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Abstract

This thesis considers the interplay between the continuous and discrete properties of
random stochastic processes. It is shown that the special cases of the one-sided Lévy-
stable distributions can be connected to the class of discrete-stable distributions
through a doubly-stochastic Poisson transform. This facilitates the creation of a one-
sided stable process for which the N-fold statistics can be factorised explicitly. The
evolution of the probability density functions is found through a Fokker-Planck style
equation which is of the integro-differential type and contains non-local effects which
are different for those postulated for a symmetric-stable process, or indeed the
Gaussian process. Using the same Poisson transform interrelationship, an exact
method for generating discrete-stable variates is found. It has already been shown that
discrete-stable distributions occur in the crossing statistics of continuous processes
whose autocorrelation exhibits fractal properties. The statistical properties of a
nonlinear filter analogue of a phase-screen model are calculated, and the level
crossings of the intensity analysed. It is found that rather than being Poisson, the
distribution of the number of crossings over a long integration time is either binomial
or negative binomial, depending solely on the Fano factor. The asymptotic properties
of the inter-event density of the process are found to be accurately approximated by a

function of the Fano factor and the mean of the crossings alone.
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1. Introduction

1.1 Background

Power-law phenomena and 1/ f noise are ubiquitous [e.g. 1] in physical systems, and

are characterised by distributions which have power-law tails. These systems are
often little understood, with distributions which have undefined moments and exhibit
self-similarity. Following the discovery of power-law tails in physical systems,
interest in ‘stable distributions’ has increased. The stable distributions arise when
considering the limiting sums of N independent, identically distributed (i.i.d.)
variables as N tends to infinity, and can be used as models of power-law
distributions. Commonly encountered continuous-stable distributions include the
Gaussian and Cauchy distributions. A class of discrete-stable distributions exists and
share many of the properties of their continuous counterparts — the Poisson being one
such distribution. It is logical to question the connection between the two classes of
distribution — for instance, is there some deeper connection between them, or are they

entirely separate mathematical entities?

A mathematical approach to gain an understanding of a process is to create a model
which fits the available information — investigation of the model will ultimately aid
understanding of the process. For instance, population processes governed by very
simple laws have been used [e.g. 2, 3, 4] to analyse complex physical systems.

Discrete-stable processes have been found and analysed [e.g. 2, 5, 6], however a non-

-1-



CHAPTER 1. INTRODUCTION

Gaussian continuous-stable process has never been found, despite the burgeoning
evidence of continuous-stable distributions in nature. It would be enormously
advantageous to find such a process. Conversely, algorithms which permit the
generation of uncorrelated continuous-stable variates exist, but there are no such
algorithms for discrete-stable variates. The discovery of such an algorithm would aid,
for instance, Monte Carlo simulation of processes which have discrete-stable

distributions.

Power-law tails also arise when considering the zero and level crossings of
continuous processes for which the correlation function has fractal properties. It has
been shown that over asymptotically long integration times, the distribution of zero
crossings of Gaussian processes falls into either the class of binomial, negative
binomial or, exceptionally, Poisson distributions. It would be informative to examine
the level crossing distributions of non-Gaussian processes and to investigate the
distribution of intervals between crossings, as they are the properties which are often

of the most interest in physical systems.

1.2 Literature Review

The research literature which has an effect on this thesis has evolved from two
disparate paths — whilst there has obviously been some interplay between the two,
results have tended to be incremental, eliciting a two-part literature review. Figure 1.1

gives an outline of the branches of research which will be followed, and shows the
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connections between the avenues of research. Note that this diagram is a very brief

sketch rather than being an exhaustive illustration of the research.

The first section details the work of Lévy and Mandelbrot with their importance to
power-law distributed phenomena. The importance and versatility of stable
distributions and population models will then be illustrated, largely from an analytical
perspective. The second section starts from the studies of Brown and Einstein, which
will be followed along a random walk and signal processing perspective, eventually
leading to level crossing statistics of Gaussian processes, and the significance of the

K distributions.

1.2.1 Power-Law distributions

In 1963, Benoit Mandelbrot [7] studied the fluctuations of cotton prices and noticed
that the fluctuations in price viewed over a certain time scale (e.g. one month) looked
statistically similar to those viewed at another time-scale (e.g. one year). He found

that the distribution of the fluctuations in prices was governed by a power-law such
that P(f) ~1/ f7 for large values of the fluctuation in price f, and ¥ the power-law
index. Such behaviour is often termed 1/ f noise or flicker noise [8], and the

associated distributions are termed ‘scale free’ due to their self-similarity. Mandelbrot
called systems with self-similarity and power-law behaviour “fractal” from the Latin
“fractus”. Fractal behaviour has subsequently been found in countless other situations,

and brought the studies of such systems out of the realms of pathologies.
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CHAPTER 1. INTRODUCTION

After Mandelbrot’s initial work, self-similarity and fractals were studied mostly by
condensed-matter physicists, as they noted power-law behaviour occurring at critical
points of phase transitions. This changed in 1987 when, in an attempt to explain the

ubiquity of 1/ f noise, Bak et al. [12, 21] introduced the notion of the sandpile. A

sandpile is a system where grains of sand are modelled as falling onto a ‘pile’. Once
the steepness of the pile becomes too great, the pile will collapse in an avalanche until
the pile is again stable; the addition of further grains of sand may disturb this stability,
causing more avalanches. Bak et al. found that various measures gauging the size and
frequency of avalanches followed power-law distributions, and they subsequently
introduced the concept of Self-Organised Criticality (SOC), where systems evolve
naturally to their critical points. Deviations from the critical state exhibit scale-free
behaviour, which are characterised by power-law tails in the distributions of the

associated measurable quantities.

Since then, there has been significant interest in fractals; they have been found in and
applied to art [22, 23], image compression [24], fracture mechanics [25], river
networks and ecology [26], and economics [27]. Similarly, there has been a great deal
of study into fractals and SOC, as they can be used to model many physical systems
[28, 29, 30, 31]. It is for this reason that interest in continuous-stable distributions

received a revival in the late 1980s.

Continuous power-law behaviour has been observed in a diverse range of places [1,

32], from the population sizes of cities, diameters of craters on the moon, the net

-5-
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economic worth of individuals [33], duration of wake-periods during the night [34] to
the distribution of sizes of earthquakes [35, 36]. Even rainfall exhibits power-law
behaviour [37] — with periods of flooding caused by exceptionally high levels of rain

being inevitable, and indeed necessary if governed by SOC.

Whilst the processes which drive 1/ f noise and scale-free behaviour have been

studied extensively, the full range of their behaviour is not understood. For instance,
despite many efforts, there is still no analytical result [e.g. 38] for the power-law
index of a given system with set conditions, even for the sandpile, for which the
governing rules are remarkably simple. With numerous new examples of power-law
behaviour being found, gaining a better understanding of such processes is becoming
increasingly important in order to infer properties of the underlying governing

physical processes themselves.

Paul Lévy, a major influence on the young Mandelbrot, discovered the continuous-
stable distributions [9, 39] in the 1930s when he investigated a class of distributions
which were invariant under convolution, such that if two (or more) independent
variables drawn from a stable distribution are added, the distribution of the resultant
is also stable. Until then, the only known continuous-stable distributions were the
Gaussian (whose mean and all higher moments exist) and the Cauchy distributions.
The continuous-stable distributions (with the exception of the Gaussian distribution,

which is a special case) all have infinite variance and power-law tails such that

P(x) ~ |x|+1 for large x with 0 <v < 2. Furthermore, they are defined through their

-6-
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characteristic function since there is no general closed-form expression for the entire

class of distributions. A subset of the continuous-stable distributions are one-sided
[40], where again P(x)~|x|_v_l for large x , and (depending on the choice of
parameters) P(x)=0 for sgn(x)==x1, with the range of the power-law index

reducedto O<v<l1.

The central limit theorem of probability theory (e.g. [9, 10]) states that the sum of N
1.1.d. variables with finite variance tends to the Gaussian distribution as the number of
variables N tends to infinity. Gnedenko and Kolmogorov [10] generalised this in
1954 to: the sums of N 1i.i.d. variables with any variance (finite or otherwise) tend to
the class of stable distributions as N — oo . Hence, systems which exhibit fluctuations
with power-law tails and infinite variance will have distributions which will tend to
stable distributions. A student under Kolmogorov, Vladimir Zolotarev studied the
continuous-stable distributions, and his results were summarised in 1986 as a

monograph [40] which continues to be a core text on stable distributions to this day.

The concept of infinite divisibility [9, 10, 41, 42, 43, 44] of probability distributions
states that: if a distribution D is infinitely divisible, then for any positive integer
nand any random variable X with distribution D, there are always » i.i.d. random
variables X,,..., X,,...,X, whose sum is equal in distribution to X . For example,
the gamma distributions [e.g. 41] can be constructed from sums of exponentially

distributed variables, which themselves are a member of the gamma class of
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distributions. By definition, all the continuous-stable distributions are infinitely

divisible — indeed this is a defining characteristic of the stable distributions.

Examples of discrete, infinitely divisible distributions are the Negative Binomial and
Poisson distributions [e.g. 41]. When attempting to find self-decomposable discrete
distributions, Steutel and Van Harn [11] discovered the discrete-stable distributions,
which were all expressible by their simple moment-generating function

O(s) =exp(—as"”) . As with the continuous-stable distributions, there are no known

closed-form expressions for the entire class of distributions — only a handful are

known. With the exception of the Poisson, all the discrete-stable distributions have
power-law tails such that P(N) ~ N, where 0 <v <1 (note that the range of v is

equal to that of the one-sided continuous-stable distributions). The Poisson
distribution can be thought of as the discrete analogue of the continuous Gaussian
distribution, as they are both the limiting distributions for sums of i.i.d. variables
without power-law tails, and they are the only stable distributions for which all

moments exist.

The Central Limit Theorem for discrete variables states that the limiting distribution
of the sums of 1.i.d. discrete variables with finite mean is Poisson. However, if the
mean of the distribution does not exist, the limiting sum belongs to the class of
discrete-stable distributions. Building upon Steutel and Van Harn’s work, Hopcraft et
al. formulated a series of limit theorems [45] for discrete scale-free distributions. It

was found that for distributions with power-law tails, the rate of convergence to the
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discrete-stable attractor slows considerably when the index v tends to unity, when

the distribution approaches the boundary between scale-free behaviours and Poisson.

More recently, researchers have been looking into discrete power-law distributions in
networks, where the term network may refer to any interconnected system of objects,
such as the internet, social networks, or even semantics [46]. To borrow a term from
graph theory, the order distribution of a network gives the discrete distribution of the
number of links that each node has to other nodes. Power-law behaviour has been
noted in an extraordinarily varied range of order distributions in physical systems.
Examples range from the distribution of links between actors [47] (where co-starring
in a production together signifies a link), the number of citations to a given paper
catalogued by the Institute for Scientific Information [48], to the distribution of
connections between sites in the human brain [49]. A fuller review of instances of

discrete power-law distributions in nature can be found in (for example) [13 or 50].

An understanding of power-law behaviour in networks can be used, for instance, to
control the spread of viruses or to prevent disease [51] by preferentially inoculating
nodes with a large degree of connectivity which would otherwise spread the disease
to a large number of nodes. Conversely, this knowledge may be used for malicious
purposes — one example of this is the attacks [52] in 2002 against the thirteen major
Domain Name Servers of the internet which are relied on by every connected

computer.
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The broadening evidence of discrete power-law behaviour prompted the development
of stochastic models which would produce power-law distributions as their stationary
state. One such model is the Death-Multiple Immigration (DMI) process [53], which
describes a population for which deaths occur in proportion to its size N . Multiple
immigrants enter the population, with immigrants entering the population
independent of its instantaneous size, with single immigrants and groups of two, three

...m entering the population at rates ¢, . The distribution of immigrants ¢, and the
rate of death x jointly determine the ‘stationary state’ that the population reaches in

the limit as time tends to infinity once the deaths and the multiple-immigrations
equilibrate. Hopcraft et al. [5] were able to formulate a discrete-stable DMI process
which produces a discrete-stable stationary state. The addition of births to the DMI
process, while altering the dynamics of the process, also permits a discrete-stable

distributed stationary state.

It is often impossible to study a system directly without disrupting it. It is instead
preferable to use an indirect method of monitoring which retains the characteristics of
the system. A suitable method, applied to the DMI model, takes a proportion of the
deaths in the population and counts them over a specified monitoring time; once a
death has occurred, the individual does not affect the dynamics of the system. The
deaths, or ‘emigrants’ of the internal population form a point process [54], which
itself generates a train of events in time that may be analysed. The distribution of the
number of emigrants, together with the time-series characteristics (such as inter-event

times, correlations, etc.) reveal information about the dynamics of the system being
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monitored without disrupting the system itself. This technique was used by Hopcraft
et al. to distinguish between a population being driven by the DMI process [53], and
another by the BDMI process, which both had the same stationary state through

examination of the correlation functions of the counting statistics.

The Poisson process [55, 56, 57] is a memoryless stochastic process which is
completely characterised by a rate 4, which denotes the expected number of
occurrences of an event in a unit time. The doubly stochastic Poisson process (or the
Cox process) is a Poisson process where the mean itself is a (continuous) stochastic
variable. The Poisson transform was originally developed by Cox [58], who modelled
the number of breakdowns of looms in a textile mill as being dependent on a
continuous parameter: the quality of the material used. Applications of the doubly
stochastic Poisson process since have been diverse, for instance, Mandel and Wolf
[59] describe a photon counting process from a quantum-mechanical standpoint,
using the Poisson transform as the core of their result. In the broadest and most
general sense, the Poisson transform is of great importance in that it provides a direct
link between continuous and discrete distributions without resorting to mean-field

approximations (which do not necessarily always work for discrete phenomena).

A useful statistic when considering discrete distributions is the Fano factor [60],
which is given by F = (< N>>—-< N>’ )/ < N >, and can be used as a measure of
how Poissonian a distribution is. For F =1, the distribution is Poisson, whereas for
F <1 and F >1 the distribution is closer to being Binomial (i.e. narrower) and

-11 -
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Negative Binomial (i.e. broader), respectively. The Binomial distribution arises when
considering the number of successes from a given number of independent Bernoulli
trials (e.g. coin tosses). Negative binomial distributions arise when considering the
number of failures before a given number of successes in an independent Bernoulli
trial. The distribution of a binomial is narrower than a Poisson of the same mean,
whereas a negative binomial is broader than a Poisson distribution of the same mean.
Jakeman et al. state [61] that the entire class of discrete distributions with Fano factor
F <1, and many for which F >1, cannot be generated through a doubly stochastic
Poisson process. They considered a model whereby the immigrations into a DMI
process enter only in pairs, and found that under certain circumstances, only even

numbers of individuals will be observed in the population.

1.2.2 The Brownian path

In 1828 Robert Brown [14] studied pollen particles suspended in water, and found
that the particles executed ‘jittery’ motions instead of following a smooth path, but
was unable to provide an explanation for this movement. It was nearly eighty years
before an explanation was found by Einstein in 1905. Einstein found [15] that the
particles’ displacements in each ‘jitter’ followed a Gaussian distribution, and that the

mean squared displacement of the particles from their initial position scales linearly
with the monitoring time, such that < x*(#) >~ ¢t . Einstein called such behaviour

“Brownian Motion”, and his paper silenced those sceptical about the existence of

atoms [e.g. 62].
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The linearity in the mean squared displacement is characteristic of Brownian motion,
and of ‘normal’ diffusion. Further to those processes which can be described as

following Brownian motion, processes exist for which the mean squared
displacement is nonlinear in time, following a power-law instead: < x° () >~ ct“ . In

processes for which & <1, the diffusion is slower than that of ‘normal’ diffusion, and
they are ‘sub-diffusive’. Similarly, those for which & >1 are ‘super-diffusive’ (the
special case o =2 is termed ‘ballistic diffusion’), as they are faster than normal

diffusion [63]. These are all part of a wider class of diffusion called anomalous

diffusion [e.g. 64, 65].

Brownian motion can be simulated through a process called a ‘random walk’. In the
simplest, one-dimensional case, this refers to a particle on a line, which at each time
step can either travel one step to the left or one step to the right with equal probability.
The root mean square of the displacement can be shown [e.g. 66] to scale with the
square root of the number of steps N . Taking the limit N — o, where N is fixed,
and with appropriate rescaling of the distances, the distribution of the displacement is
Gaussian, by the central limit theorem. However, if the number of steps is itself a
random variable, then the rescaled distribution of the displacement is not necessarily
Gaussian. In fact, Gaussian distributed displacements are the exception rather than the

rule.

There are many cases when making the Gaussian assumption for processes is simply
wrong, for instance when the recorded data makes strong departures from Gaussian,
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or when the central limit theorem does not apply. Often, if the underlying physical
processes are not well understood or are too complex to analyse mathematically,
measurements of the processes can be made and properties inferred from them. This
empirical approach will only lead to an understanding of the particular system at hand,
so the study of non-Gaussian processes is equally as important as the study of

Gaussian processes.

Allowing the displacement of each individual step in a random walk to alter also
changes the asymptotic behaviour of a random walk process. A Lévy flight is an
example of a super-diffusive process [67]; occurring when the displacement in each
step has a power-law tail. According to the generalised Central Limit Theorem [10],
as the number of steps N — oo the resultant rescaled displacement itself is also a
continuous-stable distribution. In this case, the trace of the particle in space exhibits
extreme clustering, staying within small regions for extended periods of time, rarely
undertaking large steps, and staying within the new region until the next large step.
As asymptotic behaviour of the (non-Gaussian) continuous-stable distributions
follows a power-law, large steps are far more likely in Lévy flights than in Brownian
motion; in fact it is the large steps which characterise Lévy flights. This can be seen
in Figure 1.2, which compares a normal one-dimensional random walk with a Lévy
flight. Note that for a Lévy flight, the mean squared displacement is infinite. It is
apparent that large jumps dominate the behaviour of the Lévy flight, but do not occur

in Brownian motion.
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A Lévy random walk [68] is essentially a generalised Lévy flight, but instead of the
particle essentially jumping from point to point with a fixed jump interval, the length
of the interval is permitted to vary; having its own (continuous) probability density
function. This can, for instance, be used to give a process a finite mean squared
displacement, i.e. < x’(¢) >~ ct”. Lévy walks have been used to model numerous

diffusive processes [69], memory retrieval [70], and even the foraging patterns of

animals [71].

x(®)
;?j?
=]
=1
x(1)

\ ol

Showing the difference between Brownian motion and Lévy flights in one

Figure 1.2

dimension. The Brownian motion is simulated by adding a Gaussian variable at each

step in time; the Lévy flight adds a Cauchy variable at each time step. Note that

since the motions are self-similar, the addition of scales on the axes is unnecessary.
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In the context of radars and remote sensing, clutter, or ‘sea echo’, is the term given to
unwanted returns from the sea surface which are not targets but which are detected.
When designing a radar system, it is imperative to minimise the number of ‘false
alarms’ which need to be appraised manually. This problem is made harder when
considering radars for which the so-called ‘grazing angle’ (i.e. the angle between the
sea surface and the area being investigated) is very small. In the 1970s, when trying
to model sea echo, Jakeman and Pusey [20] proposed a model advocating the so-
called K distributions, which fitted with much of the existing data on sea clutter. The
proposed model regarded the surface of the sea illuminated by the radar as being a
finite ensemble of individual scatterers, each returning the radar signal with random
phase and fluctuating amplitude [72]. One interpretation of this is that the scattered
field is an N step random walk where the value of N fluctuates, therefore the
classical central limit theorem does not apply. The K distributed noise model has
been widely regarded as an excellent model for non-Gaussian scattering; this has
been justified both by empirical data and the comparison with analytically tractable

scattering models.

The Fokker-Planck equation [3, 73] was developed in the 1910s by Fokker and
Planck [16] when they attempted to establish a theory for the fluctuations in
Brownian motion in a radiation field. The Fokker-Planck equation describes the time
evolution of the Probability Density Function (PDF) of a process, and is a

generalisation of the diffusion equation [15]. The Fokker-Planck equation and its
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subsequent generalisations have themselves since been used for a myriad of

applications [65, 66, 72, 74, 75].

It is frequently the case that real-world continuous stochastic processes [55] are too
complex to measure and analyse in full. This may be because instrumentation with
sufficiently high resolution does not exist, or because analysis of the resultant data
would be prohibitive. Instead, it is often instructive simply to examine crossings of a
process. This effectively reduces the continuous process under scrutiny to a point
process [56], which is comprised entirely of a series of points in time. A basic
example of crossing analysis is the deduction of the frequency of a sinusoidal signal
as its amplitude passes through zero (i.e. the zero crossings). Likewise, studying share
prices over a given time interval, one could predict the frequency that a given share
will exceed some value, and thus make better-informed trading decisions. This is then
studying the level crossings (see Figure 1.3) of the share’s price. Results from
analysis of zero and level crossings have countless applications, from studying
rainfall levels to predict the next major flood, to monitoring the value of equities to

estimate a suitable point in time to trade.
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Level crossings
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\_

/5-5-5:5
Zero crossings \/
——— First passage
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Figure 1.3

Illustrating the concept of zero (filled circles) and level (unfilled circles) crossings of
a process over a time [z, ¢t + T]. A clipped version of the zero crossing process is
shown also (dotted boxes), where the value of the process is either +1 or -1,
depending on the sign of the original. The first passage time (dashed line) and one

inter-event time for the clipped process is shown.

A random process with a large number of 1.i.d. increments of finite variance, will tend,
by the central limit theorem, to have a Gaussian (or ‘Normal’) distribution. In the
case of a Gaussian process, the increments themselves are a/ways Gaussian, so the
distribution of the process is always Gaussian. Many systems have been modelled
(correctly or not) as Gaussian processes based on the assumption of a large number of
increments, and due to their analytical tractability. For that reason, the largest
proportion of studies on crossings pertains to Gaussian processes [e.g. 55, 76]. Also,
through understanding the crossing statistics of Gaussian processes, it is possible to

estimate the crossing statistics (and indeed other properties) of processes for which
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Gaussian models are suitable. By studying the statistical properties of the level
crossings, an understanding of the underlying processes which drive the fluctuations

can be inferred.

Stephen Rice published his seminal papers “Mathematical Analysis of Random

Noise” in the 1940s [17]. A groundbreaking result in these papers expanded on a

result [18] of Kac’s to derive the mean number N of zero crossings over a time 7 of

a Gaussian process with autocorrelation function p(7)=<x(¢)x(¢+7)> . Rice

showed that N =T (=p'"'(0)/ p(0))""* / , indicating that the autocorrelation must be
twice differentiable at the origin for the mean to exist. Conversely, if p''(0) is

undefined, then this implies that the mean number of zero crossings is infinite.

Rice’s work was used by a team led by J. H. Van Vleck to explore the use of
electronic noise as a radar countermeasure [77]. One source of electronic noise is
clipping [78], which is when the amplitude of a signal is limited to a maximum value.
In one form of clipping, the signal is replaced with a telegraph wave, which assumes
the values =1 depending on the sign of the original signal (see Figure 1.3), the
motivation being to “spread the spectrum” [77] and thereby severely limit the
information contained within the signal. This technique is called radar jamming [78].
A major discovery [19] of Van Vleck’s was that even in this extreme case of
nonlinear processing, if the original signal was a Gaussian process, then the

correlation function of the original signal can still be recovered.
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Further research was then conducted which found the variance [79] and higher-order
moments [80] of zero crossings, all of which depend on the autocorrelation function
being differentiable. The level crossings of Gaussian processes were also
investigated; Rice showed that the mean number of crossings decayed exponentially
with the square of the level L. The first-passage time provides the time taken
between the initiation of a process and the first crossing (whether zero or level), and
again has many applications [e.g. 81]. A statistic of note with regard to continuous
processes is the inter-crossing time distribution, as it describes (for instance) how
long the process will exceed a certain level, i.e. its persistence. Results regarding zero
crossings and the information they convey from them are reviewed in [82]; a review

of crossings of Gaussian processes in particular is given by Smith et al. in [83].

The current scope of research into zero and level crossings is demonstrated
schematically in Figure 1.4; the remainder of this review will map out a path on the
figure, illustrating the route from continuous, discrete and back to continuous

phenomena.

Recently, Hopcraft et al. [84] were able to identify that if the zero crossings of a
process had a discrete-stable (or asymptotically stable) distribution, the process itself
has fractal characteristics. Such characteristics include ‘extreme clustering’, where
cascades of crossings occur in clusters, each cluster comprised of infinitely many
crossings. This cascade of crossings is analogous to fractal cascades of emigrations

which occur in the discrete-stable DMI processes [84, 85].
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Showing the connection between the branches of research in crossing statistics. The hexagons

represent the mechanism for transferring between continuous and discrete properties.
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‘Sub-fractal’ processes are continuous everywhere, but have derivatives which show
fractal properties. In this case of sub-fractal Gaussian processes, it was shown by
Smith et al. [83] that the zero crossings are either bunched (attracted to each other) or
anti-bunched (repelled by each other) depending on the structure of the correlation
function. Additionally, the crossing distributions are shown to belong to the class of
Poisson (exceptionally), or more generally, binomial or negative-binomial

distributions.

1.3 Outline of thesis

A background of the key mathematical concepts used in this thesis is given in
Chapter 2, which introduces the stable distributions and their parameterisation, as
well as the multiple immigration models which can be used to form discrete-stable

processes.

The concept of the Gaussian, Poisson and stable transforms are introduced in Chapter
3. It is shown that the symmetric-stable distributions can be linked by a hierarchy of
transforms which reduce their power-law index by modifying the scale parameter. A
Poisson transform interrelationship is found for the discrete-stable and one-sided
stable distributions. The necessary scaling which occurs when undertaking this
Poisson transform is found, and the limit as the power-law index v —1

(corresponding to the Poisson distribution) is examined.
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Chapter 4 applies the Poisson transform to define a one-sided continuous-stable
process, for which properties such as a Fokker-Planck style equation and the transient
solution are found. Multiple-interval statistics are also examined; an » -fold
generating function for a discrete-stable process is explicitly stated and used to find

the n -fold generating function of a one-sided continuous-stable process.

In Chapter 5 the Poisson transform relationship is utilised to generate discrete variates
from their continuous counterparts. The accuracy and speed of these simulations will
be considered, both for known results (e.g. generating negative binomial variates

from gamma-distributed variates), and later, for discrete-stable variates.

Chapter 6 considers a signal processing analogue of a phase screen model and finds
properties such as the level crossing distribution and the inter-crossing times. In
particular, the distribution of the number of level crossings over very long integration
times are compared to the binomial, negative binomial and Poisson results of Smith et
al [83]. Furthermore, a heuristic approximation is found for the asymptotic properties

of the inter-event times.

Conclusions are drawn in Chapter 7, and suggestions are given for possible further

avenues for research which could be undertaken.
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2. Mathematical background

2.1 Introduction

The continuous-stable distributions, which were discovered by Paul Lévy in the
1930s, arise in the generalised central limit theorem which states that the sum of N
independent, identically distributed (i.i.d.) variables will always tend to a continuous-
stable distribution as N tends to infinity, subject to an appropriate change of scale
and shift. If the distribution of the variables has a finite variance, the limiting

distribution is Gaussian (or Normal). If the distribution has a power-law tail such that
p(x)~ 1/|x|l+v (and 0 <v < 2), the variance is infinite and the limiting distribution is

a non-Gaussian stable distribution. This has a wider currency as it means that the
sums of all processes which have power-law tails have the potential to have
asymptotically stable marginal distributions. For this reason alone, the continuous-
stable distributions are worthy of further study. The abundance of examples where
they occur in nature exemplifies this point [e.g. 1, 12, 13, 28, 30, 50]. Any stable
distribution is invariant under convolution with itself; it is from this property that the
epithet stable is derived. In this thesis, an understanding of these stable distributions

will be necessary.

This chapter will firstly define the continuous-stable distributions and review some of
their properties. Secondly, the discrete-stable distributions are introduced — their

properties and behaviour are outlined. Known closed-form expressions for the
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continuous and discrete-stable distributions are given. Finally, a Death-Multiple-
Immigration (DMI) population process, which can be used to form a discrete-stable

process is introduced.

2.2 The Continuous-stable distributions

2.2.1 Definition

The continuous-stable distributions are defined through their characteristic function —

the Fourier transform of their probability density function [40]:

Clu,v,B,a)= Tp(x)exp(iux)dx
. (2.1)

= exp(— a|u|v (1 —if Sgn(u)q)(”a V)))

tan[ﬂj v#1
duy)=1 2 2.2)

——10g|u| v=1
V4

where a >0 is a scale factor. The symmetry of the distribution is described by

—1<B<1. In the case when f=1 or f=-1 and 0<Vv <1, the distributions are

defined only when x is positive or negative, respectively — these distributions are

termed ‘one-sided’. When S =0, the distribution is symmetric, and defined for all
real values of x. The parameter 0 <v <2 describes the power-law behaviour for

|x| >> 1, such that:
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1

|x|V+1 O<v<?2

p (X,V, ﬂ > Cl) ~

exp\— xz) v=2.
All the distributions for which closed-form expressions for the probability density
functions (PDFs) exist are given in §2.4. In general, however, the densities are

recovered upon inverse Fourier transforming the characteristic function (2.1):
L=
P, fa) =—— Jexp(=inu)Clu,v, B.a)du (23)
7[ —oo

Continuous-stable distributions for which 0 <v <1 have an infinite mean (all higher
moments are also infinite), whereas when 1<v <2 the mean is finite, but the
variance is infinite. When v =2, the symmetry parameter is arbitrary and immaterial
(c.f. (2.2)), and the distribution is the familiar Gaussian (Normal) distribution of

variance 2a

1 2
p(x,2,B,a)= N exp(— —j

Therefore, the only continuous-stable distribution whose variance is finite is the

Gaussian.

The effect of the symmetry parameter is best demonstrated through a relation derived

from the form of the characteristic function:
plx,v,=B,a)= p(-=x,v,B,a). 2.4)
This elicits the fact that the range of behaviour given by varying £ need only be

investigated for 0 < #<1; negative values of f can be transformed accordingly.
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Figure 2.1 plots the continuous-stable distributions for v =0.9 and v = 1.1, and a =

1. Note that for v > 1, S shifts the mode in the opposite direction to when v <1.
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Figure 2.1
Mlustrating the effect of varying f on the shape of the continuous-stable

distributions, for (a) v=0.9,a=1,and (b) v=1.1,a=1.
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It is instructive to examine the behaviour of the scale parameter on the distributions,
since some authors simply give the densities with a =1. From the characteristic
function (2.1), it is easy to see the effect of a linear scale factor in a on a distribution
with unit scale factor:

1/v
a

There is a great deal of confusion in the literature regarding the parameterisation of

the stable distributions — for instance, some authors note that when |,B| =1 and

0 <v<l1 the distributions are one-sided, but do not state that when 1<v <2 the
distributions are always two-sided. Other authors incorrectly change the sign of the

imaginary term in C(x) when v =1, though the densities of this distribution are
seldom actually calculated (except for the Cauchy case, when C(u) is real). Many

more have quoted the closed-form expressions of stable distributions from incorrect
results. This confusion is compounded by the fact that there are at least five [86]
different parameterisations for the distributions, each created for its own purpose. The
characteristic function given above is the most commonly used, and will be the one

used throughout this thesis.

Many properties of the distributions are not known, for instance, it was not until 1978
that it was shown by Yamazato [87] that the continuous-stable distributions were
unimodal — the /ocation of the mode of the continuous-stable distributions was found

by Nolan [86] via yet another parameterisation. Only the properties which are
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pertinent to this thesis are stated here — for a fuller review of stable distributions, key

works include that of Lévy [9], Zolotarev [40], and Samorodnitsky and Taqqu [39].

2.2.2 Probability Density Functions

General closed-form expansions of the PDFs in terms of well-understood functions
do not exist [e.g. 88]. For instance, Metzler and Klafter [64] transform the parameters
and provide the stable densities in terms of Fox’s H functions [89], whereas
Hoffmann—Jorgensen [90] defines them (again through a different parameterisation)
using incomplete hypergeometric functions. Bergstrom [91] proved that there is an
infinite series representation for al/l the continuous-stable distributions in terms of
elementary functions. Generally, the symmetric-stable distributions have received the
most attention, as the form of their characteristic function is simpler than that of their

asymmetric counterparts.

The case v = f =1 is rather peculiar in that as the index v tends to unity from below,
the distribution is one-sided with diverging mode. As the index tends to unity from
above, the mode tends diverges to negative infinity — this behaviour clearly
exemplifies the fact that the case v =1 is a singular value with special properties.
This effect is illustrated in Figure 2.2. Continuity in the modes of the distributions as
v varies is allowed through a different parameterisation [86] in which a term is added

to shift the distributions, such that p(x) — p(x+ Btan(rv/ 2)). This, however,

destroys the one-sidedness in the PDF when 0 <v <1.
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Figure 2.2
Showing the effect of altering the power-law index v on the location of the mode of

the distribution. @ = =1 for these plots.

The behaviour of the one-sided distributions in the limit as v — 1 will be considered

in more detail later in this thesis (Section 3.3.4).

The tail behaviour of the continuous-stable distributions can either be found through
the use of a central-limit theorem type argument [41], or by stationary phase type
methods [e.g. 92] to be:

ﬂI‘(V +1)sin Vlax™ x>>1
2 2

p(x,v,,B,a) ~ (26)

ﬂ1"(1/ +1) sin(ﬂ) a’'x™" x<<1
2 2

It can then be inferred from (2.6) that when B ==1, (even in the regime 1<v <2
when the stable distributions are two-sided), the tail for the xf# <0 end of the

distribution decays faster than a power-law.
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2.3 The Discrete-stable distributions

When attempting to create discrete analogues for the continuous-stable distributions,
Steutel and Harn [11] discovered a class of distributions which also exhibited stability
and therefore infinite divisibility. As with the continuous-stable distributions, they are

defined through a transform — in this case, their moment generating function:

O(s,v,A) = i(l—s)NP(N,V,A) 2.7)
= exp(—4s") (2.8)

where A is a positive scale factor, and 0<v<1 characterises the power-law
behaviour: for 0 < v <1, the distributions follow

1

v+l

lim P(N, v, 4) ~

(see Figure 2.3) and for v =1, the distribution is Poisson with mean A :

N

P(N,v,4) = %exp(— A). (2.9)

It is especially interesting to note that the range of the power-law index for the
discrete-stable distributions is exactly that of the one-sided continuous-stable
distributions. Also note that the form of the generating function is the same as the

characteristic function of the symmetric-stable distributions, found by setting 4 =0

in (2.1). This is due to the fact that convolutions of both generating functions and
characteristic functions with themselves are manifested as products; the exponential

form is the only one which permits both classes of distributions to be stable.
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Figure 2.3
Showing the power-law behaviour of the discrete-stable distributions as the index v
varies. For all the distributions shown, 4 = 10, whereas the values of v chosen are:
0.1 (unfilled triangles, red), 0.3 (filled squares, green), 0.5 (crosses, purple), 0.7
(filled triangles, blue), 0.9 (diamonds, yellow), and 1 (points, black). P(1) increases

with the index v.

The probabilities and moments of any discrete distribution can always be recovered

through repeated differentiation of the generating function:

_(=1)" d0ls)
P(N)= i (2.10)
< N(N=1)..(N=(r=1)) >= iP(N) ANV =1 (N = (r=1))]
" (2.11)

&)
=[-=-] 06
ds s =0.

To date, there are only a few discrete-stable distributions for which there are closed-

form expressions for the probabilities — these are given in §2.4. The probabilities for
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any 4 and 0<v <1 can always be found by substituting Q(s,v,A) into (2.10),

however for anything other than small values of N this becomes rather cumbersome.
For instance, the first few probabilities of the discrete-stable distributions are:

P(0,v, 4) =exp(—A4)
P(,v,4) = Avexp(—A)

Avexp(—A)
2

P(2,v,A)= (1-v+A4v)

hence closed-form expressions are much more suitable for obtaining distributions. A

more suitable method for obtaining the distributions is discussed in Section 5.7.

From (2.11) we can demonstrate that the mean, and hence all higher moments of the

discrete-stable distributions are infinite. The mean of a discrete-stable distribution is:

<N >= —iexp(— Asq
ds s

—0
= (A st_l]s _0

which is undefined unless v =1, in which case < N >= A4, corresponding to the mean

of the Poisson.

In the limit v — 1, a discrete-stable distribution of scale parameter 4 and a Poisson
distribution with mean A4 are almost indistinguishable for small values of N ; the
power-law behaviour is initiated for N >>1. This behaviour is illustrated in Figure
2.4. As such, the discrete-stable distributions in this regime can be thought of as a

heuristic model for Poisson distributed variables with outliers. Judicious choosing of
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the index would then allow tailoring of the frequency of the outliers to correspond to

the data at hand [e.g. 85].

10_12 F

1 10 100 1000 10000

N

Figure 2.4

Illustrating the behaviour of the discrete-stable distributions for which the scale
parameter A is unity and the index v tends to unity. The values of the power-law
index v plotted are: 0.9 (unfilled triangles, red), 0.999 (squares, green), 0.99999
(crosses, purple), 1-107 (filled triangles, blue), 1-10” (diamonds, yellow), and v = 1

(the Poisson; dots, black).

The tail when v =1, corresponding to the Poisson, which does not have a power-law
tail can be calculated by applying Stirling’s formula [e.g. 93] to the Poisson

probability distribution (2.9):
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N

. . A
llvlill P(N,1,4)= }]1210 N exp(—A4)

N
= exp(—A) }llil;lo W

_ exp(N—A) (AJNH/Z

N27A N

which clearly decays at a faster-than power-law rate.

2.4 Closed-form expressions for stable distributions

The most general characteristic functions of the continuous-stable distributions are
defined in a four-parameter space: the power-law index v, the symmetry parameter
[, a scale parameter a, and a location parameter & . The location parameter can be
removed entirely, as its only effect is a shift of the PDF; the scale parameter can be
removed also, as (2.5) shows that any scale parameter can be catered for by an
appropriate scaling of the PDF. The symmetry parameter # has its own symmetry
relation (2.4), so we need only consider the range 0 < f<1. The only parameter
whose range cannot be reduced (or removed) is v , so the continuous-stable
distributions can be defined in 0<v <2, 0 < S <1. The closed-form expressions for
the PDFs of the continuous-stable distributions are given for a=1 and 6 =0. The
discrete-stable distributions, however, have no such scaling relation for different

values of N due to their discrete nature, so are given with the value of A4 left free.

It is certainly not necessary to have closed-form expressions for continuous-stable

distributions to obtain the densities — there are alternative parameterisations which
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lend themselves to numerical integration of the inverse Fourier transform (2.3) of the
characteristic function (2.1) [e.g. 40, 94]. Indeed there are packages which will
evaluate densities for any values of v, £, and a [e.g. 95]. As it is often the case that
a numerical result lends itself to other problems, not least numerical errors, closed-
form expressions continue to be sought. The parameters for the eleven known closed-
form expressions for the continuous-stable distributions and the three expressions for

the discrete-stable distributions can be shown in (v, ) phase-space for clarity:

(2,21)(2.18) (2.15)
I O Ny ICREE @ csrrrnnnnnann [S) ®
(2.17)(2.14)(2.23) (2.24)
2/3
(2.12)
b 172
1/3
(2.25)(2.16)(2.22) (2.13) (2.19) (2.20)
L L L L L L
0 13 12 23 1 43 32 53 2
v
Figure 2.5

A phase space diagram representing the continuous-stable distributions (represented
by dots) for which closed-form expansions are known. The full line at v = 2
represents the invariance of the Gaussian with respect to the £. The dotted line at 0 <
v <1, f =1 represents one-sided distributions. Circles on the dotted line represent
discrete-stable distributions whose probabilities have closed-form expressions

(references above).

Note that the scarcity of expressions for the continuous-stable distributions in the

literature has led to some inconsistencies in the expressions given. This is partly due
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to the fact that some expressions are given in terms of little-known special functions
for which many numerical software packages cannot readily evaluate. In some cases,
the results given have even been found to be entirely incorrect (e.g. see [96]). Those
stated below have been verified by numerical methods. For the sake of simplicity, the

distributions are categorised by the functions which appear in them.

2.4.1 In terms of elementary functions
The two most well-known continuous-stable distributions are the Gaussian (v =2,

arbitrary, though usually considered to be zero):

2
(x,2,0,]) = exp[— XTJ L o< X < oo (2.12)

1
N3

and the Cauchy (v =1,8=0):

21 ; —eo<x<oo, (2.13)
x“+1

p(x,1,0,1) = L
V4
A third stable distribution also often found in the literature is the so-called ‘Lévy-

Smirnov’ distribution (v =1/2, 8 =1) [e.g. 40] , which is one-sided:

ey

The only discrete-stable distribution whose closed form is given in terms of

elementary functions is the Poisson, for which v =1:

N

P(N,1,4) = %exp(—A); 0<N<oo (2.15)
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2.4.2 In terms of Fresnel integrals

The symmetric-stable distribution for which v =1/2 is [97]:

. _|x|_3/2 . L l_ L COSL l_
Aoyou)- m{“n(%]{z S[ 27r|x|ﬂ+ (‘”’CJL

—oo < X <o

where C(z) and Z(z) are Fresnel integrals [93]:

C(z2)= jcos(%‘jdt, S(z) = :[sin[ﬁ%jdt .

0

2.4.3 In terms of modified Bessel functions

For v =1/3 the one-sided continuous distribution is [97]:

1 1 23/2 L 25/2 i
p(xag’l’l):;yﬁx K1/3 39/4)6 ) 0<x<oo

where K, (x) is a modified Bessel function of the second kind [93].

The discrete-stable distribution with v =1/2 1is [6]:

N+1/2
P(N,%,Aj— 2 (Aj Ky ,(4); 0SN <eo.

“Jzni\ 2

2.4.4 In terms of hypergeometric functions

(2.17)

(2.18)

An expression for the symmetric distribution with index v =4/3 is given by Garoni

and Frankel [96]:
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inm)_ 3 T(r/r/12) (7 1.6 8 3«
P ) T e I T(e/12)r(8/12) 2

_3‘”“|x|3 r(13/12)r(17/12) F[13 17 18 15.33x4j

232 [z T(18/12)0(15/12)* 212" 127127127 2°

—co< X < oo, (2.19)

The Holtsmark [40] distribution, which arises in astrophysics and is symmetric-stable

with index v =3/2, 1s [96]:

26
P[x,%,0,1j=ll“(5/3)2F{i Hils5 2« J
V4

12°12°3°2°6°  3°
X (3 52574 22x6j

3047473767673 3¢
4 1 1 22 6
3 1212623 3
—co < x< oo (2.20)

The discrete-stable distribution with index v =1/3 is:

3N 3
P(N,l,Aj: 4 F{N+1,N+g;—A—J

3 (3N)!’ 3 37 27

AT(-13)N(N-2/3) (45 A

+ Bl = S N-—

6+/37N! 373 27

AT(=2/3)(N —1/3) (24 4 A

N oo 3y Nim oo

34/37V! 373 27

0< N <oo. (2.21)

A derivation of this new result is given in §3.3.3.
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2.4.5 In terms of Whittaker functions

The Whittaker functions [93, 98] which feature in the following expressions are

defined as:

W,,(2)= Ziexp(_Z/z)J exp(~)* ”2(1+ t)H_l/zdz
Ao T(u—A+1/2)% ’

<.

The only known symmetric-stable distribution involving Whittaker functions is [99]:

2 4
p(x,g,o,lj \/_|x| exp(—x2JW1/21/6(27 2j;—<>o<x<o<>. (2.22)

A one-sided stable distribution for v =2/3 is given in [100]:

p x,z,l,l =£x’1 exp —Ex’2 Wl/21/6[2x2); 0<x<oo, (2.23)
3 Jr 27 el 27

A closed-form expression for the continuous-stable distribution exists for f =1 and

v =3/2, but is not one-sided [101] since v > 1:

(2.24)

2
[ 3 llj \/_|x| exp(—x le/z)l/é(—2—7x3j x<0
p X, =1, =

2
\/—|| exp( jw—l/21/6[27 3) x>0

This is the only continuous-stable distribution which is neither one-sided nor

symmetric, and for which a closed-form expression for the density is available.
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2.4.6 In terms of Lommel functions

Garoni and Frankel [96] provide the expression for the symmetric continuous-stable

distribution of index v =1/3 in terms of Lommel functions [102, 103]:

1 2exp(—im/4), -2 (2exp(m/4) _WJ
X, =01 |=Re| = = UM | ST Ty :
p[ 3 j { 3\/5” | | 0,1/3 3\/5 | |

—o0 < x < oo (2.25)

Having now introduced the continuous and discrete-stable distributions, we shall now
examine a process which can produce discrete-stable distributions as its stationary

state.

2.5 The Death-Multiple-Immigration (DMI) process

2.5.1 Definition

The size of a population of individuals whose members die at a rate proportional to its
size will decay exponentially, eventually reaching extinction. By allowing immigrants

to enter in groups of 1,2,3...m from elsewhere at a rate which is independent to the

size of the population, the population will equilibrate to a nonzero size.

In a slight alteration to the original work of Hopcraft et al. [5, 6], we denote the

probability that there are exactly m immigrants entering the population as F, such

that F, defines a valid discrete probability distribution function. Defining P, (¢) to
be the probability that the population has size N at time ¢, a simple model which has
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only a death term (at a rate 4N ) and multiple immigrations (with rate £ and

distribution F, ) has the transition diagram shown in Figure 2.6.

<. Multiple-Tmmigration ., s Death terms e
terms
Py, () 7y
e-F, - P,(1 U +2)Py, (1)
Py, (0) 7y v
£ F,-Py(0) U(N +1)Py. (1)
Py (1) " 8
£-F,- Py y(t) NPy (0

Py, (1) -

£ F Pyt H(N=1)P, (1
Py, (1) Y

Figure 2.6

A transition diagram for the death-multiple immigration model.

The corresponding rate equation is:

D = YN+ 0P O VP O+ X F, B (0 -3 F, Py 0
! ’";0 m=0 (2.26)
= LN+ Py, (1) = JNP, ()4 €3 F, Py (1) €83 (1)

the second line resulting from the fact that F is itself a valid probability distribution

and hence has unit sum.
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Defining a generating function Q(s,?) of P, (¢), the above set of equations may be
transformed into a single Partial Differential Equation (PDE) dependant on O, (s),

the generating function corresponding to the forcing terms F, :

O(s.1) = 2(1 — )" Py (1)

(2.27)

0,(5)=3.(-9)"F, (2.28)
0 0

=, 060 == 05, + & 0(5,)(Q, (5) 1), (2.29)
t os

Through the use of Laplace transforms, the solution subject to the initial condition

0(s,0) =0, (s) 1s obtained:

0.(s)

060 = o onp(a) 2 (s exp(—u1)); (2.30)
0.(s) = exp(ij.wds} . 2.31)
My s

Here O, (s) is the stationary state of the distribution — the limiting distribution to

which the population will equilibrate in the large ¢ limit.

The probability distribution of the stationary state is found using (2.10), i.e.

P = (_ l)N dNQSt (S)|
N N! ds” ‘ '
: s=1
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Jakeman et al. [104] show that if the forcing distribution has the generating function:
Q,(s)=1-5"; 0<v<l (2.32)
then the distribution of the immigrants is [2, 6]
0 m=0

m = I'(m-v)

- > 0.
I'(m+DI'(—v)

and the corresponding stationary state is stable:

0.(s)= exp(— isVJ — exp(—As"). (2.33)
v

It then follows that the DMI process with forcing distribution (2.32) is a discrete-

stable process, for which the PDE governing the generating function is:

aﬁg(s, 1= _wig(s,z) —&"Q(s,1). (2.34)
t s

Finally, the ‘transient’ generating function for the state of the discrete-stable process
prior to it reaching equilibrium is:

exp(—A4s")

exp(—A(s exp(—ut))") Oy (s exp(-1). (2.35)

O(s,1) =

Setting Q,(s) = (1—s)" is equivalent to setting the initial size of the population to N .

The corresponding transient solution is then:

eXp(=As”) —(1-sexp(-u))" . (2.36)

O™ (s,1) =
P expA(sexp(—un) )
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Figure 2.7 plots the probability distribution of the size of a population subject to
deaths and multiple immigrations as obtained from (2.34), and shows that the power-

law tail on the distribution is established instantaneously.

1 5 10 50 100 500 1000
N

Figure 2.7

lustrating the initialisation of the power-law even for very small values of time.
The probability distribution of a Death, Multiple Immigration process with an initial
condition of exactly ten individuals in the population, and for which 4 =5, v=0.5is
plotted. The values of ut are 0.001, 0.1, 1 (red triangles, green points and blue
crosses respectively), and ut = c (corresponding to the stationary solution, in black

points).

2.5.2 Multiple-interval statistics

One may consider the question: what is the probability that a population has sizes N
and N' following a separation time ¢? Given the Markovian nature of the DMI

process, this result can be derived from the transient generating function (2.35)

subject to the condition Q,(s) =(1-s)", i.e. setting the initial size of the population
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to N . We then denote the joint generating function corresponding to this joint

probability:

O(s,s'50) = ((1=9)" (1-sH")

(1-5)" P, i(l—s')N'P(Nw N)

0 N'=0

(1-5)" P,0™ (s%51)

1]
M I

=
I

0

The joint generating function for the discrete-stable process is [6]:

= exp(— i{s [1 - exp(—vut) |+ [s + (1 5)s”exp(ur) ] }] (2.37)

From a joint generating function, the correlation functions [e.g. 41] of a process can
in principle be formed. However, as all the moments of the discrete-stable process are
infinite, correlation functions are undefined. It will be shown in Chapter 4 that despite
this, the joint generating function has a wider currency since it enables the generation

of continuous-stable processes.

The use of the higher-order statistics of a process can be used to distinguish between
population processes, even those for which the stationary states are identical. One
such example of this is when two population processes with identical stationary states

are distinguished by their third-order statistics in [53].
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2.5.3 Monitoring and other population processes

Often it is difficult, if not impossible to measure a population directly without
changing its dynamics. In such cases, one may monitor the emigrants of a population:
if they are not to re-enter the population, then their being counted does not affect the
dynamics. A method of monitoring emigrants of a population, which is also
analytically tractable, is to model the emigrants as an additional death rate, and

consider the joint distribution P, (T) of the population and the count of its

emigrants. Now the variable n refers to the number of individuals which have
emigrated and been counted, and 7 is the integration time over which the emigrants
are counted. For the distribution of counts to have any sensible meaning, the internal

population must already be at equilibrium before monitoring begins.

We then define the generating function of the population and its emigrants:
0.(5,5T) =Y. (1-9)" Y (1-2)" P, (T) (2.38)
N=0 n=0

where the variable z corresponds to the transform of the count variable » . By setting

s =0 we obtain the generating function of the counts alone Q.(0,z;7) from which

the distribution can be recovered using (2.10). Altering the rate equation (2.26)
suitably, including a counting process, and using the generating function (2.38), the
counting statistics of any discrete Markov population process can be deduced. Note,
however, that if the stationary solution of the population has an infinite mean, then
the distribution of the counts will have an infinite mean for any nonzero monitoring
time 7. In particular, the distribution of counts from monitoring the discrete-stable
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process (2.34) with O<v <1 is also discrete stable [e.g. 5], the case v =1
corresponding to a Poisson process, for which the distribution of the counts is also

Poisson.

The Birth-Death-Immigration (BDI) process [e.g. 41] is a first-order Markov process
in which deaths occur as in the DMI process, but immigrants enter singly and births
occur at a rate proportional to the number of individuals present. When the death rate
is greater than the birth rate, the stationary state of the population is negative binomial.
When the births and deaths occur at the same rate, the stationary solution has a Bose-
Einstein or geometric distribution — this particular process has been used for a model
for thermal light, and characterises the photon statistics of lasers below threshold

[105].

The Death, Multiple Immigration [e.g. 5] process is a generalisation of the death,
double immigration process in which immigrants only ever enter in pairs. This ‘pairs’
process [61] was used to model the production of photon pairs in a non-linear crystal
[106] — one of the first methods found to produce so-called ‘non-classical’ light.
Through tailoring the rate of immigration in the process, it is possible to create strong
odd-even effects which clearly cannot be represented through mean-field

approximations.
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2.6 Summary

This chapter has introduced the continuous and discrete stable distributions, and
stated some of their properties and peculiarities. Despite the lack of general closed-
form expressions for the distributions and the profusion of incorrect results, the stable
distributions are ubiquitous in nature, and progress is still being made on

understanding them.

A discrete-stable process was introduced as a special case of the Death, Multiple-
Immigration (DMI) process, and properties such as a transient solution and joint
generating function were given. The concept of monitoring population processes was

established, and related population processes were also discussed.

In this introductory chapter, the continuous and discrete stable distributions are
treated as separate entities. This apparent dichotomy is addressed in Chapter 3, which
connects the discrete-stable distributions with the one-sided continuous-stable

distributions through a Poisson transform interrelationship.
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3. The Gaussian and Poisson transforms

3.1 Introduction

So far we have only examined the case of continuous stable distributions for which
the scale parameter a is fixed. The term ‘doubly stochastic’ when applied to
probability distributions refers to one parameter of a distribution being ‘smeared’ by
another. An example of this, stated by Teich and Diament [107], is the well known
result that when the mean of a Poisson distribution is modulated by a gamma
distribution, the result is negative binomial. It would be instructive to allow the scale
parameter of stable distributions to vary according to other stable distributions and

examine the results.

This chapter will begin by giving an alternative proof to a result in the literature [41]
which uses the one-sided continuous-stable distributions to modulate the variance of
the Gaussian distribution, forming a ‘Gaussian transform’. It will be shown that in

this case, the resultant distribution is another symmetric-stable distribution.

The concept of the ‘Gaussian transform’ is then extended to the ‘Poisson transform’,
whereby the mean of a Poisson distribution is modulated by a one-sided stable
distribution. The mathematics of the Poisson transform are given from a photon
counting perspective. The intrinsic connection between the discrete and continuous
distributions through the Poisson transform is found, and the limit as the power-law
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index v — 1 (which was shown in Chapter 2 to have singular behaviour) is examined

to elucidate the scaling that occurs between the two distributions.

3.2 The Gaussian transform

3.2.1 Definition

The support of the one-sided continuous stable distributions covers all allowable
values of the variance of a Gaussian distribution, so it is logical to consider a
‘Gaussian transform’ where the variance of a Gaussian is modulated by a one-sided
continuous distribution. To do this, we first start by defining the Gaussian transform,
which takes a (one-sided) continuous distribution and outputs a symmetric

distribution. Recall that a Gaussian distribution of variance ¢ =2a has

characteristic function C(u) = exp(—au’) and density given by

p(x,2,0,a) =

L
2+lar 4q )

If the value of a is itself a random variable whose PDF is p(a) then the ‘Gaussian

transformed’ probability density function is:

T 1 x’
p(x) = !p(a) N exp[— z]da . (3.1

It is clear that in the case when p(a) is a delta function, p(x) is again a Gaussian

distribution as expected.
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Given that p(x) is an even function, its odd moments are zero — evaluation of the

even moments of the new distribution can be obtained through direct integration of

the PDF:

jp(x)x”dx : j( | pla) ﬁeXp[— %)dd]xz’dx

= !ﬁ(a)[ I 2\/151_75 exp[— z—aszrdeda (3.2)

Hence the moments of the Gaussian transformed distribution are proportional to that
of the one-sided continuous distribution, except that the order of each moment is

doubled.

The characteristic function can be evaluated easily using the form of the Gaussian

transform (3.1):

Clu)= j(jp(a) o exp(— %)da]exp{ixu)dx

)

Iﬁ a)[iexp(zxu) 5 \/la_” exp(— %)dx]da
-]

p(a) exp )da

(a)c(u,2, B,a)da (3.3)

O'—-Z
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and is effectively the Laplace transform of p(a). This shows that the Gaussian

transform can be thought of as a weighed average of Gaussian distributions with

different variances.

Having now laid the foundations for the Gaussian transform, we may proceed to

apply it to the one-sided stable distributions.

3.2.2 Gaussian transforms of one-sided stable distributions

To evaluate the Gaussian transform of the one-sided continuous-stable distributions,

we need to first obtain their PDFs p(a,v.l,b). This is done by setting =1 in the

characteristic function (2.1) and using the inverse Fourier transform (2.3) when

0<v<1,using w as the Fourier variable, and b as the scale factor:

p(a,v,1b) = L ]Zexp(—iaw) exp[— b|w|v (1 —isgn(w) tan(ﬂdew. 34
2 7. 2

We then use this PDF as the one-sided distribution p(a) in (3.3). Upon noting that

the integrations over a and w are independent, we may exchange their order:

C(u)= i ]2{ Texp(—iaw) exp(— bw|" (1 —isgn(w) tan(%jj)dw} exp(— au’ )da

0 —

= 2— I {JA exp(—iaw) exp(— au’ )da:| exp{— b|w|v (1 —isgn(w) tan[%j)]dw
= ZL T R exp[— b|w|v( —isgn(w) tan( 5 Dde

—oo
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This integral does not readily yield to direct evaluation, however as there is a term in
(u® +iw)™", an alternative method using contour integration is possible. To that end,

we remove the modulus and sign functions by splitting the integral into two parts and

transform w — —w in the integral over negative w. This then gives:

Tl 1 v , dd
C(u)= ;[E{—(uz o) exp[— bw (1 +i tan(?D]
+%exp[— bwv(l —i tan(ﬂjj}dw
(u” +iw) 2

Since this is the sum of a complex term and its complex conjugate, it follows that an

(3.5)

alternative expression for C(z) which highlights the fact that it is real is:
Clu) = TRe LS N gy ot 1—itan(ﬂj dw (3.6)
.| +iw) 2 '

For the contour integration of (3.5), we define I" to be the contour along the real line

from 0 to A4, anticlockwise along an arc from A4 to Aexp(i@), then returning along
a line from Aexp(i@) to 0. These curves are shown on the Argand diagram in Figure

3.1 below.

The simple closed contour I' is then comprised of the three curves I,I,,I7 in the

complex plane. Residue theorem then states that the integral along the contour I' is

the sum of the residues of the integrand of (3.5) inside I". The only singularity is at

w=iu’, the residue of which we shall denote as R . In order that the contour encloses
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the singularity, we require that 8 > 7 /2 — for the sake of simplicity, we shall work in
the limit @ — (7/2)". If we take another limit as 4 — oo, the integral along T, is
equal to that of the characteristic function C(u), given by (3.5).

Im(w)

Aexp(if)

I, : w= Aexp(i?);

® w=iu’ 0<9<é

I, :w=zexp(i0);
0<z< 4

Figure 3.1

The path of the contour I' on an Argand diagram

Hence by denoting the integrals over the curves T, in the limits to be /,,,, we

write:

lim [--du= lim Ur.l--du+jr-2.-du+jr.3--du}

0-(x/2)" 0-(x/2)"
=1, +1,+1, (3.7
= 27iRes(--
=R

')|w:iu2

or, alternatively,

Cu)=R-1,-1,
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where the ellipsis refers to the integrand in (3.5), or equivalently, (3.6). The first term

is easily evaluated:

R=2mRe S[L {2; exp[— bw’ (1 + itan(ﬂnj
27 | (u” —iw) 2
+ 2; exp[— bw’ (1 —i tan(ﬂm}
(u” +iw) 2 i
= exp[— bw" [1 — itan(ﬂjD‘
2 w=iu?
= exp[— b(iu*)" {1 —i tan(%)}}

The above may be further simplified by noting that the imaginary term and the term
within the braces may be written in exponential forms, revealing their arguments and

moduli:

R =exp| —bu*" ex i—ﬁv 1+ tan? v ex —iﬂ
P( u P[ > ’ p >
= exp(— bu® sec(%)]

Having now found the residue of the pole, the next step is to evaluate the integral
over the contour I',. Here it is most logical to use polar coordinates in the real
integral form (3.6), and integrate over the angular variable ¢/, which runs from 0 to
0:

w= Aexp(iv); dw=dv-idexp(iv))
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The integral can then be written in the following form:

0 . .
I, = lim Re{i expi)A exp(— bA" exp(i 191/){1 -1 tan(%‘jn}d 0y

oo 2 . .
Hj(”/2)+ 0 Tu +iexp(ith4

Given that we are interested in the limit as 4 — oo, the first terms in the integrand

arc:

i exp(ih4
limf — 2 . . -
o=\ T u” +iexp(ithd) 7«

Upon substituting exp(i V) = cos(v) +isin(v) and splitting the exponential term

into a product of real and imaginary exponentials, we have:

9
I, = lim lJ‘Re exp| —bA"| cos(V) + sin(v) tan s
A>e T 2

0—(m/2)"
. v .
X exp{leV [cos(?ﬁ‘v) tan(Tj - sm(?ﬁ‘v)ﬂ}d v

The real exponential must tend to zero if 4 — o and & — (7/2)" since >0 and

when 0<¢¥<7 and O<v <1,
cos(v) +sin(v) tan[%vj >0.

Therefore the integrand must be zero, i.e.

1,=0.
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The final integral to close the contour I' is over the curve I';. For this, it is most

convenient to transform to a new coordinate z which runs along the curve and use
the parameterisation (3.6):

w=_zexp(if); dw=dz-exp(if).
N 1 exp(if) b . N EC AN
I, = Re;[ 70 +iexp(if)z exp[ bz" exp(i 01/)(1 ztan( 5 jjjd’
= Re J' 1__ exp(o) J exp(— bz" {cos(ﬁv) + sin(6v) tan(ﬂjD
R l 2

u’ +iexp(if)z
X exp(ibzv [cos(ﬁv) tan(%‘/j - sin(ﬁv)D}dz

As we are examining the contour in the limit & — (7/2)", the above may be

simplified greatly since:

lim : exp(i@) _ 21
o2\ u” +iexp(i@)z ) u” —z

lim | cos(6v)+sin(6v) tan(%n = sec[”—vj

6—(r/2)" 2

lim | cos(@v) tan(%j - sin(&v)] -0

6—(z/2)"

Thus, the integral is entirely imaginary and so the contribution from the contour I, is

Z€ro:

I, = ReT% i exp[—bsec(%jz”)xexp(ibzv 'O)jZ

2
0 u —z

=0
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Given that /, =1, =0, it follows that:

C(u)=27Res(-+-), —;,2
3.8
= exp(— bsec(%)u”} O<v<l (3:8)
- c(u,zv,o,bsec[%jj (3.9)

which is the characteristic function of a symmetric-stable distribution (2.1) with

power-law index 2v , symmetry parameter =0 and scale parameter given by

a=bsec(nv/2).

This shows that the ‘Gaussian transform’ of a one-sided stable distribution of index v
is a continuous-stable distribution whose index is 2v . The scaling of the scale factor
must occur since in the limit as v — 1, the mode of the one-sided stable distributions
tends to infinity (see Figure 2.2). Consequently, when taking the Gaussian transform
of a one-sided stable distribution with v — 1, the scale parameter of the resulting

symmetric-stable distribution must also diverge.

Having now found the relationship between the one-sided and symmetric-stable
distributions via the ‘Gaussian transform’, we shall now consider the case of a
‘Poisson transform’ which transforms continuous distributions into discrete

distributions through modulating the mean of a Poisson distribution.
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3.3 The Poisson transform

3.3.1 Definition

The Poisson transform was introduced by Cox [58] when he studied the breakdown of
cotton looms. If the quality of the cotton was constant, the breakdown could be
modelled simply as a Poisson process with a constant rate. Cox found, however, that
the number of breakdowns over a certain time period varied, and described a Poisson
process whose mean was a stochastic variable which depended on the quality of the
cotton. Hence this loom breakdown process is known as a Cox process, or more

commonly, a Doubly Stochastic Poisson Process.

Another physically occurring example of the Doubly Stochastic Poisson Process
arises in photon counting and was first described by Mandel et al. [108] as follows.
The photoelectric effect [e.g. 59] describes the release of electrons from metals when
hit by light of certain frequencies. A positively charged ‘photocathode’ attracts the
electrons emitted by the metal — if the metal undergoing the photoelectric effect is the
anode, then a current is induced between the two. Since single electrons are hard to
detect individually, a photomultiplier is placed between the anode and the cathode to
amplify the current. An electron counter is then able to register the resultant pulse of

electrons from the anode. This is illustrated schematically in Figure 3.2:
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N~ T -
o~ Photomultiplier
A A
—! Counter
Figure 3.2

Illustrating the photon counting mechanism. The electrons given off through the
photoelectric effect from the anode are amplified by the photomultiplier and reach
the cathode. The corresponding electric current is measured by an electronic counter.

For a full treatment of this, see [59, §9.1].

Defining p(w) to be the probability density function of the light intensity w, the
distribution of the number of counts over the interval is then [59]:

) w" exp(—w)

. (3.10)

P(N) = plow

0

This result is termed the ‘Poisson transform’ and is general in that it can be used to
model counting statistics of a field that fluctuates over time. In the case that the
intensity is time-independent, the integrated light intensity is constant, and hence

p(w) describes a delta function, and the distribution of the number of counts is

Poisson.

Calculating the generating function Q(s) from the Poisson transformed distribution

(3.10), we have:
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0(s)= Y- s>N[ jﬁ(w)mdwj

N!
= jp(w) exp(—w)[z (1-s)" —]dw
0 N=0 N'
= J p(w)exp(—w)exp((1- s)w)dw
0
= | p(w) exp(—ws)dw (3.11)
0
which is simply the Laplace transform of the intensity p(w). It must follow then, that

the intensity p(w) can be recovered through the inverse Laplace transform of O(s):

p(w)=L"(0(s)). (3.12)

The Poisson transform is not only valuable as it relates discrete distributions to
continuous ones through a physical process — it also has the property (which can be

verified by differentiation of Q(s)) that the integer moments of the intensity p(x) is

equal to the factorial moments of the distribution P(N), so

Tp(w)w’dwz iP(N)-N(N—l)---(N—r+1).

Having established the necessary tools to convert from discrete to continuous (and
vice-versa) one-sided distributions, we shall apply them to the one-sided stable

distributions.
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3.3.2 Poisson transforms of one-sided stable distributions

Recall that the one-sided stable distributions are defined by setting #=1 in (2.1) so
that p(x) is defined only for x > 0. Upon application of (3.11) to (2.3), we obtain the

generating function of a Poisson transformed stable distribution:

O(@s) = Texp(—sx){L Texp(—ixu)C(u)du}dx O<v<l (3.13)
0 2

—oo

where

Clu)= exp(— a|u|v [1 —ifsgn(u) tan(%nj :

Noting that the integrations over x and u are independent, we exchange the order of

integration and evaluate the integral over x first:

O(s) = %[@s -:iu exP[— a|u|v(1 —isgn(u) tan[%DJdu . (3.14)

Splitting the integral over positive and negative «# and transforming v — —u in the

latter, this becomes:

0(s) = i;‘:{s —liu exp(— a|u|v(1 +isgn(u) tan(%)D
1 ; exp[— alu|’ [1 —isgn(u) tan(ﬂjn}du
S+iu 2

This integral is of the same form as that which gives the characteristic function of the

+

Gaussian transform of the one-sided stable distributions (3.5), so
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0O(@s) = exp(— a sec(%)s VJ

- Q(s,v,asec(%n, 0<v<l (3.15)

which is exactly the generating function of a discrete-stable distribution (2.8) with
power-law index v . Therefore, the Poisson transforms of the one-sided Levy
distributions are the discrete-stable distributions; the two scale parameters being
linked through:

a=Acos(nv/2). (3.16)

It must then follow that the Laplace transform of the one-sided continuous-stable

distributions is:

oo

I plx,v,1,a)exp(=sx)dx = exp[— a sec[%vjs" J . (3.17)

0

This result, which is disseminated in Lee, Hopcraft and Jakeman [109] is significant
since it links the one-sided continuous-stable distributions (2.1 with f=1) to the
discrete-stable distributions (2.8) via a Poisson transform, despite the fact that both
distributions have infinite means, and hence all other moment-based measures are

undefined.
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A corollary of the Laplace transform result (3.17) is that the one-sided continuous-

stable distributions can also be defined as the inverse-Laplace transform of

0O(s) =exp(—s") . In this case, we write, for convenience, the group of distributions

P, (x)= L expl-as" )

S—X

py (3.18)
= p(x,v,l,acos(TD.

3.3.3 A new discrete-stable distribution

The above Poisson transform interrelationship between one-sided continuous-stable
distributions and discrete-stable distributions can be used to find the expression of a

previously unknown discrete-stable distribution.

Recall that in §2.4 the one-sided continuous-stable distribution of index v =1/3 is

given in terms of modified Bessel functions of the second kind by (2.17):

1 12%2 -3/2 2°7 -1/2
p[x,§,1,1j=;37/4 X K1/3 397)6 .

If we use (2.5) to permit the scale parameter a to vary using (2.5), we obtain:

1 1 23/2a3/2 YR 25/2a3/2 N
p(x,g,l,a]:;Tx K1/3 Tx .

Poisson transforming the resulting distribution using (3.10) obtains:
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o N
Jp x,l,l,a al exp( x)dx
0 3 N!
! 3/2 3/2 5/2 3/2 N _
:jlz 7514 x73/2K1/3 2 974 12 X exp( x)dx
0T 3 3 N!
1 23/2a3/2 L4 ~ 25/2a3/2 ~
=T A i "2 lexp(—x)dx (3.19)
(]

Using (3.16) to relate the scale parameters ¢ and 4, we obtain a = A3/2. An

evaluation of the above integral in Mathematica then gives:

3N 3
P(N,l,Aj: 4 Fz{N+l,N+g;—A—]

3 (BN)!’ 3 37 27
AT(-1/3)0(N-2/3) (4 5 A
: B =, - N
6+/3 7! 3’3 27
AT(=2/3)0(N =1/3) F(z 4 A3]
otz _’__Na__
337V 3’3 27

which is a new result for the discrete-stable distribution of index v =1/3. The form
of the one-sided continuous-stable distribution for which v =2/3 does not lend itself

easily to evaluation of the Poisson transform.

3.3.4 In the Poisson limit

Recall that as the power-law index v approaches unity, the mode of the one-sided
continuous-stable distributions diverges (c.f. Figure 2.2). The effect of this
divergence of the mode can be seen in the Poisson transform of the same continuous-
stable distributions. Figure 3.3 shows the discrete and stable-continuous distributions

with @ =1 and v = 0.99 ; the mode of both being approximately tan(0.997/2) = 64.
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Figure 3.3
Comparison of the discrete (dots) and continuous-stable (line) distributions, with v =

0.99 and scale parameter a = 1.

We can use the scaling relation (3.16) to resolve the issue of the diverging modes.
Recall (e.g. Figure 2.4) that for the discrete-stable distributions, as v —1 the
changeover between Poissonian to power-law behaviour occurs at larger values of N,
but the mode remains the same. It then stands to reason that by keeping the value of
A fixed, and setting the scale parameter of the continuous-stable distribution to be
a = Acos(v/2), the continuous-stable distributions must then tend to a Dirac delta
function centred at A . This rescaling is demonstrated in Figure 3.4, which shows the
continuous-stable distributions for 4 =1 and v = 0.7, 0.8, and 0.9. For comparison,

the distribution p(x,l,l,l), which marks the boundary between one-sidedness and two-

sidedness is also plotted.
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2.5

1.5}

pXx)

Figure 3.4
Showing the one-sided continuous-stable distributions with scale parameter a =
cos(mv/2) as v tends to 1. The limiting case v = 1, which does not scale and is two-

sided is also shown. The dotted line represents the delta function limit as v—1.

Using the scaling relation (2.5), it is clear that this scaling is equivalent to setting:

v 1 v
p(X, V)l,acos[jjj — p(l"'x, V,l,a) ]"' ]"': SeCV [7) .

It can be readily shown using trigonometric identities that the effective scale

parameter 7' satisfies:

v—l v—l

1
limr'= lim sec (%) = tan[—j (3.20)

which gives an intuitive interpretation of the rate of divergence of the mode of the

one-sided continuous-stable distributions p(x,v,l,a) as v — 1.
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Setting v =1 in (2.8) or (3.15) describes a Poisson distribution. Recall that according
to the Poisson transform (3.10), to have Poisson distributed counts, the continuous
distribution to be Poisson transformed must be a delta function. Setting v = =1 in
(2.1) gives the two-sided distribution shown in Figure 3.4 which is clearly not a delta
function. According to the scaling relation (3.16), for the continuous-stable
distribution to have a Poisson distributed Poisson transform, its scale parameter a
must be zero. This degenerate case is not permitted, however, since it would then not
have a power-law tail; the restriction that a >0 for all the continuous-stable

distributions means that all but the Gaussian have power-law tails.

An auxiliary advantage of knowing the form of the Poisson transform of one-sided
stable distributions is that the generating function of the transform is identical to its
Laplace transform (e.g. 3.11). For 1<v <2 and =41, the continuous-stable
distributions are not one-sided, and so the traditional Laplace transform is undefined.
One may instead consider a bilateral Laplace transform for which the limits of
integration range from —oo to co. Samorodnitsky and Taqqu [39] provide without
proof the bilateral Laplace transforms for the continuous-stable distributions with

P=1,15v<2 ie.:

oo

) -
O(s) = [exp(—sx) p(x)dx =

- exp(— a sec(%)svj l<v<2
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The form of the bilateral Laplace transform for 1<v <2 is identical to that of the
earlier result (3.8) for 0 <v <1. Since the PDF of the one-sided continuous-stable
distributions are zero for negative x, the expression for 1 <v <2 given above may

be extended to O <v <1.

3.4 ‘Stable’ transforms

Having found the Gaussian and Poisson transform of the one-sided continuous-stable
distributions, for which the power-law index is in the range of 0 <v <1, one may ask
the question — can these transform methods be applied to other stable distributions?
Recall that the characteristic function of the Gaussian transform of a one-sided

distribution p(a) is (3.3) a Laplace transform:

Clu)= Iﬁ(a) exp(— au’ )da

and that the generating function of the Poisson transform of a one-sided distribution is

another Laplace transform (3.11), i.e.

O(s) = [ Pa)exp(—as)da.

Either of these results could be derived from noting that they are weighted averages
of either characteristic or generating functions, and thus do not require the form of

p(x) or P(N) to be known. The form of the symmetric continuous-stable

distributions’ characteristic function is
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C(u,v,0,a) = exp(—a|u|v); O<v<2,a>0

and the discrete-stable distributions’ generating function can also be written:

Q(S7V7 A) = exp(—Asv)
=exp(-4s|');  0<v<1, A>0.

We can therefore state without loss of generality that the transforms (3.3) and (3.11)

can be extended to the symmetric-stable transform
C) = [ p(a) exp(— alul” )a’a; 0<v<2 (3.21)
0
or a discrete-stable transform of p(a):

0O(s) = ]ig_a(a) exp(— a|s|v )a’a; O<v<I. (3.22)

Equations (3.21) and (3.22) describe allowing the scale parameters of symmetric-

stable and discrete-stable distributions to be modulated by the distribution p(a),
supposing that p(a) is one-sided. The integrals are identical in form, save for the fact
that the ranges of v differ. The effect of setting p(a) to be a one-sided stable
distribution of index 77 can then be found for both transforms upon using their

probability density functions (3.4):
p(a) = p(a,n,1,b) = 2L Iexp(—iaw) exp(— b|w|’7 (1 —isgn(w) tan(%nj]]dw .
ﬂ- —c0

Substitution of the PDF into (3.21) gives
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C(u) = T{% Texp(—iaw) exp[— b|w|’7 [1 —isgn(w) tan(%nnjdw} exp(— a|u|v )a’a
_ L7 1 exp[— b’ (1 +isgn(w) tan(ﬁ—nDJ
27, |u|v —iw 2
+— ! exp(— bM" (1 —isgn(w) tan(ﬂ—njD dw
|u| +iw 2

which is of the same form as (3.5), hence

C(u) = exp(— b sec[%ﬂ]u " ]

=C[u,77v,0,bsec(?j} 0<v<2, 0<n<l.

The same applies for the generating function of the discrete-stable transform, i.e.

O(s) = exp(— b sec[%ﬂ]s”” }

- Q[s,nv,bsec(%nj} 0<v<l, 0<np<l,

The corresponding identities for the stable probability density function and generating

functions are then:

plnv,0,6)= p(x,v,O,a)-p(a,ﬂ,l,bCOS(%nDda (3.23)

0

P(N,nv,B)= j P(N,V,A).p(A,n,l,Bcos(%”j]dA : (3.24)

0
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Equations (3.23) and (3.24) are therefore able to generate closed-form expressions (or
at least formulae for) symmetric or discrete-stable distributions. Successive
applications of (3.24) or (3.23) can therefore be used (in principle) to provide integral
relations for symmetric or discrete-stable distributions for which the index v are

products of existing distributions.

Recall that in the Poisson limit, the inverse Poisson transform of the discrete-stable
distributions tends to, but never becomes a delta function. The generating function of
the form of the discrete-stable transform is given by (3.22), so taking the inverse
Laplace transform, this corresponds to a one-sided continuous-stable distribution
modulating the scale parameter of another one-sided continuous-stable distribution.

This then gives

0

which, provided that v <1 and 7 <1, show that the one-sided continuous-stable

distributions are a closed-set under transformations with themselves.

The results within this chapter are substantial since they show a deeper connection
between the different classes of stable distributions, in particular that the discrete-
stable distributions and one-sided continuous-stable distributions are linked through

the Poisson transform.
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3.5 Summary

The Gaussian transform can be thought of as the ‘smearing” of a continuous
distribution upon the variance of a Gaussian. It was seen that the Gaussian transforms
of the class of one-sided stable distributions of power-law index O0<v <1 are
symmetric-stable distributions of index 2v and a different scale parameter. This
result implies that when the variance of Gaussian distributed processes are modulated
according to one-sided continuous-stable distributions, the resultant processes are still

symmetric and continuous-stable, but no-longer Gaussian.

Similarly, the Poisson transform can be thought of as a ‘smearing’ of one distribution
on the mean of a Poisson variable. Teich and Diament [107] describe a wider class of
distribution transforms, whereby the variable whose mean is ‘smeared’ can be any
distribution, though they consider the cases when the variance is finite. Through this
formulation, they show how many classes of distribution can be constructed through
transforms of two or more other distributions. Their interpretation of this is a
scattering medium, which imposes a modulation on the mean irradiance W of a light
source that passes through it. This modulation can either be measured in terms of the
integrated irradiance of the resultant light, or through the photon count mechanism

described previously.

It has been shown that the discrete and one-sided continuous-stable distributions are
connected through the Poisson transform, the scaling for which elucidates the

behaviour of the one-sided stable distributions in the delta function limit.
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The results found in this chapter are best summarised in schematic form in Figure 3.5,
which shows the effect of the modulation of the scale parameters of symmetric-stable
(or discrete-stable) distributions by one-sided continuous-stable distributions. For
instance, the Poisson transform is shown by an arrow from a Poisson distribution to

another discrete-stable distribution.

Poisson)

Discrete-stable Poisson

Transform Transform .§
g
o
p 12 . . . .
One-sided continuous- Symmetric-stable Gaussian
stable Transform Transform Transform
L
0 1
A%
Figure 3.5

Mlustrating the stable-transform results. Arrows represent the effect of the

modulation of the scale parameter of one distribution by a one-sided continuous-

stable distribution.

Having made these connections between stable distributions, a method of generating
discrete-stable variables can be inferred — this will be investigated in §5. We shall
now use the Poisson transform interrelationship to generate a continuous-stable
process, finding its multiple-interval statistics via the (discrete) DMI population

process upon which this work is partly based.
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4. Continuous-stable processes and multiple-interval

statistics

4.1 Introduction

The key to understanding physical processes is creating, studying and refining
suitable models. The ubiquity of stable distributions found in nature [1] means that a
mathematical model for a Markovian, continuous-stable process is a powerful one

indeed.

Through the Poisson transform interrelationship developed in Section 3.3.2, this
chapter will create a one-sided continuous-stable process. Its transient solution and
Fokker-Planck style equation is found. Finally, the » -fold generating function for the
continuous-stable process is given, expanding on the Markovian nature of the
processes. These results use the formulation for the discrete-stable process (outlined

in §2.5) as a basis.

4.2 A transient solution

The transient solution of the discrete-stable DMI process is given as a generating

function by (2.35):
O(s,1) = expl- A(1-6(1)" )s" )0, (s6(1))

= expl-a(1)" 5" )0, (s6(1)) @.1)
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where A=¢/uv, a(t)=]A1-60)")]" and 6(r) = exp(~ut) define the time scale
of the process and Q,(s) is the generating function corresponding to the initial

condition of the system. Following the Poisson transform result, it is possible to
inverse Laplace transform (4.1) to obtain the transient solution p(x,#)of a one-sided
continuous-stable process. The result is a convolution of the initial condition and the
stable distribution:

117 x' x=x")
PeN= o] ”(w(z))p ( 0 jdx *2

0

where p,(x) is the initial condition of the process and has Laplace transform Q,(s),
and p,(x) is the inverse Laplace transform of exp(—s"), as defined by (3.18). Note
that the transient solution gives p(0,7) =0 for all # >0, except for the degenerate

case p,(x)=9(0), which will not be considered.

A simple case to consider is when the initial condition p,(x) is uniform on [0,1]. In

this case, the initial distribution and transient solution are:

po(x)=H(x)=H(x-1)

1 1 - X'
)= — . 43
Plet)= o max(xL(,),o)” [wm] g *3

It can be seen from the form of (4.3) that for # >0 and x >> 0, the power-law is
established immediately. In the case v =1/2, the integral for the transient solution
can be evaluated exactly since [110]:
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| 1
_[Pl/z(x)dx = J‘ N x"? eXp(4—jdx

) _erf(zk j

where erf(x) is the error function [93, 110]. This gives:

L) el L |20
) %{l erf(2 . j} 0<x<6(r)

p(xat)_ 1 1
——qerf| — ) —erf 1 e x>6(t)
o(¢) 2\ x-6() 2V x

The dynamics of this transient solution to the continuous-stable process can be seen

in Figure 4.1, which shows the rapid convergence to the stationary solution.

15 | —
1.25

px, 0

075" |
05 |
025

Figure 4.1
Mlustrating the evolution of p(x,f) when the initial distribution (dotted lines) is
uniform on [0,1]. The parameters are 4 = ¢ = 1, and ut = 0.1, 1, and 3 (red, green

and blue lines respectively). The stationary state is also plotted (solid black line).
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The behaviour when the initial condition is a delta function is particularly interesting.
The dynamics in this case are shown for when the delta function is centred on x =1,

though the results are general:

Po(x)=8(x—1)

11 x' x=x' ,
PO = o) I P ”(w(r)jg( o) ljdx

0 0<x<00)

1 (x—@@)
o) " at)

j x> 0(t).

This shows that in this case, the transient solution attains the shape of the stable
distribution instantaneously, but with a scale change and a shift. This is shown in

Figure 4.2.

Figure 4.2
Showing the rapid convergence to the stationary solution when the initial
distribution (dotted line) is a delta function. Plotted is the distribution for ut =1, 2

and 3, and the stationary solution (red, green blue and black lines, respectively).
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4.3 A one-sided stable Fokker-Planck style equation

We have seen previously that the PDE for the stable DMI population model’s

generating function is given by (2.29) and (2.32):

%Q(s,t) . —M%Q(S,t) & 0(s.1). (4.4)

Since the above is the PDE which governs a discrete-stable process, it must follow
from the Poisson transform interrelationship that Laplace inversion of (4.4) will yield

a Fokker-Planck equation [16] for the continuous-stable process p(x,t¢). Direct

inversion of (4.4) is not possible since the final term cannot then be evaluated.
However, it is possible to first divide by s and then evaluate the inverse Laplace

transform:

X

0
[ bl = prp(an) -

0

e bt
F(l—V)'([(x—x')V e

Differentiating with respect to x the above becomes:

9 _ 9 e 9fpply)
ot ploi)=p ox (p(x.0) I'(1-v) ox u (x—x)" a ] ’

The final term may be evaluated by transforming x'=x—y:
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where the last line results from transforming back to x' and recalling that p(0,7) =0.

The corresponding Fokker-Planck style equation for the one-sided continuous-stable

process is then:

9 _ 9 €7 1 opx'e)),,
o Plot) =g p(xn) F(I—V)l.((x—x')v o de *2

The convolution in the final term highlights the nonlinear dependence between
different values of x corresponding to different points in space as time evolves.
Indeed the non-local effects of the evolution of the process over time allude to some
more complex behaviour than that seen in ‘standard’ Fokker-Planck equations

involving only drift and diffusion terms.

The validity of the Fokker-Planck style equation (4.5) can be tested by setting the
PDF p(x,t) of the process to be equal to the Lévy-Smirnov distribution (2.14), which

1s one-sided continuous-stable with index 1/2:

plx,t)= p(x,%,l,aj

The time derivative in (4.5) should then be zero when setting v =1/2 and &€ = Auv

(according to (2.33)), and 4 = asec(zv/ 2) =a\2 , according to (3.16), so that:
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D e[ e
or ox| 27 2x
_ap g 1 d | a s _i :
2 x—x' X' 2ﬂ'x =P 2x' dx
P |G 2| e
_ Gl s 2 _i
- x)exl{ 2xj

au | 1 a’ a2 3a s a’
_ ' _ ' e - d '
Vorx { ((x—x')”z [2«/27: * N j Xp( 2 )|

Upon transforming x'= a’x/(a’ + z) in the integral, the final term is:

apl | 1 a’ 2 34 s a’
- e —X' exp| —— | |dx'
NeY ![(x—x')”[z«/znx 22z J p[ 2 ) [
au 1 a’ \7 z (z+a2 Z+a2—3x)
== -— -— d.
27 2\27ma’x’ eXp( ZleeXp( ZxJ Jz i
2
_ a5 2 _a
5 _2ﬂ_x (a x)exp( 2x]

so dp(x,1)/0t =0, ie. the Lévy-Smirnov distribution (2.14) is a solution to the

Fokker-Planck style equation (4.5), as expected.

A Fokker-Planck equation for symmetric-stable processes was developed by West
[111, 112], but the nonlinear dependence in x which manifests itself in the integral is
different, and does not involve a drift term. The form of the Fokker-Planck Equation

given is:

0 I p(x',t)
afp( ’ ) _J.x—x' ¥

13
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though upon closer examination, this cannot be correct, since the integrand is singular

when x'=x.

4.4 r-fold generating functions

4.4.1 The joint generating function

We have seen that a Fokker-Planck style equation for a continuous-stable process can
be formed by taking the inverse Laplace transform of the stable Death-Multiple-
Immigration model’s PDE. The joint statistics for the continuous-stable process can
also be formed from inverse-Laplace transforming the joint generating function (2.37)
using the Poisson transform relationship. To produce multiple-interval statistics of the
stable processes, we begin by obtaining the multiple-interval generating function of
general stochastic, Markovian population processes. All of the results in this section

pertain to Markovian discrete and continuous processes.

Recall that the joint probability P(N , N ';t) of a process describes the probability that
a population has sizes N and N' following a separation time ¢. The joint generating

function O(s,s';t) corresponding to the joint probability is defined by:

O(s,s5)=> (1=5)" Y (1-5)" P(N,N";¢)

AMS

(4.6)

M: 1M
=
%

(1—s)" > (1-5)"P,P(N|N;t)

AMX

=
I
f=}
=
I
(=}

where P, is the distribution of the stationary state of the process, and P(N '|N ;t) is

the probability that the population has size N' on the condition that a time ¢ ago, the
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size was N . The joint distribution P(N,N';¢) of a population process can be

recovered upon using (2.10) twice on (4.6) — once for the s variable and again for the

s' variable.

The transient generating function gives the distribution of the population size after a

time ¢, on the condition that the population had size N at time 0, and is defined:
01 (s:1) = " (1-s)" P({NV:1)
N'=0

and can be shown to always be of the form

oM (s32) = (1= (s,2))" &(s,1), (4.7)
where the functions ¥(s,#) and &(s,) depend on the particular process considered.

Supposing a stationary solution exists, in the infinite time limit, the functions satisfy

W(s,00)=0 and &(s,00) =0, (s).

Thus the joint generating function is
Os,s31)= 3 (1=5)" P, x O™ (s's2)
N=0
(1-s)" P, (1-P(s',2)"

= &(s0)x §PN<<1—w<sv,r)><1—s>>N
>

P,(1-5)"
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where S =1-(1-P(S";#)J1—s). The result of the final summation over N is

E(S,00) since it is simply the stationary solution of the population, and

0, (8)=&(8,).

Note, however that despite its derivation from Markov processes, the result for the

joint generating function holds true even when the Markov property does not.

4.4.2 The 3-fold generating function
We now consider the 3-fold generating function Q(s,s‘,s”;t,t') of a Markovian

process. This describes the probability that there are initially N members in the
population, then N' following a separation time ¢, then N' following another

separation time ¢'. This is shown schematically in Figure 4.3:

A
A 4

A
A 4

t

o

Figure 4.3

The formulation of a 3-fold generating function.

The 3-fold generating function is defined:

o

Os,s',55,0)= > (1= 5" Py 3 (1= 5)" P(NIN;) 3 (1= 5) " P(NVIA; )

N=0 N'=0 N"=0
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The summations over N'"' and N' may be evaluated by the same reasoning as in the

two-fold generating function:

oo

st s tt il S 1 s N ( ;)XQ[N'](S”;t')
[z Ni (1) PSSR - 9(s750) el
[z "B 3-8 P ;)}asw)

therefore
Os.s' 5" 1.1 = (l—s)NPNxQ[N](S';t)}f(S”,t')

= ;(l—s)NPN><(1—‘I’(S';t))N}S(S'J)f(S”af')
>

<1—s>NPN}f<sxf>§<s~,f>

where S =1—(1—-s)1-"P(S";¢)) and S'=1-(1—s"')1-"P(s";7')).

The final summation over N also follows that of the two-fold result. Thus, if we

write S"'=s"", we have:

Ols.s",s"1,1') = £(S,02)(S",1)5(5".1).

4.4.3 The r-fold generating function

It is straightforward to continue the concept of the generating function to r+1
different population sizes, separated by r time intervals. To prevent cumbersome

notation as » grows large, we denote
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N = N Sl = ¢ shl—g

N[l] =N S[l] =g S[l] =9

N[Z] — NH S[Z] :SH S[Z] — va
and set

P(N;t)= P(NU N g b glol 00 2] gl
to be the probability of the population having sizes N, NI... NV NV following

separation times 1), ¢! ... (=21 4=,

This can be illustrated in the following diagram:

N[O] N[l] N[Z] N[3] N[V—l] N[r]
J t[l] N ’ t[rfl] |
J t[O] t[2] R
L.
Figure 4.4

The formulation of an n-fold generating function.

The r-fold generating function for P(N;t) is then:

Ols;t) = [T £(s™, %) (4.8)
k=0
where
] _
k] _)S k=r
> _{1—(I—s[k])(1—‘I’(S[k”],t[k])) 0<k<r-1 *9)
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and 17 = 50 that the population is initially at equilibrium. From the results (4.8,
4.9), it is then possible to examine the »—fold interval statistics of any Markovian

discrete process.

4.4.4 Application to the DMI model

For the Death, Multiple Immigration process, the functions ¥(s,) and &(s,¢) can be

obtained using (2.36) and (4.7) to be:

W(s;1)=s-6(¢)
E(s,1) = expl- as” (1- 0" (1))

where 6(t) = exp(—ut).

The r-fold generating function for the DMI process is then

Ols:t) = H £(st, /1)

= H exp[— ASW (1- 7 (¢ ))] (4.10)
_ p[ A3 SH (1= (- ))}.

Having now obtained the form of the »-fold generating function for the DMI process,
we can consider using the Poisson transform interrelationship to obtain the » -fold
statistics of the continuous-stable process. However, care must be taken when
inverse-Laplace transforming the above generating function, due to the terms which
arise solely from the discrete nature of the process. For instance, when considering

the Poisson case (i.e. v=1), the continuous analogue must be a product of
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uncorrelated delta functions, since the Poisson process is memoryless. The terms
involving products of s are responsible for these inherently discrete properties, hence
we require a rescaling of the s terms to suppress them. One such scaling is

1
sl —>(£va["] (4.11)
A

in the limit 4 — oo

The r -fold generating function for which the inverse Poisson transform can be

performed is then:

I

Ofs;t) = exp{— a (1 — g ((1)s )} (4.12)

k=0

and the linearised S terms are

S[k] -

r /-1
M+Zsme( {l j 0<k<r-1

I=k+1 m=k

The correctly linearised r -fold generating function is then:

Q(s,t):exp{ akz;;(l—ﬁ(t[k—llv){ [k] +l;1s (;f j” (4.13)
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In this linearised form, the r-fold generating function is of the same form as that of
the Birth, Death, Multiple-Immigration (BDMI) process. For instance, taking the case

r =2, the joint generating functions for the DMI and BDMI processes are [6]:

Q(sst—exp( { [1 J s+1 S)SH()] })

and
L 4, _exp(— viu—A))
Q(sas,f)—exp{ V- 4){‘ (l (1+0s'(1-0())
N ED R
1+bs'(1-6(r))
respectively.

Upon suppressing the product terms using (4.11), the joint generating functions both

reduce to the form:

Q(ss t —exp( { ll— J S+s¢9( )] }) (4.14)

which implies that the intrinsic differences between the processes which arise from

the inclusion of the birth term do not carry through to the continuous processes.

4.4.5 r-fold distributions for the one-sided continuous-stable process

To take the inverse Poisson transform of the »-fold generating function (4.13), we
use the definition (3.18) for p,(x) and note that the only contribution of s occurs

when k& = 0. Then, upon using the relation [93] for Laplace inversion:

L'l[f(c(s+b))exp(—ds)]=F(xcdj - H(x—d)-exp(~b(x—d)) (4.15)
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where H(x) is the Heaviside step function [93], f(s) is the Laplace transform of

we obtain

[0] 1
L Q<s,t>:p{’i/vj- LA

slol_yylo]

Inversion with respect to s is facilitated by noting that the only s contributions

occur when k£ =1 in the first exponential term and / =1 in the second. Substituting

r /-1
b= s[’le( t['”]ﬂ
|:l§1 m=k k=1

c=a"" (1 - Q(t[k_l]v))l/v

k=1

d = xo(¢)

into (4.15) one obtains the second-order inversion:
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. H(xm _ x[O]H(t[O] ))

(o] 1
PV(ZICI_/VJ' a2 H(X[O])
L' 0fst)=
Slol_ lo] Obet) Kl x[‘”e(t[‘”) 1
sl X P, — | —
[al/v(l_e(t[O]V)) \] a”v(l—ﬁ(t[o]v))

’ <1_e(t[kﬂv)){s[k1 R iswe(

=2 I=k+1
S [1]6’(
=k+1

L)

1-1

m=k

Note that the last two exponential terms simplify, thus

1—

2.

m=k

1

S/

1
Pv(;cl/v]'al/v H(X[O])
L t)=
ST g 1
RO x P, L. -
{0 } o)

Successive inversions are then performed with respect to increasing values of &

using (4.15) with
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b= isme(iz[’"]}
m=k

I=k+1

c=a"" (1 - B(t[k_l]v))l/v

d = xg (1)

This method may be continued arbitrarily many times as required using the same

technique and thus, without loss of generality, the » -fold distribution is:

P(x,t):ﬁ (M _x[kl]e(t[m]))xpv( ROENEPAE) J] @16

L a o) e el )

[-1] [-1]

upon setting ¢t ' =< as before and noting that x" - terms are always multiplied by

zero, and therefore ignored.

This result (4.16) is enormously significant since it gives an explicit factorisation of
the r-fold probability density function of a one-sided continuous-stable process, from
which (in principle) suitably defined correlations can be found. Indeed, if the value of
a one-sided continuous-stable process at n points in time, separated by n-—1
intervals is known, (4.16) can be used to predict the probability density function of

the process at any given point.

4.5 Summary

Having discovered the significance of the Poisson transform in relating continuous-
and discrete-stable distributions in Chapter 3, the concept of a one-sided continuous-

stable process was introduced. The corresponding Fokker-Planck style equation for
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the process is given, and compared with a proposed symmetric-stable counterpart
found in the literature. The » -fold probability density function of the process, which
gives the probability that the process takes on values x, x', x''... after separation
times ¢, ¢'... is derived from the corresponding discrete-stable process. Though this
is an extension of the Markovian properties of the discrete-stable process, a rescaling

of the variables to remove intrinsically discrete properties was undertaken.

Another such discrete property which is destroyed when undertaking the Poisson

transform is the distribution of the number of emigrants into the DMI process, which

has generating function Q,(s)=1-s", for which the inverse Laplace transform

cannot be found. This implies that though the one-sided continuous-stable arises from
a discrete-stable DMI process, the continuous-stable process cannot be thought of as a
continuous DMI process. The mechanism which drives the increases in the value of
the process (in the case of the DMI process, this is the multiple immigrations) is

something which is inherently continuous.
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5. Simulating discrete-stable variables

5.1 Introduction

The simulation of variates to aid the application of processes provides an invaluable
insight into their behaviours; power-law distributed variates in particular, not least
because such niceties as the means and higher moments are undefined. Despite the
propensity of methods to generate continuous variates [e.g. 113], the same cannot be
said for discrete variates. They can be simulated, however, on the provisions that their
(discrete) distribution can be formed through a doubly-stochastic Poisson process,
and that the corresponding variates from the corresponding continuous distribution
can be simulated. The simulation is exact in the sense that the discrete variates
generated follow the discrete distribution exactly and are not approximations. In
particular, following from the results in Chapter 3, discrete-stable random variates
will be generated using an existing algorithm which generates continuous-stable

random variates.

5.2 The algorithm

We are interested in generating independent, identically distributed (i.i.d.) discrete
variates from 1.i.d. continuous variates using Poisson transform interrelationships. A

method of doing this can be inferred directly from the Poisson transform (3.10):

PV)= [ pln) 2 ERE 1
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Suppose that there is a method of generating a continuous variate x, from a
distribution p,_(x). The variate x, may be thought of as having a delta function as its
probability density function, i.e. p(w)=0(w—x,). Since p(w) is a delta function, its
Poisson transform P(N) is Poisson distributed with mean x,. A discrete variate n,
(with value N ) drawn from the distribution ﬁ(N) is doubly stochastic since two
variates need to be drawn from distributions to generate it — x,, and n,, which itself is
dependent on x,. The variate n, therefore has a distribution given by the Poisson

transform of p,_(x):

x" exp(~x)

e (5.1)

Py (N) = p,(x)

Repeating this process with new independent variates x,,x,...x, drawn from the
distribution p_(x) will then generate new discrete variates n,,n,---n, , drawn from

independent Poisson distributions with mean x,,x,---x, . The variates n,,n, --n

m

are i.i.d. since each variate is distributed according to (5.1).

By dividing the count C,, of the occurrence of each value of N by the number of
variates m , the ensemble distribution is F, (N)=C, -m~". In the limit as m tends
to infinity, the distribution F, (N) of the ensemble of n,,n,,n,---n, will be equal to
P (N), the Poisson transform of p, (x). It is important to stress that though the

distribution of the ensemble F (N) only becomes the theoretical distribution
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F; (N)when m — oo, each variate is drawn from the distribution £, (N) by virtue

of the Poisson transform. The algorithm is shown schematically in Figure 5.1 below.

p.(x) —’| Poisson transform I——> P (N)

Poisson |
X, Xy, Xy 00X, —® number |[—» 1M, N

o g\f J

m — oo

Figure 5.1

[llustrating the method of generating discrete variates drawn from the (discrete)
Poisson transform of a continuous variate. As the number m of discrete variates
drawn tends to infinity, the distribution of the ensemble of discrete variates tends to

the Poisson transform of the continuous distribution.

There exist many algorithms for generating Poisson variables of arbitrary mean A in
the literature. One such very simple generator is given by Knuth [114] for which the
complexity (i.e. the running time) is O(A). Clearly when the distribution of the mean
A is continuous-stable, and hence has a power-law tail, this method is rather
inefficient. A more suitable method with a complexity of O(log(A4)) is given by
Devroye [113]. This is far more appealing when power-law tails (or indeed large

values of the mean A ) are involved, and it is the algorithm used by MATLAB.

The ensemble distributions will be compared to theoretical distributions via the y’

test statistic:
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=3 B =Ra @

5.2
N=0 Fzy(N) 62

It is clear from its form that the smaller the value of y°, the better the fit between

theoretical and empirical results.

The y* statistic is sensitive to behaviour in the tail(s) of distributions — this can be

seen from its form. Supposing we write 7, =m- P (N), (where the values of T,
need not be integers, as opposed to the counts C,, , which must be integer), then the

individual contributions to the y* statistic (5.2) are

2 _ (P(T) (N) - P(E) (N))2
By (N)

N

(TN -m” -Cy _m—1)2
T, -m”
(TN _CN)Z.

T, -m

Clearly for moderately large values of m, T, = C,, for all N, so the value of y; is

small. Large contributions y; arise when T, is small, corresponding to small values
of the theoretical probabilities such as at the tails of distributions. In particular, if

there are many values of N for which F (N) = m™" (e.g. if the distribution has a

slowly decaying tail), a large y’ statistic is to be expected. In the limit 7, — 0 (for
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which B (N) << m™"), the count C,, of the occurrences of N will also tend to zero,

in which case the contribution y; is T, /m, which is vanishingly small.

Having now outlined the algorithm for numerically simulating discrete distributions
via the Poisson transform and discussed the y” statistic, we shall examine the case of

generating negative binomial distributions, whose mean and all other higher moments

exist, in order to test and validate the algorithm.

5.3 Simulating negative-binomial distributed variates

Recall that the Poisson transform of a gamma distribution is negative binomial — a
special case of this is when an exponential distribution transforms to a Bose-Einstein
distribution. This result is easily proven by calculating the Laplace transform of a
gamma-distribution. A gamma-distribution of shape parameter & and mean Ak is
[e.g. 93]:

exp(—=x/4)
X,k,A)=————7Xx
and has Laplace transform

1

Q(S)=m-

According to (3.11), the Laplace transform of a continuous distribution is also the
generating function of its Poisson transformed distribution, so the Poisson transform

of a gamma distribution must be a negative binomial distribution [93]:
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(V)= A" T(k + N)
" (A+ DY T()C(1+ N)

= (NB)(Nak; A).

The transformation from a gamma to a negative binomial distribution can be seen in
Figure 5.2 below, and shows that though the distributions resemble each other, the
Poisson transform does more than sample the continuous distribution at integer values.
This is obvious when considering the limit £ — o= when Ak is fixed — the gamma
distributions become delta functions, and the negative binomial distributions become

Poisson.

0.14

0.12

0.1

0.08

P(N). p(x)

0.06

0.04

0.02

Figure 5.2
Plotting gamma and negative binomial distributions with shape parameter £ = 10,

and means Ak = 10, 20 and 30 (red, green and blue lines and points, respectively).

A gamma distributed variable of shape parameter £ (when £ is an integer) and mean
Ak can be generated [e.g. 113] by summing k& exponentially distributed variables of
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mean A . Non-integer values of k& require additional steps in the generation of the
gamma variates, and will not be considered since they are not special cases of the
gamma and negative binomial distributions. Exponentially distributed variates are
readily generated by many computer packages, provided a method of generating

uniformly distributed variates U on [0, 1] exist: X =—Alog(U) has an exponential

distribution of mean A .

5.4 Results

The algorithm was used to generate negative binomial distributed variates with

A4=1,5,10,100 and k£ =1,5,10,100 in ensembles of 10° and 10" variates.

The results in Table 5.1 suggest an excellent agreement between the simulated

ensembles’ and the theoretical distributions for 10° variates. As expected, when the

mean Ak of the distributions increases, the y° statistic increases also.

K

7> x10°
1 5 10 100

1| 42391 | 3.8318 | 2.6362 | 16.061

51 7.9201 | 12.454 | 16.641 | 59.233

10 | 17.205 | 29.711 | 37.774 | 210.6

100 | 150.83 | 230.11 | 343.45 | 1048.5

Table 5.1
The 7 statistics for the ensembles of 10° simulated negative binomial variates. Note

that the values are scaled by 10’ to aid comparison.
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Table 5.2 shows the effect of the resolution of the distribution on the y” statistic, this

time with 10° variates. It is clear that even when A4 and k are 100 (i.e. the mean is

10,000), the simulations provide excellent agreement with theoretical results.

x> x10°
1 5 10 100

1| 2.0532 | 3.4268 | 6.4461 | 15.711

5| 14.123 | 17.015 | 40.180 | 65.851

10 | 23.529 | 33.964 | 42.674 | 126.94

100 | 185.56 | 314.85 | 443.08 | 1281.5

Table 5.2
The i’ statistics for the ensembles of 10° simulated negative binomial variates. Note

that the values are scaled by 10® to aid comparison.

Figure 5.3 shows the excellent agreement between theoretical and simulated results of
the negative binomial distributions when the ensemble size is 10°,4=5 and k=10

The difference between theoretical and simulated distributions is barely discernable.

Having shown the efficacy of the method of generating discrete distributions via a
Poisson transform method, we shall now examine the case of stably distributed

discrete distributions; since the moments are all infinite, it is expected that the heavier
tails will require much larger ensemble sizes to provide small values of the y°

statistics.
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0.025

0.02 -

0.015-

0.01F

0.005

0 50 100 150

Figure 5.3
Comparing theoretical (joined) and ensemble (crosses) negative binomial

distributions of 10° variates, with 4 = 5 and & = 10. In this instance, y* ~ 10™.

5.5 Simulating continuous-stable distributed variates

We have seen that it is possible to use the Poisson transform relationship to generate
discrete-stable variates, provided that a method for generating one-sided continuous-
stable variates exists. In the literature there are several methods for generating

continuous-stable variates of specific values of v and £. For instance, the famous
Box-Muller method [115] generates Gaussian distributed variates X, from which
Lévy distributed variates (for which v=1/2, f=1) can be simulated though
X, =1/X j It is also known [e.g. 40] that Cauchy variates can be generated by

dividing one Gaussian variate by another independent Gaussian variate.
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Methods exist to generate continuous-stable distributed variates of any values of the
parameters v and . The first such method was discovered by Kanter [116] and
generates one-sided continuous-stable variates (i.e. those for which 0 <v <1 and
B =1). It relies on an integral representation of the one-sided continuous-stable

distributions given (with an error in the proof, corrected below) by Ibragimov and

Chernin [117]:

p=1[! jx;ja((,,)exp[_x;a(@]w 63)

0

where

_( sin(ve) )=+ ( sin((1-v)g)
(/’)_( sin((p)j ( sin(ve) j oY

and p, (x) is as defined in (3.18).

Kanter used this representation to deduce a method of simulating the one-sided
continuous-stable distributions: if U is a variable uniformly distributed on [0, 7] and
W is an independent, exponentially distributed variable of unit mean, then the

random variable

1-v

)
w

has distribution p, (x). The proof of this is as follows:

Define a random vector Y = (W,U) which has values x and u with joint probability
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1
f(x,u) =exp(—x)-— x200<u<rx
/4

and a vector function of Y

1-v

Z(Y)=Z(W,U) = (%)U =(X,D)

which has an inverse

a(®d)

Xﬁ
=(g,(X, @), g,(X,D)).

G(X,®)= O =X=Y"(X,D)

The Jacobian determinant of G is

dg, (X, ®) dg,(X,D)| [dg,(X.®) dg (X, D)|
|- X o | | ox oD
| ox oD |
_9g,(X, D)
0z
v a(®)

The joint distribution of X and ® having values x and ¢ is, by Theorem 4.2 of
[113]:
h(x,0) = f(g,(x,9). &, (x,9)|J]

L o 402 | sto)

w\v-1

xl—v xl—v
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and thus the marginal distribution of the variable X being equal to x is found by

integrating over @, which is uniform on [0, 7]:
1( v\ 7 -
—[—jx - [a(g) exp[—x Ha(co)]d(p
T\l-v 0

which is exactly the form of (5.3) above, thus completing the proof.

The parameterisation (5.3), [117] is defined as giving one-sided continuous-stable
distributions p, (x) with Laplace transform exp(—s"), which, by (3.18) corresponds
to p(x,v,l,cos(zv/2)). In order to obtain variates for which the probability density
function is p(x,v,l,a) — i.e. for which the scale parameter may be varied, we use the

scaling relation (2.5) to obtain

X = {a . sec(ﬂﬂv(wjv
2 w

:(Cos(a )}ix sin(VU) X[sin((l—v)U)j; 59

zv/2 sin(U)"" w

for which the distribution is p(x,v,l,a).

Chambers, Mallows and Stuck [118] extended this result to the entire parameter range

of v and f using a similar technique, this time relying on a different integral
representation of the continuous-stable distributions given by Zolotarev [119]. If ¥

and W are random, independent variables drawn from a uniform distribution on
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[-7 /2,7 /2] and an exponential distribution of unit mean, respectively, then a slight

modification of their formula gives [e.g. 120, 121, 122] the random variable

v.p 1/v

X = cos(y) w
w27 _ W cos(y)
oo G - 5
where
arctan(/ tan(zv /2))
C 5= ,

DV,,; = (COS(arctan(IB tan(m/ / 2))))—1/1/

which has distribution p(x,v, 8,a).

YD x sin(v(7+ Cv,ﬁ))X(COS(V—V(VJf C,»)

(1-v)/v
)J vl

v=1

(5.6)

(5.7)

The full proof of this result is similar to that for the one-sided variates, and is omitted

for the sake of brevity. As expected, in the case when 0 <v <1 and S =1, (5.6) is of

the same form as (5.5). Setting =0 to obtain a simulator for the symmetric-stable

distributions, (5.6) reduces to:

. (1-v)/v
o S)codot-) L
Y= cos(y)"" w

a'" xtan(y) v=1

(5.8)

The method above is one which is most commonly found in the literature for

generating symmetric-stable distributions [e.g. 39, 120, 122] — in the case when

v =2, it simplifies to.

X =w"?sin(2y)
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which is the Box-Muller method [115] for generating Gaussian distributed variates.

With the foundations for simulating continuous-stable distributed variates laid, we

may now progress to the simulation of discrete-stable distributed variates.

5.6 Simulating discrete-stable distributed variates

Having found a method of generating one-sided continuous-stable random variates
and discovered the Poisson transform interrelationship between the one-sided
continuous and discrete-stable distributions, we may proceed to generate discrete-
stable variates. A random Poisson variable with mean governed by a one-sided
continuous-stable variable has, by the Poisson transform interrelationship, a discrete-

stable distribution.

Since the discrete-stable distributions are defined entirely through their scale
parameter 4 and power-law index Vv, it is necessary to use the scaling relation (3.16)

to define the random variable X in terms of the scale parameter A rather than a.

Hence setting a = Acos(zv/2) in (5.5) gives:

1-v

X oo A sin(VU) X(sin((l—v)U)jv 59)
sin(U)"" w :

Note that (5.9) illustrates clearly the role of the discrete scale parameter 4 on the

variable X . The specific dependence on the scale parameter 4 by the discrete-stable
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distributions on the shape of the distributions cannot be derived from the generating
function (2.8), and so this gives a new meaning to the dependence on the scale

parameter of the discrete-stable distributions.

Note also that upon setting v =1, (5.9) reduces to X = 4, which alludes to the delta
function limit of the scaled continuous-stable distributions as v — 1. This has the
effect of extending the range of the discrete-stable variate simulator to include the
Poisson case despite the fact that the corresponding continuous distribution is a delta

function.

Calculation of a new value of X is required for each successive discrete-stable
variable. Whilst this method requires the creation of three independent random
variables to create one, this method is very flexible in that it generates discrete-stable
distributions of any valid parameter, and does not require the use of look-up tables or
other such computationally expensive methods. Nor is it an approximation based

simply on power-law tails; the variates generated are discrete-stable distributed.

The efficacy of the simulator is of the most interest as v — 1, as the discrete-stable
distributions are Poisson-like for small values of N (see Figure 2.4). In this limit, we
require that the generator of the one-sided stable distributions produce variables from
a distribution which is almost a delta function in x (see Figure 3.4). The algorithm

outlined above is accurate only if the ensemble distributions of the generated variates
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as v — 1 have both the Poisson behaviour for small N and the power-law behaviour

for large N .

5.7 Results

The values of the power-law index chosen to investigate a range of values across the

parameter space are v = 0.1, 0.3, 0.5, 0.7 and 0.9, and to investigate the Poisson limit,

v is of the form 1-10"" for m =1, 3, 5, 7, and 9. The scale parameter A4 is set to 10

throughout.

Theoretical results are found by exploiting the form of the generating function of the
discrete-stable distributions (2.8) in Mathematica. The Expand command can be

used to produce Taylor-series expansions the generating functions Q(s) at the point

s =1. Since Q(s) is defined (2.7):
0(s)= Y (1-5)" P(V)
=(1=5)"PO0)+(1-5) PO +(1=5)>P2)+(1-5)P3)+...

the coefficients of (1—s)" in the expansion are the P(N) terms.

The y° statistics of the simulations are given in Table 5.3. It is apparent that for a

fixed values of 4 and m , as the power-law index v approaches unity, the
correspondence of the ensemble distributions to the theoretical distributions increases.

This is due to the fact that as the index approaches unity, the Poissonian portion of the
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distribution dominates for small N, where P(N) >>m™". Denoting k to be the value

of N for which the power-law tail begins, the ‘weight’ of the power-law tail, which

is given by the partial sum
2 P (N) (5.10)
N=k

decreases as v — 1 — this can be inferred from Figure 2.4.

.
v m=10’ m=10"

0.1 1.0573x10° | 1.0014x107
0.3 9.9912x10* | 1.0042x107
0.5 9.9654x10* | 1.0001x107
0.7 6.1361x10™* | 1.0005x107
0.9 9.9081x10™* | 1.2048x107
0.999 8.3549x10” |9.3910x10°®
0.99999 1.0381x10™ | 9.8812x10°
0.9999999 9.2061x10° | 4.9494x107
0.999999999 | 3.0443x10™° | 2.8680x10™®

Table 5.3
The ¥ statistics for generated ensembles of discrete-stable variates. The value of 4

chosen is 10 throughout.

The effect of the index on the y° statistic can be seen in Figure 5.4 below, which

shows the distribution of ensembles of m =10° variates for 4 =10 with v=0.5,

v=0.9 and v =0.999 . The corresponding y° statistics are 0.985, 1.02 and 0.010
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respectively. When v = 0.5 the tail behaviour begins at N =100 — in this case the
‘weight’ of the tail given by (5.10) is approximately 0.52, so there is a far greater
probability of a variate being in the tail. This can be seen in Figure 5.4; the error in

the ensemble distribution is noticeably larger here.

log{F(A])

101

121

4t

-16
a

log ()

Figure 5.4

Ilustrating the contributing factors to the lower y” statistics as v approaches unity.
Plotted are the distributions of ensembles of 10° simulated variates for which 4 = 10
and v = 0.5, 0.9 and 0.999 (red crosses, green plus signs and blue points,

respectively). The power-law tails for each distribution are also plotted (lines).

5.8 Summary

The method of generating discrete distributions using Poisson transform
interrelationships is outlined, and applied firstly to generate negative binomial

variates, then to discrete-stable variates. For each point in each parameter space, large
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numbers of the variates were collected to form an ensemble, the distribution of which

was compared to theoretical distributions found via analytical methods.

For a fixed ensemble size m , it was shown that as the mean (and hence the variance)
of the negative binomial distribution decreases, the accuracy of the ensemble
distribution increases. As the power-law index v of the discrete-stable distribution

approached unity, the accuracy increased. This is to be expected, since the ‘weight’ of

the tail and the number of values of N for which F, (N) = m~" both decrease in this

limit.

It is important to state that despite the fact that the y statistics are non-zero for the

ensemble distributions, this is a type of sampling error; the variates are independent,
and identically distributed, and the algorithm is an exact (as opposed to approximate)

method for generating discrete-stable variates.

We have now described a novel method to generate discrete-stable distributed
variates of arbitrary scale parameter 4 or power-law index v without the use of
cumbersome lookup tables or approximations. This is significant since the discrete-
stable distributions underpin so many processes in nature — the ability to generate
discrete-stable variates enables, for instance, Monte Carlo modelling [123] of real-
world discrete-stable processes. For this reason alone, the usefulness of this method

cannot be exaggerated.
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6.1 Introduction

In Chapter 5 a method of generating variates from discrete-stable distributions via the
Poisson transform was described — however this is a mechanism for the simulation of
random variates. A discrete-stable random process based on a multiple-immigration
population model, for which the counted emigrants also form a discrete-stable
process was described in Section 2.5. Yet another method of generating
(asymptotically) discrete-stable distributions was found by Hopcraft, Ingrey and
Jakeman [84] when studying continuous processes whose correlation function has
fractal properties. They found that the level crossing statistics of these processes have
power laws, and are thus asymptotically stable. The crossing behaviour of such
processes can be thought of as a model for extremal behaviour in nature, where
processes which have power-law tails are common. Smith, Hopcraft and Jakeman
[83] found that for Gaussian processes which have non fractal correlation functions,
the distribution of the number of zero crossings is either binomial, negative binomial

or (exceptionally) Poisson.

These results have been based on well-studied processes for which, in general, the
Probability Density Function (PDF) of the intensity has been known analytically. One
process whose PDF is not analytically known, but which can be numerically
simulated with ease is the phase-screen model [124]. This is an optical paradigm in
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which a plane wave is scattered through a phase perturbing screen which changes the
phase of the wave according to a given continuous process. This scattering is
demonstrated schematically in Figure 6.1. As the phase of a plane wave is altered by
the phase screen, contributions from different points of the phase screen interfere with
each other on propagating from the screen. As a result, focusing or ‘bright spots’ are
seen. By examining the intensity of light, in particular the distribution of level
crossings, (which occur when the intensity exceeds, or falls below a certain level), we
are examining the discrete properties of a continuous process, a recurrent theme of

this thesis.

focussing

Aperture width

Figure 6.1

A schematic demonstration of the effect of a random phase screen on a plane wave

It has been seen that negative binomial distributions in number fluctuations of

processes and the so-called K distributions [20] are intimately linked. The K
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distributions have deep roots in the context of scattering, initially proposed as a
model for sea echo, they also arise as the distribution of the slope of gamma

processes [125] and a wealth of other areas [e.g. 107, 126].

This chapter will begin by introducing the K distributions, then will outline the
algorithm used to simulate the phase-screen process. The intensity of the process will
firstly be analysed and its density compared to known distributions. After
examination of their means and Fano factors, the level crossing distributions will be
compared to binomial and negative binomial distributions. Finally, the asymptotic

properties of the infer-event times will be considered and estimated.

6.2 The K distributions

In Chapter 1 the K distributions were introduced as being an excellent model for the
statistics of ‘clutter’ (unwanted returns from radars), where the surface of the sea was
modelled as an ensemble of individual ‘scatterers’ of the radar signal. A heuristic
model [127] of this scattering paradigm arises when considering the number of
scatterers to have a negative binomial distribution, and the contribution of the signal

from each scatterer has finite variance.

This is analogous to a random walk model [97, 126] in which the sum of N
independent n -dimensional Gaussian processes is considered. The displacement of

the process is K distributed (after a suitable rescaling of the parameters) if N is a

negative binomially distributed statistical variable of mean N, and N — oo.
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We have already seen that the concept of ‘multiply stochastic’ processes and
distributions can produce new distributions from combinations of simpler ones. One
such multiply stochastic distribution which results in K distributed statistics occurs
when considering an exponential distribution whose mean is modulated by an
independent gamma distribution. Suppose we consider an exponential distribution of
mean A, where 4 is a gamma distributed random variable with shape parameter &

and mean «/b , then the multiply stochastic distribution is [e.g. 107, 125]:

T X 1
K(x,a,b): —exp(——jp , (A,Ot,—jdA
l A A)® b

2 e
=ty )7 K (24/0x) 6.1)

where as before, K, (x) is a modified Bessel function [93]. The moments of these K

distributions are easily obtained to be:

<x" >= EM (6.2)
b" T(o)

An alternative parameterisation of the K distributions arises from their roots in the
context of scattering. Supposing the variable x represents the intensity (i.e. the square

of the amplitude) of a return signal, and y is the amplitude of the signal, then upon

transforming x = y*, the distribution of the amplitude y is:

(a+1)/2

K(y,a.b)= WJ’“K(H (2\@)/) (6.3)

and the moments are:
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m M T(m+a)
b"  T(x)

It is in this parameterisation that the K distributions reduce to Rayleigh distributions

as o —> o [72]. In the same limit, the K distributions reduce to exponential

distributions.

Both parameterisations K(x,a,b) and IZ(y,Ot,b) occur in a wide variety of

experimental data [e.g. 20]; the specifics of the mode of measurement determine

which is appropriate for the situation.

The K distributions have arisen in a wealth of areas, as diverse as human migration
[128], and satellite imaging [129]. It would therefore be instructive to examine the

connection between negative binomial number fluctuations and K distributions.

6.3 A nonlinear filter model of a phase screen

A nonlinear filter model was introduced by Jakeman and Ridley [124] to numerically
investigate some properties of phase screen scattering such as far-field statistics. The
filter they describe, which is essentially a band-pass Lorentzian filter of width A of a

signal ¢(t), is given by the integral

S(t)=A2 jexp[i¢(t') + At'—1)dr'. (6.4)

This integral is analogous to the amplitude of a plane wave when scattered into the far

field by a corrugated random phase-changing screen, as illustrated in Figure 6.1.
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Denoting the aperture width of the wave to be W, the filter width can be thought of

as being A ~ W™ — this can be inferred from the integral for the filter (6.4).

The discrete analogue of this filter can be derived since:

df{—gt) = Aexplig(t')—1- S(¢).

Supposing that (z)(t) and S (t) are discretised as ¢(n) and S(n) for 1<n < N, it then

follows that

S(n)—S(n—1)= Adtexp(ig(n))— Adt-S(n—1)
S(n) = Adtexp(ig(n))+(1-A)S(n—-1).

To maintain accuracy in the discretisation, the quantity Aot must be small, or the
phase ¢(z) must be slowly changing. For simplicity, & is set to unity, so the

corresponding recurrence relation is:

Aexp(ig(l)) n=1
S(n) = (6.5)
Aexp(ig(n))+(1-A)S(n—-1) l<n<N

Note that the lower limit of the integral (6.4) is —eo, and the process S(n) has a

lower limit of n =1. Due to the exponentially decaying nature of the filter, for n'> n

and (n'-n)>>1/4, S(n) and S(n') are independent. Hence if the initial values of

S(n) are discarded (e.g. for n <3/ A1), the filtered signal is statistically stationary.

We are interested in studying the intensity of the filtered signal, which is found by

setting
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from which the pertinent statistics can be found.

6.4 Simulating a Gaussian process

Having discussed a nonlinear filtering model of a phase screen, the next logical step
is to discuss the generation of the random process which corresponds to the phase

#(t). A suitable process is the Gaussian process, for which generation methods exist.

One such method which allows the rapid generation a Gaussian process with a
prescribed autocorrelation was introduced by Liu and Manson [130]. Firstly, a vector

V, of i.i.d. Gaussian variables of unit variance and zero mean is created, then padded
with zeros. ¥V, is then convolved with a filter vector V, which contains all the
information regarding the autocorrelation of the required process. The result, V; is
now a Gaussian process with the specified correlation function. A portion of V is

removed so that end effects from the convolution are removed.

6.5 Level crossing detection

We are now in a position where we are given the intensity as a time series and are
thus able to find the level crossings. Given a series of values /(n), an efficient way to
find the level crossings at an arbitrary level u is demonstrated by Smith [131]. The
procedure of finding crossings of the level u =1 for a series of eight values is

illustrated below:
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0.1]15/1.9(3.0[09/03] 2 |0.1 I(n)

Firstly, take the sign of the values of the difference between the values and the level:

1, = sgn(/(n) —u).

A1 1|11 -1 |1 (n)y=sen(I(n)—u)

Next define I,(n)=1,(n)xI,(n+1), ignoring the terms that do not overlap (in

grey):

Al 1|t L(m)y=1,(m)XI,(n+])

Finally, subtract one from each point in the series, and divide by minus two.

rlolol1]ol1]1 I.(n)=(I,(n)=1)/(-2)

The corresponding train of zeros and ones gives the locations of the level crossings.

For instance, /,(n) =1 indicates that there is a crossing of the level u between /(n)
and /(n+1). Thus the number of crossings of the series /(n) of the level u is simply

the sum over the series /,(n). This method of analysis does not in general need to be
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performed in an element-by-element fashion, as many mathematical packages such as
MATLAB and Mathematica allow operations to be performed on entire vectors

simultaneously.

6.6 Results

For the purposes of the results in this chapter, the correlation function of the Gaussian
process is itself chosen to be Gaussian — this facilitates the fastest computation of the

Gaussian process itself. The particular correlation function chosen is of the form:

<9(0)p(2) >= ¢’ exp(— 2"7]

where the value of ¢ is taken to be 20, and the correlation length scale L is 100 steps

so that the difference in value between each step in the discretised process is small.

Values of the filter width A4 in (6.4) and (6.5) are chosen from the range [0.001, 0.1].

Each simulation is run over 87,381 steps, with the first 7381 steps discarded so that
the signal (comprised of 80,000 steps) is statistically stationary. Each realisation of
the filtered process is therefore run over 800 correlation lengths of the Gaussian
process. To generate the following results, 100,000 realisations are run for each

chosen value of A, totalling 8x10° steps.

For further examination later, nine points have been chosen which depict a range of
behaviours in the processes, and will be referred to as the test cases. These are when

the filter width 4 =0.01, 0.025, 0.075, and when the crossing level © =0.01, 0.1 and
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0.5. These test cases (along the filter widths and crossing levels) are marked on the

figures as appropriate.

6.6.1 The intensity and its density

Having outlined the method to generate the filtered process, it is instructive to
examine the effect of the filter width 4 on the intensity. For the same discretised
Gaussian process @(n), Figure 6.2 shows the processed signal /(n) for the chosen
values of 4. Note that peaks in the intensity, regardless of the value of 4, correspond

to stationary points in the phase.

For small A (corresponding to large apertures in the phase screen), the process has
more fine-scale structure that is not present as A increases. This is because for larger
apertures, many different points in the field contribute to create interference effects

which are not seen for smaller apertures (large values of A1).

In the limit 4 — 0, the filtered signal is termed ‘Gaussian’ or ‘fully developed
speckle’ [e.g. 132], for which the intensity has a negative exponential density. This
can be seen from the kernel of the integral (6.4) as A — 0, from which it can be

inferred that the signal /(¢) has a longer memory of the phase ¢(¢), resulting in

interference from many correlation lengths of the Gaussian process.
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0.1

< 0.05

¢(n)
.

0 2 4 6 8 10 12 14 16 18 20
n/L

Figure 6.2
Individual realisations of the process for 4 = 0.002 (top box), 0.025 (second), 0.075

(third), and the Gaussian phase itself (bottom box). Note the different vertical scales.

The logarithm of the probability density function of /(n) is plotted for the entire
parameter range in Figure 6.3. The richness of behaviour can be immediately be seen
in the multiple local maxima and minima in the phase space. As expected, the
maximum intensity increases as a function of the filter width 4. Figure 6.4 plots the

logarithm of the intensity for 0 < u < 0.2, where there is more structure.
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Figure 6.3
A contour plot of the logarithm of the probability density function of the intensity of filtered process

for 0 <7< 1.1. The dots refer to the case studies.
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Figure 6.4

A contour plot of the logarithm of the probability density function of the intensity of

filtered process for 0 </<0.2.

In order to examine the density P(/) of the intensity /(n) in the large aperture limit,
Figure 6.5 plots P(I) for A = 0.001, 0.002, 0.003 and 0.004. Recall that the K

distributions are defined by the two parameters « and b . To fit them to the densities,

(6.2) can be manipulated to obtain

2<x>?
o= 6.6
<x?>-2<x>? (6.6)
b=<(_j:>. 6.7)

This method of finding & and b to fit K distributions is used in Figure 6.5 below —

it is apparent that as A increases, the fit to the K distribution is less appropriate.
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Figure 6.5
Fitting K distributions to the density of the intensity when A = 0.001 (red), 0.002
(green), 0.003 (blue) and 0.004 (purple). The fitted K distributions are plotted as

solid lines.

The parameters of the K distributed fits and the y° statistics of the fit ( ;) are
given in Table 6.1. The y’ statistics from fitting an exponential distribution of the

same mean are also given (). It is clear upon comparison of the y statistics that

for 4 >0.001 that the K distributions provide far better fits than the exponential
distributions. When A = 0.001, the exponential and K fits are comparable, which is
to be expected given that as A — 0 negative exponential statistics (which K

distributions attain in the large ¢ limit) are expected from the phase screen model.
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A 0.001 0.002 | 0.003 | 0.004

<x> [0.00597 |0.0120 |0.0182 |0.0260

a 8.05 5.50 4.72 4.5

b 1349 459 254 173

7 | 813 24.8 14.5 15.25

2. |95.1 108 140 76.1
Table 6.1

Comparing the effectiveness of the fit of the K distribution to an exponential

distribution of the same mean for the intensity density of the filtered process.

For the values of 4 chosen as test cases, the intensity density is plotted in Figure 6.6.

5

Figure 6.6
Individual probability density functions for A = 0.002 (blue), 0.025 (green), and
0.075 (red).

In conjunction with Figure 6.5 which examines the intensity for small A, it is

apparent that there are three distinct regimes of behaviour for P(/). For very small
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values of A, the intensity is exponential. When A =0.002, P(I) is approximated
well by a K distribution. For 4 =0.075, P(I) resembles a uniform distribution,

whereas for 4 =0.025, P(/) is not like any known distributions.

6.6.2 Level crossing rates

Having investigated some properties of the process /(n), it is instructive to examine
its level crossings. Since the number of crossings in each realisation of the process is
dependent on the number of samples, it is more useful to consider the number of

crossings per correlation length of the Gaussian process, i.e. the crossing rate, which

is defined:

where, for the parameters used for these simulations in §6.6, L, =800 is the number

of correlation lengths over which each realisation is run. R is given as a contour plot

in Figure 6.7 as a function of the filter of width A and the crossing level u .

It is noteworthy that for values of 4 above 0.04, there is a large range of u for which
R >1, i.e. where the intensity crosses the level # more than once per correlation
length. For a fixed level u << 1, the mean decreases as A increases; this could be
inferred from the density of the process itself (Figure 6.3), which also decreases very
quickly as the level decreases. Figure 6.8 plots the mean crossing rate R for

0 <u < 0.2, where the largest value of R is.
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Figure 6.7

A contour plot of the level crossing rate of the filtered process for 0 <u <1.1.
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2

Figure 6.8

A contour plot of the level crossing rate of the filtered process 0 <u < 0.2.

The intensity of the process for 4 =0.02, u =0.01 where the crossing rate is near its
maximum is plotted in Figure 6.9. There is a large degree of fine scale structure
which occurs at almost all levels. This is due to the phase from many different points

in time contributing to produce interference effects.

0.06
0.5
0.4

0.04
0.3

I(n)

0.2 1 0.02 A f
0.1 / ﬂvr\m vﬂn f\v
LA YA L/ Y

0 2 4 6 8 0 1 2 3
nlL nlL

Figure 6.9

Showing the a realisation of the process for which # = 0.01 and A = 0.02. The region

within the blue box on the left plot is expanded on the right.
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6.6.3 Fano factors

Recall that the Fano factor is a measure of how Poissonian a discrete distribution is,

and is defined as the ratio of the variance to the mean:

_<N’>-<N>?
<N> '

F

(6.8)

It might be expected that since the process is measured over a large (800) number of
correlation lengths, the fluctuations in the number of level crossings would average
each other out, resulting in the crossings having a Poisson distribution, and hence unit

Fano factor.

Figure 6.10 shows the Fano factor for the crossings of the intensity of the filtered
process for the range 0 < 4 < 0.1 and 0 <u <1.2, from which it can be seen that the
Poisson assumption clearly does not hold, since there are points for which F < 0.5

and > 6.

Again, the range of interest seems to be 0 <u < 0.2 — this is plotted in Figure 6.11. A
maximum of the Fano factor plot can be seen to be in the region of A =0.065,
u = 0.015. Another region which has a very large Fano factor is at the origin - this
can be explained by Figure 6.2, which shows a greater degree of bunching of
crossings when A and u are low. The large variance in the crossing distribution

compared to its mean (c.f. Figures 6.7 and 6.8) then results in a large Fano factor.
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Figure 6.10

A contour plot of the Fano factor of the level crossings distribution of the intensity for 0 <u <1.1.
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Figure 6.11
A contour plot of the Fano factor of the level crossings distribution of the intensity

for 0 <u<0.2.

6.6.4 Level crossing distributions

Instead of examining the global characteristics of the crossings via their mean and
Fano factors, it is instructive to choose points in phase space and consider the level

crossing distributions themselves.

Though not apparent from either the crossing rate R or Fano factor F', there are
strong odd-even effects in the level crossing distributions. Figure 6.12 plots one such
crossing distribution when A =0.025 and u = 0.5 which exhibits strong odd-even
behaviour — there is a much greater probability of an even number of crossings

occurring than an odd number.
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The reasons for the odd-even behaviour can be intuited from the intensity /(n) of the
filtered process. Figure 6.13 shows a single realisation of the process when
A =0.025, with the level u = 0.5 plotted in red. The crossings tend to occur in pairs,
with even numbers of crossings being more likely than odd numbers. This is
reminiscent of a population process [61] for which immigrants are only permitted to

enter in pairs, and the distribution of emigrants showed strong odd-even effects.

These odd-even effects can be removed by considering the ‘envelope’ of the
distribution. Defining P(N) to be the probability that there are exactly N crossings

of the level u, the envelope is:

20 Voo
p(N)=] ?
P(N)+P(N -1) NS0,
2

The resultant distribution P, (N) is then ‘smoothed’ — the envelope of the level

crossing distribution for 4 =0.025 and u = 0.5 is plotted as circles in Figure 6.12. It
is shown in Appendix A that calculating the envelope of a distribution does not affect

its mean or Fano factor greatly except when the mean of P(N) is very small.
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Crossing distribution (black line) and envelope (red circles) for 1 =0.025, u = 0.5.
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Figure 6.13
A realisation of the process, showing the intensity when 4 = 0.025, and the level u =

0.5 (red line).

The fact that the binomial, negative binomial and Poisson distributions have Fano

factors less than, greater than and equal to unity respectively makes them suitable
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candidate distributions to fit to the envelopes. It is possible [e.g. 83] to parameterise
the binomial and negative binomial distributions in terms of their Fano factor F' and
another parameter « , i.e.:

o! _<N>

P(N)=—2 _FN1-F)"; a F<l 6.9
» (V) Ni(@— V)] (1-F) T F (6.9)
and
_ ! N
pny=¢ M el 10 a=N> Fsi (6.10)
Ni(a-1)! F -

respectively. In the context of scattering of light by discrete particles, the parameter
o can be thought of as the number of coherent scattering centres in the scattering
medium, or as another measure of how Poissonian a distribution is. For instance, as

a — o, (6.9) and (6.10) become Poisson.

For each of the nine test cases, the envelope is calculated, then (depending on the

value of the Fano factor) a negative binomial or binomial distribution fit is taken, and
the corresponding y° statistics are found. A Poisson distribution of the same mean,
and a Gaussian distribution of the same mean and variance are also compared via

their y° values — y*, and y’c respectively.

The envelopes of the level crossing distributions for # = 0.01, 0.1 and 0.5 are plotted
in Figures 6.14, 6.15 and 6.16 respectively. Also plotted are the Poisson, Gaussian
and (depending on the Fano factor) binomial or negative binomial fits. The

corresponding statistics for # = 0.01, 0.1 and 0.5 are given in Tables 6.2, 6.3 and 6.4
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respectively. Note that when A4 = 0.02, there are no crossings of the level u = 0.5, so

this case is not considered.

The envelopes (plotted as crosses) of the level crossing distributions are barely
discernable when plotted alongside the binomial and negative binomial fits (plotted as
blue lines). This shows that the binomial and negative binomial distributions provide

excellent fits to the envelopes for all of the test cases — regardless of the Fano factor
or the mean, and even in the fails of the distribution. The jy* statistics are therefore

consistently better for binomial/negative binomial fits than either Gaussian or Poisson

fits.

From the values of y’¢ it is clear that the Gaussian distribution is bad fit to the

envelopes when the mean is small. This is to be expected since it is symmetric — the

binomial and negative binomial distributions are not. For larger values of the mean
however, the Gaussian distribution provides a better fit, with y°¢ = y*, since it can
be thought of as a continuum limit to the binomial and negative binomial distributions.
Note that irrespective of the value of y°¢, the number of level crossings is a discrete

quantity, and thus can never have a true Gaussian distribution. The Poisson
distribution has provided poor fits to all the crossing distribution envelopes. This is to
be expected since none of the test cases have Fano factors which are close to unity,

and hence have relative variances which differ greatly to that of a Poisson.
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Figure 6.14

Crossing distribution envelopes for 4 = 0.002 (left), 0.025 (middle), and 0.075 (right). The crossing

level u# is 0.01 throughout. Also plotted are Poisson, Gaussian and either binomial or negative

binomial fits (green, red and blue lines respectively).

A 0.002 0.025 0.075
<N> | 708.8 2054 21.20
F 3.967 2.518 4.130
Fit Negative binomial Negative binomial Negative binomial
Ve 0.0052 0.3895 1.002
o 0.0055 0.3987 8911
2’r | 8.3x107 526 1.04x10%°
Table 6.2

The mean, Fano factor and y” statistics for the three values of 2 when u = 0.01.
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Figure 6.15

Crossing distribution envelopes for 4 = 0.002 (left), 0.025 (middle), and 0.075 (right). The crossing
level u is 0.1 throughout. Also plotted are Poisson, Gaussian and either binomial or negative binomial

fits (green, red and blue lines respectively).

A 0.002 0.025 0.075
<N > |5.569 948.3 599.4
F 3.628 0.5538 1.736
Fit Negative binomial Binomial Negative binomial
Ve 0.9594 0.0025 0.1585
2c | 1194 0.0030 0.1595
7r | 2.67x10" 0.120 3.18
Table 6.3

The mean, Fano factor and y” statistics for the three values of 2 when 1 =0.1.
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Figure 6.16

Crossing distribution envelopes for 4 = 0.025 (left) and 0.075 (right). The crossing level u# is 0.5
throughout. Also plotted are Poisson, Gaussian and either binomial or negative binomial fits (green,

red and blue lines respectively).

A 0.025 0.075
<N > | 240.0 810.4

F 1.842 0.3966
Fit Negative binomial Binomial
Ve 0.4838 0.0022
x'e | 05010 0.0029
xle | 331 0.257

Table 6.4

The mean, Fano factor and y” statistics for the two values of 2 when u = 0.5.
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Given that the parameters for the binomial and negative binomial fits are completely
parameterised by the mean and the Fano factor, it is instructive to plot the Fano factor
as a function of the mean; this is shown in Figure 6.17 (note that the Fano factor is

plotted on a logarithmic scale).

It can then be seen that for 0.5 < R <1 the minimum Fano factor is an exponential
function of the crossing rate — this is approximately

F =5exp(-2.6R). (6.11)
Likewise, the maximum crossing rate as a function of the Fano factor is

approximately

(log(F/2))"
1.6 '

R=2.65- (6.12)

It therefore follows that the maximum value of the mean crossing rate occurs when
the Fano factor is two — this can be seen in Figure 6.17, which plots the bounds for F
and R . Equation (6.13) can be inverted to give a maximum Fano factor of ~16 — it
can be inferred from Figure 6.11 and its discussion that this corresponds to crossings

for very small values of 4 and u .

Recall that the binomial (6.9) and negative binomial (6.10) distributions become
Poisson as & — o« (e.g. as F — 1), and that y” statistics have shown that they are

excellent fits to the test case envelopes (and presumably to the envelopes of any other
A ,u combination also). Figure 6.17 shows that there are envelopes for which F' =1,

so it therefore follows that for a suitable choice of A and u , the envelopes are
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Poisson distributed, though binomial and negative binomial envelopes are far more

abundant.

Small values of &, which imply strongly non-Poissonian statistics, occur either as a

result of small values of R, or large values of |F — 1| . It is apparent from Figure 6.17

that there is an abundance of negative-binomial envelopes where R (and «) is very
small, but the same is not true for binomially distributed envelopes, since the lower
bound of R is given by (6.11). For instance, the binomial test case with the smallest

value of & is 1 =0.075, u=0.5, where F =0.397 and R=1.01, and a =1300.

Figure 6.17

Plotting the Fano factor (on a logarithmic scale) as a function of the mean level
crossing rate for all sampled points. The blue dashed lines correspond to empirical
bounds for the crossing rate and Fano factor. Red lines depicting unit mean rate and
unit Fano factor are also plotted, and test cases are marked as red dots. The green

dotted lines F' = R and F = R / 2 will be referred to later.
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Note that the form of (6.9) and (6.10) imply that as the Fano factor passes through
unity from negative binomial to binomial, the value of & will diverge — this
divergence can be seen in Figure 6.18. It is especially interesting that for 4 = 0.025
and 0.075, the value of & seems to remain the same for large ranges of u , implying a
robustness in the level crossings statistics. That is, though the Fano factor in (6.9) and
(6.10) varies as the level increases, & does not vary much, indicating that an

underlying feature of the fluctuations of the intensity control the value of « .

log(e(u))

Figure 6.18

Plotting a as a function of the crossing level u for A =0.002 (red), 0.025 (green), and
0.075 (blue). Stars represent negative binomial distributed crossings; circles
represent binomial distributed envelopes. A transition from stars to circles (i.e.
negative binomial distributed envelopes to binomially distributed envelopes, or vice

versa) represents a divergence of a, illustrated by dotted lines.

144 -



CHAPTER 6. CROSSING STATISTICS
6.6.5 Inter-event times and persistence

Having considered the distribution of the number of level crossings of the process, it
is also useful to examine the distribution of the intervals between level crossings. A
useful measure of the dynamics of a process its ‘persistence exponent’, which can be

thought of as a measure of how long it tends to stay above/below a set level.

If we define the variable 7 to be the interval between two consecutive level crossings,

then it can [e.g. 133] be shown that for a wide class of random processes:
T
P(7) ~ exp(—zej; T oo (6.14)

where @ is termed the ‘persistence exponent’ and L is some scale length of the
process at hand (in this case, the correlation length of the Gaussian process). Clearly
for large values of @, the process is more likely to change signs rapidly, which
implies that the mean number of crossings will be larger as a result. Likewise, it can
be inferred that when @ is large, crossings are more bunched together, which implies

a small Fano factor. It then follows that the quantity

0 =c-

e

(6.15)

Y| &

where ¢ is some constant, is a heuristic estimate of the persistence exponent.

Figure 6.19 plots the inter-event distribution of the level crossings when A = 0.025
and u =0.01. Also plotted are straight lines corresponding to exponential tails with

persistence exponent € = 0.9923 which best fits the data (in red) and the estimated
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value (with c=1), 8, = 1.020 (in blue). It is evident that the two values do not differ
by much, 8, over-estimating the persistence coefficient. This implies that €, is a

suitable estimator for the persistence exponent.

log(P(7)

/L

Figure 6.19
Plotting the inter-event distribution when A = 0.025, u = 0.01 as a function of the
normalised interval length 7 / L. Straight lines corresponding to the persistence

exponent 8 (red) and from the estimated persistence 6, (blue) are also plotted.

Figure 6.20 plots the persistence index €, the estimated persistence index €,, mean

crossing rate R and Fano Factor ' for u = 0.01, 0.1 and 0.5 as a function of the
filter width A for the three chosen crossing levels. For u = 0.01, the difference

between 6, and @ is being barely discernable. For u = 0.1 and u = 0.5, the form of

6, resembles that of the persistence, with the fit being better for small 4.
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Figure 6.20
Plotting the persistence 6 (black line with crosses), the mean crossing rate R (green line), Fano factor '
(red line with squares), and the estimator 6. (blue line with circles) for the three levels 0.01, 0.1, and

0.5 (top, middle and bottom boxes respectively).
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Figure 6.21 plots the rescaled persistence 8/c(u) (where c(u) is some unknown

function of the level u ) as a function of R/F for the three test case levels. It is

apparent that when R <2F, 8/c(u)=R/F , so

P(r)~exp(—@-%j T oo, R<2F. (6.16)

The line R =2F is plotted in Figure 6.17, from which it can be seen that the majority

of points in the A,u phase space satisfy R <2F , i.e. (6.16) is a good estimate for the

asymptotic behaviour of the inter-event times.

4.5
4t o i
:g e
3.5} ° m] B!
3F A
° o -7
3 25! T .
o e _- o
E 2 ° //r// o b
15 et 1
1 20 |
Fra
0.5 oS .
0 il I I I I I
0 0.5 1 1.5 2 2.5 3
R/F
Figure 6.21

Plotting the rescaled persistence exponents @ / c(u) as a function of the ratio of the
mean crossing rate to the Fano factor, R / F for the three levels ¥ = 0.01, 0.1 and 0.5
(red crosses, green points and blue squares respectively), the corresponding scales

being ¢(0.01) = 1, ¢(0.1) = 0.65 and ¢(0.5) = 0.57.

Analogies to the concept of persistence can be drawn in discrete processes also. For

instance, Hopcraft considers the counting statistics (see §2.5