
Towards the artificial evolution of target
features in complex chemical systems

Peter Siepmann BSc (Hons), ARCO, LRSM

Thesis submitted to The University of Nottingham

for the degree of Doctor of Philosophy, July 2010

ii

Contents

List of Figures iv

List of Tables viii

1 Introduction 1
1.1 Motivation and aim 4
1.2 Methodology 6
1.3 Contributions 7
1.4 Overview and structure 10

2 Context and background - a literature review 12
2.1 Self-organisation 13
2.2 Complex system design 15
2.3 Evolutionary Computation 16
2.4 Frameworks 24
2.5 Applications 25
2.6 Conclusions 26

3 The Evolutionary Engine 27
3.1 System architecture 28
3.2 Parellisation 35
3.3 Remote laboratory connection 35
3.4 Conclusions 41

4 A complex search space analysis protocol 44
4.1 Cellular automata - a description 45
4.2 Fitness 49
4.3 Robustness verification 51
4.4 Conclusions 58

5 Evolving cellular automaton systems 60
5.1 Experimental setup 60

CONTENTS iii

5.2 Results 61
5.3 Local search 67
5.4 A further assessment of the USM 81
5.5 Conclusions 86

6 Evolutionary design of nanostructures 88
6.1 Nanostructures 89
6.2 Fitness 94
6.3 Robustness analysis 99
6.4 Results 103
6.5 Identifying limitations in Minkowski image analysis: Multi-phased nanos-

tructures 111
6.6 Conclusions 115

7 Accelerated evolution through fitness approximation 117
7.1 Artificial neural networks 118
7.2 Artificial neural networks as fitness approximators 123
7.3 Results 127
7.4 Conclusions 128

8 Conclusions and outlook 134

References 139

A Datasets 152
A.1 Turbulence 152
A.2 Nanostructures 160

iv

List of Figures

2.1 Graphical representation of the uniform crossover method of parent
selection in a genetic algorithm . 19

2.2 Graphical respresentation of the n-point crossover method of parent
selection in a genetic algorithm . 19

2.3 Graphical respresentation of the uniform arithmetic crossover method
of parent selection in a genetic algorithm 20

2.4 Graphical respresentation of a Gaussian mutation operator 21
2.5 Graphical respresentation of replacement strategies available for use

within a genetic algorithm . 22
2.6 A graphical explanation of Pareto optimality 23

3.1 An example XML configuration script used within the Evolutionary
Engine . 29

3.2 Code outline of the Evolutionary Engine’s problem specification class. 30
3.3 Diagrammatic representation of the logical structure and operation of

the Evolutionary Engine . 31
3.4 Screenshot of the web-based configuration module within the Evolu-

tionary Engine . 32
3.5 Screenshot of the web-based execution module within in the Evolu-

tionary Engine . 33
3.6 Diagramatic representation of the Evolutionary Engine’s class structure 34
3.7 Graphical representation of the parellisation capabilities of the Evolu-

tionary Engine. 37
3.8 Diagram and photograph of the chemical reactor array to which the

Evolutionary Engine is designed to connect 39
3.9 A schematic showing the communication protocol between the Evolu-

tionary Engine and the remote chemical reactor array 40
3.10 Evolution graph of the simple ‘find a colour’ experiment using the

remote laboratory reactor array in conjunction with the Evolutionary
Engine . 42

LIST OF FIGURES v

3.11 Absorbance spectra for generations 0-3 in the simple ’find a colour’
experiment using the remote laboratory reactor array in conjunction
with the Evolutionary Engine. 43

4.1 The elementary cellular automaton system produced using Wolfram’s
“Rule 30” . 47

4.2 A example pattern from the Tubulence cellular automaton model . . 49
4.3 Mappings and analysis methods . 52
4.4 FDC scatter plot for the Turbulence system. r = 0.165 55
4.5 FDC scatter plot for the Turbulence system (initial-turbulence only).

r = 0.143 . 56
4.6 FDC scatter plot for the Turbulence system (coupling-strength only).

r = -0.375 . 56
4.7 FDC scatter plot for the Turbulence system (roughness only). r = -0.151 57
4.8 Logarithmic clustering tree showing the Turbulence dataset grouped

according to phenotypic similarity (as calculated by the Universal Sim-
ilarity Metric) . 59

5.1 Graph of fitness against time, plus target and evolved behaviour for a
GA functioning on problem Turb-20-0.8-0.005 63

5.2 Graph of fitness against time, plus target and evolved behaviour for a
GA functioning on Turb-20-0-0.005 64

5.3 Graph of fitness against time, plus target and evolved behaviour for a
GA functioning on problem Turb-40-0.2-0.005 65

5.4 Graph of fitness against time, plus target and evolved behaviour for a
GA functioning on problem Turb-60-0.4-0 66

5.5 Graph of fitness against time, plus target and resultant behaviours for
a random search of problem Turb-20-0.8-0.005 70

5.6 Graph of fitness against time, plus target and resultant behaviours for
a random search of problem Turb-20-0-0.005 71

5.7 Graph of fitness against time, plus target and resultant behaviours for
a random search of problem Turb-40-0.2-0.005 72

5.8 Graph of fitness against time, plus target and resultant behaviours for
a random search of problem Turb-60-0.4-0 73

5.9 Graph of fitness against time, plus target and resultant behaviours for
a hill climb of problem Turb-20-0.8-0.005 76

5.10 Graph of fitness against time, plus target and resultant behaviours for
a hill climb of problem Turb-20-0-0.005 77

5.11 Graph of fitness against time, plus target and resultant behaviours for
a hill climb of problem Turb-40-0.2-0.005 78

5.12 Graph of fitness against time, plus target and resultant behaviours for
a hill climb of problem Turb-60-0.4-0 79

LIST OF FIGURES vi

5.13 Target patterns for meta-automaton group A (one rule per model) . . 82
5.14 Target patterns for meta-automaton group B (two rules per model) . 82
5.15 Target patterns for meta-automaton group C (four rules per model) . 83
5.16 Examples of mirror images evolved for meta-automaton targets (target,

left; evolved, right): (a) A2, (b) A4, (c) B1, (d) B2, (e) B7 85
5.17 Examples of other similarities captured in evolved meta-automaton

targets (target, left; evolved, right): (a) A9, (b) B8, (c) B9 85
5.18 Target and evolved patterns for meta-automaton group C (four rules)

(target, left; evolved, right): (a) C1, (b) C2, (c) C3 85

6.1 3D atomic force microscope images demonstrating four types of com-
monly observed nanostructured patterns. Imaging by Christopher Mar-
tin/Philip Moriarty (University of Nottingham) 89

6.2 Diagrammatic representation of the constructuion of a Thiol-passivated
Gold nanoparticle . 90

6.3 Example morphologies obtained through the spin casting of Thiol-
passivated Gold nanoparticles onto a silicon substrate 91

6.4 Hierarchical clustering tree showing USM classification of the nano
system dataset . 96

6.5 FDC ‘target’ individual (Parameters: < 35, 0.21, 1, 3 >, Simulation
time: 976s . 101

6.6 FDC scatter plot for the nano system (area only). r = -0.137 101
6.7 FDC scatter plot for the nano system (perimeter only). r = 0.548 . . 102
6.8 FDC scatter plot for the nano system (Euler only). r = 0.556 102
6.9 Logarithmic clustering tree showing the classification of the nano sys-

tem dataset by our Minkowski-based similarity metric 104
6.10 Nanostructured target patterns, both ‘real’ atomic force microscope

images, and thresholded, despeckled, binary version for use within the
evolutionary algorithm . 105

6.11 Target pattern, evolution graph and best resultant pattern from the
evolutionary algorithm, running on the “cell” target 107

6.12 Target pattern, evolution graph and best resultant pattern from the
evolutionary algorithm, running on the “worm” target 108

6.13 Target pattern, evolution graph and best resultant pattern from the
evolutionary algorithm, running on the “island” target 109

6.14 Target pattern, evolution graph and best resultant pattern from the
evolutionary algorithm, running on the “labyrinth” target 110

6.15 Extended nanostructure evolution: Phase separation 114
6.16 Evolved two-phased nanostructure . 115

7.1 Schematic of a biological neuron . 119
7.2 Neural network implementations of logic gates 120

LIST OF FIGURES vii

7.3 Graph of fitness against time for the evolution of the neural network
approximating the Minkowski area of a nano simulator pattern 126

7.4 Graph of fitness against time for the evolution of the neural network
approximating the Minkowski perimeter of a nano simulator pattern . 126

7.5 Graph of fitness against time for the evolution of the neural network
approximating the Minkowski Euler characteristic of a nano simulator
pattern . 127

7.6 Evolution of nanostructures with surrogate fitness - target “cell” . . . 129
7.7 Evolution of nanostructures with surrogate fitness - target “worm” . . 129
7.8 Evolution of nanostructures with surrogate fitness - target “island” . 130
7.9 Evolution of nanostructures with surrogate fitness - target “labyrinth” 130
7.10 Comparision of evolved patterns using a) the nano system simulator

with Minkowksi analysis and b) the neural network fitness approxima-
tion, along with total run-time statistics (hr:min:sec) 132

viii

List of Tables

3.1 Customisable options and user-specified operators for the Evolutionary
Engine . 36

5.1 Statistical analysis of Turbulence system evolutions, using GA/USM. 62
5.2 Statistical analysis of Turbulence system random search 69
5.3 Statistical analysis of Turbulence system hill climb 75
5.4 Statistical significance (t-value) analysis between the performance of

Genetic Algorithm, Random Search and Hill Climbing methods. . . . 80
5.5 Target and evolved rule sets for the meta-automaton system 84

6.1 Example patterns from the nano system simulator 93
6.2 Statistical analysis of Nano system evolutions 106
6.3 Extended nanostructure simulator: Parameters 112

7.1 Chromosome for the evolution of neural network parameters 124
7.2 Statistical analysis of neural network evolutions, showing the resulting

parameters as well as the RMS training error 125
7.3 Statistical analysis of surrogate-assisted nano system evolutions. The

table also shows the evolved genotype, as chosen by the Automated De-
cision Maker, along with the associated Normalised Combined Fitness
value. 131

Abstract

The synthesis of abiotic life-like behaviour in complex chemical systems is one of the

great scientific challenges in today’s research environment. Very often in this type of

design, the parameter space is so large and the system so complex that analytical,

rational design techniques are extremely difficult to manage, and more often than not,

unavailable altogether. Machine learning methods have found many applications in

the realm of design and manufacture and the research described in this thesis describes

the application of these tools towards the development of pre-specified chemical func-

tionality in complex systems. A detailed description of the ‘Evolutionary Engine’

built with this sort of design in mind is given, including preliminary investigations

into coupling this engine to a ‘real life’ chemical reactor array. Studies are performed

on a range of complex systems, including benchmark problems based on cellular au-

tomata, and, for the first time in this domain, on real world problems in self-organised

scanning probe microscopy. Given a target behaviour of the system in question, usu-

ally represented by a series of patterns in a 2D image, it is shown that parameters

can be ‘reverse engineered’ through a sophisticated combination of machine learning

techniques and image analysis methods, such that the target behaviour/pattern can

be faithfully reproduced. Finally, techniques for the approximation of a complex sys-

tem and its associated fitness function are explored, giving rise to a dramatic decrease

in computation time with little compromise to the quality of results.

ix

Acknowledgements

First, my thanks to the Engineering and Physical Sciences Research Council for

their funding throughout the three years of my PhD course (EP/D023378/1), and to

the Automated Scheduling, Optimisation and Planning research group at the Univer-

sity of Nottingham for the comprehensive training and education they provide.

Particular thanks, of course, go to my supervisor, Dr Natalio Krasnogor for his

support, inspiration, good humour and friendship – even when results were discour-

aging and motivation flagging, our weekly meetings never failed to lift my spirits and

to inspire, and I feel privileged to have had the benefit of his care and expertise.

Special thanks also to my dear friends outside of the world of Computer Science,

both members past and present of the University of Nottingham Music Society and

all those in the Parish of All Saints, St Mary and St Peter, Nottingham – their

friendship and all the wonderful music we produced together provided an invaluable

counterpoint to scientific research.

To Adele, for her boundless love, encouragement, humour and companionship, my

deepest love and thanks, always.

A PhD represents the culmination of over two decades of education – my final

thanks, then, go to all the teachers and staff at Bruern Abbey School (particularly

Rod Woods, who played such a formative part in my early education); New College

School, Oxford; St Edward’s School, Oxford and the University of Nottingham, but

most of all to two loving parents, who selflessly provided for this most privileged of

educations, the appreciation for which is as heartfelt as it is inexpressible.

x

1

Chapter 1

Introduction

The quest to produce ‘artificial life’ has been ubiquitous in the scientific community for

centuries. As early as 1738, Jacques Vaucanson’s mechanical duck [101] captured the

interest of scientist and layman alike. Of all the research devoted to designing systems

such that they exhibit some sort of life-like behaviour, particularly interesting is the

work investigating those systems that comprise entirely abiotic components – this

aspect of such research breaks with the often firmly-held view that life-like behaviour

can emerge only from biological components and, in doing so, opens the field of

artificial life research up to a far wider group of researchers across many disciplines.

Of course, such work is entirely dependent on the answer to what ‘life-like be-

haviour’ actually is. The question of what defines life has provoked countless discus-

sions within the religious, philosophical and scientific spheres. It is important not to

assume that all life is like ours, namely RNA/DNA-based biomolecular organisms.

Perhaps the biomolecular life that we observe today on Earth is just one of a number

of possible implementations! Indeed, it is often argued that life on earth evolved out

of a completely different set of building blocks, that were later to be out-competed by

‘modern’ RNA/DNA systems [97]. One aspect of living systems that is surely without

controversy is the notion of some container or boundary that separates the system

from its surrounding environment, or, in other words, cellularity. Within the confines

of this container, occurs a process or processes that result in a particular organisation

of components that drives what we deem to be a ‘life-like’ feature, whether this be a

method of reproduction, energy exchange/metabolism, information processing, etc..

1. introduction 2

Another crucial aspect of any of these processes is some sort of ‘self-organisational’

property, and so the study of self-organising systems, from the most basic to the

fiercely complex, is absolutely key in this field of research.

During the birth of the science we now know as ‘artificial intelligence’, Alan Tur-

ing (often called the ‘father of Computer Science’) proposed a test to answer the

question as to when machines could be termed ‘intelligent’ [127]. It is essentially an

imitation game: A human judge engages in a series of questions (probing some aspect

of intelligence) with two other parties, one a human and the other a machine, each in

a separate room. If the judge cannot reliably tell which is which, then the machine is

said to pass the test. It is assumed that both the human and the machine try to give

the impression of being human. There are a number of objections to this test (per-

haps most famously, Searle’s ‘Chinese Room’ concept [111]) and indeed a number of

counter-arguments to these objections, but it is still the most widely adopted method

of answering the artificial intelligence question. Indeed, we now commonly see the

Turing Test at work distinguishing between human and ‘softbot’ in some internet

registration pages, where a human user is required to interpret a picture containing

an alphanumeric code. These are called CAPTCHAs (Completely Automated Public

Turing test to tell Computers and Humans Apart) [129].

A similar imitation game is proposed in [22] for the recognition of life (or ‘life-like

behaviour’), but with a number of necessary modifications. Instead of asking ques-

tions to prove the intelligence of a machine, candidate ‘life-like’ systems are probed

in a number of different ways, in order to explore a different aspect of life, whether

this be response to stimuli, heredity, metabolism, or any of the other commonly used

criteria. If these probes cannot distinguish between natural, in vivo and artifically

constructed, in vitro systems, the manufactured system can be reasonably deemed to

be ‘life-like’, as far as the probed criterion is concerned.

The aim of the research presented in this thesis is to explore some of the issues

involved in the design of complex physio-chemical features that can be seen as initial

stepping stones towards this goal of synthesising artificial, complex, life-like chemical

behaviour.

Most design and manufacture problems (anything from building a bridge to de-

1. introduction 3

signing a new computer) are usually solved by rational/analytical design, i.e. by

hand, by engineers (if aided by computers), but as the problems that people want to

solve get more and more complex, this rational design becomes more and more infea-

sible, and in many cases there are in fact no analytical solutions available. To use a

relevant illustration, consider a simple chemical system. The inputs into this system

determine the nature of the output, such as the yield or robustness of the chemical

product, and could include parameters such as temperature, concentrations, pH and

flow rates. Given, for instance, thirty inputs, each of which can take an integer value

in the range [0,1000], this results in 1090 possible combinations of input values – sub-

stantially more than the number of atoms in the universe. Rational design of such

a system is, in the majority of interesting cases, infeasible not only because explor-

ing the search space in an exhaustive fashion would take a very long time, but also

because the system is such that the mappings between input and output are highly

complex, non-linear and counter-intuitive, thus making it possible that no analyt-

ical solutions exist. For these reasons, computational methods are often employed

to search for the optimum set of input parameters in such cases. Stephen Wolfram

describes such methodologies as “a new kind of science” [131].

It is a commonly held view that local search methods are not as appropriate for the

optimisation of such systems [87, 102] than those algorithms that stem from the field

known as ‘evolutionary computation’. John Holland’s proposal of the genetic algo-

rithm [56] in 1970 was the defining moment for this fascinating computing paradigm

which takes the principals of Darwinian evolution and applies them to computational

search methods.

Evolutionary computation is not bounded by human expectations or intuitive rea-

soning; the ‘trajectory’ of an evolutionary design may be highly counter-intuitive, yet

highly successful. Some problems may be solvable by rational means only, some only

through evolutionary design, some through both, some perhaps by neither. Examples

of the success of evolutionary design can be found throughout the literature; particu-

larly noteworthy is the work of Julian Miller with Liquid Crystal Displays [48] where

the input voltage patterns needed to create a particular pattern on the LCD display

are evolved, and the pioneering studies of Adrian Thompson in the evolutionary de-

1. introduction 4

sign of analog circuits [122] where solutions were found that were much more efficient

than their human-designed equivalents. Many more such examples are referenced in

chapter two of this thesis.

This type of automated, ‘machine learning’ assisted design is gaining increased

popularity in the world of electronic engineering. Once electronic chip design passed

a certain point of miniaturisation, systems began to be embedded into all manner

of systems, some critical, such as air craft, weaponry, power generation arrays, and

others. As the scale of these systems increased, with millions of transistors connecting

to millions of other transistors all on a single chip (so-called, very-large-scale integra-

tion (VLSI) circuits), rational design became evermore infeasible. Futhermore, once

such a chip was embedded deep into a system, maintenance became very challenging,

if not impossible. To address these problems, the notion of “Evolvable Hardware”

was introduced [45], whereby circuits could adapt and reconfigure themselves in re-

sponse to changes in their surroundings, such as environmental factors, connection

malfunctions, etc.. The ‘Field Programmable Gate Array’ (FPGA) [12] is the most

widespread example of this type of device, enabling the programming of its func-

tion to be carried out after manufacture, and offering near unlimited reconfiguration

opportunities.

1.1 Motivation and aim

We suggest that the field of synthetic chemistry has now reached a similar stage to

pre-VLSI electronic engineering; although the guiding principals are well-understood,

the integration of a large number of complex components means that a more advanced

method than rational design needs to be applied. The hypothesis is posited, therefore,

that evolutionary algorithms can be employed to coerce complex chemical systems

– but also, more generally, self-organised systems – into a pre-determined target

behaviour. This thesis therefore explores some of the issues involved in coupling

machine learning techniques to chemical design problems in the hopes of contributing

to the initial development of the field now emerging as ‘Evolutionary Chemistry’ [54].

It is important that any software developed during this work should be easily available

1. introduction 5

and easily usable, so that an expert understanding of the algorithms is not required

to operate the software, thus enabling its use by researchers in a range of other

disciplines. It is hoped that the use of evolutionary computation techniques rather

than the more traditional analytical design methods will one day open up a new,

previously unreachable area of chemical functionality, whilst also giving insight into

the underlying chemistry behind them.

Not only must we specify the algorithms, parameters, etc. that evolve the design

for the ‘recipe’ for a given problem, but we must also develop methods of analysing

the resultant behaviour and comparing it to that which has been specified by the

user. Indeed, verifying whether an evolutionary algorithm is an effective method of

optimisation for a given problem using a given fitness function is still an open problem.

It is important, therefore, that the complex nature of the genotype–phenotype–fitness

relationship is carefully analysed.

One of the most common problems with any sort of experimentation relating to

complex systems, particularly simulations, is the often very lengthy run time and

computational expense. Approximation models, sometimes called ‘surrogate’ models

of complex systems are increasingly well-studied, and so this thesis will also investi-

gate the hypothesis that self-organised complex systems can be modelled by a simpler

approximation, resulting in savings of time and computation expense without com-

promising the quality of results.

To summarise the aim of this thesis into a single problem definition:

1.1.1 Problem definition

Complex systems are those that demonstrate a highly non-linear behaviour. They

are often multi-dimensional (that is, many input parameters determine their resultant

behaviour), noisy (a given parameter set and runtime environment may result in a

varity of behaviours) and hard to model. The principal question addressed in this

thesis is: how can researchers successfully ‘reverse engineer’ the input parameters to

complex systems such that the behaviour – that is, the system’s actions/reactions to

the environment – of these systems matches a pre-defined target specification.

1. introduction 6

To investigate this research question, a number of objectives are defined:

1.1.2 Objectives

1. A toolbox of machine learning techniques will be designed, but with the crucial

added features of user-friendly configurability, and ‘connectability’ to (remote)

laboratory apparatus.

2. A selection of behaviour analysis methods for complex systems will be devel-

oped, that can be used to compare designed behaviour with target behaviour

in the context of an evolutionary algorithm.

3. Development of a method for verifying the robustness of a given analysis method

in the context of complex systems optimisation problems.

4. Approximation models of complex systems will be studied in order to investigate

the potential of such models to save time and computational expense without

compromising the quality of results.

Self-organisation is a relatively new area of research - there is much still to be

discovered, much still to be formalised. A greater understanding of the processes

involved in dynamic self-organised systems (examples of which are presented in the

next chapter) could herald the start of a revolutionary new paradigm of evolvable

chemical complexity. It is towards this overall goal that the research presented within

this thesis aims to contribute. Furthermore, it is hoped that this research is presented

in an easily readable, accesible manner.

1.2 Methodology

1. Careful analysis of the fitness landscape is important in any evolutionary study.

Both experimental and statistical techniques and measures are employed to

assess the complexity of the genotype–phenotype–fitness mapping in the various

domains being investigated.

1. introduction 7

2. Supported by the landscape analysis, standard evolutionary algorithms are then

coupled to the fitness analysis methods being developed.

3. At the initial stage of algorithm selection, the proposed evolutionary compu-

tation methods are compared, through benchmarking experiments, to basic

standards such as random search and hill climbing methods.

4. The evolutionary algorithms themselves are kept relatively simple. As this is

the first time such methods have been applied to, in particular, scanning probe

microscopy, over-complication is to be avoided at all costs, and thus we tend

to take a ‘bottom up’ approach to algorithmic complexity. Only if the simplest

algorihms do not succeed, do we move on to more complex alternatives.

5. Finally, the potential for approximation of the complex system is explored, in

the hopes that comparable results may be possible but without the computa-

tional expense associated with running complex systems.

1.3 Contributions

Research into self-organisation and self-assembly systems is in its infancy, and so it is

hoped that the work presented in this thesis will be seen as an interesting contribution

to this growing field.

1.3.1 Software platform

Although a number of evolutionary algorithm ‘toolboxes’ exist, we believe that the

platform developed during this research (and described in chapter 3) is unique through

its ease of use, flexibility, configurability and ease of access. Specifically, its intuitive

user-interface and ‘connectability’ to laboratory apparatus (such as that described

in section 3.3) makes it particularly appealing to our inter-disciplinary colleagues in

physics, chemistry and biology. It gives rise to the potential for real-time optimisation

of complex chemical processes.

1. introduction 8

1.3.2 Robustness verification

Chapter 4 presents a methodology for verifying the robustness of a given fitness

function in the context of a given complex search space. Finding a reliable method of

predicting when an evolutionary algorithm will be an effective method of optimisation

is still an open topic of research in evolutionary computation theory. Due to the

complex nature of the genotype–phenotype–fitness mapping in the problems with

which we are dealing, a method of verifying the robustness of a fitness function is of

great importance. We present a two stage process for just such a method to verify

whether a given fitness function could accurately direct a search in such complex

dynamics. This two stage process involves both cluster analysis and fitness-distance

correlation, and is published (see section 1.3.5).

1.3.3 Evolutionary design of scanning probe microscopy

Chapter 6 applies an evolutionary algorithm to design a specific pre-defined behaviour

in a nano-scale self-assembly system. This published work describes a novel appli-

cation of evolutionary computation methods; the application of such techniques to

the domain of scanning probe microscopy is unique. In particular, we believe the use

of Minkowski functionals as part of a new graphical similarity metric to be a most

interesting innovation. This application takes the work of this thesis much closer to

the design of real, physical systems, as well as providing an important link between

simulation and experiment in the study of self-organising nanostructured systems.

This is novel work and takes us ever closer to the concept of software control of

matter. The potential of this work to be extended to the construction of nanoscale

components as part of an ‘unconventional computing’ system, such as that suggested

in [126] is particularly relevant in today’s research environment, and indeed, there is

a clear analogy between the behaviour of such a system and the origins of biological

life, though the formation of simple particles into such an arrangement that could

encode some form of complex behaviour or functionality.

1. introduction 9

1.3.4 Fitness approximation

Although the results achieved with the methods alluded to above are of an impressive

quality, the time taken, both by the simulator itself, but also by the fitness calcu-

ation, is not inconsiderable. Fitness approximation is an increasingly well-studied

field within the evolutionary computation community, and explores the potential for

savings in time and computational expense through the use of a fitness approxima-

tion model. It is shown in chapter 7 that a neural network ensemble can accurately

embody not only the behaviour of the complex system, but also its subsequent map-

ping onto the relevant analysis methods. This use of a single model to approximate

both the complex system and the analysis methods is an interesting and ambitious

contribution to this area of study.

1.3.5 Publications

The work towards – and contained within – this thesis has resulted in the following

peer-reviewed publications, posters and workshop presentations:

1. L Li, P Siepmann, J Smaldon, G Terrazas, N Krasnogor: Automated Self-

Assembling Programming. Systems Self-Assembly: Multi-Disciplinary Snap-

shops, Elsevier, pp. 281-303, 2008.

2. P Siepmann, CP Martin, I Vancea, PJ Moriarty, N Krasnogor: A genetic

algorithm approach to probing the evolution of self-organised nanostructured

systems. Nano Letters, 7(7): pp. 1985-1990, 2007. [Impact factor: 10.317]

3. G Terrazas, P Siepmann, N Krasnogor, G Kendall: An evolutionary method-

ology for the automated design of cellular automaton-based complex systems.

Journal of Cellular Automata, 2(1): pp. 77-102, 2007. [Impact factor: 0.684]

4. L Cronin, N Krasnogor, BG Davis, C Alexander, N Robertson, JHG Steinke,

SLM Schroeder, AN Khlobystov, G Cooper, P Gardner, P Siepmann: Is it

alive? Recognising Cellular Systems: A Computational-Chemical Perspective.

Nature: Biotechnology, 24, pp. 1203-1206, 2006. [Impact factor: 22.30]

1. introduction 10

5. P Siepmann, G Terrazas, N Krasnogor: Evolutionary design for the behaviour

of cellular automaton-based complex systems. In the Proceedings of the Seventh

International Conference of Adaptive Computing in Design and Manufacture,

pp. 199-208, 2006.

6. P Siepmann, CP Martin, N Krasnogor, P Moriarty: A genetic algorithm

approach to guiding the evolution of self-organised nanostructured systems.

Conference presentation at Condensed Matter and Materials Physics, Exeter,

UK, April 2006.

7. L Bianco, D Pescini, P Siepmann, N Krasnogor, FJ Romero-Campero, M Ghe-

orghe: Towards a P-systems Pseudomonas quorum sensing model. Membrane

Computing, Springer, pp. 197-214, 2006.

8. P Siepmann, N Krasnogor: A Java RMI-based application for remote auto-

matic job submission. Poster at the Nottingham High Performance Computing

Workshop, Nottingham, UK, January 2007.

9. P Siepmann, CP Martin, N Krasnogor, P Moriarty: A genetic algorithm

approach to guiding the evolution of self-organised nanostructured systems.

Workshop presentation at Embodied Evolution of Complex Experimental Sys-

tems, European Centre for Living Technology, Venice, Italy, May 2007.

1.4 Overview and structure

The next chapter ‘sets the scene’ for the themes of this thesis, placing them in the

context of a survey of relevant literature. Having presented an overview of evolu-

tionary computation, and genetic algorithms in particular, the ‘Evolutionary Engine’

software system is then presented in chapter 3, including details of its ability to con-

nect to a large bank of parallel computation nodes and/or a remote chemical reactor

array. A comprehensive robustness verification protocol for evolving complex systems

is given in chapter 4. Chapter 5 presents the first significant results – a study of a cel-

lular automaton-based system that simulates the behaviour of fluid flowing through

1. introduction 11

a pipe; it is shown that given a graphical representation of some desired resultant

behaviour, input parameters to the system can be ‘reversed engineered’ so as to re-

produce the target behaviour. In chapter 6, similar strategies are then applied to a

Monte Carlo simulation of a well-characterised physical process – the self-organisation

of a particular nanoscale system. Not only is it shown that parameters can be re-

versed engineered to match a wide varity of self-organisation patterns, but, in chapter

seven, that the entire system can be surprisingly well captured by a simple ensemble

of neural networks.

12

Chapter 2

Context and background - a literature

review

Relevant background and reference to previous work related specifically to
the individual topics covered in this thesis is given when the subjects are
introduced. This section aims to ‘set the scene’ for what follows, laying
out the theme of machine learning applied to complex system design in
the context of artificial life research and the surrounding literature.

Any research towards life-like behaviour in any context requires a definition of

life itself. A clear and agreed definition of life is arguably one of the most elusive

concepts in the scientific (indeed, philosophical, religious and lingustic) communities.

Indeed, Palyi et al. [93] went as far as to suggest that life “is what the scientific

establishment will accept as life”! The authors of [91] provide a useful overview of

this vast minefield of a topic. “Life is like music; you can describe it but not define

it”, says Lazcano in [70] - that is, we find it much easier to recognise life than to define

it. But even the recognition of life needs precise descriptors if we are to provide a

scientific proof of a system behaving in a ‘life like’ manner. Perry and Kolb [95] make

the observation – particularly relevant in our case – that the point at which chemical

non-life becomes biological life is particularly hard to identify. Oliver and Perry’s [91]

preferred definition is that “life is the sum total of events which allows an autonomous

system to respond to external and internal changes and to renew itself from within

in such a way as to promote its own continuation”. In the quest to design ‘life-like

behaviour’, though, it is important to note that the aim is not this ‘sum total’, but

2. context and background - a literature review 13

rather its component parts, and how to define these is equally insidious. As Oliver

and Perry suggest, what is really needed is not a single, grand definition, but rather

a series of working descriptions. The authors of [50] and us in [22] take this a step

further in suggesting the Turing Test equivalent discussed in the previous chapter.

2.1 Self-organisation

One aspect of these arguments that can be widely agreed upon is that the process

of self-organisation is a fundamental pre-requisite to life. All systems (organisms)

we consider to be alive demonstrate some form of self-organisation, some more finely

grained (such as the formation of cell walls) than others (such as the flocking behaviour

of birds). Self-organisation is the process by which a collection of autonomous com-

ponents (of whatever form), arrange themselves into aggregated structures. There is

no ‘global control’ or ‘master plan’ – the organisation process is driven entirely by the

local interactions between components themselves, and with their local environment.

As obvserved in [117], such systems will often demonstrate so-called ‘emergent prop-

erties’, that is to say, behavioural properties or functions that are not evident in the

individual components that comprise the whole. This non-linearity of such systems

mean that their design, in particular, is a notoriously difficult problem, and one of

the aims of this thesis is to illustrate some examples of how such non-linear, complex

systems can be coerced into performing some pre-defined, target function.

Self-assembly is a slightly different, yet related process, whereby the self-organising

components converge to a a stable, equilibrium state (in a self-organised environment,

the system is out (or sometimes kept out) of equilibrium). In the most interesting

cases, these self-assembled structures will have a very definite function encoded within

its ordered state. If these natural processes could be better understood, and their

power harnessed for the production of man-made components, it would herald a

revolution in the production of embedded control systems, smart drug systems and

robotics, to name just a few. Through an ability to coerce self-organised systems

to behaviour in a certain way, a much wider variety of substances could be “func-

tionalised” to perform a given task. Moreover, such systems can, as observed in [8]

2. context and background - a literature review 14

exhibit properties of adaptability, self-healing and self-replication.

It is crucial to appreciate at this point, that even the simplest of self-organised

systems can perform useful life functions, which can, through Rothemund’s observa-

tion [105] that “self-assembly and computation are linked by the study of mathemat-

ical tiling”, also be considered to be ‘natural’ computations.

The work of Paun and Gheorghe (as described in [40]), demonstrates how compu-

tational processes can be modelled by self-organising systems; in [13, 28], we see how

simple tile systems (of which DNA can be seen to be one) can be interpreted to carry

out arithmetic operations, and in [10] how self-assembly processes can even be inter-

preted as their own class of programming language. A particularly comprehensive

study of the design of tile systems can be found in [118]. Moreover, the fascinating

work of Winfree and Schulman [110] show how tile systems can be programmed in

specially designed DNA crystals, giving an important insight into how such systems

might have developed in vivo.

The authors of [71] give an interesting demonstration (with computational com-

ponents as exemplars) of how such systems can develop into larger, more complex

systems by the application of the process of evolution. This relationship between

self-assembly/self-organisation and evolution provides the principal motivation for

the research contained within this thesis; the formation of complex self-assembled

systems driven by the process of competitive selection is a vital component in the

understanding of the origins of (artificial or otherwise) life. In applying evolutionary

computation techniques to life-like chemical components, one comes startling close

to meeting NASA’s accepted definition that “life is a self-sustained chemical system

capable of Darwinian Evolution”.

Driving self-organised systems into a particular behaviour is an intrisinctly diffi-

cult problem; the smaller and simpler the nature of the individual components of the

system, then so the system’s “intelligence” gets split into smaller and simpler units,

making the process of programming or designing particular behaviours considerably

more challenging, due to the system’s increased level of distribution. One of the prin-

cipal aims of this thesis is to address this problem, looking at a number of examples

of self-organised systems and the methods that can be applied in order to achieve

2. context and background - a literature review 15

designed complex behaviour.

2.2 Complex system design

In [44], the authors reflect that “perhaps the greatest concern is how do we build arti-

ficial systems (or manage natural ones) so that the properties that emerge are the ones

we want”. It is important to note that in this thesis, we are concerned principally with

this evolution of complexity – though there is a great deal of work on a plethora of

meta-heuristics designed for large, complex and noisy search spaces [55, 96, 85, 67, 68],

this is not the focus of this work; rather this thesis aims to address some of the

problems involved in interpreting complex behaviour such that it is suitable for op-

timisation by whatever method. As the mainstay of evolutionary computation, and

one of the most widely used global optimisation technique, the majority of research

presented throughout this thesis makes use of a standard genetic algorithm. It is an-

ticipated that future research directions would include the application of our methods

to other related problems.

It is long established that local search methods are not appropriate for the opti-

misation of such complex problems, whose search spaces can be expected to be highly

non-linear and multimodal. In particular, [87] and [102] support the reasoning that for

optimisation of this type, a global metaheuristic has a much greater chance of success.

One of the most widely used families of global metaheuristic are those that fall into

the category of evolutionary computation, and as we have already discussed, similar

methods have already proved revolutionary in the field of eletronic engineering. John

Holland’s proposal of the genetic algorithm [56] in 1970 was the defining moment for

this fascinating new computing paradigm. If, as Charles Darwin proposes, natural

selection can function over natural systems to produce complex organisms, then it

is not a giant leap to apply evolutionary computation to self-organising processes in

an attempt to produce designed complex systems, whether this be in the context

of a computational simulation, or in vitro through a computer controllable chemical

reactor array.

2. context and background - a literature review 16

2.3 Evolutionary Computation

The theory of evolution is now widely understood and accepted, and no better expla-

nation of the process can be found than the original works by Charles Darwin [23, 24],

though the subsequent thinking of Richard Dawkins [25, 26, 27] is invariably insight-

ful, thought-provoking, and often entertaining (even if the effective communication of

the science is too often obstructed by the author’s militant aetheisism). The field of

evolutionary computation draws its inspiration from the natural process identified by

Darwin where, in a population of breedable members with heriditable characteristics,

set in an environment with limited resources, well-performing members of the popu-

lation have a greater chance of surviving and procreating than less well-performing

members; thus emerges the process of evolution where successive generations inherit

the ‘good’ features of the previous generation but not the ‘bad’ ones (in the ideal

case). An excellent introduction to the computation applications of these theorems

is given in [35], whilst [71] presents a fascinating view of how complex features are

derived through the process of evolution, using ‘digital organisms’ as exemplars.

Just as in Darwinian evolution where there is a population of individuals, each

with their own genetic code (‘genotype’) that determines their physical, chemical

and biological characteristics (referred to as the individual’s ‘phenotype’), a genetic

algorithm (GA) maintains a population of individuals where each individual encodes

a possible solution to a problem. Each solution is evaluated and assigned a ‘fitness’

value. This evaluation is performed by passing the solution into an objective function.

This function could be a chemical reaction, a model, a simulation, a game or whatever

is appropriate to the problem under consideration. The output of the function could

then be a colour value, a distance, a score or whatever performance assessment is

appropriate to the problem under consideration.

For example, we could investigate the famous Travelling Salesman Problem [64]

by initialising a population of individuals where each genotype encoded the ordered

list of cities; in GA terminology, each city label is a ‘gene’ and the entire list is

the ‘chromosome’ which defines the individiual’s ‘genotype’. The ‘phenotype’ is the

TSP tour itself, and the objective function calculates the fitness value as the total

2. context and background - a literature review 17

distance travelled. In this problem, the lower this value, the better a solution is

considered (a so-called ‘minimisation problem’). In other types of problem, such as

many of those considered in this thesis, the genotype–phenotype–fitness mapping can

be significantly more complex. Although GAs were originally conceived with purely

binary genotypes in mind, much of the subsequent research in the area has developed

the concept into real-valued encodings, and even multiple datatype chromosomes.

Well-performing solutions/individuals are then permitted to ‘breed’. In the best

case, a given child will inherit good genes (parameters) from each parent and thus

will be expected to perform as well or better. In this way, each successive generation

demonstrates a higher average performance (fitness).

Genetic algorithms are useful because they allow us to sample a search space

in an intelligent manner. Instead of exhaustively testing every possible genotype

(combination of input parameters) which may take an infeasibly long time, a genetic

algorithm can take a sample from across the search space and quickly ‘zoom in’ to

the regions of the space where good solutions appear to reside. In the best case, the

optimum solution will be found.

Let us now look at this process of ‘breeding’ in a little more detail. The population

is initialised with a number of (usually randomly created) individuals, although the

population could be seeded with a number of individuals known, for instance, to have

a high fitness. The genetic activity then begins, as illustrated in algorithm 1.

2.3.1 Selection

In each iteration, two individuals are selected to be parents. Usually the selection

probability is proportional in some way to their fitness. The EE supports two of the

most popular selection operators [41]: Roulette wheel selection essentially assigns

each individual a ‘slice’ of a virtual roulette wheel whose size is proportional to the

individual’s fitness. Thus, fitter parents have a greater probability of being selected

when the wheel is virtually spun, but all individuals in the population have some

chance of selection. Tournament selection selects n members of the population

at random and selects the fittest of this selection to be a parent. The same method

2. context and background - a literature review 18

while stopping condition not fulfilled do
parents = select parents from population;

if random number > a defined parameter then
‘mate’ the parents to form (usually) two children;

else
children = parents;

end

if random number > a defined probability then
mutate children;

end

insert children into population;

end

Algorithm 1: Pseudocode to show the standard activity of a genetic algorithm

would be used for the second parent. The parameter n is user-specified.

The choice of selection operator drives the ‘selection pressure’ of the evolution.

It is important that this pressure strikes an effective balance between driving the

algorithm towards better and better solutions, and maintaining a reasonable level of

diversity amongst the population. Too high a selection pressure (for example, always

choosing the fittest two members of the population) may result in a substantially

lessened diversity, and thus a premature convergence to a suboptimal solution. In

[41], Goldberg and Deb present a comprehensive analysis of various possible methods

for parent selection.

The two parents selected (by whichever method) then combine to create a num-

ber (usually two) of children where each child individual inherits some genes from

each parent. There are a number of different operators available for this ‘crossover’

operation:

2.3.2 Crossover

Crossover is the method by which new individuals are formed. Three of the most

popular operators are implemented here: Uniform crossover [116] is the simplest

of the operators. For each gene, the algorithm determines randomly from which

2. context and background - a literature review 19

Figure 2.1: Graphical representation of the uniform crossover method of parent
selection in a genetic algorithm

Figure 2.2: Graphical respresentation of the n-point crossover method of parent
selection in a genetic algorithm

parent to take the data. Usually each parent has a 0.5 probability of being chosen.

See figure 2.1.

Often there will be interdependencies between genes in the chromosomes, i.e. a

particular gene might only result in a high fitness if its neighbouring gene has a partic-

ular value. For this reason, it is sometimes beneficial to keep groups of genes together

during the crossover process. This can be accomplished using n-point crossover [29];

given a chromosome of length k, the chromosomes of both parents and child are split

into n sections, where each child section is taken from a different parent. The param-

eter n is user-defined (see figure 2.2). Some implementations of genetic algorithms

support mixed datatype chromosomes (that is, genes can take either integer, binary

or floating point values) – it is important, therefore, that this datatype information

is preserved from parent to child.

2. context and background - a literature review 20

Figure 2.3: Graphical respresentation of the uniform arithmetic crossover method
of parent selection in a genetic algorithm

For real valued chromosomes (or parts thereof), the uniform arithmetic crossover [83]

operator simply sets the child gene to be the arithmetic mean value (or sometimes a

weighted mean) of the two parent values. See figure 2.3.

2.3.3 Mutation

After recombination, just as in nature, a mutation can occur with some small probabil-

ity. This can have the effect of taking the search into a perhaps previously unexplored

or unreachable area of the parameter space. The flip operator is applicable only to

binary typed genes and simply reverses the bit from 0 to 1 or 1 to 0. The extension

of this operator for integer types is the random reset operator where the gene is set

to some random value within the bounds of that gene (the lower and upper bound

of each gene are problem-specific, and thus user-defined). If an accuracy value has

been specified for floating point typed genes (thus making discretisation possible),

this operator can also be used for this type of gene. The popular Gaussian [52]

operator adds to the gene a value chosen randomly from a Gaussian distribution with

mean zero and a user-specified standard deviation (by default, this is set at 10% of

the entire range of the gene in question, as proposed in [53]). As is evident from figure

2.4, the majority of the Gaussian distribution is close to the original value, meaning

large mutations are significantly less probable than small ones.

2. context and background - a literature review 21

Figure 2.4: Graphical respresentation of a Gaussian mutation operator

2.3.4 Replacement

The children are then inserted into the population, usually replacing less fit individ-

uals. λ is often used to represent the number of children produced and µ the size of

the population. Users have the choice of either a (µ+λ) replacement strategy, where

the children and parents are considered together and the best (fittest) µ individuals

are chosen to form the next generation’s population, or the (µ, λ) strategy where

only the children are considered. GA implementations often implement an elitism

mechanism, where a user-specified number of the fittest individuals from the parent

population are guaranteed to be passed on to the next generation. This option is

often used when a ‘generational’ approach is taken to replacement, that is, all the

parents are totally replaced by their children at every generation. See figure 2.5.

2.3.5 Multi-objective optimisation

Many real-world problems cannot be easily mapped onto a standard genetic algo-

rithm, where each individual is assigned a single fitness value. Many problems will

have several objectives that need to be optimised [4, 92], where some may be min-

2. context and background - a literature review 22

Figure 2.5: Graphical respresentation of replacement strategies available for use
within a genetic algorithm

imisation problems and some maximisation problems. Futhermore, some or all of the

objectives may conflict with one another. This need for the optimisation of multiple

objectives gave rise to the multi-objective genetic algorithm (MOGA). An excellent

historical guide to this field is given in [20].

As shown in figure 2.6, a MOGA simultaneously optimises each objective indepen-

dently of the others, ultimately presenting the user with a set of solutions that satisfy

each objective to varying degrees. This set is called the Pareto set (after Vilfredo

Pareto) [21] and consists of so-called ‘non-dominated’ solutions. A solution is non-

dominated if every objective is the same or better than those of the other solutions

in the set, and at least one is strictly better:

A solution vector A dominates B iff ∀a ∈ A ∧ ∀b ∈ B, a ≥ b ∧ ∃a such that a > b

(2.1)

The user can then choose which solution to accept, i.e., to which objective to give

preference, or an automatic decision maker can be defined appropriate to the problem.

The diversity of the Pareto front is an important aspect of a MOGA’s success. To be

a satisfactory method, the user should have a wide choice of points (each of which, as

discussed above, satisfy each objective to a different degree). This diversity is often

2. context and background - a literature review 23

Figure 2.6: A graphical explanation of Pareto optimality

2. context and background - a literature review 24

measured (and indeed, maintained) through use of the measure known as ‘crowding

distance’, defined for each point simply as the sum of the Euclidean distances in each

dimension to the nearest neighbouring point.

One of the most successful MOGA implementations is the Non-dominated Sorting

Genetic Algorithm (NSGA-II) invented by Deb [31] and widely used in industry.

2.4 Frameworks

A number of ‘frameworks’ or ‘toolboxes’ of Evolutionary Computation (EC) tech-

niques have been assembled in the hopes that the use of such technologies might

become more widespread in the scientific community. Many such packages, such

as EO [65] and ECJ [76] include extensive code libraries, comprising large numbers

of components that can be used to construct an EC algorithm for the user’s given

problem. Packages such as these, and the inclusion of EC components into widely

used analysis tools such as ‘Matlab’ have greatly helped the progression of EC fur-

ther into the practical scientfic community, but the advanced knowledge of computer

programming needed to use many of these library-type toolboxes can be prohibitive.

However, the development of systems that make EC-based methods available to

end-users in a user-friendly, easily configurable, non-expert fashion is starting to take

off. The ‘GUIDE’ system is one such piece of software, which allows the algorith-

mic components to be specified using an intuitive graphical interface. As explained

in [109], although the specification of the evolutionary algorithm can be performed

in this high level manner, there are also a number of ‘problem specific’ features (such

as the nature of the genome, the definition of ‘fitness’, etc.) where a lower level style

of specification is unavoidable.

All the packages mentioned above are software systems that must be downloaded

and run on the user’s machine. Surprisingly, in this internet-driven age, examples

of remote, web-based EC systems are sparse indeed. The ‘Evolutionary Engine’ pre-

sented later on in this thesis aims to fill this ‘gap in the market’, presenting a user-

friendly, easily configurable, web-based system in which the evolutionary algorithms

run server-side, displaying results via a standard web page.

2. context and background - a literature review 25

2.5 Applications

Evolutionary computation, and genetic alogithms in particular have earned great

popularity both in the theoretical domain [64, 57, 58, 119] and in a great many

practical applications; some of the most fascinating deal with the open-ended evolu-

tion of structures that must satisfy a number of (often engineering or architectural)

constraints. In these cases, the evolution process often produces novel designs that

are not considered by rational or analytical methods [99, 100]. Particularly relevant

to this discussion are those applications in the design and manufacture of complex

engineering problems such as bridge [37] and dome [113] design through to the evo-

lutionary design of circuitry [49, 48, 122], aircraft [90], spacecraft [75] and celluar

automata [86, 108, 16, 107, 114].

This last class of problem – cellular automata – are of particular interest as

they have been used extensively to simulate complex systems in chemistry [130, 66],

physics [124, 19], and numerous other fields of research. Indeed, there is a growing

body of work concerned with applying evolutionary computation techniques to the

design of cellular automaton-based systems [107, 3, 11], tile systems [119, 46] and

P-system models [103, 104].

Crossing the ‘reality gap’ [121] from simulation of chemical processes ([32] presents

a particularly extensive review of this field) into in vitro optimisation, i.e., the cou-

pling of evolutionary computation methods with real, physical reactor arrays, is still

an area of research very much in its infancy. The Belousov-Zhabotinsky reaction has

received particular attention [77], due in particular to its potential for unconventional

computing [43] through the construction of chemical logic gates [115] by oscillating

pattern formation [133]. Adamatzky et al. show a particularly intriguing control

system for the optimisation of this class of chemical behaviour [15].

Indeed, this field of unconventional computing is a particularly practical applica-

tion of the type of complex system design described in this thesis. This area of the

computer sciences tries to perform computation using techqniues other than the stan-

dard von Neumann architecture and transistor/integrated circuit technologies. One

of the driving motivations behind this field of research is Sir Roger Penrose’s sugges-

2. context and background - a literature review 26

tion [94] that human thought is not a Turing algorithmic process, and thus if we are

to produce life-like thought processes, a conventional Turing machine-style computer

might not be an appropriate method. Furthermore, there are limits to the media in

which conventional computers can be embedded – the use of ‘unconventional com-

putation’ methods would enable a greater range of materials to be ‘functionalised’.

As well as techniques such as optical computing [42] and quantum computing [33],

methods of DNA computing and chemical computing [15] are particularly relevant in

the context of this research.

2.6 Conclusions

It is alongside work such as that discussed above that the research presented in this

dissertation sits. As well as expanding on some of the work related to the evolu-

tionary design of complex systems in general, not least through the suggestion of a

method for verifying the robustness of a particular objective function [120], one of

the principal areas addressed by this thesis is the evolution of some pre-defined target

behaviour in a particular class of self-organised nanoscale system [81]. The applica-

tion of evolutionary computation to this problem domain is novel, and one of the

principal contributions of this thesis. The potential of this work to be extended to

the construction of nanoscale components as part of an ‘unconventional computing’

system, such as that suggested in [126] is particularly relevant in today’s research

environment.

27

Chapter 3

The Evolutionary Engine

The hypothesis posed at the outset of this thesis surmised that evolution-
ary algorithms can be employed to coerce self-organised systems into a
pre-determined target behaviour. To investigate this claim, it is necessary
to develop a platform on which to perform such evolutionary computation.
This chapter describes the ‘Evolutionary Engine’ built for this purpose.

Genetic algorithms are the mainstay of evolutionary computation and one of the

most powerful and widely used methods in the machine learning toolbox. They are

particularly suited to optimisation problems involving large search spaces and/or

complex fitness functions. It is a matter of debate why evolutionary computation

methods are still not regarded as mainstream methods in fields such as engineering,

chemistry and physics, but one common complaint by potential end-users in the sci-

entific community is the lack of a user-friendly framework; although many algorithms

have freely available source code, setting them up, particularly in a “wet” laboratory

context, requires considerable knowledge and expertise. If the computational support

package proposed in this thesis is to be taken up by our laboratory-based collabora-

tors, a user-friendly, yet powerful and flexible interface is of paramount importance.

The ‘Evolutionary Engine’ described in this section aims to be such an interface.

It is accessible via the Internet (http://huey.cs.nott.ac.uk/chellware), and provides

the ability to customise functions and operators, and set options in a user-friendly

environment.

The Evolutionary Engine (EE) has been specially designed for optimising de-

sign and manufacturing problems. It is a web-based system, implemented using the

3. the evolutionary engine 28

Java programming language, coupled with the Tomcat server technology. It is vi-

tal that the engine can be tailored to solve a broad range of problems, hence very

few options/parameters are ‘hard coded’ into the system, but rather these are user-

customisable through a web-based configuration facility.

3.1 System architecture

The number and data type of genes in the chromosome, along with parameters for

the GA (including the user’s choice of selection, replacement, recombination, muta-

tion operators and rates, as well as the number of objectives to be optimised) can be

specified in the configuration module (a ‘screenshot’ of which is shown in figure 3.4),

which builds an XML script such as that shown in figure 3.1. Note in the example

script shown, each gene has a unique datatype-range combination, hence each is de-

fined within its own ‘block’ (within which crossover takes place). Recombination and

mutation operators are specified separately for each block. Note also the definition

of the fitness module (‘Nano’) along with the filename specifying the desired target

behaviour. This is a single objective problem, hence only one objective tag is present,

specifying the bounds and direction of search.

This script, along with a problem specification class (which, most importantly,

defines the fitness function), configures the GA to the specific problem to be opti-

mised. This class is user defined, through the extension of a Java abstract class.

All problem specification modules must extend the Problem class which defines the

required methods (illustrated in figure 3.2).

The execution of the GA can then be started and observed over the Internet

through a Java servlet, as shown in figure 3.5. This system enables a number of users

to run tailored instances of the GA in parallel on different problems.

The customisation of data types is made possible by Java’s powerful type poly-

morphism [18]. For example, the data encoded into a gene is stored as type Object.

The XML configuration script can then specify the data type into which this data

is cast. A fuller illustration of this application of polymorphism, as well as the class

structure of the engine is shown in figure 3.6.

3. the evolutionary engine 29

Figure 3.1: An example XML configuration script used within the Evolutionary
Engine. Parameters governing aspects of the genetic activity are shown in green, and
those relevant to the specification of the problem itself in red. XML tag names are
shown in purple.

3. the evolutionary engine 30

Figure 3.2: Code outline of the Evolutionary Engine’s problem specification class.

3. the evolutionary engine 31

F
i
g
u
r
e

3
.
3
:

D
ia

gr
am

m
at

ic
re

p
re

se
n
ta

ti
on

of
th

e
lo

gi
ca

l
st

ru
ct

u
re

an
d

op
er

at
io

n
of

th
e

E
vo

lu
ti

on
ar

y
E

n
gi

n
e

3. the evolutionary engine 32

F
i
g
u
r
e

3
.
4
:

S
cr

ee
n
sh

ot
of

th
e

w
eb

-b
as

ed
co

n
fi
gu

ra
ti

on
m

o
d
u
le

w
it

h
in

th
e

E
vo

lu
ti

on
ar

y
E

n
gi

n
e

3. the evolutionary engine 33

F
i
g
u
r
e

3
.
5
:

S
cr

ee
n
sh

ot
of

th
e

w
eb

-b
as

ed
ex

ec
u
ti
on

m
o
d
u
le

w
it
h
in

in
th

e
E

vo
lu

ti
on

ar
y

E
n
gi

n
e

3. the evolutionary engine 34

F
i
g
u
r
e

3
.
6
:

D
ia

gr
am

at
ic

re
p
re

se
n
ta

ti
on

of
th

e
E

vo
lu

ti
on

ar
y

E
n
gi

n
e’

s
cl

as
s

st
ru

ct
u
re

3. the evolutionary engine 35

The engine supports a number of different options, operators and algorithms, as

discussed above and shown in table 3.1.

3.2 Parellisation

Many of the fitness functions run on the engine are computationally intensive. There-

fore, the engine makes use of the University of Nottingham’s high performance com-

puting facility (or ‘cluster’), enabling the simultaneous execution of up to 1024 pro-

cesses. Communication between the evolutionary engine and the cluster’s head node

is through a specially designed RMI interface [34] as shown in figure 3.7. RMI (Re-

mote Method Invocation) is a programming paradigm whereby high-level constructs,

such as method calls, can be implemented across network boundaries. Java has a

particularly good implemenation [34].

The population to be evaluated is sent via the RMI interface to the ‘Evaluation

Distributor’ server running on the cluster’s head node. This then spawns a separate

instance of the relevant Evaluator module for each member of the population, each

scheduled to run on a different cluster node. Once each individual has been evaluated,

the Evaluation Distibutor sends the fitness values back to the Evolutionary Engine.

3.3 Remote laboratory connection

As it is hoped that this research will eventually be concerned with the artifical evolu-

tion of complex features in real, chemical systems, the ability to couple the EE to a

chemical reactor array is of paramount importance. Moreover, for ease of use, flexi-

bility and modularity, that this reactor array can reside remotely to the evolutionary

software is highly desirable.

Together with collaborators in the chemistry departments at the University of

Leeds and the University of Manchester, a protocol for linking the Evolutionary En-

gine to a chemical reactor array was developed. In this way, the software can be

initiated over the web interface and, depending on the problem script chosen, can-

didate populations can be evaluated through a chemical reactor array in a remote

3. the evolutionary engine 36

N
u
m

b
e
r

o
f
g
e
n
e
s

p
e
r

ch
ro

m
o
so

m
e

u
n
li
m

it
ed

†

G
e
n
e

d
a
ta

ty
p
e
s

i
n
t
,
d
o
u
b
l
e
,
b
o
o
l
e
a
n

(r
an

ge
an

d
ac

cu
ra

cy
u
n
li
m

it
ed

†)
N

u
m

b
e
r

o
f
o
b
je

ct
iv

e
s

u
n
li
m

it
ed

†
(1

u
se

s
st

an
d
ar

d
G

A
;
>

1
u
se

s
N

S
G

A
-I

I)
O

b
je

ct
iv

e
d
a
ta

ty
p
e
s

i
n
t
,
d
o
u
b
l
e

(r
an

ge
an

d
ac

cu
ra

cy
u
n
li
m

it
ed

†)
O

p
ti

m
is

a
ti

o
n

d
ir

e
c
ti

o
n

(p
er

ob
je

ct
iv

e)
m

ax
or

m
in

T
a
rg

e
t

fi
le

u
p
lo

ad
ab

le
if

ap
p
li
ca

b
le

E
v
a
lu

a
ti

o
n

m
o
d
u
le

u
se

r-
d
efi

n
ed

S
e
le

ct
io

n
m

e
ch

a
n
is

m
ra

n
k
,
to

u
rn

am
en

t,
ro

u
le

tt
e

w
h
ee

l
R

e
co

m
b
in

a
ti

o
n

ra
te

[0
,1

]
R

e
co

m
b
in

a
ti

o
n

o
p
e
ra

to
r*

n
-p

oi
n
t

cr
os

so
ve

r,
u
n
if
or

m
cr

os
so

ve
r,

u
n
if
or

m
ar

it
h
m

et
ic

cr
os

so
ve

r
M

u
ta

ti
o
n

ra
te

*
[0

,1
]

M
u
ta

ti
o
n

o
p
e
ra

to
r*

fl
ip

,
re

se
t,

ga
u
ss

ia
n

*
th

es
e

pa
ra

m
et

er
s

ca
n

be
sp

ec
ifi

ed
d
iff

er
en

tl
y

fo
r

d
iff

er
en

t
su

bs
et

s
o
f
ge

n
es

in
th

e
ch

ro
m

o
so

m
e

P
o
p
u
la

ti
o
n

si
ze

(λ
)

u
n
li
m

it
ed

†

N
u
m

b
e
r

o
f
ch

il
d
re

n
(µ

)
u
n
li
m

it
ed

†

R
e
p
la

ce
m

e
n
t

st
ra

te
g
y

µ
,λ

or
µ

+
λ

In
it

ia
l
p
o
p
u
la

ti
o
n

u
p
lo

ad
ab

le
if

ap
p
li
ca

b
le

In
it

ia
li
sa

ti
o
n

se
e
d

u
se

r-
sp

ec
ifi

ab
le

(0
fo

r
(p

se
u
d
o)

ra
n
d
om

)
D

is
tr

ib
u
ti

o
n

on
,o

ff

†b
u
t

su
b
je

ct
to

la
n
gu

ag
e

an
d

h
ar

d
w

ar
e

co
n
st

ra
in

ts

T
a
b
l
e

3
.
1
:

C
u
st

om
is

ab
le

op
ti
on

s
an

d
u
se

r-
sp

ec
ifi

ed
op

er
at

or
s

fo
r

th
e

E
vo

lu
ti

on
ar

y
E

n
gi

n
e

3. the evolutionary engine 37

F
i
g
u
r
e

3
.
7
:

G
ra

p
h
ic

al
re

p
re

se
n
ta

ti
on

of
th

e
p
ar

el
li
sa

ti
on

ca
p
ab

il
it

ie
s

of
th

e
E

vo
lu

ti
on

ar
y

E
n
gi

n
e.

3. the evolutionary engine 38

laboratory. The chemical reactor array itself is shown in figure 3.8. Essentially, it

enables twenty different proportions of up to four reagents to be mixed concurrently

and automatically – the syringe pumps that control the amount of each reagent, the

parameters to the reaction chamber and the analysis of the output is all computer-

controlled. The communication protocol between the Evolutionary Engine and the

reactor array is a relatively simple one and is illustrated by figure 3.9.

Initial investigations

A simple experiment was devised to illustrate that the system described above func-

tions as expected. The problem under consideration was simple: Given four food dye

solutions – red, blue, yellow and colourless, what proportions are required to manu-

facture a particular target resultant colour? An experiment was designed to optimise

these parameters (the four proportions) such as to find a resultant solution that has

some pre-defined target frequency value of maximum light absorbance.

The total volume of the resultant solution must be 1ml. This constraint makes

the genotype slightly more complex than if it were simply defining the volume of each

reagent. The genotype comprises three real values, g0, g1 and g2, each in the range

[0,1] with a step size of 0.01. The volumes of each reagent, ri are therefore:

r0 = g0

r1 = (1 − r0)g1

r2 = (1 − (r0 + r1))g2

r3 = (1 − (r0 + r1 + r2))

In this way,
∑

r is always equal to 1.

The chemical reactor array mixes the four reagents in the defined proportions.

The maximum light absorbance level of each individual is automatically measured

and compared to the target value (in this case, 625nm). It is this error that is

minimised by the GA.

Figure 3.10 shows the progress of the initial generations of an experimental run

of the system. The size of the population is set, by necessity, to twenty (there are

twenty well plates on the chemical reactor array). Recombining individuals use uni-

3. the evolutionary engine 39

F
i
g
u
r
e

3
.
8
:

D
ia

gr
am

an
d

p
h
ot

og
ra

p
h

of
th

e
ch

em
ic

al
re

ac
to

r
ar

ra
y

to
w

h
ic

h
th

e
E

vo
lu

ti
on

ar
y

E
n
gi

n
e

is
d
es

ig
n
ed

to
co

n
n
ec

t

3. the evolutionary engine 40

F
i
g
u
r
e

3
.
9
:

A
sc

h
em

at
ic

sh
ow

in
g

th
e

co
m

m
u
n
ic

at
io

n
p
ro

to
co

l
b
et

w
ee

n
th

e
E

vo
lu

ti
on

ar
y

E
n
gi

n
e

an
d

th
e

re
m

ot
e

ch
em

ic
al

re
ac

to
r

ar
ra

y

3. the evolutionary engine 41

form crossover with probability 0.9, and Gaussian mutation occurs with a probability

of 0.1. The number of generations is dependent on the smooth running of the chemical

reactor array – in these experiments, only a relatively small number (four) generations

was possible, but this is still enough to demonstrate the success of the linking mech-

anism between the array and the EE, as well as demonstrating that the evolutionary

computation methods are driving the system to its desired target behaviour. In this

case, ‘fitness’ is defined as the numerical level of absorbance in the red region arith-

metically divided by that in the blue region; in this manner, the search is directed to

find the product with minimal absorbance in the blue region and maximal absorbance

in the red (i.e., to the eye, the product will appear blue coloured). There is a clear

increase of average fitness (that is to say, the average maximal light absorbance fre-

quency is getting ever nearer the target value), and this can be clearly observed in

the three graphs (figure 3.11) which show the absorbance spectrum of the entire pop-

ulation (twenty individuals) at the end of each generation of evolution. The x-axis

in these figures represent the frequency of light (in the electro-magnetic spectrum),

with the y-axis representing the level of absorbance of a given frequency of light by

the solution under observation. It is evident that the population is converging onto

a maximal absorbance in the region of the desired 625nm. Though a simple test, the

results above show that the evolutionary engine can be coupled, via a remote link, to

a computer controlled chemical reactor array.

3.4 Conclusions

In this chapter, the specifics of the ‘Evolutionary Engine’ developed as part of this

research was presented, particularly emphasising its scope for flexibility and ease-

of-use. A brief, but powerful illustration was given of the EE’s capabilities to be

connected to a physical laboratory reactor array system, giving rise to the potential

for real-time, optimisation of complex chemical processes. However, it should be

noted that the technical chemical hurdles needed to be overcome in order to realise

this goal in anything more complex than the simple food dye test presented above

are considerable, and have presented our chemist collaborators in Manchester with

3. the evolutionary engine 42

Figure 3.10: Evolution graph of the simple ‘find a colour’ experiment using the
remote laboratory reactor array in conjunction with the Evolutionary Engine

significant difficulties. Thus, the rest of this thesis deals with digital systems and

simulated physical complex systems in the belief that the software developed and

insights gained into these systems will be transferrable onto ‘real’, in vitro systems,

when the chemical setup is ready.

3. the evolutionary engine 43

F
i
g
u
r
e

3
.
1
1
:

A
b
so

rb
an

ce
sp

ec
tr

a
fo

r
ge

n
er

at
io

n
s
0-

3
in

th
e

si
m

p
le

’fi
n
d

a
co

lo
u
r’

ex
p
er

im
en

t
u
si

n
g

th
e

re
m

ot
e

la
b
or

at
or

y
re

ac
to

r
ar

ra
y

in
co

n
ju

n
ct

io
n

w
it

h
th

e
E

vo
lu

ti
on

ar
y

E
n
gi

n
e.

44

Chapter 4

A complex search space analysis protocol

In this chapter, the Evolutionary Engine is used to evolve a target be-
haviour in a particular complex system based on a cellular automaton.
The importance of choosing a well-suited fitness function is demonstrated,
and the Universal Similarlity Metric is introduced and subsequently ver-
ified as a particularly successful measure of fitness in this problem. The
results are repeated with two standard local search algorithms in an at-
tempt to validate the hypothesis that a genetic algorithm is the more
appropriate method for solving such problems.

Cellular automata (CA) have often been used to model natural processes such as

gas diffusion systems [19], chemical reactions [66] and wave propogation in so-called

‘excitable media’ [130]. These systems usually have a number of numerical inputs

that determine the nature of the spacio-temporal behaviour of the system, often

captured by a graphical pattern. Genetic algorithms have been used to design CA-

based systems [16, 86, 107, 108]. The work presented in this section (and published

in [114]) deals specifically with using the Evolutionary Engine described in chapter

3 to evolve the parameters to a CA model such as to match a pre-specified target

behaviour. This work serves as i) a proof-of-concept that the EE can effectively

solve such parameter optimisation problems and more importantly, ii) to introduce

the Universal Similar Metric as a potentially suitable, problem-independent fitness

function.

4. a complex search space analysis protocol 45

4.1 Cellular automata - a description

Cellular automata are of particular interest, as they demonstrate the richness and

power of behaviours and functions that can be produced using only very simple com-

ponents driven by very simple rules. Homogeneity, massive parallelism, local cellular

interactions and both synchronous and asynchronous models of rule execution are

some of their most prominent features, which allow scientists to understand a variety

of phenomena in, to name but a few, the physical, chemical, biological, social and

information sciences.

A cellular automaton is essentially an infinite, regular grid of cells, each of which

can be in one of a finite number of states – the set of states may be as simple as a

binary white/black identifier, or may define a large number of ‘colours’ or states. The

nature of the grid itself must also be defined; again, this may be as simple as a one-

dimensional row of cells, but more usually it is a two-dimensional lattice which could

be square, triangular or hexagonal in shape. The most complex style of CA systems

may define n-dimensional grids. At a given time step, t, the state of a given cell is a

function of that cell’s neighborhood at t-1. There are a number of possible definitions

of a neighbourhood in CA systems. For example, the Moore neighbourhood uses the

eight surrounding cells of the cell in question for the update process, using these eight

states as input to the update function. A von Neumann neighbourhood only uses the

four cells that are strictly adjacent to the central cell. A Margolus neighbourhood

divides the grid into groups of four cells, to which the update function is applied

completely locally (i.e., using only the information in this group of four cells); so

as to allow propogation through the grid, the actual grouping of cells (in the 2x2

arrangement) changes on each update.

In [131], Wolfram presents extremely comprehensive analyses of various CA-based

systems. He describes as “elementary cellular automata”, those systems which are

based on a one-dimensional lattice, using a nearest neighbourhood – that is, the state

of a given cell is a function of the cell immediately to its left and to its right. Wolfram

enumerates all the possible rules (256) of such systems, and demonstrates the many

and diverse behaviours of these simple systems. In figure 4.1, we show an example

4. a complex search space analysis protocol 46

of the automaton produced by Wolfram’s “Rule 30”. This rule numbering system,

described in [131], works as follows. Using a one-dimensional, nearest neighbour

CA, the state of a given cell (1 or 0) is a function of the cell itself at the previous

timestep, that of its left neighbour, and that of its right neighbour. This means there

are 23 = 8 possible configurations for which a resultant state must be specified (on-

on-on, on-on-off, on-off-on, etc., which can in turn be represented in binary as 111,

110, 101, etc.). Wolfram’s “Rule 30” is that CA for which the sequence of resultant

states equates to decimal 30 when read in binary (00011110). That is to say, the first

possible arrangement of ‘left neighbour on, self on, right neighbour on’ (or 111 or

short) results in self being ‘off’ or ‘0’ at the next time step; the second arrangement

(on-on-off or 110) results in ‘off’ or 0, etc., with all eight results spelling out 00011110

– the binary representation of the number 30. Some further examples: rule 0 is the

rule for which all eight configurations result in ‘off’ (00000000); rule 255 is the rule for

which all eight configurations result in ‘on’ (11111111); rule 31 will be very similar to

the rule 30 described above, but the final configuration (off-off-off or 000) will result

in on (1) rather than off (0). Figure 4.1 shows the “Rule 30” CA in operation, when

seeded with an initial configuration of off-on-off. Each subsequent row describes the

next time step of the system. Wolfram’s system is a simple, neat, and very effective

method of evaluating and classifying all possible elementary cellular automata.

Perhaps the most famous CA system is the “Game of Life” discovered in 1970 by

JH Conway [38]. Rather more complex that the simple CAs considered above, this

model is based on an infinte two-dimension binary grid, with each cell either “live” or

“dead”. The Moore neighbourhood is used (i.e. all eight neighbours are considered in

the update function). At each time step, the following four rules are simulataneously

applied:

1. Live cells with less than two live neighbours die

2. Live cells with more than three live neighbours die

3. Live cells with two or three live neighbours live

4. Dead cells with precisely three live neighbours become alive

4. a complex search space analysis protocol 47

Figure 4.1: The elementary cellular automaton system produced using Wolfram’s
“Rule 30”

4. a complex search space analysis protocol 48

From this simple set of rules, an extraordinary wealth of functions can be produced,

including reproductions, oscillations, gliders, pulsars and many others. In fact, the

Game of Life is Turing-complete (i.e. it can perform any Turing computable algo-

rithm). Celluar automata are clearly a very powerful class of computational device,

and their ability to produce a large variety of complex behaviours from a collection

of simple rules is particularly interesting to those researching the origins of life.

In the work presented below, we consider a particular CA-based system from the

NetLogo [123] library. Named Turbulence, the model is used for investigating the

relationship between turbulence, laminarity and viscosity of a fluid flowing through

a pipe, and how the roughness of the pipe surface effects the fluid’s behaviour. The

pattern produced by the model captures the entire spacio-temporal behaviour of the

system – that is to say, the lattice is one-dimensional, with each row of the image

representing the next time step (as in the “Rule 30” system described above).

The model takes three, real-valued parameters, each of which can be seen to have

a physical analogy in the system it is modelling. For each parameter described below,

lower and upper bounds are quoted, as well as an indication of the discretisation step

size of each parameter. The initial-turbulence [0,100,0.5] parameter specifies how dis-

turbed the fluid is on its initial entry into the virtual pipe; parameter coupling-strength

[0,1,0.1] is a measure of fluid-fluid interaction, essentially, a measure of the viscosity

of the fluid; parameter roughness [0, 0.025, 0.001] is self-explanatory, governing the

roughness of the inside of the pipe.

Each cell has a state value ranging continuously from 0 to 1.5, where 0 is the great-

est degree of turbulence, and 1.5 is the greatest degree of laminarity. The transition

rules are applied sequentially as follows:

1. Diffusion: The state of a given cell is averaged with its nearest neighbours

on each side. The degree of influence that the cells have on one another is

determined by the coupling strength variable (an approximation of the physical

attribute of viscosity).

2. The state of each cell is modified according to the roughness parameter, i.e.,

the rougher the virtual pipe, the more turbulent the cell will become.

4. a complex search space analysis protocol 49

Figure 4.2: A example pattern from the Tubulence cellular automaton model.
The pattern shows the entire spacio-temporal behaviour of the system, with each
row representing a time step. This pattern was produced using parameter set
< 20, 0.8, 0.005 >.

An example behaviour pattern is shown in figure 4.2, where turbulence is repre-

sented by brightness, with darker areas representing more laminar regions.

4.2 Fitness

The aim of this work is to search for the parameters to the CA system such that a

pre-determined target behaviour can be reproduced. In the system under considera-

tion (the Turbulence model described above), behaviour is represented by a graphical

pattern. In this case, therefore, we can draw an analogy between the system’s be-

havioural and visual similarity. Hence, to evolve a target behaviour, we must have

some method of measuring visual similarity between target and evolved behaviours

in a numerical fashion.

The Universal Similarity Metric was first proposed in 2003 [72]. It is a compression-

based mechanism for measuring the similarity between two general objects based on

Kolmogorov complexity. Kolmogorov complexity is defined as the length of the short-

est program for computing o by a Turing machine [73]. The definition can be extended

to a conditional measure, K(o1 | o2), which defines how much further information is

needed to produce object o1, given the information contained within o2, otherwise

known as the ‘information distance’. Usually, a normalisation term is applied giving

4. a complex search space analysis protocol 50

the ‘Normalised Information Distance’:

NID(o1, o2) =
max{K(o1|o2), K(o2|o1)}

max{K(o1), K(o2)} (4.1)

Intuitively, it is clear that if no further information is needed, i.e., an information

distance of zero, the two objects must be the same. Li et al. [72] showed that

K(o1|o2) + K(o2) = K(o1 · o2) (4.2)

where · represents concatenation. Using this substituion, we therefore have the alter-

native expression of Normalised Information Distance:

NID(o1, o2) =
max{K(o1 · o2) − K(o2), K(o2 · o1) − K(o1)}

max{K(o1), K(o2)} (4.3)

Kolmogorov complexity is not directly computable, hence a commonly used ap-

proximation is to use a compression algorithm to remove as much information redun-

dancy as possible, and then to use the length of this compressed object as an approx-

imation to Kolmogorov complexity. Hence, we can now calculate the ‘Normalised

Compression Distance’, which is the measure used in the Universal Similarity Metric.

Hence, if |C(o)| is the length of o when compressed by some compression algorithm,

C:

USM(o1, o2) =
max{|C(o1 · o2)| − |C(o1)| , |C(o2 · o1)| − |C(o2)|}

max{|C(o1)| , |C(o2)|} (4.4)

Clearly, a lower value of the USM indicates a smaller information distance and

thus a greater degree of similarity. When used in the context of an optimisation,

therefore, it is a minimsation problem (i.e., lower = fitter).

Although the “No Free Lunch” theorem [132] states that there is no algorithm/solver

that can produce solutions of statistically identical quality for all problem instances,

there is still merit in research into algorithms that are generalisable in so far as they

can produce reasonable results for most problem instances. This has the great advan-

tage that the problem solver in question can be adaptable to a wide range of inputs

within this problem domain of object similarity. For this reason, having a ‘universal’

fitness function may prove to be advantageous.

The USM has been particularly widely used in protein structure comparison prob-

lems [5, 69] where atomic contact maps are compared for similarity, but a number of

4. a complex search space analysis protocol 51

diverse uses of the metric are also evident in the literature, including [74] where it is

used to compute a similarity matrix of a number of musical melodies. We investigate

below whether the USM may be an appropriate method for comparing target and

evolved behaviours of the CA system described above.

4.3 Robustness verification

Finding a reliable method of predicting when a GA will be an effective method of

optimisation is still an open topic of research in evolutionary computation theory.

The nature of complex systems means that the mapping between the genotype that

specifies a behaviour and the actual realisation of that behaviour – the phenotype

– may not be one-to-one, and may be highly non-linear, counter-intutitive and even

stochastic. There is then a further relationship between this phenotype and the

numerical fitness attached to it by the objective function. If there is not a clear

correlation here, i.e., if the objective function cannot effectively differentiate between

dissimilar phenotypes and cannot well-classify similar phenotypes, then the selection

pressure introduced into the search will be meaningless or even misleading. Moreover,

for the mutation to be of any use in ‘fine tuning’ the solutions found by crossover, there

must be a clear correlation between genotype and fitness – if behavioural specifications

that are only a few mutation steps away result in wildly different outward behaviours,

effective search will be very difficult indeed.

Due to the complex nature of the genotype–phenotype–fitness mapping in the

problems with which we are dealing, a method of verifying the efficacy and robustness

of a fitness function is of great importance. In [114], we propose a two stage protocol

for a process to verify whether a given fitness function could accurately direct a search

in such complex dynamics. This two stage process involves both cluster analysis and

fitness-distance correlation, which verifies the complex relationships described above

(and as shown in figure 4.3).

Fitness Distance Correlation [63] is a measure of how effectively the fitness of

an individual correlates to its genotypic distance to a known optimum. In other

words, given two different genotypes, FDC measures the correlation of the (numerical)

4. a complex search space analysis protocol 52

Figure 4.3: Mappings and analysis methods

distance between these genotypes against the value assigned by the objective function.

If there is only a weak relationship between these two values, a parameter optimisation

GA, or for that matter any metaheuristic based on the same representation, will have

very little effect. Hence, FDC analyses the genotype–fitness relationship.

The authors of [125] suggest that problems can be classified into three distint

classes of difficulty – misleading (where fitness actually increases with genotypic dis-

tance from the known optimum), difficult (where little correlation is observable) and

easy (where fitness clearly increases as the genotypic distance decreases). Although

some sensible criticisms have been made of FDC (the authors of [2] construct an exam-

ple problem where FDC’s failure to take into account the genetic operators themselves

means it is not an effective measure of problem difficulty), its continued use within

the literature [63, 125, 128] shows it remains a largely successful methodology.

We must also analyse the phenotype–fitness relationship, in other words, we must

verify that the objective function can effectively differentiate between dissimilar phe-

notypes and well-classify similar phenotypes for the purpose of effective selection.

If the fitness function cannot achieve this, a parameter optimisation GA will have

difficulty evolving towards better solutions as the selection process will not have suf-

ficiently accurate information to bias the search. For verification of the phenotype–

fitness relationship, we use a hierarchical clustering method [47].

Such is the complexity of the genotype–phenotype mapping, that FDC cannot

be guaranteed to give a completely accurate picture. Indeed, in our application, the

objective function itself is also only an approximation of two individuals’ phenotypic

4. a complex search space analysis protocol 53

similarity. For these reasons, relying on only one of FDC or clustering to validate an

objective function would not be adequate. Hence, we use both methods to show that

a given fitness function is suitable for use in a particular problem.

4.3.1 Datasets

It is important that the dataset used in this protocol is representative of the whole

search space, whilst still being of a manageable size. Hence, the search space is

systematically sampled by binning each of the n parameters of the genotype into b

bins across their entire range. Every combination of these bn parameter sets are then

run through the complex system to produce their corresponding phenotypes.

Considering the three genes in the Turbulence system, initial-turbulence [0,100,0.5],

coupling-strength [0,1,0.1] and roughness [0, 0.025, 0.001], the number of bins, b, is

set to six, giving a dataset size of 63 = 216 points. The entire dataset is listed in the

appendix (A.1).

4.3.2 Fitness Distance Correlation

FDC [63] is a statistical-based methodology which performs a correlation analysis

given a known target solution and samples from the search space. Faced with a

maximisation problem, a high positive correlation value is interpreted as indicating

that the problem may be effectively optimised by a GA, whereas a low negative value

suggests that GA optimisation might not be as effective. Correlation coefficients

around zero are inconclusive, and a closer examination is usually necessary. The

correlations are often represented by a scatter plot of fitness versus distance.

r =
(1/n)

∑n
i=1(fi − f̄)(di − d̄)

SFSD
(4.5)

The formula for the derivation of a correlation value is shown in equation 4.5,

where r is the correlation coefficient, n is the number of individuals under consid-

eration, fi is the fitness of individual i, and di is its distance to the nearest global

optimum, f̄ and SF are the mean and standard deviation of the set of fitnesses, and

d̄ and SD are the mean and standard deviation of the set of distances.

4. a complex search space analysis protocol 54

The definition of ‘distance’ is somewhat more involved when, as in this problem

domain, there are a number of genes with significantly different ranges, even different

data types. A simple Euclidean distance would clearly introduce a false weighting

in favour of the genes that naturally take larger values (for example, a distance of

1 in the context of one gene may represent 1% of its total range, whilst in another

gene, it may represent 50% of its total range). In order to provide a more meaningful

distance value, therefore, each genotypic distance is normalised into the range [0,1]

and summed together to form a single value, that we term the Normalised Combined

Distance, d̂ (equation 4.6 where G is the number of genes and gi
j represents the jth

gene of individual i). The terms gmin and gmin refer to the minimum and maximum

values allowed by the range of the gene g.

d̂i =
G∑

j=1

(
gi

j − gtarget
j

gmax
j − gmin

j

)
(4.6)

An arbitrary member of the dataset is chosen as a candidate target for the FDC

analysis. The corresponding phenotype is shown in figure 4.2, and was produced

using parameters {20, 0.8, 0.005}.
A Fitness Distance Correlation plot (F against d̂) of the 216-piece dataset com-

pared against the target described above is shown at figure 4.4. At first glance, there

is no clear correlation, and the correlation coefficient itself – 0.165 – is indeterminate.

However, a more detailed analysis can reveal a better indication of correlation:

Figures 4.5 - 4.7 show FDC plots for each parameter taken separately. Looking at

the initial-turbulence parameter (figure 4.5), some correlations can be observed – there

is a particularly strong correlation on the side of negative distance, and a correlation

(considerably shallower, though steeper nearer the origin) can also be observed on the

positive side of the x axis. Similarly, analysing the coupling-strength parameter (figure

4.6), a strong correlation on the side of negative distance can be clearly seen, as well

as a high positive trend towards the extremity of the x axis (distance). Looking at the

roughness parameter (figure 4.7), another strong correlation on the side of negative

distance is obvious, whilst a shallower (though stronger nearer the origin) trend is

also evident on the positive distance side. So, although the overall correlation is not

4. a complex search space analysis protocol 55

Figure 4.4: FDC scatter plot for the Turbulence system. r = 0.165

terribly promising from the initial plot, a more detailed analysis shows that there are

a number of well-correlated trends and so the USM may be an appropriate metric to

use with this system and its associated genotypic representation.

4.3.3 Clustering

In order to further assess the proficiency of the USM as a fitness function and specif-

ically to verify that it can effectively differentiate between dissimilar phenotypes and

effectively classify similar phenotypes for the purposes of selection, a hierarchical

clustering algorithm [47] is run over the dataset. Hierarchical clustering is a particu-

larly popular implementation of the clustering process and has been used with very

good results in similar classification work, such as that related to protein structure

comparison [5].

Using the dataset described above, every pair of phenotypes (patterns) are com-

pared using the USM-based fitness function, and a square distance matrix formed

by the resulting values is obtained. From this matrix, an hierarchical cluster can be

formed using a standard algorithm [14], as illustrated below.

4. a complex search space analysis protocol 56

Figure 4.5: FDC scatter plot for the Turbulence system (initial-turbulence only). r
= 0.143

Figure 4.6: FDC scatter plot for the Turbulence system (coupling-strength only). r
= -0.375

4. a complex search space analysis protocol 57

Figure 4.7: FDC scatter plot for the Turbulence system (roughness only). r =
-0.151

F = set of phenotypes;

for each pair of F as (Oi, Oj) do
M[i][j] = distance (Oi, Oj);

M[j][i] = distance (Oj, Oi);

end

initialise each sample as a separate cluster;

while unjoined clusters remain do
merge the two closest clusters;

calculate distance between the new cluster and every other cluster;

end

return clusters;

Algorithm 2: Pseudocode to show a standard hierarchical clustering algorithm

In this case, the Complete Linkage measure is used to calculate the inter-cluster

distance, that is, the distance between clusters is calculated as the maximum dis-

tance between all pairs of samples. Inherently, this method is the least tolerant of

noise (i.e., it gives particular weight to outlying points), and so if a good cluster

can nonetheless be produced using this method, we can be particularly sure of the

robustness of the USM’s ability to differentiate between phenotypes. The output is

4. a complex search space analysis protocol 58

most conveninently visualised as a logarithmic tree [47]. By analysing each leaf of

the tree (which correspond to a single point in the dataset), it can be seen that the

USM effectively groups visually similar (which is analagous to the similarity of the

CA’s behaviour) together. Figure 4.8 shows the logarithmic tree representation of the

216-piece dataset described above annotated by example phenotypes representative

of the clusters from which they come.

4.4 Conclusions

In this chapter, a two-stage process was presented to serve as an helpful indication as

to when a particular fitness function (in conjunction with a particular representation)

may be successful in the context of a search algorithm. The results shown and anal-

ysed above – those for both Fitness Distance Correlation and Clustering – suggest

that the Universal Similarity Metric should be an effective method for evolving target

behaviour in graphical CA-based complex systems. Supported by this verification, in

the next chapter, results are presented using this method on four target Turbulence

patterns.

4. a complex search space analysis protocol 59

Figure 4.8: Logarithmic clustering tree showing the Turbulence dataset grouped
according to phenotypic similarity (as calculated by the Universal Similarity Metric)

60

Chapter 5

Evolving cellular automaton systems

Having been given a reasonable indication by the robustness verification
protocol presented in the previous chapter, that the USM is an appropriate
objective function in this problem domain, it is used within a genetic
algorithm whose aim is to generate a spatio-temporal behaviour ‘closest’
to some specified target image.

The aim of this work is to search for the parameters to the CA system such

that a pre-determined target behaviour can be reproduced. In the system under

consideration (the Turbulence model described above), behaviour is represented by

a graphical pattern. In this case, therefore, we can draw an analogy between the

system’s behavioural and visual similarity.

5.1 Experimental setup

The parameters described in the previous chapter are represented literally in the

genotype, i.e., as floating point values. The roulette wheel parent selection method

is used along with uniform crossover (probability 0.9) and Gaussian mutation (prob-

ability 0.1). These parameters are common ‘first attempt’ choices that can be tuned

at a later stage. The emphasis here is on verifying that the USM can direct an ef-

fective search. The population size is twenty to match that for the chemical reactor

experiments presented in 3.3 – the running of complex systems is often expensive,

whether it be in terms of computer processor time or laboratory apparatus time, and

so achieving good results with relatively small populations is of particular interest.

5. evolving cellular automaton systems 61

The GA was run ten times on each of four targets from across the search space, repre-

sented by four contrasting and visually distinctive phenotypes. The algorithm stops

when there is no change in the average fitness of the population for ten generations.

Results of each run for each target behaviour are shown in table 5.1, where the sym-

bol µ represents the arithmetic mean and cv the coefficient of variation (that is, the

standard deviation divided by the mean). Figures 5.1 - 5.4 show, for each problem,

the target pattern, an evolution graph of fitness against time, and the highest quality

evolved pattern from the ten experiments.

5.2 Results

In every case, the evolved patterns are very similar to the target behaviours. It is

particularly interesting to note that for target Turb-20-0.8-0.005, the distance from

the top-most edge of the pattern to the point where activity begins (representative

of time) is very well reproduced, also the size distribution of the regions of inactivity

(the dark areas) in Turb-40-0.2-0.005 and Turb-60-0.4-0 are closely matched. Look-

ing at table 5.1, it is evident that an exact match of the genotype is not required to

produce a well-matched phenotype. That is to say, the genotype-phenotype mapping

is not one-to-one – a number of genotypes can result in similar, if not identical phe-

notypes. The fitness landscape is therefore multi-modal – there may be a number of

solutions in different areas of the search space, all of which give a high fitness (but not

necessarily equally high). These are common traits of complex systems, and features

that can make them particularly hard to search; the use of an ‘intelligent-sampling’

metaheuristic such as a genetic algorithm is therefore essential.

The mean number of generations taken to reach the stopping condition does not

vary significantly across the four different targets, though within the ten runs for each

target, there is a reasonably large variety, particularly in the case of Turb-20-0.8-0.005,

as represented by the largest cv value of the four – 0.324 – that represents a range

of values from 101 - 265. In general, however, the majority of experiments run for a

number of generations close to the mean - exceptions such as Turb-20-0.8-0.005/Run

10 and Turb-60-0.4-0/Run 5 are relatively rare. The best fitness values within each

5. evolving cellular automaton systems 62

Target Run Generations Average Best Winning individual
Turb-20-0.8-0.005 1 101 0.96389 ± 0.00094 0.96167 4.3 0.8 0.007
Turb-20-0.8-0.005 2 162 0.96714 ± 0.00080 0.96539 9.7 0.9 0.006
Turb-20-0.8-0.005 3 172 0.96654 ± 0.00091 0.96423 1.3 0.5 0.008
Turb-20-0.8-0.005 4 133 0.96327 ± 0.00087 0.96131 4.2 0.8 0.007
Turb-20-0.8-0.005 5 137 0.96322 ± 0.00071 0.96142 4.3 0.8 0.007
Turb-20-0.8-0.005 6 108 0.96533 ± 0.00046 0.96391 3.1 0.8 0.007
Turb-20-0.8-0.005 7 119 0.96707 ± 0.00051 0.96592 0.4 0.8 0.008
Turb-20-0.8-0.005 8 182 0.96407 ± 0.00071 0.96218 4.4 0.8 0.007
Turb-20-0.8-0.005 9 122 0.96592 ± 0.00129 0.96179 6.5 0.8 0.007
Turb-20-0.8-0.005 10 265 0.96529 ± 0.00090 0.96309 2.7 0.8 0.007

µ 150 0.96517 0.96309
cv 0.324 0.00155 0.00176

Turb-20-0-0.005 1 110 1.01328 ± 0.00304 1.00192 89.5 0.0 0.007
Turb-20-0-0.005 2 115 0.99347 ± 0.00156 0.99013 19.5 0.0 0.006
Turb-20-0-0.005 3 128 1.01575 ± 0.00144 1.01085 53.8 0.0 0.014
Turb-20-0-0.005 4 119 1.01313 ± 0.00201 1.00805 61.7 0.0 0.006
Turb-20-0-0.005 5 129 1.01283 ± 0.00180 1.00820 88.9 0.0 0.005
Turb-20-0-0.005 6 157 0.99973 ± 0.00175 0.99637 13.0 0.0 0.018
Turb-20-0-0.005 7 110 1.01275 ± 0.00331 1.00034 47.0 0.0 0.006
Turb-20-0-0.005 8 132 0.99273 ± 0.00297 0.98542 17.6 0.0 0.006
Turb-20-0-0.005 9 185 0.99242 ± 0.00315 0.98568 23.3 0.0 0.005
Turb-20-0-0.005 10 131 0.98884 ± 0.00249 0.98193 20.5 0.0 0.005

µ 132 1.00349 0.99689
cv 0.177 0.01091 0.01063

Turb-40-0.2-0.005 1 115 0.97089 ± 0.00057 0.96945 48.9 0.9 0.005
Turb-40-0.2-0.005 2 168 0.95906 ± 0.00043 0.95809 41.5 0.2 0.006
Turb-40-0.2-0.005 3 114 0.95912 ± 0.00057 0.95797 41.3 0.2 0.007
Turb-40-0.2-0.005 4 111 0.96066 ± 0.00038 0.95983 45.3 0.2 0.007
Turb-40-0.2-0.005 5 178 0.95846 ± 0.00084 0.95554 40.9 0.2 0.006
Turb-40-0.2-0.005 6 102 0.95951 ± 0.00061 0.95800 41.6 0.2 0.007
Turb-40-0.2-0.005 7 206 0.95860 ± 0.00055 0.95711 40.7 0.2 0.006
Turb-40-0.2-0.005 8 143 0.95923 ± 0.00034 0.95851 38.6 0.2 0.007
Turb-40-0.2-0.005 9 195 0.96938 ± 0.00063 0.96833 48.2 0.9 0.008
Turb-40-0.2-0.005 10 135 0.96102 ± 0.00093 0.95870 41.0 0.2 0.008

µ 147 0.96159 0.96015
cv 0.257 0.00477 0.00494

Turb-60-0.4-0 1 184 0.95716 ± 0.00057 0.95578 98.0 0.4 0.000
Turb-60-0.4-0 2 148 0.95701 ± 0.00066 0.95513 45.5 0.4 0.006
Turb-60-0.4-0 3 106 0.95707 ± 0.00067 0.95526 54.5 0.4 0.000
Turb-60-0.4-0 4 140 0.95647 ± 0.00069 0.95501 66.9 0.4 0.001
Turb-60-0.4-0 5 222 0.95677 ± 0.00065 0.95454 78.3 0.4 0.002
Turb-60-0.4-0 6 119 0.95790 ± 0.00064 0.95626 45.1 0.4 0.009
Turb-60-0.4-0 7 125 0.95642 ± 0.00063 0.95504 80.7 0.4 0.000
Turb-60-0.4-0 8 173 0.95644 ± 0.00069 0.95505 95.9 0.4 0.000
Turb-60-0.4-0 9 134 0.95792 ± 0.00068 0.95651 76.2 0.4 0.007
Turb-60-0.4-0 10 103 0.95690 ± 0.00070 0.95510 62.2 0.4 0.007

µ 145 0.95701 0.95537
cv 0.259 0.00057 0.00065

Table 5.1: Statistical analysis of Turbulence system evolutions, using GA/USM.

5. evolving cellular automaton systems 63

F
i
g
u
r
e

5
.
1
:

G
ra

p
h

of
fi
tn

es
s

ag
ai

n
st

ti
m

e,
p
lu

s
ta

rg
et

an
d

ev
ol

ve
d

b
eh

av
io

u
r

fo
r

a
G

A
fu

n
ct

io
n
in

g
on

p
ro

b
le

m
T
u
rb

-
20

-0
.8

-0
.0

05

5. evolving cellular automaton systems 64

F
i
g
u
r
e

5
.
2
:

G
ra

p
h

of
fi
tn

es
s

ag
ai

n
st

ti
m

e,
p
lu

s
ta

rg
et

an
d

ev
ol

ve
d

b
eh

av
io

u
r

fo
r

a
G

A
fu

n
ct

io
n
in

g
on

T
u
rb

-2
0-

0-
0.

00
5

5. evolving cellular automaton systems 65

F
i
g
u
r
e

5
.
3
:

G
ra

p
h

of
fi
tn

es
s

ag
ai

n
st

ti
m

e,
p
lu

s
ta

rg
et

an
d

ev
ol

ve
d

b
eh

av
io

u
r

fo
r

a
G

A
fu

n
ct

io
n
in

g
on

p
ro

b
le

m
T
u
rb

-
40

-0
.2

-0
.0

05

5. evolving cellular automaton systems 66

F
i
g
u
r
e

5
.
4
:

G
ra

p
h

of
fi
tn

es
s

ag
ai

n
st

ti
m

e,
p
lu

s
ta

rg
et

an
d

ev
ol

ve
d

b
eh

av
io

u
r

fo
r

a
G

A
fu

n
ct

io
n
in

g
on

p
ro

b
le

m
T
u
rb

-
60

-0
.4

-0

5. evolving cellular automaton systems 67

experiment demonstrate very little variation, though Turb-20-0-0.005 is rather more

variant (with a cv of 0.01) than the other three (each with cv values of a factor of ten

or so smaller). This feature is also evident in the graphs (figures 5.1 - 5.4), where

a greater spread of trajectories can be seen in the graph for Turb-20-0-0.005. It is

important to note, however, that even given this spread, the resultant patterns are

visually similar to their respective targets in every case, demonstrating the robustness

of the methodology, as verified by the FDC/Clustering protocol described above.

5.3 Local search

Although, as mentioned above, it is long established that local search methods are

not appropriate for the optimisation of particularly complex problems (hence our

use of Genetic Algorithms in the first instance), and although the specific search

algorithm itself is not the guiding concern of this research, it is important to ‘bench-

mark’ these results against a selection of simpler search mechanisms. First, a ran-

dom search algorithm is implemented that simply samples individuals at random

from across the search space, maintaining a memory of the ‘best’ found so far:

while stopping condition not fulfilled do
candidate = generate random individual;

if candidate > best then
best = candidate;

end

end

return best;

Algorithm 3: Pseudocode to show standard random search procedure

Secondly, the popular ‘hill climbing’ algorithm is implemented that, from a ran-

domly selected seed individual, examines an individual in it’s ‘neighbourhood’ (im-

plemented through a single Gaussian mutation in one gene). If and only if this

individual’s fitness exceeds the best found so far, it is adopted as the new winning

individual:

5. evolving cellular automaton systems 68

candidate = generate random individual;

while stopping condition not fulfilled do

if candidate > best then
best = candidate;

end

candidate = mutate(candidate);

end

return best;

Algorithm 4: Pseudocode to show standard “hill climbing” search procedure

5.3.1 Random search

The average number of generations the GA took to reach a solution are listed in table

5.1 as µ. The RS algorithm was run for this same number of iterations in each case.

This may seem to be giving the GA an unfair advantage, as for each iteration the

GA would sample λ points (where λ is the size of the population) where RS would

only sample one. However, it is important to note that in the chemical optimisation

problems to which we hope to connect this software at a later stage, the execution

of one parameter set in the complex system (i.e., the chemical reactor array) is as

costly as the execution of λ parameter sets, due to the reactor’s innate parallelism.

To measure the success of these algorithms in terms of points sampled rather than

iterations would be to ignore the fact that the GA, by its population-based nature,

makes better use of the hardware. Hence, a ‘per iteration’ comparison is performed.

Granted, alterations and more sophisticated versions of the local search methods could

be employed, but so too could the parameters for the GA be tuned and refined; it is

important to note again, that the focus of this thesis is on the evolution of complexity

through appropriate similarity measures by any search mechanism.

Each experiment, as before, was run ten times. As before, figures showing the

target, evolution graphs of fitness against time, and the best evolved individual are

shown in figures 5.5 - 5.8. Details of each search are shown in table 5.2.

Looking at targets Turb-20-0.8-0.005 and Turb-20-0-0.005, it is clear that the

Random Search results do not match the quality of those for the Genetic Algorithm,

5. evolving cellular automaton systems 69

Target Run Iterations Fitness Winning individual
Turb-RS-20-0.8-0.005 1 150 0.97929 4.3 0.5 0.006
Turb-RS-20-0.8-0.005 2 150 0.98085 2.5 0.5 0.011
Turb-RS-20-0.8-0.005 3 150 0.97692 7.1 0.7 0.007
Turb-RS-20-0.8-0.005 4 150 0.97776 2 0.8 0.009
Turb-RS-20-0.8-0.005 5 150 0.97127 3.8 0.6 0.006
Turb-RS-20-0.8-0.005 6 150 0.97734 0.6 0.8 0.009
Turb-RS-20-0.8-0.005 7 150 0.97782 9.9 0.7 0.006
Turb-RS-20-0.8-0.005 8 150 0.97316 8.9 0.5 0.006
Turb-RS-20-0.8-0.005 9 150 0.97175 5.5 0.8 0.007
Turb-RS-20-0.8-0.005 10 150 0.9776 3.6 0.7 0.006

µ 0.97638
cv 0.00322

Turb-RS-20-0-0.005 1 132 1.03753 92.7 0.2 0.005
Turb-RS-20-0-0.005 2 132 1.02636 91.4 0 0.021
Turb-RS-20-0-0.005 3 132 1.02596 64.8 0 0.015
Turb-RS-20-0-0.005 4 132 1.03907 94.2 0 0.007
Turb-RS-20-0-0.005 5 132 1.00289 12.8 0 0.021
Turb-RS-20-0-0.005 6 132 1.02248 8.7 0 0.017
Turb-RS-20-0-0.005 7 132 1.02101 90.7 0 0.016
Turb-RS-20-0-0.005 8 132 1.03973 48.4 0.1 0.002
Turb-RS-20-0-0.005 9 132 1.01917 79 0 0.024
Turb-RS-20-0-0.005 10 132 1.03475 81.5 0 0.004

µ 1.02690
cv 0.01115

Turb-RS-40-0.2-0.005 1 147 0.96543 65.1 0.2 0.008
Turb-RS-40-0.2-0.005 2 147 0.96232 39.3 0.2 0.007
Turb-RS-40-0.2-0.005 3 147 0.96594 44.9 0.1 0.006
Turb-RS-40-0.2-0.005 4 147 0.96679 88.2 0.1 0.009
Turb-RS-40-0.2-0.005 5 147 0.96491 78.3 0.2 0.004
Turb-RS-40-0.2-0.005 6 147 0.96858 57.7 0.2 0.008
Turb-RS-40-0.2-0.005 7 147 0.96382 56.2 0.1 0.005
Turb-RS-40-0.2-0.005 8 147 0.96398 76 0.2 0.004
Turb-RS-40-0.2-0.005 9 147 0.96675 68.7 0.1 0.009
Turb-RS-40-0.2-0.005 10 147 0.96583 33.5 0.1 0.008

µ 0.96543
cv 0.00185

Turb-RS-60-0.4-0 1 145 0.96095 70 0.3 0.002
Turb-RS-60-0.4-0 2 145 0.95705 55.6 0.4 0
Turb-RS-60-0.4-0 3 145 0.96304 88.3 0.4 0.016
Turb-RS-60-0.4-0 4 145 0.96197 43.5 0.3 0.01
Turb-RS-60-0.4-0 5 145 0.96124 74.4 0.4 0.003
Turb-RS-60-0.4-0 6 145 0.96103 99.9 0.3 0.006
Turb-RS-60-0.4-0 7 145 0.95991 60.3 0.3 0
Turb-RS-60-0.4-0 8 145 0.9623 80.1 0.3 0.003
Turb-RS-60-0.4-0 9 145 0.96047 67.5 0.3 0
Turb-RS-60-0.4-0 10 145 0.96115 66.6 0.3 0.004

µ 0.96091
cv 0.00169

Table 5.2: Statistical analysis of Turbulence system random search

5. evolving cellular automaton systems 70

F
i
g
u
r
e

5
.
5
:

G
ra

p
h

of
fi
tn

es
s

ag
ai

n
st

ti
m

e,
p
lu

s
ta

rg
et

an
d

re
su

lt
an

t
b
eh

av
io

u
rs

fo
r

a
ra

n
d
om

se
ar

ch
of

p
ro

b
le

m
T
u
rb

-
20

-0
.8

-0
.0

05

5. evolving cellular automaton systems 71

F
i
g
u
r
e

5
.
6
:

G
ra

p
h

of
fi
tn

es
s

ag
ai

n
st

ti
m

e,
p
lu

s
ta

rg
et

an
d

re
su

lt
an

t
b
eh

av
io

u
rs

fo
r

a
ra

n
d
om

se
ar

ch
of

p
ro

b
le

m
T
u
rb

-
20

-0
-0

.0
05

5. evolving cellular automaton systems 72

F
i
g
u
r
e

5
.
7
:

G
ra

p
h

of
fi
tn

es
s

ag
ai

n
st

ti
m

e,
p
lu

s
ta

rg
et

an
d

re
su

lt
an

t
b
eh

av
io

u
rs

fo
r

a
ra

n
d
om

se
ar

ch
of

p
ro

b
le

m
T
u
rb

-
40

-0
.2

-0
.0

05

5. evolving cellular automaton systems 73

F
i
g
u
r
e

5
.
8
:

G
ra

p
h

of
fi
tn

es
s

ag
ai

n
st

ti
m

e,
p
lu

s
ta

rg
et

an
d

re
su

lt
an

t
b
eh

av
io

u
rs

fo
r

a
ra

n
d
om

se
ar

ch
of

p
ro

b
le

m
T
u
rb

-
60

-0
.4

-0

5. evolving cellular automaton systems 74

both in terms of visual similarity of the phenotype patterns and in terms of numerical

fitness, with Random Search yeilding higher (i.e. less similar) USM values in every

case. This is not surprising – the probability of finding an optimal result by just

randomly probing the search space is remote, and of course the larger the search

space, the more insidious this problem becomes.

The results for Turb-40-0.2-0.005 and Turb-60-0.4-0 are rather closer in quality

to those for the Genetic Algorithm, with closer USM values (though still worse in

all but two cases), and better visual similarity. One possible explanation for this

may be that the areas of the search space occupied by geneotypes that correspond

to phenotypes similar to these two target patterns are, in comparison to those areas

occupied by the other two targets, relatively large and flat. This type of landscape

topology is much easier to search by any method, but the thinner, ‘spikier’ optima

of targets Turb-20-0.8-0.005 and Turb-20-0-0.005 (as suggested by the much greater

spread of evolutionary trajectories and resultant fitness values achieved) need a more

comprehensive, intelligent search mechanism.

5.3.2 Hill Climbing

The results for the Hill Climbing algorithm are similar in character to those of the

Random Search. As before, with targets Turb-20-0.8-0.005 and Turb-20-0-0.005, Hill

Climbing does not match the quality of those for the Genetic Algorithm, certainly in

terms of visual similarity, and to some extent, also in terms of numerical fitness.

Similarly, the results for Turb-40-0.2-0.005 and Turb-60-0.4-0 are rather closer in

quality to those for the Genetic Algorithm, with closer USM values (though still, in

general, not as good as those obtained with the GA).

In general, the results for Hill Climbing are comparable with those for Random

Search. Neither of these local search methods, however, produce results quite as

good as the Genetic Algorithm, due (particularly in the case of Turb-20-0.8-0.005

and Turb-20-0-0.005) to the uneven and narrow optima that characterise the fitness

landscape for this, and most other complex problems.

The recombinative nature of the GA has been shown in numerous previous publi-

5. evolving cellular automaton systems 75

Target Run Generations Fitness Winning individual
Turb-HC-20-0.8-0.005 1 150 0.98088 32.6 0.8 0.005
Turb-HC-20-0.8-0.005 2 150 0.99938 98.8 0.4 0.014
Turb-HC-20-0.8-0.005 3 150 0.99631 100.0 0.8 0.011
Turb-HC-20-0.8-0.005 4 150 0.99222 23.3 0.8 0.020
Turb-HC-20-0.8-0.005 5 150 0.98159 29.6 0.5 0.004
Turb-HC-20-0.8-0.005 6 150 0.98165 38.8 0.7 0.002
Turb-HC-20-0.8-0.005 7 150 0.99155 18.4 0.7 0.020
Turb-HC-20-0.8-0.005 8 150 0.99283 26.0 0.4 0.015
Turb-HC-20-0.8-0.005 9 150 0.99437 71.1 0.7 0.008
Turb-HC-20-0.8-0.005 10 150 0.96514 1.3 0.8 0.007

µ 0.98759
cv 0.01025

Turb-HC-20-0-0.005 1 132 1.01443 64.4 0 0.005
Turb-HC-20-0-0.005 2 132 1.03681 35.4 1.0 0.006
Turb-HC-20-0-0.005 3 132 1.00309 13.1 0 0.019
Turb-HC-20-0-0.005 4 132 1.03662 20.7 0.3 0.018
Turb-HC-20-0-0.005 5 132 1.02219 44.5 0 0.004
Turb-HC-20-0-0.005 6 132 1.01939 57.8 0 0.003
Turb-HC-20-0-0.005 7 132 1.03918 31.3 0.7 0.012
Turb-HC-20-0-0.005 8 132 1.03868 30.5 0.7 0.011
Turb-HC-20-0-0.005 9 132 1.03805 27.0 0.3 0.016
Turb-HC-20-0-0.005 10 132 1.01227 46.7 0 0.013

µ 1.02607
cv 0.01339

Turb-HC-40-0.2-0.005 1 147 0.95996 76.9 0.2 0.006
Turb-HC-40-0.2-0.005 2 147 0.96131 86.6 0.2 0.005
Turb-HC-40-0.2-0.005 3 147 0.97193 94.3 0.7 0
Turb-HC-40-0.2-0.005 4 147 0.97187 52.6 0.6 0.021
Turb-HC-40-0.2-0.005 5 147 0.97255 70.5 0.7 0.019
Turb-HC-40-0.2-0.005 6 147 0.97137 79.2 0.7 0.014
Turb-HC-40-0.2-0.005 7 147 0.96907 36.6 0.8 0.008
Turb-HC-40-0.2-0.005 8 147 0.96402 43.7 0.2 0.010
Turb-HC-40-0.2-0.005 9 147 0.97117 75.6 0.5 0.025
Turb-HC-40-0.2-0.005 10 147 0.97027 44.2 0.7 0.021

µ 0.96835
cv 0.00475

Turb-HC-60-0.4-0 1 145 0.96256 30.4 0.3 0.018
Turb-HC-60-0.4-0 2 145 0.96486 59.7 0.4 0.021
Turb-HC-60-0.4-0 3 145 0.96201 51.1 0.7 0.007
Turb-HC-60-0.4-0 4 145 0.96526 42.0 0.8 0.019
Turb-HC-60-0.4-0 5 145 0.96299 46.5 0.7 0.010
Turb-HC-60-0.4-0 6 145 0.96164 50.0 0.8 0.004
Turb-HC-60-0.4-0 7 145 0.96126 42.6 0.8 0.007
Turb-HC-60-0.4-0 8 145 0.96493 50.6 0.8 0.017
Turb-HC-60-0.4-0 9 145 0.95943 97.0 0.3 0.014
Turb-HC-60-0.4-0 10 145 0.96076 51.3 0.8 0

µ 0.96257
cv 0.00195

Table 5.3: Statistical analysis of Turbulence system hill climb

5. evolving cellular automaton systems 76

F
i
g
u
r
e

5
.
9
:

G
ra

p
h

of
fi
tn

es
s

ag
ai

n
st

ti
m

e,
p
lu

s
ta

rg
et

an
d

re
su

lt
an

t
b
eh

av
io

u
rs

fo
r

a
h
il
l
cl

im
b

of
p
ro

b
le

m
T
u
rb

-2
0-

0.
8-

0.
00

5

5. evolving cellular automaton systems 77

F
i
g
u
r
e

5
.
1
0
:

G
ra

p
h

of
fi
tn

es
s

ag
ai

n
st

ti
m

e,
p
lu

s
ta

rg
et

an
d

re
su

lt
an

t
b
eh

av
io

u
rs

fo
r

a
h
il
l
cl

im
b

of
p
ro

b
le

m
T
u
rb

-2
0-

0-
0.

00
5

5. evolving cellular automaton systems 78

F
i
g
u
r
e

5
.
1
1
:

G
ra

p
h

of
fi
tn

es
s

ag
ai

n
st

ti
m

e,
p
lu

s
ta

rg
et

an
d

re
su

lt
an

t
b
eh

av
io

u
rs

fo
r

a
h
il
l
cl

im
b

of
p
ro

b
le

m
T
u
rb

-4
0-

0.
2-

0.
00

5

5. evolving cellular automaton systems 79

F
i
g
u
r
e

5
.
1
2
:

G
ra

p
h

of
fi
tn

es
s

ag
ai

n
st

ti
m

e,
p
lu

s
ta

rg
et

an
d

re
su

lt
an

t
b
eh

av
io

u
rs

fo
r
a

h
il
l
cl

im
b

of
p
ro

b
le

m
T
u
rb

-6
0-

0.
4-

0

5. evolving cellular automaton systems 80

Experiment GA vs RS GA vs HC
Turb-20-0.8-0.005 13.559828 7.456722
Turb-20-0-0.005 6.082138 5.402137

Turb-40-0.2-0.005 3.297099 3.863920
Turb-60-0.4-0 10.064246 11.129315

Table 5.4: Statistical significance (t-value) analysis between the performance of
Genetic Algorithm, Random Search and Hill Climbing methods.

cations [87, 102] to be effective in producing more successful offspring than a purely

random search. The major advantage of a GA, though, is its population-based nature,

and this is particular suited to complex problems with an innately parallel nature, as

discussed previously. In a local search method such as Hill Climbing, the initial (ran-

dom) ‘seed’ individual is of crucial importance – if it does not reside in the ‘trough’

of a good optimum, the algorithm is destined to failure. With a population-based

mechanism, the probability of finding a fruitful area of the search space is much im-

proved. A further advantage of a population-based mechanism, and hugely important

when considering complex systems that may take a considerable time to compute, is

that a single iteration of the algorithm, though comprising many evaluations, can be

parallelised via the relevant mechanism in the Evolutionary Engine, described above

in 3.2.

A simple T-Test was performed on the ten resultant fitnesses from each of the

four target problems. Again, it is important to note that if the focus of this work

was a true comparison of algorithmic efficency, a more detailed comparison with more

repeats and more sophisticated statistical methods should be employed, and indeed

this may be the basis for future work, but to give a general picture, the t-values shown

in table 5.4 are quite telling. With a degree of freedom of 18, significance levels range

from 1.33 (alpha level of 0.2) to 4.97 (alpha level of 0.0001). If we choose the standard

alpha value of 0.05, which corresponds to a significance level of 2.10, looking at the

values in table 5.4, the difference between the GA results and those for both local

search methods are clearly statistically significant in each of the four problems.

We have shown that the GA performs significantly better than random search and

hill climbing in all the experiments performed on the Turbulence CA system. Given

5. evolving cellular automaton systems 81

these observations, coupled with the wealth of previous research that suggests local

search methods are not appropriate for the optimisation of such complex problems,

we are confident in selecting the Genetic Algorithm as the favoured search method

to be used in the remaining complex search problems considered in this thesis.

5.4 A further assessment of the USM

In this section, the USM is evaluated further on a number of CA systems built using

the Wolfram system described in section 4.1.

5.4.1 Problem description

In [86], a GA was used to evolve a non-uniform CA – a development of the CA

paradigm where each cell in the lattice does not use the same rule set – this makes

the system considerably more complex. We expand our system in a similar manner,

such that the CA can be partitioned to use a number of different rules within a single

model; for example, in a CA whose grid is bounded to a size of 100 x 100, columns

0-50 may use Wolfram Rule 30, but columns 51-100 may use Rule 145. This gives the

USM the much greater challenge of having to capture two distinct behaviours and,

as will be shown later on, demonstrates some particularly interesting features of the

metric’s abilities.

Three groups of target patterns were defined using this ‘meta-automaton’ system.

In the first set, all columns use the same rule. The ten target patterns produced by

these automata are shown in figure 5.13. For the second group of target patterns,

the spacial dynamics were divided in two. That is, given two random rules chosen

from the ‘pool’ of 256 rules, the first 50 cells are associated with one rule and the

remaining 50 with the other. These nine targets are shown in figure 5.14. In order

to provide the USM/GA search system with an even more challenging data set, the

spacial dynamics were further divided into four for the last group of target patterns.

In this case, cells were divided into groups of 25 consecutive cells and a randomly

selected rule was associated to each group. These four patterns are shown in figure

5.15.

5. evolving cellular automaton systems 82

Figure 5.13: Target patterns for meta-automaton group A (one rule per model)

Figure 5.14: Target patterns for meta-automaton group B (two rules per model)

5. evolving cellular automaton systems 83

Figure 5.15: Target patterns for meta-automaton group C (four rules per model)

5.4.2 Results

A GA using the USM as fitness function was run for 100 generations on each target.

Table 5.5 shows the target and evolved rule sets, the associated USM value, as well

as an indication of visual similarity. As shown, five out of ten experiments evolved

the expected rule for the first data set. However, if we further analyse the remaining

results we see that in most of the cases where the expected rule was not achieved, the

evolved rule often results either in a mirror or otherwise similar image. For instance,

as figure 5.16(a, b) shows, the evolved target patterns found for target A2 and A4 are

mirror images. Moreover, as depicted in figure 5.17(a), it is clear that the diagonal

black strips appearing in target A9 were well-captured by the USM. It can be argued,

therefore, that certain similarities between the target pattern and the designoid were

found in most cases. Contrarily, in the case of targets A6 and A7, no similarities at

all appear (despite an encouarging USM value for A6 in particular).

In the case of the second data set, equivalent rules, mirrors and close similarities

are also found. None of the results have reached exactly the correct rules, however,

five results out of ten are visually similar – three evolved patterns produce mirror

images, and two produce important features appearing in the target patterns. Figure

5.16(c, d, e) show that a target rule plus an equivalent rule were found in the case of

the mirrored B1, B2 and B7. On the other hand, figure 5.17(b, c) shows that in the

5. evolving cellular automaton systems 84

Target ID Target ruleset Evolved ruleset USM value Visual similarity
A1 [122] [122] 0.993958124 Correct
A2 [148] [6] 1.042744644 Mirror
A3 [181] [181] 0.984504855 Correct
A4 [120] [106] 0.983119009 Mirror
A5 [97] [97] 0.985429776 Correct
A6 [135] [195] 0.976343879 None
A7 [229] [195] 1.048922986 None
A8 [131] [131] 1.00218998 Correct
A9 [154] [169] 0.987069886 Captured
A10 [133] [133] 0.950053315 Correct
B1 [177 132] [164 177] 0.818578016 Mirror
B2 [68 122] [122 100] 0.885830497 Mirror
B3 [65 135] [215 146] 0.948304844 None
B4 [5 57] [115 192] 0.870995252 None
B5 [25 60] [26 125] 0.96081944 None
B6 [60 102] [183 20] 0.964207074 None
B7 [147 2] [130 147] 0.905361748 Mirror
B8 [129 46] [126 16] 0.958283213 Captured
B9 [167 180] [91 167] 0.993560531 Captured
C1 [49 34 84 147] [73 141 188 230] 0.907788419 Captured
C2 [61 251 23 165] [38 140 105 234] 0.917228868 Captured
C3 [41 183 195 110] [61 120 146 196] 0.940763235 Captured

Table 5.5: Target and evolved rule sets for the meta-automaton system

case of B8, the white-on-black triangular pattern on the left of the image becomes a

very similar, but black-on-white pattern in the evolved version.

In the case of the third data set, mirrors were more difficult to produce and none

of the evolved patterns have reached the target rules. However, a visual analysis of

the obtained patterns supports the idea that some relevant features were captured

from the target images. For example, in figure 5.18(a) it is particularly interesting to

note that a pair of rules for producing the central inverted V-shape were discovered

(but with reversed colouring and in a different position). Moreover, in figure 5.18(b),

an equivalent rule for the second strip was discovered at the fourth position in the

evolved pattern, and the chaotic behaviour of the last strip is represented in the third

position of the evolved version. Finally, in figure 5.18(c), a similar effect of colour

inversion is observable between the second and third strip of the target and evolved

5. evolving cellular automaton systems 85

Figure 5.16: Examples of mirror images evolved for meta-automaton targets (target,
left; evolved, right): (a) A2, (b) A4, (c) B1, (d) B2, (e) B7

Figure 5.17: Examples of other similarities captured in evolved meta-automaton
targets (target, left; evolved, right): (a) A9, (b) B8, (c) B9

Figure 5.18: Target and evolved patterns for meta-automaton group C (four rules)
(target, left; evolved, right): (a) C1, (b) C2, (c) C3

5. evolving cellular automaton systems 86

patterns respectively.

5.4.3 Outcomes

Even in those results where the exact rules have not been found, the nature of the

rules used in this ‘meta-automaton’ mean that a number of different rules can have

very similar spacio-temporal behaviour. Hence, as seen in the results for the Tur-

bulence model earlier in this chapter, a significantly different genotype can, in fact,

result in a similar phenotype – further illustration of the complex, non-linear na-

ture of the genotype–phenotype–fitness mapping in these systems. It is evident from

these experiments that, although the USM works well in many cases, it has a num-

ber of shortcomings. As illustrated by the results above, one of the most obvious

is its blindness to negative images (intuitively, using the description of conditional

Kolmogorov complexity described previously, the amount of information needed to

produce, for example, a segment of black pixels, given a segment of white pixels is

equal to that needed to produce a segment of white pixels given a segment of black

pixels). Similarly, the USM does not differentiate between mirror images. These in-

teresting insights suggest that although useful in many cases, the USM may not be as

universally appropriate as at first thought. Indeed, in the next chapter, the USM is

not found to be an appropriate fitness method, and an alternative metric is proposed

and investigated.

5.5 Conclusions

The Evolutionary Engine’s ability to successfully coerce a cellular automaton-based

system into a pre-defined, target behaviour has been demonstrated, using a fitness

function based on the Universal Similarity Metric. Furthermore, the results obtained

from the genetic algorithm were compared to two standard non-evolutionary alterna-

tives, and the argument made that the evolutionary methodology is better suited to

this area of complex system design. The USM’s ability to evolve target behaviours

was further verified by using a number of other CA-based systems; although the met-

ric scaled up to this new problem family, a number of interesting shortcomings were

5. evolving cellular automaton systems 87

identified, suggesting the method may not be universally successful.

Having proved the concept of the Evolutionary Engine using relatively simple CA

models, we move on now to look at a more complex model that closely simulates a

real physical process.

88

Chapter 6

Evolutionary design of nanostructures

From the abstraction of CA-based models, we move now to consider, for
the first time, the evolutionary design of target behaviours on a real-
world problem derived from the nanosciences. In this chapter, the Evo-
lutionary Engine is applied to a Monte Carlo model that simulates the
self-organistion processes of passivated gold nanoparticles when spin cast
onto a silicon substrate. The engine is used, first with the USM, then in
conjunction with an innovative fitness function based on Minkowski func-
tionals, to tune the operation of this system towards a target behaviour
(arrangement of particles), represented by a graphical pattern.

The process of the adsorption of gold nanoparticles not only produces an im-

pressive range of patterns, but has previously been proved [98, 80] to be remarkably

well-described by a relatively simple Monte Carlo algorithm. This application takes

the work of this thesis much closer to the design of real, physical systems, as well

as providing an important link between simulation and experiment in the study of

self-organising nanostructured systems. The potential of this work to be extended to

the construction of nanoscale components as part of an ‘unconventional computing’

system, such as that suggested in [126] is particularly relevant in today’s research

environment, and indeed, there is a clear analogy between the behaviour of such a

system and the origins of biological life – the development of both areas relies on the

self-assembly of simple particles into an arrangement whereby some form of complex

behaviour emerges.

6. evolutionary design of nanostructures 89

Figure 6.1: 3D atomic force microscope images demonstrating four types of com-
monly observed nanostructured patterns. Imaging by Christopher Martin/Philip Mo-
riarty (University of Nottingham)

6.1 Nanostructures

Nanoscience is the study of extremely small-scale systems. A nanometre is 10−9m,

which equates to roughly 1
70000

of the width of a human hair. Systems that operate

on this scale are of obvious interest in the seemingly unstoppable quest towards the

further miniaturisation of technology, specifically to fields such as computing and

medicine. Among the many avenues of research in this new and quickly developing

field of science, is the study of nanoscale self-organising systems. Governed by a num-

ber of experimental parameters, so-called ‘nanoparticles’ can organise themselves into

a large variety of patterns. In time, these patterns may be able to encode particular

functions [126], and this is therefore a particularly important area of research. Figure

6.1 shows a selection of atomic force microscope images of such patterns.

6. evolutionary design of nanostructures 90

Figure 6.2: Diagrammatic representation of the constructuion of a Thiol-passivated
Gold nanoparticle

6.1.1 Physical background

When deposited onto a solid substrate, colloidal nanoparticles (that is to say, a num-

ber of nanoparticles dispersed evenly throughout a solvent) have been found to self-

organise into a variety of complex patterns [39, 98, 88, 80, 89, 6, 9] principally driven

in many cases by the evaporation of the solvent. The system of interest in this chap-

ter, namely, gold nanoparticles dispersed in toluene deposited onto a silicon substrate,

has been described at length in a number of earlier publications [88, 80, 9]. Figure

6.3 shows a selection of the different types of morphologies that can be obtained. The

nature of the pattern depends on a number of factors including nanoparticle concen-

tration, the nature of the solvent and substrate, and the length of the thiol groups

(see figure 6.2) that surround each gold particle. Understanding the physical pro-

cesses that govern the self-organisation of patterns like those shown in figure 6.3 is an

area of particularly intensive research, and one in which simulations and experiments

play a vital role.

6.1.2 Simulation

The system built, developed and described by the authors of [80] to simulate the

processes described above is based on a two-dimensional Monte Carlo model intro-

duced in [98]. The solvent is represented as an array of cells on a square grid, each

6. evolutionary design of nanostructures 91

Figure 6.3: Example morphologies obtained through the spin casting of Thiol-
passivated Gold nanoparticles onto a silicon substrate

of which represents 1nm2, and can have a value of either 1 or 0 to represent liquid

or vapour respectively. Each gold nanoparticle occupies an area of 3 x 3 cells, and

liquid is excluded from the sites where a particle is present. The simulation proceeds

by two processes: the evaporation (and recondensation) of solvent, and the random

walks of nanoparticles. The simulation is subject to a number of parameters that

determine the nature of the pattern formed as output. The stochastic nature of the

model means that the same parameter set is unlikely to produce exactly the same

pattern more than once. However, the degree of stochasticity is such that the visual

characteristics of the pattern generated by a given parameter set all have similar,

albeit non-identical, features.

As with the cellular automaton-based systems studied in the previous chapter,

the nanosystem simulator studied here has a number of numerical input parameters

which determine the nature of the pattern formed as output (just as the experimental

laboratory conditions do). The simulator is coupled to the Evolutionary Engine in

order to tune the input parameters so as to obtain a pattern as similar as possible to

a pre-defined target morphology. The simulator takes four parameters as input; as

before, we quote lower and upper bounds, as well as an indication of sensitivity for

6. evolutionary design of nanostructures 92

each parameter. Parameter MR [5, 50, 1] governs the mobility ratio of the particles,

in effect, an abstraction of the particles’ interaction energies, determining how fast the

particles move compared to the evaporation of the solvent. The coverage parameter

[0.05, 0.29, 0.01] is simply the concentration of nanoparticles dispersed in the solvent

and kT [0.5, 2, 0.1] a measure of the energy (temperature) of the system. EL [1, 4,

0.1] defines the attraction strength between the solvent and solvent, or between the

solvent and particle.

The output of the simulator is a greyscale image representing the pattern formed

by the self-organisation of the nanoparticles where particles themselves are repre-

sented as grey pixels, whilst residual solvent is represented by black pixels and the

white areas represent uncovered areas of substrate. We consider ‘covered area’ to

be those areas covered by either particle or solvent, and can therefore threshold the

output images into a binary grid where each cell is either ‘covered’ (black) or not

(white).

The accuracy, lower and upper bounds of each parameter are intuitively derived

from the physicists’ understanding of the system. It is in the interests of the optimi-

sation process to have as small (yet phenotypically diverse) a search space as possible,

and indeed the upper bound of one of the parameters to the simulator, coverage, that

specifies the concentration of nanoparticles in the toluene solvent, can affect such

a change. We can place a revised, target-specific upper bound on this parameter

by measuring the covered area of the target pattern. Note that it is only an upper

bound (i.e. not an exact value), because the amount of residual solvent (which we

also consider as ‘covered area’) that will be left behind is not known and can vary

considerably.

Examples of the morphologies obtainable through use of this simulator, and the

parameters used to generate them can be found in the appendix (A.2). Four specific

examples are shown in table 6.1.

6. evolutionary design of nanostructures 93

“A” “B”

Parameters: 20, 0.29, 1, 3 Parameters: 5, 0.29, 1, 2
Time: 941s Time: 589s

Minkowski: 360057, 17768, -7 Minkowski: 428606, 52828, 56

“C” “D”

Parameters: 35, 0.21, 2, 3 Parameters: 5, 0.05, 1, 4
Time: 978s Time: 538s

Minkowski: 332788, 44734, 265 Minkowski: 1048576, 4096, 1

Table 6.1: Example patterns from the nano system simulator. The patterns are
shown along with the parameters used to generate them, the time taken for the
simulation to be produced (on an Intel Pentium 4 CPU running at 2.40GHz), and
their Minkowski functionals (which are explained later).

6. evolutionary design of nanostructures 94

6.2 Fitness

In order to guide the Monte Carlo simulator into producing a particular morphol-

ogy, a method of measuring similarity between self-organised patterns (target versus

evolved) must be used, just as the USM was used in the previous chapter in the

context of CA-based systems.

6.2.1 The Universal Similarity Metric

Given the success of the USM in evolving target behaviour in the CA system, as

presented in chapter 5, initial investigations were concerned with verifying whether

the USM would be an effective method for directing a search of this new system.

A cluster tree was produced, as described previously in chapter 4. As with the

CA-based system, it is important that the dataset used for this cluster analysis is

representative of the whole search space, whilst still being a manageable size. Hence,

the search space is systematically sampled as we did with the Turbulence system

before. For the four genes, MR [5, 50], coverage [0.05, 0.29], kT [0.5, 2] and EL [1,

4], the number of bins, b, is set to four, giving a dataset size of 44 = 256 points.

The entire dataset is listed in appendix A. As before, every pattern of the dataset

was compared for similarity to every other, and a square similarity matrix obtained.

Figure 6.4 shows the corresponding hierarchical cluster tree. It is clear that in this

problem domain, the USM’s ability to effectively classify similar patterns is poorer

than expected. Although the darker patterns (clusters D-G) are set apart in the tree,

it is particularly concerning to see that a number of clusters representing visually

similar patterns (such as H, K and M, or A and I, or B and L, or D and G) are not

placed together in the tree. Moreover, the USM does not seem to be able to effectively

differentiate between patterns with a high degree of connectivity. That is to say that

patterns that consist of a number of isolated and unconnected regions (such as those

individuals represented by clusters M,K and H) are not sufficiently partitioned from

those individuals (such as A, B, L and I) that are characterised by more connected

‘worm-like’ or labyrinthine structures. This, coupled with the shortcomings identified

in section 5.4 suggests that a more introspective, ‘geometrically aware’ fitness function

6. evolutionary design of nanostructures 95

is required.

6.2.2 Minkowski functionals

The authors of [80] characterised certain aspects of similar simulation patterns using

the Minkowski functionals. We develop this work, constructing a similarity mea-

sure based on these measures. The Minkowski functionals [84] characterise a binary

pattern in terms of area, perimeter and Euler characteristic (a measure of connec-

tivity). They have been recently used in fields such as tile design [119] and vesicle

simulation [78]. A binary pattern can be sub-divided into pixel squares and the three

functionals calculated as follows:

Number of squares, ns = 8 Area = ns = 8
Number of edges, ne = 24 Perimeter = −4ns + 2ne = 16
Number of vertices, nv = 16 Euler = ns − ne + nv = 0

In this way, precise geometrical characteristics can be extracted. These charac-

teristics are explained further by illustration below:

A B C
6400 320 1 4800 480 0 5200 540 -1

D E
5500 560 -3 5180 558 1

Graphic A shows a simple square of 80x80, from which the area and perimeter

characteristics are trivial; for all simple polygons (that is, without holes), the Euler

6. evolutionary design of nanostructures 96

Figure 6.4: Hierarchical clustering tree showing USM classification of the nano
system dataset

6. evolutionary design of nanostructures 97

characteristic equals one. For figures with holes, the Euler characteristic will be less

by the number of holes present, as illustrated by Graphic B (which also as a greater

perimeter, due to the newly introduced inside edge). Adding a further hole (Graphic

C) has the expected effect (again also increasing the perimeter), and furthermore,

Graphic D. Note that adding a second body within the hole (Graphic E) causes the

Euler characteristic to increment again, although this graphic is differentiated from

A in terms of both area and perimeter.

As a further, more problem-specific illustration and explanation of this method,

table 6.1 shows four example patterns along with their corresponding Minkowski

values. Pattern A is a highly connected, cellular structure. The large scale of these

‘cells’ means the total perimeter of the pattern is relatively low (and much lower

than the similarly connected, but much smaller length-scale pattern B). The small,

negative Euler characteristic is representative of the fact that the structure is almost

entirely connected, with a small number of ‘holes’. Pattern B is also quite highly

connected (but not cellular), hence the relatively small Euler number; the perimeter

is much higher than that for pattern A due to its smaller length scale, as discussed

above. Pattern C has a high Euler number, and a reasonably high perimeter, as the

pattern is a highly disconnected collection of small ‘islands’. Pattern D clearly has the

maximum area value and a Euler number of 1, as the simulation space is completed

covered.

It is important to note that for these nanostructured patterns, the scale of each

functional varies considerably. For example, the area functional takes values in the

region of 200,000 - 500,000; perimeter is a factor of ten smaller at between 10,000

and 80,000; with the Euler characteristic a further factor of 100 smaller with values

between 0 and 700. Using simply the root mean squared of the sum of each error value

(that is to say, the Euclidian distance between the target functional and that produced

by the evolved pattern) would introduce a false weighting into the fitness function in

favour of the numerically larger functionals. We are therefore faced with two options

– either, the error value for each functional is normalised and then combined into a

single similarity value to be minimised by the GA objective function, or each error

value is optimised independently in a multi-objective setting. Although simpler, the

6. evolutionary design of nanostructures 98

use of normalisation factors and an aggregate function will inevitably introduce noise

into the fitness function, hence we have opted to employ a multi-objective approach for

the work which follows. As explained in chapter 3, for multi-objective problems, the

Evolutionary Engine employs the popular Non-dominated Sorting Genetic Algorithm

(NSGA-II) invented by Deb [31] – one of the most popular multi-objective genetic

algorithm implementations used in industry today.

Each of the three Minkowksi error measures (the absolute difference between the

relevant target and evolved functional) are allocated as a separate fitness component

(equation 6.1 where a = area, p = perimeter, e = Euler, t = target, v = evolved). At

the completion of the algorithm, the user can then choose which individual from the

final Pareto front to accept as the best solution.

Fi =
〈∣∣∣ai

t − ai
v

∣∣∣ , ∣∣∣pi
t − pi

v

∣∣∣ , ∣∣∣ei
t − ei

v

∣∣∣〉 (6.1)

6.2.3 Stopping condition

In standard single objective optimisation, stopping conditions are relatively simple

to construct. Common techniques include a simple cap at a predefined number of

generations, a predefined fitness value that, when reached, signals termination, or

stopping the algorithm after a certain number of iterations showing no improvement

in average fitness (as implemented in the experiments presented in chapter 5). The

first technique mentioned above, that is, imposing a set number of generations over

which the search should run, has a number of major disadvantages, not least that

it is not suitable for performance comparision. Stopping the algorithm when fur-

ther improvement looks unlikely (and a fixed number of unimproved generations is

a good estimate of this) is a much better option, enabling the efficiency of a search

to be measured in terms of time (generations). The very nature of a multi-objective

algorithm, however, considerably complicates the definition of a ‘non-improvement’

measure, as there is no single fitness to measure. In the results presented below, we

use the technique proposed in [106]: The maximum crowding distance of all members

of the Pareto set, dl, is measured each generation, and a history of length L main-

tained. We stop the algorithm if the coefficient of deviation of this set of distances is

6. evolutionary design of nanostructures 99

less than or equal to a defined boundary, δ:

√
1
L

∑L
l=1

(
dl − d̄L

)2

d̄L

≤ δ (6.2)

In the experiments presented below, it was found, by preliminary experimentation,

that L = 10 and δ = 0.2 are suitable parameters.

The simulator is reasonably compute and time intensive (as illustrated by table

6.1, a single run can take almost twenty minutes to run). Therefore, the distributed

evaluation option provided by the evolutionary engine is employed. This can enable

the concurrent evaluation of an entire population at once.

6.2.4 Decision Maker

At the termination of a multi-objective search, the Pareto set will comprise a selection

of non-dominated individuals, each satisfying the individual fitness components to a

different degree. The user can either choose the ‘winning’ individual by hand, or a

decision maker module can be defined.

Whilst keeping the user-based option available, an automated decision maker is

defined as well. Although the three Minkowski functionals are optimised indepen-

dently, visual similarity, and thus the overall quality of the individual, is a function

of all three Minkowski functionals combined. As each fitness component (Minkowski

error) is to be minimised, and each component can be deemed equally ‘important’, a

Normalised Combined Fitness (NCF) can be defined to give an approximate measure

of an individual’s overall quality. Each functional is normalised into the range [0,1]

(using the minimum and maximum values of the relevent functional present in the

population), and then summed together. This defines each individual’s NCF value.

The individual with the minimum NCF is returned by the decision maker.

6.3 Robustness analysis

Before going on to apply this fitness function to a selection of target patterns, it is

important to verify it in the same manner as the USM was verified for use in the CA-

6. evolutionary design of nanostructures 100

based system. The Minkowski-based fitness function is analysed using the two-stage

process described in chapter 4.

6.3.1 Fitness distance correlation

Similarly to the Turbulence system, each of the genes (input parameters) to the system

have significantly different lower and upper bounds. A simple Euclidean distance

would therefore introduce a false weighting in favour of the genes that naturally take

larger values. For example, the range of the MR parameter is [5,50], meaning a

distance of 1 is equal to 2% of its total range; the EL parameter, however, ranges

[1,4], where a distance of 1 represents 33% of its total range. In order to provide a

more meaningful distance value, therefore, we normalise each of the four distances

to the range [0,1] and sum them together to form a single Normalised Combined

Distance (equation 4.6). An arbitrary target is chosen from the dataset (specifically,

that produced using parameters {35, 0.21, 1, 3} and shown in 6.5) and the 256-piece

dataset described above analysed for Fitness Distance Correlation. The three plots

(one for each objective) are shown in figures 6.6 - 6.8.

A clear correlation is evident in all three plots, though that for the area component

(figure 6.6 is slightly confused by the row of points positioned at fitness 777643 (which

represents completely covered, i.e. solvent saturated, behaviours). With these points

removed, in fact, the correlation coefficient rises to 0.43, a value more in line with

those of the other two fitness components which show much clearer correlations.

These results give an encouraging indication that the Minkowski-based metric is an

appropriate fitness function for use in this particular problem domain.

6.3.2 Clustering

Using the 256-piece data set described above, three square distance matrices were cal-

culated, one for each fitness component. Although three different cluster trees could

be produced, it would make the analysis of the tree very difficult, as visual similarity

is a function of all three Minkowski functionals combined. As each component is

to be minimised, and each component is equally important, these matrices can be

6. evolutionary design of nanostructures 101

Figure 6.5: FDC ‘target’ individual (Parameters: < 35, 0.21, 1, 3 >, Simulation
time: 976s

Figure 6.6: FDC scatter plot for the nano system (area only). r = -0.137

6. evolutionary design of nanostructures 102

Figure 6.7: FDC scatter plot for the nano system (perimeter only). r = 0.548

Figure 6.8: FDC scatter plot for the nano system (Euler only). r = 0.556

6. evolutionary design of nanostructures 103

combined into a single normalised combined matrix. Each of the three matrices is

normalised so that every value is in the range [0,1], and then summed together. It

is this combined or ‘consensus’ matrix [5] that is used in the clustering algorithm.

Figure 6.9 shows an annotated logarithmic tree representation of a Complete Linkage

cluster. By analysing each leaf of the tree (which correspond to a single point in the

dataset), is it clear that each of the seven main sub-clusters represents a particular

morphological ‘family’ (shown by the annotations) and that similar families are close

to each other in the tree. These results, along with those from the FDC analysis sug-

gest that the Minkowski-based fitness methodology should be an effective method for

evolving target behaviour in this particular complex system. We go on now, therefore,

to show the results of using this method on four target patterns.

6.4 Results

With verification that the Minkowski-based fitness seems to be a robust method in

this particular genotype–phenotype–fitness mapping, we move on now to test our

evolutionary algorithm on a number of target patterns. The system was tested on a

set of four contrasting target images, each taken directly from atomic force microscope

images of real (i.e., non-simulated) nanostructures. The experiments presented below

are therefore not only a test of the evolutionary algorithm and the Minkowski-based

fitness, but also of the fidelity and representationl power of the simulator itself. Each

target pattern represents a different ‘morphological family’. Both the original atomic

force microscope images as well as the thresholded and despeckled versions used as

targets in the evolutionary algorithm are shown in figure 6.10.

The MOGA was run, using the Minkowski-based fitness function on each target

until the stopping criterion defined in section 6.2.3 was reached. Each experiment

was run ten times. Figures 6.11 - 6.14 and table 6.2 show details of each MOGA

run, as well the best result for each of the four targets, as selected by the automated

decision maker described above.

In each case, the evolved patterns are very similar to the target morphologies

represented by the AFM images. The connected nature of the “cell” and “labyrinth”

6. evolutionary design of nanostructures 104

Figure 6.9: Logarithmic clustering tree showing the classification of the nano system
dataset by our Minkowski-based similarity metric

6. evolutionary design of nanostructures 105

AFM image Thresholded, despeckled

Target “cell”

Target “worm”

Target “island”

Target “labyrinth”

Figure 6.10: Nanostructured target patterns, both ‘real’ atomic force microscope
images, and thresholded, despeckled, binary version for use within the evolutionary
algorithm

6. evolutionary design of nanostructures 106

Target Run Generations NCF Resultant geneotype (ADM)
Cell 1 38 0.00985 39.0 0.2 0.971 2.776
Cell 2 21 0.02122 40.0 0.2 1.094 3.218
Cell 3 52 0.00614 37.0 0.2 1.024 2.986
Cell 4 48 0.01267 43.0 0.2 0.704 2.034
Cell 5 54 0.00252 44.0 0.2 0.778 2.250
Cell 6 32 0.02562 40.0 0.2 0.834 2.389
Cell 7 15 0.01134 46.0 0.2 0.706 2.075
Cell 8 100 0.73927 7.0 0.3 2.000 3.581
Cell 9 14 0.78069 9.0 0.3 1.691 3.006
Cell 10 100 0.69911 10.0 0.3 1.080 1.836

µ 47 0.23084
cv 0.659 1.52366

Worm 1 43 0.00936 22.0 0.2 1.233 3.036
Worm 2 27 0.02964 25.0 0.2 0.899 2.171
Worm 3 31 0.05639 36.0 0.2 1.666 3.820
Worm 4 26 0.01675 25.0 0.2 0.990 2.312
Worm 5 26 0.03213 20.0 0.2 1.404 3.459
Worm 6 25 0.05003 35.0 0.2 1.464 3.538
Worm 7 52 0.94533 5.0 0.3 1.376 1.647
Worm 8 11 1.15517 14.0 0.3 1.667 1.864
Worm 9 16 1.10001 25.0 0.3 1.529 1.728
Worm 10 100 0.93187 5.0 0.3 1.748 2.099

µ 36 0.43267
cv 0.714 1.20402

Island 1 24 0.05998 14.0 0.2 1.361 1.575
Island 2 16 0.02623 11.0 0.2 1.076 1.255
Island 3 59 0.01330 7.0 0.2 1.396 1.673
Island 4 10 0.22058 6.0 0.2 1.464 1.837
Island 5 14 0.06140 6.0 0.2 1.959 2.407
Island 6 19 0.15581 5.0 0.2 1.807 2.241
Island 7 11 1.90158 9.0 0.3 1.491 1.456
Island 8 24 0.04980 13.0 0.2 1.612 1.755
Island 9 100 1.74470 5.0 0.3 1.790 1.808
Island 10 16 1.96128 8.0 0.3 1.643 1.622

µ 29 0.61947
cv 0.97455 1.39832

Labyrinth 1 10 0.22369 5.0 0.3 1.509 1.776
Labyrinth 2 62 0.02913 5.0 0.3 1.580 1.910
Labyrinth 3 10 0.14225 8.0 0.3 0.853 1.000
Labyrinth 4 100 0.04312 5.0 0.3 1.950 2.363
Labyrinth 5 23 0.16899 9.0 0.3 0.842 1.041
Labyrinth 6 45 0.09556 5.0 0.3 1.999 2.432
Labyrinth 7 20 1.69588 11.0 0.5 2.000 2.202
Labyrinth 8 10 0.12358 5.0 0.4 1.610 1.780
Labyrinth 9 17 1.47631 5.0 0.5 1.300 1.000
Labyrinth 10 12 1.47771 6.0 0.5 1.389 1.057

µ 31 0.54762
cv 0.964 1.27189

Table 6.2: Statistical analysis of Nano system evolutions

6. evolutionary design of nanostructures 107

F
i
g
u
r
e

6
.
1
1
:

T
ar

ge
t

p
at

te
rn

,
ev

ol
u
ti

on
gr

ap
h

an
d

b
es

t
re

su
lt

an
t

p
at

te
rn

fr
om

th
e

ev
ol

u
ti

on
ar

y
al

go
ri

th
m

,
ru

n
n
in

g
on

th
e

“c
el

l”
ta

rg
et

6. evolutionary design of nanostructures 108

F
i
g
u
r
e

6
.
1
2
:

T
ar

ge
t

p
at

te
rn

,
ev

ol
u
ti

on
gr

ap
h

an
d

b
es

t
re

su
lt

an
t

p
at

te
rn

fr
om

th
e

ev
ol

u
ti

on
ar

y
al

go
ri

th
m

,
ru

n
n
in

g
on

th
e

“w
or

m
”

ta
rg

et

6. evolutionary design of nanostructures 109

F
i
g
u
r
e

6
.
1
3
:

T
ar

ge
t

p
at

te
rn

,
ev

ol
u
ti

on
gr

ap
h

an
d

b
es

t
re

su
lt

an
t

p
at

te
rn

fr
om

th
e

ev
ol

u
ti

on
ar

y
al

go
ri

th
m

,
ru

n
n
in

g
on

th
e

“i
sl

an
d
”

ta
rg

et

6. evolutionary design of nanostructures 110

F
i
g
u
r
e

6
.
1
4
:

T
ar

ge
t

p
at

te
rn

,
ev

ol
u
ti

on
gr

ap
h

an
d

b
es

t
re

su
lt

an
t

p
at

te
rn

fr
om

th
e

ev
ol

u
ti

on
ar

y
al

go
ri

th
m

,
ru

n
n
in

g
on

th
e

“l
ab

y
ri

n
th

”
ta

rg
et

6. evolutionary design of nanostructures 111

patterns are well-matched, as is the rather more disconnected trend of the “worm”

and “island” patterns. The small length-scale of the “island” and “labyrinth” patterns

are well contrasted with the larger scale of the “cell” and “worm” behaviours.

In all four experiments, there is a reasonably high degree of variation between the

number of generations taken to reach the stopping criteria. This is not altogether sur-

prising, however, as searches that, by virtue of their initial population, start closer to

an optimum area of the search space than others, will naturally take fewer generations

to converge.

There is also considerable variation in the NCF values among the ten runs for

each experiment. This suggests that the search space itself is highly uneven, with

local optima or very different depth and with a number of optima for a given target

– some optima will be of higher quality than others. The results for the “cell” and

“worm” targets both show two distinct shapes of trajectory, with most of the ten

runs following the higher quality (i.e., lower resultant similarity value) trend, but

with three or four runs following a path that converges on a lower quality (but still

visually acceptable) result. This may indicate that there are two distinct areas of

the search space that correspond to patterns of this type, with one satisfying the

Minkowski similarity measure to a greater extent than the other. It should be noted

that our population size is relatively small (20 individuals), due to the constraints of

the parallel computation facility – a larger population, it is expected, would ensure

that each search would visit at least one of the higher quality optima. As in the initial

experiments with the cellular automata, there is clear evidence that the search space

is multi-modal, i.e., that two different genotypes may give very similar phenotypes

(and fitnesses).

6.5 Identifying limitations in Minkowski image analysis: Multi-

phased nanostructures

In this section, preliminary work is shown where the methods employed above are

applied to more complex class of target pattern - a two-phased simulation where a

‘foreground’ and ‘background’ pattern are formed, each with their own characteristics.

6. evolutionary design of nanostructures 112

Name Type Lower Upper
MR integer 5 50

coverage real 0.05 auto
kT real 0.5 2
EL real 1 4
mu real -2.5 -2
A integer 50 1000
B real 0 1
vc real 0 1

Table 6.3: Extended nanostructure simulator: Parameters

A method of phase separation and an incremental evolutionary process is suggested

for the evolution of such behaviours as the basis for further investigation.

As can be seen from figure 6.3, some of the patterns formed by this physical system

can be seen to be in two distinct phases such as, for example, a smaller scale collection

of disconnected islands within a connected, celluar superstructure. The authors of

the Monte Carlo model extended it to represent this type of self-organisation process

by the addition of a dynamic chemical potential parameter. This extended model

is driven by eight parameters. Details of all eight parameters are given in table 6.3.

The first four are identical to those in the single-phased system described above; the

latter four are related to the specification of the dynamic chemical potential variable,

with mu governing the initial potential level. A defines the gradient between the two

phases, i.e., whether the switch between phases is sudden or gradual, and B defines

the nature of the final chemical potential value once the switch has completed. vc

defines the position of the switch in time.

6.5.1 Methodology

Simply ‘plugging in’ the extended simulator to the Minkowski-based objective func-

tion described above would not be appropriate. The Minkowski functionals are an

average measure across a given image – the area, perimeter and Euler characteristics

of the whole image. A two-phase image, where each phase has a significantly differ-

6. evolutionary design of nanostructures 113

ent Minkowski signature, clearly poses a considerable problem. A closer investigation

of the parameter set provides the route to a potential solution. Specifically, the vc

parameter can be interpreted as a measure of the size ratio between the two phases.

Setting this parameter to its lower bound value of 0 results in the production of the

foreground pattern only, whilst the upper bound value of 1 results in only the back-

ground pattern. A value between these two extreme bounds results in the two-phased

pattern such that vc equals the size ratio of the foreground pattern to the total image

size. A target pattern, T , can therefore be partitioned into two single-phased images.

If a parameter set can be found that produces both separated patterns when vc is set

to 0 and 1 respectively, the target pattern can be produced by analytically setting

the vc parameter as described above.

The target pattern is manually separated into its two phases at the outset of the

search, by hand. An example of this separation process is shown in figure 6.15. Note

that in the background-only pattern, the areas formerly occupied by the foreground

pattern have been manually extrapolated from the surrounding background pattern.

The methodology then continues using an ‘incremental complexity’ method: Two

instances of the GA are run – one concerned with matching only the foreground

pattern and one concerned with matching only the background pattern. That is to

say, all parameters are evolved, with the exception of the vc parameter which, in the

former case is set always to 0, and in the latter set always to 1. These two instances

are run until a stopping criterion identical to that defined in 6.2.3 is reached. The final

populations of these two runs are then combined, and re-evaluated, but considering

both foreground and background comparisons. In this way, a highly ranked behaviour

would be one that reproduces both foreground and background patterns faithfully.

Setting the vc parameter such that the relative sizes of the two phases are well-

matched (simply by measuring the size ratios in the two-phased target pattern),

should result in a good match for the two-phased target.

6. evolutionary design of nanostructures 114

Target pattern

Foreground (large-scale pattern) only Background (smaller-scale pattern) only

Figure 6.15: Extended nanostructure evolution: Phase separation

6.5.2 Results

Figure 6.15 shows an example two-phased nanostructured pattern. The MOGA was

run in the interative manner described above, using the phase-separated Minkwoski-

based fitness function on this target until the stopping criteria defined in section 6.2.3

was reached.

Figure 6.16 shows the final result, as selected by the automated decision maker.

6.5.3 Outcomes of the multi-phase investigations

It is perhaps unsurprising that the results for this two-phased target are not as im-

pressive as those for the single-phased system studied previously. It is a much more

complex search space – a set of parameters must now satisfy two conditions simulta-

neously, and the multi-modal nature of the space mean that a given set of parameters

may reproduce the background pattern very faithfully indeed, but not get close to the

foreground pattern, or vice versa. With this in mind, the result shown in figure 6.16

6. evolutionary design of nanostructures 115

Target Evolved

Figure 6.16: Evolved two-phased nanostructure

could actually be seen to be surprisingly good for a relatively simple metaheuristic

(even with a complex fitness function) – the foreground pattern is lacking the fingered-

style edging, and there are too many areas of white space, but the general morphology

is reasonably close to what is required; the background pattern is a cellular structure,

as required, though on a rather smaller-scale than the target. Considered as a whole,

although the evolved pattern is not as precisely reproduced as the single-phased re-

sults presented earlier, we can surely say that the general morphology is in the right

‘ball park’. This may well be an example of a search space where a more sophisticated

metaheuristic might be more effective than the standard GA currently implemented

in the Evolutionary Engine, and this is certainly grounds for further research.

6.6 Conclusions

The results presented in this chapter show that Minkowski functional analysis in the

context of a MOGA seems to be a highly successful methodology in the evolution

of simulated nanostructure patterns. Although the mapping from simulator param-

eters onto those of the actual laboratory equipment is not a particularly strong one,

these results would seem to suggest that such a methodology could be well suited to

the optimisation of real physio-chemical systems, taking us one step further in the

development of software control of matter. If one draws an analogy between visual

similarity and, for example, electrical behaviour/function, the ‘real world’, “dial-a-

6. evolutionary design of nanostructures 116

function” applications are clear. In any such application, however, the time and

computational expense of the algorithm is crucial, and as it stands, run-time may be

considered to be prohibitively lengthy. Run-times for each experiment are given in

table 7.10, showing run-times of up to 100 hours in some cases. In the context of the

real-time chemical optimisation we hope to consider in the future, this time may also

equate to financially expensive laboratory and equipment time. We move on now,

therefore, to consider a method by which the speed of the evolutionary process could

be increased, but without significant compromise to the quality of the results.

117

Chapter 7

Accelerated evolution through fitness

approximation

Notwithstanding the quality of the results presented above, the time
taken, both by the simulator itself, but also by the Minkwoski analy-
sis, is not inconsiderable. This chapter explores the potential for savings
in time and computational expense through the use of a fitness approxi-
mation model. It is shown that a neural network ensemble can accurately
embody not only the behaviour of the complex system, but also its sub-
sequent mapping onto the Minkowski analysis methods.

A forty generation run of the genetic algorithm presented in chapter 6, even when

parallelising the evaluation of a single population, takes in the region of sixteen hours,

of which the actual genetic activity is a minute proportion. Such a ‘bottle neck’

is a common problem in evolutionary computation, especially that related to the

optimisation of complex systems such as the simulator with which we are dealing. In

a number of cases, approximations of the fitness function can be very useful. The

author of [61] presents an excellent survey of this field of fitness approximation.

One particularly pressing concern in the application of approximation models to

evolutionary computation is that the landscape topology of the model and that of

the real system should be as congruent as possible. If not, a search of the model may

converge on an optimum that is not represented by the real system, and therefore

entirely reduntant. Constructing a functionally faithful model is therefore of prime

importance.

7. accelerated evolution through fitness approximation 118

As described in [61], there are a number of techniques available for approximating

a fitness function, including polynomial and kriging models, neural networks and

support vector machines. Neural networks are a particularly appealing modelling

technique as they are nature-inspired, and thus sit very comfortably alongside the

evolutionary computation methods employed in this methodology. Moreover, the

underlying architecture and function of an artificial neuron is relatively simple, their

computational power being produced by the aggregation of these simple components

into a complex network.

7.1 Artificial neural networks

Artificial neural networks [36] have shown to be particularly effective tools for function

approximation [59], and indeed have also been employed as fitness surrogates [62, 7,

30]. Artificial neural networks are a nature-inspired method of computation based

closely on the architecture of a biological neuron in which, as illustrated in figure 7.1,

an electrical signal arrives through an axon at a synapse; if the signal is of sufficient

magnitude, it will stimulate synaptic chemicals to move across the synapse, in effect,

passing the signal through a dendrite into the body (soma) of the neuron, where some

processing can occur which may result in a further signal being passed through one

of the output axons.

Artificial neurons, first proposed in 1943 by McColloch and Pitts [82], simulate

these basic functions of natural neurons. A collection of input signals arrive through

the synpases of the artificial neuron. Different input synpases can be given different

weightings. The neuron then performs some function on these input signals (the so-

called ‘activation function’). It is the output of this function that is passed on to

any adjoining neurons. Whereas traditional computation methods merely implement

a sequence of logical and arithmetic operations, artificial neural networks have the

ability to learn from examples and adapt their behaviour. This process is described

in more detail below.

McCulloch and Pitts’s original proposal represented only binary input/outputs.

That is, the neuron either fires (output of one) or does not (output of zero). Neu-

7. accelerated evolution through fitness approximation 119

Figure 7.1: Schematic of a biological neuron

rons in a McCulloch-Pitts network are connected by directed, weighted paths that is

considered excitatory if the weight on the path is positive; otherwise it is inhibitory.

The activation function mentioned above can be as simple as a step function, that is,

if the total input to the neuron is greater than some threshold, an output signal is

generated. This simplest of neurons can be used to represent basic logic operations,

as shown in figure 7.2, where the step function threshold in both cases is 1.

The McCulloch-Pitts Neuron forms the foundation of modern artificial neural

networks, but a number of changes have been made to allow the learning process

mentioned above. Modern networks are usually arranged in layers. The simple exam-

ples in figure 7.2 are single layer networks, but these are significantly restricted in the

complexity of function they can represent. Multilayer networks add hiddens layers in

addition to those for input and output, to allow the learning of nonlinear relationships

– a vital criterion for our purposes. It has been shown that a network with hidden

layers can approximate any continuous function [112]. Indeed, as explained in [60],

such networks can be termed ‘universal approximators’.

The success of an artifical neural network in modelling a continuous function is

7. accelerated evolution through fitness approximation 120

Figure 7.2: Neural network implementations of logic gates. Assuming a step thresh-
old (> 1) in both cases, it is evident that the OR example functions as an OR logic
operator – if either input fires, the output value will be 1, if both fire, it will be 2.
Similarly, in the AND example, both inputs must fire if the output sum is to reach
the threshold of 1.

highly dependent on the number of hidden layers, and indeed the number of nodes in

each layer. As mentioned already, a network with a single hidden layer can approxi-

mate any continuous function, but two or more can be beneficial to certain problems.

Too many hidden nodes can lead to overfitting (i.e., the networks perform well within

the training sample, but poorly out-of-sample), too few makes it difficult to learn

any patterns in the data. The simple threshold function used in the simple exam-

ples above is just one possible activation function that could be used in an artificial

neuron, as discussed below.

7.1.1 Learning

Learning in artificial neural networks is achieved by modifying the synaptic weights in

the network, which are initially randomly selected. Given a training set of input data

and target output values, the network under consideration processes the input values

and compares the resulting output with the desired values. Depending on the size

of the error, the weights are adjusted using an appropriate learning algorithm. This

process is repeated until the error is considered to be acceptably small. Although

7. accelerated evolution through fitness approximation 121

in some cases, the acceptable error may be no more than zero, in the majority of

problems, this is not feasible, in particular as care must be taken to avoid the problem

of overfitting the data, as mentioned above.

A multi-layer neural network trained using the Backpropagation learning algo-

rithm [51] is one of the most powerful forms of supervised neural network system. It

is important to note that the choice of activation function to use in a backpropagation

network is limited to functions that are continuous, differentiable and monotonically

non-decreasing. Furthermore, for computational efficiency, it is desirable that its

derivative is easy to compute. Usually the function is also expected to saturate,

i.e. approach finite maximum and minimum values asymptotically. One of the most

typical activation functions used, therefore, is the binary sigmoidal function:

f(x) =
1

1 + e−x
(7.1)

where the derivative is given by:

f ′(x) = (f(x))(1 − f(x)) (7.2)

During the feedforward phase of the learning algorithm, each of the input units

(Xi) is set to its given input pattern value. Each input unit is then multiplied by the

weight of its connection. The weighted inputs are then fed into the hidden units (Y0

to Yj). Each hidden unit then sums the incoming signals and applies an activation

multiplied by the weight of its connection:

Yj = f(
∑

XiWij) (7.3)

The weighted signals are fed into the output units (Z0 to Zk). Each output unit then

sums the incoming signals from the hidden units and applies an activation function

to form the response of the net for a given input pattern.

During training, each output unit then compares its output (Zk) with the required

target value (dk) to determine the associated error for that pattern. Based on this

error, a factor δk is used to distribute the error at Zk back to all units in the previous

layer:

δk = (f ′(Zk))(dk − Zk) (7.4)

7. accelerated evolution through fitness approximation 122

Each hidden unit then computes a similar factor δj that is a weighted sum of all

the backpropagated delta terms from units in the previous layer multiplied by the

derivative of the activation function for that unit:

δj = (f ′(Yj))(
∑

δk) (7.5)

After all the delta terms have been calculated, each hidden and output layer unit up-

dates its connection weights and bias weights accordingly (where ∆Wij is the change

in weight on the connection ij

∆Wij(t + 1) = ηδjXi + α∆Wij(t) (7.6)

where η is a learning rate coefficient that is given a value between 0 and 1 at the

start of training. The final term of the update function, α∆Wij(t) is an optional

enhancement that adds in a so-called ‘momentum’ term, α, that involves the previous

weight change as a parameter. This momentum term means that shallower regions

of the error surface are explored comparatively faster (with a smaller number of

large steps), while the step size is decreased in steeper regions. This innovation can

significantly increase learning speed. In addition to defining an appropriate network

architecture, then, the proper selection of these two learning parameters, η and α

is crucial in finding the true global minimum error. After each epoch of training

(that is, one presentation of the entire training set) the performance of the network

is measured by computing the root mean square (RMS) error of the network for all

of the patterns in the training set.

The question of when to halt training is another important issue. Very often, on

completion of an epoch, the RMS error will also be computed for a set of data not

included in the training set – a ‘validation’ set. Training can be ended when the error

value for the validation set begins to rise. This is a simple yet effective method of

preventing the network from being overtrained (i.e. simply ‘memorising’ the dataset

rather than inferring generalisable patterns).

7. accelerated evolution through fitness approximation 123

7.2 Artificial neural networks as fitness approximators

Three standard, general, multi-layer networks are constructed (using the Joone frame-

work [79]) - one for each component (Minkowksi functional) of our fitness function.

The networks are trained using the backpropogation method. The inputs into the

network are identical to the input parameters of the simulator, and the single output

of each network is the relevant Minkwoski functional. In this way, not only does our

model stand in place of the simulation process, but also of the Minkowski analysis.

The three networks in ensemble are then used in the parameter optimisation MOGA

as in the previous chapter.

For maximum generalisability, it is important that the neural network ensemble

can predict accurate output values across the search space. The dataset used for

training and validation must therefore be representative of the entire parameter space.

To this end, the same dataset as that used for the robustness checking described in

section 6.2.1 was employed.

Initial training experiments showed that, though the area and perimeter functions

could be reasonably well-learned by a neural network, the Euler function was consid-

erably harder, due to the fact that the range (as a function of the mean) of output

values is much larger than the other two functionals. To ease the learning process of

the Euler characteristic, therefore, the function was manually ‘smoothed out’ by a)

converting all values to be positive (although this would mean negative images would

return the same Euler characteristic, when used with the other two networks, the

area functional in particular would be able to differentiate such pairs of images) and

b) cutting all values larger than 1000 to 1000.

7.2.1 Network parameters

As discussed above, the performance of a neural network is entirely dependent on a

suitable architecture and set of learning parameters. To identify the architecture and

parameters that produce the most faithful networks, we coupled the neural network

system to the Evolutionary Engine (as proposed in [17]), where the chromosome is of

the form shown in table 7.1.

7. accelerated evolution through fitness approximation 124

Name Type Lower bound Upper bound
Learning rate float 0 1
Momentum float 0 1

Nodes in hidden layer 1 int 0 15
Nodes in hidden layer 2 int 0 15
Nodes in hidden layer 3 int 0 15
Nodes in hidden layer 4 int 0 15
Nodes in hidden layer 5 int 0 15
Nodes in hidden layer 6 int 0 15

Table 7.1: Chromosome for the evolution of neural network parameters

Using the Evolutionary Engine, it is possible to evolve, therefore, the optimal

values for the learning rate and the momentum term for the backpropogation learning

process, as well as the number of hidden layers (to a maximum of 6) and the number

of nodes they contain. The fitness for each parameter set/architecture is calculated as

the mean overall RMS error of the network over five evaluations (to compenstate for

the stochasicity introduced by the randomly assigned initial weights of the network).

The dataset is partitioned into two, a training set (75% of the samples) and a

validation set (25% of the samples). With each of the five evaluations, this partitioning

is randomly redefined to further avoid overfitting to a particular subset of the data.

The training process is set to stop when the validation error starts to rise for five

consecutive iterations. Fitness is defined simply as the root mean square training

error of the network. Note that even when distributed over the compute cluster, the

slow speed of the backpropogation learning process means that, in the interests of

computation time, the number of generations is kept low – the stopping criterion is

a simple cap at twenty generations.

A GA was run for each of the three networks (one for each of the three Minkowski

functionals), and each was run ten times. Graphs of the average fitness over time are

shown in figures 7.3 - 7.5, with a table of statistics at table 7.2.

The best (lowest global RMSE) of each of the ten runs was selected for each of

the three evolved networks.

The general fidelty of each network can be estimated by taking the average RMS

7. accelerated evolution through fitness approximation 125

Network Run RMSE Resultant geneotype
Learning Momentum Number of nodes

A 1 0.02722 0.07310 0.16998 13-5-3-8-10
A 2 0.02428 0.04167 0.19006 11-10-7-9
A 3 0.02305 0.05301 0.11543 12-11-10-10
A 4 0.02478 0.08234 0.0 15-13-12-8-1
A 5 0.02419 0.07565 0.02154 10-6-9
A 6 0.02644 0.05649 0.10981 14-4-8-6-13
A 7 0.02192 0.02334 0.26028 12-11-12-4
A 8 0.02329 0.04511 0.13735 14-12-11-13
A 9 0.02940 0.02362 0.60684 14-8-3-14-7
A 10 0.04644 0.08934 0.00335 14-3-14-9-10

µ 0.02710
cv 0.00714

P 1 0.01715 0.22062 0.01721 13-8-13-6-15
P 2 0.01873 0.04766 0.76967 14-14-13-15-14
P 3 0.01542 0.12598 0.36757 15-11-3
P 4 0.01688 0.14792 0.13110 12-5-14-10
P 5 0.01850 0.11366 0.13645 14-6-8-3-7
P 6 0.01625 0.09911 0.50339 13-10-15-12-7
P 7 0.01739 0.07694 0.44522 12-11-6-10-5
P 8 0.01626 0.14608 0.21958 14-5-11-2
P 9 0.01753 0.12831 0.30158 12-6-7-9-8
P 10 0.01750 0.09029 0.09611 10-7-15

µ 0.01716
cv 0.00102

E 1 0.10768 0.05684 0.06380 12-13-12
E 2 0.08933 0.01164 0.32716 11-14-6-9
E 3 0.10173 0.023 0.00684 14-5-11-8-11
E 4 0.09284 0.02394 0.16329 13-11-5-14-14
E 5 0.10959 0.07700 0.01517 11-12-5
E 6 0.10627 0.04553 0.11062 13-10-14-10-13
E 7 0.11786 0.05444 0.06527 9-8-12-12-7
E 8 0.18965 0.21762 0.05681 13-4-13-6-14-13
E 9 0.11879 0.01625 0.31573 7-12-7-4-9
E 10 0.36174 0.34062 0.30308 10-14-6-15-9

µ 0.13955
cv 0.08296

Table 7.2: Statistical analysis of neural network evolutions, showing the resulting
parameters as well as the RMS training error

7. accelerated evolution through fitness approximation 126

Figure 7.3: Graph of fitness against time for the evolution of the neural network
approximating the Minkowski area of a nano simulator pattern

Figure 7.4: Graph of fitness against time for the evolution of the neural network
approximating the Minkowski perimeter of a nano simulator pattern

7. accelerated evolution through fitness approximation 127

Figure 7.5: Graph of fitness against time for the evolution of the neural network
approximating the Minkowski Euler characteristic of a nano simulator pattern

error across the entire dataset. The Area network is the most accurate, at at very

impressive 96.5%. The Perimeter network also shows an excellent degree of fidelity

to the original function, with an accuracy of 87.0%. As expected, the Euler network

is not as accurate, with a fidlity value of only 46.6%. Considered as a group, however

(that is, always being used together to calculate all three functionals), the overall

mean accuracy is an encouraging 76.7%. In the next section, we show the results

of evolutionary runs using the three neural network approximators in place of the

simulator and Minkowski analysis.

7.3 Results

The experiments presented in section 6.4 were re-run on the same four targets, keeping

all parameters identical, but using our newly evolved group of neural network approx-

imators (one for each Minkowski functional) in place of the Monte Carlo simulator

and Minkowski analysis module.

As before, each experiment was run ten times. Table 7.3 shows statistical details

7. accelerated evolution through fitness approximation 128

of each MOGA run, whilst figures 7.6 - 7.9 shows the graph of evolution and the

best result for each of the four targets, as selected by the automated decision maker

described in 6.2.4.

In each case, the evolved patterns are very similar to the target morphologies

represented by the AFM images. The connected nature of the “cell” and “labyrinth”

patterns are well-matched, as is the rather more disconnected trend of the “worm”

and “island” patterns. The small length-scale of the “island” and “labyrinth” pat-

terns are well contrasted with the larger scale of the “cell” and “worm” behaviours.

This is particularly impressive when one is reminded that the model is standing in

place of both the simulator and the Minkowksi analysis. It suggests that such an

approximation technique could be very useful as part of an ‘evolutionary chemistry’

system.

As in the experiments using the ‘real’ system, there is a reasonably high degree of

variation between the number of generations taken to reach the stopping criteria, but

a lesser degree of variation amonst the NCF values for each run. This suggests that

the ‘approximated’ search space may be rather less uneven than the ‘real’ landscape,

although the quality of results shows that they are still congruent enough to be very

effective. However, the highly jagged trajectory of one run for the “cell” target in

particular (as shown in figure 7.6) shows that the approximated space may be harder

to search in certain areas.

Both the statistical analysis table and the resultant target patterns bear a striking

resemblance to those for the experiments presented in chapter 6; the time taken to

for each GA run, however, was decreased from the region of several hours to a few

seconds. This is summaried in table 7.10.

7.4 Conclusions

This chapter has shown that a neural network ensemble can accurately embody not

only the behaviour of the complex system, but also its subsequent mapping onto

the Minkowski analysis methods. This innovative approximation method results in a

dramatic saving of time with little compromise to the quality of results.

7. accelerated evolution through fitness approximation 129

Figure 7.6: Evolution of nanostructures with surrogate fitness - target “cell”

Figure 7.7: Evolution of nanostructures with surrogate fitness - target “worm”

7. accelerated evolution through fitness approximation 130

Figure 7.8: Evolution of nanostructures with surrogate fitness - target “island”

Figure 7.9: Evolution of nanostructures with surrogate fitness - target “labyrinth”

7. accelerated evolution through fitness approximation 131

Target Run Generations NCF Resultant geneotype (ADM)
Cell 1 100 0.03052 18.0 0.2 0.632 2.047
Cell 2 17 0.07507 50.0 0.2 0.851 2.509
Cell 3 16 0.02774 16.0 0.2 0.906 2.905
Cell 4 21 0.02264 34.0 0.2 1.278 3.883
Cell 5 100 0.00347 20.0 0.2 0.839 2.668
Cell 6 21 0.04995 30.0 0.2 1.323 4.000
Cell 7 28 0.00668 18.0 0.2 1.023 3.213
Cell 8 17 0.02957 35.0 0.2 1.033 3.187
Cell 9 19 0.02764 22.0 0.2 1.306 4.000
Cell 10 23 0.01360 18.0 0.2 1.202 3.732

µ 36.2 0.02869
cv 0.93387 0.02107

Worm 1 95 0.04435 50.0 0.2 1.220 3.187
Worm 2 12 0.17175 35.0 0.2 1.194 3.065
Worm 3 75 0.07590 50.0 0.2 1.342 3.582
Worm 4 18 0.03282 50.0 0.2 0.915 2.403
Worm 5 39 0.16530 5.0 0.2 0.938 2.711
Worm 6 19 0.09312 26.0 0.2 0.956 2.597
Worm 7 17 0.09069 32.0 0.2 1.148 3.101
Worm 8 31 0.08623 50.0 0.2 1.170 3.140
Worm 9 20 0.03324 23.0 0.2 0.659 1.697
Worm 10 89 0.02921 46.0 0.2 0.866 2.255

µ 41.5 0.08226
cv 0.77661 0.05191

Island 1 100 0.06168 24.0 0.2 1.087 1.441
Island 2 32 0.02157 31.0 0.2 1.323 1.656
Island 3 36 0.02087 11.0 0.2 1.497 1.964
Island 4 55 0.03334 6.0 0.2 1.849 2.388
Island 5 20 0.04300 13.0 0.2 1.422 1.857
Island 6 38 0.05138 6.0 0.1 1.910 2.450
Island 7 43 0.09038 41.0 0.2 1.518 1.840
Island 8 16 0.07852 31.0 0.1 1.626 1.983
Island 9 100 0.04942 28.0 0.2 1.111 1.446
Island 10 52 0.02313 6.0 0.1 1.954 2.495

µ 49.2 0.04733
cv 0.77661 0.02408

Labyrinth 1 39 0.04375 26.0 0.3 1.480 1.734
Labyrinth 2 66 0.01295 26.0 0.3 1.522 1.784
Labyrinth 3 14 0.70365 24.0 0.3 1.808 2.108
Labyrinth 4 51 0.02774 8.0 0.3 1.632 2.009
Labyrinth 5 21 0.02958 32.0 0.3 1.775 2.032
Labyrinth 6 100 0.02516 27.0 0.3 1.759 2.027
Labyrinth 7 36 0.04468 5.0 0.3 1.835 2.243
Labyrinth 8 100 0.08488 18.0 0.3 0.789 1.023
Labyrinth 9 24 0.09001 27.0 0.3 1.535 1.774
Labyrinth 10 100 0.01615 28.0 0.3 1.493 1.751

µ 55.1 0.10786
cv 0.62363 0.21101

Table 7.3: Statistical analysis of surrogate-assisted nano system evolutions. The
table also shows the evolved genotype, as chosen by the Automated Decision Maker,
along with the associated Normalised Combined Fitness value.

7. accelerated evolution through fitness approximation 132

Target Simulator + Minkowski Neural Net model
Evolved Time Evolved Time

25:28:09 00:00:03
09:29:25 00:00:01
14:08:36 00:00:02
42:41:19 00:00:02
57:49:09 00:00:02
19:48:15 00:00:03
05:07:12 00:00:02
12:13:13 00:00:02
02:52:44 00:00:01
11:59:33 00:00:02
25:33:29 00:00:03
06:19:19 00:00:03
05:59:35 00:00:02
60:58:24 00:00:02
07:14:33 00:00:02
22:30:28 00:00:02
08:27:01 00:00:02
01:46:41 00:00:02
02:45:28 00:00:02
11:22:17 00:00:02
08:08:23 00:00:03
09:19:45 00:00:03
03:40:37 00:00:03
18:22:10 00:00:03
05:22:56 00:00:03
03:17:58 00:00:03
06:20:48 00:00:03
01:34:51 00:00:03
12:39:10 00:00:02
02:11:02 00:00:03
09:19:45 00:00:03
102:26:55 00:00:03
02:42:17 00:00:03
38:20:19 00:00:03
18:21:49 00:00:03
14:22:11 00:00:03
04:09:37 00:00:04
02:57:13 00:00:03
02:14:04 00:00:03
03:16:47 00:00:03

Figure 7.10: Comparision of evolved patterns using a) the nano system simulator
with Minkowksi analysis and b) the neural network fitness approximation, along with
total run-time statistics (hr:min:sec)

7. accelerated evolution through fitness approximation 133

It is important to note that these results were obtained using only the approxima-

tion model. Much work of a similar nature combines the ‘real’ system alongside the

surrogate model in a rather closer fashion, and a closer style of integration as part of

the methodology presented above could form the basis of future research in this area.

Indeed, the potential for ‘active learning’, i.e., training the approximation model at

the same time as running the ‘real’ system, as in [30] is a particularly interesting

notion.

134

Chapter 8

Conclusions and outlook

At the outset of this thesis, the hypothesis was posited that evolutionary algorithms

can be employed to coerce complex chemical systems – more specifically, self-organised

systems – into a pre-determined target behaviour.

In investigating this proposal, a toolbox of machine learning techniques was de-

veloped. The Evolutionary Engine presented in chapter 3 aims to be particularly

user-friendly, easily configurable, flexible and ‘connectable’. We believe that the use

of evolutionary computation techniques will give rise to a new, previously unreachable

area of chemical functionality, whilst also giving insight into the underlying chemistry

behind them. During the presentation of the Evolutionary Engine, a brief, but pow-

erful illustration was given of its potential to be connected to a physical laboratory

reactor array system, giving rise to the potential for real-time, optimisation of com-

plex chemical processes. This level of sophistication requires the solution of a number

of significant technical chemical control issues, and thus the majority of this thesis

has presented work where the Evolutionary Engine has been coupled together with

digital, simulated complex systems. We believe that the software developed and in-

sights gained into these systems during the course of this research will be invaluable

when such systems are to be used with real chemical reactors.

In chapter 4, it was observed that the nature of complex systems means that the

mapping between the genotype that specifies a behaviour and the actual realisation of

that behaviour – the phenotype – may not be one-to-one, and indeed may be highly

non-linear, counter-intutitive and even stochastic. This relationship, and indeed that

8. conclusions and outlook 135

between the phenotype and the numerical fitness attached to it by the objective func-

tion, is therefore of prime importance if an evolutionary algorithm, or for that matter

any optimisation methodology, is to be a successful search method. Verifying whether

an evolutionary algorithm is an effective method of optimisation for a given applica-

tion using a given fitness function is a very difficult problem; chapter 4 presented a

two-stage verification protocol which can give very useful insights into the potential

(or otherwise) of the efficacy of a given representation and corresponding objective

function when confronted with a complex genotype–phenotype–fitness mapping.

In chapter 5, the Evolutionary Engine’s ability to successfully coerce a cellular

automaton-based system into a pre-defined, target behaviour was shown. Moreover,

it was also shown that the results obtained from the genetic algorithm were superior to

those of two standard non-evolutionary alternatives, adding to the weight of literature

suggesting that an evolutionary methodology is better suited to this area of complex

system design. The Universal Similarity Metric was shown to be particularly effective

in driving the search for target behaviours in such a number of CA-based systems.

In chapter 6, for the first time, evolutionary algorithms were applied to a Monte

Carlo model that simulates the self-organistion processes of spin cast nanoparticles.

Notwithstanding the success of the USM in the evolving target behaviours in the

CA-based systems, some shortcoming were observed, and hence the Minkowski func-

tionals were identified as a simple but very effective new similarity measure. The

results showed that this Minkowski-based metric in the context of a multi-objective

genetic algorithm is a highly successful methodology in this novel problem domain.

The mapping from simulator parameters onto those of the actual laboratory equip-

ment is not a straight-forward one, granted, but the methods developed in this part of

the thesis and the corresponding results would seem to suggest that such a method-

ology could be well suited to the optimisation of a real physio-chemical system – as

demonstrated in chapter 3.3, the Evolutionary Engine can be connected directly to

suitable laboratory apparatus.

As identified at the outset of this thesis, a lengthy run time and expensive compu-

tation are both symptoms of many complex system problems. A further hypothesis

was proposed that such systems can be modelled by a simpler approximation, result-

8. conclusions and outlook 136

ing in savings of time and computation expense without compromising the quality

of results. Chapter 7 showed that indeed, a neural network ensemble can accurately

embody not only the behaviour of the nano simulator complex system, but also its

subsequent mapping onto the Minkowski analysis methods. This innovative approx-

imation method results in a dramatic saving of time with little compromise to the

quality of results, even using only the approximation model. A closer integration

of real and approximated systems was identified as a possible direction for future

research, in particular the potential for an ‘active learning’ environment where the

approximation model is trained at the same time as running the ‘real’ system.

*

Self-organisation is a relatively new area of research – there is much still to be

discovered, much still to be formalised. A greater understanding of the processes

involved in dynamic self-assembly systems could herald the start of a revolutionary

new paradigm of evolvable chemical complexity, and it is hoped that the research

presented in this thesis has contributed towards this goal.

Evolutionary computation methods are becoming ever more important in today’s

engineering research environment – not only is rational design of such systems often

infeasible due to the size of the search space, but the complex, non-linear and counter-

intuitive nature of the systems that today’s scientists are wanting to develop is such

that a rational, human approach can be considerably limited in its success.

As mentioned at the outset of this thesis, the central aim of this research has been

to address some of the issues involved in the interpretation of complex behaviour

such that it is suitable for optimisation (by whatever method). Armed with the

selection of techniques developed in this thesis, a natural extension to this part of the

research is, therefore, to switch the focus to the meta-heuristic algorithms themselves,

surveying the enormous range of techniques developed for large, complex and noisy

search spaces, such that the results presented here can be improved upon and/or

obtained in a more timely fashion. The work presented in chapter 7 is therefore of

particular significance, showing that approximations of complex systems can be used

to good effect in reducing the running time of these otherwise very costly experiments.

8. conclusions and outlook 137

In addition, a more sophisticated range of meta-heuristics may become a necessity if

higher dimension problems are considered – those presented above have been in no

more than eight dimensions (and generally three or four) but, as mentioned at the

very outset of this thesis, it is not uncommon for chemical systems to involve thirty

or more input parameters.

The question posed by the authors of [44] – “how do we build aritificial systems

(or manage natural ones) so that the properties that emerge are the ones we want”

– has been the central motivation behind the work described in this dissertation.

Specifically, the work has aimed to address some of the problems involved in inter-

preting complex behaviour such that it is suitable (and robust) for optimisation. In

particular, the application of evolutionary computation to design of nanostructured

systems is both a novel and a significant contribution to the field of complex systems

design. The potential of this work to be extended to the construction of real nanoscale

components as part of an ‘unconventional computing’ system is particularly relevant

in today’s research environment, and indeed, there is a clear analogy between the

behaviour of such a system and the origins of biological life. If the computational

methods used to evolve target behaviours in such nano-scale systems could be applied

to a physical system, rather than a simulation, the potential for a ‘dial a function’

style of component design (recently identified as an EPSRC ‘Grand Challenge’ [1])

is exciting indeed. This is the natural extension to the work presented above. Much

of the burden falls on the engineers – developing a computer-controllable laboratory

setup is non-trivial in the extreme, though, as discussed below, initial work in this area

is encouraging, and suggests that the ability to perform such in vitro optimisation is

close at hand.

Initial results shown at the outset of this thesis demonstrated the capabilities of

the Evolutionary Engine when coupled, via a remote link, to a computer controlled

chemical reactor array. This achievement, coupled with the algorithms and techniques

discussed during the course of this thesis for both evolving complex behaviour, and

verifying the robustness of such techniques suggest that the artificial evolution of life-

like features in complex chemical systems is not far off. The aim of this thesis was to

provide a ‘stepping stone’ towards this lofty goal; the work presented in the chapters

8. conclusions and outlook 138

above, and in the various publications that have stemmed from this research has, I

hope, provided such a stepping stone, and contributed to this ever growing and ever

more important area of scientific research.

139

References

[1] Chemical sciences and engineering grand challenges: Report of workshop out-

comes. http://www.epsrc.ac.uk/CMSWeb/Downloads/Other/grandchallengesreport.pdf,

July 2009.

[2] L Altenberg. Fitness distance correlation analysis: An instructive counterex-

ample. In Proceedings of the Seventh International Conference on Genetic Al-

gorithms. Morgan Kaufmann, 1997.

[3] T Back, R Breukelaar, and L Willmes. Inverse Design of Cellular Automata

by Genetic Algorithms: An Unconventional Programming Paradigm. Lecture

notes in Computer Science, 3566:161, 2005.

[4] L Barone, L While, and P Hingston. Designing crushers with a multi-objective

evolutionary algorithm. In Proceedings of the Genetic and Evolutionary Com-

putation Conference, 2002.

[5] D Barthel, JD Hirst, J Blazewicz, EK Burke, and N Krasnogor. Procksi: a de-

cision support system for protein (structure) comparison, knowledge, similarity

and information. BMC Bioinformatics, 8, 2007.

[6] TP Bigioni, XM Lin, TT Nguyen, EI Corwin, TA Witten, and HM Jaeger.

Nature Mat., 5, 2006.

[7] J Biles, P Anderson, and L Loggi. Neural network fitness functions for a mu-

sical iga. In Proceedings of the International ICSC Symposium on Intelligent

Industrial Automation (IIA’96). International Computing Sciences Conferences

(ICSC), 1996.

REFERENCES 140

[8] KJM Bishop, CJ Campbell, G Mahmud, and BA Grzybowski. Biomimetic

Design of Dynamic Self-Assembling Systems. Elsevier, 2008.

[9] MO Blunt, CP Martin, M Ahola-Tuomi, E Pauliac-Vaujour, P Sharp, P Na-

tivo, M Brust, and P Moriarty. Coerced mechanical coarsening of nanoparticle

assemblies. Nature Nanotechnology, pages 167 – 170, 2007.

[10] AM Bouchard, CE Warrender, and GC Osbourn. The P̈rogramming languageöf

dynamic self-assembly. Elsevier, 2008.

[11] R. Breukelaar and T Back. Using a genetic algorithm to evolve behavior in

multi dimensional cellular automata: emergence of behavior. In GECCO ’05:

Proceedings of the 2005 conference on Genetic and evolutionary computation,

pages 107–114, New York, NY, USA, 2005. ACM Press.

[12] SD Brown. Field-programmable Gate Arrays. Springer, 1993.

[13] Y Brun. Arithmetic computation in the tile assembly model: Addition and

multiplication. Theoretical Computer Science, 378(1), 2007.

[14] J Brzustowski. qclust v0.2. http://www.biology.ualberta.ca/jbrzusto, 1998.

[15] L Bull, A Budd, C Stone, I Uroukov, B de Lacy Costello, and A Adamatzky.

Towards unconventional computing through simulated evolution: Control of

nonlinear media by a learning classifier system. Artifical Life, 14(2):203–222,

2008.

[16] L Bull, I Lawson, A Adamatzky, and B DeLacyCostello. Towards predicting

spatial complexity: A learning classifier system approach to cellular automata

identification. In In Proceedings of the IEEE Congress on Evolutionary Com-

putation, pages 136–141, 2005.

[17] E Cantupaz and C Kamath. Evolving neural networks to identify bent-double

galaxies in the first survey. Neural Networks, 16(3-4):507–517, 2003.

REFERENCES 141

[18] L Cardelli and P Wegner. On understanding types, data abstraction, and poly-

morphism. Computing Surveys, 17(4):471–522, 1985.

[19] B Chopard and M Droz. Cellular automata modeling of physical systems. Cam-

brige University Press, 1998.

[20] CA Coello Coello. Evolutionary multi-objective optimisation: An historical

view of the field. Computational Intelligence Magazine, 1(1):28–36, 2006.

[21] CA Coello Coello, DA van Veldhuizen, and GB Lamont. Evolutionary Al-

gorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers,

2002.

[22] L Cronin, N Krasnogor, BG Davis, C Alexander, N Robertson, JHG Steinke,

SLM Schroeder, AN Khlobystov, G Cooper, P Gardner, and P Siepmann. Is

it alive? recognising cellular systems: A computational-chemical perspective.

Nature: Biotechnology, 24:1203 – 1206, 2006.

[23] C Darwin. On The Origin of Species by Means of Natural Selection, or the

Preservation of Favoured Races in the Struggle for Life. John Murray, 1859.

[24] C Darwin and AR Wallace. On the tendency of species to form varieties; and on

the perpetuation of varieties and species by natural means of selection. Linnean

Society of London, 1858.

[25] R Dawkins. The Extended Phenotype: The Long Reach of the Gene. Oxford

University Press, 1982.

[26] R Dawkins. The Blind Watchmaker. Norton, 1996.

[27] R Dawkins. Climbing Mount Improbable. Penguin Books, 1996.

[28] Pablo Moisset de Espanes. Computer Aided Search for Optimal Self-Assembly

Systems. Elsevier, 2008.

[29] KA de Jong. An Analysis of the Behavior of a Class of Genetic Adaptive

Systems. PhD thesis, University of Michigan, 1975.

REFERENCES 142

[30] K Deb and P Nain. An Evolutionary Multi-objective Adaptive Meta-modeling

Procedure Using Artificial Neural Networks. Springer, 2007.

[31] K Deb, A Pratap, S Agarwal, and T Meyarivan. A fast and elitist multiobjective

genetic algorithm: Nsga-ii. IEEE Transactions in Evolutionary Computation,

6(2):182–197, 2002.

[32] P Dittrich, J Ziegler, and W Banzhaf. Artificial chemistries - a review. Artificial

Life, 7(3):225–275, 2001.

[33] DP DiVincenzo. Quantum computation. Science, 270(5234):255–261, 1995.

[34] TB Downing. Java RMI: Remote Method Invocation. Wiley, 1998.

[35] A Eiben and J Smith. Introduction to Evolutionary Computing. Springer, 2003.

[36] L Fausett. Fundamentals of Neural Networks: Architectures, Algorithms and

Applications. Prentice-Hall, 1994.

[37] K-C Fu, Y Zhai, and S Zhou. Optimum design of welded steel plate girder

bridges using a genetic algorithm with elitism. Journal of Bridge Engineering,

10(3):291–301, 2005.

[38] M Gardner. The fantastic combinations of john conway’s new solitare game of

”life”. Scientific American, 223:120–123, 1970.

[39] G Ge and L Brus. J. Phys. Chem. B, 104, 2000.

[40] M Gheorghe and G Paun. Computing by Self-Assembly: DNA Molecules, Poly-

ominoes, Cells. Elsevier, 2008.

[41] DE Goldberg and K Deb. A comparative analysis of selection schemes used in

genetic algorithms. Urbana, 51:61801–2996.

[42] D Goswami. Optical computing. Resonance, 8(6), 2003.

[43] D Graham-Rowe. Introducing the glooper computer. New Scientist,

185(2492):32–36, 2005.

REFERENCES 143

[44] G Green and D Newat. Towards a theory of everything? - grand challenges in

complexity and informatics. Complexity International, 8, 2001.

[45] GW Greenwood and AM Tyrrell. Introduction to Evolvable Hardware: A Prac-

tical Guide for Designing Self-Adaptive Systems. Wiley-IEEE Press, 2006.

[46] Y Guo, G Poulton, C Murray, and G James. Designing self-assembly dna-

based structures in a multi-agent system. In Proceedings of the 7th Asia-Pacific

Conference on Complex Systems, pages 637–648, 2004.

[47] M Halkidi, Y Batistakis, and M Vazirgiannis. On clustering validation tech-

niques. Journal of Intelligent Information Systems, 17(2):107–145, 2001.

[48] S Harding, J Miller, and E Rietman. Evolution in materio: Evolving logic

gates in liquid crystal. In European Conference on Artificial Life: Workshop on

Unconventional Computing, 2005.

[49] S Harding, J Miller, and E Rietman. Evolution in materio: Exploiting the

physics of materials for computation. IEEE Transactions on Nanotechnology,

2005.

[50] D Harel. A turing-like test for biological modeling. Nature Biotechnology,

23(4):495–496, 2005.

[51] R Hecht-Nielsen. Theory of the backpropagation neural network. In Proceedings

of the International Joint Conference on Neural Networks, pages 593–605, 1989.

[52] R Hinterding. Gaussian mutation and self-adaption for numeric genetic al-

gorithms. In IEEE International Conference on Evolutionary Computation,

volume 1, 1995.

[53] R Hinterding. Gaussian mutation and self-adaption for numeric genetic algo-

rithms. In Proceedings of the IEEE International Conference on Evolutionary

Computation, pages 384–, 1995.

REFERENCES 144

[54] RL Johnston HM Cartwright. Applications of evolutionary computation in

chemistry. Springer, 2004.

[55] SY Ho, LS Shu, and JH Chen. Intelligent evolutionary algorithms for large

parameter optimization problems. IEEE Transactions on Evolutionary Com-

putation, 8(6):522–541, 2004.

[56] JH Holland. Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence. Uni-

versity of Michigan Press, 1975.

[57] J Horn. Coevolving species for shape nesting. In Proceedings of IEEE Congress

on Evolutionary Computation, 2005.

[58] G Hornby and J Pollack. Evolving l-systems to generate virtual creatures.

Computers and Graphics, 25:1041–1048, 2001.

[59] K Hornik. Approximation capabilities of multilayer feedforward networks. Neu-

ral Networks, 4(2):251–257, 1991.

[60] K Hornik, M Stinchcombe, and H White. Multilayer feedforward networks are

universal approximators. Neural Networks, 2(5), 1989.

[61] Y Jin. A comprehensive survey of fitness approximation in evolutionary com-

putation. Soft Computing, 9(1):3–12, 2005.

[62] Y Jin and B Sendhoff. Reducing fitness evaluations using clustering tech-

niques and neural network ensembles. In Genetic and Evolutionary Compu-

tation (GECCO 2004), pages 688–699, 2004.

[63] T Jones and S Forrest. Fitness distance correlation as a measure of problem

difficulty for genetic algorithms. In Proceedings of the Sixth International Con-

ference on Genetic Algorithms, pages 184–192, 1995.

REFERENCES 145

[64] JB Kruskal Jr. On the shortest spanning subtree of a graph and the traveling

salesman problem. Proceedings of the American Mathematical Society, 7(1):48–

50, 1956.

[65] M Keijzer, JJ Merelo, G Romero, and M Schoenauer. Evolving objects: a

general purpose evolutionary computation library. In Proceedings of the Fifth

International Conference on Artificial Evolution, 2001.

[66] L Kier, P Seybold, and C Cheng. Cellular Automata Modeling of Chemical

Systems. Springer, 2005.

[67] H Kita and Y Sano. Genetic algorithms for optimisation of noisy fitness func-

tions and adaption to changing envirnoments.

[68] J Knowles. ParEGO: A hybrid algorithm with on-line landscape approximation

for expensive multiobjective optimization problems. IEEE Transactions on

Evolutionary Computation, 10(1):50–66, 2006.

[69] N Krasnogor and D Pelta. Measuring the similarity of protein structures by

means of the universal similarity metric. Bioinformatics, 20(7):1015–1021.

[70] A Lazcano. The transition from living to non-living, pages 60–69. Columbia

University Press, 1994.

[71] RE Lensk, C Ofria, RT Pennock, and C Adami. The evolutionary origin of

complex features. Nature, 423(6936):139–44, 2003.

[72] M Li, X Chen, X Li, B Ma, and P Vitnyi. The similarity metric. In Proceedings

of the Fourteenth Annual ACM-SIAM symposium on discrete algorithms, pages

863–872, 2003.

[73] M Li and P Vit. An Introduction to Kolmogorov Complexity and Its Applica-

tions. Springer, 1997.

REFERENCES 146

[74] M Ling and R Sharp. Melody classification using a similarity metric based on

kolmogorov complexity. In Proceedings of the Conference on Sound and Music

Computing, 2004.

[75] JD Lohn, GS Hornby, and DS Linden. An evolved antenna for deployment on

nasa’s space technology 5 mission. In Proceedings of the Genetic Programming

Theory Practice Workshop, 2004.

[76] S Luke, L Panait, G Balan, S Paus, Z Skolicki, J Bassett, R Hubley, and

A Chircop. Ecj: a java based evolutionary computation research system. 2006.

[77] N Marchettini, S Ristori, F Rossi, and M Rustici. An experimental model

for mimicking biological systems: the belousov-zhabotinksy reaction in lipid

membranes. International Journal of Ecodynamics, 1(1):55–63, 2006.

[78] SJ Marrink and AE Mark. Molecular dynamics simulation of the formation,

structure, and dynamics of small phospholipid vesicles. Journal of the American

Chemical Society, 125(49):15233–15242, 2003.

[79] P Marrone. Joone. http://joone.sourceforge.net.

[80] CP Martin, MO Blunt, and P Moriarty. Nano Lett., 4, 2004.

[81] CP Martin, MO Blunt, and P Moriarty. Nanoparticle networks on silicon:

self-organized or disorganized? Nano Letters, 4:271–274, 2004.

[82] WS McCulloch and W Pitts. A logical calculus of the ideas immanent in nervous

activity. Bulletin of Mathematical Biophysics, 5:115–133, 1943.

[83] Z Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.

Springer, 1996.

[84] K Michielsen and H de Raedt. Integral-geometry morphological image analysis.

Physics Reports, 347:461–538, 2001.

[85] BL Miller and DE Goldberg. Genetic algorithms, tournament selection, and

the effects of noise. Complex Systems, pages 193–212, 1995.

REFERENCES 147

[86] M Mitchell, J Crutchfield, and R Das. Evolving cellular automata with genetic

algorithms: A review of recent work. In Proceedings of the First International

Conference on Evolutionary Computation and its Applications, 1996.

[87] C Moles, P Mendes, and J Banga. Parameter estimation in biochmeical

pathways: a comparison of global optimization methods. Genome Research,

13:2467–2474, 2003.

[88] P Moriarty, MDR Taylor, and M Brust. Phys. Rev. Lett, 89, 2002.

[89] S Narayanan, J Wang, and XM Lin. Phys. Rev. Lett., 93, 2004.

[90] H Ng, D Lim, Y Ong, B Lee, L Freund, S Parvez, and B Sendhoff. A multi-

cluster grid enabled evolution framework for aerodynamic airfoil design opti-

mization. In Proceedings of the International Conference on Natural Computa-

tion, pages 1112–1121, 2005.

[91] J Oliver and R Perry. Definitely life but not definitively. Origins of Life and

Evolution of the Biosphere, 36(5-6):515–521, 2006.

[92] M Palesi and T Givargis. Multi-objective design space exploration using genetic

algorithms. In Proceedings of the Tenth International Symposium on Hard-

ware/Software Codesign, 2002.

[93] G Palyi, C Zucchi, and L Caglioti. Fundamentals of life. Elsevier, 2002.

[94] R Penrose. The Emperor’s New Mind: Concerning Computers, Minds and The

Laws of Physics. Oxford University Press, 1989.

[95] RS Perry and VM Kolb. The importance of chemicals from the transition

zone to chemical evolution. In Proceedings of the Third European Workshop on

Exo-Astrobiology. Mars: The Search for life, 2004.

[96] AD Pietro, L While, and L Barone. Applying evolutionary algorithms to

problems with noisy, time-consuming fitness functions. In Proceedings of the

Congress on Evolutionary Computation, volume 2, pages 1254–1261, 2004.

REFERENCES 148

[97] M Powner, B Gerland, and J Sutherland. Synthesis of activated pyrimidine

ribonucleotides in prebiotically plausible conditions. Nature, 459:239–242, May

2009.

[98] E Rabani, DR Reichman, PL Geissler, and LE Brus. Drying-mediated self-

assembly of nanoparticles. Nature, 426:271–274, 2003.

[99] J Rieffel and J Pollack. Evolutionary fabrication: the emergence of novel as-

sembly methods in artificial ontogenies. In Proceedings of the Genetic and

Evolutionary Computation Conference: SEEDS workshop, 2005.

[100] J Rieffel and JB Pollack. Crossing the fabrication gap: Evolving assembly plans

to build 3-d objects. In Proceedings of the IEEE Congress on Evolutionary

Computation, 2005.

[101] J Riskin. The defecating duck, or, the ambiguous origins of artificial life. Critical

Inquiry, 29:599–633, 2003.

[102] M Rodriguez-Fernandez, JA Egea, and JR Banga. Novel metaheuristic for

parameter estimation in nonlinear dynamic biological systems. BMC Bioinfor-

matics, 7, 2006.

[103] FJ Romero-Campero, H Cao, M Camara, and N Krasnogor. Structure and

parameter estimation for cell systems biology models. In Proceedings of the

Genetic and Evolutionary Computation Conference, 2008.

[104] FJ Romero-Campero, J Twycross, H Cao, J Blakes, and N Krasnogor. A

multiscale modeling framework based on p systems. In Proceedings of the 9th

International Workshop on Membrane Computing, pages 63–77, 2008.

[105] PWK Rothemund. Using lateral capillary forces to compute by self-assembly.

In Proceedings of the National Academy of Science, USA, volume 47, pages

984–989, 2000.

REFERENCES 149

[106] O Roudenko and M Schoenauer. A steady performance stopping criterion for

pareto-based evolutionary algorithms. In Proceedings of the 6th International

Multi-Objective Programming and Goal Programming Conference, 2004.

[107] E Sapin, O Bailleux, and J Chabrier. Research of complex forms in the cellular

automata by evolutioanry algorithms. In Proceedings of Artificial Evolution:

Sixth International Conference, volume 2936, pages 357–367, 2003.

[108] Emmanuel Sapin, Olivier Bailleux, Jean-Jacques Chabrier, and Pierre Collet.

A new universal cellular automaton discovered by evolutionary algorithms. In

Proceedings of the Genetic and Evolutionary Computation Conference, pages

175–187, 2004.

[109] M Schoenauer. Crossing the chasm between theory and practice in evolutionary

algorithms. http://guide.gforge.inria.fr.

[110] R Schulman and E Winfree. Self-replication and evolution of dna crystals. In

Proceedings of the 13th European Conference on Artificial Life, pages 734–743.

Springer, 2005.

[111] JR Searle. Minds, brains, and programs. The Behavioral and Brain Sciences,

3, 1980.

[112] RR Selmic and FL Lewis. Neural-network approximation of piecewise contin-

uous functions: application to friction compensation. IEEE Transactions on

Neural Networks, 13(3):745–751, 2002.

[113] D Shaw, J Miles, and A Gray. Designing geodesic domes using a computa-

tional geometry-based representation. In Proceedings of the Seventh Interna-

tional Conference of Adaptive Computing in Design and Manufacture, 2006.

[114] PA Siepmann, G Terrazas, and N Krasnogor. Evolutionary design for the be-

haviour of cellular automaton-based complex systems. In Proceedings of the

Seventh International Conference of Adaptive Computing in Design and Man-

ufacture, 2006.

REFERENCES 150

[115] O Steinbock, P Kettunen, and K Showalter. Chemical wave logic gates. Journal

of Physical Chemistry, 100:18970–18975, 1996.

[116] G Sywerda. Uniform crossover in genetic algorithms. Proceedings of the third

international conference on Genetic algorithms table of contents, pages 2–9,

1989.

[117] B Tadic. From Microscopic Rules to Emergent Cooperativity in Large-Scale

Patterns. Elsevier, 2008.

[118] G Terrazas. Automated Evolutionary Design of Self-Assembly and Self-

Organising Systems. PhD thesis, 2008.

[119] G Terrazas, M Gheorghe, G Kendall, and N Krasnogor. Evolving tiles for auto-

mated self-assembly design. In IEEE Congress on Evolutionary Computation,

2007.

[120] G Terrazas, PA Siepmann, G Kendall, and N Krasnogor. An evolutionary

methodology for the automated design of cellular automaton-based complex

systems. Journal of Cellular Automata, 2:77–102, 2007.

[121] M Theis, G Gazzola, M Forlin, I Poli, MM Hanczyc, and MA Bedau. Optimal

formulation of complex chemical systems with a genetic algorithm. ComPlexUs,

page In press, 2007.

[122] A Thompson. An evolved circuit, intrinsic in silicon, entwined with physics. In

Proceedings of the First International Conference on Evolvable Systems, 1996.

[123] S Tisue and U Wilensky. Netlogo: A simple environment for modeling com-

plexity. In Proceedings of the International Conference on Complex Systems,

2004.

[124] T Toffoli and N Margolus. Cellular automata machines - a new environment

for modelling. MIT press, 1987.

REFERENCES 151

[125] M Tomassini, L Vanneschi, P Collard, and M Clergue. A study of fitness dis-

tance correlation as a difficulty measure in genetic programming. Evolutionary

Computation, 13(2).

[126] J Tour, W van Zandt, C Husband, S Husband, L Wilson, P Franzon, and

D Nackashi. Nanocell logic gates for molecular computing. IEEE Transactions

on Nanotechnology, 1(2), 2002.

[127] A Turing. Computing machinery and intelligence. Mind, 59(236):433–460, 1950.

[128] L Vanneschi, M Tomassini, P Collard, and M Clergue. Fitness distance corre-

lation in structural mutation genetic programming. In Proceedings of EuroGP,

2003.

[129] L von Ahn, M Blum, NJ Hopper, and J Langford. CAPTCHA: Using Hard AI

Problems for Security. 2003.

[130] JR Weimar, JJ Tyson, and LT Watson. Third generation cellular automaton

for modeling excitable media. Physica D, 55:328–339, 1992.

[131] S Wolfram. A New Kind of Science. Wolfram Media, 2002.

[132] DH Wolpert and WG Macready. No free lunch theorems for optimization.

Evolutionary Computation, IEEE Transactions on, 1(1):67–82, 1997.

[133] VV Yashin and AC Balazs. Pattern formation and shape changes in self-

oscillating polymer gels. Science, 314.

152

Appendix A

Datasets

A.1 Turbulence

0-0-0.005 0-0-0.01 0-0-0.015 0-0-0.02 0-0-0.025

0-0-0 0-0.2-0.005 0-0.2-0.01 0-0.2-0.015 0-0.2-0.02

0-0.2-0.025 0-0.2-0 0-0.4-0.005 0-0.4-0.01 0-0.4-0.015

0-0.4-0.02 0-0.4-0.025 0-0.4-0 0-0.6-0.005 0-0.6-0.01

a. datasets 153

0-0.6-0.015 0-0.6-0.02 0-0.6-0.025 0-0.6-0 0-0.8-0.005

0-0.8-0.01 0-0.8-0.015 0-0.8-0.02 0-0.8-0.025 0-0.8-0

0-1-0.005 0-1-0.01 0-1-0.015 0-1-0.02 0-1-0.025

0-1-0 100-0-0.005 100-0-0.01 100-0-0.015 100-0-0.02

100-0-0.025 100-0-0 100-0.2-0.005 100-0.2-0.01 100-0.2-0.015

100-0.2-0.02 100-0.2-0.025 100-0.2-0 100-0.4-0.005 100-0.4-0.01

a. datasets 154

100-0.4-0.015 100-0.4-0.02 100-0.4-0.025 100-0.4-0 100-0.6-0.005

100-0.6-0.01 100-0.6-0.015 100-0.6-0.02 100-0.6-0.025 100-0.6-0

100-0.8-0.005 100-0.8-0.01 100-0.8-0.015 100-0.8-0.02 100-0.8-0.025

100-0.8-0 100-1-0.005 100-1-0.01 100-1-0.015 100-1-0.02

100-1-0.025 100-1-0 20-0-0.005 20-0-0.01 20-0-0.015

20-0-0.02 20-0-0.025 20-0-0 20-0.2-0.005 20-0.2-0.01

a. datasets 155

20-0.2-0.015 20-0.2-0.02 20-0.2-0.025 20-0.2-0 20-0.4-0.005

20-0.4-0.01 20-0.4-0.015 20-0.4-0.02 20-0.4-0.025 20-0.4-0

20-0.6-0.005 20-0.6-0.01 20-0.6-0.015 20-0.6-0.02 20-0.6-0.025

20-0.6-0 20-0.8-0.005 20-0.8-0.01 20-0.8-0.015 20-0.8-0.02

20-0.8-0.025 20-0.8-0 20-1-0.005 20-1-0.01 20-1-0.015

20-1-0.02 20-1-0.025 20-1-0 40-0-0.005 40-0-0.01

a. datasets 156

40-0-0.015 40-0-0.02 40-0-0.025 40-0-0 40-0.2-0.005

40-0.2-0.01 40-0.2-0.015 40-0.2-0.02 40-0.2-0.025 40-0.2-0

40-0.4-0.005 40-0.4-0.01 40-0.4-0.015 40-0.4-0.02 40-0.4-0.025

40-0.4-0 40-0.6-0.005 40-0.6-0.01 40-0.6-0.015 40-0.6-0.02

40-0.6-0.025 40-0.6-0 40-0.8-0.005 40-0.8-0.01 40-0.8-0.015

40-0.8-0.02 40-0.8-0.025 40-0.8-0 40-1-0.005 40-1-0.01

a. datasets 157

40-1-0.015 40-1-0.02 40-1-0.025 40-1-0 60-0-0.005

60-0-0.01 60-0-0.015 60-0-0.02 60-0-0.025 60-0-0

60-0.2-0.005 60-0.2-0.01 60-0.2-0.015 60-0.2-0.02 60-0.2-0.025

60-0.2-0 60-0.4-0.005 60-0.4-0.01 60-0.4-0.015 60-0.4-0.02

60-0.4-0.025 60-0.4-0 60-0.6-0.005 60-0.6-0.01 60-0.6-0.015

60-0.6-0.02 60-0.6-0.025 60-0.6-0 60-0.8-0.005 60-0.8-0.01

a. datasets 158

60-0.8-0.015 60-0.8-0.02 60-0.8-0.025 60-0.8-0 60-1-0.005

60-1-0.01 60-1-0.015 60-1-0.02 60-1-0.025 60-1-0

80-0-0.005 80-0-0.01 80-0-0.015 80-0-0.02 80-0-0.025

80-0-0 80-0.2-0.005 80-0.2-0.01 80-0.2-0.015 80-0.2-0.02

80-0.2-0.025 80-0.2-0 80-0.4-0.005 80-0.4-0.01 80-0.4-0.015

80-0.4-0.02 80-0.4-0.025 80-0.4-0 80-0.6-0.005 80-0.6-0.01

a. datasets 159

80-0.6-0.015 80-0.6-0.02 80-0.6-0.025 80-0.6-0 80-0.8-0.005

80-0.8-0.01 80-0.8-0.015 80-0.8-0.02 80-0.8-0.025 80-0.8-0

80-1-0.005 80-1-0.01 80-1-0.015 80-1-0.02 80-1-0.025

80-1-0

a. datasets 160

A.2 Nanostructures

5-0.05-0.5-1 5-0.05-0.5-2 5-0.05-0.5-3 5-0.05-0.5-4 5-0.05-1-1

5-0.05-1-2 5-0.05-1-3 5-0.05-1-4 5-0.05-1.5-1 5-0.05-1.5-2

5-0.05-1.5-3 5-0.05-1.5-4 5-0.05-2-1 5-0.05-2-2 5-0.05-2-3

5-0.05-2-4 5-0.13-0.5-1 5-0.13-0.5-2 5-0.13-0.5-3 5-0.13-0.5-4

5-0.13-1-1 5-0.13-1-2 5-0.13-1-3 5-0.13-1-4 5-0.13-1.5-1

5-0.13-1.5-2 5-0.13-1.5-3 5-0.13-1.5-4 5-0.13-2-1 5-0.13-2-2

a. datasets 161

5-0.13-2-3 5-0.13-2-4 5-0.21-0.5-1 5-0.21-0.5-2 5-0.21-0.5-3

5-0.21-0.5-4 5-0.21-1-1 5-0.21-1-2 5-0.21-1-3 5-0.21-1-4

5-0.21-1.5-1 5-0.21-1.5-2 5-0.21-1.5-3 5-0.21-1.5-4 5-0.21-2-1

5-0.21-2-2 5-0.21-2-3 5-0.21-2-4 5-0.29-0.5-1 5-0.29-0.5-2

5-0.29-0.5-3 5-0.29-0.5-4 5-0.29-1-1 5-0.29-1-2 5-0.29-1-3

5-0.29-1-4 5-0.29-1.5-1 5-0.29-1.5-2 5-0.29-1.5-3 5-0.29-1.5-4

a. datasets 162

5-0.29-2-1 5-0.29-2-2 5-0.29-2-3 5-0.29-2-4 20-0.05-0.5-1

20-0.05-0.5-2 20-0.05-0.5-3 20-0.05-0.5-4 20-0.05-1-1 20-0.05-1-2

20-0.05-1-3 20-0.05-1-4 20-0.05-1.5-1 20-0.05-1.5-2 20-0.05-1.5-3

20-0.05-1.5-4 20-0.05-2-1 20-0.05-2-2 20-0.05-2-3 20-0.05-2-4

20-0.13-0.5-1 20-0.13-0.5-2 20-0.13-0.5-3 20-0.13-0.5-4 20-0.13-1-1

20-0.13-1-2 20-0.13-1-3 20-0.13-1-4 20-0.13-1.5-1 20-0.13-1.5-2

a. datasets 163

20-0.13-1.5-3 20-0.13-1.5-4 20-0.13-2-1 20-0.13-2-2 20-0.13-2-3

20-0.13-2-4 20-0.21-0.5-1 20-0.21-0.5-2 20-0.21-0.5-3 20-0.21-0.5-4

20-0.21-1-1 20-0.21-1-2 20-0.21-1-3 20-0.21-1-4 20-0.21-1.5-1

20-0.21-1.5-2 20-0.21-1.5-3 20-0.21-1.5-4 20-0.21-2-1 20-0.21-2-2

20-0.21-2-3 20-0.21-2-4 20-0.29-0.5-1 20-0.29-0.5-2 20-0.29-0.5-3

20-0.29-0.5-4 20-0.29-1-1 20-0.29-1-2 20-0.29-1-3 20-0.29-1-4

a. datasets 164

20-0.29-1.5-1 20-0.29-1.5-2 20-0.29-1.5-3 20-0.29-1.5-4 20-0.29-2-1

20-0.29-2-2 20-0.29-2-3 20-0.29-2-4 35-0.05-0.5-1 35-0.05-0.5-2

35-0.05-0.5-3 35-0.05-0.5-4 35-0.05-1-1 35-0.05-1-2 35-0.05-1-3

35-0.05-1-4 35-0.05-1.5-1 35-0.05-1.5-2 35-0.05-1.5-3 35-0.05-1.5-4

35-0.05-2-1 35-0.05-2-2 35-0.05-2-3 35-0.05-2-4 35-0.13-0.5-1

35-0.13-0.5-2 35-0.13-0.5-3 35-0.13-0.5-4 35-0.13-1-1 35-0.13-1-2

a. datasets 165

35-0.13-1-3 35-0.13-1-4 35-0.13-1.5-1 35-0.13-1.5-2 35-0.13-1.5-3

35-0.13-1.5-4 35-0.13-2-1 35-0.13-2-2 35-0.13-2-3 35-0.13-2-4

35-0.21-0.5-1 35-0.21-0.5-2 35-0.21-0.5-3 35-0.21-0.5-4 35-0.21-1-1

35-0.21-1-2 35-0.21-1-3 35-0.21-1-4 35-0.21-1.5-1 35-0.21-1.5-2

35-0.21-1.5-3 35-0.21-1.5-4 35-0.21-2-1 35-0.21-2-2 35-0.21-2-3

35-0.21-2-4 35-0.29-0.5-1 35-0.29-0.5-2 35-0.29-0.5-3 35-0.29-0.5-4

a. datasets 166

35-0.29-1-1 35-0.29-1-2 35-0.29-1-3 35-0.29-1-4 35-0.29-1.5-1

35-0.29-1.5-2 35-0.29-1.5-3 35-0.29-1.5-4 35-0.29-2-1 35-0.29-2-2

35-0.29-2-3 35-0.29-2-4 50-0.05-0.5-1 50-0.05-0.5-2 50-0.05-0.5-3

50-0.05-0.5-4 50-0.05-1-1 50-0.05-1-2 50-0.05-1-3 50-0.05-1-4

50-0.05-1.5-1 50-0.05-1.5-2 50-0.05-1.5-3 50-0.05-1.5-4 50-0.05-2-1

50-0.05-2-2 50-0.05-2-3 50-0.05-2-4 50-0.13-0.5-1 50-0.13-0.5-2

a. datasets 167

50-0.13-0.5-3 50-0.13-0.5-4 50-0.13-1-1 50-0.13-1-2 50-0.13-1-3

50-0.13-1-4 50-0.13-1.5-1 50-0.13-1.5-2 50-0.13-1.5-3 50-0.13-1.5-4

50-0.13-2-1 50-0.13-2-2 50-0.13-2-3 50-0.13-2-4 50-0.21-0.5-1

50-0.21-0.5-2 50-0.21-0.5-3 50-0.21-0.5-4 50-0.21-1-1 50-0.21-1-2

50-0.21-1-3 50-0.21-1-4 50-0.21-1.5-1 50-0.21-1.5-2 50-0.21-1.5-3

50-0.21-1.5-4 50-0.21-2-1 50-0.21-2-2 50-0.21-2-3 50-0.21-2-4

a. datasets 168

50-0.29-0.5-1 50-0.29-0.5-2 50-0.29-0.5-3 50-0.29-0.5-4 50-0.29-1-1

50-0.29-1-2 50-0.29-1-3 50-0.29-1-4 50-0.29-1.5-1 50-0.29-1.5-2

50-0.29-1.5-3 50-0.29-1.5-4 50-0.29-2-1 50-0.29-2-2 50-0.29-2-3

50-0.29-2-4

