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ABSTRACT

Transformation methods are perhaps the most powerful analytic tool currently
available in the study of nonlinear partial differential equations. Transformations may
be classified into two categories: category I includes transformations of the dependent
and independent variables of a given partial differential equation and category II addi-

tionally includes transformations of the derivatives of the dependent vanables.

In part I of this thesis our principal attention i1s focused on transformations of
the category I, namely point transformations. We mainly deal with groups of transfor-
mations. These groups enable us to derive similarity transformations which reduce the
number of independent variables of a certain partial differential equation. Firstly, we
introduce the concept of transformation groups and in the analysis which follows three
methods for determining transformation groups are presented and consequently the
corresponding similarity transformations are derived. We also present a direct method
for determining similarity transformations. Finally, we classify all point transforma-

tions for a particular class of equations, namely the generalised Burgers equation.

Biacklund transformations belong to category II and they are investigated in part
II. The first chapter is an introduction to the theory of Bicklund transformations. Here
two different classes of Bicklund transformations are defined and appropriate example
are given. These two classes are considered in the proceeding analysis, where we

search for Bicklund transformations for specific classes of partial differential equa-

tions.



ACKNOWLEDGEMENTS

This research was carried out under the supervision of Dr John Kingston. I am
indebted to my supervisor for his guidance, encouragement and helpful criticism at

every stage of this work.

I wish to express my gratitude to Professor Robin Hudson who kindly accepted
my application and introduced me to my supervisor. I would like to thank the
members of staff of the Department of Mathematics, and particular the secretaries
Anne, Krys and Bhavna for the assistance offered me during development of my pro-

ject. I also acknowledge Dr Kostas Soldatos for his valuable advice.

Finally, I would like to thank the University of Nottingham for offering me a
scholarship and the Committee of Vice-Chancellors and Principals of the Universities
of the United Kingdom for offering me an ORS (Overseas Research Students) award

which covered my tuition fees.



To my family



CHAPTER ONE

INTRODUCTION AND GENERAL OUTLINE

The study of nonlinear partial differential equations has had a sporadic history
up to the present time. Such equations arise in many branches of applied mathematics,
for example, continuum mechanics and mathematical physics. In spite of the fact that
physical phenomena are crying out for the solution of the underlying nonlinear model
equations, this solution (general or particular) is difficult, if not impossible, to find.
Few methods of solution have been devised, but they only provide particular solu-

tions. Nevertheless, in the words of de Tocqueville, "God does not need general

theories. He knows all the special cases!”

While there 1s no existing general theory for nonlinear partial differential equa-
tions, many special cases have yielded to appropriate changes of vanable. In fact,
transformations are perhaps the most powerful tool currently available 1n this area. In
general these transformations may be classified into two categories: category I
includes transformations of the dependent and independent variables, namely point
transformations and category Il additionally includes transtormations of the deriva-
tives of the dependent variables, namely contact transformations. Part 1 of this thesis
deals with point transformations and mainly with contfinuous groups of transforma-
tions, which are also known as Lie groups after the name of a Norwegian mathemati-

cian, while 1n part Il our principal attention i1s focused on Bdcklund transformations

which arose as a generalisation of contact transformations.

Transformation group methods are powerful tools because they are not based on
linear operators, superposition or any other aspects of linear solution techniques and
therefore, these methods are applicable to nonlinear partial differential equations.
These groups enable us to derive a type of transformations, namely similarity transfor-
mations, which have the property of reducing the number of independent variables of

a system of partial differential equations. For example, consider the potential Burgers

equation
_ 2
U, = ux_x+ux ’ (1.1)
2
where u, = %E U, = _g_u_ and u,, = g——; a notation which will be used throughout this
X 4! X



thesis. A similarity transformation of the form

u=F(M); n = f,‘; (1.2)

would transtorm equation (1.1) to an ordinary differential equation of the form

d2F (dF)2 dF
dn

— sn— = 0. 1.
dnz"‘ +zndn 0 (1.3)

Transformation groups which have the property of mapping a solution into a solution,

can also be employed to generate a new solution from a known one.

These transformation groups could be generalised by allowing the transforma-
tions to depend upon the derivatives of the dependent variable as well as the indepen-
dent and dependent variables. The associated transformations are called Lie-Bdcklund

transformations. The Lie Backlund transtormation approach [3,4,73,94] is not covered

in this thesis.

An example of a Bicklund transformation is a pair of partial differential rela-
tions involving two dependent variables, two independent variables and their deriva-
tives which together imply that each one of the dependent variables satisfies

separately a partial differential equation. Thus, for example, the transformation
u, = PO,y u, 0 uy,uy), u, = @,y u,u’,uy,u,) (1.4)

would imply that u(x,y) and u’(x,y) satisfy partial differential equations of the opera-

tional form
P(u)=0, Q") =0. (1.5)

Liouville’s equation, u,, = e“, provides a simple example of an equation for which the

general solution may be obtained quite easily by means of a Bdcklund transformation.

This equation is related to the linear equation u,, = 0, by the Bicklund transformation

u, = u,—aexpz(u+u’)], (1.6a)
’ 2 1 /
uy ==y~ —exp[~3(u-u")], a = const. (1.6b)

When the general solution of u,, = 0, namely u” = A(x)+B(y), 1s inserted into equa-

tions (1.6), the solutions of the resulting first order system readily yield the general

solution of the Liouville’s equation,

2A'B’
u = In 5 | »
(A+B)
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where A” and B’ are the derived functions of A and B, respectively.

The transformation

u=F@ , u.,u, (1.7)

1s a special Backlund transformation which relates equations of the form (1.5). Such a
case 1s the Hopf-Cole transformation [29,45], u = u./u’, which relates the Burgers'
equation, u, = u,,+2uu, and the heat equation, u, = u,. Needless to say, the
Béacklund transformations (1.4) and (1.7) may depend on higher derivatives, when

equations (1.5) must be appropriate higher order equations.

Recently there has been considerable mathematical interest in applying a method
which 1s known as inverse scattering. It i1s connected with the theory of solitons
[33,34,37]. The inverse scattering method was originally introduced by Gardner,
Greene, Kruskal and Miura [40]. In effect, this method reduces the solution of a non-
linear partial differential equation to that of a linear integral equation, and the partial
ditferential equation 1s usually then said to be completely integrable. Another method
which appears in today’s research in nonlinear partial differential equations is the
Painlevé analysis. This method was developed by Weiss, Tabor and Carnevale {101].
Weiss wrote a number of papers on this method [102]. These two methods are

beyond our scope and theretore we will not examine them 1n the subsequent analysis.

The concept of continuous transformation groups 1s presented in chapter two.
This chapter contains the theoretical background needed for the subsequent chapters in
part I, and forms a basis for these chapters. We define a finite one-parameter group of
transformations and we show how the corresponding infinitesimal transformations are

obtained. We introduce the concept of invariance of differential equations under
groups of transformations which lead to similarity transformations and to the genera-
tion of new solutions from known ones. We define the extended group of transforma-

tions and we show how it can be obtained. Finally the definition of a strong and weak

symmetry group 1S given.

Given a partial differential equation, how does one construct groups of transfor-
mations which leave this equation invariant? Chapter three introduces the first method
for determining such groups. Firstly, we show how the similarity transformations are

obtained and then our main objective 1s to discover how one-parameter finite groups

may be found such that a particular equation is invariant under these groups.
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The application of infinitesimal transformation groups to the solution of partial
differential equations i1s more widespread than the application of finite transformation
groups 1n today’s research. The classical method for determining infinitesimal
transformations for a given equation, which was first introduced by Lie [63], 1s dis-
cussed in chapter four. This method derives transformations from which we are able
to derive similanity transformations and also generate new solutions from known ones.

Here we show how the latter can be achieved, through appropriate examples. In the
same chapter we refer to computer algebra systems which are available today. The

computer algebra system REDUCE [42] has greatly facilitated all computations

involved 1n this research.

Bluman and Cole [13] introduced a generalisation of Lie’s classical method for
determining infinitesimal transformations, which was named the nonclassical method.

The transformation groups obtained by this method do not map a solution into a solu-
tion and therefore can only be employed to derive similarity transformations. A com-
mon characteristic of the methods stated so far, for determining similarity transforma-
tions for a given partial differential equation, 1s the use of transformation groups.

Clarkson and Kruskal [26] proposed a direct method for determining similarity
transformations which involves no group theoretical techniques. Chapter five contains

a detailed discussion of the Bluman-Cole and Clarkson-Kruskal methods through

appropriate examples.

In the final chapter of part I, chapter six, we classify all finite point transforma-

tions between generalised Burgers equations of the form
u,+uu, +alx,u, = 0. (1.8)

These transformations necessarily include all invariant infinitesimal transformations
and in addition they include a reciprocal point transformation as well as transforma-

tions relating equations with different function a(x,t) [52].

In part II, our discussion relates to a transformation that had 1ts origin in some
investigations by Backlund [5,6]. The importance of Béacklund transformations and
their generalisations is basically twofold. Thus, one the one hand, invariance under a
Biacklund transformation (auto-Bicklund transformation) may be used to generate an
infinite sequence of solutions of certain nonlinear partial differential equations by
purely algebraic superposition principles. On the other hand, Bicklund transforma-
tions may also be used to link certain nonlinear parual differenual equations to canon-

ical forms whose properties are well known. Both kinds are presented with detailed
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examples 1n chapter seven. In the same chapter we introduce the special Bicklund

transformation (1.7) and appropriate examples are also given.

It 1s quite common to search for Backlund transformations for a class of partial
differential equations instead for a single equation. In chapters eight and nine, our
objective is to derive Backlund transformations of the form (1.4) and (1.7), respec-

tively, for a given class of nonlinear partial differential equations. In chapter eight the

Bicklund transformations of the form

Zy = .II(Z,E,Z’,;,Z;,Z;,Z;,Z;), (1.9(1)

zZ, = d?(z,f,z’,z’,z;,z;,z;,z;) (1.9b)
are consider for equations of the form
1z, + 2, +f(2,2) = 0. (1.10)

Then nonlinear forms of (1.10) that admit such transformations are completely

classified [S51].

In chapter nine we consider transtormations of the form (1.7) that link equations

of the form
Uy, = f(u,u,). (1.11)

We classify all cases, where at least one of the equations of the form (1.11) i1s non-

linear [92]. A second example is also presented, where the transformation also

depends upon second derivatives [93].



PART I

POINT TRANSFORMATIONS
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CHAPTER TWO

TRANSFORMATION GROUPS

1. Introduction

In the latter part of the 19th century, Sophus Lie [61,62] introduced and
developed quite extensively the theory of continuous groups of transformations in
connection with the study of differential equations. In the last few decades, there has
been a revival of interest in applying the techniques of transformation groups to the
theory of nonlinear differential equations [1,2,14,15,35,43,73,83,89]. Group methods
are fundamental to the development of systematic procedures that lead to invariant
transformations. These transformations may be utilised to generate new solutions from

known ones. Group invariants are used in reduction of the original system. Exact solu-

tions to these reduced systems may, on occasion, be derived.

In the present chapter a brief discussion of continuous transformation groups 1S
presented. Detailed discussion of the transformation group theory may be found 1n

references [21,28,36,78]. This chapter contains the theoretical background needed for

the three subsequent chapters.

In the following analysis we shall generally limit ourselves to transformations of
three independent variables in establishing the fundamental propositions. These propo-

sitions may also be extended to transtormations of n variables.

Consider the system of equations
x’:P(x‘!yiz)i y’=Q(x!yiz)i Z’=R(x1y:z)1 (2.1)

where P, Q and R are independent functions of the independent variables x, y and z.
Equations (2.1) represent a point transformation. This means a point 1n space with
coordinates (x,y,z) is transformed to another point in space with coordinates

(x’,y’,z"). We suppose here that the coordinate axes remain unchanged. If, now, (2.1)

can be solved 1n the form
x=P'(x",y’,2"), y=0'(x",y",2"), z=R"(x",y",z") (2.2)

a transformation 1s obtained which will carry the point (x",y",z") back to the original
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position (x,y,z). The transformation (2.2) is thus called the inverse transformation of

(2.1). The successive application of the transformations (2.2) and (2.1) will give a

transformation of the form
x'=x, y'=y, z’=z.

The last 1s called the identity transformation. This transformation leaves the position

of the point (x,y, z) unchanged.

In the context of transformation groups we have to consider point transforma-
tions that depend on (at least) one arbitrary parameter. In chapter 6 we classity finite
point transformations of the form (2.1) between generalised Burgers equations, while

in chapters 3, 4 and 5 groups of transformations will be used.

2. Finite Groups of Transformations

Let P(x,y,z,A), O(x,y,z,A) and R(x,y,z,4) be a set of functions continuous in
the variables x, y, z and the parameter A. We also assume the continuity of deriva-

tives. Now consider the family of transformations
x'=P(x,y,z,A), y'=0(x,y,z,A), z'=R(x,y,z,A). (2.3)
Let
x"'=P(x’,y’,2",A"), y'’'=Qx",y",z",A"), z''=R(x",y",z’,A")

be a second transformation of the family (2.3). Then the transformation which results

from performing these two successively evidently has the form

x''=P[P(x,y,2,4), Q(x,y,2,4), R(x,y,2,4), A" ], (2.4a)
y''=Q[P(x,y,z,4), Q(x,y,2,4), R(x,y,2,4), A"], (2.4b)
z”’=R[P(x,y,z,A), Q(x,y,2,4), R(x,y,z,A), A"]. (2.4¢)

The family of transformations of (2.3) are said to form a finite continuous group
if the following conditions are satisfied:

(C1) Transformation (2.4) can be written in the form:

x"'=P[x,y,z,u(A,A")], y''=Ql[x,y,2,u(A,47)], z""=R[x,y,2,u(4,47)],
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where 1 is a parameter depending only on 4 and A”. Expressed in words, this condi-
tion evidently is that the result of performing successively any two transformations of
the family (2.3) upon the points in space must be equivalent to the result of perform-
ing a third transformation of that family upon those points.

(C2) There exists a certain value of A (4y say) such that the transformation (2.3) con-

tains the identical transformation. That is, for A = 4,

’

x'=x, y'=y, z’=z.

(C3) For every transtormation with the parameter A, of the family (2.3), there exists a
transformation with the parameter i of the same family such that the latter transfor-
mation 1s the inverse of the former, u being a function of A4 only.

(C4) If I,,7T,- and T,.. represent the transformations from the point (x,y,z) to

re _r»s
y £

(x",y",z"), from the point (x’,y",z") to (x"’,y"’,z"’) and from the point (x"’,y

to (x”"7,y""",z""") respectively, using (2.3), then
(TnT3 )Ty = TH(Ty-Ty--).

This establishes the associative property of the transformation group.
Since the family of transformations (2.3) contains one parameter, we call it, under the

above conditions, a group of one parameter.

3. Infinitesimal Groups of Transformations

We now proceed to introduce the concept of an infinitesimal transformation.

Since P, Q and R are continuous functions the transformation (2.3) can be written as

x'=P(x,)’,ZJ~o+€)- y'=Q(I,y,Z,A'0+8), z'=R(x,y,Z,lo+8), (2'5)

where A, is the value of the parameter for which (2.3) gives the identical transforma-

tion, so that
x'=P(x,y,2,A0)=x, y' =0(x,y,2,29)=y, 2z'=R(x,y,z,15)=z2 (2.6)

and € 1s an infinitesimal quantity which changes x, y and z by an infinitesimal amount.

Expanding in Taylor series equation (2.5) becomes



2 /2
x’=P(x,y,z,Ao)+e(§£) + E—(‘—3-—13) +...
A A

oA /)y, 21\0A% J,
_ o0 e* [ 3%Q
4 _Q(x!yazylo)+8(“a"—')ln+ E(a__f)l 4

Since € 1s an mnfinitesimal quantity the above equations become

x'=x+eX(x,y,2)+ 0(e?), (2.7a)
y'=y+€Y(x,y,z)+o0(e?), (2.76)
2’ =z2+€Z(x,y, z)+ o(€?). (2.7¢)

where

oP aQ) (8R)
Y =f — y={=) . z=|—
(aa )zn’ (82 A 04/,

and the relation for the identical transformation, equations (2.6), has been used. Equa-

tions (2.7) represent an infinitesimal group of transformations, where X, Y, Z are

called the infinitesimals of the transformation.

4. Relation Between Finite and Infinitesimal Groups of Transformations

It can be shown [4,15] that every finite transformation group of one parameter
contains only one infinitesimal transformation. That is, given a finite transformation

we can generate an infinitesimal transformation. Also every infinitesimal transforma-

tion belongs to a finite one.

It i1s clear that a practical method for obtaining the infinitesimal transformation
of a given finite transformation, firstly, 1s to assign to the parameter, in the equations

of the finite transformation, a value differing only by an infinitesimal quantity from

the value which gives the identical transformation. Then using Taylor’s theorem the

desired infinitesimal transformation 1s obtained.

We now show how one can obtain a finite transformation from a given

infinitesimal transformation. We regard the parameter A as the time that a point
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(x,y,z) takes to arrive at a new point (x",y",2z"), where x", ¥, z” are functions of
x,y,z and A. If A increases by dA4, then x", y” and z” will, by (2.7), receive the incre-

ments
dx'=X(x",y",z")dA, dy’=Y(x’",y’,z")dA, dz'=Z(x",y’,z")dA.

The finite transformations is then found by solving the simultaneous system of equa-
tions
dx’ dy’ dz’

=X(x’",y",z"), =Y(x',y',2"), — =Zx",y’,z"),
7 (x",y",2") 7 x',y,z") =7 (x",y",z")

under the initial conditions, x"=x, y’=y and z"=z when A=0.

5. The Concept of Invariance

A function f(x,y,z) 1s said to be conformal invariant under the infinitesimal

transformation (2.7) [or the finite transformation (2.3)] if

f(x,y,2)=g (x,y,x,A) f(x",y",2")

for some function g of the x, y, z and A. If g is a function of 4 only, then f is called
constant conformal invariant and if g 1is identically equal to one, that 1s

f(x,y,2)=f(x",y",z’), then f is said to be an absolute invariant of the transformation

group.
A given function f(x,y,z) is changed to f(x",y",z") if it is subjected to the
infinitesimal transformation (2.7). Expanding in Taylor’s series, f(x",y",z") becomes

2
Fx',y’ 2" )=f(x+eX,y+€eY, 2 +€Z)=f(x,y,z) + €T f + %ﬂﬁ (2.8)

where the operator I is defined by

of of of
= XL 4+Y L2 +72
I'f Xax +Yay + >

and I'*f represents repeating the operator I n times. Equation (2.8) shows that f 1s
invariant if I'f = I'*f = f=...=0. However, since Ir*f = (), r’f = rxry,..., it
follows that the condition

Ff=X§—j-r+Y§£+Z—af=0 (2.9)
ox dy 0z
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1S both necessary and sufficient requirement for invariance of f(x,y, z).

Equation (2.9) 1s a first order linear partial differential equation which can be

solved by the method of characteristics [90]. That is,
— = = = —, (2.10)

Equation (2.10) has two independent solutions. These two independent solutions form
the required invariant functions corresponding to the infinitesimal transformation
(2.7). Therefore a one parameter group of transformations in three variables has only
two independent absolute invariants. It can be shown that a one parameter group in n

variables has (n-1) independent invariants [36].

Hence, for a given group of infinitesimal transformations of the form (2.7), the
group invariants are found by solving (2.10). For one parameter finite transformations
of the form (2.3) the following two methods for finding the group invariants are sug-
gested. Without loss of generality let the identical transformation given when 4 = 0.
If one of the three equations, P(x,y,z,A) = const.,, Q(x,y,z,A)=const.,
R(x,y,z,A)=const., has a unique solution for A4, then assuming that P=const. is the
equation which gives this unique solution for A, the functions Q(x,y, z,F(x,y,2)) and
R(x,y,z,F(x,y,z)) form the two independent absolute invariants of (2.3), where 4 = F
1S the unique solution of P =const. If a unique solution does not exist for any of these
three equations, then elimination of the parameter A from (2.3) will still give the

required invariants. For proofs of these results see, for example, reference [91].

6. Invariance of Differential Equations under Groups of Transformations I:

Similarity Transformations

Consider the following one parameter group of transformations

x; = P(x{,0iXp, A), i=1,....m, (2.11a)

)’; — Q_}(Yl 1---,)’;”/1)1 j=11""!n' (2.11b)

We now give the following theorem due to Morgan [69].
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Theorem 2.1: Consider the system of partial differential equations of order k

c;bj(xl,...,xm;yl,...,yn; — O’ jzli__.,n, (212)

oxk’"" xk

akyl akyn)

where y;(j=1,...,n) are regarded as the dependent variables and x;(i=1,...,m) as
independent variables. If each of the forms ¢; is conformally invariant under the

group (2.11), then the invariant solutions of (2.12) can be expressed in terms of the

new system of partial differential equations

(2.13)

9*F, o'F, \ 0
EIEETLEY

%(nl,..., nm—l;Fl‘!"'! Fn

where 7;(i=1,...,m—1) are the independent variables and F;(j=1,...,n) are the depen-
dent variables. The 7n; are the m—1 independent absolute invariants of the subgroup

(2.11a) and F; are given by

F}(nl,..-, nm_l) — éj(xlp---: -xm;yli"'!yn)i (2'14)

where &; are the remaining n independent absolute invariants of the group (2.11).

We note that the new system (2.13) has only (m—1) independent variables.
Hence, the number of independent variables has been reduced by one. These transfor-
mations, equation (2.14) which reduce the number of independent variables are called

similarity transformations.

7. Invariance of Differential Equations under Groups of Transformations 1I:

Generating Solutions by Finite Transformations

By definition, an invariant transformation maps a solution into a solution. So if
we already know a (particular) solution of a partial differential equation, we can apply
a finite transformation to obtain a (possibly) new solution. To carry out this 1dea, con-

sider the one-parameter finite transformation
.x; =P"(x] yesssXpms V1 !"'1yn12')1 i=1,...,m, (21561)

Y] =Qi(X1seee Xy Y102 Yo A)s J=10m, (2.15b)

where 1ts inverse transformation is given by
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X; = Pl (xX1,000%, Y7 40 Vn A), (2.16a)

Yi = Qi (X1, Xps Y1 oeesYms A, (2.16b)

where y; are regarded as dependent variables and x; as independent variables of some

system of partial differential equations.

Let y; = fi(x1,....x,,) be a solution of this system, then

Yi = Ji(X1seesXm) © Fi(X1,00. X, Y15000Y0) = 0. (2.17)
Using (2.16), equation (2.17) becomes
Fi(Pi(x10eesYns A)seees QX1 5oy 0, A))=0. (2.18)
Equation (2.18) can be solved for y; to give
Yi = i (X1 sXns A),

which 1s hopefully a new solution for the given system of partial differential equa-

t1ons.

8. Extended Group of Transformations

Since we examine transformations of differential equations, we need to know
how derivatives are transformed under a given group of transformations. It can be
shown that the transformed derivatives also torm a one-parameter group of transfor-

mations [46,78], which are called extended group of transformations.

In what follows in this section and 1n the next four chapters we consider u to be
the dependent variable and x and ¢ the independent variables for some partial differen-

tial equation and similarly for 4, x” and ¢". Therefore the transformations (2.1), (2.3)

and (2.7) become
x'=P(x,t,u), t'=0(x,t,u), u'=R(x,t, u). (2.19)
x'=P(x,t,u,A), t'=0(x,t,u,A), u'=R(x,t,u,r). (2.20)
x'=x+€eX(x,t, u)+0(£2), t'=t1+€T(x,t, u)+0(£2), u'=u+el(x,t, u)+0(82)(2.21)

Before we proceed it is pointed out that we assume that the transformations are non-

degenerate. This means that the Jacobian



.20 -

_9P.Q.R) |

TR 0 (2.22)

and also that

3x.0) , (2.23)

where in the case of infinitesimal transformations P = x+&X, Q = t+€T and R =
u+€elU. In (2.23) P and Q are regarded as functions of x and ¢, using the fact that
u=u(x,t), whereas in (2.22) P, Q and R are regarded as functions of three independent

variables x,t and u.

For a function Y(x,t, u, u,, u,),

d¥ = (¥, yf,r)(‘;’:) (2.24)

where
Y, = VY,+ VY, u+ ¥, u+¥, u,, (2.25)
V.= ¥Y+Yu+¥, u,+¥, u,, (2.26)

are the total derivatives of ¥ with respect to x and ¢ respectively. Note that the func-

tion ¥ might depend on derivatives to any required order (see [73]).

In particular, using ¥ = P(x,t,u) and then ¥ = Q(x,t,u), 1t follows that

(o)=(2 o)e)

so that
1 Q-r i (d-x')
d¥ = <-(¥, ¥ 2.27
’ ’ "P ' 4 f 4 ' , .
giving the partial derivatives a—qu-;lf-l and ?___gc}_‘;)_ Setting ¥ = u’, the partial
X

derivatives u.. and u,. may be determined in terms of x, ¢, u, 4, and u, from the rela-

tion

’r __ _1_ Q-r _P‘T d-x’
du’ = 5(Rx R.,.)(_ 0, P, )(d:')' (2.28)

If ¥=u, in (227) then u,.,- and u,., can be calculated in terms of

X, 0 U, Uy, Uy U, Uy, and u,,. Again for the infinitesimal transformations one needs to
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set P = x+€X, OQ=t+¢€T and R=u+ €U in the above identities.

To complete this introductory chapter we give the following definition:
Definition: Let A be a system of partial differential equations. A strong symmeitry
group of A 1s a group of transformations G of independent and dependent variables
which has the following properties:

(a) The elements of G transform solutions of the system to other solutions of the

system.

(b) The G —invariant solutions of the system are from a reduced system of differential

equations 1nvolving a fewer number of independent variables than the original

system A.

A weak symmetry group of the system A4 is a group of transformations which satisfies

the reduction property (b), but no longer transforms solutions to solutions.

Clearly, for a strong symmetry group both sections 6 and 7 are applicable, but

for a weak symmetry group only section 6 can be used.

Once we have established the concept of transformation groups, we turn our
attention to the applications of these transformations to the study of nonlinear partial
differential equations. The following two chapters deal with strong symmetry groups.
In chapter 3 1t 1s shown how Morgan’s result 1s applied and also how to determine

finite groups of transformations of the form (2.20) which leave a given equation

invariant. In chapter 4 we demonstrate how to determine 1nfinitesimal transformations
of the form (2.21) for a given partial differential equation. This method, namely clas-
sical method, is more favourable and practical than the method introduced in the pre-

vious chapter. This method was originally introduced by Lie [63].

In [13], Bluman and Cole proposed a generalisation of Lie’s method for finding
infinitesimal transformations, which they named nonclassical method. This method
and the methods in chapters 3 and 4 also appear in [2]. The nonclassical method is
presented in chapter 5. The transformations obtained by these methods are weak sym-
metry groups. In this chapter we also present a direct method introduced recently by

Clarkson and Kruskal [26], which involves no group theoretical techniques, for deter-

mining similarity transformations.

In the final chapter of Part I we classify all finite point transformations of the
form (2.19) between given generalised equations. These transformations include all
invariant transformations and in addition they include a reciprocal transformation

which can not be obtained by the group methods.
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CHAPTER THREE

APPLICATIONS OF FINITE GROUPS OF TRANSFORMATIONS

1. Introduction

In this chapter, section 4, we present the first method for determining strong
symmetry groups for partial differential equations. The goal of this method is to
obtain one-parameter finite groups of the form (2.20) that leave the equation under
consideration invariant. The next step 1s to derive the corresponding similarity
transformations and generate new special solutions starting from a trivial one using

the finite transformations, if it 1s possible.

A similarity transformation of partial differential equations reduces the number
of independent variables in the partial differential equations. In general, when reduc-
ing the number of independent variables using group of transformations, the invariants
of the group become the new variables. For a partial differential equation with
independent variables x and ¢ and dependent variable u typically one of the invariant
will be of the form 7(x, ) and the other can be expressed as an arbitrary function of

n, F(n) (see chapter 2, section 6). The functional form of the similarity solution will

be
u=W,t,n,F(n(x,t))), (3.1)

n is called the similarity variable and F(7) becomes the new dependent variable. The
function W is known explicitly and by substituting (3.1) into the given partial dif-

ferential equation we obtain an ordinary differential equation for F(n).

The general theory of Morgan [69], Michal [65] and Birkhott {11] tor develop-
ing similarity solutions of partial differential equations 1s also discussed in detail in
[1]. In the next section we discuss the application of Morgan’s theorem, introduced
earlier. This application will form the foundation for the subsequent methods for
determining symmetry groups (strong or weak) for a given partial ditferential equa-
tion. In section 3 we present two theorems due to Kingston [53] which will be very
beneficial throughout part I of this thesis. In the last and main section, our principal

attention will be focused on determining one-parameter continuous finite groups of
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transformations for the Hopf-equation u,+ uu, = [e“u,],.

2. Morgan’s Method

Consider the one-parameter group

x’ = etx, (3.2a)
t' = e, (3.2b)
u' = u (3.2¢)
and the nonlinear diffusion equation
u, = [fw)uy ]y, (3.3)

which first was examined by Ovjannikov [76] and later by Bluman [12]. We proceed
by showing that the equation (3.3) is invariant under the transformations (3.2). Firstly,
one needs to calculate the extended groups up to the second order. Let ¥W=u", P=ec*x

and Qzeut 1n (2.27) to give
’ , 1 e* 0
(ux" ut") = 'S(ux ut)( 0 eﬂ.)’
where & = e>*, from (2.23). It follows that

ul, = e *u,, (3.4a)

u', = ey, . (3.4b)

W = e Pu,, (3.5a)
o = € Uy, (3.5b)
Uy = e u,. (3.5¢)

Using (3.4a), (3.4b) and (3.5a), it is straightforward to show that equation (3.3) 1s
invariant under the one-parameter group (3.2). By Morgan’s theorem (chapter 2, sec-
tion 6) the partial differential equation (3.3) can be reduced to ordinary differential
equation, with the invariant n of the subgroup (3.2a,b) being the independent variable

and F(n) = ¢ the dependent variable, where & is the second indeperdent absolute
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invariant of the group (3.2).

Clearly, £ = u and eliminating the parameter A from (3.2a) and (3.2b) we obtain

x't’ "% = xt7*% Hence, n = xt %, Therefore using the similarity transformation
X
u=rm); n= I (3.6)

the nonlinear diffusion equation (3.3) becomes

dF . d dr] _
”5*255[1’“’)5] =0

An advantage of the finite group of transformations is that it is very easy to find
the group 1nvariants of the extended groups up to any required order, using either of
the methods described in chapter 2, section 5. Then any function of these invariants

forms a partial differential equation which is invariant under the given transformation

group of one-parameter.

For the extended group [(3.2), (3.4), (3.5)] a set of independent absolute invari-
2

- X U, Uy Uy Uy, U
ants 1s: = =U, = : = — = — = — and = —=, Wwhere
n t—g,é‘ 3 ;—‘; &a " , €3 - &4 uf Es utz

these invariants are found by eliminating the parameter A from (3.2), (3.4) and (3.9).

For example, from (3.4a) and (3.4b) u—fg = E";, hence, &, = % Having calculated
U, U, U,

the group invariants, any second order partial differential equation of the form

d52(77'» 5! gl ’ 52 ’ :3 ’ 54 ’ 55) = constant

is invariant under the one-parameter group (3.2). For example, letting @, = £2&, = 1

gives the potential Burgers equation
_ 2

Note that if we differentiate equation (3.7) with respect to x and substitute v=u,, we

derive the more usual form

U, = Uy +200,

of Burgers equation which represent the simplest wave equation combining both dissi-
pative and nonlinear effects, and therefore appears in a wide variety of physical appli-

cations [19]. Using the similarity transformation (3.6), equation (3.7) becomes
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dn* \dn
For more similarity solutions of (3.7) one can refer to [73] and [83].

Another equation which is invariant under the group (3.2) is the Boussinesq-type
equation [25]

Uy = 3w +3ulu,, —3u_...

This equation is obtained by choosing

2

s &

_3510 — 11

where @, 1s any function of the group invariants of the fourth order extended groups,

uxm

Uyt

and ¢1o =

Theretore once the group of transformations are obtained using any of the
methods described here, we firstly find the group invariants and then apply the
Morgan’s theorem to obtain the desired similarity transformations which reduce the
number of independent variables of the equation under consideration. Hopefully, for
the strong symmetry groups, the finite group of transformations will enable us to con-

struct a sequence of particular solutions starting from a trivial one. Clearly, this is

not the case for the one-parameter group (3.2).

3. On Point Transformations of Evolution Equations

In this section, we state two theorems due to Kingston [53] which will be very

helpful in the next section and chapters 4, 5 and 6.

Theorem 3.1: Consider the two evolution equations
ut=Hl(xI t! U, uxruu 1'")=01 i=1!2! (3.8)

where H; depends on the independent variables x and ¢, the dependent variable u(x,¢)
and its derivatives with respect to x up to order n( = 2). Suppose that the equations
(3.8), with one of them (i=1) expressed in terms of x’,¢",u” instead of x,t,u, are
related by the non-degenerate point transformation (2.19). Then for the point transtor-

mation (2.19) relating the two evolution equations (3.8),
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t'=0(1). (3.94)

This theorem is a generalisation of Tu result [96] who proved it for infinitesimal

transformations.

Theorem 3.2: For the point transformation (2.19) relating the two equations (3.8) in

which H; are polynomials in the derivatives of u,

x'=P(x,t). (3.9b)

4. Determination of Groups of One-Parameter by Finite Transformations

The goal of this method 1s to discover how one-parameter groups of the form
(2.20) may be found such that a particular partial differential equation is invariant
under these groups. This method seems to be "out of date” in today’s research.
Nevertheless 1t 1s a method for obtaining the proper groups for a system of partial
difterential equations, which was first introduced by v. Krzywoblocki and Roth
[97,98,99]. The same results can also be obtained by using the classical method for

determining infinitesimal transformations, described in the next chapter.

Consider the Hopf equation
u,+uu, = [ f(Wu,],, (3.10)

which appears in the study of hydrodynamics of perfect fluid [47]. We shall sketch

this method using the above equation, and in particular when f(u)=e"“. If f(u)=1, then
equation (3.10) becomes the well-known Burgers equation. Ames [2], uses Burgers

equation as an example to present this method, which also appears in detail in [104].

Now, setting f(u) = €%, in equation (3.10) 1t results to
U, + UU, = e“u’+e u,.. (3.11)
If we require that (3.11) is invariant under the finite group of transformations
x'=P(x,t,A), t'=0,A), u'=R(x,t,u,l), (3.12)

where Theorems 3.1 and 3.2 have been used, then

2—e“ul.. = 0. (3.13)

U, +u'u,—e" u,
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For non-degenerate transformations, since 6 = P,Q, and J=P,Q,R, from (2.23) and
(2.22) respectively, we must take O, # 0, P, # 0 and R, # 0. If we let ¥ = 4’ in
(2.27) then

(u up)= -1-(R1+Ruux R,+Ruu,)(% _P').

o) P,
Hence,
. RetRuu, 14
x Px 4 ( . )
P R,+P.R,u,~P,R,—P,R u,
U, = _____f.____.________‘__.___‘______‘___l_‘_ (3.15)
Pth
Finally, setting ¥ = u,- in (2.27) we find that
P.R_+2P.R u.+P. R, u’+P Ru_ —P_R_.—P_R u,
, = LxTx u wlxs  (3.16)

Substituting (3.14) - (3.16) into equation (3.13) and eliminating u,, using equation

(3.11), the resulung equation will depend only on the variables x, ¢, u, u, and u,,

which we treat as independent. The coefficients of u,_ , u°, u, and the term indepen-

dent of derivatives of u in equation (3.13) give the following identities:
e“P2R,—e"P_Q,R, = 0, (3.17)
e“P3R, —e®P_Q,R?-e"P_Q,R,, = 0, (3.18)
—uP3R,—P?PR,+P7Q,RR, -
2¢RP._Q,R R, —2¢"P.O,R,,+e"P.Q.R, = 0, (3.19)
P3R,—P2P,R,+PZ?Q,RR, —e"P,Q,R} -
efP.O,R_+e"P_OR, = 0. (3.20)

These four identities will enable us to find the functional forms of P, Q and R. From

(3.17), since R, # 0 and P, # 0, we have

5
R = u+ln(ff—). (3.21)

{

Identity (3.18) is also satisfied by (3.21). Upon substitution of (3.21) into (3.19) and

equating coefficients of powers of u, we obtain
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Px = Qu
Pt = Qtanr'

From these last two equations, it follows that

P=x"=h(A)x+ h(A)In [h(A)]t + k(A), (3.22a)
Q=t'=h(A)t+1(A), (3.22b)

and from (3.21)
R=u’=u+In[A(A)], (3.22¢)

where A, k and [ are arbitrary functions of the parameter A. Identity (3.20) is also

satisfied by equations (3.22).

Next we require that the set of transformations given by equations (3.22) form a
one-parameter group. That 18, the conditions C1-C4 (chapter 2, section 2) must all be
satisfied. These requirements place restrictions on the parameter functions hA(4), k(4)
and /(A). Let the point (xy,f;,u,) be transformed to a point (x,,?,,u,), using (3.22),
through a parameter A,. Then, construct a second transformation from (x,,?,,u,) to a

new point (x3,t3,U;) through a parameter A,, using the same transformation (3.22).

Hence,
x3 = h(A;) %3+ h(A2)In [h(A2)]1; + k(4,),
3 = h(A3) 1, +1(4,),
Uy = u,+1In [h(A,)].

Using the transformation equations of x,, f, and u, in terms of u;, #; and u,, the

above equations become

x3 = h(A1)h(A2)x1+ h(A1) h(A)In [A(A1) h(A2)] 81 + h(A2) k(A1) +

(A1) h(A2)In [A(25)] +k(4,), (3.23a)
t; = h(A)h(A) 11+ 1A h(AL) + 1(42), (3.23b)
U3 = uy+1In [A(A;) h(A2)]. (3.23¢)

Let us now perform a third transformation from the point (xi,?;,#;) to the point

(x5,13,u3) through a parameter A5 to obtain
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x3 = h(A3)x1+h(A)In [A(A3) ]t + k(As), (3.24a)
ty = h(A3)t,+1(A,), (3.24b)
Uy = uy+1In[h(4d3)]. (3.24¢)

In order to satisfy condition C1 we require the system of equations (3.23) to be identi-

cal to (3.24). It follows that

h(As) = h(A1)h(Ay), (3.25)
k(As) = h(A)k(A1) + 1A h(A)In [A(A)] +k(Ay), (3.26)
I(A3) = B(A)I(A )+ 1(A,). (3.27)

From equation (3.25) we observe that interchange of A; and A, leaves equation (3.25)
unaltered. Consequently, in order to satisfy condition C1, equations (3.26) and (3.27)

must also be unaltered under the same interchange. Thus
h(A2) k(A1) +1(A1) h(A)In [h(4,)] +k(A,) =
h(A D k(A,)+1(A,)YR(A)In [A(A{)] +k(44), (3.28)
h(A) (A1) + 1(A)=h(A ) I(A) +1(A,). (3.29)
Equation (3.29) upon rearrangement become
I(A1)[h(A2)—1] = [(A2)[h(A1)-1]
a result implying that
I(A) = h(A)—1. (3.30)
Using (3.30) and rearranging (3.28) becomes
[k(A1)—h(A)In (A(A1))] [A(A2)—-1]=
[k(A2) — h(A)In (h(A2))] [A(A1)—1],
which implies that
k(A) = h(A)[Inh(A)+1]-1. (3.31)

If we substitute (3.30) and (3.31) into equations (3.22) we can see by applying the

transformations x — x—1,x" > x’-1,t > ¢t-1 and t" —> ¢t'—1 that we can take

without loss of generality k=/=0. Hence, the system (3.22) become
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x"=h(A)x+h(ADIn [h(A)]t, (3.32a)
t" = h(A)t, (3.32b)
u'=u+1In[h(A)]. (3.32¢)

It 1s immediately evident that the establishment of condition C1 has produced a
system for which the other three conditions are easily established. Thus we need one
and only one Ay such that A(4,)=1. This establishes the unique identity transformation
(condiuon C2). Since the system (3.32) is linear, a unique inverse for each element
follows immediately (condition C3) as does the associative law (condition C4). Such

functions that satisfy all four conditions are, for example, #(1) = e* and h(1)=A.

Therefore the finite transformations which leaves equation (3.11) invariant is
given by the system (3.32). The group invariants of (3.32) are n, = te™*/* and
E=u-x/t. Setting m =Inn,=-x/t+Int, then the similarity transformation

u=x/t+F(n) reduces (3.11) to the ordinary differential equations

2 2
A p U P = emeF d—i+(g) i
dn dn dn dn dn
Similarly as it was done for the one-parameter group (3.2), we can derive the absolute

invariants of the extended groups of (3.32) up to any required order. Then we can

easily form an infinite number of equations which are invariant under the strong sym-

metry group (3.32). It 1s obvious that the finite group (3.32) cannot be employed to

generate new solutions from known ones.
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CHAPTER FOUR

CLASSICAL DETERMINATION OF INFINITESIMAL TRANSFORMATIONS

1. Introduction

We have seen in the previous chapter (section 4) how to obtain finite transfor-
mation groups of one-parameter which leave a certain partial differential equation

invariant. In the present chapter, in a similar way, we search for infinitesimal transfor-

mations of the form

x'=x+eX(x,1, u)+0(82), (4.1a)
t’'=t+€eT(x, 1, u) +o(e?), (4.1b)
u'=u+£U(x,t,u)+o(82), (4.1¢)

which leave a given partial differential equation invariant. This procedure for obtain-

ing infinitesimal transformations, namely the classical method, was first introduced by

Lie [63]. For recent descriptions of this method see, for example,

[14,15,73,77,83,103].

We assume that x,¢ are the independent variables and u(x, f) the dependent varn-

able of the partial differential equation. If u(x,?) 1s a solution of the equation Au = 0,

for invariance we require that u’(x”,t’) is also a solution of 4"u"=0, where A" desig-

nates A with the primed variables replacing the unprimed variables. Using equations

(4.1) we deduce that

w (x+eX, t+eT)=ulx,)+eU(x, t, u)+o(£2). (4.2)

Upon expanding the left hand side of (4.2) in Taylor’s series and equating coetficients

of € we obtain

Xu,+Tu,=U, (4.3)

which is the equation of an invariant surface for u. Equation (4.3) is a first order

linear partial differential equation which can be solved by the method of characteris-

tics (Lagrange) [90]. Hence,



= ===, (4.4)

Therefore for a given equation 4u = 0, we search for those infinitesimals X, T
and U for which the fact that u(x,t) is a solution of Au=0 implies that «’(x’,t’) is also
a solution of A°u’=0. This requirement ensures that the solution is invariant. We shall
present two methods for finding these infinitesimals. In this section we describe thé
classical method and in the next chapter we examine the nonclassical method. The
first method produces strong symmetry groups, while the second gives weak symmetry

groups.

The classical method only makes use of the given equation Au=0 and thus
involves setting A”u’” proportional to 4u. This provides a set of conditions on X, T, U
without the use of the invariant surface equation (4.3). In the next section as a vehicle
to explain the classical method we use the N-dimensional radially symmetric non-

linear diffusion equation of the form
U, = rl_N[rN_lf(u)ur]r-

In section 3 we show how to generate solutions for the above equation. In section 4
we refer to the computer algebraic packages which perform a variety of analytical
procedures automatically and therefore can be very handing in finding symmetry
groups for a given partial differential equation. In fact, the computer algebra system

REDUCE [42] has greatly facilitated the computations involved throughout this thesis.

2. Similarity Transformations for a Radially Symmetric Nonlinear Diffusion

Equation

We consider the N-dimensional radially symmetric nonlinear diffusion equation,

where for consistency with the notation we have used so far, we replace r by x.

Hence,
U, = xl'N[xN"lf(u)ux]x. (4.5)

We also assume that N # 1, because otherwise equation (4.5) becomes the nonlinear

diffusion equation u,—[ f(w)u, ], = 0, which has been well examined [2,12,76].

Since equation (4.5) is of the form (3.8) and the right hand side of (4.5) 1s a

polynomial in the derivatives of u, Theorems 3.1 and 3.2 imply that t’=t’(t) and
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x'=x"(x,t1). Hence, the system (4.1) becomes

x =x+€X(x, 1)+ o(e?), (4.6a)
t'=t+€eT(t) +0(e?), (4.6b)
w' =u+eU(x, t,u)+o0(e?). (4.6¢)

Setting P=x+¢€X, Q=t+€T and ¥ = u+¢€U in (2.23) and (2.27) we obtain

= (1+eX )1+€T,) = 1+e(X +T,)+o0(e?), 4.7)
;s 1 1+eT, -—-€X
(uyr u;r) = S(ux+£(Ux+Uuux) u,+e(U,+ Uuu,))( 0 ‘ 1+£X‘)’ (4.8)
respectively. Using (4.7), identity (4.8) gives
. ux+£(T,ux+Ux+Uuux)+o(£2)
* 1+ (X, +T,)+0(e?)
Hence,
ul. = u +e[U,+U, —X,)u.]+o(e?). (4.9)
Similarly,
u, = u,+ (U, +(U,~T,)u,—X,u,1+o(e?). (4.10)

Also setting ¥ = u,. in (2.27), straightforward calculations lead to

W = u +€[U+QU ~X )+ Uul+U,—2X ) u, 1+0(€%. (4.11)

X

For invariance of equation (4.5) we demand that

up —x" VNN W g1, = 0. (4.12)
From Taylor’s theorem,
fu)=f(u+elU)=f(u)+€eU dﬁ(uu) +o(e?), (4.13)
dfw’) _ dfw) , . &) 5
du’ = i +8UV + o0(e“). (4.14)

Substitution of (4.9), (4.10), (4.11), (4.13) and (4.14) into equation (4.12) and also

eliminating u, from (4.5) we obtain

E(x,t,u,u,,u,) =0, (4.15)
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where E 1s a determined polynomial in u, and u,, . The classical method consists of

imposing the condition that (4.15) is an identity in the five variables x, t, u, u,, u,,

regarded as independent. Hence setting, successively, the coefficients of u,_,, u2, u,

and the term independent of u, and u,, in (4.15) equal to zero, we are led to the

relations
Uf,-2X, f+T,f = 0, (4.16)
Ufuut U f+Ufu-2X, fu+T.f. = 0, (4.17)
QU 42U, fu+ X, — X ) X2 +
(N-1DxUf, —xX f+xT, f-Xf) = O, (4.18)
xU,—xU_ f—(N-1)U,f = 0. (4.19)

These four relations enable the infinitesimal transformations to be derived and ulti-

mately impose restrictions on the functional forms of f, X, T and U.

Upon differentiating equation (4.16) with respect to u and then subtracting the

resulting equation from (4.17) we deduce that
U=A(x,H)u+B(x,1), (4.20)

where A and B are functions to be determined. Using (4.20), equations (4.16), (4.18)

and (4.19) become

(Au+B)f, +(T,-2X,)f = 0, (4.21)
[2fA. +2(A u+B)f. +X,- X f1x*+ (N-1)(xX, - X)f = 0, (4.22)
x(A,u+B,)—x(A u+B ) f-(N=-1)(A,u+B,)f = 0. (4.23)

Equation (4.21) implies that there exists a nontrivial relationship connecung uf,, f,

and f, unless A=B=T,—-2X, = 0. This relationship 1s given by

(Au+)fu+43f =0,

where A;, A, and A; are constants. Redefining the constants A;, from the above dif-

ferential equation we deduce that f must take one of the following forms
f:llel:ur
f=ll(u+/13)1‘.

In the following analysis we let A, = A4, =1, A3 =0 and A, = n. We can therefore
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split this analysis into three cases:
1. A=B=T,-2X, = 0, f arbitrary;
2.f=u";
3. f =e".

Case 1. X = 3xT,+k(t), U=0, f arbitrary

Equation (4.23) vanishes and equating coefficients of powers of x in (4.22) we
obtain T,, = 0, k, = 0 and (N-1)kf=0. Hence,

X--"%clx, I'=cyt+c¢,, U=0, (4.24)

where ¢, and c, are constants. We note that equations (4.21) - (4.23) are all satisfied

by the system (4.24) without imposing any restrictions on the functional form of f.

Using (4.24), equation (4.4) reads

dx a _dw (4.25)

éclx Cil+Cy 0

Assuming that ¢; # 0O, then solving the first equation in (4.25) we obtain the similarity

variable

X
n=-—"73

(I+ 03)!

where ¢; = c,/c,. Clearly, the second invariant is £=u. Hence the similarity transfor-

mation 1s

u = F(mn)

which reduces the partial differential equation (4.5) to the ordinary differenual equa-

tion

dF d Wa
"mdn n an [77 f( )dﬂ

Case 2. f=u", n#0

Equation (4.5) reads
u, = x NN, (4.26)

Equations of the form (4.26) have a large number of applications, for both n>0
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("slow" diffusion) and n<0 ("fast" diffusion). See, for example, [44] and [79].

Equating coefficients of powers of u in equations (4.21) - (4.23) we obtain the

following results

nA=2X_-T,, (4.27a)
B=0, (4.27b)
X, =0, (4.27¢)
%xZXH+ 3x2Xn+(N— D(xX,-X) = 0, (4.27d)
1, =0, (4.27¢)
XX, +(N-1)X,, = 0. (4.271)

Since X=X(x) from (4.27¢), equation (4.27f) becomes an ordinary differential equa-

tion. Solving this equation, X must take one of the following forms:

X=clx3"N+ Crx+C3, N # 23, (4.28)
X = Clxlnx+ CrX+C3, (N=2) (429)
X = cllnx+ CrX+C3z, (N=3) (430)

where ¢, ¢, and ¢, are constants.

If we substitute (4.28) into (4.27d), then the coefficient of x>~ and the constant

term give
Cq = 0, (4310)
cl[(%+3)(3—N)+(N—l)] = 0. (4.31b)

2(N-3
Therefore from (4.31b) we must either have (a) ¢;=0 or (b) ¢; # 0 and n= (;-N))'

Thus, using (4.27a,b,e), (4.28) and (4.31) we conclude that the infinitesimals X, T, U

are given by one of the following two systems:

X=c,x>"N+c,x, T=c4t+cs,
© 2(N-3
U:l[201(3—N)x2_N+2C2-C4]u, C1 # 0, n= ( )1 (432)
n (4-N)
X=cyx, T=c4t+cs, U=—l—(2cz—c4)u, n arbitrary (4.33)

n
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Substitution of (4.29) into (4.27d) we deduce that
4
C3=0, Cl(""+3+1)=0.
n

From above we either have (a) ¢; =0 or (b) ¢, #0 and n=—1. Therefore when

¢, = 0, the infinitesimals are given by (4.33) and when ¢, # 0, are given by
X=cixInx+cyx, T=cat+cs, U=(c4—2cyInx-2¢,-2¢c,)u, ¢, #0, (4.34)

Finally, using equations (4.30) and (4.27d) we obtain ¢; = ¢c3 = 0. Hence, X, T, U are
given by the system (4.33).

Summarising this case we have:

(1) For n arbitrary, N arbitrary and X, T, U are given by (4.33),
2N -6

(11) For n= ,N#2, 3 4and X, T, U are given by (4.32)

(i11) For n=-1, N=2 and the infinitesimals are given by the system (4.34).

We now continue the analysis, by examining each case separately.

(1) Using (4.33), equations (4.4) read

o - — (4.35)

Equations (4.35) can be solved to give three different solutions, depending which con-
stants vanish. In all cases, equations (4.35) can be solved very easily. Therefore we
list the results, giving the similarity variable n, the similanty transformation and the

ordinary differential equation to which the parual differential equation (4.26) 1s

transformed by the similarity transformation.

(a) ca=¢c5s=0,c0#20, n=1
u=x"F(n), (4.36q)
(2nN+4)F"“—-n29§ = (. (4.36bH)
dn
(b) ca=0,c,%20,c5#0, 1=xe "%
2c,1
u=e > F(n), (4.37a)

Csh — [nF"—] + csn(N—Z)F”g——; +c2nn2-g-F;]--—2c2nF = (. (4.37b)
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(C) Cq #* 0, = z c,?
(Cat+cs)™
(2?—1)/n
u=(cst+cs) F(n), (4.38a)
2 d ndF nd-F
— | nF"— N-2)nF"—
C4 7] an [T] d’?] + c4n( )N an +
2/54_2"_F_ 2/c, —
CoCanMT} an +(ca—=2c,)N""F = 0. (4.38bH)
(11) Using (4.32), equations (4.4) now read
dx dt ndu

— = —, 4.39
clx3'N+czx Caql+Cs [2c1(3—N)x2'N+ 20, —Calu ( )

We list five different similarity solutions which can be obtained from equations (4.39).

(a) C4=CS=O, n=t,
U=(Crx+ clx3'N)%F(n), (4.40a)
_AN204 2
(N-2)"(4 i" )3 ppn_ 4F _ o (4.40b)
(N-3) dn
va —@=N)1
(b) co=¢=0,c5#20, n=¢ ¢° .,
u=xN"4F(n), (4.41a)
d dF C1q
N-2)—|nF"—|+—— = 0. (4.41b)
( )dﬂ [77 dﬂ] ¢s d7
-E!(Z-N)t
(C) Cqa = 0, Cy # 0. Cs # 0, n = (CzIN-2+ Cl)e * '
| 2
Uu=(Crx+ cle'N) "F(n), (4.42a)
2 20m2 sz dr ‘ n nr?2
n*csco(N=-2)n*|F—=+n| —} |F"+2c2cs(Nn+2)FF*+
dn dn
2 2 2 n n dr —_
[n“(N=2)+n*cocs(2N“—4N)F"+ncycs(AN-8)F"InF— = 0. (4.42b)

dn



d)  =0,c4#0, N =(cqt+cs)™ & ,

u=xN-4eN'FF . N’= C4
(n) N
d dF —=t
(N-—2)2c:12n2n—[nF"——]+(N—2)clnn cinn Y 2)—204(n+1)F"
dn dn
+(n+1)c;FF™ = 0.
(csz 24 ci)"
C Cr # O, Ca # 0, = :
6—=2N 2c,(N=-2)-c,
u=x " (cat+cs) T F(m),
2 2 2. d [ dF] 2 2 ~ndF
cycan(iN=-2)n—|nF"— | - N-2¥nF*— +
5 C4 n( )ﬂdn n an €5 Can( N an

¢, dF c
crcan(N=2)nn*’ ‘dn+[c4—2c2(N—2)]712’ F = 0.

(11) Finally, using (4.34) equat<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>