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Abstract

Three years of milk recording data from 2,128 dairy herds from England and Wales were used

to describe herd, lactation, and milk production characteristics ; to describe somatic cell count

patterns and their link to bulk milk somatic cell count and to investigate the relationship

between milk quantity and composition at the start of lactation and the calving to conception

interval.

All the data collected by the National Milk records between the 1st of January 2004 and the

31st of December 2006 were available. A selection was operated to retain samples taken on

two consecutive milkings from herds which recorded on average monthly for the complete three

years. From the 19,893,093 recordings in 5,714 herds initially available, 8,211,988 recordings

from 2,128 herds were selected for further analysis. This represented data for approximately 16

% of the dairy herds in activity in England and Wales in December 2006.

In Chapter 3 these data aggregated at the herd, lactation and month levels were described.

Calvings and milk production followed a seasonal pattern. The number of calvings was the

highest in September and the lowest in May with 80 % more calvings in September than in May.

The peak was more pronounced for heifers and flattened out with successive lactations. Seventy

three percent of cows calved again and the median interval between consecutive calvings was

391 days. There were variations in the quantity and composition of milk produced per month

of the year. Milk production was highest in May (26.5 kg) and lowest in October (24.1 kg).

Butterfat was stable, close to 4 % from October to March and reached a minimum at 3.7 % in

June and July. Protein stayed between 3.2 and 3.3 % all the year. Geometric mean somatic

cell count was between 177,000 and 180,000 between October and March and reached 205,000

cells/mL in July and August.

In Chapter 4 individual cow milk yield and constituents were described. Distributions, lactation

curves and cumulative quantities were investigated. Between 5 and 305 days in milk, the mean

milk yield, percentage of butterfat, percentage of protein, fat to protein ratio and somatic cell

count (geometric mean) were 26.4 kg, 3.96 %, 3.29 %, 1.21 and 90,000 cells/mL. Lactation

curves for milk yield were lower and flatter in parity one than in later parities. For parity one

cows, the peak occurred around 50 days in milk and production at the peak was 27.9 kg. For

later parities, the peak occurred between 38 and 41 days in milk and was between 33 and 38 kg.

Between 50 and 305 days in milk, milk production decreased by 3.2 kg/100 days in parity one

cows and by between 5.7 and 7.4 kg/100 days for later parities. Lactation curves for percentage

of butterfat, percentage of protein and somatic cell count followed an inverse shape to the one



of milk yield. The fat to protein ratio increased from week 2 to 4 in lactation and decreased

between week 4 and week 12 of lactation. Between 5 and 305 days in milk, first lactation cows

produced 7,358 kg of milk, 284 kg of fat and 235 kg of protein ; cows in later lactation produced

8,483 kg of milk, 327 kg of fat and 272 kg of protein. High yielding herds were characterised by

higher peaks, lower persistency, and slightly lower concentration in butterfat and protein.

In Chapter 5 patterns of somatic cell counts aggregated at the herd-year level were described

and their contribution to an estimated bulk milk somatic cell count quantified using linear

mixed models. Patterns were defined using a threshold of 200,000 cells/mL to categorise cows

as having a low or a high somatic cell count and combined over two consecutive milk recordings.

Cows of parity one and greater than one and cows in their first month of lactation and later

in lactation were described separately. Predictions made by the model were tested against

observed data and the model used to predict a different dataset. The selected model predicted

the data accurately. Cows staying above 200,000 cells/mL for 2 consecutive milk recordings

were the main contributors to bulk milk somatic cell count.

In Chapter 6, the model developed in Chapter 5 was tested at the test-day level and the

probability of transition between below and above 200,000 cells/mL, dry period and culling

were modelled on 3 datasets. Seven test-days were randomly sampled from a random sample of

100 herds. The first six test-days were used for parameter estimation. The seventh test-days as

well as one test-day per herd in 100 randomly selected herds were used for validation. Overall,

the model using somatic cell count categories predicted bulk milk somatic cell count well and

most coefficients were close to the ones estimated in Chapter 5. The state transition model

described the transitions well. The probability of moving or staying above 200,000 cells/mL

increased with stage of lactation. The probability of being above 200,000 cells/mL was higher

for cows above 200,000 cells/mL on the previous test-day and for cows of parity greater than

one. However, states predicted for each individual cow were not useful in predicting bulk milk

somatic cell count.

In Chapter 7, the milk quantity and composition on the first two test-days of lactation were

used to model and predict the calving to conception interval. Multilevel discrete-time survival

models were used. There was an association between milk quantity and composition at the

start of lactation and the probability of conception before 145 days in milk. This probability

increased with lower milk production on the second test-day, higher percentage of protein on

the second test-day and higher percentage of lactose on the first test-day. Positive associations

were of a limited magnitude but also significant with the percentage of protein on the first

test-day, the percentage of butterfat on the first test-day and somatic cell count on both test-

days. Characteristics of milk production on the second test-day of lactation were of more

importance, probably because they were related to the production at the peak. While there

ii



was a good agreement between observed and predicted probabilities of conception at the cow-

lactation level, predicted probabilities of conception aggregated at the herd level were not useful

in ranking individual herds.
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”All right,” said Deep Thought. ”The Answer to the Great Question ...”

”Of Life, the Universe and Everything ...”

”Is ... ”

”Forty-two,” said Deep Thought, with infinite majesty and calm. ...

”Forty-two!” yelled Loonquawl. ”Is that all you’ve got to show for seven and a half

million years work?”

”I checked it very thoroughly,” said the computer, ”and that quite definitely is the

answer. I think the problem, to be quite honest with you, is that you’ve never ac-

tually known what the question is.”

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

Prediction is very difficult, especially about the future.

Niels Bohr
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Chapter 1

General Introduction

1.1 Background to milk production in dairy cows

Cow’s milk is produced by four anatomically independent mammary glands. At the cellular

level, milk is synthesised by lactocytes organised in globular structures called acini. Once

secreted, milk is collected in acini, ducts and a cistern until suckling or milking occurs. Milk is

the exclusive source of water, carbohydrates, fat, protein and minerals for the young calf during

its first weeks of life. Hence, the amount of each constituent has to be balanced in order for

the calf to survive. For farmers, variations in milk quantity and composition are of interest

on many grounds. Payment is made on the basis of milk volume and fat content which, in

Europe, are constrained on an annual basis by quotas. A supplement is paid for protein content

and a penalty when somatic cell count is above a threshold (typically 200,000 cells/mL) so

that farmers have a direct financial incentive in monitoring these constituents. Cattle breeding

programs using cow information data have been developed throughout the world in order to

improve profitability of dairy herds by enhancing individual cow milk production. Thus, there is

a strong motivation for the dairy industry as a whole to obtain reliable data on milk production

on a large scale. Milk recording consists of the regular, usually monthly, recording of data from

all the lactating cows milked in a dairy herd. Results of these tests are used by farmers, farm

advisors and breeding companies. This thesis will focus on variations in milk quantity, fat,

protein and somatic cell count and their link to bulk milk somatic cell count, and reproduction.

1.2 Milk recording

Milk recording is used worldwide to assess individual cow performance. It was developed at

the start of the 20th century. The creation of the American Dairy Association in 1906 and the

early history of milk recording in the United States are described by Fraser (1933). Information
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Chapter 1: General Introduction

on the history of milk recording in the UK can be found on the National Milk Records website

(NMR, 2009). Before 1943, milk recording was carried out by different milk recording societies

which were then amalgamated into in the National Milk Records by the Milk Marketing Board.

By 1953, the NMR recorded 25 % of cows and 16.2 % of herds in England and Wales. The

measure of butterfat and then protein were undertaken. The measure of somatic cell count was

introduced in 1990 and within 2 years, 65 % of NMR samples were tested. Today all samples

are tested for SCC. The NMR is now a private company, and recently, other competing milk

recording companies have appeared in the UK. The information produced by milk recording is of

importance to dairy farmers in the monitoring of cow performance and hence in decision making.

Another major use of these data is the evaluation of bulls’ breeding values. Finally, these data

are used in epidemiological studies. The relatively standard way in which milk recording is

carried out worldwide makes the data comparable between countries to some extent (Weigel

et al. , 2001).

In this thesis, a large sample of milk recording data collected by the National Milk Records in

England and Wales between January 2004 and December 2006 will be used. The data and data

selection used to generate the dataset used throughout this thesis are described in Chapter 2.

1.3 Milk Composition

Milk quantity, butterfat content, protein content, lactose content and somatic cell count are

routinely measured as a part of milk recording. Substantial variations in milk composition exist

between cow breeds. For example, Channel Island breeds (Jersey, Guernsey) milk contains

more fat and protein than Holstein and Friesian which are the object of this thesis. To give

an overview, Cerbulis & Farrell (1975) determined the milk composition for various breeds of

cows in the United States. Holstein cows’ milk contained 3.07 ± 0.43 % of (true) protein, 3.73

± 0.32 % of butterfat and 4.93 ± 0.61 % of lactose. As an example, the same figures for the

Jersey breed were 4.07 ± 0.49, 5.42 ± 0.53 and 4.99 ± 0.34.

1.3.1 Lactose

Lactose is a disaccharide made of one molecule of galactose and one molecule of glucose which

condense in the presence of the enzymes galactosyltransferase and α-lactalbumine (Linzell &

Peaker, 1971). It is the principal milk constituent affecting milk osmotic pressure. Other

constituents contributing to this pressure are K+, Na+ Cl− and other sugars (Shennan & Peaker,

2000). The osmotic pressure causes an influx of water in the lumen of the alveoli determining

milk volume.
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1.3.2 Protein

Milk nitrogen can be divided in 3 fractions: casein, whey protein and non protein nitrogen

which represent approximately 77.9, 17.2 and 4.9 % of total milk nitrogen (Cerbulis & Farrell,

1975). While some of the whey proteins such as immunoglobulins and serum albumin originate

from the bloodstream, most of the milk proteins are synthesised by the mammary gland. The

amino acids used for these syntheses are either derived from the bloodstream or synthesised by

the gland (Akers, 2002).

1.3.3 Milk Fat

Milk lipids are organised as fat globules surrounded by a membrane called the milk fat globule

membrane (MFGM). The MFGM prevents globule coalescence thus stabilising the emulsion.

At the centre of the globule, the lipid core is mainly composed of triacylglycerols (TAG)

synthesized in the rough endoplasmic reticulum. These TAG assemble in microdroplets which

are coated with protein and polar lipids and expulsed from the cell by a budding process

(Bauman et al. , 2006). The lipid composition of milk has been extensively reviewed by Jensen

(2002). TAG represent 97.5 % of the total lipid weight (Kurtz, 1974). Fatty acids entering

the composition of TAG have two different origins, namely de novo synthesis by the mammary

gland and uptake from the bloodstream. Fatty acids present in the blood originate either from

the diet or from lipolysis. They vary both in terms of length and saturation. Bovine milk

contains at least 400 different fatty acids, 12 of which being present as more than 1 % of the

total triglyceride (TG) weight. Hence milk contains several thousands of different TG, most of

them only as trace (Jensen, 2002). Lactocytes synthesise fatty acids of length 4 to 14 while fatty

acids of length 18 are all blood supplied. C16 can be both synthesised or uptaken. Ruminants

utilise acetate and to a lesser extent β-hydroxybutyrate as a source of carbon for the synthesis

of fatty acids as opposed to glucose in other species (Hawke & Taylor, 2002).

1.3.4 Somatic Cells

The main cell populations in milk are immune cells. Lee et al. (1980) reported the main

cell population to be macrophages while there was no secretory epithelial cells and very few

ductal epithelial cells. Sarikaya et al. (2006) identified lymphocytes as the most numerous

cells in milk with somatic cell count of less than 12,000 cells/mL and macrophages in milk

with somatic cell count between 12,000 and 100,000 cells/mL. Inflammation is initiated by the

release in chemo-attractants by macrophages and epithelial cells which results in the recruitment

polymorphonuclear neutrophil leukocytes (Paape et al. , 2002). Inflammation of the mammary

gland is mostly of bacterial origin. The main factor of variation of somatic cell count is infection
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(Schepers et al. , 1997), and somatic cell count is used as a marker of mastitis.

1.3.5 Determination of milk composition by the National Milk Records

The instruments used by the National Milk Records between 2004 and 2006 were the Milko-Scan

605 for the determination of protein, butterfat and lactose contents, and, Fossomatic 360 for

somatic cell count (Foss Electric, Hillerød, Denmark). The Milko-Scan 605 uses different sets

of filters to detect infrared wavelengths distinctive of the constituent measured. The analysers

need to be calibrated against reference methods for each constituent (Barbano & Clark, 1989;

Kaylegian et al. , 2006). For protein, the application was calibrated for the measurement of

total nitrogen and the reference technique for the calibration was the Kjeldahl method. The

conversion from nitrogen to protein content was operated using a factor of 6.38. The Milko-Scan

605 measured butterfat directly. In this case, the reference against which the equipment was

calibrated was the Rose-Gottlieb method. Lactose content was measured after de-proteinisation

and removal of the butterfat from the sample. The calibration standard for lactose was BS 1741

Section 7.1. With the Fossomatic 360 (McKenna, 1994; Miller et al. , 1986), cell number per

unit of volume is measured by flow cytometry. Cells are stained with ethidium bromide, a DNA

specific dye, and exposed to light of a specific wavelength as they are lined up in a flow. In

response they emit light pulses of a different wavelength which are counted one at a time.

1.4 Physiological stage and milk production

1.4.1 Lactation curves

Lactation curves describing changes in milk production with stage of lactation have been ex-

tensively studied. The purposes of such studies have been, for example, to adjust observed

performance for stage of lactation and season (Wilmink, 1987), to split the phenotypic vari-

ations between additive genetic, permanent environmental, herd test-day, herd and residual

sources (Silvestre et al. , 2009) or to model the effects of disease on performance (Appuhamy

et al. , 2009). Milk yield is known to increase from calving to 6-8 weeks postpartum and to

decrease thereafter. The maximum milk production is referred to as the peak. Milk constituent

concentrations follow an inverse shape, decreasing from calving until the peak in yield and in-

creasing thereafter. There is no recent description however of lactation curves in the UK despite

the fact that cows have changed greatly in terms of genetics.

Variations in individual cow milk production in England and Wales with stage of lactation are

described in Chapter 4.

5



Chapter 1: General Introduction

1.4.2 Transition between the dry period and lactation

The onset of lactation follows calving so that there is a dramatic change in cow metabolism

between the dry period and early lactation (Bauman & Currie, 1980). The energy balance as

well as the quantity and composition of the milk produced during the first 180 days of lactation

in a Dutch dairy herd were measured by de Vries & Veerkamp (2000). On average, cows were

in Negative Energy Balance (NEB) during the first 41.5 days of lactation and 82.5 % of cows

experienced a period of NEB. The most significant change in milk composition associated with

NEB was an increase in the fat percentage during the first month of lactation. The change in

fat percentage between the first and second month of lactation had the highest correlation with

the total energy deficit during early lactation. Grieve et al. (1986) found a negative correlation

between energy balance (EB) and milk percentage of fat, a positive correlation between EB and

percentage of protein and a negative correlation between EB and the fat to protein ratio (FPR).

In their study, the fat to protein ratio was the better indicator of EB. Based on measurement

of β-hydroxy-butyrate (BHBA) for 1,333 cows in 93 Canadian herds, Duffield et al. (1997)

identified 14.1 % of cows as being in subclinical or clinical ketosis in early lactation. In another

recent study carried out in Ontario higher serum BHBA was also associated with higher milk

fat percentage and lower milk protein percentage (Duffield et al. , 2009).

Therefore, most cows are in NEB at the start of lactation and this has repercussion on milk

composition and can lead to ketosis. Among the consequences of NEB is its negative impact on

reproduction. In de Vries & Veerkamp (2000), NEB was associated with a delay in the resump-

tion of the postpartum luteal activity. Lower reproductive performance has been associated

with the genetic selection for increased milk production (Lucy, 2001; Butler & Smith, 1989).

Extensive work has been carried out on this subject, but the precise relationship between energy

status and reproduction is still only partly understood.

In Chapter 7, we use milk recording data to predict the interval between calving and conception.

1.5 Somatic Cell Count and Mastitis

1.5.1 Background on Mastitis

Mastitis is an inflammation of a mammary gland, mostly of bacterial origin. Depending on

the degree of adaptation of the pathogen to the mammary gland, mastitis causing bacteria

have classically been divided between contagious and environmental. An example of a purely

contagious bacteria is Streptococcus agalactiae which can only survive in the mammary gland

and hence is transmitted from cow to cow (Keefe, 1997). At the other end of the spectrum

is Escherichia coli which persists in the environment and infects the cow occasionally, though
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it is not generally adapted to survive in the mammary gland. This distinction has become

less clear recently because studies have shown that some Escherichia coli persist in the udder

subclinically (Dopfer et al. , 1999; Bradley & Green, 2001). Another distinction is made between

major pathogens which elicit a strong inflammatory response and minor pathogens which elicit

a milder response. In all cases, mastitis has adverse effects such as decrease in milk production,

financial penalties from treatments, milk withdrawal and death or culling (Seegers et al. , 2003).

A survey conducted in 97 herds from England and Wales on mastitis incidence and aetiology

(Bradley et al. , 2007) found a mean incidence of clinical mastitis of 47 cases per 100 cows per

year when estimated from farm records and of 71 cases per 100 cows per year when estimated

from the intervals between samples collected for bacterial analysis. This highlights the facts

that despite decades of effort to control the disease, it remains an important problem in British

dairy herds, and that dairy farmers might underestimate the real incidence in their herds. In

this same study, the main aetiological agents for mastitis were Streptococcus uberis (23.5 %)

and Escherichia coli (19.8 %), but 26.5 % of samples produced no growth. The main agent

isolated from sample with a somatic cell count greater than 200,000 cells/mL were coagulase-

negative staphylococci (15 %), Streptococcus uberis (14 %) and Corynebacterium species (10 %).

Staphylococcus aureus and coagulase-positive staphylococci represented 10 % of these samples

and 39 % did not yield any growth.

1.5.2 Somatic Cell Count

For decades now, somatic cell count has been used as a marker for mastitis. In the UK, it was

introduced by the National Milk Records in June 1990 and within two and a half years over

65 per cent of all NMR samples were tested for cell count. Today, all samples are tested for

SCC (NMR, 2009). In this respect, milk recording allows farmers to routinely check cow SCC

levels to identify individuals likely to carry an infection. Following bacterial challenge, immune

cells, mainly neutrophils, are recruited from the blood stream. Because infection can trigger

the recruitment of millions of cells/mL, the overall distribution of SCC is right skewed. Thus,

a log transformation is usually applied to study SCC (Ali & Shook, 1980) and the geometric

mean is preferred to the arithmetic mean SCC.

Djabri et al. (2002) carried out a meta-analysis of the increase in SCC associated with the main

bacteria causing mastitis. The geometric mean SCC in negative quarters, quarters harboring

IMI with Staphylococcus aureus, Streptococcus agalactiae, Streptococcus dysgalactiae, Strepto-

coccus uberis, coliforms, staphylococci other than S. aureus and Corynebacterium bovis were 68

000, 357 000, 857 000, 547 000, 1 024 000, 1 151 000, 138 000 and 105 000 cells/mL respectively.

Different bacteria also cause different patterns of SCC during lactation. Looking at the link
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between clinical mastitis of particular etiologies and SCC, de Haas et al. (2004) observed that

in the case of IMI caused by Esherichia coli, SCC was close to the levels in uninfected cows

and returned quickly to normality after the clinical episode. This pattern was similar to that

observed in cases of mastitis with culture negative samples. In cases of clinical mastitis caused

by Staphylococcus aureus, SCC was elevated before and remained elevated after the case. The

effects observed in cases of mastitis caused by Streptococcus dysgalactiae, Streptococcus uberis,

and other Streptococci were similar and characterised by a continuous increase until the case

and high SCC levels following it. Using the same dataset as well as data collected in the UK,

Green et al. (2004) found that Staphylococcus aureus and Streptococcus uberis clinical cases

were associated with increased standard deviation of the log SCC during lactation. Escherichia

coli was characterised by higher coefficients of variation. Increased lactation geometric mean

SCC were associated with increased risks of Staphylococcus aureus mastitis and a reduced risk

of Escherichia coli mastitis.

1.5.3 Diagnosis of Mastitis: problems and application at the herd level

The diagnosis of mastitis is complicated by the lack of sensitivity of bacteriology. In de Haas

et al. (2004), no bacterial growth occurred in 22 % of cows with clinical mastitis. The associated

lactations had characteristics close to the ones with a clinical mastitis caused by Escherichia

coli. In Bradley et al. (2007), twenty six percent of samples of milk from clinical mastitis did

not result in bacterial growth. It can be stated that there is no gold standard for the detection

of mastitis. With bacteriology used as the ‘best‘ available test, it is hard to determine the true

SCC distribution in uninfected quarters. Therefore, it is common in epidemiological studies to

include SCC as well as bacteriology in the definition of subclinical cases (Dohoo & Leslie, 1991).

In practice, fixed values are used to identify cows likely to bear an infection. A threshold of

200,000 cells/mL is commonly used in the UK (Bradley & Green, 2005) as in other countries

(Pantoja et al. , 2009) but alternative thresholds are also in use. For example, the Dutch

milk recording program uses a threshold of 150,000 cells/mL for primiparous and a threshold

of 250,000 cells/mL for multiparous cows (de Haas et al. , 2008). The resolution of mastitis

problems in a herd does not require the certain identification of all cases of mastitis but the

identification of the population of individuals at greatest risk of IMI. To achieve this goal, herd

performance is evaluated and compared to benchmarks. No recent reference values have been

provided in the UK regarding SCC values and herd performance.

In Chapter 3, patterns of SCC in England and Wales between 2004 and 2006 are explored. In

Chapter 4 lactation curves for individual cow SCC are presented. In Chapter 5, two thresholds

are tested for the prediction of herd bulk milk somatic cell count and the contribution of cows

in the categories defined by these threshold quantifies. Finally, in Chapter 6 the probabilities
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Chapter 1: General Introduction

of transition of individual cows across this threshold are predicted and these predictions used

to predict test-day BMSCC.

1.6 Statistical Techniques used throughout this Thesis

In this thesis, the associations between milk quantity and composition and bulk milk somatic

cell counts or the interval from calving to conception are studied with statistical models (see

Chapters 5, 6 and 7). Linear models and generalized linear models are used in both frequentist

and Bayesian frameworks. This section is an introduction to the statistical techniques used

starting with likelihood functions which are central to frequentist as well as Bayesian approaches,

followed by an outline of the differences between these two approaches. Because it is increasingly

encountered in veterinary literature, emphasis is put on Bayesian model building and checking.

Finally, linear mixed models and generalized linear mixed models are introduced.

1.6.1 Likelihood Functions

As the name indicates, a likelihood function measures the likelihood of observing a certain

outcome under a given distribution. They are pivotal in both frequentist and Bayesian analysis.

In the next two paragraphs, this concept is illustrated with examples of a discrete distribution

and of a continuous distribution.

Example 1: discrete outcome

The binomial distribution models a sequence of n Bernoulli trials. In these trials there are two

possible outcomes which can be labelled Success and Failure. In Epidemiology, a classical appli-

cation of this distribution is the sampling of a group of individuals to determine the prevalence

of a disease in a population. For a given prevalence in the general population, different samples

will give various numbers of positives. These random variations around the real prevalence are

described by the binomial probability mass function. Given the prevalence p of the disease in

the population, if there are n animals sampled (trials), the probability of observing y individuals

with the disease (Success) is:

Pr(Y = y|n, p) =
n!

y!(n− y)!
py(1− p)n−y (1.1)

The problem of statistical inference is the inverse one. In this case, y is known, and the aim is

to get an estimate of p, that is find the value of p for which Pr(p|n, y) is maximum (Myung,

2003). By removing the parts of Equation 1.1, which do not depend on p the likelihood function

9



Chapter 1: General Introduction

Figure 1.1: Binomial Distribution B(10, 0.2)
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can be written as:

L(y|p, n) ∝ py(1− p)n−y (0 ≤ p ≤ 1) (1.2)

We take the example of a disease which has a prevalence of 20 % in a population. Ten individuals

are sampled. The individuals with the disease are numbered 1 and the individuals who are

disease-free 0. The vector of observed values is z = 0001100100. The likelihood function is a

function of p:

L(y = 3|p, n = 10) = p3(1− p)7 (0 ≤ p ≤ 1) (1.3)

Figure 1.1a shows the probability mass function for Pr(Y = y|n = 10, p = 0.2). Making p vary

in Equation 1.3 gives the curve in Figure 1.1b. In this case, the likelihood function peaks at

0.3 because 3 individuals out of ten are positive but the distribution of possible values is large

because of the small sample size.

Example 2: continuous outcome

The same idea can be applied to continuous data. The probability density function for the

normal distribution can be written as:

Pr(y|µ, σ) = f(y|µ, σ) =
1√
2πσ

e−
1

2σ2 (y−µ)2 (1.4)

For a vector yi where i is the ith observed value, the likelihood function will be the product:

L(yi|µ, σ) =
∏
i

f(yi|µ, σ) (1.5)

10
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Figure 1.2: Normal Distribution N(25, 25)
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As an example, we generate a vector from a normal distribution y ∼ N(25, 25) which could be

a sample of dairy cow milk yields. This vector is

y = 22.2 23.8 32.8 25.4 25.6 33.6 27.3 18.7 21.6 22.8. The probability density

function for this distribution is plotted in Figure 1.2a. In this case, there are two parameters to

model, so that the likelihood is a surface. The plot of this surface is shown in Figure 1.2b. The

maximum likelihood estimate is the highest value of this surface. In this example the maximum

likelihood was reached for µ = 26 and σ = 4.5.

Maximum likelihood and model fit

While particular values of the functions are unimportant, variations are of interest for the

estimation of model parameters and assessment of model fit. Transformations which preserve

the variations but simplify the function are used. Taking the logarithm changes the product

into a sum. Hence the deviance is defined as −2log(likelihood). Minimizing the deviance is

equivalent to maximizing the likelihood. Penalties can be added to the deviance to account

for the number of parameters in the model. For example, the Akaike Information Criterion is

defined as:

AIC = −2log(L(θ|yi)) + 2K (1.6)

where θ is the vector of parameters of interest, yi the observed values, and K the number of

parameters in the model.
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1.6.2 Frequentist or Bayesian?

Two different approaches are used in statistical inference, namely frequentist and Bayesian.

The Frequentist approach

In the frequentist paradigm, probabilities are considered as frequencies e.g. the number of

Successes out of a sequence of trials when the number of trials tends to infinity. As sample

size increases the parameters’ estimates approach the true value. Parameters estimations are

mostly carried out by maximum likelihood estimation, but also least squares related techniques.

Various algorithms can be used for this purpose.

The Bayesian approach

In the Bayesian paradigm, probabilities are treated as beliefs. A prior belief is combined with

observed data to get a new estimate of the parameter, here called θ (which can be a vector e.g.

µ and σ in the above example), on which inference is made. This is expressed by Bayes’ rule:

p(θ|y) =
p(θ)p(y|θ)
p(y)

(1.7)

where p(θ|y) is called the posterior distribution. It is the probability distribution for θ after

having observed the data. p(θ) quantifies the ideas we have about the parameter θ before

having observed any data and is called the prior. p(y|θ) is the likelihood function (see Section

1.6.1), that is the probability of having observed the data given a particular value of θ. p(y)

is a normalising constant. It is the integral
∫
p(θ)p(y|θ)dθ for continuous data or the sum

Σθp(θ)p(y|θ) for all values of θ for discrete data (Gelman et al. , 2003). Hence, in the Bayesian

paradigm, new data are used to update a prior belief. This belief can be based on personal

opinion, experts’ opinion or literature review. Strong priors will require more data to be moved.

It is also possible to give priors that are as uninformative as possible to let the data drive the

parameters’ estimates. In this case, parameters estimates are very close to maximum likelihood

estimates.

An example

To illustrate these ideas we take a simple example. A frequentist and a Bayesian vet go onto

a farm. They estimate mastitis prevalence in the herd using the number of cows with SCC

above 200,000 cells/mL they observe. On the day of the visit, 30 cows out of 100 are above the

threshold. The frequentist vet concludes that the prevalence in the herd is 30 % and making the

12
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Figure 1.3: Example of Bayesian inference for a binomial proportion.
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hypothesis that this is the true prevalence, sampling 100 similar herds would give proportions

between 21 % and 39 %, 95 % of the time. The Bayesian vet has come to the herd many times,

and from previous experience, he thinks that the prevalence of SCC > 200,000 in the herd is

centred around 15 % with most of the possible values between 5 and 25 %. Figure 1.3a shows the

prior and posterior distributions as well as the likelihood function. Figure 1.3b presents samples

from the posterior distribution of p. The Bayesian vet has updated his knowledge about high

SCC prevalence on this farm. The posterior distribution is higher than the prior because there

were enough data to move it upwards, possibly because the prevalence has increased recently.

However, because the prior distribution was narrow, the posterior estimate is not as high as the

frequentist one. On a following visit, this posterior distribution can be used as a prior.

Bayesian parameters’ estimation

In Bayesian inference, parameter estimation is complicated by the fact that, for most models,

the normalising constant p(y) cannot be estimated by numerical integration. Parameters have

to be estimated by simulation, using Markov Chain Monte Carlo (MCMC). Thus the Bayesian

approach did not have many practical application before the 1990s because it was too computer

intensive. The principle of MCMC is to sample θ iteratively from the posterior distribution.

Initial values are provided for θ and at each iteration, these values are updated. The new values

for θ only depend on the previous iteration (Markov property), and, after a variable number

of iterations converge to the target (posterior) distribution. Samples from this distribution can

then be summarised by calculating means or quantiles. There is no guarantee at any time that

a chain has converged to the target distribution. One common solution to this problem is to
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run many chains in parallel and to check that they have converged to the same distribution.

Bayesian model checking

To assess model fit, the Deviance information criterion was developed by Spiegelhalter et al.

(2002) as an equivalent to AIC for Bayesian models. The problem in such models is the

estimation of the number of parameters in the model. It is replaced by a variable called pD

which is obtained by calculating the posterior mean of the deviance minus the deviance of the

posterior means.

Another way to check the results given by the model is prediction. Posterior prediction is used

to predict the data used in parameters’ estimation ; in cross-validation a different dataset is

used for prediction. Discrepancy variables are then tested against the observed data as a way

to evaluate model fit (Green et al. , 2009; Gelman et al. , 2000).

Which approach to use?

Both frequentist and Bayesian approaches have advantages and disadvantages. The frequentist

approach is more efficient and quicker computationally. The Bayesian approach requires more

computer power and time to run the simulations but it allows the inclusion of prior information

and the generation of predictions incorporating the uncertainty in all parameters of the models.

When analysing correlated data (Section 1.6.3), Gelman & Hill (2007) recommend to carry out

an initial frequentist analysis and then to fit a full Bayesian model. This was done in Chapter 5.

Bayesian software such as WinBUGS allow to fit very complex models, which would be hard

to fit in other statistical packages, with a relative ease. For this reason, model exploration in

Chapter 6 was carried out directly in WinBUGS. In Chapter 7, a large dataset was used. The

time required to run the corresponding models in WinBUGS would have rendered their use

impractical and a frequentist approach was preferred.

1.6.3 Linear Mixed Models

Linear models are the basis for all the models used in this thesis. They describe linear associa-

tions between an outcome and covariates. Such models can be written as:

Yi = α+XT
i β + εi (1.8)

where Yi is the ith observed datum, α the model intercept, X the matrix of predictors, β the

associated vector of coefficients and ε the vector of errors. The model estimates of α and β are
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α̂ and β̂. The estimates for the errors are called residuals. They are calculated as follows:

ε̂i = Yi − (α̂+XT
i β̂)

ε̂i = Yi − Ŷi
(1.9)

The residuals are assumed to be normally distributed, uncorrelated and their variance constant

for all levels of the covariates. In longitudinal data such as collected by the National Milk

Records, and more generally for data originating from farms, data are correlated within the

units under study. For example, milk recording data can be assumed to be correlated within

cows and cow data correlated within herds. This can be accounted for by using Linear Mixed

Models, also called Multilevel models. Instead of adding a fixed coefficient for each upper level

unit (one coefficient per herd for example), it is assumed that these effects are distributed as a

normal distribution with mean 0 and standard deviation σ. Each unit of the level is attributed

a random coefficient from this distribution which is a compromise between the population mean

effect and the individual unit effect weighted by the number of observations in the unit (Rasbash

et al. (2009) - p 39). In these models, the observed variations can be partitioned between the

different levels. In the simplest of these models, only the intercept is modelled as random. This

can be written as:
Yij = α+XT

i β + uj + εij

uj ∼ N(0, σu)

eij ∼ N(0, σe)

(1.10)

where i and j indicate the lower and upper levels, uj is the vector of upper level residuals and

εij the bottom level residuals. These models can be made more complex by modelling different

slopes for each level:
Yij = α+XT

i (β + υj) + uj + εij

υj , uj ∼MVN(0,Σ)

eij ∼ N(0, σe)

(1.11)

where υj and uj are the random residuals associated with the intercept and the slope(s) respec-

tively, which are drawn from a multivariate normal distribution.

1.6.4 Generalized Linear Mixed Models

In a lot of instances, the assumptions or prerequisite of linear regression do not hold. In this

thesis, binomial and multinomial outcomes, to which linear regression cannot be applied, will

be considered. Generalized Linear models were introduced by Nelder & Wedderburn (1972)

to model such data. Typically the outcome is related to the linear predictor through a link

function g(.) which is modelled as a function of linear predictors as described above. As for

linear mixed model, random coefficients can be modelled.
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Logistic regression

When the outcome follows a binomial distribution, it is common to model the log of the odds

of the proportion. Such models are called logistic models, of which specifications are:

Yi ∼ Binomial(pi, n)

ln( pi
1−pi ) = α+XT

i β
(1.12)

Where Yi is the outcome which can take values 0 and 1, p and n the parameters of the associated

binomial distribution, α the intercept of the regression, Xi the matrix of covariates and β the

vector of associated coefficients. The interpretation of the coefficients of such regression is not

straightforward. Exponentiating the whole expression yields:

pi
1−pi = eα+XT

i β

pi
1−pi = eα

i∏
1

eXiβ
(1.13)

So that the exponential of a coefficient gives the odds ratio of p associated with each unit of

increase in the covariate considered. These odds ratio must be multiplied and not added to

estimate the effect of a set of covariates. A convenient way to explore a model is to set all the

covariates to their mean and to plot the prediction for a covariate of interest for a range of

plausible values.

Multinomial logit regression

When the outcome can fall in one of n categories, the sampling variations can be described by

a multinomial distribution. The multinomial distribution can be written:

Yi ∼Multinomial(pik, n) (1.14)

where pk is the probability for Yi of being in category k and n the number of observations in Y .

The multinomial distribution is the generalisation of the binomial distribution to k categories.

Thus, the principle of the multinomial logit regression is to use one of the categories as the

reference and to model the odds of being in any of the other k − 1 categories against being in

the reference category. This can be written as:

ln( pikpiK
) = αk +XT

i βk (1.15)

where pik is the probability of being in category k, piK is the probability of being in the reference

category, αk the intercept for the kth category, Xi the matrix of covariates and βk the vector
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of associated coefficients for the kth category. As in the binomial logit models coefficients are

odds ratio of being in category k compared to category K.
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Chapter 2

Data Selection

2.1 Introduction

In the UK, the main provider of milk recording is a private company called the National Milk

Records (NMR). All data collected between the 1st January 2004 and the 31st December 2006

were purchased from the NMR for this project. These included herds which started or stopped

milk recording at some point during these three years, data imported from the previous herd

when cows were bought and other peculiarities such as factored data. The aim of the data

selection process was to obtain a subset of homogeneous data from regularly recorded herds.

The present chapter details the data exploration carried out and the set of criteria applied to

select the dataset used throughout this thesis.

2.2 Data Collection

2.2.1 Traditional milk recording

The procedure milk recorders must follow is described in a booklet distributed to milk recorders

(NMR, 2008). Milk recording is usually carried out on all the lactating cows of a herd on a

monthly basis. Exceptions are cows under antibiotic treatment, cows which are suckling, cows

purchased within 4 days of the visit, cows that have calved or aborted within 4 days of the

visit and cows yielding less than 3 kg of milk in the 24 hour recording period. A first milk

sample is collected in the evening and a second one in the following morning. Preliminary data

collection is operated before the first sampling to collect or update cow historical information

such as date of calving, date of service and other historical events. A list of the cows present in

the herd is available from previous recordings and cows are assigned a recording line number in

order of ascending herd identification number on this list. Sample pots are marked up with the

cow numbers and sorted by recording number within boxes prior to the milking. Any samples
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from new cows and freshly calved heifers are placed after the last numerically ordered animal.

Because the time between morning and evening milking can be different to the time between

evening and morning milking a varying volume of the milk collected is sampled using sampling

dippers. For the usual two sampling scheme, 5 sample dippers are available. These are coded as

12, 13, 14, 15 and 16 representing increasing volumes. If the interval is of 12 hours, 13 is used

on both milkings. When this interval is greater than 12 hours, 12 is used on the evening milking

and the sampling dipper used during the following morning corresponds to the entire part of the

number of hours elapsed between the milkings e.g. 13 for everything between 13:00 and 13:59.

As a cow is milked, a volume of milk proportional to the volume produced is stored in a jar

attached to the milking unit. The milk collected is a pool of the milk given by the four quarters.

Once the cow has finished milking, her number is identified, the weight of milk is read on the

jar, in kg to the nearest 0.2, and written on the sample bottle top with a chinagraph pencil

or a permanent marker pen. It can be noticed here that even though milk yield is recorded in

kg, what is actually measured is a volume. The milk in the jar is agitated for ten seconds and

approximately one third of the volume released. A sample of milk is taken with the sample

dipper and poured into the sample pot. The remainder of the milk in the jar is then released.

2.2.2 Alternative milk recording

Some herds do not or cannot comply with the usual two consecutive milking monthly recordings.

NMR proposes alternative ways of recording:

• One sampling time: in some cases, farmers can ask to have milk samples taken at one

instead of the usual two consecutive milkings. This can be done on a regular basis or

to retest some cows of the herd between regular tests. In this case, the data have to

be factored, that is to say daily milk volume and constituents are extrapolated from one

sampling point. More variation can be expected from one sampling point compared to

the average of two consecutive ones.

• 3, 6 or 8 weekly sampling intervals: farmers can choose to have their cows recorded at

different time intervals.

• Do It Yourself sampling: Farmers can supply milk yield, milk sample and data themselves

to NMR. This is also possible for 3, 6 or 8 week time intervals. Data from approved

automatic recording systems can be collected via the farm computer or from a box in the

parlour.
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2.3 Initial Dataset

The data were sent to the School of Veterinary Medicine and Science on a DVD containing a

Microsoft Access 2003 database. Minimal information was provided on an accompanying A4

sheet. The database contained all the recordings performed by the NMR between the 1st of

January 2004 and the 31st of December 2006. The data were in two tables: one for the recordings

data (NMR recordings) and one for the cows data (NMR animals). The names, types of data

and descriptions for each field of each table are in Tables 2.1 and 2.2. The recordings table

had 19,893,093 lines from 1,247,427 cows in 5,714 herds. The minimum, maximum and number

of missing values associated with each of these tables are in Tables 2.3 and 2.4. Throughout

this thesis, weight of milk was converted to kg by dividing the provided values by 10. Protein,

butterfat and lactose contents were converted to percentages by dividing the provided values

by 100.

2.4 Data selection

After an initial phase of data exploration, it was realised that the number of cows per herd was

decreasing over time when the opposite trend was expected. Some cows had not been included

when the dataset was built. The data and data selection described here are from a dataset

subsequently provided by the NMR containing all the recordings performed between the 1st

January 2004 and the 31st December 2006. The aim of the data selection process was to select

a subset of homogeneous data. We were interested in monthly regular recordings from herds

milk recording for the complete three years. The data selection process is described in the order

the selection criteria that were applied.

2.4.1 Missing data

Some cows were not recorded because of the reasons mentioned above (dry, antibiotic treatment,

. . . ). In such cases, it was expected for the field authentic recordings to be set to N . Out of the

19,893,093 lines of data initially available, 40,861 were flagged as unauthentic records. However,

in the remainder of the dataset, cows could be recorded as present (authentic recording = Y)

even though all fields either contained the value 0 or were empty. The number of lines which

either were empty or contained the value 0 for weight of milk, somatic cell count and percentage

of butterfat are indicated in Table 2.5. In more than 99.9 % of the cases, when weight of milk

was null or empty, somatic cell count and percentage of butterfat were also null or empty. Lines

where weight of milk was null or empty were recoded as missing data.
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Table 2.1: Descriptions of the fields in the table NMR recordings
Field Data Type Description
herd identity Number Herd identity
animal identity Number Animal identity
calving date Date/Time Calving date
recording date Date/Time Recording date
authentic recording Text Cow present on the recording date
weight of milk Number Milk quantity in hectograms
bfat percent Number Butterfat content (g/hg)
protein percent Number Protein content (g/hg)
lactose percent Number Lactose content (g/hg)
cell count Number Somatic cell count (1,000 cells/mL)
bfat factored flag Text Data factored for bfat percent

Table 2.2: Description of the fields in the table NMR animals
Field Data Type Description
herd identity Number Herd identity
county Text County in which the herd is located
animal identity Number Cow identity
animal breed Number Cow breed
date of birth Date/Time Cow date of birth
sire breed Number Sire breed
sire identity Number Sire identity
latest calving date Date/Time Latest calving date in the dataset
latest recording date Date/Time Latest recording in the dataset
current lactation Number Parity at the last recording date

Table 2.3: Minimum, maximum and missing values for the table NMR recordings
Field Min Max Missing
herd identity 28 24,675 0
animal identity 1 6,727 0
calving date 21/12/1994 28/12/2006 15
recording date 01/01/2004 21/12/2006 0
authentic recordinga N Y 0
weight of milk 0 998 0
bfat percent 0 1,470 0
protein percent 0 897 0
lactose percent 0 899 0
cell count 0 9,999 838,011
bfat factored flaga N Y 0

aY: Yes ; N: NO
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Table 2.4: Minimum, maximum and missing values for the table NMR animals
Field Min Max Missing
herd identity 28 24,675 0
county - - 0
animal identity 1 6,727 0
animal breed 1 93 0
date of birth 09/11/1966 2/12/2005 58,659
sire breed 1 95 0
sire identity - - 0
latest calving date 27/06/199 19/03/2007 0
latest recording date 01/01/2004 31/12/2006 0
current lactation 1 56 0

Table 2.5: Repartition of the data between missing or null (0) and positive values (> 0) when
authentic record = Y

Weight of milk n Cell count n Butterfat n

0 757,031
0 757,016

0 756,986
> 0 30

> 0 15
0 5
> 0 10

> 0 19,095,201
0 133,337

0 570
> 0 132,767

> 0 18,961,864
0 3
> 0 18,961,861

22



Chapter 2: Data Selection

2.4.2 Selection of herds recording for most of the study

Herds starting or stopping milk recording might be different from other herds and may provide

insufficient information for robust analysis. The aim of this part was to select herds recording

for the majority of the study. For each herd, the first and last recording date in the dataset

were identified. The numbers of herds having their first and last recording at each month of the

study are presented in Table 2.6. The first step consisted in the removal from the dataset of

1,779 herds for which either the first test-day occurred after February 2004 or the last test-day

occurred before November 2006.

Table 2.6: Number of herds starting and ending milk recording at each month of the study

Month First recording date Last recording date

Jan 04 5157 29

Feb 04 71 26

Mar 04 21 50

Apr 04 12 85

May 04 20 47

Jun 04 15 41

Jul 04 11 37

Aug 04 12 64

Sep 04 16 47

Oct 04 14 44

Nov 04 14 37

Dec 04 12 20

Jan 05 8 28

Feb 05 10 38

Mar 05 17 33

Apr 05 9 49

May 05 11 23

Jun 05 20 49

Jul 05 20 40

Aug 05 9 48

Sep 05 20 47

Oct 05 20 41

Nov 05 17 35

Dec 05 13 23

Jan 06 10 24

Continued on next page
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Table 2.6: Number of herds starting and ending milk recording at each month of the study

Month First recording date Last recording date

Feb 06 7 31

Mar 06 19 36

Apr 06 10 38

May 06 15 52

Jun 06 13 34

Jul 06 16 42

Aug 06 11 58

Sep 06 16 55

Oct 06 11 61

Nov 06 13 696

Dec 06 10 3592

2.4.3 Identification of monthly regular test-days and removal of factored

data

The remaining herds had between 18 and 364 test-days and the total number of test-days (a

day on which at least one cow in the herd was recorded) was 208,242. A peculiarity of the

database was that when a herd bought cows, all the previous recordings of these cows present

in the database were retrieved in the new herd. This meant that a particular recording could

have been carried out in a different herd than the one recorded in the database i.e. the herd the

cow was bought from. These recordings were not flagged and had to be identified individually.

The distribution of the number of cows recorded for a herd per test-day is shown in Figure 2.1.

For illustration purposes, the distribution was truncated at 300 cows with 2,433 (1.17 %) tests

with more than 300 cows. This distribution is clearly bimodal with 27,161 test-days with only

one cow recorded, a decrease in the number of cows recorded until around twenty cows and

a subsequent increase. Test-days with less than 20 cows recorded were mainly data imported

from a previous herd when cows had been bought and were therefore removed from the data.

This represented 67,058 tests. The interval between consecutive test-days were re-calculated

and herds with intervals smaller than 20 days were checked individually. Most of the time, the

difference between the regular and imported test-days were obvious since the number of cows

bought was smaller than the number of cows regularly recorded. In these cases, all the tests with

the number of cows recorded being smaller than a threshold identified visually were discarded.

In other instances, a single threshold would have discarded regular tests. For these herds, tables

with cow identity and recording dates were generated. The date a group of cows entered the
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herd was identified and all prior recordings removed for these cows. This resulted in the deletion

of 3,390 test-days. The intervals between consecutive tests and number of cows recorded for

two herds are presented as an example in Figure 2.2. The left part of the figure represents a

herd for which a single threshold value allowed the identification of imported recording dates.

The right part of the figure shows a herd for which there was an overlap between the number

of cows regularly recorded and the number of cows imported. A table of the recording dates

and the identities of the cows recorded was generated. As they were incorporated into the herd,

cows of different origins were recorded together and the corresponding recordings selected.

The traditional milk recording scheme involves two consecutive milkings i.e. evening and the

following morning. Farmers can choose to have milk recording on only one milking instead of

two. In this case, the data need to be corrected to account for this. The resulting data were

flagged as Factored with the variables bfat factored flag. Test-days with at least one factored

recording were removed from the data. At this stage, 10,231,300 recordings in 93,644 test-days

from 3,001 herds were remaining in the dataset. The number of test-days for each of the 3 years

were calculated for each herd. If a herd had less than 10 tests for either 2004, 2005 or 2006, it

was removed from the dataset. After this step, 8,762,480 recordings in 81,603 test-days from

2,302 herds were remaining. The highest number of test-days in the remaining herds was of 13

per year.

2.4.4 Breeds

Important differences in milk quantity and composition exist between cow breeds. The NMR

records cows’ breeds. The breeds’ names used in the data and the number of recordings per

breed are presented in Table 2.7. Cows of the Holstein breeds represented more than 90 % of

all cows and all recordings. Farms which milked mainly cows of breeds other than Holstein or

Friesian that is with less than 80 % of recordings from the breeds Holstein and/or Friesian were

discarded because it was intended to investigate data from Holstein-Friesian herds. The final

dataset contained 8,211,988 recordings from 2,128 herds.

Table 2.7: Number of recordings for each breed as defined in the NMR data. Cows of the

breeds Holstein and/or Friesian are sorted by decreasing number of occurences in the dataset.

Cows of other breeds which have more than 1,000 cows follow sorted by decreasing number of

recordings.

Code Breed Numb rec % rec

1 HOLSTEIN 8023801 91.57

12 BRITISH HOLSTEIN 101741 1.16

Continued on next page
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Table 2.7: Number of recordings for each breed as defined in the NMR data. Cows of the

breeds Holstein and/or Friesian are sorted by decreasing number of occurences in the dataset.

Cows of other breeds which have more than 1,000 cows follow sorted by decreasing number of

recordings.

Code Breed Numb rec % rec

20 BRITISH FRIESIAN 71929 0.82

63 DUTCH HOLSTEIN FRIESIAN 31604 0.36

71 FRENCH HOLSTEIN FRIESIAN 4274 0.05

65 AMERICAN HOLSTEIN 4235 0.05

64 CANADIAN HOLSTEIN 4200 0.05

60 GERMAN HOLSTEIN-FRIESIAN 3566 0.04

61 DANISH HOLSTEIN-FRIESIAN 894 0.01

15 RED & WHITE FRIESIAN 515 0.01

72 ITALIAN HOLSTEIN-FRIESIAN 458 0.01

62 NEW ZEALAND HOLSTEIN-FR. 445 0.01

47 AUSTRALIAN HOLSTEIN-FR. 22 0.00

54 SPANISH HOLSTEIN FRIESIAN 14 0.00

52 SCANDINAVIAN HOLSTEIN 13 0.00

4 JERSEY 214638 2.45

3 AYRSHIRE 99585 1.14

5 GUERNSEY 74849 0.85

2 DAIRY SHORTHORN 46933 0.54

31 BROWN SWISS 27780 0.32

24 MEUSE-RHINE-ISSEL 17751 0.20

28 MONTBELIARDE 8515 0.10

66 EUROPEAN JERSEY 7521 0.09

59 SCANDINAVIAN RED - IMPORT 2201 0.03

23 SIMMENTAL/FLECKVIEH 1685 0.02

29 NOT KNOWN (CATTLE) 1463 0.02

42 WATER BUFFALO 1447 0.02

37 BELGIAN BLUE 1116 0.01

33 LIMOUSIN 1012 0.01

Other 8273 0.09
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Figure 2.1: Number of cows recorded per test-day

Figure 2.2: Interval between consecutive test-days and number of cows recorded per test for
two herds which bought cows. The numbers on the plots indicate the number of days since
the previous recording date in the dataset. The herd on the left bought 68 cows on day 691
of the study. The recordings for these cows carried out in their previous herd were imported
and indistinguishable from the recordings carried out in the current herd. They were easily
identified because the number of cows bought was much lower than the number of cows usually
recorded. For the herd on the right, the distinction between recordings operated in another herd
and recordings operated in the current herd was harder because the number of cows bought
was close to the number of cows regularly recorded. In such cases a table was created with cow
identities and recording dates to identify the dates new cows joined the herd.
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2.5 Final dataset

The final dataset contained 8,211,988 recordings in 992,625 lactations from 483,747 cows in

2,128 herds. Some missing values remained in the dataset. However, because some of this work

will focus on test-days or on some particular aspects of the data, all the data selected until

this stage were kept and excluded appropriately in later stages. Milk yield was the minimum

required information indicating that a cow was present on the recording date considered, and

was greater than 0 for all the recordings. The NMR’s Guide to Recording/Sampling specifies

that cows yielding less than 3 kg should not be collected, but 278 lines had milk yield of less than

3 kg. These were considered as valid. There were 27 lines with both the percentage of butterfat

and the percentage of protein equal to 0. In 26 of these, cell count was 0 or missing. There

was no line with missing values for either percentage of butterfat or percentage of protein. The

highest values recorded for milk yield, percentage of butterfat and percentage of protein were

99.8 kg, 9.62 %, and 8.74 %. There were 20,103 lines were cell count was missing. There were

29,688 lines with cell count equal to 0 and only 865 lines with cell count equal to a thousand.

In some instances missing data for cell count were recorded as 0. Values of 0 were recoded as

missing data.

2.6 Discussion

The objective of this thesis is to describe the variations in milk recording data and to relate

them to udder health and reproduction. From data available on the DairyCo (2009a) website,

which publishes statistics on farming in the UK, the number of dairy herds in England and

Wales went from 16,189 in January 2004 to 13,270 in December 2006. It is hard to know how

much the present sample is representative of these herds. The total number of herds present

in the initial NMR dataset was 5,714. This means that for these years, NMR had data for

between 35 and 45 % of dairy herds in England and Wales. The present dataset contains data

for 16 % of the dairy herds in activity in December 2006. Hence, a large quantity of longitudinal

data was available for this work. These data were collected by trained technicians as a part

of routine controls of cow performance for which farmers paid and hence were willing to get

reliable data. All the samples were analysed in the same location with the same equipment.

However, not all the data present in the initial dataset could be used and some information

was missing. For example, no flag indicating whether a recording was a regular recording, an

imported recording or a Do It Yourself recording was present. Milk recording data are used for

epidemiological studies as well as for the estimation of breeding values. These recordings could

represent a source of bias in these studies. Based on the distribution of the number of cows

per test-day, the removal of all tests with less than twenty cows was undertaken to remove the
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majority of recordings originating from the previous herd the cows were in. By doing this it is

possible that regular tests from small herds were also discarded. In this case, either the whole

herd was removed or only a few tests were removed since herds with less than 10 test-days for

any of the three years were subsequently removed. In the remaining herds, the identification

of data from other herds was based on unusual intervals between consecutive recording dates.

For herds with at least one abnormally short interval between consecutive recording dates, the

number of cows recorded and the interval between recordings were plotted for the complete

period under study. This was assessed visually. In most cases, the distinction was easy since

the number of cows imported was clearly lower than the usual number of cows recorded. In

other instances the situation was less obvious but checking recording dates at the cow level

allowed the identification of cows which had been for the longer period in the herd. However, it

is possible that some regular test-days have been discarded or some imported test-days kept in

the dataset. Even if it was the case, this would represent a negligible proportion of recordings

in the dataset.

In the UK, more than 95 % cows were of the breeds Holstein, Friesian or Holstein/Friesian

between 2004 and 2006 (The Center for Dairy Information, 2009). Major differences in milk

production exist between breeds. The number of recordings originating from breeds other than

Holstein and/or Friesian in the dataset was not sufficient to infer anything about them and

herds milking predominantly these other breeds were discarded. Some other breeds remain in

the dataset but represent less than 20 % of a herd. This was done to be able to use data on a

herd basis and reflects the normal UK situation for normal Holstein-Friesian herds.

The fact that weight of milk is recorded in kg when what is actually measured is a volume can

be misleading. A litre of milk is usually estimated to weigh 1.033 kg. It is possible that some

variation exists around this mean depending on the quantity of milk solids a particular sample

contains. The difference is probably minor, but since a volume is measured, it would make sense

to record it as a volume and let other parties operate the conversion. We are not aware of the

reason for the recording of a volume as a weight. Milk will be referred as weight of milk in kg

throughout this thesis and the data left unchanged. However, this fact must be kept in mind.

2.7 Conclusion

A large sample of milk recording data representing approximately 16 % of the herds in activity

in England and Wales at the end of 2006 was selected on the basis of monthly intervals between

recordings, completeness of the data, more than 80 % of Holstein-Friesian cows recorded on

average and a number of cows recorded greater than 20.
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Distributional Characteristics of

Herds, Lactations and Milk

Production

3.1 Introduction

In some European countries, milk production is seasonal when the demand for dairy products

remains stable throughout the year (Hennessy & Roosen, 2003) which results in additional

costs for the storage or transport of milk (McErlean, 1999). There is no recent description of

such seasonality in England and Wales in the scientific literature. It is important for the dairy

industry to be aware of the observed patterns of variations. These patterns are the result of

individual cow characteristics, mostly stage of lactation and parity (Silvestre et al. , 2009), as

well as other factors specific to the season such as feed composition. In the UK, changes in

the number and structure of dairy herds are also ongoing. For example, there was a decrease

of 13.1 % in the number of dairy farms between June 2004 and June 2006 while in the same

period, the number of cows decreased by 4.3 % (DairyCo, 2009a).

Milk recording contains nationwide information on individual cow milk quantity and composi-

tion which can easily be used to derive the monthly variations in milk supply. Reliable data

on dates of calving and parity are recorded so that calving patterns can be described with the

same data. There is no recent description of the variations in milk production and calving

patterns in England and Wales. This chapter describes the general characteristics and changes

in herd, lactation and milk production data in a large sample of dairy herds from England and

Wales using milk recording data collected between 2004 and 2006. The aim is to provide current

patterns and information for the UK dairy industry.
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3.2 Materials

The selection and general description of the data analysed in this chapter are detailed in Chap-

ter 2. Specific steps of the analysis required the aggregation of the data at the herd, lactation,

test-day or month level.

3.3 Methods

3.3.1 Herd characteristics

At the herd level, the number of cows recorded, the quantity of milk produced per test-day and

their variations per month of the study were determined. In order to quantify the variations

during the three years, arithmetic means per month were calculated for each variable and for

the 36 months available (Jan 2004 to Dec 2006) as well as for the 12 calendar months (Jan

to Dec). For each of the 36 months of the study, the difference between the mean calculated

for a particular month (n = 36) and the mean for a specific month of the year (n = 12), was

evaluated. In order to identify trends, these differences were smoothed using locally weighted

regression as implemented in the R loess function. With this type of regression, the dependent

variable is smoothed as a function of the independent variable in a way similar to a moving

average (Cleveland & Devlin, 1988). The degree of smoothing is controlled by a parameter α

and a value for α of 0.75 was used here.

3.3.2 Lactation characteristics

The data available at the lactation level were the date of calving and parity. Lactations for which

calving occurred before the 1st January 2004 were excluded for the analysis. The proportion

of cows calving of each parity was calculated. For each heifer calving between the 1st January

2004 and the 31st December 2006, the age at first calving was calculated by subtracting the

date of birth from the date of calving. The numbers of cows calving per month of the study

were plotted. For cows of parity one to four and greater than 4, the number of cows calving

each month as a proportion of the cows calving over the whole study were plotted. Finally,

intervals between consecutive calvings were investigated. The Kaplan-Meier survivor function

for the probability of calving given the previous date of calving was computed using the R

survfit function (Therneau, 2009). All the cows that had not calved by the 30th November 2006

were censored.
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3.3.3 Average milk quantity per cow and bulk milk composition per calendar

month

The mean quantity produced per cow per test-day, the bulk milk concentration for the percent-

age of butterfat, the percentage of protein and somatic cell count were calculated as follows: the

concentrations of each constituent were multiplied by the quantity of milk produced for each

cow recording, and, these quantities were summed up and divided by the total quantity of milk

produced on a given test-day. The mean and standard deviations of these test-day bulk milk

estimates were calculated. The arithmetic mean of these estimates across all farms for each milk

variable were calculated for each month between January and December. The distribution of

the mean test-day bulk milk somatic cell count was right skewed. Taking the natural logarithm

of BMSCC resulted in a normal distribution and the geometric mean was therefore deemed

more meaningful than the arithmetic mean.

3.4 Results

3.4.1 Herd characteristics

Data were available for 2,128 herds. The changes in mean quantity of milk produced and the

mean number of cows recorded per test-day between January 2004 and December 2006 are

presented in Figure 3.1. On average, the month with the highest milk production was April and

the months with the lowest production were August and October. Milk production was 13.2

% higher in April than in August. The highest numbers of cows per test-day were recorded in

April and May and the lowest number in August. For both milk production and the number

of cows recorded, there was an increase from 2004 to 2007: this increase was of 143 kg of milk

and and 5.2 cows per test-day between January 2004 and December 2006.

3.4.2 Lactation characteristics

Data were available for 769,086 lactations of which 226,102 were first lactations. Date of birth

was missing for 4,379 (1.9 %) of these first lactations. The first quartile, median, mean and

third quartile for the age at first calving were 787, 879, 906 and 997 days. The distribution

of the parities of the cows calving is presented in Figure 3.2. Parity 1, 2, 3 and 4 represented

22.8 %, 21.7 %, 17.2 % and 13.4 % of all calvings respectively. The number of calvings per

month and parities of the cows calving are presented in Figure 3.3. The number of calvings in

a month varied during the year. The month with the lowest and highest numbers of calvings

were May and September respectively, with 80 % more calvings in September than in May. The

peak became less pronounced with successive parities. There were 23,209 calvings in December
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Figure 3.1: Changes in the mean milk quantity of milk produced and mean number of cows
recorded per test-day between January 2004 and 2007. Month study represents the mean per
month of the study (January 2004 to December 2006). Calendar month represents the mean for
January to December, regardless of the year. Difference is the difference between the means for
Month study and Calendar Month. Trend is the Difference smoothed using a loess regression
in order to identify trends in the variation between 2004 and 2006.
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2004, 23,840 in December 2005 and 5,597 in December 2006. Only a proportion of the calvings

that occurred in December 2006 had been recorded when the database was built. For the

following calculations, the number of calvings in December 2006 was replaced by the mean of

December 2004 and December 2005. The total number of calvings for 2004, 2005 and 2006 were

263,613, 261,989 and 261,427 respectively which represents a decrease of 0.6 % between 2004

and 2005 and a further decrease of 0.2 % between 2005 and 2006. In the same time period the

number of calvings originating from parity one cows increased by 3.8 % between 2004 and 2005

and by 7.4 % between 2005 and 2006. The equivalent figures were -0.68 % and +2.58 % for

parity 2, -3.38 % and -3.28 % for parity 3, -3.88 % and -6.08 % for parity 4 and -0.88 % and

-4.18 % for parity greater than 4. The cumulative Kaplan-Meier survivor curve for the interval

between consecutive calvings is presented on Figure 3.4. Seventy three percent of cows calved

again before December 2006. Of the cows which recalved, 0.27 % calved less than 260 days

after the previous calving indicating either that some abortions had been recorded as calvings

or misrecording of calving dates. Percentages of cows calving before 350, 400, 450, 500, 550

and 600 days after the previous calving were 11, 37, 53, 62, 66 and 69 respectively. Of all the

cows which calved more than 260 days after their previous calving, the mean interval between

consecutive calvings was 411 days and the median was 391 days.

3.4.3 Average milk quantity per cow and bulk milk composition per calendar

month

The arithmetic mean (standard deviation) for milk per cow, bulk milk percentage of butterfat

and bulk milk percentage of protein for all recordings from 2004 to 2006 were 25.2 (4.6) kg,

3.92 (0.32) %, 3.25 (0.14) %. The geometric mean (standard deviation) for bulk milk somatic

cell count was 187,528 (1,561) cells/mL. Variations in mean milk quantity and composition by

calendar month are presented in Figure 3.5. Mean milk yield was constant from January to

March at 25.7 kg, increased to 26.4 kg in April and May, decreased from May to reach 24.7 kg

in October and increased from October to January. Mean butterfat was constant at 4 % from

October to March and decreased from March to June to a minimum of 3.7 %. Variations in

the percentage of protein were small compared to variations observed in butterfat. The mean

protein content was constant between February and July at 3.2 %, reached a maximum of 3.3

% in November and then decreased until February. The arithmetic mean bulk milk somatic

cell count was between 190,000 and 195,000 cells/mL from October to March, increased to

220,000 cells/mL in July and August and decreased from August to October. Between year

variations were negligible for butterfat and protein, and limited for the quantity of milk produced

per cow (Figure 3.6). There was an increase of approximately 9,000 cell/mL in the estimated

BMSCC between January 2004 and March 2005 and a further increase of 4,000 cells/mL between
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Figure 3.2: Distribution of the parities of cows calving during the study.
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Figure 3.3: Distribution of the number of calvings per month of the study (bars) and proportion
of the calvings originating from cows of parity 1 to 4 and greater than 4 (lines).
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November 2005 and September 2006 (Figure 3.6).

3.5 Discussion

Our sample contained data for 16 % of the 13,270 dairy herds of England and Wales that

remained in business in 2006. The notable features of these data related to the annual patterns

of milk yield and calvings.

There was an estimated increase of 143 kg of bulk milk and 5.2 cows recorded per test-day

between January 2004 and December 2006. Based on the number of herds and the number of

cows present in England and Wales in June 2004 and June 2006, the average number of cows

per herd went from 103.8 to 109.4 (DairyCo, 2009a). This increase roughly matches what was

observed in the present study. Only cows milk recorded were considered here and the average

herd size was higher than the figures derived from DairyCo data. Hence, the mean herd size

in this study was higher than the general population and herds that carry out milk recording,

may be different in structure and output to non-recorded herds.

The global quantity and composition of milk per calendar month reflect the contribution of

cows at different stages of lactation and parities under similar environmental conditions. Given

the important role of lactation stage on milk quantity and composition, the month to month

variations in the number of calvings are likely to play a role in the monthly output. This has

consequences on the overall milk supply which is at its highest in May and is at its lowest

between September and December. For example, the daily milk supply was around 20 % higher

in May than in November in 2004 (DairyCo, 2009b). Milk price follows the opposite trend with

higher prices when the quantity delivered was at its lowest.

There are only two recent studies on calving patterns in Britain (Robinson & Christley, 2006;

Mitchell et al. , 2005). However, these studies did not discriminate between beef and dairy

cattle, and there are nearly as many beef as dairy cows in the United Kingdom (DairyCo,

2009a). Hence there were no recent data on calving patterns in UK dairy cows. In the present

study, there were large month to month variations in the number of calvings with a peak of

calvings in September and a minimum in May. This resulted in changes in the structure of

the milking cow population during the year. This unequal repartition of calvings was probably

the result of farmers’ objectives and their abilities to manage reproduction. The month at

first calving determines calving patterns in later lactations and there was a peak in heifers’

calvings in September with a minimum in April and May. A widespread objective is of one

calving per cow per year, but the median interval between consecutive calvings was 391 days.

The consequence of this is progressive shift and smoothing in the calving peak with successive

lactations. It would be possible to change the overall calving pattern by having more spring
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Figure 3.4: Cumulative Kaplan-Meier survivor curve for the interval between consecutive calv-
ings.
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mean bulk milk somatic cell count per calendar month between January 2004 and December
2006.
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Figure 3.6: Evolution in the arithmetic mean milk yield per cow per day and the geometric
mean estimated bulk milk somatic cell count between January 2004 and December 2006. Month
study represents the mean per month of the study (January 2004 to December 2006). Calendar
month represents the mean for January to December, regardless of the year. Difference is the
difference between the means for Month study and Calendar Month. Trend is the Difference
smoothed using a loess regression in order to identify trends in the variation between 2004 and
2006.
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calvings. In the current context, this could involve delaying the first insemination from winter

to summer for some of the heifers, although this may cause some management difficulties.

To our knowledge, this is the first study to use a nationwide milk recording dataset to investigate

milk production characteristics. Given the worldwide availability of such data, it would be

possible to replicate this analysis in other countries or in the UK at regular intervals. This would

give interesting indications on spatial and time variations in milk production characteristics.

Moreover, from reproduction and milk production parameters, it would be possible to simulate

different scenarios to assess the effects of changing the calving patterns on the national or dairy

plant level milk supply. This would be of interest in order to adapt the supply to the demand.

3.6 Conclusion

Calvings and milk production follow a seasonal pattern in England and Wales. There was 80 %

more calvings in September than in May. Overall milk production increased from October to

April and decreased from April to August. Herd size increased by 5.2 cows recorded and herd

milk yield by 143 kg of milk between 2004 and 2006.
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Chapter 4

Distributional Characteristics of

Individual Cow Milk Yield and

Constituents

4.1 Introduction

Lactation curves have been the object of extensive research, mainly to improve the determination

of breeding values used in genetic selection (Silvestre et al. , 2006). The general shape and

variance components of these curves for milk yield, fat and protein contents and somatic cell

count are well characterised. Basically, after an initial rise from calving until the peak of

lactation which happens around 50 days after calving, milk yield decreases towards the end

of lactation. Fat and protein contents and somatic cell counts curves have an inverse shape

decreasing between calving and lactation peak and increasing thereafter (Silvestre et al. , 2009;

Caccamo et al. , 2008). A biological model for lactation curves fitted on UK data was proposed

by Albarrán-Portillo & Pollott (2008), but this model analysed only variations in milk yield

and its main goal was to derive variance components. Descriptions of current individual cow

values for milk production in England and Wales are not available in the recent literature.

These may vary between countries or between low production and high production level herds

within England and Wales because of differences in climate, management, production systems

and breeding programs.

Moreover, there has been interest for some time in the use of the fat to protein ratio as a measure

of negative energy balance at the start of lactation. Grieve et al. (1986) found it was a better

predictor of the energy status of the cow than either the percentage of fat or the percentage

of protein on its own. Podpecan et al. (2008), using a sample of 51 high yielding dairy cows,

identified a cut-off value for the fat to protein ratio of 1.34 applied to milk samples collected
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between 75 and 90 days in milk to be optimal to predict whether a cow would have conceived

by 120 days in milk and a cut-off value of 1.44 for the prediction of a conception before 140

days in milk. However, the lactation curve for this parameter has not been described.

Knowledge of current individual cow production characteristics is of interest to the dairy indus-

try in order to put individual performance in context and to understand the main reasons for

variation in milk production.

The purpose of this chapter is to describe the distributions in individual cow milk quantity and

composition using a large cohort of UK dairy herds.

4.2 Materials

The selection and general description of the data analysed in this chapter are detailed in Chapter

2.

4.3 Methods

4.3.1 Milk quantity and milk constituents distributions

The distributions of cow milk yield, percentage of butterfat, percentage of protein and somatic

cell count are described for the period 5 to 305 days in lactation for cows of different parities

and for herds of different production levels. NMR does not collect data from cows prior to 5

days in milk.

4.3.2 Lactation curves

Lactation curves were plotted for different parities, months of calving and herd levels of pro-

duction between 5 and 400 days after calving. The purpose of these graphs was to illustrate

the mean of the parameter of interest each day after calving. An arithmetic mean was used

for all parameters, except somatic cell count, because the underlying distributions were approx-

imately Gaussian. The distribution of somatic cell count is reported to be right skewed (Ali

& Shook, 1980). Thus, while most readings are below 200,000 cells/mL, values as high as 10

million cells/mL are recorded. The geometric mean was used for somatic cell count in order to

give less weight to these extreme values. For the fat to protein ratio, the distribution of the

percentage of recordings above 1.4 per week from calving was determined because this value has

been recommended to monitor cows’ energy status at the start of lactation in the UK (Cook

et al. , 2006). For parity, five categories were initially considered i.e. parity one to four and
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parity greater than four. Since the properties of parities greater than one were very similar,

these parities were considered as one group when appropriate. Weight of butterfat and weight

of protein were calculated by multiplying milk yield by the percentages of butterfat and protein

respectively. For the purpose of identifying milk production and days in milk at the peak,

lactation curves for milk yield were smoothed using local regression. This was done in R using

the loess function (R Development Core Team, 2009; Cleveland & Devlin, 1988). The degree of

smoothing can be controlled by changing the number of neighbouring points used to estimate

each smoothed value. In R, this is controlled by the α parameter. Several values were tested

for α, and the smoothed curves plotted against the observed data. A value of 0.1 for α was

used. Persistency was defined as the slope of the milk yield lactation curve between 50 and 305

days in milk. It was estimated by fitting a straight line between the mean values for milk yield

and days in milk using least square linear regression as implemented in the R lm function (R

Development Core Team, 2009). The fit of the linear models were assessed using the R squared

value. In order to determine the extent of the variations in milk quantity and composition

with the month of the year, mean parameters were calculated per day in milk, per month of

calving and for parity one and greater than one when relevant. These mean parameters were

smoothed with local regression as described above and displayed graphically. This allowed a

visual comparison of the impact of calendar month on cows at the same stage of production.

Herd-year milk production was categorized according to the level of production as follows. A

mean milk yield per recording between 5 and 305 days in milk was calculated for every herd

in each of the years 2004, 2005 and 2006. The values of the 10th, 25th , 50th, 75th and 90th

percentiles of the distribution of this mean were determined and each herd-year categorized as

belonging to the interval [0-10], [10-25], [25-50], [50-75], [75-90], [90-100]. Lactation curves were

compared for each one of these six subsets.

4.3.3 Cumulative quantities

Cumulative quantities of milk, butterfat and protein were calculated over lactation from 5 days

in milk onwards. For butterfat and protein, a weight in kg was calculated for each recording

by multiplying the weight of milk by the percentage of each constituent divided by 100. These

quantities were then averaged over the category under investigation and cumulated over the

required stage of lactation.
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4.4 Results

4.4.1 Distributions

The distributions of daily milk yield per cow, percentage of butterfat, percentage of protein,

fat to protein ratio and somatic cell count between 5 and 305 days after calving are presented

in Figure 4.1. The mean milk yield between 5 and 305 days was 26.4 kg; ninety percent of the

readings were between 12.4 kg and 42.4 kg. The mean percentage of butterfat was 3.96 % and

ninety percent of the readings were between 2.83 % and 5.18 %. For the percentage of protein,

the mean was 3.29 % and ninety percent of the readings were 2.78 and 3.91 %. The mean fat

to protein ratio was 1.21 with ninety percent of the readings between 0.89 and 1.54 and 14.2 %

of the ratios were above 1.4. The somatic cell count distribution was highly right skewed. The

arithmetic mean was 218,000 cells/mL, the geometric mean was 90,000 cells/mL, the median

was 82,000 cells/mL. Thirty three percent of readings were below 50,000 cells/mL, 56 % were

below 100,000 cells/mL, 76 % were below 200,000 cells/mL and 3.9 % were above one million.

4.4.2 Stage of lactation and Parity

Stage of lactation had a major impact on all variables. The effects of parity were pronounced for

milk yield and somatic cell count while the variations exhibited for the percentage of butterfat

and the percentage of protein were limited. For milk yield and somatic cell count, the curves

were lower and flatter for parity one compared to other parities (Figures 4.2 and 4.3). For

parity 1, 2, 3, 4 and greater than 4, the peak in mean milk yield occurred at days 51, 38, 39,

41 and 41, and was of 27.9, 33.8, 36.9, 37.6 and 36.0 kg, and, between 50 and 305 days in milk,

milk production decreased by 3.2 kg, 5.7 kg, 7.0 kg, 7.4 kg and 7.2 kg per 100 days. For all

linear models used to estimate these slopes, the R squared was greater than 0.99. The lowest

concentrations were observed at around 50 days in milk for butterfat when the mean value was

approximately 3.7 % and between 35 and 40 days in milk for protein when the mean value was

close to 3 %. The fat to protein ratio peaked during the 4th week after calving and decreased

until the end of lactation. Percentiles of its distribution per week after calving for all parities

are provided in Table 4.1. Butterfat and protein yields were highest at the start of lactation and

did not decrease until the peak in milk yield. Cumulated milk production, weight of butterfat,

and weight of protein were calculated separately for parity one and parities greater than one,

and are given in Table 4.2. Between day 5 and 305 after calving, parity one cows produced

on average 7,358 kg of milk, 284 kg of butterfat and 235 kg of protein. For the same period,

parities greater than one produced 8,483 kg of milk, 327 kg of butterfat and 272 kg of protein.
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Figure 4.1: Distribution of milk yield (kg), butterfat (%), protein (%), fat to protein ratio and
somatic cell count (1,000 cells/mL) between 5 and 305 days after calving.
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Table 4.1: Quantiles and percentage > 1.4 for the fat to protein ratio per week from calving
Weeks from Quantile
calving 10% 25% 50% 75% 90% > 1.4 (%)
2 0.98 1.11 1.24 1.40 1.57 24.61
3 0.99 1.11 1.25 1.40 1.58 25.63
4 0.99 1.12 1.26 1.41 1.58 26.43
5 0.98 1.11 1.25 1.40 1.56 24.97
6 0.97 1.10 1.24 1.38 1.54 22.75
7 0.96 1.09 1.23 1.37 1.51 20.45
8 0.96 1.09 1.22 1.36 1.50 19.21
9 0.96 1.09 1.22 1.35 1.49 18.02
10 0.95 1.08 1.21 1.34 1.48 17.14
11 0.95 1.08 1.21 1.34 1.47 16.34
12 0.95 1.08 1.20 1.33 1.46 15.51
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Table 4.2: Cumulated production from day 5 after calving (kg).
Parity 1 Parity > 1

Days Milk Fat Protein Milk Fat Protein
in Milk
15 261.2 11.1 8.7 344.7 14.7 11.9
30 660.2 26.5 20.8 866.1 34.9 27.9
45 1075.5 41.9 33.2 1403.2 54.9 43.9
60 1492.9 57.3 45.7 1935.9 74.3 59.8
75 1905.0 72.4 58.2 2454.0 93.2 75.5
90 2311.4 87.4 70.8 2956.8 111.7 90.9
105 2709.3 102.2 83.2 3442.4 129.6 105.9
120 3101.5 116.9 95.5 3912.8 147.2 120.7
135 3486.6 131.4 107.8 4367.4 164.3 135.1
150 3865.9 145.8 119.9 4807.9 181.0 149.1
165 4238.5 160.1 131.9 5233.9 197.3 162.8
180 4605.1 174.2 143.7 5645.8 213.3 176.1
195 4964.7 188.2 155.4 6043.5 228.8 189.1
210 5318.3 202.0 167.0 6427.1 243.8 201.7
225 5664.3 215.6 178.4 6795.4 258.3 213.9
240 6002.3 228.9 189.6 7147.6 272.4 225.7
255 6331.4 242.0 200.5 7482.8 285.9 237.0
270 6650.2 254.8 211.3 7800.6 298.8 247.9
285 6958.9 267.3 221.7 8102.1 311.2 258.4
300 7259.1 279.6 232.0 8389.7 323.1 268.5
305 7357.6 283.7 235.4 8483.2 327.1 271.7

Figure 4.2: Effects of days in milk and parity on milk constituents concentration.

45



Chapter 4: Distributional Characteristics of Individual Cow Milk Yield and Constituents

4.4.3 Stage of lactation and Month of calving

The impact of calving month was limited for milk yield and somatic cell count. It was more

pronounced for the percentage of butterfat and the percentage of protein and was substantive

for the fat to protein ratio. The effects of the month of calving on lactation curves for the

mean percentage of butterfat, the mean percentage of protein and the mean fat to protein ratio

are presented in Figure 4.4. Generally, cows tended to give more milk with a lower content

of fat and protein from March to June. The opposite effect was observed from September to

December.

4.4.4 Effect of herd production level

The characteristics of the six groups of herds categorized by milk per cow per year are presented

in Table 4.3. As herd milk production went up, the mean number of cows per test-day was

higher, from around 60 cows in group one to 110 cows in groups six. The means for butterfat

percentage, protein percentage, and somatic cell count were lower as milk per cow increased.

The difference between the mean for group one and six reached 0.07 % for butterfat and 0.08 %

for protein. The estimated quantities produced between 5 and 305 days in milk were 155 kg of

fat and 129 kg for protein higher in group six compared to group one. The mean somatic cell

count was 28,600 cells/mL lower in group six than in group one. The lactation curves showed

differences between groups. For milk yield, the ascending phase was longer from group one to

six. In group one, after reaching the maximum production at 20 days in milk, milk yield levelled

until day 50 while in group six milk yield increased until day 50 and started to decrease from

day 60 (Figure 4.5). For parity one cows, the production decreased by 2.6 kg, 3.0 kg, 3.3 kg,

3.3 kg, 3.3 kg and 3.3 kg per 100 days in milk between day 50 and 305 after calving in group

one to six respectively. For parity greater than one the corresponding figures were 4.8 kg, 5.7

kg, 6.4 kg, 7.0 kg, 7.6 kg, 8.1 kg. All the R2 were greater than 0.96. The lactation curves were

similar in shape for butterfat and protein (Figure 4.5). The lactation curves were equally spaced

between yield groups for milk yield and somatic cell count, the difference was attenuated from

the low yield groups to the high yield groups.

4.5 Discussion

Average milk production characteristics between 2004 and 2006 in this sample of cows from

England and Wales was of 26.4 kg of milk per cow containing on average 3.96 % of butterfat

and 3.29 % of protein.

Although the shape of the lactation curves for these constituents have been described previously,
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Figure 4.3: Effects of days in milk and parity on milk constituents concentration.

Figure 4.4: Variations in mean butterfat (%), protein (%) and fat to protein ratio with stage of
lactation and calendar month.
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values observed in the UK were not available. Milk quantity and composition were predom-

inantly affected by stage of lactation. There were significant differences in the shape of the

curves for milk yield and somatic cell count between first lactation cows and older cows. For

milk yield, the peak occurred at around 50 days in milk and was 28 kg of milk while for later

parities, the peak occurred at around 40 days in milk and was between 33 and 38 kg. After the

peak, milk yield decreased by 3.2 kg of milk per 100 days in parity ones while this decrease was

between 5.7 and 7.4 per 100 days in older cows. As a result, after 300 days in milk, primiparous

cows were giving more milk than multiparous.

The lactation curve for milk yield for parity one cows was characterized by a lower peak and a

higher persistency. Milk production depends on the number of milk producing cells as well as

the activity of each one of these cells, which vary with lactation stage (Capuco et al. , 2003).

Capuco et al. (2001) investigated mammary epithelial cell dynamic in multiparous cows between

14 days and 240 days in milk and reported that the increase in milk production they observed

between 14 days and 90 days in milk was due to an increase in the activity per cell while the

decline between 90 and 240 days in milk was caused by cell loss through apoptosis. Miller

et al. (2006) hypothesized that the higher persistency in primiparous cows was the result of a

higher rate of cell proliferation in the mammary gland mediated by mitogenic or survival factors.

This and the fact that the curves for butterfat and protein concentration were similar across

parities would suggest that the mammary gland develops during the first lactation. Curves for

later parities were similar, and the quantities produced reached a maximum at parity four. A

mathematical model based on biological assumptions was fitted on UK milk yield recording

data by Albarrán-Portillo & Pollott (2008). They reported a peak yield of 28.7 kg at 34.6 days

for parity one cows and a peak yield of 37.1 at 33.7 days in later parities. The values for the

production at the peak were essentially similar to the present study, but the peak happened

much earlier for parity one cows. This could be because the peak was longer and less pronounced

for parity one cows so that milk production does not vary to a great extent between 40 and 50

days in milk.

The butterfat and protein concentrations were marginally affected by parity but appeared to

be influenced to a greater extent by the month of the year. Butterfat was the most variable

showing the lowest concentrations between March and June when, in the UK, most cows are

at pasture and highest concentrations between October and February when most cows are fed

indoor. The percentage of protein was lowest between May and July and the highest between

September and December. The effect was less pronounced than for butterfat.

The fat to protein ratio is increasingly used as a marker of negative energy balance. A threshold

of 1.4 during the first month of lactation is commonly used by veterinary practitioners as a

marker of negative energy balance (Cook et al. , 2006) and the percentage of readings above
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it at different stages of lactation were examined in this article. The effects of this ratio on

reproductive performance have been recently studied by Podpecan et al. (2008). They used

the value of the fat to protein ratio between 75 and 90 days in milk for the prediction of the

calving to conception interval using fixed thresholds. The choice of this particular time frame

is interesting since the ratio varies less during this interval than at the beginning of lactation.

The lactation curves presented for this parameter suggest that it is greatly affected by stage

of lactation especially around the start of lactation. This could reflect the changes in energy

balance as lactation proceeds. Hence when looking at this parameter, lactation stage should

be taken into account and more research is needed in this area (see Chapter 7). We suggest

that using different thresholds according to stage of lactation may be worth consideration. The

calculation of an average for all the cows at similar stage of lactation within a herd has been

recommended by Cook et al. (2006) who state that when the percentage of cows with a ratio

greater than 1.4 on the first test-day after calving exceeds 40, a ketosis problem is likely.

Comparing the low to the high yielding herd groups, curves for milk yield were characterized by

a higher and longer ascending phase followed by a smaller persistency and there was a limited

decrease in the percentages of fat and protein. Cows in high yielding herds are under a higher

energy demand, especially during the first three months of lactation. This is compatible with

the fat to protein ratio reflecting energy balance since it was higher at the beginning of lactation

in high producing groups, then lower between 100 and 250 days in milk, after which the curves

merged. This would indicate that higher yields are achieved despite higher energy deficits during

the first three months of lactation. The effect of calendar month on the fat to protein ratio was

large. Cows calving between December and February had higher curves and thus, possibly a

greater energy deficit at the start of lactation. Since the fat content of milk is affected by diet,

this could also be a consequence of the type of diet given during this period. Further studies

are required to evaluate the joint effects of lactation stage, parity, energy balance and diet on

the fat to protein ratio.

The mean milk production at 400 days in milk was still over 20 kg in high yielding herds and

between 10 and 15 kg in low yielding herds even though the persistency was slightly higher

in the low yielding group. Reproduction is an issue in modern dairy herds and the optimum

interval between calvings is still debated (Arbel et al. , 2001). The lactation is interrupted in late

pregnancy because the mammary gland needs a period of rest to maximise milk production in the

subsequent lactation. Depending on herd production level, different objectives for the interval

between calvings could be adopted, based on individual farm financial returns, if these can be

accurately calculated. Moreover, energy deficit has been linked to longer calving to conception

interval (Jorritsma et al. , 2000). Since cows in high yielding herds are under a greater energy

deficit at the start of lactation, early services may be less likely to result in a pregnancy. More
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studies are needed in the UK to investigate optimal interval lengths between calvings according

to the herd mean milk production and their consequences on calving pattern. This could be

done by simulating different management strategies for reproduction incorporating different

lactation curves between and within herds based on herd production level and individual cow

characteristics such as production at the peak.

The lactation curve for somatic cell count was flatter and lower for parity one cows than for

other parities. This is in agreement with Schepers et al. (1997). With successive parities, the

curves had the same shape but on average tended to increase by a fixed amount. While other

milk constituents are secreted by lactocytes, somatic cells are recruited from the bloodstream.

This recruitment can be massive in cases of infection and infection is the main cause of somatic

cell count increase (Schepers et al. , 1997). There is a big overlap in SCC between infected

and uninfected cows and various thresholds are used to diagnose subclinical infections. No

bacteriological data were available for this study so that the relative part played by infection

and physiological processes cannot be determined. The similarities in the shapes of the curves

for somatic cell counts and other milk constituents seem to indicate that there is a physiological

increase in SCC over lactation. Green et al. (2006a) modelled the impact of milk yield on

SCC and showed that there was an inverse linear relationship between SCC and milk yield

suggesting that a dilution effect might mitigate SCC as milk yield goes up. It could explain

partly the increase in SCC observed towards the end of lactation as milk yield decreases as

well as the observed decrease in geometric mean somatic cell counts from low yielding to high

yielding herds. Similarly, infection has been associated with decreased milk production (Hortet

& Seegers, 1998) so that an increase in infection prevalence, and hence SCC, during lactation

could result in lower milk yields. The reasons for the increase in SCC with parity are less clear.

It could be due to a regular increase in the prevalence of intramammary infection with parity,

more cells as a result of previous infections or undetermined physiological factors. The relative

roles played by infection and dilution in milk yield and SCC variations according to stage of

lactation and parity remain to be clearly quantified.

4.6 Conclusion

Milk quantity and composition are greatly affected by stage of lactation, calving month and

cow parity and important patterns within England and Wales’ dairy herds were highlighted.

Whilst energy demands of dairy cows are high at the start of lactation the use of the fat to

protein ratio to evaluate the energy balance requires clarification particularly with respect to

the impact of lactation stage on the normal range of fat to protein ratio expected. Although

large variations in herd production levels existed, the shapes of the different lactation curves
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were similar in herds with different milk yields.
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Figure 4.5: Lactation curves for milk yield, somatic cell count, percentage of butterfat, per-
centage of protein and fat to protein ratio in herds categorised according to their annual yield
per cow. The geometric mean was used for somatic cell count and the arithmetic mean for the
other parameters.
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Chapter 5

Prediction of Bulk Milk Somatic

Cell Counts from Cow Somatic Cell

Count Categories I: Herd-Year Level

5.1 Introduction

Individual cow somatic cell counts (SCC) are widely used to identify cows likely to have an

intramammary infection (Bradley & Green, 2005; Dohoo & Leslie, 1991). At the herd level, bulk

milk somatic cell count (BMSCC) is used to estimate herd mastitis prevalence (Emanuelson

& Funke, 1991). There is also ongoing motivation for farmers to control BMSCC because a

penalty is applied on milk price when BMSCC gets above certain values, typically 200,000

cells/mL in the UK, and, in the European Union, milk is not saleable if the geometric mean

BMSCC exceeds 400,000 cells/mL for more than two or three consecutive months, depending

on the frequency of measurement (Council of the European Communities, 1992). Although the

main factor increasing SCC is infection, it is also affected by other factors among which stage

of lactation and parity (Schepers et al. , 1997; Brolund, 1985). SCC decreases between calving

and the lactation peak and then increases towards the end of lactation, and, the lactation

curve is lower and flatter in first lactation cows compared to older cows (Chapter 4). However,

the use of a single threshold of 200,000 cells/mL regardless of parity and stage of lactation is

commonly applied to categorise cows as uninfected or infected in the UK and used to diagnose

herd problems (Bradley & Green, 2005). Dohoo & Leslie (1991) found this threshold to be the

best to detect new infections and Dohoo & Morris (1993) used it to study infection prevalence

and dynamics in Prince Edward Island dairy herds. The same threshold was used by Cook et al.

(2002) to investigate infection status during the dry period. Pantoja et al. (2009) concluded

that cows with SCC ≥ 200,000 cells/mL at both drying-off and first recording after calving

54



Chapter 5: Prediction of Bulk Milk Somatic Cell Counts from Cow Somatic Cell Count Categories I:
Herd-Year Level

were 20.4 and 5.6 times more likely to be infected by a major pathogen or a minor pathogen

respectively than being uninfected.

When having to devise and justify mastitis plans to farmers, 3 steps are necessary: (i) Define

indices to look at ; (ii) Determine the distribution for these indices ; (iii) Estimate the gain

resulting from improving herd performance in a given area. Applied to mastitis and SCC,

a threshold of 200,000 cells/mL has the advantage of simplicity and movements across this

threshold can reveal infection dynamics (Dohoo & Leslie, 1991). But, given the significantly

lower SCC values observed in first lactation cows, it may be argued that a lower threshold may

reflect better the prevalence of infections in primiparous cows. Milk recording databases contain

a large amount of data which can be used to describe SCC at a population level. BMSCC is

a readily available outcome, in which farmers have a strong interest, to quantify the impact of

corrective action.

The purposes of this chapter were (i) using two thresholds of 100,000 cells/mL and 200,000

cells/mL on two consecutive monthly milk recordings, to determine which transitions were

best able to discriminate between herds based on their impact on BMSCC (ii) to describe the

variability in the percentage of herds undergoing these transitions in a large sample of dairy

herds from England and Wales.

5.2 Materials

SCC was coded in thousand cells per mL and could take any integer value between 1 and 9,999

i.e. between 1,000 and 10 million cells/mL. In the NMR database, missing values are coded

as 0 or NULL. There were 240,791 lines where SCC was equal to 0 or NULL which were not

used in the analysis. It was not possible to know whether these values were missing at random.

Test-days with more than 5 % of null or missing data and herd-years with less than ten test-days

were excluded from further analysis. For this analysis, 7,770,956 recordings from 2,128 herds

were available.

5.3 Methods

5.3.1 Categories of SCC levels and transitions

Each SCC record was categorized with respect to lactation number as follows: Recordings in

parity one cows were coded as Heifers and recordings in later parities were coded as Cows. Two

categories of recordings reflecting stage of lactation were created: Calving for SCC readings

in the first 29 days after calving and Lactating for later recordings. These were combined to
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create four categories: Heifers Calving (Hc), Heifers Lactating (Hl), Cows Calving (Cc) and

Cows Lactating (Cl) (Table 5.1). Three categories measuring the level of SCC were used. SCC

were labelled as Low (L), Medium (M) and High (H) when below 100,000 cells/mL, between

100,000 and 200,000 cells/mL and above 200,000 cells/mL respectively as used by Green et al.

(2006b). When at least two recordings were available for a cow, the change in the level of SCC

between consecutive recordings was monitored. Hence, 9 transitions between the three levels of

SCC were possible (Table 5.2) for Cows Calving, Heifers Lactating and Cows Lactating. Heifers

Calving only had one recording and were classified as either Low, Medium or High. Herd SCC

patterns vary between consecutive test-days (Dohoo & Morris, 1993) and between calendar

month (Green et al. , 2006b). These sources of variation were not of interest for this analysis

and the number of cows in each category were summed over a year for each herd. Thus for each

herd-year, the numbers of recordings in each of the 30 categories were available.

5.3.2 Estimation of Bulk Milk Somatic Cell Counts

Herd-year BMSCC were estimated as follows. The number of cells contributed by a cow was

estimated by multiplying the cell count by the weight of milk on a given recording date. These

numbers were added for all the cows of a herd-year and divided by the sum of the weights of

milk produced by these cows. BMSCCs are presented in thousand cells/mL.

5.3.3 Statistical Analysis

Statistical models were constructed with the aim of identifying the impact of the percentages

of recordings in various combinations of the categories defined in Section 5.3.1 on the estimated

BMSCC. That is, an evaluation was made of which SCC categories most influenced herd-year

BMSCC. Seven competing models were tested. In all cases, the model specifications were:

BMSCCij = α+ ΣXijβ
T + uj + eij

uj ∼ N(0, σ2
j )

eij ∼ N(0, σ2
ij)

(5.1)

where the subscripts i and j denote the ith year in the jth herd, α the regression intercept, Xij

the covariates relating to a herd-year, βT the vector of coefficients for covariates Xij , uj the

herd residuals and eij the herd-year residuals.

In models 1 to 4 the percentages of herd-year recordings in the categories defined in Section 5.3.1

were considered. Depending on the model, the Medium category was grouped either with the

Low or the High category for a given group of cows. For example, when a single threshold of

200,000 cells/mL was considered, the numbers of cows in the Low and Medium SCC categories
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were added to define a new Low category. In models 5 to 7, new variables were created. These

variables were aimed at measuring the proportion of a cow category moving from a Low to a

High (Rais) or a High to a Low (Dimin) level of SCC as a percentage of the number of cows

eligible for this movement. In terms of the thresholds used, Model 5, Model 6 and Model 7

corresponded to Model 2, Model 3 and Model 4 respectively. The 7 models are explained below

and presented in Table 5.3.

• Model 1 contained all 30 categories (3 for Hc, 9 each for Cc, Hl and Cl). It was the full

model against which the other simpler models were compared.

• Model 2 and 5 considered a single threshold of 200,000 cells/mL for all 4 cow categories,

to define Low and High categories.

• Model 3 and 6 considered a threshold of 100,000 for Heifers lactating and a threshold

of 200,000 cells/mL for all other cow categories.

• Model 4 and 7 considered a single threshold of 200,000 cells/mL and the cow categories

Heifers lactating and Cows lactating were grouped together.

Models were initially fitted by Restricted Maximum Likelihood and explored in R (R Devel-

opment Core Team, 2009) using the lmer function from the lme4 package (Bates & Maechler,

2009). The same models were then estimated in a Bayesian framework using Markov Chain

Monte Carlo as implemented in WinBUGS (Lunn et al. , 2000). An example of WinBUGS model

is presented in Appendix A. One thousand five hundred of the 2,128 herds were randomly se-

lected for parameter estimation. In Bayesian inference, prior information is incorporated in

the models. In this case, no prior knowledge was assumed and vague priors of mean 0 and

variance 1,000 were put on the models’ parameters. For all models, 3 chains were run for 30,000

iterations and the first 20,000 discarded. One iteration in 100 was stored for further analysis.

Thus, for each variable in the model, 300 values from the posterior distribution were available.

5.3.4 Models checking

Different procedures were applied for model checking, as follows:

Deviance Information Criterion

The Deviance Information Criterion (DIC) was used to assess model fit (Spiegelhalter et al.

, 2002). Lower values of DIC indicate models that fit the data better. A difference of 10 is

usually considered to discriminate well between models.
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Table 5.1: Definition of cow categories.
Cow Category Days in Milk Parity Abbreviation
Heifers Calving < 30 1 Hc
Heifers Lactating ≥ 30 1 Hl
Cows Calving < 30 > 1 Cc
Cows Lactating ≥ 30 > 1 Cl

Table 5.2: Definition of the three SCC levels Low (L), Medium (M) and High (H) and transi-
tions between these levels between consecutive recordings. These are combined with the cow
categories defined in Table 5.1. Heifers Calving can only be Low, Medium or High since only
one recording is available for these animals.

SCC 2
< 100,000 100,000 ≥ ≥ 200,000 > 200,000

SC
C

1 < 100,000 LL LM LH
100,000 ≥ ≥ 200,000 ML MM MH
> 200,000 HL HM HH

Table 5.3: Description of the 7 models used to describe the association between herd-year SCC
patterns and BMSCC.
Model Cow Catgeories SCC Levels Transitions

1 Hc, Cc, Hl, Cl
L: < 100 ; LL, LM, LH,

M: 100-200; ML, MM, MH
H: > 200 HL, HM, HH

2 Hc, Cc, Hl, Cl L: ≤ 200 ; H: > 200

LL, LH, HL, HH3
Hl L: < 100 ; H: ≥ 100

Hc, Cc, Cl L: ≤ 200 ; H: > 200
4 Hc, Cc, l:(Hl + Cl) L: ≤ 200 ; H: > 200
5 Hc, Cc, Hl, Cl L: ≤ 200 ; H: > 200 Rais = LH

LL+LH
6

Hl L: < 100 ; H: ≥ 100
Hc, Cc, Cl L: ≤ 200 ; H: > 200 Dimin = HL

HL+HH7 Hc, Cc, l:(Hl + Cl) L: ≤ 200 ; H: > 200
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Summary of the posterior distribution

Median and 95 % credible intervals were calculated from the posterior distribution. The 95

% credibility interval of the posterior distribution was the interval between the 2.5th and the

97.5th percentiles for the posterior distribution.

Predictions

Posterior predictions and cross-validation predictions were generated as follows. At each itera-

tion of the MCMC algorithm, each BMSCC used for parameter estimation was predicted back

(Posterior prediction - Training data) as well as the BMSCC in the remaining 628 herds (Cross

validation - Validation data). In the case of the validation data, at each iteration, a herd effect

was generated from the herd random effects distribution (Normal(0, σu)) and combined with

the parameter values to predict BMSCC. For each predicted BMSCC, residuals were computed

by subtracting the median of the prediction from the observed value. The 95 % credibility

interval of the prediction was the interval between the 2.5th and the 97.5th percentiles for the

predicted values.

Sensitivity and specificity of the predictions

Finally, the sensitivity and specificity of the models’ predictions were assessed as follows. Cal-

culated and predicted BMSCC were categorised as below or above 200,000 cells/mL. True

positives were BMSCC > 200,000 cells/mL for which the median value predicted by the model

was > 200,000 cells/mL. True negatives were BMSCC ≤ 200,000 cells/mL for which the median

predicted value was ≤ 200,000 cells/mL. Sensitivity was the percentage of BMSCC > 200,000

which were true positives. The specificity was the percentage of BMSCC ≤ 200,000 which were

true negatives.

5.4 Results

5.4.1 Somatic Cell Count distributions

Somatic cell count distributions are shown in Figure 5.1. The number of SCC readings per class

increased steeply between 1 and 22,000 and decreased gradually afterwards. The distribution

tail reached 10 million cells per mL which is the maximum value recordable. The highly right

skewed distribution explains the difference between the arithmetic mean (223,200) and the

geometric mean (93,900). Fifty five percent of SCC were below 100,000 cells/mL ; 75 % below

200,000 ; 11.9 % above 400,000 and 5.2 % above 800,000. The test-day BMSCC distribution
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was narrower with a maximum of 1,621,000 cells/ml. The difference between the arithmetic

mean (205,500) and the geometric mean (187,600) was also reduced and 8.1 % of test-days

had a BMSCC below 100,000 ; 54.3% below 200,000 and 3.7 % above 400,000 cells/mL. The

herd-year SCC was more limited in range and approximated to a normal distribution. The

arithmetic mean was 205,900 ; the geometric mean 194,500 and 3.4 % of herd-years were below

100,000 ; 51.3% below 200,000 and 1.4% greater than 400,000 cells/mL.

5.4.2 Somatic Cell Count patterns

The individual cow and herd-year characteristics associated with each cow SCC category are

presented in Tables 5.4 and 5.5. Cows lactating, Heifers lactating, Cows calving and Heifers

calving represented 71.8 %, 21.3 %, 5.1 % and 1.8 % of recordings. During lactation, the

patterns were different between primiparous and multiparous cows. Cows remaining Low for

two consecutive recordings were the most prevalent categories, they represented 59.9 % of heifers

and 41.4 % of cows. The percentage of cows in the L and M categories becoming H was 7.3 %

for parity ones and 13.8 % for later parities. The percentage of cows in the H becoming L or

M was 48.2 % for parity ones and 27.4 % for later parities. The percentage of cows in the H

category went from 41.9 to 22.1 between the last recording before the dry period and the first

recording after. That is 71.4 % of the cows which were High before the dry period were Low or

Medium after this period. Sixty five percent of heifers calved in the L (< 100,000) category and

18.9 % in the H (> 200,000) one. At the herd-year level, there were large variations between

herds. The intervals between the 10th and 90th percentiles were of 42.2 % for the percentage

of heifers calving L, 36.2 % for the Heifers lactating staying L, 35.8 % for the Cows lactating

staying L and 32.1 % for the Cows calving staying L.

5.4.3 Models

Model fit was generally good. Between 97 and 98 % of predicted values were in the 95 %

credibility interval for the training dataset and between 94.5 and 95.5 % for the validation

dataset (Table 5.6). The distribution and standard deviation of the residuals for models 2

to 4 compared to model 1 are presented in Figure 5.2. As expected, the residuals’ standard

deviation was higher for the validation dataset than for the training dataset. When modelling

the association between the percentage of herd-year recordings in each cow SCC category and

BMSCC, the model with the lowest DIC was the full model (Model 1) and was followed by the

model with a single threshold of 200,000 for cows and heifers. Having a different threshold for

Cows lactating and Heifers lactating resulted in poorer model fit. The coefficients and credibility

intervals for model 1 and 2 are presented in Table 5.7 and 5.8. The coefficients represent the
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Figure 5.1: Somatic Cell Count distribution at the Cow, test-day and herd-year levels.
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Table 5.4: Individual cow characteristics associated with each cow SCC category as defined in
Table 5.1 and 5.2.

SCC a Milk b

Category c n d Mean sd Mean sd
Hc.L 85755 39.4 1.8 25.9 5.6
Hc.M 21486 136.2 1.2 24.4 5.9
Hc.H 24881 553.0 2.3 23.2 6.3
Hl.LL 950329 36.6 1.8 24.1 6.5
Hl.LM 127859 130.7 1.2 21.7 7.0
Hl.LH 48636 408.5 2.1 21.7 7.5
Hl.ML 107841 54.7 1.7 23.2 6.8
Hl.MM 104331 138.8 1.2 20.8 6.9
Hl.MH 53037 339.4 1.8 19.9 7.6
Hl.HL 49356 47.8 1.7 24.4 6.8
Hl.HM 45679 145.5 1.2 21.6 7.1
Hl.HH 102061 479.4 2.0 20.6 7.5
Cc.LL 88658 30.2 2.0 34.2 7.5
Cc.LM 14385 136.7 1.2 32.4 8.0
Cc.LH 17930 560.5 2.3 31.7 8.2
Cc.ML 64928 34.0 1.9 34.7 7.6
Cc.MM 14794 137.6 1.2 32.6 8.2
Cc.MH 20857 567.5 2.3 31.7 8.3
Cc.HL 88219 36.3 1.9 34.6 7.8
Cc.HM 26054 139.1 1.2 32.5 8.1
Cc.HH 45687 619.4 2.4 31.2 8.4
Cl.LL 2205414 37.7 1.9 29.4 8.8
Cl.LM 459327 132.1 1.2 24.9 8.8
Cl.LH 200056 419.1 2.1 25.4 10.0
Cl.ML 289054 59.0 1.7 27.2 9.1
Cl.MM 479389 142.4 1.2 22.7 8.3
Cl.MH 349287 346.4 1.8 21.1 9.4
Cl.HL 141705 51.2 1.8 29.3 9.4
Cl.HM 235646 149.7 1.2 24.2 9.2
Cl.HH 997930 530.6 2.1 21.4 9.7

aGeometric mean and standard deviation. In 1,000 cells/mL.
bArithmetic mean and standard deviation.
cSee Tables 5.1 and 5.2.
dNumber of observations
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Table 5.5: Herd year characteristics associated with each cow SCC category as defined in
Table 5.1 and 5.2. Figures are presented as percentages of cow categories.

Percentiles
Category a Mean 10 25 50 75 90
Hc.L 64.5 43.5 54.5 66.7 75.8 85.7
Hc.M 16.1 0.0 8.8 15.0 22.2 29.6
Hc.H 18.5 0.0 9.7 16.7 25.0 33.3
Hl.LL 59.9 41.1 51.1 60.9 70.1 77.3
Hl.LM 8.0 4.4 6.0 7.8 9.8 11.7
Hl.LH 3.1 1.0 1.8 2.8 4.0 5.4
Hl.ML 6.7 3.6 5.0 6.6 8.3 10.0
Hl.MM 6.6 2.1 3.7 6.0 8.7 11.6
Hl.MH 3.4 0.9 1.9 3.0 4.5 6.1
Hl.HL 3.1 1.1 1.9 2.9 4.0 5.3
Hl.HM 2.9 0.7 1.5 2.6 3.8 5.3
Hl.HH 6.4 1.1 2.8 5.3 8.8 12.6
Cc.LL 23.4 8.3 14.3 21.9 31.0 40.5
Cc.LM 3.7 0.0 1.4 3.2 5.6 7.8
Cc.LH 4.6 0.0 2.0 4.0 6.7 9.6
Cc.ML 17.0 9.1 12.6 16.7 21.1 25.5
Cc.MM 3.9 0.0 1.7 3.4 5.6 8.0
Cc.MH 5.4 0.0 2.8 5.0 7.6 10.5
Cc.HL 22.9 10.9 15.9 22.1 29.2 36.1
Cc.HM 6.9 1.4 3.4 6.2 9.5 12.9
Cc.HH 12.0 3.3 6.5 10.9 16.2 22.2
Cl.LL 41.4 23.8 31.9 40.9 50.9 59.6
Cl.LM 8.5 6.7 7.6 8.5 9.5 10.4
Cl.LH 3.7 2.3 2.9 3.5 4.3 5.2
Cl.ML 5.4 3.8 4.5 5.3 6.1 7.0
Cl.MM 9.0 5.4 6.9 8.8 10.8 12.8
Cl.MH 6.5 3.7 5.0 6.5 7.9 9.2
Cl.HL 2.6 1.4 1.9 2.5 3.2 3.9
Cl.HM 4.4 2.5 3.3 4.2 5.3 6.4
Cl.HH 18.6 8.6 12.5 17.6 23.3 29.5

aSee Tables 5.1 and 5.2.
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increase in BMSCC per unit of increase in the percentage of a particular cow category at the

herd year level. Hence, it represents the contribution of each cow category to BMSCC.

Model 1 (Table 5.7) considered the three SCC levels L, M and H for all the cow categories. Both

the highest and lowest coefficients were associated with cows calving. After Cows lactating LL,

the cow category with the greatest number of cows was Cows lactating HH with a mean of

13.4 % of herd-year recordings. For each percent of increase in the number of cows in this

category, the model predicted an increase of 7,890 cells/mL in BMSCC making these cows the

largest contributors to BMSCC. Each percent of increase in the Cows lactating HL resulted in

a predicted increase in BMSCC of 5,630 cells/mL when the mean SCC in this category was

51,200 cells/mL (Table 5.4). This was because herds with a high proportion of cows H also

had a high proportion of cows moving from H to L. This effect was also observed in Model 2

(Table 5.8).

In Model 5 to 7 the impact of the variations in risks of going from a Low level of SCC to a

High level (Rais) or from a High level to a Low level (Dimin) were modelled. In this case,

considering a single threshold of 200,000 cells/mL and grouping Heifers lactating and Cows

lactating resulted in the lowest DIC (Model 7 - Table 5.6). The results of the corresponding

model are presented in Table 5.9. In these models, the intercept was higher than in the herd-

year percentage models (Models 1 to 4) for which the intercept were the Lactating cows staying

L. Each percent of increase in the percentage of Rais had a greater impact on BMSCC than an

identical decrease in Dimin.

5.5 Discussion

The dynamics of SCC across a threshold of 200,000 cells/mL between consecutive recordings

predicted BMSCC accurately when aggregated at the herd-year level. Using an alternative

threshold of 100,000 cells/mL for primiparous cows during lactation did not improve the pre-

diction. Considering cows moving from a low to a high SCC level as a percentage of cows

initially low or the cows moving from a high to a low level as a percentage of the cows initially

high, resulted in poorer model fit and ability to predict than considering the percentage of

the herd in a SCC category. These figures can be used to compare herds as a proxy for the

proportion of cows becoming infected or clearing infection. Figures summarising the variability

in the indices which are of practical interest are grouped in Table 5.10. This table presents the

herd-year means, percentiles 10, 25, 50, 75 and 90 for the percentages of cows below 200,000

cells/mL and for the various transition across this threshold tested for the categories Heifers

calving, Heifers lactating, Cows calving and Cows lactating.

The characteristics of the best performing herds can be considered as realistic targets and are
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Table 5.6: Model checking for models 1 to 7. For each model, the Deviance Information Criterion
(DIC) was computed. The percentage of observed BMSCC in the 95 % credibility interval
provided by the models were calculated, and the abilities of the models to classifiy BMSCC
regarding a thresholds of 200,000 cells/mL were assessed by calculating the sensitivities (Se)
and specificities (Sp).

M
od

el
s Training Dataset Validation Dataset

% Predicted % Predicted
DIC in 95 % CI Se Sp in 95 % CI Se Sp

1 41022 97.4 93.0 90.9 95.1 89.8 86.5
2 41171 97.7 92.5 91.5 94.7 86.5 86.6
3 41317 97.5 92.7 90.7 95.0 87.1 86.3
4 41220 97.5 93.1 91.3 95.2 87.1 86.4
5 42629 97.7 92.2 89.9 95.4 84.6 83.5
6 42724 97.6 92.0 89.7 95.5 84.8 83.5
7 42507 97.8 92.7 90.1 95.3 85.6 83.8

Figure 5.2: Density of the residuals computed as median predicted value - observed value for
models 2 to 7 compared to model 1. Solid lines are predictions from the training data, dotted
lines are predictions from the validation data. Lines representing model 1 are in grey. Lines for
models to which it is compared are in black.
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Table 5.7: Model 1: Association between the percentage of recordings in each level of SCC and
BMSCC - Full model.

95 % Credibility
Interval

Variable a b Coefficient 2.5 % 97.5 %
Intercept 17.98 7.74 26.55
Hc.L -1.67 -2.91 -0.16
Hc.M 2.63 -0.75 5.56
Hc.H 9.61 6.60 12.78
Cc.LL -0.12 -1.71 1.88
Cc.LM 1.64 -1.81 5.51
Cc.LH 13.57 10.26 16.72
Cc.ML -1.60 -3.59 0.31
Cc.MM -1.33 -4.94 2.09
Cc.MH 11.61 8.39 14.63
Cc.HL -7.14 -8.68 -5.58
Cc.HM 0.06 -2.79 3.15
Cc.HH 19.43 17.55 21.73
Hl.LL 0.13 -0.09 0.39
Hl.LM 0.60 -1.31 2.31
Hl.LH 7.03 4.40 9.65
Hl.ML 1.34 -0.77 3.32
Hl.MM -0.19 -1.39 1.12
Hl.MH 2.52 -0.11 5.17
Hl.HL 4.91 2.45 7.80
Hl.HM 4.30 1.25 6.81
Hl.HH 6.22 5.24 7.08
Cl.LM 2.58 1.54 3.75
Cl.LH 6.26 5.18 7.48
Cl.ML 1.41 0.16 2.67
Cl.MM -0.75 -1.30 -0.25
Cl.MH -1.06 -2.28 0.28
Cl.HL 5.63 4.29 6.99
Cl.HM 2.58 1.22 3.97
Cl.HH 7.89 7.64 8.07
σu 17.00 16.00 18.06
σe 20.68 20.18 21.16

aSee Table 5.1 for definition of cow categories.
bSee Table 5.2 for definition of inflammation categories.
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Table 5.8: Model 2: Association between the percentage of recordings in each level of SCC and
BMSCC.

95 % Credibility
Interval

Variable a b Coefficient 2.5 % 97.5 %
Intercept 39.23 32.24 46.53
Hc.L -0.98 -2.20 0.20
Hc.H 8.99 5.91 12.27
Cc.LL -0.24 -1.29 0.68
Cc.LH 16.16 13.49 18.61
Cc.HL -6.72 -7.85 -5.40
Cc.HH 19.20 17.10 21.37
Hl.LL -0.08 -0.27 0.11
Hl.LH 5.54 3.44 7.78
Hl.HL 6.19 4.03 8.38
Hl.HH 5.12 4.13 6.02
Cl.LH 2.03 1.28 2.93
Cl.HL 4.91 4.00 5.79
Cl.HH 7.09 6.89 7.29
σu 18.79 17.83 19.89
σe 20.88 20.37 21.44

aSee Table 5.1 for definition of cow categories.
bL:≤ 200 and H:>200 (Table 5.3).

Table 5.9: Model 7: Association between the dynamics of SCC and BMSCC.
95 % Credibility

Interval
Variable a b Coefficient 2.5 % 97.5 %
Intercept 161.50 153.79 167.45
Hc.Rais 0.29 0.23 0.35
Cc.Rais 0.82 0.73 0.91
Cc.Dimin -0.54 -0.60 -0.48
l.Rais 9.31 9.07 9.58
l.Dimin -1.68 -1.79 -1.57
σu 24.12 22.87 25.32
σe 24.11 23.49 24.69

aSee Table 5.1 for definition of cow categories. l: Hl + Cl.
bRais = LH

LL+LH
; Dimin = HL

HL+HH
with L:≤ 200 and H:>200 (Table 5.3).
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Table 5.10: Herd-year means and percentiles 10, 25, 50, 75 and 90 for the variables describing
movements across a threshold of 200,000 cells/mL.

Percentiles
Variablesa b c Mean 10 25 50 75 90
Hc.L 81.3 66.7 75.0 82.8 90.0 100.0
Cc.L 77.9 65.0 72.2 78.8 84.8 89.6
Hl.L 87.2 78.1 83.4 88.3 92.3 95.2
Cl.L 71.3 58.1 65.0 71.9 78.6 83.9
Cc.LL 48.0 29.2 37.9 47.8 58.1 67.2
Cc.LH 10.1 3.4 6.1 9.4 13.3 17.6
Cc.HL 29.8 15.2 21.7 29.1 37.5 45.5
Cc.HH 12.1 3.3 6.5 10.9 16.2 22.2
Hl.LL 81.2 69.2 76.2 82.5 87.8 91.8
Hl.LH 6.4 2.8 4.2 6.0 8.1 10.5
Hl.HL 6.0 2.7 4.0 5.6 7.5 9.6
Hl.HH 6.4 1.1 2.8 5.4 8.8 12.6
Cl.LL 64.3 49.2 57.0 64.9 72.5 78.7
Cl.LH 10.2 6.8 8.4 10.2 11.9 13.4
Cl.HL 7.0 4.5 5.6 6.8 8.2 9.5
Cl.HH 18.6 8.6 12.5 17.6 23.3 29.5
Cc.Rais 17.9 6.4 11.1 16.7 23.3 31.2
Cc.Dimin 72.0 54.3 63.3 72.7 81.5 88.9
Hl.Rais 7.6 3.0 4.6 6.8 9.6 12.9
Hl.Dimin 53.6 31.2 40.0 51.0 65.2 80.0
Cl.Rais 14.3 8.0 10.5 13.7 17.2 21.0
Cl.Dimin 29.4 19.4 23.3 28.2 34.1 40.8

aSee Table 5.1 for definition of cow categories.
bL: ≤ 200,000 cells/mL ; H: > 200,000.
cThe definition of Rais and Dimin are similar to the ones used in Model 5 (Table 5.3).
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therefore helpful for monitoring schemes in health and production management. The percentage

of cows with a SCC greater than 200,000 cells/mL across a herd-year was 25 %, but large

variations were present between herds. In the 10 % best herds, the percentage of readings

above 200,000 cells/mL during lactation were 4.8 % for parity ones and 16.1 % for later parities.

The same figures were 21.9 % and 41.9 % for herds at the 90th percentile. In a similar study

in Prince Edward Island, Dohoo & Morris (1993) observed a mean percentage of recordings

greater than 200,000 cells/mL of 29 %. The distribution of SCC in that study had a longer tail,

with 10 % of the herd-years having more than 49 % of the recordings above 200,000 cells/mL,

but similar values to this current study up to the 25th percentile were observed. Another study

conducted between 1992 and 1995 on 300 herds in The Netherlands (Olde Riekerink et al. ,

2007), indicated that 23.8 % of individual cow recordings were above 200,000 cells/mL. The

differences between these studies may relate partly to different economic incentives or legal

constraints. Since 1992, in the European Union, milk is not saleable if the geometric mean

BMSCC exceeds 400,000 cells/mL for more than two or three consecutive months, depending

on the frequency of measurement (Council of the European Communities, 1992). In the UK a

financial penalty is generally deducted from the milk price when the monthly BMSCC is above a

certain value. A common BMSCC threshold for this is 200,000 cells/mL, calculated as a rolling

three monthly geometric mean. The distribution of test-day BMSCC identified in this research

indicated that 45.7 % of test-days were above 200,000 cells/mL suggesting that either penalties

would be paid or that milk would be discarded from the tank in a substantial proportion of UK

dairy herds.

As it was not possible to get BMSCC from the dairy companies, these were estimated from

individual cow recordings. These estimates might be different from the true BMSCC. It was

not possible to check the extent of this disagreement in the present study. The relation between

BMSCC as measured and as estimated here was investigated in 246 herds in The Netherlands.

Lievaart et al. (2007) concluded that estimated BMSCC was a better estimator of the prevalence

of cows with a SCC greater than 250,000 cells/mL. Lievaart et al. (2009) found measured

BMSCC to be on average 49,000 cells/mL lower than BMSCC estimated from individual cow

recordings. Higher differences were associated with differences in management. A difference

between measured and estimated BMSCC greater than 20 % was 2.4 times more likely in herds

feeding high SCC milk or milk with antibiotic residues to calves. Because BMSCC estimated

from individual cow recordings takes into account milk which is produced but not sold, BMSCC

as estimated in this study would reflect more accurately herd infection levels than measured

BMSCC.

Restricting the calving period to the first 29 days of lactation allowed us to evaluate the vari-

ability in the management of the heifers’ rearing and dry period. A similar approach was used
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by Cook et al. (2002) in the USA. As in the present study, they found an elevated percentage

of the cows which had high SCC on the last milk recording prior to drying off with a low SCC

on the first recording calving. SCC decreases very quickly at the start of lactation and Dohoo

(1993) recommended to avoid the use of SCC collected before 9 days in milk in primiparous and

11 days in milk in multiparous cows for the diagnosis of infection. The National Milk Records

do not normally collect milk prior to 5 days in milk. Therefore, data collected as early as 5 days

in milk were available in this dataset and used in the present study. The threshold values used

in this study were not aimed at measuring the true infection status of a particular cow but at

getting estimates of the distribution in a large population.

In this chapter, models were first explored in a frequentist framework and then developed in a

Bayesian framework using MCMC. This is the approach recommended by Gelman & Hill (2007).

Bayesian models are especially suited when prior knowledge about the parameters modelled are

available. No priors were incorporated in this analysis, however, posterior distributions for the

models’ parameters will be used to derive priors for similar models at the test-day level in

chapter 6. A further motivation for a Bayesian analysis was the ease with which predictions

accounting for the uncertainty in the models’ parameters can be generated. These were used

to check both the models’ assumptions and the ability of the models to predict BMSCC in a

different dataset.

5.6 Conclusion

The variability in herd dynamics of SCC across a threshold of 200,000 cells/mL between consec-

utive recordings can be used to analyse and predict BMSCC. During lactation, the percentage

of cows above 200,000 cells/mL was lower in first lactation than in later ones. Different target

values should be considered for primipara and multipara during lactation. A set of targets for

cows in different SCC categories can be obtained for UK dairy herds, derived from percentile

values shown in Table 5.10.
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Chapter 6

Prediction of Bulk Milk Somatic

Cell Counts from Cow Somatic Cell

Count Categories II: Transition

Between Categories and Prediction

at the Test-Day Level

6.1 Introduction

A threshold of 200,000 cells/mL is commonly used to categorise cows as having a Low or High

level of SCC, in the UK (Bradley & Green, 2005) as well as in other countries (Pantoja et al. ,

2009). In Chapter 5, movements of individual cows between Low (≤ 200,000 cells/mL) and High

(> 200,000 cells/mL) levels between consecutive recordings, aggregated at the herd-year level,

were described at the start of and during lactation for first and later lactation cows. Herd-year

percentages in each category were shown to predict BMSCC accurately. However, the ability

of these percentages to predict individual test-day BMSCC was not assessed. At the test-day

level, more variability can be expected because some categories can have only a few cows, and

the contribution of these categories will be harder to predict. This is why Dohoo & Morris

(1993) recommended the use of one year of data when looking at somatic cell count patterns in

herds of 40 to 60 cows in Canada.

High and Low SCC levels can be considered as states between which the probability of transition

can be modelled. Lactation curves for somatic cell count have been described in Chapter 5. For

our data, SCC increased from 50 days in milk until the end of lactation and with successive

lactations. Thus cows are more likely to move to a high level of SCC as lactation progresses.
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Furthermore, herds can vary in their abilities to prevent cows from moving to High SCC levels

by preventing IMI or to facilitate a return to Low SCC levels by successfully treating mastitic

cows. Another way to mitigate the impact of mastitis on BMSCC could be to dry or to cull cows,

and it is possible that infected cows will be dried or culled earlier (Grohn et al. , 1998). Low

and High SCC levels, dry period and culling can be seen as competing risks because they are

mutually exclusive. Steele et al. (2004) provided a statistical framework to describe transitions

between such events.

The aims of this chapter were to (i) assess the ability of the model developed in Chapter 5

to predict test-day BMSCC (ii) model the probability of transition between 2 SCC levels, dry

period and culling between consecutive test-days using multilevel multistate competing risks

models and thereby to predict test-day BMSCC from the predicted percentage of a herd in each

SCC transition category.

6.2 Materials

A sample of 200 herds was randomly selected from the 628 herds which were not used for

parameter estimation in Chapter 5. In 100 of these herds, 7 consecutive recording dates were

randomly selected between June 2004 and June 2006. The first 6 months and the last 6 months

of the data were not sampled, so that cows moving in/out of the herd or from/to a dry period

could be identified by their previous or next recording respectively. For each of the 100 herds

selected at this stage, the first six recording dates were separated from the last recording date.

These two datasets were labeled dataset 1 and dataset 2 respectively. In the remaining 100

herds, one recording date was selected between June 2004 and June 2006 at random in each

herd. This dataset was called dataset 3.

6.3 Methods

6.3.1 Prediction of test-day BMSCC

Definition of cow-SCC categories

For each recording in the 3 datasets, cows were grouped using the same procedure as in Chap-

ter 5. Briefly, SCC levels were categorised as Low (L) when ≤ 200,000 cells/mL or High (H)

when > 200,000 cells/mL. The transition between SCC categories between 2 consecutive test-

days was used to construct 4 SCC transition categories (LL, LH, HL, HH). Cows of parity

1 were categorised as Heifers and cows of parity > 1 as Cows. Recordings occurring earlier

than 30 days in milk were labeled as calving and recordings happening after 29 days in milk as
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Table 6.1: Definition of the cow categories used to model BMSCC. Parity and days in milk on
test-day n are used to define the cow category and SCC values on test-day n− 1 and n used to
define the SCC transition category.

Parityn Days in milkn SCCn−1 SCCn Category a

1 < 30 - < 200,000 Hc.L
1 < 30 - ≥ 200,000 Hc.H
1 ≥ 30 < 200,000 < 200,000 Hl.LL
1 ≥ 30 < 200,000 ≥ 200,000 Hl.LH
1 ≥ 30 ≥ 200,000 < 200,000 Hl.HL
1 ≥ 30 ≥ 200,000 ≥ 200,000 Hl.HH
≥ 1 < 30 < 200,000 < 200,000 Cc.LL
≥ 1 < 30 < 200,000 ≥ 200,000 Cc.LH
≥ 1 < 30 ≥ 200,000 < 200,000 Cc.HL
≥ 1 < 30 ≥ 200,000 ≥ 200,000 Cc.HH
≥ 1 ≥ 30 < 200,000 < 200,000 Cl.LL
≥ 1 ≥ 30 < 200,000 ≥ 200,000 Cl.LH
≥ 1 ≥ 30 ≥ 200,000 < 200,000 Cl.HL
≥ 1 ≥ 30 ≥ 200,000 ≥ 200,000 Cl.HH

aThe first letter is for the cow category (H: Parity 1 ; C: Parity > 1), the second letter is for days in milk (c:
< 30 ; l: ≥ 30) and the last 2 letters are for SCC transition between test-day n − 1 and n (L: Low ; H: High ;
LL: Low on test-day n− 1 to Low on test-day n...)

lactating. These three different types of categorisation based on SCC, parity and stage of lac-

tation were combined to define 14 categories to which individual cow recordings were assigned

(Table 6.1).

Estimation of Bulk Milk Somatic Cell Counts

Test-day BMSCC were estimated as follows: The number of cells contributed by a cow was

estimated by multiplying the cell count by the weight of milk on a given recording date. These

numbers were added for all the cows recorded on the same recording date and divided by the

sum of the total weight of milk produced by these cows. BMSCCs are presented in thousand

cells/mL.

Statistical Analysis

Test-day BMSCC was modelled as a function of the percentage of the cows recorded on a test-

day in the 14 categories defined in Table 6.1 using linear mixed models. The model specifications

were:

73



Chapter 6: Prediction of Bulk Milk Somatic Cell Counts from Cow Somatic Cell Count Categories II:
Transition Between Categories and Prediction at the Test-Day Level

BMSCCij = α+ ΣXijβ
T + uj + eij

uj ∼ N(0, σ2
j )

eij ∼ N(0, σ2
ij)

(6.1)

where the subscripts i and j denote the ith test-day in the jth herd, α the regression intercept,

Xij the covariates relating to a herd-year, βT the vector of coefficients for covariates Xij , uj the

herd residuals and eij the herd test-day residuals.

Parameter estimation was carried out using Markov chain Monte Carlo in WinBUGS (Lunn

et al. , 2000). Dataset 1 was used for parameter estimation. Priors were put on the parameters

as follows. α and β were given normal priors for which the mean and standard deviation were

the mean and twice the standard deviation of the sample from the posterior distributions from

Model 2 in Chapter 5. Uniform priors on 0 - 100 were used for σj and σij (Table 6.4). For all

models, 3 chains were run for 30,000 iterations and the first 20,000 discarded. One iteration in

100 was stored for further analysis. Thus, for each variable in the model, 300 values from the

posterior distribution were available.

Predictions

At each iteration of the MCMC algorithm BMSCCs were predicted for the three datasets. For

iteration n, the predicted BMSCC was:

BMSCCnij = αn + ΣXijβ
nT + unj (6.2)

where αn, βn and unj were the values of α, β and uj at iteration n. For Dataset 3, unj was

generated from the normal distribution N(0, σn
2

j ).

Model checking and validation

Medians and 95 % credibility intervals were calculated for the posterior distribution of each

parameter as well as for the predicted BMSCC. Prior and posterior distributions were compared.

Medians and 95 % credibility intervals were calculated for the distribution of predicted BMSCC.

Observed BMSCC were plotted against the median of the predicted ones. For each predicted

BMSCC, residuals were computed by subtracting the median of the prediction from the observed

value.

The sensitivity and specificity of the models’ predictions were assessed as follows: Calculated

and predicted BMSCC were categorised as below or above 200,000 cells/mL. True positives

were BMSCC > 200,000 cells/mL and for which the median value predicted by the model was
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Table 6.2: Definition of the 5 states used in the state transition model.
State Cow Recording Lactation Recording SCC
Low First ≤ ≤ Last First ≤ ≤ Last ≤ 200
High First ≤ ≤ Last First ≤ ≤ Last > 200
dry First ≤ ≤ Last > Last -

first a First - 1 First - 1 -
last a Last + 1 Last + 1 -

afirst only occurs as a previous state and last as a current state. The same codes were used for these two
states in the models.

> 200,000 cells/mL. True negatives were BMSCC ≤ 200,000 cells/mL and for which the median

predicted value was ≤ 200,000 cells/mL. Sensitivity was the percentage of BMSCC > 200,000

which were true positives. The specificity was the percentage of BMSCC ≤ 200,000 which were

true negatives.

6.3.2 State Transitions

States definition

Two somatic cell count states were defined and individual cow SCC categorised accordingly. Cow

SCC readings ≤ 200,000 cells/mL were categorised as Low (L) and SCC readings > 200,000

cells/mL as High (H). Three more states regarding lactation status were defined. At the cow

level, the recording date preceding the first recording was labeled as first and the one following

the last as last. For a cow, the last recording in a lactation and the first recording date in the

following lactation were identified and the recordings happening in the herd between these two

dates were labeled as dry period for this cow. The definition of the five different states used is

shown in Table 6.2.

Statistical Analysis

The transitions between these states between consecutive recordings were modelled with mul-

tilevel multistate competing risks models (Steele et al. , 2004). In these models, each state is

modelled as a function of the state a cow was in on the previous recording date as well as of

covariates of interest. The number of cows in a given state followed a multinomial distribution

and the logarithm of the probability of being in any of these states divided by the probability

of being in the reference state was modelled. This model is analogous to a logistic regression

model for a binary outcome and is referred to as a multinomial logit model (Agresti, 2002).

Thirteen transitions were possible since a cow could not move from first to dry, first to last or

dry to last. The model’s specification was as follows:
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Stateijk ∼Multinomial(πijk)

ln( πijkπ1jk
) =

4∑
i′=1

I[Statei
′

i(j−1)k](α
i′
i +

∑
Xijkβ

i′
i + ui

′
ik)

ui
′
ik ∼MVN(0,Σu)

(6.3)

where Stateijk was the ith State (1: Low ; 2: High ; 3: dry ; 4: last) a cow could be in on

the jth recording date in herd k. The log-odds of the probabilities πijk of being in one of these

states was modelled as a function of the State i′ (1: Low ; 2: High ; 3: dry ; 4: first) the cow

was in on the (j − 1)th recording date that is her State on the previous recording date in the

herd. I[Statei
′

i(j−1)k] was an indicator variable taking the value 1 when cow was in State i′ on

the previous recording in the herd, 0 otherwise. αi
′
i was the vector of regression intercepts, Xijk

the matrix of predictors, βi
′
i the associated coefficients, ui

′
ik the herd effect for the probability of

transition from Statei′(j−1) to Stateij in herd k and Σu the variance-covariance matrix for the

herd random effects.

Model Building

A first model including only previous states and no other covariates was built. This model was

then extended to include parity and days in milk. Parity was coded as 1 or greater than 1

because the lactation curve is different between first lactation and older cows (Chapter 4).

Gestation length in Holstein cows is of approximately 280 days (Norman et al. , 2009) and the

dry period is typically of 2 months. Thus, cows usually do not move to dry period at the start

of lactation. It was assumed that after a certain stage of lactation, the chance of moving to

dry period or culling was increasing with days in milk. Cutpoints were used to model different

slopes for different parts of lactation. Days in milk and squared days in milk were tested in the

models and different coefficients were used before and after the cutpoints.

Parameter Estimation

Parameter estimation was carried out using MCMC in WinBUGS. Three chains were run in

parallel for each model tested. In the models including parity and stage of lactation, each

iteration was taking between 25 and 30 seconds. Depending on whether the chains had converged

or not, the first 5,000 or 10,000 iterations were discarded. The models were then run for 10,000

more iterations. The final model was run for 20,000 iterations and the first 10,000 iterations

discarded.
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Model Checking, Predictions and Simulations

Models’ DIC were recorded and used as indicators of individual model fit. To see whether the

models predicted the data well, individual cow states were predicted in Dataset 1. Parameter

values saved from each WinBUGS iteration were used. Every 1 in 100 iterations from the

models, that is 100 iterations per chain, were imported into R (R Development Core Team,

2009). Each iteration was used to predict individual cow state given the previous state the cow

was in. Thus, each line of Dataset 1 was predicted 300 times. Median, 2.5th percentile and 97.5
th predicted values were plotted against observed mean for all the transitions per day in milk

for cows of parity one and greater than one.

Based on these investigations, initial models were altered and a final model was selected. Be-

cause the parameters of such models were hard to interpret, predicted values were generated

in order to compare the probabilities of transitions per day in milk, for parity one and greater

than one cows. Three hundred iterations were imported into R as described above. Median

values were calculated for all the fixed parameters of the model because only average effects

were of interest. A function calculating the probability of being in any of the 4 possible states

given the previous state, the number of days in milk and the parity was written and used to

predict probabilities of transition.

BMSCC Prediction from Predicted States

For the final model, individual cow states were predicted (as described above) in Dataset 1,

Dataset 2 and Dataset 3. For each line of data, the previous state and three hundred predicted

current states were available. For each prediction in each test-day, the percentage of the herd

in each combination of states on 2 consecutive recordings was calculated. These test-day per-

centages were used to predict BMSCC using the same model specifications as in Section 6.3.1.

However, the model had to be slightly modified because the previous SCC level of cows moving

out of a dry period was not available. On the first recording after the dry period, cows could

only be Low or High with this new model. All the other categories and model specifications

were the same as in Section 6.3.1. For this model, using WinBUGS, 3 chains were run for

30,000 iterations and the first 20,000 discarded. Three hundred iterations were imported into

R as described above. From these 300 iterations, BMSCC was predicted for the 300 predicted

percentages in each category per test-day. Median, 2.5th and 97.5th percentiles were calculated

for each predicted BMSCC and plotted against the observed values.
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Table 6.3: Distribution of the number of cows recorded per test-day in the 3 datasets.
Min 1st Quartile Median Mean 3rd Quartile Max

Dataset 1 31 80 110 117.3 139 285
Dataset 2 35 81.75 111 119 145.2 281
Dataset 3 35 86.25 119 138.7 159.2 649

6.4 Results

6.4.1 Data description

Dataset 1 was the training dataset containing 100 herds with 6 test-days each. Dataset 2

contained a seventh test-day from the same herds. Dataset 3 contained data for one test-

day per herd for 100 different herds. Dataset 1, 2 and 3 had 70,382, 11,895 and 14,669 lines

respectively. The distribution of the number of cows recorded in the 3 datasets is presented

in Table 6.3. The median number of cows recorded were 110 and 111 in datasets 1 and 2

respectively. This number was higher in dataset 3 with a median of 119.

6.4.2 BMSCC prediction

Summaries of the prior and posterior distributions are presented in Table 6.4. In most cases,

posterior means were close to prior ones. Differences were important for Cows calving LL (prior

mean: -0.25 ; posterior mean: -2.35), Cows lactating LH (prior: 2.05 ; posterior: 6.73), Cows

lactating HL (prior: 4.86 ; posterior: 0.93). Mean residuals were close to 0 for the training

dataset (dataset 1 ), but the model tended to predict values slightly higher than observed for

both validation datasets (datasets 2 and 3 ) (Figure 6.1 and Table 6.5). The standard deviations

of the predictions were between 48.6 for dataset 3 and 54.6 for dataset 2. The percentage of

observed BMSCC in the 95 % credibility intervals were of 97 %, 96 % and 98 % for datasets

1 to 3 respectively. The percentages of BMSCC correctly predicted above 200,000 cells/mL

(sensitivity) were 82.4 %, 77.8 % and 79.3 % and the percentages of BMSCC correctly predicted

below 200,000 cells/mL (specificity) were 86.9 %, 84.8 % and 95.2 % for datasets 1 to 3.

6.4.3 State transition

Baseline State Transition Model

Of the cows with a SCC reading, 75.6 % of Cows lactating, 78 % of Cows calving and 82 % of

first (mostly Heifers calving) were Low. The probabilities of moving to any of the four possible

states given the initial state as observed and as predicted by the baseline model are presented

78



Chapter 6: Prediction of Bulk Milk Somatic Cell Counts from Cow Somatic Cell Count Categories II:
Transition Between Categories and Prediction at the Test-Day Level

Table 6.4: Prior and posterior distribution. All variables were given normal prior except σu and
σe which were given uniform priors on 1-100.

Posterior
Prior Credibility Interval

Parameter Mean sd Mean sd Median 2.5 % 97.5 %
Intercept 39.20 3.70 39.20 0.53 39.21 38.18 40.25
Hc.L −1.00 0.64 −0.96 0.89 −0.96 −2.71 0.72
Hc.H 8.94 1.53 9.25 0.79 9.26 7.63 10.85
Cc.LL −0.25 0.52 −2.35 0.80 −2.33 −3.93 −0.74
Cc.LH 16.10 1.27 15.90 0.87 15.91 14.28 17.63
Cc.HL −6.71 0.63 −5.62 0.89 −5.64 −7.35 −3.93
Cc.HH 19.23 1.14 17.30 0.84 17.30 15.64 18.93
Hl.LL −0.08 0.10 0.16 0.31 0.14 −0.42 0.75
Hl.LH 5.56 1.07 6.48 0.84 6.51 4.78 8.14
Hl.HL 6.16 1.16 4.48 0.79 4.47 3.02 6.01
Hl.HH 5.11 0.48 5.98 1.15 5.96 3.90 8.29
Cl.LH 2.05 0.42 6.73 0.55 6.74 5.68 7.78
Cl.HL 4.86 0.47 0.93 0.63 0.90 −0.31 2.16
Cl.HH 7.09 0.11 6.41 0.37 6.40 5.68 7.15
σu Unifom(0, 100) 30.44 3.49 30.40 23.70 37.51
σe Unifom(0, 100) 57.38 1.91 57.39 53.76 61.22

Figure 6.1: Observed versus predicted values by the model
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Table 6.5: Results of the prediction of test-day BMSCC. Residuals were calculated as Observed
- Median predicted BMSCC. The percentage of observed BMSCC between the 2.5 and 97.5
percentile of the predictions were calculated. The sensitivity and specificity of the prediction
to classify BMSCC as greater or smaller than 200,000 cells/mL were also calculated.

Dataset 1 Dataset 2 Dataset 3
Mean residuals −0.17 −9.63 -6.64
Standard deviation residuals 54.10 54.62 48.64
% predicted 95 % CI 97.00 96.00 98.00
Sensitivity 86.92 84.78 95.24
Specificity 82.35 77.78 79.31

in Table 6.6. Cows ≤ 200,000 cells/mL had a 82.3 % chance to be ≤ 200,000 cells/mL on the

following test-day and a 10.7 % of being > 200,000 cells/mL, while cows > 200,000 cells/mL

had a 57.2 % chance of staying > 200,000 cells/mL and a 25.6 % chance of moving ≤ 200,000

cells/mL.

Table 6.6: Probability of transition from Previous to Current state as a proportion of the
number of cows in the same Previous state in Dataset 1 : numbers, Observed probabilities,
Median and Credibility intervals predicted by the model are shown.

State Probability of transition

P
re

vi
ou

s

C
ur

re
nt Credibility

Interval
n Observed Median 2.5 % 97.5 %

Low Low 37,259 0.822 0.822 0.819 0.825
Low High 4,870 0.107 0.107 0.105 0.110
Low dry 2,487 0.055 0.055 0.053 0.057
Low culled 720 0.016 0.016 0.015 0.017
High Low 3,770 0.258 0.257 0.251 0.264
High High 8,349 0.570 0.570 0.563 0.579
High dry 1,718 0.117 0.117 0.113 0.123
High culled 798 0.055 0.054 0.051 0.058
dry Low 2,647 0.283 0.283 0.274 0.292
dry High 745 0.080 0.079 0.075 0.085
dry dry 5,967 0.638 0.638 0.627 0.646
first Low 863 0.820 0.821 0.797 0.842
first High 189 0.180 0.179 0.158 0.203

Final State Transition Model

Based on changes in observed probabilities of transition and probabilities predicted by the

models, a final model was selected. For each transition, a different set of intercepts was used

for cows of parity one and for cows of parity greater than one. Herd random effects were also
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introduced to allow for herd variability. The probability of moving to a dry period increased

from 250 days in milk onwards. Hence a cutpoint was placed at this lactation stage and different

slopes modelled before and after 250 days in milk. Once in the dry state cows could only stay

in this state as days in milk were reset to 0 with the start of a new lactation. For cows moving

out of a dry period, a cutpoint was set at 100 days in milk to allow for a probability of 1 for

cows to stay dry after the dry period had been initiated. Linear and quadratic terms were

introduced for days in milk so that non linear effects with stage of lactation could be accounted

for. Figures 6.2 and 6.3 show the probabilities of transition predicted by the final model versus

the observed probabilities of transition to any state given the previous state a cow was in for

parity 1 and greater than 1 respectively. Observed probabilities were scattered because there

could be only a few observations per calculated proportion. However, overall, the model was

describing the data well.

Probabilities of moving from Low and High to Low, High, dry and Culled were calculated from

the median of the parameters estimated by the final model between 30 and 500 days in milk

for cows of parity one and greater than one. These probabilities are shown in Figure 6.4. The

risk of moving to dry started to increase a few days before 250 days in milk and reached a

maximum at around 450 days in milk. Changes in probabilities of transition were close to

linearity between 30 and 200 days in milk and between 300 and 400 days in milk. Probabilities

of transition from Low and High at 30 and 200 days in milk and at 300 and 400 days in milk

are presented in Tables 6.7 and 6.8 respectively. Generally, cows were more likely to move to

High and less likely to move to Low as lactation was progressing. The probability of moving to

High was always higher for cows of parity greater than 1 compared to primiparous cows. The

probability of being Low was higher for cows already Low and the probability of being High

higher for cows already High. The probability of moving to a dry period was approximately 4

% higher at 300 days for cows which were High than for cows that were Low, but the increase

in the risk of moving to dry increased more rapidly thereafter for the Low groups.

BMSCC Predictions from the Final State Transition Model

Predicted states were used to generate BMSCC predictions (Figure 6.5). BMSCC was not

predicted very accurately. For Dataset 1, Dataset 2 and Dataset 3, only 57 %, 61 % and 64 %

of observed BMSCC were in the 95 % credibility intervals respectively.

6.5 Discussion

This study validated the herd-year model developed in Chapter 5 to the test-day level. Thus

even on a single recording date, the contribution of groups of cows categorised according to
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Figure 6.2: Observed and predicted probabilities of transition per day in milk for first lactation
cows. Grey dots represent the proportion of cows that moved from Previous State to Current
State. Plain (dashed) lines are the median (2.5th and 97.5th percentile).
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Table 6.7: Probability of moving to Current state given the Previous state a cow was in:
Predicted probabilities at 30 and 300 days in milk and variations.

State Day in Milk
Previous Current Parity 30 200 Variation (%)

Low Low 1 0.94 0.93 -1.5
Low Low >1 0.92 0.86 -6.3
Low High 1 0.05 0.06 30.4
Low High >1 0.07 0.13 83.1
Low Culled 1 0.01 0.01 -19.9
Low Culled >1 0.01 0.01 -23.8
High Low 1 0.67 0.47 -29.9
High Low >1 0.49 0.28 -41.8
High High 1 0.32 0.50 57.2
High High >1 0.48 0.67 38.3
High Culled 1 0.02 0.03 70.1
High Culled >1 0.03 0.04 41.1
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Chapter 6: Prediction of Bulk Milk Somatic Cell Counts from Cow Somatic Cell Count Categories II:
Transition Between Categories and Prediction at the Test-Day Level

Figure 6.3: Observed and predicted probabilities of transition for cows of parity greater than 1.
Grey dots represent the proportion of cows that moved from Previous State to Current State.
Plain (dashed) lines are the median (2.5th and 97.5th percentile).

●

●●

●

●●

●

●●

●●

●

●●●

●

●

●●●●●

●

●

●

●

●

●

●
●

●
●

●
●
●●●
●
●●●
●
●●●
●
●
●
●●
●●
●●

●●
●
●●
●●
●
●
●
●●

●

●●

●
●
●●
●●
●
●●●
●●
●●●●●
●●
●
●●●●●●●
●
●●●●
●
●●
●
●
●
●●●●
●●●●
●●●●●
●
●
●●●
●●●
●●●●●●●
●●●●
●●●
●●
●●
●
●●●
●
●●
●●
●●

●●●●●
●
●●●

●

●●●
●●●
●
●
●●●
●●
●●●●●
●
●

●●
●

●

●

●●
●●

●

●
●
●●
●
●●●
●●●
●●

●
●●●
●
●●
●
●
●

●
●

●
●
●●●
●●
●
●●●
●
●●
●

●
●
●
●

●
●
●●
●

●

●●

●
●
●
●
●
●●●
●●
●

●
●

●

●
●

●
●●
●●
●
●●
●●
●

●●

●
●

●
●●

●

●
●●●
●

●

●

●●●●●
●
●

●

●

●●

●

●
●●

●●
●●●
●

●
●
●●
●
●●●

●●

●
●

●
●
●
●

●●
●●

●

●

●

●
●●

●

●

●

●

●

●●●

●●

●

●

●●●

●

●

●●

●

●

●
●

●

●
●
●

●
●
●
●
●●●

●
●●●
●

●

●
●

●
●
●
●

●

●

●

●
●
●

●

●
●●

●

●

●

●
●
●
●

●

●

●●●●●

●
●

●

●
●

●●●
●

●
●
●

●

●

●

●

●

●

●●

●

●●

●●●

●
●●
●

●
●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

Dim

O
bs

Dim

M
ed

Low

Lo
w

0 100 300 500

0.0

0.2

0.4

0.6

0.8

1.0

●

●●

●

●●

●

●●

●●

●

●●●

●

●

●●●●●

●

●●●

●

●

●
●
●
●

●
●
●●●●
●●●
●
●
●●●
●●●●●●
●●

●●
●●●
●●
●
●
●●
●
●

●
●

●
●
●●
●●
●

●●●
●●●●●●●●●
●
●●
●●●●
●
●●●●●●
●●
●
●
●●●
●●
●●●●
●●●●●●
●
●●●
●●●
●●
●●●●●●●●
●
●
●
●
●●
●●●
●●●
●
●●●●
●●

●
●●●●
●●●●

●

●●●
●●●●
●
●●●
●●
●●
●●●●
●
●●
●

●

●

●●
●●

●

●●●●●
●
●
●
●●
●
●●

●●●●
●
●
●
●
●
●

●
●

●
●
●
●●●●
●●
●●●
●●●
●
●
●
●

●
●
●●●

●

●●

●

●●
●●
●●●●●
●
●●

●

●●
●
●
●●●
●●
●●
●
●
●●
●

●

●
●●

●
●
●●●●
●●●●
●●●●
●

●

●

●
●

●

●●
●
●●
●●
●
●
●
●
●●
●●●
●

●

●●●●
●●●
●

●●●
●
●
●
●
●
●

●

●

●

●
●
●●
●

●●
●

●

●
●●
●
●
●●

●

●

●

●

●
●●

●

●
●
●●

●

●●
●●●
●
●
●
●

●●
●●

●

●
●

●

●
●

●●
●●
●
●

●

●

●●●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●●

●

●●●

●

●

●
●●
●
●

●

●
●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

Dim

O
bs

Dim

M
ed

High
0 100 300 500

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●
●●●●●
●
●
●●●●
●
●●

●

●
●

●
●●●●●●●●●
●
●
●

●●●●●
●
●
●
●●
●●
●
●
●
●
●
●●●●

●
●●●●
●
●

●●

●

●

●

●●
●

●
●

●
●
●

●

●●●●
●

●
●●
●

●

●●●●●
●
●

●
●●●

●●
●

●
●

●

●

●

●●
●

●

●
●
●

●
●
●
●●●
●

●

●

●

●●
●
●
●●

●
●

●
●

●

●●●●
●
●

●●

●●

●
●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●
●●●

●

●

●
●

●

●

●

●

●
●
●

●
●
●

●
●

●
●●●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●●
●

●●●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

Dim

O
bs

Dim

M
ed

dry
0 100 300 500

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●
●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●
●●●●●●●
●
●●
●●
●
●●●●●
●●●
●
●●●●●
●
●●●
●
●●●●●
●●●●●●●●
●
●●●●●
●●●●●●●●●●
●
●

●
●●●
●
●●●
●

●●
●
●
●●●●●

●
●●●

●

●
●●●●●

●
●
●●
●
●●

●

●●
●
●●
●
●
●
●

●●
●●●

●

●
●

●
●

●●

●

●●

●

●
●
●

●

●●●●

●

●●

●

●
●●●●

●●

●

●
●●●●●

●

●●●

●

●

●

●●

●●●●●

●

●●●●

●

●

●

●●

●●

●●●●

●

●●●●

●

●●●

●

●●●●●

●

●●●

Dim

O
bs

Dim

M
ed

culled

P
ro

ba
bi

lit
y

0 100 300 500

0.0

0.2

0.4

0.6

0.8

1.0

●

●

●

●

●

●●

●

●●●

●

●●

●

●

●●

●

●

●●●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●●
●

●●
●●

●

●

●

●
●●

●

●
●
●

●
●●

●●

●
●

●●

●

●
●●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●
●
●●●

●

●
●

●

●

●
●●
●●
●

●

●●●●

●

●
●

●

●

●

●
●●
●

●
●●
●

●

●

●

●
●

●●
●
●●

●

●

●
●

●●
●

●

●
●

●●●

●

●●

●●

●
●

●●●

●
●

●

●
●

●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●●

●
●●

●

●
●
●
●●●
●

●●

●

●

●●

●

●●

●

●

●
●

●●●

●

●

●●
●
●●
●●

●
●

●●
●●
●
●●
●

●
●
●

●
●

●●

●
●
●
●

●

●

●●

●
●
●

●●●●●●●

●●
●

●●●●●

●

●

●

●
●

●
●●

●
●
●

●

●

●

●

●
●
●●
●

●

●
●

●

●●●
●●
●●
●

●

●
●
●
●

●

●●●●
●●

●

●●●

●
●
●●●

●

●

●

●●
●
●

●

●

●

●

●

●
●

●

●
●
●

●
●

●

●
●
●

●
●

●
●
●●●

●

●
●●
●
●

●

●
●

●

●

●
●
●

●

●

●●
●
●

●
●

●●●

●

●
●

●
●

●●
●

●
●●

●

●
●●

●
●

●

●
●
●

●●
●

●
●●

●

●

●

●●●

●
●●●●

●

●

●●

●●

●

●

●

●

●

●

●
●
●
●
●

●●

●

●

●

●●

●

●

●

●

●
●

●●●

●●●●●●

●

●●●●●

●

●

●
●

●●

●

●

●

●●

Dim

O
bs

Dim

M
ed

H
ig

h

0.0

0.2

0.4

0.6

0.8

1.0

●

●

●

●

●

●●

●

●●●

●

●●

●

●

●●

●

●

●●●●

●

●

●

●

●●●
●
●
●

●

●

●●●●

●

●
●

●

●

●●
●●

●

●

●

●
●

●

●

●
●

●
●
●
●

●

●

●

●

●

●
●
●

●

●●

●●

●
●

●
●

●

●
●

●

●
●

●●
●
●

●

●●

●
●

●
●

●●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●

●●
●
●

●

●●●●

●

●●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●●

●

●●
●●

●

●
●

●

●●

●

●●
●

●
●

●

●
●
●

●

●

●
●

●●

●●●

●●●
●●

●

●
●

●
●
●

●
●●
●●
●

●●

●

●

●

●

●

●

●

●●●

●

●

●●
●

●

●

●
●
●

●

●●●●●

●●

●
●

●

●
●

●

●●

●
●●
●

●

●

●
●
●●
●
●
●

●●

●

●
●
●

●

●
●

●

●●●●
●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●

●●
●
●

●

●●

●

●
●
●●●
●●
●

●
●

●
●

●
●●●●●
●

●
●

●
●
●

●
●

●

●●
●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●
●●
●●●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●

●
●
●●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●●●
●

●

●●

●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●●
●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

Dim

O
bs

Dim

M
ed

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●
●●●●●●
●
●●●●●●●●●●
●
●●●●●●●●●●

●
●●●●
●
●●●●●●●●
●
●●
●
●●●
●
●●●●●
●
●●●●●●●●●
●
●●
●●
●●●●●●●●
●
●
●
●
●
●●●●
●●
●●

●
●
●
●●

●
●●●
●
●●
●

●●●

●

●●●●

●
●
●

●

●

●
●
●●

●
●

●●

●

●●●
●

●

●
●

●

●
●●●

●

●

●●

●

●

●

●

●
●●●●

●●

●●
●
●●●
●●
●

●

●
●

●

●

●

●
●●
●●

●●
●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●●
●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●●●
●

●

●
●●
●●●

●
●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

Dim

O
bs

Dim

M
ed

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●●
●
●●

●

●●●●
●
●
●●●●
●●●
●●
●●●●
●●
●
●●●
●

●

●

●
●
●
●
●●●
●●●
●●
●●●
●
●
●●●
●
●

●

●●●
●
●●
●
●●
●●●●
●●●●●●
●●
●
●
●●●●
●

●

●
●
●●●

●
●
●
●●

●

●●●●
●●
●●●●●
●●

●

●
●●
●
●
●
●

●
●
●●

●
●●
●

●●●●●●●●

●

●●●
●

●
●
●
●
●
●●
●
●
●
●
●
●
●
●●●●●
●●

●

●

●●

●

●●
●
●
●
●
●●●
●
●●●
●●●
●
●●●●
●

●
●
●

●

●
●

●

●
●
●●●
●

●
●
●

●
●●●●●●●●●
●

●
●
●
●
●●●
●●
●
●●●●
●
●●
●●
●
●
●

●●●
●●
●
●
●●
●●
●●
●
●●
●●●
●●●●●●●●
●

●
●

●●
●●●●
●
●●●

●

●●●

●●
●

●●
●
●
●●●●
●
●●

●

●
●●
●
●●●
●

●
●●●
●●
●●

●
●●●●●●
●●●
●●
●
●
●
●
●●
●●

●

●

●
●

●●●●
●
●
●
●

●
●
●

●

●

●

●

●

●●

●

●

●●
●●●

●
●

●

●

●
●
●●●
●
●
●
●

●
●

●

●●
●

●

●

●
●
●

●
●

●

●
●
●

●

●
●●●

●●●
●
●●

●

●

●

●●
●

●

●●●●

●

●●

●

●●
●
●

●

●●

●

●

●

●
●●

●●

●

●●

●

●●●

●

●

●

●

●

●●●●●●

●●●

●●●●●●●

●

●

●●

Dim

O
bs

Dim

M
ed

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

0.8

1.0

●

●

●

●
●
●
●
●

●
●
●●●
●

●
●
●●
●●●
●

●●●
●●

●●●●●

●

●

●●

●

●●●●

●

●●●

●●

●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●

●

●●

●

●

●

●●●

●

●●●●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Dim

O
bs

Dim

M
ed

dr
y

0.0

0.2

0.4

0.6

0.8

1.0

●

●

●

●
●
●
●
●

●
●
●●●●

●
●
●●
●●●
●

●●
●
●●

●●●●●

●

●

●●

●

●●●●

●

●●●

●●

●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●

●

●●

●

●

●

●●●

●

●●●●● ●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Dim

O
bs

Dim

M
ed

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

● ●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Dim

O
bs

Dim

M
ed

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Dim

O
bs

Dim

M
ed

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

0.8

1.0

Dim

O
bs

Dim

M
ed

fir
st

Days in Milk

0 100 300 500

0.0

0.2

0.4

0.6

0.8

1.0

Dim

O
bs

Dim

M
ed

Days in Milk

0 100 300 500

Dim

O
bs

Dim

M
ed

Days in Milk

0 100 300 500

Dim

O
bs

Dim

M
ed

Days in Milk

P
ro

ba
bi

lit
y

0 100 300 500

0.0

0.2

0.4

0.6

0.8

1.0

Current State

P
re

vi
ou

s 
S

ta
te

83



Chapter 6: Prediction of Bulk Milk Somatic Cell Counts from Cow Somatic Cell Count Categories II:
Transition Between Categories and Prediction at the Test-Day Level

Figure 6.4: Predicted probabilities of transition from below and above 200,000 cells/mL to
below and above 200,000 cells/mL, dry period and culling between calving and 500 days in milk
for parity 1 (solid lines) and greater than 1 (dashed lines) cows.
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Table 6.8: Probability of moving to Current state given the Previous state a cow was in:
Predicted probabilities at 300 and 400 days in milk and variations.

State Day in Milk
Previous Current Parity 300 400 Variation (%)

Low Low 1 0.82 0.60 -26.1
Low Low >1 0.72 0.51 -29.4
Low High 1 0.07 0.06 -13.2
Low High >1 0.16 0.16 -1.6
Low Dry 1 0.10 0.31 201.1
Low Dry >1 0.11 0.30 187.5
Low Culled 1 0.01 0.03 120.4
Low Culled >1 0.02 0.03 110.4
High Low 1 0.32 0.20 -37.8
High Low >1 0.18 0.10 -41.3
High High 1 0.49 0.40 -18.9
High High >1 0.61 0.47 -23.7
High Dry 1 0.14 0.33 144.3
High Dry >1 0.15 0.35 130.4
High Culled 1 0.05 0.06 42.0
High Culled >1 0.05 0.07 33.9
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Figure 6.5: Observed versus predicted BMSCC. Predictions were made from States predicted
by the final model combined with observed Previous States and aggregated at the test-day level.
Dataset 1 was the training dataset with data from 6 test-days in 100 herds, Dataset 2 was a
validation dataset with the test-day following the sixth test-days in the previous 100 herds and
Dataset 3 contained one test-day per herd in 100 herds. Black dots, blue dots and grey bars
represent the observed BMSCC, the median predicted BMSCC and the 95 % credibility interval
for the prediction.
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SCC, stage of lactation and parity to BMSCC can be calculated. This can be done for didactic

purpose, in order to show farmers what is the impact of mastitis in their herd as well as to set

targets and to estimate the result of their implementation.

A state transition model constructed to explore the probabilities of transition between the Low

and High levels of SCC used in this model as well as dry period and culling was shown to

describe these transitions well. However, the use of the predicted individual cows SCC levels

was not useful to predict BMSCC, even when including herd random effects in both the state

transition and BMSCC prediction steps (Dataset 1 ). The state transition model was designed

to account for stage of lactation and parity in the prediction of SCC level. Lactation curves

for SCC indicate that there is an increase in SCC from the lactation peak towards the end

of lactation, and that SCC levels increase with successive lactations, especially between the

first and second lactation (Schepers et al. (1997), Chapter 4). This increase could be the

result of either a physiological process, an increase in IMI prevalence or both. It is unclear

what are the roles played by these two phenomena. It is possible that while the model was

describing physiological variations in these parameters, it was not capturing the probability of

acquiring an IMI. Infection is the main factor increasing SCC (Schepers et al. , 1997), and, while

physiological variation is moderate, an IMI could have a much bigger impact on BMSCC. Thus

a model accounting for this physiological variation alone would not be able to predict BMSCC.

Looking at figures aggregated at the herd level over one or more test-days or studying changes

in BMSCC between consecutive measurements (Lukas et al. , 2005) would then be more useful

to predict BMSCC.

Predictions from the percentages of a herd in each cow infection category had sensitivities and

specificities greater than 75 % even with one test-day. The median number of cows recorded in

this study was between 110 and 120 and in 75 % of test-days, more than 80 cows were recorded.

So on average, each cow represented less than one percent of a test-day and individual variations

within a category were averaged. Means of the prior and posterior distributions were usually

close. One notable feature was the inversion in the relative importance of cows going from

below to above and above to below 200,000 cells/mL in lactating cows for both first and later

lactations: at the herd-year level, the coefficients associated with going from above to below

200,000 cells/mL were positive and higher than the coefficients associated with going from below

to above 200,000 cells/mL. At the test-day level, the former were negative and smaller. This was

related to the time period considered when looking at either herd-year or test-day estimates.

When looking at prolonged periods of time, the numbers of cows going from below to above

and from above to below will be correlated, because for the prevalence of high SCC to remain

stable, ‘cures’ have to compensate for ‘new infections’. This is not the case at the test-day level

where prevalence can increase or decrease between consecutive recordings and ‘cures’ will, by
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definition, be associated with lower SCC and hence a lower contribution.

6.6 Conclusion

The herd dynamics of SCC around a threshold of 200,000 cells/mL can be used to predict test-

day BMSCC. The use of individual cow information on stage of lactation and parity was not

useful in predicting individual cow movement across this threshold and subsequently predicting

test-day BMSCC.
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Chapter 7

Use of Individual Cow Milk

Recording Data at the Start of

Lactation to Predict the Calving to

Conception Interval

7.1 Introduction

The transition between dry period and the onset of lactation results in a sudden and massive

increase in the energy demand for dairy cows (Bauman & Currie, 1980). At this stage, the

appetite of the cow is limited, the amount of energy exported in milk cannot be covered by food

and most cows will experience a period of negative energy balance (NEB). In an experimental

herd in the Netherlands, de Vries & Veerkamp (2000) found an average period of NEB of 41.5

days. This NEB has been linked to poor reproduction (Patton et al. , 2007; Buckley et al. ,

2003). Energy exported and severity of NEB increase with milk yield. There is also a negative

correlation between milk yield and the resumption of luteal activity (Veerkamp et al. , 2000),

oestrous expression (Cutullic et al. , 2009) and days open (Haile-Mariam et al. , 2003; Abdallah

& McDaniel, 2000).

Many studies have measured the association between energy balance and milk composition.

Four of these studies were carried out on 2 experimental farms at Lelystad, the Netherlands

(Heuer et al. , 2000; de Vries & Veerkamp, 2000; Heuer et al. , 1999; Grieve et al. , 1986) and

one in 93 dairy farms in Canada (Duffield et al. , 1997). It was constantly found that in cases

of NEB there is an increase in the milk percentage of butterfat, a decrease in the percentage of

milk protein and an increase in the fat to protein ratio. Short-chain and medium-chain fatty

acids are synthesized de novo by the mammary gland, long-chain fatty acids are taken up from
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the bloodstream (Bauman et al. , 2006). Cows in negative energy balance mobilise fat reserves

and the milk percentage of C16:0 and C18:0 fatty acids increases (Stoop et al. , 2009). For

de Vries & Veerkamp (2000), the difference in milk fat percentage between the first 2 months of

lactation was the best indicator of energy balance. In their study, the percentage of protein was

only changed by a small amount with varying energy balance so that neither the percentage of

protein or the fat to protein ratio were useful in the prediction of the energy status. For Grieve

et al. (1986) the fat to protein ratio was the best indicator in predicting the energy status.

Heuer et al. (1999) identified cows with a fat to protein ratio greater than 1.5 to be at greater

risk of ketosis while Duffield et al. (1997) found none of these indicators to be useful in the

screening for ketosis although an association was present.

Few studies have looked at the association between milk composition at the start of lactation and

the probability of conception. Kristula et al. (1995) identified a negative association between

the first insemination pregnancy rates and both the percentage and weight of butterfat on the

first milk recording of lactation in 1,640 cows from 22 United States dairy herds. Using data

from 51 high yielding cows in Slovenia, Podpecan et al. (2008) found a threshold of 1.44 for the

fat to protein ratio able to identify 91.7 % of cows with a calving to conception interval greater

than 140 days.

Milk quantity and composition vary with lactation stage as well as, to a lesser extent, with

parity, season and other factors (Chapter 4). Lactation curves have been extensively studied

for milk yield, percentage of butterfat and percentage of protein (Silvestre et al. , 2009). But

the current variations for the fat to protein ratio according to stage of lactation have not been

described. Because all cows will go through the same variation with stage of lactation, this

variation must be taken into account when comparing monthly milk samples. Moreover, milk

quantity and composition, vary with the month of the year (Chapter 4) and it is not known

whether the observed variation is due to different energy status or whether it is the result of

specific seasonal factors which should be accounted for. Heuer et al. (2000) included days

in milk and parity as confounders in their models, however, this assumes that the variables

included vary together with stage of lactation and parity.

Therefore, milk quantity and composition at the start of lactation can reflect individual cow

energy balance. However, their usefulness in the prediction of the calving to conception inter-

val needs clarification. The purpose of the present chapter is to use a large dataset of milk

recording data to investigate the calving to conception interval as a function of milk quantity

and composition at the start of lactation.
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7.2 Materials

The data used in this Chapter are described in Chapter 2. Lactations for which calving occurred

in 2004 and 2005 and that had at least two milk recordings between 5 and 65 days in milk were

used. There were data for 525,602 lactations in 366,939 cows from 2,128 herds. Calvings

occurring in 2004 in a random sample of 500 of these herds were used to model the calving to

conception interval. The remaining 1,627 herds were used for model checking. The number of

herds and time frame in the dataset used for parameter estimation were a compromise between

data size and the ability to model herd variability. This dataset contained 40,514 lactations

from 39,585 cows.

7.3 Methods

7.3.1 Calving to Conception Interval

For each lactation, the date of calving was available. When two consecutive calving dates were

available for the same cow, the interval between calvings was calculated. The date of conception

was estimated by subtracting 280 days from the date of calving (Norman et al. , 2009). The

calving to conception interval was the difference between the date of conception and the date of

the previous calving. These intervals were categorised as follows. Conceptions occurring before

20 days in milk were deemed unusual and not included in the analysis. Because the impact

of negative energy balance on conception was expected to be more important at the start of

lactation, and, in order to ease computation, conceptions occurring after 144 days in milk were

censored. The first interval was 20-60 days after calving. Each of the subsequent intervals was

of 21 days. Five intervals were considered for the analysis: [20-60] ; [61-81] ; [82-102] ; [103-123]

; [124-144].

7.3.2 Statistical Analysis

The association between milk quantity and composition at the first 2 recordings after calving

and the probabilities of conception in each interval were modelled using discrete time survival

models (Yang & Goldstein, 2003). The probability of a conception at each interval, from interval

1 (20 to 60 days in milk) to interval 5 (124 to 144 days in milk) were modelled and cows were
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censored at the time of conception. The model specification was:

Ytjk = Bernoulli(ptjk)

ln( ptjk
1−ptjk ) =

5∑
t=1

Itjk(γt + δtk) +Xjkβ

δtk ∼MVN(0,Σδ)

(7.1)

with Ytjk = 1 when a conception occurred in interval t for lactation j in herd k and 0 otherwise

; ptjk the associated probability of conception in interval t; I an indicator variable taking the

value 1 in interval t, 0 otherwise ; γt the log-odds of a conception in interval t ; δtk the herd

effect for the log-odds of a conception in interval t ; Xjk the matrix of predictors and β the

vector of associated coefficients and Σδ the covariance matrix for the herd random effects. Since

cows were censored in the intervals following conception, in cows that did not recalve, the

outcome was coded as 0 for the 5 intervals. Because the date of conception was determined by

subtracting 280 days from the date of calving, it was impossible to know whether a cow was

pregnant from 280 days before she left the herd. Cows were censored from 280 days before their

last recording in the dataset because this was making their pregnancy status unknown. Models

were estimated in MLwiN using Iterative Generalised Least Squares (Rasbash et al. , 2009).

7.3.3 Covariates

Variables related to milk quantity and composition in the first two recordings of lactations, for

lactations with at least 2 recordings between 5 and 65 days in milk, were considered as covariates.

The covariates considered were milk yield, percentage and weight of butterfat, percentage and

weight of protein, percentage and weight of lactose and somatic cell count on both the first and

second test-days of lactation. Since variations in these variables occurred with lactation stage,

parity and season, variables standardised for either stage of lactation or stage of lactation and

day of the year were tested in the models. Interactions between the covariates and the natural

logarithm of the interval number were tested to allow variations with time. Variables were kept

in the model if the associated coefficient was at least twice the standard error and if its inclusion

resulted in a decrease in the deviance.

7.3.4 Standardisation for stage of lactation and time of the year

All the recordings occurring between 5 and 70 days in milk were extracted from the original

dataset. There were 1,582,488 recordings from 798,763 lactations from 441,320 cows in 2,128

herds available. For each variable, the mean and standard deviation per day in milk (5 to 70)

and per week of the year (1 to 52) were calculated. These values were smoothed using linear
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models. The effects of stage of lactation were accounted for using polynomials. The models’

specifications for the stage of lactation mean and standard deviation were:

Yi = α+
P∑
p=1

Dimp
i βp (7.2)

where Yi was either the mean or the standard deviation of the variable modelled for day in milk

i, α the model intercept, Dim the days in milk, P the highest power retained in the model and

βp the coefficient associated with Dimp. Powers 1 to 6 were tested for each variable.

The effects of the time of the year were modelled using sine and cosine functions. Each week

was converted back to a number of days using the formula:

Day = Week × 7− 3.5 (7.3)

The models’ specification for the stage of lactation and time of the year standardisation was:

Yij = α+
P∑
p=1

Dimp
i βp +

T∑
t=1

(sin(2πt
Dayj
365

)δt + cos(2πt
Dayj
365

)γt) (7.4)

where Yij were the mean or standard deviation of the variable considered on day in milk i and

for day of the year j. The transformation applied to the days of the year produced a yearly

periodicity. Interactions between days in milk and sine and cosine were tested. Variables were

retained when the p-value was smaller than 0.05 and when the residuals displayed graphically

showed no systematic patterns. The predictions were also plotted to detect overfitting.

These models were used to standardise the observed values for either stage of lactation or stage

of lactation and season as follows:

Standardisedij =
(Observedij − X̄ij)

σ̄ij
(7.5)

where Observedij was the observed value, X̄ij the estimated mean and σ̄ij the estimated stan-

dard deviation for day in milk i (1 to 60) at day of the year j (1 to 365). Thus, the corrected

values were centred around 0 and scaled to have a standard deviation of 1.

7.3.5 Model checking and validation

To check final models, predictions were used. The predictions were performed using fixed as

well as random effects estimated by the model. For each covariate, bins were created based

on quantiles, each of 20 bins containing 5 % of the data. For each bin in each interval, the

difference between the observed and predicted proportions of conceptions and the corresponding
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confidence intervals were plotted. Based on model assumptions, approximately 5 % should have

fallen outside the confidence interval.

Models were also checked using a cross validation procedure. For the 500 herd dataset used

for parameter estimation, both herd random effects and fixed effects were used to generate

predicted probabilities of conception. For the data from the 1,628 herds not used for parameter

estimation, only the fixed effects were used. For each cow not pregnant at the start of an interval,

the probability that she would conceive during this interval was calculated. The predicted

probability P that a cow would have conceived by the end of interval 5 was calculated as:

P = p1 +
5∑
i=2

i−1∏
j=1

(1− pj)pi (7.6)

where pi and pj were the probabilities that a cow conceived during interval i and j. The proba-

bilities that a cow would conceive at any of the 5 intervals given that she had not conceived on

the previous ones were summed up for the 5 intervals. The percentiles 1 to 99 were calculated for

the predicted probabilities of conception at each interval as well as for the P . These percentiles

were used to create 100 categories of increasing predicted probability of conception per interval

and by then end of interval 5. The observed proportions of cows that had conceived at each

interval as well as by the end of interval 5 were calculated for each category. For any of the 5

intervals, cows that had already conceived at the beginning of the interval considered were not

included in the calculation of this observed proportion because they were not at risk. Predicted

proportions were plotted against the mean observed proportions of conception in each category.

Finally, the mean predicted and observed probabilities of pregnancy by the end of interval 5

were calculated at the herd level.

7.4 Results

7.4.1 Calving to Conception Interval

Overall, 73 % of the cows recalved in the full dataset (see Chapter 3). The cumulative Kaplan-

Meier survivor curve for the calving to conception interval for the lactations for which calving

occurred in 2004 and 2005 is presented in Figure 7.1. The percentage of cows which had

conceived by day 20, 61, 82, 103, 124 which were the start of interval 1 to 5 and the end of

interval 5 were 0.5, 7.3, 17.9, 29.3, 38.7 and 46 respectively.

The distribution of the percentage of cows that conceived during each interval, of those eligible,

in the 500 herds used for parameter estimation is presented in Figure 7.2. For cows eligible to

become pregnant in each interval, the herd median (interquartile range) percentages of concep-
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Figure 7.1: Cumulative Kaplan-Meier survivor curve for the interval calving to conception
between calving and 200 days in milk for 2,128 herds between 2004 and 2005. The values on the
x-axis are the days at which each interval starts and the values on the y-axis the corresponding
percentage of cows that have conceived up to this stage. Greyed areas were not modelled.
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for intervals 1 to 5.

7.4.2 Corrections for stage of lactation and season

Descriptions of changes in milk production with stage of lactation between 5 and 60 days in

milk and season are presented in Figures 7.3, 7.4 and 7.5. Parameter estimates of the different

models for stage of lactation and stage of lactation and season are presented in Appendix C.

Different curves were used for parity one and greater parities for milk yield and somatic cell

count (Chapter 4). A greater mean was associated with a higher standard deviation, except

for lactose. Variations in the mean with season were important for the fat to protein ratio and

for the percentage of butterfat.

7.4.3 Models

A model with variables corrected for stage of lactation or stage of lactation and season was

constructed. The results of this model are presented in Table 7.1. The baseline probability

of conception was accounted for by using a different coefficient for each of the five intervals.

Because all the variables included were centred, the exponentials of these coefficients represent

the odds-ratio of a conception during the interval considered. The odds-ratio of conception
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Figure 7.2: Violin plot (Hintze & Nelson, 1998) of the distribution of herd percentages of
conception on each interval. The width of each violin represents the density of the percentages
of conception on the x-axis.

Percentage of cows not pregnant at the start of the interval conceiving

In
te

rv
al

1

2

3

4

5

0 10 20 30 40

increased from interval one to interval three and decreased thereafter. The herd variances for

the probability of conception decreased from interval one to interval four and was similar for in-

terval four and five. The odds-ratio associated with the variables retained ranged between 0.928

(Milk second test-day) and 1.164 (percentage of protein second test-day) indicating relatively

mild effects, even though in the case of weight of milk, a quadratic term reinforced this effect.

Interactions with ln(interval) indicated a reduction of some effects with time. The probabilities

of conception predicted by the fixed effects of the model for each variable are plotted in Fig-

ure 7.6. The largest effects were observed for weight of milk on the second test-day, percentage

of protein on the second test-day and lactose on the first test-day.

7.4.4 Model checking and validation

The model predicted the data reasonably well. Figure 7.7 shows the plots of predicted versus

observed probabilities of conception using both random and fixed effects to predict the data used

for parameter estimation. Figure 7.8 shows the plot of observed versus predicted probabilities

using only the fixed effects in the model on the validation dataset. Predictions aggregated

at the herd level on the validation dataset are presented in Figure 7.9. The relation between

the predicted and observed proportions was linear. Linear regression was carried out on the

individual cow and herd proportions presented in Figure 7.7, 7.8 and 7.9 and using the R lm

function (R Development Core Team, 2009). The regressions specifications were observed =

α + β × predicted. Estimates of α, β and the adjusted R squared for these regression models

are presented in Table 7.2. A β of 1 indicated that for each increase of 1 unit in the predicted

proportions, there was an increase of one unit in the observed proportion. Values greater or
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Figure 7.3: Variations in mean and standard deviation for milk yield in parity 1 and greater
than 1 and for lactose with stage of lactation between 5 and 60 days in milk and month of the
year.
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Figure 7.4: Variations in mean and standard deviation for butterfat, protein and fat to protein
ratio with stage of lactation between 5 and 60 days in milk and month of the year.
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Figure 7.5: Variations in mean and standard deviation for somatic cell count in parity 1 and
greater than one with stage of lactation between 5 and 60 days in milk and month of the year.
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Table 7.1: Results of the model for the influence of milk quantity and composition on the
probability of conception between 20 and 145 days in milk.

(a) Fixed effects

Standard
Variablea Test-day Correctedb β error eβ

Interval 1 c −2.527 0.039 0.080
Interval 2 c −1.876 0.027 0.153
Interval 3 c −1.556 0.024 0.211
Interval 4 c −1.574 0.022 0.207
Interval 5 c −1.636 0.024 0.195
Weight of milk 2 dim −0.075 0.010 0.928
Weight of milk2 2 dim −0.023 0.006 0.977
Fat 1 dim+seas −0.023 0.009 0.977
Protein 1 dim 0.041 0.010 1.042
Protein2 1 dim −0.014 0.005 0.986
Protein 2 dim 0.152 0.018 1.164
Protein2 2 dim −0.010 0.005 0.990
Protein * ln(Interval) d 2 dim −0.061 0.005 0.941
Lactose 1 dim+seas 0.092 0.018 1.096
Lactose2 1 dim+seas 0.004 0.002 1.004
Lactose * ln(Interval) d 1 dim+seas −0.048 0.016 0.953
Cell 1 dim −0.025 0.010 0.975
Cell 2 dim −0.040 0.010 0.961

(b) Variance-covariance matrix of random effects for intervals 1 to 5. Standard errors are in
parenthesis.

1 2 3 4 5
1 0.500 (0.045)
2 0.184 (0.023) 0.198 (0.020)
3 0.043 (0.019) 0.113 (0.014) 0.132 (0.015)
4 0.027 (0.017) 0.079 (0.012) 0.098 (0.011) 0.081 (0.013)
5 −0.048 (0.019) 0.053 (0.013) 0.095 (0.012) 0.087 (0.011) 0.088 (0.016)

aVariable2: Variable to the square
bdim: day in milk ; seas: day of the year
cCategorical (1/0)
dInterval treated as continuous

99



Chapter 7: Use of Individual Cow Milk Recording Data at the Start of Lactation to Predict the Calving
to Conception Interval

Figure 7.6: Probability of conception predicted by the fixed part of the model for each of the
variables retained for each interval.
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smaller than 1 indicated that the observed proportions were increasing by more and less than

1 for each increase of 1 in the prediction respectively. The R squared values measured the

dispersion in the observed values around the fitted lines. Values closer to one were indicative

of observed values closer to the fitted lines. The model predicted groups of individual cows

correctly: the βs of the linear regression were between 0.7 and 1.2 and the adjusted R squared

greater than 0.8 for the first three intervals for both individual cow lactation models. The effects

predicted by the model were greater than the observed ones for intervals 4 and 5 with βs of

0.660 and 0.773 and R squared of 0.808 and 0.713 for the full prediction and βs of 0.582 and

0.354 and R squared of 0.758 and 0.575 for the prediction on the validation dataset. Because

the model over predicted the probability of conception during the last intervals, the predicted

probabilities of individual cow conception by the end of interval 5 were 15.6 and 18.2 % greater

than observed. However, the βs were 1.02 for both predictions meaning that the ranking of

individual cows was overall accurate. For the validation data, the percentiles 5, 10, 25, 50, 75,

90 and 95 for the predicted probability of conception by the end of interval 5 were 0.44, 0.46,

0.50, 0.53, 0.57, 0.59 and 0.61. The proportion of cows that had conceived by the end of interval

5 for cows predicted between the percentiles 0-5 ; 5-10 ; 10-25 ; 25-50 ; 50-75 ; 75-90 ; 90-95

and 95-100 were 0.24, 0.28, 0.30, 0.34, 0.38, 0.41, 0.43 and 0.45.

The predictions were less accurate at the herd level with adjusted R squared between 0.002 and

0.072.

7.5 Discussion

This study identified an association between milk quantity and composition at the start of

lactation and the probability of conception before 145 days in milk. This probability increased

with lower milk production on the second test-day, higher percentage of protein on the second

test-day and higher percentage of lactose on the first test-day. Positive associations were of

a limited magnitude but also significant with the percentage of protein on the first test-day,

the percentage of butterfat on the first test-day and somatic cell count on both test-days.

Characteristics of milk production on the second test-day of lactation were of more importance,

possibly because they were related to the energy balance at peak yield. While there was a good

agreement between observed and predicted probabilities of conception at the cow-lactation level,

predicted probabilities of conception aggregated at the herd level were not useful in ranking

individual herds.

The link between higher milk production and poorer reproduction is well established (Lucy,

2001). Although this study identified associations of the same direction as previous studies

(de Vries & Veerkamp, 2000; Heuer et al. , 2000; Duffield et al. , 1997; Grieve et al. , 1986),
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Figure 7.7: Observed versus predicted probability of conception at the individual cow level.
Predictions were generated from both fixed and random effects on the dataset used for parameter
estimation. Each dot is a percentile (1 to 100) of predicted values. Regression lines of observed
versus predicted values are plotted. The coefficients of this regression are presented in Table
7.2.
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Figure 7.8: Observed versus predicted probability of conception at the individual cow level.
Predictions were generated from fixed effects on the validation dataset. Each dot is a percentile
(1 to 100) of predicted values. Regression lines of observed versus predicted values are plotted.
The coefficients of this regression are presented in Table 7.2.
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Chapter 7: Use of Individual Cow Milk Recording Data at the Start of Lactation to Predict the Calving
to Conception Interval

Figure 7.9: Observed versus predicted probability of conception at the herd level. Each dot is
a herd of predicted values.
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the ranking of the different variables was not the same. The outcome of these previous studies

was an estimated energy balance while in the present study an interval calving to conception

estimated from recalving dates was used. Kristula et al. (1995) found a predominant effect of the

percentage and weight of butterfat, but they used data from the first milk recording and looked

at the pregnancy rate on the first insemination when in the present study the first two test-days

and conceptions before 145 days in milk were used. An association between milk butterfat

and probability of conception was present but of a smaller magnitude than the association

with percentages of lactose and protein. The effect of energy balance on the percentage of

butterfat seemed to be more important at the start of lactation in the study by de Vries &

Veerkamp (2000) which agrees with our results. At the start of lactation, as the cow has to

adapt her metabolism to the surge in energy demand fat is mobilised. This mobilisation has

many implications some of which have been linked to poorer reproduction and health disorders

(Duffield et al. , 2009; Heuer et al. , 1999).

After milk yield, the percentage of protein followed by the percentage of lactose were the most

important variables associated with the probability of conception in all the models tested. Both

protein and lactose are synthesised in the mammary gland (Linzell & Peaker, 1971) and these

processes require energy. Attempts to predict milk protein content from amino acids availability

have been of limited success and a link between energetic metabolism and milk protein suggested

(Hanigan et al. , 2002).

Increasing somatic cell counts on both test-days were associated with lower probabilities of
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Table 7.2: Association between predicted and observed probability of conception at interval
1 to 5 and at the end of interval 5 at the individual cow-lactation and herd levels for the
years 2004 and 2005. Associations were measured using linear models whose specifications were
Observed = α+ β × Predicted.

(a) Individual cow level - Full prediction a

Interval α β Adjusted R2

1 −0.005 0.716 0.889
2 −0.034 0.949 0.918
3 −0.037 0.897 0.906
4 −0.021 0.773 0.808
5 −0.009 0.660 0.713
End of 5 −0.156 1.017 0.960

(b) Individual cow level - Prediction from fixed
effects on validation data a

Interval α β Adjusted R2

1 −0.029 1.157 0.952
2 −0.044 1.044 0.938
3 −0.037 0.851 0.927
4 −0.004 0.582 0.758
5 0.021 0.354 0.575
End of 5 −0.182 1.020 0.974

(c) Herd level - Prediction from fixed effects on
validation data

Interval α β Adjusted R2

1 −0.105 2.160 0.072
2 −0.092 1.396 0.057
3 −0.060 0.977 0.033
4 −0.012 0.633 0.017
5 0.042 0.218 0.002
End of 5 −0.290 1.213 0.068

aData grouped according to percentile of prediction (percentiles 1 to 99 used to define 100 groups).

conception. This is in line with earlier observations (Santos et al. , 2004; Schrick et al. , 2001).

The reaction of individual cows to infection depends on characteristics of the cow as well as

characteristics of the pathogen (Burvenich et al. , 2003). Cows experimentally infected with

Escherichia coli showed severer symptoms when they were ketotic than control cows (Kremer

et al. , 1993). It is not possible to know from this study whether mastitis causes delayed

conception or whether there is a common cause for mastitis and delayed conception.

One of the differences between this study and some of the earlier ones was the correction of

each variable for days in milk as opposed to having a single coefficient for days in milk in the

model. This was justified because the percentage of protein decreases more rapidly than the

percentage of butterfat at the start of lactation. As a result, there is an initial increase followed
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by a decrease in the fat to protein ratio. Because cows are sampled at random time points,

they will all undergo similar variations to a certain extent. A further correction was applied for

the season because milk production exhibits variation with the time of the year and the link

between this variation and the energy status was unknown. Variables corrected for season were

kept when the deviance of the model in which they were included was lower than the deviance

of the same model with a correction for stage of lactation alone. This was the case for the

percentage of butterfat and the percentage of lactose. Feeding regimen is known to have an

effect on milk butterfat (Bauman & Griinari, 2003). In England and Wales, most dairy cows are

housed during winter and are fed at pasture when the weather permits it which might account

for the observed patterns. The reasons for the variation in lactose with season is less clear.

One limitation of the present study was the estimation of the calving to conception from the

re-calving dates. Cows culled early because they were not pregnant were omitted from the

present study. Thus, it is possible that the reported associations underestimate the real effects.

A further step would be to test the predictions on farm and to see whether they can be used to

implement corrective action in cows with a low predicted probability of conception.

7.6 Conclusion

Individual cow information on milk quantity and composition at the start of lactation can

be used to predict the individual cow interval calving to conception. Milk yield, percentage

of protein on the second test-day ; percentage of lactose, percentage of protein on the first

test-day were positively associated with the probability of conception before 145 days in milk.

Percentage of butterfat and somatic cell counts on both test-days were negatively associated

with the probability of conception before 145 days in milk.
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Chapter 8

General Discussion and Conclusion

8.1 Discussion

8.1.1 Structural Aspects of Dairy Farming in England and Wales

Milk production in England and Wales undergoes seasonal variations (Chapter 3). Although

not documented in the scientific literature for England and Wales, such variations can result in

an inadequacy between milk supply and demand. Because milk production varies with stage

of lactation, part of the observed variations can be explained by the uneven distribution of

calvings throughout the year. Overall calving patterns depend on calving patterns in heifers as

well as of the management of reproduction in later lactations. There is a marked peak in heifers

calving in September which determines the overall calving distribution. Because the median

interval between consecutive calvings is 391 days, this peak tends to flatten out with successive

lactations. It would be interesting to model the impact of altering the calving patterns in heifers

on the global milk production, accounting for the performance in reproduction in successive

lactations. Parameters for lactation curves and reproduction derived in chapters 3 and 4 could

be used for this purpose. After consultation with milk processors, different scenarios could be

tested in order to adapt the supply to the demand.

In the UK, changes are ongoing in the number and size of dairy herds. There is a trend for less

herds of increasing size. In the sample used in this thesis, this was matched by an increase in the

number of 5.2 cows recorded and and 143 kg of milk produced per test-day between 2004 and

2006. This trend has continued since 2006 and the number of dairy herds went from 13,270 in

December 2006 to 11,709 in July 2009. It is hard, from milk recording data alone, to anticipate

what will be the consequences of such changes in the long run.
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8.1.2 Somatic Cell Count and Mastitis

SCC is widely used in the UK and worldwide for both the detection of mastitis and the resolution

of herd SCC problems. Various thresholds have been recommended or are used. In Chapter 5,

it was shown that a threshold of 200,000 cells/mL can be used to diagnose and set targets for

the resolution of herd problems. But, because the lactation curve for SCC is lower and flatter

during the first lactation than in later ones (Chapter 4); the same threshold, but different

targets should be used for first lactation cows and older cows (Chapter 5). Looking at the

movements across this threshold can be used to predict BMSCC and to estimate the expected

impact of corrective action. The main contributors to BMSCC are cows staying above 200,000

cells/mL for two consecutive recordings. Even though the movements across this threshold

could be modelled and described the variations with stage of lactation and parity accurately,

they were not useful in predicting test-day BMSCC (Chapter 6). As could be expected from

the lactation curves, the probabilities of moving or staying above 200,000 cells/mL increased

with stage of lactation and were markedly higher for cows of parity greater than one. But it is

possible that these variations reflect physiological variations and that inflammation results in

higher contribution in BMSCC and is intrinsically more unpredictable.

8.1.3 Reproduction

Modern dairy cows are under intense energy demand at the start of lactation which is associated

with a higher frequency of health disorders such as ketosis, displaced abomasum, metritis,

hypocalcemia or mastitis. Failure to conceive is one of the consequences associated with this

negative energy balance. In Chapter 6, an association was observed between milk quantity and

composition and the probability of conception. This association was less important as lactation

was progressing but was still noticeable at 145 days in milk. Milk yield around the peak was

found to be negatively correlated with the probability of conception. It can be hypothesised

that energy exports and hence negative energy balance increase with yield. Higher lactose and

protein contents, lower fat content were associated with higher probabilities of conception. The

negative correlation between fat percentage and energy balance have been observed in previous

studies and it seems that when cows mobilise fat in early lactation, milk butterfat increases.

Associations with protein have been reported but, to our knowledge, associations with lactose

have not. Because the 2 components are synthesised and this synthesis requires energy, it could

be that in case of negative energy balance, less energy can be allocated to their synthesis and

their concentration in milk is lower. The link between mastitis and reproduction has been

observed in previous studies. It is hard to know whether mastitis has detrimental impact on

reproduction or whether the probability of showing mastitis signs increases with negative energy

balance. All these events have been linked in the past, but association or not even precedence
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are proofs of causality.

8.2 Conclusion

For as long as farming has existed, farmers have tried to improve yields by selecting the best

performers. With the advent of modern genetic selection, this process has been dramatically

improved and has resulted in a massive increase in the quantity produced and a reduction in

the genetic variability. In England and Wales, an average cow in her second lactation currently

produces around 8,500 kg of milk between calving and 305 days of lactation. This increase in

production is marked at the start of lactation, when the cow has to mobilise a vast amount of

energy that will be exported in milk. For example, it was estimated in the present research

that a multiparous cow exports approximately 900 kg of milk, 35 kg of butterfat and 30 kg of

protein during her first month of lactation. Selection on a limited set of parameters has the

disadvantage of being prone to unintended consequences because the improvement is operated

on what is measured and can, in the same time, degrade unobserved parameters. Decreased

resistance to mastitis and poorer reproduction have been some of the consequences of a selection

directed mainly at milk yield and constituents. Milk recording is powerful tool to assess and

resolve individual herd mastitis problems. The distribution of somatic cell count patterns and

their contribution to bulk milk somatic cell, provided in this thesis, can be used to tackle

such problems. Regarding reproduction, cows producing more milk at the peak and a milk

containing less protein and lactose in early lactation were identified as less likely to conceive

before 145 days in milk. In some countries, there have been attempts to mitigate these trends

by incorporating new parameters in the selection programs such as somatic cell count, fertility

or longevity. However, the metabolic consequences of increasing what the cow exports and their

link with endocrine balance and immunity are still poorly understood and a global picture is

missing. This also means that genetically ’improved’ cows need to be cared by highly trained

staff and in standardised conditions. Currently, dairy farming in England and Wales seems

to be characterised by increasingly hard economic conditions. It should be ensured that the

conditions remain attractive for students to train and get involved in the industry. The country

also relies on imported protein to feed these cows. While this is feasible in the context of cheap

energy, the prospect oil rarefaction in the medium to long term and its consequences on energy

price should be considered.
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Appendix A

An example of WinBUGS model

WinBUGS model for model 2 in chapter 5.

Table A.1: WinBUGS functions used in the model.
Function Description
∼ Stochastic relation
< − Deterministic relation
vector[i] ith value of vector
matrix[i, j] Value in the ith row and jth column of matrix
dnorm(Mean, Precisiona) Normal distribution
dunif(Minimum, Maximum) Uniform distribution
pow(Number, Power) Number raised to Power

aPrecision = 1
V ariance

Table A.2: Data used in the model.
Training dataset

N Number of observations
ebmscc Observed BMSCC
nHcL, nHcH ... Percentage of herd-years in categories Hc.L, Hc.H ...

Validation dataset
P Number of observations
pHcL, pHcH ... Percentage of herd-years in categories Hc.L, Hc.H ...
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Table A.3: Parameters used in the model.
Training dataset

mubmscc Mean for BMSCC
tau.bmscc Precision for BMSCC
beta Vector of coefficients
pebmscc Predicted BMSCC
u.herd Vector of herd intercepts

Validation dataset
pbmscc Predicted BMSCC
pmubmscc Mean for predicted BMSCC

model {

## Training dataset

for(i in 1:N){

ebmscc[i] ~ dnorm(mubmscc[i], tau.bmscc)

pebmscc[i] ~ dnorm(mubmscc[i], tau.bmscc)

mubmscc[i] <- mubmscc1[i] + mubmscc2[i]

mubmscc1[i] <- beta[1] * nHcL[i] +

beta[2] * nHcH[i] +

beta[3] * nCcLL[i] +

beta[4] * nCcLH[i] +

beta[5] * nCcHL[i] +

beta[6] * nCcHH[i] +

beta[7] * nHlLL[i] +

beta[8] * nHlLH[i]

mubmscc2[i] <- beta[9] * nHlHL[i] +

beta[10] * nHlHH[i] +

beta[11] * nClLH[i] +

beta[12] * nClHL[i] +

beta[13] * nClHH[i] +

u.herd[hd_id[i]]

}
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# Priors for fixed effects

for(k in 1:13) {beta[k] ~ dnorm(0,0.1)}

tau.bmscc <- pow(sigma.bmscc, -2)

sigma.bmscc ~ dunif(0, 100)

# herd intercept

for(j in 1:nhd){

u.herd[j] ~ dnorm(mu.herd, tau.herd)

}

# priors for random effects

mu.herd ~ dnorm(0, .01)

tau.herd <- pow(sigma.herd, -2)

sigma.herd ~ dunif(0, 100)

## Validation dataset (Predictions)

for(m in 1:P){

# a herd random effect is generated at each iteration

pu.herd[m] ~ dnorm(mu.herd, tau.herd)

pbmscc[m] ~ dnorm(pmubmscc[m], tau.bmscc)

pmubmscc[m] <- pmubmscc1[m] + pmubmscc2[m]

pmubmscc1[m] <- beta[1] * pHcL[m] +

beta[2] * pHcH[m] +

beta[3] * pCcLL[m] +

beta[4] * pCcLH[m] +

beta[5] * pCcHL[m] +

beta[6] * pCcHH[m] +

beta[7] * pHlLL[m] +

beta[8] * pHlLH[m]
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pmubmscc2[m] <- beta[9] * pHlHL[m] +

beta[10] * pHlHH[m] +

beta[11] * pClLH[m] +

beta[12] * pClHL[m] +

beta[13] * pClHH[m] +

pu.herd[m]

}

}
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Supplement to Chapter 6. Details

on the state transition model

B.1 WinBUGS code

## State: 1-Low; 2-High; 3-dry; 4-Culled

## pstate: 1-Low; 2-High; 3-dry; 4-first

## Dim: Days in milk / 100

## day100: 1 when days in milk > 100; 0 otherwise

## day250: 1 when days in milk > 250; 0 otherwise

## par2: 1 when parity = 1; 0 otherwise

model

{

for (i in 1:N) {

State[i, 1:4] ~ dmulti(pi[i, 1:4], 1)

for (j in 1:4) {

pi[i, j] <- p[i, j]/sum(p[i, ])

}

p[i, 1] <- 1
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# transition to High

log(p[i, 2]) <- beta[1, i] + beta[2, i] + beta[3, i] + beta[4, i]

## from Low

beta[1, i] <-

pstate[i, 1] * (

theta[1] + u1[hd_id[i], 1] + par2[i] * theta[2] +

(1 - par2[i]) * (Dim[i] * theta[3] + pow(Dim[i], 2) * theta[4]) +

par2[i] * (Dim[i] * theta[5] + pow(Dim[i], 2) * theta[6]))

## from High

beta[2, i] <-

pstate[i, 2] * (

theta[7] + u1[hd_id[i], 2] + par2[i] * theta[8] +

(1 - par2[i]) * (Dim[i] * theta[9] + pow(Dim[i], 2) * theta[10]) +

par2[i] * (Dim[i] * theta[11] + pow(Dim[i], 2) * theta[12]))

## from dry

beta[3, i] <-

pstate[i, 3] * (

par2[i] * (1 - day100[i]) * (theta[13] + u1[hd_id[i], 3]) +

day100[i] * gamma)

## from first

beta[4, i] <-

pstate[i, 4] * (theta[14] + u1[hd_id[i], 4] + par2[i] * gamma)

# transition to dry

log(p[i, 3]) <- beta[5, i] + beta[6, i] + beta[7, i] + beta[8, i]

## from Low

beta[5, i] <-

pstate[i, 1] * (

theta[15] + u1[hd_id[i], 5] + par2[i] * theta[16] +

(1 - day250[i]) * (2.5 - Dim[i]) * theta[17] +

day250[i] * (
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(Dim[i] - 2.5) * theta[18] +

pow((Dim[i] - 2.5), 2) * theta[19]))

## from High

beta[6, i] <-

pstate[i, 2] * (

theta[20] + u1[hd_id[i], 6] + par2[i] * theta[21] +

(1 - day250[i]) * (2.5 - Dim[i]) * theta[22] +

day250[i] * (

(Dim[i] - 2.5) * theta[23] +

pow((Dim[i] - 2.5), 2) * theta[24]))

## from dry

beta[7, i] <-

pstate[i, 3] * (

u1[hd_id[i], 7] + (1 - day100[i]) * theta[25] +

day100[i] * theta[26])

## from first (impossible)

beta[8, i] <- pstate[i, 4] * gamma

# transition to culling

log(p[i, 4]) <- beta[9, i] + beta[10, i] + beta[11, i] + beta[12, i]

## from Low

beta[9, i] <-

pstate[i, 1] * (

theta[27] + u1[hd_id[i], 8] + par2[i] * theta[28] +

(1 - day250[i]) * (2.5 - Dim[i]) * theta[29] +

day250[i] * (

(Dim[i] - 2.5) * theta[30] +

pow((Dim[i] - 2.5), 2) * theta[31]))

## from High

beta[10, i] <-
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pstate[i, 2] * (

theta[32] + u1[hd_id[i], 9] + par2[i] * theta[33] +

(1 - day250[i]) * (2.5 - Dim[i]) * theta[34] +

day250[i] * (

(Dim[i] - 2.5) * theta[35] +

pow((Dim[i] - 2.5), 2) * theta[36]))

## from dry (impossible)

beta[11, i] <- pstate[i, 3] * gamma

## from first (impossible)

beta[12, i] <- pstate[i, 4] * gamma

}

# prior for theta

for (k in 1:36) {

theta[k] ~ dnorm(0, 0.01)

}

# for transitions that are impossible

# exp(-2000) ~ 0

gamma <- -2000

# prior for random effects

for (j in 1:nhd) {

u1[j, 1:9] ~ dmnorm(zero1[1:9], tau.u1[1:9, 1:9])

}

for (i in 1:9) {

zero1[i] <- 0

}

tau.u1[1:9, 1:9] ~ dwish(R2[1:9, 1:9], 9)

sigma.u1[1:9, 1:9] <- inverse(tau.u1[, ])
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}

B.2 R function to generate the transition curves

B.2.1 Function

PredProb <- function(Dim, parity, pstat, theta){

day100 <- ifelse(Dim < 101, 0, 1)

day250 <- ifelse(Dim < 251, 0, 1)

Dim <- Dim / 100

par2 <- ifelse(parity == 1, 0, 1)

pstate <- rep(0, 4)

pstate[pstat] <- 1

BeTa <- vector(mode="numeric", length=12)

probs <- vector(mode="numeric", length=4)

### to state 2

BeTa[1] <- pstate[1] * (theta[1] +

par2 * theta[2] +

(1-par2) * Dim * theta[3] +

(1-par2) * Dim^2 * theta[4] +

par2 * Dim * theta[5] +

par2 * Dim^2 * theta[6])

BeTa[2] <- pstate[2] * (theta[7] +

par2 * theta[8] +

(1-par2) * Dim * theta[9] +

(1-par2) * Dim^2 * theta[10] +

par2 * Dim * theta[11] +

par2 * Dim^2 * theta[12])

BeTa[3] <- pstate[3] * (par2 * (1-day100) * theta[13] +

day100 * -2000)
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BeTa[4] <- pstate[4] * (theta[14] + par2 * -2000)

### to state 3

BeTa[5] <- pstate[1] * (theta[15] +

par2 * theta[16] +

(1 - day250) * (2.5 - Dim) * theta[17] +

day250 * (Dim - 2.5) * theta[18] +

day250 * (Dim - 2.5)^2 * theta[19])

BeTa[6] <- pstate[2] * (theta[20] +

par2 * theta[21] +

(1 - day250) * (2.5 - Dim) * theta[22] +

day250 * (Dim - 2.5) * theta[23] +

day250 * (Dim - 2.5)^2 * theta[24])

BeTa[7] <- pstate[3] * ((1-day100) * theta[25] +

day100 * theta[26])

BeTa[8] <- pstate[4] * -2000

### to state 4

BeTa[9] <- pstate[1] * (theta[27] +

par2 * theta[28] +

(1 - day250) * (2.5 - Dim) * theta[29] +

day250 * (Dim - 2.5) * theta[30] +

day250 * (Dim - 2.5)^2 * theta[31])

BeTa[10] <- pstate[2] * (theta[32] +

par2 * theta[33] +

(1 - day250) * (2.5 - Dim) * theta[34] +

day250 * (Dim - 2.5) * theta[35] +

day250 * (Dim - 2.5)^2 * theta[36])
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### probabilities

probs[1] <- 1

probs[2] <- exp(BeTa[1] + BeTa[2] + BeTa[3] + BeTa[4])

probs[3] <- exp(BeTa[5] + BeTa[6] + BeTa[7] + BeTa[8])

probs[4] <- exp(BeTa[9] + BeTa[10] + BeTa[11] + BeTa[12])

probs <- probs / sum(probs)

}

B.2.2 Values for theta[ ]

theta <-

structure(c(-3.0055, 0.33045, 0.16685, -0.00090055, 0.42405,

-0.01302, -0.91145, 0.7252, 0.5777, -0.0447, 0.6296, -0.052355,

-1.309, -1.559, -3.1975, 0.1522, -7.536, 2.533, -0.5641, -1.952,

0.71515, -5.3585, 2.438, -0.5351, -5.3625, 14.555, -4.8865, 0.2999,

0.12165, 1.5455, -0.2264, -2.45, 0.78135, -0.52115, 1.0085, -0.0919

), .Dim = c(1L, 36L), .Dimnames = list(NULL, c("theta[1]", "theta[2]",

"theta[3]", "theta[4]", "theta[5]", "theta[6]", "theta[7]", "theta[8]",

"theta[9]", "theta[10]", "theta[11]", "theta[12]", "theta[13]",

"theta[14]", "theta[15]", "theta[16]", "theta[17]", "theta[18]",

"theta[19]", "theta[20]", "theta[21]", "theta[22]", "theta[23]",

"theta[24]", "theta[25]", "theta[26]", "theta[27]", "theta[28]",

"theta[29]", "theta[30]", "theta[31]", "theta[32]", "theta[33]",

"theta[34]", "theta[35]", "theta[36]")))

B.2.3 Prediction

The following line produces a matrix pred of probabilities of transition from pstat (set to 1) for

cows of parity 1.

pred <- t(sapply(30:500,

function(x) PredProb(Dim = x, parity = 1, pstat = 1, theta = theta)))
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B.2.4 Variance-covariance matrix for the random effects

This matrix is provided for information. The above R code can easily be modified to incorporate

the herd variability. The herd effects need to be sampled from a multivariate normal distribution

with a vector of 0 for the means and the matrix provided below as the variance-covariance

matrix.

sigma.u1 <-

structure(c(0.3084, -0.01096, 0.21205, 0.04895, -0.063325, 0.089885,

0.4533, -0.089325, 0.011505, -0.01096, 0.48005, -0.41545, 0.32595,

0.26055, 0.049795, 0.1798, 0.2515, -0.00077065, 0.21205, -0.41545,

0.97525, -0.3918, -0.4762, -0.01921, 0.2693, -0.55735, 0.11025,

0.04895, 0.32595, -0.3918, 0.5414, 0.3065, -0.077725, 0.33975,

0.3812, -0.13275, -0.063325, 0.26055, -0.4762, 0.3065, 0.4573,

0.11705, 0.17505, 0.3603, 0.013185, 0.089885, 0.049795, -0.01921,

-0.077725, 0.11705, 0.2673, 0.1698, -0.052465, 0.09662, 0.4533,

0.1798, 0.2693, 0.33975, 0.17505, 0.1698, 2.622, -0.1627, 0.20925,

-0.089325, 0.2515, -0.55735, 0.3812, 0.3603, -0.052465, -0.1627,

0.67215, -0.10565, 0.011505, -0.00077065, 0.11025, -0.13275,

0.013185, 0.09662, 0.20925, -0.10565, 0.25625), .Dim = c(9L,

9L))
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Parameter estimates of the linear

models for milk yield and

constituents as a function of days in

milk and day of the year

Table C.1: Parameter estimates of the linear models for milk yield (mean and standard devia-
tion) as a function of days in milk (1-60).

Parity 1 Parity > 1
Standard Standard

Covariatesa Mean Deviation Mean Deviation
Intercept 1.877e+01 5.111e+00 2.447e+01 6.276e+00
Dim 6.914e-01 3.622e-02 1.039e+00 1.305e-01
Dim2 -2.045e-02 -3.249e-04 -4.038e-02 -2.496e-03
Dim3 2.816e-04 8.507e-04 1.478e-05
Dim4 -1.505e-06 -9.449e-06
Dim5 4.181e-08

aDim: days in milk
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Table C.2: Parameter estimates of the linear models for the percentage of lactose and the
percentage of butterfat (mean and standard deviation) as a function of days in milk (1-60).

Lactose Butterfat
Standard Standard

Covariatesa Mean Deviation Mean Deviation
Intercept 4.042e+00 2.432e-01 4.995e+00 1.235e+00
Dim 7.351e-02 -4.079e-03 -1.083e-01 -8.824e-02
Dim2 -4.073e-03 9.362e-05 4.243e-03 6.162e-03
Dim3 1.201e-04 -6.908e-07 -9.357e-05 -2.218e-04
Dim4 -1.945e-06 1.069e-06 4.220e-06
Dim5 1.627e-08 -4.824e-09 -4.041e-08
Dim6 -5.492e-11 1.535e-10

aDim: days in milk

Table C.3: Parameter estimates of the linear models for the percentage of protein and the fat
to protein ratio (mean and standard deviation) as a function of days in milk (1-60).

Protein Fat to Protein ratio
Standard Standard

Covariatesa Mean Deviation Mean Deviation
Intercept 4.336e+00 4.827e-01 1.179e+00 3.181e-01
Dim -1.521e-01 -3.846e-02 1.186e-02 -1.578e-02
Dim2 7.777e-03 2.580e-03 -4.667e-04 1.344e-03
Dim3 -2.278e-04 -8.921e-05 6.660e-06 -5.339e-05
Dim4 3.886e-06 1.668e-06 -3.314e-08 1.062e-06
Dim5 -3.539e-08 -1.599e-08 -1.037e-08
Dim6 1.323e-10 6.155e-11 3.972e-11

aDim: days in milk

Table C.4: Parameter estimates of the linear models for somatic cell count (mean and standard
deviation) as a function of days in milk (1-60).

Parity 1 Parity > 1
Standard Standard

Covariatesa Mean Deviation Mean Deviation
Intercept 5.842e+00 1.168e+00 5.528e+00 1.277e+00
Dim -1.956e-01 -1.677e-03 -1.536e-01 4.196e-03
Dim2 9.253e-03 6.919e-03 -4.965e-05
Dim3 -2.308e-04 -1.601e-04
Dim4 2.846e-06 1.857e-06
Dim5 -1.354e-08 -8.451e-09

aDim: days in milk
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Table C.5: Parameter estimates of the linear models for milk yield (mean and standard devia-
tion) as a function of days in milk (1-60) and day of the year (1-365).

Parity 1 Parity > 1
Standard Standard

Covariatesa Mean Deviation Mean Deviation
Intercept 1.877e+01 5.111e+00 2.535e+01 6.272e+00
Dim 6.913e-01 3.621e-02 8.267e-01 1.306e-01
Dim2 -2.045e-02 -3.249e-04 -2.402e-02 -2.497e-03
Dim3 2.816e-04 3.133e-04 1.479e-05
Dim4 -1.505e-06 -1.611e-06
cos(day) -1.542e-01 6.552e-02 5.405e-01 3.264e-01
sin(day) 8.375e-02 2.872e-01 3.736e-01 3.210e-01
cos(2*day) 3.745e-01 3.183e-01 -7.454e-02
sin(2*day) -1.232e-01 -4.579e-01 5.161e-02
cos(3*day) 2.212e-01 -1.872e-02
sin(3*day) -8.995e-02
Dim*cos(day) -1.523e-02 -2.367e-03
Dim*sin(day) 9.822e-03 1.746e-02 1.363e-03
Dim*cos(2*day) -3.247e-03
Dim*sin(2*day) 6.659e-03 9.050e-03

aDim: days in milk ; day: day of the year ; cos: cosine ; sin: sine

Table C.6: Parameter estimates of the linear models for the percentage of lactose and the
percentage of butterfat (mean and standard deviation) as a function of days in milk (1-60) and
day of the year (1-365).

Lactose Butterfat
Standard Standard

Covariatesa Mean Deviation Mean Deviation
Intercept 4.074e+00 2.623e-01 4.894e+00 1.147e+00
Dim 6.402e-02 -7.558e-03 -8.383e-02 -6.174e-02
Dim2 -3.101e-03 2.791e-04 2.354e-03 3.445e-03
Dim3 7.434e-05 -4.406e-06 -3.156e-05 -9.398e-05
Dim4 -8.680e-07 2.481e-08 1.643e-07 1.210e-06
Dim5 3.915e-09 -5.871e-09
cos(day) -1.168e-02 8.175e-02 -3.924e-02
sin(day) 1.281e-02 5.016e-03 2.280e-02 2.104e-02
cos(2*day) -4.253e-02 -4.845e-03
sin(2*day) 2.468e-03 -1.172e-02 -8.832e-03
cos(3*day) -2.891e-03 -1.222e-02 5.615e-03
sin(3*day) 2.511e-03 -2.879e-02 -5.104e-03
Dim*cos(day) 3.079e-04 1.617e-04 1.623e-03 7.133e-04
Dim*sin(day) 6.328e-04 -1.717e-04 -3.631e-04 -3.686e-04

aDim: days in milk ; day: day of the year ; cos: cosine ; sin: sine
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Table C.7: Parameter estimates of the linear models for the percentage of protein and the fat
to protein ratio (mean and standard deviation) as a function of days in milk (1-60) and day of
the year (1-365).

Protein Fat to Protein ratio
Standard Standard

Covariatesa Mean Deviation Mean Deviation
Intercept 4.259e+00 4.828e-01 1.179e+00 2.548e-01
Dim -1.292e-01 -3.847e-02 1.186e-02 2.770e-04
Dim2 5.435e-03 2.580e-03 -4.667e-04 -2.281e-05
Dim3 -1.177e-04 -8.921e-05 6.660e-06 1.588e-07
Dim4 1.291e-06 1.668e-06 -3.314e-08
Dim5 -5.623e-09 -1.599e-08
Dim6 6.155e-11
cos(day) -1.572e-02 3.016e-02 -1.152e-02
sin(day) -3.648e-02 2.109e-02 1.028e-02
cos(2*day) 3.373e-03 -2.652e-03 -1.854e-02 -6.610e-03
sin(2*day) -1.541e-02 -6.067e-03 5.601e-03 -4.807e-03
cos(3*day) 5.014e-03 -5.747e-03 1.912e-04
sin(3*day) 5.026e-03 -1.135e-02 -3.633e-03
Dim*cos(day) 9.299e-04 1.732e-04 2.226e-04 5.248e-05
Dim*sin(day) -2.929e-05 -7.525e-05 -8.540e-05
Dim*cos(2*day) -2.997e-04 1.962e-04 9.240e-05
Dim*sin(2*day) -3.742e-04 6.098e-05 6.666e-05
Dim*cos(3*day) 5.385e-05
Dim*sin(3*day) 6.149e-05

aDim: days in milk ; day: day of the year ; cos: cosine ; sin: sine

Table C.8: Parameter estimates of the linear models for somatic cell count (mean and standard
deviation) as a function of days in milk (1-60) and day of the year (1-365).

Parity 1 Parity > 1
Standard Standard

Covariatesa Mean Deviation Mean Deviation
Intercept 5.558e+00 1.168e+00 5.350e+00 1.328e+00
Dim -1.269e-01 -1.679e-03 -1.108e-01 4.849e-04
Dim2 3.953e-03 3.611e-03
Dim3 -5.674e-05 -5.142e-05
Dim4 3.072e-07 2.727e-07
cos(day) 6.503e-02 -5.478e-02 3.511e-02
sin(day) 1.479e-01 2.189e-02 1.484e-01 3.864e-02
cos(2*day) 2.102e-02
sin(2*day) 1.192e-02
Dim*cos(day) -5.612e-04 -9.470e-04 -8.491e-04
Dim*sin(day) -1.146e-03 8.862e-04 -2.492e-03 2.457e-04

aDim: days in milk ; day: day of the year ; cos: cosine ; sin: sine
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