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Abstract

In this thesis several problems concerning the stochastic modelling of emerging
infections are considered. Mathematical modelling is often the only available
method of predicting the extent of an emerging disease and assessing proposed
control measures, as there may be little or no available data on previous out-
breaks. Only stochastic models capture the inherent randomness in disease
transmission observed in real-life outbreaks, which can strongly influence the
outcome of an emerging epidemic because case numbers will initially be small
compared with the population size.

Chapter 2 considers a model for diseases in which some of the cases exhibit
no symptoms and are therefore difficult to observe. Examples of such diseases
include influenza, mumps and polio. This chapter investigates the problem of
determining whether or not the epidemic has died out if a period containing no
symptomatic individuals is observed.

When modelling interventions, it is realistic to include a delay between ob-
serving the presence of infection and the implementation of control measures.
Chapter 3 quantifies the effect that the length of such a delay has on an epi-
demic amongst a population divided into households. As well as a constant
delay, an exponentially distributed delay is also considered.

Chapter 4 develops a model for the spread of an emerging strain of influenza
in humans. By considering the probability that an outbreak will be contained
within a region in which an intervention strategy is active, it becomes possible
to quantify and therefore compare the effectiveness of intervention strategies.
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Chapter 1

Introduction

1.1 Overview

This thesis aims to develop solutions to problems in the stochastic modelling

of emerging diseases that are important from both a mathematical and a mod-

elling point of view. Specifically, three problems are considered. Firstly, the

problem of evaluating the conditional probability that an epidemic has died out

given that no symptomatic cases have been observed, although asymptomatic

cases may be present. Secondly, the effect on the behaviour of a households

model of the length of the delay between discovering the presence of infection

in a household and the implementation of an intervention. Finally, a model is

developed for an emerging strain of influenza in humans in order to assess the

risk that the disease escapes from a geographical region in which an intervention

is effective.

This introductory chapter begins by providing a brief history of epidemic mod-
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1.1 Overview

elling before describing the use of stochastic modelling for emerging diseases,

with some relevant examples. Each research chapter is then described and re-

lated to other relevant research. Finally, some of the theory that will be relied

upon throughout this thesis is explained and reviewed.

1.1.1 Foundations of epidemic modelling

This section describes the foundations and development of epidemic modelling,

starting with an early model for smallpox.

Daniel Bernoulli (1760) was one of the first mathematicians to attempt to

model the effects of disease in a population. He used a deterministic model to

show that inoculation with a mild form of the smallpox virus would reduce the

death rate of the population of France. An early reference to the non-linearity

of epidemic models is made in a paper by Hamer (1906). Hamer postulated

that the probability of an infection in the next period of time (in a discrete

time model) was proportional to the number of infectious individuals multiplied

by the number of susceptible individuals. This idea is called the mass action

principle and has been used in many areas of science, in particular to determine

the rate of chemical reactions, in work as early as Boyle’s c. 1674 (Daley and

Gani, 1999). Kermack and McKendrick (1927) incorporated this idea into the

Deterministic General Epidemic Model.

One of the first epidemic models to incorporate the randomness observed in real-

life outbreaks was suggested by McKendrick (1926). This model is a stochastic

continuous time version of the Deterministic General Epidemic Model. Another

early discrete-time model is the chain Binomial model of Reed and Frost (see

2



1.1 Overview

Bailey, 1975) in which the number of infectives to appear in the next time unit

follows a binomial distribution, with the probability of infection dependent on

the number of infectives in the current time unit. It was not until Bartlett

(1949) studied McKendrick’s model, that stochastic models in continuous time

were examined more extensively. Since then, research has been directed towards

the study of a wide variety of models, and their statistical analysis.

1.1.2 Stochastic modelling of emerging diseases

This section sets out the purpose of using mathematical modelling, particularly

stochastic modelling, for emerging diseases and looks at some examples.

When a new disease emerges and begins to cause infections and fatalities it is

desirable for health authorities to be able to make predictions concerning the

future behaviour of the epidemic. Since the disease is emerging, there is unlikely

to be a previous outbreak or other existing data on which to base predictions.

Also, if there is no immunity in the population to this new pathogen, there is

a risk that a very large outbreak will occur, causing a large number of deaths.

Mathematical modelling is one of the few available tools for predicting possible

outcomes, and assessing the effectiveness of proposed control strategies.

The spread of a disease through a population is inherently random due to the

unpredictability of person-to-person contacts. It is particularly important to

include this randomness in models for emerging diseases, as in the early stages

of an outbreak case numbers will be very small and so random variations alone

can cause an epidemic to die out.

There is a large amount of academic and public interest in emerging diseases.

3



1.1 Overview

Because of the randomness in disease spread and the potential for a disease to

rapidly spread throughout the world via air travel, emerging infectious diseases

are a global problem from their inception. Recent examples in humans include

avian influenza, in particular the H5N1 subtype, Severe Acute Respiratory

Syndrome (SARS) and the threat of bioterrorism.

Avian influenza is considered by the World Health Organisation to have a high

risk of causing an imminent pandemic (Mills et al. 2006; Ferguson et al. 2005),

and new cases in humans continue to be discovered (WHO, 2007). Many simu-

lation based studies have attempted to predict the likely extent of an outbreak

of pandemic avian influenza in humans and to assess the effectiveness of antivi-

ral drugs in containing the spread. Ferguson et al. (2005) use a discrete time

model with three levels of mixing, one of which is weighted according to the

spatial distance between individuals. Their population structure is based on

data for Thailand, and they use Markov Chain Monte Carlo methods on several

influenza datasets to estimate suitable model parameters. They find that com-

bining targeted antiviral prophylaxis with social distancing measures should

be sufficient to prevent a pandemic, assuming that sufficient amounts of the

antiviral drug have been stockpiled prior to the start of the pandemic. Longini

et al. (2005) use a discrete time model with four levels of mixing to assess the

use of different intervention strategies in rural Southeast Asia. They show that

targeted use of antivirals would be sufficient to contain an outbreak with re-

production number below 1.4, as long as the intervention is applied within the

first 21 days of the outbreak. The reproduction number can be thought of as

the expected number of new cases to be generated by a typical infective, see

section 1.5.4. They also consider the effect of pre-existing partial immunity in

4



1.1 Overview

the population caused by a vaccine poorly matched to the emerging strain.

SARS has been modelled in several studies to estimate the reproduction number

and to attempt to understand the transmission dynamics so that intervention

strategies can be improved. Riley et al. (2003) fit a stochastic model to data

from the first 10 weeks of the outbreak and find a reproduction number of 2.7,

excluding superspreader events in which one case generates a very large number

of other cases. Lipsitch et al. (2003) fit a deterministic model to the same data

and estimate the reproduction number to lie between 2.2 and 3.6. Anderson

et al. (2004) provides a comprehensive review of the transition dynamics and

control measures for SARS. Becker et al. (2005) take a more analytic approach.

They calculate the effect on the threshold parameter of several proposed inter-

vention measures for a two level mixing model based on a branching process of

households, and use SARS as an example.

Several modelling studies have been carried out, aimed at assessing the effective-

ness of the U.S. Center for Disease Control and Prevention (CDC) emergency

response plan to a bioterrorist attack with smallpox. Kaplan et al. (2002) use

a 17 state deterministic model that allows for asymptomatic infection, and has

a queue for vaccinating at-risk individuals in an unstructured population. Hal-

loran et al. (2002) simulate a discrete time stochastic model of a structured

population with four levels of mixing. Both papers favour a mass vaccination

policy over a targeted vaccination policy to halt a smallpox outbreak. Eu-

bank et al. (2004) use a realistic social contact network to model the spread

of smallpox and find that the vaccination strategy is largely irrelevant when

compared with variations in the time taken to detect cases, and therefore a

targeted vaccination policy is sufficient when combined with a fast response.

5



1.2 Asymptomatic carriers

1.2 Asymptomatic carriers

This section motivates and describes chapter 2 of this thesis, before relating it

to other relevant research.

Many diseases can be transmitted by infectious individuals that never develop

symptoms or individuals that develop very mild symptoms, called asymp-

tomatic carriers. Examples include influenza, mumps, rubella, cytomegalovirus,

Epstein-Barr virus (which causes glandular fever) and polio. Clearly, asymp-

tomatic infections are difficult to observe, and so if no cases are observed for a

period of time the disease may still be present in the population. This chapter

attempts to address this problem by calculating the probability the epidemic is

over given a period in which no symptomatic cases have been observed. This is

relevant to both emerging diseases like influenza, where the cases numbers are

small, and diseases the World Health Organisation is attempting to eradicate,

like polio.

In particular two probabilities are explored in this chapter. The first is the

probability that the epidemic has died out at time t given that no cases have

been observed in (s, t]. This is calculated for two models: a small population

epidemic model and its large population branching process approximation. The

second is the probability that the epidemic is over at the end of the first time

period of length t in which no cases are observed. The same two models are con-

sidered, but for this second probability progress is difficult with the branching

process approximation unless all of the cases are observed.

Little research has been done into this important area, although three papers

tackle related problems.
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1.2 Asymptomatic carriers

Glass et al. (2007) apply Markov Chain Monte Carlo methods to a discrete time

branching process model with two types of infectious individual: diagnosed and

hidden. They obtain estimates of the distribution of the number of infectious

individuals in the (t+1)th generation of the infection, given that the number of

diagnosed individuals has been observed for the first t generations. Since it is

necessary to know to which generation an infective belongs, the method of Glass

et al. should only be used for data on the very early generations of infection.

However, if the reproduction number is close to one, the highly stochastic first

phase of an epidemic may last for many more generations than this. Chapter 2

assumes that the transmission parameters of the epidemic are already known,

perhaps from previous outbreaks of the disease, or from similar diseases.

Eichner and Dietz (1996) simulate a continuous time Markov process model for

the spread of polio with vaccination, in order to find the probability that the

disease has died out given a case free period of length t. They calculate this

probability by simulating the epidemic and recording the proportion of case

free periods with length greater than t in which the disease has died out by the

end. All of the simulations begin from a state of endemic polio in a completely

unvaccinated population of 200,000 individuals. They find that a case free

period of 3 years gives a 95% probability of eradication. Chapter 2 of this

thesis uses a simpler Markov process model to the model used in Eichner and

Dietz (1996), but instead of simulation methods, analytic results are derived

where possible.

O’Neill and Roberts (1999) describe Markov Chain Monte Carlo methods for

estimating the parameters for the Markov SIR epidemic model in which the

removal times are observed until time t. The infection times can be considered
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as missing data, and treated as model parameters. Since they do not assume

that the epidemic is over at t, their method can be directly applied to give the

probability the epidemic is over at t, given full knowledge of the removal process

until that point in time. The information given by the process of removals is

too complicated to make any analytic progress possible, so in chapter 2 of this

thesis only the length of the period without discoveries is assumed to be known.

Also, O’Neill and Roberts assume that every removal that occurs before t is

observed, ignoring asymptomatic carriers.

Finally, note that the asymptomatic carriage epidemic model used in chapter

2 generalises the one first proposed by Downton (1968). To obtain Downton’s

model, set the infectious period of an infective individual to have zero length, so

that they are instantly removed. Downton gives the distribution of the number

of survivors in terms of a triangular system of equations. The joint distribution

of the state probabilities and the severity for Downton’s model is given in Ball

and Clancy (1995). In chapter 2 the joint distribution of the state probabilities

and the severity are found for the asymptomatic carriage epidemic model, thus

generalising the work of Ball and Clancy (1995).
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1.3 Modelling the effects of a delay in inter-

vention

This section briefly motivates and describes chapter 3, before discussing a small

number of relevant papers.

It is realistic to include in an epidemic model a delay between observing that

an individual has been infected and the time at which an intervention can

be applied to their household. Although many modelling papers include such

a delay, the effect that the length of the delay has on the outcome of the

epidemic is rarely investigated. Chapter 3 considers a model in which the time

between the end of an individual’s infectious period and the implementation

of the intervention has a random length. Principally, two distributions are

considered: the constant distribution and the exponential distribution. The

effect of the mean length of the delay on the sum of the infectious periods is

also explored. For epidemics amongst a population divided into households,

such calculations are necessary to calculate the effect of the intervention on the

reproduction number.

Ball et al. (2007) perform calculations similar to those seen in chapter 3 to

calculate the effect of intervention strategies on the reproduction number for a

model of an epidemic amongst a population divided into households. In their

model individuals are observed at the end of their infectious period and there

is no delay before the intervention is applied.

Longini et al. (2004) use a discrete time simulation model with four levels of

mixing to predict the effectiveness of using antivirals to prevent an influenza
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pandemic. They investigate the effect of including a delay before intervention,

and they find that the intervention strategy remains effective for a delay of

one to three days; there remain substantial benefits for a delay of four days,

but any longer delay means that the intervention is ineffective. Section 3.10.3

attempts to produce the results of this simulation study analytically for a two

level mixing model constructed to be analogous to the four level mixing model

used by Longini et al. (2004).

Eubank et al. (2004) simulate a smallpox epidemic on a dynamic bipartite

graph designed to capture a realistic contact structure in the population. They

investigate the effect of a delay in response, and also allow infectious individuals

to withdraw to the home. They find that the time taken to withdraw to the

home has the strongest effect on the size of the outbreaks, followed by the

delay in the response, and that the choice of vaccination strategy is much

less important than these two considerations. This highlights the importance

of investigating the effect of a delay in intervention on the outcomes of an

epidemic.
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1.4 Evaluating the probability of containment

for pandemic influenza

Influenza has caused several pandemics in the past (Oxford, 2006), and is

thought to be extremely likely to cause the next major pandemic (Mills et

al., 2006; Ferguson et al., 2005). Consequently, there is a large literature on

modelling outbreaks of an emerging strain of influenza and possible strategies

to control such outbreaks. This section describes the approach of chapter 4 and

then relates it to a small selection of papers thought to be most relevant.

Threshold parameters like R∗ (see section 1.5.4) can be used to assess the ef-

fectiveness of interventions. If an intervention reduces the threshold parameter

below one, then the epidemic will die out with probability one. Many papers

judge an intervention only to be effective if it reduces the threshold parameter

below one, and not otherwise, see for example (Becker and Dietz, 1995; Ball et

al., 1997; Becker et al., 2005). There are several problems with this approach:

firstly it is very difficult to judge from the threshold parameter how long it will

take for the disease to die out, or how many cases will be created. Also, it

does not take into account the chance of the epidemic dying out despite the

fact that the threshold parameter is greater than one. Finally, the intervention

strategy will not be fully effective everywhere, and the threshold parameter

does not take into account the probability that the disease will be transmitted

to a region in which the surveillance is not as good, or the intervention cannot

be applied as efficiently.

In order to provide an alternative to using the threshold parameter alone to

assess intervention strategies, chapter 4 describes a method for calculating the
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probability that the outbreak does not escape from a region in which the inter-

vention is fully effective. This containment probability has several advantages.

The first advantage is that probabilities are easier to interpret than thresh-

old parameters. The containment probability also incorporates the probability

that the epidemic dies out even if the threshold parameter is greater than one.

Finally, the spread of the disease to another geographic region is explicitly

modelled, clearly demonstrating the dependence of the model behaviour on the

external contact rate. Chapter 4 develops a multitype branching process of

household subepidemics to model the progression of the disease in a population

where the intervention is effective; and models the transmission of the disease

outside of this population with a Poisson process. The models for the house-

hold subepidemics are very flexible and can incorporate many different kinds

of intervention.

Longini et al. (2005) use a discrete time simulation model to assess the effec-

tiveness of using antiviral prophylaxis to contain emerging pandemic influenza

at the source of the outbreak. They use four functions of the realisations of the

epidemic model to assess the effectiveness and efficiency of eight intervention

strategies. One of these functions is the expected number of individuals who

leave the intervention region at any point during their infectious periods. They

estimate the probability that on any day an individual will travel outside of the

population of 500,000 to be 10−3, and multiply this by the number of infectives

each day. Chapter 4 improves upon this by calculating the probability that

there are no infectious contacts to outside the population, which is easier to

interpret than the expected number of escapees.

Ferguson et al. (2005) estimate the transmission parameters for pandemic in-
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fluenza emerging in Southeast Asia. These parameters are then used in a sim-

ulation model for an emerging pandemic to estimate the probability of a large

outbreak in Southeast Asia, which would cause a global pandemic. Interven-

tions with social distancing measures and prophylactic use of antiviral drugs

are also modelled. Ferguson et al. (2005) obtain explicit parameters for house-

hold transmission and antiviral efficacy. These parameters are applied to the

branching process model in chapter 4 to compare the effectiveness of different

intervention strategies.

13



1.5 Background theory

1.5 Background theory

This section sets out some results concerning stochastic epidemic models that

will be relied upon throughout this thesis. First, the SIR stochastic epidemic

model will be defined, then a branching process approximation will be consid-

ered. Structured population models are then defined with particular reference

to two level mixing household models. Finally, threshold parameters for these

models are explored.

1.5.1 The SIR stochastic epidemic model

The standard SIR (Susceptible Infective Removed) epidemic model is a well

studied model for the spread of an infectious disease through a fixed population.

This section sets out to carefully construct the model, and then generalise it to

have multiple types of individual. For more details see Andersson and Britton

(2000).

Consider a closed, homogeneous and homogeneously mixing population of indi-

viduals partitioned at any time t ≥ 0 into three categories: susceptible, infective

and removed. Susceptible individuals become infectives when they come into

contact with an infective. It is assumed that the newly infected individual un-

dergoes no latent period (during which they are infected but not infectious) but

instead, instantly begins their infectious period. When their infectious period

is over, an infective moves into the removed category - they are either dead or

immune to the infection - and can play no further part in the epidemic.

Epidemics of this type are modelled mathematically by three families of non-
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negative, integer valued random variables indexed by a continuous time param-

eter. The number of susceptibles is modelled by the process {S(t) : t ≥ 0},

with S(0) denoted by n. Since no individuals can enter the susceptible category

during an epidemic, the number of susceptibles is non-increasing. The number

of infectives is represented by the process {I(t) : t ≥ 0}, and I(0) = i. Finally,

the number of removed individuals is modelled by the process {R(t) : t ≥ 0}

and without loss of generality, R(0) = 0. Since no individuals may leave the

removed category once they have entered it, R(t) is non-decreasing. Since the

population is fixed, for all t ≥ 0, S(t) + I(t) + R(t) = n+ i.

Any pair of individuals make contact at the points of a Poisson process with rate

β

n
, and all of the

(

n+i

2

)

Poisson processes are assumed to be independent. This

implies that at time t, infections occur at a rate of β

n
S(t)I(t). The non-negative

constant β encapsulates both the infectiousness of the disease and the suscep-

tibility of the population, as a ‘contact’ is defined to be a meeting between two

individuals sufficient to transfer the disease from an infective to a susceptible.

Alternatively, contacts could be defined to occur at a rate β′

n+i
S(t)I(t). In this

formulation when an infective makes a contact they choose an individual at

random from the whole population to contact, whereas in our formulation con-

tacts occur at n
n+i

times the rate, but contacts are chosen from only the initial

susceptibles. This formulation is used as it highlights the connection with the

branching process approximation: when S(t) ≈ S(0) = n then infections occur

at rate βI(t), as in the branching process.

At the instant of infection, the new infective is allocated an infectious period

according to a non-negative random variable TI . All instances of the random

variable TI are assumed to be independent of each other, and of the Poisson
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processes governing the infections.

When the infectious period distribution TI has an exponential distribution, the

SIR epidemic model has been referred to as the General Stochastic Epidemic,

and in this case the process {(S(t), I(t)) : t ≥ 0} has the Markov property.

The SIR epidemic model can be easily generalised to have multiple types of

individual. Let K be the number of types of individual. For t ≥ 0 let

S(t) = (S1(t), . . . , SK(t)), where Sk(t) represents the number of type k sus-

ceptible individuals at time t. Similarly let Ik(t) and Rk(t) denote the number

of type k infective and removed individuals respectively at time t, and form

the random vectors I(t) = (I1(t), . . . , IK(t)) and R(t) = (R1(t), . . . , RK(t)).

A type k infective has infectious period distributed according to the random

variable TI,k and makes contacts with a type j susceptible at the points of a

Poisson process with rate βk,j/nj. Here nj = Sj(0) and the contact rates βj,k

form the K × K matrix B. Again it is assumed that every pair of Poisson

processes and infectious period distributions are independent. In this model

no individual may change their type during the course of the epidemic, and if

K = 1 this model reduces to the SIR epidemic model described above.

1.5.2 Branching process approximation

This section describes an approximation to the SIR epidemic model valid for

large population sizes or during the early stages of the epidemic. First the

approximating branching process is defined and then a coupling argument is

set out to make clear the relationship between the two processes.

The term ‘branching process’ is used in several different ways in the literature,
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however in this thesis it will be used exclusively to describe the continuous

time branching process defined below. Branching processes in discrete time

were first used by Galton and Watson (for a historical account see Mode, 1971)

in order to model the survival of surnames, but they have come to have many

other applications, particularly in biology (see Jagers, 1975).

At time zero, i initial ancestors begin their lifetimes. During its lifetime, each

individual in the process independently gives birth to offspring at the points

of a Poisson process with rate β, and these offspring start their own lifetimes

immediately. Each lifetime has length distributed according to the random

variable TI , all instances of which are independent. Let I(t) denote the number

of individuals alive in the branching process at time t, so that overall, births

occur at a rate βI(t).

It is easy to understand that this branching process is an approximation to the

epidemic process in the early stages or when n is large as in these circumstances

S(t) ≈ S(0) = n and so infections will occur in the epidemic process at a rate

approximately equal to βI(t) and the infectious periods in the epidemic process

have the same distribution as the lifetime distribution in the branching process.

However, the relationship between the processes can be made much more precise

by constructing them on the same probability space, so that there is a coupling

between them. This allows us to pinpoint the precise instant at which the two

processes first diverge, and to observe that after this instant the number of

individuals alive in the branching process is an upper bound for the number of

infectives in the epidemic process.
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Coupling the branching process and the epidemic

Here a coupling between the epidemic process and the branching process, first

used by Ball (1983), is constructed following Andersson and Britton (2000).

First, construct the branching process and then enlarge its probability space

(Ω,F,P) to include an infinite sequence (Uj), j ≥ 1 of independent uniform

random variables on (0, 1). Next, construct the epidemic process from the

branching process as follows. Label the n susceptibles in the epidemic process

from 1, . . . , n and associate each initial infective with an initial ancestor in the

branching process. Let a contact occur in the epidemic process when a birth

occurs in the branching process. The jth individual to be contacted is defined

to be the initially susceptible individual with label bnUjc, and if this individual

is still susceptible then they become an infective. However, if they have already

been contacted then the contact has been unsuccessful and the epidemic process

does not change. The individual born in the branching process at this instant

and all of their offspring are subsequently ignored in the construction of the

epidemic process and are called ‘ghosts’. When a death occurs in the branching

process, the corresponding infective in the epidemic is removed.

By constructing the epidemic process from the branching process in this way

it is clear that the number of infectives in the epidemic and the number of

individuals in the branching process must coincide until the time of the first

ghost, after which there must be more individuals (by the number of ghosts) in

the branching process. Also note that in any time interval (0, t], t ∈ R, there

can be only finitely many births and so the probability that the two processes

coincide throughout (0, t] tends to 1 as n tends to infinity.
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1.5.3 Structured models

One of the least realistic assumptions made during the construction of the

SIR epidemic is that the population is homogeneously mixing. This section

briefly explores ways in which that assumption may be relaxed, in particular

discussing two level mixing models, but first the random graph representation

of an epidemic is briefly discussed.

Let each of the n + i individuals in the epidemic correspond to a vertex in

a graph. A directed edge between individuals j and k (1 ≤ j, k ≤ n + i)

exists if, given that individual j is infected, then they will go on to make an

infectious contact with individual k during their infectious period. Thus, in

the SIR epidemic model each edge from individual j will exist with probability

1 − exp(−βTI,j/n), where TI,j is the infectious period of individual j. Given

the infectious periods TI,j (1 ≤ j ≤ n + i) then all edges are assumed to exist

independently. The total number of individuals to be infected by the epidemic

is therefore the number of individuals connected by an unbroken (and directed)

path leading from an initial infective. Clearly this graph representation of the

epidemic loses any temporal information in the epidemic process, but it has

the potential to allow a much more complicated social contact structure to be

expressed. For more information about epidemics and graphs, see for example

chapter 7 of Andersson and Britton (2000).

There are 2
(

n+i

2

)

possible directed edges on the graph of the epidemic and if

each of these is to be modelled separately (possibly with dependence between

them) then analysis of the model quickly becomes intractable. A more practical

approach is to associate together groups of individuals that mix uniformly. The
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maximum number of mixing groups an individual may belong to is called the

number of levels of mixing of the model. Models with overlapping mixing groups

and more than two levels of mixing are very difficult to make analytic progress

with. However, if it is thought that more than two levels of mixing are required

to realistically capture the mixing behaviour of the population, progress can be

made using simulation studies, for example Longini et al. (2005), Ferguson et

al. (2005) and Halloran et al. (2002).

Ball et al. (1997) define an epidemic model with two levels of mixing for a pop-

ulation partitioned into households. This model includes the models of Becker

and Dietz (1995) and Becker et al. (2005) as special cases. Consider a popu-

lation of N individuals divided into households. Since each individual belongs

to precisely one household, the households form a partition of the population.

Two types of infectious contact are possible - ‘local contacts’ between members

of the same household and ‘global contacts’ between any two individuals in the

population. Two individuals in the same household make local contacts at rate

λL and any two individuals make global contacts at rate λG/N . Thus, if the

population size N tends to infinity so that the household size distribution re-

mains constant, this model tends to a multitype branching process in which an

‘individual’ in the branching process corresponds with a household in the epi-

demic process. For more details see Ball et al. (1997). This model is extended

by Ball and Lyne (2001) to include multiple types of individuals.

1.5.4 Threshold parameters

A threshold parameter for an epidemic model gives an indication as to whether

or not a large outbreak is possible. A reproduction number is a particular
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threshold parameter that can be interpreted as the expected number of infec-

tious individuals produced by a typical infectious individual in a completely

susceptible population. For epidemic models with one level of mixing a sim-

ple formula for this reproduction number exists. For two level mixing models,

several threshold parameters have been proposed.

Branching processes can exhibit two kinds of long-term behaviour: either the

number of individuals follows an upward trend for all time or at some point the

branching process dies out. A threshold parameter for the branching process

indicates which of these two kinds of behaviour can occur. If the threshold

parameter is less than one then the branching process will eventually become

extinct and if it is larger than one there is a possibility that extinction will not

occur. A branching process with threshold parameter equal to one will eventu-

ally become extinct, unless each individual produces precisely one offspring. A

branching process with a threshold parameter strictly less than one is termed

subcritical, and strictly greater than one supercritical. A critical branching

process has a threshold parameter of precisely one. The reproduction number

for the single type branching process is defined to be the expected number of

offspring produced by an individual before their death. In a multitype branch-

ing process the reproduction number is calculated from the matrix of mean

offspring M , in which mi,j is the mean number of type j individuals produced

by a type i individual. If M is positive regular (i.e. there exists an n ∈ N such

that every entry of Mn is strictly positive) then the reproduction number is the

largest eigenvalue of M . The reproduction number for a branching process is

a threshold parameter, and therefore it dictates the possible behaviour of the

process. For more information about branching process threshold parameters
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see for example Mode (1971) and Jagers (1975).

Epidemic models in large populations frequently exhibit two kinds of long-term

behaviour: either the disease will die out in the early stages of the epidemic

or there will be a large outbreak. Again, a threshold parameter dictates which

of these two types of behaviour can occur. We have seen that the epidemic

process is dominated by its branching process approximation, and the epidemic

will die out before (or at the same instant as) the coupled branching process.

Therefore a threshold parameter for the epidemic model is given by a threshold

parameter for the approximating branching process. The basic reproduction

number R0 for a single type SIR epidemic model is defined to be the expected

number of new infectives created by a typical infective in a totally susceptible

population. For the one type SIR epidemic model, this means thatR0 = βE[TI ].

A further advantage of the basic reproduction number is that it gives the critical

vaccination coverage. For a perfect vaccine, the smallest proportion of the

population needed to be vaccinated to ensure that a large outbreak occurs

with probability zero is given by 1 − 1
R0

when R0 > 1. For more information

about the basic reproduction number R0 and its use in determining the critical

vaccination coverage see for example Andersson and Britton (2000).

When two levels of mixing are introduced into the model, several different

threshold parameters have been proposed. This thesis focuses only on the one

proposed by Ball et al. (1997), given the symbol R∗, which is produced by

interpreting the households in the epidemic model as ‘individuals’ in a branch-

ing process. R∗ is defined to be the largest eigenvalue of the matrix of mean

offspring M , where the offspring of infective i are those individuals globally

contacted by i, plus any individuals globally contacted by the other members
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of i’s household, assuming that initially the population is infinitely large and

entirely susceptible except for i. Let there be K types of individual living in

a set H of possible household arrangements, where a household arrangement

specifies the number of each type of individual. Ball and Lyne (2001) give the

mean number of type j infectious offspring produced by a type i infective to be

mi,j =

K
∑

k=1

∑

h∈H

αi(h)E[Ni,k(h)]E[TI,k]λ
G
k,j (1.1)

where αi(h) is the proportion of type i infectives living in a household with

arrangement h, Ni,k(h) is the number of type k individuals locally infected in

a household of arrangement h in which one of the type i individuals is the

sole initial infective (if i = k this individual is included), TI,k is the infectious

period distribution of a type k individual, and λG
k,j is the rate at which a type k

individual globally contacts a type j individual. The matrix M can be written

as M = NΓΛG, where N has entries ni,k =
∑

h∈H

αi(h)E[Ni,k(h)], Γ is the

diagonal matrix with entries γk,k = E[TI,k] and ΛG has entries λG
j,k.

Wald’s identity for multitype epidemics (Ball, 1986) states that

E[Ni,k(h)]E[TI,k] = E[Si,k(h)]

where Si,k(h) is the sum of all of the type k infectious periods in a household

with arrangement h in which one of the type i individuals is the sole initial

infective. Thus, equation (1.1) is equivalent to

mi,j =

K
∑

k=1

∑

h∈H

αi(h)E[Si,k(h)]λG
k,j.
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When all of the households are of size 1, there are no local infections and so

the population is homogeneously mixing again. In this case, the threshold

parameter R∗ reduces to R0. Since R∗ generalises R0 and applies to both

epidemic and branching processes, all the threshold parameters will be denoted

by R∗ throughout the thesis, even if there is only a single level of mixing.

Becker et al. (2005) propose an alternative definition for the reproduction num-

ber of an epidemic model with two levels of mixing, which gives a reproduction

number equal to R∗. They define the offspring of infective i to be the global con-

tacts of i plus the individuals infected in the household subepidemics initiated

by these global contacts. This leads to

m̃i,j =

K
∑

k=1

∑

h∈H

E[TI,i]λ
G
i,kαk(h)E[Nk,j(h)]

which implies that M̃ = ΓΛGN . Equation (A.6.7) of Mardia et al. (1979)

implies that for any non-singular n× n matrix C the eigenvalues of the n× n

matrix A are equal to the eigenvalues of the matrix CAC−1. If we take C = N

and A = TΛGN we see that M̃ and M have the same eigenvalues, and therefore

they must have the same threshold parameters.

Becker and Dietz (1995) suggest two further alternative definitions for the

threshold parameter of an epidemic model on a population divided into house-

holds. In their model the disease is highly infectious, so if any household mem-

ber contracts the disease, then every susceptible in the household is ultimately

infected. There is a single type of infectious individual. Firstly, they derive a

threshold parameter for the proliferation of infected individuals, called RI . An

individual is of type i (for 0 ≤ i ≤ N − 1, where N is the maximum household
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size) if there are i susceptible individuals in their household just after they are

infected. Under this definition of type, Becker and Dietz then define RI to be

the largest eigenvalue of the matrix of mean offspring MI .

The second threshold parameter defined by Becker and Dietz (1995) relates to

the proliferation of infected households. A household is said to be of type i

(1 ≤ i ≤ N) if there are ultimately i individuals infected in that household,

including the initial infective. This allows the matrix MH to be defined, where

mH
i,j is the mean number of infectious households of type j produced by a

household of type i. RH is defined to be the largest eigenvalue of the matrix

MH . Becker and Dietz state that

RI = 1 ⇐⇒ RH = 1,

although in general RI is not equal to RH . Calculating R∗ for this model shows

that in this case R∗ = RH .

In conclusion, R∗ is the most general threshold parameter, as it reduces to

R0 and RH in the circumstances in which the latter are defined. When RI is

defined, RI = 1 if and only if R∗ = 1 and so they give the same threshold.
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Chapter 2

Asymptomatic carriers

2.1 Introduction

For many diseases it is possible for individuals to be infected and to infect others

without any apparent symptoms or with just mild symptoms. Examples include

influenza (Ferguson et al., 2005), mumps (Conly and Johnston, 2007), rubella

(Anderson and May, 1992) and polio (Lissauer and Claydon, 2001). These in-

dividuals are called asymptomatic carriers and can significantly increase the

spread of the disease through a population whilst remaining unnoticed. This

causes particular difficulties for emerging diseases, where the proportion of in-

fected individuals that are asymptomatic carriers will be unknown. Clearly

individuals without any obvious symptoms are difficult to identify and so es-

timates of the state of an epidemic must be drawn from observations of the

symptomatic individuals alone. This chapter is concerned with calculating the

probability that an epidemic has died out, given that no symptomatic individ-

uals have been observed for a certain time.
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Many human infectious diseases have asymptomatic infections, particularly vi-

ral diseases. Between a third and a half of influenza infections are asymp-

tomatic, see for example modelling papers by Elveback et al. (1976), Longini et

al. (2005) and Ferguson et al. (2005). These papers all include asymptomatic

carriers as a type of infective that is 50% as infectious as symptomatic infec-

tives, and in the first two papers carriers have different mixing behaviour and

effective infectious periods to symptomatic infectives.

In mumps it is estimated that between 15% and 20% of infections are asymp-

tomatic (Conly and Johnston, 2007). Rubella has between 20% and 50% of

cases as asymptomatic (Anderson and May, 1992). In developed countries, half

of the adult population show signs of having had cytomegalovirus, which is

mild or sub-clinical in a normal host (Lissauer and Claydon, 2001). The ma-

jority of cases of Epstein-Barr virus (which can cause infectious mononucleosis,

also known as glandular fever) are sub-clinical (Lissauer and Claydon, 2001).

Finally, more than 90% of infections with the polio virus are asymptomatic

(Lissauer and Claydon, 2001). It is clearly important to include asymptomatic

infections in models for these diseases, but because asymptomatic infections are

hard to detect, it can be very difficult to accurately estimate the proportion of

infections that are caused by them.

In reality all the information about an epidemic is unlikely to be observed, in

particular infection times and the beginnings of infectious periods are unlikely to

be observed. Also, data may be concerned with specific geographical regions,

a subset of the population (for example school children) and cases may go

unreported. Infections will cluster together geographically because individuals

living in close proximity are more likely to make infectious contacts. These
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factors mean that it is difficult to extrapolate partial information about an

epidemic to the whole population. Some work has been done on inference for

partially observed epidemics, for example O’Neill and Roberts (1999), however

although the process of infection is hidden, all of the removals are assumed to

be observed.

When a new disease emerges there is a significant probability that it will die

out in the very early stages, even if the reproduction number is greater than

one. But if there are asymptomatic carriers of the disease, there may be a

period in which no new cases are discovered but the disease is still present but

unobserved within the population. Therefore, if a period without discoveries

is observed, it is important to be able to quantify whether the epidemic has

really died out, or if it still persists through asymptomatic carriage. In order

to achieve this aim, the probability that the epidemic is over at time t given

there have been no discoveries between time s and time t will be derived.

Glass et al. (2007) and Eichner and Dietz (1996) have different approaches to the

problem of asymptomatic carriage. Glass et al. (2007) use Markov Chain Monte

Carlo methods to calculate 95% bounds for the number of asymptomatic cases

in the current generation of the infection, and make predictions concerning the

number of diagnosed cases that will occur in the next generation of infection.

They then test their methods on data from the SARS outbreak in 2003. Eichner

and Dietz (1996) use a simulation model to estimate the length of time without

observing a symptomatic case needed to be 95% certain that polio has been

eradicated from a population of 200,000 individuals.

Many simulation papers include asymptomatic carriage in their models (see for

example Elveback et al., 1976; Halloran et al., 2002; Ferguson et al., 2005), but
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the effect of the uncertainty surrounding the number of asymptomatic carriers

on the results is rarely explored. The asymptomatic carriage model used in

this chapter generalises one first proposed by Downton (1968), in which the

infectious periods of symptomatic individuals have zero length.

2.1.1 Definition of the model

In order to model asymptomatic infections we consider a generalisation of the

Markov SIR epidemic model (see section 1.5.1) with two infectious types. Con-

sider a closed homogeneously mixing population of n + i + c individuals, each

of which can be in one of five categories at any time. Initially there are n

susceptibles, i infectives, c carriers and no discovered or escaped individuals.

Individuals in the infective category make infectious contacts with each indi-

vidual in the susceptible category at the points of a Poisson process with rate

(β1,1 + β1,2)/n. Once contacted by an infective, a susceptible will become an

infective with probability
β1,1

β1,1+β1,2
and a carrier otherwise. Infectives have infec-

tious periods with length distributed according an exponential random variable

with rate parameter γ, after which they enter the discovered category. It is

at this instant that they are first thought to be observed. In the sequel, we

shall assume that the number of discovered individuals is the only aspect of the

epidemic that it is possible to observe.

Similarly, carriers have infectious periods of length Exp(µ) (i.e. exponential

with mean µ−1) and make infectious contacts with each susceptible at rate

(β2,1 + β2,2)/n. Susceptibles contacted by carriers become infectives with prob-

ability
β2,1

β2,1+β2,2
and carriers otherwise. At the end of their infectious periods
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carriers enter the escaped category. It is assumed that all instances of the

infectious period distributions and the Poisson processes governing infectious

contacts are mutually independent. Let the number of susceptible, infective,

carrier, discovered and escaped individuals at time t be represented by the ran-

dom variables S(t), I(t), C(t), D(t) and E(t) respectively. Therefore, infectives

are created at an overall rate of (β1,1I(t) + β2,1C(t))S(t)/n, carriers at a rate

of (β1,2I(t)+β2,2C(t))S(t)/n and the two types of removal (into the discovered

and escaped categories respectively) occur at rates γI(t) and µC(t).

At any time, the future behaviour of the epidemic process can be fully deter-

mined by the current numbers of susceptibles, infectives and carriers. For t ≥ 0,

let S(t) = (S(t), I(t), C(t)) represent the state of the process at time t. In the

sequel we will work only with this subprocess which will be referred to as the

‘epidemic process’. Let n = (n, i, c) denote the initial state of the epidemic

process and let En ⊆ Z
3 be the state space of the epidemic. A vector (x, y, z)

is in En if the following inequalities are satisfied:

1. 0 ≤ x ≤ n,

2. y ≥ 0,

3. z ≥ 0,

4. x+ y ≤ n + i,

5. x+ z ≤ n+ c,

6. x+ y + z ≤ n + i+ c.

It can be shown by induction (see Appendix A) that if n is not an absorbing
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state (i+ c > 0) then

|En| = (n+ 1)(i+ 1)(c+ 1) +
n(n− 1)(i+ c+ 1)

2
+
n(n + 1)(n+ 2)

6
.

The threshold parameter R∗ for this model is the largest eigenvalue of the mean

offspring matrix

M =

[ β1,1

γ

β1,2

γ

β2,1

µ

β2,2

µ

]

,

so that

R∗ =
1

2





β1,1

γ
+
β2,2

µ
+

√

(

β1,1

γ
+
β2,2

µ

)2

−
4(β1,1β2,2 − β1,2β2,1)

γµ



 .

For the special case in which newly infected individuals become infectives with

probability π and carriers with probability 1−π independently of whether they

were infected by an infective or a carrier, this simplifies to

R∗ = β

(

π

γ
+

1 − π

µ

)

,

as in this case β1,1 = β2,1 = πβ and β1,2 = β2,2 = (1 − π)β.

2.1.2 Chapter structure

The aim of this chapter is to find the probability the epidemic is over given a

period containing no new discoveries, i.e. P(I(t) + C(t) = 0|D(s) = D(t)). In

order to solve this problem two methods are developed, firstly a path evaluation

method (section 2.2) and then a matrix exponential method (section 2.3). In

section 2.4 a branching process approximation to the epidemic process is con-
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sidered. The effects of altering the parameters on the probability the epidemic

is over at t given no discoveries in (s, t] are explored for the epidemic and the

branching process approximation in section 2.5. An extended model featuring

independent households is considered in section 2.6. Finally in section 2.7, a

related problem is considered, in which a stopping time Tt is defined as

Tt = inf{u ≥ t : D(u) = D(u− t)}.

The stopping time Tt represents the first time at which a time period of length

t containing no discoveries has been observed. The probability the epidemic is

over at time Tt is calculated.
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2.2 Path evaluation method

2.2 Path evaluation method

The asymptomatic carriage epidemic model has the property that the process

can visit no state twice. In fact the process is absorbed in at most 2n + i + c

steps, since there can be at most n infections and n + i + c removals. Since

the state space is finite, the number of possible paths through the state space

is therefore finite also. In this section, the temporal state probabilities are

derived by conditioning on the path the epidemic process takes through the

state space and solving the resulting differential equation. Kryscio (1975) used

this method to find the temporal state probabilities of the General Stochastic

Epidemic which was generalised for Downton’s carrier borne epidemic model

by Ball and Clancy (1995). Ball and Clancy also derive the generating function

of the severity of the epidemic jointly with the transition probabilities, and the

corresponding result is also derived here.

For t ≥ 0, let S(t) = (S(t), I(t), C(t)) be the state of the process at time t and

let n = (n, i, c) denote the initial state of the process. Our interest focuses on

the function

hn(x, θ, t) = E
[

e−
R t
0 θ.S(u) du �

{S(t)=x}

∣

∣

∣
S(0) = n

]

where x ∈ En and θ ∈ [0,∞)3. For u,x ∈ En, define a path d from u to x to

be the ordered set of states {s0, . . . , sL} ⊆ En such that

1. s0 = u,

2. sL = x,
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3. For j = 0, . . . , L− 1,

sj − sj−1 ∈ {(−1, 1, 0), (−1, 0, 1), (0,−1, 0), (0, 0,−1)},

4. sj,2 + sj,3 > 0 for j = 0, . . . , L− 1.

Conditions 1 to 4 imply that

5. L = 2(u1 − x1) + u2 − x2 + u3 − x3,

since there must be exactly u1 − x1 infections and u1 − x1 + u2 − x2 + u3 − x3

removals. Let D(u,x) denote the (possibly empty) set of all paths from u to

x, and let vd denote the probability that the process takes path d. By the law

of total probability,

hn(x, θ, t) =
∑

d∈D(n,x)

h(x, θ, t|d)vd,

where h(x, θ, t|d) denotes hn(x, θ, t) conditional on taking path d.

To find vd, the probability that the process takes path d, note that

P(The process jumps from sj to sj+1) =
aj

bj

where aj is the rate at which the process goes from state sj to sj+1, and bj is

the total rate at which the process leaves state sj. Thus,

aj =































(β1,1sj,2 + β2,1sj,3)sj,1/n sj+1,2 = sj,2 + 1,

(β1,2sj,2 + β2,2sj,3)sj,1/n sj+1,3 = sj,3 + 1,

γsj,2 sj+1,2 = sj,2 − 1,

µsj,3 sj+1,3 = sj,3 − 1,

(2.1)
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bj = (β1,1sj,2 + β2,1sj,3)sj,1/n+ (β1,2sj,2 + β2,2sj,3)sj,1/n+ γsj,2 + µsj,3.

(2.2)

Thus,

vd =
L−1
∏

j=0

aj

bj
.

Using the Markov property over an infinitesimal interval it is possible to derive

and solve a set of differential equations for h(sj, θ, t|d) for j = 0, . . . , L, as

follows. To simplify the notation, write wj(t) for h(sj, θ, t|d) and let F(t)

denote the sigma field generated by the process up to time t ≥ 0. Then

wj(t+ ∆t) = E

[

exp

{

−

∫ t+∆t

0

θ.S(u) du

} �
{S(t+∆t)=sj}

∣

∣

∣
d

]

= E

[

E

[

exp

{

−

∫ t+∆t

0

θ.S(u) du

} �
{S(t+∆t)=sj}

∣

∣

∣
F(t), d

]

∣

∣

∣
d

]

= E

[

exp

{

−

∫ t

0

θ.S(u) du

}

×E

[

exp

{

−

∫ t+∆t

t

θ.S(u) du

} �
{S(t+∆t)=sj}

∣

∣

∣
F(t), d

]

∣

∣

∣
d

]

.

However,

exp

{

−

∫ t+∆t

t

θ.S(u) du

}

= 1 − ∆tθ.S(t) + o(∆t),

and so,

wj(t + ∆t)

= E

[

exp

{

−

∫ t

0

θ.S(u) du

}

(1−∆tθ.S(t))E
[

�
{S(t+∆t)=sj}

∣

∣

∣
F(t), d

]∣

∣

∣
d

]

+o(∆t).

Next consider the indicator function

�
{S(t+∆t)=sj}. This function is one if and
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only if one of the following events occur.

1. S(t) = sj and no events occur in (t, t+ ∆t],

2. S(t) = sj−1 and one event occurs in (t, t+ ∆t],

3. S(t) = sj−k for 1 < k ≤ j and k events occur in (t, t+ ∆t].

Given S(t) = sj, the first of these events occurs with probability 1−∆tbj+o(∆t).

Given S(t) = sj−1, the second event occurs with probability ∆tbj−1 + o(∆t).

The third event occurs with probability o(∆t). Thus,

E
[ �

{S(t+∆t)=sj}

∣

∣

∣F(t), d
]

=
�
{S(t)=sj}(1 − ∆tbj) +

�
{S(t)=sj−1}∆tbj−1 + o(∆t).

Thus,

wj(t+ ∆t) = (1 − ∆t(θ.S(t) + bj))E

[

exp

{

−

∫ t

0

θ.S(u) du

} �
{S(t)=sj}

∣

∣

∣
d

]

+∆tbj−1E

[

exp

{

−

∫ t

0

θ.S(u) du

} �
{S(t)=sj−1}

∣

∣

∣
d

]

+ o(∆t)

= (1 − ∆t(θ.S(t) + bj))wj(t) + ∆tbj−1wj−1(t) + o(∆t),

which upon rearrangement and taking the limit ∆t → 0 yields that for

j = 0, . . . , L,

dwj(t)

dt
= −wj(t)(θ.S(t) + bj) + wj−1(t)bj−1.

This implies that the (L + 1)-vector

w(t) =









w0(t)

...

wL(t)








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satisfies the differential equation

dw(t)

dt
= Aw(t) (2.3)

where the (L+ 1) × (L+ 1) matrix A is defined to be

A =



































−θ.s0 − b0 0 · · · 0

b0 −θ.s1 − b1 · · · 0

0 b1 · · · 0

...
. . .

...

0 · · · bL−1 −θ.sL − bL



































.

The initial conditions for equation (2.3) are given by

w(0) = [1 0 0 . . . 0]TL+1

where [·]l denotes a vector of length l. Theorem 1 of Severo (1969) gives a

complete solution to differential difference equations of this type. By applying

this result we find that for t ≥ 0,

w(t) = Ce(t)

where for t ≥ 0,

e(t) =















exp(−t(θ.s0 + b0))

exp(−t(θ.s1 + b1))

...

exp(−t(θ.sL + bL))















L+1
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and the (L+ 1) × (L+ 1) matrix C has elements cu,v specified by

cu,v =



































0 1 ≤ u < v,

1 1 = u = v,

a(u, u− 1)TC(u− 1, v)h(v, u) 1 ≤ v < u,

−
u−1
∑

k=1

c0(u, k) 1 < u = v.

(2.4)

The vector a(u, v) comprises the first v elements of the uth row of the matrix

A (for 1 ≤ v < u ≤ L+ 1), so that

a(u, v) =

{

[0 0 . . . 0]v 1 ≤ v < u− 1,

[0 0 . . . bu−2]v v = u− 1.

The symbol h(v, u) is the (u− v)-vector defined by

h(v, u) =















δ0(θ.su−1 + bu−1 − θ.sv−1 − bv−1)

δ1(θ.su−1 + bu−1 − θ.sv−1 − bv−1)

...

δu−v−1(θ.su−1 + bu−1 − θ.sv−1 − bv−1)















u−v

where for y ∈ R and k = 0, 1, . . . ,

δk(y) =











k!
yk+1

k
∑

j=0

(−1)k−j (yt)k

j!
y 6= 0,

tk+1

k+1
y = 0.

For u > v, the matrices C(u, v) in equation (2.4) are of dimension u× (u− v)

and have (r, s)th element equal to

C(u, v)
∣

∣

∣

r,s
=

{

cs−1(r, v) r ≥ v + s− 1,

0 otherwise.
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Finally, for u > v the functions cj(u, v) (j = 0, . . . , u− v) can be found recur-

sively from the relation

cu,v = c0(u, v) + c1(u, v)t+ . . .+ cu−v(u, v)t
u−v (2.5)

if it is further assumed that the functions cj(u, v) are independent of t. If the

eigenvalues of A given by {θ.sj +bj : j = 0, . . . , L} are distinct, then a relatively

simple solution exists, as the matrix C is independent of t. If the eigenvalues of

A are not distinct, the parameters γ, µ and βu,v (u, v ∈ {1, 2}) can be altered

infinitesimally so that the eigenvalues become distinct and the value of R∗ is

unchanged. From here onwards, it will be assumed that the eigenvalues of A

are indeed distinct, and therefore the vector h(v, u) has no entries of the form

δj(0) for j = 0, . . . , u− v − 1.

Substituting (2.4) into (2.5) for the case in which u > v yields,

u−v
∑

l=0

cl(u, v)t
l =

u−v
∑

l=1

bj−2cl−1(u− 1, v)δl−1(θ.su−1 + bu−1 − θ.sv−1 − bv−1).

(2.6)

Notice that if y 6= 0 then δl(y) contains powers of t up to l. Thus, for u > v,

equating coefficients of tu−v in (2.6) gives

cu−v(u, v) = 0.

If u − v > 1, then this can be re-written cu−v−1(u − 1, v) = 0. Equating
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coefficients of tu−v−1 in equation (2.6) therefore gives

cu−v−1(u, v) = 0.

Iterating this argument shows that the constants of the form cj(u, v) with index

j ∈ {u−v, u−v−1, . . . , 1} are all zero. All the non-zero constants are therefore

of the form c0(u, v). Equation (2.5) then gives cu,v = c0(u, v). This implies that

the matrix C can be written

cu,v =



































0 1 ≤ u < v,

1 1 = u = v,

bu−2cu−1,v

θ.su−1+bu−1−θ.sv−1−bv−1
1 ≤ v < u,

−
u−1
∑

k=1

cu,k 1 < u = v.

(2.7)

This recursive relation allows a formula for cu,v to be derived, but first a lemma

is needed.

Lemma 2.1 For any distinct real numbers x1, . . . , xn (n > 1),

n
∑

j=1

n
∏

k = 1
k 6= j

1

xj − xk

= 0.

This lemma is proved in Appendix B. We are now ready to prove that for

1 ≤ u, v ≤ L + 1,

cu,v =











(

u−2
∏

k=0

bk

)

u
∏

k = 1
k 6= v

(θ.sk−1 + bk−1 − θ.sv−1 − bv−1)
−1 v ≤ u,

0 v > u,

(2.8)

by induction on u.
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Equation (2.7) shows that the base case u = 1 holds, assuming that the empty

product is unity. Next, assume the inductive hypothesis - that equation (2.8)

holds for all u < u∗ and for all v. Firstly, note that if v > u∗ then equation

(2.7) implies that cu∗,v = 0. Next treat the case v < u∗. From equation (2.7),

cu∗,v =
bu∗−2

θ.su∗−1 + bu∗−1 − θ.sv−1 − bv−1

×

(

u∗−3
∏

k=0

bk

)

u∗−1
∏

k = 1
k 6= v

(θ.sk−1 + bk−1 − θ.sv−1 − bv−1)
−1

=

(

u∗−2
∏

k=0

bk

)

u∗

∏

k = 1
k 6= v

(θ.sk−1 + bk−1 − θ.sv−1 − bv−1)
−1

as required. The only remaining case is v = u∗. From equation (2.7),

cu∗,u∗ = −
u∗−1
∑

j=1

cu∗,j

= −

u∗−1
∑

j=1

(

u∗−2
∏

k=0

bk

)

u∗

∏

l = 1
l 6= j

(θ.sl−1 + bl−1 − θ.sj−1 − bj−1)
−1

=

(

u∗−2
∏

k=0

bk

)

u∗

∏

l = 1

l 6= u∗

(θ.sl−1 + bl−1 − θ.su∗−1 − bu∗−1)
−1

by Lemma 2.1. This completes the proof of (2.8).

Now, the following lemma can be proved.
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Lemma 2.2 If the real numbers {θ.sj + bj : j = 0, . . . , L} are distinct, then

for x ∈ En, θ ∈ [0,∞)3 and t ∈ [0,∞),

hn(x, θ, t) =
∑

u∈En(x)

C1(n→ u)C2(u→ x) exp(−tλ(u, θ))

where En(x) = {u ∈ En : x ∈ Eu},

λ(u, θ) = ((β1,1 + β1,2)u2 + (β2,1 + β2,2)u3)
u1

n
+ u1θ1 + u2(θ2 + γ) + u3(θ3 + µ)

and

C1(n→ u) =
∑

d∈D1

L1−1
∏

k=0

ak

θ.sk + bk − θ.sL1 − bL1

,

C2(u→ x) =
∑

d∈D2

L2−1
∏

k=0

ak

θ.sk+1 + bk+1 − θ.s0 − b0
.

Here D1 is the set of paths from n to u, D2 is the set of paths from u to x,

and for j ∈ {1, 2}, Lj is the length of all the paths in Dj.

Proof:

Recall that

hn(x, θ, t) =
∑

d∈D(n,x)

vdh(x, θ, t|d)

=
∑

d∈D(n,x)

vdwL(t)

=
∑

d∈D(n,x)

(

L−1
∏

k=0

ak

bk

)

L
∑

j=0

cL+1,j+1 exp(−t(θ.sj + bj))
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=
∑

d∈D(n,x)

L
∑

j=0

(

L−1
∏

k=0

ak

)

exp(−t(θ.sj + bj))

×

j
∏

l = 1
l 6= j

(θ.sl−1 + bl−1 − θ.su∗−1 − bu∗−1)
−1.

This result can be re-arranged as follows. Let D(n,u,x) be the set of paths

from n to x passing through u. Let L1 be the length of the path from n to u

and let L2 be the length of the path from u to x, so that L = L1 + L2. Let

D1 be the set of paths from n to u and D2 be the set of paths from u to x, so

that D(n,u,x) = D1 ×D2. Finally define En(x) ⊆ En such that u ∈ En(x)

if and only if x ∈ Eu. In other words, En(x) is the subset of the state space

that can be connected by a path to x.

Now, collect together coefficients of the same exponential term, taking L1 = j

so that u = sj. Thus,

hn(x, θ, t) =
∑

u∈En(x)

∑

d∈D(n,u,x)

(

L−1
∏

k=0

ak

)

exp(−tλ(u, θ))

×

L
∏

l = 0
l 6= L1

(θ.sl + bl − θ.sL1 − bL1)
−1

=
∑

u∈En(x)

C1(n→ u)C2(u→ x) exp(−tλ(u, θ))

where

λ(u, θ) = ((β1,1 + β1,2)u2 + (β2,1 + β2,2)u3)
u1

n
+ u1θ1 + u2(θ2 + γ) + u3(θ3 + µ),
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2.2 Path evaluation method

and

C1(n→ u) =
∑

d∈D1

L1−1
∏

k=0

ak

θ.sk + bk − θ.sL1 − bL1

,

C2(u→ x) =
∑

d∈D2

L2−1
∏

k=0

ak

θ.sk+1 + bk+1 − θ.s0 − b0
.

This completes the proof of Lemma 2.2.

2.2.1 Application

This section describes how the function hn(x, θ, t) can be used to calculate

properties of interest.

1. The state probabilities.

P(S(t) = x|S(0) = n) = hn(x, 0, t)

2. The probability of no discoveries in (0, t].

P(D(0) = D(t)) =
∑

x∈En

P(D(0) = D(t) and S(t) = x)

=
∑

x∈En

∑

d∈D′(n,x)

h(x, 0, t|d)

where D′(n,x) ⊆ D(n,x) is the set of paths from n to x that contain

no discoveries. Obviously if x2 < i the set D′(n,x) will be empty.
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2.2 Path evaluation method

3. The probability of no discoveries in (s, t].

P(D(s) = D(t)) =
∑

u∈En

P(D(s) = D(t)|S(s) = u)P(S(s) = u)

=
∑

u∈En

P(D(0) = D(t− s)|S(0) = u)P(S(s) = u)

4. The probability there are k infectious individuals at time t, given no

discoveries in (s, t].

P(I(t) + C(t) = k|D(s) = D(t)) =
P(I(t) + C(t) = k and D(s) = D(t))

P(D(s) = D(t))

where

P(I(t) + C(t) = k and D(s) = D(t))

=
∑

u ∈ En

u2 + u3 = k

P(I(t− s) + C(t− s) = k and D(0) = D(t− s)|S(0) = u)

× P(S(s) = u)

=
∑

u ∈ En

u2 + u3 = k

h′n(x, 0, t− s)P(S(s) = u)

and where h′n(x, θ, t) =
∑

d∈D′(u,x)

h(x, θ, t)vd.

5. The expected severity of the epidemic.

E

[
∫ ∞

0

I(u) + C(u) du

]

=
n
∑

x=0

[

∂

∂θ2
hn([x 0 0], θ,∞)+

∂

∂θ3
hn([x 0 0], θ,∞)

]

θ=0

The usefulness and flexibility of these functions is quickly apparent, however

they are very intensive to compute for even moderate population sizes. The size
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2.2 Path evaluation method

of the state space is given by a polynomial in n with degree three, and therefore

the number of possible paths increases with even more rapidity. When n = 8,

a program written in C takes about 20 minutes to complete, and increasing n

by one causes approximately a tenfold increase in computation time. As n is

increased above eight, for some parameter choices truncation errors begin to

effect the results. Numerical progress is therefore difficult to make for values of

n greater than ten.
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2.3 Matrix exponential method

2.3 Matrix exponential method

Although very flexible, the path evaluation method is computationally inten-

sive. However, it is also possible to calculate the probability the epidemic is

over at time t given no discoveries in (s, t] by utilising matrix exponentials.

The asymptomatic carriage epidemic model is a continuous time Markov pro-

cess on a finite state space, and so the state probabilities at time t can be

found by taking the matrix exponential of the product of the generator matrix

Q and t. This idea can be extended to calculate the probability of no discov-

eries in (0, t]. First a new matrix R is defined to be the matrix Q with the

off-diagonal entries that represent discovery transitions set to zero. Define a

family of |En| × |En| matrices R(t) with (u, v)th entry ru,v(t) representing the

probability the epidemic is in state v at time t and there were no discoveries

in (0, t], given that the process was initially in state u. First we will show that

R(∆t) = ∆tR+ I + o(∆t), where I is the |En|× |En| identity matrix, and then

by deriving the forward equations for R(t) we will see that R(t) = exp(Rt).

First, note that for u, v ∈ En with u 6= v,

ru,v(∆t) = P(jump from u to v in (0,∆t] and D(0) = D(∆t))

+P(more than one jump in (0,∆t] and D(0) = D(∆t))

= ru,v∆t + o(∆t)

rv,v(∆t) = P(no jumps in (0,∆t])

+P(more than one jump in (0,∆t] and D(0) = D(∆t))

= 1 + rv,v∆t + o(∆t)
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2.3 Matrix exponential method

and so R(∆t) = ∆tR + I + o(∆t). Analogously to the generator matrix Q, we

have that

R = lim
t→0

R(t) − I

t
.

Next, we calculate the matrix R(t) from the forward equations. Note that for

u, v ∈ En

ru,v(t+ ∆t) = ru,v(t)rv,v(∆t) +
∑

w 6=v

ru,w(t)rw,v(∆t) + o(∆t)

= ru,v(t)(1 + rv,v∆t) +
∑

w 6=v

ru,w(t)rw,v∆t + o(∆t)

= ru,v(t) + ∆t
∑

w

ru,w(t)rw,v + o(∆t)

taking the limit ∆t→ 0 implies that

d

dt
ru,v(t) = [R(t)R]u,v

and so

d

dt
R(t) = R(t)R

with the boundary condition

R(0) = I.

This differential equation has the unique solution

R(t) = exp(Rt).

Let π be a row vector representing the initial distribution of the process and

let 1 be a column vector of ones. By conditioning on the state of the process
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2.3 Matrix exponential method

at time s, we see that

P(D(s) = D(t)) = π exp(sQ) exp((t− s)R)1.

Next, let E ⊆ En be a subset of the state space, define the indicator column

vector � E to be 1 for the states in E and 0 for the states in Ec. Then,

P(S(t) ∈ E and D(s) = D(t)) = π exp(sQ) exp((t− s)R) � E,

and so

P(I(t) + C(t) = k|D(s) = D(t)) =
π exp(sQ) exp((t− s)R) � {I+C=k}

π exp(sQ) exp((t− s)R)1

where {I+C = k} represents the set of states in which the number of infectives

plus carriers is equal to k.

2.3.1 Comparison of methods

The matrix exponential method is computationally much faster than the path

evaluation method and works well for population sizes less than 25. However,

when n is 25, the state space has 3627 elements and so the matrices exp(sQ)

and exp((t − s)R) have more than 13 million entries each, which places high

demands on the computer memory. Also note that since the size of the state

space is proportional to n3, the number of entries in these temporal matrices

is proportional to n6, and so this problem cannot be readily solved by simply

increasing the amount of computer memory.

Although the matrix exponential method is many times faster than using the
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2.3 Matrix exponential method

path evaluation method described in section 2.2, the path evaluation method

does have certain advantages over the matrix method. Firstly, once the coef-

ficients C1 and C2 have been computed in the path evaluation method (for a

given set of parameters), they provide the function hn(x, θ, t) for all time.

This allows the function to be easily differentiated or integrated with re-

spect to time. The matrix exponential needs to be recalculated for each time

point required. Secondly, it is possible to adapt the path evaluation method

to calculate other interesting functionals of the epidemic, for instance the

expected severity E
[∫∞

0
I(t) + C(t) dt

]

and the expected time to extinction
∫∞

0
P(I(t) + C(t) > 0) dt. Also, by evaluating the possible paths of the epi-

demic process, this method gives a very clear and direct understanding of the

model itself, and its behaviour. However, it relies on the number of paths that

the process may take being finite (and possible to compute in a reasonable

amount of time) and this makes the method suitable only for epidemic models

with small population sizes or small subpopulations, for instance those used in

households models (see section 2.6). Next, we consider the branching process

approximation to the epidemic, which is valid for both large populations and

for the early stages of an epidemic in moderate populations.
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2.4 Branching process approximation

2.4 Branching process approximation

As the number of susceptibles tends to infinity, the probability of a susceptible

being contacted more than once in the initial phase of the epidemic becomes

negligible. Therefore for moderately large n, the initial phase of the epidemic

can either be modelled by a branching process, or, since the asymptomatic

carriage epidemic model has the Markov property, a birth and death process

with two types of individual.

It is possible to write the probability that the epidemic is over at t given no

discoveries in (s, t] in terms of solutions to some differential equations, which

are not explicitly solvable in general. For i, c ∈ N ∪ {0} with i + c > 0 and for

t ∈ [0,∞) define

pi,c(t) = P(D(t) = D(0)|(I(0), C(0)) = (i, c))

and

ri,c(t) = P(D(t) = D(0) and I(t) + C(t) = 0|(I(0), C(0)) = (i, c)).

The offspring of the zeroth generation of the birth-death process can be con-

sidered as the initial ancestors of independent birth-death processes. There are

no discoveries in the original process if and only if there are no discoveries in

the offspring processes, and so we have that

pi,c(t) = p1,0(t)
ip0,1(t)

c,

ri,c(t) = r1,0(t)
ir0,1(t)

c.
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2.4 Branching process approximation

By conditioning on the state of the process at time ∆t it is possible to derive

the backward equations for these functions. For example,

p1,0(t+ ∆t) = β1,1∆tp2,0(t) + β1,2∆tp1,1(t) + (1 − ∆t(β1,1 + β1,2 + γ))p1,0(t)

+o(∆t)

which implies that

dp1,0(t)

dt
= β1,1p1,0(t)

2 + β1,2p1,0(t)p0,1(t) − (β1,1 + β1,2 + γ)p1,0(t) (2.9)

dp0,1(t)

dt
= β2,2p0,1(t)

2 + β2,1p1,0(t)p0,1(t) − (β2,2 + β2,1 + µ)p0,1(t) + µ(2.10)

dr1,0(t)

dt
= β1,1r1,0(t)

2 + β1,2r1,0(t)r0,1(t) − (β1,1 + β1,2 + γ)r1,0(t)

dr0,1(t)

dt
= β2,2r0,1(t)

2 + β2,1r1,0(t)r0,1(t) − (β2,2 + β2,1 + µ)r0,1(t) + µ

with the boundary conditions

p1,0(0) = 1

p0,1(0) = 1

r1,0(0) = 0

r0,1(0) = 0.

Firstly notice that these equations trivially imply that r1,0(t) = 0. This is

also implied from the definition, as it is impossible for the epidemic to die out

without the discovery of the initial infective. This implies that

dr0,1(t)

dt
= β2,2r0,1(t)

2 − (β2,2 + β2,1 + µ)r0,1(t) + µ
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2.4 Branching process approximation

which can be solved to give

r0,1(t) =
ξ2(ξ1 − 1) + ξ1(1 − ξ2)e

−(ξ1−ξ2)β2,2t

ξ1 − 1 + (1 − ξ2)e−(ξ1−ξ2)β2,2t

where ξ1 > ξ2 are the two roots of the equation

β2,2x
2 − (β2,2 + β2,1 + µ)x+ µ = 0.

The differential equations (2.9) and (2.10) can be jointly solved numerically.

Now, by conditioning on the number of infectious individuals at time s, we can

formulate the probability the epidemic is over at t given no discoveries in (s, t].

P(I(t) + C(t) = 0|D(s) = D(t))

=
P(I(t) + C(t) = 0 and D(s) = D(t))

P(D(s) = D(t))

=

∞
∑

y=0

r0,1(t− s)yP(C(s) = y)

∞
∑

x,y=0

p1,0(t− s)xp0,1(t− s)yP((I(s), C(s)) = (x, y))

=
Φ(0, r0,1(t− s); s)

Φ(p1,0(t− s), p0,1(t− s); s)

where Φ(u, v; t) = E
[

uI(t)vC(t)
]

.

The function Φ(u, v; t) satisfies the following partial differential equation,

∂Φ(u, v; t)

∂t
=

∂Φ(u, v; t)

∂u
(β1,1u

2 + β1,2uv − (β1,1 + β1,2 + γ)u+ γ)

+
∂Φ(u, v; t)

∂v
(β2,2v

2 + β2,1uv − (β2,2 + β2,1 + µ)v + µ)
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2.4 Branching process approximation

with the boundary conditions

Φ(1, 1; t) = 1,

Φ(u, v; 0) = uivc.

Unfortunately, a solution to these equations is not available in general, only for

the special case considered in section 2.4.1 (see Mode, 1962). Instead, the best

way to proceed is to simulate the birth-death process until time s, to estimate

the joint distribution of the number of individuals alive at this time. This can

then be used to approximate the generating function Φ(u, v; s) = E
[

uI(s)vC(s)
]

.

In conclusion, the probability the epidemic is over given a period without dis-

coveries can be found by numerically solving differential equations for p1,0(t− s)

and p0,1(t− s) and then simulating the birth-death process up to time s to ob-

tain an estimate for Φ(u, v; s). However, in a special case, there is an entirely

analytic solution to the problem.

2.4.1 A special case

The following argument is due to Frank Ball.

Consider the special case of the model in which infectives and carriers have the

same removal rates, and the type of a new infectious individual is independent

of the type of individual which created them. In this special case, both types of

infectious individual behave in the same way until they are removed, at which

point a proportion of them become discovered, and the rest escape detection.

Although the preceeding results can still be applied, it is now possible to obtain
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2.4 Branching process approximation

an entirely analytic solution to the problem. Let π denote the proportion of

infectious individuals to be discovered, andX(t) denote the number of infectious

individuals at time t.

Grimmett and Stirzaker (2001) give the generating function of X(t) to be

Φ(u; t) = E
[

uX(t)
]

=











(

βt(1−u)+u

βt(1−u)+1

)X(0)

γ = β,
(

γ(1−u)−(γ−βu)e−t(β−γ)

β(1−u)−(γ−βu)e−t(β−γ)

)X(0)

γ 6= β,

where infectious individuals are created with rate β and removed with rate γ.

By deriving and solving the backward equations, we find that

p(t) = P(D(t) = D(0)|X(0) = 1)

=
ζ2(ζ1 − 1) + ζ1(1 − ζ2)e

−(ζ1−ζ2)βt

ζ1 − 1 + (1 − ζ2)e−(ζ1−ζ2)βt

r(t) = P(D(t) = D(0) and X(t) = 0|X(0) = 1)

=
ζ1ζ2(1 − e−(ζ1−ζ2)βt)

ζ1 − ζ2e−(ζ1−ζ2)βt

where ζ1 > 1 > ζ2 > 0 are the roots of the equation

βz2 − (β + γ)z + γπ = 0.

Finally,

P(X(t) = 0|D(s) = D(t)) =
Φ(r(t− s); s)

Φ(p(t− s); s)
.
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2.5 Effects of parameter changes

This section numerically explores the effect of the parameters on the probability

the epidemic is over given a period without discoveries for both the epidemic

model and the branching process approximation.

The parameters used in this section have been chosen to cover as broad a range

of cases as possible. However, since it is impossible to cover the whole param-

eter space, this section focuses on changing s, t, R∗ and n. Unless otherwise

stated it is assumed that infectives are twice as infectious as carriers, as this is

thought to be the case for influenza-like illnesses for example avian influenza

(Ferguson et al., 2005). This is because symptoms like coughing and sneezing

clearly increase the transmissibility of airborne infections. Where possible it is

assumed that symptomatic individuals are removed at twice the rate of carri-

ers. This assumption does not indicate a difference in the duration of infection

within the two types of individual, but instead represents a difference in the

effective infectious period, as symptomatic individuals are likely to withdraw

to the home and stop mixing. Also, infectives are observed upon removal and

so this is equivalent to assuming that once they are discovered to have the in-

fection, they are prevented from making any further infectious contacts, either

through treatment or isolation. It is always assumed that infectives have infec-

tious periods with mean length one, so the units of time can be interpreted as

multiples of this period, and therefore have some interpretation in the context

of the epidemic.

Figure 2.1 shows the effect of increasing the length of the period of no discoveries

on the probability the epidemic is over given D(1/2) = D(t) for several values of
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Figure 2.1: P(I(t) + C(t) = 0|D(s) = D(t)) against t for s = 1/2,
(n, i, c) = (20, 1, 0), (β1,1, β1,2, β2,1, β2,2) = λ

n
(0.6, 0.4, 0.2, 0.3), γ = 1 and

µ = 1/2.

R∗. The value of R∗ is changed by altering the parameter λ, which determines

the infectious contact rates as (β1,1, β1,2, β2,1, β2,2) = λ
n
(0.6, 0.4, 0.2, 0.3). The

curve for R∗ = ∞ is calculated by setting λ to be very large.

When the period of no discoveries is small this gives very little information

about the state of the model, and so epidemics with smaller values of R∗ are

more likely to be extinct than ones with larger values of R∗. However, as the

length of the period of no discoveries increases, more information is gained

for models with moderately large values of R∗. These models have the most

uncertainty in their behaviour, as they can either die out rapidly or persist with

a major outbreak, and therefore a longer period without discoveries suggests

that the former of these has occurred. When R∗ becomes very large, a period
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Figure 2.2: P(I(t) + C(t) = 0|D(s) = D(t)) against s for t = s + 1,
(n, i, c) = (20, 1, 0), (β1,1, β1,2, β2,1, β2,2) = λ

n
(0.6, 0.4, 0.2, 0.3), γ = 1 and

µ = 1/2.

containing no discoveries gives much less information about the model because

the probability of extinction is so small. Instead it suggests that the infection

is still present in carriers.

Figure 2.2 demonstrates the effect of altering the start time of a fixed

length period of no discoveries on the probability the epidemic is over given

D(s) = D(s+ 1). Since the initial infective must be discovered before the epi-

demic can cease, all of the curves begin at zero. In the first stage of the graph,

the epidemics most likely to be over are the ones with moderately large values

of R∗, as for these epidemics the period of no discoveries is most informative.

However, as s increases a period without discoveries becomes less informative,

as carriers have longer infectious periods and are more likely to persist. As R∗
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Figure 2.3: P(I(t) + C(t) = 0|D(s) = D(t)) against s for t = s + 1, R∗ = 3,
(i, c) = (1, 0), (β1,1, β1,2, β2,1, β2,2) = λ

n
(0.6, 0.4, 0.2, 0.3), γ = 1 and µ = 1/2.

becomes very large the behaviour is very different. Despite the period of no

discoveries, the epidemic is extremely unlikely to be over in the early stages.

However when s increases, the probability the epidemic is over rapidly ap-

proaches one, as all of the population is infected right at the beginning of the

epidemic.

Figure 2.3 shows the effect of increasing the population size on the probability

the epidemic is over given a period without discoveries. For n = ∞, 10,000

simulations of the branching process up to time s were used to calculate the

joint distribution of the number of infectives and carriers, and the probability

of no discoveries in (0, t− s] was found by numerically solving the differential

equations (2.9) and (2.10).
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Figure 2.4: P(I(t) + C(t) = 0|D(s) = D(t)) against t for s = 1/2, i = 1,
π = 1/2 and γ = µ = 1.

As in figure 2.2, the period of no discoveries gives most information at the begin-

ning of the epidemic. As n increases, the potential for more infections increases

and so a period without discoveries makes the epidemic even more likely to be

over. However, as s increases, the effect of the period of no discoveries begins

to diminish for all of the models with finite n because the supply of susceptibles

runs out. Those with smallest n are most affected as these models are unable

to sustain a long epidemic. When n is infinite however, the information given

by the period of no discoveries only increases the likelihood that the epidemic is

over, until it approaches one. Without the period of no discoveries, this curve

would tend to the probability of extinction for the branching process, which is

1/3. It is important to notice that the curve for n = ∞ is an upper bound for

the finite n cases, and that it is often very close to the curves for finite n. The
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Figure 2.5: P(I(t) + C(t) = 0|D(s) = D(t)) against s for t = s + 1/2, i = 1,
π = 1/2 and γ = µ = 1.

branching process can therefore be used as a reasonable approximation to the

epidemic process, particularly in the early stages of the epidemic.

Figures 2.4 and 2.5 are the analogues of figures 2.1 and 2.2 for the special case

of the branching process model discussed in section 2.4.1. Here the parameter π

represents the probability that a newly infected individual becomes an infective.

The trends visible in figure 2.4 agree with those in figure 2.1 with one exception.

For the branching process, the probability the epidemic is over given a period of

no discoveries continues to increase as R∗ is increased. This is because there is

no limit on the number of infectives in the branching process, so as R∗ increases,

a period without discoveries suggests that the epidemic is over more and more

strongly.
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2.5 Effects of parameter changes

In figure 2.5, the probability the epidemic is over given a period of no discov-

eries is increasing in s. This strongly contrasts with figure 2.2, in which the

information {D(s) = D(s+ 1/2)} affected the probability the epidemic is over

less as s was increased. This is because in the branching process model the

number of susceptibles is not limited, and so it is possible for the epidemic to

be sustained for all time. Interestingly, the probability the epidemic is over

given no discoveries tends to one the slowest when R∗ = 1. This is likely to

be because the expected number of infectives remains constant when R∗ = 1.

When s is large, subcritical branching processes are likely to be extinct and

supercritical process will either be extinct or contain a large number of infec-

tives. This means that the event {D(s) = D(s + 1/2)} is very informative for

supercritical processes, and suggests extinction.
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2.6 Structured populations

The asymptomatic carriage epidemic model assumes that the population is ho-

mogeneously mixing, which is not particularly realistic. An easy way to remove

this assumption is to divide the population into households and introduce two

levels of mixing into the model. Unfortunately, this increases the size of the

state space for a given population size, and reduces still further the popula-

tion sizes for which it is feasible to perform calculations. Instead it will be

assumed that a population divided into households experiences some approxi-

mately constant source of infection from elsewhere for some fixed time, which

can be thought, approximately, as the duration of the epidemic season. After

the external source of infection is withdrawn the epidemic proceeds within the

households. It is assumed throughout that the number of between household

contacts is small enough to be ignored compared with the household contacts

and external infections, and therefore the households behave independently.

Other papers to consider this kind of independent households model include

Addy et al. (1991) and Demiris and O’Neill (2005).

Let m be the number of households. If the are no discoveries in the whole

population, then there are no discoveries in any one household, and since the

households behave independently we have that

P

(

m
∑

j=1

Ij(t) + Cj(t) = 0
∣

∣

∣
Dj(s) = Dj(t) ∀j

)

=
m
∏

j=1

P(Ij(t) + Cj(t) = 0|Dj(s) = Dj(t))

where the subscript j denotes the household with index j. Thus, we need
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2.6 Structured populations

consider only a single household.

Consider a household of size n, and assume that initially there are no infectious

individuals. In the time interval (0, w] each member of the household is con-

tacted from outside the household at the points of a Poisson process with rate

α1 +α2 and once contacted become an infective with probability α1/(α1 +α2).

The within household contact rates are given by B as before. Thus, infectives

are created at a rate (α1 + β1,1I(t)+ β2,1C(t))S(t) and carriers are created at a

rate (α2 +β1,2I(t)+β2,2C(t))S(t). As before infectives and carriers are removed

at rate γ and µ respectively. After time w, the source of external infection is

withdrawn and the vector α = (α1, α2) is set to zero.

Let Qα denote the generator matrix of the process before time w, and let Q

denote it after time w, when α is set to zero. Similarly to section 2.3, define

Rα and R to be the restricted generator matrices before and after w; where for

u 6= v, ru,v represents the rate at which the process goes from state u to state v

with no discoveries, and ru,u = qu,u. By conditioning on the state of the process

at times w and s it is easy to show that

P(I(t) + C(t) = k|D(s) = D(t))

=
P(I(t) + C(t) = k and D(s) = D(t))

P(D(s) = D(t))

=



























π exp(sQα) exp((t−s)Rα) � {I+C=k}

π exp(sQα) exp((t−s)Rα)1
s < t < w

π exp(sQα) exp(w−s)Rα) exp((t−w)R) � {I+C=k}

π exp(sQα) exp(w−s)Rα) exp((t−w)R)1 s < w < t

π exp(wQα) exp(s−w)Q) exp((t−w)R) � {I+C=k}

π exp(wQα) exp(s−w)Q) exp((t−w)R)1 w < s < t

where π is a row vector representing the initial distribution of the household, 1

is a column vector of ones, � E is a column vector with � E(u) = 1 if u ∈ E and
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Figure 2.6: P(I(t) + C(t) = 0|D(s) = D(t)) against t for w = 1, s = 1/2,
(n, i, c) = (6, 0, 0), α = (5, 5), (β1,1, β1,2, β2,1, β2,2) = λ

n
(0.6, 0.4, 0.2, 0.3), γ = 1

and µ = 1/2.

zero otherwise and {I+C = k} is the set of states with k infectious individuals.

2.6.1 Effects of parameter changes

Figure 2.6 shows the effect of increasing the length of the period of no discoveries

on the probability the epidemic is over given D(1/2) = D(t). When t is less

than w the probability the epidemic is over is kept low by the possibility of new

infections from outside occurring shortly before t. Once t is increased above w,

extinction becomes more likely. The graphs do not approach one very quickly

because there is quite a high probability that an infective is active at time s or

created in (s, w], and if there are no discoveries in (s, t] this infective must still
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Figure 2.7: P(I(t) + C(t) = 0|D(s) = D(t)) against s for w = 1/2, t = s + 1,
(n, i, c) = (6, 0, 0), α = (5, 5), (β1,1, β1,2, β2,1, β2,2) = λ

n
(0.6, 0.4, 0.2, 0.3), γ = 1

and µ = 1/2.

exist at t.

The probability the epidemic is over at s + 1 given no discoveries in (s, s + 1]

is plotted against s in figure 2.7. Like figure 2.2, when s is small the epidemics

with the largest values of R∗ are most likely to be extinct because no discoveries

are observed in the early stages. As s increases the effect of this period without

discoveries begins to diminish and the probabilities re-order themselves so that

the values of R∗ that are likely to cause epidemics with long duration are least

likely to be extinct. Unlike figure 2.2 the graphs do not begin at zero as there

is no longer definitely an initial infective that must be discovered before the

epidemic dies out.
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2.7 Stopping time problem

This section considers a variation on the original problem, in which the epidemic

process is stopped at the first time at which no discoveries have been made in

the last t time units. Defining

Tt = inf{u ≥ t : D(u) = D(u− t)},

we will seek to evaluate

P(I(Tt) + C(Tt) = 0) =
∑

d∈D

P(I(Tt) + C(Tt) = 0|d)P(d)

where d is the path that the process takes through the state space and D is the

set of all possible paths through the state space. Each of these paths is of finite

length and ends at an absorbing state of the form (x, 0, 0) for x ∈ {0, . . . , n}.

Thus, P(I(Tt) +C(Tt) = 0|d) is the probability that the waiting times between

discovery events in the path are all less than t. The probability the process takes

path d is given by P(d) =
L−1
∏

j=0

aj/bj where aj and bj are defined in equations

(2.1) and (2.2) respectively, and L is the length of path d.

Recall that a path d of length L consists of a sequence of states {s0, . . . , sL}. If

there are K discovery events in the path, then d can be broken down into K+1

subpaths d0, . . . , dK separated by discovery events. Thus, d = {d0, . . . , dK}.

For example the path

d = {(3, 2, 0), (3, 1, 0), (2, 2, 0), (2, 1, 0), (2, 0, 0)}
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2.7 Stopping time problem

with L = 4 contains K = 3 discoveries and so

d0 = {(3, 2, 0)}

d1 = {(3, 1, 0), (2, 2, 0)}

d2 = {(2, 1, 0)}

d3 = {(2, 0, 0)}

with lengths L0 = 0, L1 = 1, L2 = 0, L3 = 0 and we see that L = K +
K
∑

k=0

Lk.

For k = 0, . . . , K and j = 0, . . . , Lk let sk,j denote the jth state visited in the

path dk. Let q(x) denote the rate at which the process leaves state x so that

q(x) = ((β1,1 + β1,2)x2 + (β2,1 + β2,2)x3)x1/n+ γx2 + µx3.

Since the waiting time in state x is distributed Exp(q(x)), we have

P(I(Tt) + C(Tt) = 0|d) =

(

K−1
∏

k=0

P(path dk lasts less than t)

)

×P(first LK − 1 steps of path dK last less than t)

=

(

K−1
∏

k=0

P

(

Lk
∑

j=0

Wk,j < t

))

P

(

LK−1
∑

j=0

WK,j < t

)

,

where for k = 0, . . . , K and j = 0, . . . , LK, Wk,j ∼ Exp(q(sk,j)) and the Wk,j

are independent.

P203 of Rényi (1970) states that if Xj (j = 1, . . . , n) are independent exponen-

tial distributions with distinct intensities λj then Y =
n
∑

j=1

Xj has probability
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2.7 Stopping time problem

density function

fY (y) = (−1)n−1λ1 . . . λn

n
∑

j=1

exp(−λjy)
∏

k 6=j

λj − λk

for y > 0 and therefore

P(Y < y) = (−1)n−1

n
∑

j=1

(1 − exp(−λjy))
∏

k 6=j

λk

λj − λk

(2.11)

which can be used to calculate P(I(Tt) + C(Tt) = 0) if q(x) 6= q(y) for every

pair of states x 6= y in every possible path between discoveries. If this is not

the case, the result can still be found by separating any equal rates by a factor

ε > 0 and then taking the limit ε→ 0.

2.7.1 Effects of parameter changes

The probability that the epidemic is over at time Tt against t is given in figure

2.8. Interestingly there is very little variability for different values of R∗, which

is probably due to the small population size. As with the other path evaluation

methods, calculating this figure was computationally very time consuming -

taking over four hours for a population of size seven. Also, due to the massive

increase in the number of paths, when n is increased by one the computation

time increases by about a factor of ten. This leads us to look for an analogous

result for the branching process approximation to this epidemic model.
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Figure 2.8: P(I(Tt)+C(Tt) = 0) against t for (n, i, c) = (6, 1, 0), γ = 1, µ = 1/2
and (β1,1, β1,2, β2,1, β2,2) = λ

n
(0.6, 0.4, 0.2, 0.3).

2.7.2 Branching process approximation

For the epidemic model, the method used to find P(I(Tt)+C(Tt) = 0) cannot be

extended in full generality to the branching process approximation. It relies on

finding every possible path the process can take between two discovery events,

and there are infinitely many such paths for a branching process. Progress is

possible for the special case of the branching process model in which there is a

single type of infective that is observed upon removal with probability one.

Since the infectious periods have an exponential distribution, the branching

process approximation to the epidemic model is a linear birth-death process.

Let I(t) represent the number of individuals in the process so that births occur

at a rate βI(t) and deaths occur at a rate γI(t). After their ‘death’ individuals
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2.7 Stopping time problem

enter a removed category called the discovered category, represented by the

process {D(t) : t ≥ 0}. As before define

Tt = inf{u ≥ t : D(u) = D(u− t)}

and we seek the probability that the process is extinct at this stopping time,

P(I(Tt) = 0). Embedded within this continuous time birth-death process is a

discrete time Markov chain. Let X0 = I(0) and for n ∈ N define Xn to be the

number of infectives just after the nth discovery event. This embedded process

satisfies the relation

Xn+1 ∼

{

Xn − 1 + Y Xn > 0,

0 Xn = 0,
(2.12)

where P(Y = k) = βγk

(β+γ)k+1 for k = 0, 1, . . ..

This follows from the fact that the probability of having a birth before a death

is equal to

βI(t)

βI(t) + γI(t)
=

β

β + γ

which is independent of I(t), and therefore the number of births before a death

(assuming Xn > 0) has the geometric distribution given by Y .

First, we use the embedded process Xn to show that P(Tt <∞) = 1.

P(Tt = ∞) = P(the time between every discovery is less than t)

≤ P(the time until the first event after a discovery is less than t)

= E

[

∞
∏

n=0

(1 − exp{−Xn(β + γ)t})

]

= 0
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2.7 Stopping time problem

since the product is zero if for some n, Xn = 0; and zero if Xn > 0 for all n, as

these are complimentary events.

Therefore, P(Tt < ∞) = 1. It is now clear what we mean by P(I(Tt) = 0),

since the stopping time Tt is almost surely finite.

Let xu = P(I(Tt) = 0|X0 = u) and yu,v = P(Yu,v < t,X1 = v|X0 = u), where

Yu,v is the time taken for X0 = u to become X1 = v. Since the only path from

u to v ending in the first discovery is

{u, u+ 1, . . . , v, v + 1, v},

then

Yu,v =
v
∑

k=u

Wk,

where Wk ∼ Exp(k(β + γ)) and the Wk are independent.

From equation (2.12) we see that

yu,v =

(

β

β + γ

)v−u+1 (
γ

β + γ

)

P(Yu,v < t)

and P(Yu,v < t) is given by equation (2.11).

By analysing the first jump of the process Xn and by invoking the Markov

property we see that

xu =

∞
∑

v=u−1

yu,vxv. (2.13)

In order to solve this equation we truncate the infinite state space to

{0, 1, . . . , N}, where state N is an absorbing state considered to be the birth-

death process tending to infinity. Clearly x0 = P(I(Tt) = 0|I(0) = 0) = 1, but
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since we have also shown that P(Tt < ∞) = 1 it makes sense to assume that

xN = 0. Thus, equation (2.13) becomes

xu =
N
∑

v=u−1

yu,vxv

for u = 1, . . . , N − 1. In order to satisfy the law of total probability, yu,v must

be modified so that

yu,N =

(

β

β + γ

)N−u+1

P(Yu,N < t).

Thus, we have N + 1 linear equations in the N + 1 unknowns x0, . . . , xN which

can be easily solved to give

x = (IN+1 − Y )−1w

where x and w are column vectors; y0,v = yN,v = 0 for v = 0, . . . , N ; IN+1 is

the (N + 1) × (N + 1) identity matrix and

wu =

{

1 u = 0,

0 u > 0.

2.7.3 Effects of parameter changes

Figure 2.9 shows the probability that the birth-death process is extinct at the

stopping time Tt against t. Notice that as t is increased, the curves rapidly

tend to the extinction probability for the birth-death process. When t is small,

the process with R∗ = 0 is the most likely to be extinct at Tt as there can be

no new individuals. However, as t is increased above the expected infectious
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Figure 2.9: P(I(Tt) = 0) against t for I(0) = 1, γ = 1 and N = 50.

period length one, the information given by observing no discoveries for a period

t makes extinction more likely when 0 < R∗ ≤ 1, where there can be some

further infections. This appears to contrast with the epidemic version (figure

2.8), in which the probability the epidemic is over at Tt is decreasing in R∗,

however, when all of the discoveries are observed figure 2.8 also has the property

that increased potential for infections makes extinction more likely at Tt.

Finally notice that the curve for R∗ = 1 does not quite approach its extinction

probability of one. This curve is affected by the truncation of the state space

more than any of the others as it is the most likely to reach state N and yet

still become extinct. Thus, its asymptote gives an indication of how good the

approximation is.
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2.8 Conclusion and extensions

This chapter considers an epidemic model that has two types of infectious in-

dividual: symptomatic infectives that are observed (discovered) upon removal,

and asymptomatic carriers that are never observable. The aim is to find the

probability the epidemic has died out if no discoveries have been observed for

a certain period of time.

Two methods of finding this probability are considered: the path evaluation

method and the matrix exponential method. The path evaluation method

is very flexible and develops an understanding of the model, however it as-

sumes that the eigenvalues of the model are distinct and is computationally

very difficult for populations larger than 12. The matrix exponential method is

faster, but still computationally difficult for populations larger than 25. These

methods are therefore useful for small population epidemics, and subepidemics

within a larger model for instance the independent households model considered

in section 2.6.

This leads us to study the branching process approximation to the epidemic

model, valid for large population sizes. Here the probability the epidemic is

over given a period without discoveries can be found by simulating the branch-

ing process, and numerically solving a pair of differential equations. For the

special case of the branching process model in which infectives and carriers

have the same infectious period distribution and an infectious individual’s type

is independent of the type that infected them, an explicit solution exists.

Finally, a stopping time version of the problem was proposed, in which the epi-

demic was stopped at the first time at which no discoveries have been observed
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for t time units. The probability that the epidemic is over at this stopping

time was found by evaluating all possible paths, and this was computationally

feasible for populations of size 7 and smaller. For the branching process ap-

proximation to this model the number of possible paths is infinite, and so no

progress was made in general. However, for the special case in which there

is a single type of infective which is observed on removal, the probability the

epidemic is over at the stopping time can be found once the state space is

truncated.

Throughout this chapter it is assumed that the infectious period distributions

are exponential. This is usually unrealistic for human diseases, although relax-

ing this assumption makes analysis of the model more difficult. Some progress

may be possible if the infectious periods have a fixed length, particularly for

very small populations. It may also be possible to make progress after relaxing

the assumption that symptomatic individuals are observed at the instant of

removal. Adding exponentially distributed latent periods increases the realism

and the complexity of the model, and therefore reduces the population sizes for

which calculations are feasible.
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Chapter 3

Modelling the effects of a delay

in intervention

3.1 Motivation

The two main aims of epidemic modelling are to develop an understanding of

the large-scale effects caused by interactions and properties of the disease at the

individual level; and to develop and assess strategies for preventing or restricting

the spread of an epidemic. This chapter upholds both of these aims by studying

the time delay between observing the presence of a disease and implementing

measures targeted towards its containment. This delay at the local level has

global ramifications when the effectiveness of the intervention is compromised,

and therefore any intervention strategy seeking to reduce the potency of an

epidemic must attempt to minimise the delay prior to the intervention.

There are many different kinds of intervention that can be applied to epidemics,
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but they fall into three main categories. The first type of intervention aims to

reduce the susceptibility of uninfected individuals, for instance vaccinating or

giving pre-emptive antiviral prophylaxis to individuals at risk of infection. The

second type seeks to reduce the infectiousness of individuals who have already

contracted the disease, for example antibiotic or antiviral treatments. The

third type of intervention attempts to minimise the contact between infectious

and susceptible individuals, for instance by isolating infectious individuals at

home or in hospitals, or by more drastic measures including closing schools or

cancelling public gatherings like football matches.

The first two types of intervention suffer from a delay between observing the

presence of infection and the effectiveness of the intervention caused by the time

taken to distribute the vaccine or organise treatment. There may be a period

after the vaccine or treatment have been administered before they become fully

effective. The first type of intervention may be delayed by the time taken to

identify and to trace the individuals that may have come into contact with

the infected individual. The third type of intervention will also be difficult to

apply instantly. For all three types of intervention it will take time to ascertain

which individuals are infectious. They may be a wait for lab tests or cultures

to determine whether a patient showing symptoms has the disease. In many

diseases (particular influenza-like illnesses) an individual will become infectious

before the onset of symptoms and therefore will not be observed until well into

(or after) their infectious period. Finally, a delay can be caused by patients not

reporting symptoms straight away.

There is some variation between papers concerning the amount of time between

an individual’s infectious period and the time at which an intervention is ap-
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plied. Not all papers explicitly include delay and very few incorporate a delay

of random length. Müller et al. (2000) consider a branching process model with

contact tracing, in which the whole population is periodically screened. This

model has no delay between the time at which an individual is identified as

infectious and the end of not only their own infectious period but also the end

of the infectious periods of all of their successfully identified contacts. If this

model included a delay before the intervention is applied to the index case or

their contacts then fewer cases would be identified during their infectious period

and therefore the epidemic would be more severe. Ball et al. (2007) implement

a vaccination and isolation based intervention at the end of the infectious pe-

riod of the first individual to be diagnosed, and therefore no delay is included

in the model. Becker et al. (2005) study a stochastic epidemic model with

constant latent and infectious periods. Individuals are diagnosed a constant

time after their infection, at which point various interventions are considered.

The time before diagnosis can be thought of as including the time necessary

for the intervention to become effective, and therefore this model can include

a delay before intervention. Kaplan et al. (2002) use a deterministic epidemic

model to assess the effectiveness of a contact tracing based control measure

in response to a bioterrorist smallpox attack. Although their model does not

explicitly feature a delay between identifying an infectious individual and the

end of their infectious period, newly identified contacts are put into a queue for

vaccination and therefore this model incorporates a delay before the vaccine is

applied. Varying the length of this delay is not explored.

Longini et al. (2004) use a discrete time stochastic model with a fixed delay

before the intervention to model the effectiveness of antiviral prophylaxis at
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containing a new influenza strain. They find that increasing the delay before

the intervention rapidly reduces its effectiveness. When the delay is more than

3 days (when the incubation period has mean 1.9 days) the intervention is no

longer sufficient to contain the outbreak.

Eubank et al. (2004) simulate an epidemic on a dynamic bipartite graph de-

signed to capture the contact structure of a population realistically. They

include a delay before intervention and allow infected individuals to withdraw

to the home. They find that the time taken for infected individuals to withdraw

to the home and the delay before intervention have a much greater effect on

the outcome of the epidemic than the vaccination strategy. This highlights how

important these delay parameters are on the model, and therefore they should

be chosen with care.

The principal focus of this chapter is to calculate the threshold parameter for

a continuous time epidemic model that includes a delay between diagnosis and

intervention. Two probability distributions for the length of this delay are con-

sidered: the exponential distribution and the constant distribution. In section

3.3, methods are derived to find the threshold parameter for a model with ex-

ponentially distributed delays, but no latent period. Exponentially distributed

latent periods are then added to this model and the threshold parameter recal-

culated in section 3.4. The next two sections, section 3.5 and section 3.6 explore

the model with constant delay length, first without and then with exponentially

distributed latent periods. In sections 3.7 and 3.8, a branching process version

of the model is considered, firstly with exponentially distributed delays and

then with constant delays. The penultimate section draws a comparison be-

tween the two delay period distributions. Finally section 3.10 of this chapter
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outlines a method to find the threshold parameter for discrete time epidemic

models that feature an intervention.
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3.2 Definition of the Model

Consider a fixed population of N individuals divided into equal sized house-

holds. At any point in time, each individual can be in one of five categories:

susceptible, latent, infective, removed or response. Any two individuals in the

population come into contact at times given by the points of a homogeneous

Poisson process with rate λ/N . Individuals that are in the same household

make additional contacts at the points of a homogeneous Poisson process with

rate β. Any such contact between a susceptible and an infective results in the

immediate infection of the susceptible, who enters the latent category. Upon en-

tering the latent category, an individual is allocated a latent period distributed

according to the random variable TE. During this period the individual has

contracted the disease but is unable to infect other individuals. At the end

of their latent period, an individual automatically enters the infective cate-

gory. Infectives are able to infect susceptibles during their infectious period,

which is distributed according to the random variable TI . Once their infectious

period is over, individuals enter the removed category where they remain for

their removed period, which is distributed according to the random variable

TR. Finally, at the end of their removed periods, individuals enter the response

category, in which they subsequently remain.

Denote the number of susceptible, latent, infective, removed and response indi-

viduals in a household at time t by the random variables S(t), E(t), I(t), R(t)

and V (t) respectively. The random vector X(t) = (S(t), E(t), I(t), R(t)) fully

represents the state of a household at time t since the household sizes are fixed,

and therefore V (t) can be deduced from X(t). If the household initially satis-

fies S(0) = n, I(0) = i and E(0) = R(0) = V (0) = 0 then the state space of the
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3.2 Definition of the Model

epidemic, denoted by Ω, is the set given by vectors of the form (a, b, c, d) ∈ N
4

where

0 ≤ a ≤ n,

0 ≤ b ≤ n− a,

0 ≤ c ≤ n + i− a− b,

0 ≤ d ≤ n + i− a− b− c.

The reproduction number for an epidemic model is a function of the parameters

that gives an indication of the character of the epidemic that is likely to be

produced. The basic reproduction number is defined as the expected number

of individuals infected by a ‘typical’ infectious individual during the early stages

of the epidemic, and therefore if the reproduction number is smaller than one

the epidemic will die out, larger than one and a large epidemic becomes more

likely.

For this households model the reproduction number is denoted by R∗, and is

derived by considering a single household containing one infective together with

a large number of entirely susceptible households. The infectious individual in-

stigates a subepidemic within their own household and this epidemic will go

on to cause further infections in other households. The parameter R∗ is the

expected number of these infections in other households. Since the number

of households is assumed large, the possibility of infecting more than one in-

dividual in a household is ignored. Also, the probability of a global contact

occurring between two individuals within the initial household is assumed to

be zero. Therefore R∗ is the rate at which global contacts are made (λ) multi-

plied by the expected sum of all the infectious periods created within the initial

household. This sum is called the severity generated by a household and is
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equal to
∫∞

0
I(u) du. Thus, if the households are all of size n+ 1,

R∗ = λE

[
∫ ∞

0

I(u) du
∣

∣

∣
X(0) = (n, 0, 1, 0)

]

.

A strong motivation to study epidemic models is to assess and compare the

effectiveness of proposed control measures. In order to incorporate an interven-

tion into the epidemic model, define the stopping time

Tv = inf{t ≥ 0 : V (t) = v}

where v ∈ N is called the intervention trigger. When the number of individuals

in the response category reaches the intervention trigger it is assumed that the

household is no longer able to make global contacts. This implies that after time

Tv, any remaining infectious periods do not contribute to the global epidemic,

and so R∗ is reduced. Define A(t) =
∫ t

0
I(u) du to be the severity up to time t

generated by a household and call A(Tv) the household’s effective severity. The

basic reproduction number R∗ is therefore reduced to λE[A(Tv)]. Since λ is a

parameter of the model, the aim of this research is to discover the expected

effective severity (and therefore R∗) so define χ = E[A(Tv)].

The intervention time is defined in the manner described above in order to

be most flexible. The removed period may in fact comprise many different

steps (a period before the individual’s symptoms begin, the time needed to

perform tests to identify the strain or the time needed to contact all of the

household and distribute a vaccine) and so the first individual to enter the

removed category need not be the same as the one to trigger the intervention.

Also, the precise form of the intervention applied to the household has not been

84



3.2 Definition of the Model

assumed. For instance, a vaccine may be applied to prevent the susceptibles

in the household from becoming infected, antiviral prophylaxis may be used to

render the household immune and not infectious to the disease or most directly,

the household may be isolated from the community until their infectious periods

have passed. In reality, a combination of these measures could be imposed in

order to prevent the household from making further external infections.

Although the expected severity is vital in determining the reproduction number,

it may also be interpreted as the ‘cost’ of the epidemic as it contains informa-

tion about the number of infections and the duration of the epidemic, and is

therefore interesting in its own right, see Gani and Jerwood (1972).
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3.3 Exponential infectious and removed peri-

ods without latent periods

This section considers the case in which the time spent in the removed category,

TR, has an exponential distribution. Initially it is assumed for simplicity that

the latent period (the time between an individual’s infection and the time at

which they are able to infect other individuals) has zero length. This simplifies

the derivations and allows a better understanding of the ideas involved before

latent periods are added in section 3.4. The state of the epidemic at time t can

now be represented by a vector X(t) = (S(t), I(t), R(t)) = (a, b, c) ∈ N
3 that

satisfies

0 ≤ a ≤ n,

0 ≤ b ≤ n + i− b,

0 ≤ c ≤ n + i− a− b.

3.3.1 Derivation of the expected effective severity

If the infectious period distribution (TI) and the removed period distribution

(TR) are both assumed to be exponential then the model has the Markov prop-

erty, allowing the following method for calculating the expected severity.

Assume that TI ∼ Exp(γ) and TR ∼ Exp(µ) (where Exp(θ) denotes an expo-

nential distribution with mean θ−1) and define

xa,b,c = E

[
∫ Tv

0

I(u) du
∣

∣

∣
X(0) = (a, b, c)

]

to be the expected effective severity of the epidemic, given that the epidemic
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starts in state (a, b, c) ∈ Ω. Since the population size is fixed to be n + i, the

number of individuals in the response category if X(t) = (a, b, c) is n+ i− a−

b− c. A recursive formula for xa,b,c is now derived by conditioning on the time

and then type of the first event.

xa,b,c = E

[∫ Tv

0

I(u) du
∣

∣

∣
X(0) = (a, b, c)

]

= E

[

E

[
∫ Tv

0

I(u) du
∣

∣

∣
first event occurs at T,X(0) = (a, b, c)

]]

= E
[

bT
∣

∣

∣
X(0) = (a, b, c)

]

+ E

[

E

[
∫ Tv

T

I(u) du
∣

∣

∣
T,X(0) = (a, b, c)

]]

=
b

f(a, b, c)
+

βab

f(a, b, c)
xa−1,b+1,c +

γb

f(a, b, c)
xa,b−1,c+1 +

µc

f(a, b, c)
xa,b,c−1

(3.1)

for a, b, c ∈ Ω with f(a, b, c) = βab+ γb+ µc > 0. Since the epidemic ends once

there are no infectives, we have that xa,0,c = 0. A second boundary condition

is produced by noting that no contribution is made to the severity once there

are v individuals in the response category and the intervention is applied. This

gives xa,b,c = 0 for a+b+c ≤ n+i−v. Solving the three-dimensional recurrence

relation (3.1) involves tracing every path from the start state to a boundary.

Since no state can be visited by the epidemic twice and there are finitely many

states, the paths are of finite length and there are finitely many of them. It is

therefore possible to find the expected effective severity χ = xn,i,0 by applying

recurrence relation (3.1) finitely many times.
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Figure 3.1: The expected effective severity χ against µ, with n = 4, i = v = 1
and γ = 1.

3.3.2 Effects of parameter changes

In this section the effects of changing the parameters on the expected effective

severity (χ) are explored in three numerical examples in order to demonstrate

quantitative results for plausible parameter values and to identify more general

qualitative trends that have a practical significance. Although not included

here, other parameter combinations have been explored and do not affect the

general trends described below. Since there is a degree of freedom in the choice

of one parameter, the infectious periods have been normalised to have a mean

length of 1.

Figure 3.1 shows the effect on χ of increasing the response rate µ, the rate at

which removed individuals are transferred into the response category. When µ
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Figure 3.2: The expected effective severity χ against v, with n = 10, i = 1, and
γ = µ = 1.

is zero the intervention cannot occur and so the graph begins at the expected

severity of the epidemic without intervention. Increasing µ raises the proba-

bility that the intervention will occur before the epidemic ends naturally. It

also causes the intervention to occur earlier in the epidemic and therefore χ is

a decreasing function of µ. As µ tends to infinity χ approaches the expected

severity up to the vth removal which is v/γ (Watson, 1980), which is equal

to one here. When no infections can occur (β = 0) the intervention has no

effect on the epidemic and so for this case the severity is equal to the infectious

period of the single initial infective and is therefore independent of µ. The

most important thing to note about figure 3.1 is that χ drops very rapidly as

µ is increased from zero. This implies that if the response rate is too small,

the intervention will have very little effect. It also clearly demonstrates that

89



3.3 Exponential infectious and removed periods without latent periods

0 1 2 3 4 5

0
1

2
3

4

µ−1

χ

n = 1
n = 2
n = 3
n = 4
n = 5

Figure 3.3: The expected effective severity χ against µ−1, with i = v = 1 and
β = γ = 1.

any delay in the intervention is detrimental to its effectiveness. It is also worth

noting that the graphs for β = 1 and β = 5 are quite close to β = ∞, and

so the degree of infectiousness of a disease does not have a large effect on χ

here. This is very useful in practice as for an emerging disease the value of β

will be unknown and difficult to estimate, and so the case in which β is infinite

provides a useful upper bound on χ.

Figure 3.2, shows the effect of increasing the intervention trigger v on a large

household of 11 individuals. Such a large household was chosen to allow a

greater number of values of v to be explored. Obviously χ increases as v is

increased, but for larger values, the increase is smaller. This is because a small

value of v is likely to prevent the epidemic from getting off the ground whereas
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a larger v merely truncates a developed epidemic. Also, changing the value of

β has slightly more effect on the expected severity if v is larger, because longer

outbreaks can occur if the intervention trigger is higher.

Finally, figure 3.3 demonstrates the effect on χ of increasing the household

size, whilst keeping the intervention trigger constant at v = 1. The curves are

plotted as functions of the expected removed period µ−1. For larger values of n

there are more individuals in the epidemic, and so more infectious individuals

can be created before the intervention is applied. Thus, χ is strictly increasing

in n. At first glance it appears that doubling the number of initial susceptibles

doubles the height of χ above 1. However, a more careful study reveals that

doubling the number of initial susceptibles more than doubles the height of

the expected effective severity above 1. This stems from the potential of the

new initial susceptibles to go on to infect the original susceptibles that would

otherwise have avoided infection.
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3.4 Exponential latent, infectious and removed

periods

In section 3.3.1, the expected severity until the vth entry into the response

category was found by using the Markov property to derive a recurrence rela-

tion. If the latent period distributions are not exponential, this method will

no longer work. Conversely, the method continues to work if the latent periods

are exponentially distributed, as the Markov property is preserved.

3.4.1 Derivation of the expected effective severity

Assume that the latent periods are exponentially distributed with mean length

κ−1. Closely following section 3.3.1, define for (a, b, c, d) ∈ Ω,

xa,b,c,d = E

[
∫ Tv

0

I(u) du
∣

∣

∣
X(0) = (a, b, c, d)

]

.

Since the initial state is now X(0) = (n, 0, i, 0), the number of individuals in

the response category if X(t) = (a, b, c, d) is n + i − a − b − c − d. Using the

same argument as in 3.3.1 we derive that

xa,b,c,d =
c

f(a, b, c, d)
+

βac

f(a, b, c, d)
xa−1,b+1,c,d +

κb

f(a, b, c, d)
xa,b−1,c+1,d

+
γc

f(a, b, c, d)
xa,b,c−1,d+1 +

µd

f(a, b, c, d)
xa,b,c,d−1 (3.2)

for a, b, c, d ∈ Ω with

f(a, b, c, d) = βac+ κb + γc+ µd > 0.
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Figure 3.4: The expected effective severity χ against κ−1 with n = 4, i = v = 1
and γ = µ = 1.

The boundary conditions are xa,0,0,d = 0 for a + d ≤ n + i − v and xa,b,c,d = 0

for a+ b+ c+ d ≤ n+ i− v. Since the state space of the epidemic is finite and

no state can be visited more than once, finitely many applications of equation

(3.2) yield a solution for χ = xn,0,i,0.

3.4.2 Effects of parameter changes

Figure 3.4 demonstrates the effect of increasing the expected latent period κ−1

on the expected effective severity χ generated by an epidemic in a household

of five individuals, one of whom is initially infectious. The intervention is set

to occur when a single individual enters the response category. Clearly longer

latent periods reduce χ, but notice that the graph is not very steep. This
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Figure 3.5: The expected effective severity χ against κ−1 with n = 4, i = v = 1
and γ = β = 1.

is because latent periods do not change the total severity generated by an

epidemic without intervention. Instead they affect the model by spreading the

severity over a longer time period and reducing the amount that occurs before

the intervention. Also notice that χ is fairly robust to changes in the infection

rate β. Although increasing β increases the expected severity, in this instance

much of the extra severity would be generated after the intervention occurs, as

v = 1.

Figure 3.5 is a variation on figure 3.4 with the expected removed period allowed

to range over a set of values and the infection rate β fixed at one. Thus the curve

for β = µ−1 = 1 appears on both figures. This figure demonstrates the influence

of the expected removed period on the expected effective severity χ when there
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are latent periods. The expected latent period has a much smaller effect than

the expected removed period because short removed periods can curtail a larger

epidemic. Also notice that the latent period distribution has no effect on the

expected severity when the removed periods are almost surely zero or infinite.

Obviously infinite removed periods mean that the intervention cannot occur

and so the latent periods don’t affect the expected severity. However when the

removed periods are almost surely zero, the intervention occurs at the time of

the vth removal. The random time transform of Watson (1980) demonstrates

that the expected severity until the vth removal is unchanged by the distribution

of the latent periods, and this is verified by the graph.
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3.5 Constant removed periods with exponen-

tial infectious periods and no latent period

When the period of time spent in the removed category has a constant length,

the time between a case being observed and the intervention being applied to

their household has a constant length. This kind of delay may occur if the

patient is tested to confirm whether or not they have the disease in question or

some other infection before the vaccine is applied. Measures like this may be

introduced if there is a cost associated with vaccination (for instance a financial

cost, a shortage of the vaccine or a risk of side-effects) and the number of

vaccinations is required to be kept as small as possible. As with the exponential

removed period, the methods used to find the expected effective severity χ are

first described for the case without latent periods for simplicity.

Recall that,

Tv = inf{t ≥ 0 : V (t) = v}

and define

Uv = inf{t ≥ 0 : R(t) + V (t) = v}.

Notice that Uv is the time of the vth removal (as opposed to the vth individual

to enter the response category) and so Uv is always less than Tv.

Under the assumption that the removed period is a constant of fixed length

TR ≡ L, then Tv = Uv + L. Thus,

E

[
∫ Tv

0

I(u) du

]

= E

[
∫ Uv

0

I(u) du

]

+ E

[
∫ Uv+L

Uv

I(u) du

]
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= E

[
∫ Uv

0

I(u) du

]

+

n+i−v
∑

k=0

E

[
∫ Uv+L

Uv

I(u) du
∣

∣

∣
I(Uv) = k

]

P(I(Uv) = k)

= E[A(Uv)] +

n+i−v
∑

k=0

E[A(L)|I(0) = k]P(I(Uv) = k).

Notice that since v individuals have been removed at time Uv, the information

I(Uv) = k implies that S(Uv) = n+ i−k−v. In order to calculate the expected

effective severity, we therefore need to evaluate (i) the expected severity up to

the vth removal, E[A(Uv)]; (ii) the distribution of the number of infectives just

after the vth removal, P(I(Uv) = k); and (iii) the expected severity up to time

L, E[A(L)|I(0) = k].

3.5.1 The expected severity up to the vth removal

There are two methods of finding the expected severity up to the vth removal.

The first method uses a random time scale transform to find the expected

severity conditional on the final size of the epidemic. The second method

produces a recurrence relation that can be solved to find the expected severity.

The random time scale method

Watson (1980) introduces a useful random time-scale transformation that can

be used to find the expected severity up to the vth removal of the Markov SIR

epidemic model. Recall that

A(t) =

∫ t

0

I(u) du
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is the severity generated by the epidemic until time t. This function is increasing

until the number of infectious individuals reaches zero - call this (stopping) time

Z, so that

Z = inf{t ≥ 0 : I(t) = 0}.

For t ≥ Z, A(t) = A(Z).

Form a new process {X ′(u) : 0 ≤ u ≤ A(Z)} from {X(t) : t ≥ 0} by running

the clock k times slower in the new process, where k represents the number

of infectives in the current state of the epidemic. For example, if the process

{X(t) : t ≥ 0} remains in the initial state (n, i, 0) for 2 time units, the new

process {X ′(u) : 0 ≤ u ≤ A(Z)} remains in the initial state for 2i time units.

Thus, the ‘time’ until a particular event in the new process corresponds to

the severity that the epidemic generates until the same event occurs in the

original process. So if an event occurs at time T in the original process, its

corresponding event in the transformed process will occur at time T ′ = A(T ).

This continues until the number of infectives in the epidemic reaches zero.

Thus, for 0 ≤ t ≤ Z,

X ′(A(t)) = X(t).

From this construction it is clear that when the process {X ′(u) : 0 ≤ u ≤ A(Z)}

is in state (x, y, z); infections occur at a rate βx and removals occur at a rate

γ. Thus, the removals occur at the points of a homogeneous Poisson process

with rate γ until the final removal at time Z ′ = A(Z). This implies that the

severity generated between removals has an exponential distribution with mean

γ−1, and so if v removals occur the expected severity up to the vth removal has
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a gamma distribution with mean v/γ, c.f. Ball et al. (2007). Therefore,

E[A(Uv)|v removals occur] =
v

γ
.

If v is larger than i then v removals are not certain to occur as the epidemic may

die out having infected insufficiently many individuals. In this case Uv = ∞

and so U ′
v = Z ′ = A(Z).

Summing over the final size distribution of the epidemic can be used to remove

the condition that v removals are certain to occur, since if the final number of

initially susceptible individuals infected is k, then k+ i removals are certain to

occur.

E

[
∫ Uv

0

I(u) du

]

=
n
∑

k=0

min{k + i, v}

γ
P(Final Size = k).

Notice that if i ≥ v this simplifies to

E

[
∫ Uv

0

I(u) du

]

=
v

γ

because v removals are certain to occur.

The recurrence relation method

Instead of calculating the final size distribution, in practice it is often easier to

use the second method of finding the expected severity until the vth removal.

This method adapts the recurrence relation approach used in section 3.3. Since

all that is required is the expected severity until the vth removal, it is sufficient

to keep track of only the first two categories of the epidemic: the susceptibles
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and the infectives. Defining

xa,b = E

[
∫ Uv

0

I(u) du

]

,

then

xa,b =
1

βa+ γ
+

βa

βa+ γ
xa−1,b+1 +

γ

βa+ γ
xa,b−1

for a, b ∈ N and with the boundary conditions

xa,0 = 0 for a ∈ {0, 1, . . . , n},

xa,b = 0 for a+ b < n+ i− v.

The first two categories of the epidemic form a continuous time Markov process

with a finite state space in which no state can be returned to once it has been

visited and therefore a finite number of applications of this recurrence relation

and its boundary conditions yield a solution for xn,i.

3.5.2 The distribution of the number of infectives after

the vth removal

Once an individual has entered the removed category or the response category

they can no longer affect the susceptible or infective processes and therefore

contribute to the model only through the intervention time. Thus, in order to

find the distribution of the number of infectives just after the vth removal, it is

sufficient to keep track of the numbers of susceptible and infective individuals.

Since this pair is a Markov process, the times between events can be ignored

and the embedded discrete time process used to find the required distribution.
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The state of this process after the vth removal is characterised by the number

of infectives, because if the number of infectives is known to be k then the

number of susceptibles must be n + i− v − k. If the number of susceptibles is

larger than n (or less than 0) then obviously the probability of arriving in this

state is zero. Thus, we require

P(I(Uv) = k) = pk

for max{0, i− v} ≤ k ≤ n+ i− v. There are two methods of calculating the pk

with different computational advantages and disadvantages, discussed later.

The matrix method

The distribution of the number of infectives just after the vth removal can be

found by utilising matrices. Consider the embedded two dimensional discrete

time Markov chain given by the states visited by the process

{Y (t) : t ≥ 0} = {(S(t), I(t)) : t ≥ 0}.

The state space of this process (until v removals occur) is given by the set

{(a, b) : 0 ≤ a ≤ n, i + n − a − v ≤ b ≤ i + n − a}. Define a matrix C by

setting cx,y to be the probability that the embedded Markov chain goes to state

y along a path containing only infections, except for the last jump which is a

removal, given that the epidemic begins in state x. Obviously, many pairs of

states cannot be connected by such a path, so the matrix will contain many

zeros. In fact, from the state (S(0), I(0)) = (a, b) (b > 0) the epidemic can
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reach precisely a + 1 states, so for k = 0, . . . , a,

c(a,b),(a−k,b+k−1) =
γ

β(a− k) + γ

k−1
∏

l=0

β(a− l)

β(a− l) + γ

gives all the non-zero entries in the row corresponding to state (a, b).

If the epidemic process has an initial distribution given by the row vector α,

then αC gives the distribution of the epidemic after the first removal, from

the definition of C. Iterating this argument implies that the distribution of

the epidemic after the vth removal is given by αCv. Thus, by pooling the

states that have the same number of infectives, the distribution of the number

of infectives after the vth removal is obtained.

The path evaluation method

A second method of calculating pk, for k = max{0, i − v}, . . . , n + i − v is

produced by evaluating every possible path through the state space that the

epidemic process can take. If a path has k infectives after the vth removal,

add the probability of observing the path to pk. However, if the path does not

contain v removals (the epidemic dies out first) then the path can be ignored.

Figure 3.6 displays the structure of such an algorithm written in C. In this

algorithm, the probability of observing a path without v removals (q) is also

generated as a check, since

1 − q =

n+i−v
∑

k=0

pk.

The algorithm is recursive (it calls itself) and terminates with the array p (of
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void calculatePaths(int a, int b, int removals, long double prob) {

if (removals==v) {

p[b]+=prob;

} else if (b==0) {

q+=prob;

} else {

//Calculate the path created by an infection.

if (a>0) {

calculatePaths(a-1,b+1,removals,prob*beta*a/(beta*a+gamma));

}

//Calculate the path created by a removal.

calculatePaths(a,b-1,removals+1,prob*gamma/(beta*a+gamma));

}

}

Figure 3.6: A simple recursive algorithm to calculate the pk from the call
calculatePaths(n,i,0,1).

length n+ i− v + 1) filled with the pk (k = 0, . . . n + i− v).

A comparison of the methods

Both the path evaluation method and the matrix method are useful in different

situations. If v is small (one or two for example), then even for quite large

populations the number of possible paths remains relatively small and the path

evaluation method is very fast. However, for larger values of v the number of

paths rapidly increases as the population size increases and so the path evalua-

tion method takes much longer to compute. The matrix evaluation method can

be used for any value of v provided that the number of states in the epidemic

is not too large. If the population size is 60 (with one initial infective), then

there are 1890 states and more than 3.5 million matrix entries. However, since

most of them are zero, this calculation can be performed in a few minutes. The

number of states (represented by (S(t), I(t))) is equal to n(n+2i+3)/2 and so

the number of matrix entries is given by the square of this number. It therefore

seems reasonable to assume that the computation time increases approximately
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according to a quartic in n. However, for very large state spaces, the amount

of computer memory needed to store the non-zero matrix entries becomes too

large, and the computation becomes less feasible.

3.5.3 The expected severity up to time L

All that remains is to calculate the expected severity from Uv to Tv = Uv + L

conditional on the number of infectives just after the vth removal. Since the

number of infectives after the vth removal implies the number of susceptibles

(and therefore the state of the SIR epidemic), this problem is equivalent to

finding the expected severity generated by an SIR epidemic until time L. There

are two methods of calculating the expected severity up to time L, a path

evaluation method and a matrix method.

The path evaluation method

Ball and Clancy (1995) find the generating function for expected severity for

Downton’s carrier-borne epidemic model using the method of Kryscio (1975).

Downton’s carrier-borne epidemic model reduces to the Markov SIR epidemic

model if no individuals are directly removed from the epidemic. Alternatively,

the asymptomatic carriage epidemic model studied in chapter 2 reduces to the

Markov SIR epidemic model when there are no carriers. From either of these

sources it is possible to derive the function hn,i(x, y, θ, t) defined and given

below. Let n, i ∈ N ∪ {0} then the state space of the SIR epidemic with n
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initial susceptibles and i initial infectives is

Ωn,i = {(x, y) ∈ Z
2 : 0 ≤ x ≤ n, 0 ≤ y ≤ n + i− x}.

For (x, y) ∈ Ωn,i and θ, t ≥ 0,

hn,i(x, y, θ, t) = E

[

exp

(

−θ

∫ t

0

I(u) du

) �
{(S(t),I(t))=(x,y)}

∣

∣

∣
(S(0), I(0)) = (n, i)

]

=
∑

(u,w)∈E

C1(u, w|n, i)C2(u, w|x, y) exp(−t(βuw + (γ + θ)w))

where

C1(u, w|n, i) =
∑

d∈D1

L1−1
∏

k=0

ak

bk + θsk,2 − bL1 − θsL1,2

,

C2(u, w|x, y) =
∑

d∈D2

L2−1
∏

k=0

ak

bk+1 + θsk+1,2 − b0 − θs0,2

and E ⊆ Ωn,i is the set of states (u, w) that it is possible to pass through on

a path from (n, i) to (x, y). The set D1 contains all possible paths from (n, i)

to (u, w) (they have length L1 = 2(n− u) + i− w) and the set D2 contains all

possible paths from (u, w) to (x, y) (they have length L2 = 2(u− x) + w − y).

The state (sk,1, sk,2) ∈ E denotes the state of the epidemic (S(t), I(t)) after

0 ≤ k ≤ l steps along the path d with length l. Finally,

ak =

{

βsk,1sk,2 if sk+1,2 = sk,2 + 1

γsk,2 if sk+1,2 = sk,2 − 1

bk = βsk,1sk,2 + γsk,2.
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In order to find the required expected severity between time t = 0 and time

t = L note that

E

[
∫ L

0

I(u) du
∣

∣

∣
(S(0), I(0)) = (n, i)

]

= −

n
∑

x=0

n−x
∑

y=0

[

d

dθ
hn,i(x, y, θ, L)

]

θ=0

. (3.3)

Calculation of the derivative in equation (3.3) is straightforward and we obtain

d

dθ
hn,i(x, y, θ, t) =

∑

(u,w)∈E

exp(−t(βuw + (γ + θ)w))
[

C ′
1(u, w|n, i)C2(u, w|x, y)

+C1(u, w|n, i)C
′
2(u, w|x, y)− twC1(u, w|n, i)C2(u, w|x, y)

]

where

C ′
1(u, w|n, i) =

∑

d∈D1

(

L1−1
∏

k=0

ak

bk + θsk,2 − bL1 − θsL1,2

)

×

(

L1−1
∑

j=0

sj,2 − sL1,2

bj + θsj,2 − bL1 − θsL1,2

)

,

C ′
2(u, w|x, y) =

∑

d∈D2

(

L2−1
∏

k=0

ak

bk+1 + θsk+1,2 − b0 − θs0,2

)

×

(

L2−1
∑

j=0

sj+1,2 − s0,2

bj+1 + θsj+1,2 − b0 − θs0,2

)

.

However, numerical evaluation of equation (3.3) is complicated by the large

number of terms that need to be added together - particularly problematic for

small values of L where the rounding errors may dominate.
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The matrix method

A second method of obtaining the expected severity between the vth removal

and the intervention is possible using the generator matrix. Let X(t) represent

the state of a continuous time Markov process at time t, let F(t) represent the

σ-field generated by the process up to time t, let Q be the generator matrix of

the process (with (i, j)th entry qi,j), let s be a function from the state space Ω

to R and for i, j ∈ Ω define

ri,j(θ, t) = E
[

e−θ
R t

0
s(X(u)) du �

{X(t)=j}

∣

∣

∣
X(0) = i

]

.

For ∆t > 0,

ri,j(θ, t + ∆t)

= E
[

E
[

e−θ
R t
0 s(X(u)) due−θ

R t+∆t
t

s(X(u)) du �
{X(t+∆t)=j}

∣

∣

∣
F(t)

] ∣

∣

∣
X(0) = i

]

.

Next, recall that as x→ 0, exp(x) = 1+x+o(x) and
∫ t+x

t
f(u)du = f(t)x+o(x)

(for measurable f). Thus,

ri,j(θ, t+ ∆t)

= E
[

e−θ
R t

0
s(X(u)) duE

[

(1 − θ∆ts(X(t)) + o(∆t)) �
{X(t+∆t)=j}

∣

∣

∣
F(t)

] ∣

∣

∣
X(0) = i

]

.

Now,

E
[ �

{X(t+∆t)=j}

∣

∣

∣
F(t)

]

=
∑

k 6=j

�
{X(t)=k}∆tqk,j + �

{X(t)=j}(1 + ∆tqj,j) + o(∆t)

=
∑

k

�
{X(t)=k}(∆tqk,j + δk,j) + o(∆t)
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so

ri,j(θ, t + ∆t)

=
∑

k

E
[

e−θ
R t

0
s(X(u)) du(∆tqk,j + δk,j(1 − θ∆ts(X(t)))) � {X(t)=k}

∣

∣

∣
X(0) = i

]

+o(∆t)

= (1 − θ∆ts(j))ri,j(θ, t) +
∑

k

∆tqk,jri,k(θ, t) + o(∆t),

which implies that

dri,j(θ, t)

dt
=

∑

k

ri,k(θ, t)qk,j − θs(j)ri,j(θ, t). (3.4)

Define

ai,j(θ) =

{

qi,j i 6= j

qj,j − θs(j) i = j

and

A(θ) = [ai,j(θ)]i,j and R(θ, t) = [ri,j(θ, t)]i,j.

Using this notation, equation (3.4) becomes

∂R(θ, t)

∂t
= R(θ, t)A(θ)

which has unique solution

R(θ, t) = exp(A(θ)t).
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This result for Markov reward processes with a finite state space is also proved

in Ball et al. (1994). Differentiating this with respect to θ (see Appendix 2 of

Ball and Sansom, 1989) yields

∂R(θ, t)

∂θ
=

∫ t

0

e(t−u)A(θ) ∂A(θ)

∂θ
euA(θ) du.

Next, substituting θ = 0 gives

∂R(θ, t)

∂θ

∣

∣

∣

∣

θ=0

=

∫ t

0

e(t−u)QDeuQ du.

where D is a diagonal matrix with dj,j = s(j). This integral can be evaluated

numerically.

Returning to the context of epidemics, let α(x, y) represent the row vector

of zeros with a single one in the row corresponding to the state (x, y); let 1

be a column vector of ones (with length equal to the size of the state space,

(n + 1)(n+ 2i+ 2)/2) and let D be a diagonal matrix with d(x,y),(x,y) = y (the

number of infectives in the state), then,

E

[
∫ L

0

I(u) du
∣

∣

∣
S(0) = n, I(0) = i

]

=

∫ L

0

α(n, i)e(L−u)QDeuQ1 du.

A comparison of the methods

The path evaluation method for finding the expected severity of a Markov SIR

epidemic up to time L (the first one described above) is very fast for small values

of v as the number of possible paths remains small. However, as the number of

paths gets larger, the number of terms to be added together becomes enormous
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and so the number of rounding errors is very high. This can make the results

produced inaccurate and unrealistic (decreasing in L for example), particularly

for small values of L when the errors dominate. This suggests that the matrix

method is more useful for v > 2, despite the need to use numerical methods

to calculate the matrix exponentials and the integral. However, when the size

of the state space is large, taking the exponential of the generator matrix may

take a long time and large amounts of computer memory.

It is possible to transform the result for the matrix method into the result for

the path evaluation method using the spectral representation of the matrix Q,

see for example Wedderburn (1934). For example, from section 3.3.1 of Ball et

al. (1994), we see that if the n×n matrix Q has n distinct eigenvalues λ1, . . . , λn

then there exist n matrices E1, . . . , En such that

1. Q =
n
∑

i=1

λiEi,

2. EiEj =

{

Ei i = j,

0 i 6= j,

3.
n
∑

i=1

Ei = In.

Thus, etQ =
n
∑

i=1

etλiEi and so

∫ t

0

e(t−u)QDeuQdu =

n
∑

i=1

n
∑

j=1

EiDEj

∫ t

0

e(t−u)λi+uλj du

=
n
∑

i=1

n
∑

j=1

Fi,j(t)

where

Fi,j(t) =







tetλiEiDEi i = j,

e
(λj−λi)t

λj−λi
EiDEj i 6= j.
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The terms of this matrix are a finite sum of terms proportional to ect and tect

and therefore so is the expected severity found using the matrix method. The

expected severity between 0 and L found using the path evaluation method is

also a finite sum of terms with these two forms. Since these two methods must

agree for every value of t, both the coefficients and the exponents in each term

of the sums must agree. This demonstrates that although the methods appear

to be very different, they do relate to one another, and identifies exactly how.

It also suggests that the matrix method is slightly more general than the path

evaluation method, as it does not require the assumption that the eigenvalues

are all distinct.

3.5.4 Effects of parameter changes

The following figures were calculated using the recurrence relation method to

find the expected severity until the vth removal (for simplicity) and the matrix

methods for the other two parts, for flexibility and so that the value of v could

be increased above two. Some calculations were repeated using the alternative

methods to ensure that the results agreed.

Figure 3.7 displays the effect of increasing L, the constant time spent as a

removed individual, on the expected effective severity χ. Increasing L strongly

increases χ initially, but once L is above two or three, the intervention begins

to have little effect, and so χ tends to the expected severity for the household

without intervention. As β is increased χ strictly increases, however increasing

β from one to infinity has remarkably little effect on χ. The similarity between

five and infinity is particularly marked. This is because for these values of

β it is likely that most of the household will be infected, and the times at
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Figure 3.7: The expected effective severity χ against L with n = 4, i = v = 1
and γ = 1.

which they become infected are rendered largely unimportant by the period of

time separating infection and response (TI + TR). During a real epidemic, the

parameter β is unlikely to be known with any certainty and so this property of

χ suggests that the case β = ∞ provides a useful upper bound.

Figure 3.8 shows the effect of increasing the intervention trigger v on the ex-

pected effective severity χ on a large household of ten individuals, one of whom

is initially infectious. As v is increased, χ increases by an almost uniform

amount until (when v is 10) no intervention can occur before the end of the

epidemic. Again, β appears to have only a small effect on χ for the same reasons

as for figure 3.7.

If the removed period L is increased to two (twice the expected infectious
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Figure 3.8: The expected effective severity χ against v with n = 10, i = 1 and
γ = L = 1.

period) in figure 3.8 the graphs become much flatter, but still progress towards

the same final point (at which no intervention occurs). Consequently for small

v, χ is much larger. This is because a longer removed period allows the epidemic

to progress much further and the intervention has little effect. Thus, changing

the intervention trigger v has less effect on χ. Conversely, if the removed

period is reduced to below the expected infectious period the intervention may

be triggered earlier for small v, and so the graphs progress more steeply towards

the same endpoint.

Figure 3.9 shows the effect of altering the number of initial susceptibles in a

household on χ, against the removed period L. Obviously χ increases in n, but

also notice that adding two susceptibles causes more than twice the increase of
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Figure 3.9: The expected effective severity χ against L with i = 1 and
β = γ = 1.

adding one susceptible. This is because not only do the new susceptibles provide

additional severity themselves, but they also add the potential to infect some of

the existing susceptibles that would otherwise have avoided infection. Because

of this, moving the intervention later (by increasing the removed period) has a

larger effect on χ in the larger households, where the epidemic will take longer.

This implies that if the household sizes are small, then an early intervention is

vital if it is to have any substantial effect. In the larger households an earlier

intervention still has a much stronger effect than a later one, however late

interventions may still cause a worthwhile reduction in the expected effective

severity.
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3.6 Constant removed periods with exponen-

tial infectious and latent periods

The methods needed to find the expected effective severity for the constant

removed period case rely upon the Markov property. Specifically, the Markov

property needs to hold for the process {(S(t), E(t), I(t)) : t ≥ 0}. For these

methods to continue to work, it is therefore necessary for the latent periods to

have an exponential distribution.

Section 3.5 decomposes the expected effective severity for the epidemic with

constant removed periods and no latent periods. This decomposition is still

possible after the addition of exponentially distributed latent periods, however,

two of the three components become more complicated. Recall that

Uv = inf{t ≥ 0 : R(t) + V (t) = v}

and

Tv = inf{t ≥ 0 : V (t) = v} = Uv + L

where L is the length of the removed period.

Using these stopping times, the expected effective severity χ can be written as

follows.

χ = E

[
∫ Tv

0

I(u) du

]

= E

[∫ Uv

0

I(u) du

]

+ E

[∫ Uv+L

Uv

I(u) du

]
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= E

[
∫ Uv

0

I(u) du

]

+

n+i−v
∑

k=0

k
∑

l=0

E

[
∫ Uv+L

Uv

I(u) du
∣

∣

∣
(E(Uv), I(Uv)) = (l, k − l)

]

× P((E(Uv), I(Uv)) = (l, k − l))

Since precisely v individuals have been removed at time Uv, the event

{(E(Uv), I(Uv)) = (l, k − l)} implies that S(Uv) = n + i− k − v.

3.6.1 The expected severity up to the vth removal

The random time-scale transform of Watson (1980) can be used to show that

the expected severity until the vth removal is unchanged under the addition of a

latent period. It is therefore sufficient to modify only the last two parts of the

decomposition of the expected effective severity to incorporate exponentially

distributed latent periods.

The argument runs as follows. Recall from section 3.5.1 that events at time

T in the process {X(t) : t ≥ 0} occur at time T ′ = A(T ) in the transformed

process {X ′(u) : 0 ≤ u ≤ Z}, where A(t) =
∫ t

0
I(u) du. However, the la-

tent periods in the process {X(t) : t ≥ 0} do not contribute anything to the

transformed process, and therefore the transformed process is independent of

the distribution of the latent period as long as it is almost surely finite. Thus,

the time between removals in the transformed process remains exponentially

distributed with mean γ−1 and so the expected severity until the vth removal

has a gamma distribution with mean v/γ.
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Since the expected severity until the vth removal is independent of the latent

period distribution, this might suggest that the expected severity until the vth

entry into the response category is also independent of the latent period distri-

bution, however this is not the case. Consider a household of two individuals

called S and I. Assume that S is initially susceptible and I is an infective.

If S is infected and ends their latent period before the removal of I then the

expected severity will not depend upon the distribution of the latent period,

because removals now occur twice as fast but severity is generated at twice the

rate. However, if I is removed before the end of the latent period of S, then the

amount of severity generated by S before I enters the response category clearly

depends upon the latent period distribution. Consequently (if the interven-

tion has any effect) the expected severity until the vth entry into the response

category will be smaller for the model which includes latent periods than for

the model without them. This implies that unlike the expected severity until

the vth removal, the expected severity until the vth entry into the response

category is reduced by the addition of latent periods.

3.6.2 The distribution of the number of infectives after

the vth removal

Of the two methods given in section 3.5.2, the path evaluation algorithm is much

easier to modify to incorporate latent periods. Firstly, it is necessary to keep

track of the extra information of the number of latent individuals, and secondly

the extra type of event (the end of a latent period) must be incorporated.

These two modifications make the algorithm slightly more complex, but for

realistic household sizes (up to six) the run-time of the algorithm remains almost
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Figure 3.10: The expected effective severity χ against κ−1 with n = 4, i = v = 1
and γ = L = 1.

instantaneous. Modifying the matrix method is more difficult, as the entries of

the matrix C (cx,y being the probability of the epidemic passing along a path

from state x to state y, with the only removal occurring as the final step in the

path) are now difficult to compute. This is because without latent periods there

is only one kind of jump that is not a removal, but with them, there are now

two kinds. The cx,y are sums over the order in which these events occur and

therefore what was one term becomes complicated for households containing

more than three or four individuals.
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Figure 3.11: The expected effective severity χ against κ−1 with n = 4, i = v = 1
and γ = β = 1.

3.6.3 The expected severity up to time L

It is possible to modify both of the methods given in section 3.5.3 to find

the expected severity generated by time L from a given starting state. The

matrix method is simple to modify as it is a more general method, whereas the

path evaluation method requires a large number of extra computations to be

performed.

3.6.4 Effects of parameter changes

Figures 3.10 and 3.11 show the reduction in the expected effective severity

χ as the expected latent period κ−1 is increased. On first glance, increasing
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the expected latent period appears to have a stronger effect on χ in this case

than in the exponential removed period case (figures 3.4 and 3.5). However, the

proportional reduction in χ by adding latent periods is approximately the same,

once the contribution of the initial infective (who does not undergo a latent

period) has been ignored. Figure 3.10 also shows that as κ−1 is increased,

the model becomes very robust to changes in β. This is because the other

individuals are unlikely to reach the infective category before the intervention

is triggered by the initial infective when the mean latent period is large. From

figure 3.11 it is clear that the length of the latent period has no effect on χ

when the intervention occurs at the vth removal (L = 0), as described by the

argument in section 3.6.1.
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3.7 Branching process approximation to the

epidemic with exponential infectious and

removed periods

We now consider the branching process approximation to an epidemic. This

can be thought of as modelling an outbreak of infection caused by a finite

number of initial infectives in an infinite, homogeneously mixing population

of susceptible individuals. The branching process approximation is sometimes

referred to as the initial approximation since it approximates the early stages

of an epidemic in a finite (homogeneously mixing) population. This is the main

motivation for studying it, as the approximation is unlikely to break down

before the intervention has been applied. Note that since this model is not

a households model, the intervention is now applied to every member of the

population, representing a community wide intervention in real-life.

Consider a branching process in which an individual lives for a time TI during

which they give birth to new individuals at the points of a Poisson process

with rate β. At the end of their lifetime individuals enter a removed category

for time TR before finally entering the response category. Define I(t) to be

the number of individuals alive (those capable of reproducing) at time t in the

branching process, let R(t) represent the number that are in their removed

periods and let V (t) be the number that have entered the response category.

Let i be the number of initial ancestors, and assume that there are initially

no individuals in the removed or response categories. From these definitions it

is clear that new individuals are born at the points of a Poisson process with

rate βI(t). If TI and TR have exponential distributions with parameters γ and
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µ respectively, then deaths occur at the points of a Poisson process with rate

γI(t) and individuals enter the response category at the points of a Poisson

process with rate µR(t). Let Y (t) = (I(t), R(t), V (t)) represent the state of

the branching process at time t. Call the state space Ω ⊆ (N ∪ {0})3. The

vector (a, b, c) is in Ω if a + b+ c ≥ i and c ≤ v.

As for the epidemic, define A(t) to be the severity of the process up to time t,

A(t) =

∫ t

0

I(u) du

and let

Tv = inf{t ≥ 0 : V (t) = v},

then χ = E[A(Tv)] is the expected effective severity - the expected severity

up to the intervention. Note that since we are not (particularly) interested

in the model with approximately infinite household sizes, finding the threshold

parameter R∗ is no longer our main motivation for finding χ. Instead, we simply

use it as a measure of the cost of the epidemic.

3.7.1 Recurrence relation method

Using the same technique as for the epidemic model (section 3.3.1), it is possible

to derive a recurrence relation for

ya,b,c = E[A(Tv)|Y (0) = (a, b, c)]
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specifically,

ya,b,c =
a

g(a, b, c)
+

βa

g(a, b, c)
ya+1,b,c +

γa

g(a, b, c)
ya−1,b+1,c +

µb

g(a, b, c)
ya,b−1,c+1

(3.5)

for (a, b, c) ∈ Ω with g(a, b, c) = (β + γ)a + µb > 0. The boundary conditions

are y0,b,c = 0 and ya,b,v = 0. In the case of the epidemic model, a solution could

be obtained since the state space was finite and no state could be returned to

once left. Although the latter property still holds, the branching process model

has an infinite state space and so directly solving recurrence relation (3.5) is

no longer possible. An approximate solution can be obtained by assuming that

for a+ b > M ,

ya,b,c ≈ yM−b,b,c.

Thus, the state space is truncated and a finite number of applications of re-

currence relation (3.5) yield a solution. As M increases this approximation

becomes more accurate, although the computation time increases proportion-

ally to the number of states.

3.7.2 Effects of parameter changes

Using the recurrence relation method it is possible to explore the properties of

χ numerically.

Figure 3.12 demonstrates the effect of increasing the response rate µ upon the

expected effective severity generated by a branching process with one initial

ancestor. When µ is zero, the intervention cannot occur and so the graph of χ
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Figure 3.12: The expected effective severity χ against µ with γ = 1 and
i = v = 1 calculated using M = 1000.

begins at its value for a branching process without intervention, which is infinite

if β ≥ 1. Note that when no intervention is considered and β = 1, although the

expected severity is infinite, the severity is infinite with probability zero. As

the response rate increases, the intervention occurs earlier and so χ decreases.

As µ tends to infinity, χ tends to the expected severity until the vth removal

(which is one here). As the infection rate β is increased, χ increases. When

β ≥ 1, the response rate µ becomes vital in determining the size of χ, since

reducing the response rate by a small amount can cause a massive increase in χ.

This highlights the importance of an early intervention to prevent the epidemic

becoming rampant.

Figure 3.13 shows the effect of increasing the intervention trigger v on the ex-
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Figure 3.13: The expected effective severity χ against v with γ = µ = 1 and
i = 5 calculated using M = 500.

pected effective severity, χ, generated by the branching process. The graphs

begin at the points given by µ = 1 in figure 3.12 and then increase as v is

increased. The graphs level off when the probability of having more than v

individuals in the branching process becomes small, and the limit of the graphs

is the expected severity generated by the branching process without interven-

tion. When β = 0, χ reaches its limit once v has risen above 5, since only the

5 initial ancestors can be created. When β ≥ 1 the expected total progeny

of the branching process without intervention is infinite, and so χ continues

to increase indefinitely as v increases. From a modelling point of view, figure

3.13 demonstrates that if the intervention is triggered when two cases have

been observed instead of when one case has been observed, χ is significantly

increased.
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3.7.3 Deterministic approximations

In section 3.7.1 a recurrence relation was derived which could be solved for

χ only by truncating the state space of the branching process. This section

attempts to find bounds and approximations for χ by deriving and solving a

set of differential equations for the mean trajectories of the numbers of each

type of individual. For ∆t > 0,

E[I(t+ ∆t)] = E[E[I(t + ∆t)|I(t)]]

= E[(I(t) + 1)∆tβI(t) + (I(t) − 1)∆tγI(t)

+I(t)(1 − ∆tI(t)(β + γ))] + o(∆t)

= E[I(t)](∆tβ − ∆tγ + 1) + o(∆t)

After rearranging, and letting ∆t→ 0, we obtain

dE[I(t)]

dt
= (β − γ)E[I(t)]

which implies that

E[I(t)] = ie(β−γ)t,

since I(0) = i. A similar approach yields,
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Figure 3.14: The expected severity generated by a branching process up to time
t with i = 1 and γ = 1.

E[R(t)] =











γite−µt

γi(e(β−γ)t−e−µt)
β−γ+µ

β = γ − µ,

β 6= γ − µ.

E[V (t)] =























µγi

β−γ+µ

(

t + e−µt

µ

)

µγi

β−γ
te−µt

µγi

β−γ+µ

(

e(β−γ)t

β−γ
+ e−µt

µ

)

β = γ,

β = γ − µ,

otherwise.

E[A(t)] =











it

i(e(β−γ)t−1)
β−γ

β = γ,

β 6= γ.

Recall that A(t) =
∫ t

0
I(u) du.

Figure 3.14 shows the expected severity until time t generated by a branching

process with one initial ancestor. Notice that when β is less than γ the expected
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severity until time t forms a concave function, however, once the threshold β = γ

has been exceeded the function becomes convex. This follows from whether the

expected number of infectives is increasing or decreasing in nature, which is

clearly dictated by the relative sizes of β and γ.

Having derived the mean trajectories of the branching process, it is possible

to try to use them to calculate approximations to the expected severity up

to the intervention, χ = E[A(Tv)]. An approximation is required because the

expected effective severity does not seem to be analytically tractable. First we

compare some possible times at which the expected trajectory of the severity

can be evaluated, to provide an estimate of χ, for different values of β. Since

the intervention does not always occur, the stopping time Tv can be infinite

with non-zero probability and so its expectation is infinite. Therefore define

the time of the end of the epidemic to be

Wv = inf{t ≥ 0 : V (t) = v or I(t) = 0},

which is almost surely finite. Another way around this problem is to consider

only the realisations in which a useful intervention occurs, i.e. when there are

still infectives at the time of intervention. This leads us to consider the random

variable Tv given I(Tv) > 0. Finally, define t1 to be the unique non-negative

solution to the equation v = E[V (t1)].

Table 3.1 shows possible times at which to evaluate the mean trajectory of

the severity. Notice that for β = 0, E[Tv|I(Tv) > 0] is not defined since for

i = v = 1 it is impossible for the event I(Tv) > 0 to occur. The table suggests
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β = 0 β = 1/2 β = 1 β = 2 β = 5

E[Wv] 1.0005 0.9229 0.8557 0.7500 0.5559

E[Tv|I(Tv) > 0] - 1.4623 1.2387 0.9766 0.6396

t1 ∞ 1.9340 1.4738 1.0792 0.6681

Table 3.1: Comparison of possible times at which to evaluate the mean trajec-
tory of the severity, with γ = 1, µ = 2 and i = v = 1. The expectations were
simulated using one million realisations of the branching process.

that

E[Wv] ≤ E[Tv|I(Tv) > 0] ≤ t1.

The first of these inequalities makes sense, as Wv = Tv when I(Tv) > 0 and Wv

is likely to be smaller if the branching process dies out before the intervention

occurs. The second inequality also makes sense as the function E[V (t)] includes

the case in which the branching process dies out and so E[V (t)] reaches v slower

than it might otherwise.

To simplify the notation in the following, define

f(t) = E[A(t)] =
i(e(β−γ)t − 1)

β − γ
.

Table 3.2 gives the function f evaluated at the times given in table 3.1 together

with simulations and approximations for χ = E[A(Tv)].

Table 3.2 suggests that the true value for χ lies between f(E[Tv|I(Tv) > 0])

and f(t1). Since E[Tv|I(Tv) > 0] has been found using simulations, it does not

provide a useful lower bound for χ, as it is simpler to simulate χ. The upper

bound f(t1) however, appears to be very close to χ and is the solution to an
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β = 0 β = 1/2 β = 1 β = 2 β = 5

f(E[Wv]) 0.6323 0.7393 0.8557 1.1171 2.0598

f(E[Tv|I(Tv) > 0]) - 1.0373 1.2387 1.6553 2.9791

f(t1) 1.0000 1.2395 1.4737 1.9422 3.3686

χ (simulated) 1.0005 1.1733 1.3539 1.7372 3.0143

χ (approximated) 1.0000 1.1719 1.3534 1.7394 3.0181

Table 3.2: Comparison of estimates for χ against simulated values and ap-
proximated values. The simulated values were calculated using one million
realisations of the branching process and the approximated values were calcu-
lated using the state space truncation method described in section 3.7.1 with
M=250. The parameters used are γ = 1, µ = 2 and i = v = 1.

equation and is easy to calculate and therefore useful in practice. By varying

the parameters i and v it is possible to produce variations of table 3.2 that

conform to a trend. If the branching process is much more likely to die out

before the intervention is applied then f(t1) provides a sharp upper bound for

χ. This is because the expected trajectory of the severity (the function f) will

rapidly approach the total severity of a branching process without intervention

and t1 will be large or infinite. This implies that f(t1) and χ will both be close

to the expected severity generated by the subcritical branching process.

The other situation in which f(t1) will have a value close to χ is when extinction

of the branching process is very unlikely. In this case the number of individuals

in the branching process will quickly become large and so V (t) is likely to

follow a path similar to E[V (t)] and A(t) is likely to follow a path similar to

E[A(t)]. The former of these suggests that Tv will be close to t1 in most of

the realisations of the branching process and the latter suggests that f(t1) will

accurately reflect the severity produced in the same realisations.
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The only remaining situation, in which f(t1) is not a very good estimate for χ,

is when the probability of extinction of the branching process is approximately

equal to the probability of intervention. In this case V (t) rises slowly to v

(instead of quickly or not at all) and t1 is unrealistically large. This causes

f(t1) to overestimate χ since f is strictly increasing.

In conclusion f(t1) appears to be a useful upper bound on the expected effective

severity for the branching process model with exponential removed periods,

particularly if the branching process is very likely to die out, or to grow rapidly.

However, the recurrence relation method derived in section 3.7.1 provides a

more accurate approximation for χ.
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3.8 Branching process approximation to the

epidemic with exponential infectious peri-

ods and constant removed periods.

We now change the distribution of the time that individuals spend in the re-

moved category from an exponential distribution to a constant for the branching

process described in section 3.7. Let TR = L and define Tv and Uv to be the

stopping times

Tv = inf{t ≥ L : V (t) = v},

Uv = inf{t ≥ 0 : R(t) + V (t) = v},

so that Uv represents the time of the vth death in the branching process and Tv

represents the time that the vth individual enters the response category. Using

these stopping times it becomes possible to follow the plan of attack used in

section 3.5 and to express the expected effective severity χ in terms of E[A(Uv)],

E
[

∫ Tv

Uv
I(u) du

∣

∣

∣
I(Uv) = k

]

and the distribution of I(Uv). These three quantities

are derived in the next three subsections.

χ = E[A(Tv)]

= E[A(Uv)] + E

[
∫ Tv

Uv

I(u) du

]

= E[A(Uv)] +

∞
∑

k=0

E

[
∫ Tv

Uv

I(u) du
∣

∣

∣
I(Uv) = k

]

P(I(Uv) = k)

Notice that it is not immediately clear what happens when v deaths do not

occur, so that Uv = ∞. Since lim
t→∞

I(t) = 0 almost surely, it makes sense to
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define I(Uv) = 0 in this case. This implies that the expected severity generated

between Uv and Tv is also zero, which makes sense. Therefore given that v

deaths do not occur, χ reduces to E[A(Uv)].

3.8.1 The expected severity up to the vth removal.

Using the random time transform of Watson (1980) for the present branching

process model, we again find that the severity between deaths has an expo-

nential distribution with mean γ−1, up to the death of the last individual (see

section 3.5.1). Assuming that the number of individuals stays above zero, the

probability that a birth occurs before a death from any state of the branching

process is β/(β+ γ). Thus, the probability that the total progeny of branching

process is k (the probability that k individuals are born including the i initial

ancestors), is equal to

(

γ

β + γ

)k (
β

β + γ

)k−i

Ni,k

for i > 0 and k ≥ i. The multiplier Ni,k is an integer representing the number

of possible paths through the state space that the number of infectives can take

from its initial value of i to its final value of 0 with exactly k deaths. Once

the number of infectives has reached 0 there can be no more deaths and so the

path cannot reach zero until its final step. Also, if there are k ≥ i deaths then

there must be k − i births and so the path must contain 2k − i steps in total,

the last one of which is a death. Thus,

Ni,k = |{paths on N from i to 1 in 2k − i− 1 steps}|
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= |{paths on Z from i to 1 in 2k − i− 1 steps}|

−|{paths on Z reaching 0 from i to 1 in 2k − i− 1 steps}|

= |{paths on Z from i to 1 in 2k − i− 1 steps}|

−|{paths on Z from i to −1 in 2k − i− 1 steps}|

by the reflection principle. A path on Z from a to b ≤ a in a − b + 2c steps

contains c births and a− b+ c deaths, in any order. Thus, the number of such

paths is
(

a−b+2c

c

)

=
(

a−b+2c

a−b+c

)

. Therefore,

Ni,k =

(

2k − i− 1

k − 1

)

−

(

2k − i− 1

k

)

=
i

k

(

2k − i− 1

k − 1

)

.

The conventions used here are that there is exactly one path of zero length

between 1 and 1 (e.g. k = i = 1); and when i exceeds 2k−1 there are no paths.

Rajarshi (1981) proves this result for Ni,k by relating it to the ‘ballot theorem’

in Feller (1971): if the winner in a ballot totalling 2x+ y votes wins by y votes,

the number of ways that the winner will be ahead throughout the counting is

equal to y

2x+y

(

2x+y

x

)

. The mass function of the total progeny of the branching

process can also be found using Theorem 2.11.2 of Jagers (1975).

We can now use the preceding results to find the expected severity until the

vth removal, by conditioning on the total progeny of the branching process.

E[A(Uv)]

= E

[∫ Uv

0

I(u) du

]
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=

v−1
∑

k=i

k

γ
P(Total Progeny = k) +

v

γ
(1 − P(Total Progeny < v))

=
v

γ
+

v−1
∑

k=i

k − v

γ

(

γ

β + γ

)k (
β

β + γ

)k−i((
2k − i− 1

k − 1

)

−

(

2k − i− 1

k

))

.

Obviously, if i ≥ v then this simplifies to v/γ.

3.8.2 The expected severity until time L.

We now derive the expected severity between Uv and Tv, conditional on the

number of individuals alive at time Uv. Since the time spent in the removed

category is always equal to the constant L, the time at which the vth individual

enters the response category (Tv) occurs exactly L time units after the vth death

(time Uv), i.e. Tv = Uv + L. Thus, it is sufficient to find the expected severity

of a branching process without intervention between 0 and L (by the time

homogeneity property) given the number of individuals alive at time 0.

For i ≥ 1 and t ≥ 0 define

xi(t) = E

[
∫ t

0

I(u) du
∣

∣

∣
I(0) = i

]

,

then the backward equation can be formed as follows.

xi(t+ ∆t)

= E

[
∫ t+∆t

0

I(u) du
∣

∣

∣
I(0) = i, birth in (0,∆t]

]

P(birth in (0,∆t])

+E

[
∫ t+∆t

0

I(u) du
∣

∣

∣
I(0) = i, death in (0,∆t]

]

P(death in (0,∆t])

+E

[
∫ t+∆t

0

I(u) du
∣

∣

∣
I(0) = i, no event in (0,∆t]

]

P(no event in (0,∆t])
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+E

[
∫ t+∆t

0

I(u) du
∣

∣

∣
I(0) = i, > 1 events in (0,∆t]

]

P(> 1 events in (0,∆t])

= ∆tβi(∆t(i + 1/2) + xi+1(t)) + ∆tγi(∆t(i− 1/2) + xi−1(t))

+(1 − ∆t(β + γ)i)(∆ti + xi(t)) + o(∆t)

= ∆tβixi+1(t) + ∆tγixi−1(t) + (1 − ∆t(β + γ)i)(∆ti + xi(t)) + o(∆t).

This implies that

dxi(t)

dt
= βixi+1(t) + γixi−1(t) + i− (β + γ)ixi(t)

Since this is the branching process model,

xi(t) = ix1(t) (3.6)

so that,

dx1(t)

dt
= (β − γ)x1(t) + 1. (3.7)

Equation (3.7) has solution

x1(t) =

{

t β = γ,

1
β−γ

(

e(β−γ)t − 1
)

β 6= γ,

and thus from (3.6) we obtain

xi(L) =

{

iL β = γ,

i
β−γ

(

e(β−γ)L − 1
)

β 6= γ.
(3.8)

In order to find the expected severity between Uv and Tv, equation (3.8) must

be multiplied by P(I(Uv) = i) and summed over i = 0, 1, 2, . . .. Since xi(L) is

linear in i, it is sufficient to work out the expected number of individuals alive
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just after the vth death, i.e.

E

[
∫ Tv

Uv

I(u) du

]

=
∞
∑

i=0

xi(L)P(I(Uv) = i)

=

∞
∑

i=0

ix1(L)P(I(Uv) = i)

= x1(L)E[I(Uv)].

This expectation is properly defined since Uv = ∞ implies that I(Uv) = 0

almost surely. We now turn to the evaluation of E[I(Uv)].

3.8.3 The expected number of individuals alive after the

vth death.

The expected number of individuals alive just after the vth death can be found

by conditioning on the path that the embedded discrete time branching process

takes. This process is a random walk on N ∪ {0} with the probability of an

upward jump as β/(β + γ); the probability of a downward jump as γ/(β + γ)

and an absorbing barrier at zero. Recall from section 3.8 that we need not

consider paths in which v removals do not occur since I(Uv) = 0 in this case.

E[I(Uv)] =
∑

d∈D

I(Uv; d)P(the process takes path d),

where I(Uv; d) is the number of individuals alive after the vth death in the

path d; and D is the set of valid paths in which v deaths occur and in which

I(Uv; d) > 0.

Next, group together paths with the same values of I(Uv; d) by noticing that
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the number of births before Uv determines I(Uv; d) and the probabilities of

observing these paths are equal. A path containing l births before the vth

death contains l + v steps (ending with a death); starts with i individuals and

ends with i+ l − v individuals, where i+ l − v = I(Uv) > 0. Thus,

E[I(Uv)] =
∞
∑

l=v−i+1

(i+ l − v)

(

β

β + γ

)l (
γ

β + γ

)v

Ni,l,v

where Ni,l,v represents the number of permitted paths.

Ni,l,v = |{paths on N from i with l births and v deaths ending with a death}|

= |{paths on N from i with l births and v − 1 deaths}|

= |{paths on Z from i with l births and v − 1 deaths}|

−|{paths on Z from i with l births and v − 1 deaths reaching 0}|

=

(

l + v − 1

v − 1

)

−

(

l + v − 1

v − i− 1

)

.

The second combinatorial term is found by applying the reflection principle.

So,

E[I(Uv)] =

∞
∑

l=v−i+1

(i+l−v)

(

β

β + γ

)l (
γ

β + γ

)v [(
l + v − 1

v − 1

)

−

(

l + v − 1

v − i− 1

)]

.

(3.9)

This infinite sum can be expressed as a finite sum with the application of two

identities.

Consider a random walk on Z that starts at a and has the probability of an

upward jump as β/(β + γ). The expected location of this random walk after
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r > 0 downward jumps is

∞
∑

l=0

(a + l − r)

(

β

β + γ

)l (
γ

β + γ

)r (
l + r − 1

r − 1

)

,

and also

E[a + (X1 − 1) + (X2 − 1) + . . .+ (Xr − 1)] = a+ rE[X1] − r

where Xj is the number of upward jumps (births) between the (j − 1)th jump

down (death) and the jth jump down. Thus, X1 has a geometric distribution

with P(X1 = k) = γβk

(β+γ)k+1 , and so E[X1] = β

γ
. This implies that

a+
r(β − γ)

γ
=

∞
∑

l=0

(a + l − r)

(

β

β + γ

)l (
γ

β + γ

)r (
l + r − 1

r − 1

)

. (3.10)

Next, let l 7→ k + i:

a+
r(β − γ)

γ
=

∞
∑

k=−i

(a+ i+ k − r)

(

β

β + γ

)k+i(
γ

β + γ

)r (
k + i+ r − 1

r − 1

)

,

and then set a = −i and r = v − i (for v > i) to give,

(

(v − i)(β − γ)

γ
−i

)(

γ

β

)i

=
∞
∑

k=−i

(i+k−v)

(

β

β + γ

)k(
γ

β + γ

)v(
k + v − 1

v − i− 1

)

.

(3.11)

Applying equation (3.10) to the first combinatorial term in (3.9) and equation

(3.11) to the second combinatorial term in (3.9) (which is zero unless v > i)
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yields

E[I(Uv)] =







































i+ v(β−γ)
γ

v ≤ i,

i+ v(β−γ)
γ

−
(

(v−i)(β−γ)
γ

− i
)(

γ

β

)i

−
v−i−1
∑

l=0

(i + l − v)
(

β

β+γ

)l (
γ

β+γ

)v
(

l+v−1
v−1

)

+
v−i−1
∑

l=−i

(i+ l − v)
(

β

β+γ

)l (
γ

β+γ

)v
(

l+v−1
v−i−1

)

v > i.

Taking this result with the two previous parts gives an explicit expression for

the expected severity until intervention.

E

[
∫ Tv

0

I(u) du

]

= E

[
∫ Uv

0

I(u) du

]

+ E[I(Uv)]x1(L)

This lengthy formula simplifies greatly for the special case in which v ≤ i

(including the practically useful case i = v = 1) to

E

[
∫ Tv

0

I(u) du

]

=







v
γ

+ iL β = γ,

v
γ

+
(

i+ v(β−γ)
γ

)(

e(β−γ)L−1
β−γ

)

β 6= γ.

3.8.4 Effects of parameter changes

Figure 3.15 shows the effect of increasing the constant time L that an individual

spends in the removed category. There is a remarkable distinction between

the subcritical and supercritical branching processes, with the limiting case

(β = γ) having gradient one. The graph therefore highlights the importance of

an early intervention in the supercritical branching process case, as the expected

effective severity rises extremely steeply as L is increased. This also illustrates

the importance of minimising the number of contacts between individuals to
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3.8 Branching process approximation to the epidemic with exponential

infectious periods and constant removed periods.
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Figure 3.15: The expected effective severity χ against L with i = 1, v = 1 and
γ = 1.

reduce the value of β as much as possible.

Figure 3.16 demonstrates the effect of increasing the intervention trigger v on

the expected effective severity. In this graph, five initial infectives were as-

sumed, so that in the lower part of the graph (1-5) intervention is certain and

in the upper part (6+) the branching process may become extinct before the

intervention trigger has been reached. This appears to make no significant dif-

ference for β > 0, although close examination reveals a very minor reduction

in the gradient after v = 5. As v tends to infinity, the graphs produced by sub-

critical branching processes tend to finite limits, given by the expected severity

generated by these processes without intervention. For the other branching pro-

cesses (β ≥ γ), the graphs tend to infinity as v tends to infinity, again reflecting
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Figure 3.16: The expected effective severity χ against v with i = 5, γ = 1 and
L = 1/2.

the the expected severity without intervention.

3.9 Comparison of the exponential and con-

stant removed periods

Methods have been produced for finding the expected effective severity when

the removed periods have an exponential distribution and when they are of

constant length. This section compares the effect that the removed period

distribution has on the expected effective severity.
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Figure 3.17: The expected effective severity χ against E[TR] for epidemics with
exponential and constant removed periods with n = 4, i = v = 1 and γ = 1.

3.9.1 Epidemic model

Figure 3.17 compares the expected effective severity, χ, generated by the epi-

demic with exponential and constant removed periods when the contact rate

β is zero, one and infinity. When β is zero, the initially infectious individual

is removed before infecting any other individuals, and so this individual is the

only one to contribute to the severity. Since this individual is removed before

the intervention occurs, the severity is independent of the removed period dis-

tribution. When β is greater than zero, the removed period distribution does

affect χ. The graph suggests that χ is larger when the removed period has a

constant length than when it is distributed exponentially. A likely explanation

is as follows. In the former case, the intervention is certain to be set off by the
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Figure 3.18: The expected effective severity χ against v for epidemics with ex-
ponential and constant removed periods with n = 10, i = 1 and γ = E[TR] = 1.

first individual to be removed. When the removed period has an exponential

distribution, there is a positive probability of an individual that was removed

later ‘overtaking’ the first individual to be removed and setting off the inter-

vention earlier. Figure 3.17 also suggests that as the expected removed period

tends to infinity, the expected effective severities of the two removed period

distributions tend to the same limit. This is because an infinite removed period

prevents the intervention from occurring and so χ tends to the expected sever-

ity for an epidemic without intervention - which is independent of individuals

that have been removed.

Figure 3.18 provides further insights. It demonstrates the effect of increasing

the intervention threshold v on the expected severities created by constant and
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3.9 Comparison of the exponential and constant removed periods

exponential removed periods. Notice that for small v, the constant removed

period creates the larger expected severity; however, as v approaches the whole

household, the exponential removed period creates the larger expected severity.

This trend can be explained as follows.

Since the propagation of the epidemic is independent of the removed periods

except for the timing of the intervention, the random variable Tv determines

the severity. Define the time at which individual j is removed to be Wj, for

j = 1, . . . , n + i with Wj = ∞ if they are never removed. Then, Tv is the vth

smallest instance of the random variables Wj + T
(j)
R , where T

(j)
R is the removed

period of individual j. When v is small, the variation in the exponential distri-

bution means that Tv for exponential distribution is likely to be smaller than

Wv + E[TR], the equivalent for the constant removed period. However, the vth

smallest instance of Wj + T
(j)
R is also the n + i − vth largest instance, and so

when v is large, the fact that some of the exponential distributions are likely

to be higher than the constant removed period, delays the intervention in the

same way.

3.9.2 Branching process approximation

Figure 3.19 demonstrates the effect of changing the removed period distribu-

tion on the graph of the expected effective severity χ as the expected removed

period is altered. When β > 0 the curves for exponential and constant removed

period distributions rapidly diverge, with the constant removed period distri-

bution causing greater severity. For the supercritical branching process (β > 1)

the constant removed period yields a convex function in E[TR], however the cor-

responding function for the exponential removed period appears to be concave.
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Figure 3.19: The expected effective severity χ against E[TR] for branching pro-
cesses with exponential and constant removed periods with i = v = 1 and
γ = E[TR] = 1.

Figure 3.20 displays the effect of increasing the intervention trigger v on χ. For

the critical and subcritical processes the intervention time is predominantly

determined by the removal times due to the slow rate at which the epidemic

propagates. In the supercritical case shown (β = 5) it is very likely that there

will be individuals removed shortly after the vth removal. This increases the

likelihood that the intervention will be triggered earlier for the exponential re-

moved period than for the constant removed period, as these individuals may

trigger the intervention in the exponential case.
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Figure 3.20: The expected effective severity χ against v for branching pro-
cesses with exponential and constant removed periods with i = 1, γ = 1 and
E[TR] = 4.

3.9.3 Conjectures

It is conjectured that the constant removed period distribution gives the largest

possible expected effective severity for the branching process approximation to

the epidemic model when the expected removed period is held fixed. The same

belief is held for the epidemic model with the restriction v = 1. If true, these

conjectures would enable the constant removed period to be used to calculate

an upper bound on the expected severity when little is known of the removed

period distribution.
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3.10 Discrete time models

3.10 Discrete time models

Thus far, this chapter has been concerned only with a continuous time model,

however, discrete time epidemic models are also used. This section attempts to

incorporate a delay between the detection of an infective and the subsequent

intervention into discrete time models. In some respects discrete time models

represent a more realistic analogy to practical situations than continuous time

models. For instance, continuous time models usually assume a constant rate of

mixing all of the time, ignoring the differences between daytime and nighttime

behaviour that fit intuitively into a discrete time model.

This section develops a general approach for calculating the expected severity

of discrete time epidemic models. Interventions are incorporated as absorbing

states which produce no further severity, and as long as an absorbing state is

ultimately accessible from any part of the state space, the expected severity can

be concisely stated. The application of this formula is then illustrated with the

example of a chain binomial epidemic model that incorporates a delay before

the intervention can be applied. The effect of altering the expected length of

this delay is then explored. Finally, the threshold parameter is calculated for a

model based on the discrete time model used by Longini et al. (2004) to predict

the effect of antiviral agents on pandemic influenza.

3.10.1 A general approach

In order to incorporate interventions (at a Markov stopping time) into a discrete

time epidemic model, form a new Markov process with an absorbing state

representing the intervention having occurred and define this state to contribute
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3.10 Discrete time models

nothing to the severity. When the epidemic process enters this absorbing state,

the epidemic is effectively over. This might mean that some of the states are

now inaccessible to the epidemic and therefore do not need to be considered as

part of the state space, greatly simplifying calculations. For example, when the

intervention is triggered after the first removal, states containing two or more

removed individuals are inaccessible to the process, and so can be ignored.

Next, we derive a method of finding the expected severity for an epidemic

process.

Let {Xt : t ≥ 0} be a discrete time Markov process with finite state space Ω

and transition matrix P , initially distributed according to the row vector α.

Associate with this Markov process a function s : Ω → R and form a row vector

s = [s(x)]x∈Ω\A where A ⊆ Ω is the set of absorbing states, and assume that

s(a) = 0 for all a ∈ A. Next define Q to be the submatrix of P on Ω \A and so

Q is a substochastic matrix. To avoid the possibility that Ω \ A contains any

absorbing states or any closed subsets of states, it is necessary to assume that

the following condition holds.

For each x ∈ Ω \ A there exists a path with positive probability of occurring,

from x to some state a ∈ A.

This condition can be restated in terms of the matrix Q as follows.

For each x ∈ Ω \ A there exists a y ∈ Ω \ A and a k ∈ N ∪ {0} such that the

probability of going from x to y in k steps is strictly positive and the state y

satisfies
∑

j∈Ω\A

qy,j < 1.

Clearly this condition implies that Q is strictly substochastic, i.e. that at least

one row of the matrix Q must sum to strictly less than one. In Appendix C, it
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3.10 Discrete time models

is shown that for a substochastic Q with the above property, the matrix (I−Q)

is non-singular and that

(I −Q)−1 =

∞
∑

t=0

Qt.

This can be used to calculate the expected ‘severity’ (the expected cumulation

of s(Xt) until absorption) of this Markov process as follows.

E

[

∞
∑

t=0

s(Xt)

]

=
∞
∑

t=0

E [s(Xt)]

=
∞
∑

t=0

∑

x∈Ω

P(Xt = x|X0 ∼ α)s(x)

=
∞
∑

t=0

∑

x∈Ω\A

P(Xt = x|X0 ∼ α)s(x)

since s(a) = 0 for a ∈ A. Thus,

E

[

∞
∑

t=0

s(Xt)

]

=
∞
∑

t=0

αQtsT

= α

(

∞
∑

t=0

Qt

)

sT

= α(I −Q)−1sT (3.12)

using Appendix C and where I denotes the |Ω \ A|2 identity matrix.

3.10.2 A chain binomial example

In order to demonstrate the implementation of the above theory to a discrete

time epidemic model featuring a delay before intervention, a chain binomial

model of the Reed-Frost type (with geometric infectious and removed periods)

will be used. For more information on chain binomial models see Gani and Jer-
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3.10 Discrete time models

wood (1971). Let St, It, Rt and Vt denote the number of susceptible, infective,

removed and response individuals respectively at time t in the epidemic, for

t = 0, 1, . . .. Assume (S0, I0, R0, V0) is known, then for t = 0, 1, . . ., recursively

define the epidemic as follows. Given St, It, Rt, Vt, define

St+1 ∼ Bin(St, q
It),

It+1 ∼ St − St+1 + Bin(It, θI),

Rt+1 ∼ St − St+1 + It − It+1 + Bin(Rt, θR),

Vt+1 = St + It +Rt + Vt − St+1 − It+1 − Rt+1.

where P(Bin(n, p) = k) =
(

n

k

)

pk(1 − p)n−k for k = 0, . . . , n. Since this model

has the Markov property, the infectious and removed periods have geometric

distributions with means of (1 − θI)
−1 and (1 − θR)−1 respectively.

The form of the transition matrix P depends upon the size of the state space and

this is determined by the initial conditions. When (S0, I0, R0, V0) = (1, 1, 0, 0)

this Markov process (so far without intervention) has transition matrix

110 020 011 010 0

110

020

011

010

0

























qθI

0

0

0

0

(1 − q)θI

θ2
I

0

0

0

(1 − q)(1 − θI)

2θI(1 − θI)

θIθR

0

0

0

0

θI(1 − θR)

θI

0

q(1 − θI)

(1 − θI)
2

1 − θI

1 − θI

1

























where state abc has (St, It, Rt, Vt) = (a, b, c, 2 − a − b − c) and state 0 is the

pooled absorbing state (i.e. states with zero infectives). If we now implement
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the intervention v = 1, transitions involving an individual leaving the removed

category and entering the response category (e.g. 011 → 010) now go to the

absorbing state 0 instead. The transition matrix P becomes

110 020 011 0

110

020

011

0



















qθI

0

0

0

(1 − q)θI

θ2
I

0

0

(1 − q)(1 − θI)

2θI(1 − θI)

θIθR

0

q(1 − θI)

(1 − θI)
2

1 − θIθR

1



















since it is no longer possible to enter the state 010 without triggering the inter-

vention.

To apply equation (3.12), we need the submatrix of the transition matrix for

the non-absorbing states, called Q. In this example Q is the upper-left 3 × 3

submatrix of the transition matrix P . We also need the initial distribution

(α = (1, 0, 0)) and the vector s. Since we are calculating the expected value of

the effective severity of the epidemic
T1
∑

t=0

It, we require s(x) to give the number

of infectives in state x and therefore in this example, s = (1, 2, 1). Thus the

expected effective severity χ generated by this epidemic is,

χ = E

[

T1
∑

t=0

It

]

= α(1 −Q)−1sT

=
1

1 − qθI

(

1 +
2θI(1 − q)

(1 − θI)
−

(1 − 3θ2
I)(1 − q)

(1 − θIθR)(1 + θI)

)

.
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Figure 3.21: The expected effective severity χ against the expected removed
period (1 − θR)−1 with n = 4, i = v = 1 and θI = 0.5.

Effects of parameter changes

Figure 3.21 demonstrates the effect of increasing the expected removed period

in a larger household of five individuals, assuming the same chain binomial

epidemic model. Several values of the probability a given susceptible avoids

infection from a given infective in one time unit (q) are given in order to demon-

strate the effect of varying the disease’s infectiousness. The expected infectious

period is defined to be two time units instead of one, in order to allow the

possibility that infectives are not instantly removed. When q = 1, no further

individuals can become infected and so the expected effective severity χ is sim-

ply that generated by the initial infective. However, once q is reduced below

one, increasing the expected removed period increases χ.
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When q = 0, all of the initial susceptibles are infected at the first time unit.

The expected severity generated without the intervention is therefore ten, and

we can see that even with the shortest possible removed period (one time unit),

χ is only reduced by about a third. This can be explained as follows. Of

all possible paths the epidemic can take, the lowest possible value of χ is five

since the intervention cannot occur before time two. In all other paths the

intervention occurs later and therefore even more severity may be generated.

Overall, this model appears to be quite robust to changes in the expected

removed period. This is because all of the individuals infected before the in-

tervention experience infectious periods of at least one time unit, still half of

their expected length. In the continuous time model, infectious periods may be

cut off almost instantly, and therefore when the number of infectives is high,

an intervention has more effect for this model. In practice, it may be difficult

to cut short infectious periods once they have started and so the discrete time

model may be more realistic in this respect.

3.10.3 Application to realistic parameter values.

Longini et al. (2004) use a discrete time epidemic model in order to predict the

effectiveness of several different interventions on an outbreak of pandemic in-

fluenza in a fixed population of 2000 individuals representing a small American

town. Their model includes six types of infective and four levels of mixing. Due

to the complexity of their model they are unable to calculate R∗ and instead

estimate a threshold parameter by simulation. After simplifying the model

somewhat, it becomes possible to calculate R∗ using the discrete time method

described above.
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Ball and Lyne (2001) state that for a multitype epidemic model with two levels

of mixing, R∗ is given by the largest eigenvalue of the matrix of mean offspring

M , where

mi,j =
∑

h

αi(h)
∑

k

E[TA
k |h, i]λk,j, (3.13)

and where αi(h) is the probability that a type i individual chosen uniformly at

random resides in a household of configuration h; λk,j is the rate at which a type

k individual globally contacts a type j individual; and (TA
k |h, i) is the sum of

the infectious periods of the type j individuals in a household of configuration

h (ignoring global contacts), given that the subepidemic within that household

was started by a single individual of type i.

In order to apply this formula for R∗ with two levels of mixing to the model of

Longini et al. (2004), it needs to be simplified. This is done by incorporating the

two intermediate levels of mixing (neighbourhood contacts and school contacts)

into the global mixing, in such a way that the expected number of outside con-

tacts made by a given infective over their infectious period remains unchanged.

For simplicity, the six types of individual used by Longini et al. (adults and five

ages of children) have been reduced to two types (adults and children). This

is unlikely to make much difference to R∗ as the expected number of infectious

contacts a day made by the five types of infected children are mostly very sim-

ilar. In the paper, every type of individual has the same latent and infectious

period distribution with means of 1.9 days and 4.1 days respectively. Using the

method outlined here (without an intervention), the matrix of mean offspring
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M is given by







ma,a ma,c

mc,a mc,c






=







0.32 0.37

0.28 3.13






,

which implies that R∗ = 3.17. Longini et al. (2004) estimate R0 to be 1.67 by

repeatedly selecting an individual in the population at random and counting the

number of infections they produce during their infectious period in an otherwise

susceptible and non-infectious population. It is also possible to estimate R∗

using the same technique - select an individual at random and calculate the

average number of households infected either by the initial infective or by any

other members of their household. This method estimates R∗ to be 1.82.

Clearly there is a large discrepency between the calculated value for the ap-

proximate model and the simulated values for R0 and R∗. Further investigation

reveals that the calculated and simulated values for R∗ agree very closely when

the school level of mixing is removed from the simulations and the global rate

of mixing in the calculation is adjusted accordingly.

An explanation of this is as follows. The theoretical value of R∗ (the largest

eigenvalue of the matrix of mean offspring) gives an indication of the long-

term behaviour of the branching process approximation to the epidemic model.

Because the matrix of mean offspring relates to the branching process, the entry

mi,j does not explicitly depend upon the number of households of each type,

only those containing type i individuals (see the definition of αi(h) in equation

(3.13)). Clearly the simulation method does explicitly depend upon this, and

when one type of individual is many times more infectious than the others and

is also a small minority of the population, then the theoretical R∗ will be large
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(the infection will be propagated in the minority group) however the simulated

values of R0 and R∗ are much smaller, as the initial infective will be chosen

from the minority group in only a very small proportion of the realisations.

This implies that the ‘true’ value of R∗ is probably much closer to the value

calculated for the approximate model than the value given in the paper.

With intervention

Longini et al. (2004) consider a series of complex interventions with antiviral

prophylaxis for up to eight weeks for traced contacts of symptomatic cases.

They assume that not only does prophylaxis reduce the susceptibility, infec-

tiousness and probability of developing symptomatic illness if infected, it ad-

ditionally reduces the length of the infectious period by 1 day. Also, some

vaccination based strategies are considered. Since these types of intervention

are difficult to include in the calculation of R∗, we will continue with the house-

hold based intervention considered in the rest of this chapter (with v = 1),

namely, that when an individual is detected at the end of their infectious pe-

riod, TR days pass before their household is isolated from all of its external

mixing groups and makes no further infectious contacts. For their more com-

plex interventions, Longini et al. (2004) conclude that for an intervention delay

of between three and five days whilst there is still a significant reduction in the

numbers of cases and deaths, the probability of a major epidemic (which they

define as an overall attack rate greater than 2.5%) is largely unaffected by the

intervention.

We consider two types of intervention, the (more realistic) weak type where

only symptomatic individuals can trigger an intervention and the strong type
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where any infectious individual can trigger the intervention. Table 3.3 shows

the values of R∗ for the approximate models with weak and strong interventions

for different values of TR.

TR R∗ (strong) R∗ (weak)

0 2.164 2.404

1 2.182 2.416

2 2.198 2.430

3 2.210 2.441

4 2.219 -

∞ 3.172 3.172

Table 3.3: The effect of increasing the delay before intervention TR on R∗ for
two kinds of intervention.

Neither of the two types of intervention considered are successful in reducing

the threshold parameter R∗ to below one. Also, there appears to be very little

drop in the effectiveness of the intervention as the delay is increased from zero

to three, unlike the Longini finding. When the delay is infinite, no intervention

occurs and so the row for infinity gives R∗ without intervention. In fact, this

could be relabelled TR = 63, as the longest time the epidemic can last is the

maximum serial interval (the gap between being infected and infecting others)

multiplied by the number of individuals in the household. If R∗ is concave in

TR, which is reasonable, the values in the table do not approach R∗ without

intervention rapidly enough to reach it by TR = 63. A likely reason for this

is the accumulation of truncation errors as TR is increased, as the state space

increases in size to more than one million states by TR = 4.
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3.11 Conclusion and Extensions

This chapter has used an epidemic model to analyse the effect of a delay before

an intervention can be applied. The length of this delay between the end of the

infectious period and the triggering of the intervention was called the removed

period. The effectiveness of the intervention was quantified by the reduction

in the threshold parameter R∗, which is proportional to the expected effective

severity (the sum of the infectious periods until intervention). In general, the

findings agreed with the papers by Longini et al. (2004) and Eubank et al. (2004)

- the effectiveness of an intervention rapidly decreases as the delay increases.

However, when the model used by Longini et al. (2004) was approximated this

finding was not replicated, probably due to the accumulation of truncation

errors. In the case of the epidemic model, we have seen that this reduction in

effectiveness can be mitigated somewhat by the addition of latent periods.

A second important finding was that for the households model the reproduction

number was quite robust to changes in the within household infection rate.

Since this parameter is difficult to estimate accurately in practice, a very useful

upper bound on R∗ can be obtained by letting the within household transition

rate be infinite. This implies that as soon as the first member of a household

reaches their infectious period, the whole household is infected. When the two

types of delay period distribution were compared, we saw that the constant

delay creates more severity than the exponential delay, when the intervention

is applied after the first observation, however if large numbers of observations

are required to trigger the intervention this trend is reversed.

When a supercritical branching process version of the model is considered, an
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early intervention is again very important, because the number of infectives

can quickly become very large. Discrete time versions of the model were also

studied, including a chain binomial model similar to the continuous time epi-

demic model. For the chain binomial model the intervention appeared to be

less effective, because infectious periods could not be shortened by as much by

the intervention as in the continuous time case.

Although the model considered in this chapter is quite general, progress has

only been made in the continuous time setting for some specific removed pe-

riod distributions (the constant and exponential) and exponentially distributed

infectious and latent periods. Clearly these distributions are not always ap-

propriate, particularly for human diseases, and so more distributions could be

considered. In practice temporal data for epidemics is usually in the form of

case numbers per day and so parameter estimation is likely to be more straight-

forward for a discrete time model, and a quite general approach is developed

for these models.
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Chapter 4

Evaluating the probability of

containment for pandemic

influenza

4.1 Introduction

Strains of the influenza A virus (for example H5N1) are thought to be ex-

tremely likely to cause the next major pandemic (Mills et al., 2006; Ferguson et

al., 2005). Interventions and control measures aimed at reducing the spread of

the virus will be applied to any area where a highly pathogenic strain emerges.

This chapter aims to develop techniques to assess the probability that, despite

being eradicated from the area in which the infection emerged, the virus escapes

to other areas where surveillance and interventions might not be in place. To

this end, a model is constructed for the spread of the influenza virus that in-

cludes transmission events which allow the disease to escape from the modelled
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population. The probability that one of these escape events does not occur is

then derived.

4.1.1 Chapter structure

This chapter is structured as follows. Firstly this introductory section discusses

the modelling issues surrounding influenza pandemics. Section 4.2 defines the

model in as much generality as possible, before deriving the probability that

the epidemic is successfully contained within the population. Next, section 4.3

considers some simplifications of the model in order to demonstrate the effect

on the probability of containment of the basic parameters. These simplifica-

tions include the case in which all of the households are equally infectious with

known infectious offspring distribution, then a model for the household subepi-

demics (without intervention) is explored. Following this we consider the effect

of including different sized households in the model, and a simple model with

different types of infectious individuals is explored - all without interventions.

In section 4.4 the effect of the shape of the infectious period distribution on the

containment probability is explored, and found to depend upon the Laplace

transform of the household severity distribution. Household based interven-

tions are introduced in section 4.5, firstly using a Markov process to model the

within household epidemics and then a simulation model is used to predict the

household severities.
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4.1.2 Influenza

This section describes some features of the influenza virus and the H5N1 sub-

type in particular, which suggest that it may cause a global pandemic.

The influenza A virus is constantly changing through a process called antigenic

drift. In this process random genetic mutations give rise to new strains, which

then undergo intense selection pressure caused by competition with similar

strains of the influenza virus, and the ability of their host population to develop

immunity to particular influenza strains (Ferguson and Anderson, 2002). Such

a mechanism is considered unlikely to cause a global pandemic as there is

evidence to suggest that infection by a particular strain of influenza A gives

the host partial immunity to closely related strains of the virus, thus reducing

the transmissibility of emerging strains (Casagrandi et al., 2006). However,

the influenza A viruses circulating amongst humans can also undergo sudden

genetic changes by experiencing antigenic shift. This is where a new influenza

A subtype is introduced into the human population, for instance directly from

animal populations or through a reassortment event. Reassortment events can

occur in an intermediate host (for example swine) or in humans when they

are co-infected with two quite different strains of influenza A. Genetic material

from the two viruses can mix during viral replication (Brown et al., 1998). In

the past, antigenic shifts have corresponded to the emergence of novel strains

of influenza A which have gone on to cause severe pandemics, for example the

Spanish flu epidemic in 1918 (Casagrandi et al., 2006).

Subtypes of the influenza virus are categorised by two types of protein spikes

protruding through their lipid outer membrane. There are 15 known types
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of haemagglutinin (H) and 9 known types of neuroaminidase (N) in mammals

and birds. The H5N1 subtype is currently thought most likely to cause a global

pandemic, as this subtype is highly prevalent in both domesticated and wild

bird populations (Mills et al., 2006), giving rise to the terms avian influenza

and bird flu. H5N1 is the first subtype with the H5 protein to be able to infect

humans, and so human populations have little pre-existing immunity (Buxton

Bridges et al., 2000). Fortunately, it currently lacks the ability for efficient

transmission between humans, as evidenced by the recent outbreaks in Asia

(WHO, 2007).

Since it is impossible to predict the exact strain of influenza that will cause a

pandemic, the production of a pandemic-preventing vaccine is difficult. Cur-

rently, the seasonal influenza A vaccine is produced using hens’ eggs ordered

six months in advance and so production cannot suddenly be increased (Ox-

ford, 2006). The first line of defence against an emerging strain is antiviral

prophylaxis. It has been shown that these drugs can reduce the duration of

symptomatic illness and that by administering antivirals to a household after

the identification of an index case, the spread in the family can be reduced by

more than 80%. (Welliver et al., 2001).

4.1.3 Modelling pandemic influenza

This section discusses some features that may be important to include in a

model for the spread of an emerging strain of influenza through a human pop-

ulation.

Mathematical modelling has suggested that it may be possible to contain an
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outbreak of an emergent pandemic strain of influenza using a combination of

antiviral prophylaxis and social distancing measures, if the intervention is ap-

plied in the very early stages (Ferguson et al., 2005). However this paper focuses

on a particular region of Southeast Asia, and does not consider the possibility

that the disease may be transported outside of this region to an area where the

infection controls and disease surveillance may not be in place. Although such

infectious contacts may be considerably less likely than local contacts and even

country-wide contacts, the mass availability of international travel means that

the effects of such contacts could be devastating and should not be ignored.

An example of this kind of global contact occurred during the SARS outbreak

of 2002/3, when a couple from Toronto spent ten days in Hong Kong before

returning to Canada to trigger a second epidemic (Booth et al., 2003).

When modelling the spread of influenza through a sizable human population,

it is usually important to include the following features in the model. Firstly,

the population should be stratified by age as past pandemics have shown that

one particular age-group may be more at risk than others. In 1918 mainly

25-35 year-olds were at risk, however, when H1N1 re-emerged in 1977 under

25 year-olds were at risk, as they had no prior immunity obtained from the

virus’s circulation in the 1950’s, (Oxford, 2006). Influenza is also well known

to cause asymptomatic or mildly symptomatic infections in a proportion of the

people it infects (Kaiser et al., 2000). This makes the infection harder to track

and to detect. Finally it is important to note that since transmission occurs

through close contacts, infectious contacts are likely to be made to relatives or

colleagues.
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4.1.4 Modelling interventions

There are several ways in which interventions can be included in a model,

each appropriate to different kinds of real-life interventions. In practice, a

combination of interventions are likely to be used in order to give the best chance

of reducing the reproduction number of the epidemic to below one with minimal

disruption and expense. The easiest way to model an intervention is to allow the

rate at which infectious contacts occur to reduce over time. This is appropriate

when the mixing behaviour of the population changes, for instance when only

essential journeys are undertaken; mass vaccination or antiviral prophylaxis are

used to reduce susceptibility; face masks are worn in public places (as happened

during the SARS epidemic in 2002/3, see for example Lau et al., 2004); or

handwashing and other types of disinfection are increased.

Interventions may be included in a model at the household level by incorporat-

ing a trigger into the within household subepidemic after which the behaviour

in the household changes, for example susceptibility and infectiousness could

decrease or infectious periods could be reduced. This method is suitable for

clinical interventions, such as treatment with antivirals to reduce infectivity

and to shorten the infectious periods, as well as a policy of isolating household

members to reduce contact rates. This kind of intervention is the main subject

of this chapter.

Finally, contact tracing interventions can be applied, in which an infective

identifies any individuals which they have may infected (forward tracing) or

any individuals that may have infected them (backward tracing). These traced

contacts are then are pre-emptively treated with antivirals or isolated, and have
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their contacts traced also. This kind of intervention can be difficult to include

realistically in the model, as in practice there is often a limit to the treatment

capacity of the health services. Some papers that consider contact tracing

interventions include Muller et al. (2000), Eubank et al. (2004) and Kaplan et

al. (2004).

4.1.5 Assessing the probability of containment

This section sets out the objective of this chapter of the thesis, and briefly

describes how it will be achieved.

The aim of this chapter is to assess the probability that despite being success-

fully eliminated from an outbreak area, a potentially pandemic-causing strain

of the influenza virus escapes the area where it initially emerged to cause fur-

ther outbreaks elsewhere. This will be achieved by developing a model for the

spread through a population of an emerging strain of influenza constrained by

interventions, and then considering additional contacts to individuals external

to the outbreak population. A branching process of households will be used to

model the spread of infection through the population in the outbreak region,

and a Poisson process will be used to model infectious contacts to individuals

external to this population.
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4.2 The general model

In this section the model is defined in full generality, and the probability of

containment is derived.

4.2.1 Definition of the model

This section describes a continuous time multitype epidemic model with two

levels of mixing, with additional external contacts that allow the disease to

escape from the population. The branching process approximation is then

applied to this model in order to make it more tractable. Finally, it is noted

that in order to calculate the probability of containment, it suffices to work

with the discrete time branching process embedded within this continuous time

branching process model.

Consider a finite closed population of several types of individual, partitioned

into a large number of households. This population is called the internal popu-

lation. At this stage the model is kept as general as possible for flexibility. At

some point after being infected individuals undergo an infectious period. Dur-

ing this period they can make three types of infectious contact. Firstly, they can

infect other members of their household. It is not necessary to specify a model

for within household transmission at this point - this allows different models

for household based interventions to be introduced later. Secondly, an infective

can make an infectious contact to an individual in another household in the

internal population, and we assume that such contacts are made at the points

of a Poisson process with rate dependant on the types of the two individuals.

Finally, an infective can make an infectious contact to an individual outside the
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internal population, termed an external contact. It is assumed that individuals

make external contacts at the points of a Poisson process with rate dependent

on the type of infective. When an individual’s infectious period is over, they

can make no more infectious contacts and they cannot be re-infected. We as-

sume the Poisson processes describing internal contacts and external contacts

are all mutually independent.

In order to make this model more tractable, consider its branching process

approximation by letting the number of households tend to infinity. We scale

the rates in the Poisson processes governing transmissions between individuals

of different households by the size of the population, so that the average number

of contacts made by each type of infective to each type of individual in other

households remains unchanged as the population size becomes infinite. Thus,

we have obtained the branching process approximation to the epidemic model

described above, where the ‘individuals’ in the branching process correspond

to household subepidemics. The type of these ‘individuals’ in the branching

process is specified by both the composition of individuals in the household and

the type of the initial infective in the household subepidemic. For example, a

household containing two adults and one child creates two types of household

subepidemic: one instigated by an adult and another instigated by the child. A

household containing only two adults creates a third type of subepidemic. This

branching process approximation is valid for the early stages of an outbreak

when the probability that an infectious individual contacts an individual in a

household already affected by the epidemic is negligible.

Next, notice that since we are interested in the probability that there are no

external contacts over all time, the temporal information contained in the model
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is irrelevant. It therefore suffices to consider the discrete time branching process

embedded within this continuous time branching process, obtained by simply

counting the number of each type of infected household in each generation of

the infection.

For 1 ≤ k ≤ K and 1 ≤ h ≤ H, define the random variable Sh,k to be the sum

of the type k infectious periods in a household subepidemic of type h. This

random variable is called the type k severity produced by a type h household

subepidemic. If there are I types of individual in the epidemic model we started

out with, then K ≤ I is defined to be the smallest number of severity types

needed to correctly describe the embedded discrete time branching process.

If there are J arrangements of these I types of individual into households in

the original epidemic model, H ≤ IJ is defined to be the smallest number

of household subepidemic types needed to correctly describe the discrete time

branching process. Notice that in general the severity distribution of these

subepidemics will depend on the type of the initial infective. It is often possible

to use fewer types of severity than types of individual as any two types of

individual that make external contacts at the same rate and instigate each

type of household subepidemic at the same rate can be considered to produce

the same type of severity. Note that they do not necessarily need to have the

same infectious period distribution or household contact rates.

For example, assume every household contains two adults and two children each

making external contacts at rate 1, internal contacts to adults at rate 2 and

internal contacts to children at rate 3, but with different infectious period dis-

tributions and household contact rates. Since infectious contacts originate from

adults and children at the same rate, just one type of severity is needed (K = 1).
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However, adults and children are contacted at different rates (and have different

infectious period distributions) and so two household subepidemics are required

(H = 2), one initiated by each type of individual. If infected, adults and chil-

dren will contribute different amounts to the household’s severity, as they have

different infectious periods.

Similarly the number of household subepidemic types can often be reduced

from IJ , for instance when not every type of infective is in every household

arrangement.

For 1 ≤ k ≤ K and 1 ≤ u ≤ H, define βk,u to be the rate at which type u

household subepidemics are produced from type k severity and define the num-

ber of household subepidemics of type u generated by a household subepidemic

of type h to be Xh,u. Thus, in the H-type discrete time branching process an

individual of type h produces Xh,u offspring of type u and we have that

Xh,u ∼ Pois

(

K
∑

k=1

Sh,kβk,u

)

.

For 1 ≤ k ≤ K, define αk to be the rate at which individuals producing type k

severity make external contacts. Therefore, a household with severity distribu-

tion Sh = (Sh,1, . . . , Sh,K) produces a number of external contacts with a Pois-

son distribution with mean
K
∑

k=1

Sh,kαk. Let α = (α1, . . . , αK), for 1 ≤ h ≤ H

let βh = (β1,h, . . . , βK,h) and for θ = (θ1, . . . , θK) ∈ [0,∞)K define

ψh(θ) = E

[

exp

{

−
K
∑

k=1

θkSh,k

}]

.

Finally, for 1 ≤ h ≤ H and 1 ≤ k ≤ K, define ∆h,k to be the sum of the type k

severity generated throughout the entire course of a branching process started
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from one household subepidemic of type h, and write ∆h = (∆h,1, . . . ,∆h,K).

4.2.2 The threshold parameter

This section discusses the threshold parameter for the branching process of

households used as a model.

Let M be the matrix of mean offspring, so for 1 ≤ i, j ≤ H, mi,j is the

expected number of type j household subepidemics to emanate from a type i

household subepidemic. In our branching process model, conditional on the

severity vector of the type i household subepidemic S i, the number of type j

household subepidemic offspring has a Poisson distribution with mean Si.βj .

Thus, M is the product of two rectangular matrices, M = SB. The H × K

matrix S has at the (h, k)th entry the expected type k severity of a type h

household, and the K×H matrix B has at the (k, h)th entry the rate at which

a type k infectious individual infects type h households.

Branching process theory tells us that there is a reproduction number R which

dictates the ultimate behaviour of the process. If the matrix of mean offspring

M is positive regular (for some n ∈ N, every entry of Mn is positive) then R is

equal to the largest eigenvalue of M . If R > 1, there is a positive probability

that the branching process will have infinite total progeny, and if R ≤ 1 the

number of offspring will be almost surely finite. However, if R ≥ 1 the expected

severity of the branching process will be infinite, and finite if R < 1; as the

expected time taken for the branching process to die out is infinite for R = 1,

despite the fact that extinction is certain. For more information about the

threshold parameter of a branching process see for example Mode (1972) and
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Jagers (1975).

Ball et al. (1997) have a slightly different definition of the threshold parame-

ter for a multitype epidemic model with two levels of mixing. They use the

reproduction number for a branching process approximation to the epidemic

process to provide a reproduction number for the epidemic process (which has

finite population), so it is also relevant here. Instead of considering the expected

number of new infectious households created from an infectious household, they

consider the expected number of infectious individuals outside of an initial in-

fective’s household to be created by an initial infective and the other members

of their household. Thus, if there are K infectious types, they form a K × K

matrix M∗ in which m∗
i,j is the expected number of type j infectives to be glob-

ally infected from a household subepidemic started by a type i infective. Call

the largest eigenvalue of this matrix R∗.

For our model, M ∗ = BS, where B and S are as before. The number of house-

hold types H must be greater than or equal to the number of infectious types

K since a susceptible household that contains two types of individual forms two

infectious household types, with each infectious household type corresponding

with the initial infective’s type. Thus, the matrix M ∗ is a more compact repre-

sentation of the same information contained in M . Theorem A.6.2 of Mardia et

al. (1979) states that for any two matrices X and Y with dimension n×m and

m× n respectively, the non-zero eigenvalues of XY and Y X are the same and

have the same multiplicity. The threshold parameters R and R∗ are therefore

equal.
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4.2.3 Derivation of the containment probability

The probability of containment is defined to be the probability that there are

no external contacts throughout the entire course of the branching process.

Individuals producing severity of type k (1 ≤ k ≤ K) make external contacts

at rate αk. Thus, for 1 ≤ h ≤ H, given the total severity vector ∆h of a

branching process initiated by a single household subepidemic of type h, the

probability of no external contacts throughout the whole branching process is

exp(−α.∆h). Thus,

P(containment|h) = E[exp(−α.∆h)],

i.e. the containment probability of a branching process starting from one infec-

tious household of type h is the joint generating function of the total severity

created by such branching process, evaluated at α. Let Gh be this generating

function, so that

Gh(θ) = E[exp(−θ.∆h)]

for 1 ≤ h ≤ H and θ ∈ [0,∞)K, and so the probability of containment is given

by Gh(α).

Theorem 4.1 For h ∈ {1, . . . , H}, the Gh(θ) satisfy the equations

Gh(θ) = ψh

(

θ +
H
∑

u=1

(1 −Gu(θ))βu

)

. (4.1)
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Proof:

Let Xh,u be the number of type u infectious households created by the initial

type h infectious household. Firstly notice that a branching process can be

written in terms of the zeroth generation combined with independent copies of

the branching process, each started by an individual from the first generation

of the original branching process. For instance, the total severity satisfies

∆h = Sh +

H
∑

u=1

Xh,u
∑

j=1

∆(j)
u

where the ∆(j)
u are independent and identically distributed copies of ∆u and

the empty sum is zero. This implies that

Gh(θ) = E[exp(−θ.∆h)]

= E



exp



−θ.



Sh +

H
∑

u=1

Xh,u
∑

j=1

∆(j)
u













= E



e−θ.Sh





H
∏

u=1

exp





Xh,u
∑

j=1

−θ.∆(j)
u













= E

[

e−θ.Sh

(

H
∏

u=1

Gu(θ)
Xh,u

)]

= E

[

e−θ.ShE

[

H
∏

u=1

Gu(θ)Xh,u

∣

∣

∣

∣

Sh

]]

= E

[

e−θ.Sh

H
∏

u=1

exp {−(βu.Sh)(1 −Gu(θ))}

]
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since conditional on Sh, the Xh,u are independent Poisson-distributed random

variables with means βu.Sh, for u = 1, . . . , H. Thus,

Gh(θ) = E

[

exp

{

−

[

θ +
H
∑

u=1

(1 −Gu(θ))βu

]

.Sh

}]

= ψh

(

θ +

H
∑

u=1

(1 −Gu(θ))βu

)

.

4.2.4 Uniqueness

In this section the number of solutions to equations (4.1) is discussed. For

convenience, rewrite equations (4.1) as

Gh = fh(G),

for 1 ≤ h ≤ H, where G = (G1, . . . , GH) are the generating functions with

their θ dependence suppressed and for x = (x1, . . . , xH) ∈ [0, 1]H ,

fh(x) = ψh

(

θ +

H
∑

u=1

(1 − xu)βu

)

.

First a lemma is needed.

For 1 ≤ u, h ≤ H and t = 0, 1, . . ., let Zh,u(t) be the number of type u indi-

viduals in generation t of a branching process with generation zero consisting

of a single type h individual. For 1 ≤ h ≤ H, 1 ≤ k ≤ K and t ∈ N, let

the cumulative severity ∆h,k(t) be the sum of the type k severity generated

by the first t − 1 generations of the branching process described above, with

the convention ∆h,k(0) = 0. Form the vectors Zh(t) = (Zh,1(t), . . . , Zh,H(t))
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and ∆h(t) = (∆h,1(t), . . . ,∆h,K(t)). For 1 ≤ h ≤ H and t = 0, 1, . . ., let

f t
h(x) = E

[

e−θ.∆h(t)xZh(t)
]

where the notation xy for H-vectors x and y is

defined by

xy =
H
∏

h=1

xyh

h .

Finally, let f t(x) = (f t
1(x), . . . , f t

H(x)).

Lemma 4.2 For t ∈ N and x ∈ R
H ,

f t
h(x) = fh(f

t−1(x)). (4.2)

Proof:

f t
h(x) = E[e−θ.∆h(t)xZh(t)]

= E



e
−θ.

 

Sh+
H
P

u=1

Xh,u
P

j=1
∆

(j)
u (t−1)

!

x

H
P

u=1

Xh,u
P

j=1
Z

(j)
u (t−1)





where Xh,u is the number of type u offspring from the type h ancestor and the

∆(j)
u (t− 1) and the Z(j)

u (t− 1) are i.i.d. copies of the random vectors ∆u(t− 1)

and Zu(t− 1) respectively. So,

f t
h(x) = E



e−θ.Sh

H
∏

u=1



e

Xh,u
P

j=1
−θ.∆

(j)
u (t−1)

x

Xh,u
P

j=1
Z

(j)
u (t−1)









= E

[

e−θ.Sh

H
∏

u=1

(

e−θ.∆
(1)
u (t−1)xZ

(1)
u (t−1)

)Xh,u

]

since the ∆(j)
u (t− 1) and the Z(j)

u (t− 1) are independent of each other and of
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Sh and Xh = (Xh,1, . . . , Xh,H). Thus,

f t
h(x) = E

[

e−θ.Sh

H
∏

u=1

f t−1
u (x)Xh,u

]

= E

[

e−θ.ShE

[

H
∏

u=1

f t−1
u (x)Xh,u

∣

∣

∣

∣

Sh

]]

= E

[

e−θ.Sh

H
∏

u=1

e−(βu.Sh)(1−f t−1
u (x))

]

since given Sh, Xh,u ∼ Pois(βu.Sh) for u = 1, . . . , H, and these Poisson random

variables are conditionally independent. Thus,

f t
h(x) = E



e
−

 

θ+
H
P

u=1
(1−ft−1

u (x))βu

!

.Sh





= ψh

(

θ +
H
∑

u=1

(1 − f t−1
u (x))βu

)

= fh(f
t−1(x)).

Next we state the uniqueness result, in which the word ‘smallest’ is used in

the following way. A partial ordering on vectors of dimension n is defined by

x ≤ y if and only if xi ≤ yi for 1 ≤ i ≤ n. Then we say that G is the smallest

solution if G ≤ x∗ for any other solution x∗. Notice that any two vectors

are not necessarily ordered, so if we have two solutions x1 and x2 that are

unordered, Theorem 4.3 implies the existence of yet another solution G that is

smaller than x1 and x2.
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Theorem 4.3 The vector G(θ) is the smallest non-negative solution to the

vector equation

x = ψ

(

θ +

H
∑

u=1

(1 − xu)βu

)

in [0, 1]H . Further, when the branching process has R∗ ≤ 1 or is irreducible

with θ 6= 0, this solution is unique. Finally, if θ = 0 then Gh(0) corresponds

to the probability of extinction for a branching process with one initial ancestor

of type h.

Proof:

The first section of the proof, to show that G(θ) is the smallest solution to

(4.1), closely follows the proof of Theorem 7.1 in Mode (1971).

First rewrite equation (4.1) as xh = fh(x). Let x∗ be a solution to this equation,

and we prove by induction on t that for t ∈ N

x∗ ≥ f t(1),

where f t(x) is as defined for Lemma 4.2 and 1 is an H-vector of ones.

First, the initialisation. Since ψh is non-increasing,

x∗h = fh(x
∗)

= ψh

(

θ +
H
∑

u=1

(1 − x∗u)βu

)

≥ ψh

(

θ +

H
∑

u=1

(1 − 0)βu

)
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= fh(0)

= fh(f
0(1))

= f 1
h(1)

by Lemma 4.2. Next, assume the inductive hypothesis x∗h ≥ f t−1(1), then

x∗ = f(x∗) ≥ f(f t−1(1)) = f t(1),

by the lemma. Thus, by induction, x∗h ≥ f t
h(1) for t ∈ N, and so

x∗h ≥ lim
t→∞

f t
h(1) = lim

t→∞
E
[

e−θ.∆h(t)
]

= Gh(θ)

for h ∈ {1, . . . , H}, and so G(θ) must be the smallest solution.

Next, the second part of the theorem is proved, that this solution is unique for

R∗ ≤ 1 or for an irreducible branching process with R∗ > 1 and θ 6= 0. The

proof is adapted from the proof of Theorem 7.2 of Mode (1971). First, we show

that irrespective of the value of x ∈ [0, 1]H ,

lim
t→∞

f t
h(x) = Gh(θ)

where f t
h(x) is as defined for Lemma 4.2.

This proof is split into two cases R∗ ≤ 1 and R∗ > 1, and further assumptions

about the branching process are needed in the latter case. Branching process

theory says that if R∗ ≤ 1 then extinction is certain, see for example Theorem
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7.1 of Mode (1972). Thus,

lim
t→∞

f t
h(x) = lim

t→∞
E
[

e−θ.∆h(t)xZh(t)
]

= E
[

lim
t→∞

e−θ.∆h(t)xZh(t)
]

by the dominated convergence theorem. Next, note that since extinction is

certain, lim
t→∞

Zh(t) = 0 almost surely so,

lim
t→∞

f t
h(x) = E

[

e−θ.∆h
]

= Gh(θ).

For the same argument to work for the case R∗ > 1, an extra assumption is

required, namely

lim
t→∞

exp(−θ.∆h(t, ω)) = 0 (4.3)

for all ω ∈ Ec ⊆ Ω, where E is the event that the branching process becomes

extinct and Ω is the sample space of the branching process. Condition (4.3) can

only be satisfied if θ 6= 0, and it is immediately satisfied if all components of

θ are strictly positive, since non-extinction implies that there will be infinitely

many of at least one type of individual. If some components of θ are zero and

extinction does not occur, then condition (4.3) is satisfied if all K components

of the severity vector ∆h(t) tend to infinity as t tends to infinity. This is true

if the branching process is irreducible, which can be seen as follows.

A branching process is said to be irreducible if for every pair of types (u, v)

there exists a t ∈ N such that the probability that there is at least one type v

individual in generation t is strictly positive, when the branching process has
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an initial ancestor of type u. If the branching process does not become extinct

then there must be infinitely many of at least one type of individual, type w

say. Each type w individual can be viewed as an initial ancestor of a branching

process which has positive probability of producing a type v individual in t

generations time, for some t, and so there must be infinitely many of each type

of individual and so every type of severity must be infinite.

Thus, assuming condition (4.3) is satisfied,

lim
t→∞

f t
h(x) = lim

t→∞
E
[

e−θ.∆h(t)xZh(t)
]

= E
[

e−θ.∆h

∣

∣

∣
E
]

P(E) + 0

= E
[

e−θ.∆h
]

= Gh(θ).

Therefore, we have shown that for a branching process with R∗ ≤ 1 or with

irreducibility and θ 6= 0,

lim
t→∞

f t(x) = G. (4.4)

Next, let G∗ be another solution to G = f(G), then we show by induction on

t that f t(G∗) = G∗. For the initialisation note that,

f 0
h(G∗) = E

[

e−θ.∆h(0)(G∗)Zh(0)
]

= G∗
h,

and so f 0(G∗) = G∗. Assume the inductive hypothesis that for t ≥ 1,

f t−1(G∗) = G∗ and note that by Lemma 4.2,

f t(G∗) = f(f t−1(G∗))

182



4.2 The general model

= f(G∗)

= G∗

and so by induction f t(G∗) = G∗ for t = 0, 1, . . .. However, from equation

(4.4),

G∗ = lim
t→∞

f t(G∗) = G,

and so G∗ = G.

To show the third part of the theorem, that if θ = 0, then G(0) corresponds

to the probability of extinction vector for the branching process, note that for

θ with all components strictly positive,

Gh(θ) = E[e−θ.∆h |E]P(E) + E[e−θ.∆h|Ec]P(Ec)

= E[e−θ.∆h |E]P(E)

since Ec implies at least one component of ∆h is infinite. Thus,

lim
θ→0

Gh(θ) = lim
θ→0

E[e−θ.∆h|E]P(E)

= P(E).

When θ = 0, G(0) = 1 is also clearly a solution. This solution is the solution

one might expect to recover, because when there are no contacts to the external

population (α = 0), the probability of containment must be one. However, the

smallest solution corresponds to the extinction probability for the branching

process, and is therefore of greater importance and will be the one considered

in the rest of this chapter. It seems unnatural to consider the outbreak to
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be contained when the number of infectives has become unbounded, and so

henceforth it will be assumed that the probability of containment is G(α),

even if α = 0.

4.2.5 Calculating the probability of containment

A possible algorithm for solving equations (4.1) for G(θ) runs as follows.

Let x0 = 0 and ψ = (ψ1, . . . , ψH). For n ∈ N define

xn = ψ

(

θ +

H
∑

u=1

(1 − xn−1,u)βu

)

.

To find G(θ) sequentially calculate x1,x2, . . . until xn ≈ xn−1 to the desired

level of accuracy.

Here, we prove that the sequence (xn) converges to G(θ), and so the algorithm

must converge. First we show by induction that (xn) is non-decreasing and

bounded above by G.

First note that for 1 ≤ h ≤ H,

ψh

(

θ +
H
∑

u=1

βu

)

= E

[

exp

{

−

(

θ +
H
∑

u=1

βu

)

.Sh

}]

≥ 0,

whence x1 ≥ x0, where y ≥ x if and only if yi ≥ xi for all i. Next assume the

inductive hypothesis that xn−1 ≤ xn and note that since ψh is non-increasing

xn ≥ xn−1 ⇐⇒ ψ

(

θ +
H
∑

u=1

(1 − xn,u)βu

)

≥ ψ

(

θ +
H
∑

u=1

(1 − xn−1,u)βu

)

⇐⇒ xn+1 ≥ xn.
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Therefore by induction, (xn) is monotonic. Next, we show that (xn) is bounded

above by G. Clearly x0 = 0 ≤ G, and if we assume the inductive hypothesis

xn ≤ G, then

G = ψ

(

θ +
H
∑

u=1

(1 −Gu)βu

)

≥ ψ

(

θ +

H
∑

u=1

(1 − xn,u)βu

)

= xn+1

and so by induction (xn) is bounded above by G for all n. For 1 ≤ h ≤ H,

the sequence (xn,h) is non-decreasing and bounded above, so by the monotone

sequence theorem it must converge. Given that (xn,h) converges, it must con-

verge to a solution to equation (4.1). Since it is bounded above by G, and G is

the smallest solution to this equation by Theorem 4.3, it must converge to G.

Therefore this algorithm is guaranteed to converge to the solution of equation

(4.1). In applications, it has been noted that remarkably few iterations are

required for convergence to eight decimal places, sometimes as few as two.
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4.3 Calculating the probability of containment

without an intervention

In order to best understand the properties of the probability of containment,

some special cases will be considered, and explored numerically. This section

starts with the simplest - the case in which every household generates sever-

ity according to a known distribution. Next, a simple model for the household

subepidemics is considered. The effect of having a mixture of household sizes on

the model is explored and finally a multitype model for the household subepi-

demics is considered.

4.3.1 Household severity distribution known

Let every household generate severity according to a known distribution S with

generating function ψ. This is equivalent to a model in which every household is

identical and consists of a single individual with infectious period S. This case

clearly demonstrates the effect of the parameters α and β upon the probability

of containment.

When there is one type of infective (K = 1) and one type of household subepi-

demic (H = 1) with known severity distribution S, Theorem 4.1 implies that

G(α) = ψ(α+ (1 −G(α))β) (4.5)

where individuals make internal infectious contacts at rate β, external contacts

at rate α and household subepidemics produce severity according the random

variable S, with generating function ψ.
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Figure 4.1: The probability of containment G(α) against the internal contact
rate β, when S ≡ 1.

Figure 4.1 demonstrates the effect on the probability of containment G(α) of

altering the infection rate β and the external contact rate α, when the house-

hold severity distribution S ≡ 1, and so ψ(θ) = e−θ. Clearly G(α) is strictly

decreasing in α and decreasing in β. When α is zero no external contacts are

possible, and therefore the probability of containment within the target region

must be one. However, the limit as α tends to zero of G(α) is the probability

that the branching process has finitely many offspring (as discussed in Theo-

rem 4.3). The region of figure 4.1 enclosed by the solid line lim
α→0

G(α) and the

line G(α) = 1 (which is not shown) is unobtainable by G(α) for this household

severity distribution. Since α = 0 is a bounding case, it is interesting to note

that for β > 2, the containment probability is small, irrespective of the value

of α.
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4.3.2 An SIR model for the household subepidemics

This section calculates the severity distribution of a simple SIR household

subepidemic without intervention, staying with the case in which H = K = 1.

The effect of this model on the probability of containment is explored.

Consider a household subepidemic in which individuals fall into one of three

categories: susceptible, infective or removed. Let n be the number of initial

susceptibles and since the household subepidemic results from a single infectious

contact in the internal population, assume that there is just one initial infective

in the household. Each infective has infectious period with distribution TI

and during this period makes infectious contacts with each susceptible in the

household (independently) at the points of a Poisson process with rate γ. If

there are n susceptibles and a single infective initially, Ball (1986) derives the

generating function of the household severity to be

ψ(θ) = E[exp(−θS)]

=

n
∑

j=0

(

n

j

)

gj(θ)

where for j = 0, . . . , n,

j
∑

w=0

(

j

w

)

gj(θ)

φ(θ + γ(n− j))1+w
= 1. (4.6)

Here φ(θ) = E[exp(−θTI)] is the generating function of the infectious pe-

riod distribution. Equation (4.6) can be solved sequentially to give gj(θ) for

j = 0, . . . , n. Recall that individuals in the households make internal contacts

(to individuals in other households) at rate β and external contacts at rate α.
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Figure 4.2: The probability of containment G(α) against the internal contact
rate β, when α = 0.02, TI ≡ 1 and n = 3.

Figure 4.2 demonstrates the effect that the contact rates β and γ have on

the probability of containment, for a fixed value of α, and with TI ≡ 1 so

that φ(θ) = e−θ. When the household contact rate γ is infinite, all of the

susceptibles become infected the instant that the household does. Since the

constant infectious period is the maximum under Laplace transform ordering

(see section 4.4.3), this curve is a lower bound for any G(α) with this household

size, external contact rate and expected infectious period. Notice that there

is very little difference between the curves for γ = 1 and γ = ∞; and when γ

is small the containment probability is much more sensitive to changes in γ.

This stems from the fact that there is an upper limit on the household severity

distribution corresponding to the whole household becoming infected. If n is

increased then the containment probability is increasingly affected by the value
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Figure 4.3: The probabilities of containment Ge(α), Gr(α) and Gj(α) (for
j ∈ {1, 3, 5}) against the mixing rate λ, when α = 0.002, γ = 1, and TI ≡ 1.

of γ.

4.3.3 Mixed household sizes

Two models were compared in order to investigate the effect of mixed household

sizes on the probability of containment. For comparison we consider an equal-

sized households model in which all households are of size three, and a mixed

households model with household sizes of one, three and five in equal amounts.

In order to keep the models comparable, it is assumed in both that an infective

will make contacts with susceptible individuals outside of their household with

equal probability at a rate λ. Thus, in the model with equal sized households,

β = λ, and in the mixed household size model βj = jλ/9, where βj is the rate
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at which households of size j are infected for j ∈ {1, 3, 5}.

Figure 4.3 shows the probability of containment for the equal sized household

model (Ge(α)); the probability of containment given the branching process

starts from an infectious household of size j (Gj(α)) for the mixed sized house-

holds model; and also Gr(α), the probability of containment given that the

mixed sized households branching process is seeded with a single infectious

individual chosen uniformly at random from the population. Thus,

Gr(α) =
G1(α)

9
+

3G3(α)

9
+

5G5(α)

9
.

For the branching process with equal sized households, the reproduction number

is R∗ = 2.56λ, and for the mixed sized households process R∗ = 3.65λ. Notice

that with the exception of G1(α), all of the other curves fall beneath Ge(α),

the probability of containment with equal sized households. This ties in with

the fact that R∗ is lower for this model. If the internal contact rate is increased

in the mixed sized households process so that the two processes have the same

value of R∗, then the equal sized households process has the higher containment

probability only when R∗ is less than approximately 1.2.

4.3.4 Two types of infective

This section compares the containment probabilities of a model that has two

types of infective (called adults and children) and a model that has a single

infective type. Children (type 2) are assumed to be ten times as infectious as

adults (to clearly demonstrate the effect - this is not thought to be realistic).

However, children make external contacts at a tenth of the rate of adults.
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Figure 4.4: The probabilities of containment Gs(α), Gr(α) and Gj(α) (for
j ∈ {1, 2}) against the household contact rate. In the two type model, house-
holds contain 2 adults and 2 children, α = (0.1, 0.01), β1,j = 0.045, β2,j = 0.45,
γ1,j = 0.1γ2,2 = 0.1γ2,1 and TI ≡ 1, for j ∈ {1, 2}. For the one type model
households are of size 4 and the parameters were chosen to be the average over
the two types.

Let K be the number of types of infective, nk be the initial number of type k

susceptibles and mk be the initial number of type k infectives, for k = 1, . . . , K.

Form the vectors n = (n1, . . . , nK) and m = (m1, . . . , mK). Write x ≤ y if

xk ≤ yk for all k = 1, . . . , K, and
(

x

y

)

for
K
∏

k=1

(

xk

yk

)

. Let Γ = [γi,j] be the matrix

of household contact rates, and let the infectious period distribution of a type

k infective have generating function φk(θ). For θ ∈ [0,∞)K, Ball (1986) gives

the generating function of the severity of a multitype SIR epidemic model to
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be

ψ(θ) =
∑

0≤w≤n

gw(θ)

(

n

w

)

where, for 0 ≤ j ≤ n,

∑

0≤w≤j

gw(θ)
(

j

w

)

φ(θ + (n− j)ΓT )m+w
= 1,

where φ(θ)x =
K
∏

k=1

φk(θk)
xk . This can again be solved sequentially to give gw(θ)

for 0 ≤ w ≤ n.

Figure 4.4 shows four versions of the probability of containment: one for a

population with a single type of infective with average behaviour (Gs(α)); two

for populations seeded with an infectious adult and an infectious child (G1(α)

and G2(α) respectively) and one for a population in which the initial infective’s

type is chosen at random (Gr(α) = (G1(α)+G2(α))/2). The household contact

rates are fixed in the following proportions as γ2,2 is increased;

γ2,2 = γ2,1 = 10γ1,1 = 10γ1,2.

When the household contact rates are very close to zero, the containment prob-

ability is lowest in a population seeded with an infectious adult. This is be-

cause the initial household forms a significant part of the branching process

and adults have the highest external contact rate. As the household contact

rates are increased the curves rapidly swap over, as more individuals are likely

to be infected by a child and so the population seeded with a child has the

lower probability of containment. Unless the household contact rate is very
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Figure 4.5: The probabilities of containment Gs(α), Gr(α) and Gj(α) (for
j ∈ {1, 2}) against the external contact rate, always with R∗ = 1.8. For the
carrier model α2 = 0.5α1, β2 = 0.5β1 and γ = (1, 0.5); TI ≡ 1. The single type
model has the average of the two equivalent parameters in the two type model.

small, the probability of containment is lower for the population with one type

of infectious individual of average infectiousness than for the population seeded

with a random type of infective. This reflects the fact that the reproduction

number R∗ is larger for single type population when γ2,2 > 0. When γ2,2 = 0

both values of R∗ are equal to λ(1 + 1/10) = 0.5. As the household contact

rates tend to infinity, R∗ tends to two for both models, however R∗ is always

larger for the single type model.
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4.3.5 Asymptomatic carriers and infectives

It is a clinical feature of the influenza virus that some cases can be severe,

whilst others appear to have no symptoms (Kaiser et al., 2000). It is therefore

assumed that infectiousness can vary between cases too (for example Longini

et al., 2004; Ferguson et al., 2005). The simplest way to incorporate this into

a model is to define two types of infectious individual, symptomatic infectives

and asymptomatic carriers, each with different infectious contact rates. Once

infected, an individual is symptomatic with probability 1/2 (Ferguson et al.,

2005), and asymptomatic otherwise.

It is possible to calculate the generating function of the household severity

distribution using the formula given in section 4.3.4 by conditioning on the type

of infectious behaviour each individual in the household will exhibit if infected.

Thus, individuals exhibit the same type throughout their lifetime as in section

4.3.4. For example, the number of susceptibles that will be symptomatic if

infected follows a binomial distribution with parameters n and 1/2.

Figure 4.5 compares the containment probability for a model with a single type

of infective (Gs(α)) with the containment probabilities for a model with asymp-

tomatic carriers (type 2 individuals) and symptomatic infectives (type 1 individ-

uals), as the external contact rate is increased. For j = 1, 2, Gj(α) and Gr(α)

are the containment probabilities for this two type model, when the epidemic is

seeded with a type j infective and randomly chosen infective respectively. Both

models have the same reproduction number, R∗ = 1.8 (based on Ferguson et al.,

2005). The curves begin at the probability that the branching process becomes

extinct, and decrease towards zero. The population seeded with a symptomatic
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infective is obviously least likely to be contained, and an asymptomatic seed the

most likely. More interestingly, the single type population with the same value

of R∗ is less likely to be contained than the mixed infectiousness population

with randomly chosen seed. This is because the asymptomatic carriers make

the branching process more likely to become extinct in the early stages.

4.3.6 Summary of numerical illustrations

A simple version of the model defined in section 4.2.1 was considered, in which

the household severity distribution was known, to demonstrate the effects of

changing the external contact rate and the internal contact rate on the proba-

bility of containment. Next, a simple household model was used to demonstrate

the effect of altering the household contact rate on the containment probability.

Finally, the effect on the probability of containment of three ways of increasing

the realism of the model was explored: mixed household structure, two types

of infective, and asymptomatic carriage. Whilst having a mixture of household

sizes in the model decreases the probability of containment, having a mixture

of infectiousness parameters usually increases it.
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4.4 Laplace transform orders

Previously we have seen how to calculate containment probabilities, which of

course depend on the distribution of the household severity S, which in turn

depends on the infectious period distribution TI . This section uses a Laplace

transform order to investigate such dependencies further, beginning with the

model with a single household type. In particular, it is proved that the constant

household severity distribution has the smallest probability of containment, for

a given value of E[S].

4.4.1 Laplace transform orders of household severity dis-

tributions

This section is concerned with comparing household severity distributions, par-

ticularly those with equal mean, to see their effect on the containment probabil-

ity for the model with a single type of household subepidemic. It is proved that

a Laplace transform ordering on the household severity distributions induces

a Laplace transform ordering on the total severities of the resulting branching

processes, i.e. if U ≥Lt V then ∆U ≥Lt ∆V , where ∆X is the total severity of

a branching process with household severities distributed according to X. The

Laplace transform partial order ≥Lt is defined on the space of non-negative ran-

dom variables by U ≥Lt V if and only if E[e−θU ] ≤ E[e−θV ] for all θ ∈ [0,∞),

assuming the expectations exist. For more details see Shaked and Shanthiku-

mar (1994). This Laplace transform ordering implies that the containment

probabilities satisfy

E[e−α∆U ] ≤ E[e−α∆V ]
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for every value of α ≥ 0.

The proof that U ≥Lt V implies ∆U ≥Lt ∆V will be structured as follows.

The branching process will be constructed so that the individuals are ordered,

the first n− 1 having severity distributed according to U , and the rest having

severity according to V . Then, the total severity of the branching process

is decomposed about the nth individual. The effect on the total severity of

changing the nth individual’s severity distribution from U to V can then be

isolated, and the required ordering proved.

Construct the discrete time branching process so that the individuals are

uniquely numbered 0, 1, 2, . . . in any way, as long as the following three condi-

tions hold.

1. If an individual appears in an earlier generation than individual n, then

its number is less than n.

2. If an individual appears in a later generation than individual n, then its

number is greater than n.

3. If individual n > 0 has been born in the branching process, so have

individuals 0, . . . , n− 1.

Define En to be the event that individual n is ever born in the branching process,

so if En does not occur, the total progeny of the branching process is less than

n. For n ∈ N define ∆n(X) to be the total severity of a branching process in

which (if the individuals are ever created) individuals 0, . . . , n−1 have severity

distributed according to U ; individual n has severity distributed according to X

and individuals with numbers greater than n have severity distributed according

to V . Note that ∆n(0) is the severity generated by a branching process with
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severity distribution U before individual n, V after individual n and individual

n generates no severity and therefore has no offspring. Define ∆X,V to be the

total severity generated by a branching process with severity distribution V ,

except for the initial ancestor which has severity distributed according to X,

and define ∆0(X) = ∆X,V . For i ∈ N, let ∆
(i)
X,V be i.i.d. copies of ∆X,V . Let

GV (θ) = E[e−θ∆V,V ]. Finally, assume that U ≥Lt V . By isolating individual n

and their offspring from the rest of the branching process, we see that

E[e−θ∆n(U)] = E[e−θ∆n(U) 	
En

] + E[e−θ∆n(U) 	
Ec

n
]

= E[e−θ(∆n(0)+∆U,V ) 	
En

] + E[e−θ∆n(U) 	
Ec

n
]

= E[e−θ∆n(0) 	
En

]E[e−θ∆U,V ] + E[e−θ∆n(U) 	
Ec

n
]

Let XU denote the number of offspring produced by an individual with severity

distribution U , so that XU ∼ Pois(βU). Thus,

E[e−θ∆U,V ] = E

[

exp

{

−θ

(

U +

XU
∑

i=1

∆
(i)
V,V

)}]

= E

[

e−θU

XU
∏

i=1

E
[

e−θ∆
(i)
V,V

]

]

= E
[

e−θUGV (θ)XU
]

= E
[

e−θUE[GV (θ)XU |U ]
]

= E
[

e−(θ+β(1−GV (θ)))U
]

≤ E
[

e−(θ+β(1−GV (θ)))V
]

= E[e−θ∆V,V ]
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Thus,

E[e−θ∆n(U)] = E[e−θ∆n(0) 

En

]E[e−θ∆U,V ] + E[e−θ∆n(U) 

Ec

n
]

≤ E[e−θ∆n(0) 

En

]E[e−θ∆V,V ] + E[e−θ∆n(U) 

Ec

n
]

= E[e−θ∆n(0) 

En

]E[e−θ∆V,V ] + E[e−θ∆n(V ) 

Ec

n
]

= E[e−θ∆n(V )]

and so ∆n(U) ≥Lt ∆n(V ). However, for n = 0, 1, . . ., we have that

∆n(U) = ∆n+1(V ) almost surely, and so

∆V = ∆0(V )

≤Lt ∆0(U)

= ∆1(V )

≤Lt ∆1(U)

...

≤Lt ∆U .

This is equivalent to

P(containment|U, α) ≤ P(containment|V, α)

for α ∈ [0,∞), where P(containment|X,α) denotes the probability of contain-

ment for the branching process with household severities distributed according

to X and external contact rate α.
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4.4.2 Laplace transform orders of infectious period dis-

tributions

Section 4.4.1 demonstrated that if S1 ≥Lt S2 then ∆1 ≥Lt ∆2 where household

severity distribution Si gives rise to a branching process with severity ∆i. This

section discusses the equivalent property for infectious period distributions and

household severities, for the household subepidemic model given in section 4.3.2

with only a single type of infective, i.e. if TI,1 ≥Lt TI,2 then S1 ≥Lt S2. This

result is proved by Lefèvre and Picard (1993) using Gontcharoff polynomials.

A similar result for the final size of an epidemic was proved by Daley (1990),

i.e. if TI,1 ≥Lt TI,2 then Z1 ≥Lt Z2, where Zi is the final size of an epidemic

with infectious period distribution TI,i.

Combining the result for the severity distributions of the household subepi-

demics with the result proved in section 4.4.1, we have that if TI,1 ≥Lt TI,2 then

∆1 ≥Lt ∆2, which implies that

P(containment|TI,1, α) ≤ P(containment|TI,2, α)

for α ≥ 0, where P(containment|TI,i, α) is the containment probability for a

single type branching process of household subepidemics without intervention,

in which the infectious periods are distributed according to TI,i and the external

contact rate is α.
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4.4.3 The constant distribution

This section considers the constant distribution, which is the maximal distri-

bution for a given finite mean under the Laplace transform order. Recall that

U ≥Lt V if and only if E[exp(−θU)] ≤ E[exp(−θV )] for every θ ∈ [0,∞). The

function f(x) = exp(−θx) is convex, and so by Jensen’s inequality every ran-

dom variable X satisfies E[exp(−θX)] ≤ exp(−θE[X]), which is the Laplace

transform of the constant distribution. Thus, E[X] ≥Lt X, for all non-negative

random variables X with finite mean.

The result proved in section 4.4.1 then shows that ∆(E[S]) ≥Lt ∆(S), where

∆(S) is the severity of a branching process with household severity distribution

S. This implies that no household severity distribution with the same mean

yields a larger expected total severity than the constant distribution and also

the probability of containment is smallest for the constant distribution. Also,

when α → 0, G(α) becomes the probability of extinction for the branching

process, and so the constant household severity distribution provides the lowest

probability of extinction.

Section 4.4.2 concludes that if two SIR epidemic models without intervention

have infectious period distributions U and V that satisfy U ≥Lt V then the

household severity distributions must satisfy S(U) ≥Lt S(V ), where S(X)

denotes the severity distribution of an SIR epidemic with infectious period

distribution X. When coupled with Jensen’s inequality, this implies that

S(E[TI ]) ≥Lt S(TI) for any non-negative infectious period distribution TI

with finite mean. Applying the result from section 4.4.1 then shows that

∆(S(E[TI ])) ≥Lt ∆(S(TI)) and so the branching process with SIR household
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Figure 4.6: The probability of containment G(α) against the external contact
rate α, when β = 0.4, γ = 0.5, and E[TI ] = 1 and all households are of size 4.

subepidemics (without intervention) and constant infectious period distribu-

tions has a lower containment probability than any other infectious period

distribution with this mean.

4.4.4 Examples

Figure 4.6 demonstrates the effect of the infectious period distribution on the

probability of containment. The infectious period distributions given in the

figure satisfy

1 ≥Lt U(0, 2),Γ(2, 2) ≥Lt Exp(1) ≥Lt Γ(1/2, 1/2)
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and so the curves appear in this order from the bottom. Notice how much

variability in the containment probability can be attributed to the infectious

period distribution. The smallest possible non-negative distribution (under

Laplace transform ordering) is the contant zero, and this can be approached

arbitrarily closely by a distribution with mean one, for example define

Xn =

{

n with probability 1/n,

0 with probability 1 − 1/n,

then this distribution has mean one, and its Laplace transform tends to the

Laplace transform of 0 as n tends to infinity. The distributions Γ(2, 2) and

U(0, 2) are not ordered under the Laplace transform ordering and the curves

representing their containment probabilities cross.

Distribution E[Z] R∗

1 1.78 1.11
U(0, 2) 1.56 1.02
Γ(2, 2) 1.52 1.01
Exp(1) 1.34 0.94
Γ(1/2, 1/2) 1.11 0.84

Table 4.1: The effect of the infectious period distribution on the expected
household final size and R∗, for β = 0.4, γ = 0.5, E[TI ] = 1 and household size
4.

Table 4.1 shows the expected final size of the households and the threshold

parameter for the same infectious period distributions as figure 4.6. The final

size of a household subepidemic, Z, does not include the initial infective. Notice

that it is not the case that the expected final sizes are all equal, despite the

fact that the expected infectious periods are equal. Of the unordered infectious

period distributions, the uniform has the lowest probability of containment as

α approaches zero, and therefore it has a smaller probability that the branching
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process is finite, and so a larger value of R∗.

4.4.5 Laplace transform orders in a multitype setting

It is possible to generalise the Laplace transform order relationships for single-

type populations to hold for multitype populations. In section 4.4.2, it was

noted that if the infectious period distributions satisfy U ≥Lt V then the re-

spective household severities (without intervention) generated from these sat-

isfy S(U) ≥Lt S(V ). Lefèvre and Picard (1993) state that this can be gen-

eralised to the multitype case, so if the infectious period distributions satisfy

Uk ≥Lt Vk (1 ≤ k ≤ K) then the household severity distributions will satisfy

Sk(U1, . . . , UK) ≥Lt Sk(V1, . . . , VK) for 1 ≤ k ≤ K, where Sk(X1, . . . , XK) is

the severity generated by a household SIR subepidemic with infectious period

distributions X1, . . . , XK and no intervention. It is also possible to generalise

the proof used for branching processes in section 4.4.1 to the multitype setting,

but the notation is cumbersome and it follows the same lines as the single type

case, so it will not be included here. If household severity distributions satisfy

Uh ≥Lt Vh for 1 ≤ h ≤ H, then the corresponding total severity vectors satisfy

∆h(U1, . . . , UH) ≥Lt ∆h(V1, . . . , VH) for 1 ≤ h ≤ H, where ∆h(X1, . . . , XH)

is the total severity generated by a H-type branching process of households,

with household severity distributions X1, . . . , XH and initial ancestor of type h.

Note that the result relating household severity distributions to containment

probabilities can be applied to any model for household subepidemics (possibly

including interventions), whereas the result relating infectious period distribu-

tions to household severity distributions relies on the Markov SIR household

subepidemic model (without intervention) introduced in section 4.3.2.
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4.5 Modelling household subepidemics with interventions

4.5 Modelling household subepidemics with

interventions

This section considers interventions at the household level, i.e. if influenza is

discovered in a household (for instance by one member of the household devel-

oping symptomatic illness) then the transmission dynamics of the household

change. Firstly, Markov models and then simulated models for the household

subepidemics are considered. Several intervention strategies are then explored

for a realistic example using simulated household subepidemics.

4.5.1 Markov household subepidemics

In order to include interventions in the household model, we require a trigger -

a point in time at which to apply the intervention. It seems sensible to assume

that the observation of the first symptomatic individual in the household is a

suitable trigger (c.f. Ball et al., 2007). Since the timing of this trigger is based

on the state of the epidemic process, it can be difficult to make analytic progress

if the model does not have the Markov property. Assume that the model has

the Markov property, so that the transmission dynamics after the intervention

depend only upon the state at the time of intervention. One disadvantage is

that if the model does have the Markov property then the time spent in each

state has an exponential distribution, which is not usually very realistic.

Next, a generating function for the total severity generated by a household

subepidemic is derived for a general Markov model.

Let {X(t) : t ≥ 0} be a continuous time Markov process model for the household
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4.5 Modelling household subepidemics with interventions

subepidemics. Let Ω be the state space of the model, and associate with each

state a function s : Ω → [0,∞)K, so that if the Markov process spends a time t

in state u, the severity of the household S goes up by ts(u). Let Q = [qu,v] be

the generator matrix for the process and let ψu be the generating function of

the household severity S given that the process starts in state X(0) = u. Let

T1 be the time of the first event, which has density fu(t) = −qu,ue
qu,ut. So,

ψu(θ) = E
[

e−θ.S
∣

∣

∣
X(0) = u

]

=
∑

v∈Ω\{u}

∫ ∞

0

{

E
[

e−θ.S
∣

∣

∣
X(0) = u,X(t) = v, T1 = t

]

× P(X(t) = v|T1 = t, X(0) = u)fu(t)
}

dt

=
∑

v∈Ω\{u}

∫ ∞

0

{

E
[

e−θ.(ts(u)+S)
∣

∣

∣
X(0) = v

]

× P(X(t) = v|T1 = t, X(0) = u)fu(t)
}

dt

=
∑

v∈Ω\{u}

∫ ∞

0

e−tθ.s(u)E
[

e−θ.S
∣

∣

∣
X(0) = v

] qu,v

−qu,u

(−qu,u)e
qu,ut dt

=
∑

v∈Ω\{u}

∫ ∞

0

e−tθ.s(u)ψv(θ)qu,ve
qu,ut dt

=
∑

v∈Ω\{u}

ψv(θ)qu,v

θ.s(u) − qu,u

.

If θ is fixed and |Ω| is finite these equations can be solved simultaneously for

ψu(θ), for u ∈ Ω. In practice, as the number of individuals in the household

subepidemics increases, and as the possible infective behaviour becomes more

complex, the size of the state space Ω becomes very large, and so solutions to

these equations are time consuming to compute.
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4.5.2 Simulated household subepidemics

As the model for the household subepidemic is made more realistic and more

complicated, it becomes increasingly difficult to make analytic progress towards

finding the generating function of the household severity. It is however possible

to find an approximation for the generating function by simulating the house-

hold severity distribution, which can be done very quickly and easily for even

very complicated models, for example models that include several types of in-

fective, each of which undergoes several phases of infection. This approach is

much better than simulating the whole branching process of households as it

can be done much more rapidly and robustly. Simulating a branching process

with a reproduction number close to one is difficult because some realisations

may take a very long time to die out and therefore a very large number of cal-

culations need to be performed to determine whether or not extinction occurs.

Another situation in which it is appropriate to approximate the generating

function from a sample from the distribution of household severities arises when

performing inference on household epidemic data. Cauchemez et al. (2004) use

Markov Chain Monte Carlo methods to analyse purely household based data

to estimate the household transmission parameters for influenza. In order to

obtain estimates of the infectiousness, it is also necessary to impute the infection

times, and therefore implicitly the household severity. These samples from the

household severity distribution can then be used to estimate the generating

function of the household severity. This can then be used with estimates for

the internal and external transmission parameters to calculate the containment

probability, without needing to simulate the entire branching process - which

can be difficult if the threshold parameter is close to unity.
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4.5 Modelling household subepidemics with interventions

If there are r samples S1, . . . ,Sr from a household severity distribution with

K kinds of severity then a generating function ψ(θ) can be formed simply by

summing the appropriate functions of the samples.

ψ(θ) =

r
∑

i=1

exp(−θ.Si)

r

4.5.3 Influenza in rural Thailand

Ferguson et al. (2005) use household epidemic data to determine estimates of in-

fluenza natural history parameters and distributions. These estimates are used

to construct a detailed model for influenza transmission in Thailand, which is

then simulated to determine the effectiveness of several intervention strategies

aimed at eradicating the disease from Thailand. They do not model any trans-

missions out of the region. In this section, the parameter estimates obtained

by Fergusson et al. are used to simulate the household severity distribution for

several possible interventions at the household level. The effectiveness of each

intervention strategy is then quantified by the effect on the probability of con-

tainment. Finally, a suitable distribution for the initial number of infectious

households is arrived at.

Household size Proportion Household size Proportion
1 0.105 6 0.030
2 0.175 7 0.015
3 0.230 8 0.005
4 0.270 9 0.004
5 0.165 10 0.001

Table 4.2: The household size distribution of Thailand.

In contrast to many other modelling papers, Ferguson et al. (2005) have a

constant length infectious period during which infectiousness varies. This is
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simple to incorporate into our model if the household severity is defined to be

the integral of the present household infectiousness level over the entire period

of the household subepidemic. In fact, this simplifies things somewhat, as it

is now sufficient to consider just this single type of severity. Again following

Ferguson et al., after infection each individual undergoes a latent period with

length distributed according to 0.5 days plus a Weibull distribution with power

parameter 2.21 and scale parameter 1.1. It is assumed that 50% of infections are

severe (strongly symptomatic) and these are twice as infectious as those that

are non-severe. Infectiousness for severe cases varies according to the density

of a lognormal distribution with parameters -0.72 and 1.8 truncated at 10 days

and then renormalised; denote this density by κ. The probability of a household

member avoiding infection in the first t days of infectiousness from a severe case

is assumed to be

exp

(

−

∫ t

0

0.94

n0.8
κ(u)du

)

where n is the number of individuals in the household. Table 4.2 shows the

distribution of household sizes.

The internal contact rate β was chosen to give a value of R∗ equal to 1.8 to

match the paper, which has more than two levels of mixing. Following Ferguson

et al. (2005), the simulations were actually performed in a discretisation of the

above model, in which all events that occur in ((t − 1)/4, t/4] actually occur

at time t/4, for t ∈ N. This does not effect the severity produced by the

household (since infectious periods have constant length 10 days) except by

changing slightly the time at which the intervention (if there is one) is applied.
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Interventions

The following five intervention strategies are considered.

1. No intervention,

2. Household isolation,

3. Household prophylaxis,

4. Blanket prophylaxis,

5. Social distancing.

Again following Ferguson et al. (2005), in the household isolation and household

prophylaxis intervention strategies, severe infections exhibit healthcare-seeking

behaviour 0.25 days after the onset of symptoms, assumed to coinside with the

start of the infectious period, and at this point the intervention is triggered with

probability 0.9. In the household isolation intervention strategy it is assumed

that no more internal or external infections can emerge from an isolated house-

hold after the intervention, and therefore any further household infections and

household severity are inconsequential. In the household prophylaxis interven-

tion strategy, each individual is given a course of antivirals with probability 0.9.

Ferguson et al. (2005) assume that a course of the antiviral drug Oseltamivir

(Tamiflu) will reduce infectiousness by 60%, reduce susceptibility by 30% and

reduce the probability of a severe infection by 65%. In the blanket prophylaxis

intervention, 90% of the population is given a course of antivirals at the out-

set. Finally, in the social distancing intervention the internal contact rate is

decreased so that R∗ is reduced from 1.8, to the threshold level of one, at which

the extinction of the branching process becomes certain.
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Figure 4.7: The probability of containment against the external contact rate
α for five intervention strategies with 10,000 simulations of each of the 10
household sizes.

Figure 4.7 shows the probability of containment for the intervention strategies

described above, and table 4.3 gives the R∗ values. The household prophylaxis

strategy and the social distancing strategy give similar improvements in the

probability of containment. It is interesting to note that for some values of α

the household prophylaxis strategy outperforms the social distancing strategy,

despite the fact that it has failed to reduce R∗ below one. This is because the

household prophylaxis strategy reduces infectiousness and therefore decreases

the number of external contacts per household, whereas it has been assumed

that the social distancing strategy has no effect on the external contact rate.

The household isolation strategy is the best possible household based inter-

vention with this set of trigger assumptions, as no contacts are assumed to
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Intervention Strategy R∗

No intervention 1.80
Household isolation 0.71
Household prophylaxis 1.05
Blanket prophylaxis 0.42
Social distancing 1.00

Table 4.3: The threshold parameter R∗ after intervention for five intervention
strategies for the household simulation model.

be made after the intervention is triggered. Despite this, the blanket prophy-

laxis strategy has a substantially lower value of R∗. This substantial difference

in threshold parameters is not as strongly reflected in the probability of con-

tainment. This is probably due to the fact that approaching a containment

probability of one becomes increasingly difficult.

Computationally, these results were very rapid to produce - 10,000 simulations

of each of the 10 possible household subepidemics were produced in about 45

minutes to obtain an estimate for the severity function. The algorithm to cal-

culate the probability of containment using these simulations usually converges

in two to five iterations, and takes at most a few seconds. To produce 10,000

simulations of such a complicated branching process model using the same com-

puting resources would take considerably longer - particularly as many of the

threshold parameters in table 4.3 are extremely near to one.

4.5.4 Initial phase

It may be unrealistic to assume that interventions can be applied to the ear-

liest generations of the branching process, as they may not even contain any

symptomatic cases. In section 4.5.3 it is assumed that the intervention can be

applied to the single initially infected household in the branching process. A
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more realistic approach is to seed the branching process with the number of

infectious households generated during an initial phase without intervention.

Let X denote the number of infectious households with which the branching

process is seeded. We will take X to be the number of infectious households

produced by the first generation in which the cumulative number of observed

cases exceeds 5. The distribution of X was found by the following method.

Firstly 200,000 household subepidemics were simulated, and the severity and

number of observed cases was recorded in each case. Recall that 90% of the

symptomatic cases are assumed to be observed. Next, 10,000 realisations of

the branching process were simulated up to the first generation in which the

cumulative number of observed cases exceeded 5, and the severity of this gener-

ation was recorded. If the branching process became extinct before this point,

then that realisation was discarded. For each of the 5,240 successful realisations

of the branching process severity, 10 observations of the offspring distribution

were simulated and contributed towards the distribution of X. The probability

of containment was then taken to be

∞
∑

i=0

G(α)iP(X = i).

Figure 4.8 shows the probability of containment given that five cases have been

observed, after which the intervention is applied. Obviously increasing the

number of seeds makes the probability of containment much smaller, however

note that there is also a small probability that X = 0, and so very small

probabilities of containment will increase. Without intervention, the probability

of containment is now very small, in contrast to when the branching process
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Figure 4.8: The probability of containment for five intervention strategies, when
the branching process is seeded with a random number of infectious households.

was seeded with a single infective. This highlights the importance of good case

surveillance, and the need to apply the intervention as soon as possible after

the first few cases are observed. Household prophylaxis and social distancing

only appear to be very effective for small external contact rates. Household

isolation and blanket prophylaxis remain effective for more values of α, but it

is not long before the probability of containment drops below 0.5.
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4.6 Conclusion and extensions

Halting an emerging disease like avian influenza in its early stages is vital to

prevent a pandemic. Mathematical models such as the ones developed here

provide a way to quantify the risks and assess the effectiveness of public health

policies before the event. This chapter has developed a method to find the

probability that an intervention will successfully contain an outbreak of pan-

demic influenza in humans. A branching process of households was used to

model the spread of infection through a population. Whilst the intervention

was considered to be effective within this population, the possibility that the

infection was transported outside this region was modelled. Several effects on

the probability of containment were then explored, without interventions.

It was found that if two infectious period distributions were ordered under the

Laplace transform ordering, then their probabilities of containment had the re-

verse ordering. If a mixture of household sizes was introduced into the popula-

tion this reduced the probability of containment. If a mixture of infectiousness

parameters was introduced into the model, this increased the probability of

containment.

Simulating the household severity distributions was found to be quicker and

much more flexible than using a Markov model. Several interventions were

considered with a household model based on the paper by Ferguson et al. (2005),

and blanket prophylaxis and household isolation were found to be more effective

than household prophylaxis and social distancing. Finally, an initial phase

without intervention was added to the model and this massively reduced the

range of external contact rates for which the interventions were effective. This
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initial phase without intervention was assumed to be over for the generation

after the first generation in which the total number of observed cases exceeds

five. This number of cases needed to initiate the intervention strategy could be

investigated further. If possible it should optimise the probability of containing

an emerging pandemic compared with the costs associated with an unnecessary

intervention caused by false detections and strains that are yet to develop the

ability to transmit efficiently between humans.
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Chapter 5

Conclusion and extensions

This chapter briefly summarises the purpose and main results of each chapter

of the thesis as well as suggesting some possible extensions.

5.1 Asymptomatic carriers

Chapter 2 of this thesis considers diseases in which a proportion of infected

individuals never develop symptoms, or develop only very mild symptoms, and

so are never detected. Such individuals are called asymptomatic carriers and

can significantly increase the spread of a disease. Asymptomatic carriers make

it very difficult to be certain that a disease has died out, even if no cases have

been detected recently. The aim of chapter 2 is to calculate the probability the

epidemic has died out given that no symptomatic cases have been observed for

a certain amount of time.

Throughout chapter 2 it is assumed that at time zero the distribution of the
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number of initial infectives is known. In practice, it is hard to know how this

distribution might be obtained. It would be interesting to explore the effect that

the initial distribution has on the probability the epidemic is over, particularly

for the stopping time version of the problem.

There are some interesting inference problems relating to asymptomatic car-

riers, for instance developing a model with which it is possible to test for the

presence of asymptomatic carriage from temporal data on case numbers. Es-

timating the proportion of individuals that are asymptomatic could also be

investigated.
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5.2 Modelling the effects of a delay in inter-

vention

Chapter 3 investigates the effect of modelling a delay between observing an in-

fected individual in a household and applying an intervention to that household.

The expected effective severity is defined to be the expected sum of the infec-

tious periods in a household, up to the time that the intervention is applied,

and this is calculated for a household subepidemic in a two level mixing model.

The expected effective severity is proportional to the reproduction number R∗,

which can be used to assess the effectiveness of an intervention.

Chapter 3 could be extended in many ways. Interventions that are not perfectly

effective could be considered, as could different distributions for the length of

the delay before the intervention is applied. During the early stages of an

epidemic, vaccines or interventions like administering antivirals are likely to be

in short supply, and this model allows them to be given to households in which

the epidemic has already died out. This raises the question in what proportion

of the households the intervention is ultimately totally ineffective, and how

could these households be identified.
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5.3 Evaluating the probability of containment

for pandemic influenza

Chapter 4 of this thesis develops a model to assess whether an outbreak of an

emerging disease can be contained by an intervention to the region from which

it emerged. This problem is motivated by the study of pandemic influenza in

humans. A multitype branching process of households is used to model the

spread of the disease in the region in which the intervention is fully effective,

and a Poisson process of external contacts is used to model the transmission of

the disease to outside this region. The containment probability is derived and

shown to be unique for a very general model, in which the household trans-

mission model is not specified. This allows a variety of different intervention

strategies targeted at the household level to be compared.

The effect on the probability of containment of changing various aspects of

the model was then explored numerically. It was found that if a mixture of

household sizes was included in the model this reduced the containment proba-

bility, however, if individuals were allowed a mixture of levels of infectiousness,

this increased the containment probability. It was proved that if two infectious

period distributions were ordered under the Laplace transform ordering, then

their probabilities of containment had the reverse ordering.

It was found that simulating the household severity distribution was easier and

more flexible than using a Markov process model, and was much faster than

simulating the whole branching process of households. Finally, a specific house-

hold transmission model was considered based on Ferguson et al. (2005) for a

selection of intervention strategies. It was found that blanket prophylaxis and
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household isolation were more effective than household prophylaxis and social

distancing, and a more appropriate number of initially infected households was

simulated.

The models and methods used in chapter 4 could be extended in several ways. It

is assumed that given a household’s severity, the number of internal contacts fol-

lows a Poisson distribution, and this assumption could be relaxed. This would

allow more variation in the number of infections an individual could make, and

so the model would better capture so called ‘superspreaders’ that infect a very

large number of individuals. Many other household severity models could be

explored. Forward contact tracing could be included in the simulated house-

hold model by assuming that a proportion of a household’s offspring will be

given antivirals some time after they were created. Backward contact tracing

could be incorporated into the household model by assuming that a house-

hold is investigated some period of time after making an infectious contact. A

more thorough investigation could be conducted into the appropriate number

of infectious households with which to seed the branching process. Mixtures of

intervention strategies could also be considered.

Although the model used in chapter 4 was developed to model an emerging

influenza pandemic in humans, it is very flexible and could be applied to other

emerging infectious diseases.
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Chapter 6

Appendices

Appendix A

An appendix to show that for the asymptomatic carriage epidemic model the

size of the state space En,i,c is equal to

|En,i,c| = (n+ 1)(i+ 1)(c+ 1) +
n(n− 1)(i+ c+ 1)

2
+
n(n + 1)(n+ 2)

6
.

Let

ej = |{(j, y, z) ∈ En,i,c}|

so that

|En,i,c| =
n
∑

j=0

ej.

Clearly en = (i+1)(c+1) because given only that no infections have occurred,

it is known that the number of infectives is between 0 and i and the number of

carriers is between 0 and c (inclusive).
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Next note that,

en−1 = en + i+ 1 + c+ 1

since the pair representing the numbers of infectives and carriers can be all of

the pairs above; plus c+ 1 pairs of the form (i+ 1, j) for j = 0, . . . , c and i+ 1

pairs of the form (j, c + 1) for j = 0, . . . , i.

In fact for k = 1, . . . , n,

en−k = en−k+1 + i+ 1 + c+ 1 + k − 1

since there are now c+ 1 extra pairs of the form (i+ k, j) for j = 0, . . . , i; i+ 1

extra pairs of the form (j, c + k) for j = 0, . . . , c; and k − 1 extra pairs of the

form (i+ j, c+ k− j) for j = 1, . . . , k− 1. It is easy to show by induction on k

that

en−k = (i+ 1)(c+ 1) + k(i+ c + 1) +
k(k + 1)

2
.

Initialisation:

en = (i+ 1)(c+ 1)

as required.

Inductive Hypothesis:

en−k = (i+ 1)(c+ 1) + k(i+ c + 1) +
k(k + 1)

2
.
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Inductive Step:

en−(k+1) = en−k + i + c+ 1 + k + 1

= (i+ 1)(c+ 1) + k(i+ c+ 1) +
k(k + 1)

2
+ i + c+ 1 + k + 1

= (i+ 1)(c+ 1) + (k + 1)(i+ c+ 1) +
(k + 1)(k + 2)

2

as required.

It remains only to find

|En,i,c| =

n
∑

k=0

en−k

=

n
∑

k=0

(i + 1)(c+ 1) + k(i + c+ 1) +
k(k + 1)

2

= (n + 1)(i+ 1)(c+ 1) +

(

i+ c+
3

2

) n
∑

k=0

k +
1

2

n
∑

k=0

k2

= (n + 1)(i+ 1)(c+ 1) +

(

i+ c+
3

2

)

n(n + 1)

2
+
n(n + 1)(2n+ 1)

12

= (n + 1)(i+ 1)(c+ 1) +
n(n + 1)(i+ c+ 1)

2
+
n(n + 1)(n+ 2)

6
.

This completes the proof.

225



Appendix B

Appendix B

Lemma 2.1 For any distinct real numbers x1, . . . , xn (n > 1),

n
∑

j=1

∏

k = 1
k 6= j

1

xj − xk

= 0

Proof:

Without loss of generality we may assume that the real numbers x1, . . . , xn are

positive, since we can apply the result to the list x1 + λ, . . . , xn + λ for any λ,

and the λs will cancel to give the more general result.

Let Yi ∼ Exp(xi) for i = 1, . . . , n be independent random variables. From page

203 of Rényi (1970) for n ∈ N, the random variable

Sn =
n
∑

i=1

Yi

has probability density function

gn(t) = (−1)n−1b1 . . . bn

n
∑

k=1

e−bkt

∏

i6=k

bk − bi

for t > 0. Now let x = min{x1, . . . , xn}. If X1, . . . , Xn are i.i.d. Exp(x) random

variables then

Rn =

n
∑

i=1

Xi
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is a Γ(n, x) random variable with probability density function

fn(t) =
xntn−1e−xt

(n− 1)!

for t > 0.

Since the Xi and Yi are exponentially distributed and x ≤ xi (for i = 1, . . . , n)

then, for all ε > 0,

P(Rn < ε) > P(Sn < ε)

which implies that
∫ ε

0

fn(t)dt >

∫ ε

0

gn(t)dt.

Since this is true for all ε > 0 and fn(t), gn(t) ≥ 0;

lim
ε→0

fn(ε) ≥ lim
ε→0

gn(ε) ≥ 0.

But for n > 1,

lim
ε→0

fn(ε) = 0

follows from the definition of fn(t). Thus,

0 = lim
ε→0

gn(ε)

= lim
ε→0

(−1)n−1x1 . . . xn

n
∑

k=1

e−xkε

∏

i6=k

xk − xi

= (−1)n−1x1 . . . xn

n
∑

k=1

1
∏

i6=k

xk − xi

and since xi > 0 for i = 1, . . . , n, the result follows.

227



Appendix C

Appendix C

Lemma 6.1 Let Q be a substochastic d × d matrix in which for all states x

there exists a state y and a k ∈ N ∪ {0} such that the probability of going from

x to y in k steps is strictly positive, and the state y satisfies
d
∑

j=1

qy,j < 1. Then,

∞
∑

t=0

Qt = (1 −Q)−1.

Proof: (following Young (1988, P73))

Let qi,j represent the (i, j)th entry of Q and let q
(k)
i,j be the probability of going

from i to j in k steps. The states not represented in Q are absorbing states and

so q
(k)
i,j is the (i, j)th entry in the matrix Qk. The conditions of the theorem

imply that for each row i in Q there exists a k(i) such that
d
∑

j=1

q
(k(i)+1)
i,j < 1.

Define K = 1 + max{k(i) : i = 1, . . . , d}, and so every row in QK will sum to

strictly less than one. Let ‖ · ‖ be the norm

‖x‖ =

d
∑

i=1

|xi|

on R
d and define a matrix norm ‖Q‖ = sup{‖xQ‖ : x ∈ R

d, ‖x‖ ≤ 1}. Since

every row of QK has sum strictly less than one, we have that ‖QK‖ < 1. First

we show that the sequence (x(1 +Q +Q2 + . . .+Qn))∞n=1 converges and then

that 1 +Q +Q2 + . . .+Qn → (1 −Q)−1 as n→ ∞.

If the sequence (x(1 +Q+Q2 + . . .+Qn))∞n=1 is a Cauchy sequence, then since

R
d is complete the sequence must converge, so it suffices to prove that it is

Cauchy.
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For m > n > K,

‖x(1 +Q +Q2 + . . .+Qm) − x(1 +Q +Q2 + . . .+Qn)‖

= ‖x(Qn+1 + . . .+Qm)‖

≤ ‖xQn+1‖ + . . .+ ‖xQm‖

≤ ‖x‖‖Qn+1‖ + . . .+ ‖x‖‖Qm‖

≤ ‖x‖

∞
∑

a=n+1

‖Qa‖

≤ ‖x‖

∞
∑

a=NK

‖Qa‖

where N = min{c ∈ N : cK ≤ n+ 1 < (c+ 1)K}. Thus,

‖x(1 +Q+Q2 + . . .+Qm) − x(1 +Q+Q2 + . . .+Qn)‖

≤ ‖x‖

∞
∑

b=N

‖QKb‖ + ‖QKb+1‖ + . . .+ ‖QKb+K−1‖

≤ ‖x‖
∞
∑

b=N

‖QKb‖(1 + ‖Q‖ + . . .+ ‖QK−1‖)

since ‖Qc+d‖ ≤ ‖Qc‖‖Qd‖. So,

‖x(1 +Q +Q2 + . . .+Qm) − x(1 +Q +Q2 + . . .+Qn)‖

≤ ‖x‖(1 + ‖Q‖ + . . .+ ‖QK−1‖)

∞
∑

b=N

‖QK‖b

=
‖x‖(1 + ‖Q‖ + . . .+ ‖QK−1‖)‖QK‖N

1 − ‖QK‖
(6.1)

→ 0

as n → ∞ with m > n, since N → ∞ as n → ∞. Thus the sequence

(x(1 +Q+Q2 + . . .+Qn))∞n=1 is a Cauchy sequence in the complete space R
d
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and therefore it must converge to a limit. Call this limit xT ∈ R
d. Clearly T

is a linear operator and letting m→ ∞ in (6.1) yields

‖xT − x(1 +Q+ . . .+Qn)‖ ≤
‖x‖(1 + ‖Q‖ + . . .+ ‖QK−1‖)‖QK‖N

1 − ‖QK‖
, (6.2)

which shows that T − (1 +Q + . . . +Qn) is a bounded linear operator and so

T is also a bounded linear operator. Now (6.2) implies that

‖T − (1 +Q + . . .+Qn)‖ ≤
(1 + ‖Q‖ + . . .+ ‖QK−1‖)‖QK‖N

1 − ‖QK‖

and letting n→ ∞ (which implies N → ∞), shows that 1 +Q+ . . .+Qn → T

as n→ ∞. It remains to show that (1 −Q)−1 = T .

For x ∈ R
d, the continuity of 1 −Q gives

x(1 −Q)T = x(1 −Q) lim
n→∞

(1 +Q +Q2 + . . .+Qn)

= lim
n→∞

x(1 −Q)(1 +Q +Q2 + . . .+Qn)

= lim
n→∞

x− xQn+1

= x

since from the definition of ‖Q‖,

‖xQn+1‖ ≤ ‖x‖‖Qn+1‖

≤ ‖x‖‖Q‖n+1

→ 0

as n→ ∞.

230



Chapter 7

References

Addy, C.L., Longini, I.M. and Haber, M. (1991) A generalized stochastic

model for the analysis of infectious disease final size data. Biometrics 47, 961-

974.

Anderson, R.M., Fraser, C., Ghani, A.C., Donnelly, C.A., Riley,

S., Ferguson, N.M., Leung, G.M., Lam, T.H. and Hedley, A.J. (2004)

Epidemiology, transmission dynamics and control of SARS: the 2002-2003 epi-

demic. Philosophical Transactions of the Royal Society of London, Series B

359, 1091-1105.

Anderson, R.M. and May, R.M. (1992) Infectious Diseases of Humans.

Oxford University Press, Oxford.

Andersson, H. and Britton, T. (2000) Stochastic Epidemic Models and

Their Statistical Analysis, Springer Verlag, New York.

Bailey, N.T.J. (1975) The Mathematical Theory of Infectious Diseases and

Its Applications. 2nd Edn. Griffin, London.

231



Ball, F. (1983) The threshold behaviour of epidemic models. Journal of

Applied Probability 20, 227-241.

Ball, F. (1986) A unified approach to the distribution of total size and total

area under the trajectory of infectives in epidemic models. Advances in Applied

Probability 18, 289-310.

Ball, F., Britton, T. and O’Neill, P. (2002) Empty confidence sets for

epidemics, branching processes and Brownian motion. Biometrika 89, 211-224.

Ball, F. and Clancy, D. (1995) The final outcome and temporal solution

of a carrier-borne epidemic model. Journal of Applied Probability 32, 304-315.

Ball, F. and Lyne, O.D. (2001) Stochastic multitype SIR epidemic among

a population partitioned into households. Advances in Applied Probability 33,

99-123.

Ball, F., Mollison, D. and Scalia-Tomba, G. (1997) Epidemics with

two levels of mixing. Annals of Applied Probability 7, 46-89.

Ball, F., Milne, R.K. and Yeo, G.F (1994) Continuous-time Markov

chains in a random environment, with applications to ion channel modelling.

Advances in Applied Probability 26, 919-946.

Ball, F., O’Neill, P.D. and Pike, J. (2007) Stochastic epidemic models

in structured populations featuring dynamic vaccination and isolation. Journal

of Applied Probability 44, 571-585.

Ball, F. and Sansom, M.S.P (1989) Ion-channel gating mechanisms: model

identification and parameter estimation from single channel recordings. Pro-

ceedings of the Royal Society of London, Series B 236, 385-416.

232



Bartlett, M.S. (1949) Some evolutionary stochastic processes. Journal of

the Royal Statistical Society, Series B 11, 211-229.

Becker, N.G. and Dietz, K. (1995) The effect of household distribution

on transmission and control of highly infectious diseases. Mathematical Bio-

sciences 127, 207-219.

Becker, N.G., Glass, K., Li, Z. and Aldis, G. (2005) Controlling emerg-

ing infectious diseases like SARS. Mathematical Biosciences 193, 205-221.

Bernoulli, D. (1760) Essai d’une nouvelle analyse de la mortalité causée par
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