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Abstract

Looking inside the lungs without the danger of ionizing radiation side effects became

available with magnetic resonance imaging using hyperpolarised noble gases. This tech-

nique has the potential to become a real tool for assessing in vivo ventilation, perfusion

and even lung microstructure.

The work covered in this research was aimed to improve the existing method for 3He

polarisation and open the possibility to develop new modalities to probe the lung mi-

crostructure that could then be used in clinical trials. For this purpose, the polarisation

facility was remodeled and new components were added. The rest of the work was fo-

cused on developing diffusion techniques that are more appropriate for the assessment of

lung diseases.

The improvement of the 3He polarisation facility consisted in the optimization of the

gas flow path, implementation of a new dispensing method and new controlling protocol.

The capacity of the polarisation system was increased by using a more powerful laser.

The outcome of this was an increase in polarisation rate and a significant reduction of the

dispensing time. Altogether this allow for clinical studies to be performed without too

much delay.

A clinical study aimed to distinguish differences between children born at term and

premature was started on 70 volunteers. Three methods for measuring diffusion were

used: spin echo diffusion weighted method, SPAMM tagging and MR diffusion spec-

troscopy. The first was previously used in the group and the last two were developed

during this research. The results were correlated with basic pulmonary functional tests

(spirometry and plethysmography) and also with the multiple breaths nitrogen wash-out

results. No differences were found in the two groups. The results don’t agree with the

current theories on lung growth and suggest that alveolarisation occurs even after the age

of 8, possibly up to adult age. This is very important to be investigated further due to its

clinical importance.
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Chapter 1

Introduction

1.1 Preamble

Respiratory disorders are a major cause of death in Europe and world wide. In some

countries, including UK, it is already the leading killer. Lung cancer, pneumonia and

chronic obstructive pulmonary disease (COPD) are the main respiratory causes of death

in Europe. The total financial burden of lung disease in Europe amounts to nearly 102

billion per year. COPD contributes almost one half of this figure, followed by asthma,

pneumonia, lung cancer and tuberculosis. Despite this, methods to investigate and treat

these patients remain relatively undeveloped.

Up to this moment we lack the techniques for probing the lung development and

physiology. The existing modalities are not safe enough to be used on a large scale to

monitor longitudinally the lung evolution. Also, they can not be used intensively in the

early stage of development and can not provide an early diagnosis of diseases.

First attempts to measure lung function go back to 200 AD when Galen did do a volu-

metric experiment on human ventilation. He had a boy breath in and out of a bladder and

found that the volume of the gas was, after a period, unchanged. The modern spirometry

was brought by Hutchinson in the 19th century. Together with plethysmography, also

developed in late 19th century, these are the most used methods for measuring flows and

pulmonary volumes. These tests allow quantitative measurement of the function of an

individual’s lungs but can not provide direct measures of lung physiology and disorder.
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1.1. PREAMBLE

The use of imaging technique like radionuclide imaging and X-ray Computed Tomog-

raphy (CT) is prone to hazards due to the associated risk of exposure to ionizing radiation.

The radionuclide imaging has very poor resolution and CT can not detect airways below

the 10th generation, where gas exchange takes place.

Magnetic Resonance Imaging (MRI) offers the benefits of CT without the danger of

ionizing radiation but it is not suitable for imaging the lungs due to the low fraction of

polarised protons (5 in 106 at 1.5 T). The density of protons in the lungs is very low

and the differences in susceptibility between air and lung tissue generate magnetic field

inhomogeneities which lead to signal loss and image distortion. These susceptibility

effects increase with the field strength of the magnet. These limitations have restricted

the resolution of MR images to around the 8th generation [1].

With hyperpolarised 3He MRI the polarisation is obtained using optical pumping.

Good signal to noise ratios can be obtained even at low static magnetic field. A series

of applications of hyperpolarised 3He MRI exists starting with static ventilation images

that can identify regions with no ventilation in asthma patients. Dynamic imaging can

provide information about the mobility of the aerosol [2], [3], [4], [5], [6], [7], [8], [9],

[10]. Hyperpolarised 3He is very sensitive to the oxygen in the lungs. The paramagnetic

nature of the latter will reduce the longitudinal relaxation time of 3He (T1) in the lung

[11], [12], [13], [14], [15]. This effect can be used to measure the partial pressure of

oxygen within the lung and, consecutively, probe the lung perfusion. The size of lung

microstructure can be assessed by measuring how fast 3He can diffuse within the lung.

A single measurement can be made globally, for both lungs, or a diffusion map can be

produced showing the differences in diffusion at different locations in the lung. Gas

diffusion is restricted by the alveolar wall which translates in a smaller apparent diffusion

coefficient in small peripheral airspaces and a larger apparent diffusion coefficient where

the peripheral airspace size is enlarged due to poor lung development or lung damage.

This thesis focuses on probing the potential of 3He diffusion for lung functional MRI.
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CHAPTER 1. INTRODUCTION

1.2 Overview of the Thesis

The thesis is divided into three parts. The first part, chapters 1, 2 and 3, give preliminary

details about the field and the equipment used in this research. The second part, chapters

4 and 5, covers the experiments undertaken during this research. Finally the last part,

chapter 6, draws conclusions from the research.

Chapter 1 gives an introduction to the field of the research.

Chapter 2 describes important aspects of the lung looking at anatomy, physiology and

pathology. The second part of this chapter reviews the existing imaging techniques for

lung investigation in order to prepare the terrain for the MRI with hyperpolarised 3He

Chapter 3 starts with an overview of the NMR and MRI principles. It then discusses

the physics of metastable optical pumping of 3He and also includes a discussion on the

diffusion effect in NMR.

Chapter 4 presents the work done on improving the 3He gas production and admin-

istration. Next, it details the results of the magnetic field orientation dependance experi-

ment. Finally the specific constraints of using hyperpolarised gases are detailed and the

available imaging techniques are described.

Chapter 5 starts with an introduction on the power of diffusion as a tool for lung

description. The theory behind the diffusion and aspects of signal decay due to diffusion

are presented next. A detailed description of the three methods for measuring diffusion

used in this work is also presented in this chapter. Finally, a description of the study on

child lung development and the results are given.

Chapter 6 summarises the research that has been presented in the thesis.
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Chapter 2

The Lung: Anatomy, Physiopathology

and Imaging

Before going any further with presenting insights of lung hi-tech imaging it is necessary

to understand the architecture and functionality of the lung. We need to get the feeling

of what challenges the lung is posing. Following I will highlight just the important in-

formation that we know about the lungs and the transition from the classic investigation

methods to the modern approach.

The role of the lung is to perform gas exchange - the extraction of oxygen from the

environment and elimination of carbon dioxide. In addition to its primary role in gas

exchange, the lung serves a number of metabolic functions. These include production

of surfactant and other compounds and metabolism of a variety of chemical mediators.

Derangements in these functions can have a profound impact on the lung’s ability to carry

out gas exchange.

Lung diseases can affect the individual physiologic steps involved in gas exchange.

For example, the obstructive airway diseases impede gas flow into and out of the alve-

oli, whereas the restrictive lung diseases disturb the relationship between ventilation and

blood flow or create a barrier for diffusion of gas. The function of the lung is closely

coupled to its structure; that is, form follows function.
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2.1. ELEMENTS OF LUNG ANATOMY

2.1 Elements of Lung Anatomy

As with all other organs, lung anatomy varies from person to person and from healthy

to unhealthy subjects. The anatomy changes with the respiratory cycle and, contrary to

the automatic movement of the heart, the lungs have a mixed movement, automatic and

voluntary, with an irregular frequency and amplitude. This causes the imaging to be more

complicated and the results very variable.

2.1.1 Generalities

The lungs are encompassed by the chest wall on all sides and by the diaphragm inferiorly.

The gas-exchanging function of the lungs is profoundly affected by the mechanical prop-

erties of the chest wall and diaphragm. Movement of the lungs within the thoracic cavity

during respiration is facilitated by a space between the two structures - the pleural space-

created by apposition of the inner lining surface of the chest wall, the parietal pleura,

and the outer lining surface of the lung, the visceral pleura. The separation of the two

linings is made by a thin film of pleural fluid which has also a lubricating role. Changes

in pressure within the pleural space determines the inspiratory and expiratory airflow in

healthy and diseased lungs.

The lungs are enclosed in a virtual space created by the pleurae extending medially.

This compartment is called mediastinum and contains the major airways and great vessels.

2.1.2 Airway structure

The air arrives in the lungs through the trachea. The point of bifurcation into left and right

main bronchi is at the level of carina. The airways may be viewed as a series of dichoto-

mously branching tubes; each ”parent” airway gives rise to two ”daughter” branches (Fig.

2.1). On average, there are 23 generations of airways in the human lung. The first 16 are

known as conducting airways because they provide a conduit for gas flow to and from

the gas-exchanging regions of the lung. These include bronchi, bronchioles and terminal

bronchioles. The last 7 generations include the respiratory bronchioles, alveolar ducts

and alveolar sacs, all of which give rise to alveoli. The first-order respiratory bronchiole
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(z=17 in Fig. 2.2 ) and all its distal gas-exchanging airways constitute a pulmonary acinus

.

Figure 2.1: The tracheo-bronchial tree as a system of dichotomously branching tubes. The con-

ducting zone, made up of the first 16 generations of airways to the level of the terminal bronchi-

oles (z = 0-16), does not participate in the gas exchange. The transitional and respiratory zones, in

which the gas exchange takes place, include the respiratory bronchioles, alveolar ducts, alveolar

sacs, and alveoli (z = 17-23).(From Weibel ER. [16])

Although the diameter of each daughter branch is less than the diameter of the parent

airway from which it is derived, the total cross-sectional area of each successive airway

generation increases because of a marked increase in the number of airways (Fig. 2.3).

The total exchange surface reaches 70 m2 for 300 million alveoli [17]. Consecutive to

this increase in surface area the gas flow rates decrease. Eventually, at the level of the

respiratory bronchioles, gas movement occurs primarily by diffusion, rather than by ”bulk

flow”. The alveoli can be modeled as spheres having diameters ranging from 75 µm and

300 µm [18]; in fact, they are polyhedrals [19] (Fig. 2.4).

Airway resistance is not distributed evenly throughout the respiratory system. Within
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2.1. ELEMENTS OF LUNG ANATOMY

Figure 2.2: The acinus, or respiratory unit. This part of the airways is involved in gas exchange.

Figure 2.3: Total airway cross-sectional area in relation to airway generation. Although indi-

vidual airway cross-sectional area decreases in succesive airway generations, total cross-sectional

area increases markedly because of an increase in the number of airways. (From Weibel ER. [20])

the chest, the larger airways - trachea and lobar and segmental bronchi - provide 80% of

the remaining airway resistance; small airways, less than 2 mm in diameter, contribute
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Figure 2.4: Average airway diameter as a function of airway generation. Individual airway

diameter decreases in each successive generation of airways. For larger airways. to the level of

the terminal bronchioles, airway diameter in a given generation (z) can be predicted if the diameter

of the trachea (d0) is known. (From Weibel ER. [21])

20%. The distribution of airway resistance is shown in Figure 2.5. Although the individ-

ual cross-sectional areas of the peripheral airways are small, their large number generates

a large overall cross-sectional area and a lower resistance.

2.1.3 Vascularisation

The lung has a double arterial vascularisation: the pulmonary arteries bring blood with

less oxygen, at low pressure and high debit; the bronchial artery delivers blood highly

oxygenated, at high pressure and low debit, necessary for the perfusion of the conducting

airways [22], [19].

2.2 Elements of Lung Physiology

The main function of the lung is the gas exchange between the air and the rest of the body,

through the blood (oxygen intake and carbon dioxide outtake). This exchange, facilitated

by the vast alveolar area, is realized between the air compartment (the tracheal bronchial
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2.2. ELEMENTS OF LUNG PHYSIOLOGY

Figure 2.5: Variation of airway resistance with airway generation. Generation 0 is the trachea;

higher generations of airways are denoted in moving from central to peripheral airways. (From

Grippi M. [22])

tree) and the blood vessels.

Ventilation is the flow of air in and out of the respiratory system (breathing); it is

defined physiologically as the amount of air breathed in and out in a given time. The

function of ventilation is to maintain blood gases at their optimum level, by delivering air

to the alveoli where gas exchange can take place. The movement of the air in and out of

the lungs occurs due to pressure differences. The respiratory muscle brings about these

pressure changes, but other factors are also involved, namely the physical properties of

the lungs, including their elasticity and the resistance of the airways. Lung diseases that

affect these physical properties therefore impair gas exchange by reducing the delivery of

fresh gas to the lungs, ultimately leading to a mismatch in ventilation/perfusion ratio.
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2.2.1 Anatomical dead space

Not all of the air entering the respiratory system actually reaches the alveoli and takes

part in gas exchange. We need to introduce the concept of anatomical dead space, or

those areas of the airway not involved in gaseous exchange. This space includes: nose

and mouth, pharynx, larynx, trachea, bronchi and bronchioles, down to and including the

terminal bronchioles.

The volume of the anatomical dead space (VD) is usually about 150 ml (or 2 mL/Kg of

bodyweight). Anatomical dead space varies with the size of the subject and also increases

with increased inspiration because greater expansion of the lungs lengthens and widens

the conducting airways. Anatomical dead space can be measured using Fowler’s method,

which is based on the single-breath nitrogen test (Fig. 2.6).

Figure 2.6: Measurement of the anatomical dead space. (A) using Fowler’s method it would

be expected that the gas expired from those areas not undergoing gaseous exchange (anatomical

dead space) would contain no nitrogen and thus a stepwise change would occur to the nitrogen

concentration of expired gas; the volume at which this occurs would be equal to the anatomical

dead space volume. (B) In the real world, the dotted line shows the step change in nitrogen

concentration and the solid line shows the actual change curve.
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2.2. ELEMENTS OF LUNG PHYSIOLOGY

2.2.2 Physiological dead space

Even in the healthy lungs the anatomical dead space is not the only cause of ”wasted”

ventilation. The total dead space is known as the physiological dead space and includes

gas in the alveoli that does not participate in gas exchange.

Physiological dead space = anatomical dead space + alveolar dead space

Alveolar dead space comes about because gas exchange is less optimal in some parts

of the lung. In a normal, healthy person, anatomical and physiological dead space are

almost equal, alveolar dead space being very small (< 5 mL). When lung disease alters

ventilation/perfusion ratio, the volume of alveolar dead space increases.

Physiological dead space is calculated using the Bohr equation (2.1).

VD/VT = (PACO2 − PECO2)/PACO2 (2.1)

VD = Dead space volume, VT = Tidal volume, PACO2 = Partial pressure of carbon dioxide

in alveolar air, PECO2 = Partial pressure of carbon dioxide in mixed expired air.

Normally, the partial pressures of carbon dioxide in alveolar gas and arterial blood are

the same, hence:

VD/VT = (PaCO2 − PECO2)/PaCO2 (2.2)

2.2.3 Minute ventilation

Minute ventilation (V̇E) is the volume of gas moved in and out of the lungs in 1 minute

and is normally 6-10 litres (Fig. 2.7).

The normal frequency of breathing varies between 12 and 20 breaths per minute.

Normal tidal volume is approximately 500 mL in quiet breathing. Generally:

V̇E = VT f (2.3)

where V̇E = minute ventilation, VT = tidal volume and f = the respiratory rate (breaths/minute).

2.2.4 Alveolar ventilation

Since not all the air inspired reaches the alveoli, two values of minute ventilation need to

be considered:

12
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Figure 2.7: Ventilation in the simplified lung. (Criner & D’Alonzo 1999).

• Minute ventilation (V̇E), as described above;

• Minute alveolar ventilation (V̇A), which is the amount of air that reaches the alveoli

in 1 minute.

For one breath:

VA = VT − VD (2.4)

where VA = the volume reaching the alveolus in one breath and VD = the volume of dead

space. Hence, in 1 minute:

V̇A = (VT − VD)f (2.5)

2.2.5 Distribution of ventilation within the lung

Pulmonary ventilation is the ratio of the debit of air arriving in the lung to the ventilated

lung volume; therefore it is the inverse of the turnover; this parameter is hard to measure.

Extending the definition, ventilation is used to express the ventilated pulmonary volume

or the ventilation debit. The physiological pulmonary ventilation is:

V = f × VT − VD
FRC

= 15min−1 × 500ml − 150ml

2500ml
= 2min−1 (2.6)

13
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The alveolar ventilation debit is:

V̇ = f × VT − VD = 15min−1 × 500ml − 150ml = 5250ml ·min−1 (2.7)

comparable to the pulmonary blood debit.

At first glance, it might appear that the lung is functionally homogeneous, and that the

portion of each breath reaching the gas-exchanging regions is uniformly distributed. The

lung, however, is quite heterogeneous with regard to regional mechanical properties of the

airways and parenchyma. This heterogeneity accounts for differences in the distribution

of each breath.

In an upright subject, a pleural pressure gradient exists between the top and bottom

of the lung. The pleural pressure is greatest at the top; it is least at the bottom. The

gradient is about 0.25 cm H2O for each centimeter of vertical height. The larger apical

transpulmonary pressure results in greater alveolar distention at the top of the lung (Fig.

2.8). This phenomenon is related to the subject’s posture. In supine position, the posterior

regions are the most ventilated.

This effect can be explained using the analogy with a spring: because of its own

weight, a spring is more stretched at the top; when pulling it down, the lower coils will

spread the most.

The larger transpulmonary pressure and alveolar size at the apex mean that this region

functions along a different portion of the lung’s pressure-volume curve than does the

basilar area (Fig. 2.9).

Another key factor in ventilation distribution is the amplitude of the respiratory move-

ment; a superficial respiration will ventilate the parahilar region whilst a deep respiration

will ventilate also the base (Fig. 2.10) [23].

When tested with helium gas this distribution does not show very clear this pattern

since the acquisition is too slow compared to the very fast diffusion of the gas so the

distribution looks homogeneous in the whole lung (Fig. 2.11). Regarding the imaging

side, the image obtained depends on how the contrast agent is administered (i.e. on bolus,

along the whole respiration duration or using a closed circuit respiration), and also at what

lung volume is delivered (e.g. FRC, RV) [24].
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Figure 2.8: Schematic of apical and basal alveolar size. The lung is depicted at FRC. Apical

alveoli (A) are larger than basilar (B).

Figure 2.9: Pressure-volume plot of the lung. Changes in volume from two regions of the same

lung are shown during application of inflation pressure, ∆P . The change in lung volume at the

base, ∆V1, is grater than the change at the apex, ∆V2.
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2.2. ELEMENTS OF LUNG PHYSIOLOGY

Figure 2.10: Ventilation distribution with respiration amplitude.

Figure 2.11: Ventilation distribution of 3He with respiration amplitude.

Despite the tremendously wide range of diseases that affect the lung by altering the

distribution of ventilation, the underlying pathophysiologic mechanisms can be reduced

to a basic few (Fig. 2.12).

2.2.6 Lung volumes

The gas held by the lungs can be thought of in terms of subdivisions, or specific lung vol-

umes. Some of these volumes can be measured using spirometry. A detailed description
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Figure 2.12: Models of non-uniform lung ventilation. (A) Partial obstruction of the airway to

one lung unit. (B) Altered elasticity of one lung unit. (C) Localized dynamic compression of the

airway to one lung unit. (D) Limited expansion of one lung unit during inflation.

of the lung volumes is given in Appendix A.

There are four main methods of measuring lung volumes:

• Spirometry

• Nitrogen washout

• Plethysmography

• Helium dilution

First three were employed in this work, in the Leicester laboratory. These techniques

are considered in more detail in Appendix A.

17



2.2. ELEMENTS OF LUNG PHYSIOLOGY

2.2.7 Gaseous exchange in the lungs

Diffusion

Gas exchange between alveolar air and blood in the pulmonary capillaries takes place by

diffusion. Diffusion in the lungs occurs across a membrane and is therefore governed by

Fick’s law (Fig. 2.13).

Figure 2.13: Diffusion - Fick’s law. Fick stated that the rate of diffusion (J) of a gas through

a membrane is: J = K × A × ∆C/t; where: K is the diffusivity = S/MW, A = surface area,

t = thickness of membrane, ∆C = concentration difference, S = solubility of substance in the

membrane, MW = molecular weight.

It is clear that the blood-gas interface with its large surface area of 50-100 m2 and

average thickness of 0.4 um permits the high rate of diffusion required by the body. The

rate of diffusion across the alveoli is also directly dependent upon the difference in partial

pressure between gas in the alveoli (PA) and in arterial blood (Pa).

Perfusion and diffusion limitation

At the gas-exchange surface, gas transfer occurs through a membrane into a flowing liq-

uid. There are two processes (Fig. 2.14) occurring:

• Diffusion across the alveolar capillary membrane.

• Perfusion of blood trough pulmonary capillaries.
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Uptake of a gas into the blood is dependent on its solubility and the chemical com-

bination (e.g. with haemoglobin: Hb). If the chemical combination is strong, the gas is

taken up by the blood with little rise in arterial partial pressure.

Figure 2.14: Gas transfer across alveolar capillary membrane. (1) Diffusion across membrane;

(2) perfusion of blood through pulmonary capillaries.

Oxygen uptake in the capillary network

The time taken for the partial pressure of oxygen to reach its plateau is approximately

0.25 seconds. The pulmonary capillary volume under resting conditions is about 75 mL,

which is approximately the same size as the stroke volume of the right ventricle. Pul-

monary capillary blood is therefore replaced with every heart beat, approximately every

0.75 seconds. This far exceeds the time for transfer of oxygen into the blood stream (Fig.

2.15).

Carbon dioxide transfer

Graham’s law states that gases with greater molecular weights diffuse more slowly than

those that are lighter. Diffusion in liquids is directly dependent upon the solubility of

the gas, but inversely proportional to the square root of its molecular weight. Carbon

monoxide diffuses 20 times more rapidly than oxygen, but has a similar molecular weight.

Under normal conditions, the transfer of carbon dioxide is not diffusion limited.
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2.3. ELEMENTS OF LUNG PATHOLOGY

Figure 2.15: Pulmonary capillary pressure of oxygen vs. time in the pulmonary capillary net-

work: (A) alveolar PO2 normal; (B) low alveolar PO2. Curves are for normal blood-gas interface

and abnormal in diseased state. Note that the difference between the normal and abnormal lungs

increases at low alveolar PO2.(After West [25])

2.3 Elements of Lung Pathology

The following section gives an insight on the most frequent lung pathologies that could

benefit from magnetic resonance imaging with hyperpolarised 3He.

2.3.1 Pulmonary embolism (PE)

An embolus is an abnormal mass of material that is transported in the bloodstream from

one part of the circulation to another and which impacts finally in the lumen of a vessel

that has a calibre to small to allow passage. The incidence of pulmonary emboli at autopsy

has been reported to be 12%. There are no specific signs to indicate the PE so it is

very hard to diagnose. Currently the methods used to diagnose PE are the radioisotope

ventilation/perfusion scan and HRCT (High Resolution Computed Tomography) with
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MRI in sight for the future [26], [27].

2.3.2 Disorders of the airways

Chronic obstructive pulmonary disease

COPD is an inflammatory lung disease characterized by infiltration of neutrophils and

resulting in airway obstruction. The airway obstruction is unlike that seen in asthma ,

being progressive and only partially reversed by bronchodilators. Because of progressive

decline in lung function, COPD is a significant cause of disability and death in smokers.

It tends to be the third cause of death worldwide.

COPD is an umbrella term for different disease processes-the most important being

chronic bronchitis and emphysema.

Smoking is the most important aetiology factor although only 15% of smokers will

develop the disorder. Cigarette smoke generates inflammation by activating the inflamma-

tory cells and by the effect of the oxidants (Fig. 2.16). These cause alveolar destruction

(in emphysematous patient) and mucus hypersecretion (in bronchitic patient).

Figure 2.16: The overall pathogenesis of COPD. (After West [28]

Atmospheric pollution, occupational exposure and recurrent bronchial infections are

also implicated. 2% of COPD patients have a genetic deficiency of a serum acute phase-
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protein produced in the liver called α1-antitrypsin. This cause an early-onset emphysema

(less than 40 years of age) and death.

Emphysema Emphysema is a permanent enlargement of the air spaces distal to the

terminal bronchiole as a result of alveolar septal destruction (Fig. 2.17).

Figure 2.17: Main types of emphysema. (A) Normal distal lung acinus; (B) centriacinar emphy-

sema; (C) panacinar emphysema; (D) irregular emphysema; (E) paraseptal emphysema.

Chronic bronchitis Chronic bronchitis is an airway disorder characterized by a persis-

tent cough with sputum. The irritant effects of smoking cause the airway obstruction (Fig.

2.18).

Asthma

Asthma is a chronic inflammatory disorder of the lung airways characterized by air-

flow obstruction, which is usually reversible, airway hyperresponsiveness and inflamed

bronchi.

5% of the adult population in UK are receiving therapy for asthma while 20% of

children have symptoms at some time in their childhood. Currently there are over 200

materials encountered at the workplace that are implicated in the occupational asthma.
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Figure 2.18: Pathogenesis of chronic bronchitis.

Other airway disorders

Bronchiectasis Bronchiectasis is an abnormal and permanent dilatation of the bronchi

and is associated with chronic infection. Most cases arise in childhood.

Infection leads to obstruction, dilatation of bronchi and often loss of cilia. The

most common consequence is bronchial wall thickening. Usually the lower lobes are

affected most commonly. High-resolution CT is the investigation of choice for detection

of bronchial wall thickening.

Cystic fibrosis Cystic fibrosis is a genetic disease that affects the mucus-secreting glands.

The thick secretion cause small airway obstruction, leading to recurrent infection and ul-

timately bronchiectasis.
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2.4 Lung investigations and imaging techniques

There are a large number of investigations in respiratory medicine, ranging from basic

bedside tests to more invasive procedures such as bronchoscopy. Some of the investiga-

tions described are performed only rarely in specialized pulmonary laboratories whilst

others are performed by patients at home everyday.

This section will treat only the imaging methods. These techniques can be divided

in two groups: anatomical imaging, which focuses on the structure and the functional

imaging, which depicts the performance of the lung.

2.4.1 Anatomical imaging techniques

Plain radiography

Chest radiography is the most used medical imaging technique. It consists of obtain-

ing a 2D image using a beam of X-rays (energy centered on 120 keV). The attenuation

of the beam can be detected on a photographic film (conventional radiography) or on a

semiconductor detector (digital radiography).

There are a number of standard radiographic examinations of the chest. One of the

most used is the posteroanterior erect radiograph (PA chest) shown in Figure 2.19.

Apart from the lung parenchyma, the image shows the mediastinum, the heart shadow

and the big vessels and the diaphragm. The lungs are extremely transparent to X-rays and

they appear black on the image. The thorax and the heart are opaque.

This method can give a lot of information but it has the disadvantage of showing only

a projection. Since the structures are superposed the diagnostic can be very difficult.

To overcome this, it is a standard procedure to acquire a second, orthogonal image in a

sagittal plane. The maximum spatial resolution is 200 µm.

The dose received for each image depends on the quality of the X-rays source and on

the set-up (usually 50 µSv) [29].
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Figure 2.19: Normal posteroanterior chest radiograph. The lungs are equally transradiant, the

pulmonary vascular pattern is symmetrical. AA = aortic arch; SVC = superior vena cava; PA =

pulmonary artery; LAA = left atrial appendage; RA = right atrium; LV = left ventricle; IVC =

inferior vena cava.

Computed tomography

Before computed tomography, in conventional medical X-ray tomography, clinical staff

made a sectional image through a body by moving an X-ray source and the film in oppo-

site directions during the exposure. Consequently, structures in the focal plane appeared

sharper, while structures in other planes appeared blurred. By modifying the direction

and extent of the movement, operators can select different focal planes which contain the

structures of interest. Before the advent of more modern computer-assisted techniques

, this technique, imaginated in the 30’s by the radiologist Alessandro Vallebona, proved

useful in reducing the problem of superimposition of structures in projectional (shadow)

radiography.

Computed tomography (CT) is a medical imaging method employing tomography de-
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veloped by Sir Godfrey Hounsfield [30]. Digital geometry processing is used to generate a

three-dimensional image of the inside of an object from a large series of two-dimensional

X-ray images taken around a single axis of rotation.

CT produces a volume of data which can be manipulated, through a process known as

windowing, in order to demonstrate various structures based on their ability to block the

X-ray beam. Although historically the images generated were in the axial or transverse

plane (orthogonal to the long axis of the body), modern scanners allow this volume of

data to be reformatted in various planes or even as volumetric (3D) representations of

structures.

Over the past 10 years CT improved by the use of helical CT; a gantry holding the

source and detector array rotates as the patient is translated along the axis of rotation,

multislice CT; similar in concept to the helical CT but there are more than one detector

ring, dual-source CT; 256+ slice CT.

CT is excellent for detecting both acute and chronic changes in the lung parenchyma.

For evaluation of chronic interstitial processes (emphysema, fibrosis, and so forth), thin

sections with high spatial frequency reconstructions are used - often scans are performed

both in inspiration and expiration. This special technique is called High resolution CT

(HRCT). HRCT is normally done with thin section with skipped areas between them.

Therefore it produces a sampling of the lung and not continuous images (Fig. 2.20).

Figure 2.20: CT of the chest, axial projection.
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For detection of airspace disease (such as pneumonia) or cancer, relatively thick sec-

tions and general purpose image reconstruction techniques may be adequate. Intra venous

contrast may also be used as it clarifies the anatomy and boundaries of the great vessels

and improves assessment of the mediastinum and hilar regions for lymphadenopathy; this

is particularly important for accurate assessment of cancer.

CT angiography of the chest is also becoming the primary method for detecting pul-

monary embolism (PE) and aortic dissection, and requires accurately timed rapid injec-

tions of contrast (Bolus Tracking) and high-speed helical scanners. CT is the standard

method of evaluating abnormalities seen on chest X-ray and of following findings of un-

certain acute significance.

Xenon-enhanced CT scanning is a method of computed tomography (CT scanning)

used for neuroimaging in which the subject inhales xenon gas while CT images are made.

The method can be used to assess changes in cerebral blood flow in the period shortly

after a traumatic brain injury. The diffusion of the gas into the tissues shows how much

blood flow each area is getting.

A typical effective dose for a chest CT is 5-10 mSv.

Bronchography

Bronchography is a radiographic examination of the bronchial tree by instillation of con-

trast medium directly into the trachea or bronchi. Until recently, bronchography was the

method of choice in the evaluation of bronchiectasis. CT, and especially high resolution

CT, has nearly completely surpassed the method, which at many centres is no longer per-

formed. The most commonly used contrast medium for bronchography was an aqueous

suspension of propyliodone (Dionosil). Several techniques existed for instillation of the

contrast medium, including a cannula inserted over the extended tongue, a catheter intro-

duced through the nostril or the mouth, and a direct needle puncture of the crico-thyroid

membrane. Even coating of the bronchial mucosa was accomplished by injection of the

contrast medium during inspiration (Fig. 2.21). Today, instillation of contrast medium

via a fibreoptic bronchoscope would be preferred.
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Figure 2.21: The bronchial tree of the right lung has been coated with contrast medium. 1: main

bronchus, 2: upper lobe bronchus, 3: intermediate bronchus, 4: middle lobe bronchus, 5: lower

lobe bronchus. (Courtesy of Dr. A.N. Kolbenstvedt, Rikshospitalet University Hospital, Oslo,

Noway.)

Pulmonary angiography

Pulmonary angiography is used for demonstration of the pulmonary arteries and veins.

Using fluoroscopic guidance and ECG monitoring, a pulmonary catheter is passed into

the trunk of the pulmonary artery over a guide wire. Generally, a femoral approach is

used, but alternatively the internal jugular vein or the median cubital vein may be ac-

cessed. Imaging is done using digital subtraction angiography (DSA) (Fig. 2.22), how-

ever, conventional cut film series often show superior image quality.

Chest ultrasonography

Ultrasound uses high-frequency sound waves to image internal structures. Chest ultra-

sonography is an examination mainly indicated in pleural diseases. It is usually performed
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Figure 2.22: DSA showing normal right pulmonary artery. (Courtesy of Dr. K. Vatne, Rikshos-

pitalet University Hospital, Oslo, Norway.)

with a 3.5 - 7.5 MHz linear or curvilinear probe placed in the line of the intercostal space

(Fig. 2.23).

A variation of this technique, Doppler ultrasound, is a non-invasive method for detect-

ing deep vein thrombosis. It is used in investigating patients with suspected pulmonary

thromboembolism. Chest ultrasonography is frequently used to guide chest interventions

such as thoracocentesis, biopsy or chest tube insertion.

2.4.2 Functional imaging techniques

The existing lung functional imaging can only show either the ventilation (air supply)

or the perfusion (blood supply). There are no techniques that can be routinely used to

provide information about the gas exchange in the lungs.
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Figure 2.23: Chest Ultrasonography.

Lung scintigraphy

Ventilation-perfusion scintigraphy is a radionuclide imaging study of pulmonary circula-

tion and ventilation. It is mainly used in:

• the detection of pulmonary embolism

• monitoring the natural history or treatment of thromboembolic disease

• quantitative evaluation of distribution of obstructive pulmonary disease

• preoperative evaluation of patients with emphysema, lung cancer and bronchiecta-

sis.

Radionuclide lung imaging are methods by which one physiological aspect of lung

function is evaluated. The most widely used techniques are: lung perfusion imaging

using Tc-99m MAA (macroaggregates of albumin) labeled perfusion agents and lung

ventilation imaging using either radioactive Xe or Tc-99m labeled aerosols . The clini-

cal indications are mainly the diagnosis of pulmonary embolism and the semiquantitative

assessment of the left-right distribution of pulmonary perfusion before performing ma-
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jor lung surgery such as lung transplantation or pulmonary volume reduction surgery in

emphysema patients.

Lung perfusion scanning is done by injecting 40 to 160 MBq (1-4 mCi) of Tc-99m-

labelled MAAs (see aggregated albumin) in the supine patient to reduce orthostatic gra-

dients, and during repeated deep inhalation. Both measures serve evenly to distribute the

aggregates throughout the perfused lung areas. The aggregates are extracted during their

first pass through the lung, thus imaging can begin immediately. Anterior, posterior, left

and right lateral oblique and sometimes lateral projections are obtained (Fig. 2.24).

Figure 2.24: Normal perfusion scan in the four projections A-P (dorsal), P-A (ventral), LPO 45

and RPO 45.

Ventilation scanning is undertaken using radioactive Xe or Tc-99m labeled aerosols

. The advantage of this technique is that the projection most clearly shows a perfusion

defect can also be imaged during ventilation, but has the disadvantages of high cost and

limited availability. The Rubidium-Krypton generator system is too expensive to be used

in most clinical environments.
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Figure 2.25: Normal ventilation scan with wash-in, equilibrium and wash-out phases.

2.5 Lung imaging by proton Magnetic Resonance

The physics of the Magnetic Resonance Imaging (MRI) is detailed in Chapter 3. This

section gives an insight of the use of MRI in lung investigation.

2.5.1 Anatomical lung MRI

In the chest, MRI is mainly indicated for the evaluation of mediastinal or chest wall le-

sions. The most frequent indication is the characterization and preoperative assessment of

a mediastinal mass. MRI is used to study the lungs too. The lung parenchyma is known to

give a weak MR signal [31]. There are three explanation for this: first, the lung is mainly

air so it has very little proton density [32]; second, the lung has a non-regular move-

ment; and last, it consists of 70 m2 air-tissue interface. This interface between structures

with different magnetic susceptibility is the source of internal gradients which severely

amplify the transverse relaxation. At 1.5 T, the transverse relaxation time measured by

gradient echo sequence (T ∗2 ) is between 0.86 and 2 ms [33]; the transverse relaxation time
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measured by spin echo (T2) is 25 to 35 ms. The reversible part of T ∗2 measured by spin

echo, (T ′2) is between 5 to 7 ms average; it is elevated at the bottom of the lung where the

alveoli are less inflated. It also increases with certain diseases (35 ms in atelectasis and

140 ms in tumors) [32]. At 0.5 T, other authors reported a T ∗2 of 4 +/-1 ms [34].

This short relaxation time leads to a very weak signal [31] and implies very short echo

times (TEs). With the latest development in gradients performance it is possible now to

obtain TEs short enough to visualize the pulmonary parenchyma.

Mayo used a spin echo sequence at 1.5 T with TE=7 ms to obtain images of the lung

tissue [35]; these images showed intrapulmonary structures (small vessels, septa) better

than the sequences with TE of 20 ms.

Bergin used a projection-reconstruction (PR) sequence with 250 µs TE that was able

to correct the susceptibility artifacts [36].

Alsop used a gradient echo sequence with a very short TE (0.7 ms) at 1.5 T. To obtain

this short times, the switching rate of the gradients was 150 T.m−1.s−1, a large bandwidth

(62.5 kHz) and asymmetric echoes. The acquisition time was 16 s [33].

Heidemann described resolution enhancement in lung 1H imaging using half-Fourier

acquisition single-shot turbo spin-echo (HASTE) sequences, with short echo time (TE)

and short interecho spacing (Tinter) combined with partially parallel acquisition (PPA)

strategy [37], [38].

2.5.2 Functional lung MRI

Oxygen contrast enhanced MRI

Oxygen is a paramagnetic agent which affects T1. The idea of using the oxygen as a

contrast agent was first tried to study the heart chambers by Young [39].

It was then applied to lungs by Edelman [40] who reported a variation of T1 from 901

+/- 55 ms with ambient air ventilation to 826 +/- 62 ms with pure oxygen. The difference

(75 ms) was enough to obtain ventilation images at 1.5 T using a IR-HASTE sequence:

spin-echo single-shot half-Fourier with magnetization inversion (inversion time, TI = 720

ms) to cancel the signal of the lung ventilated with ambient air (128x256 matrix, inter-

echo time 4.2 ms, effective TE 25 ms, RF sinc pulses, 1 ms duration, acquisition time 320
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ms). An image of the variation of the signal reflected the ventilation (Fig. 2.26).

Figure 2.26: Dynamic lung imaging by MRI before and after administration of pure oxygen; the

signal (arbitrary units) increases by the paramagnetic effect of the oxygen [40].

Lung perfusion MRI

The term of lung perfusion imaging can be confusing: numerous authors consider that

the perfusion imaging should be the vessel visualisation; stricto sensu, the perfusion is

the process of delivery of arterial blood to a capillary bed in the biological tissue and the

real perfusion imaging has to show/quantify the blood supply to the tissue.

The first application of MRI to the measurement of pulmonary perfusion was the

phase contrast velocity measurement [41] of the pulmonary arteries. After, the use of

contrast agents made possible the visualisation of the pulmonary arterial tree and pul-

monary perfusion, first in animals [42], [43] and then in humans [44], [45] (Fig. 2.27).

The main clinical application of this method was the diagnostic of the pulmonary em-

bolism [46] first reported in 1997 by Amundsen [47].

More recently, the MRI angiography using the time of flight (TOF) was used. This

sequence uses spin labelling without contrast agent to obtain images of the vascularisation
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Figure 2.27: Pulmonary perfusion MRI with gadolinium contrast agent; acquisition obtained

with a FLASH sequence; left image, healthy volunteer: clear view of the vascularization and

pulmonary perfusion after substraction of an image acquired before the agent injection; right

image, animal model of pulmonary embolism in pig [44]).

[48], [49], [50], [51], [52] (Fig. 2.28).

Figure 2.28: Images of pulmonary perfusion obtained without contrast agent from healthy vol-

unteers, by spin labelling technique; left, visualisation of the pulmonary arterial tree up to the 7th

generation ([49]); right, reference image (a), followed by functional images obtained with differ-

ent inversion times, the short times (b: 500 ms & c: 700 ms) show the vessels and the long times

(d: 1 s, e: 1.2 s and f: 1.4 s) show the pulmonary perfusion ([51]).
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2.6 Conclusion

In multiple domains like neurology, oncology, cardiology, rheumatology, Magnetic Res-

onance Imaging has an important position among the medical imaging techniques, both

anatomical and functional. By contrast, in pneumology, this method is hardly used: it is

very difficult to visualise the parenchyma. Before the use of hyperpolarised gases MRI

couldn’t provide ventilation images with enough quality to be of potential use for clinical

application.

On the other hand, the other available imaging techniques can not answer all the

problems found in pneumology: in particular, the diagnosis of the air ways diseases like

asthma and COPD is impossible in the early stages. These diseases need a technique

that can provide more information on the ventilation than scintigraphy in order to be of

clinical interest. The difficult diagnosis of pulmonary embolism could be facilitated by

extra information from ventilation MRI.

Proton MRI of the lung is a method of low sensitivity in terms of the signal. With

the other imaging techniques there is no real theoretical limit in signal augmentation: the

electrical intensity in the X-ray tube can be increased in radiography and CT, the intensity

of the ultrasound wave can be increased in ultrasonography, or the injected activity in

scintigraphy. With MRI we are limited by the field strength and temperature, the available

magnetization depends on the spin density of the region of interest. In order to overcome

some of the limitations and get an advantage over the previous methods applied to lungs,

it is necessary to think of using techniques of hyperpolarisation.
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Chapter 3

Fundamentals of hyperpolarised 3He

MRI

This chapter will review the physics of the Magnetic Resonance Imaging (MRI), focusing

on aspects of hyperpolarised gas. The second part will present theoretical aspects of the

hyperpolarised 3He.

3.1 Basics of Nuclear Magnetic Resonance

Nuclear magnetic resonance involves the natural resonance phenomena of transitions be-

tween specific energy states of nuclear orientation in a magnetic field . Magnetic reso-

nance requires the existence of a magnetic moment and angular momentum. The useful-

ness of NMR is that it allows the study of specific spins in a magnetic material. Even

in the presence of dominant magnetic material, spins that have a small contribution to

the total magnetisation can be investigated with NMR. Due to the screening effect of the

electrons in chemical compounds the resonance frequency of a free atom is different from

that in bulk material. This effect is called chemical shift. Observing the chemical shift

provides information about the chemical composition of the material. NMR also allows

for non invasive studies of subjects and materials. These properties allow for the use of

NMR in fields such as physics, chemistry, biology and medicine. This section introduces

the basic principles of NMR in preparation for a discussion of magnetic resonance imag-
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ing with polarized noble gases. Thorough discussions of NMR can be found in many

texts [53], [54], [55], [56].

3.1.1 Magnetisation and Polarisation

Individual nucleons have a spin of 1
2
. The spins from individual nucleons couple together

in a nucleus with orbital angular momentum to form the total angular momentum of ~I

where I is either integer or half integer. The magnetic moment related to a total angular

momentum ~I is:

µ =
ge~I
2mp

(3.1)

where g is the Landé factor, e is the charge of an electron, ~ is Planck’s constant

divided by 2π, and mp is the mass of the proton. By defining the gyromagnetic ratio

γ =
ge

2mp

the magnetic moment is

µ = γ~I

In SI units, for protons (neutrons) γ = 2.7522212× 108 rad s−1 T−1 (γ = -1.83247188

× 108 rad s−1 T−1) and for 3He γ is γ = -2.0378 × 108 rad s−1 T−1. Any free system

with a constant gyromagnetic ratio, such as a rigid system of charges, a nucleus, or an

electron, when placed in an external magnetic field B (measured in teslas) that is not

aligned with its magnetic moment, will precess at a frequency f (measured in hertz), that

is proportional to the external field:

f =
γ

2π
B

For this reason, values of γ/(2π), in units of hertz per tesla (Hz/T), are often quoted

instead of γ. For protons this value is 42.576 MHz/T and for 3He is -32.434 MHz/T.

If a magnetic moment is placed in a magnetic field the nucleus will be in an energy

state of the HamiltonianH = −−→µ ·B. If the magnetic field is pointing in the z direction

H = −µB0 = −γ~B0Iz.
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The eigenvalues for this Hamiltonian are

E = −mγ~B0

where m are sub states corresponding to different levels, m = −I, ..., I − 1, I . The

energy difference between two adjacent states is

∆E = ~γB

and the energy absorbed is

∆E = ~ω.

From these relations the transition between two adjacent states occurs when radiation

of angular frequency ω (= 2πν) is applied

ω = γB.

When an isotropic non ferromagnetic sample is placed in a magnetic field, a magneti-

sation M is created

M =
χ

1 + χ

B

µ0

where χ is the magnetic susceptibility and µ0 is the permeability of free space. For

paramagnetic systems χ� 1 so

M = χ
B

µ0

. (3.2)

For a collection of spin 1
2

particles (eg. protons), each particle has two quantum

substates, m = 1
2

and m = −1
2
. For thermal populations, statistical mechanics must

be used to determine what fraction of the spins are aligned with the magnetic field and

what fraction are pointing opposite to the field. Given that γ is positive, in which case
−→µ is parallel to I. The fraction of the spins that are pointing parallel (antiparallel ) to the

magnetic field direction is given by the Maxwell-Boltzmann distribution
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N ↑↓= e
±µB
kT

e
µB
kT + e

−µB
kT

where ± is used to represent a magnetic moment parallel(+) or antiparallel(-) to the

applied field. T is the temperature in Kelvin and k is the Boltzmann constant. The net

magnetisation is given by

M = Nµ
N ↑ −N ↓
N ↑ +N ↓

(3.3)

= Nµ
e
±µB
kT

e
µB
kT + e

−µB
kT

(3.4)

= Nµ tanh

(
µB

kT

)
(3.5)

= Nµ tanh

(
~ω

2kT

)
(3.6)

where N = N ↑ +N ↓. The polarization of a sample is defined as

P =
N ↑ −N ↓
N ↑ +N ↓

(3.7)

and the polarization due to a Boltzmann distribution of spins is given by

Pthermal = tanh

(
~ω

2kT

)
≈ ~ω

2kT
(3.8)

where the thermal subscript is given since the polarization is dependent upon temper-

ature for a given field. Seen from equation 3.8, the polarization increases linearly with

frequency and therefore with magnetic field strength. For protons in a 1.5 T (15,000

gauss) field at 300 K, the polarization is 5.1× 10−4%.

This small value generates a small magnetisation; as an effect, the population in the

parallel and antiparallel state are almost identical. This usually means a low sensitivity of

the nuclear magnetic resonance (Fig. 3.2).

In order to increase the polarisation, according to 3.8, the only posibilities are to cool

down the nuclear population (this is hard to do in biomedical applications) and increase

the
−→
B0 field; nowadays, the most intense magnetic field achievable for human imaging

is about 10 T which only provides a polarisation just above 10−5. The only solution
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Figure 3.1: A net magnetisation due to individual magnetic moments precessing around a mag-

netic field. Note that the transverse magnetisation is averaged to zero.

Figure 3.2: Small nuclear magnetisation as a result of similar population on the parallel and

antiparallel levels.

to increase the NMR signal remains working in the non-equilibrium state: this is the

principle of hyperpolarisation. In the hyperpolarised regime, the two populations are

more different, the polarisation is therefore significantly increased and the magnetisation

available is greater (Fig. 3.3). The ways of obtaining this hyperpolarised state will be

presented in a later chapter.
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Figure 3.3: Principle of hyperpolarisation: the populations on the parallel and antiparallel levels

are much more different from equilibrium; the polarisation is increased together with increase in

magnetisation and NMR signal.

3.1.2 Magnetic Moment in a Magnetic Field

The motion of particles with spin I, in a constant magnetic field B0 and a weak oscillating

field B1 perpendicular to B0 can be calculated classically. Let J be the magnitude of

the angular momentum J, classically given by J = ~I . An angle θ is defined as the

angle between the z-axis and J (Fig. 3.4). The constant field B0 defines the z-axis, and

B1 is oscillating in the x-y plane. The constant magnetic field produces a torque on the

magnetic moment

Γ = −→µ ×B0 = γ(J ×B0).

Figure 3.4: The magnetic fields in the a) lab and b) rotating frame.

The torque is equal to the time derivative of the angular momentum so
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dJ
dt

= γ(J×B0) (3.9)

To solve this equation it first must be shown that the magnitude of J is constant

dJ2

dt
=
d(J · J)

dt
= 2J · dJ

dt
= 2γJ(J×B0),

where it is readily seen that the last expression is identically zero. Using the identities

ω0 =
dφ

dt

dθ

dt
= 0

and the individual components of equation 3.9

dJx
dt

=
d

dt
(J sin θ sinφ) = ω0J sin θ cosφ = γJyB0

dJy
dt

=
d

dt
(J sin θ cosφ) = −ω0J sin θ sinφ = −γJxB0

dJz
dt

=
d

dt
(J cos θ) = 0

it is easily shown that

ω = γB0

and
−→ω0 = −

∣∣dJ
dt

∣∣
|J× ẑ|

ẑ,

where ẑ is the unit vector in the z direction. From equation 3.9 the magnetic moment

is seen to precess about B0 with an angular frequency of ω0.

If a weak magnetic fieldB1(t) is rotating in the x-y plane about the z axis with angular

frequency ω given by the expression

B1 = B1(x̂ cosωt+ ŷ sinωt),

along with a static magnetic field B0 = B0ẑ, the equation of motion for the spin is
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dJ
dt

= γ(J× B) (3.10)

where B = B0 + B1 is the total magnetic field.

The time dependence in equation 3.10 can be eliminated by moving into the rotating

frame of B1(t). In this new coordinate system, B1(t) and B0 are static. In the lab frame

the time derivative of the angular momentum vector is

dJ
dt

= (
∂J
∂t

+−→ω × J), (3.11)

where ∂J
∂t

is the time derivative computed in the rotating frame. Substituting 3.11 into

3.10 the equation of motion in the rotating frame is

∂J
∂t

= γ

[
J× (B0 + B1 +

−→ω
γ

)

]
, (3.12)

Rewriting equation 3.12 in the form

∂J
∂t

= γ

[
J× (B0 −

ω

γ
)k̂
′
+ B1x̂

′
]
, (3.13)

the spin vector is seen to precess about an effective magnetic field Beff = (B0 −
ω
γ
)k̂′ +B1x̂′ . At the resonant condition ω0 = γB0, the spin is precessing about the x̂′ axis

with a frequency ω1 = γB1 (Fig. 3.5).

Figure 3.5: Precession of a spin J in a magnetic field B0 at a frequency ω0 = γB0 a). Addi-

tionally, when a small rotating magnetic field B1 is applied about the z direction, the spin will

precesses about B1 with a frequency ω1 = γB1 b).
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There are two general types of methods in NMR, cw (continuous wave) and the pulsed

methods. The cw method utilizes an RF field that is applied continuously. Resonance is

typically achieved by varying the frequency through the resonant condition. The RF pulse

method cycles on and off the RF utilizing various pulse sequences. If an RF pulse is turned

on for a duration τ , the magnetisation will rotate about B1 through an angle θ = γB1τ . If

τ is 90◦ or 180◦ the pulse is referred to as a 90◦ or 180◦ pulse (Fig. 3.6). Such pulses are

commonly used in experimental pulsed NMR.

Figure 3.6: Diagram describing the nutation angle θ = γω1τ which a magnetisation vector

rotates through when a resonant RF pulse of duration τ is applied.

3.1.3 Spin Relaxation

The application of an RF excitation pulse applied to a system in thermal equilibrium will

lift the system to the excited state. Once in the excited state, the system will return to

thermal equilibrium with a time constant T1. The energy that was absorbed to excite

the nuclei is then transferred to its surroundings, the lattice. This process is referred to
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as spin-lattice relaxation or longitudinal relaxation . In liquids and gases, the RF fields

are moving magnetic nuclei that produce field fluctuations at the resonance condition

ω0 = γB0. The rate at which nuclei relax is dependent on the motion of the molecule

containing the nuclei. For instance, a proton in water may rotate faster than protons in

tissue; This is because the protons in tissue may have a stronger rotational component at

the resonant condition than do the protons in water. Therefore, the T1 for protons in tissue

would be shorter than those in water. One can easily see that the T1 is dependent upon the

magnetic field strength. Typically, the T1 for protons in water is approximately 3 seconds,

whereas protons in biological tissue is typically several hundred milliseconds at typical

field strengths (1.5 T). By changing the magnetic field strength, the resonant condition

may be closer to the motional frequency of protons in water, causing T1 to shorten and

increasing the T1 in tissue. The change in the magnetisation along the direction of the

magnetic field as it relaxes to thermal equilibrium is governed by the equation

dMz

dt
=
−(Mz −M0)

T1

(3.14)

where Mz is the longitudinal component of the magnetisation, and M0 is the longi-

tudinal component at thermal equilibrium. Since T1 is the time constant describing the

relaxation of the longitudinal component of magnetisation, it is referred to as the longitu-

dinal relaxation time.

If a 90◦ pulse has rotated the magnetisation into the x-y plane, the magnetisation will

precess about B0. As the magnetisation vector rotates about the z direction its magnitude

decreases. This mode of relaxation is referred to as spin-spin, or transverse relaxation,

and is given by the time constant T2. Transverse relaxation is different from longitudinal

relaxation in that it is not due to energy exchange to the lattice. Rather, unlike longitudi-

nal relaxation, transverse relaxation is due to loss of phase coherence between spins. If

the sample of interest were in a uniform field, all the spins would precess at the same fre-

quency and in phase. However, magnetic field inhomogeneities and nuclear dipole fields

within the bulk material will cause nuclei at different locations to precess at different fre-

quencies. As the nuclei precess, their relative phases change, causing a loss in transverse

magnetisation. Since transverse relaxation is affected by dephasing interactions T2 ≤ T1.

46



CHAPTER 3. FUNDAMENTALS OF HYPERPOLARISED 3HE MRI

T2 is primarily due to local field imperfections and, thus, is less susceptible to magnetic

field strengths than T1. Since they produce larger static field components, slowly rotating

molecules are causing more T2 relaxation; this is readily observed in solids where T2 is

very short. The transverse magnetisation is governed by the equation

dMx,y

dt
=
Mx,y

T2

(3.15)

where Mx,y is the component of the magnetisation in the x,y direction.

By combining equations 3.14, 3.15, 3.13 and the relationship M ∝
∑

Ji the well

known Bloch equations [53] are reproduced in the rotating frame:

dMx

dt
= γMy(B0 −

ω

γ
)− Mx

T2

(3.16)

dMy

dt
= γMzB1 − γMx(B0 −

ω

γ
)− My

T2

(3.17)

dMz

dt
= γMyB1 −

Mz −M0

T1

. (3.18)

Transverse spin relaxation due to magnetic field imperfections can be recovered using

spin echoes. By applying a 90◦ pulse, the longitudinal magnetization is rotated into the

transverse plane where the spins precess. As time increases, spins in a larger field will

precess faster than those in a smaller field causing them to dephase. In Figure 3.7 the

faster spins are ahead of the slower spins. If a 180◦ pulse is applied a time TE/2 after

the 90◦ pulse, the slower spins exchange place with the faster spins. After an additional

time TE/2, the faster spins will catch up to the slower spins producing a spin echo. An

example of a spin echo is shown in Figure 3.8.

The amplitude of the echo is smaller than that of the FID since the magnetization loss

due to local dipolar fields is not recovered with a spin echo as in the case due to losses

associated with magnetic field imperfections. When a refocusing 180◦ pulse is given,

both the spins and the dipolar fields are reversed. Thus the effect due to dipolar fields is

unchanged using a spin echo. The use of a spin echo technique allows for the separation

of dipolar and magnet inhomogeneity relaxation modes. Therefore, it is useful to define
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Figure 3.7: Formation of a spin echo. At time t=0 the net magnetization vector is in the x-y

plane after having received a 90◦ pulse. As time progresses, the spins begin to dephase due to

magnetic field inhomogeneities. At time t=TE/2, a 180◦ pulse is applied. At time t=TE the spins

have rephased and an echo is observed.

Figure 3.8: Signal observed during a spin echo. At t=0 a free induction decay is observed with

a decay time constant of T ∗2 . At time TE the center of the echo occurs. The echo amplitude

decreases exponentially with a time constant T2.

the transverse relaxation time constant due to non-reversible dephasing processes, such

as dipolar fields, and diffusion as T2 and the time constant related to the decay of the FID

as T ∗2
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1

T ∗2
=

1

T2

+
1

T2inh

+
1

T2sus

+
1

T2other

(3.19)

where T2inh, T2sus, and T2other are the transverse relaxation time constants due to in-

homogeneities in the magnetic field, local differences in susceptibility and magnetisation,

and other processes. Additional 180◦ pulses will produce similar echoes with decreasing

amplitudes that fall off with the time constant T2.

3.1.4 Acquisition Cycle in NMR

NMR at thermal polarisation

In the case of NMR at thermal polarisation, application of an RF pulse tips the magnetisa-

tion in the transverse plane; the signal is recorded during a time T2. After waiting a time

t > 5 × T1 to allow the magnetisation to recover fully, it is possible to send another RF

pulse and get another signal and then repeat this for a any number of signals (Fig. 3.9).

Figure 3.9: NMR at thermal polarisation: the microscopic magnetisations are represented by

arrows: the effect of the RF pulse has a double effect: equalizes the parallel and antiparallel

populations and puts in phase the magnetisations; starting from equilibrium, a 90◦ pulse tips

the magnetisation in the transverse plane where it will generate a signal; after signal voidance

(magnetisations dephasing), the longitudinal magnetisation is recovering and a new cycle can

begin.
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Usually, in NMR, the transverse relaxation (T2) is considered a negative phenomenon

since it destroys the signal. On the other hand, the longitudinal relaxation (T1) is a positive

one because it regenerates the signal reservoir; relaxing agents (contrast agents) are used

to shorten T1 and accelerate this regeneration.

Single use magnetisation in the hyperpolarised regime

Figure 3.10: NMR in the hyperpolarised regime : starting with an equilibrium magnetisation, one

can obtain a hyperpolarised state by optical pumping; an 90◦ RF pulse tips the magnetisation in

the transverse plane where it generates a signal; after signal is destroyed because of the transverse

relaxation, the longitudinal relaxation can not put the system back in the hyperpolarised state but

in the equilibrium state meaning a state with very low magnetisation (virtually zero) compared

to the magnetisation in the hyperpolarised state; since optical pumping is obtained only in very

specific conditions (never in vivo), it is not possible to reproduce the cycle described in Figure 3.9.

In the hyperpolarised case, the longitudinal magnetisation is increased by optical

pumping1; it is no more an equilibrium state. Applying an RF pulse tips the magneti-
1a description of optical pumping will be presented in a future section
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sation in the transverse plane where it will generate a NMR signal. Immediately after the

signal is destroyed, the longitudinal magnetisation generates the recovery of the magneti-

sation to the equilibrium state, which is not a hyperpolarised state anymore; it is a state

with very low magnetisation compared to the hyperpolarised state. Since optical pumping

need certain conditions that can not be obtained in vivo, this is a critical situation (Fig.

3.10). The hyperpolarised regime does not allow the cycling described in 3.1.4 .

The longitudinal relaxation, which is always recovering the system to its equilibrium,

can be considered as a pejorative factor in the case of hyperpolarisation. It will transform

a very high magnetisation level into a very low (almost zero) magnetisation. Therefore

there are two aspects that are different from the classic NMR:

• once polarised, the gas has a life time dictated by T1 during which it can be used

for experiments. The goal is to maximise T1, contrary to classic NMR where short

T1 is desired.

• cycling the magnetisation is impossible for medical applications since the optical

pumping can not be done in vivo.

3.2 Magnetic Resonance Imaging

Nuclear magnetic resonance experiments were first reported independently in 1946 by

Purcell et al. [57] at MIT, and by Bloch et al.[58] at Stanford. However, it was not until

1973 that the first two dimensional image of a live animal was reported by Lauterbur [59].

Mansfield and Grannell [60] demonstrated the relationship between the NMR signal and

the spin density using Fourier techniques during the same year. In 1977 the first images

were observed [61] using a whole body imager. Shortly afterwards, in the early 1980’s,

manufacturers obtained FDA approval for their magnetic resonance imaging systems. To-

day magnetic resonance imaging (MRI) is routinely used in experiments with resolutions

of less than 0.1 mm for biological, mineral, and synthetic material research.
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Basic Principles of Spatial Localisation

Before obtaining an image, it is necessary to localise the magnetisation. The Larmor

frequency - the frequency of the RF pulses that tip the magnetisation and also of the

NMR signal - depends on the nucleus and the
−→
B0 magnetic field and it is in the order

of tens of MHz. Since the frequency of precession for a moment is dependent upon the

magnetic field strength, it is easy to impose a spatial dependence to the frequency by using

a spatially varying magnetic field. Using linearly varying magnetic fields, the precession

frequency will be a linear function of position. By defining the three dimensional gradient

G as

G = (Gx, Gy, Gz)−
(
∂Bz

∂x
,
∂Bz

∂y
,
∂Bz

∂z

)
(3.20)

the magnetic field at position r can be written as

B(r) = B0 + G · ~r (3.21)

whereB0 is the static magnetic field applied in the z direction. The position dependent

angular frequency becomes

ω(r) = ω0 + γG · ~r (3.22)

Localisation by slice selection The first method of spatial localisation consists of ap-

plying a magnetic field gradient Gz during the RF emission: only the spins situated in the

region where the magnetic field corresponds to the frequency spectrum of the RF pulse

will be tipped in the transverse plane. This selects a slice perpendicular to the z direction.

The slice thickness is inverse proportional to the Gz magnitude and proportional to the

bandwidth of the RF pulse (Fig. 3.11).

Localisation in frequency direction When applying a gradient during signal recording

this creates a linear frequency dependence of the signal on the position along the direction

of the applied gradient (Fig. 3.12).
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Figure 3.11: Figure A) shows how the slice thickness varies with different gradient strengths.

Gradient 1 is greater than gradient 2 and the corresponding slice thickness ∆z1 is smaller than

∆z2. In figure B) the smaller bandwidth ∆ω1 produces a thinner slice thickness ∆z1 than the

larger bandwidth ∆ω2 .

By identifying the frequencies and so the signal source, and by Fourier transformation,

localisation becomes possible followed by the formation of a one-dimensional image.

The size of the pixel is small when the difference in frequencies between the two

regions is large(the gradient is large) and the duration of signal observation is long.

Let’s denote Tobs the duration of signal observation, tsample the sampling period and

Nx the number of samples. The bandwidth of the signal is then ∆ν = 1/tsample and the

frequency resolution: δν = 1/Tobs. If the field of view (FOVx) consists of Nx pixels of

size δx, the following relationships are true:

FOVx =
2π∆ν

γGx

=
2π

γGxtsample
(3.23)

δx =
2πδν

γGx

=
2π

γGxTobs
(3.24)

There is a symmetry between the image space and the signal space (Fig. 3.13): the

size of one corresponds to the other’s resolution (field of view⇐⇒ sampling time) and

reciprocal (size of pixel⇐⇒ bandwidth).

Let’s consider the transverse magnetisation in the rotating frame. In the absence of a

gradient this magnetisation is fixed. By applying a gradient
−→
G , the magnetisation located

on an abscise x will rotate with an angular speed:
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Figure 3.12: Applying a magnetic field gradient on x direction will determine a linear dependance

of frequency and the position x.

Figure 3.13: Illustration of the symmetry between the temporal signal space (called Fourier

space) and the frequency image space: size of pixel is inverse proportional to the bandwidth; size

of the field of view is also inverse proportional to the sampling time; each space can be obtained

by Fourier transformation the other one.

ω = γGx · x (3.25)

This will dephase and its evolution will be described by:

M(T ) = M(0)× exp

(
i ·
∫ T

0

γGx(t) · xdt
)

(3.26)

the total signal being the sum of all the magnetisations.
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Localisation in phase direction To get the second dimension of the image, the most

popular method consists of repeating the signal acquisition in the presence of a gradient

Gy placed between the slice selection and signal reading (Fig. 3.15). By varying the gra-

dient amplitude, the magnetisation is dephased and this dephasing depends on its position

on the y axis. The equations 3.25 and 3.26 can be generalised:

ω = γ
−→
G · r (3.27)

M(T ) = M(0)× exp

(
i ·
∫ T

0

γ
−→
G(t) · −→r dt

)
(3.28)

The dephasing between two consecutively sampled points (and dephased by Gx) and

two successive lines (and dephased by Gy) is of the same nature and is given by Eq. 3.28

although there are two differences between the read and phase gradient:

• the read gradient is always applied during the signal acquisition

• two points sampled from the same line (discriminated by the read gradient) are

obtained using the same RF pulse; two points from the same column are obtained

by using different RF pulses

Image reconstruction is obtained by applying a second Fourier transform in the y-

direction.

Hence, the acquisition consists of sampling the reciprocal image space, or Fourier-

space (k-space) . The image is then obtained using a two-dimensional Fourier transform.

The Fourier-space formalism, described in 1983 [62], [63], allows us to describe the

image acquisition strategy in an easy way (Fig. 3.14 and Fig. 3.15). The hyperpolarised

gas case is described later.

Signal and noise

The hyperpolarisation technique is used to compensate for the lack of NMR signal from

the gases. In addition, the polarisation at thermal equilibrium and hyperpolarisation are

determined by different factors. Therefore it is useful to treat separately the signal to

noise ratio for the two situations.
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Figure 3.14: The rules of covering the k-space. First, the transverse magnetisation is at the center

of the k-space; a gradient along the x-direction creates a horizontal displacement in the k-space; a

gradient along the y-direction creates a vertical displacement in the k-space; a 180◦ pulse creates

a central symmetry in the k-space.

Signal amplitude

Signal in general The NMR signal is an electromotive force ξ induced in the coil

by the precessing transverse magnetisation
−→
M . This causes a magnetic flux variation:

ξ(t) =

∫∫∫
object

− ∂

∂t

[−→
b1 (x, y, z) ·

−→
M(x, y, z)

]
dxdydz (3.29)

where
−→
b1 = d

−→
B1

dI
is the magnetic field per unit of current created by the coil in trans-

mission mode (the reciprocal theorem [64]).

Tipping the whole available magnetisation, M0 = ||
−−−→
Mx, y||; assuming

−→
b1 normal to

−→
B0 Eq. 3.29 is written as:

ξ(t) = b1 ·M0ω0 cos(ω0t) · V (3.30)
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Figure 3.15: The k-space: after applying an RF pulse, we apply a gradient Gy in the y direction

and then a gradient Gx during signal recording; each point stores the dephasing caused by the

two gradients; repeating the acquisition while varying the amplitude of the encoding gradient

allows for sampling of the temporal signal space called Fourier-space (k-space); the slice selection

gradient is not represented on this plot.

V being the volume over which
−→
b1 is supposed to be uniform.

Signal at thermal polarisation At thermal equilibrium , the magnetisation is

M = n
γ2~2B0

4kTs
,

where Ts is the temperature of the sample. More general formulation is [65]:

M0 =
B0nγ

2~2I(I + 1)

3kTs
(3.31)

For a number N of spins 1
2

the amplitude of the signal is:

ξ(t) = b1 ·
γ3~2B2

0

4kTs
×N (3.32)

For MRI, considering the number of resonant atoms in the voxel n × δx × δy × δz,

the equation is:

ξc−c(t) = b1 ·
nγ3~2B2

0

4kTs
δx× δy × δz (3.33)
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So, the signal is proportional to the sensitivity of the coil and the square of the main

magnetic field.

Signal in the hyperpolarised regime In the hyperpolarised regime, the polarisa-

tion is not given by the Boltzman’s statistics but it depends on the optical pumping. By

replacing the value of magnetisation given by

Mz = n
γ~P

2

in 3.30, we get:

ξ = b1 ·
nγ2~B0

2
δx× δy × δz × P (3.34)

In the hyperpolarised case, the signal is linearly proportional to the main magnetic

field and to the polarisation obtained by optical pumping.

Sources of noise The electronic noise comprises of two types: Johnson noise or thermal

and Schottky noise or quantic noise (caused by the random motion of the electrons in a

semiconductor). In real life, the quality of the components used in NMR allows us to

neglect the Schottky noise.

The Johnson noise is the electronic noise generated by the thermal agitation of the

charge carriers (usually the electrons) inside an electrical conductor at equilibrium, which

happens regardless of any applied voltage. The value of the noise emitted by a resistor R

at temperature TR in a frequency range ∆ν is:

ξN = 2
√
kTRR∆ν (3.35)

A general method to reduce the thermal noise is the use of a narrow bandwidth; this

is also limited by the signal life time.

There are multiple sources of thermal noise:

Coil noise in general Usually, the coils used in NMR experiments are resistive ones.

At zero frequency, the resistance Rc of a loop with resistivity ρc, of perimeter 2πa and

section radius r is:
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RC = ρc
2a

r2
(3.36)

At high frequency, the current only flows efficiently on the surface of the conductor

down to a dept δ (the ”skin” effect) :

δ =

√
2ρc
µ0ω0

(3.37)

where µ is the magnetic permeability. For copper, at 3 MHz δ is about 30 µm. Eq.

3.34 becomes:

Rc =
a

r

√
µ0ρcγB0

2
(3.38)

This is true for a right circular cylinder. In addition to this, for a real coil, there is a

proximity factor ζ that reduces the conductivity of the coil at high frequencies. Current

carrying wires influence other currents through the magnetic field that it produces. Hence:

Rc = ζ
a

r

√
µ0ρcγB0

2
(3.39)

and the noise voltage:

ξc =

√
a

r
kTcζ∆ν 4

√
8µ0ρcγB0 (3.40)

where Tc is the coil temperature.

This type of noise can be reduced by changing Tc or ρc (superconductive coil )

Coil noise at low magnetic field Eq. 3.40 was calculated considering δ very small

compared to the diameter of the wire. At low field δ may become similar to the wire

radius; in this case, the ”skin” effect does not occur and Eq. 3.38 is not true. From 3.37,

the frequency corresponding to δ is:

ν0 =
ρc

πµ0δ2
(3.41)

Considering the conductivity of the copper to be 1.710−8Ωm [66], the frequency cor-

responding to a millimeter depth ”skin” effect, is 4300 Hz. This gives a magnetic field of

100µT. The noise voltage is then:
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ξB =
2

r

√
kTRρcp∆ν

π
(3.42)

independent of the field.

At low field there are other sources of noise like the Schottky noise or exterior mag-

netic fluctuations that can be dominant.

Inductive coupling to object The sample examined by NMR is inductively coupled

to the coil; it is behaving like a noisy resistance. The resulting noise is inherent strictly

because of the nature of the signal. Considering the case of a patient, there are models

that can estimate the noise induce by his presence. Considering a model of a half-space

plane conductor placed in contact with a loop of radius a. The resistance RS is then [67]:

RS '
1

3
σSµ

2ω2
0a

3 (3.43)

where σS is the conductivity of the object. Although this simple model does not

correspond entirely to the real life, it gives an idea of the noise dependance. The noise

voltage induced by the subject is:

ξS = 2

(√
kTS

3
σS∆ν

)
µ0γB0a

3/2 (3.44)

This type of noise is inevitable and can only be reduced by adapting the dimensions

and the coil geometry to the field of view, in other words to avoid collecting noise from

regions that don’t provide signal.

Capacitive coupling to object The sample and the coil are two conductors placed

face-to-face and so they behave like a capacitor. It is possible to minimise this coupling

by distributing the tuning capacitance along the wire; this diminishes the electric field

between the sample and the coil. In general this can be neglected if the coil is well

designed. The resistance induced by dielectric losses RE can be written as [67]:

RE = τω3
0L

2Cd (3.45)
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where τ is a factor of dielectric losses, L is the inductance of the coil, and Cd is the

distributed capacitance. The noise voltage is then:

ξB = 2
√
kTS∆ντCdLγ

3/2B
3/2
0 (3.46)

Environment coupling The coil is located in a complex environment surrounded

by the magnet, gradient coils and transmit coils. All these metallic components can be

coupled at frequency ν0. They can induce a resistance RB. Generally, a screen prevents

the coupling of the coil with the rest of the system at the frequency ν0.

Review of different sources of noise By neglecting the capacitive coupling, the

total noise, as long as the magnetic field is not too low (less then 100 µT), can be written

as:

ξB =
√
k∆ν

√a

r
Tcζ

4
√

8µ0ρcγB0︸ ︷︷ ︸
coil

+ 2

√
TS
3
σSµ0γB0a

3/2︸ ︷︷ ︸
sample

+ 2
√
TRRB︸ ︷︷ ︸

scanner

 (3.47)

Figure 3.16: The conditions for patient noise dominance. (from [67]).

From Eq. 3.47, the condition of patient noise dominance over the coil noise is:

B0 >
3

√
9

2

ρc
σ2
S

(a
r
ζ
)2/3

(
Tc
TS

)2/3
1

µ0γ
a−2 (3.48)
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Considering a perfect coil with a
r
ζ of 30 [67], the copper resistivity 1.7 10−8Ωm [68],

human tissue conductivity is 0.66 Sm−1 [70], human temperature is 310 K, the resulting

conditions are presented in Table 3.1 and Figure 3.16 [67].

For lung imaging with 3He (radius of order 200 mm), this figure indicates that the

patient noise is dominant above 5 mT.
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Signal to noise ratio

At thermal equilibrium In the case of classic NMR at Boltzman’s equilibrium,

from Eq. 3.33, the signal to noise ratio is given by:

SNR =
ξc−c
ξ

=
K · b1 ·B2

0nγ
3~2(δxδyδz)

4k3/2TS
√

∆ν

[√
a
r
Tcζ

4
√

8µ0ρcγB0 + 2
√

TS
3
σSµ0γB0a3/2 + 2

√
TRRB

]
(3.49)

Table 3.1: The conditions of patient noise dominance (a is the coil radius or the size of the object)

proton helium-3

@ 293 K B0 > 1.5510−4T.m2 × a−2 B0 > 2.0310−4T.m2 × a−2

@ 77 K B0 > 6.3510−5T.m2 × a−2 B0 > 8.3410−5T.m2 × a−2

In order to maximise the signal to noise ratio (SNR), we need to optimise the coil

geometry (b1), use a nucleus with high gyromagnetic ratio, limit the spatial resolution,

reduce the bandwidth ∆ν, work at low temperature and at a high field.

In the hyperpolarised regime

SNR =
ξsignal
ξnoise

=
b1 · nγ2~B0(δxδyδz)× P

2
√
k∆ν

[√
a
r
Tcζ

4
√

8µ0ρcγB0 + 2
√

TS
3
σSµ0γB0a3/2 + 2

√
TRRB

] (3.50)

The SNR is then proportional to the polarisation created by the optical pumping and

is dominant over the SNR given by the B0 strength.
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3.3 Physics of the hyperpolarised 3He

The idea of increasing the NMR signal by moving away from thermal equilibrium is not

new. To do NMR in the hyperpolarised regime there are two conditions that need to be

fulfilled: the isotope needs to be nuclear magnetic resonance active (nuclear spin different

from zero) and capable of being hyperpolarised. There are multiple methods that can be

used; the first to have been used in NMR is the Overhauser effect [69]; however, this

effect cannot be used in vivo in humans since it requires injection of free radicals and also

the resonant frequency is in the microwave spectrum unless the magnetic field is very low

(10 mT) [70]. The more recent use of hyperpolarised noble gases by optical pumping

made possible the first images in this regime in humans.

There are two elements that are hyperpolarised by optical pumping: helium (3He) and

xenon (129Xe) [71]; the latter has the advantage - or disadvantage depending on the appli-

cation - of dissolving very quickly in the biological tissues and having a large chemical

shift, which allows for using 129Xe in spectroscopy. However, only 3He will be treated in

this section since is the only nucleus used in this work.

Following a brief description of some physical properties of helium there will be

a discussion on the principle of nuclear hyperpolarisation followed by a more detailed

description of two essential aspects of hyperpolarised gases NMR: signal gain by optical

pumping and rapid diffusion.

3.3.1 Helium properties

Helium was discovered in 1868 by the French astronomer Pierre Janssen during a total

solar eclipse. It is a colorless, odorless, tasteless, non-toxic, inert monatomic chemical

element that heads the noble gas series in the periodic table and whose atomic number is

2. Helium is the second most abundant and second lightest element in the known universe.

It’s the element with the lowest boiling point (4 K) so is used as a cryogenic liquid.

Its dynamic viscosity η (17 µ Pa.s for 3He and 20 µ Pa.s for 4He) is similar to air (18

µPa.s) [68], [72]; the kinetic viscosity ν = η/ρ is 10 times higher than air. In similar

condition, helium flow is less turbulent than air. Let’s consider a flow Q = 0.5L.s−1
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through a pipe of diameter d = 3mm, a typical situation observed when inhaling the gas

during the experiments reported in this work. The Reynold’s number

Re =
2Qη

πdρ
(3.51)

is of order of 2000 for helium (indicating a laminar flow) and 16000 for air (indicating

a turbulent flow).

Helium has two isotopes that are stable. The principal isotope (4
2He) has the atomic

mass equal to 4.0026 uma and a nuclear spin zero. The other isotope (3
2He) has the atomic

mass 3.016 uma; its nucleus consists of two protons and a neutron and has a spin I = 1/2,

hence its NMR suitability.

The natural reserve of 3He is found in the atmosphere but the isotopic concentration

is very low (3He/4He ∼ 1ppm) and extraction is extremely expensive. The current

production of 3He comes from military (side-product of β− disintegration of tritium). The

cost per litre is approx. £100. 3He is very abundant in the universe; the lunar reserves

are high and in higher isotopic concentration (3He/4He ∼ 400ppm); there are plans to

exploit these deposits to allow for the production of energy from nuclear fusion [73].

Having a zero valence, helium is chemically inert. It does not have chemical toxicity.

Helium is used, mixed with oxygen, as a vector gas both in diving to avoid nitrogen

narcosis and in medical emergency when there is an elevated bronchial resistance and

helium prevents the turbulent flow due to its high kinetic viscosity and diffusivity [74],

[75].

The speed of sound in helium is (at 0◦C) 965m.s−1 (331m.s−1 in air); this will change

the timbre of a person’s voice when inhaled.

At 37◦C, helium is slightly soluble in blood and water compared to xenon which is

almost 20 times more soluble.

Production of nuclear orientation

The following section is a brief theory of the techniques used to create the nuclear orienta-

tion. There are multiple articles that describe in detail these methods. The first description

of the hyperpolarisation by optical pumping was made in 1963 [76]. There is also a good
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review of the technique of optical pumping by metastability exchange done by Brossel

et.al [77] and other articles on the LASER side and other aspects on optical pumping

[78], [79], [80].

There are two categories of methods used to enhance the nuclear polarisation:

• obtaining a superior polarisation at equilibrium in different conditions (the ”equi-

librium” method or the ”brute force”)

• using the transitions between different states to obtain a greater polarisation (”non-

equilibrium” method)

The first method consists of placing the 3He nuclei at high field and low temperature

during a period a few times longer than the relaxation time in those conditions; the result

is a state of higher polarisation than the initial state; by quickly heating the helium it is

possible to use the sample at the room temperature assuming it is done in a shorter time

than T1 [81], [82].

The second method consists of polarising the nuclei directly in a non-equilibrium

state.

The principle of optical pumping The nuclear hyperpolarisation can be achieved by a

procedure called optical pumping which allows the transfer of angular momentum from

polarised light to nucleus via electrons, thanks to the electronuclear coupling (hyperfine

coupling) which exists at certain atomic levels.

The principle is to create a population difference between two magnetic sub-levels

from a metastable state by absorbing and re-emitting polarised light. This is illustrated in

Figure 3.17.

In our case, since 3He has two Zeeman states, the interaction is necessary with an

external spin. There are two possible situations:

• the use of rubidium atom; hyperpolarisation is obtained by transferring the angular

momentum through coupling of the electronic spin of Rb and the helium nucleus

during collision [83], [84]

66



CHAPTER 3. FUNDAMENTALS OF HYPERPOLARISED 3HE MRI

Figure 3.17: The principle of optical pumping in a system with three states: two magnetic sub-

levels (A and C) of a ”fundamental state” (metastable state) and the excited state (B); A is irra-

diated by a photons beam corresponding to the transition (A � B); state B will get populated,

without exceeding population of A; however, since B can be de-excited to both A and C, state C

will keep populating since it can not be de-excited by stimulated emission since the photons don’t

correspond to its transition; if C has a long radiative life-time(metastability), its population will

increase at the expense of A via B: this is the optical pumping.

• the use of the electro-nuclear coupling (hyperfine) between helium atoms; this will

be described in this section

Optical pumping by exchange of metastability The method was invented by Cole-

grove [76] and orients the helium atoms by optical pumping to a metastable state fol-

lowed by transfer of the angular momentum to the atom in a stable state during collision

(exchange of metastability).

Obtaining the metastability The metastable state is created by plasma (obtained

by electric discharge in the gas). The result is a large variety of excited levels. Only rapid

de-excitations (100 ns) populate the metastable level 23S (the radiative life-time is hours)

(Fig. 3.18).

The 23S → 11S transition is forbidden.
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Figure 3.18: De-excitation in cascade inside the plasma will populate the metastable levels.

Optical pumping of the metastable state Optical pumping occurs between the

metastable state 2S and the excited state P (Fig. 3.18). This transition (1.15 eV) cor-

responds to 1083 nm wavelength (near infra-red). The transition is obtained by using a

narrow spectrum light (in this case a LASER).

There are 9 allowed transitions between the hyperfine sub-levels 2S and 2P: C1−C9.

By tuning the LASER it is possible to select any transition.

The goal of pumping is the transfer of angular momentum between two populations;

it needs to select the transitions that involve angular momentum transfer (∆m 6= 0). For

this, there are two possible approaches.

In the first method the transition selection is done by angular momentum transfer: for

example a right circularly polarised light σ+ will induce transitions with unity variation

of the angular momentum projection (∆m = +1). Figure 3.19 shows the C9 transition

between 23S1, F = 3
2
,mz = −3

2
or −1

2
and 23P0, F = 1

2
,mz = −1

2
or +1

2
.

The excited state 2P will de-excite (the life-time of 23P is the order of 100 ns) in a

radiative manner. The angular momentum of the emitted photons depend on the excited

sub-levels and the transitions that can be observed are ∆m = +1,∆m = 0 or ∆m = −1

but the emitted light will not be polarised. The effect of the optical pumping followed

by the de-excitation will be a positive transfer of the angular momentum to helium (Fig.

3.20).

This process is done at low pressure (the order of 10 mbar).
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Figure 3.19: Energy levels of Helium-3 at low field; example of optical pumping of a metastable

triplet on line C9 by light σ+.

Figure 3.20: During the pumping by a polarised light σ+, the angular momentum is incremented;

at the time of de-excitation, the direction of the variation is isotrope and can only vary according

to the sub-levels; however, the statistic effect is the rise of the angular momentum by pumping and

de-excitation.

Exchange of metastability In experimental conditions, the proportion of metastable

atoms is approximate 10−6 of the helium atoms. During the collision between the atoms

in the fundamental state and the polarised metastable atoms, an exchange of metastability

will occur: at the end of the collision, the nuclei could exchange electrons; the final state

consists of a non-polarised metastable state (2S) and a stable state (1S) whose nucleus

is polarised by electronuclear coupling (hyperfine) (Fig. 3.21). The angular momentum

of the stable atom is carried by the nuclear spin since its electronic angular momentum
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is zero. In the end this corresponds to a transition from parallel to anti-parallel state. In

order for the nuclear polarisation to exist, it is necessary to run the optical pumping in the

presence of a magnetic field. The field is not necessary to be high since a field too strong

will accentuate the Zeeman effect and reduce the hyperfine interaction.

The effective cross-section of the metastability exchange is in the order of σ ' 10−20

m2. The interval between two collisions depends on pressure (is in the order of 0.2 µs at

1 torr for the metastable atoms and 0.2 s for the stable atoms).

Figure 3.21: Optical pumping cycle: the electrical discharge creates a plasma, containing

metastable atoms with electronuclear coupling; the optical pumping transfer angular momen-

tum to these atoms. During collision, can transfer their angular momentum to the atoms in the

fundamental state; they can then start a new pumping cycle.

The process of optical pumping is always competing against relaxation phenomena.

In practice, the main source of relaxation of the metastable atoms is the collisions with

the walls; the nuclear relaxation is due to plasma (T1 is in the order of minutes). Using

a more powerful LASER can increase polarisation, to some extent (the phenomena are

not linear and saturation can occur). The collisions in a typical pumping cell, occur after

diffusion over a distance the order of centimeters (diffusion coefficient is in the order of

0.1 m2.s−1).
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To conclude, this method works at low pressure and high chemical purity. It needs

an electric discharge to generate plasma, a monochromatic light source (LASER) at 1083

nm to select a ∆m = ±1 transition and a weak magnetic field (� 1T ). Recent work

from Krakow group shows that MEOP can be achieved at magnetic field strength of 2 T

and 64 mBar pressure ([85]). The present findings suggest that still higher polarizations

can be achieved in higher magnetic fields, and motivate investigations at higher gas pres-

sures. New ways of producing hyperpolarized 3He for magnetic resonance imaging and

medical applications can be envisaged, as most clinical whole-body scanners operate at

1.5. This allows levels of nuclear polarisation superior to that of the equilibrium states to

be generated.

NMR signal gain in the hyperpolarised regime

We already know the size of polarisation at thermal equilibrium in normal conditions of

field strength and temperature is 10−6. Even a modest hyperpolarisation state induces a

considerable gain in signal. For a 10% polarisation the gain in signal is a factor of 105.

Comparison of the signal-to-noise ratio in proton NMR and hyperpolarised 3He In

the hyperpolarised regime, the polarisation is given by the optical pumping and does not

depend on B0 like at thermal equilibrium. In the MRI of the lung at 0.15 T, the dominant

noise is the patient noise. The SNR for proton and helium are:

SNRH =
b1 ·B0nHγ

2
H~2(δxδyδz)

4k3/2TS
√

∆ν2
√

TS
3
σSµ0a3/2

(3.52)

SNRHe =
b1 · nHeγHe~(δxδyδz)× P

4
√
k∆ν

√
TS
3
σSµ0a3/2

(3.53)

where P is the value of the polarisation obtained by optical pumping.

Considering identical coils the SNR is then:

SNRHe

SNRH

=
nHe
nH

γHe
γH

2kTS
B0γH~

× P (3.54)

The nuclear density ratio of pure 3He and water at normal temperature and pressure
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nHe
nH

=
44.6mol.m−3

111 · 103mol.m−3
= 4.04 · 10−4 (3.55)

is compensated by a polarisation of 20% at 0.15 T:

SNRHe

SNRH

= 26 (3.56)

Dependence of signal-to-noise ratio on B0 as a function of the dominant noise Ac-

cording to 3.33 and 3.34, the signal depends quadratically upon field B0 at thermal equi-

librium and linearly in hyperpolarised regime.

If the dominant noise is the patient noise, the noise depends linearly on B0 and quad

root of B0 if coil noise is dominant (after 3.47). At very low field (less than 100µT ), is

negligible and the coil noise is independent of field B0 (according to 3.42).

In practice, for magnetic fields less than 50 mT, the dominant noise is the patient

noise, for objects bigger than 5 cm (Fig. 3.16). In these conditions, in hyperpolarised

regime, the SNR is independent of B0. At equilibrium, SNR is linearly dependent on B0

(Table 3.2) ([86]. This relies on the assumptionwe can build equally sensitive coils that

couple equally well to sample at any frequency.

The hyperpolarised regime gives an unusual situation in NMR: the independence of

SNR to the main magnetic field. The low fields are easier to produce and less expensive.

Table 3.2: The dependence of SNR on
−→
B0.

Signal regime patient noise coil noise coil noise

dominant dominant dominant

no ”skin” effect

equivalent resistance RS ∝ B2
0 RC ∝ B

1/2
0 independent RC

noise B ∝ B0 B ∝ B
1/4
0 independent B

thermic Signal ∝ B2
0 SNR ∝ B0 SNR ∝ B

7/4
0 SNR ∝ B2

0

hyperpolarised Signal ∝ B0 no dependence SNR ∝ B
3/4
0 SNR ∝ B0
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3.4 Diffusion effect on NMR

Diffusion in gases is very fast. Diffusion in an inhomogeneous magnetic field causes

the magnetisation carriers to lose coherence; this is the transverse relaxation mechanism.

The effect of diffusion is used in proton MRI. In medicine it is used in brain imaging [87].

Diffusion in proton MRI is not a source of artefact apart from microscopy [88]. However,

helium diffusion, being 104 times more rapid than in water, will have a bigger impact.

This section will start with some theory on the free diffusion. The case of free dif-

fusion in a uniform gradient will be treated for different types of gradients. Aspects of

restricted diffusion will be detailed in a future chapter.

3.4.1 Free diffusion

The free diffusion occurs when there is no obstacle (apart from themselves) for the parti-

cles to move.

Theory of the free diffusion

The mean quadratic speed of a particle A (atom or molecule) can be written as:

νA =

√
3kT

mA

(3.57)

k, being the Boltzman’s constant, T the gas temperature and mA the particle mass.

For the helium atom at 37◦C, m = 3.016 uma [68] and the mean quadratic speed can be

found to be 1601 m.s−1.

The mean free path l is defined as the mean distance traveled during two consecutive

collisions and the mean free time τ as the mean duration between these two collisions

[89]. Hence:

l = νAτ (3.58)

Let’s consider the diffusion of a particle A in an environment consisting of particles

B. Denote σA−B the effective cross-section of the collision between A and B . The relative

mean quadratic speed between A and B can be written as:
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V =
√
νA + νB =

√
3kT

2

(
1

mA

+
1

mB

)
(3.59)

The mean free time will be written as (Fig. 3.22 ) :

τ =
1

nBσA−BV
(3.60)

where nB is the volume density of the particles B.

Figure 3.22: The mean free path: in a reference frame where the particle B is fixed, the mean

speed of A is V ; a collision will occur if B is inside a cylinder of diameter σ and height V × τ ;

the mean number of particles B in the cylinder (nBσV τ ) must be equal to 1.
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The mean free path is then:

l =

√
2

nBσA−B
√

1 + mA
mB

(3.61)

Let’s define the diffusion coefficient of A in B as:

DA−B =
1

3
νAl (3.62)

We show that:

DA−B =
(kT )3/2

√
3PBσA−B

√
1

mA

+
1

mB

(3.63)

PB is the particle B pressure.

In the case of the auto-diffusion (B=A), Eq. 3.63 is simplified to:

DA−A =
(kT )3/2

√
6mAPAσA−A

(3.64)

A simple way of calculating the effective cross-section of diffusion is to consider the

atom has a apparent radius r. The effective cross-section is:

σ = 4πr2 (3.65)

for the auto-diffusion.

For particles of different nature (inter-diffusion), the effective cross-section is given

by:

σ = π(r1 + r2) (3.66)

r1 and r2 being the apparent radii of the particles. The effective cross-section depends

on the atom radius and the energy of the particle. Correct determination of the diffusion

coefficients should be done by direct measurement or calculated from potentials.
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Values of the diffusion coefficients for helium

Slaman [72] published the calculated values for the diffusion coefficients of helium at 1

atm (101300 Pa). These values agree with the measured values published by Liner [90]

using chromatography.

The regression of logD as a function of log T shows an excellent correlation with the

slope 1.7. The dependence of D on T is then:

D(T ) = D(T0)×
(
T

T0

)1.7

(3.67)

Using this formula and calculating D, the values are identical with those calculated by

Slaman. After the results of the chromatography, Liner came with an empirical equation

of D as a function of temperature:

D4He−3He = 1.36 · 10−5 × T 1.671[m2s−1K−1.671] (3.68)

The behaviour of the two helium isotopes should be the same since the effective cross-

section is an atomic property. After 3.63, we get:

D3−3

D3−4

=

√
8

7
(3.69)

D3−3

D4−4

=

√
4

3
(3.70)

Liner also proposed empirical equations for the diffusion of 4He in nitrogen [90]:

D4He−N2 = 5.90 · 10−9 × T 1.648[m2s−1K−1.648] (3.71)

Using Eq. 3.63, equation 3.71 becomes:

D3He−N2 =

√
31

24
D4He−N2 (3.72)

giving:

D3He−N2 = 6.71 · 10−9 × T 1.648[m2s−1K−1.648] (3.73)
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Table 3.3: Published values of helium diffusion coefficient at 101300 Pa. C = calculated values

by Slaman - E = interpolation using the equation of Slaman - L = measured values by Liner

Diffusion type Temperature Diffusion coefficient Obs

self-diffusion 3He

293 K
1.894 · 10−4m2.s−1 C

1.892 · 10−4m2.s−1 E

303 K 2.003 · 10−4m2.s−1 E

310 K 2.082 · 10−4m2.s−1 E

313 K
2.118 · 10−4m2.s−1 C

2.117 · 10−4m2.s−1 E

inter-diffusion 3He−4 He

293 K
1.773 · 10−4m2.s−1 C

1.771 · 10−4m2.s−1 E

303 K
1.875 · 10−4m2.s−1 E

1.88 · 10−4m2.s−1 L

310 K 1.949 · 10−4m2.s−1 E

313 K
1.983 · 10−4m2.s−1 C

1.981 · 10−4m2.s−1 E

self-diffusion 4He

293 K
1.642 · 10−4m2.s−1 C

1.640 · 10−4m2.s−1 E

303 K 1.737 · 10−4m2.s−1 E

310 K 1.805 · 10−4m2.s−1 E

313 K
1.837 · 10−4m2.s−1 C

1.835 · 10−4m2.s−1 E

Table 3.4 gives the values of helium diffusion coefficients in nitrogen at different

temperatures.

In practice we used the diffusion coefficients from Table 3.5; the mean free path and

mean free time were calculated using the following equations:

l = D

√
3m

kT
(3.74)
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Table 3.4: Values of helium diffusion coefficient in nitrogen measured by Liner for helium-4 and

adapted for helium-3, at different temperatures.

Temperature Diffusion coefficient

inter-diffusion 3He−N2

293 K 7.80 · 10−5m2.s−1

303 K 8.24 · 10−5m2.s−1

310 K 8.55 · 10−5m2.s−1

324 K 9.20 · 10−5m2.s−1

τ =
Dm

kT
(3.75)

Table 3.5: Values of helium diffusion coefficient used in experiments; free displacement and the

corresponding mean free time.

Vector gas D mean free

path

mean free

time

in-vitro 20◦ C
nitrogen 7.80 · 10−5m2.s−1 150 nm 96 ps

helium-4 1.78 · 10−4m2.s−1 342 nm 219 ps

in-vivo 37◦ C
nitrogen 8.55 · 10−5m2.s−1 160 nm 100 ps

helium-4 1.95 · 10−4m2.s−1 364 nm 227 ps

In − vivo, gas composition is never the composition of the inspired gas due to the

residual volume and the water vapour saturation; plus, the composition varies in time due

to alveolar exchange.

The Einstein’s law

In open space, the distance traveled by a particle in a time t is given by the Einstein law

(in 3D):

d =
√

6Dt (3.76)

and in 1D:
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d =
√

2Dt (3.77)

For example, water diffusion coefficient at 37◦C is DH2O = 2.3 · 10−9m2s−1; in 1

ms the distance traveled is 4µm; in 1 s, 120 µm and in 1 hour, 7 mm (the convection is

neglected).

This law is only applicable if the diffusion time is much longer than the mean free

time. In the case of shorter times, the helium atom moves with a given speed and the

traveled distance is simply proportional with the time it travelled: this is the Knudsen

regime (Table 3.6).

Considering the long times, helium diffuses in the alveoli; the particles situated at the

center of the alveoli will initially diffuse according to Einstein’s law; the particles closer

to the alveolar wall will collide with this and this will restrict the diffusion. It is than a

transition from free diffusion to a restricted diffusion regime which will be presented in

the next chapter. After even longer times, the helium atoms will travel longer distances

through other neighbour and eventually the whole acinus .

Table 3.6 presents the temporal and spatial scale of the 3He diffusion at alveolar

level. The calculation of these scales was done using Table 3.5 and the value of ADC

2 · 10−4m2s−1, taken as the average value published for the restricted diffusion inside the

lung [91], [92], [93]. These limits are only for guidance. The transition between different

regimes can not be clearly explained.

3.4.2 Free diffusion in the presence of a uniform magnetic field gra-

dient

The source of longitudinal or transverse relaxation is the magnetic field variation ”sensed”

by the spins, this can be due to a variation of the magnetic field (temporal variation) or

due to the spin motion in an inhomogeneous field (spatial variation). The longitudinal

relaxation is created by an apparent variation of the transverse field
−−→
Bx,y whereas the

transverse relaxation is due to the apparent variation of the longitudinal field
−→
Bz. The

temporal variation can be produced in two ways: variation generated by the application

of a RF and the RF noise.
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Table 3.6: Temporal and spatial scale of helium-3 inside the lungs.

inter-diffusion of 3He in 4He inter-diffusion of 3He in N2

time space time space

Knudsen pre-diffusive regime: ν = 1601ms−1

τ = 2.3 · 10−10s L = 0.37µm τ = 9.1 · 10−11s L = 0.15µm

D = 1.95 · 10−4m2s−1 free diffusion D = 8.55 · 10−5m2s−1

τD = 0.45ms L = 300µm τD = 1.5ms L = 300µm

diffusion restricted to the intra-alveolar scale (ADC = 2 · 10−5m2s−1)

τ
′
D = 12.5ms L

′
= 500µm τ

′
D = 12.5ms L

′
= 500µm

diffusion restricted to the supra-alveolar scale

In non viscous liquids, a fortiori in a gas, the correlation time τC is short compared

with the Larmor period, and the transverse and longitudinal relaxation times, in an homo-

geneous field, are equal and independent on the magnetic field [94], the fast motion limit

applies:

T1 = T2 =

(
2γ4~2I(I + 1)

r6
τC

)−1

(3.78)

Bloch-Torrey equation in general

When the particles carrying spins diffuse in a magnetic field gradient, the diffusion adds

an extra term to the Bloch equation, and this transforms into Bloch-Torrey equation [95]:

d
−→
M

dt
= γ ·

−→
B ∧

−→
M +

1

T1

(
−−→
Meq −

−→
Mz)−

1

T2

−−→
Mx,y +D ·

−→
52−→M (3.79)

the term D ·
−→
52−→M corresponding to the effect of diffusion.

We can show that the attenuation due to free diffusion of the spins in the presence of

an uniform gradient G(τ) is:

e−γ
2D·I (3.80)

where D is the diffusion coefficient and I is the following integral [95], [96]:
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I =

∫ T

0

(

∫ t

0

G(τ)dτ)2dt (3.81)

Effect of a spin echo on the dephasing due to diffusion

A 180◦ pulse will change the sign of the phase of the magnetisation. Changing the sign

of a gradient will change the sign of the phase evolution. When considering only the

amplitude of the signal, it is possible when calculating diffusion, to consider an 180◦

pulse as changing the sign of the gradients (Fig. 3.23) [97].

Figure 3.23: Changing the gradients sign (supposed uniform) change the sign of the phase vari-

ation; an 180◦ pulse change the sign of the phase (mirror); when only considering the amplitude

of the signal, it is possible to replace the 180◦ pulse by a pair of gradients of opposite polarity.

This effect is only valid in the case of uniform gradients.

Equation in the case of symmetric gradients

In practice, the NMR sequences are created such as the signal is acquired at the time of

a gradient echo. The gradients used are usually symmetric, generating an echo at time T,

but the symmetry is not necessary to obtain a gradient echo:

∀t ∈ [0, T ], G(T − t) = −G(t) (3.82)
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Hence, the integral given by 3.81 is simplified to:

I = 2

∫ T/2

0

(

∫ t

0

G(τ)dτ)2dt (3.83)

Signal attenuation due to free diffusion in the presence of an uniform gradient for

different gradient echoes sequences

The calculated attenuation for different gradient shapes is given in Table 3.7. Equation

3.87 for a continuous gradient is given by Abragam [60]. Equation 3.88 for a double

pulse gradient of fixed duration is the classical Stejskal-Tanner formula [98]. Equation

3.92, 3.93 are detailed in Annex A. 3.91 is obtained from 3.93 by considering δ = 0 and

3.89 with m = 0. In the same manner 3.90 is obtained from 3.92 and 3.88.

In a NMR experiment in the presence of gradients, the diffusion introduces an extra

signal attenuation that can be expressed as a reduction of the apparent transverse relax-

ation time:

T2,apparent =

(
1

T2

+
1

T †2

)−1

(3.84)

where:

T †2 =
TCP
Dγ2I

(3.85)

TCP being the interval between two consecutive signal acquisitions.

For a continuous gradient, 3.85 becomes:

T †2 =
12

Dγ2G2T 2
CP

(3.86)

The signal attenuation will increase as the gradient gets stronger, the diffusion is faster

and the refocusing gradients are less frequent. T †2 depends on TCP ; this means the nth

echo acquired is not identical with the echo acquired at time n · TCP [60].

Thus, applying multiple refocusing pulses will limit the coherence loss.

The signal attenuation between two consecutive echoes can be also expressed as a

function of the characteristics lengths lD and lG (5.11, 5.12):
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Table 3.7: Various diffusion gradients shapes and their integral I value.

gradient form equation

continuous

I =
G2T 3

CP

12
=
G2∆3

12
(3.87)

rectangle

I = G2δ2

(
∆− δ

3

)
(3.88)

half-rectangle

I =
G2T 3

CP

12
=
G2∆3

12
(3.89)

triangle
I =

G2δ2

12
(3∆− 2δ) (3.90)

half-triangle

I = G2m2

(
∆− 7

15
m

)
(3.91)

trapezoid

I = G
2
δ
2
∆

[
1−

1

3

δ

∆

]
+x

(
2−

δ

∆

)
+x

2
(

1−
7

6

δ

∆

)
−

7

15
x
3 δ

∆
(3.92)

where x = m
δ

half-trapezoid

I =
G2δ2∆

12

[
1− 2

δ

∆

]
+ 6x

(
1−

δ

∆

)
+ 3x

2
(

1−
7

3

δ

∆

)
−

14

15
x
3 δ

∆
(3.93)

where x = m
δ
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S(TCP )

S(0)
= exp

[
−
(
lD
lG

)6
]

(3.94)

Note that the formulas presented are valid for uniform gradients. The signal decay

after a train of spin echoes is strictly monoexponential. The restricted diffusion in the

alveoli and the internal non-uniform gradients make the problem more complicated.
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Chapter 4

Practical Considerations on

Hyperpolarised 3He MR

This work was accomplished on a 0.15 T permanent magnet(IMIG IGR). The 3He was

polarised using an in-house polarisation system via the metastability exchange optical

pumping technique described in Chapter 3. Chronologically, the experimental work

started with measurements of the field orientation dependance of the T1 relaxation time in

different glass cells. The second group of experiments involved measuring 3He diffusion

with different methods in vivo. For clarity purposes the diffusion measurements will be

presented separately in the fifth chapter.

This chapter starts with a description of the specific hyperpolarised 3He constraints in

MRI. The second part describes the progress made on the hyperpolarised 3He production

facility and the results of the field orientation dependance experiment. Last part analyses

the use of single shot (RARE) and multi-shot (FLASH) pulse sequences at low field (0.15

T) for hyperpolarised 3He MRI.

4.1 Specific Constraints in Hyperpolarised 3He MRI

Hyperpolarised gas NMR has two types of constraints: those linked to the rapid diffusion

of the gas and those related to the absence of longitudinal magnetisation recovery in the

hyperpolarised regime, considered as a signal reserve.
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Because of its specificity and source of contrast, the helium diffusion will be described

in detail in Chapter 5; some consequences of diffusion will be presented in this section

together with some particular aspects of the consequences of longitudinal relaxation.

4.1.1 Hyperpolarised 3He Longitudinal Relaxation

In contrast to the case of thermal equilibrium, hyperpolarised 3He longitudinal relaxation

does not cause the recovery of magnetisation but its virtual destruction to the thermal

value. This section will present a review of the sources of longitudinal relaxation, some

in vivo experiments to measure these effects and the consequences of the longitudinal

relaxation.

Sources of longitudinal relaxation

The parietal relaxation

In vitro parietal relaxation The walls of the gas container may have a relaxing

effect due to the interaction of molecules with the surface. This is the main source of in

vitro relaxation. A Pyrexr glass cell has a T1 in the order of 1 hour. In order to reduce

relaxation the glass has to be free of paramagnetic ions (Fe3+ in particular) or it can be

coated with metals (caesium, bismuth) [81]. T1 can be increased to tens of hours [99].

Parietal relaxation inside the lungs Due to oxygen’s necessary presence in the

lungs, it is impossible to estimate the wall relaxation but it is generally accepted that this

is dominated by the molecular interaction of oxygen and helium. Experiments were done

ex vivo in pigs after the animal was sacrificed and the lungs were rinsed for 15 minutes

with nitrogen. The parietal relaxation indicated a T1 longer than 260 s [100]. In rats there

were similar results (T1 270 s) [81]. Considering the surface to volume ratio, the alveolar

wall is a good enclosure for the hyperpolarised gas.

These results are debatable since the experiments are not done in physiological con-

ditions; the alveolar surface will change 15 minutes after death. In practice, nevertheless

we can suppose the wall relaxation is not dominant.
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Dipole-dipole interaction between helium atoms In practice this phenomenon is small;

it depends on the species concentration [101]:

T1,dipole =
744h.amg−1

[3He]
(4.1)

This expression is valid at 23◦C, the time being inversely proportional to the square

root of the temperature, fixed species concentration, and in a broad spectrum of tempera-

tures: 0.1 to 550 K 1

From 3.1:

T1 = 46.9h.atm.K−1/2

√
T

P
(4.2)

T1 is 803 h at 20◦C and 1 atm. The gas internal relaxation is hence proportional to

pressure but in practice it is negligible compared to wall relaxation, even at atmospheric

pressure.

Diffusion in the presence of the magnetic field gradients This effect is more evident

at low pressure due to diffusion being more rapid.

It depends on the radial field distribution (perpendicular to the main magnetic field)[99]:

1

T1,gradient

= α× 1

PB2

(
∂Br

∂r

)2

(4.3)

with α = 0.18 h−1· bar · m2 for a spherical cell with diameter 5 cm. Basically, the

longitudinal relaxation being caused by a RF field, will depend on the variation of the Bx

and By components of the relative magnetic field experienced by the helium nuclei (Bz

being the main component). When the helium atom diffuses, the spatial variation of the

radial component of
−→
B will be important.

The paramagnetic effect of oxygen The effect of oxygen on the 3He relaxation is due

to the binary collisions that have the same effect both on the longitudinal and transverse

1An amagat is a practical unit of number density. Although it can be applied to any substance at any

conditions, it is defined as the number of ideal gas molecules per unit volume at 1 atm (= 101325 Pa) and

0◦C (=273.15 K)
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relaxation, and is proportional to oxygen concentration. This effect was measured by

Saam et al. [15]:

T1 = T2 = 0.204s · amg−1 ·K−0.42T
0.42

[O2]
(4.4)

or

T1 = T2 = 7.48 · 10−4s · atm−1 ·K−1.42T
1.42

P
(4.5)

for a large temperature range (200 K - 400 K). This measurement was done at 1.4

T but it should be field independent if the duration of a collision is dominated by the

precessing time:

ωτC � 1 (4.6)

At atmospheric pressure and 37◦C, for an oxygen fraction fO2 , the relaxation times

are:

T1 = T2 =
2.58s

fO2

(4.7)

In the optical pumping cell, this relaxation is negligible because of the great efforts

to keep the oxygen out of the environment. In vivo though, this effect is inevitable and

dominant.

Summary In vivo, the diffusion effect is dominated by the paramagnetic effect of oxy-

gen. In vitro, the dominant effect depends on pressure. At low pressure (∼ 1 mbar), the

effect of diffusion in a heterogeneous field may be important; in a homogeneous field, the

dominant effect is the wall relaxation. At high pressure (∼ 1 bar), the dominant effect is

the wall relaxation. In practice the internal dipolar relaxation of helium is always small

compared with the other sources of relaxation.

Experimental measurement of the longitudinal relaxation in vivo

In NMR, the classical method for measuring the longitudinal relaxation is the inversion

recovery technique [102]. This method can not be used with hyperpolarised gases since
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it’s impossible to repeat the experiment with a second inversion; after the first run, the gas

has returned irreversibly to thermal equilibrium and if inhaling a second batch there are

always reproducibility issues (polarisation, gas volume, T1).

The method used with hyperpolarised gases consists of applying multiple small tip-

ping angles that allow to see the evolution of the longitudinal magnetisation after com-

pensating for the loss of magnetisation due to the RF.

Results Figure 4.1 shows the signal evolution in a typical T1 measuring experiment.

The apparent relaxation time has to be corrected for the effect of the RF using the

following formula for T1 determination:

1

T app1

=
1

T1

− ln(cosα)

TR
(4.8)

The effects of longitudinal relaxation

Constraints imposed by the longitudinal relaxation At thermal equilibrium, the lon-

gitudinal relaxation has a positive effect since it recovers the available magnetisation. In

the hyperpolarised regime, it is necessary to run the experiment in a short period com-

pared to T1.

In vitro, the longitudinal relaxation is mainly due to wall relaxation and is generally

few hours. This long life-time allows for hyperpolarised gas production, storage and even

long route transport before the actual use.

In vivo, the main destruction source is oxygen. The life-time is much shorter (tens of

seconds) and hence it is needed to use rapid acquisition sequences.

Potential applications By measuring T1 it is possible to get indirect information about

the intrapulmonary oxygen concentration [11]. It is also possible to follow the oxygen as

it travels through the alveoli [11] and calculate partial pressure of oxygen.

The measurement of the local oxygen concentration gives information about the ven-

tilation/perfussion ratio; basically, regions that are well ventilated and bad perfused will

have a high oxygen concentration, while well perfused and poorly ventilated ones have
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Figure 4.1: Signal evolution in a T1 measuring experiment; (a) squares represent the raw signal,

circles represent the signal after RF correction and up triangles represent the signal after RF and

T1 correction. (b) T1 is calculated from the exponential decay of the signal after RF correction.
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low oxygen concentration. The V/P ratio is very important in pathology since its hetero-

geneity can explain many respiratory diseases.

By tracking the oxygen travelling the alveolar-capillary barrier allows for the inves-

tigation of the basic function of the lungs: oxygen transport; in the absence of a severe

fibrosis (that obstructs the oxygen passage), this parameter gives an indirect information

about the pulmonary perfusion. In order to measure over 25 s the variation of a relaxation

parameter, a high signal-to-noise ratio is needed. Plus, during this time, the gas can travel

about 7 cm if considering a diffusion coefficient of 0.2 cm2.s−1; it is then difficult to get

oxygen passage maps with high spatial resolution.

4.1.2 Tipping angle calibration

The lack of longitudinal magnetisation regeneration makes the tipping angle calibration

a real challenge. In general, in the MRI experiments, sequences are preceded by a cali-

bration sequence meant to determine the resonant frequency and to calibrate the tipping

angle. When working with hyperpolarised gases, due to the limited quantity of gas, the

lack of longitudinal magnetisation regeneration and short duration of apnea, make this

calibration sequence very difficult to implement and is often abandoned. At high field it

is possible to calibrate the angle by using a 3He phantom at high pressure (several bars),

thermally polarised. At 0.15 T, the signal would be to small using this approach.

There is a variation of the tipping pulse given by numerous phenomena in different

experimental conditions. After briefly enumerating them, there will be a description of

the sequences used for calibration and how they are adapted to helium.

Inherent difficulties when calibrating the RF

Off resonance pulses The resonant frequency may often vary between experiments

due to the susceptibility effect or due to the main magnetic field shifting (a fortiori in a

permanent magnet). On resonance, the tipping angle is proportional to the duration and

amplitude of the RF pulse; off resonance, the dependence is more complex.

In practice, this effect is a non-linearity source and can impede delivery of a 180◦

pulse.
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Short and long range instability For a given setting, the amplifier response may not

be constant with time, essentially due to thermal variations. On a short range, this hap-

pens when using repeated long pulses, a short interval apart; on a long range, there are

temperature variations of the whole system or differences in the system settings.

Correction by coil loading When the coil is loaded with different samples, the equiv-

alent impedance induced by the sample is also changing. The response to RF field will

also change. The calibration of the angle using a phantom is not valid unless it’s done on

the subject.

Sequences for angle calibration

Since the sequences that are normally used for angle calibration on protons don’t work in

the absence of the longitudinal magnetisation recovery, different types of sequences had

to be used.

Angle calibration at thermal polarisation Consider a series of unknown RF pulses

αi, repeated with a period TR starting from an initial magnetisation M0 (at thermal equi-

librium). The residual longitudinal magnetisation after i RF pulses will be:

Mi = M0 − [M0 −Mi−1(cosαi)]e
−TR
T1 (4.9)

The signal will be:

Si = Mi−1 sinαi (4.10)

At thermal polarisation, the classical method implies using a TR bigger than T1. The

result is:

Mi = Mi−1 = M0 (4.11)

and thus:

Si = M0 sinαi (4.12)
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In order to get the π/2 angle it is enough to maximize signal and find the first mini-

mum for π.

As mentioned before, this method fails with hyperpolarised 3He at 0.15 T.

Angle calibration in the hyperpolarised regime: from the loss of longitudinal mag-

netisation In the hyperpolarised regime, the transverse relaxation destroys magnetisa-

tion. If the experiment is done in a sufficient small time compared to T1, TR can be

neglected. If not, like it’s generally the case in vivo, it is possible to compensate the

longitudinal magnetisation if T1 is known:

Mi = Mi−1(cosαi)e
−TR
T1 (4.13)

However, due to the long duration of the calibration process and need of reproducibil-

ity in vivo, the calibration is, in general, done in vitro. Equation 4.12 allows to calculate

the signal variation for consecutive pulses:

Si = Si−1 ×
sinαi

sinαi−1

(cosαi) (4.14)

Si
Si−1

=
sinαi

tanαi−1

(4.15)

From 4.15 it is possible to determine the angle if αi−1 and αi are identical:

αi = αi−1 = arccos
Si
Si−1

(4.16)

Angle calibration in the hyperpolarised regime: the rapid method In order to accel-

erate the calibration process, it is possible to use in the same sequence both big and small

angles; if α0 and α1 are identical, then:

α1 = α0 = arccos
S1

S0

(4.17)

α1 being determined, α2 is calculated from:

S2 = S1 ×
sinα2

tanα1

(4.18)
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α2 = arcsin

(
S2

S1

tanα1

)
(4.19)

The measuring principle is as follows: repeat many times an angle big enough to

precisely measure the cosine, once calculated, its value is used to determine the available

longitudinal magnetisation and calibrate the signal given by the tipping field.

4.1.3 Acquisition strategies for hyperpolarised gases

Because of the limitations specific to hyperpolarised gases it is not possible to use all

sequences for imaging. A brief review of the available sequences for imaging at 0.15 T is

presented.

The large variety of MRI sequences can be divided in: ”single-shot” sequences - when

the magnetisation remains in the transverse plane during the acquisition and ”multi-shot”

sequences - when each line of the Fourier plane is acquired by tipping small amounts of

the magnetisation. There are also hybrid sequences that allow one acquire multiple lines

with every magnetisation tipping.

Single-shot sequences

Relaxation limitations The use of a single-shot sequence with hyperpolarised gases

seems logical because of the non renewable magnetisation. In order to acquire the whole

k-space the duration of the transverse magnetisation has to be long. T2 apparent (T app2 )

has to be less than the acquisition time TACQ. If we consider an observation time for each

line Tobs and a matrix with NY lines, we get an acquisition time:

TACQ = NY × Tobs (4.20)

Types of sequences Once the magnetisation is tipped in the transverse plane, the read

out of the k-space can be done:

• using a unique gradient echo: either an echo planar imaging sequence (EPI) , de-

veloped by Mansfield in 1977 [103] or a spiral sequence [63]. These sequences are

very rapid but generate lot of artefacts [34].
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• using spin echoes ; this technique, RARE (Rapid Acquisition with Relaxation En-

hancement) published by Henning in 1986 [104], is a bit longer but more robust

with regards to artefacts.

• using an intermediate sequence that combines EPI and RARE: GRASE (GRAdient

and Spin Echo) that acquires multiple lines per gradient echo before a refocusing

180◦ pulse.

• finally the acquisition can be done by using stimulated echoes (BURST)

Multi-shot sequences

Tipping angle choice Since the longitudinal relaxation is a source of signal destruction,

a multi-shot sequence has to use small tipping pulses to preserve the longitudinal reserve

of signal. However, this angle has to be big enough to provide enough signal for each

line.

There were certain authors [81],[8] that used multi-shot sequences with 90◦ pulses for

animal imaging; since after each line the signal is destroyed, it is necessary to provide

fresh helium for every line. In order to have reproducible conditions to acquire each line,

it is necessary to use an artificial ventilator and sedate the animal. This is not possible

with humans.

The use of a fixed angle The classical approach is to use a constant angle α. The

available signal for line n is:

S(n) = M0(cosα)n−1 sinα (4.21)

and the ratio of the first and last line signal is:

S(NY )

S(1)
= (cosα)NY−1 (4.22)

In Figure 4.2 there is an example of three angles. An angle too big will destroy the

signal very quickly and an angle to small will generate too small signal.

Note that the effect of TR is similar to the effect of T2 in the single-shot sequence:
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T2 =
TR

ln(cosα)
(4.23)

Contrary to the decay due to diffusion, this effect can be controlled by reducing the

tipping angle, but losing SNR.
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Figure 4.2: Theoretical curves illustrating the effect of three different flip angles on the signal for

NY=20 lines.

No matter if using a single-shot or multi-shot sequence, there is always a filtering

phenomenon in the phase encoding direction that has to be minimized. Considering Eq.

4.23, α can be written as:

α = arccos
(
e−

1
NY−1

)
(4.24)

The signal attenuation between the first and last line is then 1/e and the equivalent T2

is (NY − 1) · TR.

Other possibility is to maximize the signal from the last line and hence choosing an

angle:

α = arctan

√
1

NY − 1
(4.25)

The optimal angle as a function of the number of phase encoding steps is given in

Figure 4.3.
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Figure 4.3: Optimal tipping angle as a function of phase encoding steps, according to the two

options (maximization of the last line and 1/e attenuation between the extreme lines).

The use of a variable angle Using a variable angle [105] leads to equal available

signal for all lines:

sinαn−1 = cosαn−1 × sinαn (4.26)

αn−1 = arctan(sinαn) (4.27)

and to maximize it, it is necessary to use all remaining signal for the last line, thus:

αNY = 90◦ (4.28)

These two conditions lead to [131]:

αn = arctan
1√

NY − n
(4.29)

This technique allows one to use all signal and avoid the k-space filtering in the phase

encoding direction. The method is not always achievable because not all systems allow

RF pulse tabulation.

Figure 4.4 shows an example of how the angle is changing when reading the Fourier

space while Figure 4.5 shows the longitudinal and transverse magnetisation evolution in
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Figure 4.4: Theoretical value of the tipping pulse as a function of the phase encoding step for a

32 lines matrix: comparison between a fix and variable angle [8].

the two cases (fixed and variable angle). It is clear that using a fixed angle gives a better

signal for the first lines.
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Figure 4.5: Theoretical evolution of longitudinal and transverse magnetisation during the acqui-

sition: comparison between a fix and variable angle [8].

Types of sequences

The k-space read out can be done:
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• in Cartesian manner, line by line, using a classic gradient echo sequence with small

tipping angles called FLASH (Fast Low Angle SHot).

• in a polar manner, radius by radius, using a projection-reconstruction sequence

(PR); this has the advantage of an extremely short echo time but the image recon-

struction it’s not easy [81].

4.2 Aspects of Gas Production and Administration

During the experiments presented in this work, the system for producing the hyperpo-

larised helium underwent multiple transformations (Fig. 4.6) The initial production facil-

ity was developed during the work of Fichele and a complete description can be found in

his thesis [106]. The system was improved during the work of Waters [107] by adding a

semiautomated gas handling system computer controlled using LabView.

Figure 4.6: A photograph of the final polarisation system indicating the newly added components.

a - the cylinder pump used for dispensing the 3He b - the peristaltic pump with 4 rollers; c1 and

c2 - the new storage cells, c2 is placed next to the optical pumping cell d to allow recording the

NMR spectra of both c2 and d; e - one of the new valves used to control the gas flow; f - the new

20 W Ytterbium fibre laser used to polarise the 3He.

Producing hyperpolarised gas is subject to a lot of constraints (magnetic environment,
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chemical purity necessary for pumping2, vacuum system, medical use) thus, necessitates

a complex system with carefully designed components (a great know-how).

The optical pumping needs a narrow spectrum light. In the very early attempts, 4He

lamps were used [76] but to obtain higher power, the LASER was introduced. The use of

fiber LASER [108] allows for high power and practicability.

4.2.1 General Principle of the Polarisation System

The optical pumping was done in a clean and vacuumed Pyrex glass cell. In order to

obtain this it is necessary to have a system capable of delivering a high vacuum. The cell

was filled with 3He at low pressure (1 to 10 mbar). This cell was connected through a

pipe network to the 3He and 4He sources, the vacuum pump and pressure gauges.

The cell was fitted with two circular electrodes connected to a high frequency (the or-

der of 1.2 MHz) voltage source (the order of 1 kV). The voltage was amplitude modulated

in order to modulate the proportion of metastable atoms (see Fig. 4.7).

A 1083 nm LASER was used for the optical pumping. The beam travels through

a polarising cube and then a λ/4 plate which creates the circularly polarisation σ+3; the

beam then traverse the cell parallel with the
−→
B0 magnetic field (Fig. 4.7). The LASER was

tuned to the C8 or C9 transitions. The necessary duration to fully polarise the gas depends

on the gas pressure and LASER power (few seconds to few minutes for the experiments

described in this work).

Since optical pumping needs to be done at a lower pressure than the atmospheric

pressure, in order to use the gas for medical applications, it is necessary to compress the

gas to higher pressures.

2a high chemical purity of the cell is necessary in order to avoid contamination with atoms that can

destroy the metastable population or accelerate the relaxation
3this λ/4 plate is necessary at low field because it allows the selection of a transition δm = ±1; it is

also useful at high field since it allows for all the energy of the beam to contribute to pumping
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Figure 4.7: Diagram of the polarisation system: LASER light is σ+ polarised in a magnetic field
−→
B0 and shines through the pumping cell where the plasma is maintained by electrical discharge;

the unabsorbed light is reflected back into the cell using a mirror at the bottom of the cell (the

piping network is not shown on this diagram).

4.2.2 Polarisation System

The polarisation system underwent many changes during my work. There were many set

ups tried but only three configurations will be described.

The polarisation system is divided into two sections. The section outside the B0 field,

contains the vacuum pumps and the 3He and 4He supply. The section inside the B0 field,

contains the optical pumping cell (OPC), peristaltic pump and the storage cells (STGC)

and is in contact with the polarised 3He. Figure 4.8 shows the circuit diagram of the

system.
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Figure 4.8: Schematic of the polarisation system.

Vacuum system

The polarisation system is kept under high vacuum (10−3 mbar) to ensure that the sys-

tem is clean and the 3He gas is not contaminated by impurities that would destroy the

polarisation. The high vacuum is obtained using two pumps. The first is a Leybold rotary

vacuum pump which can pump the system down from atmospheric pressure to around

1.5 · 10−2 mbar. This pump also acts as the backing pump for a turbomolecular vacuum

pump (Leybold Model D50), which can achieve pressures as low as (9 · 10−7 mbar). An

Edwards Speedivac ES50 rotary pump (Edwards High Vacuum) is used to evacuate the

peristaltic pump manifold. There are three vacuum lines in the gas system - a low vacuum

line and a high vacuum line connected to the unpolarised section of the system and a low

vacuum line connected directly to the peristaltic pump manifold. A low vacuum line,

from the unpolarised section of the system, was also connected to the back of the cylinder

pump (See section 4.2.2)

Gas flow path

The pipework in the section outside the magnetic field (see Figure 4.8) consists of a mix-

ture of 1/4” stainless steel pipes and 6 mm copper pipe. The flow of 3He and 4He gas

from the pressurized gas cylinders is controlled by manually operated low and high flow
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trickle valves. The two gas lines from the pressurized gas cylinders pass through getter

filters to absorb impurities in the gas. Gas delivery to the section within the magnetic field

is controlled with a series of solenoid valves (14, 15, 16). Copper piping, 6 mm diameter,

is used for supplying the vacuum. The liquid nitrogen trap causes any oxygen gas con-

taminating the supply gases to condense in the trap from where it can be later pumped out

by the vacuum system. A thin brass capillary prevents the polarised gas from diffusing

into the section outside the magnetic field where unwanted local magnetic fields could

depolarise the gas. The section within the magnetic field contains the optical pumping

cell, the compression system and the two storage cells. Here the pipework is a mixture

of 6 mm PFA and copper tubing. Capillaries before and after the optical pumping cell

isolate the polarised gas from the rest of the circuit. The flow of the helium can be con-

trolled by opening or closing glass stopcocks on either side of the optical pumping cell.

The gas then passes through a series of non-magnetic air actuated valves (Swagelokr) to

the peristaltic pump. Within the peristaltic pump the helium passes through Masterflexr

Tygonr peristaltic tubing. On the far side of the peristaltic pump the gas passes into the

two storage cells which can be manually isolated from the system. The storage vessels

are also connected to a second pump, a cylinder compressor, which is used to transfer the

gas into the bag. This will be described in Section 4.2.2

This section of the polarisation system was the most challenging one since there were

many configurations employed to date. With increasing the complexity of the flow path,

the rigid copper tubing was no longer practical since we were adding more gas lines in an

already tight space. At present we have replaced most of the copper tubing and fittings

with PFA hard plastic.

Optical pumping

Low pressure (p < 10 mbar) 3He is polarised using metastable optical pumping. The

metastable state is obtained by applying a high voltage oscillating RF field to the gas in

the optical pumping cell. A sinusoidal voltage from a signal generator (1.18 MHz, 0.1 V)

passes through an RF amplifier which amplifies the signal to 10 V (2 W). Finally, a step

up transformer with 100 turns on the secondary and only 2 turns on the primary increases
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the voltage of the signal to 500 V (50 times step up) which is applied to two single turn

coils wrapped around the optical pumping cell. The metastable 3He is polarised by ap-

plying circularly polarised light from a 1083 nm, continuous wave, Ytterbium fibre laser

(Keopsysr). The beam is then expanded up to 3 cm diameter using a lens system. Ex-

panding the laser beam illuminates the polarisation cell more fully and greatly reduces the

hazard posed by the laser beam. A door interlock switches the laser off if anyone enters

the room and protective glasses are worn while the laser is being used. A mirror below

the optical pumping cell fully reflects the beam and increases optical absorbtion. The op-

tical pumping cell provides a clean environment in which the 3He can be illuminated with

the laser beam and polarised. It sits in a homogeneous magnetic field generated by DC

current flowing through 7 large coils which surround the polarisation rig. The strength

of this field is 2.4 mT corresponding to Larmor frequency of 66.5 kHz. Two orthogonal

pairs of Helmholtz coils are positioned round the optical pumping cell. These allow the

polarised 3He to be excited using an RF pulse and the free induction decay to be recorded.

Gas compression

This part of the polarisation system is very important because the polarised gas must be

pressurized to provide enough signal for imaging. There are mainly three types of pumps

that can be used to pressurise the HP 3He: diaphragm, peristaltic or cylinder. No matter

what pump is employed it must be free of any depolarising materials.

Initial compressor In our case the compression is made by a peristaltic pump built by

Fichele and described in his thesis [106]. The diagram of this compressor is shown in

Figure 4.9. The initial compressor had only two rollers as described in [106]. This is to

prevent the tubing from being pulled away from the inlet or the pump-head to be jammed.

This eventually reduces the efficiency of the pump since the compression ratio is smaller

with two rollers compared with four.

Since the goal was to optimize the amount of gas and polarisation available it was not

long before the initial configuration limited it. The signal amplitude in the storage cell

drops above a certain pressure as shown in Figure 4.10.
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Figure 4.9: Peristaltic pump diagram. Reproduced from thesis of S. Fichele, Univ. of Nottingham

2002

4-Rollers compressor Although there is a slight improvement compared to the 2-rollers

compressor this updated compressor is still not satisfying our requirements. In Figure

4.10 it is depicted a diagram of the signal evolution with the growing pressure in the

storage cell before and after adding two more rollers as tested in this work.

These attempts to obtain higher amounts of hyperpolarised 3He suggest that there

are some limitations due to the relaxation time and pressure in the storage cell. The

building pressure increases the signal in the first stage up to 40 mBar and then there is the

relaxation time that destroys the signal.
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Figure 4.10: Signal amplitude vs. Pressure in the storage cell. Dots represent the signal evolution

when compressing with 2 rollers and squares represent the signal evolution when compressing

with 4 rollers.

Figure 4.11: Signal amplitude vs. Pressure in the storage cell after destroying the polarisation

and adding fresh polarised gas.

Figure 4.11 presents a situation where the gas was collected up to a pressure that is

no longer growing the signal, the gas was depolarised with successive RF pulses and then
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fresh polarised gas was added. It is obvious from this figure that higher compression rates

and/or longer relaxation time cells are needed in order to store the hyperpolarised gas for

lung imaging.

One way to increase the compression rate of the pump was to increase the volume of

the inside tubing. A larger tubing (10 mm NORPRENEr tube) was used but due to some

mechanical constraints the pump did not work and the idea was abandoned.

The cylinder compressor First, the idea was to create a two-stage compression system

using the peristaltic pump as the first stage compressor and a cylinder pump as the second

stage compressor. This was a solution employed by some groups (NIST [109] and Mainz

[110]) and it was thought to be achievable at a smaller scale in this work.

First attempt: the syringe First attempt was to use a 60 ml plastic syringe (BD

Plastipakr) as a compressor and an air-driven piston (SMCr ) to drive the cylinder.

Figure 4.12: Diagram of the syringe compressor system. Arrows indicate the 3He flow while

compression is in progress. The labeled system components are storage cell (STG), peristaltic

compressor (C1), syringe compressor (C2), pneumatic valves (1,2), getter/purifier (G/P), liquid

nitrogen trap (LN).

The syringe and the piston were connected together, aligned and fixed onto a rail. The

outlet of the syringe cylinder is connected through a T, which was glued with black epoxy,

to the pneumatic valves 1 and 2 (Swagelokr) that control the compression. When the gas
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is ready to be collected the automated system for compression is started. The automated

system for gas compression uses the control unit built by the electronics workshop and a

virtual instrument design in LabView 7 by Martin Bellwood with my new sequences. The

control unit provides 16 switching channels to control the pneumatic valves, the peristaltic

pump and the piston that drives the syringe cylinder. The virtual instrument is used to set

up the sequences that are used to operate the valves and to transmit, via a RS232, the

command to the control unit. The sequence to control the compression consists of 5

steps. In step 1 both pneumatic valves 1 and 2 are open and the cylinder is in its top

position. This step is just before starting the collection. Collection starts in step 2 when

the piston moves to the bottom position, both valves close for 2 s. In step 3, pneumatic

valve 2 remains closed, piston moves to top position, valve 1 opens and hyperpolarised
3He passes from the OPC to the syringe cylinder with the C1 (See Figure 4.12). This

accumulation stage lasts 8 s. Then, in step 4 the valve 1 closes, piston moves down and

valve 2 remains closed for 2 s. In the final step valve 2 is open to the STG for 4 s. The

whole sequence is repeated until the storage cell has reached its set pressure. To prevent

the fast relaxation rates in the last phase of the compression, where there is a large surface

to volume ratio, the piston moves very fast [110].

The first tests with this system have showed a short relaxation time in the storage

cell compared with a single stage compression. This indicates a source of depolarization

inside the second stage compression.

Measuring T1 relaxation time in the syringe cylinder was difficult to perform because

there was no NMR coil available. The measurements were made on an identical syringe

filled with hyperpolarised 3He and placed near the NMR coils around the OPC. The value

obtained vas 31 minutes in uncompressed state. Considering this value is a lot greater

than the time that gas stays inside the syringe one can conclude this is not the loss source.

Another step was to test the pneumatic valves for leaks. All valves were found to be

leak tight.

Replacing the black epoxy with a white one we found that this was improving the T1

relaxation time. Although, when the piston was moving, the T1 was still short.

The pressure inside the vacuum system was fluctuating when the piston was moving.
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The moving piston was allowing air to enter inside the syringe cylinder and thus, to depo-

larize the 3He. One quick solution was to add oil on the back of the rubber piston to have

a seal. The seal works well for piston moving up but fails when moving down because

the oil moves slower than the rubber piston and it remains attached to the cylinder wall

braking the seal. The oil eventually passed inside the gas chamber and the syringe had to

be abandoned.

Summarizing, the perfect cylinder pump will have vacuum on the back of the piston.

Also, there is the need to have a buffer cell between the peristaltic and the cylinder pumps

so the pressure inside the OPC remains low and does not affect the polarisation process.

Figure 4.13: Diagram of the piston.

The cylinder compressor: prototype A new cylinder pump was designed and built

having the same dimensions as the syringe and with a vacuum line on back of the piston.

The cylinder is made of plastic and has a rubber piston from a syringe on an aluminium

threaded rod. Because the piston has an H profile, there was some air trapped inside so a

thin copper pipe had to be added to expose this space to the back vacuum (See Fig. 4.13).

The cylinder’s inside wall needed to be lubricated with a hydrogen-free PTFE grease to

prevent the system from locking.

The compression ratio, which is the ratio of the total compressor volume to the dead

volume KC2 = VC2/DV , was determined by measuring the pressure changes in the con-
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necting tubing with the piston in the top and bottom positions [111]. These measurements

yielded KC2 = 11. This ratio multiplied by the peristaltic pump ratio (KC1 = 10) gives a

total gain of 110. The new configuration is shown in Figure 4.14.

Figure 4.14: Diagram of the cylinder compressor system.Arrows indicate the 3He flow while

compression is in progress. The labeled system components are storage cell (STG), buffer cell

(BUFF), peristaltic compressor (C1), cylinder compressor (C2), pneumatic valves (1,2), get-

ter/purifier (G/P), liquid nitrogen trap (LN).

The valve control sequence had to be changed. First the hyperpolarised 3He is col-

lected with the peristaltic in the buffer cell up to 10 mBar, with valves 1 and 2 closed and

piston in the top position, when the pressure reaches 10 mBar the automated compression

sequence is started. The sequence is as follows: step 1 - valve 1 is open to the buffer cell

for 7 s allowing gas to enter the cylinder; step 2 - valve 1 closes; step 3 - piston moves to

bottom position for 3 s; step 4 - valve 2 opens for 2 s to allow the compressed gas to pass

in the storage cell; step 5 - valve 2 closes; step 6 - piston moves to top position.

There is the possibility of using either cell as buffer cell or storage cell. The results

were promising but there were still some issues regarding the compression ratio. The

dead volume is contained mostly in the pneumatic valves so increasing the ratio implied

increasing the compression volume i.e a larger cylinder and reducing the length of the

pipes (See Appendix A for detailed description of the pneumatic valves).
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The cylinder compressor: final version A larger cylinder was designed and built

using the prototype and scaling up the diameter. The driving piston had to be replaced

with a bigger one. A diagram of the cylinder pump is given in Figure 4.15.

Figure 4.15: Diagram of the final cylinder pump.

3He storage There were two types of glass cells used for storage: 1720 Corning and

180 GE in this work. Initially only the Corning cell was used because it was placed inside

a NMR coil ensemble and the signal from the hyperpolarised 3He could be recorded

using the NMR spectrometer. The Corning was replaced eventually with GE 180 since

the relaxation time was longer in the latter. A detailed description of the storage cells and

experiments carried on them are described in section 4.3.

Changes to polariser

Upgraded gas manifold The previous version of gas manifold was very long and con-

tained many plastic-copper interfaces that were sensible to leaks. There was the need to

rearrange the components and shorten the gas manifold in order to prevent future leaks.

It was also important to place all depolarisation sensitive components near the center of

the Helmholtz coils ensemble, where the magnetic field is more homogeneous.

• The NMR coils used for probing the storage cell were removed. A new GE 180

storage cell was placed near the NMR coils for the optical pumping cell. This
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allows to pick up signal from both cells at the same time. There are two distinctive

peaks for the two cells (Figure 4.16), as they experience slightly different B fields

• The stand for bag filling was replaced with a new one, placed near the storage cell

• The length of the tubing is minimal hence the compression of the cylinder pump is

improved
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Figure 4.16: Due to its location near the receiver coil, the storage cell is visible as an extra peak

on the NMR spectrum at +15 Hz from the OPC one. The traces show NMR spectra at different

pressures in the storage cell.

Upgraded compression system When imaging a subject, the time to fill a bag of 3He

up to 350 mBar was long, almost 10 minutes, and with the existing storage cell it was

impossible to make more than two bags at once. There was a need for a faster system for

producing bags since the goal was to use at least three bags of gas for the children study

and to keep the children inside the magnet as less as possible. A second GE 180 storage

cell was installed and the compression system was rearranged.
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• The gas is collected using the peristaltic pump only. The pump works very well at

the low pressure inside the optical pumping cell (10 mBar). It is possible to collect

the gas for many hours without reaching the steady-state since relaxation time in

the storage cell is much longer in GE 180 (See Fig. 4.17).

• The gas is pumped into bag with the cylinder pump. The pump works very well at

the high pressures inside the storage cell (1 Bar)(See Fig. 4.18).

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

P
re

ss
ur

e 
[m

ba
r]

Time [mins]

Figure 4.17: Evolution of pressure inside the storage cell with 15 mBar driving pressure (P1) and

the pump on 300 rpm.

The resulting system is shown in Figure 4.8. With the new system it is possible to

produce six bags of hyperpolarised 3He and 4He mixture (350 mBar each) in one batch.

Each bag needs, on average, less then two minutes to be filled. As seen on Figure 4.15,

first bags are filled extremely fast but once the pressure drops below 50 mBar the pump

too slow and usually evacuation stops at this pressure.
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Figure 4.18: A diagram of the gas evacuation using the cylinder compressor.

4.3 Magnetic field orientation and strength dependence

The aim of these experiments was to investigate the longitudinal spin relaxation of 3He

in glass cells in order to develop improved methods for producing and storing the hyper-

polarised 3He used in lung MRI. A significant dependence of 3He relaxation time, T1, in

glass cells due to the physical orientation of the cell relative to the applied magnetic field

has already been noticed [112], [113].

T1 relaxation time was measured in three types of uncoated glass cell (1720 Corning,

7740 Pyrex and 180 GE) for a range of magnetic field with two different magnetic field

orientations (See Fig. 4.19). The effect of demagnetization and heat treatment on T1 was

also investigated. A second part of the experiment was focused on the study of NMR

lineshape at different orientations, gas pressures, temperature and 3He magnetization.

The chemical composition of these glasses is given in Table 4.1.

4.3.1 7740 Pyrex

The values for T1 in the optical pumping cell are given in Table 4.2.
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Figure 4.19: A photograph showing the Corning 1720 and GE 180 glass cells used to investigate

the field orientation dependence of T1. Note the 1720 has flat ends and the 180 is oval.

4.3.2 1720 Storage Cell

The glass cell was fixed in place and the B0 orientation was set by reversing the current

through the Helmholtz coils. The orientations were denoted as follows:

• + B0 along Earth’s magnetic field;

• - B0 opposing Earth’s magnetic field.

For measuring the T1 relaxation time, 3He was polarised using metastable optical

pumping at 1 mBar followed by compression with a peristaltic pump to around 20 mBar

in the glass cell. The gas was then allowed to decay and every 40 minutes a NMR tipping

pulse was applied and a value of the NMR free induction signal was recorded. A mini-

mum of ten values were collected and then the FFT peak heights were plotted and fitted

with an exponential decay. The NMR tipping pulse had 0.03 ms length and the loss to

NMR signal due to each tipping pulse was about 2.5%which was corrected for. The mag-

netic field strength is given by the current through the Helmholtz coils (0.7 mT ·A−1). T1
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Table 4.1: Chemical composition of the glass types used in the glass vessels of the polarisation

system.

Glass Composition

1720 Corning 62% SiO2, 17% Al2O3, 5% B2O2, 1% Na2O, 7% MgO, 8% CaO

7740 Pyrex 81% SiO2, 2% Al2O3, 13% B2O3, 4% Na2O

180 GE 60% SiO2, 14% Al2O3, 7% CaO, < 1% SrO, 18% BaO, < 1% TiO2

Table 4.2: T1 relaxation time in the optical pumping cell.

Orientation T1 (minutes)

+ 224 ± 10

- 213 ± 10

relaxation time was measured at different field strengths (0.40 mT, 1 mT, 2.4 mT and 3.4

mT) in both orientation using a field cycling technique (See Fig. 4.20). No matter what

the polarisation field, T1 is measured at 2.4 mT matching the Larmor frequency of 66.5

kHz. The gas was polarised at a given magnetic field strength and the field was cycled to

the measurement value (2.4 mT) each time a FID was recorded. The relaxation time T1 is

much longer than the field-cycling time.

The NMR lineshape is obtained applying a FFT to the FID signal. NMR lineshapes

were recorded at different pressures in the storage cell (therefor each preassure value).

In order to investigate the NMR lineshape changes with temperature and magnetism,

the storage cell was heated up to 300◦ C using a hot air gun and magnetized with a strong

magnet. The cell can be degaussed using a TV degaussing device. The degaussing tool is

placed far from the cell and then slowly moved towards the glass surface. Then portions

of the glass are scanned and the degaussing device is slowly moved away. The degaussing

field is around 5 mT and degaussing was performed in the Earth’s field.

Cell Orientation dependence Table 4.3 shows the values of T1 for the 1720 Corning

storage cell.

As shown in Figure 4.21 there is a significant difference between the T1 relaxation

time with + and - orientation, T1 being longer with the B0 field oriented in the direction
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Figure 4.20: Diagram of the field cycling technique. The gas was polarised at a given magnetic

field strength and the field was cycled to the measurement value (2.4 mT) each time a FID was

recorded. The relaxation time T1 is much longer than the field-cycling time.

of the Earth’s field. We noticed a drop of T1 value with + orientation when we turned

off the B0 field for 3 days. This did not affect the T1 values with - orientation. After

demagnetizing the storage cell the T1 recovered.

Magnetic field strength dependence Looking at Table 4.3 there is a weak dependence

of T1 with magnetic field strength (in low magnetic field) but still T1 is longer at 2.4 mT

(the measuring field).

NMR lineshape gas pressure dependence A set of NMR spectra were collected start-

ing at 0.2 mBar up to 250 mBar in order to observe the NMR lineshape at different

pressures. The experiment was repeated for both orientations. The NMR lineshapes with

+ and - orientation are shown in Figure 4.22 and Figure 4.23 respectively.

With + orientation one can see that the NMR lineshape is wider than with - orientation

and is more asymmetric.

The NMR lineshape shows a second peak on the right hand-side that appears at 2
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Table 4.3: T1 relaxation time (in minutes) in the fixed storage cell. a - before exposing the storage
cell to Earth’s magnetic field, b - immediately after switching on the measurement field, c - a week
after switching on the measurement field, d - after heating and/or degaussing the storage cell

Orientation T1 @0.4 mT T1 @1 mT T1 @2.4 mT T1 @3.4 mT

+ 82c 432a 430a 165b

+ 142b 202b 165c

+ 153c 297c

+ 315d

- 45b 189a 139a 138a

- 153c 148b 121a

- 161c 156b

- 188d 108c

mBar and transforms into a shoulder after 10 mBar. With - orientation this second peak

disappears at 10 mBar. The NMR lineshape becomes wider with increasing pressure. For

pressures exceeding 160 mBar the peak of the NMR lineshape is much more rounded.

Motional narrowing occurs at low pressures and is responsible for the change in linewidth

as the fast diffusion of the gas at low pressure leads to averaging of the inhomogeneous

magnetic field in the cell (see Fig. 4.24).

NMR lineshape temperature and magnetization dependance The NMR lineshape is

not affected by the thermal treatment applied to the glass cell, it is T1 that is improved

after heating the glass (see Fig. 4.25).

After magnetizing the cell, the NMR lineshape remains unchanged; obviously T1

relaxation time drops dramatically (see Fig. 4.26). The T1 returns to its previous values

or is even longer after degaussing the glass cell.

4.3.3 180 GE Storage Cell

For this cell it was possible to rotate it and measure T1 with two different orientations, de-

noted up and down. Accidentally, before starting the measurements, the cell was exposed

to a high magnetic field (B0 = 0.15 T) then stayed for 2 weeks in the Earth’s magnetic
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Figure 4.21: T1 relaxation time variation during the experiments.
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Figure 4.22: NMR lineshapes for different pressures with + orientation.
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Figure 4.23: NMR lineshapes for different pressures with - orientation.

field. The measurement field (B0 = 2.4 mT) was turned on for 3 days before the first

measurement. The gas was polarised up to 30% and collected in the storage cell up to 40

mBar. The gas was then allowed to decay. T1 measurements were done before and after

degaussing the cell.

Cell Orientation dependence The T1 values obtained for this cell are shown in Table

4.4.

Table 4.4: T1 relaxation time in the GE storage cell.

Orientation T1 (mins) T1 (mins)

before degaussing after degaussing

up 330 608

down 146 311

Magnetic field strength dependance The 180 GE storage cell was placed inside the

MRI scanner (B0=0.15 T) and T1 was measured. T1 values obtained were relatively short,

around 30 minutes.

120



CHAPTER 4. PRACTICAL CONSIDERATIONS ON HYPERPOLARISED 3HE MR

0 5 1 0 1 5 2 0 2 5 3 0
2 0 . 0
2 2 . 5
2 5 . 0
2 7 . 5
3 0 . 0
3 2 . 5
3 5 . 0
3 7 . 5
4 0 . 0
4 2 . 5
4 5 . 0
4 7 . 5
5 0 . 0

 B 0  a g a i n s t  E a r t h ’ s  f i e l d
 B 0  a l o n g  E a r t h ’ s  f i e l d

FW
HM

 (H
z)

P r e s s u r e  ( m B a r )

Figure 4.24: Plot of the spectral linewidth with increasing pressure in both B0 orientations.

Motional narrowing occurs at low pressures and is responsible for the change in linewidth as the

fast diffusion of the gas at low pressure leads to averaging of the inhomogeneous magnetic field

in the cell.

4.3.4 Conclusions

The GE 180 and Corning 1720 appear to contain magnetic materials in the wall that can

be magnetized and demagnetized to some extent. It is not known whether this is due to Co

or Fe in the glass or contamination with iron during fabrication. We can rule out rubidium

impurities as we use MEOP and uncoated glass cells. The glass magnetization at room

temperature is time and history dependent. The lineshape confirms the magnetization of

the glass cell and shows unexpected structure. Classic motional narrowing is observed

when the pressure is reduced and diffusion increases such that gas samples an average B0

over the cell. There seems to be an optimal B0 ∼ 2 mT for long T1 in these cells. T1

is longest when the gas is stored with B0 in the same direction as Earth’s field and after

degaussing and/or heating the cell [114].
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Figure 4.25: NMR lineshapes at room and high temperature.
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Figure 4.26: NMR lineshapes before and after magnetizing the storage cell.
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4.4 Comparison of Two Ventilation Imaging Sequences

at Low Field (0.15 T)

Much of the published work on hyperpolarised 3He in vivo was done at high field (1.5

T). In general, the sequences used are gradient echo sequences (FLASH or PR) and very

rarely single-shot sequences like RARE [115], [116] or EPI [6] .

The purpose of this work was to demonstrate the possibility of using a low field mag-

net for lung studies as a step towards the clinical use.

All the results presented here were obtained on a IMIGr 0.15 T scanner with a SMIS

console. This was previously used in a clinical environment and was installed in the

laboratory back in the late 90s. The following sections presents the two types of sequences

we used on this work: RARE and FLASH.

4.4.1 Rapid spin echo sequence (RARE)

The RARE sequence is a single-shot sequence and the read out of the Fourier space is

done by spin echoes. 180◦ pulses (non-selective) are systematically applied to correct for

the gradients and RF imperfections (Figure 4.27 and Figure 4.28).

Technological aspects

The RARE sequence that was used had the following characteristics:

• initial tipping pulse: 90 ◦

• field of view: 460 mm

• matrix 64×64

• k-space read out: centre-out (0, -1, +1, -2, +2, ...)

• pixel size: 7.2 mm

• TCP : 14 ms

• read out time: Tobs = 2.1 ms
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Figure 4.27: Fourier space read out on a RARE sequence: after acquiring a line, a rephasing

gradient (opposite to the phase encoding gradient) restores the magnetisation on the central line of

the k-space; a 180◦ pulse inverses the dephase due to the read out; another phase encoding step is

applied and another line can be acquired; the fact that the lines are acquired in the same direction

and the 180◦ pulse is applied always on the central line makes the sequence robust to artefacts.

Figure 4.28: Timing of the RARE sequence. The 90◦ pulse is selective, the 180◦ pulses are non

selective.

• read gradient amplitude: 3.5 mT ·m−1

• total acquisition time: TACQ= 896 ms

• selective acquisition (50 mm slices) or non selective
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• crusher gradient amplitude and duration: 5.6 mT · m−1 and 10 ms

• 180◦ pulse duration: 900 µs

Transverse relaxation constraints

K-space filtering In general, the interval between the initial RF pulse and the signal

acquisition has to be short enough compared to the transverse relaxation of the signal.

If not, the signal is significantly reduced and, if the signal acquisition is long compared

to the relaxation time, there will be a loss of resolution as well as distortions due to the

k-space filtering in the phase direction. This is not a problem for the multi-shot sequences

but becomes an issue when running single-shot ones.

Attenuation induced by the gradients The rapid gas diffusion in the magnetic field

gradients create a significant signal attenuation. A more detailed study of the relaxation

due to diffusion will be presented in Chapter 5.

Imaging results

In vitro imaging Figure 4.29 shows a slice selective RARE image of a 60 ml syringe

(∅ 25 mm) filled with 50 mBar hyperpolarised 3He STP mixed with 4He up to 600 mBar.

The syringe edges are blurred in the phase encoding direction (vertical on Fig. 4.29).

This effect can be explained by the fast decay of the signal on each line due to rapid

diffusion with gradients. Considering the diffusion coefficient of 3He to be D = 1.8 · 10−4

m2· s−1 and 64 lines we end up with a 106 signal attenuation. The Fourier space is then

highly filtered in the phase encoding direction.

Theoretically this can be corrected by an exponential filter:

S ′(kx, ky) = S(kx, ky)× exp−bD(ky) (4.30)

which needs to be apodised in order to prevent the imminent noise amplification.

The correction implies that the diffusion coefficient is homogeneous within the object.

The restricted diffusion impedes the use of this correction in-vivo.
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Figure 4.29: Coronal profile of a syringe using a slice selective RARE sequence. Image was

obtained with 60 ml mixture of 3He - 4He (50 mBar hyperpolarised 3He STP and 550 mBar 4He);

FOV = 260 mm, 64×64 matrix, acquisition time = 896 ms.

In vivo imaging

Projection images Figure 4.30 shows breath-hold RARE in vivo projection images,

after the inhalation of 30 mBar 3He STP diluted with 4He up to 300 mBar. SNR is high

(220).

These images have slightly better quality compared to a usual ventilation scintigraphy

image, with an acquisition time very much improved (896 ms compared to a few minutes

for a ventilation scintigraphy image) because D is smaller in the lungs.

Slice selective images Applying a slice gradient it is possible to acquire images of

any plane. In Figure 4.31 are shown images of axial slices.

The images have a high SNR (285) and give much more anatomical information than

the scintigraphy and it takes just above 10.5 s to acquire the whole set, compared to more

than 20 minutes for scintigraphy.

It was possible to acquire transverse profiles of the lungs using a 128×128 matrix, TE

= 18 ms and slice thickness = 50 mm in just over 2 s. The resulting image is presented
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Figure 4.30: Coronal profile of the human lungs using a non-selective RARE sequence. Image

was obtained in a healthy volunteer, FOV = 350 mm, 64×64 matrix, acquisition time = 896 ms,

after the inhalation of 30 mBar 3He STP; the image shows the heart silhouette and some big

airways; left lung is not completely shown most likely because it is not fully covered by the coil.

in Figure 4.32 a). SNR was still high (167). Trying a 256×256 matrix the image was

blurred showing the k-space filtering artifact [117](see Fig. 4.32 b) ).

Summary

The RARE sequence allows us to acquire in vivo images up to 4 mm resolution in just

over 2 s. The sequence shows great performance in terms of signal-to-noise ratio. It is

very easy to use it at low field since the 180◦ pulses can be repeated at very short intervals.

The resolution is limited at 4 mm and the images present some artifacts, probably due to

some phase loss of the 180◦ pulses and k-space filtering.

4.4.2 Gradient echo sequence (FLASH)

The FLASH sequence is a gradient echo multi-shot sequence. It is identical to the spin-

warp sequence with regards to reading the k-space. however, it employs small tipping

pulses and short repetition times, TR (Fig. 4.33).
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Figure 4.31: Transverse profiles of the human lungs using a multislice RARE sequence with the

following parameters: 64 × 64 matrix, TE = 24 ms, FOV = 400 mm, slice thickness = 24 mm,

slice separation = 28 mm, RF pulse = Gaussian 900 µs. Images show a complete coverage of the

lungs, from apex to diaphragm; big airways are also visible.

Technological aspects

In the hyperpolarised regime, the longitudinal magnetisation decays progressively in an

exponential fashion by applying a fix value tipping angle.

The sequence used in this work was a classical 2D gradient echo sequence with the

following characteristics:

• matrix 64×64 (128×128)

• flip angle: 14◦(12◦)
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Figure 4.32: Transverse profile of the human lungs using a multislice RARE sequence with the

following parameters: a) 128×128 matrix, TE = 18 ms, FOV = 526 mm, slice thickness = 50 mm,

RF pulse = Gaussian 900 µs. Image is clearly showing the anatomy with little artifacts due to

k-space filtering; b) 256×256 matrix, TE = 24 ms, FOV = 526 mm, slice thickness = 50 mm, RF

pulse = Gaussian 900 µs. Image is still showing anatomy but is distorted by the k-space filtering

• field of view: 460 mm

• k-space read out: sequential (..., -2, -1, 0, +1, +2, ...)

• pixel size: 7.2 mm (3.6 mm)

• TE: 5 ms

• read out time: Tobs = 2.1 ms (4.2 ms)

• read gradient amplitude: 2.8 mT · m−1

• total acquisition time: TACQ= 3.8 s

• selective acquisition (50 mm slices) or non selective

• spoiler gradient amplitude and duration: 5.6 mT · m−1 and 1000 µs
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Figure 4.33: A short TR and a low tipping pulse are employed. In order to suppress any re-

manent transverse magnetisation present from a previous excitation that could interfere with the

next line of the k-space, large spoiling gradients can be used to completely dephase the transverse

magnetisation. Notice that the phase gradients and the readout dephase lobe commence whilst the

refocussing lobe of the slice gradient is still present. This reduces the acquisition time.

In vitro imaging Figure 4.34 shows the image of a syringe obtained using a FLASH

sequence. As expected, the artifacts related to the Fourier space filtering from Figure

4.29 disappeared.

In vivo imaging

Projection images Figure 4.35 show in vivo projection image in a healthy volunteer

using 30 mBar of hyperpolarised 3He STP. The image has less artifacts than the RARE

equivalent but SNR is reduced ( 59 compared to 220 in RARE), even if the quantity of

gas is identical.
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Figure 4.34: Coronal profile of a syringe using a slice selective FLASH sequence. Image was

obtained with 60 ml mixture of 3He - 4He (50 mBar hyperpolarised 3He STP and 550 mBar 4He);

FOV = 260 mm, 64×64 matrix, acquisition time = 1.6 s.

Figure 4.35: Coronal profile of the human lungs using a non-selective FLASH sequence.

Slice selective images As with RARE, it is possible to acquire all three planes using

a slice gradient. In Figure 4.36 it is shown a set of images depicting three 50 mm slices

on each plane. SNR is 78.

FLASH also allows for higher resolution 128×128 and less artifacts, although SNR
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Figure 4.36: Multi-orientation profiles of the human lungs using a multislice FLASH sequence:

a) Transverse plane, b) Coronal plane, c) Sagittal plane. The parameters are as follows: 64 × 64

matrix, TE = 5 ms, TR = 60 ms, FOV = 460 mm, slice thickness = 50 mm, tipping pulse = 14,◦

RF pulse = 3 lobes sinc.

is low (see Fig. 4.37).

Summary

According to theory, FLASH sequence allows imaging to go below the 5 mm resolution

barrier. It produces less artifacts than RARE when choosing the right tipping angle. The

sequence is slower than RARE and the resulting images have a lower SNR. This might

be improved with centric acquisition of the k-space.

On the use of low field for hyperpolarised 3He imaging The results presented here

show the possibility of obtaining hyperpolarised 3He images in vivo at low field (0.15 T).

Unlike thermal polarisation, working at low field with hyperpolarisation is not affecting

SNR. The polarisation is only determined by the optical pumping and hence SNR is

independent of the magnetic field strength [86].

There are even some advantages when using a low magnetic field:

• it allows a rapid repetition of 180◦ pulses with no concern exceeding the SAR value,

thus making the RARE sequence very easy to use
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Figure 4.37: Axial profile of the human lungs using a slice selective FLASH sequence; the

parameters are as follows: 128 × 128 matrix, TE = 5 ms, TR = 60 ms, FOV = 460 mm, slice

thickness = 50 mm, tipping pulse = 12,◦ RF pulse = 3 lobes sinc.

• the susceptibility artefacts are smaller at low field; signal decay due to T ∗2 is less in

gradient echo sequences at low field

• the running costs are smaller

On the other hand, low field limits the use of echo planar imaging due to the Maxwell

terms artifacts which is dominant at low field [118], [119].

On the choice of imaging sequences The RARE sequence allows us to obtain a lung

image in less than a second (projection or slice selective). The resolution is limited by

the gas diffusing in the imaging gradients. Due to the imperfections of the 180◦ pulse, the

acquisition is limited to only a slice at a time.

In theory, the FLASH sequence can give resolution smaller than 5 mm. It generates

less artifacts than the single-shot sequences if the flip angle is correctly chosen. The
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acquisition is slower than with RARE and gives a smaller SNR, unless using a variable

angle.

To conclude:

• obtaining a spatial resolution smaller than 3 mm would be hard with any of the

RARE or FLASH, a multi-shot sequence should prevent the k-space filtering arti-

fact but as shown here, FLASH’s SNR would be just to small so other sequences

should be employed

• to get a high SNR with small quantities of gas, a RARE sequence is preferable,

which is easy to use at low field
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Chapter 5

Diffusion Study

5.1 Introduction

Normal lung physiology is extremely complex, and this complexity is further enhanced

in sick lungs. The relationship between our current understanding of how lungs function,

and what actually happens is perhaps similar to the relationship between counting on

one’s fingers and advanced matrix algebra.

The core of the respiratory function of our lungs are the alveoli. Basically it’s here

that oxygen passes out of the lungs and into the blood. Oxygen is needed in the pro-

cess of generating energy for cells. It is therefore very interesting to be able to monitor

how the alveoli develop and how they change over the human lifetime. Since respira-

tory diseases like COPD (Chronic Obstructive Pulmonary Disease) and emphysema are

becoming more common there is the need for a tool to monitor alveoli size changes.

The distal airways are a complex porous structure where the respiratory gases transfer

is realised by diffusion. The 3He diffusion is even faster due to its small mass.

In MRI, the diffusion of nuclei in a heterogeneous magnetic field creates a random

magnetisation dephasing that is source of signal decay. As with all phenomena that de-

stroy the signal, diffusion can be considered either as a phenomenon that limits the image

acquisition or as a source of image contrast. The diffusion study inside the lungs has two

goals: optimisation of the imaging sequences and to access parameters that are related to

the lung microstructure.
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The diffusion study in MRI is not new. It is used in clinical MRI, particulary in

neurology [87], but also in non medical applications to probe structural parameters of

porous media. The possibility to acquire 3He lung images opened the possibilities of

studying helium diffusion in the airways and characterising the lung microstructure below

the limits of the spatial resolution.

With the existing imaging techniques it is impossible to probe the microscopic size of

human alveoli (cca. 4.2E-3 mm3). What we can do instead is to measure how the alveolar

walls impede the diffusion of a gas like 3He.

In this chapter there will be a description of the theory behind the restricted diffusion,

then the heterogeneity sources inside the lung and three methods of measuring diffusion

used in this work together with the results obtained.

5.2 Theoretical Aspects of the Signal Decay Due to Dif-

fusion in a Heterogeneous Field

5.2.1 Restricted diffusion

Restricted diffusion in an enclosed cavity

In a restricted environment, diffusion won’t follow the Einstein’s law for an indefinite

time due to the walls that will limit the displacement of the particle. This is the restricted

diffusion (Fig. 5.1, Fig. 5.2). We can define an apparent diffusion coefficient denoted

ADC or D(t) [120]:

D(t) =
〈d2〉
6t

(5.1)

〈d2〉 being the square mean value of the particle displacement in time t.

In the case of the free diffusion, the apparent diffusion coefficient is equal to the dif-

fusion coefficient (D(t) = D0); in the case of restricted diffusion, the apparent diffusion

coefficient gets smaller with time, and approaches zero in an enclosed cavity.
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Figure 5.1: The distance traveled as a function of restricted diffusion time in an enclosed space.

Figure 5.2: The distance travelled by the restricted diffusion in an enclosed space.

Restricted diffusion in an open environment

In an open environment like the lungs1, the situation is more complex. Basically, the

restriction is influenced by the geometry of the environment. One model used to study

restricted diffusion is liquid diffusing in a porous rock.

1The notion of open environment depends on the set scale: even the Universe is a closed structure. On

the scales used in NMR, the lung can be considered open.
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Structural parameters: porosity and tortuosity In a porous medium, the porosity is

defined as the volume fraction accessible to the tracer. In the case of the lung it is defined

as:

Φ =
Vairways
Vlung

(5.2)

In a non conductive porous medium, wetted by a liquid, we define the factor of elec-

tronic formation as the ratio of the pure liquid conductivity σ0 and the wetted medium σ

[121]:

F =
σ0

σ
(5.3)

This ratio, always greater than 1, reflects the reduction of the effective conductive

cross-section and the pores topography. To distinguish the two effects, we define tortuos-

ity as:

T = FΦ (5.4)

which describes the elongation of the covered path due to pores topography. The

tortuosity is always equal or greater to 1. Typical values of the tortuosity and porosity are

given in Table 5.1.

Table 5.1: Example values of porosity and tortuosity; in the case of the isolated liquid, tortuosity

equal to 1 shows the possibility of moving in a straight line.

porosity Φ tortuosity T

isolated liquid (without the rock) 1 1

pile of monodispersed spheres 0.45 1.5

sedimentary rocks 0.2 ≤ 3

The conductivity is written as:

σ = σ0
Φ

T
(5.5)
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This formula distinguishes the two causes of electrical conductivity reduction: the

porosity Φ (effective conductive cross-section reduction) and the tortuosity T (elongation

of the path covered by the charge carriers).

Modeling of the apparent diffusion coefficient in the pores In an open environment

with restricted diffusion, the ADC behaves as in Figure 5.3; ADC decays proportionally

with the square root of time, the proportionality coefficient depends of the interface sur-

face (S)-to-total volume (V) ratio. Basically, for very short times, the number of particles

encountering an obstacle is proportional to this ratio (S/V Fig. 5.4). For short times, the

ADC evolution is given by Mitra [120]:

D(t)

D0

' 1− 4

9
√
π

(
S

V

)√
D0t (5.6)

(t� L2

D
, L being the size of the pores)

Figure 5.3: The evolution of ADC with time.

For long times, the limit of ADC (D) is the formation factor F .

In order to describe ADC in general, the following interpolation was proposed by

Latour [122]:

D(t)

D0

= 1− (1− F )×
4
9

√
D0t
π

(
S
V

)
+ (1− F )D0t

L2
0

(1− F ) + 4
9

√
D0t
π

(
S
V

)
+ (1− F )D0t

L2
0

(5.7)
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L0 (denoted
√
Dθ by the authors of the article) being a length parameter of the envi-

ronment. In the absence of an obstacle for diffusion (F = 1), we get D(t) = D0.

Figure 5.4: The effect of surface-to-volume ratio on the ADC decay.

In practice, for liquids in porous rocks, the D(t) behaviour for very short times (the

S/V ratio) is accessible by NMR, even if the measurements are different from those with

other methods (measurement of the isotherm absorption ). The asymptotic behaviour

(porosity and tortuosity) remains difficult to explore by NMR since the relaxation limits

the length of diffusion [123], [124].

Application of restricted diffusion models to helium in the lung The models of re-

stricted diffusion presented here were elaborated for the diffusion of liquids. To use these

models in gases raises some questions. In particular, the restricted diffusion model used

implies the lack of interaction between the gas and the alveolar wall that could slow down

the diffusion or lead to a surface diffusion [125]. If for liquids, the high density impedes

absorption, this is not necessarily the case for gases. We also neglect the small surface

relaxation compared to relaxation induced by oxygen. The diffusion coefficient for gases

is 105 times higher than for liquids.

For the case of 3He diffusing in the lung, considering the diffusion coefficient in 4He

at 37◦C (Table 3.5), a typical gas volume of 2L and a exchange surface of 70m2 [17],

applying 5.6 we get negative values for D(t) at t ≥ 150µs. From this we can not hope

to get information on the initial section of the curve (obtain a surface-to-volume ratio) by

means of NMR in vivo. We could though, measure tortuosity for long times, with NMR.
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5.2.2 Sources of magnetic field heterogeneity

The magnetic field variation sensed by a magnetisation can be a temporal variation (the

magnetic field varies locally in time) or spatial variation (the particle carrying nuclear

spin is moving in an heterogeneous field).

The temporal variation can be created by an RF pulse application or generated by the

RF noise. The latter won’t be described here.

The spatial variation can occur at three levels:

Molecular (microscopic) scale

On the atomic scale (microscopic), the dipole-dipole interaction corresponds to both a

spatial and temporal variation of the magnetic field; the mobile spins sense and induce

a magnetic field. This interaction has to be treated by a phenomenological model and

corresponds to T2 transverse relaxation time [60].

Macroscopic scale

At the macroscopic level, the spatial variation is produced by: magnetic field defects due

to magnet and shimming system imperfections (residual gradients); gradients induced by

the gradient coils.

The gradients are supposed to be perfectly uniform and they are in reality, at least at

first order.

The residual gradients are not necessarily uniform on the scale of the field of view,

but can be considered uniform for the diffusion scale used in practice.

Mesoscopic scale: internal gradients

The mesoscopic scale is an intermediary scale between the macroscopic scale of the ob-

ject and the microscopic molecular scale. On this scale, the spatial variation of the mag-

netic field is due to susceptibility variations in a heterogeneous environment.

The diffusion of the particles carrying spins in this heterogeneous field leads to relax-

ation. These field variations are normally hard to model, due to the lack of information
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about the precise geometry of the environment and lack of analytical solutions for com-

plex geometry. This is the case of the lung. A simple approximation was proposed by

Gasel [126] to estimate the internal gradients in an environment having the spatial dimen-

sion L and the susceptibility difference between two components ∆χ:

Gi '
∆χ ·B0

L
(5.8)

This approximation is arguable since the gradient is probably overestimated in the

centre of the homogeneous region and probably underestimated in the proximity of the

interfaces. For the lung (susceptibility difference air-water ∆χ = 12 ppm over 300 µm),

5.8 gives a value of 6 mTm−1 at 0.15 T.

5.2.3 Signal decay due to restricted diffusion in heterogeneous field

In the case of the restricted diffusion, there are two possible approaches.

The simplest one consists of keeping the equation from the free diffusion and re-

placing the diffusion coefficient D with an apparent coefficient D(t). For a continuous

gradient, for example, we have:

S(TCP )

S0

= exp

(
−γ

2G2T 3
CP

12
·D(TCP )

)
(5.9)

D(t) is defined by:

D(t) =
−12 · ln(S(t)/S0)

γ2G2T 3
CP

(5.10)

The other approach, more complex, consists of analytically solving the equations of

signal attenuation for certain cases of restricted diffusion. This has been done in prac-

tice only for diffusion in a closed geometry and for a uniform and continuous gradient,

or a pair of Dirac pulses [127]. More recently, Callaghan proposed a matrix formalism

for solving the restricted diffusion in uniform, time varying gradients, for the case of an

environment sandwiched between two parallel planes [97]. The cases of open geome-

try (including the lungs) and more complex gradients weren’t studied in the literature;
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probably due to the complexity of the situation, it is unlikely one can get an analytical

solution.

Parameters characterizing the diffusion

During the spin echo experiment in the lungs, there are three phenomena taking place:

helium diffuses in the alveolar structures, magnetisation is dephasing and 180◦ pulses are

applied and partially rephase the magnetisation.

To describe these phenomena, it is possible to estimate diffusion considering: the size

of the alveoli, the distance traveled whilst the magnetisation is dephasing and the distance

travelled between two 180◦ pulses.

The ratio of these dimensions is very important when choosing the right model for the

signal decay.

Size of the environment For the case of the lung, the characteristic dimension of the

medium is the alveolar diameter, L = 300 µm [16].

Size of the dephasing The size of the dephasing, denoted lG, is given by:

lG = 3

√
D

γG
(5.11)

Table 5.2: Values of the dephasing size of helium inside the lungs for the applied external gradi-

ents.

lG G = 0.1 mT ·m−1 G = 1 mT ·m−1 G = 10 mT ·m−1

3He diffusion in 4He

D = 2 cm2 · s−1 2.14 mm 0.99 mm 0.46 mm

For values of the applied gradients within accessible limits, the size of dephasing is

bigger than the alveolar size: lG > L (Table 5.2); the dephasing is negligible unless a

helium atom travels outside the initial alveolus.
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Size of the diffusion length The size of the diffusion length, denoted lD, is the distance

diffused during the inter-echo time TCP/2 in a spin echo sequence:

lD =

√
D
TCP

2
(5.12)

Table 5.3: Values of the diffusion size of helium inside the lungs.

lD TCP = 5 ms TCP = 10 ms TCP = 100 ms

3He diffusion in 4He

D = 2 cm2 · s−1 0.71 mm 1.00 mm 3.16 mm

For the accessible inter-echo times, the size of the diffusion length is bigger than the

size of the alveoli (Table 5.3).

Diffusion in a uniform magnetic field gradient

First we consider the macroscopic level of the heterogeneity. The case of the mesoscopic

gradients, will be presented in the next section.

Free diffusion regime Even in a porous structure, diffusion can be considered ”suffi-

ciently free” if the signal attenuation by diffusion between two consecutive echoes is very

small, or [128]:

(
lD
lG

)6

< 4 (5.13)

or

lG > 0.8lD (5.14)

This is the case of the lung when the smallest gradient is applied (Table 5.2, Table

5.3).

Motional averaging regime In the case of free diffusion in an uniform gradient, the

particles will move away from their initial position over an average distance
√

2Dt. The
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induced dephasing can not be totally compensated by the spin echo. Diffusion is hence a

source of signal decay (Fig. 5.5 a).

Qualitative description In the case of restricted diffusion in a closed medium, the

particle can not move from its initial position, further than the size of the enclosure. The

range of magnetic field gradients that the particle is sensing is limited. If the diffusion

is fast enough the particle will travel through a successively strong fields and less strong

fields before dephasing will take place. This will slow the signal attenuation and equalize

the dephasing of the magnetisation. This is the motional averaging (Fig. 5.5b). This

averaging is also present in the case of diffusion in an heterogeneous gradient (Fig. 5.5c).

In order for the motional averaging to take place, it is necessary that the time needed

to move across the medium to be small compared to the time needed to substantially

dephase the magnetisation.

Figure 5.5: a) Free diffusion in an uniform gradient: no averaging; b) Restricted diffusion in

uniform gradient: there could be an averaging process (because of the motion) if the diffusion

is faster than the dephasing; the average position is shown by the dotted line; c) Free diffusion

in heterogeneous gradient: there could be also a motional averaging if the magnetic field varies

around a mean value.

First condition for motional averaging In order for the motional averaging to take

place, the diffusion must be fast enough to overcome the magnetisation dephasing.
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Take the case of an uniform gradient G in a closed enclosure of size L, the condition

for motional averaging is:

(γGL) · L
2

D
� 1 (5.15)

or:

lG � L (5.16)

meaning that the particle has to travel the size of the enclosure a number of times big

enough to allow for averaging before the magnetisation dephasing gets too large [128].

There is another equation for the condition in 5.16 given by Hyslop [129]:

d
.
=

4πD

γGL3
=

3

√
π
lG
L

(5.17)

the condition for motional averaging being now d > 0.1. This condition together with

5.16 leads to:

lG >
1

1000π
L (5.18)

More recently, Pütz proposed a third equation for the motional averaging condition

[130]:

q
.
= 3

√
8πD

γGL3
= (2 3
√
π)
lG
L

(5.19)

the condition transforms into q � 1.

Table 5.2 shows that for the case of helium diffusion inside the lung, the condition is

fulfilled when the applied gradient is much smaller than 10 mT· m−1.

The second condition for motional averaging In a spin echo experiment, there is

a second condition for motional averaging. Basically, if the time between two π pulses

is very short compared to the time needed for dephasing, the compensation for the field

heterogeneity is achieved by these pulses, not the averaging due to diffusion [128].

The condition for the π pulses to be faster than the dephasing is:
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lD � lG (5.20)

In order for the motional averaging to occur, the π pulses have to induce a fast rephas-

ing and the second condition is:

lD ≥ lG (5.21)

Table 5.2 and Table 5.3 indicate that this condition is true for the helium NMR exper-

iments inside the lung.

Signal decay in the case of motional averaging This case was theoretically de-

scribed by Robertson [131] for the space between two infinite parallel planes and then by

Neuman [132] for other geometries (cylinders or spheres). Simulation experiments were

realized by Hyslop and Lauterbur [129] for simple and closed geometries in 1D, 2D and

3D.

For the simple case of two planes separated by a distance L [131], the signal decay

follows the equation:

S(TCP )

S0

= exp

−γ2G2L4
(
TCP − 17

56
L2

D

)
120D

 (5.22)

which can be rewritten considering 5.21 as:

S(TCP )

S0

= exp

(
−γ

2G2L4TCP
120D

)
= exp

[
− 1

60

(
lD
lG

)2(
L

lG

)4
]

(5.23)

The echo decay is, as for the free diffusion, exponential, but with a different decay

time:

T †2 =
120D

γ2G2L4
(5.24)

In this case, the relaxation speed is independent of the inter-echo time. Diffusion

is slowing down the signal attenuation. For a very fast diffusion, T †2 is infinite and the

observed T2 is thus ”raw” T2 . This regime causes resolution loss in MR microscopy
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since a particle in an enclosure and diffusing fast will appear as located in the center of

the enclosure (Fig. 5.6c).

Figure 5.6: Motional averaging in a 1D closed enclosure; the lower curve represents the spins

localisation by MRI; diffusion speed increases from a) to c); the averaged trajectories are moving

to the centre (dotted line); when diffusion is slow a), there is a edge enhancement; when diffusion

is very fast c) there is only a central peak (motional averaging): there is a loss of spatial resolution.

Localised regime There is a third regime that was described more recently: the lo-

calised regime or static dephasing regime (heterogeneous broadening) . The theory was

described in the 90s [133], [134], [135] and it was experimentally proven in 1995 by

Hürlimann [128].

Conditions for occurence of the localised regime The localised regime occurs for

restricted diffusion outside motional averaging, when:

lD � L� lG (5.25)

Signal decay in the localised regime In this regime, the particles move slow enough

that the transverse relaxation is determined by the spatial distribution of the magnetic
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field. The decay does not follow a simple exponential decay with time but it depends

strongly on geometry; as a result, T †2 is independent of TCP :

S(TCP )

S0

= c

3

√
D
γ·G

L
exp

(
−a · d

1/3 · γ2/3 ·G2/3 · TCP
2

)
∝ lG
L

exp

[
−a
(
lD
lG

)2
]

(5.26)

a and c being geometry constants [83], [128], [133], [134], [135].

Edge enhancement in the localised regime In the localised regime, accentuated

NMR signal near the walls was described and shown by numerical simulation [130] and

experiments [136], [137]. The experimental evidence is not always possible due to the

spatial resolution demands. This paragraph will discuss the causes of phenomenon.

According to Pütz [130], the phenomenon occurs due to a spectral peak of diffusion

(diffusive-spectral edge enhancement) when lG ≈ L (Fig. 5.6 a) and b)).

After Callaghan [136], the dominant cause of this effect is strictly the restriction near

the edges (diffusive-relaxation edge enhancement). In the case of very fast dephasing, a

variation of D(t) due to proximity of the wall diminishes the decay thus the edge enhance-

ment.

Finally, the last hypothesis for the cause of this phenomenon could be: formation of

an enhanced spin echo, rephasing effect can be seen for lD = TCP/2 (Fig. 5.7).

Review of restricted diffusion regimes in uniform gradient Hürlimann has summa-

rized the different diffusion regimes in a monodimensional closed enclosure in the pres-

ence of a uniform gradient [128]. These regimes are shown in Figure 5.8. The figure

clearly illustrates the complexity of the problem, even for the simple case of a monodi-

mensional closed enclosure.

For the case of the lung, since it is an open structure with various length scales , it is

obvious that the problem is more complex and difficult to model in an analytical fashion.

Figure 5.9 uses the Hürlimann diagram to predict the diffusion of helium inside the lung.

This diagram shows that, considering the applied gradients, the regime that occurs is

motional averaging.
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Figure 5.7: A particle traveling through similar magnetic field regions before and after the π

pulse, and colliding with a wall, could explain the edge enhancement.

Figure 5.8: Different diffusion regimes in a 1D enclosed space in an uniform gradient G [128]:

the regions where the three described regimes exist are depicted as a function of the parameters

lD, lG and L.
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Figure 5.9: Diagram of 3He diffusion in 4He inside the lung, derived from [128] (5.8): for the

inter-echo time and gradients used in this work, the diagram predicts a motional averaging regime.

Restricted diffusion in a non uniform gradient

Up to this point we only considered the case of a uniform gradient. The situation is more

complex for the case of internal gradients due to the magnetic susceptibility.

Some have tried to analytically model the diffusion [138]; however, the models are

very simple (in this case, a monodimensional sinusoidal variation of the field is consid-

ered) and can be far from reality.

Other authors used Monte-Carlo numerical methods to model [139]; this type of

model, focused on one application, provides information only on the specific study with-

out giving details of the general problem.

Finally Packer et.al. used a qualitative comparison between the diffusion in uniform

and heterogeneous gradients [140] and found a great resemblance to reality. If the de-

phasing is small during the diffusion over the size of the heterogeneity, Packer suggests

that there exists a motional averaging similar to the one previously described, occuring

under the same conditions and with the same equation for relaxation. We can apply this
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model for the internal gradients in the lung (estimated at 6 mT· m−1 at 0.15 T) by con-

sidering the alveolar size L as the parameter characterizing the field heterogeneity. The

dephasing length for the estimated internal gradients is 0.63 mm.

Applying the Hürlimann model for the internal gradients of the lung, we obtain the

diagram in Figure 5.10. At 0.15 T the conditions are fulfilled for the motional averaging

to occur. This model might not be a very robust one but it gives the foundation to study

the phenomena that control the signal decay in the lungs.

Figure 5.10: Application of Figure 5.8 to the case of 3He diffusion in the lung.

5.2.4 Summary

The combined effect of diffusion and gradients in a porous structure such as the lung is

complex. There are two approaches for analyzing this effect.

The first approach implies applying the established formulas for signal attenuation and

replacing the diffusion coefficient D with an apparent diffusion coefficient (ADC or D(t)).

The ratio D/ADC varies depending on the time scale and the structural parameters of the

lung: porosity, tortuosity and the surface-to-volume ratio. It is theoretically possible to

measure these structural parameters by studying the ADC evolution depending on the
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time scale of the measurement. However, due to limitations of the MRI, the surface-to-

volume ratio can not be investigated in the lung.

The second approach is more analytical and was only applied to simple models (monodi-

mensional closed cavity). It considers three regimes: free diffusion, motional averaging

and the localised regime. The ratio of the three characteristic dimensions, L, lD and lG

determines which regime occurs. For the case of the lung, considering the typical used

gradients, the theory predicts the dominance of motional averaging. For the internal gra-

dients, taking into account that the models are not very robust, at 0.15 T, it’s also the

motional averaging that dominates.

5.3 Methods for studying diffusion

3He diffusion weighted MRI is a promising new technique for evaluating lung microstruc-

ture and has been demonstrated to detect alterations in lung microstructure in lung dis-

eases such as emphysema/COPD, and bronchopulmonary dysplasia. Unfortunately, the

world wide supply of 3He is limited and as typically performed, diffusion weighted MR

imaging requires a relatively large dose (250 -500 cc) of hyperpolarised 3He gas, that

might limit its widespread clinical utility. Alternatively, a global (non-localized) diffu-

sion weighted spectroscopy technique which requires a very low volume of 3He might

be a good alternative to diffusion weighted hyperpolarised 3He MR imaging, especially if

global measurements can provide clinically useful information about the lung microstruc-

ture.

In MR imaging, the standard method for measuring D is the pulse field gradient (PFG)

technique of Stejskal and Tanner. PFG techniques are very sensitive to the environment,

and in the presence of restriction, yield an ”apparent” diffusion coefficient or ADC, that is

smaller than the free diffusion coefficient. The ADC thus provides a quantitative measure

that reflects the relative difficulty with which a group of particles may move within a given

environment. In healthy human lungs, the measured 3He ADC (0.2 cm2· s−1, observation

time of 1-2 ms) is nearly a factor of 10 smaller than the free diffusion coefficient of 3He

(1.8 cm2· s−1).
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During this work there were three methods used for studying diffusion. This sec-

tion will present technical aspects of these sequences and how they were implemented in

practice. There will be also details on data analysis.

5.3.1 Spin echo diffusion weighted sequence

This method was well established during the work of Waters [107] so, was the first to be

used in this work.

The RARE sequence is well suited to measuring global ADCs and ADC profiles. It

consists of a 90◦ RF pulse followed by a train of 180◦ pulses. Between the RF pulses an

incremented phase encode lobe and a read out gradient lobe are applied to acquire data

from the whole of k-space in a single acquisition. If the phase gradient and slice select

gradients are turned off then the positive read out gradient lobe before and after the 180◦

pulse act as a monopolar diffusion weighting gradient along the read direction. This re-

duces the signal from spins which move or diffuse but leaves the signal from stationary

spins unchanged. Each read out gradient lobe increases the diffusion weighting so that

the final exponentially decaying echo train represents identical profiles with incremented

levels of diffusion weighting. Therefore a normal RARE sequence can be used for mea-

suring diffusion by switching off the slice select and phase encode gradients giving a

sequence similar to Figure 5.11. ADC in this case is measured from the decay of the

transverse magnetisation. The experiment is sensitive to displacements during the gradi-

ent waveform that is typically several milliseconds (14 ms) in duration, corresponding to

displacements of a few hundred microns. This time is limited by the short T ∗2 of 3He in

lung (20 ms at 1.5 T). This diffusion coefficient is therefore denoted ADCmsec.

For data analysis, the raw data from the scanner were transferred to a dedicated com-

puter for post processing. An updated version of a MATLAB script developed by Waters

[107] was used to analyze the results. The program automatically calculates the ADC

value for each selected data set, with the operator only adjusting the range of data fitting.

The data set consists of a series of 64 echoes with heights that fall off exponentially due

to diffusion of the helium. To measure the rate of diffusion the peak value of each echo

was selected to give an exponential decay. Natural logarithms were then taken of the data
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Figure 5.11: Diffusion weighted RARE sequence diagram.

to give a straight line with a gradient proportional to the apparent diffusion coefficient.

This gradient was obtained by carrying out a least squares linear fit to the data. A typical

output of the analyzing software is presented in Figure 5.12
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Figure 5.12: Output of the diffusion measurement software.

Some data sets did not display monoexponential decay indicating an inhomogeneous

distribution of ADC. As the DW Rare data set is acquired with the Read gradient switched

on each echo can be Fourier transformed to give a profile across the lungs. By selecting

the same pixel from each of the 64 diffusion weighted profiles and applying the same

analysis as detailed above for global ADC measurements, an ADC can be calculated for

each point in the profile (5.13.
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Figure 5.13: Output of the 1D profile analysis software.

5.3.2 SPAMM tagging method

Measuring the diffusion coefficient was demonstrated using a SPAMM tagging method

[141]. This technique produces a spatial modulation of magnetisation (SPAMM) prior to

imaging, by using a sequence of two nonselective RF pulses separated by a magnetic field

gradient pulse (Figure 5.14).

Figure 5.14: Diagram of the tagging diffusion weighted sequence. Letters mark times that are

described in Figure 5.15.

Starting with a uniform longitudinal magnetisation (Figure 5.15 A), the first RF pulse

turns some of the magnetisation into transverse magnetisation without changing the phase
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(Figure 5.15 B). With the gradient pulse, the phase of the transverse magnetisation is spa-

tially modulated (”wrapped”) along the direction of the applied gradient (Figure 5.15 C).

The second RF pulse will mix the modulated transverse magnetisation with the longitu-

dinal one and eventually restore the longitudinal component to its initial value since it

has the same flip angle (Figure 5.15 D). The second gradient is used to spoil the remain-

ing transverse magnetisation. The amplitude of the modulation will decrease by the time

imaging starts, due to longitudinal relaxation and diffusion of the gas (Figure 5.15 E).

The result is the production of bands of modulated magnetisation.

Figure 5.15: Magnetisation evolution at different times in the pulse sequence. a) Magnetisa-

tion before the modulation sequence initiation. b) Magnetisation after the first 45◦ RF pulse. c)

Magnetisation after the modulation gradient pulse. d) Magnetisation after the second 45◦ RF

pulse having the same value as first. e) Magnetisation before imaging (significant relaxation has

occurred). [142]

The amplitude of the initial magnetisation modulation is given by the choice of tipping

angle (eg. a 45◦ pulse produces bands of saturation at the troughs, while a 90◦ pulse

produces bands of inversion.)
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Attenuation of the tags due to diffusion

Due to the large diffusion coefficient of 3He in free space (1.8 cm2s−1), the lifetime of

the tags is limited. Spins with one polarity will mix with spins of different polarity which

causes the macroscopic cancelation of magnetisation. The rate of this cancelation for the

sinusoidally tagged magnetisation is determined by the wavelength of the modulation.

Consider the Bloch-Torrey diffusion equation in 1D:

d

dt
M(x, t) = D52 M(x, t)− M(x, t)

T1

(5.27)

where D is the diffusion coefficient and M(x, t) is the longitudinal magnetisation at

position x and time t. For unbounded spins, the analytical solution is found to be a Fourier

series:

M(x, t) =

∫ ∞
−∞

Mk(0) exp(−k2Dt) exp(−t/T1) exp i(kx+ φ)dk (5.28)

where k = 2π
λ

is the spatial frequency, Mk(0) is the initial amplitude of the magneti-

sation corresponding to the harmonic, k, and λ is the wavelength.

In the case where the modulated magnetisation is a sinusoid, the effective amplitude

of magnetisation will decay exponentially in time:

Mk(t) = Mk(0) exp(−k2Dt) exp(−t/T1) (5.29)

In the case of hyperpolarised 3He in the lungs we can correct for or ignore T1 since it

is in the order of tens of seconds, and hence, the decay of tags is exponential in time with

a rate −k2D.

Implementation and data analysis

The tagging of longitudinal magnetization is limited by the longest relaxation time in

the spin system, T1 which allows diffusion over much greater times and distances to be

probed. Therefore, this diffusion coefficient is denoted ADCsec.

Measuring diffusion using this method implies using a sequence that has a tagging part

followed, after a certain delay, by any imaging sequence. First we used a RARE sequence

158



CHAPTER 5. DIFFUSION STUDY

to image the tags. Since the sequence uses a 90◦ pulse to tip all magnetisation in the XY

plane it is not possible to image the tags more than once. A fresh bag of hyperpolarised
3He is needed for each delay time. This method proved to be inefficient for clinical studies

due to the large quantities of 3He needed. Even if the ADC is calculated by fitting the tag

decay with only two points, our standards of time and gas quantity were not met.

The only viable solution to overcome the above mentioned constraints was the use of

a 1D FLASH sequence to image the tags as they decay. The idea is to disable the phase

encoding so every line in the k-space represents the modulated magnetisation of the entire

lung at different times. Considering there were N lines acquired, the tags are allowed to

decay for a period of time equal to N · TR, where TR is the repetition time. Generally,

32 lines were acquired with a TR of 400 ms giving a total time of 12.8 s. A relatively

large tipping pulse (18◦) had to be used to image in order to get a high SNR needed for

high accuracy ADC calculation. This reduces the SNR after the 15th line. It is why the

fit was done using only the first 15 points from the decay.

In order to maximize the diffusion effect introduced by the tags the wavelength has to

be small; 1.6 cm is a typical value for the experiments described in this work. The size of

wavelength is inversely proportional to the size of the wrap gradient. For a gradient pulse

of amplitude G and effective duration t, λ is given by γGλt = 2π. Given the maximum

available gradient strength for our system, the minimum wavelength that can be obtained

is 0.3 cm. Especially for small wavelengths the number of samples needs to be large (128

or 256) in order to have well defined stripes. The data is padded with zeros up to 2048

sample points for extra accuracy in tags analysis.

Data analysis consists in isolating the stripes and finding the peaks and troughs, and

the average magnetisation for each wavelength. The ratio of the distance between the

peak and trough and the average value of the magnetisation is plotted against time. These

are fitted to a monoexponential decay to determine the decay rate and then the diffusion

coefficient. The procedure automatically excludes pixels that are outside the lung and/or

of inadequate SNR. A diagram of the data analysis is shown in Figure 5.16
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Figure 5.16: Output of the tags analyzing software.

Results

The aim of this method was to get a better measure of ADC by directly measuring the gas

molecule displacement within the voxel. The method was hard to implement for routine

use in the clinical study because it needs a great amount of magnetisation that was not

always achieved. The results available from the study group are shown in Section 5.4.2.

Here are presented the results of an experiment ran on the same healthy volunteer in

order to check how is ADC varying with wavelength (λ). Since λ is related to diffusion

time this is also an indication of how ADC changes with time. The idea behind the ex-

periment was to probe if a SPAMM technique with a really short diffusion time (i.e. short

λ) could get ADC values closer to the ADCmsec obtained using the spin echo diffusion

weighted sequence.

A set of 33 values of the ADCsec for wavelength ranging from 0.4 cm to 10 cm was

recorded on a healthy volunteer. The results are presented in Figure 5.17.

5.3.3 MR diffusion spectroscopy sequence

Global diffusion studies by Owers-Bradley et. al have looked at multi b-value diffusion

in human lungs, albeit at lower b-values (0.3 s/cm2) by utilizing the mono-exponential

model [107]. However, in a heterogeneous structure, such as the lung, this assumption
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Figure 5.17: ADC sec variation with wavelength. At very short λ the diffusion coefficient tends

to be higher.

is no longer valid [82]. Yablonskiy et. al demonstrated this non-monoexponential nature

by increasing the number of sampled points along the diffusion curve from two to six,

increasing the sampled portion of the diffusion curve, and analyzing the data assuming a

regular geometrical structure of the lung [143]. The result was a dataset that was distinctly

non-monoexponential for healthy adults. Fichele et. al [144] also showed show that the

apparent diffusion coefficient (ADC) is a function of diffusion time and gradient strength,

and suggests diffusion is locally anisotropic.

The strategy described in this section is also a global diffusion measurement gADC of

hyperpolarised 3He where the diffusion curves are densely sampled and nearly the entire

dynamic range of the curve acquired.

Sequence Design

The gADC data were collected using the pulse field gradient technique. A non-selective

900 µs Gaussian RF pulse was used for spin excitation. Diffusion weighting was accom-

plished by applying trapezoidal bipolar diffusion gradients along the x axis (right-left).
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The timing parameters for the diffusion sensitizing gradient are presented in Figure 5.18.

Figure 5.18: Timing parameters for the diffusion sensitizing gradient.

The sequence is divided into blocks. Each block consists of four discrete diffusion

weighted signal acquisitions along the x-axis, and one block of single non-diffusion-

weighted signal (b-value = 0 s/cm2). The b-value was varied by changing the strength of

the diffusion sensitizing gradients GD, where the b-value for trapezoidal gradient wave-

form given by (see Table 3.7):

btrapezoid = γ2G2
D

[
δ2

(
∆− δ

3

)
+
τ 3

30
− δτ 2

6

]
(5.30)

where, γ is the gyromagnetic ratio of the observed nuclei, τ is the ramp time of gra-

dient, δ is the duration of one lobe of the bipolar gradient and ∆ is the diffusion time.

Every block is repeated 10 times (Fig. 5.19), to yield a total of 50 FIDs. The diffusion

gradient amplitude was logarithmically sampled for 40 of the FIDs and for the remaining

10 was set to zero. As described below, these latter acquisitions were used to correct for

the effects of T1 relaxation and RF depletion The diffusion gradient parameters, were:

τ = 0.15 ms, δ = 4.7 ms and ∆ = 5.2 ms. Since the hyperpolarized magnetization de-
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creases throughout the scan, the b values were ordered from highest to lowest to maximize

the signal-to-noise ratio for the most strongly diffusion-weighted signals. The diffusion

weighted signals were acquired with gradient amplitudes ranging from 16.5 mT/m to 0

mT/m, with the corresponding b-values from ranging from 50 s/cm2 to 0.006 s/cm2. The

data acquisition was started after a 500 µs ringdown time, at the end of the bipolar dif-

fusion gradient. Repetition time was fixed at 200 ms with spectral bandwidth of 12.5

kHz and 2048 sample points. At the end of the acquisition, a set of bipolar crushers (5

ms duration , 11 mT/m amplitude) were applied on all axes to depolarise any residual

transverse magnetization after signal acquisition.

Figure 5.19: Diagram of the diffusion spectroscopy sequence.

T1 and tipping angle attenuation correction The resulting FIDs have non-recoverable

longitudinal decay due to T1 relaxation time and RF time. It is necessary for diffusion

measurements to be corrected for these effects, otherwise the gADC measurements will

be underestimated. The detected signal from a series of n RF pulses of constant flip angle

(τ ), constant TE, and constant TR for a 3He diffusion experiment is given by [105]:
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Sxy(n) = SDW (n)

[
cos τ exp

(
−TR
T1

)]n−1

(5.31)

where,

SDW (n) = fn(D)Sz(0) sin τ exp

(
−TE
T ∗2

)
(5.32)

where SDW (n) are the diffusion weighted signals, fn(D) is the DW after nth RF

pulse, T ∗2 is the apparent transverse relaxation time, and Sz(0) is the signal intensity

that would have been measured at time t=0 if a 90◦ RF pulse had been applied. Since

cos τ exp
[
−TR

T1

]
is constant for the given experimental conditions, equation 5.31 can be

rewritten as:

Sxy(n) = SDW (n)Kn−1 (5.33)

where, K = cos τ exp
(
−TR

T1

)
. The attenuation parameter K is obtained by fitting the

non-diffusion-weighted signals to equation 5.33.

Data analysis The corrected diffusion weighted data were fit to three different models,

mono-exponential, multi-exponential, and geometric using Matlab functions.

Mono-exponential model The mono-exponential model is the most commonly used

model in hyperpolarised 3He diffusion imaging, even though it is known to be incorrect

for diffusion in a restricted environment. The model is: S = S0 exp−bADC .

Multi-exponential model

S =
m∑
n=1

Sn exp−bADCn ,m ≥ 2 (5.34)

where Sn are the signal fractions obtained for the respective apparent diffusion coef-

ficients ADCn.

The data were analyzed for m=2 and 3.
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Geometrical model In this model, suggested by Yablonskiy et. al. [143], the res-

piratory airways are modeled geometrically as cylindrical tubes embedded in alveolar

sleeve (Fig. 5.20).

Figure 5.20: Schematic diagram of two levels of respiratory airways. Open spheres represent

alveoli forming an alveolar sleeve around each airway. Each respiratory airway can be considered

geometrically as a cylindrical object consisting of a tube embedded in the alveolar sleeve. The

diagram defines inner (r) and outer (R) radii [21].

The signal decay is characterized in terms of DL and DT , the ADC along and perpen-

dicular to the long axis of the cylinder. The signal expression is given by,

S = S0 exp(−bD)

(
π

4bDAN

)1/2

exp

(
bDAN

3

)
Φ[(bDAN)1/2] (5.35)

where Φ(x) is the error function, and the quantities D and DAN

D =
1

3
DL +

2

3
DT , DAN = DL −DT (5.36)

represent the mean ADC and the anisotropy of ADC, respectively.

A diagram of the analyzing software is depicted in Figure 5.21.

165



5.4. LUNG DEVELOPMENT IN CHILDREN

0 20 40 60 80 100 120 140 160 180
0

2000

4000

6000

8000

10000

12000

14000

Time, ms

F
ID

 s
ig

na
l

 

 

FIDs

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9
x 10

7

 

 0 10 20 30 40 50 60
10

−2

10
−1

10
0

b, s/cm2

 

 

before correction
after correction

exp
biexp
triexp
geom

Figure 5.21: Output of the gADC analyzing software.

5.4 Lung development in children

The methods described in the previous sections were developed as part of a lung devel-

opment study on children. This study was aimed at identifying changes in specific lung

parameters in different groups of young children. A description and size of the groups is

given in Table 5.4.

This section will describe in detail the methodology and the results of the tests per-

formed in this laboratory in correlation with the lung function measurements performed

in Leicester University Hospital. These methods were described in Appendix A.

5.4.1 Method

Subjects from the control group were recruited amongst children born at term, with no

recorded illnesses, from a group in the Leicester area (called the Leicester cohort) moni-

tored since birth. The preterm subjects are born between 24-36 weeks of gestation, some

of them being very premature born. The actual treatment in this situation consists of oxy-

gen therapy for the baby after the birth and steroids for the mother plus surfactants for

baby, before birth. All these methods are potentially harmful to the lung and could cause

changes in structure.
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Table 5.4: Population distribution within the groups.

Group Description Boys Girls Total

control completely healthy individuals 13 10 23

(11-12 years old)

preterm 11-12 years old extreme 5 3 8

preterms with chronic lung

disease - oxygen dependent to

36 weeks

preterm2 11-12 years old extreme 4 3 7

preterms who were oxygen

dependent to 4 weeks postnatal

preterm3 11-12 years extreme preterms 1 1

who were not oxygen dependent

to 4 weeks postnatal

preterm4 11-12 years old moderate preterm 2 5 7

12-14 healthy 12-14 years old control group 8 9 17

12-14 test 12-14 years old with risk 3 4 7

factors(low birth weight,

maternal smoke and viral wheeze

in the past)

TOTAL 36 34 70
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In general all PFTs are performed before starting the MR experiments, in the Leicester

laboratory. At least an FEV1 measurement is necessary in order to comply with the safety

regulations for this kind of study.

The MR procedure for volunteers is as follows. First, there are two or more trials

with a bag of air to allow the child to practice the technique of breathing in the sample.

After a magnetic safety check, the subject is positioned inside the magnet with the 3He

coil around their thorax. A second test is run to identify if the person is claustrophobic or

not and to measure the noise induced by the presence of the body. This will be eventually

subtracted before calculating ADC. The tests are run by two persons; one is producing

and transporting the hyperpolarised 3He gas and initiates the acquisition; the other is

delivering the gas and instructing the subject. The operator loads the sequence, collects

the gas, transports the 3He to the scanner room, passes the gas to the other person who then

helps the subject handle the Tedlar bag. Once the subject inhaled all the gas (cca. 350 ml),

the operator presses the gating button next to the magnet. The procedure is repeated up to

four times depending on subject cooperation. It takes approximately 5 minutes between

two scans so usually the subject is kept outside the magnet and is positioned inside just

before scan. This is to prevent any claustrophobic manifestations from the subject. The

magnet has a large bore and is well illuminated to minimize this complication. Only one

subject was claustrophobic and was impossible to continue scanning after the second run.

A set of diffusion measurements using the RARE method was acquired for each in-

dividual. The tagging and MR spectroscopy method was also used for some of the vol-

unteers. At the time of writing, there were only five subjects that had a complete set of

measurements (i.e. RARE, tagging, MR spectroscopy) as these techniques were under

development.

5.4.2 Results

Spin echo diffusion weighted method

A histogram of the ADC distribution within the subjects is depicted in Figure 5.22.
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Figure 5.22: Distribution of the ADC values within the groups.
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There is a wide range of ADC values in these subjects, ranging from 0.1007 cm2.s−1

to 0.1630 cm2.s−1 with the mean 0.1252 cm2.s−1. One of the subjects from Waters’s study

was used as reference and his ADC was periodically measured to check the robustness of

the results.

There is a series of graphs that shows the ADC values against some important lung

function parameters such as FRC, FEV1, FVC, TLC, FEV1/FVC, and the values from

the multi breaths Nitrogen wash-outs (Scond and Sacin). In Figure 5.23 there is a plot

of ADC against a) TLC, b) FRC, c) FEV1 and d) FEV1/FVC. The FEV1/FVC ratio is

smaller for the majority of the preterms. There is no correlation of the ADC value with

the BMI (Body Mass Index) or FVC indicating that ADC is not related to the size of the

lung (Figure 5.24).

Figure 5.25 shows no relevant correlation of ADC with Scond or Sacin.
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Figure 5.23: ADC against Pulmonary Functional Tests.
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Figure 5.24: ADC against BMI and FVC.
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Figure 5.25: Plot of ADC vs. Scond and Sacin.
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SPAMM tagging method

The SPAMM tagging technique reflects more directly the gas displacement. The value

is related to actual diffusion of the gas over long distances and is probably sensitive to

collateral pathways. As stated previously, the method employs a great amount of mag-

netisation and it was difficult to use for our study. 10 of the volunteers were sampled

using this method and the results are shown in Table 5.5.

Table 5.5: Value of the ADCsec measured on 10 volunteers. The results are mean values. Lambda

was set to 1.7 cm.

Volunteer Group ADCsec LL ADCsec RL

ID [cm2s−1] [cm2s−1]

V44 12-14 healthy 0.00754 0.00786

V46 12-14 healthy 0.00699 0.00769

V47 12-14 healthy 0.00617 0.00571

V49 12-14 test 0.01513 -

V51 12-14 healthy 0.01213 0.01107

V52 12-14 healthy 0.0049 0.00523

V53 12-14 healthy 0.00625 0.00865

V54 12-14 healthy 0.00413 0.00283

V55 12-14 healthy 0.00683 -

V69 preterm3 0.00682 -
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MR diffusion spectroscopy sequence

Table 5.6: Value of the gADC according to Yablonskiy’s geometrical model measured for the

study group. T1 inside the lung is also shown for most of the volunteers.

Volunteer Group D D(AN) D(L) T SO T1

ID [cm2s−1] [cm2s−1] [cm2s−1] [s]

V48 12-14 test 0.0660 0.1430 0.1613 0.0184 0.9565

V49 12-14 test 0.1264 0.3120 0.3345 0.0224 1 26.9

V51 12-14 healthy 0.1029 0.2657 0.2800 0.0143 0.8370 50.6

V52 12-14 healthy 0.0919 0.2076 0.2304 0.0227 0.9568

V53 12-14 healthy 0.0976 0.2127 0.2394 0.0267 1.0204 36

V58 12-14 healthy 0.0810 0.2603 0.2546 -0.0058 0.9831

V59 preterm4 0.1071 0.2761 0.2912 0.0150 0.8758 29.6

V60 preterm4 0.0394 0.0568 0.0773 0.0205 0.6464 33.3

V63 12-14 test 0.0955 0.2075 0.2338 0.0263 0.9804 17.8

V64 12-14 test 0.0645 0.1962 0.1954 -0.0009 0.9265

V65 preterm4 0.1029 0.2489 0.2689 0.0200 0.9647 37.3

V66 preterm4 0.0797 0.2419 0.2409 -0.0009 0.9507

V67 preterm4 0.1351 0.3310 0.3558 0.0247 0.9754 19

V68 preterm2 0.1224 0.2929 0.3177 0.0248 0.9341 24.7

V69 preterm3 0.0841 0.2151 0.3110 0.0124 0.9736

V70 12-14 healthy 0.1171 0.2909 0.3110 0.0201 1.0026 36
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This method put no stress on the volunteers and on the magnetisation size so it was

available for more volunteers. The results are presented in Table 5.6. The output of this

technique is a set of numerous parameters described in Section 5.3.3.

5.4.3 Discussion

This study was based on the following hypothesis:

• Children are supposed to have a smaller ADC value compared to adults.

• ADC in preterms is higher than in children born at term because they have less

number of enlarged alveoli.

The results presented in the previous sections were not envisaged when starting this

study.

The ADC values for these children are higher than expected. The wide range of values

may be correlated with the fact that they are in different stages of puberty when the thorax

is growing faster than the lungs and the alveoli are enlarged due to the traction exercised

by the rib cage [145].

We found volunteers with inhomogeneous ADC distribution across the lungs. Run-

ning a 1D analysis on the data is possible to measure the inter- and intra-lung ADC distri-

bution. A comparison between a typical and inhomogeneous ADC distribution is shown

in Figure 5.26.

This distribution pattern is more evident in girls (see Fig. 5.27).

We are using the same protocol and method for measuring the ADC as Waters et

al. [146] and a subject from his study is used as reference. It is hard to believe the

methodology is wrong since this method was successfully used in the above mentioned

study on people aged 18 to 74 years. As for the similar ADC values in pre terms and

control subjects this is clearly an independent fact since all subjects undergo the same

procedure.

• ADC for normal and preterms show no difference; in fact preterms are less scat-

tered.
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(a) Typical ADC distribution across the x-axis of the lung

(b) Heterogeneous ADC distribution across the x-axis of the lung

Figure 5.26: Comparison of typical (a) and heterogeneous (b) ADC distribution across the lung.
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Figure 5.27: ADC variability across the lung with age and gender within the groups

• ADC vs age for children for all subjects shows very little variation.

So what does ADC measure?

We know ADC increases as volume of gas in lungs increases [107],[146]. So does

simple expansion of lungs give a greater ADC increase than seen? Plotting ADC vs FRC

(5.23(b)) can not distinguish between the groups.

• Preterms catch up - at least the microstructure - they may still have airways prob-

lems as suggested by the MBNW data

The suggestion is that there is alveolar number growth after age 8, up to adulthood

probably. Research of Schittny et al. on rats [147] and Hyde et al. on Rhesus monkey

[145] show that alveolarisation continues after birth till early adulthood. Extrapolating

the rat and Rhesus monkey data to humans would mean that alveolar septa are formed

until growth stops and that half of the alveolar septa are formed roughly between the age

of 3 to 18 yr. This opinion was already present 30 to 40 yrs ago ([148], [149], [16]), but,

for theoretical reasons, it was changed later to the present view that alveolarisation stops

after microvascular maturation took place (2 to 3 yrs of age [150], [151]).
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Clinically, this insight has large significance, especially for humans 3 to 18 yrs of age.

Steroids are widely used during the treatment of lung diseases like asthma and wheezing

illnesses or other diseases like inflammatory bowel diseases [152], [153]. Furthermore,

retinoids are used for the treatment of psoriasis and severe acne [154]. In rats, both drugs

are known to alter the lung structure when given neonatally or during the phase of classical

alveolarisation [155],[156]. So far, there was little concern regarding possible side effects

of these drugs in children and adolescents due to the view that alveolarisation is most

likely already completed at this time point. Further studies are necessary to understand

the influence of these drugs on the structure of the lungs during the second phase of

developmental alveolarisation.

Also, there are studies available which suggest the possibility of the lung to stimulate

a vigorous compensatory growth of alveolar tissue in excess of maturational lung growth,

resulting in complete normalization of aerobic capacity and gas-exchange function [157].

• Tagging does not seem to correlate with ADCmsec

Probably ADCsec is due to lateral pathways e.g. holes of Kohn and other pores.

This study limits our understanding of what is happening with ADC before the age of

10 and after 14, till 18.
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Conclusion

Apart from being a report on the research work carried on during the last three years,

this thesis intends to provide a comprehensive guide on the lung structure, physiology,

pathology and means of analyzing its parameters. The work described here was divided

in two main directions: first part aimed to improve the 3He polarisation facility and second

to asses the lung micro structure by measuring diffusion.

Although there exists a strong background and know-how on building a 3He polarisa-

tion facility there is always room for improvement especially with the increased demand

for higher polarisation and faster production. In this case the system was performing well

but it was never put to real test before this research was started. Measuring the longitu-

dinal relaxation time in three different glasses (7740 Pyrex, 1720 Corning and GE 180)

and observing how the orientation of the holding magnetic field is influencing its values it

was possible to get an idea about what can be changed in order to improve the production.

Having in mind a system capable of providing enough 3He for up to six measurements in

one run with minimum delays between each measurement and each run, it was obvious

that the system had to be fast and to deliver high amounts of hyperpolarised 3He. The

initial layout had a big dead volume due to the long gas path. By shortening this path the

dead volume was halved. In the first configuration the peristaltic pump was also used to

dispense the bags of hyperpolarised 3He which was introducing long delays. The use of a

piston pump to fill the bags reduced the time between measurements by almost five times.

This is very important when the volunteers are young children. The storage cells were
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replaced by GE 180 glass cells having larger volume and the peristaltic pump was set to

its maximum speed. A more powerful laser (20 W) was also used which has doubled the

production rate but there were limitations induced by the compressor and optical pumping

cell. These should be further improved if larger quantities of gas are required.

The study on the two categories of children: born at term and premature was the

main result of this research. This was just a part of a larger study (200 children) aimed

to asses the functionality of hyperpolarised 3He as a tool for pulmonary studies. The

RARE based global measurement of diffusion that was first used showed no variation

between the two categories of volunteers. Also, the values were very high for the age and

very scattered. A second method using SPAMM taging was implemented and tested on

children. This had the disadvantage of requiring higher magnetisation in order to reduce

the error on the measurements. Even so, the analysis of the data was hard to perform on

most of the volunteers. Later, a new diffusion measurement modality was tested. The

MR diffusion spectroscopy sequence was relatively easy to implement and use because

it did not require high amounts of signal. It was not possible to compare the groups

using all three methods due to the lack of complete set of results for every volunteer.

The conclusions were drawn only using the well establish RARE based method. The

ADCmsec values for these children were much higher than expected. The wide range of

values may be correlated with the fact that they were in different stages of puberty when

the thorax is growing faster than the lungs and the alveoli are enlarged due to the traction

exercised by the rib cage. There were volunteers with inhomogeneous ADC distribution

across the lungs, more evident in girls. Extending this study to a longitudinal one is very

important if we want to understand the high values of the ADC. If puberty is to blame

then the ADC of these children should return to normal values in the next few years. The

preterms had values similar to the control group, less scattered suggesting that they can

catch-up - at least the microstructure. They may still have airways problems as suggested

by the MBNW data. This can only be explained if alveolarisation continues after the age

of 8, contrary to the current view.

To summarize, this study supports the new view on lung growth and should be contin-

ued and refined in order to be used as evidence of the continuous alveolarisation. If this is
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confirmed, then it has large clinical significance. So far, there was little concern regarding

possible side effects of steroids, used to treat asthma, in children and adolescents due to

the view that alveolarisation is most likely already completed at this time point. Further

studies are necessary to understand the influence of these drugs on the structure of the

lungs during the second phase of developmental alveolarisation.
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Appendix A

Pulmonary Functional Tests

A.1 Lung Volumes

Figure A.1 is a graphical representation of the lung volumes. A definition of each volume

is given below:

Figure A.1: Typical spirometer trace. Note that functional residual capacity (FRC) and residual

volume (RV) can not be measured using a spirometer; thus, neither can total lung capacity (TLC).

ERV = expiratory reserve volume; IRV = inspiratory reserve volume; TV = tidal volume; IC =

inspiratory capacity; VC = vital capacity.

FEV1 (Forced Expiratory Volume in 1 Second) = The amount of air that you can
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forcibly blow out in one second, measured in litres. Along with FVC it is considered one

of the primary indicators of lung function.

FVC (Forced Vital Capacity) = The total amount of air that you can forcibly blow out

after full inspiration, measured in liters.

PEF (Peak Expiratory Flow) = The speed of the air moving out of your lungs at the

beginning of the expiration, measured in liters per second.

MEF 75,50,25% (Maximal Mid-Expiratory Flow) = The average flow (or speed) of

air coming out of the lung during the middle portion of the expiration.

FRC (Functional residual capacity) = The amount of air left in the lungs after a tidal

breath out. The amount of air that stays in the lungs during normal breathing.

RV (Residual volume) = The amount of air left in the lungs after a maximal exha-

lation. The amount of air that is always in the lungs and can never be expired (i.e.: the

amount of air that stays in the lungs after maximum expiration).

TLC (Total lung capacity) = The volume of gas contained in the lung at the end of

maximal inspiration. The total volume of the lung (i.e. the volume of air in the lungs after

maximum inspiration).

VC (Vital capacity) = The amount of air that can be forced out of the lungs after a

maximal inspiration. Emphasis on completeness of expiration. The maximum volume of

air that can be voluntarily moved in and out of the respiratory system.
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A.2 Measuring Lung Volumes

Spirometry is the most commonly used lung function screening study. It requires a volun-

tary maneuver in which a seated patient inhales maximally from tidal respiration to total

lung capacity (TLC) and then rapidly exhales to the fullest extent until no further volume

is exhaled at residual volume (RV)(Fig. A.1). The maneuver may be performed in a

forceful manner to generate a forced vital capacity (FVC) or in a more relaxed manner to

generate a slow vital capacity (SVC) (Figure A.2). In normal individuals, the inspiratory

vital capacity, the expiratory SVC, and expiratory FVC are essentially equal. However,

in patients with obstructive airways disease, the expiratory SVC is generally higher than

the FVC.

A spirogram is a graphic representation of bulk air movement depicted as a volume-

time tracing or as a flow-volume tracing. Values generated from a simple spirogram

provide important graphic and numeric data regarding the mechanical properties of the

lungs, including airflow (FEV1, along with other timed volumes) and exhaled lung vol-

ume (FVC or SVC). The measurement is typically expressed in liters for volumes or in

liters per second for flows and is corrected for body temperature and pressure of gas that

is saturated with water vapor. Data from a spirogram provides important clues to help dis-

tinguish obstructive pulmonary disorders that typically reduce airflow, such as asthma and

emphysema, from restrictive disorders that typically reduce total lung volumes, including

pulmonary fibrosis and neuromuscular disease.

Because spirometry is an expiratory maneuver, it measures exhaled volume or vital

capacity but does not measure residual volume, functional residual capacity (or the resting

lung volume), or TLC. Vital capacity is a simple measure of lung volume that is usually

reduced in restrictive disorders; however, vital capacity is only an indirect measure of

other lung volumes. Because residual volume is not exhaled through the mouth, it is not

measured by a spirometer.

Other pulmonary function methodology is required to formally measure TLC, which

is derived from the addition of FRC to inspiratory capacity obtained from spirometry.

FRC is usually measured by a gas dilution technique or body plethysmography. Gas

dilution techniques are based on a simple principle, are widely used, and provide a good
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Figure A.2: Flow-Volume loop showing successful FVC maneuver. Positive values represent

expiration, negative values represent inspiration. The trace moves clockwise for expiration fol-

lowed by inspiration. (Note the FEV1, FEV1/2 and FEV3 values are arbitrary in this graph and

just shown for illustrative purposes, they must be recorded as part of the experiment).

measurement of all air in the lungs that communicates with the airways. A limitation of

this technique is that it does not measure air in ”noncommunicating” bullae and, therefore,

may underestimate TLC, especially in patients with severe emphysema.

Gas dilution techniques use either closed-circuit helium dilution or open-circuit ni-

trogen washout. They are based on the inhalation of a known concentration and volume

of an inert tracer gas, such as helium, followed by equilibration of 7 to 10 minutes in

the closed-circuit helium dilution technique. The final exhaled helium concentration is

diluted in proportion to the unknown volume of air in the patient’s chest (RV). Usually

the patient is connected at the end-tidal position of the spirometer; therefore, the lung

volume measured is FRC. In the nitrogen-washout technique, the patient breathes 100%

oxygen and all the nitrogen in the lung is ”washed out.” The exhaled volume and the

nitrogen concentration in that volume are measured. The difference in nitrogen volume

at the initial concentration and at the final exhaled concentration allows a calculation of

intrathoracic volume, usually FRC.

Body plethysmography is an alterative method of measuring lung volume that takes

188



APPENDIX A. PULMONARY FUNCTIONAL TESTS

Figure A.3: Schematic of a ”body box” or plethysmograph.

advantage of the principle of Boyle’s law, which states that the volume of gas at a con-

stant temperature varies inversely with the pressure applied to it. The primary advantage

of body plethysmography is that it can measure the total volume of air in the chest, includ-

ing gas trapped in bullae. Another advantage is that this test can be performed quickly.

Drawbacks include the complexity of the equipment as well as the need for a patient to sit

in a small enclosed space. A patient is placed in a sitting position in a closed ”body box”

with a known volume (Figure A.3). From the FRC, the patient pants against a closed shut-

ter to produce changes in the box pressure proportionate to the volume of air in the chest.

The volume measured by this technique is referred to as thoracic gas volume (TGV) and

represents the lung volume at which the shutter was closed, typically FRC.

A.3 Multiple Breath Nitrogen Washout

Conventional lung function tests such as the flow-volume loop and derived parameters

such as FEF25-75% and FEV1 are limited in their capacity to differentiate subtle abnor-

189



A.3. MULTIPLE BREATH NITROGEN WASHOUT

Figure A.4: Typical N2 washout curve and breathing analysis showing the Phase III slope (inset).

malities in airway function arising independently in these two lung regions. There are

two main reasons for this. Firstly, this test requires full inspiration followed by a max-

imal expiratory effort, which imposes unphysiologically large compressive pressures on

the airways that can mask subtle changes in airway function. Secondly, the interpretation

of the flow-volume loop remains uncertain as it is not yet clear what the exact contri-

butions are from airway calibre, lung compliance and the mechanical linkage between

airways and parenchyma. A far more specific and sensitive measure of peripheral ver-

sus proximal airway function has recently been described and is based on the multiple

breath nitrogen washout (MBNW) test. This test is performed during tidal breathing and

has been shown to provide a specific measure of structural asymmetries in the peripheral

(acinar) and proximal (conducting) airways. Therefore, the MBNW test is ideal for our

study as it provides indices of airway function that are representative of lung structure

and sensitive to changes due to lung disease. Non-uniform ventilation within the normal

lung is due to: (a) convection-dependent inhomogeneity and interaction between diffu-

sion, and (b) convection in the presence of branching asymmetry or inequality in airway
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cross-section. The latter occurs in the lung periphery, the former among the larger lung

zones subtended more proximally. The MBNW test measures nitrogen concentration and

volume during expiration following a breath of 100% oxygen. The slope of the expired

nitrogen concentration versus volume is referred to as the slope of phase III (see Fig.

A.4) and provides information about non-uniform ventilation within the acinar space. If

all the alveoli emptied synchronously during expiration, the nitrogen gradient measured

at the lips would be zero. However, in normal lungs and in particular lungs with abnormal

airways, alveoli fill and empty at different rates according to the relative resistance of the

airways serving them. This means that during a single tidal inspiration of oxygen most

of the oxygen will be delivered to alveoli served by airways with least flow resistance.

This creates a nitrogen gradient across alveoli. In the MBNW test the effect of airway

asymmetry on the nitrogen gradient is deliberately amplified by measuring the change in

slope of phase III in consecutive tidal breaths of oxygen.
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Appendix B

Calculation of the Signal Attenuation

Due to Diffusion for a Pair of Trapezoid

Gradients

B.1 The Half Trapezoid Case

Given trapezoid pulses with plateau time δ and ramp timem, the integral consists of three

parts:

I = 2(I1 + I2 + I3) (B.1)

I1 =

∫ δ/2

0

(∫ t

0

G(τ)dτ

)2

dt (B.2)

I2 =

∫ δ/2+m

δ/2

(∫ t

0

G(τ)dτ

)2

dt (B.3)

I3 =

∫ ∆/2

δ/2+m

(∫ t

0

G(τ)dτ

)2

dt (B.4)
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G(τ) =

∣∣∣∣∣∣∣∣∣
G if τ ∈ [0, δ/2] < 0

G
(
1 + δ

2m
− 1

m
· τ
)

if τ ∈ [δ/2, δ/2 +m]

0 if τ ∈ [δ/2 +m,∆/2]

(B.5)

The I1 and I3 calculation is simple:

I1 =
G2δ3

24
(B.6)

I3 =

∫ ∆/2

δ/2+m

[
G

(
m+ δ

2

)]2

dt (B.7)

I3 = G2

[
1

8
∆δ2 +

1

4
∆δm+

1

8
∆m2 − 1

8
δ3 − 1

2
δ2m− 5

8
δm2 − 1

4
m3

]
(B.8)

I2 is more difficult to calculate; using a .
= δ

2
I2 is:

I2 =G2

∫ a+m

a


(
a4

4m

)
︸ ︷︷ ︸
I2−1

+

(
−a

2

m
− a3

m2

)
t︸ ︷︷ ︸

I2−∞

+

(
1 +

2a

m
+

3a2

2m

)
t2︸ ︷︷ ︸

I2−3

+

(
− 1

m
− a

m2

)
t3︸ ︷︷ ︸

I2−4

+

(
1

4m2

)
t4︸ ︷︷ ︸

I2−5

 dt
(B.9)

where

I2−1

G2
=

1

4m
a4 (B.10)

I2−2

G2
= −1

2
ma2 − 3

2
a3 − a4

m
(B.11)

I2−3

G2
=

1

3
m3 +

5

3
m2a+

7

2
ma2 +

7

2
a3 +

3a4

2m
(B.12)
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I2−4

G2
=

1

4
m3 − 5

4
m2a− 5

2
ma2 − 5

2
a3 − 5a3

2
− a4

m
(B.13)

I2−5

G2
=

1

20
m3 +

1

4
m2a+

1

2
ma2 +

1

2
a3 +

a4

4m
(B.14)

finally:

I2

G2
=

2

15
m3 +

2

3
m2a+ma2 (B.15)

I2

G2
=

2

15
m3 +

1

3
m2δ +

1

4
mδ2 (B.16)

and,

I

G2
=
−7

30
m3 +

1

4
∆m2 +

1

2
∆δm− 7

12
δm2 +

1

4
∆δ2 − 1

2
δ2m− 1

6
δ3 (B.17)

I =
G2δ2∆

12

[
3− 2

(
δ

∆

)
+ 6x

(
1− δ

∆

)
+ 3x2

(
1− 7δ

3∆

)
− 14

5
x3

(
δ

∆

)]
(B.18)

where x .
= m

δ
.

B.2 The Full Trapezoid Case

Given trapezoid pulses with plateau time δ and ramp time m, the integral consists of four

parts:

I = 2(I1 + I2 + I3 + I4) (B.19)

I1 =

∫ m/2

0

(∫ t

0

G(τ)dτ

)2

dt (B.20)

I2 =

∫ m/2+δ

m/2

(∫ t

0

G(τ)dτ

)2

dt (B.21)
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I3 =

∫ 2m+δ

m+δ

(∫ t

0

G(τ)dτ

)2

dt (B.22)

I4 =

∫ ∆/2−m−δ/2

2m+δ
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dt (B.23)
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1 if τ ∈ [m,m+ δ]
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(B.24)
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m
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)
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I2 = G2
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2m
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m

2
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)2

dt′ (B.28)
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(
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5

3
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60
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)
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I4 = G2
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Appendix C

Swagelok Pneumatic Valves

C.1 Ultra-high-Purity Fluoropolymer Diaphragm Valve

Figure C.1: Diagram of the pneumatic valve.
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Table C.1: Pressure and temperature ratings and flow data.

Media Pressure Rating Flow

Temperature (forward and reverse) Coefficient

(◦C) (Bar) (CV )

23-65 5.5 0.5

C.1.1 Pressure and temperature ratings and flow data

C.1.2 Materials of construction

Table C.2: Materials of construction for the valves components.

Component Material

1 Hole plugs Polypropylene

2 Cap screws Teflon-coated stainless steel

3 Washers Teflon-coated stainless steel

4 Actuator housing 20 % glass-filled polypropylene

5 Diaphragm DuPont Teflon (modified PTFE

6 Body DuPont Teflon (modified PTFE)

7 Nuts PFA

8 Sleeve PFA

9 Gauge ring ETFE

10 Mounting bracket 20 % glass-filled polypropylene
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Appendix D

Standard Operating Procedure 3He

ADC. 3He Production and

Administration for Clinical Trials

D.1 Scope and Application

This method is used to measure the Apparent Diffusion Coefficient of 3He inside the

human lung. It is used to investigate the lung microstructure of volunteers from different

study groups (e.g. preterm, asthma, smoking, pollutants)

D.2 Method Summary

A 30 ml hyperpolarised 3He sample mixed with high purity 250 ml 4He is administrated

from a Tedlarr bag via a mouth piece connected through a one-way valve. No other

substances are involved during gas production. During a breath hold of maximum 15 s

a set of measurements is collected from the volunteer placed supine inside a permanent

magnet at 0.15 T. ADC is measured by means of magnetic resonance.
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D.3 Definitions

• Apparent Diffusion Coefficient - is a measure of restricted movement of a substance

across a unit area through a unit concentration gradient in unit time. This is related

to the microstructure of the lung

• 3He - is an inert gas that is used, after optical pumping hyperpolarisation, as a

contrast agent for NMR (Nuclear Magnetic Resonance) measurements

• Optical pumping - is a method to enhance the polarization of 3He in order to be

NMR visible. It involves a laser shinning on a glass cell containing the 3He

D.4 Health and Safety Warnings

• Optical polarization involves a high power laser in the polariser laboratory. Stan-

dard laser safety precautions for class IIIb should be followed. Note this apparatus

is in a separate room from the scanner with keypad access and no access for volun-

teers

• The measurements are obtained in a high magnetic field environment. Standard

high magnetic field safety precautions should be followed

• All mouthpieces shall be disposed after each measurement

• Laboratory equipment and benches shall be disinfected weekly

• Safety warning labels detailing the hazards of media are available in the polariser

laboratory

D.5 Equipment

• Polarising System - comprises of an electromagnet that produces a 20 gauss mag-

netic field, a 20 W NIR fiber laser, a system of tubes and glass cells for gas cir-

culation and storage, a set of pumps for gas compression, a high vacuum pumping
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system to prevent air contamination, 3He and 4He gas supply, a spectrometer to

monitor the gas polarisation. (No access for volunteers)

• MR Scanner - permanent magnet 0.15 T, magnetic resonance spectrometer console

• Tedlarr bag

• Mouthpieces and one way valve

D.6 Quality Control

• Run at least weekly an analysis on a reference volunteer (i.e. JOB or RG) to ensure

the results are consistent

• Check monthly the tubing of the peristaltic pump

• Check monthly the integrity of the Tedlarr bag to ensure it doesn’t leak

• Check monthly the tuning of the receiver coil to enable maximum signal

• Check daily the one way valve is functional

D.7 Procedures

D.7.1 General Procedures

• Disinfect work area before and after analysis

• Prepare the mouthpiece and one way valve

• Prepare the MR scanner - shim, tune the frequency, acquire a scout image, measure

noise, attach the 3He coil, verify gating
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D.7.2 Sample Preparation

Ensure the vacuum pressure falls below 4·10−2 mBar. Start flushing approximate

200 ml 4He to clean the gas manifold and glass cells. Start plasma discharge to

clean the optical pumping cell (OPC). When the pressure in the OPC drops to 0 start

the laser and release 3He into the system. Monitor the signal with the spectrometer

and start collecting the gas in the storage cell as soon as the signal has reached the

set value. Keep collecting for as long as needed. When ready, add 4He up to the

set pressure, plug the Tedlarr bag and transfer the gas. Unplug when finished and

attach the one way valve and mouthpiece.

D.7.3 Volunteer preparation

Remove all magnetic objects, shoes and other unnecessary items before entering

the magnet area and deposit them in the box provided. Place the volunteer supine

on the bed with the coil on his/her chest. Position the volunteer in the centre of the

magnet. Do two trial runs with a bag full of air to ensure the volunteer is familiar

with the procedure and can hold breath for the duration of the acquisition.

D.7.4 Sample Administration

Bring the sample into the scanner area. Put the mouthpiece into volunteer’s mouth

Once empty, remove the bag, wait a second for the volunteer to settle and trigger

the acquisition. Keep the volunteer inside till all the measurements are finished or

allow him/her to rest outside between measurements if necessary.

D.7.5 Analysis

– ADCmsec - Run the RARE based sequence with 64 views and 64 samples and

get the echo decay. Plot the heights on a log scale, do a fit and find the slope.

Calculate ADC from that slope
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– ADCsec - Run the tagging sequence with 32 views and 128 samples. Set the

repetition time to 400 ms and the wavelength to 1.7 cm. Plot the profiles

versus time. Follow each stripe and fit their decay. Calculate ADC from the

fit

– gADC - Run the global ADC measurement sequence with 50 views and 2048

samples, 12.5 KHz bandwidth. Plot the FIDs versus b value. Using the multi-

exponential and geometric model fit the data and derive ADC

D.8 Data Storage

The results are saved in a spreadsheet for future reference and comparison. All

the raw data are archived daily on at least two computers and regularly on optical

support.

D.9 Waste Management

All mouthpieces are disposable. The Tedlarr bag is reused.
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