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Abstract

Modelling and reconstruction of genetic regulatory networks has developed

in a wide field of study in the past few decades, with the application of ever

sophisticated techniques. This thesis looks at how models for genetic networks

have been developed from simple Boolean representations to more complicated

models that take into account the inherent stochasticity of the biological system

they are modelling.

Statistical techniques are used to help predict the interaction between genes

from microarray data in order to recover genetic regulatory networks and pro-

vide likely candidates for interactions that can be experimentally verified. The

use of Granger causality is applied to statistically assess the effect of one gene

upon another and modifications to this are presented, with bootstrapping used

to understand the variability present within the parameters. Given the large

amounts of data to be analysed from microarray experiments, clustering tech-

niques are used to help reduce the computational burden and novel algorithms

are developed to make use of such clustered data. Variability within clusters

is also considered, by developing a novel approach with the use of principal

component analysis.

These algorithms that are developed are implemented with an observed dataset

from Xenopus Laevis that has many genes but few timepoints in order to assess

their effectiveness under such limited data. Predictions of likely interactions be-

tween genes are provided from the algorithms developed and their limitations

discussed. Using extra information is considered, where a further dataset of

gene knockout data is used to verify the predictions made for one particular

gene.
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CHAPTER 1

Introduction

Genetic networks are representations of how genes interact within a cell. The

dynamics of such networks give rise to biologically observable change, such

as the ability of a stem cell to develop into one of hundreds of possible cells.

Understanding how the dynamics change can give deep insight into genetic

diseases, such as certain cancers. There has long been interest, therefore, to ap-

ply mathematical and statistical techniques to such networks in order to reduce

costly and lengthy biological experiments and help direct where resources may

be best used.

Modelling of genetic networks has its origins in the 1960s when Kauffman [1]

used simple Boolean logic to consider how genes interact with each other. Since

then, the area of modelling and reconstructing genetic networks has developed

considerably, with much active research into the area. This thesis looks at how

such networks are modelled with a focus on using biologically observed data

to recover such networks. This is developed to prediction of interactions and

applied to a real world example by developing statistical models of causal in-

teractions between genes.

Novel contributions within this thesis are presented by extending the idea from

the paper by Mukhopadhyay and Chatterjee [2] to reduce the computational

burden generated by analysing all possible pairs of interactions where there

may be many thousands of individual genes. These extensions have been im-

plented in three different way. Firstly, gene data is clustered and the centroid

of each cluster is used to assess the significance of the interaction between all

possible pairings between the clusters. As this may give rise to within cluster

1



CHAPTER 1: INTRODUCTION

variance, the second extension is to use Principal Components to take into ac-

count this variance. Finally, the results generated by the algorithms presented

are compared against gene knockout data to assess whether extra support is

given for individual actions.

This chapter explains the biological mechanisms underpinning how gene inter-

acts with each other. Further to this, the development of techniques for mea-

suring data from this biological process is explained, by the use of microarrays

and their limitations. A review of the literature is then given, which shows how

wide and varied the field has become from its origins and the range of applied

mathematical and statistical techniques that have been used.

1.1 Biological Foundations

Living organisms are highly complex systems that develop from very small be-

ginnings. A sperm may fuse with an egg to then develop into a fully grown

animal, with individual physical characteristics. These characteristics are de-

rived from genes, which act as a source of information for how the organism

should develop into many different types of cells. Stem cells, which act as mas-

ter cells to become one of many different types of individual cell, need to know

how to become one cell type over another. The genes carried within the stem

cells produce gene products that can interact with other genes. Describing the

interaction of genes is the goal of Genetic Regulatory Networks. These are di-

rected networks that describe whether a gene targets another gene in some way

and has a direct effect on one another.

1.1.1 Genes and gene function

DNA (Deoxyribonucleic Acid) is found replicated within the nucleus of every

cell. It is made out of four bases, which bind together in complementary pairs:

Adenine binds to Thymine and Cytosine binds to Guanine. These occur in

two strands which bind together in a double helix fashion with a phosphate-

deoxyribose backbone to bind each strand. A gene is a sequence of these bases

occurring along the DNA strand. Genes provide a blueprint for life by acting

as a code to produce protein products.

2
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A gene produces proteins through an intermediary product called mRNA (mes-

senger ribonucleic acid). This is similar to DNA except that the Thymine base

is replaced by another called Uracil. Genes undergo transcription into mRNA,

by which a polymerase reads the bases of the gene and makes an mRNA copy.

From these mRNA molecules a ribosome then translates these into proteins.

Triplets of such bases, known as codons, represent any of 20 amino acids (or

one of the 3 codons to signify the transcription or translation process to stop).

Proteins are strings of these amino acids which differ greatly in size and func-

tion.

Genes can interact with one another through their protein products in a highly

complex manner. Transcription factors of a gene, a type of protein molecule,

can bind upstream of a gene at given binding sites of not only their own gene

but other genes as well. There may be multiple binding sites for a gene to which

different transcription factors have the ability to bind. It is the arrangement in

which they are bound which allows the rate of transcription for this gene to

change, either increasing (activation) or decreasing (repression). This measure

of the rate of production of mRNA is termed gene expression.

At the heart of this lies an important concept within genetics termed the Central

Dogma. The central dogma states that there is a cyclical behaviour of how

genes and their products interact, whereby genes may transcribe RNA which is

then translated into functional proteins which may then interact with a gene by

binding at some promoter site upstream of the gene it is targeting. The central

dogma is not strictly true, as retroviruses may cause a direct link from RNA

back to the gene without the need for proteins. However, as this is not required

for the work within this thesis, the assumption shall be that the central dogma

holds in order to consider the biological mechanisms underpinning the use of

genetic networks. Figure 1.1 represents this cyclical nature diagrammatically.

1.1.2 Genetic Regulatory Networks

The complex interactions between genes and their protein products such as

transcription factors or signalling molecules lead to a network representation.

Within a gene network, the nodes of the network are represented by the genes

with links representing an interaction. A directional arrow from gene A to gene

3
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Figure 1.1: Model of the central dogma. The DNA part of the gene transcribes

to mRNA, which is then translated into a functional protein. Tran-

scription factors can then bind to promoter sites upstream of genes

in order to influence the rate of mRNA transcription.

B shows that the protein products translated from the mRNA transcribed by

gene A bind to the promoter site of gene B in order to increase the rate of tran-

scription of mRNA for gene B, or gene A activates gene B. A flathead arrow

shows that gene A acts to turn off the transcription of gene B, or gene A re-

presses gene B. An example is given in Figure 1.2. Where gene A is shown to

have exhibit some response on gene B, then it is said that gene A targets gene B.

Further reference to the biological foundations of genetic systems can be found

in Lewin [4] and Latchman [5].

1.1.3 Microarray Technology

When trying to reconstruct genetic networks, data needs to be extracted from

the biological experiment being performed. The two natural choices would

be to measure the abundance of the biochemical molecules present within the

sample, such as the protein products or the mRNA that has been transcribed.

Measuring protein levels is difficult due to the structure of the molecules and

the inability to accurately measure them at present. In contrast, methods for

measuring the abundance of mRNA have been well developed in the form of

4
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Figure 1.2: A genetic network for mesendoderm formation in Xenopus Laevis

as reproduced from Loose and Patient [3]. Interactions between la-

belled genes are represented by directed lines between these genes,

with an arrowhead representing activation and a flathead repre-

senting repression.

microarrays.

The amount of mRNA present within a sample is also termed the gene expres-

sion level of the gene from which the mRNA was transcribed. Microarrays can

measure simultaneously many thousands of genes. The two main types of mi-

croarrays are cDNA microarrays [6] (which typically compare two samples)

and Affymetrix [7], a chip based design which measures mRNA expression

level for a single sample in comparison to the known genes present on the

chip. A further technology Luminex, a bead based array system, is showing

promising development but we do not consider this here.

1.1.4 cDNA Microarrays

Suppose we wish to test two samples to compare their gene expressions, such

as a healthy against a cancerous cell, and to determine the variation in the ex-

pression levels of various genes. The use of cDNA microarrays is used to test

such variation.

5
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Firstly, a glass slide is spotted at known sites with half strands of DNA of

known genes for the biological system being measured. These arrays also con-

tain genes that are always present and should always be expressed with little

variation, known as housekeeping genes, in order to detect any defects within

the array. The spots are made by binding together nucleotides that are equiv-

alent to the half strand of gene DNA. Many of these strands are placed on the

array at the known spots.

Next, the samples to be analysed are prepared to extract the mRNA and a re-

verse transcriptase added to obtain cDNA (complementary DNA) strands that

can bind to the DNA strands on the array. The reference sample (e.g. a healthy

cell) is labeled with a fluorescing dye, Cy3, and the test sample (e.g. cancerous

cell) is labeled with a different coloured fluorescing dye, Cy5.

Next, the samples are amplified in solution to create more copies of the same

cDNA strands and mixed with the array slide to enable the appropriate cDNA

strands to attach, termed hybridisation. Any excess is then washed to remove

excess sample and the amount of sample that has bound to the array can be

used as a measure of how much mRNA is present within the sample.

In order to measure the gene expression level of the genes, the array is scanned

with a laser that causes the attached dye to fluoresce and the intensity of this

fluorescence can be measured. This output will then contain many spots of

varying intensity representing the amount of mRNA for each of the individual

genes that each spot represents. The image can then be read by image analysis

software to determine the relative level abundance of gene in each sample, from

the Cy3 which fluoresces green and the Cy5, which fluoresces red.

If the resulting spots are these individual colours then the gene is only activated

in one of the samples, with a gene abundant in both samples showing as yellow

in the output sample. Where the gene is not activated in neither the reference

nor the test sample, a black spot is shown.

This technique is useful where two samples are to be compared but a more

suitable microarray test for a single sample is the use of Affymetrix arrays.
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1.1.5 Affymetrix

Affymetrix chips are prefabricated arrays spotted with DNA strands ready for

hybridising from a sample [7]. In comparison to cDNA microarrays, the length

of the strands is fixed at 25 nucleotides (compared to unlimited length in cDNA

microarrays). By repeating various sections of the mRNA strands it means that

the same mRNA strand will bind to different spots on the chip. This reduces

the variance in spots being misread by combining the measurement values to-

gether. Mismatches are also used as a control.

Similar to cDNA microarrays, the Affymetrix chip is scanned with a laser to

read the levels of expression for each of the known spots. Using statistical tech-

niques, the expression level can be measured from a combination of the perfect

matches and the mismatches for each gene on the array. Details of how this is

calculated can be found in Irizarry et al [8].

1.1.6 Reducing Error in Measurement

As microarray measurement is dependent on human and machine interaction

in the process, there are potentially many sources of noise. This can come from

production of arrays themselves, where printing tips to spot the nucleotides

onto the arrays may be slightly out of place, to the sample production and then

scanning errors. A more complete list of potential sources of error can be found

in Zakharkin et al. [9].

Once the array has been scanned and the array image produced, the raw ex-

pression level can be obtained by image analysis software. In the case of cDNA

microarrays, the intensity of the signal at each spot is measured. With the

Affymetrix procedure of having repeats and mismatches, these are performed

by combining these in a meaningful way.

In order to reduce the noisiness of the signals produced in obtaining this raw

expression level, normalisation can be applied which compares the gene expres-

sion levels of the genes with that of the housekeeping genes. This has evolved

into a vast field of study in its own right and there are many excellent sources

of reference [10], [11], [12], [13], [14], [15].

Once normalisation has been applied, these normalised signal measurements
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are often log-transformed and these log-normalised values used as measures

of the expression levels for the genes in the samples. There exists much com-

mercial and free software to perform normalisation to produce a useful dataset,

such as BRB-Arraytools [16]. This data can then be analysed in order to recon-

struct genetic networks.
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1.2 Literature Review

Genetics and the understanding of the interplay between genes developed con-

siderably in the mid part of the 20th century. Given the network represenation

of such genetic interactions, applying mathematical techniques was a natural

progression. The first models were developed by Kauffman in the 1960s [1] by

using Boolean logic and Boolean functions to represent the nodes of a network

as genes and understand how the dynamics of a network change depending

on choice of function and state of the overall network. Such simple models

exhibit stability properties, such as steady states, notably through the applica-

tion of certain canalysing functions that seek to explain behaviour on a few key

nodes within the network [17]. The nature of binding and unbinding transcrip-

tion factors to promoter sites of a gene is inherently stochastic; furthermore, the

transcription rate of a gene into mRNA varies greatly and such activity levels

are too simplistic to be represented by simple states of being on or off. By ex-

tending the Boolean model to consider discrete levels of activity of a gene leads

to a more accurate biological representation of the network state, as in [18].

The use of Boolean functions also does not take into account the strength of

each individual interaction between genes which may vary greatly. Probabilis-

tic Boolean networks parameterise the interaction between nodes, as in as in

Dougherty and Shmulevich [19], Ivanov and Dougherty [20] and Shmulevich

et al [21]. Like their Boolean counterparts, they exhibit steady state properties

as shown by Shmulevich et al [22].

Gene activity is not a discrete process with the expression level of a gene vary-

ing continuously. By using a continuous scale, ordinary differential equation

models developed using ideas from neural networks, whereby the expression

level of a gene is dependent on the expression levels of genes targeting it and

parameterisations of the interactions. As with ODE systems, and in comparison

to the discrete level models, there exist steady states. These ideas are considered

by Weaver [23] and Vohradsky [24] with a further general overview of some of

the popular deterministic models is given in Wessels et al [25] , deJong [26] and

Smolen et al [27].

One of the best applications of genetic networks is at the developmental stage,
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such as where as stem cell undergoes a series of decisions in order to specify

what cell type it becomes. This set of decisions, or the lineage of the network, is

based on the change of transcription levels of key genes at each decision stage.

Initially, where low levels of functional proteins are present, it is difficult to

predict which choice of fate exists before the decision is made. This biological

process has been studied in haematopoietic stem cells, as in Laslo et al [28] and

modelled by Roeder and Glauche [29] for which Loose et al [30] describe the

developmental network.

The lambda phage repressor system is a simple two gene model widely stud-

ied due to the low number of nodes required, such as by Ackers et al [31]. This

system switches between different steady states due to the two different bio-

logical processes in play, such as in Cinquin and Demongeot [32]. Santillan and

Mackey [33] show further that one steady state is more stable than the other.

Other such bistable systems are considered by Lai et al [34] and Deineko [35]

for a mammalian cell cycle.

Understanding attractors and steady state analysis of genetic networks is im-

portant as they can be considered as representations of cell fate and determi-

nation of cell type, originally suggested by Kauffman [1] and discussed further

in Huang et al [36]. Given that functional proteins govern cell function due to

their relationship with mRNA from the central dogma, models have been pro-

posed which consider the expression level of proteins as well as of mRNA, such

as by Hatzimanikatis et al [37] and Karmakar et al [38]. Due to the difficulties in

measuring protein levels, there is limited scope for studying such protein based

models. However, as the experimental techniques are improved, this will be of

increasing interest.

There is a wide range of software available for simulating such ODE models,

both commercial and freeware. Some examples include Genetic Network An-

alyzer by deJong [39] and Genexp [40] which implements the model proposed

by Vohradsky [24].

Ordinary differential equation models are useful for observing the dynamics

of a network but do not take into account the inherent stochasticity of the un-

derlying physical system that binding and unbinding presents, with such ori-

gins considered by Kepler and Elston [41]. The first considerations of adding
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stochasticity into models of genetic networks was given by McAdams and Arkin

[42],[43] in application to the lambda phage system. By considering how the

noise in these systems is controlled, such as in Raser and O’Shea [44],[45],

stochastic models can be developed that provide a more accurate representa-

tion of the genetic networks.

One way of adding stochasticity is by discretisation of the ODE systems with

noise added by the use of stochastic jump processes between timepoints, such

as by Tian and Burrage [46]. This requires the time between steps to still be con-

sidered. A continuous version can be further improved by the use of stochastic

differential equations such as in Rao and Arkin [47] or Chen et al [48]. Given the

extension of the model to include this stochasticity, the properties of the models

can be considered as with the deterministic models.

The bifurcation of the lambda phage system is considered by Arkin, Ross and

McAdams [49] and in a similar system by Toulouse et al [50], with stochastic

oscillations in a more general framework considered by Bratsun et al [51]. How

the noise is structured is of interest in its own right, such as by Blake et al [52]

and Pedraza [53]. The variation in fluctuations by altering the amount of noise

present in a simple system is studied by Chen and Wang [54] and Chen et al

[55].

Noise may be viewed in the frequency domain, such as by Simpson et al [56],[57]

or in a multivariate setting, as in Tomikaa et al [58]. These views of the under-

lying structure of noise and how it affects the results can be split into intrin-

sic an extrinsic components, where noise within the system and external noise

are considered as individual noise systems, as by Swain et al [59]. This inter-

nal noise is considered by Tao [60] for a simple two gene network and then

extended to add external noise [61], with Thattal and Van Oudenaarden [62]

modelling just extrinsic noise. How this split of internal and external noise af-

fects cell fate is considered by Maamar et al [63] for Bacillus subtilis.

Due to the biological realism of stochastic models, there has been a wide variety

of literature produced, with De Jong having produced a comprehensive bibli-

ography of the wide range of deterministic and stochastic models [64] and a

more technical consideration of the model details and their use [26]. Of course,

such models will have limitations as in Kim and Tidor [65]. Constructing the

networks themselves also presents issues, as explained in Blais and Dynlacht
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[66], with Bornholdt [67] widening this further to the context of dynamical sys-

tems. Francois and Hakim [68] consider design issues both for deterministic

and stochastic models. The book by Bower and Bolouri [18] provides a worth-

while reference to the range of models for genetic networks, with a good overall

view of biological networks as objects for modelling given in Alon [69].

Most expression data obtained from experiments is based on multiple cells. As

experimental procedures develop, the use of single cell data becomes feasible,

although expression levels at the individual cell level have already been studies.

Gibson [70] first considered modelling activity within a single and the measure

of of single cell gene expressions, also considered by Elowitz et al [71], Isaacs et

al [72], and Rosenfeld et al[73]. As before, the noise within a single cell should

be considered, as in Ozbudak et al [74], with Zhang et al [75] exploring the

binary decisions present and their effect within the single cell.

Instead of modelling the dynamics of large scale networks possibly containing

thousands of genes, expression dynamics for subnetworks can be considered.

The smallest such building blocks, which are repeated throughout larger net-

works, are the motifs as described by Milo et al [76]. Of particular interest in

genetic networks is the feedforward loop described in Dekel et al [77] and Man-

gan et al [78]. Detecting these motifs, as opposed to larger scale structures, is

considered by Keles et al [79] with Ingram et al [80] demonstrating that motif

structures alone do not determine overall cell function. Similarly, widening the

structure to larger subnetworks of the full network can show that certain parts

may be more important to the network dynamics than other parts [79]. The use

of such motifs in simple network is considered by Shen-Orr et al [81] applied to

a system which governs e. coli.

Differential equation approaches, both with and without stochasticity consid-

ered, measure gene expression on a relative, continuous scale. However, in-

dividual molecules are present within a sample so modelling at the molecular

level can be implemented with the use of stochastic processes. These stochastic

simulation algorithms relate back to chemical master equations [18] which have

been widely used to model chemical reactions and the number of molecules

present. An equivalence to genetic networks exists, where biological molecules
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are used instead of chemical molecules [82].

The Gillespie algorithm, as developed by Gillespie [83],[84], provides an equiv-

alent to a master equation which may not be easy to solve. As they are stochas-

tically equivalent, the Gillespie algorithm is widely used in practise for mod-

elling chemical system. This original algorithm is inefficient, so successive re-

finements have been proposed, such as by Gibson and Bruck [85]. Large scale

approximations can be made via the use of Langevin and Fokker-Planck equa-

tions [86], [87], [88],[89].. Gillespie et al substantially improved the speed of

calculation based on approximation with the use of tau-leaping [90], [91], [92],

[93], [94], where the timestep between reactions is not fixed and many reac-

tions may occur. Problems may occur if the number of molecules is allowed to

go negative, which is rectified by binomial approximations by Cao et al [95].

Similarly, efficient choice of timestep needs to be considered [96].

Reactions may occur at different timescales, with recent developments exploit-

ing such slow and fast timescales. Purely slow dynamics are investigated by

Bundschuh et al [97] with Cao et al [98],[99], and Burrage and Tian [100] ex-

tending the Gillespie algorithm to such multiscale reactions. This multiscale

Gillespie algorithm is investigated for steady state analysis by Rawool and Ven-

takash [101]. As an extension, Puchaka and Kierzek [102] combine by deter-

ministic and stochastic regimes, with Vasudeva and Bhalla [103] using this ap-

proach to extend the Gibson and Bruck algorithm. Concise overviews of these

stochastic simulation algorithms and their limitations are given by Samad et al

[104] and Turner et al [105].

The application of stochastic simulation algorithms to genetic networks has

been used for various biological systems, such as the lambda phage switch by

Salis and Kaznessis [106] and E.coli by Rodriguez et al[107], with Tuttle et al

[108] further considering oscillations within this system. Parameter variation

for a simple network is explored by Kierzek et al [109]. Using time series data

to estimate parameters is considered by Reinker et al [110] and Tomshine and

Kaznessis [111], with Wu et al [112] using state space representation to perform

this.

As seen in the literature presented so far, a wide variety of techniques has been

applied to modelling genetic networks and with such interest in the area, many
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software packages have been developed for simulation. Some examples in-

clude Biodrive [113], SynTREN [114], SGNSim[115] which implement stochas-

tic algorithms with BioNetS[116] and STOCKS [117] implementing the Gillespie

algorithm.

These deterministic and stochastic models are used to model genetic networks

in order to understand their dynamics and also to generate artificial data based

on known network structures. The reverse view to this is using data obtained

from microarrays in order to recover the original network that such data came

from. Many of the approaches used for modelling have analogues in network

recovery.

Within the Boolean framework, this is considered by Akutsu et al [118],[119]

and implemented in the REVEAL algorithm [120].Cho et al [121] using genetic

programming and D’Haeseleer et al [122] applying clustering ideas. The use

of scoring function for the likelihood of interactions present between nodes is

implemented by Gat-Viks and Shamir [123], with Lahdesmaki et al [124] using

a consistency based approach.

Differential equation based models are used in an iterative scheme as a means

of identifying network structure by Gadkar et al [125]. Using time series data

and maximum likelihood methods, De Hoon et al [126] recover ODE models

for networks. A perturbation based approach is used by MacCarthy et al [127]

for a discretised ODE system, and also by Pe’er et al [128] for inferring sub-

networks. A comparative appraoch is used by Ronen et al [129] by assign pa-

rameter values to known networks. Such ODE model recovery is implemented

in many software applications such as ASIAN [130], BIOREL [131], EXAMINE

[132] and SPLINDID [133].

A widespread and popular approach for reconstructing genetic networks is the

use of Bayesian networks, which represent the proabilistic state of network de-

pending on directed graphical structure and data at each node, with Beal [134]

and Bernard [135] providing overviews and reconstruction in stochastic net-

works considered by Wilkinson and Boys [82]. Dynamic Bayesian networks

introduce the use of directional interactions and data changing over time, such

as by the use of time series data for each node with many studies on their appli-
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cation to genetic networks such as by Eddy et al [136],Fridman et al[137], Ching

et al [138], Chu et al [139], Datta et al [140], Nariai et al [141] and Spirtes et al

[142]. Sensitivity within Bayesian networks can alter the specificity in a net-

work, as shown by Husmeier [143]. Lahdesmaki et al [144] also show that these

dynamic Bayesian networks exhibit a correspondence with Bayesian network

models.

A variety of approaches based on Bayesian networks have been studied. Imoto

et al [145], [146] use regression based techniques, whereas Missal et al [147]

work with incomplete data that may not be sampled regularly or missing. Noise

within such networks can also be considered , as by Streib et al [148]. Motif de-

tection is considered by Tamada et al [149]. Yoo et al [150] use gene knockout

data for network inference, where certain genes are switched off in order to

understand how the dynamics change without their presence.

As with the stochastic models, these techniques have been applied to specific

biological systems. The E.coli network is reconstructed by Ong et al [151] with

Perrin et al [152] using an Expectation-Maximisation approach to the same sys-

tem. Woolf et al [153] look at an embryonic cell fate network. An overview and

comparison of some of the variations of Bayesian network methods for recon-

struction of genetic networks is presented in Werhli et al [154].

Bayesian networks are part of a larger class of learning algorithms, with other

such algorithms also used such as in Li and Yang [155]. Genetic programming

and neural networks are used by Motsinger et al [156] with Sokhansanj et al

[157] using fuzzy neural networks and exhaustive search algorithms. Scoring

based algorithms are used by Nacu et al [158] and also by Nemenman [159] in

the context of information theory. External signal perturbations to understand

the robustness of network estimates is given by Lipan and Wong [160] and Teg-

ner et al [161]. A Gibbs sampler approach is studied by Brynildsen et al [162].

Shehadeh et al [163] use a slightly different approach of considering the density

function of mRNA expression functions in different types of genetic network

information to build up a dictionary of functional associations from which true

data can be compared.

Given that networks are based on association of genes, clustering techniques
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have become useful to identify such groups of genes, such as by Alon and Broad

[164], as those with similar expression levels over time may have functional re-

lationships [165],[166]. Similarly, the use of clustering has become an impor-

tant technique to reduce dimesnion where there may be thousands of genes

to analyse and compare. Classification algorithms in genetic networks have

been considered by Liu et al [167] and Meltzer et al [168], with an extension

via perturbations for prediction by Schreiber and Baumann [169]. Clustering

techniques have been combined with other approaches such as spectral meth-

ods, by Subramani et al [170], graphical modelling, by Toh and Horimoto [171],

principal components, by Yeung and Ruzzo [172], and information theory, by

Zhou et al [173].

Obtaining data for inference of genetic networks comes from microarray ex-

periments which measure the expression levels of the genes present within the

system being studied. Normalisation techniques convert raw data in the usable

data by seeking to eliminate noise within the samples, with many references

[10], [11], [12], [13], [14], [15], [174], [175]. The normalisation procedure used

will effect the outcome of the data, as explored by Qiu et al [176], with Za-

kharkin et al [9] discussing the origins of the noise. Two channel arrays depend

on ratio based methods for comparison between the two samples with a con-

sideration of the reference level made in Chen et al [177], whereas Affymetrix

have developed normalisation techniques based on mismatches, with Irizarry

et al [8] discussing some of the most common.

Identifying genes that are differentially expressed, where the expression lev-

els shown are statistically significant, are of interest to determine which genes

are most important with a sample and is explored by Storey et al [178] and

Li et al [179]. These ideas are developed by Liang et al [180] who use boot-

strapping , which is also used by Ma [181] in combination with other statistical

techniques. A variety of the methods used for identifying these differentially

exrpessed genes is given in Pan [182] and Park et al [183]. Periodic expressed

genes, such as those which exhibit circadian rhythms in relation to the cycle of

a day, are considered by Wichert et al [184]. The use of maximum likelihood

methods applied to these circadian genes are considered by Bakewell and Wit

[185].
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Instead of trying to reconstruct a whole network or even a subnetwork, such

as the approach taken by Bayesian networks, pairwise interactions between all

possible pairings of genes can be studied. Correlation measures between genes

have been studied along with partial correlation measures, which conditions a

correlation on other measures, such as by de la Fuente et al [186] and Schafer

and Strimmer [187],[188]. Conditional correlations are used by Rice et al [189]

with Wang et al [190] extending this to considering the use of graphical models

in particular. This can be extended to multivariate methods for pairwise inte-

actions, such as matrix methods akin to multivariate linear modelling. Gao et

al [191] use this approach for mRNA and protein data, with Ghosh [192] using

singular value decomposition.

For such large scale interactions between many genes, the use of computational

tools to reduce calculation time are increasingly important. One of these tools

is to use parallel computing [193] with Salis et al [194] using this for a large

scale networks based on stochastic simulation algorithms and Schwehm [195]

applying parallel techniques to large stochastic models. Furthermore, public

databases have been created from microarray experiment data described by

Penkett and Bahler [196] with ArrayExpress as an example [197]. Such data

is usually in the form of time sampled data, with time series analysis used to

analyse these.

Time series analysis of recovering genetic networks is considered by Bansal et

al [198], Bar-Joseph [199], Bay et al [200] and Bickel [201], with multivariate

time series models increasingly being used to not only detect interactions but

also estimate parameters. The books by Hannan [202], Lutkepohl [203] and

Priestley [204] provide a comprehensive overview of multivariate time series.

Identifiyng time series models is possible by the use of information criteria,

such as Akaike’s Information Criterion [205] and Schwarz’s Bayesian Criterion

[206], with Kadilar and Erdemier [207] comparing these to show an optimal

performance of the BIC in multivariate time series.

Estimating parameters in multivariate time series models is also necessary for

inference purposes. Specific classes of time series models are considered by

Bagarinao and Sato [208] and Mauricio [209], with software provided for these
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purposes, such as that of Schneider and Neumaier [210] for least squares esti-

mation. A particular class of time series mdoels is applied to gene expression

data in Fujita et al [211].

Causality is a measure of how one variable may affect and frequently used in

economic data modelling. These have an arrow of time associated, whereby one

variable may influence another but not the other way round, which naturally

leads to their application in recovering genetic networks. Time series models

looking at the general change in trend, such as in He and Zeng [212], act as a

precursor to more formal statistical models. Granger causality in particular is a

statistical technique for quantifying the influence of one variable upon another

from time series data of each [213], [214], with Chatterjee and Mukhopadhyay

[2] applying this to recovering genetic networks.

Experimental techniques are limited by financial and time resources so infer-

ence may typically be based on short range time series. Bootstrapping methods,

developed by Efron [215], [216], are resampling techniques used to infer statis-

tical properties of parameters where the data is limited. Their use in time series

has been developed recently [217] so are of increasing interest to inference for

microarray time series analysis.

This review of the literature shows that a wide range of mathematical and sta-

tistical techniques can be applied to modelling and recoveing genetic networks,

from simple Boolean models to more sophisticated stochastic models. This list

is by no means exhaustive, with frequent papers in the general area of mod-

elling and recovering genetic networks appearing regularly in leading journals

such as Bioinformatics.
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Modelling Genetic Networks

By reviewing the literature covering the area of modelling and reconstructing

genetic networks, it is clear that there are many approaches that have been de-

veloped and a wide range mathematical techniques applied in order to improve

the models. This chapter looks at the origins of modelling genetic networks,

from a simplistic Boolean approach through continuous ODE models to more

sophisticated approaches taking into account the stochastic nature of the un-

derlying biological system. Key biological features may be observed in such

models.

2.1 Boolean Models

In the 1960s, Kauffman [1] used Boolean logic in order to model genetic net-

works. These Boolean networks assign values to each node of the network, repre-

senting a gene in the network. If a gene is switched on and transcribing mRNA,

it takes the value 1, with the value 0 assigned to a gene that is switched off. By

the use of Boolean functions, which combine the inputs to a gene, the state at

the next timestep can be calculated. A steady state, or attractor, can be found

for the Boolean network. Kauffman suggested that these steady states are rep-

resentative of cell types.

In order to understand the dynamics of Boolean networks, small networks con-

sisting of a few nodes, or motifs, are studied.
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2.1.1 Motif example

Let Xi
t be the state of gene i for i = 1, ..., n at some timepoint t. Under a Boolean

model, the state of the gene at time t is either 0 if the gene is not expressed,

or 1 if the gene is expressed. For the network in Figure 2.1, suppose there are

two input genes A,B targeting a two output genes, C, D. Furthermore, let A be

activating C and B repressing, and A repressing D with B activating. Further,

A and B are mutually repressing, with the dotted lines representing possible

external outputs.

Figure 2.1: Four node motif with two input and two output genes

Consider a smaller subnetwork from this motif, whereby gene A is activating

C and B repressing it. The attractor values are dependent on the choice of in-

put and the Boolean function used to combine the inputs. For this example,

the three node network has 16 possible choices of Boolean function. Kauffman

argues that out of these choices, only one is biologically feasible, which would

correspond to the state observed in a real biological system.

In this network, the presence of a repressor (B) which is expressed will always

result in the output node (C) being switched off. By having the activator (A)

expressed, and the repressor (B) not expressed, the output node (C) will be

expressed, as the logic table in Table 2.1 shows. This is equivalent to the logic

statement

20



CHAPTER 2: MODELLING GENETIC NETWORKS

C = A&¬B

A B C

0 0 0

0 1 0

1 0 1

1 1 0

Table 2.1: Logic table for three gene motif

2.1.2 Between input interference

Within a biological network, genes regulating each other will lead to different

output states depending on the dynamics of the interaction. For this simple 3

node example let the two input genes A, B be mutually repressing; then the

output will eventually be switched off. Table 2.2 shows the initial states of A

and B at time t with the output (C) and then at timestep t + 1 with all the genes

are switched off.

A B C A B C

0 0 0 0 0 0

1 0 1 0 0 0

0 1 0 0 0 0

1 1 0 0 0 0

Table 2.2: Three gene motif with inputs mutually repressing.

Clearly this is not representative of what is observed biologically, as many

genes would end up switched off and there would be no observed biological

development. This simple 3 node network alone is highly insufficient to truly

represent a large scale biological network. What it does show, however, is the

competing dynamics between nodes are affected by the choice of network in-

teractions. Other inputs in a larger system will have an effect and so will the

choice of function used to represent the dynamics.
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Certain functions provide a means to fully determine the steady state. Such

canalizing functions, as suggested by Kauffman [17], uniquely determine the

steady state based on the current state of the system. This means that regardless

of the inputs, the steady state can always be found and is shown to always be

stable.

2.1.3 Extending the Boolean approach

Given a set of inputs, applying a Boolean function as a ’rule’ to determine the

outcome and then finding the output state is simple to simulate and can be eas-

ily extended to large scale Boolean networks. However, it is also too simplistic

and not particularly accurate from a biological viewpoint given that genes fluc-

tuate in their ability to regulate and cannot just be viewed as being switched on

or off.

Within a pure Boolean framework, the inherent stochasticity of the biological

system is not accounted for, as the Boolean dyanmics are wholly deterministic

dependent on the Boolean functions and their initial conditions. As opposed

to considering just Boolean functions to represent network dynamics, proba-

bilistic Boolean networks add a probabilistic interpretation by parameterising

the interactions between nodes[19], [20],[21]. As with a simple Boolean model,

they exhibit steady state properties[22].

Another approach taken to extend these Boolean networks is to no longer con-

sider just an on or off state of the gene but to quantify it into multiple levels of

expression depending on how active a gene may be [18]. By taking more and

more levels this approaches a continuous representation of gene activity, which

is more biologically accurate as the level of gene activity may be measured. This

continuous representation is now considered.

2.2 ODE Models

Whilst Boolean networks and their multilevel refinements have simple dynam-

ics that are easy to model, they lack biological realism. This is not only due to

the simplistic state of expression that they exhibit, but also due to the inherent
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stochastic nature of the underlying biological mechanism of binding and un-

binding of transcription factors to the promoter sites of genes. Furthermore,

assigning values to each node representing a gene as switched on or off does

not allow for the wide variation of expression levels of these genes but also for

the interactions between genes and how the strength of these interactions are

quantified.

A continuous range of values would allow the model greater flexibility. Instead

of assigning Boolean values of 0 or 1, the range of values of the expression level

of the gene may be in the closed interval [0, 1], with 0 still representing a fully

switched off gene and 1 a fully switched on gene, comparable with the Boolean

model.

2.2.1 Neural Network Model

The largest class of ODE models used in modelling genetic networks are based

on neural networks [23], [46], [25], [24],[218]. Here, the current state of the in-

puts to a node, combined with weighting factors representing the strength of

interaction, are combined to produce a value for the level of expression at that

node. The following model is based on that in Tian and Burrage [46].

Let U(t) = (u1(t), ..., uN(t)) be a vector representing the gene expression level

at time t across N genes within a network. Interactions between genes i and j

are characterised by a weight matrix w where wij represents the weight of inter-

action of gene j on gene i and

• wij > 0 gene j activates gene i

• wij < 0 gene j represses gene i

• wij = 0 gene j has no interaction with gene i

The total regulatory input ri for gene i is given by

ri(t) =
N

∑
j=1

wijuj(t) + αi (2.2.1)
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which represents the weighted linear sum of inputs to gene i. αi is a parameter

representing any external inputs that may not be described by the rest of the

model. This may be useful when considering only part of a full network yet

some parameterisation is required for those interactions not shown or for some

external signal that may not be part of the network.

In order to normalise the regulatory input to the [0, 1] scale, the normalized tran-

scriptional response is given by application of a sigmoid function

gi(t) =
1

1 + e−ri(t)
(2.2.2)

Two further parameters are included within the model. The maximal expression

level for gene i, si, is a rate parameter for proliferation of proteins produced by

that gene. As biological molecules will decay over time, a degradation rate pa-

rameter is included as well, di.

The neural network model gives the expression level of gene i by the differential

equation

dui

dt
= sigi(t)− diui (2.2.3)

This system of N differential equations can then be solved to produce expres-

sion profiles (gene expression levels over time) and the dynamics observed.

Instead of just modelling expression levels of genes themselves in the cells, the

expression levels of RNA can be included to allow for both transcription and

translation effects. An example of this setup is included in Tian and Burrage

[46]. Here the expression of both mRNA molecules r = (r1, ..., rN) and trans-

lated proteins (transcription factors) p = (p1, ..., pN) are modelled in the same

fashion as above with a pair of coupled ODEs

dri

dt
= s1i f (p, w1)− d1iri (2.2.4)

dpi

dt
= s2ig(r, w2)− d2i pi (2.2.5)
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These models are not currently widely used in practise, due to the difficulty of

measuring levels of proteins in practise. As a consequence, further analysis of

this class of models is not considered and solely the expression levels based on

mRNA is used.

2.3 Stochastic Models for Gene Expression

Biological systems at the molecular level are inherently stochastic, with parti-

cles moving in a random fashion and similarly binding and unbinding at target

sites on the DNA. The differential equation models previously therefore do not

accurately reflect this stochastic nature and so models need to build in random

fluctuations within the gene expression levels. The paper by McAdams and

Arkin [43] originally introduced this notion which has led to many ways to de-

scribe stochasticity in genetic networks

This section looks at some of the ways in which stochasticity can be built into

the model. Discretisation of the differential equation model to build up to a

stochastic differential equation based approach is developed. A different in-

terpretation is then considered by using the individual numbers of molecules

present within the system in the development of stochastic simulation algo-

rithms.

2.3.1 Stochastic Neural Networks

For the differential equation models in equation 2.2.3, a first order discretisation

can be written as

ui,n+1 = ui,n + sigi(tn)hn − diui,nhn (2.3.1)

where ui,n = ui(tn) and the stepsize is hn = tn+1 − tn.

By introducing fluctuations into the update state, a stochastic difference model can

be obtained. Three variations can be described as given in Tian and Burrage

[46].
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• Poisson Models ui,n+1 = ui,n + Poi(sigi(tn)hn)− Poi(diui,nhn)

where X ∼ Poi(λ) is sampled from a Poisson distribution with mean and

variance λ

• Exponential Models ui,n+1 = ui,n + Exp(sigi(tn)hn)− Exp(diui,nhn)

where X ∼ Exp(λ) has mean λ and can be sampled as x = −λ logu for

u ∼ U(0, 1)

• Normal models ui,n+1 = ui,n + sigi(tn)(hn + Ni1)− diui,n(hn + Ni2)

where Nik ∼ N(0, hnσ2
ik)

• SDE Model An equivalent formulation of the Normal model is dui =

(sigi(t)− diui)dt + σi1sigi(t)dWi1 − σi2diuidWi2

For each of these approaches, the update step is now no longer determinis-

tic and is allowed to change under some distributional assumption, with the

Poisson and Exponential models requiring a single parameter and the Normal

model using a mean based change in the step with a variation in the fluctua-

tion from the standard deviation parameter. The SDE model is provided as a

limiting case of the Normal model.

2.3.2 Application

To show how these stochastic models compare, consider a simple three gene

model where A activates B, B activates A and C, and C represses A, as given

in Tian and Burrage [46]. Consideration of the parameters however is required.

What is shown is that under certain choice of parameter, a cyclical pattern of

expression can be observed, as in Fig 2.2.

This shows that this cyclical pattern expected from the differential equation

model is replicated to varying success with the exponential and poisson stochas-

tic difference models, with the poisson model performing well.

A more general example is now given, based on the four node network as given

in Figure 2.1 Here there are two input genes which repress one another and self-

regulate, and two output genes, which are regulated by one of the input genes
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Figure 2.2: A simple 3 gene motif expression pattern under a differtial equa-

tion, exponential and poisson model respectively. With the same

parameter values (scaled appropriately for the Poisson model) the

cyclical pattern is visible for the difference model. The effect of

stochasticity becomes visible in the poisson model but the cyclical

pattern is still visible. This cannot be said for the exponential model

where this noise distorts any detection of the original cycle.

and repressed by the other. In order to compare various properties of the model,

the following parameter values are assigned to the model, as used in Equations

2.2.2 and 2.2.3.

w =


10 −10 0 0

−10 10 0 0

10 −10 0 0

−10 10 0 0

 , s =


0.7

0.7

0.8

0.8

 , b =


0

0

4

5

 , d =


1.0

1.1

1.0

0.8

 (2.3.2)

where regulatory input may now be written in vector form as r = wu + b.

By way of example, the four node network given in Fig 2.1 is used with two in-

put genes targeting two output genes. Figure 2.3 shows the expression levels for

the four genes under the deterministic, difference model, exponential and pois-

son stochastic models. This assumes that genes A and B start fully expressed

and genes C and D are not expressed at all initially so that u0 = [1 1 0 0].

These graphs show that noise can affect the dynamics of the modelling of the

27



CHAPTER 2: MODELLING GENETIC NETWORKS

Figure 2.3: For the given 4 gene motif, graphs showing the outputs under the

deterministic, difference, exponential and Poisson models respec-

tively.

motif. Under a Poisson model, as the mean and variance are the same, the

overall dynamics are comparable to that of the original differential equation

model. In the exponential case, where the variance is now the square of the

mean, the noise creates a less discernible figure in comparison to that of the

other models.

2.3.3 Characterisation of initial conditions

Within the stochastic framework, due to fluctuations occurring, the same initial

conditions may lead to different competing states depending on the initial be-

haviour within the model. Figure 2.4 shows that for the four gene motif with

the same set of initial conditions, two different outcomes are shown for the

stochastic Poisson model. This is in stark contrast to the deterministic models,

where the longer term behaviour is solely dependent on the initial conditions.

Consideration therefore needs to be given when using such stochastic models

for genetic networks.
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Figure 2.4: For the same initial condition for the two input-two output gene

motif, stochastic behaviour in the model may lead to different

longer term behaviour. Two simulations from the same initial con-

dition are shown with two different long term states.

2.3.4 Observed Biological Features

In the corresponding biological system cell type is determined by which out-

put gene is more strongly expressed. This binary decision corresponds to the

notion of two steady states, where each exhibits greater expression of one of

the output genes. This feature of is consistent with Kauffman’s hypothesis [1]

that an attractor in the Boolean network model corresponds to a particular cell

type and helps to validate the model. For the four node motif, Figure 2.5 shows

two different steady states depending on the initial conditions of one of the in-

put genes, gene A. Here a critical value, α, is given for the value at which the

change in steady state occurs.

Within the stochastic framework, this steady state phenomena is also observed

although there may be longer term fluctuations. As in the previous section, the

same initial conditions may also give rise to different steady states, as seen in

Figure 2.4.

As stem cells differentiate, they become one type of cell from all possible cell

types available. This fate can be related to the expression levels of output genes

in the steady state of the system after decision via a pathway. These expression

levels may appear to be very similar at the same stages of differentiation, and

hence it is difficult to uniquely determine the ultimate fate of the stem cell. This

similarity in expression at low levels is termed multi-lineage priming.
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Figure 2.5: Steady state for initial value of gene A above and below critical

value α = 0.976 respectively, under the deterministic model with

initial given parameter values.

This phenomenon can be observed within the deterministic model at short

timescales (taking care to note that the timescale is arbitrary depending on

choice of parameters). It is observed as the similarity in expression between

output genes before a bifurcation occurs and hence a decision on fate is made.

Fig 2.6 illustrates an example, in both the deterministic and stochastic setting.

In both cases, the levels of the output genes are shown at a similar rate before

one wins out against the other.

Roeder & Glauche [29] consider this process for the GATA-1 and PU.1 genes

in haematopoietic stem cells, where the priming behaviour is modelled as a bi-

furcation in a deterministic model. The results show that such a deterministic

model suitably provides a measure for this biologically observed feature. One

particular limitation within this model is that it is purely deterministic and ne-

glects the inherent stochasticity of the biological system. With the results shown

in Figure 2.6, this shows that the stochastic based models can exhibit priming

behaviour and so themselves do not lose the biological realism.

Overall, with both the competing dynamics of steady states and long term be-

haviour of the systems and the short timescale behaviour of multilineage prim-

ing, these ODE based models and their stochastic improvements are well suited

to modelling genetic networks.
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Figure 2.6: Multi-lineage priming behaviour shown for increasing weights

in the deterministic model. The output genes are initially fully

switched off and can be seen to increase at approximately the same

value for a certain time period. The weight of interaction is in-

creased from top to bottom, left to right, and shows the decrease in

timespan over which this behaviour occurs.

2.4 Stochastic Simulation Algorithms

The previous section modelled gene expression as a normalised scaling of con-

centration levels of molecules within a sample. This arbitrary and comparative

measure does not take into the individual molecular level modelling within

the cell. This section looks at a different method of modelling the amount of

molecules in a system by looking at the individual molecule numbers present.

2.4.1 Master Equation

Consider a cell containing a single DNA strand to which both activator and re-

pressor transcription factors can bind. Initially let there be p mRNA molecules

of gene A and q mRNA molecules of gene B and each of these can bind and

unbind to a pair of promotor sites of a gene G located on the DNA strand. Sup-

pose that gene A activates gene C and gene B repressed gene C. As a simplified

model, any other cellular phenomena such as degradation or dimerisation of

molecules is disregarded and further let the binding and unbinding be singular
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events that do not occur at the same time. The DNA strand can then be in one

of four possible states:

• State 0 No binding.

• State 1 Activating molecule bound.

• State 2 Repressing molecule bound.

• State 3 Both activating and repressing molecules bound.

This relates to the initial Boolean logic models with a set of logic input states

for activator A and repressor B (00,10,01,11) respectively, with 0 representing

an unbound state and hence the gene being switched off and 1 representing the

gene switched on and transcribing mRNA.

The model is parameterised by a reaction coefficient for binding and unbinding

of each molecular species. Then over a small time, ∆t,the probability of a bind-

ing is k{#A}∆t, where k is the reaction coefficient for binding and {#A} is the

number of molecules of type A present in the cell. Similarly, for the unbinding

of a molecular species, the probability is j∆t with j the reaction coefficient for

unbinding.

From this a Markov Chain model can be set up, where the future state depends

only on the current state of the system. Let kij be the reaction coefficient for

moving from state i to state j. Over a timestep ∆t, where P(k, t) is the probabil-

ity of being in state k at time t, and supposing there are p molecules of molecular

species P and q molecules of molecular species Q then

P(t + ∆t) =


P(0, t + ∆t)

P(1, t + ∆t)

P(2, t + ∆t)

P(3, t + ∆t)

 = AP(t) (2.4.1)

where
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A =


1− pk01∆t− qk02∆t k10∆t k20∆t 0

pk01∆t 1− k10∆t− qk13∆t 0 k31∆t

qk02∆t 0 1− k20∆t− pk23∆t k32∆t

0 qk13∆t pk23∆t 1− k∆t− k32∆t


Taking the limit as ∆t→ 0, then

dP
dt

= lim∆t→0
P(t + ∆t)− P(t)

∆t
= BP(t) (2.4.2)

where

B =


−pk01 − qk02 k10 k20 0

pk01 −k10 − qk13 0 k31

qk02 0 −k20 − pk23 k32

0 qk13 pk23 −k31 − k32

 (2.4.3)

Here, B is a Q-matrix representing a continuous time Markov Chain. This Mas-

ter Equation, as it is termed, generally cannot be solved explicitly. However,

the equilibrium distribution is of considerable interest, which can be shown to

exist and is unique, where dP
dt = 0 leading to solving BP = 0. It is known that

B has a zero determinant and, as such, has a zero eigenvalue so the solution for

P(t) is the corresponding eigenvector. A full derivation can be found in Bower

and Bolouri [18].

2.5 Stochastic Simulation Algorithms

The Master Equation cannot be generally solved algebraically, except for a few

simple cases, so simulation methods are required in order to understand the

dynamics of larger scale systems. One shortcoming in simulating such large

scale systems under the master equation is that the cost of computation can

be high when many different molecular species and reactions can occur. In

this section, the use of Stochastic Simulation Algorithms, and most notably the

Gillespie algorithm, give an equivalence to the Master Equation but are less

costly to implement.
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2.5.1 Gillespie Algorithm

For a well stirred mixture within a finite volume Ω, let there be N chemical

species {S1, ..., SN} reacting with each other by M chemical reactions {R1, ..., RM}.
The state of the system at time t is given by the state vector x(t) = (x1(t), ..., xN(t))

where xi(t) is the number of molecules of Si present at time t.

Each reaction Rj is parameterised by two quantities. The stoichiometric matrix

ν where νij defines the change in species Si when undergoing reaction Rj, with

νj a vector representing the change for this reaction across all species Si. The

propensity function aj for reaction j depends on the type of reaction and the rate

constants, k j, for this reaction. For a single reactant, xi → products this is of

the form aj = cjxi. For two reactants, xi + xj → products this is of the form

aj = cjxixj for i 6= j or of the form aj = cjxi(xi − 1)/2. Similarly this can be ex-

tended to multi-species reactions, however, all reactions with multiple species

can be broken down into these primary reactions with one or two reactants,

further details of which can be found in Gillespie [83].

Now, the master equation for this type of reaction can be expressed as

∂p(x, t)
∂t

=
M

∑
j=1

(
bj(x− νj)p(x− νj, t)− bj(x)p(x, t)

)
(2.5.1)

where p(x, t) is the probability of being in state x at time t. This is directly

equivalent to the Master Equation from section 2.4.1.

Direct Method

As given in Gillespie [83] a probability distribution for j, the reaction number,

and τ, the timestep, is derived from the master equation to give

p(τ, j|x, t) = aj(x)exp(−a0(x)τ) (2.5.2)

where x is the current state vector, t is the current time of the system and a0 =

∑M
j=1 aj for reaction channels j = 1, . . . , M. Then the joint distribution can be

factored to a product of distributions p(τ, j) = p(τ)p(j) where
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p(τ) = a0(x)exp(−a0(x)τ) ; p(j) =
aj(x)
a0(x)

(2.5.3)

Samples from these can be found via inversion. If u1, u2 ∼ U(0, 1) then

τ =
1

a0(x)
log
(

1
u1

)
(2.5.4)

and choose j such that

j−1

∑
k=1

ak(x) ≤ u2a0(x) <
j

∑
k=1

ak(x) (2.5.5)

Then the Stochastic Simulation Algorithm for this direct method [83] is given

by

• Generate initial state vector x = x0 and initial time t = t0.

• Calculate propensity functions aj(x) and their sum a0(x).

• Generate samples τ and j.

• Update state vector x(t) by t + τ → t , x + νj → x.

• Record (x, t). Return to second step until reach final time, T.

2.5.2 Tau-leaping Method

A couple of important refinements were made to this original algorithm. The

First Reaction Method, developed by Gillespie [84], simulates only the timestep

τ for each reaction and chooses the smallest of these timesteps. Further to this

was the development of the Next Reaction Method by Gibson and Bruck [85].

This method only updates values for reactions that have taken place and keeps

all others fixed so that the timestep and reaction do not have to be simulated

at every timestep across all reactions and species. It can also be shown to be

equivalent to the Direct Method.

All these methods are quite efficient for small scale systems and provide an

exact solution to the Master Equation. However, for very large scale systems,
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they require a lot of simulation to select the timestep over which an individ-

ual reaction occurs. By improving this method to allow for multiple reactions

occurring within the same timestep, the computational cost is greatly reduced.

This is achieved by an approximation to the Direct Method which is suitable for

large systems with many species and many reactions. This tau-leaping method

[91] simulates timestep, τ, and then calculates the numbers of each reaction that

occur within this timestep.

Let τ be small enough so that the propensity functions aj(x) are approximately

constant on [t, t + τ). Define k j(τ; x, t) to be the number of Rj reactions oc-

curring within the time interval [t, t + τ) given the current state vector x and

current time t. Then the change in state vector over this timestep X(t + τ) is

X(t + τ) = x +
M

∑
j=1

k j(τ; x, t)νj (2.5.6)

One thing to consider is how to generate the k j. If the aj are approximately

constant in the time interval considered then they can be modelled as a Poisson

random variable k j(τ; x, t) ∼ Poi(aj(x), τ). From this, a sample can be taken

from a Poisson random variable with parameter ajτ and hence

X(t + τ) = x +
M

∑
j=1

P(aj(x), τ)νj (2.5.7)

This is all dependent on generating a suitable τ so that the propensity func-

tions don’t change significantly over the time period. Currently there exists no

superior way to generate this τ and it is chosen by a bounding condition as

explained in [91].

Where low count numbers of species are involved, it is often more suitable to

use the Direct Method. In practise, for large scale systems, a mixture of this and

the tau-leaping method is combined. Similarly, care needs to be taken to ensure

that negative amounts of species are not generated within a leap and there exist

suitable methods for implementing this.
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2.5.3 Example

To illustrate the algorithm in practise we use the following system with three

different substances, X,Y and Z. They react according to the reactions

R1 : X + X
k1→ Y

R2 : Y
k2→ X + X

R3 : Y
k3→ Z

with parameter values k1 = 0.002 , k2 = 0.16 and k3 = 0.07 and initial numbers

of molecules X = 1000, Y = 1 and Z = 0. Figure 2.7 shows a realisation of

this example under both the Direct Method and the tau-leaping method. It can

be seen that the results are the same for both the direct method and the tau-

leaping method, yet the time taken to execute the algorithm was 2.35 seconds

under the direct method but only 1.05 seconds under the tau-leaping method.

Although this difference is small, for much larger scale systems this speed up

is significant.

Figure 2.7: A realisation of the Gillespie algorithm with parameter values k1 =

0.002,k2 = 0.16 and k3 = 0.07. On the left is the direct method and

the right shows the tau-leaping method.
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2.5.4 Application to Genetic Networks

Stochastic Simulation Algorithms are widely used to model chemically reaction

systems where reactions and species are known. They have been extended to

other interacting systems, such as genetic networks. As an example, for some

transcription factor TF undergoing a reaction at a promoter site on some strand

of DNA DNA, then genetic properties can be characterised as such:

• Binding : TF + DNA→ TF · DNA

• Unbinding : TF · DNA→ TF + DNA

• Degradation : TF → ∅

• Dimerization : TF + TF → TF2

In a genetic system, typically the number of transcription factors will be in the

orders of tens or hundreds, potentially even thousands. Clearly, to model these

in a differential equation framework would require a great amount of compu-

tational power. Stochastic simulation algorithms, especially where good ap-

proximations can be used such as tau-leaping, therefore provide the means to

greatly reduce this computational cost yet still providing an insight into these

large scale systems.

For further applications of this modelling methodology, Wilkinson and Boys

[82] include transcription and translation each as reactions, and a good overview

of the whole modelling concept is provided in the book by Wilkinson [219]. A

real world example of the well studied Lambda phage system is given by Gib-

son [70].
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Network Inference

In the previous chapter, the aim was to build a model of a genetic network and

how to make it biologically plausible, such as by the addition of stochasticity.

This is useful for generating data for simulation purposes and to understand

the dynamics of such known networks. This chapter, and the subsequent chap-

ters, look at the alternate view, by using this data sampled over time in order to

reconstruct the underlying network such data came from.

For artificial networks, the comparison can be made as to how well the network

is reconstructed and comparison measurements can be made. This is not quite

so easy for real data, where the existing networks may only be partially known.

Here the aim is to then predict which interactions are most likely to occur in

order that the biological experiments can be performed to verify this and new

interactions discovered.

3.1 Genetic Network Inference Models

Existing models can be split into two categories; directional networks and cor-

relation based networks. These differ in the ability to reconstruct the direction

of interaction between networks but both offer different perspectives on how

genes are linked together to form overall networks. Directional networks, such

as Bayesian networks, are more realistic due the known directional nature of

observed genetic networks, where a gene has an influence on another yet this

may not be true the other way round. Correlation based models look at whether

there is similarity between the nodes to state whether there is some interactional
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effect between them.

3.1.1 Bayesian Networks

A Bayesian Network is a directed graph whereby a series of nodes are connected

by a series of direct interactions to each other and where such interactions may

be parameterised in some way. Where these nodes are represented by a se-

quence of variables, such as a time series, these give rise to Dynamic Bayesian

networks. An excellent overview of Bayesian Networks is given in the book

by Pearl [220], with the application of dynamic Bayesian networks to genetic

network recovery presented in Spirtes et al. [142] and Werhli et al. [154].

Inference on a given node is given by knowledge of only the values of its par-

ents nodes i.e. the nodes leading directly into it. Then a distribution for the

network can be inferred via the conditional independence of each of the nodes

and use of Bayes’ Theorem. For example, let X(t) = (X1(t), ..., XN(t)) repre-

sent parameterised values of the nodes, corresponding to expression levels in

the genetic sense. Then if Pa(Xi(t)) represents the "parents" of node i at time t

i.e. only the nodes directed into gene i then the update is

P(X(t)|X(t− 1)) =
N

∏
i=1

P(Xi(t)|Pa(Xi(t− 1)))

3.1.2 Correlation Based Models

By assessing the correlation between two nodes of a network, a measure of

similarity can be inferred which would signify an interactional effect between

them even if the direction of such interaction may not be known. Soranzo et

al. [221] consider the use of Pearson and partial Pearson correlations between

time series data to see whether any such interactions are to be found. By using

a partial correlation measure, the effect of the presence of other variables can be

measured against the Pearson correlation.

One particular use of correlation, and in particular partial correlation, measures

is the analysis performed by Schafer and Strimmer [187]. Here, data is used at

a steady state, so for a single time point. However, repeated measurements
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at the same gene are made in order to calculate the correlations between each

gene. This approach does not take into account the temporal nature of gene

networks evolving but it does consider the stochasticity by using such repeated

measurements.

3.1.3 Single timepoint, multiple samples

For the analysis of repeated samples at a single timepoint, the approach consid-

ered is taken from the paper by Schafer and Strimmer [187].

Using a breast cancer dataset X consisting of G = 3883 genes with N = 49 sam-

ples taken, three estimates of the partial correlation matrix are constructed :

Π̂1 : Use the pseudoinverse to generate an estimate of the partial correlation

Π̂2 : Estimate P by applying bootstrapping, then use the pseudoinverse to get

an estimate of the partial correlation

Π̂3 : Use the pseudoinverse on each bootstrap replicate of P, and then average

the results.

Given a partial correlation matrix, we seek to find which of these is significant

enough to represent a direct interaction between two genes. This can be ad-

dressed as a hypothesis testing problem

H0 : πij = 0 vs H1 : πij 6= 0

The distribution of p = π̂ under the null distribution can be shown [222] to be

f0(p, κ) = (1− p2)(κ−3)/2 Γ(κ/2)
π1/2Γ((κ − 1)/2)

However, the degree of freedom κ is required to be positive but is given as

κ = N − G + 1 so with the number of genes much greater than the number of

samples, κ has to be estimated from the estimated partial correlation matrix. To

estimate this we utilise the assumption that typically a genetic network will be

sparse.
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Let η0 be the proportion of genes under the null distribution and η1 the propor-

tion of genes under the alternative distribution, with η0 � η1 and η0 + η1 = 1.

Then the form of the distribution of the partial correlation coefficients is

f (p) = η0 f0(p, κ) + η1 f1(p) (3.1.1)

where f1 is the alternative distribution, set for simplicity as a Uniform distribu-

tion on [−1, 1].

This form of problem is naturally solved by the Expectation-Maximisation (EM)

algorithm. This uses iterative expectation and maximisation steps that con-

verge to estimates for the parameters, in this case θ = (κ, η0).

From these parameters we can form the distribution of samples to identify the

p-value associated with a statistically significant interaction.

3.1.4 Example

Arbitrarily taking the first 100 genes of the breast cancer data set, implementing

the algorithm above with partial correlation matrix Π̂1 detects η0 = 0.99923

and κ = 22.066. This leads to a p-value cutoff level for each interaction of

0.48 leading to 282 significant interactions. A subset of these genes is shown in

Figure 3.1. It is interesting to note that not all genes are shown to link to each

other and that there exist pockets of genes with no interactions shown.

3.2 Discussion of Existing Models

When attempting to recover genetic networks, the biological model needs to be

taken into account and the salient features that should be reproduced in order

to validate the biological realism of the model. The most important features are

the stochastic nature of the binding and unbinding mechanism to alter the rate

of transcription, and the directional nature of the interactions between genes.

The stochastic nature can easily be associated with data taken at regular time

intervals, whereby the measurements are not known continuously. The limita-

tion of the ability to measure such data must also be taken into account, such as

measurement error.
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Figure 3.1: Subset shown for the breast cancer network recovered by Schafer

and Strimmer [187].

The correlation measures, such as those explored by Schafer and Strimmer, are

useful up to a point to understand functional relationship between genes. The

use of repeated measures allows the stochastic nature of the system to be con-

sidered but this is limited information at a single steady state timepoint. Hence,

the truly stochastic nature of a system over time is not taken into account. The

use of a correlation based measure does not allow for the directionality of the

gene interactions and so also provides limited information. As such, this type of

model fails to fully address the issues addressed in terms of fully reconstructing

a genetic network.

Bayesian Networks, however, do take into account both of these desired fea-

tures. By constructing a probability measure of the state of a network depend-

ing on the interactions between them, the overall stochasticity of the system

is coupled with the directional interaction between genes, as a change in di-

rectionality between two nodes would give a different probability distribution

over time for the state of the system. This explains why Bayesian network mod-

els are prevelant within the area of reconstructing genetic networks as they re-

late soundly to the biological system being modelled.
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Granger Causality for Recovering

Genetic Networks

The previous chapter looked at some of the existing ways in which genetic net-

works can be inferred from microarray data. The approach set out in this chap-

ter is to consider how a causal link may be inferred from such data, so as to

say whether there is a statistically significant effect of one gene upon another.

Clearly one benefit is the directedness of the approach, whereby gene A may

target gene B but vice versa this may not be true.

By using time series data as well, the temporal nature of change within a sys-

tem can be used to understand whether a change over time in gene A causes a

change in gene B, and use this as a means of finding an interaction.

This chapter introduces Granger causality, which provides a statistical measure

of how much effect one timeseries has on another by considering whether a

model with a variable regressed on itself is different to a model with other vari-

ables added. This uses both the temporal and directional nature required to

reconstruct genetic networks.

4.1 Time Series

Given that the data used in Granger causality is based on time series, here an

introduction to time series modelling is given. Time series analysis has grown

into a huge area of research with many applications for prediction and estima-

tion where data is given at time samples for single or multiple variables. For a
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wide ranging discussion of time series, both in univariate and multivariate set-

tings, the books by Hannan [202], Lutkepohl [203] and Priestley [204] all give

very useful overviews to the area.

4.1.1 Notation

Let Xt be a random variable indexed by a time variable t. Whilst t may be

negative or continuous, our focus shall be on time data sampled discretely

and indexed by t = 1, ..., T for some T. A univariate time series is then X =

{X1, . . . , Xt}.

The multivariate equivalent is X = {X1, . . . , X t} for m time series, where the

vector of time series at timepoint i is X i = {Xi1, . . . , Xim}.

One key property that is used in causality detection, particularly with Granger

causality, is stationarity of data. Stationarity enforces certain structure of the

data.

A time series X is said to be (weakly) stationary if E(Xt) and Cov(XtXt+h) are

independent of t for all h.

When considering stationarity it will be assumed in the context of weak sta-

tionarity which is less restrictive. For autoregressive processes, a simple test

of stationarity is that all roots of the characteristic equation lie outside the unit

circle.

4.1.2 VARMA Models

There are many types of time series model that can be used to describe data.

One of these general classes of model are VARMA models - Vector AutoRegres-

sive Moving Average. Autoregression in a time series describes the dependence

of data at previous timepoints whereas moving averages represent noise terms

in the model.

The VARMA(p,q) model is given by
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X t = µ + Φ1X t−1 + ... + ΦpX t−p + εt −Θ1εt−1 − ...−Θqεt−q (4.1.1)

where the noise term is

εt ∼ N(0, Σ) (4.1.2)

Φ1, . . . , Φp, Θ1, . . . , Θq are parameter matrices and µ is a vector of intercept

terms.

4.1.3 Estimation of Parameters

Estimation of parameters where q ≥ 1 is challenging due to the requirement

to estimate noise in the model. By restricting q = 0, this reduces the VARMA

models to VAR(p) models which are more easily estimated. Similarly, setting

µ = 0 removes the need to estimate the mean of the model. These will be used

mostly in the following analyses but the results naturally extended to VARMA

models with appropriate estimation of parameters.

Given a time series of observed data, X, the model parameters can be fitted to

this data depending on the type of model used. Whilst there are many tech-

niques available covered in most books on Time Series such as in Lutkepohl

[203], the subsequent analysis shall be focus on VAR(p) models and hence pa-

rameter estimation under such models is considered. One popular method is to

obtain a series of recurrence relations termed the Yule-Walker equations [223].

Assuming a (weakly) stationary VAR(p) process

X t = Φ1X t−1 + ... + ΦpX t−p + εt (4.1.3)

with εt ∼ N(0, Σ) we can calculate the Yule-Walker equations by multiplying

each side by X t−j , j = 0, ..., p and taking expectations. Defining Γ(i) as the

covariance at lag i, Γ(i) = Cov(X t, X t−i) and noting that Γ(i) = Γ(−i)
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Σ = Γ(0)−
p

∑
j=1

ΦjΓ(j) (4.1.4)

Γ(i) =
p

∑
j=1

ΦjΓ(i− j) (4.1.5)

Estimates for the Φj can be obtained by the Whittle algorithm [224], a multi-

variate extension of the Durbin-Levinson algorithm [225], and point estimate

of Γ(i)

Γ̂(i) = Ĉov(X t, X t−i) =
1
T
(X t − X)′(X t−i − X) (4.1.6)

The Yule-Walker equations provide a least squares estimation of the data for a

VARMA model but there are many other estimation techniques.

4.2 Model Selection

In order to appropriately fit a time series model, such as the VAR(p) model,

the order of the model needs to be first assigned. Care needs to be taken when

choosing this order of fit. If the order is too great, there may be no real gain

in information and more parameters will be estimated needlessly. If the order

is too small, the model may not contain enough information and hence not

accurately capture the structure of the data giving rise to performance errors.

One solution is to choose the order of the model in a statistical manner by using

Information Criteria. Here, multiple models are fitted over a range of orders and

larger models penalised unless there is enough extra information to use them.

Let X be modelled with a VAR(p)

X t = Φ1X t−1 + ... + ΦpX t−p + εt (4.2.1)

where X is a K-variate time series with n timepoints and m the number of pa-

rameters used to estimate the criterion. The value of p chosen to estimate the
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Information Criterion Value

Akaike (AIC) [205] log|Σ̂ε|+ 2pK2

T

Schwarz Bayesian (BIC) [206] log|Σ̂ε|+ log(n)pK2

T

Hannan-Quinn [202] log|Σ̂ε|+ 2log(log(n))pK2

T

Table 4.1: List of Information Criteria

model is the value of m which minimises the criterion.

4.2.1 Information Criteria

Information criteria seek to find a suitable model whereby a model with an ex-

cessive number of parameters is penalised. Data is fitted to the model and the

residuals used to calculate how well the model fits. This is then penalised de-

pending on the number of parameters in the model and other information such

as the dimension of the data. The optimal model chosen is that which min-

imises the information criterion chosen.

For a multivariate time series X, let K x T be the dimension of the time series

data (with K time series each of length T) and let Σ̂ε be an estimate of the Co-

variance matrix of the residuals for the fitted model with order p. Then three

widely used information critera are given in Table 4.1.

Although these information criteria provide a mechanical way of selecting an

appropriate model, care still needs to be taken to ensure the model order is

appropriate. A high model order may be chosen as it has the minimal value of

the information criterion, yet a smaller model may be neglected even though

the information criterion may be close to this value. In order to prevent such

spurious choices of model, it can be sometimes beneficial to restrict the order of

the model.

In Kadilar and Edemir [207], the use of information criteria is explored specif-

ically in the case of VAR models. Here, the Bayesian Information Criterion

is shown to have optimal performance above other widely used information

criteria, including the AIC. As subsequent analysis will use VAR models, it is
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decided that the BIC will be used for model selection.

4.3 Granger Causality

In simple terms, causality is the effect of one thing on another. As genes are

able to directly affect other genes, such as by transcription factors molecules

of one gene binding to promoter sites of another gene and altering the rate of

transcription, they can be described as having a causal effect on each other.

This causality may be direct or indirect. The nature of causality means it is

directional and hence suitable for application in recovery of gene networks.

Gene A may exhibit some causal effect on gene B, but this doesn’t always apply

the other way round.

Granger causality is a statistical technique that can be used to give a numerical

way of asserting whether one time series has an effect upon another. By looking

at two competing models, one where a time series is autoregressed upon itself

and another where a time series is autoregressed upon itself and also another

time series, the significant difference of the two models would imply that the

presence of the extra information from another time series has had some effect

on the original time series.

4.3.1 Granger Causality

Granger [214] developed the statistical technique of Granger causality in econo-

metrics to measure the effect of economic variables upon each other, such as

whether change in price caused a change in demand or vice versa. The time

series are assumed to be either stationary or co-integrated, where a linear su-

perposition of the time series is stationary.

Suppose X1 and X2 are two (univariate) time series. By defining the model

X1
t = α1X1

t−1 + ... + αpX1
t−p + β1X2

t−1 + ... + βqX2
t−p + ut (4.3.1)

then X2 is said to Granger cause X1 if βi 6= 0 for at least one of the i. This can be

tested by means of an F-test with the null hypothesis H0 : β1 = β2 = ... = βp =
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0.

By estimating the parameters α̂i, β̂i, such as by the Yule-Walker equations in

section 4.1.3, the residual sum of squares can be calculated for the fitted model

RSS1 = ∑T
t=1 û2

t , where

ût = X1
t − α̂1X1

t−1 − ...− α̂pX1
t−q − β̂1X2

t−1 − ...− β̂pX2
t−p (4.3.2)

An autoregressive model of the same order p to the series X1 alone.

X1
t = γ1X1

t−1 + ... + γpX1
t−p + et (4.3.3)

Similarly, residual sum of squares for this fitted model is RSS0 = ∑T
t=1 ê2

t .

The test statistic is then

S1 =
(RSS0 − RSS1)/p

RSS1/(T − 2p− 1)
(4.3.4)

and the null hypothesis H0 is rejected at the α level if S1 > F(p, T − 2p− 1)α.

An equivalent asymptotic test for large T is to use the statistic

S2 =
T(RSS0 − RSS1)

RSS1
(4.3.5)

and to reject if S2 > χ2(p)α.

4.3.2 Algorithm 4.1 - Bivariate Granger Causality

The Granger causality model can be related to a bivariate VAR(p) model, or

VAR(2) model, for pairwise testing whether one time series has an effect on one

other time seres and vice versa. For two time series Xt and Yt, the VAR(2) model

is
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[
xt

yt

]
=

[
φ1

11 φ1
12

φ1
21 φ1

22

] [
xt−1

yt−1

]
+ · · ·+

[
φ

p
11 φ

p
12

φ
p
21 φ

p
22

] [
xt−p

yt−p

]
+

[
εx

t

ε
y
t

]

So y does not Granger cause x if φk
12 = 0 for k = 1, ..., p.

For analysis from time series data, a hypothesis test can be formed to decide

whether there is statistically significant evidence of causality

H0 : x G9 y vs H1 : x G→ y (4.3.6)

4.4 Bootstrapping Time Series

One of the assumptions used in assessing Granger causality is that the data is

stationary or co-integrated. Whilst there are various tests of this, typical ge-

netic microarray data can be short in which case it may be difficult to quantify

whether this assumption holds true. One way to assess how the variation of

parameters in the models occurs in these cases is to use bootstrapping.

Bootstrapping is a resampling technique to assess the variability in the estima-

tion of parameters. Bootstrapping was developed by Efron [215] as a means of

obtaining statistics of interest, such as the mean or variance, when the distribu-

tion of the true population from which the sample is taken may not be explicitly

known. This is the case where the sample size is very limited.

4.4.1 Bootstrapping

Given an n-vector of observations x = (x1, x2, ..., xn), a bootstrap sample is

x∗ = (x∗1 , x∗2 , ..., x∗n) where x∗i is taken with replacement from the original ob-

servations. For example of a boostrap sample from a vector of 7 observations

could be x∗ = (x3, x5, x2, x3, x7, x5, x1).

Given B bootstrap samples, x∗1,x∗2,...,x∗B, the statistics of interest for each of
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these samples are θ∗1, θ∗2, ..., θ∗B. The bootstrap estimate of the statistic of inter-

est is then the mean of these bootstrap samples

θ̂bootstrap =
1
B

B

∑
i=1

θ∗i

Similarly, the variance of this bootstrap estimate may be calculated as

σ̂2
bootstrap =

1
B

B

∑
i=1

(θ∗i − θ̂bootstrap)
2

4.4.2 Bootstrapping applied to Time Series

In the context of time series, the observed sample is the time series itself. Using

this sample, bootstrap time series can be created from resampling the observed

time series and then the bootstrap parameter estimates obtained for these mod-

els.

There are two main types of bootstrapping time series: residual based boot-

strap and block based bootstrap. The residual bootstrap resamples from the

residuals of the fitted model and adds these to the observed time series to gen-

erate the bootstrap time series. Block bootstrapping divides the time series into

blocks, either overlapping or not, and rejoins these blocks in order to create the

bootstrap time series.

4.4.3 Non-Overlapping Block bootstrap

For sufficiently long time series, the non-overlapping bootstrap can be used to

estimate the parameters of interest but also the variability of such parameter

estimates.

Select the block length l and hence the number of blocks k such that k l ≥ n

such that blocks are [x1, . . . , xl] , [xl+1, . . . , x2l] . . . [xk(l−1)+1, . . . , xk l]. For con-

venience, relabel the blocks Y1, ..., Yk.

Then for each bootstrap replicate b = 1, . . . , B,
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1. For i = 1, . . . , k, sample a block index αi uniformly from 1, . . . , k.

2. The bth bootstrap time series is then Xb = Yα1 . . . Yαk .

3. If kl > n, remove any extra timepoints so that Xb is of length n.

4. The bootstrap estimate of the parameters is obtained from this time series,

φ̂b
1, . . . , φ̂b

p.

4.4.4 Overlapping block bootstrap

Select the block length l, the overlap shift d and the number of blocks k such

that k l ≥ n such that blocks are

[x1, . . . , xl] , [x1+d, . . . , xl+d] , . . . , [x1+md, . . . , xl+md]

, . . . , [xn−l+1−d, . . . , xn−d] , [xn−l+1, . . . , xn].

For convenience, relabel the blocks Y1, ..., Yk′ , where k′ will vary depending on

the value of d as more blocks will be generated than in the non-overlapping

block case.

Then for each bootstrap replicate b = 1, . . . , B,

1. For i = 1, . . . , k, sample a block index αi uniformly from 1, . . . , k′.

2. The bth bootstrap time series is then Xb = Yα1 . . . Yαk .

3. If kl > n, remove any extra timepoints so that Xb is of length n.

4. The bootstrap estimate of the parameters is obtained from this time series,

φ̂b
1, . . . , φ̂b

p.

Where the overlap shift d = 1, this represents where where all possible over-

lapping blocks are generated and is referred to as the fully overlapping block

bootstrap. Furthermore, blocks of fixed length can be selected at random such

that the overlap shift is non-constant but this is not considered here.
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4.4.5 Residual bootstrap

The residual bootstrap differs from the approach for the block bootstrap, whereby

the bootstrap is applied to the residuals of an already fitted model, as opposed

to fitting a model to bootstrapped data straight away.

1. Fit an appropriate AR(p) model to the true data Xt.

2. Estimate parameters for the model φ̂1, . . . , φ̂p from Xt.

3. Fit the estimated parameters to the model and obtain the residuals ri for

i = p + 1, . . . , n.

4. Obtain the centred residuals r̃i = ri − r for i = p + 1, . . . , n.

5. Obtain a bootstrap series of residuals sampled from the centred residuals, r̃B
i

6. Obtain a bootstrap time series by recursion Xb
t = φ̂1Xb

t−1 + . . .+ φ̂pXb
t−p + r̃B

t .

7. Re-estimate the parameters from this time series to obtained the bth bootstrap

sample of the parameters φ̂b
1, . . . , φ̂b

p.

4.4.6 Example

An example for an AR(2) model is given. The true underlying model is given

by Xt = 0.5Xt−1− 0.3Xt−2 + εt to give φ1 = 0.5 and φ2 = −0.3. A time series of

250 timepoints is generated according to this model to give an observed dataset

from which to estimate the parameters. Figures 4.1 - 4.3 show the histograms of

φ̂1 and φ̂2 for 2000 bootstraps under the non-overlapping block, fully overlap-

ping block and residual bootstraps respectively, with a blocksize of 10 for the

block bootstraps.
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Figure 4.1: Non overlapping block bootstrap with 2000 bootstrap replicates

showing bootstrap mean and standard deviation estimates.

Figure 4.2: Fully overlapping block bootstrap with 2000 bootstrap replicates

showing bootstrap mean and standard deviation estimates.

Figure 4.3: Residual bootstrap with 2000 bootstrap replicates showing boot-

strap mean and standard deviation estimates.
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In order to contrast the performance of the overlapping block bootstrap, Table

4.2 shows the estimate of the parameters and their standard deviation for all

possible shifts, as in Section 4.4.4, for d = 2, . . . , 9 , along with d = 1 (fully over-

lapping block bootstrap) and d = 10 (non-overlapping block bootstrap).

Table 4.2: Performance of the overlapping block bootstrap for all possible

shifts from Example 4.4.6 with φ1 = 0.5 and φ2 = −0.3.

d φ̂1 sd(φ̂1) φ̂2 sd(φ̂2)

1 (Full overlap) 0.39064 0.062802 -0.30488 0.059717

2 0.39055 0.063584 -0.29753 0.060148

3 0.38077 0.062986 -0.30048 0.061426

4 0.37044 0.064057 -0.28747 0.062447

5 0.38265 0.065018 -0.29581 0.061843

6 0.38924 0.064756 -0.30542 0.059964

7 0.36857 0.066225 -0.28540 0.062483

8 0.37849 0.065843 -0.29445 0.063415

9 0.37004 0.068027 -0.28382 0.062931

10 (Non-overlap) 0.36538 0.067561 -0.27369 0.063662

Residual 0.46868 0.061397 -0.2758 0.061108

Table 4.3 shows the effect of keeping the overlap fixed, in this instance using the

fully overlapping bootstrap, but altering the blocksize used to gain estimates of

the parameters. This shows the blocksize indeed has an effect on the ability to

estimate the parameters of the model. The best estimate is obtained when the

blocksize is 20, however, there is no clear trend in these estimates as the block-

size changes. The standard deviation, on the other hand, has a more noticeable

trend where it declines as the blocksize increases. Overall, however, the results

are not significantly different from each other. Further discussion of optimal

block length is discussed by Buhlmann et al [226].

Overall, the residual bootstrap performs best in terms of the estimate of the pa-

rameters. The overlapping block bootstrap generally performs better than the

non-overlapping bootstrap. Overall, however, there is little difference between
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Table 4.3: Performance of the fully overlapping block bootstrap for all varying

blocksize from Example 4.4.6 with φ1 = 0.5 and φ2 = −0.3.

Blocksize φ̂1 sd(φ̂1) φ̂2 sd(φ̂2)

5 0.39414 0.061005 -0.29443 0.063157

8 0.39287 0.063572 -0.31435 0.061082

10 0.39064 0.062802 -0.30488 0.059717

12 0.40371 0.060437 -0.30682 0.060359

15 0.39832 0.059476 -0.31523 0.059114

20 0. 42461 0.058361 -0.32553 0.059327

25 0.39429 0.054190 -0.31874 0.057364

50 0.38727 0.057494 -0.29631 0.058367

the block bootstraps with the variability of the bootstrap estimates reasonably

similar and mean estimates further away from the true value than in the resid-

ual bootstrap, as shown in Table 4.2. Furthermore, there is evidence that block

size will also have an effect on the ability to recover parameter estimates, as

shown in Table 4.3. Again, this is generally less effective than the use of the

residual bootstrap.

One further consideration is that using the block bootstrap adds extra parame-

ters for the choice of blocklength and also for the choice of overlap. The residual

bootstrap removes the need for these extra parameters. Coupled with better

performance, the residual bootstrap is favoured over the block bootstraps, as

discussed by Buhlmann [227].
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4.4.7 Multivariate Time Series Bootstraps

The bootstrapping methods for time series extend naturally into the multivari-

ate setting, with no difference required in the setup of the algorithm. Figure 4.4

shows two time series generated by the VAR(1) model

[
xt

yt

]
=

[
0.5 −0.1

0.2 −0.3

] [
xt−1

yt−1

]
+

[
εx

t

ε
y
t

]

with φ1 = 0.5, φ2 = −0.1, φ3 = 0.2 and φ4 = −0.3. Figures 4.4 - 4.6 show the

parameter estimates for the non-overlapping block and overlapping block with

a blocksize of 10 used. As with the univariate example, the non-overlapping

block bootstrap works less well than for the overlapping block.

Figure 4.4: A time series of 250 timepoints for an AR(1) model with true pa-

rameters φ1 = 0.5, φ2 = −0.1, φ3 = 0.2 and φ4 = −0.3
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Figure 4.5: Non overlapping block bootstrap with 1000 bootstrap replicates

showing bootstrap mean and standard deviation estimates.

Figure 4.6: Overlapping block bootstrap with 1000 bootstrap replicates show-

ing bootstrap mean and standard deviation estimates.
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4.5 Granger causality in the frequency domain

With the multivariate bootstrap extension for Algorithm 4.1, the choice of block-

size alters the success of estimation of the parameters of the model. Clearly,

this extra parameter needs to be chosen well for the model. By using a resid-

ual based bootstrap, this parameter is removed. In a multivariate setting, this

residual bootstrap is not so easily implemented. Hidalgo [228] proposes an

algorithm to deal with this by using the frequency domain to implement the

residual bootstrap. A statistic is then derived which allows us to accept or re-

ject a hypothesis test of the form

H0 : x G9 y vs H1 : x G→ y (4.5.1)

Algorithm 4.2 - Hidalgo frequency domain Granger causality

Let wt = (yt, xt) be a vector of observed values for two time series xt, yt and

for t = 1, ..., T. Given that we are using discrete analogues for estimates of

continuous values, we also use the following. Let m = m(T) be a number

increasing slowly with T such that m−1 + mT−1 → 0. We use that m =
√

T/2.

Let M = [T/4m] where [z] denotes the integer part of z. We use the convention

that λj = 2π j/T.

The test is based upon an (infinite) autoregressive process representation, as

with algorithm 4.1 such that

∞

∑
j=0

Ajwt−j = εt (4.5.2)

and an equivalent representation to perform the hypothesis test is to test for the

model

yt =
∞

∑
j=−∞

c(j)xt−j + ut (4.5.3)

and simultaneously test that the c(j) are all zero for j < 0. This is equivalent to

all values of y depending only on previous or current values of x and, as such,

future values of x do not have a causal effect on values on y.
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The main part of the paper by Hidalgo is the following statistic

S∗(µ) = Re

(∫ µ

0
vec

(
0

∑
j=−∞

c(j− 1)e−iπ jλ

)
dλ

)
(4.5.4)

with the null hypothesis that

H0 : S∗(µ) = 0 ∀µ ∈ [0, 1] (4.5.5)

A modified statistic is used, based on a Riemann sum approximation for the

integral, given as

ST(µ) = Re

(
1
M

[Mµ]

∑
p=1

vec

(
0

∑
j=2−M

ĉ(j− 1)e−ijλ2mp

))
(4.5.6)

First, estimates of the c(j) are obtained for the model. The hat notation ĉ(j) is

used to denote these estimates. The following estimation procedure is based

taken from Hannan [202]

1. Calculate periodogram of {wt}

Iww(λ) = (2πT)−1(
T

∑
t=1

wteitλ)(
T

∑
t=1

wte−itλ)′ (4.5.7)

2. Find spectral density matrix estimate

f̂ww(λ) =
1

2m + 1

m

∑
j=−m

Iww(λj + λ) (4.5.8)

3. Calculate the frequency response function

Ĉ2mp = f̂yx,2mp f̂−1
xx,2mp (4.5.9)

where fxx and fyx are components of the spectral density matrix fww

4. Estimate the parameters

61



CHAPTER 4: GRANGER CAUSALITY FOR RECOVERING GENETIC NETWORKS

č(j) =
1

2M

2M−1

∑
p=0

Ĉ2mpeijλ2mp (4.5.10)

However, Hidalgo proposes a slightly modified version of č(j) to remove es-

timating fxx(0) which may potentially be infinite. He proposes the use of the

estimator

ĉ(j) =
1

2M

2M−1′

∑
p=1

Ĉ2mpeijλ2mp (4.5.11)

where ∑2M−1′
p=1 φ2mpeijλ2mp denotes ∑2M−1

p=1 φ2mpeijλ2mp+φ2m

Given the estimates for ĉ(j), we can obtain estimates of the residuals for t =

1, ..., T

ût = yt −
M

∑
l=1−M

ĉ(l)xt−l (4.5.12)

Now there are two options of performing the bootstrap, either to bootstrap the

Fourier transforms of the residuals, or alternately bootstrap the residuals and

then take the Fourier transform of these.

Let ṽû(λj) =
¯̂f−1/2
ûû,j wû(λj) for j = 1, ..., [T/2],

then take the DFT of ût, denoted wû(λj) and compute the standardised residu-

als vû(λj), where

vû(λj) = Ξ̃−1/2

(
ṽû(λj)−

1
[T/2]

[T/2]

∑
l=1

ṽû(λl)

)
(4.5.13)

and

Ξ̃ =
1

[T/2]

[T/2]

∑
k=1

(
ṽû(λk)−

1
[T/2]

[T/2]

∑
l=1

ṽû(λl)

)(
ṽû(λk)−

1
[T/2]

[T/2]

∑
l=1

ṽû(λl)

)′
(4.5.14)

Then the bootstrap is taken from these transformed residuals, and denote this

boostrap sample as η∗j,1 for j = 1, ..., [T/2].
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Conversely, the centred residuals ũt are found where

ũt = Σ̃−1/2
û

(
ût − T−1

T

∑
t=1

ût

)
, Σ̃û =

1
T

T

∑
t′=1

(
ût′ − T−1

T

∑
t=1

ût

)(
ût′ − T−1

T

∑
t=1

ût

)′
(4.5.15)

From these centred residuals, a bootstrap sample ũ∗ for t = 1, ..., T is formed.

Applying the discrete Fourier transform to these gives the second bootstrap

sample

η∗j,2 =
1

T1/2

T

∑
t=1

ũ∗t e−itλj

for j = 1, ..., [T/2].

Using these bootstrap samples we obtain the bootstrap distributed lag regres-

sion model for k = 1, 2 and j = 1, ..., [T/2]

wy∗,k(λj) =
M

∑
l=0

ĉ(l)wx,l(λj) +
¯̂f 1/2
ûû (λj)η

∗
j,k

Using these bootstrap samples, analogue bootstrap parameters ĉ∗k(l) can be cal-

culated which are required for the statistic. Then the statistic is given as

S∗T,k(µ) = Re

(
1
M

[Mµ]

∑
p=1

vec

(
0

∑
l=2−M

ĉ∗k(l − 1)e−ilλ2mp

))

for µ ∈ [0, 1] and k = 1, 2.

Maximising over µ then gives the maximum value for the statistic and it is this

that is the significance level of the interaction required.

In practise, this technique works well for long range time series, as explained in

the paper by Hidalgo [228]. One significant problem is the use of optimisation

required in the last step for every bootstrap.If the optimisation is taken over a

fine grid then the algorithm can be slow to perform; over a coarse grid it may

not optimise well. Couple with the number of bootstraps required to obtain

meaningful results makes this procedure computationally very expensive.
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4.6 Alternative method for Granger causality

Whilst Algorithm 4.2 allows considers long range time series in the frequency

domain. However, this is penalised by a heavy cost in runtime by needing to

maximise over a grid for each bootstrap and is therefore less practical where

there may be many interactions to analyse. The next algorithm is a modified

form of the original Granger causality Algorithm 4.1 where bootstrapping can

be easily applied in both the block and residual forms. The details of the algo-

rithm are given in the paper by Hatemi and Shukur [229].

Algorithm 4.3 - Hatemi-Shukur Algorithm

Let x and y be time series of length T and a VAR(p) model fitted in the form

[
xt

yt

]
=

[
φ1

11 φ1
12

φ1
21 φ1

22

] [
xt−1

yt−1

]
+ · · ·+

[
φ

p
11 φ

p
12

φ
p
21 φ

p
22

] [
xt−p

yt−p

]
+

[
εx

t

ε
y
t

]

or, more concisely,

zt = Φ1zt−1 + . . . + Φpzt−p + εt

By setting

Y = (z1, . . . , zT) ; B = (Φ1, . . . , Φp)

Zt = (1 zt, . . . , zt−p+1)
′ ; Z = (Z0, . . . , ZT−1)

and

δ = (ε1, . . . , εT)

then the bivariate VAR(p) model can be written in the form

Y = BZ + δ (4.6.1)
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as described in [229], with B a matrix of parameters to be estimated.

Let δ̂U be the residual matrix for the unrestricted regression from the full dataset,

with δ̂R the corresponding matrix under the null hypothesis that there is no

cross interaction (and hence no causality present) and the cross parameters are

set to zero (so that φ
j
12 = φ

j
21 = 0 ∀j. Further define the cross product of resid-

uals as SU = δ̂′U δ̂U and SR = δ̂′Rδ̂R.

The statistic of interest is then

Rao =
φ

q
(U1/s − 1) (4.6.2)

where s =
√

q2−4
k2(G2+1)−5 , r = q/2− 1, φ = ∆s− r, ∆ = T − (k(kp + 1)− Gm) +

0.5[k(G− 1)− 1] and U = detSR/detSU. q = Gm2 is the number of restrictions

placed under the null hypothesis.

The statistic Rao is approximately distributed as the F-statistic F(q, φ) under H0.

In order to overcome the problem where two individual univariate time series

are compared against each other, a variation in the statistic is required, as G = 1

in this case. This would leave q as the square of the number of parameters

fitting the model, which will typically be small i.e. 1 or 2. Clearly s then will be

either imaginary or zero. Instead, let s =

√
q2

k2(G2+1)−5 . As bootstrapping will

be considered, the variation in Rao will still be shown.

4.6.1 Bootstrapping of the Hatemi-Shukur Algorithm

The block bootstrap can be obtained from the original dataset Y to produce a

bootstrap equivalent Yb. From this , the parameters in the model Yb = BZb + δb

can be estimated and the corresponding statistic Raob found for b = 1, ..., B.

The residual bootstrap is applied by replacing the estimated residuals for the

model with a resample of centred residuals. Let δ∗ be resamples with replace-

ment from the centred residuals δ̂− δ̄. The estimate of B is then B̂ = YZ′(ZZ′)−1

and the residual bootstrap is based on this adjusted dataset
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Y∗ = B̂Z∗ + δ∗ (4.6.3)

Correspondingly, the residual bootstrap Rao∗b is obtained from this dataset for

b = 1, ..., B.

4.7 Example of the Granger Causality algorithms

In order to show the performance of each of the algorithms described, sim-

ulated datasets are obtained from an underlying model with the parameters

known. In order to understand how the variation in each of these algorithms

alters the performance, the values of two of the parameters are changed. This

should show where Granger causality should indeed occur and also, where the

parameters are zero, it should not occur.

The true values are taken from the following models:

[
xt

yt

]
=

[
0

0

]
+

[
0.2 α

−0.1 0.1

] [
xt−1

yt−1

]
+

[
−0.1 β

0.2 −0.1

] [
xt−2

yt−2

]
+

[
εx

t

ε
y
t

]

where

[
εx

t

ε
y
t

]
∼ N (0, Σ)

where Σ is the covariance matrix of x and y and is set to exhibit small amounts

of noise in the system

Σ =

[
0.001 0.0022

0.0012 0.0009

]

The parameters α and β represent the effect of yt on xt; if they are zero then y

should not Granger cause x. By varying the magnitude of the values of α and

β, this will show how the presence of Granger causality is detected at different

levels. Table 4.4 shows the values of α and β used and the label of the causality

type, along with the column number shown in the graphs.
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Table 4.4: Increasing amounts of Granger causality applied to example

Causality Type Column Number α β

None 1 0 0

Small 2 0.01 0.01

Regular 3 0.1 0.2

Large 4 0.4 0.6

Figure 4.7: Boxplots of Granger causality test p-values for increasing amounts

of causality under Algorithm 4.1 and approximate χ2 model.

The number of timepoints is fixed at T = 100 and 100 monte carlo runs are

applied with the distribution of the p-values of these monte carlo runs shown.

For the bootstrapped algorithms, 100 bootstraps for each of these runs. Further,

the block size is set to 10 for the block based bootstrap algorithm. As the data

is generated from a VAR(2) model, p = 2 parameters are backfitted into the

model. The model is to test whether y G→ x.

The results for each of the algorithms 4.1 - 4.3 are shown in Figures 4.7 - 4.9

respectively. As the magnitude of the parameters increases, the p-value should

tend towards zero.

Figure 4.8: Boxplots of Granger causality test p-values for increasing amounts

of causality under Hidalgo Algorithm 4.2 model.
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Figure 4.9: Boxplots of Granger causality test p-values for increasing amounts

of causality under Hatemi-Shukur Algorithm 4.3 with no boot-

strapping

Figure 4.7 shows the application of Algorithm 4.1 under both the F-test p-value

found and also the χ2 approximation. The results are as expected, with zero

and low values of the parameters showing wide variation in the p-values with

increased magnitude of parameters showing very little distribution around a

very small p-value.

Figure 4.8 shows the application of Algorithm 4.2 under the two variations of

the Hidalgo algorithm; Hidalgo A refers to the bootstrapping of residuals ap-

plied to the Fourier transforms, with Hidalgo B taking the bootstrapping of

Fourier transforms of the bootstraps. Indeed, the results at low parameters val-

ues are expected but quite unexpected for where the p-values should be very

low. This would warrant further investigation as to the cause of such unex-

pected results.

Figure 4.9 applies the Hatemi Shukur Algorithm 4.3 under all variations of the

bootstrap; the original has no bootstrapping applied, and then residual, block

overlap and block non-overlap bootstraps are applied. The original and resid-

ual bootstrap variations perform well and as expected. The residual bootstrap

also shows a narrower distribution of p-values for the ’None’ and ’Small’ cate-

gories of causality. The block bootstrap performs less well, with wide distribu-

tion of p-values shown at the ’Large’ category.
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4.8 Summary of Granger Causality Algorithms

The algorithms 4.1 - 4.3 perform variably for the example shown, where causal-

ity should indeed be detected. The Hidalgo Algorithm (Algorithm 4.2) per-

forms unexpectedly and this would warrant further investigation. As such,

this algorithm is not used in subsequent analysis.

The original Granger causality Algorithm 4.1 performs well and as anticipated;

similarly the Hatemi-Shukur algorithm (Algorithm 4.3) with some improve-

ments shown by application of the residual bootstrap. Whilst the bootstrap

algorithm performs well, the extra compuational cost of generating bootstraps

does not necessarily justify the minimal improvement. As such, the original

Granger causality Algorithm 4.1 performs adequately as well does the Hatemi-

Shukur algorithm. Where bootstrapping is to be applied, then the Hatemi-

Shukur algorithm is best implemented for comparison; where bootstrapping

is not performed, there is equal benefit to apply Algorithm 4.1.

4.9 Application of Granger Causality

The use of Granger causality applied to reconstruction of genetic networks was

considered by Mukhopadhyay and Chatterjee [2]. Here, time series for genes

in a given network were used to calculate the significance of all possible cross

interactions. Autoregulating genes cannot be considered due to the structure of

the Granger causality algorithm.

Further to this, for each directional pair of interactions between two genes, the

interaction with the lower significance is discarded. The reasoning behind this

is unclear and therefore does not take into account where there may be bidi-

rectional interaction as can be biologically seen. In order that these potential

interactions are considered, all possible interactions shall be taken into account

with the following algorithms.
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4.9.1 Recovery of Gene Networks

The first algorithm is a simple refinement of the algorithm developed by Mukhopad-

hyay and Chatterjee [2], where every interaction is calculated and the Granger

causality significance used to decide whether the interaction is statistically sig-

nificant or not. As pointed out in Section 4.2.1, the information criterion is lim-

ited in this and subsequent cases to order 2 or 3.

Algorithm 4.4 - Gene Network Recovery with Granger causality

Let X1, ..., Xn be n genetic time series

1. Select two gene time series Xi and X j

2. Combine two time series into a single bivariate time series Y = [Xi X j]′

3. Estimate order of Y using Bayesian Information Criterion restricted to order

2 or 3

4. Calculate significance of Xi Granger causing X j and vice versa, Sij, Sji

5. If Sij > α for some α, then interaction Iij = 1; else Iij = 0

6. Repeat for all i, j = 1, ..., n; i 6= j

The choice of α has to be considered, whether it be a fixed value or by the use

of a correction if the algorithm is to be considered as a multiple hypothesis test.

This is not further explored here and the α level is set in advance as fixed.

4.9.2 Recovery of Gene Networks with Bootstrapping

By extending Algorithm 4.1 to include the use of bootstrapping the bivariate

time series used for obtaining Granger causality, the Hatemi-Shukur algorithm

(Algorithm 4.3) is used. As shown previously, the residual bootstrap form of

the algorithm performs best although the Algorithm described can be more

generally extended to any bootstrapping form of any of the Granger causality

algorithms.

Algorithm 4.2 - Gene Network Recovery with bootstrapped Granger causality
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Let X1, ..., Xn be n genetic time series and B the number of bootstraps.

1. Select two gene time series Xi and X j

2. Combine two time series into a single bivariate time series Y = [Xi X j]′

3. Estimate order of each Y using Bayesian Information Criterion restricted to

order 2 or 3

4. Create bootstraps of these bivariate series Y1, ..., Yb for b = 1, ..., B for chosen

order

5. Calculate bootstrap significance of Xi Granger causing X j and vice versa,

Sb
ij,S

b
ji

6. Use bootstrap mean significance Sij =
1
B ∑B

b=1 Sb
ij and Sji =

1
B ∑B

b=1 Sb
ji

7. If Sij > α for some α, then interaction Iij = 1; else Iij = 0

8. Repeat for all i, j = 1, ..., n; i 6= j

4.10 Measuring Similarity

In order to measure how well a known network and recovered network, sim-

ilarity measures can be used that look at whether an interaction is correctly

predicted or not. Define an indicator variable dij depending on whether the in-

teraction from i to j is found in both the true and the estimated networks. We

state explicitly that we mean not just where an interaction exists but also where

an interaction does not exist.

dij =

{
0, interaction in both

1, otherwise

Then a similarity measure, S, may be defined as the normalised sum of these

indicators. For n nodes, where self regulation is omitted,
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S =
1

n(n− 1) ∑
i 6=j

dij

This may be interpreted that S is a measure of how far from the true network

an estimated network is. If S = 0 then the networks are in perfect agreement

and increasing values of S show a departure from the true network.

With networks that have been obtained from biological observation, these are

known to not necessarily be ’true’ in the sense that all interactions may not have

been studied. However, one way to take into account any biological knowledge

is to somehow incorporate this into weight parameters for the network.

S =
∑i 6=j wij dij

∑i 6=j wij

4.11 Test Network

A test network is considered in order to assess how well the algorithm per-

forms. The following network is taken from the paper by Mukhopadhyay and

Chatterjee [2] and consists of 14 nodes with 12 interactions. These are broken

down into components where Granger causality should be observed and none

should be observed. Further to this, stationary and non-stationary variations

are used to illustrate the effect this has on network recovery.

The components where Granger causality is observed are

x2t = 0.29x2(t−1) + 0.65x1(t−1) + ε2t

x3t = 0.15x3(t−1) + 0.29x2(t−1) + 0.65x14(t−1) + ε3t

x6t = 0.12x6(t−1) + 0.3x7(t−1) + 0.3x8(t−1) + 0.3x9(t−1) + ε6t

x4t = 0.17x4(t−1) + 0.4x3(t−1) + 0.7x6(t−1) + ε4t

x5t = 0.6x5(t−1) + 0.8x4(t−1) + ε5t

x10t = 0.4x10(t−1) + 0.3x11(t−1) + ε10t

x12t = 0.4x12(t−1) + 0.4x11(t−1) + ε12t

x13t = 0.4x13(t−1) + 0.4x11(t−1) + ε13t

(4.11.1)

The stationary series are
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Figure 4.10: Hatemi-Shukur Algorithm 4.3 applied to stationary dataset.

x1t = 0.7x1(t−1) + ε1t

x7t = 0.8x7(t−1) + ε7t

x8t = 0.7x8(t−1) + ε8t

x9t = 0.77x9(t−1) + ε9t

x11t = 0.7x11(t−1) + ε11t

x14t = 0.65x14(t−1) + ε14t

(4.11.2)

with their corresponding non-stationary series

x1t = sin πt
40 + 0.7x1(t−1) + ε1t

x7t = 0.8x7(t−1) + ε7t

x8t = cos πt
40 + 0.7x8(t−1) + ε8t

x9t = 0.77x9(t−1) + ε9t

x11t = cos πt
40 + 0.7x11(t−1) + ε11t

x14t = 0.65x14(t−1) + ε14t

(4.11.3)

Figures 4.10 and 4.11 show the application of the Granger causality algorithm

4.1 with stationarity and non-stationarity present respectively for the α sig-

nificance levels of 95%, 98% and 99% and the similarity score in section 4.8

achieved as the number of timepoints increases from 10 to 100. The results

show that the same general trend is followed, although a lower score (and

hence closer to the true network) is achieved at the 99% level. This is due to

not only the number of true interactions being found, but also the number of

true non-interactions found.
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Figure 4.11: Hatemi-Shukur Algorithm 4.3 applied to non-stationary dataset.

Indeed, where stationarity is present, the results improve with the increased

number of timepoints. This shows that the increased number of timepoints

indeed helps to improve the modelling where the stationarity requirement is

upheld. Where stationarity does not exist, the results show very poor perfor-

mance. This issue of stationarity is therefore key to performing modelling in

the Granger causality framework.

4.12 Multivariate Granger Causality

Previously the consideration has been on considering pairwise interaction be-

tween two time series to detect a causal link in the Granger sense. This can nat-

urally be extended to considering the impact of many genes on a single target,

or indeed vice versa with a single gene targeting many other genes, and more

generally for many genes targeting many other genes. The Granger causality

model can therefore easily be extended a vector of observations at timepoint t,

the multivariate Granger model is

[
xt

yt

]
=

[
Φ1

11 Φ1
12

Φ1
21 Φ1

22

] [
xt−1

yt−1

]
+ · · ·+

[
Φp

11 Φp
12

Φp
21 Φp

22

] [
xt−p

yt−p

]
+

[
εx

t

ε
y
t

]
(4.12.1)

where now, instead of univariate time series, xt =
(
x1

t , . . . , xl
t
)

and yt =
(
y1

t , . . . , ym
t
)

are multivariate vectors. Similarly Φj are block matrices.
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Similarly to the univariate case, we can say that the m time series y fail to

Granger cause the l time series x iff Φk
12 = 0 for k = 1, ..., p.

One problem with the use of multivariate Granger causality is the interpretation

of what it means for a set of genes to be targeting another full set of genes. The

next chapter considers the issue of a more multivariate setting in relation to the

interaction of many genes upon each other in a less computationally laborious

way than multivariate Granger causality and less parameters are required to be

estimated.
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CHAPTER 5

Data Reduction

In the previous chapter, algorithms were presented and developed to imple-

ment Granger Causality as a means of assessing significant interactions be-

tween genes by using time series data for each gene. Where the number of

interactions for n genes is O(n2), the computational expensiveness is exponen-

tially increased as the number of genes increases. Typically a genetic dataset

may be of the order of thousands of genes, with even a useful subset of the

order of hundreds. Depending on the choice of algorithm used to assess the

causality between two genes, this may increase the expensiveness of the over-

all computation greatly.

This chapter looks at methods for data reduction in order to improve the time

taken to compute and assess significant interactions. Clustering can help to

reduce the size of a dataset by grouping together genes that have similar ex-

pression profiles, such as those which occur in similar families of genes. This is

then extended to consider how much variation occurs within these clusters and

how this impacts in finding significant interactions.

5.1 Clustering

Clustering algorithms takes multivariate observations of data and groups these

observations into a fixed number of subsets so that elements within a cluster

are similar to each other, in some specified way. Clustering techniques have

progressed a long way and are widely used with large scale genomic data, each

with their own features and drawbacks, as detailed in Kerr et al. [230]. Selec-
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tion of an appropriate clustering technique is a challenge in itself. Here, two

particular clustering algorithms are used.

The k-means algorithm [231] is one of the most widely used algorithms due

the simplicity of application. This algorithm assigns all the data objects, such

as multi-dimensional observations or time series, into a specified number of

clusters dependent on the initial configuration of the allocation to cluster and

some specified stopping criterion.

The Quality Threshold (QT) algorithm developed by Heyer et al. [232] was de-

veloped originally for use with genetic time series. This algorithm removes this

initial configuration and pre-specification of the number of clusters required.

As will be shown, it does come with an increased computational cost.

5.1.1 Distance between two points

Clustering algorithms rely on defining distance between two points. There are

many different distance measures that can be applied. In particular, when deal-

ing with time series, the distance is defined across all timepoints. Let xi and xj

be two time series of length T, such that xi = (xi1, ..., xiT). Then the distance

between these two time series is the sum of the distance between individual

points d(xi, xj) = ∑T
t=1 d(xit, xjt).

5.1.2 k-means Algorithm

Given n multivariate objects (such as time series observations), the k-means

clustering algorithm [231] fixes the number of clusters, k, a priori and initially

assigns each object to one of these clusters at random. From this initial config-

uration, the centroids (mean of objects within each cluster) are calculated for

each cluster and readjusted until convergence within some specified tolerance

occurs.

Algorithm 5.1 - k-means Clustering Algorithm

1. Choose k and convergence criterion
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2. Assign all objects X1, ..., Xn uniformly at random to clusters C1, ..., Ck

3. Calculate the centroid (mean point) of each cluster mj =
1
|Cj| ∑Xi∈Cj

Xi, j =

1, ..., k

4. Reassign variables X1, ..., Xn to nearest centroid

5. Recalculate centroids

6. Stop at convergence, when assignment to clusters is unchanged

For this algorithm, the least squares distance metric is used such that the algo-

rithm seeks to minimise the function

V =
K

∑
i=1

∑
Xi∈Cj

(
Xi −mj

)2 (5.1.1)

5.1.3 kmeans ++-algorithm

One of the problems with the k-means algorithm is that it initially assigns ob-

jects to each cluster at random, leading to different assignments of objects at

convergence for the same dataset. One extension is the k means++ algorithm

[233] which chooses an initial configuration that produces a more stable con-

verging configuration and less variability. Here, the centroids are chosen ini-

tially as follows.

Algorithm 5.2 - k ++-means Clustering Algorithm

1. Choose an initial centroid m1 uniformly at random from objects X1, ..., Xn

2. Choose the next centroid mi = x′ for some object x with probability D(x′)2

∑x∈X D(x)2

where D(x) is the shortest distance from the variable x to the closest centroid

previously chosen.

3. Repeat until all k centroids are chosen.
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5.1.4 QT-clustering

The k-means clustering algorithm is widely used due to the easy implementa-

tion and widely understood properties. One drawback is that the number of

clusters, k ,must be defined in order to implement the algorithm. Further to

this, the solution may not converge uniquely and is highly dependent on the

initial configuration.

The Quality Threshold (QT) clustering algorithm by Kerr et al. [230] does not

specify an initial configuration nor the number of clusters. Instead, by using a

threshold value of how close members within a cluster must be, the resulting

clustered configuration will be unique for the same dataset. This algorithm was

designed for use with genetic time series so is presented here.

Algorithm 5.3 - Quality Threshold Clustering Algorithm

Let ρij denote the correlation between the time series Xi and Xj. Now let ρ
(l)
ij

be the correlation between these time series but with the lth timepoint removed.

The jackknife correlation between Xi and Xj is defined as Jij = min{ρ(1)ij , . . . , ρ
(t)
ij , . . . , ρ

(t)
ij }.

1. Select time series uniformly at random Xi as a candidate cluster Cj

2. To cluster Cj, add time series with greatest jackknife correlation to cluster

3. Iteratively add remaining time series until each gene is within threshold d

4. Repeat 2 and 3 for every gene, including overlaps

5. Retain largest cluster, remove these genes from dataset

6. Repeat 2-5 on reduced dataset until all time series are assigned to clusters

5.1.5 Choice of Clustering Algorithm

The two clustering algorithms presented (with a modification to one also pre-

sented) vary in their approach to implementation and computational cost. The

k-means algorithm is quick and easy to implement, but the final configuration

depends heavily on the initial configuration, number of clusters chosen and the
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convergence criterion. The QT clustering algorithm is computationally more

expensive but uniquely defines a final configuration, subject to the choice of d.

Considered first is the choice of threshold parameter d and the effect on the

ability of the QT clustering algorithm to recover a set of clusters. Clusters are

generated by taking 20 AR(2) models and taking multiple runs in order to give

100 time series overall; the clusters are not all of fixed size with the largest

containing 8 time series and the smallest containing a single time series. In

order that the time series are similar within each cluster, the noise component

of the AR(2) model is made small.

These 100 time series are then clustered with the the QT clustering algorithm.

In order to assess the ability of the algorithm to reconstruct the clusters, a score

is used where 1 is assigned if the time series is assigned to the correct cluster

and 0 if it is wrongly assigned. These scores are summed and normalised in

order to give the overall score. Table 5.1 shows how the value of d changes the

score, with a lowest threshold of 0.1 and the highest at 1.0.

Table 5.1: The effect of the threshold parameter d in the QT-clustering algo-

rithm on ability to reconstruct a set of clusters.

d Score

0.1 0.9876

0.2 0.9042

0.3 0.7344

0.4 0.6838

0.5 0.6584

0.6 0.5934

0.7 0.5497

0.8 0.4283

0.9 0.5081

1.0 0.4875

It is noticeable that a lower threshold value results in a better recovery of the

network due to members of each cluster needing to be more similar to each
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other than those with a higher threshold. Also of note is the fact that it doesn’t

take a big jump in the threshold parameter before network reconstruction is

poor, as shown by the large drop in score when d = 0.3.

In order to compare the speed of the QT clustering algorithm against the k-

means algorithm, clustering on time series is performed for speed under each of

these algorithms. Time series of fixed length 25 were generated with 20, 50, 100

and 500 time series objects clustered into 4, 10, 20 and 100 clusters respectively.

As seen in Table 5.2, there is little difference in computational time taken to

cluster the lower number of time series objects. As the number of objects to be

clustered increases, the k-means algorithm performs significantly quicker than

QT clustering.

Table 5.2: Comparison of k-means and QT clustering algorithms

Objects Clusters k-means QT clustering

20 4 1.2 secs 3.5 secs

50 10 10.4 secs 40.5 secs

100 20 2.3 mins 12.6 mins

500 100 32.4 mins 4.2 hours

For the subsequent use of clustering algorithms, k-means clustering is chosen.

Despite the sensitivity of the algorithm, large numbers of time series objects are

to be clustered which would be unfeasible with QT clustering due to the length

of time taken to perform the clustering.

5.1.6 Number of Clusters

As the k-means algorithm requires the number of clusters to be specified in

advance, care needs to be taken as to the number of clusters to choose. Too

many and the purpose of clustering is diminshed with the increased likelihood

of similar clusters; too few and there may be lots of variability within the cluster

which could lead to spurious results with any application of the clusters.

Whilst there has been discussion on the optimal number of clusters to use, such

as in Ray and Turi [234], one rule of thumb often used is k ≈ (n/2)1/2 [235].
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This approximation is used subsequently when considering large numbers of

objects to be clustered.

5.2 Clustering applied to Granger Causality

In the previous chapter, Granger Causality was introduced as a measure of the

significance of interaction between two time series and whether there is statis-

tical evidence that change in one time series may cause a change in another

time series. For genetic data, where there may be hundreds or even thousands

of time series to consider, the number of pairwise interactions would be too

cumbersome to easily analyse. By using a clustering algorithm on the data,

the number of pairwise interactions can be reduced greatly. Here, the k-means

clustering algorithm (Algorithm 5.1) is used and the significance calculated be-

tween centroids of the clusters.

5.2.1 Granger Causality with Clustered Time Series

By calculating the significance of interactions between centroids of clusters, this

provides a statistical measure between the clusters and not the original genetic

time series which are the interactions of interest. In order to use the clusters

meaningfully, each possible interaction between members of the clusters being

used is assigned the overall significance between the centroids of the clusters,

as described in the following algorithm.

Algorithm 5.4 - Clustered Granger Causality Algorithm

Let X1, ..., Xn be time series of length T.

1. Assign X1, ..., Xn to clusters C1, ..., Ck by k-means clustering (Algorithm 5.1),

let N(Ci) be the number of time series objects in cluster Ci

2. Calculate centroid of each cluster M1, ..., Mk where Mi =
1

N(Ci)
∑j XCi,j

3. Calculate significance between all centroids Ŝa,b = SMa,Mb for a, b = 1, ..., k; a 6=
b by Granger Causality (Algorithm 4.4)

4. Assign this value to all possible pairings: if Xα ∈ Ca and Xβ ∈ Cb then

Sα,β = Ŝa,b for α, β = 1, ..., n
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This then assigns the original n(n− 1) pairwise interactions to a reduced num-

ber of interactions between clusters k(k− 1).

5.2.2 Assessing clustered interactions

Due to the use of the k-means clustering algorithm, Algorithm 5.4 will produce

different results each time it is run for the same dataset. In turn this will assign

different significance values to each of the possible interactions. In order to

overcome spurious results from a single run, the solution proposed is to run

the algorithm many times and combine the resulting significances so as to find

interactions that are repeatedly significant.

By summing the significances obtained over all runs, those interactions that are

consistently highly significant will be ranked highly when the resulting sum or

product is considered. This can be described as follows.

Algorithm 5.5 - Overall sum significance level for clustered Granger Causality

1. For run m, calculate significance Sm
i,j between Xi and Xj using Algorithm 5.4

2. Over r runs, SSum
i,j = ∑r

m=1 Sm
i,j

3. Rank interactions based on SSum

Figure 5.1 shows the application of Algorithm 5.5 for 500 monte carlo runs for

500 time series of length 25 generated. Here the number of clusters is increased

from 25 to 75 in increments of 5. All the curves show similar results with the

significance values ranked in order. There is a very slow decline before a steep

drop in the overall signifiance value at around the 600th ordered overall signif-

icance value ranking.

Whilst these results may provide useful information for the most significant

interactions, within the midrange of rankings it may provide uncertain results.

One way to deal with this is to consider whether the interaction is significant at

some α level.
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Figure 5.1: Algorithm 5.5 showing the sum of significances for 500 monte carlo

runs of 500 time series of length 25. The number of clusters increase

from 25 to 75 in increments of 5.

Here, if the interaction is significant at or above the α level then it is kept, oth-

erwise it is set to 0. More formally, if Sm
i,j < α then S̃m

i,j = 0 ; else S̃m
i,j = Sm

i,j.

Algorithm 5.5 is then altered as follows.

Algorithm 5.5a - Overall count significance level for clustered Granger Causality

1. For run m, calculate significance S̃m
i,j between Xi and Xj using Algorithm 5.4

2. Over r runs, S̃Sum
i,j = ∑r

m=1 S̃m
i,j

3. Rank interactions based on S̃Sum

Figure 5.2 shows that a less steep decline in the ranking of significances with

the α level cutoff is present, and a visible effect from the number of clusters

used, with the top curve showing the least number of clusters. This means that

the use of a counting based mechanism of significance is useful as a means of

assessing overall significance of individual interactions.
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Figure 5.2: Algorithm 5.5 showing the count of significances at 95% signifi-

cance level for the same 500 monte carlo runs of 500 time series of

length 25 as shown in Figure 5.1.

5.3 Principal Components Analysis

When the elements of the clusters are very similar, assigning each possible pair-

ing the significance of the causality based on cluster centroids provides a rea-

sonable and useful estimate of all possible cluster interactions. However, the

number of clusters can greatly vary how near each object is to each other within

the cluster. Clearly, fewer clusters can lead to greater within cluster variability.

This variability is now considered in an extension of Algorithm 5.3 by the ap-

plication of Principal Components.

5.3.1 Principal Components

Principal Components are used to find where the most amount of variability

within a dataset occurs, which may account for large amounts of the overall

variability within the data . By transforming the data, this means that the orig-

inal data can be composed of the principal components and their directions in

n-dimensional space, for vectors of length n. By taking the first few principal

components, if they account for most of the overall variation, means that the

data can be described at a lower dimension than the original data, without too

much loss of information. Whilst this is useful in most situations, the princi-

pal components as measures of variability within data shall be the focus for the

following analysis.
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5.4 Granger Causality with PCA Algorithm

In Algorithm 5.4, the significance between interactions is based solely on the

centroid or mean of the clusters. The variation within the cluster should be

considered for the effect that is may have on the overall significance of the in-

teractions. The derivation of the principal components and their eigenvalues is

taken from the book by Jolliffe [236].

For cluster Ca with elements x1, ..., xn and cluster Cb with elements y1, ..., ym, the

principal components are v1, ..., vr and w1, ..., ws respectively, with respective

eigenvalues λ1, ..., λr and ξ1, ..., ξs. Then a representation of the clusters Ca, Cb

is

x̄± λ1/2
1 v1 ± . . .± λ1/2

r vr

and

ȳ± ξ1/2
1 w1 ± . . .± ξ1/2

s ws

respectively. By taking one or a few principal components, the most variation

within the cluster can be explained.

With Granger causality applied on two single variables, as in Algorithm 4.1, the

variables are singly regressed on each other with some chosen lag. Now, the re-

gression is performed on the means, as in Algorithm 5.4, but with the principal

components of each cluster added in.

Algorithm 5.6 - Clustered Granger Causality with PCA

For p lags, to determine whether Ca causes Cb, the regression

ȳ(t) = β1ȳ(t− 1) + . . . + βpȳ(t− p) + γ1w1(t− 1) + . . . + α1x̄(t− 1) + . . .

. . . + αp x̄(t− p) + δ1v1(t− 1) + . . .

is compared against the model where the elements of cluster Cb are regressed

upon themselves
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ȳ(t) = ω1ȳ(t− 1) + . . . + ωpȳ(t− p) + π1w1(t− 1) + . . . (5.4.1)

As in Algorithm 4.1, the residual sum of squares is compared to give the signif-

icance.

When the principal components are not added in, this reduces to the standard

Granger causality algorithm (Algorithm 4.1). By adding in the components one

at a time, this will take into account the variability within the data as explained

by these principal components. The first few principal components will usually

be sufficient.

5.5 Example

In order to show the application of this concept, two time series are gener-

ated with 20 timepoints, labeled x and y. These have been generated such that

Granger causality is significant only in one direction under Algorithm 4.1. Dif-

ferent amounts of noise are added to these time series to give n repetitions with

the amount of noise classified as "small" (s), "medium" (m), "large" (l) and "extra

large" (xl). These repetitions form the basis of a cluster with centroid x and y

so that the same significance level would be given under Algorithm 5.4 but the

within cluster variation is increased.

By Algorithm 4.1, x causes y with significance level 0.7660 (2 lags) and 0.1693

(3 lags), whereas y causes x with significance 0.9949 (2 lags) and 0.9955 (3 lags).

For Ca, 48.5% of variation is explained by the first principal components, with

a further 23.2% explained by the second principal component.

Algorithm 5.6 is applied to these clusters where n = 50 and repeated 500 times,

with the distribution of the significances plotted. This is applied to the case

where one and two principal components of Ca are used, and the case where

one principal component of each Ca and Cb are used.
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5.5.1 Results

In Figures 5.3 - 5.5, the plots shown are the distributions of significances for the

500 repetitions with increasing addition of noise within the cluster from left to

right. The top row shows the significances for Ca causing Cb with the bottom

row showing the results for Cb causing Ca. Figure 5.3 uses the first principal

component of Ca, Figure 5.2 uses the first two principal components of Ca with

Figure 5.3 using the first principal components of both clusters Ca and Cb.

Figure 5.3: Histograms of significances for 50 time series within each cluster

based on the first principal component of cluster Ca. a-d show the

causal effect of the mean of cluster X on the mean of cluster Y where

the noise around the true series is classified as small, medium, large

and extra large successively. e-h show the same result with cluster

Y causing cluster X.

Where there should be a significant interaction found for the centroids of Cb

causing Ca, as the amount of noise increases within the cluster there seems

to be little effect on the repeatedly high significances being found. However,

as the number of principal components is increased there is a case for the the

more significant interactions to be found more times. This is due to the extra

information used in the regression to help explain more of the variability.

In the opposite direction, where Ca causes Cb, the spread of the distribution

of significances is increased, providing a reasonable argument that the signifi-

cance of interaction is not so strongly supported as in the other direction. How-

ever, it should be noted that there is still a tendency to find the interaction at

a high level of significance. The explanation for this could be due to the data

itself and is of great interest to consider further.
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Figure 5.4: Histograms of significances for 50 time series within each cluster

based on the first and second principal components of cluster Ca.

a-d show the causal effect of the mean of cluster X on the mean

of cluster Y where the noise around the true series is classified as

small, medium, large and extra large successively. e-h show the

same result with cluster Y causing cluster X.

Figure 5.5: Histograms of significances for 50 time series within each cluster

based on the first principal component of both clusters Ca and Cb.

a-d show the causal effect of the mean of cluster X on the mean

of cluster Y where the noise around the true series is classified as

small, medium, large and extra large successively. e-h show the

same result with cluster Y causing cluster X.
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Overall, the use of principal components may help provide extra information

where there is low amount of variation within clusters. This can then be used

with Algorithm 5.5 and Algorithm 5.5a to help discover the most significant

interactions from microarray data.
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CHAPTER 6

Application to Observed Data

In the previous two chapters, methods for inferring genetic networks based on

Granger causality and extended to include data reduction techniques were pre-

sented and their effectiveness considered with a view to understanding which

interactions are statistically significant. This is all very well for simulated data

where the data may have a well known structure, but in real life situations this

may not always be the case. This chapter applies to the algorithms developed

in the past two chapters to an observed dataset for a real biological network

which is already partially described. Reconstruction of this network is the first

aim with the further aim of predicting which interactions would be likely can-

didates for biological verification.

6.1 Xenopus Laevis Dataset

Data has been obtained from microarray experiments at the developmental

stage of the African Clawed frog, Xenopus Laevis. Measurements were taken

during this phase from 5 to 16 hours inclusively post fertilisation at hour in-

tervals to give 12 time points of data. These measurements are made on pre-

fabricated Affymetrix microarray slides which measure 15611 genes in total, of

which 52 are signalling molecules and 529 are transcription factors.

The raw data has been normalised by the use of the Excel add-in BRB-Array

Tools [16], giving log-normalised values for the basis of the subsequent analy-

sis.
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Figure 6.1: Observed time series for 42 genes from the Xenopus Laevis dataset

at 12 timepoints.

6.2 Subnetwork evaluation

Analysis is performed firstly on a subnetwork of the overall data available for

mesendoderm formation, as from in Figure 1.2 with the interactions described

in Table 6.1 and taken from the paper by Loose and Patient [3]. This provides

a useful starting point for two key reasons. Firstly, there are only 42 transcrip-

tions factors to analyse so the computation is quick and easy to perform without

requiring data reduction techniques and introducing any variability from this.

Secondly, many interactions within this subnetwork are already known so their

presence can be easily tested as well as providing suitable candidate interac-

tions. These 77 known interactions can be then used as the basis for further

biological measurement and verification. Figure 6.1 shows the observed time

series for these genes over the 12 timepoints measured.

6.2.1 Results

The results of applying Granger causality algorithms and the variations as de-

scribed in Chapter 4 are given in table 6.2 . Here direct Granger causality (Algo-

rithm 4.1), Granger causality and the modified Granger algorithm by Hatemi

et al (Algorithm 4.3) are applied to the data. The existing known network is

assumed to be the true network and results are obtained by comparing against

this network. The results show how many of the known interactions in the true

network are recovered, how many interactions are shown as significant and the

similarity measure of the true network and recovered network. These values
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Table 6.1: Mesendoderm subnetwork interactions from Xenopus Laevis
Gene Targets Targeted By

Maternal Regulators

Fast1 Brachyury, Chordin, Goosecoid, Xfkh1, Xlim1

Sox3 Xnr5

VegT Bix1, Bix2, Bix3, Bix4, Brachyury, Cerberus

Derriere, Endodermin, Fgf3, Fgf8, Gata4, Gata5

Gata6, Goosecoid, Mix1, Mix2, Mixer, Sox17, Xenf

Xhex, Xnr1, Xnr2, Xnr4, Xnr5, Xnr6, Xwnt8

Vg1 Xenf, Xnr1, Xnr2

Pre-MBT

β-Catenin Cerberus, Siamois, Xhex, Xnr3, Xnr5, Xnr6

Xnr5 Brachyury, Derriere, Pitx2, Xnr1, Xnr2 β-Catenin, Sox3, VegT

Xnr6 Brachyury, Derriere, Pitx2, Xnr1, Xnr2 β-Catenin, VegT

MBT - Stage 9

Brachyury Bix1, Bix2, Bix3, Bix4, Brachyury, Efgf Brachyury, Efgf, Fast1, Goosecoid

Xbtg1, Xegr1, Xwnt11 Mix1 Sip1, VegT, Xnr1, Xnr5, Xnr6

Derriere Bix1, Cerberus, Derriere, Mix1, Mix2 Derriere, VegT, Xnr5, Xnr6

Eomes

Pitx2 Goosecoid, Xnr1, Xnr5, Xnr6

Siamois Goosecoid β-Catenin

Sip1 Brachyury

Sox17 Endodermin, Goosecoid, Hnf1 Goosecoid, Mixer, VegT, Xnr2

Xfkh1 Fast1, Xnr2

Xnr1 Brachyury, Pitx2, Xnr1 VegT, Vg1, Xnr1, Xnr5, Xnr6

Xnr2 Antivin, Bix4, Cerberus, Endodermin, Eomes, Gata4 VegT, Vg1, Xnr1, Xnr5, Xnr6

Gata5, Gata6, Mix1, Mix2, Mixer, Sox17

Xnr2, Xfkh1

Xnr3 β-catenin

Xnr4 Xnr4 VegT, Xnr4

Xwnt8 Goosecoid, VegT

Dorsal Anterior

Goosecoid Brachyury, Goosecoid, Pitx2, Sox17, Xwnt8 Fast1, Goosecoid, Mix1, Mixer, Siamois

Sox17, VegT

Stage 9

Antivin/Lefty1 Xnr2

Bix1/Mix4 Brachyury, Derriere, VegT

Bix2/Milk Brachyury, VegT

Bix3 Brachyury, VegT

Bix4 Brachury, VegT, Xnr2

Cerberus

Chordin Fast1, Mix1

Efgf Brachyury Brachyury

Endodermin Mixer, Sox17, VegT, Xnr2

Fgf3 VegT

Fgf8 VegT

Gata4 VegT, Xnr2

Gata5 Mixer, VegT, Xnr2

Gata6 VegT, Xnr2

Hnf1 Sox17

Mix1 Brachyury, Chordin, Goosecoid Derriere, VegT, Xnr2

Mix2 Derriere, VegT, Xnr2

Mixer Cerberus, Endodermin, Gata5, Goosecoid, Sox17 VegT, Xnr2

Xbtg1 Brachyury

Xegr1 Brachyury

Xenf VegT, Vg1

Xhex β-Catenin, VegT

Xlim1 Fast1

Xwnt11 Brachyury
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are shown for three different significance levels at 95%, 99% and 99.5%. The

non-overlap block bootstrap uses blocks of size 3 and all bootstrapping algo-

rithms use 250 bootstraps.

The results show that generally network reconstruction is relatively poor. Al-

though the similarity measures are reasonably good, as explained in the deriva-

tion of them, they allow for where an interaction affect is correctly identified as

not significant. The application of bootstrapping to the Granger causality al-

gorithm shows some slight improvment with the residual bootstrapping algo-

rithm performing best out of all those used. The Hatemi algorithm shows poor

performance although again here the use of bootstrapping shows some slight

improvement than without.

6.2.2 Predicted Interactions

In complement to recovering those interactions already known, the mesendo-

derm subnetwork is not fully understood and explored so the predictability of

other likely interactions is of interest. Interactions predicted under the Granger

causality algorithm 4.1 is shown in Table 6.3 with the direction of interaction

from and to given along with whether the interaction is already known.

From these it is shown that two interactions are already known, with Derriere

known to target Bix1 and showing significant targeting of Bix3 and Bix4 genes.

These results are ranked in order of significance from the most significant. Of

particular interest to note is that the same genes are shown as repeatedly most

targeted, the Bix family of genes Bix2, Bix3 and Bix4.

6.3 Clustering Transcription Factors

Whilst the subnetwork shows how the algorithms recover known interactions

in a network, a subsection of the full dataset is now considered by combining

together the 529 transcriptions factors the 52 signalling molecules into a single
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CHAPTER 6: APPLICATION TO OBSERVED DATA

Table 6.3: Predicted Interactions for mesendoderm subnetwork

Ranking From To Known

1 Cerberus Bix3

2 Cerberus Bix4

3 Brach Bix3 Y

4 Brach Bix4 Y

5 Derriere Bix3 Bix1

6 Derriere Bix4 Bix1

7 Xenf Bix3

8 Xenf Bix4

9 Chordin Bix3

10 Chordin Bix4

11 Gata6 Bix3

12 Gata6 Bix4

13 Gata5 Bix3

14 Gata5 Bix4

15 Gata5 Bix2

16 Gata6 Bix2

17 Chordin Bix2

18 Fgf3 Bix3

19 Fgf3 Bix4

20 Gata4 Bix2

dataset. This focuses the inference for a particular type of interaction which

is of greatest interest for biological measurements and also provides a suitable

upscaling of the previous subnetwork which is built only upon transcription

factors.

For Algorithm 5.4, where individual pairings do not require bootstrapping, the

algorithm is applied directly. However with the increase in the number of indi-

vidual genes, clustering algorithms are also to be applied for dimension reduc-

tion and to gain improvements in speed of computation. This will also provide

a comparison of how well the clustering compares to the direct algorithm.

As now the subnetwork is much larger and would require more computational
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CHAPTER 6: APPLICATION TO OBSERVED DATA

time to implement, the data reduction techniques introduced in the previous

chapter are used for prediction of significant interactions. Table 6.4 shows the

results where the number of runs is fixed at 500 and the count of the signifi-

cances used for an α = 0.99 level. This shows a good amount of overlap for the

most significant interactions, supporting that these interactions are repeatedly

significant.

Table 6.4: Transcription Factor predicted interactions with Granger causality

from to

gabpa-A LOC496377

HoxA1 MGC68588

Bix1 lim2b-A

XSUG stat3-A

lim5/Lhx5 mafB

lhx2-A zax-A

LOC398730 nrl20-A

TRH4 AR

cbfa2t2-a MGC53355

lhx2-A Lmx1b

nr3-A PPARg

otx5-A en1-A

MGC68543 Xlim-3

Clk nr6a1

hif1a nkx2-10-A

Bix1 hoxd10

taf10b HoxA1

atf4-ii fgf9-A

foxd1-A gabpa-A

HoxD1 thr
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CHAPTER 6: APPLICATION TO OBSERVED DATA

6.3.1 Results

The data was clustered to between 10 and 30 clusters inclusive in steps of 5

using the k-means algorithm due to the simplicity and speed of computation.

Using Algorithm 5.5, the standard Granger causality was applied on the means

of the clusters to create the significance value for each possible interaction. This

was repeated 500 times. From these the summation of the significances was

taken to rank the most repeated significant interactions with the results for the

top 20 interactions shown in table 6.5.

From these, the ten most consistently significant interactions are given in Table

6.6, by taking the average of the overall sum significances for each of the cluster

sizes used. It is then these interactions which should be considered for further

experimental verification, in particular the HoxA1-RAB18 interaction.
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CHAPTER 6: APPLICATION TO OBSERVED DATA

Table 6.6: Transcription factor network most highly predicted interactions

Rank From To

1 HoxA1 RAB18

2 vax1-A myc

3 rxra-A MGC80584

4 Hoxa2 MGC83056

5 sip1 Pax3

6 hoxa13-A xldb1

7 MGC114753 tcf

8 MGC52531 XSUG

9 chi hoxa11

10 GATA-5a nr6a1

6.3.2 Principal Components

The same dataset for transcription factors is used to observe the effects of the

addition of principal components, as outlined in section 5.3 and implmeneted

in algorithm 5.6. Here, the number of clusters is fixed at 30 for 500 repetitions

with summation of significances used as the measure of overall significance for

interactions. Principal components are considered by the addition of the first

principal component for both clusters used in the algorithm. Table 6.7 shows

the twenty most significant interactions ranked in order of overall significance

for the control and with the addition of principal components.
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CHAPTER 6: APPLICATION TO OBSERVED DATA

Table 6.7: Transcription Factor network interactions with principal compo-

nents

Without PC With PC

Rank From To From To

1 HoxA1 RAB18 thibz-a tcf

2 bra3-a foxn5 rxra-A LOC397824

3 vax1-A myc sip1 Pax3

4 hoxa13-A xldb1 XER81 LOC397824

5 POU 2 Mdk thibz-a MGC68543

6 dnmt1 myc tbx4-A —

7 hoxa3a gabpa-A lft-a MGC68691

8 stat3-A MGC81762 LOC397778 LOC398730

9 LOC397942 LOC397877 Xlim-3 LOC398167

10 MGC52531 irf2 xldb1 hoxa11

11 Hoxa2 MGC83056 bix2-A gene 7

12 XFD2 tfiiealpha tbx5-B barh2-a

13 XGATA-3 MGC114733 fkh1-A LOC397761

14 MGC52531 XSUG hoxa13-A xldb1

15 rxra-A MGC80584 HoxA1 RAB18

16 hlxb9-A RAB35 Hoxa2 MGC83056

17 tef Mta2 rxra-A MGC80584

17 rab7 LOC10012665 vax1-A myc

19 xsmad4a TFIIDtau bra3-a gabpa-A

20 otx1-A LOC10003685 hlxb9-A RAB35
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CHAPTER 6: APPLICATION TO OBSERVED DATA

6.4 Discussion of Results

When considering recovery of known existing networks, such as the mesendo-

derm subnetwork for Xenopus Laevis as shown, the results show that the abil-

ity of the algorithms used to successfully recover the network to be poor. One

particular caveat should be placed on this, however, that this assumes the known

network is indeed truly fully known and this is as given. The only way to fully

know whether this network is indeed true is by experimentally measuring ev-

ery possible interaction which would be costly and time consuming. With such

limitation in mind, the results assuming this as a known network should there-

fore be approached with some caution.

Bootstrapping applied to the Granger causality methods shows some very slight

improvement. The improvement cannot be described as significant under the

conditions assumed, as the extra number of interactions found is very few. Sim-

ilarly, the use of the alternative representation of the Granger causality algo-

rithm shows a slight deterioration in performance but this cannot be seen to be

significant due to the low level or interactions recovered by all algorithms.

The conclusion to this would be that bootstrapping within the Granger causal-

ity framework may provide some benefit for recovery of networks. One partic-

ular difficulty as well is the use of such limited data from the very low number

of timepoints. This leads to high variability in parameter estimates and the

interactions are seen to show very high levels of significance where the inter-

actions are indeed significant but also variable values of significance where the

interaction is not significant.

Looking at prediction of interactions, the mesendoderm network shows a per-

haps surprising results, where the Bix family of genes is highly significant as

a targeted gene. Whilst Derriere is known to already target the Bix1 gene, this

extends naturally to provide candidate interactions with other members of the

Bix family of genes. The other targeting genes show that Bix genes are highly

targeted from many other genes and further investigation would be warranted

into this area.

Extending the prediction of interactions to the larger subset of all transcription
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CHAPTER 6: APPLICATION TO OBSERVED DATA

factors and signalling molecules, clustering techniques were applied. These

results are compared against the interactions without any form of clustering in

order to see how the results vary. The most 20 significant interactions in each

case are shown. Where the cluster sizes are varied, there is a broad amount of

overlap for the cluster sizes from 30 to 60. At cluster size 20, there is a significant

deviation, most likely due to the variation within the clusters.

Table 6.6 shows the ten most consistent highly predicted interactions from clus-

tering across all clusters. It is these interactions that would be likely candidates

for experimental verification of interaction.

The addition of principal components, as shown in Table 6.7, shows a certain

amount of agreement in terms of the interactions predicted for a fixed number

of clusters. Further to this, by comparison to table 6.5, it shows more consistent

prediction with the greater number of clusters. This could lead to the interpre-

tation that the presence of extra information of the structure of the clusters, such

as by principal components, gives rise to extra insight into the performance of

clusters. At lower cluster numbers, the ability to replicate higher cluster num-

bers without loss of information could give a significant improvement in terms

of speed and calculation.
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CHAPTER 7

Verification from other data

With the previous chapter, the algorithms developed and described in the pre-

ceding chapters were implemented for an experimentally observed dataset.

From this, interactions were predicted that would be good candidates for ex-

perimental verification. However, it would be hoped that experimentally ver-

ified interactions should achieve high rankings given existing knowledge that

such an interaction should exist. With the interaction of many genes possible

for single targets this is clearly a difficult challenge.

This chapter explores the use of other data sources to support the decision to

undertake a full scale experimental verification of predicted interactions. Data

is provided for a particular gene, the caudal-type homeobox transcription fac-

tor CDX4 (also known as Xcad-3), under two sets of conditions: one where the

gene is present and another where the gene is switched off by use of a gene

knockout. Under conditions described, this should provide some information

as to whether there is an interaction of interest with this particular gene target-

ing other genes. A known interaction with a particular family of genes is also

explored for verification.

7.1 Gene Knockout Data

Data has been provided for the Xenopus Laevis chip as used in the previous

analysis. There are four types of data given. Firstly, a control, where nothing

has been altered and a single reading taken. Secondly, another single reading

taken but this time with the CDX4 gene knocked out or silenced. Two further
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CHAPTER 7: VERIFICATION FROM OTHER DATA

pieces of data are given as well. One is for the addition of VP16, which acts as

a superactivator and should increase the activity of any gene. The other is for

the addition of ENR which acts as an inhibitor and hence decrease the activity

of any gene.

To interpret the results, when the CDX4 gene is knocked out, if this value is

less than control value it supports that CDX4 activates this gene as with the

presence of CDX4 the control value is higher. The significance of this is most

important and the subsequent analysis considers the variation in measuring

what a significant change is.

For reference purposes, it is helpful to be able to identify known existing in-

teractions. One pathway that is well identified is the FGF-CDX-Hox pathway

[237]. From this, it is known that CDX4 in particular should target the Hox

family of genes. For reference, we focus on one well identified interaction on

Hox7a/Hox36.

7.1.1 Results

Firstly, the genes where the control signal is less than 100 are discarded as signal

levels at this range are highly prone to noise in the detection. From the full

dataset of 15611, this leaves 9626 genes. Similarly from the 611 transcription

factors, 319 are above this level.

From these, at the 50% change level with deletion of CDX4 compared to the

control and with VP16 levels being greater than the control and ENR level be-

ing less than the control, 114 genes are selected of which 17 are transcription

factors. Similarly, at the 25% level, 479 genes are selected of which 32 are tran-

scription factors.

For the 17 transcription factor found at the 50% change level, Table 7.1 shows

the genes targeted and their consistent count rank for the results used in sec-

tion 6.3, based across varying amounts of clustering. This shows that indeed

Hox genes are well targeted and the data supports this, but the range of rank-

ings is quite variable, from a ranking of 11 for Xhox3 down to 438 for hoxa9-A.

However, generally the Hox genes are well predicted considering the overall
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Table 7.1: CDX4 targets where 50% change level of CDX4 detected compared

to control

Target Count Rank

hoxa3a 248

stat3-A 395

hox36 84

Xhox3 11

Xvex-1 469

xCAD2 582

XlHbox1 438

Xombi 337

MGC131107 20

hoxd10 83

Hoxb7 103

LOC398337 100

hoxa11 347

hox36 43

hoxa9-A 438

vg1 227

MGC154472 24

number of possible interactions that would be measurable across all genes in

the transcription factor dataset. This helps to support that the Algorithm 5.5

developed using Granger causality applied to clustering data is useful in terms

of providing predictions for interactions.

In particular, where CDX4 targets Hox7a/Hox36, the change level is measured

above 50% and the interaction ranked as 43. Given that this interaction has di-

rectly been measured and is known, this strengthens the support for using gene

knockout data in combination with the Granger causality algorithms developed

prior.
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7.2 Known interactions

In order to verify the the results of the previous chapter, using existing known

interactions can provide a mechanism to see how these perform under the al-

gorithms used. One known pathway is that of the eFGF-CDX-Hox pathway,

as described in Pownall et al [237]. Here the CDX family of genes is known

to target the Hox family of genes, and one particular gene from each family is

well described, that of the CDX4 gene targeting Hox36 (also known as Hox7a).

These genes exist as transcription factors within Xenopus Laevis so the dataset

obtained and analysed can be assessed for performance.

As CDX4 is known to target one gene in particular, Hox36, the comparison can

be made also against the gene knockout data from the previous section. As

such, the use of both datasets can be measured against known interactions to

assess the use of extra data.

7.2.1 CDX4 - Hox36 Interaction

The Xenopus Laevis transcription factor dataset is used, as analysed in section

6.3.1, with the cluster size increasing from 20 to 75 in increments of 5. The

overall significance is compared from the count of the individual significances

as well as the count variation, with a count of 1 for a significant interaction at

the 99.5% level. The average significance level is provided for 250 repetitions.

The results for the CDX4-Hox36 interaction are shown in Table 7.2, with the

number of clusters showing the rank under the sum and count variations of the

overall significance.

For the full dataset clustering, only 1000 clusters were used with 25 repetitions

due to the time taken to cluster and analyse such large amounts of interactions.

For this, the average rankings for the count and sum overall significances were

1086 and 244 respectively.
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Table 7.2: CDX4-Hox36 interaction rankings out of interactions based on tran-

scription factors alone

No. of clusters Sum Rank Count Rank

20 149 22

25 170 31

30 129 43

35 85 18

40 86 23

45 40 29

50 83 48

55 77 19

60 198 50

65 415 30

70 426 43

75 386 26

7.2.2 eFGF - CDX4 Interaction

The other interaction shown by the Pownall et al paper is that of the eFGF-

CDX4 interaction, both of which appear in the Xenopus Laevis dataset. The

data for this interaction from both the transcription factor and the full datasets

can therefore be given and is presented in Table 7.3 as for the CDX4-Hox36

interaction.

7.2.3 Results

The CDX4-Hox36 interaction shows good predictability especially under the

count ranking method of significances, with results consistently in the top 100

rankings. It performs less well where a sum is assigned based on a 99.5% level

of significance for each interaction. However, the results still here are relatively

high compared against the total number of possible interactions.

For the eFGF-CDX4 interaction, there is less support for the interaction within

the analysis performed, yet again the count rank shows better performance than
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Table 7.3: eFGF-CDX4 interaction rankings out of interactions based on tran-

scription factors alone

No. of clusters Sum Rank Count Rank

20 1385 233

25 875 205

30 633 195

35 749 226

40 724 198

45 689 212

50 534 221

55 785 164

60 895 185

65 587 192

70 406 144

75 745 168

that of the sum rank. In comparison against all possible interactions, these re-

sults are still relatively well performing.

Overall, these two known interactions help to show that the use of clustering

with the Granger algorithm from Algorithm 5.4 can be used to predict interac-

tions in genetic networks, even though the data may be limited. One problem

lies choosing which interactions are deemed most significant; clearly if the most

20 significant interactions were chosen as contenders for experimental verifica-

tion, it would potentially miss interactions such as these ones that are known.

So whilst Table 6.6 shows the top ten most significant predicted interactions,

care needs to be taken to ensure that these are indeed interactions worth persu-

ing.

By combining the knockout data in the previous section, this will help allow to

ensure that these predicted significant interactions are indeed worthy of further

investigation.
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Discussion

The field of genetic network modelling and inference has evolved greatly with

the wide range of statistical and applied mathematical techniques that are avail-

able. Research groups and sections of well regarded journals, such as Bioinfor-

matics, are devoted to the area and making sense of the huge amounts of ex-

perimental data produced. This thesis has considered the origins of modelling

genetic networks and how this leads to using statistical approaches to infer in-

teractions between genes in a biological system. This chapter summarises the

findings of this thesis and presents some considerations on how to expand and

develop on some of the issues and ideas raised.

8.1 Conclusions

Chapter 1 introduced the underlying biological mechanism being studied and

what a genetic network means. The use of microarrays to obtain data is pre-

sented and the challenges of obtaining this sort of data due to the inherent

noise in measurement. A survey of literature for modelling and recovering

genetic networks is given which shows the great range and scope of a multi-

tude of techniques used. This review is by no means exhaustive, with a lot of

active research into the area generating more literature than could ever be fully

described in a single thesis. However, it presents some of the key ideas and

approaches that have been used and the variations thereon.

Chapter 2 looks at how modelling of genetic networks has developed, from the
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simple binary models of Kauffman, to more developed stochastic models. Bio-

logically observed features, such as competition of binary decisions and multi-

lineage priming, are shown to verify the validity of using such models. Mod-

elling a stochastic system at the molecular level, by stochastic simulation algo-

rithms and the Gillespie algorithm, are shown. These techniques can be used to

build artificial networks and understand their dynamics and generate artificial

data.

Chapter 3 moves away from modelling genetic networks and looks at the re-

verse view, of how to reconstruct a genetic network from data provided. Simple

least square algorithms are introduced, which are unlikely to be feasible across

very large networks. The use of Bayesian networks, currently a widely used

technique, is also discussed.

Arguments are presented for using a single timepoint with multiple measure-

ments as this will only give limited information in stochastic system that evolves

over time. Further to this, a correlation measure is used for inference between

nodes which fails to take into account the directionality that is present in ge-

netic networks. For these two reasons, this approach does not seem to be useful

as it neglects arguably the most two key features of a genetic network.

Chapter 4 presents the main underlying technique used to assess the interaction

of genes within a genetic network, that of Granger causality. The use of such a

statistical technique is appropriate, as it provides a statistical means to assess a

directional effect between two genes on data measured over time, the form in

which the most useful data is provided. Bootstrapping of multivariate time se-

ries is introduced, with the overlapping and non-overlapping block bootstraps

and the residual bootstraps compared. The block bootstraps are compared and

shown to perform reasonably similarly when considering both the size of block

length and the amount of overlap. The residual bootstrap generally outper-

forms the block bootstraps and require less parameters to consider so is used in

subsequent analysis. These are further integrated into the Granger causality ap-

proach and three algorithms compared. It is shown that direct Granger causal-

ity (Algorithm 4.1) and the Hatemi-Shukur algorithm (Algorithm 4.3) perform

well, with the Hidalgo algorithm (Algorithm 4.2) based in the frequency do-
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main shown to perform poorly.

The paper by Chatterjee and Mukhophadyay [2] is evaluated with the deci-

sion to only take the most significant directional interaction between two genes

discouraged. Algorithms for recovering a genetic network on this basis are in-

troduced which can in turn be used to predict the most significant interactions.

Performance is shown to be good when used with stationary datasets and im-

provements for longer time series, with non-stationary data showing generally

poor performance.

Chapter 5 develops the application of Granger causality to very large datasets

where all possible interactions may be too time consuming to calculate. Clus-

tering is used in order to speed up calculation, with two particular clustering

algorithms given. The QT-algorithm is discussed with relation to the choice of

threshold parameter. A small threshold recovers networks well but soon falls

away the larger this threshold becomes. The k-means algorithm is chosen due

to ease and speed of computation, even for large amounts of data. Original al-

gorithms are developed in order to combine clustering with Granger causality

to meaningfully ascertain which interactions are most significant, by consider-

ing repetitions of the clustering algorithm.

The variation within the clusters is considered by use of Principal Components

to help explain the variation. This is combined with the clustered Granger

causality algorithm and shown that the first few principal components are use-

ful where a true interaction may exist.

Chapter 6 applies these newly developed algorithms to the case of an observed

dataset in order to understand their performance in a real life setting. A subset

of the data where some of the network interactions are known is used to attempt

to recover this network and give an indication of which interactions may be of

interest to further experimentally verify.

A larger subset of signalling molecules and transcription factors is used with

clustering and provides some interactions of interest for further verification.

Certain interactions are consistently marked as significant, regardless of cluster

size. The full data set is clustered to again find interactions of interest. Some of
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these are in common with the previous subset, giving weight to these interac-

tions as being the best candidates.

Chapter 7 verifies those interactions that target a particular gene, CDX4, by use

of gene knockouts. One particular known pathway, for Hox genes targeting

CDX genes, is considered to show that the data obtained is indeed useful. This

is combined with the fact that some of these interactions are shown to be highly

significant by using the clustered Granger causality algorithms. By combining

the results from gene knockout data with the clustered Granger causality algo-

rithms, this helps support which predicted interactions are indeed most likely

to be shown as significant.

8.2 Further Study

Application of mathematical and statistical techniques to genetic networks is

wide and varied, with a wide range of research being undertaken with the in-

crease of genomic data and applications. As the experimental technology de-

velops, the data obtained can be used to produce better results.

One such technology is the protein assay. This is the protein equivalent of the

microarray to measure levels of proteins within a sample as opposed to mRNA.

Due to the size and specificity of proteins, the development of technologies to

measure such data has encountered significant difficulties. As this improves,

the level of protein can be used as well as that of the mRNA, such as as that

used in the ODE models given in Chapter 2. Given the current assumption that

the level of mRNA and that of proteins is linear, this relationship itself can be

explored to better understand and parameterise a genetic network.

Within the context of the causality methods described and developed in this

thesis, one key factor has been the limited amount of data measured due to the

high cost and laboratory time taken to extract the data. As gene chips become

cheaper and faster to produce and analyse, longer range time series data will
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be rapidly available, possibly over many tens or even hundreds of time points.

Such extra information will be crucial for providing better estimates of param-

eters to obtain better reconstruction of networks.

Coupled with this increase in timepoints is the actual analysis itself, especially

in the context where the data may not fulfil the criteria of the algorithms used,

such as stationarity. One way to view this is to split the time series into parts

and look at localised causality for each of these, already used in applications

such as in Hesse et al [238] . Furthermore, extra information for the model can

be obtained by taking multiple samples and combining these to understand

variation in the model. Use of non-linear methods for parameter estimation

within a Granger causality framework may be of use here [239] [240].

One technique to improve speed of computation is through the use of parallel

computing, whereby many processors are able to individually perform com-

putations before being rejoined together. In fact, pairwise analysis is highly

suitable to this, as each pairwise interaction is a completely separate action not

requiring the knowledge of any other interactions. Such embarrassingly paral-

lel problems are therefore ripe for development with parallel computing allow-

ing very large datasets to be easily and manageably analysed.

For the algorithms developed within this thesis, these can be refined and im-

proved in various ways. Principal components are used to understand the af-

fect of within cluster variation and how it affects the algorithm. One extension

to this is to use multivariate Granger causality between the full clusters.

The variation in clustering algorithms would also be worthwhile investigating,

such as the QT algorithm. As the computational power of processors increases,

such algorithms may provide a more useful insight than the clustering tech-

niques that are sensitive to intitial conditions.
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