Achatina (Lissachatina) fulica BOWDICH: ITS MOLECULAR PHYLOGENY, GENETIC VARIATION IN GLOBAL POPULATIONS, AND ITS POSSIBLE ROLE IN THE SPREAD OF THE RAT LUNGWORM Angiostrongylus cantonensis (CHEN)

IAN KENDRICH C. FONTANILLA, M.Sc.

Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy

JULY 2010

ABSTRACT

The Giant African Snail, Achatina (Lissachatina) fulica Bowdich, 1822, is a tropical crop pest species with a widespread distribution across East Africa, the Indian subcontinent, Southeast Asia, the Pacific and the Caribbean. It is also a known intermediate host of the rat lungworm, Angiostrongylus cantonensis, which can infect humans and cause eosinophilic meningitis. The phylogenetic position of A. fulica within the Achatinoidea and the Achatinidae was investigated using segments of the nuclear ribosomal (r) RNA cluster, actin and histone 3 genes and the mitochondrial CO1 and 16S rRNA genes. Results from molecular data support the monophyly of the Achatinidae based on the taxa surveyed as well as the morphological distinction of the Eastern Achatina (Lissachatina) from the Western and Central Achatina (Achatina); Lissachatina should therefore be elevated to genus status. The results also show non-monophyly of the Coeliaxidae, Ferussaciidae and Subulinidae; the taxonomy of these families must therefore be reassessed. The extent of genetic diversity in global A. fulica populations was also determined using an SSCP molecular marker developed from the 16S rRNA gene. Results reveal only one haplotype (C) emerged from East Africa and spread globally. The rat lungworm (Angiostrongylus *cantonensis*) has a parallel distribution with A. *fulica*, and the possible role of the snail in the spread of the parasite is investigated using a molecular marker derived from the small subunit (SSU) rRNA gene. A survey of the parasite within the route of dispersal of A. fulica detected A. cantonensis only in the Philippines and the French Polynesian territory of Tahiti, the latter of which being the first reported case of A. cantonensis infection for Achatina fulica in that territory. Due to the limited sampling of the snail and the patchy distribution of the parasite, there are insufficient data at this time to assess the role of Achatina fulica in the spread of Angiostrongylus cantonensis.

ACKNOWLEDGEMENTS

My sincerest gratitude to the following:

Chris Wade, my supervisor, for taking the risk of accepting me, for giving me the opportunity to work in his lab, for all the engaging conversations about anything under the sun, and for making my stay in the UK pleasant and memorable;

Cendrine Hudelot, my unofficial second supervisor, for teaching me a lot of things, from running computer programs and aligning sequences to cloning, for help with soliciting samples, for showing me how to manage time wisely in the lab, and for all the dinners and trips and doughnuts and muffins and films together;

Angus Davison and Robert Cowie, for their critical appraisal of my manuscript and for being patient with me;

The University of the Philippines System for funding my PhD in the UK;

The Leverhulme Trust (Ref: F/00114U) for partially funding my PhD work;

Fred Naggs for his helpful comments on my manuscript and for the help in soliciting samples;

All the collectors for generously providing us with specimens to work on;

Heidi Seears, Rachel Clark, Jonathan Rowlinson, James Folwell, Mohammad Bakkali, Morito Hayashi, Matt Carroll and Wan Omar for all the good times together;

Sheila Keeble and the rest of the A-team for making our work in the lab less stressful;

Brenda Hernandez, Jonas Quilang, Lala Espanola, Neil Ramirez, Maan Guzman, Lillian Rodriguez, Reynand Canoy, Kring Soriano, Dino Ramos, Ellen Catap, John Yason, Bai Basiao, Windell Rivera, Thucy Salunga, Perry Ong and Remedios Roderos for all the help with my teaching load, for proof-reading my manuscript, and for all the much needed distraction.

My family, for their kind words, financial support and understanding.

TABLE OF CONTENTS

CHAPTER 1	1 – Introduction	1
1.1.	Taxonomy of Achatina fulica: Mollusca, Gastropoda, Stylommatophora,	
	Achatinoidea, Achatinidae	2
1.2.1.	Classification of the Stylommatophora based on morphological data	3
1.2.2.	Relationships within the Stylommatophora based on molecular data	6
1.2.3.	The 'achatinoid clade' and the Achatinoidea	10
1.2.4.	The Achatinidae	12
1.3.	The biology of Achatina fulica	13
1.4.	The biology of introduced species	13
1.5.	Achatina fulica as an introduced species and its dispersal from East Africa	15
1.6.	Parasites of molluscs	18
1.7.	Nematode parasites of Achatina fulica	19
1.8.	Angiostrongylus cantonensis: the nematode that hitched along	20
1.8.1.	The taxonomy of Angiostrongylus cantonensis: Nematoda, Rhabditea, Strongylida,	
	Metastrongyloidea, Angiostrongylidae	21
1.8.2.	Biology of Angiostrongylus cantonensis	23
1.8.3.	The life cycle of Angiostrongylus cantonensis	24
1.8.4.	Natural intermediate hosts of Angiostrongylus cantonensis	25
1.8.5.	Medical importance of Angiostrongylus cantonensis	26
1.8.6.	The dispersal of Angiostrongylus cantonensis	28
1.8.7.	Molecular identification of A. cantonensis and other nematodes	28
1.9.	Major objectives	29
1.10.	Literature cited	31
	2 – General Protocols	37
2.1.	DNA extraction methods	37
2.1.1.	DNA extraction of snail tissues using the CTAB protocol	37
2.1.2.	DNA extraction of snail tissues using the Nucleon® PhytopureDNA TM Purification	0.
2.1.2.	Kit	39
2.1.3.	DNA extraction of snail tissues using the NaOH-lysis method	40
2.1.3.	DNA extraction of single nematodes using NaOH digestion	41
2.2.	Polymerase chain reaction (PCR)	42
2.2.1.	PCR primers	43
2.2.1.1	Snail PCR primers	45
2.2.1.1.	Nuclear genes	45
2.2.1.1.1.	Ribosomal RNA (rRNA) gene cluster	45
2.2.1.1.1.1.2.	Actin gene	43
	Histone 3 gene	40 50
2.2.1.1.1.3. 2.2.1.1.2.		50
	Mitochondrial primers	51
2.2.1.1.2.1.	Cytochrome oxidase subunit 1 gene	
2.2.1.1.2.2.	16S ribosomal (r) RNA gene	52
2.2.1.2.	Nematode PCR primers	53
2.2.2.	PCR components	54
2.2.3.	PCR running conditions For rRNA 1 ⁰ PCR	55
2.2.3.1.	For rRNA 1 PCR For rRNA 2 ^{0} PCR and all other genes	56
2.2.3.2.		56
2.3.	Gel electrophoresis	56
2.4.	Gel extraction	57
2.5.	DNA quantification	59
2.6.	Cycle sequencing	59
2.6.1.	Cycle sequencing components	60
2.6.2.	Cycle sequencing running conditions	60
2.6.3.	Precipitation of cycle sequencing samples	60
2.7.	Cloning	61
2.7.1.	Agar plate preparation	63
2.7.2.	Setting up the TOPO TM Cloning Reaction	64
2.7.3.	Plasmid isolation	64

2.8.	Sequencing of the insert	66
2.8.	Single strand conformational polymorphism analysis	66
2.8.1.	Native polyacrylamide gel preparation	67
2.8.2.	Preparation of PCR products for SSCP analysis	68
2.8.3.	Loading of samples in the polyacrylamide gel	68
2.8.4.	Silver staining of SSCP gels	69
2.9.	DNA sequence analyses	70
2.9.1.	Aligning sequences	70
2.9.2.	Checking for contamination	71
2.9.3.	Assigning ambiguous sites	72
2.9.4.	Estimating the average base frequencies and the number of variable and	
	parsimony-informative sites	73
2.9.5.	Identifying the optimal model for DNA sequence evolution	73
2.9.6.	Evaluating the sequences for evidence of saturation	77
2.9.7	Testing for phylogenetic signal	81
2.9.8.	Tree construction	82
2.9.9.	Estimating reliabilities of clades in phylogenetic trees	85
2.9.10.	Combining datasets as a single concatenated sequence	86
2.9.11.	Hypothesis testing	89
2.9.12.	Inferring the presence of paralogous sequences in the dataset	89
2.9.13.	Assessing the utility of the actin gene for phylogenetic analyses	90
2.10.	Literature cited	91
CHAPTER 3 -	- Phylogeny of the Achatinoidea	97
3.1.	Introduction	97
3.1.1.	The Achatinoidea	97
3.1.2.	Some questions about the Achatinoidea	102
3.1.3.	Use of molecular markers to determine phylogeny	104
3.1.4.	Objectives of this study	108
3.2.	Materials and methods	109
3.2.1.	Taxa used	109
3.2.2.	DNA extraction, PCR amplification and sequencing	110
3.2.3.	Sequence analysis	111
3.3.	Results	114
3.3.1.	Molecular data	114
3.3.2.	Sequence analyses	118
3.3.2.1.	Evaluating for saturation and phylogenetic signal	118
3.3.2.2.	Inferring the presence of paralogous sequences in the actin dataset and assessing	110
3.3.2.2.	its utility for phylogenetic analysis	155
3.3.2.3.	Partition homogeneity test for combining datasets	159
3.3.3.	Molecular phylogeny	160
3.3.3.1.	Individual gene phylogenies	169
3.3.3.2.	Combined gene phylogenies	172
3.3.3.3.	Hypothesis testing of groups expected to be monophyletic based on taxonomy	174
3.4.	Discussion	174
3.4.1.	Single versus combined gene phylogenies	177
3.4.2.	Phylogenetic relationships within the Achatinoidea	179
3.4.2.1.	The monophyly and phylogenetic position of the Achatinidae	179
3.4.2.1.	The monophyly and phylogenetic position of the Ferussaciidae	1/9
3.4.2.2.		160
5.4.2.3.	Evaluation of the taxonomic designation of the Subulinidae, Coeliaxidae, Glessulidae and Thyrophorellidae	181
3.4.2.4.	Evaluation of the monophyly of the different subulinid subfamilies	184
3.4.3.	The next step	185
3.5.	Summary	186
3.6.	Literature cited	187
		-

CUADTED 4	Dhulagany of the Ashetinidae	102
	- Phylogeny of the Achatinidae	192
4.1.	Introduction	192
4.1.1.	The Achatinidae	192
4.1.2.	Distribution and habitat of the Achatinidae	193
4.1.3.	The search for the phylogeny of the Achatinidae using morphological characters	193
4.1.4.	Taxonomic revision of the genus Achatina based on morphological	
	characteristics	198
4.1.5.	Objective of the study	199
4.2.	Materials and methods	200
4.2.1.	Taxa used	200
4.2.2.	DNA extraction, PCR amplification and sequencing	202
4.2.3.	Sequence analysis	202
4.3.	Results	204
4.3.1.	Molecular data	204
4.3.2.	Sequence analyses	208
4.3.2.1.	Evaluating for saturation and phylogenetic signal	208
4.3.2.2.	Inferring the presence of paralogous sequences in the actin dataset and	
	assessing its utility for phylogenetic analyses	247
4.3.2.3.	Partition homogeneity test for combining datasets	250
4.3.3.	Molecular phylogeny	250
4.3.3.1.	Single gene phylogenies	259
4.3.3.2.	Combined gene phylogenies	260
4.3.3.3.	Hypothesis testing of <i>Achatina</i> (<i>Achatina</i>) based on taxonomy	263
4.4.	Discussion	264
4.4.1.	Single versus combined gene phylogenies	264
4.4.1.	Evolutionary history of the Achatinidae based on molecular data	265
4.4.2.	Limitations of the study and the next step	270
4.5.	Summary	270
4.6.	Literature cited	270
	- Genetic Variation in Global Populations of Achatina fulica	270
5.1.	Introduction	273
5.1.1.	The dispersal of <i>Achatina fulica</i> from East Africa	273
5.1.2.	Genetic variation in introduced species	275
5.1.3.	Mitochondrial molecular markers for evaluating genetic variation in snail	215
5.1.5.	populations and elucidating their population history	277
5.1.4.	Objective of the study	277
5.2.	Materials and methods	278
	Sample collection	278
5.2.1.	-	
5.2.2.	PCR and SSCP analysis using the 16S rRNA gene	280
5.2.3.	Phylogenetic and network analyses of the 16S rRNA haplotypes	281
5.3.	Results	281
5.3.1.	PCR and SSCP analysis using the 16S rRNA gene	281
5.3.2.	Phylogenetic and network analyses of the 16S rRNA haplotypes	285
5.4.	Discussion	287
5.5.	Summary	293
5.6.	Literature cited	293
CHAPTER 6	- The SSU rRNA gene as a genetic marker for identifying infective 3 rd juvenile	2 0 7
	stage Angiostrongylus cantonensis from known gastropod intermediate hosts	297
6.1.	Introduction	297
6.1.1.	Problems with identifying nematodes: the angiostrongylids as examples	298
6.1.2.	Identifying nematodes using molecular markers	299
6.1.3.	Objectives of the study	302

6.2.	Materials and methods	304
6.2.1.	Sequence variation in angiostrongylid worms	304 304
6.2.2.	Using the SSU rRNA gene to identify <i>Angiostrongylus cantonensis</i> in a trial	504
0.2.2.	population	305
6.2.3.	Phylogeny of the Angiostrongylidae	307
6.3.	Results	310
6.3.1.	Sequence variation in the angiostrongylid worms	310
6.3.2.	Using the SSU rRNA gene to identify Angiostrongylus cantonensis in a trial	
	population	311
6.3.3.	Phylogeny of the Angiostrongylidae	315
6.4.	Discussion	318
6.4.1.	Suitability of the 5' end of the SSU rRNA gene as a molecular marker for	
	Angiostrongylus cantonensis	318
6.4.2.	Molecular identification of nematodes from a trial population of Achatina	
	fulica and Laevicaulis alte in the Philippines	319
6.4.3.	Phylogenetic position of the Angiostrongylidae and the Angiostrongylus	
	species within the Metastrongylina	320
6.5.	Conclusion	321
6.6.	Literature cited	321
	urvey of Angiostrongylus cantonensis (and other nematodes) from global	
	opulations of the Giant African Snail, Achatina fulica (and other snails)	325
7.1.	Introduction	325
7.1.1.	Dispersal of Angiostrongylus cantonensis from East Africa: Alicata's	
	hypothesis	326
7.1.2.	Perceived role of Achatina fulica in the spread of A. cantonensis	328
7.1.3.	Dispersal of Angiostrongylus cantonensis from South and Southeast Asia:	
	Drozdz et al.'s alternative hypothesis	329
7.1.4.	Other nematodes in Achatina fulica	330
7.1.5.	Objectives of the study	331
7.2.	Materials and methods	332
7.2.1.	Samples and localities	332
7.2.2.	DNA extraction, PCR amplification and sequencing	333
7.2.3.	Sequence analyses	333
7.3.	Results	335
7.4.	Discussion	345
7.4.1.	Angiostrongylus cantonensis infection in snail and slug populations	345
7.4.2. 7.4.3.	The presence of other worms in snail and slug populations	349 251
	Limitations and the next step	351
7.5.	Summary	352
7.6.	Literature cited	353
CHAPTER 8 – S	ummary	357
APPENDIX Appendix 2.1.	Command lines for concreting likelihood scenes for the 12 models in DAUD*	360
Appendix 2.1. Appendix 2.2.	Command lines for generating likelihood scores for the 12 models in PAUP* Command lines in PAUP* for estimating the uncorrected and corrected	360
Appendix 2.2.	distances as well as the transition and transversion values	367
Appendix 2.3.	Command lines for the different tree-construction methods	368
Appendix 2.3.1.	Maximum likelihood (ML) method	
Appendix 2.3.1. Appendix 2.3.2.	Bayesian inference	368 369
Appendix 2.3.2. Appendix 2.3.3.	•	309
Appendix 2.3.3. Appendix 2.3.4.	Neighbor-joining (NJ) method Maximum parsimony (MP) method	371
Appendix 2.3.4. Appendix 2.4.	Command lines for the partition homogeneity test in PAUP*	373
Appendix 2.4. Appendix 2.5.		373 374
	Command lines to run the Shimodaira-Hasegawa test in PAUP*	5/4
Appendix 3.1.	Alignment of the LSU rRNA gene for the Achatinoidea and three streptaxid	275
	outgroup taxa	375

Appendix 3.2.	Alignment of the actin gene for the Achatinoidea and three streptaxid	411
Appendix 3.3.	outgroup taxa Alignment of the histone 3 gene for the Achatinoidea and three streptaxid	411
Appendix 3.4.	outgroup taxa Alignment of the CO1 gene for the Achatinoidea and three streptaxid	419
Appendix 3.5.	outgroup taxa Alignment of the 16S rRNA gene for the Achatinoidea and three streptaxid	422
Appendix 3.6.	outgroup taxa Log likelihood scores of the different models used for the Achatinoidea	428 433
Appendix 3.7.	Summary of ambiguous sites for the actin gene for the Achatinoidea and the	
Appendix 3.8A.	three streptaxid outgroup taxa Summary of cloned actin sequences from three achatinoid species	434 435
Appendix 3.8B.	Variable sites across the actin sequence for the different clones of (A) <i>Coeliaxis blandii</i> , (B) <i>Coelitoma granulata</i> and (C) <i>Leptinaria lamellata</i>	436
Appendix 3.9.	Neighbor-joining phylogenetic tree of the Achatinoidea (including taxa from the Achatinidae) based on the actin and showing the clones of the three	
	representative taxa	438
Appendix 3.10.	Phylogenetic trees of the Achatinoidea based on the large subunit rRNA gene	439
Appendix 3.11.	Phylogenetic trees of the Achatinoidea based on the actin gene	441
Appendix 3.12.	Phylogenetic trees of the Achatinoidea based on the histone 3 gene	443
Appendix 3.13.	Phylogenetic trees of the Achatinoidea based on the 1 st and 2 nd codon	
	positions of the CO1 gene	445
Appendix 3.14.	Phylogenetic trees of the Achatinoidea (taxa with complete datasets only) based on the combined dataset of the LSU rRNA, actin and histone 3 genes and the 1 st and 2 nd acdor positions of the CO1 gene	447
Appendix 3.15.	and the 1 st and 2 nd codon positions of the CO1 gene Phylogenetic trees of the Achatinoidea (all taxa) based on the combined	447
rippondix 5.15.	dataset of the LSU rRNA, actin and histone 3 genes and the 1 st and 2 nd codon	
	positions of the CO1 gene	449
Appendix 4.1.	Alignment of the LSU rRNA gene for the Achatinidae and the subulinid	,
	outgroup taxon <i>Rumina decollata</i>	451
Appendix 4.2.	Alignment of the actin gene for the Achatinidae and the subulinid outgroup	101
	Rumina decollata	486
Appendix 4.3.	Alignment of the histone 3 gene for the Achatinidae and the subulinid	100
PPononi nov	outgroup <i>Rumina decollata</i>	494
Appendix 4.4.	Alignment of the CO1 gene for the Achatinidae and the subulinid outgroup	171
PPononi ini	Rumina decollata	497
Appendix 4.5.	Alignment of the 16S rRNA gene for the Achatinidae and the subulinid	177
PPononi nov	outgroup Rumina decollata	503
Appendix 4.6.	Log likelihood scores of the different models used for the Achatinidae	508
Appendix 4.7.	Summary of ambiguous sites for the actin gene for the Achatinidae	509
Appendix 4.8.	Maximum likelihood phylogenetic tree of the Achatinidae based on	507
Appendix 4.0.	unambiguously aligned nucleotide sites of the actin gene	510
Appendix 4.9.	Phylogenetic trees of the Achatinidae based on the large subunit rRNA gene	511
Appendix 4.10.	Phylogenetic trees of the Achatinoidea based on the histone 3 gene	513
Appendix 4.11.	Phylogenetic trees of the Achatinidae based on the 1 st and 2 nd codon positions	515
Appendix 4.11.	of the CO1 gene	515
Appendix 4.12.	Phylogenetic trees of the Achatinidae based on the 16S rRNA gene	517
Appendix 4.12. Appendix 4.13.	Phylogenetic trees of the Achatinidae (taxa with complete datasets only) based	517
дреншх 4.13.	on the combined dataset of the LSU rRNA, histone 3, the 1^{st} and 2^{nd} codon positions of the CO1 gene and the 16S rRNA	519
Appendix 4.14.	Phylogenetic trees of the Achatinidae (all taxa) based on the combined dataset	519
¹ yppendix 4.14.	of the LSU rRNA, actin and histone 3 genes and the 1^{st} and 2^{nd} codon	
	positions of the CO1 gene	521
	positions of the COT gene	JZ1

Appendix 5.1.	Pair-wise uncorrected distances of the East African Achatina species using the	
	SSCP fragment of the 16S rRNA gene (293 nucleotides for A. fulica)	523
Appendix 5.2.	Alignment of the 15 haplotypes for the global Achatina fulica populations	
	based on 293 nucleotides of the 16S rRNA gene	523
Appendix 5.3.	Log likelihood scores of the different models used for comparison for the 16S	
	haplotypes of the global A. fulica populations using 293 nucleotides of the	
	16S rRNA gene	525
Appendix 6.1.	Nematode species used for the Angiostrongylus cantonensis survey as found	
	in GenBank	526
Appendix 6.2.	Alignment of the 5' end of the SSU rRNA gene for the Nematoda	537
Appendix 6.3.	Log likelihood scores of the different models used for comparison for the (A)	
	the Nematoda and (B) the Rhabditida within Nematoda using the SSU rRNA	
	gene	604
Appendix 6.4.	Alignment of the full-length SSU rRNA gene for the Metastrongylina and two	
	Trichostrongylina outgroups	605
Appendix 6.5.	Log likelihood scores of the different models used for comparison for the	
	Suborder Metastrongylina using 1628 unambiguously aligned nucleotide sites	
	from the near full-length SSU rRNA gene	616
Appendix 7.1.	Log likelihood scores of the different models used for comparison for the (A)	
	the Nematoda and (B) the Rhabditida within Nematoda using SSU rRNA gene	617

LIST OF FIGURES

Figure 1.1.	The Pilsbry-Baker system of classification of the Stylommatophora based on	
F: 10	the structures of the excretory organ	5
Figure 1.2.	Neighbor-joining phylogenetic tree of the Stylommatophora based on the large subunit rRNA gene (823 unambiguously aligned nucleotide sites)	9
Figure 1.3.	Adult male bursa of (A) Angiostrongylus, i.e. A. vasorum, and (B)	22
Eigung 1 4	Angiostrongylus (=Parastrongylus), i.e. A. cantonensis	23 25
Figure 1.4. Figure 2.1.	Life cycle of <i>Angiostrongylus cantonensis</i> Schematic diagram of the rRNA gene cluster based on the complete sequence	25
Figure 2.1.	of <i>Rattus norgevicus</i> (GenBank X00133) and showing the position of the primers used in this study	48
Figure 2.2.	Schematic diagram of the SSU rRNA gene based on the complete sequence of	40
1 iguie 2.2.	<i>Caenorhabditis elegans</i> (GenBank X00133) and showing the position of the primers used in this study	54
Figure 3.1.	Phylogeny of the Achatinoidea based on 823 unambiguously aligned	51
1.18010 0111	nucleotide sites of the rRNA gene cluster	104
Figure 3.2.	Plots of pairwise uncorrected distance against corrected (GTR+ Γ) distance for	
Garage	the rRNA cluster in (A) the Achatinoidea and the streptaxid outgroup taxa and (B) the Achatinoidea only.	119
Figure 3.3.	Plots of uncorrected pairwise transition (ti) and transversion (tv) distances	
	against pairwise total uncorrected distances for the rRNA cluster in (A) the Achatinoidea and outgroup taxa and (B) the Achatinoidea only	121
Figure 3.4.	Plots of uncorrected pairwise transition (ti) distances against transversion (tv)	
	distances for the rRNA cluster in (A) the Achatinoidea and the streptaxid	
	outgroup taxa and (B) the Achatinoidea only	122
Figure 3.5.	Plots of pairwise uncorrected distance against corrected distance for the actin	
	gene in (A) the Achatinoidea and the streptaxid outgroup taxa and (B) the	100
	Achatinoidea only	123
Figure 3.6.	Plots of uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for the actin in (A) the	
	against pairwise total uncorrected distances for the actin in (A) the Achatinoidea and the streptaxid outgroup taxa and (B) the Achatinoidea only	125
Figure 3.7.	Plots of pairwise uncorrected distance versus corrected ($GTR+\Gamma$) distance for	125
1 iguie 5.7.	the histone 3 gene in (A) the Achatinoidea and the streptaxid outgroup taxon	
	Gibbulinella dewinteri and (B) the Achatinoidea only	126
Figure 3.8.	Plots of pairwise uncorrected distance versus corrected (GTR+ Γ) distance for	
8	the histone 3 gene in (A) the Achatinoidea and the streptaxid outgroup taxon	
	Gibbulinella dewinteri and (B) the Achatinoidea only	127
Figure 3.9.	Plots of uncorrected pairwise transition (ti) and transversion (tv) distances	
	against pairwise total uncorrected distances for the histone 3 gene in (A) the	
	Achatinoidea and the streptaxid outgroup taxon Gibbulinella dewinteri and	
-	(B) the Achatinoidea only	129
Figure 3.10.	Plots of uncorrected pairwise transition (ti) distances against transversion (tv)	
	distances for the histone 3 gene in (A) the Achatinoidea and the streptaxid	120
Eigung 2 11	outgroup taxon <i>Gibbulinella dewinteri</i> and (B) the Achatinoidea only	130
Figure 3.11.	Plots of pairwise uncorrected distance versus corrected (TN93) distance for the 1^{st} and 2^{nd} codon positions of the histone 3 gene in (A) the Achatinoidea	
	and the streptaxid outgroup taxon <i>Gibbulinella dewinteri</i> and (B) the	
	Achatinoidea only	131
Figure 3.12.	Plots of uncorrected pairwise transition (ti) and transversion (tv) distances	101
8	against pairwise total uncorrected distances for the 1 st and 2 nd codon positions	
	of the histone 3 gene in (A) the Achatinoidea and the streptaxid outgroup	
	taxon Gibbulinella dewinteri and (B) the Achatinoidea only	132
Figure 3.13.	Plots of uncorrected pairwise transition (ti) distances against transversion (tv)	
	distances for the 1^{st} and 2^{nd} codon positions of the histone 3 gene in (A) the	
	Achatinoidea and the streptaxid outgroup taxon Gibbulinella dewinteri and	
	(B) the Achatinoidea only	133

Figure 3.14.	Plots of pairwise uncorrected distance versus corrected (GTR+ Γ) distance for the 3 rd codon position of the histone 3 gene in (A) the Achatinoidea and the streptaxid outgroup taxon <i>Gibbulinella dewinteri</i> and (B) the Achatinoidea	
	only.	134
Figure 3.15.	Plots of uncorrected pairwise transition (ti) and transversion (tv) distances	
	against pairwise total uncorrected distances for the 3^{rd} codon position of the histone 3 gene in (A) the Achatinoidea and the streptaxid outgroup taxon	
	Gibbulinella dewinteri and (B) the Achatinoidea only	136
Figure 3.16.	Plots of uncorrected pairwise transition (ti) distances against transversion (tv)	150
e	distances for the 3 rd codon position of the histone 3 gene in (A) the	
	Achatinoidea and the streptaxid outgroup taxon Gibbulinella dewinteri and	
	(B) the Achatinoidea only	137
Figure 3.17.	Plots of pairwise uncorrected distance against corrected distance for the CO1	
	gene in (A) the Achatinoidea and the streptaxid outgroup taxon Gibbulinella	100
E	dewinteri and (B) the Achatinoidea only	138
Figure 3.18.	Plots of uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for the CO1 gene in (A) the	
	Achatinoidea and the streptaxid outgroup taxon <i>Gibbulinella dewinteri</i> and	
	(B) the Achatinoidea only	140
Figure 3.19.	Plots of uncorrected pairwise transition (ti) distances against transversion (tv)	
0	distances for the CO1 gene in (A) the Achatinoidea and the streptaxid	
	outgroup taxon Gibbulinella dewinteri and (B) the Achatinoidea only	141
Figure 3.20.	Plots of pairwise uncorrected distance versus corrected (GTR+ Γ) distance for	
	the 1 st and 2 nd codon positions of the CO1 gene in (A) the Achatinoidea and	
	the streptaxid outgroup taxon <i>Gibbulinella dewinteri</i> and (B) the Achatinoidea	142
Figure 3.21.	only Plots of uncorrected pairwise transition (ti) and transversion (tv) distances	143
Figure 5.21.	against pairwise total uncorrected distances for the 1^{st} and 2^{nd} codon positions	
	of the CO1 gene in (A) the Achatinoidea and the streptaxid outgroup taxon	
	<i>Gibbulinella dewinteri</i> and (B) the Achatinoidea only	145
Figure 3.22.	Plots of uncorrected pairwise transition (ti) distances against transversion (tv)	
	distances for the 1 st and 2 nd codon positions of the CO1 gene in (A) the	
	Achatinoidea and the streptaxid outgroup taxon Gibbulinella dewinteri and	
Eima 2 22	(B) the Achatinoidea only	146
Figure 3.23.	Plots of pairwise uncorrected distance against corrected distance for the 3^{rd}	
	codon position of the CO1 gene in (A) the Achatinoidea and the streptaxid outgroup taxon <i>Gibbulinella dewinteri</i> and (B) the Achatinoidea only	147
Figure 3.24.	Plots of uncorrected pairwise transition (ti) and transversion (tv) distances	147
8	against pairwise total uncorrected distances for the 3 rd codon position of the	
	CO1 gene in (A) the Achatinoidea and the streptaxid outgroup taxon	
	Gibbulinella dewinteri and (B) the Achatinoidea only	149
Figure 3.25.	Plots of uncorrected pairwise transition (ti) distances against transversion (tv)	
	distances for the 3 rd codon position of the CO1 gene in (A) the Achatinoidea	
	and the streptaxid outgroup taxon <i>Gibbulinella dewinteri</i> and (B) the	150
Figure 3.26.	Achatinoidea only Plots of pairwise uncorrected distance against corrected (GTR+ Γ) distance for	150
1 Iguie 5.20.	the 16S rRNA gene in (A) the Achatinoidea and the streptaxid outgroup taxa	
	and (B) the Achatinoidea only	151
Figure 3.27.	Plots of uncorrected pairwise transition (ti) and transversion (tv) distances	
0	against pairwise total uncorrected distances for the 16S rRNA gene in (A) the	
	Achatinoidea and the streptaxid outgroup taxa and (B) the Achatinoidea only	153
Figure 3.28.	Plots of uncorrected pairwise transition (ti) distances against transversion (tv)	
	distances (A) the Achatinoidea and the streptaxid outgroup taxa and (B) the	154
Figure 2 20	Achatinoidea only Maximum likelihood phylogenetic trees of the Achatinoidea	154 161
Figure 3.29.	Maximum likelihood phylogenetic trees of the Achatinoidea	101

Figure 3.30.	Maximum likelihood phylogenetic trees of the Achatinoidea based on a concatenated sequence of 5028 nucleotides derived from the combined dataset of the rRNA cluster, actin and H3 genes as well as the 1^{st} and 2^{nd} codon	
	positions of the CO1 gene	166
Figure 4.1.	Generalized reproductive structure of achatinids	195
Figure 4.2.	Schematic diagrams of how the penis sheath envelops certain parts of	
-	achatinid genitalia	197
Figure 4.3.	Schematic illustrations of the reproductive organs of the West and Central	
	African Achatina (Achatina) (A) and the East African Achatina (Lissachatina)	
	(B)	199
Figure 4.4.	Plots of pairwise uncorrected distance against corrected (TN93) distance for the rRNA cluster in (A) the Achatinidae and the subulinid outgroup <i>Rumina</i>	
	decollata and (B) the Achatinidae only	209
Figure 4.5.	Plots of uncorrected pairwise transition (ti) and transversion (tv) distances	
	against pairwise total uncorrected distances for the rRNA cluster in (A) the	
	Achatinidae and the subulinid outgroup Rumina decollata and (B) the	
-	Achatinidae only	211
Figure 4.6.	Plots of uncorrected pairwise transition (ti) distances against transversion (tv)	
	distances for the rRNA cluster in (A) the Achatinidae and the subulinid	212
Figure 47	outgroup <i>Rumina decollata</i> and (B) the Achatinidae only	212
Figure 4.7.	Plots of pairwise uncorrected distance against corrected distance for the actin gene in (A) the Achatinidae and the the subulinid outgroup <i>Rumina decollata</i>	
	and (B) the Achatinidae only	214
Figure 4.8.	Plots of uncorrected pairwise transition (ti) and transversion (tv) distances	214
riguie 1.6.	against pairwise total uncorrected distances for the actin in (A) the	
	Achatinidae and the subulinid outgroup <i>Rumina decollata</i> and (B) the	
	Achatinidae only	216
Figure 4.9.	Plots of uncorrected pairwise transition (ti) distances against transversion (tv)	
-	distances for the actin gene in (A) the the Achatinidae and the subulinid	
	outgroup Rumina decollata and (B) the Achatinidae only	217
Figure 4.10.	Plots of pairwise uncorrected distance versus corrected (GTR+ Γ) distance for	
	the histone 3 gene in (A) the Achatinidae and the subulinid outgroup <i>Rumina</i>	010
F 4.11	<i>decollata</i> and (B) the Achatinidae only	218
Figure 4.11.	Plots of uncorrected pairwise transition (ti) and transversion (tv) distances	
	against pairwise total uncorrected distances for the histone 3 gene in (A) the Achatinidae and the subulinid outgroup <i>Rumina decollata</i> and (B) the	
	Achatinidae and the the subunite outgroup <i>Rumina accontata</i> and (B) the Achatinidae only	220
Figure 4.12.	Plots of uncorrected pairwise transition (ti) distances against transversion (tv)	220
1 iguie 1.12.	distances for the histone 3 gene in (A) the Achatinidae and the subulinid	
	outgroup <i>Rumina decollata</i> and (B) the Achatinidae	221
Figure 4.13.	Plots of pairwise uncorrected distance versus corrected (HKY85) distance for	
U	the 1^{st} and 2^{nd} codon positions of the histone 3 gene in (A) the Achatinidae	
	and the subulinid outgroup Rumina decollata and (B) the Achatinidae only	222
Figure 4.14.	Plots of uncorrected pairwise transition (ti) and transversion (tv) distances	
	against pairwise total uncorrected distances for the 1 st and 2 nd codon positions	
	of the histone 3 gene in (A) the Achatinidae and the subulinid outgroup	
	Rumina decollata and (B) the Achatinidae only	224
Figure 4.15	Plots of uncorrected pairwise transition (ti) distances against transversion (tv)	
	distances for the 1 st and 2 nd codon positions of the histone 3 gene in (A) the	
	Achatinidae and the subulinid outgroup $Rumina \ decollata$ and (B) the	225
	Achatinidae only.	225

Figure 4.17.	Plots of uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for the 3^{rd} codon position of the histone 3 gene in (A) the Achatinidae and the the subulinid outgroup <i>Rumina decollata</i> ; (B) the Achatinidae only; and (C) the Achatinidae and the subulinid	220
Figure 4.18.	outgroup <i>Rumina decollata</i> but excluding <i>Archachatina marginata</i> Plots of uncorrected pairwise transition (ti) distances against transversion (tv) distances for the 3^{rd} codon position of the histone 3 gene in (A) the Achatinidae and the subulinid outgroup <i>Rumina decollata</i> ; (B) the Achatinidae only; and (C) the Achatinidae and the subulinid outgroup <i>Rumina</i>	229
Figure 4.19.	<i>decollata</i> but excluding <i>Archachatina marginata</i> Plots of pairwise uncorrected distance against corrected distance for the CO1 gene in (A) the Achatinidae and the subulinid outgroup <i>Rumina decollata</i> and (B) the Achatinidae only	230 231
Figure 4.20.	Plots of uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for the CO1 gene in (A) the Achatinidae and the subulinid outgroup <i>Rumina decollata</i> and (B) the	
Figure 4.21.	Achatinidae only Plots of uncorrected pairwise transition (ti) distances against transversion (tv) distances for the CO1 gene in (A) the Achatinidae and the the subulinid	232
Figure 4.22.	outgroup <i>Rumina decollata</i> and (B) the Achatinidae only Plots of pairwise uncorrected distance versus corrected (GTR+ Γ) distance for	233
Figure 4.23.	the 1 st and 2 nd codon positions of the CO1 gene in (A) the Achatinidae and the subulinid outgroup <i>Rumina decollata</i> and (B) the Achatinidae only Plots of uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for the 1 st and 2 nd codon positions	234
Figure 4.24.	of the CO1 gene in (A) the Achatinidae and the the subulinid outgroup <i>Rumina decollata</i> and (B) the Achatinidae only Plots of uncorrected pairwise transition (ti) distances against transversion (tv) distances for the 1 st and 2 nd codon positions of the CO1 gene in (A) the	236
F: 4.25	Achatinidae and the subulinid outgroup <i>Rumina decollata</i> and (B) the Achatinidae only	237
Figure 4.25.	Plots of pairwise uncorrected distance against corrected distance for the 3 rd codon position of the CO1 gene in (A) the Achatinidae and the the subulinid outgroup <i>Rumina decollata</i> and (B) the Achatinidae only	238
Figure 4.26.	Plots of uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for the 3^{rd} codon position of the CO1 gene in (A) the Achatinidae and the the subulinid outgroup <i>Rumina</i>	
Figure 4.27.	<i>decollata</i> and (B) the Achatinidae only Plots of uncorrected pairwise transition (ti) distances against transversion (tv) distances for the 3 rd codon position of the CO1 gene in (A) the Achatinidae	240
Figure 4.28.	and the subulinid outgroup <i>Rumina decollata</i> and (B) the Achatinidae only Plots of pairwise uncorrected distance against corrected (GTR+ Γ) distance for the 16S rRNA gene in (A) the Achatinidae and the subulinid outgroup <i>Rumina</i>	241
Figure 4.29.	<i>decollata</i> and (B) the Achatinidae only Plots of uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for the 16S rRNA gene in (A) the Achatinidae and the the subulinid outgroup <i>Rumina decollata</i> and (B) the	243
Figure 4.30.	Achatinidae only Plots of uncorrected pairwise transition (ti) distances against transversion (tv) distances for the 16S rRNA gene in (A) the Achatinidae and the the subulinid	245
Figure 4.31. Figure 4.32.	outgroup <i>Rumina decollata</i> and (B) the Achatinidae only Maximum likelihood phylogenetic trees of the Achatinidae Maximum likelihood phylogenetic trees of the Achatinidae based on a concatenated sequence of 4403 nucleotides derived from the combined dataset	246 251
	of the rRNA cluster, H3 genes and the 1 st and 2 nd codon positions of the CO1 gene	256

Figure 4.33.	Geographic distribution of the achatinid taxa used in this study	263
Figure 5.1.	Dispersal route of Achatina fulica from East Africa	275
Figure 5.2.	Gel profiles of the 15 haplotypes based on a 293 bp fragment found in the	
C	domain IV of the secondary structure of the 16S rRNA gene	281
Figure 5.3.	Seventeen variable sites across the 15 haplotypes	282
Figure 5.4.	Distribution map of the 15 Achatina (Lissachatina) fulica populations and	
-	their 16S rRNA haplotypes	284
Figure 5.5.	Neighbor-joining tree of the 15 Achatina fulica 16S rRNA haplotypes based	
-	on unambiguously aligned nucleotide sites and using the optimal HKY model	286
Figure 5.6.	Median-joining network of the 15 Achatina fulica 16S haplotypes	287
Figure 6.1.	Posterior portion of the infective third juvenile stage of (A) Angiostrongylus	
-	cantonensis and (B) Angiostrongylus vasorum	299
Figure 6.2.	Variable sites across the SSU rDNA region for the previously sequenced	
-	Angiostrongylus cantonensis (Carreno & Nadler, 2003) and the 4 other	
	angiostrongylid worms sequenced in this study	311
Figure 6.3.	Neighbor-joining (NJ) phylogenetic trees based on 376 unambiguously	
-	aligned nucleotide sties of the SSU rRNA gene. (A) NJ tree of the Nematoda	
	(349 taxa excluding the new nematode sequences from the Philippines) rooted	
	on 4 non-nematode taxa	314
Figure 6.4.	Phylogenetic trees of the angiostrongylids and worms in other families of the	
-	suborder Metastrongylina based on the SSU rRNA gene	315
Figure 7.1.	Probable dispersal route of Angiostrongylus cantonensis	327
Figure 7.2.	Neighbor-joining (NJ) phylogenetic trees based on 376 unambiguously	
-	aligned nucleotide sites of the SSU rRNA gene for the Nematoda and the	
	Rhabditida	344

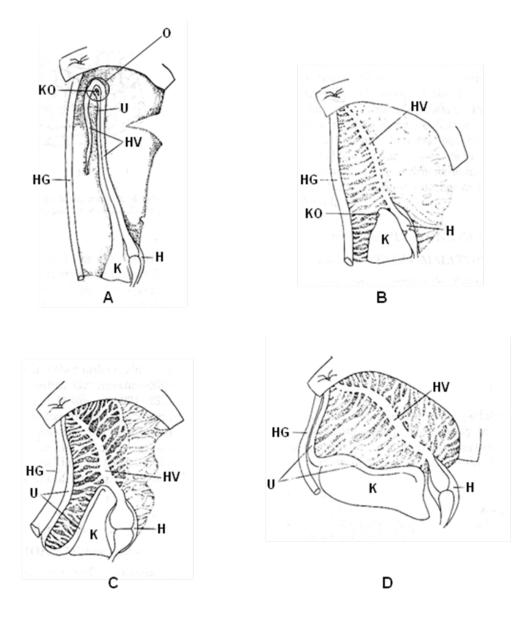
LIST OF TABLES

Table 1.1.	The Achatinoidea according to various authors in comparison with the Achatinoidea by Wade <i>et al.</i> (2006) based on molecular data (rRNA cluster)	11
Table 2.1.	Summary of the rRNA primers	47
Table 2.2.	Summary of the actin primers	50
Table 2.3.	Summary of the historie 3 primers	51
Table 2.4.	Summary of the cytochrome oxidase subunit 1 primers	52
Table 2.5.	Summary of the 16S rRNA primers	53
Table 2.6.	The four overlapping primer pairs used to amplify nearly the entire region	00
14010 2101	(approximately 1670 nucleotides) of the SSU rDNA gene	54
Table 2.7.	PCR components used and their concentrations for the different genes	55
Table 2.8.	Codes for ambiguous positions in DNA sequences	73
Table 2.9.	Summary of the number of parameters of the different models of DNA	10
14010 2001	substitution	76
Table 2.10.	Critical values for g1 measure of skewness at $P=0.05$	82
Table 2.11.	Comparison of methods	85
Table 3.1.	Comparison of the composition and distribution of the Rumininae according	
	to Zilch (1959) and Schileyko (1999).	102
Table 3.2.	Taxa used for the phylogenetic study of the Achatinoidea	110
Table 3.3.	Summary of molecular data across all genes used for the Achatinoidea and	
	three streptaxid outgroup taxa (rRNA gene cluster, actin and 16S) and one	
	streptaxid outgroup taxon (histone 3 and CO1)	117
Table 3.4.	Comparison of the actin ambiguous sites and nucleotide differences for each	
	achatinoid and its closest relative	159
Table 3.5.	Hypothesis testing for the monophyly of selected taxa of the Achatinoidea	
	using the Shimodaira-Hasegawa test	176
Table 4.1.	Taxa used for the phylogenetic study of the Achatinidae	201
Table 4.2.	Summary of molecular data across all genes used (rRNA gene cluster, actin,	
	histone 3, CO1 and 16S) for the Achatinidae and the subulinid outgroup	
	Rumina decollata	208
Table 4.3.	Comparison of the actin ambiguous sites and nucleotide differences for each	
	achatinid and its closest relative.	249
Table 4.4.	Hypothesis testing for the monophyly of Achatina (Achatina) using the	
	Shimodaira-Hasegawa test	264
Table 5.1.	Locality, collector and sample size of global populations of Achatina fulica	
	used in the study	279
Table 5.2.	Summary of the geographic distribution and frequency of the 16S rRNA	
	haplotypes from Achatina fulica populations as evaluated by SSCP analysis	283
Table 6.1.	Detailed information of the angiostrongylid worms used in this study	304
Table 6.2.	Taxa used for the sequence analysis of the angiostrongylid worms	309
Table 6.3.	Matrix showing the number of differences between any two Angiostrongylus	
	species	311
Table 6.4.	Summary of the distribution of the 2 Philippine nematode sequences from the	
	University of the Philippines, Diliman campus in Quezon City	312
Table 7.1.	Snail samples, collectors and localities	332
Table 7.2.	Population sizes and percentage of nematode infection	335
Table 7.3.	Distribution and frequencies of the nematode sequences across global	
	populations of Achatina fulica, West African populations of Achatina sp. and	
	Philippine populations of Laevicaulis alte	337
Table 7.4.	Snails infected with more than one type of worm based on the sequence of the	
	5' end of the SSU rRNA gene	338
Table 7.5.	GenBank BLAST results for the nematode type sequences	340

CHAPTER 1 – Introduction

The tropical Giant African Land Snail Achatina (Lissachatina) fulica Bowdich, 1822 is one of the most extensively studied snails because of its economic, ecological and medical importance (Mead, 1979). It belongs to a family of African snails, the Achatinidae (Mollusca, Gastropoda, Stylommatophora, Achatinoidea), that includes more than 200 species in 13 genera (Schileyko, 1999). Achatina fulica is a major crop pest species that originated in East Africa but has been spreading across the globe since before the 1800's primarily through human activities (Mead, 1961, 1979; Raut & Barker, 2002). The World Conservation Union (IUCN) has listed Achatina fulica as one of the world's 100 most invasive species (Lowe et al., 2000). The snail also serves as an intermediate host of the rat lungworm Angiostrongylus cantonensis (Chen) (see Alicata, 1966). Humans get accidentally infected by ingesting the 3rd juvenile stage of this parasite, derived from the snail intermediate host, which leads to eosinophilic meningoencephalitis (EME) or angiostrongyliasis, a disease of the central nervous system (Marquardt et al., 2000). Although much is already known about Achatina fulica, many issues regarding the snail remain unaddressed. These include its phylogenetic relationship with other members of the Achatinoidea and the Achatinidae, the validity of the subgenus *Lissachatina* based on molecular data, the genetic variation present in introduced populations of A. fulica across the globe, and its potential role in the spread of the parasite Angiostrongylus cantonensis.

1.1. Taxonomy of *Achatina fulica*: Mollusca, Gastropoda, Stylommatophora, Achatinoidea, Achatinidae


Achatina fulica belongs to the phylum Mollusca, the second largest animal phylum in the world, with an estimated total species diversity ranging from less than 50,000 to as much as 200,000 and inhabiting freshwater, marine and terrestrial habitats (van Bruggen, 1995). Although members of this phylum exhibit diversity in form as exemplified by snails, clams, octopods, squids, chitons and the tusk shells, this group possesses three unique hallmarks that distinguish its members from other animal phyla. These hallmarks are: (1) a muscular foot for locomotion; (2) a fleshy skin fold called a mantle that secretes a calcareous shell; and (3) a feeding organ called a radula. Some molluscan groups may have lost one or more of these hallmarks during the course of evolution, but their ancestors clearly had all three as shown by fossil records (Ruppert *et al.*, 2004). Other characteristics of molluscs are the lack of true segmentation, the reduction of the body cavity, and the presence of spiral cleavage during early development (van Bruggen, 1995).

Terrestrial slugs and snails like *Achatina fulica* belong to the Gastropoda, the largest taxonomic class in the Mollusca, in which members have a characteristic head-foot region and a visceral mass (Ruppert *et al.*, 2004). Gastropods undergo torsion during larval development that leads to the 180^o rotation of the visceral mass and brings the ctenidia or gills and the excretory organs to the anterior region above and behind the head (Barker, 2001). There are an estimated 30,000-35,000 species of terrestrial snails and slugs (Solem, 1984), and many of these have become very important to Man either as a food source, parasite vectors, ornaments or even tools (Barker, 2001). The majority of terrestrial snails and slugs, including *A. fulica*, do not have gills but instead have a vascularised chamber or a 'lung' within the mantle cavity, a characteristic of the

subclass Pulmonata. The groupings within the pulmonates are still in a state of flux as disagreements still persist regarding interpretations of evolutionary pathways based on conchological and anatomical characters, but most workers agree on the monophyly of the (sub)order Stylommatophora. Stylommatophorans like *A. fulica* characteristically have two pairs of caudal tentacles, with the upper pair bearing eyes at the tip (Ruppert *et al.*, 2004); a contractile pneumostome that minimises contact between the environment and the pallial cavity that houses the lung, kidney and ureter; and the lack of an operculum that covers the aperture (Barker, 2001). Around 71-92 families constitute the Stylommatophora (Emberton *et al.*, 1990). Recent molecular evidence from (1) sequences from the rRNA cluster (Wade & Mordan, 2000); (2) primary sequence data of mitochondrial genes, particularly the absence of entire stem/loop structures in some domains of the mitochondrial 16S rRNA gene (Lydeard *et al.*, 2000; (3) sequence data provided by the cytochrome c oxidsase subunit I (COI) gene (Remigio & Hebert, 2003); and (4) rare genomic changes in the trnP and COI genes (Grande *et al.*, 2004) all support the monophyly of the Stylommatophora.

1.2.1. Classification of the Stylommatophora based on morphological data

There is considerable debate as to how the Stylommatophora should be subdivided into groups that reflect true evolutionary relationships. The widely used but criticised Pilsbry-Baker System divides the Stylommatophora into four infraorders based on the excretory system (Pilsbry, 1900; Baker, 1955). The main excretory organ is made up of three parts: (1) a neprhidium or neprhidial sac (=kidney); (2) a distal ureteric pouch or orthureter; and (3) a separate ureter represented either as an open ciliated groove or a closed tube. Based on variations of these structures, the four infraorders are as follows: (1) Orthurethra (those with nephridium, orthureter with an anterior nephropore, and a ureter developed as a groove, the proximal part of which lies along the rectal face of the nephridium, Figure 1.1A); (2) Mesurethra (those with neither an orthureter on the nephridium nor a closed ureter, Fig. 1.1B); (3) Sigmurethra (those without an orthureter but with a ureter that runs along the anterior portion of the nephridium and connects to the pallial cavity before terminating at the pneumostome, Fig. 1.1C); and (4) Heterurethra (those without an orthureter, with the nephridium extending transversely, and a ureter that runs along the face of the kidney before following the rectum and terminating at the pneumostomal opening Fig. 1.1D). It has been hypothesised that the orthurethran type of excretory system is the most 'primitive' or ancient while the other types are derived from it (Pilsbry, 1900; Baker, 1955; Barker, 2001). Based on this classification system, *A. fulica* is included in the Sigmurethra.

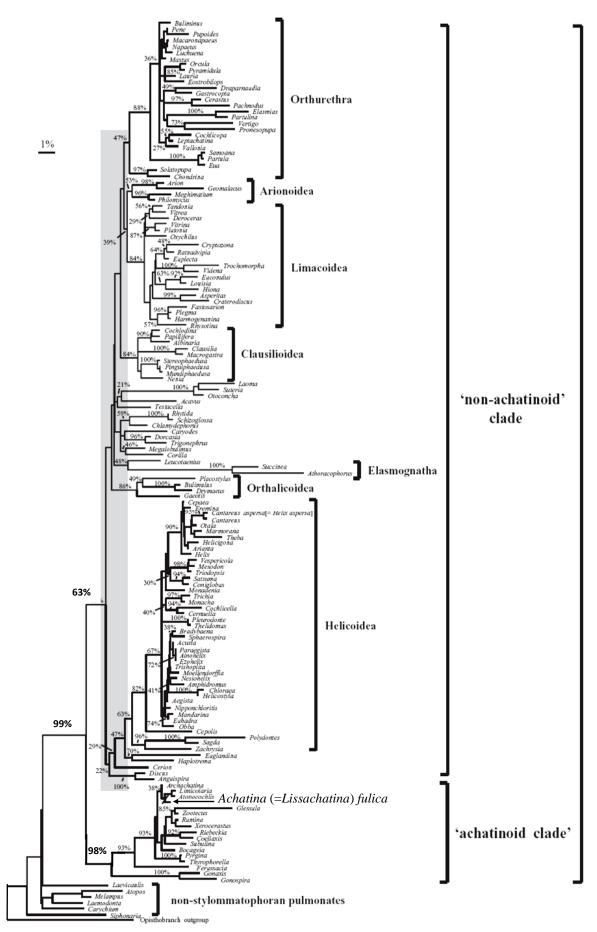
Figure 1.1: The Pilsbry-Baker system of classification of the Stylommatophora based on the structures of the excretory organ. K – neprhidium (=kidney); U – ureter; KO – renal orifice or nephropore; O – orthureter; HG – hindgut; HV – principal pulmonary vein; H – heart. The four infraorders of the Stylommatophora are (**A**) – Orthurethra; (**B**) – Mesurethra; (**C**) – Sigmurethra; (**D**) – Heterurethra. (From Solem, 1959)

Pilsbry's classification system is not without its critics (Simroth & Hoffmann, 1908-1928; Thiele, 1929-1935). Tillier (1989) proposed an alternative classification system based on the differentiation within the renal organ. He retained the Orthurethra as one suborder but divided the other stylommatophorans into two different suborders: the Brachynephra in which the shortening of the kidney took place followed by closure

of the ureter; and the Dolichonephra, in which the ureter closed first before the kidney shortened. He also based his classification scheme on the various groups' current distributions that corresponded to regions that were once part of either of the two hypothetical supercontinents that resulted from the breakup of the Pangaean landmass 200 million years ago. The Orthurethra have a mixed Laurasian (Europe, North America and Asia) and Gondwanian (South America, Africa, India, Australia) distribution, the Brachynephra includes representatives that are wholly or partly Gondwanian, and the Dolichonephra have members with Laurasian links. In this classification scheme, A. fulica is placed in the Dolichonephra. However, Nordsieck (1992) criticised Tillier's system and believed that overemphasis was given to the differentiation within the renal organ. Instead, he divided the Stylommatophora into two suborders: the Orthurethra that bear an orthurethran excretory system and have a primarily Laurasian origin, and the Sigmurethra with a non-orthurethran system and mixed Laurasian and Gondwanan origins. He agreed with Pilsbry's assumption of the basal position of the Orthurethra. Nordsieck's Sigmurethra also includes Achatina fulica.

1.2.2. Relationships within the Stylommatophora based on molecular data

Molecular markers are increasingly being used to infer phylogenetic relationships among groups of taxa because of the advantages they provide. Molecular data are derived from discrete heritable characters, are unambiguous, can easily be subjected to quantitative analyses and homology assessment, may provide characters that can be used to compare distantly related taxa, and are abundant (Graur & Li, 2000).


Although stylommatophoran taxa have been used in a variety of molecular studies examining evolutionary relationships within the Mollusca, relatively few studies

6

have focused on the relationships within the Stylommatophora themselves. Studies that include a handful of representative stylommatophorans, with emphasis on relationships at deeper levels within the Mollusca and the position of the Stylommatophora therein, include those of Winnepenninckx *et al.* (1998) on the small subunit (SSU) ribosomal (r) RNA gene; Thollesson (1999) on the 16S rRNA gene; Lydeard *et al.* (2000) on the secondary structures of the 16S rRNA gene; Wade & Mordan (2000) on the rRNA cluster; Remigio & Hebert (2003) on the COI gene; Colgan *et al.* (2003) on the SSU rRNA, COI and histone 3 genes; Grande *et al.* (2004) on the rare genomic changes in the trnP and COI genes; and Passamaneck *et al.* (2004) on the LSU and SSU rRNA genes.

Studies focusing on the evolutionary relationships within the Stylommatophora include those of Armbruster et al. (2005) and Wade et al. (2001; 2006). Armbruster et al. (2005) surveyed 18 species from eight families of the Stylommatophora using the combined coding regions of the histone 3 and histone 4 genes. Their study demonstrated the basal position of the Helicidae relative to Punctidae, Clausiliidae, Pupillidae, Enidae, Vertiginidae, Cochlicopidae, and Valloniidae. Achatina fulica was not represented in their study. Wade et al. (2001, 2006) conducted a more comprehensive phylogenetic study of the Stylommatophora with initially 104 species from 50 families including A. fulica (2001), which they expanded to 160 species encompassing 61 families (2006). They utilised DNA sequence data from the nuclear rRNA gene cluster spanning a 1460 bp region of the 5.8S rRNA gene, the internal transcribed spacer (ITS) 2 region and the large subunit (LSU) ribosomal (r) RNA gene and comprising 823 unambiguously aligned nucleotides used for phylogenetic analysis (Figure 1.2). Although the results they obtained were in general agreement with currently accepted taxonomic families, a clear and unexpected dichotomy of the Stylommatophora into two clades was also revealed: the strongly supported 'achatinoids' (99% NJ bootstraps for both the 2001 and 2006 studies) and the weakly supported 'non-achatinoids' (65% NJ bootstraps for the 2001 study and 63% NJ bootstraps for the 2006 study). Both clades included members with Laurasian and Gondwanian distributions, implying that the radiation of the Stylommatophora predated the breakup of Pangaea into Laurasia and Gondwana some 200 million years ago. This also implies that the sigmurethran type of excretory system is ancestral with all the other types being derived from it, contradicting Pilsbry's assumption of a basal Orthurethra and suggesting that the Orthurethra is a derived group.

Additionally, several studies have focused on specific taxonomic groups within the Stylommatophora, as exemplified by Dutra-Clarke *et al.* (2001) on the Succineidae using the SSU rRNA gene; Holland & Hadfield (2004) on endemic Hawaiian Achatinellinae using the COI gene; Steinke *et al.* (2004) on the western Palearctic Helicidae also using the COI gene; and Tongkerd *et al.* (2004) on the Thai Pupillidae using the LSU and the 16S rRNA genes.

Figure 1.2: Neighbor-joining phylogenetic tree of the Stylommatophora based on the large subunit rRNA gene (823 unambiguously aligned nucleotide sites). The phylogeny shows dichotomy of the group into the 'achatinoid' (bootstrap support=99%) and the 'non-achatinoid' (bootstrap support=63%) clades. (From Wade *et al.*, 2006.)

1.2.3. The 'achatinoid clade' and the Achatinoidea

The 'achatinoid clade' of Wade et al. (2001, 2006) based on the rRNA cluster consisted of two superfamilies: the Streptaxoidea and the Achatinoidea. Traditionally, the Streptaxoidea comprises only a single family, the Streptaxidae. They are the only carnivorous group within the 'achatinoid clade,' and have a long buccal mass and short oesophagus reflecting their carnivorous adaptation (Tillier, 1989). The other families in Wade et al.'s 'achatinoid clade' belong to the superfamily Achatinoidea, which included representatives of the Achatinidae, Coeliaxidae, Ferussaciidae, Subulinidae, Glessulidae and Thyrophorellidae. Various authors have different views as to which families constitute the Achatinoidea. Solem's (1978) Achatinacea (=Achatinoidea) comprised the Achatinidae, Ferussaciidae, Megaspiridae, Spiraxidae and Subulinidae (including the coeliaxids and glessulids as the subfamilies Coeliaxinae and Glessulinae, respectively) while Abbott (1989) regarded Coeliaxidae as a family in its own right while additionally including the monotypic Thyrophorellidae. Tillier's (1989) Achatinoidea comprised the Achatinidae, Ferussaciidae, Subulinidae (including the subfamilies Coeliaxinae and Glessulinae), Thyrophorellidae as well as the Streptaxidae, Succineidae and the Oleacinidae (Spiraxidae and Testacellidae). Tillier treated the Achatinoidea as those with a closed ureter, symmetrical cerebro-pedal connectives, short cerebral commissure, and contiguous left parietal and visceral ganglia; however, he also included the Succineidae because of superficial features it shares with the Ferussaciidae and the presence of a heterurethran type of excretory organ. Vaught (1989) incorporated the Achatinidae, Coeliaxidae, Ferussaciidae, Subulinidae, (including the Glessulidae which Vaught regarded as subfamily Glessulinae) and Thyrophorellidae in her Achatinoidea. Schileyko (1999) placed only the Achatinidae in the Achatinoidea, whereas Bouchet & Rocroi (2005) included the Achatinidae,

Ferussaciidae, Subulinidae (which also incorporated the coeliaxids and glessulids as the subfamilies Coeliaxinae and Glessulinae) and Micractaeonidae. In Wade *et al.*'s (2006) study, the Spiraxidae (represented by *Euglandina*) and Succineidae (represented by *Succinea*) fell within the 'non-achatinoid' clade and not within the Achatinoidea, thus contradicting Solem (1978) and Abbott (1989) for their inclusion of the Spiraxidae in the Achatinoidea and Tillier (1989) for his inclusion of the Oleacinidae (Spiraxidae and Testacellidae) and the Succeinidae. The Micractaeonidae, which are presumably distantly related to the Ferussciidae (Schileyko, 1999), were not represented in the Wade *et al.* study. Table 1.1 summarises the various authors' groupings of the Achatinoidea.

Table 1.1: The Achatinoidea according to various authors in comparison with the Achatinoidea by Wade *et al.* (2006) based on molecular data (rRNA cluster).

Solem (1978)	Abbott (1989)	Tillier (1989)	Vaught (1989)	Schileyko (1999)	Bouchet & Rocroi (2005)	Wade <i>et al.</i> (2006)
Achatinidae	Achatinidae	Achatinidae	Achatinidae	Achatinidae	Achatinidae	Achatinidae
Ferussaciidae	Coeliaxidae	Ferussaciidae	Coeliaxidae		Ferussaciidae	Coeliaxidae
Megaspiridae	Ferussaciidae	Oleacinidae*	Ferussaciidae		Micractaeonidae	Ferussaciidae
Spiraxidae	Spiraxidae	Streptaxidae	Subulinidae		Subulinidae	Glessulidae
Subulinidae	Subulinidae	Subulinidae	(including		(including	Subulinidae
(including	Thyrophorellidae	(including	Glessulinae)		Coeliaxinae &	Thyrophorellidae
Coeliaxinae &		Coeliaxinae &	Thyrophorellidae		Glessulinae)	• •
Glessulinae)		Glessulinae)	• •			
,		Succineidae				
		Thyrophorellidae				

* Oleacinidae – Spiraxidae + Testacellidae

The Achatinoidea in Wade *et al.*'s (2006) study were represented by 14 taxa, and their relationship was evaluated using only a short fragment (823 unambiguously aligned nucleotides) of the rRNA cluster. Increasing the number of taxa and using more genes could shed more light on the relationships of the various achatinoid groups and the validity of the taxonomic designation of the families under the Achatinoidea.

1.2.4. The Achatinidae

The family Achatinidae is a group of land snails confined to Sub-Saharan Africa, with the exception of Achatina fulica, which has been introduced by Man to areas outside Africa (Mead, 1979; Raut & Barker, 2002). Their shells are mostly dextral, higher than wide and are fusiform, ovoid or pillar-shaped (Schileyko, 1999). Classification within the family is based on conchological features (Bequaert, 1950) and the highly variable reproductive tract (Mead, 1991). There are three subfamilies within the Achatinidae: (1) the Callistopeplinae in which members have medium sized shells with a truncated columellar margin and a vas deferens that is not attached to the penis sheath (Mead, 1994); (2) the Limicolariinae in which members also have medium sized shells but with a non-truncated columellar margin and a vas deferens that is attached to the penis sheath (Schileyko, 1999); and (3) the Achatininae with medium to large shells with truncated columellar margin and a vas deferens that is also attached to the penis sheath (Mead, 1994). Variation also exists within the subfamilies. In the Achatininae, for instance, the East African Achatina (Lissachatina), to which A. fulica belongs, has a smooth nepionic whorl (Bequaert, 1950) and a half-dome apex (Mead, 1995) as well as a muscular bulboid enlargement of the basal vagina (Mead, 1991; 1995) while the West and Central African Achatina (Achatina) has a sculptured nepionic whorl (Bequaert, 1950), a plateaued apex (Mead, 1995) and no muscular bulboid enlargement in the basal vagina (Mead, 1991; 1995).

Despite the huge amount of morphological data available on the Achatinidae, no systematic molecular approach has yet been attempted to correlate molecular data with the morphological data, in particular to assess the designation of *Achatina fulica* under the subgenus *Lissachatina* based on conchological and anatomical features.

1.3. The biology of Achatina fulica

Achatina fulica is a large snail with a shell length ranging from 5 to 10 cm, with some specimens even reaching 20 cm. The conical shell is light brown in colour, though the colour pattern may vary (Schotman, 1989). The presence of streaks is associated with a dominant allele such that homozygous recessive individuals have unstreaked shells (Allen, 1983). However, variation in shell morphology in terms of size, shape and colour exists and has been largely attributed to environmental conditions (Mead, 1961).

A typical *A. fulica* has a life span of 5-6 years, becoming sexually mature as early as five months. Although hermaphroditic, *A. fulica* cross-fertilises and lays eggs 8-20 days after mating. The number of eggs laid can vary depending on the age of the snail but can reach up to 1800 in a year in a tropical setting. If conditions become unfavourable, the snail can aestivate by burrowing underground and covering its shell opening with a calcareous membrane, called an epiphragm, until such time as the environment improves (Mead, 1979, Raut & Barker, 2002).

1.4. The biology of introduced species

Achatina fulica is a classic example of an introduced species. Introduced species, also known as exotic species, are those found outside their natural range due to human activity (Primack, 2006). Species may be introduced deliberately to benefit Man, with examples including agricultural plants and animals for human consumption, decorative plants for gardening, and animals for hunting or fishing. Other species may be introduced unintentionally such as parasites or pests found in deliberately introduced species and those that "hitchhike" with transported goods (Freeland, 2005).

Species introduced by Man to new areas can have a profound effect on the ecosystem of that area as well as on the introduced species itself. They can prey upon, infect, outcompete or hybridise with native species or alter the habitat at the expense of the native species (Simberloff *et al.*, 2005), thus providing additional selective pressure on the native species (Suarez & Tsutsui, 2008). A balancing act must therefore come into play between the native species and the introduced species, and sometimes even between the introduced species and the local environment of the invaded habitat; otherwise, either the native or introduced species will face displacement or extinction (Suarez & Tsutsui, 2008). The disturbance caused by introduced species has become problematic in many areas such that they have been regarded as the second greatest threat to biodiversity, next only to habitat loss (Freeland, 2005). In some cases, however, introduced species have already disappeared due to habitat loss (Cowie & Robinson, 2003).

Not all species become easily established once translocated into a new area, but characteristics such as a rapid reproduction rate, high fecundity and generalist food and habitat requirements can increase the success of an introduced species (Cowie, 2000). Organisms that become invasive are also most likely to possess traits that facilitate their transport by humans, the ability to withstand the rigours of transport, the capacity to tolerate varying environmental conditions, and the predilection to thrive in human disturbed areas (Suarez & Tsutsui, 2008). As mentioned previously, species may be introduced deliberately or inadvertently, although those in the former category may have a greater chance of being established, particularly if the introduction is perceived to have some economic benefits. Deliberate introductions involve individuals that are

cared for and are brought to new areas in large numbers, thus improving their chance of survival once they are released in the wild (Cowie & Robinson, 2003).

The success of an introduced species in a new area can also be influenced by the genetic composition of its population. In many cases, introduced species are represented by a few individuals with a reduced amount of genetic variation when compared to their source population, a phenomenon called a founder effect. After many generations, a population bottleneck ensues where genetic variation is considerably reduced and allele frequencies undergo massive shifts (Dlugosch & Parker, 2008). As a consequence, some beneficial adaptive traits that could otherwise improve the survival and fitness of the species in the new habitat may be lost (Kolbe *et al.*, 2007). However, this low genetic variability as a result of founder events and bottlenecking could be counteracted by multiple introductions from different source populations (Dlugosch & Parker, 2008), as was shown in the cheatgrass *Bromus tectorum* (Novack & Mack, 1993) and the *Anolis* lizards (Kolbe *et al.*, 2007).

1.5. Achatina fulica as an introduced species and its dispersal from East Africa

Man has always been drawn to the Giant African Land Snail for reasons including its large size, supposed medicinal properties and its potential as a human or animal food source (Mead, 1979; Kliks & Palumbo, 1992; Raut & Barker, 2002). It is for these reasons that *Achatina fulica* has been spreading globally primarily through human factors, and its success as an introduced species can be attributed to several factors.

First, the biology of *Achatina fulica* makes it eminently suitable as an introduced species. The snail has a high reproductive capacity, producing between 10 and 400 eggs per clutch and as many as 1800 eggs per year; they also become sexually mature

15

between 5 and 8 months (Raut & Barker, 2002). Achatina fulica's high reproductive capacity, in addition to the tendency of people to release the snails into the wild, would help to explain the rapid spread of Achatina fulica into new areas, as in Brazil where it was introduced as recently as 1988 but has since spread (Thiengo *et al.*, 2007). The Giant African Land Snail is a voracious herbivore that feeds on a wide range of cultivated plants and even weeds and indigenous plants, thus making it a serious crop pest (see Raut & Barker, 2002 for a comprehensive list of economically important food crops and ornamental and medicinal plants that are susceptible to Achatina fulica). It also scavenges its food from detritus and decaying plant material, which may comprise up to 75% of its diet (Raut & Barker, 2002). Its non-specific food requirements further leads to its success as an introduced species.

Second, *Achatina fulica* possesses traits that facilitate its transport by humans. For instance, the snails can easily be transported in consigned cargoes, whether accidentally or on purpose, and survive the journey of several days with little adverse effect on the "hitchhikers." This was demonstrated by a tourist who came from Hawaii and inadvertently brought a live snail to the mainland USA over a period of ten days (Mead, 1979). During these periods of long distance travel, the snails can undergo aestivation to avoid desiccation (Mead, 1961). Furthermore, *A. fulica* has a wide tolerance for different environmental conditions despite being a tropical snail (Mead, 1979; Raut & Barker, 2002). They have been found to survive temperatures as low as 2⁰ C in India and altitudes as high as 1500 meters in Malaysia (Raut & Barker, 2002). In addition, they can thrive in a range of soil pH, moisture and plant cover conditions as well as withstand a diverse group of predators (Mead, 1979). Lastly, *A. fulica* has and

gardens, though they have also been found in primary and secondary forests in Hawaii, the Bonin Islands, India, Southeast Asia and New Caledonia (Raut & Barker, 2002).

Third, *Achatina fulica* is commonly introduced deliberately and is therefore transported in large numbers and properly cared for, which then increases its chance of survival. In Brazil, *Achatina fulica* was introduced in 1988, probably from Indonesia, when it was heralded as an alternative source of meat. These snails were then distributed for commercial purposes but were subsequently released when people eventually lost interest. As a consequence, Brazil is currently experiencing an explosive stage of the invasion that is characterised by large individuals that are prevalent in urban areas, particularly in gardens (Thiengo *et al.*, 2007). Other deliberate introductions include those in Borneo where duck farmers used the snails as feed (Jarrett, 1931), those in Nepal where the snails were introduced in local gardens and venerated for their religious significance (Budha & Naggs, 2008) and those in the Indo-Pacific where Japanese soldiers and merchants before and during the Second World War used the snails as food and sometimes as pets (Kliks & Palumbo, 1992; Civeyrel & Simberloff, 1996).

Although currently distributed in many areas around the globe, it is possible to elucidate the route of dispersal of *Achatina fulica* since before the 1800's. The snail is thought to be indigenous to East Africa, specifically Kenya and Tanzania. It is believed to have been introduced into Madagascar and Mauritius in the early 19th century (Bequaert, 1950) and subsequently to have spread to the Indian subcontinent, Southeast Asia, most islands of the Pacific (Mead, 1961; Kliks & Palumbo, 1992), the Caribbean (Schotman, 1989) and South America (Paiva, 1999; Thiengo *et al.*, 2007; Borrero *et al.*, 2009). It has also been recently detected in West Africa (Raut & Barker, 2002). There are several pathways or activities that are available to the snail that enables it to spread

quickly to new areas. These are the accidental transfer by humans, usually by hitchhiking onto agricultural machinery and even in cars and trucks (Cowie & Robinson, 2003) and the intentional transfer by humans as pets, for food consumption or for other uses (Mead, 1979; Kliks & Palumbo, 1992; Cowie & Robinson, 2003).

To date, no systematic evaluation of the genetic variation of *Achatina fulica* across global populations has been undertaken. Such data could indicate the number of genetic types that have been introduced in the snail's new range. Furthermore, results from such a global survey would reveal if introduced populations of *A. fulica* are undergoing genetic bottlenecks as a consequence of a lack of genetic variation, or if multiple introductions from various source populations took place that could potentially counteract the effects of bottlenecking.

1.6. Parasites of molluscs

Parasitism is a relationship between two organisms where the parasite thrives on or within the host, which is harmed in some way (Roberts & Janovy, 2005). Many organisms are known to parasitise molluscs. These parasites use molluscs either as intermediate hosts, where the parasite develops but does not reach sexual maturity, as definitive or final hosts where the parasite reaches the adult stage, or as permanent hosts where the entire development of the parasite takes place in the host (Malek & Cheng, 1974; Roberts & Janovy, 2005). Examples of known parasites of molluscs include bacteria such as *Mycobacterium* in the gastropod *Helisoma anceps* (Malek & Cheng, 1974) and *Aeromonas hydrophila* in *Achatina fulica* (Dean *et al.*, 1970), protozoa such as *Hartmanella* sp. in the gastropod *Biomphalaria* (Malek & Cheng, 1974), trematodes such as *Schistosoma japonicum* in the gastropod *Oncomelania quadrasi* (Malek & Cheng, 1974) and *Echinostoma* in the apple snail *Pomacea* (Hollingsworth & Cowie, 2006), and copepod arthropods such as Mytilocola intestinalis in the blue mussel Mytilus edulis (Malek & Cheng, 1974) and nematodes such as Oslerus ostratus in the pulmonate slug Laevicaulis alte and Nemhelix bakeri in the pulmonate snail Helix aspersa (Grewal et al., 2003). Molluscs act as intermediate hosts for several medically important parasites, as exemplified by trematodes such as Schistosoma that leads to schistosomiasis (a liver disease characterised by an enlarged liver and spleen, diarrhea, and bloody urine) (Roberts & Janovy, 2005), Fasciola that induces fasciolariasis (necrosis of the liver) (Roberts & Janovy, 2005), Echinostoma that causes echinostomiasis (an intestinal disease that leads to headache, dizziness, gastic pain, anemia and diarrhea) (Hollingsworth & Cowie, 2006) as well as nematodes such as the lungworm Angiostrongylus eosinophilic cantonensis that leads rat to meningioencephalitis (see below).

1.7. Nematode parasites of Achatina fulica

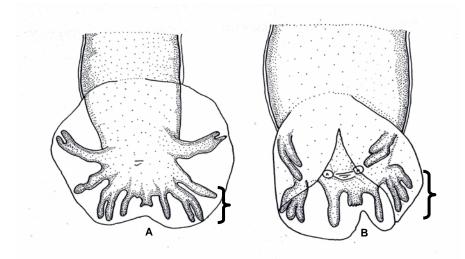
Various nematodes are associated with molluscs (Grewal *et al.*, 2003; Morand *et al.*, 2004), including *Achatina fulica*. Members of the phylum Nematoda are typically bilaterally elongated and tapering at both ends. They also have a characteristic body cavity called a pseudocoelom that is derived embryologically from the blastocoel, which normally disappears during gastrulation in eucoleomate animals but not in nematodes. These animals possess a non-cellular body covering called the cuticle that is shed four times during their lifetime through moulting; these worms therefore have four juvenile stages (sometimes incorrectly referred to as larval stages) that resemble the final adult stage in form. Nematodes include sexually dimorphic species (e.g. the rat lungworm *Angiostrongylus cantonensis*) as well as hermaphroditic species (e.g. the soil nematode *Caenorhabditis elegans*). Other characteristics include a complete digestive system,

absence of circular muscles in the body cavity, and in the case of sexually dimorphic species, the presence of females that are generally larger and males that have a more curled tail (Roberts & Janovy, 2005).

Molluscs are infected by nematodes either as intermediate hosts of the juvenile worms or as definitive or final hosts of the adult worms (Grewal *et al.*, 2003; Morand *et al.*, 2004). In total, 108 species have been found to infect gastropods, with 61 using these gastropods as intermediate hosts and 47 using gastropods as final hosts (Grewal *et al.*, 2003). Evolutionarily speaking, it has been postulated that parasitic nematodes started out as facultative parasites in which free-living forms accidentally infected animals (Adamson, 1986). Morand *et al.* (2004) used Blaxter *et al.*'s (1998) phylogeny of the Nematoda to map the occurrence of parasitism in terrestrial molluscs among the different nematode groups. They hypothesised that nematode parasitism in terrestrial molluscs occurred independently at least five times.

Very limited data are available on nematode species associated with *Achatina fulica*. Nematodes shown to be associated with *A. fulica* include *Oslerus ostratus*, which uses *A. fulica* as an intermediate host (Grewal *et al.*, 2003), *Rhabditis* sp., most likely a facultative parasite of the snail (Viyada, 2005), and the medically important *Angiostrongylus cantonensis*, the rat lungworm, which uses the snail as an intermediate host (see Mead, 1979 for a detailed list of *A. fulica* survey for *A. cantonensis*).

1.8. Angiostrongylus cantonensis: the nematode that hitched along


Angiostrongylus cantonensis is a parasite of rodents that requires a gastropod intermediate host such as Achatina fulica to complete its life cycle. The nematode's definitive or final hosts are murid rodents such as the black rat (*Rattus rattus*), the brown rat (*Rattus norgevicus*), the Pacific rat (*Rattus exulans*), the oriental house rat

(*Rattus tanezuni*), the Philippine forest rat (*Rattus everetti*) and the malabaric bandicoot rat (*Bandicota malabarica*) (Alicata, 1966; Westerlund & Chamberlain, 1969; Marquardt *et al.*, 2000). Humans can also get infected by acquiring the 3rd juvenile stage of the worm from several of its snail or slug intermediate hosts, including *Achatina fulica* (Alicata, 1966; Marquardt *et al.*, 2000), which leads to a disease of the nervous system called eosinophilic meningoencephalitis (EME) or angiostrongyliasis (Marquardt *et al.*, 2000).

1.8.1. The taxonomy of *Angiostrongylus cantonensis*: Nematoda, Rhabditea, Strongylida, Metastrongyloidea, Angiostrongylidae

Angiostrongylus cantonensis belongs to the phylum Nematoda, a group including some of the most abundant animals in the world. There are more than 25,000 described species of nematodes, with 10,000 known to be free-living and more than 15,000 known to be parasitic on animals (Poulin & Morand, 2000; Hugot *et al.*, 2001). Roberts & Janovy (2005) predicted that current figures pertaining to the diversity of the Nematoda are underestimates and that there may be more species of nematodes than there are of insects, which Ruppert *et al.* (2004) estimate to be around 30 million. Nematodes can be divided into two main classes, the Enoplea and the Rhabditea, based on the presence of certain sensilla or small sense organs. Members of the Enoplea possess pouch-like anterior sensilla called amphids whereas members of the Rhabditea, including *Angiostrongylus*, have ventrally coiled amphids; many rhabditeans also possess sensilla called phasmids near the posterior end. Within the Rhabditea is the order Strongylida that includes long, slender worms with males having the characteristic copulatory bursa supported by sensory rays (Roberts & Janovy, 2005). Within the Strongylida is the superfamily Metastrongyloidea whose members utilise mammals as definitive hosts, with many occupying the host lungs during the adult stage (Anderson, 2000).

The genus Angiostrongylus belongs to the family Angiostrongylidae in the Metastrongyloidea. Members of this family have an adult stage that possesses a posterior vulva (Anderson, 2000) but not a buccal cavity or lips at the mouth. They reside in the lungs of the mammalian final hosts and require an invertebrate intermediate host (Roberts & Janovy, 2005). Angiostrongylus itself was regarded by Ubelaker (1986) as a heterogeneous group, and he suggested that, on the basis of the morphological differences in the copulatory bursa in adult males as well as differences in their mammalian final host specificity, the genus should be split into five distinct genera including Parastrongylus (which Ubelaker was resurrecting and was first described by Baylis in 1928 using *Parastrongylus tateronae* as the type species) as well as Angiostrongylus (first described by Baillet in 1866 using Angiostrongylus vasorum as type species). In Parastrongylus, the lateral rays of the copulatory bursa arise from a single common trunk in adult males whereas those in Angiostrongylus arise separately (Fig. 1.3). In terms of their final hosts, Parastrongylus utilises murid rodents whereas Angiostrongylus infects carnivores like dogs, foxes and cats (Ubelaker, 1986). Based therefore on these characteristics, Ubelaker reclassified Angiostrongylus cantonensis as Parastrongylus cantonensis. Other members of Parastrongylus, according to Ubelaker, include Parastrongylus costaricensis (Central and South America, Cuba and southern North America), P. dujardini (Europe) and P. malaysiensis (Malaysia). **Species** retained by Ubelaker in the genus Angiostrongylus are A. vasorum in foxes and dogs (Africa, Europe, North America and South America) (Anderson, 2000) and A. chabaudi in wild cats (central Italy) (Ubelaker, 1986).

Figure 1.3: Adult male bursa of (**A**) *Angiostrongylus*, i.e. *A. vasorum*, and (**B**) *Angiostrongylus* (=*Parastrongylus*), i.e. *A. cantonensis*. Brackets show lateral rays. Note that the lateral rays arise from a common trunk in (**B**) but not in (**A**). From Ubelaker (1986).

The recognition of *Parastrongylus* as a separate genus, however, is not widely accepted and the name *Angiostrongylus* is still used to refer to the genus of *A. cantonensis* and the other species mentioned in the previous paragraph (Kliks & Palumbo, 1992). Molecular data to confirm or refute Ubelaker's designation are also wanting.

1.8.2. Morphology of Angiostrongylus cantonensis

Adult female *A. cantonensis* range from 17 to 33 mm long and 0.28 to 0.5 mm wide, whereas the males tend to be smaller, being only 15 to 22 mm long and 0.25-0.35 mm wide. The worms feed on blood, thus giving a red appearance to their intestines. In females, the intestines intertwine with the uterine tubules, which lend a characteristic barber pole appearance (Marquardt *et al.*, 2000; Roberts & Janovy, 2005). The infective 3^{rd} juvenile stage of the parasite is considerably smaller, around 425-524 µm long and 23-34 µm wide. Although the juvenile is similar morphologically to other

species of lungworms like *Aulurostrongylus abstrutus* and *Anafilaroides rostratus*, it can be subtly distinguished by the fine point termination of the tail (Ash, 1970).

1.8.3. The life cycle of Angiostrongylus cantonensis (Figure 1.4)

The mature adult worms reside for approximately two weeks in the subarachnoid space separating the meninges of the rat brain. After that period, they move into the circulatory system through the venous system until they reach the heart where the females begin laying their eggs. The arterial blood then brings these eggs to the lungs where they get lodged in the alveoli. As the 1st juvenile stage emerges from the eggs, they are passed from the lungs into the trachea until they reach the gut and stay there for 42-45 days before being eliminated through the faeces (Marquardt et al., 2000; Kliks & Palumbo, 1992). A snail or slug intermediate host then gets infected by these juveniles either by ingesting contaminated rodent faeces or by burrowing of the nematodes through the gastropod body wall or respiratory pores (Hollingsworth & Cowie, 2006). These nematodes then progress into the 2^{nd} and 3^{rd} juvenile stages after about 18 days (Marquardt et al., 2000) where they reside mostly in the head-foot region of the gastropod intermediate host, although they can also be found in the lungs, liver and kidneys (Hollingsworth & Cowie, 2006). The 3rd stage juveniles are passed on to definitive hosts such as rats when they ingest infected gastropod intermediate hosts. In the absence of a definitive host ingesting the intermediate host, the 3^{rd} stage juveniles can become quiescent and remain in the intermediate host tissue for months (Hollingsworth & Cowie, 2006). Occasionally, crabs, prawns and planarians act as paratenic hosts in which they passively carry 1st to 3rd juvenile stage worms; consumption of such paratenic hosts can pass on the 3rd stage juvenile worms (Kliks & Palumbo, 1992; Hollingsworth & Cowie, 2006). Once inside the definitive host, the

nematodes normally take only one to two days before they reach the central nervous system through the blood where they mature into adult worms after about 13 days (Kliks & Palumbo, 1992; Marquardt *et al.*, 2000).

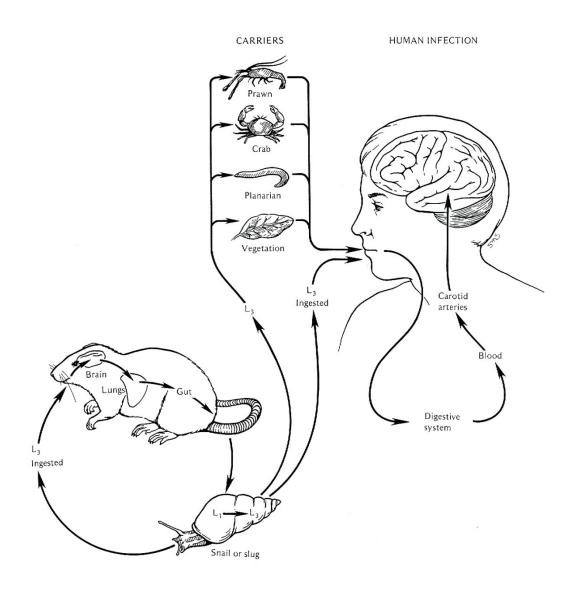


Figure 1.4: Life cycle of Angiostrongylus cantonensis. (From Marquardt et al., 2000).

1.8.4. Natural intermediate hosts of Angiostrongylus cantonensis

Apart from *Achatina fulica*, there are several other gastropods that serve as natural intermediate hosts of *A. cantonensis* (Anderson, 2000). Gastropods so far identified as hosts include the following: *Hemiplecta sagittifera*, *Helicostyla*

macrostoma, Cyclophorus sp., Chlorea fibula (Westerlund & Chamberlain, 1969), Imerinia plebia (Salazar & Cabrera, 1969), Bellamya ingallsiana, Bradybaena similaris, Cipangopaludina chinensis, Deroceras laeve, Euglandina rosea, Girasia peguensis, Indoplanorbis exustus, Laevicaulis alte (also referred to by the name of Veronicella altae in the literature), Macrochlamys resplendens, Microparmarion malayanus, Opeas japonicum, Pupina complanata, Pila ampullacea, P. scutata, Quantula striata, Sarasinula plebeia (=Vaginalus plebeius in the literature) Subulina octona (Anderson, 2000) and Pomacea canaliculata (=Ampullarium canaliculatus in the literature) (Tsai et al., 2001b). Other gastropods that were found experimentally to be susceptible to A. cantonensis infection could potentially become intermediate hosts. They are: Biomphalaria spp. Bithynia sp., Bradybaena oceania, Bulinis spp., Deroceras reticulatum, Drepanotrema simmonsi, Euglandina rosea, Euhadra hickonsis, Ferrissia tenuis, Fossaria ollula, Fruticola despecta, Helicina orbiculata, Helisoma sp., Indoplanorbis exustus, Lanistes carinatus, Limax arborum, L. flavus, L. maximus, L. marginalis, Lymnaea spp., Marisa cornuarietis, Mesodon thyroidus, Onchidium sp., Physa acuta, Planorbis planorbis, Plesiophysa hubendicki, Segmentina hemisphaerula, Semisalcospira libertina, Stagnicola elodes and Succinea lauta (Anderson, 2000).

1.8.5. Medical importance of Angiostrongylus cantonensis

Angiostrongylus cantonensis is the causative agent of eosinophilic meningoencephalitis (EME) or angiostrongyliasis in humans. In recent years, the geographic range of the nematode and the number of types of animal it infects have been growing rapidly, making EME an 'emerging' disease (Prociv *et al.*, 2000). People accidentally acquire the 3^{rd} juvenile stage through any of the following routes of infection: (1) eating raw or undercooked snails or slugs (Marquardt *et al.*, 2000); (2)

drinking water or food such as raw vegetables or salads contaminated with the parasite such as raw vegetables for salads (Wallace & Rosen, 1969; Marquardt et al., 2000); (3) eating raw or undercooked paratenic hosts like crabs, prawns and (by accident) planarians such as *Platydemus* (Kliks & Palumbo, 1992; Marquardt et al., 2000); or (4) handling infected snails followed by failure to wash hands (Wan & Weng, 2004). Since humans are not the natural definitive hosts of A. cantonensis, these worms do not mature into adults inside the human body; however, their presence elicits a whole range of clinical manifestations typical of eosinophilic meningoencephalitis. Symptoms of this disease include headaches, stiffness of the neck, vomiting, paresthesia or abnormal sensation, fever, paralysis and tremors. In response to the presence of the worm, there is also a marked increase in the cerebrospinal fluid and peripheral blood of eosinophils, white blood cells responsible for combating infection and parasites (Kliks & Palumbo, 1992; Marquardt et al. 2000; Lee, 2002). Cases of EME are rarely fatal, with patients recovering after the symptoms subside within ten weeks (Hollingsworth & Cowie, 2006). It is not known how many infective 3^{rd} stage juveniles are necessary to elicit EME in humans (Prociv et al., 2000), although fatal cases often involve infection of hundreds or thousands of nematodes, as in the case of one Korean fisherman who died after consuming infected Achatina fulica in Pago Pago, American Samoa (Kliks et al., 1982). To date, there is no known antihelminthic drug against A. cantonensis, although it is possible to treat infection at an early stage using thiabendazole (Roberts & Janovy, 2005). Most doctors are wary of recommending this drug, however, since worms may be more dangerous dead than alive as they tend to elicit a strong inflammatory reaction that could lead to the formation of a large granuloma and cause further damage (Marquardt et al., 2000; Roberts & Janovy, 2005). On the other hand, mebendazole combined with corticosteroids have been successfully used to treat the symptoms of A. *cantonensis*-induced meningoencephalitis and shorten the course of infection (Tsai *et al.*, 2001a; Wan & Weng, 2004). Aside from humans, other mammals such as dogs (Mason, 1987), horses (Costa *et al.*, 2000), tamarins (Carlisle *et al.*, 1998) and even a captive white-handed gibbon (Duffy *et al.*, 2004) have also been reported to be susceptible to *A. cantonensis* infection.

1.8.6. The dispersal of Angiostrongylus cantonensis

The expanding range of *Angiostrongylus cantonensis* has been attributed largely to the global distribution of rats, although the role of the intermediate hosts such as the Giant African Land Snail should not be ignored. The nematode is believed to have originated either in East Africa (Alicata, 1966) or South or Southeast Asia (Drozdz *et al.*, 1975). Alicata (1966) noted the nearly parallel distribution of *A. cantonensis* and *A. fulica* and postulated that the rapid dispersal of the snail brought about the current geographical distribution of the parasite. Drozdz *et al.* (1975), on the other hand, argued that murid rats were responsible, owing to the long association of the worm with its definitive hosts and the dispersal of the murid rats from tropical Asia. It would be valuable to determine which hypothesis is correct as this would identify which host is primarily responsible for the expanding range of the nematode; hence, appropriate measures could be set in place to control the host. Testing the hypothesis could be addressed by conducting a comprehensive survey to identify *A. cantonensis* among global populations of the nematode's definitive and intermediate hosts.

1.8.7. Molecular identification of A. cantonensis and other nematodes

It is, however, difficult to identify nematodes such as *A. cantonensis* to named species. Few taxonomic experts are available (Floyd *et al.*, 2002), and many worms

lack suitable morphological characters to facilitate identification, particularly in the infective juvenile stages (Newton *et al.*, 1998). An alternative to morphological identification is the use of DNA 'barcodes' that are unique to individual species. DNA barcoding makes use of a small section of a DNA sequence from a standardised region of the genome to identify species (Dasmahapatra & Mallet, 2006). A 650-bp fragment of the 5' end of the mitochondrial cytochrome *c* oxidase subunit I gene (COI) is most commonly used for barcoding in animals (Hajibabaei *et al.*, 2007), although other genes have also been used. For instance, the small subunit (SSU) rRNA gene was employed to rapidly identify individual free-living marine nematodes in Southwest England (Bhadury *et al.*, 2006); the gene was likewise used on the parasitic nematodes of the sardine *Sardinella pilchardus* (Santos *et al.*, 2006). Through DNA barcoding, unidentified individuals of nematodes such as *Angiostrongylus cantonensis* could be assigned to species, irrespective of life cycle stage. This tool is applied here to rapidly identify 3^{rd} stage juvenile *A. cantonensis* from their gastropod intermediate hosts.

1.9. Major objectives

This thesis will address five major issues concerning *Achatina fulica* over five chapters. A separate chapter, Chapter 2, will summarise all the general protocols to be used for the five chapters.

In Chapter 3, the phylogenetic relationships of the six achatinoid families (Achatinidae, Coeliaxidae, Ferussaciidae, Glessulidae, Subulinidae and Thyrophorellidae) will be evaluated using an expanded coverage of the rRNA gene cluster as well as the nuclear actin and histone 3 genes and the mitochondrial cytochrome c oxidase subunit I and the 16S rRNA genes. The monophyly and validity of these taxonomic families will likewise be assessed.

29

In Chapter 4, comprehensive molecular-based phylogenetic analyses will be provided for the first time on the Achatinidae using the same molecular markers to be used in Chapter 3 in order to correlate molecular data with the available morphological data and to provide evidence of relationships among the members of this family. The designation of *Lissachatina* as a subgenus of *Achatina* will likewise be evaluated based on molecular data.

In Chapter 5, genetic variation among global populations of *Achatina fulica* will be examined using the 16S rRNA gene. This study will investigate the movement of *A*. *fulica* out of Africa and its subsequent spread throughout the tropics. It will establish if more than one genetic type has been introduced in the snail's new range and whether genetic bottlenecking is taking place in these populations. The lack of genetic variation, if any, could have a profound impact on the success of *A. fulica* as an invasive species.

In Chapters 6 and 7, focus will be on the nematode parasite of *A. fulica*, *Angiostrongylus cantonensis*. A survey of global populations of *A. fulica* for the parasite will be conducted to determine the possible role of the snail in the spread of the parasite. In Chapter 6, a rapid molecular method of identification for *A. cantonensis* from Philippine samples of *A. fulica* as well as the black slug *Laevicaulis alte* will be developed using a segment of the small subunit (SSU) rRNA gene. Using the same marker, a phylogenetic analysis will also be conducted on representative taxa of the genus *Angiostrongylus* to assess if Ubelaker's designation of *Parastrongylus* has merit based on molecular data. In Chapter 7, global populations of *A. fulica* will be screened for the nematode parasite using the molecular marker developed in Chapter 6. The role of the snail in spreading the parasite will be evaluated in this chapter. In addition, the presence of other types of nematodes in global populations of *A. fulica* will also be reported.

1.10. Literature cited

- Abbott, R.T. 1989. <u>Compendium of Landshells: A Full-color Guide to More Than 2000</u> of the World's Terrestrial Shells. American Malacologists, Inc., Burlington, MA, 240 pp.
- Adamson, M.L. 1986. Modes of transmission and evolution of life histories on zooparasitic nematodes. Canadian Journal of Zoology **64:** 1375-1384.
- Alicata, J. 1966. The presence of *Angiostrongylus cantonensis* in the islands of the Indian Ocean and probable role of the giant African snail, *Achatina fulica*, in the dispersal of the parasite to the Pacific islands. Canadian Journal of Zoology **44**: 1041-1049.
- Allen, J.A. 1983. The inheritance of a shell colour polymorphism in *Achatina fulica* Bowdich from East Africa. Journal of Conchology **31**: 185-189.
- Anderson, R.C. 2000. <u>Nematode Parasites of Vertebrates: Their Development and</u> <u>Transmission, 2nd ed.</u> CABI Publishing, Wallingford, 650 pp.
- Armbruster, G.F.L., Bohme, M., Bernhard, D. and Schegel, M. 2005. The H3/H4 histone gene cluster of land snails (Gastropoda: Stylommatophora). TS/TV ratio, GC3 drive and signals in stylommatohoran phylogeny. Journal of Molluscan Studies 71: 339-348.
- Ash, L.R. 1970. Diagnostic morphology of the third-stage larvae of Angiostrongylus cantonensis, Angiostrongylus vasorum, Aelurostrongylus abstrusus, and Anafilaroides rostatus (Nematoda: Metastrongyloidea). Journal of Parasitology 56(2): 249-253.
- Baker, H.B. 1955. Heterurethrous and aulocopod. Nautilus. 68: 109-112.
- Barker, G.M. 2001. Gastropods on Land: Phylogeny, Diversity and Adaptive Morphology. *In*: Barker, G.M. (ed.), <u>The Biology of Terrestrial Molluscs</u>. CABI Publishing, U.K, pp. 1-146.
- Baillet, C.C. 1866. Strongyle des vaisseaux et du coeur du chien. *Strongylus vasorum* (Nobis). Nouveau Dictionnaire Practique de Medecine, de Chirurgie et d'Hygiene Veterinaires, Paris 8: 587-588.
- Baylis, H.S. 1928. On a collection of nematodes from Nigerian mammals (chiefly rodents). Parasitology **20**: 280-304.
- Bequaert, J.C. 1950. Studies on the Achatinidae, a group of African land snails. Bulletin of the Museum of Comparative Zoology, Harvard **105**: 1-216.
- Bhadury, P., Austen, M.C., Bilton, D.T., Lambshead, P.J.D., Rogers, A.D. and Smerdon, G.R. 2006. Development and evaluation of a DNA-barcoding approach for the rapid identification of nematodes. Marine Ecology Progress Series 320: 1-9.
- Blaxter, M.J., De Ley, P., Garey, J.R., Liu, L.X., Scheldeman, P., Vierstraete, A., Vanfleteren, J.R. Mackey, L.Y., Dorris, M., Frisse, L.M., Vida, J.T. and Thomas, W.K. 1998. A molecular evolutionary framework for the phylum nematode. Nature **392**: 1935-1943.
- Borrero, F.J., Breure, A.S.H., Christensen, C.C., Correoso, M. and Avila, V.M. 2009. Into the Andes: three new introductions of *Lissachatina fulica* (Gastropoda, Achatinidae) and its potential distribution in South America. Tentacle **17**: 6-8.
- Bouchet, P. and Rocroi, J-P. 2005. Classification and nomenclator of the gastropod families. Malacologia **47**(1-2): 1-397.
- Budha, P. and Naggs, F. 2008. The Giant African Land Snail in *Lissachatina fulica* (Bowdich) in Nepal. The Malacologist **50**: 19-21.

- Carlisle, M.S., Prociv, P., Grennan, J., Pass, M.A., Campbell, G.L., and Mudie, A. 1998. Cerebrospinal angiostrongyliasis in five captive tamarins (*Saguinus* spp.). Australian Veterinary Journal **76**(3): 167-170.
- Chen, H.T. 1935. Un noveau nematode pulmonaire, *Pulmonema cantonensis* n.g., n. sp., des rats de Canton. Annales de Parasitologie Humaine et Comparee **13**: 312-317.
- Civeyrel, L. and Simberloff, D. 1996. A tale of two snails: is the cure worse than the disease? Biodiversity and Conservation **5:** 1231-1252.
- Colgan, D.J., Ponder, W.F., Beacham, E. and Macaranas, J.M. 2003. Gastropod phylogeny based on six segments from four genes representing coding or non-coding and mitochondrial or nuclear DNA. Molluscan Research **23**: 123-148.
- Costa, L.R.R., McLure, J.J., Snider III, T.G. and Stewart, T.B. 2000.Verminous meningoencephalitis by *Angiostrongylus* (=*Parastrongylus*) cantonensis in an American miniature horse.Equine Veterinary Education **12**(1):2-6.
- Cowie, R.H. 2000. Non-indigenous land and freshwater molluscs in the islands of the Pacific: conservation impacts and threats. *In*: Shirley, G. (ed.), <u>Invasive Species</u> in the Pacific: A Technical Review and Regional Strategy. South Regional Environment Programme, Apia, pp. 143-172.
- Cowie, R.H. and Robinson, D.G. 2003. Pathways of introduction of nonindigenous land and freshwater snails and slugs. *In*: Ruiz, G. & Carlton, J.T. (ed.), <u>Invasive</u> <u>Species: Vectors and Management Strategies</u>. Island Press, Washington, D.C., pp. 93-122.
- Dasmahapatra, K.K. and Mallet, J. 2006. DNA barcodes: recent successes and future prospects. Heredity **97**: 254–255.
- Dean, W.W., Mead, A.R. and Northy, W.T. 1970. *Aeromonas liquefaciens* in the Giant African Land Snail, *Achatina fulica*. Journal of Invertebrate Pathology **16**: 346-351.
- Dlugosch, K.M. and Parker, I.M. 2008. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Molecular Ecology **17**: 431-449.
- Drozdz, J., Gorecka, T. and Binh, N.H. 1975. The occurrence of nematodes of the subfamily Angiostrongylinae in Vietnam and the question of geographical origin of *Parastrongylus cantonensis* (Chen, 1935). Acta Parasitologica Polonica 23: 115-126.
- Duffy, M.S., Miller, C.L., Kinsella, J.M. and de Lahunta, A. 2004. *Parastrongylus cantonensis* in a non-human primate, Florida. Emerging Infectious Diseases **10**(12): 2004.
- Dutra-Clarke, A.V.C., Williams, C., Dickstein, R., Kaufer, N. and Spolita, J.R. 2001. Inferences on phylogenetic relationships of Succineidae (Mollusca, Pulmonata) based on the 18S rRNA gene. Malacologia **43**: 223-236.
- Emberton, K.C., Kuncio, G.S., Davis, G.M., Phillips, S.M., Monderewicz, K.M. and Hua Guo, Y. 1990. Comparison of recent classifications of stylommatophoran land snail families, and evaluation of large-ribosomal-RNA sequences for their phylogenies. Malacologia **31**: 327-352.
- Floyd, R., Abebe, E., Papert, A. and Blaxter, M. 2002. Molecular barcodes for soil nematode identification. Molecular Ecology **11**: 839-850.
- Freeland, J.R. 2005. Molecular Ecology. John Wiley & Sons, Ltd., U.K., 388 pp.
- Grande, C., Templado, J., Lucas Cervesa, J. and Zardoya, R. 2004. Molecular phylogeny of Euthyneura (Mollusca: Gastropoda). Molecular Biology and Evolution **21**(2): 303-313.

- Graur, D. and Li, W-H. 2000. <u>Fundamentals of Molecular Evolution</u>, 2nd edition. Sinauer Associates, Inc., U.S.A., 481 pp.
- Grewal, P.S., Grewal, S.K., Tan, L. and Adams, B.J. 2003. Parasitism of molluscs by nematodes: types of associations and evolutionary trends. Journal of Nematology **35**(2): 146-156.
- Hajibabaei, M., Singer, G.A.C., Hebert, P.D.N., and Hickey, D.A. 2007. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends in Genetics **23**(4): 167-172.
- Holland, B.S. and Hadfield, M.G. 2004. Origin and diversification of the endemic Hawaiian tree snails (Achatinellidae: Achatinellinae) based on molecular evidence. Molecular phylogenetics and evolution **32**: 588-600.
- Hollingsworth, R.G & Cowie, R.H. 2006. Apple snails as disease vectors. *In*: Joshi, R.C. and Sebastian, L.C. (ed.), <u>Global Advances in Ecology and Management of</u> <u>Golden Apple Snails</u>. Philippine Rice Research Institute, Muñoz, Nueva Ecija, pp. 121-132.
- Hugot, J.P., Baujard, P. and Morand, S. 2001. Biodiversity in helminthes and nematodes as a field study: an overview. Nematology **3**(3): 199-208.
- Jarrett, V.H.C. 1931. The spread of the snail *Achatina fulica* to South China. The Hong Kong Naturalist **II**(4): 262-264.
- Kliks, M.M., Kroenke, K. and Hardman, J.M. 1982. Eosinophilic radiculomyeloencephalitis: an angisotrongyliasis outbreak in American Samoa related to ingestion of *Achatina fulica* snails. American Journal of Tropical Medicine and Hygiene **31**: 1114-1122.
- Kliks, M.M. and Palumbo, N.E. 1992. Eosinophilic meningitis beyond the Pacific Basin: the global dispersal of a peridomestic zoonosis caused by *Angiostrongylus cantonensis*, the nematode lungworm of rats. Social Science & Medicine 34(2): 199-212.
- Kolbe, J.J., Glor, R.E., Schettino, L.R., Lara, A.C., Larson, A. and Losos, J.B. 2007. Multiple sources, admixture, and genetic variation in introduced anolis lizard populations. Conservation Biology 21(6): 1612-1625.
- Lee, D.L. (ed.) 2002. <u>The Biology of Nematodes.</u> Taylor & Francis, London, U.K, 635 pp.
- Lowe, S., Browne, M. and Boudejas, S. 2000. <u>100 of the World's Worst Invasive</u> <u>Alien Species</u>. <u>A selection from the Global Invasive Species Database</u>. Invasive Species Specialisty Group, IUCN, Auckland, 12 pp.
- Lydeard. C., Holznagel, W.E., Schnare, M.N. and Gutell, R.R. 2000. Phylogenetic analysis of molluscan mitochondrial LSU rDNA sequences and secondary structures. Molecular Phylogenetics and Evolution **15**(1): 83-102.
- Malek, E.A. and Cheng, T.C. 1974. <u>Medical and Economic Malacology</u>. Academic Press, New York, 398 pp.
- Marquardt, W.C., Demaree, R.S. and Grieve, R.B. 2000. <u>Parasitology and Vector</u> <u>Biology, 2nd ed.</u> Academic Press, San Diego, California, U.S.A. 702 pp.
- Mason, K.V. 1987. Canine neural angiostrongyliosis: the clinical and therapeutic features of 55 natural cases. Australian Veterinary Journal **64**:201-203.
- Mead, A.R. 1961. <u>The Giant African Snail: A Problem in Economic Malacology.</u> University of Chicago Press, U.S.A, 257 pp.
- Mead, A.R. 1979. Economic malacology with particular reference to Achatina fulica. In: Fretter, V. and Peake, J. (eds.) <u>Pulmonates, Vol. 2B</u>. Academic Press, London, 150 pp.

- Mead, A.R. 1991. Anatomical criteria in the systematics of the Achatinidae (Pulmonata). *In:* Meier-Brook, C. (ed.), <u>Proceedings of the Tenth International</u> <u>Malacological Congress</u>. Tubingen, pp. 549-553.
- Mead, A.R. 1994. A new subfamily and genus in Achatinidae (Pulmonata: Sigmurethra). Bulletin of the Natural History Museum (Zoology) **60**: 1-37.
- Mead, A.R. 1995. Anatomical studies reveal new phylogenetic interpretations in *Lissachatina* (Pulmonata: Achatinidae). Journal of Molluscan Studies **61**: 257-273.
- Morand, S., Wilson, M.J. and Glen, D.M. 2004. Nematodes (Nematoda) parasitic in terrestrial gastropods. *In:* Barker, G.M. (ed.), <u>Natural Enemies of Terrestrial Molluscs</u>. CABI Publishing, New Zealand, pp. 525-557.
- Newton, L.A., Chilton, N.B., Beveridge, I., Hoste, H., Nansen, P. and Gasser, R.B. 1998. Genetic markers for strongylid nematodes of livestock defined by PCR-based restriction analysis of spacer rDNA. Acta Tropica **69**: 1-15.
- Nordsieck, H. 1992. Phylogeny and system of the Pulmonata (Gastropoda). Archiv fur Molluskendkunde **121**: 31-52.
- Novack, S.J. and Mack, R.N. 1993. Genetic variation in *Bromus tectorum* (Poaceae): comparison between native and introduced populations. Heredity **71**: 167-176.
- Paiva, C.L. 1999. Introducao de Achatina fulica (Mollusca, Achatinidae) no Brasil: responsabilidade profissonal e informacao t, cnica. In: Bovi, M.L.A., Betti, J.A., Veiga, R.F.A. (ed.), <u>Encontro sobre Educacao Ambiental na Agricultura</u>. Campinas, Instituto Agron'mico, Brasil, p. 29.
- Passamaneck, Y.J., Schander, C. and Halanych, K.M. 2004. Investigation of molluscan phylogeny using large-subunit and small-subunit nuclear rRNA sequences. Molecular Phylogenetics and Evolution **32**: 25-38.
- Pilsbry, H.A. 1900. On the zoological position of *Achatinella* and *Partula*. Proceedings of the Academy of Natural Science. Philadelphia. **52**: 561-567.
- Poulin, R. and Morand, S. 2000. The diversity of parasites. Quarterly Review of Biology **75**(3): 277-293.
- Primack, R.B. 2006. <u>Essentials of Conservation Biology</u>, 4th edition. Sinauer Associates, Inc., U.S.A., 585 pp.
- Prociv, P., Spratt, D.M. and Carlisle, M.S. 2000. Neuro-angiostrongyliasis: unresolved issues. International Journal for Parasitology **30**: 1295-1303.
- Raut, S.K. and Barker, G.M. 2002. *Achatina fulica* Bowdich and Other Achatinidae as Pests in Tropical Agriculture. pp. 55-114. *In* G.M. Barker (ed.), <u>Molluscs as</u> <u>Crop Pests</u>. CABI Publishing: Hamilton, New Zealand, pp. 55-114.
- Remigio, E.A. and Hebert, P.D.N. 2003. Testing the utility of partial COI sequences for phylogenetic estimates of gastropod relationships. Molecular Phylogenetics and Evolution **29**: 641-647.
- Roberts, L.S. and Janovy, J. Jr. 2005. <u>Gerald D. Schmidt & Larry S. Roberts'</u> <u>Foundations of Parasitology, 7thed.</u> McGraw-Hill Co., Inc.: U.S.A. 702 pp.
- Ruppert, E.E., Fox, R.S. and Barnes, R.D. 2004. <u>Invertebrate Zoology: A Functional</u> <u>Evolutionary Approach, 7th ed.</u>, Brooks/Cole-Thomson Learning, USA, 963 pp.
- Salazar, N.P. and Cabrera, B.D. 1969. *Angiostrongylus cantonensis* in rodent and molluscan hosts in Manila and suburbs. Acta Medica Philippina. **6**(1): 20-25.
- Santos, A.T., Sasal, P., Verneau, O. and Lenfent, P. 2006. A method to detect the parasitic nematodes from the Family Anisakidae, in *Sardina pilchardus*, using specific primers of 18 S DNA gene. European Food Research Technology **222**: 71-77.

- Schileyko, A.A. 1999. <u>Treatise on Recent Terrestrial Pulmonate Molluscs, Part 4:</u> <u>Draparnaudiidae, Caryodidae, Macrocyclidae, Acavidae, Clavatoridae,</u> <u>Dorcasiidae, Sculptariidae, Corillidae, Plectopylidae, Megalobulimidae,</u> <u>Strophocheilidae, Cerionidae, Achatinidae, Subulinidae, Glessulidae,</u> <u>Micractaeonidae, Ferussaciidae.</u> Ruthenica, Moscow, 129 pp.
- Schotman, C.Y.L. 1989. Data sheet on the giant African snail Achatina fulica Bowdich (Mollusca: Achatinidae). In: PROVEG No. 19. FAO Regional Office of Latin America and the Caribbean Plant quarantine Action Program, pp. 16-21.
- Simberloff, D., Parker, I.M. and Windle, P.N. 2005. Introduced species policy, management, and future research needs. Frontiers in Ecology and Environment 3(1): 12-20.
- Simroth, H. and Hoffmann, H. 1908-1928. <u>Pulmonata</u>. Bronns Klassen and Ordnungen des Tier-Reichs, 3, 2, 2: 1354 pp.
- Solem, A. 1959. Systematics of the land and fresh-water Mollusca of the New Hebrides. Fieldiana: Zoology **43**(1): 1-359.
- Solem, A. 1978. Classification of the Land Mollusca. *In*: Fretter, V. and Peake, J. (ed.), <u>Pulmonates, Vol. 2A</u>: Systematics, Evolution and Ecology. Academic Press, U.K., pp. 49-97.
- Solem, A. 1984. A world model of land snail diversity and abundance. *In*: Solem, A. & van Bruggen, A.C. (ed.), <u>World-wide Snails</u>. Brill/Backhuys, Leiden, pp. 6-22.
- Steinke, D., Albrecht, C. and Pfenninger, M. 2004. Molecular phylogeny and character evolution in the Western Palaearctic Helicidae *s.l.* (Gastropoda: Stylommatophora). Molecular Phylogenetics and Evolution **32**: 724-734.
- Suarez, A.V. and Tsutsui, N.D. 2008. The evolutionary consequences of biological invasions. Molecular Ecology **17**: 351-360.
- Thiengo, S.C., Faracas, F.A., Salgado, N.C., Cowie, R.H. and Fernandez, M.A. 2007. Rapid spread of an invasive snail in Brasil. Biological invasions **9**: 693-702.
- Thiele, J. 1929- 1935. Handbuch der systematischen Weichtierkunde. Gustav Fischer, Jena, 1154 pp.
- Thollesson, M. 1999. Phylogenetic analysis of the Euthyneura (Gastropoda) by means of the 16S rRNA gene: use of a 'fast' gene for 'higher-level' phylogenies. Proceedings of the Royal Society of London Series B **266**: 75-83.
- Tillier S. 1989. Comparative morphology, phylogeny and classification of land slugs and snails (Gastropoda: Pulmonata: Stylommatophora). Malacologia. **30**:1-303.
- Tongkerd, P., Lee, T., Panha, S., Burch, J.B. and Foighil, D.O. 2004. Molecular phylogeny of certain Thai gastrocoptine micro land snails (Stylommatophora: Pupillidae) inferred from mitochondrial and nuclear ribosomal DNA sequences. Journal of Molluscan Studies **70**(2): 139-147.
- Tsai, H.C., Liu, Y.C. and Kunin, C.M. 2001a. Eosinophilic meningitis caused by *Angiostrongylus cantonensis*: report of 17 cases. American Journal of Medicine **111**(2): 109-114.
- Tsai, T.H., Liu, Y.C., Wann, S.R., Lin, W.R., Lee, S.S.J., Lin, H.H., Chen, Y.S., Yen, M.Y. and Yen, C.M. 2001b. An outbreak of meningitis caused by *Angiostrongylus cantonensis* in Kaohsiung. Journal of Microbiology, Immunology & Infection 34: 50-56.
- Ubelaker, J.E. 1986. Systematics of species referred to the genus *Angiostrongylus*. Journal of Parasitology **72**(2): 237-244.
- Van Bruggen, A.C. 1995. Biodiversity of the Mollusca: a time for a new approach. *In*: van Bruggen, A.C. and Wells, S.M. (ed.), <u>Biodiversity and Conservation of the Mollusca</u>. Backhuys Publishers, Oegstgeest-Leiden, the Netherlands, pp. 1-19.

- Vaught, K.C. 1989. <u>A classification of the living mollusca</u>. American Malacologists, Inc., Melbourne, FL, 195 pp.
- Viyada, S. 2005. Nematodes in alimentary tracts of Giant African Snails (*Achatina fulica*) in Thailand. Kamphaengsaen Academy Journal **3**(1): 37-41.
- Wade, C.M. and Mordan, P.B. 2000. Evolution within the gastropod molluscs: using the ribosomal RNA gene cluster as an indicator of phylogenetic relationships. Journal of Molluscan Studies **66**: 565-570.
- Wade, C.M., Mordan, P.B. and Clarke, B.C. 2001. A phylogeny of the land snails (Pulmonata: Gastropoda). Proceedings of the Royal Society of London Series B. 268: 413-422.
- Wade, C.M., Mordan, P.B. and Naggs, F. 2006. Evolutionary relationships among the pulmonate land snails and slugs (Pulmonata, Stylommatophora). Biological Journal of the Linnean Society 87: 593-610.
- Wallace, G.D. and Rosen, L. 1969. Molluscan hosts of Angiostrongylus cantonensis on Pacific Islands. The American Journal of Tropical Medicine and Hygiene 18(2): 206-216.
- Wan, K.S. and Weng, W.C. 2004. Eosinophilic meningitis in a child raising snails as pets. Acta Tropica 90: 51-53.
- Westerlund, N.C. and Chamberlain, M. 1969. Further observations on *Angiostrongylus* cantonensis in the Philippines. Acta Medica Philippina **6**(1): 3-11.
- Winnepenninckx, B., Steiner, G., Backeljau, T. and De Wachter, R. 1998. Details of gastropod phylogeny inferred from 18S rRNA sequences. Molecular Phylogenetics and Evolution 9(1): 55-63.

CHAPTER 2 - General Protocols

Summarized in this chapter are general protocols that are referred to in the succeeding chapters. A brief description, along with some basic concepts, accompanies each method.

2.1. DNA extraction methods

DNA from fresh or preserved samples of snails and nematodes was extracted using several extraction protocols. Each method is described below, along with details of the rationale for their use. As the DNA extracts were used for subsequent PCR amplification, the methods emphasized the removal of polysaccharides and other PCR inhibitors (Demeke & Adams, 1992) as well as nuclease enzymes that could cleave DNA (Rolfs *et al.*, 1992).

2.1.1. DNA extraction of snail tissues using the CTAB protocol (modified from Hillis *et al.* (1996)

This standard and cost-effective protocol was used to extract DNA from snail tissues used for phylogenetic analyses in Chapters 3 and 4. The protocol was applied to fresh, fresh frozen and ethanol-preserved specimens. Traditionally, this technique also includes phenol (Rolfs *et al.*, 1992) but this was excluded here as phenol is a very toxic substance.

- For ethanol preserved tissues, the tissue slices were soaked in 1 ml TE buffer (10 mM Tris-HCl, 1mM EDTA) for approximately 1 hour in order to remove excess ethanol to soften the tissue prior to DNA extraction.
- Tissue was cut into small pieces, placed into 500 μl of CTAB solution [100mM Tris-HCl pH 8, 20mM EDTA pH 8, 1.4 mM NaCl, CTAB 2% (w/v)] and ground

using sterile glass beads and a plastic pestle. CTAB (cetyltrimethylammonium bromide) is a non-ionic detergent that precipitates polysaccharides and lyses cells (Richards *et al.*, 1995).

- 3. 20 μ l of Proteinase K (10mg/ml), an enzyme that digests proteins such as nucleases that cleave naked DNA, was added to each tube. This was followed by 10 μ l of β -mercaptoethanol, which precipitates polyphenolics (Rolfs *et al.*, 1992). The tubes were then vortexed then incubated at 55^o C for at least one hour until the tissue slices were completely digested.
- 4. 500 μl of ice-cold chloroform-isoamyl alcohol (24:1) was added, after which the tubes were inverted several times for 5 minutes. This separated the DNA from proteins (Rolfs *et al.*, 1992). The tubes were then centrifuged for 10 minutes at 13,000 rpm, after which the aqueous phase was transferred to a new tube (~400 μl). When necessary (i.e. there were a lot of proteins), step 4 was repeated.
- 5. 2.5 volumes (~1 ml) of ice-cold 95% ethanol and 1/10 volume (~40 μ l) of 3M sodium acetate (NaOAc) were added to the mix followed by overnight incubation at -80^o C to precipitate the DNA (Rolfs *et al.*, 1992). The tubes were centrifuged for 15 minutes at 13,000 rpm, then the supernatant was carefully removed.
- 6. The remaining pellets were washed with 500 μ l of ice-cold 70% ethanol and centrifuged for five minutes at 13,000 rpm to remove salts and small organic molecules. The ethanol was carefully removed afterwards.
- The remaining pellets were air-dried on a heat block at 45°C for a maximum of 15 minutes. The pellets were then resuspended in 150 µl TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.5).

- Each suspension was then boiled for 15 min at 100°C to denature any remaining enzymes in order to prolong the life of the DNA extract.
- 9. The DNA extracts were stored at -80° C until use.

2.1.2. DNA extraction of snail tissues using the Nucleon[®] PhytopureDNA[™] Purification Kit

Because of its relatively fast and simple use, the Nucleon® PhytopureDNATM kit was used as an alternative to the CTAB protocol (Section 2.1.1) in extracting DNA from snail tissues used for phylogenetic analyses (Chapters 3 and 4) as well as for the global genetic survey of *A. fulica* populations (Chapter 5). It produced no discernible difference in DNA quality in comparison to the CTAB method. Like CTAB, this kit allowed for the precipitation of polysaccharides. The protocol below generally followed the manufacturers' instructions except that volumes indicated were half of what was recommended while the times prescribed were lengthened.

- 300 μl of reagent 1 was added to a tube containing approximately 0.1 g snail tissue from the foot muscle that was previously ground using sterile glass beads and plastic pestle. After mixing thoroughly, 100 μl of reagent 2 was added. The tubes were inverted several times until a homogenous mixture was obtained.
- The tubes were placed in a 65[°] C water bath for at least 30 minutes with regular manual agitation until the tissues were fully digested.
- 3. The tubes were then placed in ice for at least 30 minutes.
- 4. 250 μl of ice-cold chloroform was added followed by 50 μl Phytopure DNA extraction resin suspension that was thoroughly shaken prior to use. The tubes were inverted for 10 minutes followed by centrifugation at 13,000 rpm for 10

minutes. The DNA-containing phase above the resin layer was then transferred into a fresh tube.

- 5. An equal volume (~400 μl) of cold isopropanol was added, after which the tubes were gently inverted several times to precipitate the DNA. The tubes were centrifuged at 13,000 rpm for 5 minutes to pellet the DNA. The isopropanol was pipetted out and discarded.
- 6. The DNA pellet was washed with 1.0 ml 70% ethanol, then centrifuged at 13,000 rpm for 5 minutes. The ethanol was pipetted out and discarded.
- The remaining DNA pellets in the tubes were air-dried for a maximum of 15 minutes at 45-55⁰ C on a heat block.
- The DNA pellets were resuspended in 150 μl TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.5) and boiled for 15 minutes at 100°C.
- 9. The DNA extracts were stored at -80° C until further use.

2.1.3. DNA extraction of snail tissues using the NaOH-lysis method

This method was used on the *Achatina fulica* population samples (Chapter 5) and was chosen over the two previous methods because it was considerably cheaper to use even if the quantity of DNA extracted was slightly less than that extracted in the previous methods. This disadvantage was offset by using more tissue, which could be readily obtained when using *A. fulica* population samples.

- 1. Tissue slices were ground in microfuge tubes containing 200 μ l of 0.1 N NaOH using sterile glass beads and a plastic pestle. The samples were boiled at 95-100⁰ C for 20 minutes to lyse the cells.
- 2. 100 μ l of sterile distilled water and 300 μ l of chloroform-isoamyl alcohol (24:1) were added. The tubes were vortexed, then centrifuged at 13,000 rpm for 10

minutes. The upper phase ($\sim 300\mu l$) was collected and transferred into new tubes.

- 3. An equal volume of isopropanol (~ 300μ l) was added to precipitate the DNA. The tubes were inverted several times, then stored at -80° C for at least one hour.
- 4. The tubes were centrifuged at 13,000 rpm for 15 minutes, after which the isopropanol was carefully removed.
- 5. The pellets were washed with 500 μ l of 70% ice cold ethanol then centrifuged for 5 minutes at 13,000 rpm to remove salts and small organic molecules. The ethanol was carefully removed.
- 6. The DNA pellets were air dried on a heat block at 45°C for a maximum of 15 minutes, after which they were resuspended in 150 μl TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.5). Each suspension was then boiled for 15 minutes at 100°C.
- 7. The DNA extracts were stored at -80° C until further use.

2.1.4. DNA extraction of single nematodes using NaOH digestion

This method is a modification of the NaOH lysis method used to extract DNA from individual nematodes (Floyd *et al.*, 2002). The method was used on nematodes extracted from the gastropod intermediate hosts (Chapters 6 and 7) as well as on the adult angiostrongylid nematodes used for phylogenetic analyses and as references for molecular barcoding (Chapter 6).

 Each nematode was placed in a separate tube containing 20 µl 0.25 M NaOH to digest the cuticle and cells. The tubes were centrifuged briefly to ensure that the nematodes were fully immersed in NaOH. This was followed by overnight incubation at 25° C (or 3-16 hours; beyond that, over-digestion could lead to less intense or infrequent bands during PCR amplification).

- 2. The tubes were heated for three minutes at 95° C, then cooled to room temperature. The tubes were centrifuged briefly to collect any liquid along the sides and the lid.
- 3. The following were added in succession: 4 μ l 1.0 M HCl to neutralize the NaOH; 10 μ l 0.5 M Tris-HCl, and 5 μ l 2% Triton X-100, a strong detergent that disrupts the cell membranes and effectively lyses the cells.
- 4. The tubes were mixed and centrifuged briefly, then heated for 3 minutes at 95^oC.
 The samples were cooled to room temperature (pH of digest should be between 8 and 9).
- 5. The DNA extracts were stored at -80° C until further use.

2.2. Polymerase chain reaction (PCR)

Polymerase chain reaction (PCR) entails the rapid amplification *in vitro* of specific DNA segments using the same principles involved in DNA replication. This technique was used to amplify fragments of the nuclear ribosomal (r)RNA cluster, actin and histone 3 genes of snails and the small subunit (SSU) rRNA of nematodes as well as the mitochondrial cytochrome c oxidase subunit I (COI) and 16S rRNA genes of snails. Crucial in any successful PCR is the pair of primers that bind to specific regions of the complementary strands and the DNA polymerase that facilitates the amplification. Other components of PCR are the deoxynucleotide triphosphates (dNTPs) that are incorporated in the growing chain, and MgCl₂ that acts as the enzyme co-factor of the DNA polymerase. There are three stages in PCR that are repeated over a number of cycles; these are: (1) denaturation of the double stranded DNA at 94^{0} C; (2)

annealing of the PCR primers to target sites in the DNA at specific temperatures; and (3) extension of the growing strand of synthesized DNA at 72^{0} C through the activity of the DNA polymerase (Reece, 2004).

2.2.1. PCR primers

Primers are short oligonucleotides (17-30 nucleotides) that bind to specific targets in the DNA (Reece, 2004). Several factors need to be considered for PCR primers to successfully amplify their intended targets. First, the melting temperature (T_m) of each primer in the primer pair, calculated as 2(A+T)+4(C+G), where A, C, G and T refer to the nitrogenous bases of the oligonucleotide, should be approximately equal so that they anneal to their target sites at almost the same time (Reece, 2004). Second, primers should not have strings of repeated nucleotides within their sequences in order to prevent annealing to non-specific targets that exhibit strings of complementary repeated nucleotides (Reece, 2004). Third, primers should not contain complementary sequences with each other or within themselves as these would result in primer dimers and secondary structures, respectively, which would lead to nonamplification (Reece, 2004). Fourth, the 3' end of the primers should match perfectly the target region for the polymerase enzyme to properly extend the primer beginning at the 3' end (Reece, 2004). Fifth, provided that the 3' ends of the primers match with their targets, some mismatched pairing could form partial bonds between the primer and the target. For example, G-T bonds also occur with some stability. Such a phenomenon could be taken advantage of when designing primers that need to be applied across many taxa in which ambiguous positions could potentially be present in the primerbinding sites. If a position in the target region could either be a C or a T, then the primer would be assigned a G for that position in order to bind to either C or T of the

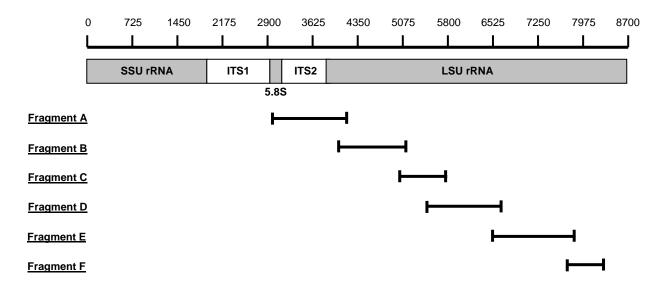
target. Likewise, if the target contains a position that could either be an A or a G, then the primer that binds to it should preferentially contain a T for that corresponding position (Palumbi, 1996). Sixth, the length of the product being amplified by the primer pair would determine the duration of the extension step of the PCR. For instance, 30 seconds are generally needed to amplify products less than 500 bp, 60 seconds for products between 500 and 1500 bp, and 90 seconds for products longer than 1500 bp (Palumbi, 1996). Lastly, more than one round of PCR could be undertaken to ensure the success of amplification of the target segment. For instance, the product of the first round of PCR using one set of primers could be used as template for the second round using an internal set of primers in a two-step process called nested PCR (Aurelius *et al.*, 1991). This was applied to the rRNA cluster and the actin gene in which the first pair of primers amplified a larger fragment (approximately 4000 bp for the rRNA cluster and around 900 bp for the actin) while the second round made use of primer pairs that bound to targets within the larger fragments. This process facilitated the annealing of the primers in the second round where the target regions were more readily available.

2.2.1.1. Snail PCR primers

2.2.1.1.1. Nuclear genes

2.2.1.1.1.1. Ribosomal RNA (rRNA) gene cluster

The nuclear ribosomal RNA gene family encodes the small and large subunit rRNA genes that are incorporated into the small subunit and large subunit, respectively, of the ribosome that facilitates gene translation into amino acid sequences (Lewin, 2008). The gene family consists of five parts that are transcribed as a single unit: (1) the small subunit rRNA gene (SSU or 16-18S); (2) the first internal transcribed spacer (ITS 1); (3) the 5.8S gene; (4) the second internal transcribed spacer (ITS-2); and (5) the LSU rRNA gene (26-28S). A 5S gene found downstream of the LSU gene is separated from this array by an intron or a non-transcribed spacer and is independently transcribed in eukaryotes (Graur & Li, 2000; Lafontaine & Tollervey, 2001; Klug et al., 2007). The ribosomal RNA gene cluster is repeated in a tandem array over the genome, with the actual number of copies varying across different taxa; for instance, nematodes have 50 to 100 copies, some mammals up to several hundred copies, while plants have up to thousands (Long & Dawid, 1980). The function of these genes in protein translation means that the genes are required in many copies and that these copies should be homogenous. The identity of these copies within a species is maintained by concerted evolution through purifying selection in which new variants are eliminated, thus leading to sequence homogeneity within a species (Gasser & Newton, 2000; Graur & Li, 2000). Variation between copies of the rRNA array in a species is rare; in land snails, variation has only ever been found in the ITS as detected by ambiguous positions in direct sequences of the ITS (Wade, pers comm.). The choice of this gene cluster for


45

phylogenetic study is ideal for several reasons: (1) it is easy to PCR amplify because more copies are available for the PCR primers to anneal to; (2) the genes are present in all animal taxa because of their conserved function in RNA translation into proteins; and (3) regions within the genes exhibit variable evolutionary rates, with some regions that are very conserved and are thus ideal for primer binding sites, while other regions are variable enough to be phylogenetically informative (Hillis & Dixon, 1991).

The primers listed in Table 2.1 were used to amplify an approximately 4000 nucleotide fragment of the rRNA gene cluster that was employed as a marker for the snail phylogenetic analyses (Chapters 3 and 4). The amplified region included nearly the entire large subunit (LSU) rRNA gene as well as the internal transcribed spacer 2 (ITS 2) region and about 80 nucleotides of the 5.8S rRNA gene (Figure 2.1). Actual differences in length of the amplified products among taxa were predominantly due to variations in length in the ITS 2 region and to a lesser extent the minor variations in the variable regions in the LSU. The rRNA cluster was amplified using nested PCR. The first round made use of the LSU-1 and LSU-12 or the LSU-2 and LSU-12 primer pairs. This served as the 1^0 PCR for the rRNA gene fragment. Using the primary PCR products as template, the succeeding rounds of PCR (2^0 PCR) amplified the internal rRNA fragments (fragment A using primers LSU-1/1iii and LSU-3/3iii; fragment B using LSU-2 and LSU-5; fragment C using primers LSU-4ii and LSU-7/7i; fragment D using LSU-6/6ii and LSU-9/9ii; fragment E using LSU-8/8ii and LSU-11/11ii; and fragment F using LSU-10/10i and LSU 12/12i; see also Table 2.1).

LSU Fragment	Primers	Reference		
A	LSU-1 (sense): 5'-CTAGCTGCGAGAATTAATGTGA-3' LSU-3 (anti-sense): 5'-ACTTTCCCTCACGGTACTTG-3'	Wade & Mordan (2000); Wade <i>et al.</i> (2001); Wade <i>et al.</i> (2006)	~900-1200 (difference due mostly to variable size of the ITS2 region;	
	LSU-1iii (sense): 5'-TGCGAGAATTAATGTGAATTGC-3' LSU-3iii (anti-sense): 5'-ACGGTACTTGTCCGCTATCG-3'	designed by C. Wade	see also Fig. 2.1)	
В	LSU-2 (sense): 5'-GGGTTGTTTGGGAATGCAGC-3' LSU-5 (anti-sense): 5'-GTTAGACTCCTTGGTCCGTG-3'	Wade & Mordan (2000); Wade <i>et al.</i> (2001); Wade <i>et al.</i> (2006)	~580	
С	LSU-4ii (sense): 5'-GTCGGCATTCCACCCGACC-3' LSU-7 (anti-sense): 5'- GCAGGTGAGTTGTTACACACTC-3' LSU-7i (anti-sense): 5'-GTTGTTACACACTCCTTAGCGG-3'	designed by C. Wade	~700	
D	LSU-6 (sense): 5'-AAGGTGCCAAACGCTGACGC-3' LSU-6ii (sense): 5'-GTGCCAAACGCTGACGCTCA-3' LSU-9 (anti-sense): 5'-CAGTCCTCAGAGCCAATCCTT-3' LSU-9ii (anti-sense): 5'-ACCCAGTCCTCAGAGCCAATC-3'	designed by C. Hudelot	~850	
E	LSU-8 (sense): 5'-CCATATCCGCAGCAGGTCTC-3' LSU-8ii (sense): 5'-GTGCACAGCCTCTAGTCGATA-3' LSU-11 (anti-sense): 5'-CTGAGCTCGCCTTAGGACAC-3' LSU-11ii (anti-sense): 5'-TCCTCCTGAGCTCGCCTTAG-3'	designed by C. Hudelot	~850	
F	LSU-10 (sense): 5'-ATCCGCTCTGAAGACAGTGTC-3' LSU-10i (sense): 5'-GGCCGCGATCCGTCTGAAGA-3' LSU-12 (anti-sense): 5'-TTCTGACTTAGAGGCGTTCAG-3' LSU-12i (anti-sense): 5'-GGCTTCTGACTTAGAGGCGTT-3'	designed by C. Hudelot	~500	

Table 2.1: Summary of the rRNA primers

Figure 2.1: Schematic diagram of the rRNA gene cluster based on the complete sequence of *Rattus norgevicus* (GenBank X00133) and showing the position of the primers used in this study.

2.2.1.1.1.2. Actin gene

Actin is a protein involved in various functions such as muscle contraction, cell division and differentiation (Hightower & Meagher, 1986; Hernan, 1993) and is highly conserved across animal groups (Hightower & Meagher, 1986; Palumbi, 1996). Actin is coded by several genes that arose from gene duplication and divergence, resulting in the presence of different forms (isoforms) of the actin protein within an organism (Hightower & Meagher, 1986). These protein isoforms can be classified into two broad categories: the muscle (α) type and the cytoplasmic (β) type (Vandekerckhove & Weber, 1978; Adema, 2002), with the number of isoforms for each category varying between animal groups. In mammals, there are two cytoplasmic actins and four muscle-type actins (Vandekerckhove & Weber, 1978); the same numbers were also found in *Drosophila* (Fyrberg *et al.*, 1981). In molluscs, the number and type of actin isoforms appear to vary among taxa based on the few that have been evaluated to date. DesGroseillers *et al.* (1994) found between three and five genes in the sea hare *Aplysia*

californica that probably coded for the muscle type actin, while Patwary (1996) found 12-15 genes in the bivalve *Placopecten magellanicus* that were also of the muscle type. Carlini et al. (2000) surveyed 44 taxa among the coleoid cephalopods and found at least one gene each of the muscle type and cytoplasmic type actins and a third that was most probably a pseudogene. Adema (2002) sequenced one gene of a cytoplasmic actin isoform in each of six planorbid basommatophoran species using cytoplasmic actinspecific primers. However, Southern blotting and hybridization experiments using probes specific for actin yielded up to five genes in Biomphalaria glabrata and Helisoma trivolis, prompting Adema not to discount the possibility that some of these genes could code for muscle type actin isoforms. Morgan et al. (2002) extended the actin survey of the planorbids to 38 taxa using the cytoplasmic actin to correlate the relationship of these snails to the evolution of their Schistosoma trematode parasite. Using actin for phylogenetic analyses could pose a problem if the sequences being compared are paralogous, which resulted from gene duplication, rather than orthologous, as in the case of muscle and cytoplasmic actins that arose from gene duplication in the distant past or even within each type due to more recent duplications. Using paralogous sequences could lead to inferring incorrect relationships; awareness of their presence in the sequence data is therefore crucial in any phylogenetic analysis (Bailey et al., 2003). Donald et al. (2005) acknowledged the problem of paralogs in actin, but they justified the use of actin to elucidate the phylogeny of marine top shells by employing primers specific for the gene that codes for a single isoform of the cytoplasmic actin and by showing agreement of the actin phylogeny with the 16S rRNA and COI phylogenies. How to address the issues of paralogous sequences in the actin gene is discussed further in Sections 2.9.12 and 2.9.13, pp. 89-91.

The primers listed in Table 2.2 amplified an approximately 900 bp fragment of the actin gene; this fragment was used for the snail phylogenetic analyses in Chapters 3 and 4. Nested PCR was carried out in which a primary PCR product was amplified using the primers ActF2 and ActR1; this fragment was then used as template for the secondary PCR using ActF1 and ActR. If amplification failed, several combinations of primers from the primary and secondary PCR were tried until a product was amplified.

 Table 2.2: Summary of the actin primers.

Primers	Reference	Fragment Size (bp)
ActF1 (sense): 5'-TATGTTGGTGATGAGGCTCAG-3'	Morgan <i>et al.</i> (2002)	~900
ActF2 (sense): 5'-GGTATGGGTCAGAAGGACAGCTATG-3' ActR1 (anti-sense): 5'-GAAGCATTTCCTGTGGGTCAATG-3' ActR (anti-sense): 5'-GATCCACATCTGTTGGAAGGT-3'	Designed by C. Hudelot	

2.2.1.1.1.3. Histone 3 gene

Histone 3 (H3) forms part of the histone core protein octamer that packs the eukaryotic chromatin into bead-like structures (Lewin, 2008). Histone core proteins are some of the most conserved proteins known, suggesting a function that is identical across eukaryotes (Lewin, 2008). Histone genes occur as a tandemly repeating unit comprising the different genes that code for the subunits of the core protein octamer. In *Drosophila*, the repeating unit consists of five genes in the following order, H1, H2A, H2B, H3 and H4; this repeating unit occurs 110 times (Lifton *et al.*, 1977). In bivalve molluscs, a different order was found in the genome of the bivalve mussel *Mytilus galloprovinialis*: H4, H2B, H2A, H3 and H1, with the copy number averaging more

than 200 per haploid genome (Eirin-Lopez *et al.*, 2004). Transcription of the H3 and H4 genes in the stylommatophorans occurs in opposite directions as in other protostomate animals (Armbruster *et al.*, 2005) but not in the bivalve *Mytilus* (Eirin-Lopez *et al.*, 2004). Among the gastropods, Colgan *et al.* (2000) noted a high codon usage bias for the H3 gene. As with the rRNA genes, H3 and H4 genes are subject to concerted evolution, thus leading to sequence homogeneity among copies of the genes within the species (Liao, 1999). The primers listed in Table 2.3 amplified a 331 bp fragment that was also used for the snail phylogenetic analyses in Chapters 3 and 4. Different primer combinations amplified roughly the same fragment.

Table 2.3: Summary of the histone 3 primers

Primers	Reference	Fragment Size (bp)
H3aF (sense): 5'-ATGGCTCGTACCAAGCAGACVGC-3' H3aR (anti-sense): 5'-ATATCCTTRGGCATRATRAGTGAC-3'	Colgan <i>et al.</i> (1998)	328
H3Fm (sense): 5'-ATGGCTCGTACCAAGCAGAC-3' H3Fml (sense): 5'-ATGGCTAGAACGAAGCAGAC-3' H3Rm (anti-sense): 5'-TCCTTGGGCATGATGGTGAC-3' H3Rml (anti-sense): 5'-CCAACTGAATATCTTTGGGCAT-3'	designed by C. Hudelot	331-340

2.2.1.1.2. Mitochondrial primers

2.2.1.1.2.1. Cytochrome c oxidase subunit I gene

Cytochrome c oxidase is an enzyme that transfers electrons from cytochrome c to O_2 during the electron transport chain in the mitochondrion (Zubay *et al.*, 1995). A typical enzyme has three functional subunits in which subunits I and II contain the

electron carriers (Alberts *et al.*, 2008). Although the amino acid sequence of the subunit I is conserved across the different animal phyla, the nucleotide sequence is subject to silent mutations (Palumbi, 1996), particularly in the 3^{rd} codon positions. In fact, its variability that yields phylogenetic signal and its robust universal primers have made the COI a marker of choice for DNA barcoding in animals (Hebert *et al.*, 2003). Several primer pairs listed in Table 2.4 amplified a fragment that was used in Chapters 3 and 4. Different primer combinations amplified roughly the same fragment.

Table 2.4: Summary of the cytochrome c oxidase subunit I primers

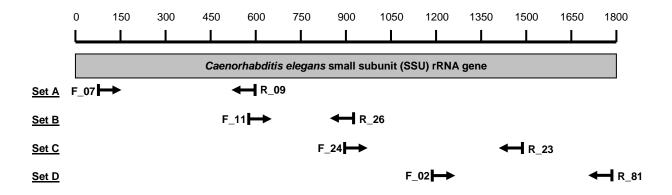
Primers	Reference	Fragment Size (bp)
LCO 1490 (sense): 5'-GGTCAACAAATCATAAAGATATTGG-3' HCO 2198 (anti-sense): 5'-TAAACTTCAGGGTGACCAAAAAATCA-3'	Folmer <i>et al.</i> (1994)	655
<pre>STY_LCOi (sense): 5'-TCAACGAATCATAAGGATATTGG-3' STY_LCOii (sense): 5'-ACGAATCATAAGGATATTGGTAC-3' STY_LCOiii (sense): STY_HCO: (anti-sense) 5'-GAATTAAAATATATACTTCTGGGTG-3'</pre>	designed by I. Fontanilla	628-667

2.2.1.1.2.2. 16S ribosomal (r) RNA gene

The 16S rRNA gene transcribes a ribosomal RNA that folds into a secondary structure following base pairing of the nucleotides within it, after which it is incorporated in the mitochondrial ribosome and is used for translation of proteins (Lewin, 2008). Among the Mollusca, 16S exhibits extreme variation in length, with those of the Stylommatophora being the shortest (Lydeard *et al.*, 2000). Two primer pairs are listed in Table 2.5. The first pair (STY_16Sarm and STY_16Sbrm) amplified a 420-450 bp fragment that was used for the snail phylogenies in Chapters 3 and 4. The second pair (16S1i and 16S_SSCP2i) amplified a 293 bp fragment that was used for the

global population survey of Achatina fulica in Chapter 5.

Primers	Reference	Fragment Size (bp)
<pre>(for the phylogeny studies-chapters 3 & 4) STY_16Sarm (sense): 5'-CTTCTCGACTGTTTATCAAAAACA-3' STY_16Sbrm (anti-sense): 5'-GCCGGTCTGAACTCAGATCAT-3'</pre>	Bonnaud <i>et al.</i> (1994)	420 - 500
<pre>(for the SSCP study-chapter 5) 16S1i: 5'-TGACTGTGCAAAGGTAGCATAA-3' 16S_SSCP2i: 5'-CCTAGTCCAACATCGAGGTC-3'</pre>	designed by I. Fontanilla	293


Table 2.5:	Summary	of the	16S	rRNA	primers

2.2.1.2. Nematode PCR primers

The small subunit (SSU) rRNA, which is a part of the ribosomal gene family, has been used to elucidate the phylogeny of the Nematoda (Blaxter *et al.*, 1998; Meldal *et al.*, 2006). The 5' end of the SSU has also been employed as a marker to identify marine nematodes (Bhadury *et al.*, 2006). The primers listed in Table 2.6 amplified four overlapping fragments that included nearly the entire region of the small subunit (SSU) rRNA gene in nematodes (Blaxter *et al.*, 1998); this fragment was used to infer the phylogeny of the Angiostrongylidae relative to other metastrongylids as well as to determine the most suitable marker to identify *Angiostrongylus cantonensis* in Chapter 6. The relative locations of the binding sites for these primers are shown in Figure 2.2.

Table 2.6: The f	four overlapping	primer pairs	used to a	amplify 1	nearly the	entire region
(approximately 1	670 nucleotides)	of the SSU rl	DNA gen	ne.		

	Primers	Reference	Fragment size (bp)
Set A	SSU_F_07 (sense):	Blaxter <i>et al.</i> (1998)	480
	5'-AAAGATTAAGCCATGCATG-3'		
	SSU_R_09 (anti-sense):		
	5 ' -AGCTGGAATTACCGCGGCTG-3 '		
Set B	SSU_F_11 (sense):	Blaxter <i>et al.</i> (1998)	360
	5 ' -AAGTCTGGTGCCAGCAGCCGC-3 '		
	SSU_R_26 (anti-sense):		
	5 ′ -CATTCTTGGCAAATGCTTTCG-3 ′		
Set C	SSU_F_24 (sense):	Blaxter <i>et al.</i> (1998)	390
	5'-AGRGGTGAAATYCGTGGACC-3'		
	SSU_R_23 (anti-sense):		
	5'-TCTCGCTCGTTATCGGAAT-3'		
Set D	SSU_F_02 (sense):	Blaxter <i>et al.</i> (1998)	600
	5'-GGAAGGGCACCACCAGGAGTGG-3'		
	SSU_R_81 (anti-sense):		
	5'-TGATCCWKCYGCAGGTTCAC-3'		

Figure 2.2: Schematic diagram of the SSU rRNA gene based on the complete sequence of *Caenorhabditis elegans* (GenBank X00133) and showing the position of the primers used in this study.

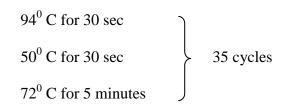
2.2.2. PCR components

Listed in Table 2.7 are the PCR components used and their concentrations. The optimal concentrations varied depending on the size of the gene and the number of copies available per cell. In particular, the concentration of MgCl₂ differed between the nuclear (1.5 mM) and the mitochondrial (2.5 mM) genes.

Components	Initial concentration	Final concentration		Volume (µl)	
Buffer	10X	1X		5.0	
Build	104	1 ⁰ PCR for LSU:	2^{0} PCR for LSU/1 ⁰ & 2 ⁰ PCR for actin/ other genes:	1 ⁰ PCR for LSU:	2^{0} PCR for LSU/1 ⁰ & 2 ⁰ PCR for actin/ other genes:
dNTPs	1.25 mM	300 µM	200 µM	12.0	8.0
		LSU rRNA/ Actin/ Histone3:	16S/ Cytochrome c oxidase I:	LSU rRNA/ Actin/ Histone3:	16S/ Cytochrome c oxidase I:
^a MgCl ₂	50 mM	1.5 mM	2.5 mM	1.5	2.5
Primer 1	10 mM	200	μM	1.0	
Primer 2	10 mM	200 µM		1.0	
^b Q-solution	5X	1X		10	
Taq	1 unit/µl	0.01 unit/µl		0.5	
Sterile distilled H ₂ O				To make final volume of 50 μl	

 Table 2.7: PCR components used and their concentrations for the different genes

^aSome manufacturers provided PCR buffers that already contained MgCl₂ (e.g. QIAgenTM with 25 mM concentration), while other manufacturers separated the buffer and the MgCl₂ (e.g. BiolineTM, which separately provided 50 mM MgCl₂). Care was taken in order to guarantee that the recommended final MgCl₂ concentration was followed.


^bProvided by QIAgenTM

2.2.3. PCR running conditions

Different reaction cycles were employed depending on the size of the expected PCR product. For the rRNA gene cluster, a very long extension step (5 minutes) was used in the 1^0 PCR reaction in order to ensure that the approximately 4000 bp fragment was amplified. For the rRNA 2^0 PCR reactions, which amplified the shorter internal rRNA fragments, a shorter extension step was used. For all other genes, reaction cycles followed those used for the rRNA 2^0 PCR reactions.

2.2.3.1. For rRNA 1⁰ PCR

hot start at 96[°] C for 2 minutes

2.2.3.2. For rRNA 2⁰ PCR and all other genes:

hot start at 94⁰ C for 2 minutes

94[°] C for 30 sec ^a45[°] C for 30 sec 65[°] C for 60 sec 38 cycles

 ${}^{a}45^{0}$ C was the optimal annealing temperature for the mitochondrial primers; this temperature also worked well for the nuclear primers

2.3. Gel electrophoresis

Once the PCR products were amplified, they were then separated and visualized through gel electrophoresis. PCR products were loaded in wells in an agarose gel, after which an electric current was applied to move the DNA towards the positive electrode. Different-sized DNA fragments migrate at different rates with smaller fragments moving rapidly through the gel matrix and larger fragments moving more slowly. Different sized PCR products would therefore be found at different positions of the gel at the end of electrophoresis. The DNA molecules were visualized when the ethidium bromide in the agarose gel intercalated between the nitrogen bases of the DNA and fluoresced under UV light (Reece, 2004). Below is the general protocol for agarose gel electrophoresis.

- For a 1.25% agarose gel, 1.25 g agarose was dissolved in 100 ml TBE buffer
 [54 g Tris, 27.5 g boric acid and 20 ml 0.5 EDTA dissolved in 1000 ml distilled water to make 5X TBE buffer, then diluted to 1X before use]. The agarose was melted in a microwave oven and the molten gel cast in a container. The combs were added to make the wells.
- Once the gel had set, the combs were removed and the PCR products loaded on the wells, after which the gel was submerged in a tank containing 1X TBE.
- 3. A current (100-120 V) was applied through the gel using a portable power supply.
- Once the PCR products had run their course through the gel, the gel was removed from the tank and placed on a UV transilluminator to visualize the bands.

2.4. Gel extraction

Since most of the PCR amplifications yielded more than one band, it was necessary to separate these bands by electrophoresis prior to purifying the band of the correct size from the agarose gel in preparation for sequencing. Each band in the gel represented a PCR product of a particular size, thus the nucleic acid purified from a particular band is assured of having no other PCR product or primer of a different size. For bands that were very close to each other, care was taken when cutting these bands.

The protocol follows the manufacturers' instructions for the Eppendorf PerfectprepTM Gel Extraction Kit.

1. The PCR product was excised from the agarose gel with a sterile, sharp scalpel and placed in a 1.5ml microfuge tube.

- 2. The gel slice was weighed. Three volumes of Binding Buffer were added to every volume of the excised gel (100 mg \sim 100 µl).
- The gel slices were incubated at 50 ^oC for 10 minutes (or until the gel slice had completely dissolved). To help dissolve the gel, the tubes were inverted every 2-3 minutes during the incubation.
- 4. One gel volume of isopropanol was added and mixed to precipitate the PCR product.
- 5. A spin column with a membrane filter was placed in a 2 ml collection tube. To bind the PCR product, the sample was applied to the spin column provided and centrifuged at 13,000 rpm for 1 minute. The flow-through was discarded and the column was placed back into the same collection tube. (Maximum volume capacity of spin column was 800 μl. For sample volumes of more than 800 μl, the remaining samples were also loaded and the collection tube centrifuged again until all the samples were used up.)
- 6. 750 μl of the wash buffer were added to the column and centrifuged at 13,000 rpm for 1 minute. After discarding the flow-through the column was replaced in the collection tube and centrifuged at 13,000 rpm for another minute to completely remove traces of the Wash Buffer.
- 7. The spin column was placed into a clean 2 ml collection tube. 30 μl of the Elution Buffer (10 mM Tris-Cl, pH 8.5) was added to the center of the membrane filter and the collection tube centrifuged at 13,000 rpm for 1 minute to elute the PCR product.
- 8. The spin column was discarded, and the eluted product was stored at -20° C until further use.

2.5. DNA quantification

Eluted PCR products were quantified using a NanoDrop® ND-1000 spectrophotometer prior to DNA sequencing. For cycle sequencing using the ABI PRISMTM Big Dye Version 3.1 Kit (see next section), approximately 1-3 ng concentration was recommended for every 100-200 bp of the PCR product to be sequenced.

2.6. Cycle sequencing

Cycle sequencing was employed to derive the sequence of the purified PCR products. This method uses the principle of dideoxy chain termination (also known as the Sanger method) in determining DNA sequences. In this procedure, a template DNA such as the double stranded PCR product was subjected to amplification of each strand in separate tubes using one primer each. A small amount of fluorescently labeled dideoxynucleotide triphosphates (ddNTPs) were included in the sequencing mix. These ddNTPs differed from the normal dNTPs in that they had an H group rather than an OH group on the 3rd carbon of the ribose sugar. When a ddNTP was incorporated instead of a dNTP in the growing chain, no other dNTP would bind to the 3rd carbon of the ribose sugar in the absence of the OH group, thereby prematurely terminating the sequence. This resulted in a mixture of different sized fragments all terminating in a fluorescently labeled ddNTP. After the sequencing reaction, these fragments were run on a gel in an automated DNA sequencer where the fragments separated according to size. As the samples passed through a certain point along the course of the gel, an argon ion laser fluoresced the dye attached to the samples. Each ddNTP (A, C, G and T) carried a dye that fluoresced at a particular wavelength, which were picked up and registered by a computer as a unique color. A sequence complementary to the template DNA was then

generated as a series of differently colored peaks (Reece, 2004). The protocol below follows the manufacturers' instructions for the ABI PRISM[™] Big Dye Version 3.1 Kit except that volumes were reduced by half for most components while less than 20% of the Big Dye was used.

2.6.1. Cycle sequencing components

Listed below are the components used for each sample sequenced. Sequencing of the forward and reverse strands was carried out in separate tubes.

- 1. 1.5 µl Big Dye Mix (for 500-1000 bp PCR product)
- 2. 1.6 μ l primer (1 μ M)
- 3. purified PCR product (approximately 1-3 ng/ 100-200 bp)
- 4. sterile distilled water to make a final volume of $10 \ \mu$ l.

2.6.2. Cycle sequencing running conditions

96⁰ C for 5 minutes 96⁰ C for 10 sec 50⁰ C for 5 sec 60^0 C for 4 minutes \rightarrow 25 cycles

2.6.3. Precipitation of cycle sequencing samples

Once the cycle sequencing was complete, the samples were precipitated prior to being run in an automated sequencer such as the Applied Biosystems 3730 DNA sequencer. The instructions below follow those recommended by the manufacturers of the ABI PRISM[™] Big Dye Version 3.1 Kit but with some modifications.

1. For each 1.5 ml microfuge tube, 2.0 μ l 3M NaOAc (pH 4.6) and 50 μ l 95% ethanol was added. The entire cycle sequencing mix was then added into the

NaOAc-ethanol mixture. The tubes were vortexed and set aside for at least 30 minutes. This step precipitated the different-sized PCR products in the tube.

- 2. The tubes were centrifuged for 20 minutes at 13,000 rpm. The supernatant was then carefully removed.
- 3. The pellet was rinsed with 190 μ l 70% ethanol, then vortexed briefly.
- 4. The tubes were centrifuged for 5 minutes at 13,000 rpm, after which the supernatant was carefully removed.
- 5. The tubes were placed with the lid open in a heat block or thermal cycler at 90⁰ C for one minute. The samples were then sent to the Department of Biochemistry of Oxford University or the DNA Sequencing Facility of the Natural History Museum for sequencing.

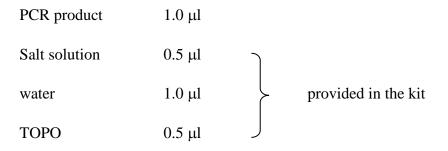
2.7. Cloning

There are instances in which PCR amplifies more than one copy of a particular gene fragment. This happens if an individual is either a heterozygote for a particular gene or actually possesses several genes. Once the PCR products are sequenced, variable sites among the different copies are manifested as ambiguous sites as PCR does not discriminate between copies as long as they have the same primer-binding sites. Such is the case for actin where several genes coding for actin are sometimes found within the same individual (Hernan, 1993). Where possible, all the different genes should be amplified, cloned and then sequenced in order to identify the presence of paralogous sequences. However, cloning was not possible for the snail phylogenetic analyses in Chapters 3 and 4 due to time and cost constraints, so direct-sequencing from PCR products was employed instead, with ambiguity codes assigned to positions of ambiguity in the direct sequences (see Section 2.9.3, pp. 72-73). These ambiguous sites

were then utilized as ambiguities in the tree-building process. Sequences obtained via cloning from the different copies from a few selected taxa served as a reference in assigning codes for the ambiguous sites. One taxon that did not exhibit any ambiguous sites (i.e. *Leptinaria lamellata*, see Appendix 3.8C, p. 436) was also used for cloning in order to check if any ambiguity was missed in the direct sequence. It should be emphasized that, in the absence of sequencing all the actin clones for each taxon, using direct sequence with ambiguous sites implies using an "average" or consensus sequence for all the possible copies of the actin gene for that species. Caution must therefore be taken in interpreting trees involving taxa with potentially more than one actin gene.

Sequencing different copies of the actin gene separately was achieved by first cloning the PCR products in bacteria using a plasmid vector. A special plasmid used in cloning called the pUC plasmid included an ampicillin-resistant gene and a lacZ gene that coded for a subunit of the β -galactosidase enzyme that breaks down galactose. Foreign DNA can be inserted into this plasmid within the *lacZ* gene. Once the insert is incorporated in the plasmid, the plasmid was allowed to be taken in through chemical transformation by a *lacZ* mutant *E. coli* that could not produce a functional β galactosidase enzyme. These bacteria were then allowed to grow in an agar plate containing ampicillin and galactose. Bacteria that took in the plasmid were able to grow on the medium because of the presence of the ampicillin-resistant gene in the plasmid. Bacteria that harbored plasmids with inserts would not exhibit β-galactosidase activity in the presence of galactose because the inserts were placed within the lacZ gene, thereby disrupting its transcription. Colonies of these bacteria appeared white when compared to bacteria with functional lacZ in the plasmid, which appeared as blue colonies. These white colonies were then picked from the agar and were subcultured in a liquid medium to allow them to grow, thereby producing a vast number of copies of

the insert. The plasmids were then isolated from the bacteria and the inserts directsequenced using plasmid specific primers that bound to the flanking regions of the annealing site of the insert. As only one molecule of foreign DNA could be inserted into a plasmid, the inserts derived from a single colony represented a single copy of that insert (Reece, 2004). In this way individual copies of the actin gene were obtained for sequencing.


The protocol below follows the manufacturers' instructions for the Invitrogen[™] TOPO Cloning Kit except that the volume of competent cells used was reduced by half.

2.7.1. Agar plate preparation

- Around 15-20 ml LB agar was poured into a Petri dish and set aside at room temperature to solidify the agar. The agar plate was left slightly open in a drying cabinet for 30 minutes to remove condensation from the lid.
- 2. 17 μ l of 50 mg/ml ampicillin was spread on top of the agar plate before replacing the lid.
- 3. The agar plate was then warmed at 37° C for 30 minutes.
- 4. 80 μ l of 20 mg/ml X-gal was spread on the agar plate, after which it was incubated at 37^o C until use.

2.7.2. Setting up the TOPOTM Cloning Reaction

1. The following were mixed gently and incubated for five minutes at room temperature:

- 2. 1 μ l of the TOPO cloning reaction from (1) was added to 25 μ l of One-ShotTM chemically competent cells and incubated on ice for 5 minutes.
- 3. The cells were heat-shocked for 30 seconds at 42^{0} C without shaking. This allowed the cells to take in the plasmids. The tubes were immediately transferred in ice.
- 4. 125 μ l of previously defrosted SOC medium from Box 2 was added, and the tube was then capped tightly and shaken horizontally (200 rpm) at 37 0 C for one hour.
- 5. 50 μ l from each transformation was spread on a pre-warmed (37[°] C) selective agar plate containing X-gal and incubated overnight at 37[°] C.
- 6. White colonies were picked and cultured overnight in 5-ml LB medium containing 50 ug/ml ampicillin.

2.7.3. Plasmid isolation

- 1. The culture was transferred into a microfuge, after which it was centrifuged for five minutes at 13,000 rpm to discard the supernatant.
- 2. The process was repeated until most of the culture was used up. [A small amount (~500 μ l) was set aside in a separate tube where ~125 μ l of 80% sterile

glycerol was added. The tubes were then stored at -80° C so that the culture could be re-grown in the near future should the need arise.]

- 3. 1.0 ml of cold TE buffer was added, after which the tube was vortexed. The tube was then centrifuged for 5 minutes at 13,000 rpm to discard the supernatant.
- 4. 100 μ l of cold TE buffer was added and the tube was then vortexed. Incubation on ice for a minimum of 15 minutes followed.
- 200 μl of 0.2 N freshly prepared NaOH / 1% SDS solution was added. This mix lysed the bacterial cells.
- 6. 150 μl of 3M KOAc, pH 4.8 was added followed by gentle mixing. The tube was mixed gently and left in ice for 5 minutes. This stage precipitated the proteins and neutralized the alkaline pH.
- 7. The tube was centrifuged for 5 minutes at 13,000 rpm. The supernatant was moved to a separate tube while the pellet was discarded.
- 10 μl of 2 mg/ml RNAse was added, and the tube was then incubated at 37⁰ C for 30 minutes. This degraded RNA.
- 9. An equal volume (~450 µl) of phenol-chloroform was added, after which the tube was inverted several times. It was then centrifuged for 5 minutes at 13,000 rpm. The aqueous phase was transferred to a new tube.
- 10. An equal volume (~400 μl) of chloroform was added, after which the tube was inverted several times. It was then centrifuged for five minutes at 13,000 rpm. The aqueous phase was transferred to a new tube.
- 11. 2.5 volumes (~1 ml) of ice-cold 95% ethanol were added. The tube was placed in -80° C for at least 20 minutes or in -20° C for at least 2 hours and 30 minutes.

It was then centrifuged for 10 minutes at 13,000 rpm. The aqueous phase was discarded.

- 12. 1.0 ml of 70% ice-cold ethanol was added, and the tube was then centrifuged for5 minutes at 13,000 rpm before the aqueous phase was discarded.
- 13. The pellets were dried at 45° C for 15 minutes. These were then eluted in 20 µl sterile distilled water and stored at -20° C until use.

2.7.4. Sequencing of the insert

The protocols for sequencing of the insert were the same as those in Section 2.6 (see pp. 59-61) except that the M13 forward primer (5' – GTAAAACGAC GGCCAGTGAA – 3') and the M13 reverse primer (5' – CAGGAAACAG CTATGACCATGA – 3') were used. These primers bound to sites that flank the annealing site of the insert in the plasmid. This ensured that the sequence, which included some segments of the plasmid DNA, was derived from the insert.

2.8. Single strand conformational polymorphism analysis

Determining variation at the DNA level among populations need not require sequencing every sample. One method of detecting variation is single strand conformational polymorphism analysis (SSCP), which was used to evaluate the variation in global populations of *Achatina fulica* (Chapter 5). Amplified PCR products from a marker gene such as the 16S rRNA was compared for nucleotide variation by denaturing them into single strands and then allowing them to migrate slowly over a long period in a polyacrylamide gel. Single stranded DNA underwent conformational changes that depended on their nucleotide composition. Therefore, similar sized fragments that varied even in just a single nucleotide assumed different conformations and hence exhibited different migration rates. The DNA was visualized by silver staining in which silver nitrate bound to the DNA. The pattern generated by the two single stranded DNA's on a polyacrylamide gel represented the haplotype of the individual for the amplified genetic marker (Orita *et al.*, 1989). The SSCP technique, however, only works for fragments that are 400 bp or shorter (Sunnucks *et al.*, 2000); in this study, the amplified PCR products derived from the 16S primers were 293 bp long. The subsequent protocol follows that of Orita *et al.* (1989) with some modifications.

2.8.1. Native polyacrylamide gel preparation:

1. The following were mixed in a beaker:

2X MDE [™] gel solution (Cambrex Bio Science®)	7.5 ml
1X TBE buffer	18 ml
sterile distilled water	4.0 ml
TEMED	40 µl
ammonium persulfate	400 µl

<u>Note</u>: The ammonium persulfate was added last as this catalyzed the polymerization of the gel.

- 2. Once the reagents were mixed, the solution was immediately poured into two glass plates stacked on top of each other and separated by 0.4 mm spacers. The gel set–up was then tapped at the bottom to ensure that no bubbles formed. The combs were subsequently added on top of the gel set-up.
- 3. The gel was allowed to set for at least 40 minutes, after which the combs were gently removed and the wells washed with water.
- 4. The gel plates were secured to the rig, which was filled with 2.0 L of 0.6X TBE.

2.8.2. Preparation of PCR products for SSCP analysis

- 1. An equal volume of isopropanol was added to each PCR product. The tubes were then inverted several times, then placed in ice for at least 30 minutes to precipitate the DNA.
- 2. The tubes were centrifuged for 15 minutes at 13,000 rpm, after which the supernatant was discarded. The pellets were dried at 45-55⁰ C for 15 minutes.
- 3. The pellets were resuspended in formamide-heavy loading buffer. [Loading buffer: 0.2 g bromophenol blue, 0.2 g CFF, 20 ml 0.5 M EDTA; one part loading buffer diluted in nine parts formamide]
- 4. The tubes were incubated at 95° C for 10 minutes to denature the DNA into single strands, then the tubes were placed in ice to prevent gradual reannealing.

2.8.3. Loading of samples in the polyacrylamide gel

- 1. 15 μ l of formamide-heavy loading buffer was loaded in each well. The gel was allowed to run at 180 volts for at least one hour to ensure that the gel was both consistent and equilibrated.
- 2. Once the gel was equilibrated, the samples were then loaded directly from ice into the wells.
- 3. The samples were allowed to migrate along the gel for 24 hours at 180 V.

2.8.4. Silver staining of SSCP gels

Fi	ix-stop solution	
	10% acetic acid	200 ml
	Distilled water	1800 ml
Si	ilver nitrate solution	
	Silver nitrate	2.0 g
	Distilled water	1997 ml
	Formaldehyde	3.0 ml
D	eveloper	
	Sodium carbonate	60 ml
	Distilled water	1997 ml
	Formaldehyde	3.0 ml

1. The following solutions were prepared:

- 2. After the run was complete, the gel was transferred into a staining tray containing 200 ml of fix-stop solution. Under the fume hood, the gel was agitated for 45 minutes to ensure complete fixation of the bands, after which the fix-stop solution was removed.
- 3. The gel was washed with distilled water three times for 20 minutes or until it attained a smooth appearance, indicating that it was already free of fix-stop solution. The excess water was removed.
- 4. 200 ml of silver nitrate solution was carefully added on the side of the tray and not directly onto the gel itself to prevent it from blackening. The gel was agitated for 40 minutes to give adequate time for the silver nitrate to bind with the DNA. The silver nitrate solution was removed afterwards into a suitable waste jar containing NaOH pellets to neutralize the solution.

- 5. The gel was washed with distilled water to remove excess sliver nitrate, then the water was discarded into the silver nitrate waste jar.
- 6. 200 ml of developer was added and the gel agitated until bands were clearly visible.
- 7. The reaction was stopped by pouring 200 ml of fix-stop solution onto the gel, which was then agitated for an additional 5 minutes to release all the CO₂.
- 8. The gel was repeatedly washed with 200 ml distilled water until the smell of the acetic acid was no longer detected, after which the excess water was removed.
- 9. The gel was transferred onto a clean filter paper and covered with cling film. The gel was allowed to dry in a gel dryer for approximately 3 hours at 70 0 C.

2.9. DNA sequence analyses

DNA sequences were assembled using the STADEN package version 1.5.3 (Staden, 2000) and aligned manually within the Genetic Data Environment (GDE) Version 2.2 (Smith *et al.*, 1994). The sequences were then checked for ambiguous nucleotide sites, saturation, and phylogenetic signal before being subjected to phylogenetic estimation. To this end, the optimal model that best fits the dataset was first identified, then a range of tree construction methods were employed.

2.9.1. Aligning sequences

Sequences were brought into the Genetic Data Environment (GDE) Version 2.2 (Smith *et al.*, 1994) where they were aligned manually. Positions were identified as unambiguously aligned when there was absolutely no question over their positional homology. All other positions for which homology could not be ascertained were excluded from subsequent analyses. For the nuclear rRNA cluster and the

mitochondrial 16S rRNA, the sequences were aligned according to their secondary structure. Initial secondary structure-based alignments for the nuclear rRNA and mitochondrial 16S rRNA for the Stylommatophora were obtained by C. Hudelot with all other sequences brought and aligned into these initial alignments. The initial alignment of the SSU for the Nematoda was provided by M. Blaxter. This alignment was updated to include all nematode SSU sequences available in GenBank (GB Release Numbers 157-158) as well as the new sequences obtained in this study.

2.9.2. Checking for contamination

Every precaution was taken to avoid contamination, which could have occurred either during DNA extraction, PCR amplification of the gene fragment of interest, or through cycle sequencing. These precautions included maintaining a clean work bench, regularly cleaning pipettes with 0.1 N HCl to destroy any contaminant DNA present, and using sterile pipette tips, scalpel blades and reagents. However, sequences obtained were still checked for contamination. A cursory inspection of the alignment was conducted to see if a sequence varied greatly or was more difficult to align than the rest. A BLAST check through NCBI was also carried out to verify if indeed the sequence originated from a contaminant (i.e. the sequence had a closest identity to a non-mollusc such as a human gene or a cross-contaminant with another mollusc). Sequences obtained in this study were also crosschecked against each other to determine whether sequences from different taxa (or even segments of sequences as in the case of the rRNA cluster) exhibited identical sequences; this might indicate cross contamination (though it should be noted that among closely related taxa, relatively conserved regions might reasonably be expected to be identical). In cases of contamination, the entire process from PCR amplification to cycle sequencing was repeated. Where the same result was obtained, the process was again repeated, this time starting from the DNA extraction.

2.9.3. Assigning ambiguous sites

Sequence positions were scored as ambiguous either because the sequence could not be read reliably (due to poor quality sequence reads), or because there were several copies of the gene (as in the case of actin for which several copies were identified in some achatinoid species; see Chapters 3 and 4). For the actin gene, the identification of ambiguous sites (positions where different copies of the actin gene differed in sequence) was facilitated by using as guides the sequences obtained through cloning from representative taxa. For perfectly clear forward and reverse sequences, an ambiguous site was assigned to a position where two overlapping peaks were seen for that position in both strands. In cases where one strand was clear and the other strand had background noise, then the clear strand was used as the basis for deciding whether the site was ambiguous or not. If both strands exhibited background noise and yet both had the same clear overlapping peaks for a site, then that site was also assigned as ambiguous. Table 2.8 lists the codes for ambiguous nucleotides.

Base ambiguity	Code
A or C	М
A or G	R
A or T	W
C or G	S
C or T	Y
G or T	K
A or C or G (not T)	V
A or C or T (not G)	Н
A or G or T (not C)	D
C or G or T (not A)	В
A or C or G or T	N

Table 2.8: Codes for ambiguous positions in DNA sequences (Cornish-Bowden, 1985)

2.9.4. Estimating the average base frequencies and the number of variable and parsimony-informative sites

Sequences for DNA very rarely exhibit identical frequencies for each base due to nucleotide bias. An extreme example of this is exhibited at the 3rd codon position of insects and crustaceans where 95% of the bases are either A or T (Palumbi, 1996). For all sequences under consideration, base frequencies were estimated using the basefreq command in the PAUP* (version 4.0b10) package (Swofford, 2002). The numbers of variable and parsimony-informative sites were calculated using the randtrees command in PAUP*.

2.9.5. Identifying the optimal model for DNA sequence evolution

Multiple 'hits', where pre-existing mutations are masked by more recent mutations that occur at the same site, will lead to an underestimate of the actual number of changes that have taken place at a particular site, thus obscuring the phylogenetic relationship of the taxa being compared. It is therefore necessary to apply a model of sequence evolution in order to 'correct' for such multiple 'hits' (Graur & Li, 2000). Models require certain assumptions as to how variations in DNA sequences evolve. All possible assumptions for a given situation that are taken into account form a 'conceptual model' in which phylogenetic estimation is made. As more assumptions or parameters are incorporated in the model, the more complex it becomes. Several models can be used to account for DNA sequence evolution; these include the JC69 (Jukes & Cantor, 1969), F81 (Felsenstein, 1981), K2P (Kimura, 1980), HKY85 (Hasegawa, et al. 1985), TN93 (Tamura & Nei, 1993) and general time-reversible (GTR) models (Rodriguez et al., 1990). The JC69 is the simplest model and assumes that all types of change (all substitutions) are equally likely, base frequencies are equal, all sites are equally likely to change and change independently of each other, and base composition is at equilibrium among all the sequences under consideration (Jukes & Cantor, 1969). The K2P is an extension of the JC69 model but allows transitions and transversions to have different substitution rates (Kimura, 1980). Likewise, the F81 model is an extension of the JC69 but allows for unequal base frequencies (Felsenstein, 1981). The HKY85 model allows for different rates of substitution for transitions and transversions as well as allowing for unequal base frequencies (Hasegawa et al., 1985). The TN93 model is an extension of the HKY model but distinguishes between transition rates of purines and pyrimidines (Tamura & Nei, 1993). Finally, the GTR model allows all six pairs of substitution to have different substitution rates as well as allowing for unequal base frequencies (Rodriguez et al., 1990). Rate heterogeneity between sites can also be accounted for by incorporating gamma distributed rates (Γ) into the models (Yang, 1993). Gu et al. (1995) proposed to take into account the proportion of invariant sites (I) in the gamma distributed rates, hence the ' Γ +I' model. Yang (2006) describes this model as "pathological" as gamma distribution with an α shape parameter less than 1 already accounts for the invariant sites. Depending on the model under consideration, the base frequencies, rate matrix and shape parameter (α) of the gamma distribution using 16 rate

categories were estimated using likelihood by iteration from an initial neighbor-joining (NJ) tree. The parameters derived from the initial tree were then used to build a new neighbor-joining tree and the parameters re-estimated, repeating the process until no noticeable improvement is seen in the likelihood.

Models are generally selected based on their fit to the sequence data as measured by likelihood values (Kelchner & Thomas, 2007). Normally, addition of parameters in a model increases the likelihood score; this, however, increases complexity and thus the data are spread more thinly, so if there is no significant improvement in likelihood score then there is no justification for using the more complex model. One way to identify which model to use is through a likelihood ratio test (LRT). The LRT is a statistical test that determines the goodness of fit of any two models being compared with a particular dataset. This can be applied to models that are nested since twice the difference in the likelihood scores between two nested models is approximately Chi squared distributed. The formula for this test is given as: LR = 2*(lnL1-lnL2); where lnL1-lnL2 is the difference in the log likelihood scores between any two nested models being compared. The LRT can then be used to determine if there is a significant difference between the log likelihood scores of the two models by identifying the degrees of freedom and checking for the P value in a Chi square table. The number of degrees of freedom is the difference between the number of parameters used by the two models being compared. For example, the GTR and the GTR+ Γ models differ by one parameter (addition of the gamma distribution in the latter); therefore, the number of degrees of freedom for comparing these two models is 1 (Huelsenbeck & Crandall, 1997). Table 2.9 summarizes the number of parameters for a given model of DNA substitution. The model with the best likelihood score was selected but only if it was significantly better than a less complex model; otherwise, the simpler model was used.

Table 2.9: Summary of the number of parameters of the different models of DNA substitution (taken from Morrison, 2006)

Model	Number or Parameters
JC69	0
JC69+Γ	1
K2P	1
К2Р+Г	2
F81	3
F81+Γ	4
HKY85	4
НКҮ85+Γ	5
TN93	5
ΤΝ93+Γ	6
GTR	8
GTR+Γ	9

Twelve different models were evaluated; these were: (1) JC69, (2) JC69+ Γ , (3) K2P, (4) K2P+ Γ , (5) F81, (6) F81+ Γ , (7) HKY85, (8) HKY85+ Γ , (9) TN93, (10) TN93+ Γ , (11) GTR, (12), and GTR+ Γ . Since the F81 and K2P models are not nested, they could not be compared with each other. F81 and K2P could, however, be compared with any other model. Although it was tempting to restrict the model search to the parameter-rich HKY85, TN93 and GTR models as they were determined to be the optimal models by the ModelTest program in 80% of 208 published datasets in 2004 alone (Kelchner & Thomas, 2007), it was more prudent to check the less parameter-rich models to confidently rule them out if the more complex models had significantly higher likelihood scores. The likelihood scores for these models were computed in PAUP*, with the command lines summarized in Appendix 2.1, pp. 360-366.

The application of the LRT described here is similar to that which is applied in the Modeltest program by Posada and Crandall (1998) except that the LRT used in this study allows for a comprehensive comparison of all models under consideration (apart from non-nested models) whereas Modeltest 'traverses' a model space through a series of pairwise comparisons of the different models. For instance, if Modeltest compares the likelihood scores of JC69 and F81 and found the latter to be significantly better, then F81 is selected and compared with HKY85. If HKY85 is better than F81, then HKY85 is selected and compared with GTR. If GTR is better than HKY, then GTR is compared with GTR+ Γ . Otherwise, HKY and TN93 will instead be compared. The problem with this approach is that it does not allow for a comprehensive comparison of all the different models being considered. In the above example, the GTR and TN93 models were not compared, and there is the possibility that TN93 is not significantly better than GTR.

2.9.6. Evaluating the sequences for evidence of saturation

Sequence data could suffer from extreme substitution saturation to such a degree that an optimal model of DNA sequence evolution could no longer correct for multiple hits (Xia *et al.*, 2003). The effect of this phenomenon of substitution saturation in phylogenetic analyses is twofold. First, it underestimates the amount of evolutionary change that took place. Second, homoplasy could occur where descendant sequences appear similar even if the similarity is not brought about by descent from a common ancestor (Graur & Li, 2000). For protein-coding genes, the third codon position has been found to be the most variable, with the 1st and 2nd codon positions more conserved. This is because substitution in either the 1st or 2nd codon position is more likely to lead to amino acid replacement that could affect the function of the protein being coded by the gene; hence, substitution tends to occur at a higher frequency at the 3rd codon position where substitution is mostly synonymous (Graur & Li, 2000). Including the 3rd codon position in phylogenetic analyses is beneficial when close relationships are

examined as it is the most variable position and therefore contains much of the phylogenetic information; removing it, on the other hand, would leave only a few variable sites in the 1^{st} and 2^{nd} codon positions to work with. In the presence of substitution saturation, however, using the 3^{rd} codon position could be more disadvantageous since 3^{rd} codon positions would saturate first (Xia *et al.*, 2003).

Constructing different types of plots based on substitutions have been the standard procedure to check for evidence of saturation in sequence datasets (Morisson, 2006; Xia et al., 2009), and their use abounds in the literature. Three types of plots were constructed. Plotting pairwise uncorrected distances against pairwise corrected distances based on an optimal model (Plot 1), for instance, would normally result in a When distances are small there would be little difference between the curve. uncorrected and corrected distances. As more divergent sequences are compared, however, multiple hits would lead to an underestimate of the actual amount of change in the uncorrected distances relative to the corrected distances where a correction is made to account for these unseen changes. At some point, the sequences being compared would become too divergent to allow correction for multiple hits to be made reliably leading to substitution saturation; when this happens, a plateau is observed, and the actual amount of change taking place would be underestimated (Strimmer & von Haeseler, 2003). Morisson (2006) used this type of plot on the actin and HSP70 genes of Cryptosporidium. If both transitions and transversions are plotted against total distance (Plot 2), on the other hand, both would be expected to increase linearly. However, as more divergent sequences are compared, transitions (which generally occur more frequently than transversions, Brown et al., 1982) would be expected to saturate prior to transversions, leading to the transition line curving and eventually reaching a plateau. Transversions (which generally occur less frequently than transitions, Brown et

al., 1982) would continue to increase linearly for longer but eventually as sequences become even more divergent even the transversion substitutions would saturate, eventually leading to a curved transversion line and ultimately a plateau. This type of plot was used by Jorgensen *et al.* (2008) on the 16S rRNA and COI genes of apple snails. Plotting transitions against transversions (Plot 3) would result in a linear relationship when sequences are unsaturated. As divergence increases and the transitions saturate, the relationship between transitions and transversions would be non-linear, resulting in a curve in the plot. Tsigenopolous *et al.* (2002) employed this type of plot on the cytochrome b of southern African barbs. It was noted that interpretation of the plots could be somewhat subjective, particularly in determining when a plot has plateaued; it was imperative that all three types of plots were considered alongside one another in evaluating the level of saturation of each dataset.

The command lines in PAUP* for computing the uncorrected and corrected distances as well as the transition and transversion values are listed in Appendix 2.2, p. 367.

In addition to the plots mentioned above, there are other ways to detect the presence of full substitution saturation in a given dataset. One method is the randomization or permutation test in which a set of tree lengths are generated from randomized set of characters derived from the same dataset. If the dataset is saturated, then the tree lengths will not be significantly different from one another (Archie, 1989). Another method is the tree-independent relative apparent synapomorphy analsysis (RASA) where synapomorphies or shared characteristics between any two given taxa are statistically evaluated (as expressed by the sum total of all shared character states between two taxa at the exclusion of third taxon) to determine if they result from shared evolutionary history or from convergence (Lyons-Weiler *et al.*, 1996). Both methods,

79

however, can incorrectly conclude that there is no saturation taking place if there are two very closely related taxa in the dataset even if the other taxa have reached full substitution saturation (Xia, 2009). A third method is the frequency-dependent significance test based on parsimony (see discussion on parsimony in Section 2.9.8, p. 84) in which the distribution of phylogenetically informative sites is statistically tested against the hypothesis that the sequence variation is random, as in the case of full substitution variation (Steel et al., 1993, 1995). This method, however, is affected by long branch attraction, a typical problem of parsimony, where highly divergent taxa tend to group together by chance not because of shared homology but precisely because of homoplasy (Xia, 2009). A fourth method makes use of the index of saturation based on the concept of entropy in information theory where entropy is defined as the measure of uncertainty pertaining to a random variable, in this case the frequency of a nucleotide for a nucleotide site (Xia & Xie, 2001, Xia et al., 2003). The index of substitution saturation (Iss) is the ratio of the observed mean entropy of all the sites in a gene of specific length over the expected entropy of the sequence at full saturation. Once the Iss has reached a critical value (or is not statistically significantly different from this critical value) in which the sequences could no longer be expected to recover the true tree, then the dataset is said to be saturated. However, applying this method becomes problematic if more than 32 taxa are used (Xia, 2009). It is also limited to determining if saturation has taken place for a perfectly symmetrical and completely asymmetrical tree but not anything in between. For all the reasons mentioned, these four methods were therefore not used for testing for evidence of saturation.

2.9.7. Testing for phylogenetic signal

If the tree lengths of all tree topologies generated through maximum parsimony (discussed in Section 2.9.8, p. 84-85) follow a normal distribution, then the differences in tree lengths are due to chance rather than homology; otherwise, the distribution is skewed enough that very few alternative solutions exist near the shortest tree, thus indicating the presence of a phylogenetic signal. A g1 test can measure how skewed a dataset is when applied to a set of tree lengths based on parsimony. Critical values for the g1 measure of skewness for such datasets (Table 2.10) were derived by Hillis and Huelsenbeck (1992). If g1 test scores obtained are smaller (or more negative) than the critical values, then the tree length distributions are said to be skewed and therefore exhibit phylogenetic signal. It should be noted that the critical values change little beyond 15 taxa being investigated so the values derived for 25 taxa can be used to test datasets with more than 25 taxa (Hillis & Huelsenbeck, 1992). Where the number of parsimony-informative sites or the number of taxa being investigated is not available in the table, then the next lower number should be used as a basis for deriving the critical value. Increasing the number of parsimony-informative sites or the number of taxa will increase the critical value (make it less negative), so if a g1 score for a particular number of parsimony-informative sites and taxa is less than the critical value for a lower number of parsimony-informative sites or lower number of taxa, then there is phylogenetic signal for the dataset.

Table 2.10: Critical values for g1 measure of skewness at *P*=0.05.

No. of parsimony-	No. of Taxa							
informative sites	5	6	7	8	9	10	15	25
10	-0.95	-0.70	-0.59	-0.51	-0.44	-0.34	-0.23	-0.16
50	-0.78	-0.58	-0.45	-0.37	-0.25	-0.28	-0.19	-0.12
100	-0.66	-0.56	-0.40	-0.31	-0.25	-0.30	-0.20	-0.10
250	-0.81	-0.43	-0.39	-0.26	-0.22	-0.20	-0.16	-0.08

Caution was taken, however, when interpreting strong skewness as this could be misleading. The presence of duplicated taxa or even very closely related taxa (i.e. those with very similar sequences) in a group of random taxa could lead to a very strong left skew as the tree that would show monophyly of these taxa would be considerably shorter than the other trees generated (Swofford *et al.*, 1996).

The g1 test statistic was performed in PAUP* and applied to all the gene datasets using the randtrees command with 10,000 replicates in PAUP*.

2.9.8. Tree Construction

Phylogenetic trees are graphical representations of the evolutionary relationships among taxa derived from morphological or molecular datasets. For molecular datasets, tree-construction methods either convert aligned sequences into a matrix of pairwise distances among the taxa (distance methods), or they use the positions in the sequences directly (character-state methods). Tree construction methods can use an algorithm to search for the single best tree estimate (algorithmic methods) or they define a criterion by which several alternative trees are compared and scored in order to identify the best tree (optimality criterion methods) (Graur & Li, 2000).

The maximum likelihood (ML) method (Cavalli-Sforza & Edwards, 1967; Felsenstein, 1981) is a character-state method that finds the best tree with the highest probability of fit with the data (measured as the likelihood score) using a specific model of DNA sequence evolution (Graur & Li, 2000). The objective of maximum likelihood is to find the tree with the best or largest likelihood score. However, phylogenetic analyses involving many taxa would entail evaluating a large number of trees (e.g. there are more than 34 million possible rooted trees for only 10 taxa) so that conducting an exhaustive search is impractical. Instead, a heuristic search is done in which an initial start tree (obtained by stepwise addition, with a random sequence input order and 10 replicates) is successively improved by swapping branches until the most likely tree with the best likelihood score is obtained. Unlike an exhaustive search, a heuristic search only evaluates a subset of all the possible trees and provides the best guess of the optimal tree (Hall, 2008). ML was undertaken in PHYML Version 2.4.4 (Guindon *et al.*, 2005). The command lines in PHYML are listed in Appendix 2.3.1, pp. 368-369.

Bayesian inference (BI) is similar to maximum likelihood in that it also utilises likelihood values. Unlike maximum likelihood, Bayesian inference determines the best hypothesis that maximises the posterior probability, which is proportional to the likelihood value multiplied by the prior probability of the hypothesis. A prior probability is based on what is initially known about the dataset (Holder & Lewis, 2004). Computer programs that conduct Bayesian inference such as MrBayes make use of the Markov Chain Monte Carlo algorithm to approximate posterior probability values of randomly generated trees through a number of generations until the chain attains a stable likelihood value (Ronquist & Huelsenbeck, 2003; Hall, 2008). Four chains of a Markov Chain Monte Carlo algorithm in BI were used to compute the posterior probability values with an optimized number of generations and heating temperature (Temp). The number of generations was optimized when the values of the posterior probabilities across the four chains converged or did not vary significantly from each other. The heating temperature was optimized when the acceptance rates of the Metropolis-Hastings mcmc sampler ranged between 0.1 and 0.7. (See also Appendix 2.3.2, pp. 369-370.) Bayesian inference was conducted in MrBayes Version 3.1.2 package (Ronquist & Huelsenbeck, 2003), and the command lines for this package are listed in Appendix 2.3.2., pp. 369-370.

The neighbor-joining (NJ) method (Saitou & Nei, 1987) is an algorithmic distance method that uses a modified distance matrix that adjusts the separation of each pair of sequences based on the pair's average divergence from all the other sequences. This method identifies the shortest tree by sequentially finding neighbors that minimize the total length of the tree (Graur & Li, 2000). NJ trees were built in PAUP*, with the command lines summarized in Appendix 2.3.3, p. 371.

The maximum parsimony (MP) method is a non-model based method that identifies a topology that requires the least number of possible changes (Eck & Dayhoff, 1966; Fitch, 1977). As with ML, a heuristic search for the most parsimonious tree or a set of equally most parsimonious trees is conducted by starting with an initial tree (obtained by stepwise addition, with a random sequence input order and 10 replicates) and swapping branches until the optimal tree is obtained. MP analysis was undertaken in PAUP* with a heuristic search using the tree bisection and reconnection (TBR) swapping routine and 10 random input orders. The command lines are listed in Appendix 2.3.4, pp. 371-372.

Advantages and disadvantages of the four tree methods are summarized in Table 2.11.

Tree method	Advantages	Disadvantages
Neighbor-joining	Fast	Information is lost in
		compressing sequences into
		distances; reliable estimates of
		pairwise distances can be hard
		to obtain for divergent
		sequences
Maximum likelihood	The likelihood fully captures	Can be prohibitively slow
	what the data tell us about the	
	phylogeny under a given model	
Bayesian inference	Has a strong connection to the	The prior distributions must be
	maximum likelihood method;	specified; it can be difficult to
	might be a faster way to assess	determine whether the Markov
	support for trees rather than the	chain Monte Carlo (MCMC)

 Table 2.11: Comparison of methods (table taken from Holder & Lewis, 2004)

	maximum likelihood	approximation has run for long
	bootstrapping	enough
Maximum parsimony	Fast enough for the analysis of	Can perform poorly if there is
	hundreds of sequences; robust if	substantial variation in branch
	branches are short (closely	length
	related sequences or dense	_
	sampling)	

2.9.9. Estimating reliabilities of clades in phylogenetic trees

A phylogenetic tree represents the best estimate of the true tree based on the sequences available and the method of tree construction. Reliability of the tree estimates, which can be measured by how many times the members of a particular clade are recovered as members of that clade, can be done through the bootstrap method in the maximum likelihood, neighbor-joining and maximum parsimony methods and through measuring posterior probabilities in the Bayesian inference method (Hall, 2008). The bootstrap method is a resampling technique used to estimate the confidence level of hypotheses in phylogenetic estimation. A measure of support for the branches in the tree is provided by bootstrap values, which are based on the percentage of the number of times a particular branch is generated in the bootstrap datasets (generated by random sampling from the dataset with replacement) (Graur & Li, 2000). For instance, a particular dataset is resampled 1000 times with replacement to produce 1000 resampled datasets, with each dataset used to generate a tree. Out of the 1000 trees, the percentage of the trees in which a particular branch appears becomes its measure of support. Bootstrap resampling with 1000 replicates was undertaken in PHYML for ML (see Appendix 2.3.1, pp. 368-369) and in PAUP* for NJ and MP (see Appendix 2.3.3, p. 371 for NJ and 2.3.4, pp. 371-372 for MP). In Bayesian inference analysis, the fraction of times a clade occurred among the last 1000 trees surveyed as part of the MCMC process was directly computed as posterior probabilities. Unlike the bootstrap method, the

underlying data are not resampled (Hall, 2008). The posterior probabilities were computed in MrBayes (see Appendix 2.3.2, pp. 369-370).

2.9.10. Combining datasets

As well as undertaking phylogenetic analyses for each gene independently, where possible the individual gene datasets were combined in order to get a better estimate of the phylogeny. It has been recognized that a phylogeny based only on a single gene, known as a gene tree, cannot truly represent a species tree (Cummings *et al.*, 1995; Graur & Li, 2000) as organisms that participate in the evolutionary process are a collection of genes, each with its own evolutionary history, that interact with each other and with the environment (Morrison, 2006). Combining data from different genes tends to increase phylogenetic signal and disperse noise while at the same time uncovering the underlying signal found in the different data partitions (Baldauf *et al.*, 2000). Using genes in concert that have different evolutionary rates and modes of inheritance (i.e. the relatively slower evolving nuclear genes and the faster evolving, maternally inherited mitochondrial genes) can also provide information at different levels of phylogeny (Graybeal, 1994). Combining datasets are also known to reduce the phenomenon of long-branch attraction in parsimony analysis (Gontcharov *et al.*, 2004) in which long branches in a tree tend to cluster together (Graur & Li, 2000).

Concatenation is the combination of all datasets into a single data matrix for the purpose of phylogenetic analysis (Morrison, 2006). However, simply concatenating the datasets under consideration and analyzing them using only one evolutionary model could produce a phylogeny with the wrong groupings if the different datasets represent very divergent evolutionary histories (Cunningham, 1997). The partition homogeneity test (also known as the incongruence length test) based on maximum parsimony in

PAUP* was used in this study to distinguish between separate datasets that could be combined to give an improved phylogenetic accuracy (with *P* normally greater than 0.01) and individual datasets that give poorer accuracy when combined (with P<0.001) due to their very divergent evolutionary histories (Cunningham, 1997). The command lines for the partition homogeneity test in PAUP* are shown in Appendix 2.4, p. 373. As the test makes use of maximum parsimony to determine if datasets can be combined, its utility is hampered if at least one of the genes being considered exhibit polytomies as this considerably slows down PAUP*. For such a scenario, the decision to combine would rely on whether or not the single gene phylogenies exhibited concordance with each other.

Two sets of concatenated sequence alignments were prepared for the combined gene analyses. The first included only taxa with complete sequences across all genes evaluated. In order not to lose any taxon, a second set of concatenated sequences was also prepared in which taxa with missing datasets were also included. Though including taxa with incomplete datasets could be potentially problematic in phylogenetic analyses, Wiens (2006) found that these taxa could still be included and their phylogenetic position accurately determined so long as enough characters have been surveyed; their inclusion could also remove misleading long branches and potentially increase the accuracy of the combined phylogeny. The trees generated from the second set of concatenated sequences were compared for any similarity with the individual gene phylogenies as well as those derived from the first set of concatenated sequences.

An alternative to combining datasets by concatenating sequences is to construct from multiple trees a consensus tree derived from several genes with the same set of taxa or a supertree if the taxa sampled are not identical but there are taxa overlapping

87

between trees (Morrison, 2006). Two strategies employed to construct consensus trees and supertrees are strict consensus (tree generated contains all the groups that occur on all trees considered) and majority consensus (tree generated includes groups that occur in at least 50% of all the trees considered) (Felsenstein, 2004). However, the effectiveness of consensus methods is limited by the following: 1) their tendency to produce spurious groups that do not appear in any of the trees; 2) the non-avoidance of pseudoreplication as a result of using overlapping data in some of the trees that increases the weight of these data; 3) the inappropriateness of using branch support methods such as bootstrapping (Morrison, 2006); and 4) their treatment of each tree, no matter how bad, as equally good (Wade, pers. comm.). The consensus methods were therefore not used.

2.9.11. Hypothesis testing

An optimal tree may not necessarily produce the expected topologies, as in the case where a supposedly monophyletic group based on taxonomy turned out not to be monophyletic in the optimal tree. A tree can be constrained to reflect the expected topology, and this tree can be compared for significant difference with the optimal tree. If the optimal tree turns out to be not significantly better than the constrained tree, then the hypothesis being put forward by the optimal tree is not a strong hypothesis. The Shimodaira-Hasegawa test (Shimodaira & Hasegawa, 1999; Goldman *et al.*, 2000) was applied on the datasets found in Chapters 3 and 4 to compare for significant difference between constrained and optimal NJ trees using likelihood. The command lines for the Shimodaira-Hasegawa test, which was carried out in PAUP*, are listed in Appendix 2.5, p. 374.

2.9.12. Inferring the presence of paralogous sequences in the dataset

The presence of paralogous sequences due to gene duplication could yield misleading trees. All genes were therefore evaluated for the presence of paralogs. Of the genes used in this study, actin is most susceptible to the problem of paralogy since several copies of the actin gene, which arose from gene duplication events, abound. Although the primers used to amplify the actin gene were known to be specific for the cytoplasmic actin (see Section 2.2.1.1.1.2, pp. 48 – 50), this was no guarantee that only orthologous sequences were amplified as duplication events could also have taken place within the cytoplasmic actin. To infer the presence of paralogous sequences, the PCR-direct sequences were checked for the presence of ambiguous sites; the presence of ambiguous sites (where more than one peak is obtained at the same position in a DNA sequence) implies that more than one copy of the gene is present in that individual. All

sequences obtained in this study were evaluated for the presence of ambiguities. Where evidence of multiple copies is found, cloning the PCR products prior to sequencing enables each copy of the gene to be examined individually. Cloning of the actin gene (Chapters 3 and 4) was undertaken for a limited number of clones from three taxa (time and cost constraints precluded a more detailed analysis).

2.9.13. Assessing the utility of the actin gene for phylogenetic analyses

The inherent problem of actin in relation to the presence of paralogous sequences could limit its utility in phylogenetic analyses. However, the potential of actin to provide some phylogenetic signal should not be underestimated. Several steps were undertaken to evaluate the utility of the actin dataset. First, the clones derived from representative taxa were checked for monophyly; if all clones derived from a taxon fall as a monophyletic group within the actin tree, then they will not mislead organismal phylogeny. Second, the number of ambiguous sites within a taxon was compared with the total number of nucleotide differences between the taxon and its closest relative based on the closest sequence identity of the actin sequence (i.e. the least number of nucleotide differences between any two taxa). In principle, the time of divergence between two taxa should be earlier than the evolution of the different actin genes within these taxa, such that the number of ambiguous sites should not exceed the number of differences between the two taxa being compared. However, it is possible for two taxa to have a higher number of ambiguous sites than nucleotide differences if these ambiguous sites are due to a large number of multiple copies, in which each contains only a small number of variable sites (when this variation is added together it may exceed the number of nucleotide differences). These sequences will still cluster together in a tree and will not mislead phylogeny. Third, a partition homogeneity test (see

Section 2.9.10, pp. 86-88) was undertaken to determine whether or not the sequences from the actin gene exhibited a significant difference in terms of phylogenetic signal with the other genes being evaluated. If no significant difference was observed, this would suggest that the actin gene could be utilized alongside the other genes in phylogenetic analyses and that the presence of multiple copies of the actin gene was not having a significant effect on phylogenetic estimation. Lastly, the phylogenetic tree obtained from the actin dataset was checked for concordance with the other gene phylogenies. Concordance would suggest that the presence of multiple copies of the actin gene was not misleading phylogeny. Phylogenetic analyses involving the actin gene were therefore approached with caution, with reference to the limitations of using this gene.

2.10. Literature cited

- Adema, C.M. 2002. Comparative study of cytoplasmic actin DNA sequences from six species of Planorbidae (Gastropoda: Basonmatophora). Journal of Molluscan Studies 68: 17-23.
- Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. 2008. <u>The</u> <u>Molecular Biology of the Cell, 5th ed.</u> Garland Science, Taylor & Francis Group, New York, 1268 pp.
- Archie, J.W. 1989. A randomization test for phylogenetic information in systematic data. Sytematic Zoology **38**: 219-252.
- Armbruster, G.F.L., Bohme, M., Bernhard, D. and Schegel, M. 2005. The H3/H4 histone gene cluster of land snails (Gastropoda: Stylommatophora): TS/TV ratio, GC3 drive and signals in stylommatophoran phylogeny. Journal of Molluscan Studies 71: 339-348.
- Aurelius, E., Johansson, B., Skoldenberg, B., Staland, A. and Forsgren, M. 1991. Rapid diagnosis of herpes simplex encephalitis by nested polymerase chain reaction assay of cerebrospinal fluid. Lancet 337(8735): 189-192.
- Bailey, C.D., Carr, T.G., Harris, S.A. and Hughes, C.E. 2003. Characterization of angiosperm nDNA polymorphism, paralogy, and pseudogenes. Molecular Phylogenetics and Evolution **29**: 435-455.
- Baldauf, S.L., Roger, A.J., Wenk-Siefert, I. and Doolittle, W.F. 2000. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science **290**: 972-977.
- Bhadury, P., Austen, M.C., Bilton, D.T., Lambshead, P.J.D., Rogers, A.D. and Smerdon, G.R. 2006. Development and evaluation of a DNA-barcoding

approach for the rapid identification of nematodes. Marine Ecology Progress Series **320**: 1-9.

- Blaxter, M.L., De Ley, P., Garey, J.R., Liu, L.X., Scheldeman, P., Vierstraete, A., Vanfleteren, J.R., Mackey, L.Y., Dorris, M., Frisse, L.M., Vida, J.T. and Thomas, W.K. 1998. A molecular evolutionary framework for the phylum nematoda. Nature. **392**(6671): 71-75.
- Bonnaud, L., Boucher-Rodoni, R. and Monnerot, M. 1994. Phylogeny of decapod cephalopods based on partial 16S rDNA nucleotide sequences. Comptes rendus de l'Academie de sciences. Serie III, Sciences de la vie **317**(6): 581-588.
- Brown, W.M., Prager, E.M., Wang, A. and Wilson, A.C. 1982. Mitochondrial DNA sequences of primates: tempo and mode of evolution. Journal of Molecular Evolution **18**: 225-239.
- Carlini, D.B., Reese, K.S. and Graves, J.E. 2000. Actin gene family evolution and the phylogeny of coleoid cephalopods (Mollusca: Cephalopoda). Molecular Biology and Evolution **17**(9): 1353-1370.
- Cavalli-Sforza, L.L. and Edwards, A.W.F. 1967. Phylogenetic analysis: models of estimation procedures. American Journal of Human Genetics **19**: 233-257.
- Colgan, D.J., McLauchlan, A., Wilson, G.D.F., Livingston, S.P., Edgecombe, G.D., Macaranas, J., Cassis, G., and Gray, M.R. 1998. Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Australian Journal of Zoology 46: 419-437.
- Colgan, D.J., Ponder, W.F. and Eggler, P.E. 2000. Gastropod evolutionary rates and phylogenetic relationships assessed using partial 28S rDNA and histone H3 sequences. Zoologica Scripta **29**(1): 29-63.
- Cornish-Bowden, A. 1985. Nomenclature for incompletely specified bases in nucleic acid sequences: recommendations 1984. Nucleic Acids Research **13**(9): 3021-3030.
- Cummings, M.P., Otto, S.P. and Wakely, J. 1995. Sampling properties of DNA sequence data in phylogenetic analysis. Molecular Biology and Evolution **12**: 814-822.
- Cunningham, C.W. 1997. Can three incongruence tests predict when data should be combined? Molecular Biology and Evolution **14**(7): 733-740.
- Demeke, T. and Adams, R.P. 1992. The effects of plant polysaccharides and buffer additives on PCR. Biotechniques **12**: 332-334.
- DesGroseillers, L., Auclair, D., Wickham, L. and Maalouf, M. 1994. A novel actin cDNA is expressed in the neurons of *Aplysia californica*. Biochimica Biophysica Acta **1217**: 322-324.
- Donald, K.M., Kennedy, M. and Spencer, H.G. 2005. The phylogeny and taxonomy of austral monodontine topshells (Mollusca: Gastropoda: Trochidae), inferred from DNA sequences. Molecular Phylogenetics and Evolution 37: 474-483.
- Eck, R.V. and Dayhoff, M.O. 1966. <u>Atlas of Protein Sequence and Structure</u>. National Biomedical Research Foundation, U.S.A., 215 pp.
- Eirin-Lopez, J.M., Fernanda Ruiz, M., Gonzalez-Tizon, A.M., Martinez, A., Sanchez, L. and Mendez, J. 2004. Molecular evolutionary characterization of the mussel *Mytilus* histone multigene family: first record of a tandemly repeated unit of five histone genes containing an H1 subtype with "orphon" features. Journal of Molecular Evolution **58**: 131-144.
- Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution. **17**: 368-376.

- Fitch, W.M. 1977. On the problem of discovering the most parsimonious tree. American Naturalist **111**: 223-257.
- Floyd, R., Abebe, E., Papert, A. and Blaxter, M. 2002. Molecular barcodes for soil nematode identification. Molecular Ecology **11**:839-850.
- Folmer, O., Black, M., Hoen, W., Lutz, R. and Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metozoan invertebrates. Molecular Marine Biology and Biotechnology 3:294-299.
- Fyrberg, E.A., Bond, B.J., Hershey, N.D., Mixter, K.S. and Davidson, N. 1981. The actin genes of *Drosophila*: protein coding regions are highly conserved but intron positions are not. Cell **24**: 107-116.
- Gasser, R.B., and Newton, S.E. 2000. Genomic and genetic research on bursate nematodes: significance, implications and prospects. International Journal of Parasitology **30**: 509-534.
- Goldman, N., Anderson, J.P. and Rodrigo, A.G. 2000. Likelihood-based tests of topologies in phylogenetics. Systematic Biology **49**: 652-670.
- Gontcharov, A.A., Marin, V. and Melkonian, M. 2004. Are combined analyses better than single gene phylogenies? A case study using SSU rDNA and *rbcL* sequence comparisons in the Zygnematophyceae (Streptophyta). Molecular Biology and Evolution 21(3): 612-624.
- Graur, D. and Li,W-H. 2000. <u>Fundamentals of Molecular Evolution, 2nd ed</u>. Sinauer Associates, Inc., U.S.A., 481 pp.
- Graybeal, A. 1994. Evaluating the phylogenetic utility of genes: a search for genes informative about deep divergences among vertebrates. Systematic Biology **43**: 174-193.
- Gu, X., Fu, Y.-X. and Li, W.-H. 1995. Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. Molecular Biology and Evolution **12**: 546-547.
- Guindon, S., Lethiec, F., Duroux, P. and Gascuel, O. 2005. PHYML Online--a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Research **33**: w577-w581.
- Hall, B.G. 2008. <u>Phylogenetic Trees Made Easy: A How-to Manual, 3rd ed</u>. Sinauer Associates, Inc., U.S.A., 233 pp.
- Hasegawa, M., Kishino, H. and Yano, T. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution **21**: 160-174.
- Hebert, P.D.N., Cywinska, A., Ball, S.L., and deWaard, J.R. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B **270**: 313–321.
- Hernan, I.M. 1993. Actin isoforms. Current Opinion in Cell Biology 5: 48-55.
- Hightower, R.C. and Meagher, R.B. 1986. The molecular evolution of actin. Genetics **114**: 315-332.
- Hillis, D.M. and Dixon, M.T. 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. Quarterly Review of Biology **66**: 411-453.
- Hillis, D.M. and Huelsenbeck, J.P. 1992. Signal, noise, and reliability in molecular phylogenetic analyses. Journal of Heredity **85**: 189-195.
- Hillis, D.M., Mable, B.K., Larson, A., Davis, S.K. and Zimmer, E.A. 1996. Nucleic Acids IV: Sequencing and Cloning. *In*: Hillis, D.M., Moritz, C. and Mable, B.K. (ed.), <u>Molecular Systematics</u>, 2nd ed. Sinauer Associates, Inc., USA, pp. 321-381.

- Holder, M. and Lewis, P.O. 2004. Phylogenetic estimation: traditional and Bayesian approaches. Nature Reviews: Genetics **4**: 275-284.
- Huelsenbeck, J.P. and Crandall, K.A. 1997. Phylogeny estimation and hypothesis testing using maximum likelihood. Annual Review of Ecology, Evolution and Systematics **28**:437-466.
- Jukes, T.H. and Cantor C.R. 1969. Evolution of Protein Molecules. *In:* Munro, H.N. (ed.), <u>Mammalian Protein Metabolism</u>. Academic Press, New York, pp. 21-132.
- Kelchner, S.A. and Thomas, M.A. 2007. Model use in phylogenetics: some key questions. Trends in Ecology and Evolution **22**(2): 87-94.
- Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. Journal of Molecular Evolution **16**: 111-120.
- Klug, W.S., Cummings, M.R. and Spencer, C.A. 2007. <u>Essentials of Genetics</u>, 6th ed. Pearson education, Inc., New Jersey, 553 pp.
- Jorgensen, A., Kristensen, T.K. and Madsen, H. 2008. A molecular phylogeny of apple snails (Gastropoda, Caenogastropoda, Ampullariidae) with an emphasis on African species. Zoologica Scripta **37**(3): 245-252.
- Lafontaine, D.L.J. and Tollervey, D. 2001. The function and synthesis of ribosomes. Nature Reviews: Molecular Cell Biology **2**: 514-520.
- Lewin, B. 2008. Genes IX. Jones and Bartlett Publishers, U.S.A., 892 pp.
- Liao, D. 1999. Concerted evolution: molecular mechanism and biological implications. American Journal of Human Genetics **64**: 24-30.
- Lifton, R.P., Goldberg, M.L., Karp, R.W. and Hogness, D.S. 1977. The organization of the histone genes in *Drosophila melanogaster*: functional and evolutionary implications. Proceedings of the Cold Spring Harbor Symposium on Quantitative Biology 42: 1047-1051.
- Long, E.O. and Dawid, I.B. 1980. Repeated genes in eukaryotes. Annual Review of Biochemistry **49**: 727-764.
- Lydeard, C., Holznagel, W.E., Schnare, M.N. and Gutell, R.R. 2000. Phylogenetic analysis of molluscan mitochondrial LSU rDNA sequences and secondary structures. Molecular Phylogenetics and Evolution **15**(1): 83-102.
- Lyons-Weiler, J., Hoelzer, G.A. and Tausch, R.J. 1996. Relative apparent synapomorphy analysis (RASA) I: the statistical measurement of phylogenetic signal. Molecular Biology and Evolution **13**: 496-508.
- Meldal, B.H.M., Debenham, N.J., De Ley, P., Tandingan De Lay, I., Vanfleteren, J.R., Vierstraete, A.R., Bert, W., Borgonie, G., Moens, T., Tyler, P.A., Austen, M.C., Blaxter, M.L., Rogers, A.D. and Lambshead, P.J.D. 2006. An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa. Molecular Phylogenetics and Evolution 42(3): 622-636.
- Morgan, J.A.T., DeJong, R.J., Jung, Y., Khallaayoune, K., Kock, S., Mkoji, G.M. and Loker, E.S. 2002. A phylogeny of planorbid snails, with implications for the evolution of *Schistosoma* parasites. Molecular Phylogenetics and Evolution 25: 477-488.
- Morrison, D.A. 2006. Phylogenetic analyses of parasites in the new millennium. Advances in Parasitology **63**: 1-124.
- Orita, M., Suzuki, Y., Sekiya, T. and Hayashi, K. 1989. Rapid and sensitive detection of point mutations and DNA polymorphisms using polymerase chain reaction. Genomics. **5**: 874-879.

- Palumbi, S.R. 1996. Nucleic Acids II: The Polymerase Chain Reaction. In: Hillis, D.M., Moritz, C. and Mable, B.K. (ed.), <u>Molecular Systematics</u>, 2nd ed. Sinauer Associates, Inc., USA, pp. 205-247.
- Patwary, M.U. 1996. Isolation and characterization of a cDNA encoding an actin gene from sea scallop (*Placopecten magellanicus*). Journal of Shellfish Research 15: 265-270.
- Posada, D. and Crandall, K.A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics **14**: 817-818.
- Reece, R.J. 2004. <u>Analysis of Genes and Genomes</u>. John Wiley & Sons, Ltd., U.K., 469 pp.
- Richards, E., Reichardt, M. and Rogers, S. 1995. Preparation of Genomic DNA from Plant Tissue. *In*: Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. (ed.) <u>Current Protocols in Molecular</u> Biology. John Wiley & Sons, Inc., U.S.A., pp. 2.3.1-2.3.7.
- Rodriguez, F., Oliver, J.L., Marin, A. and Medina, J.R. 1990. The general stochastic model of nucleotide substitution. Journal of Theoretical Biology **142**: 485-501.
- Rolfs, A., Schuller, I., Finckh, U. and Weber-Rolfs, I. 1992. <u>PCR: Clinical Diagnostics</u> and Research. Springer-Verlag, Germany, 271 pp.
- Ronquist, F. and Huelsenbeck, J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics **19**: 1572-1574.
- Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution **4**: 406-425.
- Shimodaira, H. and Hasegawa, M. 1999. Multiple comparisons of log likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16: 1114-1116.
- Smith, S.W., Overbeek, R., Woese, C.R., Gilbert, W. and Gillevet, P.M. 1994. The genetic data environment, an expandable GUI for multiple sequence analysis. Computer Applications in the Biosciences **10**: 671-675.
- Staden, R. Beal, K.F. and Bonfield, J.K. 2000. The Staden package, 1998. Methods in Molecular Biology **132**: 115-130.
- Steel, M., Lockhart, P.J. and Penny, D. 1993. Confidence in evolutionary trees from biological sequence data. Nature **364**: 440-442.
- Steel, M., Lockhart, P.J. and Penny, D. 1995. A frequency-dependent significance test for parsimony. Molecular Phylogenetics and Evolution **4**: 64-71.
- Strimmer, K. and von Haeseler, A. 2003. Nucleotide Substitution Models. In: Salemi, M. and Vandamme, A-M. (ed.), <u>The Phylogenetic Handbook: A Practical</u> <u>Approach to DNA and Protein Phylogeny.</u> Cambridge University Press, U.K., pp. 72-87.
- Sunnucks, P., Wilson, A.C.C., Beheregaray, L.B., Zenger, K., French, J. and Taylor, A.C. 2000. SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology. Molecular Ecology 9: 1699-1710.
- Swofford, D.L. 2002. PAUP* 4.0b10, Sinauer Associates, Sunderland, MA.
- Swofford, D.L., Olsen, G.J., Waddell, P.J. and Hillis, D.M. 1996. Phylogenetic Inference. *In*: Hillis, D.M., Moritz, C. and Mable, B.K. (ed.), <u>Molecular Systematics</u>, 2nd ed. Sinauer Associates, Inc., USA, pp. 407-514.
- Tamura, K. and Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10: 512-526.

- Tsigenopolous, C.S., Rab, P. Naran, D. and Berrebi, P. 2002. Multiple origins of polyploidy in thephylogeny of southern African barbs (Cyprinidae) as inferred from mtDNA markers. Heredity **88**: 466-473.
- Wade, C.M. and Mordan, P.B. 2000. Evolution within the gastropod molluscs; using the ribosomal RNA gene-cluster as an indicator of phylogenetic relationships. Journal of Molluscan Studies **66**: 565-570.
- Wade, C.M., Mordan, P.B., and Clarke, B.C. 2001. A phylogeny of the land snails (Gastropoda: Pulmonata). Proceedings of the Royal Society of London Series B 268: 413-422.
- Wade, C.M., Morgan, P.B. and Naggs, F. 2006. Evolutionary relationships among the pulmonate land snails and slugs (Pulmonata, Stylommatophora). Biological Journal of the Linnean Society 87: 593-610.
- Wiens, J.J. 2006. Missing data and the design of phylogenetic analyses. Journal of Biomedical Informatics **39**(1): 34-42.
- Xia, X. 2009. Assessing Substitution Saturation With DAMBE. In: Lemey, P., Salemi, M. and Vandamme, A-M. (ed.), <u>The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing</u>, 2nd ed. Cambridge University Press, New York, pp. 615-630.
- Xia, X. and Xie, Z. 2001. DAMBE: data analysis in molecular biology and evolution. Journal of Heredity **92**: 371-373.
- Xia, X., Xie, Z., Salemi, M., Chen, L. and Wang, Y. 2003. An index of substitution saturation and its application. Molecular Phylogenetics and Evolution 26: 1-7.
- Vandekerckhove, J. and Weber, K. 1978. At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. Journal of Molecular Biology **126**: 783-802.
- Yang, Z. 1993. Maximum likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Molecular Biology and Evolution **10**: 1396-1401.
- Yang, Z. 2006. <u>Computational Molecular Evolution</u>. Oxford University Press, U.K., 357 pp.
- Zubay, G.L., Parson, W.W. and Vance, D.E. 1995. <u>Principles of Biochemistry</u>. Wm. C. Brown Publishers, USA, 863 pp.

CHAPTER 3 – Phylogeny of the Achatinoidea

3.1. Introduction

The Giant African Land Snail, Achatina fulica, and other members of the superfamily Achatinoidea belong to the suborder Stylommatophora, whose members possess a vascularised mantle cavity that serves as a lung and two pairs of caudal tentacles, the upper pair of which bears the eyes at their tips (Ruppert et al., 2004; Barker, 2001). Using the Pilsbry-Baker system of classification, the Stylommatophora can be divided into four infraorders based on the structure of the excretory system (Pilsbry, 1900; Baker, 1955). Achatina fulica and other members of the Achatinoidea belong to the infraorder Sigmurethra, in which the excretory system does not have a distal ureteric pouch or orthureter but possesses a ureter that runs along the anterior portion of the nephridium and connects to the pallial cavity before terminating at the pneumostome. Recent molecular phylogenetic studies (Wade et al., 2001, 2006) based on the nuclear ribosomal (r) RNA gene cluster (including part of the 5.8S and LSU genes) revealed a principal division of the Stylommatophora into two major clades. The 'achatinoid' clade comprises the superfamilies Streptaxoidea, represented by the single family Streptaxidae, and the Achatinoidea, represented by the families Achatinidae, Coeliaxidae, Ferussaciidae, Glessulidae, Subulinidae and Thyrophorellidae. All other stylommatophoran families fall within the 'non-achatinoid' clade.

3.1.1. The Achatinoidea

The composition of the Achatinoidea varies according to author (Solem, 1978; Abbott, 1989; Tillier, 1989; Vaught, 1989; Schileyko, 1999; Bouchet & Rocroi, 2005; Table 1.1). Solem (1978) included the Achatinidae, Ferussaciidae, Megaspiridae, Spiraxidae and Subulinidae (including the coeliaxids and glessulids as the subfamilies Coeliaxinae and Glessulinae, respectively), while Abbott (1989) regarded the Coeliaxidae as a family in its own right and additionally included the monotypic Thyrophorellidae. Tillier (1989) classified land snails under the superfamily Achatinoidea based on certain morphological features such as a closed ureter in the excretory system and possession of symmetrical cerebro-pedal connectives, short commissure and contiguous left parietal and visceral ganglia in the nervous system. His Achatinoidea comprised the Achatinidae, Ferussaciidae, Subulinidae (including the subfamilies Coeliaxinae and Glessulinae), Thryphorellidae as well as the Streptaxidae, Succineidae and the Oleacinidae (Spiraxidae and Testacellidae). Vaught (1989) did not include the Streptaxidae, Succineidae, Spiraxidae or Testacellidae in her Achatinoidea but instead included the Thyrophorellidae and the Coeliaxidae (elevated from a subfamily of subulinids) in addition to the Achatinidae, Ferussaciidae and Subulinidae. Schileyko (1999) placed only the Achatinidae in the Achatinoidea, whereas Bouchet & Rocroi (2005) included the Achatinidae, Ferussaciidae, Subulinidae (which also incorporated the coeliaxids and glessulids as the subfamilies Coeliaxinae and Glessulinae) and Micractaeonidae. Wade et al.'s (2001, 2006) molecular phylogenies based on a part of the rRNA gene cluster lend support to Vaught's Achatinoidea. In this study, I utilise an Achatinoidea that largely resembles Vaught's and comprising the Achatinidae, Coeliaxidae, Ferussaciidae, Glessulidae (a subfamily of the Subulinidae in Vaught's classification), Subulinidae and Thyrophorellidae.

The family Achatinidae, which includes the Giant African Land Snail, *Achatina fulica*, has shells that are mostly dextral, are generally higher than wide and range in size from medium to very large (Schileyko, 1999). The reproductive structures of the achatinids are highly variable (Mead, 1991), but all members possess a penis sheath

(Schileyko, 1999). With the exception of *Achatina fulica*, which has been introduced by Man into new areas (Mead, 1979; Raut & Barker, 2002), all other achatinids are restricted to Africa and nearby islands (Schileyko, 1999).

The monotypic family Thyrophorellidae is represented by *Thyrophorella thomensis* from São Thomé. The shell is sinistral and is made up of three nearly flat whorls so that it appears low conic on top and bulging at the bottom (Schileyko, 2001). *Thyrophorella thomensis* is one of the few stylommatophorans that have secondarily acquired a structure similar in function to the prosobranch gastropod operculum; in the case of *T. thomensis*, a lobe-shaped outgrowth of the parietal wall of the shell's aperture is hinged on a flexible periostracal layer to serve as a covering of the aperture (Barker, 2001). Bouchet and Rocroi (2005) included the Thyrophorellidae in the superfamily Punctoidea, although recent molecular data from the LSU rRNA gene (Wade *et al.*, 2006) clearly places this family within the Achatinoidea.

Members of the Ferussaciidae have very small dextral shells that are elongateovate to nearly cylindrical and appear translucent or transparent (Schileyko, 1999). Ferussaciids are unique among the 'achatinoids' because they superficially resemble the 'non-achatinoid' Succineidae in possessing a short but transversely elongate kidney (Tillier, 1989) with a complete ureter (Schileyko, 1999). The ferussaciids are largely found in the Mediterranean, with several in tropical Africa, the Indian subcontinent and Indian Ocean islands, the Philippines, Hawaii, Mexico, the Caribbean, Brazil (Schileyko, 1999), Hawaii (introduced, Cowie, pers. comm.), New Caledonia (introduced, Schileyko, 1999) and Northwest Europe (Kerney & Cameron, 1979).

The family Subulinidae is a large group with a pantropical distribution (Tillier, 1989). With very few exceptions, its members have characteristic slender and turreted shells and are generally dextral. The internal anatomy of members of the group is not

99

well studied, and most taxa within the family are grouped together based largely on the similarity of their shells and their geographic distribution. Such an approach is exemplified by Zilch (1959). In revising the Subulinidae, Schileyko (1999) attempted to restructure their classification by including characters of the reproductive tract, primarily those proximal to the genital orifice. As the only comprehensive review of the group since Pilsbry (1906-1907; 1908-1910), it seems logical to use Shileyko (1999) as the primary source when reviewing the group as was done by Bouchet & Rocroi (2005). According to Schileyko (1999), eight subfamily groups can be recognized. These are the Subulininae (dextral shell with the last whorl lacking internal sculpture and with a reproductive tract that has a reduced or absent epiphallus, a muscular organ responsible for the formation of the spermatphores, and a short or absent flagellum, an extension of the epiphallus; distributed in tropical and subtropical regions of the world), Petriolinae (dextral or sinistral shell similar to Subulininae but with a prominent epiphallus; found in Africa and St. Helena), Rishetiinae (dextral shell with a simple columella and a reproductive organ with a long flagellum; found in the Hindustan Peninsula, Ceylon, and Southeast Asia), Rumininae (dextral shell decollated or entire and with a reproductive organ lacking an epiphallus and a flagellum; found in South Africa and the Mediterranean), Opeatinae (with dextral shell and an enlarged penis; found in subtropical regions of the Old and New World), Obeliscinae (dextral shell slender turreted to subfusiform and with a reproductive organ lacking an epiphallus and a flagellum; found in South America, the Caribbean and Southeast Asia), Tristaniinae (sinistral shell; found in Tristan da Cunha Islands), and Perrieriinae (shell sinistral and subcylindrical or pillar-shaped; found in New Guinea) (Schileyko, 1999). Other subulinid groups have been accorded by some authors with full taxonomic family status such as the Coeliaxidae (Abbott, 1989; Vaught, 1989) and the Glessulidae (Schileyko,

1999). The coeliaxids have slender dextral or sinistral shells and are distributed in South Africa (only one species), the Gulf Island of São Thomé in West Africa, the Caribbean, Colombia and Peru (Schileyko, 1999). The glessulids generally have glossy, oblong-conic dextral shells and are restricted to the Indian subcontinent and Sri Lanka (Schileyko, 1999).

However, closer examination of Schileyko's results raises doubts regarding his conclusions, and the taxonomy of the Subulinidae therefore warrants further scrutiny. For instance, rather than representing a subulinid subfamily, Tristania is a junior synonym of Balea, which is a member of the Clausiliidae (Preece & Gittenberger, 2003). *Rishetia* is anatomically close to *Glessula* (both have a shell with truncated columella and penis with epiphallus), and both are restricted to South Asia; therefore, there seems to be no basis for Schileyko's erection of the subfamily Rishetiinae. Shileyko's acceptance of Thiele's (1933) genus Striosubulina is supposedly justified by the reproductive anatomy described and figured by Shileyko. However, in describing the penis, Shileyko seems to have mistaken that part of the penis surrounded by the penial sheath for the complete penis, and most of what he describes as the penial retractor muscle is in fact the long thin penis almost identical to that of Subulina octona, the type species of Subulina (Naggs, pers. comm.). Thus, the arrangement of the Subulinidae into eight subfamilies by Shileyko (1999), subsequently accepted by Bouchet & Rocroi (2005), is unreliable and will need to be reassessed. Furthermore, some pieces of information on distributions of the subulinids based on published records were not included by Shileyko (1999). For example, in giving the range of Glessula as 'Hindustan peninsula and Ceylon (1999, page 541), Shileyko fails to mention that several species of Glessula occur in Myanmar, Yunnan (China), Thailand and east as far as Vietnam and southeast into the Indonesian peninsula (Pilsbry, 1908-

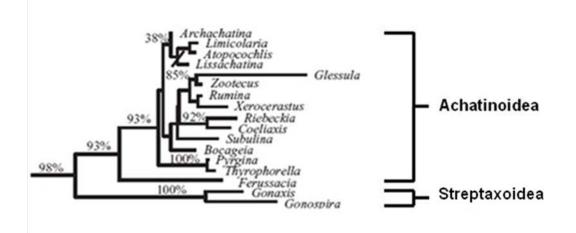
101

1910; Van Benthem Jutting, 1952, 1959; Hemmen & Hemmen, 2001; Vermeulen & Maassen, 2003). With the Rumininae, the geographical range for the group alters drastically if *Zootecus* is excluded (see Table 3.1) or included, when the range extends from circum-Mediterranean, Arabian and West African to encompass a large longitudinal range from the Cape Verde islands through Central and Northern India to Myanmar (Gude, 1914). It should be noted that Schileyko (1999) placed *Zootecus* under the Subulininae.

	Rumininae	Rumininae	Distribution	Distribution
	sensu Zilch	sensu Shileyko	according to	according to
	(1959)	(1999)	Shileyko	Zilch
Namibiella	Х	X	SW Africa	SW Africa
Xerocerastus	Х	X	SW Africa	SW Africa
Lubricetta	Х	X	SW Africa	SW Africa
Krapfiella		X	E. Africa	
Riebeckia		X	Sokotra	
Balfouria		X	Sokotra	
Rumina	Х	X	Mediterranean	Europe and
				N. Africa
Obeliscella	Х			Arabia
Zootecus	Х			Cape Verde
				Islands,
				N Africa, N
				& C. India

Table 3.1: Comparison of the composition and distribution of the Rumininae according to Zilch (1959) and Schileyko (1999).

3.1.2. Some questions about the Achatinoidea


Although the Achatinoidea is strongly supported in Wade *et al's* (2006) rRNA phylogeny with 93% NJ bootstraps (see Figure 3.1), their phylogeny was based on only 823 nucleotide sites from the rRNA gene cluster and incorporated only 15 achatinoid taxa. Clearly, the clade could be further refined by obtaining new sequence data (both

longer sequences of the rRNA as well as sequences from other new genes) as well as the inclusion of additional taxa.

For instance, the achatinids are a compact group based on the presence of a penis sheath (Schileyko, 1999) and their restricted geographic distribution to sub-Saharan Africa (Mead, 1979; Raut & Barker, 2002). Wade *et al.* (2006) used four taxa to represent the Achatinidae, but support for the monophyly of the group was equivocal (38% NJ bootstraps and P=0.94 BI) based on the small segment of the rRNA gene cluster used in their analyses.

The ferussaciid *Ferussacia folliculus* forms a distinct basal lineage in the Achatinoidea (Wade *et al.*, 2006). Whether this topology persists if other ferussaciids are surveyed remains to be seen.

The monophyly of the Subulinidae and its subfamilies also needs to be verified as, anatomically, this group is poorly studied (Schileyko, 1999), and both the coeliaxids (Abbott, 1989; Vaught, 1989) and the glessulids (Abbott, 1989; Schileyko, 1999) have been regarded as separate families. In particular, the placement of *Zootecus* in the Subulininae according to Schileyko (1999) must be validated. The subulinids, coeliaxids and glessulids were represented by nine taxa in the Wade *et al.* (2006) study, which formed several groups together with the thyrophorellid *Thyrophorella thomensis* but with no support apart from the *Riebeckia-Coeliaxis* group (92% NJ bootstraps and P=1.0 BI) and the *Pyrgina-Thyrophorella* group (100% NJ bootstraps and P=1.0 BI).

Figure 3.1: Phylogeny of the Achatinoidea based on 823 unambiguously aligned nucleotide sites of the rRNA gene cluster. (Taken from the stylommatophoran phylogeny of Wade *et al.*, 2006.)

3.1.3. Use of molecular markers to determine phylogeny

Various molecular markers are available for determining evolutionary relationships. These include the nuclear ribosomal RNA gene family (see Section 2.2.1.1.1.1 of Chapter 2, pp. 45-48). Already described is Wade *et al.*'s (2001, 2006) use of the nuclear ribosomal RNA gene cluster to infer phylogenetic relationships within the Stylommatophora. However, their results were derived from only a partial segment of the rRNA cluster. Wade *et al* (2001, 2006) amplified an approximately 1460 nucleotide region of the rRNA (comprising approximately 80 nucleotides of the 5.8S gene, the complete internal transcribed spacer (ITS) 2 region and approximately 840 nucleotides of the LSU gene) of which 843 (2001 study) and 823 (2006 study) nucleotide sites could be aligned across all taxa and were therefore used in phylogeny reconstruction. Expanding the Wade *et al.* fragment to cover the entire LSU gene (approximately 4000 nucleotides) could provide better resolution of the Achatinoidea. The small subunit (SSU) rRNA gene has also been employed to elucidate evolutionary relationships among different gastropod groups. For example, Winnepenninckx *et al.*

(1998) applied the full-length SSU rRNA gene (approximately 1800 nucleotides), to reassess the groupings within the Gastropoda, demonstrating the basal position of the archaeogastropods. However, their results could not resolve whether the pulmonates or even the stylommatophorans were monophyletic.

In addition to the ribosomal genes, the nuclear actin and histone 3 genes have also been used to estimate phylogeny within the Mollusca. The actin gene encodes a protein that is involved in various functions such as muscle contraction, cell division and differentiation (Hernan, 1993, see also Section 2.2.1.1.1.2 of Chapter 2, pp. 48-50). However, several actin genes may exist in animals as a result of gene duplication and divergence (Hightower & Meagher, 1986); these genes code for protein isoforms that are broadly classified as either the muscle (α) type or the cytoplasmic (β) type (Vandekerckhove & Weber, 1984; Adema, 2002). Great care must therefore be taken to ensure that paralogous copies of the gene do not mislead the phylogenetic analysis. A 784 bp fragment of the actin gene has been successfully employed to show the monophyly of several groups within the coleoid cephalopods such as the Octopodiformes, the Decapodiformes, the Octopoda and the Incirrata (Carlini et al, 2000). The actin gene was also used together with the mitochondrial 16S and cytochrome c oxidase subunit I (COI) genes to resolve the phylogeny within the ancestral archaeogastropod monodontine topshells (family Trochidae) from the southern hemisphere, with three species of Austrocochlea being transferred to the genus Chlorodiloma (Donald et al., 2005). The actin fragment (764 bp) used in this study was amplified using primers designed for the cytoplasmic actin fragment of the planorbid snail Biomphalaria glabrata previously sequenced by Adema (2002). To date, the cytoplasmic type actin gene has not been used in the Achatinoidea, and the utility of this

105

gene for phylogenetic analysis of the group is worth investigating, though the potential presence of paralogous sequences could limit its utility.

The histone 3 (H3) gene codes for two subunits of the histone core protein octamer that packs the eukaryotic chromatin into bead-like structures (Lewin, 2008) (see Section 2.2.1.1.1.3 of Chapter 2, pp. 50-51). Histone 3 was used, in conjunction with the nuclear SSU and LSU rRNA genes and the mitochondrial COI gene, to resolve the incongruence between molecular and morphological data for the gastropod phylogeny (Colgan *et al.*, 2003). The results demonstrated the monophyly of the Euthyneura, which include the stylommatophoran pulmonates. The H3 fragment (331 bp) used in this study corresponds to the 3' end of the gene in the bivalve *Spisula solidissima*. Like the actin gene, the histone 3 gene has not been used in the Achatinoidea; thus, its usefulness is worth investigating.

Using mitochondrial genes in concert with nuclear genes is desirable for constructing phylogenetic trees as they tend to improve phylogenetic accuracy (Lake & Moore, 1998; Steinke *et al.*, 2004). Nuclear and mitochondrial genes evolve at different rates and are not inherited in the same way; as such, they provide information at different levels of phylogeny (Graybeal, 1994). Mitochondrial genes generally evolve faster than nuclear genes; they are also maternally inherited and are therefore not subject to recombination (Brown, 1985; Avise, 1994). Two mitochondrial genes commonly used for phylogenetic analyses are the cytochrome c oxidase subunit I (COI) gene, which codes for an enzyme that accepts electrons from cytochrome c during the electron transport chain in the mitochondrion (Zubay *et al.*, 1995; see also Section 2.2.1.1.2.1 of Chapter 2, pp. 51-52), and the 16S rRNA gene, which transcribes a ribosomal rRNA that is incorporated in the mitochondrial ribosome (Lewin, 2008; see also Section 2.2.1.1.2.2 of Chapter 2, pp. 52-53). Steinke *et al.* (2004) used a combined

data set of nuclear rRNA genes (18S and ITS-1) and mitochondrial genes (16S rRNA and COI) to separate the Western Palaearctic helicoid stylommatophorans into two families: Helicidae and Hygromiidae. They reasoned that the faster evolving mitochondrial genes were able to resolve the terminal taxa while the more conserved nuclear rRNA genes separated the basal groups. The 16S rRNA fragment (approximately 400 bp) was amplified using Palumbi et al.'s (1991) universal primers while the COI fragment (approximately 500 bp) was amplified using Folmer et al.'s (1994) universal primers. As mentioned previously, these same fragments were also used by Carlini et al. (2000) alongside the actin gene for the coleoid cephalopod phylogeny. Furthermore, both 16S (Thollesson, 1999) and COI (Remigio & Hebert, 2003) were employed with some degree of success to evaluate higher level phylogenies within the Gastropoda even though both genes are susceptible to significant levels of saturation. Neither Palumbi et al.'s (1991) universal 16S primers nor Folmer et al.'s (1994) universal COI primers have been applied previously to phylogenetic analyses of the Achatinoidea.

Aside from the COI and the 16S rRNA genes, several other mitochondrial genes have also been used for inferring deep level phylogenies within the gastropods. Grande *et al.* (2004) employed several mitochondrial genes, in addition to the 16S and COI, such as the tRNA-valine, tRNA-argenine, tRNA-proline and the NADH dehydrogenase subunits 5 and 6 genes in the study of the Euthyneura (opisthobranchs and pulmonates) in which their molecular data rejected the monophyly of the pulmonates.

At present, no study has attempted to use nuclear and mitochondrial genes in concert to address the issues regarding the relationships within the Achatinoidea. Using several genes together approximates the species tree that traces the evolutionary relationships of the species under consideration, which is more desirable than

107

representing their relationships based on the history of individual genes, as shown by a gene tree (Grauer & Li, 2000). Combining these genes could also resolve the phylogeny of the Achatinoidea at all levels, with the faster evolving mitochondrial genes (COI and 16S) resolving the shallower nodes and the slower evolving nuclear genes (rRNA, actin and possibly histone 3) resolving the deeper nodes (Graybeal, 1994; Johnson & Clayton, 2000). Combining genes could also increase phylogenetic signal and disperse noise (Baldauf *et al.* 2000; Gontcharov *et al.*, 2004).

3.1.4. Objectives of this study

This study had the following objectives: (1) to identify the primary divisions within the superfamily Achatinoidea and to elucidate the relationship of the different families; (2) to establish if the Achatinidae are monophyletic and to identify their position relative to the other families within the Achatinoidea; (3) to determine whether the Ferussaciidae is monophyletic and to establish its phylogenetic position; (4) to settle the taxonomic designation of the Subulinidae, Coeliaxidae and Glessulidae; and (5) to validate the different subfamilies of the Subulinidae. To address these objectives, the phylogeny of the Achatinoidea was inferred by examining representative taxa from all major groupings across the superfamily using molecular data from three nuclear genes (rRNA cluster, actin, and histone 3) and two mitochondrial genes (16S rRNA and COI). The genes were analyzed separately and in combination.

3.2. Materials and methods

3.2.1. Taxa used

Twenty-four taxa from six achatinoid families (Achatinidae, Coeliaxidae, Ferussaciidae, Glessulidae, Subulinidae and Thyrophoprellidae) and three streptaxid outgroup taxa, two of which were used by Wade *et al.* (2006) and were found to fall at the base of the 'achatinoid clade,' were used to evaluate the phylogeny of the Achatinoidea (see Table 3.2). Four subulinid subfamilies following Schileyko's (1999) classification (Petriolinae, Rishetiinae, Rumininae and Subulininae) were also represented in this study. Thirteen taxa were entirely new to this study while the remaining 14 taxa were used by Wade *et al.* (2006) in their phylogeny of the land snails based on a partial fragment of the rRNA cluster.

Table 3.2: Taxa used for the phylogenetic study of the Achatinoidea. Taxa marked with (*) are new to this study and were solicited through email by myself, C. Hudelot, F. Naggs and C. Wade from the collectors shown in the table. The DNA for the remaining taxa was provided by C. Wade from the collections obtained for Wade *et al.* (2001, 2006).

Family		Species	Collection/Location	Collector/Provider
Achatinidae	*	Achatina achatina (Linneaus, 1758)	Unknown (Zool. Soc. Lond. Colln.)	NHM**
		Achatina fulica Bowdich, 1822	Captive bred, unknown origin	NHM**
	*	Achatina stuhlmanni von Martens, 1892	Semuliki National Park, Uganda	B. Rowson
	*	Cochlitoma ustulata (Lamarck, 1822)	Western Cape Prov., South Africa	A. Moussalli & D. Stuart- Fox
Coeliaxidae		Coeliaxis blandii (Pfeiffer, 1852)	New Bradford, South Africa	N. Smith
		Pyrgina umbilicata Greeff, 1882	São Thomé	A. Gascoigne
Ferussaciidae	*	Cecilioides gokweanus (Boettger, 1870)	Cape Vida, Bhangazi Hill, Zululand, South Africa	D. Herbert
		Ferussacia folliculus (Gmelin, 1791)	Los Alcornales, Prov Cadiz, Spain	M. Seddon
Glessulidae Subulinidae		Glessula ceylanica (Pfeiffer, 1845)	Colombo, Sri Lanka	P. Karunaratne
S.f. Petriolinae		<i>Bocageia</i> sp.	São Thomé	A. Gascoigne
	*	Subulona sp.	Ossen Forest, Tupen Hills, Kenya	M. Pickford
S.f. Rishetiinae	*	Eutomopeas layardi (Benson, 1863)	Koralegama, Sri Lanka	?
	*	Tortaxis erectus (Pilsbry, 1906)	Guilin, Guangxi Prov., China	R. Anderson
S.f. Rumininae		Riebeckia sp.	Samha, Sokotra Archipelago	E. Neubert
		Rumina decollata (Linneaus, 1758)	Sicily	A. Davison
		Xerocerastus sp.	Otjiwarongo, Namibia	W. Sirgel
S.f. Subulininae	*	Allopeas clavulinum (Potiez & Michaud, 1838)	University of Sao Paulo, Brazil	F. Florens & C. Baider
	*	Leptinaria lamellata (Potiez & Michaud, 1838)	Botanical Garden, Rio de Janeiro, Brazil	F. Florens & C. Baider
	*	Paropeas achatinaceum (L. Pfeiffer, 1846)	Agra Gajaba's Garden Sri Lanka	D. Raheem
	*	Subulina octona (Bruguiere, 1789)	Island of Pulo Anna, Sonsorol, Southwest Islands, Republic of Palau	R. Rundell & A.M. Gawel
		Subulina striatella (Rang, 1831)	Kew Gardens (introduced)	F. Naggs
	*	Subulina vitrea (Mousson, 1887)	Gauss, Namibia	?
		Zootecus insularis (Ehrenberg, 1831)	Dubai, United Arab Emirates	S. Green
Thyrophorellidae		Thyrophorella thomensis Greeff, 1882	Zampala, São Thomé, West Africa	A. Gascoigne
Streptaxidae (outgroups)	*	Gibbulinella dewinteri Bank, Groh & Ripken, 2002	Puntas Coloradas, La Gomera Island	M. Ibañez
		Gonaxis quadrilateralis Preston, 1910	Reunion	O. Griffiths
		Gonospira sp.	Mauritius	O. Griffiths

** NHM-Natural History Museum

3.2.2. DNA extraction, PCR amplification and sequencing

For all new specimens, tissue slices (approximately eight mm³) from the foot muscle of the snail were obtained and the DNA was extracted using the standard CTAB method of DNA extraction (Section 2.1.1 of Chapter 2, pp. 37-39). The DNA was

provided by C. M. Wade for those specimens utilized in the Wade *et al.* (2001, 2006) studies.

Amplification by PCR, gel migration and purification of PCR products from agarose gels were carried out as described in Sections 2.2-2.4 of Chapter 2, pp. 42-59. Nearly the entire fragment of the nuclear LSU rRNA gene, the internal transcribed spacer 2 (ITS2) and 80 bp of the 5.8S rRNA gene (for a total of approximately 4000 bp) were amplified using six overlapping primer pairs listed in Table 2.1 of Chapter 2, p. 47. Sequences of the Morgan (2002) nuclear cytoplasmic actin gene fragment (approximately 900 bp), the Colgan *et al.* (2003) nuclear histone 3 fragment (328 bp), the Folmer *et al.* (1994) mitochondrial COI fragment (approximately 650 bp) and the Palumbi *et al.* (1991) mitochondrial 16S fragment (420-500 bp) were amplified using the primers listed in Tables 2.2-2.5 of Chapter 2, pp. 50-53. For all fragments, both sense and anti-sense strands were sequenced directly using an Applied Biosystems 3730 DNA sequencer and BigDye version 3.1 termination cycle sequencing chemistry (see Section 2.6 of Chapter 2, pp. 59-61 for details).

3.2.3. Sequence analysis

Sequences were assembled using the STADEN package version 1.5.3 (Staden *et al.*, 2000) and aligned manually within the Genetic Data Environment (GDE) Version 2.2 (Smith *et al.*, 1994). The rRNA and 16S rRNA sequences were aligned following alignments generated by C. Hudelot for the Stylommatophora based on the secondary structure of these genes. Ambiguous sites due to sequencing errors (for all genes) or the presence of multiple copies (for the actin gene) were assigned as described in Section 2.9.3 of Chapter 2, pp. 72-73. Cloned sequences of actin gene copies from three

representative taxa of the Achatinoidea were used as a guide to assign ambiguous sites in the actin gene (see Section 2.7 of Chapter 2, pp. 61-66).

For each gene fragment, the average base frequencies as well as the numbers of variable and parsimony-informative sites were determined in PAUP* Version 4.0b10 package (Swofford, 2002) (Section 2.9.4 of Chapter 2, p. 73). Corrected distances were computed after determination of the optimal model for DNA sequence evolution. This was carried out using likelihood by estimating the log likelihood scores in the PAUP* for the JC69 (Jukes & Cantor, 1969), F81 (Felsenstein, 1981), K2P (Kimura, 1980), HKY85 (Hasegawa *et al.*, 1985), TN93 (Tamura & Nei, 1993) and the GTR (Rodriguez *et al.*, 1990) models as well as their variant that incorporated gamma distributed rates (Γ) (Yang, 1993), after which the scores were compared for significant differences using the Likelihood Ratio Test (LRT) (see Section 2.9.5 of Chapter 2, pp. 73-77 for details of the LRT).

In order to examine the sequences for evidence of saturation, the following plots were generated: pairwise corrected versus pairwise uncorrected distances (Plot 1); pairwise uncorrected transition and transversion distances versus pairwise uncorrected total distances (Plot 2); and pairwise uncorrected transition distances versus pairwise uncorrected transversion distances (Plot 3) (see Section 2.9.6 of Chapter 2, pp. 77-81). Gene datasets that demonstrated saturation were excluded from subsequent phylogenetic analyses. To test for the presence of phylogenetic signal, tree length distribution using parsimony was also determined for a g1 measure of skewness for 10,000 tree length replicates (see Section 2.9.7 of Chapter 2, pp. 81-82). Due to the potential problems posed by the presence of paralogous sequences the actin gene was assessed for its utility in phylogenetic analyses using the procedures outlined in Section 2.9.13, pp. 90-91.

Phylogenetic trees were generated from the aligned datasets using the model based maximum likelihood (ML), Bayesian inference (BI) and neighbor-joining (NJ) methods and the non-model based maximum parsimony (MP) method (Section 2.9.8 of Chapter 2, pp. 82-85). The trees for NJ and MP were generated in PAUP* while that of ML was generated using PHYML Version 2.4.4 (Guindon *et al.*, 2005). Bootstrap resampling (Felsenstein, 1985) with 1000 replicates for MP and NJ (using PAUP*) and 1000 replicates for ML (using PHYML) were also carried out. Bayesian inference (BI) was performed using the MrBayes (Version 3.1.2) package (Ronquist & Huelsenbeck, 2003) using four chains of a Markov Chain Monte Carlo algorithm. The number of generations to explore the tree space and the heating temperature used for each gene were optimised as described in the BI segment of Section 2.9.8 of Chapter 2, pp. 83-84 and on Appendix 2.3.2, pp. 369-370. A consensus tree for each gene (where unsaturated) was constructed using the last 1000 trees.

To determine if the sequences from the genes that did not exhibit saturation could be combined and analyzed as a single dataset of concatenated sequences, a partition-homogeneity test (Swofford, 2002) was carried out within PAUP* (Section 2.9.10 of Chapter 2, p. 86-88). Two sets of concatenated sequences were prepared. The first one included only those taxa with complete sequences for all the gene fragments under consideration while the second set included all taxa. Studies show that taxa with incomplete datasets could still be used and their phylogenetic positions accurately determined provided that a lot of characters were surveyed from the other sequences (Wiens, 2006). Inclusion of such taxa could also benefit the combined gene analyses by removing misleading long branches and potentially increase the accuracy of the phylogeny (Wiens, 2006).

Where taxonomic groups expected to be monophyletic based on taxonomy did not cluster together in the optimal trees, their monophyly was tested using the Shimodaira-Hasegawa (1999) test in PAUP* (Section 2.9.11 of Chapter 2, p. 89).

3.3. Results

3.3.1. Molecular data

Twenty four achatinoid and three streptaxid outgroup taxa (Gibbulinella dewinteri, Gonaxis quadrilateralis and Gonospira sp.) were examined. Sequences were obtained for the nuclear rRNA cluster, actin and histone 3 genes as well as the mitochondrial 16S and cytochrome c oxidase I genes. Sequence alignments are presented in Appendices 3.1-3.5 on pp. 375-432. All sequences were scanned for the presence of ambiguous positions in the direct sequences that might be indicative of the presence of multiple gene copies. Ambiguities indicative of multiple gene copies were detected only for the actin gene (see Section 3.3.2.2, p. 155-156 for details). A summary of the molecular data for all the sequences is shown in Table 3.2. For the protein-coding genes (actin, histone 3 and COI), summary information was obtained separately for the entire gene (all codon positions), the combined 1st and 2nd codon positions and the 3rd codon position only. Uncorrected and corrected pairwise distances and their optimal models were determined for all five genes and are summarized in Table 3.3. The GTR+ Γ model was found to be the optimal model by LRT for the nuclear rRNA cluster, the mitochondrial 16S RNA and for both the full (all codon positions) and 3rd codon position datasets for the actin, histone 3 and COI genes. For the combined $1^{st} + 2^{nd}$ codon position datasets, TNR93+ Γ was determined to be the optimal model for the actin, TN93 for the histone 3, and $GTR+\Gamma$ for COI. (See Appendix 3.6, p. 433 for the summary of the LRT results).

Nearly the entire fragment of the LSU rRNA gene, the internal transcribed spacer 2 (ITS 2) and 80 nucleotides of the 5.8S rRNA gene was sequenced (approximately 4000 nucleotides) for the rRNA gene cluster, of which 3435 nucleotides could be aligned unambiguously. The ITS 2 region was too variable to align across all taxa and was therefore excluded from the analysis. A total of 260 (7.6%) variable sites were found, of which 151 were parsimony-informative. Pairwise distances across all taxa ranged from 0.001 to 0.034 (uncorrected) and 0.001 to 0.062 (corrected). The highest base frequency was obtained for G (0.318) followed by C (0.260), then by A (0.229) and finally by T (0.193). For the actin gene, 861 nucleotide positions were sequenced, of which all sites could be aligned unambiguously; of these, 288 (33.5%) were variable and 240 were parsimony-informative. Pairwise distances ranged from 0.009 to 0.173 (uncorrected) and 0.009 to 0.469 (corrected). Highest average base frequency was for A (0.274) followed by C (0.255) then T (0.250) and finally G (0.220). The majority of the variable sites (237) and parsimony-informative sites (210) were found at the 3^{rd} codon position, while the combined 1^{st} and 2^{nd} codon positions only had 51 variable sites and 30 parsimony-informative sites. For the histone 3 gene, 328 nucleotides were sequenced and aligned unambiguously, with 103 (31.4%) variable positions and 71 parsimony-informative sites. Pairwise distances ranged from 0 to 0.183 (uncorrected) and 0 to 0.605 (corrected). Average base frequencies, in decreasing order, were as follows: C (0.321); G (0.271); A (0.242) and T (0.166). As with the actin gene, the 3rd codon position exhibited the most number of variable sites (93) as well as parsimony-informative sites (70) in comparison to the combined 1st and 2nd codon positions with only 10 and 1, respectively. Amplification of the histone 3 gene

115

fragment for Cecilioides gokweanus (Ferussaciidae), Paropeas achatinaceum, Riebeckia sp., and Subulina vitrea (Mousson) (Subulinidae) proved unsuccessful. Only a single streptaxid outgroup sequence (Gibbulinella dewinteri) was obtained for the histone 3 gene. For the COI gene, approximately 650 nucleotides were sequenced, with the length varying depending on the primers used. A total of 607 unambiguously aligned nucleotides were used; of which 279 (46.0%) were variable and 250 were parsimony-informative. Pairwise distances ranged from 0.160 to 0.265 (uncorrected) and 7.215 to 57.369 (corrected). Average base frequencies, in decreasing order, were as follows: T (0.395); A (0.249); G (0.194) and C (0.163), indicating a strong bias for T; this was heightened in the 3rd codon position where average frequency of T rose to 0.462. The 3rd codon position had 201 variable sites and 188 parsimony-informative sites, whereas the combined 1^{st} and 2^{nd} codon positions only had 78 and 62, respectively. Amplification of the COI gene for Cecilioides gokweanus was also unsuccessful. As with the histone 3 gene, only a single streptaxid outgroup sequence (Gibbulinella dewinteri) was obtained for the COI gene. The 16S rRNA gene product ranged from 420-500 nucleotides, with 294 that were unambiguously aligned, 139 (47.3%) that were variable, and 120 that were parsimony-informative. Pairwise distances ranged from 0.078 to 0.279 (uncorrected) and 0.107 and 1.082 (corrected). Base frequencies were as follows: T (0.306); A (0.296); G (0.217) and C (0.181), showing bias for A and T. Sequencing of the 16S rRNA gene fragment for Eutomopeas layardi and Subulona sp. (Subulinidae) was unsuccessful.

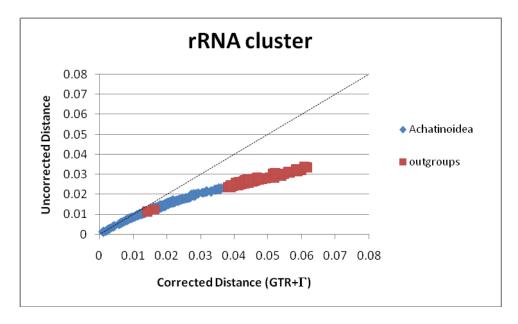
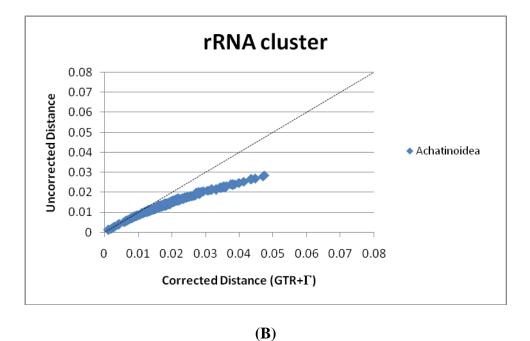

	Length	# of va	ariable	Range of	distances	Optimal	Range of	distances	Average base frequencies					#	of			
	(bp)	sites	(%)	(Uncor	rected)	Model (α value for Γ	· · · · · · · · · · · · · · · · · · ·		1	A C		G		T		parsimony- informative sites		
		А	A+O	А	A+O	distribution)	А	A+O	А	A+O	А	A+O	А	A+O	А	A+O	Α	A+O
rRNA cluster	3435	212 (6.2)	260 (7.6)	0.001-0.029	0.001-0.034	GTR+Γ (0.049)	0.001-0.048	0.001-0.062	0.229	0.229	0.260	0.260	0.319	0.318	0.192	0.193	113	151
Actin combined	861	283 (32.9)	288 (33.5)	0.009-0.173	0.009-0.173	GTR+Γ (0.190)	0.009-0.469	0.009-0.469	0.276	0.274	0.254	0.255	0.219	0.220	0.251	0.250	230	240
Actin 1 st and 2 nd codon positions	574	50 (8.7)	51 (8.9)	0-0.046	0-0.046	TN93+Γ (0.059)	0-0.105	0-0.105	0.316	0.316	0.228	0.228	0.228	0.228	0.229	0.229	29	30
Actin 3 rd codon position	287	233 (81.2)	237 (82.6)	0.025-0.444	0.025-0.444	GTR+Γ (1.339)	0.023-1.056	0.023-1.056	0.192	0.189	0.307	0.312	0.203	0.206	0.298	0.294	201	210
Histone3 combined	328	97 (29.6)	103 (31.4)	0-0.156	0-0.183	GTR+Γ (0.164)	0-0.491	0-0.605	0.241	0.242	0.322	0.321	0.272	0.271	0.165	0.166	66	71
Histone 3 1^{st} and 2^{nd} codon positions	218	8 (3.7)	10 (4.6)	0-0.023	0-0.028	TN93 (N/A)	0-0.024	0-0.029	0.287	0.287	0.285	0.285	0.261	0.261	0.167	0.167	1	1
Histone 3 3 rd codon positions	110	89 (80.9)	93 (84.5)	0-0.449	0-0.520	GTR+Γ (1.811)	0-1.289	0-1.452	0.145	0.147	0.397	0.395	0.297	0.295	0.161	0.163	65	70
COI combined	607	276 (45.5)	279 (46.0)	0.160-0.265	0.160-0.265	GTR+Γ (0.077)	7.215-57.369	7.215-57.369	0.249	0.249	0.163	0.163	0.194	0.194	0.394	0.395	250	250
COI 1 st and 2 nd codon positions	404	75 (18.6)	78 (19.3)	0.032-0.119	0.032-0.119	GTR+Γ (0.086)	0.046-0.459	0.046-0.459	0.205	0.205	0.199	0.199	0.235	0.235	0.361	0.361	62	62
COI 3 rd codon positions	203	201 (99.0)	201 (99.0)	0.365-0.631	0.365-0.631	GTR+Γ (0.386)	299.377-5420.470	299.377-5420.470	0.335	0.336	0.091	0.090	0.114	0.113	0.459	0.462	188	188
16S rRNA	294	137 (46.6)	139 (47.3)	0.078-0.279	0.078-0.279	GTR+Γ (0.233)	0.107-1.082	0.107-1.082	0.292	0.296	0.184	0.181	0.220	0.217	0.304	0.306	113	120

Table 3.3: Summary of molecular data across all genes used for the Achatinoidea and three streptaxid outgroup taxa (rRNA gene cluster, actin and 16S) and one streptaxid outgroup taxon (histone 3 and COI). A=Achatinoidea only; A+O=Achatinoidea and outgroup.


3.3.2. Sequence analyses

3.3.2.1. Evaluating for saturation and phylogenetic signal

For the rRNA cluster, the uncorrected versus corrected distances plots (Plot 1, Figure 3.2) demonstrated that the corrected distance based on the optimal GTR+ Γ model deviated from linearity starting at an uncorrected (*p*) distance of approximately 0.01 but no plateau was reached for the plots of either the Achatinoidea or the Achatinoidea plus outgroups. This suggested that the dataset for the rRNA cluster was far from being saturated and that the GTR+ Γ model was adequate at correcting the distances for multiple hits.

1	٨)	
Į.	Н	J	

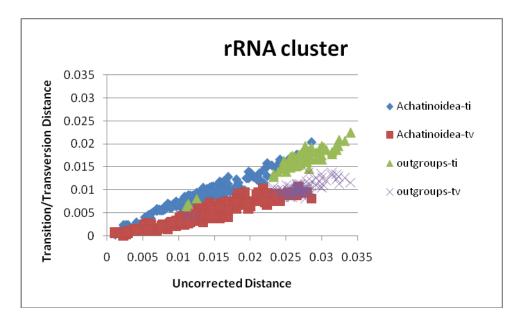
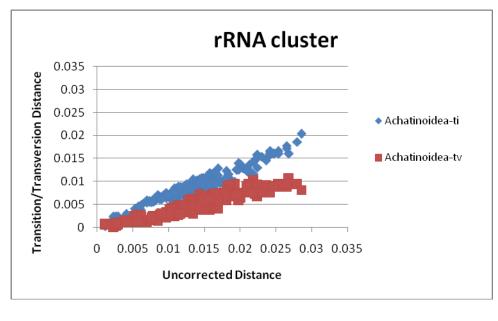
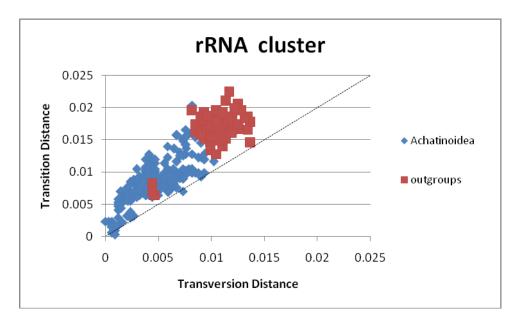


Figure 3.2: Plots of pairwise uncorrected distance against corrected (GTR+ Γ) distance for the rRNA cluster in (**A**) the Achatinoidea and the streptaxid outgroup taxa and (**B**) the Achatinoidea only.

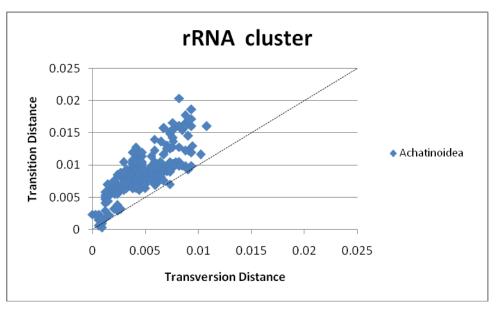

Plots for the transition and transversion rates versus uncorrected distances both with and without the outgroup taxa (Plot 2, Figure 3.3) showed transition distances that were higher than the transversion distances, with both types of substitutions increasing linearly. Plots for transitions against transversions both with and without the outgroup taxa (Plot 3, Figure 3.4) demonstrated that all transitions were higher than transversions. These suggested that neither transition nor transversion distances were saturated for the rRNA cluster.

A g1 value of -1.200 was obtained for the rRNA cluster with 10,000 replicates based on 27 taxa and 151 parsimony-informative characters. This value differed significantly from the critical g1 value of -0.1 at P=0.05 level of significance for 25 taxa and 100 parsimony-informative characters (Hillis & Huelsenbeck, 1992). This result was indicative of a strong phylogenetic signal.

The lack of substitution saturation and the presence of a strong phylogenetic signal suggested that the rRNA cluster was suitable for phylogenetic analyses of the Achatinoidea and outgroups.

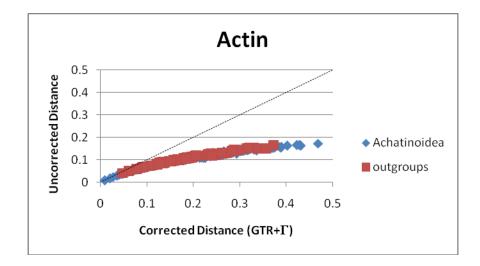


1	۸	1
L.	А	
· •		·/



(B)

Figure 3.3: Plots of uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for the rRNA cluster in (A) the Achatinoidea and outgroup taxa and (B) the Achatinoidea only.


(A)

(B)

Figure 3.4: Plots of uncorrected pairwise transition (ti) distances against transversion (tv) distances for the rRNA cluster in (**A**) the Achatinoidea and the streptaxid outgroup taxa and (**B**) the Achatinoidea only.

For the actin gene, Plot 1 (Figure 3.5) showed that the corrected distance, based on the optimal GTR+ Γ model, deviated from linearity starting at an uncorrected (*p*) distance of approximately 0.04 for both the Achatinoidea only and the Achatinoidea plus outgroup taxa. The plots were still increasing and had not reached a plateau, suggesting adequate correction of the optimal GTR+ Γ model and no saturation in the dataset.

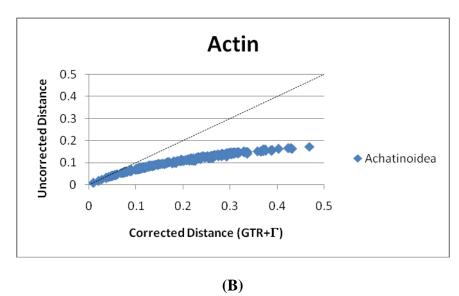
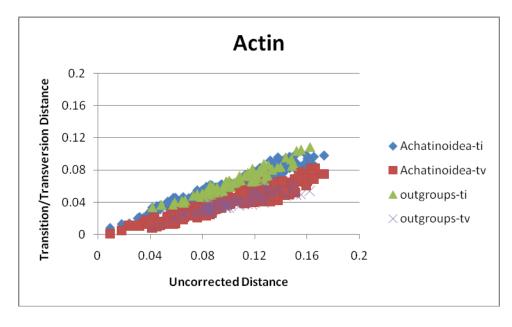
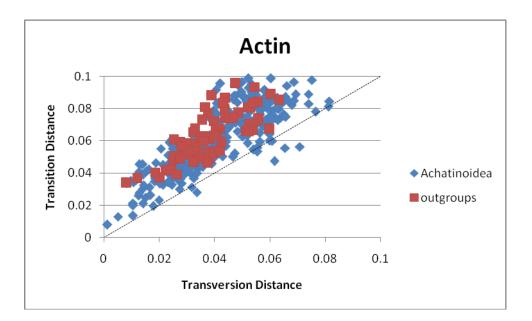



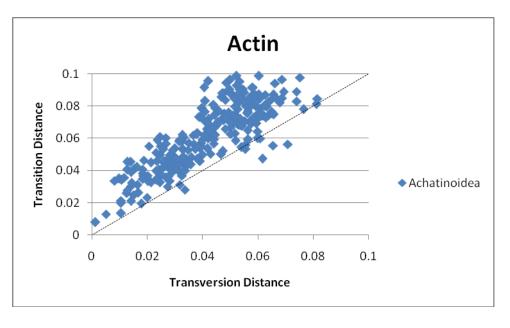
Figure 3.5: Plots of pairwise uncorrected distance against corrected distance for the actin gene in (A) the Achatinoidea and the streptaxid outgroup taxa and (B) the Achatinoidea only.

Plot 2 (Figure 3.6) for the actin gene, whether with or without outgroup taxa, exhibited a linear increase for both transitions and transversions. Plot 3 (Figure 3.7) showed that except for four points, all transitions were higher than tranversions. These suggest that neither transition nor transversion distances were saturated for the actin gene.

A g1 value of -0.767 was computed for the actin gene based on 27 taxa and 245 parsimony-informative sites, much lower than the critical value of -0.1 at p=0.05 level of significance for 25 taxa and 100 parsimony-informative characters (Hillis & Huelsenbeck, 1992). The actin gene therefore exhibited strong phylogenetic signal.

The absence of substitution saturation and the presence of phylogenetic signal suggested that the actin gene was suitable for phylogenetic analyses of the Achatinoidea and outgroups.

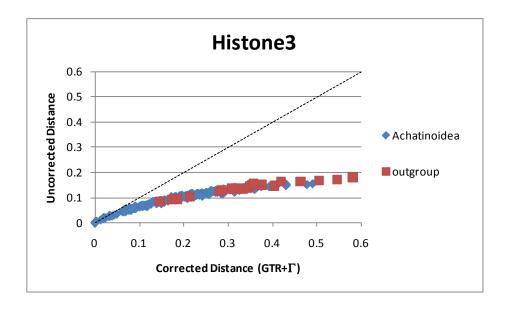




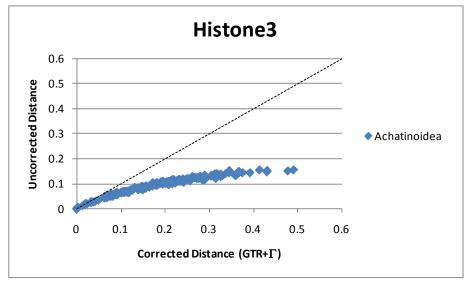
(B)

Figure 3.6: Plots of uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for the actin in (**A**) the Achatinoidea and the streptaxid outgroup taxa and (**B**) the Achatinoidea only.

(A)

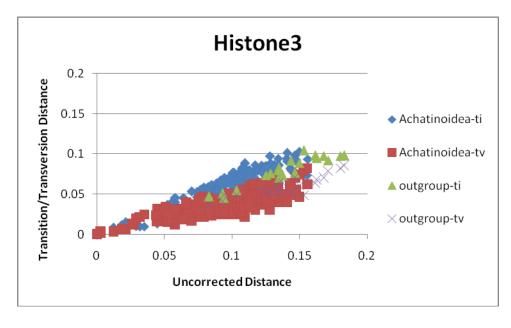


(B)

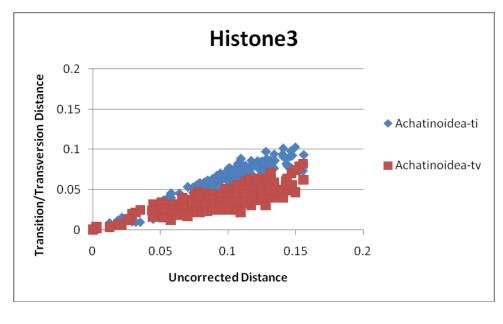

Figure 3.7: Plots of uncorrected pairwise transition (ti) distances against transversion (tv) distances for the actin gene in (**A**) the Achatinoidea and the streptaxid outgroup taxa and (**B**) the Achatinoidea only.

For the histone 3 gene, Plot 1 (Figure 3.8) revealed a curve for the corrected distances using the optimal GTR+ Γ model, with the deviation from a linear increase beginning at an uncorrected (*p*) distance of approximately 0.02 for both the

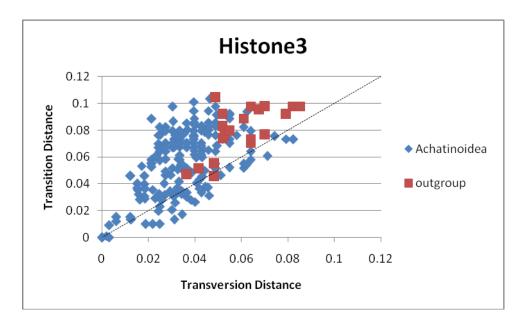
Achatinoidea only and including the streptaxid outgroup taxon *Gibbulinella dewinteri*. The plots were still increasing and had not reached a plateau, implying that the histone 3 gene had not reached saturation.



(B)


Figure 3.8: Plots of pairwise uncorrected distance versus corrected $(\text{GTR}+\Gamma)$ distance for the histone 3 gene in (A) the Achatinoidea and the streptaxid outgroup taxon *Gibbulinella dewinteri* and (B) the Achatinoidea only.

Plot 2 (Figure 3.9) for histone 3 revealed a linear increase of both transitions and transversions for the Achatinoidea, but the transition line appeared to be beginning to curve when the outgroup was included. Although transitions were generally higher than transversions, some overlap was seen. Plot 3 (Figure 3.10) showed that the majority of transitions were higher than transversions. This suggested that the histone 3 dataset was just beginning to saturate, particularly if the outgroup taxon was included.


The g1 value for histone 3 based on 21 taxa and 71 parsimony-informative sites was -0.539, which was significantly smaller than the critical value of -0.16 based on 15 taxa and 50 parsimony-informative sites. The histone 3 gene therefore exhibited phylogenetic signal.

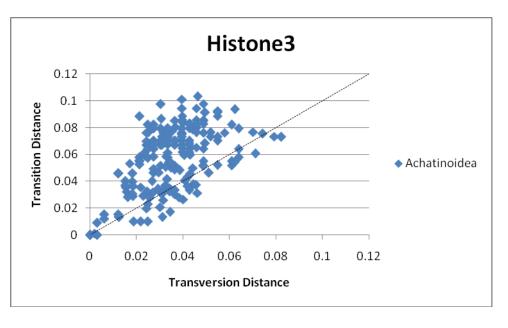
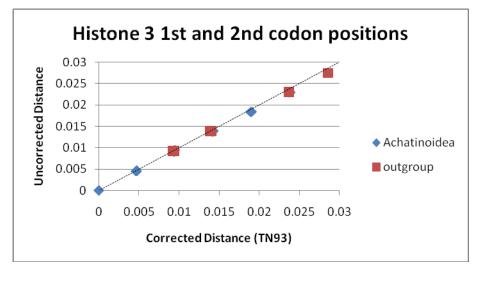
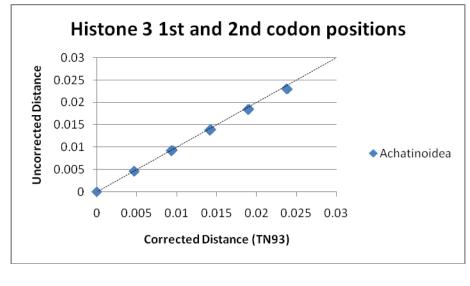


Figure 3.9: Plots of uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for the histone 3 gene in (A) the Achatinoidea and the streptaxid outgroup taxon *Gibbulinella dewinteri* and (B) the Achatinoidea only.

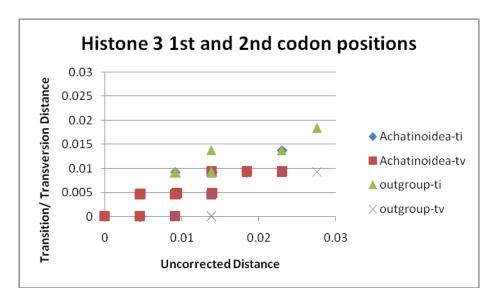


(B)


Figure 3.10: Plots of uncorrected pairwise transition (ti) distances against transversion (tv) distances for the histone 3 gene in (**A**) the Achatinoidea and the streptaxid outgroup taxon *Gibbulinella dewinteri* and (**B**) the Achatinoidea only.

The analyses of the histone 3 gene as a whole (all codon positions) demonstrated that the dataset began to saturate when the outgroup taxon was included. The combined 1^{st} and 2^{nd} codon positions and the 3^{rd} codon positions were therefore evaluated separately.

For the 1st and 2nd codon positions of the histone 3 gene, only a handful of sites varied (10 of 218 sites in the dataset that included the Achatinoidea and outgroup taxon). Plot 1 (Figure 3.11) showed a direct relationship between the corrected (based on the optimal TN93 model) and uncorrected distances, indicative of a highly conserved dataset with no saturation.



1	۸	`
	А	L)

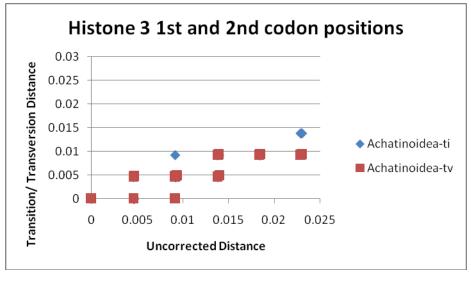
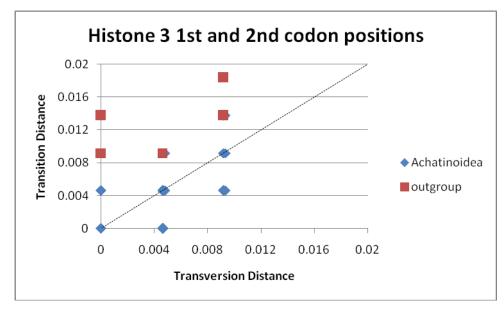
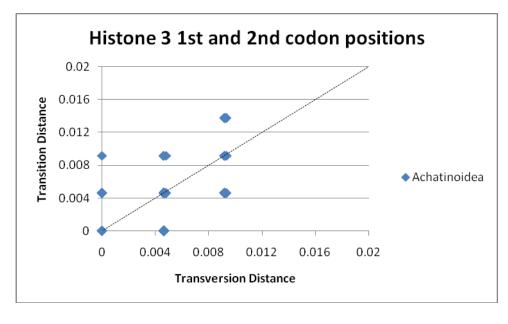


Figure 3.11: Plots of pairwise uncorrected distance versus corrected (TN93) distance for the 1^{st} and 2^{nd} codon positions of the histone 3 gene in (**A**) the Achatinoidea and the streptaxid outgroup taxon *Gibbulinella dewinteri* and (**B**) the Achatinoidea only.

Plots 2 (Figure 3.12) and 3 (Figure 3.13) showed overlap between transitions and transversions, but curving due to saturation could not be assessed due to the small number of variable sites (10) evaluated.

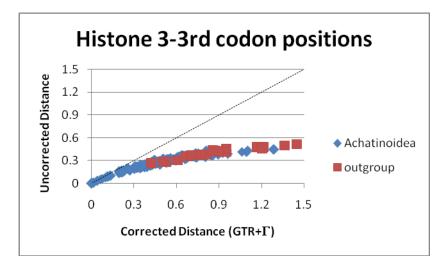


(A)



(B)

Figure 3.12: Plots of uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for the 1^{st} and 2^{nd} codon positions of the histone 3 gene in (A) the Achatinoidea and the streptaxid outgroup taxon *Gibbulinella dewinteri* and (B) the Achatinoidea only. Some transitions overlapped with transversions and were therefore not evident in the plots.



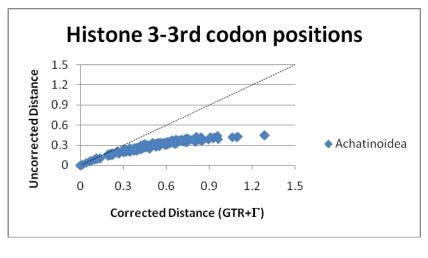
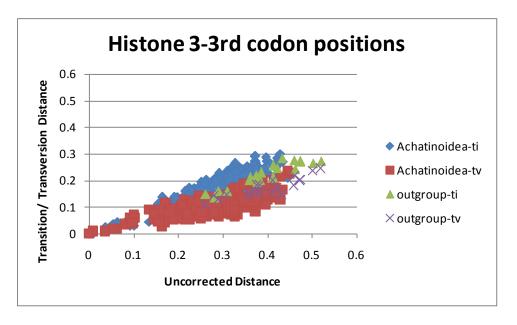
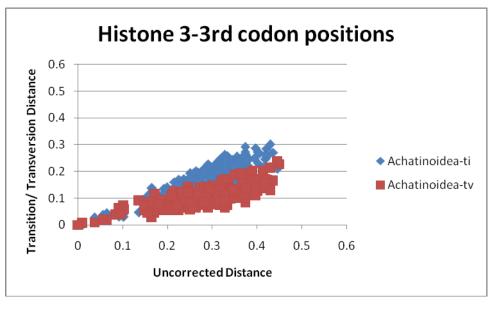
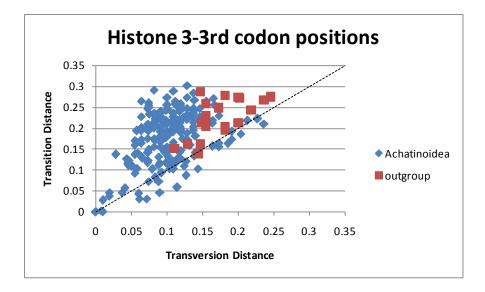


Figure 3.13: Plots of uncorrected pairwise transition (ti) distances against transversion (tv) distances for the 1^{st} and 2^{nd} codon positions of the histone 3 gene in (A) the Achatinoidea and the streptaxid outgroup taxon *Gibbulinella dewinteri* and (B) the Achatinoidea only.

For the 3^{rd} codon position, Plot 1 (Figure 3.14) revealed a curve for the corrected distances based on the optimal GTR+ Γ model that deviated from linearity at an uncorrected (*p*) distance of approximately 0.1. The corrected distances were still increasing and had not reached a plateau, implying that the dataset had not reached saturation.




(A)


Figure 3.14: Plots of pairwise uncorrected distance versus corrected (GTR+ Γ) distance for the 3rd codon position of the histone 3 gene in (A) the Achatinoidea and the streptaxid outgroup taxon *Gibbulinella dewinteri* and (B) the Achatinoidea only.

Plot 2 (Figure 3.15) revealed a linear increase of both transitions and transversions, but the transition line appeared to be beginning to curve when the outgroup was included. Although transitions were generally higher than transversions, some overlap was seen. Plot 3 (Figure 3.16) demonstrated that majority of transitions were still higher than transversions. These results suggested that the 3rd codon positions of the histone 3 gene were just beginning to saturate, particularly as the outgroup taxon was included.

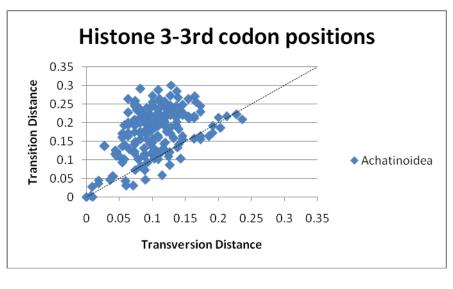
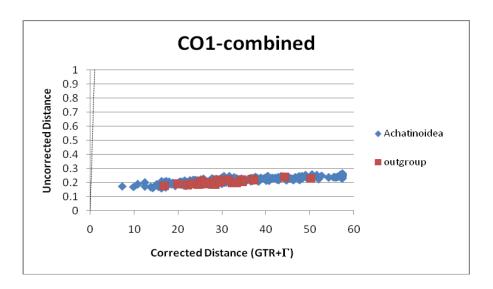


Figure 3.15: Plots of uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for the 3^{rd} codon position of the histone 3 gene in (A) the Achatinoidea and the streptaxid outgroup taxon *Gibbulinella dewinteri* and (B) the Achatinoidea only.



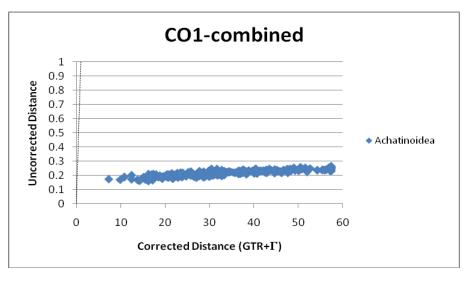
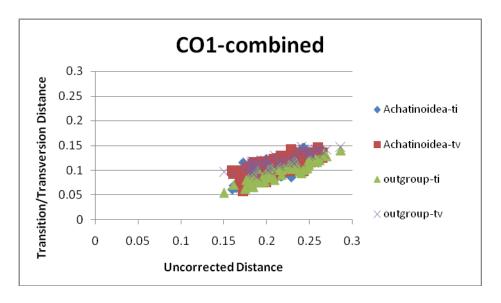

(B)

Figure 3.16: Plots of uncorrected pairwise transition (ti) distances against transversion (tv) distances for the 3^{rd} codon position of the histone 3 gene in (**A**) the Achatinoidea and the streptaxid outgroup taxon *Gibbulinella dewinteri* and (**B**) the Achatinoidea only.

The findings suggested that the histone 3 dataset could be employed in its entirety in phylogenetic analyses of the Achatinoidea though with caution, particularly when the outgroup taxon was included. Moreover, particular care should be taken over the interpretation of the findings of the non-model based maximum parsimony method. For the COI gene, Plot 1 (Figure 3.17) yielded an almost horizontal trend for all taxa and for the Achatinoidea only. This, along with corrected distances in excess of 50, indicated severe saturation for the COI gene and the optimal $GTR+\Gamma$ model was unable to correct the dataset for multiple hits.


(A)

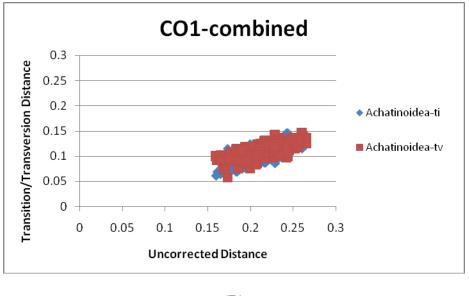
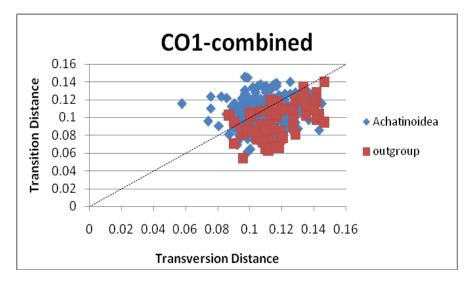
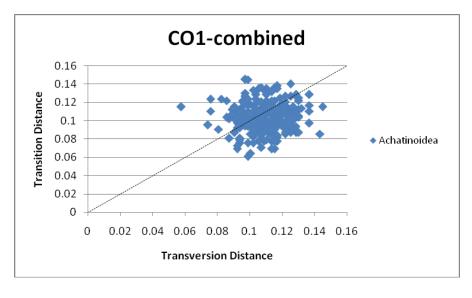


Figure 3.17: Plots of pairwise uncorrected distance against corrected distance for the COI gene in (A) the Achatinoidea and the streptaxid outgroup taxon *Gibbulinella dewinteri* and (B) the Achatinoidea only.

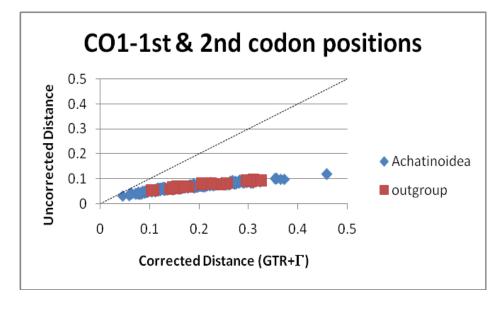
Plot 2 (Figure 3.18) revealed transversions overlapping with transitions in both the Achatinoidea only and the Achatinoidea plus outgroup datasets, while Plot 3 (Figure 3.19) revealed that the majority of the pairwise comparisons had higher rates of transversions than transitions.


The g1 test score for the COI gene based on 24 taxa and 250 parsimonyinformative sites was -0.142, still significantly larger than the critical value of -0.16 for 15 taxa and 250 parsimony-informative sites. The g1 test therefore suggested that no phylogenetic information could be generated from the dataset.



(B)

Figure 3.18: Plots of uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for the COI gene in (**A**) the Achatinoidea and the streptaxid outgroup taxon *Gibbulinella dewinteri* and (**B**) the Achatinoidea only.



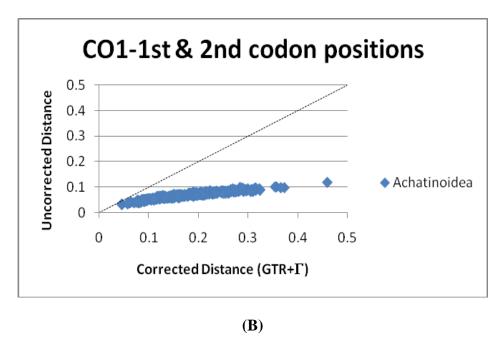
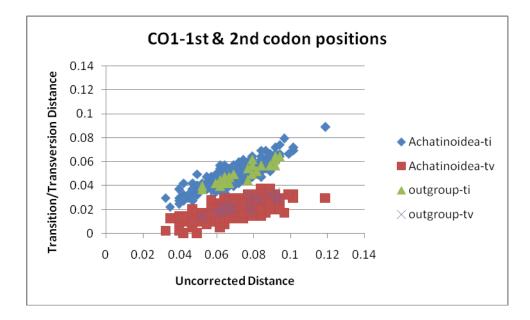

(B)

Figure 3.19: Plots of uncorrected pairwise transition (ti) distances against transversion (tv) distances for the COI gene in (**A**) the Achatinoidea and the streptaxid outgroup taxon *Gibbulinella dewinteri* and (**B**) the Achatinoidea only.

The analyses of the COI gene as a whole (all codon positions) clearly demonstrated the existence of extensive saturation in the dataset, especially as shown by Plot 1. Its utility was further compromised by the absence of phylogenetic signal based on the g1 test. In order to evaluate whether this saturation was restricted to the 3rd codon position and whether some phylogenetic signal could be recovered from the 1st and 2nd codon positions, the combined 1st and 2nd codon positions and the 3rd codon position were evaluated separately.

For the 1st and 2nd codon positions of the COI gene, Plot 1 (Figure 3.20) revealed a curve for the corrected distances using the optimal GTR+ Γ model, with the deviation from linearity beginning at an uncorrected (*p*) distance of approximately 0.03 for both the Achatinoidea only and including the outgroup taxon. The plots were still increasing slightly and had not reached a plateau, implying that the 1st and 2nd codon positions of COI had not yet reached saturation.



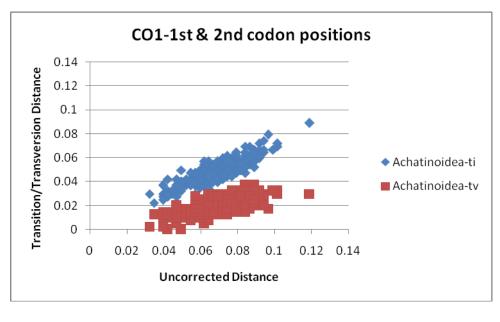
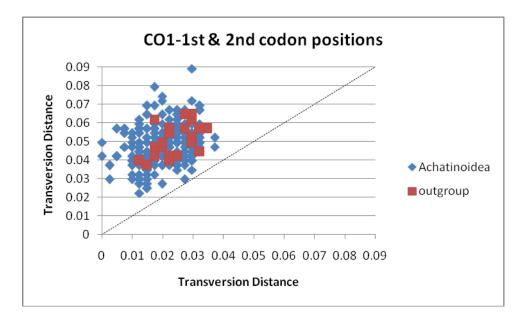


Figure 3.20: Plots of pairwise uncorrected distance versus corrected (GTR+ Γ) distance for the 1st and 2nd codon positions of the COI gene in (**A**) the Achatinoidea and the streptaxid outgroup taxon *Gibbulinella dewinteri* and (**B**) the Achatinoidea only.


Plot 2 (Figure 3.21) for the 1^{st} and 2^{nd} codon positions of the COI gene showed a linear increase of both transitions and transversions for the Achatinoidea and when the outgroup taxon was included, with the transitions being higher than the transversions. Plot 3 (Figure 3.22) also demonstrated the same conclusions as Plot 2. These findings suggested that the 1^{st} and 2^{nd} codon positions were not saturated.

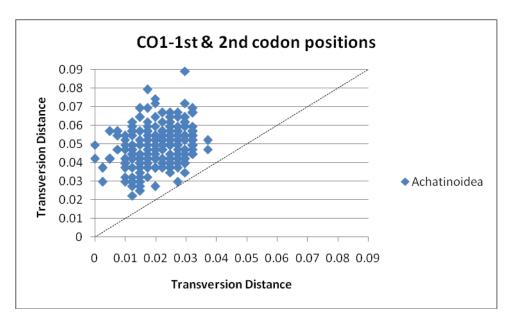
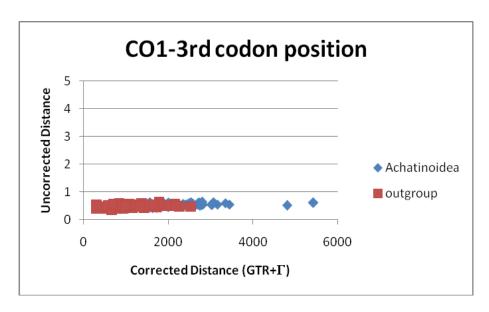

The g1 value based on 24 taxa and 62 parsimony-informative sites was -0.283, which was significantly smaller than the critical value of -0.16 based on 15 taxa and 50 parsimony-informative sites. The 1^{st} and 2^{nd} codon positions of the COI gene therefore exhibited phylogenetic signal.

Figure 3.21: Plots of uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for the 1^{st} and 2^{nd} codon positions of the COI gene in (A) the Achatinoidea and the streptaxid outgroup taxon *Gibbulinella dewinteri* and (B) the Achatinoidea only.



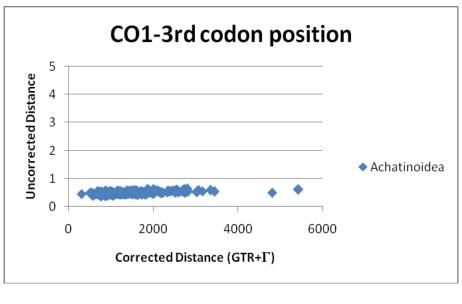
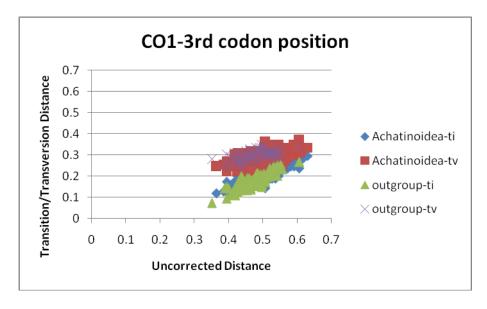

(B)

Figure 3.22: Plots of uncorrected pairwise transition (ti) distances against transversion (tv) distances for the 1^{st} and 2^{nd} codon positions of the COI gene in (A) the Achatinoidea and the streptaxid outgroup taxon *Gibbulinella dewinteri* and (B) the Achatinoidea only.

For the 3^{rd} codon position of the COI gene, Plot 1 (Figure 3.23) revealed that the optimal GTR+ Γ model was unable to correct the dataset for multiple hits as demonstrated by the nearly horizontal trend for both plots. The uncorrected distances also ranged from 0.365 to 0.631 while corrected distances ranged from 299.377 to 5420.470 (see also Table 3.3). This indicated severe saturation for the 3^{rd} codon position.

(A)



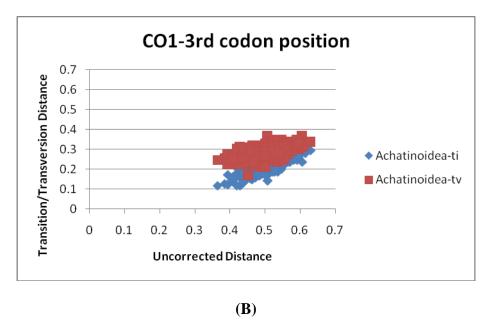
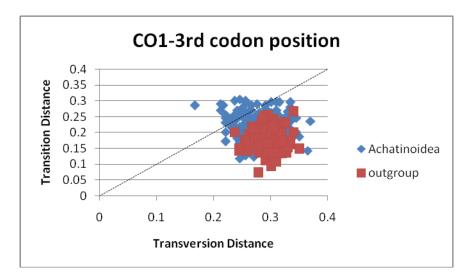

(B)

Figure 3.23: Plots of pairwise uncorrected distance against corrected distance for the 3^{rd} codon position of the COI gene in (**A**) the Achatinoidea and the streptaxid outgroup taxon *Gibbulinella dewinteri* and (**B**) the Achatinoidea only.


Plot 2 (Figure 3.24) for all taxa as well as for the Achatinoidea only showed transversions overlapping with transitions, with the transversions generally higher than the transitions. Plot 3 (Figure 3.25) demonstrated that most of the pairwise comparisons had higher rates of transversions than transitions.

The g1 test score for the 3rd codon position of the COI gene based on 24 taxa and 188 parsimony-informative sites was -0.050, which was significantly larger than the critical value of -0.16 for 15 taxa and 100 parsimony-informative sites. The 3rd codon position therefore did not exhibit any phylogenetic signal.

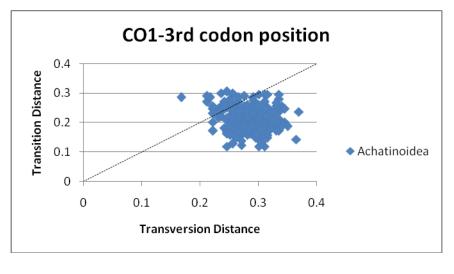
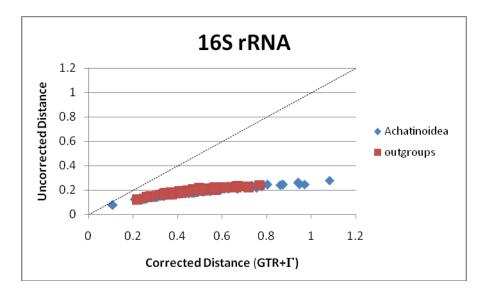
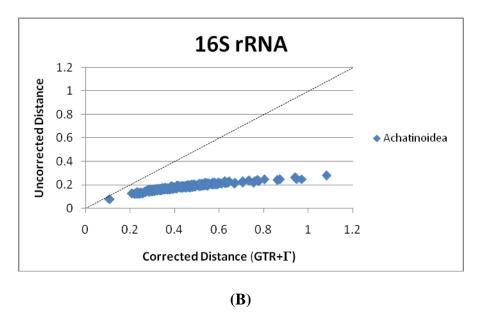


Figure 3.24: Plots of uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for the 3^{rd} codon position of the COI gene in (A) the Achatinoidea and the streptaxid outgroup taxon *Gibbulinella dewinteri* and (B) the Achatinoidea only.



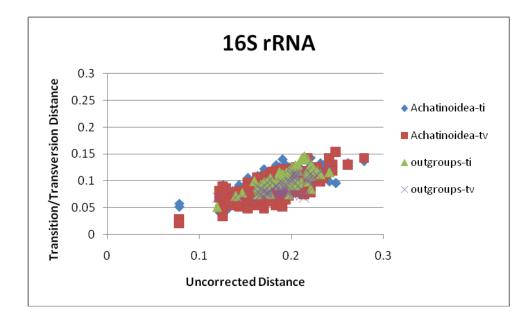
(B)

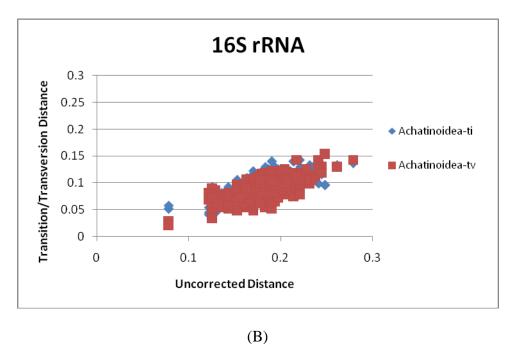

Figure 3.25: Plots of uncorrected pairwise transition (ti) distances against transversion (tv) distances for the 3^{rd} codon position of the COI gene in (**A**) the Achatinoidea and the streptaxid outgroup taxon *Gibbulinella dewinteri* and (**B**) the Achatinoidea only.

The lack of phylogenetic signal (as indicated by the g1 test) and the strong evidence for saturation of the entire COI gene suggested that the gene should not be used in its entirety for phylogenetic analyses. Further analysis revealed that the saturation is entirely due to the 3^{rd} codon position. Phylogenetic analyses for the COI gene were therefore limited to the 1^{st} and 2^{nd} codon positions only.

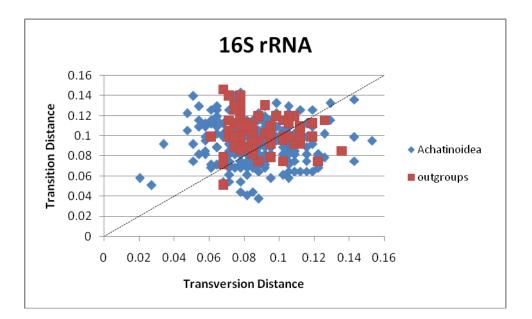
For the 16S rRNA gene, Plot 1 (Figure 3.26) produced corrected distances based on the optimal GTR+ Γ model that curved from linearity at an uncorrected (*p*) distance of 0.08 or below and approached a plateau at an uncorrected distance of approximately 0.3. One corrected distance even exceeded the value of 1. These findings suggest the possibility of saturation in the 16S dataset.

1	۸	`
	А	
્ષ્ટ		•




Figure 3.26: Plots of pairwise uncorrected distance against corrected (GTR+ Γ) distance for the 16S rRNA gene in (A) the Achatinoidea and the streptaxid outgroup taxa and (B) the Achatinoidea only.

Plot 2 (Figure 3.27) yielded a transition line that began to curve at higher distances where it was overtaken by the transversion line that continued to increase, thus indicative of saturation. An unmistakable overlap was also seen between transitions and transversions. Plot 3 (Figure 3.28) revealed that approximately half of all pairwise comparisons had higher rates of transversions than transitions.


The g1 value based on 25 taxa and 120 parsimony-informative sites was -0.437, which was significantly smaller than the critical value of -0.1 at p=0.05 for 25 taxa and 100 parsimony-informative sites. Phylogenetic signal was therefore evident in the 16S rRNA gene.

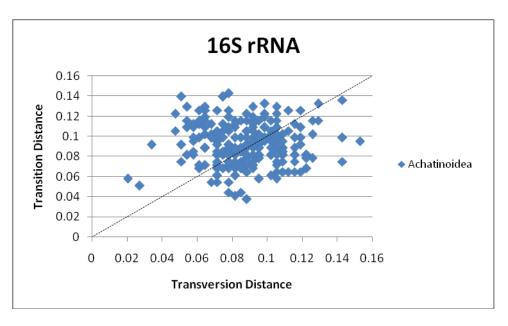

Similarly to the COI gene, there was evidence of saturation in the 16S rRNA dataset. This suggested that the gene should not be used for phylogenetic analyses, despite apparently exhibiting some phylogenetic signal based on the g1 test.

Figure 3.27: Plots of uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for the 16S rRNA gene in (A) the Achatinoidea and the streptaxid outgroup taxa and (B) the Achatinoidea only.

Figure 3.28: Plots of uncorrected pairwise transition (ti) distances against transversion (tv) distances (**A**) the Achatinoidea and the streptaxid outgroup taxa and (**B**) the Achatinoidea only.

3.3.2.2. Inferring the presence of paralogous sequences in the actin dataset and assessing its utility for phylogenetic analysis

To infer the presence of paralogous sequences, the actin sequences (obtained by direct sequencing of PCR products) were examined for the presence of ambiguous sites. Ambiguous sites were detected in 17 out of 24 achatinoid taxa and all three streptaxid outgroups (Appendix 3.7, p. 434), indicating the presence of more than one copy of the actin gene in the Achatinoidea and the Streptaxoidea.

Clones derived from three representative taxa, which had varied numbers of ambiguous sites in their direct sequences (Coeliaxis blandii, 21 ambiguities; Cochlitoma granulata, 9 ambiguities; Leptinaria lamellata, 0 ambiguities), were examined to assess the ability of the PCR-direct sequences to detect variation among actin copies as ambiguities in the direct sequence. (See details of actin clones in Appendix 3.8, pp. 435-437). The three taxa were selected to represent those with many, few and no ambiguous sites, respectively and were chosen from a batch of actin sequences processed early on, with their cloned sequences used as guides to assign ambiguities in direct sequences. Other actin sequences obtained later yielded considerably more ambiguous sites after subsequent processing, as in the case of Bocageia sp. with 101 ambiguous sites. Although the sequences of the clones would be subject to Tag error, a reasonably close correlation would be expected between the amount of variation detected among clones and the amount of ambiguity detected in the direct sequences. However, for C. blandii, a total of 163 variable sites were detected among the 4 clones obtained, as opposed to only 21 ambiguities in the direct sequence (Appendix 3.8A, p. 435). Of these variable sites, 132 were attributed to a single clone (Clone 3) that was clearly not picked up in the direct sequence (see Appendix 3.8B-1, p. 436). Likewise for C. granulata, 72 variable sites were detected among the 7 clones obtained as

opposed to only 9 ambiguities in the direct sequence (Appendix 3.8A). The majority of these variable sites (55) were attributed to Clones 3 and 6 that were not picked up in the direct sequence (see Appendix 3.8B-2, p. 437). For L. lamellata, six clones were obtained, with three clones (Clones 1, 3 and 5) bearing sequences identical to the direct sequence (Appendix 3.8A). Clones 2 and 4 had one variable site each while Clone 6 had two; none of the four variable sites were picked up in the direct sequence (see Appendix 3.8B-3, p. 437). The very small number of variable sites in the L. lamellata clones and their absence in the direct sequence would suggest that these variable sites were probably due to Taq sequencing error. The cloned sequences therefore confirmed the presence of multiple actin genes in at least some achatinoid taxa, with some clones exhibiting highly divergent sequences when compared to other clones derived from the same taxon. Moreover, not all of the variation observed in the clones was detected in the PCR-direct sequences. The reason for the failure of the direct sequences to identify all of the variation among the clones is not clear. One explanation may lie in the fact that the PCR-direct sequence is effectively a consensus of the different actin copies within an individual in which rare copies of the gene might reasonably be expected to be averaged out.

To assess the utility of the actin gene for phylogenetic analysis of the Achatinoidea, four approaches were undertaken to determine whether the observed paralogy in actin was likely to mislead phylogeny. First, a neighbor-joining tree was constructed for all actin sequences for the Achatinoidea as well as all clones obtained for *C. blandii* (4 clones), *C. granulata* (7 clones) and *L. lamellata* (6 clones) in order to determine whether the clones for each species were monophyletic. Monophyly would suggest that the gene duplication event that led to the actin paralogs detected was recent relative to the date of species divergence. Moreover, if all copies of the gene were

monophyletic, the organismal phylogeny would not be misled. However, monophyly was not observed for the clones of either *C. blandii* or *C. granulata*, with the most divergent clones (Clone 3 for *C. blandii* and Clones 3 and 6 for *C. granulata*) falling separately from both the PCR direct sequence and the other clones from the species (see Appendix 3.9, p. 438). This suggested a high probability that the organismal phylogeny may be misled. Nevertheless, the most divergent sequences for *C. blandii* and *C. granulata* sequences in the neighbor-joining tree) were not represented as ambiguities in the PCR-direct sequences and would therefore not affect the phylogenetic signal of the direct sequences.

Second, the number of ambiguous sites within a taxon was compared with the total number of nucleotide differences between the taxon and its closest relative (based on actin sequence identity). The number of ambiguous sites within a taxon should not exceed the number of differences between this taxon and its closest relative if the time of divergence between the two taxa were to be earlier than the evolution of the different actin genes within these taxa. With the exception of Pyrgina umbilicata and Thyrophorella thomensis, a lower number of ambiguous sites was observed within each taxon when compared to the number of nucleotide differences between the taxon and its closest relative. Thus, based on the number of ambiguous sites observed from the direct sequences, in most cases the divergence among taxa was deeper than the divergence among the different copies of the actin gene, suggesting that some phylogenetic signal could be derived from actin at and above the genus level (see Table 3.4). However, the presence of divergent actin gene sequences falling deeper than the divergence among taxa should not be ruled out, as some divergent sequences, which were not picked up as ambiguities in the direct sequences, were detected by cloning; these sequences did not cluster with the other clones or the direct sequence from that species (i.e. *Coeliaxis blandii* and *Cochlitoma granulata*). It should also be noted that since the closest relative was identified based on actin sequence identity, such a relationship was not always found to be associative. For instance, *Achatina achatina* is most similar to *A*. *fulica* with 65 nucleotide differences, and yet the latter is most similar to *C. ustulata* with only 46 differences.

Third, a partition homogeneity test (see Section 2.9.10, p. 86-88) was undertaken to determine whether or not the sequences from the actin gene exhibited a significant difference in terms of phylogenetic signal compared to the other genes being evaluated (see results in Section 3.3.2.3, p. 161-165). The test revealed that the actin dataset was not too divergent in terms of its evolutionary history relative to the other datasets and that the presence of multiple copies of the actin gene was not having a significant effect on phylogeny.

Lastly, the phylogenetic tree obtained from the actin dataset was checked for concordance with the phylogeny obtained from the rRNA cluster. The actin phylogeny showed concordance with the rRNA phylogeny with respect to many well-supported groups (see results in Section 3.3.3, pp. 162-163 and 169-171), suggesting that the presence of multiple copies of the actin gene was not having a significant effect on phylogeny.

Thus, despite serious reservations over the utility of the actin gene in phylogenetic analysis of the Achatinoidea, it seems that some useful phylogenetic signal could be gleaned from the gene. Actin was therefore utilised in phylogenetic analyses of the Achatinoidea though its shortcomings suggest that its findings should be interpreted with extreme caution.

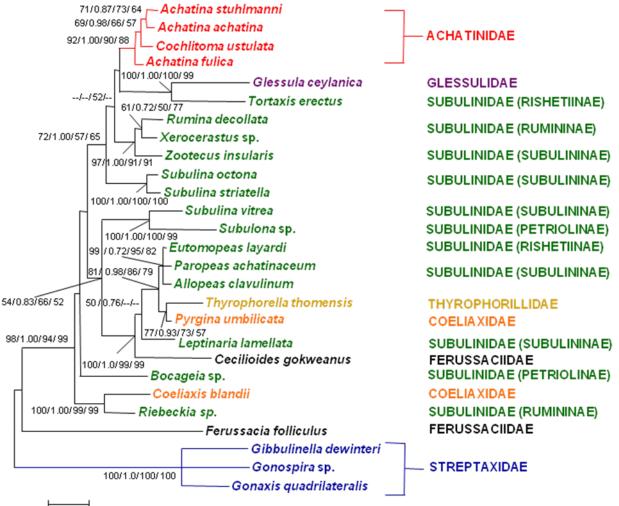
158

Table 3.4. Comparison of the actin ambiguous sites and nucleotide differences for each achatinoid and its closest relative. The closest relative for each taxon is determined based on the actin sequence identity (least number of nucleotide differences). Note that in scoring for the total differences, comparison between an ambiguous site and an unambiguous site is counted as different even if one of the possible nucleotides for the ambiguous site is the same as that found in the unambiguous site being compared (e.g. A vs. R, which is either A or G). See also Table 2.8 of p. 73 for assignment of ambiguous positions.

Species (total ambiguous sites)	Closest relative (total ambiguous sites)	Total number of nucleotide differences between each species and its closest relative		
ACHATINIDAE				
Achatina achatina (45)	Achatina fulica (18)	65		
Achatina fulica (18)	Cochlitoma ustulata (0)	46		
Achatina stuhlmanni (2)	Cochlitoma ustulata (0)	28		
Cochlitoma ustulata (0)	Achatina stuhlmanni (2)	28		
SUBULINIDAE				
Allopeas clavulinum (0)	Eutomopeas layardi (0)	36		
Bocageia sp. (101)	Rumina decollata (29)	126		
Eutomopeas layardi (0)	Allopeas clavulinum (0)	36		
Leptimnaria lamellata (0)	Allopeas clavulinum (0)	104		
Paropeas clavulinum (1)	Allopeas clavulinum (0)	46		
Riebeckia sp. (76)	Coeliaxis blandii (21)	107		
Rumina decollata (29)	Zootecus insularis (20)	55		
Subulina octona (0)	Subulina striatella (26)	63		
Subulina striatella (26)	Subulina octona (0)	63		
Subulina vitrea (37)	Coeliaxis blandii (21)	87		
Subulona sp. (0)	Achatina stuhlmanni (2) Cochlitoma ustulata (0)	117		
Tortaxis erectus (32)	Rumina decollate (29) Zootecus insularis (20)	110		
Xerocerastus sp. (0)	Zootecus insularis (20)	60		
Zootecus insularis (20)	Rumina decollata (29)	55		
COELIAXIDAE				
Coeliaxis blandii (21)	Zootecus insularis (20)	82		
Pyrgina umbilicata (88)	Thyrophorella thomensis (62)	77		
THYROPHORELLIDAE				
Thyrophorella tomensis (62)	Pyrgina umbilicata (88)	77		
GLESSULIDAE				
Glessula ceylanica (53)	Cochlitoma ustulata (0)	149		
FERUSSACIIDAE				
Cecilioides gokweanus (4)	Xerocerastus sp. (0)	81		
Ferussacia folliculus (4)	Xerocerastus sp. (0)	99		
STREPTAXIDAE (OUTGRO	DUP)			
Gibbulinella dewinteri (6)	Gonaxis quadrilateralis (55)	94		
Gonaxis quadrilateralis (55)	Gibbulinella dewinteri (6)	94		
Gonospira sp. (77)	Gonaxis quadrilateralis (55)	117		

3.3.2.3. Partition homogeneity test for combining datasets

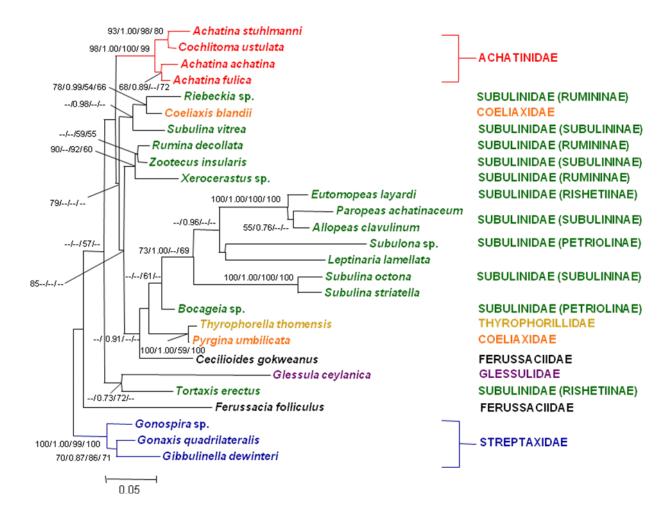
A partition homogeneity test of the rRNA cluster, actin and histone 3 datasets and the 1^{st} and 2^{nd} codon positions of the COI gene (5028 nucleotides total) for all taxa


with complete DNA sequences yielded a P value of 0.01 (note that the 16S rRNA gene and the 3rd codon position of the COI gene were excluded due to saturation (see Section 3.3.2.1, pp. 138-154). This would indicate that the genes under consideration, including the actin, exhibited similar evolutionary histories (Cunningham, 1997). The datasets from the four genes could therefore be combined as a single dataset.

3.3.3. Molecular phylogeny

The maximum likelihood (ML) phylogenies for the rRNA cluster, actin, H3 and COI (1st and 2nd codon positions only) are shown in Figure 3.29 and those of the concatenated sequences from the four genes in Figure 3.30. Note that for the concatenated sequences, two sets of phylogenetic analyses were carried out. In the first, only taxa with sequences from all four genes were used in the phylogeny; thus, the achatinoids *Celilioides gokweanus*, *Paropeas achatinaceum*, *Riebeckia* sp. and *Subulina vitrea* and the streptaxids *Gonaxis quadrilateralis* and *Gonospira* sp. were excluded (Figure 3.30A). In the second, all taxa were included in the analyses (Figure 3.30B), with missing data assigned in the analyses for taxa with incomplete datasets. Also shown in the phylogenies are the bootstrap support values for ML, neighbor-joining (NJ) and maximum parsimony (MP) analyses and the posterior probabilities for Bayesian inference (BI) analysis. The BI, NJ and MP phylogenies for the genes and the concatenated sequences are shown in Appendices 3.10-3.15, pp. 439-450.

Figure 3.29: (See next four pages). Maximum likelihood phylogenetic trees of the Achatinoidea based on (A) the rRNA cluster (3435 nucleotides); (B) the actin gene (861 nucleotides); (C) the histone 3 gene (328 nucleotides) and (D) the 1^{st} and 2^{nd} codon positions of the COI gene (404 nucleotides). The phylogenies were rooted on the streptaxids Gibbulinella dewinteri, Gonaxis quadrilateralis and Gonospira sp for the rRNA and actin datasets and Gibulinella dewinteri for the histone 3 and COI datasets. Values on the nodes represent bootstrap support (1000 replicates) for ML, posterior probabilities (based on the last 1000 trees) for BI, and bootstrap support (1000 replicates) for NJ and MP, respectively. Bootstrap support less than 50% and posterior probabilities less than 0.7 are not shown. For BI, the optimized number of generations to explore the tree space was 2,000,000 for all the genes; the optimized heating temperatures for each gene were as follows: rRNA cluster-0.1; actin-0.1; histone 3-0.1; 1st and 2nd codon positions of COI-0.075. The scale bar for (A) represents 5 substitutional changes per 1000 nucleotide positions; those of (**B**), (**C**) and (**D**) represent 5 substitutional changes per 100 nucleotide positions.


Figure 3.29 (contd.)

0.005

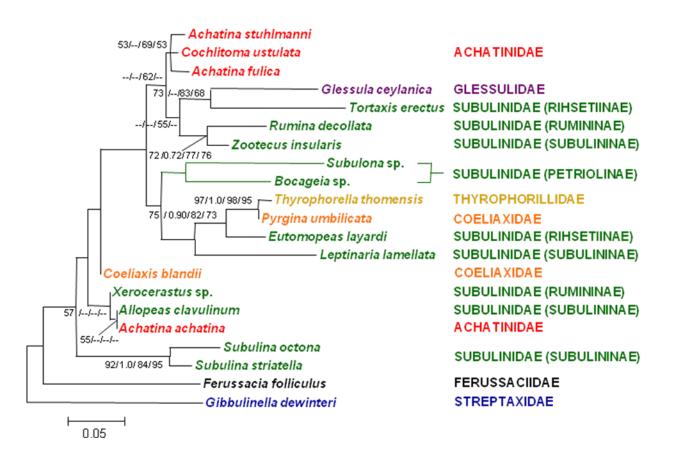
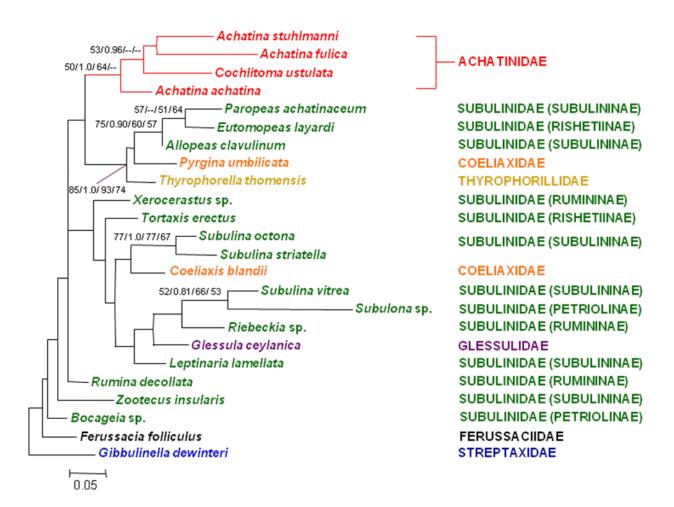
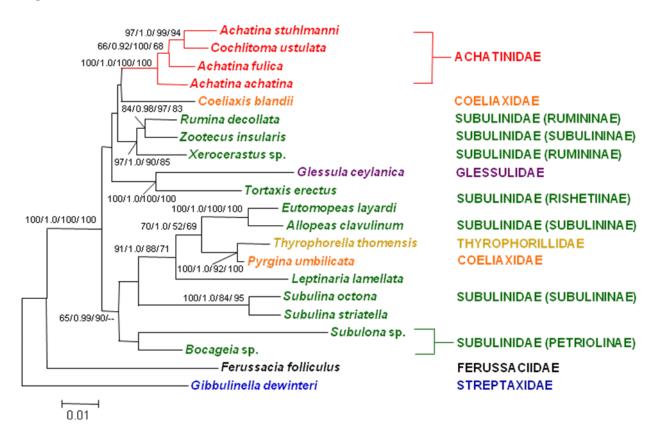

 $(\mathbf{A}) - \mathbf{r}\mathbf{R}\mathbf{N}\mathbf{A}$ cluster

Figure 3.29 (contd.)



(B) – Actin

Figure 3.29 (contd.)


(C) - H3

 (\mathbf{D}) – COI-1st and 2nd codon positions

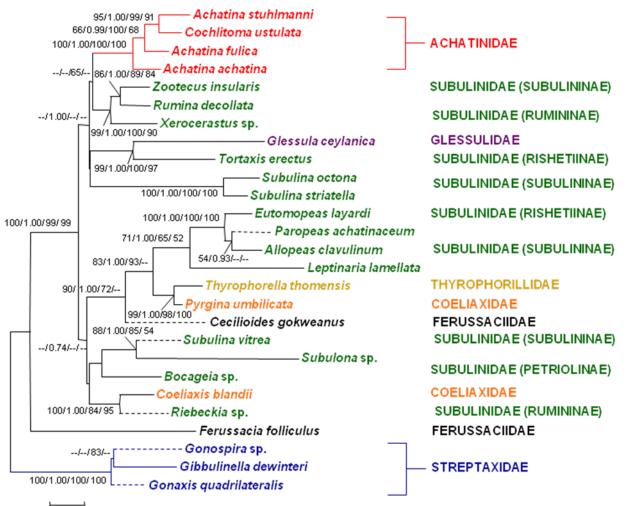

Figure 3.30: (See next two pages.) Maximum likelihood phylogenetic trees of the Achatinoidea based on a concatenated sequence of 5028 nucleotides derived from the combined dataset of the rRNA cluster, actin and H3 genes as well as the 1st and 2nd codon positions of the COI gene. The phylogeny in (A) includes only those taxa which have complete sequence data for all sequence regions while that in (**B**) includes all taxa including some with missing data. The following taxa had missing DNA sequence data: Cecilioides gokweanus (Histone 3 and COI), Paropeas achatinaceum (Histone 3), Riebeckia sp. (Histone 3), Subulina vitrea (Histone 3), Gonaxis quadrilateralis (Histone 3 and COI) and Gonospira sp. (Histone 3 and COI). The phylogeny in (A) is rooted on the streptaxid Gibbulinella dewinteri while that in (B) is rooted on the streptaxids Gibbulinella dewinteri, Gonaxis quadrileteralis and Gonospira sp. Values on the nodes represent bootstrap support (1000 replicates) for ML, posterior probabilities (based on the last 1000 trees) for BI, and bootstrap support (1000 replicates) for NJ and MP, respectively. Bootstrap support less than 50% and posterior probabilities less than 0.7 are not shown. For BI, the optimized number of generations to explore the tree space was 2,000,000 while the optimized heating temperature was 0.125 for both trees. The scale bars represent 1 substitutional change per 100 nucleotides. Branches for taxa with missing data are marked with dashes.

Figure 3.30 (contd.)

(A) - taxa with complete DNA sequence data

Figure 3.30 (contd.)

0.01

(B) - all taxa

3.3.3.1. Individual gene phylogenies

The phylogenies based on the four genes yielded several consistent groups. Even with the incorporation of new taxa and the addition of an extra 2612 nucleotide sites, the topology of the Achatinoidea based on the nuclear rRNA cluster (Figure 3.29A) remained similar to that obtained by Wade et al. (2006) based on a partial 823 bp fragment of the rRNA cluster. Several well-supported groups were recovered in the rRNA phylogeny. The Achatinidae, which included Achatina fulica, was recovered as monophyletic, with strong support with all tree methods (92% ML bootstraps, P=1.0 BI, 90% NJ bootstraps and 88% MP bootstraps). The other achatinoid families were not recovered in the tree as expected, but six groupings with strong support were resolved. The first group incorporated the coeliaxid Coeliaxis blandii and the subulinid Riebeckia sp. (100 ML bootstraps, P=1.00, 99% NJ bootstraps and 99% MP bootstraps). The second group included the thyrophorellid Thyrophorella thomensis, the coeliaxid Pyrgina umbilicata, the subulinids Leptinaria lamellata, Eutomopeas layardi, Paropeas achatinaceum and Allopeas clavulinun and the ferussaciid Cecilioides gokweanus (100% ML bootstraps, P=1.0 BI, 99% NJ bootstraps and 99% MP bootstraps). Within this group, the two São Thomé taxa, the 'operculate' T. thomensis and the coeliaxid P. umbilicata, clustered together (77% ML bootstraps, P=0.93 BI, 73% NJ bootstraps and 57% MP bootstraps) while E. layardi, P. achatinaceum and A. clavulinum formed another cluster (99% ML bootstraps, P=0.72, 95% NJ bootstraps and 82% MP bootstraps). The third group included the subulinids Subulina vitrea and Subulona sp. (100% ML bootstraps, P=1.0, 100% NJ bootstraps and 99% MP bootstraps). The fourth group consisted of another pair of subulinids, Subulina octona and Subulina striatella (100% ML bootstraps, P=1.0 BI, 100% NJ bootstraps and 100% MP bootstraps). The fifth group incorporated the subulinids Xerocerastus sp., Rumina decollata and Zootecus insularis (97% ML bootstraps, P=1.0 BI, 91% NJ bootstraps and 91% MP bootstraps). The sixth group clustered together the subulinid *Tortaxis erectus* and the glessulid *Glessula ceylanica* (100 ML bootstraps, P=1.0 BI, 100% NJ bootstraps and 99% MP bootstraps). Finally, the ferussacid *Ferrusaccia foliculus* fell at the base of the Achatinoidea and was separated from the other ferusaccid in the study, *Cecilioides gokweanus*.

Despite the limitations of the nuclear actin gene for phylogenetic analysis due to the presence of multiple copies of the gene within an individual, the actin phylogeny was very similar to the rRNA tree, with many strongly supported groups in the actin tree also recovered in the rRNA tree. This suggests that the presence of multiple copies of the actin gene had a minimal effect on the achatinoid phylogeny. There was, however, less structure in the actin tree when compared to the rRNA tree as shown by the lower or equivocal support in many of the internal branches (Figure 3.29B). Ferussacia folliculus again fell at the base of the tree; however, this was only moderately supported by NJ (57% bootstraps). Other groups that were consistent with the rRNA cluster phylogeny included the Achatinidae, which again formed a monophyletic group (98% ML bootstraps, P=1.0 BI, 100% NJ bootstraps and 99% MP bootstraps); the C. blandii and Riebeckia sp. group (78% ML bootstraps, P=0.99 BI, 54% NJ bootstraps and 66% bootstraps); the São Thomé taxa T. thomensis and P. umbilicata (100 ML bootstraps, P=1.0 BI, 59% NJ bootstraps and 100% MP bootstraps); the E. layardi, P. achatinaceum and A. clavulinum group (100 ML bootstraps, P=1.0 BI, 100% NJ bootstraps and 100% MP bootstraps); the S. octona and S. striatella group (100 ML bootstraps, P=1.0 BI, 100% NJ bootstraps and 100% MP bootstraps); the Xerocerastus sp., R. decollata and Z. insularis group (90% ML bootstraps, P < 0.7 BI, 92% NJ bootstraps and 60% MP bootstraps); and the *T. erectus* and *G. ceylanica* group (with only P=0.73 BI and 72% NJ bootstraps as support).

The phylogeny based on the nuclear histone 3 gene (Figure 3.29C), which excluded the achatinoids *Cecilioides gokweanus*, *Paropeas achatinaceum*, *Riebeckia* sp. and *Subulina vitrea* and the streptaxids *Gonaxis quadrilaterlis* and *Gonospira* sp., revealed some groupings that were consistent with the rRNA phylogeny but showed less structure and a general reduction of support for most groups when compared to either the rRNA or the actin gene phylogenies (as shown in Figure 3.30C). For instance, *Achatina achatina* did not cluster with the rest of the Achatinidae and instead grouped with the subulinids *Xerocerastus* sp. and *A. clavulinum*, although it only received 57% ML bootstrap support. Some groups were recovered, however, such as *T. thomensis* and *P. umbilicata* (97% ML bootstraps, *P*=1.0 BI, 98% NJ bootstraps and 95% MP bootstraps), *S. octona* and *S. striatella* (92% ML bootstraps, *P*=1.0 BI, 84% NJ bootstraps and 95% MP bootstraps), and *T. erectus* and *G. ceylanica* (73% ML bootstraps, 83% NJ bootstraps and 68% MP bootstraps).

The mitochondrial COI gene phylogeny for codon positions 1 and 2 (Figure 3.29D) likewise revealed some groups that were consistent with the rRNA phylogeny but showed less structure and support (see Figure 3.30D). These were the Achatinidae (50% ML boostraps, P=1.0 BI and 64% NJ bootstraps), *S. vitrea* and *Subulona* sp. (52% ML bootstraps, P=0.81 BI, 66% NJ bootstraps and 53% MP bootstraps), *S. octona* and *S. striatella* (77% ML bootstraps, P=1.0 BI, 77% NJ bootstraps and 67% MP bootstraps), and *E. layardi*, *P. achatinaceum* and *A. clavulinum* (75% ML bootstraps, P=0.90 BI, 60% NJ bootstraps and 57% MP bootstraps). It should be noted that *T. thomensis* and *P. umbilicata* also clustered with these three taxa with strong support

(85% ML bootstraps, P=1.0 BI, 93% NJ bootstraps and 74% MP bootstraps) as with the rRNA phylogeny.

3.3.3.2. Combined gene phylogenies

Combining datasets from genes with different evolutionary rates and mechanisms of inheritance provides information at different levels of phylogeny and therefore provides signals both for the internal branches and the terminal branches (Graybeal, 1994). The combined analysis for the rRNA cluster, actin, H3, and the 1st and 2nd codon positions of COI, but excluding the four taxa that did not yield either or both H3 and COI sequences, recovered most groups identified in the rRNA phylogeny and exhibited longer internal branches with similar or better support (Figure 3.30A). Ferussacia folliculus still fell at the base of the Achatinoidea while the other achatinoids clustered together but with improved support when compared to the rRNA tree (100% ML bootstraps, P=1.0 BI, 100% NJ bootstraps and 100% MP bootstraps). The monophyly of the Achatinidae was also recovered again with better support (100% ML bootstraps, P=1.0 BI, 100% NJ bootstraps and 100% MP bootstraps). Consistent with the rRNA tree was the group that consisted of L. lamellata, T. thomensis, P. umbilicata, E. layardi and A. clavulinum (91% ML bootstraps, P=1.0 BI, 88% NJ bootstraps and 71% MP bootstraps), with the São Thomé taxa T. thomensis and P. umbilicata again forming one pair and with increased support (100% ML bootstraps, P=1.0 BI, 92% NJ bootstraps and 100% MP bootstraps) and E. layardi and A. clavulinum forming a second pair likewise with increased support (100% ML bootstraps, P=1.0 BI, 100% NJ bootstraps and 100% MP bootstraps). Still other groups from the rRNA tree that were also recovered included S. octona and S. striatella (100% ML bootstraps, P=1.0 BI, 84% NJ bootstraps and 95% MP bootstraps), Xerocerastus sp., R. decollata and Z.

insularis (97% ML bootstraps, P=1.0 BI, 90% NJ bootstraps and 85% MP bootstraps) and *T. erectus* and *G. ceylanica* (100% ML bootstraps, P=1.0 BI, 100% NJ bootstraps and 100% MP bootstraps).

When all taxa were included in the combined analysis (including those taxa for which there was missing data), all groups found in the rRNA phylogeny were recovered and in general received higher support (Figure 3.30B). Ferussacia folliculus fell at the base of the Achatinoidea while the remaining Achatinoidea formed a separate clade with increased support (100% ML bootstraps, P=1.0 BI, 99% NJ bootstraps and 99% MP bootstraps). Within this clade and consistent with the rRNA tree were the monophyletic Achatinidae with increased support (100% ML bootstraps, P=1.0 BI, 100% NJ bootstraps and 100% MP bootstraps); C. blandii and Riebeckia sp. (100% ML bootstraps, P=1.0 BI, 84% NJ bootstraps and 95% MP bootstraps); Subulina vitrea and Subulona sp. (88% ML bootstraps, P=1.0 BI, 85% NJ bootstraps and 54% MP bootstraps); S. octona and S. striatella (100% ML bootstraps, P=1.0 BI, 100% NJ bootstraps and 100% MP bootstraps); G. ceylanica and T. erectus (99% ML bootstraps, P=1.0 BI, 100% NJ bootstraps and 97% MP bootstraps); Xeroxerastus sp., Rumina decollata and Zootecus insularis with increased support (99% ML bootstraps, P=1.0 BI, 100% NJ bootstraps and 90% MP bootstraps); and C. gokweanus, P. umbilicata, T. thomensis, L. lamellata, A. clavulinum, P. achatinaceum, and E. layardi (90% ML: bootstraps, P=1.0 BI and 72% NJ bootstraps). Within the last group, A. clavulinum, P. achatinaceum and E. layardi clustered together with increased support (100% ML bootstraps, P=1.0 BI, 100% NJ bootstraps and 100% MP bootstraps), and in turn clustered with L. lamellata (71% ML bootstraps, P=1.0 BI, 65% NJ bootstraps and 52% MP bootstraps) while the São Thomé group T. thomensis and P. umbilicata clustered together with increased support (99% ML bootstraps, P=1.0 BI, 98% NJ bootstraps and 100% MP bootstraps).

3.3.3.3. Hypothesis testing of groups expected to be monophyletic based on taxonomy

Seven expected monophyletic groups (based on taxonomy) that were not recovered in either the single gene or combined gene phylogenies were subjected to hypothesis testing using the Shimodaira-Hasegawa (1999) test. These groups were the Coeliaxidae, Ferussaciidae, and the Subulinidae; within the Subulinidae were the subfamilies Petriolinae, Rishetiinae, Rumininae and the Subulininae. The placement of Zootecus insularis in the Subulininae (according to Schileyko, 1999), in contrast to its placement in the Rumininae (according to Zilch, 1959), was also subjected to the SH test. A summary of the Shimodaira-Hasegawa tests are shown in Table 3.5. Constraining the NJ trees for the four single gene and combined gene phylogenies to show monophyly of the Coeliaxidae produced likelihood scores that were significantly worse (P < 0.01) than those of the optimal trees (see Table 3.5 for details). This confirmed the non-monophyly of the Coeliaxidae. The monophyly of the Ferussaciidae was evaluated only for the rRNA cluster and actin gene phylogenies, for which both Ferussacia folliculus and Cecilioides gokweanus were successfully sequenced, as well as the combined gene phylogeny that included taxa with missing data. The constrained trees showing monophyly of the Ferussaciidae for the rRNA cluster and the combined genes that included all taxa were significantly worse than the optimal tree (P < 0.01, Table 3.5), indicating that the family is not monophyletic. This was not the case for the actin gene where no significant difference was noted (P=0.293, Table 3.5). The monophyly of the Subulinidae was also rejected in the SH tests (P < 0.01, Table 3.5) as

was the monophyly of two of its subfamilies, the Rishetiinae (P<0.03, Table 3.5) and the Subulininae (with Z. insularis-P < 0.01; without Z. insularis-P < 0.04, Table 3.5). For the Petriolinae, the expected topology (Petriolinae monophyletic) was present in the actin NJ tree (see Appendix 3.10B, p. 440) while no significant difference was shown between the likelihood scores for the constrained trees in which the Petriolinae were monophyletic and the optimal NJ trees in the rRNA cluster (P=0.093), histone 3 (P=0.184), 1st and 2nd codon positions of COI (P=0.083), combined genes but excluding taxa with missing data (P=0.433) and combined genes with all taxa (P=0.150). Support for the monophyly of the Petriolinae based on the molecular data is therefore equivocal. The constrained trees showing monophyly of the Rumininae yielded significantly worse likelihood scores than those of the optimal trees ($P \le 0.001$ for both with and without Z. insularis for the rRNA cluster, actin and combined genes with all taxa, Table 3.5). Riebeckia sp. was not included in the datasets for histone 3, COI (1st and 2nd codon positions) and the combined genes that excluded taxa with missing data. Significant difference between the optimal tree and the constrained tree was observed in histone 3 ($P \le 0.01$ for both with and without Z. insularis) but not in the 1st and 2nd codon positions of the COI ($P \le 0.3$ for both with and without Z. insularis) and the combined genes but excluding taxa with missing data (P=0.370 for without Z. insularis while expected NJ topology was generated when Z. insularis was included) (see Table 3.5). On the basis of the taxa examined, neither Shileyko's (1999) nor Zilch's (1959) Rumininae is monophyletic.

Gene	Likeliho	od Score	P for SH ^a Test		
	Optimal Constrained		(Conclusion ^b)		
	NJ tree	NJ tree	()		
COELIAXIDAE					
rRNA cluster	7951.71731	8036.16984	<0.001 (Significant)		
Actin	5881.25298	5972.47679	<0.001 (Significant)		
Histone 3	1815.79561	1864.59737	<0.001 (Significant)		
COI (1 st and 2 nd codons)	1885.86879	1924.07354	0.006 (Significant)		
Combined	16679.19409	16826.68130	<0.001 (Significant)		
Combined-all taxa	18474.64048	18683.79407	<0.001 (Significant)		
FERUSSACIIDAE					
rRNA cluster	7951.71731	7982.47034	0.010 (Significant)		
Actin	5881.25298	5877.42426	0.293 (Not significant)		
Histone 3	Not applica	able; <i>Cecilioides</i>	gokweanus not included		
COI (1 st and 2 nd codons)	Not applicable; <i>Cecilioides gokweanus</i> not included				
Combined			<i>gokweanus</i> not included		
Combined-all taxa	18474.64048	18518.72376	0.010 (Significant)		
	SUBUL	INIDAE			
rRNA cluster	7951.71731	8098.27402	<0.001 (Significant)		
Actin	5881.25298	5922.88073	0.001 (Significant)		
Histone 3	1815.79561	1874.36463	0.008 (Significant)		
COI (1 st and 2 nd codons)	1885.86879	1933.58362	0.005 (Significant)		
Combined	16679.19409	16974.41302	0.005 (Significant)		
Combined-all taxa	18474.64048	18638.18916	<0.001 (Significant)		
P	ETRIOLINAE	(SUBULINIDA	E)		
rRNA cluster	7951.71731	7967.95035	0.093 (Not significant)		
Actin	Not applicable	; expected topol	ogy exists in optimal NJ tree		
Histone 3	1815.79561	1813.07222	0.184 (Not significant)		
COI (1 st and 2 nd codons)	1885.86879	1911.13362	0.083 (Not significant)		
Combined	16679.19409	16680.26472	0.433 (Not significant)		
Combined-all taxa	18474.64048	18486.19798	0.150 (Not significant)		
RISHETIINAE (SUBULINIDAE)					
rRNA cluster	7951.71731	8084.95708	<0.001 (Significant)		
Actin	5881.25298	6059.01720	<0.001 (Significant)		
Histone 3	1815.79561	1838.11663	0.026 (Significant)		
COI (1 st and 2 nd codons)	1885.86879	1924.68912	<0.001 (Significant)		
Combined	16679.19409	16914.16222	<0.001 (Significant)		
Combined-all taxa	18474.64048	18758.90087	<0.001 (Significant)		
RUMININAE sensu Schileyko-without Zootecus insularis (SUBULINIDAE)					
rRNA cluster	7951.71731	8019.95480	<0.001 (Significant)		
Actin	5881.25298	5911.57548	0.001 (Significant)		
Histone 3	1815.79561	1837.83013	0.01 (Significant)		
COI (1 st and 2 nd codons)	1885.86879	1896.97810	0.226 (Not significant)		
Combined	16679.19409	16681.37066	0.370 (Not significant)		
Combined-all taxa	18474.64048	18578.49191	<0.001 (Significant)		
RUMININAE sensu Zilch-with Zootecus insularis (SUBULINIDAE)					
rRNA cluster	7951.71731	8000.77016	0.001 (Significant)		
Actin	5881.25298	6042.92852	<0.001 (Significant)		
Histone 3	1815.79561	1835.88838	0.009 (Significant)		
COI (1 st and 2 nd codons)	1885.86879	1894.94276	0.244 (Not significant)		
Combined			ogy exists in optimal NJ tree		
Combined-all taxa	18474.64048	18542.21668	<0.001 (Significant)		

Table 3.5: Hypothesis testing for the monophyly of selected taxa of the Achatinoidea using the Shimodaira-Hasegawa test.

SUBULININAE sensu Schileyko-with Zootecus insularis (SUBULINIDAE)				
rRNA cluster	7951.71731	8106.81200	<0.001 (Significant)	
Actin	5881.25298	6067.38758	<0.001 (Significant)	
Histone 3	1815.79561	1865.98883	0.002 (Significant)	
COI $(1^{st} \text{ and } 2^{nd} \text{ codons})$	1885.86879	1940.19417	<0.003 (Significant)	
Combined	16679.19409	16965.35856	<0.001 (Significant)	
Combined-all taxa	18474.64048	18805.02183	<0.001 (Significant)	
SUBULININAE sensu Zilch-without Zootecus insularis (SUBULINIDAE)				
rRNA cluster	7951.71731	8051.96505	<0.001 (Significant)	
Actin	5881.25298	5898.27655	<0.028 (Significant)	
Histone 3	1815.79561	1841.74798	0.034 (Significant)	
COI $(1^{st} \text{ and } 2^{nd} \text{ codons})$	1885.86879	1933.96199	<0.001 (Significant)	
Combined	16679.19409	16825.89704	<0.001 (Significant)	
Combined-all taxa	18474.64048	18706.81385	<0.001 (Significant)	

^a SH test – Shimodaira-Hasegawa Test

^b Significant at *P*<0.05

3.4. Discussion

This phylogenetic study provides the first systematic coverage of the Achatinoidea with over 24 species from 20 genera and 6 families (Achatinidae, Coeliaxidae, Ferussaciidae, Glessulidae, Subulinidae and Thyrophorellidae), including 4 subfamilies from the Subulinidae (Petriolinae, Rishetiinae, Rumininae and Subulininae).

3.4.1. Single versus combined gene phylogenies

Three nuclear genes and two mitochondrial genes were used for this study. Among these genes, the nuclear rRNA showed the least saturation, and its phylogeny provided the most resolved structure. Many of the basal nodes were well supported, most notably the splitting of the Achatinoidea into *Ferussacia folliculus* and the rest of the achatinoids. Many terminal nodes likewise received support. Expanding the coverage of the rRNA cluster to include nearly the entire LSU when compared to Wade *et al.*'s (2001, 2006) studies led to an increase in support for the Achatinoidea (99% NJ bootstraps and P=1.0 BI for this study versus 93% NJ bootstraps and P=0.98 BI in Wade *et al.*'s (2006) study). Support for the Achatinidae increased significantly from 38% NJ bootstraps and P=0.94 BI to 90% NJ bootstraps and P=1.0 BI, although a different set of achatinid taxa (apart from A. fulica) were used when compared to the Wade et al. (2006) study. There was also a slight increase in support for the Coeliaxis blandii and Riebeckia sp. grouping (99% NJ bootstraps and P=1.0 BI for this study versus 92% NJ bootstraps and P=1.0 BI in Wade et al.'s (2006) study). However, a rather surprising decrease in support was noted for the Pyrgina umbilicata and Thyrophorella thomensis group (73% NJ bootstraps and P=0.93 BI for this study versus 100% NJ bootstraps and P=1.0 BI in Wade *et al.*'s (2006) study). The actin gene also recovered many strongly-supported groupings found in the rRNA cluster despite the presence of several copies of the actin gene within many taxa leading to ambiguous sites in the sequences. While many basal groups received less than 50% bootstrap support (ML, NJ and MP) and less than 0.7 posterior probabilities (BI), the splitting of the Achatinoidea into F. thomensis and the other achatinoids was still strongly supported with 100% bootstrap support (ML, NJ, MP) and a posterior probability of 1.0 (BI). Two terminal groups also received higher support in actin than in the rRNA cluster. For instance, the Achatinidae obtained 98% NJ bootstraps, P=1.0 BI, 100% NJ boostraps and 99% MP bootstraps. The second group, comprising Pyrgina umbilicata and Thryphorella thomensis, received 100% ML boostraps, P=1.0 BI, 59% NJ bootstraps and 100% MP bootstraps; however, Pyrgina exhibited more ambiguous sites (88) than the total number of nucleotide differences (77) between it and Thyrohorella thomensis. It is highly probable that the actin copies in P. umbilicata and T. thomensis diverged earlier than the two taxa, and interpretation of this grouping should be treated with caution. On the other hand, the histone 3 and COI (1st and 2nd codon position) gene phylogenies generally had less structure with little support for basal nodes in the tree. This could be attributed to the relatively smaller number of sites used, particularly in the COI where the 3rd codon positions were excluded, as well as the possibility that both datasets were approaching saturation. In the COI, for example, the high levels of saturation of the 3rd codon position would imply the fast rate of evolution for this gene. Nevertheless, several groups in common with the rRNA and actin phylogenies were also recovered from the histone 3 and COI data. The 16S rRNA gene was excluded because it was found to be saturated and therefore not suitable for phylogenetic analyses at the level of the Achatinoidea.

The groups recovered in the rRNA tree also emerged in the phylogenies based on the concatenated sequence after the partition homogeneity test revealed that the individual datasets could be combined. The resolution within the internal branches and the statistical support for groupings in the tree clearly improved when the datasets were combined and analyzed under a single model (GTR+ Γ) for both the phylogeny that excluded taxa with missing datasets and for the phylogeny with all taxa. The combined phylogenies were dominated by the signal from the rRNA cluster as all groups from the rRNA phylogeny that did not appear in the other single gene phylogenies were recovered in the combined phylogenies.

3.4.2. Phylogenetic relationships within the Achatinoidea

3.4.2.1. The monophyly and phylogenetic position of the Achatinidae

The limited natural range of the Achatinidae to sub-Saharan Africa (Tillier, 1989, Raut & Barker, 2002) and the existence of fossils no earlier than the Pleistocene (0.01-1.8 MYA) (Zilch, 1959-1960; Solem, 1979) suggest that the achatinids are a relatively recent group (Tillier, 1989), although Raut & Barker (2002) believed them to be much older than the fossil record. The first molecular evidence for the monophyly of

the Achatinidae was provided by Wade *et al.* (2001) based on the analysis of a partial fragment of the rRNA cluster. Further molecular evidence for achatinid monophyly is provided in this study based on the analysis of an expanded rRNA dataset as well as the analysis of data from three other genes; actin, histone 3 and the 1^{st} and 2^{nd} codon positions of COI. High support for the monophyly of the family was also obtained when the genes were combined. The relative position of the Achatinidae within the Achatinoidea was not resolved.

3.4.2.2. The monophyly and phylogenetic position of the Ferussaciidae

This study included two representatives from the Ferussaciidae, Ferussacia folliculus and Cecilioides gokweanus, although the H3 and COI gene fragments failed to amplify in the latter. In the rRNA phylogeny, the two taxa did not cluster together as expected, and the early divergence of F. folliculus from the rest of the Achatinoidea, including C. gokweanus, was strongly supported (98% ML bootstraps, P=1.00 BI, 94% NJ bootstraps and 99% MP bootstraps). Furthermore, the Shimodaira-Hasegawa test conclusively rejected the monophyly of the Ferussaciidae. The actin gene also did not recover the Ferussaciidae as a monophyletic unit, though both bootstrap support/Bayesian posterior probabilities and the Shimodaira-Hasegawa test were equivocal. Cecilioides gokweanus has only been described conchologically; its internal anatomy has not been described, although that of *Cecilioides acicula* is already available. Cecilioides acicula, like Ferussacia folliculus, exhibits characteristics unique to Ferussaciidae such as the short but transversely elongated kidney (Watson, 1928; Tillier, 1989). However, the kidney of C. acicula is broader and curves gradually forward as it approaches the rectum whereas the kidney of F. folliculus bents abruptly where it meets the rectum. Furthermore, C acicula has a simpler penis structure than F.

folliculus, as the former possesses an indistinct penis papilla (Watson, 1928). There is therefore no compelling evidence from morphological data to show that the Ferussaciidae are monophyletic, and the molecular data from this study confirm their polyphyly.

3.4.2.3. Evaluation of the taxonomic designation of the Subulinidae, Coeliaxidae, Glessulidae and Thyrophorellidae

The single and combined phylogenies clearly showed that the Subulinidae (represented by eleven taxa in this study), are a polyphyletic group, with members of the Coeliaxidae (two representatives), Glessulidae (one representative) and Thyrophorellidae (one representative) falling among the subulinids. Subulinid monophyly was also significantly rejected by the SH test. The phylogenies also revealed that the Coeliaxidae, which are regarded as a subfamily, Coeliaxinae, under the Subulinidae by Schileyko (1999), are likewise not monophyletic, as *Coeliaxis blandii* and *Pyrgina umbilicata* did not cluster together. Coeliaxidae monophyly was also significantly rejected by the SH test.

The polyphyly of the subulinids is not surprising considering several taxa have not been described anatomically and are grouped together based only on their shell morphology and geographic distribution (Schileyko, 1999). However, some fascinating groupings have emerged. For instance, *Xerocerastus* sp. from southwest Africa (Schileyko, 1999), *Rumina decollata* from the Mediterrenean (Schileyko, 1999) and *Zootecus insularis* from the Sahara, Arabia, India and Burma (Schileyko, 1999) formed one group despite having distinct geographic distributions. Most descriptions of *Xerocerastus* species are limited to the shell (Van Bruggen, 1970; Schileyko, 1999), but both *R. decollata* and *Z. insularis* have a very short to nearly absent oviduct (Schileyko, 1999). *Xerocerastus* should be evaluated anatomically to determine if it shares any morphological features with *R. decollata* and *Z. insularis*.

Two of the three *Subulina* species clustered together: *S. octona* from central and tropical South America (Schileyko, 1999) and *S. striatella* from tropical Africa (Jurickova, 2006). The third species, *S. vitrea*, which has a geographic distribution limited to within southwest Africa (Van Bruggen, 1970), clustered with the tropical African *Subulona* sp. The internal structures of *S. striatella* and *S. vitrea* have not been described, but *S. octona* and the type species of *Subulona*, *S. badia* (Martens), are distinct morphologically in that the former has a penis sheath while the latter does not (Schileyko, 1999). The reproductive tracts of *S. striatella* and *S. vitrea* are therefore worth investigating to determine if they are also distinct.

The subulinid *Allopeas clavulinum* (Subulininae), which has a New World distribution, clustered with another subulinid, *Eutomopeas layardi* (Rishetiinae), which is restricted to Sri Lanka and neighboring islands (Schileyko, 1999). Like most subulinid genera, which are classified according to their shell characteristics, both taxa can be distinguished from one another conchologically based on the shape of the apex, color pattern and the presence or absence of the umbilicus (Schileyko, 1999). However, *Allopeas* and *Eutomopeas* also share other shell characteristics, including shape, size and translucence (Schileyko, 1999). Cain (1977) observed that distinct taxa, such as the high spired *Cochlicella acuta* and *Cionella* (*=Cochlicopa*) *lubrica*, which live in separate but very similar environments and possibly exhibit similar feeding habits, may manifest strikingly similar shell morphology as a result of convergent evolution. Mead (1994) found the same observations for two species of the Achatinidae. This could also be the case for *A. clavulinum* and *E. layardi*. Only the internal anatomy of *A. clavulinum* has been described, so it is therefore worthwhile to note if the internal

structures of these taxa are also congruent with molecular data. If that is the case, then the shell characteristics used to distinguish the two taxa into separate subfamilies and even genera may not be valid.

The coeliaxid *Coeliaxis blandii* from South Africa (Schileyko, 1999) grouped with the subulinid *Riebeckia* sp. found in Sokotra near the tip of Somalia (Schileyko, 1999). Only *C. blandii* has been described morphologically. Comparison of the two taxa based on internal structures is therefore not possible.

The other coeliaxid, Pyrgina umbillicata, forms a group with the thyrophorellid T. thomensis that is consistent in all the single gene and combined gene phylogenies. This grouping is highly controversial in that, in contrast to A. clavulinum and E. layardi, these two taxa are very distinct from each other conchologically. Whereas *P*. umbilicata is dextral and turricate with 13 narrow whorls (Schileyko, 1999), T. thomensis is sinistral and low conic above and bulging below (Schileyko, 2001). Furthermore, the thyrophorellid bears a unique operculum-like structure (Schileyko, 2001). It is speculated that differences in shell morphology often reflect the differences of the feeding behaviour of the taxa being compared (Cain, 1977) and not necessarily their phylogenetic relationship. The only similarity exhibited by *P. umbilicata* and *T.* thomensis at present is their geographic distribution; both are restricted to São Thomé (Schileyko, 1999, 2001). It is not uncommon to have distinct morphological variation that arises between closely related taxa within a small geographic area as a result of adaptive radiation. A classic example of this is Darwin's finches in the Galapagos Islands, where different environmental conditions could have given rise to different feeding niches for these birds that could have led to the evolution of different beak forms (Whittaker & Fernandez-Palacios, 2007). Further examination of the internal

structures of *P. umbilicata* is imperative so that it can be compared with *T. thomensis*, which is already anatomically described (Schileyko, 2001).

Tortaxis erectus from Indochina and southern China (Schileyko, 1999) and the glessulid *Glessula ceylanica* from the Indian subcontinent and Sri Lanka (Schileyko, 1999) formed another group. Conchologically, the two species are somewhat similar in having glossy shells, although *T. erectus* has a turreted, cylindrical-turrited or subulate-turrited shell with 6-13 convex whorls while *Glessula* has an elongated-ovate to ovate-conic shell with 5-8 convex whorls (Schileyko, 1999). The anatomy of *T. erectus* is likewise unknown, so comparison of the two taxa based on internal structures is not possible. In addition to *G. ceylanica*, there are various other *Glessula* species that need to be characterized at the molecular level as they are very similar to each other conchologically (Beddome, 1906).

Based, therefore, on molecular data presented in this study, and in light of the fact that numerous subulinids are not described anatomically, revision of the Subulinidae is clearly needed as this no longer appears to be a valid group. The Coeliaxidae must also be revised as its representatives in this study grouped with either another subulinid or a thyrophorellid. The designation of the monotypic Thyrophorellidae requires re-examination based on *Thyrophorella thomensis*' close association with the coeliaxid *Pyrgina umbilicata*. Finally, the association of *Tortaxis erectus* with *Glessula ceylanica* raises the question as to whether the Glessulidae are really restricted to the Indian subcontinent.

3.4.2.4. Evaluation of the monophyly of the different subulinid subfamilies

Of the four subulinid subfamilies represented in this study, only the Petriolinae (represented by *Bocageia* sp. and *Riebeckia* sp.) were recovered in any of the gene

phylogenies, in this case the NJ tree based on the actin gene though bootstrap support was less than 50% (see Appendix 3.11B, p. 442). For the rRNA, H3, COI and combined gene phylogenies, the Shimodaira-Hasegawa test did not find any significant difference in the likelihood scores between the optimal NJ tree (in which the Petriolinae were not monophyletic) and the constrained tree showing monophyly of the Petriolinae. There is therefore no compelling evidence to rule out the monophyly of the Petriolinae but neither is there any convincing evidence in support of the subfamily. The Petriolinae is distinct from all the other subfamilies based on the presence of a well-developed epiphallus and a very large and fleshy stimulator in the penis. Bocageia sp. and Subulona sp. have not yet been described based on their reproductive structure and were only included in the subfamily based on their shell morphology (Schileyko, 1999). The monophyly of the other subulinid subfamilies, particularly Rumininae sensu Schileyko (without Zootecus) and Rumininae sensu Zilch (with Zootecus), were strongly rejected by the Shimodaira-Hasegawa Test, and a re-examination of their taxonomic position is warranted. As discussed in the previous section, many of these taxa that have been included in the subfamilies have not been described anatomically, particularly with regards to the reproductive structures. In fact, this situation applies to many subulinids in general, which leaves their taxonomic position questionable (Schileyko, 1999).

3.4.3. The next step

The monophyly of the Achatinidae using molecular data is based only on very limited taxa sampled to date. A comprehensive survey of taxa within the family will determine the extent of their monophyly and at the same time give a glimpse of the inter-relationships of the various groups in the family on the basis of molecular data. Mead (1991, 1995) has already described various groups within the Achatinidae using the reproductive tract as a criterion, and it would be interesting to know if these groupings are supported by molecular data. The molecular data have revealed that the Ferusaciidae are not monophyletic; the inclusion of additional taxa from the family is therefore necessary in order to re-evaluate the relationships within the group. The Subulinidae are also determined to be non-monophyletic based on molecular data; this necessitates a re-examination of the different surprising groupings of these subulinids in the light of their association with the Coeliaxidae (also non-monophyletic), Glessulidae and Thyrophorellidae by expanding the taxon coverage to include other members of the families mentioned. There is also a need to investigate the morphological features of many of the anatomically undescribed species to correlate the molecular data with morphological data. Within the Subulinidae, only the Petriolinae had equivocal support for its monophyly. Including other taxa from the Petriolinae could shed more light on its status as a valid group. Other subfamilies that were not represented in this study (Obeliscinae, Opeatinae, Perrieriinae and Tristaniinae) should likewise be surveyed to determine their validity in the light of the rejection of the monophyly of the Rishetiinae, Rumininae and Subulininae.

3.5. Summary

The study provides a phylogenetic analysis of the Achatinoidea based on 24 taxa representing six families using the nuclear rRNA, actin and histone 3 genes and the 1st and 2nd codon positions of the mitochondrial cytochrome c oxidase subunit I gene. The 16S rRNA gene and the 3rd codon position of the COI gene were severely saturated and were excluded from the phylogenetic analyses. Combined gene phylogenies recovered most of the groupings in the rRNA phylogeny with longer internal branches and similar or slightly better statistical support. The study provided further strong molecular support

for the monophyly of the Achatinidae. The Ferussaciidae did not form a monophyletic group within the molecular trees, with *Ferussacia folliculus* falling separately from *Cecilioides gokweanus* at the base of the Achatinoidea, thus warranting a re-evaluation of the Ferussaciidae as a valid taxonomic group. The Coeliaxidae was not supported, with the two representatives sequenced to date falling separately in the molecular trees, thereby prompting a re-evaluation of the validity of the family. Finally, the Subulinidae were not supported in the molecular trees with members of the Coeliaxidae, Glessulidae and Thyrophorellidae falling among the subulinids. As with the Ferussaciidae and the Coeliaxidae, the molecular data prompt a re-evaluation of the Subulinidae as a valid taxonomic group.

3.6. Literature cited

- Abbott, R.T. 1989. Compendium of Landshells: A Full-Color Guide to More than 2000 of the World's Terrestrial Shells. American Malacologists, Massachusetts, 240 pp.
- Adema, C.M. 2002. Comparative study of cytoplasmic actin DNA sequences from six species of Planorbidae (Gastropoda: Basommatophora). Journal of Molluscan Studies 68: 17-23.
- Avise, J.C. 1994. <u>Molecular Markers, Natural History and Evolution</u>. Chapman & Hall, London, 511 pp.
- Baker, H.B. 1955. Heterurethrous and aulocopod. Nautilus. 68: 109-112.
- Baldauf, S.L., Roger, A.J., Wenk-Siefert, I. and Doolittle, W.F. 2000. Kingdom-level phylogeny of eukaryotes based on combined protein data. Science **290**: 972-977.
- Barker, G.M. 2001. Gastropods on Land: Phylogeny, Diversity and Adaptive Morphology. *In:* Barker, G.M. (ed.), <u>The Biology of Terrestrial Molluscs</u>. CABI Publishing, New Zealand, pp. 1-146.
- Beddome, R.H. 1906. Notes on Indian and Ceylonese *Glessula*. Proceedings of the Malacological Society **VII**(XV): 160-172.
- Bouchet, P. and Rocroi, J-P. 2005. Classification and nomenclator of the gastropod families. Malacologia **47**(1-2): 1-397.
- Brown, W.M. 1985. The mitochondrial genome of animals. *In:* MacIntyre, R.J. (ed.), <u>Molecular Evolutionary Genetics</u>. Plenum Press, New York, pp. 95-130.
- Cain, A.J. 1977. Variation in the spire index of some coiled gastropod shells, and its evolutionary significance. Philosophical Transactions of the Royal Society of London B, Biological Sciences 277: 377-428.

- Carlini, D.B., Reece, K.S. and Graves, J.E. 2000. Actin gene family evolution and the phylogeny of coleoid cephalopods (Mollusca: Cephalopoda). Molecular Biology and Evolution 17(9): 1353-1370.
- Colgan, D.J., Ponder, W.F., Beacham, E. and Macaranas, J.M. 2003. Gastropod phylogeny based on six segments from four genes representing coding or non-coding and mitochondrial or nuclear DNA. Molluscan Research **23**: 123-148.
- Cunningham, C.W. 1997. Can three incongruence tests predict when data should be combined? Molecular Biology and Evolution **14**(7): 733-740.
- Donald, K.M., Kennedy, M. and Spencer, H.G. 2005. The phylogeny and taxonomy of austral monodontine topshells (Mollusca: Gastropoda: Trochidae), inferred from DNA sequences. Molecular Phylogenetics and Evolution 37: 474-483.
- Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution **17**: 368-376.
- Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution **39**: 783-791.
- Folmer, O., Black, M., Hoen, W., Lutz, R. and Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3:294-299.
- Grande, C., Templado, J., Cervera, J.L. and Zardoya, R. 2004. Molecular phylogeny of the Euthyneura (Mollusca: Gastropoda). Molecular Biology and Evolution **21**(2): 303-313.
- Graybeal, A. 1994. Evaluating the phylogenetic utility of genes: a search for genes informative about deep divergences among vertebrates. Systematic Biology **43**: 174-193.
- Gude, G.K. 1914. <u>Fauna of British India Including Ceylon and Burma. Mollusca</u> <u>Volume II – Trochomorphidae and Janellidae</u>. Taylor & Francis, London, 520 pp.
- Guindon, S., Lethiec, F., Duroux, P. and Gascuel, O. 2005. PHYML Online--a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Research **33**: w577-w581.
- Hasegawa, M., Kishino, H. and Yano, T. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution **21**: 160-174.
- Hemmen, J. and Hemmen, C. 2001. Aktualisierte liste der terrestrischen gastropoden Thailands. Schriften zur Malakozoologie **18**: 35-70.
- Hernan, I.M. 1993. Actin isoforms. Current Opinion in Cell Biology 5: 48-55.
- Hightower, R.C. and Meagher, R.B. 1986. The molecular evolution of actin. Genetics 114: 315-332.Hillis, D.M. and Huelsenbeck, J.P. 1992. Signal, noise, and reliability in molecular phylogenetic analyses. Journal of Heredity 85: 189-195.
- Hillis, D.M. and Huelsenbeck, J.P. 1992. Signal, noise, and reliability in molecular phylogenetic analyses. Journal of Heredity **85**: 189-195.
- Jukes, T.H. Cantor, C.R. 1969. Evolution of protein molecules. *In*: Munro, H.N. (ed.), <u>Mammalian Protein Metabolism.</u> Academic Press, New York, pp. 21-32.
- Kerney, M.P. and Cameron, R.A.D. 1979. <u>A Field Guide to the Land Snails of Britain</u> <u>and Northwest Europe</u>. William Collins Sons & Co, Ltd., London, 288 pp.
- Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111-120.

- Johnson, K.P. and Clayton, D.H. 2000. Nuclear and mitochondrial genes contain similar phylogenetic signal for pigeons and doves (Aves: Columbiformes). Molecular Phylogenetics and Evolution **14**(1): 141-151.
- Jurickova, L. 2006. *Subulina octona* (Brugiere, 1798) a new greenhouse species for the Czech Republic (Mollusca: Gastropoda: Subulinidae). Malacologica Bohemoslovaca **5**: 1-2.
- Lake, L.A. and Moore, J.E. 1998. Phylogenetic analyses and comparative genomics. Trends Guide to Bioinformatics (Supplement): 22-23.
- Lewin, B. 2008. Genes IX. Jones and Bartlett Publishers, USA, 892 pp.
- Mead, A.R. 1979. Economic malacology with particular reference to *Achatina fulica*. *In*: Fretter, V. and Peake, J. (eds.), <u>Pulmonates, Vol. 2B</u>. Academic Press, London, 150 pp.
- Mead, A.R. 1991. Anatomical criteria in the systematics of the Achatinidae (Pulmonata). *In:* Meier-Brook, C. (ed.), <u>Proceedings of the Tenth International Malacological Congress</u>. Tubingen, pp. 549-553.
- Mead, A.R. 1994. A new subfamily and genus in Achatinidae (Pulmonata: Sigmurethra). Bulletin of the Natural History Museum (Zoology) **60**: 1-37.
- Mead, A.R. 1995. Anatomical studies reveal new phylogenetic interpretations in *Lissachatina* (Pulmonata: Achatinidae). Journal of Molluscan Studies **61**: 257-273.
- Morgan, J.A.T., DeJong, R.J., Jung, Y., Khallaayoune, K., Kock, S., Mkoji, G.M. and Loker, E.S. 2002. A phylogeny of planorbid snails, with implications for the evolution of *Schistosoma* parasites. Molecular Phylogenetics and Evolution 25: 477-488.
- Palumbi, A., Martin, A., Romano, S., McMillian, W.O., Stine, L. and Grabowski, G. 1991. The simple fool's guide to PCR version 2.0. University of Hawaii, Honolulu.
- Pilsbry, H.A. 1900. On the zoological position of *Achatinella* and *Partula*. Proceedings of the Academy of Natural Sciences of Philadelphia **52**: 561-567.
- Pilsbry, H.A. 1906-1907. <u>Manual of Conchology. Structural and Systematic. With</u> <u>Illustrations of the Species. Founded by George W. Tryon, Jr. Second Series:</u> <u>Pulmonata. Vol. XVIII. Achatinidae: Stenogyrinae and Coeliaxinae.</u> Academy of Natural Sciences, Philadelphia, 357 pp.
- Pilsbry, H.A. 1908–1910. <u>Manual of conchology. Structural and Systematic. With</u> <u>Illustrations of the Species. Second Series: Pulmonata. Vol. XX. Caecilioides,</u> <u>Glessula and Partulidae.</u> Academy of Natural Sciences, Philadelphia, 336 pp.
- Preece, R.C. and Gittenberger, E. 2003. Systematics, distribution and ecology of *Balea* (*=Tristania*) (Pulmonata: Clausiliidae) in the islands of the Tristan-Gough Group. Journal of Molluscan Studies **69**: 329-348.
- Raut, S.K. and G.M. Barker. 2002. Achatina fulica Bowdich and Other Achatinidae as Pests in Tropical Agriculture. In: G.M. Barker, G.M. (ed.), <u>Molluscs as Crop</u> Pests. CABI Publishing, Hamilton, New Zealand, pp. 55-114.
- Remigio, E.A. and Hebert, P.D.N. 2003. Testing the utility of partial COI sequences for phylogenetic estimates of gastropod relationships. Molecular Phylogenetics and Evolution **29**: 641-647.
- Rodriguez, F., Oliver, J.L., Marin, A. and Medina, J.R. 1990. The general stochastic model of nucleotide substitution. Journal of Theoretical Biology **142**: 485-501.
- Ronquist, F. and Huelsenbeck, J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics **19**: 1572-1574.

- Ruppert, E.E., Fox, R.S. and Barnes, R.D. 2004. <u>Invertebrate Zoology: A Functional</u> <u>Evolutionary Approach</u>, 7th ed., Brooks/Cole-Thomson Learning, USA, 963 pp.
- Schileyko, A.A. 1999. Treatise on recent terrestrial pulmonate molluscs, Part 4: Caryodidae, Draparnaudiidae, Macrocyclidae, Acavidae, Clavatoridae. Dorcasiidae, Sculptariidae, Corillidae, Plectopylidae, Megalobulimidae, Cerionidae, Glessulidae, Strophocheilidae, Achatinidae, Subulinidae, Micractaeonidae, Ferussaciidae. Ruthenica, Moscow, 129 pp.
- Schileyko, A.A. 2001. Treatise on recent terrestrial pulmonate molluscs, Part 7: Endodontidae, Thyrophorellidae, Charopidae. Ruthenica, Moscow, 154 pp.
- Shimodaira, H. and Hasegawa, M. 1999. Multiple comparisons of log likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution **16**: 1114-1116.
- Smith, S.W., Overbeek, R., Woese, C.R., Gilbert, W. and Gillevet, P.M. 1994. The genetic data environment, an expandable GUI for multiple sequence analysis. Computer Applications in the Biosciences **10**: 671-675.
- Solem, A. 1978. Classification of the Land Mollusca. *In*: Fretter, V. and Peake, J. (ed.), <u>Pulmonates, Vol. 2A</u>: Systematics, Evolution and Ecology. Academic Press, U.K., pp. 49-97.
- Solem, A. 1979. Biogeographic significance of land snails, Paleozoic to Recent. *In*: Gray, J. and Boucot, A.J. (eds.) <u>Historical Biogeography, Plate Tectonics, and the Changing Environment</u>. Oregon University Press, Corvallis, pp. 277-287.
- Staden, R. Beal, K.F. and Bonfield, J.K. 2000. The Staden package, 1998. Methods in Molecular Biology **132**: 115-130.
- Steinke, D., Albrecht, C. and Pfenninger, M. 2004. Molecular phylogeny and character evolution in the Western Paearctic Helicidae *s.l.* (Gastropoda: Stylommatophora). Molecular Phylogenetics and Evolution **32**: 724-734.
- Swofford, D.L. 2002. PAUP* 4.0b10, Sinauer Associates, Sunderland, MA.
- Tamura, K. and Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10: 512-526.
- Thiele, J. 1933. Die von Oskar Neumann in Abbessinien gesammelten und einige andere afrikanische Landschnecken. Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin 1933: 280-323.
- Thollesson, M. 1999. Phylogenetic analysis of the Euthyneura (Gastropoda) by means of the 16S rRNA gene: use of a 'fast' gene for 'higher-level' phylogenies. Proceedings of the Royal Society of London Series B **266**: 75-83.
- Tillier, S. 1989. Comparative morphology, phylogeny and classification of land snails and slugs (Gastropoda: Pulmonata: Stylommatophora). Malacologia **30**(1-2): 1-303.
- Van Bruggen, A.C. 1970. A contribution to the knowledge of non-marine mollusca of Southwest Africa. Zoologische Medelingen 45(4): 44-73.
- Van Benthem Jutting, W.S.S. 1952. Systematic studies on the non-marine Mollusca of the Indo-Australian Archipelago. III. Critical revision of the Javanese pulmonate land snails of the families Ellobiidae to Limacidae, with an appendix on Helicarionidae. *Treubia* 21(2): 291–435.
- Van Benthem Jutting, W.S.S. 1959. Catalogue of the non-marine Mollusca of Sumatra and of its satellite islands. Beufortia **7**(83): 41-191.
- Vandekerckhove, J. and Weber, K. 1984. Chordate muscle actins differ distinctly from invertebrate muscle actins. Journal of Molecular Biology **179**: 391-413.

- Vaught, K.C. 1989. <u>A classification of the living mollusca</u>. American Malacologists, Inc., Melbourne, FL, 195 pp.
- Vermeulen, J.J. and Maassen, W.J.M. 2003. The non-marine mollusk fauna of the Pu Luong, Cuc Phuong, Phu Ly, and Ha Long regions in northern Vietnam. Report of a survey for the Vietnam Programme of FFI, 35 pp.
- Wade, C.M., Mordan, P.B. and Clarke, B.C. 2001. A phylogeny of the land snails (Pulmonata: Gastropoda). Proceedings of the Royal Society of London Series B. 268: 413-422.
- Wade, C.M., Mordan, P.B. and Naggs, F. 2006. Evolutionary relationships among the Pulmonate land snails and slugs (Pulmonata, Stylommatophora). Biological Journal of the Linnean Society 87: 593-610.
- Watson, H. 1928. The affinities of *Cecilioides* and *Ferussacia*, illustrating adaptive evolution. Journal of Conchology **18**(8): 217-243.
- Winnepenninckx, B., Steiner, G., Backeljau, T. and De Wachter, R. 1998. Details of gastropod phylogeny inferred from 18S rRNA sequences. Molecular Phylogenetics and Evolution 9(1): 55-63.
- Whittaker, R.J. and Fernandez-Palacios, J.M. 2007. <u>Island Biogeography: Ecology</u>, <u>Evolution, and Conservation</u>. Oxford University Press, New York, 401 pp.
- Wiens, J.J. 2006. Missing data and the design of phylogenetic analyses. Journal of Biomedical Informatics **39**(1): 34-42.
- Yang, Z. 1993. Maximum likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Molecular Biology and Evolution 10: 1396-1401.
- Zilch, A. 1959-1960. Euthyneura. *In:* Wenz, W. (ed.) <u>Handbuch der Palaozoologie</u>, <u>6(2)</u>. Gebruder Borntraeger, Berlin, 833 pp.
- Zubay, G.L., Parson, W.W. and Vance, D.E. 1995. <u>Principles of Biochemistry</u>. Wm. C. Brown Publishers, U.S.A., 863 pp.

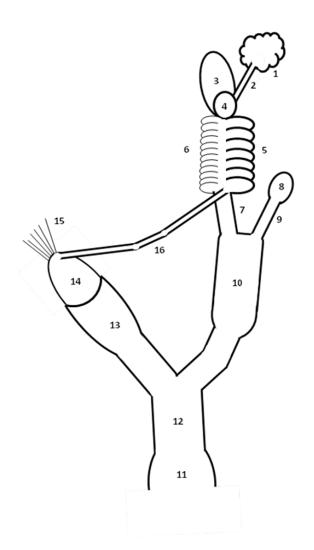
CHAPTER 4 - Phylogeny of the Achatinidae

4.1. Introduction

4.1.1. The Achatinidae

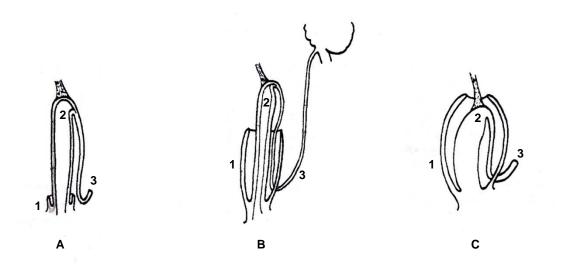
Other than as exotic alien species, the Achatinidae are confined to sub-Saharan Africa and the Atlantic Islands in the Gulf of Guinea, West Africa. Achatina (Lissachatina) immaculata Lamarck is considered to have been introduced into Madagascar (Raut & Barker, 2002), but the most notable colonizing achatinid is Achatina (Lissachatina) fulica Bowdich, which has been introduced by Man throughout much of the tropics where it is a major pest species (Mead, 1979a; Raut & Barker, 2002). Achatinids include some of the largest known terrestrial molluscs (Bequaert, 1950) and have been aptly called Giant African Land Snails. There are 13 genera and approximately 200 species (Raut & Barker, 2002) distributed across 3 subfamilies within the Achatinidae (Schileyko, 1999). With the exception of the sinistral Columna columna (Müller) and Archachatina bicarinata (Bruguière), the shells of the Achatinidae are dextral. In general, achatinid shells are higher than wide and are fusiform, ovoid or pillar-shaped (Schileyko, 1999). Although achatinids do not possess the wide range of anatomical accessory structures that are found in many other stylommatophoran groups, the morphology of the genital structures in achatinids is highly variable (Mead, 1991); all members of the Achatinidae possess a well-developed penis sheath (Schileyko, 1999).

4.1.2. Distribution and habitat of the Achatinidae


The Achatinidae are widely distributed in sub-Saharan Africa. They are present from Senegal to Guinea in the west, the Zaire Basin, the Lake District and Southern Sudan in the centre, Somalia and southern Ethiopia in the northeast, Kenya, Tanzania and Mozambique in the east, and to Zambia, Botswana, Zimbabwe, South Africa, Namibia and Angola in the south and southwest (Mead, 1991; Raut & Barker, 2002). The Atlantic Islands in the Gulf of Guinea, including São Thomé and Principe, also harbor certain achatinids such as Columna columna (Schileyko, 1999) and the monotypic Atopocochlis exarata (Müller) (Mead, 1991; Raut & Barker, 2002). Van Bruggen (1986) noted an unequal distribution of diversity of the Achatinidae within sub-Saharan Africa, with Western Africa exhibiting a high concentration of endemic species. Habitat preferences of the achatinids are also diverse. Members of the genus Achatina in Central Africa thrive in humid, tropical forest areas. Some achatinids such as Achatina (Lissachatina) fulica in Eastern Africa flourish in modified tropical forests and forest margins and even in highly disturbed areas such as gardens, intensively farmed crops and plantations. Others such as the lowland *Cochlitoma zebra* (Bruguière) and the montane Cochlitoma omissa (van Bruggen) live in temperate regions in Southern Africa. Still others can be found in less humid areas, for example Achatina (Lissachatina) immaculata Lamarck in savannah and Achatina (Achatina) damarensis (Pfeiffer) in deserts of south and southwest Africa (Raut & Barker, 2002).

4.1.3. The search for the phylogeny of the Achatinidae using morphological characters

Several studies have attempted to elucidate the phylogeny of the Achatinidae using morphological characters (Bequaert, 1950; Mead, 1950, 1979b, 1991, 1995).


Classification within the family is based mostly on shell form and structure as well as the anatomy of the genitalia. However, different forces of selection act to different extents on the two systems. Shell form is subjected to selection pressures associated with particular habitats and homoplasy in shell form is common (Cain, 1977; Mead, 1994); modifications to the genitalia are more likely to reflect evolutionary processes (Mead, 1994) partly in response to sexual selection and selection pressures associated with the need for compatibility of form within species and incompatibility of form acting as reproductive isolation mechanisms between species. It is therefore not unusual to have cases where there is no correspondence between shell structures and the genitalia (Mead, 1979b, 1991) where distinct taxa living in separate but very similar environments may undergo convergent evolution and manifest strikingly similar shell morphology (Mead, 1994). For instance, the western species Achatina (Achatina) achatina Linneaus and the southern species Cochlitoma zebra (Bruguière) are very similar conchologically and were placed in the same genus, Achatina, by Bequaert (1950) when clearly they belong to different genera based on the differences in their reproductive organs (Mead, 1991).

A typical achatinid reproductive system based on *Archachatina (Calachatina) marginata* Swainson is shown in Figure 4.1. Achatinids, like all stylommatophorans, are hermaphroditic. Both the sperm and egg are produced in the ovotestis, though not at the same time, and pass through the hermaphrodite duct. During copulation, the sperm proceeds to the male portion of the common hermaphrodite duct and then to the vas deferens and the penis. The penis then protrudes through the genital atrium and the genital pore and inserts into the reproductive tract of the partner until it reaches the vagina where it injects the sperm into the spermolytic sac through the spermolytic duct. The penis then retracts through the penial retractor muscle. Most of the sperm injected into the spermolytic sac is digested by proteolytic enzymes. Sperm that survive go through the spermolytic duct and pass through the oviduct into the female hermaphrodite duct (=uterus) before they are stored in the seminal receptacle (=carrefour). Fertilization also takes place in the seminal receptacle, after which the fertilized eggs or zygotes receive yolk from the albumin gland. The zygotes then pass through the female hermaphrodite duct where the yellow egg shells are added before the eggs are released through the genital pore (Segun, 1975; Egonmwan, 2007).

Figure 4.1: Generalized reproductive structure of achatinids. 1 – ovotestis; 2 – hermaphroditic duct; 3 – albumin gland; 4 – seminal receptacle; 5 - male part of common hermaphrodite duct; 6 – female part of common hermaphrodite duct (=uterus); 7 oviduct; 8 – spermolytic sac (=spermatheca); 9 – spermolytic duct; 10 – vagina; 11 – genital pore; 12 – genital atrium; 13 – penis sheath; 14 – penis; 15 – penial retractor muscle; 16 – vas deferens (Segun, 1975; Gomez, 2001; Egonmwan, 2007).

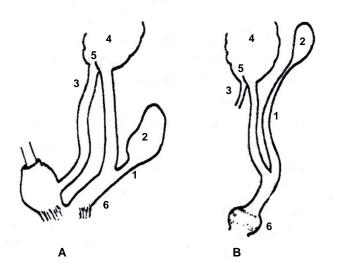

Morphological features of achatinid reproductive systems show a strong correlation with geographic distribution. For example, Mead (1991, 1994) hypothesized that members of the subfamily Callistoplepinae, which are found in Lower Guinea (Cameroon, Equatorial Guinea, Gabon and adjacent islands) in West Africa and include the genera Callistoplepa and Leptocala, probably gave rise to the other achatinids because they have the most 'primitive' genitalia in which the penis sheath does not enclose the vas deferens (Figure 4.2A). For the rest of the achatinids, the developing penis sheath envelopes the apical vas deferens to divide it into the apical and basal portions. Among these achatinids, the penis sheath either encloses the basal vas deferens but not the entire penis (microphallate type, Figure 4.2B) or it encloses both the basal part of the vas deferens as well as the entire penis (macrophallate type, Figure 4.2C). These two types can be found across different geographic regions of the Sub-Saharan Africa over several genera; for instance, the microphallate type is present in the West African Achatina (Achatina) achatina, Archachatina marginata and Pseudachatina downesii Sowerby and the Southern African Metachatina kraussi L. Pfieffer while the macrophallate type is evident in the East African Achatina (Lissachatina) fulica, the Southern African Cochlitoma species and the East and West African Limicolaria species (Mead, 1979b; 1991). Apart from the penis sheath, other features also reflect groupings within the Achatinidae that have been thought to mirror their routes of dispersal. In the subfamily Limicolariinae, members are restricted to tropical regions of Africa and possess penial retractor muscles that originate from the diaphragm and are not enclosed by the penis sheath; a verge or penis papilla is also present at the base of the penis in this subfamily (Schileyko, 1999). Greater variation in the reproductive structure is exhibited in the subfamily Achatininae, members of which are distributed all over Sub-Saharan Africa (Schileyko, 1999), with some genera possessing reproductive features that reflect their geographic distributions. For instance, extroversion muscles at the base of the penis sheath are very prominent in East African *Achatina* in the subgenus *Lissachatina* (Mead, 1979b, 1991), which include *A*. (*L.*) *fulica*, *A*. (*L.*) *immaculata*, *A*. (*L.*) *reticulata* Pfeiffer and *A*. (*L.*) *zanibarica* Bourguignat. In Southern Africa, several species of *Archachatina* and *Achatina* exhibit a distinct folding of the penis, which prompted Mead (2004) to resurrect *Cochlitoma* Pilsbry. Based on these morphological features, it was proposed that the Achatinidae originated in Lower Guinea and dispersed through much of Sub-Saharan Africa (south of the Sahel) where they adapted to specific environmental conditions, from humid to arid, and tropical to temperate (Mead, 1991; Raut & Barker, 2002).

Figure 4.2: Schematic diagrams of how the penis sheath envelops certain parts of achatinid genitalia. 1 – penis sheath; 2 – penis; 3 – vas deferens. **A** – the penis sheath does not envelop the vas deferens, as in *Callistoplepa*. **B** – the penis sheath envelopes the vas deferens and divides into the apical and basal portions, as in the West African *Archachatina*. **C** – the penis sheath envelopes both the entire penis and the basal segment of the vas deferens, as in *Achatina* (*Lissachatina*). (From Mead, 1991).

4.1.4. Taxonomic revision of the genus *Achatina* based on morphological characteristics

Bequaert (1950) used the appearance of the nepionic whorls of the shell to distinguish two subgenera of the genus Achatina, namely: (1) Achatina found in West and Central Africa; and (2) Lissachatina found in East Africa. He noted that the nepionic whorls in Achatina (Achatina) are sculptured whereas those of Achatina (Lissachatina) are either smooth or with faint vertical wrinkles. Mead (1995) further added that Achatina (Achatina) normally has a plateaued apex while Achatina (Lissachatina) exhibits a lopsided or half-dome apex. However, distinguishing these two subgenera using taxonomic characters based on the shell can be unreliable in the case of specimens with worn or weathered shells (Mead, 1995). The morphology of the reproductive organs is considered to provide more reliable characters for recognizing natural groups (Mead, 1991). For example, Achatina (Achatina) has a short spermolytic duct (=spermathecal duct sensu Mead), which causes the spermolytic sac (=spermatheca) to be located below the junction of the apical vas deferens and the uterine portion of the common hermaphrodite duct (=spermoviduct). In contrast, Achatina (Lissachatina) has a very long spermolytic duct, thus pushing the spermolytic sac way above the junction of the apical vas deferens and the uterine portion of the common hermaphrodite duct. Furthermore, Achatina (Lissachatina) tends to have a muscular, bulboid enlargement at the basal vagina (Fig. 4.3) in addition to the presence of extroversion muscles at the base of the penis sheath (Mead 1991; 1995).

Figure 4.3: Schematic illustrations of the reproductive organs of the West and Central African *Achatina* (*Achatina*) (A) and the East African *Achatina* (*Lissachatina*) (B). 1 - spermolytic duct; 2 - spermolytic sac; 3 - apical vas deferens; 4 - uterine portion of the common hermaphrodite duct; 5 - junction of 3 and 4; 6 - basal vagina. Note that the spermolytic duct is longer in *Achatina* (*Lissachatina*), pushing the spermolytic sac above the junction of the vas deferens and the uterine portion of the common hermaphroditic duct. *Lissachatina* also tends to have a bulbous basal vagina. (From Mead, 1991)

4.1.5. Objective of the study

Results from Chapter 3 confirm the monophyly of the Achatinidae as represented by four taxa. However, no molecular based phylogenetic analyses have been carried out to determine the relationships within the Achatinidae. The current investigation aimed to address this issue by obtaining molecular data for the nuclear ribosomal rRNA cluster, actin and histone 3 genes as well as the mitochondrial cytochrome c oxidase subunit 1 and 16S rRNA genes to elucidate the phylogeny of the Achatinidae. The validity of the taxonomic designation of the East African *Lissachatina* and the West African *Achatina* was also evaluated using the molecular data.

4.2. Materials and methods

4.2.1. Taxa used

Twenty-nine taxa from the family Achatinidae were used to evaluate the phylogeny of the Achatinidae (see Table 4.1). Except for five taxa used by Wade *et al.* (2006), namely *Achatina (Lissachatina) fulica, Archachatina marginata, Atopocochlis exarata, Limicolaria kambeul* and the subulinid outgroup taxon *Rumina decollata*, all other taxa have not been evaluated in previous studies. *Rumina decollata* was chosen as the outgroup because it fell immediately outside of the Achatinidae in the phylogenetic studies found in Chapter 3, and it was the taxon that allowed incorporation of the greatest number of unambiguously aligned nucleotide sites across the Achatinidae for the ITS 2 region. Three subgenera of *Achatina* were represented in this study, namely *Achatina* (represented by *A. achatina, A. bisculpta, A. damarensis* and *A. stuhlmanni*), *Euaethiopina (A. loveridgei)* and *Lissachatina (A. fulica, A. immaculata, A. reticulata* and *A. zanzibarica*).

Table 4.1: Taxa used for the phylogenetic study of the Achatinidae. With the exception of *Achatina (Lissachatina) fulica, Archachatina marginata, Atopocochlis exarata, Limicolaria kambeul* and *Rumina decollata* from Wade *et al.* (2006), all other taxa were not used in previous studies and were solicited through email by myself, C. Hudelot, F. Naggs and C. Wade from the collectors shown in the table. The DNA for the five taxa used by Wade *et al.* (2006) was provided by C. Wade.

Family	Species	Collection/Location	Collector/Provider
Achatinidae	Achatina (Achatina) achatina (Linneaus, 1758)	Unknown (Zool. Soc. Lond. Colln.)	NHM*
	Achatina (Achatina) biscultpa Smith, 1878	Gauteng Prov., South Africa	K. du Preez
	Achatina (Achatina) damarensis (Pfeiffer, 1870)	Damaraland, Namibia	D. Herbert
	Achatina (Achatina) stuhlmanni von Martens, 1892	Semuliki National Park, Uganda	B. Rowson
	Achatina (Lissachatina) fulica Bowdich, 1822	Captive bred, unknown origin	NHM
	Achatina (Lissachatina) immaculata Lamarck, 1822	Cato Ridge, South Africa	D. Herbert
	Achatina (Lissachatina) reticuata Pfeiffer, 1845	Mkungwe Forest reserve, Uluguru Mts, Tanzania	B. Rowson
	Achatina (Lissachatina) zanzibarica Bourguignat, 1879	Lulanda Forest Reserve, Udzungwa Scarp, Tanzania	B. Rowson
	Achatina (Euaethiopina) loveridgei	Uluguru Forest Reserve, Tanzania	B. Rowson
	(Clench & Archer, 1930)		
	Archachatina marginata (Swainson, 1821)	Purchased in Lagos Market, Nigeria	NHM
	Atopocochlis exarata (Müller, 1774)	Nr. Belem, São Thomé	A. Gascoigne
	Cochlitoma churchilliana (Melvill & Ponsonby, 1895)	KwaZulu-Natal, South Africa	D. Herbert
	Cochlitoma dimidiata (Smith, 1878)	Mpumalanga, South Africa	A. Moussalli & D. Stuar Fox
	Cochlitoma granulata (Krauss, 1848)	KwaZulu-Natal, South Africa	A. Moussalli & D. Stuar Fox
	Cochlitoma kilburni Mead, 2004	Eastern Cape Prov., South Africa	L. Davis & M. Bursey
	Cochlitoma marinae (Sirgel, 1989)	Mossel Bay, Eastern Cape Prov., South Africa	K. Tolly
	Cochlitoma montistempli (van Bruggen, 1965)	Cathedral Peak area, Fern Forest, South Africa	D. Herbert
	Cochlitoma omissa (van Bruggen, 1965)	Monks Cowl area, South Africa	D. Herbert
	Cochlitoma semidecussata (Pfeiffer, 1846)	Durban, Pigeon Valley Park, South Africa	A. Moussalli & D. Stuar Fox
	Cochlitoma simplex (Smith 1878)	Colenso area, Emaweni Game Ranch, near Brakfontein, South Africa	V. Albers
	Cochlitoma sp. cf vestita (Pfeiffer, 1861)	KwaZulu-Natal, South Africa	D. Herbert
	Cochlitoma ustulata (Lamarck, 1822)	Western Cape Prov., South Africa	A. Moussalli & D. Stuar Fox
	Cochlitoma varicosa (Pfeiffer, 1861)	Transkei, South Africa	J. Marais
	Cochlitoma zebra (Bruguière, 1789)	W. Cape, Witsand, South Africa	A. Moussalli & D. Stuar Fox
	Limicolaria kambeul (Bruguiere, 1792)	Somalia (NHM collection)	M. Leng
	Limicolaria martenssii (Smith, 1880)	Bulyanbulu, Tanzania	A. Moussalli
	Limicolariopsis ruwenzoriensis Pilsbry, 1919	Rwenzori Mts, National Park, Uganda	B. Rowson
	Limicolariopsis sp.	Saimoforest, Tupen Hills, Kenya	M. Pickford
	Metachatina kraussi Pilsbry, 1904	Zululand, South Africa	D. Herbert
Subulinidae (outgroup)	Rumina decollata (Linneaus, 1758)	Sicily	A. Davison

*NHM-Natural History Museum

4.2.2. DNA extraction, PCR amplification and sequencing

The CTAB method of DNA extraction (Section 2.1.1 of Chapter 2, pp. 37 – 39) was used on tissue slices (approximately 8 mm³) derived from the foot muscle of each snail. The DNA for *Achatina (Lissachatina) fulica, Archachatina marginata, Atopocochlis exarata, Limicolaria kambeul* and *Rumina decollata* was provided by C.M. Wade.

Amplification by PCR, gel migration and purification of PCR products from agarose gels were carried out as described in Sections 2.2 - 2.4 of Chapter 2, pp. 42 – 59. Approximately 4000 bp of the nuclear rRNA cluster (80 bp of the 5.8S rRNA, the full ITS2 and nearly the entire fragment of the LSU rRNA), 900 bp of the nuclear cytoplasmic actin gene, 328 bp of the nuclear histone 3 gene, 650 bp of the Folmer *et al.* (1994) mitochondrial COI fragment and 420-500 bp of the Palumbi *et al.* (1991) mitochondrial 16S (420-500 bp) fragment were amplified using the primers listed in Tables 2.1 - 2.5 of Chapter 2, pp. 47 – 53. Both sense and anti-sense strands were sequenced directly using an Applied Biosystems 3730 DNA sequencer and BigDye version 3.1 terminator cycle sequencing chemistry (see Section 2.6 of Chapter 2, pp. 59 – 61 for details).

4.2.3. Sequence analysis

Sequences were assembled using the STADEN package version 1.5.3 (Staden *et al.*, 2000) and aligned manually within the Genetic Data Environment (GDE) Version 2.2 (Smith *et al.*, 1994). Ambiguous sites due to sequencing errors (for all genes) or the presence of multiple copies (for the actin gene) were assigned as described in Section 2.9.3 of Chapter 2, pp. 72-73 and using as a guide the three cloned sequences from representative taxa of the Achatinoidea in Chapter 3.

The average base frequencies and the numbers of variable and parsimonyinformative sites for each gene fragment were determined (Section 2.9.4 of Chapter 2, p. 73). Corrected distances were computed after determination of the optimal model for DNA sequence evolution. Models evaluated by the Likelihood Ratio Test (LRT) were the JC69 (Jukes & Cantor, 1969), F81 (Felsenstein, 1981), K2P (Kimura, 1980), HKY85 (Hasegawa et al., 1985), TN93 (Tamura & Nei, 1993) and the GTR (Rodriguez et al., 1990) models as well as their variant that incorporated gamma distributed rates (Γ) (Yang, 1993) (Section 2.9.5 of Chapter 2, pp. 73-77). The sequences were also examined for evidence of saturation by plotting the pairwise corrected versus pairwise uncorrected distances (Plot 1), pairwise uncorrected transition and transversion distances versus pairwise uncorrected total distances (Plot 2), and pairwise uncorrected transition distances versus pairwise uncorrected transversion distances (Plot 3) (Section 2.9.6 of Chapter 2, pp. 77-81). Gene datasets that demonstrated saturation were excluded from subsequent phylogenetic analyses. The sequences were also subjected to the g1 measure of skewness test based on 10,000 tree length replicates to determine if there is phylogenetic signal (Section 2.9.7 of Chapter 2, p. 81-82). The presence of paralogous sequences in actin that could affect phylogenetic analyses was detected (Section 2.9.12 of Chapter 2, pp. 89-90) and the utility for of the actin gene for phylogenetic studies assessed (Section 2.9.13 of Chapter 2, pp. 90-91).

Phylogenetic trees were generated from the aligned datasets using the model based maximum likelihood (ML), Bayesian inference (BI) and neighbor-joining (NJ) methods and the non-model based maximum parsimony (MP) method (Section 2.9.8 of Chapter 2, pp. 82-85). Bootstrap resampling (Felsenstein, 1985) with 1000 replicates for ML, MP and NJ were also carried out. Bayesian inference (BI) was performed using four chains of a Markov Chain Monte Carlo algorithm. The number of generations to explore the tree space and the heating temperature used for each gene were optimised as described in the BI segment of Section 2.9.8 of Chapter 2, p. 83-84 and in Appendix 2.3.2, pp. 369-370. A consensus tree for each gene (where unsaturated) was constructed using the last 1000 trees.

A partition-homogeneity test (Swofford, 2002) was carried out to determine if the sequences from the different genes could be combined into one dataset (Section 2.9.10 of Chapter 2, pp. 86-88). Two sets of concatenated sequences were prepared; one set included only those taxa with complete sequences for all gene fragments while the other set included all taxa.

The Shimodaira-Hasegawa (1999) test was used to test the monophyly of taxonomic groups that were expected to be monophyletic based on taxonomy but did not cluster together in the optimal trees (Section 2.9.11 of Chapter 2, p. 89).

4.3. Results

4.3.1. Molecular data

Twenty nine achatinids and the subulinid *Rumina decollata* were examined for the nuclear rRNA cluster, actin and histone 3 genes as well as the mitochondrial 16S and cytochrome c oxidase I genes. Sequence alignments are presented in Appendices 4.1 – 4.5 on pp. 451-507. All sequences were checked for the presence of ambiguous positions in the direct sequences that might indicate the presence of multiple gene copies. (Ambiguities due to multiple gene copies were detected only in the actin gene; see Section 4.3.2.2, pp. 247-249 for details). A summary of the molecular data for all the sequences is shown in Table 4.1. For the protein-coding genes (actin, histone 3 and COI), information was obtained separately for the entire gene (all codon positions), the combined 1st and 2nd codon positions and the 3rd codon position only. Uncorrected and corrected pairwise distances and their optimal models were determined for all five genes and are likewise summarized in Table 4.2. The following models were found to be the optimal models for the different datasets: GTR+ Γ for the 16S rRNA gene and the full (all codon positions) of the actin and COI genes as well as the 1st + 2nd codon position and the 3rd codon position datasets of COI and the 3rd codon position dataset of actin; TN93+ Γ for the actin 1st and 2nd codon positions; TN93 for the nuclear rRNA cluster; HKY for the histone 1st and 2nd codon positions; and HKY+ Γ for the histone 3 full and 3rd codon position datasets. (See Appendix 4.6, p. 508 for the summary of the LRT results).

Nearly the entire fragment of the LSU rRNA gene, the internal transcribed spacer 2 (ITS 2) and 80 nucleotides of the 5.8S rRNA gene were sequenced (approximately 4000 nucleotides) for the rRNA gene cluster, of which 3648 nucleotides (including 194 nucleotides of the ITS2) could be aligned unambiguously. A total of 105 (2.9%) variable sites was found, of which 40 were parsimony-informative. Pairwise distances across all taxa ranged from 0 to 0.014 (uncorrected) and 0 to 0.139 (corrected). *Cochlitoma montistempli* and *C. omissa* yielded identical sequences based on the 3648 unambiguously aligned sites, although variations were exhibited between these two taxa in the excluded nucleotides, particularly in the ITS2 region. The highest base frequency for the rRNA gene cluster dataset was obtained for G (0.320) followed by C (0.266), then by A (0.224) and finally by T (0.190). For the actin gene, 873 nucleotide positions were sequenced, of which all sites could be aligned unambiguously; of these, 185 (21.2%) were variable and 84 were parsimony-informative. Pairwise distances ranged from 0 to 0.147 (uncorrected) and 0 to 0.372 (corrected). Highest average base frequency for actin was computed for A (0.268)

followed by T (0.257) then by C (0.254) and finally by G (0.221). Looking at the different codon positions, the majority of the variable sites (161) and parsimonyinformative sites (72) were at the 3^{rd} codon position, while the combined 1^{st} and 2^{nd} codon positions only had 24 variable sites and 12 parsimony-informative sites. Amplification of the actin gene for Limicolariopsis ruwenzoriensis was unsuccessful. For the histone 3 gene, 328 nucleotides were sequenced and aligned unambiguously, with 61 (18.6%) variable positions and 27 parsimony-informative sites. Pairwise distances ranged from 0 to 0.090 (uncorrected) and 0 to 0.148 (corrected). Five sets of identical sequences were observed for the histone 3 gene; the first set included Achatina (Lissachatina) fulica, A. (L.) reticulata and A. (L.) zanzibarica; the second included Achatina (Achatina) bisculpta, A. (A.) damarensis and A. (A.) stuhlmanni; the third included Limicolaria kambeul and Limicolaria martenssii; the fourth included Cochlitoma dimidiata, C. montistempli, C. omissa, C. semidecussata, C. simplex and C. varicosa; and the fifth included C. kilburni and C. sp. cf. vestita. The presence of these sets of identical sequences and the low uncorrected distances demonstrate the conserved nature of the histone 3 gene fragment at the level of the Achatinidae. Average base frequencies for histone 3, in decreasing order, were as follows: C (0.320); G (0.275); A (0.243) and T (0.162). As with the actin gene, the 3rd codon position exhibited the most number of variable sites (57) as well as parsimony-informative sites (26) in comparison to the combined 1^{st} and 2^{nd} codon positions with only 4 and 1, respectively. Amplification of the histone 3 gene fragment for Achatina (Euaethiopina) loveridgei and Limicolariopsis ruwenzoriensis was unsuccessful. For the mitochondrial COI gene, approximately 650 nucleotides were sequenced, with the length varying depending on the primers used. A total of 641 unambiguously aligned nucleotides were used, of which 293 (45.7%) were variable and 276 were parsimony-informative. Pairwise

distances ranged from 0.067 to 0.264 (uncorrected) and 0.211 to 11.856 (corrected), making the COI gene fragment more variable than the nuclear genes above. No two sequences were found alike, and the smallest uncorrected distance is 0.067, way above the 0.03 sequence divergence threshold for any two species set by Hebert *et al.* (2003) for the COI.

Average base frequencies, in decreasing order, were as follows: T (0.376); A (0.239); G (0.204) and C (0.180), indicating a strong bias for T; this was heightened in the 3^{rd} codon position where average frequency of T rose to 0.404. The 3^{rd} codon position had 214 variable sites and 212 parsimony-informative sites, whereas the combined 1^{st} and 2^{nd} codon positions only had 79 and 64, respectively. Note that sequencing was unsuccessful for *A*. (*E*.) *loveridgei* and *Limicolariopsis ruwenzoriensis*. The mitochondrial 16S rRNA gene product ranged from 420-500 nucleotides, with 310 that were unambiguously aligned, 147 (47.4%) that were variable, and 110 that were parsimony-informative. Pairwise distances ranged from 0.019 to 0.242 (uncorrected) and 0.021 and 0.837 (corrected); thus, the gene is likewise more variable than the nuclear genes. As with the COI, no two sequences were found alike. Base frequencies were as follows: T (0.285); A (0.277); G (0.247) and C (0.191), showing bias for A and T. Sequencing of the 16S rRNA gene fragment for *L. ruwenzoriensis* was unsuccessful.

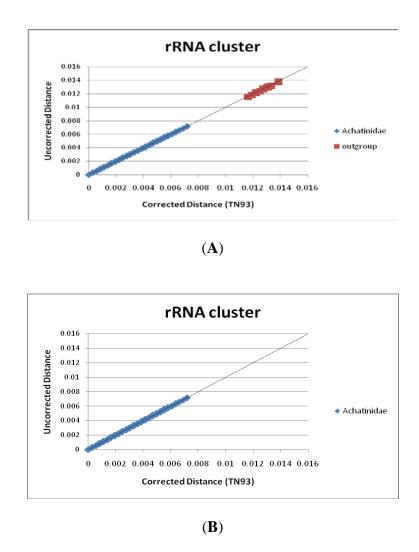

	Length			Range of distances (Uncorrected)		Optimal	Range of distances (Corrected)		Average base frequencies								#	[‡] of
	(bp)					Model (α value for Γ			A		С		G		Т		parsimony- informative sites	
		Α	A+O	А	A+O	distribution)	А	A+O	А	A+O	А	A+O	А	A+O	Α	A+O	Α	A+O
rRNA cluster	3648	77 (2.1)	105 (2.9)	0-0.007	0-0.014	TN93 (N/A)	0-0.007	0-0.139	0.224	0.224	0.266	0.266	0.320	0.320	0.190	0.190	37	40
Actin combined	873	176 (20.2)	185 (21.2)	0-0.147	0-0.147	GTR+Γ (0.175)	0-0.372	0-0.372	0.268	0.268	0.254	0.254	0.221	0.221	0.257	0.257	71	84
Actin 1 st and 2 nd codon positions	582	23 (4.0)	24 (4.1)	0-0.031	0-0.031	TN93+Γ (0.043)	0-0.053	0-0.053	0.311	0.311	0.229	0.229	0.227	0.227	0.233	0.233	11	12
Actin 3 rd codon position	291	153 (52.6)	161 (55.3)	0-0.628	0-0.384	GTR+Γ (0.686)	0-0.628	0-0.628	0.180	0.179	0.303	0.304	0.211	0.211	0.306	0.306	60	72
Histone3 combined	328	53 (16.2)	61 (18.6)	0-0.090	0-0.090	НКҮ85+Г (0.256)	0-0.148	0-0.148	0.243	0.243	0.320	0.320	0.275	0.275	0.162	0.162	22	27
Histone 3 1 st and 2 nd codon positions	218	4 (1.8)	4 (1.8)	0-0.019	0-0.019	HKY85 (N/A)	0-0.019	0-0.019	0.288	0.288	0.285	0.285	0.261	0.261	0.166	0.166	1	1
Histone 3 3 rd codon positions	110	49 (44.5)	57 (51.8)	0-0.280	0-0.280	НКҮ85+Г (2.967)	0-0.460	0-0.460	0.150	0.151	0.392	0.391	0.305	0.305	0.154	0.154	21	26
COI combined	641	292 (40.9)	293 (45.7)	0.067-0.264	0.067-0.264	GTR+Γ (0.106)	0.211- 11.856	0.211-11.856	0.239	0.239	0.181	0.180	0.205	0.204	0.376	0.376	275	276
COI 1 st and 2 nd codon positions	427	78 (18.3)	79 (18.5)	0.007-0.098	0.007-0.098	GTR+Γ (0.072)	0.008- 0.389	0.008- 0.389	0.197	0.197	0.204	0.204	0.236	0.236	0.362	0.362	63	64
COI 3 rd codon positions	214	214 (100)	214 (100)	0.164-0.625	0.164-0.625	GTR+Γ (0.659)	1.304-120.141	1.304-120.141	0.321	0.323	0.134	0.133	0.142	0.140	0.403	0.404	212	212
16S rRNA	310	145 (46.8)	147 (47.4)	0.019-0.242	0.019-0.242	GTR+Γ (0.250)	0.021- 0.837	0.021- 0.837	0.277	0.277	0.191	0.191	0.247	0.247	0.285	0.285	107	110

Table 4.2: Summary of molecular data across all genes used (rRNA gene cluster, actin, histone 3, COI and 16S) for the Achatinidae and the subulinid outgroup *Rumina decollata*. A=Achatinidae only; A+O=Achatinidae and outgroup.

4.3.2. Sequence analyses

4.3.2.1. Evaluating for saturation and phylogenetic signal

For the rRNA cluster, the uncorrected versus corrected distances plots (Plot 1, Figure 4.4) demonstrated a linear relationship between the corrected distance (based on the optimal TN93 model) and the uncorrected (p) distance. This suggested that the dataset for the rRNA cluster was not saturated and that the TN93 model was adequate for correcting the distances for multiple hits.

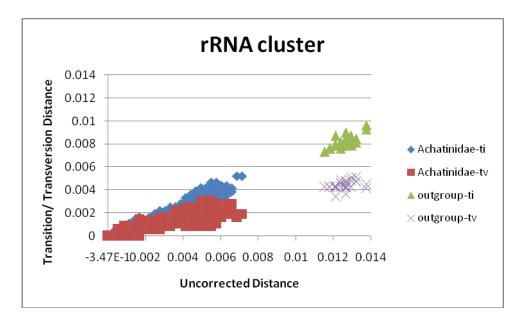
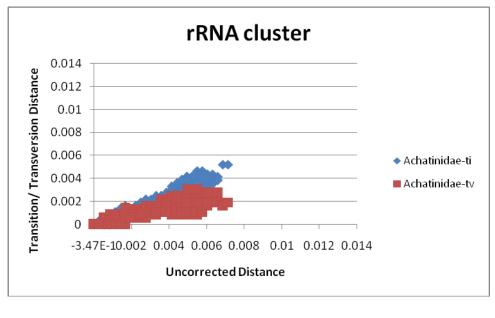
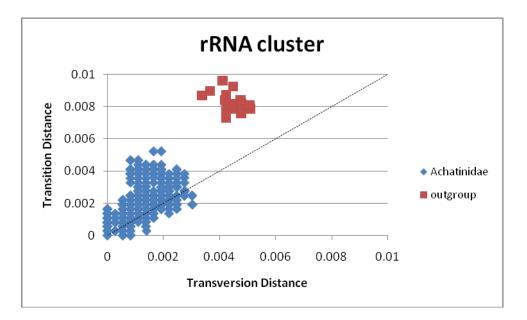


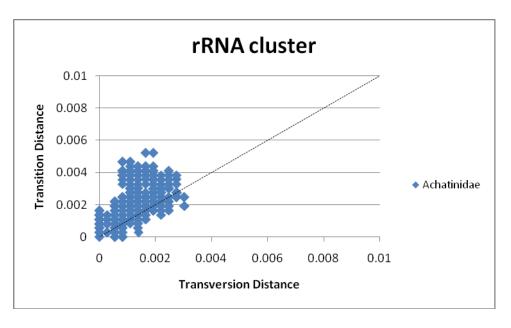
Figure 4.4: Plots of pairwise uncorrected distance against corrected (TN93) distance for the rRNA cluster in (A) the Achatinidae and the subulinid outgroup *Rumina decollata* and (B) the Achatinidae only.


Plots for the transition and transversion rates versus uncorrected distances both with and without the outgroup taxon (Plot 2, Figure 4.5) showed that both transition and transversion substitutions were increasing linearly with transition distances higher than transversion distances. Plots for transitions against transversions both with and without the outgroup taxon (Plot 3, Figure 4.6) confirmed the results of Plot 2 where transition rates were higher than transversion rates. The results suggested that the rRNA cluster dataset was not saturated.

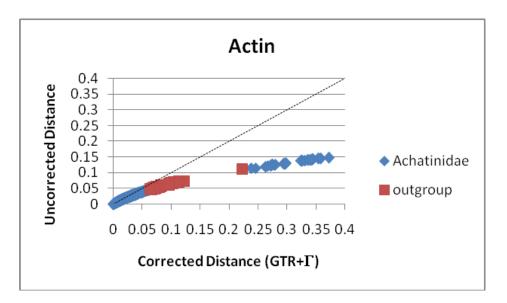
A g1 value of -0.596 was obtained for the rRNA cluster with 10,000 replicates based on 30 taxa and 40 parsimony-informative characters. This value differed significantly from the critical g1 value of -0.16 at P=0.05 level of significance for 25 taxa and 10 parsimony-informative characters (Hillis & Huelsenbeck, 1992). This result was indicative of a strong phylogenetic signal.

The absence of saturation and the presence of phylogenetic signal implied that the rRNA cluster was suitable for phylogenetic analyses of the Achatinidae.




1	٨)	
L,	Н	v.	

(B)


Figure 4.5: Plots of uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for the rRNA cluster in (A) the Achatinidae and the subulinid outgroup *Rumina decollata* and (B) the Achatinidae only.

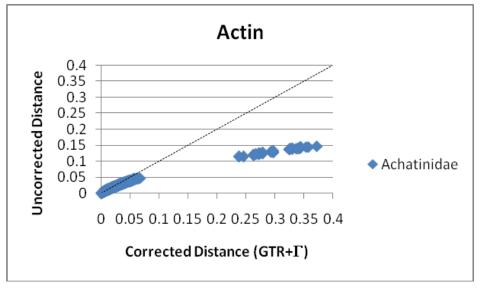
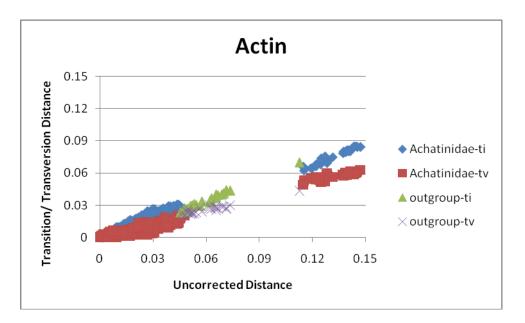
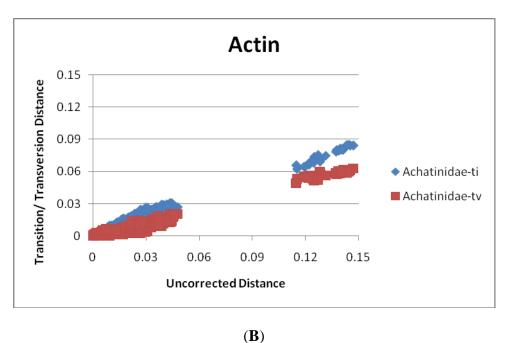


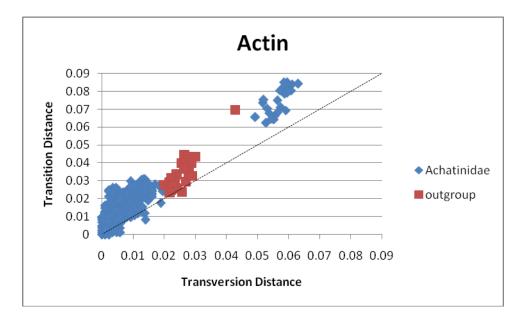
Figure 4.6: Plots of uncorrected pairwise transition (ti) distances against transversion (tv) distances for the rRNA cluster in (A) the Achatinidae and the subulinid outgroup *Rumina decollata* and (B) the Achatinidae only.

For the actin gene, Plot 1 (Figure 4.7) demonstrated that the corrected distance, based on the optimal GTR+ Γ model, deviated from linearity starting at an uncorrected (*p*) distance of approximately 0.05 for both the Achatinidae only and the Achatinidae plus outgroup taxon. A big gap was also shown in both plots; the points that came after the gap were attributed to the distance between the actin copy of *Cochlitoma marinae* and those of the other taxa. The presence of this highly divergent actin copy and its implications in the phylogenetic analysis of the Achatinidae using actin is discussed further in Section 4.3.2.2, pp. 247-249. Both plots were still increasing and had not reached a plateau, suggesting adequate correction of the optimal GTR+ Γ model and no saturation in the dataset.


(B)


Figure 4.7: Plots of pairwise uncorrected distance against corrected distance for the actin gene in (**A**) the Achatinidae and the subulinid outgroup *Rumina decollata* and (**B**) the Achatinidae only. Points after the gap were attributed to the divergent actin sequence of *Cochlitoma marinae*.

Plot 2 (Figure 4.8) for the actin gene, whether with or without outgroup taxa, exhibited a linear increase for both transitions and transversions, with transition distances higher than transversion distances. Plot 3 (Figure 4.9) confirmed the higher transition rates over the transversion rates. These results suggested that the actin gene was not saturated. Once again, a gap was observed in both plots due to the highly divergent *Cochlitoma marinae*.


A g1 value of -0.475 was computed for the actin gene based on 29 taxa and 84 parsimony-informative sites, much lower than the critical value of -0.12 at p=0.05 level of significance for 25 taxa and 50 parsimony-informative characters (Hillis & Huelsenbeck, 1992). The actin gene therefore exhibited strong phylogenetic signal.

Lack of saturation and the presence of phylogenetic signal implied that the actin gene was suitable for phylogenetic analyses of the Achatinidae and the outgroup taxon. However, the observed gap in the plots due to the highly divergent sequence of *Cochlitoma marinae* suggested caution must be exercised in using this gene in phylogenetic analyses. These issues are discussed in section 4.3.2.2, pp. 247-249.

Figure 4.8: Plots of uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for the actin in (**A**) the Achatinidae and the subulinid outgroup *Rumina decollata* and (**B**) the Achatinidae only. Points after the gap were attributed to the divergent actin sequence of *Cochlitoma marinae*.

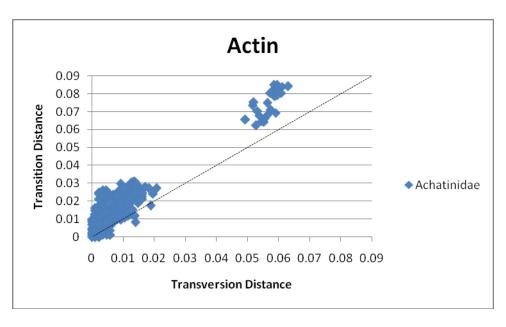
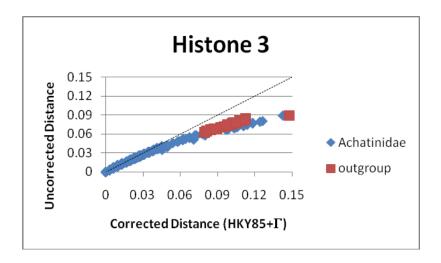
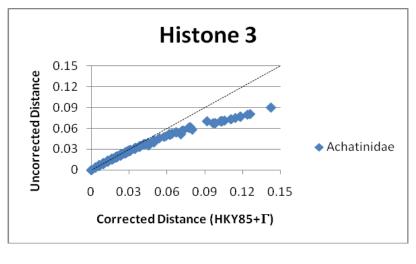
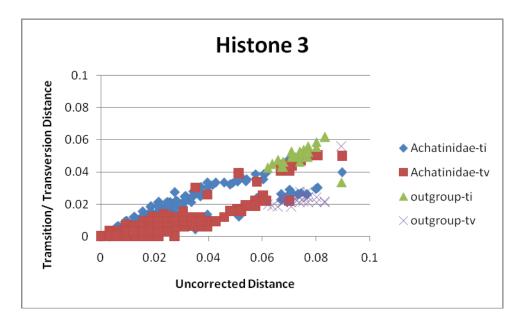




Figure 4.9: Plots of uncorrected pairwise transition (ti) distances against transversion (tv) distances for the actin gene in (A) the Achatinidae and the subulinid outgroup *Rumina decollata* and (B) the Achatinidae only. Points after the gap were attributed to the divergent actin sequence of *Cochlitoma marinae*.

For the histone 3 gene, Plot 1 (Figure 4.10) revealed a curve for the corrected distances using the optimal GTR+ Γ model, with the deviation from a linear increase beginning at an uncorrected (*p*) distance of approximately 0.03 for both the Achatinidae only and including the subulinid outgroup taxon. Both plots were still increasing and had not reached a plateau, implying that the histone 3 had not reached saturation.


(**A**)

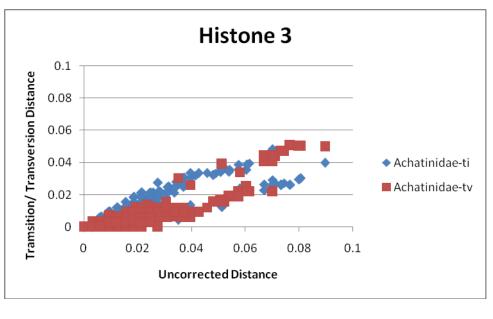
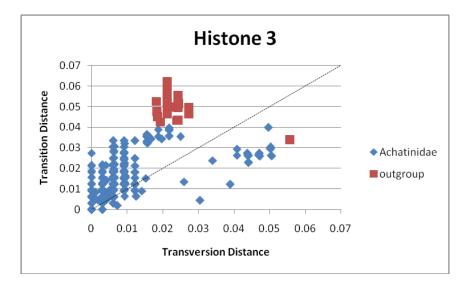


Figure 4.10: Plots of pairwise uncorrected distance versus corrected (GTR+ Γ) distance for the histone 3 gene in (**A**) the Achatinidae and the subulinid outgroup *Rumina decollata* and (**B**) the Achatinidae only.


For plot 2, transitions and transversions were increasing and did not curve for both the Achatinidae only and including the outgroup taxon. Transitions were also generally higher than transversions. However, both the transition and transversion lines appeared to each form two separate lines beginning at approximately 0.035 uncorrected distance in both plots (Figure 4.11). Plot 3 (Figure 4.12) supported the observations from Plot 2, with several pairwise comparisons exhibiting higher transversions than transitions.

The g1 value for the histone 3 gene based on 28 taxa and 27 parsimonyinformative sites was -0.900, significantly smaller than the critical value of -0.16 based on 25 taxa and 10 parsimony-informative sites. The histone 3 gene therefore exhibited phylogenetic signal.

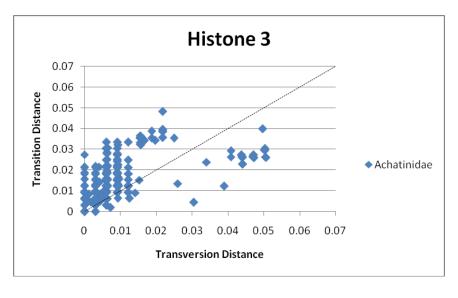
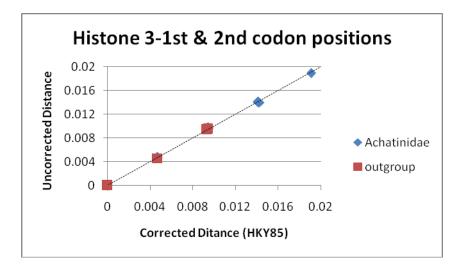
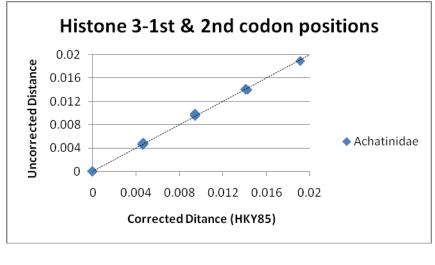


Figure 4.11: Plots of uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for the histone 3 gene in (**A**) the Achatinidae and the subulinid outgroup *Rumina decollata* and (**B**) the Achatinidae only.

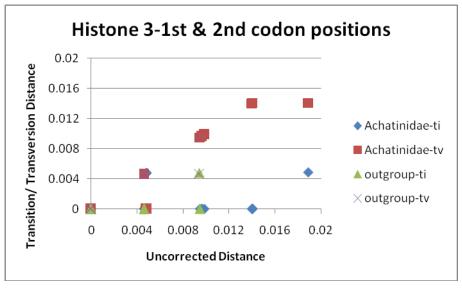


(B)


Figure 4.12: Plots of uncorrected pairwise transition (ti) distances against transversion (tv) distances for the histone 3 gene in (\mathbf{A}) the Achatinidae and the subulinid outgroup *Rumina decollata* and (\mathbf{B}) the Achatinidae only.

To account for the distinct lines that separated from the main transition and transversion lines observed in Figure 4.9, to determine if these observations were restricted to the 3^{rd} codon positions, and whether such observations could be associated with saturation, separate plots were made for the combined 1^{st} and 2^{nd} codon positions as well as the 3^{rd} codon positions.

For the 1st and 2nd codon positions, Plot 1 (Figure 4.13) showed a direct relationship between the corrected distances based on the optimal HKY85 model and the uncorrected distances, signifying adequate correction of the model and the absence of saturation. Note, however, that the distances were computed based only on four variable sites.


(A)

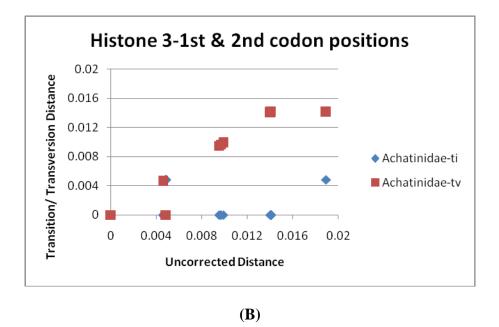
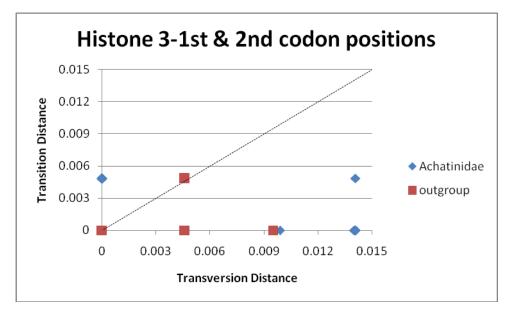


Figure 4.13: Plots of pairwise uncorrected distance versus corrected (HKY85) distance for the 1^{st} and 2^{nd} codon positions of the histone 3 gene in (**A**) the Achatinidae and the subulinid outgroup *Rumina decollata* and (**B**) the Achatinidae only.


For Plot 2 (Figure 4.14), transversion distances overtook the transition distances, and this was also evident in Plot 3 (Figure 4.15) where there were more transversions than transitions. However, the limited number of variable sites in the 1^{st} and 2^{nd} codon positions made it difficult to assess the presence of saturation through the curving of the plots.

The g1 value for the 1st and 2nd codon positions of histone 3 gene based on 28 taxa and one parsimony-informative site was -0.204. No critical value was available for 25 taxa and at least 2 parsimony-informative sites. The presence of phylogenetic signal could not be assessed based on one parsimony-informative site.

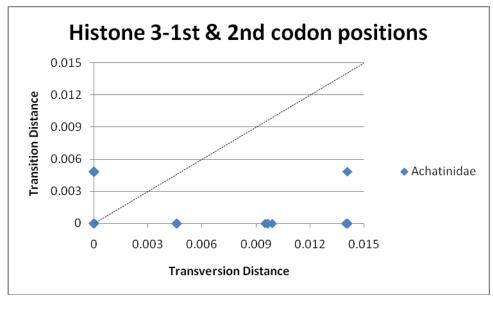
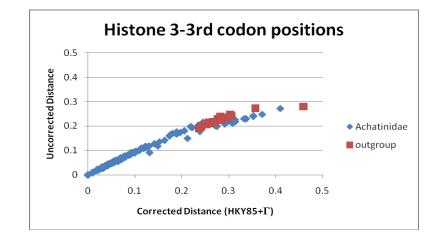


Figure 4.14: Plots of uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for the 1^{st} and 2^{nd} codon positions of the histone 3 gene in (**A**) the Achatinidae and the subulinid outgroup *Rumina decollata* and (**B**) the Achatinidae only.



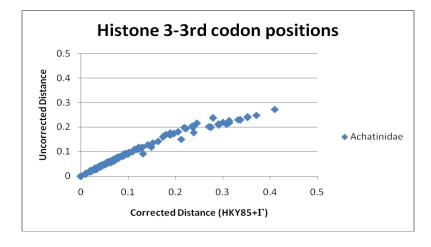
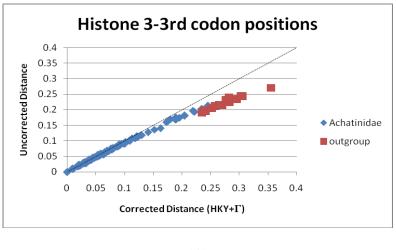
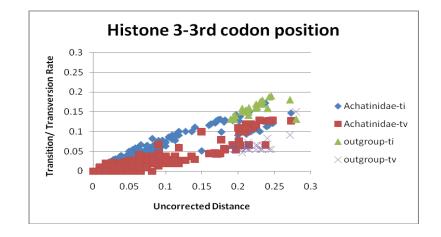


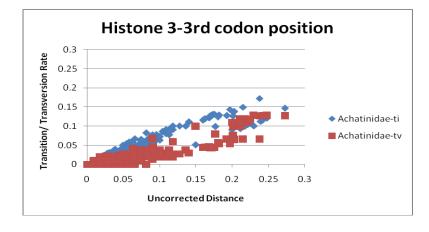
Figure 4.15: Plots of uncorrected pairwise transition (ti) distances against transversion (tv) distances for the 1^{st} and 2^{nd} codon positions of the histone 3 gene in (**A**) the Achatinidae and the subulinid outgroup *Rumina decollata* and (**B**) the Achatinidae only.


For the 3^{rd} codon position of the histone 3 gene, Plot 1 (Figure 4.16) showed the corrected distances based on the optimal model HKY85+ Γ to be increasing but deviating from linearity at an uncorrected (*p*) distance of approximately 0.14. However, both plots showed an umistakable second line starting at 0.13 corrected distance. This second line was attributed to the divergent sequence exhibited by *Archachatina marginata* as supported by the fact that the second line disappeared when *A. marginata* was removed from the plots (see Figure 4.16C). Nevertheless, no plateau was observed, suggesting that adequate correction was made by the optimal model and that the 3^{rd} codon position was not saturated.

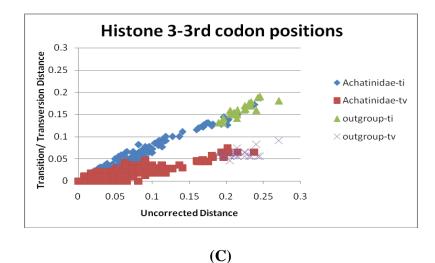
(]	B)

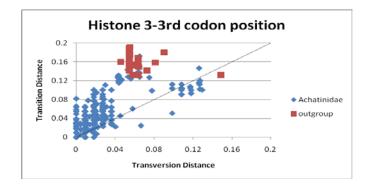


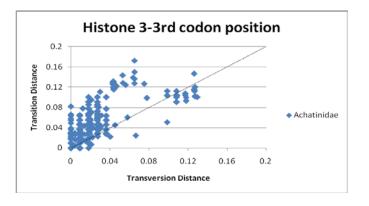
(C)


Figure 4.16: Plots of pairwise uncorrected distance versus corrected (HKY85+ Γ) distance for the 3rd codon position of the histone 3 gene in (**A**) the Achatinidae and the subulinid outgroup *Rumina decollata*; (**B**) the Achatinidae only; and (**C**) Achatinidae and subulinid outgroup *Rumina decollata* but without *Archachatina marginata*.

For Plot 2 (Figure 4.17), the same observations were seen as in Figure 4.11 where both the transition and transversion lines each formed a distinct line beginning at approximately 0.09 uncorrected distance and resulting in a separate transversion line that was higher than the separate transition line in both the Achatinidae only and with the outgroup taxon. These separate lines were attributed to the divergent sequence of *Archachatina marginata*. When this sequence was excluded from the plots (see Figure 4.17C), it became clear that both the transition and transversion lines were increasing with no curving evident. Plot 3 (Figure 4.18) also showed majority of the pairwise comparisons with higher transitions than transversions. Those points with higher transitions involved *A. marginata* as these points dissappeared when *A. marginata* was excluded from the plot (see Figure 4.18C). These results indicated that the 3rd codon position was not saturated.


The g1 value for the 3^{rd} codon position of the histone 3 gene based on 28 taxa and 26 parsimony-informative sites was -0.886, which was significantly smaller than the critical value of -0.16 based on 25 taxa and 10 parsimony-informative sites. The 3^{rd} codon position of the histone 3 gene therefore exhibited phylogenetic signal.





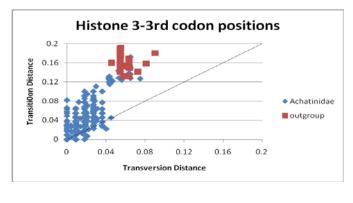
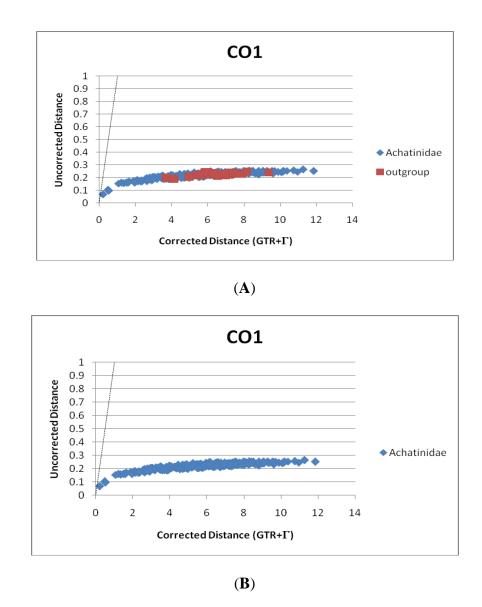
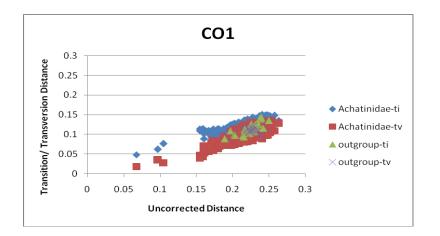


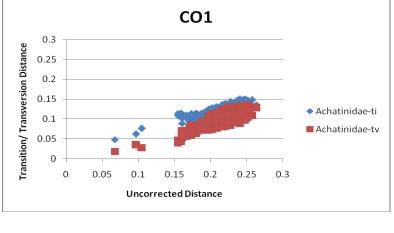
Figure 4.17: Plots of uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for the 3^{rd} codon position of the histone 3 gene in (A) the Achatinidae and the subulinid outgroup *Rumina decollata*; (B) the Achatinidae only; and (C) the Achatinidae and the subulinid outgroup *Rumina decollata* but excluding *Archachatina marginata*.


(B)

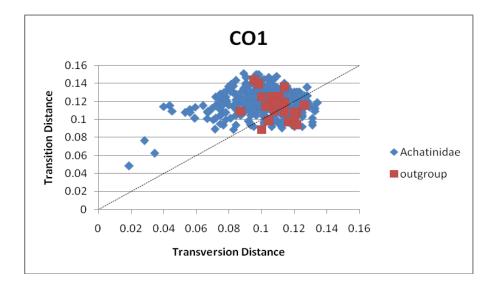
(C)

Figure 4.18: Plots of uncorrected pairwise transition (ti) distances against transversion (tv) distances for the 3^{rd} codon position of the histone 3 gene in (**A**) the Achatinidae and the subulinid outgroup *Rumina decollata*; (**B**) the Achatinidae only; and (**C**) the Achatinidae and the subulinid outgroup *Rumina decollata* but excluding *Archachatina marginata*.


The findings suggested that the entire histone 3 dataset could be employed for the phylogenetic analyses of the Achatinidae, although the divergent sequence of *Archachatina marginata* should be taken into account when interpreting the trees. For the COI gene, Plot 1 (Figure 4.19) yielded an almost horizontal trend for all taxa and for the Achatinidae only. This, along with corrected distances of up to 12, indicated severe saturation for the COI gene and the optimal $GTR+\Gamma$ model was unable to correct the dataset for multiple hits.


Figure 4.19: Plots of pairwise uncorrected distance against corrected distance for the COI gene in (**A**) the Achatinidae and the subulinid outgroup *Rumina decollata* and (**B**) the Achatinidae only.

Plot 2 (Figure 4.20) for all taxa as well as the Achatinidae only revealed transversions overlapping with transitions. Plot 3 (Figure 4.21) showed approximately a quarter of all pairwise distances showing transversions that were higher than transitions.


The g1 test score for the COI gene based on 28 taxa and 276 parsimonyinformative sites was -0.507, significantly smaller than the critical value of -0.08 for 25 taxa and 250 parsimony-informative sites. The g1 test suggested some phylogenetic information could be generated from the dataset.

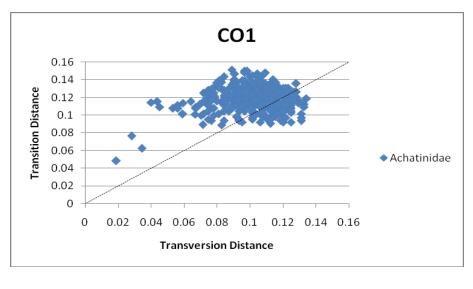
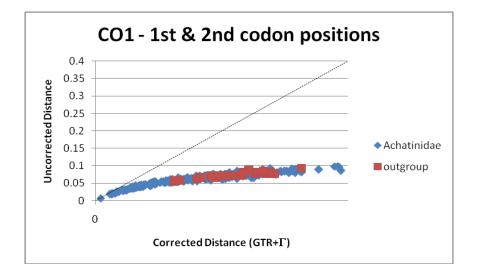
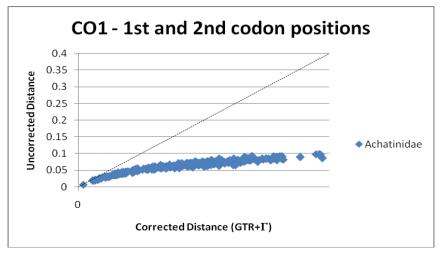


Figure 4.20: Plots of uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for the COI gene in (**A**) the Achatinidae and the subulinid outgroup *Rumina decollata* and (**B**) the Achatinidae only.

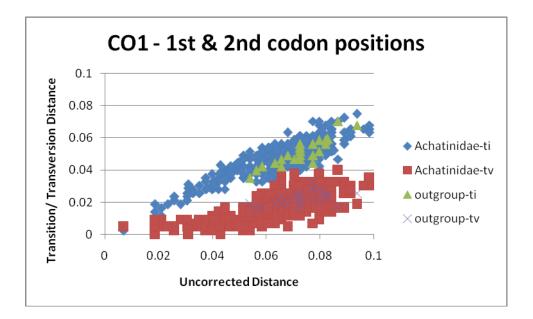


(B)


Figure 4.21: Plots of uncorrected pairwise transition (ti) distances against transversion (tv) distances for the COI gene in (\mathbf{A}) the Achatinidae and the subulinid outgroup *Rumina decollata* and (\mathbf{B}) the Achatinidae only.

Despite the presence of phylogenetic signal, the problem of saturation remained as shown in Plot 1. In order to evaluate whether saturation of the COI gene was restricted to 3^{rd} codon positions, the combined 1^{st} and 2^{nd} codon positions and the 3^{rd} codon positions were evaluated separately.

For the 1st and 2nd codon positions of the COI gene, Plot 1 (Figure 4.22) revealed a curve for the corrected distances using the optimal GTR+ Γ model, with the deviation from linearity beginning at an uncorrected (*p*) distance of approximately 0.03 for both the Achatinidae only and including the outgroup taxon. The plots were still increasing slightly and had not reached a plateau, implying that the 1st and 2nd codon positions of COI had not yet reached saturation.


(A)

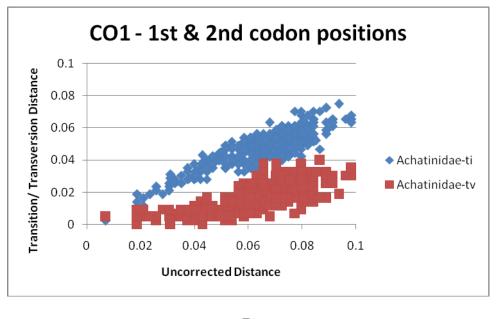
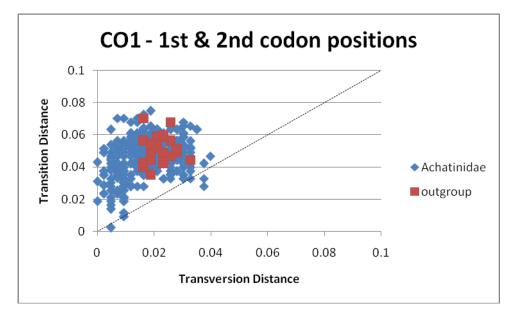


Figure 4.22: Plots of pairwise uncorrected distance versus corrected (GTR+ Γ) distance for the 1st and 2nd codon positions of the COI gene in (**A**) the Achatinidae and the subulinid outgroup *Rumina decollata* and (**B**) the Achatinidae only.


Plot 2 (Figure 4.23) for the 1^{st} and 2^{nd} codon positions of the COI gene revealed a linear increase of both transitions and transversions for the Achatinidae and when the outgroup taxon was included, with the transitions being higher than the transversions, while plot 3 (Figure 4.24) revealed that all but three pairwise comparisons had higher rates of transversions than transitions. These findings suggested that the 1^{st} and 2^{nd} codon positions were not saturated.

A g1 value of -0.309 was obtained based on 28 taxa and 64 parsimonyinformative sites, which was significantly smaller than the critical value of -0.12 based on 25 taxa and 50 parsimony-informative sites. The 1^{st} and 2^{nd} codon positions of the COI gene therefore exhibited phylogenetic signal.

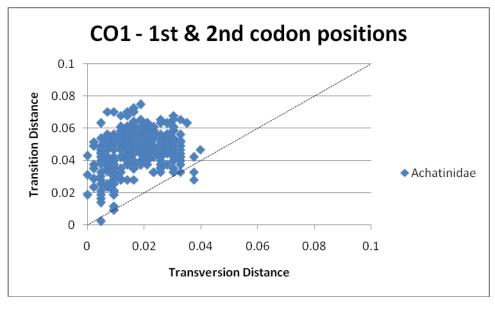
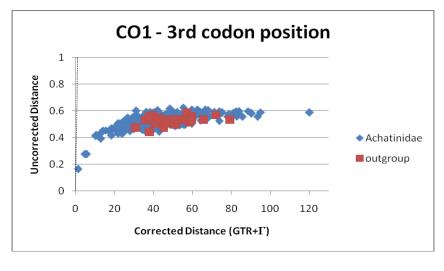


Figure 4.23: Plots of uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for the 1^{st} and 2^{nd} codon positions of the COI gene in (A) the Achatinidae and the subulinid outgroup *Rumina decollata* and (B) the Achatinidae only.


(**A**)

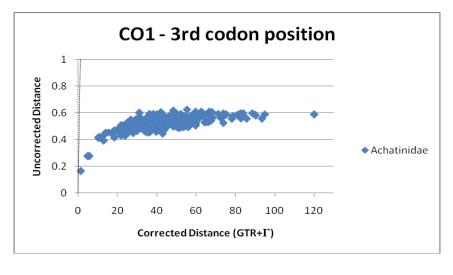
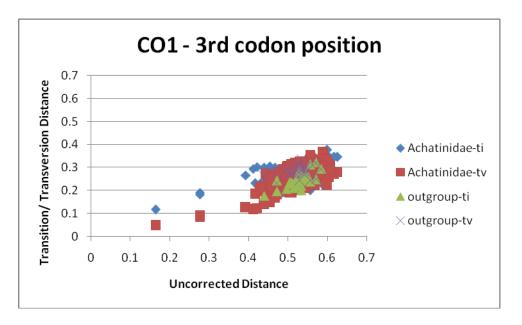

(B)

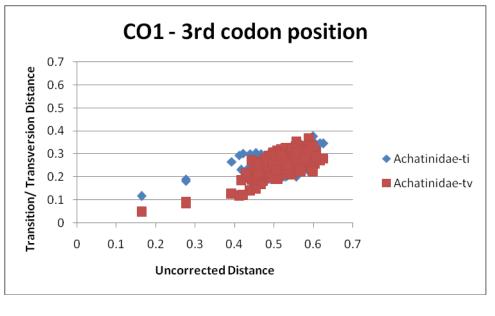
Figure 4.24: Plots of uncorrected pairwise transition (ti) distances against transversion (tv) distances for the 1^{st} and 2^{nd} codon positions of the COI gene in (**A**) the Achatinidae and the subulinid outgroup *Rumina decollata* and (**B**) the Achatinidae only.

For the 3^{rd} codon position of the COI gene, Plot 1 (Figure 4.25) showed that the optimal GTR+ Γ model was unable to correct the dataset for multiple hits as demonstrated by the nearly horizontal trend for both plots. The uncorrected distances also ranged from 0.164 to 0.625 while corrected distances ranged from 1.303 to 120.141 (see also Table 4.1). This indicated severe saturation for the 3^{rd} codon position.

(A)

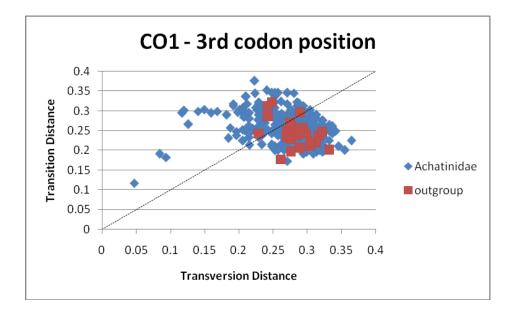


(B)

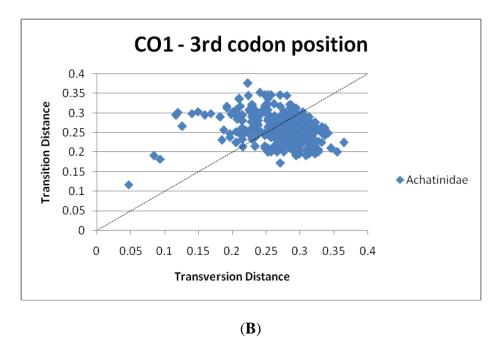

Figure 4.25: Plots of pairwise uncorrected distance against corrected distance for the 3^{rd} codon position of the COI gene in (**A**) the Achatinidae and the subulinid outgroup *Rumina decollata* and (**B**) the Achatinidae only.

Plot 2 (Figure 4.26) for all taxa as well as for the Achatinidae only revealed transversions overlapping with transitions. Plot 3 (Figure 4.27) demonstrated that approximately half of the pairwise comparisons had higher rates of transversions than transitions.

The g1 test score for the COI gene based on 28 taxa and 212 parsimonyinformative sites was -0.457, significantly smaller than the critical value of -0.1 for 25 taxa and 100 parsimony-informative sites. The 3^{rd} codon position therefore exhibited phylogenetic signal.

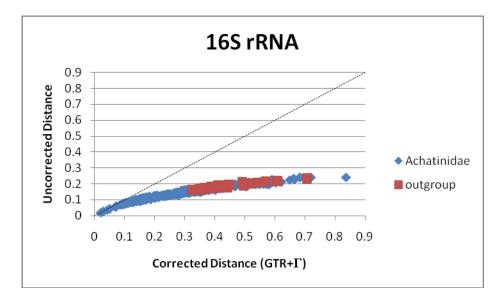


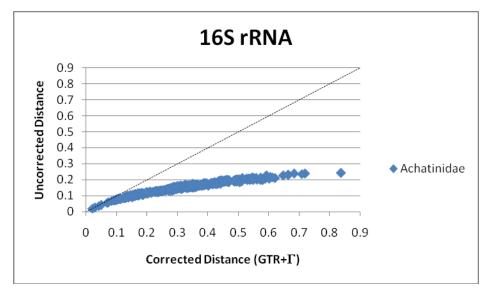
(**A**)



(B)

Figure 4.26: Plots of uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for the 3^{rd} codon position of the COI gene in (A) the Achatinidae and the subulinid outgroup *Rumina decollata* and (B) the Achatinidae only.


(**A**)


Figure 4.27: Plots of uncorrected pairwise transition (ti) distances against transversion (tv) distances for the 3^{rd} codon position of the COI gene in (**A**) the Achatinidae and the subulinid outgroup *Rumina decollata* and (**B**) the Achatinidae only.

Despite the presence of phylogenetic signal as indicated by the g1 test, the strong evidence for saturation of the entire COI gene suggested that the gene should not be used in its entirety for phylogenetic analyses. The results also revealed that saturation was restricted to the 3^{rd} codon position despite showing phylogenetic signal based on the g1 test. These contradictory results from the saturation tests and the g1 test are most likely due to the presence of taxa with very similar sequences that led to a strong left skew of tree length distribution based on parsimony in the g1 test. In these instances, the saturation tests took precedence over the g1 test in deciding whether or not datasets should be included. Phylogenetic analyses for the COI gene were therefore limited to the 1^{st} and 2^{nd} codon positions only.

For the 16S rRNA gene, Plot 1 (Figure 4.28) produced corrected distances based on the optimal GTR+ Γ model that curved from linearity at an uncorrected (*p*) distance of 0.04 but was still increasing and had not reached a plateau. These findings did not indicate any saturation.

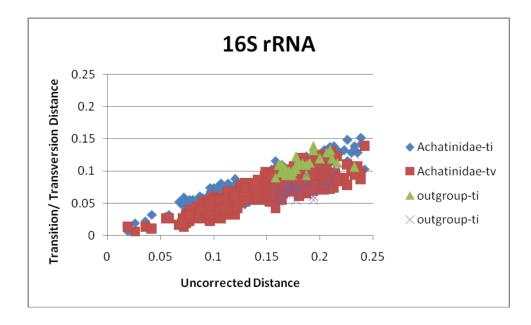
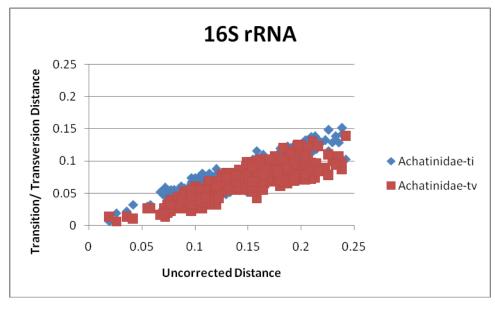
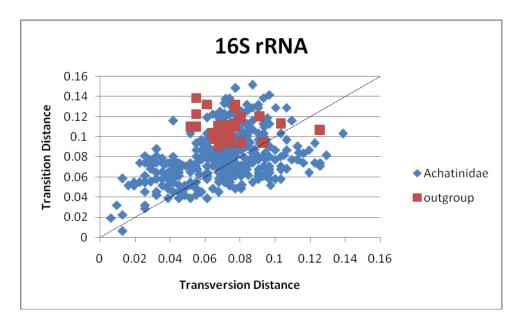

(B)

Figure 4.28: Plots of pairwise uncorrected distance against corrected $(\text{GTR}+\Gamma)$ distance for the 16S rRNA gene in (A) the Achatinidae and the subulinid outgroup *Rumina decollata* and (B) the Achatinidae only.

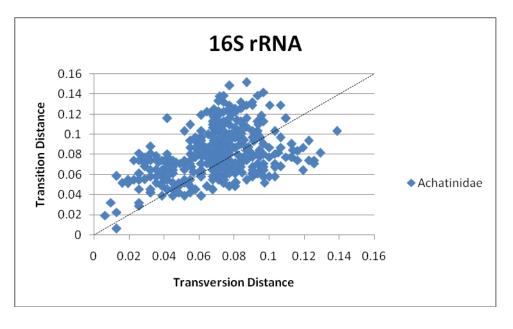

Plot 2 (Figure 4.29) showed an unmistakable overlap between transitions and transversions for the Achatinidae only and including the streptaxid outgroup. However, both plots were still increasing with no evidence of curving for either transitions or transversions. Plot 3 (Figure 4.30) revealed that many pairwise comparisons had higher rates of transversions than transitions, although more than half of the transitions were still higher than transversions.

A g1 value of -0.507 was obtained based on 29 taxa and 110 parsimonyinformative sites, which was significantly smaller than the critical value of -0.1 at p=0.05 for 25 taxa and 100 parsimony-informative sites. Phylogenetic signal was therefore evident in the 16S rRNA gene.

The lack of evidence for saturation and the presence of strong phylogenetic signal implied that the 16S rRNA gene could to infer the phylogenetic relationship of the Achatnidae.



(A)



(B)

Figure 4.29: Plots of uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise total uncorrected distances for the 16S rRNA gene in (A) the Achatinidae and the subulinid outgroup *Rumina decollata* and (B) the Achatinidae only.

(A)

(B)

Figure 4.30: Plots of uncorrected pairwise transition (ti) distances against transversion (tv) distances (A) the Achatinidae and the subulinid outgroup *Rumina decollata* and (B) the Achatinidae only.

4.3.2.2. Inferring the presence of paralogous sequences in the actin dataset and assessing its utility for phylogenetic analyses

To infer the presence of paralogous sequences, the actin sequences (obtained by direct sequencing of PCR products) were examined for ambiguous sites. Ambiguous sites were detected in 22 out of 28 achatinid taxa (Appendix 4.7, p. 509), which implied the presence of more than one copy of the actin gene in the Achatinidae. The presence of multiple actin copies was further supported when seven distinct cloned sequences were observed for Cochlitoma granulata (see Appendix 3.8, pp. 435-437; note that the clone data for Cochlitoma granulata is also discussed as part of the discussion on paralogy of the actin gene in the Achatinoidea, Section 3.3.2.2, Chapter 3, pp. 155-159). A total of 72 variable sites were detected among the seven clones as opposed to only 9 ambiguities in the direct sequence. The majority of these variable sites (55) were attributed to Clones 3 and 6 that were not picked up by the direct sequence. As discussed in chapter 3, the reason for the failure of the direct sequences to identify as ambiguous sites all of the variation among the clones is not clear, but as the PCR-direct sequence is effectively a consensus of the different actin copies within an individual, it is possible that rare copies of the gene might be averaged out.

Four approaches were carried out to determine whether the observed paralogy in actin was likely to mislead phylogeny. First, a neighbor-joining tree of all the actin sequences and the clones of *C. granulata* was generated to determine if the clones were monophyletic. As discussed previously in Section 3.3.2.2 of Chapter 3, the results revealed that some clones (Clones 1, 2, 4 and 5) formed a monophyletic group together with the direct sequence for *C. granulata* while others (Clones 3 and 6) fell elsewhere in the tree (see also Appendix 3.9, p. 438). Second, pairwise comparison between closely related taxa across the Achatinidae based on actin sequence identity (i.e. least number of

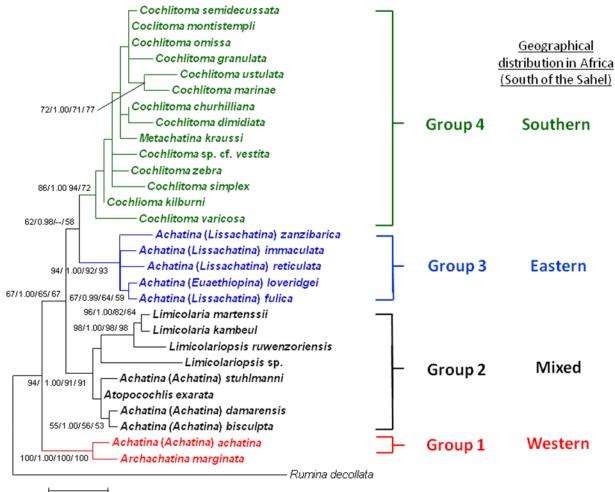
247

nucleotide differences) showed that for some pairwise comparisons, the number of ambiguous sites for at least one taxon in the pair were either very close to the number of total nucleotide differences (i.e. Achatina (Achatina) achatina and Archachatina marginata; Achatina (Achatina) damarensis and Metachatina kraussi; and Cochlitoma montistempli and C. omissa) or were larger than the total differences (i.e. Achatina (Achatina) damarensis and Atopocochlis exarata; C. dimidiata and Atopocochlis exarata; C. varicosa and C. sp. cf. vestita; Limicolaria kambeul and L. martenssii; and *Limicolariopsis* sp. and *Achatina (Achatina) damarensis)*. (See also Table 4.3.) These observations suggested that the divergence among the actin copies within some taxa were just as deep if not deeper than the divergence of the taxa themselves and that phylogenetic signal could be obscured at and above the genus level for these taxa. Third, a partition homogeneity test was supposed to evaluate whether or not the actin sequences exhibited significant difference in the phylogenetic signal with respect to the other genes. However, the test was not successfully carried out due to the polytomies exhibited by the actin gene using maximum parsimony. It was therefore not possible to assess the utility of the actin sequence for phylogenetic analyses in the Achatinidae using the partition homogeneity test. Last, the actin phylogeny was evaluated for concordance with the rRNA gene cluster phylogeny, and results showed little concordance. For example, *Cochlitoma marinae* had a very divergent sequence relative to the other achatinids, particularly the other Southern African Cochlitoma species; it fell at the base of the Achatinidae (see Appendix 4.8 on p. 510 for the actin phylogenies and Figure 4.31A on p. 252 for the rRNA gene phylogeny). Based on these results, the presence of multiple copies of the actin gene was having a significant effect on phylogeny; the actin gene was therefore excluded from further phylogenetic analyses.

Table 4.3. Comparison of the actin ambiguous sites and nucleotide differences for each achatinid and its closest relative. Closest relative for each taxon is determined based on the actin sequence identity (least number of nucleotide differences). Note that in scoring for the total differences, comparison between an ambiguous site and an unambiguous site is counted as different even if one of the possible nucleotides for the ambiguous site is the same as that found in the unambiguous site being compared (e.g. A vs. R, which is either A or G). See also Table 2.8 of p. 73 for assignment of ambiguous positions.

Species (total ambiguous sites)	Closest relative with least number of differences (total ambiguous sites)	Total number of nucleotide differences			
WEST AFRICAN					
Achatina (Achatina) achatina (45)	Archachatina marginata (27)	48			
Archachatina marginata (27)	Achatina (Achatina) achatina (45)	48			
EAST AFRICAN					
Achatina (Lissachatina) fulica (18)	Achatina (Lissachatina) immaculata (15)	27			
Achatina (Lissachatina) immaculata (15)	Achatina (Lissachatina) fulica (18)	27			
Achatina (Lissachatina) reticulata (33)	Achatina (Euaethiopina) loveridgei (0)	39			
Achatina (Lissachatina) zanzibarica (1)	Achatina (Euaethiopina) loveridgei (0)	13			
Achatina (Euaethiopina) loveridgei (0)	Achatina (Lissachatina) zanzibarica (1)	13			
OTHERS					
Achatina (Achatina) bisculpta (32)	Limicolaria kambeul (30)	49			
Achatina (Achatina) damarensis (34)	Atopocochlis exarata (29)	33			
Achatina (Achatina) stuhlmanni (2)	Cochlitoma churchilliana (0)	29			
	Cochlitoma montisptempli (0)				
	Cochlitoma ustulata (0)				
	Cochlitoma zebra (0)				
Atopocochlis exarata (29)	Achatina (Achatina) damarensis (34)	33			
Limicolaria kambeul (30)	Limicolaria martenssii (33)	31			
Limicolaria martenssii (33)	Limicolaria kambeul (30)	31			
Limicolariopsis sp. (40)	Achatina (Achatina) damarensis (34)	42			
SOUTHERN					
Cochlitoma varicosa (27)	Cochlitoma sp. cf. vestita (30)	18			
Cochlitoma dimidiata (31)	Atopocochlis exarata (29)	33			
Cochlitoma sp. cf. vestita (30)	Cochlitoma varicosa (27)	18			
Cochlitoma marinae (4)	Cochlitoma semidecussata (0)	124			
Cochlitoma churchilliana (0)	Cochlitoma zebra (0)	8			
Cochlitoma kilburni (1)	Cochlitoma zebra (0)	5			
Cochlitoma granulata (9)	Cochlitoma omissa (6)	15			
	Cochlitoma semidecussata (0)				
	Cochlitoma ustulata (0)				
Cochlitoma simplex (2)	Cochlitoma zebra (0)	10			
Cochlitoma montisptempli (0)	Cochlitoma omissa (6)	5			
Cochlitoma omissa (6)	Cochlitoma montisptempli (0)	5			
Cochlitoma semidecussata (0)	Cochlitoma ustulata (0)	11			
Cochlitoma ustulata (0)	Cochlitoma churchilliana (0)	11			
	Cochlitoma semidecussata (0)				
	Cochlitoma zebra (0)	_			
Cochlitoma zebra (0)	Cochlitoma kilburni (1)	5			
Metachatina kraussi (52)	Achatina (Achatina) damarensis (34)	59			
SUBULINIDAE (OUTGROUP)					
Rumina decollata (29)	Cochlitoma churchilliana (0)	82			

4.3.2.3. Partition homogeneity test for combining datasets


A partition homogeneity test was done separately for the dataset incorporating the rRNA cluster, histone 3, the 1st and 2nd codon positions of the COI, and the 16S rRNA (5586 nucleotides total) for all taxa with complete DNA sequences as well as the dataset that excluded actin (4713 total). However, PAUP* version 4.0b10 was unable to compute the *P* value for 1000 tree replicates using maximum parsimony. This was due to the presence of polytomies in the topology of the trees generated by maximum parsimony that severely slowed down PAUP. It was therefore not possible to assess whether the gene sequences could be combined as a single dataset using the partition homogeneity test. The decision to combine, therefore, relied on whether the single gene phylogenies exhibited some degree of concordance with each other, which they did for some groups of taxa based on the results in Section 4.3.3.1, pp. 259-261. On this basis, the rRNA cluster, histone 3, the 1st and 2nd codon positions of the COI, and the 16S rRNA were combined into a single dataset.

4.3.3. Molecular phylogeny

The maximum likelihood (ML) phylogenies for the rRNA cluster, histone 3, COI (1st and 2nd codon positions only) and 16S rRNA are shown in Figure 4.31 and those of the concatenated sequences from the four genes in Figure 4.32. For the concatenated sequences, two sets of phylogenetic analyses were done. In the first, only taxa with sequences from all four genes were used in the phylogeny; thus, *Achatina (Euaethiopina) loveridgei* (histone 3 and COI data missing) and *Limicolariopsis ruwenzoirensis* (histone 3, COI and 16S rRNA data missing) were excluded (Figure 4.30A). In the second, all taxa were included in the analyses (Figure 4.30B), with missing data assigned in the analyses for taxa with incomplete datasets. The bootstrap

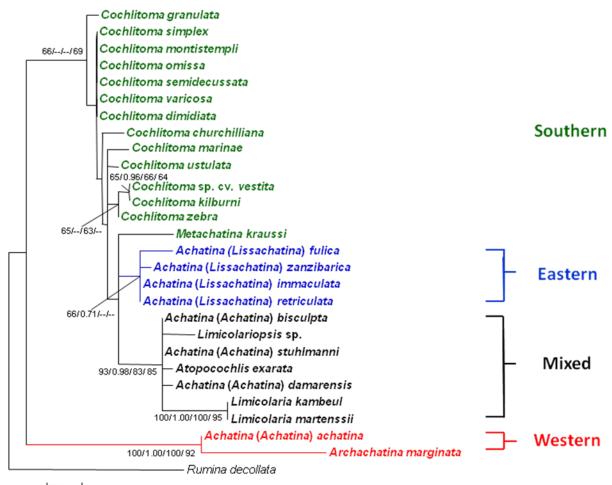
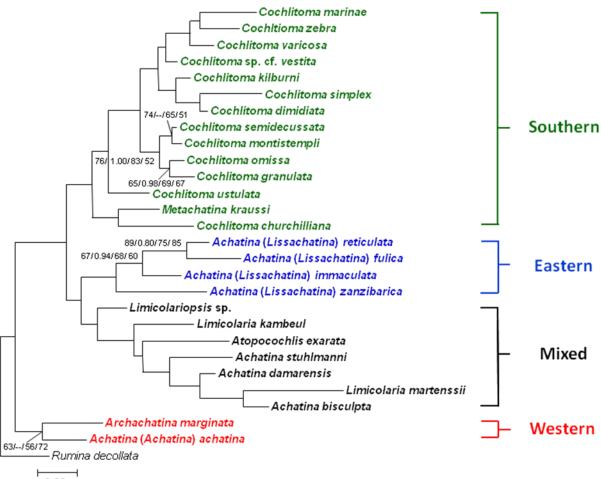
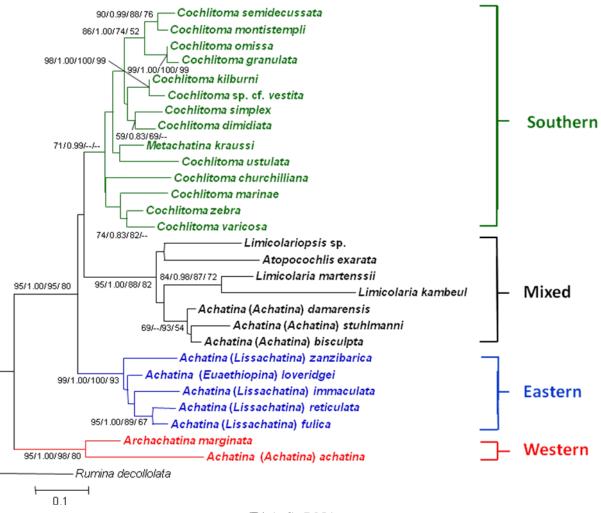

support values for ML, neighbor-joining (NJ) and maximum parsimony (MP) analyses and the posterior probabilities for Bayesian inference (BI) analysis are also shown. For the BI, NJ and MP phylogenies for the genes and the concatenated sequences, see Appendices 4.9-4.14, pp. 511-522.

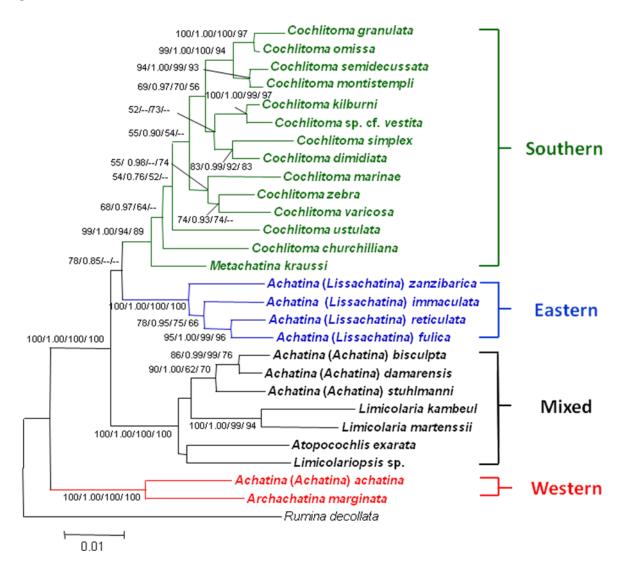
Figure 4.31: (See next four pages.) Maximum likelihood phylogenetic trees of the Achatinidae based on (A) the rRNA gene cluster (3648 nucleotides); (B) the histone 3 gene (328 nucleotides); (C) the COI gene (641 nucleotides) and (D) the 16S rRNA gene (310 nucleotides). The phylogenies were rooted on the subulinid Rumina decollata. Values on the nodes represent bootstrap support (1000 replicates) for ML, posterior probabilities (based on the last 1000 trees) for BI, and bootstrap support (1000 replicates) for NJ and MP, respectively. For BI, the optimized number of generations to explore the tree space was 2,000,000 for all the genes; the optimized heating temperatures for each gene were as follows: rRNA cluster-0.1; histone 3-0.075; 1st and 2^{nd} codon positions of COI-0.075; 16S rRNA-0.1. The optimal model for the rRNA cluster was TN93; however, this model is not available in MrBayes, so the GTR model was instead used after determining that there was no significant difference between the TN93 and GTR models and that the GTR model was significantly better than HKY85 (see also Appendix 4.6, p. 508). The scale bar for (A) represents 2 substitutional changes per 1000 nucleotide positions; that of (B) represents 5 substitutional changes per 100 nucleotides; that of (C) represents 1 substitutional change per 100 nucleotides; and that of (**D**) represents 10 substitutional changes per 100 nucleotides.


0.002

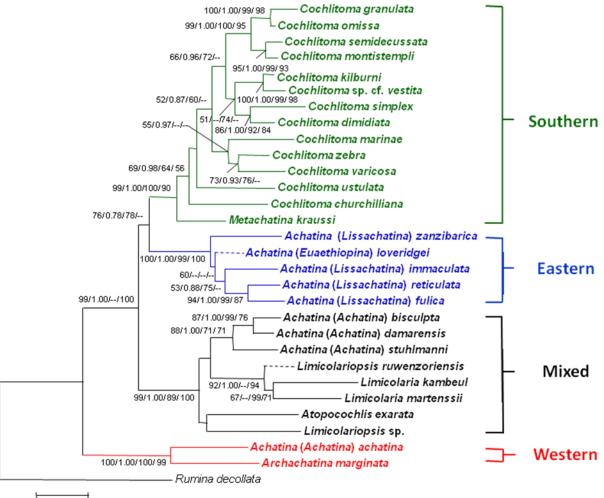
(A) rRNA gene cluster


0.01

(**B**) Histone 3


0.02

(C)COI $(1^{st} and 2^{nd} codon positions only)$



(D) 16S rRNA

Figure 4.32: (See next two pages.) Maximum likelihood phylogenetic trees of the Achatinidae based on a concatenated sequence of 4403 nucleotides derived from the combined dataset of the rRNA cluster, H3 genes and the 1^{st} and 2^{nd} codon positions of the COI gene. The phylogeny in (**A**) includes only those taxa which have complete sequence data for all sequence regions while that in (**B**) includes all taxa including some with missing data. Both *Achatina (Euaethiopina) loveridgei* and *Limicolariopsis ruwenzoriensis* have missing datasets for the histone 3 and COI genes. Both phylogenies are rooted on the subulinid *Rumina decollata*. Values on the nodes represent bootstrap support (1000 replicates) for NJ and MP, respectively. Bootstrap support less than 50% and posterior probabilities less than 0.7 are not shown. For BI, the optimized number of generations to explore the tree space was 1,000,000 while the optimized heating temperature was 0.1 for both trees. The scale bars represent 1 substitutional change per 100 nucleotides. Branches for taxa with missing data are marked with dashes.

(A) Combined dataset (taxa with complete gene sequences only)

0.01

(**B**) combined dataset (all taxa)

4.3.3.1. Single gene phylogenies

For the rRNA gene cluster (Fig 4.31A), four major groups emerged that reflect certain geographical distributions. Group 1 at the base of the tree incorporated the two West African achatinids: Achatina (Achatina) achatina and Archachatina marginata (100% ML bootstraps, P=1.0 BI, 100% NJ bootstraps and 100% MP bootstraps). Group 2 incorporated several achatinids with mixed geographic distributions (94% ML bootstraps, P=1.0 BI, 91% NJ bootstraps and 91% MP bootstraps). These included the West African (São Thomé) Atopocochlis exarata, the Southern African Achatina (Achatina) bisculpta, the Southwestern African Achatina (Achatina) damarensis, the Central African Achatina (Achatina) stuhlmanni and Limicolaria martenssii, the tropical African (i.e. Uganda and Kenya) Limicolariopsis ruwenzoriensis and Limicolariopsis sp. and the widely distributed (from Senegal to Sudan and Somalia) Limicolaria kambeul. The other two groups formed sister clades. Group 3 incorporated the East African Achatina (Lissachatina) species, A. (L.) fulica, A. (L.) immaculata, A. (L.) reticulata and A. (L.) zanzibarica, as well as the East African Achatina (Euaethiopina) species, A. (E.) loveridgei (94% ML bootstraps, P=1.00 BI, 92% NJ bootstraps and 93% MP bootstraps). Group 4 included the Southern African Cochlitoma as well as Metachatina kraussi (86% ML bootstraps, P=1.0 BI, 94% NJ bootstraps and 72% MP bootstraps).

For the histone 3 gene (Figure 4.31B), three of the four groups identified in the rRNA gene phylogenies were recovered. These were the West African (Group 1) achatinids (100% ML bootstraps, P=1.00 BI, 100% NJ bootstraps and 92% MP bootstraps), the mixed group (Group 2) (93% ML bootstraps, P=0.98 BI, 83% NJ bootstraps and 85% MP bootstraps) and the East African group (Group 3), although support for this group was equivocal (66% ML bootstraps, P=0.71 BI and less than 50%

259

NJ and MP bootstraps). The Southern African group (group 4) resolved in the rRNA tree did not form a monophyletic unit in the H3 tree but instead was resolved as a paraphyletic group in that it included the Eastern (Group 3) and Mixed (Group 2) groups. In fact, *Metachatina kraussi*, a Southern African taxon, clustered with Groups 2 and 3, although this grouping is not well supported.

For the 1st and 2nd codon positions of the COI gene (Figure 4.31C), all four groups were recovered but there was generally less structure in the topology of the phylogeny and little support for groupings. Of the four groups, only the West African group (Group 1) received moderate support (63% ML bootstraps, P<0.7 BI, 56% NJ bootstraps and 72% MP bootstraps).

For the 16S rRNA gene (Figure 4.31D), all four groups were recovered with good to moderate support: the West African group (Group 1) (95% ML bootstraps, P=1.00 BI, 98% NJ bootstraps and 80% MP bootstraps); the mixed group (Group 2) (95% ML bootstraps, P=1.00 BI, 88% NJ bootstraps and 82% MP bootstraps); the East African group (Group 3) (99% ML bootstraps, P=1.00 BI, 100% NJ bootstraps and 93% MP bootstraps); and the Southern African group (Group 4) (71% ML bootstraps, P=0.99 BI, and less than 50% NJ and MP bootstraps).

4.3.3.2. Combined gene phylogenies

The combined analysis for the rRNA cluster, H3, the 1st and 2nd codon positions of COI and 16S rRNA, but excluding *Achatina (Euaethiopina) loveridgei* and *Limicolariopsis ruwenzoriensis* as they had some gene sequences missing, recovered all four groups present in the rRNA phylogeny and exhibited longer internal branches with better support (Figure 4.32A). The West African group (Group 1) still fell at the base of the Achatinidae (100% ML bootstraps, P=1.00 BI, 100% NJ and 100% MP bootstraps) while the other achatinids clustered together (100% ML bootstraps, P=1.0 BI, 100% NJ bootstraps and 100% MP bootstraps). Within this cluster were the mixed group (Group 2) (100% ML bootstraps, P=1.00 BI, 100% NJ and 100% MP bootstraps), the East African group (Group 3) (100% ML bootstraps, P=1.00 BI, 100% NJ and 100% MP bootstraps) and the Southern African group (Group 4) (99% ML bootstraps, P=1.00 BI, 94% NJ and 89% MP bootstraps), with *Metachatina kraussi* falling at the base of the latter. Groups 3 and 4 clustered as sister clades within the tree.

When all taxa were included in the combined analysis (including the two taxa with missing data), all groups found in the rRNA phylogeny were recovered and in general received higher support (Figure 4.32B). The West African group (Group 1) again fell at the base of the Achatinidae (100% ML bootstraps, P=1.0 BI, 100% NJ and 99% MP bootstraps) while the remaining achatinids formed a separate clade with increased support in comparison to the rRNA cluster except for NJ (99% ML bootstraps, P=1.0 BI, less than 50% NJ bootstraps and 100% MP bootstraps). Within this clade and consistent with the rRNA tree were the mixed group (Group 2) with increased support (99% ML bootstraps, P=1.0 BI, 89% NJ and 100% MP bootstraps) and the clade incorporating the East African and Southern African groups with increased support except for MP (76% ML bootstraps, P=0.78 BI, 78% NJ and less than 50% MP bootstraps). The East African group (Group 3) also received increased support (100% ML bootstraps, P=1.00 BI, 99% NJ and 100% MP bootstraps) as did the Southern African group (Group 3) (99% ML bootstraps, P=1.0 BI, 100% NJ and 90% MP bootstraps). Some well-supported groupings were also observed within groups 2-4. Within the mixed group (Group 2), for instance, there was strong support for the clustering of Achatina (Achatina) bisculpta, A. (A.) damarensis and A. (A.) stuhlmanni (88% ML bootstraps, P=1.0 BI, 71% NJ bootstraps and 71% MP bootstraps) as well as Limicolaria kambeul, L. martenssii and Limicolariopsis ruwenzoriensis (92% ML bootstraps, P=1.0 BI, less than 50% NJ bootstraps and 94% MP bootstraps). Within the East African group (Group 3), Achatina (Lissachatina) fulica clustered with A. (L.) immaculata (94% ML bootstraps, P=1.0 BI, 99% NJ bootstraps and 87% MP bootstraps). Within the Southern African group (Group 4), Metachatina kraussi again fell at the base. Very strong support was also shown for several groups. These were Cochlitoma omissa and C. granulata (100% ML bootstraps, P=1.0 BI, 99% NJ bootstraps, P=1.0 BI, 99% NJ bootstraps and 98% MP bootstraps); C. montistempli and C. semidecussata (95% ML bootstraps, P=1.0 BI, 99% NJ bootstraps, P=1.0 BI, 92% NJ bootstraps, P=0.93 BI, 76% NJ bootstraps and less than 50% MP bootstraps). The geographic distributions of the members of the four groups are shown in Fig. 4.33.

Figure 4.33: Geographic distribution of the achatinid taxa used in this study (distribution data from Bequaert, 1950; Mead, 1950; Schileyko, 1999; and Raut & Barker, 2002 as well as the actual sites from which some of the taxa were collected).

3.3.3.3. Hypothesis testing of Achatina (Achatina) based on taxonomy

The four members of the subgenus *Achatina* (*A. achatina*, *A. bisculpta*, *A. damarensis* and *A. stuhlmanni*) were not recovered as monophyletic, with *Achatina* (*Achatina*) *achatina* clustering with *Archachatina marginata*; these taxa were subjected to hypothesis testing using the Shimodaira-Hasegawa (1999) test. Constraining the NJ trees for the four single gene and combined gene phylogenies to show monophyly of the subgenus *Achatina* produced likelihood scores that were significantly worse (p<0.01) than those of the optimal trees except for the 1st and 2nd codon positions of the COI gene (p=0.177) (see Table 4.4 for details). The results confirmed the non-monophyly of the subgenus *Achatina*.

Gene	Likelihood Score		P for SH ^a Test
	Optimal	Constrained	(Conclusion ^b)
	NJ tree	NJ tree	
rRNA cluster	6146.48364	6240.31789	0.002 (Significant)
Histone 3	909.37626	949.45797	0.001 (Significant)
COI $(1^{st} \text{ and } 2^{nd} \text{ codons})$	1995.68125	2004.66467	0.177 (Not significant)
16S rRNA	2876.32254	2906.36582	0.008 (Significant)
Combined	12509.66094	12643.04203	<0.001 (Significant)
Combined-all taxa	12640.55433	12756.19951	<0.001 (Significant)

Table 4.4: Hypothesis testing for the monophyly of *Achatina* (*Achatina*) using the Shimodaira-Hasegawa test.

^a SH test – Shimodaira-Hasegawa Test

^b Significant at P<0.05

4.4. Discussion

4.4.1. Single versus combined gene phylogenies

Among the five genes used for the Achatinidae, the nuclear rRNA cluster provided the most resolved structure of the internal branches with the four major groups based on biogeography receiving good support. The terminal nodes, however, were not well supported, suggesting that the gene is too conserved for that level. The nuclear histone 3 gene yielded even less structure with only three groups recovered and very few terminal nodes received support. The gene was also too conserved as evidenced by the presence of five sets of identical sequences among 16 taxa. On the other hand, the two mitochondrial genes were more variable and were therefore evolving faster than the two nuclear genes. Of the two, the 16S rRNA gene gave support to most terminal nodes while at the same time recovering the four major groups. The COI had less structure than 16S because the groups were not well supported. Fewer sites were used for COI as the third codon positions were excluded due to their saturated condition, which is indicative of their faster rate of evolution. The fifth gene, the nuclear actin, was also not included due to significant levels of paralogy that disrupted phylogenetic signal. When the four genes were combined, both the terminal branches and the internal nodes received support based on ML, NJ and MP bootstraps as well as BI posterior probabilities. Underlying signal was also detected in the combined phylogenies with very good support that was not evident in the single gene phylogenies (i.e. the basal position of *Metachatina kraussi* in the Southern African group).

4.4.2. Evolutionary history of the Achatinidae based on molecular data

The existence of no fossils earlier than the Pleistocene (0.01-1.8 MYA) (Zilch, 1959-1960; Solem, 1979) suggests that the Achatinidae are a relatively recent group (Tillier, 1989), although Raut & Barker (2002) believed them to be much older than the fossil record. Mead (1991) suggested that the primitive achatinids occurred in the region of the Lower Guinea in West Africa, and he postulated that the achatinids radiated from there to the other parts of Africa south of the Sahel. Tillier (1989) described the achatinids as giant subulinids, although the taxonomy of the latter is still in a state of flux, and Tillier could not identify with certainty from which subulinid group the achatinids arose.

This study presents the first attempt to elucidate the phylogeny of the Achatinidae using molecular data. Phylogenies derived from the combined nuclear rRNA cluster and histone 3 genes and the mitochondrial cytochrome c oxidase 1 and 16S rRNA genes demonstrated groupings that roughly corresponded to the geographical distributions of the Achatinidae. These groups were the West African group (Group 1) found at the base of the tree followed by the mixed group (Group 2), the East African (Group 3) group and Southern African (Group 4) group, the last two of which clustering as sister clades. Group 2 included species found in the other three regions as well as some that are present in Central Africa.

The West African Achatina (Achatina) achatina (found in the region of Upper Guinea of West Africa; Bequaert, 1950) and Archachatina marginata (found in the region of West Africa east of the Dahomey gap, Bequaert, 1950) both fell at the base of the tree, which supports Mead's (1991 hypothesis that the achatinids originated in the west, particularly in the Gabon-Cameroon region. Both species share a penis sheath that only covers half of the penis (Mead, 1950). In fact, Archachatina Albers was erected as a distinct genus from Achatina purely on conchological criteria, primarily on the form of the shell apices. The large obtuse apex of Archachatina is a result of the large embryonic whorls that form in their large eggs (about 19 by 14.5 mm); Achatina possesses an acute apex as a result of its small eggs (Bequaert, 1950).

The mixed group includes several species with varying distribution patterns, including the São Thomé endemic *Atopocochlis exarata*. Mead (1991) included *Atopocochlis exarata* as one of the most primitive achatinids together with *Callistoplepa, Leptocala, Tripachatina* and *Columna*, none of which was sampled in this study due to inability to obtain fresh material. The reproductive structures of *A. exarata* include a very short penis sheath similar to that of *Achatina (Achatina) achatina* and *Archachatina marginata* and an enlarged vagina (Mead, 1950); the vas deferens is also enclosed by the penis sheath, unlike in the other "primitive" achatinids like *Callistoplepa* and *Leptocala* where the vas deferens is free (Schileyko, 1999). The molecular data as well as the morphological features of the genitalia puts into question the position of *Atopocochlis exarata* among the "primitive" achatinids as suggested by Mead (1991). Another group within the mixed group with high support is the grouping of the two *Limicolaria* species. Both have a distinct penis papilla (Mead, 1979b; 1991). Also within the mixed group are *Achatina (Achatina) bisculpta* and *Achatina (Achatina) damarensis*, which clustered together with strong support. In both species, the basal vas

deferens and penis are either intimately and tightly connected to the penial retractor muscles, as in the case *A*. (*A*.) *bisculpta* (Sirgel, 2000), or cocooned by them, as in the case of *A*. (*A*.) *damarensis* (Mead, 1950, 1991; Van Bruggen, 1970). These two taxa clustered with *A. stuhlmanni*, and all three belong to the subgenus *Achatina*, though these taxa did not cluster with another member of the subgenus, *A. achatina*, which grouped with *Archachatina marginata*. The non-monophyly of this subgenus was further supported by the Shimodaira-Hasegawa test. The validity of this taxon therefore warrants re-examination.

The Southern African and East African groups together form a sister clade with the mixed group according to the combined gene phylogenies. Indeed, both *Achatina* (*Lissachatina*) from East Africa and *Cochlitoma* of Southern Africa share a "long spermathecal [=gametolytic] duct [that] places the spermatheca [=gametolytic sac] on the uterine portion of the spermoviduct, well above the junction of" the apical vas deferens and the uterine portion of the spermoviduct (Mead, 1991, p. 553). Such a characteristic is probably derived as it is not found in the Western group, which falls at the base of the Achatinidae based on the single and combined gene phylogenies.

The presence of the penial groove in *Cochlitoma* is most likely a derived character as it is not present in *Metachatina kraussi* found at the base of the southern African clade in the combined gene phylogenies, thus lending support to the assumption of Mead (1991) that *Cochlitoma* is an 'advanced' genus. This topology was not evident in the single gene phylogenies and was only revealed as an underlying signal when the genes were combined, as shown by the higher bootstrap and posterior probability supports. The clustering of *Cochlitoma* species within the Southern African group based on the molecular phylogenies supports Mead's (2004) recognition of *Cochlitoma*

as a distinct genus rather than a subgenus of Western African *Archachatina* even if they share similar conchological features.

The members of the East African group under Achatina (Lissachatina) have extroversion muscles as well as a muscular, bulboid enlargement of the basal vagina (Mead, 1991, 1995). The results from the molecular data in this study support Mead's view that Lissachatina be distinguished from the West and central African Achatina species. Furthermore, judging from the topology of the East African group in relation to other Achatina species in the molecular trees, coupled with the distinct morphological characteristics of both the male and female conduits of the reproductive tract, it is clear that there is no basis for including Lissachatina within Achatina and Lissachatina should be recognized as a distinct genus as with Cochlitoma. Within the East African group, Achatina (Lissachatina) fulica clustered with A. (L.) reticulata. They differ morphologically in that A. reticulata has a short penis sheath that does not cover the entire penis (Mead, 1950). As with Atopocochlis exarata, the presence of a short penis sheath in A. reticulata is hypothesized to be a derived state and does not indicate plesiomorphic condition or 'primitive' state sensu Mead. It can be noted that the Southern African Metachatina kraussi (Mead, 1950) and Cochlitoma granulata (Mead, 2004) also possess a short penis sheath. The subgenus Euaethiopina, represented by A. (E.) loveridgei, has a shell that is more elongated ovoid than that of Lissachatina, which is more broadly ovate to obesely fusiform; the two taxa also have distinct coloration (Bequaert, 1950; Schileyko, 1999). However, Achatina (Euaethiopina) loveridgei is very similar to Achatina (Lissachatina) zanzibarica with respect to its reproductive anatomy (Mead, 1950). Its placement within Lissachatina based on molecular data, coupled with the evidence based on reproductive anatomy, would suggest that A. loveridgei should be moved to Lissachatina.

All these results support the hypothesis that the achatinids migrated to the central region from the west, then radiated to the east and south. As further support to this hypothesis, van Bruggen (1986) noted that terrestrial snails and slugs of the Afrotropical region (south of the Sahel) occur in four major centres of endemism: 1) Southern Africa; 2) East Africa; 3) North-East Africa; and 4) Central/West Africa. He also observed the highest taxon density for the Achatinidae in West Africa that extended to Central Africa, followed by East and North-East Africa and finally Southern Africa.

Aside from the Achatinidae, there are 33 other families of terrestrial gastropods in the Afrotropical region, of which eight are endemic. Of these, three families (Maizaniidae, Gymnarionidae and Urocyclidae) are found in all four major centres like the Achatinidae; one family (Aillyidae) is found only in West Africa and another (Thyrophorellidae) is restricted to São Thomé off the coast of West Africa. The remaining endemic families (Aperidae, Dorcasiidae and Prestonellidae) are distributed in Southern Africa (van Bruggen, 1986). Diamond and Hamilton (1980) also found that forest passerine birds roughly occur in the four endemic centres, either limited to one or a few of these centres or occurring in all. These centres most likely served as refugia for forest-dependent animals, such as terrestrial gastropods and passerine birds, when forests contracted due to changing rainfall patterns as a result of alternating glacial and interglacial periods during the Quaternary, particularly the Holocene (18,000 years ago), which in turn gave opportunities for vicariant speciation to occur (van Bruggen, 1986). However, Raut & Barker (2002) acknowledged that much of the speciation process, particularly for the terrestrial gastropods, could have predated the changing forest cover of the Holocene.

4.4.3. Limitations of the study and the next step

A number of achatinid groups were not available for this study. Among these are genera found in West Africa considered primitive by Mead (1991) in that the penis sheath is very short and does not enclose the vas deferens. These include *Leptocala* and *Callistoplepa*. If Mead's hypothesis is correct, then these genera should fall at the base of the tree. Furthermore, as West Africa harbors a high number of endemic species of achatinids (van Bruggen, 1986), it is desirable to include as many of these species as possible in future investigations. Of particular interest are the sinistral *Columna columna* and *Archachatina bicarinata*. Equally interesting is the relationship of the East African *Bequaertina* with *Lissachatina*.

4.5. Summary

This study is the first attempt to reconstruct the phylogeny of the Achatinidae using molecular data derived from the nuclear rRNA cluster, actin and histone 3 genes and the mitochondrial cytochrome c oxidase subunit 1 and 16S rRNA genes. Results demonstrated four distinct groups that to a large extent follow the geographical distribution of the sampled taxa and validate groupings previously erected on the basis of reproductive morphology. At the base of the trees are West African species followed by a group which includes taxa with varying geographical distributions ranging from the western, central, eastern and southern regions. Two other groups probably arose from the mixed group and form sister clades: one is the East African group that includes *Achatina (Lissachatina) fulica*; the other group encompasses most of the Southern African species. The results support Mead's recognition of Southern African *Cochlitoma* as a genus separate from the West African *Archachatina*. The results likewise support Mead's (1950) distinction of the Eastern subgenus *Lissachatina* from the western and central Achatina and demonstrate that there is no basis for continuing to

include Lissachatina as a subgenus of Achatina.

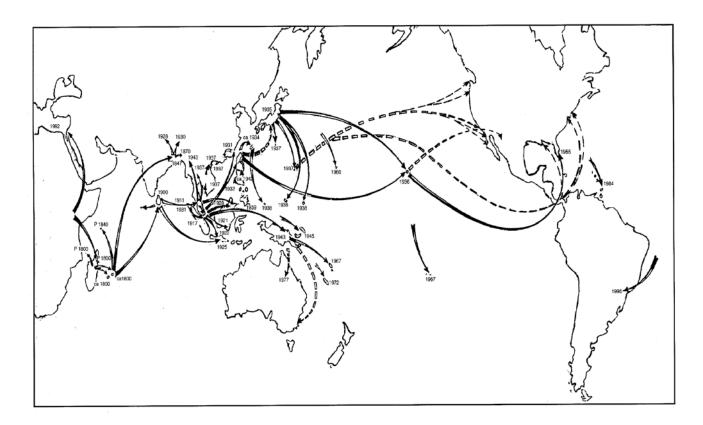
4.6. Literature cited

- Bequaert, J.C. 1950. Studies in the Achatinidae, a group of African land snails. Bulletin of the Museum of Comparative Zoology, Harvard **105**: 1-216.
- Cain, A.J. 1977. Variation in the spire index of some coiled gastropod shells, and its evolutionary significance. Philosophical Transactions of the Royal Society of London B, Biological Sciences 277: 377-428.
- Diamond, A.W. and Hamilton, A.C. 1980. The distribution of forest passerine birds and Quaternary climatic change in tropical Africa. Journal of Zoology **191**: 379-402.
- Egonmwan, R.I. 2007. Gross anatomy and characteristics of the reproductive system of the land snail *Archachatina marginata ovum* (Pfeiffer) during the breeding season. Tropical Science **47** (2): 57-64.
- Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution **17**: 368-376.
- Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution **39**: 783-791.
- Folmer, O., Black, M., Hoen, W., Lutz, R. and Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3:294-299.
- Gomez, B.J. 2001. Structure and functioning of the reproductive system. *In*: Barker, G.M. (ed.), <u>The Biology of Terrestrial Molluscs.</u> CABI Publishing, New Zealand, pp. 307-330.
- Hasegawa, M., Kishino, H. and Yano, T. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution **21**: 160-174.
- Hebert, P.D.N., Cywinska, A., Ball, S.L. and deWaard, J.R. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B **270**: 313-321.
- Hillis, D.M. and Huelsenbeck, J.P. 1992. Signal, noise, and reliability in molecular phylogenetic analyses. Journal of Heredity **85**: 189-195.
- Jukes, T.H. Cantor, C.R. 1969. Evolution of protein molecules. *In*: Munro, H.N. (ed.), <u>Mammalian Protein Metabolism.</u> Academic Press, New York, pp. 21-32.
- Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111-120.
- Mead, A.R. 1950. Comparative genital anatomy of some Achatinidae (Pulmonata). Bulletin of the Museum of Comparative Zoology, Harvard **105**: 219-291.
- Mead, A.R. 1979a. Economic malacology with particular reference to *Achatina fulica*. *In*: Fretter, V. and Peake, J. (eds.), <u>Pulmonates, Vol. 2B</u>. Academic Press, London, 150 pp.
- Mead, A.R. 1979b. Anatomical studies in the African Achatinidae a preliminary report. Malacologia **18**: 133-138.

- Mead, A.R. 1991. Anatomical criteria in the systematics of the Achatinidae (Pulmonata). *In:* Meier-Brook, C. (ed.), <u>Proceedings of the Tenth International</u> <u>Malacological Congress</u>. Tubingen, pp. 549-553.
- Mead, A.R. 1994. A new subfamily and genus in Achatinidae (Pulmonata: Sigmurethra). Bulletin of the Natural History Museum (Zoology) **60**:1-37.
- Mead, A.R. 1995. Anatomical studies reveal new phylogenetic interpretations in *Lissachatina* (Pulmonata: Achatinidae). Journal of Molluscan Studies **61**: 257-273.
- Mead, A.R. 2004. Comparative reproductive anatomy in the South African giant land snails (Gastropoda: Pulmonata: Achatinidae). Zoologische Mededelingen, Leiden **78**: 417-449.
- Palumbi, A., Martin, A., Romano, S., McMillian, W.O., Stine, L. and Grabowski, G. 1991. The simple fool's guide to PCR version 2.0. University of Hawaii, Honolulu, 47 pp.
- Raut, S.K. and Barker, G.M. 2002. *Achatina fulica* Bowdich and Other Achatinidae as Pests in Tropical Agriculture. pp. 55-114. *In:* G.M. Barker (ed.), <u>Molluscs as Crop Pests</u>. Hamilton, CABI Publishing, New Zealand.
- Rodriguez, F., Oliver, J.L., Marin, A. and Medina, J.R. 1990. The general stochastic model of nucleotide substitution. Journal of Theoretical Biology **142**: 485-501.
- Schileyko, A.A. 1999. <u>Treatise on recent terrestrial pulmonate molluscs</u>, Part 4. Ruthenica, Supplement 2, Moscow, 564 pp.
- Segun, A.O. 1975. <u>Dissection Guides to Common Tropical Animals: The Giant Land</u> <u>Snail Archachatina (Calachatina) marginata, Swainson.</u> Ethiope Publishing House, Nigeria, 25 pp.
- Shimodaira, H. and Hasegawa, M. 1999. Multiple comparisons of log likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16: 1114-1116.
- Sirgel, W.F. 2000. Comparative genital anatomy of some South African Achatinidae (Pulmonata). Annals of the Natal Museum **30**: 197-210.
- Smith, S.W., Overbeek, R., Woese, C.R., Gilbert, W. and Gillevet, P.M. 1994. The genetic data environment, an expandable GUI for multiple sequence analysis. Computer Applications in the Biosciences **10**: 671-675.
- Staden, R. Beal, K.F. and Bonfield, J.K. 2000. The Staden package, 1998. Methods in Molecular Biology **132**: 115-130.
- Swofford, D.L. 2002. PAUP* 4.0b10, Sinauer Associates, Sunderland, MA.
- Tamura, K. and Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10: 512-526.
- Van Bruggen, A.C. 1970. A contribution to the knowledge of non-marine mollusca of Southwest Africa. Zoologische Medelingen **45**(4): 44-73.
- Van Bruggen, A.C. 1986. Aspects of the diversity of the land molluscs of the Afrotropical Region. Revue de Zoologie Afrcaine **100**: 29-45.
- Wade, C.M., Mordan, P.B. and Naggs, F. 2006. Evolutionary relationships among the Pulmonate land snails and slugs (Pulmonata, Stylommatophora). Biological Journal of the Linnean Society 87: 593-610.
- Yang, Z. 1993. Maximum likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Molecular Biology and Evolution **10**: 1396-1401.

CHAPTER 5 - Genetic variation in global populations of Achatina fulica

5.1. Introduction


The Giant African Land Snail, *Achatina (Lissachatina) fulica* Bowdich, is a tropical species with a widespread distribution across East Africa, the Indo-Pacific and the Caribbean. Its natural range is East Africa, but its current global distribution is primarily due to human intervention (Raut & Barker, 2002). It is a serious crop pest that can easily spread into new areas where it causes significant damage to vegetables and other food crops (Mead, 1979; Raut & Barker, 2002). The World Conservation Union (IUCN) has listed *A. fulica* in its 100 most invasive species (Lowe *et al.*, 2000), and among the land snails in the world, it is probably the most invasive (Raut & Barker, 2002). Its success as an invasive species is probably attributable to its high reproductive capacity and its generalist food behavior, feeding on a wide range of plants and detritus (Raut & Barker, 2002). The tendency for people to transport the snails and release them into the wild either intentionally or inadvertently also helps to spread them further (Thiengo *et al.*, 2007). The snail also serves as the intermediate host of the rat lungworm *Angiostrongylus cantonensis* that causes eosinophilic meningitis in humans (Marquardt *et al.*, 2000).

5.1.1. The Dispersal of *Achatina fulica* from East Africa

The ease with which *Achatina fulica* spreads into new areas is attributed to the availability of several pathways of dispersal for the snail. A pathway, which pertains to an activity that involves the introduction of a species, can be accidental or deliberate (Cowie & Robinson, 2003). *Achatina fulica* is deliberately introduced into new areas for the purposes of consumption, as pets, aesthetics or ornaments, religious symbols, or

for medicinal or research use (Mead, 1979; Kliks & Palumbo, 1992; Cowie & Robinson, 2003; Budha & Naggs, 2008). On the other hand, *A. fulica* is accidentally introduced when it "hitchhikes" with agricultural and horticultural products, the packaging or containers of any commodity, or even on vehicles such as cars and trucks (Cowie & Robinson, 2003). *Achatina fulica* can also escape from local farm operations where they are bred for their meat (Paiva, 1999).

Achatina fulica has a pan-tropical distribution brought about within the last 200 years by its human-aided dispersal (Fig. 5.1). The snail is indigenous to the coast of East Africa (probably originating in Kenya and Tanzania) but was introduced into the nearby islands of Madagascar, Mauritius, the Comoros, Mayotte and Reunion prior to 1800 (Bequaert, 1950). The snail was then brought to India and Sri Lanka by naturalists in the early 1900s (Naggs, 1997; Raut & Barker, 2002) and spread to Nepal to the north (Budha & Naggs, 2008) and to the Malay Peninsula to the southeast via sea routes in cargo vessels (Mead, 1961). Immediately before and during the Second World War, Japanese merchants and soldiers spread A. fulica further into Southeast Asia, Taiwan, and many islands of the Pacific as they were used for food and medicinal purposes and sometimes as pets (Kliks & Palumbo, 1992). By the late 1980's, A. fulica had been reported in the Caribbean, particularly in Guadeloupe and Martinique (Schotman, 1989) and later on in St. Lucia and Barbados by 2000 (Fields et al., 2006) and in Antigua by 2008 (NAPPO-PAS, 2008). By the 1990's, A. fulica had already established itself in South America, particularly Brazil (Paiva, 1999; Carvalho de Vasconcellos & Pile, 2001; Thiengo et al., 2007), Colombia, Ecuador and Peru (Borrero et al., 2009). Recently, the snail has been observed in the Ivory Coast, Ghana and Morocco in West and Northwest Africa (Raut & Barker, 2002). Although A. fulica has reached Australia, Japan, and the United States mainland in the past, authorities in these countries have successfully eradicated *A. fulica* for fear of its potential for causing damage to agriculture (Mead, 1961; Kliks & Palumbo, 1992). As an exotic pet (Kliks & Palumbo, 1992), *A. fulica* is now present in temperate countries such as the UK and France.

Figure 5.1: Dispersal route of *Achatina fulica* from East Africa. Years indicate approximate dates when the snail was first observed in each region. Solid lines denote successful introductions while broken lines denote introductions that were intercepted. (From Raut & Barker, 2002).

5.1.2. Genetic variation in introduced species

The genetic composition of the population of an introduced species in a new area may affect the success of that population. Invasion may involve founder events in which a population of a few individuals carries a reduced amount of genetic variation in comparison to the source population. Over time, this leads to a population bottleneck in which individuals suffer from a lack of genetic variation and where massive shifts in allele frequencies are observed (Dlugosch & Parker, 2008). This becomes particularly problematic to the invasive species if the loss of variation includes adaptive traits that could have improved their chance of establishing in a new habitat, preventing extinction and increasing population growth (Kolbe et al., 2007). Although some data do show lack of genetic diversity in introduced species, as seen in the apple snails Pila conica and Pomacea canalicuata in Hawaii (Tran Chuong et al., 2008), other data on invasive species reveal that many populations do not exhibit such lack of diversity. One possible explanation is the role of multiple introductions in augmenting the genetic diversity of the invasive species. Multiple introductions may involve separate dispersal events over a long period of time in which new genes from recently introduced populations are spread among the individuals in the established population (Dlugosch & Parker, 2008). This was evident in the cheatgrass, *Bromus tectorum*, in which multiple introductions from Europe and Southwest Asia counteracted the effect of bottlenecking in introduced populations in western North America (Novack & Mack, 1993). Kolbe et al. (2007) also noted the same pattern in eight species of Anolis lizards introduced in Florida and the Dominican Republic from the northern Caribbean using the ND2, tRNA-Trp and tRNA-Ala genes of the mitochondrial DNA. Their results revealed that 80% of introductions were derived from multiple native sources. Furthermore, haplotypes that were found in distinct geographic locations in the native range occurred as variants within the introduced populations. They proposed a two-step process in introductions marked by the initial decrease in genetic variation as a result of founder events and bottlenecking followed by an increase in genetic variation if multiple introductions from different sources take place.

Despite the detailed historical and anecdotal information concerning the spread of *Achatina fulica*, no systematic evaluation of its genetic variation across global

276

populations has been undertaken. It is therefore not known whether multiple introductions of *A. fulica* from different sources have occurred in any part of its new range or whether the introduced populations are undergoing bottlenecking. In either case, these factors could have a profound impact on the success of *A. fulica* as an introduced species.

5.1.3. Mitochondrial molecular markers for evaluating genetic variation in snail populations and elucidating their population history

Data derived from molecular genetic variation in snail populations can yield useful information about the routes of introduction or dispersal and colonization of a particular snail species into new areas (Davison, 2000; Gittenberger et al., 2004; Pinceel et al., 2005; Rawlings et al., 2007). Mitochondrial genes have been used as the markers of choice to assess variation within and between snail populations because they generally evolve faster than nuclear genes and are maternally inherited and therefore not subject to recombination (Brown, 1985; Avise et al., 1987). For example, Davison (2000) analyzed a fragment of the mitochondrial 16S rRNA gene using single-stranded conformational polymorphism (SSCP) analysis and DNA sequencing to identify different haplotypes from populations of the banded grove snail Cepaea nemoralis from Britain and Ireland. The fragment he used for the SSCP analysis corresponded to the variable domain IV segment of the secondary structure of the post-transcribed 16S rRNA gene (Lydeard et al., 2000) for which Palumbi (1996) designed universal primers. Davison's work revealed two mitochondrial lineages that had an east-west distribution, suggesting two possible routes of colonization of Britain after the last ice age. Pinceel et al. (2005) also used the same variable domain IV segment of the 16S rRNA gene as part of their population genetic survey of the terrestrial slug Arion

277

subfuscus in northeastern USA and Europe. They likewise used SSCP and DNA sequencing. Their results revealed the existence of two distinct 16S rRNA haplotyes in the USA representing at least two independent introductions from the British Isles on the one hand and mainland Europe on the other. In another study, Gittenberger *et al.* (2004) sequenced a fragment of the cytochrome c oxidase subunit I (COI) gene for several populations of the snail *Arianta arbustorum* and three other species of *Arianta* to elucidate the evolutionary history of the two shell forms of *A. arbustorum*.

5.1.5. Objective of the study

This study aimed to assess the genetic variation in global populations of *Achatina fulica*. Comparison of recently dispersed *A. fulica* populations from across the globe with those from East Africa and adjacent islands were undertaken to determine where the recently introduced global populations of *A. fulica* originated and whether they represent single or multiple introductions. To this effect, the genetic diversity of *A. fulica* populations from East Africa, the Indian subcontinent, Southeast Asia, the Pacific and the Caribbean were evaluated using single stranded conformational polymorphism (SSCP) analysis of the 16S ribosomal (r) RNA gene.

5.2. Materials and methods

5.2.1. Sample collection

In total, 382 individuals of *Achatina fulica* from 19 populations across the globe were sampled. Two populations were obtained from East Africa: Kampala, Uganda (5 snails) and Dar Es Salaam, Tanzania (38 snails). Three populations were from Indian Ocean islands near East Africa: Mayotte (50 snails) off the coast of Mozambique;

Souillac, Mauritius (45 snails) east of Madagascar; and Mahe, Seychelles (2 snails) northeast of Madagascar. Samples from Nepal (22 snails) represented the Indian subcontinent while those from Southeast Asia included Myanmar/ Burma (20 snails), Thailand (20 snails), the Philippines (2 population samples with 20 snails each), Malaysia (20 snails) and Singapore (20 snails). The Pacific was represented by Ogasawara/ Bonin (12 snails), New Caledonia (21 snails), Hawaii (20 snails), Moorea (10 snails) and Tahiti (5 snails). Two populations were obtained from the Caribbean: Martinique (20 snails) and Barbados (12 snails). The Martinique specimens were a captive bred population of F1 offspring bred from Martinique parents by F. Adnai. See also Table 5.1.

Locality	Collector	Sample size
Kampala, Uganda	B. Rowson	5
Dar Es Salaam, Tanzania	C. Ngereza	38
Mayotte	F. Barthelat	50
Souillac, Mauritius	O. Griffiths	45
Mahe, Seychelles	J. Gerlach	2
Bharatpur, Nepal	P. Budha	22
Yangon, Myanmar/ Burma	F. Naggs	20
Trok Nong Area, Chantaburi, Thailand	S. Panha &	20
	C. Sutcharit	
Hahajima, Ogasawara/ Bonin Islands	A. Davison	12
University of the Philippines, Diliman,	I. Fontanilla	20
Quezon City, Philippines		
Los Baños, Philippines	M. Carandang	20
Singapore	M. Posa	20
Kota Kinabalu, Sabah, Malaysia	M. Schilthuizen &	20
	T. Liew	
Noumea, New Caledonia	C. Wade	21
Moaroa Valley, Tahiti, French Polynesia	T. Coote	5
Haapiti Valley, Moorea, French Polynesia	T. Coote	10
Kaneohe, Oahu, Hawaii	K. Hayes	20
Martinique	F. Adnai	20
(captive bred F1 population, Nancy,		
Lorraine, France)		
Barbados	A. Norville	12

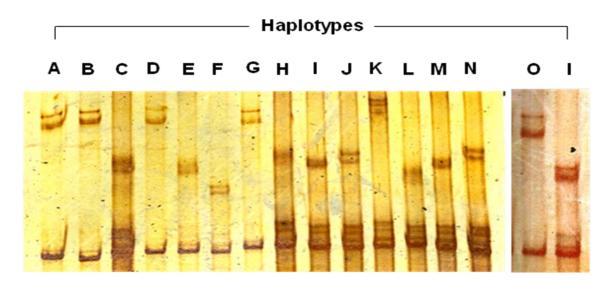
Table 5.1: Locality, collector and sample size of global populations of *Achatina fulica* used in the study

5.2.2. PCR and SSCP analysis using the 16S rRNA gene

Small tissue slices (approximately 8 mm³) were cut from the foot muscle of each snail and subjected to the NaOH direct lysis DNA extraction method for snails (Section 2.1.2 of Chapter 2, pp 39-40).

A 400 bp PCR fragment used for SSCP analysis can only detect 80% of single nucleotide differences whereas smaller fragments have an increased probability of the detection of differences (Sunnucks *et al.*, 2000). For the 16S rRNA gene, a primer pair, 16S1i and 16S_SSCP2i, was designed to produce a 293 bp fragment of domain IV of the post-transcribed 16S rRNA (Lydeard *et al.*, 2000). Note that primers 16S1i and 16S_SSCP2i bind to positions 781-802 and 1049-1068, respectively, of the 16S rRNA gene of *Cepaea nemoralis* (GenBank NC_001816). Details of the primer pair are shown in Table 2.5 of Chapter 2, p. 53.

The amplified PCR products were then subjected to SSCP analysis (Section 2.8 of Chapter 2, pp. 66-70). The bands in the native acrylamide gel were visualized using silver staining, after which haplotypes were identified and scored. Representative samples bearing unique haplotype gel profiles were checked for single nucleotide differences by re-amplifying the PCR product from the DNA sample and sequencing the amplified fragment. Both sense and anti-sense strands were sequenced directly using an Applied Biosystems 3730 DNA sequencer and BigDye version 3.1 termination cycle sequencing chemistry (Section 2.6 of Chapter 2, pp. 59-61). The sequences were subsequently assembled in the STADEN package version 1.5.3 (Staden *et al.*, 2000) and aligned manually within GDE Version 2.2 (Smith *et al.*, 1994).


5.2.3. Phylogenetic and network analyses of the 16S rRNA haplotypes

To determine the evolutionary relationships of the different 16S haplotypes, the best model for sequence evolution with optimized parameters was determined and an NJ tree was generated in PAUP* Version 4.0b10 package (Swofford, 2002) (see Section 2.9.8 of Chapter 2, p. 84). *Achatina reticulata* was used as an outgroup as this species had the smallest uncorrected distance to *A. fulica* based on the same 16S rRNA SSCP fragment (see Appendix 5.1, p. 523). A median joining network of the haplotypes (Bandelt *et al.*, 1999) was also drawn using the Network Version 4.502 program (http://www.fluxus-engineering.com).

5.3. Results

5.3.1. PCR and SSCP analysis of the 16S rRNA gene

PCR and SSCP analysis carried out on 382 snails from 19 populations yielded 15 unique 16S rRNA haplotypes (Figure 5.2).

Figure 5.2: Gel profiles of 15 haplotypes (labeled A – O) based on a 293 bp fragment in domain IV of the 16S rRNA gene. (Haplotype O was run on a separate gel alongside haplotype I, which was used as basis of comparison.) Samples were run on a 50% native polyacrylamide gel at 180 V for 24 hours. The bands were visualized by silver staining.

PCR-direct sequencing of the haplotypes revealed 17 variable sites (Figure 5.3).

Two of these sites (pos. 285-286) were found to be indels.

Nucleotide Position 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 4 0 0 4 5 5 5 5 9 0 1 5 8 8 8 8 9 2 2 6 5 1 5 6 8 7 5 7 8 1 2 5 6 Haplotype A GACCCATAATTAATTTT Haplotype B AG..... Haplotype C A.....G....-Haplotype D A....-AC.....G....-Haplotype E Haplotype F Haplotype G Haplotype H Haplotype I A.T..G.T.C.... A.T..G.T....A.-Haplotype J Haplotype K A.....G..--A.G..G.T.CC...--Haplotype L Haplotype M A.T..G.T.C....-Haplotype N A.T.TG.T...G...-Haplotype 0 A...T....A..-

Figure 5.3: Seventeen variable sites across the 15 haplotypes. The number shown above each site refers to the variable site based on the 16S rRNA SSCP fragment.

A summary of the frequency and distribution of these haplotypes is shown in Table 5.2 and Figure 5.4. Seven haplotypes were found in the two East African populations: Uganda with one haplotype (O) and Tanzania with six haplotypes (I, J, K, L, M, and N). Among the Indian Ocean islands, Mayotte yielded the highest number of haplotypes with six (A, B, C, D, G and H), three of which were also found in Mauritius (C, D and H) and one in Seychelles (C). However, of the haplotypes found in Africa and on the Indian Ocean islands, only haplotype C was found in the populations surveyed outside East Africa and the Indian Ocean islands, thus making type C the only pan-tropical haplotype. There was also one unique haplotype (E) detected in the Los Baños site in the Philippines where it was found in conjunction with haplotype C. Another unique haplotype (F) was found in New Caledonia in the Pacific and Barbados in the Caribbean where it was the only haplotype identified for both populations.

Locality	Sample size (& no. of haplotypes)	Haplotype name (& no. of individuals)
Kampala, Uganda	5 (1)	O (5)
Dar Es Salaam, Tanzania	38 (6)	I (11)
		J (1)
		K (12)
		L (10)
		M (2)
		N (2)
Mayotte	50 (6)	A (1)
		B (1)
		C (6)
		D (40)
		G (1)
		H (1)
Souillac, Mauritius	45 (3)	C (34)
		D (9)
		Н (2)
Mahe, Seychelles	2 (1)	C (2)
Bharatpur, Nepal	22 (1)	C (22)
Yangon, Myanmar/ Burma	20 (1)	C (20)
Trok Nong Area, Chantaburi, Thailand	20 (1)	C (20)
Hahasima, Ogasawara/ Bonin	12 (1)	C (12)
Quezon City, Philippines	20 (1)	C (20)
Los Baños, Philippines	20 (2)	C (17)
		E (3)
Singapore	20 (1)	C (20)
Kota Kinabalu, Sabah, Malaysia	20 (1)	C (20)
Noumea, New Caledonia	21 (1)	F (21)
Moaroa Valley, Tahiti, French Polynesia	5 (1)	C (5)
Haapiti Valley, Moorea, French Polynesia	10(1)	C (10)
Kaneohe, Oahu, Hawaii	20 (1)	C (20)
Martinique	20 (1)	C (20)
(captive bred F1 population, Nancy, Lorraine, France)		
Barbados	12 (1)	F (12)
TOTAL	382 (15)	A (1) I (11)
		B (1) J (1)
		C (248) K (12)
		D (49) L (10)
		E (3) M (2)
		F (33) N (2)
		G (1) O (5)
		H (3)

Table 5.2: Summary of the geographic distribution and frequency of the 16S rRNA haplotypes from *Achatina fulica* populations as evaluated by SSCP analysis.

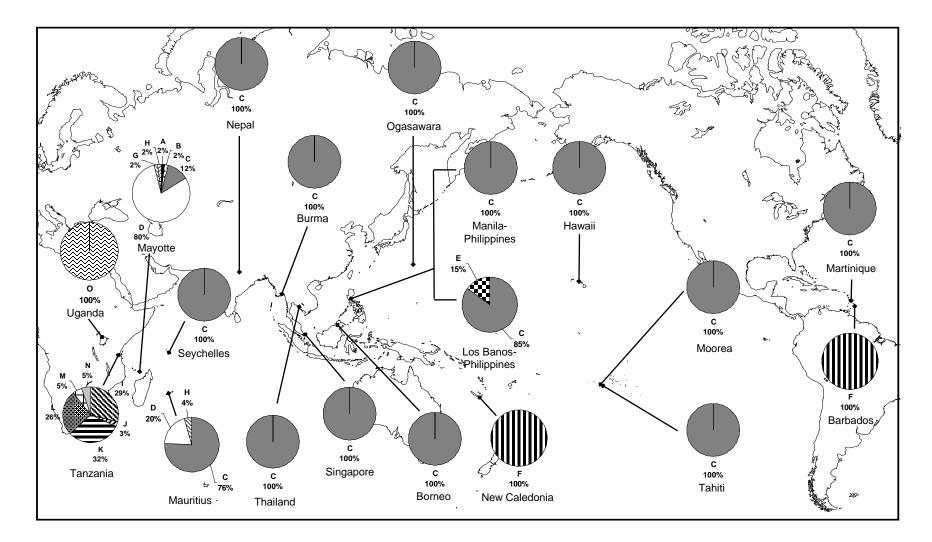
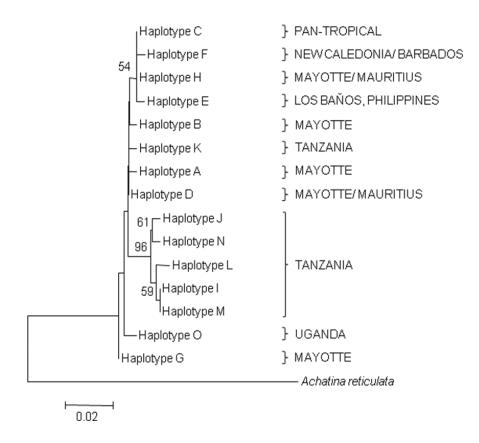



Figure 5.4: Distribution map of the 15 *Lissachatina fulica* populations and their 16S rRNA haplotypes.

5.3.2. Phylogenetic and network analyses of the 16S rRNA haplotypes

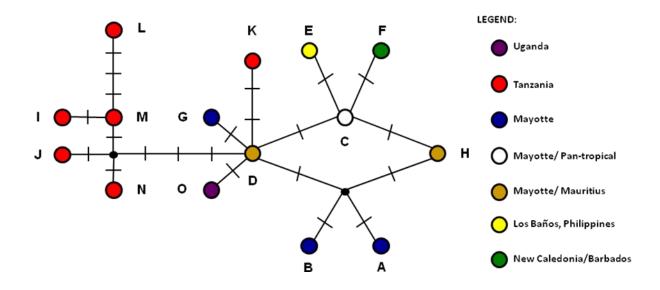

A neighbor-joining phylogenetic tree showing the interrelationships among the 15 haplotypes is shown in Figure 5.5 (see also alignment in Appendix 5.2, pp. 523-524). The tree was built using the optimal HKY85 model of DNA sequence evolution (see Appendix 5.3 for the LRT results, p. 525) and is rooted on *A. reticulata*. In general, there is very little phylogenetic structure within the tree and the interrelationships among the haplotypes remain largely unresolved. Nevertheless, two clades are apparent. The first comprises five of the six Tanzanian haplotypes (I, J, L, M and N) and is supported in 96% NJ bootstraps. The second comprises the pan-tropical (Mayotte) haplotype C, the East African (Mayotte) haplotype H, the Philippine haplotype E and the New Caledonian/Barbados haplotype F, albeit with only 54% NJ bootstrap support.

Figure 5.5: Neighbor-joining tree of the 15 *Achatina fulica* 16S rRNA haplotypes based on 293 unambiguously aligned nucleotide sites and using the optimal HKY model. The tree was rooted on the East African *Achatina reticulata*. Bootstrap values indicate the percentage support for individual branches based on 1000 replicates. Bootstrap values lower than 50% are not shown. The scale bar represents two substitutional changes per 100 nucleotide positions.

Median network analysis (Figure 5.6) showed that the Tanzanian haplotypes (I, J, L, M and N) that formed a clade in the NJ tree were also grouped together in the network analysis where they were linked to the Mayotte haplotype D with three substitutions. The Tanzanian haplotype K was also linked to haplotype D by two substitutional steps but was separated from the other Tanzanian haplotypes. Other haplotypes linked to the Mayotte haplotype D were the Ugandan haplotype O, Mayotte haplotype G and the pantropical (Mayotte) haplotype C with one substitutional step each. Mayotte haplotype H, in turn, was linked to haplotype C by one substitution. Mayotte haplotypes A and B probably originated independently by one substitutional

step from a hypothetical haplotype, which, in turn, was probably only one substitutional step away from either D or H. The non-African haplotypes (E and F) arose through a single mutation each from the pantropical (Mayotte) haplotype C.

Figure 5.6: Median-joining network of the 15 *Achatina fulica* 16S haplotypes. Each mutation between haplotypes is represented by a bar. Unsampled putative haplotypes are represented by black dots.

5.4. Discussion

Results of the SSCP analysis, NJ tree and median-joining network indicated that all *Achatina fulica* populations outside East Africa and adjacent islands descended from haplotype C, presumably from a few individuals, as there is a complete absence of any other East African haplotypes among the non-African populations. Multiple introductions that could offset the lack of genetic variation as a consequence of founder events were therefore not detected. In India in particular, historical records suggest that the prevalence of *Achatina fulica* could be traced back to the introduction of two individuals from Mauritius to Calcutta by the malacologist William Benson in 1847 (Naggs, 1997). These snails were released by Benson's friend into his garden (Naggs,

1997) and then began to proliferate and slowly spread to the rest of India and later to Nepal (Raut & Barker, 2002; Budha & Naggs, 2008). Though samples were not available from India, particularly from Calcutta, they are expected to bear haplotype C because the population from Nepal also harbored this haplotype. Haplotype C was also the most common haplotype found in Mauritius, the source of Benson's A. fulica. The Giant African Land Snail was introduced separately to Sri Lanka from India and Mauritius by Oliver Collett sometime in 1900 (Mead, 1961; Naggs, 1997), and it would be worthwhile to investigate if A. *fulica* individuals in that island are also of the C haplotype or if they harbor other African haplotypes. It is highly likely, however, that the Sri Lankan A fulica would carry the C haplotype as the snail populations from Peninsular Malaysia were derived from Sri Lanka, and Peninsular Malaysia, in turn, became the source of the snail for Burma, Singapore and Thailand (Mead, 1961), all of which bear the C haplotype; Singapore also became the source of the snail for Borneo (Jarrett, 1931), and the population there also carried the C haplotype. A similar case to India also took place in Hawaii where the snails descended from two individuals introduced there from Taiwan (Formosa) in 1936 (Pemberton, 1938), which in turn got the snail from Singapore after 1917 (Mead, 1961). As the A. fulica populations in Hawaii and Singapore are of the C haplotype, A. fulica populations in Taiwan would therefore also be expected to harbor the C haplotype.

The median-joining network demonstrated that the non-African haplotypes E (Philippines) and F (New Caledonia and Barbados) were probably recent mutations and were derived from haplotype C. To date, haplotype E has only been found in the Philippines where it is present alongside the pantropical haplotype C. It is therefore likely that haplotype E originated in the Philippines and since we know that *Achatina fulica* was introduced in the Philippines in 1931 (Muniappan *et al.*, 1986) this would

suggest that the single nucleotide substitution from C to E took place within the last 70 years or so.

The presence of F in areas that are far apart from each other such as New Caledonia in the Pacific and Barbados in the Caribbean would indicate that either both areas had the same source or that the snails from Barbados originated from New Caledonia as the snail was introduced earlier in New Caledonia (Lambert, 1974). A less likely possibility is that haplotype F arose independently by mutation in both places. Further sampling in New Caledonia would determine if the mutation from C to F took place there or elsewhere. To date, only haplotype F has been found in New Caledonia but so far sampling has been restricted to a single site in Noumea.

The relationship of the East African haplotypes from Tanzania and Uganda with Mayotte is less clear due to limited sampling in the region. It is believed that the Giant African Land Snail was introduced first in Madagascar from Kenya prior to 1800, and it is these Madagascan *A. fulica* snails that were eventually introduced to nearby islands (Bequaert, 1950; Raut & Barker, 2002) such as Mayotte. This raises some very important questions. Is haplotype C found in Madagascar and mainland East Africa? If so, then this would suggest that C was originally present in East Africa and was brought to nearby islands such as Mayotte. If C is *not* present in mainland East Africa, then this would indicate that this haplotype originated on islands off East Africa, possibly on Madagascar or indeed even on Mayotte itself. This question also applies to the other Mayotte haplotypes. Are they also found in Madagascar is necessary in order to answer these questions and get a clearer picture of the pattern of genetic variation in *A. fulica* populations in East Africa.

The use in this study of a single mitochondrial gene marker such as the 16S rRNA was sufficient to show that all the non-African *Achatina fulica* populations were very closely related and are undergoing bottlenecking as measured by the reduction or loss of genetic variation due to founder events. Whether or not this observation extends to other genes warrants further investigation. Using different markers to measure genetic variation can lead to conflicting results because these markers evolve independently of each other or may have varying degrees of sensitivity. This was proven to be the case when the effectiveness of various molecular markers on native and introduced North American house finches (*Carpodacus mexicanus*) were compared. Hawley *et al.* (2008) found that AFLP, mitochondrial DNA RFLP and allozyme markers did not show statistically significant difference in the degree of variability between introduced and native finches whereas 12 microsatellite loci and ND2 mitochondrial markers be used in conjunction with multi-locus variable nuclear microsatellite markers to detect the presence of recent bottlenecks.

Whether the lack of genetic variation has any effect on the overall fitness of the *A. fulica* populations is another matter altogether. Mead (1979) noted that the snail frequently undergoes three phases after establishment in a new area: (1) an exponential increase characterized by large individuals; (2) a stable phase of variable duration; and (3) decline exemplified by small individuals. Civeyrel and Simberloff (1996) also cited similar patterns in other introduced species; these include the cane toad (*Bufo marinus*) in Australia, the red-billed leiothrix (*Leiothrix lutea*) in Oahu, Hawaii and the weasel (*Mustela nivalis*) in New Zealand. Mead (1979) speculated that the decline in *A. fulica* could be attributed to the snail's susceptibility to the bacterium *Aeromonas hydrophila*, which causes leucodermic lesions. He based his theory on a study by Dean *et al.* (1970)

in which the bacterium, then called Aeromonas liquefaciens but was later synonymised with Aeromonas hydrophila by Ewing & Hugh (1974), was isolated from the snails and a positive correlation was detected between the presence of the bacteria and the manifestation of leucodermic lesions. What leads to the susceptibility is unknown, but Raut & Barker (2002) cited two possible explanations. One is the breakdown of natural resistance caused by stress in a densely populated environment (Mead, 1979) and the other is the increased chance of transmission of the bacterium due to crowding (Civeyrel & Simberloff, 1996). An alternative explanation is the depletion of food supply as a result of high population density, leading to starvation of the snails and tmaking them more susceptible to bacterial infection (Civeyrel & Simberloff, 1996) or to any other disease-causing vector. Cowie (pers. comm.) offered yet another explanation in which he speculated that native and genetically diverse populations of A. fulica were naturally neither abundant nor large because they harboured the bacterium (or other disease agent). When the introduced populations were released from the disease agent pressure, it allowed them to become abundant and larger; eventually, however, the disease made its way to the new region and re-associated with the snails, reducing population density and snail size.

Whether or not the decline phenomenon observed in introduced Achatina fulica populations in many areas across the globe is a consequence of founder events is difficult to say. It should be noted that in general, the loss of genetic variation (i.e. heterozygosity and presence of rare alleles) may seriously affect the ability of future generations to adapt to changing environments and subsequently trigger a decline (Backeljau *et al.*, 2001). This was seen in the house finch, *Carpodacus mexicanus*, in which resistance to experimentally infected *Mycoplasma gallispectum* is associated with increasing multilocus heterozygosity in 12 microsatellites (Hawley *et al.*, 2005). This

led Hawley *et al.* (2008) to speculate that the susceptibility of the house finch to the bacterium in its introduced range in eastern North America, the site of an epidemic in 1994, could be attributed to the reduced genetic variation of the introduced populations as a consequence of founder events. Indeed, their study (2008) revealed reduced genetic variability among the introduced populations of *C. mexicanus* as demonstrated by microsatellite and mitochondrial DNA data. A similar situation could also be taking place among global populations of *A. fulica* in which reduced heterozygosity or variability due to founder events could lead to susceptibility to bacteria or other disease-causing agents in the Giant African Land Snail.

As already mentioned in previously, this study is limited by the availability of sampling, and many crucial areas were not covered, particularly from East Africa (i.e. Kenya and Madagascar), the Indian subcontinent (Calcutta in India and Sri Lanka) and even in the Caribbean and South America (Brazil). The logical next step is to gather samples from these localities. Sampling from Kenya and Madagascar will most likely provide additional haplotypes not found in Uganda, Tanzania and Mayotte, which could give a clearer picture of the pattern of genetic variation in East Africa. Samples from Calcutta in India would determine if indeed the snails in India descended from two haplotype C individuals (if only C are found) or if multiple introductions took place (if other haplotypes are found). Likewise, samples from Sri Lanka would determine whether other haplotypes are present on the island, which could indicate more than one introduction. Sri Lanka is crucial as it served as a source of the Giant African Land Snail for some countries like Malaysia that ultimately became the source for many other countries. Additional sampling from the other Caribbean islands such as Guadeloupe could show if other areas also harbor haplotype F and if introduction occurred from different sources. The presence of A. fulica in Brazil is a result of recent introduction to raise snails for food (Paiva, 1999; Carvalho de Vasoncellos & Pile, 2001; Thiengo *et al.*, 2007) and was probably derived from Indonesia (Thiengo *et al.*, 2007). Sampling from either Brazil or Indonesia will determine whether the pantropical haplotype C is also present in these areas or whether the populations in these areas comprise other haplotypes. Other South American countries such as Colombia, Ecuador and Peru are also worth investigating to track the spread of the snail in the continent.

5.5. Summary

The extent of genetic diversity in *Achatina fulica* populations was investigated using single-stranded conformational polymorphism (SSCP) analysis. A fragment of the 16S rRNA gene found within the variable domain IV was used as marker for the SSCP analysis. Fifteen haplotypes were identified from populations of *A. fulica*, but only haplotype C emerged to spread across the globe. Two non-African haplotypes (E from the Philippines and F from New Caledonia and Barbados) were recent mutations derived from haplotype C as shown by the neighbor-joining phylogenetic and medianjoining network analyses. Non-East African populations of *A. fulica* therefore exhibited a lack of genetic variation based on the 16S rRNA marker, implying bottlenecking has taken place in these populations.

5.6. Literature cited:

- Avise, J.C., Arnold, J., Ball, R.M., Bermingham, E., Lamb, T., Neigel, J.E., Reeb, C.A. and Saunders, N.C. 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics 18: 489-522.
- Backeljau, T., Baur, A. and Baur, B. 2001. Population and conservation genetics. *In*: Barker, G.M. (ed.), <u>The Biology of Terrestrial Molluscs</u>. CABI Publishing, UK, pp. 383-412.
- Bandelt, H.J., Forster, P. and Rohl, A. 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution **16**: 37-48.

- Bequaert, J.C. 1950. Studies on the Achatinidae, a group of African land snails. Bulletin of the Museum of Comparative Zoology, Harvard **105**: 1-216.
- Borrero, F.J., Breure, A.S.H., Christensen, C.C., Correoso, M. and Avila, V.M. 2009. Into the Andes: three new introductions of *Lissachatina fulica* (Gastropoda, Achatinidae) and its potential distribution in South America. Tentacle **17**: 6-8.
- Brown, W.M. 1985. The mitochondrial genome of animals. *In:* MacIntyre, R.J. (ed.), <u>Molecular Evolutionary Genetics</u>. Plenum Press, New York, pp. 95-130.
- Budha, P. and Naggs, F. 2008. The Giant African Land Snail in *Lissachatina fulica* (Bowdich) in Nepal. The Malacologist **50**: 19-21.
- Carvalho de Vasconcellos, M. and Pile, E. 2001. Ocorrencia de *Achatina fulica* no Vale do Paraiba, Estado do Rio de Janeiro, Brasil. Revista Saude Publica **35**(6): 582-584.
- Civeyrel, L and Simberloff, D. 1996. A tale of two snails: is the cure worse than the disease? Biodiversity and Conservation 5: 1231-1252.
- Cowie, R.H. and Robinson, D.G. 2003. Pathways of introduction of nonindigenous land and freshwater snails and slugs. *In*: Ruiz, G. & Carlton, J.T. (ed.), <u>Invasive</u> <u>Species: Vectors and Management Strategies</u>. Island Press, Washington, D.C., pp. 93-122.
- Davison, A. 2000. An east-west distribution of divergent mitochondrial haplotypes in British populations of the land snail, *Cepaea nemoralis* (Pulmonata). Biological Journal of the Linnean Society **70**: 697-706.
- Dean, W.W., Mead, A.R. and Northy, W.T. 1970. *Aeromonas liquefaciens* in the Giant African Land Snail, *Achatina fulica*. Journal of Invertebrate Pathology **16**: 346-351.
- Dlugosch, K.M. and Parker, I.M. 2008. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Molecular Ecology **17**: 431-449.
- Ewing, W.H. and Hugh, R. 1974. Aeromonas. In: Lennette, E.H., Spaulding, E.H. and Truant, J.P. (ed.), <u>Manual of Clinical Microbiology</u>, 2nd ed. American Society of Microbiology, Washington, D.C., pp. 230-237.
- Fields, H.A., Gibbs, I. and Taylor, B. 2006. Colonization of Barbados by the Giant African Snail, *Achatina fulica* Bowdich 1822. Journal of the Barbados Museum and Historical Society **LII**: 233-241.
- Gittenberger, E., Piel, W.H. and Groenenberg, D.S.J. 2004. The Pleistocene glaciations and the evolutionary history of the polytypic snail species *Arianta arbustorum* (Gastropoda, Pulmonata, Helicidae). Molecular Phylogenetics and Evolution **30**: 64-73.
- Hawley, D.M., Sydenstricker, K.V., Kollias, G.V. and Dhondt, A.A. 2005. Genetic diversity predicts pathogen resitance and cell-mediated immunocompetence in house finches. Biology Letters 1: 326-329.
- Hawley, D.M., Briggs, J., Dhondt, A.A. and Lovette, I.J. 2008. Reconciling molecular signatures across markers: mitochondrial DNA confirms founder effect in invasive North American house finches (*Carpodacus mexicanus*). Conservation Genetics 9: 637-643.
- Jarrett, V.H.C. 1931. The spread of the snail *Achatina fulica* to South China. The Hong Kong Naturalist **II**(4): 262-264.
- Kliks, M.M. and Palumbo, N.E. 1992. Eosinophilic meningitis beyond the Pacific Basin: the global dispersal of a peridomestic zoonosis caused by *Angiostrongylus cantonensis*, the nematode lungworm of rats. Social Science & Medicine **34**(2): 199-212.

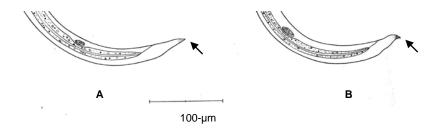
- Kolbe, J.J., Glor, R.E., Schettino, L.R., Lara, A.C., Larson, A. and Losos, J.B. 2007. Multiple sources, admixture, and genetic variation in introduced anolis lizard populations. Conservation Biology 21(6): 1612-1625.
- Lambert, M. 1974. L'escargot geant africain *Achatina fulica* dans les iles du Pacifique. Bulletin de la Commission du Pacifique Sud **24**: 37-42.
- Lowe, S., Browne, M. and Boudejas, S. 2000. <u>100 of the World's Worst Invasive</u> <u>Alien Species</u>. <u>A selection from the Global Invasive Species Database</u>. Invasive Species Specialisty Group, IUCN, Auckland, 12 pp.
- Lydeard. C., Holznagel, W.E., Schnare, M.N., and Gutell, R.R. 2000. Phylogenetic analysis of molluscan mitochondrial LSU rDNA sequences and secondary structures. Molecular Phylogenetics and Evolution **15**(1): 83-102.
- Marquardt, W.C., Demaree, R.S. and Grieve, R.B. 2000. <u>Parasitology and Vector</u> <u>Biology, 2nd ed.</u> Academic Press, San Diego, California, U.S.A., 702 pp.
- Mead, A.R. 1961. <u>The Giant African Land Snail: A Problem in Economic Malacology</u>. University of Chicago Press, U.S.A., 257 pp.
- Mead, A.R. 1979. <u>Pulmonates, Vol. 2B: Economic Malacology with Particular</u> <u>Reference to Achatina fulica</u>. Academic Press, London, 150 pp.
- Muniappan, R., Duhamel, G., Santiago, R.M. and Acay, D.R. 1986. Giant African Land Snail control in Bugsuk island, Philippines, by *Platydemus manokwari*. Oleagineux **41**: 183-188.
- Naggs, F. 1997. William Benson and the early study of land snails in British India and Ceylon. Archives of Natural History **24**(1): 37-88.
- NAPPO-PAS. 2008. First report of Giant African Snail (*Achatina* fulica) in Antigua. North American Plant Protection Organization's Phytosanitary Alert System. http://www.pestalert.org/viewNewsAlert.cfm?naid=58.
- Novack, S.J. and Mack, R.N. 1993. Genetic variation in *Bromus tectorum* (Poaceae): comparison between native and introduced populations. Heredity **71**: 167-176.
- Paiva, C.L. 1999. Introducao de Achatina fulica (Mollusca, Achatinidae) no Brasil: responsabilidade profissonal e informacao t, cnica. In: Bovi, M.L.A., Betti, J.A., Veiga, R.F.A. (ed.) <u>Encontro sobre Educacao Ambiental na Agricultura</u>. Campinas, Instituto Agron'mico, Brasil.
- Palumbi, S.R. 1996. Nucleic Acids II: The Polymerase Chain Reaction. In: Hillis, D.M., Moritz, C. and Mable, B.K. (ed.), <u>Molecular Systematics</u>, 2nd ed. Sinauer Associates, Inc., USA, pp. 205-247.
- Pemberton, C.E. 1938. The giant African snail *Achatina fulica* discovered in Hawaii. Hawaiian Planters Record **42**: 135-140.
- Pinceel, J., Jordeans, K., Van Houtte, N., Bernon, G. and Backeljau, T. 2005. Population genetics and identity of an introduced terrestrial slug: Arion subfuscus s.l. in the north-east USA (Gastropoda, Pulmonata, Arionidae). Genetica 125: 155-171.
- Raut, S.K. and Barker, G.M. 2002. Achatina fulica Bowdich and Other Achatinidae as Pests in Tropical Agriculture. In: Barker, G.M. (ed.), <u>Molluscs as Crop Pests</u>. CABI Publishing, Hamilton, New Zealand, pp. 55-114.
- Rawlings, T.A., Hayes, K.A., Cowie, R.H. and Collins, T.M. 2007. The identity, distribution, and impacts of non-native apple snails in the continental United States. BMC Evolutionary Biology **7**:97.
- Schotman, C.Y.L. 1989. Data sheet on the Giant African Land Snail Achatina fulica Bowdich (Mollusca: Achatinidae). In: PROVEG No. 19. FAO Regional Office of Latin America and the Caribbean Plant Quarantine Action Program, pp. 16-21.

- Smith, S.W., Overbeek, R., Woese, C.R., Gilbert, W. and Gillevet, P.M. 1994. The genetic data environment, an expandable GUI for multiple sequence analysis. Computer Applications in the Biosciences **10**: 671-675.
- Staden, R. Beal, K.F. and Bonfield, J.K. 2000. The Staden package, 1998. Methods in Molecular Biology **132**: 115-130.
- Sunnucks, P., Wilson, A.C.C., Beheregaray, L.B., Zenger, K., French, J. and Taylor, A.C. 2000. SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology. Molecular Ecology 9: 1699-1710.
- Swofford, D.L. 2002. PAUP* 4.0b10, Sinauer Associates, Sunderland, MA.
- Thiengo, S.C., Faracas, F.A., Salgado, N.C., Cowie, R.H. and Fernandez, M.A. 2007. Rapid spread of an invasive snail in Brasil. Biological invasions **9**: 693-702.
- Tran Chuong, T., Hayes, K.A. and Cowie, R.H. 2008. Lack of mitochondrial DNA diversity in invasive apple snails (Ampullariidae) in Hawaii. Malacologia **50**(1): 351-357.

CHAPTER 6 - The SSU rRNA gene as a genetic marker for identifying infective 3rd juvenile stage *Angiostrongylus cantonensis* from known gastropod intermediate hosts¹

6.1. Introduction

The rat lungworm, *Angiostrongylus cantonensis* (Chen), is a nematode parasite of murid rodents (Ubelaker, 1986; Marquardt *et al.*, 2000). Its life cycle requires invertebrate intermediate hosts such as snails and slugs (Roberts & Janovy, 2005). The lungworm can also accidentally infect humans where it causes eosinophilic meningoencephalitis (EME) or neurologic angiostrongyliasis, a disease of the central nervous system that leads to headache, vomiting, nausea, neck stiffness and photophobia (Kliks & Palumbo, 1992; Senanayake *et al.*, 2003; see also Section 1.8.5 of Chapter 1, pp. 26-28). Humans become infected with the 3rd juvenile stage *A. cantonensis* by handling infected snails (Wan & Weng, 2004) or by eating raw/undercooked infected snails or contaminated salad crops (Marquardt *et al.*, 2000). Reported cases of gastropod, rat and human infection reflect the wide geographic distribution of *A. cantonensis*, from East Africa and Madagascar to the Indian subcontinent, East and Southeast Asia, Australia, most islands in the Pacific (Kliks & Palumbo, 1992; Marquardt *et al.*, 2000) and the Caribbean (Raccurt *et al.*, 2003; Waugh *et al.*, 2005).


¹ This chapter was published as "Fontanilla, I.K.C. and Wade, C.M. 2008. The small subunit (SSU) ribosomal (r) RNA gene as a genetic marker for identifying infective 3rd juvenile stage *Angiostrongylus cantonensis*. Acta Tropica 105: 181-186."

6.1.1. Problems with identifying nematodes: the angiostrongylids as examples

Accurately identifying medically important nematodes such as *A. cantonensis* is crucial in diagnosing and controlling the diseases that they cause (Gasser & Newton, 2000). However, it is difficult to identify worms to species level due to a lack of suitable morphological characters in both the adult (Newton *et al.*, 1998a; Roberts & Janovy, 2005) and, more importantly, the infective juvenile stages (Newton *et al.*, 1998a). Some examples of these medically important nematodes include various species of the hookworm *Ancylostoma* as well as the other hookworm *Necator americanus*, in which the juveniles of these worms, which are difficult to distinguish from one another, infect humans either through the oral route or by penetration of the skin and cause hookworm disease. Other examples include different species of *Strongyloides*, most notably *S. stercoralis*, whose juveniles infect humans by contact through contaminated water or soil and cause strongyloidiasis, leading to damage of the skin, lungs and intestines; juveniles of *Strongyloides* are also difficult to detect and identify (Roberts & Janovy, 2005).

Identification of members of the order Strongylida such as the angiostrongylids relies heavily on expert knowledge of the morphological characteristics of the copulatory bursa found only in adult males, which it uses to wrap around the body of the female during copulation (Newton *et al.*, 1998a; Roberts & Janovy, 2005). For example, adult *A. cantonensis* can only be distinguished from the closely related species *A. vasorum* (Baillet) by differences in the copulatory bursa; in *A. cantonensis* the lateral rays arise from a single trunk whereas in *A. vasorum* the lateral rays arise separately (see Fig. 1.3 in Chapter 1, p. 23) (Ubelaker, 1986). Complicating the identification of nematodes is the ambiguity of morphological characters of the juvenile worms (Newton *et al.*, 1998a). For instance, the infective 3rd juvenile stages of *A. cantonensis* and *A.*

vasorum are differentiated only through the fine point termination of the tail of the former and the digitiform termination of the tail in the latter (Ash, 1970, see Fig. 6.1). Whether juveniles of other *Angiostrongylus* species can also be distinguished based on differences in the tail is not known, and some of these species may possibly exhibit similar tail terminations to those of either *A. cantonensis* or *A. vasorum*. In order to identify these juvenile angiostrongylids with certainty, they must be fed to laboratory mice until such time the adults can be observed (Wallace & Rosen, 1969). However, this process takes time, is tedious and does not guarantee that all the juveniles will mature into adults. A viable alternative is clearly needed to identify the 3rd juvenile stage *A. cantonensis*.

Figure 6.1: Posterior portion of the infective third juvenile stage of (**A**) *Angiostrongylus cantonensis* and (**B**) *Angiostrongylus vasorum*. Arrows indicate the type of termination of the tail for each nematode (e.g. fine point for *A. cantonensis* and digitiform, not fine point for *A. vasorum*). Taken from Ash (1970).

6.1.2. Identifying nematodes using molecular markers

In lieu of morphological expertise, the problem of identifying nematodes accurately and rapidly can be addressed by using various molecular genetic markers that are applicable at any stage of a nematode's development. Examples of these molecular markers are nuclear genes such as the ribosomal RNA genes and their internal transcribed spacers (ITS) (Newton *et al.*, 1998a; Gasser, 1999; Floyd *et al.*, 2002; Blaxter *et al.*, 2005) and mitochondrial genes like cytochrome c oxidase I (Caldeira *et*

al., 2003; Hebert *et al.*, 2003; Blaxter *et al.*, 2005). Using these markers requires PCR-based techniques that include polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP) analysis and PCR-direct sequencing (Gasser, 1999).

In PCR-RFLP, PCR products from DNA target regions are digested by restriction enzymes. Depending on the sequence variations within the restriction sites that may result in either their recognition or non-recognition by restriction enzymes, fragments of varying lengths will be produced among different species. Through gel electrophoresis, each species can potentially generate a unique banding profile based on these fragments (Gasser, 1999). Newton et al. (1998a) employed this technique on the ITS-2 region between the 5.8S and the large subunit (LSU) ribosomal (r) RNA genes to characterize 24 previously described nematode species in the order Strongylida that parasitise livestock. The banding patterns they obtained from both adults and 3rd stage juveniles were unique for each of the species they surveyed except for Cooperia oncophora and C. surnabada. The ITS-2 can therefore be used to identify most of these parasites at specific developmental stages at which morphological characters are ambiguous. In another study, Caldeira et al. (2003) also used PCR-RFLP on the ITS2 as well as the mitochondrial cytochrome c oxidase subunit 1 to distinguish closely related taxa in the Angiostrongylidae such as A. cantonensis, A. costaricensis and A. *vasorum* using 3^{rd} stage juveniles and adults. However, this technique cannot detect nucleotide substitutions outside the restriction site. Closely related species may share restriction sites but differ outside these restriction sites, thereby producing identical banding patterns after gel electrophoresis.

A more reliable molecular method of identifying nematodes is direct sequencing (Bhadury *et al.*, 2006). The ribosomal genes, which are advantageous for several reasons, have often been used for this purpose. First, they consist of highly variable and

phylogenetically informative regions interspersed with conserved regions that are suitable for primer-binding sites (Palumbi, 1996). Second, they are present as multiple copies of the same sequence (~50-100 copies in nematodes) arranged in tandem arrays across the genome, thus making them easier to PCR amplify (Floyd et al., 2002). Finally, they show very little variation within a species due to concerted evolution (Gasser & Newton, 2000; Floyd et al., 2002). When Newton et al. (1998a) generated the same banding profile for Cooperia oncophora and C. surnabada using PCR-RFLP of the ITS-2, they sequenced this region and discovered that these two taxa have identical sequences, which supports their hypothesis that they may in fact belong to the same species (Newton et al., 1998b). In another example, Bhadury et al. (2006) employed a marker near the 5' end of the SSU rRNA gene to rapidly identify marine nematodes collected from southwest England. When they compared their sequences to public databases and conducted phylogenetic analyses, over 97% of their sequences corresponded with the correct species designation based on their morphological identification, and they concluded that amplifying and sequencing a specific region of the SSU rRNA gene could be utilized to rapidly identify nematodes. They accounted for the 3% misidentification either as DNA contamination or distortion of morphological features during ethanol preservation of the nematodes. In another study, Santos et al. (2006) successfully employed direct sequencing of the SSU rRNA to detect and identify nematode species in the family Anisakidae (i.e. Anisakis simplex, Contraceacum maculates, Pseudoterranova decipiens and Hysterothylacium aduncus) that parasitise the commercially important sardine Sardina pilchardus. Humans get infected by the juvenile stages of these nematodes by eating raw or inadequately processed fish. Still other studies by Qvarnstrom et al. (2007) and Hollingsworth et al. (2007), which were done concurrently with this study, used a 1134 bp fragment of the

SSU to successfully detect by direct sequencing the presence of *A. cantonensis* from tissue and mucus secretions from gastropod intermediate hosts, primarily the semi-slug *Parmarion* cf. *martensi* in Hawaii. However, only *A. cantonensis* (Carreno & Nadler, 2003) and *A. vasorum* (Chilton *et al.*, 2006) SSU sequences were available to Qvarnstrom *et al.* (2007) and Hollingsworth *et al.* (2007), and their studies were therefore unable to exclude the possibility of detecting other closely related *Angiostrongylus* species. Moreover, sequencing the entire SSU rRNA gene to identify nematodes is not practical if a shorter fragment will suffice. Floyd *et al.* (2002) noted that 50% of the variations found in the SSU rRNA gene of nematodes occur in the first one third from the 5' end (approximately 450 bp), and sequences available for this region for many nematodes in GenBank could distinguish different species. They also considered individuals to belong to the same species if their sequences of the 5' end of the SSU rRNA gene are more than 99.5% identical.

6.1.3. Objectives of the study

The main objective of this study was to develop a quick and reliable molecular method for the identification of infective 3rd juvenile stage *Angiostrongylus cantonensis* based on PCR-direct sequencing a fragment of the small subunit (SSU) ribosomal (r) RNA gene. The SSU rRNA gene was chosen because it is well represented in nematodes in public databases (Floyd *et al.*, 2002) and is variable enough to permit differentiation of closely related nematode species (Gasser & Newton, 2000). The SSU sequence of *A. cantonensis* (voucher specimen no. 92610 of the US National Parasite Collection; identified using published descriptions) became available in Genbank during the course of my PhD studies (Accession AY295804, Carreno & Nadler, 2003) while that of *A. vasorum* (Accession AJ920365, Chilton *et al.*, 2006)

became available after I had already sequenced another individual from the same species (see below). However, there are no full length SSU sequences for many other closely related species that could be mistaken for A. cantonensis. To ascertain whether the SSU rRNA gene is indeed suitable to distinguish A. cantonensis, the full length SSU for several species of Angiostrongylus was sequenced and a suitable variable marker region within the gene determined. In particular, species closely related to A. cantonensis were chosen, such as those grouped together by Ubelaker (1986) under Parastrongylus based on the morphological characteristics of the male copulatory bursa and host specificity. To test the efficacy of the marker for identifying the 3rd juvenile stage A. cantonensis, worms were extracted and identified from gastropod intermediate hosts from a trial area, the Philippines, particularly in Manila, which is known for its prevalence of the parasite (De Leon & Saulog, 1965; Nishimura & Yogore, 1965) and its suburb Quezon City (Salazar & Cabrera, 1969). Furthermore, Salazar & Cabrera (1969) positively identified 3rd juvenile stage A. cantonensis in several gastropod intermediate hosts such as the widespread giant African land snail, Achatina fulica (with an infection rate of 4.52%), and the common black slug Laevicaulis alte (18.18%) infected).

As this study resulted in new SSU sequences for several *Angiostrongylus* species, and with two other angiostrongylid SSU sequences already available in GenBank (Carreno & Nadler, 2003; Chilton *et al.*, 2006), a second objective was to conduct phylogenetic analyses of the Angiostrongylidae. These analyses had a dual purpose: to test the monophyly of the group as well as to test Ubelaker's (1986) hypothesis that some members of the genus *Angiostrongylus*, including *A. cantonensis*, are distinct and should be reclassified under the genus *Parastrongylus*.

303

6.2. Materials and methods

6.2.1. Sequence variation in angiostrongylid worms

Nearly the entire length of the SSU rRNA gene was obtained for four species of Angiostrongylidae: *Angiostrongylus costaricensis, A. dujardini, A. malaysiensis* and *A. vasorum.* These species were identified, based on published descriptions of the morphological characters of the adult and their definitive hosts, by the taxonomic experts listed in Table 6.1

Table 6.1: Detailed information of the angiostrongylid worms used in this study.

Specimen	Host	Location	Collector/Provider
Angiostrongylus costaricensis	Sigmodon hispidus	Maintained in the	Akira Ishih
	(cotton rat) &	Department of	
	Biomphalaria glabrata	Parasitology,	
	(blood fluke planorbid	Hamamatsu University	
	snail)	School of Medicine,	
		Japan	
Angiostrongylus dujardini	Clethrionomys glareolus	Prades, Pyrenees-	Serge Morand &
	(red-backed mouse)	Orientales, France	Carlos Feliu
Angiostrongylus malaysiensis	Rattus tiomanicus	Endau-Rompin	Siti Nursheena Mohd
	(Malaysian field rat)	National Park, Johor,	Zain
		Malaysia	
Angiostrongylus vasorum	Vulpes vulpes	Swansea, Great Britain	Eric Morgan
	(common fox)		-

With the exception of *A. vasorum*, the DNA of which was provided by Eric Morgan of the University of Bristol School of Biological Sciences, all other samples were subjected to DNA extraction following the NaOH direct lysis protocol of Floyd *et al.* (2002) (see Section 2.1.4 of Chapter 2, pp. 41-42).

For the PCR, the 4 overlapping primer sets (see Section 2.2.1.2 of Chapter 2, pp. 53-54) of Blaxter *et al.* (1998) were used to amplify nearly the entire fragment (approximately 1670 nucleotides) of the SSU rDNA gene. PCR amplification, gel

migration and purification of PCR products from agarose gels were done as previously described (see Sections 2.2.1.2 – 2.4 of Chapter 2, pp. 53-59). Both sense and antisense strands were sequenced directly using an Applied Biosystems 3730 DNA sequencer and BigDye version 3.1 termination cycle sequencing chemistry (see Section 2.6 of Chapter 2, pp. 59-61).

Sequences were assembled using the STADEN package version 1.5.3 (Staden *et al.*, 2000) and aligned manually within the Genetic Data Environment (GDE) Version 2.2 (Smith *et al.*, 1994) together with the previously published SSU sequence of *Angiostrongylus cantonensis* (Carreno & Nadler, 2003). The primer set that amplified the most variable region that is also unique to *A. cantonensis* was chosen to identify the parasite.

6.2.2. Using the SSU rRNA gene to identify *Angiostrongylus cantonensis* in a trial population

The widely distributed Giant African Land Snail, *Achatina fulica*, and the black slug *Laevicaulis alte* were sampled for *A. cantonensis* from a grassy area within the College of Science complex at the University of the Philippines, Diliman campus in Quezon City, Philippines (samples collected by I. Fontanilla). *Angiostrongylus cantonensis* is common in Manila and its suburb Quezon City. Moreover, as rats frequent the Dilman collection site, snails and slugs were highly likely to be infected with *A. cantonensis*.

Snails and slugs were cut into small pieces and digested overnight in a Petri dish containing Ash's (1970) digestive fluid (0.7% pepsin in 0.5% HCl). Individual nematodes were collected under a dissecting microscope using a yellow-tipped pipette

(20-200- μ l capacity) and transferred into wells containing 100- μ l TE buffer in a 96-well microtitre plate. The worms were then stored in a -20 0 C freezer until use.

DNA extraction, PCR amplification and direct sequencing were undertaken for each nematode using the same protocols described in Section 6.2.1 except that only the primer set that amplified the most variable region among the *Angiostrongylus* species was used (Primer Set A – see results). In cases in which the PCR amplifies products from both the nematode and the snail or slug host, the nematode band can be clearly distinguished as it is smaller (~480 bp) than the snail/slug host band (~510 bp). Once the purified PCR products were obtained, only the antisense strand (amplified by SSU_R09 of Set A) was directly sequenced.

Nematode sequences were processed using the STADEN package, after which distinct nematode sequences were identified and a BLAST search in GenBank was carried out to determine an exact match or identify the closest similarity for each sequence. To complement the BLAST results, a neighbor-joining (NJ) tree based on 376 unambiguously aligned nucleotide sites was generated in order to illustrate the phylogenetic position of the nematode sequences relative to all known nematode sequences in GenBank (GB Release No. 157, see Appendix 6.1, pp 526-536) as well as the new Angiostrongylus sequences obtained in this study. The phylogeny was rooted on 4 non-nematode taxa: Chordodes morgani (AF036639, Blaxter et al., 1998) and Gordius aquaticus (X87985, Winnepenninckx et al., 1995) of Phylum Nematomorpha, Priapulus caudatus (Z38009, Aleshin et al., 1998) of Phylum Priapulida, and Brachionus plicatis (U49911, Aguinaldo et al., 1997) of Phylum Rotifera. (See Appendix 6.2, pp 537-603 for the Nematoda alignment). The optimal model for DNA sequence evolution was determined using likelihood by estimating the log likelihood scores in PAUP* for the JC69 (Jukes & Cantor, 1969), F81 (Felsenstein, 1981), K2P

(Kimura, 1980), HKY85 (Hasegawa *et al.*, 1985), TN93 (Tamura & Nei, 1993) and the GTR (Rodriguez *et al.*, 1990) models as well as their variants that incorporated gamma distributed rates (Γ) (Yang, 1993) followed by comparing these scores for significant differences using the Likelihood Ratio Test (LRT) as described in Section 2.9.5 of Chapter 2, pp. 73-77). Bootstrap resampling (Felsenstein, 1985) with 1000 replicates was carried out. Once the phylogenetic positions of the nematode sequences were identified with specific clades, other nematode taxa that do not belong to these clades were removed in order to construct a smaller NJ tree based on the same fragment (376 sites) and using the best model with optimised parameters; however, a suitable outgroup [*Plectus acuminatus* (AF037628, Blaxter *et al.*, 1998), which falls immediately outside of the Rhabditida clade of Meldal *et al.* (2006) –see results] was retained.

6.2.3. Phylogeny of the Angiostrongylidae

In order to investigate relationships among the Angiostrongylidae, the full length SSU rRNA of all *Angiostrongylus* species that were not sequenced prior to this study as well as *A. cantonensis* from Carreno & Nadler (2003) were aligned with the rest of the sub-order Metastrongylina/ superfamily Metastrongyloidea and phylogenetic trees constructed. Two taxa from the Trichostrongylina, which falls immediately outside of the Metastrongylina based on phylogenetic studies of the Metastrongyloidea (Carreno & Nadler, 2003) and the Strongylida (Chilton *et al.*, 2006), were included in the alignment to serve as outgroups (Table 6.2). Phylogenies were constructed from the aligned dataset using the model based maximum likelihood (ML), Bayesian inference (BI) and neighbor-joining (NJ) methods as well as the non-model based maximum parsimony (MP) method (Section 2.9.8 of Chapter 2, pp. 82-85). A total of 1628 unambiguously aligned nucleotide sites were used for the phylogenies. The sequences were first

checked for base composition bias using the Chi square test in PAUP* (version 4.0b10) program (Swofford, 2002). The optimal model for DNA sequence evolution was then determined for the model-based methods. Bootstrap resampling (Felsenstein, 1985) with 1000 replicates for MP and NJ and 100 replicates for ML was also carried out. Bayesian inference (BI) was performed on the MrBayes (version 3.1.2) package (Ronquist & Huelsenbeck, 2003) using four chains of Markov Chain Monte Carlo algorithm to explore the tree space for 2 million generations with sampling at every 100 generations. The heating parameter was set to 0.125 to ensure adequate chain swapping. A consensus tree was constructed using the last 1000 trees (burnin=19001 samples).

Sub-order	Family	Species	Reference	GenBank Accession #	
Metastrongylina (Superfamily	Angiostrongylidae	Angiostrongylus costaricensis (Morera & Cespedes, 1971)	This study	EF514913	
Metastrongyloidea)		Angiostrongylus dujardini (Drozdz & Doby, 1969)	This study	EF514915	
		Angiostrongylus malaysiensis (Bhaibulaya & Cross, 1971)	This study	EF514914	
		Angiostrongylus cantonensis (Chen, 1935)	Carreno & Nadler (2003)	AY295804	
		Angiostrongylus vasorum (Baillet, 1866)	This study	EF514916	
		Aelurostrongylus abstrusus (Raillet, 1898)	Chilton <i>et al.</i> (2006)	AJ920366	
		Didelphostrongylus hayesi Prestwood, 1976	Carreno & Nadler (2003)	AY295806	
	Crenosomatidae	Crenosoma mephitidis Hobmaier, 1941	Carreno & Nadler (2003)	AY295805	
		<i>Otostrongylus circumlitus</i> (Railliet, 1899)	Carreno & Nadler (2003)	AY295813	
		Troglostrongylus wilsoni (Stough, 1953)	Carreno & Nadler (2003)	AY295820	
	Filaroididae	Filaroides martis (Werner, 1782)	Carreno & Nadler (2003)	AY295807	
		Oslerus osleri (Cobbold, 1889)	Carreno & Nadler (2003)	AY295812	
		Parafilaroides decorus Dougherty & Herman, 1947	Carreno & Nadler (2003)	AY295814	
	Metastrongylidae	Metastrongylus salmi (Gedoelst, 1823)	Carreno & Nadler (2003)	AY295809	
	Protostrongylidae	Muellerius capillaris (Müeller, 1889)	Carreno & Nadler (2003)	AY295810	
		Parelaphostrongylus odocoilei (Hobmaier & Hobmaier, 1934)	Carreno & Nadler (2003)	AY295815	
	Pseudaliidae	Halocercus invaginatus (Quekett, 1841)	Carreno & Nadler (2003)	AY295808	
		Pseudalius inflexus (Rudolphi, 1808)	Carreno & Nadler (2003)	AY295816	
		Stenurus minor (Kühn, 1829)	Carreno & Nadler (2003)	AY295817	
		Torynurus convolutus (Kühn, 1829)	Carreno & Nadler (2003)	AY295818	
	Skrjabingylidae	Skrjabingylus chitwoodrum Hill, 1939	Carreno & Nadler (2003)	AY295819	
Trichostrongylina (Superfamily	Molineidae	Nematodirus battus (Crofton and Thomas, 1951)	Zarlenga <i>et al.</i> (1994)	U01230	
Trichostrongylina) OUTGROUP	Heligmonellidae	Nippostrongylus brasiliensis (Travassos, 1914)	Blaxter <i>et al.</i> (1998)	AF036597	

Table 6.2: Taxa used for the sequence analysis of the angiostrongylid worms.

6.3. Results

6.3.1. Sequence variation in the angiostrongylid worms

When the sequences of all five Angiostrongylus species available to date (including the four new Angiostrongylus sequences obtained in this study) were compared, a total of 31 variable sites were found, including an indel at position 1323 (Fig. 6.2). A pairwise comparison of the number of differences between any two Angiostrongylus species (Table 6.3) reveals that the least number of differences (9) was found between A. cantonensis and A. malaysiensis whereas the greatest number of differences (22) was seen between A. malaysiensis and A. dujardini. The sequences of the SSU rRNA clearly demonstrate that A. cantonensis has a distinct sequence that could be used to distinguish it from the other angiostrongylid worms in this study. Furthermore, 12 out of the 31 sites (or more than a third of the total) were within the first 480 bp from the 5' end. Moreover, A. cantonensis is distinct from all other Angiostrongylus species in this 480 bp 5' region. These findings demonstrate that the first 480 bp fragment of the SSU rRNA gene, which is amplified by primer Set A (see Section 2.2.1.2, pp. 53-54, and Table 2.6, p. 54 of Chapter 2), is a suitable marker to identify A. cantonensis and set it apart from other Angiostrongylus species sequenced to date, including three of its closest relatives, A. costaricensis, A. dujardini and A. malaysiensis, based on the morphology of the copulatory bursa (Ubelaker, 1986).

	Variable Nucleotide Position	
	11111111111 111112444 5566666772223334666 2682223822788945668178891120223 9522372171801166259933658934183 	
Angiostrongylus cantonensis	TGCTAAGTCGTCGATTGAAGTTATGT-GGGGG	
Angiostrongylus costaricensis	ССТАА.СG.GCTАА	
Angiostrongylus malaysiensis	CCTACAGGA.	
Angiostrongylus dujardini	CC.GTGAA.A.GCGA.CTCCCAA	
Angiostrongylus vasorum	CCTATCAGTCA	

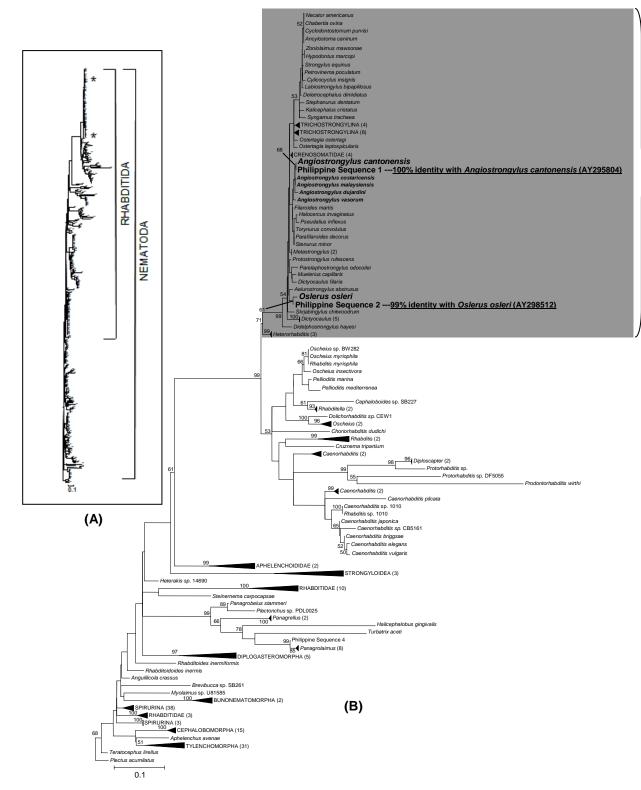
Figure 6.2: Variable sites across the SSU rDNA region for the previously sequenced *Angiostrongylus cantonensis* (Carreno & Nadler, 2003) and the four other angiostrongylid worms sequenced in this study. The number shown directly above each site pertains to the variable site relative to the SSU rRNA sequence of *A. cantonensis* (GenBank AY295804). The grey area corresponds to the 480 bp marker used for this study.

Table 6.3: Matrix showing the number of differences between any two Angiostrongylus species.

	A. cantonensis	A. costaricensis	A. malaysiensis	A. dujardini
A. costaricensis	12			
A. malaysiensis	9	11		
A. dujardini	19	16	22	
A. vasorum	11	15	14	16

6.3.2. Using the SSU rRNA gene to identify *Angiostrongylus cantonensis* in a trial population

In total, 27 nematodes were extracted from 15 *Achatina fulica* individuals (with 6 nematodes) and 19 *Laevicaulis alte* individuals (with 21 nematodes) from the University of the Philippines, Diliman campus in Quezon City. The 480 bp fragment at the 5' end of the SSU rRNA gene identified as a suitable marker for the discrimination of *A. cantonensis* (see Section 6.3.2, fragment amplified by Primer Set A) was then amplified for each nematode extracted. The results yielded two distinct nematode sequences (Philippine Sequences 1 and 2). Table 6.4 lists the distribution of these nematode sequences.

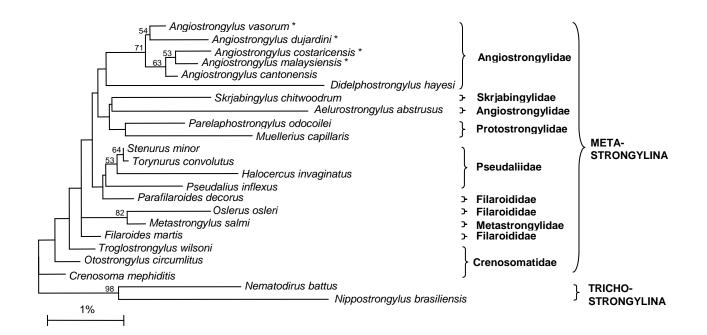

Table 6.4: Summary of the distribution of the two Philippine nematode sequences from the University of the Philippines, Diliman campus in Quezon City.

Nematode sequence	Gastropod host	Number of nematodes
Philippine Sequence 1	Achatina fulica	1
	Laevicaulis alte	20
Philippine Sequence 2	Achatina fulica	5
	Laevicaulis alte	1

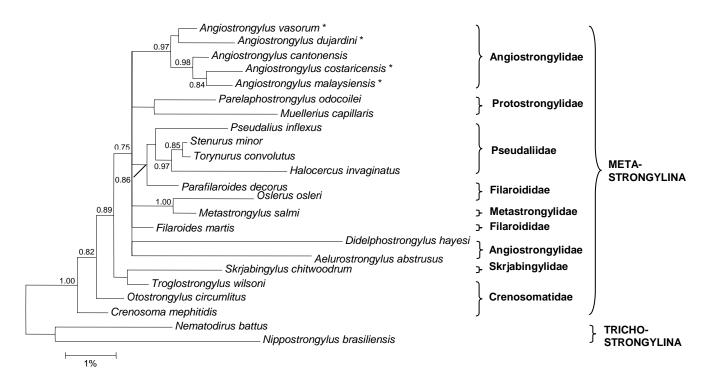
The two Philippine nematode sequences were then subjected to a BLAST search in GenBank (GB Release No. 157, 22 December 2006), to identify an exact match or closest identity to a named nematode species. BLAST results showed Philippine Sequence 1 is identical to *Angiostrongylus cantonensis*. On the other hand, Philippine Sequence 2 did not match any named taxon in GenBank based on BLAST results but can only be assigned to its closest sequence identity to a named nematode species, which is *Oslerus osleri*, a dog lungworm, at 99% BLAST identity; since the value is less than 99.5% to be considered the same species as *O. osleri* based on Floyd *et al.* (2002), the exact species identification of Philippine Sequence 2 could therefore not be known as of GB Release No. 157.

To complement the BLAST results, a neighbor-joining tree of the Nematoda was generated in order to illustrate the phylogenetic position of the new nematode sequences relative to all 349 nematode taxa having at least the first 480 nucleotides of the 5' end of the SSU rRNA in GenBank (GB Release No. 157) as well as the new *Angiostrongylus* sequences obtained in this study. A GTR+ Γ model was used to correct distances for multiple hits after it was determined to be the best model (see Appendix 6.3A, p. 604). As this phylogeny is based on a small marker intended for barcoding purposes, it should not be expected to accurately show the deep-level evolutionary relationships amongst the nematodes (see Hajibabaei *et al.*, 2007 for a discussion of the limitations of "barcode" markers in phylogenetic studies). Nevertheless, the phylogeny

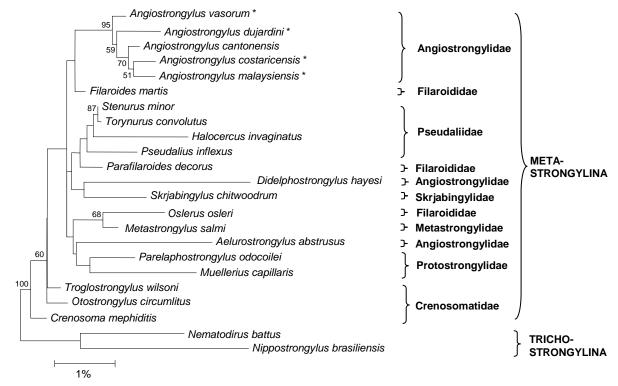
clearly demonstrates that the two Philippine sequences and all the *Angiostrongylus* taxa fall within the Rhabditida clade (as defined by Meldal *et al.*, 2006). Another NJ phylogeny of the same gene fragment (376 nucleotide sites) was then constructed (Fig. 6.3B) using 229 rhabditid taxa and rooted on the plectid nematode *Plectus acuminatus*. A GTR+ Γ model was determined to be the best model and was subsequently used for this analysis (see Appendix 6.3B, p. 604). The two Philippine nematode sequences and the *Angiostrongylus* taxa all fall within the Strongyloidea. Philippine Sequence 1 clusters with *Angiostrongylus cantonensis* (AY295804, Carreno & Nadler, 2003) with 100% BLAST identity. Philippine Sequence 2 clusters with *Oslerus osleri* (AY295812, Carreno & Nadler, 2003) with 99% BLAST identity.

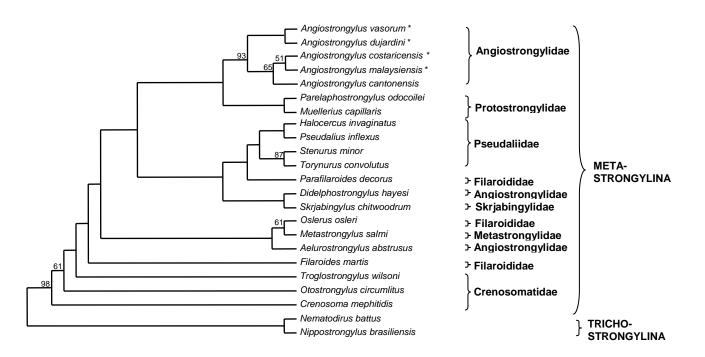

Figure 6.3: Neighbor-joining (NJ) phylogenetic trees based on 376 unambiguously aligned nucleotide sties of the SSU rRNA gene. (A) NJ tree of the Nematoda (349 taxa excluding the new nematode sequences from the Philippines) rooted on 4 non-nematode taxa: *Chordodes morgani* (Nematomorpha), *Gordius aquaticus* (Nematomorpha), *Priapulus caudatus* (Priapulida) and *Brachionus plicatis* (Rotifera). Both Philippine nematode sequences, as indicated by (*), fall within the Rhabditida clade. The scale bar shows one nucleotide change per ten nucleotide positions. (B) NJ tree of the Rhabditida (229 taxa excluding Philippine sequences) from (A), which is rooted on the nematode plectid worm *Plectus acuminatus*, and showing the positions (indicated by lines) of the 7 Philippine nematode sequences as well as their GenBank BLAST results from Table 6.6. Bootstrap values indicate the percentage support for individual branches based on 1000 replicates. Bootstrap values lower than 50% are not shown. Numbers in parentheses denote the number of species within a clade.

6.3.3. Phylogeny of the Angiostrongylidae


Phylogenetic analyses were undertaken to determine the relationships among the *Angiostrongylus* species sequenced to date (including the four angiostrongylid species sequenced for the first time in this study) and to determine the phylogenetic position of the Angiostrongylidae within the Sub-order Metastrongylina/ Superfamily Metastrongyloidea. (See alignment on Appendix 6.4, pp. 605-615.) Tests for base composition biases using the Chi square test in PAUP* showed no composition bias (P=1.0). GTR+ Γ was determined to be the best model (Appendix 6.5, p. 616) and was subsequently used for tree building in the model-based tree construction methods (ML, BI and NJ).

The maximum likelihood (ML), Bayesian inference (BI), neighbor-joining (NJ) and maximum parsimony (MP) phylogenies are shown in Figure 6.4. The trees were constructed using 1628 unambiguously aligned nucleotide sites and were rooted on the trichostrongylids *Nematodirus battus* (GenBank U01230, Zarlenga *et al.*, 1994) and *Nippostrongylus brasiliensis* (Genbank AF036597, Blaxter *et al.*, 1998).


Figure 6.4: (See next two pages.) Phylogenetic trees of the angiostrongylids and worms in other families of the sub-order Metastrongylina based on the SSU rRNA gene using (A) maximum likelihood, (B) Bayesian analysis, (C) neighbor-joining and (D) maximum parsimony based on majority rule consensus of 3 equally parsimonious trees. The phylogenies are constructed from 1628 unambiguously aligned nucleotide sites and are rooted on the trichostrongylid worms *Nematodirus battus* (GenBank U01230) and *Nippostrongylus brasiliensis* (Genbank AF036597). Bootstrap values in (A) indicate the percentage support for individual branches based on 100 replicates. Bootstrap values lower than 50% are not shown. Bayesian analysis based on the last 1000 trees. Posterior probabilites lower than 0.7 are not shown. Bootstrap values in (C) and (D) indicate the percentage support for individual branches based on 1000 replicates. The scale bars for (A), (B) and (C) represent one substitutional change per 100 nucleotide with (*).


(A) - ML

(B) - BI

(C) - NJ

(D) - MP

The four phylogenies reveal several important points. First, monophyly of the Angiostrongylidae is neither conclusively supported nor rejected. For instance, in the ML tree (Fig. 6.4A) Aelurostrongylus abstrusus fell outside the main angiostrongylid group, while in Bayesian (Fig. 6.4B), NJ (Fig. 6.4C) and MP (Fig. 6.4D) analyses, both Aelurostrongylus abstrusus and Didelphostrongylus hayesi fell outside the main angiostrongylid group, though bootstrap support and posterior probabilities for these branches in the four trees were less than 50% and 0.7, respectively. Second, the phylogenies did not seem to support the distinction between Angiostrongylus and Parastrongylus as proposed by Ubelaker (1986) based on differences in morphology of the male bursa and the mammalian final host. The grouping of A. vasorum, [retained in the genus Angiostrongylus by Ubelaker (1986)] with A. dujardini [included in the genus *Parastrongylus* (Ubelaker, 1986)], was equivocal in these analyses (P=0.67 BI, 54%) ML bootstraps, 30.2% NJ bootstraps and 43.9% MP bootstraps). Lastly, Angiostrongylus cantonensis was distinct from all other angiostrongylids and clustered with the A. costaricensis and A. malaysiensis group (P=0.98 BI, 68% ML bootstraps, 70% NJ bootstraps and 65% MP bootstraps).

6.4. Discussion

6.4.1. Suitability of the 5' end of the SSU rRNA gene as a molecular marker for *Angiostrongylus cantonensis*

A total of five *Angiostrongylus* species (including four from this study) have now been sequenced for almost the entire region (approximately 1670 nucleotides) of the SSU rRNA gene. All sequences are distinct and can therefore distinguish the *Angiostrongylus* species. However, this almost complete SSU rRNA gene region is too long to be used as a molecular marker to rapidly and accurately identify specific taxa. When the first 480 bp of the 5' end of the gene was compared across the different *Angiostrongylus* taxa, 12 variable sites (more than a third of the total number of variations for the entire gene) were found. Furthermore, *A. cantonensis* exhibited a unique sequence for this region even when compared to its closest relatives *A. costaricensis*, *A. dujardini* and *A. malaysiensis* (based on morphology and host specificity). Furthermore, this segment of the SSU is available for the majority of the named nematodes in GenBank and encompasses the segment Bhadury *et al.* (2006) used to identify their marine nematodes. These factors make the first 480 bp region eminently suitable as a molecular marker to identify *A. cantonensis* in nematode surveys.

6.4.2. Molecular identification of nematodes from a trial population of *Achatina fulica* and *Laevicaulis alte* in the Philippines

Two distinct nematode sequences were detected by the SSU marker when applied to a trial population of intermediate hosts. Of these, Philippine Sequence 1 was identified as *A. cantonensis* on account of its 100% identity based on GenBank BLAST results of the variable region at the 5' end of the SSU rRNA gene. One hundred percent sequence identity could either mean 'the same taxon' or that 'there is insufficient variation to define taxa' (Floyd *et al.*, 2002). In the case of Philippine Sequence 1, its designation as *A. cantonensis* is valid as the current study already ascertained the uniqueness of the segment of the gene surveyed for this species in comparison to other closely related *Angiostrongylus* species (Figure 6.3).

This study clearly demonstrates the possibility of identifying infective 3rd juvenile stage *A. cantonensis* isolated from slug and snail intermediate hosts using the

319

5' end of the rRNA gene. This molecular approach to identification is a reliable alternative to morphological identification of nematode samples, especially in cases in which morphological characters are ambiguous in juvenile stages, thus rendering positive identification difficult.

6.4.3. Phylogenetic position of the Angiostrongylidae and the *Angiostrongylus* species within the Metastrongylina

Members of the Angiostrongylidae share certain features such as a posterior vulva but no buccal cavity or lips and the ability to infect a wide range of mammals as final hosts, including marsupials, insectivores, carnivores and rodents (Anderson, 2000; Roberts & Janovy, 2005). However, results from this study based on the SSU rRNA gene do not strongly support the monophyly of this group and show that only the *Angiostrongylus* species form a distinct group. Carreno and Nadler (2003) have already hinted that there is wide morphological diversity within the Angiostrongylidae. A further examination of the Angiostrongylidae that includes a broader taxonomic coverage of the group is required to determine its validity.

Ubelaker (1986) moved certain Angiostrongylus species, such as A. cantonensis, A. costaricensis, A. dujardini, A. mackerrrasae, A. malaysiensis, A. petrowi, A. ryjikovi, A. sandarsae, A. schmidti, and A. siamensis to the genus Parastrongylus, which was first described by Baylis (1928) based on Parastrongylus tateronae as the type species. This is to distinguish Parastrongylus from Angiostrongylus, first described by Baillet (1866) based on A. vasorum as the type species and includes A. chabaudi and A. raillieti. This distinction was based on differences of the morphology of the male bursa and the mammalian final host. However, this distinction is not widely accepted, and molecular data from this study based on five *Angiostrongylus* species neither conclusively support nor reject this distinction.

6.5. Conclusion

An alternative approach to morphological identification of infective 3rd juvenile stage *Angiostrongylus cantonensis* was developed and successfully employed using the 5' end of the SSU rRNA gene (~480 bp). Sequences of other closely related *Angiostrongylus* species were obtained for this region to ascertain the uniqueness of the marker for *A. cantonensis*. When the SSU rRNA marker was used on nematode populations extracted from the giant African land snail, *Achatina fulica*, and the black slug, *Laevicaulis alte*, from the Philippines, the infective 3rd juvenile stage *A. cantonensis* was detected without difficulty. The technique developed in this study therefore enables the rapid and accurate identification of medically important nematode taxa when morphological analysis proves difficult or inadequate.

Phylogenetic analyses based on the full length SSU rRNA of the Metastrongylina with 5 *Angiostrongylus* species and 2 other angiostrongylids do not support the monophyly of the Angiostrongylidae. The same data neither support nor reject Ubelaker's distinction of *Parastrongylus* from *Angiostrongylus*.

6.6. Literature cited

- Aguinaldo, A.M., Turbeville, J.M., Linford, L.S., Rivera, M.C., Garey, J.R., Raff, R.A. and Lake, J.A. 1997. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature **387**(6632): 489-493.
- Aleshin, V.V., Milyutina, I.A., Kedrova, O.S., Vladychenskaya, N.S. and Petrov, N.B. 1998. Phylogeny of Nematoda and Cephalorhyncha derived from 18S rDNA. Journal of Molecular Evolution 47(5): 597-605.
- Anderson, R. C. 2000. <u>Nematode parasites of vertebrates: their development and transmission, 2nd ed</u>. CABI Publishing, Wallingford, 650 pp.
- Ash, L.R. 1970. Diagnostic morphology of the third-stage larvae of Angiostrongylus cantonensis, Angiostrongylus vasorum, Aelurostrongylus abstrusus, and

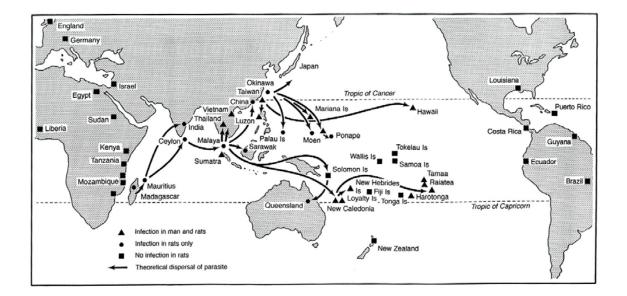
Anafilaroides rostatus (Nematoda: Metastrongyloidea). Journal of Parasitology **56**(2): 249-253.

- Baillet, C.C. 1866. Strongyle des vaisseaux et du cour du chien. Strongylus vasorum (Nobis). Nouveau Dictionnaire Practique de medicine, de Chirurgie et d'Hygiene Veterinaires 8: 587-588.
- Baylis, H.S. 1928. On a collection of nematodes from Nigerian mammals (chiefly rodents). Parasitology **20**: 280-304.
- Bhadury, P., Austen, M.C., Bilton, D.T., Lambshead, P.J.D., Rogers, A.D. and Smerdon, G.R. 2006. Development and evaluation of a DNA-barcoding approach for the rapid identification of nematodes. Marine Ecology Progress Series 320: 1-9.
- Blaxter, M.L., De Ley, P, Garey, J.R., Liu, L.X, Scheldeman, P., Vierstraete, A., Vanfleteren, J.R., Mackey, L.Y., Dorris, M., Frisse, L.M., Vida, J.T. and Thomas, W.K. 1998. A molecular evolutionary framework for the phylum nematoda. Nature. **392**(6671): 71-75.
- Blaxter, M., Mann, J, Chapman, T., Thomas, F., Whitton, C., Floyd, R. and Abebe, E. 2005. Defining operational taxonomic units using DNA barcode data. Philosophical Transactions of the Royal Society B 360: 1935-1943.
- Caldeira, R.L., Carvalho, O.S., Mendonca, C.L.F.G., Graeff-Teixeira, C., Silva, M.C.F., Ben, R., Maurer, R., Lima, W.S. and Lenzi, H.L. 2003. Molecular differentiation of *Angiostrongylus costaricensis*, *A. cantonensis* and *A. vasorum* by polymerase chain reaction-restriction fragment length polymorphism. Memorias do Instituto Oswaldo Cruz **98**(8): 1039-1043.
- Carreno, R.A. and Nadler, S.A. 2003. Phylogenetic analysis of the Metastrongyloidea (Nematoda: Strongylida) inferred from ribosomal RNA gene sequences. Journal of Parasitology **89**(5): 965-973.
- Chilton, N.B., Huby-Chilton, F., Gasser, R.B. and Beveridge, I. 2006. The evolutionary origins of nematodes within the order Strongylida are related to predilection sites within hosts. Molecular Phylogenetics and Evolution **40**: 118-128.
- De Leon, D.D. and Saulog, T.M. 1965. Occurrence of *Angiostrongylus cantonensis* in the brown rats (*Rattus norgevicus*) in Manila, P.I. Journal of Parasitology **51**: 947.
- Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution **17**: 368-376.
- Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution **39**: 783-791.
- Floyd, R., Abebe, E., Papert, A. and Blaxter, M. 2002. Molecular barcodes for soil nematode identification. Molecular Ecology **11**:839-850.
- Gasser, R.B. 1999. PCR-based technology in veterinary parasitology. Veterinary Parasitology 84: 229-258.
- Gasser, R.B., and Newton, S.E. 2000. Genomic and genetic research on bursate nematodes: significance, implications and prospects. International Journal of Parasitology **30**: 509-534.
- Hajibabaei, M., Singer, G.A.C., Hebert, P.D.N., and Hickey, D.A. 2007. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends in Genetics **23**(4): 167-172.
- Hasegawa, M., Kishino, H. and Yano, T. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution **21**: 160-174.

- Hebert, P.D.N., Cywinska, A., Ball, S.L. and deWaard, J.R. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London Series B 270: 313-321.
- Hollingsworth, R.G., Kaneta, R., Sullivan, J.J., Bishop, H.S., Qvarnstrom, Y., da Silva, A.J., and Robinson, D.G. 2007. Distribution of *Parmarion* cf. *martensi* (Pulmonata: Helicarionidae), a new semi-slug pest on Hawai'i Island, and its potential as a vector for human angiostrongyliasis. Pacific Science 61: 457-467.
- Jukes, T.H. and Cantor, C.R. 1969. Evolution of protein molecules. *In*: Munro, H.N. (ed.), <u>Mammalian Protein Metabolism.</u> Academic Press, New York, pp. 21-32.
- Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution **16**: 111-120.
- Kliks, M.M. and Palumbo, N.E. 1992. Eosinophilic meningitis beyond the Pacific Basin: the global dispersal of a peridomestic zoonosis caused by *Angiostrongylus cantonensis*, the nematode lungworm of rats. Social Science & Medicine **34**(2): 199-212.
- Marquardt, W.C., Demaree, R.S. and Grieve, R.B. 2000. <u>Parasitology and Vector</u> <u>Biology, 2nd ed.</u> Academic Press, San Diego, California, U.S.A. 702 pp.
- Meldal, B.H.M., Debenham, N.J., De Ley, P., Tandingan De Lay, I., Vanfleteren, J.R., Vierstraete, A.R., Bert, W., Borgonie, G., Moens, T., Tyler, P.A., Austen, M.C., Blaxter, M.L., Rogers, A.D. and Lambshead, P.J.D. 2006. An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa. Molecular Phylogenetics and Evolution 42(3): 622-636.
- Newton, L.A., Chilton, N.B., Beveridge, I., Hoste, H., Nansen, P. and Gasser, R.B. 1998a. Genetic markers for strongylid nematodes of livestock defined by PCR-based restriction analysis of spacer rDNA. Acta Tropica **69**: 1-15.
- Newton, L.A., Chilton, N.B., Beveridge, I. and Gasser, R.B. 1998b. Genetic evidence indicating that *Cooperia surnabada* and *Cooperia oncophora* are one species. International Journal of Parasitology **28**(2): 331-336.
- Nishimura, K. and Yogore, M.G. 1965. On the occurrence of the rat lungworm, *Angiostrongylus cantonensis* in rats in the Philippines. Journal of Parasitology **51**: 928.
- Palumbi, S.R. 1996. Nucleic Acids II: The Polymerase Chain Reaction. In: Hillis, D.M., Moritz, C. and Mable, B.K. (ed.), <u>Molecular Systematics</u>, 2nd ed. Sinauer Associates, Inc., USA, pp. 205-247.
- Raccurt, C.P., Blaise, J., and Durette-Desset, M.C. 2003. Presence d'Angiostrongylus cantonensis en Haiti. Tropical Medicine and International Health **8**(5): 423-426.
- Roberts, L.S. and Janovy, J. Jr. 2005. <u>Gerald D. Schmidt & Larry S. Roberts'</u> <u>Foundations of Parasitology</u>, 7th ed. McGraw-Hill Co., Inc., U.S.A., 702 pp.
- Qvarnstrom, Y., Sullivan, J.J., Bishop, H.S., Hollingsworth, R.G. and da Silva, A.J. 2007. PCR-based detection of *Angiostrongylus cantonensis* in tissue and mucus secretions from molluscan hosts. Applied and Environmental Microbiology 73(5): 1415-1419.
- Rodriguez, F., Oliver, J.L., Marin, A. and Medina, J.R. 1990. The general stochastic model of nucleotide substitution. Journal of Theoretical Biology **142**: 485-501.
- Ronquist, F. and Huelsenbeck, J.P. 2003. MrBayes 3: Bayesian phylognetic inference under mixed models. Bioinformatics **19**: 1572-1574.
- Salazar, N.P. and Cabrera, B.D. 1969. *Angiostrongylus cantonensis* in rodent and molluscan hosts in Manila and suburbs. Acta Medica Philippina **6**(1): 20-25.

- Santos, A.T., Sasal, P., Verneau, O. and Lenfent, P. 2006. A method to detect the parasitic nematodes from the Family Anisakidae, in *Sardina pilchardus*, using specific primers of 18 S DNA gene. European Food Research Technology **222**: 71-77.
- Senanayake, S.N., Pryor, D.S., Walker, J. and Konecny, P. 2003. First report of human angiostongyliasis acquired in Sydney. Medical Journal of Australia **179:** 430-431.
- Smith, S.W., Overbeek, R., Woese, C.R., Gilbert, W. and Gillevet, P.M. 1994. The genetic data environment, an expandable GUI for multiple sequence analysis. Computer Applications in the Biosciences **10**: 671-675.
- Staden, R. Beal, K.F. and Bonfield, J.K. 2000. The Staden package, 1998. Methods in Molecular Biology **132**: 115-130.
- Swofford, D.L. 2002. PAUP* 4.0b10, Sinauer Associates, Sunderland, MA.
- Tamura, K. and Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10: 512-526.
- Ubelaker, J.E. 1986. Systematics of species referred to the genus *Angiostrongylus*. Journal of Parasitology **72**(2): 237-244.
- Wallace, G.D. and Rosen, L. 1969. Experimental infection of Pacific island mollusks with Angiostrongylus cantonensis. American Journal of Tropical Medicine and Hygiene 18(1): 13-19.
- Wan, K.S. and Weng, W.C. 2004. Eosinophilic meningitis in a child raising snails as pets. Acta Tropica 90: 51-53.
- Waugh, C.A., Shafir, S., Wise, M., Robinson, R.D., Eberhard, M.L. and Lindo, J.F. 2005. Human Angiostrongylus cantonensis, Jamaica. Emerging Infectious Diseases 11(12): 1977-1978.
- Winnepenninckx, B., Backeljau, T., Mackey, L.Y., Brooks, J.M., De Wachter, R., Kumar, S. and Garey, J.R. 1995. 18S rRNA data indicate that Aschelminthes are polyphyletic in origin and consist of at least three distinct clades. Molecular Biology and Evolution 12(6): 1132-1137.
- Yang, Z. 1993. Maximum likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Molecular Biology and Evolution 10: 1396-1401.
- Zarlenga, D.S., Lichtenfels, J.R. and Stringfellow, F. 1994. Cloning and sequence analysis of the small subunit ribosomal RNA gene from *Nematodirus battus*. Journal of Parasitology **80**:342-344.

CHAPTER 7 - Survey of *Angiostrongylus cantonensis* (and other nematodes) from global populations of the giant African snail, *Achatina fulica* (and other snails)


7.1. Introduction

Angiostrongylus cantonensis, like one of its gastropod intermediate hosts Achatina fulica, has a global distribution (Marquardt et al., 2000) and is a major concern from a human health perspective as it causes the food-borne disease eosinophilic meningoencephalitis (EME) or angiostrongyliasis (Kliks & Palumbo, 1992; Prociv et al., 2000). The presence of A. cantonensis in rats in New Orleans, USA (Campbell & Little, 1988) and the recent outbreak of EME among medical students visiting Jamaica (Waugh et al., 2005) illustrate the expanding distribution of the parasite. The life cycle of A. cantonensis involves a gastropod intermediate host and a murid rodent definitive host (Fig. 1.4, Chapter 1, p. 25); interestingly, the parasite is not highly specific to either its intermediate or its definitive host, which could help to explain its global distribution (Prociv et al., 2000). The route for human infection by A. cantonensis is mostly through the gastropod intermediate host. The consumption of contaminated salad crops or raw/undercooked snails (Marquardt et al., 2000) either as an alternative food source during famine (Kliks & Palumbo, 1992) or as delicacies (Chau et al., 2003), their use as medicine (Kliks & Palumbo, 1992) and the predilection of humans to keep gastropods as pets (Wan & Weng, 2004) has led to sudden outbreaks or isolated cases of eosinophilic meningoencephalitis due to 3^{rd} juvenile stage A. cantonensis infection (Kliks & Palumbo, 1992). Some of these outbreaks were attributed to the Giant African Land Snail, Achatina fulica (Kliks & Palumbo, 1992), which Alicata (1966) suggested as primarily responsible for the spread of the parasite to Southeast Asia and the Pacific.

325

7.1.1. Dispersal of *Angiostrongylus cantonensis* from East Africa: Alicata's hypothesis

First reported in rats in Canton, China in 1933 (Chen, 1935), Angiostrongylus cantonensis has a wide distribution and infects a range of intermediate and final hosts (Alicata, 1966, Fig. 7.1). The parasite was thought to have spread from East Africa towards the Indian subcontinent until it reached the Malay Peninsula (Alicata, 1966; Marquardt et al., 2000). From there it migrated northwards to Indochina, southern China, Taiwan, and Okinawa, and eastwards to the Philippines, New Guinea, Australia, New Zealand, and several islands and island groups of the Pacific including Palau, Guam, Pohnpei, Pingelap, Moen, Ponape, Mariana, Wallis, Solomon, New Hebrides, New Guinea, Fiji, Loyalty, New Caledonia, Tahiti, Tonga, Rarotonga, Raiatea, Samoa, Tokelau and Hawaii (Kliks & Palumbo, 1992). Angiostrongylus cantonensis has also been reported in Western Africa (Ivory Coast, Liberia and Nigeria) (Kliks & Palumbo, 1992; Marquardt et al., 2000), the Middle East (Egypt) (Marquardt et al., 2000), North America (Campbell & Little, 1988; New et al., 1995), and the Caribbean (Cuba, Puerto Rico, Jamaica and Haiti) (Pascual et al., 1981; Andersen et al., 1986; Lindo et al., 2002; Raccurt et al., 2003). Prociv et al. (2000) observed a general pattern in the recognition of A. cantonensis in new locations that begins with the initial detection in rats and occasionally in captive primates, followed by reported human cases of EME, and finally by the recovery of worms from some patients. Subsequent surveys of gastropod intermediate hosts in these new locations oftentimes lead to the detection of the parasite following confirmation by infecting the juveniles in laboratory rats, as in the study of Wallace & Rosen (1969).

Figure 7.1: Probable dispersal route of *Angiostrongylus cantonensis*. (From Marquardt *et al.*, 2000.)

Alicata's (1966) hypothesis that the worm most probably originated from East Africa and migrated to East Asia and the Pacific is based on three observations. First, *A. cantonensis* is not found in all major Pacific islands despite the prevailing similar environmental conditions. Second, reported cases of eosinophilic meningoencephalitis in the Pacific are relatively recent, from just after the Second World War. Third, the parasite was only reported during the latter half of the 20th century in East Asia, the Pacific and Australia. This hypothesis was further supported by the total absence of the worm in 1967 in Central America (Costa Rica and Puerto Rico) and South America (Brazil, Ecuador and Guyana) based on a survey of 1810 rats (Alicata, 1967) only to appear later on in Cuba in 1973 (Pascual *et al.*, 1981), Puerto Rico in 1984 (Andersen *et al.*, 1986), Jamaica in 2000 (Waugh *et al.*, 2005) and Haiti in 2002 (Raccurt *et al.*, 2003; Marquardt *et al.*, 2000). The parasite was also reported for the first time in North America in New Orleans in 1986 (Campbell & Little, 1988).

It is not yet clear how *A. cantonensis* spread from the Pacific Basin to the Caribbean and beyond, although Kliks and Palumbo (1992) pointed to rats as culprits.

They suspected that infected rats from Indochina were accidentally brought to Cuba between 1966 and 1975 during the Vietnam War, which led to cases of EME beginning in 1973. From there it spread to Puerto Rico where the worms were detected in adult rats in 1981. How the worms got to West Africa, particularly the Ivory Coast and Nigeria is less clear. The first and only case of eosinophilic meningoencephalitis in the Ivory Coast was reported in 1979 (Nozais *et al.*, 1980). In Nigeria, adult worms were also recovered from rats in Port Harcourt but not in Ibadan (Kliks & Palumbo, 1992). Nematodes were also found in Giant African Land Snails in Port Harcourt, reported by Kliks and Palumbo as *Achatina fulica*, though they are more likely to be *Achatina achatina* based on the prevalence of this snail in that area and the fact that *A. fulica* has not yet been officially recorded there.

7.1.2. Perceived role of Achatina fulica in the spread of A. cantonensis

Alicata (1966) pinned his East Africa origin for *A. cantonensis* on the nearly parallel distribution of the parasite with one of its intermediate hosts, *Achatina fulica*, particularly in Southeast Asia and the Pacific. He based his hypothesis on the observations he made when he surveyed 8 areas from East Africa to the Western Pacific, in which he checked for the presence of *A. cantonensis* in adult rats. He found the parasite in Madagascar, Mauritius, Sri Lanka and Borneo but not in Mozambique, Kenya, Tanzania and India. By combining his findings with what was known at that time regarding the dispersal route of *A. fulica* and the reported cases of rat and human infections of *A. cantonensis*, he concluded that the rapid spread of the snail led to the spread of the parasite based on the following reasons. First, he observed *A. cantonensis* along the dispersal route of the snail. Second, he found the parasite in rats in places where *A. fulica* was introduced. Last, he also noted the close time relationship between

the introduction of the snail and the first reported case of EME in several Pacific islands. In the case of West Africa, however, the presence of *A. cantonensis* there can not be pinned on *A. fulica*. Although Kliks and Palumbo (1992) reported the presence of the parasite in *A. fulica*, this was probably a result of a misidentification of another giant African snail, probably *Achatina achatina*.

7.1.3. Dispersal of *Angiostrongylus cantonensis* from South and Southeast Asia: Drozdz *et al.*'s alternative hypothesis

An alternative hypothesis for the dispersal of A. cantonensis was proposed by Drozdz et al. (1975) in which they postulated that the parasite originated in South and Southeast Asia rather than East Africa and that the murid rodent definitive hosts and not Achatina fulica were responsible for the current distribution of A. cantonensis. First, they argued that the occurrence within close geographical regions (Indo-Malayan region and Australia) of closely related Angiostrongylus species and their respective Rattus final hosts would indicate a very long host-parasite association that probably encompassed the radiation of murid rodents in Asia. Such is probably the case for A. cantonensis (China, Southeast Asia) in R. rattus and R. norvegicus, A. malaysiensis (Malaysia) in R. jalorensis, and A. mackerrasae (Australia) in R. fuscipes. Second, they believed that the adaptation of rat hosts such as *Rattus rattus* and *R. norvegicus*, which originated in South and Southeast Asia, to survive high dosage infections (150 parasites per individual) would have taken a long time to evolve, which could not have happened had the parasite originated in East Africa and spread to Asia in a short period of time as postulated by Alicata (1966). They therefore concluded that Achatina fulica is a recent introduction in the parasite's life cycle. As further support of this hypothesis, A. cantonensis has so far only been found in Madagascar in Rattus rattus, a recent human

introduction to the island (Drodz *et al.*, 1975; Prociv *et al.*, 2000); no other endemic murid rodent is found in Madagascar (Drodz *et al.*, 1975). Prociv *et al.* (2000) believed that the role of *A. fulica* in the dispersal of *A. cantonensis* was over-emphasised as the parasite was more likely to have been introduced into new areas by rats, owing to their cosmopolitan distribution, and that local snails and slugs had just as easily assumed the role of intermediate hosts. Furthermore, Civeyrel & Simberloff (1996) pointed the possibility of other introduced snails, such as *Euglandina, Edentulina* and *Gonaxis*, in spreading the parasite.

7.1.4. Other nematodes in Achatina fulica

In addition to Angiostrongylus cantonensis, other nematodes may also be present in Achatina fulica. Indeed, land snails and slugs in general have often been used by nematodes either as intermediate hosts or as definitive hosts (Grewal et al., 2003). There are 61 known nematode species that utilise molluscs as intermediate hosts, with 49 belonging to the superfamily Metastrongyloidea; 47 known nematode species use molluscs as definitive hosts, 33 of which belong to the order Rhabditida (Grewal et al., 2003). Both groups are included in the Rhabditida clade by Meldal et al. (2006) based on phylogenetic analyses using the small subunit (SSU) ribosomal (r) RNA gene. In the case of Achatina fulica, previous studies have already demonstrated the presence of nematodes. For instance, the metastrongyloid lungworm Oslerus ostratus (=Anafilaroides rostratus), which parasitises cats as the final host and is closely related to the dog lungworm Oslerus osleri, can also infect Achatina fulica as an intermediate host (Grewal et al., 2003). Another nematode, Rhabditis sp., was found in A. fulica populations in Thailand in which the parasite utilised the snail as a definitive host but without causing any noticeable damage (Viyada, 2005). Juvenile nematodes were also noted in the mucus of *A. fulica* in Brazil though their identities were not reported (Fonseca & Nascimento, 2004).

7.1.5. Objectives of the study

Alicata's (1966) hypothesis states that the Giant African Land Snail, Achatina fulica, caused the spread of Angiostrongylus cantonensis, particularly in Southeast Asia and the Pacific, whereas Drozdz et al.'s (1975) hypothesis points to murid rodents. The objectives of this study were to (1) survey global populations of Achatina fulica for the presence of Angiostrongylus cantonensis using the technique developed in Chapter 6 that employed the 5' end of the small subunit rRNA gene for rapid identification of the parasite, and (2) investigate the role of A. fulica in the dispersal of A. cantonensis (as proposed by Alicata, 1966) by comparing the movement of the snail through population genetic analysis with the movement of the parasite also through population genetic analysis using a suitable molecular marker. Both objectives, however, were dependent on the availability of sufficient population samples of both the parasite and the snail. While the focus was on A. cantonensis infection in A. fulica, where samples of other snails and slugs were obtained within the distribution range of the parasite (in this case two other species, Laevicaulis alte and Achatina sp.), they were also surveyed for A. cantonensis infection. This is the first systematic attempt to survey A. cantonensis from global populations of a known intermediate host using molecular identification. If Alicata's hypothesis is correct, then the nematode parasite should be present within the dispersal route of the snail intermediate host, and the dispersal patterns of the snail and the parasite based on population genetic analysis should also be similar.

7.2. Materials and methods

7.2.1. Samples and localities

Ten global populations of *Achatina fulica*, two West African populations of *Achatina* sp. and two Philippine populations of *Laevicaulis alte* were sampled for *Angiostrongylus cantonensis*. The *Achatina fulica* and *Laevicaulis alte* sample populations from UP Diliman used in Chapter 6 were also included in this survey. For the Ivory Coast *Achatina* sp. samples, the exact location of the sampling site was not identified as the snails were confiscated by customs officials at Waterloo Station in London from a man trying to smuggle the snails in October 2005. Details of the samples, their sampling localities and collectors are provided in Table 7.1.

Locality	Species	Collector
Bharatpur, Nepal	Achatina fulica	P. Budha
Yangon, Myanmar	Achatina fulica	F. Naggs
Trok Nong Area, near Phlieu Waterfall	Achatina fulica	S. Panha & C. Sutcharit
National Park, Chantaburi, Eastern Thailand		
near Cambodia		
Hahajima, Ogasawara, Japan	Achatina fulica	A. Davison
UP Diliman Campus, Quezon City, Philippines	Achatina fulica	I. Fontanilla
Batasan Hills, Quezon City, Philippines	Achatina fulica	E. Fontanilla &
		I. Fontanilla
Subic Bay Forest Reserve, Zambales,	Achatina fulica	M.R. Posa
Philippines		
Singapore	Achatina fulica	M.R. Posa
Haapiti Valley, Moorea, French Polynesia	Achatina fulica	T. Coote
Moaroa Valley, Tahiti, French Polynesia	Achatina fulica	T. Coote
Ivory Coast	Achatina sp.	Intercepted by customs
		officials at Waterloo
		Station in London from a
		man from the Ivory Coast
		(October 2005)
Ibadan, Nigeria	Achatina sp.	F. Opeyemi
UP Diliman Campus, Quezon City, Philippines	Laevicaulis alte	I. Fontanilla
Batasan Hills, Quezon City, Philippines	Laevicaulis alte	E. Fontanilla &
		I. Fontanilla

Table 7.1: Snail samples, collectors and localities

7.2.2. DNA extraction, PCR amplification and sequencing

The protocols in this section follow those developed in Chapter 6. The snails were cut into small pieces and digested overnight in Ash's digestive fluid, after which the worms were individually collected using yellow-tipped pipettes and stored at -20^oC in TE buffer until use (see Section 6.2.2 of Chapter 6, pp. 305-307). DNA extraction, PCR amplification, gel extraction and purification were carried out for each nematode using the protocols in Chapter 2, Section 2.1.4, pp. 41-42 and Sections 2.2 - 2.4, pp. 42-59, except that only Primer Set A (SSU_F07 and SSU_R09) for the 5' end of the SSU rRNA was used to amplify an approximately 480 bp PCR product. The purified PCR products were subsequently sequenced using the SSU_R09 primer and the peaks visualised using an Applied Biosystems 3730 DNA sequencer and BigDye version 3.1 termination cycle sequencing chemistry (Section 2.6 of Chapter 2, pp. 59-61). PCR amplification and sequencing of a second molecular marker for the population genetic analyses of the snail and parasite samples (second objective) were no longer carried out due to the limited and patchy sampling of the parasite and the difficulty of obtaining live snail intermediate host (see results and discussion).

7.2.3. Sequence analyses

Individual nematode sequences were processed using the STADEN package (Staden *et al.*, 2000) and the presence of *Angiostrongylus cantonensis* was determined by BLAST search in GenBank based on the 5' end of the SSU rRNA gene. Where possible, the non-angiostrongylid nematodes were also identified based on the closest sequence match to a named nematode species. If a 100% BLAST sequence identity to a named nematode species was obtained, it could mean the same taxon or that there is insufficient variation to distinguish taxa (Floyd *et al.*, 2002). In the case of

333

Angiostrongylus, results in Chapter 6 have already shown that the five closely related species of Angiostrongylus, which include A. cantonensis, can be distinguished from each other based on the 5' end of the SSU rRNA gene. To complement the BLAST results, a neighbor-joining phylogeny was then constructed to visualise the relationship of the nematode sequences against all known nematode taxa in Genbank as well as the Angiostrongylus species obtained in Chapter 6. The phylogeny was based on 376 unambiguously aligned nucleotide sites and rooted on 4 non-nematode taxa: Chordodes morgani (AF036639, Blaxter et al., 1998) and Gordius aquaticus (X87985, Winnepenninckx et al., 1995) of Phylum Nematomorpha, Priapulus caudatus (Z38009, Aleshin et al., 1998) of Phylum Priapulida, and Brachionus plicatis (U49911, Aguinaldo et al., 1997) of Phylum Rotifera (for alignment, see Appendix 6.2, pp. 537-603). The sequences were checked for base composition bias using the Chi square test in PAUP* (version 4.0b10) (Swofford, 2002), after which the optimal model for DNA sequence evolution was determined by comparing, through the Likelihood Ratio Test (LRT), the likelihood scores of the following: JC69 (Jukes & Cantor, 1969), F81 (Felsenstein, 1981), K2P (Kimura, 1980), HKY85 (Hasegawa et al., 1985), TN93 (Tamura & Nei, 1993) and the GTR (Rodriguez et al., 1990) models as well as their variants that incorporated gamma distributed rates (Γ) (Yang, 1993). Bootstrap resampling (Felsenstein, 1985) with 1000 replicates was then carried out (see Section 2.9.9 of Chapter 2, pp. 85-86). Once the clades to which the nematode sequences belong were identified, a second NJ tree based on the same gene fragment (376 sites) with optimised parameters was constructed but this time excluding the taxa that do not belong to these clades.

7.3. Results

A total of 191 *Achatina fulica* from 10 global populations, 25 *Achatina* sp. from 2 West African populations and 39 *Laevicaulis alte* from 2 Philippine populations were surveyed for *A. cantonensis* infections. Of the 10 global populations of *Achatina fulica*, 6 yielded nematodes; these were Thailand (20 snails sampled), Ogasawara (12 snails), UP Diliman-Philippines (15 snails), Batasan Hills-Philippines (50 snails), Singapore (33 snails) and Tahiti (5 snails). Population samples from Ogasawara and Tahiti had a 100% infection rate. Population samples from Myanmar (20 snails), Nepal (22 snails), Zambales-Philippines (4 snails) and Moorea (10 snails) had a 0% infection rate. The two *Achatina* sp. populations from West Africa, namely the Ivory Coast (22 snails) and Nigeria (3 snails), as well as the two Philippine populations of *Laevicaulis alte*, UP Diliman (19 slugs) and Batasan Hills (20 slugs), also manifested nematode infection, with the population sample from Nigeria exhibiting a 100% infection rate. See also Table 7.2.

Table 7.2: Pop	ulation siz	es and	percentage	of nemato	de infec	tion
----------------	-------------	--------	------------	-----------	----------	------

Locality	Species	Sample Size	% Infected
Bharatpur, Nepal	Achatina fulica	22	0
Yangon, Myanmar	Achatina fulica	20	0
Chantaburi, Eastern Thailand	Achatina fulica	20	5.0%
Hahajima, Ogasawara, Japan	Achatina fulica	12	100.0%
UP Diliman Campus, Philippines	Achatina fulica	15	6.7%
Batasan Hills, Philippines	Achatina fulica	50	14.0%
Subic Bay Forest Reserve, Philippines	Achatina fulica	4	0
Singapore	Achatina fulica	33	15.2%
Haapiti Valley, Moorea	Achatina fulica	10	0
Moaroa Valley, Tahiti	Achatina fulica	5	100.0%
Ivory Coast	Achatina sp.	22	18.2%
Ibadan, Nigeria	Achatina sp.	3	100.0%
UP Diliman Campus, Philippines	Laevicaulis alte	19	21.1%
Batasan Hills, Philippines	Laevicaulis alte	20	30.0%

A total of 25 distinct nematode sequences were identified from the snail and slug populations. For the *Achatina fulica* populations, a single unique nematode sequence was found in the Thailand population; two nematode sequences were each found in the UP Diliman-Philippines, Ogasawara and Tahiti populations; three were found in the Batasan-Philippines population, and four in the Singapore population. For the West African *Achatina* sp. populations, three unique nematode sequences were found in Nigeria and seven in the Ivory Coast. For the Philippine *Laevicaulis alte* populations, the same two nematode sequences found in *A. fulica* were also found in the UP Diliman *L. alte* population, whereas two unique sequences were found in the Batasan Hills population in addition to a nematode sequence that it shares with the *A. fulica* population from that site. One of the Tahiti sequences (Tahiti Sequence 1) is identical to one of the Philippines sequences (Philippines Sequence 1), which was present in the UP Diliman population of *Achatina fulica* and in both UP Diliman and Batasan Hills populations of *Laevicaulis alte*. A summary of the frequency and distribution of these nematode sequences is given in Table 7.3.

Table 7.3: Distribution and frequencies of the nematode sequences across global populations of *Achatina fulica*, West African populations of *Achatina* sp. and Philippine populations of *Laevicaulis alte*. Note that Philippines Sequence 1 and Tahiti Sequence 1 are 100% identical.

Locality	Host	Nematode Sequences	Number (Frequency relative to the total nematodes found in the whole snail population)
Nepal	Achatina fulica	None	None
Myanmar	Achatina fulica	None	None
Thailand	Achatina fulica	Thailand Sequence 1	1 (100.0%)
Ogasawara, Japan	Achatina fulica	Ogasawara Sequence 1	2 (2.3%)
		Ogasawara Sequence 2	86 (97.7%)
UP Diliman, Philippines	Achatina fulica	Philippines Sequence 1 (=Tahiti Sequence 1)	1 (16.7%)
		Philippines Sequence 2	5 (83.3%)
Batasan, Philippines	Achatina fulica	Philippines Sequence 5	6 (33.3%)
		Philippines Sequence 6	1 (5.6%)
		Philippines Sequence 7	11 (61.1%)
Subic Forest Reserve, Philippines	Achatina fulica	None	None
Singapore	Achatina fulica	Singapore Sequence 1	6 (9.7%)
		Singapore Sequence 2	1 (1.6%)
		Singapore Sequence 3	1 (1.6%)
		Singapore Sequence 4	54 (87.1%)
Tahiti	Achatina fulica	Tahiti Sequence 1	91 (98.9%)
		(=Philippines Sequence 1)	
		Tahiti Sequence 2	1 (1.1%)
Moorea	Achatina fulica	None	None
Ivory Coast	Achatina sp.	Ivory Coast Sequence 1	2 (8.7%)
		Ivory Coast Sequence 2	11 (47.8%)
		Ivory Coast Sequence 3	1 (4.3%)
		Ivory Coast Sequence 4	1 (4.3%)
		Ivory Coast Sequence 5	5 (21.7%)
		Ivory Coast Sequence 6	1 (4.3%)
		Ivory Coast Sequence 7	2 (8.7%)
Nigeria	Achatina sp.	Nigeria Sequence 1	1 (1.8%)
		Nigeria Sequence 2	1 (1.8%)
		Nigeria Sequence 3	54 (96.4%)
UP Diliman, Philippines	Laevicaulis alte	Philippines Sequence 1 (=Tahiti Sequence 1)	20 (95.2%)
		Philippines Sequence 2	1 (4.8%)
Batasan, Philippines	Laevicaulis alte	Philippines Sequence 1 (=Tahiti Sequence 1)	8 (80%)
		Philippines Sequence 3	1 (10%)
		Philippines Sequence 4	1 (10%)

Nine snails from six localities (UP Diliman-Philippines, Batasan Hills-Philippines, Ogasawara, Singapore, Tahiti and Ivory Coast) were infected by more than one type of worm based on the SSU rRNA sequences. Table 7.4 summarises the multiple infections of these snails.

Table 7.4: Snails infected with more than one type of worm based on the sequence of the 5' end of the SSU rRNA gene.

Locality	Host #	Nematode Sequence	Number (Frequency*)
UP Diliman, Philippines	Achatina fulica	Philippines Sequence 1	1 (16.7%)
	D51	Philippines Sequence 2	5 (83.3%)
Batasan Hills, Philippines	Achatina fulica	Philippines Sequence 5	1 (33.3%)
	B42	Philippines Sequence 7	2 (66.67%)
	Achatina fulica	Philippines Sequence 5	1 (50%)
	B43	Philippines Sequence 7	1 (50%)
Ogasawara, Japan	Achatina fulica	Ogasawara Sequence 1	1 (8.3%)
	OJ2	Ogasawara Sequence 2	11 (91.7%)
	Achatina fulica	Ogasawara Sequence 1	1 (14.3%)
	OJ3	Ogasawara Sequence 2	6 (85.7%)
Singapore	Achatina fulica	Singapore Sequence 1	4 (80.0%)
	Si63	Singapore Sequence 2	1 (8.3%)
Tahiti	Achatina fulica	Tahiti Sequence 1	11 (91.7%)
	T1	Tahiti Sequence 2	1 (1.1%)
Ivory Coast	Achatina sp.	Ivory Coast Sequence 2	11 (84.6%)
	IVC19	Ivory Coast Sequence 3	1 (7.7%)
		Ivory Coast Sequence 4	1 (7.7%)
	Achatina sp.	Ivory Coast Sequence 6	2 (66.7%)
	IVC22	Ivory Coast Sequence 7	1 (33.3%)

*Frequency is relative to the total nematodes found per snail.

The 25 nematode sequences were then subjected to a BLAST search in GenBank (GB Release No. 158, 15 February 2007) to identify an exact match or closest identity to named nematode species. Two of these sequences, namely Tahiti Sequence 1/ Philippines Sequence 1 and Tahiti Sequence 2, are angiostrongylids based on the BLAST results. However, only Tahiti Sequence 1/Philippines Sequence 1 has a 100% match with *Angiostrongylus cantonensis* (AY295804, Carreno & Nadler, 2003). Among the non-angiostrongylids, Philippines Sequence 5 is the only other nematode sequence to have a 100% BLAST identity to a named species in GenBank. This

sequence is identical to *Ancylostoma caninum* (AJ920347, Chilton *et al.*, 2006). As the other sequences did not match any named taxon in GenBank based on BLAST results, only the closest sequence identity to a named nematode species could be assigned; their exact species identification based on the BLAST results could therefore not be known as of GB Release No. 158. For instance, the second highest sequence similarity attained was 99%; this was the case for Philippines Sequence 2 (for *Oslerus osleri*), Singapore Sequence 4 (for *Oslerus osleri*), Tahiti Sequence 2 (for *Angiostorngylus cantonensis*), Ivory Coast Sequence 1 (for *Metastrongylus elongatus* and *M. salmi*) and Nigeria Sequence 2 (for *Ancylostoma caninum*). On the other hand, Singapore Sequence 1 and Philippines Sequence 3 have the lowest sequence identity (87% BLAST identity for both with *Pellioditis marina*, a marine nematode, which, being terrestrial nematodes, Singapore Sequence 1 and Philippines Sequence 3 clearly are not). A summary of the BLAST results is shown in Table 7.5.

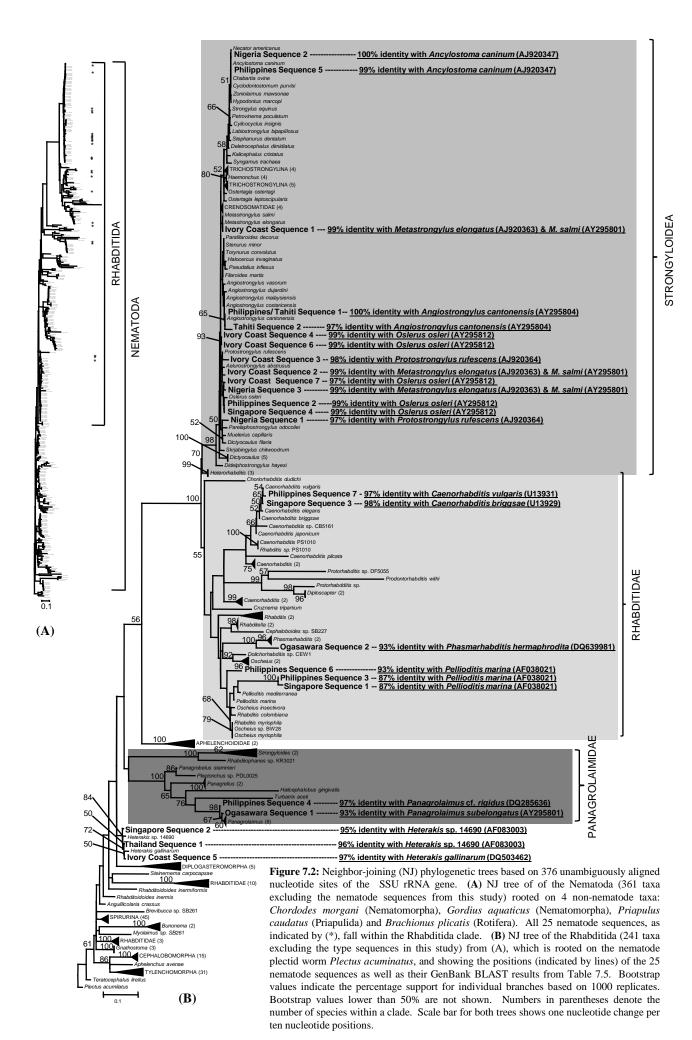
Table 7.5: GenBank BLAST results for the nematode sequences

Sequence	BLAST Result
Thailand Sequence 1	96% identity with Heterakis sp. 14690 (AF083003) [Ascaridida]
Ogasawara Sequence 1	93% identity with <i>Panagrolaimus subelongatus</i> (AY284681) [Panagrolaimidae]
Ogasawara Sequence 2	93% identity with Phasmarhabditis hermaphrodita (DQ639981) [Rhabditida]
Philippines Sequence 1	100% identity with Angiostrongylus cantonensis (AY295804) [Strongyloidea]
(=Tahiti Sequence 1)	
Philippines Sequence 2	99% identity with Oslerus osleri (AY295812) [Strongyloidea] (but different
	from Singapore Sequence 4)
Philippines Sequence 3	87% identity with Pellioditis marina (AF038021) [Rhabditidae] (but different
	from Singapore Sequence 1)
Philippines Sequence 4	97% identity with <i>Panagrolaimus</i> c.f. <i>rigidus</i> (DQ285636) [Panagrolaimidae]
Philippines Sequence 5	100% identity with Ancylostoma caninum (AJ920347) [Strongyloidea]
Philippines Sequence 6	93% identity with Pelliodits marina (AF038021) [Rhabditidae]
Philippines Sequence 7	97% identity with Caenorhabditis vulgaris (U13931) [Rhabditidae]
Singapore Sequence 1	87% identity with Pellioditis marina (AF038021) [Rhabditidae]
Singapore Sequence 2	95% identity with Heterakis sp. 14690 (AF083003) [Ascaridida]
Singapore Sequence 3	98% identity with Caenorhabditis briggsae (U13929) [Rhabditidae]
Singapore Sequence 4	99% identity with Oslerus osleri (AY295812) [Strongyloidea] (but different
	from Singapore Sequence 2)
Tahiti Sequence 1	100% identity with Angiostrongylus cantonensis (AY295804) [Strongyloidea]
(=Philippines Sequence 1)	
Tahiti Sequence 2	97% identity with Angiostrongylus cantonensis (AY295804) [Strongyloidea]
Ivory Coast Sequence 1	99% identity with Metastrongylus elongatus (AJ920363) [Strongyloidea]
	99% identity with Metastrongylus salmi (AY295801) [Strongyloidea]
Ivory Coast Sequence 2	98% identity with Metastrongylus elongatus (AJ920363) [Strongyloidea]
	98% identity with Metastrongylus salmi (AY295801) [Strongyloidea]
Ivory Coast Sequence 3	98% identity with Protostrongylus rufescens (AJ920364) [Strongyloidea]
Ivory Coast Sequence 4	98% identity with Oslerus osleri (AY295812) [Strongyloidea] (but different
	from Ivory Coast sequence 6)
Ivory Coast Sequence 5	97% identity with Heterakis gallinarum (DQ503462) [Ascaridida]
Ivory Coast Sequence 6	98% identity with Oslerus osleri (AY295812) [Strongyloidea] (but different
	from Ivory Coast sequence 4)
Ivory Coast Sequence 7	97% identity with Oslerus osleri (AY295812) [Strongyloidea]
Nigeria Sequence 1	97% identity with Protostrongylus rufescens (AJ920364) [Strongyloidea]
Nigeria Sequence 2	99% identity with Ancylostoma caninum (AJ920347) [Strongyloidea]
Nigeria Sequence 3	97% identity with Metastrongylus elongatus (AJ920363) [Strongyloidea]
	97% identity with Metastrongylus salmi (AY295801) [Strongyloidea]

To complement the BLAST results, a neighbor-joining tree of the Nematoda based on 376 unambiguously aligned nucleotide sites of the 5' end of the SSU rRNA gene (Fig. 7.2A) was then generated to visualise the relationships of the 25 nematode sequences with all 361 nematode taxa having at least the first 480 nucleotides of the 5' end of the SSU rRNA in GenBank (GB Release No. 158, see Appendix 6.2) as well as the new sequences from the four *Angiostrongylus* species in Chapter 6. The GTR+ Γ model was used to construct the tree after it was determined to be the best model (Appendix 7.1A, p. 617). According to this phylogeny, all 25 nematode sequences fall within the Rhabditida clade (Meldal et al., 2006). A smaller NJ phylogeny of the same gene fragment (376 nucleotide sites) was constructed (Fig. 7.2B) for the Rhabditida clade using all 241 rhabditid SSU sequences available in GenBank (GB Release No. 158) as well as the other Angiostrongylus sequences and rooted on the plectid nematode Plectus acuminatus (AF037628, Blaxter et al., 1998). The GTR+ Γ model was determined to be the best model and was subsequently used for this analysis (Appendix 7.1B, p. 617). This NJ phylogeny shows that 22 out of the 25 nematode sequences, including the two angiostrongylid sequences (Philippines Sequence 1/ Tahiti Sequence 1 and Tahiti Sequence 2), are distributed across three major clades in the tree: the Strongyloidea, the Rhabditidae and the Panagrolaimidae. The three remaining nematode sequences (Ivory Sequence 5, Singapore Sequence 2 and Thailand Sequence 1) group with the two *Heterakis* species found outside the three aforementioned clades. The groupings of the nematode sequences to the different clades correspond to the taxonomic grouping of the closest match(es) of each of the nematode sequences according to BLAST (see also Table 7.5).

The Strongyloidea clade includes the 2 angiostrongylid sequences: Tahiti Sequence 1/ Philippines Sequence 1 and Tahiti Sequence 2. Tahiti Sequence 1/ Philippines Sequence 1 has 100% BLAST identity to the sequence of *Angiostrongylus cantonensis* on Genbank (AY295804, Carreno & Nadler, 2003) and clusters with *A. cantonensis* in the tree, while the sequences from the other *Angiostrongylus* species sequenced in Chapter 6 fall outside this cluster. Tahiti Sequence 2 also clusters with *A. cantonensis* in the tree but has a BLAST identity of 97% with *A. cantonensis*.

There are 12 non-angiostrongylid sequences that are also included in the Strongyloidea; these are the 3 Nigeria sequences, 6 out of 7 Ivory Coast sequences, 2


Philippines sequences and Singapore Sequence 4. Nigeria Sequence 1 clusters with the deer muscleworm Parelaphostrongylus odocoilei, the hair lungworm Muellerius capillaris, and the sheep lungworm Dictyocaulus filaria, though it has a 97% BLAST identity with the goat and sheep lungworm Protostrongylus rufescens (AJ920364, Chilton et al., 2006) (see Table 7.5). Nigeria Sequence 2 and Philippines Sequence 5 cluster with the dog hookworms Ancylostoma caninum and Necator americanus; both sequences are most similar to Ancylostoma caninum (AJ920347, Chilton et al., 2006) with 99% and 100% BLAST identities, respectively. Nigeria Sequence 3 clusters with Ivory Coast Sequence 7, though they have different BLAST identities; Nigeria Sequence 3 has a 97% BLAST identity with both pig lungworms Metastrongylus elongatus (AJ920363, Chilton et al., 2006) and M. salmi (AY295609, Carreno & Nadler, 2003) while Ivory Coast Sequence 7 has a 97% BLAST identity with the filaroid dog lungworm Oslerus osleri (AY295812, Carreno & Nadler, 2003). Ivory Coast Sequence 1 groups with Metastrongylus elongatus (AJ920363) and M. salmi (AY295609) with 99% BLAST identity for both taxa. Ivory Coast Sequence 2 clusters with the cat lungworm Aelurostrongylus abstrusus (Chilton et al., 2006), though it has a 98% BLAST identity with both Metastrongylus elongatus (AJ920363) and M. salmi (AY295609) (see Table 7.5). Ivory Coast Sequence 3 clusters with Protostrongylus rufescens (AJ920364) with 98% BLAST identity. Ivory Coast Sequences 4 and 6 cluster together and both have a 98% BLAST identity with Oslerus osleri (AY295812) though the two sequence types are not identical with each other (see Table 7.5). Both Philippines Sequence 2 and Singapore Sequence 4 cluster with Oslerus osleri (AY295812) with 99% BLAST identity though they are not identical with each other (see Table 7.5).

342

The Rhabditidae clade includes six nematode sequences: Singapore Sequences 1 and 3, Philippines Sequences 3, 6 and 7 and Ogasawara Sequence 2. Singapore Sequence 1 and Philippines Sequence 3 cluster together, and in turn group with the freeliving marine nematode *Pellioditis mediterranea*, though both have an 87% BLAST identity with *Pellioditis marina* (AF038021, Fitch, 2000). Philippines Sequence 6 forms a sister group taxon with a group of rhabditids that include the *Pellioditis* species and has a 93% BLAST identity with *Pellioditis marina* (AF038021). Singapore Sequence 3 clusters with *Caenorhabditis* spp., free-living soil nematodes, along with Philippines Sequence 7; Singapore Sequence 3 is 98% identical with *Caenorhabditis briggsae* (U13929, Fitch *et al.*, 1995) while Philippines Sequence 7 is 97% identical with *Caenorhabditis vulgaris* (U13931) based on BLAST results. Ogasawara Sequence 2 groups with the two *Phasmarhabditis* taxa and has a 93% BLAST identity with *Phasmarhabditis hermaphrodita*.

Two nematode sequences, Ogasawara Sequence 1 and Philippines Sequence 4, are included in the Panagrolaimidae clade; the former has a 93% BLAST identity with the soil nematode *Panagrolaimus subelongatus* (AY284681, Holterman *et al.*, 2006) while the latter has a 97% identity with *Panagrolaimus* c.f. *rigidus* (DQ285636, Houthoofd *et al.*, 2006).

The three remaining nematode sequences, Singapore Sequence 2, Thailand Sequence 1 and Ivory Coast Sequence 5, all cluster with the bird parasites in the genus *Heterakis*; Singapore Sequence 2 and Thailand Sequence 1 are 95% and 96% identical, respectively, with *Heterakis* sp. isolate 14690 (AF083003, Fitch, 2000) based on BLAST results whereas Ivory Coast Sequence 5 has a 97% BLAST identity with *Heterakis galinarum* (DQ503462, Smythe *et al.*, 2006).

7.4. Discussion

7.4.1. Angiostrongylus cantonensis infection in snail and slug populations

The results of this study demonstrate the presence of Angiostrongylus cantonensis from Achatina fulica populations in the Philippines and Tahiti among the areas within the route of dispersal of Achatina fulica; in the case of the Philippines, the worm was also detected in the black slug Laevicaulis alte. This was demonstrated by the 100% BLAST identity of Philippines Sequence 1/Tahiti 1 with A. cantonensis based on the 5' end of the SSU rRNA gene and its distinction from all other Angiostrongylus species sequenced to date. Historically, cases of rat and mollusc infections in the Philippines (Garcia, 1979) and rat, gastropod and human infections in Tahiti (Alicata, 1966; Wallace & Rosen, 1969; Bronstein et al., 1977) have been recorded. Although Wallace and Rosen (1969) surveyed Tahiti for the presence of Angiostrongylus *cantonensis* in gastropod intermediate hosts between 1965 and 1966 and found 3rd stage juveniles in areas where the rats were known to be infected with the parasite, they did not confirm the identity of the juveniles by feeding them to laboratory rats. Their survey did not include A. fulica among the gastropods they examined as they did not encounter the snail, noting that it was only reported in Tahiti in 1967 (Raut & Barker, 2002). This study therefore provides the first ever reported case of A. cantonensis infection in A. fulica in Tahiti. The first recorded case of human infection in Tahiti by the nematode parasite occurred in 1957 and rat infection in 1961 (Alicata, 1966), several years before A. *fulica* was supposedly introduced. In the case of Tahiti, at least, Alicata (1966) hypothesised that A. cantonensis was not brought there by A. fulica. Nevertheless, the results show that the Tahitian Achatina fulica is used as an intermediate host of A. cantonensis. Alicata (1966) also found A. fulica in Hawaii to be

infected with the parasite, and he concluded that if the snails and the worms are found in the same area, then it is highly likely that the majority of the snails in the population will be infected.

The other A. fulica populations surveyed in the current study that are within the dispersal route of A. fulica proved negative for A. cantonensis. Among these areas, Thailand, Japan and Singapore had prior reported cases of A. cantonensis. In the case of Thailand, A. cantonensis was "found" in the edible land snail, Hemiplecta distincta, from 16 provinces where a total of 467 snails were surveyed (Panha, 1988). However, it was not definitively identified by feeding the nematodes to laboratory rats; instead, identification relied more on the morphological features of the juveniles. The sampling site in Thailand for this study (with only 20 snails surveyed but with no A. cantonensis infection) is also near the border with Cambodia where the parasite was detected in both humans and rats (Brumpt et al., 1968). In Japan, A. cantonensis was reported from 27 cases of human infections, the majority of which are from the Okinawa Prefecture in the Pacific south of the Japanese main islands (Nakazawa et al., 1992). In Ogasawara (with 12 snails surveyed in this study), there are no reported cases of A. cantonensis to date; Ogasawara is another group of islands in the Pacific southeast of the main Japanese islands. In Singapore (33 snails surveyed), there is one previous case of eosinophilic meningoencephalitis in a woman who was suspected of acquiring the parasite from eating contaminated raw vegetables, though it was more likely that these vegetables were imported from a nearby country where these worms are found (Lim *et al.*, 2004). For the remaining areas, Nepal, Myanmar and Moorea, there are no known reported cases to date that demonstrate the presence of Angiostrongylus cantonensis, though no systematic attempts to survey the snails and rats for worms in these areas have been done so far.

For West Africa, neither the *Achatina* sp. sample population from Ibadan, Nigeria (3 snails surveyed) nor that of the Ivory Coast (22 snails surveyed) yielded *A. cantonensis*. However, both countries had prior reported cases of *A. cantonensis* infections. A previous survey conducted on 22 rats in Ibadan in 1989 also failed to recover the parasite (Kliks & Palumbo, 1992), although it was detected in rats in Port Harcourt 450 km to the southeast (Udonsi, 1989; Kliks & Palumbo, 1992). In the Ivory Coast, the only recorded incidence was based on a single patient in 1979 that manifested the disease (Nozais *et al.*, 1980).

Angiostrongylus cantonensis was found in only two of the global populations of A. fulica sampled in this study. These results are therefore insufficient to permit any consideration of the role of A. fulica in the dispersal of A. cantonensis. The low success in finding the parasite in the snail intermediate host could have been caused by several factors. For one, the absence of A. cantonensis in A. fulica populations within the snail's route of dispersal, with the exception of the Philippines and Tahiti, may be due to the patchy distribution of the parasite. This was shown in a previous study by Bisseru (1971) in which he surveyed the presence of A. cantonensis in A. fulica populations from 27 sites in West Malaysia and found two sites with no parasite in any of the snails. One of these sites, Padang Besar, Perlis, with 100 snails sampled, is less than 65 km from Alor Star, Kedah, with 70 snails sampled and with an infection rate of 28.5%. Further to the patchy distribution of the parasite, the snail intermediate host itself could also have a patchy distribution and be uncommon in some of the sampling sites, thus reducing the probability of finding the parasites. For example, the Subic Bay Forest Reserve in the Philippines only yielded four individuals despite rigourous searching. In addition to the issue of patchy distribution, this study was also affected by sampling limitation; in particular, sampling was severely hampered by the availability

of live snail samples that could be brought out of the sampling sites. For instance, governmental restrictions in India and Sri Lanka prevent the export of live snails from these countries. Based on these factors, a comprehensive global survey of *A. fulica* populations was not possible.

Angiostrongylus cantonensis is not stringent as to its choice of intermediate and definitive hosts (Prociv et al., 2000); therefore, the current distribution range of the parasite could be attributed to more than just one host. Indeed, the parasite is known to have been established in many localities where A. fulica is absent or has arrived after A. cantonensis. Already mentioned is Tahiti, to which the parasite could have been brought either by contaminated rats or by molluscs other than A. fulica that were probably imported by labourers from Indochina and Indonesia in the 1950s (Alicata, 1966). Other examples include Brisbane, Australia, where the parasite was found in the exotic rats R. norvegicus and R. rattus (Yong et al., 1981), and New Orleans, USA where the worm was recovered from R. rattus (Campbell & Little, 1988). In both cases, local snails and slugs were also found to harbor A. cantonensis either in the wild (Yong et al., 1981) or experimentally (Campbell & Little, 1988). Furthermore, other intermediate hosts with similar routes of dispersal to that of A. fulica could just as easily have aided the dispersal of A. cantonensis. One candidate is the black slug, Laevicaulis alte, which originated from Africa (Solem, 1964) and has spread across the globe in association with humans (Hoffman, 1925); the slug is also known to harbor A. cantonensis as demonstrated by Salazar and Cabrera (1969) and by the results from this study. It is therefore highly likely that the dispersal of the nematode is attributed to a complex combination of rats and mollusc intermediate hosts, and a systematic survey of all possible taxa that could harbour A. cantonensis as well as the population genetic analysis of global populations of the parasite and its hosts, juxtaposed with the information regarding the first reported cases of infection in new areas, is perhaps the only way to trace the dispersal of *A. cantonensis*.

7.4.2. The presence of other worms in snail and slug populations

Nematodes other than *Angiostrongylus cantonensis* can likewise infect terrestrial snails and slugs such as *Achatina fulica* and *Laevicaulis alte*. The BLAST results and the phylogenetic analysis in this study clearly revealed 23 unique nematode species from the snails and slugs that fall within the Rhabditida clade and which have not yet been characterised molecularly using the 18S rRNA gene as they did not have a match with any named nematode taxa in GenBank. Some of these nematode species were also found to infect the same snail, as in the case of two *Achatina* sp. from the Ivory Coast, three *Achatina fulica* from the Philippines and one *A. fulica* each from Singapore, Ogasawara and Tahiti. Infection in gastropods by more than one species of nematodes is not uncommon, although localization of these parasites to specific organs does occur (Morand *et al.*, 2004). In another study, Viyada (2005) surveyed 200 adult *A. fulica* from two provinces in Thailand in which he found *Rhabditis* sp. in the alimentary tract. He suggested that this species could have been an accidental parasite of the snail as no noticeable damage to the host was observed.

Some species of nematodes pass through a dauer stage, a non-feeding alternative 3rd juvenile stage that is resistant to stress and can survive for several months without feeding. In free living soil nematodes such as *Caenorhabditis elegans*, the dauer stage is utilised for dispersal and forms associations with invertebrate hosts or even feeds on carcasses of animals. For instance, *C. elegans* was found in snails (*Helix, Oxychilus* and *Pomatias*), isopods (*Oniscus asellus*) and a glomeris myriapod, indicating a wide host specificity for a nematode originally thought to be free-living (Barriere & Felix,

2005). Some of the nematode infections in this study could have been attributed to associations with the dauer stage; for example, Singapore Sequence 3 has a 98% identity with the free-living soil nematode *Caenorhabditis briggsae* while Philippines Sequence 7 has a 97% identity with *C. vulgaris*.

Grewal et al. (2003) listed 108 nematodes species that are known to be parasitic on gastropods and divided them into those that use gastropods as intermediate hosts and those that use gastropods as definitive hosts. For the first group of gastropodparasitizing nematodes, the majority belong to the order Strongylida while the rest are from the Ascaridia, Spirurida and Rhabditida. Based on the results of this study, 13 nematode sequences fall within the Strongyloidea: Tahiti Sequence 2, Nigeria Sequences 1, 2 and 3, Ivory Coast Sequences 1, 2, 3, 4, 6 and 7, Philippines Sequences 2 and 5 and Singapore Sequence 4. A further three sequences cluster with the Heterakis species from the Ascaridia: Singapore Sequence 2, Thailand Sequence 1 and Ivory Coast Sequence 5. Based on their phylogenetic positions, these nematodes were probably juveniles and most likely used Achatina fulica and Achatina sp. as intermediate hosts. For the second group of gastropod-parasitizing nematodes, the majority belong to the Rhabditida (Grewal et al., 2003). Six other sequences in this study fall within the Rhabditidae: Singapore Sequences 1 and 3, Philippines Sequences 3, 6 and 7, and Ogasawara Sequence 2. These nematodes were probably adults that used the snails and slugs as definitive hosts. On the other hand, Ogasawara Sequence 1 and Philippines Sequence 4 did not fall in either group described by Grewal et al. (2003) as they cluster with the Panagrolaimidae, a group of bacteria-feeding soil nematodes. It is highly likely that the A. fulica samples from Ogasawara and the Philippines L. alte that was infected with the nematode bearing Philippines Sequence 4 became accidental hosts of these probable free-living soil nematodes.

There were instances in the study when a nematode sequence clustered with a particular taxon or group of taxa in the phylogenetic analysis and yet was most similar to another species based on the BLAST result. This was true for Nigeria Sequences 1 and 3 and Ivory Coast Sequence 2. It should be noted that the BLAST results were based on approximately 480 nucleotide sites whereas the phylogenetic analysis utilised only 376 sites as the rest could not be unambiguously aligned and that the clades generated were not well supported at the tips. For this reason, BLAST results take precedence as they identify the closest sequence match to named nematode taxa found in GenBank using all available nucleotide sites obtained while the phylogenetic analyses only determine which clades the unknown sequence types belong to based on a subset of the sequence information obtained.

7.4.3. Limitations and the next step

This study was heavily dependent on the availability of live samples of *Achatina fulica* and other gastropod intermediate hosts. Alicata's hypothesis was not sufficiently tested precisely because of the patchy and limited sampling of live snails and parasites, and the second objective (comparison of the population genetics of the snail and the parasite to check for similarity in their dispersal) was therefore not met as only the population genetics of global samples of *Achatina fulica* based on the 16S rRNA gene was available (see Chapter 5). Many areas were not covered because of governmental restrictions on the export of live snails, the difficulty of finding these snails by collectors and keeping them alive whilst in transit, the unwillingness of some couriers to ship live specimens, and the UK government's restrictions on the importation of such live snails from different countries. One practical solution will be to collect the samples and extract the worms in the field. Another is to develop a technique that will detect the

presence of *A. cantonensis* through PCR in ethanol-preserved specimens, though this technique will not be able to determine the parasite load (number of parasites present) per individual snail.

Owing to the fact that *Angiostrongylus cantonensis* has a patchy distribution as demonstrated by the survey from three sampling sites in the Philippines, several sampling sites per locality should also be covered. In addition, other gastropod intermediate hosts that could have had a role in the dispersal of *A. cantonensis* should be surveyed alongside *A. fulica*.

7.5. Summary

Within the route of dispersal of *Achatina fulica*, *Angiostrongylus cantonensis* was only found in *A. fulica* populations in the Philippines and Tahiti as well as the *Laevicaulis alte* populations in the Philippines. The results for Tahiti provide the first recorded case of *A. cantonensis* infection for *A. fulica* in that island. Due to the patchy distribution of *A. cantonensis* and the limited sampling of the snail intermediate host, the results from this study are insufficient to test Alicata's hypothesis that the Giant African Land Snail is primarily responsible for the spread of the parasite. Further sampling is therefore required. *Angiostrongylus cantonensis* has a wide range of suitable intermediate hosts, and gastropods such as the black slug *Laevicaulis alte*, which this study clearly demonstrated to harbor the parasite, should also be considered in future studies to determine their role in the dispersal of the parasite. Other worms found in *Achatina fulica*, *Achatina* sp. and *Laevicaulis alte* include 12 strongyloid species and 3 ascarid species that probably used the snails as intermediate hosts. One panagrolaimid

nematode species each from Ogasawara and the Philippines most likely used A. fulica

and L. alte, respectively, as accidental hosts.

7.6. Literature Cited:

- Aguinaldo, A.M., Turbeville, J.M., Linford, L.S., Rivera, M.C., Garey, J.R., Raff, R.A. and Lake, J.A. 1997. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature **387**(6632): 489-493.
- Aleshin, V.V., Milyutina, I.A., Kedrova, O.S., Vladychenskaya, N.S. and Petrov, N.B. 1998. Phylogeny of Nematoda and Cephalorhyncha derived from 18S rDNA. Journal of Molecular Evolution 47(5): 597-605.
- Alicata, J. 1966. The presence of *Angiostrongylus cantonensis* in the islands of the Indian Ocean and probable role of the giant African snail, *Achatina fulica*, in the dispersal of the parasite to the Pacific islands. Canadian Journal of Zoology **44**: 1041-1049.
- Alicata, J. 1967. Absence of *Angiostrongylus cantonensis* in rodents in parts of Central and South America. Journal of Parasitology **53**(5): 1118.
- Andersen, E., Gubler, D.J., Sorensen, K., Beddard, J., and Ash, L.R. 1986. First report of *Angiostrongylus cantonensis* in Puerto Rico. American Journal of Tropical Medicine and Hygiene 35(2): 319-322.
- Barriere, A. and Felix, M-A. 2005. High local genetic diversity and low outcrossing rate in *Caenorhabditis elegans* natural populations. Current Biology 15: 1176-1184.
- Bisseru, B. 1971. The prevalence of *Angiostrongylus cantonensis* larvae collected from the giant African snail, *Achatina fulica*, in West Malaysia and Singapore. Southeast Asian Journal for Tropical Medicine and Public Health **2**(4): 523-526.
- Blaxter, M.L., De Ley, P, Garey, J.R., Liu, L.X, Scheldeman, P., Vierstraete, A., Vanfleteren, J.R., Mackey, L.Y., Dorris, M., Frisse, L.M., Vida, J.T. and Thomas, W.K. 1998. A molecular evolutionary framework for the phylum nematoda. Nature. **392**(6671): 71-75.
- Bronstein, J.A., Plassart, H., Huot, D., Jouffe, G. and Thevenot, J. 1977. Meningite a eosinophiles. La Nouvelle presse medicale **6**: 4059-4061.
- Brumpt, V., Chaubaud, A.G., Klein, J.M., Jolly, M., Mazaud, R. and Goube, P. 1968. Incidence d' Angiostrongylus cantonensis (Chen, 1935) au Cambodge. Bulletin de la Societe de pathologie exotique 61(3): 444-462.
- Campbell, B.G. and Little, M.D. 1988. The finding of *Angiostrongylus cantonensis* in rats in New Orleans. The American Society of Tropical Medicine and Hygiene **38**(3): 568-573.
- Carreno, R.A. and Nadler, S.A. 2003. Phylogenetic analysis of the Metastrongyloidea (Nematoda: Strongylida) inferred from ribosomal RNA gene sequences. Journal of Parasitology **89**(5): 965-973.
- Chau, T.T.H., Thwaites, G.E., Chuong, L.V., Sinh, D.X. and Farrar, J.J. 2003. Headache and confusion: the dangers of a raw snail supper. Lancet **361**: 1866.
- Chen, H.T. 1935. Un noveau nematode pulmonaire, *Pulmonema cantonensis* n.g., n. sp., des rats de Canton. Annales de Parasitologie Humaine et Comparee **13**: 312-317.

- Chilton, N.B., Huby-Chilton, F., Gasser, R.B. and Beveridge, I. 2006. The evolutionary origins of nematodes within the order Strongylida are related to predilection sites within hosts. Molecular Phylogenetics and Evolution **40**: 118-128.
- Drozdz, J., Gorecka, T. and Binh, N.H. 1975. The occurrence of nematodes of the subfamily Angiostrongylinae in Vietnam and the question of geographical origin of *Parastrongylus cantonensis* (Chen, 1935). Acta Parasitologica Polonica 23: 115-126.
- Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution **17**: 368-376.
- Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution **39**: 783-791.
- Fitch, D.H., Bugaj-Gaweda, B., and Emmons, S.W. 1995. 18S ribosomal RNA gene phylogeny for some Rhabditidae related to *Caenorhabditis*. Molecular Biology and Evolution **12**(2): 346-358.
- Fitch, D.H.A. 2000. Evolution of "Rhabditidae" and the male tail. Journal of Nematology **32**: 235-244.
- Fitch, D.H., Bugaj-Gaweda, B. and Emmons, S.W. 1995. 18S ribosomal RNA gene phylogeny for some Rhabditidae related to *Caenorhabditis*. Molecular Biology & Evolution **12**(2): 346-358.
- Floyd, R., Abebe, E., Papert, A. and Blaxter, M. 2002. Molecular barcodes for soil nematode identification. Molecular Ecology **11**:839-850.
- Fonseca, M.G. and Nascimento, L.R. 2004. Occurrence of Achatina fulica Bowdich, 1822 (Gastropoda: Achatinidae) in three municipalities in the north region of Sao Paolo State, Brazil. Arquivos do Instituto Biologico 71 (supplement): 654-655.
- Garcia, E.G. 1979. Angiostrongylus cantonensis in the Philippines: a review. In: Cross, J.H. (ed.) Studies on angiostrongyliasis in eastern Asia and Australia. U.S. Naval Medical Research Unit 2, Taipei, pp. 53-56.
- Grewal, P.S., Grewal, S.K., Tan, L. and Adams, B.J. 2003. Parasitism of molluscs by nematodes: types of associations and evolutionary trends. Journal of Nematology 35(2): 146-156.
- Hasegawa, M., Kishino, H. and Yano, T. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution **21**: 160-174.
- Hoffman, H. 1925. Die Vagineliden Ein Beitrag zur Kennis ihrer Biologie, Anatomie, Systematik, geographischen Verbreitung und Phylogenie (Fauna et Anatomica ceylanica, III, Nr. 1). Jena Z. Naturwiss **61** (1 and 2): 1-374.
- Holterman, M., van der Wurff, A., van den Elsen, S., van Megen, H., Bongers, T., Holovachov, O., Bakker, J. and Helder, J. 2006. Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Molecular Biology and Evolution 23(9): 1792-1800.
- Houthoofd, W., Willems, M., Vangstel, S., Mertens, C., Bert, W. and Borgonie, G. 2006. Different roads to form the same gut in nematodes. Evolution and Development 8: 362-369.
- Jukes, T.H. and Cantor, C.R. 1969. Evolution of protein molecules. *In*: Munro, H.N. (ed.), <u>Mammalian Protein Metabolism.</u> Academic Press, New York, pp. 21-32.

- Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111-120.
- Kliks, M.M. and Palumbo, N.E. 1992. Eosinophilic meningitis beyond the Pacific Basin: the global dispersal of a peridomestic zoonosis caused by *Angiostrongylus cantonensis*, the nematode lungworm of rats. Social Science & Medicine 34(2): 199-212.
- Lim, J.M., Lee, C.C. and Wilder-Smith, A. 2004. Eosinophilic meningitis caused by *Angiostrongylus cantonensis*, the nematode lungworm of rats. Social Science & Medicine 34(2): 199-212.
- Lindo, J.F., Waugh, C., Hall, J., Cunningham-Myre, C., Ashley, D., Eberhard, M.L., Sullivan, J.J., Bishop, H.S., Robinson, D.G., Holtz, T. and Robinson, R.D. 2002. Enzootic Angiostrongylus cantonensis in rats and snails after an outbreak of human eosinophilic meningitis, Jamaica. Emerging Infectious Diseases. 8(3): 324-326.
- Marquardt, W.C., Demaree, R.S. and Grieve, R.B. 2000. <u>Parasitology and Vector</u> <u>Biology, 2nd ed.</u> Academic Press, San Diego, California, U.S.A., 702 pp.
- Meldal, B.H.M., Debenham, N.J., De Ley, P., Tandingan De Lay, I., Vanfleteren, J.R., Vierstraete, A.R., Bert, W., Borgonie, G., Moens, T., Tyler, P.A., Austen, M.C., Blaxter, M.L., Rogers, A.D. and Lambshead, P.J.D. 2006. An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa. Molecular Phylogenetics and Evolution 42(3): 622-636.
- Morand, S., Wilson, M.J. and Glen, D.M. 2004. Nematodes (Nematoda) parasitic in terrestrial gastropods. *In:* Barker, G.M. (ed.) <u>Natural Enemies of Terrestrial Molluscs.</u> CABI Publishing, New Zealand, pp. 525-557.
- Nakazawa, K., Kato, Y. and Sakai, H. 1992. A case of eosinophilic meningitis due to *Angiostrongylus cantonensis*. Kansenshogaku Zasshi **66**(7): 998-1001.
- New, D., Little, M.D., and Cross, J. 1995. *Angiostrongylus cantonensis* infection from eating raw snails. New England Journal of Medicine **332**(16): 1105-1106.
- Nozais, J.P., Moreau, J., Morlier, G., Kouame, J. and Doucet, J. 1980. Premier cas de meningite a eosinophiles en Cote-d'Ivoire avec presence d'un *Parastrongylus* sp. Dans le liquide cephalo-rachidien. Bulletin de la Societe de pathologie exotique **73**: 179-182.
- Panha, S. 1988. Natural infection of the rat lungworm *Angiostrongylus cantonensis* in a Thai edible snail, *Hemiplecta distinca*. ScienceAsia 14: 233-239.
- Pascual, J.E., Planas Bouli, R. and Aguiar, H. 1981. Eosinophilic meningoencephalitis in Cuba, caused by *Angiostrongylus cantonensis*. American Journal of Tropical Medicine and Hygiene **30**(5): 960-962.
- Prociv, P., Spratt, D.M. and Carlisle, M.S. 2000. Neuro-angiostrongyliasis: unresolved issues. International Journal for Parasitology **30**: 1295-1303.
- Raccurt, C.P., Blaise, J., and Durette-Desset, M.C. 2003. Presence d'Angiostrongylus cantonensis en Haiti. Tropical Medicine and International Health **8**(5): 423-426.
- Raut, S.K. and Barker, G.M. 2002. Achatina fulica Bowdich and other Achatinidae as pests in tropical agriculture. In: Barker, G.M. (ed.), <u>Molluscs as Crop Pests</u>. CABI Publishing, Hamilton, New Zealand, pp. 55-114.
- Rodriguez, F., Oliver, J.L., Marin, A. and Medina, J.R. 1990. The general stochastic model of nucleotide substitution. Journal of Theoretical Biology **142**: 485-501.
- Salazar, N.P. and Cabrera, B.D. 1969. *Angiostrongylus cantonensis* in rodent and molluscan hosts in Manila and suburbs. Acta Medica Philippina **6**(1): 20-25.

- Smythe, A.B., Sanderson, M.J. and Nadler, S.A. 2006. Nematode small subunit phylogeny correlates with alignment parameters. Systematic Biology **55**(6): 972-992.
- Solem, A. 1964. New records of New Caledonia nonmarine mollusks and the analysis of the introduced mollusks. Pacific Science **18**: 130-137.
- Staden, R. Beal, K.F. and Bonfield, J.K. 2000. The Staden package, 1998. Methods in Molecular Biology 132: 115-130.
- Swofford, D.L. 2002. PAUP* 4.0b10, Sinauer Associates, Sunderland, MA.
- Tamura, K. and Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10: 512-526.
- Udonsi, J.K. 1989. A preliminary report of angiostrongyliasis in Nigeria: a potential public health problem. 13th Annual Conference, Nigerian Society for Parasitology, Vom, Nigeria.
- Viyada, S. 2005. Nematodes in alimentary tracts of Giant African Snails (*Achatina fulica*) in Thailand. Kamphaengsaen Academy Journal **3**(1): 37-41.
- Wallace, G.D. and Rosen, L. 1969. Studies on eosinophilic meningitis: V. Molluscan hosts of *Angiostrongylus cantonensis* on Pacific Islands. American Journal of Tropical Medicine and Hygiene 18: 206-216.
- Wan, K-S. and Weng, W-C. 2004. Eosinophilic meningitis in a child raising snails as pets. Acta Tropica **90**: 51-53.
- Waugh, C.A., Shafir, S., Wise, M., Robinson, R.D., Eberhard, M.L. and Lindo, J.F. 2005. Human Angiostrongylus cantonensis, Jamaica. Emerging Infectious Diseases 11(12): 1977-1978.
- Winnepenninckx, B., Backeljau, T., Mackey, L.Y., Brooks, J.M., De Wachter, R., Kumar, S. and Garey, J.R. 1995. 18S rRNA data indicate that Aschelminthes are polyphyletic in origin and consist of at least three distinct clades. Molecular Biology and Evolution 12(6): 1132-1137.
- Yang, Z. 1993. Maxiumum likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Molecular Biology and Evolution 10: 1396-1401.
- Yong, W.K., Welch, J.S. and Dobson, C. 1981. Localized distribution of *A. cantonensis* among wild rat populations in Brisbane, Australia. Southeast Asian Journal of Tropical Medicine and Public Health **12**: 608-609.

CHAPTER 8 – Summary

The Giant African Snail *Achatina* (*Lissachatina*) *fulica* is a pest species that originated in East Africa but currently has a pantropical distribution brought about by human activities. It is also a known intermediate host of the rat lungworm, *Angiostrongylus cantonensis*, which can infect humans and cause eosinophilic meningoencephalitis.

Achatina fulica belongs to the Stylommatophora, a group of land snails and slugs that has two pairs of caudal tentacles, a contractile pneumostome and no operculum. Recent molecular phylogenetic study based on the rRNA gene cluster has shown a clear dichotomy of the Stylommatophora into the 'non-achatinoid' clade and the 'achatinoid' clade, which includes A. fulica. Within the 'achatinoid clade' is the Achatinoidea, which includes the Achatinidae, Coeliaxidae, Ferussaciidae, Glessulidae, Subulinidae and Thyrophorellidae. The phylogeny of the Achatinoidea was investigated further using 24 taxa across 6 families based on 3 nuclear genes (rRNA cluster, actin and histone 3) and 2 mitochondrial genes (CO1 and 16S rRNA). The 3rd codon position of the CO1 gene and the 16S rRNA were later excluded as they were found to be saturated. All stronglysupported groups in the rRNA phylogeny were recovered in the combined gene phylogenies with longer internal branches and receiving similar or slightly better statistical The study demonstrated the monophyly of the Achatinidae but not the support. Ferussaciidae, Coeliaxidae and the Subulinidae. These results suggest the need to reevaluate of the Ferussaciidae, Coeliaxidae and Subulinidae as valid groupings.

The first systematic attempt to reconstruct the phylogeny of the Achatinidae was also conducted using 26 species from 7 genera based on the same genes used to evaluate the relationships of the Achatinoidea. The nuclear actin gene and the 3rd codon position of the mitochondrial CO1 gene were subsequently excluded due to the presence of paralogous sequences in the former that affected the phylogeny and the severe saturation of the latter. Results showed four distinct groups that to a large extent follow the geographical distributions of the taxa used in the survey. These were the West African group that fell at the base of the tree, a mixed group consisting of members with distributions ranging from the western, central, eastern and southern regions, and two groups that formed sister clades and which probably arose from the mixed group: the Southern African group and the East African group, which included A. fulica. The East African group incorporated all members of the subgenus *Lissachatina* of *Achatina*, which also exhibit distinct features of the reproductive organ, as well as the subgenus Euaethiopina of Achatina. Evidence from both molecular and morphological data would suggest that *Lissachatina* should be elevated to genus status.

The extent of genetic variation among global populations of *A. fulica* was also investigated using a fragment of the 16S rRNA gene to determine how many genetic types emerged from East Africa. Of the 15 distinct haplotypes observed, 13 were found in East Africa and nearby Indian Ocean islands while the rest of the global populations shared only haplotype C that came out of East Africa. Two non-African haplotypes (E from the Philippines and F from New Caledonia and Barbados) were probably recent mutations derived from C. This would indicate that the global populations of *A. fulica* descended from a small group of individuals that shared the same haplotype and that these populations could be experiencing genetic bottlenecks as a consequence of lack of variation.

The role of A. fulica in spreading the rat lungworm Angiostrongylus cantonensis was evaluated. It is believed that the rat lungworm, like A. fulica, also originated in East Africa, and the nearly parallel distribution of the snail intermediate host and the parasite is noted. A molecular marker was first developed using a small segment of the SSU rRNA gene to rapidly identify the worm from snail tissues. This marker was also found to discriminate between closely related species of Angiostrongylus. Using this molecular marker, global populations of A. fulica were surveyed to detect the presence of A. cantonensis within the route of dispersal of A. fulica. The parasite was only found in the Philippines and Tahiti. The results for Tahiti provide the first recorded case of A. cantonensis infection for Achatina fulica in that country. The limited sampling of A. fulica and the patchy distribution of A. cantonensis could explain the lack of A. cantonensis among the populations sampled, with the exception of the Philippines and Tahiti. It is therefore difficult to assess if the snail has a role in the spread of the parasite, and the possibility of other gastropods such as *Laevicaulis alte* contributing to the spread of A. *cantonensis* is not discounted.

APPENDIX

Appendix 2.1: Command lines for generating likelihood scores for the 12 models in PAUP*

2.1.1. JC69

- 1. paup> log file=filename.JC69models.paupout (this saves an output file)
- 2. paup> execute dataset.nex
- 3. paup> set criterion=distance (sets the optimality criterion to distance)
- paup> dset distance=ml (specifies the distance measure to maximum likelihood for the estimation of the likelihood score for the model, which will be used for the LRT)
- 5. paup> lset nst=1 basefreq=equal rates=equal pinvar=0 (this specifies the assumptions of the JC69 model, which are equal frequency for all bases and equal rate of substitutions)
- paup> nj (this generates a neighbor-joining tree based on the assumptions of the model)
- paup> likelihoods /basefreq=equal rates=equal pinvar=0 (this estimates a likelihood score based on the model)

2.1.2. JC69+ Γ (continued from JC69)

 paup> likelihoods /basefreq=equal rates=gamma shape=estimate ncat=16 pinvar=0 (this adds the among site gamma rate variation with 16 categories dividing the discrete approximation of the gamma distribution)

- 9. paup> lset nst=1 basefreq=equal rates=gamma shape=previous ncat=16 pinvar=0
- 10. paup> nj
- 11. repeat 8-10 until the parameters and likelihood score do not change; note the likelihood score.

2.1.3. F81

- 1. paup> log file=filename.F81models.paupout
- 2. paup> execute dataset.nex
- 3. paup> set criterion=distance
- 4. paup> dset distance=ml
- 5. paup> lset nst=1 basefreq=estimate rates=equal pinvar=0 (this specifies the assumptions of the F81 model, which are unequal base frequencies and equal rate of substitutions)
- 6. paup> nj
- 7. paup> likelihoods /basefreq=estimate rates=equal pinvar=0
- 8. paup> lset nst=1 basefreq=previous rates=equal pinvar=0
- 9. nj
- 10. repeat 7-9 until parameters and likelihood score do not change; note the likelihood score.

2.1.4. F81+Γ (continued from F81)

- 11. paup> likelihoods /basefreq=estimate rates=gamma shape=estimate ncat=16 pinvar=0
- 12. paup> lset nst=1 basefreq=previous rates=gamma shape=previous ncat=16 pinvar=0
- 13. paup> nj
- 14. repeat 11-13 until the parameters and likelihood score do not change; note the likelihood score.

2.1.5. K2P

- 1. paup> log file=filename.K2Pmodels.paupout
- 2. paup> execute dataset.nex
- 3. paup> set criterion=distance
- 4. paup> dset distance=ml
- 5. paup> lset nst=2 basefreq=equal tratio=estimate rates=equal pinvar=0 (this specifies the assumptions of the K2P model, which are equal frequency of bases and different substitution rates for transitions and transversions)
- 6. paup> nj
- 7. paup> likelihoods /basefreq=equal tratio=estimate rates=equal pinvar=0
- 8. paup> lset nst=2 basefreq=equal tratio=previous rates=equal pinvar=0
- 9. paup> nj
- 10. repeat 7-9 until parameters and likelihood score do not change; note the likelihood score.

2.1.6. K2P+ Γ (continued from K2P)

- 11. paup> likelihoods /basefreq=equal tratio=estimate rates=gamma shape=estimate ncat=16 pinvar=0
- 12. paup> lset nst=2 basefreq=equal tratio=previous rates=gamma shape=previous ncat=16 pinvar=0
- 13. paup> nj
- 14. repeat 11-13 until the parameters and likelihood score do not change; note the likelihood score.

2.1.7. HKY85

- 1. paup> log file=filename.HKY85models.paupout
- 2. paup> execute dataset.nex
- 3. paup> set criterion=distance
- 4. paup> dset distance=ml
- 5. paup> lset nst=2 basefreq=estimate tratio=estimate rates=equal pinvar=0 (this specifies the assumptions of the HKY85 model, which are unequal base frequencies and different substitution rates for transitions and transversions)
- 6. paup> nj
- 7. paup> likelihoods /basefreq=estimate tratio=estimate rates=equal pinvar=0
- 8. paup> lset nst=2 basefreq=previous tratio=previous rates=equal pinvar=0
- 9. paup> nj

10. repeat 7-9 until parameters and likelihood score do not change; note the likelihood score.

2.1.8. HKY85+Γ (continued from HKY85)

- 11. paup> likelihoods /basefreq=estimate tratio=estimate rates=gamma shape=estimate ncat=16 pinvar=0
- 12. paup> lset nst=2 basefreq=previous tratio=previous rates=gamma shape=previous ncat=16 pinvar=0
- 13. paup> nj
- 14. repeat 11-13 until the parameters and likelihood score do not change; note the likelihood score.

2.1.9. TN93

- 1. paup> log file=filename.TN93models.paupout
- 2. paup> execute dataset.nex
- 3. paup> set criterion=distance
- 4. paup> dset distance=ml
- 5. paup> lset nst=6 basefreq=estimate rmatrix=estimate rates=equal pinvar=0 rclass=(a b a a e a) (this specifies the assumptions of the TN93 model, which are unequal base frequencies and different substitution rates for transitions in purines and pyrimidines and transversions)
- 6. paup> nj

- paup> likelihoods /basefreq=estimate rmatrix=estimate rates=equal pinvar=0
 rclass=(a b a a e a)
- paup> lset nst=6 basefreq=previous rmatrix=previous rates=equal pinvar=0 rclass=(a b a a e a)
- 9. paup> nj
- 10. repeat 7-9 until parameters and likelihood score do not change; note the likelihood score.

2.1.10. TN93+ Γ (continued from TN93)

- 11. paup> likelihoods /basefreq=estimate rmatrix=estimate rates=gamma shape=estimate ncat=16 pinvar=0 rclass=(a b a a e a)
- 12. paup> lset nst=6 basefreq=previous rmatrix=previous rates=gamma shape=previous ncat=16 pinvar=0 rclass=(a b a a e a)
- 13. paup> nj
- 14. repeat 11-13 until the parameters and likelihood score do not change; note the likelihood score.

2.1.11. GTR

- 1. paup> log file=filename.GTRmodels.paupout
- 2. paup> execute dataset.nex
- 3. paup> set criterion=distance
- 4. paup> dset distance=ml

- 5. paup> lset nst=6 basefreq=estimate rmatrix=estimate rates=equal pinvar=0 (this specifies the assumptions of the GTR model, which are unequal base frequencies and different substitution rates)
- 6. paup> nj
- 7. paup> likelihoods /basefreq=estimate rmatrix=estimate rates=equal pinvar=0
- 8. paup> lset nst=6 basefreq=previous rmatrix=previous rates=equal pinvar=0
- 9. paup> nj
- 10. repeat 7-9 until parameters and likelihood score do not change; note the likelihood score.

2.1.12. GTR+ Γ (continued from GTR)

- 11. paup> likelihoods /basefreq=estimate rmatrix=estimate rates=gamma shape=estimate ncat=16 pinvar=0
- 12. paup> lset nst=6 basefreq=previous rmatrix=previous rates=gamma shape=previous ncat=16 pinvar=0
- 13. paup> nj
- repeat 11-13 until the parameters and likelihood score do not change; note the likelihood score.

Appendix 2.2: Command lines in PAUP* for estimating the uncorrected and corrected distances as well as the transition and transversion values

- 1. paup> log file=filename.distances.paupout
- 2. paup> execute dataset.nex
- 3. paup> set criterion=distance
- 4. paup>dset distance=p
- 5. paup> showdist (this generates the uncorrected total pairwise distances)
- 6. paup> savedist /format=onecolumn file=filename.distances.p.1col (this saves the pairwise uncorrected total distances in one column)
- paup> dset subst=ti (this specifies that the transition distances will be computed)
- 8. showdist (this generates the transition distances)
- 9. paup>savedist /format=onecolumn file=filename.distances.p.ti.1col
- 10. paup> dset subst=tv (this specifies that the transversion distances will be computed)
- 11. showdist (this generates the transversion distances)
- 12. paup>savedist /format=onecolumn file=filename.distances.p.tv.1col
- 13. paup> dset subst=all (this restores the setting to pertain to total distances)
- 14. paup> set criterion=distance
- 15. paup> dset distance=ml
- 16. set the predetermined optimal criterion using the lset command
- 17. paup> showdist (this generates the corrected total distances)
- 18. paup> savedist /format=onecolumn file=filename.distances.ml.model.1col

Appendix 2.3: Command lines for the different tree-construction methods

2.3.1. Maximum likelihood (ML) method

The ML method was done in PHYML Version 2.4.4 package (Guindon *et al.*, 2005). The parameters of the optimal model was specified when the dataset analyzed.

Enter the sequence file name > sequence.file.phy er the sequence file name > sequence.file.phy

Settings:

D:	Data type (DNA/AA)	DNA
I:	Input sequences interleaved (or sequenctial)	interleaved
S:	Analyze multiple data sets	no
B:	Non parametric bootstrap analysis	yes
	Number of replicates >	1000
	Print bootstrap trees (and statistics) ? [Y/n]	у
M:	Model of nucleotide substitution	(depending on optimal
		model)
E:	Base frequency estimates (empirical/ML)	model) ML
E: V:	Base frequency estimates (empirical/ML) Proportion of invariable sites (fixed/estimated)	
		ML
V:	Proportion of invariable sites (fixed/estimated)	ML fixed (p-invar = 0.00)
V:	Proportion of invariable sites (fixed/estimated)	ML fixed (p-invar = 0.00) no (if with gamma

A:	Gamma distribution parameter (fixed/estimated)	estimated (if with gamma
		distribution)
	Optimize alpha ? [Y/n]	Y
U:	Input tree (BIONJ/user tree)	BIONJ
O:	Optimize tree topology	yes

2.3.2. Bayesian inference

Bayesian inference (BI) analysis was carried out in the MrBayes Version 3.1.2 package (Ronquist & Huelsenbeck, 2003). The program was set to run with four independent chains, each of which aimed to converge on a stable likelihood value from a number of generations. Below are the command lines for approximating the posterior probabilities.

- 1. MrBayes > log start file=filename.mbout (this saves an output file)
- 2. MrBayes > execute filename
- 3. MrBayes > lset nst=1/2/6 rates=equal/gamma Ngammacat=16 (only for gamma distributed rates) (this states the model in which the tree will be based)
- 4. MrBayes >showmodel (this is to show the model settings)
- MrBayes > help mcmcp (this is to show default settings of the Markov Chain Monte Carlo analysis)
- MrBayes > mcmcp Nruns=1 Ngen=2000000 Temp=0.075 or 0.1 or 0.125 (the number of generations to be run as defined by Ngen and the temperature to heat the chains as defined by Temp need to be optimized as described below;

initially, values of 2000000 for Ngen and 0.1 for Temp are used and later on changed if necessary)

7. MrBayes > mcmc (this is to run the analysis)

At the end of the run, the program asked if the analysis should be continued. The word 'yes' was typed when the values from the four columns did not converge to similar likelihood scores. The number of additional generations (e.g. 1000000) was indicated to resume the analysis. Otherwise, the word 'no' was typed. When the cold chain (value enclosed with bracket) did not switch randomly across the four chains, the analysis was repeated but the Temp setting was changed.

When the analysis was completed, the state exchange information was displayed. As a rule of thumb, the values found on the upper diagonal, which expressed the acceptance rates of the Metropolis-Hastings mcmc sampler, should range between 0.1 and 0.7. When the acceptance rates were too low, the analysis was repeated but using a lower Temp. When the rates were too high, the analysis was repeated with a higher Temp.

 MrBayes > sump burnin=value (e.g. 19001 if 2000000 generations were made; this summarizes the samples of model parameters)

<u>Note</u>: The value given indicated the number of samples to be discarded. A sample contained 100 generations; however, the first generation is always sampled and should be included in the samples to be discarded.

 MrBayes > sumt burnin =value (e.g. 19001 if 2000000 generations were made; this summarized the samples of trees and branch lengths)

2.3.3. Neighbor-joining (NJ) method

The NJ method was done in PAUP* by starting out with the same parameters set by the identified optimal model for DNA sequence evolution, which was then followed by the commands listed below.

- 1. paup> nj brlens=yes (to display the table of branch lengths)
- paup> savetrees /format=phylip brlens file=filename.nj.tree.phy (to save the tree in phylip format)
- paup> savetrees /format=nexus brlens file=filename.nj.tree.nex (to save the tree in nexus format)
- 4. paup>bootstrap nreps=1000 method=nj keepall=yes
 treefile=filename.nj.boottree (to calculate and save the bootstrap values for 1000 replicates)
- 5. paup>quit

2.3.4. Maximum parsimony (MP) method

The MP method was also carried out in Paup*; this did not employ any models of DNA sequence evolution.

- 1. paup>set maxtrees=100 increase=auto
- 2. paup> set criterion=parsimony
- paup> hsearch swap=tbr addseq=random nreps=10 start=stepwise (this is to make a heuristic or non-exhaustive search of the most parsimonious trees)
- 4. paup> showtrees all
- 5. paup> savetrees /fmt=phylip brlens=yes file=filename.mp.phy

- 6. paup> savetrees /fmt=nexus brlens=yes file=filename.mp.nex
- paup> contree /majrule=yes file=filename.mp.constree (this generates a consensus tree of all the equally most parsimonious trees found)
- 8. paup> bootstrap nreps=1000 search=heuristic keepall=yes
 file=filename.mpboot.treefile (to calculate and save the bootstrap values for 1000 replicates)

Appendix 2.4: Command lines for the partition homogeneity test in PAUP* to determine if individual genes could be combined as a single dataset.

- 1. paup> execute concatenated.file.nex
- paup> charpartition gene1:1-3435, gene2:3436-4296, gene3:4297-4624. (this is to specify which segment of the concatenated sequence belongs to which gene)
- paup> hompart partition=genes nreps=1000 seed=123 search=heuristic (this is to perform a homogeneity test with 1000 homogeneity replicates searched heuristically using a random seed number of 123)

Appendix 2.5: The command lines to run the Shimodaira-Hasegawa test in PAUP* to compare for significant difference between optimal and constrained trees

- 1. paup> execute concatenated.file.nex
- 2. set the parameters of the optimal model
- 3. paup> constraints taxonmonophyly (MONOPHYLY) = ((1,2)) (where numbers refer to the taxon numbers; this specifies which taxa were constrained to form a clade based on an *a priori* hypothesis that they are monophyletic)
- paup> nj brlens=yes enforce=yes constraints=taxonmonophyly (this generated a constrained neighbor-joining tree)
- paup> savetrees /format=nexus brlens file=taxonmonophyly.nex (this saved the constrained neighbor-joining tree)
- 6. execute trees.file (this file should include both the constrained tree from no. 5 as well as the optimal neighbor-joining tree)
- 7. paup> showtrees all (this displayed both trees)
- paup> lsocres all/shtest=rell (this computed for the likelihood scores of the two trees based on the estimated likelihood method and compared for significant difference between the two likelihood scores at *P*=0.05 level of significance)

Appendix 3.1: Alignment of the LSU rRNA gene for the Achatinoidea and three streptaxid outgroup taxa. Positions included for the phylogenetic analyses were marked by "m" within "NUCEOTIDES INCLUDED".

	10) 30) 60
		ACATTGAACA				
		ACATTGAACA				
		ACATTGAACA				
		TTGAACA				
		ACATTGAACA				
	ATTGCAGAAC	ACATTGAACA	TCGATACCTT	GAACGCACAT	GGCGGCCTCG	GG-TCCATCC
	ATTGCAGAAC	ACATTGAACA	TCGACACCTT	GAACGCAAAT	GGCGGCCTCG	GG-GCCATCC
	ATTGCAGAAC	ACATTGAACA	TCGACACCTT	GAACGCAAAT	GGCGGCCTCG	GG-GCCATCC
m	ATTGCAGAAC	ACATTGAACA	TCGACACCTT	GAACGCAAAT	GGCGGCCTCG	GG-GCCATCC
	AAC	ACATTGAACA	TCGACACCTT	GAACGCACAT	GGCGGCCTCG	GG-TCCATCC
	ATTGCAGAAC	ACATTGAACA	TCGACACCTT	GAACGCACAT	GGCGGCCTCG	GG-TCCATCC
			TCGACACCTT	GAACGCACAT	GGCGGCCTCG	GG-TCCATCC
	ATTGCAGAAC	ACATTGAACA	TCGACACCTT	GAACGCACAT	GGCGGCCTCG	GG-TCCATCC
		ACA	TCGATACCTT	GAACGCATAT	GGCGGCCTCG	GG-TCCATCC
			CCTT	GAACGCATAT	GGCGGCCTCG	GGCTCCATCC
	ATTGCAGAAC	ACATTGAACA	TCGACACCTT	GAACGCACAT	GGCGGCCTCG	GG-TCCATCC
	ATTGCAGAAC	ACATTGAACA	TCGACACCTT	GAACGCACAT	GGCGGCCTCG	GG-TCCATCC
	ATTGCAGAAC	ACATTGAACA	TCGACACCTT	GAACGCACAT	GGCGGCCTCG	GG-TCCATCC
	AAC	ACATTGAACA	TCGACACCTT	GAACGCACAT	GGCGGCCTCG	GG-TCCATCC
	AAC	ACATTGAACA	TCGACATCTT	GAACGCAAAT	GGCGGCCTCG	GG-GCCATCC
	ATTGCAGAAC	ACATTGAACA	TCGATACCTT	GAACGCACAT	GGCGGCCTCG	GG-TCCATCC
s			ACATCTT	GAACGCAAAT	GGCGGCCTCG	GG-TCCATCC
s	GCAGAAC	ACATTGAACA	TCGACACCTT	GAACGCACAT	GGCGGCCTCG	GG-TCCATCC
sis	ATTGCAGAAC	ACATTGAACA	TCGACATCTT	GAACGCAAAT	GGCGGCCTCG	GG-GCCATCC
ri			NCTT	GNACGCANAT	GGCGGCCNCG	GG-TCNNTCC
lis	AGAAC	ACATTGAACA	TCGACAACTT	GAACGCATAT	GGCGGCCTCG	GG-TCAATCC
	AGAAC	ACATTGAACA	TCGACAACTT	GAACGCATAT	GGCGGCCTCG	GG-TAAATCC
)		mmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mm-mmmmmmm

Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomens Gibbulinella dewinter Gonaxis quadrilateral Gonospira sp.

NUCLEOTIDES INCLUDED

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum

·····

70) 80) 90) 100) 110) 120
CGGGGGCCACG	CCCGTCTGAG	GGTCGGCGAG	AGTACAA	AGCCTTCGCT	TCGTATGAGG
CGGGGCCACG	CCCGTCTGAG	GGTCGGCGAG	AGTACAA	AGCCTTCGCT	TCGCATGTGG
CGGGGGCCACG	CCCGTCTGAG	GGTCGGCGAG	AGTACAA	AGCCTTCGCT	TCGTATGCGG
CGGGGGCCACG	CCCGTCTGAG	GGTCGGCGAG	AGTACAA	AGCCCTCGCT	TCGTATGTGG
CGGGGGCCACG	CCCGTCTGAG	GGTCGGCGAA	AAAACCA	AACCATCGCT	TCTCTTCTTC
CGGGGGCCACG	CCCGTCTGAG	GGTCGGCGAG	AATCAA	AGCAATCGCT	TCCTGTTTGG
CGGGGGCCACG	CCCGTCTGAG	GGTCGGCGAA	AAATCA	AACCATCGCT	CCTCTT-TTC
CGGGGGCCACG	CCCGTCTGAG	GGTCGGCGAG	AAACTA	AACAATCGCT	TCAGTT-TTT
CGGGGGCCACG	CCCGTCTGAG	GGTCGGCGAA	AAACCA	AACCATCGCT	TCTTTTTTTT
CGGGGGCCACG	CCCGTCTGAG	GGTCGGCGAG	AATCAAA	AGCAATCGCT	TCGAGATGGC
CGGGGGCCACG	CCCGTCTGAG	GGTCGGCGAG	AGTCAA	AGCCTTCGCT	TCGCTTCTGG
CGGGGGCCACG	CCCGTCTGAG	GGTCGGCGAG	AGTCGCAA	AGCAATCGCT	TCGGTTTGTT
CGGGGCCACG	CCCGTCTGAG	GGTCGGCGAG	AGTCTCAA	AGCAATCGCT	TCCGTTTATA
CGGGGCCACG	CCCGTCTGAG	GGTCGGCGAG	AATCAA	AGCAATCGCT	TCTATTTTGG
CGGNGCCACG	CCCGTCTGAG	GGTCGGCGAG	AATCTTAATA	AGCATTCGCT	TCTTATCGGA
CGGGGCCACG	CCCGTCTGAG	GGTCGGCGAG	AGTATCAA	AGCAATCGCT	TCGCACTAAA
CGGGGGCCACG	CCCGTCTGAG	GGTCGGCGAG	ARTCAA	AGCATTCGCT	TCGCTTTTTT
CGGGGGCCACG	CCCGTCTGAG	GGTCGGCGAG	AGACAA	AGCCATCGCT	TCGCTTTTTT
CGGGGGCCACG	CCCGTCTGAG	GGTCGGCGAG	AATCAA	AGCAATCGCT	TCGAGCTGGG
CGGGGGCCACG	CCCGTCTGAG	GGTCGGCGAA	AAATCA	AACAATCGCT	TCTCCTCAGA
CGGGGGCCACG	CCCGTCTGAG	GGTCGGCGAG	AAGTCAA	AGCAATCGCT	TCGAATTTGA
CGGGGCCACG	CCCGTCTGAG	GGTCGGCGAG	AAACTA	CACCATCGCT	TCGCTTTATG
CGAGGCCACG	CCCGTCTGAG	GGTCGGCGAG	AGAA	ACTCATCGCT	TTTCATTTGC
CGGGGGCCACG	CCCGTCTGAG	GGTCGGCGAA	ATATCA	AACAATCGCT	TCTCTTCAG-
CGAGGCCACG	CCCGTCTGAG	GGTGGGGAGT	CTTAAAAAAA	GCCGTTCGCT	TTCATGTTGG
CGAGGCCACG	CCCGTCTGAG	GGTCGGCGAG	ACTTATA	AGCATTCGCT	TTTTCCGTTG
CGAGGCCACG	CCCGTCTGAG	GGTCGGCGAG	TCTTAAAA	GCCGTTCGCT	TTCTGCTGAC
mmmmmmmmm	mmmmmmmmm	mmmmmmmmm			

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

$\dots \dots \dots$	
-CAGCAGGTC TCGCTCA ATTTATTCCG AGATCCGTCC AGCTCTTC	CTCTATC
GCAGCAGGTC TCG ATTTATTCCG AGATCCGTCT A-TACTTC N	TGNTCTANT
-CAGCAGGTC TCGCTTAA ATTTCCGTCC AGATCTTC	CTCTATC
-CAGCAGGTC TCGCTCA ATTTATTCCA AGATCCGTCT AGCTCTTC	CTCTATC
TTACCAGACC AAAGGCCG-C ACGCCGTCGG GGTCTTTCGC TCTTCCGAAG C	TCGAAGGGA
CTCGGGGTTC TAACTAAACC CGTTCGCGCG CGTCCTTCTT CTTTTTCCCG A	GCTCGTGCG
TATGTGACCA AAGGCCCACA CGCCGTCGTG AGACAGGTCT TTCGCTCATC CO	GAAGCTCGA
ATGACAACTG GCATTCCCGT TTCTTCCGAG CTCGAGGAAG AGCGGGAGAG CC	CGCCGAAGC
CTTATCAGAC CAAAGGCAGC GCGCCGTCGG TGTATCGT TCTTCCGAAG C	TCGAAGGGA
GGTAACAGGT CGCCTC-AAA CAAGCTGCTC CGATCCGATC GCCGCCGTTT C	TTCCCGGGC
-CAGCTGGTC CGGTTC	
-CTCGACAGC GGGTCTCCAG CCTCCAGAGA AGGCTT	
-GTGACGGCG GGTCTCCAGC TTCCGATCGT CCCCACAACT TCCTTCGCGC TC	CGGCAGGGA
CACAGGGGTC TCCCGTTGGG GGGTTGGCTG GCAAGGCAAG	TTCTTTCTC
GAA NNNNNNNNN NNNNN	
-CCGACGAGT GGTCGTCCTT CCCCAACTTG GCTCTGAGTT TGCGGGCGGG CA	AGGCCGACC
GGTNAACGGG TCCNCCTTGN TCAGNNAATT CCGTTC-CAT TGNGCTCGCG G	GAAACAAAA
TTTTTYCTTT AAAAAAAAAA ATGCACCGGG TTTTGCTTAT TCCCACCATG TC	CGTTCTCGC
TTGGGTCGTC TCGAAGTCCG ATCAGCTCAG TCCGTTCCTC CGCGCTCATC G	TGGGAGGAT
GACCAAAGGC ACTCGCCGTC CGTCCGTCGG CCTTCCTAAG CTCGAAGGAA GO	CGCTTGATG
CATGGGTCAC ACAATTTCNA ANANACTTCN AANAATNCTT TTTTNTCCCC G	CTTTTGAAA
GCAACAGGTT TCCCCG-TCT TCTTCCGAGC T	
CCTAAGGATT CGACCTTGCC ACCTCTGTGT TCGTGTTAGA GGGAGAAGGT G	CAGAATTCG
-ATCAAAGGC ACTCTCGC-C CGTCCGTCGG CCTTCCTAAG CTCGAAGGAA AG	GGCTTGATG
ACTGGTAGGC CTACGCGGGC CGTCGCCAGC AGGTTTGGCT TTTGCGGGAG G	GCATATTTT
GACTGCTGCT CGGGCCACCG TCTGTCTGGG TGANGAGGGG NATTGACGCN T	CAACTCGTT
TGGAAGGCAA CCGTCGGTCT GTCACAGGCG CGGAGGAAAG TCCCTCTCGT G	TTGCGACGT

190) 200) 210) 220) 230) 240
C-ATCCGCGG	-CTCGTGCGG	AGGGGTTA	CAGAGAGGAA	GAAT-CGGGC	G
G-NCGTCCCG	CTGCTCGTGC	TGGGACA	CGGAAAAGAA	GAATTGGACN	N
TTCCGCGG	-CTCGTGCGG	GGA	CAGAAAGAAA	GAAT-CTGTC	G
T-ATCCGCGG	-CTCGTGCGG	$\mathtt{T}\mathtt{G}\mathtt{G}\mathtt{A}\mathtt{G}\mathtt{G}\mathtt{A}$	CAGAAAGGCG		
GAGCGCAGAC	ATGGTGGCGA	TGGGCCGCAG	CAGAAGCGCT	TTGGGCTCTC	GTAGGTCGAT
GGTTGAGA					
AGGGAGGGCG	AAGACCGCCG	CGACTGCGAT	GGGCCGCAGC	AGGAGCGCGT	TGGGCTCTCG
GCATTGGGCT	TTCGCGGGAC	GCGCAGGGCA	CGTGCTCGTC	CGTCGCGCTC	TCGTACCGCG
GGGCGAAGAT	ACGATGACGT	CGGGCCGCCG	CAGAAGCGCG	TTGGGCTGTC	GTAGGTCGAT
TCGTGGGAGG	ATTCAAGTGG	TTAGTTAGGA	GGATGCTTTC	GAGAGGTGAC	CGTCGAAGCG
CCACGTCGTT	TTTCACTCCG	TGCTCGTGCG	AGGGAGAAGC	TGCGTCGTGG	ATGA
GGGTTTGGGT	GACGTTT				
CTAATTTTTT	TCATTTTCTT	CCCGCCCGTG	CGCTCTGACG	GGCGCGGGTA	GAGAGTGAAA
		CCGAGGATGA			
		N			
		AAGCGGCTCG			
		NAAATGNGAC			
		GCAGAAGCGC			
		GAGAATCACA			
		GCAGAAGCGC			
		CCAGCGGCGT			
		AGGAGGAAAA			
CCGGTTGCCG	AGAAAGCGGT	ATGGGCCTTC	GCGGATGATG	ACGTGCATCC	CCGCGGCCTC

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

Achatina fulica
Achatina achatina
Achatina stuhlmanni
Cochlitoma ustulata
Allopeas clavulinum
Bocageia sp.
Eutomopeas layardi
Leptinaria lamellata
Paropeas achatinaceum
Riebeckia sp.
Rumina decollata
Subulina octona
Subulina striatella
Subulina vitrea
Subulona sp.
Tortaxis erectus
Xerocerastus sp.
Zootecus insularis
Coeliaxis blandii
Pyrgina umbilicata
Glessula ceylanica
Cecilioides gokweanus
Ferussacia folliculus
Thyrophorella thomensis
Gibbulinella dewinteri
Gonaxis quadrilateralis
Gonospira sp.
NUCLEOTIDES INCLUDED

					GC
TTCAACGACC	ACCGTGGCCT	CAAGTACATC	GTGCGCCTGC	CCCGTCCGTT	TTAATCGG
					TTAA
TAGGTCGATT	TCTACGACCG	CCGTGGCCTC	AAGTACATCG	TGCGCCTGCC	CCTGTCCGTT
TTGCCTCAAG	TACGTAGTGC	GCCCGCCCTG	TCCGATCAAT	CGGTCCGTTG	TGCTCTCGAC
TTCAACGACC	CCCGTAGCCT	CAAGTACATC	GTGCGCCTGC	CCTGTCCGTT	TTTTAATCGG
CAATGGGCTT	TCGAGGATGC	TTGCTGCCTA	TNATGGANGG	AAAAAGGAT	GGCTCGCTCC
ATACAGGAAA	AGAAGAAGAG	CCGCGGCCGC	CGTCGCCGCA	CGCCA	TTTTACTTTT
	NNNNN	NNNNNNNNN	NNNNNNNN-	TTTTTTTT	TTTTTGTTA-
NNNN					
TCGTGGCTTC	AAGTACAACG	TGCGCCTGCC	CCTGTCCGTT	TTAGTCGGTC	TCGTTAGCTC
GGTTTCCGTT	GCCTGAAGTA	CTGAAAAAAA	CTGCGTCCTC	TGTCCGTTCT	AGCTAGCTCA
TCGTGGCCTC	AAGTACAACG	TGCGCCTGCC	CCTGTCCGTT	TTGGTCGGTC	TCGTTAGCTC
CTTCGCGGAT	CGCATGATCC	CCGTGGCTTC	AAGTGTACTC	GATGCGCGCG	CGCCCTTTGC
TCANCCCCGT	GGCCACAAGT	GTAAAAGATG	CGCGCGTGTC	TGCTGANCTG	CCGCCTGCCT
AAGTGCAAGC	GTTGAGGGAG	CGTCTTAGCT	GCTGCTTCTG	TCCCGCGACC	TAAACGTGGA

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

310) 320) 330) 340) 350	360
-GAGAAGGAA	GAAGAAGAGA	CCG	TCGA-AGCGC	TGTGGGCCGT	CGTGGGAG
ATANNGAAGG	G-AAGAGAGG	CCG	TCGA-AGCGC	TCTGGGCCGT	CGTGGGAG
GAG	AAGAAAGAGA	CCG	TCGA-AGCGC	TGTGGGCCGT	CGTGGGAT
GAAGGAAGAA	GAAGAAGAGA	CCG	TCGA-AGCGC	TGTGGGCCGT	CGTGGGAG
TCTCGATGGT	TCTC	TAACCGTC	GGAGCGCTCG	CTCGCTCGCC	GTCCGTCTGG
TAGGGCCGTG	CTGATG	AAGA-AG	CGCACTGGGC	TCTCGAGG	AGAGAAGAAC
TTAATCGGTG	TCGATGGCTC	TCTAGCCGTC	TGAGCGCTCG	CTCGCTCGCC	GTCCGTCTGG
CGGAGCGCTC	GCCGTCAGTC	TGGCAGGACT	CGGCTCGCAT	AAAAGCATGA	AATCGAGCCT
TCTC		TACCGTC	GGAGCGCTCG	CTCGCTCGCC	GTCCGTCTGG
TTTTTTTTTTT-		N	NNNNNNN -		
	TGAAGA	CCG	TCGA-AGCGC	ACTGGGCTTT	CGAGGACG
	GGTGA	CCG	TAGA-AGCGC	CCTGGGCTCT	CGAGGAGG
GAAGA	GGCTTGGCGA	CCG	TGGA-AGCGC	CCTGGGCTGT	CGAGGAGG
AACGTGAGAG	GACCCG	GAGAAG	CGCACTGGGC	TTTCGAGC	TAAAGAAACA
	TGGC				
		N	NNNNNNNN-		
	GACG	TCGAAG	CGTTCTGGCC	TTCGAGG	ACGAGGAGGA
			NNNNNNNNN		
	TCTCCGAGCG				
		NN	NNNNNNN		
C	GGTTGG	ATGA-AG	CGAGGTTAGC	CGCCGAAG	CGCCTTGGGT
CGAGTACGCC	ATCTCGTCTA	CTTGCCGTTA	TGTCTGGCAG	GACTCGGCTC	GCTAATTCGA
TCGATGATCG	TCTGAGCG	ATAGC	TCGCTCG	CCGTCCGTCT	GGCAGGACTC
GCGACCCTTC	CCGCCATTTA	GCGGCCCGCC	GAACCGCGGC	AGGACTCGGC	TCGTGATGAC
CTCGGGGAAT	TGGTTGGNTT	CCCAGCGCNC	CNCGACGAAG	AAACCTTTCT	GCATCCNCCG
CAGGGCGGAG	AGCACACAAC	ATCTCCTTTT	TTTCTTGTCA	TCCGCCGGAT	CGTGGCGGGA

37	0 380	390) 400) 410	420
GAGGAAGAA-	GGGTTT	T	TTTCCAC	CC-TT-CCCC	CGTGGCCTCA
AGGAGGAGAG	G	GATTTTGGAT	TTTTCTTCTT	TC-TTCCCCC	CGTGGCCTCA
GAGGAATAAC	TGGGTTT	TTCCCAG	TTTTTTTC	TC-TT-CCCC	CGTGGCCTCA
GAGGAAGAAG	TGCTTTT	TTTT	TCTC	TC-TT-TCCC	CGGGGCCTCC
CAGGACTCGG	CTCGCTT	TTTCGTGCAT	CGAGCCTACC	AGACCACGTC	CGAAGAA
A-CACTT	TCCCCGTGGC	CTGAAGTACA	CGTTGCGTCG	TCGTTTGTCC	TTTGAGCGGC
CAGGACT	CGGCTCGCTT	TTTCTTGCAT	CGAGCCTGCC	AGACCCCCGT	CCGAAGAAGG
GTCGACC	GTCCGAAGAA	GCGGCCTGCG	CGCAAAATAT	CCGCTAGAGA	GAGAAGGACC
CAGGACTCGG	CTCGCTC	AATCTTGCAT	CGAGCCTGCC	AGACCACGTC	CCAAGAA
	N				
AGGAGGAT-C	GAGTTTT	CTCT	TTCCA	CC-TT-CCCT	CGTAGCCTCA
A			TGGCTC	TTTTCCTCCC	CGTGGCTTCA
AGGAGACGTA	TG	TATGCTC	TGTCGTCGTC	GTCCTCTCCC	CGTGGCTTCA
AAACCGAAGT	TAGCCCGAT-	GCCTGAAG	TACACGTTGC	GTCGTCAGTC	CTTTGAGCGG
	-CCAACACCA				
	N				
	N				
GGCTCGC	TTTATATTAT	CGCCTCGAGC	CTGCAGACTC	CGTCCAAAGA	AGAAGGCGGC
	NNN	NNNNNNN			NNNN
CTTCG	CGGAGGACGC	GGATACTGTG	CTCGTTATGC	GTATCTGAAA	CCTCCCCGTG
GCCTGTC	AAAGACAACT	TGTCCGTAAG	CGGCTCGTGT	CGTGACGATG	ATAGGTGCCG
GGCTCGC	ATTATAATAT	CGCCTCGAGC	CTGCAGACTC	GGTCCGA	AGAAGGCGGC
GCTATCG	AGCCTGCCCG	GTCGTCCGAG	CGTTGCGGTG	CCTAACGGCG	GAGGAGAGGT
AACCGTT	GCAGGACTCG	GCTCGTGGTT	GTGTGGGTGG	CGGCGGCGAC	GANGCTGTCC
CTCGGCT	CGCGGTGACC	AGAACATCGA	GCCTGCTCGG	TCAGTCTTGT	ACTACGGCGG

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula cevlanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

AGTACACGCA TGCGCCGTCC TCGTCATTTC AGCGACTCTT TCGCT---CG CCCGGAGCGC AGTGCAC-GG TGCGCCGTCC -CGTCAGTTT AGCGACTCTT TCGCT---TG CCCCGAGCGC AGTACACGCA TGCGCCGTCC TCGTCATTTT AGCGACTCTT TCGCT---CG CCCGGAGCGC AGTACACCCA TGCGCCGTCC TCGGCATTTC AGCAACTCCT TCGCTGGTCG CCCGGAGCGG GGCGGCCTGC TTGCATGTCC TTCCGATCGC GGTTG---- ----GAGA GTGGGACCGA CGGTCTTCGC TCATCTCATC CGAAACGCTC GTGATGTTCG TTCGCTCGCC GTCCGTCTGG CGGCTTGCTT GCTTGCGTTG CGTTCTGATG GCGGATGGAG GGCCGAGATC GACTTTGGCT GATGGCGGCG TCGCCAGGAG CGCAGGGAAG AGAGTAAGCT TTGCTCTCTT TCCTCCTCCC GGCGGCTTGC TTGCACCGCG TTCGGATGAG TGGAT---- --TATGAGAC CGGTTTCGGC NNNNNNN- ------ ------ ------AGTACACGAA TGCGCCGTCC CCGTCATCTG AGCA----- ---TCGCTCT CTCGAAGCGC AGTACTCGCG ATGCGT---- ----CGCCCA GTCAATTTTT GTTTGCGGCA AGTGCTCGAT GCGTCGT--- ----- -CCAGTCAAT TTCTTTTGCG GCGGCACGCT TC----- TCCTTCGCTC TTCTACGAAG CCATTCTTCG TTCGCTTGCC -GTCCGTCT------ ------ ------ACTCGAAACC AAATC----- ----GAGCCT GTCGGACCAG CCCGAATCGG NNNNNNN-- ----- --- TTGGAAG ACGAGGACCT TTGAACCGCC TTGGCATTGG AGTACATGTA TGCGTCGTCC CGTCATCTGA GCGGCTACAT CGCTCTCTCG GAGCGCTCAT NNNNNNN- ----- ---- ---- ---- NNNNNN NNN---AAA TTGCTTGCCT GCTGGCTGTG CTCGTTACGA TTGGATTGAG GGTGAGATCG ATTTCGGCGG GCCTGAAGTA CGCCTATGCG TCGTCTGCCC GGAGAGCAGC TCACTATCGT CCGCTCGCCG TGCAGTGGGG TCTGGCTTTG AGGATGCCAG GAAGATGTGA GATGCCACCG TTTGGCGGCT TTGCTTGCTT TGCTCGATTA CGGTCG---- GAG GGTGAGATCG ATTTCGGCGG GGCCTTGTGT GGAGGCTGCG CGCGTCCGCA GCTGCAGAGC AGCAGCAGAA TCGTACGATG CTTCCCATTC NAGCNTGCTC GGTCGCNNTG CTGAAANAAG GGTTNTTGCG GACAAACGTG TTCTTGAAAA ACGAGAGCTT GTTTTGTGCG GTGAGGCGCC TCCTCTGGAT TCCTACAGAG

480

						0 540
Achatina fulica	T-CATCTTCG	TTT-GTTCGC	TCGCCGTCCG	TCCGGCAGGA	CTCGGCTCGC	TTCTTT
Achatina achatina	C-CGTCTTCG	TTC-GTTCGC	CGTCCG	TCCGGCAGGA	CTCGGGTCGC	TT
Achatina stuhlmanni	TCCATCTTCG	TTT-GTTCGC	TCGCCGTCCG	TCCGGCAGGA	CTCGGCTCGC	TTCTTTTTT-
Cochlitoma ustulata	T-CATCTTCG	TTT-GTTCGC	TCGCCGKCCG	TCCGGCAGGA	CTCGGCTCGC	TTCTTTTTTT
Allopeas clavulinum	TTTCGGCGGC	GCCCAGCAAC	ATTCATCAAT	TTTCAA		
Bocageia sp.	CAGGACTCGG	CTCGCTTAAT	GACTCAAATC	GAGCCTGCTG	GCGCGTCTGA	AAACGGCACG
Eutomopeas layardi	GCGCCAGAAA	CATATGTATT	TTTAA			
Leptinaria lamellata	GTATTCTTTT	GATTTTCTCT	TCCA			
Paropeas achatinaceum	AGCGCCAGAA	TTTTTTTTGT	TTTTACACTT	TTTCAA		
Riebeckia sp.						
Rumina decollata		TTC-GCTCGC				
Subulina octona		TTCGCTCGCC				
Subulina striatella	CTTTCGTTCG	CTCGCCCGTC	CGTCCGTCC-	GGCAGGA	CTCGGCTCGC	TTTATTTT
Subulina vitrea	GGCAGGA	CTCGGCTCGC	TGTGAGACAG	ACAAAACTGT	ATCGAGCCTG	CCGGTCGAAT
Subulona sp.						
Tortaxis erectus		TGGTGTATCA				
Xerocerastus sp.		GGAAGGATTA				
Zootecus insularis		TCGCCGTCCG				
Coeliaxis blandii		CGGATGCAAT				
Pyrgina umbilicata		TTTAAAATAT				
Glessula ceylanica						
Cecilioides gokweanus		CGGACTCGGC				
Ferussacia folliculus	10011					
Thyrophorella thomensis	TGCTCATTAT	TGTGTCCTCT				
Gibbulinella dewinteri	AT					
Gonaxis quadrilateralis		CAACAAGGTG				
Gonospira sp.	AA					
NUCLEOTIDES INCLUDED						

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

....|....||||||||| 550 560 570 580 590 600 -----AACAA ATCGAGCCTG CCAGAC---C GTCCGAAGCG GCTAGGG-AT TG-CGAAGTG 600 -----TT ATCGAGCCTG CCAGAC---T GTCCGAAGCG GCTAGCG-GT TG-CGAAGTG -----A ATCGAGCCTG CCAGAC---C GTCCGAAGCG GCTAGCG-AT TG-CGAAGTG T-----A ATCGAGCCTG CCAGAC---C GTCCGAAGCG GCTAGCGGAT TG-CGAAGTG _____ ____ CGGTATGAAC AGTGAGGAGA GAGATGATTA GCGCTGTTGC CGGCTGCGAC GGCGCCAGGC _____ ____ _____ _____ ____ ----AATAA AACGAGCCTG CCGAC---C GTCCGAAGTG GCATGCGGTT TCGAAGTGTG -----CA CTCGAGCCTG TCAGTA--CT GTCCGAAACG GCGA----- ---AGGACGG ----- CTCGAGCCTG TCGGTAC--T GTCCGAAACG GCGAGTGGGG TGGGTGACGG GTCCGAAGCG GCTAGCGCTT ATTTGATGAG GTTATGGCCG AGAGAAAGAA GTGTGTGGGA ATTTGAAC-- ----- -----TGGTCGTCCC GTCATCTGAG CGGCTACATC GCTCTCTCTC GGAGCGCTCA TCTTCGTTCG TCGAGCCTGC CGACCGTCCG AAGCGGCTTG CTGTATCGAG GAGAGCGTGA GAGGGCGGGA GGAGGGCAAG ACTTCGTCTC GTTTCATA-- ----- ----- -----_____ ____ CGACGGTGCC CACCAAGTTT TTATTCACTA -----CGTGAACGGC TTGCGGCGTT CGAGTTGCCA ATCGACGCCA CTAATCCGCA GCAAATTTTG _____ _____ ____ _____ ____

$\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots $	 650	
GGGCG CGCAAGCGCA TGGGTC TGCTGCGGCG (GCGCCA	
GGTGGCG GGCAAGCG-A TCGGTC TGCGGCG (GCGCCAGCA-	
GGGCGCC CGCGAGCGGA TTGGGGGGGTC TGCTGTGGCG (GCGCCA	
GGGCGCGC GAGCGCA TGGGTC TGTTGCGGCG (GCGCCA	
AGTTTTTGTA TTTTTTCATA		
TACTACATAA ACCGTTTCGC A		
AGAGGGCGAT TGCCGCGGCG GCGCCAATTT TTTTTGTCC (GTTCTAAA	
AGGCAGTCGA GAGCCGCAAC GACGACGGCG CCCCGTGGT		-AATGTGTCA
AAGCAGTCGA TGGCTAGCGA AAGCGACGGC GCCCGTGGTC	TATTTACCGT	ACGTCGTCGT
CCGCGACGTC GCCTATTTGT AAAAAAATT TGTTTATTTT 7	ICTTTAC	
CTCGCCGTCC GTCCGGCAGG ACTCGGCTCG CTGTGAAAAC A	AAAGCACACT	ATTCGAGCCT
TTGCTGCGGC GGCGCCAACT TTTTGTTTTT CTTTCTAAA		
CTTTTTTTTT		

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

|....|
|....|
|
|

 670
 680
 690
 700
 710
 720

 GTCTTTCT- -----AAA
 ATCTTTCTTT
 A----- -----
 GTCTCTATAA CGACGACGTT TNNTTTAAAA TTTTTA---- ------
 GTCTTTCT- -----

 GTCTTTCT- -----

 GTCTTTCT- TTCTTTCTTT
 ----- ------ ------ ------- --------_____ ____ ______ ____ _____ ____ _____ ____ _____ ____ TACTATTATT T------ -----ACGAATCATT T-----_____ ____ _____ GCC-GACCCC GTCCGAAGCG GCTTGCGGTT TTGAAGTTTG AGGCGCGCCG CGCCCCGCTC ---- ----- ----- ------ ------_____ ____ _____ ____ _____ ____ _____ ____ _____ ____

730 740 750 760 770 78						
						T-
						T-
						T-
						T-
						T-
						T-
						T-
						T-
						T-
Constraints of the second seco						T-
						T-
						C-
GAGAGGTGGA GGAGGGCGAT TGCTGCCGCG GAGGCGCCAG TATTTANTAT TTTCTAAAT 						C-
GAGAGGTGGA GGAGGGCGAT TGCTGCCGCG GAGGCGCCAG TATTTANTAT TTTCTAAAT						T
GAGAGGTGGA GGAGGGCGAT TGCTGCCGCG GAGGCGCCAG TATTTANTAT TTTCTAAAT						T
						T
	GAGAGGTGGA	GGAGGGCGAT	TGCTGCCGCG	GAGGCGCCAG	TATTTANTAT	TTTCTAAAT-
						T
						T
						T-
						T-
						T
						T
Ti						T
T-						T-
-						TI
m						T
						m-

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum

Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis

Gonospira sp. NUCLEOTIDES INCLUDED

> ····|····| ····| ····| ····| ····| ····| ····| ····| ····| ····| 800 790 810 820 830 840 CCGACCTCAG ATCGGACGAG ATTACCCGCT GAATTTAAGC ATATAACTAA GCGGAGGAAA CCGACCTCAG TTCGGACGAG ATTACCCGCT GAATTTAAGC ATATAACTAA GCGGAGGAAA CCGACCTCAG ATGGGACGAG ATTACCCGCT GAATTTAAGC ATATAACTAA GCGGAGGAAA CCGACCTCAG ATCGGACGAG ATTACCCGCT GAATTTAAGC ATATAACTAA GCGGAGGAAA CCGACCTCAG ATCGGACGAG ATTACCCGCT GAATTTAAGC ATATAACTAA GCGGAGGAAA CCGACCTCAG ATCGGAGGAG ATTACCCGCT GAATTTAAGC ATATAACTAA GCGGAGGAAA CCGACCTCAG ATCGGACGAG ACTACCCGCT GAATTTAAGC ATATAACTAA GCGGAGGAAA

 850				 890	···· ···· 900
AGAAACTAAC	AAGGATTTCC	CCAGTAACGG	CGAGTGAAGC	GGGAATAGCC	CAGCACCGAA
AGAAACTAAC	AAGGATTTCC	CCAGTAACGG	CGAGTGAAGC	GGGAATAGCC	CAGCACCGAA
AGAAACTAAC	AAGGATTTCC	CCAGTAACGG	CGAGTGAAGC	GGGAATAGCC	CAGCACCGAA
AGAAACTAAC	AAGGATTTCC	CCAGTAACGG	CGAGTGAAGC	GGGAATAGCC	CAGCACCGAA
AGAAACTAAC	AAGGATTTCC	CCAGTAACGG	CGAGTGAAGC	GGGAATAGCC	CAGCACCGAA
AGAAACTAAC	AAGGATTTCC	CCAGTAACGG	CGAGTGAAGC	GGGAAGAGCC	CAGCACCGAA
AGAAACTAAC	AAGGATTTCC	CCAGTAACGG	CGAGTGAAGC	GGGAATAGCC	CAGCACCGAA
AGAAACTAAC	AAGGATTTCC	CCAGTAACGG	CGAGTGAAGC	GGGAATAGCC	CAGCACCGAA
AGAAACTAAC	AAGGATTTCC	CCAGTAACGG	CGAGTGAAGC	GGGAATAGCC	CAGCACCGAA
AGAAACTAAC	AAGGATTTCC	CCAGTAACGG	CGAGTGAAGC	GGGAAGAGCC	CAGCACCGAA
AGAAACTAAC	AAGGATTTCC	CCAGTAACGG	CGAGTGAAGC	GGGAAGAGCC	CAGCACCGAA
AGAAACTAAC	AAGGATTTCC	CCAGTAACGG	CGAGTGAAGC	GGGAAGAGCC	CAGCACCGAA
AGAAACTAAC	AAGGATTTCC	CCAGTAACGG	CGAGTGAAGC	GGGAAGAGCC	CAGCACCGAA
AGAAACTAAC	AAGGATTTCC	CCAGTAACGG	CGAGTGAAGC	GGGAAGAGCC	CAGCACCGAA
AGAAACTAAC	AAGGATTTCC	CCAGTAACGG	CGAGTGAAGC	GGGAAGAGCC	CAGCACCGAA
AGAAACTAAC	AAGGATTTCC	CCAGTAACGG	CGAGTGAAGC	GGGAAGAGCC	CAGCACCGAA
AGAAACTAAC	AAGGATTTCC	CCAGTAACGG	CGAGTGAAGC	GGGAAGAGCC	CAGCACCGAA
AGAAACTAAC	AAGGATTTCC	CCAGTAACGG	CGAGTGAAGC	GGGAAGAGCC	CAGCACCGAA
AGAAACTAAC	AAGGATTTCC	CCAGTAACGG	CGAGTGAAGC	GGGAAGAGCC	CAGCACCGAA
AGAAACTAAC	AAGGATTTCC	CCAGTAACGG	CGAGTGAAGC	GGGAATAGCC	CAGCACCGAA
AGAAACTAAC	AAGGATTTCC	CCAGTAACGG	CGAGTGAAGT	GGGAAGAGCC	CAGCACCGAA
AGAAACTAAC	AAGGATTTCC	CCAGTAACGG	CGAGTGAAGC	GGGAATAGCC	CAGCACCGAA
AGAAACTAAC	AAGGATTTCC	CCAGTAACGG	CGAGTGAAGC	GGAAATAGCC	CAGCACCGAA
AGAAACTAAC	AAGGATTTCC	CCAGTAACGG	CGAGTGAAGC	GGGAATAGCC	CAGCACCGAA
AGAAACTAAC	AAGGATTCCC	CCAGTAACGG	CGAGTGAAGC	GGGAAAGGCC	CAGCACCGAA
AGAAACTAAC	AAGGATTCCC	CCAATAACGG	CGAGTGAAGC	GGGATAGGCC	CAGCACTGAA
AGAAACTAAC	AAGGATTCCC	CCAGTAACTG	CGAGTGAAGC	GGGAACGGCC	CAGCACCGAA
mmmmmmmmmm	mmmmmmmmm	mmmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmmm

> ····|····| ····|····| ····| ····| ····| ····| ····| ····| ····| 910 920 930 940 950 960 TCCCTCAGTG TCACGCTGGC GGGAACTGTG GTGTGTGGGA CGCCACCAGT CGCATCAGAG TCCCTCAGTG TCACGCTGAC GGGAACTGTG GTGTGTGGGA CGCCACCAGT CGCATCAGAG TCCCTCAGTG TCACGCTGAC GGGAACTGTG GTGTGTGGGA CGCCACCAGT CGCATCAGAG TCCCTCAGTG TCACGCTGAC GGGAACTGTG GTGTGTGGGA CGCCACCAGT CGCATCAGAG TCCCCCAGTG TCACGCTGGC GGGAAATGTG GTGTGTGGGA CGCCACCAGT CGCATCAGAG TCCCCCAGTG TCACGCTGGC GGGAACTGTG GTGTGTGGGA CGCCACCAGT CGCATCAGAG TCCCCCAGTG TCACGCTGGC GGGAACTGTG GTGTGTGGGA CGCCACCAGT CGCATCAGCG TCCCCCAGTG TCACGCTGGC GGGAACTGTG GTGTGAGGGA CGCCACCAGC CGCATCAGAG TCCCCCAGTG TCACGCTGGC GGGAACTGTG GTGTGTGGGA CGCCACCAGT CGCATCAGAG TCCCCCGGTG TCACGCCGGC GGGAACTGTG GTGTGTGGGA CGCCACCAGT CGCATCAGAG TCCCCCAGTG TCACGCTGGC GGGAACTGTG GTGTGTGGGA CGCCACCAGT CGCATCAGAG TCCCTCAGTG TCACGCTGAC GGGAACTGTG GTGTGTGGGA CGCCACCAGT CGCATCAGAG TCCCTCAGTG TCACGCTGAC GGGAACTGTG GTGTGTGGGA CGCCACCAGT CGCATCAGAG TCCCTCAGTG TCACGCTGGC GGGAACTGTG GTGTGTGGGA CGCCACCAGT CGCATCAGAG TCCCCCAGTG TCATGCTGGC GGGAACTGTG GTGTGTGGGA CGCCACCAGT CGCATCAGAG TCCCCCGGTG TCACGCCGGC GGGAACTGTG GTGTGTGGGA CGCCACCAGT CGCTTCAGAG TCCCCCAGTG TCACGCTGGC GGGAACTGTG GTGTGTGGGA CGCCACCAGT CGCATCAGAG TCCCCCAGTG TCACGCTGGC GGGAACTGTG GTGTGTGGGA CGCCACCAGT CGCATCAGAG TCCCCCGGTG TCATGCCGGC GGGAACTGTG GTGTGTGGGA CGCCACCAGT CGCATCAGAG TCCCCCAGTG TCACGCTGGC GGGAACTGTG GTGTGTGGGA CGCCACCAGT CGCATCAGAG TCCCCCAGTG TCATGCTGGC GGGAACTGTG GTGTGTGGGA CGCCACCAGT CGCATCAGAG TCCCTCAGTG TCACGCTGGC GGGAACTGTG GTGTGAGGGA CGCCACCAGT CGCATCAGAG TCCCTCAGTG TCACGCTGAC GGGAACTGTG GTGTGTGGGA CGCCACCAGT CGCATCAGAG TCCCCCAGTG TCACGCTGGC GGGAACTGTG GTGTGTGGGA CGCCACCAGT CGCATCAGAG TTCCTCAGTG TCACGCTGAC GGGAAATGTG GTGTGTGGGA CGCCACCAGT CGCATCAGAG TCCCTCAGTG TCACGCTGAC GGGAACTTTG GTGTGTGGGA CCCCACCAGT CGCATCAGAG TTCCTCAGTG TCACGCTGAC GGAAACTGTG GTGTGCGGGA CGCCACCAGT CGCATCAGAG

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula cevlanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula cevlanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

....|....||||||||| 970 980 990 1000 1010 102 GGCGTCGAAG TCCTCCTGAT CGGGGCTTCA CCCAGAGCGG GTGTAAGGCC TTTGCAGGCG 1020 GGCGTCGAAG TCCTCCTGAT CGGGGCTTCA CCCAGAGCGG GTGTAAGGCC TTTGCAGGCG GGTGTCGAAG TCCTCCTGAT CGGGGCTTCA CCCAGAGCGG GTGTAAGGCC TTTGCAGGCG GGCGTCGAAG TCCTCCTGAT CGGGGGCTTCA CCCAGAGCGG GTGTAAGGCC TTTGCAGGCG GGTGTCGAAG TCCTCCTGAT CGGGGCTTCA CCCAGAGCGG GTGTAAGGCC TTTGCAGGCG GGCGTCGAAG TCCTCCTGAT CGGGGCTTCA CCCAGAGCGG GTGTAAGGCC TTTGCAGGCG GGTGTCGAAG TCCTCCTGAT CGGGGCTTCA CCCAGAGCGG GTGTAAGGCC TTTGCAGGCG GGTGTCGAAG TCCTCCTGAT CGGGGCTTCA CCCAGAGCGG GTGTAAGGCC TTTGCAGGCG GGTGTCGAAG TCCTCCTGAT CGGGGCTTCA CCCAGAGCGG GTGTAAGGCC TTTGCAGGCG

1080

CCTCTCTGTG CGGCCGCGAG CGTCTCAGGA GTCGGGTTGT TTGGGAATGC AGCCCAAAGC CCTCTCTGTG CGGCCGCGAG CGTCTCAGGA GTCGGGTTGT TTGGGAATGC AGCCCAAAGC CCACTCTGTG CGGCCGCGAG CGTCTCAGGA GTCGGGTTGT TTGGGAATGC AGCCCAAAGC CCCCTCTGTG CGGCCGCGAG CGTCTCAGGA GTCGGGTTGT TTGGGAATGC AGCCCAAAGC CCTCTCTGTG CGGCCGCGAG CGTCTCAGGA GTCGGGTTGT TTGGGAATGC AGCCCAAAGC CCCCTCTGTG CGGCCGCGAG CGTCTCAGGA GTCGGGTTGT TTGGGAATGC AGCCCAAAGC CCTCTCTGTG CGGCCGCGAG CGTCTCAGGA GTCGGGTTGT TTGGGAATGC AGCCCAAAGC CCCCTCTGTG CGGCCGCGAG CGTCTCAGGA GTCGGGTTGT TTGGGAATGC AGCCCAAAGC CCTCTCTGTG CGGCCGCGAG CGTCTCAGGA GTCGGGTTGT TTGGGAATGC AGCCCAAAGC CCTCTCTGTG CGGCCGCGAG CGTCTCAGGA GTCGGGTTGT TTGGGAATGC AGCCCAAAGC CCCCTCTGTG CGGCCGCGAG CGTCTCAGGA GTCGGGTTGT TTGGGAATGC AGCCCAAAGC CCTCTCTGTG CGGCCGCGAG CGTCTCAGGA GTCGGGTTGT TTGGGAATGC AGCCCAAAGC CCTCTCTGTG CGGCCGCGAG CGTCTCAGGA GTCGGGTTGT TTGGGAATGC AGCCCAAAGC CCTCTCTGTG CGGCCGCGAG CGTCTCAGGA GTCGGGTTGT TTGGGAATGC AGCCCAAAGC CCACTCTGTG CGGCCGCGAG CGTCTCAGGA GTCGGGTTGT TTGGGAATGC AGCCCAAAGT CCTCTCTGTG CGGCCGCGAG CGTCTCAGGA GTCGGGTTGT TTGGGAATGC AGCCCAAAGC CCTCTCTGTG CGGCCGCGAG CGTCTCAGGA GTCGGGTTGT TTGGGAATGC AGCCCAAAGC CCTCTCTGTG CGGCCGCGAG CGTCTCAGGA GTCGGGTTGT TTGGGAATGC AGCCCAAAGC CCCCTCTGTG CGGCCGCGAG CGTCTCAGGA GTCGGGTTGT TTGGGAATGC AGCCCAAAGC CCTCTCTGTG CGGCCGCGAG CGTCTCAGGA GTCGGGTTGT TTGGGAATGC AGCCCAAAGC CCTCTCTGTG CGGCCGCGAG CGTCTCAGGA GTCGGGTTGT TTGGGAATGC AGCCCAAAGC CCTCTCTGTG CGGCCGCGAG CGTCTCAGGA GTCGGGTTGT TTGGGAATGC AGCCCAAAGC CCCCTCTGTG CGGCCGCGAG CGTCTCAGGA GTCGGGTTGT TTGGGAATGC AGCCCAAAGC CTCCTCTGTG CGGCCGCGAG CGTCTCAGGA GTCGGGTTGT TTGGGAATGC AGCCCAAAGC CTCCTCTGTG CGGCCGCGAG CGTCTCAGGA GTCGGGTTGT TTGGGAATGC AGCCCAAAGC CTCCTCTGTG CGGCCGCGAG CGTCTCAGGA GTCGGGTTGT TTGGGAATGC AGCCCGAAGC ന്നത്തത്തന്നത് അന്തരത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത

GGGTGGTAAA	CTCCATCTAA	GGCTAAATAC	T-GGCACGAG	TCCGATAGCG	GACAAGTACC
GGGTGGTAAA	CTCCATCTAA	GGCTAAATAC	T-GGCACGAG	TCCGATAGCG	GACAAGTACC
GGGTGGTAAA	CTCCATCTAA	GGCTAAATAC	T-GGCACGAG	TCCGATAGCG	GACAAGTACC
GGGTGGTAAA	CTCCATCTAA	GGCTAAATAC	T-GGCACGAG	TCCGATAGCG	GACAAGTACC
GGGTGGTAAA	CTCCATCTAA	GGCTAAATAC	C-GGCACGAG	TCCGATAGCG	GACAAGTACC
GGGTGGTAAA	CTCCATCTAA	GGCTAAATAC	T-GGCACGAG	TCCGATAGCG	GACAAGTACC
GGGTGGTAAA	CTCCATCTAA	GGCTAAATAC	C-GGCACGAG	TCCGATAGCG	GACAAGTACC
GGGTGGTAAA	CTCCATCTAA	GGCTAAATAC	C-GGCACGAG	TCCGATAGCG	GACAAGTACC
GGGTGGTAAA	CTCCATCTAA	GGCTAAATAC	C-GGCACGAG	TCCGATAGCG	GACAAGTACC
GGGTGGTAAA	CTCCATCTAA	GGCTAAATAC	C-GGCACGAG	TCCGATAGCG	GACAAGTACC
GGGTGGTAAA	CTCCATCTAA	GGCTAAATAC	T-TGCACGAG	TCCGATAGCG	GACAAGTACC
GGGTGGTAAA	CTCCATCTAA	GGCTAAATAC	C-GGCACGAG	TCCGATAGCG	GACAAGTACC
GGGTGGTAAA	CTCCATCTAA	GGCTAAATAC	C-GGCACGAG	TCCGATAGCG	GACAAGTACC
GGGTGGTAAA	CTCCATCTAA	GGCTAAATAC	C-GGCACGAG	TCCGATAGCG	GACAAGTACC
GGGTGGTAAA	CTCCATCTAA	GGCTAAATAC	C-GGCACGAG	TCCGATAGCG	GACAAGTACC
GGGTGGTAAA	CTCCATCTAA	GGCTAAATAC	G-TGCACGAG	TCCGATAGCG	GACAAGTACC
GGGTGGTAAA	CTCCATCTAA	GGCTAAATAC	T-GGCACGAG	TCCGATAGCG	GACAAGTACC
GGGTGGTAAA	CTCCATCTAA	GGCTAAATAC	T-GGCACGAG	TCCGATAGCG	GACAAGTACC
GGGTGGTAAA	CTCCATCTAA	GGCTAAATAC	C-GGCACGAG	TCCGATAGCG	GACAAGTACC
GGGTGGTAAA	CTCCATCTAA	GGCTAAATAC	C-GGCACGAG	TCCGATAGCG	GACAAGTACC
GGGTGGTAAA	CTCCATCTAA	GGCTAAATAC	G-TGCACGAG	TCCGATAGCG	GACAAGTACC
GGGTGGTAAA	CTCCATCTAA	GGCTAAATAC	C-GGCACGAG	TCCGATAGCG	GACAAGTACC
GGGTGGTAAA	CTCCATCTAA	GGCTAAATAC	G-TGCACGAG	TCCGATAGCG	GACAAGTACC
GGGTGGTAAA	CTCCATCTAA	GGCTAAATAC	C-GGCACGAG	TCCGATAGCG	GACAAGTACC
GGGTGGTAAA	CTCCATCTAA	GGCTAAATAC	TTTGCACGAG	TCCGATAGCG	GACAAGTACC
	CTCCATCTAA				
GGGTGGTAAA	CTCCATCTAA	GGCTAAATAC	T-GGCACGAG	TCCGATAGCG	GACAAGTACC
mmmmmmmmmm	mmmmmmmmm	mmmmmmmmm	m-mmmmmmmm	mmmmmmmmm	mmmmmmmmm

115	50 110	50 11'	70 118	30 119	90 1200
GTGAGGGAAA	GTTGAAAAGA	ACTTTGAAGA	GAGAGTTCAA	GAGTACGTGA	AACCGCCCAG
GTGAGGGAAA	GTTGAAAAGA	ACTTTGAAGA	GAGAGTTCAA	GAGTACGTGA	AACCGCCCAG
GTGAGGGAAA	GTTGAAAAGA	ACTTTGAAGA	GAGAGTTCAA	GAGTACGTGA	AACCGCCCAG
GTGAGGGAAA	GTTGAAAAGA	ACTTTGAAGA	GAGAGTTCAA	GAGTACGTGA	AACCGCCCAG
GTGAGGGAAA	GTTGAAAAGA	ACTTTGAAGA	GAGAGTTCAA	GAGTACGTGA	AACCGCCCAG
GTGAGGGAAA	GTTGAAAAGA	ACTTTGAAGA	GAGAGTTCAA	GAGTACGTGA	AACCGCCCAG
GTGAGGGAAA	GTTGAAAAGA	ACTTTGAAGA	GAGAGTTCAA	GAGTACGTGA	AACCGCCCAG
GTGAGGGAAA	GTTGAAAAGA	ACTTTGAAGA	GAGAGTTCAA	GAGTACGTGA	AACCGCCCAG
GTGAGGGAAA	GTTGAAAAGA	ACTTTGAAGA	GAGAGTTCAA	GAGTACGTGA	AACCGCCCAG
GTGAGGGAAA	GTTGAAAAGA	ACTTTGAAGA	GAGAGTTCAA	GAGTACGTGA	AACCGCCCAG
GTGAGGGAAA	GTTGAAAAGA	ACTTTGAAGA	GAGAGTTCAA	GAGTACGTGA	AACCGCCCAG
GTGAGGGAAA	GTTGAAAAGA	ACTTTGAAGA	GAGAGTTCAA	GAGTACGTGA	AACCGCCCAG
GTGAGGGAAA	GTTGAAAAGA	ACTTTGAAGA	GAGAGTTCAA	GAGTACGTGA	AACCGCCCAG
GTGAGGGAAA	GTTGAAAAGA	ACTTTGAAGA	GAGAGTTCAA	GAGTACGTGA	AACCGCCCAG
GTGAGGGAAA	GTTGAAAAGA	ACTTTGAAGA	GAGAGTTCAA	GAGTACGTGA	AACCGCCCAG
GTGAGGGAAA	GTTGAAAAGA	ACTTTGAAGA	GAGAGTTCAA	GAGTACGTGA	AACCGCCCAG
GTGAGGGAAA	GTTGAAAAGA	ACTTTGAAGA	GAGAGTTCAA	GAGTACGTGA	AACCGCCCAG
GTGAGGGAAA	GTTGAAAAGA	ACTTTGAAGA	GAGAGTTCAA	GAGTACGTGA	AACCGCCCAG
GTGAGGGAAA	GTTGAAAAGA	ACTTTGAAGA	GAGAGTTCAA	GAGTACGTGA	AACCGCCCAG
GTGAGGGAAA	GTTGAAAAGA	ACTTTGAAGA	GAGAGTTCAA	GAGTACGTGA	AACCGCCCAG
GTGAGGGAAA	GTTGAAAAGA	ACTTTGAAGA	GAGAGTTCAA	GAGTACGTGA	AACCGCCCAG
GTGAGGGAAA	GTTGAAAAGA	ACTTTGAAGA	GAGAGTTCAA	GAGTACGTGA	AACCGCCCAG
GTGAGGGAAA	GTTGAAAAGA	ACTTTGAAGA	GAGAGTTCAA	GAGTACGTGA	AACCGCCCAG
GTGAGGGAAA	GTTGAAAAGA	ACTTTGAAGA	GAGAGTTCAA	GAGTACGTGA	AACCGCTCAG
GTGAGGGAAA	GTTGAAAAGA	ACTTTGAAGA	GAGAGTTCAA	GAGTACGTGA	AACCGCCCAG
GTGAGGGAAA	GTTGAAAAGA	ACTTTGAAGA	GAGAGTTCAA	GAGTACGTGA	AACCGCCCAG
GTGAGGGAAA	GTTGAAAAGA	ACTTTGAAGA	GAGAGTTCAA	GAGTACGTGA	AACCGCCCAG
mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp.

NUCLEOTIDES INCLUDED

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula cevlanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

....|....||||||||| 1210 1220 1230 1240 1250 126 AGGTAAACGG GTGGATCCGC AAAGTCGGCC CGCGGAATTC AGCGCGGCGC GCGGCCTCGG 1260 AGGTAAACGG GTGGATCCGC AAAGTCGGCC CGCGGAATTC AGCGCGGCGC GCGGCCTCGG AGGTAAACGG GTGGATCCGC AAAGTCGGCC CGCGGAATTC AGCGCGGCGC GCGGCCT-GG AGGTAAACGG GTGGATCCGC AAAGTCGGCC CGCGGAATTC AGCGCGGCGC GCGGCCTCGG AGGTAAACGG GTGGATCCGC AAAGTCGGCC CGCGGAATTC AGCGCGGCGC GCGGCCT-GG AGGTAAACGG GTGGATCCGC AAAGTCGGCC CGCGGAATTC AGCGCGGCGC GCGGCCC-GG AGGTAAACGG GTGGATCCGC AAAGTCGGCC CGCGGAATTC AGCGCGGCGC GCGGCCT-GG AGGTAAACGG GTGGATCCGC AAAGTCGGCC CGCGGAATTC AGCGCGGCGC GCGGCCT-GG AGGTAAACGG GTGGATCCGC AAAGTCGGCC CGCGGAATTC AGCGCGGCGC GCAGCCT-GG AGGTAAACGG GTGGATCCGC AAAGTCGGCC CGCGGAATTC AGCGCGGCGC GCGGCCC-GG AGGTAAACGG GTGGATCCGC AAAGTCGGCC CGCGGAATTC AGCGCGGCGC GCGGCCT-GG AGGTAAACGG GTGGATCCGC AAAGTCGGCC CGCGGAATTC AGCGCGGCGC GCGGCCT-GG AGGTAAACGG GTGGATCCGC AAAGTCGGCC CGCGGAATTC AGCGCGGCGC GCGGCCT-GG AGGTAAACGG GTGGATCCGC AAATTCGGCC CGCGGAATTC AGCGCGGCGC GCGGCCT-GG AGGTAAACGG GTGGATCCGC AAATTCGGCC CGCGGAATTC AGCGCGGCGC GCGGCCT-GG AGGTAAACGG GTGGATCCGC AAAGTCGGCT CGCGGAATTC AGCGCGGCGC GCGGCCTGTG AGGTAAACGG GTGGATCCGC AAAGTCGGCC CGCGGAATTC AGCGCGGCGC GCGGCCT-GG AGGTAAACGG GTGGATCCGC AAAGTCGGCT CGCGGAATTC AGCGCGGCGC GCGATCTGTG AGGTAAACGG GTGGATCCGC AAAGTCGGCT CGCGGAATTC AGCGCGGCGC GCGGTTT-GG AGGTAAACGG GTGGATCCGC AAAGTCGGCC CGCGGAATTC AGCGCGGCGC GCAGCCT-GG AGGTAAACGG GTGGATCCGC AAAGTCCGCC CGCGGAATTC AGCGCGGCGC GCGGCCT-GG AGGTAAACGG GTGGATCCGC AATGTCGGCC CGCGGAATTC AGCGCGGCGT GCGGTCG-GG AGGTAAACGG GTGGATCCGC AATGTCGGCC CGCGGAATTC AGCGCGGCGT GCGGCCT-GG AGGCAAACGG GTGGATCCGC AATGTCGGCC CGCGGAATTC AGCGCGGCGT GCGGCTC-GG

....|....||||||||| 1270 1280 1290 1300 1310 132 GGCGATCGCG GCCGGGGATC CCTGGGACCC CGCCGCGGTG TCGATCCGGG CTCCGCCGCG 1320 GGCGATCGCG GCCGGGGGATC CCTGGGACCC CGCCGCGGTG TCGATCCGGG CTCCGCCGCG GGCGATCGCG GCCGGGGATC CCTGGGACCC CGCCGCGGTG TCGATCCGGG CTCCGCCGCG GGCGATCGCG GCCGGGGATC CCTGGGACCC CGCCGCGTG TCGATCCGGG CTCCGCCGCG GGCGATCGCG GCCGGGGATC CCTGGGACCC CGCCGCGGTG TCGATCCGGG CTCCGCCGCG GGCGACTGCG GCCGGGGATC CCTGGGACCC CGCTGCGGTG TCGATCCGGG TTCCGCCGCG GGCGATCGCG GCCGGGGATC CCTGGGACCC CGCCGCGGTG TCGATCCGGG CTCCGCCGCG GGCGATTGCG GCCGGGGATC CCTGGGACCC CGCCGCGGTG TCGATCCGGG CTCCGCCGCG GGCGATCGCG GCCGGGGATC CCTGGGACCC CGCCGCGGTG TCGATCCGGG CTCCGCCGCG GACTATCGCA GCCGGGGATC CCTGGGACCC CGCCGCGGTG TCGCTCCGGG CTCCGCCGCG GGCTATTGCG GCCGGGGATC CCTGGGACCC CGCCGCGGTG TCGATCCGGG CTCCGCCGCG GGCGATCGCT GCAGGGGATC CCTGGGACCC CGCTGTGGTG TCGATCCGGG CTCCGCCGCG GGCGATCGCT GCCGGGGATC CCTGGGACCC CGCTGTGGTG TCGATCCGGG CTCCGCCGCG GGCGACTGCG GCCGGGGATC CCTGGGACCC CGCCGCGGTG TCGATCCGGG CTCCGCCGCG GGCGACTGCG GCCGGGGATC CCTGGGAACC CGCCGCGGTG TCGATCCGGG CTCCGCCGCG GGCGATCGCG GCCGGGGATC CCTGGGACCC CGCCGTGGTG TCGAACCGGG CTCCGCCGCG GGCGATCGCG GCCGGGGATC CCTGGGACCC CGCCGCGGTG TCGATCCGGG CTCCGCCGCG GGCGATCGCG GCCGGGGGATC CCTGGGACCT CGCCGTGGTG TCGAACCGGG CTCCGCCGCG GGCGATCGCG GCCGGGGATC CCTGGGACCC CGCCGCGTCG TCGATCCGGG CTCCGCCGCG GGCGATCGCG GCCGGGGGATC CCTGGGACCC CGCCGCGGTG TCGATCCGGG CTCCGCCGCG GGCGATTGCG GCCGGGGATC CCTGGGACCC CGCCGTGATG TCGAACCGGG TTCCGCCGCG GGCGATTGCG GCCGGGGATC CCTGGGACCC CGCCGTGGTG TCGAACCAGA CTCCGCCGCG GACAATCGTG GCCGGGGATT CTTGGGACCC CGCTTCGGTG TCGAGCCGGG CTCCGCCGCG GGCGATCGCG GCCGGGGATC CCTGGGACCC CGCCGCGGTG TCGATCCGGG CTCCGCCGCG GGCCGTCGTG GCAAGGGATC CCTGGGACCC TGCCGCGATG TCGAGCCCGG CCCCGCCGCG GACCGTCGTG GCCAGGGATC CGTGGGACCC TGCCGCGATG TCGAGCCTGG CCCCGCCGCG GGACGTCGTG GCCAGGGATC CCTGGGACCC TGCCGCGATG TCGAGCTGGG CCTCGCCGCG ന്നത്തത്തന്നത്ത് നന്നത്തത്തന്ന നന്തത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത

		···· ···			
TGCACTTTCC	GCGGGCAGAG	TGCCACAACC	GGTTCCGCTG	GAGCCGTC	AGAGGCCGGG
TGCACTTTCC	GCGGGCAGAG	TGCCACAACC	GGTTCCGCTG	GAGCCGTC	AGAGGCCGGG
TGCACTTTCC	GCGGGCAGAG	TGCCACAACC	GGTTCCGCTG	GAGCCGTC	AGAGGCCGGG
TGCACTTTCC	GCGGGCAGAG	TGCCACAACC	GGTTCCGCTG	GAGCCGTC	AGAGGCCGGG
TGCACTTTCC	GCGGGCAGAG	TGCCACAACC	GGTTCTGC-G	GTCGTC	AGAGGCCGGG
TGCACTTTCC	GCGGGCAGAG	TGCCACAACC	GGTTCTGACG	GGCCGTC	AGAGGCCGGG
TGCACTTTCC	GCGGGCAGAG	TGCCACAACC	GGTTCTGC-G	GTCGTC	AGAGGCCGGG
TGCACTTTCC	GCGGGCAGAG	TGCCACAACC	GTTTCTGC-G	GCCGTC	AGAGGCCGGG
TGCACTTTCC	GCGGGCAGAG	TGCCACAACC	GGTTCTGG-G	GTCGTC	AGAGGCCGGG
TGCACTTTCC	GCGGGCAGAG	TGCCACAACC	GGTTCTGG-T	TCCGTC	AGAGGCCGGG
TGCACTTTCC	GCGGGCAGAG	TGCCACAACC	GGTTCCGCGG	GAGCCGTC	AGAGGTCGGA
TGCACTTTCC	GCGGGCAGAG	TGCCACAACC	GGTTTCGCTG	GTGCCGTC	AGAGGCCGGG
TGCACTTTCC	GCGGGCAGAG	TGCCACAACC	GGTTTCGCTG	GTGTCGTC	AGAGGCCGGG
TGCACTTTCC	GCGGGCAGAG	TGCCACAACC	GGTTCTGGCT	GGGCCGTC	AGATGCCGGG
TGCACTTTCC	GCGGGCAGAG	TGCCACAACC	GGTTCTGGCT	GGGCCGTC	AGATGCCGAG
TGCACTTTCC	GCGGGCAGAG	TGCCACAACC	GGTTCCGCGG	GAGCCGTC	AGCAGCCGTG
TGCACTTTCC	GCGGGCAGAG	TGCCACAACC	GGTTCCGCGG	GAGCCGTC	AGAGGCCGGG
TGCACTTTCC	GCGGGCAGAG	TGCCACAACC	GGTTCCGCGG	GAGCCGTC	AGAGGCCGGA
TGCACTTTCC	GCGGGCAGAG	TGCCACAACC	GGTTCCGG-C	TCTGTC	AGAGGCCGGG
TGCACTTTCC	GCGGGCAGAG	TGCCACAACC	GGTTCTGT-G	GTCGTC	AGAGGCCGGG
TGCACTTTCC	GCGGGCAGAG	TGCCACAACC	GGTTTCGCTG	GTGCCGTC	AGAGGCCGGG
TGCACTTTCC	GCGGGCAGAG	TGCCACAACC	GGTTCTGC-G	GCCGCC	AGAGGCCGGG
TGCACTTTCC	GCGGGCAGAG	TGCCACAACC	GGTTCTGCGA	GAACGGTC	AGAAGTCCGG
TGCACTTTCC	GCGGGCAGAG	TGCCACAACC	GGTTCTGT-G	GTCGTC	AGAGGCCAGG
TGCACTTTCC	GCGGGCAGTG	GGCCACAACC	GGTTCGGA-G	GCGGTC	AAAAGCCGGG
TGCACTTTCC	GCGGGCAGTG	GGCCACAACC	GGTTCGGATT	GAAGGCGGTC	AAAAGCCGGG
TGCACTTTCC	GCGGGCAGTG	GGCCACAACC	GGTTCGGG-G	GCGGTC	AAAAGCCGGG
mmmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmm	mmmmmm	mmmmmmmmm

139	90 140	0 141	10 142	20 143	30 144
C-GGGTTGTC	GGTGGGGGCG	CTTGC-GTCC	CTACCAGCCC	GCCCCGG	CGGACGGCCT
C-GAGTTGTC	GGTGGGGGCG	CTTGC-GTCC	CTACCAGCCC	GCCCCGG	CGGACGGCCT
C-GGGTTGTC	GGTGGGGGCG	CTTGC-GTCC	CTACCAGCCC	GCCCCGG	CGGACGGCCT
C-GGGTTGTC	GGTGGGGGCG	CTTGC-GTCC	CTACCAGCCC	GCCCCGG	CGGACGGCCT
C-GGGTTGTC	GGTGGGGGCG	CTCGC-GTCC	CTACCAGCCT	GCCCCGG	CGGACGGCCG
C-GGGTTGTC	GGTGGGGGCG	CTCGC-GTCC	CTACCAGCCC	GCCTCGG	CGGACGGCCT
C-GGGTTGTC	GGTGGGGGCG	CTCGC-GTCC	CTACCAGCCT	GCCCCGG	CGGACGGCCG
C-GGGTTGTC	GGTGGGGGCG	CTCGC-GTCC	CTACCAGCCT	GCCTCGG	CGGACGGCCG
C-GGGTTGTC	GGTGGGGGCG	CTCGC-GTCC	CTACCAGCCT	GCCCCGG	CGGACGGCCG
C-GGGTTGTC	GGTGGGGGCG	CTTGC-GTCC	CTACCAGCCC	GCCCCGG	CGGACGGCTC
C-GGGTTGTC	GGTGGGGGCG	CTCGC-GTCC	CTACCAGCCC	GCCCCGG	CGGACGGCCT
C-GGGTTGTC	GGTGGGGGCG	CTCGC-GTCC	CTACCAGCCC	GCCTCGG	CGGACGGCCT
C-GGGTTGTC	GGTGGGGGCG	CTCGC-GTCC	CTACCAGCCC	GCCCCGG	CGGACGGCCT
T-GGGTTGTC	GGTGGGGGCG	CTCGC-GTCC	CTACCAGCCC	GCCTCGG	CGGACGGCTC
AAGGGTTGTC	GGTGGGGGCG	CTCGCCGTCC	CTACCAGCCC	AACTCGG	CGGACGGCCT
T-GGGTTGTC	GGTCGGGGCG	CTCGC-GTCC	CTACCAGCCT	GCAACGG	CGGACGGCCT
C-GGGTTGTC	GGTGGGGGCG	CTCGC-GTCC	CTACCAGCTC	GCCCCGG	CGGACGGCCT
C-GGGTTGTC	GGTGGGGGCG	CTCGC-GTCC	CTACCAGCCC	GCCCCGG	CGGACGGCCT
C-GGGTTGTC	GGTGGGGGCG	CTCGC-GTCC	CTACCAGCCC	GCCGCCCCGG	CGGACGGCTC
C-GGGTTGTC	GGTGGGGGCG	CTTGC-GTCC	CTACCAGCCT	GCCCCGG	CGGACGGCCG
C-GGGTTGTC	GGTGGGGGCG	CTCGC-GTCC	CTACCAGCCT	GTTACGG	CGGACGGCCT
C-GGGTTGTC	GGTGGGGGCG	CTCGC-GTCC	CTACCAGCCT	GCCCCGG	CGGACGGCCG
T-GGGTTGTC	GGTGGGGACG	TTCGC-GTGC	CTACCAGCCC	GCTGAGG	CGGACCGCTC
C-GGGTTGTC	GGTGGGGGCG	CTTGC-GTCC	CTACCAGCCT	GCCCCGG	CGGACGGCCG
C-GGGTTGTC	GGTGGGGGCG	TTCGC-GTCC	CTACCAGCCT	GCCCCGG	CGAGCCGCCG
C-GGGTTGTC	GGTGGGGGCG	CTCGC-GTCC	CTACCAGCCC	GCCCCGG	CGAGCCGCCG
C-GGGTTGTC	GGTGGGGGCG	CTCGC-GTCC	CTACCAGCCT	TCCCCGG	CGAGCCGCCG
m-mmmmmmmm	mmmmmmmmm	mmmmm-mmmm	mmmmmmmmm	mmmmmmm	mmmmmmmmm

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula cevlanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

....|....||||||||| 1450 1460 1470 1480 1490 150 -CGGGACCGA GGAACCGCCG -CGCGCTTCG AGGCTACCCG GCCCCTCTGC GCGAGTCCGA 1500 -CGGGACCGA GGGACCGCCG -CGCGCTTCG AGGCTACCCG ACCCCTCCGC GCGAGTCCGA -CGGGACCGA GGAACTGCCG -CGCGCTTCG AGGCTACCCG ACCCCTCGGC GCGAGTCCGA -CGGGACCGA GGAACCGCCG -CGCGCTTGG AGGCTACCCG ACCCCTCCGT GCGAGTCCGA -CGGGACCGA GGAACCGCCG -CGCACTTCG AGGCCGCCT- GCCCCTCCGC GCGAGTTCGA -CGGGACCGA GGAACCGCCG -CGCGCTTCG AGGCTACCT- GCCCCTCCGG GCGAGTTCGA -CGGGACCGA GGAACCGCCG -CGCGCTTCG AGGCCGCCT- GCCCCTCCGC GCGAGTTCGA -CGGGACCGA GGAACCGCCG -CGCGCTTCG AGGCCGCCT- GCCCCTCCGC GCGAGTTCGA -CGGGACCGA GGAACCGCCG -CGCGCTTCG AGGCCGCCT- GCCCCTCCGC GCGAGTTCGA -TGGGATCGA GGAACCGCCG -CGCGCTTCG AGGCTACCT- GCTCCTCCGG GCGAGTTCGA -CGGGACCGA GGGACCGCCG -CACGCTTCG AGGCTACCT- GCTCCTCCGC GCGAGTCCGA -CGGGACCGA GGAACTGCCG -CGCGCTTCG AGGCTACCC- GCTCCTCCGC GCGAGTTCGA -CGGGACCGA GGAACCGCCG -CGCGCTTCG AGGCTACCC- GCTCCTCCGC GCGAGTTCGA -CGGGACCGA GGAACCGCCG -CGTGCTTCG AGGCTACTC- GCTCCTCCGC GTGAGTTCGA -CGGGACCGA GGAACCGCCG -CGCGCTTCG AGGCTGCTC- GCTCCTCCGC GCGAGTTCGA -CGGGACCGA GGAACTGCCG -CGCGCTTTG AGGCTACCT- GCCCCTCCGC ACGAGTTCGA -CGGGACCGA GGGACCGCCG -CACGCTTCG AGGCTACCT- GCTCCTCAGC GCGAGTCCGA -CGGGACCGA GGGACCGCCG -CGCGCTTCG AGGCTACCT- GCTCCTCCGC GCGAGTTCGA -CGGGACCGA GGAACCGCCG -CGCGCTTCG AGGCTACCT- GCTCCTCCGG GCGAGTCCGA -CGGGACCGA GGAACCGCCG -CGCGCTTCG AGGCAGCCT- GCCCCTCCGC GCGAGTTCGA -CGGGACCGA GGAACTGCCG -CGCGCTTCG AGGCTACCT- GCTCCTCCGC ACGAGTTCGA -CGGGACCGA GGAACAGCCG -CGCGCTTCG AGGCCACAT- GCCCCTCCGT GCGAGTCCGA -TGGGACCGA GGAACAGCCT TCGCGCTTCG AGGCTACCT- GCTCCTCCGT GTGAGTTCAA -CGGGACCGA GGAACCGCCG -CGCGCTTCG AGGCTGCCT- GCCCCTCCGC GCGAGTTCGA GCCAGACCGA GGAACCGCCG -CTCGCTTCG AGGCTACCC- GCTCCTCAGG GTGAGTTCGA -CCGGACCGA GGAACCGCCG -CTCGCTTCG AGGCTACCC- GCTCCTCGGG GTGAGTTCGA -CCGGACCGA GGAACCGCCG -CTCGCTTCG AGGCTGTCC- GCTCCTCAGG GTGAGTTCGA

....|....||||||||| 1510 1520 1530 1540 1550 156 CTGGGAAGAA CTGGGCAACC GTGTCTTCCG ACCGCTCGCG CGCGACCGGG CC-GGGCTAG 1560 CTGGGAGAGA CTGGGCAACC GTGTCTCCCG ACCGCTCGCG TGCGACCGGG CC-GGGCTAG CTGGGAGAGA CTGGGCAACC GTGTCTCCCG ACCGCTCGCG CAAGACCGGG CC-GGGCTAG CTGGGAGAGA CTGGGCAACC GTGTCTTCCG ACCGCTCGCG CGCGACCGGG CC-GGGCTAG CTGGGAGAGA CTGGGCAACC GTGTCTTCCG ACCGCTCGCG TGCGACCGGG ATCGGGCCGG CTGGGAGAGA CTGGGCAACC GTGTCTTCCG ACCGCTCGCG CGTGATCGGG TT-GGGCTAG CTGGGAGAGA CTGGGCAACC GTGTCTTCCG ACCGCTCGCG TGCGACCGGG ATCGGGCCGG CTGGGAGAGA CTGGGCAACC GTGTCTCCCG ACCGCTCGCG -CTGACAGGG ATCGGGCCGG CTGGGAGAGA CTGGGCAACC GTGTCTTCCG ACCGCTCGCG TGCGACCGGG ATCGGGCCGG CTGGGAGAGA CTGGGCAACC GTGTCTKCCG ACCGCTCGCT CGCGATCGGG TTGGGGCTAG CTGGGAGAGA CTGGGCAACC GTGTCTCCCG ACCGCTCGCG CGCGACCGGG CC-GGGCTAG CTGGGAGAGA CTGGGCAACC GTGTCTTCCG ACCGCTCGCG TGCGACCGGG CC-GGGATAG CTGGGAGAGA CCGGGCAACC GTGTCTTCCG ACCGCTCGCG TGTGATCGGG CC-GGGATAG CCGGGAGAGA CTGGGCAACC GTGTCTCCCG ACTGCTCGCG CGCGACCGGG TT-GGGTCAG CCGGGAGAGA CTGGGCAACC GTGTCTCCCT ACCGCTCGCG CGCGATTGGG TT-GGGCTAG CTGGAAGAGA CTGGGTAACC GTGGCTTCCG AATGCTCGAG CGCGATCGGG CC-GGGCTAG CTGGGAGAGA CTGGGCAACC GTGTCTCCCG ACCGCTCGCG CGCGACCGAG CC-GGGCTAG CTGGGAGAGA CTGGGCAACC GTGTCTTCCG ACCGCTCGCG CGCGACCGGG CC-GGGCTAG CTGGGAGAGA CTGGGCAACC GTGTCTCCCG ACCGCTCGCT CGCGATCGGG TTGGGGTTAG CTGGGAGAGA CTGGGCAACC GTGTCTCCCG ACCGCTCGCG TGCGACCGGG ATCGGGCCGG CTGGGAGAGA CTGGGCAACC GTGTCTCCCCG AATGCTCGAG CGTGACTGGG TC-GGGCTAA CTGGGAGAGA CTGGGCAACC GTGTCTCCCG ACCGCTCGCG CGCGACCGGG ATCGTGTCGG CTGGGAGAGA CTGGGCAACC GTGTCTCCCG ACCGCTCGCA CGCGACCGGG TC-GGGCTAG CTGGGAGAGA CTGGGCAACC GTGTCTCCCG ACCGCTCGCG CGCGACCGGG ATCGGGCCGG CTGGAAGAGA CTGGGCAACC GTGACTTCCG ACCGCTCATC CTCGATCGGG CC-GGGCTAG CAGGAAGAGA CTGGGCAACC GTGTCTTCCG ACCGCTCATC CTCGACCGGG CC-GGGCTAG CTGGGAGAGA CTGGGCAACC GTGTCTTCCG ACCGCTCATC CTCGATCGGG CC-GGGCCAG

$\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots $	 10 1620
CCGGGCGT-C GCGACT GTAACAG GGTTGGTGGC GAGTCCGTCC	GCATTCCACC
CCGGGCGC GACT GAAGCAG GGTTGGTGGC GAGTCCGTCC	GCATTCCACC
CCGGGCGC-C GCGACT GTAACAG GGTTGGTGGC GAGTCCGTCC	GCATTCCACC
CCGGGCGT-C GCGACT GTAACAG GGTTGGTGGC GAGTCCGTCC	GCATTCCACC
CCGGGTGC-C GCTTGTCAG GGTTTGTGGC GAGTCCGTCC	GCATTCCACC
CCGGGTGC GTTAGTGAG GGTTGGTGGC GAGTCCGTCC	GCATTCCACC
CCGGGCGC-C GCTTGTCAG GGTTTGTGGC GAGTCCGTCC	GCATTCCACC
CCGGGCGC GCACGCCAG GGTTTGTGGC GAGTCCGTCC	GCATTCCACC
CCGGGCGC-C GCTTGTCAG GGTTTGTGGC GAGTCCGTCC	GCATTCCACC
CCGGGCCG-C GCCAGTCAG GGTTTGTGGC GAGTCCGTCC	GCATTCCACC
CCGGGCGT GCACACGG GGTTGGTGGC GAGTCCGTCC	GCATTCCACC
CCGGGCGCGC GCACGCACAG GGTTTGTGGC GAGTCCGTCC	GCATTCCACC
CCGGGCGCGC GCATGCAGCAG GGTTTGTGGC GAGTCCGTCC	GCATTCCACC
CCGGGCAC GCCCGTCAG GGTTCGTGGC GAGTCCGTCC	GCATTCCACC
CCGGGCGC GCCCGTCCAG GGTTCGTGGC GAGTCCGTCC	GCATTCCACC
CCGGGCGC GCAACGCTTCAG GGTTGGTGGC GAGTCCGTCC	GCATTCCACC
CCGGGCGT GCACACTG GGTTGGTGGC GAGTCCGTCC	GCATTCCACC
CCGGGCGT GCACACGG GGTTGGTGGC GAGTCCGTCC	GCATTCCACC
CCGGGCCG-C GCCAGTCAG GGTTTGTGGC GAGTCCGTCC	GCATTCCACC
CCGGGCGC-C GCTCGTCAG GGTTTGTGGC GAGTCCGTCC	GCATTCCACC
CCGGGCGT GCATTTTCAG GGTGTGTGGC GAGTCCGTCC	GCATTCCACC
CCGGGTGC GTTCGTCAG GGTTTGTGGC GAGTCCGTCC	
CCGGGCGC GCGTCAGTCAG GGTTGGTGGC AAGTCTGTCC	
CCGGGCGC-C GCTCGTCAG GGTTTGTGGC GAGTCCGTCC	GCATTCCACC
CCGGGCGA GCCGATTGGCAG GGTTGGTGGC GAATCTGTCC	GCATTCCACC
CCGGGCGA GCCTGTCGGCAG GGTTGGTGGC GAATCTGTCC	GCATTCCACC
CCGGGCGA GCCGATTGGCAG GGTTGGTGGC GAATCTGTCC	GCATTCCACC
mmmmmmmm mmmmm mmmmmmmmmm	ı mmmmmmmmm

	16.	30 164	10 16	50 166	50 16'	/0 1680
	CGACCCGTCT	TGAAACACGG	-ACCAAGGAG	TCTAACATGC	GCGCGAGTCA	TTGGGCGGTA
	CGACCCGTCT	TGAAACACGG	-ACCAAGGAG	TCTAACATGC	GCGCGAGTCA	TTGGGCGGTA
	CGACCCGTCT	TGAAACACGG	-ACCAAGGAG	TCTAACATGC	GCGCGAGTCA	TTGGGCGGTA
	CGACCCGTCT	TGAAACACGG	-ACCAAGGAG	TCTAACATGC	GCGCGAGTCA	TTGGGCGGTA
	CGACCCGTCT	TGAAACACGG	-ACCAAGGAG	TCTAACATGC	GCGCGAGTCA	TTGGGCCGTA
	CGACCCGTCT	TGAAACGCGG	GACCAAGGAG	TCTAACATGC	GCGCGAGTCA	TTGGGCAGTA
	CGACCCGTCT	TGAAACACGG	-ACCAAGGAG	TCTAACATGC	GCGCGAGTCA	TTGGGCCGTA
	CGACCCGTCT	TGAAACACGG	-ACCAAGGAG	TCTAACATGC	GCGCGAGTCA	TTGGGCGGTA
	CGACCCGTCT	TGAAACACGG	-ACCAAGGAG	TCTAACATGC	GCGCGAGTCA	TTGGGCCGTA
	CGACCCGTCT	GGAAACACCG	-ACCAAGGAG	TCTAACATGC	GCGCGAGTCA	TTGGGCAGTA
	CGACCCGTCT	TGAAANNNNN	-NCCAAGGAG	TCTAACATGC	GCGCGAGTCA	TTGGGCWGTA
	CGACCCGTCT	TGAAACACGG	-ACCAAGGAG	TCTAACATGC	GCGCGAGTCA	TTGGGCGGTA
	CGACCCGTCT	TGAAACAAGG	-ACCAAGGAG	TCTAACATGC	GCGCGAGTCA	TTGGGCAGTA
	CGACCCGTCT	TGAAACACGG	-ACCAAGGAG	TCTAACATGC	GCGCGAGTCA	TTGGGCGGTA
	CGACCCGTCT	TGAAACACGG	-ACCAAGGAG	TCTAACATGC	GCGCGAGTCA	TTGGGCTGTA
	CGACCCGTCT	TGAAACACGG	-ACCAAGGAG	TCTAACATGC	GCGCGAGTCA	TTGGGCTATA
	CGACCCGTCT	TGAAACACGG	-ACCAAGGAG	TCTAACATGC	GCGCGAGTCA	TTGGGCGGTA
	CGACCCGTCT	TGAAACAAGG	-ACCAAGGAG	TCTAACATGC	GCGCGAGTCA	TTGGGCGGTA
	CGACCCGTCT	TGAAACACGG	-ACCAAGGAG	TCTAACATGC	GCGCGAGTCA	TTGGGCRCTA
	CGACCCGTCT	TGAAACACGG	-ACCAAGGAG	TCTAACATGC	GCGCGAGTCA	TTGGGCCGTA
	CGACCCGTCT	TGAAACACGG	-ACCAAGGAG	TCTAACATGC	GCGCGAGTCA	TTGGGCGGTA
	CGACCCGTCT	TGAAACACGG	-ACCAAGGAG	TCTAACATGC	GCGCGAGTCA	TTGGGCTGTA
	CGACCCGTCT	TGAAACACGG	-ACCAAGGAG	TCTAACATGC	GCGCGAGTCA	TTGGGCAGTA
5	CGACCCGTCT	TGAAANNNNN	-NCCAAGGAG	TCTAACATGC	GCGCGAGTCA	TTGGGCCGTA
	CGACCCGTCT	TGAAACACGG	-ACCAAGGAG	TCTAACATGC	GCGCGAGTCA	TTGGGTCGTA
5	CGACCCGTCT	TGAAACACGG	-ACCAAGGAG	TCTAACATGC	GCGCGAGTCA	TTGGGTCGTA
	CGACCCGTCT	TGAAACACGG	-ACCAAGGAG	TCTAACATGC	GCGCGAGTCA	TTGGGTCGTA
	mmmmmmmmm	mmmmmmmmm	-mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp.

NUCLEOTIDES INCLUDED

	.				
	1690 17	17	10 172	20 173	30 1740
CGAAACCC	AA AGGCGCAGTO	AAAGCGAGGG	TC-GTCT	CGCGC	GACCCAGGTG
CGAAACCC	AA AGGCGCAGTO	AAAGCGAGGG	TC-GTCT	CGCGC	GACCCAGGTG
CGAAACCC	AA AGGCGCAGTO	AAAGCGAGGG	TC-GTCT	CGCGC	GACCCAGGTG
CGAAACCO	AA AGGCGCAGTO	AAAGCGAGGG	TC-GTCT	CGCGC	GACCCAGGTG
CGAAACCC	AA AGGCGCAGTO	AAAGCGAGGG	TC-GTTT	CGGC	GACCCAGGTG
CGAAACCC	AA AGGCGCAGTO	AAAGCGAGGG	TC-GTCT	CGGC	GACCCAGGTG
CGAAACCC	AA AGGCGCAGTO	AAAGCGAGGG	TC-GTTT	CGGC	GACCCAGGTG
CGAAACCC	AA AGGCGCAGTO	AAAGCGAGGG	TC-GTCT	CGGC	GACCCAGGTG
CGAAACCC	AA AGGCGCAGTO	AAAGCGAGGG	TC-GTTT	CGGC	GACCCAGGTG
CGAAACCO	AA AGGCGCAGTO	AAAGCGAGGG	TC-GTCTT	AGCGC	GACCCAGGTG
CGAAACCC	AA AGGCGCAGTO	AAAGCGAGGG	TC-GTCT	CNCGC	GACCCAGGTG
CGAAACCC	AA AGGCGCAGTO	AAAGCGAGGG	TC-GCCT	CGCGC	GGCCCAGGTG
CGAAACCC	AA AGGCGCAGTO	AAAGCGAGGG	TC-GCCT	TGCGC	GGCCCAGGTG
CGAAACCC	AA AGGCGCAGTO	AAAGCGAGGG	TC-GTTT	CGGC	GGCCCAGGTG
CGAAACTO	AA AGGCGAAGTO	AAAGCGAGGG	TC-GTTT	CGGC	GACCCAGGTG
CGAAACCC	AA AGGCGCAGTO	AAAGCGAGGG	TC-GTCT	CGCGC	GACCCAGGTG
CGAAACCC	AA AGGCGCAGTO	AAAGCGAGGG	TC-GTCTC	GCGC	GGCCCAGGTG
CGAAACCC	AA AGGCGCAGTO	AAAGCGAGGG	TC-GTCT	CGCGC	GACCCAGGTG
CGAAACCC	AA AGGCGCAGTO	AAAGCGAGGG	TC-GTCGTTC	GTTTCGGCGC	GACCCAGGTG
CGAAACCC	AA AGGCGCAGTO	AAAGCGAGGG	TC-GTTT	CGGC	GACCCAGGTG
CGAAACCC	AA AGGCGCAGTO	AAAGCGAGGG	TC-GTTT	CGCGC	GACCTAGGTG
CGAAACCC	AA AGGCGCAGTO	AAAGCGAGGG	TC-GTCT	CGCGC	GACCCAGGTG
CGAAACCC	AA AGGCGCAGTO	AAAGCGAGGG	TC-GCC	TGGC	GACCCAGGTG
CGAAACCC	AA AGGCGCAGTO	AAAGCGAGGG	TC-GTTT	CGGC	GACCCAGGTG
CGAAACCC	AA AGGCGCAGTO	AAAGCGAGGG	TCCTCCTC	GCGGG	GACCCAGGTG
CGAAACCC	AA AGGCGCAGTO	AAAGCGAGGG	TCCTCTTC	GCGGA	GACCCAGGTG
CGAAACCC	AA AGGCGCAGTO	AAAGCGAGGG	TC-TCCTC	GCGGA	GACCCAGGTG
mmmmmmmn	imm mmmmmmmmm	mmmmmmmmmm	mm	nn	mmmmmmmm

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula cevlanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

1800 GGATCCT-CC GCTCCT---- -----TC G---CGGGAG CGGT-GGCGC GGATCCT-CC GCTCCT---- -----TC G---CGGGAG CGGT-GGCGC GGATCCT-CC GCTCCT---- ------TC G---CGGGAG CGGT-GGCGC GGATCCT-CC CTACCCC--G CGTTATCGCG CGGGT----- ----GCGT GGGT-GGCGC GGATCCA-TC CTCCGCT--- ----- ---- ---- CGCGGC GGGT-GGCGC GGATCCT-CC CTACCCC--G CGTTATCGCG CGGGT----- -----GCGT GGGT-GGCGC GGATCCT-CC CTACCCC-CG CGTTTCCGCG CGGGT---- ----TCTTG GGGT-GGCGC GGATCCT-CC CTACCCC--G CGTTATCGCG CGGGT----- ----GCGT GGGT-GGCGC GGATCCT-CC TCCTCCTCCT CCTTCCCCTC --GCGGGGGGT G---GTGGTG GGGT-GGCGC GGATCCT-CC ACCCCTCTCG ----- -----GGGGG CGGT-GGCGC GGATCCT-CC ACTTC----- -----TGG TGGT-GGCGC GGATCCT-CC ACTTC----- ------TGG TGGT-GGCGC GGATCCATCC CTCCGCC--- ----GCGAGC GCAAGCCCGC G---CGTCGG GGGT-GGCGC GGATCCATCC CTCCTGTCTG CGCGAGCGCA AGCCCGCGTC GGCGGTCTGG GGGT-GGCGC GGATCCT-CC ACCCCTCT-- ----- ----- ---CGGGGGGG CGGT-GGCGC GGATCCT-CC T-----GAT AGGA-GGCGC GGATCCT-CC CTACCCC--G CGTTCTCGCG CGGGT----- ----GCGT GGGT-GGCGC GGATCCT-CC CTGCCGG--- CCCGTTTACG CGGGT---- ---TCGTCGT GGGT-GGCGC GGATCCT-CT CCCGTCC--- -----GAGG GGGA-GGCGC GGATCCT-CC CTACCCC--G CGTTCTCGCG CGGGT----- ----GCGT GGGT-GGCGC GGATCCTTCC TCTCCCACGC CTTCT-GGCG CG----- ----GGGGGGA GAGTTGGCGC GGATCCT-TC CCTCCCCGTC ACATTTGGCG C-----GGGG GGGCTGGCGC GGATCCT-GT CCTTCGCGCC ACATTTGGCG CG-----GGTG AGGCTGGCGC ----- ----mmm mmmm-mmmmm

ACCACCGGCC	CGTCCCGTCC	GCGTCGTCGG	TGGGGCGGAG	CAAGAGCGTG	CACGCTGGGA
ACCACCGGCC	CGTCCCGTCC	GCGCCGTCGG	TGGGGCGGAG	CAAGAGCGTG	CACGCTGGGA
ACCACCGGCC	CGTCCCGTCC	GCGCCGTCGG	TGGGGCGGAG	CAAGAGCGTG	CACGCTGGGA
ACCACCGGCC	CGTCCCGTCC	GCGCCGTCGG	TGGGGCGGAG	CAAGAGCGTG	CACGCTGGGA
ACCACCGGCC	CGTCCCGTCC	GCGTCGGCGG	TGGGGCGGAG	CAAGAGCGTG	CACGCTGGGA
ACCACCGGCC	CGTCCCATCC	GCGCCGGCGG	TGGGGCGGAG	CAAGAGCGTG	CACGCTGGGA
ACCACCGGCC	CGTCCCGTCC	GCGTCGGCGG	TGGGGCGGAG	CAAGAGCGTG	CACGCTGGGA
ACCACCGGCC	CGTCCCGTCC	GCGTCGGCGG	TGGGGCGGAG	CAAGAGCGTG	CACGCTGGGA
ACCACCGGCC	CGTCCCGTCC	GCGTCGGCGG	TGGGGCGGAG	CAAGAGCGTG	CACGCTGGGA
ACCACCGGCC	CGTCCCGTCC	GCGTCGGCGG	TGGGGCGGAG	CAAGAGCGTG	CACGCTGGGA
ACCACCGGCC	CGTCCCGTCY	GCGYCGYCYG	TGGGGCGGAG	CAAGAGCGTG	CACGCTGGGA
ACCACCGGCC	CGTCCCGTCC	GCGCCGTCGG	TGGGGCGGAG	CAAGAGCGTG	CACGCTGGGA
ACCACCGGCC	CGTCCCGTCC	GCGCCGTCGG	TGGGGCGGAG	CAAGAGCGTG	CACGCTGGGA
ACCACCGGCC	CGTCCCGTCC	GCGTCGGCGG	TGGGGCGGAG	CAAGAGCGTG	CACGCTGGGA
ACCACCGGCC	CGTCCCGTCC	GCGTCGGCGG	TGGGGCGGAG	CAAGAGCGCG	CACGCTGGGA
ACCACCGGCC	CGTCCCGTCC	GCGCTGTCGG	TGGGGCGGAG	CAAGAGCGTG	CACGCTGGGA
ACCACCGGCC	CGTCCCGTCC	GCGCCGTCGG	TGGGGCGGAG	CAAGAGCGTG	CACGCTGGGA
ACCACCGGCC	CGTCCCGTCC	GCGCTGTCGG	TGGGGCGGAG	CAAGAGCGTG	CACGCTGGGA
ACCACCGGCC	CGTCCCGTCC	GCGTCGGCGG	TGGGGCGGAG	CAAGAGCGTG	CACGCTGGGA
ACCACCGGCC	CGTCCCGTCC	GCGCCGGCGG	TGGGGCGGAG	CAAGAGCGTG	CACGCTGGGA
ACCACCGGCC	CGTCCCGTCC	GCGTCGTCGG	TGGGGCGGAG	CAAGAGCGTG	CACGCTGGGA
ACCACCGGCC	CGTCCCGTCC	GCGTCGGCGG	TGGGGCGGAG	CAAGAGCGTG	CACGCTGGGA
ACCACCGGCC	CGTCCCGTCT	GCGTCGGCAG	TGGGGCGGAG	CAAGAGCGTG	CACGCTGGGA
ACCACCGGCC	CGTCCCGTCC	GCGTCGGCGG	TGGGGCGGAG	CAAGAGCGTG	CACGCTGGGA
ACCACCGGCC	CGTCCCGTCT	GCGTCGGCAG	TGGGGCGGAG	CAAGAGCGTG	CACGCTGGGA
ACCACCGGCC	CGTCCCGTCT	GCGTCGGCAG	TGGGGCGGAG	CAAGAGCGTG	CACGCTGGGA
ACCACCGGCC	CGTCCCGTCT	GCGTCGGCAG	TGGGGCGGAG	CAAGAGCGTG	CACGCTGGGA
mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

1870 CCCGAAAGAT GGTGAACTAT GCCTGAGTAG AACGAAGCCA GAGGAAACTC TGGTGGAGGT Achatina fulica CCCGAAAGAT GGTGAACTAT GCCTGAGTAG AACGAAGCCA GAGGAAACTC TGGTGGAGGT Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula cevlanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

CCCGAAAGAT GGTGAACTAT GCCTGAGTAG AACGAAGCCA GAGGAAACTC TGGTGGAGGT

····|····| ····|····| ····| ····| ····| ····| ····| ····| ····|

1900

1910

1920

1890

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula cevlanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

....|....||||||||| 1930 1940 1950 1960 1970 198 TCGTAGCGAT TCTGACGTGC AAATCGATCG TCAAACTTGG GTATAGGGGC GAAAGACTAA 1980 TCGTAGCGAT TCTGACGTGC AAATCGATCG TCAAACTTGG GTATAGGGGGC GAAAGACTAA TCGTAGCGAT TCTGACGTGC AAATCGATCG TCAAACTTGG GTATAGGGGC GAAAGACTAA TCGTAGCGAT TCTGACGTGC AAATCGATCG TCAAACTTGG GTATAGGGGGC GAAAGACTAA TCGTAGCGAT TCTGACGTGC AAATCGATCG TCAAACTTGG GTATAGGGGGC GAAAGACTAA TCGTAGCGAT TCTGACGTGC AAATCGATCG TCAAACTTGG GTATAGGGGC GAAAGACTAA TCGTAGCGAT TCTGACGTGC AAATCGATCG TCAAACTTGG GTATAGGGGC GAAAGACTAA TCGTAGCGAT TCTGACGTGC AAATCGATCG TCAAACTTGG GTATAGGGGC GAAAGACTAA TCGTAGCGAT TCTGACGTGC AAATCGATCG TCAAACTTGG GTATAGGGGGC GAAAGACTAA TCGTAGCGAT TCTGACGTGC AAATCGATCG TCAAACTTGG GTATAGGGGC GAAAGACTAA

2040 TCGAACCATC TAGTAGCTGG TTCCCTCCGA AGTTTCCCTC AGGATAGCTG GCGCTCGATC ന്നത്തത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്ത

 205		\ldots			
GCAGTTTTAT	CCGGTAAAGC	GAATGATTAG	AGGTCTTGGG	GACGAAACGA	CCTCAACCTA
GCAGTTTTAT	CCGGTAAAGC	GAATGATTAG	AGGTCTTGGG	GACGAAACGA	CCTCAACCTA
GCAGTTTTAT	CCGGTAAAGC	GAATGATTAG	AGGTCTTGGG	GACGAAACGA	CCTCAACCTA
GCAGTTTTAT	CCGGTAAAGC	GAATGATTAG	AGGTCTTGGG	GACGAAACGA	CCTCAACCTA
GCAGTTTTAT	CCGGTAAAGC	GAATGATTAG	AGGTCTTGGG	GACGAAACGA	CCTCAACCTA
GCAGTTTTAT	CCGGTAAAGC	GAATGATTAG	AGGTCTTGGG	GACGAAACGA	CCTCAACCTA
GCAGTTTTAT	CCGGTAAAGC	GAATGATTAG	AGGTCTTGGG	GACGAAACGA	CCTCAACCTA
GCAGTTTTAT	CCGGTAAAGC	GAATGATTAG	AGGTCTTGGG	GACGAAACGA	CCTCAACCTA
GCAGTTTTAT	CCGGTAAAGC	GAATGATTAG	AGGTCTTGGG	GACGAAACGA	CCTCAACCTA
GCAGTTTTAT	CCGGTAAAGC	GAATGATTAG	AGGTCTTGGG	GACGAAACGA	CCTCAACCTA
GCAGTTTTAT	CCGGTAAAGC	GAATGATTAG	AGGTCTTGGG	GACGAAACGA	CCTCAACCTA
GCAGTTTTAT	CCGGTAAAGC	GAATGATTAG	AGGTCTTGGG	GACGAAACGA	CCTCAACCTA
GCAGTTTTAT	CCGGTAAAGC	GAATGATTAG	AGGTCTTGGG	GACGAAACGA	CCTCAACCTA
GCAGTTTTAT	CCGGTAAAGC	GAATGATTAG	AGGTCTTGGG	GACGAAACGA	CCTCAACCTA
GCAGTTTTAT	CCGGTAAAGC	GAATGATTAG	AGGTCTTGGG	GACGAAACGA	CCTCAACCTA
GCAGTTTTAT	CCGGTAAAGC	GAATGATTAG	AGGTCTTGGG	GACGAAACGA	CCTCAACCTA
GCAGTTTTAT	CCGGTAAAGC	GAATGATTAG	AGGTCTTGGG	GACGAAACGA	CCTCAACCTA
GCAGTTTTAT	CCGGTAAAGC	GAATGATTAG	AGGTCTTGGG	GACGAAACGA	CCTCAACCTA
GCAGTTTTAT	CCGGTAAAGC	GAATGATTAG	AGGTCTTGGG	GACGAAACGA	CCTCAACCTA
GCAGTTTTAT	CCGGTAAAGC	GAATGATTAG	AGGTCTTGGG	GACGAAACGA	CCTCAACCTA
GCAGTTTTAT	CCGGTAAAGC	GAATGATTAG	AGGTCTTGGG	GACGAAACGA	CCTCAACCTA
GCAGTTTTAT	CCGGTAAAGC	GAATGATTAG	AGGTCTTGGG	GACGAAACGA	CCTCAACCTA
GCAGTTTTAT	CCGGTAAAGC	GAATGATTAG	AGGTCTTGGG	GACGAAACGA	CCTCAACCTA
GCAGTTTTAT	CCGGTAAAGC	GAATGATTAG	AGGTCTTGGG	GACGAAACGA	CCTCAACCTA
GCAGTTTTAT	CCGGTAAAGC	GAATGATTAG	AGGTCTTGGG	GACGAAACGA	CCTCAACCTA
GCAGTTTTAT	CCGGTAAAGC	GAATGATTAG	AGGTCTTGGG	GACGAAACGA	CCTCAACCTA
GCAGTTTTAT	CCGGTAAAGC	GAATGATTAG	AGGTCTTGGG	GACGAAACGA	CCTCAACCTA
mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

	21.	LU 21.	20 21.	30 ZI-	±0 ZI:	2100
Achatina fulica	TTCTCAAACT	TTAAATGGGT	AAGAAGTCCG	GCTCGCTCGA	TT-GGAGCCG	GGCGCGT
Achatina achatina	TTCTCAAACT	TTAAATGGGT	AAGAAGTCCG	GCTCGCTCGA	TT-GGAGCCG	GGCGCGT
Achatina stuhlmanni	TTCTCAAACT	TTAAATGGGT	AAGAAGTCCG	GCTCGCTCGA	TT-GGAGCCG	GGCGCGT
Cochlitoma ustulata	TTCTCAAACT	TTAAATGGGT	AAGAAGTCCG	GCTCGCTCGA	TT-GGAGCCG	GGCGCGT
Allopeas clavulinum	TTCTCAAACT	TTAAATGGGT	AAGAAGTCCG	GCTCGCTCGA	CT-GGAGCCG	GGCGCGT
Bocageia sp.	TTCTCAAACT	TTAAATGGGT	AAGAAGTCCG	GCTCGCTCGA	TT-GGAGCCG	GGCG
Eutomopeas layardi	TTCTCAAACT	TTAAATGGGT	AAGAAGTCCG	GCTCGCTCGA	CT-GGAGCCG	GGCGCGT
Leptinaria lamellata	TTCTCAAACT	TTAAATGGGT	AAGAAGTCCG	GCTCGCTCGA	CT-GGAGCCG	GGCGCGT
Paropeas achatinaceum	TTCTCAAACT	TTAAATGGGT	AAGAAGTCCG	GCTCGCTCGA	AT-GGAGCCG	GGCGCGT
Riebeckia sp.	TTCTCAAACT	TTAAATGGGT	AAGAAGTCCG	GCTCGCTCGA	CT-GGAGCCG	GGCGTC
Rumina decollata	TTCTCAAACT	TTAAATGGGT	AAGAAGTCCG	GCTCGCTCGA	YT-GGAGCCG	GGCGCGT
Subulina octona	TTCTCAAACT	TTAAATGGGT	AAGAAGTCCG	GCTCGCTCGA	CT-GGAGCCG	GGCGCGT
Subulina striatella	TTCTCAAACT	TTAAATGGGT	AAGAAGTCCG	GCTCGCTCGA	CT-GGAGCCG	GGCGCGT
Subulina vitrea	TTCTCAAACT	TTAAATGGGT	AAGAAGTCCG	GCTCGCTCGA	TTTGGAGCCG	GGCGCGTG
Subulona sp.	TTCTCAAACT	TTAAATGGGT	AAGAAGTCCG	GCTCGCTCGA	TT-GGAGCCG	GGCGCGTTTG
Tortaxis erectus	TTCTCAAACT	TTAAATGGGT	AAGAAGTCCG	GCTCGCTCGA	TT-GGAGCCG	GGCGCGT
Xerocerastus sp.	TTCTCAAACT	TTAAATGGGT	AAGAAGTCCG	GCTCGCTCGA	CT-GGAGCCG	GGCGCGT
Zootecus insularis	TTCTCAAACT	TTAAATGGGT	AAGAAGTCCG	GCTCGCTCGA	CT-GGAGCCG	GGCGCGT
Coeliaxis blandii	TTCTCAAACT	TTAAATGGGT	AAGAAGTCCG	GCTCGCTCGA	CT-GGAGCCG	GGCG
Pyrgina umbilicata	TTCTCAAACT	TTAAATGGGT	AAGAAGTCCG	GCTCGCTCGA	CT-GGAGCCG	GGCGCGT
Glessula ceylanica	TTCTCAAACT	TTAAATGGGT	AAGAAGTCCG	GCTCGCTCGA	TT-GGAGCCG	GGCGCGT
Cecilioides gokweanus	TTCTCAAACT	TTAAATGGGT	AAGAAGTCCG	GCTCGCTCGA	CT-GGAGCCG	GGCGCGTG
Ferussacia folliculus	TTCTCAAACT	TTAAATGGGT	AAGAAGTCCG	GCTCGCTCGA	TT-GGAGCCG	GGCGCGT
Thyrophorella thomensis	TTCTCAAACT	TTAAATGGGT	AAGAAGTCCG	GCTCGCTCGA	CT-GGAGCCG	GGCGCGT
Gibbulinella dewinteri	TTCTCAAACT	TTAAATGGGT	AAGAAGTCCG	GCTCGCTCGA	AT-GGAGCCG	GGCGCGT
Gonaxis quadrilateralis	TTCTCAAACT	TTAAATGGGT	AAGAAGTCCG	GCTCGCTCGA	AT-GGAGCCG	GGCGCGT
Gonospira sp.	TTCTCAAACT	TTAAATGGGT	AAGAAGTCCG	GCTCGCTCGA	AT-GGAGCCG	GGCGTGT
NUCLEOTIDES INCLUDED	mmmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mm-mmmmmmm	mmmm

 217					
			TTGGTAAGCA		TGTGGGATGA
-TTCGAATGC	GTGTGCCAAG	TGGGCCACTT	TTGGTAAGCA	GAACTGGCGC	TGTGGGATGA
-TTCGAATGC	GTGTGCCAAG	TGGGCCACTT	TTGGTAAGCA	GAACTGGCGC	TGTGGGATGA
-TTCGAATGC	GTGTGCCAAG	TGGGCCACTT	TTGGTAAGCA	GAACTGGCGC	TGTGGGATGA
GTTCGAATGC	GTGTGCCAAG	TGGGCCACTT	TTGGTAAGCA	GAACTGGCGC	TGTGGGATGA
TCGAATGC	GTGTGCCAAG	TGGGCCACTT	TTGGTAAGCA	GAACTGGCGC	TGTGGGATGA
GTTCGAATGC	GTGTGCCAAG	TGGGCCACTT	TTGGTAAGCA	GAACTGGCGC	TGTGGGATGA
GTTCGAATGC	GTGTGCCAAG	TGGGCCACTT	TTGGTAAGCA	GAACTGGCGC	TGTGGGATGA
GTTCGAATGC	GTGTGCCAAG	TGGGCCACTT	TTGGTAAGCA	GAACTGGCGC	TGTGGGATGA
-GTCGAATGC	GTGTGCCAAG	TGGGCCACTT	TTGGTAAGCA	GAACTGGCGC	TGTGGGATGA
-NTCGAATGC	NTGTGCCAAG	TGGGCCACTT	TTGGTAAGCA	GAACTGGCGC	TGTGGGATGA
-TTCGAATGC	GTGTGCCAAG	TGGGCCACTT	TTGGTAAGCA	GAACTGGCGC	TGTGGGATGA
-TTCGAATGC	GTGTGCCAAG	TGGGCCACTT	TTGGTAAGCA	GAACTGGCGC	TGTGGGATGA
TGTCGAATGC	GTGTGCCAAG	TGGGCCACTT	TTGGTAAGCA	GAACTGGCGC	TGTGGGATGA
TGTCGAATGC	GTGTGCCAAG	TGGGCCACTT	TTGGTAAGCA	GAACTGGCGC	TGTGGGATGA
GTACGAATGC	GTGTGCCAAG	TGGGCCACTT	TTGGTAAGCA	GAACTGGCGC	TGTGGGATGA
-TTCGAATGC	GTGTGCCAAG	TGGGCCACTT	TTGGTAAGCA	GAACTGGCGC	TGTGGGATGA
-TTCGAATGC	GTGTGCCAAG	TGGGCCACTT	TTGGTAAGCA	GAACTGGCGC	TGTGGGATGA
TCGAATGC	GTGTGCCAAG	TGGGCCACTT	TTGGTAAGCA	GAACTGGCGC	TGTGGGATGA
GTTCGAATGC	GTGTGCCAAG	TGGGCCACTT	TTGGTAAGCA	GAACTGGCGC	TGTGGGATGA
GTCCGAATGC	GTGTGCCAAG	TGGGCCACTT	TTGGTAAGCA	GAACTGGCGC	TGTGGGATGA
TGTCGAATGC	GTGTGCCAAG	TGGGCCACTT	TTGGTAAGCA	GAACTGGCGC	TGTGGGATGA
-TTCGAATGC	GTGTGCCAAG	TGGGCCACTT	TTGGTAAGCA	GAACTGGCGC	TGTGGGATGA
GTTCGAATGC	GTGTGCCAAG	TGGGCCACTT	TTGGTAAGCA	GAACTGGCGC	TGTGGGATGA
-TTCGAATGC	GTGTGCCAAG	TGGGCCACTT	TTGGTAAGCA	GAACTGGCGC	TGTGGGATGA
-TTCGAATGC	GTGTGCCAAG	TGGGCCACTT	TTGGTAAGCA	GAACTGGCGC	TGTGGGATGA
-CTCGAATGC	GTGTGCCAAG	TGGGCCACTT	TTGGTAAGCA	GAACTGGCGC	TGTGGGATGA
mmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum

Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis

Gonospira sp. NUCLEOTIDES INCLUDED

223	30 224	10 22!	50 226	50 22'	70 2280
ACCAAACGCC	CGGTTAAGGT	GCCAAACGCT	GACGCTCATC	AGACACCATA	AAAGGTGTTG
ACCAAACGCC	CGGTTAAGGT	GCCAAACGCT	GACGCTCATC	AGACACCATA	AAAGGTGTTG
ACCAAACGCC	CGGTTAAGGT	GCCAAACGCT	GACGCTCATC	AGACACCATA	AAAGGTGTTG
ACCAAACGCC	CGGTTAAGGT	GCCAAACGCT	GACGCTCATC	AGACACCATA	AAAGGTGTTG
ACCAAACGCC	CGGTTAAGGT	GCCAAACGCT	GACGCTCATC	AGACACCATA	AAAGGTGTTG
ACCAAACGCC	CGGTTAAGGT	GCCAAACGCT	GACGCTCATC	AGACACCATA	AAAGGTGTTG
ACCAAACGCC	CGGTTAAGGT	GCCAAACGCT	GACGCTCATC	AGACACCATA	AAAGGTGTTG
ACCAAACGCC	CGGTTAAGGT	GCCAAACGCT	GACGCTCATC	AGACACCATA	AAAGGTGTTG
ACCAAACGCC	CGGTTAAGGT	GCCAAACGCT	GACGCTCATC	AGACACCATA	AAAGGTGTTG
ACCAAACGCC	CGGTTAAGGT	GCCAAACGCT	GACGCTCATC	AGACACCATA	AAAGGTGTTG
ACCAAACGCC	CGGTTAAGGT	GCCAAACGCT	GACGCTCATC	AGACACCATA	AAAGGTGTTG
ACCAAACGCC	CGGTTAAGGT	GCCAAACGCT	GACGCTCATC	AGACACCATA	AAAGGTGTTG
ACCAAACGCC	CGGTTAAGGT	GCCAAACGCT	GACGCTCATC	AGACACCATA	AAAGGTGTTG
ACCAAACGCC	CGGTTAAGGT	GCCAAACGCT	GACGCTCATC	AGACACCATA	AAAGGTGTTG
ACCAAACGCC	CGGTTAAGGT	GCCAAACGCT	GACGCTCATC	AGACACCATA	AAAGGTGTTG
ACCAAACGCC	CGGTTAAGGT	GCCAAACGCT	GACGCTCATC	AGACACCATA	AAAGGTGTTG
ACCAAACGCC	CGGTTAAGGT	GCCAAACGCT	GACGCTCATC	AGACACCATA	AAAGGTGTTG
ACCAAACGCT	CGGTTAAGGT	GCCAAACGCT	GACGCTCATC	AGACACCATA	AAAGGTGTTG
ACCAAACGCC	CGGTTAAGGT	GCCAAACGCT	GACGCTCATC	AGACACCATA	AAAGGTGTTG
ACCAAACGCC	CGGTTAAGGT	GCCAAACGCT	GACGCTCATC	AGACACCATA	AAAGGTGTTG
ACCAAACGCC	CGGTTAAGGT	GCCAAACGCT	GACGCTCATC	AGACACCATA	AAAGGTGTTG
ACCAAACGCC	CGGTTAAGGT	GCCAAACGCT	GACGCTCATC	AGACACCATA	AAAGGTGTTG
ACCAAACGCC	CGGTTAAGGT	GCCAAACGCT	GACGCTCATC	AGACACCATA	AAAGGTGTTG
ACCAAACGCC	CGGTTAAGGT	GCCAAACGCT	GACGCTCATC	AGACACCATA	AAAGGTGTTG
ACCAAACGCC	CGGTTAAGGT	GCCAAACGCT	GACGCTCATC	AGACACCATA	AAAGGTGTTG
ACCAAACGCC	CGGTTAAGGT	GCCAAACGCT	GACGCTCATC	AGACACCATA	AAAGGTGTTG
ACCAAACGCC	CGGTTAAGGT	GCCAAACGCT	GACGCTCATC	AGACACCATA	AAAGGTGTTG
mmmmmmmmm	mmmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

		\ldots			
GTTGATATAG	ACAGCAGGAC	GGTGGCCATG	GAAGTCGGAA	CCCGCTAAGG	AGTGTGTAAC
GTTGATATAG	ACAGCAGGAC	GGTGGCCATG	GAAGTCGGAA	CCCGCTAAGG	AGTGTGTAAC
GTTGATATAG	ACAGCAGGAC	GGTGGCCATG	GAAGTCGGAA	CCCGCTAAGG	AGTGTGTAAC
GTTGATATAG	ACAGCAGGAC	GGTGGCCATG	GAAGTCGGAA	CCCGCTAAGG	AGTGTGTAAC
GTTGATATAG	ACAGCAGGAC	GGTGGCCATG	GAAGTCGGAA	CCCGCTAAGG	AGTGTGTAAC
GTTGATATAG	ACAGCAGGAC	GGTGGCCATG	GAAGTCGGAA	CCCGCTAAGG	AGTGTGTAAC
GTTGATATAG	ACAGCAGGAC	GGTGGCCATG	GAAGTCGGAA	CCCGCTAAGG	AGTGTGTAAC
GTTGATATAG	ACAGCAGGAC	GGTGGCCATG	GAAGTCGGAA	CCCGCTAAGG	AGTGTGTAAC
GTTGATATAG	ACAGCAGGAC	GGTGGCCATG	GAAGTCGGAA	CCCGCTAAGG	AGTGTGTAAC
GTTGATATAG	ACAGCAGGAC	GGTGGCCATG	GAAGTCGGAA	CCCGCTAAGG	AGTGTGTAAC
GTTGATATAG	ACAGCAGGAC	GGTGGCCATG	GAAGTCGGAA	CCCGCTAAGG	AGTGTGTAAC
GTTGATATAG	ACAGCAGGAC	GGTGGCCATG	GAAGTCGGAA	CCCGCTAAGG	AGTGTGTAAC
GTTGATATAG	ACAGCAGGAC	GGTGGCCATG	GAAGTCGGAA	CCCGCTAAGG	AGTGTGTAAC
GTTGATATAG	ACAGCAGGAC	GGTGGCCATG	GAAGTCGGAA	CCCGCTAAGG	AGTGTGTAAC
GTTGATATAG	ACAGCAGGAC	GGTGGCCATG	GAAGTCGGAA	CCCGCTAAGG	AGTGTGTAAC
GTTGATATAG	ACAGCAGGAC	GGTGGCCATG	GAAGTCGGAA	CCCGCTAAGG	AGTGTGTAAC
GTTGATATAG	ACAGCAGGAC	GGTGGCCATG	GAAGTCGGAA	CCCGCTAAGG	AGTGTGTAAC
GTTGATATAG	ACAGCAGGAC	GGTGGCCATG	GAAGTCGGAA	CCCGCTAAGG	AGTGtgtaaC
GTTGATATAG	ACAGCAGGAC	GGTGGCCATG	GAAGTCGGAA	CCCGCTAAGG	AGTGTGTAAC
GTTGATATAG	ACAGCAGGAC	GGTGGCCATG	GAAGTCGGAA	CCCGCTAAGG	AGTGTGTAAC
GTTGATATAG	ACAGCAGGAC	GGTGGCCATG	GAAGTCGGAA	CCCGCTAAGG	AGTGtGGGAC
GTTGATATAG	ACAGCAGGAC	GGTGGCCATG	GAAGTCGGAA	CCCGCTAAGG	AGTGTGTAAC
GTTGATATAG	ACAGCAGGAC	GGTGGCCATG	GAAGTCGGAA	CCCGCTAAGG	AGTGTGTAAC
GTTGATATAG	ACAGCAGGAC	GGTGGCCATG	GAAGTCGGAA	CCCGcTAAGG	AGTGTGTAAC
GTTGATATAG	ACAGCAGGAC	GGTGGCCATG	GAAGTCGGAA	CCCGCTAAGG	AGTGTGTAAC
GTTGATATAG	ACAGCAGGAC	GGTGGCCATG	GAAGTCGGAA	CCCGCTAAGG	AGTGCGTAAC
GTTGATATAG	ACAGCAGGAC	GGTGGCCATG	GAAGTCGGAA	CCCGCTAAGG	AGTGTGTAAC
mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

235	50 236	50 23	70 238	30 239	90 2400
AACTCACCTG	CCGAATCAAC	CAGCCCTGAA	AATGGATGGC	GCTAGAGCGT	CGGACCCATA
AACTCACCTG	CCGAATCAAC	CAGCCCTGAA	AATGGATGGC	GCTAGAGCGT	CGGACCCATA
AACTCACCTG	CCGAATCAAC	CAGCCCTGAA	AATGGATGGC	GCTAGAGCGT	CGGACCCATA
AACTCACCTG	CCGAATCAAC	CAGCCCTGAA	AATGGATGGC	GCTAGAGCGT	CGGACCCATA
AACTCACCTG	CCGAATCAAC	CAGCCCTGAA	AATGGATGGC	GCTAGAGCGT	CGGACCCATA
AACTCACCTG	CCGAATCAAC	CAGCCCTGAA	AATGGATGGC	GCTAGAGCGT	CGGACCCATA
AACTCACCTG	CCGAATCAAC	CAGCCCTGAA	AATGGATGGC	GCTAGAGCGT	CGGACCCATA
AACTCACCTG	CCGAATCAAC	CAGCCCTGAA	AATGGATGGC	GCTAGAGCGT	CGGACCCATA
AACTCACCTG	CCGAATCAAC	CAGCCCTGAA	AATGGATGGC	GCTAGAGCGT	CGGACCCATA
AACTCACCTG	CCGAATCAAC	CAGCCCTGAA	AATGGATGGC	GCTAGAGCGT	CGGACCCATA
AACTCACCTG	CCGAATCAAC	CAGCCCTGAA	AATGGATGGC	GCTAGAGCGT	CGGACCCATA
AACTCACCTG	CCGAATCAAC	CAGCCCTGAA	AATGGATGGC	GCTAGAGCGT	CGGACCCATA
AACTCACCTG	CCGAATCAAC	CAGCCCTGAA	AATGGATGGC	GCTAGAGCGT	CGGACCCATA
AACTCACCTG	CCGAATCAAC	CAGCCCTGAA	AATGGATGGC	GCTAGAGCGT	CGGACCCATA
AACTCACCTG	CCGAATCAAC	CAGCCCTGAA	AATGGATGGC	GCTAGAGCGT	CGGACCCATA
AACTCACCTG	CCGAATCAAC	CAGCCCTGAA	AATGGATGGC	GCTAGAGCGT	CGGACCCATA
AACTCACCTG	CCGAATCAAC	CAGCCCTGAA	AATGGATGGC	GCTAGAGCGT	CGGACCCATA
AACTCACCTG	CCGAATCAAC	CAGCCCTGAA	ACTGGATGGG	GCTAGAGCGT	CGGACCCATA
AACTCACCTG	CCGAATCAAC	CAGCCCTGAA	AATGGATGGC	GCTAGAGCGT	CGGACCCATA
AACTCACCTG	CCGAATCAAC	CAGCCCTGAA	AATGGATGGC	GCTAGAGCGT	CGGACCCATA
AACTCACCTG	CCGAATCAAC	CAGCCCTGAA	AATGGATGGC	GCTAGAGCGT	CGGACCCATA
AACTCACCTG	CCGAATCAAC	CAGCCCTGAA	AATGGATGGC	GCTAGAGCGT	CGGACCCATA
AACTCACCTG	CCGAATCAAC	CAGCCCTGAA	AATGGATGGC	GCTAGAGCGT	CGGACCCATA
AACTCACCTG	CCGAATCAAC	CAGCCTGGAA	AATGGATGGC	GCTAGAGCGT	CGGACCCATA
AACTCACCTG	CCGAATCAAC	CAGCCCTGAA	AATGGATGGC	GCTAGAGCGT	CGGACCCATA
AACTCACCTG	CCGAATCAAC	CAGCCCTGAA	AATGGATGGC	GCTAGAGCGT	CGGACCCATA
AACTCACCTG	CCGAATCAAC	CAGCCCTGAA	AATGGATGGC	GCTAGAGCGT	CGGACCCATA
mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmmm

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis

Gonospira sp. NUCLEOTIDES INCLUDED

	242					
Achatina fulica	CCGGGCCGTC	TCGGCAATGG	GCCCTTCCAT	GGGG-CCGGA	AGCGAGGCCG	AGACGAGTAG
Achatina achatina	CCGGGCCGTC	TCGGCAATAG	GCCTTCT	TCCG-CCGGA	AGCGAGGCCG	AGACGAGTAG
Achatina stuhlmanni	CCGGGCCGTC	TCGGCAATGG	GCCCTTTCAT	GGGG-CCGGA	AGCGAGGCCG	AGACGAGTAG
Cochlitoma ustulata	CCGGGCCGTC	TCGGCAATGG	GCCC-TTCCA	CGGG-CCGGA	AGCGAGGCCG	AGACGAGTAG
Allopeas clavulinum	CCGGGCCGTC	TCGGCAATCG	GAAACAA	G	CGCGAGGCCG	AGACGAGTAG
Bocageia sp.	CCGGGCCGTC	TCGGCAATCA	GAAAGCA	A	ATCGAGGCCG	AGACGAGTAG
Eutomopeas layardi	CCGGGCCGTC	TCGGCAATCG	GAAACAA	G	CGCGAGGCCG	AGACGAGTAG
Leptinaria lamellata				-	CGCGAGGCCG	
Paropeas achatinaceum	CCGGGCCGTC	TCGGCAATCG	GAAACAA	G	CGAGAGGCCG	AGACGAGTAG
Riebeckia sp.	CCGGGCCGTC	TCGGCAATCG	AATAAAGCGG	CAA	AGCGAGGCCG	AGACGAGTAG
Rumina decollata					ATCGAGGCCG	
Subulina octona				==	AGCGAGGCCG	
Subulina striatella	CCGGGCCGTC	TCGGCAATTG	TTGCCTC	A	AGCGAGGCCG	AGACGAGTAG
Subulina vitrea	CCGGGCCGTC	TCGGCAATCG	GATCTAACCG	AGAGAG	AGAGAGGCCG	AGACGAGTAG
Subulona sp.	CCGGGCCGTC	TCGGCAATGG	TTG	C	TGAGAGGCCG	AGACGAGTAG
Tortaxis erectus					AGCGAGGCCG	
Xerocerastus sp.					ATCGAGGCCG	
Zootecus insularis					ATCGAGGCCG	
Coeliaxis blandii					AGCGAGGCCG	
Pyrgina umbilicata					CGCGAGGCCG	
Glessula ceylanica					AGCGAGGCCG	
Cecilioides gokweanus					CGCGAGGCCG	
Ferussacia folliculus	CCGGGCCGTC				AAAAAGGCCG	
Thyrophorella thomensis	CCGGGCCGTC		0		CGCGAGGCCG	
Gibbulinella dewinteri					GGCAAGGCCG	
Gonaxis quadrilateralis	CCGGGCCGTC				GGCAAGGCCG	
Gonospira sp.	CCGGGCCGTC	TCGGCAATCG	GTGCCGCA	A	GGCGAGGCCG	AGACGAGTAG
NUCLEOTIDES INCLUDED	mmmmmmmmm	mmmmmmmm		m	mmmmmmmmm	mmmmmmmmm

> GAGGGCCGTC GGGGTGAGCG TGGAAGCCTG GGGAGCGATC CTGGGTGGAG CCGCCCGGG GAGGGCCGTC GGGGTGAGCG TGGAAGCCTG GGGAGCGATC CTGGGTGGAG CCGCCCCGGG GAGGGCCGTC GGGGTGAGCG TGGAAGCCTG GGGAGCGATC CTGGGTGGAG CCGCCCGGG GAGGGCCGTC GGGGTGAGCG TGGAAGCCTG GGGAGCGATC CTGGGTGGAG CCGCCCCGGG GAGGGCCGTC GGGGTGAGCG TGGAAGCCTG GGGAGCGATC CTGGGTGGAG CCGCCCCGGG GAGGGCCGTC GGGGTGAGCG TGGAAGCCTG GGGAGCGATC CTGGGTGGAG CCGCCCGGG GAGGGCCGTC GGGGTGAGCG TGGAAGCCTG GGGAGCGATC CTGGGTGGAG CCGCCCCGGG GAGGGCCGTC GGGGTGAGCG TGGAAGCCTG GGGAGCGATC CTGGGTGGAG CCGCCCGGG GAGGGCCGTC GGGGTGAGCG TGGAAGCCTG GGGAGCGATC CTGGGTGGAG CCGCCCCGGG GAGGGCCGTC GGGGTGAGCG TGGAAGCCTG GGGAGCGATC CTGGGTGGAG CCGCCCCGGG GAGGGCCGTC GGGGTGAGCG TGGAAGCCTG GGGAGCGATC CTGGGTGGAG CCGCCCGGG GAGGGCCGTC GGGGTGAGCG TGGAAGCCTG GGGAGCGATC CTGGGTGGAG CCGCCCGGG GAGGGCCGTC GGGGTGAGCG TGGAAGCCTG GGGAGCGATC CTGGGTGGAG CCGCCCGGG

GAGGGCCGTC GAGGTGAGCG TGGAAGCCTG GGGAGCGATC CTGGGTGGAG CCGCCTCGGG GAGGGCCGTC GGGGTGAGCG TGGAAGCCTG GGGAGCGATC CTGGGTGGAG CCGCCCCGGG

GAGGGCCGTC GGGGTGAGCG TGGAAGCCTG GGGAGCGATC CTGGGTGGAG CCGCCCCGGG

GAGGGCCGTC GGGGTGAGCG TGGAAGCCTG GGGAGCGATC CTGGGTGGAG CCGCCCGGG

GAGGGCCGTC GGGGTGAGCG TGGAAGCCTG GGGAGCGATC CTGGGTGGAG CCGCCCGGG

····| ····|····| ····| ····| ····| ····| ····| ····|

2500

2510

2520

2490

GAGGGCCGTC GGGGTGAGCG TGGAAGCCTG GGGAGCGATC CTGGGTGGAG CCGCCCCGGG

2470

. 2530				 50 257	
TGCAGATCTT G	GGTGGTAGTA	GCAAATATTC	AAACGAGAAC	TTTGAAGACT	GAAGTGGAGA
TGCAGATCTT G	GGTGGTAGTA	GCAAATATTC	AAACGAGAAC	TTTGAAGACT	GAAGTGGAGA
TGCAGATCTT G	GGTGGTAGTA	GCAAATATTC	AAACGAGAAC	TTTGAAGACT	GAAGTGGAGA
TGCAGATCTT G	GGTGGTAGTA	GCAAATATTC	AAACGAGAAC	TTTGAAGACT	GAAGTGGAGA
TGCAGATCTT G	GGTGGTAGTA	GCAAATATTC	AAACGAGAAC	TTTGAAGACT	GAAGTGGAGA
TGCAGATCTT G	GGTGGTAGTA	GCAAATATTC	AAACGAGAAC	TTTGAAGACT	GAAGTGGAGA
TGCAGATCTT G	GGTGGTAGTA	GCAAATATTC	AAACGAGAAC	TTTGAAGACT	GAAGTGGAGA
TGCAGATCTT G	GGTGGTAGTA	GCAAATATTC	AAACGAGAAC	TTTGAAGACT	GAAGTGGAGA
TGCAGATCTT G	GGTGGTAGTA	GCAAATATTC	AAACGAGAAC	TTTGAAGACT	GAAGTGGAGA
TGCAGATCTT G	GGTGGTAGTA	GCAAATATTC	AAACGAGAAC	TTTGAAGACT	GAAGTGGAGA
TGCAGATCTT G	GGTGGTAGTA	GCAAATATTC	AAACGAGAAC	TTTGAAGACT	GAAGTGGAGA
TGCAGATCTT G	GGTGGTAGTA	GCAAATATTC	AAACGAGAAC	TTTGAAGACT	GAAGTGGAGA
TGCAGATCTT G	GGTGGTAGTA	GCAAATATTC	AAACGAGAAC	TTTGAAGACT	GAAGTGGAGA
TGCAGATCTT G	GGTGGTAGTA	GCAAATATTC	AAACGAGAAC	TTTGAAGACT	GAAGTGGAGA
TGCAGATCTT G	GGTGGTAGTA	GCAAATATTC	AAACGAGAAC	TTTGAAGACT	GAAGTGGAGA
TGCAGATCTT G	GGTGGTAGTA	GCAAATATTC	AAACGAGAAC	TTTGAAGACT	GAAGTGGAGA
TGCAGATCTT G	GGTGGTAGTA	GCAAATATTC	AAACGAGAAC	TTTGAAGACT	GAAGTGGAGA
TGCAGATCTT G	GGTGGTAGTA	GCAAATATTC	AAACGAGAAC	TTTGAAGACT	GAAGTGGAGA
TGCAGATCTT G	GGTGGTAGTA	GCAAATATTC	AAACGAGAAC	TTTGAAGACT	GAAGTGGAGA
TGCAGATCTT G	GGTGGTAGTA	GCAAATATTC	AAACGAGAAC	TTTGAAGACT	GAAGTGGAGA
TGCAGATCTT G	GGTGGTAGTA	GCAAATATTC	AAACGAGAAC	TTTGAAGACT	GAAGTGGAGA
TGCAGATCTT G	GGTGGTAGTA	GCAAATATTC	AAACGAGAAC	TTTGAAGACT	GAAGTGGAGA
TGCAGATCTT G	GGTGGTAGTA	GCAAATATTC	AAACGAGAAC	TTTGAAGACT	GAAGTGGAGA
TGCAGATCTT G	GGTGGTAGTA	GCAAATATTC	AAACGAGAAC	TTTGAAGACT	GAAGTGGAGA
			AAACGAGAAC		GAAGTGGAGA
TGCAGATCTT G	GGTGGTAGTA	GCAAATATTC	AAACGAGAAC	TTTGAAGACT	GAAGTGGAGA
TGCAGATCTT G	GGTGGTAGTA	GCAAATATTC	AAACGAGAAC	TTTGAAGACT	GAAGTGGAGA
mmmmmmmmm n	nmmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

	259	90 260	262	10 262	20 263	30 2640
	AGGGTTCCAT	GTGAACAGCA	GTTGAACATG	GGTCAGTCGG	TCCTAAGAGA	TAGGAAAACT
	AGGGTTCCAT	GTGAACAGCA	GTTGAACATG	GGTCAGTCGG	TCCTAAGAGA	TAGGAAAACT
	AGGGTTCCAT	GTGAACAGCA	GTTGAACATG	GGTCAGTCGG	TCCTAAGAGA	TAGGAAAACT
	AGGGTTCCAT	GTGAACAGCA	GTTGAACATG	GGTCAGTCGG	TCCTAAGAGA	TAGGAAAACT
	AGGGTTCCAT	GTGAACAGCA	GTTGAACATG	GGTCAGTCGG	TCCTAAGAGA	TAGGAAAACT
	AGGGTTCCAT	GTGAACAGCA	GTTGAACATG	GGTCAGTCGG	TCCTAAGAGA	TAGGAAAACT
	AGGGTTCCAT	GTGAACAGCA	GTTGAACATG	GGTCAGTCGG	TCCTAAGAGA	TAGGAAAACT
	AGGGTTCCAT	GTGAACAGCA	GTTGAACATG	GGTCAGTCGG	TCCTAAGAGA	TAGGAAAACT
	AGGGTTCCAT	GTGAACAGCA	GTTGAACATG	GGTCAGTCGG	TCCTAAGAGA	TAGGAAAACT
	AGGGTTCCAT	GTGAACAGCA	GTTGAACATG	GGTCAGTCGG	TCCTAAGAGA	TAGGAAAACT
	AGGGTTCCAT	GTGAACAGCA	GTTGAACATG	GGTCAGTCGG	TCCTAAGAGA	TAGGAAAACT
	AGGGTTCCAT	GTGAACAGCA	GTTGAACATG	GGTCAGTCGG	TCCTAAGAGA	TAGGAAAACT
	AGGGTTCCAT	GTGAACAGCA	GTTGAACATG	GGTCAGTCGG	TCCTAAGAGA	TAGGAAAACT
	AGGGTTCCAT	GTGAACAGCA	GTTGAACATG	GGTCAGTCGG	TCCTAAGAGA	TAGGAAAACT
	AGGGTTCCAT	GTGAACAGCA	GTTGAACATG	GGTCAGTCGG	TCCTAAGAGA	TAGGAAAACT
	AGGGTTCCAT	GTGAACAGCA	GTTGAACATG	GGTCAGTCGG	TCCTAAGAGA	TAGGAAAACT
	AGGGTTCCAT	GTGAACAGCA	GTTGAACATG	GGTCAGTCGG	TCCTAAGAGA	TAGGAAAACT
	AGGGTTCCAT	GTGAACAGCA	GTTGAACATG	GGTCAGTCGG	TCCTAAGAGA	TAGGAAAACT
	AGGGTTCCAT	GTGAACAGCA	GTTGAACATG	GGTCAGTCGG	TCCTAAGAGA	TAGGAAAACT
	AGGGTTCCAT	GTGAACAGCA	GTTGAACATG	GGTCAGTCGG	TCCTAAGAGA	TAGGAAAACT
	AGGGTTCCAT	GTGAACAGCA	GTTGAACATG	GGTCAGTCGG	TCCTAAGAGA	TAGGAAAACT
	AGGGTTCCAT	GTGAACAGCA	GTTGAACATG	GGTCAGTCGG	TCCTAAGAGA	TAGGAAAACT
	AGGGTTCCAT	GTGAACAGCA	GTTGAACATG	GGTCAGTCGG	TCCTAAGAGA	TAGGAAAACT
3	AGGGTTCCAT	GTGAACAGCA	GTTGAACATG	GGTCAGTCGG	TCCTAAGAGA	TAGGAAAACT
	AGGGTTCCAT	GTGAACAGCA	GTTGAACATG	GGTCAGTCGG	TCCTAAGAGA	TAGGAAAACT
3	AGGGTTCCAT	GTGAACAGCA	GTTGAACATG	GGTCAGTCGG	TCCTAAGAGA	TAGGAAAACT
	AGGGTTCCAT	GTGAACAGCA	GTTGAACATG	GGTCAGTCGG	TCCTAAGAGA	TAGGAAAACT
	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

265	50 266	50 267	70 268	30 269	90 2700
CCGTTCTGAC	CCCGGGGC-A	TTCTTTCTTT	CTTTCT		AGAAGA
CCGTTCTGAC	CCCGGGGC-A	TTCTTTGTCA	GCAGT		CAA
CCGTTCTGAC	CCCGGGGC-A	TTCTTTATAA	TTCGTTA	TT	AGA
CCGTTCTGAC	CCCGGGGC-A	TTCTTTCGTG			ATTAAA
CCGTTCTGAC	CCCGGGGC-A	TTCTTTCTTT	CTTTCTTCT-	CGAA	GCCAGAAGTA
CCGTTCTGAC	CCCGGGGC-A	TTCTTTACTA	ACA	AAA	AGGAAGAAAA
CCGTTCTGAC	CCCGGGGC-A	TTCTTTCTTT	CTTCTC		GAAGCAGA
CCGTTCTGAC	CCCGGGGC-A	TTCTTTCTG-			AATGAGTA
CCGTTCTGAC	CCCGGGGC-A	TTCTTTCTTA	CTTCTTCTTC	TCGCGAAC	GAAGAGCAGA
CCGTTCTGAC	CCCGGGGCAA	TTCTTTCTTT	CTTTCT	CGAAC	GAACGATCGA
CCGTTCTGAC	CCCGGGGC-A	ATCTTTCTCG	AGCTA	AGA	AGAAAAAGAA
CCGTTCTGAC	CCCGGGGC-A	ATCTTTTCTT	C		AAGA
CCGTTCTGAC	CCCGGGGC-A	ATCTTCATTT	TT		GA
CCGTTCTGAC	CCCGGGGC-A	TTCTTTCTTT	AATCTTTT		GCAGA
CCGTTCTGAC	CCCGGGGC-G	TTTTTTTGTA	ATAATCTT		A
CCGTTCTGAC	CCCGGGGC-A	TTCTTTCTC-			AGCGAATA
CCGTTCTGAC	CCCGGGGC-A	CTCTTT		CTTGACG	ATTCAATTGA
		ATCTTTCTTT			
		TTCTTT			
CCGTTCTGAC	CCCGGGGC-A	TTCTTTCTTT	CACT	CGA	AGAAGCAAGA
		TTCTTTCAG-			
		TTCTTTCTTT			
CCGTTCTGAC	CCCGGGGC-A	CTCTTT		ACGT	CGGTAAACGA
		TTCTTTCTT-			
		CTCTTTACG-			
CCGTTCTGAC	CCCGGGGC-G	CTCTTTTTT-			-GTTGATCGA
CCGTTCTGAC	CCCGGGGC-G	ATCTTTACA-	CAAC	AACACGCGAG	TTGTCGTCGA
mmmmmmmmm	mmmmmmmm				m

····|····| ····| ····| ····| ····| ····| ····| ····| ····|

271	LO 272	20 273	30 274	40 275	50 2760
G-TCTGCCCG	CAGCCTATCG	AAAGGGAATC	GGGTTAATAT	TCCCGAACCT	GGACACGGAG
G-TCTGCCCG	CAGCCTATCG	AAAGGGAATC	GGGTTAATAT	TCCCGAACCT	GGACACGGAG
G-TCTGCCCG	CAGCCTATCG	AAAGGGAATC	GGGTTAATAT	TCCCGAACCT	GGACACGGAG
G-TCTGCCCG	CAGCCTATCG	AAAGGGAATC	GGGTTAATAT	TCCCGAACCT	GGACACGGAG
G-TCTGCCCG	CAGCCTATCG	AAAGGGAATC	GGGTTAATAT	TCCCGAACCT	GGACACGGAG
GTTTTGCCCG	CAGCCTATCG	AAAGGGAATC	GGGTTAATAT	TCCCGAACCT	GGACACGGAG
G-TCTGCCCG	CAGCCTATCG	AAAGGGAATC	GGGTTAATAT	TCCCGAACCT	GGACACGGAG
G-TCTGCCCG	CAGCCTATCG	AAAGGGAATC	GGGTTAATAT	TCCCGAACCT	GGACACGGAG
G-TCTGCCCG	CAGCCTATCG	AAAGGGAATC	GGGTTAATAT	TCCCGAACCT	GGACACGGAG
G-TCTGCCCG	CAGCCTATCG	AAAGGGAATC	GGGTTAATAT	TCCCGAACCT	GGACACGGAG
G-TCTGCCCG	CAGCCTATCG	AAAGGGAATC	GGGTTAATAT	TCCCGAACCT	GGACACGGAG
GTTTTGCCCG	CAGCCTATCG	AAAGGGAATC	GGGTTAATAT	TCCCGAACCT	GGACACGGAG
GTTTTGCCCG	CAGCCTATCG	AAAGGGAATC	GGGTTAATAT	TCCCGAACCT	GGACACGGAG
G-TTTGCCCG	CAGCCTATCG	AAAGGGAATC	GGGTTAATAT	TCCCGAACCT	GGACACGGAG
ACACTGCCCG	CAGCCTATCG	AAAGGGAATC	GGGTTAATAT	TCCCGAACCT	GGACACGGAG
G-TCTGCCCG	CAGCCTATCG	AAAGGGAATC	GGGTTAATAT	TCCCGAACCT	GGACACGGAG
G-TCTGCCCG	CAGCCTATCG	AAAGGGAATC	GGGTTAATAT	TCCCGAACCT	GGACACGGAG
G-TAAGCCCG	CAGCCTATCG	AAAGGGAATC	GGGTTAATAT	TCCCGAACCT	GGACACGGAG
G-TCTGCCCG	CAGCCTATCG	AAAGGGAATC	GGGTTAATAT	TCCCGAACCT	GGACACGGAG
G-TCTGCCCG	CAGCCTATCG	AAAGGGAATC	GGGTTAATAT	TCCCGAACCT	GGACACGGAG
G-TCTGCCCG	CAGCCTATCG	AAAGGGAATC	GGGTTAATAT	TCCCGAACCT	GGACACGGAG
A-TCAGCCCG	CAGCCTATCG	AAAGGGAATC	GGGTTAATAT	TCCCGAACCT	GGACACGGAG
GCTCGGCCCG	CAGCCTATCG	AAAGGGAATC	GGGTTAATAT	TCCCGAACCT	GGACACGGAG
GNGTCGCCCG	CAGCCTATCG	AAAGGGAATC	GGGTTAATAT	TCCCGAACCT	GGACACGGAG
G-TACGCCCG	CAGCCTATCG	AAAGGGAATC	GGGTTAATAT	TCCCGAACCT	GGACACGGAG
G-CACGCCCG	CAGCCTATCG	AAAGGGAATC	GGGTTAATAT	TCCCGAACCT	GGACACGGAG
G-CACGCCCG	CAGCCTATCG	AAAGGGAATC	GGGTTAATAT	TCCCGAACCT	GGACACGGAG
m-mmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

 2770	···· ···· ···· 2780 2'	 790 280		
ATTGGTCCTC AGGGG	CCACG TGCGGCAAC	G CAAACGAAGT	GGGGGACGTC	GGCGGGAGCC
ATTGGTCCTC AGGGGG	CCACG TGCGGCAAC	G CAAACGAAGT	GGGGGGACGTC	GGCGGGAGCC
ATTGGTCCTC AGGGG	CCACG TGCGGCAAC	G CAAACGAAGT	GGGGGACGTC	GGCGGGGAGCC
ATTGGTCCTC AGGGG	CCACG TGCGGCAAC	G CAAACGAAGT	GGGGGACGTC	GGCGGGAGCC
ATTGGTCCTC AGGGGG	CCACG TGCGGCAACO	G CAAACGAAGT	GGGGGGACGTC	GGCGGGAGCC
ATTGGTCCTC TGGGGG	CCACG TGCGGCAAC	G CAAACGAAGT	GGGGGACGTC	GGCGAGAGCC
ATTGGTCCTC AGGGGG	CCACG TGCGGCAACO	G CAAACGAAGT	GGGGGGACGTC	GGCGGGAGCC
ATTGGTCCTC AGGGGG	CCACG TGCGGCAACO	G CAAACGAAGT	GGGGGGACGTC	GGCGGGGAGCC
ATTGGTCCTC AGGGGG	CCACG TGCGGCAACO	G CAAACGAAGT	GGGGGGACGTC	GGCGGGAGCC
ACTGGTCCTC AGGGGG	CCACG TGCGGCAACO	G CAAACGAAGT	GGGGGGACGTC	GGCGGGAGCC
ATTGGTCCTC AGGGGG	CCACG TGCGGCAACO	G CAAACGAAGT	GGGGGACGTC	GGCGGGGAGCC
ATTGGTCCTC AGGGGG	CCACG TGCGGCAACO	G CAAACGAAGT	GGGGGGACGTC	GGCGGGAGCC
ATTGGTCCTC AGGGG	CCACG TGCGGCAAC	G CAAACGAAGT	GGGGGACGTC	GGCGGGAGCC
ATTGGTCCTC AGGGGG	CCACG TGCGGCAACO	G CAAACGAAGT	GGGGGGACGTC	GGCGGGAGCC
ATTGGTCCTC TGGGGG	CCACG TGCGGCAACO	G CAAACGAAGT	GGGGGGACGTC	GGCGGGAGCC
ATTGGTCCTC AGGGGG	CCACG TGCGGCAACO	G CAAACGAAGT	GGGGGGACGTC	GGCGGAAGCC
ATTGGTCCTC AGGGG	CCACG TGCGGCAAC	G CAAACGAAGT	GGGGGACGTC	GGCGGGAGCC
ATTGGTCCTC AGGGGG	CCACG TGCGGCAACO	G CAAACGAAGT	GGGGGGACGTC	GGCGGGAGCC
ACTGGTCCTC AGGGG	CCACG TGCGGCAAC	G CAAACGAAGT	GGGGGACGTC	GGCGGGAGCC
ATTGGTCCTC AGGGG	CCACG TGCGGCAAC	G CAAACGAAGT	GGGGGACGTC	GGCGGGAGCC
ATTGGTCCTC AGGGGG	CCACG TGCGGCAACO	G CAAACGAAGT	GGGGGACGTC	GGCGGAAGCC
ATTGGTCCTC TGGGGG	CCACG TGCGGCAAC	G CAAACGAAGT	GGGGGACGTC	GGCGGGAGCC
ACTGGTCCTC AGGGA	CCACG TGCGGCAAC	G CAAACGAAGT	GGGGGACGTC	GGCGGGAGCC
ATTGGTCCTT TGGGGG	CCACG TGCGGCAACO	G CAAACGAAGT	GGGGGACGTC	GGCGGGAGCC
ACTGGTCCTC AGGGG	CCACG TGCGGCAAC	G CAAACGAAGT	GGGGGACGTC	GGCGGGAGCT
ACTGGTCCTC AGGGGG	CCACG TGCGGCAAC	G CAAACGAAGT	GGGGGACGTC	GGCGGGAGCC
ACTGGTCCTC AGGGGG	CCACG TGCGGCAAC	G CAAACGAAGT	GGGGGACGTC	GGCGGGAGCC
mmmmmmmmmm mmmmmm	mmmmm mmmmmmmmm	n mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

> 2870 2830 2840 2850 2860 2880 CCGGGAAGAG TTCTCTTTTC TTTGTAAGGA GCCACATCCC TGGAATCGGC TTGCCCGGAG CCGGGAAGAG TTCTCTTTC TTTGTAAGGA GCCACATCCC TGGAATCGGC TTGCCCGGAG CCGGGAAGAG TTCTCTTTTC TTTGTAAGGA GCCACATCCC TGGAATCGGC TTGCCCGGAG CCGGGAAGAG TTCTCTTTC TTTGTAAGGA GCCACATCCC TGGAATCGGC TTGCCCGGAG CCGGGAAGAG TTCTCTTTTC TTTGTAAGGA GCCACATCCC TGGAATCGGC TTGCCCGGAG CCGGGAAGAG TTCTCTTTTC TTTGTAAGGA GCCACATCCC TGGAATCGGC TTGCCCGGAG CCGGGAAGAG TTCTCTTTTC TTTGTAAGGA GCCACATCCC TGGAATCGGC TTGCCCGGAG CCGGGAAGAG TTCTCTTTC TTTGTAAGGA GCCACATCCC TGGAATCGGC TTGCCCGGAG CCGGGAAGAG TTCTCTTTTC TTTGTAAGGA GCCACATCCC TGGAATCGGC TTGCCCGGAG CCGGGAAGAG TTCTCTTTTC TTTGTAAGGA GCCACATCCC TGGAATCGGC TTGCCCGGAG CCGGGAAGAG TTCTCTTTC TTTGTAAGGA GCCACATCCC TGGAATCGGC TTGCCCGGAG CCGGGAAGAG TTCTCTTTTC TTTGTAAGGA GCCATATCCC TGGAATCGGC TTGCCCGGAG CCGGGAAGAG TTCTCTTTTC TTTGTAAGGA GCCACATCCC TGGAATCGGC TTGCCCGGAG CCGGGAAGAG TTCTCTTTTC TTTGTAAGGA GCCACATCCC TGGAATCGGC TTGCCCGGAG CCGGGAAGAG TTCTCTTTC TTTGTAAGGA GCCACATCCC TGGAATCGGC TTGCCCGGAG CCGGGAAGAG TTCTCTTTTC TTTGTAAGGA GCCACATCCC TGGAATCGGC TTGCCCGGAG

....|....||....||....|||||....|

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula cevlanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula cevlanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

....|....||||||||||| 2940 ATAGGGACCG CGGCCCCGTA AAGCACCGCG GCTCTTGCGG TGTCCGGTGC GCTCCCGTCG ATAGGGACCG CGGCTCCGTA AAGCACCGCG GCTCTTGCGG TGTCCGGTGC GCTCCCGTCG ATAGGGACCG CGGCCCCGTA AAGCACCGCG GCTCTTGCGG TGTCCGGTGC GCTCCCGTCG ATAGGGACCA CGGCTCCGTA AAGCACCGCG GCTCTTGCGG TGTCCGGTGC GCTCCCGTCG ATAGGGACCG CGGCCCCGTA AAGCACCGCG GCTCTTGCGG TGTCCGGTGC GCTCCCGTCG

3000

|....|
|....|
|....|
|....|

 2950
 2960
 2970
 2980
 2990
 300

 GCCCTTGAAA ACCCCACGGA GACGGTGTGA ATTTCGTGCC AGGCCGTACC CATATCCGCA

 GCCCTTGAAA ACCCCACGGA GACGGTGTGA ATTTCGTGCC AGGCCGTACC CATATCCGCA GCCCTTGAAA ACCCCACGGA GACGGTGTGA ATTTCGTGCC AGGCCGTACC CATATCCGCA GCCCTTGAAA ACCCCACGGA GACGGTGTGA ATTTCGTGCC AGGCCGTACC CATATCCGCA GCCCTTGAAA ACCCCACGGA GACGGTGTGA ATTTCGTGCC AGGCCGTACC CATATCCGCA GCCCTTGAAA ACCCCACGGA GACGGTGTGA ATTTCGTGCC AGGCCGTACC CATATCCGCA GCCCTTGAAA ACCCCACGGA GACGGTGTGA ATTTCGTGCC AGGCCGTACC CATATCCGCA GCCCTTGAAA ACCCCACGGA GACGGTGTGA ATTTCGTGCC AGGCCGTACC CATATCCGCA GCCCTTGAAA ACCCCACGGA GACGGTGTGA ATTTCGTGCC AGGCCGTACC CATATCCGCA GCCCTTGAAA ACCCCACGGA GACGGTGTGA ATTTCGTGCC AGGCCGTACC CATATCCGCA GCCCTTGAAA ACCCCACGGA GACGGTGTGA ATTTCGTGCC AGGCCGTACC CATATCCGCA GCCCTTGAAA ACCCCACGGA GACGGTGTGA ATTTCGTGCC AGGCCGTACC CATATCCGCA GCCCTTGAAA ACCCCACGGA GACGGTGTGA ATTTCGTGCC AGGCCGTACC CATATCCGCA GCCCTTGAAA ACCCCACGGA GACGGTGTGA ATTTCGTGCC AGGCCGTACC CATATCCGCA GCCCTTGAAA ACCCCACGGA GACGGTGTGA ATTTCGTGCC AGGCCGTACC CATATCCGCA GCCCTTGAAA ACCCCACGGA GACGGTGTGA ATTTCGTGCC AGGCCGTACC CATATCCGCA GCCCTTGAAA ACCCCACGGA GACGGTGTGA ATTTCGTGCC AGGCCGTACC CATATCCGCA GCCCTTGAAA ACCCCACGGA GACGGTGTGA ATTTCGTGCC AGGCCGTACC CATATCCGCA GCCCTTGAAA ACCCCACGGA GACGGTGTGA ATTTCGTGCC AGGCCGTACC CATATCCGCA GCCCTTGAAA ACCCCACGGA GACGGTGTGA ATTTCGTGCC AGGCCGTACC CATATCCGCA GCCCTTGAAA ACCCCACGGA GACGGTGTGA ATTTCGTGCC AGGCCGTACC CATATCCGCA GCCCTTGAAA ACCCCACGGA GACGGTGTGA ATTTCGTGCC AGGCCGTACC CATATCCGCA GCCCTTGAAA ACCCCACGGA GACGGTGTGA ATTTCGTGCC AGGCCGTACC CATATCCGCA GCCCTTGAAA ACCCCACGGA GACGGTGTGA ATTTCGTGCC AGGCCGTACC CATATCCGCA GCCCTTGAAA ACCCCACGGA GACGGTGTGA ATTTCGTGCC AGGCCGTACC CATATCCGCA GCCCTTGAAA ACCCCACGGA GACGGTGTGA ATTTCGTGCC AGGCCGTACC CATATCCGCA GCCCTTGAAA ACCCCACGGA GACGGTGTGA ATTTCGTGCC AGGCCGTACC CATATCCGCA ന്നത്തത്തെന്നത് അത്തത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത

 303			···· ···· 30 304		
GCAGGTCTCC	GAGGTGCACA	GCCTCTAGTC	GATAGAACAA	TGTAGGTAAG	GGAAGTCGGC
GCAGGTCTCC	GAGGTGCACA	GCCTCTAGTC	GATAGAACAA	TGTAGGTAAG	GGAAGTCGGC
GCAGGTCTCC	GAGGTGCACA	GCCTCTAGTC	GATAGAACAA	TGTAGGTAAG	GGAAGTCGGC
GCAGGTCTCC	GAGGTGCACA	GCCTCTAGTC	GATAGAACAA	TGTAGGTAAG	GGAAGTCGGC
GCAGGTCTCC	GAGGTGCACA	GCCTCTAGTC	GATAGAACAA	TGTAGGTAAG	GGAAGTCGGC
GCAGGTCTCC	GAGGTGCACA	GCCTCTAGTC	GATAGAACAA	TGTAGGTAAG	GGAAGTCGGC
GCAGGTCTCC	GAGGTGCACA	GCCTCTAGTC	GATAGAACAA	TGTAGGTAAG	GGAAGTCGGC
GCAGGTCTCC	GAGGTGCACA	GCCTCTAGTC	GATAGAACAA	TGTAGGTAAG	GGAAGTCGGC
GCAGGTCTCC	GAGGTGCACA	GCCTCTAGTC	GATAGAACAA	TGTAGGTAAG	GGAAGTCGGC
GCAGGTCTCC	GAGGTGCACA	GCCTCTAGTC	GATAGAACAA	TGTAGGTAAG	GGAAGTCGGC
GCAGGTCTCC	GAGGTGCACA	GCCTCTAGTC	GATAGAACAA	TGTAGGTAAG	GGAAGTCGGC
GCAGGTCTCC	GAGGTGCACA	GCCTCTAGTC	GATAGAACAA	TGTAGGTAAG	GGAAGTCGGC
GCAGGTCTCC	GAGGTGCACA	GCCTCTAGTC	GATAGAACAA	TGTAGGTAAG	GGAAGTCGGC
GCAGGTCTCC	GAGGTGCACA	GCCTCTAGTC	GATAGAACAA	TGTAGGTAAG	GGAAGTCGGC
GCAGGTCTCC	GAGGTGCACA	GCCTCTAGTC	GATAGAACAA	TGTAGGTAAG	GGAAGTCGGC
GCAGGTCTCC	GAGGTGCACA	GCCTCTAGTC	GATAGAACAA	TGTAGGTAAG	GGAAGTCGGC
GCAGGTCTCC	GAGGTGCACA	GCCTCTAGTC	GATAGAACAA	TGTAGGTAAG	GGAAGTCGGC
GCAGGTCTCC	GAGGTGCACA	GCCTCTAGTC	GATAGAACAA	TGTAGGTAAG	GGAAGTCGGC
GCAGGTCTCC	GAGGTGCACA	GCCTCTAGTC	GATAGAACAA	TGTAGGTAAG	GGAAGTCGGC
GCAGGTCTCC	GAGGTGCACA	GCCTCTAGTC	GATAGAACAA	TGTAGGTAAG	GGAAGTCGGC
GCAGGTCTCC	GAGGTGCACA	GCCTCTAGTC	GATAGAACAA	TGTAGGTAAG	GGAAGTCGGC
GCAGGTCTCC	GAGGTGCACA	GCCTCTAGTC	GATAGAACAA	TGTAGGTAAG	GGAAGTCGGC
GCAGGTCTCC	GAGGTGCACA	GCCTCTAGTC	GATAGAACAA	TGTAGGTAAG	GGAAGTCGGC
GCAGGTCTCC	GAGGTGCACA	GCCTCTAGTC	GATAGAACAA	TGTAGGTAAG	GGAAGTCGGC
GCAGGTCTCC	GAGGTGCACA	GCCTCTAGTC	GATAGAACAA	TGTAGGTAAG	GGAAGTCGGC
GCAGGTCTCC	GAGGTGCACA	GCCTCTAGTC	GATAGAACAA	TGTAGGTAAG	GGAAGTCGGC
GCAGGTCTCC	GAGGTGCACA	GCCTCTAGTC	GATAGAACAA	TGTAGGTAAG	GGAAGTCGGC
mmmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum

Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis

Gonospira sp. NUCLEOTIDES INCLUDED

307	70 308	30 30	90 310	00 311	LO 312
AAATTGGATC	CGTAACTTCG	GGAAAAGGAT	TGGCTCTGAG	GGCTGGGTCA	GTCGGGCCGG
AAATTGGATC	CGTAACTTCG	GGAAAAGGAT	TGGCTCTGAG	GGCTGGGTCA	GTCGGGCCGG
AAATTGGATC	CGTAACTTCG	GGAAAAGGAT	TGGCTCTGAG	GGCTGGGTCA	GTCGGGCCGG
AAATTGGATC	CGTAACTTCG	GGAAAAGGAT	TGGCTCTGAG	GGCTGGGTCA	GTCGGGCCGG
AAATTGGATC	CGTAACTTCG	GGAAAAGGAT	TGGCTCTGAG	GGCTGGGTCA	GTCGGGCCGG
AAATTGGATC	CGTAACTTCG	GGAAAAGGAT	TGGCTCTGAG	GGCTGGGTCA	GTCGGGCCGG
AAATTGGATC	CGTAACTTCG	GGAAAAGGAT	TGGCTCTGAG	GGCTGGGTCA	GTCGGGCCGG
AAATTGGATC	CGTAACTTCG	GGAAAAGGAT	TGGCTCTGAG	GGCTGGGTCA	GTCGGGCCGG
AAATTGGATC	CGTAACTTCG	GGAAAAGGAT	TGGCTCTGAG	GGCTGGGTCA	GTCGGGCCGG
AAATTGGATC	CGTAACTTCG	GGAAAAGGAT	TGGCTCTGAG	GGCTGGGTCA	GTCGGGCCGG
AAATTGGATC	CGTAACTTCG	GGAAAAGGAT	TGGCTCTGAG	GGCTGGGTCA	GTCGGGCCGG
AAATTGGATC	CGTAACTTCG	GGAAAAGGAT	TGGCTCTGAG	GGCTGGGTCA	GTCGGGCCGG
AAATTGGATC	CGTAACTTCG	GGAAAAGGAT	TGGCTCTGAG	GGCTGGGTCA	GTCGGGCCGG
AAATTGGATC	CGTAACTTCG	GGAAAAGGAT	TGGCTCTGAG	GGCTGGGTCA	GTCGGGCCGG
AAATTGGATC	CGTAACTTCG	GGAAAAGGAT	TGGCTCTGAG	GGCTGGGTCA	GTCGGGCCGG
AAATTGGATC	CGTAACTTCG	GGAAAAGGAT	TGGCTCTGAG	GGCTGGGTCA	GTCGGGCCGG
AAATTGGATC	CGTAACTTCG	GGAAAAGGAT	TGGCTCTGAG	GGCTGGGTCA	GTCGGGCCGG
AAATTGGATC	CGTAACTTCG	GGAAAAGGAT	TGGCTCTGAG	GGCTGGGTCA	GTCGGGCCGG
AAATTGGATC	CGTAACTTCG	GGAAAAGGAT	TGGCTCTGAG	GGCTGGGTCA	GTCGGGCCGG
AAATTGGATC	CGTAACTTCG	GGAAAAGGAT	TGGCTCTGAG	GGCTGGGTCA	GTCGGGCCGG
AAATTGGATC	CGTAACTTCG	GGAAAAGGAT	TGGCTCTGAG	GGCTGGGTCA	GTCGGGCCGG
AAATTGGATC	CGTAACTTCG	GGAAAAGGAT	TGGCTCTGAG	GGCTGGGTCA	GTCGGGCCGG
AAATTGGATC	CGTAACTTCG	GGAAAAGGAT	TGGCTCTGAG	GGCTGGGTCA	GTCGGGCCGG
AAATTGGATC	CGTAACTTCG	GGAAAAGGAT	TGGCTCTGAG	GGCTGGGTCA	GTCGGGCCGG
AAATTGGATC	CGTAACTTCG	GGAAAAGGAT	TGGCTCTGAG	GGCTGGGTCA	GTCGGGCCGG
AAATTGGATC	CGTAACTTCG	GGAAAAGGAT	TGGCTCTGAG	GGCTGGGTCA	GTCGGGCCGG
AAATTGGATC	CGTAACTTCG	GGAAAAGGAT	TGGCTCTGAG	GGCTGGGTCA	GTCGGGCCGG
mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

313					5100
		TGGGCCCGGG			
		TGGGCCCGGG			
GGTACGAAGC	GGGACTGGGA	TGGGCCCGGG	CTGGGCGAGG	CCGCCGCCGC	TAGCCGGCGG
GGTACGAAGC	GGGACTGGGA	TGGGCCCGGG	CTGGGCGAGG	CCGCCGCCGC	TAGCCGGCGG
GGTACGAAGC	GGGACTGGGA	TGGGCCCGGG	CTGGGCGAGG	CCGCCGCCGC	TAGCCGGCGG
GGTACGAAGC	GGGACTGGGA	TGGGCCCGGG	CTGGGCGAGG	CCGCCGCCGC	TAGTCGGCGG
GGTACGAAGC	GGGACTGGGA	TGGGCCCGGG	CTGGGCGAGG	CCGCCGCCGC	TAGCCGGCGG
GGTACGAAGC	GGGACTGGGA	TGGGCCCGGG	CTGGGCGAGG	CCGCCGCCGC	TAGCCGGCGG
GGTACGAAGC	GGGACTGGGA	TGGGCCCGGG	CTGGGCGAGG	CCGCCGCCGC	TAGCCGGCGG
GGTACGAAGC	GGGACTGGGA	TGGGCCCGGG	CTGGGCGAGG	CCGCCGCCGC	TAGCCGGCGG
GGTACGAAGC	GGGACTGGGA	TGGGCCCGGG	CTGGGCGAGG	CCGCCGCCGC	TAGTCGGCGG
GGTACGAAGC	GGGACTGGGA	TGGGCCCGGG	CTGGGCGAGG	CCGCCGCCGC	TAGCCGGCGG
GGTACGAAGC	GGGACTGGGA	TGGGCCCGGG	CTGGGCGAGG	CCGCCGCCGC	TAGCCGGCGG
GGTACGAAGC	GGGACTGGGA	TGGGCCCGGG	CTGGGCGAGG	CCGCCGCCGC	TAGCCGGCGG
GGTACGAAGC	GGGACTGGGA	TGGGCCCGGG	CTGGGCGAGG	CCGCCGCCGC	TAGCCGGCGG
GGTACGAAGC	GGGACTGGGA	TGGGCCCGGG	CTGGGCGAGG	CCGCCGCCGC	TAGTCGGCGG
GGTACGAAGC	GGGACTGGGA	TGGGCCCGGG	CTGGGCGAGG	CCGCCGCCGC	TAGTCGGCGG
GGTACGAAGC	GGGACTGGGA	TGGGCCCGGG	CTGGGCGAGG	CCGCCGCCGC	TAGTCGGCGG
GGTACGAAGC	GGGACTGGGA	TGGGCCCGGG	CTGGGCGAGG	CCGCCGCCGC	TAGCCGGCGG
GGTACGAAGC	GGGACTGGGA	TGGGCCCGGG	CTGGGCGAGG	CCGCCGCCGC	TAGCCGGCGG
GGTACGAAGC	GGGACTGGGA	TGGGCCCGGG	CTGGGCGAGG	CCGCCGCCGC	TAGCCGGCGG
GGTACGAAGC	GGGACTGGGA	TGGGCCCGGG	CTGGGCGAGG	CCGCCGCCGC	TAGCCGGCGG
GGTACGAAGC	GGGACTGGGA	TGGGCCCGGG	CTGGGCGAGG	CCGCCGCCGC	TCGTCGGCGG
GGTACGAAGC	GGGACTGGGA	TGGGCCCGGG	CTGGGCGAGG	CCGCCGCCGC	TAGCCGGCGG
GGTACGAAGC	GGGACTGGGA	TGGGCCCGGG	CTGGGCGAGG	CCGCCGCCGC	TAGTCGGCGG
GGTACGAAGC	GGGACTGGGA	TGGGCCCGGG	CTGGGCGAGG	CCGCCGCCGC	TAGTCGGCGG
GGTACGAAGC	GGGACTGGGA	TGGGCCCGGG	CTGGGCGAGG	CCGCCGCCGC	TAGTCGGCGG
mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp.

Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis

Gonospira sp. NUCLEOTIDES INCLUDED

Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum

319	90 320	0 321	10 322	20 323	30 3240
GCCGGCCGAG	CTCGGAACGC	GGCTGCAACC	TTCCCGTGGA	CCGCCCAGC	TATGCGGCGG
GCCGGCCGAG	CTCGGAACGC	GGCTGCAACC	TTCCCGTGGA	CCGCCCCAGC	TATGCGGCGG
GCCGGCCGAG	CTCGGAACGC	GGCTGCAACC	TTCCCGTGGA	CCGCCCAGC	TATGCGGCGG
GCCGGCCGAG	CTCGGAACGC	GGCTGCAACC	TTCCCGTGGA	CCGCCCCAGC	TATGCGGCGG
GCCGGCCGAG	CTCGGAACGC	GGCTGCAACC	TTCCCGTGGA	CCGCCCCAGC	TATGCGGCGG
GCCGGCCGAG	CTCGGAACGC	GGCTGCAACC	TTCCCGTGGA	CCGCCCCAGC	TATGCGGCGG
GCCGGCCGAG	CTCGGAACGC	GGCTGCAACC	TTCCCGTGGA	CCGCCCCAGC	TATGCGGCGG
GCCGGCCGAG	CTCGGAACGC	GGCTGCAACC	TTCCCGTGGA	CCGCCCCAGC	TATGCGGCGG
GCCGGCCGAG	CTCGGAACGC	GGCTGCAACC	TTCCCGTGGA	CCGCCCCAGC	TATGCGGCGG
GCCGGCCGAG	CTCGGAACGT	GGCTGCAACC	TTCCCGTGGA	CCGCCCCAGC	TATGCGGCGG
GCCGGCCGAG	CTCGGAACGC	GGCTGCAACC	TTCCCGTGGA	CCGCCCCAGC	TATGCGGCGG
GCCGGCCGAG	CTCGGAACGC	GGCTGCAACC	TTCCCGTGGA	CCGCCCCAGC	TATGCGGCGG
GCCGGCCGAG	CTCGGAACGC	GGCTGCAACC	TTCCCGTGGA	CCGCCCCAGC	TATGCGGCGG
GCCGGCCGAG	CTCGGAACGC	GGCTGCAACC	TTCCCGTGGA	CCGCCCCAGC	TATGCGGCGG
GCCGGCCGAG	CTCGGAACGC	GGCTGCAACC	TTCCCGTGGA	CCGCCCCAGC	TATGCGGCGG
GCAGGCCGAG	CTCGGAACGC	GGCTGCAACC	TTCCCGTGGA	CCGCCCCAGC	TATGCGGCGG
GCCGGCCGAG	CTCGGAACGC	GGCTGCAACC	TTCCCGTGGA	CCGCCCCAGC	TATGCGGCGG
GCCGGCCGAG	CTCGGAACGC	GGCTGCAACC	TTCCCGTGGA	CCGCCCCAGC	TATGCGGCGG
GCCGGCCGAG	CTCGGAACGC	GGCTGCAACC	TTCCCGTGGA	CCGCCCCAGC	TATGCGGCGG
GCCGGCCGAG	CTCGGAACGC	GGCTGCAACC	TTCCCGTGGA	CCGCCCCAGC	TATGCGGCGG
GCCGGCCGAG	CTCGGAACGC	GGCTGCAACC	TTCCCGTGGA	CCGCCCCAGC	TATGCGGCGG
GCCGGCCGAG	CTCGGAACGC	GGCTGCAACC	TTCCCGTGGA	CCGCCCCAGC	TATGCGGCGG
GCCGGCCGAG	CTCGGAACGC	GGCTGCAACC	TTCCCGTGGA	CCGCCCCAGC	TATGCGGCGT
GCCGGCCGAG	CTCGGAACGC	GGCTGCAACC	TTCCCGTGGA	CCGCCCCAGC	TATGCGGCGG
GCCGGCCGAG	CTCGGAACGC	GGCTGCAACC	TTCCCGTGGA	CCGCCCCAGC	TATGCGGCGG
GCCGGCCGAG	CTCGGAACGC	GGCTGCAACC	TTCCCGTGGA	CCGCCCCAGC	TATGCGGCGG
GCCGGCCGAG	CTCGGAACGC	GGCTGCAACC	TTCCCGTGGA	CCGCCCCAGC	TATGCGGCGG
mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

$\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots $	 3300
CGCCTCCCCGGCGT CGTTCGCGTC GGCTGGCATT CAACAGCCAA CTCAG	AACTG
CGCCTCCCCGGCGT CGTTCGCGTC GGCTGGCATT CAACAGCCAA CTCAG	AACTG
CGCCTCCCCGGCGT CGTCCGCGTC GGCTGGCATT CAACAGCCAA CTCAG	AACTG
CGCCTCCCCGGCGT CGTCCGCGTC GGCTGGCATT CAACAGCCAA CTCAG	AACTG
CGCCT TCCCGGGCGT CGTCCGCGTC GGCTGGCATT CAACAGCCAA CTCAG	AACTG
CGCCTCCCCGGCGT CGTCCGCGTC GGCTGGCATT CAACAGCCAA CTCAG	AACTG
CGCCT TCCCGGGCGT CGTCCGCGTC GGCTGGCATT CAACAGCCAA CTCAG	AACTG
CGCCC TCCCGGGCGT CGTCCGCGTC GGCTGGCATT CAACAGCCAA CTCAG	AACTG
CGCCT TCCCGGGCGT CGTCCGCGTC GGCTGGCATT CAACAGCCAA CTCAG	AACTG
CGCCTCCCCGGCGT CGTTCGCGTC GGCTGGCATT CAACAGCCAA CTCAG	AACTG
CGCCTCCCGGCGT CGTCCGCGTC GGCTGGCATT CAACAGCCAA CTCAG	AACTG
CGCCTCCCCGGCGT CGTCCGCGTC GGCTGGCATT CAACAGCCAA CTCAG	AACTG
CGCCTCCCCGGCGT CGTCCGCGTC GGCTGGCATT CAACAGCCAA CTCAG	AACTG
CGCCT TCCCGGGCGT CGTTCGCGTC GGCTGGCATT CAACAGCCAA CTCAG	AACTG
CGCCT TCACGGGCGT CGTTCGCGTC GGCTGGCATT CAACAGCCAA CTCAG	AACTG
CGCCT TCCCAGGCGT CGTCCGCGTC GGCTGGCATT CAACAGCCAA CTCAG	AACTG
CGCCTCCCCGGCGT CGTCCGCGTC GGCTGGCATT CAACAGCCAA CTCAG	AACTG
CGCCTCCCCGGCGT CGTCCGCGTC GGCTGGCATT CAACAGCCAA CTCAG	AACTG
CGCCTCCCCGGCGT CGTCCGCGTC GGCTGGCATT CAACAGCCAA CTCAG	AACTG
CGCCT TCCCGGGCGT CGTCCGCGTC GGCTGGCATT CAACAGCCAA CTCAG	AACTG
CACCG TCCCCGGTGT CGTCCGCGTC GGCTGGCATT CAACAGCCAA CTCAG	AACTG
CGCCT TCCCGGGCGT CGTCCGCGTC GGCTGGCATT CAACAGCCAA CTCAG	AACTG
CGCCTCCTCC CGCGGGGTGW CGTCCGCGTC GGCTGGCATT CAACAGCCAA CTCAG	AACTG
CGCCT TCCCGGGCGT CGTCCGCGTC GGCTGGCATT CAACAGCCAA CTCAG	AACTG
CGCCTCCCGGCGT TGTCCGCGTC GGCTGGCATT CAACAGCCAA CTCAG	AACTG
CGCCTCCCGGCGT CGTCCGCGTC GGCTGGCATT CAACAGCCAA CTCAG	AACTG
CGCCTCCCGGCGT CGTCCGCGTC GGCTGGCATT CAACAGCCAA CTCAG	AACTG
	nmmmm

	331	LO 332	20 333	30 334	10 335	50 336
	GTACGGACCA	GGGGAATCCG	ACTGTCTAAT	TAAAACAAAG	CATTGCGACG	GCCGTCACCC
	GTACGGACCA	GGGGAATCCG	ACTGTCTAAT	TAAAACAAAG	CATTGCGACG	GCCGTCACCC
	GTACGGACCA	GGGGAATCCG	ACTGTCTAAT	TAAAACAAAG	CATTGCGACG	GCCGTCACCC
	GTACGGACCA	GGGGAATCCG	ACTGTCTAAT	TAAAACAAAG	CATTGCGACG	GCCGTCACCC
	GTACGGACCA	GGGGAATCCG	ACTGTCTAAT	TAAAACAAAG	CATTGCGACG	GCCGTCACCC
	GTACGGACCA	GGGGAATCCG	ACTGTCTAAT	TAAAACAAAG	CATTGCGACG	GCCGTCACCC
	GTACGGACCA	GGGGAATCCG	ACTGTCTAAT	TAAAACAAAG	CATTGCGACG	GCCGTCACCC
	GTACGGACCA	GGGGAATCCG	ACTGTCTAAT	TAAAACAAAG	CATTGCGACG	GCCGTCACCC
	GTACGGACCA	GGGGAATCCG	ACTGTCTAAT	TAAAACAAAG	CATTGCGACG	GCCGTCACCC
	GTACGGACCA	GGGGAATCCG	ACTGTCTAAT	TAAAACAAAG	CATTGCGACG	GCCGTCACCC
	GTACGGACCA	GGGGAATCCG	ACTGTCTAAT	TAAAACAAAG	CATTGCGACG	GCCGTCACCC
	GTACGGACCA	GGGGAATCCG	ACTGTCTAAT	TAAAACAAAG	CATTGCGACG	GCCGTCACCC
	GTACGGACCA	GGGGAATCCG	ACTGTCTAAT	TAAAACAAAG	CATTGCGACG	GCCGTCACCC
	GTACGGACCA	GGGGAATCCG	ACTGTCTAAT	TAAAACAAAG	CATTGCGACG	GCCGTCACCC
	GTACGGACCA	GGGGAATCCG	ACTGTCTAAT	TAAAACAAAG	CATTGCGACG	GCCGTCACCC
	GTACGGACCA	GGGGAATCCG	ACTGTCTAAT	TAAAACAAAG	CATTGCGACG	GCCGTCACCC
	GTACGGACCA	GGGGAATCCG	ACTGTCTAAT	TAAAACAAAG	CATTGCGACG	GCCGTCACCC
	GTACGGACCA	GGGGAATCCG	ACTGTCTAAT	TAAAACAAAG	CATTGCGACG	GCCGTCACCC
	GTACGGACCA	GGGGAATCCG	ACTGTCTAAT	TAAAACAAAG	CATTGCGACG	GCCGTCACCC
	GTACGGACCA	GGGGAATCCG	ACTGTCTAAT	TAAAACAAAG	CATTGCGACG	GCCGTCACCC
	GTACGGACCA	GGGGAATCCG	ACTGTCTAAT	TAAAACAAAG	CATTGCGACG	GCCGTCACCC
	GTACGGACCA	GGGGAATCCG	ACTGTCTAAT	TAAAACAAAG	CATTGCGACG	GCCGTCACCC
	GTACGGACCA	GGGGAATCCG	ACTGTCTAAT	TAAAACAAAG	CATTGCGACG	GCCGTCACCC
5	GTACGGACCA	GGGGAATCCG	ACTGTCTAAT	TAAAACAAAG	CATTGCGACG	GCCGTCACCC
	GTACGGACCA	GGGGAATCCG	ACTGTCTAAT	TAAAACAAAG	CATTGCGACG	GCCGTCACCC
s	GTACGGACCA	GGGGAATCCG	ACTGTCTAAT	TAAAACAAAG	CATTGCGACG	GCCGTCACCC
	GTACGGACCA	GGGGAATCCG	ACTGTCTAAT	TAAAACAAAG	CATTGCGACG	GCCGTCACCC
	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula cevlanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

....|....|||||||||| 3370 3380 3390 3400 3410 3420 GGTGTTGACG CAATGTGATT TCTGCCCAGT GCTCTGAATG TCAAAGTGAA GAAATTCAAC

343	30 344	10 345	50 346	50 34	/0 3480
CAAGCGCGGG	TAAACGGCGG	GAGTAACTAT	GACTCTCTTA	AGGTAGCCAA	ATGCCTCGTC
CAAGCGCGGG	TAAACGGCGG	GAGTAACTAT	GACTCTCTTA	AGGTAGCCAA	ATGCCTCGTC
CAAGCGCGGG	TAAACGGCGG	GAGTAACTAT	GACTCTCTTA	AGGTAGCCAA	ATGCCTCGTC
CAAGCGCGGG	TAAACGGCGG	GAGTAACTAT	GACTCTCTTA	AGGTAGCCAA	ATGCCTCGTC
CAAGCGCGGG	TAAACGGCGG	GAGTAACTAT	GACTCTCTTA	AGGTAGCCAA	ATGCCTCGTC
CAAGCGCGGG	TAAACGGCGG	GAGTAACTAT	GACTCTCTTA	AGGTAGCCAA	ATGCCTCGTC
CAAGCGCGGG	TAAACGGCGG	GAGTAACTAT	GACTCTCTTA	AGGTAGCCAA	ATGCCTCGTC
CAAGCGCGGG	TAAACGGCGG	GAGTAACTAT	GACTCTCTTA	AGGTAGCCAA	ATGCCTCGTC
CAAGCGCGGG	TAAACGGCGG	GAGTAACTAT	GACTCTCTTA	AGGTAGCCAA	ATGCCTCGTC
CAAGCGCGGG	TAAACGGCGG	GAGTAACTAT	GACTCTCTTA	AGGTAGCCAA	ATGCCTCGTC
CAAGCGCGGG	TAAACGGCGG	GAGTAACTAT	GACTCTCTTA	AGGTAGCCAA	ATGCCTCGTC
CAAGCGCGGG	TAAACGGCGG	GAGTAACTAT	GACTCTCTTA	AGGTAGCCAA	ATGCCTCGTC
CAAGCGCGGG	TAAACGGCGG	GAGTAACTAT	GACTCTCTTA	AGGTAGCCAA	ATGCCTCGTC
CAAGCGCGGG	TAAACGGCGG	GAGTAACTAT	GACTCTCTTA	AGGTAGCCAA	ATGCCTCGTC
CAAGCGCGGG	TAAACGGCGG	GAGTAACTAT	GACTCTCTTA	AGGTAGCCAA	ATGCCTCGTC
CAAGCGCGGG	TAAACGGCGG	GAGTAACTAT	GACTCTCTTA	AGGTAGCCAA	ATGCCTCGTC
CAAGCGCGGG	TAAACGGCGG	GAGTAACTAT	GACTCTCTTA	AGGTAGCCAA	ATGCCTCGTC
CAAGCGCGGG	TAAACGGCGG	GAGTAACTAT	GACTCTCTTA	AGGTAGCCAA	ATGCCTCGTC
CAAGCGCGGG	TAAACGGCGG	GAGTAACTAT	GACTCTCTTA	AGGTAGCCAA	ATGCCTCGTC
CAAGCGCGGG	TAAACGGCGG	GAGTAACTAT	GACTCTCTTA	AGGTAGCCAA	ATGCCTCGTC
CAAGCGCGGG	TAAACGGCGG	GAGTAACTAT	GACTCTCTTA	AGGTAGCCAA	ATGCCTCGTC
CAAGCGCGGG	TAAACGGCGG	GAGTAACTAT	GACTCTCTTA	AGGTAGCCAA	ATGCCTCGTC
CAAGCGCGGG	TAAACGGCGG	GAGTAACTAT	GACTCTCTTA	AGGTAGCCAA	ATGCCTCGTC
CAAGCGCGGG	TAAACGGCGG	GAGTAACTAT	GACTCTCTTA	AGGTAGCCAA	ATGCCTCGTC
CAAGCGCGGG	TAAACGGCGG	GAGTAACTAT	GACTCTCTTA	AGGTAGCCAA	ATGCCTCGTC
CAAGCGCGGG	TAAACGGCGG	GAGTAACTAT	GACTCTCTTA	AGGTAGCCAA	ATGCCTCGTC
CAAGCGCGGG	TAAACGGCGG	GAGTAACTAT	GACTCTCTTA	AGGTAGCCAA	ATGCCTCGTC
mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

	 349		\ldots			
			GAATGGATTA			
			GAATGGATTA			
	ATCTAATTAG		GAATGGATTA			
			GAATGGATTA			
	ATCTAATTAG		GAATGGATTA			
			GAATGGATTA			
	ATCTAATTAG		GAATGGATTA			
			GAATGGATTA			
	ATCTAATTAG		GAATGGATTA			
-	ATCTAATTAG	TGACGCGCAT	GAATGGATTA	ACGAGATTCC	CACTGTCCCT	ATCTACTATC
			GAATGGATTA			
	ATCTAATTAG	TGACGCGCAT	GAATGGATTA	ACGAGATTCC	CACTGTCCCT	ATCTACTATC
3	ATCTAATTAG		GAATGGATTA			
j	ATCTAATTAG	TGACGCGCAT	GAATGGATTA	ACGAGATTCC	CACTGTCCCT	ATCTACTATC
j	ATCTAATTAG	TGACGCGCAT	GAATGGATTA	ACGAGATTCC	CACTGTCCCT	ATCTACTATC
j	ATCTAATTAG	TGACGCGCAT	GAATGGATTA	ACGAGATTCC	CACTGTCCCT	ATCTACTATC
i	ATCTAATTAG	TGACGCGCAT	GAATGGATTA	ACGAGATTCC	CACTGTCCCT	ATCTACTATC
j.	ATCTAATTAG	TGACGCGCAT	GAATGGATTA	ACGAGATTCC	CACTGTCCCT	ATCTACTATC
1	ATCTAATTAG	TGACGCGCAT	GAATGGATTA	ACGAGATTCC	CACTGTCCCT	ATCTACTATC
1	ATCTAATTAG	TGACGCGCAT	GAATGGATTA	ACGAGATTCC	CACTGTCCCT	ATCTACTATC
1	ATCTAATTAG	TGACGCGCAT	GAATGGATTA	ACGAGATTCC	CACTGTCCCT	ATCTACTATC
ŝ	ATCTAATTAG	TGACGCGCAT	GAATGGATTA	ACGAGATTCC	CACTGTCCCT	ATCTACTATC
ŝ	ATCTAATTAG	TGACGCGCAT	GAATGGATTA	ACGAGATTCC	CACTGTCCCT	ATCTACTATC
ŝ	ATCTAATTAG	TGACGCGCAT	GAATGGATTA	ACGAGATTCC	CACTGTCCCT	ATCTACTATC
1	ATCTAATTAG	TGACGCGCAT	GAATGGATTA	ACGAGATTCC	CACTGTCCCT	ATCTACTATC
1	ATCTAATTAG	TGACGCGCAT	GAATGGATTA	ACGAGATTCC	CACTGTCCCT	ATCTACTATC
1	ATCTAATTAG	TGACGCGCAT	GAATGGATTA	ACGAGATTCC	CACTGTCCCT	ATCTACTATC
1	mmmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

····|···| ····| ····| ····| ····| ····| ····| ····| ····| ····|

	35	50 356	50 35'	70 358	80 359	90 3600
Achatina fulica	TAGCGAAACC	ACAGCCAAGG	GAACGGGCTT	GGTAGAATCA	GCGGGGAAAG	AAGACCCTGT
Achatina achatina	TAGCGAAACC	ACAGCCAAGG	GAACGGGCTT	GGTAGAATCA	GCGGGGAAAG	AAGACCCTGT
Achatina stuhlmanni	TAGCGAAACC	ACAGCCAAGG	GAACGGGCTT	GGTAGAATCA	GCGGGGAAAG	AAGACCCTGT
Cochlitoma ustulata	TAGCGAAACC	ACAGCCAAGG	GAACGGGCTT	GGTAGAATCA	GCGGGGAAAG	AAGACCCTGT
Allopeas clavulinum	TAGCGAAACC	ACAGCCAAGG	GAACGGGCTT	GGTAGAATCA	GCGGGGAAAG	AAGACCCTGT
Bocageia sp.	TAGCGAAACC	ACAGCCAAGG	GAACGGGCTT	GGTAGAATCA	GCGGGGAAAG	AAGACCCTGT
Eutomopeas layardi	TAGCGAAACC	ACAGCCAAGG	GAACGGGCTT	GGTAGAATCA	GCGGGGAAAG	AAGACCCTGT
Leptinaria lamellata	TAGCGAAACC	ACAGCCAAGG	GAACGGGCTT	GGTAGAATCA	GCGGGGAAAG	AAGACCCTGT
Paropeas achatinaceum	TAGCGAAACC	ACAGCCAAGG	GAACGGGCTT	GGTAGAATCA	GCGGGGAAAG	AAGACCCTGT
Riebeckia sp.	TAGCGAAACC	ACAGCCAAGG	GAACGGGCTT	GGTAGAATCA	GCGGGGAAAG	AAGACCCTGT
Rumina decollata	TAGCGAAACC	ACAGCCAAGG	GAACGGGCTT	GGTAGAATCA	GCGGGGAAAG	AAGACCCTGT
Subulina octona	TAGCGAAACC	ACAGCCAAGG	GAACGGGCTT	GGTAGAATCA	GCGGGGAAAG	AAGACCCTGT
Subulina striatella	TAGCGAAACC	ACAGCCAAGG	GAACGGGCTT	GGTAGAATCA	GCGGGGAAAG	AAGACCCTGT
Subulina vitrea	TAGCGAAACC	ACAGCCAAGG	GAACGGGCTT	GGTAGAATCA	GCGGGGAAAG	AAGACCCTGT
Subulona sp.	TAGCGAAACC	ACAGCCAAGG	GAACGGGCTT	GGTAGAATCA	GCGGGGAAAG	AAGACCCTGT
Tortaxis erectus	TAGCGAAACC	ACAGCCAAGG	GAACGGGCTT	GGTAGAATCA	GCGGGGAAAG	AAGACCCTGT
Xerocerastus sp.	TAGCGAAACC	ACAGCCAAGG	GAACGGGCTT	GGTAGAATCA	GCGGGGAAAG	AAGACCCTGT
Zootecus insularis	TAGCGAAACC	ACAGCCAAGG	GAACGGGCTT	GGTAGAATCA	GCGGGGAAAG	AAGACCCTGT
Coeliaxis blandii	TAGCGAAACC	ACAGCCAAGG	GAACGGGCTT	GGTAGAATCA	GCGGGGAAAG	AAGACCCTGT
Pyrgina umbilicata	TAGCGAAACC	ACAGCCAAGG	GAACGGGCTT	GGTAGAATCA	GCGGGGAAAG	AAGACCCTGT
Glessula ceylanica	TAGCGAAACC	ACAGCCAAGG	GAACGGGCTT	GGTAGAATCA	GCGGGGAAAG	AAGACCCTGT
Cecilioides gokweanus	TAGCGAAACC	ACAGCCAAGG	GAACGGGCTT	GGTAGAATCA	GCGGGGAAAG	AAGACCCTGT
Ferussacia folliculus	TAGCGAAACC	ACAGCCAAGG	GAACGGGCTT	GGTAGAATCA	GCGGGGAAAG	AAGACCCTGT
Thyrophorella thomensis	TAGCGAAACC	ACAGCCAAGG	GAACGGGCTT	GGTAGAATCA	GCGGGGAAAG	AAGACCCTGT
Gibbulinella dewinteri	TAGCGAAACC	ACAGCCAAGG	GAACGGGCTT	GGTAGAATCA	GCGGGGAAAG	AAGACCCTGT
Gonaxis quadrilateralis	TAGCGAAACC	ACAGCCAAGG	GAACGGGCTT	GGTAGAATCA	GCGGGGAAAG	AAGACCCTGT
Gonospira sp.	TAGCGAAACC	ACAGCCAAGG	GAACGGGCTT	GGTAGAATCA	GCGGGGAAAG	AAGACCCTGT
NUCLEOTIDES INCLUDED	mmmmmmmmmm	mmmmmmmmm	mmmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula cevlanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

....|....|....|....|....|....|....|....|36103620363036403650366TGAGCTTGAC TCTAGTCCGA CTTTGTGAAG ACACATGAAG GGTGTAGCAT AGGTGGGAGC 3660 TGAGCTTGAC TCTAGTCCGA CTTTGTGAAG ACACATGAAG GGTGTAGCAT AGGTGGGAGC TGAGCTTGAC TCTAKTCCGA CTTTGTGAAG ACACATGAAG GGTGTAGCAT AGGTGGGAGC TGAGCTTGAC TCTAGTCCGA CTTTGTGAAG ACACATGAAG GGTGTAGCAT AGGTGGGAGC

3720

....|....||||||||| 3670 3680 3690 3700 3710 372 GCAAGCGCAA TTGAAATACC ACTACTTTA TCGTTTCTTT ACTTATTCAG TCAAGCGGAG GCAAGCGCAA TTGAAATACC ACTACTTTTA TCGTTTCTTT ACTTATTCAG TCAAGCGGAG GCGAGCGCAA TTGAAATACC ACTACTTTTA TCGTTTCTTT ACTTATTCAG TCAAGCGGAG GCGAGCGCAA TTGAAATACC ACTACTTTTA TCGTTTCTTT ACTTATTCAG TCAAGCGGAG GCAAGCGCAA TTGAAATACC ACTACTTTTA TCGTTTCTTT ACTTATTCAG TCAAGCGGAG GCGAGCGCAA TTGAAATACC ACTACTTTTA TCGTTTCTTT ACTTATTCAG TCAAGCGGAG GCGAGCGCAA TTGAAATACC ACTACTTTTA TCGTTTCTTT ACTTATTCAG TCAAGCGGAG GCGAGCGCAA TTGAAATACC ACTACTTTTA TCGTTTCTTT ACTTATTCAG TCAAGCGGAG

· · · · · · · . 371	 30 374				
AGCGGGGCGC	AAGCCCCTCG	CTTCTGGAGT	TAAGCGGCAA	CCGGCGCTCG	TCGTCGGCCG
AGCGGGGCGC	AAGCCCCTCG	CTTCTGGAGT	TAAGCGGCAA	CCGGCGCTCG	TCGTCGGCCG
AGCGGGGCGC	AAGCCCCTCG	CTTCTGGAGT	TAAGCGGCAA	CCGGCGCTCG	TCGTCGGCCG
AGCGGGGCGC	AAGCCCCTCG	CTTCTGGAGT	TAAGCGGCAA	TCGGCGCTCG	TCGTCGGCCG
AGCGGGGCGC	AAGCCCCTCG	CTTCTGGAGT	TAAGCGGCAA	CCGGCGCTCG	TCGTCGGCCG
AGCGGGGCGC	AAGCCCCTCG	CTTCTGGAGT	TAAGCGGCAA	CCGGCGCTCG	TCGTCGGCCG
AGCGGGGCGC	AAGCCCCTCG	CTTCTGGAGT	TAAGCGGCAA	CCGGCGCTCG	TCGTCGGCCG
AGCGGGGCGC	AAGCCCCTCG	CTTCTGGAGT	TAAGCGGCAA	CCGGCGCTCG	TCGTCGGCCG
AGCGGGGCGC	AAGCCCCTCG	CTTCTGGAGT	TAAGCGGCAA	CCGGCGCTCG	TCGTCGGCCG
AGCGGGGCGC	AAGCCCCTCG	CTTCTGGAGT	TAAGCGGCAA	CCGGCGCTCG	TCGTCGGCCG
AGCGGGGCGC	AAGCCCCTCG	CTTCTGGAAT	TAAGCGGCAA	CCGGCGCTCG	TCGTCGGCCG
AGCGGGGCGC	AAGCCCCTCG	CTTCTGGAGT	TAAGCGGCAA	CCGGCGCTCG	TCGTCGGCCG
AGCGGGGCGC	AAGCCCCTCG	CTTCTGGAGT	TAAGCGGCAA	CCGGCGCTCG	TCGTCGGCCG
AGCGGGGCGC	AAGCCCCTCG	CTTCTGGAGT	TAAGCGGCAA	CCGGCGCTCG	TCGTCGGCCG
AGCGGGGCGC	AAGCCCCTCG	CTTCTGGAGT	TAAGCGGCAA	TCGGCGCTCG	TCGTCGGCCG
AGCGGGGCGC	AAGCCCCTCG	CTTCTGGAGT	TAAGCGGCAA	CCGGCGCTCG	TCGTCGGCCG
AGCGGGGCGC	AAGCCCCTCG	CTTCTGGAGT	TAAGCGGCA-	CCGGCGCTCG	TCGTCGGCCG
AGCGGGGCGC	AAGCCCCTCG	CTTCTGGAGT	TAAGCGGCAA	CCGGCGCTCG	TCGTCGGCCG
AGCGGGGCGC	AAGCCCCTCG	CTTCTGGAGT	TAAGCGGCAA	CCGGCGCTCG	TCGTCGGCCG
AGCGGGGCGC	AAGCCCCTCG	CTTCTGGAGT	TAAGCGGCAA	CCGGCGCTCG	TCGTCGGCCG
AGCGGGGCGC	AAGCCCCTCG	CTTCTGGAGT	TAAGCGGCAA	CCGGCGCTCG	TCGTCGGCCG
AGCGGGGCGC	AAGCCCCTCG	CTTCTGGAGT	TAAGCGGCAA	TCGGCGCTCG	TCGTCGGCCG
AGCGGGGCGC	AAGCCCCTCG	CTTCTGGAGT	TAAGCGGCAC	TCGGCGCTCG	TCGTCGGCCG
AGCGGGGCGC	AAGCCCCTCG	CTTCTGGAGT	TAAGCGGCAA	CCGGCGCCCG	TCGCCGGCCG
AGCGGGGCGC	AAGCCCCTCG	CTTCTGGAGT	TAAGCGGCAA	TCGGCGCTCG	TCGTCGGCCG
AGCGGGGCGA	AAGCCCCTCG	CTTCTGGAGT	TAAGCGGCAA	TCGGCGCTCG	TCGTCGGCCG
AGCGGGGCGC	AAGCCCCTCG	CTTCTGGAGT	TAAGCGGCAA	TCGGCGCTCG	TCGTCGGCCG
mmmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum

Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis

Gonospira sp. NUCLEOTIDES INCLUDED

3/5	30 380	JU 38.	LU 384	20 383	30 3840
CGATCCGCTC	TGAAGACAGT	GTCAGGCGGG	GAGTTTGACT	GGGGCGGTAC	ATCTGTCAAA
CGATCCGCTC	TGAAGACAGT	GTCAGGCGGG	GAGTTTGACT	GGGGCGGTAC	ATCTGTCAAA
CGATCCGCTC	TGAAGACAGT	GTCAGGCGGG	GAGTTTGACT	GGGGCGGTAC	ATCTGTCAAA
CGATCCGCTC	TGAAGACAGT	GTCAGGCGGG	GAGTTTGACT	GGGGCGGTAC	ATCTGTCAAA
CGATCCGCTC	TGAAGACAGT	GTCAGGCGGG	GAGTTTGACT	GGGGCGGTAC	ATCTGTCAAA
CGATCCGCTC	TGAAGACAGT	GTCAGGCGGG	GAGTTTGACT	GGGGCGGTAC	ATCTGTCAAA
CGATCCGCTC	TGAAGACAGT	GTCAGGCGGG	GAGTTTGACT	GGGGCGGTAC	ATCTGTCAAA
CGATCCGCTC	TGAAGACAGT	GTCAGGCGGG	GAGTTTGACT	GGGGCGGTAC	ATCTGTCAAA
CGATCCGCTC	TGAAGACAGT	GTCAGGCGGG	GAGTTTGACT	GGGGCGGTAC	ATCTGTCAAA
CGATCCGCTC	TGAAGACAGT	GTCAGGCGGG	GAGTTTGACT	GGGGCGGTAC	ATCTGTCAAA
CGATCCGCTC	TGAAGACAGT	GTCAGGCGGG	GAGTTTGACT	GGGGCGGTAC	ATCTGTCAAA
CGATCCGCTC	TGAAGACAGT	GTCAGGCGGG	GAGTTTGACT	GGGGCGGTAC	ATCTGTCAAA
CGATCCGCTC	TGAAGACAGT	GTCAGGCGGG	GAGTTTGACT	GGGGCGGTAC	ATCTGTCAAA
CGATCCGCTC	TGAAGACAGT	GTCAGGCGGG	GAGTTTGACT	GGGGCGGTAC	ATCTGTCAAA
CGATCCGCTC	TGAAGACAGT	GTCAGGCGGG	GAGTTTGACT	GGGGCGGTAC	ATCTGTCAAA
CGATCCGCTC	TGAAGACAGT	GTCAGGCGGG	GAGTTTGACT	GGGGCGGTAC	ATCTGTCAAA
CGATCCGCTC	TGAAGACAGT	GTCAGGCGGG	GAGTTTGACT	GGGGCGGTAC	ATCTGTCAAA
CGATCCGCTC	TGAAGACAGT	GTCAGGCGGG	GAGTTTGACT	GGGGCGGTAC	ATCTGTCAAA
CGATCCGCTC	TGAAGACAGT	GTCAGGCGGG	GAGTTTGACT	GGGGCGGTAC	ATCTGTCAAA
CGATCCGCTC	TGAAGACAGT	GTCAGGCGGG	GAGTTTGACT	GGGGCGGTAC	ATCTGTCAAA
CGATCCGCTC	TGAAGACAGT	GTCAGGCGGG	GAGTTTGACT	GGGGCGGTAC	ATCTGTCAAA
CGATCCGCTC	TGAAGACAGT	GTCAGGCGGG	GAGTTTGACT	GGGGCGGTAC	ATCTGTCAAA
CGATCCGCTC	TGAAGACAGT	GTCAGGCGGG	GAGTTTGACT	GGGGCGGTAC	ATCTGTCAAA
CGATCCGCTC	TGAAGACAGT	GTCAGGCGGG	GAGTTTGACT	GGGGCGGTAC	ATCTGTCAAA
CGATCCGCTC	TGAAGACAGT	GTCAGGCGGG	GAGTTTGACT	GGGGCGGTAC	ATCTGTCAAA
CGATCCGCTC	TGAAGACAGT	GTCAGGCGGG	GAGTTTGACT	GGGGCGGTAC	ATCTGTCAAA
CGATCCGCTC	TGAAGACAGT	GTCAGGCGGG	GAGTTTGACT	GGGGCGGTAC	ATCTGTCAAA
mmmmmmmmm	mmmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula cevlanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

....|....||||||||| 3850 3860 3870 3880 3890 390 AGGTAACGCA GGTGTCCTAA GGCGAGGTCA GCGAGGACGG AAACCTCGCG TAGAGCAAAA 3900 AGGTAACGCA GGTGTCCTAA GGCGAGCTCA GCGAGGACGG AAACCTCGCG TAGAGCAAAA AGGTAACGCA GGTGTCCTAA GGCGAGCTCA GCGAGGACGG AAACCTCGCG TAGAGCAAAA AGGTAACGCA GGTGTCCTAA GGCGAGGTCA GCGAGGACGG AAACCTCGCG TAGAGCAAAA AGGTAACGCA GGTGTCCTAA GGCGAGCTCA GCGAGGACGG AAACCTCGCG TAGAGCAAAA AGGTAACGCA GGTGTCCCTAA GGCGAGCTCA GCGAGGACGG AAACCTCGCG TAGAGCAAAA AGGTAACGCA GGTGTCCTAA GGCGAGCTCA GCGAGGACGG AAACCTCGCG TAGAGCAAAA AGGTAACGCA GGTGTCCTAA GGCGAGCTCA GCGAGGACGG AAACCTCGCG TAAAGCAAAA AGGTAACGCA GGTGTCCTAA GGCGAGCTCA GCGAGGACGG AAACCTCGCG TAGAGCAAAA

GGGCAAAAGC TCGCTTGATT TTGATTTTCA GTACGAATAC AGACCGTGAA AGCGTGGCCT GGGCAAAAGC TCGCTTGATT TTGATTTTCA GTACAAATAC AGACCGTGAA AGCGTGGCCT GGGCAAAAGC TCGCTTGATT TTGATTTTCA GTACGAATAC AGACCGTGAA AGCGTGGCCT ന്നത്തത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്തന്നത്ത

 39'		 30 399			
ATCGATCCTT	TTGACTTTAA	GAGTTTTAAG	CAAGAGGTGT	CAGAAAAGTT	ACCACAGGGA
ATCGATCCTT	TTGACTTTAA	GAGTTTTAAG	CAAGAGGTGT	CAGAAAAGTT	ACCACAGGGA
ATCGATCCTT	TTGACTTTAA	GAGTTTTAAG	CAAGAGGTGT	CAGAAAAGTT	ACCACAGGGA
ATCGATCCTT	TTGACTTTAA	GAGTTTTAAG	CAAGAGGTGT	CAGAAAAGTT	ACCACAGGGA
ATCGATCCTT	TTGACTTTAA	GAGTTTTAAG	CAAGAGGTGT	CAGAAAAGTT	ACCACAGGGA
ATCGATCCTT	TTGACTTTAA	GAGTTTTAAG	CAAGAGGTGT	CAGAAAAGTT	ACCACAGGGA
ATCGATCCTT	TTGACTTTAA	GAGTTTTAAG	CAAGAGGTGT	CAGAAAAGTT	ACCACAGGGA
ATCGATCCTT	TTGACTTTAA	GAGTTTTAAG	CAAGAGGTGT	CAGAAAAGTT	ACCACAGGGA
ATCGATCCTT	TTGACTTTAA	GAGTTTTAAG	CAAGAGGTGT	CAGAAAAGTT	ACCACAGGGA
ATCGATCCTT	TTGACTTTAA	GAGTTTTAAG	CAAGAGGTGT	CAGAAAAGTT	ACCACAGGGA
ATCGATCCTT	TTGACTTTAA	GAGTTTTAAG	CAAGAGGTGT	CAGAAAAGTT	ACCACAGGGA
ATCGATCCTT	TTGACTTTAA	GAGTTTTAAG	CAAGAGGTGT	CAGAAAAGTT	ACCACAGGGA
ATCGATCCTT	TTGACTTTAA	GAGTTTTAAG	CAAGAGGTGT	CAGAAAAGTT	ACCACAGGGA
ATCGATCCTT	TTGACTTTAA	GAGTTTTAAG	CAAGAGGTGT	CAGAAAAGTT	ACCACAGGGA
ATCGATCCTT	TTGACTTTAA	GAGTTTTAAG	CAAGAGGTGT	CAGAAAAGTT	ACCACAGGGA
ATCGATCCTT	TTGACTTTAA	GAGTTTTAAG	CAAGAGGTGT	CAGAAAAGTT	ACCACAGGGA
ATCGATCCTT	TTGACTTTAA	GAGTTTTAAG	CAAGAGGTGT	CAGAAAAGTT	ACCACAGGGA
ATCGATCCTT	TTGACTTTAA	GAGTTTTAAG	CAAGAGGTGT	CAGAAAAGTT	ACCACAGGGA
ATCGATCCTT	TTGACTTTAA	GAGTTTTAAG	CAAGAGGTGT	CAGAAAAGTT	ACCACAGGGA
ATCGATCCTT	TTGACTTTAA	GAGTTTTAAG	CAAGAGGTGT	CAGAAAAGTT	ACCACAGGGA
ATCGATCCTT	TTGACTTTAA	GAGTTTTAAG	CAAGAGGTGT	CAGAAAAGTT	ACCACAGGGA
ATCGATCCTT	TTGACTTTAA	GAGTTTTAAG	CAAGAGGTGT	CAGAAAAGTT	ACCACAGGGA
ATCGATCCTT	TTGACTTTAA	GAGTTTTAAG	CAAGAGGTGT	CAGAAAAGTT	ACCACAGGGA
ATCGATCCTT		GAGTTTTAAG		CAGAAAAGTT	ACCACAGGGA
ATCGATCCTT	TTGACTTTAA	GAGTTTTAAG	CAAGAGGTGT	CAGAAAAGTT	ACCACAGGGA
ATCGATCCTT	TTGACTTTAA	GAGTTTTAAG	CAAGAGGTGT	CAGAAAAGTT	ACCACAGGGA
ATCGATCCTT	TTGACTTTAA	GAGTTTTAAG	CAAGAGGTGT	CAGAAAAGTT	ACCACAGGGA
mmmmmmmmmm	mmmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum

Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis

Gonospira sp. NUCLEOTIDES INCLUDED

403	30 404	40 405	50 406	50 407	70 4080
TAACTGGCTT	GTGGCAGCCA	AGCGTTCATA	GCGACGTTGC	TTTTTGATCC	TTCGATGTCG
TAACTGGCTT	GTGGCAGCCA	AGCGTTCATA	GCGACGTTGC	TTTTTGATCC	TTCGATGTCG
TAACTGGCTT	GTGGCAGCCA	AGCGTTCATA	GCGACGTTGC	TTTTTGATCC	TTCGATGTCG
TAACTGGCTT	GTGGCAGCCA	AGCGTTCATA	GCGACGTTGC	TTTTTGATCC	TTCGATGTCG
TAACTGGCTT	GTGGCAGCCA	AGCGTTCATA	GCGACGTTGC	TTTTTGATCC	TTCGATGTCG
TAACTGGCTT	GTGGCAGCCA	AGCGTTCATA	GCGACGTTGC	TTTTTGATCC	TTCGATGTCG
TAACTGGCTT	GTGGCAGCCA	AGCGTTCATA	GCGACGTTGC	TTTTTGATCC	TTCGATGTCG
TAACTGGCTT	GTGGCAGCCA	AGCGTTCATA	GCGACGTTGC	TTTTTGATCC	TTCGATGTCG
TAACTGGCTT	GTGGCAGCCA	AGCGTTCATA	GCGACGTTGC	TTTTTGATCC	TTCGATGTCG
TAACTGGCTT	GTGGCAGCCA	AGCGTTCATA	GCGACGTTGC	TTTTTGATCC	TTCGATGTCG
TAACTGGCTT	GTGGCAGCCA	AGCGTTCATA	GCGACGTTGC	TTTTTGATCC	TTCGATGTCG
TAACTGGCTT	GTGGCAGCCA	AGCGTTCATA	GCGACGTTGC	TTTTTGATCC	TTCGATGTCG
TAACTGGCTT	GTGGCAGCCA	AGCGTTCATA	GCGACGTTGC	TTTTTGATCC	TTCGATGTCG
TAACTGGCTT	GTGGCAGCCA	AGCGTTCATA	GCGACGTTGC	TTTTTGATCC	TTCGATGTCG
TAACTGGCTT	GTGGCAGCCA	AGCGTTCATA	GCGACGTTGC	TTTTTGATCC	TTCGATGTCG
TAACTGGCTT	GTGGCAGCCA	AGCGTTCATA	GCGACGTTGC	TTTTTGATCC	TTCGATGTCG
TAACTGGCTT	GTGGCAGCCA	AGCGTTCATA	GCGACGTTGC	TTTTTGATCC	TTCGATGTCG
TAACTGGCTT	GTGGCAGCCA	AGCGTTCATA	GCGACGTTGC	TTTTTGATCC	TTCGATGTCG
TAACTGGCTT	GTGGCAGCCA	AGCGTTCATA	GCGACGTTGC	TTTTTGATCC	TTCGATGTCG
TAACTGGCTT	GTGGCAGCCA	AGCGTTCATA	GCGACGTTGC	TTTTTGATCC	TTCGATGTCG
TAACTGGCTT	GTGGCAGCCA	AGCGTTCATA	GCGACGTTGC	TTTTTGATCC	TTCGATGTCG
TAACTGGCTT	GTGGCAGCCA	AGCGTTCATA	GCGACGTTGC	TTTTTGATCC	TTCGATGTCG
TAACTGGCTT	GTGGCAGCCA	AGCGTTCATA	GCGACGTTGC	TTTTTGATCC	TTCGATGTCG
TAACTGGCTT	GTGGCAGCCA	AGCGTTCATA	GCGACGTTGC	TTTTTGATCC	TTCGATGTCG
TAACTGGCTT	GTGGCAGCCA	AGCGTTCATA	GCGACGTTGC	TTTTTGATCC	TTCGATGTCG
TAACTGGCTT	GTGGCAGCCA	AGCGTTCATA	GCGACGTTGC	TTTTTGATCC	TTCGATGTCG
TAACTGGCTT	GTGGCAGCCA	AGCGTTCATA	GCGACGTTGC	TTTTTGATCC	TTCGATGTCG
mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula cevlanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

 $\begin{array}{c|cccc} \dots & | & \\ \hline & 4090 & 4100 & 4110 & 4120 & 4130 & 414 \\ \texttt{GCTCTTCCTA TCATTGCGAA GCAGAATTCG CCAAGCGTTG GATTGTTCAC CCACTAATAG } \end{array}$ GCTCTTCCTA TCATTGCGAA GCAGAATTCG CCAAGCGTTG GATTGTTCAC CCACTAATAG

4200

GGAACGTGAG CTGGGTTTAG ACCGTCGTGA GACAGGTTAG TTTTACCCTA CTGATGACAG GGAACGTGAG CTGGGTTTAG ACCGTCGTGA GACAGGTTAG TTTTACCCTA CTGATGACAA GGAACGTGAG CTGGGTTTAG ACCGTCGTGA GACAGGTTAG TTTTACCCTA CTGATGACAG GGAACGTGAG CTGGGTTTAG ACCGTCGTGA GACAGGTTAG TTTTACCCTA CTGATGACAA GGAACGTGAG CTGGGTTTAG ACCGTCGTGA GACAGGTTAG TTTTACCCTA CTGATGACAA GGAACGTGAG CTGGGTTTAG ACCGTCGTGA GACAGGTTAG TTTTACCCTA CTGATGACAG GGAACGTGAG CTGGGTTTAG ACCGTCGTGA GACAGGTTAG TTTTACCCTA CTGATGACAA GGAACGTGAG CTGGGTTTAG ACCGTCGTGA GACAGGTTAG TTTTACCCTA CTGATGACAG GGAACGTGAG CTGGGTTTAG ACCGTCGTGA GACAGGTTAG TTTTACCCTA CTGATGACAA GGAACGTGAG CTGGGTTTAG ACCGTCGTGA GACAGGTTAG TTTTACCCTA CTGATGACAG GGAACGTGAG CTGGGTTTAG ACCGTCGTGA GACAGGTTAG TTTTACCCTA CTGATGACAG ന്നത്തത്തെന്നത്. അത്തത്തത്തെ അത്തത്തത്തെ അത്തത്തത്തെ അത്തത്തത്തെ അത്തത്തത്ത

421					
103		GCTCAGTACG			1200
		GCTCAGTACG			
GTCGTTGCTA	CGGTAATCCT	GCTCAGTACG	AGAGGAACCG	CAGGTTCAGA	CATTTGGTTC
GTCGTTGCTA	CGGTAATCCT	GCTCAGTACG	AGAGGAACCG	CAGGTTCAGA	CATTTGGTTC
GTCGTTGCTA	CGGTAATCCT	GCTCAGTACG	AGAGGAACCG	CAGGTTCAGA	CATTTGGTTC
GTCGTTGCTA	CGGTAATCCT	GCTCAGTACG	AGAGGAACCG	CAGGTTCAGA	CATTTGGTTC
GTCGTTGCTA	CGGTAATCCT	GCTCAGTACG	AGAGGAACCG	CAGGTTCAGA	CATTTGGTTC
GTCGTTGCTA	CGGTAATCCT	GCTCAGTACG	AGAGGAACCG	CAGGTTCAGA	CATTTGGTTC
GTCGTTGCTA	CGGTAATCCT	GCTCAGTACG	AGAGGAACCG	CAGGTTCAGA	CATTTGGTTC
GTCGTTGCTA	CGGTAATCCT	GCTCAGTACG	AGAGGAACCG	CAGGTTCAGA	CATTTGGTTC
GTCGTTGCTA	CGGTAATCCT	GCTCAGTACG	AGAGGAACCG	CAGGTTCAGA	CATTTGGTTC
GTCGTTGCTA	CGGTAATCCT	GCTCAGTACG	AGAGGAACCG	CAGGTTCAGA	CATTTGGTTC
GTCGTTGCTA	CGGTAATCCT	GCTCAGTACG	AGAGGAACCG	CAGGTTCAGA	CATTTGGTTC
GTCGTTGCTA	CGGTAATCCT	GCTCAGTACG	AGAGGAACCG	CAGGTTCAGA	CATTTGGTTC
GTCGTTGCTA	CGGTAATCCT	GCTCAGTACG	AGAGGAACCG	CAGGTTCAGA	CATTTGGTTC
GTCGTTGCTA	CGGTAATCCT	GCTCAGTACG	AGAGGAACCG	CAGGTTCAGA	CATTTGGTTC
GTCGTTGCTA	CGGTAATCCT	GCTCAGTACG	AGAGGAACCG	CAGGTTCAGA	CATTTGGTTC
GTCGTTGCTA	CGGTAATCCT	GCTCAGTACG	AGAGGAACCG	CAGGTTCAGA	CATTTGGTTC
GTCGTTGCTA	CGGTAATCCT	GCTCAGTACG	AGAGGAACCG	CAGGTTCAGA	CATTTGGTTC
GTCGTTGCTA	CGGTAATCCT	GCTCAGTACG	AGAGGAACCG	CAGGTTCAGA	CATTTGGTTC
GTCGTTGCTA	CGGTAATCCT	GCTCAGTACG	AGAGGAACCG	CAGGTTCAGA	CATTTGGTTC
GTCGTTGCTA	CGGTAATCCT	GCTCAGTACG	AGAGGAACCG	CAGGTTCAGA	CATTTGGTTC
GTCGTTGCTA	CGGTAATCCT	GCTCAGTACG	AGAGGAACCG	CAGGTTCAGA	CATTTGGTTC
GTCGTTGCTA	CGGTAATCCT	GCTCAGTACG	AGAGGAACCG	CAGGTTCAGA	CATTTGGTTC
GTCGTTGCTA	CGGTAATCCT	GCTCAGTACG	AGAGGAACCG	CAGGTTCAGA	CATTTGGTTC
GTCGTTGCTA	CGGTAATCCT	GCTCAGTACG	AGAGGAACCG	CAGGTTCAGA	CATTTGGTTC
GTCGTTGTTA	CGGTAATCCT	GCTCAGTACG	AGAGGAACCG	CAGGTTCAGA	CATTTGGTTC
mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

.....

	42	4270 42		90 . 430	0 43	10
Achatina fulica	ACGTGCTTGG	CTGATAAGCC	AATGGTGCGA	GGCTACCATC	TGAGGGATTA	TGG
Achatina achatina	ACGTGCTTGG	CTGATAAGCC	AATGGTGCGA	GGCTACCATC	TGAGGGATTA	TGG
Achatina stuhlmanni	ACGTGCTTGG	CTGATAAGCC	AATGGTGCGA	GGCTACCATC	TGAGGGATTA	TGG
Cochlitoma ustulata	ACGTGCTTGG	CTGATAAGCC	AATGGTGCGA	GGCTACCATC	TGAGGGATTA	TGG
Allopeas clavulinum	ACGTGCTTGG	CTGATAAGCC	AATGGTGCGA	GGCTACCATC	TGAGGGATTA	TGG
Bocageia sp.	ACGTGCTTGG	CTGATAAGCC	AATGGTGCGA	GGCTACCATC	TGAGGGATTA	TGG
Eutomopeas layardi	ACGTGCTTGG	CTGATAAGCC	AATGGTGCGA	GGCTACCATC	TGAGGGATTA	TGG
Leptinaria lamellata	ACGTGCTTGG	CTGATAAGCC	AATGGTGCGA	GGCTACCATC	TGAGGGATTA	TGG
Paropeas achatinaceum	ACGTGCTTGG	CTGATAAGCC	AATGGTGCGA	GGCTACCATC	TGAGGGATTA	TGG
Riebeckia sp.	ACGTGCTTGG	CTGATAAGCC	AATGGTGCGA	GGCTACCATC	TGAGGGATTA	TGG
Rumina decollata	ACGTGCTTGG	CTGATAAGCC	AATGGTGCGA	GGCTACCATC	TGAGGGATTA	TGG
Subulina octona	ACGTGCTTGG	CTGATAAGCC	AATGGTGCGA	GGCTACCATC	TGAGGGATTA	TGG
Subulina striatella	ACGTGCTTGG	CTGATAAGCC	AATGGTGCGA	GGCTACCATC	TGAGGGATTA	TGG
Subulina vitrea	ACGTGCTTGG	CTGATAAGCC	AATGGTGCGA	GGCTACCATC	TGAGGGATTA	TGG
Subulona sp.	ACGTGCTTGG	CTGATAAGCC	AATGGTGCGA	GGCTACCATC	TGAGGGATTA	TGG
Tortaxis erectus			ACTGGTGCGA			
Xerocerastus sp.	ACGTGCTTGG	CTGATAAGCC	AATGGTGCGA	GGCTACCATC	TGAGGGATTA	TGG
Zootecus insularis			AATGGTGCGA			
Coeliaxis blandii	ACGTGCTTGG	CTGATAAGCC	AATGGTGCGA	GGCTACCATC	TGAGGGATTA	TGG
Pyrgina umbilicata			AATGGTGCGA			
Glessula ceylanica	ACGTGCTTGG	CTGATAAGCC	ACTGGTGCGA	GGCTACCATC	TGAGGGATTA	TGG
Cecilioides gokweanus	ACGTGCTTGG	CTGATAAGCC	AATGGTGCGA	GGCTACCATC	TGAGGGATTA	TGG
Ferussacia folliculus	ACGTGCTTGG	CTGATAAGCC	AATGGTGCGA	GGCTACCATC	TGAGGGATTA	TGG
Thyrophorella thomensis	ACGTGCTTGG	CTGATAAGCC	AATGGTGCGA	GGCTACCATC	TGAGGGATTA	TGG
Gibbulinella dewinteri	ACGTGCTTGG	CTGATAAGCC	AATGGTGCGA	GGCTACCATC	TGAGGGATTA	TGG
Gonaxis quadrilateralis	ACGTGCTTGG	CTGATAAGCC	AATGGTGCGA	GGCTACCATC	TGAGGGATTA	TGG
Gonospira sp.	ACGTGCTTGG	CTGATAAGCC	AATGGTGCGA	GGCTACCATC	TGAGGGATTA	TGG
NUCLEOTIDES INCLUDED	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmmm	mmm

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

Appendix 3.2: Alignment of the actin gene for the Achatinoidea and three streptaxid outgroup taxa.

Achatina achatina Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas lavardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp.

TCCAAGAGAG GTATCCTCAC TCTCAAGTAT CCCATTGAGC ATGGTATTGT CACCAACTGG TCCAAGAGAG GTATCCTCAC TCTCAAGTAT CCCATTGAGC ATGGTATTGT CACCAACTGG TCCAAGAGAG GCATCCTCAC TCTCAAGTAT CCCATTGAGC ATGGTATTGT CACCAACTGG TCCAAGAGAG GTATCCTCAC TCTCAAGTAT CCCATTGAGC ATGGAATTGT CACCAACTGG TCCAAGAGAG GTATCCTCAC ACTCAAGTAY CCCATTGARC ATGGTATTGT CACCAACTGG TCCAAGAGAG GTATCCTCAC TCTCAAGTAT CCCATTGAGC ATGGAATTGT CACCAACTGG TCCAAGAGAG GTATCCTAAC TCTCAAGTAT CCCATCGAGC ATGGCATTGT CACCAACTGG TCCAAGAGAG GTATCCTCAC TCTCAAGTAT CCCATTGAGC ATGGAATTGT CACCAACTGG TCYAAGAGAA GKATCCTCAC CYTCAAGTAC CCCATTGAGC ATGGTATTGT CACCAACTGG TCYAAGAGAG GTATCCTCAC TCTCAAGTAT CCCATTGAGC ATGGTATTGT CACYAACTGG TCTAAGAGAG GTATACTTAC TCTCAAGTAT CCCATTGAGC ATGGTATTGT CACAAACTGG TCTAAGAGAG GTATCCTCAC TCTCAAGTAC CCCATTGAGC AYGGTATTGT CACAAACTGG TCCAAGAGAG GTATCCTCAC TCTCAAGTAY CCCATTGAGC ATGGTATTGT CACCAACTGG TCCAAGAGAG GTATCCTCAC TCTAAAGTAC CCCATTGAGC ATGGTATTGT CACCAACTGG TCTAAGAGAG GTATCCTCAC TCTCAAGTAT CCCATTGARC ATGGTATTGT CACCAACTGG TCCAAGAGAG GTATTCTCAC CCTCAAGTAT CCCATTGAGC ATGGTATTGT CACTAACTGG TCCAAGAGAG GTATCCTCAC TCTCAAGTAT CCCATTGAGC ATGGTATTGT CACCAACTGG TCCAAGAGAG GTATCCTCAC TCTCAAGTAT CCCATTGAGC ATGGTATTGT CACCAACTGG TCCAAGAGAG GTATCCTCAC TCTCAAGTAT CCCATTGAGC ATGGWATTGT CACCAACTGG TCCAAGAGAG GTATCCTCAC TCTYAAGTAT CCCATTGAGC ATGGTRTTGT CACCAACTGG TCCAAGAGAG GTATCCTCAC ACTCAAGTAT CCCATTGAGC ACGGYATTGT CACCAACTGG TCCAAGAGAG GTATCCTCAC TCTCAAGTAC CCCATTGAGC ATGGTATTGT CACCAACTGG TCYAAGAGAG GTATCCTTAC TCTCAARTAT CCCATYGAGC ATGGTATTGT CACCAACTGG TCCAAGAGAG GTATCCTCAC TCTCAAGTAC CCTATTGAAC ATGGCATTGT CACCAACTGG TCCAAGAGAG GCATCCTCAC TCTCAAGTAC CCCATTGAGC ACGGCATTGT CACCAACTGG TCCAAGAGAG GTATCCTCAC TCTCAAGTAC CCCATTGAGC ATGGCATTGT CACCAACTGG

	7	70 80 90		100 110) 120
Achatina achatina	GATGATATGG	AGAAGATCTG	GCATCACACY	TTCTACAATG	AGTTGAGAGT	TGCWCCAGAA
Achatina fulica	GATGATATGG	AGAAGATCTG	GCATCACACC	TTCTACAATG	AGCTSAGAGT	TGCACCAGAA
Achatina stuhlmanni	GATGATATGG	AGAAAATATG	GCATCACACC	TTCTACAATG	AGCTGAGAGT	TGCACCAGAA
Cochlitoma ustulata	GATGATATGG	AGAAGATCTG	GCACCACACC	TTCTACAATG	AGCTGAGAGT	TGCACCAGAA
Allopeas clavulinum	GACGATATGG	AGAAGATCTG	GCATCACACT	TTCTACAACG	AGCTCAGAGT	TGCTCCTGAA
Bocageia sp.	GAYGATATGG	AGAAGATYTG	GCAYCAYACY	TTCTACAAYG	ARCTKAGAGT	TGCWCCTGAA
Eutomopeas layardi	GACGATATGG	AGAAGATCTG	GCATCACACT	TTCTACAACG	AGCTCAGAGT	TGCTCCTGAA
Leptinaria lamellata	GACGATATGG	AGAAGATCTG	GCATCACACT	TTCTACAACG	AGCTCAGAGT	TGCTCCTGAA
Paropeas achatinaceum	GATGATATGG	AAAAGATCTG	GCATCACACT	TTCTACAACG	AGCTCAGAGT	TGCTCCTGAA
Riebeckia sp.	GAYGAYATGG	AGAAGATCTG	GCATCACACY	TTCTACAACG	AGCTGAGAGT	TGCWCCTGAA
Rumina decollata	GAYGATATGG	AGAAGATCTG	GCATCACACY	TTCTACAATG	AGCTGAGAGT	TGCWCCTGAA
Subulina octona	GATGATATGG	AAAAGATCTG	GCATCACACT	TTCTACAATG	AGCTGAGAGT	TGCTCCTGAA
Subulina striatella	GATGATATGG	AGAAGATCTG	GCATCACACT	TTCTACAATG	ARCTGAGAGT	TGCTCCTGAA
Subulina vitrea	GATGATATGG	AGAAGATCTG	GCATCACACY	TTCTACAATG	ARCTGAGAGT	TGCCCCAGAA
Subulona sp.	GACGATATGG	AGAAGATCTG	GCACCATACT	TTCTACAACG	AGCTTAGAGT	TGCTCCAGAA
Tortaxis erectus	GATGACATGG	AGAAAATTTG	GCATCACACT	TTCTACAATG	AGCTCAGAGT	TGCACCTGAA
Xerocerastus sp.	GATGATATGG	AGAAGATCTG	GCATCATACC	TTCTACAATG	AGCTGAGAGT	TGCCCCTGAG
Zootecus insularis	GATGATATGG	AGAAGATCTG	GCATCACACY	TTCTACAATG	AGCTGAGAGT	TGCCCCTGAA
Coeliaxis blandii	GATGATATGG	AGAAGATCTG	GCATCACACC	TTCTACAATG	AGCTGAGAGT	TGCCCCTGAA
Pyrgina umbilicata	GAYGAYATGG	AGAAGATCTG	GCATYAYACY	TTCTACAACG	AGCTSAGAGT	TGCYCCTGAA
Glessula ceylanica	GATGACATGG	AGAAGATCTG	GCACCATACC	TTCTACAATG	AGCTCAGAGT	TGCCCCTGAA
Cecilioides gokweanus	GATGATATGG	AGAAGATCTG	GCATCACACC	TTCTACAACG	AGCTGAGAGT	TGCCCCAGAA
Ferussacia folliculus	GATGATATGG	AGAAGATCTG	GCATCACACC	TTCTACAATG	AGCTCAGAGT	TGCCCCAGAG
Thyrophorella thomensis	GAYGAYATGG	AGAAGATCTG	GCATCAYACY	TTCTACAACG	AGCTSAGAGT	TGCCCCTGAA
Gibbulinella dewinteri	GATGATATGG	AGAAGATCTG	GCATCACACC	TTCTACAACG	AGCTGAGAGT	TGCCCCTGAG
Gonaxis quadrilateralis	GATGACATGG	AGAAGATCTG	GCATCACACC	TTCTACAACG	AGCTGAGAGT	TGCCCCTGAG
Gonospira sp.	GATGATATGG	AGAAGATCTG	GCATCACACC	TTCTACAACG	AGTTGAGAGT	TGCCCCTGAG

Achatina achatina Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pvrgina umbilicata Glessula cevlanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp.

	J 140 TTCTRCTKAC				. 100
	TTCTGCTTAC				
	TTCTGCTTAC				
	TTCTGCTTAC				
	TTTTACTTAC				
	TWYTKYTKAC				
	TTTTACTCAC				
	TTTTACTCAC				
	TTTTACTTAC				
	TAYTTCTGAC				
	TYYTSCTKAC				
	TTTTGCTGAC				
	TTTTGCTGAC				
	TTCTCCTTAC				
	TTCTCCTGAC				
	TTCTCCTTAC				
	TCCTCCTTAC				
	TCCTCCTGAC				
	TACTTCTGAC				
GARCAYCCAG	TWYTMCTCAC	AGAGGCTCCW	CTTAACCCCA	AAGCCAAYAG	AGARAAGATG
GAACAYCCAG	TTYTTCTYAC	AGAGGCYCCA	CTCAACCCCA	AGGCCAACAG	AGAGAAGATG
GAGCACCCAG	TACTCCTTAC	AGAGGCCCCA	CTCAACCCCA	AGGCCAACAG	AGAGAAGATG
GAGCACCCAG	TCCTCCTCAC	TGAGGCTCCA	CTCAACCCCA	AGGCCAACAG	AGAGAAGATG
GAGCAYCCAG	TWCTCCTCAC	AGAGGCTCCA	CTTAACCCCA	AAGCTAAYAG	AGAAAAGATG
GAACACCCAG	TCCTACTCAC	GGAGGCTCCA	CTCAACCCCA	AAGCYAACAG	AGAGAAGATG
GAACACCCRG	TYCTACTCAC	GGAGGCTCCW	CTCAATCCCA	AAGCCAACAG	AGAGAAGATG
GAACACCCAG	TCCTACTCAC	GGARGCTCCW	CTCAATCCCA	AAGCCAAYAG	AGAGAAGATG

240 ACCCAGATCA TGTTTGAGAC YTTCAAYWSY CCAGCYATGT ATGTYGCYAT TCAAGCNGTG ACCCAGATCA TGTTTGAAAC YTTCAAYTCT CCAGCCATGT ATGTCGCCAT YCAAGCYGTG ACCCAGATCA TGTTTGAAAC TTTCAACTCT CCAGCCATGT ATGTTGCCAT TCAAGCAGTC ACCCAGATCA TGTTTGAGAC CTTCAACTCT CCAGCCATGT ATGTCGCCAT TCAAGCCGTG ACACAAATTA TGTTTGAAAC CTTCAATACT CCAGCCATGT ATGTCGCCAT CCAAGCCGTT ACCCAGATCA TGTTTGAGAC YTTCAAYACY CCAGCYATGT ACGTSKCYAT CCARGCTGTS ACACAGATTA TGTTTGAAAC CTTCAATACT CCAGCCATGT ATGTCGCCAT CCAAGCCGTT ACCCAGATTA TGTTTGAGAC CTTCAACACT CCAGCAATGT ACGTCGCCAT TCAAGCTGTG ACACAGATTA TGTTTGAAAC CTTCAATACC CCAGCCATGT ATGTCGCCAT CCAAGCCGTT ACCCAGATCA TGTTYGAGAC YTTCAACWCY CCAGCCATGT AYGTCGCYAT YCARGCWGTY ACACAGATCA TGTTTGAGAC CTTCAAYACC CCAGCNATGT AYGTCGCYAT YCARGCCGTG ACACAGATCA TGTTTGAGAC ATTCAACACC CCAGCTATGT ATGTTGCTAT CCAGGCTGTA ACACAGATCA TGTTTGAGAC ATTCAAYTCY CCAGCCATGT ATGTTGCTAT YCARGCTGTS ACCCAGATCA TGTTTGAGAC CTTCAACACA CCAGCCATGT ATGTTGCYAT CCAGGCCGTA ACCCAGATCA TGTTTGAGAC CTTCAACTCT CCAGCCATGT ACGTTGCAAT TCAAGCCGTG ACCCAGATAA TGTTTGAGAC CTTCAAYWCT CCAGCGATGT ATGTTGCMAT CCAGGCAGTT ACACAGATCA TGTTTGAAAC CTTCAACTCT CCAGCCATGT ATGTAGCAAT TCAAGCAGTG ACACAGATCA TGTTTGAAAC CTTCAATACC CCAGCAATGT ATGTMGCCAT CCAGGCNGTG ACCCAGATCA TGTTTGAGAC CTTCAACACC CCAGCCATGT ACGTCGCCAT CCAGGCCGTA ACCCAGATTA TGTTYGAGAC CTTCAAYWCY CCAGCCATGT ACGTNGCCAT CCAAGCTGTY ACCCAGATMA TGTTTGAGAC CTTCAACTCT CCAGCMATGT WTGTGCMCAT TCAAGCCGTA ACCCAGATCA TGTTCGAGAC CTTCAACACT CCAGCCATGT ACGTTGCCAT CCAGGCCGTA ACACAGATCA TGTTTGAAAC CTTCAACTCC CCAGCAATGT ACGTCGCCAT TCAAGCCGTA ACCCAGATTA TGTTYGAGAC YTTCAAYWCT CCAGCYATGT AYGTCGCTAT CCAAGCTGTC ACTCAGATCA TGTTTGAGAC ATTCAACACT CCAGCCATGT ATGTCGCCAT CCAGGCCGTA ACCCAGATCA TGTTTGAAAC ATTCAACTCW CCAGCCATGT ATGTCGCYAT CCAGGCAGTY ACCCAGATCA TGTTTGAGAC ATTYAACWCT CCAGCCATGT ATGTYGCSAT YCAGGCNGTT

	·····
	250 260 270 280 290 300
Achatina achatina Achatina fulica	CTTTCYTTRT ATGCTTCAGG TCGTACAACT GGTATTGTKC TGGATTCTGG WGATGGTGTM CTTTCTTTRT ATGCWTCAGG TCGTACAACT GGTATTGTKC TGGATTCTGG TGATGGTGTA
Achatina fullca Achatina stuhlmanni	
Cochlitoma ustulata	CTTTCTTTAT ATGCATCGGG TCGTACAACT GGTATTGTGC TGGATTCTGG TGATGGTGTA CTTTCTTTAT ATGCATCAGG TCGTACAACT GGTATTGTTC TGGATTCTGG TGATGGTGTA
Allopeas clavulinum	CTCTCCCCTGT ATGCCTCAGG TCGTACAACT GGTATTGTTC TGGATTCTGG TGATGGTGTA CTCTCCCCTGT ATGCCTCAGG TCGTACAACT GGTATTGTGC TTGATTCTGG AGATGGTGTC
Bocageia sp.	CTGTCCYTGT AYGCTTCWGG TCGKACNACY GGTRTWGTNC TKGATTCTGG WGATGGWGTY
Eutomopeas layardi	CTTTCCCTGT ATGCTTCTGG TCGTACTACT GGTATTGTGC TTGATTCTGG AGATGGTGTC
Leptinaria lamellata	CTGTCCCTGT ATGCCTCAGG TCGTACAACA GGTATTGTGC TAGATTCTGG AGATGGAGTC
-	CTCTCCCCTGT ATGCCTCTGG TCGTACAACA GGTATIGTGC TAGATICTGG AGATGGAGTC
Paropeas achatinaceum Riebeckia sp.	CTGTCCYTGT AYGCYTCAGG TCGTACAACT GGCATTGTGC TCGATTCTGG AGATGGTGTC CTGTCCYTGT AYGCYTCAGG TCGTACAACT GGGATTGTGC TAGATTCTGG WGATGGTGTC
Rumina decollata	CTGTCCYTGT AYGCYTCAGG TCGTACAACT GGGATTGTGC TAGATTCTGG WGATGGTGTC CTKTCYYTGT ATGCCTCTGG TCGTACAACT GGTATTGTGC TAGATTCTGG WGATGGTGTT
Subulina octona	CTGTCTCTGT ATGCTTCTGG TCGTACGACT GGTATCGTCT TGGATTCAGG AGATGGTGTT
Subulina striatella	CTATCTYTGT ATGCYTCTGG TCGTACSACW GGCATTGTCT TRGAYTCWGG AGATGGKGTK
Subulina vitrea	CTTTCCTTGT ATGCTTCTGG TCGTACAACT GGTATTGTKC TAGATTCTGG AGATGGTGTY
Subulona sp.	CTGTCCTTGT ATGCTTCAGG TAGGACAACT GGTATCGTGC TGGATTCTGG GGATGGAGTC
Tortaxis erectus	CTCTCACTGT ATGCCTCAGG TCGTACAACA GGTATTGTGT TAGACTCTGG TGATGGTGTC
Xerocerastus sp.	CTTTCCCTGT ATGCCTCTGG TCGTACAACT GGTATTGTGC TAGATTCTGG TGATGGTGTT
Zootecus insularis	CTATCCCTGT ATGCCTCTGG TCGTACAACT GGTATTGTGC TAGATTCTGG TGATGGTGTT
Coeliaxis blandii	CTTTCCCTGT ATGCCTCAGG TCGTACAACT GGYATTGTKC TAGATTCTGG TGATGGTGTC
Pyrgina umbilicata	CTGTCCYTGT ATGCCTCAGG TCGTACAACT GGAATTGTGC TAGATTCTGG AGAYGGWGTC
Glessula ceylanica	CTATCGCTNT ATGCCTCAGG TCGTACAACC GGTATTGTCC TAGATTCTGG TGATGGTGTC
Cecilioides gokweanus	CTGTCCCTGT ATGCTTCAGG TCGTACAACT GGTATTGTGC TAGATTCTGG TGATGGTGTC
Ferussacia folliculus	CTTTCCCTGT ATGCCTCAGG TCGTACCACT GGTATTGTCC TGGATTCTGG TGATGGTGTG
Thyrophorella thomensis	CTCTCCYTGT ATGCCTCAGG TCGTACAACT GGAATTGTGC TAGATTCTGG MGAYGGWGTC
Gibbulinella dewinteri	CTTTCCTTGT ATGCCTCGGG TCGTACCACG GGTATTGTGC TCGACTCTGG TGATGGTGTC
Gonaxis quadrilateralis	CTGTCTTTGT ATGCYTCAGG TCGTACTACA GGYATTGTSC TGGATTCTGG TGATGGTGTC
Gonospira sp.	CTKTCTTTGT ATGCCTCAGG TCGWACCACA GGYATTGTGC TGGAYTCTGG KGATGGTGTC
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Achatina achatina	ACYCAYACTG TNCCAATMTA TGARGGTTAT GCTCTTCCYC AYGCCATCAT GAGACTGGAY
Achatina fulica	ACCCACACTG TCCCAATTTA TGAAGGTTAT GCTCTACCTC ATGCCATCAT GAGACTGGAC
Achatina stuhlmanni	ACCCACACTG TCCCAATCTA TGAAGGTTAT GCTCTTCCCC ATGCCATCAT GAGACTGGAC
Cochlitoma ustulata	ACTCACACTG TCCCAATCTA TGAAGGTTAT GCTCTTCCCC ATGCCATCAT GAGACTGGAC
Allopeas clavulinum	ACTCACACTG TCCCTATCTA TGAAGGCTAT GCTCTACCAC ACGCCATCAT GAGATTAGAC
Bocageia sp.	WCYCAYACWG TSCCYATMTA TGAAGGTTAT GCCCTTCCTC ATGCCATCAT GAGRYTKGAC
Eutomonoga lawardi	

Achatir Achatir Cochlit Allopea Bocagei Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pvrgina umbilicata Glessula ceylanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp.

ACTCATACTG TCCCCATCTA TGAAGGCTAT GCTCTCCCAC ACGCCATCAT GAGATTAGAC ACTCACACAG TCCCTATATA TGAAGGTTAT GCCCTCCCTC ATGCTATTAT GAGACTGGAC ACTCATACTG TCCCTATCTA TGAAGGCTAT GCTCTCCCAC ATGCCATCAT GAGATTAGAC ACACACACTG TCCCCATCTA TGAAGGTTAT GCMCTTCCCC AYGCCATCAT GAGACTGGAT ACCCAYACTG TCCCCATCTA TGAAGGTTAT GCCCTTCCTC ATGCCATCAT GAGAYTGGAC ACCCACACTG TTCCCATCTA TGAAGGTTAT GCTCTTCCTC ATGCCATTAT GAGACTGGAC ACCCACACTG TWCCMATCTA TGAAGGCTAT GCTCTTCCTC ACGCCATCAT GAGACTGGAC ACTCACACTG TYCCCATCTA TGAAGGTTAT GCTCTTCCCC ATGCCATCAT GAGACTGGAT ACCCATACTG TCCCCATCTA CGAAGGTTAT GCTCTCCCAC ATGCCATCAT GAGACTGGAC ACCCACACTG TTCCCATCTA TGAAGGATAT GCCCTTCCTC ATGCCATCAT GAGACTGGAC ACCCATACTG TCCCCATATA TGAAGGTTAT GCCCTTCCCC ACGCCATCAT GAGACTGGAC ACCCACACTG TCCCYATCTA TGAAGGTTAT GCCCTTCCTC ATGCCATCAT GAGACTGGAY ACWCACACTG TCCCCATCTA TGAAGGTTAT GCCCTTCCTC ATGCCATCAT GAGACTGGAT ACTCAYACWG TCCCYATCTA YGAAGGTTAT GCTCTTCCTC ACGCCATYAT GAGACTRGAT ACCCACACTG TCCCTATYTW TGAAGGGTAT GCCCTTCCTC ATGCCATCAC GAGATTGGAC ACTCACACTG TTCCCATCTA TGAAGGTTAT GCTCTTCCTC ATGCCATCAT GAGACTGGAC ACCCACACTG TCCCCATCTA TGAAGGTTAC GCTTTGCCCC ACGCCATCAT GAGACTGGAT ACTCAYACWG TCCCYATMTA YGAAGGCTAT GCTCTTCCTC ACGCCATYAT GAGAYTGGAT ACCCACACGG TCCCCATCTA TGAAGGTTAT GCYCTTCCCC ACGCCATCAT GAGACTGGAT ACCCACACAG TCCCYATCTA TGAAGGTTAT GCTCTYCCCC AYGCCATCAT GAGACTGGAY ACCCAYACAG TCCCYATCTA TGAAGGTTAT GCCCTTCCTC AYGCCATYAT GAGATTGGAT

Achatina achatina Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas lavardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pvrgina umbilicata Glessula cevlanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp.

TTGGCTGGTC GTGACCTCAC AGATTACCTC ATGAAGATCC TCACAGAGAG AGGCTACAGC TTGGCTGGTC GTGACCTCAC AGATTACCTC ATGAAGATCC TCACAGAGAG AGGCTACAGC TTGGCTGGTC GTGACCTCAC AGATTACCTC ATGAAGATCC TCACAGAGAG AGGCTACAGC TTGGCTGGCC GTGACCTCAC CGACTACCTC ATGAAGATTC TGACTGAGCG AGGATACAGC YTGGCTGGYC GTGACCTTAC AGAYTACCTS ATGAAGATYC TSACWGAGAG AGGCTACAGC TTGGCTGGCC GTGACCTCAC TGACTACCTC ATGAAGATCC TCACTGAGCG AGGATACAGC TTGGCTGGTC GTGATCTCAC AGATTATTTG ATGAAGATTC TAACAGAGAG AGGCTACAGC TTGGCTGGCC GTGACCTCAC TGACTACCTC ATGAAGATTC TCACTGAGCG AGGCTACAGC CTGGCYGGCC GTGACCTCAC AGACTACCTC ATGAAGATCC TCACAGAGAG GGGCTACAGC TTGGCTGGTC GTGACCTYAC AGATTACCTC ATGAAGATCC TCACAGAGAG AGGCTACAGC TTGGCTGGTC GCGACCTGAC AGATTATCTA ATGAAGATTC TCACGGAGAG AGGTTACAGC TTGGCTGGTC GAGACCTGAC AGATTATCTG ATGAAGATTC TCACAGAGAG AGGTTACAGC CTGGCTGGCC GTGACCTCAC AGACTAYCTC ATGAAGATCC TGACAGAGAG AGGCYACAGC TTGGCTGGTC GAGACCTCAC AGACTACCTC ATGAAGATCC TCACTGAGAG AGGTTACAGC TTGGCTGGCC GTGACCTCAC AGATTACCTC ATGAARATCC TCACAGAGAG AGGTTACAGC TTGGCTGGTC GTGACCTCAC AGATTACCTC ATGAAAATCC TCACAGAGAG AGGCTACAGC TTGGCTGGTC GTGACCTCAC AGATTAYCTC ATGAAGATCC TCACAGAGAG AGGCTAYAGY CTGGCTGGCC GTGACCTCAC AGACTACCTC ATGAAGATCC TCACAGAGAG AGGCTACAGC CTGGCTGGCC GTGACCTCAC AGAYTAYCTC ATGAAGATCC TMACAGAGMG AGGMTACAGC CTGGCTGGAC GAGACCTCAC AGATTATCTC ATGAAGATTC TTMCAGAGAG AGGCTACCCC TTGGCTGGCC GTGACCTTAC AGATTACCTC ATGAAGATCC TCACAGAGAG AGGCTACAGC CTGGCTGGTC GTGATCTCAC AGATTACCTC ATGAAGATCC TYACAGAGAG AGGCTACAGC CTRGCTGGCC GTGAYCTCAC AGATTAYCTC ATGAAGATCC TCACAGAGAG AGGATACAGC CTGGCTGGCC GTGACCTTAC AGATTAYCTG ATGAAGATCC TCACAGAGAG AGGCTACAGT TTGGCYGGGC GTGACCTTAC AGATTACCTG ATGAAGATCC TCACAGAGAG AGGCTACAGC TTGGCTGGAC GTGACCTKAC AGATTAYYTG ATGAAGATCC TCACAGAGAG AGGCTAYAGC

TTCACCACCA CAGCTGAGAG AGAAATTGTT CGAGAYATCA ARGAGAAGCT GTGCTATGTG TTCACCACCA CAGCTGAGAG AGAAATTGTT CGAGACATCA AAGAGAAGCT TTGCTATGTG TTCACCACYA CAGCTGAGAG AGAAATTGTT CGAGACATCA AAGAGAAACT TTGCTATGTG TTCACCACCA CAGCTGAGAG AGAAATTGTT CGAGACATCA AAGAGAAGCT TTGCTATGTG TTCACTACAA CAGCCGAGAG AGAAATTGTA CGTGACATCA AGGAGAAACT TTGCTACGTT TTCACYACMA CWGCWGAGAG AGAAATTGTT CGAGAYATCA AGGAAAAACT TTSCTATGTY TTCACTACAA CAGCCGAGAG AGAAATTGTA CGCGACATCA AGGAGAAACT TTGCTACGTT TTCACAACAA CGGCTGAGAG AGAAATTGTA CGTGACATCA AGGAGAAACT TTGCTATGTT TTCACAACAA CAGCCGAGAG AGAAATTGTA CGTGACATCA AAGAGAAACT TTGCTACGTT TTCACCACYA CTGCYGAGAG AGAAATTGTT CGAGACATYA AAGARAAGCT TTSYTAYGTR TTCACCACCA CTGCTGAGAG AGAAATTGTT CGAGACATCA AGGAGAAGCT GTSCTATGTT TTCACAACCA CAGCTGAGAG AGAAATTGTT CGAGACATCA AGGAGAAACT TTGCTACGTC TTCACCACCA CAGCYGAGAG AGAAATTGTY CGAGACATCA AAGAGAAACT TTGCTACGTC TTCACCACCA CWGCTGAGAG AGAAATTGTT CGAGACATCA AGGAGAAACT CTGYTATGTT TTCACCACAA CGGCCGAGAG AGAAATTGTT CGAGACATCA AGGAGAAACT CTGCTACGTC TTCACYACYA CAGCYGAGAG AGAAATTGTT CGAGAYATCA AGGAGAAGCT KTSCTAYGTK TTCACCACCA CCGCTGAGAG AGAAATTGTT CGAGACATCA AGGAGAAGCT TTGCTATGTT TTCACCACCA CCGCTGAGAG AGAAATTGTT CGAGACATCA AGGARAAGCT TTSCTATGTT TTCACCACCA CTGCTGAGAG AGAAATYGTT MGAGACATCA ARGAGAAGCT TTSCTATGTT TTYACTACCA CAGCYGAGAG AGAAATTGTT MGWGACATCA ARGAGAARCT KTGYTAYGTK TTCACYACMA CAGCCGAGAG GRAAATYGTK CGAGACATGA AAGAGAAGCT TGCGTATGTT TTCACCACCA CAGCCGAGAG GGAAATTGTC CGAGACATCA AGGAGAAGCT TTCATACGTT TTCACCACCA CTGCTGAGAG AGAAATTGTS AGGGAYATCA AGGAGAAGCT CTGTTATGTT TTYACTACCA CAGCYGAGAG AGAAATTGTT MGRGAYATCA ARGAGAARCT NTSYTACGTK TTCACCACCA CTGCTGAGAG AGAGATTGTA CGAGACATCA AGGAGAAGCT CTGCTACGTT TTCACCACCA CTGCTGAGAG AGAAATTGTA MGAGACATCA AGGAGAARCT CTGCTACGTT TTCACCACCA CTGCWGAGAG AGAGATYGTA CGAGACATMA ARGARAAGCT MTGYTATGTT

	490					
Achatina achatina			GATGTCRACA			
Achatina fulica			RATGGCAACA			
Achatina stuhlmanni			GATGGCAACA			
Cochlitoma ustulata			GATGGCAACA			
Allopeas clavulinum			GATGGGAACA			
Bocageia sp.			AATGSACACA			
Eutomopeas layardi			GATGGGAACA			
Leptinaria lamellata			GATGGGTACA			
Paropeas achatinaceum	GCCCTAGATT	TCGAACAGGA	GATGGGAACA	GCTGCCACAT	CATCATCTTT	GGAGAAGAGC
Riebeckia sp.	GCTCTYGACT	TTGAGCAAGA	AAWGGSTACG	GCTGCCACAT	CWTCCTCAYT	AGAGAAGAGT
Rumina decollata	GCTCTTGACT	TTGAACAAGA	AATGGCAACA	GCTGCCACTT	CATCTTCWCT	GGAGAAAAGT
Subulina octona	GCCCTTGACT	TTGAACAAGA	AATGGGTACA	GCTGCCACAT	CGTCATCTTT	AGAGAAGAGC
Subulina striatella	GCCCTTGACT	TCGAACAAGA	AATGGGTACA	GCTGCCACAT	CCTCATCTTT	GGAGAAGAGT
Subulina vitrea	GCYCTTGACT	TCGARCARGA	AATGTCTACA	GCTGCCACRT	CWTCTTCACT	RGAGAAGAGT
Subulona sp.	GCACTTGACT	TTGAGCAGGA	GATGCAGACA	GCTGCTACAT	CATCATCTTT	GGAGAAAAGC
Tortaxis erectus	GCTCTAGACT	TTGAGCAGGA	GATGGCAACA	GCTGCCACTT	CATCTWCTCT	AGAGAAAAGT
Xerocerastus sp.	GCTCTTGACT	TTGAACAAGA	AATGGCAACA	GCTGCCACTT	CATCTTCACT	AGAGAAGAGT
Zootecus insularis	GCTCTTGAYT	TTGAACAAGA	AATGGCAACA	GCTGCCACAT	CATCTTCACT	AGAGAAGAGT
Coeliaxis blandii	GCTCTTGACT	TTGAGCAAGA	AATGGCTACA	GCTGCYACAT	CATCCTCATT	AGAGAAGAGT
Pyrgina umbilicata	GCTCTRGACT	TTGARCAAGA	RATGGCRACA	GCWGCYWCTT	CATCYWCYCT	NGAGAAGAGC
Glessula ceylanica	GCTCTGGACT	TTGAMCARGA	GATGCAGWTA	TCATCCAGYK	CTTCAWCAAT	TGAARAAAGT
Cecilioides gokweanus	GCWCTAGACT	TTGAGCAAGA	AATGGCAACA	GCTGCAACTT	CATCTTCACT	RGAGAAGAGC
Ferussacia folliculus	GCTCTGGATT	TTGAACAGGA	GATGGCTACA	GCTGCAACTT	CCTCCTCCCT	GGAGAAGAGC
Thyrophorella thomensis	GCTCTRGACT	TTGAGCAAGA	AATGGCAACA	GCTGCYACTT	CATCYTCYCT	GGAGAAGAGY
Gibbulinella dewinteri	GCTCTGGACT	TTGAGCAGGA	GATGGCAACA	GCTGCTACAT	CATCATCACT	TGAGAAGAGC
Gonaxis quadrilateralis	GCTCTGGACT	TTGAGCARGA	GATGGCMACA	GCTGCTACAT	CATCMTCCCT	TGAGAAGAGY
Gonospira sp.	GCTCTGGACT	TTGAACARGA	GATGGSWACW	GCWGCWWCAT	CATCWTCCCT	TGAGAAGAGC

> 600 TATGAATTGC CTGATGGACA RGTCATYACT ATTGGTAAYG AGCGYTTCAG RTGYCCAGAA TATGAATTRC CTGATGGACA GGTCATCACC ATTGGTAAYG AGCGTTTCAG ATGTCCAGAA TATGAATTGC CTGATGGACA GGTCATCACT ATTGGTAACG AGCGATTTAG GTGCCCAGAA TATGAATTAC CTGATGGACA GGTCATAACT ATTGGTAATG AGCGCTTCAG GTGCCCAGAA TACGAACTTC CAGATGGACA GGTCATCACG ATTGGCAACG AGCGCTTTAG ATGCCCTGAG TAYGAACTTC CTGATGGACA GGTCATCACC ATTGGCAATG ARCGWTTCAG ATGTCCWGAR TACGAGCTTC CAGATGGACA GGTCATCACA ATCGGCAATG AGCGCTTTAG ATGCCCCGAG TATGAGCTGC CTGATGGGCA AGTCATTACC ATTGGAAATG AGCGCTTCAG ATGCCCCGAG TACGAACTTC CAGATGGACA AGTTATCACA ATTGGCAATG AGCGCTTTAG ATGCCCCGAA TAYGAATTGC CTGATGGACA AGTCATCACC ATTGGYAAYG ARCGKTTCMG GWGYCCAGAA TATGAATTGC CTGAYGGACA GGTCATCACC ATCGGCAAYG AGCGTTTCAG ATGTCCAGAA TACGAACTTC CAGATGGGCA AGTGATTACC ATTGGCAATG AACGTTTCAG ATGCCCTGAG TACGAACTTC CAGATGGGCA AGTTATTACC ATTGGCAATG AACGTTTYAG ATGCCCTGAG TACGAGYTGC CTGATGGACA GGTCATCACT ATTGGCAAYG AGCGTTTCAG ATGYCCWGAA TACGAACTGC CAGATGGGCA AGTCATTACT ATTGGTAACG AGCGATTTAG ATGTCCCGAA TATGAACTRC CTGATGGACA GGTCATCACY ATTGGCAAYG AAAGATTCAG RTGNCCAGAA TACGAACTGC CTGATGGACA GGTCATCACC ATTGGCAATG AGCGCTTCAG GTGCCCAGAA TATGAATTGC CTGAYGGACA GGTCATCACC ATTGGCAATG AGCGTTTCAG RTGTCCAGAA TATGAATTGC CTGATGGACA AGTCATCACY ATCGGTAAYG AGCGTTTCAG ATGCCCWGAA TACGARYTKC CWGATGGACA GGTCATCACN ATTGGNAAYG AGCGYTTCAG RTGTCCWGAR TACGARCTKC CGGATGGAMA SRTMATYACM ATWGGAAACG AGCGATTCAG RTGTCCCGAA TACGAACTTC CCGATGGTCA AGTCATCACC ATTGGCAACG AGCGTTTCAG ATGTCCAGAA TACGAACTGC CTGACGGACA GGTCATCACT ATTGGCAACG AGCGATTCAG RGCTCCGGAA TACGARYTNC CWGATGGACA GGTYATCACN ATTGGWAAYG AGCGTTTCAG ATGTCCAGAA TAYGAACTTC CAGACGGACA GGTCATCACC ATTGGCAATG ARCGATTCAG GTGCCCAGAA TATGAACTRC CWGAYGGACA GGTCATYACY ATTGGMAACG ARCGWTTYAG RTGCCCAGAA TATGAAYTAC CTGAYGGACA GGTCATYACC ATTGGCAAYG ARMGWTTYAG GWSWCCTGAA

Achatina achatina Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas lavardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pvrgina umbilicata Glessula cevlanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp.

GCCATGTTCC AGCCWTCTTT CCTTGGTATG GARWCCGCAG GTATTCATGA RACCACYTAC GCAGAATTCC AGCCATCTTT CCTTGGTATG GAGTCTGCAG GTATTCACGA GACCACCTAC GCAGAATTCC AGCCATCTTT CCTTGGTATG GAGTCTGCAG GTATTCATGA GACCACCTAC GCAATGTTCC AGCCATCCTT CCTTGGTATG GAGTCTGCTG GTACCCATGA AACAACGTAC GCAATGTTYC AGCCATCTTT CCTKGGAATG GAGTCTGCWG GTATTCATGA GACYAYCTAC GCAATGTTCC AGCCATCCTT CCTTGGTATG GAGTCTGCTG GTACCCATGA AACAACGTAC GCAATGTTCC AACCATCTTT TCTTGGCATG GAATCTGCTG GCACACATGA AACAACATAC GCAATGTTCC AGCCATCATT CCTTGGTATG GAGTCTGCAG GTACCCATGA AACAACATAC GCAATGTTCC AGCCATCCTT YCTTGGYATG GAGTCTGCTG GTATTCAYGA RACCACYTAC GCAATGTTCC AGCCATCTTT CCTTGGTATG GAGTCTGCTG GTATTCATGA GACCACCTAC GCAATGTTTC AGCCATCTTT TCTGGGCATG GAATCTGCAG GTACTCATGA AACAACGTAC GCAATGTTYC AGCCATCTTT TCTGGGCATG GAATCTGCAG GTACTCACGA AACAACATAC GCAATGTTCC AGCCATCTTT CCTTGGTATG GARTCWGCTG GTAYTCACGA GACCACYTAC GCTGAGTTCC AACCATCTTT CTTGGGTATG GAGTCAGCTG GCATTCACGA AACTACCTAT GCWATGTTNC ARCCATCTTT TCTTGGTATG GAATCTGCTG GWATCCATGA GACCACATAC GCAGAATTCC AACCATCCTT CCTTGGTATG GAGTCTGCTG GTATTCATGA GACCACCTAC GCAATGTTCC AGCCATCTTT CCTTGGTATG GAGTCTGCTG GTATYCATGA GACCACCTAC GCAATGTTCC AGCCATCCTT CCTTGGWATG GAATCTGCTG GTATTCACGA GACCACCTAC GCAATRTTCC ARCCATCWTT CCTTGGYATG GARTCTGCYG GTATTCATGA AACCACCTAC GCTTTGTTCC AGCCATCTTT TCTAGGTMTA GAGATCRSTG GTATTCACGA AACCACTTAC GCAATGTTCC AGCCATCCTT CCTTGGTATG GAGTCTGCTG GTATTCACGA GACCACATAC GCAGAATTTC AGCCATCTTT CCTTGGCATG GAATCTGCCG GTATTCACGA AACAACCTAC GCAATRTTCC ARCCATCNTT CCTTGGTATG GAGTCWGCTG GTATTCATGA AACCACCTAC GCAATGTTCC AACCATCTTT CCTTGGTATG GAGTCTGCTG GTATCCACGA GACCACGTAC GCAATGTTYC AGCCATCWTT CYTTGGTATG GARTCTGCYG GYRTCCAYGA GACMACATAC GCAATGTTYC AGCCATCYTT CYTSGGYATG GAGTCTGCTG GTRTYCAYGA GACCACATAC

AACTCCATCA TGAAGTGTGA CGTCGACATC CGTAAAGACT TGTATGCCAA CACTGTATTA AACTCCATCA TGAAGTGTGA CGTCGACATC CGTAAAGACT TGTATGCCAA CACTGTATTG AACTCCATCA TGAAGTGCGA CGTCGACATC CGTAAAGACT TGTATGCCAA CACTGTACTT AACTCCATCA TGAAGTGCGA CGTCGACATC CGTAAAGACT TGTATGCCAA CACTGTATTG AATTCCATCA TGAAGTGCGA TGTTGACATC AGAAAAGACC TCTATGCCAA CACTGTTCTG AAYTCYATCA TGAAGTGTGA TGTYGAYATC CGTAAAGAYY TGTAYGCCAA YAYTGTACTG AATTCCATCA TGAAATGCGA TGTTGATATC AGAAAAGACC TCTATGCCAA CACTGTTCTG AATTCAATTA TGAAGTGTGA TGTTGATATC AGAAAAGACC TCTATGCCAA CACTGTACTA AATTCCATTA TGAAGTGCGA TGTTGATATC AGAAAAGACC TTTATGCTAA CACTGTATTG AAYTCCWTYA TGAARTGTGA YGTYGACATY CGTAAAGACT TGTATGCCAA CWCCGTCTTG AATTCCATCA TGAARTGTGA TGTYGACATC CGTAAAGACT TGTATGCCAA CACTGTCTTG AATTCAATCA TGAAGTGTGA CGTTGATATC CGAAAAGACC TTTATGCTAA CACTGTACTG AATTCAATCA TGAAATGTGA CGTCGATATC CGAAAAGACC TATATGCTAA CACTGTACTG AACTCCATCA TGAAGTGTGA TGTYGACATC CGTAAAGACT TGTATGCCAA CACTGTAYTG AACTCCATCA TGAAGTGTGA TGTTGACATC AGAAAAGACC TTTACGCCAA TACTGTGTTG AACTCCATCA TGAARTGTGA TGTTGACATC CGTAAAGACT TGTATGCAAA YACAGTTCTG AACTCCATCA TGAAGTGTGA TGTTGACATT CGTAAAGACT TGTATGCCAA CACTGTGTTG AACTCCATCA TGAARTGCGA TGTTGACATY CGTAAAGACY TGTATGCCAA CACTGTATTG AACTCCATCA TGAAGTGTGA CGTAGACATY CGTAAAGACT TGTACKCCAA CAYCGTATTG AACTCCATCA TGAAATGYGA YGTYGACATY CGTAAAGAYT TGTATGCCAA CACTGTATTG AACTCCATMA TSAAATGTGA CGTCGACATC CGTAAAGACC TGTAYGCMAA CACWGTCYTR AACTCCATCA TGAAGTGCGA CGTTGACATC CGTAAAGACT TGTATGCCAA CACTGTATTG AACTCCATCA TGAAGTGTGA CGTCGACATC CGTAAAGACT TGTACGCCAA CACTGTCCTC AAYTCYATCA TGAAATGCGA CGTYGAYATY CGWAAAGACY TGTATGCCAA CACTGTATTG AACTCCATCA TGAAGTGCGA CGTTGACATC CGTAAAGACT TGTACGCCAA CACCGTGCTG AACTCCATCA TGAARTGCGA YGTTGATATC CGTAAAGAYT TGTACKCCAA CACYGTNTTG AACTCCATCA TGAARTGTGA TGTRGAYATC CGMAAAGACT TGTATTCCAA CACTGTTCTG

	···· ··· ···	- 740				
Achatina achatina	TCTGGTGGAW CTA					
Achatina fulica	TCTGGTGGAW CTA					
Achatina stuhlmanni	TCTGGTGGCT CCA					
Cochlitoma ustulata	TCTGGTGGCT CCA					
Allopeas clavulinum	TCTGGTGGTT CCA					
Bocageia sp.	TCTGGMGGTT CYA					
Eutomopeas layardi	TCTGGTGGTT CCA					
Leptinaria lamellata	TCTGGTGGTT CCA					
Paropeas achatinaceum	TCTGGTGGGT CCA					
Riebeckia sp.	TCYGGWGGST CCA	ACCATGTT	CCCTGGSATC	GCTGACCGCA	TGCAGAAGGA	AATCACYKCT
Rumina decollata	TCTGGTGGNT CAP	ACAATGTT	CCCAGGCATC	GCTGACCGCA	TGCAGAAAGA	AATCACCAMT
Subulina octona	TCTGGCGGTT CTA	ACAATGTT	CCCTGGCATT	GCCGATCGCA	TGCAAAAGGA	AATCACGGCT
Subulina striatella	TCTGGCGGTT CWA	ACAATGTT	CCCTGGCATT	GCCGACCGCA	TGCAGAAGGA	AATCACAGCT
Subulina vitrea	TCTGGTGGTT CYA	ACAATGTT	YCCTGGCATY	GCCGACCGCA	TGCARAAGGA	AATYRTCAAT
Subulona sp.	TCTGGAGGGT CCA	ACGATGTT	CCCAGGCATC	GCTGACCGAA	TGCAGAAGGA	AATTACTTCT
Tortaxis erectus	TCTGGWGGTT CTA	ACCATGTW	CCCTGGARTT	GCTGAYCGCA	TGCAGAAGGA	AATCACAGMT
Xerocerastus sp.	TCTGGTGGCT CAA	ACAATGTT	CCCAGGCATC	GCTGACCGCA	TGCAGAAAGA	AATCACCAGC
Zootecus insularis	TCTGGTGGTT CAA	ACAATGTT	CCCTGGCATT	GCTGACCGCA	TGCAGAAAGA	AATCACCAAT
Coeliaxis blandii	TCTGGTGGTW CCW	ICAATGTT	CCCYGGTATY	GCTGACCGCA	TGCAGARGGA	AATCGTGAAC
Pyrgina umbilicata	TCTGGWGGTT CCA	ACAATGTT	CCCTGGAATC	GCTGACCGCA	TGCAGAAAGA	AATCACTKCY
Glessula ceylanica	TCTGGAGGAT CCA	ACAATGTW	TCCTGGAATT	GCTGACCGCA	TGCAGAAGGA	AATCACMGCS
Cecilioides gokweanus	TCTGGTGGCT CCA	ACCATGTT	CCCCGGCATC	GCTGACCGCA	TGCAGAAAGA	AATTACCTGC
Ferussacia folliculus	TCTGGAGGTT CAA	ACAATGTT	CCCTGGCATC	GCTGACCGCA	TGCAGAAAGA	GATCACGTCT
Thyrophorella thomensis	TCTGGWGGTT CCA	ACAATGTW	CCCTGGAATC	GCTGACCGCA	TGCAGAAAGA	AATCACTKCT
Gibbulinella dewinteri	TCTGGTGGGT CTA	ACCATGTA	CCCAGGCATC	GCCGACCGTA	TGCAGAAAGA	AATTACTTCC
Gonaxis quadrilateralis	TCTGGTGGTT CCA	ACCATGTA	YCCCGGCATT	GCTGACCGCA	TGCAGAAGGA	AATYACYTCC
Gonospira sp.	TCTGGAGGTT CTA	ACMATGTT	CCCWGGSATT	GCWGAYCGCA	TGCAAAARGA	AATYACKKSY

Achatina achatina Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pvrgina umbilicata Glessula cevlanica Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp.

> 840 CTGGCTCCAS CCACAATGAA GATCAAGATC ATTGCTCCAC CAGAACGTAA ATACTCTGTC CTGGCTCCTT CCACAATGAA GATCAAGATC ATTGCTCCAC CTGAGCGTAA ATACTCTGTC CTGGCTCCTG CCACAATGAA GATCAAGATC ATTGCTCCAC CTGAACGTAA ATACTCTGTC CTGGCTCCTG CCACAATGAA GATCAAGATC ATTGCTCCAC CTGAGCGTAA ATACTCTGTC TTGGCTCCAC CAACAATGAA GATCAAGATC ATTGCCCCAC CAGAAAGGAA GTACTCAGTC CTTGCTCCAY CCACAATGAA GATCAAGATC ATTGCTCCTC CYGAGMGGAA ATACTCAGTC TTGGCTCCAC CAACGATGAA GATCAAGATC ATCGCTCCAC CAGAGAGGAA GTACTCGGTC CTCGCACCAC CAACAATGAA AATCAAAATC ATCGCTCCAC CTGAGAGAAA GTACTCCGTA TTGGCTCCAC CAACAATGAA AATCAAGATC ATTGCCCCAC CAGAGAGAAA GTACTCAGTC CTKGCTCCAM CCACAATGAA GATCAAGATC ATTGCTCCAC CTGAAMGCAA ATACTCWGTC CTGGCTCCAC CCACAATGAA GATCAAAATC ATTGCTCCTC CTGAGAGAAA ATACTCTGTC CTAGCTCCAC CCACAATGAA AATCAAGATA ATTGCGCCAC CTGAAAGGAA ATATTCAGTC CTAGCTCCAC CCACAATGAA AATMAAAATA ATTGCACCAC CTGAACGGAA ATATTCGGTT CTTGCTCCAC CMACAATGAA GATCAAAATC ATCGCACCCC CAGAACGYAA ATACTCTGTG CTTGCTCCAG CAACAATGAA GATCAAGATA ATAGCTCCCC CTGAGAGGAA GTACTCTGTT TTRGCTCCAC CCACAATGAA GATCAAGATC ATAGCTCCTC CTGAACGCAA GTACTCTGTC CTGGCTCCAG CCACAATGAA GATCAAGATC ATTGCTCCTC CTGAGAGGAA ATACTCTGTC CTGGCYCCAC CCACGATGAA RATYAAAATC ATTGCTCCTC CTGAGAGAAA ATACTCTGTC CTTGCTCCAC CCACAATGAA GATCAAAATC ATTGCTCCCC CTGAACGTAA ATACTCAGTC CTTGCTCCAA CAACRATGAA GATCAAGATC ATYGCTCCAC CWGARAGRAA GTACTCAGTC CTGGCWCCAA SCACCATGAA AATCAAGATC ATTGCTCCCC CAGARCGGAA GTACTCTGTC TTGGCTCCAC CCACAATGAA GATCAAGATC ATCGCTCCCC CAGAGAGGAA ATACTCAGTC TTAGCCCCTG CCACCATGAA AATCAAGATC ATCGCTCCAC CAGAACGTAA ATACTCCGTG CTTGCTCCAG CAACAATGAA GATCAAGATC WTYGCTCCWC CTGAARRRAA GTACTCAGTC CTCGCTCCAC CCACAATGAA GATCAAGATC ATTGCTCCCC CCGAGCGTAA ATACTCTGTA CTKGCTCCAM STACAATGAA GATCAAGATY ATTGCTCCYC CWGAGCGNAA ATACTCTGTA YTKGCTCCAC CCACTATGAA RATCAAGATC ATTGCTCCCC CWGAGCGWAA GTAYTCTGTC

	850 860
Achatina achatina	TGGATTGGAG GTTCCATTCT G
Achatina fulica	TGGATTGGAG GATCCATCCT G
Achatina stuhlmanni	TGGATTGGAG GATCCATCCT G
Cochlitoma ustulata	TGGATTGGAG GATCCATCCT G
Allopeas clavulinum	TGGATTGGTG GCTCCATCTT G
Bocageia sp.	TGGATTGGAG GCTCCATCTT G
Eutomopeas layardi	TGGATCGGTG GCTCCATCTT G
Leptinaria lamellata	TGGATTGGTG GTTCAATCTT A
Paropeas achatinaceum	TGGATCGGTG GCTCCATCTT G
Riebeckia sp.	TGGATTGGAG GCTCCATCCT G
Rumina decollata	TGGATTGGAG GTTCCATCCT G
Subulina octona	TGGATTGGAG GCTCCATTTT G
Subulina striatella	TGGATTGGAG GCTCTATTTT G
Subulina vitrea	TGGATTGGAG GTTCCATCCT G
Subulona sp.	TGGATTGGTG GCTCCATCTT G
Tortaxis erectus	TGGATTGGAG GTTCCATCCT G
Xerocerastus sp.	TGGATTGGAG GTTCCATCCT G
Zootecus insularis	TGGATTGGAG GTTCCATCCT G
Coeliaxis blandii	TGGATTGGAG GTTCCATCCT G
Pyrgina umbilicata	TGGATCGGAG GTCCCATYTT G
Glessula ceylanica	TGGATTGGAG GTTCCATCCT G
Cecilioides gokweanus	TGGATCGGAG GCTCAATCCT G
Ferussacia folliculus	TGGATTGGTG GCTCCATCCT G
Thyrophorella thomensis	TGGATCGGAG GTTCCATCTT G
Gibbulinella dewinteri	TGGATCGGAG GCTCCATCTT G
Gonaxis quadrilateralis	TGGATCGGAG GCTCCATCTT G
Gonospira sp.	TGGATCGGAG GTTCCATTTT G

Appendix 3.3: Alignment of the histone 3 gene for the Achatinoidea and three streptaxid outgroup taxa. Note that sequencing was usuccessful for the achatinoids *Cecilioides gokweanus*, *Paropeas achatinaceum*, *Riebeckia* sp. and *Subulina vitrea* and the streptaxids *Gonaxis quadrilateralis* and *Gonospira* sp.

	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
	10 20 30 40 50 60
Achatina achatina	TCGTAAATCC ACCGGAGGCA AGGCTCCCCG CAAGCARCTG GCCACCAAGG CKGCCAGRAA
Achatina fulica	TCGTAAATCC ACCGGAGGTA AGGCTCCCCG CAAACAGCTT GCCACCAAGG CGGCTAGAAA
Achatina stuhlmanni	TCGCAAATCC ACCGGAGGTA AGGCTCCTCG CAAACAGCTT GCCACCAAGG CGGCTAGAAA
Cochlitoma ustulata	TCGCAAATCC ACCGGAGGTA AGGCTCCCCG CAAACAGCTT GCCACCAAGG CGGCTAGGAA
Allopeas clavulinum	TCGTAAATCY ACCGGAGGCA ARGCTCCCCG CAARCARCTG GCCACCAARG CNGCCAGGAA
Bocageia sp.	TCGCAAGTCC ACCGGTGGTA AAGCACCCCG CAAACAGCTT GCCACAAAGG CCGCTAGAAA
Eutomopeas layardi	TCGCAAATCT ACCGGAGGCA AAGCACCCCG CAAGCAGCTT GCCACCAAGG CGGCTAGGAA
Leptinaria lamellata	CCGAAAATCT ACTGGTGGTA AAGCACCCCG CAAGCAACTT GCCACCAAGG CTGCTAGAAA
Rumina decollata	TCGCAAATCC ACAGGAGGAA AAGCTCCCCG CAAACAGCTT GCCACTAAGG CGGCTAGAAA
Subulina octona	CCGTAAATCA ACTGGAGGAA AGGCACCACG CAAACAACTG GCCACTAAGG CAGCCAGAAA
Subulina striatella	CCGTAAATCA ACTGGAGGCA AGGCCCCGCG CAAACAGCTG GCCACTAAGG CGGCCAGAAA
Subulona sp.	GCGAAAGTCT ACCGGTGGCA AAGCTCCCCG CAAGCAGCTA GCCACCAAGG CGGCTAGAAA
Tortaxis erectus	CCGCAAATCT ACCGGAGGAA AGGCCCCTCG TAAACAGCTT GCCACCAAGG CTGCTAGAAA
Xerocerastus sp.	TCGYAAATCY ACCGGAGGYA ARGCTCCCCG CAARCARCTK GCCACCAARG CRGCYAGRAA
Zootecus insularis	CCGCAAGTCC ACCGGAGGCA AGGCTCCACG TAAACAGCTT GCCACCAAGG CGGCTAGAAA
Coeliaxis blandii	TCGYAAATYY ACCGGAGGCA AGGCTCCYCG CAARCARCTK GCCACCAARG CGGCYAGRAA
Pyrgina umbilicata	TCGTAAATCT ACCGGAGGCA AAGCACCCCG AAAGCAGCTT GCCACCAARG CGGCTAGGAA
Glessula ceylanica	CAGGAAATCA ACCGGAGGCA AGGCTCCGCG TAAACAGCTT GCCACCAAAG CTGCCAGAAA
Ferussacia folliculus	TCGTAAGTCT ACTGGTGGTA AGGCGCCACG CAAACAGTTG GCCACCAAAG CAGCCAGGAA
Thyrophorella thomensis	TCGTAAATCT ACCGGAGGCA AAGCACCCCG AAAGCAGCTT GCCACAAAGG CGGCTAGGAA
Gibbulinella dewinteri	ACGTAAATCC ACCGGAGGCA AGGCTCCACG AAAGCAGCTG GCCACCAAGG CAGCAAGGAA
	$\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots $
Achatina achatina	
Achatina achatina Achatina fulica	70 80 90 100 110 120
	70 80 90 100 110 120 RTCGGCCCCR GCCACMGGRG GTGTSAAGAA RCCCCATCGW TACAGGCCCG GCACNGTSGC
Achatina fulica	70 80 90 100 110 120 RTCGGCCCCR GCCACMGGRG GTGTSAAGAA RCCCCATCGW TACAGGCCCG GCACNGTSGC GTCGGCCCCG GCCACAGGAG GTGTCAAGAA ACCCCACAGA TACAGGCCCG GCACAGTCGC
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata	708090100110120RTCGGCCCCR GCCACMGGRG GTGTSAAGAA RCCCCATCGW TACAGGCCCG GCACNGTSGCGTCGGCCCCG GCCACAGGAG GTGTCAAGAA ACCCCACAGA TACAGGCCCG GCACAGTCGCGTCGGCCCCA GCCACAGGAG GTGTGAAGAA GCCCCACAGA TACAGGCCCG GCACAGTCGC
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum	708090100110120RTCGGCCCCRGCCACMGGRGGTGTSAAGAARCCCCATCGWTACAGGCCCGGCACNGTSGCGTCGGCCCCGGCCACAGGAGGTGTCAAGAAACCCCACAGAATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGAATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGAATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGAATACAGGCCCGGCACAGTCGC
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp.	70 80 90 100 110 120 RTCGGCCCCR GCCACMGGRG GTGTSAAGAA RCCCCATCGW TACAGGCCCG GCACNGTSGC GTCGGCCCCG GCCACAGGAG GTGTCAAGAA ACCCCACAGA TACAGGCCCG GCACAGTCGC GTCGGCCCCA GCCACAGGAG GTGTGAAGAA ACCCCACAGA TACAGGCCCG GCACAGTCGC GTCGGCCCCA GCCACAGGAG GTGTGAAGAA ACCCCACAGA TACAGGCCCG GCACAGTCGC ATCGGCCCCA GCCACAGGAG GTGTGAAGAA ACCCCACAGA TACAGGCCCG GCACAGTCGC
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi	708090100110120RTCGGCCCCRGCCACMGGRGGTGTSAAGAARCCCCATCGWTACAGGCCCGGCACNGTSGCGTCGGCCCCGGCCACAGGAGGTGTCAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTSAAGAAACCCCACCAGATACAGGCCCGGCACCGTGGCATCGGCCCCAGCCACAGGAGGTGTGAAGAAACCTCACCGATACAGGCCCGGCACAGTGGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCTCACCGATACAGGCCCGGCACAGTGGCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCTCACAGATACAGGCCCGGCACAGTGGC
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata	708090100110120RTCGGCCCCRGCCACMGGRGGTGTSAAGAARCCCCATCGWTACAGGCCCGGCACNGTSGCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGAATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGAATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACCAGAATACAGGCCCGGCACCGTGGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCTCACCGATACAGGCCCGGTACAGTGGCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCTCACAGATACAGGCCCGGCACAGTGGCGTCAGCCCCGGCTACCGGAGGTGTGAAGAAACCTCACAGATACAGGCCCGGCACAGTGCCGTCAGCCCCGGCTACTGGGGGTGTGAAGAAACCTCACAGATACAGGCCCGGCACAGTCGCGTCAGCCCCGGCTACTGGGGGTGTGAAGAAACCTCACAGATACAGGCCCGGCACAGTCGC
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Rumina decollata	708090100110120RTCGGCCCCRGCACMGGRGGTGTSAAGAARCCCATCGWTACAGGCCCGGCACNGTSGCGTCGGCCCCAGCACAGGAGGTGTCAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGAATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACCGATACAGGCCCGGCACAGTGGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCTCACCGATACAGGCCCGGCACAGTGGCGTCAGCCCCAGCTACCGGAGGTGTGAAGAAACCTCACAGATACAGGCCCGGCACAGTGCCGTCAGCCCCGGCTACTGGGGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCAGCCCCGGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACTGTCGCGTCGGCCCCGGCCACAGGAGGCGTGAAGAAACCCCACAGATACAGGCCCGGCACTGTCGCGTCGGCCCCGGCCACAGGAGGCGTGAAGAAACCCCACAGATACAGGCCCGGCACTGTCGC
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Rumina decollata Subulina octona	708090100110120RTCGGCCCCRGCACMGGRGGTGTSAAGAARCCCATCGWTACAGGCCCGGCACNGTSGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACCGATACAGGCCCGGCACAGTGGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCTCACCGATACAGGCCCGGCACAGTGGCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCTCACAGATACAGGCCCGGCACAGTCGCGTCAGCCCCGGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCGGCCACAGGAGGCGTGAAGAAACCCCAXCGATACAGGCCCGGCACTGTCGCGTCGGCCCCGGCCACAGGAGGCGTGAAGAAACCCCAYCGATACAGGCCCGGCACGGTCGCGTCGGCCCCGGCCACAGGAGGCGTGAAGAAACCCCAYCGATACAGGCCCGGCACGGTCGCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCCCAYCGATACAGGCCCGGCACGGTCGCGTCGGCCCCAGCACAGGAGGTGTCAAGAAACCCCAYCGATACAGGCCCGGCACGGTCGCGTCGGCCCCAGCACAGGAGGCGTGAAGAAACCCCAYCGATACAGGCCCGGCACGGTCGCGTCGGCCCCAGCACAGGAGGCGTGAAGAAACCCCAYCGATACAGGCCCGGCACGGTCGCGTCGGCCCCAGCACAGGAGGCGTGAAGAAACCCCAYCGATACAGGCCCGGCACGGTCGC
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Rumina decollata Subulina octona Subulina striatella	708090100110120RTCGGCCCCRGCCACMGGRGGTGTSAAGAARCCCCATCGWTACAGGCCCGGCACAGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGAATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGAATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCTCACAGATACAGGCCCGGCACAGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCTCACAGATACAGGCCCGGCACAGTGCCGTCGGCCCCAGCTACCGGAGGTGTGAAGAAACCCCACCAAGATACAGGCCCGGCACAGTCGCGTCGGCCCCGGCCACAGGAGGCGTGAAGAAACCCCAYCGATACAGGCCCGGCACGTCGCCGTCGGCCCCAGCCACAGGAGGCGTGAAGAAACCCCAYCGATACAGGCCCGGCACGGTCGCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCCCAYCGATACAGGCCCGGCACTGTCGCGTCCGCCCCGGCCACAGGAGGTGTCAAGAAACCCCAYCGATACAGGCCCGGCACTGTCGCGTCCGCCCCGGCCACAGGAGGTGTCAAGAAACCCCAYCGATACAGGCCCGGCACTGTCGCGTCCGCCCCGGCCACAGGGGGTGTCAAGAAACCCCAYCGATACAGGCCCGGCACTGTCGCGTCGGCCCCGGCCACAGGGGGTGTCAAGAAACCCCAYCGATACAGGCCCGGCACTGTCGCGTCGCCCCCGCCACAGGGGGTGTCAAGAAACCCCAYCGATACAGGCCCGGCACTGTCG
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Rumina decollata Subulina octona Subulina striatella Subulina sp.	708090100110120RTCGGCCCCRGCCACMGGRGGTGTSAAGAARCCCCATCGWTACAGGCCCGGCACAGTGCCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACCGTGGCATCGGCCCCAGCCACAGGAGGTGTGAAGAAACCTCACCGATACAGGCCCGGCACAGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCTCACAGATACAGGCCCGGCACAGTGCCGTCGGCCCCAGCTACCGGAGGTGTGAAGAAACCTCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCGGCCACAGGAGGCGTGAAGAAACCCCAYCGATACAGGCCCGGCACGGTCGCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCCCAYCGATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCCACAGGGGGTGTCAAGAAACCCCAYCGATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCCACAGGGGGTGTCAAGAAACCCCAYCGATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCCACAGGGGGTGTCAAGAAACCCCACCACGATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCCACAGGGGGTGTCAAGAAACCCCACACAGACAGGCCCGGCACTGTCGCGTCGGCCCCAGCCACAGGGGGTGTCAAGAAACCCCACACAGATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCCACAGGGGGTGTCAAGAAACCCCACACAGAACACGCCCGGCACTGT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Rumina decollata Subulina octona Subulina striatella Subulona sp. Tortaxis erectus	708090100110120RTCGGCCCCRGCCACMGGRGGTGTSAAGAARCCCCATCGWTACAGGCCCGGCACAGTGCCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACCAGATACAGGCCCGGCACAGTGCCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCTCACAGATACAGGCCCGGCACAGTGCCGTCGGCCCCGGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCGGCCACAGGAGGTGTCAAGAAACCCCACCGGCACTGTCGCGCACTGTCGCGTCGGCCCCGGCCACAGGAGGTGTCAAGAAACCCCACCAGATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCCCACCAGATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCCCACAGATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCCCACAGATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCCCACAGATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACACAGATACAGGCCCGGCACTGTC
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Rumina decollata Subulina octona Subulina striatella Subulona sp. Tortaxis erectus Xerocerastus sp.	708090100110120RTCGGCCCCRGCCACMGGRGGTGTSAAGAARCCCCATCGWTACAGGCCCGGCACAGTGCCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACCAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACCGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCTACTGGGGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCCCACCAGATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCCACAGGGGGTGTCAAGAAACCCCACCAGATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCCCACAGATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACCGTGGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACCAGAGTACAGGCCCGGCACCGTGGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACCACAGATACAGGCCCGGCACCGTGGCGTCGGCCCCAGCCACAGGAGGTGTAAGAAACCCCACCACAGATACAGGCCCGGCACCGTGCCGTCGGCCCCGGCCACAGGAGGTGTAAGAAACCCCACCACAGATACAGGCCCG
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Rumina decollata Subulina octona Subulina striatella Subulina sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis	708090100110120RTCGGCCCCRGCACMGGRGGTGTSAAGAARCCCATCGWTACAGGCCCGGCACMGTSGCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGAATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACCAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCTCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCTACCGGAGGTGTGAAGAAACCTCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCTACTGGGGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACGGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACGGTCGCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCCCACAGATACAGGCCCGGCACGTGCCCGTCGGCCCCAGCGACAGGGGGTGTCAAGAAACCCCACAGATACAGGCCCGGCACCGTGGCGTCGGCCCCAGCGACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACCGTGGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGAGTACAGGCCCGGCACCGTGGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGAGTACAGGCCCGGCACCGTGGCGTCGGCCCCGGCCACAGGAGGTGTGAAGAAACCCCACAGAGTACAGGCCCGGCACGTGCCGTCGGCCCCGGCCACAGGAGGTGTGAAGAAACCCCACAGAGTACAGGCCCGGCACGTGCC
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Rumina decollata Subulina octona Subulina striatella Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii	708090100110120RTCGGCCCCRGCCACMGGRGGTGTSAAGAARCCCCATCGWTACAGGCCCGGCACAGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCTCACAGATACAGGCCCGGCACAGTGCCGTCGGCCCCAGCTACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCTACAGGAGGTGTCAAGAAACCCCACCAGATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCCCACCAGATACAGGCCCGGCACGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACCAGATACAGGCCCGGCACCGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACCAGATACAGGCCCGGCACCGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACCAGAATACAGGCCCGGCACCGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACCACAGATACAGGCCCGGCACCGTGCCGTCGGCCCCAGCCACAGGAGGTGTAAGAAACCCCACCACAGATACAGGCCCGGCACGTGCCGTCGGCCCCAGCCACAGGAGGTGTAAGAAACCCCACCACAGATACAGGCCCGG
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Rumina decollata Subulina octona Subulina striatella Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata	708090100110120RTCGGCCCCRGCCACMGGRGGTGTSAAGAARCCCCATCGWTACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACCGTGGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACCGATACAGGCCCGGCACAGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTGCCGTCGGCCCCAGCTACAGGAGGTGTCAAGAAACCCCACAGATACAGGCCCGGCACGTGCCCGTCGGCCCCGGCCACAGGAGGTGTCAAGAAACCCCACCGATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCCCACCAGATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACCAGAATACAGGCCCGGCACCGTGCCGTCGGCCCCAGCACAGGAGGTGTGAAGAAACCCCACAGAATACAGGCCCGGCACCGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGGATACAGGCCCGGCACCGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGGATACAGGCCCGGCACGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGGTACAGGCCCGGCACGTGCCGTCGGCCCCAGCCACAGGAGGTGTAAGAAACCCCACAGGATACAGGCCCGGCACGTGCC
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Rumina decollata Subulina octona Subulina striatella Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica	708090100110120RTCGGCCCCRGCCACMGGRGGTGTSAAGAARCCCCATCGWTACAGGCCCGGCACAGTGCCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACCAGATACAGGCCCGGCACAGTGCCATCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACCAGATACAGGCCCGGCACAGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCTCACAGATACAGGCCCGGCACAGTGCCGTCGGCCCCAGCTACCGGAGGTGTGAAGAAACCTCACAGATACAGGCCCGGCACAGTGCCGTCGGCCCCGGCCACAGGAGGTGTCAAGAAACCCCACCAGATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCACAGGAGGTGTCAAGAAACCCCACCAGAATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCACAGGAGGTGTGAAGAAACCCCACCAGAATACAGGCCCGGCACCGTGCCGTCGGCCCCAGCACAGGAGGTGTGAAGAAACCCCACCAGAATACAGGCCCGGCACCGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACCAGAATACAGGCCCGGCACCGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACCACAGATACAGGCCCGGCACCGTGCCGTCGGCCCCAGCCACAGGAGGTGTAAAGAAACCCCACCACAGATACAGGCCCGGCACCGTGCCGTCGGCCCCAGCCACAGGAGGTGTAAAGAAACCCCACCACAGATACAGGCCCG
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Rumina decollata Subulina octona Subulina striatella Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus	708090100110120RTCGGCCCCRGCCACMGGRGGTGTSAAGAARCCCCATCGWTACAGGCCCGGCACAGTGCCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCTCACAGATACAGGCCCGGCACAGTGCCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCTCACAGATACAGGCCCGGCACAGTGCCGTCGGCCCCAGCTACTGGGGGTGTCAAGAAACCTCACAGATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCCCACAGATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCCCACAGATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACCGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGAGTACAGGCCCGGCACGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGAGTACAGGCCCGGCACGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGAGTACAGGCCCGGCACGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGAGTACAGGCCCGGCACGTGCC </th
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Rumina decollata Subulina octona Subulina octona Subulina striatella Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis	708090100110120RTCGGCCCCRGCCACMGGRGGTGTSAAGAARCCCCATCGWTACAGGCCCGGCACAGTGCCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTGGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTGGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTGGCGTCGGCCCCAGCTACTGGGGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCCCACAGATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCCCACAGATACAGGCCCGGCACCGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACCGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACCGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACGTGCCGTCGGCCCCAGCCACAGGAGGTGTAAGAAACCCCACAGATACAGGCCCGGCACGTGCCGTCGGCCCCAGCCACAGGAGGTGTAAGAAACCCCACAGATACAGGCCCGGCACGTGCC
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Rumina decollata Subulina octona Subulina striatella Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus	708090100110120RTCGGCCCCRGCCACMGGRGGTGTSAAGAARCCCCATCGWTACAGGCCCGGCACAGTGCCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACAGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCTCACAGATACAGGCCCGGCACAGTGCCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCTCACAGATACAGGCCCGGCACAGTGCCGTCGGCCCCAGCTACTGGGGGTGTCAAGAAACCTCACAGATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCCCACAGATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCCACAGGAGGTGTCAAGAAACCCCACAGATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACTGTCGCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGATACAGGCCCGGCACCGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGAGTACAGGCCCGGCACGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGAGTACAGGCCCGGCACGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGAGTACAGGCCCGGCACGTGCCGTCGGCCCCAGCCACAGGAGGTGTGAAGAAACCCCACAGAGTACAGGCCCGGCACGTGCC </th

130) 140) 150) 160) 170) 180
TCTKCGAGAR	ATCCGTCGTT	ACCAGAAGAG	CACKGAGCTC	CTCATCCGCA	AGCTGCCCTT
ACTTCGAGAG	ATCCGTCGTT	ACCAGAAGAG	CACTGAGCTT	CTCATCCGCA	AACTGCCCTT
ACTTCGAGAG	ATCCGTCGTT	ACCAGAAGAG	CACGGAGCTT	CTCATCCGCA	AACTGCCATT
ACTTCGAGAG	ATCCGTCGTT	ACCAGAAGAG	CACGGAGCTT	CTCATTCGCA	AACTGCCCTT
TCTGCGAGAR	ATCCGTCGTT	ACCAGAAGAG	CACTGAGCTS	CTCATCCGCA	AGCTGCCCTT
ACTTCGAGAG	ATCCGTCGTT	ACCAGAAGAG	CACAGAGCTC	CTCATCCGTA	AACTGCCTTT
ACTTCGAGAG	ATCCGTCGTT	ACCAGAAGAG	CACGGAGCTC	CTCATCCGCA	AGCTGCCCTT
ACTTCGAGAG	ATCCGTCGTT	ACCAGAAGAG	CACGGAACTT	CTCATCCGCA	AGCTGCCCTT
GCTTCGAGAG	ATCCGACGTT	ACCAGAAGAG	CACAGAGCTT	CTCATCCGCA	AGCTGCCCTT
ACTTCGAGAG	ATCCGCCGTT	ATCAGAAGAG	CACGGAGCTT	CTCATCCGCA	AGCTGCCCTT
ACTTCGAGAG	ATCCGCCGTT	ACCAGAAGAG	CACGGAGCTC	CTCATCCGCA	AGCTGCCCTT
ACTCCGAGAG	ATCCGCCGTT	ACCAGAAGAG	CACCGAGCTT	CTCATCCGCA	AACTGCCCTT
ACTCAGAGAG	ATCCGCCGTT	ACCAGAAGAG	CACAGAGCTG	CTCATCCGCA	AATTGCCCTT
TCTGCGAGAG	ATCCGTCGTT	ACCAGAAGAG	CACTGAGCTK	CTCATCCGCA	AGCTGCCCTT
ACTTCGAGAG	ATCCGTCGTT	ACCAGAAGAG	CACAGAGCTT	CTCATCCGCA	AACTGCCCTT
TCTKCGAGAG	ATCCGTCGTT	ACCAGAAGAG	CACKGAGCTN	CTCATCCGCA	ARCTGCCCTT
ACTCCGAGAG	ATCCGTCGTT	ACCARAAGAG	CACGGAGCTM	CTCATCCGCA	AGCTGCCCTT
ACTTCGAGAG	ATCCGCCGTT	ACCAGAAGAG	CACGGAGCTG	CTCATCCGAA	AACTGCCCTT
ACTCCGTGAG	ATCCGTCGTT	ACCAGAAGAG	CACAGAGCTG	CTCATCCGCA	AACTGCCCTT
ACTCCGAGAG	ATCCGTCGTT	ACCAGAAGAG	CACGGAGCTT	CTCATCCGCA	AGCTGCCCTT
TCTTCGTGAG	ATTCGTCGTT	ATCAGAAAAG	CACGGAACTT	CTCATCCGCA	AACTGCCCTT

CCAGCGCCTG	GTCAGAGAAA	TCGCCCAGGA	CTTCAAGACY	GACCTCCCCT	TCCAGAGCTC
CCAGCGGCTG	GTCAGAGAGA	TCCCCCACCA	CTTTAAGACC	GATCTGCGTT	TCCAGAGCTC
CCAGCGGCIG	GTCAGAGAGA	TCGCACAGGA	CTTCAAGACC	GATCTGCGTT	TCCAGAGCTC
00110000010	01011011011011			0111 01 00011	
CCAGCGGCTG	GTCAGAGAGA	TCGCCCAGGA	CTTCAAGACC	GATCTGCGTT	TCCAGAGCTC
CCAGCGCCTG	GTSMGAGAAA	TYGCYCAGGA	CTTCAAGACY	GACCTGCGYT	TCCAGAGCTC
CCAGCGCCTG	GTCAGAGAAA	TCGCCCAGGA	TTTCAAAACC	GACCTGCGTT	TCCAGAGCTC
CCAGCGTCTG	GTCAGAGAGA	TCGCCCAGGA	CTTTAAGACA	GATCTGCGTT	TCCAGAGCTC
CCAGCGCCTG	GTCAGAGAAA	TCGCTCAGGA	CTTTAAAACA	GATCTGCGTT	TCCAAAGTTC
CCAGCGCCTT	GTCAGAGAGA	TCGCGCAGGA	TTTCAAGACT	GACCTGCGTT	TTCAGAGCTC
CCAGCGCCTG	GTCAGAGAAA	TCGCCCAGGA	TTTCAAGACG	GACCTGCGCT	TCCAGAGCTC
CCAGCGACTG	GTCAGAGAAA	TCGCCCAGGA	TTTCAAGACC	GACCTGCGCT	TCCAGAGCTC
CCAGCGACTG	GTGAGAGAAA	TCGCCCAGGA	CTTCAAGACC	GATCTTCGAT	TCCAGAGCTC
CCAGCGCCTT	GTCAGGGAGA	TCGCACAGGA	CTTTAAGACT	GACCTGCGTT	TCCAGAGCTC
CCAGCGCCTG	GTSMGAGARA	TYGCYCAGGA	YTTCAAGACY	GAYCTGCGYT	TCCAGAGCTC
CCAGCGCCTG	GTCAGAGAGA	TCGCGCAGGA	TTTCAAGACT	GATCTGCGCT	TCCAGAGCTC
CCARCGCCTG	GTSMGAGAAA	TCGCYCAGGA	YTTCAAGACY	GAYCTGCGYT	TCCAGAGCTC
CCAGCGCCTG	GTCAGAGAAA	TCGCTCAGGA	CTTCAAGACC	GATCTGCGCT	TCCAGAGCTC
CCAGCGCCTG	GTCAGAGAGA	TTGCCCAGGA	CTTCAAGACC	GACCTGCGTT	TCCAGAGCTC
CCAGCGACTG	GTCAGAGAAA	TCGCACAGGA	CTTCAAGACT	GACCTGCGCT	TCCAAAGCTC
CCAGCGCCTG	GTCAGAGAAA	TCGCTCAGGA	CTTCAAGACC	GATCTGCGCT	TCCAAAGCTC
CCAACGCTTG	GTAAGAGAAA	TTGCACAGGA	CTTCAAGACA	GATCTGCGCT	TCCAGAGCTC

GGCYGTCATG GCCCTGCAAG AGGCYAGCGA RGCCTACCTG GTGGGTCTGT TYGAGGACAC GGCTGTCATG GCACTGCAAG AGGCTAGCGA GGCCTACCTG GTGGGTCTGT TTGAGGACAC GGCTGTCATG GCACTGCAAG AGGCTAGCGA GGCCTACCTG GTGGGTCTGT TTGAGGACAC GGCTGTCATG GCACTGCAAG AGGCTAGCGA GGCCTACCTG GTGGGTCTGT TTGAGGACAC SGCTGTCATG GCYCTGCARG AGGCCAGCGA RGCCTACCTG GTSGGYCTST TTGAGGACAC GGCTGTCATG GCTCTGCAAG AGGCTAGCGA GGCCTACCTG GTCGGTCTGT TTGAGGACAC GGCTGTCATG GCACTGCAGG AAGCCAGCGA GGCCTACCTC GTAGGTCTGT TTGAAGACAC AGCTGTCATG GCTCTGCAGG AGGCTAGCGA GGCCTACCTT GTGGGTCTGT TCGAAGACAC RGCYGTCATG GCACTGCAGG AGGCTAGCGA GGCMTACYTR GTGGGCCTGT TTGAGGACAC GGCTGTCATG GCGCTGCAGG AGGCCAGCGA GGCCTACCTC GTAGGTCTGT TTGAGGACAC GGCTGTCATG GCGCTGCAGG AGGCCAGCGA GGCCTACCTG GTAGGTCTGT TTGAGGACAC TGCTGTCATG GCACTGCAAG AGGCTAGCGA GGCTTACCTG GTCGGCCTGT TCGAGGACAC GGCCGTCATG GCTCTGCAGG AAGCAAGCGA GGCCTATCTG GTGGGTCTGT TCGAGGACAC SGCTGTCATG GCYCTGCARG AGGCYAGCGA RGCCTACCTG GTSGGYCTST TTGAGGACAC GGCTGTCATG GCACTGCAGG AGGCTAGCGA GGCCTACCTG GTGGGTCTGT TTGAGGACAC SGCTGTCATG GCYCTGCAAG AGGCYAGCGA RGCCTACCTG GTSGGTCTST TTGAGGACAC GGCTGTCATG GCACTGCAGG AAGCCAGCGA GGCCTACCTC GTAGGTCTGT TTGAAGACAC AGCTGTCATG GCACTGCAGG AAGCCAGCGA AGCCTAYTTG GTGGGTTTGT TCGAGGACAC SGCCGTCATG GCCCTGCAAG AGGCAAGYGA GGCCTACCTT GTGGGTCTGT TTGAAGACAC GGCTGTCATG GCACTGCAGG AAGCCAGCGA GGCCTACCTC GTAGGTCTGT TTGAAGACAC RGCCGTCATG GCATTGCAGG AGGCCAGCGA GGCTTACCTC GTGGGTCTCT TTGAGGACAC

Achatina achatina Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Rumina decollata Subulina octona Subulina striatella Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri

Achatina achatina Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Rumina decollata Subulina octona Subulina striatella Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri

Achatina achatina Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Eutomopeas lavardi Leptinaria lamellata Rumina decollata Subulina octona Subulina striatella Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri

	310 320
Achatina achatina	YAACYTGTGC GCYATCCACG CCAARCGT
Achatina fulica	CAACCTGTGC GCCATCCACG CCAAACGT
Achatina stuhlmanni	CAACCTGTGC GCCATYCACG CCAAACGT
Cochlitoma ustulata	CAACCTGTGC GCCATCCACG CCAAACGT
Allopeas clavulinum	CAACYTGTGC GCCATCCAYG CCAAGCGT
Bocageia sp.	CAACCTGTGC GCCATCCATG CCAAGCGG
Eutomopeas layardi	CAATCTGTGC GCAATTCACG CCAAGCGT
Leptinaria lamellata	CAACCTGTGC GCCATCCATG CCAAACGT
Rumina decollata	CAACCTGTGC GCCATCCACG CCAAACGT
Subulina octona	CAACCTGTGC GCCATCCACG CCAAGCGT
Subulina striatella	CAACCTGTGC GCCATCCACG CCAAACGT
Subulona sp.	CAACCTCTGC GCCATCCATG CCAAGCGC
Tortaxis erectus	AAACCTGTGC GCCATCCACG CCAAGCGA
Xerocerastus sp.	CAACTTGTGC GCCATCCAYG CCAARCGT
Zootecus insularis	CAACCTGTGC GCCATCCACG CCAAACGT
Coeliaxis blandii	CAACYTGTGC GCYATCCAYG CYAAGCGY
Pyrgina umbilicata	CAACCTGTGC GCCATCCATG CCAAGCGT
Glessula ceylanica	CAACCTGTGC GCCATCCACG CCAAACGT
Ferussacia folliculus	CAACCTGTGT GCCATCCACG CCAAGCGT
Thyrophorella thomensis	TAACCTGTGC GCCATCCATG CCAAGCGT
Gibbulinella dewinteri	CAACCTGTGC GCTATCCACG CCAAGCGT

Appendix 3.4: Alignment of the CO1 gene for the Achatinoidea and three streptaxid outgroup taxa. Note that sequencing was usuccessful for *Cecilioides gokweanus* as well as the streptaxids *Gonaxis quadrilateralis* and *Gonospira* sp.

.

	10 20 30 40 50 60
Achatina achatina	AGGTACAGGC CTATCATTGT TAATTCGATT AGAATTAGGG ACAGCTGGGG TTTTAACCGA
Achatina fulica	TGGCACAGGC TTGTCACTCT TAATTCGGTT AGAGCTTGGA ACAGTGGGAA CCTTAACTGA
Achatina stuhlmanni	TGGTACCGGC TTGTCTTTAC TTATCCGGCT AGAACTAGGG AGTATTGGAA CACTGACTGA
Cochlitoma ustulata	GGGCACAGGT CTATCTTTAT TGATCCGACT AGAGCTAGGA ACGACCTCTA CTTTAACTGA
Coeliaxis blandii	TGGGACTGGG TTATCTTTAC TTATTCGTTT AGAATTAGGT ACTGTTGGAG TTTTAACTGA
Pyrgina umbilicata	CGGGACTGGT CTATCTTTAT TAATCCGTTT AGAACTCGGA ATAGGGGGCG TGTTAATTGA
Glessula ceylanica	CGGTACAGGA TTATCATTAT TAATTCGGTT AGAATTAGGA ACAACTGGTG TATTGACGGA
Ferussacia folliculus	TGGAACTGGC TTATCTTTGC TTATTCGTTT AGAATTAGGT ACATCGGGCG TCTTAACAGA
Thyrophorella thomensis	TGGAACAGGT TTGTCATTAC TGATCCGTCT GGAGTTAGGA ACAGCCGGTG TACTAGTTGA
Allopeas clavulinum	TGGGACAGGA TTATCTCTTC TCATTCGTTT TGAGTTAGGT ACTAGTGGGG TGTTAACCGA
Bocageia sp.	AGGTACCGGC TTATCCTTAT TAATTCGTCT GGAATTAGGA ACCTCTGGTG TTTTGACTGA GGGGACAGGT TTATCATTAC TAATCCGTTT AGAATTAGGA ACTAGCGGAG TTTTAACTGA
Eutomopeas layardi Leptinaria lamellata	AGGTACAGGT TTATCATTAC TAATCCGTTT AGAATTAGGA ACTAGCGGAG TTTTAACTGA
Paropeas achatinaceum	TGGGACTGGT TTATCTTTAC TAATTCGTCT TGAGTTAGGA ACTAGGGAAG TGTTAACAGA
Riebeckia sp.	TGGGACTGGT TTATCTTTAT TAATTCGATT AGAGTTAGGA ACTAGGGGAG IGITAACCGA
Rumina decollata	TGGTACTGGT TTATCTCTTC TTATTCGTTT AGAGTIAGGT ACHCAGGIG TGTTAACAGA
Subulina octona	TGGGACTGGT TTATCATTAT TAATTCGTTT AGAGCTTGGG ACGGCTGGAG TGTTAACAGA
Subulina striatella	TGGGACGGGT TTGTCATTAT TAATTCGACT TGAGTTAGGT ACTGCTGGTG TTTTAACGGA
Subulina vitrea	TGGTACAGGG CTTTCCCTTT TAATTCGTAT TGAGCTTGGA ACTGCTGGGG TTCTTACTGA
Subulona sp.	AGGGACAGGA TTATCTTTAT TAATTAGTTT AGAATTAGGG ACTGTAAGGG TATTAGTAGA
Tortaxis erectus	TGGGACAGGG TTGTCTTTAT TGATTCGTCT TGAACTAGGT ACTTCTGGTG TATTAACAGA
Xerocerastus sp.	TGGTACTGGA CTATCTTTAT TAATTCGGCT TGAGTTAGGA ACAGCTGGTG TTTTAACTGA
Zootecus insularis	TGGGACAGGG TTGTCGTTAC TAATTCGGCT TGAATTAGGT ACCTCAGGTG TGTTAACAGA
Gibbulinella dewinteri	TGGGACCGGT TTGTCCTTAT TAATTCGGCT AGAATTAGGT ACAGCTGGGG TTCTTATTGA
	70 80 90 100 110 120
Achatina achatina	70 80 90 100 110 120 TGATCATTTC TTTAATGTAG TGGTGACAGC CCATGCTTTT GTTATAATTT TTTTTATAGT
Achatina fulica	70 80 90 100 110 120 TGATCATTTC TTTAATGTAG TGGTGACAGC CCATGCTTTT GTTATAATTT TTTTTATAGT TGATCACTTT TTCAACGTGG TTGTAACTGC GCATGCTTTT GTCATAATTT TTTTTATGGT
Achatina fulica Achatina stuhlmanni	70 80 90 100 110 120 TGATCATTTC TTTAATGTAG TGGTGACAGC CCATGCTTTT GTTATAATTT TTTTTATAGT TGATCACTTT TTCAACGTGG TTGTAACTGC GCATGCTTTT GTCATAATTT TTTTTATGGT CGATCATTTT TTTAATGTTG TAGTTACTGC TCATGCTTTT GTGATAATTT TTTTTATAGT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata	708090100110120TGATCATTTCTTTAATGTAGTGGTGACAGCCCATGCTTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTCAACGTGGTTGTAACTGCGCATGCTTTTGTCATAATTTTTTTTATAGGTCGATCATTTTTTTAATGTTGTAGTTACTGCTCATGCTTTTGTGATAATTTTTTTTATAGTTGATCATTTCTTTAATGTTATCGTGACAGCGCACGCTTTTGTAATAATTTTTTTCATAGT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii	708090100110120TGATCATTTCTTTAATGTAGTGGTGACAGCCCATGCTTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTCAACGTGGTTGTAACTGCGCATGCTTTTGTCATAATTTTTTTTATAGGTCGATCATTTTTTTAATGTTGTAGTTACTGCTCATGCTTTTGTGATAATTTTTTTTATAGTTGATCATTTCTTTAATGTTATCGTGACAGCGCACGCTTTTGTAATAATTTTTTTCATAGTTGATCATTTTTTTAATGTGGTTGTAACTGCTCATGCTTTTGTAATAATTTTTTTCATAGTTGATCATTTTTTTAATGTGGTTGTAACTGCTCATGCTTTTGTAATAATTTTTTTTATAGT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata	70 80 90 100 110 120 TGATCATTC TTTAATGTAG TGGTGACAGC CCATGCTTTT GTTATAATTT TTTTTATAGT TGATCACTTT TTCAACGTGG TTGTAACTGC GCATGCTTTT GTCATAATTT TTTTTATGGT CGATCATTTT TTTAATGTTG TAGTTACTGC TCATGCTTTT GTGATAATTT TTTTTATAGT TGATCATTTC TTTAATGTTA TCGTGACAGC GCACGCTTTT GTAATAATTT TTTTTATAGT TGATCATTTT TTTAATGTGG TTGTAACTGC TCATGCGTTT GTAATAATTT TTTTTATAGT TGACCACTTT TTCAATGTTG TTGTAACAGC TCATGCGTTT GTAATAATTT TTTTTATAGT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica	708090100110120TGATCATTCTTTAATGTAGTGGTGACAGCCCATGCTTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTCAACGTGGTTGTAACTGCGCATGCTTTTGTCATAATTTTTTTTATAGGTTGATCATTTTTTAATGTGTAGTTACTGCTCATGCTTTTGTGATAATTTTTTTTATAGTTGATCATTTCTTTAATGTGGTCGTGACAGCCCATGCTTTTGTAATAATTTTTTTTATAGTTGATCATTTTTTTTAATGTGGTTGTAACAGCCCATGCTTTTGTAATAATTTTTTTTATAGTTGACCACTTTTTCAATGTGGTTGTAACAGCTCATGCGTTTGTAATAATTTTTTTTATAGTTGATCATTTTTTTAATGTGATTGTTACCGCTCATGCTTTGTAATAATTTTTTTTATAGTCGATCATTTTTTTAATGTAATTGTTACCGCTCATGCTTTTGTTATAATTTTTTTTATAGT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus	708090100110120TGATCATTTCTTTAATGTAGTGGTGACAGCCCATGCTTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTCAACGTGGTTGTAACTGCGCATGCTTTTGTCATAATTTTTTTTATAGGTTGATCATTTTTTTAATGTTGTAGTTACTGCTCATGCTTTTGTGATAATTTTTTTTATAGGTTGATCATTTTTTTAATGTTGTTGTAACGCGCACGCTTTTGTGATAATTTTTTTTATAGTTGATCATTTTTTTAATGTGGTTGTAACGCGCACGCTTTTGTAATAATTTTTTTTATAGTTGACCACTTTTTCAATGTGGTTGTAACAGCTCATGCGTTTGTAATAATTTTTTTTATAGTTGATCATTTTTTTAATGTATTGTTACCGCTCATGCTTTGTATAATTTTTTTTATAGTTGATCACTTTTTTAATGTATTGTTACCGCACACGCTTTTGTTATGATTTTTTTATAGTTGATCACTTTTTTAATGTTATTGTTACCGCACACGCTTTTGTTATGATTTTTTTTATAGT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis	708090100110120TGATCATTTCTTTAATGTAGTGGTGACAGCCCATGCTTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTTACTGCGCATGCTTTTGTCATAATTTTTTTTATAGGTCGATCATTTTTTTAATGTGTAGTTACTGCTCATGCTTTTGTGATAATTTTTTTTATAGGTTGATCATTTTTTTAATGTGTTGTAACGCGCACGCTTTTGTGATAATTTTTTTTATAGTTGATCATTTTTTTAATGTGTTGTAACGCGCACGCTTTGTAATAATTTTTTTTATAGTTGACCACTTTTTCAATGTTGTTGTAACAGCTCATGCGTTTGTAATAATTTTTTTTATAGTCGATCATTTTTTTAATGTATTGTTACGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTATTGTTACCGCACACGCTTTTGTTATGATTTTTTTATAGTTGATCACTTTTTTAATGTATTGTTACGCACACGCTTTTGTTATGATTTTTTTTATAGTTGATCACTTTTTTAATGTATTGTTACGCACACGCTTTTGTTATGATTTTTTTTATAGTTGATCACTTTTTTAATGTGGTCGTCACAGCCCACGCTTTTGTTATAATCTTTTTTATAGT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum	708090100110120TGATCATTCTTTAATGTAGTGGTGACAGCCCATGCTTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTCAACGTGGTTGTAACTGCGCATGCTTTTGTCATAATTTTTTTTATAGTCGATCATTTTTTAATGTTGTAGTTACTGCTCATGCTTTTGTGATAATTTTTTTTATAGTTGATCATTTCTTTAATGTGGTTGTAACAGCGCACGCTTTTGTAATAATTTTTTTTATAGTTGATCATTTCTTTAATGTGGTTGTAACAGCTCATGCTTTTGTAATAATTTTTTTTATAGTTGACCACTTTTTCAATGTGGTTGTAACAGCTCATGCGTTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTTATTGTTACCGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTTATTGTTACCGCCCACGCTTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTTATTGTTACCGCCCACGCTTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGGTCGTCACAGCCCACGCTTTTGTTATAATTTTTTTTATAGTTGACCACTTTTTTAATGTGGTCGTCACAGCCCACGCTTTTGTTATAATTTTTTTTATAGTTGACCATTTTTTTAATGTGGTCGTCACAGCCCACGCTTTTGTAATAATTTTTTTTATAGTTGACCATTTTTTTAATGTGGTCGTCACAGCCCACGCTTTTGTAATAATTTTTTTTATAGTTGACCATTTTTTTAATGTGGTCGTCACAGCCCACGCTTTTGTAATAATTTTTTTTATAGTTGACCATTTTTTTAATGTGGTCGTCACAGCTCATGCTTTCGTAATAATTTTTTTTATAGTTGACCATTTTTTTAATGTGGTCGTCACAGCTCATGCTTTCGTAATAATTTTTTTTATAGT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp.	708090100110120TGATCATTCTTTAATGTAGTGGTGACAGCCCATGCTTTTGTTATAATTTTTTTATAGTTGATCATTTTTTAATGTGTAGTTACTGCGCATGCTTTTGTCATAATTTTTTTTATAGTTGATCATTTTTTAATGTTGTAGTACAGCCCATGCTTTTGTCATAATTTTTTTTATAGTTGATCATTTTTTAATGTGGTTGTAACTGCGCACGCTTTGTAATAATTTTTTTTATAGTTGATCATTTTTTAATGTGGTTGTAACTGCTCATGCTTTGTAATAATTTTTTTTATAGTTGACCACTTTTTCAATGTGGTTGTAACAGCTCATGCGTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTATTGTTACGCCTCATGCTTTGTAATAATTTTTTTTATAGTGGATCACTTTTTTAATGTATTGTTACGCCCCACGCTTTGTATAAATTTTTTTTATAGTTGATCACTTTTTTAATGTGGTCGTCACAGCCCACGCTTTGTATAAATTTTTTTTATAGTTGACCACTTTTTTAATGTGGTGGTCACAGCTCATGCGTTTGTATAAATTTTTTTTATAGTTGACCACTTTTTTAATGTGGTAGTACAGCTCATGCGTTTGTATAAATTTTTTTTATAGTGGACCACTTTTTTAATGTGTAGTACAGCTCATGCGTTTGTATAAATTTTTTTTATAGTGGATCACTTTTTTAATGTGTAGTACAGCTCATGCGTTTGTATAAATTTTTTTTATAGTGGACCACTTTTTTAATGTGTAGTACAGCTCATGCGTTTGTATAAATTTTTTTTATAGTGGACCACTTTTTTAATGTGTAGTACAGCTCATGCGTTTGTATAAATTTTTTTTATAGTGGACCACTTTTTTAATGTGTAGTACAGCTCATGCGTTTGTATAAATTTTTTTTATAGTGGACCACTTT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi	708090100110120TGATCATTCTTTAATGTAGTGGTGACAGCCCATGCTTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTCAACGTGGTTGTAACTGCGCATGCTTTTGTCATAATTTTTTTTATAGTCGATCATTTTTTAATGTTGTAGTTACTGCTCATGCTTTTGTGATAATTTTTTTTATAGTTGATCATTTCTTTAATGTGGTTGTAACAGCGCACGCTTTTGTAATAATTTTTTTTATAGTTGATCATTTCTTTAATGTGGTTGTAACAGCTCATGCTTTTGTAATAATTTTTTTTATAGTTGACCACTTTTTCAATGTGGTTGTAACAGCTCATGCGTTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTTATTGTTACCGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTTATTGTTACCGCCCACGCTTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTTATTGTTACCGCCCACGCTTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGGTCGTCACAGCCCACGCTTTTGTTATAATTTTTTTTATAGTTGACCACTTTTTTAATGTGGTCGTCACAGCCCACGCTTTTGTTATAATTTTTTTTATAGTTGACCATTTTTTTAATGTGGTCGTCACAGCCCACGCTTTTGTAATAATTTTTTTTATAGTTGACCATTTTTTTAATGTGGTCGTCACAGCCCACGCTTTTGTAATAATTTTTTTTATAGTTGACCATTTTTTTAATGTGGTCGTCACAGCCCACGCTTTTGTAATAATTTTTTTTATAGTTGACCATTTTTTTAATGTGGTCGTCACAGCTCATGCTTTCGTAATAATTTTTTTTATAGTTGACCATTTTTTTAATGTGGTCGTCACAGCTCATGCTTTCGTAATAATTTTTTTTATAGT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata	708090100110120TGATCATTCTTTAATGTAGTGGTGACAGCCCATGCTTTGTTATAATTTTTTTATAGTTGATCACTTTTTCAACGTGGTTGTAACTGCGCATGCTTTGTCATAATTTTTTTTATAGTTGATCATTTTTTAATGTTGTAGTTACTGCGCATGCTTTGTCATAATTTTTTTTATAGTTGATCATTTTTTAATGTTGTAGTACTGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCATTTTTTAATGTGTTGTAACGCGCACGCTTTGTAATAATTTTTTTTATAGTTGACCACTTTTTCAATGTGGTTGTAACGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTATTGTACCGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTATTGTACCGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTACACGCCCACGCTTTTGTAATAATTTTTTTTATAGTTGACCATTTTTTAATGTGTAGTACACGCTCATGCGTTTGTAATAATTTTTTTTATAGTGGATCACTTTTTTAATGTGTAGTACACGCTCATGCGTTTGTAATAATTTTTTTTATAGTGGATCACTTTTTTAATGTGTAGTACACGCTCATGCGTTTGTAATAATTTTTTTTATAGTGGATCACTTTTTTAATGTGTAGTACACGCTCATGCGTTTGTAATAATTTTTTTTATAGTGGATCACTTTTTTAATGTGTAGTACACGCTCATGCGTTTGTAATAATTTTTTTTATAGTGGATCACTTTTTTAATGTGTAGTACACGCTCATGCGTTTGTAATAATTTTTTTTATAGTGGATCACTTTTTTAATGTGTAGTACACGCTCATGCGTTTGTAATAATTTTTTTATAGTGGATCACTTT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi	708090100110120TGATCATTCTTTAATGTAGTGGTGACAGCCCATGCTTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTCAACGTGGTTGTAACTGCGCATGCTTTTGTCATAATTTTTTTTATAGTTGATCATTTTTTAATGTGTAGTTACTGCCCATGCTTTTGTCATAATTTTTTTTATAGTTGATCATTTTTTAATGTGTAGTACTGCTCATGCTTTGTCATAATTTTTTTTATAGTTGATCATTTTTTAATGTGTTGTACGCTCATGCTTTGTAATAATTTTTTTTATAGTTGACCACTTTTTTAATGTGTTGTACGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTATTGTACCGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTATTGTACACGTCATGCTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTACACGCCACGCTTTTGTTATAATTTTTTTTATAGTTGACCACTTTTTTAATGTGTAGTAACAGCCCACGCTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTTAACGTGTAGTAACAGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTTGTAGTAACAGCTCACGCTTTCGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTTGTAGTAACAGCTCACGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTTGTAGTAACAGCTCACGCTTTCGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTTGTAGTAACAGCTCACGCTTTCGTAATAATTTTTTTTATAGTTGATCACTTT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum	708090100110120TGATCATTCTTTAATGTAGTGGTGACAGCCCATGCTTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTCAACGTGGTTGTAACTGCGCATGCTTTTGTCATAATTTTTTTTATAGTTGATCATTTTTTAATGTTGTAGTTACTGCGCATGCTTTTGTGATAATTTTTTTTATAGTTGATCATTTTTTTAATGTGTTGTAACGCGCACGCTTTTGTGATAATTTTTTTTATAGTTGATCATTTTTTAATGTGTTGTAACGCTCATGCTTTGTAATAATTTTTTTTATAGTTGACCACTTTTTTAATGTGTTGTAACGCTCATGCGTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTATTGTACCGCTCATGCGTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTATTGTTACCGCTCATGCGTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTACAGCTCATGCGTTTGTAATAATTTTTTTTATAGTTGACACTTTTTTAATGTGTAGTACAGCTCATGCGTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTTGTAGTACAGCTCATGCGTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTTGTAGTAACAGCTCACGCTTTCGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTTGTAGTAACAGCTCACGCTTTCGTGATGATTTTTTTATAGTTGATCACTTTTTTAATGTTGTAGTACAGCTCACGCTTTCGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTTGTAGTACAGCTCACGCTTTCGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTTGTAGTACAGCTCACGCTTTCGTAATAATTTTTTTTATAGTTGATCAC
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp.	708090100110120TGATCATTCTTTAATGTAGTGGTGACAGCCCATGCTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTCAACGTGGTTGTAACTGCGCATGCTTTGTCATAATTTTTTTTATAGTTGATCACTTTTTTAATGTTGTAGTTACTGCTCATGCTTTGTGATAATTTTTTTTATAGTTGATCATTTTTTAATGTGTTGTAACAGCGCACGCTTTGTGATAATTTTTTTTATAGTTGATCATTTTTTAATGTGTTGTAACAGCGCACGCTTTGTAATAATTTTTTTTATAGTTGACCACTTTTTTAATGTGTTGTAACAGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTATTGTTACCGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTATTGTTACGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCTTTGTAATAATTTTTTTTATAGTTGACACTTTTTTAATGTGTAGTAACAGCTCATGCTTTCGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCTTTCGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCACGCTTTCGTAGTAATTTTTTTTATAGTTGATCACTTTTTTAATGTTGTAGTAACAGCTCACGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTTGTAGTAACAGCTCACGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTTGTAGTAACAGCTCATGCATTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCACGCTTTGTAATAATTTTTTTTATAGTTGATCACTTT<
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata	708090100110120TGATCATTCTTTAATGTAGTGGTGACAGCCCATGCTTTTGTTATAATTTTTTTTATAGTTGATCATTTCTTTAATGTGTAGTAACTGCGCATGCTTTTGTCATAATTTTTTTTATAGTTGATCATTTTTTTAATGTTGTAGTAACTGCGCATGCTTTTGTCATAATTTTTTTTATAGTTGATCATTTTTTTAATGTGGTTGTAACTGCGCACGCTTTGTAATAATTTTTTTTATAGTTGATCATTTTTTTAATGTGGTTGTAACAGCTCATGCTTTGTAATAATTTTTTTTATAGTTGACCACTTTTTTAATGTGGTTGTAACAGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTATTGTACGCCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGATTGTACGCCTCATGCTTTGTTATAATTTTTTTTATAGTTGACCACTTTTTTAATGTGTAGTACACCTCATGCGTTTGTTATAATTTTTTTTATAGTTGACCACTTTTTTAATGTGTAGTAACAGCTCATGCGTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCGTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCGTTTGTAATAATTTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCGTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCGTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCGTTTGTAATAATTTTTTTTATAGTTGATCATTTTTTAATGTGTAGTAACAGCTCATGCGTTTGTAATAATTTTTTTTATAGTT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona	708090100110120TGATCATTCTTTAATGTAGTGGTGACAGCCCATGCTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTCAACGTGGTTGTAACTGCGCATGCTTTTGTCATAATTTTTTTTATAGTTGATCATTTCTTTAATGTTGTAGTACTGCTCATGCTTTTGTCATAATTTTTTTTATAGTTGATCATTTCTTTAATGTGGTTGTAACTGCTCATGCTTTTGTAATAATTTTTTTTATAGTTGATCATTTTTTTAATGTGGTTGTAACAGCTCATGCTTTTGTAATAATTTTTTTTATAGTTGACCACTTTTTTAATGTGGTTGTAACAGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTATTGTACCGCTCATGCTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGGTCGTCACAGCTCATGCTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGGTAGTACAGCTCATGCGTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGGTAGTACAGCTCATGCGTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTACAGCTCATGCGTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCGTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCGTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCGTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCGTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCGTTTGTAATAATTTTTTTTATAGTT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella	708090100110120TGATCATTCTTTAATGTAGTGGTGACAGCCCATGCTTTGTTATAATTTTTTTATAGTTGATCACTTTTTCAACGTGGTTGTAACTGCGCATGCTTTGTCATAATTTTTTTTATAGTTGATCACTTTTTTAATGTTGTAGTTACTGCGCATGCTTTGTCATAATTTTTTTTATAGTTGATCATTTCTTTAATGTTGTAGTACTGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCATTTTTTTAATGTGTTGTAACGCGCACGCTTTGTAATAATTTTTTTTATAGTTGACCACTTTTTTAATGTGTTGTAACAGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTATTGTACCGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTATTGTACCGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCGTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCGTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCGTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCACGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCACGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCACGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCACGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCACGCTTTGTAATAATTTTTTTTATAGTTGATCACTTT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella	708090100110120TGATCATTCTTTAATGTAGTGGTGACAGCCCATGCTTTGTTATAATTTTTTTAATGTTGATCACTTTTTCAACGTGGTTGTAACTGCGCATGCTTTGTCATAATTTTTTTTAATGTTGATCACTTTTTTAATGTGTAGTTACTGCTCATGCTTTGTCATAATTTTTTTTAATGTTGATCATTTCTTTAATGTGTAGTACTGCTCATGCTTTGTAATAATTTTTTTTAATGTTGATCATTTTTTAATGTGTTGTAACGCTCATGCTTTGTAATAATTTTTTTTATAGTTGACCACTTTTTTAATGTGTTGTAACGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTTGTACCGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTTGTACACCTCATGCTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTACACGTCATGCGTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTACACGTCATGCGTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACACCTCATGCGTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACACCTCACGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACACCTCACGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACACCTCATGCATTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACGCTCATGCATTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACGCTCATGCATTTGTAATAATTTTTTTTATAGTTGACACTTTTT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp.	708090100110120TGATCATTCTTTAATGTAGTGGTGACAGCCCATGCTTTGTTATAATTTTTTTAATGTTGATCACTTTTTCAACGTGGTAGTAACTGCGCATGCTTTGTCATAATTTTTTTTAATGTTGATCACTTTTTTAATGTTGTAGTACTGCTCATGCTTTGTCATAATTTTTTTTAATGTTGATCATTTTTTAATGTGTAGTACACGCTCATGCTTTGTGATAATTTTTTTTAATGTTGACCACTTTTTTAATGTGTTGTAACGCTCATGCTTTGTAATAATTTTTTTTATAGTTGACCACTTTTTTAATGTGTTGTAACGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTATTGTACCGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTATTGTACCGCTCATGCTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTACACGTCATGCTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTACACGTCATGCTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTACACGTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTACACGTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTG<
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina striatella Subulina sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis	708090100110120TGATCATTCTTTAATGTAGTGGTGACAGCCCATGCTTTGTTATAATTTTTTTATAGTTGATCACTTTTTCAACGTGGTTGTAACTGCGCATGCTTTGTCATAATTTTTTTTATAGTTGATCATTTCTTTAATGTTGTAGTACTGCTCATGCTTTGTCATAATTTTTTTTATAGTTGATCATTTCTTTAATGTTGTTGTAACTGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCATTTTTTTAATGTGGTTGTAACAGCTCATGCTTTGTAATAATTTTTTTTATAGTTGACCACTTTTTTAATGTGGTTGTACCGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGGTTGTACCGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGGTCGTCACAGCTCATGCGTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGGTAGTACAGCTCATGCGTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGGTAGTACAGCTCATGCGTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCGTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCGTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCATTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCGTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCATTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACGCTCATGCATTTGTAATAATTTTTTTTATAGTTGATC
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp.	708090100110120TGATCATTCTTTAATGTAGTGGTGACAGCCCATGCTTTGTTATAATTTTTTTTATAGTTGATCACTTTTTCAACGTGGTTGTAACTGCGCATGCTTTTGTCATAATTTTTTTTATAGTTGATCACTTTTTTAATGTTGTAGTTACTGCTCATGCTTTTGTCATAATTTTTTTTATAGTTGATCATTTCTTTAATGTGGTTGTAACTGCTCATGCTTTTGTAATAATTTTTTTTATAGTTGACCACTTTTTTAATGTGGTTGTAACAGCTCATGCTTTGTAATAATTTTTTTTATAGTTGACCACTTTTTTAATGTGGTTGTAACAGCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGGTTGTACACCTCATGCTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGGTCGTCACAGCTCATGCGTTTGTATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTACAGCTCATGCGTTTGTATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCGTTTGTATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCGTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCGTTTGTAATAATTTTTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCATTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCGTTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCATTTGTAATAATTTTTTTTATAGTTGATCACTTTTTTAATGTGTAGTAACAGCTCATGCATTTGTAATAATTTTTTTTATAGT <td< th=""></td<>

	·····[····].····[····].····].···].···].	
Jehoting ochoting		80
Achatina achatina Achatina fulica	CATACCAATT ATGATTGGGG GTTTTGGTAA TTGAATAGTC CCACTATTAA TTGGGGGCTC TATACCAATT ATAATTGGCG GATTTGGAAA CTGGATGGTC CCAATACTTA TTGGTGCTC	
Achatina stuhlmanni	GATACCAATT ATAATTGGTG GGTTTGGAAA CTGGATGGTC CCATTACTGA TTGGTGCTC	
Cochlitoma ustulata	AATACCCATT ATAATTGGGG GTTTTGGTAA TTGAATAACT CCCCTTTTAA TCGGGGCTC	
Coeliaxis blandii	TATACCTATT ATAATTGGGG GATTTGGAAA TTGAATGGTT CCATTATTAA TTGGAGCTC	
Pyrgina umbilicata	TATACCAATT ATGATTGGTG GGTTTGGGAA TTGAATAGTG CCGCTTTTAA TTGGTGCTC	
Glessula ceylanica	TATGCCTATT ATAATTGGAG GATTTGGTAA TTGGATAGTT CCGTTATTAA TTGGTGCTC	
- Ferussacia folliculus	TATACCTATT ATAATTGGAG GGTTTGGAAA TTGAATGGTG CCCCTTTTGA TTGGTGCTC	С
Thyrophorella thomensis	TATACCAATT ATAATTGGTG GGTTTGGTAA TTGAATAGTA CCACTTTTAA TTGGTGCTC	С
Allopeas clavulinum	TATGCCTATT ATAATTGGTG GCTTTGGGAA CTGAATGGTC CCACTATTAA TTGGGGGCTC	С
Bocageia sp.	AATACCTATC ATAATTGGTG GGTTTGGGAA CTGAATAGTT CCACTATTAA TTGGAGCTC	С
Eutomopeas layardi	TATACCAATC ATGATTGGGG GGTTTGGAAA CTGAATAGTC CCATTACTGA TTGGGGGCCC	С
Leptinaria lamellata	TATACCTATT ATAATTGGGG GATTTGGAAA TTGAATAGTG CCTTTACTAA TTGGTGCAC	С
Paropeas achatinaceum	TATACCAATT ATAATTGGAG GTTTTGGGAA TTGGATAGTC CCCTTATTAA TTGGTGCTC	С
Riebeckia sp.	TATACCAATT ATAATTGGAG GATTTGGAAA TTGAATAGTC CCTTTACTAA TTGGGGGCCC	С
Rumina decollata	AATGCCTATT ATAATCGGTG GTTTTGGAAA TTGAATAGTG CCCCTATTAA TTGGGGGCAC	
Subulina octona	AATACCTATT ATAATTGGAG GATTTGGGAA TTGAATAGTT CCTTTGCTTA TTGGGGGCTC	
Subulina striatella	CATACCTATT ATGATTGGAG GGTTTGGGAA TTGGATAGTT CCTTTACTGA TTGGTGCTC	
Subulina vitrea	TATACCTATT ATAATTGGGG GGTTTGGGAA TTGGATAGTA CCACTACTAA TTGGTGCGC	
Subulona sp.	AATACCTATT ATGATTGGGG GATTTGGAAA TTGAATAGTG CCTTTACTTA TTGGGGGCTC	
Tortaxis erectus	AATGCCTATT ATAATTGGTG GTTTTGGTAA TTGAATAGTT CCACTTTTAA TTGGTGCTC	
Xerocerastus sp.	TATACCAATT ATAATTGGTG GATTTGGTAA TTGAATAGTT CCATTATTAA TTGGTGCTC	
Zootecus insularis	TATGCCCATC ATAATTGGCG GCTTCGGAAA TTGAATGGTC CCACTATTAA TTGGTGCTC	
Gibbulinella dewinteri	TATACCACTA ATAATTGGAG GTTTTGGAAA TTGAATAGTA CCTCTTCTTA TTGGGGGCTC	С
	$\dots \dots \dots \dots$	 40
Achatina achatina		40
Achatina achatina Achatina fulica	190 200 210 220 230 2	40 C
	190 200 210 220 230 2 AGATATAAGA TTCCCTCGGA TGAATAATAT AAGGTTCTGA TTATTACCAC CTTCATTTA	40 C C
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata	190 200 210 220 230 2 AGATATAAGA TTCCCTCGGA TGAATAATAT AAGGTTCTGA TTATTACCAC CTTCATTTA TGATATAAGA TTTCCACGAA TAAATAATAT AAGGTTTTGA CTTTTACCAC CTTCATTTA TGATATAAGG TTTCCGCGGA TAAATAACAT AAGATTTTGA CTACTTCCCC CATCATTTT TGATATAAGC TTTCCTCGTA TAAATAACAT GAGCTTTTGA TTGTTACCCC CTTCCTTTA	40 C C C C
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii	190 200 210 220 230 2 AGATATAAGA TTCCCTCGGA TGAATAATAT AAGGTTCTGA TTATTACCAC CTTCATTTA TGATATAAGA TTTCCACGAA TAAATAATAT AAGGTTTTGA CTTTTACCAC CTTCATTTA TGATATAAGG TTTCCGCGGA TAAATAACAT AAGATTTTGA CTACTTCCCC CATCATTTT TGATATAAGC TTTCCTCGTA TAAATAACAT GAGCTTTTGA TTGTTACCCC CTTCCTTTA TGATATAAGA TTTCCCCCGAA TAAATAATAT AAGATTTTGG CTTTTACCCC CATCTTTA	40 C C C C T
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata	1902002102202302AGATATAAGATTCCCTCGGATGAATAATATAAGGTTCTGATTATTACCACCTTCATTATGATATAAGATTCCCACGAATAAATAATATAAGGTTTTGACTACTTCACCCCTCATTTATGATATAAGGTTTCCCCGGATAAATAACATAAGATTTTGACTACTTCCCCCATCATTTTTGATATAAGATTCCCCGGATAAATAACATAAGATTTTGACTACTTCCCCCATCCTTTATGATATAAGATTCCCCGGATAAATAATATAAGATTTTGGCTTTTACCCCCATCTTTTATGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGGCTTTTACCTCCATCTTTTATGATATAAGTTTCCCCCGAATAAATAATATAAGATTTTGACTTTTACCTCCATCTTTTA	40 C C C C T T
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica	1902002102202302AGATATAAGATTCCCTCGGATGAATAATATAAGGTTCTGATTATTACCACCTTCATTTATGATATAAGATTCCCACGAATAAATAATATAAGGTTTTGACTTATTACCACCTTCATTTATGATATAAGGTTTCCGCGGATAAATAACATAAGATTTTGACTACTTCCCCCATCATTTTTGATATAAGGTTTCCCTCGTATAAATAACATGAGCTTTTGATTGTTACCCCCATCATTTATGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGGCTTTTACCTCCATCTTTTATGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGGCTTTTACCTCCATCTTTTAAGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGGTTATTACCACCATCTTTTG	40 C C C C T T T
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus	1902002102202302AGATATAAGATTCCCTCGGATGAATAATATAAGGTTCTGATTATTACCACCTTCATTTATGATATAAGATTCCCACGAATAAATAATATAAGGTTTTGACTTTTACCACCTTCATTTATGATATAAGGTTCCCCGGGATAAATAACATAAGATTTTGACTACTTCCCCCATCATTTTTGATATAAGGTTCCCCCGAATAAATAACATGAGCTTTTGATTGTTACCCCCATCCTTTATGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGGCTTTTACCTCCATCTTTTATGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGGCTTTTACCTCCATCTTTTAAGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGGTTATTACCACCATCTTTTGTGATATAAGGTTCCCCCGTATAAATAATATAGGTTTTGACTTCTCCCGCCTTCTTTTA	40 C C C C T T T T
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis	1902002102202302AGATATAAGATTCCCCCGGATGAATAATATAAGGTTCTGATTATTACCACCTTCATTATTGATATAAGATTCCCACGAATAAATAATATAAGGTTTTGACTTTTACCACCTTCATTTATGATATAAGATTCCCCCGGATAAATAACATAAGATTTTGACTACTTCCCCCATCATTTTTGATATAAGATTCCCCCGAATAAATAACATAAGATTTTGACTTGTACCCCCATCATTTATGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTTTTACCCCCATCTTTTATGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTTTACCCCCATCTTTTAGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTTCTCCCCCCATCTTTTATGATATAAGGTTTCCCCCGTATAAATAATATGAGGTTTTGACTTCTCCCCCCATCTTTTATGATATAGGTTTTCCCCCGTATAAACAACATAAGCTTCTGGCTCCTCCCCCATCATTA	40 C C C C T T T T
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum	1902002102202302AGATATAAGATTCCCCCGGATGAATAATATAAGGTTCTGATTATTACCACCTTCATTATTGATATAAGATTCCCCGGATAAATAATATAAGGTTTTGACTTTTACCACCTTCATTATTGATATAAGATTCCCCGGATAAATAACATAAGATTTGACTACTTCCCCATCATTTTGATATAAGATTCCCCGGATAAATAACATAAGATTTTGACTTTTACCCCCATCATTTTTGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTTTTACCCCCATCTTTATGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGGCTTTTACCCCCATCTTTTAAGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGGCTTCTCCCCCCATCTTTGTTGATATAAGATTCCCCCGTATAAACAACATAAGCTTCTGGCTCCTCCCCCCATCATTATAAGATATAAGGTTTCCCCGAATAAACAACATAAGCTTCTGGCTCCTCCCCCCATCATTTAAGATATAAGGTTTCCCCGAATAAATAATATAAGTTTTTGGCTCCTCCCCCCATCATTTA	40 C C C C T T T T T
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp.	1902002102202302AGATATAAGATTCCCTCGGATGAATAATATAAGGTTCTGATTATTACCACCTTCATTATGATATAAGATTTCCCACGAATAAATAATATAAGGTTTTGACTTATTACCACCTTCATTATTGATATAAGGTTTCCCCGGATAAATAACATAAGATTTTGACTACTTCCCCCATCATTTTTGATATAAGGTTTCCCCGGATAAATAACATAAGATTTTGACTACTTCCCCCATCATTTTTGATATAAGGTTTCCCCGGATAAATAACATAAGATTTTGGCTTTTACCCCCATCTTTTATGATATAAGTTTCCCCCGAATAAATAATATAAGATTTTGGCTTTTACCCCCATCTTTTAAGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGGCTTCTCCCCCCATCTTTTATGATATAAGGTTTCCCCGTATAAATAATATAAGGTTTTGACTTCTCCCCCCATCATTTAAGATATAAGGTTTCCCCGTATAAACAACATAAGTTTTGGCTCCTCCACCATCATTTAAGAATATAAGGTTTCCCCGAATAAATAATATAAGATTTTGGCTCTCCCCCCATCATTTAGGACATAAGTTTTCCCCGTATAAATAATATAAGATTTTGACTGCTTCCACCATCATTTAGGACATAAGTTTCCCCGTATAAATAATATAAGATTTTGACTGCTTCCCCCATCATTTA	40 C C C C C C T T T T T T T
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi	1902002102202302AGATATAAGATTCCCTCGGATGAATAATATAAGGTTTGATTATTACCACCTTCATTATGATATAAGATTCCCACGAATAAATAATATAAGGTTTTGACTACTTCACCCCTCCATTATGATATAAGGTTTCCCCGGATAAATAACATAAGATTTTGACTACTTCCCCCATCATTTATGATATAAGATTCCCCGGATAAATAACATAAGATTTTGACTACTTCCCCCATCATTTATGATATAAGATTCCCCGGATAAATAACATAAGATTTTGACTTTTACCCCCATCTTTATGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGGCTTTTACCCCCATCTTTTAAGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGGCTTCTCCCCGCATCTTTTAGGATATAAGATTCCCCCGTATAAACAACATAAGGTTTTGGCTCCTCCCCCATCTTTAAGATATAAGGTTTCCCCGTATAAATAATATAAGGTTTTGGCTCCTCCCCCATCTTTAGGACATAAGATTTCCCCGTATAAATAATATAAGGTTTTGGCTCCTCCCCCATCTTTAGGACATAAGATTTCCCCGGATAAATAATATAAGTTTTGGCTCCTCCCCCATCTTTAGGACATAAGATTCCCCCGATAAATAATATAAGTTTCGGTTACTCCCCCATCTTCCCGGATATGAGATTCCCCCGATAAATAATATAAGTTTCGGTTACTCCCCCATCTTTA	40 C C C C C C T T T T T T T
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata	1902002102202302AGATATAAGATTCCCTCGGATGAATAATATAAGGTTCTGATTATTACCACCTTCATTATTGATATAAGATTCCCACGAATAAATAATATAAGGTTTTGACTTATACCACCTTCATTATTGATATAAGGTTTCCCGCGGATAAATAACATAAGATTTTGACTACTTCCCCCATCATTTTTGATATAAGGTTTCCCCGGAATAAATAACATAAGATTTTGACTTTTACCCCCATCATTTATGATATAAGGTTCCCCCGAATAAATAATATAAGATTTTGGCTTTTACCCCCATCTTTTATGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGGCTTTTACCCCCATCTTTTAAGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGGCTTCTCCCCCCATCTTTTATGATATAAGGTTTCCCCGTATAAATAATATGAGGTTTTGACTTCCTCCCCCATCTTTTAAGATATAAGGTTTCCCCGAATAAATAATATAAGGTTTTGGCTCCTCCCCCATCTTTAAGATATAAGGTTTCCCCGAATAAATAATATAAGTTTTGGCTCCTCCCCCATCTTTAGGAATAGAGATTTCCCCGAATAAATAATATAAGATTTTGGCTCCTCCCCCATCTTTAGGATATGAGATTCCCCGGATAAATAATATAAGATTTTGGCTCCTCCCCCATCTTTAGGATATGAGATTCCCCGGATAAATAATATAAGATTTTGGCTCCTCCCCCATCTTTAGAATATGAGATTCCCCGGATAAATAATATAAGATTTTGGCTCCTCCCCCATCTTTAGAATATGAGATTCCCCGGATAAATAATATAAGATTTTGGCTCTCCCCCATCTTTAGAATATGAGATTCCCCGGATAAATAATATAAGATTTTGGCTCTCCCCCCATCTTTCAGAATATGAGA	40 C C C C C T T T T T T T T
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum	1902002102202302AGATATAAGATTCCCCGGATGAATAATATAAGGTTCTGATTATTACCACCTTCATTTATGATATAAGATTCCCACGAATAAATAATATAAGGTTTTGACTTTTACCACCTTCATTTATGATATAAGATTCCCCGGAATAAATAACATAAGATTTTGACTTTTACCCCCATCATTTTTGATATAAGATTCCCCGGAATAAATAACATAAGATTTTGACTTTTACCCCCATCATTTATGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTTTTACCCCCATCTTTTATGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTTTTACCCCCATCTTTTAAGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGGCTTCTCCCCCCATCTTTTATGATATAAGATTCCCCCGAATAAATAATATAAGGTTTTGGCTCCTCCCCCCATCATTTAAGAATATAAGATTCCCCGGATAAATAATATAAGGTTTTGGCTCCTCCCCCATCTTTAGGATATGAGATTCCCCGGATAAATAATATAAGATTTTGGCTGCTCCCCCATCTTTAGGATATGAGATTCCCCGGATAAATAATATAAGATTTTGGCTGCTCCCCCATCTTTCAGGATATGAGATTCCCCGGATAAATAATATAAGATTTTGGTTACTCCCCCATCTTTCAGAATATAAGATTCCCCGGATAAATAATATAAGATTTTGGCTGCTCCCCCATCTTTAGAATATAAGATTCCCCGGATAAATAATATAAGATTTTGGCTGCTCCCCCATCTTTAGAATATAAGATTCCCCGGATAAATAATATAAGATTTTGGCTACTCCCCCATCTTTAGAATATAAGATTCCCCGGATAAATAATATAAGATTTTGGCTGCTCCCCCATCTTTAGAATATAAGATT	40 C C C C C T T T T T T T T T T
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp.	1902002102202302AGATATAAGATTCCCTCGGATGAATAATATAAGGTTCTGATTATTACCACCTTCATTATTGATATAAGATTCCCACGAATAAATAATATAAGGTTTTGACTTTTACCACCTTCATTATTGATATAAGATTCCCCGGGATAAATAACATAAGGTTTTGACTTTTACCCCCATCATTTTTGATATAAGATTCCCCGGAATAAATAACATAAGATTTTGACTTTTACCCCCATCATTTATGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTTTTACCCCCATCTTTTATGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTTTTACCCCCATCTTTTAAGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTTCTCCCGCCTTCTTTATGATATAAGATTCCCCCGAATAAATAATATAAGGTTTTGACTTCTCCCCCCATCTTTAGGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTCCTCCCCCATCATTAAGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTCCTCCCCCATCTTTGGGATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTCCTCCCCCATCTTTGAGGATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTCCTCCCCCATCTTTGAGGATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTCCTCCCCCATCTTTGAGGATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTCCTCCCCCATCTTTGAGGATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTCTCCCCCATCTTTGAGGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTCTCCCCCATCTTTGAGGATATAAGA <td< th=""><th>40 C C C C T T T T T T T T T T T T T T</th></td<>	40 C C C C T T T T T T T T T T T T T T
Achatina fulica Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata	1902002102202302AGATATAAGATTCCCTCGGATGAATAATATAAGGTTCTGATTATTACCACCTTCATTATGATATAAGATTTCCACGGATAAATAATATAAGGTTTTGACTTATTACCACCTTCATTATTGATATAAGGTTTCCGCGGATAAATAACATAAGGTTTTGACTACTTCCCCCATCATTTTTGATATAAGGTTTCCCCGGATAAATAACATAAGATTTTGACTACTTCCCCCATCATTTTTGATATAAGATTCCCCCGAATAAATAACATAAGATTTTGACTTTTACCCCCATCTTTTATGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTTTTACCCCCATCTTTTAAGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTTCTCCCGCCATCTTTTAAGATATAAGGTTCCCCGTATAAATAATATAAGGTTTTGACTTCTCCCCCCATCATTTAAGATATAAGATTCCCCGGATAAATAATATAAGGTTTTGACTTCTCCCCCATCATTTAGGACATAAGTTTTCCCCGGATAAATAATATAAGATTTTGGCTTCTCCCCCATCTTTCGGGATATAAGATTCCCCGGATAAATAATATAAGATTTTGGTTACTCCCCCATCTTTGGGGATATAAGATTCCCCGGATAAATAATATAAGATTTTGGTTACTCCCCCATCTTTGGGGATATAAGATTCCCCGGATAAATAATATAAGATTTTGGTTACTCCCCCATCTTTGAGAATATAAGATTCCCCGGATAAATAATATAAGATTTTGGTTACTCCCCCATCTTTGAGAATATAAGATTCCCCGGATAAATAATATAAGATTTTGGTTACTCCCCCATCTTTGAGAATATAAGATTCCCCGGATAAATAATATAAGATTTTGGCTACTCCCCCATCTTTGAGAATATAAGA	40 ССССТТТТТТТТТТТТТТТТТТ
Achatina fulica Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona	1902002102202302AGATATAAGATTCCCTCGGATGAATAATATAAGGTTTGATTATTACCACCTTCATTATGATATAAGATTCCCACGAATAAATAATATAAGGTTTGACTACTTCACCCTTCATTATGATATAAGGTTTCCCCGGATAAATAACATAAGATTTGACTACTTCCCCCATCATTTATGATATAAGATTCCCCGGATAAATAACATAAGATTTTGACTACTTCCCCATCATTTATGATATAAGATTCCCCGGATAAATAACATAAGATTTTGACTTTTACCCCCATCTTTATGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTTTTACCCCCATCTTTTAAGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTTCTCCCCCCATCTTTTAAGATATAAGATTCCCCCGAATAAATAATATAAGGTTTTGACTCCTCCCCCCATCATTTAAGATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTCCTCCCCCATCATTTAGGACATAAGTTTTCCCCGGATAAATAATATAAGATTTTGACTGCTTCCCCCATCTTTCGGGATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTGCTCCCCCATCTTTGGGATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTGCTCCCCCATCTTTGGAATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTACTTCCCCATCTTTGAGAATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTACTTCCCCATCTTTTAGAATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTTTACCCCCATCTTTTAGAATATAAGATTCCCCGGAATAAATAATATAAGATTTTGACTTTACCCCCATCTTTTAGAATATAAGAT	40 ССССТТТТТТТТТТТТТТТТТТ
Achatina fulica Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella	1902002102202302AGATATAAGATTCCCTCGGATGAATAATATAAGGTTTGATTATTACCACCTTCATTATGATATAAGATTCCCACGAATAAATAATATAAGGTTTGACTACTTCCCCCATCATTATGATATAAGGTTTCCCCGGATAAATAACATAAGATTTGACTACTTCCCCATCATTTATGATATAAGATTCCCCGGATAAATAACATAAGATTTTGACTACTTCCCCATCATTTATGATATAAGATTCCCCGGATAAATAACATAAGATTTTGACTTTACCCCCATCTTTATGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTTTTACCCCCATCTTTATGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTTCTCCCCCCATCTTTAAGATATAAGATTCCCCCGAATAAATAATATAAGGTTTTGACTCCTCCCCCCATCTTTAAGATATAAGATTCCCCGGATAAATAATATAAGGTTTTGACTCCTCCCCCATCTTTAAGATATAAGATTCCCCGAATAAATAATATAAGGTTTTGGCTCCTCCCCCATCTTTAGGATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTGCTTCCCCATCTTTGAGATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTACTCCCCCATCTTTGAGATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTTTACCCCCATCATTTAAGATATAAGATTCCCCGAATAAATAATATAAGATTTTGACTTTACCCCCATCTTTGAAGATATAAGATTCCCCGAATAAATAATATAAGATTTTGACTTTACCCCCATCATTTAAGATATAAGATTCCCCGAATAAATAATATAAGATTTTGACTTACCCCCATCATTTAAGATATAAGATTCCCCGAA<	40 ССССТТТТТТТТТТТТТТТТТТТТ
Achatina fulica Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella	1902002102202302AGATATAAGATTCCCTCGGATGAATAATATAAGGTTTGATTATTACCACCTTCATTATTGATATAAGATTCCCACGAATAAATAATATAAGGTTTGACTTATACCACCTTCATTATTGATATAAGGTTTCCCCGGATAAATAACATAAGGTTTTGACTTTTACCCCCATCATTTTTGATATAAGGTTTCCCCGGAATAAATAACATAAGATTTTGACTTTTACCCCCATCTTTATGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTTTTACCCCCATCTTTTATGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGGCTTTTACCCCCATCTTTTAAGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGGCTTCTCCCCCCCATCTTTTAAGATATAAGGTTTCCCCGTATAAATAATATAAGGTTTTGGCTCCTCCCCCATCTTTAAGATATAAGGTTTCCCCGAATAAATAATATAAGGTTTTGGCTCCTCCCCCATCTTTAAGATATAAGATTTCCCCGAATAAATAATATAAGATTTTGGCTCCTCCCCCATCTTTGAGATATAAGATTTCCCCGAATAAATAATATAAGATTTTGGCTCCTCCCCCATCTTTGAGATATAAGATTCCCCGGATAAATAATATAAGATTTTGGCTACTCCCCCATCTTTGAGATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTACTCCCCCATCTTTAAGATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTACTCCCCCATCTTTAAGATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTACTCCCCCATCTTTAAGATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTACTCCCCCATCTTTAAGATATAAGATTCC	40 СССТТТТТТТТТТТТТТТТТТТТТ
Achatina fulica Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella	1902002102202302AGATATAAGATTCCCTCGGATGAATAATATAAGGTTTGATTATTACCACCTTCATTATGATATAAGATTCCCACGAATAAATAATATAAGGTTTGACTACTTCCCCCATCATTATGATATAAGGTTTCCCCGGATAAATAACATAAGATTTGACTACTTCCCCATCATTTATGATATAAGATTCCCCGGATAAATAACATAAGATTTTGACTACTTCCCCATCATTTATGATATAAGATTCCCCGGATAAATAACATAAGATTTTGACTTTACCCCCATCTTTATGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTTTTACCCCCATCTTTATGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTTCTCCCCCCATCTTTAAGATATAAGATTCCCCCGAATAAATAATATAAGGTTTTGACTCCTCCCCCCATCTTTAAGATATAAGATTCCCCGGATAAATAATATAAGGTTTTGACTCCTCCCCCATCTTTAAGATATAAGATTCCCCGAATAAATAATATAAGGTTTTGGCTCCTCCCCCATCTTTAGGATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTGCTTCCCCATCTTTGAGATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTACTCCCCCATCTTTGAGATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTTTACCCCCATCATTTAAGATATAAGATTCCCCGAATAAATAATATAAGATTTTGACTTTACCCCCATCTTTGAAGATATAAGATTCCCCGAATAAATAATATAAGATTTTGACTTTACCCCCATCATTTAAGATATAAGATTCCCCGAATAAATAATATAAGATTTTGACTTACCCCCATCATTTAAGATATAAGATTCCCCGAA<	40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Achatina fulica Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp.	1902002102202302AGATATAAGATTCCCCGGATGAATAATATAAGGTTTGATTATTACCACCTTCATTATTGATATAAGATTCCCACGAATAAATAATATAAGGTTTGACTTTACCCCCATCATTATTGATATAAGATTCCCCGGATAAATAACATAAGGTTTTGACTTTACCCCCATCATTTTTGATATAAGATTCCCCGGATAAATAACATAAGATTTTGACTTTACCCCCATCATTTATGATATAAGATTCCCCGGATAAATAACATAAGATTTTGACTTTACCCCCATCTTTATGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTTTACCCCCATCTTTAAGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTTCTCCCCCCATCTTTAAGATATAAGATTCCCCCGAATAAATAATATAAGGTTTTGACTCCTCCCCCCATCTTTAGGATATAAGATTCCCCGGATAAATAATATAAGGTTTTGACTCTCCCCCCATCTTTAGGATATGAGATTCCCCGGATAAATAATATAAGATTTTGACTGCTCCCCCATCTTTGAGGATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTGCTCCCCCATCTTTGAGGATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTTTACCCCCATCTTTAGGATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTTTACCCCCATCTTTAGAATATAAGATTCCCCGAATAAATAATATAAGATTTTGACTTTACCCCCATCTTTAGAATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTTTACCCCCATCTTTAAGATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTTTACCCCCTTCATTTAAGATATAAGATTCCCCGAA <t< th=""><th>40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th></t<>	40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Achatina fulica Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus	1902002102202302AGATATAAGATTCCCTCGGATGAATAATATAAGGTTTGATTATTACCACCTTCATTATGATATAAGATTTCCACGGATAAATAATATAAGGTTTTGACTTATACCACCTTCATTATTGATATAAGGTTTCCCCGGATAAATAACATAAGGTTTTGACTACTTCCCCCATCATTTTTGATATAAGGTTTCCCCGGATAAATAACATAAGATTTTGACTACTTCCCCCATCATTTTTGATATAAGATTCCCCCGAATAAATAACATAAGATTTTGACTTTTACCCCCATCTTTTATGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGGCTTTACCCCCATCTTTTAAGATATAAGATTCCCCCGAATAAATAATATAAGGTTTTGACTTCTCCCGCCATCTTTTAAGATATAAGGTTTCCCCGTATAAATAATATAAGGTTTTGACTTCTCCCCCATCATTTAAGATATAAGATTCCCCGGATAAATAATATAAGGTTTTGACTTCTCCCCCATCTTTTAGGACATAAGTTTTCCCCGAATAAATAATATAAGATTTGGCTACTCCCCCATCTTTGAGGATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTGCTCCCCCATCTTTGAGGATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTACTCCCCCATCTTTGAGAATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTACTCCCCCATCTTTTAGAATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTACTCCCCCATCTTTTAGAATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTACTCCCCCATCTTTTAAGATATAAGATTCCCCGGATAAATAATATAAGGTTTTGACTACTCCCCCATCTTTTAAGATATAAGA	400000000000000000000000000000000000000
Achatina fulica Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp.	1902002102202302AGATATAAGATTCCCTCGGATGAATAATATAAGGTTTGATTATTACCACCTTCATTATGATATAAGATTCCCACGAATAAATAATATAAGGTTTGACTACTTCACCCCATCATTATGATATAAGGTTTCCCCGGATAAATAACATAAGGTTTTGACTACTTCCCCCATCATTTTTGATATAAGGTTCCCCCGAATAAATAACATAAGATTTTGACTACTTCCCCCATCATTTTTGATATAAGATTCCCCCGAATAAATAACATAAGATTTTGACTTTTACCCCCATCTTTTATGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTTTACCCCCATCTTTTAAGATATAAGATTCCCCCGAATAAATAATATAAGATTTTGACTTCTCCCCCCATCTTTTAAGATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTTCTCCCCCATCATTTAAGATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTTCTCCCCCATCATTTAGGACATAAGTTTTCCCCGGATAAATAATATAAGATTTTGACTGCTCCCCCATCTTTGCGGATATAAGATTCCCCGGATAAATAATATAAGATTTTGACTGCTCCCCCATCTTTGAGGATATAAGATTCCCCGGATAAATAATATAAGATTTTGGCTTCTCCCCCATCTTTGAGGATATAAGATTCCCCGGATAAATAATATAAGATTTTGGCTTCTCCCCCATCTTTTAGGATATAAGATTCCCCGGATAAATAATATAAGATTTTGGCTTCTCCCCCATCTTTTAGAATATAAGATTCCCCGGATAAATAATATAAGATTTTGGCTTCTCCCCCATCTTTTAGAATATAAGATTCCCCGGATAAATAATATAAGATTTTGGCTTCTCCCCCATCTTTTAGAATATAAGAT	-40 CCCCTTTTTTTTTTTTTTTTTTTTTTTTTT

250) 260) 270) 280) 290) 300
CTTACTTATT	CTTTCTAGTA	TAGTTGAGGG	AGGAGCTGGT	ACTGGGTGAA	CAGTTTATCC
TTTGTTAATC	TGTTCAAGTA	TAGTGGAAGG	AGGGGCTGGA	ACTGGGTGGA	CTGTGTACCC
TTTGCTAATT	CTCTCAAGTA	TAGTAGAAGG	TGGGGCTGGG	ACAGGATGGA	CAGTTTACCC
ACTTCTTATC	TTGTCAAGAA	TAGTGGAGGG	GGGTGCAGGT	ACAGGTTGAA	CTGTGTATCC
TTTTTTTAATT	GTCTCGAGAA	TGGTAGAAGG	GGGAGCCGGG	ACTGGGTGAA	CTGTTTACCC
TTTCCTTATT	ATGTCTAGTA	TAATAGAGGG	TGGAGCTGGT	ACAGGTTGGA	CAGTTTATCC
TCTTTTAATT	GTATCTAGTA	TAATTGAAGG	TGGTGCTGGT	ACAGGGTGAA	CTGTTTATCC
TCTTTTAATT	ACATCTAGTT	TGGTAGAAGG	TGGTGCAGGG	ACAGGATGGA	CAGTTTACCC
TTTCTTGATC	ACGTCAAGGT	TAATAGAAGG	CGGAGCTGGC	ACAGGTTGGA	CTGTATACCC
TTTTTTTAATT	ATGTCAAGAA	TAATAGAAGG	AGGAGCAGGA	ACAGGTTGAA	CCGTTTATCC
TTTTTTTAATT	ATGTCTAGAA	TAGTTGAAGG	TGGGGCTGGA	ACTGGTTGAA	CTGTGTACCC
TTTTTTAATT	ATGTCTAGTA	TAATAGAGGG	GGGGGGCTGGT	ACAGGCTGAA	CTGTTTACCC
ATTTTTAATT	ATTTCTAGTT	TAGTGGAAGG	GGGTGCTGGA	ACAGGTTGAA	CAGTCTACCC
TTTTCTAATT	GTTTCAAGGA	TAATAGAGGG	GGGAGCCGGA	ACTGGTTGAA	CTGTCTACCC
TCTACTTATT	GTATCAAGTA	TAGTAGAAGG	AGGTGTAGGA	ACAGGGTGAA	CTGTTTACCC
TTTATTAATT	ATATCTAGGA	TAGTAGAAGG	TGGGGCAGGA	ACTGGTTGAA	CAGTGTATCC
ATTATTAATT	TTATCTAGAA	TAGTGGAAGG	TGGTGCTGGT	ACTGGTTGAA	CAGTTTATCC
TTTATTAATT	TTATCAAGCA	TGGTARAAGG	AGGTGCGGGG	ACAGGTTGAA	CCGTTTATCC
TTTTTTAATT	GTCTCTAGGA	TAGTGGAAGG	AGGGGCTGGA	ACAGGGTGAA	CAGTTTACCC
TTTTTTAATT	ATTTCGAGGT	TGATTGAAGG	TGGAGCCGGA	ACTGGTTGAA	CTGTTTACCC
TTTATTAATT	TTATCTAGAA	TAGTTGAAGG	TGGGGCTGGG	ACTGGTTGGA	CTGTTTACCC
TTTATTAATT	ATATCGAGGA	TAGTTGAAGG	GGGTGCTGGT	ACTGGTTGAA	CTGTTTACCC
TTTACTAATT	GTTTCAAGTT	TAGTTGAGGG	GGGTGCAGGG	ACAGGCTGAA	CCGTATATCC
TTTTTTAATT	ATTTCTAGAA	TAGTAGAAGG	TGGAGCTGGA	ACAGGTTGAA	CGGTATACCC

Achatina achatina
Achatina fulica
Achatina stuhlmanni
Cochlitoma ustulata
Coeliaxis blandii
Pyrgina umbilicata
Glessula ceylanica
Ferussacia folliculus
Thyrophorella thomensis
Allopeas clavulinum
Bocageia sp.
Eutomopeas layardi
Leptinaria lamellata
Paropeas achatinaceum
Riebeckia sp.
Rumina decollata
Subulina octona
Subulina striatella
Subulina vitrea
Subulona sp.
Tortaxis erectus
Xerocerastus sp.
Zootecus insularis
Gibbulinella dewinteri

Achatina achatina Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum

Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Gibbulinella dewinteri

31(ר <u>ז</u> כי ר) 33() 34() 35(360
	TCTACTTTAG				
	TCTTGCTTAG				
	TCATTAATTG				
	TCTATCATAG				
	GGTATTATTG				
ACCCCTTAGC	TCAATAATTG	GCCACAGAGG	TCCATCTGTT	GATTTGGCAA	TTTTCTCCCT
ACCATTAAGA	AGTATTGTTG	GACATAGCGG	TGCGTCTGTT	GACTTAGCTA	TTTTTTCACT
CCCTTTAAGC	AGATTGGTAG	GCCATAGAGG	TGCTTCTGTA	GATTTGGCGA	TTTTCTCTCT
CCCCCTTAGA	TCAATGATCG	GTCATAGTGG	TCCGTCTGTT	GATTTAGCAA	TCTTCTCTCT
ACCATTAAGA	TCAATATTAG	GGCACGGAGG	ACCTTCTGTA	GACTTAGCTA	TTTTTTTCTCT
TCCTTTAAGA	AGTCTGATAG	GTCATAGAGG	TGCGTCCGTG	GATTTGGCTA	TTTTTTCACT
ACCTTTAAGA	TCAATATTAG	GGCACGGTGG	GCCCTCAGTA	GATCTAGCTA	TTTTTTTCTCT
ACCTTTAAGT	GGGATTTTAG	GTCATAGGGG	CGCTTCTGTC	GACTTAGCTA	TTTTTTTCTCT
ACCATTAAGG	TCAATACTAG	GTCATAGAGG	CCCATCAGTA	GACTTAGCTA	TTTTTTTCTCT
TCCTTTAAGA	GGTATTTTAG	GACATAGGGG	AGCATCTGTT	GATTTAGCTA	TCTTTTCTCT
ACCCTTAAGC	AGAATCATAG	GACATAGTGG	GGCATCTGTT	GACTTAGCTA	TTTTCTCTCT
ACCTTTAAGC	AGAATTATAG	GTCATGCTGG	GGCTTCAGTT	GATCTTGCTA	TTTTTTTCTTT
CCCTCTTAGA	GGAATTTTAG	GACATGCTGG	TGCGTCAGTG	GATCTAGCTA	TTTTTTTCTTT
CCCCCTAAGA	GGGATCTTAG	GCCATAGTGG	CGCTTCTGTT	GATTTAGCCA	TTTTTTTCTTT
TCCATTAAGT	GGGATTAGAG	GTCATGGTGG	AGCTTCTGTT	GACTTAGCAA	TTTTTTTCTTT
TCCTTTAAGT	GGAATTATGG	GCCATAGTGG	TGCTTCAGTT	GACTTAGCTA	TTTTTTCATT
CCCATTAAGT	AGTATTATTG	GACACAGTGG	TGCTTCTGTA	GATTTAGCTA	TCTTCTCTCT
ACCTCTAAGA	AGAAGCTTGG	GACATAGTGG	AGCTTCTGTC	GATCTGGCTA	TTTTCTCACT
ACCATTAAGT	AGCCTATTAG	GACATGGAGG	AGCTTCTGTA	GATTTAGTTA	TTTTTTTCTTT

	···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ····
	370 380 390 400 410 420
Achatina achatina	ACATTTGGCT GGTATATCAT CTATCTTAGG GGCTATTAAC TTTATTACTA CAATTTTTAA
Achatina fulica	ACATTTGGCT GGTGTATCCT CAATTTTAGG GGCAATCAAT TTTATTACGA CGGTGTATAA
Achatina stuhlmanni	ACACTTAGCC GGAATATCCT CTATTCTCGG AGCTATCAAC TTTATTACTA CAATTTTTAA
Cochlitoma ustulata	ACACTTAGCT GGTATATCTT CTATTCTCGG GGCTATTAAC TTTATCACAA CTATCTTTAA
Coeliaxis blandii	ACATTTAGCT GGTATGTCTT CAATTTTAGG TGCTATTAAT TTTATTACAA CTATTTTTAA
Pyrgina umbilicata	CCATTTGGCA GGAATTTCTT CAATCTTAGG GGCAATTAAC TTTATTACCA CTATTTTTAA
Glessula ceylanica	TCACCTAGCA GGAATATCAT CAATTTTAGG TGCTATCAAT TTTATTACAA CTATTTTTAA
Ferussacia folliculus	ACATCTTGCT GGAATATCTT CAATTTTAGG GGCAATTAAT TTTATTACTA CTATCTTTAA
Thyrophorella thomensis	TCACTTAGCA GGGATATCCT CTATTTTGGG TGCAATTAAC TTTATTACAA CAATCTTTAA
Allopeas clavulinum	TCATTTAGCT GGGATGTCTT CTATTCTTGG TGCTATCAAT TTTATTACTA CGATTTTTAA
Bocageia sp.	TCATCTTGCG GGTATATCTT CAATCTTAGG TGCCATCAAT TTTATTACTA CTATTTTTAA
Eutomopeas layardi	TCACTTAGCG GGGATATCTT CAATTTTAGG GGCTATCAAT TTTATTACCA CAATTTTTAA
Leptinaria lamellata	CCATTTAGCT GGAATATCTT CAATTTTAGG TGCAATTAAT TTTATTACTA CAATTTTTAA
Paropeas achatinaceum	CCATTTGGCT GGGATATCCT CAATTTTAGG GGCTATTAAC TTTATTACAA CAATCTTTAA
Riebeckia sp.	TCATTTAGCA GGAATATCTT CAATTCTAGG GGCTATTAAT TTTATTACAA CTATTTTTAA
Rumina decollata	TCATTTAGCA GGGATATCTT CTATTTTAGG TGCAATTAAT TTTATTACTA CTATTTATAA
Subulina octona	GCATTTAGCA GGAATGTCTT CTATTTTAGG TGCAATTAAT TTTATTACTA CTGTATTTAA
Subulina striatella	ACATTTGGCT GGTATGTCTT CAATTTTAGG TGCAATTAAT TTTATTACGA CTGTTTTTAA
Subulina vitrea	ACATTTAGCA GGAATATCTT CTATTTTAGG GGCCATTAAT TTTATTACTA CAATTTATAA
Subulona sp.	ACATCTAGCT GGTATATCTT CCATTTTAGG TGCAATTAAC TTTATTACAA CTATTTATAA
Tortaxis erectus	ACATTTAGCT GGACTTTCTT CTATTTTAGG GGCTATTAAC TTTATTACAA CTATTTTTAA
Xerocerastus sp.	CCACTTAGCC GGGATGTCTT CTATCCTTGG GGCTATTAAT TTTATTACTA CCATTTTTAA
Zootecus insularis	TCACTTGGCC GGTATATCTT CAATTCTTGG AGCTATTAAT TTTATTACTA CTATCTTTAA
Gibbulinella dewinteri	ACATCTAGCA GGTATATCTT CTATTTTAGG GGCTATTAAT TTTATTACTA CTATCTTTAA
	430 440 450 460 470 480
Achatina achatina	
	TATACGAGCA TCAGGGATAT CTATAGAACG GGTTAGACTG TTTGTATGAT CTATTTTAGT
Achatina fulica	TATACGAGCA TCAGGGATAT CTATAGAACG GGTTAGACTG TTTGTATGAT CTATTTTAGT TATACGAGCC TCTGGGCTAA CTATAGAACG GGTAAGCTTA TTCGTGTGGT CAATTTTAGT
Achatina fulica Achatina stuhlmanni	TATACGAGCA TCAGGGATAT CTATAGAACG GGTTAGACTG TTTGTATGAT CTATTTAGT TATACGAGCC TCTGGGCTAA CTATAGAACG GGTAAGCTTA TTCGTGTGGT CAATTTTAGT CATACGAGTA TCTGGACTAT CTATGGAACG GGTGAGGTTA TTTGTATGAT CAATTCTTGT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata	TATACGAGGA TCAGGGATAT CTATAGAACG GGTTAGACTG TTTGTATGAT CTATTTAGT TATACGAGCC TCTGGGCTAA CTATAGAACG GGTAAGCTTA TTCGTGTGGT CAATTTTAGT CATACGAGTA TCTGGACTAT CTATGGAACG GGTGAGGTTA TTTGTATGAT CAATTCTTGT TATACGAGCT CAAGGCTTAT CTATGGAGCG TATAAGATTA TTTGTATGGT CTATTTTAGT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii	TATACGAGGA TCAGGGATAT CTATAGAACG GGTTAGACTG TTTGTATGAT CTATTTAGT TATACGAGCC TCTGGGCTAA CTATAGAACG GGTAAGCTTA TTCGTGTGGT CAATTTTAGT CATACGAGTA TCTGGACTAT CTATGGAACG GGTGAGGTTA TTTGTATGAT CAATTCTTGT TATACGAGCT CAAGGCTTAT CTATGGAGCG TATAAGATTA TTTGTATGGT CTATTTTAGT TATACGTGCT TCCGGATTAA CAATAGAACG TGTAAGTCTT TTTGTATGAT CTATTTTAAT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata	TATACGAGCA TCAGGGATAT CTATAGAACG GGTTAGACTG TTTGTATGAT CTATTTAGT TATACGAGCC TCTGGGCTAA CTATAGAACG GGTAAGCTTA TTCGTGTGGT CAATTTTAGT CATACGAGTA TCTGGACTAT CTATGGAACG GGTGAGGTTA TTTGTATGAT CAATTCTTGT TATACGAGCT CAAGGCTTAT CTATGGAGCG TATAAGATTA TTTGTATGGT CTATTTTAGT TATACGTGCT TCCGGATTAA CAATAGAACG TGTAAGTCTT TTTGTATGAT CTATTTTAAT TATACGTTCG TCAGGAGTTA AATATGAACG GTTAAGCTTG TTTGTTTGAT CAATTTTAGT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica	TATACGAGCA TCAGGGATAT CTATAGAACG GGTTAGACTG TTTGTATGAT CTATTTAGT TATACGAGCC TCTGGGCTAA CTATAGAACG GGTAAGCTTA TTCGTGTGGGT CAATTTTAGT CATACGAGTA TCTGGACTAT CTATGGAACG GGTGGAGGTTA TTTGTATGAT CAATTCTTGT TATACGAGCT CAAGGCTTAT CTATGGAGCG TATAAGATTA TTTGTATGGT CTATTTTAGT TATACGTGCT TCCGGATTAA CAATAGAACG TGTAAGCTTG TTTGTATGAT CAATTTAAGT TATACGTTCG TCAGGAGTTA ATATGAACG GTTAAGCTTG TTTGTATGAT CAATTTTAGT CATACGAGCT CCTGGTCTTA CCATAGAACG AGTGAGGTTG TTTGTATGAT CAATTTTAGT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus	TATACGAGCA TCAGGGATAT CTATAGAACG GGTTAGACTG TTTGTATGAT CTATTTAGT TATACGAGCC TCTGGGCTAA CTATAGAACG GGTAAGCTTA TTCGTGTGGT CAATTTTAGT CATACGAGCT TCTGGACTAT CTATGGAACG GGTGAGGTTA TTTGTATGAT CAATTCTTGT TATACGAGCT CAAGGCTTAT CTATGGAACG GGTGAGGTTA TTTGTATGGT CTATTTAGT TATACGTGCT TCCGGATTAA CAATAGAACG TGTAAGATTA TTTGTATGGT CTATTTTAAT TATACGTTCG TCAGGAGTTA ATATGAACG GTTAAGCTTG TTTGTATGAT CAATTTTAGT CATACGAGCT CCTGGTCTTA CCATAGAACG AGTGAGGTTG TTTGTATGAT CTATTTTAGT TATACGACC CCAGGTATAA CAATAGAACG GTTAAGTTG TTTGTATGAT CTATTTTAGT TATACGACC CCAGGTATAA CAATAGAACG GGTTAATTTA TTTGTATGAT CTATTTTAGT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis	TATACGAGCA TCAGGGATAT CTATAGAACG GGTTAGACTG TTTGTATGAT CTATTTAGT TATACGAGCC TCTGGGCTAA CTATAGAACG GGTAAGCTTA TTCGTGTGGT CAATTTTAGT CATACGAGCT TCTGGACTAT CTATGGAACG GGTGAGGTTA TTTGTATGAT CAATTCTTGT TATACGAGCT CAAGGCTTAT CTATGGAACG GGTGAGGTTA TTTGTATGAT CAATTCTTGT TATACGTGCT TCCGGATTAA CAATAGAACG TGTAAGATTA TTTGTATGAT CTATTTAAT TATACGTTCG TCAGGAGTTA AATATGAACG GTTAAGCTTG TTTGTATGAT CAATTTTAAT TATACGAGCT CCTGGTCTTA CCATAGAACG GTTAAGCTTG TTTGTATGAT CTATTTTAGT TATACGAGCT CCTGGTCTTA CCATAGAACG GTTAAGCTTG TTTGTATGAT CTATTTTAGT TATACGAGCT CCTGGTCTTA CCATAGAACG GGTTAATTTA TTTGTATGAT CTATTTTAGT CATACGAGCT CCTGGTCTTA CTATGGAACG GGTTAATTTA TTTGTATGAT CTATTTTAGT CATACGATCC CCAGGTATAA CTATGGAACG TCTAAGATTA TTTGTGTGGT CTATTTTAGT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum	TATACGAGCA TCAGGGATAT CTATAGAACG GGTTAGACTG TTTGTATGAT CTATTTAGT TATACGAGCC TCTGGGCTAA CTATAGAACG GGTAAGCTTA TTCGTGTGGT CAATTTTAGT CATACGAGCT TCTGGACTAT CTATGGAACG GGTGAGGTTA TTTGTATGAT CAATTCTTGT TATACGAGCT CAAGGCTTAT CTATGGAGCG TATAAGATTA TTTGTATGGT CTATTTTAGT TATACGTCC TCCGGATTAA CAATAGAACG TGTAAGTCTT TTTGTATGGT CTATTTTAAT TATACGTTCG TCAGGAGTTA AATATGAACG GTTAAGCTTG TTTGTATGAT CAATTTTAGT CATACGAGCT CCTGGTCTTA CCATAGAACG AGTGAGGTTG TTTGTATGAT CTATTTTAGT TATACGATCC CCAGGTATA CAATAGAACG GTTAAGCTTG TTTGTATGAT CTATTTTAGT CATACGAGCT CCTGGTCTTA CCATAGAACG GGTTAATTTA TTTGTATGAT CTATTTTAGT TATACGATCC CCAGGTATAA CTATGGAACG AGTGAGTTG TTTGTGTGGGT CTATTTGGT CATACGATCC TCTGGAATAA GTTATGAGCG TCTAAGATTA TTTGTGTGGAT CAATTTTAGT TATACGATCG TCAGGAATAA AGTACGAACG AATAAGGTTA TTTGTTTGAT CAATTTTAGT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp.	TATACGAGCA TCAGGGATAT CTATAGAACG GGTTAGACTG TTTGTATGAT CTATTTAGT TATACGAGCC TCTGGGCTAA CTATAGAACG GGTAAGCTTA TTCGTGTGGT CAATTTTAGT CATACGAGCT TCTGGACTAT CTATGGAACG GGTGAGGTTA TTTGTATGAT CAATTCTTGT TATACGAGCT CAAGGCTTAT CTATGGAGCG TATAAGATTA TTTGTATGGT CTATTTTAGT TATACGTCC TCCGGATTAA CAATAGAACG TGTAAGTCTT TTTGTATGGT CTATTTTAAT TATACGTTCG TCAGGAGTTA AATATGAACG GTTAAGCTTG TTTGTATGAT CAATTTTAAT TATACGACC CCTGGTCTTA CCATAGAACG AGTGAGGTTG TTTGTATGAT CTATTTTAGT CATACGAGCT CCTGGTCTA CCATAGAACG GTTAAGCTTG TTTGTATGAT CTATTTAGT CATACGAGCT CCTGGTCTTA CCATAGAACG AGTGAGGTTG TTTGTTGGAT CTATTTAGT TATACGATCC CCAGGTATAA CTATGGAACG ACTAAGTTA TTTGTGTGGT CTATTTTAGT TATACGATCC CCAGGTATAA GTTATGACCG TCTAAGATTA TTTGTGTGGAT CAATTTTAGT TATACGATCG TCGGAATAA AGTACGAACG AATAAGGTTA TTTGTTTGAT CAATTTTAGT TATACGATCA CCTGGTATAA CAATAGAACG AACAAGATTA TTTGTTTGAT CTATTTTGGT TATACGATCA CCTGGTATAA CAATAGAACG AACAAGATTA TTTGTATGGT CTATTTTGGT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi	TATACGAGCA TCAGGGATAT CTATAGAACG GGTTAGACTG TTTGTATGAT CTATTTAGT TATACGAGCC TCTGGGCTAA CTATAGAACG GGTAGACTG TTTGTATGAT CAATTTTAGT CATACGAGCT TCTGGACTAT CTATGGAACG GGTAGGTTA TTTGTATGAT CAATTCTTGT TATACGAGCT CAAGGCTTAT CTATGGAGCG TATAAGATTA TTTGTATGGT CTATTTTAGT TATACGTGCT TCCGGATTAA CAATAGAACG GTTAAGTTA TTTGTATGGT CTATTTTAGT TATACGTGC TCCGGATTAA CAATAGAACG GTTAAGCTTG TTTGTATGAT CAATTTTAGT CATACGAGCT CCTGGTCTTA CCATAGAACG AGTGAGGTTG TTTGTATGAT CAATTTTAGT CATACGAGCT CCTGGTCTTA CCATAGAACG AGTGAGGTTG TTTGTATGGT CAATTTTAGT TATACGATCC CCCGGTATAA CTATGGAACG AGTGAGGTTG TTTGTATGGT CTATTTTAGT TATACGATCC CCAGGTATAA CTATGGAACG AGTGAGGTTG TTTGTATGGT CTATTTTAGT TATACGATCC TCGGAATAA GTTATGGACG GCTTAAGATTA TTTGTGTGGGT CTATTTTAGT TATACGATCG TCAGGAATAA AGTACGAACG AATAAGATTA TTTGTTTGAT CAATTTAGT TATACGATCA CCTGGTATAA CAATAGAACG AACAAGATTA TTTGTATGGT CTATTTTAGT TATACGATCA CCTGGTATAA CAATAGAACG AACAAGATTA TTTGTATGGT CTATTTAGT TATACGATCA TCTGGGATAA AATAGAACG AACAAGATTA TTTGTATGGT CTATCTTAGT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata	TATACGAGCA TCAGGGATAT CTATAGAACG GGTTAGACTG TTTGTATGAT CTATTTAGT TATACGAGCC TCTGGGCTAA CTATAGAACG GGTAGACTG TTTGTATGAT CTATTTAGT CATACGAGCT TCTGGGCTAA CTATAGAACG GGTAAGCTTA TTCGTGTGGT CAATTTTAGT TATACGAGCT CAAGGCTTAT CTATGGAGCG GTTAAGATTA TTTGTATGAT CAATTCTTGT TATACGTGCT TCCGGATTAA CAATAGAACG TGTAAGATTA TTTGTATGGT CTATTTTAGT TATACGTGC TCCGGATTAA CAATAGAACG GTTAAGCTTG TTTGTATGGT CTATTTTAGT CATACGAGCT CCTGGTCTTA CCATAGAACG AGTGAGGTTG TTTGTATGGT CAATTTTAGT TATACGTCG TCAGGAGTTA ATATGAACG GTTAAGCTTG TTTGTATGGT CAATTTTAGT CATACGAGCT CCTGGTCTTA CCATAGAACG AGTGAGGTTG TTTGTATGGT CAATTTTAGT TATACGATCC CCAGGTATAA CTATGGAACG AGTGAGGTTG TTTGTATGGT CTATTTTAGT CATACGATCC TCTGGAATAA GTTATGGAACG AGTAAGTTA TTTGTGTGGAT CAATTTTAGT TATACGATCG TCAGGAATAA AGTACGAACG AATAAGGTTA TTTGTTTGAT CTATTTGGT TATACGATCA CCTGGTATAA CAATAGAACG AATAAGGTTA TTTGTATGGT CTATTTAGT TATACGATCA CCTGGTATAA CAATAGAACG AATAAGGTTA TTTGTATGGT CTATCTTAGT TATACGATCA CCTGGTATAA AATAGAACG AATAAGATTA TTTGTATGGT CTATCTTAGT TATACGATCA CCTGGATTAA AAATAGAACG AATAAGATTA TTTGTTTGGT CTATCTTAGT TATACGGTCA CCTGGATTAA AAATAGAACG AATAAGATTA TTTGTTTGGT CAATTTAGT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum	TATACGAGCA TCAGGGATAT CTATAGAACG GGTTAGACTG TTTGTATGAT CTATTTAGT TATACGAGCC TCTGGGCTAA CTATAGAACG GGTAGACTG TTTGTATGAT CTATTTAGT CATACGAGCC TCTGGGCTAA CTATAGAACG GGTAAGCTTA TTCGTGTGGT CAATTTTAGT CATACGAGCT CAAGGCTTAT CTATGGAACG GGTGAGGTTA TTTGTATGAT CAATTCTTGT TATACGTGCT TCCGGATTAA CAATAGAACG TGTAAGATTA TTTGTATGGT CTATTTTAGT TATACGTGC TCCGGATTAA CAATAGAACG GTTAAGCTTG TTTGTATGGT CAATTTTAGT CATACGAGCT CCTGGTCTA CCATAGAACG GTTAAGCTTG TTTGTATGGT CAATTTTAGT TATACGTCG TCAGGAGTTA ATATGGACG GTTAAGCTTG TTTGTATGGT CAATTTTAGT TATACGATCC CCAGGTATAA CAATAGAACG AGTGAGGTTG TTTGTTTGAT CAATTTTAGT TATACGATCC CCAGGTATAA CTATGGAACG GGTTAATTTA TTTGTGTGGGT CTATTTTAGT TATACGATCC CCAGGAATAA GTTATGACG TCTAAGATTA TTTGTGTGGGT CAATTTTAGT TATACGATCA TCTGGAATAA GTTATGACG ACTAAGATTA TTTGTTGGTGTAT CAATTTTAGT TATACGATCA CCTGGTATAA CAATAGAACG AACAAGATTA TTTGTTTGAT CTATTTTGGT TATACGATCA CCTGGTATAA CAATAGAACG AACAAGATTA TTTGTTTGGT CTATCTTAGT TATACGATCA CCTGGGTTGA AATATGAACG ACTAAGATTA TTTGTTTGGT CTATCTTAGT TATACGGTCA CCTGGGATAA AATAGAACG AGTAAGATTA TTTGTTTGGT CAATTTTAGT TATACGGTCA CCTGGATAA AATAGAACG AGTAAGATTA TTTGTTTGGT CAATTTTAGT TATACGGTCA CCTGGATAA AATAGAACG AGTAAGATTA TTTGTTTGGT CAATTTTAGT TATACGGTCA CCTGGATAA AGTATGAACG AGTAAGATTA TTTGTTTGGT CAATTTTAGT TATACGGTCA TCAGGGATGA AGTATGAACG TATAGGATTA TTTGTTTGGT CAATTTTAGT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp.	TATACGAGCA TCAGGGATAT CTATAGAACG GGTTAGACTG TTTGTATGAT CTATTTAGT TATACGAGCC TCTGGGCTAA CTATAGAACG GGTAGACTG TTTGTATGAT CTATTTAGT CATACGAGCC TCTGGGCTAA CTATAGAACG GGTAAGCTTA TTCGTGTGGT CAATTTTAGT TATACGAGCT CCAGGCTTAT CTATGGAACG GGTGAGGTTA TTTGTATGAT CAATTCTTGT TATACGAGCT CCCGGATTAA CAATAGAACG TGTAAGATTA TTTGTATGAT CAATTCTTAGT TATACGTGCC TCCGGATTAA CAATAGAACG TGTAAGATTA TTTGTATGAT CAATTTTAAT TATACGTTCG TCAGGAGTTA ACATAGAACG GTTAAGCTTG TTTGTATGAT CTATTTTAGT CATACGAGCC CCTGGTCTTA CCATAGAACG AGTGAGGTTG TTTGTATGAT CTATTTTAGT TATACGATCC CCAGGATAA CTATGGAACG AGTGAGGTTG TTTGTATGAT CTATTTTAGT TATACGATCC CCAGGTATAA CTATGGAACG GGTTAATTTA TTTGTATGAT CTATTTTAGT TATACGATCC CCAGGATAA GTTATGAGCG TCTAAGATTA TTTGTTGGAT CAATTTTAGT TATACGATCA TCTGGAATAA GTTATGAGCG ACTAAGATTA TTTGTTGAT CAATTTTAGT TATACGATCA CCTGGTATAA CAATAGAACG AATAAGGTTA TTTGTTTGAT CAATTTTAGT TATACGATCA CCTGGTATAA CAATAGAACG AATAAGATTA TTTGTTTGGT CTATCTTAGT TATACGATCA CCTGGATAA AATAGAACG AATAAGATTA TTTGTTTGGT CTATCTTAGT TATACGGTCA CCTGGATAA AATAGAACG TATAAGATTA TTTGTTTGGT CTATTTAGT TATACGGTCA TCAGGATGA AGTATGAACG TATAAGTTA TTTGTTTGAT CAATTTAAGT CAACGTCCA TCAGGATGA AGTATGAACG TATAAGTTA TTTGTTTGAT CAATTTAAGT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata	TATACGAGCA TCAGGGATAT CTATAGAACG GGTTAGACTG TTTGTATGAT CTATTTAGT TATACGAGCC TCTGGGCTAA CTATAGAACG GGTAGACTG TTTGTATGAT CTATTTAGT CATACGAGCT TCTGGACTAT CTATGGAACG GGTGAGGTTA TTTGTATGAT CAATTCTTGT TATACGAGCT CAAGGCTTAT CTATGGAACG GGTGAGGTTA TTTGTATGAT CAATTCTTGT TATACGAGCT CCAGGCTTAT CTATGGAACG GTTAAGATTA TTTGTATGGT CTATTTAGT TATACGTGCT TCCGGATTAA CAATAGAACG TGTAAGATTA TTTGTATGGT CTATTTTAGT TATACGTTCG TCAGGAGTTA AATATGAACG GTTAAGCTTG TTTGTATGAT CAATTTTAGT CATACGAGCT CCTGGTCTTA CCATAGAACG GGTAAGCTTG TTTGTATGGAT CTATTTTAGT TATACGATCC CCAGGTATAA CAATAGAACG GGTTAATTTA TTTGTATGGT CTATTTTAGT TATACGATCC CCAGGTATAA CTATGGAACG GGTTAATTTA TTTGTATGGT CTATTTTAGT TATACGATCC TCTGGAATAA GTTATGAGCG TCTAAGATTA TTTGTTGGAT CAATTTTAGT TATACGATCC TCAGGAATAA AGTACGAACG AATAAGGTTA TTTGTTTGGT CTATTTTGGT TATACGATCA CCTGGTATAA CAATAGAACG AACAAGATTA TTTGTTTGGT CTATTTTAGT TATACGATCA CCTGGTATAA CAATAGAACG AACAAGATTA TTTGTTTGGT CTATTTTAGT TATACGATCA CCTGGTATAA AATAGAACG AACAAGATTA TTTGTTTGGT CTATTTAGT TATACGGTCA CCTGGATTAA AAATAGAACG AATAAGATTA TTTGTTTGGT CTATTTAGT TATACGGTCA CCTGGATGA AATATGAACG AATAAGATTA TTTGTTTGGT CTATTTAGT TATACGGTCA CCAGGATGA AGTATGAACG ATAAGATTA TTTGTTTGGT CAATTTAAGT TATACGGTCA CCAGGATGA AGTATGAACG ATAAGATTA TTTGTTTGGT CAATTTAAT CATACGGTCC CCAGGATTAA CAATGAACG AGTAAGATTA TTTGTTTGGT CAATTTAAT CATACGGTCC CCAGGATTAA CAATGAACG TATAAGTCTA TTTGTTTGAT CAATTTAAT
Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp.	TATACGAGCA TCAGGGATAT CTATAGAACG GGTTAGACTG TTTGTATGAT CTATTTAGT TATACGAGCC TCTGGGCTAA CTATAGAACG GGTAGACTG TTTGTATGAT CTATTTAGT CATACGAGCC TCTGGGCTAA CTATAGAACG GGTAAGCTTA TTCGTGTGGT CAATTTTAGT TATACGAGCT CCAGGCTTAT CTATGGAACG GGTGAGGTTA TTTGTATGAT CAATTCTTGT TATACGAGCT CCCGGATTAA CAATAGAACG TGTAAGATTA TTTGTATGAT CAATTCTTAGT TATACGTGCC TCCGGATTAA CAATAGAACG TGTAAGATTA TTTGTATGAT CAATTTTAAT TATACGTTCG TCAGGAGTTA ACATAGAACG GTTAAGCTTG TTTGTATGAT CTATTTTAGT CATACGAGCC CCTGGTCTTA CCATAGAACG AGTGAGGTTG TTTGTATGAT CTATTTTAGT TATACGATCC CCAGGATAA CTATGGAACG AGTGAGGTTG TTTGTATGAT CTATTTTAGT TATACGATCC CCAGGTATAA CTATGGAACG GGTTAATTTA TTTGTATGAT CTATTTTAGT TATACGATCC CCAGGATAA GTTATGAGCG TCTAAGATTA TTTGTTGGAT CAATTTTAGT TATACGATCA TCTGGAATAA GTTATGAGCG ACTAAGATTA TTTGTTGAT CAATTTTAGT TATACGATCA CCTGGTATAA CAATAGAACG AATAAGGTTA TTTGTTTGAT CAATTTTAGT TATACGATCA CCTGGTATAA CAATAGAACG AATAAGATTA TTTGTTTGGT CTATCTTAGT TATACGATCA CCTGGATAA AATAGAACG AATAAGATTA TTTGTTTGGT CTATCTTAGT TATACGGTCA CCTGGATAA AATAGAACG TATAAGATTA TTTGTTTGGT CTATTTAGT TATACGGTCA TCAGGATGA AGTATGAACG TATAAGTTA TTTGTTTGAT CAATTTAAGT CAACGTCCA TCAGGATGA AGTATGAACG TATAAGTTA TTTGTTTGAT CAATTTAAGT

Ac Ac Cc Cc P₂ GI Fe Al Bc Et Et Pa R: R۱ Sı Su Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Gibbulinella dewinteri

425

TATACGAGCC CCTGGTATAA CCCCAGAACG AATTAGGCTA TTTGTTTGAT CAATTTAGT

CATACGAGCA CCAGGCTTAA CTCCAGAACG AACTAGACTA TTTGTTTGGT CTATTTAGT

TATACGTTCT TCAGGAATAT CTATGGAACG GGTAAGTCTA TTTGTTTGAT CTATTTTAGT

TATACGATCC TCTGGAATAA GTATGGAACG TGTCAGGTTG TTTGTATGAT CAATTCTGGT

TATGCGCTCT CCCGGATTAA CTATGGAACG GGTGAGCTTA TTTGTATGAT CTATTTTGGT

TATACGATCG CCTGGAATAA CAATAGAACG GGTGTCTTTA TTTGTTTGGT CTATTTAGT

490) 500) 510) 520	0 530) 540
TACAGTATTT	TTACTGCTTT	TATCTCTCCC	AGTATTAGCG	GGTGCAATTA	CTATACTTCT
TACAGTGTTT	CTACTATTGT	TATCATTGCC	AGTTCTAGCG	GGGGCAATTA	CTATACTATT
TACTGTTTTC	CTTTTACTTT	TATCTCTACC	AGTCTTAGCT	GGGGCGATTA	CTATACTATT
TACTGTTTTC	CTACTGCTCT	TATCTCTACC	AGTACTAGCA	GGGGCTATTA	CAATACTCCT
TACAGTATTT	TTATTACTCC	TATCTTTACC	AGTCTTGGCA	GGGGCAATTA	CTATGTTATT
TACTGTATTT	CTTCTCCTTC	TTTCCCTTCC	TGTATTAGCT	GGTGCAATTA	CCATATTATT
TACAGTTTTT	TTACTTCTTC	TTTCATTACC	TGTGTTAGCT	GGAGCTATTA	CTATATTATT
TACAGTTTTC	CTCTTATTAT	TATCACTCCC	TGTACTTGCG	GGGGCTATTA	CTATATTATT
CACTGTTTTT	CTTCTTCTCT	TATCTCTTCC	TGTTCTAGCT	GGGGCTATTA	CTATACTCTT
GACAGTTTTT	TTACTTCTTT	TATCTCTTCC	AGTTCTTGCC	GGTGCTATCA	CTATACTTTT
CACAGTATTT	CTATTACTTT	TATCATTACC	TGTTTTAGCT	GGTGCTATTA	CTATGCTTCT
AACAGTTTTT	TTGCTTTTAC	TATCTCTTCC	TGTTCTAGCT	GGCGCGATTA	CGATACTTTT
AACTGTTTTT	TTACTTCTCC	TATCGCTTCC	TGTTTTAGCT	GGGGCAATTA	CAATATTATT
CACAGTTTTC	TTATTACTTC	TTTCGTTACC	TGTTCTTGCT	GGTGCAATCA	CTATACTTCT
AACAGTTTTT	TTACTTCTTT	TATCTCTTCC	TGTTTTAGCT	GGAGCAATTA	CTATACTTTT
AACCGTTTTT	CTATTGCTTT	TATCCCTACC	AGTACTAGCA	GGAGCTATTA	CAATACTACT
TACTGTTTTT	TTATTATTAC	TATCATTGCC	TGTATTGGCT	GGTGCAATTA	CAATATTATT
AACGGTGTTT	TTACTATTAT	TGTCTTTACC	TGTATTGGCT	GGGGCAATCA	CTATGTTATT
AACAGTATTT	TTATTACTTT	TATCTTTACC	GGTTTTAGCT	GGGGCTATCA	CAATGTTATT
TACTGTGTTT	TTATTATTGT	TATCATTACC	AGTACTAGCT	GGCGCAATTA	CTATACTACT
TACAGTTTTC	TTGTTACTTC	TTTCACTTCC	TGTTTTAGCA	GGTGCTATTA	CTATGTTATT
TACTGTATTC	CTTTTATTAC	TTTCACTCCC	AGTATTAGCT	GGTGCTATTA	CTATATTATT
TACTGTATTT	CTATTACTGC	TATCATTACC	CGTTTTAGCG	GGTGCAATTA	CTATGCTATT
TACTGTTTTC	CTCTTACTTT	TATCACTTCC	AGTTCTTGCT	GGAGCAATTA	CTATATTGTT

Achatina achatina Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Gibbulinella dewinteri

Achatina achatina Achatina fulica Achatina stuhlmanni Cochlitoma ustulata Coeliaxis blandii Pyrgina umbilicata Glessula ceylanica Ferussacia folliculus Thyrophorella thomensis Allopeas clavulinum Bocageia sp. Eutomopeas layardi Leptinaria lamellata Paropeas achatinaceum

Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Gibbulinella dewinteri

> 600 GACCGATCGT AACTTTAATA CATCTTTTT TGATCCAGCT GGAGGTGGTG ATCCAGTGCT AACGGATCGT AACTTTAACA CATCTTTTTT TGACCCAGCT GGAGGGGGGG ACCCAGTCCT AACTGATCGA AATTTTAATA CATCTTTTT TGATCCGGCA GGGGGTGGTG ATCCAATCCT AACAGACCGG AACTTTAATA CGTCATTTTT TGACCCGGCC GGGGGCGGAG ATCCTGTTCT AACTGATCGT AATTTTAATA CTTCTTTTT TGATCCAGCT GGGGGTGGTG ATCCGGTGCT GACAGATCGA AATTTTAATA CATCTTTTTT TGACCCAGCT GGAGGTGGTG ACCCAATTTT AACGGATCGT AATTTTAATA CGTCTTTTTT TGATCCAGCA GGAGGTGGAG ACCCAATTTT AACTGATCGA AATTTTAATA CTTCTTTCTT TGACCCTGCG GGAGGGGGGCG ATCCGGTGTT AACTGATCGG AATTTTAATA CATCTTTTT TGATCCTGCT GGTGGAGGGG ACCCAGTCCT TACAGATCGT AATTTTAATA CATCCTTTTT TGATCCGGCT GGGGGAGGGG ATCCTATTTT AACTGATCGA AACTTTAACA CATCTTTTT TGATCCGGCT GGAGGGGGGG ATCCTATCTT AACAGATCGA AATTTTAATA CATCATTCTT TGATCCAGCA GGTGGTGGAG ATCCAATTTT TACAGACCGT AATTTTAATA CATCTTTTTT TGACCCCGGCT GGTGGCGGTG ACCCTGTGTT AACAGACCGA AATTTTAATA CATCATTTTT TGACCCAGCT GGAGGAGGTG ATCCTATTTT AACTGACCGT AACTTTAACA CTTCATTCTT TGATCCTGCA GGGGGAGGTG ATCCAATTCT AACTGATCGT AATTTTAATA CATCTTTTTT TGATCCAGCT GGTGGGGGGG ACCCTATTCT AACTGATCGT AATTTTAATA CATCTTTTT TGACCCAGCA GGTGGAGGGG ACCCTATCTT AACCGATCGT AATTTTAACA CATCTTTCTT TGATCCGGCT GGAGGGGGAG ACCCTGTTTT GACGGACCGT AATTTTAATA CATCATTTTT TGATCCTGCT GGGGGAGGAG ATCCAGTCTT GACTGATCGA AATTTTAATA CATCATTCTT TGACCCAGCT GGTGGTGGTG ATCCAATTCT AACTGATCGT AATTTCAATA CTTCATTTT TGATCCAGCA GGCGGAGGTG ACCCTGTACT GACTGATCGA AATTTTAACA CGTCGTTTTT TGATCCAGCT GGGGGTGGTG ATCCTATTT AACTGATCGG AATTTTAATA CGTCTTTTT TGATCCTGCT GGGGGTGGGG ATCCTATTT

Achatina achatina	TTACCAG
Achatina fulica	GTACCAG
Achatina stuhlmanni	ATACCAG
Cochlitoma ustulata	GTATCAG
Coeliaxis blandii	TTACCAA
Pyrgina umbilicata	ATATCAA
Glessula ceylanica	ATATCAG
Ferussacia folliculus	ATACCAA
Thyrophorella thomensis	ATATCAA
Allopeas clavulinum	ATATCAG
Bocageia sp.	ATATCAA
Eutomopeas layardi	ATACCAA
Leptinaria lamellata	ATATCAA
Paropeas achatinaceum	GTATCAA
Riebeckia sp.	GTATCAA
Rumina decollata	ATATCAG
Subulina octona	TTATCAG
Subulina striatella	ATATCAG
Subulina vitrea	ATACCAA
Subulona sp.	ATATCAA
Tortaxis erectus	TTATCAA
Xerocerastus sp.	TTATCAA
Zootecus insularis	GTACCAA
Gibbulinella dewinteri	ATATCAA
Gonaxis quadrilateralis	ATATCAA
Gonospira sp.	GTATCAA

Appendix 3.5: Alignment of the 16S rRNA gene for the Achatinoidea and three streptaxid outgroup taxa. Positions included for the phylogeny analyses were marked by "m" within "NUCEOTIDES INCLUDED".

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Leptinaria lamellata Paropeas clavulinum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

	20 3			
	GTGC			
TAGCTAATAG G	CT	CTTTCCATAA	TTATTAGTGG	ACCCTGCCCG
TAGCCTGCTG T		AGATTTA	TTACAGGTGA	TCCCTGCCCG
			AGATAT	ATTCTGCCCA
TTTCCTAAAG A		TTTTTA	TTTTAGGTCC	AGCCTGCCCA
TAGCCTTAAG G		TATTA	TTTAAGGTAA	AGCCTGCTCA
		GATGGCTA	TACTTAGCAT	CCCCTGCCCA
			-TTTAGGTAA	CCCCTGCCCA
TAGCTTGAAG A		AAATTGG	TTTTAGGTTA	TTTCTGCCCA
		TACTA	TTTTAAGTGA	CTTCTGCCCG
TAGCTTAAAG A		-GTATTTTTA	TTTTAAGTAC	CTTCTGCCCA
TKRCTTAACG G		ATATDGKGRA	TGTTAAGCAT	SSCCTGCCCA
			CTTTATGTAA	CTTCTGCCCG
			TTAGGTGA	TTTCTGCCCG
CATA	ATTTTA TTAATTTGTA	AGTTTATTTA	TTTCAAGCTT	CTCCTGCCCA
			TTATAGATTA	ATCCTGCCCA
				AGCCTGCTCA
TAACTTAAAG A		AATTTA	TTTTAAGTAT	ACCCTGCCCG
			A	CTCCTGCCCG
				AGCCTGCTCA
			AGGTGA	CTTCTGCCCA
			AGTGT	TGTCTGCCCA
				mmmmmmmmm

Achatina fulica
Achatina achatina
Achatina stuhlmanni
Cochlitoma ustulata
Allopeas clavulinum
Bocageia sp.
Leptinaria lamellata
Paropeas clavulinum
Riebeckia sp.
Rumina decollata
Subulina octona
Subulina striatella
Subulina vitrea
Subulona sp.
Tortaxis erectus
Xerocerastus sp.
Zootecus insularis
Coeliaxis blandii
Pyrgina umbilicata
Cecilioides gokweanus
Ferussacia folliculus
Thyrophorella thomensis
Gibbulinella dewinteri
Gonaxis quadrilateralis
Gonospira sp.
NUCLEOTIDES INCLUDED

\ldots $ $ \ldots $ $ \ldots $ $ \ldots $ $				
GTGAGTTATA GAAACTT				100
GIGAGIIAIA GAAACII GTGATAGGTT ACCTATT				
GTGAAGTTAACCTTT				
GTGGGGCCTA TTACCCT				
ATGAAAATGTTT				
ATGAACCCTAAGTTT	TAATGGCCGC	AGTACCTTGA	CTGTGCAAAG	GTAGCATAAT
ATGATATATTT	TAATGGCCGC	AGTACCCTGA	CTGTGCTAAG	GTAGCATAAT
ATGAATAATTT	TAATAGCCGC	AGTACCCTGA	CTGTGCTAAG	GTAGCATAAT
GTGAGATATATTCTT	AAATGGCCGC	GGTACTTTGA	CCGTGCTAAG	GTAGCATAAT
GCGATATATAAGTT	TAGCGGCCGC	AGTACTTTGA	CTGTGCTAAG	GTAGCATAAT
GTGACGGTAA AAAGTT	AAATGGCCGC	AGTACATTGA	CTGTGCTAAG	GTAGCATAAT
GTGAATAGAAATT	TAACGGCCGC	AGTACATTGA	CTGTGCTAAG	GTAGCATAAT
ATGAAATTAATTT	TAATGGCCGC	AGTACTTTGA	CTGTGCAAAG	GTAGCATAAT
AWGAATAATT TATTKT	TAATGGCCGC	AGTACCTTGA	CTGTRCTAAG	GTAGCATAAT
GTGATTTTTTT	TAACGGCCGC	AGTACCCTGA	CTGTGCTAAG	GTAGCATAAT
GTGATATATTT	TAACGGCCGC	AGTACCTTGA	CTGTGCTAAG	GTAGCGTAAT
GTGATTTTTATATT	TAACGGCCGC	AGTACCCTGA	CTGTGCTAAG	GTAGCGTAAT
GTGAATACTT GTGAAAATTT	TAACGGCCGC	GGTACCTTGA	CCGTGCTAAG	GTAGCATAAT
ATGAATAAAA AACTTT	TAATAGCCGC	AGTACCCTGA	CTGTGCTAAG	GTAGCATAAT
GTGAGTTATT TTTCTT	TAACGGCCGC	AGTACCTTGA	CTGTGCAAAG	GTAGCATAAT
GTGATGGTTTATT	TAACGGCCGC	AGTACCCTGA	CTGTGCAAAG	GTAGCGTAAT
ATGAATATT	TAATAGCCGC	AGTACCCTGA	CTGTGCTAAG	GTAGCATAAT
CTGATTAGTT AACT-AACTT	TAACGGCCGC	AGTACTCTGA	CTGTGCTAAG	GTAGCATAAT
GTGAAAATTT	TAACGGCCGC	AGTACCCTGA	CTGTGCTAAG	GTAGCATAAT
GTGATGTTTATT	CAACGGCCGC	AGTACTTTGA	CTGTGCTAAG	GTAGCATAAT
mmmmmmmm	mmmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

	130					0 180
Achatina fulica	AATTTGTCCT	CTAATTAAGG	TCTGGAATGA	AGGGGGACA-	-CAGGGGAGA	GCTGTCTCCA
Achatina achatina	AATTTGTCCC	TTAATTAGGG	TCTGGTATGA	AAGGATTTT-	-CGGGAGTTT	ACTGTCTTAG
Achatina stuhlmanni	AATTTGTCCT	TTAATTAAGG	TCTTGCATGA	ATGGGTGTT-	-CGAGGAGTC	GCTGTCTTTA
Cochlitoma ustulata	CACTTGTCCT	TTAATTGAGG	ACTGGAATGA	AAGGGAAGAA	ACGGGTATGA	GCTGTCTCTA
Allopeas clavulinum	AATTTGTCTT	TTAATTGGAG	TCTGGAATGA	ATGGATTAA-	-TGGGGGATA	ACTGTCTCTT
Bocageia sp.	AATTTGTCCT	TTAATTAGGG	TCTAGAATGA	ATGAAAAATT	TTGGAAAACC	TCTGTCTCAT
Leptinaria lamellata	AATTAGTCCT	TTAATTGAGG	TCTGGAATAA	ATGGTATAA-	-CGGATAATA	ACTGTCTCAT
Paropeas clavulinum	AATTTGTCTT	TTAATTAAGG	TCTAGAATGA	ATGGTTTAT-	-TGGGGAAAA	GCTGTCTTAA
Riebeckia sp.	AATTTGTCCT	TTAATTAAGG	TCTAGAATGA	ATGGGGTTA-	-CTGGAAAGT	ATTGTCTCTG
Rumina decollata	AACTTGTCCT	TTAATTGAGG	TCTTGAATGA	ACGGGTTTA-	-CGAAAAATT	TCTGTCTCCT
Subulina octona	AATTTGTCCT	TTAATTGGGG	TCTAGAATGA	ATGAATTTA-	-TGGGGAATA	GCTGTCTCAA
Subulina striatella	AAATTGTCTC	TTAATTGGGG	TCTAGAATTA	ACGGAGTTA-	-TGGGGATTA	ACTGTCTCTA
Subulina vitrea	AATTTGTTCT	TTAATTGGGG	ACTAGAATGA	ATGAAAAAA-	-CGGAGGAAA	GCTGTCTCTT
Subulona sp.	CACTTGTTCT	TTAATTGAGG	ACTAGAATGA	ATGGGGGCA-	-CGGGAACCR	GCTGTCTGTA
Tortaxis erectus	AATTTGTCCT	CTAATTAGGG	TCTAGAATGA	AAGAAGATT-	-TAGGGATAA	ACTGTCTCTG
Xerocerastus sp.	AATTTGGCTT	TTAATTGAGG	TCTTGAATGA	AAGGGATAA-	-CGTGGGGGA	ATTGTCTCTT
Zootecus insularis	AATTTGTCCT	TTAATTGGGG	TCAGGTATGA	ACGGAGATCA	-CACATAGCC	GCTGTCTCTT
Coeliaxis blandii				ACGGATATT-		
Pyrgina umbilicata	AATTTGTCTT	TTAATTGAGG	TCTAGAATGA	ATGGCACCT-	-TGGGGTGAA	GCTGTCTTAA
Cecilioides gokweanus	AATTTGTCTT	TTAATTGGAG	TCTTGAATAA	ATGGGAATTT	-GGGGAGG-G	GCTGTCTCTT
Ferussacia folliculus				AAGGAATTTT		
Thyrophorella thomensis	AACTTGTCTC	CTAATTAGGG	TCTAGAATAA	ACGGCATCTA	-GAAGAGA-A	TCTGTCTTGG
Gibbulinella dewinteri	AAATTGATTT	TTAATTGGAG	TCTAGAATGA	AAGGGATTA-	-TGGGGGGAT	ACTGTCTCTA
Gonaxis quadrilateralis				ATGGAAATT-		
Gonospira sp.	AAATTGTCTT	ATAATTAAGG	ACTAGAATCA	AAGAATTTA-	-TGGAGTTTA	ACTGTCTTAA
NUCLEOTIDES INCLUDED	mmmmmmmmmm	mmmmmmmmmm	mmmmmmmmmm	mmmmm		-mmmmmmmm-

ATAAGGTTAA TT--TAACTT TC-TTATCAG GTGAAAATTC CTGAGCCT-- --CCGATGAA TGAGGTTAAT AT--GAATTT ACTCAATAAG GTGAAAATTC CTTAAAAT-- --TAGATAAA TTAGGGTTTA ATT-AAATTT AC-TCAAGAG GTGAAAATTC CTCTAAATT- --AAGATAAA GTTAGCTCTT TT--AAATTT AA-TTGTTAG GTGAAAATAC CTATACCT-- --TTAACAGA TAAGATTAAT TT--TAACTT GT-TTAAAAG GTGAAAAAAC CTTTGAAAA- --CAGAAAAA TTAGAAGTTT TG--TAAGTT TC-TAATAAG GTGAAAATTC CTTAGTGG-- --CCGAAGAA TGATTAATTT TAATTAACTT AC-TAATAAG GTGAAAATTC CTTAAAA--- --TTGAAAAA TTCAATTAAC TT--TAATTT AC-TTAGAAG GTGAAAAAAC CTTCAAAT-- --TAGAAAAA CTTTATTACT T---GAAATT TC-TTATCAG GTGAAAATTC CTGAATT--- --TTGAAAAA GTACAAATTT TACTGAACTT AC-TTAAGAG GTGAAAATTC CTTTAGTA-- --ATGAAAAA TAAGAATTTA TAT-GAATTT AT-TAATAAG GTGAAAATAC CTTAAGT--- --TTGAAAAA TAGGGTTTAT AT--GAAGTT AA-TTATTAG GTGCAAAAGC CTAATTGT-- --TAGAAAAA GTAAGTTAAC TT--TAATTT AC-TTAAAAG GTGAAAATAC CTTTATTT-- --AACATGAA TTATATTATC TA--TAATTT GC-TAAGGAG GTGAAAATTC CTCTAGC--- --TATAAGGT TAGAGGTTAA TT--GAATTT CC-TTAAAAG GTGAAAATTC CTTTATAA-- --ATGAAGTT TAAAAGTTTG TA--GAATTT GT-TTATTAG GTGAAAATAC CTATATTT-- --AATATATT AGAAGTTTTT GT--GAAGTT AC-TTATAAG GTGAAAATTC CTTTGAGCT- --TAGATAAA TTTAATTAAA TT--TAAGTT CC-TAATAAG GTGCAAATTC CTTAATTTTG TTATGAAAAT TTGGGGATTA TTT-TAACTT ACTTTATAGG GTGAAAATTC CCTTAAAT-- --ATTTATTT ATAAATTTTT TT--TAACTT AC-TAAAGAG GTGAAAATTC CTCTGGTTA- --TTTTTAAA TTAAACTTTT TT--TAATTT TC-TTAGGGT GTGAAAATTC ACCTATTAAC T-TTTAAGAA GTAGGTTAAT AC--TAACTT AC-TTAAAGG GTGAAAATTC CCTTGAAA-- --CTTTATTT GTTCGCATTT ATTTGAACTT AT-ATTTTAG GTGAAAATAC CTAAGAATT- --TTAATAAT ATTAATTATT TT--TAAATT AC-TTATAAG GTGAAAATAC CTTAAATT-- --TTAATTAA TTTAATTGTT TT--GAATTT AC-TTAAAAG GTGAAAATTC CTTTATTA-- --AAAATAAT

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Leptinaria lamellata Paropeas clavulinum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

				290	
Achatina fulica	AGACGAGAAG ACCCTTAGA				
Achatina achatina	AGACGAGAAG ACCCTTGGA				
Achatina stuhlmanni	AGACGAGAAG ACCCTTAGA	G TTTTAATGAA	AAGTAAAC		
Cochlitoma ustulata	AGACGAGAAG ACCCTTAGA	G TTTTTATGAT	AAGCATTCT-		
Allopeas clavulinum	AGACGAGAAG ACCCTTAGA	G TTTTTAATTA	ATTGAATTT-		
Bocageia sp.	AGACGAGAAG ACCCTAAGA	G TTTTTATAAA	CTTCTACAT-		
Leptinaria lamellata	AGACGAGAAG ACCCTAAGA	A TTTTTATGAA	AAAG		
Paropeas clavulinum	AGACGAGAAG ACCCTTAGA	G TTTTAATAAA	ATGTTAATT-		
Riebeckia sp.	AGACGAGAAG ACCCTTAGA	A TTTTTATAAT	ACCTTAC		
Rumina decollata	AGACGAGAAG ACCCTTAGA	A TTTTAATAAA	AACTGTCAT-		
Subulina octona	AGACGAGAAG ACCCTAAGA	G TTTTTATAAG	TAGTAAAAA-		T
Subulina striatella	AGACGAGAAG ACCCTATGA	A TTTTAATTAA	AATATTTGA-		
Subulina vitrea	AGACGAGAAG ACCCTTAGA	A TTTTTATAAA	CATAATTTC-		
Subulona sp.	AGACGAGAAG ACCCTAAGA	A TTTTACACCT	GACCAGCGC-		
Tortaxis erectus	AGACGAGAAG ACCCTTAGA	A TTTTTATAAT	GTAACTCTT-		TATAATA
Xerocerastus sp.	AGACGAGAAG ACCCTTAGA	A TTTAAATTAT	TG		
Zootecus insularis	AGACGAGAAG ACCCTTAGA	A TTTTTATAAT	AGGTAAGAA-		
Coeliaxis blandii	AGACGAGAAG ACCCTTAGA	A TTTTTATTTT	ATTTAAATA-		
Pyrgina umbilicata	AGACGAGAAG ACCCTTAGA	A CTTTTAATTA	AAGAGG		
Cecilioides gokweanus	AGACGAGAAG ACCCTTAGA	G TTTTAATAAA	ATTTAATTTC	ATATAATTTA	AGTAAGAATT
Ferussacia folliculus	AGACGAGAAG ACCCTTAGA	G TTTAATCGTG	TGAGAGTAT-		
Thyrophorella thomensis	AGACGAGAAG ACCCTCAGA	A CTTTAACTAA	TGAAGG		
Gibbulinella dewinteri	AGACGAGAAG ACCCTTAGA				
Gonaxis quadrilateralis	AGACGAGAAG ACCCTTAGA	G TTTTTATAAA	AGG		
Gonospira sp.	AGACGAGAAG ACCCTATGA	A TTTTTTATAAT	TGTTAGA		
NUCLEOTIDES INCLUDED	mmmmmmmmm mmmmmmmm	nm mmmmm————			

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Leptinaria lamellata Paropeas clavulinum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

>|....|||||||||| 310 320 330 340 350 360 TTAAGATTCT TGTTCTGTTT TTGTTGGGGC GACAGGGTTA CA------A -----TT CTATTCTTTT TCGCTGGGGC AGCGAGATTA CA-----------TTT ACTTAAGTTT TTGTTGGGGC AACAAGATGG CA--AAAATT AGTAATACTT ---ACATATG CTGTCAGTTT TCGTTGGGGC AACGAGATTG CA-----TG --TTTTAATG TTTATTTTTT TTGTTGGGGC GACATAGTAA CA------CAACTTTAGA ATAGGCGTTT TCGTTGGGGC GACGAAATTA CA----- --- ATAGTA -----TTAA ACTTAAGTTT TCGTTGGGGC GACGGGTTTT CA----------ATT TTCTTTTTT TTGTTGGGGC GACAAAGTAA CA-----------TAAA GGGAAAGTTT TTGTTGGGGC GACAAAGTTA CA-----AG --TGCGTGAT TGTTTAGTTT TCGTTGGGGC GACGAGGTAG CA-----AT TATTAGATTT ACATAAGTTT TCGTTGGGGC GACGGGATTA CA-------GAAGCAAAG TATTAGATTT TCGTTGGGGC GACGGAATTA CA----- -TAAAGAGTT ---AACTTAT TATTGTATTT TCGTTGGGGC AACGGGCTGA CA-----CG -AACTCGTCT GWATAGGTTT TCGTTGGGGC GACGGATTAA CA----- ----ACTC TTATTGTAGG TTAATTTTTT TCGTTGGGGC GACGAAATTA CA----- -AAAATTTAT --TTTAAAAG TATAACATTT TTGTTGGGGC GACAAAGTTA CA----------CTTTT ACTTTTGTTT TCGTTGGGGC GACGAGGTGA CATGTTGCTT TTAGGTGGAC ATTAATTTTA ATTAATGTTT TCGTTGGGGC GACGGGTTTA CA---------TTACTCA CCTTTCTTTT TCATTGGGGC GATGAATTAA CA------ATTATATTTT AAATTAGTTT TCGTTGGGGC GACGTAGTTA CA---------GTCTCTT CTTGACGATT TTGTTGGGGGC GACAAGTTTT CA-------TTATATAT CTTCTGTTTT TTGTTGGGGC GACAAGTTAA CA--------ATTATTTT ATGAGTTTTT TTGTTGGGGT GACAAAATAA CA-----GGTT ----TAATTA ACTTTTTTTT TTGTTGGGGT GACAAAGTAR AA------A ----TTTTTC TAATTATTTT TTGTTGGGGC AACAAGATAG CA------

	370	38	0 39	0 40	0 41	420
Achatina fulica	TAGATAACTT	ACCCTACCAT	ATTTTTATAT	GGCGATCATT	ATACTTT	
Achatina achatina	TCTTTA	CTTTTAATTA	ATCTTTACTT	ATCTAAACAT	TTGCCAAGTA	TTTATCCTAA
Achatina stuhlmanni	AAACCCATCT	AATTTTCTAA	AGTGAATCAG	TCAATTATTA	TAAGAA	
Cochlitoma ustulata	AAATAAACCA	ATCATACGTT	AATAGTAGAT	AAGTCAATCT	TAATAGGTA-	
Allopeas clavulinum	AAATTAACTT	ACTATATTAT	TTTATTTTAC	ACAACGCTTA	AGCTATA	
Bocageia sp.	ACCATAACTA	ATTAAGATTA	ATCTTAAACA	AATCAAAAGA	ATTTTTAACT	
Leptinaria lamellata	CATACTAT	AACTTTACCT	GATAATGATT	ATTTTACTAA	CCAAGACAAT	TATTTATTA-
Paropeas clavulinum	TATT	ACTTATAACT	TACTTTTTTA	TTAGTTTATC	TGACATCTTT	ATTGAG
Riebeckia sp.	TTATATAATA	ACTAACTATA	AATAATTATT	TTTGCCATAG	TTTTATTGTG	AT
Rumina decollata	CAAATAACCT	ACCTATTAAT	ATTTAATACA	CCGAAATCTA	TTAAACA	
Subulina octona	-TATAATTTA	AACTTTTTAA	TTATAGAATA	GGGATATTTC	AAATTTTGTT	TAGAA
Subulina striatella	AAAGAATATA	ACTTTGTTAA	ACTTTTTTAA	TTATTGAGTT	TGTATATACC	AGGTGATACC
Subulina vitrea	GATTAAATTC	GGCCAAAAAG	ATTTATATAT	AAACCTATAT	TTTCAAGAG-	
Subulona sp.	TACATAACTT	AGCTGATATG	AGTAAATTTA	YTATATARAT	CTTGTTTRTA	AATGA
Tortaxis erectus	GAACTTATTG	TTTTTAGTTT	TT	-ATGTGCCGA	ATCATATTAA	GAA
Xerocerastus sp.	TTTA	ACTTACTATA	TTATTTAAGC	TACTAGCCGA	GTTAATTATG	AG
Zootecus insularis	CCTGAAACTC	ACCTTTAATT	TTAA-AATTT	TATAAGCCGA	ATTTTATTAT	GTA
Coeliaxis blandii	-TTCTGCATA	AACTAATCTA	TAAATTTTTC	TTAATAAACC	GAGGATTTTT	ATCTT
Pyrgina umbilicata	TTTTTT	AGGTTTAACT	TAATTTTTTT	GTTTAGTACA	AGACACTTTC	TACAA
Cecilioides gokweanus	TGATGTGA	ACTAACTTAA	TGAATTATTG	TATTTTAATA	AGTTTTATTT	AATTAAATTT
Ferussacia folliculus	TAAATAACAA	ACCTTTATGA	AGTTTTTCAA	GACGATTATA	TTATGGT	
Thyrophorella thomensis	GCAATAACTT	AACTTTAAGT	TCATTTTACA	AGGTATCGTC	TTAGGA	
Gibbulinella dewinteri	AAATCAACTT	ATTTTTGGTA	TTAGTTTTAC	AAGAAAGTTT	TAATAACAGG	AA
Gonaxis quadrilateralis	AAATTAACCT	ACATTATAAT	TCAAGCCGAG	TTATACTATG	AA	
Gonospira sp.	TAAAAAATCT	ATCTTAAAAT	GATTTACTAC	ATTTCAAAGT	TTTTTATAA-	
NUCLEOTIDES INCLUDED	mm	mmmm				

	1 1	1 1		1 1	1 1	1 1
	430					
ca			ATTAAGCTAC			
			ACTAAACTAC			
tina .						
lmanni			GAAAAACTAC			
tulata			ATTAAACTAC			
ulinum		AG	AAGAAACTAC	CTTAGGGATA	ACAGCATAAT	TTTTT-AAAA
		TG	AATAAACTAC	CTTAGGGATA	ACAGCATAAT	CTATT-TTTA
nellata		AG	ATTAAATTAC	CTTAGGGATA	ACAGCATAAT	ATTTT-ATAA
ulinum		AA	ATTAAACTAC	CTTAGGGATA	ACAGCATAAT	TTTAATCA
		TA	AAAAATTAC	CTAAGGGATA	ACAGCATAAT	CTTAA-ATAA
ata		TA	ATTAAATTAC	CTAAGGGATA	ACAGCATAAT	ACTAA-GTAG
na		ТА	AGTAAACTAC	CTTAGGGATA	ACAGCATAAT	ACTTTTAG
atella	TTTTA	ТА	AGAAAATTAC	CTTAGGGATA	ACAGCATAAT	ACTTTTAG
ea		TA	TTTAAATTAC	CTAAGGGATA	ACAGCATAAT	TTTTT-AAAA
		CA	ATTAAATTAC	CTTAGGGATA	ACAGCATAAT	CTTTW-ATAA
tus		AA	TTTAAATTAC	CTAAGGGATA	ACAGCATAAT	ATTTT-TTTA
sp.		TG	ATAAAATTAC	CTGAGGGATA	ACAGCATAAT	TTATTTTA
laris		AA	ATTAAATTAC	CTGAGGGATA	ACAGCATAAT	ATCCT-TTGA
ndii		TA	TATAAATTAC	CTAAGGGATA	ACAGCATAAT	CTTAG-ATAA
icata		AG	GAGAAGTTAC	CTGAGGGATA	ACAGCATTAT	TTATT-TTTA
okweanus	AACGAGAAAT	TTTAATTTTA	ATTAAGCTAC	CTTAGGGATA	ACAGCATAAT	ATTTTTAA
lliculus		TG	AGAAAACTAC	CTAAGGGATA	ACAGCATAAT	TCTAT-AAAG
thomensis		AG	ATTAAGTTAC	CTGAGGGATA	ACAGCATTAT	TTATT-AGTA
lewinteri		AG	ATTAAATTAC	CTTAGGGATA	ACAGCATAAT	TCTTT-TACG
ilateralis		AG	ААААААСТАС	CTTAGGGATA	ACAGCATAAT	TTTTT-TTAA
		AG	GAGAAATTAC	CTTAGGGATA	ACAGCGTAAT	TTCACTTTGA
NCLUDED			mmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmm

Achatina fulica Achatina achat: Achatina stuhl Cochlitoma ust Allopeas clavu Bocageia sp. Leptinaria lame Paropeas clavul Riebeckia sp. Rumina decollat Subulina octona Subulina striat Subulina vitrea Subulona sp. Tortaxis erect Xerocerastus sp Zootecus insula Coeliaxis bland Pyrgina umbilio Cecilioides gol Ferussacia fol: Thyrophorella Gibbulinella de Gonaxis quadril Gonospira sp. NUCLEOTIDES INC

	490		0 01			• • • • •
Achatina fulica	GGTTTGCGAC	CTCGATGTTG	GAC-TAGGGG	CCTACTG	GTTAGTTACC	ATTAT
Achatina achatina	AGATTGTGAC	CTCGATGTTG	GAC-TAGGGC	TCTATTG	GTTAACTACC	AAGAA
Achatina stuhlmanni	GGATTGCGAC	CTCGATGTTG	GAC-TAGGGA	CCTAATG	ATGAGATATC	AAGGTGACTA
Cochlitoma ustulata	GGATTGCGAC	CTCGATGTTG	GAC-TAGGGA	CCCAGTG	GTGAGAAACC	AGCT
Allopeas clavulinum	AGATTGTGAC	CTCGATGTTG	GAC-TAGGGA	CTTTATG	GTTAACCACC	TTAA
Bocageia sp.	GGATTGTGAC	CTCGATGTTG	GAC-TAGGGT	CAGAAAG	GTAAGCAATC	AAAA
Leptinaria lamellata	AGATTGTGAC	CTCGATGTTG	GAC-TAGGGA	CCTATAG	GTTAACCACC	AATA
Paropeas clavulinum	AGATTGTGAC	CTCGATGTTG	GAC-TAGGGA	CTTTATG	GTTAACTACC	TGAT
Riebeckia sp.	GGTTTGTGAC	CTCGATGTTG	GAT-TAGGAA	CATAATG	ATTAACAATC	AGCT
Rumina decollata	TGTTTGTGAC	CTCGATGTTG	GAC-TAGGGA	CTAATTG	GTTAACCACC	AGGA
Subulina octona	TGATTGTGAC	CTCGATGTTG	GAC-TAGGGA	CAAATGAATG	GTTAGATGCC	TGTT
Subulina striatella	TGTTTGTGAC	CTCGATGTTG	GAC-TAGGGA	CATTAGTG	GCGAGATGTC	AAAT
Subulina vitrea	AGATTGTGAC	CTCGATGTTG	GAT-TAGGAA	CTTAATG	GTTAGCCACC	AAGT
Subulona sp.	GGATTRTGAC	CTCGAWGTTG	GAT-TAGGGA	TTAGATAG	GTTAGCCATC	TTTTT
Tortaxis erectus	TGATTGTGAC	CTCGATGTTG	GAC-TAGGGA	CTTAATG	GTTAATAACT	AAAA
Xerocerastus sp.	AGTTTGTGAC	CTCGATGTTG	GAT-TAGGGA	AAATAAAG	GTTAGTAATT	TTTA
Zootecus insularis	TGATTGTGAC	CTCGATGTTG	GACTTAGGGC	CCAAATG	GTTAGCCACC	AAGC
Coeliaxis blandii	TGATTGTGAC	CTCGATGTTG	GAT-TAGGGC	CTAAAAG	GTAAGTAACC	TAGT
Pyrgina umbilicata	AGATTGTGAC	CTCGATGTTG	GAC-TAGGGC	CCTGAGG	GTTAACCACC	CAAA
Cecilioides gokweanus	TGATTGTGAC	CTCGATGTTG	GAC-TAGGGA	CTTTCTG	ATTAACCATC	AAAC
Ferussacia folliculus	AGATTATGAC	CTCGATGTTG	GAC-TAGGAA	ACTTATG	GTTAGACACC	AAAA
Thyrophorella thomensis	AGATTGTGAC	CTCGATGTTG	GAC-TAGGGC	CCATT-AG	GTTAACCACC	TTAA
Gibbulinella dewinteri	AGTTTGTGAC	CTCGATGTTG	GAC-TAGGAA	CCTAATA	ATAAGCAATT	AAAT
Gonaxis quadrilateralis	AGATTGTGAC	CTCGATGTTG	GAC-TAGGAA	CTTAATA	ATTAGTAATT	AAAA
Gonospira sp.	AGATTGCGAC	CTCGATGTTG	GAC-TAGGAA	CCTTATG	ACTAAAAGTC	TAAA
NUCLEOTIDES INCLUDED	mmmmmmmmm	mmmmmmmmm	mmm-mmmmmm	mmmm-mm	mmmmmmmmm	mmmm

Achatina fulica Achatina achatina Achatina stuhlmanni Cochlitoma ustulata Allopeas clavulinum Bocageia sp. Leptinaria lamellata Paropeas clavulinum Riebeckia sp. Rumina decollata Subulina octona Subulina striatella Subulina vitrea Subulona sp. Tortaxis erectus Xerocerastus sp. Zootecus insularis Coeliaxis blandii Pyrgina umbilicata Cecilioides gokweanus Ferussacia folliculus Thyrophorella thomensis Gibbulinella dewinteri Gonaxis quadrilateralis Gonospira sp. NUCLEOTIDES INCLUDED

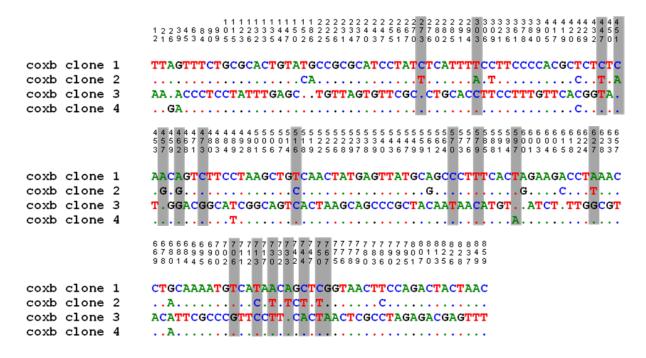
....|....|||| 550 560 570 GGG-GCGGTT CTGTTCGAAC TTTTCCTACC CTAC TGT-AAGGTT CTGTTCGAAC TTT-TTATCC CTAC TGG-ATTGTT CTGTTCGAAC AC--TAGACC CTAC AGG-CAAGTT CTGTTCGAAC TTT-CCACCC CTAC TAGATTTGCT CTGTTCGAGC TT--TAACCC CTAC CTG-GATGTT CTGTTCGAAC ATT-TTACCC CTAC AGG-ATAGTT CTGTTCGAAC TC--TGTACC CTAC TAG-ATTGCT CTGTTCGAGC AC--TTGTTC CTAC TTG-TAAGTT CTGTTCGAAC TTT-TACTTC CTAC TAG-ATGATT CTGTTCGAAT CC--TTCACC CTAC TTG-CTGGTT CTGTTCGAAC TT--AAAACC CTAC TTG-CAGGTT CTGTTCGAAC AT--ATAACC CTAC AAG-TTAGTT CTGTTCGAAC CC--TTCCTC CTAC TAA-TGAAYT CTGTTCRAAY TWA-ATCNCC CTAC AAG-ATTGTT CTGTTCGAAC ATA-ACAACC CTAC -TA-TAAGTT CTGTTCGAAC ATT-TTTACC CTAC TGG-ATGGTT CTGTTCGAAC CG--TTTACC CTAC TAG-ATAGTT CTGTTCGAAC TT--TTTACC CTAC TGG-ACTGCT CTGTTCGAGC AT--TGTTCC CTAC TAGATTTGTT CTGTTCGAAC TTT-TTTACC CTAC TGT-TATGTT CTGTTCGAAC ATT-AAACTC CTAC CGG-ATAGCT CTGTTCGAGC TT--CTTACC CTAC TGG-AAAGTT CTGTTCGAAC AA--ATTATC CTAC TTG-ATGGTT CTGTTCGAAC TT--ATTTTC CTAC AGG-AGTGTT CTGTTCGAAC AAT-TATTTC CTAC

-mm----mmm mmmmmmmmm -----mm mmmm

Appendix 3.6: Log likelihood scores of the different models used for the Achatinoidea using (A) 3435 unambiguously aligned nucleotides from the rRNA gene cluster; (B) 861 unambiguously aligned nucleotides of actin; (B.1) 574 unambiguously aligned nucleotides of the 1st and 2nd codon positions of actin; (B.2) 287 unambiguously aligned nucleotides of the 3rd codon position of actin; (C) 328 unambiguously aligned nucleotides of histone 3; (C.1) 218 unambiguously aligned nucleotides of the 1st and 2nd codon positions of histone 3; (D.2) 110 unambiguously aligned nucleotides of the 3rd codon position of histone 3; (D) 607 unambiguously aligned nucleotides of CO1; (D.1) 404 unambiguously aligned nucleotides of the 1st and 2nd codon positions of CO1; (D.2) 203 unambiguously aligned nucleotides of the 3rd codon position of CO1; and (E) 294 unambiguously aligned nucleotides of the 16S rRNA gene. Scores in **bold** belong to optimal models as determined by Likelihood Ratio Test. Note that the K2P and F81 models are non-nested and therefore cannot be compared for significant difference using the LRT.

	(A)	(B)	(B.1)	(B.2)	(C)	(C.1)	(C.2)	(D)	(D.1)	(D.2)	(E)
Model	rRNA gene	Actin-	Actin-	Actin	Histone 3	Histone 3	Histone 3	CO1	$CO1 1^{st} + 2^{nd}$	CO1	16S rRNA
	cluster	combined	$1^{st}+2^{nd}$	3 rd codons		$1^{st}+2^{nd}$	3 rd codons		codons	3 rd codons	
			codons			codons					
JC69	8722.54544	7034.70607	1582.96160	4551.89700	2263.05590	387.26745	1519.62452	9562.61908	2707.77230	5655.47905	3720.10115
JC69+Γ	8166.65498	6318.61908	1457.51470	4364.19564	2055.16076	387.26745	1503.87233	8204.89347	2288.23519	5546.19261	3285.58073
F81	8696.59840	6997.51585	1577.09006	4404.85550	2259.84534	384.18591	1516.51436	9502.53463	2670.20603	5476.35282	3669.15845
F81+Γ	8139.63345	6263.18854	1452.88144	4302.40699	2050.07377	384.18591	1499.41097	8005.17426	2231.16774	5356.26679	3214.09399
K2P	8604.34705	6815.80245	1569.84105	4225.33326	2188.48052	385.69744	1444.53135	9484.47349	2553.77652	5631.30210	3670.91274
K2P+ Γ	8038.52028	6058.78021	1439.71055	4120.55651	1977.17697	385.69744	1425.02655	8027.24407	2125.16439	5511.17394	3223.49673
HKY85	8577.13470	6776.05418	1567.69219	4205.14693	2183.03436	382.58884	1438.38403	9391.53749	2525.16880	5283.03501	3610.74395
HKY85+ Γ	8000.79127	6026.10365	1439.81885	4092.36162	1969.91019	382.58884	1420.79835	7546.29497	2090.98831	4997.88304	3103.10529
TrN93	8524.93663	6730.23510	1540.64290	4201.59908	2172.17869	376.07479	1444.42135	9390.78281	2515.71421	5278.46766	3609.31276
TrN93+Γ	7970.59211	6024.01007	1420.57243	4092.24782	1965.63536	376.07479	1420.52557	7522.62965	2083.36045	4997.26819	3102.99238
GTR	8515.61458	6707.83141	1539.76409	4145.18258	2167.71615	370.44371	1411.10672	9096.60454	2506.42682	5222.31450	3536.04532
$GTR+\Gamma$	7951.71731	5993.90425	1420.05757	4051.76435	1960.84472	370.44371	1408.67625	7507.55611	2069.51524	4993.80631	3089.76804

Appendix 3.7: Summary of ambiguous sites for the actin gene for the Achatinoidea and the three streptaxid outgroup taxa


Species	Total ambiguous sites	% ambiguous sites (out of 873 total; 861 for subv)	Total ambiguous 3 rd codon positions	% ambiguous 3 rd codon positions relative to all ambiguous sites	Number of RY sites at ambiguous 3 rd codon positions	% RY sites relative to all ambiguous 3 rd codon positions	Number of ambiguous amino acids	% ambiguous amino acids (out of 291 total; 287 for subv)
ACHATINIDAE								
Achatina achatina	45	5.15	40	88.89	31	77.50	4	1.37
Achatina fulica	18	2.06	16	88.89	12	75.00	2	0.69
Achatina stuhlmanni	2	0.23	1	50.00	1	100.00	1	0.34
Cochlitoma ustulata	0	0	0	0	0	0	0	0
SUBULINIDAE	•							
Allopeas clavulinum	0	0	0	0	0	0	0	0
Bocageia sp.	101	11.57	85	84.16	51	60.00	14	4.81
Eutomopeas layardi	0	0	0	0	0	0	0	0
Leptinaria lamellata	0	0	0	0	0	0	0	0
Paropeas achatinaceum	1	0.11	0	0	0	0	1	0.34
Riebeckia sp.	76	8.71	59	77.63	44	74.58	15	5.15
Rumina decollata	29	3.32	24	82.76	16	66.67	3	1.03
Subulina octona	0	0	0	0	0	0	0	0
Subulina striatella	26	2.98	25	96.15	15	60.00	0	0
Subulina vitrea	37	4.30	32	86.49	26	81.25	4	1.39
Subulona sp.	0	0	0	0	0	0	0	0
Tortaxis erectus	32	3.67	26	81.25	20	76.92	7	2.41
Xerocerastus sp.	0	0	0	0	0	0	0	0
Zootecus insularis	20	2.29	18	90.00	16	88.89	1	0.34
COELIAXIDAE								
Coeliaxis blandii	21	2.41	13	61.90	9	69.23	7	2.41
Pyrgina umbilicata	88	10.08	78	88.64	55	70.51	7	2.41
THYROPHORELLIDAE								
Thyrophorella thomensis	62	7.10	51	82.26	37	72.55	7	2.41
GLESSULIDAE								
Glessula ceylanica	53	6.07	34	64.15	16	47.06	19	6.53
FERRUSSACIIDAE								
Cecilioides gokweanus	4	0.46	4	100.00	3	75.00	0	0
Ferussacia folliculus	4	0.46	4	100.00	4	100.00	0	0
STREPTAXIDAE (Outgro								
Gibbulinella dewinteri	6	0.69	6	100.00	4	66.67	0	0
Gonaxis quadrilateralis	55	6.30	49	89.09	34	69.39	4	1.37
Gonospira sp.	77	8.82	64	83.12	37	57.81	9	3.09

Species cloned	Total ambiguous	Total variable sites	Clone #	Sequence
-	sites	found in clones		type*
Coeliaxis blandii	29	163	coxb clone 1	а
			coxb clone 2	b
			coxb clone 3	с
			coxb clone 4	d
Cochlitoma granulata	9	72	coig clone 1	e
			coig clone 2	f
			coig clone 3	g
			coig clone 4	h
			coig clone 5	i
			coig clone 6	j
			coig clone 7	k
Leptinaria lamellata	0	4	letl clone 1	1
			letl clone 2	m
			letl clone 3	1
			letl clone 4	n
			letl clone 5	1
			letl clone 6	0

Appendix 3.8A: Summary of cloned actin sequences from three achatinoid species.

* <u>NOTE</u>: Clones with the same letter have identical actin sequences.

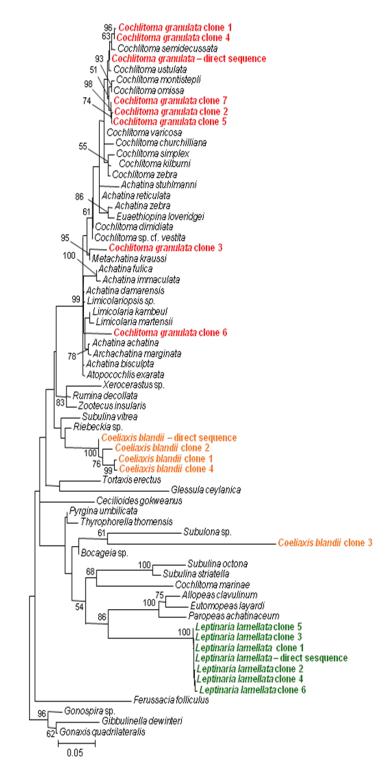
Appendix 3.8B: Variable sites across the actin sequence for the different clones of (1) *Coeliaxis blandii*, (2) *Cochlitoma granulata* and (3) *Leptinaria lamellata*. The number shown directly above each site pertains to a variable site. Shaded positions refer to ambiguous sites found in the direct cycle sequences.

(1) Coeliaxis blandii (coxb)

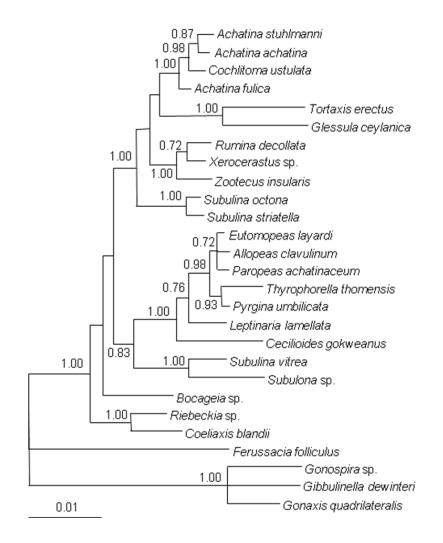
<u>NOTE</u>: A total of 163 variable positions were detected from the four clones, with 132 positions alone attributable to Clone 3; these positions were not picked up as ambiguities in the direct sequence.

Appendix 3.8B (contd.)

	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
coig clone 1	TGCCCATCTTATCTCTTTATATGCTCCCCATCACAATTCGCAGAATCTCCTCCATCTACA
coig clone 2	CACC
coig clone 3	TT.GCTACGCTG.TAG.TTGTC.C.TATCATGCC
coig clone 4	······································
coig clone 5	CA
coig clone 6	
coig clone 7	CA
	7 7 7 7 7 7 7 7 7 8 8 7 7 7 7 8 8 8 9 9 4 5 6 7 8 9 0 3 4 9 0 2 0 2
coig clone 1	CCAGCGATGCCA
coig clone 2	G
coig clone 3	T.T.T.GACTG.
coig clone 4	G
coig clone 5	G
coig clone 6	.TGCTTGGCT
coig clone 7	G

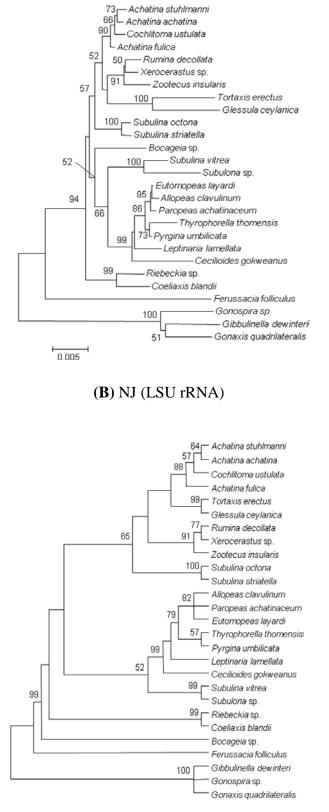

(2) Cochlitoma granulata (coig)

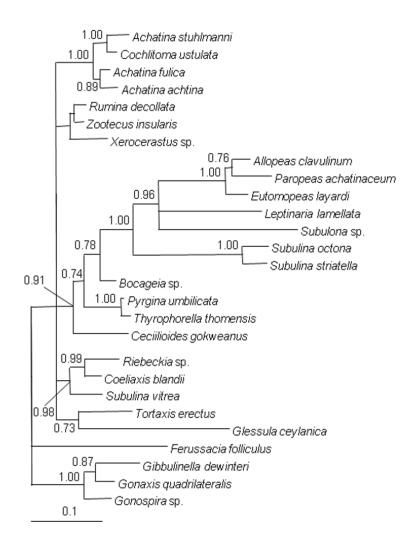
<u>NOTE</u>: A total of 72 variable positions were found in the 7 clones, with 55 of these derived from Clones 3 and 6 and which were not picked up as ambiguities in the direct sequence.


letl clone 1 AACT letl clone 2 ...C letl clone 3 letl clone 4 .G.. letl clone 5 letl clone 6 G.T.

(3) Leptinaria lamellata (letl)

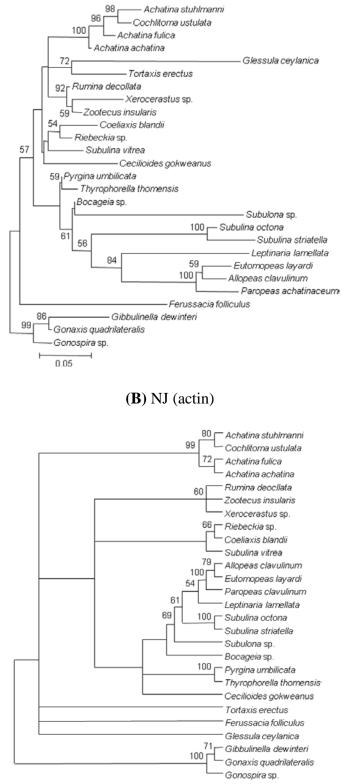
<u>NOTE</u>: *Leptinaria lamellata* did not exhibit any ambiguous positions in the direct sequence. Nevertheless, this taxon was cloned to determine if the direct sequence missed any of the ambiguous sites. Six clones were obtained, three of which (clones 1, 3 and 5) were identical with the direct sequence.

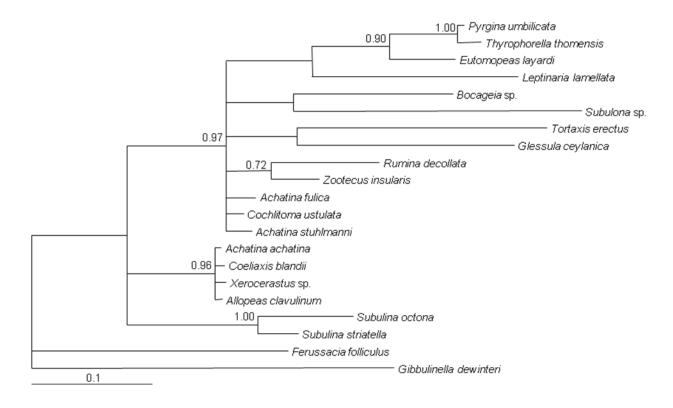

Appendix 3.9: Neighbor-joining phylogenetic tree of the Achatinoidea (including taxa from the Achatinidae) based on the actin and showing the clones of the three representative taxa (Cochlitoma granulata, Coeliaxis blandii and Leptinaria lamellata). The was constructed using 861 tree unambiguously aligned nucleotide sites and rooted on the streptaxids Gibbulinella dewinteri, Gonaxis quadrilateralis and Gonospira sp. using the GTR+ Γ model of DNA sequence evolution. Bootstrap values lower than 50% are not shown. The scale bar represents 5 substitutional changes per 100 nucleotides.



Appendix 3.10: Phylogenetic trees of the Achatinoidea based on the large subunit rRNA gene using (**A**) Bayesian analysis, (**B**) neighbor-joining (p. 440) and (**C**) maximum parsimony based on two equally parsimonious trees (p. 440). The phylogenies were constructed from 3435 unambiguously aligned nucleotide sites and were rooted on the streptaxids *Gibbulinella dewinteri*, *Gonaxis quadrilateralis* and *Gonospira* sp. Bayesian posterior probabilities in (**A**) indicate support for individual branches in the Bayesian analysis based on the last 1000 trees. Posterior probabilities lower than 0.7 are not shown. Bootstrap values in (**B**) and (**C**) indicate the percentage support for individual branches based on 1000 replicates. Bootstrap values lower than 50% are not shown. The scale bar for (**A**) represents 1 substitutional change per 100 nucleotides and that of (**B**) represents 5 substitutional changes per 1000 nucleotides.

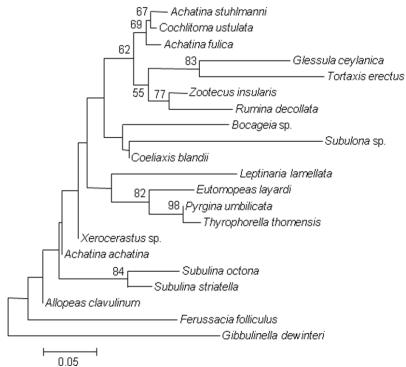
Appendix 3.10 (contd.)

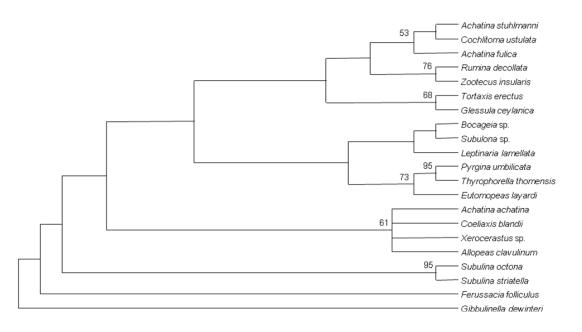

(C) MP (LSU rRNA)

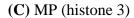

(A) BI (actin)

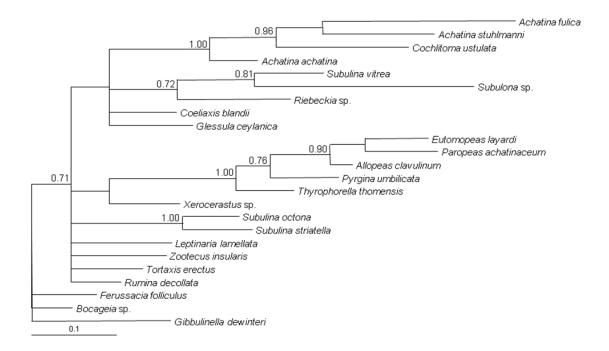
Appendix 3.11: Phylogenetic trees of the Achatinoidea based on the actin gene using (**A**) Bayesian analysis, (**B**) neighbor-joining (p. 442) and (**C**) maximum parsimony based on seven equally parsimonious trees (p. 442). The phylogenies were constructed from 861 unambiguously aligned nucleotide sites and were rooted on the streptaxids *Gibbulinella dewinteri*, *Gonaxis quadrilateralis* and *Gonospira* sp. Bayesian posterior probabilities in (**A**) indicate support for individual branches in the Bayesian analysis based on the last 1000 trees. Posterior probabilities lower than 0.7 are not shown. Bootstrap values in (**B**) and (**C**) indicate the percentage support for individual branches based on 1000 replicates. Bootstrap values lower than 50% are not shown. The scale bar for (**A**) represents 1 substitutional change per 10 nucleotides and that of (**B**) represents 5 substitutional changes per 100 nucleotides.

Appendix 3.11 (contd.)

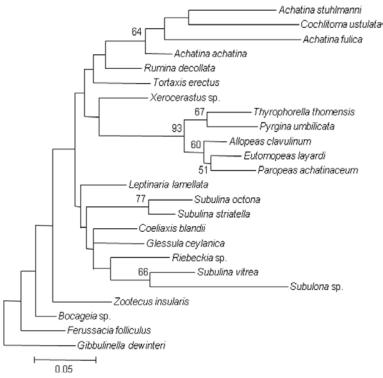

(C) MP (actin)

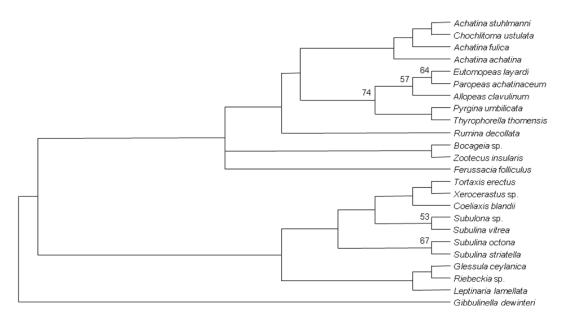

(A) BI (histone 3)


Appendix 3.12: Phylogenetic trees of the Achatinoidea based on the histone 3 gene using (**A**) Bayesian analysis, (**B**) neighbor-joining (p. 444) and (**C**) maximum parsimony based on five equally parsimonious trees (p. 444). The phylogenies were constructed from 328 unambiguously aligned nucleotide sites and were rooted on the streptaxid *Gibbulinella dewinteri*. Bayesian posterior probabilities in (**A**) indicate support for individual branches in the Bayesian analysis based on the last 1000 trees. Posterior probabilities lower than 0.7 are not shown. Bootstrap values in (**B**) and (**C**) indicate the percentage support for individual branches based on 1000 replicates. Bootstrap values lower than 50% are not shown. The scale bar for (**A**) represents 1 substitutional change per 10 nucleotides and that of (**B**) represents 5 substitutional changes per 100 nucleotides. Note that the achatinoids *Cecilioides gokweanus*, *Paropeas achatinaceum*, *Riebeckia* sp. and *Subulina vitrea* and the streptaxids *Gonaxis quadrilateralis* and *Gonospira* sp. were not included in the phylogenies as they were not successfully sequenced.

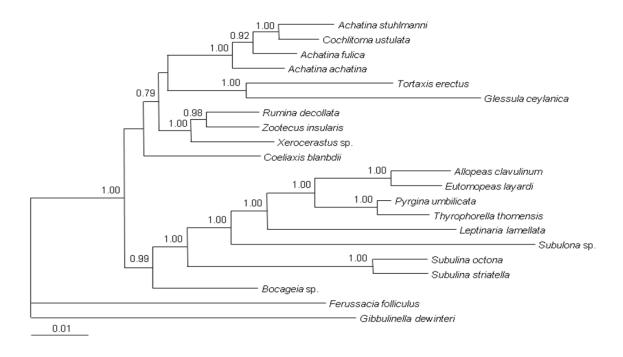

Appendix 3.12 (contd.)

(B) NJ (histone 3)

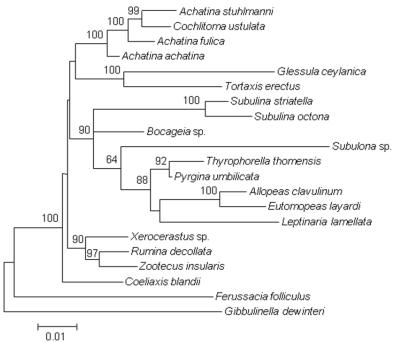


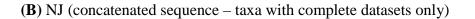

(A) BI (1st and 2nd codon positions of CO1)

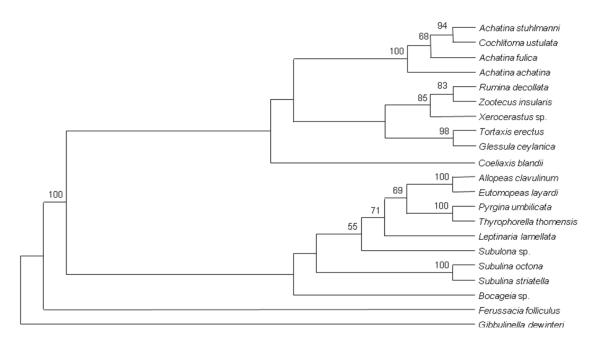
Appendix 3.13: Phylogenetic trees of the Achatinoidea based on the 1st and 2nd codon positions of the CO1 gene using (**A**) Bayesian analysis, (**B**) neighbor-joining (p. 446) and (**C**) maximum parsimony based on two equally parsimonious trees (p. 446). The phylogenies were constructed from 404 unambiguously aligned nucleotide sites and were rooted on the streptaxids *Gibbulinella dewinteri*, *Gonaxis quadrilateralis* and *Gonospira* sp. Bayesian posterior probabilities in (**A**) indicate support for individual branches in the Bayesian analysis based on the last 1000 trees. Posterior probabilities lower than 0.7 are not shown. Bootstrap values in (**B**) and (**C**) indicate the percentage support for individual branches based on 1000 replicates. Bootstrap values lower than 50% are not shown. The scale bar for (**A**) represents 1 substitutional change per 10 nucleotides and that of (**B**) represents 5 substitutional changes per 100 nucleotides. Note that *Ceceilioides gokweanus* and the streptaxids *Gonaxis quadrilateralis* and *Gonospira* sp. were excluded in the analyses as they were not successfully sequenced.


Appendix 3.13 (contd.)

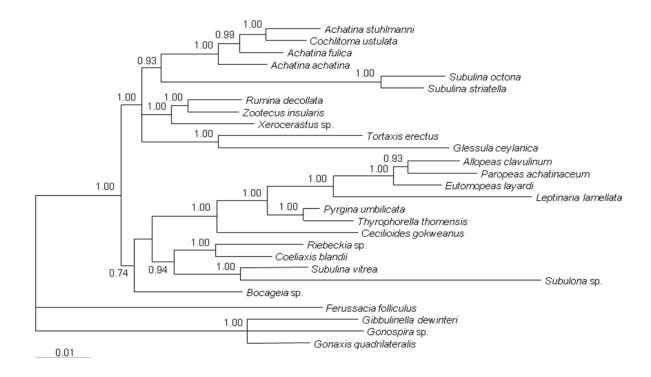
(B) NJ $(1^{st} \text{ and } 2^{nd} \text{ codon positions of the CO1 gene)}$

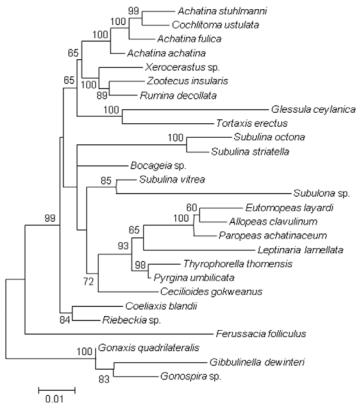

(C) MP $(1^{st} \text{ and } 2^{nd} \text{ codon positions of the CO1 gene})$




(A) BI (concatenated sequence – taxa with complete datasets only)

Appendix 3.14: Phylogenetic trees of the Achatinoidea (taxa with complete datasets only) based on the combined dataset of the LSU rRNA, actin and histone 3 genes and the 1st and 2nd codon positions of the CO1 gene using (**A**) Bayesian analysis, (**B**) neighbor-joining (p. 448) and (**C**) maximum parsimony based on one most parsimonious tree (p. 448). The phylogenies were constructed from a concatenated sequence of 5028 nucleotides and were rooted on the streptaxid *Gibbulinella dewinteri*. Bayesian posterior probabilities in (**A**) indicate support for individual branches in the Bayesian analysis based on the last 1000 trees. Posterior probabilities lower than 0.7 are not shown. Bootstrap values in (**B**) and (**C**) indicate the percentage support for individual branches based on 1000 replicates. Bootstrap values lower than 50% are not shown. The scale bars for (**A**) and (**B**) represent 1 substitutional change per 100 nucleotides. Note that the achatinoid *Cecilioides gokweanus*, *Paropeas achatinaceum*, *Riebeckia* sp. and *Subulina vitrea* and the streptaxids *Gonaxis quadrilateralis* and *Gonospira* sp. were not included in the phylogenies as they lack at least one of the genes used for the combined analyses.


Appendix 3.14 (contd.)


(C) MP (concatenated sequence – taxa with complete datasets only)


(A) BI (concatenated sequence – all taxa)

Appendix 3.15: Phylogenetic trees of the Achatinoidea (all taxa) based on the combined dataset of the LSU rRNA, actin and histone 3 genes and the 1st and 2nd codon positions of the CO1 gene using (**A**) Bayesian analysis, (**B**) neighbor-joining (p. 450) and (**C**) maximum parsimony based on two equally parsimonious trees (p. 450). The phylogenies were constructed from a concatenated sequence of 5028 nucleotides and were rooted on the streptaxid *Gibbulinella dewinteri*. Bayesian posterior probabilities in (**A**) indicate support for individual branches in the Bayesian analysis based on the last 1000 trees. Posterior probabilities lower than 0.7 are not shown. Bootstrap values in (**B**) and (**C**) indicate the percentage support for individual branches based on 1000 replicates. Bootstrap values lower than 50% are not shown. The scale bars for (**A**) and (**B**) represent 1 substitutional change per 100 nucleotides.

Appendix 3.15 (contd.)

(**B**) NJ (concatenated sequence – all taxa)

(C) MP (concatenated sequence – all taxa)

Appendix 4.1: Alignment of the LSU rRNA gene for the Achatinidae and the subulinid outgroup taxon *Rumina decollata*. Positions included for the phylogeny analyses were marked by "m" within "NUCEOTIDES INCLUDED".

	10) 20			י 5ט	
Achatina fulica			TTGCA-GAAC			
Achtina immaculata						
Achatina reticulata			A-GAAC			
Achatina zanzibarica Euaethiopina loveridgei			TTGCA-GAAA			
Achatina achatina			TTGCA-GAAC			
Archachatina marginata			TTGCA-GAAC			
Achatina bisculpta			A-GAAC			
Achatina damarensis				AACA	TCGACACCTT	GAACGCACAT
Achatina stuhlmanni			A-GAAC	ACATTGAACA	TCGACACCTT	GAACGCACAT
Atopocochlis exarata			TTGCA-GAAC			
Limicolaria kambeul			TTGCA-GAAC			
Limicolaria martenssii			TTGCA-GAAC			
Limicolariopsis sp. Limicolariopsis ruwenzori			A-GAAC			
Cochlitoma varicosa			TTGCA-GAAC			
Cochlitoma dimidiata			GAAC			
Cochlitoma sp. cf. vestita			TTGCA-GAAC			
Cochlitoma marinae			A-GAAC			
Cochlitoma churchilliana				AACA	TCGACACCTT	GAACGCACAT
Cochlitoma granulata						
Cochlitoma simplex						
Cochlitoma kilburni						
Cochlitoma montistempli Cochlitoma omissa					TCGACACCTT	
Cochlitoma semidecussata						
Cochlitoma ustulata			AAC			
Cochlitoma zebra						
Metachatina kraussi				TTGAACA	TCGACACCTT	GAACGCACAT
Rumina decollata			TTGCA-GAAC			
NUCLEOTIDES INCLUDED				mmmm	mmmmmmmmm	mmmmmmmmm
Johnting fulion	70) 80) 90) 100) 110) 120
Achatina fulica	70 GGCGGCCTCG) 80 GGTCCATCCC) 9(GGGGCCACGC) 100 CCGTCTGAGG) 110 GTCGGCGAGA) 120 GTACAAAGCC
Achtina immaculata	70 GGCGGCCTCG GGCGGCCTCG) 80 GGTCCATCCC GGTCCATCCC) 90 GGGGCCACGC GGGGCCACGC) 100 CCGTCTGAGG CCGTCTGAGG) 110 GTCGGCGAGA GTCGGCGAGA) 120 GTACAAAGCC GTACAAAGCC
Achtina immaculata Achatina reticulata	GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG	GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC) 9(GGGGCCACGC GGGGCCACGC GGGGCCACGC) 100 CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG) 110 GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA) 120 GTACAAAGCC GTACAAAGCC GTACAAAGCC
Achtina immaculata	70 GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG) 80 GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC) 90 GGGGCCACGC GGGGCCACGC) 100 CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG) 110 GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA) 120 GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC
Achtina immaculata Achatina reticulata Achatina zanzibarica	70 GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG) 8(GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC) 9(GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC) 100 CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG) 110 GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA) 120 GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata	70 GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG	GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC) 9(GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC) 100 CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG) 110 GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA) 120 GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta	70 GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG	GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC	GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC) 100 CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG) 111 GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA) 120 GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis	70 GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG	GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC) 90 GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC) 100 CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG) 111 GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA) 120 GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni	70 GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG	GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC	GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC) 100 CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG) 111 GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA) 120 GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata	70 GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG	GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC	GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC) 100 CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG) 111 GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA) 120 GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni	70 GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG	GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC) 90 GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC) 100 CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG) 111 GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA) 120 GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul	70 GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG	GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC	GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC) 100 CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG) 111 GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA) 120 GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocchlis exarata Limicolaria kambeul Limicolaria martenssii	70 GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG	GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC	GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC) 100 CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG) 111 GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA	120 GTACAAAGCC
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria sp. Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa	70 GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG	GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC	GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC) 100 CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG) 111 GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA) 120 GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC GTACAAAGCC
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata	70 GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG	GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC	GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGCCACGC GGGCCACGC) 100 CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG) 111 GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA) 120 GTACAAAGCC
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma sp. cf. vestita	70 GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG	GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC	GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC) 100 CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG) 111 GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA) 120 GTACAAAGCC
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma marinae	70 GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG	GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC GGTCCATCCC	GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC) 100 CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG) 111 GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA) 120 GTACAAAGCC
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma churchilliana	70 GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG	GGTCCATCCC GGTCCATCCC	GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC) 100 CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG) 111 GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA	120 GTACAAAGCC
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma marinae	70 GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG GGCGGCCTCG	GGTCCATCCC GGTCCATCCC	GGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGCCACGC GGGCCCACGC GGGCCCACGC) 100 CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG CCGTCTGAGG) 111 GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA GTCGGCGAGA	120 GTACAAAGCC
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma sp. cf. vestita Cochlitoma churchilliana Cochlitoma granulata	70 GGCGGCCTCG	GGTCCATCCC GGTCCATCCC	GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC) 100 CCGTCTGAGG) 111 GTCGGCGAGA	120 GTACAAAGCC
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria kambeul Limicolaria kambeul Limicolariopsis sp. Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex	70 GGCGGCCTCG	GGTCCATCCC GGTCCATCCC	GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC) 100 CCGTCTGAGG) 111 GTCGGCGAGA	120 GTACAAAGCC
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma gr. cf. vestita Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa	70 GGCGGCCTCG	GGTCCATCCC GGTCCATCCC	GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC) 100 CCGTCTGAGG) 111 GTCGGCGAGA	120GTACAAAGCC<
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria kambeul Limicolariopsis sp. Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma granulata Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma missa Cochlitoma semidecussata	70 GGCGGCCTCG	GGTCCATCCC GGTCCATCCC	GGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC) 100 CCGTCTGAGG) 111 GTCGGCGAGA	120 GTACAAAGCC
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma gr. cf. vestita Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma kilburni Cochlitoma montistempli Cochlitoma semidecussata Cochlitoma ustulata	70 GGCGGCCTCG	GGTCCATCCC GGTCCATCCC	GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGCCACGC) 100 CCGTCTGAGG) 111 GTCGGCGAGA	120 GTACAAAGCC
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria kambeul Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma ustulata	70 GGCGGCCTCG	GGTCCATCCC GGTCCATCCC)) GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGCCACGC GGGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC GGGCCACGC </th <th>) 100 CCGTCTGAGG</th> <th>) 111 GTCGGCGAGA</th> <th>D 120 GTACAAAGCC</th>) 100 CCGTCTGAGG) 111 GTCGGCGAGA	D 120 GTACAAAGCC
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma gr. cf. vestita Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma kilburni Cochlitoma montistempli Cochlitoma semidecussata Cochlitoma ustulata	70 GGCGGCCTCG	GGTCCATCCC GGTCCATCCC	GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGGCCACGC GGGCCACGC) 100 CCGTCTGAGG) 111 GTCGGCGAGA	D 120 GTACAAAGCC

NUCLEOTIDES INCLUDED

	13					
Achatina fulica				TCAATTT		
Achtina immaculata				TCAATTT		
Achatina reticulata				TCAATTT		
Achatina zanzibarica				TCAATTT		
Euaethiopina loveridgei				TCAATTT ATTT		
Achatina achatina						
Archachatina marginata				ATTT TCAAATTT		
Achatina bisculpta Achatina damarensis				TCAAATTT		
Achatina stuhlmanni				TTAAATTT		
Atopocochlis exarata				TCCAGCTT		
Limicolaria kambeul				TCAAATTT		
Limicolaria martenssii				TCAAATTT		
Limicolariopsis sp.				TCAAATTT		
Limicolariopsis ruwenzori				TCAAATTT		
Cochlitoma varicosa				TCAATTT		
Cochlitoma dimidiata				TCAATTT		
Cochlitoma sp. cf. vestita	TTCGCTTCGT	ATGTGG-CAG	CAGGTCTCGC	TCAATTT	ATTCCAATAT	CCGTCTAGCT
Cochlitoma marinae	CTCGCTTCGT	ATGTGG-CAG	CAGGTCTCGC	TCAGTTT	ATTCCAAGAT	CCGTCCAGCT
Cochlitoma churchilliana	TTCGCTTCGT	ATGTGG-CAG	CAGGTCTCGC	TCCAAGATTT	ATTCCAAGAT	CCGTCCAGCT
Cochlitoma granulata	TTCGCTTCGT	ATGTGG-CAG	CAGGGCTCGC	TCCATTT	ATTCCCAGAA	CCGGCTAGCT
Cochlitoma simplex	TTCGCTTCGT	ATGTGG-CAG	GAGGTCTCGC	TCAATTT	ATTCC	GTCTAGCT
Cochlitoma kilburni	TTCGCTTCGT	ATGTGG-CAG	CAGGTCTCGC	TCAATTT	ATTCCAGGAT	CCGTCTAGCT
Cochlitoma montistempli				TCAATTT		
Cochlitoma omissa				TCAATTT		
Cochlitoma semidecussata				TCAATTT		
Cochlitoma ustulata				TCAATTT		
Cochlitoma zebra				TCAATTT		
Metachatina kraussi				TCAATTTT		
Rumina decollata				TC		
NUCLEOTIDES INCLUDED	mmmmmmmmmm	mmmmmm—mmm	mmmmmmmmm-			
	 19			···· ···· 0 220		
Achatina fulica	19 CTTCC	0 200 TCTATCC-AT) 210 CCGCGG-CTC	0 220 GTGCGGA) 230 GGGG) 240 TTACAGAGAG
Achtina immaculata	19 CTTCC CTTCTCTTCC	0 200 TCTATCC-AT TCTATCC-AT) 21 CCGCGG-CTC CCGCGG-CTC	0 220 GTGCGGA GTGCGGG) 230 GGGG GGGG) 240 TTACAGAGAG G-ACAGAAAG
Achtina immaculata Achatina reticulata	19 CTTCC CTTCTCTTCC CTTCAACC	0 200 TCTATCC-AT TCTATCC-AT TCTATCC-AT) 21 CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC	0 220 GTGCGGA GTGCGGG GTGCGGG) 230 GGGG GGGG GGGG-) 240 TTACAGAGAG G-ACAGAAAG TTACAGAGAG
Achtina immaculata Achatina reticulata Achatina zanzibarica	19 CTTCC CTTCTCTTCC CTTCAACC CTTCC	0 200 TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AC) 21 CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC	0 22(GTGCGGA GTGCGGG GTGCGGG GTGCGGG) 23(GGGG GGGG GGGG GGGG) 240 TTACAGAGAG G-ACAGAAAG TTACAGAGAG TTACAGAGAT
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei	19 CTTCC CTTCTCTCTCC CTTCAACC CTTCC CTTCC	0 200 TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AC TCTATCC-AT) 211 CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC	0 22(GTGCGGA GTGCGGG GTGCGGG GTGCGGG GCGCGGA) 23 GGGG GGGG GGGG GGGG) 240 TTACAGAGAG G-ACAGAAAG TTACAGAGAG TTACAGAGAT TTACAGAGAG
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina	19 CTTCC CTTCTCTTCC CTTCAACC CTTCC CTTCC CTTCTTG	0 200 TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AC TCTATCC-AT CTCTGCCGTN) 21 CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCTG-CTC	0 22(GTGCGGA GTGCGGGG GTGCGGGG GTGCGGGG GCGCGGA GTGCTGG) 231 GGGG GGGG GGGG GGGG G	D 240 TTACAGAGAG G-ACAGAAAG TTACAGAGAG TTACAGAGAG TTACAGAGAG ACACGGAAAA
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata	19 CTTCC CTTCTCTCTCC CTTCAACC CTTCC CTTCC CTTCTTG CTTCNTGNTC	0 200 TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AC TCTATCC-AT CTCTGCCGTN TANTGNCGTC	21 CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCTG-CTC CCGCTG-CTC	0 220 GTGCGGA GTGCGGGG GTGCGGGG GTGCGGGA GTGCTGG GTGCTGG) 23 GGGG GGGG GGGG GGGG G	D 240 TTACAGAGAG G-ACAGAAAG TTACAGAGAG TTACAGAGAG TTACAGAGAG ACACGGAAAA ACACGGAAAA
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta	19 CTTCC CTTCTCTTCC CTTCAACC CTTCC CTTCC CTTCTTG CTTCNTGNTC C	0 200 TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AC TCTATCC-AT CTCTGCCGTN TANTGNCGTC TCTATCTT) 211 CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCTG-CTC CCGCCG-CTC	0 221 GTGCGGA GTGCGGG GTGCGGG GTGCGGA GTGCTGG GTGCTGG GTGCTGG) 231 GGGG GGGG GGGG GGGG 	D 240 TTACAGAGAG G-ACAGAAAG TTACAGAGAG TTACAGAGAG TTACAGAGAG ACACGGAAAA ACACGGAAAA GGACAGAAAG
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis	19 CTTCC CTTCTCTTCC CTTCAACC CTTCC CTTCTTG CTTCNTGNTC C	0 200 TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AC TCTATCC-AT CTCTGCCGTN TANTGNCGTC TCTATCTT TAAATCTT) 21 CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCTG-CTC CCGCCGG-CTC CCGCCGG-CTC	0 221 GTGCGGA GTGCGGG GTGCGGG GTGCGGG GTGCTGG GTGCTGG GTGCGG GTGCGG) 23 GGGG GGGG- GGGG GGGG G G G	D 240 TTACAGAGAG G-ACAGAAAG TTACAGAGAG TTACAGAGAG TTACAGAGAG ACACGGAAAA GGACAGAAAA GGACAGAAAG
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni	19 CTTCC CTTCTCTTCC CTTCACC CTTCC CTTCTG CTTCNTGNTC C C	0 200 TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT CTCTGCCGTN TANTGNCGTC TCTATCT-T TAAATCTT TCTATCTT	CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCTG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC	0 220 GTGCGGA GTGCGGG GTGCGGG GTGCTGG GTGCTGG GTGCTGG GTGCGG GTGCGG GTGCGG) 23 GGGG GGGG GGGG GGGG G G G	D 240 TTACAGAGAG G-ACAGAAAG TTACAGAGAG TTACAGAGAG TTACAGAGAG ACACGGAAAA GGACAGAAAG GGACAGAAAG GGACAGAAAG
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata	19 CTTCC CTTCCACC CTTCC CTTCTG CTTCNTGNTC C C C	0 200 TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT CTCTGCCGTN TANTGNCGTC TCTATCTT TCTATCTT TCTATCTT TCTATCTT	CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC	0 220 GTGCGGA GTGCGGG GTGCGGG GTGCGGG GTGCTGG GTGCTGG GTGCCGG GTGCGG GTGCGG GTGCGG) 23 GGGG GGGG GGGG GGGG GGGG G G G	D 240 TTACAGAGAG G-ACAGAAAG TTACAGAGAG TTACAGAGAG TTACAGAGAG ACACGGAAAA GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul	19 CTTCC CTTCC-TTCC CTTCC CTTCC CTTCTTG CTTCNTGNTC C C GC	0 200 TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT CTCTATCC-AT CTCTGCCGTN TANTGNCGTC TCTATCTT TCTATCTT TCTATCTT TCTATCTT	CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCTG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC	0 220 GTGCGGA GTGCGGG GTGCGGG GTGCGGG GTGCTGG GTGCTGG GTGCCGG GTGCGG GTGCGG GTGCGG GTGCGG) 23 GGGG GGGG GGGG GGGG 	D 240 TTACAGAGAG G-ACAGAAAG TTACAGAGAG TTACAGAGAG TTACAGAGAG ACACGGAAAA GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii	19 CTTCC CTTCC-TTCC CTTCC CTTCC CTTCTG CTTCNTGNTC C C GC GC	0 200 TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT CTCTGCCGTN TANTGNCGTC TCTATCTT TCTATCTT TCTATCTT TCTATCTT TCTATCTT TCTATCTT	CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC	0 221 GTGCGGA GTGCGGG GTGCGGG GTGCGGG GTGCTGG GTGCTGG GTGCGGC GTGCGG GTGCGGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG) 23 GGGG GGGG GGGG GGGG G G G G	D 240 TTACAGAGAG G-ACAGAAAG TTACAGAGAG TTACAGAGAG TTACAGAGAG ACACGGAAAA GGACAGAAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaris sp.	19 CTTCC CTTCTCTCCC CTTCAACC CTTCTG CTTCTG CTTCNTGNTC C GC GC GC	0 200 TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AC TCTATCC-AT TCTATCT-T TAAATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T CCGAATCT-T	211 CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC	0 221 GTGCGGA GTGCGGG GTGCGGG GTGCTGG GTGCTGG GTGCTGG GTGCGGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG) 23 GGGG GGGG GGGG GGGG G G G 	D 240 TTACAGAGAG G-ACAGAAAG TTACAGAGAG TTACAGAGAT TTACAGAGAT TTACAGAGAG ACACGGAAAA GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori	19 CTTCC CTTCTCTCCC CTTCAACC CTTCTTG CTTCNTGNTC C GC GC GC GC GC	0 200 TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AC TCTATCC-AT TCTATCT-T TAAATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCGAATCT-T	CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCCGG-CTC CCGCCGG-CTC	0 221 GTGCGGA GTGCGGG GTGCGGG GTGCTGG GTGCTGG GTGCTGG GTGCGGC GTGCGG GTGCGGC GTGCGG GTGCGGC GTGCGGC GTGCGGC GTGCGGC GTGCGGC GTGCGGC GTGCGGC GTGCGGC GTGCGGC GTGCGGC GTGCGGC) 23 GGGG GGGG GGGG GGGG G G 	D 240 TTACAGAGAG G-ACAGAAAG TTACAGAGAG TTACAGAGAT TTACAGAGAT TTACAGAGAG ACACGGAAAA GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaris sp.	19 CTTCC CTTCAACC CTTCC CTTCC CTTCTTG CTTCNTGNTC C GC GC GT GC CTTCC CTTCC	0 200 TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT CTCTGCCGTN TANTGNCGTC TCTATCTT TCTATCTT TCTATCTT TCTATCTT TCTATCTT TCTATCTT CGAATCTT TCGATCTT TCTATCTT	CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC	0 221 GTGCGGA GTGCGGG GTGCGGG GTGCTGG GTGCTGG GTGCTGG GTGCGGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG) 23 GGGG GGGG GGGG GGGG G G G 	D 240 TTACAGAGAG G-ACAGAAAG TTACAGAGAG TTACAGAGAG TTACAGAGAG ACACGGAAAA GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa	19 CTTCC CTTCACC CTTCC CTTCTG CTTCNTGNTC C C GC GC GC CTTCC CTTCC CTTCC	0 200 TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT CTCTGCCGTN TANTGNCGTC TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCGAATCT-T TCGAATCT-T TCTATCT-T TCTATCT-T TCTATCT-T	CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC	0 220 GTGCGGA GTGCGGG GTGCGGG GTGCTGG GTGCTGG GTGCTGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG) 23 GGGG GGGG GGGG GGGG 	D 240 TTACAGAGAG G-ACAGAAAG TTACAGAGAG TTACAGAGAG TTACAGAGAG ACACGGAAAA GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma sp. cf. vestita Cochlitoma marinae	19 CTTCC CTTCC-TACC CTTCC CTTCTG CTTCNTGNTC C C GC GC GC GC CTTCC CTTCC CTTCC	0 200 TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT CTCTGCCGTN TANTGNCGTC TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCGATCT-T TCTATCT-T TCTATCTAT TCTATCTAT	CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC	0 220 GTGCGGA GTGCGGG GTGCGGG GTGCTGG GTGCTGG GTGCTGG GTGCGGG GTGCGG GTGCGGG GTGCGG GTGCGGG GTGCCGG GTGCGG GTGCGG) 23 GGGG GGGG GGGG GGGG G G 	D 240 TTACAGAGAG G-ACAGAAAG TTACAGAGAG TTACAGAGAG TTACAGAGAG ACACGGAAAA GACAGGAAAA GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma marinae Cochlitoma churchilliana	19 CTTCC CTTCCTTCC CTTCTC CTTCTC CTTCTC CTTCC CTTCC CC GC GC GC CTTCC CTTCC CTTCC CTTCC CTTCC	0 200 TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT CTCTATCC-AT CTCTGCCGTN TANTGNCGTC TCTATCTT TCTATCTT TCTATCTT TCTATCTT TCTATCTT TCGATCTT TCGATCTT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT	CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC	0 221 GTGCGGA GTGCGGG GTGCGGG GTGCTGG GTGCTGG GTGCGG GTGCGGG GTGCGG GTGCGGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGGT GTGCGGT GTGCGGT GTGCGGT GTGCGGT GTGCGGT GTGCGGT) 23 GGGG GGGG GGGG GGGG GGGG GG GG 	D 240 TTACAGAGAG G-ACAGAAAG TTACAGAGAG TTACAGAGAG TTACAGAGAG TTACAGAGAG ACACGGAAAA GGACAGAAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma marinae Cochlitoma granulata	19 CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC GC GC GC GC CTTCC CTTCC CTTCC CTTCC CTTCC	0 200 TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT CTCTGCCGTN TANTGNCGTC TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCGATCT-T TCTATCT-T TCTATCT-T TCTATCT-AT TCTATCT-AT	CCGCGG-CTC CCGCGG-CTC	0 220 GTGCGGA GTGCGGG GTGCGGG GTGCTGG GTGCTGG GTGCTGG GTGCGGG GTGCGG GTGCGG GTGCGG GTGCGGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG) 23 GGGG GGGG GGGG GGGG GGGG GGG GG GGA GGA GGA GGA GGA GGA	D 240 TTACAGAGAG G-ACAGAAAG TTACAGAGAG TTACAGAGAG TTACAGAGAG ACACGGAAAA GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma gp. cf. vestita Cochlitoma marinae Cochlitoma churchilliana Cochlitoma sp. cf.	19 CTTCC CTTCAACC CTTCC CTTCTG CTTCNTGNTC C C GC GC GC GC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC	0 200 TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT CTCTGCCGTN TANTGNCGTC TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCGATCT-T TCTATCT-T TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT	CCGCGG-CTC CCGCGG-CTC	0 220 GTGCGGA GTGCGGG GTGCGGG GTGCTGGG GTGCCGG GTGCCGG GTGCCGG GTGCCGG GTGCGG) 23 GGGG GGGG GGGG GGGG GGGG GG GG 	D 240 TTACAGAGAG G-ACAGAAAG TTACAGAGAG TTACAGAGAG TTACAGAGAG ACACGGAAAA GACAGGAAAA GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex	19 CTTCC CTTCACC CTTCC CTTCTG CTTCNTGNTC C C GC GC GC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC	0 200 TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCT-T TAAATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT	CCGCGG-CTC CCGCGG-CTC	0 220 GTGCGGGA GTGCGGGG GTGCGGGG GTGCTGGG GTGCTGGG GTGCGGG GTGCGGG GTGCGGG) 23 GGGG GGGG GGGG GGGG GGGG G G 	D 240 TTACAGAGAG G-ACAGAAAG TTACAGAGAG TTACAGAGAG TTACAGAGAG ACACGGAAAA GACAGGAAAA GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma sp. cf. vestita Cochlitoma granulata Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli	19 CTTCC CTTCC-TTCC CTTCC CTTCTG CTTCNTGNTC C C GC GC GC GC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC	0 200 TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT CTCTGCCGTN TANTGNCGTC TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT	CCGCGG-CTC CCGCGGCCTC	0 220 GTGCGGA GTGCGGG GTGCGGG GTGCTGG GTGCTGG GTGCTGG GTGCGGG GTGCGG GTGCGGG GTGCGG GTGCGGG GTGCGG GTGCGG GTGCGGT GTGCGGT GTGCGGT GTGCGGT) 231 GGGG GGGG GGGG GGGG GG GG 	D 240 TTACAGAGAG G-ACAGAAAG TTACAGAGAG TTACAGAGAG TTACAGAGAG TTACAGAGAG ACACGGAAAA GACAGGAAAA GGACAGAAAG
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stulhmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma sp. cf. vestita Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa	19 CTTCC CTTCCTTCC CTTCC CTTCTG CTTCNTGNTC C C GC GC GC GC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC	0 200 TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT CTCTGCCGTN TANTGNCGTC TCTATCTT TCTATCTT TCTATCTT TCTATCTT TCTATCTT TCTATCTT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT	21 CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGGCCTC CCGCGGCCTC CCGCGGCCTC CCGCGGCCTC CCGCGGCCTC	0 220 GTGCGGA GTGCGGG GTGCGGG GTGCTGG GTGCTGG GTGCGG GTGCGGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGG GTGCGGT GTGCGGT) 23 GGGG GGGG GGGG GGGG GGGG GG 	D 240 TTACAGAGAG G-ACAGAAAG TTACAGAGAG TTACAGAGAG TTACAGAGAG TTACAGAGAG ACACGGAAAA GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG GGACAGAAAG
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma ap. cf. vestita Cochlitoma marinae Cochlitoma sp. cf. vestita Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata	19 CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTCC GC GC GC GC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC	0 200 TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT CTATCC-AT CTCTGCCGTN TANATCTT TCTATCTT TCTATCTT TCTATCTT TCTATCTT TCGATCTT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT	CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGGCCTC CCGCGGCCTC CCGCGGCCTC CCGCGGCCTC CCGCGGCCTC CCGCGGCCTC	0 220 GTGCGGGA GTGCGGG GTGCGGGG GTGCTGG GTGCTGG GTGCTGG GTGCGGG GTGCGGG GTGCGGG GTGCGGG GTGCGGG GTGCGGG GTGCGGG GTGCGGG GTGCGGG GTGCGGG GTGCGGG GTGCGGGT GTGCGGT GTGCGGT GTGCGGT GTGCGGT GTGCGGT GTGCGGT GTGCGGT GTGCGGT GTGCGGT) 23 GGGG GGGG GGGG GGGG GGG GG 	D 240 TTACAGAGAG G-ACAGAAAG TTACAGAGAG TTACAGAGAG TTACAGAGAG ACACGGAAAA GGACAGAAAG
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma dimidiata Cochlitoma dimidiata Cochlitoma granulata Cochlitoma sp. cf. vestita Cochlitoma simplex Cochlitoma kilburni Cochlitoma kilburni Cochlitoma martistempli Cochlitoma semidecussata Cochlitoma semidecussata Cochlitoma ustulata	19 CTTCC CTTCC CTTCC CTTCC CTTCC CTTCC CC GC GC GC CTTCC	0 200 TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT CTCTGCCGTN TANTGNCGTC TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT	CCGCGG-CTC CCGCGGCTC CCGCGGCTC CCGCGGCTC CCGCGGCTC CCGCGGCTC CCGCGGCTC	0 220 GTGCGGGA GTGCGGGG GTGCGGGG GTGCTGG GTGCGGG GTGCGGG GTGCGGG GTGCGG GTGCGG) 23 GGGG GGGG GGGG GGGG GGGG GGG GG GG GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA	D 240 TTACAGAGAG G-ACAGAAAG TTACAGAGAG TTACAGAGAG TTACAGAGAG ACACGGAAAA GGACAGAAAG
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma granulata Cochlitoma granulata Cochlitoma simplex Cochlitoma missa Cochlitoma missa Cochlitoma semidecussata Cochlitoma semidecussata Cochlitoma zebra	19 CTTCC CTTCC CTTCC CTTCTG CTTCNTGNTC C C GC GC GC GC CTTCC	0 200 TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT CTCTGCCGTN TANTGNCGTC TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT	CCGCGG-CTC CCGCGGCTC CCGCGGCTC CCGCGGCTC CCGCGGCTC CCGCGGCTC CCGCGGCTC CCGCGGCTC CCGCGGCTC	0 220 GTGCGGGA GTGCGGGG GTGCGGGG GTGCTGGG GTGCGGG GTGCGGG GTGCGGG GTGCGGG GTGCGGG GTGCGGG) 23 GGGG GGGG GGGG GGGG GG GG 	D 240 TTACAGAGAG G-ACAGAAAG TTACAGAGAG TTACAGAGAG TTACAGAGAG ACACGGAAAA GACAGGAAAA GGACAGAAAG
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma sp. cf. vestita Cochlitoma granulata Cochlitoma simplex Cochlitoma simplex Cochlitoma montistempli Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma ustulata	19 CTTCC CTTCC CTTCC CTTCTG CTTCNTGNTC C C GC GC GC GC CTTCC	0 200 TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-T TANAGNOGTC TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT TCTATCT-AT	21 CCGCGG-CTC CCGCGGCTC CCGCGGCTC CCGCGGCTC CCGCGGCTC CCGCGGCTC CCGCGGCTC CCGCGGCTC CCGCGGCTC CCGCGGCTC CCGCGGCTC CCGCGGCTC CCGCGGCTC CCGCGGCTC CCGCGGCTC CCGCGGCTC CCGCGGCTC	0 220 GTGCGGG GTGCGGG GTGCGGG GTGCTGG GTGCGGG GTGCGGG GTGCGGG GTGCGGG GTGCGGG) 23 GGGG GGGG GGGG GGGG GGGG GG 	D 240 TTACAGAGAG G-ACAGAAAG TTACAGAGAG TTACAGAGAG TTACAGAGAG TTACAGAGAG ACACGGAAAA GACAGGAAAA GGACAGAAAG
Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma granulata Cochlitoma granulata Cochlitoma simplex Cochlitoma missa Cochlitoma missa Cochlitoma semidecussata Cochlitoma semidecussata Cochlitoma zebra	19 CTTCC CTTCCTTCC CTTCC CTTCTG CTTCNTGNTC C C GC GC GC GC CTTCC	0 200 TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCC-AT TCTATCT-T TANTGNCGTC TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-T TCTATCT-AT	21 CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGGCTC CCGCGGCTC CCGCGGCTC CCGCGGCTC CCGCGGCTC CCGCGGCTC CCGCGGCTC CCGCGGCTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC CCGCGG-CTC	0 220 GTGCGGGA GTGCGGGG GTGCGGGG GTGCTGGG GTGCGGG GTGCGGG GTGCGGG GTGCGGG GTGCGGG GTGCGGG) 231 GGGG GGGG GGGG GGGG GGG GG G 	D 240 TTACAGAGAG G-ACAGAAAG TTACAGAGAG TTACAGAGAG TTACAGAGAG TTACAGAGAG ACACGGAAAA GACAGGAAAA GGACAGAAAG

452

Achatina fulica
Achtina immaculata
Achatina reticulata
Achatina zanzibarica
Euaethiopina loveridgei
Achatina achatina
Archachatina marginata
Achatina bisculpta
Achatina damarensis
Achatina stuhlmanni
Atopocochlis exarata
Limicolaria kambeul
Limicolaria martenssii
Limicolariopsis sp.
Limicolariopsis ruwenzori
Cochlitoma varicosa
Cochlitoma dimidiata
Cochlitoma sp. cf. vestita
Cochlitoma marinae
Cochlitoma churchilliana
Cochlitoma granulata
Cochlitoma simplex
Cochlitoma kilburni
Cochlitoma montistempli
Cochlitoma omissa
Cochlitoma semidecussata
Cochlitoma ustulata
Cochlitoma zebra
Metachatina kraussi
Rumina decollata
NUCLEOTIDES INCLUDED

 250			 280) 290	 300
			GAAGGAAGAA		
GAAGAAT-CG	GG-CG	GA	GAAGGAAGAA	GAAGAGACCG	TCGAAGCGCT
GAAGAAT-CG	GG-CG	GA	GAAGGAAGAA	GAAGAGACCG	TCGAAGCGCT
GAAGAAT-CG	GG-CG	GA	GAAGGAAGAA	GAAGAGACCG	TCGAAGCGCT
GAAGAAT-CG	GG-CG	GA	GAAGGAAGAA	GAAGAGACCG	TCGAAGCGCT
GAAGAAT-TG	GGGCG	GATA	AGGAAGGGGA	AGAGAGACCG	TCGAAGCGCT
GAAGAAT-TG	GA-CNN	ATA	NNGAAGGG-A	AGAGAGGCCG	TCGAAGCGCT
AAAGAAT-CT	GG-CG		GAGAA	GCGGAGACCG	TCGAAGCGCT
AAAGAAT-CT	GG-CG		GAGAA	GCGGAGACCG	TCGAAGCGCT
AAAGAAT-CT	GT-CG		GAGAAG	AAAGAGACCG	TCGAAGCGCT
			GAGA		
			GA		
			GGAA		
			AGAAGAAGAA		
			GGAAGAA		
GCG	G	AGAAGGAAGA	AGAAGAAGAA	GAAGAGACCG	TCGAAGCGCT
			ACTAAGAAAG		
			NAAAGAAGAA		
			GAAGGAAGAA		
			GAAGGAAGAA		
			GGAAGAAGAA		
			GGAAGAAGAA		
			AGAAGAAGAA		
			GGAAGAAGAA		
GCG		GA	GAAGGAAGAA	GAAGAGACCG	TCGAAGCGCT
			AGAAGAAGAA		
CTGCGTCGTG					
				mmmmmm	mmmmmmmmm

|....|
|....|
|....|
|....|

 310
 320
 330
 340
 350
 360

) 34(360
				GGGTTTT		
				GGGTTTTTACC		
				GGGTCTCACC		
	GTGGGCCGTC	GTGGGAGGAG	GAAGAA	GGGTTTCACC	CCCCTTTTTT	CCC-ACTCTT
				GGGTTTCACC		
	CTGGGCCGTC	GTGGGAGAGA	GG-AGGGA		TTGTTTTC	TTTTTTTTCTT
	CTGGGCCGTC	GTGGGAGAGG	AGGAGAGG	GATT	TTGGATTTTT	CTTCTTTCTT
	GTGGGCCGTC	GTGGGATGAG	GAAGAACT	GGGTTTTTCC	CAGTTTT	TT-CCCTCTT
	GTGGGCCGTC	GTGGGATGAG	GGTGAAGA	ACC	CAGTTTT	TTTTCCTCCT
	GTGGGCCGTC	GTGGGATGAG	GAATAACT	GGGTTTTTCC	CAGTT	TTTTTTCTCTT
	GTGGGCCGTC	GCGGGATGAG	GAAGAACT	GGGTTTTTCCC	CAGTTT	TTTTTTCTCTT
	GTGGGCCGTC	GTGGGATGAG	GAAGAACT	GGGTT	T	TTCCCCTCTT
	GTGGGCCGTC	GTGGGATGAG	GAAGAACT	GGGTT		TTTCCCTCTT
	GTGGGCCGTC	GTGGGATGAG	GAATTACT	GGGTTT-ACC	CAGTT	TTTTTTCTATT
	GTGGGCCGTC	GTGGGATGAG	GAAGAACT	GGCTT	TT	TTCCCCTCTT
				-GCTTTTTCT		
				AGTTTTT		
a				-GCTTTTTTT		
				-GCTTTTTTT		
				TGCTTTTTTT		
				-GNTNTTTTT		
				TGCTCTTATG		
				GCTTTTTTTT		
				GCTTTTTTTT		
				GCTTTTTTT-		
				GCTTTTTTTC		
				GCTTTTTTTT		
				GCTTTTTTTT		
				CTTTTTTTTT		
				GTTTTCTCT-		
	mmmmmmmmm	m-mmmm				

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	 420
Achatina fulica	CCCCCGTGG CCTCAAGTAC ACGCATGCGC CGTCCTCGTC ATTTCAGCGA CTC	
Achtina immaculata	CCCCCGTGG CCTCAAGTAC ACGCATGCGC CGTCCTCGTC ATTTCAGCGA CTC	CTTTCGCT
Achatina reticulata	CCCCCGTGG CCTCAAGTAC ACGCATGCGC CGTCCTCGTC ATTTCAGCGA CTC	CTTTCGCT
Achatina zanzibarica	CCCCCGTGG CCTCAAGTAC ACGCATGCGC CGTCCTCGTC ATTTCAGCGA CTC	CTTTCGCT
Euaethiopina loveridgei	CCCCCGTGG CCTCAAGTAC ACGCATGCGC CGTCCTCGTC ATTTCAGCGA CTC	CTTTCGCT
Achatina achatina	CCCCCGTGG CCTCAAGTGC ACG-GTGCGC CGTCC-CGTC AGTTTAGCGA CTC	
Archachatina marginata	CCCCCGTGG CCTCAAGTGC ACG-GTGCGC CGTCC-CGTC AGTTTAGCGA CTC	
Achatina bisculpta	CCCCCGTGG CCTCAAGTAC ACGCATGCGC CGTCCTCGTC ATTTTAGCGA CTC	CTTTCGCT
Achatina damarensis	TCCCCGTGG CCTCAAGTAC ACTCATGCGC CGTCGTCGTC ATTTCAGCGA CTC	CTTTCGCT
Achatina stuhlmanni	CCCCCGTGG CCTCAAGTAC ACGCATGCGC CGTCCTCGTC ATTTTAGCGA CTC	CTTTCGCT
Atopocochlis exarata	CCCCCGTGG CCTCAAGTAC ACGCATGCGC CGTCCTCGTC ATTTTAGCGA CTC	
Limicolaria kambeul	CCCCCGTGG CCTCAAGTAC ACGCATGCGC CGTCCTTGTC ATTT-AGCGA CTC	
Limicolaria martenssii	CCCCCGTGG CCTCAAGTAC ACGCATGCGC CGTCCTTGTC ATTT-AGCGA CTC	CTTTCGCT
Limicolariopsis sp.	CCCCCGTGG CCTCAAGTAC ACGCATGCGC CGTCCTCGTC ATTTTAGCGA CTC	
Limicolariopsis ruwenzori	CCCCCGTGG CCTCAAGTAC ACGCATGCGC CGTCCTTGTC ATTT-AGCGA CTC	CTTTTGCT
Cochlitoma varicosa	CCCCCGTGG CCTCAAGTAA ACGCATGCGC CGTCCTCGTC ATTTCAGCGA CTC	CTTTCGCT
Cochlitoma dimidiata	CCCCCGTGG CCTCAAGTAC ACGCATGCGC CGTCCTCGTC ATTTCAGNGA CTC	CTTTTCGC
Cochlitoma sp. cf. vestita	CCCCCGTGG TCTCAAGTAT ACGCATGCGC CGTCCTCGTC ATTTCAGCGA CTC	
Cochlitoma marinae	CCCCCGTGG CCTCAAGTAC ACGCATGCGC CGTCCTCGTC ATTTCAGAGA CTC	CTTTCGCT
Cochlitoma churchilliana	CCCCCGTGG CCTCAAGTAC ACGCATGCGC CGTCCTCGTC ATTTCAGCGA CTC	CTTTCGCT
Cochlitoma granulata	CCCCCGTGN CCTCNAGTAC ACGCATGCNC CGNCCTNGTC NTTTCAGCGA CTC	
Cochlitoma simplex	CCCCCGTGG CCTCAAGTAC ACGCATGCGC CGTCCTCGTC ATTTCAGCGA CTC	CTTTCGCT
Cochlitoma kilburni	CCCCCGTGG CCTCAAGTAC ACGCATGCGC CGTCCTCGTC ATTTCAGCGA CTC	CTTTCGCT
Cochlitoma montistempli	CCCCCGTGG CCTCAAGTAC ACGCATGCGC CGTCCTCGTC ATTTCAGCGA CTC	CTTTCGCT
Cochlitoma omissa	CCCCCGTGG CCTCAAGTAC ACGCATGCGC CGTCCTCGTC ATTTCAGCGA CTC	CTTTCGCT
Cochlitoma semidecussata	CCCCCGTGG CCTCAAGTAC ACGCATGCGC CGTCCTCGTC ATTTCAGCGA CTC	CTTTCGCT
Cochlitoma ustulata	TCCCCGGGG CCTCCAGTAC ACCCATGCGC CGTCCTCGGC ATTTCAGCAA CTC	CCTTCGCT
Cochlitoma zebra	CCCCCGTGG CCTCAAGTAC ACGCATGCGC CGTCCTCGTC ATTTCAGCGA CTC	CTTTCGCT
Metachatina kraussi	CCCCCGTGG CCTCAAGTAC ACACATGCGC CGTCCTCGTC ATTTCAGCGA CTC	CTTTCGCT
Rumina decollata	CCCTCGTAG CCTCAAGTAC ACGAATGCGC CGTCCCCGTC ATCTGAGCA	TC
NUCLEOTIDES INCLUDED	-mmmmmmm maaaaaaaaaaaa mmmmmmm maanaa-mmmm mmmm	

	43	0 440				
Achatina fulica	CGCCCGG	AGCGCT-CAT	CTTCGTTT-G	TTCGCTCGCC	GTCCGTCCGG	CAGGACTCGG
Achtina immaculata	CGCCCGG	AGCGCT-CAT	CTTCGTCT-G	TTCGCTCGCC	GTCCGTCCGG	CAGGACTCGG
Achatina reticulata	CGCCCGG	AGCGCT-CAT	ATTCGTTT-G	TTCGTTCGCC	GTCCGTCCGG	CAGGACTCGG
Achatina zanzibarica	CGCCCGG	AGCGCT-CAT	CTTCGTTT-G	TTCGCTCGCC	GTCCGTCCGG	CAGGACTCGG
Euaethiopina loveridgei	CGCCCGG	AGCGCT-CAT	CTTCGTTT-G	TTCGCTCGCC	GTCCGTCCGG	CAGGACTCGG
Achatina achatina	TGCCCCG	AGCGCC-CGT	CTTCGTTC-G	TTCGCC	GTCCGTCCGG	CAGGACTCGG
Archachatina marginata	TGCCCCG	AGCGCC-CGT	CTTCGTTC-G	TTCGCC	GTCCGTCCGG	CAGGACTCGG
Achatina bisculpta	CGCCAGG	AGCGCTCCAT	CTTCGTTT-G	TTCGCTCGCC	GTCCGTCCGG	CAGGACTCGG
Achatina damarensis	CGCCCGG	AGCNGCTCAT	CTTCGTTT-G	TTCGCTCGCC	GTCCGTCCGG	CAGGACTCGG
Achatina stuhlmanni	CGCCCGG	AGCGCTCCAT	CTTCGTTT-G	TTCGCTCGCC	GTCCGTCCGG	CAGGACTCGG
Atopocochlis exarata	CGCCCGG	AGCGCT-CAT	CTTCGTTT-G	TTCGCTCGCC	GTCCGTCCGG	CAGGACTCGG
Limicolaria kambeul		CNT				
Limicolaria martenssii		CAT				
Limicolariopsis sp.	CGCCCGG	AGCACT-CAT	CTTCGTTT-G	TTCGCTCGCC	GTCCGTCCGG	CAGGACTCGG
Limicolariopsis ruwenzori		CAT	CTTCGCTT-G	TTCGCTCGCC	GTCCGTCCAG	CAGGACTCGG
Cochlitoma varicosa	GCTCGCCCGG	AGCGCT-CAT	CTTCGTTT-G	TTCGCTCGCC	GTCCGTCCGG	CAGGACTCGG
Cochlitoma dimidiata	GCTCNNCCGG	ANNGNT-CAT	NTTNNTTTTG	TTCGCTTNCC	GTCCNTCCGN	CAGGACTCGG
Cochlitoma sp. cf. vestita		AGCGCT-CAT				
Cochlitoma marinae		AGCGCT-CAT				
Cochlitoma churchilliana	GCTCGCCCGG	AGCGCT-CAT	CTTCGTTT-G	TTCGCTCGCC	GTCCGTCCGG	CAGGACTCGG
Cochlitoma granulata		AGCGCT-CAT				
Cochlitoma simplex		AGCGCT-CAT				
Cochlitoma kilburni		AGCGCT-CAT				
Cochlitoma montistempli		AGCGCT-CAT				
Cochlitoma omissa		AGCGCT-CAT				
Cochlitoma semidecussata		AGCGCT-CAT				
Cochlitoma ustulata		AGCGGT-CAT				
Cochlitoma zebra		AGCGCT-CGT				
Metachatina kraussi		AGCGCT-CAT				
Rumina decollata		AGCGCT-CAT				
NUCLEOTIDES INCLUDED		mmm	mmmmm		mmmmmmm	mmmmmmmmm

	1 1	1 1	1 1	1 1	1 1	1 1
	49(···· ····) 51(
			J 510 AACAAATCGA			
			AAAAAATCGA			
			AACAAATCGA			
	CTCGCTTTTT		AACAAATCGA			
			AACAAATCGA			
			TTATCGA			
			TTATCGA			
			AATCGA			
			AATCGA			
	CTCGCTTCTT		AATCGA			
	CTCGCTTCTT		AATCGA			
	CTCGCTTCTT		AATCGA			
	CTCGCTTCTT		AATCGA			
	CTCGCTTCTT		AATCGA			
ri	CTCGCTTCTT	TTTT	AATCGA	GCCTGCCAGA	CCGTCCT	AAGCGGCTAG
	CTCGCTTCTT	${\rm TTTTTTT}$	AATCGA	GCCTGCCAGA	CCGTCCG	AAGCGGCTAG
	CTCGNTTNTT	$\mathrm{T}\mathrm{T}\mathrm{T}\mathrm{T}\mathrm{T}\mathrm{T}$	AATCGA	GCCTGCCAGA	CCGTCCG	AATCGGCTAG
ita	CTCGCTTCTT	${\rm TTTTTT}$	AATCGA	GCCTGCCAGA	CCCGTCCG	AAGCGGCTAG
	CTCGCTTCTT	TTTGTTT	AATCGA	GCCTGCCAGA	CAC-CGTCCG	AAGCGGCTAG
a	CTCGCTTCTT	$\mathrm{T}\mathrm{T}\mathrm{T}\mathrm{T}\mathrm{T}$	AATCGA	GCCTGCCAGA	CCGTCCG	AAGCGGCTAG
	CTCGCTTCTT	TTTTTTNTT	ANTCGA	GCCTGNCAGA	CCGTCCG	AAGCGGCTAG
	CTCGCTTCTT	TTTTTTNNNT	TTTTAATCGA	GCCTGCCAGA	CCGTCCG	AAGCGGCTAG
	CTCGCTTCTT	${\rm TTTTTT}{\rm T}{\rm -}{\rm -}{\rm -}{\rm -}{\rm -}{\rm -}{\rm -}{\rm -$	AATCGA	GCCTGCCAGA	CCGTCCG	AAGCGGCTAG
	CTCGCTTCAT	TTTTATT	AATCGA	GCCTGCCAGA	CCGTCCG	AAGCGGCTAG
	CTCGCTTCAT	TTTTATT	AATCGA	GCCTGCCAGA	CCGTCCG	AAGCGGCTAG
a	CTCGCTTCTT	TTT-ATT	AATCGA	GCCTGCCAGA	CCGTCCG	AAGCGGCTAG
	CTCGCTTCTT	TTTTTT	AATCGA	GCCTGCCAGA	CCGTCCG	AAGCGGCTAG
	CTCGCTTCTT	TTTTTTTTT-	AATCGA	GCCTGCCAGA	CCGTCCG	AAGCGGCTAG
	CTCGCTTCTT	TTTAT	AATCGA	GCCTGCCAGA	CCGTCCG	AAGCGGCTAG
	CTCGCTGTG-		AATAAAACGA	GCCTGCC-GA	CCGTCCG	AAGTGGCATG
	mmmmmm		m	mmmmmmm-mm	mmmmmmm	mmmmmmmm

	550	560) 570	580) 590	000
	GG-ATTG-CG	AAGTGGGG	CGCGCAA	GCGCATGGG-	TCTGCTG	CGGCGGCGCC
	GG-ATTG-CG	AAGTGGGG	CGCGCAA	GCGCATGGG-	TCTGCTG	CGGCGGCGCC
	GG-ATTG-CG	AAGTGGGG	CGCGCAA	GCGCATGGG-	TCTGCTG	CGGCGGCGCC
	GG-ATTG-CG	AAGTGGGG	CGCGCAA	GCGCATGGGG	TCTGCTG	CGGCGGCGCC
	GG-ATTG-CG	AAGTGGGG	CGCGCAA	GCGCATGGG-	TCTGCTG	CGGCGGCGCC
	CG-GTTG-CG	AAGCGGGT	-GGCGCGTAA	GCG-ATCGG-	TCTG	CGGCGGCGCC
	CG-GTTG-CG	AAGTGGGT	-GGCGGGCAA	GCG-ATCGG-	TCTG	CGGCGGCGCC
	CG-ATTG-CG	AAGTGGAG		GGG-	TCTGCTG	CGGCGGCGCC
	CG-ATTG-CG	AAGTGGGG-C	GCGTGAGCGC	TGGCATGTTG	GGGTCTGCTG	CGGCGGCGCC
	CG-ATTG-CG	AAGTGGGG	-CGCCCGCGA	GCGGATTGGG	GGGTCTGCTG	TGGCGGCGCC
	CG-AATG-CG	AAGTGGGG	CCCGGGAG	CGGCATGGG-	TCTGCTG	CGGCGGCGCC
	CG-ATTGGCG	AAGTG		CATGGG-	TCTGCTG	AGGCGGCGCC
	CG-ATTGGCG	AAGTG		CATGGG-	TCAGCTG	AGGCGGCGCC
	TG-ATTG-CG	AAGTGGGT	CGCGGGT	GCGCATGGG-	TCTGCTG	CGGCGGCGCC
i	CG-ATTGGCG	AAGTG		CATGGG-	TCTGCTG	CGGCGGCGCC
	CGGATTG-CG	AAGTGGGG	CGCGCGAGCG	CAGCATGGG-	GTCTGCTG	CGGCGGCGCC
	CGGATTG-CG	AAGTGGGG	CGCGCGAGCG	CAGCATGGGG	GAGTCTGCTG	CGGCGGCGCC
ta	CGGATTG-CG	AAGTGGGG	CGCGCGAGCG	CAGCATGGG-	TCTGCTG	CGGCGGCGCC
	CGGATTG-CG	AAGTGGGG	CGCGCGA	GCGCATGGG-	TCTGTTG	CGGCGGCGCC
	CG-AGTG-CG	AAGTGGGG	-GGCGCGCGA	GCGCATGGG-	TCTGCTG	CGGCGGCGCC
	CGGATTG-NG	AAGNGGGG	CGCGCGAGCG	CAACATGGGG	GTCTGNTG	CGGCGGCGCC
	CGGATTG-CG	AAGTGGGGCG	CACGCGAGCG	CAGCATAGG-	TCTGTTG	CGGCGGCGCC
	CGGATTG-CG	AAGTGGGG	CGCGCGAGCG	CAGCATGGG-	TCTGCTG	CGGCGGCGCC
	CGGATTG-CG	AAGTGGGG	CGCGCGAGCG	CAACATGGGG	GG-TCTGCTG	CGGCGGCGCC
	CGGATTG-CG	AAGTGGGG	CGCGCGAGCG	CAACATGGGG	GTCTGCTG	CGGCGGCGCC
	CGGATTG-CG	AAGTGGGG	CGCGCGAGCG	CAACATGGGG	GTCTGCTG	CGGCGGCGCC
	CGGATTG-CG	AAGTGGGG	CGCGCGAGCG	CATGGG-	TCTGTTG	CGGCGGCGCC
	CGGATTG-CG	AAGTGGGT	CGCGCGAGCG	CAGCATGGG-	TCTGTTG	CGGCGGCGCC
	CG-ATTG-CG	AAGTGGGG	CGCGCGAGCG	CATGGG-	TCTGCTG	CGGCGGCGCC
	CG-GTTT-CG	AAGTGTGA		GAGG	GCGATTGCCG	CGGCGGCGCC
	mmmm	mmmmm			m	mmmmmmmmm

Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzor: Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vesti Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata NUCLEOTIDES INCLUDED

Achatina fulica Achtina immaculata

Achatina fulica Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestit Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata NUCLEOTIDES INCLUDED

	 610					
		GTCTT				
		GTCTT				
	A	GTCTT	TCT	AAAATCTT	TCTTTA	-TCCGACCTC
	A	GTCTT	TCT	AAAATCTT	TCTTTA	-TCCGACCTC
	A	GTCTT	TCT	AAAATCTT	TCTTTA	-TCCGACCTC
	ACAACA	GTCTT	TATACGAACG	AACGTTCGGT	TCTTTA	-TCCGACCTC
	AGCA	GTCTC	TATAACGACG	ACGTTTNNTT	TAAAATTTTT	ATCCGACCTC
	A	GTCTT	TCT	AAAATATT	TCTTTA	-TCCGACCTC
	A	GTCTT	TCT	AAAAAATCTT	TCTTTA	-TCCGACCTC
	A	GTCTT	TCT	AAAATTTT	TCTTTA	-TCCGACCTC
	A	GTCTT	TCTA	AAAAAATCTT	TCTTTA	-TCCGACCTC
	A	GTCTT	TCT	AAAATTTT	TCTTTA	-TCCGACCTC
	A	GTCTT	TCT	AAAATTTT	TCTTTA	-TCCGACCTC
	A	GTCTT	TCT	AAAATCTT	TCTTTA	-TCCGACCTC
	A	GTCTT	TCT	AAAATTTT	TCTTTA	-TCCGACCTC
	A	GTCTT	TCT	TTCAT	TCTTTA	-TCCGACCTC
	A	GTCTT	TCT	TTCAT	TCGTTA	-TCCGACCTC
a	A	GTCTT	TCT	TTCAT	TCTTTA	-TCCGACCTC
	AA	GTCTT	TCT	TTCTT	TCTTTA	-TCCGACCTC
	A	GTCTT	TCT	TTCTT	TCTTTA	-TCCGACCTC
	A	GTCTT	TCT	T	TCTTTA	-TCCGACCTC
	A	GTCTT	TCT	-TTCTTTCTT	TCTTTA	-TCCGACCTC
		GTCTT				
		GTCTT	- • -			
		GTCTT				
	A	GTCTT	TCT	TTCTT	TCTTTA	-TCCGACCTC
		GTCTT	- • -			
	A	GTCTT	TCT	TTCAT	TCTTTA	-TCCGACCTC
		GTCTT	101	11011	1011111	1000110010
	AATTTT	TTTTTGTCCG	TTCT	AAA		-TCCGACCTC
	m					-mmmmmmmmm

	670	0 680	0 69	0 70) 71(0 720
Achatina fulica	AGATCGGACG	AGATTACCCG	CTGAATTTAA	GCATATAACT	AAGCGGAGGA	AAAGAAACTA
Achtina immaculata	AGATCGGACG	AGATTACCCG	CTGAATTTAA	GCATATAACT	AAGCGGAGGA	AAAGAAACTA
Achatina reticulata	AGATCGGACG	AGATTACCCG	CTGAATTTAA	GCATATAACT	AAGCGGAGGA	AAAGAAACTA
Achatina zanzibarica	AGATCGGACG	AGATTACCCG	CTGAATTTAA	GCATATAACT	AAGCGGAGGA	AAAGAAACTA
Euaethiopina loveridgei	AGATCGGACG	AGATTACCCG	CTGAATTTAA	GCATATAACT	AAGCGGAGGA	AAAGAAACTA
Achatina achatina	AGATCGGACG	AGATTACCCG	CTGAATTTAA	GCATATAACT	AAGCGGAGGA	AAAGAAACTA
Archachatina marginata	AGATCGGACG	AGATTACCCG	CTGAATTTAA	GCATATAACT	AAGCGGAGGA	AAAGAAACTA
Achatina bisculpta	AGATCGGACG	AGATTACCCG	CTGAATTTAA	GCATATAACT	AAGCGGAGGA	AAAGAAACTA
Achatina damarensis	AGATCGGACG	AGATTACCCG	CTGAATTTAA	GCATATAACT	AAGCGGAGGA	AAAGAAACTA
Achatina stuhlmanni		AGATTACCCG				
Atopocochlis exarata		AGATTACCCG				
Limicolaria kambeul		AGATTACCCG				
Limicolaria martenssii		AGATTACCCG				
Limicolariopsis sp.		AGATTACCCG				
Limicolariopsis ruwenzori		AGATTACCCG				
Cochlitoma varicosa		AGATTACCCG				
Cochlitoma dimidiata		AGATTACCCG				
Cochlitoma sp. cf. vestita		AGATTACCCG				
Cochlitoma marinae		AGATTACCCG				
Cochlitoma churchilliana		AGATTACCCG				
Cochlitoma granulata		AGATTACCCG				
Cochlitoma simplex		AGATTACCCG				
Cochlitoma kilburni		AGATTACCCG				
Cochlitoma montistempli		AGATTACCCG				
Cochlitoma omissa		AGATTACCCG				
Cochlitoma semidecussata		AGATTACCCG				
Cochlitoma ustulata		AGATTACCCG				
Cochlitoma zebra		AGATTACCCG				
Metachatina kraussi		AGATTACCCG				
Rumina decollata		AGATTACCCG				
NUCLEOTIDES INCLUDED	mmmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmmm

Achatina fulica Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata NUCLEOTIDES INCLUDED

ACAAGGATTT CCCCAGTAAC GGCGAGTGAA GCGGGAATAG CCCAGCACCG AATCCCTCAG ACAAGGATTT CCCCAGTAAC GGCGAGTGAA GCGGGAAGAG CCCAGCACCG AATCCCCCAG

840 TGTCACGCTG GCGGGAACTG TGGTGTGTGG GACGCCACCA GTCGCATCAG AGGGCGTCGA TGTCACGCTG ACGGGAACTG TGGTGTGTGG GACGCCACCA GTCGCATCAG AGGGCGTCGA TGTCACGCTG GCGGGAACTG TGGTGTGTGG GACGCCACCA GTCGCATCAG AGGGCGTCGA TGTCACGCTG ACGGGAACTG TGGTGTGTGG GACGCCACCA GTCGCATCAG AGGGCGTCGA TGTCACGCTG GCGGGAACTG TGGTGTGTGG GACGCCACCA GTCGCATCAG AGGGCGTCGA

	850					
	AGTCCTCCTG	ATCGGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCTCTCTG
	AGTCCTCCTG	ATCGGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCTCTCTG
	AGTCCTCCTG	ATCGGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCTCTCTG
	AGTCCTCCTG	ATCGGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCTCTCTG
	AGTCCTCCTG	ATCGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCTCTCTG
	AGTCCTCCTG	ATCGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCTCTCTG
	AGTCCTCCTG	ATCGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCTCTCTG
	AGTCCTCCTG	ATCGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCTCTCTG
	AGTCCTCCTG	ATCGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCTCTCTG
	AGTCCTCCTG	ATCGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCTCTCTG
	AGTCCTCCTG	ATCGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCTCTCTG
	AGTCCTCCTG	ATCGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCTCTCTG
	AGTCCTCCTG	ATCGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCTCTCTG
	AGTCCTCCTG	ATCGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCTCTCTG
	AGTCCTCCTG	ATCGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCTCTCTG
	AGTCCTCCTG	ATCGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCTCTCTG
	AGTCCTCCTG	ATCGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCACTCTG
1	AGTCCTCCTG	ATCGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCACTCTG
	AGTCCTCCTG	ATCGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCACTCTG
	AGTCCTCCTG	ATCGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCACTCTG
	AGTCCTCCTG	ATCGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCACTCTG
	AGTCCTCCTG	ATCGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCACTCTG
	AGTCCTCCTG	ATCGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCACTCTG
	AGTCCTCCTG	ATCGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCACTCTG
	AGTCCTCCTG	ATCGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCACTCTG
	AGTCCTCCTG	ATCGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCACTCTG
	AGTCCTCCTG	ATCGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCACTCTG
	AGTCCTCCTG	ATCGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCACTCTG
	AGTCCTCCTG	ATCGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCACTCTG
	AGTCCTCCTG	ATCGGGGCTT	CACCCAGAGC	GGGTGTAAGG	CCTTTGCAGG	CGCCTCTCTG
	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

Achatina fulica

	910) 920) 930) 940) 950) 960
	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
ei	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
a	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
i	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
zori	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
stita	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
ana	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
1i	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
ata	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
	TGCGGCCGCG	AGCGTCTCAG	GAGTCGGGTT	GTTTGGGAAT	GCAGCCCAAA	GCGGGTGGTA
	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmmm

Achatina fulica Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridge Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenz Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. ves Cochlitoma marinae Cochlitoma churchillia Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempl Cochlitoma omissa Cochlitoma semidecussa Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata

NUCLEOTIDES INCLUDED

Achatina fulica Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata NUCLEOTIDES INCLUDED

....|....||||||||| 970 980 990 1000 1010 102 AACTCCATCT AAGGCTAAAT ACTGGCACGA GTCCGATAGC GGACAAGTAC CGTGAGGGAA 1020 AACTCCATCT AAGGCTAAAT ACTGGCACGA GTCCGATAGC GGACAAGTAC CGTGAGGGAA AACTCCATCT AAGGCTAAAT ACTTGCACGA GTCCGATAGC GGACAAGTAC CGTGAGGGAA

····|····| ····|····| ····| ····| ····| ····| ····| ····|

1030 1040 1050 1060 1070 1080 AGTTGAAAAG AACTTTGAAG AGAGAGTTCA AGAGTACGTG AAACCGCCCA GAGGTAAACG AGTTGAAAAAG AACTTTGAAG AGAGAGTTCA AGAGTACGTG AAACCGCCCA GAGGTAAACG AGTTGAAAAG AACTTTGAAG AGAGAGTTCA AGAGTACGTG AAACCGCCCA GAGGTAAACG

				CAGCGCGGCG		
				CAGCGCGGCG		
	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCGGCCTCG	GGGCGATCGC
	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCGGCCTCG	GGGCGATCGC
	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCGGCCTCG	GGGCGATCGC
	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCGGCCTCG	GGGCGATCGC
	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCGGCCTCG	GGGCGATCGC
	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCGGCCT-G	GGGCGATCGC
	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCGGCCT-G	GGGCGATCGC
	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCGGCCT-G	GGGCGATCGC
	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCGGCCTCG	GGGCGATCGC
	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCAGCCTCG	GGGCTATCGC
	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCAGCCTCG	GGGCTATCGC
	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCGGCCTCG	GGGCTATCGC
	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCAGCCTCG	GGGCTATCGC
	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCGGCCTCG	GGGCGATCGC
	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCGGCCTCG	GGGCGATCGC
a	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCGGCCTCG	GGGCGATCGC
	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCGGCCTCG	GGGCGATCGC
	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCGGCCTCG	GGGCGATCGC
	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCGGCCTCG	GGGCGATCGC
	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCGGCCTCG	GGGCGATCGC
	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCGGCCTCG	GGGCGATCGC
	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCGGCCTCG	GGGCGATCGC
	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCGGCCTCG	GGGCGATCGC
	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCGGCCTCG	GGGCGATCGC
	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCGGCCTCG	GGGCGATCGC
	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCGGCCTCG	GGGCGATCGC
	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCGGCCTCG	GGGCGATCGC
	GGTGGATCCG	CAAAGTCGGC	CCGCGGAATT	CAGCGCGGCG	CGCGGCCT-G	GGGCTATTGC
	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmm-m	mmmmmmmmm

···· | ····· | ···· | ···· | ···· | ···· | ···· | ···· | ···· | ···· | ···· | ·

	115	50 11	50 ['] 11'	70 ' 118	30 119	90 ['] 1200
Achatina fulica	GGCCGGGGAT	CCCTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
Achtina immaculata	GGCCGGGGAT	CCCTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
Achatina reticulata	GGCCGGGGAT	CCCTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
Achatina zanzibarica	GGCCGGGGAT	CCCTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
Euaethiopina loveridgei	GGCCGGGGAT	CCCTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
Achatina achatina	GGCCGGGGAT	CCCTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
Archachatina marginata	GGCCGGGGAT	CCCTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
Achatina bisculpta	GGCCGGGGAT	CCCTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
Achatina damarensis	GGCCGGGGAT	CCCTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
Achatina stuhlmanni	GGCCGGGGGAT	CCCTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
Atopocochlis exarata	GGCCGGGGGAT	CCCTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
Limicolaria kambeul	GGCCGGGGGAT	CCCTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
Limicolaria martenssii	GGCCGGGGGAT	CCYTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
Limicolariopsis sp.	GGCCGGGGGAT	CCCTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
Limicolariopsis ruwenzori	GGCCGGGGGAT	CCCTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
Cochlitoma varicosa	GGCCGGGGGAT	CCCTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
Cochlitoma dimidiata	GGCCGGGGGAT	CCCTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
Cochlitoma sp. cf. vestita	GGCCGGGGGAT	CCCTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
Cochlitoma marinae	GGCCGGGGGAT	CCCTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
Cochlitoma churchilliana	GGCCGGGGGAT	CCCTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
Cochlitoma granulata	GGCCGGGGAT	CCCTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
Cochlitoma simplex	GGCCGGGGAT	CCCTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
Cochlitoma kilburni	GGCCGGGGAT	CCCTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
Cochlitoma montistempli	GGCCGGGGAT	CCCTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
Cochlitoma omissa	GGCCGGGGAT	CCCTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
Cochlitoma semidecussata	GGCCGGGGAT	CCCTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
Cochlitoma ustulata				GTCGATCCGG		
Cochlitoma zebra				GTCGATCCGG		
Metachatina kraussi	GGCCGGGGAT	CCCTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
Rumina decollata	GGCCGGGGAT	CCCTGGGACC	CCGCCGCGGT	GTCGATCCGG	GCTCCGCCGC	GTGCACTTTC
NUCLEOTIDES INCLUDED	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata

NUCLEOTIDES INCLUDED

Achatina fulica

Achatina fulica Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata NUCLEOTIDES INCLUDED

....|....||||||||| 1210 1220 1230 1240 1250 126 CGCGGGCAGA GTGCCACAAC CGGTTCCGCT GGAGCCGTCA GAGGCCGGGC GGGTTGTCGG 1260 CGCGGGCAGA GTGCCACAAC CGGTTCCGCT GGAGCCGTCA GAGGCCGGGC GGGTTGTCGG CGCGGGCAGA GTGCCACAAC CGGTTCCGCT GGAGCCGTCA GAGGCCGGGC GGGTTGTCGG CGCGGGCAGA GTGCCACAAC CGGTTCCGCT GGAGCCGTCA GAGGCCGGAC GGGTTGTCGG CGCGGGCAGA GTGCCACAAC CGGTTCCGCT GGAGCCGTCA GAGGCCGGGC GGGTTGTCGG CGCGGGCAGA GTGCCACAAC CGGTTCCGCT GGAGCCGTCA GAGGCCGGGC GAGTTGTCGG CGCGGGCAGA GTGCCACAAC CGGTTCCGCT GGAGCCGTCA GAGGCCGGGC GAGTTGTCGG CGCGGGCAGA GTGCCACAAC CGGTTCCGCT GGAGCCGTCA GAGGCCGGGC GGGTTGTCGG CGCCGGCCAGA GTGCCACAAC CGGTTCCGCT GGAGCCGTCA GAGGCCGGGC GTGTTGTCGG CGCGGGCAGA GTGCCACAAC CGGTTCCGCT GGAGCCGTCA GAGGCCGGGC GGGTTGTCGG CGCCGGCCAGA GTGCCACAAC CGGTTCCGCT GGAGCCGTCA GAGGCCGGGC GGGTTGTCGG CGCGGGCAGA GTGCCACAAC CGGTTCCGCT GGAGCCGTCA GAGGCCGGGC GGGTTGTCGG CGCCGGCCAGA GTGCCACAAC CGGTTCCGCG GGAGCCGTCA GAGGTCGGAC GGGTTGTCGG

TGGGGGGCGCT TGCGTCCCTA CCAGCCCGCC CCGGCGGACG GCCTCGGGAC CGAGGAACCG TGGGGGGCGCT TGCGTCCCTA CCAGCCCGCC CCGGCGGACG GCCTCGGGAC CGAGGAACCG TGGGGGGCGCT TGCGTCCCTA CCAGCCCGCC CCGGCGGACG GCCTCGGGAC CGAGGAACCG TGGGGGCGCT TGCGTCCCTA CCAGCCCGCC CCGGCGGACG GCCTCGGGAC CGAGGAACCG TGGGGGGCGCT TGCGTCCCTA CCAGCCCGCC CCGGCGGACG GCCTCGGGAC CGAGGAACCG TGGGGGGCGCT TGCGTCCCTA CCAGCCCGCC CCGGCGGACG GCCTCGGGAC CGAGGGACCG TGGGGGGCGCT TGCGTCCCTA CCAGCCCGCC CCGGCGGACG GCCTCGGGAC CGAGGGACCG TGGGGGGCGCT TGCGTCCCTA CCAGCCCGCC CCGGCGGACG GCCTCGGGAC CGAGGAACCG TGGGGGCGCT TGCGTCCCTA CCAGCCCGCC CCGGCGGACG GCCTCGGGAC CGAGGAACCG TGGGGGGCGCT TGCGTCCCTA CCAGCCCGCC CCGGCGGACG GCCTCGGGAC CGAGGAACTG TGGGGGGCGCT TGCGTCCCTA CCAGCCCGCC CCGGCGGACG GCCTCGGGAC CGAGGAACCG TGGGGGGCGCT TGCGTCCCTA CCAGCCCGCC CCGGCGGACG GCCTCGGGAC CGAGGAACCG TGGGGGGCGCT TGCGTCCCTA CCAGCCCGCC CCGGCGGACG GCCTCGGGAC CGAGGAACCG TGGGGGGCGCT TGCGTCCCTA CCAGCCCGCC CCGGCGGACG GCCTCGGGAC CGAGGAACTG TGGGGGCGCT TGCGTCCCTA CCAGCCCGCC CCGGCGGACG GCCTCGGGAC CGAGGAACCG TGGGGGGCGCT TGCGTCCCTA CCAGCCCGCC CCGGCGGACG GCCTCGGGAC CGAGGAACCG TGGGGGCGCT TGCGTCCCTA CCAGCCCGCC CCGGCGGACG GCCTCGGGAC CGAGGAACCG TGGGGGCGCT TGCGTCCCTA CCAGCCCGCC CCGGCGGACG GCCTCGGGAC CGAGGAACCG TGGGGGCGCT TGCGTCCCTA CCAGCCCGCC CCGGCGGACG GCCTCGGGAC CGAGGAACCG TGGGGGGCGCT TGCGTCCCTA CCAGCCCGCC CCGGCGGACG GCCTCGGGAC CGAGGAACCG TGGGGGCGCT TGCGTCCCTA CCAGCCCGCC CCGGCGGACG GCCTCGGGAC CGAGGAACCG TGGGGGGCGCT TGCGTCCCTA CCAGCCCGCC CCGGCGGACG GCCTCGGGAC CGAGGAACCG TGGGGGCGCT TGCGTCCCTA CCAGCCCGCC CCGGCGGACG GCCTCGGGAC CGAGGAACCG TGGGGGCGCT TGCGTCCCTA CCAGCCCGCC CCGGCGGACG GCCTCGGGAC CGAGGAACCG TGGGGGCGCT TGCGTCCCTA CCAGCCCGCC CCGGCGGACG GCCTCGGGAC CGAGGAACCG TGGGGGGCGCT TGCGTCCCTA CCAGCCCGCC CCGGCGGACG GCCTCGGGAC CGAGGAACCG TGGGGGGCGCT CGCGTCCCTA CCAGCCCGCC CCGGCGGACG GCCTCGGGAC CGAGGGACCG

				 50 136		
				GCGCGAGTCC		
	CCGCGCGCTT	CGAGGCTACC	CGGCCCCTCT	GCGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	CCGCGCGCTT	CGAGGCTACC	CGGCCCCTCT	GCGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	CCGCGCGCTT	CGAGGCTACC	CGGCCCTTCT	GCGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	CCGCGCGCTT	CGAGGCTACC	CAGCCCCTCT	GCGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	CCGCGCGCTT	CGAGGCTACC	CGACCCCTCC	GCGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	CCGCGCGCTT	CGAGGCTACC	CGACCCCTCC	GCGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	CCGCGCGCTT	CGAGGCTACC	CGACCCCTCG	GCGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	CCGCGCGCTT	CGAGGCTACC	CGACCCCTCG	GCGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	CCGCGCGCTT	CGAGGCTACC	CGACCCCTCG	GCGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	CCGCGCGCTT	CGAGGCTACC	CGACCCCTCG	GCGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	CCGCGCGCTT	CGAGGCTACC	CGACCCCTCG	GCGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	CCGCGCGCTT	CGAGGCTACC	CGACCCCTCG	GCGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	CCGCGCGCTT	CGAGGCTACC	CGATCCCTCG	GCGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	CCGCGCGCTT	CGAGGCTACC	CGACCCTTCG	GCGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	CCGCGCGCCT	GGAGGCTACC	CGACCCCTCC	GCGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	CCGCGCGCTT	GGAGGCTACC	CGACCCCTCC	GTGCGAGTCC	GACTGGGAGA	GACTGGGCAA
a	CCGCGCGCCT	GGAGGCTACC	CGACCCCTCC	GCGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	CCGCGCGCTT	GGAGGCTACC	CGACCCCTCC	GTGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	CCGCGCGCTT	GGAGGCTACC	CGACCCCTCC	GCGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	CCGCGCGCTT	GGAGGCTACC	CGACCCCTCC	GTGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	CCGCGCGCCT	GGAGGCTACC	CGACCCCTCC	GCGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	CCGCGCGCCT	GGAGGCTACC	CGACCCCTCC	GCGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	CCGCGCGCTT	GGAGGCTACC	CGACCCCTCC	GTGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	CCGCGCGCTT	GGAGGCTACC	CGACCCCTCC	GTGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	CCGCGCGCTT	GGAGGCTACC	CGACCCCTCC	GTGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	CCGCGCGCTT	GGAGGCTACC	CGACCCCTCC	GTGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	CCGCGCGCCT	GGAGGCTACC	CGACCCCTCC	GCGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	CCGCGCGCTT	AGAGGCTACC	CGACCCCTCC	GCGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	CCGCACGCTT	CGAGGCTACC	T-GCTCCTCC	GCGCGAGTCC	GACTGGGAGA	GACTGGGCAA
	mmmmmmmmm	mmmmmmmmm	m-mmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

	139	90 140	0 142	142	20 143	30 1440	
	CCGTGTCTTC	CGACCGCTCG	CGCGCGACCG	GGCCGGGCTA	GCCGGGCGTC	GCGACTGTAA	
	CCGTGTCTTC	CGACCGCTCG	CGCGCGACCG	GGCCGGGCTA	GCCGGGCGTC	GCGACTGTAA	
	CCGTGTCTTC	CGACCGCTCG	CGCGCGACCG	GGCCGGGCTA	GCCGGGCGTC	GCGACTGTAA	
L	CCGTGTCTTC	CGACCGCTCG	CGCGCGACCG	GGCCGGGCTA	GCCGGGCGTC	GCGACTGTAA	
lgei	CCGTGTCTTC	CGACCGCTCG	CGCGCGACCG	GGCCGGGCTA	GCCGGGCGTC	GCGACTGTAA	
	CCGTGTCTCC	CGACCGCTCG	CGCGCGACCG	GGCCGGGCTA	GCCGGGCGC-	GCGACTGAAA	
ita	CCGTGTCTCC	CGACCGCTCG	CGTGCGACCG	GGCCGGGCTA	GCCGGGCGC-	GACTGAAG	
	CCGTGTCTCC	CGACCGCTCG	CGCAAGACCG	GGCCGGGCTA	GCCGGGCGCC	GCGACTGTAA	
	CCGTGTCTCC	CGACCGCTCG	CGCAAGACCG	GGCCGGGCTA	GCCGGGCGCC	GCGACTGTAA	
	CCGTGTCTCC	CGACCGCTCG	CGCAAGACCG	GGCCGGGCTA	GCCGGGCGCC	GCGACTGTAA	
L	CCGTGTCTCC	CGACCGCTCG	CGCAAGACCG	GGCCGGGCTA	GCCGGGCGCC	GCGACTGTAA	
	CCGTGTCTCC	CGACCGCTCG	CGCAAGACCG	GGCCGGGCTA	GCCGGGCGCC	GCGACTGTAA	
ii	CCGTGTCTCC	CGACCGCTCG	CGCAAGACCG	GGCCGGGCTA	GCCGGGCGCC	GCGACTGTAA	
	CCGTGTCTCC	CGACCGCTCG	CGCAAGACCG	GGCCGGGCTA	GCCGGGCGCC	GCGACTGTAA	
enzori	CCGTGTCTCC	CGACCGCTCG	CGCAAGACCG	GGCCGGGCTA	GCCGGGCGCC	GCGACTGTAA	
	CCGTGTCTTC	CGACCGCTCG	TGCGCGACCG	GGCCGGGCTA	GCCGGGCGTC	GCGACTGTAA	
L	CCGTGTCTTC	CGACCGCTCG	CGCGCGACCG	GGCCGGGCTA	GCCGGGCGTC	GCGACTGTAA	
vestita	CCGTGTCTTC	CGACCGCTCG	CGCGCGACCG	GGCCGGGCTA	GCCGGGCGTC	GCGACTGTAA	
	CCGTGTCTTC	CGACCGCTCG	CGCGCGACCG	GGCCGGGCTA	GCCGGGCGTC	GCGACTGTAA	
iana	CCGTGTCTTC	CGACCGCTCG	CGCGCGACCG	GGCCGGGCTA	GCCGGGCGTC	GCGACTGTAA	
L	CCGTGTCTTC	CGACCGCTCG	CGCGCGACCG	GGCCGGGCTA	GCCGGGCGTC	GCGACTGTAA	
	CCGTGTCTTC	CGACCGCTCG	CGCGCGACCG	GGCCGGGCTA	GCCGGGCGTC	GCGACTGTAA	
	CCGTGTCTTC	CGACCGCTCG	CGCGCGACCG	GGCCGGGCTA	GCCGGGCGTC	GCGACTGTAA	
npli	CCGTGTCTTC	CGACCGCTCG	CGCGCGACCG	GGCCGGGCTA	GCCGGGCGTC	GCGACTGTAA	
	CCGTGTCTTC	CGACCGCTCG	CGCGCGACCG	GGCCGGGCTA	GCCGGGCGTC	GCGACTGTAA	
sata	CCGTGTCTTC	CGACCGCTCG	CGCGCGACCG	GGCCGGGCTA	GCCGGGCGTC	GCGACTGTAA	
	CCGTGTCTTC	CGACCGCTCG	CGCGCGACCG	GGCCGGGCTA	GCCGGGCGTC	GCGACTGTAA	
	CCGTGTCTTC	CGACCGCTCG	CGCGCGACCG	GGCCGGGCTA	GCCGGGCGTC	GCGACTGTAA	
	CCGTGTCTTC	CGACCGCTCG	CGCGCGACCG	GGCCGGGCTA	GCCGGGCGTC	GCGACTGTAA	
	CCGTGTCTCC	CGACCGCTCG	CGCGCGACCG	GGCCGGGCTA	GCCGGGCGT-	GC-ACA-	
)	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm-	mmm	

Achatina fulica Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridg Achatina achatina Archachatina marginat Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssi Limicolariopsis sp. Limicolariopsis ruwer Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. ve Cochlitoma marinae Cochlitoma churchilli Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistemp Cochlitoma omissa Cochlitoma semidecuss Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata NUCLEOTIDES INCLUDED

Achatina fulica Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata NUCLEOTIDES INCLUDED

1500 תמתחתות המתחתות המתחתות

····|····| ····|····| ····| ····| ····| ····| ····| ····|

1510 1520 1530 1540 1550 1560 AGTCTAACAT GCGCGCGAGT CATTGGGCGG TACGAAACCC AAAGGCGCAG TGAAAGCGAG AGTCTAACAT GCGCGCGGGT CATTGGGCGG TACGAAACCC AAAGGCGCAG TGAAAGCGAG AGTCTAACAT GCGCGCGAGT CATTGGGCGG TACGAAACCC AAAGGCGCAG TGAAAGCGAG AGTCTAACAT GCGCGCGGGT CATTGGGCTG TACGAAACCC AAAGGCGCAG TGAAAGCGAG AGTCTAACAT GCGCGCGAGT CATTGGGCGG TACGAAACCC AAAGGCGCAG TGAAAGCGAG AGTCTAACAT GCGCGCGGGT CATTGGGCGG TACGAAACCC AAAGGCGCAG TGAAAGCGAG AGTCTAACAT GCGCGCGAGT CATTGGGCGG TACGAAACCC AAAGGCGCAG TGAAAGCGAG AGTCTAACAT GCGCGCGGGT CATTGGGCGG TACGAAACCC AAAGGCGCAG TGAAAGCGAG AGTCTAACAT GCGCGCGAGT CATTGGGCGG TACGAAACCC AAAGGCGCAG TGAAAGCGAG AGTCTAACAT GCGCGCGAGT CATTGGGCWG TACGAAACCC AAAGGCGCAG TGAAAGCGAG

				···· ···· 90 160		 L0 1620
	GGTCGTCTCG	CGCGACCCAG	GTGGGATCCT	CCGCTCCTTC	GCGGGAGCGG	TGGCGCACCA
	GGTCGTCTCG	CGCGACCCAG	GTGGGATCCT	CCGCTCCTTC	GCGGGAGCGG	TGGCGCACCA
	GGTCGTCTCG	CGCGACCCAG	GTGGGATCCT	CCGCTCTTTC	GCGGGAGCGG	TGGCGCACCA
	GGTCGTCTCG	CGCGACCCAG	GTGGGATCCT	CCGTTCCTTC	GCGGGAGCGG	TGGCGCACCA
	GGTCGTCTCG	CGCGACCCAG	GTGGGATCCT	CCGCTCCTTC	GCGGGAGCGG	TGGCGCACCA
	GGTCGTCTCG	CGCGACCCAG	GTGGGATCCT	CCGCTCCTTC	GCGGGAGCGG	TGGCGCACCA
	GGTCGTCTCG	CGCGACCCAG	GTGGGATCCT	CCGCTCCTTC	GCGGGAGCGG	TGGCGCACCA
	GGTCGTCTCG	CGCGACCCAG	GTGGGATCCT	CCGCTCCTTC	GCGGGAGCGG	TGGCGCACCA
	GGTCGTCTCG	CGCGACCCAG	GTGGGATCCT	CCGCTCCTTC	GCGGGAGCGG	TGGCGCACCA
	GGTCGTCTCG	CGCGACCCAG	GTGGGATCCT	CCGCTCCTTC	GCGGGAGCGG	TGGCGCACCA
	GGTCGTCTCG	CGCGACCCAG	GTGGGATCCT	CCGCTCCTTC	GCGGGAGCGG	TGGCGCACCA
	GGTCGTCTCG	CGCGACCCAG	GTGGGATCCT	CCGCTCCTTC	GCGGGAGCGG	TGGCGCACCA
	GGTCGTCTCG	CGCGACCCAG	GTGGGATCCT	CCGCTCCTTC	GCGGGAGCGG	TGGCGCACCA
	GGTCGTCTCG	CGCGACCCAG	GTGGGATCCT	CCGCTCCTTC	GCGGGAGCGG	TGGCGCACCA
	GGTCGTCTCG	CGCGACCCAG	GTGGGATCCT	CCGCTCCTTC	GCGGGAGCGG	TGGCGCACCA
	GGTCGTCTCG	CGCGACCCAG	GTGGGATCCT	CCGTTCCTTC	GCGGGAGCGG	TGGCGCACCA
	GGTCGCCTCG	CGCGACCCAG	GTGGGATCCC	CCGCTCCTTC	GCGGGAGCGG	AGGCGCACCA
a	GGTCGCCTCG	CGCGACCCAG	GTGGGATCCT	CCGCTCCTTC	GCGGGAGCGG	TGGCGCACCA
	GGTCGTCTCG	CGCGACCCAG	GTGGGATCCT	CCGCTCCTTC	GCGGGAGCGG	TGGCGCACCA
	GGTCGCCTCG	CGCGACCCAG	GTGGGATCCC	CCACTCCTTT	GCGGGGAGCGG	TGGCGCACCA
	GGTCGCCTCG	CGCGACCCAG	GTGGGATCCT	CCGCTCCTTC	GCGGGAGCGG	TGGCGCACCA
	GGTCGCCTCG	CGCGACCCAG	GTGGGATCCC	CCGCTCCTTC	GCGGGAGCGG	TGGCGCACCA
	GGTCGTCTCG	CGCGACCCAG	GTGGGATCCT	CCGCTCCTTC	GCGGGAGCGG	TGGCGCACCA
	GGTCGCCTCG	CGCGACCCAG	GTGGGATCCT	CCGCTCCTTC	GCGGGAGCGG	TGGCGCACCA
				CCGCTCCTTC		
	GGTCGCCTCG	CGCGACCCAG	GTGGGATCCT	CCGCTCCTTC	ACGGGAGCGG	TGGCGCACCA
	GGTCGTCTCG	CGCGACCCAG	GTGGGATCCT	CCGCTCCTTC	GCGGGAGCGG	TGGCGCACCA
	GGTCGCCTCG	CGCGATCCAG	GTGGGATCCT	CCGCTCCTTC	GCGGGAGCGG	TGGCGCACCA
	GGTCGCCTCG	CGCGACCCAG	GTGGGATCCT	CCGCTCCTTC	GCGGGAGCGG	TGGCGCACCA
	GGTCGTCTCN	CGCGACCCAG	GTGGGATCCT	CCACCCCTTC	G-GGGGGCGG	TGGCGCACCA
	mmmmmmmm	-mmmmmmmmm	mmmmmmmmm		mmmmmmmm	mmmmmmmmm

····|····| ····| ····| ····| ····| ····| ····| ····| ····|

	163	30 164	40 165	50 166	50 167	70 1680
	CCGGCCCGTC	CCGTCCGCGT	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
	CCGGCCCGTC	CCGTCCGCGC	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
	CCGGCCCGTC	CCGTCCGCGC	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
	CCGGCCCGTC	CCGTCCGCGC	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
ei	CCGGCCCGTC	CCGTCCGCGT	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
	CCGGCCCGTC	CCGTCCGCGC	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
a	CCGGCCCGTC	CCGTCCGCGC	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
	CCGGCCCGTC	CCGTCCGCGC	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
	CCGGCCCGTC	CCGTCCGCGC	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
	CCGGCCCGTC	CCGTCCGCGC	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
	CCGGCCCGTC	CCGTCCGCGC	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
	CCGGCCCGTC	CCGTCCGCGC	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
i	CCGGCCCGTC	CCGTCCGCGC	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
	CCGGCCCGTC	CCGTCCGCGC	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
zori	CCGGCCCGTC	CCGTCCGCGC	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
	CCGGCCCGTC	CCGTCCGCGC	TGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
	CCGGCCCGTC	CCGTCCGCGC	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
stita	CCGGCCCGTC	CCGTCCGCGC	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
	CCGGCCCGTC	CCGTCCGCGC	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
ana	CCGGCCCGTC	CCGTCCGCGC	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
	CCGGCCCGTC	CCGTCCGCGC	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
	CCGGCCCGTC	CCGTCCGCGC	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
	CCGGCCCGTC	CCGTCCGCGC	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
1i	CCGGCCCGTC	CCGTCCGCGC	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
	CCGGCCCGTC	CCGTCCGCGC	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
ata	CCGGCCCGTC	CCGTCCGCGC	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
	CCGGCCCGTC	CCGTCCGCGC	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
	CCGGCCCGTC	CCGTCCGCGC	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
	CCGGCCCGTC	CCGTCCGCGT	CGTCGGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
	CCGGCCCGTC	CCGTCYGCGY	CGYCYGTGGG	GCGGAGCAAG	AGCGTGCACG	CTGGGACCCG
	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

Achatina fulica Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridge Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenz Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. ves Cochlitoma marinae Cochlitoma churchillia Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempl Cochlitoma omissa Cochlitoma semidecussa Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata NUCLEOTIDES INCLUDED

Achatina fulica Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata NUCLEOTIDES INCLUDED

1740 AAAGATGGTG AACTATGCCT GAGTAGAACG AAGCCAGAGG AAACTCTGGT GGAGGTTCGT

····|····| ····|····| ····| ····| ····| ····| ····| ····|

1750 1760 1770 1780 1790 1800 AGCGATTCTG ACGTGCAAAT CGATCGTCAA ACTTGGGTAT AGGGGGCGAAA GACTAATCGA AGCGATTCTG ACGTGCAAAT CGATCGTCAA ACTTGGGTAT AGGGGGCGAAA GACTAATCGA AGCGATTCTG ACGTGCAAAT CGATCGTCAA ACTTGGGTAT AGGGGCGAAA GACTAATCGA AGCGATTCTG ACGTGCAAAT CGATCGTCAA ACTTGGGTAT AGGGGGCGAAA GACTAATCGA AGCGATTCTG ACGTGCAAAT CGATCGTCAA ACTTGGGTAT AGGGGCGAAA GACTAATCGA AGCGATTCTG ACGTGCAAAT CGATCGTCAA ACTTGGGTAT AGGGGCGAAA GACTAATCGA AGCGATTCTG ACGTGCAAAT CGATCGTCAA ACTTGGGTAT AGGGGGCGAAA GACTAATCGA AGCGATTCTG ACGTGCAAAT CGATCGTCAA ACTTGGGTAT AGGGGCGAAA GACTAATCGA AGCGATTCTG ACGTGCAAAT CGATCGTCAA ACTTGGGTAT AGGGGCGAAA GACTAATCGA AGCGATTCTG ACGTGCAAAT CGATCGTCAA ACTTGGGTAT AGGGGGCGAAA GACTAATCGA AGCGATTCTG ACGTGCAAAT CGATCGTCAA ACTTGGGTAT AGGGGCGAAA GACTAATCGA AGCGATTCTG ACGTGCAAAT CGATCGTCAA ACTTGGGTAT AGGGGCGAAA GACTAATCGA AGCGATTCTG ACGTGCAAAT CGATCGTCAA ACTTGGGTAT AGGGGGCGAAA GACTAATCGA AGCGATTCTG ACGTGCAAAT CGATCGTCAA ACTTGGGTAT AGGGGCGAAA GACTAATCGA AGCGATTCTG ACGTGCAAAT CGATCGTCAA ACTTGGGTAT AGGGGGCGAAA GACTAATCGA AGCGATTCTG ACGTGCAAAT CGATCGTCAA ACTTGGGTAT AGGGGGCGAAA GACTAATCGA AGCGATTCTG ACGTGCAAAT CGATCGTCAA ACTTGGGTAT AGGGGGCGAAA GACTAATCGA AGCGATTCTG ACGTGCAAAT CGATCGTCAA ACTTGGGTAT AGGGGCGAAA GACTAATCGA AGCGATTCTG ACGTGCAAAT CGATCGTCAA ACTTGGGTAT AGGGGGCGAAA GACTAATCGA AGCGATTCTG ACGTGCAAAT CGATCGTCAA ACTTGGGTAT AGGGGCGAAA GACTAATCGA AGCGATTCTG ACGTGCAAAT CGATCGTCAA ACTTGGGTAT AGGGGCGAAA GACTAATCGA AGCGATTCTG ACGTGCAAAT CGATCGTCAA ACTTGGGTAT AGGGGCGAAA GACTAATCGA AGCGATTCTG ACGTGCAAAT CGATCGTCAA ACTTGGGTAT AGGGGGCGAAA GACTAATCGA AGCGATTCTG ACGTGCAAAT CGATCGTCAA ACTTGGGTAT AGGGGCGAAA GACTAATCGA

	183					
Achatina fulica				TCCCTCAGGA		
Achtina immaculata				TCCCTCAGGA		
Achatina reticulata				TCCCTCAGGA		
Achatina zanzibarica				TCCCTCAGGA		
Euaethiopina loveridgei				TCCCTCAGGA		
Achatina achatina				TCCCTCAGGA		
Archachatina marginata				TCCCTCAGGA		
Achatina bisculpta				TCCCTCAGGA		
Achatina damarensis	ACCATCTAGT	AGCTGGTTCC	CTCCGAAGTT	TCCCTCAGGA	TAGCTGGCGC	TCGATCGCAG
Achatina stuhlmanni	ACCATCTAGT	AGCTGGTTCC	CTCCGAAGTT	TCCCTCAGGA	TAGCTGGCGC	TCGATCGCAG
Atopocochlis exarata	ACCATCTAGT	AGCTGGTTCC	CTCCGAAGTT	TCCCTCAGGA	TAGCTGGCGC	TCGATCGCAG
Limicolaria kambeul	ACCATCTAGT	AGCTGGTTCC	CTCCGAAGTT	TCCCTCAGGA	TAGCTGGCGC	TCGATCGCAG
Limicolaria martenssii	ACCATCTAGT	AGCTGGTTCC	CTCCGAAGTT	TCCCTCAGGA	TAGCTGGCGC	TCGATCGCAG
Limicolariopsis sp.	ACCATCTAGT	AGCTGGTTCC	CTCCGAAGTT	TCCCTCAGGA	TAGCTGGCGC	TCGATCGCAG
Limicolariopsis ruwenzori	ACCATCTAGT	AGCTGGTTCC	CTCCGAAGTT	TCCCTCAGGA	TAGCTGGCGC	TCGATCGCAG
Cochlitoma varicosa	ACCATCTAGT	AGCTGGTTCC	CTCCGAAGTT	TCCCTCAGGA	TAGCTGGCGC	TCGATCGCAG
Cochlitoma dimidiata	ACCATCTAGT	AGCTGGTTCC	CTCCGAAGTT	TCCCTCAGGA	TAGCTGGCGC	TCGATCGCAG
Cochlitoma sp. cf. vestita	ACCATCTAGT	AGCTGGTTCC	CTCCGAAGTT	TCCCTCAGGA	TAGCTGGCGC	TCGATCGCAG
Cochlitoma marinae	ACCATCTAGT	AGCTGGTTCC	CTCCGAAGTT	TCCCTCAGGA	TAGCTGGCGC	TCGATCGCAG
Cochlitoma churchilliana	ACCATCTAGT	AGCTGGTTCC	CTCCGAAGTT	TCCCTCAGGA	TAGCTGGCGC	TCGATCGCAG
Cochlitoma granulata	ACCATCTAGT	AGCTGGTTCC	CTCCGAAGTT	TCCCTCAGGA	TAGCTGGCGC	TCGATCGCAG
Cochlitoma simplex	ACCATCTAGT	AGCTGGTTCC	CTCCGAAGTT	TCCCTCAGGA	TAGCTGGCGC	TCGATCGCAG
Cochlitoma kilburni	ACCATCTAGT	AGCTGGTTCC	CTCCGAAGTT	TCCCTCAGGA	TAGCTGGCGC	TCGATCGCAG
Cochlitoma montistempli	ACCATCTAGT	AGCTGGTTCC	CTCCGAAGTT	TCCCTCAGGA	TAGCTGGCGC	TCGATCGCAG
Cochlitoma omissa	ACCATCTAGT	AGCTGGTTCC	CTCCGAAGTT	TCCCTCAGGA	TAGCTGGCGC	TCGATCGCAG
Cochlitoma semidecussata	ACCATCTAGT	AGCTGGTTCC	CTCCGAAGTT	TCCCTCAGGA	TAGCTGGCGC	TCGATCGCAG
Cochlitoma ustulata	ACCATCTAGT	AGCTGGTTCC	CTCCGAAGTT	TCCCTCAGGA	TAGCTGGCGC	TCGATCGCAG
Cochlitoma zebra	ACCATCTAGT	AGCTGGTTCC	CTCCGAAGTT	TCCCTCAGGA	TAGCTGGCGC	TCGATCGCAG
Metachatina kraussi	ACCATCTAGT	AGCTGGTTCC	CTCCGAAGTT	TCCCTCAGGA	TAGCTGGCGC	TCGATCGCAG
Rumina decollata	ACCATCTAGT	AGCTGGTTCC	CTCCGAAGTT	TCCCTCAGGA	TAGCTGGCGC	TCGATCGCAG
NUCLEOTIDES INCLUDED	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

····|····| ···| ··| ···| ···| ···| ···| ··| ···| ···| ···| ···| ··| ···| ···| ···| ···| ··| ···| ···| ···| ···| ··| ···| ···| ···| ···| ··| ···| ···| ···| ···| ··| ···| ···| ···| ···| ··| ···| ···| ···| ···| ··| ···| ···| ···| ··| ··| ···| ··| ··| ···| ···| ··| ··| ···| ···| ··| ··| ···| ···| ··| ··|

	18	70 18	80 189	90 ['] 190	DO 192	10 1920
Achatina fulica	TTTTATCCGG	TAAAGCGAAT	GATTAGAGGT	CTTGGGGACG	AAACGACCTC	AACCTATTCT
Achtina immaculata	TTTTATCCGG	TAAAGCGAAT	GATTAGAGGT	CTTGGGGACG	AAACGACCTC	AACCTATTCT
Achatina reticulata	TTTTATCCGG	TAAAGCGAAT	GATTAGAGGT	CTTGGGGACG	AAACGACCTC	AACCTATTCT
Achatina zanzibarica	TTTTATCCGG	TAAAGCGAAT	GATTAGAGGT	CTTGGGGACG	AAACGACCTC	AACCTATTCT
Euaethiopina loveridgei	TTTTATCCGG	TAAAGCGAAT	GATTAGAGGT	CTTGGGGACG	AAACGACCTC	AACCTATTCT
Achatina achatina	TTTTATCCGG	TAAAGCGAAT	GATTAGAGGT	CTTGGGGACG	AAACGACCTC	AACCTATTCT
Archachatina marginata	TTTTATCCGG	TAAAGCGAAT	GATTAGAGGT	CTTGGGGACG	AAACGACCTC	AACCTATTCT
Achatina bisculpta	TTTTATCCGG	TAAAGCGAAT	GATTAGAGGT	CTTGGGGACG	AAACGACCTC	AACCTATTCT
Achatina damarensis	TTTTATCCGG	TAAAGCGAAT	GATTAGAGGT	CTTGGGGACG	AAACGACCTC	AACCTATTCT
Achatina stuhlmanni	TTTTATCCGG	TAAAGCGAAT	GATTAGAGGT	CTTGGGGACG	AAACGACCTC	AACCTATTCT
Atopocochlis exarata	TTTTATCCGG	TAAAGCGAAT	GATTAGAGGT	CTTGGGGACG	AAACGACCTC	AACCTATTCT
Limicolaria kambeul	TTTTATCCGG	TAAAGCGAAT	GATTAGAGGT	CTTGGGGACG	AAACGACCTC	AACCTATTCT
Limicolaria martenssii	TTTTATCCGG	TAAAGCGAAT	GATTAGAGGT	CTTGGGGACG	AAACGACCTC	AACCTATTCT
Limicolariopsis sp.	TTTTATCCGG	TAAAGCGAAT	GATTAGAGGT	CTTGGGGACG	AAACGACCTC	AACCTATTTT
Limicolariopsis ruwenzori	TTTTATCCGG	TAAAGCGAAT	GATTAGAGGT	CTTGGGGACG	AAACGACCTC	AACCTATTCT
Cochlitoma varicosa	TTTTATCCGG	TAAAGCGAAT	GATTAGAGGT	CTTGGGGACG	AAACGACCTC	AACCTATTCT
Cochlitoma dimidiata	TTTTATCCGG	TAAAGCGAAT	GATTAGAGGT	CTTGGGGACG	AAACGACCTC	AACCTATTCT
Cochlitoma sp. cf. vestita	TTTTATCCGG	TAAAGCGAAT	GATTAGAGGT	CTTGGGGACG	AAACGACCTC	AACCTATTCT
Cochlitoma marinae	TTTTATCCGG	TAAAGCGAAT	GATTAGAGGT	CTTGGGGACG	AAACGACCTC	AACCTATTCT
Cochlitoma churchilliana	TTTTATCCGG	TAAAGCGAAT	GATTAGAGGT	CTTGGGGACG	AAACGACCTC	AACCTATTCT
Cochlitoma granulata				CTTGGGGACG		
Cochlitoma simplex				CTTGGGGACG		
Cochlitoma kilburni	TTTTATCCGG	TAAAGCGAAT	GATTAGAGGT	CTTGGGGACG	AAACGACCTC	AACCTATTCT
Cochlitoma montistempli	TTTTATCCGG	TAAAGCGAAT	GATTAGAGGT	CTTGGGGACG	AAACGACCTC	AACCTATTCT
Cochlitoma omissa				CTTGGGGACG		
Cochlitoma semidecussata				CTTGGGGACG		
Cochlitoma ustulata	TTTTATCCGG	TAAAGCGAAT	GATTAGAGGT	CTTGGGGACG	AAACGACCTC	AACCTATTCT
Cochlitoma zebra				CTTGGGGACG		
Metachatina kraussi	TTTTATCCGG	TAAAGCGAAT	GATTAGAGGT	CTTGGGGACG	AAACGACCTC	AACCTATTCT
Rumina decollata	TTTTATCCGG	TAAAGCGAAT	GATTAGAGGT	CTTGGGGACG	AAACGACCTC	AACCTATTCT
NUCLEOTIDES INCLUDED	mmmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

Achatina fulica Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata NUCLEOTIDES INCLUDED

1980 CAAACTTTAA ATGGGTAAGA AGTCCGGCTC GCTCGATTGG AGCCGGGCGC GTNTCGAATG CAAACTTTAA ATGGGTAAGA AGTCCGGCTC GCTCGATTGG AGCCGGGCGC GTTTCGAATG CAAACTTTAA ATGGGTAAGA AGTCCGGCTC GCTCGATTGG AACCGGGCGC GTTTTGAATG CAAACTTTAA ATGGGTAAGA AGTCCGGCTC GCTCGATTGG AGCCGGGCGC GTTTCGAATG CAAACTTTAA ATGGGTAAGA AGTCCGGCTC GCTCGAYTGG AGCCGGGCGC GTNTCGAATG

····|····| ····|····| ····| ····| ····| ····| ····| ····|

1990 2000 2010 2020 2030 2040 CGTGTGCCAA GTGGGCCACT TTTGGTAAGC AGAACTGGCG CTGTGGGATG AACCAAACGC CGTGTGCCAA GTGGGCCCCT TTTGGTAAGC AGAACTGGCG CTGTGGGATG AACCAAACGC CGTGTGCCAA GTGGGCCACT TTTGGTAAGC AGAACTGGCG CTGTGGGATG AACCAAACGC CNTGTGCCAA GTGGGCCACT TTTGGTAAGC AGAACTGGCG CTGTGGGATG AACCAAACGC

		···· ····				
		TGCCAAACGC				.0 5100
	CCGGTTAAGG	TGCCAAACGC	TGACGCTCAT	CAGACACCAT	AAAAGGTGTT	GGTTGATATA
	CCGGTTAAGG	TGCCAAACGC	TGACGCTCAT	CAGACACCAT	AAAAGGTGTT	GGTTGATATA
	CCGGTTAAGG	TGCGAAACGC	TGACGCTCAT	CAGACACCAT	AAAAGGTGTT	GGTTGATATA
	CCGGTTAAGG	TGCCAAACGC	TGACGCTCAT	CAGACACCAT	AAAAGGTGTT	GGTTGATATA
	CCGGTTAAGG	TGCCAAACGC	TGACGCTCAT	CAGACACCAT	AAAAGGTGTT	GGTTGATATA
	CCGGTTAAGG	TGCCAAACGC	TGACGCTCAT	CAGACACCAT	AAAAGGTGTT	GGTTGATATA
	CCGGTTAAGG	TGCCAAACGC	TGACGCTCAT	CAGACACCAT	AAAAGGTGTT	GGTTGATATA
	CCGGTTAAGG	TGCCAAACGC	TGACGCTCAT	CAGACACCAT	AAAAGGTGTT	GGTTGATATA
	CCGGTTAAGG	TGCCAAACGC	TGACGCTCAT	CAGACACCAT	AAAAGGTGTT	GGTTGATATA
	CCGGTTAAGG	TGCCAAACGC	TGACGCTCAT	CAGACACCAT	AAAAGGTGTT	GGTTGATATA
	CCGGTTAAGG	TGCCAAACGC	TGACGCTCAT	CAGACACCAT	AAAAGGTGTT	GGTTGATATA
	CCGGTTAAGG	TGCCAAACGC	TGACGCTCAT	CAGACACCAT	AAAAGGTGTT	GGTTGATATA
	CCGGTTAAGG	TGCCAAACGC	TGACGCTCAT	CAGACACCAT	AAAAGGTGTT	GGTTGATATA
	CCGGTTAAGG	TGCCAAACGC	TGACGCTCAT	CAGACACCAT	AAAAGGTGTT	GGTTGATATA
	CCGGTTAAGG	TGCCAAACGC	TGACGCTCAT	CAGACACCAT	AAAAGGTGTT	GGTTGATATA
	CCGGTTAAGG	TGCCAAACGC	TGACGCTCAT	CAGACACCAT	AAAAGGTGTT	GGTTGATATA
a	CCGGTTAAGG	TGCCAAACGC	TGACGCTCAT	CAGACACCAT	AAAAGGTGTT	GGTTGATATA
	CCGGTTAAGG	TGCCAAACGC	TGACGCTCAT	CAGACACCAT	AAAAGGTGTT	GGTTGATATA
		TGCCAAACGC				
	CCGGTTAAGG	TGCCAAACGC	TGACGCTCAT	CAGACACCAT	AAAAGGTGTT	GGTTGATATA
	CCGGTTAAGG	TGCCAAACGC	TGACGCTCAT	CAGACACCAT	AAAAGGTGTT	GGTTGATATA
	CCGGTTAAGG	TGCCAAACGC	TGACGCTCAT	CAGACACCAT	AAAAGGTGTT	GGTTGATATA
		TGCCAAACGC				
		TGCCAAACGC				
		TGCCAAACGC				
		TGCCAAACGC				
		TGCCAAACGC				
		TGCCAAACGC				
	CCGGTTAAGG	TGCCAAACGC	TGACGCTCAT	CAGACACCAT	AAAAGGTGTT	GGTTGATATA
	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

····|····| ···| ··| ···| ···| ···| ···| ··| ···| ···| ···| ···| ··| ···| ···| ···| ···| ··| ···| ···| ···| ···| ··| ···| ···| ···| ···| ··| ···| ···| ···| ··| ··| ···| ···| ···| ··| ···| ···| ···| ···| ··| ···| ···| ···| ··| ··| ···| ···| ··| ··| ···| ···| ··| ··| ··| ··| ··| ···| ··| ··| ···| ···| ··| ··| ···| ···| ··| ··| ···| ·

	213	10 21:	20 21	30 214	40 21	50 2160
Achatina fulica	GACAGCAGGA	CGGTGGCCAT	GGAAGTCGGA	ACCCGCTAAG	GAGTGTGTAA	CAACTCACCT
Achtina immaculata	GACAGCAGGA	CGGTGGCCAT	GGAAGTCGGA	ACCCGCTAAG	GAGTGTGTAA	CAACTCACCT
Achatina reticulata	GACAGCAGGA	CGGTGGCCAT	GGAAGTCGGA	ACCCGCTAAG	GAGTGTGTAA	CAACTCACCT
Achatina zanzibarica	GACAGCAGGA	CGGTGGCCAT	GGAAGTCGGA	ACCCGCTAAG	GAGTGTGTAA	CAACTCACCT
Euaethiopina loveridgei	GACAGCAGGA	CGGTGGCCAT	GGAAGTCGGA	ACCCGCTAAG	GAGTGTGTAA	CAACTCACCT
Achatina achatina	GACAGCAGGA	CGGTGGCCAT	GGAAGTCGGA	ACCCGCTAAG	GAGTGTGTAA	CAACTCACCT
Archachatina marginata	GACAGCAGGA	CGGTGGCCAT	GGAAGTCGGA	ACCCGCTAAG	GAGTGTGTAA	CAACTCACCT
Achatina bisculpta	GACAGCAGGA	CGGTGGCCAT	GGAAGTCGGA	ACCCGCTAAG	GAGTGTGTAA	CAACTCACCT
Achatina damarensis	GACAGCAGGA	CGGTGGCCAT	GGAAGTCGGA	ACCCGCTAAG	GAGTGTGTAA	CAACTCACCT
Achatina stuhlmanni	GACAGCAGGA	CGGTGGCCAT	GGAAGTCGGA	ACCCGCTAAG	GAGTGTGTAA	CAACTCACCT
Atopocochlis exarata	GACAGCAGGA	CGGTGGCCAT	GGAAGTCGGA	ACCCGCTAAG	GAGTGTGTAA	CAACTCACCT
Limicolaria kambeul	GACAGCAGGA	CGGTGGCCAT	GGAAGTCGGA	ACCCGCTAAG	GAGTGTGTAA	CAACTCACCT
Limicolaria martenssii	GACAGCAGGA	CGGTGGCCAT	GGAAGTCGGA	ACCCGCTAAG	GAGTGTGTAA	CAACTCACCT
Limicolariopsis sp.	GACAGCAGGA	CGGTGGCCAT	GGAAGTCGGA	ACCCGCTAAG	GAGTGTGTAA	CAACTCACCT
Limicolariopsis ruwenzori	GACAGCAGGA	CGGTGGCCAT	GGAAGTCGGA	ACCCGCTAAG	GAGTGTGTAA	CAACTCACCT
Cochlitoma varicosa	GACAGCAGGA	CGGTGGCCAT	GGAAGTCGGA	ACCCGCTAAG	GAGTGTGTAA	CAACTCACCT
Cochlitoma dimidiata	GACAGCAGGA	CGGTGGCCAT	GGAAGTCGGA	ACCCGCTAAG	GAGTGTGTAA	CAACTCACCT
Cochlitoma sp. cf. vestita	GACAGCAGGA	CGGTGGCCAT	GGAAGTCGGA	ACCCGCTAAG	GAGTGTGTAA	CAACTCACCT
Cochlitoma marinae	GACAGCAGGA	CGGTGGCCAT	GGAAGTCGGA	ACCCGCTAAG	GAGTGTGTAA	CAACTCACCT
Cochlitoma churchilliana	GACAGCAGGA	CGGTGGCCAT	GGAAGTCGGA	ACCCGCTAAG	GAGTGTGTAA	CAACTCACCT
Cochlitoma granulata				ACCCGCTAAG		
Cochlitoma simplex	GACAGCAGGA	CGGTGGCCAT	GGAAGTCGGA	ACCCGCTAAG	GAGTGTGTAA	CAACTCACCT
Cochlitoma kilburni	GACAGCAGGA	CGGTGGCCAT	GGAAGTCGGA	ACCCGCTAAG	GAGTGTGTAA	CAACTCACCT
Cochlitoma montistempli	GACAGCAGGA	CGGTGGCCAT	GGAAGTCGGA	ACCCGCTAAG	GAGTGTGTAA	CAACTCACCT
Cochlitoma omissa				ACCCGCTAAG		
Cochlitoma semidecussata	GACAGCAGGA	CGGTGGCCAT	GGAAGTCGGA	ACCCGCTAAG	GAGTGTGTAA	CAACTCACCT
Cochlitoma ustulata				ACCCGCTAAG		
Cochlitoma zebra				ACCCGCTAAG		
Metachatina kraussi	GACAGCAGGA	CGGTGGCCAT	GGAAGTCGGA	ACCCGCTAAG	GAGTGTGTAA	CAACTCACCT
Rumina decollata	GACAGCAGGA	CGGTGGCCAT	GGAAGTCGGA	ACCCGCTAAG	GAGTGTGTAA	CAACTCACCT
NUCLEOTIDES INCLUDED	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata

NUCLEOTIDES INCLUDED

Achatina fulica

Achatina fulica Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata NUCLEOTIDES INCLUDED

2220 GCCGAATCAA CCAGCCCTGA AAATGGATGG CGCTAGAGCG TCGGACCCAT ACCGGGCCGT GCCGAATCAA CCAGCCCTGA AAATGGATGG CGSTAGAGCG TCGGACCCAT ACCGGGCCGT GCCGAATCAA CCAGCCCTGA AAATGGATGG CGCTAGAGCG TCGGACCCAT ACCGGGCCGT

····|····| ····|····| ····| ····| ····| ····| ····| ····|

2230 2240 2250 2260 2270 2280 CTCGGCAATG GGCCCTTCCA TGGGG-CCGG -AAGCGAGGC CGAGACGAGT AGGAGGGCCG CTCGGCAATG GGCCCTTCCA TGGGG-CCGG NAAGCGAGGC CGAGACGAGT AGGAGGGCCG CTCGGCAATG GGCCCTTCCA TGGGG-CCGG -AAGCGAGGC CGAGACGAGT AGGAGGGCCG CTCGGCAATG GGCCCTTCCA TGGGG-CCGG -AAGCGAGGC CGAGACGAGT AGGAGGGCCG CTCGGCAATG GGCCCTTCCA TGGGG-CCGG -AAGCGAGGC CGAGACGAGT AGGAGGGCCG CTCGGCAATA GGCC----- TTCCG-CCGG -AAGCGAGGC CGAGACGAGT AGGAGGGCCG CTCGGCAATA GGCC---TTC TTCCG-CCGG -AAGCGAGGC CGAGACGAGT AGGAGGGCCG CTCGGCAATG GGCTCTTTCA TGGGG-CCGG -AAGCGAGGC CGAGACGAGT AGGAGGGCCG CTCGGCAATG GGCCCTTTCA TGGGG-CCGG -AAGCGAGGC CGAGACGAGT AGGAGGGCCG CTCGGCAATG GGCCCCTTCC ACGGG-CCGG -AAGCGAGGC CGAGACGAGT AGGAGGGCCG CTCGGCAATG GGCCCCTTCC ACGGG-CCGG -AAGCGAGGC CGAGACGAGT AGGAGGGCCG CTCGGCAATG GGCCCCTTCC ACGGG-CCGG -AAGCGAGGC CGAGACGAGT AGGAGGGCCG CTCGGCAATG GGCCC-TTCC ACGGG-CCGG -AAGCGAGGC CGAGACGAGT AGGAGGGCCG CTCGGCAATG GGCCC-TTCC ACGGG-CCGG -AAGCGAGGC CGAGACGAGT AGGAGGGCCG CTCGGCAATG GGCCCCTTCC ACGGGGCCGG -AAGCGAGGC CGAGACGAGT AGGAGGGCCG CTCGGCAATG GGCCCCTTCC ACGGG-CCGG -AAGCGAGGC CGAGACGAGT AGGAGGGCCG CTCGGCAATG GGCCCCTTCC ACGGG-CCGG -AAGCGAGGC CGAGACGAGT AGGAGGGCCG CTCGGCAATG GGCCCCTTCC ACGGGGCCGG -AAGCGAGGC CGAGACGAGT AGGAGGGCCG CTCGGCAATG GGCCCCTTCC ACGGGGCCGG -AAGCGAGGC CGAGACGAGT AGGAGGGCCG CTCGGCAATG GGCCCCTTCC ACGGGGCCGG -AAGCGAGGC CGAGACGAGT AGGAGGGCCG CTCGGCAATG GGCCC-TTCC ACGGG-CCGG -AAGCGAGGC CGAGACGAGT AGGAGGGCCG CTCGGCAATG GGCCCCTTCC ACGGG-CCGG -AAGCGAGGC CGAGACGAGT AGGAGGGCCG CTCGGCAATG GGCCC-TTCC ACGGG-CCGG -AAGCGAGGC CGAGACGAGT AGGAGGGCCG CTCGGCAGTG GCGATAGCCG CG----- -AATCGAGGC CGAGACGAGT AGGAGGGCCG

	1 1	1 1	I I		1 1	
	229					
				TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
a	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	TCGGGGTGAG	CGTGGAAGCC	TGGGGAGCGA	TCCTGGGTGG	AGCCGCCCCG	GGTGCAGATC
	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

····|····| ···| ··| ···| ···| ···| ···| ···| ···| ···| ···| ···| ···| ···| ···| ···| ···| ···| ···| ··| ···| ···| ···| ···| ··| ···| ···| ···| ···| ··| ···| ···| ···| ···| ···| ···| ···| ···| ···| ···| ··| ···| ···| ···| ···| ··| ···| ···| ···| ··| ···| ···| ···| ··| ··| ···| ···| ··| ··| ···| ···| ··

	23	50 23	60 23	70 238	30 239	90 2400
Achatina fulica	TTGGTGGTAG	TAGCAAATAT	TCAAACGAGA	ACTTTGAAGA	CTGAAGTGGA	GAAGGGTTCC
Achtina immaculata	TTGGTGGTAG	TAGCAAATAT	TCAAACGAGA	ACTTTGAAGA	CTGAAGTGGA	GAAGGGTTCC
Achatina reticulata	TTGGTGGTAG	TAGCAAATAT	TCAAACGAGA	ACTTTGAAGA	CTGAAGTGGA	GAAGGGTTCC
Achatina zanzibarica	TTGGTGGTAG	TAGCAAATAT	TCAAACGAGA	ACTTTGAAGA	CTGAAGTGGA	GAAGGGTTCC
Euaethiopina loveridgei	TTGGTGGTAG	TAGCAAATAT	TCAAACGAGA	ACTTTGAAGA	CTGAAGTGGA	GAAGGGTTCC
Achatina achatina	TTGGTGGTAG	TAGCAAATAT	TCAAACGAGA	ACTTTGAAGA	CTGAAGTGGA	GAAGGGTTCC
Archachatina marginata	TTGGTGGTAG	TAGCAAATAT	TCAAACGAGA	ACTTTGAAGA	CTGAAGTGGA	GAAGGGTTCC
Achatina bisculpta	TTGGTGGTAG	TAGCAAATAT	TCAAACGAGA	ACTTTGAAGA	CTGAAGTGGA	GAAGGGTTCC
Achatina damarensis	TTGGTGGTAG	TAGCAAATAT	TCAAACGAGA	ACTTTGAAGA	CTGAAGTGGA	GAAGGGTTCC
Achatina stuhlmanni	TTGGTGGTAG	TAGCAAATAT	TCAAACGAGA	ACTTTGAAGA	CTGAAGTGGA	GAAGGGTTCC
Atopocochlis exarata	TTGGTGGTAG	TAGCAAATAT	TCAAACGAGA	ACTTTGAAGA	CTGAAGTGGA	GAAGGGTTCC
Limicolaria kambeul			TCAAACGAGA			
Limicolaria martenssii	TTGGTGGTAG	TAGCAAATAT	TCAAACGAGA	ACTTTGAAGA	CTGAAGTGGA	GAAGGGTTCC
Limicolariopsis sp.	TTGGTGGTAG	TAGCAAATAT	TCAAACGAGA	ACTTTGAAGA	CTGAAGTGGA	GAAGGGTTCC
Limicolariopsis ruwenzori	TTGGTGGTAG	TAGCAAATAT	TCAAACGAGA	ACTTTGAAGA	CTGAAGTGGA	GAAGGGTTCC
Cochlitoma varicosa	TTGGTGGTAG	TAGCAAATAT	TCAAACGAGA	ACTTTGAAGA	CTGAAGTGGA	GAAGGGTTCC
Cochlitoma dimidiata	TTGGTGGTAG	TAGCAAATAT	TCAAACGAGA	ACTTTGAAGA	CTGAAGTGGA	GAAGGGTTCC
Cochlitoma sp. cf. vestita	TTGGTGGTAG	TAGCAAATAT	TCAAACGAGA	ACTTTGAAGA	CTGAAGTGGA	GAAGGGTTCC
Cochlitoma marinae			TCAAACGAGA			
Cochlitoma churchilliana	TTGGTGGTAG	TAGCAAATAT	TCAAACGAGA	ACTTTGAAGA	CTGAAGTGGA	GAAGGGTTCC
Cochlitoma granulata	TTGGTGGTAG	TAGCAAATAT	TCAAACGAGA	ACTTTGAAGA	CTGAAGTGGA	GAAGGGTTCC
Cochlitoma simplex	TTGGTGGTAG	TAGCAAATAT	TCAAACGAGA	ACTTTGAAGA	CTGAAGTGGA	GAAGGGTTCC
Cochlitoma kilburni			TCAAACGAGA			
Cochlitoma montistempli			TCAAACGAGA			
Cochlitoma omissa			TCAAACGAGA			
Cochlitoma semidecussata			TCAAACGAGA			
Cochlitoma ustulata			TCAAACGAGA			
Cochlitoma zebra			TCAAACGAGA			
Metachatina kraussi			TCAAACGAGA			
Rumina decollata	TTGGTGGTAG	TAGCAAATAT	TCAAACGAGA	ACTTTGAAGA	CTGAAGTGGA	GAAGGGTTCC
NUCLEOTIDES INCLUDED	mmmmmmmmm	mmmmmmmmmm	mmmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

Achatina fulica Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata NUCLEOTIDES INCLUDED

....|....|||||||||| 2410 2420 2430 2440 2450 2460 ATGTGAACAG CAGTTGAACA TGGGTCAGTC GGTCCTAAGA GATAGGAAAA CTCCGTTCTG Cochlitoma sp. cf. vestita ATGTGAACAG CAGTTGAACA TGGGTCAGTC GGTCCTAAGA GATAGGAAAA CTCCGTTCTG

	24	/0 248	30 249	30 250	0 251	LO 2520
	ACCCCGGGGGC	ATTCTTTCTT	TCTTTCT		AGAAGA	GTCTGCCCGC
	ACCCCGGGGGC	ATTCTTTCTT	TCTTTCT		AGAAGA	GTCTGCCCGC
			TCTTTCT			
			TCTTTCT			
	ACCCCGGGGGC	ATTCTTTCTT	TCTTTCT		AGAAGA	GTCTGCCCGC
			TTCTTTC			
			AGCAGT			
	ACCCCGGGGGC	ATTCTTTATT	ATTCGTT	ATTCGT	AGA	GTCTGCCCGC
	ACCCCGGGGGC	ATTCTTTATT	ACTCTTCGTT	ATT	AGA	GTCTGCCCGC
	ACCCCGGGGGC	ATTCTTTATA	ATTCGTT	ATT	AGA	GTCTGCCCGC
	ACCCCGGGGGC	ATTCTTTATT	AATCGTT	TAA	AGA	GTCTGCCCGC
			ATTCGTT			
	ACCCCGGGGGC	ATTCTTTATT	ATTCGTT		AGA	GTCTGCCCGC
	ACCCCGGGGGC	ATTCTTTATT	ATA-TTCGTT	TT	AGA	GTCTGCCCGC
	ACCCCGGGGC	ATTCTTTATT	ATTCGTT		AGA	GTCTGCCCGC
	ACCCCGGGGGC	ATTCTTTCTT	TCTTT		CGTGATTAAA	GTCTGCCCGC
			TCTTT			
a			G			
			G			
	ACCCCGGGGC	ATTCTTTCTT	TCTTTTCT	T	GATTAAA	GTCTGCCCGC
	ACCCCGGGGC	ATTCTTTCTT	TTTCTT	G	ATTAATTAAA	GTCTGCCCGC
	ACCCCGGGGC	ATTCTTTCTT	TCTTT		A	GTCTGCCCGC
	ACCCCGGGGC	ATTCTTTCTT	TCTTT	ATTA	ATTAAATAAA	GTCTGCCCGC
	ACCCCGGGGC	ATTCTTTCTT	TTTCTT	G	ATTAATTAAA	GTCTGCCCGC
	ACCCCGGGGC	ATTCTTTCTT	TTTCTT	G	ATTAATTAAA	GTCTGCCCGC
	ACCCCGGGGC	ATTCTTTCTT	TTTCTT	G	ATTAATTAAA	GTCTGCCCGC
	ACCCCGGGGC	ATTCTTTCGT	G		ATTAAA	GTCTGCCCGC
	ACCCCGGGGC	ATTCTTTCGT	G		ATTAAA	GTCTGCCCGC
	ACCCCGGGGC	ATTCTTTCTT	TCTT		AAA	GTCTGCCCGC
	ACCCCGGGGC	AATCTTTCTC	GAGCTA	AGA	AGAAAAAGAA	GTCTGCCCGC
	mmmmmmmmm				m	mmmmmmmmm

	 253		 40 255			···· ···· 70 2580
	AGCCTATCGA	AAGGGAATCG	GGTTAATATT	CCCGAACCTG	GACACGGAGA	TTGGTCCTCA
	AGCCTATCGA	AAGGGAATCG	GGTTAATATT	CCCGAACCTG	GACACGGAGA	TTGGTCCTCA
	AGCCTATCGA	AAGGGAATCG	GGTTAATATT	CCCGAACCTG	GACACGGAGA	TTGGTCCTCA
	AGCCTATCGA	AAGGGAATCG	GGTTAATATT	CCCGAACCTG	GACACGGAGA	TTGGTCCTCA
	AGCCTATCGA	AAGGGAATCG	GGTTAATATT	CCCGAACCTG	GACACGGAGA	TTGGTCCTCA
	AGCCTATCGA	AAGGGAATCG	GGTTAATATT	CCCGAACCTG	GACACGGAGA	TTGGTCCTCA
	AGCCTATCGA	AAGGGAATCG	GGTTAATATT	CCCGAACCTG	GACACGGAGA	TTGGTCCTCA
	AGCCTATCGA	AAGGGAATCG	GGTTAATATT	CCCGAACCTG	GACACGGAGA	TTGGTCCTCA
	AGCCTATCGA	AAGGGAATCG	GGTTAATATT	CCCGAACCTG	GACACGGAGA	TTGGTCCTCA
	AGCCTATCGA	AAGGGAATCG	GGTTAATATT	CCCGAACCTG	GACACGGAGA	TTGGTCCTCA
	AGCCTATCGA	AAGGGAATCG	GGTTAATATT	CCCGAACCTG	GACACGGAGA	TTGGTCCTCA
	AGCCTATCGA	AAGGGAATCG	GGTTAATATT	CCCGAACCTG	GACACGGAGA	TTGGTCCTCA
	AGCCTATCGA	AAGGGAATCG	GGTTAATATT	CCCGAACCTG	GACACGGAGA	TTGGTCCTCA
	AGCCTATCGA	AAGGGAATCG	GGTTAATATT	CCCGAACCTG	GACACGGAGA	TTGGTCCTCA
	AGCCTATCGA	AAGGGAATCG	GGTTAATATT	CCCGAACCTG	GACACGGAGA	TTGGTCCTCA
	AGCCTATCGA	AAGGGAATCG	GGTTAATATT	CCCGAACCTG	GACACGGAGA	TTGGTCCTCA
	AGCCTATCGA	AAGGGAATCG	GGTTAATATT	CCCGAACCTG	GACACGGAGA	TTGGTCCTCA
L	AGCCTATCGA	AAGGGAATCG	GGTTAATATT	CCCGAACCTG	GACACGGAGA	TTGGTCCTCA
	AGCCTATCGA	AAGGGAATCG	GGTTAATATT	CCCGAACCTG	GACACGGAGA	TTGGTCCTCA
	AGCCTATCGA	AAGGGAATCG	GGTTAATATT	CCCGAACCTG	GACACGGAGA	TTGGTCCTCA
	AGCCTATCGA	AAGGGAATCG	GGTTAATATT	CCCGAACCTG	GACACGGAGA	TTGGTCCTCA
	AGCCTATCGA	AAGGGAATCG	GGTTAATATT	CCCGAACCTG	GACACGGAGA	TTGGTCCTCA
	AGCCTATCGA	AAGGGAATCG	GGTTAATATT	CCCGAACCTG	GACACGGAGA	TTGGTCCTCA
			GGTTAATATT			
	AGCCTATCGA	AAGGGAATCG	GGTTAATATT	CCCGAACCTG	GACACGGAGA	TTGGTCCTCA
	AGCCTATCGA	AAGGGAATCG	GGTTAATATT	CCCGAACCTG	GACACGGAGA	TTGGTCCTCA
			GGTTAATATT			
	AGCCTATCGA	AAGGGAATCG	GGTTAATATT	CCCGAACCTG	GACACGGAGA	TTGGTCCTCA
			GGTTAATATT			
	AGCCTATCGA	AAGGGAATCG	GGTTAATATT	CCCGAACCTG	GACACGGAGA	TTGGTCCTCA
	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmmm

	25					
Achatina fulica				GGGGACGTCG		
Achtina immaculata	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGGAGCCC	CGGGAAGAGT
Achatina reticulata	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGGAGCCC	CGGGAAGAGT
Achatina zanzibarica	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGGAGCCC	CGGGAAGAGT
Euaethiopina loveridgei	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGGAGCCC	CGGGAAGAGT
Achatina achatina	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGGAGCCC	CGGGAAGAGT
Archachatina marginata	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGAGCCC	CGGGAAGAGT
Achatina bisculpta	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGAGCCC	CGGGAAGAGT
Achatina damarensis	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGGAGCCC	CGGGAAGAGT
Achatina stuhlmanni	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGAGCCC	CGGGAAGAGT
Atopocochlis exarata	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGAGCCC	CGGGAAGAGT
Limicolaria kambeul	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGAGCCC	CGGGAAGAGT
Limicolaria martenssii	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGAGCCC	CGGGAAGAGT
Limicolariopsis sp.	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGAGCCC	CGGGAAGAGT
Limicolariopsis ruwenzori	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGAGCCC	CGGGAAGAGT
Cochlitoma varicosa	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGAGCCC	CGGGAAGAGT
Cochlitoma dimidiata	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGAGCCC	CGGGAAGAGT
Cochlitoma sp. cf. vestita	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGGAGCCC	CGGGAAGAGT
Cochlitoma marinae	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGAGCCC	CGGGAAGAGT
Cochlitoma churchilliana	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGAGCCC	CGGGAAGAGT
Cochlitoma granulata	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGAGCCC	CGGGAAGAGT
Cochlitoma simplex	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGAGCCC	CGGGAAGAGT
Cochlitoma kilburni	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGAGCCC	CGGGAAGAGT
Cochlitoma montistempli	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGAGCCC	CGGGAAGAGT
Cochlitoma omissa	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGAGCCC	CGGGAAGAGT
Cochlitoma semidecussata	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGAGCCC	CGGGAAGAGT
Cochlitoma ustulata	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGGAGCCC	CGGGAAGAGT
Cochlitoma zebra	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGAGCCC	CGGGAAGAGT
Metachatina kraussi	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGGAGCCC	CGGGAAGAGT
Rumina decollata	GGGGCCACGT	GCGGCAACGC	AAACGAAGTG	GGGGACGTCG	GCGGGAGCCC	CGGGAAGAGT
NUCLEOTIDES INCLUDED	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

Achatina fulica Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata NUCLEOTIDES INCLUDED

....|....|||||||||| 2650 2660 2670 2680 2690 270 TCTCTTTTCT TTGTAAGGAG CCACATCCCT GGAATCGGCT TGCCCGGAGA TAGGGACCGC 2700 TCTCTTTTCT TTGTAAGGAG CCACATCCCT GGAATCGGCT TGCCCGGAGA TAGGGACCGC TCTCTTTTCT TTGTAAGGAG CCACATCCCT GGAATCGGCT TGCCCCGGAGA TAGGGACCGC TCTCTTTTCT TTGTAAGGAG CCACATCCCT GGAATCGGCT TGCCCGGAGA TAGGGACCGC

	272					
		AGCACCGCGG				
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
a	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	GGCCCCGTAA	AGCACCGCGG	CTCTTGCGGT	GTCCGGTGCG	CTCCCGTCGG	CCCTTGAAAA
	mmmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

	 275	···· ····		···· ··· 90 280		
		ACGGTGTGAA				
	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
a	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	CCCCACGNAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	CCCCACGGAG	ACGGTGTGAA	TTTCGTGCCA	GGCCGTACCC	ATATCCGCAG	CAGGTCTCCG
	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

	283	30 284	10 285	50 286	50 28	70 288
	AGGTGCACAG	CCTCTAGTCG	ATAGAACAAT	GTAGGTAAGG	GAAGTCGGCA	AATTGGATCC
	AGGTGCACAG	CCTCTAGTCG	ATAGAACAAT	GTAGGTAAGG	GAAGTCGGCA	AATTGGATCC
	AGGTGCACAG	CCTCTAGTCG	ATAGAACAAT	GTAGGTAAGG	GAAGTCGGCA	AATTGGATCC
	AGGTGCACAG	CCTCTAGTCG	ATAGAACAAT	GTAGGTAAGG	GAAGTCGGCA	AATTGGATCC
ei	AGGTGCACAG	CCTCTAGTCG	ATAGAACAAT	GTAGGTAAGG	GAAGTCGGCA	AATTGGATCC
	AGGTGCACAG	CCTCTAGTCG	ATAGAACAAT	GTAGGTAAGG	GAAGTCGGCA	AATTGGATCC
a	AGGTGCACAG	CCTCTAGTCG	ATAGAACAAT	GTAGGTAAGG	GAAGTCGGCA	AATTGGATCC
	AGGTGCACAG	CCTCTAGTCG	ATAGAACAAT	GTAGGTAAGG	GAAGTCGGCA	AATTGGATCC
	AGGTGCACAG	CCTCTAGTCG	ATAGAACAAT	GTAGGTAAGG	GAAGTCGGCA	AATTGGATCC
	AGGTGCACAG	CCTCTAGTCG	ATAGAACAAT	GTAGGTAAGG	GAAGTCGGCA	AATTGGATCC
	AGGTGCACAG	CCTCTAGTCG	ATAGAACAAT	GTAGGTAAGG	GAAGTCGGCA	AATTGGATCC
	AGGTGCACAG	CCTCTAGTCG	ATAGAACAAT	GTAGGTAAGG	GAAGTCGGCA	AATTGGATCC
i	AGGTGCACAG	CCTCTAGTCG	ATAGAACAAT	GTAGGTAAGG	GAAGTCGGCA	AATTGGATCC
	AGGTGCACAG	CCTCTAGTCG	ATAGAACAAT	GTAGGTAAGG	GAAGTCGGCA	AATTGGATCC
zori	AGGTGCACAG	CCTCTAGTCG	ATAGAACAAT	GTAGGTAAGG	GAAGTCGGCA	AATTGGATCC
	AGGTGCACAG	TCTCTAGTCG	ATAGAACAAT	GTAGGTAAGG	GAAGTCGGCA	AATTGGATCC
	AGGTGCACAG	CCTCTAGTCG	ATAGAACAAT	GTAGGTAAGG	GAAGTCGGCA	AATTGGATCC
stita		CCTCTAGTCG				
		CCTCTAGTCG				
ana		CCTCTAGTCG				
		CCTCTAGTCG				
		CCTCTAGTCG				
		CCTCTAGTCG				
li		CCTCTAGTCG				
		CCTCTAGTCG				
ata		CCTCTAGTCG				
		CCTCTAGTCG				
		CCTCTAGTCG				
		CCTCTAGTCG				
		CCTCTAGTCG				
	mmmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

Achatina fulica Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridge Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenze Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vest Cochlitoma marinae Cochlitoma churchillia Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempl. Cochlitoma omissa Cochlitoma semidecussa Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata

NUCLEOTIDES INCLUDED

Achatina fulica Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata NUCLEOTIDES INCLUDED

....|....||||||||||| 2940 GTAACTTCGG GAAAAGGATT GGCTCTGAGG GCTGGGTCAG TCGGGCCGGG GTACGAAGCG

	295	50 296	50 29'	70 298	30 299	3000 3000
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
a	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGCCGGCGGG	CCGGCCGAGC
	GGACTGGGAT	GGGCCCGGGC	TGGGCGAGGC	CGCCGCCGCT	AGTCGGCGGG	CCGGCCGAGC
	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

			TCCCGTGGAC			
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCCGG
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCCGG
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCCGG
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCCGG
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCCGG
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCCGG
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCCGG
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCCGG
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCCGG
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCCGG
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCCGG
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCGGG
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCCGG
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCCGG
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCCGG
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCCGG
a	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCCGG
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCCGG
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCCGG
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCCGG
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCCGG
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCCGG
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCCGG
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCCGG
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCCGG
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCCGG
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCCGG
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCTCCCCGG
	TCGGAACGCG	GCTGCAACCT	TCCCGTGGAC	CGCCCCAGCT	ATGCGGCGGC	GCCT-CCCGG
	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmm-mmmmm

						LO 312
	CGTCGTTCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
	CGTCGTTCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
	CGTCGTTCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
	CGTCGTTCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
i	CGTCGTTCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
	CGTCGTTCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
	CGTCGTTCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
	CGTCGTCCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
	CGTCGTCCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
	CGTCGTCCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
	CGTCGTCCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
	CGTCGTCCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
	CGTCGTCCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
	CGTCGTCCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
ori	CGTCGTCCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
	CGTCGTCCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
	CGTCGTCCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
tita	CGTCGTCCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
	CGTCGTCCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
na	CGTCGTCCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
	CGTCGTCCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
	CGTCGTCCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
	CGTCGTCCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
i	CGTCGTCCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
	CGTCGTCCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
ta	CGTCGTCCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
	CGTCGTCCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
	CGTCGTCCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
	CGTCGTCCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
	CGTCGTCCGC	GTCGGCTGGC	ATTCAACAGC	CAACTCAGAA	CTGGTACGGA	CCAGGGGAAT
	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

Achatina fulica Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzo Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vest Cochlitoma marinae Cochlitoma churchillian Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata

NUCLEOTIDES INCLUDED

Achatina fulica Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestit Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata NUCLEOTIDES INCLUDED

3180 CCGACTGTCT AATTAAAACA AAGCATTGCG ACGGCCGTCA CCCTGTGTTG ACGCAATGTG CCGACTGTCT AATTAAAACA AAGCATTGCG ACGGCCGTCA CCCGGTGTTG ACGCAATGTG

	319	30 320	32	LO 322	323	30 3240
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
i	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
ta	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	ATTTCTGCCC	AGTGCTCTGA	ATGTCAAAGT	GAAGAAATTC	AACCAAGCGC	GGGTAAACGG
	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

			\ldots			
			TTAAGGTAGC			
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
a	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	CGGGAGTAAC	TATGACTCTC	TTAAGGTAGC	CAAATGCCTC	GTCATCTAAT	TAGTGACGCG
	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

····|····| ···| ··| ···| ···| ···| ···| ···| ···| ···| ···| ···| ···| ···| ···| ···| ···| ···| ···| ··| ···| ···| ···| ···| ··| ···| ···| ···| ···| ··| ···| ···| ···| ···| ···| ···| ···| ···| ···| ···| ··| ···| ···| ···| ···| ··| ···| ···| ···| ··| ···| ···| ···| ··| ··| ···| ···| ··| ··| ···| ···| ··

	33		20 33			
Achatina fulica			TCCCACTGTC			
Achtina immaculata	CATGAATGGA	TTAACGAGAT	TCCCACTGTC	CCTATCTACT	ATCTAGCGAA	ACCACAGCCA
Achatina reticulata	CATGAATGGA	TTAACGAGAT	TCCCACTGTC	CCTATCTACT	ATCTAGCGAA	ACCACAGCCA
Achatina zanzibarica	CATGAATGGA	TTAACGAGAT	TCCCACTGTC	CCTATCTACT	ATCTAGCGAA	ACCACAGCCA
Euaethiopina loveridgei	CATGAATGGA	TTAACGAGAT	TCCCACTGTC	CCTATCTACT	ATCTAGCGAA	ACCACAGCCA
Achatina achatina	CATGAATGGA	TTAACGAGAT	TCCCACTGTC	CCTATCTACT	ATCTAGCGAA	ACCACAGCCA
Archachatina marginata	CATGAATGGA	TTAACGAGAT	TCCCACTGTC	CCTATCTACT	ATCTAGCGAA	ACCACAGCCA
Achatina bisculpta	CATGAATGGA	TTAACGAGAT	TCCCACTGTC	CCTATCTACT	ATCTAGCGAA	ACCACAGCCA
Achatina damarensis	CATGAATGGA	TTAACGAGAT	TCCCACTGTC	CCTATCTACT	ATCTAGCGAA	ACCACAGCCA
Achatina stuhlmanni	CATGAATGGA	TTAACGAGAT	TCCCACTGTC	CCTATCTACT	ATCTAGCGAA	ACCACAGCCA
Atopocochlis exarata	CATGAATGGA	TTAACGAGAT	TCCCACTGTC	CCTATCTACT	ATCTAGCGAA	ACCACAGCCA
Limicolaria kambeul	CATGAATGGA	TTAACGAGAT	TCCCACTGTC	CCTATCTACT	ATCTAGCGAA	ACCACAGCCA
Limicolaria martenssii	CATGAATGGA	TTAACGAGAT	TCCCACTGTC	CCTATCTACT	ATCTAGCGAA	ACCACAGCCA
Limicolariopsis sp.	CATGAATGGA	TTAACGAGAT	TCCCACTGTC	CCTATCTACT	ATCTAGCGAA	ACCACAGCCA
Limicolariopsis ruwenzori	CATGAATGGA	TTAACGAGAT	TCCCACTGTC	CCTATCTACT	ATCTAGCGAA	ACCACAGCCA
Cochlitoma varicosa	CATGAATGGA	TTAACGAGAT	TCCCACTGTC	CCTATCTACT	ATCTAGCGAA	ACCACAGCCA
Cochlitoma dimidiata	CATGAATGGA	TTAACGAGAT	TCCCACTGTC	CCTATCTACT	ATCTAGCGAA	ACCACAGCCA
Cochlitoma sp. cf. vestita	CATGAATGGA	TTAACGAGAT	TCCCACTGTC	CCTATCTACT	ATCTAGCGAA	ACCACAGCCA
Cochlitoma marinae	CATGAATGGA	TTAACGAGAT	TCCCACTGTC	CCTATCTACT	ATCTAGCGAA	ACCACAGCCA
Cochlitoma churchilliana	CATGAATGGA	TTAACGAGAT	TCCCACTGTC	CCTATCTACT	ATCTAGCGAA	ACCACAGCCA
Cochlitoma granulata	CATGAATGGA	TTAACGAGAT	TCCCACTGTC	CCTATCTACT	ATCTAGCGAA	ACCACAGCCA
Cochlitoma simplex	CATGAATGGA	TTAACGAGAT	TCCCACTGTC	CCTATCTACT	ATCTAGCGAA	ACCACAGCCA
Cochlitoma kilburni	CATGAATGGA	TTAACGAGAT	TCCCACTGTC	CCTATCTACT	ATCTAGCGAA	ACCACAGCCA
Cochlitoma montistempli			TCCCACTGTC			
Cochlitoma omissa			TCCCACTGTC			
Cochlitoma semidecussata			TCCCACTGTC			
Cochlitoma ustulata			TCCCACTGTC			
Cochlitoma zebra	CATGAATGGA	TTAACGAGAT	TCCCACTGTC	CCTATCTACT	ATCTAGCGAA	ACCACAGCCA
Metachatina kraussi			TCCCACTGTC			
Rumina decollata	CATGAATGGA	TTAACGAGAT	TCCCACTGTC	CCTATCTACT	ATCTAGCGAA	ACCACAGCCA
NUCLEOTIDES INCLUDED	mmmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmmm

Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata NUCLEOTIDES INCLUDED

Achatina fulica

Achatina fulica Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata NUCLEOTIDES INCLUDED

....|....|||||||||| 3370 3380 3390 3400 3410 342 AGGGAACGGG CTTGGTAGAA TCAGCGGGGA AAGAAGACCC TGTTGAGCTT GACTCTAGTC 3420 AGGGAACGGG CTTGGTAGAA TCAGCGGGGA AAGAAGACCC TGTTGAGCTT GACTCTAGTC

····|····| ····|····| ····| ····| ····| ····| ····| ····|

3430 3440 3450 3460 3470 3480 CGACTTTGTG AAGACACATG AAGGGTGTAG CATAGGTGGG AGCGCAAGCG CAATTGAAAT

	1 1	1 1		1 1	1 1	
			TTTACTTATT			
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
L	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	ACCACTACTT	TTATCGTTTC	TTTACTTATT	CAGTCAAGCG	GAGAGCGGGG	CGCAAGCCCC
	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

····|····| ···| ··| ···| ···| ···| ··| ···| ···| ···| ··| ··| ···| ···| ···| ··| ···| ···| ·

	35!		50 35'		80 359	3600
Achatina fulica					-GCCGCGATC	
Achtina immaculata					-GCCGCGATC	
Achatina reticulata					-GCCGCGATC	
Achatina zanzibarica					-GCCGCGATC	
Euaethiopina loveridgei	TCGCTTCTGG	AGTTAAGCGG	CAACCGGCGC	TCGTCGTCG-	-GCCGCGATC	CGCTCTGAAG
Achatina achatina	TCGCTTCTGG	AGTTAAGCGG	CAACCGGCGC	TCGTCGTCG-	-GCCGCGATC	CGCTCTGAAG
Archachatina marginata	TCGCTTCTGG	AGTTAAGCGG	CAACCGGCGC	TCGTCGTCG-	-GCCGCGATC	CGCTCTGAAG
Achatina bisculpta	TCGCTTCTGG	AGTTAAGCGG	CAACCGGCGC	TCGTCGTCG-	-GCCGCGATC	CGCTCTGAAG
Achatina damarensis	TCGCTTCTGG	AGTTAAGCGG	CAACCGGCGC	TCGTCGTCG-	-GCCGCGATC	CGCTCTGAAG
Achatina stuhlmanni	TCGCTTCTGG	AGTTAAGCGG	CAACCGGCGC	TCGTCGTCG-	-GCCGCGATC	CGCTCTGAAG
Atopocochlis exarata	TCGCTTCTGG	AGTTAAGCGG	CAACCGGCGC	TCGTCGTCG-	-GCCGCGATC	CGCTCTGAAG
Limicolaria kambeul	TCGCTTCTGG	AGTTAAGCGG	CAACCGGCGC	TCGTCGTCG-	-GCCGCGATC	CGCTCTGAAG
Limicolaria martenssii	TCGCTTCTGG	AGTTAAGCGG	CAACCGGCGC	TCGTCGTCG-	-GCCGCGATC	CGCTCTGAAG
Limicolariopsis sp.	TCGCTTCTGG	AGTTAAGCGG	CAACCGGCGC	TCGTCGTCG-	-GCCGCGATC	CGCTCTGAAG
Limicolariopsis ruwenzori	TCGCTTCTGG	AGTTAAGCGG	CAACCGGCGC	TCGTCGTCG-	-GCCGCGATC	CGCTCTGAAG
Cochlitoma varicosa	TCGCTTCTGG	AGTTAAGCGG	CAACCGGCGC	TCGTCGTCG-	-GCCGCGATC	CGCTCTGAAG
Cochlitoma dimidiata	TCGCTTCTGG	AGTTAAGCGG	CAACCGGCGC	TCGTCGTCGC	GGCCGCGATC	CGCTCTGAAG
Cochlitoma sp. cf. vestita	TCGCTTCTGG	AGTTAAGCGG	CAACCGGCGC	TCGTCGTCG-	-GCCGCGATC	CGCTCTGAAG
Cochlitoma marinae	TCGCTTCTGG	AATTAAGCGG	CAACAGGCGC	TCGTCGTCG-	-GCCGCGATC	CGCTCTGAAG
Cochlitoma churchilliana	TCGCTTCTGG	AGTTAAGCGG	CAACCGGCGC	TCGTCGTCG-	-GCCGCGATC	CGCTCTGAAG
Cochlitoma granulata	TCGCTTCTGG	AGTTAAGCGG	CAACCGGCGC	TCGTCGTCG-	-GCCGCGATC	CGCTCTGAAG
Cochlitoma simplex	TCGCTTCTGG	AGTTAAGCGG	CAACCGGCGC	TCGTCGTCG-	-TCCGCGATC	CGCTCTGAAG
Cochlitoma kilburni	TCGCTTCTGG	AGTTAAGCGG	CAACCGGCGC	TCGTCGTCG-	-GCCGCGATC	CGCTCTGAAG
Cochlitoma montistempli	TCGCTTCTGG	AGTTAAGCGG	CAACCGGCGC	TCGTCGTCG-	-GCCGCGATC	CGCTCTGAAG
Cochlitoma omissa	TCGCTTCTGG	AGTTAAGCGG	CAACCGGCGC	TCGTCGTCG-	-GCCGCGATC	CGCTCTGAAG
Cochlitoma semidecussata	TCGCTTCTGG	AGTTAAGCGG	CAACCGGCGC	TCGTCGTCG-	-GCCGCGATC	CGCTCTGAAG
Cochlitoma ustulata	TCGCTTCTGG	AGTTAAGCGG	CAATCGGCGC	TCGTCGTCG-	-GCCGCGATC	CGCTCTGAAG
Cochlitoma zebra					-GCCGCGATC	
Metachatina kraussi	TCGCTTCTGG	AGTTAAGCGG	CAACCGGCGC	TCGTCGTCG-	-GCCGCGATC	CGCTCTGAAG
Rumina decollata	TCGCTTCTGG	AATTAAGCGG	CAACCGGCGC	TCGTCGTCG-	-GCCGCGATC	CGCTCTGAAG
NUCLEOTIDES INCLUDED	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmm-	-mmmmmmmmm	mmmmmmmmm

Achatina fulica Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata NUCLEOTIDES INCLUDED

....|....|....|....|....|....|....|....|36103620363036403650366ACAGTGTCAGGCGGGGGAGTTTGACTGGGGCGGTACATCTGTCAAAAGGTAACGCAGGTGT 3660 ACAGTGTCAG GCGGGGAGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGGAGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGGAGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGAGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGGGGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGGAGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGGGGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGAGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGAGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGAGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGGAGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGGGGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGAGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGGGGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGAGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGAGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGAGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGGGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGAGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGAGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGGGGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGAGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGGGGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGGAGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGAGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGAGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGGGGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGGAGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT ACAGTGTCAG GCGGGGAGTT TGACTGGGGC GGTACATCTG TCAAAAGGTA ACGCAGGTGT

····|····| ····|····| ····| ····| ····| ····| ····| ····|

3670 3680 3690 3700 3710 3720 CCTAAGGCGA GCTCAGCGAG GACGGAAACC TCGCGTAGAG CAAAAGGGCA AAAGCTCGCT

				GTGAAAGCGT		
				GTGAAAGCGT		
				GTGAAAGCGT		
				GTGAAAGCGT		
	TGATTTTGAT	TTTCAGTACG	AATACAGACC	GTGAAAGCGT	GGCCTATCGA	TCCTTTTGAC
	TGATTTTGAT	TTTCAGTACG	AATACAGACC	GTGAAAGCGT	GGCCTATCGA	TCCTTTTGAC
	TGATTTTGAT	TTTCAGTACG	AATACAGACC	GTGAAAGCGT	GGCCTATCGA	TCCTTTTGAC
	TGATTTTGAT	TTTCAGTACG	AATACAGACC	GTGAAAGCGT	GGCCTATCGA	TCCTTTTGAC
	TGATTTTGAT	TTTCAGTACG	AATACAGACC	GTGAAAGCGT	GGCCTATCGA	TCCTTTTGAC
	TGATTTTGAT	TTTCAGTACG	AATACAGACC	GTGAAAGCGT	GGCCTATCGA	TCCTTTTGAC
	TGATTTTGAT	TTTCAGTACG	AATACAGACC	GTGAAAGCGT	GGCCTATCGA	TCCTTTTGAC
	TGATTTTGAT	TTTCAGTACG	AATACAGACC	GTGAAAGCGT	GGCCTATCGA	TCCTTTTGAC
	TGATTTTGAT	TTTCAGTACG	AATACAGACC	GTGAAAGCGT	GGCCTATCGA	TCCTTTTGAC
	TGATTTTGAT	TTTCAGTACG	AATACAGACC	GTGAAAGCGT	GGCCTATCGA	TCCTTTTGAC
	TGATTTTGAT	TTTCAGTACG	AATACAGACC	GTGAAAGCGT	GGCCTATCGA	TCCTTTTGAC
	TGATTTTGAT	TTTCAGTACG	AATACAGACC	GTGAAAGCGT	GGCCTATCGA	TCCTTTTGAC
	TGATTTTGAT	TTTCAGTACG	AATACAGACC	GTGAAAGCGT	GGCCTATCGA	TCCTTTTGAC
a	TGATTTTGAT	TTTCAGTACG	AATACAGACC	GTGAAAGCGT	GGCCTATCGA	TCCTTTTGAC
	TGATTTTGAT	TTTCAGTACG	AATACAGACC	GTGAAAGCGT	GGCCTATCGA	TCCTTTTGAC
	TGATTTTGAT	TTTCAGTACG	AATACAGACC	GTGAAAGCGT	GGCCTATCGA	TCCTTTTGAC
	TGATTTTGAT	TTTCAGTACG	AATACAGACC	GTGAAAGCGT	GGCCTATCGA	TCCTTTTGAC
	TGATTTTGAT	TTTCAGTACG	AATACAGACC	GTGAAAGCGT	GGCCTATCGA	TCCTTTTGAC
	TGATTTTGAT	TTTCAGTACG	AATACAGACC	GTGAAAGCGT	GGCCTATCGA	TCCTTTTGAC
	TGATTTTGAT	TTTCAGTACG	AATACAGACC	GTGAAAGCGT	GGCCTATCGA	TCCTTTTGAC
	TGATTTTGAT	TTTCAGTACG	AATACAGACC	GTGAAAGCGT	GGCCTATCGA	TCCTTTTGAC
	TGATTTTGAT	TTTCAGTACG	AATACAGACC	GTGAAAGCGT	GGCCTATCGA	TCCTTTTGAC
	TGATTTTGAT	TTTCAGTACG	AATACAGACC	GTGAAAGCGT	GGCCTATCGA	TCCTTTTGAC
	TGATTTTGAT	TTTCAGTACG	AATACAGACC	GTGAAAGCGT	GGCCTATCGA	TCCTTTTGAC
	TGATTTTGAT	TTTCAGTACG	AATACAGACC	GTGAAAGCGT	GGCCTATCGA	TCCTTTTGAC
	TGATTTTGAT	TTTCAGTACG	AATACAGACC	GTGAAAGCGT	GGCCTATCGA	TCCTTTTGAC
	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

····|····| ····| ····| ····| ····| ····| ····| ····| ····|

	379	90 380	382	10 382	20 383	30 3840
	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
a	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
ita	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
ica	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
ridgei	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
L	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
finata	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
a	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
is	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
ini	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
ata	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
ul	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
enssii	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
p.	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
ruwenzori	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
sa	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
ata	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
. vestita	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
le	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
illiana	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
ata	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
x	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
rni	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
templi	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
L	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
cussata	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
ta	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
si	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
	TTTAAGAGTT	TTAAGCAAGA	GGTGTCAGAA	AAGTTACCAC	AGGGATAACT	GGCTTGTGGC
DED	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata

NUCLEOTIDES INCLUDED

Achatina fulica Achtina immaculata

Achatina fulica Achtina immaculata Achatina reticulat Achatina zanzibari Euaethiopina lover Achatina achatina Archachatina margi Achatina bisculpta Achatina damarensi Achatina stuhlmann Atopocochlis exara Limicolaria kambeu Limicolaria marter Limicolariopsis sp Limicolariopsis ru Cochlitoma varicos Cochlitoma dimidia Cochlitoma sp. cf. Cochlitoma marinae Cochlitoma churchi Cochlitoma granula Cochlitoma simplex Cochlitoma kilburr Cochlitoma montist Cochlitoma omissa Cochlitoma semideo Cochlitoma ustulat Cochlitoma zebra Metachatina krauss Rumina decollata NUCLEOTIDES INCLUE

Achatina fulica Achtina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Limicolariopsis ruwenzori Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata NUCLEOTIDES INCLUDED

3900 AGCCAAGCGT TCATAGCGAC GTTGCTTTTT GATCCTTCGA TGTCGGCTCT TCCTATCATT תמתחתות המתחתות המתחתות

····|····| ····| ····| ····| ····| ····| ····| ····| ····|

3910 3920 3930 3940 3950 3960 GCGAAGCAGA ATTCGCCAAG CGTTGGATTG TTCACCCACT AATAGGGAAC GTGAGCTGGG

	 397		 30 399			
	TTTAGACCGT	CGTGAGACAG	GTTAGTTTTA	CCCTACTGAT	GACAGGTCGT	TGCTACGGTA
	TTTAGACCGT	CGTGAGACAG	GTTAGTTTTA	CCCTACTGAT	GACAGGTCGT	TGCTACGGTA
	TTTAGACCGT	CGTGAGACAG	GTTAGTTTTA	CCCTACTGAT	GACAGGTCGT	TGCTACGGTA
	TTTAGACCGT	CGTGAGACAG	GTTAGTTTTA	CCCTACTGAT	GACAGGTCGT	TGCTACGGTA
	TTTAGACCGT	CGTGAGACAG	GTTAGTTTTA	CCCTACTGAT	GACAGGTCGT	TGCTACGGTA
	TTTAGACCGT	CGTGAGACAG	GTTAGTTTTA	CCCTACTGAT	GACAGGTCGT	TGCTACGGTA
	TTTAGACCGT	CGTGAGACAG	GTTAGTTTTA	CCCTACTGAT	GACAGGTCGT	TGCTACGGTA
	TTTAGACCGT	CGTGAGACAG	GTTAGTTTTA	CCCTACTGAT	GACAGGTCGT	TGCTACGGTA
	TTTAGACCGT	CGTGAGACAG	GTTAGTTTTA	CCCTACTGAT	GACAGGTCGT	TGCTACGGTA
	TTTAGACCGT	CGTGAGACAG	GTTAGTTTTA	CCCTACTGAT	GACAGGTCGT	TGCTACGGTA
	TTTAGACCGT	CGTGAGACAG	GTTAGTTTTA	CCCTACTGAT	GACAGGTCGT	TGCTACGGTA
	TTTAGACCGT	CGTGAGACAG	GTTAGTTTTA	CCCTACTGAT	GACAGGTCGT	TGCTACGGTA
	TTTAGACCGT	CGTGAGACAG	GTTAGTTTTA	CCCTACTGAT	GACAGGTCGT	TGCTACGGTA
	TTTAGACCGT	CGTGAGACAG	GTTAGTTTTA	CCCTACTGAT	GACAGGTCGT	TGCTACGGTA
	TTTAGACCGT	CGTGAGACAG	GTTAGTTTTA	CCCTACTGAT	GACAGGTCGT	TGCTACGGTA
	TTTAGACCGT	CGTGAGACAG	GTTAGTTTTA	CCCTACTGAT	GACAGGTCGT	TGCTACGGTA
	TTTAGACCGT	CGTGAGACAG	GTTAGTTTTA	CCCTACTGAT	GACAGGTCGT	TGCTACGGTA
L	TTTAGACCGT	CGTGAGACAG	GTTAGTTTTA	CCCTACTGAT	GACAGGTCGT	TGCTACGGTA
	TTTAGACCGT	CGTGAGACAG	GTTAGTTTTA	CCCTACTGAT	GACAGGTCGT	TGCTACGGTA
	TTTAGACCGT	CGTGAGACAG	GTTAGTTTTA	CCCTACTGAT	GACAGGTCGT	TGCTACGGTA
			GTTAGTTTTA			
			GTTAGTTTTA			
			GTTAGTTTTA			
			GTTAGTTTTA			
			GTTAGTTTTA			
			GTTAGTTTTA			
			GTTAGTTTTA			
			GTTAGTTTTA			
			GTTAGTTTTA			
			GTTAGTTTTA			
	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

····|····| ···| ··| ···| ···| ···| ···| ··| ···| ···| ···| ···| ··| ···| ···| ···| ···| ··| ···| ···| ···| ···| ··| ···| ···| ···| ···| ··| ···| ···| ···| ··| ··| ···| ···| ··| ··| ···| ··| ··| ···| ···| ··| ··| ···| ···| ··| ··| ···| ···| ··

	40	30 40	40 40	50 400	50 40'	70 4080
Achatina fulica	ATCCTGCTCA	GTACGAGAGG	AACCGCAGGT	TCAGACATTT	GGTTCACGTG	CTTGGCTGAT
Achtina immaculata	ATCCTGCTCA	GTACGAGAGG	AACCGCAGGT	TCAGACATTT	GGTTCACGTG	CTTGGCTGAT
Achatina reticulata	ATCCTGCTCA	GTACGAGAGG	AACCGCAGGT	TCAGACATTT	GGTTCACGTG	CTTGGCTGAT
Achatina zanzibarica	ATCCTGCTCA	GTACGAGAGG	AACCGCAGGT	TCAGACATTT	GGTTCACGTG	CTTGGCTGAT
Euaethiopina loveridgei	ATCCTGCTCA	GTACGAGAGG	AACCGCAGGT	TCAGACATTT	GGTTCACGTG	CTTGGCTGAT
Achatina achatina	ATCCTGCTCA	GTACGAGAGG	AACCGCAGGT	TCAGACATTT	GGTTCACGTG	CTTGGCTGAT
Archachatina marginata	ATCCTGCTCA	GTACGAGAGG	AACCGCAGGT	TCAGACATTT	GGTTCACGTG	CTTGGCTGAT
Achatina bisculpta	ATCCTGCTCA	GTACGAGAGG	AACCGCAGGT	TCAGACATTT	GGTTCACGTG	CTTGGCTGAT
Achatina damarensis	ATCCTGCTCA	GTACGAGAGG	AACCGCAGGT	TCAGACATTT	GGTTCACGTG	CTTGGCTGAT
Achatina stuhlmanni	ATCCTGCTCA	GTACGAGAGG	AACCGCAGGT	TCAGACATTT	GGTTCACGTG	CTTGGCTGAT
Atopocochlis exarata	ATCCTGCTCA	GTACGAGAGG	AACCGCAGGT	TCAGACATTT	GGTTCACGTG	CTTGGCTGAT
Limicolaria kambeul	ATCCTGCTCA	GTACGAGAGG	AACCGCAGGT	TCAGACATTT	GGTTCACGTG	CTTGGCTGAT
Limicolaria martenssii	ATCCTGCTCA	GTACGAGAGG	AACCGCAGGT	TCAGACATTT	GGTTCACGTG	CTTGGCTGAT
Limicolariopsis sp.	ATCCTGCTCA	GTACGAGAGG	AACCGCAGGT	TCAGACATTT	GGTTCACGTG	CTTGGCTGAT
Limicolariopsis ruwenzori	ATCCTGCTCA	GTACGAGAGG	AACCGCAGGT	TCAGACATTT	GGTTCACGTG	CTTGGCTGAT
Cochlitoma varicosa			AACCGCAGGT			
Cochlitoma dimidiata	ATCCTGCTCA	GTACGAGAGG	AACCGCAGGT	TCAGACATTT	GGTTCACGTG	CTTGGCTGAT
Cochlitoma sp. cf. vestita			AACCGCAGGT			
Cochlitoma marinae			AACCGCAGGT			
Cochlitoma churchilliana			AACCGCAGGT			
Cochlitoma granulata			AACCGCAGGT			
Cochlitoma simplex			AACCGCAGGT			
Cochlitoma kilburni			AACCGCAGGT			
Cochlitoma montistempli			AACCGCAGGT			
Cochlitoma omissa			AACCGCAGGT			
Cochlitoma semidecussata			AACCGCAGGT			
Cochlitoma ustulata			AACCGCAGGT			
Cochlitoma zebra			AACCGCAGGT			
Metachatina kraussi			AACCGCAGGT			
Rumina decollata			AACCGCAGGT			
NUCLEOTIDES INCLUDED	mmmmmmmmm	mmmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmmm

Achatina fulica	409		0 411 CCATCTGAGG	
Achtina immaculata			CCATCIGAGG	
Achatina reticulata			CCATCTGAGG	
Achatina zanzibarica			CCATCTGAGG	
Euaethiopina loveridgei			CCATCTGAGG	
Achatina achatina			CCATCTGAGG	
Archachatina marginata			CCATCTGAGG	
Achatina bisculpta			CCATCTGAGG	
Achatina damarensis			CCATCTGAGG	
Achatina stuhlmanni	AAGCCAATGG	TGCGAGGCTA	CCATCTGAGG	GATTATGG
Atopocochlis exarata	AAGCCAATGG	TGCGAGGCTA	CCATCTGAGG	GATTATGG
Limicolaria kambeul	AAGCCAATGG	TGCGAGGCTA	CCATCTGAGG	GATTATGG
Limicolaria martenssii	AAGCCAATGG	TGCGAGGCTA	CCATCTGAGG	GATTATGG
Limicolariopsis sp.	AAGCCAATGG	TGCGAGGCTA	CCATCTGAGG	GATTATGG
Limicolariopsis ruwenzori	AAGCCAATGG	TGCGAGGCTA	CCATCTGAGG	GATTATGG
Cochlitoma varicosa	AAGCCAATGG	TGCGAGGCTA	CCATCTGAGG	GATTATGG
Cochlitoma dimidiata	AAGCCAATGG	TGCGAGGCTA	CCATCTGAGG	GATTATGG
Cochlitoma sp. cf. vestita	AAGCCAATGG	TGCGAGGCTA	CCATCTGAGG	GATTATGG
Cochlitoma marinae	AAGCCAATGG	TGCGAGGCTA	CCATCTGAGG	GATTATGG
Cochlitoma churchilliana	AAGCCAATGG	TGCGAGGCTA	CCATCTGAGG	GATTATGG
Cochlitoma granulata			CCATCTGAGG	
Cochlitoma simplex	AAGCCAATGG	TGCGAGGCTA	CCATCTGAGG	GATTATGG
Cochlitoma kilburni			CCATCTGAGG	
Cochlitoma montistempli			CCATCTGAGG	
Cochlitoma omissa			CCATCTGAGG	
Cochlitoma semidecussata			CCATCTGAGG	
Cochlitoma ustulata			CCATCTGAGG	
Cochlitoma zebra			CCATCTGAGG	
Metachatina kraussi			CCATCTGAGG	
Rumina decollata			CCATCTGAGG	
NUCLEOTIDES INCLUDED	mmmmmmmmm	mmmmmmmmmm	mmmmmmmmmm	mmmmmmmm

Appendix 4.2: Alignment of the actin gene for the Achatinidae and the subulinid outgroup Rumina decollata. Note that sequencing was unsuccessful for Limicolariopsis ruwenzoriensis.

	10	20 3			
Achatina fulica	TCCAAGAGAG GTATCC				
Achatina immaculata	TCCAAGAGAG GTATCC				
Achatina reticulata	TCCAAGAGAG GTATCC				
Achatina zanzibarica	TCCAAGAGGG GTATCC				
Euaethiopina loveridgei	TCCAAGAGGG GTATCC				
Achatina achatina	TCCAAGAGAG GTATYC				
Archachatina marginata	TCCAAGAGAG GTATCC				
Achatina bisculpta	TCYAAGAGAG GTATCC				
Achatina damarensis	TYYAAGAGAG GTATCC				
Achatina stuhlmanni	TCCAAGAGAG GTATCC				
Atopocochlis exarata	TCYAAGAGAG GTATCC				
Limicolaria kambeul	TCCAAGAGAG GTATCC	FCAC TCTCAAGTAT	CCCATTGAGC	ATGGTATTGT	CACCAACTGG
Limicolaria martenssii	TCCAAGAGAG GTATCC				
Limicolariopsis sp.	TCCAAGAGAG GTATCC	FCAC TCTCAAGTAT	CCCATTGARC	ATGGTATTGT	YACCAACTGG
Cochlitoma varicosa	TCCAAGAGAG GYATCC				
Cochlitoma dimidiata	TCCAAGAGAG GYATCC	ICAC TCTCAAGTAT	CCCATTGAGC	ATGGTATTGT	CACCAACTGG
Cochlitoma sp. cf. vestita	TCCAAGAGAG GYATCC	ICAC TCTCAAGTAT	CCCATTGAGC	ATGGTATTGT	CACCAACTGG
Cochlitoma marinae	TCTAAGAGGG GTATTC	ICAC ACTCAAGTAC	CCCATTGAAC	ATGGTATTGT	CACAAACTGG
Cochlitoma churchilliana	TCCAAGAGAG GCATCC	ICAC TCTCAAGTAT	CCCATTGAGC	ATGGTATTGT	CACCAACTGG
Cochlitoma granulata	TCCAAGAGAG GTATCC	ICAC TCTCAAGTAT	CCCATTGARC	ATGGTATTGT	CACCAACTGG
Cochlitoma simplex	TCCAAGAGAG GTATCC	ICAC TCTCAAGTAT	CCCATTGAGC	ATGGTATTGT	CACTAACTGG
Cpchlitoma kilburni	TCCAAGRGAG GCATCC	ICAC TCTCAAGTAT	CCCATTGAGC	ATGGTATTGT	CACCAACTGG
Cochlitoma montistempli	TCCAAGAGAG GCATCC	ICAC TCTCAAGTAT	CCTATTGAGC	ATGGTATTGT	CACCAACTGG
Cochlitoma omissa	TCCAAGAGAG GYATCC	ICAC TCTCAAGTAT	CCYATTGAGC	ATGGTATTGT	CACCAACTGG
Cochlitoma semidecussata	TCCAAGAGAG GTATCC	ICAC TCTCAAGTAT	CCCATTGAGC	ATGGTATTGT	CACCAACTGG
Cochlitoma ustulata	TCCAAGAGAG GCATCC	ICAC TCTCAAGTAT	CCCATTGAGC	ATGGTATTGT	CACCAACTGG
Cochlitoma zebra	TCCAAGAGAG GCATCC	ICAC TCTCAAGTAT	CCCATTGAGC	ATGGTATTGT	CACCAACTGG
Metachatina kraussi	TYCAAGAGAG GTATCC	ICAC TCTCAAGTAT	CCCATTGARC	ATGGTATTGT	CACTAACTGG
Rumina decollata	TCYAAGAGAG GTATCC	ICAC TCTCAAGTAT	CCCATTGAGC	ATGGTATTGT	CACYAACTGG

	/(J 80	J 90	J 100) 110	J 120
Achatina fulica	GATGATATGG	AGAAGATCTG	GCATCACACC	TTCTACAATG	AGCTSAGAGT	TGCACCAGAA
Achatina immaculata	GATGATATGG	AGAAGATCTG	GCATCACACY	TTCTACAATG	AGCTGAGAGT	TGCWCCAGAA
Achatina reticulata	GATGATATGG	AGAAGATCTG	GCATCACACC	TTCTACAATG	AGCTGAGAGT	TGCACCRGAA
Achatina zanzibarica	GATGATATGG	AGAAGATCTG	GCATCACACC	TTCTACAATG	AGCTGAGAGT	TGCACCAGAA
Euaethiopina loveridgei	GATGATATGG	AGAAGATCTG	GCATCACACC	TTCTACAATG	AGCTGAGAGT	TGCACCAGAA
Achatina achatina	GATGATATGG	AGAAGATCTG	GCATCACACY	TTCTACAATG	AGTTGAGAGT	TGCWCCAGAA
Archachatina marginata	GATGATATGG	AGAAGATCTG	GCATCACACC	TTCTACAATG	AGYTGAGAGT	TGCACCAGAA
Achatina bisculpta	GATGATATGG	AGAAGATCTG	GCATCACACC	TTCTACAATG	AGCTGAGAGT	TGCACCAGAA
Achatina damarensis	GATGATATGG	AGAAGATCTG	GCATCACACY	TTCTACAATG	AGCTGAGAGT	TGCWCCAGAA
Achatina stuhlmanni	GATGATATGG	AGAAAATATG	GCATCACACC	TTCTACAATG	AGCTGAGAGT	TGCACCAGAA
Atopocochlis exarata					ARCTGAGAGT	
Limicolaria kambeul	GATGAYATGG	AGAAGATCTG	GCATCACACC	TTCTAYAATG	AGCTGAGAGT	TGCACCAGAA
Limicolaria martenssii	GATGATATGG	AGAAGATCTG	GCATCACACC	TTCTATAATG	AGCTGAGAGT	TGCACCAGAA
Limicolariopsis sp.	GATGATATGG	AGAAGATCTG	GCATCACACC	TTCTACAATG	AGCTGAGAGT	TGCACCAGAA
Cochlitoma varicosa					AGCTGAGAGT	
Cochlitoma dimidiata					AGCTGAGAGT	
Cochlitoma sp. cf. vestita					AGCTGAGAGT	
Cochlitoma marinae					AGCTTAGAGT	
Cochlitoma churchilliana					AGCTGAGAGT	
Cochlitoma granulata	GATGATATGG	AGAAGATCTG	GCACCACACC	TTCTACAATG	AGCTGAGAGT	TGCACCAGAA
Cochlitoma simplex					AGCTGAGAGT	
Cpchlitoma kilburni					AGCTGAGAGT	
Cochlitoma montistempli					AGCTGAGAGT	
Cochlitoma omissa					AGCTGAGAGT	
Cochlitoma semidecussata					AGCTGAGAGT	
Cochlitoma ustulata					AGCTGAGAGT	
Cochlitoma zebra					AGCTGAGAGT	
Metachatina kraussi	GATGATATGG	AGAARATCTG	GCAYCACACC	TTCTACAATG	AGCTGAGAGT	TGCWCCAGAA
Rumina decollata	GAYGATATGG	AGAAGATCTG	GCATCACACY	TTCTACAATG	AGCTGAGAGT	TGCWCCTGAA

Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cpchlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata

GAGCATCCAG TTCTGCTTAC AGAAGCTCCA CTCAACCCCA AGGCCAAYAG AGAGAAGATG GARCATCCAG TTCTGCTTAC AGAGGCTCCA CTCAACCCYA AGGCCAACAG AGAGAAGATG GAGCATCCAG TTCTGCTTAC AGAGGCTCCA CTCAACCCCA AGGCCAACAG AGAGAAGATG GAGCATCCAG TTCTGCTTAC AGAGGCTCCA CTCAACCCCA AGGCCAACAG AGAGAAGATG GAGCATCCAG TTCTRCTKAC AGAGGCTCCA CTCAATCCCA AGGCCAACAG AGAGAAGATG GAGCATCCAG TTCTRCTTAC AGAGGCTCCA CTCAATCCCA AGGCCAACAG AGAGAAGATG GAGCATCCAG TTCTKCTTAC AGAGGCTCCA CTCAACCCCA AGGCCAACAG AGAGAAGATG GARCATCCAG TTCTGCTTAC AGAGGCTCCA CTCAACCCCA AGGCCAACAG AGAGAAGATG GAGCATCCAG TTCTGCTTAC AGAGGCTCCA CTCAACCCCA AGGCCAACAG AGAGAAGATG GAGCATCCAG TTCTTCTTAC AGAGGCTCCA CTCAACCCCA AGGCCAACAG AGAGAAGATG GAGCATCCAG TTCTGCTTAC AGAGGCTCCA CTCAAYCCCA AGGCCAACAG AGAGAAGATG GAGCATCCAG TTCTGCTTAC AGAGGCTCCA CTCAACCCCA AGGCCAACAG AGAGAAGATG GAGCATCCAG TTCTGCTTAC AGAGGCTCCA CTCAAYCCCA AGGCCAACAG AGAGAAGATG GAGCATCCAG TTCTGCTTAC AGAGGCTCCD CTCAACCCCA AGGCCAAYAG AGAGAAGATG GAGCATCCAG TTCTGCTTAC AGAGGCTCCA CTCAACCCCA AGGCCAACAG AGAGAAGATG GAGCATCCWG TTCTGCTTAC AGAGGCTCCA CTCAACCCCA AGGCCAAYAG AGAGAAGATG GAACATCCGG TTTTGCTGAC AGAGGCTCCT CTCAACCCAA AAGCCAACAG AGAGAAGATG GAGCATCCAG TTCTGCTTAC AGAGGCTCCA CTCAACCCCA AGGCCAACAG AGAGAAGATG GAGCATCCAG TTCTGCTTAC AGAGGCTCCA CTCAACCCCA AGGCCAACAG AGAGAAGATG GAGCATCCTG TTCTGCTTAC AGAGGCTCCA CTCAACCCCA AGGCCAACAG AGAGAAAATG GAGCATCCAG TTCTGCTTAC AGAGGCTCCA CTCAACCCCA AGGCCAATAG AGAGAAGATG GAGCATCCAG TTCTGCTTAC AGAGGCTCCA CTCAACCCCA AGGCCAACAG AGAGAAGATG GAGCATCCAG TTCTGCTTAC AGAGGCTCCA CTCAACCCCA AGGCCAATAG AGAGAAGATG GAGCATCCAG TTCTGCTTAC AGAGGCTCCM CTCAACCCCA AGGCCAACAG AGAGAAGATG GAGCACCCAG TYYTSCTKAC AGAGGCTCCA CTCAACCCCA AGGCCAACAG AGAGAAGATG

240

ACCCAGATCA TGTTTGAAAC TTTCAATTCT CCAGCCATGT ATGTYGCCAT TCAAGCYGTG ACCCAGATCA TGTTTGAAAC YTTCAAYTCT CCAGCCATGT AYGTYGCCAT TCAAGCTGTG ACCCAGATCA TGTTTGAAAC TTTCAATTCT CCAGCCATGT ATGTCGCCAT CCAAGCCGTG ACCCAGATCA TGTTTGAAAC TTTCAACTCT CCAGCCATGT ATGTCGCCAT CCAAGCCGTG ACCCAGATCA TGTTTGAGAC YTTCAAYWSY CCAGCYATGT ATGTYGCYAT TCAAGCHGTG ACCCAGATCA TGTTTGAGAC CTTCAAYACC CCAGCYATGT ATGTTGCCAT CCAAGCYGTG ACCCAGATCA TGTTTGARAC YTTCAAYWCC CCAGCYATGT ATGTTGCCAT YCAAGCCGTS ACCCAGATCA TGTTTGARAC YTTCAACWCY CCAGCYATGT ATGTTGCYAT TCAAGCYGTG ACCCAGATCA TGTTTGAAAC TTTCAACTCT CCAGCCATGT ATGTTGCCAT TCAAGCAGTC ACCCAGATCA TGTTTGARAC YTTCAACTCY CCAGCCATGT AYGTTGCYAT TCAAGCTGTG ACCCAGATCA TGTTTGAGAC YTTCAAYWCY CCAGCYATGT AYGTTGCCAT YCAAGCYGTG ACCCAGATCA TGTTTGARAC CTTCAATACC CCAGCYATGT AYGTTGCCAT YCAAGCYGTG ACCCAGATCA TGTTTGARAC YTTCAAYWCY CCAGCCATGT AYGTYGCCAT TCAAGCYGTG ACCCAGATCA TGTTTGAGAC CTTCAAYWCY CCRGCCATGT ATGTCGCCAT TCAAGCTGTG ACCCAGATCA TGTTTGAGAC CTTCAAYWCY CCAGCCATGT AYGTYGCCAT YCAAGCTGTG ACCCAGATCA TGTTTGAGAC CTTCAAYWCY CCRGCCATGT AYGTYGCYAT TCAAGCTGTG ACCCAGATCA TGTTTGAGAC CTTCAACACY CCAGCTATGT ATGTTGCTAT CCAGGCTGTG ACCCAGATCA TGTTTGAGAC CTTCAACTCT CCAGCCATGT ATGTCGCCAT TCAAGCTGTG ACCCAGATCA TGTTTGAAAC TTTCAACTCT CCAGCCATGT ATGTCGCCAT TCAAGCTGTG ACCCAGATCA TGTTTGAGAC CTTCAACTCT CCAGCCATGT ATGTCGCCAT TCAAGCTGTG ACCCAGATCA TGTTTGAGAC CTTCAACTCT CCAGCCATGT ATGTCGCCAT TCAAGCTGTG ACCCAGATCA TGTTTGAGAC TTTCAACTCT CCAGCCATGT ATGTCGCCAT TCAAGCTGTG ACCCAGATCA TGTTTGAGAC TTTCAACTCT CCAGCCATGT ATGTCGCCAT TCAAGCTGTG ACCCAGATCA TGTTTGAGAC TTTCAACTCT CCAGCCATGT ATGTCGCCAT TCAAGCTGTG ACCCAGATCA TGTTTGAGAC CTTCAACTCT CCAGCCATGT ATGTCGCCAT TCAAGCCGTG ACCCAGATCA TGTTTGAGAC CTTCAACTCT CCAGCCATGT ATGTCGCCAT TCAAGCTGTG ACCCAGATCA TGTTTGAGAC CTTCAAYWCY CCAGCYATGT AYGTYGCYAT YCAAGCYGTG ACACAGATCA TGTTTGAGAC CTTCAAYACC CCAGCHATGT AYGTCGCYAT YCARGCCGTG

	 250	 260				
	CTTTCTTTRT	ATGCWTCAGG	TCGTACAACT	GGTATTGTKC	TGGATTCTGG	TGATGGTGTA
	CTTTCTTTRT	AYGCATCAGG	TCGTACAACT	GGTATTGTGY	TGGATTCTGG	TGATGGTGTA
	CTTTCYYTRT	AYGCWTCAGG	TCGTACAACT	GGTATTGTRC	TGGATTCTGG	TGATGGTGTA
	CTTTCTTTAT	ATGCATCAGG	TCGTACAACT	GGTATTGTAC	TGGATTYTGG	TGATGGTGTG
	CTTTCTTTAT	ACGCATCAGG	TCGTACAACT	GGTATTGTGC	TGGATTCTGG	TGATGGTGTA
	CTTTCYTTRT	ATGCTTCAGG	TCGTACAACT	GGTATTGTKC	TGGATTCTGG	WGATGGTGTM
	CTTTCCTTGT	ATGCTTCAGG	TCGTACAACT	GGTATTGTGC	TGGATTCTGG	TGATGGTGTM
	CTTTCHYTGT	AYGCWTCAGG	TCGTACAACT	GGTATTGTTC	TGGATTCTGG	TGATGGTGTR
	CTTTCYTTRT	ATGCWTCAGG	TCGTACAACT	GGTATTGTGC	TGGATTCTGG	TGATGGTGTR
	CTTTCTTTAT	ATGCATCGGG	TCGTACAACT	GGTATTGTGC	TGGATTCTGG	TGATGGTGTA
	CTTTCYTTRT	AYGCWTCAGG	TCGTACAACT	GGTATTGTGC	TGGATTCTGG	TGATGGTGTA
	CTTTCYYTRT	ATGCWTCAGG	TCGTACAACT	GGTATYGTGC	TGGATTCTGG	TGATGGTGTA
	YTTTCYTTRT	AYGCWTCAGG	TCGTACAACT	GGTATYGTGC	TGGATTCTGG	TGATGGTGTR
	CTTTCYCTRT	AYGCWTCAGG	TCGTACAACT	GGTATYGTGC	TGGATTCTGG	TGATGGTGTG
	CTTTCTTTRT	ATGCATCAGG	TCGTACAACT	GGTATTGTTC	TGGATTCTGG	WGATGGTGTA
	CTTTCTTTRT	ATGCATCAGG	TCGTACAACT	GGTATTGTGC	TGGATTCTGG	WGATGGTGTM
1	CTTTCTTTRT	ATGCATCAGG	TCGTACAACT	GGTATTGTGC	TGGAYTCTGG	WGATGGTGTM
	CTGTCACTGT	ATGCTTCAGG	TCGAACAACA	GGCATTGTCC	TTGACTCAGG	AGATGGTGTC
	CTTTCTTTAT	ATGCATCAGG	TCGTACAACT	GGTATTGTTC	TGGATTCTGG	TGATGGTGTA
	CTTTCTTTAT	ATGCATCAGG	TCGTACAACT	GGTATTGTTC	TGGATTCTGG	TGATGGTGTA
	CTTTCTTTAT	ATGCATCAGG	TCGTACAACT	GGTATTGTGC	TGGATTCTGG	TGATGGTGTA
	CTTTCTTTAT	ATGCATCAGG	TCGTACAACT	GGTATTGTGC	TGGATTCTGG	TGATGGTGTA
	CTTTCTTTAT	ATGCATCAGG	TCGTACAACT	GGTATTGTTC	TGGATTCTGG	TGATGGTGTA
	CTTTCTTTAT	ATGCATCAGG	TCGTACAACT		TGGATTCTGG	TGATGGTGTA
	CTTTCTTTAT	ATGCATCAGG	TCGTACAACT	GGTATTGTTC	TGGATTCTGG	TGATGGTGTA
	CTTTCTTTAT	ATGCATCAGG	TCGTACAACT	GGTATTGTTC	TGGATTCTGG	TGATGGTGTA
	CTTTCTTTAT	ATGCATCAGG			TGGATTCTGG	TGATGGTGTA
		ATGCWTCAGG			TGGATTCTGG	
	CTKTCYYTGT	ATGCCTCTGG	TCGTACAACT	GGTATTGTGC	TAGATTCTGG	WGATGGTGTT

Achatina fulica

360 ACCCACACTG TCCCAATTTA TGAAGGTTAT GCTCTACCTC ATGCCATCAT GAGACTGGAC ACCCACACTG TCCCAATYTA TGAAGGTTAT GCTCTACCTC ATGCCATCAT GAGACTGGAC

Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cpchlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata

ACCCACACTG TCCCAATYTA TGAAGGTTAT GCTCTTCCCC AYGCCATCAT GAGACTGGAC ACCCACACTG TCCCAATCTA TGAAGGTTAT GCTCTTCCCC ATGCCATCAT GAGACTGGAC ACCCACACTG TCCCAATCTA TGAAGGTTAT GCTCTTCCCC ATGCCATCAT GAGACTGGAC ACYCAYACTG THCCAATMTA TGARGGTTAT GCTCTTCCYC AYGCCATCAT GAGACTGGAY ACYCACACTG TCCCAATCTA YGARGGTTAT GCTCTTCCYC ATGCCATYMT GAGACTGGAC ACCCACACTG TYCCAATCTA TGAAGGTTAT GCTCTTCCCC ATGCCATCAT GAGACTRGAY ACCCACACTG TYCCAATCTA TGAAGGTTAT GCTCTTCCYC ATGCCATCAT GAGACTGGAY ACCCACACTG TCCCAATCTA TGAAGGTTAT GCTCTTCCCC ATGCCATCAT GAGACTGGAC ACYCACACTG TCCCAATCTA TGAAGGTTAT GCTCTTCCYC ATGCCATCAT GAGACTGGAC ACYCACACTG TYCCAATCTA TGAAGGTTAT GCYCTTCCYC ATGCCATCAT GAGACTGGAC ACCCACACTG TYCCAATCTA YGAAGGTTAT GCYCTTCCYC ATGCCATCAT GAGACTKGAC ACCCACACTG TYCCAATCTA YGAAGGTTAT GCTCTTCCCC ATGCCATCAT GAGACTGGAC ACCCACACTG TCCCAATCTA TGAAGGWTAT GCTCTTCCCC ATGCCATCAT GAGACTGGAC ACYCACACTG TCCCAATCTA TGAAGGWTAT GCTCTTCCCC ATGCCATCAT GAGACTGGAY Cochlitoma sp. cf. vestita ACCCACACTG TCCCAATCTA TGAAGGWTAT GCTCTTCCCC ATGCCATCAT GAGACTGGAY ACTCACACTG TGCCCATCTA TGAAGGTTAT GCCCTCCCTC ATGCCATCAT GAGACTGGAT ACCCACACTG TCCCAATCTA TGAAGGTTAT GCTCTTCCCC ATGCCATCAT GAGACTGGAC ACCCATACTG TCCCAATCTA TGAAGGTTAT GCTCTTCCCC ATGCCATCAT GAGACTGGAC ACCCAYACTG TCCCAATCTA TGAAGGTTAT GCTCTTCCCC ATGCCATCAT GAGACTGGAC ACCCACACTG TCCCAATCTA TGAAGGTTAT GCTCTTCCCC ATGCCATCAT GAGACTGGAC ACTCACACTG TCCCAATCTA TGAAGGTTAT GCTCTTCCCC ATGCCATCAT GAGACTGGAC ACCCACACTG TCCCAATCTA TGAAGGTTAT GCTCTTCCCC ATGCCATCAT GAGACTGGAC ACCCACACTG TCCCMATCTA TGAAGGTTAT GCTCTTCCCC ATGCCATCMW GAGACTGGAC ACCCAYACTG TCCCCATCTA TGAAGGTTAT GCCCTTCCTC ATGCCATCAT GAGAYTGGAC

Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cpchlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata

Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cpchlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata

TTGGCTGGTC GTGACCTCAC AGATTACCTC ATGAAGATCC TCACAGAGAG AGGCTACAGC TTGGCTGGTC GTGACCTCAC AGATTACCTC ATGAAGATCC TCACAGAGAG AGGCTACAGC TTGGCTGGTC GTGACCTCAC AGATTACCTC ATGAAGATCC TCACAGAGAG AGGCTACAGC TTGGCTGGTC GTGACCTCAC AGATTACCTC ATGAAAATCC TTACAGAGAG AGGCTACAGC TTGGCTGGTC GTGACCTCAC AGATTATCTC ATGAARATCC TCACAGAGAG AGGTTACAGC TTGGCTGGWC GTGACCTCAC AGATTAYCTC ATGAARATYC TCACAGAGAG AGGYTACAGY TTGGCTGGTC GTGACCTYAC AGATTACCTC ATGAAGATCC TCACAGAGAG AGGCTACAGC TTGGCTGGTC GTGACCTCAC AGATTACCTC ATGAAGATCC TCACAGAGAG AGGCTACAGY TTGGSTGGTC GTGACCTCAC AGATTACCTC ATGAAGATCY TCACAGAGAG AGGCYACAGY TTGGCTGGTC GTGACCTCAC AGATTACCTY ATGAAGATCC TCACAGAGAG AGGCTACAGC TTGGCTGGTC GTGACCTCAC AGATTATCTS ATGAAGATCC TCACAGAGAG AGGCTACAGC TTGGCTGGTC GTGACCTCAC AGATTATCTS ATGAAGATCC TYACAGAGAG AGGCTACAGC Cochlitoma sp. cf. vestita TTGGCTGGTC GTGACCTCAC AGATTATCTS ATGAAGATCC TCACAGAGAG AGGCTACAGC CTGGCTGGTC GTGACCTTAC TGATTATTTG ATGAAGATCC TCACAGAGAG AGGCTACAGC TTGGCTGGTC GTGACCTCAC AGATTACCTC ATGAAGATCC TCACAGAGAG AGGCTACAGC TTGGCTGGTC GTGACCTCAC AGATTAYCTC ATGAAGATCC TCACAGAGAG AGGCTACAGC TTGGCTGGTC GTGACCTCAC AGATTATCTS ATGAAGATCC TCACAGAGAG AGGCTACAGC TTGGCTGGTC GTGACCTCAC AGATTATCTC ATGAAGATCC TCACAGAGAG AGGCTACAGC TTGGCTGGTC GTGACCTCAC AGATTACCTC ATGAAGATCC TCACAGAGAG AGGCTACAGC TTGGCTGGTC GTGACCTCAC AGATTATCTC ATGAAGATCC TCACAGAGAG AGGCTACAGC TTGGCTGGTC GTGACCTYAC AGATTAYCWS ATGAAGATCC TCACAGAGAG AGGCTACAGC TTGGCTGGTC GTGACCTYAC AGATTACCTC ATGAAGATCC TCACAGAGAG AGGCTACAGC

480 TTCACCACCA CAGCTGAGAG AGAAATTGTT CGAGACATCA AAGAGAAGCT TTGCTATGTG TTCACCACCA CAGCTGAGAG AGAAATTGTT CGAGACATCA AAGAGAAGCT TTGCTATGTG TTCACCACCA CAGCTGAGAG AGAAATTGTT CGAGACATCA AAGAGAARCT TTGCTATGTG TTCACCACCA CAGCTGAGAG AGAAATTGTT CGAGACATCA AAGAGAAGCT TTGCTATGTG TTCACCACCA CAGCTGAGAG AGAAATTGTT CGAGACATCA AAGAGAAGCT TTGCTATGTG TTCACCACCA CAGCTGAGAG AGAAATTGTT CGAGAYATCA ARGAGAAGCT GTGCTATGTG TTCACCACCA CAGCTGAGAG AGAAATTGTT CGAGACATCA AGGAGAAGCT GTGCTATGTG TTCACCACCA CAGCTGAGAG AGAAATTGTT CGAGACATCA AAGAGAAACT TTGCTATGTG TTCACCACCA CAGCTGAGAG AGAAATTGTT CGAGACATCA AAGAGAAACT TTGCTATGTG TTCACCACYA CAGCTGAGAG AGAAATTGTT CGAGACATCA AAGAGAAACT TTGCTATGTG TTCACCACCA CAGCTGAGAG AGAAATTGTT CGAGACATCA AAGAGAAACT TTGCTATGTG TTCACCACCA CAGCTGAGAG AGAAATTGTT CGAGACATCA AAGAGAAACT TTGCTAYGTG TTCACCACCA CAGCTGAGAG AGAAATTGTT CGAGACATCA AAGAGAAACT TTGCTAYGTG TTCACCACCA CAGCTGAGAG AGAAATTGTT CGAGACATCA AAGAGAAACT TTGCTAYGTG TTCACCACCA CAGCTGAGAG AGAAATTGTT CGAGACATCA AAGAGAAGCT TTGCTATGTG TTCACCACCA CAGCTGAGAG AGAAATTGTT CGAGACATCA AAGAGAAGCT TTGCTATGTG TTCACCACCA CAGCTGAGAG AGAAATTGTT CGAGACATCA AAGAGAAGCT TTGCTATGTG TTCACCACTA CAGCCGAGAG AGAGATTGTA CGTGATATCA AGGAGAAGCT CTGCTATGTT TTCACCACCA CAGCTGAGAG AGAAATTGTT CGAGACATCA AAGAGAAGCT TTGCTATGTG TTCACCACCA CAGCTGAGAG AGAAATTGTT CGAGAYATCA AAGAGAAGCT TTGCTATGTG TTCACCACCA CTGCTGAGAG AGAAATTGTT CGAGACATCA AGGAGAAGCT GTSCTATGTT

	 49(
			RATGGCAACA			AGAGAAGAGT
	GCCCTTGACT	TTGAGCARGA	GATGGCAACA	GCTTCCACAT	CATCTTCATT	AGAGAAGAGT
	GCCCTTGACT	TTGAGCAAGA	GATGGCAACA	GCTKCYACAT	CATCTTCATT	AGAGAAGAGT
	GCCCTTGACT	TTGAGCAAGA	GATGGCAACA	GCTGCTACAT	CATCCTCATT	AGAGAAGAGT
	GCCCTTGACT	TTGAGCAAGA	GATGGCAACA	GCTGCTACAT	CATCTTCATT	AGAGAAGAGT
	GCYCTTGACT	TTGAGCAAGA	GATGTCRACA	GCTTCCACAT	CATCTTCATT	AGAGAAGAGY
	GCYCTTGACT	TTGAGCAAGA	GATGGCAACA	GCTKCCACAT	CATCTTCATT	AGAGAAGAGT
	GCCCTTGACT	TTGAGCAAGA	GATGGCAACA	GCTKCCACAT	CATCTTCATT	AGAGAAGAGT
	GCCCTTGACT	TTGAGCAAGA	GATGGCAACA	GCTKCCACAT	CATCTTCATT	AGAGAAGAGT
	GCCCTTGACT	TTGAGCAAGA	GATGGCAACA	GCTGCCACAT	CATCTTYATT	AGAGAAGAGT
	GCYCTTGACT	TTGAGCAAGA	GATGGCAACA	GCTKCCACAT	CATCTTCATT	AGAGAAGAGT
	GCCCTTGAYT	TTGAGCAAGA	GATGGCAACA	GCTKCCACAT	CATCTTCATT	AGARAAGAGT
	GCCCTTGACT	TTGAGCAAGA	GATGGCAACA	GCTKCCACAT	CATCTTCATT	AGAGAAGAGT
	GCCCTTGACT	TTGAGCAAGA	GATGGSWACA	GCTKCCACGT	CATCTTCATT	AGAGAAGAGT
	GCCCTTGACT	TTGARCAAGA	GATGGCAACA	GCTTCCACAT	CATCTTCATT	AGAGAAGAGT
	GCCCTTGACT	TTGARCAAGA	GATGGCAACA	GCTTCCACAT	CATCTTCATT	AGAGAAGAGT
L	GCCCTTGACT	TTGAGCAAGA	GATGGCAACA	GCTTCCACAT	CATCTTCATT	AGAGAAGAGT
	GCACTTGACT	TTGAGCAAGA	AATGGGTACA	GCAGCAACAT	CATCATCTTT	GGAGAAGAGC
	GCCCTTGACT	TTGAACAAGA	GATGGCAACA	GCTTCCACAT	CATCTTCATT	AGAGAAGAGT
	GCCCTTGACT	TTGAGCARGA	GATGGCAACA	GCTTCCACAT	CATCTTCATT	AGAGAAGAGT
	GCCCTTGACT	TTGAACAAGA	GATGGCAACA	GCTTCCACAT	CATCTTCATT	AGAGAAGAGT
	GCCCTTGACT		GATGGCAACA			
	GCCCTTGACT		GATGGCAACA			
			GATGGCAACA			
			GATGGCCACA			
			GATGGCAACA			
			GATGGCAACA			
			GATGGCAACA			
	GCTCTTGACT	TTGAACAAGA	AATGGCAACA	GCTGCCACTT	CATCTTCWCT	GGAGAAAAGT

	550) 56	0 570) 580) 590) 600
Achatina fulica	TATGAATTRC	CTGATGGACA	GGTCATCACC	ATTGGTAAYG	AGCGTTTCAG	ATGTCCAGAA
Achatina immaculata	TATGAATTGC	CTGATGGACA	GGTCATCACC	ATTGGTAATG	AGCGTTTCAG	ATGTCCAGAA
Achatina reticulata	TATGAAYTGC	CTGATGGACA	GGTCATCACC	ATTGGTAAYG	AGCGTTTCAG	RTGYCCAGAA
Achatina zanzibarica	TATGAATTGC	CTGATGGACA	GGTCATCACC	ATTGGCAACG	AGCGTTTCAG	GTGCCCAGAA
Euaethiopina loveridgei	TATGAACTGC	CTGATGGACA	GGTCATCACC	ATTGGTAATG	AGCGTTTCAG	GTGCCCAGAA
Achatina achatina	TATGAATTGC	CTGATGGACA	RGTCATYACT	ATTGGTAAYG	AGCGYTTCAG	RTGYCCAGAA
Archachatina marginata	TATGAATTGC	CTGATGGACA	GGTCATCACY	ATTGGWAAYG	AGCGCTTCAG	RTGYCCAGAA
Achatina bisculpta	TATGAATTGC	CTGATGGACA	GGTCATCACY	ATTGGTAAYG	AGCGTTTCAG	ATGTCCAGAA
Achatina damarensis	TATGAATTGC	CTGATGGACA	GGTCATCACY	ATTGGTAACG	AGCGTTTCAG	ATGTCCAGAA
Achatina stuhlmanni	TATGAATTGC	CTGATGGACA	GGTCATCACT	ATTGGTAACG	AGCGATTTAG	GTGCCCAGAA
Atopocochlis exarata	TATGAATTGC	CTGATGGACA	GGTCATCACY	ATTGGTAACG	AGCGTTTCAG	RTGTCCAGAA
Limicolaria kambeul	TATGAATTRC	CTGATGGACA	GGTCATCACT	ATTGGTAACG	AGCGTTTCAG	RTGYCCAGAA
Limicolaria martenssii	TATGAATTRC	CTGATGGACA	GGTCATCACT	ATTGGTAACG	AGCGTTTCAG	ATGTCCAGAA
Limicolariopsis sp.	TATGAATTGC	CTGATGGACA	GGTCATCACY	ATTGGTAACG	AGCGTTTCAG	ATGYCCAGAA
Cochlitoma varicosa	TATGAATTRC	CTGATGGACA	GGTCATCACC	ATTGGTAAYG	AGCGYTTCAG	RTGYCCAGAA
Cochlitoma dimidiata	TATGAATTGC	CTGAYGGACA	GGTCATCACC	ATTGGTAAYG	AGCGYTTCAG	RTGYCCAGAA
Cochlitoma sp. cf. vestita	TATGAATTGC	CTGATGGACA	GGTCATCACC	ATTGGTAAYG	AGCGYTTCAG	RTGYCCAGAA
Cochlitoma marinae	TATGAACTAC	CAGACGGCCA	GGTCATTACC	ATTGGTAATG	AGCGTTTCAG	GTGCCCTGAG
Cochlitoma churchilliana			GGTCATCACC			
Cochlitoma granulata	TATGAATTRC	CTGAYGGACA	GGTCATMACY	ATTGGTAAYG	AGCGCTTCAG	GTGCCCAGAA
Cochlitoma simplex	TATGAATTGC	CTGATGGACA	GGTCATCACT	ATTGGTAACG	AGCGCTTCAG	GTGCCCAGAA
Cpchlitoma kilburni	TATGAATTGC	CTGATGGACA	GGTCATCACC	ATTGGTAACG	AGCGCTTCAG	GTGCCCAGAA
Cochlitoma montistempli			GGTCATCACC			
Cochlitoma omissa	TATGAATTRC	CTGATGGACA	GGTCATCACC	ATTGGTAACG	AGCGCTTCAG	GTGCCCAGAA
Cochlitoma semidecussata	TATGAATTAC	CTGACGGACA	GGTCATAACT	ATTGGTAATG	AGCGCTTCAG	GTGCCCAGAA
Cochlitoma ustulata	TATGAATTAC	CTGATGGACA	GGTCATAACT	ATTGGTAATG	AGCGCTTCAG	GTGCCCAGAA
Cochlitoma zebra	TATGAATTGC	CTGATGGACA	GGTCATCACC	ATTGGTAATG	AGCGCTTCAG	GTGCCCAGAA
Metachatina kraussi	TATGAATTGC	CTGATGGACA	GGTCATCACM	ATTGGTAAYG	AGCGTTTYAG	ATGTCCAGAA
Rumina decollata	TATGAATTGC	CTGAYGGACA	GGTCATCACC	ATCGGCAAYG	AGCGTTTCAG	ATGTCCAGAA

Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cpchlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata

Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cpchlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata

GCCATGTTCC AGCCATCTTT CCTTGGTATG GAAWCCGCAG GTATTCATGA AACCACCTAC GCMRWRTTTC AGCCATCTTT CCTTGGTATG GAGTCTGCAG GYATTCATGA AACCACCTAC GCAGAATTTC AGCCATCTTT CCTTGGTATG GAGTCTGCAG GCATTCATGA GACCACCTAC GCAGAATTTC AGCCCTCTTT CCTTGGTATG GAGTCTGCAG GCATTCATGA AACCACCTAC GCCATGTTCC AGCCATCTTT CCTTGGTATG GARWCTGCAG GTATTCATGA AACCACCTAC GCCATGTTCC AGCCATCCTT CCTTGGTATG GARTCTGCAG GTATTCATGA GACCACCTAC GCCATGTTCC AGCCATCTTT CCTTGGYATG GAGTCTGCAG GTATTCATGA GACCACSTAC GCCATGTTCC AGCCATCTTT YCTTGGTATG GARWCYGCAG GTATTCATGA GACCACCTAC GCAGAATTCC AGCCATCTTT CCTTGGTATG GAGTCTGCAG GTATTCACGA GACCACCTAC GCMATGTTCC AGCCATCTTT CCTTGGTATG GAGTCYGCAG GTATTCATGA GACCACCTAC GCCATGTTCC AGCCATCTTT CCTTGGTATG GAGTCTGCAG GTATTCAYGA GACCACCTAY GCCATGTTCC AGCCMTCTTT YCTTGGTATG GAGTCHGCAG GTATTCAYGA GACCACCTAC GCCATGTTCC AGCCATCTTT YCTTGGTATG GARWCWGCAG GTATTCAYGA GACCACCTAC GCMRWRTTCC AGCCATCTTT CCTTGGTATG GAGTCTGCAG GTATTCATGA GACCACCTAC GCMRWRTTCC AGCCWTCTTT CCTTGGTATG GAGTCTGCAG GTATTCATGA GACCACCTAC GCMRWRTTCC AGCCATCTTT CCTTGGYATG GAGTCTGCAG GTATTCATGA GACCACCTAC GCAATGTTCC AGCCATCTTT CTTGGGTATG GAGTCTGCTG GTAYTCATGA AACAACATAC GCAGAATTCC AGCCATCTTT CCTTGGTATG GAGTCTGCAG GTATTCATGA GACCACCTAC GCAGAATTCC AGCCATCTTT CCTTGGTATG GAGTCTGCAG GTATTCATGA GACCACCTAC GCAGAATTCC AGCCTTCTTT CCTTGGTATG GAGTCTGCAG GTATTCATGA GACCACCTAC GCAGAATTCC AGCCATCTTT CCTTGGTATG GAGTCTGCAG GTATTCATGA GACCACCTAC GCCATGTTCC AGCCATCTTT YCTTGGTATG GARWCYGCWG GTATTCATGA RACCACCTAC GCAATGTTCC AGCCATCTTT CCTTGGTATG GAGTCTGCTG GTATTCATGA GACCACCTAC

Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cpchlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata

AACTCCATCA TGAAGTGTGA CGTCGACATC CGTAAAGACT TGTATGCCAA CACTGTATTG AACTCCATCA TGAAGTGYGA CGTCGACATC CGTAAAGACT TGTATGCCAA CACTGTATTG AACTCCATCA TGAAGTGYGA CGTCGACATC CGTAAAGACT TGTATGCCAA CACTGTATTG AACTCCATCA TGAAGTGCGA CGTCGACATC CGTAAAGACT TGTATGCCAA CACTGTATTG AACTCCATCA TGAAGTGCGA CGTCGACATC CGTAAAGACT TGTATGCCAA CACTGTATTG AACTCCATCA TGAAGTGTGA CGTCGACATC CGTAAAGACT TGTATGCCAA CACTGTATTA AACTCCATCA TGAAGTGTGA CGTCGACATC CGTAAAGACT TGTATGCCAA CACTGTATTA AACTCCATCA TGAAGTGCGA CGTCGACATC CGTAAAGACT TGTATGCCAA CACTGTACTG AACTCCATCA TGAAGTGYGA YGTYGACATC CGTAAAGACT TGTATGCCAA CACTGTAYTG AACTCCATCA TGAAGTGCGA CGTCGACATC CGTAAAGACT TGTATGCCAA CACTGTACTT AACTCCATCA TGAAGTGYGA CGTCGACATC CGTAAAGACY TGTATGCCAA CACTGTACTG AACTCCATCA TGAARTGCGA CGTCGACATC CGTAAAGACT TGTATGCCAA CACTGTATTG AACTCCATCA TGAARTGCGA CGTCGACATC CGTAAAGACT TGTATGCCAA CACTGTATTR AACTCCATCA TGAAGTGYGA CGTCGACATC CGTAAAGACT TRTATKCCAA CACTGTMTTG AACTCCATCA TGAAGTGYGA CGTYGACATC CGTAAAGACT TGTATGCCAA CACTGTATTG AACTCCATCA TGAAGTGCGA CGTCGACATC CGTAAAGACT TGTATGCCAA CACTGTATTG AACTCCATCA TGAAGTGCGA CGTCGACATC CGTAAAGACT TGTATGCCAA CACTGTATTG AACTCCATCA TGAAGTGCGA TGTTGATATC CGTAAAGACC TGTATGCCAA CACTGTCTTA AACTCCATCA TGAAGTGTGA CGTCGACATC CGTAAAGACT TGTATGCCAA CACTGTATTG AACTCCATCA TGAAGTGCGA CGTCGACATC CGTAAAGACT TGTATGCCAA YACTGTATTG AACTCCATCA TGAAGTGCGA TGTCGACATC CGTAAAGACT TGTATGCCAA CACTGTATTG AACTCCATCA TGAAGTGCGA CGTTGACATC CGTAAAGACT TGTATGCCAA CACTGTATTG AACTCCATCA TGAAGTGCGA CGTCGACATC CGTAAAGACT TGTATGCCAA CACTGTATTG AACTCCATCA TGAAGTGCGA CGTCGACATC CGTAAAGACT TGTATGCCAA CACTGTATTG AACTCCATCA TGAAGTGCGA CGTTGACATC CGTAAAGACT TGTATGCCAA CACTGTATTG AACTCCATCA TGAAGTGCGA CGTCGACATC CGTAAAGACT TGTATGCCAA CACTGTATTG AACTCCATCA TGAAGTGCGA TGTCGACATC CGTAAAGACT TGTATGCCAA CACTGTATTG AACTCCATCA TGAARTGCGA YGTCGACATC CGTAAAGACT TGTATGCCAA CWCTGTATTG AATTCCATCA TGAARTGTGA TGTYGACATC CGTAAAGACT TGTATGCCAA CACTGTCTTG

	730) 740) 750) 760) 770) 780
	TCTGGTGGAW	CTACCATGTA	TCCAGGCATT	GCTGACCGCA	TGCAGAAGGA	AATYGYCAAC
	TCTGGTGGAA	CTACCATGTA	TCCAGGCATT	GCTGACCGCA	TGCAGAAGGA	AATYGYCAAC
	TCTGGTGGAW	CYACMATGTW	YCCTGGCATT	GCTGACCGCA	TGCAGAAGGA	AATCACCAGC
	TCTGGTGGAT	CCACAATGTT	CCCTGGCATT	GCTGACCGCA	TGCAGAAGGA	AATCACCAGC
	TCTGGTGGAT	CCACAATGTT	CCCTGGCATT	GCTGACCGCA	TGCAGAAGGA	AATCACCAGC
	TCTGGTGGAW	CTACCATGTA	TCCTGGCATT	GCTGACCGCA	TGCAGAAGGA	AATCACHAAY
	TCTGGTGGAW	CYACCATGTA	CCCTGGCATT	GCTGACCGCA	TGCAGAAGGA	AATCACYAAY
	TCTGGTGGMT	CYACMATGTW	YCCCGGCATT	GCTGACCGCA	TGCAGAAGGA	AATCACCAAC
	TCTGGTGGAT	CYACCATGTW	TCCAGGCATT	GCTGACCGCA	TGCAGAAGGA	AATCACYAAY
	TCTGGTGGCT	CCACAATGTT	TCCAGGCATC	GCTGACCGCA	TGCAGAAGGA	AATCACCAGC
	TCTGGTGGAT	CCACCATGTW	CCMYGGCATT	GCTGACCGCA	TGCAGAAGGA	AATCACYAAY
	TCTGGTGGAT	CYACCATGTA	TCCAGGCATT	GCTGACCGCA	TGCAGAAGGA	AATCACCAAC
	TCTGGTGGAT	CTACYATGTA	TCCAGGCMTT	GCTGACCGCA	TGCAGAAGGA	AATCACCAAC
	TCTGGTGGAT	CTACCATGTW	TCCAGGCATT	GCTGACCGCA	TGCAGAAGGA	AATCRYYAAC
	TCTGGTGGCT	CCACAATGTT	CCCTGGCATT	GCTGACCGCA	TGCAGAAGGA	AATCACCAGY
	TCTGGTGGMT	CCACAATGTT	CCCTGGCATT	GCTGACCGCA	TGCAGAAGGA	AATCACCAGY
L	TCTGGTGGCT	CCACAATGTT	CCCTGGCATT	GCTGACCGCA	TGCAGAAGGA	AATCACCAGY
	TCTGGTGGTT	CCACAATGTT	CCCAGGCATC	GCTGACCGCA	TGCAAAAGGA	AATCACTGCT
	TCTGGTGGCT	CCACAATGTT	CCCTGGCATT	GCTGACCGCA	TGCAGAAAGA	AATCACCAGC
	TCTGGTGGCT	CCACAATGTT	CCCTGGCATT	GCTGACCGCA	TGCAGAAGGA	AATCACCAGC
	TCTGGTGGCT	CSACAATGTT	CCCTGGCATT	GCTGACCGCA	TGCAGAAGGA	AATCACCAGC
	TCTGGTGGCT	CCACAATGTT	CCCTGGCATT	GCTGACCGCA	TGCAGAAGGA	AATCACCAGC
	TCTGGTGGCT	CCACAATGTT	CCCTGGCATT	GCTGACCGCA	TGCAGAAGGA	AATCACCAGC
	TCTGGTGGCT	CCACAATGTT	CCCKGGCATT	GCTGACCGCA	TGCAGAAGGA	AATCACCAGC
	TCTGGTGGCT	CCACAATGTT	CCCGGGCATT	GCTGACCGCA	TGCAGAAGGA	AATCACCAGC
	TCTGGTGGCT	CCACAATGTT	CCCTGGCATT	GCTGACCGCA	TGCAGAAGGA	AATCACCAGC
	TCTGGTGGCT	CCACAATGTT	CCCTGGCATT	GCTGACCGCA	TGCAGAAGGA	AATCACCAGC
	TCTGGTGGAW	CYACCATGTT	CCCTGGCATT	GCTGACCGYA	TGCAGAAGGA	AATYRYCTSY
	TCTGGTGGHT	CAACAATGTT	CCCAGGCATC	GCTGACCGCA	TGCAGAAAGA	AATCACCAMT

Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cpchlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata

840 CTGGCTCCTT CCACAATGAA GATCAAGATC ATTGCTCCAC CTGAGCGTAA ATACTCTGTC CTGGCTCCAT CCACAATGAA GATCAAGATC ATTGCTCCAC CTGAGCGTAA GTACTCTGTC CTGGCTCCTG CCACAATGAA GATCAAGATC ATTGCTCCAC CTGAGCGTAA ATACTCTGTC CTGGCTCCTG CCACAATGAA GATCAAGATC ATTGCTCCAC CTGAGCGTAA ATACTCTGTC CTGGCTCCTG CCACAATGAA GATCAAGATC ATTGCTCCAC CTGAGCGTAA ATACTCTGTC CTGGCTCCAS CCACAATGAA GATCAAGATC ATTGCTCCAC CAGAACGTAA ATACTCTGTC CTGGCTCCAC CCACAATGAA GATCAAGATC ATTGCTCCAC CAGAACGTAA ATACTCTGTC YTGGCTCCWS CSACAATGAA GATCAAGATC ATTGCTCCAC CTGAACGTAA ATACTCTGTC CTGGCTCCTC CCACAATGAA GATCAAGATC ATTGCTCCAC CTGAACGTAA ATWCTCTGTC CTGGCTCCTG CCACAATGAA GATCAAGATC ATTGCTCCAC CTGAACGTAA ATACTCTGTC CTGGCTCCTC CCACAATGAA GATCAAGATC ATTGCTCCMC CTGAACGTAA ATACTCTGTC CTRGCTCCAC CCACMATGAA GATCAAGATC ATTGCTCCAC CTGAACGTAA ATACTCTGTC CTRGCTCCAC CCACAATGAA GATCAAGATC ATTGCTCCAC CTGAACGTAA ATACTCTGTC CTRGCTCCAC CCACAATGAA GATCAAGATH ATTGCTCCAC CTGAACGTAA ATACTCTGTC CTGGCTCCTG CCACAATGAA GATCAAGATC ATTGCTCCAC CTGAGCGTAA ATACTCTGTS CTGGCTCCTS CCACAATGAA GATCAAGATC ATTGCTCCAC CTGAGCGTAA ATACTCTGTG Cochlitoma sp. cf. vestita CTGGCTCCTS CCACAATGAA GATCAAGATC ATTGCTCCAC CTGAGCGTAA ATACTCTGTG CTTGCTCCAC CCACAATGAA AATCAAGATT ATTGCTCCAC CAGAAAGAAA ATACTCTGTT CTGGCTCCTG CCACAATGAA GATCAAGATC ATTGCTCCAC CTGAGCGTAA ATACTCTGTG CTGGCTCCTG CCACAATGAA GATCAAGATC ATTGCTCCAC CTGAGCGTAA ATACTCTGTC CTGGCTCCTG CCACAATGAA GATCAAGATC ATTGCTCCAC CTGAGCGTAA ATACTCTGTC CTGGCTCCTG CCACAATGAA GATCAAGATC ATTGCTCCAC CTGAGCGTAA ATACTCTGTC CTGGCTCCTG CCACAATGAA GATCAAGATT ATTGCTCCAC CTGAACGTAA ATACTCTGTC CTGGCTCCTG CCACAATGAA GATCAAGATT ATTGCTCCAC CTGAGCGTAA ATACTCTGTC CTGGCTCCTG CCACAATGAA GATCAAGATC ATTGCTCCAC CTGAGCGTAA ATACTCTGTC CTGGCTCCTG CCACAATGAA GATCAAGATC ATTGCTCCAC CTGAGCGTAA ATACTCTGTC CTGGCTCCTG CCACAATGAA GATCAAGATC ATTGCTCCAC CTGAGCGTAA ATACTCTGTC CTGGCTCCAC CCACAATGAA GATCAAGATC ATTGCTCCWC CTGAGMGTAA ATACTCTGTG CTGGCTCCAC CCACAATGAA GATCAAAATC ATTGCTCCTC CTGAGAGAAA ATACTCTGTC

Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cpchlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi

Rumina decollata

		2 86		
Achatina fulica	TGGATTGGAG	GATCCATCCT	GGCCTCTCTG	TCC
Achatina immaculata	TGGATYGGAG	GATCCATCCT	GGCCTCTCTG	TCC
Achatina reticulata	TGGATTGGAG	GATCCATCCT	GGCCTCTCTG	TCC
Achatina zanzibarica	TGGATTGGAG	GATCCATCCT	GGCCTCTCTG	TCC
Euaethiopina loveridgei	TGGATTGGAG	GATCCATCCT	GGCCTCTCTG	TCC
Achatina achatina	TGGATTGGAG	GTTCCATTCT	GGCTTCTCTG	TCC
Archachatina marginata	TGGATTGGAG	GTTCCATTCT	GGCTTCTCTG	TCC
Achatina bisculpta	TGGATTGGAG	GATCCATCCT	GGCCTCTCTG	TCC
Achatina damarensis	TGGATTGGAG	GATCCATCCT	GGCCTCTCTG	TCC
Achatina stuhlmanni			GGCCTCTCTG	
Atopocochlis exarata	TGGATTGGAG	GATCCATCCT	WGCCTCTCTG	TCC
Limicolaria kambeul			GGCTTCTCTG	
Limicolaria martenssii			GGCTTCTCTG	
Limicolariopsis sp.			GGCCTCTCTG	
Cochlitoma varicosa			GGCCTCTCTG	
Cochlitoma dimidiata			GGCCTCTCTG	
Cochlitoma sp. cf. vestita			GGCCTCTCTG	
Cochlitoma marinae			GGCTTCTCTA	
Cochlitoma churchilliana			GGCCTCTCTG	
Cochlitoma granulata			GGCCTCTCTG	
Cochlitoma simplex			GGCCTCTCTG	
Cpchlitoma kilburni			GGCCTCTCTG	
Cochlitoma montistempli			GGCCTCTCTG	
Cochlitoma omissa			GGCCTCTCTG	
Cochlitoma semidecussata			GGCCTCTCTG	
Cochlitoma ustulata			GGCTTCTCTG	
Cochlitoma zebra			GGCCTCTCTG	
Metachatina kraussi			GGCCTYTCTG	
Rumina decollata	TGGATTGGAG	GTTCCATCCT	GGCCTCTCTG	TCC

Appendix 4.3: Alignment of the histone 3 gene for the Achatinidae and the subulinid outgroup *Rumina decollata*. Note that sequencing was unsuccessful for *Euaethiopina loveridgei* and *Limicolariopsis ruwenzoriensis*.

	.					
Ashabiya fulia	10	20				
Achatina fulica Achatina immaculata	TCGTAAATCC A					
Achatina reticulata	TCGCAAATCC A					
Achatina zanzibarica	TCGCAAATCC A					
Achatina achatina	TCGTAAATCC A	ACCGGAGGCA	AGGCTCCCCG	CAAGCARCTG	GCCACCAAGG	CKGCCAGRAA
Archachatina marginata	TMGYAAATCN A					
Achatina bisculpta	TCGCAAATCC A					
Achatina damarensis	TCGCAAATCC A					
Achatina stuhlmanni Atopocochlis exarata	TCGCAAATCC A					
Limicolaria kambeul	TCGCAAATCC A					
Limicolaria martenssii	TCGCAAATCC A					
Limicolariopsis sp.	TCGCAAATCC A					
Cochlitoma varicosa	TCGCAAATCC A	ACCGGAGGTA	AGGCTCCCCG	CAAACAGCTT	GCCACMAAGG	CGGCTAGGAA
Cochlitoma dimidiata	TCGCAAATCC A					
Cochlitoma sp. cf. vestita	TCGCAAATCC A					
Cochlitoma marinae	TCGCAAATCC A					
Cochlitoma churchilliana	TYGCAAATCC M					
Cochlitoma granulata Cochlitoma simplex	TCGCAAATCC A					
Cochlitoma kilburni	TCGCAAATCC A					
Cochlitoma montistempli	TCGCAAATCC A					
Cochlitoma omissa	TCGCAAATCC A					
Cochlitoma semidecussata	TCGCAAATCC A	ACCGGAGGTA	AGGCTCCCCG	CAAACAGCTT	GCCACCAAGG	CGGCTAGGAA
Cochlitoma ustulata	TCGCAAATCC A					
Cochlitoma zebra	TCGCAAATCC A					
	TCGCAAATCC A	ACCGGAGGTA	AGGCTCCCCG	CAAGCAGCTT	GCCACGAAGG	
Metachatina kraussi				~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
Metachatina kraussi Rumina decollata	TCGCAAATCC A	ACAGGAGGAA	AAGCTCCCCG	CAAACAGCTT	GCCACTAAGG	CGGCTAGAAA
Rumina decollata	TCGCAAATCC A	· · · · · · · · 80	···· ····)	···· ····) 100	···· ····) 110	 D 120
Rumina decollata Achatina fulica	TCGCAAATCC A	 8(GCCACAGGAG) 90 GTGTCAAGAA) 100 ACCCCACAGA) 110 TACAGGCCCG) 120 GCACAGTCGC
Rumina decollata Achatina fulica Achatina immaculata	TCGCAAATCC A	 80 GCCACAGGAG GCCACAGGAG) 90 GTGTCAAGAA GTGTCAAGAA) 100 ACCCCACAGA ACCCCACAGA) 110 TACAGGCCCG TACAGGCCCG	 D 120 GCACAGTCGC GCACAGTCGC
Rumina decollata Achatina fulica Achatina immaculata Achatina reticulata	TCGCAAATCC A	 80 GCCACAGGAG GCCACAGGAG GCCACAGGRG	 90 GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA	 D 100 ACCCCACAGA ACCCCACAGA ACCCCAYMGA	 D 110 TACAGGCCCG TACAGGCCCG TACAGGCCCG	 D 120 GCACAGTCGC GCACAGTCGC GCACAGTCGC
Rumina decollata Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica	TCGCAAATCC A	 8 (GCCACAGGAG GCCACAGGAG GCCACAGGRG GCCACAGGGG	 90 GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA	 D 100 ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA	 110 TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG	 D 120 GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC
Rumina decollata Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina	TCGCAAATCC A	 80 GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG	 GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTSAAGAA	 accccacaga accccacaga accccaraga accccaraga accccaraga	 TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG	 D 120 GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACHGTSGC
Rumina decollata Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica	TCGCAAATCC A	 80 9CCACAGGAG 9CCACAGGRG 9CCACAGGRG 9CCACAGGRG 9CCACMGGRG 9CCCCCGGWG	GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTSAAGAA GTGTCAAGAA	 ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA RCCCCACAGA RCCCCATCGW	 TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG	 D 120 GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACHGTSGC SSACCGTGGC
Rumina decollata Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata	TCGCAAATCC A	80 BCCACAGGAG BCCACAGGAG BCCACAGGAG BCCACAGGAG BCCACMGGRG BCCCCCCGGWG BCCCACMGGAG	GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA	 ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA RCCCCACAGA RCCCCATCGW RCCCCAYSGY GCCCCAYMGA	 TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG	 D 120 GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACHGTSGC SSACCGTGGC GCACAGTCGC
Rumina decollata Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni	TCGCAAATCC A 70 GTCGGCCCCA G GTCGGCCCCA G GTCGGCCCCA G RTCGGCCCCA G RTCGGCCCCA G GTCGGCCCCA G GTCGGCCCCA G GTCGGCCCCA G	 80 GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACMGGAG GCCACMGGAG GCCACAGGAG GCCACAGGAG	GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA	 ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA RCCCCACAGA RCCCCAYMGA GCCCCACAGA GCCCCACAGA	TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG	 GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACHGTSGC SSACCGTGGC GCACAGTCGC GCACAGTCGC GCACAGTCGC
Rumina decollata Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata	TCGCAAATCC A 70 GTCGGCCCCA G GTCGGCCCCA G GTCGGCCCCA G GTCGGCCCCA G RTCGGCCCCA G GTCGGCCCCA G GTCGGCCCCA G GTCGGCCCCA G GTCGGCCCCA G GTCGGCCCCA G	 80 GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG	GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTSAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA	 ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA RCCCCACAGA RCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA	TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG	 GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC
Rumina decollata Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul	TCGCAAATCC A . 70 GTCGGCCCCA G GTCGGCCCCA G GTCGGCCCCA G GTCGGCCCCA G GTCGGCCCCA G GTCGGCCCCA G GTCGGCCCCA G GTCGGCCCCA G GTCGGCCCCA G GTCGGCCCCA G	 80 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG	 GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA	 accccacaga accccacaga accccacaga accccacaga accccargg gccccargg gccccacaga gccccacaga gccccacaga gccccacaga gccccacaga	TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG	 GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC
Rumina decollata Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii	TCGCAAATCC A 70 GTCGGCCCCA G GTCGGCCCCA G	 80 3CCACAGGAG 3CCACAGGRG 3CCACAGGRG 3CCACAGGRG 3CCACMGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG	GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA	 ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA RCCCCACAGA RCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA	 TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG	 GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC
Rumina decollata Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp.	TCGCAAATCC A 70 GTCGGCCCCA G GTCGGCCCCA G	 80 GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACMGGAG GCCACMGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG	GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA	 ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA RCCCCACAGA RCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA	TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG	CACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC
Rumina decollata Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa	TCGCAAATCC A 70 GTCGGCCCCA G GTCGGCCCCA G	 80 GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG	GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA		TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG	 GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC
Rumina decollata Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp.	TCGCAAATCC A 70 GTCGGCCCCA G GTCGGCCCCA G	 80 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACMGGAG 3CCACMGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACMGGAG 3CCACMGGAG	 GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA	 ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA RCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA ACCCCACMGA	TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG	 D 120 GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC
Rumina decollata Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata	TCGCAAATCC A 70 GTCGGCCCCA G GTCGGCCCCA G	 80 GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACMGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACMGGAG GCCACMGGAG GCCACMGGAG	 GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA	 ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA RCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA ACCCCACAGA ACCCCACAGA	TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG	 GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACAGTCGC GCACMGTCGC GCACMGTCGC
Rumina decollata Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina disculpta Achatina disculpta Achatina dumarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata	TCGCAAATCC A TCGCAAATCC A TO GTCGGCCCCA G GTCGGCCCCA G	 80 3CCACAGGAG 3CCACAGGAG 3CCACAGGRG 3CCACAGGAG 3CCACMGGRG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACMGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG	 GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA	 ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA RCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA	TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG	 GCACAGTCGC
Rumina decollata Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma granulata	TCGCAAATCC A 70 GTCGGCCCCA G GTCGGCCCCA G	 80 GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG	 GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA	 ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA RCCCCACAGA RCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA	TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG TACAGGCCCG	
Rumina decollata Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma granulata Cochlitoma simplex	TCGCAAATCC A 70 GTCGGCCCCA G GTCGGCCCCA G GTCGGCCCA G G GTCGGCCCA G G G G G G G G G G G G G G	 80 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACMGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG	 GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA	 ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA CCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA	TACAGGCCCG TACAGGCCCG	 GCACAGTCGC
Rumina decollata Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni	TCGCAAATCC A TCGCAAATCC A TO GTCGGCCCCA G GTCGGCCCCA G GTCGGCCCA	 80 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACMGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG	 GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA	 ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA RCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA	 TACAGGCCCG	 GCACAGTCGC
Rumina decollata Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina damarensis Achatina disculpta Achatina disculpta Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli	TCGCAAATCC A TCGCAAATCC A TO TO TO TO TCGGCCCCA C TCGGCCCCA C	 80 GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACMGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG	 GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA	 ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA RCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA	 TACAGGCCCG	 GCACAGTCGC
Rumina decollata Achatina fulica Achatina immaculata Achatina reticulata Achatina reticulata Achatina zanzibarica Achatina achatina Achatina damarensis Achatina disculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria kambeul Limicolaria martenssii Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma dimidiata Cochlitoma marinae Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli	TCGCAAATCC A 70 GTCGGCCCCC G GTCGGCCCCA G GTCGGCCCA G GTC	 80 3CCACAGGAG	 GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA	 ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA RCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA	 TACAGGCCCG	 GCACAGTCGC
Rumina decollata Achatina fulica Achatina immaculata Achatina reticulata Achatina reticulata Achatina zanzibarica Achatina achatina Achatina achatina Achatina damarensis Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolaria martenssii Limicolaria martenssii Limicolariopsis sp. Cochlitoma dimidiata Cochlitoma dimidiata Cochlitoma granulata Cochlitoma simplex Cochlitoma simplex Cochlitoma montistempli Cochlitoma nomissa Cochlitoma semidecussata	TCGCAAATCC A 70 GTCGGCCCCA G GTCGGCCCCA G GTCGGCCCA G G	 80 3CCACAGGAG	 GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA	 ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCATAGA RCCCCATAGA RCCCCATAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA	TACAGGCCCG TACAGGCCCG	
Rumina decollata Achatina fulica Achatina immaculata Achatina reticulata Achatina reticulata Achatina zanzibarica Achatina achatina Achatina damarensis Achatina disculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria kambeul Limicolaria martenssii Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma dimidiata Cochlitoma marinae Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli	TCGCAAATCC A 70 GTCGGCCCCC G GTCGGCCCCA G GTCGGCCCA G GTC	 80 3CCACAGGAG	 GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA	 ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA CCCCACAGA CCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA	TACAGGCCCG TACAGGCCCG	
Rumina decollata Achatina fulica Achatina immaculata Achatina reticulata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina damarensis Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolaria martenssii Limicolaria martenssii Limicolaria martenssii Limicolaria ps. cf. vestita Cochlitoma dimidiata Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma martisempli Cochlitoma montistempli Cochlitoma semidecussata Cochlitoma ustulata	TCGCAAATCC A 70 GTCGGCCCCA G GTCGGCCCCA G GTCGGCCCA G GTCGGCCC	 80 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACMGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG 3CCACAGGAG	 GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA	 ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA CCCCACAGA CCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA	 TACAGGCCCG	 D 120 GCACAGTCGC
Rumina decollata Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria kambeul Limicolaria martenssii Limicolaria martenssii Limicolariopsis sp. Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma granulata Cochlitoma simplex Cochlitoma simplex Cochlitoma montistempli Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra	TCGCAAATCC A 70 GTCGGCCCCA G GTCGGCCCCA G GTCGGCCCA G GTCGGCCC	 GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACMGGAG GCCACMGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG GCCACAGGAG	 GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTCAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA GTGTGAAGAA	 ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA RCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA GCCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA ACCCCACAGA	 TACAGGCCCG	 GCACAGTCGC

Achatina fulica ACTTCGAGAG ATCCGTCGTT ACCAGAAGAG CACGGAGCTT CTCATCCGCA AACTGCCCTT Achatina immaculata WCTKMGAGAG ATCCGTCGKT ACCAGAAGAG CACKGAGCTK CTCATYCGCA ARCTGCCCTT Achatina reticulata Achatina zanzibarica ACTTCGAGAG ATCCGTCGTT ACCAGAAGAG CACGGAGCTT CTCATCCGCA AACTGCCCTT Achatina achatina TCTKCGAGAR ATCCGTCGTT ACCAGAAGAG CACKGAGCTC CTCATCCGCA AGCTGCCCTT Archachatina marginata CCTSMGAGAR ATCCGYCGTT ACCAGAAGAG CASGGAGCTG CTCATYCGCA AGYTGCCCTT WCTTCGAGAG ATCCGTCGTT ACCAGAAGAG YACGGAGCTT CTCATCCGCA ARCTGCCATT Achatina bisculpta Achatina damarensis ACTTCGAGAG ATCCGTCGTT ACCAGAAGAG TACGGAGCTT CTCATCCGCA AACTGCCATT Achatina stuhlmanni ACTTCGAGAG ATCCGTCGTT ACCAGAAGAG CACGGAGCTT CTCATCCGCA AACTGCCATT Atopocochlis exarata ACTTCGAGAG ATCCGTCGTT ACCAGAAGAG CACGGAGCTT CTCATCCGCA AACTGCCATT ACTTCGAGAG ATCCGTCGTT ACCAAAAAAG CACGGAGCTT CTCATCCGCA AACTGCCATT Limicolaria kambeul ACTTCGAGAG ATCCGTCGTT ACCARAARAG CACGGAGCTT CTCATCCGCA AACTGCCATT Limicolaria martenssii Limicolariopsis sp. ACTTCGAGAG ATCCGTCGTT ACCAGAAGAG CACGGAGCTT CTCATCCGCA AACTGCCGTT Cochlitoma varicosa WCTTCGAGAG ATCCGTCGTT ACCAGAAGAG CACAGAGCTT CTCATCCGCA ARCTGCCCTT Cochlitoma dimidiata WCTKCGAGAR ATCCGTCGTT ACCAGAAGAG CACWGAGCTT CTCATCCGCA ARCTGCCCTT Cochlitoma sp. cf. vestita ACTTCGAGAG ATCCGTCGTT ACCARAARAG CACGGAGCTT CTCATCCGCA AACTGCCCTT Cochlitoma marinae ACTTCGAGAG ATCCGTCGTT ACCAGAAAAG CACGGAGCTT CTCATCCGCA AACTGCCCTT Cochlitoma churchilliana ACTTCGAGAG ATCCGTCGTT ACCARAARAG CACCGAGCTT YTCATCCGCA AACTGCCCTT Cochlitoma granulata ACTTCGAGAG ATCCGTCGTT ACCAGAAGAG CACAGAGCTT CTCATCCGCA AACTGCCCTT Cochlitoma simplex ACTTCGAGAG ATCCGTCGTT ACCAGAAGAG CACAGAGCTT CTCATCCGCA AACTGCCCTT ACTTCGAGAG ATCCGTCGTT ACCAGAAGAG CACGGAGCTT CTCATCCGCA AACTGCCCTT Cochlitoma kilburni Cochlitoma montistempli ACTTCGAGAG ATCCGTCGTT ACCAGAAGAG CACAGAGCTT CTCATCCGCA AACTGCCCTT Cochlitoma omissa ACTTCGAGAG ATCCGTCGTT ACCAGAAGAG CACAGAGCTT CTCATCCGCA AACTGCCCTT Cochlitoma semidecussata ACTTCGAGAG ATCCGTCGTT ACCAGAAGAG CACAGAGCTT CTCATCCGCA AACTGCCCTT Cochlitoma ustulata ACTTCGAGAG ATCCGTCGTT ACCAGAAGAG CACGGAGCTT CTCATTCGCA AACTGCCCTT ACTTCGAGAG ATCCGTCGTT ACCAGAAGAG CACGGAGCTT CTCATCCGCA AACTGCCCTT Cochlitoma zebra Metachatina kraussi ACTTCGAGAG ATCCGTCGTT ACCAGAAGAG CACGGAGCTT CTCATCCGCA AACTGCCCTT Rumina decollata GCTTCGAGAG ATCCGACGTT ACCAGAAGAG CACAGAGCTT CTCATCCGCA AGCTGCCCTT CCAGCGGCTG GTCAGAGAGA TCGCCCAGGA CTTTAAGACC GATCTGCGTT TCCAGAGCTC Achatina fulica CCAGCGGCTG GTCAGAGAGA TCGCCCAGGA CTTTAAGACC GATCTGCGTT TCCAGAGCTC Achatina immaculata CCAGCGGCTG GTSAGAGAGA TYGCCCAGGA CTTYAAGACC GATCTGCGYT TCCAGAGCTC Achatina reticulata Achatina zanzibarica CCAGCGGCTG GTCAGAGAGA TCGCCCAGGA CTTTAAGACC GATCTGCGTT TCCAGAGCTC CCAGCGCCTG GTCAGAGAAA TCGCCCAGGA CTTCAAGACY GACCTGCGCT TCCAGAGCTC Achatina achatina Archachatina marginata CCAGCGCYTG GTGAGAGARA TCGCCCARGA CTTCAAGACH GAYCTGCGYT TCCAGAGCTC Achatina bisculpta CCAGCGGCTG GTCAGAGAGA TCGCMCAGGA CTTCAAGACY GATCTGCGYT TCCAGAGCTC Achatina damarensis CCAGCGGCTG GTCAGAGAGA TCGCACAGGA CTTCAAGACC GATCTGCGTT TCCAGAGCTC CCAGCGGCTG GTCAGAGAGA TCGCACAGGA CTTCAAGACC GATCTGCGTT TCCAGAGCTC Achatina stuhlmanni CCAGCGGCTG GTCAGAGAGA TCGCACAGGA CTTCAAGACC GATCTGCGTT TCCAGAGCTC Atopocochlis exarata Limicolaria kambeul CCAGCGGCTG GTCAGAGAGA TCGCACAGGA CTTCAAGACC GATCTGCGTT TCCAGAGCTC CCAGCGGCTG GTCAGAGAGA TCGCACAGGA CTTCAAGACC GATCTGCGTT TYCAGAGCTC Limicolaria martenssii Limicolariopsis sp. CCAGCGGCTG GTCAGAGAGA TCGCACAGGA CTTCAAGACC GATCTGCGTT TCCAGAGCTC Cochlitoma varicosa CCAGCGGYTG GTCAGAGAGA TCGCCCAGGA CTTCAAGACC GATCTGCGTT TCCAGAGCTC Cochlitoma dimidiata CCAGCGGCTG GTSMGAGARA TCGCYCAGGA CTTCAAGACC GATCTGCGYT TCCAGAGCTC Cochlitoma sp. cf. vestita CCAGCGGCTG GTCARARARA TCGCCCAGGA CTTCAAGACT GATYTGCGTT TCCAGAGCTC CCAGCGGCTT GTCAGAGAGA TCGCCCAGGA CTTCAAGACC GATCTGCGTT TCCAGAGCTC Cochlitoma marinae Cochlitoma churchilliana CCAGCGGCTG GTCARAGAGA TCGCCCAGGA CTTCAARACC GATYTGCGTT TCCARAGCTC CCAGCGGCTG GTCAGAGAGA TCGCCCAGGA CTTCAAGACC GATCTGCGTT TCCAGAGCTC Cochlitoma granulata Cochlitoma simplex CCAGCGGCTG GTCAGAGAGA TCGCCCAGGA CTTCAAGACC GATCTGCGTT TCCAGAGCTC CCAGCGGCTG GTCAGAGAGA TCGCCCAGGA CTTCAAGACT GATCTGCGTT TCCAGAGCTC Cochlitoma kilburni Cochlitoma montistempli CCAGCGGCTG GTCAGAGAGA TCGCCCAGGA CTTCAAGACC GATCTGCGTT TCCAGAGCTC Cochlitoma omissa CCAGCGGCTG GTCAGAGAGA TCGCCCAGGA CTTCAAGACC GATCTGCGTT TCCAGAGCTC CCAGCGGCTG GTCAGAGAGA TCGCCCAGGA CTTCAAGACC GATCTGCGTT TCCAGAGCTC Cochlitoma semidecussata Cochlitoma ustulata CCAGCGGCTG GTCAGAGAGA TCGCCCAGGA CTTCAAGACC GATCTGCGTT TCCAGAGCTC Cochlitoma zebra CCAGCGGCTG GTCAGAGAGA TCGCCCAGGA CTTCAAGACT GATCTGCGTT TCCAGAGCTC Metachatina kraussi CCAACGGCTG GTCAGAGAGA TCGCCCAAGA CTTCAAGACC GATCTGCGTT TCCAGAGCTC Rumina decollata CCAGCGCCTT GTCAGAGAGA TCGCGCAGGA TTTCAAGACT GACCTGCGTT TTCAGAGCTC

	250			. 200		
			AGGCTAGCGA			
			AGGCTAGCGA			
	VGCTGTCATG	GCWCTGCAAG	AGGCYAGCGA	RGCMTACCTG	GTGGGTCTGT	TYGAGGACAC
	GGCTGTCATG	GCACTGCAAG	AGGCTAGCGA	GGCCTACCTG	GTGGGTCTGT	TTGAGGACAC
	GGCYGTCATG	GCCCTGCAAG	AGGCYAGCGA	RGCCTACCTG	GTGGGTCTGT	TYGAGGACAC
	GGCTGTCATG	GCYCTGCARG	AGGCYAGCGA	GGCMTACCTG	GTGGGCCTGT	TYGAGGACAC
	GGCTGTCATG	GCACTGCAAG	AGGCTAGCGA	GGCCTACCTG	GTGGGTCTGT	TTGAGGACAC
	GGCTGTCATG	GCACTGCAAG	AGGCTAGCGA	GGCCTACCTG	GTGGGTCTGT	TTGAGGACAC
	GGCTGTCATG	GCACTGCAAG	AGGCTAGCGA	GGCCTACCTG	GTGGGTCTGT	TTGAGGACAC
	GGCTGTCATG	GCACTGCAAG	AGGCTAGCGA	GGCCTACCTG	GTGGGTCTGT	TTGAGGACAC
	AGCTGTCATG	GCACTGCAAG	AAGCTAGCGA	GGCCTACCTG	GTGGGTCTGT	TTGAGGACAC
	AGCTGTCATG	GCACTGCAAG	AAGCTAGCGA	GGCCTACCTG	GTGGGTCTGT	TTGARGACAC
	GGCTGTCATG	GCACTGCAAG	AGGCTAGCGA	GGCCTACCTG	GTGGGTCTGT	TTGAGGACAC
	GGCTGTCATG	GCACTGCAAG	AGGCYAGCGA	GGCCTACCTG	GTGGGTCTGT	TTGAGGACAC
	GGCTGTCAWG	GCACTGCAAG	AGGCYAGCGA	GGCCTACCTG	GTGGGTCTGT	TTGAGGACAC
ta	GGCTGTCATG	GCACTGCAAG	AGGCTAGCGA	GGCCTACCTG	GTGGGTYTGT	TTGAGGACAC
	GGCTGTCATG	GCACTGCAAG	AGGCTAGCGA	GGCCTACCTG	GTGGGTCTGT	TTGAGGACAC
	GGCTGTCATG	GCACTGCAAR	AGGCTAGCGA	GGCCTACCTG	GTGGGTCTGT	TTGAGGACAC
	GGCTGTCATG	GCACTGCAAG	AGGCTAGCGA	GGCCTACCTG	GTGGGTCTGT	TTGAGGACAC
	GGCTGTCATG	GCACTGCAAG	AGGCTAGCGA	GGCCTACCTG	GTGGGTCTGT	TTGAGGACAC
	GGCTGTCATG	GCACTGCAAG	AGGCTAGCGA	GGCCTACCTG	GTGGGTCTGT	TTGAGGACAC
	GGCTGTCATG	GCACTGCAAG	AGGCTAGCGA	GGCCTACCTG	GTGGGTCTGT	TTGAGGACAC
	GGCTGTCATG	GCACTGCAAG	AGGCTAGCGA	GGCCTACCTG	GTGGGTCTGT	TTGAGGACAC
	GGCTGTCATG	GCACTGCAAG	AGGCTAGCGA	GGCCTACCTG	GTGGGTCTGT	TTGAGGACAC
	GGCTGTCATG	GCACTGCAAG	AGGCTAGCGA	GGCCTACCTG	GTGGGTCTGT	TTGAGGACAC
	GGCTGTCATG	GCACTGCAAG	AGGCTAGCGA	GGCCTACCTG	GTGGGTCTGT	TTGAGGACAC
	GGCTGTCATG	GCACTGCAAG	AGGCTAGCGA	GGCCTACCTA	GTGGGTCTGT	TTGAGGACAC
			AGGCTAGCGA			

Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestit Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata

Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata

 $\ldots | \ldots \\ 310 \qquad 320$ CAACCTGTGC GCCATCCACG CCAAACGT CAACCTGTGC GCCATCCACG CCAAACGT CAACCTGTGC GCCATCCAYG CCAARMGT CAACCTGTGC GCCATCCACG CCAAACGT YAACYTGTGC GCYATCCACG CCAARCGT CMACCTKTGC GCCATCCAYG CCARVCGT CAACCTGTGC GCCATCCACG CCAAACGT CAACCTGTGC GCCATCCACG CCAAACGT CAACCTGTGC GCCATYCACG CCAAACGT CAACCTGTGC GCCATCCACG CCAAACGT Cochlitoma sp. cf. vestita CAACCTGTGC GCCATCCACG CCAAACGK CAACCTGTGC GCCATCCACG CCAAACGT CAACTTGTGC GCCATCCACG CCAAACGT CAACCTGTGC GCCATCCACG CCAAACGT

CAACCTGTGC GCCATCCACG CCAAACGT

Appendix 4.4: Alignment of the CO1 gene for the Achatinidae and the subulinid outgroup *Rumina decollata*. Note that sequencing was unsuccessful for *Euaethiopina loveridgei* and *Limicolariopsis ruwenzoriensis*.

Jahoting fulias	10 TTTTTGGTGT A	20				
Achatina fulica Achatina immaculata	TTTTGGGGRT T					
Achatina reticulata	TCCTCGGGGT A					
Achatina zanzibarica	TATTTGGTGT T					
Achatina achatina	TTTTTTGGGGT T					
Archachatina marginata	TTTTTGGGGT G					
Achatina bisculpta	TTTTTGGTGT T					
Achatina damarensis	TTTTTTGGTGT G					
Achatina stuhlmanni	TTTTTGGGGT C					
Atopocochlis exarata	TCTTTGGGGT T					
Limicolaria kambeul	TTTTTGGAAT T					
Limicolaria martenssii	TCTTTGGAGT A					
Limicolariopsis sp.	TCTTAGGGGT A					
Cochlitoma varicosa	TTTTCGGGGT G	GTGATGTGGT	TTAGTTGGGA	CTGGGCTATC	TTTACTTATT	CGATTAGAGT
Cochlitoma dimidiata	TTTTTGGTGT T	TGATGTGGT	TTGGTTGGGA	CCGGGCTATC	TCTACTAATC	CGTTTAGAGC
Cochlitoma sp. cf. vestita	TTTTTGGTGT G	GTGATGTGGT	TTGGTTGGGA	CTGGGCTATC	CTTACTAATC	CGTCTAGAGT
Cochlitoma marinae	TCTTCGGGAC C	CTGGTGTGGC	TTGGTGGGCA	CTGGGCTGTC	TTTACTAATC	CGTTTGGAGT
Cochlitoma churchilliana	TTTTCGGGGT C	CTGGTGTGGG	TTAGTGGGGA	CTGGTTTGTC	CCTATTAATT	CGATTAGAGC
Cochlitoma granulata	TCTTTGGATT C	CTGATGCGGG	TTAGTTGGTA	CTGGGTTATC	GTTATTGATC	CGGTTAGAAC
Cochlitoma simplex	TTTTTGGAGT T					
Cochlitoma kilburni	TTTTTGGAGT G					
Cochlitoma montistempli	TTTTTGGGTT T					
Cochlitoma omissa	TTTTCGGGTT C					
Cochlitoma semidecussata	TTTTCGGGTT T					
Cochlitoma ustulata	TTTTTGGGGT A					
Cochlitoma zebra	TTTTCGGAGT G					
Metachatina kraussi Rumina decollata	TTTTTGGGGT A TTTTTGGGGT C					
Rumina decorraca	TITIIGGGGI C	LGAIGCGGI	TIAGIIGGIA	CIGGIIIAIC	ICIICIIAII	CGITIAGAAC
	· · · · · · · · · · ·	 80				
Achatina fulica	70 TTGGAACAGT G	80 GGAACCTTA) 9(ACTGATGATC) 100 ACTTTTTCAA) 110 CGTGGTTGTA) 120 ACTGCGCATG
Achatina immaculata	70 TTGGAACAGT G TAGGGTCAGT T	80 GGAACCTTA GGGACTTTA) 9(ACTGATGATC ACAGATGATC) 100 ACTTTTTCAA ATTTTTTTAA) 110 CGTGGTTGTA TGTTGTAGTA) 120 ACTGCGCATG ACTGCGCATG
Achatina immaculata Achatina reticulata	70 TTGGAACAGT G TAGGGTCAGT T TCGGTTCGGT G	80 GGGAACCTTA GGGACTTTA GGGACGTTA) 9(ACTGATGATC ACAGATGATC ACTGACGATC) 100 ACTTTTTCAA ATTTTTTTAA ATTTTTTTAA) 110 CGTGGTTGTA TGTTGTAGTA TGTTGTAGTA) 120 ACTGCGCATG ACTGCGCATG ACCGCACATG
Achatina immaculata Achatina reticulata Achatina zanzibarica	70 TTGGAACAGT G TAGGGTCAGT T TCGGTTCGGT G TAGGGACTAC T	80 GGAACCTTA GGGACTTTA GGGACGTTA GGTACCCTC) 9(ACTGATGATC ACAGATGATC ACTGACGATC ACAGATGACC) 10(ACTTTTTCAA ATTTTTTTAA ATTTTTTTAA ATTTCTTTAA) 11(CGTGGTTGTA TGTTGTAGTA TGTTGTAGTA TGTTGTAGTT) 120 ACTGCGCATG ACTGCGCATG ACTGCACATG ACTGCACATG
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina	70 TTGGAACAGT G TAGGGTCAGT T TCGGTTCGGT G TAGGGACTAC T TAGGGACAGC T	80 GGGAACCTTA GGGACTTTA GGGACGTTA GGTACCCTC GGGGTTTTA) 9(ACTGATGATC ACAGATGATC ACTGACGATC ACAGATGACC ACCGATGATC) 10(ACTTTTTCAA ATTTTTTTTAA ATTTTTTTTAA ATTTCTTTAA ATTTCTTTAA) 110 CGTGGTTGTA TGTTGTAGTA TGTTGTAGTA TGTTGTAGTT TGTAGTGGTG) 120 ACTGCGCATG ACTGCGCATG ACCGCACATG ACTGCACATG ACAGCCCATG
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata	70 TTGGAACAGT G TAGGGTCAGT T TCGGTTCGGT G TAGGGACTAC T TAGGGACAGC T TAGGGACAGC A	80 GGGAACCTTA GGGACTTTA GGGACGTTA GGTACCCTC GGGGTTTTA AGGGGTATTA) 9(ACTGATGATC ACAGATGATC ACTGACGATC ACAGATGACC ACCGATGATC ACTGATGATC) 10(ACTTTTTCAA ATTTTTTTTAA ATTTTTTTTAA ATTTCTTTAA ATTTCTTTAA ACTTTTTTTAA) 110 CGTGGTTGTA TGTTGTAGTA TGTTGTAGTA TGTTGTAGTT TGTAGTGGTG TGTGGTAGTA) 120 ACTGCGCATG ACTGCGCATG ACCGCACATG ACCGCACATG ACTGCACATG ACAGCCCATG ACTGCTCATG
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta	70 TTGGAACAGT G TAGGGTCAGT T TCGGTTCGGT G TAGGGACTAC T TAGGGACAGC A TAGGGACAGC A TAGGGAATGT T	80 GGGAACCTTA GGGGACTTTA GGGGACGTTA GGGGACGTTTA AGGGGTATTA AGGGGTATTA GGGTACTTTG) 9(ACTGATGATC ACAGATGATC ACTGACGATC ACAGATGACC ACCGATGATC ACTGATGATC ATTGATGATC) 10(ACTTTTTCAA ATTTTTTTTAA ATTTTTTTTAA ATTTCTTTAA ATTTCTTTAA ACTTTTTTTAA ACTTTTTTTAA) 110 CGTGGTTGTA TGTTGTAGTA TGTTGTAGTA TGTTGTAGTA TGTAGTGGTG TGTGGTAGTA CGTGGTGGTC) 120 ACTGCGCATG ACTGCGCATG ACCGCACATG ACTGCACATG ACTGCACATG ACTGCTCATG ACTGCTCATG
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis	70 TTGGAACAGT G TAGGGTCAGT T TCGGTTCGGT G TAGGGACTAC T TAGGGACAGC T TAGGGACAGC T TAGGGAAGTAC T	80 GGGAACCTTA GGGACTTTA GGGACGTTA CGGTACCTCA CGGGTATTA CGGTACTTTG CGGTACCTTA) 9(ACTGATGATC ACAGATGATC ACAGATGATC ACAGATGATC ACCGATGATC ACTGATGATC ATTGATGATC ACTGATGATC) 10(ACTTTTTCAA ATTTTTTTAA ATTTCTTTAA ATTTCTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTCAA ATTTTTTAAA) 110 CGTGGTTGTA TGTTGTAGTA TGTTGTAGTA TGTTGTAGTG TGTAGTGGTG TGTGGTGGTG CGTGGTGGTC TGTAGTAGTT) 120 ACTGCGCATG ACTGCGCATG ACTGCACATG ACTGCACATG ACTGCCCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni	70 TTGGAACAGT G TAGGGTCAGT T TCGGTTCGGT G TAGGGACTAC T TAGGGACAGC A TAGGGACAGC A TAGGGAAGTAC T TAGGAAGTAC T TAGGGAGTAT T	80 GGGAACCTTA GGGACTTTA GGGACGTTA CGGGACGTTTA GGGGTATTA CGGTACTTTG CGGTACCTTA CGGAACACTG) 9(ACTGATGATC ACAGATGATC ACAGATGATC ACAGATGAC ACCGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGACGATC) 10(ACTTTTTCAA ATTTTTTTAA ATTTTTTTTAA ATTTCTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTTAA ATTTTTTAAA) 110 CGTGGTTGTA TGTTGTAGTA TGTTGTAGTA TGTTGTAGTA TGTAGTGGTG TGTGGTAGTA CGTGGTGGTC TGTAGTAGTT TGTTGTAGTT) 120 ACTGCGCATG ACTGCGCATG ACTGCGCATG ACTGCACATG ACTGCCCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata	70 TTGGAACAGT G TAGGGTCAGT T TCGGTTCGGT G TAGGGACTAC T TAGGGACAGC A TAGGGACAGC A TAGGGAAGTAC T TAGGAAGTAC T TAGGAAATGT A	80 GGGAACCTTA GGGACTTTA GGGACGTTA CGGGACTTTA GGGGGTATTA CGGTACTTG CGGTACCTTA CGGAACACTG AGGGACATTA) 9(ACTGATGATC ACAGATGATC ACTGACGATC ACCGATGACC ACCGATGATC ACTGATGATC ACTGATGATC ACTGACGATC ACTGACGATC) 10(ACTTTTTCAA ATTTTTTTAA ATTTTTTTAA ATTTCTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTCAA ATTTTTTTAA ACTTTTTTAA) 110 CGTGGTTGTA TGTTGTAGTA TGTTGTAGTA TGTTGTAGTA TGTAGTAGTG TGTGGTAGTA TGTAGTAGTT TGTAGTAGTT TGTAATTGTG) 120 ACTGCGCATG ACTGCGCATG ACCGCACATG ACCGCACATG ACAGCCCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul	70 TTGGAACAGT G TAGGGTCAGT T TCGGTTCGGT G TAGGGACTAC T TAGGGACAGC A TAGGGACAGC A TAGGGAAGTAC T TAGGAAGTAC T TAGGGAGTAT T	80 GGGAACCTTA GGGAACGTTA GGGACGTTA GGGACCTTC GGGGGTTTTA AGGGGTATTA CGGAACACTG AGGGAACATTA CGGAACATTA	ACTGATGATC ACTGACGATC ACTGACGATC ACCGATGATC ACCGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGACGATC ACTGATGATC ACTGATGATC) 100 ACTITITCAA ATTITITTAA ATTICITITAA ATTICITITAA ACTITITTAA ACTITITTAA ACTITITAA ACTITITAA ACTITITAA ACTITITAA ACTITIACAA ATTIGTATAA) 110 CGTGGTTGTA TGTTGTAGTA TGTTGTAGTA TGTTGTAGTG TGTAGTGGTG TGTGGTAGTA TGTAGTAGTT TGTAGTAGTT TGTAGTAGTT) 120 ACTGCGCATG ACTGCGCATG ACCGCACATG ACTGCACATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACCGCCCACG
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata	70 TTGGAACAGT G TAGGGTCAGT T TCGGTTCGGT G TAGGGACTAC T TAGGGACAGC A TAGGGACAGC A TAGGGAAGTAC T TAGGAAGTAC T TAGGAAATTAT A TAGGGAACAT T	80 GGGAACCTTA GGGGACTTTA GGGGACGTTA CGGGACCTC CGGGGTATTA CGGTACCTTA CGGAACATTA CGGAACATTA GGGAACTTTA GGGTACCTTG) 9(ACTGATGATC ACTGACGATC ACTGACGATC ACCGATGATC ACCGATGATC ACTGATGATC ATTGATGATC ACTGACGATC ACTGACGATC ACTGATGATC ATTGATGATC ATTGATGATC	100 ACTTTTTCAA ATTTTTTTAA ATTTCTTTAA ATTTCTTTAA ATTTCTTTAA ACTTTTTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTAAA ATTTTTAAA ATTTTTAAA) 111 CGTGGTTGTA TGTTGTAGTA TGTTGTAGTA TGTTGTAGTA TGTAGTAGTA TGTGGTAGTA CGTGGTGGTC TGTAGTAGTT TGTAGTAGTT TGTAGTAGTT TGTTATTGTA) 120 ACTGCGCATG ACTGCGCATG ACCGCACATG ACCGCACATG ACTGCACATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACCGCCCACG ACAGCTCACG
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii	70 TTGGAACAGT G TAGGGTCAGT T TCGGTTCGGT G TAGGGACTAC T TAGGGACAGC A TAGGGACAGC A TAGGGAAGTAC T TAGGAAGTAT T TAGGAAATGT A TAGGAACAT T TAGGAACAT G	80 GGGAACCTTA GGGACGTTA GGGACGTTA GGGGACTTTA GGGGACTTTA GGGAACACTG GGGAACACTG GGGAACCTTG GGGAACCTTG AGGGAACCTTA) 9(ACTGATGATC ACTGACGATC ACTGACGATC ACAGATGATC ACCGATGATC ACTGATGATC ACTGATGATC ACTGACGATC ACTGATGATC ATTGATGATC ATTGATGATC ATAGATGATC) 100 ACTTTTTCAA ATTTTTTTAA ATTTCTTTAA ATTTCTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTAA ACTTTTACAA ATTTGTATAA ATTTTTAAA) 111 CGTGGTTGTA TGTTGTAGTA TGTTGTAGTA TGTTGTAGTG TGTAGTAGTG TGTGGTAGTA CGTGGTGGTC TGTAGTAGTT TGTAATTGTG TGTAATTGTA TGTTATTGTA TGTAGTAGTA) 120 ACTGCGCATG ACTGCGCATG ACCGCACATG ACTGCACATG ACTGCCCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACCGCCCACG ACAGCTCACG ACTGCTCATG
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp.	70 TTGGAACAGT G TAGGGTCAGT T TCGGTTCGGT G TAGGGACTAC T TAGGGACAGC A TAGGGACAGC A TAGGGAAGTAC T TAGGAAGTAC T TAGGAAGTAC T TAGGAACAT T TAGGAACAT G TTGGGAACAC A	80 GGGAACCTTA GGGAACTTTA GGGGACGTTA CGGGTACCTCC CGGGTTTTA CGGTACTTTG CGGTACCTTA CGGAACATTA CGGAACTTA CGGAACTTA CGGAACCTTA CGGAACCTTA CGGAACCTTA CGGAACCTTA CTCTACCTTA) 9(ACTGATGATC ACTGATGATC ACTGACGATC ACCGATGATC ACCGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ATAGATGATC ACTGATGATC ACTGATGATC ACTGATGATC) 100 ACTTTTTCAA ATTTTTTTAA ATTTCTTTAA ATTTCTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTTAA ATTTTTTAA ATTTTTTAA ATTTTGTATAA ATTTTTTAA ATTTTTTAA) 110 CGTGGTTGTA TGTTGTAGTA TGTTGTAGTA TGTAGTGTGTG TGTGGTAGTA CGTGGTGGTC TGTAGTAGTA TGTAATTGTG TGTAATTGTG TGTAGTAGTA TGTAGTAGTA TGTAGTAGTA TGTTATTGTA) 120 ACTGCGCATG ACTGCGCATG ACCGCACATG ACTGCACATG ACTGCCCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACCGCCCACG ACGCCCACG ACTGCTCATG ACAGCACATG
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa	70 TTGGAACAGT G TAGGGTCAGT T TCGGTTCGGT G TAGGGACTAC T TAGGGACAGC A TAGGGACAGC A TAGGGAAGTAC T TAGGAAGTAC T TAGGAACAT T TAGGAACAT T TAGGAACAT A TAGGGAACAC A TAGGTACTAC C	80 GGGAACCTTA GGGACGTTTA GGGACGTTTA GGGTACTTA GGGTACTTA CGGTACCTTA CGGAACATTA CGGAACATTA GGGAACTTTA GGGAACCTTA GGGACCTTA CGGAACCTTA CGGAACCTTA CGGAACCTTA CGGAACCTTA CGGAACCTTA) 9(ACTGATGATC ACAGATGATC ACAGATGATC ACAGATGATC ACCGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ATTGATGATC ATAGATGATC ATAGATGATC ACAGACGATC ACAGACGATC) 100 ACTTTTTCAA ATTTTTTTAA ATTTCTTTAA ATTTCTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTTAA ATTTTTTAA ATTTTTTAA ATTTTTTAA ATTTTTT) 110 CGTGGTTGTA TGTTGTAGTA TGTTGTAGTA TGTTGTAGTG TGTAGTGGTG TGTGGTGGTG TGTAGTAGTA TGTAATTGTG TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA) 120 ACTGCGCATG ACTGCGCATG ACTGCCCATG ACTGCACATG ACTGCCCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACCGCCCACG ACAGCTCACG ACAGCTCATG ACAGCACATG
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata	70 TTGGAACAGT G TAGGGTCAGT T TCGGTTCGGT G TAGGGACTAC T TAGGGACAGC T TAGGGACAGC T TAGGGAAGTAC T TAGGAAGTAC T TAGGAACAT T TAGGAACAT T TAGGAACAT G TTGGGAACAC C TCGGGACAAC C	80 GGGAACCTTA GGGAACCTTA GGGACCTTA GGGACCTTC CGGGGTATTA CGGGACATTA CGGAACACTG CGGAACATTA CGGAACATTA CGGAACCTTG CGGAACCTTG CGGAACCTTA CTCTACACTA	ACTGATGATC ACAGATGATC ACAGATGATC ACCGATGATC ACCGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACAGATGATC ACAGATGATC ACAGATGATC ACTGATGATC	100 ACTITITCAA ATTTITITAA ATTTCTITAA ATTTCTITAA ACTITITTAA ACTITITAA ACTITITAA ACTITITAA ATTTITAA ATTTITAAA ATTTITAAA ATTTITAAA ATTTITAAA ATTTITTAAA ATTTCTTAAA ATTTCTACAA ATTTITAAA) 110 CGTGGTTGTA TGTTGTAGTA TGTTGTAGTA TGTTGTAGTG TGTGGTAGTA CGTGGTGGTG TGTAGTAGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA) 120 ACTGCGCATG ACTGCGCATG ACCGCACATG ACTGCACATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACCGCCCACG ACAGCTCACG ACAGCTCACG ACAGCACATG ACAGCACATG ACGGCGCACG
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita	70 TTGGAACAGT G TAGGGTCAGT T TCGGTTCGGT G TAGGGACTAC T TAGGGACAGC A TAGGGACAGC A TAGGGACAGC A TAGGAAGTAC T TAGGAAGTAC T TAGGAACAT T TAGGAACAT G TTGGGAACAC A TAGGTACTAC C TCGGGACAAC C TAGGTACGAC C	80 GGGAACCTTA GGGGACTTTA GGGGACGTTA TGGTACCTC TGGGGGTATTA CGGGACATTA TGGAACACTG AGGAACATTA TGGAACATTA GGGAACCTTA TCTACATTA TCTACACTA ATCCACACT) 90 ACTGATGATC ACTGACGATC ACAGATGATC ACCGATGATC ACCGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACAGACGATC ACAGACGATC ACCGATGATC) 100 ACTTTTTCAA ATTTTTTTAA ATTTCTTTAA ATTTCTTTAA ACTTTTTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTAA ACTTTTTAA ATTTTTTAA ATTTTTAAA ATTTTTTAAA ATTTTTT) 111 CGTGGTTGTA TGTTGTAGTA TGTTGTAGTA TGTTGTAGTG TGTGGTAGTA CGTGGTGGTC TGTAGTAGTA TGTAGTAGTT TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTC TGTAATTGTC TGTAATTGTC) 120 ACTGCGCATG ACTGCGCATG ACCGCACATG ACTGCACATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACCGCCCACG ACAGCTCACG ACAGCACATG ACAGCACATG ACGGCGCACG ACAGCACATG
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae	70 TTGGAACAGT G TAGGGTCAGT T TCGGTTCGGT G TAGGGACTAC T TAGGGACAGC A TAGGGACAGC A TAGGGACAGC A TAGGGAAGTAC T TAGGAAGTAC T TAGGAACAT T TAGGGAACAC A TAGGGAACAC C TGGGAACAC C TAGGTACTAC C TAGGTACCAC A	80 GGGAACCTTA GGGGACTTTA GGGGACGTTA CGGGACCTCC CGGGGTATTA CGGGACATTA CGGAACACTG AGGGACATTA CGGAACCTTG AGGAACCTTG AGGAACCTTA CTCTACCTTA TCTACACTA ATCCACACTT GTCTACACTTG) 9(ACTGATGATC ACTGACGATCATC ACAGATGATCA ACCGATGATCC ACCGATGATCC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATCC ACTGATGATC ACTGATGATC ACAGATGATC ACAGATGATC ACCGATGATC ACCGATGATC) 100 ACTITITCAA ATTITITTAA ATTITITTAA ATTICTITAA ATTICTITAA ACTITITTAA ACTITITTAA ACTITITAA ACTITITAA ATTITITAA ATTITITAA ATTITITAA ATTITITAA ATTICTACAA ATTICTACAA ATTICTACAA) 110 CGTGGTTGTA TGTTGTAGTA TGTTGTAGTA TGTTGTAGTG TGTGGTAGTA TGTAGTGGTG TGTAGTAGTA TGTAGTAGTA TGTAGTAGTA TGTAGTAGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTG TGTAATTGTG TGTAATTGTG TGTAATTGTG) 120 ACTGCGCATG ACTGCGCATG ACCGCACATG ACCGCACATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACCGCCCACG ACAGCTCACG ACAGCACATG ACAGCACATG ACAGCACATG ACAGCACATG ACAGCACATG ACAGCACATG
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma granulata Cochlitoma simplex	70 TTGGAACAGT G TAGGGTCAGT T TCGGTTCGGT G TAGGGACTAC T TAGGGACAGC A TAGGGACAGC A TAGGGACAGC A TAGGGAAGTAC T TAGGAAGTAT T TAGGAACAT T TAGGAACAT A TAGGTAATGT G TTGGGAACAC A TAGGTACTAC C TCGGGACAAC C TAGGTACGAC C TAGGTACCAC A TAGGTACTAC G TGGGGACTAC T TGGGGACTAC C	80 GGGAACCTTA GGGACCTTA GGGACGTATA GGGGACTTTA GGGTACTTG GGTACCTTA GGGAACACTG GGGAACACTG GGGAACCTTA GGGAACCTTA GGGAACCTTA CTCTACCTTA TCTACATTA TCTACACTA JTCTACACTT JTCTACACTT GTCACCTTA CACCACTTA CACCACTTA CACCACTA	ACTGATGATC ACTGATGATC ACTGACGATC ACAGATGATC ACCGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACAGATGATC ACAGATGACC ACCGATGATC ACCGATGATC ACCGATGATC) 100 ACTTTTTCAA ATTTTTTTAA ATTTCTTTAA ATTTCTTTAA ACTTTTTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTTAA ATTTTTTAA ATTTTTTAA ATTTCTTAA ATTTCTTAA ATTTCTACAA ATTTTTTAA ATTTCTACAA) 111 CGTGGTTGTA TGTTGTAGTA TGTTGTAGTA TGTTGTAGTG TGTAGTAGTG TGTAGTAGTA CGTGGTAGTA CGTGGTAGTA TGTAATTGTG TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTG TGTAATTGTG TGTAATTGTG TGTAATTGTG TGTAATTGTG TGTAATTGTT CGTGATCGTT) 120 ACTGCGCATG ACTGCGCATG ACCGCACATG ACCGCACATG ACTGCACATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACCGCCCACG ACAGCTCATG ACAGCACATG ACAGCACATG ACAGCACATG ACAGCACATG ACAGCTCATG ACAGCACATG ACAGCACATG ACAGCTCATG ACAGCTCATG ACAGCTCATG ACAGCTCATG ACAGCTCATG ACAGCTCATG ACAGCTCATG ACAGCTCATG ACAGCTCATG
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma marinae Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni	70 TTGGAACAGT G TAGGGTCAGT T TCGGTTCGGT G TAGGGACTAC T TAGGGACAGC A TAGGGACAGC A TAGGGACAGC A TAGGGACAGT T TAGGAAGTAC T TAGGGAACAT T TAGGGACACAC A TAGGGACACAC C TCGGGACAAC C TAGGTACCAC A TAGGGACTAC G TGGGGACTAC T TGGGACTAC T TGGGACTAC C TAGGTACGAC C TAGGTACCAC C	80 GGGAACCTTA GGGGACTTTA GGGACCTTC GGGGGTTTTA AGGGGTATTA CGGTACTTTG CGGTACTTTG GGGACATTA CGGAACATTG AGGAACCTTA GGGAACCTTA CTCTACATTA CTCTACACTA TCTACACTA TCCACACTA CTCTACACTA CTCTACACTA	ACTGATGATC ACAGATGATC ACAGATGATC ACCGATGATC ACCGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACAGATGATC ACAGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC	100 ACTTTTTCAA ATTTTTTTAA ATTTCTTTAA ATTTCTTTAA ACTTTTTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTAA ATTTTTTAA ATTTTTTAA ATTTTTTAA ATTTCTTTAA ATTTCTTTAA ATTTCTTCACA ATTTCTTCACA ATTTTTTTAA ATTTTTTTAA) 110 CGTGGTTGTA TGTTGTAGTA TGTTGTAGTA TGTTGTAGTG TGTGGTAGTA CGTGGTGGTG TGTAGTAGTA TGTAGTAGTT TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTG TGTAATTGTG TGTAATTGTG TGTAATTGTG TGTAATTGTT TGTAATTGTA TGTAATTGTT TGTAATTGTA) 120 ACTGCGCATG ACTGCGCATG ACCGCACATG ACAGCCCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACCGCCCACG ACAGCTCACG ACAGCACATG ACAGCACATG ACAGCACATG ACAGCTCATG ACAGCTCATG ACAGCTCATG ACAGCTCATG ACAGCTCATG ACAGCTCATG ACAGCTCACG
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma granulata Cochlitoma granulata Cochlitoma kilburni Cochlitoma montistempli	70 TTGGAACAGT G TAGGGTCAGT T TCGGTTCGGT G TAGGGACTAC T TAGGGACAGC A TAGGGACAGC A TAGGGACAGC A TAGGGACAGT T TAGGAAGTAC T TAGGAAATGT A TAGGGAACAC A TAGGTACTAC C TAGGTACCAC A TAGGGACTAC G TGGGGACTAC G TGGGGACTAC C TAGGGACTAC C TAGGGACTAC C TAGGGACTAC C TAGGGACTAC C TAGGGACTAC C TAGGGACTAC C TAGGGACTAC C	80 GGGAACCTTA GGGGACTTTA GGGGACGTTA GGGGGTTTTA AGGGGTATTA GGGTACTTTG GGGAACACTG AGGGACATTA GGGAACCTTG AGGAACCTTG GGGAACCTTA TCTACACTTA TCTACACTA ACCACTCTA ACTACTCTA ACTACTCTA) 90 ACTGATGATC ACAGATGATC ACAGATGATC ACCGATGATC ACCGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACAGATGATC ACAGATGATC ACAGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC	100 ACTTTTTCAA ATTTTTTTAA ATTTCTTTAA ATTTCTTTAA ATTTCTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTTAA ATTTTTTAA ATTTTTTAA ATTTTTTAA ATTTCTTCACAA ATTTCTTCACAA ATTTCTTCACAA ATTTTTTTAA ATTTTTTTAA ATTTTTTTAA ATTTTTT) 110 CGTGGTTGTA TGTTGTAGTA TGTTGTAGTA TGTTGTAGTG TGTGGTGGTG TGTGGTGGTG TGTGGTGGTG TGTAGTAGTA TGTAATTGTG TGTAATTGTA TGTAATTGTA TGTAATTGTG TGTAATTGTG TGTAATTGTG TGTAATTGTG TGTAATTGTG TGTTATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA) 120 ACTGCGCATG ACTGCGCATG ACCGCACATG ACCGCACATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACCGCCCACG ACAGCTCATG ACAGCACATG ACAGCACATG ACAGCACATG ACAGCCACATG ACAGCCACATG ACAGCCCATG ACAGCCCATG ACAGCCCATG ACAGCCCATG ACAGCCCATG ACAGCTCATG ACAGCTCATG ACGGCTCACG ACGGCCCACG
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma granulata Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa	70 TTGGAACAGT G TAGGGTCAGT T TCGGTTCGGT G TAGGGACTAC T TAGGGACAGC A TAGGGACAGC A TAGGGACAGC A TAGGGACAGC A TAGGGAACAT T TAGGAAATGT A TAGGAACAT C TGGGACACA C TAGGTACTAC C TAGGTACCAC A TAGGGACTAC T TGGGGACTAC C TAGGGACTAC C TAGGTACGAC C TAGGTACGAC C TAGGGACACA C TAGGGACACA C	80 GGGACCTTA GGGACCTTA GGGACGTATA GGGGACTTA CGGGACCTCC CGGGACATTA CGGAACACTG AGGAACACTG AGGAACCTTG CGGAACCTTA CTCTACCTTA CTCTACACTA CTCTACACTA CACACTCTA CACACTCA CACACTCA CACACTCA CACACTCA CACACTCA CACACTCA CACACTCA CACACTCA CACACTCA CACACTCA CACACTCA CACACTCA CACACTCA CACACTCA CACACTCA CACACTCA CACACTCA CACACTCA CACACTCA) 90 ACTGATGATC ACTGACGATC ACAGATGATC ACCGATGATC ACCGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACAGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC) 100 ACTTTTTCAA ATTTTTTTAA ATTTCTTTAA ATTTCTTTAA ATTTCTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTAA ATTTTTTAA ATTTTTTAA ATTTTTTAA ATTTTTT) 110 CGTGGTTGTA TGTTGTAGTA TGTTGTAGTA TGTTGTAGTG TGTGGTAGTA TGTGGTAGTA CGTGGTGGTC TGTAGTAGTA TGTAGTAGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTG TGTAATTGTG TGTAATTGTG TGTAATTGTG TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA) 120 ACTGCGCATG ACTGCGCATG ACCGCACATG ACCGCACATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACCGCCCACG ACAGCTCATG ACAGCACATG ACAGCACATG ACAGCACATG ACAGCACATG ACAGCTCATG ACAGCTCATG ACAGCTCATG ACAGCTCATG ACAGCTCATG ACGCCCACG ACAGCTCACG ACGCCCACG ACGCCCACG ACGCCCACG ACGCCCACG ACGCCCACG ACAGCTCATG
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma varicosa Cochlitoma sp. cf. vestita Cochlitoma granulata Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata	70 TTGGAACAGT G TAGGGTCAGT T TCGGTTCGGT G TAGGGACTAC T TAGGACAGC A TAGGGACAGC A TAGGGACAGC A TAGGGACAGT T TAGGAAGTAT T TAGGAAATGT A TAGGAACAT T TAGGAACAT G TTGGGACACA C TAGGTACGAC C TAGGTACCAC A TAGGGACTAC C TAGGGACTAC C TAGGGACTAC C TAGGGACTAC C TAGGGACTAC C TAGGGACACA A TAGGGACTAC C TAGGGACACA G	80 GGGAACCTTA GGGACCTTA GGGACGTTA GGGGACTTTA GGGGTATTA GGGACCTTA GGGACCTTA GGGACCTTA GGGACCTTA GGGACCTTA GGGACCTTA CTCTACCTTA TTCTACACTA TTCTACACTA TTCTACACTA AACTACTCTA ACCTACTCA TCGACTCTA CTCTACACTA CTCTACACTA ACTACTCTA TCGACTCTA CTCTACACTA) 90 ACTGATGATC ACTGACGATC ACTGACGATC ACCGATGATC ACCGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC	100 ACTTTTTCAA ATTTTTTTAA ATTTCTTTAA ATTTCTTTAA ATTTCTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTTAA ATTTTTTAA ATTTTTTAA ATTTCTTCAA ATTTCTTCAA ATTTTTTTAA ATTTTTTTAA ATTTTTTTAA ATTTTTT) 111 CGTGGTTGTA TGTTGTAGTA TGTTGTAGTA TGTTGTAGTA TGTAGTAGTG TGTAGTAGTA CGTGGTGGTG TGTAGTAGTA TGTAGTAGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTG TGTCATTGTG TGTCATTGTG TGTCATTGTA TGTTATTGTA TGTTATTGTA TGTTATTGTA TGTTATTGTA TGTTATTGTA) 120 ACTGCGCATG ACTGCGCATG ACCGCACATG ACCGCACATG ACTGCACATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACCGCCCACG ACAGCCCACG ACAGCACATG ACAGCACATG ACAGCACATG ACAGCACATG ACAGCTCATG ACCGCCCACG ACGGCACACG ACGGCACACG ACGGCACACG ACGGCACACG ACGGCACACG
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma sp. cf. vestita Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma semidecussata Cochlitoma ustulata	70 TTGGAACAGT G TAGGGTCAGT T TCGGTTCGGT G TAGGGACTAC T TAGGGACAGC A TAGGGACAGC A TAGGGACAGC A TAGGGACAGT T TAGGAAGTAT T TAGGAATGT A TAGGAACAT T TAGGAATGT G TTGGGACACA C TAGGTACGAC C TAGGTACCAC A TAGGGACTAC C TAGGGACTAC C	80 GGGAACCTTA GGGACCTTA GGGACGTTA GGGGACTTTA GGGGACTTTA GGGACCTTA GGGAACACTG GGGAACACTG GGGAACCTTA GGGAACCTTA GGGAACCTTA CTCTACCTTA TCCTACATTA TCCACACTA ACTACTCTA ACTACTCTA ACTACTCTA ACTACTCTA TCCACACTA TCCACACTA TCCACACTA TCCACACTA TCCACACTA) 90 ACTGATGATC ACAGATGATC ACAGATGATC ACAGATGATC ACCGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACAGATGATC ACAGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACAGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC	100 ACTTTTCAA ATTTTTTAA ATTTCTTTAA ATTTCTTTAA ATTTCTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTAA ATTTTTAA ATTTTTTAA ATTTCTACAA ATTTCTTCACA ATTTCTTCACAA ATTTTTTTAA ATTTTTTAA ATTTTTTAA ATTTTTT) 111 CGTGGTTGTA TGTTGTAGTA TGTTGTAGTA TGTTGTAGTA TGTAGTAGTG TGTAGTAGTA CGTGGTAGTA CGTGGTAGTA CGTGGTAGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTG TGTCATTGTG TGTCATTGTA TGTTATTGTA TGTTATTGTA TGTTATTGTA TGTTATTGTA TGTTATTGTA TGTTATTGTA) 120 ACTGCGCATG ACTGCGCATG ACTGCACATG ACCGCACATG ACTGCACATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACCGCCCACG ACAGCCCACG ACAGCCCATG ACAGCACATG ACAGCGCACA ACTGCACATG ACAGCCCATG ACAGCCCATG ACAGCCCATG ACGGCCCACG ACGGCCCACG ACGGCCCACG ACGGCCCACG ACGGCCCACG ACGGCCCACG ACGGCCCACG ACGGCCCACG ACGGCCCACG ACGGCCACACG ACGGCCACACG ACGGCCACACG
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina bisculpta Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma ustulata	70 TTGGAACAGT G TAGGGTCAGT G TAGGGACTAC T TAGGGACAGC T TAGGGACAGC A TAGGGACAGC A TAGGGACAGC A TAGGGACAGT T TAGGAAGTAC T TAGGAAATGT A TAGGGACAT T TAGGGACAAC A TAGGGACAAC C TAGGTACCAC A TAGGGACTAC C TAGGGACTAC C TAGGGACTAC C TAGGGACAAC A TGGGGACTAC C TAGGGACACA C	80 GGGAACCTTA GGGGACTTTA GGGACCTTC GGGGGTTTTA AGGGGTATTA CGGGACATTA GGGTACTTTG GGAACACTG AGGGACATTA CGGAACATTA CGGAACCTTA CTCTACACTA	ACTGATGATC ACAGATGATC ACAGATGATC ACCGATGATC ACCGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACAGATGATC ACAGATGATC ACAGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC	100 ACTTTTTCAA ATTTTTTTAA ATTTCTTTAA ATTTCTTTAA ATTTCTTTAA ACTTTTTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTAA ATTTTTTAA ATTTTTTAA ATTTTTTAA ATTTCTTAA ATTTCTTCACA ATTTCTTCACA ATTTCTTCACA ATTTCTTCACA ATTTCTTCACA ATTTCTTCACA ATTTTTTTAA ATTTTTTTAA ATTTTTTTAA ATTTTTT) 110 CGTGGTTGTA TGTTGTAGTA TGTTGTAGTA TGTTGTAGTG TGTGGTAGTA CGTGGTGGTG TGTGGTAGTA TGTAGTAGTA TGTAATTGTG TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTTATTGTA TGTTATTGTA TGTTATTGTA TGTTATTGTA TGTTATTGTA TGTTATTGTA TGTTATTGTA) 120 ACTGCGCATG ACTGCGCATG ACTGCGCATG ACTGCCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACCGCCCACG ACAGCTCATG ACAGCACATG ACAGCACATG ACAGCACATG ACAGCACATG ACGGCCACG ACAGCTCATG ACGGCCACG ACGGCCACG ACGGCCACG ACGGCCACG ACGGCCACG ACAGCTCATG ACGGCCACG ACGGCCACG ACAGCTCATG ACGGCCACG ACAGCTCACG ACAGCCACG ACAGCCACG ACAGCCACG
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma sp. cf. vestita Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma semidecussata Cochlitoma ustulata	70 TTGGAACAGT G TAGGGTCAGT T TCGGTTCGGT G TAGGGACTAC T TAGGGACAGC A TAGGGACAGC A TAGGGACAGC A TAGGGACAGT T TAGGAAGTAT T TAGGAATGT A TAGGAACAT T TAGGAATGT G TTGGGACACA C TAGGTACGAC C TAGGTACCAC A TAGGGACTAC C TAGGGACTAC C	80 GGGAACCTTA GGGAACCTTA GGGACGTTA GGGACCTTC GGGGACTTTA AGGGGTATTA GGGGACATTA GGGAACACTG AGGAACATTA GGGAACCTTG GGAACCTTA TCTACACTA TCTACACTA TCTACACTA TCTACACTA ACTACTCTA TCTACACTA TCTACACTA TCTACACTA TCGACTCTA TCGACTCTA TCTACACTA TCGACTCTA TCTACACTA TCGACTCTA TCTACACTA TCTACACTA TCCACCTTA	ACTGATGATC ACAGATGATC ACAGATGATC ACAGATGATC ACCGATGATC ACCGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACTGATGATC ACAGATGATC ACAGATGATC ACAGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC ACCGATGATC	100 ACTTTTTCAA ATTTTTTTAA ATTTCTTTAA ATTTCTTTAA ATTTCTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTTAA ACTTTTTAA ATTTTTTAA ATTTTTTAA ATTTTTTAA ATTTCTTCACA ATTTCTTCACA ATTTCTTCACA ATTTCTTCACA ATTTCTTCACA ATTTCTTCACA ATTTCTTCACA ATTTTTTTAA ATTTCTTCACA ATTTTTTTAA ATTTTTTTAA ATTTTTTTAA ATTTCTTTAA ATTTCTTTAA) 110 CGTGGTTGTA TGTTGTAGTA TGTTGTAGTA TGTTGTAGTA TGTAGTGGTG TGTAGTAGTA CGTGGTAGTA CGTGGTAGTA TGTAGTAGTA TGTAATTGTG TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTAATTGTA TGTTATTGTA TGTTATTGTA TGTTATTGTA TGTTATTGTA TGTTATTGTA TGTTATTGTA TGTTATTGTA TGTTATTGTA TGTTATTGTA TGTTATTGTA) 120 ACTGCGCATG ACTGCGCATG ACTGCGCATG ACTGCCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACTGCTCATG ACCGCCCACG ACAGCTCATG ACAGCACATG ACAGCACATG ACAGCACATG ACAGCACATG ACAGCCACATG ACAGCCACATG ACAGCTCATG ACGGCCACATG ACGGCCACATG ACGGCCACATG ACGGCCCACG ACGGCCCACG ACGGCCCACG ACAGCTCATG ACGGCCCACG ACAGCTCACG ACAGCTCACG ACAGCTCACG ACAGCTCACG ACAGCTCACG ACAGCTCACG ACAGCTCACG

	130) 140) 15	0 160	0 17	0 180
Achatina fulica				CAATTATAAT		
Achatina immaculata				CAATTATGAT		
Achatina reticulata				CAATTATAAT		
Achatina zanzibarica Achatina achatina				CAATTATGAT CAATTATGAT		
Archachatina marginata				CAATTATGAT		
Achatina bisculpta				CTATTATAAT		
Achatina damarensis				CTATTATAAT		
Achatina stuhlmanni	CTTTTGTGAT	AATTTTTTTT	ATAGTGATAC	CAATTATAAT	TGGTGGGTTT	GGAAACTGGA
Atopocochlis exarata	CTTTCGTAAT	AATTTTCTTT	ATAGTTATAC	CAATCATAAT	TGGCGGGTTT	GGGAACTGAA
Limicolaria kambeul				CTATTATAAT		
Limicolaria martenssii				CCATTATAAT		
Limicolariopsis sp.				CTATTATAAT		
Cochlitoma varicosa				CCATTATAAT		
Cochlitoma dimidiata				CCATTATAAT CAATTATAAT		
Cochlitoma sp. cf. vestita Cochlitoma marinae				CAATTATGAT		
Cochlitoma churchilliana				CTATTATAAT		
Cochlitoma granulata				CAATTATAAT		
Cochlitoma simplex				CCATTATAAT		
Cochlitoma kilburni	CATTCGTTAT	AATTTTCTTT	ATAGTAATAC	CTATTATAAT	TGGGGGTTTT	GGCAACTGGA
Cochlitoma montistempli	CGTTTGTTAT	AATTTTCTTT	ATAGTAATAC	CTATTATAAT	TGGGGGTTTT	GGGAACTGGA
Cochlitoma omissa				CTATTATAAT		
Cochlitoma semidecussata				CTATTATAAT		
Cochlitoma ustulata				CCATTATAAT		
Cochlitoma zebra				CCATTATAAT CTATTATAAT		
Metachatina kraussi Rumina decollata				CTATTATAAT		
Rumina decorraca	CATTIGIGAT	AAIIIIIIII	AIAGIAAIGC	CIAIIAIAAI	CGGIGGIIII	GGAAATIGAA
	1 1	1 1	1 1	1 1	1 1	1 1
	190	200	21		0 23	0 240
Achatina fulica	190 TGGTCCCAAT) 200 ACTTATTGGT) 210 GCTCCTGATA) 220 TAAGATTTCC	D 23 ACGAATAAAT	0 240 AATATAAGGT
Achatina immaculata	190 TGGTCCCAAT TGGTTCCCCT) 200 ACTTATTGGT TTTAATTGGG) 21 GCTCCTGATA GCTCCTGATA) 220 TAAGATTTCC TAAGTTTTCC	0 23 ACGAATAAAT CCGGATGAAT	0 240 AATATAAGGT AATATGAGGT
Achatina immaculata Achatina reticulata	190 TGGTCCCAAT TGGTTCCCCT TGGTTCCCAT) 200 ACTTATTGGT TTTAATTGGG ACTTATTGGG) 21 GCTCCTGATA GCTCCTGATA GCTCCCGATA) 220 TAAGATTTCC TAAGTTTTCC TAAGTTTTCC	0 23 ACGAATAAAT CCGGATGAAT ACGTATAAAC	0 240 AATATAAGGT AATATGAGGT AATATAAGAT
Achatina immaculata Achatina reticulata Achatina zanzibarica	190 TGGTCCCAAT TGGTTCCCCT TGGTTCCCAT TGGTACCACT) 200 ACTTATTGGT TTTAATTGGG ACTTATTGGG ATTAATTGGA) 21 GCTCCTGATA GCTCCTGATA GCTCCCGATA GCACCTGACA	0 220 TAAGATTTCC TAAGTTTTCC TAAGTTTTCC TAAGATTCCC	0 23 ACGAATAAAT CCGGATGAAT ACGTATAAAC ACGCATAAAT	0 240 AATATAAGGT AATATGAGGT AATATAAGAT AATATAAGAT
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina	19(TGGTCCCAAT TGGTTCCCCT TGGTTCCCAT TGGTACCACT TAGTCCCACT) 200 ACTTATTGGT TTTAATTGGG ACTTATTGGG ATTAATTGGA ATTAATTGGG) 211 GCTCCTGATA GCTCCTGATA GCTCCCGATA GCACCTGACA GCTCCAGATA	0 220 TAAGATTTCC TAAGTTTTCC TAAGTTTTCC TAAGATTCCC TAAGATTCCC	0 23 ACGAATAAAT CCGGATGAAT ACGTATAAAC ACGCATAAAT TCGGATGAAT	0 240 AATATAAGGT AATATGAGGT AATATAAGAT AATATAAGAT AATATAAGGT
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata	190 TGGTCCCAAT TGGTTCCCCT TGGTTCCCAT TGGTACCACT TAGTCCCACT TAGTTCCTCT) 200 ACTTATTGGT TTTAATTGGG ACTTATTGGG ATTAATTGGA ATTAATTGGG ATTAATTGGG) 211 GCTCCTGATA GCTCCTGATA GCTCCCGATA GCACCTGACA GCTCCAGATA GCTCCAGATA	0 220 TAAGATTTCC TAAGTTTTCC TAAGTTTTCC TAAGATTCCC TAAGATTCCC TAAGATTCCC	0 23 ACGAATAAAT CCGGATGAAT ACGTATAAAC ACGCATAAAT TCGGATGAAT TCGGATAAAT	0 240 AATATAAGGT AATATGAGGT AATATAAGAT AATATAAGAT AATATAAGGT AATATAAGGT
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina	190 TGGTCCCAAT TGGTTCCCAT TGGTACCACT TAGTCCCACT TAGTTCCTCT TGGTCCCACT) 200 ACTTATTGGT TTTAATTGGG ACTTATTGGG ATTAATTGGA ATTAATTGGG ATTAATTGGG TTTAATTGGT) 211 GCTCCTGATA GCTCCTGATA GCTCCCGATA GCACCTGACA GCTCCAGATA GCTCCAGATA GCGCCAGATA	0 220 TAAGATTTCC TAAGTTTTCC TAAGTTTTCC TAAGATTCCC TAAGATTCCC	0 23 ACGAATAAAT CCGGATGAAT ACGTATAAAC ACGCATAAAT TCGGATGAAT TCGGATAAAT TCGGATAAAT	0 240 AATATAAGGT AATATAAGAT AATATAAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGAT
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta	190 TGGTCCCAAT TGGTTCCCAT TGGTACCACT TAGTCCCACT TAGTCCCACT TGGTCCCACT TGGTCCCACT) 200 ACTTATTGGT TTTAATTGGG ACTTATTGGG ATTAATTGGG ATTAATTGGG TTTAATTGGG TTTAATTGGT TTTGATTGGT) 211 GCTCCTGATA GCTCCTGATA GCACCTGACA GCACCTGACA GCTCCAGATA GCCCCAGATA GCCCCAGATA	0 220 TAAGATTTCC TAAGTTTTCC TAAGTTTTCC TAAGATTCCC TAAGATTCCC TAAGATTTCC TAAGATTTCC	0 23 ACGAATAAAT CCGGATGAAT ACGTATAAAC ACGCATAAAAT TCGGATGAAAT TCGGATAAAAT TCGAATAAAT	0 240 AATATAAGGT AATATAAGGT AATATAAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGAT AACATAAGGT
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata	190 TGGTCCCAAT TGGTTCCCAT TGGTTCCCAT TAGTCCCACT TAGTTCCTCT TGGTCCCACT TGGTCCCATT TAGTTCCATT) 200 ACTTATTGGT TTTAATTGGG ACTTATTGGG ATTAATTGGG ATTAATTGGG TTTAATTGGG TTTAATTGGT TTTGATTGGT ACTGATTGGT ACTGATTGGGT	CCCCCGACA CCCCCGATA CCTCCCGATA CCTCCCGATA CCTCCCGATA CCTCCAGATA CCCCCAGATA CCCCCAGATA CCCCCAGACA CCTCCTGATA CCCCCCGACA	D 221 TAAGATTTCC TAAGTTTTCC TAAGTTTTCC TAAGATTCCC TAAGATTCCC TAAGATTTCC TAAGATTTCC TAAGATTTCC TAAGGTTTCCC TAAGGTTTCCC	0 23 ACGAATAAAT CCGGATGAAT ACGTATAAAC ACGCATAAAT TCGGATGAAT TCGGATAAAT TCGAATAAAC GCGGATAAAT TCGAATAAAT	0 240 AATATAAGGT AATATGAGGT AATATAAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGGT AACATAAGAT AACATAAGAT
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul	190 TGGTCCCAT TGGTTCCCAT TGGTACCACT TAGTCCCACT TGGTCCCACT TGGTCCCACT TGGTCCCACT TGGTCCCATT TAGTTCCATT) 200 ACTTATTGGT TTTAATTGGG ACTTATTGGG ATTAATTGGG ATTAATTGGG TTTAATTGGT TTTGATTGGT ACTGATTGGT ATTAATTGGG ATTAATTGGG	CTCCTGATA GCTCCTGATA GCTCCCGATA GCTCCCGATA GCACCTGACA GCTCCAGATA GCTCCAGATA GCACCAGACA GCTCCTGATA GCCCCCGACA	D 221 TAAGATTTCC TAAGTTTTCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTTCC TAAGATTTCC TAAGGTTTCC TAAGGTTTCCC TAAGATTCCC	0 23 ACGAATAAAT CCGGATGAAT ACGTATAAAC ACGCATAAAT TCGGATGAAT TCGGATAAAT TCGTATAAAC GCGGATAAAT TCGAATAAAT CCGAATGAAT	0 240 AATATAAGGT AATATAAGAT AATATAAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGGT AACATAAGGT AACATAAGAT AACATAAGAT AACATAAGAT
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii	190 TGGTCCCAT TGGTTCCCAT TGGTACCACT TAGTCCCACT TGGTCCCACT TGGTCCCACT TGGTCCCATT TAGTCCATT TAGTTCCCTT TAGTACCATT) 200 ACTTATTGGT TTTAATTGGG ACTTATTGGG ATTAATTGGG ATTAATTGGG TTTAATTGGT TTTGATTGGT ACTGATTGGT ATTAATTGGG ATTAATTGGT ATTGATTGGT	CCCCCGATA GCTCCTGATA GCTCCCGATA GCACCTGACA GCACCTGACA GCTCCAGATA GCGCCAGATA GCGCCAGATA GCCCCCGATA GCCCCCGATA GCCCCCGATA	D 221 TAAGATTTCC TAAGTTTTCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTTCC TAAGATTTCC TAAGATTTCC TAAGTTTCCC TAAGATTCCC TAAGATTCCC	0 23 ACGAATAAAT CCGGATGAAT ACGTATAAAC ACGCATAAAT TCGGATGAAT TCGGATGAAT TCGAATAAAT TCGAATAAAT CCGAATGAAT TCGCATGAAT	0 240 AATATAAGGT AATATAAGAT AATATAAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGGT AACATAAGGT AACATAAGAT AACATAAGAT AATATAAGAT
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp.	190 TGGTCCCAT TGGTTCCCAT TGGTACCACT TAGTCCCACT TGGTCCCACT TGGTCCCACT TGGTCCCATT TAGTTCCCTT TAGTTCCCTT TAGTACCATT TAGTACCACT) 200 ACTTATTGGT TTTAATTGGG ACTTATTGGG ATTAATTGGG ATTAATTGGG TTTAATTGGG TTTGATTGGT ACTGATTGGT ATTAATTGGG ATTAATTGGG ATTAATTGGG GTTAATTGGG	CACCCGAGATA GCTCCTGATA GCTCCCGATA GCACCTGACA GCACCTGACA GCTCCAGATA GCGCCAGATA GCCCCAGATA GCCCCCGACA GCTCCTGATA GCCCCGACA GCCCCGACA GCCCCGACA	D 221 TAAGATTTCC TAAGTTTTCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTTCC TAAGATTTCC TAAGGTTTCC TAAGATTCCC TAAGATTCCC TAAGATTCCC	0 23 ACGAATAAAT CCGGATGAAT ACGTATAAAC ACGCATAAAT TCGGATGAAT TCGGATAAAT TCGAATAAAT TCGAATAAAT CCGAATGAAT CCGAATGAAT TCGCATGAAA	0 240 AATATAAGGT AATATAAGAT AATATAAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGGT AACATAAGGT AACATAAGAT AACATGAGAT AATATAAGAT AATATAAGAT
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa	190 TGGTCCCAT TGGTTCCCAT TGGTCCCACT TAGTCCCACT TAGTCCCACT TGGTCCCACT TGGTCCCATT TAGTTCCATT TAGTTCCCTT TAGTACCATT TAGTACCACT TAGTACCACT) 200 ACTTATTGGT TTTAATTGGG ACTTATTGGG ATTAATTGGG ATTAATTGGG TTTAATTGGG TTTAATTGGT ACTGATTGGT ATTAATTGGG ATTAATTGGG ATTAATTGGG GTTAATTGGG GCTAATTGGT	CACCCCGATA CCTCCTGATA GCTCCCGATA GCACCTGACA GCTCCAGATA GCTCCAGATA GCCCCAGATA GCCCCAGATA GCCCCCGACA GCTCCTGATA GCACCAGATA GCACCTGACA GCCCCTGATA	D 221 TAAGATTTCC TAAGTTTTCC TAAGTTTTCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTTCC TAAGATTTCC TAAGTTTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC	0 23 ACGAATAAAT CCGGATGAAT ACGTATAAAC ACGCATAAAT TCGGATGAAT TCGGATGAAT TCGAATAAAT TCGTATAAAC GCGGATAAAT CCGAATGAAT TCGCAATGAAT TCGCAATGAAT	0 240 AATATAAGGT AATATAAGAT AATATAAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGGT AACATAAGGT AACATAAGAT AACATGAGAT AATATAAGAT AATATAAGAT AATATAAGAT AATATAAGAT
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata	190 TGGTCCCAT TGGTTCCCAT TGGTACCACT TAGTCCCACT TAGTCCCACT TGGTCCCACT TGGTCCCATT TAGTTCCTT TAGTTCCCTT TAGTACCATT TAGTACCACT TAGTCCCCTT TAGTCCCCTT) 200 ACTTATTGGT TTTAATTGGG ACTTATTGGG ATTAATTGGG ATTAATTGGG TTTAATTGGG TTTAATTGGT ACTGATTGGT ATTAATTGGT ATTAATTGGG ATTAATTGGG GTTAATTGGG GCTAATTGGG ATTGATTGGG	CCCCCGATA CCCCCGATA CCCCCGATA CCACCTGATA CCACCTGACA CCCCAGATA CCCCAGATA CCCCCAGATA CCCCCCGACA CCCCCCGACA CCCCCCGACA CCCCCGATA CCACCAGATA CCACCAGATA	D 221 TAAGATTTCC TAAGTTTTCC TAAGTTTTCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGGTTTCC TAAGGTTCCC TAAGATTCCC TAAGATTCCC TAAGCTTTCC TAAGCTTTCC TAAGCTTTCC	0 23 ACGAATAAAT CCGGATGAAT ACGTATAAAC ACGCATAAAT TCGGATGAAT TCGGATAAAT TCGAATAAAT TCGAATAAAT CCGAATGAAT CCGAATGAAT TCGCATGAAT TCGTATAAAC CCGAATGAAT TCGTATAAAC	0 240 AATATAAGGT AATATAAGGT AATATAAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGGT AACATAAGGT AACATAAGAT AACATGAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGCT
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa	190 TGGTCCCAT TGGTTCCCAT TGGTACCACT TAGTCCCACT TGGTGCCCACT TGGTGCCCACT TGGTGCCCATT TAGTTCCATT TAGTTCCATT TAGTACCACT TAGTACCACT TAGTACCCTT TAGTCCCTT TAGTCCCTT) 200 ACTTATTGGT TTTAATTGGG ACTTATTGGG ATTAATTGGG ATTAATTGGG TTTAATTGGG TTTAATTGGT ACTGATTGGT ATTAATTGGG ATTAATTGGG GTTAATTGGG GCTAATTGGG ACTGATCGGG ACTGATCGGG	CACCCGGATA GCTCCTGATA GCTCCCGATA GCTCCCGATA GCTCCAGATA GCTCCAGATA GCTCCAGATA GCACCAGACA GCTCCTGATA GCCCCCGATA GCACCAGATA GCACCTGATA GCACCTGATA GCACCCGATA	D 221 TAAGATTTCC TAAGTTTTCC TAAGTTTTCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTTCC TAAGATTTCC TAAGTTTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC	0 23 ACGAATAAAT CCGGATGAAT ACGTATAAAC ACGCATAAAT TCGGATGAAT TCGGATGAAT TCGAATAAAT CCGAATGAAT TCGAATGAAT TCGCATGAAT TCGTATAAAC CCGAATGAAT TCGTATAAAC CCGAATGAAT	0 240 AATATAAGGT AATATAAGAT AATATAAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGGT AACATAAGGT AACATAAGAT AACATGAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGT
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita	190 TGGTCCCAT TGGTTCCCAT TGGTACCACT TAGTCCCACT TAGTCCCACT TGGTGCCCAT TGGTGCCCATT TAGTTCCATT TAGTACCATT TAGTACCACT TAGTACCACT TAGTACCCTT TGGTCCCCTT TGGTCCCCTT) 200 ACTTATTGGT TTTAATTGGG ACTTATTGGG ATTAATTGGG ATTAATTGGG TTTAATTGGG TTTGATTGGT ACTGATTGGT ATTAATTGGG ATTAATTGGG GCTAATTGGT GTTAATTGGG ATTGATTGGG ACTGATTGGG ACTGATCGGG ATTGGTTGGT	CCCCCGATA CCCCCTGATA GCTCCCGATA GCACCCGATA GCACCTGACA GCTCCAGATA GCACCAGATA GCACCAGATA GCCCCCGATA GCACCAGATA GCACCAGATA GCACCAGATA GCACCAGATA GCACCCGATA	D 220 TAAGATTTCC TAAGTTTCC TAAGTTTCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGTTTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGGTTTCC	0 23 ACGAATAAAT CCGGATGAAT ACGTATAAAC ACGCATAAAT TCGGATGAAT TCGGATGAAT TCGAATAAAT TCGAATAAAT CCGAATGAAT TCGCATGAAT TCGTATAAAC CCGAATGAAT TCGTATAAAC CCGAATGAAT TCGTATAAAC	0 240 AATATAAGGT AATATAAGAT AATATAAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGGT AACATAAGAT AACATAAGAT AACATAAGAT AACATAAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGTT AATATAAGTT AATATAAGTT
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma marinae	190 TGGTCCCAT TGGTTCCCAT TGGTACCACT TAGTCCCACT TGGTCCCACT TGGTCCCACT TGGTCCCATT TAGTCCCATT TAGTTCCCTT TAGTACCACT TAGTACCACT TAGTCCCCTT TGGTCCCCTT TGGTCCCCTT TGGTACCCCT) 200 ACTTATTGGT TTTAATTGGG ACTTATTGGG ATTAATTGGG ATTAATTGGG TTTAATTGGG TTTAATTGGT ACTGATTGGT ATTAATTGGG ATTAATTGGG GCTAATTGGT ATTGATTGGG ATTGATTGGG ACTGATCGGG ATTGGTTGGT ACTGATTGGG ACTAATTGGG	CACCCTGATA GCTCCTGATA GCTCCCGATA GCACCTGACA GCTCCAGATA GCTCCAGATA GCTCCAGATA GCCCCAGATA GCCCCCGATA GCCCCCGATA GCACCAGATA GCACCAGATA GCACCAGATA GCACCAGATA GCACCAGATA GCCCCCGATA	D 221 TAAGATTTCC TAAGATTTCC TAAGATTCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC	0 23 ACGAATAAAT CCGGATGAAT ACGTATAAAC ACGCATAAAT TCGGATGAAT TCGGATGAAT TCGAATAAAT TCGAATAAAT CCGAATGAAT TCGCATGAAT TCGTATAAAC CCGAATGAAT TCGTATAAAC CCGAATGAAT TCGTATAAAC	0 240 AATATAAGGT AATATAAGAT AATATAAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGGT AACATAAGAT AACATAAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGTT AATATAAGTT AATATAAGTT AATATAAGTT AATATAAGTT AATATAAGTT AATATAAGTT
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma sp. cf. vestita Cochlitoma sp. cf. vestita Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex	190 TGGTCCCAT TGGTTCCCAT TGGTACCACT TAGTCCCACT TAGTCCCACT TGGTGCCCACT TGGTCCCATT TAGTTCCATT TAGTTCCATT TAGTACCATT TAGTACCACT TAGTCCCTT TAGTACCCTT TAGTACCCTT TAGTACCAT TAGTTCCCCT) 200 ACTTATTGGT TTTAATTGGG ACTTATTGGG ATTAATTGGG ATTAATTGGG TTTAATTGGG TTTAATTGGT ATTGATTG	CACCCGATA CCCCCGATA CCTCCCGATA GCACCTGACA GCACCTGACA GCTCCAGATA GCCCCAGATA GCCCCAGATA GCCCCGACA GCCCCGACA GCCCCGATA GCACCAGATA GCCCCGATA GCCCCGATA GCCCCGATA GCCCCGATA GCCCCGATA	D 221 TAAGATTTCC TAAGATTTCC TAAGATTTCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTTCC TAAGATTTCC TAAGATTTCC TAAGATTCCC TAAGATTCCC TAAGATTTCC TAAGGTTTCC TAAGGTTTCC TAAGGTTTCC TAAGGTTTCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC	0 23 ACGAATAAAT CCGGATGAAT ACGTATAAAC ACGCATAAAT TCGGATGAAT TCGGATGAAT TCGAATAAAT TCGAATAAAT TCGAATAAAT CCGAATGAAT TCGTATAAAC CCGAATGAAT TCGTATAAAC CCGAATGAAT TCGAATAAAC CCGAATGAAT	0 240 AATATAAGGT AATATAAGGT AATATAAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGGT AACATAAGGT AACATAAGAT AACATGAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGCT AATATAAGCT AATATAAGCT
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina bisculpta Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria kambeul Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni	190 TGGTCCCAT TGGTTCCCAT TGGTACCACT TAGTCCCACT TGGTGCCACT TGGTGCCCACT TGGTGCCCATT TAGTTCCATT TAGTTCCATT TAGTACCATT TAGTACCACT TAGTACCACT TAGTACCCTT TGGTCCCTT TAGTACCAT TAGTACCATT) 200 ACTTATTGGT TTTAATTGGG ACTTATTGGG ATTAATTGGG ATTAATTGGG TTTAATTGGG ATTAATTGGG ATTAATTGGT ATTGATTG	CCCCCGATA GCTCCTGATA GCTCCCGATA GCTCCCGATA GCTCCAGATA GCTCCAGATA GCTCCAGATA GCCCCGACA GCCCCGACA GCCCCGACA GCCCCGATA GCACCAGATA GCACCAGATA GCCCCCGATA GCCCCCGATA GCCCCCGATA GCCCCCGATA GCCCCCGATA GCCCCCGATA	D 220 TAAGATTTCC TAAGTTTCC TAAGTTTCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC	D 23 ACGAATAAAT CCGGATGAAT ACGTATAAAC ACGCATAAAT TCGGATGAAT TCGGATGAAT TCGGATAAAT TCGAATAAAT TCGAATAAAT TCGAATGAAT TCGTATAAAC CCGAATGAAT TCGTATAAAC CCGAATGAAT TCGAATAAAT TCGAATAAAT TCGAATAAAT TCGAATAAAT TCGAATAAAT	0 240 AATATAAGGT AATATAAGGT AATATAAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGGT AACATAAGGT AACATAAGAT AACATAAGAT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina bisculpta Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli	190 TGGTCCCAT TGGTTCCCAT TGGTACCACT TAGTCCCACT TGGTCCCACT TGGTCCCACT TGGTCCCACT TGGTCCCATT TAGTTCCATT TAGTACCATT TAGTACCATT TGGTCCCCTT TGGTCCCCTT TGGTACCACT TGGTACCATT TGGTCCCTT TGGTCCCTT TGGTCCCTT TGGTCCCTT TGGTCCCTT TGGTCCCTT TGGTCCCTT) 200 ACTTATTGGT TTTAATTGGG ACTTATTGGG ATTAATTGGG ATTAATTGGG TTTAATTGGG TTTAATTGGT ATTAATTGGT ATTAATTGGT ATTAATTGGT GTTAATTGGG GCTAATTGGG ATTGATTGGG ACTGATCGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG	CCCCCGGATA CCCCCTGATA GCTCCCGATA GCTCCCGATA GCTCCAGATA GCTCCAGATA GCTCCAGATA GCCCCGATA GCACCAGATA GCCCCCGATA GCACCAGATA GCACCAGATA GCACCTGATA GCACCTGATA GCCCCCGATA GCCCCCGATA GCCCCCGATA GCCCCCGATA GCCCCCGATA GCCCCCGATA	D 221 TAAGATTTCC TAAGTTTCC TAAGTTTCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC	0 23 ACGAATAAAT CCGGATGAAT ACGTATAAAC ACGCATAAAT TCGGATGAAT TCGGATGAAT TCGGATAAAT TCGAATAAAT TCGAATAAAT CCGAATGAAT TCGCATGAAT TCGTATAAAC CCGAATGAAT TCGAATGAAT TCGAATGAAT TCGAATAAAT GCGAATAAAT GCGAATAAAT CCGAATGAAT TCGTATAAAC CCGAATGAAT	0 240 AATATAAGGT AATATAAGGT AATATAAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGGT AACATAAGGT AACATAAGAT AACATAAGAT AACATAAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina bisculpta Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa	190 TGGTCCCAT TGGTTCCCAT TGGTTCCCAT TAGTCCCACT TAGTCCCACT TGGTCCCACT TGGTCCCACT TGGTCCCATT TAGTCCCTT TAGTACCATT TAGTACCATT TAGTACCCTT TGGTCCCCTT TAGTACCCAT TAGTACCAAT TAGTACCAAT TAGTACCAAT TAGTACCAAT) 200 ACTTATTGGT TTTAATTGGG ACTTATTGGG ATTAATTGGG ATTAATTGGG TTTAATTGGG TTTAATTGGT ATTAATTGGT ACTGATTGGT ATTAATTGGG GCTAATTGGG GCTAATTGGG GCTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG	CCCCCGGATA CCCCCTGATA GCTCCCGATA GCACCTGACA GCTCCAGATA GCACCAGATA GCACCAGATA GCACCAGATA GCACCAGATA GCACCAGATA GCACCAGATA GCACCAGATA GCACCCGATA GCCCCCGATA GCCCCCGATA GCCCCCGATA GCCCCCGATA	D 221 TAAGATTTCC TAAGATTTCC TAAGATTCC TAAGATTCC TAAGATTCC TAAGATTCC TAAGATTCC TAAGATTCC TAAGATTCC TAAGATTCC TAAGATTCC TAAGATTCC TAAGATTCC TAAGATTCC TAAGATTCC TAAGATTCC TAAGGTTCC TAAGGTTCC TAAGGTTCC TAAGGTTCC TAAGGTTCC TAAGGTTCC TAAGGTTCC	0 23 ACGAATAAAT CCGGATGAAT ACGTATAAAC ACGCATAAAT TCGGATGAAT TCGGATGAAT TCGAATAAAT TCGAATAAAT TCGAATAAAT TCGAATGAAT TCGCATGAAT TCGTATAAAC CCGAATGAAT TCGAATAAAT TCGAATAAAT TCGAATAAAT TCGAATAAAT TCGAATAAAT TCGTATAAAC CCGAATGAAT	0 240 AATATAAGGT AATATAAGGT AATATAAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGGT AACATAAGGT AACATAAGAT AACATAAGAT AACATAAGAT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma gr. cf. vestita Cochlitoma marinae Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma semidecussata	190 TGGTCCCAT TGGTTCCCAT TGGTTCCCAT TAGTCCCACT TAGTCCCACT TGGTCCCACT TGGTCCCACT TGGTCCCATT TAGTTCCCTT TAGTACCATT TAGTACCACT TAGTACCCTT TGGTCCCCTT TGGTCCCCTT TGGTCCCCTT TGGTCCCCTT TAGTACCAAT TAGTACCATT TAGTACCATT) 200 ACTTATTGGT TTTAATTGGG ACTTATTGGG ATTAATTGGG ATTAATTGGG TTTAATTGGG TTTAATTGGG TTTAATTGGT ACTGATTGGT ATTGATTGGG GTTAATTGGG GCTAATTGGG GCTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG	CCCCGGATA CCCCCTGATA GCTCCCGATA GCACCTGACA GCACCTGACA GCTCCAGATA GCTCCAGATA GCCCCAGATA GCCCCAGATA GCACCAGATA GCACCAGATA GCACCAGATA GCACCAGATA GCCCCTGATA GCCCCTGATA GCCCCTGATA GCCCCGATA GCCCCGATA	D 221 TAAGATTTCC TAAGATTTCC TAAGATTTCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGATTCCC	0 23 ACGAATAAAT CCGGATGAAT ACGTATAAAC ACGCATAAAT TCGGATGAAT TCGGATGAAT TCGAATAAAT TCGAATAAAT TCGAATAAAT TCGAATGAAT TCGAATGAAT TCGTATAAAC CCGAATGAAT TCGAATAAAT TCGTATAAAC TCGTATAAAC TCGTATAAAT TCGTATAAAT TCGTATAAAT TCGTATAAAT	0 240 AATATAAGGT AATATAAGGT AATATAAGAT AATATAAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGGT AACATAAGAT AACATAAGAT AACATAAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma granulata Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma semidecussata Cochlitoma ustulata	190 TGGTCCCAT TGGTTCCCAT TGGTTCCCAT TGGTCCCACT TAGTCCCACT TGGTCCCACT TGGTCCCATT TAGTTCCATT TAGTTCCATT TAGTACCATT TAGTACCACT TGGTCCCCTT TGGTCCCCTT TGGTCCCCTT TGGTCCCCTT TGGTCCCCTT TGGTCCCCTT TGGTCCCCTT TGGTCCCCTT TGGTCCCTT TGGTCCCTT TGGTCCCTT TGGTCCCTT TGGTCCCTT TGGTCCCTT TGGTCCCTT	D 200 ACTTATTGGT TTTAATTGGG ACTTATTGGG ATTAATTGGG ATTAATTGGG TTTAATTGGG TTTAATTGGG TTTAATTGGT ATTGATTG	Carteria and a construction of the second state of the second stat	D 221 TAAGATTTCC TAAGATTTCC TAAGATTTCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGGTTTCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC	0 23 ACGAATAAAT CCGGATGAAT ACGTATAAAC ACGCATAAAT TCGGATGAAT TCGGATGAAT TCGGATGAAT TCGGATAAAT TCGAATAAAT TCGAATGAAT TCGAATGAAT TCGTATAAAC CCGAATGAAT TCGTATAAAC CCGAATGAAT TCGTATAAAC TCGTATAAAC TCGTATAAAT TCGTATAAAT TCGTATAAAT TCGTATAAAT	0 240 AATATAAGGT AATATAAGGT AATATAAGAT AATATAAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGGT AACATAAGGT AACATAAGAT AACATAAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina bisculpta Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma varicosa Cochlitoma sp. cf. vestita Cochlitoma sp. cf. vestita Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma ustulata	190 TGGTCCCAT TGGTTCCCAT TGGTACCACT TAGTCCCACT TGGTCCCACT TGGTCCCACT TGGTCCCACT TGGTCCCATT TAGTTCCATT TAGTTCCATT TAGTACCATT TAGTACCACT TAGTACCATT TAGTACCATT TAGTACCATT TAGTACCATT TAGTACCATT TAGTACCATT TAGTACCATT TAGTACCATT TAGTACCATT	D 200 ACTTATTGGT TTTAATTGGG ACTTATTGGG ATTAATTGGG ATTAATTGGG ATTAATTGGG TTTAATTGGT ATTGATTG	CCCCCGATA GCTCCTGATA GCTCCCGATA GCTCCCGATA GCTCCAGATA GCTCCAGATA GCTCCAGATA GCCCCAGATA GCACCAGATA GCCCCGACA GCTCCTGATA GCACCAGATA GCACCAGATA GCCCCCGATA GCCCCCGATA GCCCCCGATA GCCCCCGATA GCCCCCGATA GCCCCCGATA GCCCCCGATA GCCCCCGATA	D 220 TAAGATTTCC TAAGTTTCC TAAGTTTCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC	0 23 ACGAATAAAT CCGGATGAAT ACGTATAAAC ACGCATAAAT TCGGATGAAT TCGGATGAAT TCGGATAAAT TCGAATAAAT TCGAATAAAT TCGAATGAAT TCGAATGAAT TCGTATAAAC CCGAATGAAT TCGTATAAAC CCGAATGAAT TCGTATAAAC CCGAATGAAT TCGTATAAAT TCGTATAAAT TCGTATAAAT TCGTATAAAT TCGTATAAAT	0 240 AATATAAGGT AATATAAGGT AATATAAGAT AATATAAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGGT AACATAAGGT AACATAAGGT AACATAAGAT AACATAAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGCT AACATGAGCT AACATRAGYT
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma granulata Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma semidecussata Cochlitoma ustulata	190 TGGTCCCAT TGGTTCCCAT TGGTACCACT TAGTCCCACT TGGTCCCACT TGGTCCCACT TGGTCCCACT TGGTCCCATT TAGTTCCATT TAGTTCCATT TAGTACCACT TAGTACCACT TGGTCCCCTT TGGTCCCCTT TGGTCCCTT TGGTCCCTT TGGTCCCTT TGGTCCCTT TGGTCCCTT TAGTACCAT TAGTACCAT TAGTACCACT	D 200 ACTTATTGGT TTTAATTGGG ACTTATTGGG ATTAATTGGG ATTAATTGGG TTTAATTGGG TTTAATTGGG ATTAATTGGT ACTGATTGGT ATTAATTGGG ATTAATTGGG GCTAATTGGG GCTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG GTTAATTGGG TTTAATCGGG ACTTAATTGGG ACTTAATCGGG ACTTAATTGGG ACTTAATTGGG ACTTAATTGGG ACTTAATTGGG ACTTAATTGGG ACTTAATTGGG	CCCCCGGATA GCTCCTGATA GCTCCCGATA GCTCCCGATA GCTCCAGATA GCTCCAGATA GCTCCAGATA GCCCCGATA GCACCAGATA GCACCAGATA GCACCAGATA GCACCTGATA GCACCTGATA GCACCTGATA GCCCCCGATA GCCCCCGATA GCCCCCGATA GCCCCCGATA GCCCCCGATA GCCCCCGATA GCCCCCGATA GCCCCCGATA	D 221 TAAGATTTCC TAAGATTTCC TAAGATTTCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGATTCCC TAAGGTTTCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC TAAGGTTCCC	D 23 ACGAATAAAT CCGGATGAAT ACGTATAAAC ACGCATAAAT TCGGATGAAT TCGGATGAAT TCGGATAAAT TCGAATAAAT TCGAATAAAT CCGAATGAAT TCGAATGAAT TCGTATAAAC CCGAATGAAT TCGAATGAAT TCGAATAAAT TCGAATAAAT CCGAATGAAT TCGTATAAAT TCGTATAAAT TCGTATAAAT TCGTATAAAT TCGTATAAAT TCGTATAAAT TCGTATAAAT	0 240 AATATAAGGT AATATAAGGT AATATAAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGGT AACATAAGGT AACATAAGGT AACATAAGAT AACATAAGAT AATATAAGAT AATATAAGGT AATATAAGGT AATATAAGGT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AATATAAGCT AACATGAGCT AACATGAGCT AACATGAGCT AACATGAGCT AACATGAGCT AACATGAGCT AACATGAGCT

300 Achatina fulica TTTGGCTTCT CCCACCATCG TTTACTTTAT TAATTAGGTC AAGCCTGGTT GAAGGTGGTG Achatina immaculata TTTGACTTTT ACCCCCTGCG TTTACATTAT TAATCTGCTC AAGTATAGTC GAAGGTGGGG Achatina reticulata Achatina zanzibarica TTTGACTTCT ACCACCTTCT TTTTGTCTTT TAATTAGATC GAGAATGGTA GAGGGGGGGG Achatina achatina TCTGATTATT ACCACCTTCA TTTACCTTAC TTATTCTTTC TAGTATAGTT GAGGGAGGAG TTTGATTGCT TCCACCTTCA TTTGTTCTGC TAATTCTCTC GAGGATGGTC GAGGGTGGAG Archachatina marginata TCTGACTTTT ACCCCCATCT TTTACTCTTT TAATCCTATC GAGTATAGTT GAAGGTGGAG Achatina bisculpta Achatina damarensis TTTGACTTTT ACCACCGTCT TTTACTTTAC TAATTTTATC AAGTATGGTT GAAGGTGGAG Achatina stuhlmanni TTTGACTACT TCCCCCATCA TTTTCTTTGC TAATTCTCTC AAGTATAGTA GAAGGTGGGG Atopocochlis exarata TTTGGTTACT TCCACCATCA TTTACCCTTT TAATTTTATC TAGAATAGTA GAAGGAGGGG TTTGATTACT ACCACCTTCT TTTACTTTAC TAATCTTATC AAGCATAGTA GAGGGTGGGG Limicolaria kambeul Limicolaria martenssii TCTGGTTACT ACCCCCAGCT TTTACTTTAT TAATTCTCTC TAGGATAGTA GAAGGAGGCG Limicolariopsis sp. TCTGATTACT TCCTCCTGCA TTTACTTTAC TAATTTTATC AAGGATAGTA GAAGGAGGCG TCTGACTATT ACCACCTTCG TTCTCCCTGT TAATTCTATC AAGGATAGTT GAGGGGGGGTG Cochlitoma varicosa Cochlitoma dimidiata TTTGATTGCT CCCACCTTCA TTTTCTCTTT TGATTTTATC AAGAATAGTG GAAGGGGGAG TTTGATTACT TCCACCTTCG TTTTCTCTAT TAATTTTATC AAGAATGGTA GAAGGTGGTG Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma churchilliana TCTGATTACT TCCCCCCTCT TTTTCGTTAC TGATTTTATC TAGTATAGTG GAAAGTGGTG Cochlitoma granulata TTTGACTCCT ACCCCCCTCA TTCTCTCTTC TAATCTTATC AAGAATGGTT GAGGGTGGTG Cochlitoma simplex TCTGACTGCT TCCTCCCTCA TTTTCTCTTC TAATCTTATC AAGACTAGTG GAGGGTGGGG TTTGATTACT CCCACCTTCG TTTTCACTTC TAATCTTATC AAGAATGGTA GAGGGTGGTG Cochlitoma kilburni TCTGGCTCCT ACCCCCTTCT TTTTCCCTCT TAATTTTATC AAGAATAGTA GAGGGCGGAG Cochlitoma montistempli Cochlitoma omissa TTTGACTCCT GCCCCCCCG TTCTCTCTTT TAATCTTATC TAGAATGGTT GAGGGTGGTG Cochlitoma semidecussata TCTGGCTCCT ACCCCCTTCG TTTTCCCTCT TAATTTTATC AAGAATAGTA GAGGGTGGGG Cochlitoma ustulata TTTGATTGTT ACCCCCTTCC TTTACACTTC TTATCTTGTC AAGAATAGTG GAGGGGGGGTG TTTGATTRCT CCCMCCTTCG TTCTCTCTAC TAATTTTRTC AAGRATAGTA GAGGGAGGTG Cochlitoma zebra Metachatina kraussi TTTGGTTATT ACCGCCGTCT TTTACATTAT TGATTTTGTC AAGAATAGTA GAAGGAGGTG Rumina decollata TTTGACTACT TCCTCCTTCT TTTATTTAT TAATTATATC TAGGATAGTA GAAGGTGGGG CTGGAACTGG GTGGACTGTG TACCCGCCCT TAAGTTCTTG CTTAGGACAC AGAGGGGGCTT Achatina fulica CTGGGACTGG TTGAACTGTT TACCCGCCGT TAAGTTCTTA TATGGGTCAC AGGGGGGGCCT Achatina immaculata CTGGCACAGG TTGAACTGTC TACCCACCTT TAAGCTCTTA TTTAGGGCAT AGTGGGGCAT Achatina reticulata Achatina zanzibarica CAGGTACAGG TTGGACTGTG TACCCACCAT TGAGCTCAAT TATTGGGCAT AGGGGCCCAT CTGGTACTGG GTGAACAGTT TATCCACCTT TAAGATCTAC TTTAGGTCAT AGAGGTGCCT Achatina achatina Archachatina marginata CAGGTACTGG GTGGACAGTT TACCCCCCCC TTAGGTCAGT CTTAGGACAT AGTGGAGCTT CGGGAACTGG CTGAACAGTT TATCCACCAC TTAGTTCATT AATTGGACAT AGTGGAGCAT Achatina bisculpta CAGGAACTGG TTGGACAGTT TACCCACCTC TTAGTTCTCT GATTGGTCAT AGGGGAGCAT Achatina damarensis Achatina stuhlmanni CTGGGACAGG ATGGACAGTT TACCCTCCTC TAAGTTCATT AATTGGCCAT AGTGGAGCAT CAGGGACTGG TTGAACGGTG TACCCCCCTC TTAGCTCTAT GCTTGGCCAC AGGGGTGCCT Atopocochlis exarata CTGGAACTGG TTGAACAGTT TACCCTCCTC TTAGAGCTAT TACAGGCCAT AGAGGTGCTT CGGGAACAGG GTGAACTGTT TATCCTCCTT TAAGATCCCT AGTGGGTCAT AGAGGGGCCA Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. CAGGAACTGG TTGAACTGTA TACCCCCCTC TAAGTTCTAT AATTGGACAT AGAGGAGCCT Cochlitoma varicosa CAGGGACTGG TTGAACAGTT TACCCCCCTC TGAGTTCTAT AATAGGACAT AGAGGAGCGT Cochlitoma dimidiata CAGGGACAGG CTGGACGGTA TACCCGCCTC TAAGTTCGAT TATAGGTCAC AGAGGGGGCTT Cochlitoma sp. cf. vestita CAGGTACTGG GTGAACTGTG TACCCACCTC TCAGGTCTAT GTTAGGGCAT AGAGGTGCGT CAGGCACCGG TTGGACTGTG TACCCGCCTT TAAGCTCTAT TATTGGTCAT AGGGGGCGCTT Cochlitoma marinae Cochlitoma churchilliana CTGGGACAGG GTGAACAGTA TACCCTCCCC TGAGGTCAAC TATTGGTCAT AGGGGCGCAT Cochlitoma granulata CAGGTACAGG TTGAACTGTT TACCCTCCTT TGAGTTCTGT AATAGGCCAT AGAGGTGCAT CAGGAACAGG CTGAACAGTA TACCCTCCCC TTAGTTCTAT TATTGGTCAC AGAGGAGCTT Cochlitoma simplex CAGGTACTGG TTGAACTGTG TACCCACCTC TTAGATCTAT ATTAGGGCAT AGGGGTGCAT Cochlitoma kilburni Cochlitoma montistempli CAGGTACTGG TTGAACAGTT TACCCCCCCTT TAAGTTCAAT TATTGGCCAT AGAGGTGCAT Cochlitoma omissa CAGGTACTGG TTGAACAGTT TACCCCCCTT TGAGCTCTAT AATAGGTCAT AGAGGTGCAT Cochlitoma semidecussata CAGGTACTGG TTGAACGGTT TACCCTCCTT TAAGTTCAAT TATTGGCCAT AGAGGAGCAT CAGGTACAGG TTGAACTGTG TATCCACCTT TAAGGTCTAT CATAGGTCAT AGGGGAGCAT Cochlitoma ustulata Cochlitoma zebra CWGGTACWGG CTGRACAGTK TATCCCCCTT TAAGTTCCAT GCTWGGACAT AGRGGWGCAT Metachatina kraussi CCGGGACTGG TTGAACTGTG TACCCACCGT TAAGTTCTAT TCTTGGGCAT AGGGGAGCAT CAGGAACTGG TTGAACAGTG TATCCACCCT TAAGCAGAAT CATAGGACAT AGTGGGGGCAT Rumina decollata

	370					
Achatina fulica			TCTTTACATT			
Achatina immaculata			TCCCTTCATC			
Achatina reticulata Achatina zanzibarica			TCTCTCCACT TCACTTCATT			
Achatina achatina			TCATTACATT			
Archachatina marginata			TCTTTGCACT			
Achatina bisculpta			TCTTTACACT			
Achatina damarensis			TCTTTACATC			
Achatina stuhlmanni	CAGTGGACTT	GGCAATTTTT	TCTCTACACT	TAGCCGGAAT	ATCCTCTATT	CTCGGAGCTA
Atopocochlis exarata	CGGTTGACTT	AGCAATTTTC	TCACTTCATC	TAGCAGGTAT	ATCCTCGATT	CTTGGGGCTA
Limicolaria kambeul	CAGTAGACTT	AGCAATCTTC	TCTCTTCACC	TTGCAGGAAT	GTCTTCAATC	CTAGGAGCAA
Limicolaria martenssii			TCCTTACACT			
Limicolariopsis sp.			TCATTACATC			
Cochlitoma varicosa			TCTCTTCATC			
Cochlitoma dimidiata			TCCTTACATC			
Cochlitoma sp. cf. vestita			TCACTACATC TCTCTTCACC			
Cochlitoma marinae Cochlitoma churchilliana			TCCCTTCACT			
Cochlitoma granulata			TCCCTTCACC			
Cochlitoma simplex			TCCCTACATC			
Cochlitoma kilburni			TCATTACATC			
Cochlitoma montistempli			TCGCTACATC			
Cochlitoma omissa	CTGTGGATTT	AGCTATTTTT	TCTCTTCACC	TTGCGGGTCT	GTCCTCAATC	CTAGGTGCTA
Cochlitoma semidecussata	CGGTGGACCT	TGCAATCTTC	TCACTTCATC	TTGCGGGTAT	ATCCTCAATT	CTTGGTGCTA
Cochlitoma ustulata			TCTCTACACT			
Cochlitoma zebra			TCTCTACATY			
Metachatina kraussi			TCTTTACATT			
Rumina decollata	CTGTTGACTT	AGCTATTTTC	TCTCTTCATT	TAGCAGGGAT	ATCTTCTATT	TTAGGTGCAA
	···· ···· 430		···· ···· 0 45			
Achatina fulica	430 TCAATTTTAT) 44 TACGACGGTG	0 45 TATAATATAC) 460 GAGCCTCTGG) 47 GCTAACTATA	0 480 GAACGGGTAA
Achatina immaculata	430 TCAATTTTAT TTAACTTTAT) 44 TACGACGGTG TACAACAGTA	0 45 TATAATATAC TATAATATAC) 460 GAGCCTCTGG GTTCTTCAGG) 47 GCTAACTATA GTTAACCATA	0 480 GAACGGGTAA GAACGAGTAA
Achatina immaculata Achatina reticulata	430 TCAATTTTAT TTAACTTTAT TTAATTTTAT) 44 TACGACGGTG TACAACAGTA TACTACAGTT	0 45 TATAATATAC TATAATATAC TACAATATAC) 460 GAGCCTCTGG GTTCTTCAGG GTGCTTCTGG) 47 GCTAACTATA GTTAACCATA GTTAACCATA	0 480 GAACGGGTAA GAACGAGTAA GAACGAGTAA
Achatina immaculata Achatina reticulata Achatina zanzibarica	430 TCAATTTTAT TTAACTTTAT TTAATTTTAT TTAACTTTAT) 44 TACGACGGTG TACAACAGTA TACTACAGTT TACCACAGTC	0 45 TATAATATAC TATAATATAC TACAATATAC TATAATATGC) 460 GAGCCTCTGG GTTCTTCAGG GTGCTTCTGG GGGCTTCGGG) 47 GCTAACTATA GTTAACCATA GTTAACTATA CTTAGAGATA	0 480 GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina	430 TCAATTTTAT TTAACTTTAT TTAATTTTAT TTAACTTTAT TTAACTTTAT) 44 TACGACGGTG TACAACAGTA TACTACAGTT TACCACAGTC TACTACAATT	0 450 TATAATATAC TATAATATAC TACAATATAC TATAATATAC TTTAATATAC) 460 GAGCCTCTGG GTTCTTCAGG GTGCTTCTGG GGGCTTCGGG GAGCATCAGG) 470 GCTAACTATA GTTAACCATA GTTAACTATA CTTAGAGATA GATATCTATA	0 480 GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGGATGA GAACGGGTTA
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata	43(TCAATTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT) 44 TACGACGGTG TACAACAGTA TACTACAGTT TACCACAGTC TACTACAATT CACAACTATT	0 45 TATAATATAC TATAATATAC TACAATATAC TATAATATAC TTTAATATAC TTCAACATGC) 460 GAGCCTCTGG GTTCTTCAGG GTGCTTCTGG GGGCTTCGGG GAGCATCAGG GAGCTCCCGG) 47 GCTAACTATA GTTAACCATA GTTAACTATA CTTAGAGATA GATATCTATA TCTTACAATG	0 480 GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGGATGA GAACGGGTTA GAGCGGGTAA
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta	430 TCAATTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT) 44 TACGACGGTG TACAACAGTA TACTACAGTT TACCACAGTC TACTACAATT CACAACTATT TACTACTATC	0 45 TATAATATAC TATAATATAC TACAATATAC TATAATATAC TTTAATATAC TTCAACATGC TTTAATATAC) 460 GAGCCTCTGG GTTCTTCAGG GTGCTTCTGG GGGCTTCGGG GAGCATCAGG GAGCTCCCGG GGGTGTCTGG) 47 GCTAACTATA GTTAACCATA GTTAACTATA CTTAGAGATA GATATCTATA TCTTACAATG TTTGTCTATG	0 480 GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis	430 TCAATTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAATTTTAT TTAATTTCAT) 44 TACGACGGTG TACAACAGTA TACTACAGTT TACCACAGTC TACTACAATT CACAACTATT TACTACTATC TACTACTATC	0 45 TATAATATAC TATAATATAC TATAATATAC TATAATATAC TTTAATATAC TTCAACATGC TTTAATATAC TTCAATATAC) 460 GAGCCTCTGG GTTCTTCAGG GGGCTTCTGG GAGCATCAGG GAGCATCAGG GAGCTCCCGG GGGTGTCTGG GGGTGTCCAGG	GCTAACTATA GTTAACCATA GTTAACCATA GTTAACTATA CTTAGAGATA GATATCTATA TCTTACAATG TCTTACAATG GCTAACTATA	0 480 GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta	430 TCAATTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAATTTCAT TCAACTTTAT) 44 TACGACGGTG TACAACAGTA TACTACAGTT TACCACAGTC TACTACAATT CACAACTATT TACTACTATC TACTACTATC TACTACAATT	0 45 TATAATATAC TATAATATAC TACAATATAC TATAATATAC TTTAATATAC TTCAACATGC TTTAATATAC) 460 GAGCCTCTGG GTTCTTCAGG GGGCTTCTGG GAGCTTCGGG GAGCATCAGG GAGCTCCCGG GGGTGTCCGG GGGTGTCCAGG GAGTATCTGG) 470 GCTAACTATA GTTAACCATA GTTAACCATA CTTAGAGATA GATATCTATA TCTTACAATG TCTTACAATG GCTAACTATA ACTATCTATG	0 480 GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni	430 TCAATTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAATTTAT TTAATTTCAT TCAACTTTAT TCAACTTTAT	D 44 TACGACGGTG TACAACAGTA TACTACAGTT TACCACAGTC TACTACAATT CACAACTATT TACTACTATC TACTACTATC TACTACAATT TACCACAATT	0 45 TATAATATAC TATAATATAC TATAATATAC TATAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTCAATATGC TTTAACATAC) 460 GAGCCTCTGG GTTCTTCAGG GGCTTCGG GAGCATCAGG GAGCATCAGG GAGTGTCTGG GAGTGTCAGG GAGTGTCAGG GAGTATCTGG GGGTTAGGGG	GCTAACTATA GTTAACCATA GTTAACTATA GTTAACTATA CTTAGAGATA GATATCTATA TCTTACAATG TTTGTCTATG GCTAACTATA ACTATCTATG ATTGACAATA	0 480 GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata	430 TCAATTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAATTTTAT TCAACTTTAT TCAACTTTAT TCAATTTTAT) 44 TACGACGGTG TACAACAGTA TACTACAGTT TACCACAGTC TACTACAATT CACAACTATT TACTACTATC TACTACAATT TACCACAATT TACTACAATT	0 45 TATAATAATAC TATAATATAC TACAATATAC TATAATATAC TTTAATATAC TTCAACATGC TTTAACATAC TTCAACATAC TTTAACATAC) 460 GAGCCTCTGG GTTCTTCAGG GGCTTCTGG GGCTTCGGG GAGCATCAGG GAGTGTCAGG GGGTGTCAGG GAGTATCTGG GGGTTACGGG GAGCATCAGG	GCTAACTATA GTTAACCATA GTTAACCATA GTTAACTATA CTTAGAGATA GATATCTATA TCTTACAATG TTTGTCTATG GCTAACTATA ACTATCTATG GTTAACTATA GTTATCTTTA	0 480 GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGAGTAA GAACGAGTAA
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp.	430 TCAATTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAATTTCAT TCAACTTTAT TCAATTTTAT TTAATTTTAT TTAATTTTAT) 44 TACGACGGTG TACAACAGTA TACTACAGTT TACCACAGTC TACTACAATT CACAACTATT TACTACTATC TACTACAATT TACTACAATT TACTACAATT TACTACAATT TACTACAATT	0 45 TATAATATAC TATAATATAC TACAATATAC TATAATATAC TTTAATATAC TTCAACATGC TTTAACATAC TTCAACATAC TATAATATAC TATAATATAC TTTAACATAC TTTAATATAC TTTAATATAC) 460 GAGCCTCTGG GTGCTTCTGG GGGCTTCGGG GAGCATCAGG GAGCATCAGG GGGTGTCTGG GGGTGTCTGG GGGTGTCAGG GAGTATCTGG GAGTACAGG GAGTAAAAGG GAGCATCAGG	CTAACTATA GCTAACTATA GTTAACCATA GTTAACTATA CTTAGAGATA GATATCTATA TCTTACAATG GCTAACTATA ACTATCTATA GTTATCTTTA GTTATCTTTA GTTAACTATA	0 480 GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa	430 TCAATTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TCAACTTTAT TCAACTTTAT TTAATTTCAT TTAACTTTAT TTAACTTTAT TTAACTTCAT) 44 TACGACGGTG TACAACAGTA TACTACAGTT TACCACAGTC TACTACAATT CACAACTATT TACTACTATC TACTACAATT TACTACAATT TACTACAATT TACTACAATT TACAACTGTA TACCACAGTA	0 45 TATAATATAC TATAATATAC TACAATATAC TATAATATAC TTTAATATAC TTCAACATGC TTTAATATAC TTCAACATGC TTTAACATAC TATAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC) 460 GAGCCTCTGG GTGCTTCTAGG GGGCTCCGG GAGCATCAGG GAGCATCAGG GGGTGTCTGG GGGTGTCAGG GAGTACCGG GAGTACAGG GAGCATCAGG GAGCATCAGG GAGCACAGGG) 47 GCTAACTATA GTTAACCATA GTTAACCATA CTTAGAGATA GATATCTATA TCTTACAATG GTTACCTATG GCTAACTATA ACTATCTATA GTTATCTATA GTTATCTATA GTTAACTATA GTTATCTATG	0 480 GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGACTAA GAACGACTAA
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata	430 TCAATTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TCAACTTTAT TCAACTTTAT TCAATTTTAT TTAATTTCAT TTAACTTTAT TTAACTTCAT TTAACTTCAT) 44 TACGACGGTG TACAACAGTA TACTACAGTT TACCACAGTT TACTACAATT CACAACTATT TACTACTATC TACTACAATT TACTACAATT TACTACAATT TACTACAATT TACAACTGTA TACCACAGTA	0 45 TATAATATAC TATAATATAC TACAATATAC TATAATATAC TTTAATATAC TTCAACATGC TTTAATATAC TTCAACATGC TTTAACATAC TATAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC) 460 GAGCCTCTGG GTTCTTCAGG GGGCTTCTGG GAGCATCAGG GAGCATCAGG GAGTATCTGG GGGTGTCTGG GGGTTAGGGG GAGCATCAGG GAGCATCAGG GAGCATCAGG GAGCATCAGG GAGCATCAGG GAGCACCAGG GAGCGCAGGG) 470 GCTAACTATA GTTAACCATA GTTAACCATA CTTAGAGATA GATATCTATA TCTTACAATG GCTAACTATA ACTATCTATG GCTAACTATA GTTATCTTTA GTTAACTATA GTTAACTATA GTTAACTATA GTTAACTATA ACTCTCAATG	0 480 GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGAGTAA GAACGACTAA GAACGACTAA GAACGACTAA GAACGACTAA
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita	430 TCAATTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAATTTCAT TCAACTTTAT TCAACTTTAT TTAATTTCAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT	D 44 TACGACGGTG TACAACAGTA TACTACAGTT TACCACAGTT TACCACAGTC TACTACAATT CACAACTATT TACTACTATC TACTACAATT TACTACAATT TACTACAATT TACAACTGTA TACAACAGTA TACTACAGTA	0 45 TATAATATAC TATAATATAC TACAATATAC TATAATATAC TTTAATATAC TTCAACATGC TTTAACATAC TTCAACATGC TTTAACATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC) 460 GAGCCTCTGG GTCTTCTAGG GGCTTCTGG GGCTTCGGG GAGCATCAGG GAGTGTCAGG GAGTGTCAGG GAGTAACAGG GAGTAAAAGG GAGCATCAGG GAGCATCAGG GAGCACCAGG GAGCACAAGG	GCTAACTATA GTTAACCATA GTTAACCATA GTTAACTATA CTTAGAGATA GATATCTATA TCTTACAATG TTTGTCTATG GCTAACTATA ACTATCTATG ATTGACAATA GTTATCTATA GTTAACTATA GTTAACTATA GTTATCTATG GTTATCCAATG CTTATCAATA	D 480 GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae	430 TCAATTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAATTTCAT TCAACTTTAT TCAACTTTAT TTAATTTCAT TTAACTTCAT TTAACTTCAT TTAACTTTAT TTAACTTTAT TTAACTTTAT	D 44 TACGACGGTG TACAACAGTA TACTACAGTT TACCACAGTC TACTACAATT CACAACTATT TACTACTATC TACTACAATT TACTACAATT TACTACAATT TACTACAATT TACTACAATT TACAACTGTA TACAACAGTA TACAACAGTA TACTACAGTA CACCACTATT	0 45 TATAATATAC TATAATATAC TACAATATAC TATAATATAC TTTAATATAC TTCAACATGC TTTAATATAC TTCAACATGC TTTAACATAC TTTAACATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC) 460 GAGCCTCTGG GTTCTTCAGG GGCTTCTGG GGCTTCGGG GAGCATCAGG GAGTGTCAGG GAGTGTCAGG GAGTATCTGG GAGTATCAGG GAGCATCAGG GAGCATCAGG GAGCATCAGG GAGCCACAGG GAGCCCAAGG GAGCCCAAGG GAGCCCAAGG	GCTAACTATA GTTAACCATA GTTAACCATA GTTAACTATA CTTAGAGATA GATATCTATA TCTTACAATG TTTGTCTATA GCTAACTATA ACTATCTATA GTTATCTATA GTTATCTATA GTTAACTATA GTTATCTATA GTTATCTATA GTTATCTATA GTTATCTATA GTTATCTATA GTTATCAATA	D 480 GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA GAACGAGTAA
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma marinae Cochlitoma churchilliana	430 TCAATTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAATTTTAT TCAATTTAT TCAATTTAT TTAATTTCAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT	D 44 TACGACGGTG TACAACAGTA TACTACAGTT TACCACAGTC TACTACAATT CACAACTATT TACTACTATC TACTACTATC TACTACAATT TACCACAATT TACTACAATT TACAACTGTA TACAACAGTA TACAACAGTA TACTACAGTA CACCACAGTC	0 45 TATAATATAC TATAATATAC TACAATATAC TATAATATAC TTTAATATAC TTCAACATGC TTTAACATAC TTCAACATAC TTTAACATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC) 460 GAGCCTCTGG GTTCTTCAGG GGGCTTCGGG GAGCATCAGG GAGCATCAGG GAGTGTCAGG GAGTGTCAGG GAGTATCTGG GAGTATCAGG GAGCATCAGG GAGCATCAGG GAGCATCAGG GAGCACAGG GAGCACAGG GAGCCACAGG GGGCGCAAGG GGGCGCAAGG GGGCCCAAGG GGGCCCAAGG) 47 GCTAACTATA GTTAACCATA GTTAACCATA GTTAACTATA CTTAGAGATA GATATCTATA TCTTACAATG TTTGTCTATG GCTAACTATA ACTATCTATG GTTAACTATA GTTAACTATA GTTAACTATA ACTATCAATG ACTCTCAATG ACTCTCAATG ACTCTCAATG TTTAACTATA	D 480 GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA GAACGAGTAA GAACGAGTGA
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma churchilliana Cochlitoma granulata	430 TCAATTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAATTTCAT TCAACTTTAT TCAATTTTAT TTAATTTCAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT	D 44 TACGACGGTG TACAACAGTA TACTACAGTT TACCACAGTT TACCACAGTC TACTACAATT CACAACTATT TACTACTATC TACTACAATT TACTACAATT TACTACAATT TACTACAATT TACAACAGTA TACCACAGTA TACCACAGTA CACCACTATT TACCACAGTG	0 45 TATAATATAC TATAATATAC TACAATATAC TACAATATAC TTTAATATAC TTCAACATGC TTTAATATAC TTCAACATAC TTCAACATAC TTTAACATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC) 460 GAGCCTCTGG GTTCTTCAGG GGGCTTCGGG GAGCATCAGG GAGCATCAGG GAGTGTCTGG GGGTGTCAGG GAGTATCTGG GAGTATCAGG GAGCATCAGG GAGCATCAGG GAGCATCAGG GAGCACAAGG GAGCACAAGG GGGCCAAGG GGGCCCAAGG	CTAACTATA GCTAACTATA GTTAACCATA GTTAACCATA GTTAACTATA CTTAGAGATA GATATCTATA TCTTACAATG TTTGTCTATG GCTAACTATA ATTGACAATA GTTATCTATA GTTATCTATA GTTATCTATA GTTATCTATA CTTATCTATA TTTAACTATA ATTATCTATG	0 480 GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma marinae Cochlitoma churchilliana	430 TCAATTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TCAACTTTAT TCAACTTTAT TCAATTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT	D 44 TACGACGGTG TACAACAGTA TACTACAGTT TACCACAGTC TACTACAATT CACAACTATT TACTACTATC TACTACTATC TACTACAATT TACTACAATT TACTACAATT TACTACAATT TACAACTGTA TACAACAGTA TACAACAGTA TACCACAGTG TACTACAGTG TACCACAGTG TACCACAGTG	0 45 TATAATATAC TATAATATAC TACAATATAC TACAATATAC TTTAATATAC TTCAACATGC TTTAATATAC TTCAACATGC TTTAACATAC TTTAACATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAACATAC) 460 GAGCCTCTGG GTCTTCTAGG GGGCTTCGGG GAGCATCAGG GAGCATCAGG GAGTGTCTGG GGGTGTCAGG GAGTATCTGG GAGTATCAGG GAGTAAAAGG GAGCATCAGG GAGCACAAGG GAGCACAAGG GGGCGCAAGG GTACTCCTGG GGGCACAAGG GGGCACAAGG	CTAACTATA GCTAACTATA GTTAACCATA GTTAACCATA GTTAACTATA GTTAGAGATA GATATCTATA GATATCTATA GCTAACTATA GTTACCTATA GTTATCTATA GTTATCTATA GTTATCTATA GTTATCTATA ACTCTCAATA TTTAACTATA TTTAACTATA CTGTCCAATA	0 480 GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma granulata Cochlitoma simplex	430 TCAATTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TCAACTTTAT TCAACTTTAT TCAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT	D 44 TACGACGGTG TACAACAGTA TACTACAGTT TACCACAGTT TACCACAGTC TACTACAATT CACAACTATT TACTACTATC TACTACAATT TACTACAATT TACTACAATT TACTACAATT TACAACTGTA TACAACAGTA TACAACAGTA TACCACAGTC TACTACAGTG TACCACAGTG TACCACAGTG	0 45 TATAATATAC TATAATATAC TATAATATAC TATAATATAC TTTAATATAC TTTAATATAC TTCAACATGC TTTAACATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC	D 460 GAGCCTCTGG GTTCTTCAGG GGTTTCTGG GGGCTTCGGG GAGCATCAGG GAGTGTCAGG GAGTGTCAGG GAGTATCTGG GGGTTAGGGG GAGCATCAGG GAGCATCAGG GAGCACCAGG GGGCGCAAGG GGGCGCAAGG GGGCACAAGG GGGCACAAGG GAGCACCAGG GGGCACAAGG GAGCACAAGG	CTTAACTATA GTAACTATA GTAACTATA GTAACTATA GTAACTATA GTAACTATA GATATCTATA GATATCTATA GCTAACTATA ACTATCTATG GTAACTATA GTTATCTATA GTTATCTATA GTTATCTATA GTTATCTATA GTTATCTATA GTTATCTATA ACTATCAATA	0 480 GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina bisculpta Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni	430 TCAATTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAATTTCAT TCAACTTTAT TCAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT	D 44 TACGACGGTG TACAACAGTA TACTACAGTT TACCACAGTT TACCACAGTC TACTACAATT CACAACTATT TACTACTATC TACTACAATT TACCACAATT TACCACAATT TACTACAATT TACTACAATT TACAACTGTA TACCACAGTA TACTACAGTA TACCACAGTG TACCACAGTG TACCACAGTG TACCACAGTG TACTACAGTG	0 45 TATAATATAC TATAATATAC TACAATATAC TACAATATAC TTAAATATAC TTCAACATGC TTTAACATAC TTCAACATGC TTTAACATAC TTTAACATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAACATAC TTCAATATAC TTCAATATAC) 460 GAGCCTCTGG GTTCTTCAGG GGTTTCTGG GGGCTTCGGG GAGCATCAGG GAGCATCAGG GAGTGTCAGG GAGTGTCAGG GAGTATCAGG GAGCATCAGG GAGCATCAGG GAGCACAAGG GAGCACAAGG GGGCGCAAGG GGGCGCAAGG GGGCGCAAGG GGGCCCAGGG GAGCACCAGG GGGCCCAGGG	GCTAACTATA GTTAACCATA GTTAACCATA GTTAACCATA GTTAACTATA CTTAGAGATA GATATCTATA TCTTACAATG TTTGTCTATG GCTAACTATA ACTATCTATA GTTATCTATA GTTATCTATA GTTATCTATA GTTATCCATA CTTATCCATA TTTAACTATA ATTAACTATA ATTATCCATA ACTATCAATA	D 480 GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGAGTGA GAACGAGTGA GAACGAGTCA
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina bisculpta Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli	430 TCAATTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TCAACTTTAT TCAACTTTAT TCAATTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT	D 44 TACGACGGTG TACAACAGTA TACTACAGTT TACCACAGTT TACCACAGTC TACTACAATT CACAACTATT TACTACTATC TACTACAATT TACTACAATT TACCACAGTA TACCACAGTA TACAACAGTA TACCACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACAACAGTG	0 45 TATAATATAC TATAATATAC TACAATATAC TACAATATAC TTCAACATGC TTTAATATAC TTCAACATGC TTTAACATAC TTCAACATGC TTTAACATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTCAATATAC TTCAATATAC TTCAATATAC) 460 GAGCCTCTGG GTGCTTCTAGG GGGCTTCGGG GAGCATCAGG GAGCATCAGG GAGTGTCAGG GAGTGTCAGG GAGTATCTGG GAGTATCAGG GAGCATCAGG GAGCATCAGG GAGCACAAGG GAGCACAAGG GAGCACAAGG GAGCACAAGG GAGCACAAGG GGGCGCAAGG GAGCACAAGG GGGCCCAGGG GAGCACAAGG GGGCCCAGGG GGGCCCAGGG	CTAACTATA GCTAACTATA GTTAACCATA GTTAACCATA GTTAACTATA CTTAGAGATA GATATCTATA TCTTACAATG TTTGTCTATA GCTAACTATA GTTATCTATA GTTATCTATA GTTATCTATA GTTAACTATA GTTAACTATA ACTATCAATA ATTAACTATA ATTAACTATA ACTATCAATA ACTATCAATA ACTATCAATA GTTAACTATA GTTAACTATA	0 480 GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma montistempli Cochlitoma semidecussata Cochlitoma ustulata	430 TCAATTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAATTTCAT TCAACTTTAT TCAATTTCAT TTAATTTCAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT	D 44 TACGACGGTG TACAACAGTA TACTACAGTT TACCACAGTC TACTACAATT CACAACTATT TACTACTATC TACTACTATC TACTACAATT TACTACAATT TACTACAATT TACTACAATT TACAACAGTA TACCACAGTA TACCACAGTA TACCACAGTG TACCACAGTG TACCACAGTG TACTACAGTG TACTACAGTG CACAACTATC	0 45 TATAATATAC TATAATATAC TACAATATAC TACAATATAC TATAATATAC TTCAACATGC TTTAATATAC TTCAACATGC TTTAATATAC TTCAACATAC TTTAACATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTCAATATAC TTCAATATAC TTTAATATAC TTTAATATAC TTCAATATAC TTTAATATAC) 460 GAGCCTCTGG GTTCTTCAGG GGGCTTCGGG GAGCATCAGG GAGCATCAGG GAGCATCAGG GAGTGTCAGG GAGTATCTGG GAGTATCTGG GAGCATCAGG GAGCATCAGG GAGCATCAGG GAGCACAAGG GGGCGCAAGG GGGCCCAGGG GGGCCCAGGG GGGCCCAGGG GGGCCCAGGG GGGCCCAGGG GAGCCCAGGG GAGCCCAGGG	CTAACTATA GCTAACTATA GTTAACCATA GTTAACCATA GTTAACTATA CTTAGAGATA GATATCTATA TCTTACAATG TTTGTCTATG GCTAACTATA ATTATCTATG GTTATCTATA GTTATCTATA GTTATCTATA GTTATCTATA CTTATCTATA TTTAACTATA ATTATCTATG GTTAACTATA ATTATCAATG GTTAACTATA ATTATCAATG GTTAACTATA ATTATCAATG GTTAACTATA ATTATCTATG	0 480 GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina bisculpta Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma ustulata	430 TCAATTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TCAACTTTAT TCAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TCAACTTCAT TTAACTTTAT	D 44 TACGACGGTG TACAACAGTA TACTACAGTT TACCACAGTT TACCACAGTC TACTACAATT CACAACTATT TACTACTATC TACTACAATT TACTACAATT TACTACAATT TACTACAATT TACAACAGTA TACAACAGTA TACAACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG	0 45 TATAATATAC TATAATATAC TATAATATAC TATAATATAC TATAATATAC TTTAATATAC TTCAACATGC TTTAACATGC TTTAACATAC TTTAACATAC TTTAACATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC	D 460 GAGCCTCTGG GTTCTTCAGG GGTTCTCAGG GAGCATCAGG GAGCATCAGG GAGTGTCTGG GGGTGTCTGG GAGTATCTGG GAGTATCTGG GAGCATCAGG GAGCATCAGG GAGCACAAGG GAGCACAAGG GGGCGCAAGG GGGCCAAGG GGGCCCAGGG GGGCCCAGGG GAGCCCAAGG GGGCCCAAGG GGGCCCAAGG GAGCCCAAGG GAGCCCAAGG	CTTAACTATA GTAACTATA GTAACTATA GTAACTATA GTAACTATA GTAACTATA GATATCTATA GATATCTATA GATATCTATA GCTAACTATA GTAACTATA GTTATCTATA GTTATCTATA GTTATCTATA GTTATCTATA GTTATCTATA ATTACCATA ATTATCAATA ATTATCAATA ATTATCAATA ATTATCAATA GTTAACTATA ATTATCAATA GTTAACTATA CTTAACTATA ATTATCAATA GTTAACTATA GTTAACTATA GTTAACTATA GTTAACTATA	0 480 GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina bisculpta Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma ustulata	430 TCAATTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TCAACTTTAT TCAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT	D 44 TACGACGGTG TACAACAGTA TACTACAGTT TACCACAGTT TACCACAGTC TACTACAATT CACAACTATT TACTACTATT TACTACAATT TACTACAATT TACTACAATT TACTACACATT TACTACACAGTA TACAACAGTA TACTACAGTA TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG	0 45 TATAATATAC TATAATATAC TATAATATAC TACAATATAC TATAATATAC TTTAATATAC TTTAATATAC TTCAACATGC TTTAACATAC TTTAACATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC	D 460 GAGCCTCTGG GTTCTTCAGG GGTCTTCTGG GGGCTTCGGG GAGCATCAGG GAGCATCAGG GAGTGTCAGG GAGTATCTGG GAGTATCTGG GAGTAAAAGG GAGCATCAGG GAGCACAAGG GAGCACAAGG GGGCGCAAGG GGGCCCAGGG GGGCCCAGGG GAGCCCAGGG GAGCCCAGGG GAGCCCAGGG GAGCCCAGGG GAGCCCAGGG GAGCCCAGGG GACCCCAGGG	CTTAACTATA GTAACTATA GTAACTATA GTAACTATA GTAACTATA GTAACTATA GATATCTATA GATATCTATA TCTTACAATG TTTGTCTATG GCTAACTATA ATTGTCTATG GTTAACTATA GTTATCTATA GTTATCTATA GTTATCTATA GTTATCTATA GTTATCTATA CTTATCAATA ATTATCAATG GCTGTCAATA ATTATCAATG GTTAACTATA GTTAACTATA GTTAACTATA GTTAACTATA GTTAACTATA GTTAACTATA GTTACTATA GTTACTATA GTTATCTATA GTTATCTATA GTTATCTATA	0 480 GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA
Achatina immaculata Achatina reticulata Achatina zanzibarica Achatina achatina Archachatina marginata Achatina bisculpta Achatina bisculpta Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestita Cochlitoma marinae Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma ustulata	430 TCAATTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TCAACTTTAT TCAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT TTAACTTTAT	D 44 TACGACGGTG TACAACAGTA TACTACAGTT TACCACAGTT TACCACAGTC TACTACAATT CACAACTATT TACTACTATT TACTACAATT TACTACAATT TACTACAATT TACTACACATT TACTACACAGTA TACAACAGTA TACTACAGTA TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG TACTACAGTG	0 45 TATAATATAC TATAATATAC TATAATATAC TACAATATAC TATAATATAC TTTAATATAC TTTAATATAC TTCAACATGC TTTAACATAC TTTAACATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC TTTAATATAC	D 460 GAGCCTCTGG GTTCTTCAGG GGTCTTCTGG GGGCTTCGGG GAGCATCAGG GAGCATCAGG GAGTGTCAGG GAGTATCTGG GAGTATCTGG GAGTAAAAGG GAGCATCAGG GAGCACAAGG GAGCACAAGG GGGCGCAAGG GGGCCCAGGG GGGCCCAGGG GAGCCCAGGG GAGCCCAGGG GAGCCCAGGG GAGCCCAGGG GAGCCCAGGG GAGCCCAGGG GACCCCAGGG	CTTAACTATA GTAACTATA GTAACTATA GTAACTATA GTAACTATA GTAACTATA GATATCTATA GATATCTATA TCTTACAATG TTTGTCTATG GCTAACTATA ATTGTCTATG GTTAACTATA GTTATCTATA GTTATCTATA GTTATCTATA GTTATCTATA GTTATCTATA CTTATCAATA ATTATCAATG GCTGTCAATA ATTATCAATG GTTAACTATA GTTAACTATA GTTAACTATA GTTAACTATA GTTAACTATA GTTAACTATA GTTACTATA GTTACTATA GTTATCTATA GTTATCTATA GTTATCTATA	0 480 GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGGGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA GAACGAGTAA

Achatina fulica GGCTATTTGT CTGGTCTATT TTAGTAACCG TTTTTTTATT ACTGCTATCC CTACCAGTTC Achatina immaculata GATTATTTGT GTGATCAATT TTGGTTACGG TGTTTCTTTT ACTACTATCA TTACCTGTAC Achatina reticulata Achatina zanzibarica GTTTATTTGT TTGATCAATT TTAGTCACCG TATTTTTACT ACTACTCTCA TTACCTGTAT Achatina achatina GACTGTTTGT ATGATCTATT TTAGTTACAG TATTTTTACT GCTTTTATCT CTCCCAGTAT Archachatina marginata GTCTTTTGT GTGGTCTATT TTGGTGACAG TTTTTCTGTT GTTGTTGTCT TTACCAGTGT GTTTATTTGT TTGATCTATT CTTGTAACTG TATTTCTTTT ACTTCTCTCA TTGCCAGTCC Achatina bisculpta Achatina damarensis GTTTATTTGT TTGGTCAATT CTTGTGACAG TGTTTCTTTT ACTTCTTTCT TTGCCTGTCT Achatina stuhlmanni GGTTATTTGT ATGATCAATT CTTGTTACTG TTTTCCTTTT ACTTTTATCT CTACCAGTCT Atopocochlis exarata GGTTATTTGT GTGGTCAATT TTGGTTACAG TATTCCTTTT ACTCTTATCA TTACCAGTAT GCTTATTTGT TTGGTCTATT CTTGTTACAG TATTTTTACT TCTTCTCTCT CTCCCTGTTT Limicolaria kambeul GTCTGTTTGT ATGATCTATC TTAGTAACGG TCTTTTTATT ACTCCTATCT CTTCCAGTAC Limicolaria martenssii Limicolariopsis sp. GGTTATTTGT ATGATCTATT TTAATTACTG TATTTCTTTT ACTCTTATCT CTACCAGTCC GCTTATTTGT GTGGTCAATC CTTGTCACTG TATTTTTACT TCTTTTATCG CTACCTGTTT Cochlitoma varicosa Cochlitoma dimidiata GCCTATTTGT GTGGTCTATC TTAGTTACCG TGTTTTTACT ACTCCTCTCC CTTCCTGTCT Cochlitoma sp. cf. vestita GGTTATTTGT GTGGTCAATT TTAGTAACTG TATTTTTACT ACTTCTCTCT CTCCCAGTTC Cochlitoma marinae GGTTGTTTGT GTGATCAATC CTAGTAACCG TGTTTTTACT ATTATTATCC TTACCAGTTT Cochlitoma churchilliana GTTTGTTTGT ATGGTCTGTT CTAGTGACAG TATTCTTACT ACTTTTGTCT TTACCTGTAT Cochlitoma granulata GTTTATTCGT TTGGTCTATT TTGATTACTG TTTTTTTACT CCTTCTCTCT CTTCCTGTTC Cochlitoma simplex GCCTCTTTGT GTGGTCAATC TTAGTCACCG TGTTTTTACT ACTTCTCTCC CTCCCTGTCT GGTTATTTGT ATGGTCAATT TTAGTAACTG TATTTTTATT ACTTCTCTCT CTACCTGTTC Cochlitoma kilburni Cochlitoma montistempli GCTTGTTTGT ATGGTCAATC TTGGTAACAG TATTTTTACT TCTTCTCCC CTTCCGGTTT Cochlitoma omissa ATTTATTCGT ATGGTCTATT TTAGTTACTG TATTTTTACT CCTTCTCTCT CTTCCTGTTC Cochlitoma semidecussata GCTTATTTGT GTGGTCCATC TTGGTAACAG TTTTTTTACT TCTTCTCTCC CTTCCTGTTT Cochlitoma ustulata GATTATTTGT ATGGTCTATT TTAGTTACTG TTTTCCTACT GCTCTTATCT CTACCAGTAC GMCTATTCGT MTGRTCCATT YTAGTAACAG TTTTCTTACT SCTCTTATCA TTACCCGTCT Cochlitoma zebra Metachatina kraussi GATTATTTGT TTGATCTATT TTAGTGACCG TGTTCTTATT ACTTCTTTCT TTACCAGTTT Rumina decollata GCCTATTTGT GTGATCTATT TTAGTAACCG TTTTTCTATT GCTTTTATCC CTACCAGTAC 600 TAGCGGGGGC AATTACTATA CTATTAACGG ATCGTAACTT TAACACATCT TTTTTGACC Achatina fulica TTGCCGGAGC TATTACTATA CTGCTAACAG ACCGTAATTT TAATACCTCA TTTTTTGACC Achatina immaculata TGGCTGGGGC TATTACTATA TTATTAACAG ACCGTAATTT TAATACATCT TTTTTGATC Achatina reticulata Achatina zanzibarica TAGCAGGGGC AATTACTATA TTATTAACAG ACCGAAACTT TAACACATCA TTTTTTGACC TAGCGGGTGC AATTACTATA CTTCTGACCG ATCGTAACTT TAATACATCT TTTTTTGATC Achatina achatina Archachatina marginata TAGCTGGTGC TATTACTATA CTTTTAACTG ATCGAAATTT TAATACATCT TTTTTTGACC Achatina bisculpta TAGCTGGGGC AATTACAATA TTATTAACAG ATCGAAATTT TAATACATCA TTTTTTGATC Achatina damarensis TAGCTGGAGC AATTACAATG TTATTAACTG ATCGAAATTT TAATACATCG TTTTTTGACC Achatina stuhlmanni TAGCTGGGGC GATTACTATA CTATTAACTG ATCGAAATTT TAATACATCT TTTTTTGATC TAGCAGGGGC AATTACTATA CTATTAACAG ATCGAAATTT TAATACTTCA TTTTTTGACC Atopocochlis exarata Limicolaria kambeul TAGCTGGAGC TATTACTATA TTATTAACTG ATCGTAATTT TAATACATCT TTTTTTGACC TGGCAGGGGC TATTACTATA TTATTAACAG ATCGTAATTT TAATACCTCT TTTTTTGACC Limicolaria martenssii Limicolariopsis sp. TTGCAGGTGC AATCACTATA CTATTAACTG ATCGTAACTT TAATACGTCA TTTTTTGATC Cochlitoma varicosa TAGCAGGGGC TATCACTATA CTATTAACAG ATCGAAATTT TAACACTTCT TTTTTGATC Cochlitoma dimidiata TAGCGGGGGGC TATCACTATA CTACTTACGG ACCGAAATTT TAACACCTCA TTTTTTGACC Cochlitoma sp. cf. vestita TAGCAGGGGC TATTACTATG CTTTTAACAG ATCGTAATTT TAATACTTCC TTTTTTGACC TAGCAGGTGC AATCACAATG CTCTTGACTG ATCGGAATTT TAATACTTCC TTTTTTGATC Cochlitoma marinae Cochlitoma churchilliana TGGCAGGGGC GATTACTATA CTGCTTACTG ACCGGAATTT TAATACCTCT TTTTTCGACC Cochlitoma granulata TAGCTGGGGC TATTACTATA CTTTTAACAG ATCGCAATTT TAACACCTCG TTCTTTGACC TGGCCGGGGC TATTACTATG CTTCTAACAG ACCGAAATTT TAATACTTCA TTCTTTGACC Cochlitoma simplex TAGCAGGGGC TATTACCATA CTTCTGACAG ACCGTAATTT TAATACTTCT TTTTTGATC Cochlitoma kilburni Cochlitoma montistempli TGGCAGGAGC TATTACTATG CTTTTAACAG ATCGAAATTT TAACACTTCC TTCTTTGATC Cochlitoma omissa TAGCAGGGGC TATTACTATA CTTTTAACAG ACCGAAATTT TAACACCTCG TTCTTCGACC Cochlitoma semidecussata TAGCAGGGGC TATTACTATA CTTTTAACGG ATCGGAATTT CAACACTTCA TTTTTTGATC Cochlitoma ustulata TAGCAGGGGC TATTACAATA CTCCTTACTG ATCGTAATTT TAACACATCC TTTTTCGACC Cochlitoma zebra TAGCGGGGGC TATTACCATA TTATTAACAG ATCGAAATTT TAATACATCT TTTTTTGATC Metachatina kraussi TAGCTGGAGC TATTACTATA CTTCTTACTG ATCGAAATTT TAATACTTCT TTTTTTGACC TAGCAGGAGC TATTACAATA CTACTAACTG ACCGTAACTT TAACACTTCA TTCTTTGATC Rumina decollata

	 610				
Achatina fulica				AGCACCTATT	0
Achatina immaculata	CAGCAGGGGG	TGGTGATCCA	ATTTTATACC	AACATTTATT	Т
Achatina reticulata	CTGCTGGAGG	TGGGGATCCG	GTCTTATATC	AACACTTGTT	Т
Achatina zanzibarica	CAGCGGGAGG	GGGAGACCCA	ATTTTGTATC	AGCACTTGTT	Т
Achatina achatina	CAGCTGGAGG	TGGTGATCCA	GTGCTTTACC	AGCACCTATT	С
Archachatina marginata	CGGCGGGAGG	TGGGGACCCT	ATTCTTTATC	AGCATTTGTT	Т
Achatina bisculpta	CTGCTGGAGG	GGGTGATCCT	GTCTTGTATC	AACACTTGTT	Т
Achatina damarensis	CTGCCGGTGG	TGGTGACCCG	ATTTTATATC	AACATTTATT	Т
Achatina stuhlmanni	CGGCAGGGGG	TGGTGATCCA	ATCCTATACC	AGCAYCTATT	С
Atopocochlis exarata	CGGCAGGGGG	TGGTGACCCT	GTGCTATATC	AACATTTGTT	Т
Limicolaria kambeul	CTGCAGGCGG	CGGGGATCCT	ATTTTGTATC	AGCACTTATT	С
Limicolaria martenssii	CAGCTGGAGG	GGGGGATCCT	ATTCTTTATC	AGCATTTATT	С
Limicolariopsis sp.	CTGCAGGAGG	AGGGGATCCA	GTCTTATATC	AACATTTATT	Т
Cochlitoma varicosa	CGGCCGGGGG	GGGTGACCCT	ATTCTATATC	AGCATCTATT	С
Cochlitoma dimidiata	CAGCTGGAGG	TGGGGACCCT	ATCTTGTACC	AGCACCTCTT	С
Cochlitoma sp. cf. vestita	CGGCTGGGGG	AGGCGATCCT	ATTTTGTATC	AACATCTCTT	Т
Cochlitoma marinae	CTGCAGGAGG	TGGGGACCCT	ATTTTATACC	AGCATTTATT	Т
Cochlitoma churchilliana				AACACCTTTT	-
Cochlitoma granulata				AGCACCTTTT	-
Cochlitoma simplex				AGCACCTCTT	-
Cochlitoma kilburni				AACATCTCTT	-
Cochlitoma montistempli				AACATCTTTT	-
Cochlitoma omissa				AGCACCTTTT	-
Cochlitoma semidecussata				AACACCTTTT	-
Cochlitoma ustulata				AGCATCTCTT	-
Cochlitoma zebra				AACATCTATT	
Metachatina kraussi				AGCATCTTTT	-
Rumina decollata	CTGCAGGGGG	AGGTGATČČA	ATTCTATATC	AGCATTTATT	·Γ

Appendix 4.5: Alignment of the 16S rRNA gene for the Achatinidae and the subulinid outgroup *Rumina decollata*. Positions included for the phylogeny analyses were marked by "m" within "NUCEOTIDES INCLUDED". Note that sequencing was unsuccessful for *Limicolariopsis ruwenzoriensis*.

		.			
	10	20 30			
Achatina fulica	TAGCTTAAAG A-GTGCGTA				
Achatina immaculata Achatina reticulata	TAGTTTAAAG AAATT				
Achatina reticulata Achatina zanzibarica	TAGCTTAAAG CGTWC TAGCTTAAAG GAC				
Euaethiopina loveridgei	CAGCTTGAAG TTTA				
Achatina achatina	TAGCTTTAGG A				
Archachatina marginata	TAGCTCTAGG A				
Achatina bisculpta	TRGKTARTAG T	- TTATGATTAT 1	TAGTGGATCC	TGCCCAGTGG	AATTTTAA
Achatina damarensis	TAGCCAGTAG CTA	G CTAGGATTGC 1	TGGTGGATCC	TGCCCAGTGG	AAAATTCTC-
Achatina stuhlmanni	TAGCTAATAG GCTCTI	Г ССАТААТТАТ Т	TAGTGGACCC	TGCCCGGTGA	AGTTAA
Atopocochlis exarata	TAGCTAAAAG T	AGAAATTTT 1	TAGTGTGTCC	TGCCCACTGG	GTTCC
Limicolaria kambeul	TAGCTAATAG A				
Limicolaria martenssii	TAGCTAATAG CATT				
Limicolariopsis sp.	TAGYTGGAAC G1				
Cochlitoma varicosa	TAGCTTAAAG T				
Cochlitoma dimidiata Cochlitoma sp. cf. vestit	TAGCTKGAAG A TAGCTTGAAG T				
Cochlitoma marinae	TAGCIIGAAG I				
Cochlitoma churchilliana	TAGCTTAAAG TTCT				
Cochlitoma granulata	TAGCTTGAGA G				
Cochlitoma simplex	TAGCTTGAAG CA				
Cochlitoma kilburni	TAGCTTGAAG T	- TTTTCGTTTT A	AAGTGATCCC	TGCCCGGTGG	TGTAA
Cochlitoma montistempli	TAGCTTGAGA G	T ATTTTATTTT A	AAGTGTCCCC	TGCCCAGTGA	TAATTA
Cochlitoma omissa	TAGCTTGRGA G	T ACTTCATTTC A	AAGTGTCCCC	TGCCCAGTGA	TCAATAA
Cochlitoma semidecussata	TAGCCTAAGA G				
Cochlitoma ustulata	TAGCCTGCTG T				
Cochlitoma zebra	TAGCTTTAAG T				
Metachatina kraussi Rumina decollata	TTGCTTGAAG TAG				
NUCLEOTIDES INCLUDED		– ––––––TTT <i>I</i> – –––––mmm n			
NCCLLCTIDED INCLUDED		titituti ti		mannannannannan	
			1 1	1 1	
		. 80			
Achatina fulica	 70 AACTTTA ACGGCCGCA	80 90	100) 110	120
Achatina fulica Achatina immaculata	70	80 90 G TACCTTGACT (100 GTGCAAAGGT) 110 AGCATAATAA) 120 TTTGTCCTCT
	70 AACTTTA ACGGCCGCA	80 90 G TACCTTGACT (G TACCCTGACT (100 GTGCAAAGGT GTGCAAAGGT) 110 AGCATAATAA AGCATAATAA) 120 TTTGTCCTCT TTTGTCCTTT
Achatina immaculata Achatina reticulata Achatina zanzibarica	70 AACTTTA ACGGCCGCA TATTTTA ACGGCCGCA	80 90 G TACCTTGACT (G TACCCTGACT (G TACCTTGACT (100 GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT) 110 AGCATAATAA AGCATAATAA AGCATAATAA) 120 TTTGTCCTCT TTTGTCCTTT TTTGTCCTTT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei	70 AACTTTA ACGGCCGCA TATTTTA ACGGCCGCA TACTTTA ACGGCCGCA GGCTTAA ACGGCCGCA TTCTTTA ACGGCCGCA	80 90 G TACCTTGACT (G TACCCTGACT (G TACCTTGACT (G TACCCTGACT (G TACCTTGACT (10(GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCTAAGGT) 110 AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA) 120 TTTGTCCTCT TTTGTCCTTT TTTGTCCTTT TTTGTCCTAT TTTGTCCTTT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina	70 AACTTTA ACGGCCGCZ TATTTTA ACGGCCGCZ GGCTTAA ACGGCCGCZ GGCTTAA ACGGCCGCZ CTATTTA ACGGCCGCZ	80 90 G TACCTTGACT (G TACCCTGACT (G TACCTTGACT (G TACCCTGACT (G TACCTTGACT (G TACCTTGACT (10(GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT) 110 AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA) 120 TTTGTCCTCT TTTGTCCTTT TTTGTCCTTT TTTGTCCTAT TTTGTCCTTT TTTGTCCCTT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata	70 AACTTTA ACGGCCGCA TATTTTA ACGGCCGCA GGCTTAA ACGGCCGCA GGCTTAA ACGGCCGCA TTCTTTA ACGGCCGCA TGACTTA ACGGCCGCA	80 90 G TACCTTGACT (G TACCTGACT (G TACCTTGACT (G TACCTTGACT (G TACCTTGACT (G TACCTTGACT (G TACCTTGACT (10(GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT) 110 AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA) 120 TTTGTCCTCT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCCTTT TTTGTCCCTTT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta	70 AACTTTA ACGGCCGCA TATTTTA ACGGCCGCA GGCTTTA ACGGCCGCA GGCTTTA ACGGCCGCA TTCTTTA ACGGCCGCA TGACTTA ACGGCCGCA TGACTTA ACGGCCGCA	80 90 G TACCTTGACT (G TACCTGACT (G TACCCTGACT (100 GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT) 111 AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA) 120 TTTGTCCTCT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCCTTT TTTGTCCCTTT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis	70 AACTTTA ACGGCCGCA TATTTTA ACGGCCGCA GGCTTTA ACGGCCGCA GGCTTTA ACGGCCGCA CTATTTA ACGGCCGCA CTATTTA ACGGCCGCA ATTCTTA ACGGCCGCA ATTCTTA ACGGCCGCA	80 90 G TACCTTGACT G G TACCTGACT G G TACCTGACT G	100 GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT) 111 AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA) 120 TTTGTCCTCT TTTGTCCTTT TTTGTCCTTT TTTGTCCTAT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni	70 AACTTTA ACGGCCGCA TATTTTA ACGGCCGCA TACTTTA ACGGCCGCA GGCTTAA ACGGCCGCA TTCTTTA ACGGCCGCA CTATTTA ACGGCCGCA ATTCTTA ACGGCCGCA ATTCTTA ACGGCCGCA CTTTTA ACGGCCGCA	80 90 G TACCTTGACT G G TACCTGACT G G TACCCTGACT G G TACCCTGACT G	100 GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT) 110 AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA) 120 TTTGTCCTCT TTTGTCCTTT TTTGTCCTTT TTTGTCCTAT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis	70 AACTTTA ACGGCCGCA TATTTTA ACGGCCGCA GGCTTTA ACGGCCGCA GGCTTTA ACGGCCGCA CTATTTA ACGGCCGCA CTATTTA ACGGCCGCA ATTCTTA ACGGCCGCA ATTCTTA ACGGCCGCA	80 90 G TACCTTGACT (G TACCTGACT (G TACCTGACT (G TACCTGACT (G TACCCTGACT (G TACCCTGACT (G TACCTGACT (100 GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT) 111 AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA) 120 TTTGTCCTCT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT CTTGTCCTTT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata	70 AACTTTA ACGGCCGCZ TATTTTA ACGGCCGCZ TACTTTA ACGGCCGCZ GGCTTAA ACGGCCGCZ TTCTTTA ACGGCCGCZ TGACTTA ACGGCCGCZ ATTCTTA ACGGCCGCZ ATTCTTA ACGGCCGCZ CTTTTA ACGGCCGCZ CTCCTTA ACGGCCGCZ	80 90 G TACCTTGACT (G TACCTGACT (100 GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT) 111 AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA) 120 TTTGTCCTCT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul	70 AACTTTA ACGGCCGCZ TATTTTA ACGGCCGCZ GGCTTAA ACGGCCGCZ GGCTTAA ACGGCCGCZ TTCTTTA ACGGCCGCZ TGACTTA ACGGCCGCZ TGACTTA ACGGCCGCZ ATTCTTA ACGGCCGCZ CTTTTA ACGGCCGCZ CTCTTTA ACGGCCGCZ TAGATTTTTA ACGGCCGCZ	80 90 G TACCTTGACT G G TACCTGACT G	100 GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCAAAGGT GTGCAAAGGT) 111 AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA) 120 TTTGTCCTCT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria martenssii	70 AACTTTA ACGGCCGCA TATTTTA ACGGCCGCA TACTTTA ACGGCCGCA GGCTTAA ACGGCCGCA TTCTTTA ACGGCCGCA TGACTTA ACGGCCGCA TGACTTA ACGGCCGCA ATTCTTA ACGGCCGCA CTCCTTTA ACGGCCGCA CTCCTTA ACGGCCGCA TACCTAA ACGGCCGCA ATCTTTA ACGGCCGCA ATCTTTA ACGGCCGCA	80 90 3 TACCTTGACT G TACCTGACT	100 GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCAAAGGT GTGCAAAGGT GTGCTAAGGT GTGCAAAGGT) 111 AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA) 120 TTTGTCCTCT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata	70 AACTTTA ACGGCCGC2 TACTTTA ACGGCCGC2 TACTTTA ACGGCCGC2 TACTTTA ACGGCCGC2 TTCTTTA ACGGCCGC2 TTCTTTA ACGGCCGC2 TTCTTA ACGGCCGC2 ATTCTTA ACGGCCGC2 CTCCTTA ACGGCCGC2 TAGATTTTA ACGGCCGC2 TAGATTTTA ACGGCCGC2 ACCTTAA ACGGCCGC2 ACGTTTA ACGGCCGC2 ACGTTTA ACGGCCGC2 ACGTTAA ACGGCCGC2	80 90 G TACCTTGACT G TACCTGACT	100 GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT) 111 AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA) 120 TTTGTCCTCT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina bisculpta Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma sp. cf. vestit	70 AACTTTA ACGGCCGCZ TATTTTA ACGGCCGCZ GGCTTAA ACGGCCGCZ GGCTTAA ACGGCCGCZ CTATTTA ACGGCCGCZ TGACTTA ACGGCCGCZ ATTCTTA ACGGCCGCZ ATTCTTA ACGGCCGCZ CTCCTTA ACGGCCGCZ TAGATTTTTA ACGGCCGCZ TACCTAA ACGGCCGCZ ATCTTTA ACGGCCGCZ ACCCTAA ACGGCCGCZ ACCCCAA	80 90 G TACCTTGACT (G TACCTGACT (100 GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT) 111 AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA) 120 TTTGTCCTCT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestit Cochlitoma marinae	70 AACTTTA ACGGCCGCZ TATTTTA ACGGCCGCZ GGCTTAA ACGGCCGCZ GGCTTAA ACGGCCGCZ CTATTTA ACGGCCGCZ TGACTTA ACGGCCGCZ TGACTTA ACGGCCGCZ ATTCTTA ACGGCCGCZ ATTCTTA ACGGCCGCZ TAGATTTTA ACGGCCGCZ TACCTAA ACGGCCGCZ ACTCTAA ACGGCCGCZ ACCCCAA ACGGCCGCZ ACCCCAA ACGGCCGCZ	80 90 G TACCTTGACT (G TACCTGACT (100 GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT) 111 AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA AGCATAATAA) 120 TTTGTCCTCT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma marinae Cochlitoma churchilliana	70 AACTTTA ACGGCCGCZ TATTTTA ACGGCCGCZ TACTTTA ACGGCCGCZ GGCTTAA ACGGCCGCZ CTATTTA ACGGCCGCZ TGACTTA ACGGCCGCZ TTCTTTA ACGGCCGCZ ATTCTTA ACGGCCGCZ ATTCTTA ACGGCCGCZ TAGATTTTTA ACGGCCGCZ TAGATTTTA ACGGCCGCZ ATCTTA ACGGCCGCZ ACTCTAA ACGGCCGCZ ACGCTAA ACGGCCGCZ ACGCTAA ACGGCCGCZ ACGCTAA ACGGCCGCZ ACGCTAA ACGGCCGCZ ACGCTAA ACGGCCGCZ	80 90 G TACCTTGACT G G TACCTGACT G	100 GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT) 111 AGCATAATAA) 120 TTTGTCCTCT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata	70 AACTTTA ACGGCCGCA TATTTTA ACGGCCGCA TACTTTA ACGGCCGCA GGCTTAA ACGGCCGCA TCTTTA ACGGCCGCA TGACTTA ACGGCCGCA TGACTTA ACGGCCGCA ATTCTTA ACGGCCGCA CTTCTTA ACGGCCGCA CTCCTTA ACGGCCGCA ACCTAA ACGGCCGCA ACCTAA ACGGCCGCA ACCGCAA ACGGCCGCA ACCGCAA ACGGCCGCA ACCGCAA ACGGCCGCA ACCGCAA ACGGCCGCA ACCGCAA ACGGCCGCA	80 90 G TACCTTGACT G G TACCTGACT G	100 GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT) 111 AGCATAATAA) 120 TTTGTCCTCT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma sp. cf. vestit Cochlitoma sp. cf. vestit Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex	70 AACTTTA ACGGCCGCZ TATTTTA ACGGCCGCZ TACTTTA ACGGCCGCZ TACTTTA ACGGCCGCZ TTCTTTA ACGGCCGCZ TTCTTTA ACGGCCGCZ TTCTTA ACGGCCGCZ ATTCTTA ACGGCCGCZ CTCCTTA ACGGCCGCZ TAGATTTTTA ACGGCCGCZ ATCCTTA ACGGCCGCZ ACTTTA ACGGCCGCZ ACCTAA ACGGCCGCZ ACCTTAA ACGGCCGCZ ACCTTAA ACGGCCGCZ ACCTTAA ACGGCCGCZ ACCTTAA ACGGCCGCZ ACCTTAA ACGGCCGCZ ACCTTAA ACGGCCGCZ ACCTTAA ACGGCCGCZ ACCTTAA ACGGCCGCZ	80 90 G TACCTTGACT G TACCTTGACT <	100 GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT) 111 AGCATAATAA) 120 TTTGTCCTCT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCCTT TTTGTCCCTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT TTTGTCCTTT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma sp. cf. vestit Cochlitoma sp. cf. vestit Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni	70 AACTTTA ACGGCCGCZ TATTTTA ACGGCCGCZ TACTTTA ACGGCCGCZ TACTTTA ACGGCCGCZ TTCTTTA ACGGCCGCZ TTCTTTA ACGGCCGCZ TTCTTA ACGGCCGCZ ATTCTTA ACGGCCGCZ CTCCTTA ACGGCCGCZ TAGATTTTTA ACGGCCGCZ TAGATTTTTA ACGGCCGCZ ATCTTA ACGGCCGCZ ACCTAA ACGGCCGCZ ACCTTAA ACGGCCGCZ ACGTTAA ACGGCCGCZ ACCTTAA ACGGCCGCZ ACCTTAA ACGGCCGCZ ACCGTAA ACGGCCGCZ ACCTTAA ACGGCCGCZ ACCGTAA ACGGCCGCZ ACCGTAA ACGGCCGCZ	80 90 G TACCTTGACT G TACCTTGACT <	100 GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT) 111 AGCATAATAA) 120 TTTGTCCTCT TTTGTCCTTT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma sp. cf. vestit Cochlitoma sp. cf. vestit Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex	70 AACTTTA ACGGCCGCZ TATTTTA ACGGCCGCZ TACTTTA ACGGCCGCZ TACTTTA ACGGCCGCZ TTCTTTA ACGGCCGCZ TTCTTTA ACGGCCGCZ TTCTTA ACGGCCGCZ ATTCTTA ACGGCCGCZ CTCCTTA ACGGCCGCZ TAGATTTTTA ACGGCCGCZ ATCCTTA ACGGCCGCZ ACTTTA ACGGCCGCZ ACCTAA ACGGCCGCZ ACCTTAA ACGGCCGCZ ACCTTAA ACGGCCGCZ ACCTTAA ACGGCCGCZ ACCTTAA ACGGCCGCZ ACCTTAA ACGGCCGCZ ACCTTAA ACGGCCGCZ ACCTTAA ACGGCCGCZ ACCTTAA ACGGCCGCZ	80 90 G TACCTTGACT G TACCTGACT G TACCTGACT <td< th=""><th>100 GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT</th><th>) 111 AGCATAATAA</th><th>) 120 TTTGTCCTCT TTTGTCCTTT</th></td<>	100 GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT) 111 AGCATAATAA) 120 TTTGTCCTCT TTTGTCCTTT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma sp. cf. vestit Cochlitoma sp. cf. vestit Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma kilburni	70 AACTTTA ACGGCCGCZ TATTTTA ACGGCCGCZ GGCTTAA ACGGCCGCZ GGCTTAA ACGGCCGCZ CTATTTA ACGGCCGCZ TTCTTTA ACGGCCGCZ TTCTTTA ACGGCCGCZ ATTCTTA ACGGCCGCZ CTCCTTA ACGGCCGCZ TAGATTTTTA ACGGCCGCZ TACCTAA ACGGCCGCZ ATCTTTA ACGGCCGCZ ACCTAA ACGGCCGCZ ACGTAA ACGGCCGCZ ACCTTAA ACGGCCGCZ ACCTTAA ACGGCCGCZ ACCTTAA ACGGCCGCZ ACCCTAA ACGGCCGCZ ACCCTAA ACGGCCGCZ ACCCTAA ACGGCCGCZ ACCCTAA ACGGCCGCZ ACCCTAA ACGGCCGCZ ACCCTAA ACGGCCGCZ	80 90 G TACCTTGACT G G TACCTGACT G G TACCTTGACT G	100 GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT) 111 AGCATAATAA) 120 TTTGTCCTCT TTTGTCCTTT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolaria martenssii Limicolaria martenssii Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestit Cochlitoma granulata Cochlitoma simplex Cochlitoma montistempli Cochlitoma omissa	70 AACTTTA ACGGCCGCZ TATTTTA ACGGCCGCZ GGCTTAA ACGGCCGCZ GGCTTAA ACGGCCGCZ CTATTTA ACGGCCGCZ TTCTTTA ACGGCCGCZ TTCTTTA ACGGCCGCZ ATTCTTA ACGGCCGCZ ATTCTTA ACGGCCGCZ TAGATTTTTA ACGGCCGCZ ACCTTAA ACGGCCGCZ ACGTTAA ACGGCCGCZ ACCTTAA ACGGCCGCZ ACCTTAA ACGGCCGCZ ACCCTAA ACGGCCGCZ ACCCTAA ACGGCCGCZ ACCCTAA ACGGCCGCZ ACCCTAA ACGGCCGCZ ACCCTAA ACGGCCGCZ ACCCTAA ACGGCCGCZ ACCCTAA ACGGCCGCZ ACCCTAA ACGGCCGCZ ACCCTAA ACGGCCGCZ	80 90 G TACCTTGACT G G TACCTGACT G G TACC	100 GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT) 111 AGCATAATAA) 120 TTTGTCCTCT TTTGTCCTTT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolaria martenssii Limicolariopsis sp. Cochlitoma dimidiata Cochlitoma dimidiata Cochlitoma granulata Cochlitoma sp. cf. vestit Cochlitoma simplex Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma missa Cochlitoma semidecussata	70 AACTTTA ACGCCGCZ TATTTTA ACGGCCGCZ TACTTTA ACGGCCGCZ TACTTTA ACGGCCGCZ TTCTTTA ACGGCCGCZ TTCTTTA ACGGCCGCZ TTCTTA ACGGCCGCZ ATTCTTA ACGGCCGCZ CTCCTTA ACGGCCGCZ TAGATTTTA ACGGCCGCZ TAGATTTTA ACGGCCGCZ ATCTTA ACGGCCGCZ ACCTAA ACGGCCGCZ	80 90 G TACCTTGACT G TACCTTGACT <	100 GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT) 111 AGCATAATAA) 120 TTTGTCCTCT TTTGTCCTTT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestit Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma montistempli Cochlitoma semidecussata Cochlitoma ustulata	70 AACTTTA ACGGCCGCZ TATTTTA ACGGCCGCZ TACTTTA ACGGCCGCZ TACTTTA ACGGCCGCZ TTCTTTA ACGGCCGCZ TTCTTTA ACGGCCGCZ TTCTTA ACGGCCGCZ ATTCTTA ACGGCCGCZ CTCCTTA ACGGCCGCZ CTCCTTA ACGGCCGCZ TAGATTTTTA ACGGCCGCZ ATCTTA ACGGCCGCZ ACTTTA ACGGCCGCZ ACCTAA ACGGCCGCZ ACCTTAA ACGGCCGCZ	80 90 G TACCTTGACT G TACCTGACT G TACCTGACT G TACCTGACT G TACCTGACT G TACCTTGACT	100 GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCTAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT GTGCAAAGGT) 111 AGCATAATAA) 120 TTTGTCCTCT TTTGTCCTTT

503

NUCLEOTIDES INCLUDED

130 140 150 160 170 18 Achatina fulica AATTAAGGTC TGGAATGAAG GGGGACAC AGGGGAG-AG CTGTCTCCAA TAAGGTTAAT Achatina immaculata AATTGAGGTC TAGTATGAAT GGGTTCAC AGGGGAA-AG CTGTCTCCAA GAGATTAAT Achatina reticulata AATTTAGGTC TGGAATGAAT GAGAACAC AGGGGAG-AG CTGTCTCTAG WARGGTTAAC Achatina zanzibarica AATTGAGGTC TGGTATGAAT GGGTTCAC GGGGGAA-AC CTGTCTCTAT TAAGGTAACC	0
Achatina immaculata AATTGAGGTC TAGTATGAAT GGGTTCAC AGGGGAA-AG CTGTCTCAAG GGAGATTAAT Achatina reticulata AATTTAGGTC TGGAATGAAT GAGAACAC AGGGGAG-AG CTGTCTCTAG WARGGTTAAC	
Achatina zanzibarica AATTGAGGTC TGGTATGAAT GGGTTCAC GGGGGAA-AC CTGTCTTTAT TAAGGTAACC	
Euaethiopina loveridgei AATTGAGGTC TGGTATGAAT GGGGGTAC GGGCGGG-TG CTGTCTTTAC TAAAGGTTAC	
Achatina achatina AATTAGGGTC TGGTATGAAA GGATTTTC GGGAGTT-TA CTGTCTTAGT GAGGTTAATA	
Archachatina marginata AATTGAGGTC TGGAATGAAT GGGCTACC GGGGGTT-GG CTGTCTGCTA -AAGGATAAT	
Achatina bisculpta AATTAAGGTC TTGTATGAAA GGGGGAAC GGGGGGT-AA CTGTCTCTAA GGGGTTTCAG	
Achatina damarensis AATTAAGGTC TTGTATGAAA GGGAGAAC GGGGGAT-AA CTGTCTCTTA TGGGGTTTAA	
Achatina stuhlmanni AATTAAGGTC TTGCATGAAT GGGTGTTC GAGGAGT-CG CTGTCTTTAT TAGGGTTTAA	
Atopocochlis exarata GATTGGGGTC TAGAATGAAT GGATGAT-T GGGGGGAA-AA CTGTTTCTTT CATGTTAATA	
Limicolaria kambeul AAATGAGGTC TTGTATGAAT GGGATAAC GGGGGGT-AG CTGTCTTATT ATAGTTTCTT	
Limicolaria martenssii AAATGAGGTC TTGTATGAAA GGATTAAC GGGGGAG-AG CTGTCTTATC TATAAAAAAC	
Limicolariopsis sp. AATTAGGGTC TAGAATGAAA GAACGCAC GATATAA-AG CTGTCTCAAA ATGGGTTATT	
Cochlitoma varicosa AATTGGGGTC TAGTATGAAT GGGTTAAC GGGTATT-AG CTGTCTCAGG GGGGTCTTAT	
Cochlitoma dimidiata AATTGAGGTC TGGAATGAAC GGGTTAGA-C GAATGTT-AG CTGTCTTATG TTAGGTCTTA	
Cochlitoma sp. cf. vestit AATTGAGGTC TGGAATGAAT GGGTTAAA-C GAGTATT-AG CTGTCTTATG TTGGTTAATG	
Cochlitoma marinae AATTGAGGTC TAGAATGAAT GGGAAAAG-C GGGTGAT-AG CTGTCTTAAG TCAGTTTTTA	
Cochlitoma churchilliana AATTAAGGTC TGGTATGAAT GGGTTAAC GGGTGTT-GA CTGTCTCAGG GATTGATATT	
Cochlitoma granulata AATTGAGGTC TGGTATGAAT GGGTTAGA-C GGGTATA-AG CTGTCTTAAT TTGGTTATCT	
Cochlitoma simplex AATTGAGGTC TAGAATGAAT GGGTTAAAAC GGGTGTT-AG CTGTCTCGCG TTGGGTTTTT	
Cochlitoma kilburni AATTGAGGTC TGGAATGAAT GGGTTTAA-C GGGTGTT-AG CTGTCTCATG CTGGTTAATG	
Cochlitoma montistempli AATTGAGGTC TGGAATGAAT GGGTTAGA-C GGGTATA-AG CTGTCTTAAT TTGGTTATCT	
Cochlitoma omissa AATTGAGGTC TGGAATGAAT GGGTTAGA-C GGGTATG-AG CTGTCTTAAT TTGGTTATT	
Cochlitoma semidecussata AATTGAGGTC TGGAATGAAT GGGTTAGA-C GGGTATA-AG CTGTCTTAAT TTGGTTATCC	
Cochlitoma ustulata AATTGAGGAC TGGAATGAAA GGGAAGAAAC GGGTATG-AG CTGTCTCTAG TTAGCTCTTT	
Cochlitoma zebra AATTGAGGTC TGGAATGAAT GGGTTTAA-C GGGTAAA-AG CTGTCTTAGG AAGGTCTTAT	
Metachatina kraussi AATTGAGGTC TGGAATGAAT GGGAAAAC GGGTATA-AG CTGTCTCAAG CTATTTTGT	
Rumina decollata AATTGAGGTC TTGAATGAAC GGGTTTAC GAAAAATGTT CTGTCTCCTG TACAAATTTT	
NUCLEOTIDES INCLUDED mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	

·····|····| ·····| ·····| ·····| ·····| ·····| ·····| ·····| ·····|

Achatina fulica Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestit Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi Rumina decollata NUCLEOTIDES INCLUDED

> 190 200 210 220 230 240 T--TAACTTT C-TTATCAGG TGAAAATTCC TGAGCCT-CC GATGAAAGAC GAGAAGACCC C--TAATTTA C-TTATCAGG TGAAAATTCC TGAGGAT-AA AAGGAAAGAC GAGAAGACCC T--TAACTTC C-TTATCAGG TGAAAATTCC TGAGCTT-CT TTGGAAAGAC GAGAAGACCC T--AAATTTG C-TTATCAGG TGAAAATTCC TGAATTTATA AAGGAAAGAC GAGAAGACCC CT-AAACTTA C-TTATCAGG TGAAAATTCC TGAACTT-TT AAGGAAAGAC GAGAAGACCC T--GAATTTA C-TCAATAAG GTGAAAATTC CTTAAAATTA GATAAAAGAC GAGAAGACCC TT-GAATTTG C-TTATAAGG TGAAAATTCC TTTAATTATA GATAAAAGAC GAGAAGACCC T--GAATTTC C-TCAGGAGG TGAAAATTCC TCTGATATTT GACAAAAGAC GAGAAGACCC T--AAATTTA C-TTAAGAGG TGAAAATTCC TCTAATT-GT GACAAAAGAC GAGAAGACCC TT-AAATTTA C-TCAAGAGG TGAAAATTCC TCTAAATTAA GATAAAAGAC GAGAAGACCC T--TAACTTA C-TTAAAAGG TGAAAATTCC TTTAGTT-AA GAAAAAAGAC GAGAAGACCC T--GAACTTA CTAAATTAGG TGAAAAATCC TACACTTATA TACAAAAGAC GAGAAGACCC ---GAAATTA CTTAATTAGG TGAAAACTCC TATAAAT-AA GAAAAAAGAC GAGAAGACCC TT-TAATTTG C-TAAAGAGG TGAAAATTCC TTTAATTTTT TATAAAAGAC GAGAAGACCC T--TAATTTA T-TTAGAAGG TGAAAATACC TTTAAATTTA TATAGTAGAC GAGAAGACCC T--TAACTTA A-TTAGAAGG TGAAAACTCC TTTATGTATT ATTAGAAGAC GAGAAGACCC C--TAACTTA A-TTAGAAGG TGAAAATGCC TTCATATTTT AATAGAAGAC GAGAAGACCC T--TAATTTA A-TTAGGGGGG KGAAAATTCC CCTATTCCTA AACAGTAGAC GAGAAGACCC ATTGAATTTA A-TCATAAGG TGAAAATGCC TTTACTTATT AACAGAAGAC GAGAAGACCC T--AAATTTA A-TTAAAAGG TGAAAATTCC TTTAAAATAA GATAGAAGAC GAGAAGACCC T--TAACTTA ATCTAGAAGG TGAAAACTCC TTCAAGAATA GACAGAAGAC GAGAAGACCC T--CAACTTA A-TTAGAAGG TGAAAATACC TTCATGTTTA AATAGAAGAC GAGAAGACCC T--AAACTTA A-TTAGAAGG TGAAAATTCT TTTAATATAT TACAGAAGAC GAGAAGACCC T--AAATTTA A-TTAAAAGG TGAAAATTCC TTTAAAGTGA AATAGAAGAC GAGAAGACCC T--GAACTTA A-TGAAAAGG TGAAAATTCC TTTAAGT-GT TACAGAAGAC GAGAAGACCC T--AAATTTA A-TTGTTAGG TGAAAATACC TATACCT-TT AACAGAAGAC GAGAAGACCC T--TAACTTA A-TTAGAAGG TGAAAATCCC TTTAAGTATA AAAAGTAGAC GAGAAGACCC T--GAACTTA CTTTAGAAGG TGAAAATACC TTTGTTT-TA GTTAGAAGAC GAGAAGACCC ACTGAACTTA C-TTAAGAGG TGAAAATTCC TTTAGTA-AT GAAAAAAGAC GAGAAGACCC

Ashabing fulies	250 260 270 28	
Achatina fulica Achatina immaculata	TTAGAGTTTT TATTATAACT TGATA TATTAAGATT TTAGAGCTTT TATGAAAATT TGAGA AGTTACTAAT	
Achatina reticulata	TTAGAGCTITI TATGAAAATTI TGAGA AGTIACTAAT TTAGAGTTTTI AATAATTATTI TAGAT AAATAAAATT	
Achatina zanzibarica	TTAGAGTTTT CATTAAAGCC TAGGAGTAATAGC	
Euaethiopina loveridgei	TTAGAGTTTT TACTACAACT AGAAATGTCATATT	
Achatina achatina	TTGGAGTTTT TATTATATAG ATAGA	
Archachatina marginata	TTGGAATTTT AAGGAATTTG TAAGCT	TTACATAAAT TTTCGCTGGG
Achatina bisculpta	TTAGAGCTTT AATAAAAGGT AAATCACTATT	TTACTTAAGT TTTTGTTGGG
Achatina damarensis	TTAGAGCTTT TACAAAAAGT AGACAAGTAG TGTACTATTT	
Achatina stuhlmanni	TTAGAGTTTT AATGAAAAGT AAACT	
Atopocochlis exarata	TTAGAAATTT GTAGAAAATG CAAATTCAAT	
Limicolaria kambeul Limicolaria martenssii	TATGAGTTTT TATGAATAAA TGAAAT CATATTTTAT TAAGAGTTTT AATGAGAATA CTATT AGGTAATTAA	
Limicolariopsis sp.	TAAGAGIIIII AAIGAGAAIA CIAII AGGIAAIIAA TAAGAGCTTT TAATAATCTA AATAT AAAAATTTA	
Cochlitoma varicosa	TTAGAGTTTC CATGAAAGAG TATAATCTTTAT	
Cochlitoma dimidiata	TTAGAGTTTT AATGAAACAA TATAT TTTACAATTG	
Cochlitoma sp. cf. vestit	TTAGAGTTTA AAATGAATAA ATATTA ATCTTACGAT	
Cochlitoma marinae	TTAGAGTTTT TATGAAAGTA GTCTAAGG TTATCTAGTA	
Cochlitoma churchilliana	TTAGAGTTTT TATGAAGAAG TTATATAT ATATCAAATA	AGCTTTAAGT TTTCGTTGGG
Cochlitoma granulata	TTAGAGTTTT TATAAATAAA TATAGAA CAGATGAGTT	
Cochlitoma simplex	TTAGAGTTTT AATGAAATAA TATAG TTTAAAGTAG	
Cochlitoma kilburni	TTAGAGTTTT AAATGAATAA ATACTA ATATTATAAT	
Cochlitoma montistempli	TTAGAGTTTT TATAAATAAA TATAGA ACAATAAGTT	
Cochlitoma omissa Cochlitoma semidecussata	TTAGAGTTTT TATAAACAAA TGTAGA ACAATGAGTT TTAGAGTTTT TATAAATAAA TGTAGA ACAATGCGTT	
Cochlitoma ustulata	TTAGAGTTTT TATGATAAGC ATTCTACATA	
Cochlitoma zebra	TTAGAGTTTT TATAAGAATA TATAACTTTTTT	
Metachatina kraussi	TTAGAGTTTT TATAAAAATA TATGGTA ATTATTTAAA	
Rumina decollata	TTAGAATTTT AATAAAAACT GTCATTGCGTG	ATTGTTTAGT TTTCGTTGGG
NUCLEOTIDES INCLUDED	mmmmmmmmm m	mmm mmmmmmmmm
Achatina fulica	310 320 330 34	0 350 360
Achatina fulica Achatina immaculata	310 320 330 34 GCGACAGGGT TACA	0 350 360 ACCCTACCAT ATTTTTAT
Achatina fulica Achatina immaculata Achatina reticulata	310 320 330 34	0 350 360 ACCCTACCAT ATTTTTAT ACCTGATCTT TAAAGTAT
Achatina immaculata	310 320 330 34 GCGACAGGGT TACA	0 350 360 ACCCTACCAT ATTTTTAT ACCTGATCTT TAAAGTAT ACCCATTCAT ATATTTTTAT
Achatina immaculata Achatina reticulata	310 320 330 34 GCGACAGGGT TACA A TAGATAACTT GCGACAGGGT AGCA A TATTAAACCT GCGACAGGGT AACA A AGGTAAACTT	0 350 360 ACCCTACCAT ATTTTTAT ACCTGATCTT TAAAGTAT ACCCATTCAT ATATTTTTAT ACCTAGAATA C-TTCCTGTT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina	310 320 330 34 GCGACAGGGT TACA TAGATAACTT GCGACAGGGT AGCA TATTAAACCT GCGACAGGGT AACA TATTAAACCT GCGACAGGGT TACA GTTTGAACTC GCGACAGGGT GACA GTTTGAACTT GCAGCGAGAT TACA	0 350 360 ACCCTACCAT ATTTTTAT ACCTGATCTT TAAAGTAT ACCCATTCAT ATATTTTTAT ACCTAGAATA C-TTCCTGTT ACCAACACAA TATTATATAT CTTTTAATTA ATCTTTACTT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata	31032033034GCGACAGGGT TACATAGATAACTTGCGACAGGGT AGCATATTAAACCTGCGACAGGGT TACAGCGACAGGGT TACAGCGACAGGGT GACAGCTTTGAACTCGCGACAGGGT GACATAATTAACTTGCGACAGGGT GACATAATTAACTTGCGCCAGGAT TACATCTTTAGCGCGCGAGAC TACAAGGTTTCATTAACTA	0 350 360 ACCCTACCAT ATTTTTAT ACCTGATCTT TAAAGTAT ACCCATTCAT ATATTTTTAT ACCTAGAATA C-TTCCTGTT ACCAACACAA TATTATATAT CTTTTAATTA ATCTTTACTT GTCTTACATT ATAATTTGGT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta	31032033034GCGACAGGGT TACATAGATAACTTGCGACAGGGT AGCATATTAAACCTGCGACAGGGT TACAGTTTGAACTCGCGACAGGGT GACAGTTTGAACTCGCGACAGGGT GACATATTAACTTGCGCAGAGAT TACATCATTAACTTGCGCGAGAT TACATCTTTAGCGCGAGAC TACAAGGTTTCATTAACTAGCACCAGGTGCACCAGAGAT GGCAAGGTTAACACAAGAT GGCAAATGAAAATAAACCCATCT	0 350 360 ACCCTACCAT ATTTTTAT ACCTGATCTT TAAAGTAT ACCCATTCAT ATATTTTTAT ACCTAGAATA C-TTCCTGTT ACCAACAACAA TATTATATAT CTTTTAATTA ATCTTTACTT GTCTTACATT ATAATTTGGT AATATTCCTA TTTTATTTGA
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis	31032033034GCGACAGGGT TACATAGATAACTTGCGACAGGGT AGCATATTAAACCTGCGACAGGGT TACAGTTTGAACTCGCGACAGGGT GACAGTTTGAACTCGCGACAGGGT GACATAATTAACTTGCGCCAGGAT TACACTTTAGCGCCAGAGAT TACACTTTAGCGCCAGAGAT TACACTTTAGCGCCAGAGAT TACACTTTAGCGCCAGAGAT TACACAGGTT TCATTAACTAGCACAAGAT GGCAAATGAAAAT AAACCCATCTGCAACAAGAT GGCAAAGTT TAACCCATCC	0 350 360 ACCCTACCAT ATTTTTAT ACCTGATCTT TAAAGTAT ACCCATTCAT ATATTTTTAT ACCTAGAATA C-TTCCTGTT ACCAACAACA TATTATATAT CTTTTAATTA ATCTTTACTT GTCTTACATT ATAATTTGGT AATATTCCTA TTTTATTTGA A-TATTCTAT GTTAATTTGA
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni	31032033034GCGACAGGGT TACATAGATAACTTGCGACAGGGT AGCATATTAAACCTGCGACAGGGT AACATATTAAACTTGCGACAGGGT GACAGTTTGAACTCGCGACAGGGT GACAGTTTGAACTCGCGACAGGGT GACATAATTAACTTGCGACAGGGT TACATAATTAACTTGCGACGAGAC TACAGCGACGAGAC TACA	0 350 360 ACCCTACCAT ATTTTTAT ACCTGATCTT TAAAGTAT ACCCATCAT ATATTTTAT ACCCATCAT ATATTTTAT ACCCACAA TATTATATT CTTTTAATTA ATCTTTACTT GTCTTACATT ATAATTTGGT AATATTCCTA TTTTATTTGA A-TATTCTAT GTTAATTTGA AATTTTCTAA AGTGAATCAG
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata	31032033034GCGACAGGGTTACATAGATAACTTGCGACAGGGTAGCATATTAAACTTGCGACAGGGTTACAGTTTGAACTCGCGACAGGGTGACAGTTTGAACTCGCGACAGGGTGACATATTAAACTTGCGACAGGGTGACATATTAACTTGCGACAGGGTGACATATTAACTTGCGACAGGGTGACAATGATTGCGACAGGATTACAAGGTTGCACAGAGATGGCAAATGAAAATGCAACAAGATGGCAAATGATACTTGCAACAAGATGGCAAAAATTAGACCATCTGCAACAAGATGGCAAATATATAACCCATCTGCAACAGAATGGCA	0 350 360 АСССТАССАТ АТТТТТАТ АССТВАТСАТ АТ-ТТТТАТ АСССАТТСАТ АТАТТТТТАТ АСССАТСАТ АТАТТТТАТ АССТАЗААТА С-ТТССТВТ АССААСАСАА ТАТТАТАТАТ СТТТТААТТА АТСТТТАСТТ GTCTTACATT АТААТТТGGT ААТАТТССТА ТТТТАТТТGA А-ТАТТСТАТ GTTAATTTGA ААТАТТСТА АGTGAATCAG ААААСТТААG СТТАААТСА
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni	31032033034GCGACAGGGT TACATAGATAACTTGCGACAGGGT AGCATATTAAACCTGCGACAGGGT AACATATTAAACTTGCGACAGGGT GACAGTTTGAACTCGCGACAGGGT GACAGTTTGAACTCGCGACAGGGT GACATAATTAACTTGCGACAGGGT TACATAATTAACTTGCGACGAGAC TACAGCGACGAGAC TACA	0 350 360 ACCCTACCAT ATTTTTAT ACCTGATCTT TAAAGTAT ACCCATTCAT ATATTTTTAT ACCTAGAATA C-TTCCTGTT ACCAACACAA TATTATATAT CTTTTAATTA ATCTTTACTT GTCTTACATT ATAATTTGGT AATATTCCTA TTTTATTTGA A-TATTCTAT GTTAATTTGA AATTTTCTAA AGTGAATCAG AAACTTAAG CTTAAATCTA
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul	31032033034GCGACAGGGT TACATATAAACTTGCGACAGGGT AGCATATTAAACTTGCGACAGGGT TACAGTTTGAACTCGCGACAGGGT GACAGTTTGAACTCGCGACAGGGT GACAGTTTGAACTCGCGACAGGGT GACATAATTAACTTGCGCGAGAT TACATAATTAACTTGCGCGAGAC TACAAGGTTGCACAGGT GACAAGGTTGCACAGGAT GCCAAATGAAAATAAACCCATCTGCAACAAGAT GGCAAATGAAAATGCAACAAGAT GGCAAATGAAACTTGCAACAAGAT GGCAAAAGCCATCTGCAACAAGAT GGCAAATATAAAACCCATCTGCAACAAGAT GGCAAATATAGCAACAAGAT GGCAAAGTTAATAT	0 350 360 ACCCTACCAT ATTTTTAT ACCTGATCTT TAAAGTAT ACCCATCAT ATATTTTAT ACCAGATA C-TTCCTGTT ACCAACACAA TATTATATAT CTTTTAATTA ATCTTTACTT GTCTTACATT ATAATTTGGT AATATTCCTA TTTTATTGA A-TATTCTAA GTGAATCAG AAAACTTAAG CTTAAATCA ATTTATCAT ATGTAAATAA ATTTATCAT ATTATATTAT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria martenssii	31032033034GCGACAGGGT TACAATAGATAACTTGCGACAGGGT AGCAATAAACTTGCGACAGGGT TACAGTTTGAACTCGCGACAGGGT GACAGTTTGAACTCGCGACAGGGT GACAATATTAACTTGCGACAGGGT GACAATATTAACTTGCGACAGGGT GACAATATTAACTTGCGCGAGAC TACAAGGTTGCACCAGGT GACAAGGTTGCACCAGAT GGCAAATGAAAATAAACCCATCTGCAACAAGAT GGCAGCAACAAGAT GGCAAATATAGCAACAAGAT GGCAAATATAGCAACAAGAT GGCAAATATATGCAACAAGAT ATCAAGATAATATGCAACAAGAT ATCAAGATTAATATGCAACAAGAT TCCAGATTAAATGA	0 350 360 ACCCTACCAT ATTTTAT ACCTGATCTT TAAAGTAT ACCCATCAT ATATTTTAT ACCCATCAT ATATTTTAT ACCACACAA TATTATATAT CTTTTAATTA ATCTTTACTT GTCTTACATT ATAATTTGGT AATATTCCTA TTTTATTGA A-TATTCTAT GTTAATTGGA AAACTTAAG CTTAAATTAG AATCTTATAT TAGTAAATAA ATTTTATTAT ATTATATTAT ATCTGTTTTT CTTGAATACA
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp.	31032033034GCGACAGGGT TACATATAAACTTGCGACAGGGT AGCATATTAAACCTGCGACAGGGT AACATATTAAACTTGCGACAGGGT GACAGTTTGAACTCGCGACAGGGT GACAGCTTTGAACTCGCGACAGGGT GACAGTTTGAACTCGCGCGAGAT TACAAGGTT TCATTAACTTGCAGCGAGAT TACA	0350360ACCCTACCATATTTTTATACCTGATCTTTAAAGTATACCCATCATATATTTTTATACCCATCATATATTTTTATACCTAGAATAC-TTCCTGTTACCAACACATATTATATATCTTTTAATTAATCTTTACTTGTCTTACATTATATTTGAA-TATTCTATGTTAATTGGTAATATTCTATGTTAATTGGAA-TATTCTATGTTAATTGAAATTTCTAAAGTGAATCAGAAAACTTAAGCTTAAATTAAATTTTATTATTAGTAAATAAATTTATCTATATATATATATATCTGTTTTCTTGAATACAACCTGTATAGATGGTAAATG
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestit	31032033034GCGACAGGGTTACATAGATAACTTGCGACAGGGTAGCATATTAAACCTGCGACAGGGTTACAGTTTGAACTCGCGACAGGGTGACAGTTTGAACTCGCGACAGGGTGACATAATTAACTTGCGACAGGGTGACATAATTAACTTGCGACAGGGTGACATAATTAACTTGCGACAGGGTGACAATGATTGCACAGGATTACAGCACAGAGATGGCA	0350360ACCCTACCATATTTTTATACCTGATCTTTAAAGTATACCTGATCATATATTTTATACCTAGAATAC-TTCCTGTTACCAACACAATATTATATATCTTTAATTAATCTTTACTTGTCTTACATATATTCGTAATATTCCTATTTTATTGAA-TATTCTATGTTAATTGGAATATTCTAAAGTGAATCAGAAAACTTAAGCTTAAATTAAATCTTTATTATAGTAAATCAAATCTTTATTAATGTAAATCAAACTGGTATAGATGATAACAAACTGTTTTTCTGAATACAACCTGTATAGATGATAAATGGTTTAAAAGTAATCAACAAGCTAACGAAATAAACTAAGA
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma sp. cf. vestit Cochlitoma marinae	31032033034GCGACAGGGTTACATATAAACTTGCGACAGGGTAGCATATTAAACTTGCGACAGGGTAACAGTTTGAACTCGCGACAGGGTTACAGTTTGAACTCGCGACAGGGTGACAGTTTGAACTCGCGACAGGGTGACAGTTTGAACTCGCGACAGGTGACAATAATTAACTTGCGACAGGTGACAAATTAACTTGCGCGAGACTACAAGGTTGCAACAAGATGGCAAATGAAAATGCAACAAGATGGCAAAACCCATCTGCAACAAGATGGCAAATTAACCCATCTGCAACAAGATGGCAAATTAATTGCAACAAGATTCCAAGATTAATATGCAACAAGATTCCAGATTAAATATGCAACAGAATTCCAAAGTTAACATGCAACAGGATCGCAAAGTTAACCGGCAACGGGGTCGCAAGTTAACCGGCAACGGAGTCGCATATTTAACCGGCAACGGAGTCGCATATTTAACCGGCAACGGAGTGCATATTTAACCGGCAACGGAGTTGCA	0350360ACCCTACCATATTTTTATACCTGATCTTTAAAGTATACCTGATCATATATTTTATACCAACACAAATATTATATATCTTTAATTAATCTTTACTTGTCTTACATTATATTTGGTAATATTCTAATTATATATGGTAATATTCTAATTATATATGGTAATATTCTAATTATATATGGTAATATTCTAATTATATATATTGAAATATTCTAATTATATTGAAATATTCTAAGTGAAATCAGAAAACTTAAGCTTAAATTAATTTATATATATGTAAATAAATTTATCTATATGAAAATAAATTTATATATATATCTGTTTTTCTGTATAGAATGGTAAATGGTTTAAAAGTAATACACAGCTAACGAAATAAACTAAGAGATTAATTGTTTAGGGTTT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma marinae Cochlitoma churchilliana	31032033034GCGACAGGGT TACAATAGATAACTTGCGACAGGGT AGCAATAGTAAACTTGCGACAGGGT TACAGTTTGAACTCGCGACAGGGT GACAGTTTGAACTCGCGACAGGGT GACAAGCGACAGGT GACAAGCGACAGGT GACAAGCGACAGGT GACAAGCGACAGGT GACAAGGTT TCATTAACTTGCGCGAGAC TACAAGGTT TCATTAACTAGCACAAGAT GGCAAATGAAAAT AAACCCATCTGCAACAAGAT GGCAAAGTT TAACCCATCTGCAACAAGAT GGCAAATATA TAACCCATCTGCAACAAGAT GGCAAATATA TAACCCATCTGCAACAAGAT ATCAAATATAGCAACAGAAT TCCAAATATAGCAACAGAAT TCCAAATATAGCAACAGAAT ATCAAAGTTAACATGCAACAGAAT ATCA	0350360ACCCTACCATATTTTTATACCCTGATCTTTAAAGTATACCCTGATCATATATTTTATACCAGACACAAATATTATATATCTTTAATTAATCTTTACTTGTCTTACATTATATTTTGGTAATATTCCTAATTATATATGGTAATATTCTAGTTAAATTGGTAATATTCTAAATGTAAATTGGAAATATTCTAAGTGTAAATTGAAATTTCTAAAGTGAAATCAGAAAACTTAAGCTTAAATCAATTATCTATATGTAAATAAATTTATCTATATGTAAATAAATTTATCTATATGTAAATAAATTTATCTATATGTAAATAGGTTTAAAAGTAATACACAGCTAACGAAATAAACTAAGAGATTAATTGTTTAGGGTTTACTTGTTAGGGAAGTAATAA
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestit Cochlitoma marinae Cochlitoma churchilliana Cochlitoma granulata	31032033034GCGACAGGGTTACATATAAACTTGCGACAGGGTAGCATATTAAACTTGCGACAGGGTAACATATTAAACTTGCGACAGGGTGACAGTTTGAACTCGCGACAGGGTGACAGTTTGAACTCGCGACAGGGTGACATATTAACTTGCGCGAGAGTTACATCTTTAGCGCCGAGACTACAAGGTTTCATTAACTAGCACAGAGTGGCAGCAACAAGATGGCAAATGAAAATAAACCCATCTGCAACAAGATGGCAGCAACAAGATGGCAAAAATTAGACAAGATGGCAGCAACAAGATGGCAGCAACAAGATTCAGCAACAAGATTCCA	0350360ACCCTACCATATTTTTATACCCTACCATA-TTTTTATACCCTACCATATATTTTATACCCATCATATATTTTATACCAACACAAATTTATATATCTTTTAATTAATCTTTACTTGTCTTACATTATATTTGGTAATATTCCTAATTATATATGGTAATATTCTAATCTTTACTTGTCTTACATTGTTAAATTGGTAATATTCTAATTATTTGAAATATTCTAGTGAAATCAGAAACTTAAGCTTAAATTAATCTGTTTTCTTGAATACAACCTGTATAGATGATAACAAACCTGTATAGATGATAACAAGCTTAAATTGTTTAGGGATTACTTGTTAGGGAATATAACAAGATTAATTGTTAAGGGTTTACTTGTTAGGGAATAATAAAATTATTAGTAACTAACAA
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolaria partenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma sp. cf. vestit Cochlitoma churchilliana Cochlitoma granulata Cochlitoma simplex	31032033034GCGACAGGGTTACATAGATAACTTGCGACAGGGTAGCATATTAAACCTGCGACAGGGTAACATATTAAACTTGCGACAGGGTGACAGTTTGAACTCGCGACAGGGTGACATATTAAACTTGCGACAGGGTGACATATTAAACTTGCGACAGGGTGACATATTAACTTGCGACAGGGTGACAATGATTGCAGCAGAATTACAAGGTTGCAACAAGATGGCAAATGAAATGCAACAAGATGGCAAATGAAATGCAACAAGATGGCAAAGTTAACTTGCAACAAGATGGCAAATGATATGCAACAAGATTCCAAGATTAATATGCAACAAGATTCCA	0350360ACCCTACCATATTTTTATACCCTGATCTTTAAAGTATACCTGATCATATATTTTATACCTAGAATAC-TTCCTGTTACCAACACAATATTATATATCTTTAATTAATCTTTACTTGTCTTACATATATTTTGAA-TATTCTATGTTAATTTGAA-TATTCTAAGTTAAATTGAAATATTCTAAGTTAAATTGAAATATTCTAAGTTAAATTGAAATATTCTAAAGTGAATCAGAAAACTTAAGCTTAAATTAAATCTTTATTATAGTAAATAAATCTTTATTAATGATAATAAATCTGTTTTCTTGAAATACAACCTGTATAGATGATAACAAGCTAACGAAATAAACTAACAAGATTAATTGTTTAGGGATTTACTGTTAGGGAAGTAATAAAATTATTTAGTAACTAACAAGTTAAATAATAAACTAACAAGTTTAATTAGTAACTAACAATAAAATTATTTAGTAACTAACAATAAGTTAAATAAATAATGCATATA
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria kambeul Limicolaria sep. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestit Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni	31032033034GCGACAGGGTTACATAGATAACTTGCGACAGGGTAGCATATTAAACCTGCGACAGGGTAACATATTAAACTTGCGACAGGGTGACAGTTTGAACTCGCGACAGGGTGACATATTAAACTTGCGACAGGGTGACAATAATTAACTTGCGACAGGGTGACAATAATTAACTTGCGACAGGGTGACAAATTAACTTGCGACAGGATTACAATGTTGCACAGAGATGGCAAATGAAAATAAACCCATCTGCAACAAGATGGCAGCAACAAGATGGCAAATAATATGCAACAAGATGGCA	0350360ACCCTACCATATTTTTATACCCTGATCATA-AAGTATACCTGATCATATATTTTATACCTAGAATAC-TTCCTGTTACCAACACATATTATATATCTTTAATTAATCTTTACTTGTCTTACATATATTTGGTAATATTCCTATTTTATTGAA-TATTCTATGTTAATTGGAAATATTCCTAGTTAATTGGAAATATTCCTAGTTAATTGAATTTTATTAAAGTGAATCAGAAAACTTAAGCTTAAATCAAATCTTTATTATAGTAAATAAATCTTTATTATGGTAAATAAACCTGTATAGATGATACAAAGTTAAAAGTAATACAACAGCTAACGAAATAAACTAAGAAATTATTAGGAAGTAATAAAATTATTAGTAACTAACATGTTAACAAATAAACTAACATGTTAACAAATAAACCAACATGTTAACGAAATAAACTAACAT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria kambeul Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestit Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma kilburni	31032033034GCGACAGGGTTACATAGATAACTTGCGACAGGGTAGCATATTAAACCTGCGACAGGGTAACATATTAAACTTGCGACAGGGTTACAGTTTGAACTCGCGACAGGGTGACATATTAAACTTGCGACAGGGTGACATATTAAACTTGCGACAGGGTGACATAATTAACTTAGCGACAGGGTGACAAGGTTGCAACAAGATGGCAAATGAAATGCAACAAGATGGCAAATGAAATGCAACAAGATGGCAAATGAATATGCAACAAGATGGCAAATATATAACCCATCTGCAACAAGATGGCAGCAACAAGATGGCAAAGTTAATATGCAACAAGATTCCAGATTAATATAGCAACAGGATTCCAAAGTTAACGGCAACAGGATCGCAAAGTTAACGGCAACGGAGTCGCA	0350360ACCCTACCATATTTTTATACCCTGATCATA-AAGTATACCTGATCATATATTTTATACCAGACACAATATTATATATATCTTTAATTAATCTTTACTTGTCTTACATATATATTGGTAATATTCTATATTATATTGAA-TATTCTATGTTAATTGGAAATATTCTAATTATATTGAAATATTCTAGTTAAATTGAAATATTCTATGTGAATCAGAAAACTTAAGCTTAAATTATATCTTTATTATAGTAAATCAAACTGGTATAGATGGAAAACAAACTGGTATAGATGGAAAATAAATTTAATATAATGGAAAATAAACTGGTATAGATGAATACAAGCTAACGAAATAAACTAAGAGATTAATTAGGAACTAACAAGTTAAATAATAATGCATATGTTAACAAATAAACTAACAAGTTAACAAATAAACTAACAAGTTAACAAATAAACTAACAAATTATTAGATAAACTAACAAATTAACAAATAAACTAAATAAATTAATTAAATAAACTAAATA
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria kambeul Limicolaria sep. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestit Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni	31032033034GCGACAGGGTTACATAGATAACTTGCGACAGGGTAGCATATTAAACCTGCGACAGGGTAACATATTAAACTTGCGACAGGGTGACAGTTTGAACTCGCGACAGGGTGACATATTAAACTTGCGACAGGGTGACAATAATTAACTTGCGACAGGGTGACAATAATTAACTTGCGACAGGGTGACAATGATAGCAACAGAATGGCAAGGTTGCAACAAGATGGCAAAGATGCAACAAGATGGCAAAGATGCAACAAGATGGCAAAGATGCAACAAGATGGCAAATATATAACCCATCTGCAACAGAATGGCAGCAACAGAATTCCA	0350360ACCCTACCATATTTTATACCTGATCTTAAAGTATACCTGATCATATATTTTATACCAGACACAATATTATATATCTTTAATTAATCTTTACTTGTCTTACATATATTTGGTAATATTCTATATATTCTAGAATATTCTAATTATATATTGGTAATATTCTAATTATATATTGGAAATATTCTAGTTAAATTGAATTTCTAAAGTGAATCAGAAAACTTAAGCTTAAATTATATTTATTTATTTAGTAAATAAATTTATTTATATGGTAAATGAGTTTAATAGATTATACAAACTGGTATAGAGTAATACAAACTGGTATAGATAACTAAGAGCTAACGAAATAAACTAAGAGATTAATTAGTAACTAACATGTTAAATAATAACTAACATGTTAAATAATAACTAAATAAATTTATCAAATAACTAAATAAAATTATTTAGTAACTAAATAAAATTATTAGTAACTAAATAAAATTATTAGATAACTAAATAAAATTATTAGTAACTAACAAGTTAAATAAATAATTAATAATAAAATTATTAGTAACTAACAAATTATCAAATAATTAATGAAATTATTAGTAACTAACAA
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria kambeul Limicolaria martenssii Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestit Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma omissa	31032033034GCGACAGGGTTACATATAAACTTGCGACAGGGTAGCATATTAAACTTGCGACAGGGTAACATATTAAACTTGCGACAGGGTTACAGTTTGAACTCGCGACAGGGTGACAGTTTGAACTCGCGACAGGGTGACAGTTTGAACTCGCGACAGGGTGACAATGATTGCACCAGGTGACAAGGTTGCACAAGATGGCAAATGAAAATGCAACAAGATGGCAAATGAAAATGCAACAAGATGGCAAATGAAATGCAACAAGATGGCAAATGATATTGCAACAAGATGGCAAATATAGCAACAAGATGGCAAATTAATTGCAACAAGATTCCAAATATAGCAACAGAATTCCAAATATAGCAACAGAATTCCAAATATAGCAACAGGATCCCAAAGTTAACGGCAACGGAGTCGCAAAGTTAACCGGCAACGGAGTGCA	0350360ACCCTACCATATTTTTATACCCTGATCTTTAAAGTATACCCTGATCATATATTTTATACCCATCATATATTTTATACCAGACACAAATATTATATATCTTTAATTAATCTTTACTTGTCTTACATTATATTTTATTGAAATATTCCTAATTATATATTGGTAATATTCTAGTTAAATTGGTAATATTCAATGTTAAATTGGTAATATTCTAAATGTAAATTGAAATTTCTAAGTGAAAATCAGAAAACTTAAGCTTAAATTATATCTGTTATTTAGTAAATCAGAATTTATCTATATGTAAATCAGACCTGTATAGATGGTAAAATGAGCTAACGAAATAAACTAAGAGGATTAATTGTTTAGGGTTTACTGGTAAGGGAAGTAATAAAATTATTTAGTAACTAACATGTTAAACAAATAACTAACATGTTAACGAAATAACTAATATATTATTTAGTAACTAACATGTTAACGAAATAACTAATATATTATCAAATAACTAACATGTTAACGAAATAACTAACATATTATTTAGTAACTAACATATTATTTAGTAACTAACATATTATTTAGTAACTAACATATTATTTAGTAACTAACATATTATTTAGTAACTAACATATTATTTAGTAACTAACATATTATTTAGTAACTAACATATTATTTAGTAACTAACATATTATTTAGTAACTAACATATTATTTAGTAACTAACATATTATTTAGTAACTAACATATTATATTAGTAACTAACATATTATATTAGTAACTAACATATTATATTAGTAACTAACATATTATATTAGTAACTAACAT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma dimidiata Cochlitoma sp. cf. vestit Cochlitoma granulata Cochlitoma simplex Cochlitoma kilburni Cochlitoma montistempli Cochlitoma missa Cochlitoma semidecussata	31032033034GCGACAGGGT TACAATAGATAACTTGCGACAGGGT AGCAATATTAAACCTGCGACAGGGT AACAAAGGTAAACTTGCGACAGGGT TACAAGTTGAACTCGCGACAGGGT GACAATATTAAACTTGCGACAGGGT GACAATATTAACTTGCGACAGGGT GACAAGGTTTCATTAACTAGCAACAAGAT GGCAAGGTTTCATTAACTAGCAACAAGAT GGCAAAGTTAAACCCATCTGCAACAAGAT GGCAAAGTTTAACCCATCTGCAACAAGAT GGCAAATATATAACCCATCTGCAACAAGAT GGCAAATATATAACCCATCTGCAACAAGAT GCAAAAATTAGTAAATATGCAACAAGATGCAACAGAAT TCCAAATATAAAGTTAACATGCAACAGAAT TCCAAATATAAAGTTAACATGCAACAGAAT TCCAAAAAGTTAACATGCAACAGAAT CGCA	0350360ACCCTACCATATTTTTATACCCTACCATA-TTTTTATACCCTACCATATATTTTTATACCCATCATATATTTTTATACCACACAAATATTATATATCTTTAATTAATCTTTACTTGTCTTACATATATTTTGGTAATATTCCTAATTTTATTGAATATTCTAATCTTTACTTGTCTTACATTATAATTTGGTAATATTCTAATTATATATATATTTTAATTAATCTTTACTTGTCTTACATTGTGAAATCAGAATATTCTAAGTGAAAACAGAATTTTTAATTAATGTAAATAAATTTATCTATATGTAAATAAATCTGTTTTCTTGAATACAACCTGTATAGGTAATACACAGCTTAACAAAAAACTAAGAGATTAATTGTTAACGATATATTATTTAGGAAGTAATAAAATTATTTAGTAACTAACATGTTTAACAAATAAACTAACATGTTTAACAAATAAACTAATAAAATTATTTAGTAACTAACAATATTATCAAATAAACTAACAATATTATTAGTAACTAACAATATTATTAGTAACTAACAATATTATTAGTAACTAACAATATTATTAGTAACTAACAATATTATTAGTAACTAACAATATTATTTAGTAACTAACAATATTATTTAGTAACTAACAATATTATTTAGTAACTAACAATATTATTACAAATAACTAACAATATTATTACAAATAACTAACAATATTATTAGTAACTAACAATATTATTACAAATAACTAACAATATTATTACAAATAACTAACAATATTATTACAAATAACTAACAATATTATTACAAATAACTAACAAT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma sp. cf. vestit Cochlitoma sp. cf. vestit Cochlitoma granulata Cochlitoma simplex Cochlitoma simplex Cochlitoma montistempli Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma ustulata Cochlitoma zebra Metachatina kraussi	31032033034GCGACAGGGTTACATATATAACTTGCGACAGGGTAGCATATTAAACTTGCGACAGGGTAACATATTAAACTTGCGACAGGGTGACATATTAAACTTGCGACAGGGTGACATATTAAACTTGCGACAGGGTGACATATTAAACTTGCGACAGGGTGACATATTAATTAACTTGCGACAGGGTGACAAATTAACTTGCGACAGGATTACATCTTTAGCGACAGAGATGGCAAATGAAATAAACCCATCTGCAACAAGATGGCAGCAACAAGATGGCAAAGTTAATATGCAACAAGATGGCA	0350360ACCCTACCATATTTTTATACCCTGATCATA-AAGTATACCTGATCATATATTTTATACCAGACACATATTATATATCTTTAGAATAC-TTCCTGTTACCAACACAATATTATATATATCTTTAATTAATCTTTACTTGTCTTACATATATATTGGTAATATTCTATTTAATTGGAATATTCTAGTTAAATTGAAATATTCTATGTGAATCAGAAAACTTAAGCTTAAATTATATCTTTATTATAGTAAATCAGAAACTTAAGCTTAAATTATATCTTTATTATAGTAAATCAGACCTGTATAGATGATACACAGCTAACGAAATAAACTAAGAGCTAACGAAATAACTAACAAGTTTAATAAATATATTATATATATTATTAGTAACTAACAATGTTAACGAAATAACTAACATGTTAACGAAATAACTAACATGTTAACGAAATAACTAACATGTTAACGAAATAACTAACATGTTAACGAAATAACTAACATATTATTAGTAACTAACATATTATTAGTAACTAACATATTATTAGTAACTAACATATTATTAGTAACTAACATATTATTAGTAACTAACATATTATTAGTAACTAACATATTATTAGTAACTAACATATTATTAGTAACTAAGTAGATTATTAGTAACTAACATATTATTAGTAACTAACATATTATTAGTAACTAACATATTATTAGTAACTAACATATTATTAGTAACTAACATATTATTAGTAACTAACATATTATTAGTAACTAACATATTATTAGTAACTAACATATTATTAGTAACTAACATATTATTAGTAACTAACATATTAT
Achatina immaculata Achatina reticulata Achatina zanzibarica Euaethiopina loveridgei Achatina achatina Archachatina marginata Achatina bisculpta Achatina damarensis Achatina stuhlmanni Atopocochlis exarata Limicolaria kambeul Limicolaria martenssii Limicolaria martenssii Limicolariopsis sp. Cochlitoma varicosa Cochlitoma sp. cf. vestit Cochlitoma sp. cf. vestit Cochlitoma granulata Cochlitoma simplex Cochlitoma simplex Cochlitoma montistempli Cochlitoma semidecussata Cochlitoma ustulata Cochlitoma ustulata	31032033034GCGACAGGGTTACATAGATAACTTGCGACAGGGTAGCATATTAAACCTGCGACAGGGTAACATATTAAACTTGCGACAGGGTGACAGTTTGAACTCGCGACAGGGTGACATATTAAACTTGCGACAGGGTGACAATAATTAACTTGCGACAGGGTGACAATAATTAACTTGCGACAGGGTGACAATGTTGCACAGAGATGGCAAATGAAATAAACCCATCTGCAACAAGATGCAACAAGATGGCAGCAACAAGATGGCAAAGTTAATATTAACCCATCTGCAACAAGATGGCAGCAACAAGATGGCAGCAACAAGATGGCAAAGATAATATGCAACAGAATTCCAGCAACAGAATACCCATCTGCAACAGGATCGCAGCAACAGGATCGCA	0350360ACCCTACCATATTTTATACCCTGATCATA-TTTTTATACCTGATCATATATTTTATACCAGACACAAATATTTTATACCAACACAAATATATATATCTTTAATTAATCTTTACTTGTCTTACATATAATTTGGTAATATTCTAATCTTTACTTGTCTTACATTATAATTTGAA-TATTCTATGTTAAATTGGAATATTCCTAATTATATATTGAAATATTCTATGTTAAATTGAAATTTTATTATAGTGAATCAGAAACTTAAGCTTAAATTATATCTTTATTATAGTAAATAAATTTATCTATATGGTAAATGAGCTAACGAAATAAACTAAGAGCTATAAAAGTAATACACAGCTAACGAAATAACTAACAAGTTTAATAAGAAACTAAGAAATTATTAGTAACTAACAATGTTAAATAAATAATTAATTAGAATTATTAGTAACTAACATGTTAACGAAATAATTAATGAAATTATTAGTAACTAACATGTTAACGAAATAATTAATGAAATTATTAGTAACTAACATATTATTAGTAACTAACATATTATTAGTAACTAACATATTATTAGTAACTAACATATTATTAGTAACTAACATATTATTAGTAATTAATGAATTATTAATAAATTATTAATAAATTATTAC

	1 1	1 1	1 1		1 1	1 1
	370) 390			
lata	ATACCGATGG	TAATATTAA-		CACGAAA	GCTACCTAAG	GGATAACAGC
lata						
arica						
veridgei						
na			TTTATCCTAA			
rginata pta						
nsis						
anni						
arata						
beul	ATCGATTATG	ATAATGG		AAACTAA	ACTACCTTAG	GGATAACAGC
tenssii	AAGAAGAAAG	GTAATAAGAA		AAAATAA	GCTACCTTAG	GGATAACAGC
sp.						
cosa			AA			
diata			AA			
cf. vestit			AA GGG			
nae chilliana			TCGTT			
ulata			AA			
lex			AA			
urni			AA			
istempli	ATA-TGACAA	TTCGTATGAG	AG	TAAATAA	ACTACCTAAG	GGATAACAGC
sa			TA			
decussata			AA			
lata			TA			
a			AA			
ussi			AA			
a LUDED						
	430) 440		460	9 470	480
lata	430 GTAATCTTTT) 44(TTTTTGGT) 460 GATGTTGGAC) 470 TAGGGGCCTA) 480 CTGGTTAGTT
lata lata	430 GTAATCTTTT GTAATCTTTG) 440 TTTTTGGT TTATGGT) 450 TTGCGACCTC) 460 GATGTTGGAC GATGTTGGAC) 470 TAGGGGCCTA TAGGAACCCT) 480 CTGGTTAGTT TTGGTTAGTT
	430 GTAATCTTTT GTAATCTTTG GTAATCTTTT) 44(TTTTTGGT TTATGGT TTTTTGGT) 450 TTGCGACCTC TTGCGACCTC) 460 GATGTTGGAC GATGTTGGAC GATGTTGGAC) 470 TAGGGGCCTA TAGGAACCCT TAGGGGCCTA) 480 CTGGTTAGTT TTGGTTAGTT CTGGTTAGCA
lata	430 GTAATCTTTT GTAATCTTTG GTAATCTTTT GTAATCTAAA GTAATCTTTT) 44(TTTTTGGT TTATGGT TTTTTGGT AGTAGGT TTAAGGC) 450 TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC) 460 GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC) 470 TAGGGGCCTA TAGGAACCCT TAGGGGCCTA TAGGGTCCAC TAGGGACCTG) 480 CTGGTTAGTT TTGGTTAGTT CTGGTTAGCA TTGGTTAGCC TTGGTTAGTT
lata arica veridgei na	430 GTAATCTTTT GTAATCTTTG GTAATCTTTT GTAATCTAAA GTAATCTTTT ATAATTCCTT) 44(TTTTTGGT TTATGGT TTTTTGGT AGTAGGT TTAAGGC AGGGAGA) 450 TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGTGACCTC) 460 GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC) 470 TAGGGGCCTA TAGGAACCCT TAGGGGCCTA TAGGGTCCAC TAGGGACCTG TAGGGCTCTA) 480 CTGGTTAGTT TTGGTTAGTT CTGGTTAGCA TTGGTTAGCC TTGGTTAGTT TTGGTTAACT
lata arica veridgei na rginata	430 GTAATCTTTT GTAATCTTTT GTAATCTTAAA GTAATCTTTT ATAATTCCTT ATAATTCCCA) 44(TTTTTGGT TTATGGT TTTTTGGT AGTAGGT TTAAGGC AGGGAGA ATGGAGT) 450 TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGTGACCTC TTGTGACCTC) 460 GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC) 470 TAGGGGCCTA TAGGAACCCT TAGGGGCCTA TAGGGTCCAC TAGGGACCTG TAGGGCCCTT) 480 CTGGTTAGTT TTGGTTAGTT CTGGTTAGCA TTGGTTAGCC TTGGTTAGTT TTGGTTAACT ATGATTAACT
lata arica veridgei na rginata pta	430 GTAATCTTTT GTAATCTTTT GTAATCTTTT GTAATCTTAAA GTAATCCTTT ATAATTCCCA GTAATCTAAA) 44(TTTTTGGT TTTTTGGT AGTAGGT TTAAGGC AGGGAGA ATGGAGT ATGTTTAGGA) 450 TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGTGGACCTC TTGTGGACCTC TTGTGGACCTC) 460 GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC) 470 TAGGGGCCTA TAGGGACCTA TAGGGCCTA TAGGGTCCAC TAGGGACCTG TAGGGCCCTT TAGGGCCCTT TAGGGACCAA) 480 CTGGTTAGTT TTGGTTAGTT CTGGTTAGCA TTGGTTAGCC TTGGTTAGTT TTGGTTAACT ATGATTAACT ATGATTAGAT
lata arica veridgei na rginata pta nsis	430 GTAATCTTTT GTAATCTTTT GTAATCTTTT GTAATCTTAAA GTAATCCTTT ATAATTCCCA GTAATCTAAA GTAATCTAAA) 44(TTTTTGGT TTTTTGGT AGTAGGT AGTAGGT AGGAGA ATGGAGA ATGTTTAGGA AG-TTTAGGA) 450 TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGTGACCTC TTGTGACCTC TTGTGACCTC TTGCGACCTC) 460 GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC) 470 TAGGGGCCTA TAGGACCCT TAGGGCCTA TAGGGCCTA TAGGGCCTG TAGGGCCTT TAGGGCCCTT TAGGGACCAA TAGGGACCAA) 480 CTGGTTAGTT TTGGTTAGTT TTGGTTAGCA TTGGTTAGCC TTGGTTAGTT TTGGTTACT ATGATTAACT ATGATTACAT ATGATTAGAT
lata arica veridgei nginata pta nsis anni	430 GTAATCTTTT GTAATCTTTT GTAATCTTTT GTAATCTTAA GTAATCCTT ATAATTCCCA GTAATCTAAA GTAATCTAAT GTAATCTAAT) 44(TTTTTGGT TTTTTGGT TTTTTGGT AGTAGGT AGTAGGA AGGGAGA AG-TTTAGGA AG-TTTAGGA ATTAGGA) 450 TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGTGACCTC TTGTGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC) 460 GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC) 470 TAGGGGCCTA TAGGACCCT TAGGGCCTA TAGGGCCTG TAGGGCCTG TAGGGCCCTT TAGGGACCAA TAGGGACCAA TAGGGACCAA) 480 CTGGTTAGTT TTGGTTAGTT CTGGTTAGCC TTGGTTAGCC TTGGTTAACT TTGGTTAACT ATGATTAACT ATGATTAGAT ATGATTAGAT ATGATGAGAT
lata arica veridgei na rginata pta nsis	430 GTAATCTTTT GTAATCTTTT GTAATCTTTT GTAATCTAAA GTAATCTAAA GTAATCTAAA GTAATCTAAAT GTAATCTAAAT GTAATCTAAG) 44(TTTTTGGT TTTATGGT AGTAGGT AGGAGA AGGAGA AG-TTTAGGA AG-TTTAGGA AG-TTTAGGA ATTAGGA ATTAGGA) 450 TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGTGACCTC TTGTGACCTC TTGTGACCTC TTGCGACCTC) 460 GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC) 470 TAGGGACCTA TAGGGACCTA TAGGGCCTA TAGGGCCCAC TAGGGCCCTG TAGGGCCCAT TAGGGACCAA TAGGGACCAA) 480 CTGGTTAGTT TTGGTTAGTT CTGGTTAGCA TTGGTTAGCC TTGGTTAGCT TTGGTTAACT ATGATTAACT ATGATTAGAT ATGATTAGAT ATGATGAGAT ATGATAAGAT
lata arica veridgei na rginata pta nsis anni arata	430 GTAATCTTTT GTAATCTTTTG GTAATCTTTT ATAATCTAAA GTAATCTAAA GTAATCTAAAT GTAATCTAAAT GTAATCTAAAT GTAATCTAAAA) 44(TTTTTGGT TTTTTGGT ATTTTGGT ATGAGT ATGGAGT ATGTTTAGGA AG-TTTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA) 450 TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGTGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC) 460 GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC) 470 TAGGGGCCTA TAGGGACCTA TAGGGCCTA TAGGGCCCA TAGGGCCTA TAGGGCCTA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCAA) 480 CTGGTTAGTT TTGGTTAGTT TTGGTTAGCA TTGGTTAGCC TTGGTTAGCT TTGGTTACT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATAAGAT ATGATAAGAT ATGATAAGAT
lata arica veridgei na rginata pta nsis anni arata beul	430 GTAATCTTTT GTAATCTTTT GTAATCTATTT GTAATCTATA ATAATTCCTT ATAATTCCCA GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT) 44(TTTTTGGT TTTTTGGT AGTAGGT AGTAGGC AGGGAGA ATGGAGT AG-TTTAGGA AG-TTTAGGA ATTAGGA ATTAGGA AGTTAGGT AGTTAGGA) 450 TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGTGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC) 460 GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC KATGTTGGAC) 470 TAGGGGCCTA TAGGGACCTA TAGGGCCTA TAGGGCCCTA TAGGGCCTA TAGGGCCTA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCAA) 480 CTGGTTAGTT TTGGTTAGTT CTGGTTAGCA TTGGTTAGCC TTGGTTAGCT TTGGTTAACT ATGATTAGAT ATGATTAGAT ATGATAGAT ATGATAGAT ATGATAGAT ATGATTAGCC ATGATTAGCC ATGATTAGC
lata arica veridgei na rginata pta nsis anni arata beul tenssii sp. cosa	430 GTAATCTTTT GTAATCTTTT GTAATCTTTT GTAATCTTAAA GTAATCTAAA GTAATCTAAA GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTATT GTAATCTATT GTAATCTATT) 44(TTTTTGGT TTTTGGT AGTAGGT AGTAGGC AGGGAGA ATGGAGT ATGTTTAGGA AG-TTTAGGA ATTAGGA ATTAGGA AGTTAGGT A-GTTAGGA ATTAGGA) 450 TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGTGACCTC TTGTGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC) 460 GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC KATGTTGGAC GATGTTGGAC) 470 TAGGGGCCTA TAGGGACCTA TAGGGCCTA TAGGGCCCTG TAGGGACCTG TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCAA) 480 CTGGTTAGTT TTGGTTAGTT TTGGTTAGCA TTGGTTAGCC TTGGTTAGTT TTGGTTAACT ATGATTAGAT ATGATTAGAT ATGATAGAT ATGATAAGAT ATGATTAAGC ATGATTAAGC ATGATTAAGC ATGATTAAGC
lata arica veridgei na rginata pta nsis anni arata beul tenssii sp. cosa diata	430 GTAATCTTTT GTAATCTTTT GTAATCTTTT GTAATCTAAA GTAATCTATT ATAATTCCTA GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTATT) 44(TTTTTGGT TTTTTGGT AGTAGGT AGGAGAA ATGAGA AG-TTTAGGA AG-TTTAGGA ATTAGGA ATTAGGA TTTAGGT AGTTAGGA ATTAGGA TTTTAGGY) 450 TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC) 460 GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC) 470 TAGGGACCTA TAGGGACCTA TAGGGCCTA TAGGGCCTA TAGGGCCTA TAGGGCCTA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCTA) 480 CTGGTTAGTT TTGGTTAGTT TTGGTTAGCA TTGGTTAGCC TTGGTTAGCT ATGATTAGT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGC ATGATTAGC ATGATTAGC ATGATTAGCA
lata arica veridgei na rginata pta nsis anni arata beul tenssii sp. cosa diata cf. vestit	430 GTAATCTTTT GTAATCTTTT GTAATCTTTT GTAATCTAAA GTAATCTAAA GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTATT) 44(TTTTTGGT TTTTTGGT ATTTTGGT ATGAGGT ATGGAGA AG-TTTAGGA AG-TTTAGGA ATTAGGA ATTAGGA TTTAGGT AGTTAGGT ATTAGGA TTTTAGGA TTTTAGGA) 450 TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGTGCACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC) 460 GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC) 470 TAGGGACCTA TAGGGACCTA TAGGGCCTA TAGGGCCTA TAGGGCCTA TAGGGCCTA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCTA TAGGGACCTA TAGGGACCTA) 480 CTGGTTAGTT TTGGTTAGTT TTGGTTAGCC TTGGTTAGCC TTGGTTAGCT ATGATTAGAT ATGATTAGAT ATGATAGAT ATGATAGAT ATGATAGAT ATGATAGAC ATGATTAGAC ATGATTAGAC ATGATTAGAC ATGATTAGAC ATGATTAGCA TTGGTTAGCA TTGGTTAGCA
lata arica veridgei na rginata pta nsis anni arata beul tenssii sp. cosa diata cf. vestit nae	430 GTAATCTTTT GTAATCTTTT GTAATCTAAA GTAATCTAAA GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTATT) 44(T TTTTGGT T TTTTGGT AGTAGGT AGGAGA AGGGAGA ATGGAGT AG - TTTAGGA AG - TTTAGGA ATTAGGA ATTAGGA ATTAGGA TTTAGGA T TTTAGGA) 450 TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC) 460 GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC) 470 TAGGGACCTA TAGGGACCTA TAGGGCCTA TAGGGCCTA TAGGGCCTA TAGGGCCTA TAGGGACCAA TAGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCTA TAGGGACCTA TAGGGACCTA) 480 CTGGTTAGTT TTGGTTAGTT TTGGTTAGCC TTGGTTAGCC TTGGTTAGCT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATAGGAT TGGTTAGCA TTGGTTAGCA TTGGTTAGTA TTGGTTAGTA
lata arica veridgei na rginata pta nsis anni arata beul tenssii sp. cosa diata cf. vestit nae chilliana	430 GTAATCTTTT GTAATCTTTT GTAATCTAAA GTAATCTAAA GTAATCTAAA GTAATCTAAA GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTAC) 44(T - TTTTGGT T - TTTTGGT T - TTTTGGT AGTAGGT AGGGAGA ATGGAGT ATGTTTAGGA AG - TTTAGGA ATTAGGA ATTAGGA ATTAGGA TTTAGGA T - TTTAGGA T - ATTAGGA TTTAGGA TTTAGGA TTTAGGA TTTAGGA) 450 TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC) 460 GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC) 470 TAGGGACCTA TAGGGACCTA TAGGGCCTA TAGGGCCCAC TAGGGCCCAC TAGGGCCCAT TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCCA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA) 480 CTGGTTAGTT TTGGTTAGTT TTGGTTAGCC TTGGTTAGCC TTGGTTAGCT ATGATTACT ATGATTACT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGCA TTGGTTAKTA TTGGTTAGTA TTGGTTAGTA TTGGTTAGTA ATGGTTAGTA ATGGTTAGTA
lata arica veridgei na rginata pta nsis anni arata beul tenssii sp. cosa diata cf. vestit nae	430 GTAATCTTTT GTAATCTTTT GTAATCTATT GTAATCTATA GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT) 44(TTTTTGGT TTTTTGGT AGTAGGT AGTAGGT AGGGAGA ATGGAGA AG - TTTAGGA AG - TTTAGGA ATTAGGA ATTAGGA TTTAGGT A GTTAGGA TTTAGGA T TTTAGGA TTTAGGA TTTAGGA TTTAGGA TTTAGGA TTTAGGA TTTAGGA) 450 TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC) 460 GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGAC) 470 TAGGGACCTA TAGGGACCTA TAGGGCCTA TAGGGCCTA TAGGGCCTA TAGGGCCTA TAGGGCCTA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA) 480 CTGGTTAGTT TTGGTTAGTT TTGGTTAGCC TTGGTTAGCC TTGGTTAGCT ATGATTACT ATGATTACT ATGATTAGAT ATGATTAGAT ATGATAGGAT ATGATTAGAT ATGATTAGC ATGATTAGC ATGATTAGC ATGATTAGCA TTGGTTACA TTGGTTAGCA TTGGTTAGTA ATGGTTAGTA ATGGTTACA
lata arica veridgei na rginata pta nsis anni arata beul tenssii sp. cosa diata cf. vestit nae chilliana ulata	430 GTAATCTTTT GTAATCTTTT GTAATCTTTT ATAATCTTT ATAATTCCTA GTAATCTAAA GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTCTC GTAATCTCTC GTAATCTCTC GTGATCTACT) 44(T TTTTGGT T TTTTGGT T TTTTGGT AGTAGGT AGGAGA ATGAGA AG-TTTAGGA AG-TTTAGGA ATTAGGA TTTAGGA TTTAGGA T TTTAGGA T TTTAGGA TTTAGGA TTTAGGA TTTAGGA TTTGGA TTTGGA TTTGGA TTTGGA TTTGGA) 450 TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC) 460 GATGTTGGAC) 470 TAGGGACCTA TAGGGACCTA TAGGGCCTA TAGGGCCTA TAGGGCCTA TAGGGCCTA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACTAA TAGGGACTAA TAGGGACTAA	 480 CTGGTTAGTT TTGGTTAGCT TTGGTTAGCC TTGGTTAGCC TTGGTTAGCT TTGGTTAGCT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGCA TGGTTAGCA TTGGTTAGCA TTGGTTAGTA ATGGTTAGTA ATGGTTAACA TCGGTAACA TCGGTAATCA TTGGTTAACA TCGGTAATCA TTGGTAACA TCGGTAATCA TTGGTTAACA
lata arica veridgei na rginata pta nsis anni arata beul tenssii sp. cosa diata cf. vestit nae chilliana ulata lex	430 GTAATCTTTT GTAATCTTTT GTAATCTTTT GTAATCTAAA GTAATCTATT ATAATTCCTA GTAATCTAAA GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTATT GTAATCTATT GTAATCTTATT GTAATCTTATT GTAATCTTAC GTAATCTTATT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT) 44(T TTTTGGT T TTTTGGT T TTTTGGT AGGAGA AGGAGA AG-TTTAGGA AG-TTTAGGA AG-TTTAGGA ATTAGGA ATTAGGA ATTAGGA TTTAGGA T TTTAGGA T TTTAGGA T TTTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA) 450 TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC TTGCGACCTC) 460 GATGTTGGAC) 470 TAGGGACCTA TAGGGACCTA TAGGGCCTA TAGGGCCTA TAGGGCCTA TAGGGCCTA TAGGGCCTA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA	 480 CTGGTTAGTT TTGGTTAGCT TTGGTTAGCA TTGGTTAGCC TTGGTTAGCT TTGGTTAGCT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGCA ATGATTAGCA ATGATTAGCA TTGGTTACCA TTGGTTAGTA TTGGTTAGTA ATGGTTAGTA ATGGTTACACA TTGGTTACACA TTGGTTAACA TTGGTTACACA TTGGTTAACA
lata arica veridgei na rginata pta nsis anni arata beul tenssii sp. cosa diata cf. vestit nae chilliana ulata lex urni	430 GTAATCTTTT GTAATCTTTT GTAATCTAAA GTAATCTAAA GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTGATCTATT GTAATTCACT GTAATTCACT GTAATTCACT GTAATTCACT) 44(T - TTTTGGT T - TTTTGGT T - TTTTGGT AGTAGGT AGGAGA ATGGAGT AG-TTTAGGA AG-TTTAGGA ATTAGGA ATTAGGA TTTAGGA TTTAGGA TTTAGGA TTTAGGA TTTAGGA TTTAGGA TTTAGGA TTTAGGA TTTAGGA TTTAGGA TTTAGGA TTTAGGA TTTAGGA TTTAGGA) 450 TTGCGACCTC) 460 GATGTTGGAC) 470 TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGCCTA TAGGGCCTA TAGGGCCTA TAGGGACCTA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA	 480 CTGGTTAGTT TTGGTTAGTT CTGGTTAGCC TTGGTTAGCC TTGGTTACT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGC ATGATTAGCA ATGATTAGCA TTGGTTAGCA TTGGTTAGCA TTGGTTAGCA TTGGTTAGTA ATGGTTAGCA TTGGTTAGTA ATGGTTAGCA TTGGTTAGTA ATGGTTAACA TTGGTTAGTA TTGGTAGCA TTGGTAACA TTGGTAAGCA TTGGTAAGCA TTGGTAAGCA TTGGTAAGCA TTGGTAAGCA TTGGTAAGCA TTGGTAAGCA TTGGTAAGCA TTGGTAAGCA
lata arica veridgei na rginata pta nsis anni arata beul tenssii sp. cosa diata cf. vestit nae chilliana ulata lex urni istempli sa decussata	430 GTAATCTTTT GTAATCTTTT GTAATCTTTT GTAATCTAAA GTAATCTAAA GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTAC GTAATCTAC GTAATCTAC GTAATCTACT GTAATCTACT GTAATTCACT GTAATTCACT GTAATTCACT GTAATTCACT GTAATTCACT) 44(T - TTTTGGT T - TTTTGGT T - TTTTGGT T - TTTAGGT T - TTTAGGT T - TTAAGGC - AGGAGAA - ATGTTTAGGA AG - TTTAGGA - ATTAGGA - ATTAGGA - ATTAGGA - TTTAGGA T - TTTAGGA T - ATTAGGA T - ATTGGA - ATTAGGA - ATTAGGA - TTTAGGA - TTTAGGA - ATTAGGA - ATTAGGA - ATTAGGA - ATTAGGA - ATTAGGA - ATTAGGA) 450 TTGCGACCTC) 460 GATGTTGGAC) 470 TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGTCCAC TAGGGCCTA TAGGGCCTA TAGGGCCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA	 480 CTGGTTAGTT TTGGTTAGTT TTGGTTAGCC TTGGTTAGCC TTGGTTAGCT TTGGTTAGCT ATGATTAGAT ATGATTAGAT ATGATAGAT ATGATAGGAT ATGATAGAT ATGATAGAT ATGATAGAT ATGATAGAT ATGATAGAT ATGATAGAT ATGATAGAT ATGATAGAT ATGATAGAT ATGATAAGAT ATGATAAGAT TTGGTAAGTA TTGGTAAGCA TTGGTAAGCA TTGGTAAGCA TTGGTAAGCA TTGGTAAGCA TTGGTAAGCA TTGGTAAGCA TTGGTAAACA TTGGTAAGCA TTGGTAAGCA TTGGTAAGCA TTGGTAAGCA TTGGTAAGCA
lata arica veridgei na rginata pta nsis anni arata beul tenssii sp. cosa diata cf. vestit nae chilliana ulata lex urni istempli sa decussata lata	430 GTAATCTTTT GTAATCTTTT GTAATCTTTT GTAATCTAAA GTAATCTATT ATAATTCCCT GTAATCTAAA GTAATCTAAA GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTATT GTAATCTATT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATTCACT GTAATTCACT GTAATTCACT GTAATTCACT GTAATTCACT GTAATTCACT GTAATTCACT) 44(T TTTTGGT T TTTTGGT T TTTTGGT AGGAGA AGGAGA AG-TTTAGGA AG-TTTAGGA ATTAGGA ATTAGGA ATTAGGA TTTAGGA T TTTAGGA T TTTAGGA T TTTAGGA ATTGGA ATTGGA ATTGGA TTTAGA TTTAGA TTTAGA TTTAGA TTTAGA TTTAGA TTTAGA TTTAGA TTTAGA TTTAGA TTTAGA TTTGGA TTTGGA ATTAGGA ATTAGGA ATTAGGA) 450 TTGCGACCTC) 460 GATGTTGGAC	ATC TAGGGACCTA TAGGGACCTA TAGGGCCTA TAGGGCCTA TAGGGCCTA TAGGGCCTA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA	 480 CTGGTTAGTT TTGGTTAGTT TTGGTTAGCC TTGGTTAGCC TTGGTTAGCT TTGGTTAGCT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATAGAT ATGATAGAT ATGATAGAT ATGATTAGAT ATGATAGAT ATGATAGAA ATGATAGAA ATGATAGAA TTGGTTAACA TTGGTTAACA TTGGTTAACA TTGGTAACA
lata arica veridgei na rginata pta nsis anni arata beul tenssii sp. cosa diata cf. vestit nae chilliana ulata lex urni istempli sa decussata lata a	430 GTAATCTTTT GTAATCTTTT GTAATCTTTT GTAATCTAAA GTAATCTATT ATAATTCCTA GTAATCTAAA GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT) 44(T TTTTGGT T TTTTGGT T TTTTGGT AGGAGA AGGAGA AG-TTTAGGA AG-TTTAGGA AG-TTTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA T TTTAGGA T TTTAGGA T TTTAGGA ATTAGGA ATTAGGA ATTAGGA A TTTGGA A TTTGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA) 450 TTGCGACCTC) 460 GATGTTGGAC	ATC TAGGAGCCTA TAGGGACCTA TAGGGACCTA TAGGGCCTA TAGGGCCTA TAGGGCCTA TAGGGCCTA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA	 480 CTGGTTAGTT TTGGTTAGCT TTGGTTAGCA TTGGTTAGCC TTGGTTAGCT TTGGTTAGCT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGCA TTGGTTAKTA TTGGTTAGTA TTGGTTAGTA TTGGTTAGTA TTGGTAACA TTGGTAAGCA
lata arica veridgei na rginata pta nsis anni arata beul tenssii sp. cosa diata cf. vestit nae chilliana ulata lex urni istempli sa decussata lata a ussi	430 GTAATCTTTT GTAATCTTTT GTAATCTTTT GTAATCTAAA GTAATCTAAA GTAATCTAAA GTAATCTAAA GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTACT GTGATCTACT GTGATCTACT GTGATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT) 44(T TTTTGGT T TTTTGGT T TTTTGGT AGGAGGA ATGAGGA AG-TTTAGGA AG-TTTAGGA ATTAGGA ATTAGGA ATTAGGA TTTAGGA TTTAGGA T TTTAGGA T TTTAGGA TTTAGGA ATTGGA ATTAGGA ATTAGGA ATTAGGA A TTTGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA) 450 TTGCGACCTC) 460 GATGTTGGAC	ATC TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGCCTA TAGGGCCTA TAGGGCCTA TAGGGCCTA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA	 480 CTGGTTAGTT TTGGTTAGCT TTGGTTAGCA TTGGTTAGCA TTGGTTAGCT TTGGTTAGCT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATTAGAT TTGGTTAGCA TTGGTTAGTA TTGGTAACA TTGGTAACA TTGGTAACA TTGGTAACA TTGGTAACA TTGGTAACA TTGGTAACA TTGGTAACA TTGGTAAGTA ATGGTAAGTA ATGGTAAGTA ATGGTAAGTA TTGGTAAGTA
lata arica veridgei na rginata pta nsis anni arata beul tenssii sp. cosa diata cf. vestit nae chilliana ulata lex urni istempli sa decussata lata a	430 GTAATCTTTT GTAATCTTTT GTAATCTTTT ATAATCTAAA GTAATCTAAA GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTAAT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTATT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTACT GTAATCTTC GTAATCTTC GTAATCTTC GTAATCTTC GTAATCTTC GTAATCTTC) 44(T TTTTGGT T TTTTGGT T TTTTGGT AGGAGA ATGAGGT ATGTTTAGGA AG - TTTAGGA AG - TTTAGGA ATTAGGA ATTAGGA ATTAGGA T TTTAGGA T TTTAGGA T TTTAGGA T TTTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA A TTTGGA A TTTGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA ATTAGGA TTATGGA TTATGGA TTATGGA TTATGGA) 450 TTGCGACCTC) 460 GATGTTGGAC) 470 TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGCCTA TAGGGCCTA TAGGGCCTA TAGGGCCTA TAGGGACCAA TAGGGACCAA TAGGGACCAA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA TAGGGACCTA) 480 CTGGTTAGTT TTGGTTAGTT TTGGTTAGCC TTGGTTAGCC TTGGTTAGCT ATGATTAGAT ATGATTAGAT ATGATTAGAT ATGATAGAT ATGATAGAT ATGATAGAT ATGATAGAT TTGGTTAGT TTGGTTAGTA TTGGTTAGTA TTGGTTAGTA TTGGTTAGTA TTGGTTAGTA TTGGTTAGTA TTGGTAACA

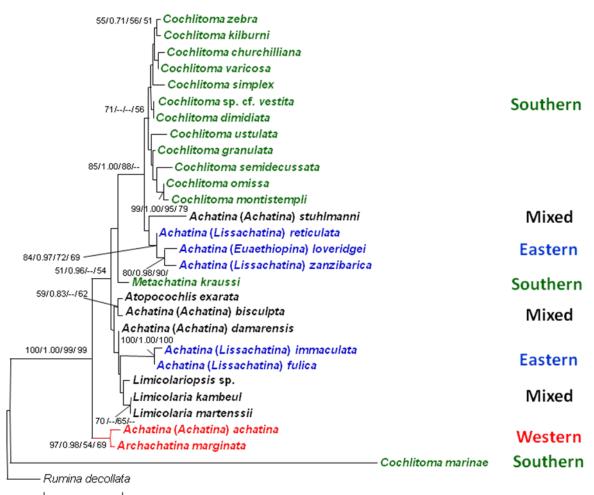
Achatina immacul Achatina reticul Achatina zanziba Euaethiopina lov Achatina achatin Archachatina mar Achatina bisculp Achatina damaren Achatina stuhlma Atopocochlis exa Limicolaria kamb Limicolaria mart Limicolariopsis Cochlitoma varic Cochlitoma dimid Cochlitoma sp. c Cochlitoma marin Cochlitoma churc Cochlitoma granu Cochlitoma simpl Cochlitoma kilbu Cochlitoma monti Cochlitoma omiss Cochlitoma semid Cochlitoma ustul Cochlitoma zebra Metachatina krau Rumina decollata NUCLEOTIDES INCL

Achatina fulica

Achatina fulica Achatina immacul Achatina reticul Achatina zanziba Euaethiopina lov Achatina achatin Archachatina mar Achatina bisculp Achatina damaren Achatina stuhlma Atopocochlis exa Limicolaria kamb Limicolaria mart Limicolariopsis Cochlitoma varic Cochlitoma dimid Cochlitoma sp. c Cochlitoma marin Cochlitoma churc Cochlitoma granu Cochlitoma simpl Cochlitoma kilbu Cochlitoma monti Cochlitoma omiss Cochlitoma semid Cochlitoma ustul Cochlitoma zebra Metachatina krau Rumina decollata NUCLEOTIDES INCLUDED

	···· ··· · 490	· · · · · · · . 500			
Achatina fulica	ACCATTA		GTTCTGTTCG	AACTTTTTCCT	ACCCTAC
Achatina immaculata	ACCATTT	CTGG-ATA	GTTCTGTTCG	AACTTTTT	TTCCTAC
Achatina reticulata	ACCATCA	ATGG-AGG	GTTCTGTTCG	AACTTAAT	CCCCTAC
Achatina zanzibarica	ACCATTT	GTGG-GTG	GTTCTGTTCG	AACTTATC	TCCCTAC
Euaethiopina loveridgei	ACCATCA	TGGG-GTG	GTTCTGTTCG	AACTTTTT	TCCCTAC
Achatina achatina	ACCAAGA	ATGT-AAG	GTTCTGTTCG	AACTTT-TTA	TCCCTAC
Archachatina marginata	ATCAATT	TGG-ACA	GTTCTGTTCG	AACTCTCG	CCCCTAC
Achatina bisculpta	ATCAAGAT A	AACTGG-ATT	GTTCTGTTCG	AACACTGG	ACCCTAC
Achatina damarensis	ATCAAGTT I	TTCTGG-ATT	GTTCTGTTCG	AACACTTG	ACCCTAC
Achatina stuhlmanni	ATCAAGGTGA C	CTATGG-ATT	GTTCTGTTCG	AACACTAG	ACCCTAC
Atopocochlis exarata	ATTAAGAT I	FCACGG-ATT	GTTCTGTTCG	AACACT-TAG	ACCCTAC
Limicolaria kambeul	GTCAGGC				
Limicolaria martenssii	ATCAAGT	TGGAAGT	GTTCTGTTCG	AACTTAAT	ACCCTAC
Limicolariopsis sp.	ATCATCT	AGG-AYT	GTTCTGTTCG	AACATTAA	MCCCTAM
Cochlitoma varicosa	ACCAGCT	TGG-CAG	GTTCTGTTCG	AACCCTTA	CCCCTAC
Cochlitoma dimidiata	ACCAGAT				
Cochlitoma sp. cf. vestit	ACCAGGC				
Cochlitoma marinae	ACCAGTA				
Cochlitoma churchilliana	ACCAGGC				
Cochlitoma granulata	ACCAGAA				
Cochlitoma simplex	ACCAGGA				
Cochlitoma kilburni	ACCAGGC				
Cochlitoma montistempli	ATCTAAA				
Cochlitoma omissa	ACCAGAA				
Cochlitoma semidecussata	ATCAGGA				
Cochlitoma ustulata	ACCAGCT				
Cochlitoma zebra	ATCAGCT				
Metachatina kraussi	ACCAGAT				
Rumina decollata	ACCAGGA				
NUCLEOTIDES INCLUDED	mmmmmmm	mm	mmmmmmmmm	mmm	-mmmmmm

Appendix 4.6: Log likelihood scores of the different models used for the Achatinidae using (A) 3648 unambiguously aligned nucleotides from the rRNA gene cluster; (B) 873 unambiguously aligned nucleotides of actin; (B.1) 582 unambiguously aligned nucleotides of the 1st and 2nd codon positions of actin; (B.2) 291 unambiguously aligned nucleotides of the 3rd codon position of actin; (C) 328 unambiguously aligned nucleotides of histone 3; (C.1) 218 unambiguously aligned nucleotides of the 1^{st} and 2^{nd} codon positions of histone 3; (D.2) 110 unambiguously aligned nucleotides of the 3^{rd} codon position of histone 3; (D) 641 unambiguously aligned nucleotides of CO1; (D.1) 427 unambiguously aligned nucleotides of the 1st and 2nd codon positions of CO1; (D.2) 214 unambiguously aligned nucleotides of the 3rd codon position of CO1; and (E) 310 unambiguously aligned nucleotides of the 16S rRNA gene. Scores in **bold** belong to optimal models as determined by Likelihood Ratio Test. Note that the K2P and F81 models are non-nested and therefore cannot be compared for significant difference using the LRT.

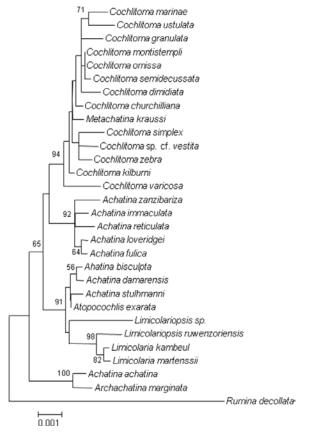

	(A)	(B)	(B.1)	(B.2)	(C)	(C.1)	(C.2)	(D)	(D.1)	(D.2)	(E)
Model	rRNA gene cluster	Actin- combined	Actin- 1 st +2 nd codons	Actin 3 rd codons	Histone 3	Histone 3 1 st +2 nd codons	Histone 3 3 rd codons	C01	CO1 1 st +2 nd codons	CO1 3 rd codons	16S rRNA
JC69	6248.60194	3079.30195	1033.47821	1770.38462	961.35579	330.69952	547.08597	10577.13076	2639.75972	6467.22043	3410.68577
JC69+Γ	6274.56535	2941.42677	1019.80247	1748.03013	944.88406	330.69952	545.05987	9044.70208	2207.91549	6415.07916	3057.86503
F81	6187.62669	3067.34670	1028.44871	1747.01512	951.97785	325.87231	537.40127	10519.45591	2597.94022	6379.86740	3392.31335
F81+Γ	6213.92744	2928.60315	1015.11409	1722.19734	938.63868	325.87231	535.75438	8289.79099	2137.55284	6334.75953	3022.41771
K2P	6217.14469	2999.90791	1029.51509	1690.58148	942.44107	330.63592	520.04898	10305.12794	2494.32907	6291.12771	3332.43652
K2P+ Γ	6233.51676	2856.89829	1018.80719	1657.31863	927.23046	330.63592	525.37382	8654.44378	2053.68656	6219.17666	2961.52886
HKY85	6155.43566	2987.60266	1024.45322	1677.30224	932.61470	325.81310	514.06374	10214.37634	2447.65021	6026.06510	3311.76468
НКҮ85 +Γ	6173.49112	2847.31250	1013.84964	1646.32805	909.37626	325.81310	513.02241	8294.44610	2020.38852	5887.87774	2902.18513
TrN93	6146.48364	2976.74300	1019.97904	1677.26346	932.53700	324.88259	513.02953	10210.89277	2422.04372	6023.81427	3308.08745
TrN93+Γ	6164.98831	2837.76616	1013.43024	1644.81901	909.25171	324.88259	512.04887	8289.71414	2015.28913	5879.85256	2900.05462
GTR	6143.87015	2967.76023	1018.79267	1663.08220	931.83493	321.54407	512.77514	9954.78203	2405.51236	6018.45857	3243.11777
$GTR+\Gamma$	6157.24483	2821.80122	1011.67014	1634.16756	908.90524	321.54420	511.78485	8289.46582	1995.68125	5878.05759	2876.32253

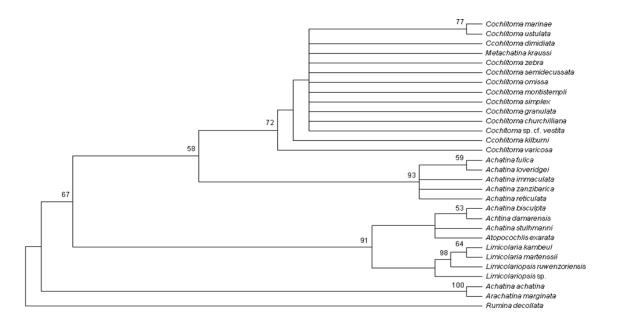
Species	Total ambiguous sites	% ambiguous sites (out of 873 total)	Total ambiguous 3 rd codon positions	% ambiguous 3 rd codon positions relative to all ambiguous sites	Number of RY sites at ambiguous 3 rd codon positions	% RY sites relative to all ambiguous 3 rd codon positions	Number of ambiguous amino acids	% ambiguous amino acids (out of 291 total)
WEST AF	RICAN							
acha	45	5.15	40	88.89	31	77.50	4	1.37
arcm	27	3.09	23	85.19	21	91.30	3	1.03
EAST AFR	ICAN							
achf	18	2.06	16	88.89	12	75.00	2	0.69
achi	15	1.72	12	80.00	11	91.67	1	0.34
achr	33	3.78	26	78.79	23	88.46	4	1.37
achz	1	0.11	0	0	0	0	1	0.34
euel	0	0	0	0	0	0	0	0
OTHERS								
achb	32	3.67	26	81.25	17	65.38	4	1.37
achd	34	3.89	27	79.41	25	92.59	6	2.06
achs	2	0.23	1	50.00	1	100.00	1	0.34
atcx2	29	3.32	25	86.21	21	84.00	3	1.03
lim	30	3.44	27	90.00	25	92.59	2	0.69
limm	33	3.78	27	81.82	23	85.19	7	2.41
lip	40	4.58	32	80.00	27	84.38	7	2.41
SOUTHER	N AFRICAN							
achv	27	3.09	24	88.89	18	75.00	2	0.69
arcd	31	3.55	27	87.10	20	74.07	3	1.03
arcv	30	3.32	26	86.67	19	73.08	3	1.03
coia	4	0.46	2	50.00	1	50.00	2	0.69
coic	0	0	0	0	0	0	0	0
coik	1	0.11	0	0	0	0	0	0
coig	9	1.03	9	100.00	8	88.89	0	0
coii	2	0.23	2	100.00	0	0	0	0
coim	0	0	0	0	0	0	0	0
coio	6	0.69	6	100.00	5	83.33	0	0
cois	0	0	0	0	0	0	0	0
coiu	0	0	0	0	0	0	0	0
coiz	0	0	0	0	0	0	0	0
metk	52	5.96	38	73.08	29	76.32	9	3.09

Appendix 4.7: Summary of ambiguous sites for the actin gene for the Achatinidae

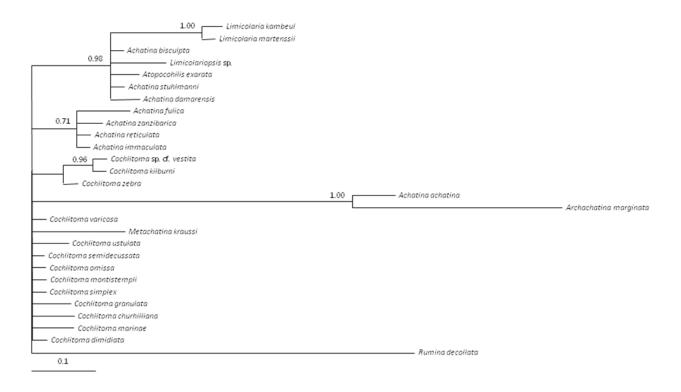
NOTE: primers used: ActF1 and ActR

Appendix 4.8. Maximum likelihood phylogenetic tree of the Achatinidae based on 873 unambiguously aligned nucleotide sites of the actin gene. The phylogenies were rooted on the subulinid *Rumina decollata*. Values on the nodes represent bootstrap support (1000 replicates) for ML, posterior probabilities (based on the last 1000 trees) for BI, and bootstrap supports for NJ (1000 replicates) and MP (69 replicates only after the PAUP* version 4.0b10 was terminated after running for 135 hours). The scale bar represents 5 substitutional changes per 100 nucleotide positions.

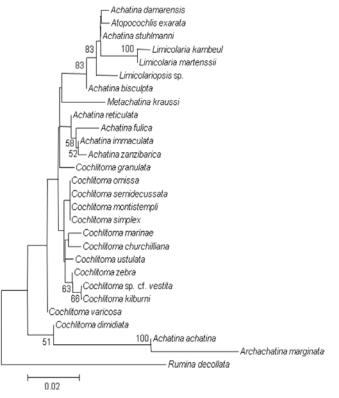

0.05

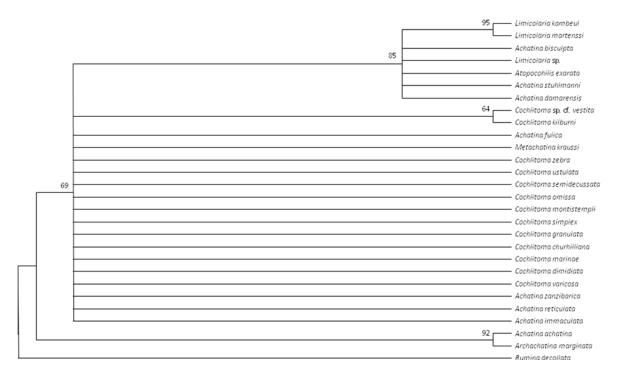

(A) BI (LSU rRNA)

Appendix 4.9: Phylogenetic trees of the Achatinidae based on the large subunit rRNA gene using (**A**) Bayesian analysis, (**B**) neighbor-joining (p. 512) and (**C**) maximum parsimony based on 25 equally parsimonious trees (p. 512). The phylogenies were constructed from 3648 unambiguously aligned nucleotide sites and were rooted on the subulinid *Rumina decollata*. Bayesian posterior probabilities in (**A**) indicate support for individual branches in the Bayesian analysis based on the last 1000 trees. Posterior probabilities lower than 0.7 are not shown. Bootstrap values in (**B**) and (**C**) indicate the percentage support for individual branches based on 1000 replicates. Bootstrap values lower than 50% are not shown. The scale bar for (**A**) represents 1 substitutional change per 1000 nucleotides.

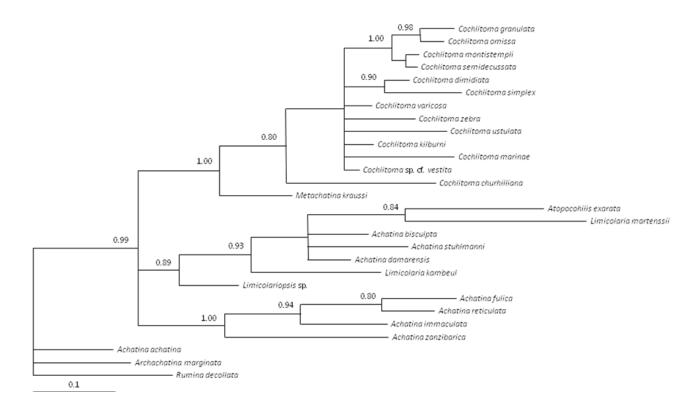

Appendix 4.9 (contd.)

(B) NJ (LSU rRNA)

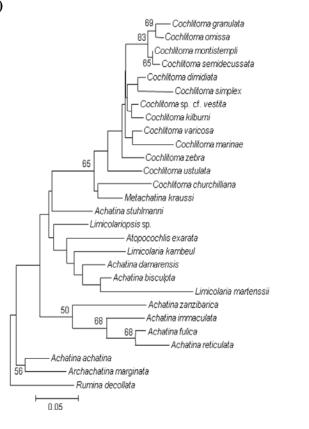

(C) MP (LSU rRNA)

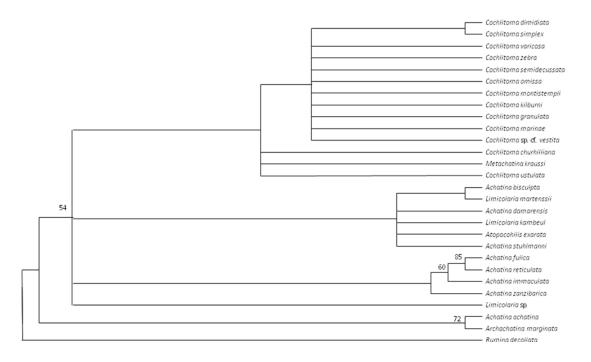

(A) BI (histone 3)

Appendix 4.10: Phylogenetic trees of the Achatinoidea based on the histone 3 gene using (**A**) Bayesian analysis, (**B**) neighbor-joining (p. 514) and (**C**) maximum parsimony based on 8404 equally parsimonious trees (p. 514). The phylogenies were constructed from 328 unambiguously aligned nucleotide sites and were rooted on the subulinid *Rumina decollata*. Bayesian posterior probabilities in (**A**) indicate support for individual branches in the Bayesian analysis based on the last 1000 trees. Posterior probabilities lower than 0.7 are not shown. Bootstrap values in (**B**) and (**C**) indicate the percentage support for individual branches based on 1000 replicates. Bootstrap values lower than 50% are not shown. The scale bar for (**A**) represents 1 substitutional change per 10 nucleotides while that of (**B**) represents 2 substitutional changes per 100 nucleotides. Note that *Achatina loveridgei* and *Limicolariopsis ruwenzoriensis* were not included in the phylogenies as they were not successfully sequenced.

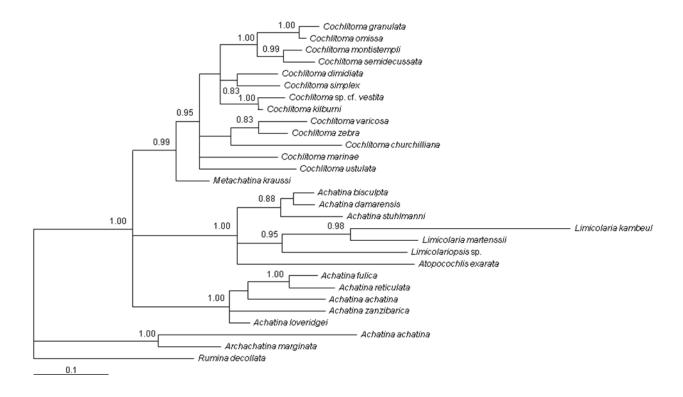

Appendix 4.10 (contd.)

(B) NJ (histone 3)

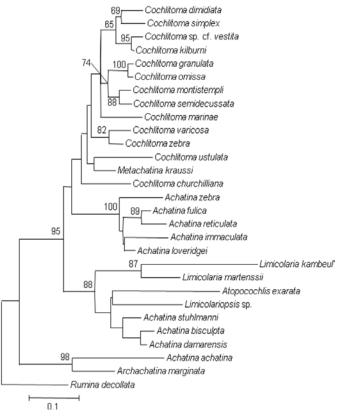

(C) MP (histone 3)

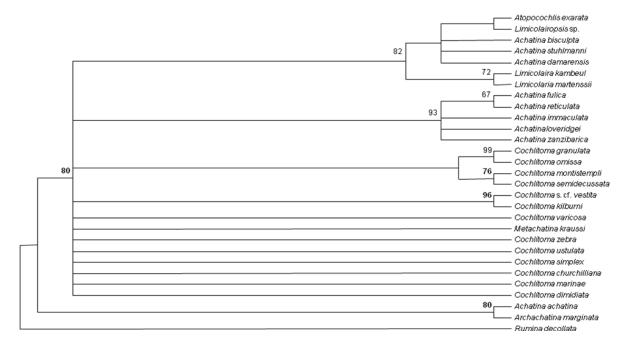

(A) BI $(1^{st} \text{ and } 2^{nd} \text{ codon positions of CO1 gene})$

Appendix 4.11: Phylogenetic trees of the Achatinidae based on the 1^{st} and 2^{nd} codon positions of the CO1 gene using (**A**) Bayesian analysis, (**B**) neighbor-joining (p. 516) and (**C**) maximum parsimony based on 127 equally parsimonious trees (p. 516). The phylogenies were constructed from 427 unambiguously aligned nucleotide sites and were rooted on the subulinid *Rumina decollata*. Bayesian posterior probabilities in (**A**) indicate support for individual branches in the Bayesian analysis based on the last 1000 trees. Posterior probabilities lower than 0.7 are not shown. Bootstrap values in (**B**) and (**C**) indicate the percentage support for individual branches based on 1000 replicates. Bootstrap values lower than 50% are not shown. The scale bar for (**A**) represents 1 substitutional changes per 10 nucleotides and that of (**B**) represents 5 substitutional changes per 100 nucleotides. Note that *Achatina loveridgei* and *Limicolariopsis ruwenzoriensis* were not included in the phylogenies as they were not successfully sequenced.

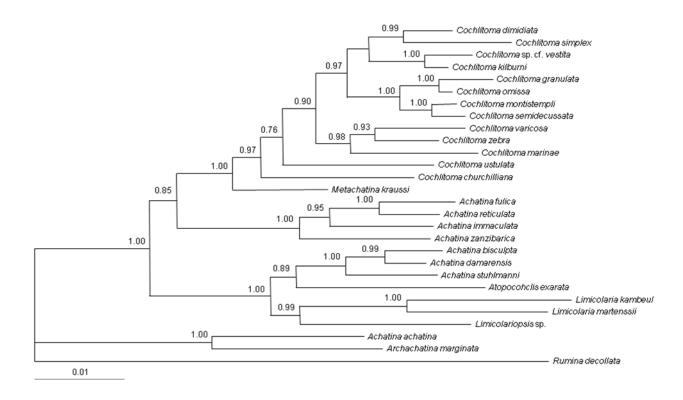

Appendix 4.11 (contd.)

(B) NJ $(1^{st} \text{ and } 2^{nd} \text{ codon positions of the CO1 gene)}$

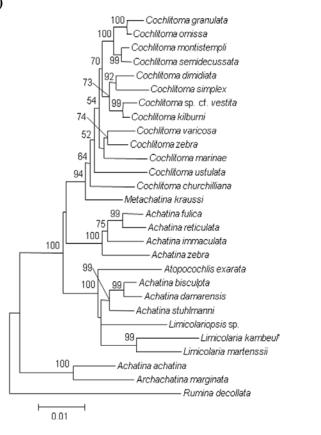

(C) MP (1st and 2nd codon positions of the CO1 gene)


(A) BI (16S rRNA gene)

Appendix 4.12: Phylogenetic trees of the Achatinidae based on the 16S rRNA gene using (**A**) Bayesian analysis, (**B**) neighbor-joining (p. 518) and (**C**) maximum parsimony based on 11 equally parsimonious trees (p. 518). The phylogenies were constructed from 310 unambiguously aligned nucleotide sites and were rooted on the subulinid *Rumina decollata*. Bayesian posterior probabilities in (**A**) indicate support for individual branches in the Bayesian analysis based on the last 1000 trees. Posterior probabilities lower than 0.7 are not shown. Bootstrap values in (**B**) and (**C**) indicate the percentage support for individual branches based on 1000 replicates. Bootstrap values lower than 50% are not shown. The scale bar for (**A**) and (**B**) represents 1 substitutional change per 10 nucleotides. Note that *Limicolariopsis ruwenzoriensis* was excluded in the analyses as it was not successfully sequenced.

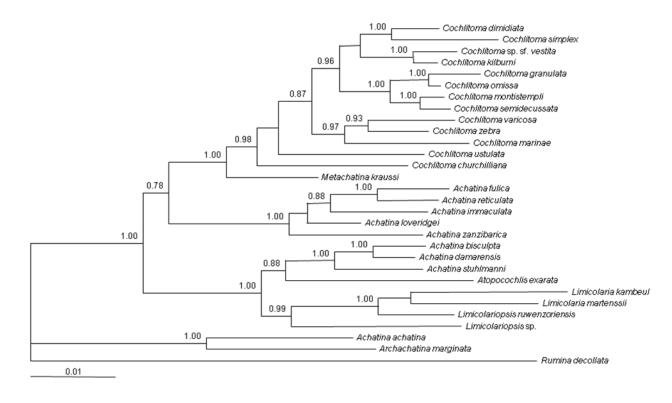

Appendix 4.12 (contd.)

(B) NJ (16S rRNA gene)

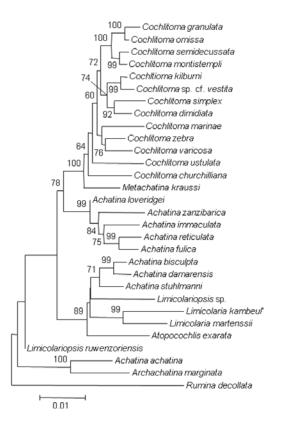

(C) MP (16S rRNA gene)

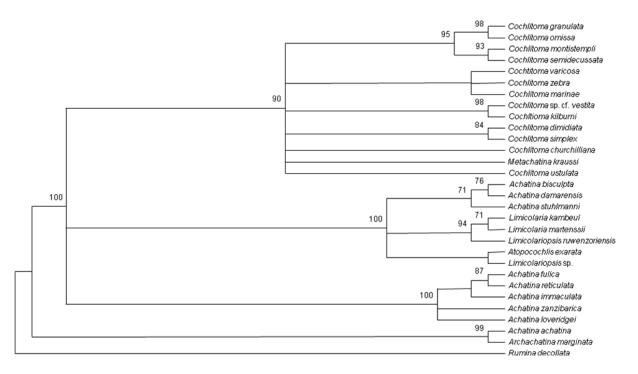

(A) BI (concatenated sequence – taxa with complete datasets only)

Appendix 4.13: Phylogenetic trees of the Achatinidae (taxa with complete datasets only) based on the combined dataset of the LSU rRNA, histone 3, the 1st and 2nd codon positions of the CO1 gene and the 16S rRNA using (**A**) Bayesian analysis, (**B**) neighbor-joining (p. 520) and (**C**) maximum parsimony based on four equally parsimonious trees (p. 520). The phylogenies were constructed from a concatenated sequence of 4713 nucleotides and were rooted on the subulinid *Rumina decollata*. Bayesian posterior probabilities in (**A**) indicate support for individual branches in the Bayesian analysis based on the last 1000 trees. Posterior probabilities lower than 0.7 are not shown. Bootstrap values in (**B**) and (**C**) indicate the percentage support for individual branches based on 1000 replicates. Bootstrap values lower than 50% are not shown. The scale bars for (**A**) and (**B**) represent 1 substitutional change per 100 nucleotides. Note that *Achatina loveridgei* and *Limicolariopsis ruwenzoriensis* were not included were not included in the phylogenies as they lack at least one of the genes used for the combined analyses.


Appendix 4.13 (contd.)

(B) NJ (concatenated sequence – taxa with complete datasets only)


(C) MP (concatenated sequence – taxa with complete datasets only)


(A) BI (concatenated sequence – all taxa)

Appendix 4.14: Phylogenetic trees of the Achatinidae (all taxa) based on the combined dataset of the LSU rRNA, actin and histone 3 genes and the 1^{st} and 2^{nd} codon positions of the CO1 gene using (**A**) Bayesian analysis, (**B**) neighbor-joining (p. 522) and (**C**) maximum parsimony based on eight equally parsimonious trees (p. 522). The phylogenies were constructed from a concatenated sequence of 4713 nucleotides and were rooted on the subulinid *Rumina decollata*. Bayesian posterior probabilities in (**A**) indicate support for individual branches in the Bayesian analysis based on the last 1000 trees. Posterior probabilities lower than 0.7 are not shown. Bootstrap values in (**B**) and (**C**) indicate the percentage support for individual branches based on 1000 replicates. Bootstrap values lower than 50% are not shown. The scale bars for (**A**) and (**B**) represent 1 substitutional change per 100 nucleotides.

Appendix 4.14 (contd.)

(B) NJ (concatenated sequence – all taxa)

(C) MP (concatenated sequence – all taxa)

Appendix 5.1: Pair-wise uncorrected	d distances of the East African Achatina species using
the SSCP fragment of the 16S rRNA	gene (293 nucleotides for A. fulica).

	A. fulica	A. zanzibarica	A. immaculata
A. fulica			
A. zanzibarica	0.24518		
A. immaculata	0.22864	0.26893	
A. reticulata	0.14414	0.24952	0.22459

Appendix 5.2: Alignment of the 15 haplotypes for the global *Achatina fulica* populations based on 293 nucleotides of the 16S rRNA gene. Sequence for *Achatina reticulata* was used as outgroup.

	· · · · · · · · 1($ \dots \dots $				
Haplotype A	= -				CAGGGGAGAG	
Haplotype B	TAATTTGTCC	TCTAATTAAG	GTCTGGAATG	AAGGGGGACA	CGGGGGGAGAG	CTGTCTCCAA
Haplotype C	TAATTTGTCC	TCTAATTAAG	GTCTGGAATG	AAGGGGGACA	CAGGGGAGAG	CTGTCTCCAA
Haplotype D	TAATTTGTCC	TCTAATTAAG	GTCTGGAATG	AAGGGGGACA	CAGGGGAGAG	CTGTCTCCAA
Haplotype E	TAATTTGTCC	TCTAATTAAG	GTCTGGAATG	AAGGGGGACA	CCGGGGAGAG	CTGTCTCCAA
Haplotype F	TAATTTGTCC	TCTAATTAAG	GTCTGGAATG	AAGGGGGACA	CAGGGGAGAG	CTGTCTCCAA
Haplotype G	TAATTTGTCC	TCTAATTAAG	GTCTGGAATG	AAGGGGGACA	CAGGGGAGAG	CTGTCTCCAA
Haplotype H	TAATTTGTCC	TCTAATTAAG	GTCTGGAATG	AAGGGGGACA	CAGGGGAGAG	CTGTCTCCAA
Haplotype I	TAATTTGTCC	TCTAATTAAG	GTCTGGAATG	AAGGGGGACA	CAGGGGAGAG	CTGTCTCCAA
Haplotype J	TAATTTGTCC	TCTAATTAAG	GTCTGGAATG	AAGGGGGACA	CAGGGGAGAG	CTGTCTCCAA
Haplotype K	TAATTTGTCC	TCTAATTAAG	GTCTGGAATG	AAGGGGGACA	CAGGGGAGAG	CTGTCTCCAA
Haplotype L	TAATTTGTCC	TCTAATTAAG	GTCTGGAATG	AAGGGGGACA	CAGGGGAGAG	CTGTCTCCAA
Haplotype M	TAATTTGTCC	TCTAATTAAG	GTCTGGAATG	AAGGGGGACA	CAGGGGAGAG	CTGTCTCCAA
Haplotype N	TAATTTGTCC	TCTAATTAAG	GTCTGGAATG	AAGGGGGACA	CAGGGGAGAG	CTGTCTCCAA
Haplotype O	TAATTTGTCC	TCTAATTAAG	GTCTGGAATG	AAGGGGGACA	CAGGGGAGAG	CTGTCTCCAA
A. reticulata	TAATTTGTCC	TTTAATTTAG	GTCTGGAATG	AATGAGAACA	CAGGGGAGAG	CTGTCTCTAG
	···· ··· 70				···· ····	
Haplotype A	70) 80) 90) 100		120
Haplotype A Haplotype B	7 (TAAGGTTAAT) 8(TTAACTTTCT) 9(TATCAGGTGA) 100 AAATTCCTGA) 110) 120 AAAGACGAGA
	7 (TAAGGTTAAT TAAGGTTAAT) 8(TTAACTTTCT TTAACTTTCT) 9(TATCAGGTGA TATCAGGTGA) 100 AAATTCCTGA AAATTCCTGA) 11(GCCTCCGATG) 120 AAAGACGAGA AAAGACGAGA
Haplotype B	7(TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT) 8(TTAACTTTCT TTAACTTTCT TTAACTTTCT) 9(TATCAGGTGA TATCAGGTGA TATCAGGTGA) 100 AAATTCCTGA AAATTCCTGA AAATTCCTGA) 110 GCCTCCGATG GCCTCCGATG) 120 AAAGACGAGA AAAGACGAGA AAAGACGAGA
Haplotype B Haplotype C	7(TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT) 8(TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT) 9(TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA) 10(AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA) 110 GCCTCCGATG GCCTCCGATG GCCTCCGATG) 120 AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA
Haplotype B Haplotype C Haplotype D	70 TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT) 8(TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT) 9(TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA) 10(AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA) 110 GCCTCCGATG GCCTCCGATG GCCTCCGATG GCCTCCGATG) 120 AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA
Haplotype B Haplotype C Haplotype D Haplotype E	70 TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT	80 TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT) 9(TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA) 100 AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA) 110 GCCTCCGATG GCCTCCGATG GCCTCCGATG GCCTCCGATG GCCTCCGATG GCCTCCGATG GCCTCCGATG) 120 AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA
Haplotype B Haplotype C Haplotype D Haplotype E Haplotype F Haplotype G Haplotype H	70 TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT	8 TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT	TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA) 100 AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA	CCTCCGATG GCCTCCGATG GCCTCCGATG GCCTCCGATG GCCTCCGATG GCCTCCGATG GCCTCCGATG GCCTCCGATG GCCTCCGATG) 120 AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA
Haplotype B Haplotype C Haplotype D Haplotype E Haplotype F Haplotype G Haplotype H Haplotype I	70 TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT	8 TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT	TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA) 100 AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA	Control Contro) 120 AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA
Haplotype B Haplotype C Haplotype D Haplotype E Haplotype G Haplotype H Haplotype I Haplotype J	TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT	8 TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT	TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA) 100 AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA	Control Contro) 120 AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA
Haplotype B Haplotype C Haplotype D Haplotype E Haplotype F Haplotype G Haplotype H Haplotype I Haplotype J Haplotype K	TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT	8 TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT	TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA) 100 AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA	Control Contro) 120 AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA
Haplotype B Haplotype C Haplotype D Haplotype E Haplotype F Haplotype G Haplotype H Haplotype I Haplotype J Haplotype K Haplotype L	TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT	8 TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT	TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA) 100 AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA	Control Contro) 120 AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA
Haplotype B Haplotype C Haplotype D Haplotype E Haplotype F Haplotype G Haplotype H Haplotype I Haplotype J Haplotype K Haplotype L Haplotype M	TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT	8 TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT	TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA) 100 AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA	Control Contro) 120 AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA
Haplotype B Haplotype C Haplotype D Haplotype E Haplotype F Haplotype G Haplotype H Haplotype J Haplotype J Haplotype K Haplotype L Haplotype M Haplotype N	TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT	8 TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT	TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA) 100 AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA	Control Contro) 120 AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA
Haplotype B Haplotype C Haplotype D Haplotype E Haplotype F Haplotype G Haplotype H Haplotype I Haplotype J Haplotype K Haplotype L Haplotype M	TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT TAAGGTTAAT	8 TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT TTAACTTTCT	TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA TATCAGGTGA) 100 AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA AAATTCCTGA	Control Contro) 120 AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA AAAGACGAGA

	$\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots $
Haplotype A	130 140 150 160 170 180 AGACCCTTAG AGTTTTTATT ATAACTTGAT ATATTAAAAT TCTTGTTCTG TTTTTGTTGG
Haplotype B	AGACCCTTAG AGTTTTTATT ATAACTTGAT ATATTAAAAT TCTTGTTCTG TTTTTGTTGG
Haplotype C	AGACCCTTAG AGTTTTTATT ATAACTTGAT ATATTAAGAT TCTTGTTCTG TTTTTGTTGG
Haplotype D	AGACCCTTAG AGTTTTTATT ATAACTTGAT ATATTAAAAT TCTTGTTCTG TTTTTGTTGG
Haplotype E	AGACCCTTAG AGTTTTTATT ATAACTTGAT ATATTAAGAT TCTTGTTCTG TTTTTGTTGG
Haplotype F	AGACCCTTAG AGTTTTTATT ATAACTTGAT ATATCAAGAT TCTTGTTCTG TTTTTGTTGG
Haplotype G	AGACCCTTAG AGTTTTTATT ATAACTTGAT ATATTAAAAT TCTTGTTCTG TTTTTGTTGG
Haplotype H	AGACCCTTAG AGTTTTTATT ATAACTTGAT ATATTAAGAT TCTTGTTCTG TTTTTGTTGG
Haplotype I	AGACCCTTAG AGTTTTTATT ATAACTTGAT GTATTTAAAT TCTTGTTCTG TTTTTGTTGG
Haplotype J	AGACCCTTAG AGTTTTTATT ATAACTTGAT GTATTTAAAT TCTTGTTCTG TTTTTGTTGG
Haplotype K	AGACCCTTAG AGTTTTTATT ATAACTTGAT ATATTAAAAT TCTTGTTCTG TTTTTGTTGG
Haplotype L	AGACCCTTAG AGTTTTTATT ATAACTTGAT GTATTTAAAT TCTTGTTCTG TTTTTGTTGG
Haplotype M	AGACCCTTAG AGTTTTTATT ATAACTTGAT GTATTTAAAT TCTTGTTCTG TTTTTGTTGG
Haplotype N Haplotype O	AGACCCTTAG AGTTTTTATT ATAACTTGAT GTATTTAAAT TCTTGTTCTG TTTTTGTTGG AGACCCTTAG AGTTTTTATT ATAATTTGAT ATATTAAAAT TCTTGTTCTG TTTTTGTTGG
Haplotype O A. reticulata	AGACCCTTAG AGTITITATI ATAATIGAT ATATTAAAAT TCHGITCIG IIIIIGIIGG AGACCCTTAG AGTITTAATA ATTATTTAGA TAAATAAAAT TCTACTATTG TTTTGTTGG
A. IELICUIALA	AGACCCIING AGIIIIAAIA AIIAIIIAGA IAAAIAAAAI ICIACIAIIG IIIIIGIIGG
	190 200 210 220 230 240
Haplotype A	GGCGACAGGG TTACAATAGA TAA-CTTACC CTACCATA TTTTTATATG GCGATCATTA
Haplotype B	GGCGACAGGG TTACAATAGA TAA-CTTACC CTACCATA TTTTTATATG GCGATCATTA
Haplotype C	GGCGACAGGG TTACAATAGA TAA-CTTACC CTACCATA TTTTTATATG GCGATCATTA
Haplotype D	GGCGACAGGG TTACAATAGA TAA-CTTACC CTACCATA TTTTTATATG GCGATCATTA
Haplotype E	GGCGACAGGG TTACAATAGA TAA-CTTACC CTACCATA TTTTTATATG GCGATCATTA
Haplotype F	GGCGACAGGG TTACAATAGA TAA-CTTACC CTACCATA TTTTTATATG GCGATCATTA
Haplotype G	GGCGACAGGG TTACAATAGA TAA-CTTACC CTACCATA TTTTTATATG GCGATCATTA
Haplotype H	GGCGACAGGG TTACAATAGA TAA-CTTACC CTACCATA TTTTTATATG GCGATCATTA
Haplotype I Naplotype I	GGCGACAGGG TTACAACAGA TAA-CTTACC CTACCATA TTTTTATATG GCGATCATTA GGCGACAGGG TTACAATAGA TAA-CTTACC CTACCATA TTTTTATATG GCGATCATTA
Haplotype J Haplotype K	GGCGACAGGG TTACAATAGA TAA-CTTACC CTACCATA TITTTATATG GCGATCATTA GGCGACAGGG TTACAATAGA TAA-CTTACC CTACCATA TTTTTATATG GCGATCATTA
Haplotype L	GGCGACAGGG TTACAACAGA TAA-CCTACC CTACCATA- TTTTTATATG GCGATCATTA
Haplotype M	GGCGACAGGG TTACAACAGA TAA-CTTACC CTACCATA TTTTTATATG GCGATCATTA
Haplotype N	GGCGACAGGG TTACAATAGA TAA-CTTACC CTACCATG TTTTTATATG GCGATCATTA
Haplotype O	GGCGACAGGG TTACAATAGA TAA-CTTACC CTACCATA TTTTTATATG GCGATCATTA
A. reticulata	GGCGACAGGG TAACAATAGG TAAACTTACC CATTCATATA TTTTTATGCG TCGATAGTTA
	250 260 270 280 290 TACTTTTAAT TAAGCTACCT AAGGGATAAC AGCGTAATCT TTTTTTTTG GTTTGC
Haplotype A Haplotype B	TACTITIAAT TAAGCTACCT AAGGGATAAC AGCGTAATCT TITTTTTTG GTITGC
Haplotype C	TACTITITAT TAAGCTACCT AAGGGATAAC AGCGTAATCT TITTTTTTG GITTGC
Haplotype D	TACTITITAT TAAGCTACCT AAGGGATAAC AGCGTAATCT TITTTTTT-G GTTTGC
Haplotype E	TACTITIAAT TAAGCTACCT AAGGGATAAC AGCGTAATCT TTTTTTTT-G GTTTGC
Haplotype F	TACTTTTAAT TAAGCTACCT AAGGGATAAC AGCGTAATCT TTTTTTT-G GTTTGC
Haplotype G	TACTTTTAAT TAAGCTACCT AAGGGATAAC AGCGTAATCT TTTTTTT-G GTTTGC
Haplotype H	TACTTTTAAT TAAGCTACCT AAGGGATAAC AGCGTAATCT TTTTTTTTG GTTTGC
Haplotype I	TACTTTTAAT TAAGCTACCT AAGGGATAAC AGCGTAATCT TTTTTTTTG GTTTGC
Haplotype J	TACTTTTAAT TAAGCTACCT AAGGGATAAC AGCGTAATCT TTTTATTT-G GTTTGC
Haplotype K	TACTTTTAAT TAAGCTACCT GAGGGATAAC AGCGTAATCT TTTTTTTG GTTTGC
Haplotype L	TACTTTTAAT TAAGCTACCT AAGGGATAAC AGCGTAATCT TTTTTTTG GTTTGC
Haplotype M	TACTTTTAAT TAAGCTACCT AAGGGATAAC AGCGTAATCT TTTTTTTT-G GTTTGC
Haplotype N	TACTTTTAAT TAAGCTACCT AAGGGATAAC AGCGTAATCT TTTTTTTT-G GTTTGC
Haplotype O	TACTTTTAAT TAAGCTACCT AAGGGATAAC AGCGTAATCT TTTATTTT-G GTTTGC
A. reticulata	TACTAATAAT TAAACTACCT AAGGGATAAC AGCGTAATCT TTTTTTTT-G GTTTGC

Appendix 5.3: Log likelihood scores of the different models used for comparison for the 16S haplotypes of the global *A. fulica* populations using 293 nucleotides of the 16S rRNA gene. Likelihood Ratio Test revealed that GTR and TrN93 models were not significantly better than HKY85; the latter was therefore used for the phylogenetic analysis. Note that the K2P and F81 models are non-nested and therefore cannot be compared using LRT.

Model	Log-Likelihood Score
JC69	697.00855
JC69+Γ	696.73625
F81	676.85077
F81+Γ	676.50788
K2P	692.34383
K2P+Γ	691.96730
HKY85	670.85793
НКҮ85+Γ	670.25753
TN93	670.82611
ΤΝ93+Γ	670.23779
GTR	666.27323
$GTR+\Gamma$	666.03208

Appendix 6.1: Nematode species used for the *Angiostrongylus cantonensis* survey as found in GenBank Release No. 157 (22 December 2006) or GenBank Release No. 158 (15 February 2007) as indicated by (*).

Species	Accession No.	Taxonomy
Gordius aquaticus	X87985	Nematomorpha; Gordioida
Chordodes morgani	AF036639	Nematomorpha; Gordioida
Priapulus caudatus	Z38009	Priapulida; Priapulidae
Brachionus plicatilis	U49911	Rotifera; Monogononta
Axonolaimus helgolandicus	AY854232	Nematoda; Chromadorea; Araeolaimida; Axonolaimoidea; Axonolaimidae
Ascolaimus elongatus	AY854231	Nematoda; Chromadorea; Araeolaimida; Axonolaimoidea; Axonolaimidae
Odontophora rectangula	AY854233	Nematoda; Chromadorea; Araeolaimida; Axonolaimoidea; Axonolaimidae
Cylindrolaimus sp. 202149	AF202149	Nematoda; Chromadorea; Araeolaimida; Cylindrolaimidae
Tylocephalus auriculatus	AF202155	Nematoda; Chromadorea; Araeolaimida; Plectoidea; Plectidae
Plectus acuminatus strain BS9	AF037628	Nematoda; Chromadorea; Araeolaimida; Plectoidea; Plectidae
Plectus aquatilis	AF036602	Nematoda; Chromadorea; Araeolaimida; Plectoidea; Plectidae
Anaplectus sp. PDL-2005	AJ966473	Nematoda; Chromadorea; Araeolaimida; Plectoidea; Plectidae
Anisakis sp. WKT	U81575	Nematoda; Chromadorea; Ascaridida; Ascaridoidea; Anisakidae
Anisakis sp. Nadler	U94365	Nematoda; Chromadorea; Ascaridida; Ascaridoidea; Anisakidae
Contracaecum multipapillatum	U94370	Nematoda; Chromadorea; Ascaridida; Ascaridoidea; Anisakidae
Pseudoterranova decipiens	U94380	Nematoda; Chromadorea; Ascaridida; Ascaridoidea; Anisakidae
Raphidascaris acus*	DQ503460	Nematoda; Chromadorea; Ascaridida; Ascaridoidea; Anisakidae
Terranova caballeroi	U94382	Nematoda; Chromadorea; Ascaridida; Ascaridoidea; Anisakidae
Ascaris suum	U94367	Nematoda; Chromadorea; Ascaridida; Ascaridoidea; Ascarididae
Ascaris lumbricoides	U94366	Nematoda; Chromadorea; Ascaridida; Ascaridoidea; Ascarididae
Baylisascaris procyonis	U94368	Nematoda; Chromadorea; Ascaridida; Ascaridoidea; Ascarididae
Baylisascaris transfuga	U94369	Nematoda; Chromadorea; Ascaridida; Ascaridoidea; Ascarididae
Parascaris equorum	U94378	Nematoda; Chromadorea; Ascaridida; Ascaridoidea; Ascarididae
Porrocaecum depressum	U94379	Nematoda; Chromadorea; Ascaridida; Ascaridoidea; Ascarididae
Toxascaris leonine	U94383	Nematoda; Chromadorea; Ascaridida; Ascaridoidea; Ascarididae
Heteroncheilus tunicatus	U94373	Nematoda; Chromadorea; Ascaridida; Ascaridoidea;
Goezia pelagia	U94372	Heterocheilidae Nematoda; Chromadorea; Ascaridida; Ascaridoidea; Raphidascarididae
Hysterothylacium fortalezae	U94374	Nematoda; Chromadorea; Ascaridida; Ascaridoidea;
Hysterothylacium pelagicum	U94375	Raphidascarididae Nematoda; Chromadorea; Ascaridida; Ascaridoidea; Raphidascarididae
Hysterothylacium reliquens	U94376	Nematoda; Chromadorea; Ascaridida; Ascaridoidea;
Iheringascaris inquies	U94377	Raphidascarididae Nematoda; Chromadorea; Ascaridida; Ascaridoidea; Raphidascarididae
Toxocara canis	U94382	Nematoda; Chromadorea; Ascaridida; Ascaridoidea; Toxocaridae
Nemhelix bakeri	DQ118537	Nematoda; Chromadorea; Ascaridida; Cosmocercoidea; Cosmocercidae
Raillietnema sp. V3060*	DQ503461	Nematoda; Chromadorea; Ascaridida; Cosmocercoidea; Cosmocercidae
Cruzia Americana	U94371	Nematoda; Chromadorea; Ascaridida; Cosmocercoidea; Kathlaniidae
Paraspidodera sp. 21303	AF083005	Nematoda; Chromadorea; Ascaridida; Heterakoidea; Aspidoderidae

Species	Accession No.	Taxonomy
Heterakis gallinarum*	DQ503462	Nematoda; Chromadorea; Ascaridida; Heterakoidea; Heterakidae
Heterakis sp.14690	AF083003	Nematoda; Chromadorea; Ascaridida; Heterakoidea; Heterakidae
Chromadoropsis vivipara	AF047891	Nematoda; Chromadorea; Chromadorida; Chromadoridae
Chromadora nudicapitata	AY854205	Nematoda; Chromadorea; Chromadorida; Chromadoridae
Chromadora sp. BHMM_2005	AY854206	Nematoda; Chromadorea; Chromadorida; Chromadoridae
Atrochromadora microlaima	AY854204	Nematoda; Chromadorea; Chromadorida; Chromadoridae
Chromadorita tentabundum	AY854208	Nematoda; Chromadorea; Chromadorida; Chromadoridae
Chromadorina germanica	AY854207	Nematoda; Chromadorea; Chromadorida; Chromadoridae
Dichromadora sp. BHMM_2005	AY854209	Nematoda; Chromadorea; Chromadorida; Chromadoridae
Neochromadora BHMM_2005	AY854210	Nematoda; Chromadorea; Chromadorida; Chromadoridae
Spilophorella paradoxa	AY854211	Nematoda; Chromadorea; Chromadorida; Chromadoridae
Paracanthonchus caecus	AF047888	Nematoda; Chromadorea; Chromadorida; Cyatholaimidae
Paracyatholaimus intermedius	AJ966495	Nematoda; Chromadorea; Chromadorida; Cyatholaimidae
Praeacanthonchus punctatus	AY854214	Nematoda; Chromadorea; Chromadorida; Cyatholaimidae
Praeacanthonchus sp.	AF036612	Nematoda; Chromadorea; Chromadorida; Cyatholaimidae
Cyatholaimus sp. BHMM_2005	AY854213	Nematoda; Chromadorea; Chromadorida; Cyatholaimidae
Spirinia parasitifera	AY854217	Nematoda; Chromadorea; Desmodorida; Desmodoridae
Acanthopharynx micans	Y16911	Nematoda; Chromadorea; Desmodorida; Desmodoridae;
Desmodora ovigera	Y16913	Desmodorinae Nematoda; Chromadorea; Desmodorida; Desmodoridae; Desmodorinae
Desmodora communis	AY854215	Nematoda; Chromadorea; Desmodorida; Desmodoridae;
Xyzzors sp.	Y16923	Desmodorinae Nematoda; Chromadorea; Desmodorida; Desmodoridae; Desmodorinae
Metachromadora sp.	AF036595	Nematoda; Chromadorea; Desmodorida; Desmodoridae; Spiriniinae
Metachromadora remanei	AY854216	Nematoda; Chromadorea; Desmodorida; Desmodoridae; Spiriniinae
Catanema sp.	Y16912	Nematoda; Chromadorea; Desmodorida; Desmodoridae; Stilbonematinae
Eubostrichus dianae	Y16915	Nematoda; Chromadorea; Desmodorida; Desmodoridae; Stilbonematinae
Eubostrichus topiarus	Y16917	Nematoda; Chromadorea; Desmodorida; Desmodoridae; Stilbonematinae
Eubostrichus parasitiferus	Y16916	Nematoda; Chromadorea; Desmodorida; Desmodoridae; Stilbonematinae
Laxus oneistus	Y16919	Nematoda; Chromadorea; Desmodorida; Desmodoridae; Stilbonematinae
Laxus cosmopolites	Y16918	Nematoda; Chromadorea; Desmodorida; Desmodoridae; Stilbonematinae
Leptonemella sp.	Y16920	Nematoda; Chromadorea; Desmodorida; Desmodoridae; Stilbonematinae
Robbea hypermnestra	Y16921	Nematoda; Chromadorea; Desmodorida; Desmodoridae; Stilbonematinae
Stilbonema majum	Y16922	Nematoda; Chromadorea; Desmodorida; Desmodoridae; Stilbonematinae
Monoposthia costata	AY854221	Nematoda; Chromadorea; Desmodorida; Monoposthiidae
Nudora bipapillata	AY854222	Nematoda; Chromadorea; Desmodorida; Monoposthiidae
Calomicrolaimus parahonestus	AY854218	Nematoda; Chromadorea; Desmodorida; Richtersioidea; Microlaimidae
Calomicrolaimus sp. BHMM_2005	AY854219	Nematoda; Chromadorea; Desmodorida; Richtersioidea;
Molgolaimus demani	AY854220	Microlaimidae Nematoda; Chromadorea; Desmodorida; Richtersioidea; Microlaimidae
Diplogaster lethieri	AF036643	Nematoda; Chromadorea; Diplogasterida; Diplogasteridae

Species	Accession No.	Taxonomy
Aduncospiculum halicti	U61759	Nematoda; Chromadorea; Diplogasterida; Diplogasteridae
Pristionchus Iheritieri	AF036640	Nematoda; Chromadorea; Diplogasterida; Neodiplogasteridae
Pristionchus pacificus	U81584	Nematoda; Chromadorea; Diplogasterida; Neodiplogasteridae
Pristionchus pacificus PS312	AF083010	Nematoda; Chromadorea; Diplogasterida; Neodiplogasteridae
Sabatieria punctata Strain 343	AY854237	Nematoda; Chromadorea; Monhysterida; Comesomatidae
Sabatieria sp. 355 BHMM_2005	AY854239	Nematoda; Chromadorea; Monhysterida; Comesomatidae
Sabatieria celtica	AY854234	Nematoda; Chromadorea; Monhysterida; Comesomatidae
Sabatieria punctata Strain 200	AY854235	Nematoda; Chromadorea; Monhysterida; Comesomatidae
Sabatieria punctata Strain 223	AY854236	Nematoda; Chromadorea; Monhysterida; Comesomatidae
Sabatieria sp. 210 BHM_2005	AY854238	Nematoda; Chromadorea; Monhysterida; Comesomatidae
Setosabatiera hilarula	AY854240	Nematoda; Chromadorea; Monhysterida; Comesomatidae
Desmolaimus zeelandicus	AY854229	Nematoda; Chromadorea; Monhysterida; Linhomoeidae
Terschellingia longicaudata	AY854230	Nematoda; Chromadorea; Monhysterida; Linhomoeidae
Cyartonema elegans	AY854203	Nematoda; Chromadorea; Monhysterida; Monhysterida incertae sedis
Tridentulus sp. PDL-2005	AJ966507	Nematoda; Chromadorea; Monhysterida; Monhysteridae
Diplolaimelloides meyli	AJ966507	Nematoda; Chromadorea; Monhysterida; Monhysteridae
Diplolaimella dievengatensis	AJ966482	Nematoda; Chromadorea; Monhysterida; Monhysteridae
Geomonhystera disjuncta	AJ966485	Nematoda; Chromadorea; Monhysterida; Monhysteridae
Sphaerolaimus hirsutus	AY854228	Nematoda; Chromadorea; Monhysterida; Sphaerolaimidae
Theristus acer	AJ966505	Nematoda; Chromadorea; Monhysterida; Xyalidae
Daptonema procerus	AF047889	Nematoda; Chromadorea; Monhysterida; Xyalidae
Daptonema hirsutum	AY854223	Nematoda; Chromadorea; Monhysterida; Xyalidae
Daptonema normandicum	AY854224	Nematoda; Chromadorea; Monhysterida; Xyalidae
Daptonema oxycerca	AY854225	Nematoda; Chromadorea; Monhysterida; Xyalidae
Daptonema setosum	AY854226	Nematoda; Chromadorea; Monhysterida; Xyalidae
Metadesmolaimus sp. PDL-2005	AJ966491	Nematoda; Chromadorea; Monhysterida; Xyalidae
Dentostomella sp.	AF036590	Nematoda; Chromadorea; Oxyurida; Oxyuroidea; Heteroxynematidae
Bunonema franzi	AJ966477	Nematoda; Chromadorea; Rhabditida; Bunonematoidea; Bunonematidae
Bunonema sp.	U81582	Nematoda; Chromadorea; Rhabditida; Bunonematoidea; Bunonematidae
Seleborca complexa	U81577	Nematoda; Chromadorea; Rhabditida; Cephaloboidea; Cephalobida
Cephaloboides sp. SB227	AF083027	Nematoda; Chromadorea; Rhabditida; Cephaloboidea;
Acrobeloides nanus	DQ102707	Cephalobidae Nematoda; Chromadorea; Rhabditida; Cephaloboidea; Cephalobidae
Acrobeloides bodenheimeri PS1158	AF202159	Nematoda; Chromadorea; Rhabditida; Cephaloboidea;
Acrobeloides sp. PS1146	AF034391	Cephalobidae Nematoda; Chromadorea; Rhabditida; Cephaloboidea; Cephalobidae
Acrobeles ciliates	AF202148	Nematoda; Chromadorea; Rhabditida; Cephaloboidea; Cephalobidae
Acrobeles sp. PS1156	U81576	Nematoda; Chromadorea; Rhabditida; Cephaloboidea;
Acrobeles complexus WCUG2	U81577	Cephalobidae Nematoda; Chromadorea; Rhabditida; Cephaloboidea; Cephalobidae
Cephalobus cubaensis	AF202161	Nematoda; Chromadorea; Rhabditida; Cephaloboidea; Cephalobidae
Cephalobus sp. PS1143	AF202158	Nematoda; Chromadorea; Rhabditida; Cephaloboidea; Cephalobidae

Species	Accession No.	Taxonomy
Cephalobus sp. PS1196	AF202160	Nematoda; Chromadorea; Rhabditida; Cephaloboidea;
Cephalobus oryzae PS1165	AF034390	Cephalobidae Nematoda; Chromadorea; Rhabditida; Cephaloboidea; Cephalobidae
Cervidellus alutus	AF202152	Nematoda; Chromadorea; Rhabditida; Cephaloboidea; Cephalobidae
Pseudacrobeles variabilis	AF202150	Nematoda; Chromadorea; Rhabditida; Cephaloboidea; Cephalobidae
Triligulla alluta	AF331911	Nematoda; Chromadorea; Rhabditida; Cephaloboidea;
Zeldia punctada	U61760	Cephalobidae Nematoda; Chromadorea; Rhabditida; Cephaloboidea;
Myolaimus sp U81585	U81585	Cephalobidae Nematoda; Chromadorea; Rhabditida; Myolaimoidea; Myolaimidae
Rhabditophanes sp. KR3021	AF202151	Nematoda; Chromadorea; Rhabditida; Panagrolaimoidea; Alloionematidae
Brevibucca sp. SB261	AF202163	Nematoda; Chromadorea; Rhabditida; Panagrolaimoidea; Brevibuccidae
Halicephalobus gingivalis	AF202156	Nematoda; Chromadorea; Rhabditida; Panagrolaimoidea; Panagrolaimidae
Panagrobelus stammeri	AF202153	Nematoda; Chromadorea; Rhabditida; Panagrolaimoidea; Panagrolaimidae
Plectonchus sp. PDL0025	AF202154	Nematoda; Chromadorea; Rhabditida; Panagrolaimoidea;
Turbatrix aceti	AF202165	Panagrolaimidae Nematoda; Chromadorea; Rhabditida; Panagrolaimoidea;
Panagrellus redivivus	AF036599	Panagrolaimidae Nematoda; Chromadorea; Rhabditida; Panagrolaimoidea;
Panagrellus redivivus PS1163	AF083007	Panagrolaimidae Nematoda; Chromadorea; Rhabditida; Panagrolaimoidea;
Panagrolaimus subelongatus	AY284681	Panagrolaimidae Nematoda; Chromadorea; Rhabditida; Panagrolaimoidea;
Panagrolaimus davidi	AJ567385	Panagrolaimidae Nematoda; Chromadorea; Rhabditida; Panagrolaimoidea;
Panagrolaimus cf rigidus AF40	DQ285636	Panagrolaimidae Nematoda; Chromadorea; Rhabditida; Panagrolaimoidea;
Panagrolaimus sp. Sourhope farm7	AF430487	Panagrolaimidae Nematoda; Chromadorea; Rhabditida; Panagrolaimoidea;
Panagrolaimus sp. Sourhope farm5	AF430485	Panagrolaimidae Nematoda; Chromadorea; Rhabditida; Panagrolaimoidea;
Panagrolaimus sp. Sourhope farm6	AF430486	Panagrolaimidae Nematoda; Chromadorea; Rhabditida; Panagrolaimoidea;
Panagrolaimus sp. Sourhope farm4	AF430484	Panagrolaimidae Nematoda; Chromadorea; Rhabditida; Panagrolaimoidea;
Panagrolaimus sp. Sourhope farm3	AF430483	Panagrolaimidae Nematoda; Chromadorea; Rhabditida; Panagrolaimoidea;
Steinernema carpocapsae	AF036604	Panagrolaimidae Nematoda; Chromadorea; Rhabditida; Panagrolaimoidea;
Strongyloides stercoralis	M84229	Steinernematidae Nematoda; Chromadorea; Rhabditida; Panagrolaimoidea;
Strongyloides ratti	U81581	Strongyloididae Nematoda; Chromadorea; Rhabditida; Panagrolaimoidea;
Diploscapter sp PS1897	AF083009	Strongyloididae Nematoda; Chromadorea; Rhabditida; Rhabditoidea;
Diploscapter sp PS2017	U81586	Diploscapteridae Nematoda; Chromadorea; Rhabditida; Rhabditoidea;
Heterorhabditis bacteriophora	AF036593	Diploscapteridae Nematoda; Chromadorea; Rhabditida; Rhabditoidea;
Heterorhabditis hepialus	AF083004	Heterorhabditidae Nematoda; Chromadorea; Rhabditida; Rhabditoidea;
Heterorhabditis zelandica	AJ920368	Heterorhabditidae Nematoda; Chromadorea; Rhabditida; Rhabditoidea;
Phasmarhabditis hermaphrodita*	DQ639981	Heterorhabditidae Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae
Phasmarhabditis neopapillosa*	DQ639982	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae
Parasitorhabditis sp SB281	AF083028	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae
Rhabditoides inermiformis	AF083017	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae

Species	Accession No.	Taxonomy
Rhabditoides inermis DF5001	AF082996	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae
Rhabditoides regina	AF082997	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae
Poikilolaimus oxycerca SB200	AF083023	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae
Poikilolaimus regenfussi SB199	AF083022	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae
Choriorhabditis dudichi	AF083012	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae
Distolabrellus veechi	AF083011	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae
Distolabrellus veechi DF5024	AF082999	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae
Protorhabditis sp.	AF083024	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Rhabditinae
Protorhabditis sp DF5055	AF083001	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Rhabditinae
Cruznema tripartitum DF5015	U73449	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Mesorhabditinae
Mesorhabditis sp. PS1179	U73452	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Mesorhabditinae
Mesorhabditis spiculigera SB157	AF083016	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Mesorhabditinae
Mesorhabditis anisomorpha SB123	AF083013	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Mesorhabditinae
Teratorhabditis palmarum DF5019	U13937	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Mesorhabditinae
Teratorhabditis synpapillata SB131	AF083015	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Mesorhabditinae
Caenorhabditis briggsae PB102	U13929	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Peloderinae
Caenorhabditis elegans N2	X03680	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Peloderinae
Caenorhabditis sp CB5161	U13930	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Peloderinae
Caenorhabditis sp. PS1010	AF083006	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Peloderinae
Caenorhabditis japonica	AY602182	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Peloderinae
Caenorhabditis sp. DF5170	AY602181	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Peloderinae
Caenorhabditis sp. SB341	AY602180	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Peloderinae
Caenorhabditis plicata	AY602178	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Peloderinae
Caenorhabditis sp. CB5161	U13930	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Peloderinae
Caenorhabditis vulgaris	U13931	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Peloderinae
Caenorhabditis sonorae	AF083026	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Peloderinae
Caenorhabditis drosophilae	AF083025	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Peloderinae
Pellioditis marina	AF083021	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Peloderinae
Pelioditis mediterrenea	AF083020	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Peloderinae
Prodontorhabditis wirthi	AY602179	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Protorhabditinae
Crustorhabditis scanica SB125	AF083014	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Rhabditinae
Dolichorhabditis sp CEW1 (=Oscheius)	AF036591	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Rhabditinae
Oscheius sp. DF5000	AF082995	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Rhabditinae
Oscheius sp. BW282	AF082994	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Rhabditinae
Oscheius myriophila EM435	U81588	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Rhabditinae

Species	Accession No.	Taxonomy
Oscheius insectivora	AF083019	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Rhabditinae
Oscheius dolichuroides	AF082998	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Rhabditinae
Rhabditis blumi DF5010	U13935	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Rhabditinae
Rhabditis sp PS1191	AF083008	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Rhabditinae
Rhabditis sp PS1010	AF083006	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Rhabditinae
Rhabditis myriophila EM435	U13936	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Rhabditinae
Rhabditis colombiana*	AY751546	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Rhabditinae
Rhabditella axei DF5006	U13934	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Rhabditinae
Rhabditella sp. DF5044	AF083000	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Rhabditinae
Cuticularia sp. PS2083	U81583	Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Rhabditinae
Necator americanus	AY295811	Nematoda; Chromadorea; Rhabditida; Strongylida; Ancylostomatoidea: Ancylostomatidae; Bunostominae
Kalicephalus cristatus	AJ920349	Nematoda; Chromadorea; Rhabditida; Strongylida; Diaphanocephaloidea; Diaphanocephalidae
Ancylostoma caninum	AJ920347	Nematoda; Chromadorea; Rhabditida; Strongylida;
Angiostrongylus cantonensis	AY295804	Ancylostomatoidea; Ancylostomatidae; Ancylostomatinae Nematoda; Chromadorea; Rhabditida; Strongylida;
Angiostrongylus costaricensis	This study	Metastrongyloidea; Angiostrongylidae Nematoda; Chromadorea; Rhabditida; Strongylida;
Angiostrongylus malaysiensis	This study	Metastrongyloidea; Angiostrongylidae Nematoda; Chromadorea; Rhabditida; Strongylida;
Angiostrongylus dujardini	This study	Metastrongyloidea; Angiostrongylidae Nematoda; Chromadorea; Rhabditida; Strongylida;
Angiostrongylus vasorum	This study	Metastrongyloidea; Angiostrongylidae Nematoda; Chromadorea; Rhabditida; Strongylida;
Aelurostrongylus abstrusus	AJ920366	Metastrongyloidea; Angiostrongylidae Nematoda; Chromadorea; Rhabditida; Strongylida;
Didelphostrongylus hayesi	AY295806	Metastrongyloidea; Angiostrongylidae Nematoda; Chromadorea; Rhabditida; Strongylida;
Crenosoma mephitidis	AY295805	Metastrongyloidea; Angiostrongylidae Nematoda; Chromadorea; Rhabditida; Strongylida;
Crenosoma vulpis	AJ920367	Metastrongyloidea; Crenosomatidae Nematoda; Chromadorea; Rhabditida; Strongylida;
Otostrongylus circumlitus	AY295813	Metastrongyloidea; Crenosomatidae Nematoda; Chromadorea; Rhabditida; Strongylida;
Troglostrongylus wilsoni	AY295820	Metastrongyloidea; Crenosomatidae Nematoda; Chromadorea; Rhabditida; Strongylida;
Filaroides martis	AY295807	Metastrongyloidea; Crenosomatidae Nematoda; Chromadorea; Rhabditida; Strongylida;
Oslerus osleri	AY295812	Metastrongyloidea; Filaroididae Nematoda; Chromadorea; Rhabditida; Strongylida;
Parafilaroides decorus	AY295814	Metastrongyloidea; Filaroididae Nematoda; Chromadorea; Rhabditida; Strongylida;
Metastrongylus salmi	AY295809	Metastrongyloidea; Filaroididae Nematoda; Chromadorea; Rhabditida; Strongylida;
Metastrongylus elongatus	AJ920363	Metastrongyloidea; Metastrongylidae Nematoda; Chromadorea; Rhabditida; Strongylida;
Skrjabingylus chitwoodrum	AY295819	Metastrongyloidea; Metastrongylidae Nematoda; Chromadorea; Rhabditida; Strongylida;
Parelaphostrongylus odocoilei	AY295815	Metastrongyloidea; Metastrongylidae Nematoda; Chromadorea; Rhabditida; Strongylida;
Muellerius capillaries	AY295810	Metastrongyloidea; Protostrongylidae; Elaphostrongylinae Nematoda; Chromadorea; Rhabditida; Strongylida;
Protostrongylus rufescens	AJ920364	Metastrongyloidea; Protostrongylidae; Elaphostrongylinae Nematoda; Chromadorea; Rhabditida; Strongylida;
Halocercus invaginatus	AY295808	Metastrongyloidea; Protostrongylidae; Protostrongylinae Nematoda; Chromadorea; Rhabditida; Strongylida;
Ť		Metastrongyloidea; Pseudaliidae

Pseudalius inflexusAY295816Nematoda; Chromadorea; Rhabditida; Strongylida; Metastrongyloidea; PseudaliidaeStenurus minorAY295817Nematoda; Chromadorea; Rhabditida; Strongylida; Metastrongyloidea; PseudaliidaeSyngamus trachaeaAJ920344Nematoda; Chromadorea; Rhabditida; Strongylida; Metastrongyloidea; SyngamidaeTorynurus convolutesAY295818Nematoda; Chromadorea; Rhabditida; Strongylida; Metastrongyloidea; Unclassified MetastrongyloideaNematodirus battusU01230Nematoda; Chromadorea; Rhabditida; Strongylida; Molineoidea; Molineidae; Nematoda; Chromadorea; Rhabditida; Strongylida; Strongylida; Strongylida; Molineoidea; Molineidae; Nematoda; Chromadorea; Rhabditida; Strongylida; Strongylidae
Stenurus minorAY295817Nematoda; Chromadorea; Rhabditida; Strongylida; Metastrongyloidea; PseudaliidaeSyngamus trachaeaAJ920344Nematoda; Chromadorea; Rhabditida; Strongylida; Metastrongyloidea; SyngamidaeTorynurus convolutesAY295818Nematoda; Chromadorea; Rhabditida; Strongylida; Metastrongyloidea; Unclassified MetastrongyloideaNematodirus battusU01230Nematoda; Chromadorea; Rhabditida; Strongylida; Molineoidea; Molineidae; Nematoda; Chromadorea; Rhabditida; Strongylida; Molineoidea; Molineidae; Nematoda; Chromadorea; Rhabditida; Strongylida; Molineoidea; Molineidae; Nematoda; Chromadorea; Rhabditida; Strongylida; Strongyloidea; Strongylus equinesStrongylus equinesDQ094176Nematoda; Chromadorea; Rhabditida; Strongylida; Strongyloidea; Nematoda; Chromadorea; Rhabditida; Strongylida; Strongyloidea; Strongylus equines
Torynurus convolutesAY295818Metastrongyloidea; SyngamidaeTorynurus convolutesAY295818Nematoda; Chromadorea; Rhabditida; StrongyloideaNematodirus battusU01230Nematoda; Chromadorea; Rhabditida; Strongyloidea; Molineidae; NematodirinaePetrovinema poculatumAJ920343Nematoda; Chromadorea; Rhabditida; Strongyloidea; Strongylus equinesStrongylus equinesDQ094176Nematoda; Chromadorea; Rhabditida; Strongyloidea; Nematoda; Chromadorea; Rhabditida; Strongyloidea; Strongyloidea; Nematoda; Chromadorea; Rhabditida; Strongyloidea; Strongyloidea;
Torynurus convolutesAY295818Nematoda; Chromadorea; Rhabditida; Strongylida; Metastrongyloidea; Unclassified MetastrongyloideaNematodirus battusU01230Nematoda; Chromadorea; Rhabditida; Strongylida; Molineoidea; Molineidae; NematodirinaePetrovinema poculatumAJ920343Nematoda; Chromadorea; Rhabditida; Strongylida; Strongyloidea; Strongylus equinesDQ094176Nematoda; Chromadorea; Rhabditida; Strongylida; Strongyloidea; Nematoda; Chromadorea; Rhabditida; Strongylida; Strongyloidea;
Nematodirus battusU01230Nematoda; Chromadorea; Rhabditida; Strongylida; Molineoidea; Molineidae; NematodirinaePetrovinema poculatumAJ920343Nematoda; Chromadorea; Rhabditida; Strongylida; Strongyloidea; Strongylus equinesStrongylus equinesDQ094176Nematoda; Chromadorea; Rhabditida; Strongylida; Strongyloidea; Nematoda; Chromadorea; Rhabditida; Strongylida; Strongyloidea;
Petrovinema poculatumAJ920343Nematoda; Chromadorea; Rhabditida; Strongylida; Strongyloidea; Strongylus equinesStrongylus equinesDQ094176Nematoda; Chromadorea; Rhabditida; Strongyloidea; Nematoda; Chromadorea; Rhabditida; Strongyloidea;
Strongylus equines DQ094176 Nematoda; Chromadorea; Rhabditida; Strongylida; Strongyloidea;
Cylicocyclus insignis AJ920342 Nematoda; Chromadorea; Rhabditida; Strongylida; Strongyloidea; Strongylidae
Zoniolaimus mawsonae AJ920338 Nematoda; Chromadorea; Rhabditida; Strongylida; Strongyloidea; Cloacinidae
Labiostrongylus bipapillosus AJ920337 Nematoda; Chromadorea; Rhabditida; Strongylida; Strongyloidea; Cloacinidae
Hypodontus macropi AJ920339 Nematoda; Chromadorea; Rhabditida; Strongylida; Strongyloidea; Cloacinidae
Chabertia ovina AJ920341 Nematoda; Chromadorea; Rhabditida; Strongylida; Strongyloidea; Chabertiidae
Cyclodontostomum purvisi AJ920340 Nematoda; Chromadorea; Rhabditida; Strongylida; Strongyloidea; Chabertiidae
Stephanurus dentatus AJ920345 Nematoda; Chromadorea; Rhabditida; Strongylida; Strongyloidea; Stephanuridae
Deletrocephalus dimidiatus AJ920346 Nematoda; Chromadorea; Rhabditida; Strongylida; Strongyloidea; Deletrocephalidae
Dictyocaulus eckerti P7B8 AY168857 Nematoda; Chromadorea; Rhabditida; Strongylida; Trichostrongyloidea; Dictyocaulidae; Dictyocaulinae
Dictyocaulus capreolus P3B2 AY168859 Nematoda; Chromadorea; Rhabditida; Strongylida; Trichostrongyloidea; Dictyocaulidae; Dict
Dictyocaulus sp. P6A1 AY168860 Nematoda; Chromadorea; Rhabditida; Strongylida;
Dictyocaulus filarial AY168861 Trichostrongyloidea; Dictyocaulidae; D
Dictyocaulus capreolus P2C10 AY168862 Trichostrongyloidea; Dictyocaulidae; Dictyocaul
Dictyocaulus viviparous AY168856 Trichostrongyloidea; Dictyocaulidae; Dictyocaulidae;
Dictyocaulus filarial AJ920362 Trichostrongyloidea; Dictyocaulidae; D
Dictyocaulus viviparous AJ920361 Trichostrongyloidea; Dictyocaulidae; Dictyocaulidae; Dictyocaulida; Strongylida;
Haemonchus sp. V3091* DQ503465 Trichostrongyloidea; Dictyocaulidae; Dictyocaulidae;
Haemonchus contortus L04153 Trichostrongyloidea; Haemonchidae; Haemonchidae;
Haemonchus placei L04154 Trichostrongyloidea; Haemonchidae; Haemonchinae
Haemonchus similis L04152 Trichostrongyloidea; Haemonchidae; Haemonchinae
Ostertagia ostertagi AJ920352 Nematoda; Chromadorea; Rhabditida; Strongylida;
Ostertagia leptospicularis AJ920351 Nematoda; Chromadorea; Rhabditida; Strongylida;
Trichostrongyloidea; Haemonchidae; Ostertagiinae
Nippostrongylus brasiliensis AJ920356 Nematoda; Chromadorea; Rhabditida; Strongylida; Trichostrongyloidea; Heligmonellidae; Nippostrongylinae Trichostrongyloidea; Heligmonellidae; Nippostrongylinae
Heligmosomoides polygyrus AJ920355 Nematoda; Chromadorea; Rhabditida; Strongylida; Trichostrongyloidea; Heligmosomatidae
Trichostrongylus colubriformis AJ920350 Nematoda; Chromadorea; Rhabditida; Strongylida; Trichostrongyloidea; Trichostrongylidae
Tetrabothriostrongylus mackerrasae AJ920359 Nematoda; Chromadorea; Rhabditida; Strongylida; Trichostrongyloidea; Mackerrastrongylidae
Herpetostrongylus pythonis AJ920358 Nematoda; Chromadorea; Rhabditida; Strongylida; Trichostrongyloidea; Herpetostrongylidae

Species	Accession No.	Taxonomy
Nicollina cameroni	AJ920357	Nematoda; Chromadorea; Rhabditida; Strongylida;
Filarinema flagrifer	AJ920354	Trichostrongyloidea; Nicollinidae Nematoda; Chromadorea; Rhabditida; Strongylida; Trichostrongyloidae; Dromacostrongylidae
Amidostomum cygni	AJ920353	Trichostrongyloidea; Dromaeostrongylidae Nematoda; Chromadorea; Rhabditida; Strongylida; Trichostrongyloidea; Amidostomatidae
Teratocephalus lirellus	AF036607	Nematoda; Chromadorea; Rhabditida; Teratocephaloidea; Teratocephalidae; Teratocephalinae
Brumptaemilius justini	AF036589	Nematoda; Chromadorea; Rhigonematida
Anguillicola crassus	DQ118535	Nematoda; Chromadorea; Spirurida; Dracunculoidea; Anguillicolidae
Dracunculus medinensis	AY852268	Nematoda; Chromadorea; Spirurida; Dracunculoidea; Dracunculidae
Dracunculus oesophageus	AY852269	Nematoda; Chromadorea; Spirurida; Dracunculoidea; Dracunculidae
Dracunculus sp. V3104*	DQ503457	Nematoda; Chromadorea; Spirurida; Dracunculoidea; Dracunculidae
Philonema sp. A	U81574	Nematoda; Chromadorea; Spirurida; Dracunculoidea; Philometridae
Philometra obturans	AY852267	Nematoda; Chromadorea; Spirurida; Dracunculoidea; Philometridae
Camallanus oxycephalus*	DQ503463	Nematoda; Chromadorea; Spirurida; Camallanida; Camallanidae
Acanthocheilonema viteae	DQ094171	Nematoda; Chromadorea; Spirurida; Filarioidea; Onchocercidae
Loa loa	DQ094173	Nematoda; Chromadorea; Spirurida; Filarioidea; Onchocercidae
Onchocerca cervicularis	DQ094174	Nematoda; Chromadorea; Spirurida; Filarioidea; Onchocercidae
Dirofilaria immitis	AF036638	Nematoda; Chromadorea; Spirurida; Filarioidea; Onchocercidae
Brugia malayi	AF036588	Nematoda; Chromadorea; Spirurida; Filarioidea; Onchocercidae
Wuchereria bancrofti	AF227234	Nematoda; Chromadorea; Spirurida; Filarioidea; Onchocercidae
Litomosoides sigmodontis	AF227233	Nematoda; Chromadorea; Spirurida; Filarioidea; Onchocercidae
Setaria digitata	DQ094175	Nematoda; Chromadorea; Spirurida; Filarioidea; Setariidae
Gnathostoma turgidum	Z96948	Nematoda; Chromadorea; Spirurida; Gnathostomatoidea;
Gnathostoma neoprocyonis	Z96947	Gnathostomatidae Nematoda; Chromadorea; Spirurida; Gnathostomatoidea; Gnathostomatidae
Gnathostoma binuncleatum	Z96946	Nematoda; Chromadorea; Spirurida; Gnathostomatoidea;
Physaloptera alata	AY702703	Gnathostomatidae Nematoda; Chromadorea; Spirurida; Physalopteroidea; Physalopteridae
Physaloptera turgid*	DQ503459	Nematoda; Chromadorea; Spirurida; Physalopteroidea; Physalopteridae
Ascarophis arctica	DQ094172	Nematoda; Chromadorea; Spirurida; Spiruroidea; Cystidicolidae
Spinitectus carolini*	DQ503565	Nematoda; Chromadorea; Spirurida; Spiruroidea; Cystidicolidae
Thelazia lacrymalis*	DQ503458	Nematoda; Chromadorea; Spirurida; Thelazioidea; Thelaziidae
Aphelenchus avenae	AF036586	Nematoda; Chromadorea; Tylenchida; Aphelenchoidea; Aphelenchidae
Aphelenchoides fragariae	AJ966475	Nematoda; Chromadorea; Tylenchida; Aphelenchoidea; Aphelenchidae
Bursaphelenchus sp.	AF037369	Nematoda; Chromadorea; Tylenchida; Aphelenchoidoidea; Aphelenchoididae
Deladenus sp.	AJ966481	Nematoda; Chromadorea; Tylenchida; Sphaerulariidae
Criconema sp.	AJ966480	Nematoda; Chromadorea; Tylenchida; Tylenchina; Criconematoidea; Criconematidae; Criconematinae
Hemicycliophora conida	AJ966471	Nematoda; Chromadorea; Tylenchida; Tylenchina; Criconematoidea; Criconematidae; Hemicycliophorinae
Pratylenchus thornei	AJ966499	Nematoda; Chromadorea; Tylenchida; Tylenchina; Tylenchoidea; Pratylenchidae; Pratylenchinae
Paratylenchus dianthus	AJ966496	Nematoda; Chromadorea; Tylenchida; Tylenchina; Criconematoidea; Tylenchulidae; Paratylenchidae
Tylenchulus semipentrans	AJ966511	Nematoda; Chromadorea; Tylenchida; Tylenchina; Criconematoidea; Tylenchulidae; Tylenchulinae

Species	Accession No.	Taxonomy
Ditylenchus angustus	AJ966483	Nematoda; Chromadorea; Tylenchida; Tylenchina; Tylenchoidea; Anguinidae
Subanguina radicola	AF202164	Nematoda; Chromadorea; Tylenchida; Tylenchina; Tylenchoidea; Anguinidae; Anguininae
Tylenchorhynchus maximus	AY993979	Nematoda; Chromadorea; Tylenchida; Tylenchina; Tylenchoidea; Belonolaimidae
Geocenamus quadrifer	AY993977	Nematoda; Chromadorea; Tylenchida; Tylenchina; Tylenchoidea; Belonolaimidae
Globodera pallid	AFO36592	Nematoda; Chromadorea; Tylenchida; Tylenchina; Tylenchoidea; Heteroderidae; Heteroderinae
Scutellonema bradys	AJ966504	Nematoda; Chromadorea; Tylenchida; Tylenchina; Tylenchoidea; Hoplolaimidae; Hoplolaiminae
Helicotylenchus dihystera	AJ966486	Nematoda; Chromadorea; Tylenchida; Tylenchina; Tylenchoidea; Hoplolaimidae; Hoplolaiminae
Rotylenchus robustus	AJ966503	Nematoda; Chromadorea; Tylenchida; Tylenchina; Tylenchoidea; Hoplolaimidae; Rotylenchulinae
Meloidogyne arenaria	U42342	Nematoda; Chromadorea; Tylenchida; Tylenchina; Tylenchoidea; Meloidogynidae; Meloidogyninae
Meloidogyne incognita	U81578	Nematoda; Chromadorea; Tylenchida; Tylenchina; Tylenchoidea; Meloidogynidae: Meloidogyninae
Meloidogyne javanica	AF442193	Nematoda; Chromadorea; Tylenchida; Tylenchina; Tylenchoidea; Meloidogynidae; Meloidogyninae
Meloidogyne artiellia	AF442192	Nematoda; Chromadorea; Tylenchida; Tylenchina; Tylenchoidea; Meloidogynidae; Meloidogyninae
Meloidogyne duytsi	AF442197	Nematoda; Chromadorea; Tylenchida; Tylenchina; Tylenchoidea; Meloidogynidae; Meloidogyninae
Meloidogyne exigua	AF442200	Nematoda; Chromadorea; Tylenchida; Tylenchina; Tylenchoidea;
Meloidogyne hapla	AF442194	Meloidogynidae; Meloidogyninae Nematoda; Chromadorea; Tylenchida; Tylenchina; Tylenchoidea;
Meloidogyne ichinohei	AF442191	Meloidogynidae; Meloidogyninae Nematoda; Chromadorea; Tylenchida; Tylenchina; Tylenchoidea;
Meloidogyne maritima	AF442199	Meloidogynidae; Meloidogyninae Nematoda; Chromadorea; Tylenchida; Tylenchina; Tylenchoidea;
Meloidogyne microtyla	AF442198	Meloidogynidae; Meloidogyninae Nematoda; Chromadorea; Tylenchida; Tylenchina; Tylenchoidea;
Nacobbus aberrans	AJ966494	Meloidogynidae; Meloidogyninae Nematoda; Chromadorea; Tylenchida; Tylenchina; Tylenchoidea;
Pratylenchoides ritteri	AJ966497	Pratylenchidae; Nacobbinae Nematoda; Chromadorea; Tylenchida; Tylenchina; Tylenchoidea;
Pratylenchoides magnicauda	AF202157	Pratylenchidae; Pratylenchinae Nematoda; Chromadorea; Tylenchida; Tylenchina; Tylenchoidea;
Hirschmanniella sp. JH_2003	AY284616	Pratylenchidae; Pratylenchinae Nematoda; Chromadorea; Tylenchida; Tylenchina; Tylenchoidea;
Radopholus similis	AJ966502	Pratylenchidae; Pratylenchinae Nematoda; Chromadorea; Tylenchida; Tylenchina; Tylenchoidea;
Pratylenchus goodyeri	AJ966498	Pratylenchidae; Radopholinae Nematoda; Chromadorea; Tylenchida; Tylenchina; Tylenchoidea;
Boleodorus thylactus clone2	AY993976	Pratylenchidae; Radopholinae Nematoda; Chromadorea; Tylenchida; Tylenchina; Tylenchoidea;
Paractinolaimus macrolaimus	AY993978	Tylenchidae; Boleodorinae Nematoda; Enoplea; Dorylaimida; Dorylaimina; Actinolaimoidea;
Aporcelaimellus obtusicaudatus	DQ141212	Paractinolaiminae Nematoda; Enoplea; Dorylaimida; Dorylaimina; Dorylaimoidea;
Wilsonema schuurmansstekhoveni	AJ966513	Aporcelaimidae; Aporcelaiminae Nematoda; Enoplea; Dorylaimida; Dorylaimina; Dorylaimoidea; Demoinidae
Mesodorylaimus cf. nigritulus AV-2005	AJ966490	Dorylaimidae Nematoda; Enoplea; Dorylaimida; Dorylaimina; Dorylaimoidea; Dorylaimidae, Laimydorinae
Mesodorylaimus japonicus	AJ966489	Dorylaimidae; Laimydorinae Nematoda; Enoplea; Dorylaimida; Dorylaimina; Dorylaimoidea; Dorylaimidae, Laimydorinae
Mesodorylaimus bastiani	AJ966488	Dorylaimidae; Laimydorinae Nematoda; Enoplea; Dorylaimida; Dorylaimina; Dorylaimoidea; Dorylaimidae, Laimydorinae
Pungentus sp. PDL-2005	AJ966501	Dorylaimidae; Laimydorinae Nematoda; Enoplea; Dorylaimida; Dorylaimina; Dorylaimoidea; Nordiidae: Bungaptinae
Allodorylaimus sp. PDL-2005	AJ966472	Nordiidae; Pungentinae Nematoda; Enoplea; Dorylaimida; Dorylaimina; Dorylaimoidea; Qudsianematidae
Eudorylaimus carteri	AJ966484	Nematoda; Enoplea; Dorylaimida; Dorylaimina; Dorylaimoidea; Qudsianematidae; Qudsianematinae

Species	Accession No.	Taxonomy
Microdorylaimus sp. PDL-2005	AJ966492	Nematoda; Enoplea; Dorylaimida; Dorylaimina; Dorylaimoidea;
Longidorus elongates	AF036594	Qudsianematidae; Qudsianematinae Nematoda; Enoplea; Dorylaimida; Dorylaimina; Longidoroidea; Longidoridae
Xiphinema rivesi	AF036610	Nematoda; Enoplea; Dorylaimida; Dorylaimina; Longidoroidea; Longidoridae
Tylencholaimus sp. PDL-2005	AJ966510	Nematoda; Enoplea; Dorylaimida; Dorylaimina; Tylencholaimoidea; Tylencholaimidae; Tylencholaiminae
Anoplostoma sp. BHMM_2005	AY854194	Nematoda; Enoplea; Enoplida; Enoploidea; Anoplostomatidae
Adoncholaimus fuscus	AY854195	Nematoda; Enoplea; Enoplida; Enoploidea; Enoplidae
Enoplus meridionalis	Y16914	Nematoda; Enoplea; Enoplida; Enoploidea; Enoplidae
Enoplus brevis	U88336	Nematoda; Enoplea; Enoplida; Enoploidea; Enoplidae
Enoplus communis	AY854192	Nematoda; Enoplea; Enoplida; Enoploidea; Enoplidae
Enoploides brunettii	AY854193	Nematoda; Enoplea; Enoplida; Enoploidea; Thoracostomopsidae
Syringolaimus striatocaudatus	AY854200	Nematoda; Enoplea; Enoplida; Ironoidea; Ironidae
Ironus dentifurcatus	AJ966487	Nematoda; Enoplea; Enoplida; Ironoidea; Ironidae
Calyptronema maxweberi	AY854199	Nematoda; Enoplea; Enoplida; Oncholaimoidea; Enchelidiidae
Viscosia viscose	AY854198	Nematoda; Enoplea; Enoplida; Oncholaimoidea; Oncholaimidae
Viscosia sp. BHMM_2005	AY854197	Nematoda; Enoplea; Enoplida; Oncholaimoidea; Oncholaimidae
Pontonema sp.	AF047890	Nematoda; Enoplea; Enoplida; Oncholaimoidea; Oncholaimidae
Oncholaimus sp. BHMM_2005	AY854196	Nematoda; Enoplea; Enoplida; Oncholaimoidea; Oncholaimidae
Alaimus sp. PDL-2005	AJ966514	Nematoda; Enoplea; Enoplida; Oxystominoidea; Alaimidae
Prismatolaimus intermedius	AF036603	Nematoda; Enoplea; Enoplida; Tripyloidea; Prismatolaimidae
Tobrilus gracilis	AJ966506	Nematoda; Enoplea; Enoplida; Tripyloidea; Tripylidae
<i>Tripyla cf. filicaudata</i> JH-2004 isolate TripFil2Z	AY284731	Nematoda; Enoplea; Enoplida; Tripyloidea; Tripylidae
Bathylaimus sp. PB-2005	AM234619	Nematoda; Enoplea; Enoplida; Tripyloidoidea; Tripyloididae
Bathylaimus assimilis	AJ966476	Nematoda; Enoplea; Enoplida; Tripyloidoidea; Tripyloididae
Bathylaimus sp. BHMM_2005	AY854201	Nematoda; Enoplea; Enoplida; Tripyloidoidea; Tripyloididae
Tripyloides sp. BHMM_2005	AY854202	Nematoda; Enoplea; Enoplida; Tripyloidoidea; Tripyloididae
Trischistoma monohystera	AJ966509	Nematoda; Enoplea; Enoplida; Tripyloidoidea; Tripyloididae
Mermis nigrescens	AF036641	Nematoda; Enoplea; Mermithida; Mermithoidea; Mermithidae
Mylonchulus arenicolus	AF036596	Nematoda; Enoplea; Mononchida; Mononchina; Mononchoidea; Mylonchulidae; Mylonchulinae
Anatonchus tridentatus	AJ966474	Nematoda; Enoplea; Mononchida; Mononchina; Anatonchoidea; Anatonchidae
Mononchus truncates	AJ966493	Nematoda; Enoplea; Mononchida; Mononchina; Mononchoidea;
Prionchulus muscorum	AJ966500	Mononchidae; Mononchinae Nematoda; Enoplea; Mononchida; Mononchina; Mononchoidea; Mononchidae; Prionchulinae
Clarkus sp. PDL-2005	AJ966479	Nematoda; Enoplea; Mononchida; Mononchina; Mononchoidea; Mononchidae; Prionchulinae
Trichinella spiralis	TSU60231	Nematoda; Enoplea; Trichocephalida; Trichinellidae
Trichinella papuae	AY851263	Nematoda; Enoplea; Trichocephalida; Trichinellidae
Trichinella britovi	AY851257	Nematoda; Enoplea; Trichocephalida; Trichinellidae
Trichinella murelli	AY851259	Nematoda; Enoplea; Trichocephalida; Trichinellidae
Trichinella pseudospiralis	AY851258	Nematoda; Enoplea; Trichocephalida; Trichinellidae
Trichinella native	AY851256	Nematoda; Enoplea; Trichocephalida; Trichinellidae
Trichinella zimbabwensis	AY851264	Nematoda; Enoplea; Trichocephalida; Trichinellidae
Trichinella nelson	AY851261	Nematoda; Enoplea; Trichocephalida; Trichinellidae

Species	Accession No.	Taxonomy
Trichuris suis	AY851265	Nematoda; Enoplea; Trichocephalida; Trichiuridae
Trichuris trichiura	DQ118536	Nematoda; Enoplea; Trichocephalida; Trichiuridae
Trichuris muris	AF036637	Nematoda; Enoplea; Trichocephalida; Trichiuridae
Tylolaimophorus minor	AJ966512	Nematoda; Enoplea; Triplonchida; Diphtherophorina; Diphtherophoroidea; Diphtherophoridae
Paratrichodorus pachydermus	AF036601	Nematoda; Enoplea; Triplonchida; Diphtherophorina; Trichodoroidea; Trichodoridae
Paratrichodorus anemones	AF036600	Nematoda; Enoplea; Triplonchida; Diphtherophorina; Trichodoroidea; Trichodoridae
Trichodorus primitivus	AF036609	Nematoda; Enoplea; Triplonchida; Diphtherophorina; Trichodoroidea; Trichodoridae

Appendix 6.2: Alignment of the 5' end of the SSU rRNA gene for the Nematoda. Positions included for the phylogeny analyses were marked by "m" within "NUCEOTIDES INCLUDED". This alignment included new nematode sequences from Chapter 6 *and* Chapter 7.

	1	0 20	30) 4	0 5	0 60
Gordius_aquaticus			TAGTCATATG			
Priapulus_caudatus			TAGTCATATG			
Brachionus_plicatilis			TAGTCATATG			
Chordodes_morgani			AAGCTTG			
Paractinolaimus_macrolaimus						
Aporcelaimellus_obtusicaudatus						
Wilsonema_schuurmansstekhoveni						
Mesodorylaimus_sp_cf_nigritul						
Mesodorylaimus_bastiani						
Mesodorylaimus_japonicus						
Pungentus_spPDL_2005						
Allodorylaimus_sp						
Eudorylaimus_carteri						
Microdorylaimus_sp						
Longidorus_elongatus						
Xiphinema_rivesi						
Tylencholaimus_sp						
Anoplostoma_spBHMM_2005						
Adoncholaimus_fuscus						
Enoplus_meridionalis			GAATTCGTCG			
Enoplus_brevis_U88336						
Enoplus_communis						
Enoploides_brunettii						
Syringolaimus_striatocaudatus						
Ironus_dentifurcatus						
Calyptronema_maxweberi						
Viscosia_spBHMM_2005						
Viscosia_viscosa						
Pontonema_vulgare						
Oncholaimus_spBHMM_2005						
Alaimus_sp_PDL_2005						
Prismatolaimus_intermedius						
Tobrilus_gracilis						
Tripyla_cf_filicaudata_JH_2004						
Bathylaimus_sp						
Bathylaimus_assimilis						
Bathylaimus_spBHMM_2005						
Tripyloides_spBHMM_2005						
Trischistoma_monohystera						
Mermis_nigrescens						
Mylonchulus_arenicolus						
Anatonchus_tridentacus						
Mononchus_truncatus						
Prionchulus_muscorum						
Clarkus_sp						
Trichinella_spiralis						
Trichinella_papuae						
Trichinella_britovi						
Trichinella_murrelli						
Trichinella_pseudospiralis						
Trichinella_nativa						
Trichinella_zimbabwensis						
Trichinella_nelsoni						
Trichuris_suis						
Trichuris_trichiura						
Trichuris_muris			ACTCTAGAGG			
Tylolaimophorus_minor						
Paratrichodorus_pachydermus						
Paratrichodorus_anemones						
Trichodorus_primitivus						
Axonolaimus_helgolandicus						
Ascolaimus_elongatus						
Odontophora_rectangula						
Cylindrolaimus_sp202149						
Tylocephalus_auriculatus						
Plectus_acuminatus_BS9						
Plectus_aquatilis						
Anaplectus_sp						
Anisakis_sp_WKT						
Anisakis_sp_Nadler						GGTTATA
NUCLEOTIDES INCLUDED						

Contracaecum_multipapillatum					GGTTATA
Pseudoterranova_decipiens					
Raphidascaris_acus Terranova_caballeroi					
Ascaris_suum					
Ascaris_lumbricoides					
Baylisascaris_procyonis					
Baylisascaris_transfuga Parascaris_equorum					
Porrocaecum_depressum					
Toxascaris_leonina	 				GGTTATA
Heterocheilus_tunicatus					
Goezia_pelagia					
Hysterothylacium_fortalezae Hysterothylacium_pelagicum					
Hysterothylacium_reliquens					
Iheringascaris_inquies					
Toxocara_canis					
Nemhelix_bakeri Raillietnema_spV3060					
Cruzia_americana					
Heterakis_sp_14690					
Heterakis_gallinarum					
Paraspidodera_sp_21303					
Chromodora_nudicapitata Chromadora_spBHMM_2005					
Atrochromadora_microlaima					
Chromadorina_germanica	 				
Chromadorita_tentabundum					
Dichromadora_spBHMM_2005					
Neochromadora_BHMM_2005 Spilophorella_paradoxa					
Paracanthonchus_caecus			CGGT		
Paracyatholaimus_intermedius					
Praeacanthonchus_punctatus					
Praeacanthonchus_sp					
Cyatholaimus_spBHMM_2005 Spirinia_parasitifera					
Acanthopharynx_micans	 GA	ATTCGGCTTG	ACAACCTGGT	TGATCCTGCC	AGTGGTCATA
Xyzzors_sp			ACAACCTGGT		
Metachromadora_sp					
Metachromadora_remanei Catanema_sp			ACAACCTGGT		
Eubostrichus_dianae			ACAACCIGGI		
Eubostrichus_topiarus			ACAACCTGGT		
Eubostrichus_parasitiferus			CCAACCTGGT		
Laxus_oneistus			ACAACCTGGT		
Laxus_cosmopolitus Leptonemella sp			ACAACCTGGT CAACCTGGGT		
Robbea_hypermnestra			-CAACCTGGT		
Stilbonema_majum			ACAACCTGGT		
Monoposthia_costata					
Nudora_bipapillata					
Calomicrolaimus_parahonestus Calomicrolaimus_spBHMM_2005					
Molgolaimus_demani	 				
Diplogaster_lethieri					
Aduncospiculum_halicti					
Pristionchus_lheritieri Pristionchus_pacificus					
Pristionchus_pacificus					
Sabatieria_punctata_STRAIN_343					
Sabatieria_sp355_BHMM_2005					
Sabatieria_celtica					
Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_223					
Sabatieria_sp210_BHM_2005					
Setosabatieria_hilarula					
Desmolaimus_zeelandicus					
Terschellingia_longicaudata Cyartonema_elegans					
Cyartonema_elegans Tridentulus_sp					
Diplolaimelloides_meyli					
Diplolaimella_diavengatensis					
Geomonhystera_disjuncta					
Sphaerolaimus_hirsutus Theristus_acer					
Daptonema_procerus					GGTCATA
NUCLEOTIDES INCLUDED					

Daptonema_hirsutum Daptonema_normandicum Daptonema_oxycerca Daptonema_setosum Desmodora_communis Desmodora_ovigera
Daptonema_normandicum Daptonema_oxycerca Daptonema_setosum Desmodora_communis
Daptonema_oxycerca Daptonema_setosum Desmodora_communis
Daptonema_setosum Desmodora_communis
Desmodora_communis
Desmodora ovigera
Metadesmolaimus_sp
Dentostomella_sp
Bunonema_franzi
Bunonema_sp
Seleborca_complexa
Acrobeloides_nanus
Acrobeloides_bodenheimeri
Acrobeloides_sp_PS1146
Acrobeles_ciliatus
Acrobeles_sp_PS1156
Acrobeles_complexus_WCUG2
Cephaloboides_sp_SB227
Cephalobus_cubaensis
Cephalobus_spPS1143
Cephalobus_spPS1196
Cephalobus_oryzae_PS1165
Cervidellus_alutus
Pseudacrobeles_variabilis
Triligulla_aluta
Zeldia_punctada
Myolaimus_sp_U81585
Rhabditophanes_spKR3021
Brevibucca_spSB261
Halicephalobus_gingivalis
Panagrobelus_stammeri
Plectonchus_spPDL0025
Turbatrix_aceti
Panagrellus_redivivus
Panagrellus_redivivus_PS1163
Panagrolaimus_subelongatus
Panagrolaimus_davidi
Panagrolaimus_cf_rigidus_AF40
Panagrolaimus sp. Sourhope ED2
Panagrolaimus sp. Sourhope ED2
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_bacteriophora
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_bacteriophora Heterorhabditis_hepialus
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_hepialus Heterorhabditis_hepialus
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_bacteriophora Heterorhabditis_hepialus
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_hepialus Heterorhabditis_hepialus
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_bacteriophora Heterorhabditis_hepialus Heterorhabditis_zelandica Parasitorhabditis_sp_SB281 Rhabditoides_inermiformis
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_bacteriophora Heterorhabditis_tepialus Heterorhabditis_zelandica Parasitorhabditis_sp_SB281 Rhabditoides_inermis_DF5001
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_hepialus Heterorhabditis_hepialus Heterorhabditis_sp_SB281 Rhabditoides_inermis_DF5001 Rhabditoides_regina_DF5012
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_bacteriophora Heterorhabditis_hepialus Heterorhabditis_relandica Parasitorhabditis_sp_SB281 Rhabditoides_inermiformis Rhabditoides_inermiforD12 Poikilolaimus_oxycerca_SB200
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_hepialus Heterorhabditis_hepialus Parasitorhabditis_sp_SB281 Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_regina_DF5012 Poikilolaimus_regenfussi_SB199
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_bacteriophora Heterorhabditis_bacteriophora Heterorhabditis_sp_SB281 Rhabditoides_inermis_DF5001 Rhabditoides_regina_DF5001 Rhabditoides_regina_DF5001 Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_hepialus Heterorhabditis_hepialus Parasitorhabditis_sp_SB281 Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_regina_DF5012 Poikilolaimus_regenfussi_SB199
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_hepialus Heterorhabditis_telandica Parasitorhabditis_sp_SB281 Rhabditoides_inermis_DF5001 Rhabditoides_inermis_DF5001 Rhabditoides_regina_DF5012 Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_hepialus Heterorhabditis_hepialus Heterorhabditis_sp_SB281 Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_regina_DF5012 Poikilolaimus_oxycerca_SB200 Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604 Distolabrellus veechi DF5024 Choriorhabditis_dudichi
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_hepialus Heterorhabditis_hepialus Heterorhabditis_sp_SB281 Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_regina_DF5012 Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604 Distolabrellus veechi DWF1604 Distolabrellus veechi DF5024 Choriorhabditis_sp
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_hepialus Heterorhabditis_hepialus Heterorhabditis_zelandica Parasitorhabditis_sp_SB281 Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_regina_DF5001 Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604 Distolabrellus veechi DF5024 Choriorhabditis_sp_PF2055
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_hepialus Heterorhabditis_hepialus Heterorhabditis_sp_SB281 Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_regina_DF5001 Rhabditoides_regina_DF5012 Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604 Distolabrellus veechi DWF1604 Distolabrellus veechi DWF1604 Distolabrellus veechi DWF1604 Distorhabditis_sp_DF5055 Cruznema_tripartitum_DF5015
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_bacteriophora Heterorhabditis_tepialus Heterorhabditis_relandica Parasitorhabditis_sp_SB281 Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_regina_DF5012 Poikilolaimus_oxycerca_SB200 Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604 Distolabrellus veechi DF5024 Choriorhabditis_sp_DF5055 Cruznema_tripartitum_DF5015 Mesorhabditis_sp_PS1179
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_hepialus Heterorhabditis_hepialus Heterorhabditis_sp_SB281 Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_regina_DF5012 Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604 Distolabrellus veechi DF5024 Choriorhabditis_sp_DF5055 Cruznema_tripartitum_DF5015 Mesorhabditis_sp_N179 Mesorhabditis_spiculigera_SB15
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_hepialus Heterorhabditis_hepialus Parasitorhabditis_sp_SB281 Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_regina_DF5012 Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604 Distolabrellus veechi DWF1604 Distolabrellus veechi DWF1604 Distolabrellus veechi DF5024 Choriorhabditis_sp_DF5055 Cruznema_tripartitum_DF5015 Mesorhabditis_spiculigera_SB15 Mesorhabditis_anisomorpha_SE12
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_hepialus Heterorhabditis_hepialus Heterorhabditis_sp_SB281 Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_regina_DF5012 Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604 Distolabrellus veechi DF5024 Choriorhabditis_sp_DF5055 Cruznema_tripartitum_DF5015 Mesorhabditis_sp_N179 Mesorhabditis_spiculigera_SB15
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_hepialus Heterorhabditis_hepialus Parasitorhabditis_sp_SB281 Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_regina_DF5012 Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604 Distolabrellus veechi DWF1604 Distolabrellus veechi DWF1604 Distolabrellus veechi DF5024 Choriorhabditis_sp_DF5055 Cruznema_tripartitum_DF5015 Mesorhabditis_spiculigera_SB15 Mesorhabditis_anisomorpha_SE12
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_startoi Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_hepialus Heterorhabditis_taplanus Heterorhabditis_sp_SB281 Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_regina_DF5012 Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604 Distolabrellus veechi DWF1604 Choriorhabditis_sp_PS179 Protorhabditis_sp_DF5055 Cruznema_tripartitum_DF5015 Mesorhabditis_spiculigera_SB15 Mesorhabditis_aplanurum_DF501 Teratorhabditis_galmarum_DF501
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_hepialus Heterorhabditis_hepialus Heterorhabditis_sp_SB281 Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_regina_DF5012 Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604 Distolabrellus veechi DWF1604 Distolabrellus veechi DF5024 Choriorhabditis_sp_DF5055 Cruznema_tripartitum_DF5015 Mesorhabditis_spiculigera_SB15 Mesorhabditis_anisomorpha_SB12 Teratorhabditis_palmarum_DF501
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_hepialus Heterorhabditis_sp_SB281 Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_regina_DF5012 Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604 Distolabrellus veechi DWF1604 Distolabrellus veechi DWF1604 Distolabrellus veechi DWF1604 Distolabrellus sp_PS1179 Mesorhabditis_sp_DF5055 Cruznema_tripartitum_DF5015 Mesorhabditis_anisomorpha_SB12 Teratorhabditis_palmarum_DF501 Teratorhabditis_synpapillata_S Caenorhabditis_briggsae_PB102 Caenorhabditis_elegans_N2
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_hepialus Heterorhabditis_hepialus Parasitorhabditis_sp_SB281 Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_inermis_DF5001 Rhabditoides_regina_DF5012 Poikilolaimus_oxycerca_SB200 Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604 Distolabrellus veechi DWF1604 Distolabrellus veechi DF5024 Choriorhabditis_sp_DF5055 Cruznema_tripartitum_DF5015 Mesorhabditis_spiculigera_SB15 Mesorhabditis_anisomorpha_SB12 Teratorhabditis_palmarum_DF501 Teratorhabditis_synpapillata_S Caenorhabditis_sp_CB5161
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_hepialus Heterorhabditis_hepialus Heterorhabditis_sp_SB281 Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_regina_DF5001 Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604 Distolabrellus veechi DWF1604 Choriorhabditis_sp_DF5055 Cruznema_tripartitum_DF5015 Mesorhabditis_spillata_SB12 Mesorhabditis_sp_Df179 Mesorhabditis_sp_Df179 Mesorhabditis_sp_Df179 Mesorhabditis_sp_Df179 Mesorhabditis_sp_Df179 Mesorhabditis_sp_Df179 Mesorhabditis_sp_Df179 Mesorhabditis_sp_Df179 Mesorhabditis_sp_Df179 Mesorhabditis_sp_Df179 Mesorhabditis_sp_Df179 Mesorhabditis_sp_Df179 Mesorhabditis_sp_Df179 Mesorhabditis_sp_Df179 Mesorhabditis_sp_Df179 Mesorhabditis_sp_Df179 Mesorhabditis_sp_Df179 Mesorhabditis_sp_Df179 Caenorhabditis_Sp_Df179
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_hepialus Heterorhabditis_hepialus Heterorhabditis_sp_SB281 Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_regina_DF5012 Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604 Distolabrellus veechi DF5024 Choriorhabditis_sp_DF5055 Cruznema_tripartitum_DF5015 Mesorhabditis_spiculigera_SB15 Mesorhabditis_palmarum_DF501 Teratorhabditis_palmarum_DF501 Teratorhabditis_sp_PS1172 Caenorhabditis_sp_D51055 Caenorhabditis_sp_D51055 Caenorhabditis_sp_D51010 Caenorhabditis_sp_D51010
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_hepialus Heterorhabditis_tepialus Heterorhabditis_sp_SB281 Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_inermis_DF5001 Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604 Distolabrellus veechi DWF1604 Distolabrellus veechi DF5024 Choriorhabditis_sp_DF5055 Cruznema_tripartitum_DF5015 Mesorhabditis_spiculigera_SB15 Mesorhabditis_spiculigera_SB15 Mesorhabditis_briggsae_PB102 Caenorhabditis_sp_CB5161 Caenorhabditis_sp_DF5170
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_hepialus Heterorhabditis_telandica Parasitorhabditis_sp_SB281 Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_regina_DF5012 Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604 Distolabrellus veechi DWF1604 Distolabrellus veechi DF5024 Choriorhabditis_sp_DF5055 Cruznema_tripartitum_DF5015 Mesorhabditis_spiculigera_SB15 Mesorhabditis_palmarum_DF501 Teratorhabditis_palmarum_DF501 Teratorhabditis_sp_DS161 Caenorhabditis_sp_DS161 Caenorhabditis_sp_DS161 Caenorhabditis_sp_DS161 Caenorhabditis_sp_DS161 Caenorhabditis_sp_DS170 Caenorhabditis_sp_DS170
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_hepialus Heterorhabditis_tapialus Heterorhabditis_sp_SB281 Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_regina_DF5001 Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604 Distolabrellus veechi DWF1604 Distolabrellus veechi DWF1604 Choriorhabditis_sp_DF5055 Cruznema_tripartitum_DF5015 Mesorhabditis_spiculigera_SB15 Mesorhabditis_spiculigera_SB15 Mesorhabditis_spiculigera Scaenorhabditis_briggsae_PB102 Caenorhabditis_sp_DF5161 Caenorhabditis_sp_DF5170 Caenorhabditis_sp_DF5170 Caenorhabditis_sp_DF5170 Caenorhabditis_sp_S8341 Caenorhabditis_plicata
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_hepialus Heterorhabditis_telandica Parasitorhabditis_sp_SB281 Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_regina_DF5012 Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604 Distolabrellus veechi DWF1604 Distolabrellus veechi DF5024 Choriorhabditis_sp_DF5055 Cruznema_tripartitum_DF5015 Mesorhabditis_spiculigera_SB15 Mesorhabditis_palmarum_DF501 Teratorhabditis_palmarum_DF501 Teratorhabditis_sp_DS161 Caenorhabditis_sp_DS161 Caenorhabditis_sp_DS161 Caenorhabditis_sp_DS161 Caenorhabditis_sp_DS161 Caenorhabditis_sp_DS170 Caenorhabditis_sp_DS170
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_statti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_hepialus Heterorhabditis_taplatus Heterorhabditis_sp_SB281 Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_inermis_DF5001 Poikilolaimus_oxycerca_SB200 Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604 Distolabrellus veechi DWF1604 Choriorhabditis_sp_DF5055 Cruznema_tripartitum_DF5015 Mesorhabditis_spiculigera_SB15 Mesorhabditis_spiculigera_SB15 Mesorhabditis_spiculigera_SB15 Mesorhabditis_briggsae_PB102 Caenorhabditis_sp_DF5170 Caenorhabditis_sp_DF5170 Caenorhabditis_sp_DF5170 Caenorhabditis_sp_DF5170 Caenorhabditis_sp_DF5170 Caenorhabditis_sp_DF5170 Caenorhabditis_sp_DF5170 Caenorhabditis_plicata Caenorhabditis_plicata
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_hepialus Heterorhabditis_tapialus Heterorhabditis_sp_SB281 Rhabditoides_inermiformis Rhabditoides_inermiformis Rhabditoides_regina_DF5001 Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604 Distolabrellus veechi DWF1604 Distolabrellus veechi DWF1604 Choriorhabditis_sp_DF5055 Cruznema_tripartitum_DF5015 Mesorhabditis_spiculigera_SB15 Mesorhabditis_spiculigera_SB15 Mesorhabditis_spiculigera Scaenorhabditis_briggsae_PB102 Caenorhabditis_sp_DF5161 Caenorhabditis_sp_DF5170 Caenorhabditis_sp_DF5170 Caenorhabditis_sp_DF5170 Caenorhabditis_sp_S8341 Caenorhabditis_plicata

	10) 50)
			ACAACCTGGT	TGATCCTGCC	AGTGGTCATA
		 			T
		 	CTGA	TTGATTCTGT	CAGCGATGTA
_		 			T
2		 			
2 2		 			
2		 			
2		 			
2		 			
		 	ACCTGGT	TGATCCTGCC	AGTAGTCATA
		 			CGGTATA
		 			CGCTATA
		 			CGCTATA
		 			GACGATA
		 			GATCATA
		 			GGTGATA
~					
9					
5		 			
2		 			
1		 			
S			GCTACCTGAT		
			ATACCTGA		
		 			CGCTATA

Caenorhabditis_drosophilae	1	0 20			
Phasmarhabditis_hermaphrodita					
Phasmarhabditis_neopapillosa					
Phasmarhabditis_neopapillosa Pellioditis mediterranea SB173					
Pellioditis marina					
Prodontorhabditis_wirthi					-
Crustorhabditis_scanica					
Dolichorhabditis_sp_CEW1 Oscheius_sp_DF5000					
Oscheius_sp_BW282					
Oscheius_myriophila_EM435					
Oscheius_insectivora Oscheius_dolichuroides					
Rhabditis_blumi_DF5010					
Rhabditis_sp_PS1191					
Rhabditis_sp_PS1010					
Rhabditis_myriophila_EM435 Rhabditis_colombiana					
Rhabditella_axei_DF5006					
Rhabditella_sp_DF5044					
Cuticularia_sp_PS2083 Necator_americanus					
Kalicephalus_cristatus					
Ancylostoma_caninum					
Angiostrongylus_cantonensis					
Angiostrongylus_costaricensis Angiostrongylus_malaysiensis					
Angiostrongylus_dujardini					
Angiostrongylus_vasorum					
Aulurostrongylus_abstrusus Didelphostrongylus_hayesi					
Crenosoma_mephitidis					
Crenosoma_vulpis					
Otostrongylus_circumlitus Troglostrongylus_wilsoni					
Filaroides_martis					
Oslerus_osleri					
Parafilaroides_decorus					
Metastrongylus_salmi Metastrongylus_elongatus					
Skrjabingylus_chitwoodrum			 		TATA
Parelaphostrongylus_odocoilei					
Muelerius_capillaris Protostrongylus_rufescens					
Halocercus_invaginatus					
Pseudalius_inflexus					
Stenurus_minor Torynurus_convolutus					
Syngamus_trachea					
Stephanurus_dentatus			 		CGCTATA
Nematodirus_battus					
Strongylus_equinus Labiostrongylus_bipapillosus					
Petrovinema_poculatum					
Cylicocyclus_insignis					
Chabartia_ovina Cyclodontostomum_purvisi					
Zoniolaimus_mawsonae					
Hypodontus_macropi					
Deletrocephalus_dimidiatus Dictyocaulus_eckerti_P7B8					
Dictyocaulus capreolus P3B2					
Dictyocaulus_spP6A1					
Dictyocaulus_filaria					
Dictyocaulus_capreolus_P2C10 Dictyocaulus_viviparus					
Haemonchus_spV3091			 		
Haemonchus_contortus					
Haemonchus_placei Haemonchus_similis					
Ostertagia_ostertagi					
Ostertagia_leptospicularis			 		CGCTATA
Nippostrongylus_brasileinsis					
Heligmosomoides_polygyrus Trichostrongylus_colubriformis					
Tetrabothriostrongylus mackerr					
Herpestrongylus_pythonis					
NUCLEOTIDES INCLUDED			 		

1 1		1 1	1 1	
 			.	
10	20	20	10	F 0

Nicollina_cameroni
Filarimena_flagrifer
Amidostomum_cygni Teratocephalus_lirellus
Brumptaemilius_justini
Anguillicola_crassus
Dracunculus_medinensis Dracunculus_oesophageus
Dracunculus_spV3104
Philonema_sp_A
Philometra_obturans
Camallanus_oxycepahalus Acanthocheilonema_viteae
Loa_loa
Onchocerca_cervicalis
Dirofilaria_immitis
Brugia_malayi Wuchereria_bancrofti
Litomosoides_sigmodontis
Setaria_digitata
Gnathostoma_turgidum Gnathostoma_neoprocyonis
Gnathostoma_heoprocyonis Gnathostoma_binucleatum
Physaloptera_alata
Physaloptera_turgida
Ascarophis_arctica Spinitectus_carolini
Thelazia_lacrymalis
Aphelenchus_avenae
Aphelenchoides_fragariae
Bursaphelelenchus_sp Deladenus sp
Criconema_sp
Hemicycliophora_conida
Paratylenchus_dianthus Pratylenchus_thornei
Tylenchulus_semipentrans
Ditylenchus_angustus
Subanguina_radicola
Tylenchorhynchus_maximus Geocenamus_quadrifer
Globodera_pallida
Scutellonema_bradys
Helicotylenhcus_dihystera Rotylenchus_robustus
Meloidogyne_arenaria
Meloidogyne_incognita_KT
Meloidogyne_javanica
Meloidogyne_artiellia Meloidogyne_duytsi
Meloidogyne_exigua
Meloidogyne_hapla
Meloidogyne_ichinohei Meloidogyne_maritima
Meloidogyne_microtyla
Nacobbus_aberrans
Pratylenchoides_ritteri
Pratylenchoides_magnicauda Hirschmanniella_spJH_2003
Radopholus_similis
Pratylenchus_goodeyi_VF
Boleodorus_thylactus_clone2
Philippine Sequence 1 Philippine Sequence 2
Philippine Sequence 3
Philippine Sequence 4
Philippine Sequence 5
Philippine Sequence 6 Philippine Sequence 7
Tahiti Sequence 1
Tahiti Sequence 2
Thailand Sequence 1 Ogasawara Sequence 1
Ogasawara Sequence 1 Ogasawara Sequence 2
Ivory Coast Sequence 1
Ivory Coast Sequence 2 Ivory Coast Sequence 3
Ivory Coast Sequence 3 Ivory Coast Sequence 4
NUCLEOTIDES INCLUDED

) 30) 40) 50	,
				CGCTAT
 				CGCTAI
 				CGCTAI
 		TCTCCGAT	TGATTCTGTC	GGCGATTA
 		TCTCCGAT	TGATTCTGTC	GGCGATTA
 		TCTCCGAT		
		 -ATATCTGGT		
		-ATATCTGGT	TGATCCTGCC	TGAACTGA
		-ATATCTGGT	TGATCCTGCC	TGAACTGA
 		-ATATCTGGT 	TGATCCTGCC	TGAACTGA
 		-ATATCTGGT 	TGATCCTGCC	TGAACTGA
 		-ATATCTGGT	TGATCCTGCC	TGAACTGA
 		-ATATCTGGT	TGATCCTGCC	TGAACTGA
		-ATATCTGGT	TGATCCTGCC	TGAACTGA
		-ATATCTGGT	TGATCCTGCC	TGAACTGA
		-ATATCTGGT	TGATCCTGCC	TGAACTGA
		-ATATCTGGT	TGATCCTGCC	TGAACTGA
		-ATATCTGGT	TGATCCTGCC	TGAACTGA
		-ATATCTGGT	TGATCCTGCC	TGAACTGA
		-ATATCTGGT	TGATCCTGCC	TGAACTGA
		-ATATCTGGT	TGATCCTGCC	TGAACTGA
		-ATATCTGGT	TGATCCTGCC	TGAACTGA
		-ATATCTGGT	TGATCCTGCC	TGAACTGA
		-ATATCTGGT	TGATCCTGCC	TGAACTGA
		-ATATCTGGT	TGATCCTGCC	TGAACTGA
		-ATATCTGGT	TGATCCTGCC	TGAACTGA
		-ATATCTGGT	TGATCCTGCC	TGAACTGA
		-ATATCTGGT	TGATCCTGCC	TGAACTGA
		-ATATCTGGT	TGATCCTGCC	TGAACTGA
		-ATATCTGGT	TGATCCTGCC	TGAACTGA
		-ATATCTGGT	TGATCCTGCC	
		-ATATCTGGT	TGATCCTGCC	TGAACTGA
		-ATATCTGGT	TGATCCTGCC	TGAACTGA
		-ATATCTGGT	TGATCCTGCC	

Ivory Coast Sequence 5 Ivory Coast Sequence 6 Ivory Coast Sequence 7 Singapore Sequence 2 Singapore Sequence 3 Singapore Sequence 4 Nigerian Sequence 1 Nigerian Sequence 3 NUCLEOTIDES INCLUDED

Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macro Aporcelaimellus_obtus Wilsonema_schuurmanss Mesodorylaimus_sp_cf_ Mesodorylaimus_bastia Mesodorylaimus_japoni Pungentus_sp._PDL_200 Allodorylaimus_sp Eudorylaimus_carteri Microdorylaimus_sp Longidorus_elongatus Xiphinema_rivesi Tylencholaimus_sp Anoplostoma_sp._BHMM_ Adoncholaimus_fuscus Enoplus_meridionalis Enoplus_brevis_U88336 Enoplus_communis Enoploides_brunettii Syringolaimus_striato Ironus_dentifurcatus Calyptronema_maxweber Viscosia_sp._BHMM_200 Viscosia_viscosa Pontonema_vulgare Oncholaimus_sp._BHMM_ Alaimus_sp_PDL_2005 Prismatolaimus_interm Tobrilus_gracilis Tripyla_cf_filicaudat Bathylaimus_sp Bathylaimus_assimilis Bathylaimus_sp._BHMM_ Tripyloides_sp._BHMM_ Trischistoma_monohyst Mermis_nigrescens Mylonchulus_arenicolu Anatonchus_tridentacu Mononchus_truncatus Prionchulus_muscorum Clarkus_sp Trichinella_spiralis Trichinella_papuae Trichinella_britovi Trichinella_murrelli Trichinella_pseudospi Trichinella_nativa Trichinella_zimbabwen Trichinella_nelsoni Trichuris_suis Trichuris_trichiura Trichuris_muris Tylolaimophorus_minor Paratrichodorus_pachy Paratrichodorus_anemo Trichodorus_primitivu Axonolaimus_helgoland Ascolaimus_elongatus NUCLEOTIDES INCLUDED

	1 1		1 1	1 1	1 1	1 1
	 7(
	GTCTC	AAAGATTAAG	CCATGCATGT	ATAA-GTA	T-AAAC-TA-	ACTTA-AA
		AAAGATTAAG				
s		AAAGATTAAG				
-1		AAAGATTAAG				
olaimus sicaudatus		AAAGATTAAG GAT-AAG				
stekhoveni		AAAGATTAAG				
_nigritul		GATTAAG				
ani		AAAGATTAAG				
icus	CTC	AAAGATTAAG	CCATGCATGT	CTAA-GCA	C-ATGC-CA-	TTTTA-TG
05		AAAGATTAAG				
		AAAGATTAAG				
		AAAGATTAAG AAAGATTAAG				
		AAAGATTAAG				
		TAAG				
		AAAGATTAAG				
_2005		AAAGATTAAG				
	TGTCTC	AAAGATTAAG	CCATGCATGT	CTAG-GCA	T-AAAT-GA-	ATCAA-TT
		AAAGATTAAG				
6		AAAGATTAAG				
		AAAGATTAAG AAAGATTAAG				
ocaudatus		AAAGATTAAG				
ocudacus		AAAGATTAAG				
ri		AAAGATTAAG				
05	TGTCTC	AAAGATTAAG	CCATGCATGT	CTCA-GCA	T-AAAT-AA-	ATTCCATT
		AAAGATTAAG				
		AAAGACTAAG				
_2005		AAAGATTAAG AAAGATTAAG				
medius		AAAGATTAAG				
mearub		AAAGATTAAG				
ta_JH_2004		AAAGATTAAG				
	TCTC	AAAGATTAAG	CCATGCAAGT	CTTA-GCA	C-AAGC-CG-	TTAGTATG
s		AAAGATTAAG				
_2005		AAAGATTAAG				
_2005 tera		AAAGATTAAG AAAGATTAAG				
Cera		AAAGATTAAG				
us		AAAGATTAAG				
us		AAAGATTAAG				
	TCTC	AAAGATTAAG	CCATGCATGT	CTAA-GCA	C-ATGC-C	TTAAAATG
		AAAGATTAAG				
		AAAGATTAAG				
		AAAGATTAAG AAAGATTAAG				
		AAAGATTAAG				
		AAAGATTAAG				
iralis	TGCTTGTCTC	AAAGATTAAG	CCATGCATGT	GTAA-GCA	C-ACAC-TGT	T-TTAAAA
	TGCTTGTCTC	AAAGATTAAG	CCATGCATGT	GTAA-GCA	C-ACAC-TGT	T-TTAAAA
nsis		AAAGATTAAG				
		AAAGATTAAG				
		AAAGACTAAG AAAGATTAAG				
		AAAGATTAAG				
r		AAAGATTAAG				
ydermus		AAAGATTAAG				
ones		AAAGATTAAG				
us						
dicus		AAAGATTAAG				
		AAAGATTAAG				

	.	1 1	1 1	1 1	1 1	
	70	80	90	100) 110	120
Odontophora_rectangula Cylindrolaimus sp. 202149						
Tylocephalus_auriculatus	TGGCTGTCTC A					
Plectus_acuminatus_BS9					AAGC-CG-	TTTAA-TG
Plectus_aquatilis	TGCTTGTCTC A					
Anaplectus_sp Anisakis_sp_WKT	CTC A					
Anisakis_sp_Nadler	TGCTTATCTC G					
Contracaecum_multipapillatum	TGCTTATCTC A					
Pseudoterranova_decipiens Raphidascaris_acus	TGCTTATCTC A TGCTTATCTC A					
Terranova_caballeroi	TGCTTATCTC A					
Ascaris_suum	TGCTTATCTC A					
Ascaris_lumbricoides Baylisascaris_procyonis	TGCTTATCTC A TGCTTATCTC A					
Baylisascaris_transfuga	TGCTTATCTC A					
Parascaris_equorum	TGCTTATCTC A					
Porrocaecum_depressum Toxascaris_leonina	TGCTTATCTC A TGCTTATCTC A					
Heterocheilus_tunicatus	TGCTTATCTC A					
Goezia_pelagia	TGCTTATCTC A					
Hysterothylacium_fortalezae Hysterothylacium pelagicum	TGCTTATCTC A TGCTTATCTC A					
Hysterothylacium_reliquens	TGCTTATCTC A					
Iheringascaris_inquies	TGCTTATCTG A					
Toxocara_canis Nemhelix_bakeri	TGCTTATCTC A					
Raillietnema_spV3060	TGCTTGTCTC A					
Cruzia_americana	TGCTTGTCTC A	AAGGCTAAG	CCATGCATGT	CTAA-GTTCA	AATAAC-CT-	ATAATG
Heterakis_sp_14690	TGCTTGTCTC A					
Heterakis_gallinarum Paraspidodera_sp_21303	TGCTTGTCTC A TGCT-GTCTC A					
Chromodora_nudicapitata	TGTCTC A					
Chromadora_spBHMM_2005	TGTCTC A					
Atrochromadora_microlaima Chromadorina_germanica	TGTCTC A					
Chromadorita_tentabundum	TGTCTC A					
Dichromadora_spBHMM_2005	TGTCTC A					
Neochromadora_BHMM_2005 Spilophorella_paradoxa	TGTCTC A					
Paracanthonchus_caecus	TGCTTGTCTC A					
Paracyatholaimus_intermedius	TGCCTGTCTC A					
Praeacanthonchus_punctatus Praeacanthonchus_sp	TGTCTC A					
Cyatholaimus_spBHMM_2005	TGTCTC A					
Spirinia_parasitifera	TGTCTC A					
Acanthopharynx_micans Xyzzors sp	TGCTTGTCTC A TGCTTGTCTC A					
Metachromadora_sp	CTGTCTC A					
Metachromadora_remanei	TGTCTC A					
Catanema_sp Eubostrichus_dianae	TGCTTGTCTC A TGCTTGTCTC A					
Eubostrichus_topiarus	TGCTTGTCTC A					
Eubostrichus_parasitiferus	TGCTTGTCTC A					
Laxus_oneistus Laxus_cosmopolitus	TGCTTGTCTC A TGCTTGTCTC A					
Leptonemella_sp	TGCTTGTCTC A					
Robbea_hypermnestra	TGCTTGTCTC A					
Stilbonema_majum Monoposthia_costata	TGCTTGTCTC A					
Nudora_bipapillata	TGTCTC A					
Calomicrolaimus_parahonestus	TGTCTC A					
Calomicrolaimus_spBHMM_2005 Molgolaimus_demani	TGTCTC A TGTCTC A					
Diplogaster_lethieri	TGCTTGTCTC A					
Aduncospiculum_halicti						
Pristionchus_lheritieri Pristionchus pacificus	TGCTTGTCTC A					
Pristionchus_pacificus Pristionchus_pacificus	A A					
Sabatieria_punctata_STRAIN_343	TGTCTC A	AAGATTAAG	CCATGCATGT	TTAA-GCA	G-AAGC-CG-	CACAA-TG
Sabatieria_sp355_BHMM_2005 Sabatieria_celtica	TGTCTC A					
Sabatieria_celtica Sabatieria_punctata_STRAIN_200	TGTCTC A					
Sabatieria_punctata_STRAIN_223	TGTCTC A	AAGATTAAG	CCATGCATGT	CTAA-GCA	G-AAGC-CG-	AACAA-TG
Sabatieria_sp210_BHM_2005	TGTCTC A					
Setosabatieria_hilarula Desmolaimus_zeelandicus	TGTCTC A					
Terschellingia_longicaudata	TGTCTC A					
NUCLEOTIDES INCLUDED						

Cyartonema_elegans	7 TGTCTC				0 110 C-AAGC-TG-	
Tridentulus_sp					T-A-GC-TG-	
Diplolaimelloides_meyli					T-GCGC-TG-	
Diplolaimella_diavengatensis					T-GCGT-TG-	
Geomonhystera_disjuncta Sphaerolaimus_hirsutus					T-GAGC-TA- C-AAGC-TG-	
Theristus_acer					T-GAAC-TA-	
Daptonema_procerus					T-AAAC-GA-	
Daptonema_hirsutum					T-AAAC-GA-	
Daptonema_normandicum Daptonema_oxycerca					T-AAAC-TG- T-AAAC-GA-	
Daptonema_setosum					T-AAAC-GA-	
Desmodora_communis					T-GAGC-CG-	
Desmodora_ovigera					T-GAGC-CG-	
Metadesmolaimus_sp Dentostomella sp					T-AAAC-GA- T-AAAT-AC-	
Bunonema_franzi					C-TTGC-CC-	
Bunonema_sp						
Seleborca_complexa					T-AAAC-GA-	
Acrobeloides_nanus Acrobeloides_bodenheimeri					T-AAAC-GA- AAAC-GG-	
Acrobeloides_podemiermerr Acrobeloides_sp_PS1146					T-AAAC-GA-	
Acrobeles_ciliatus					AAAC-GA-	TTTAA-TC
Acrobeles_sp_PS1156					AAAC-GA-	
Acrobeles_complexus_WCUG2 Cephaloboides_sp_SB227					AAAC-GA- C-AAAT-TT-	
Cephalobus_cubaensis					AAAC-GA-	
Cephalobus_spPS1143					AAAC-GA-	
Cephalobus_spPS1196					AAAC-GA-	
Cephalobus_oryzae_PS1165 Cervidellus_alutus					T-AAAC-GA- AAAC-GA-	
Pseudacrobeles_variabilis					AAAC-GA-	
Triligulla_aluta					T-AAAC-GA-	
Zeldia_punctada					GA-	
Myolaimus_sp_U81585 Rhabditophanes_spKR3021					C-AAAC-CA-	
Brevibucca_spSB261					C-AGAC-TA-	
Halicephalobus_gingivalis					ACA-TG-	
Panagrobelus_stammeri					CA-TG-	
Plectonchus_spPDL0025 Turbatrix_aceti					CA-TG- CTT-GC-	
Panagrellus_redivivus					CATG-TA-	
Panagrellus_redivivus_PS1163					CATG-TA-	
Panagrolaimus_subelongatus					CATG-TG- CATG-TG-	
Panagrolaimus_davidi Panagrolaimus_cf_rigidus_AF40					CATG-TG-	
Panagrolaimus sp. Sourhope ED2					CATG-TG-	
Panagrolaimus sp. Sourhope ED2						
Panagrolaimus sp. Sourhope ED2						
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2					TG-	
Steinernema_carpocapsae					TAAAC-	
Strongyloides_stercoralis					TAAA-CA-	
Strongyloides_ratti Diploscapter_sp_PS1897					CAAT-GT- C-AACT-CG-	
Diploscapter_sp_PS1097 Diploscapter_sp_PS2017					C-AACI-CG-	
Heterorhabditis_bacteriophora		AAAGATTAAG	CCATGCATGT	ACTGTT	CA-	ACTAA-CG
Heterorhabditis_hepialus						
Heterorhabditis_zelandica Parasitorhabditis_sp_SB281					C-AGCC-AA- C-CTGC-CC-	
Rhabditoides_inermiformis					T-AGCG-TG-	
Rhabditoides_inermis_DF5001	TGCTCAGTTA	GAAGATTAAG	CCATGTACGT	CTAA-GTT	C-ATCT-CT-	CGAA
Rhabditoides_regina_DF5012					C-GACC-AT-	
Poikilolaimus_oxycerca_SB200 Poikilolaimus_regenfussi_SB199					C-ACAT-CT- CACGCT-GA-	
Distolabrellus veechi DWF1604					TTAAC-CAT-	
Distolabrellus veechi DF5024	TGCTTATGTA	TGAGATTAAG	CCATGCATGT	ATAT-GT	TCAAC-CAT-	CTAATG
Choriorhabditis_dudichi					WAGTA-CAT-	
Protorhabditis_sp Protorhabditis_sp_DF5055					TCTCGA- T-CAG-CTT-	
Cruznema_tripartitum_DF5015					T-TCA-ACG-	
Mesorhabditis_sp_PS1179			TAT	CTTA-GTT	C-AGCC-CT-	TTTACG
Mesorhabditis_spiculigera_SB15					C-CCAC-CC-	
Mesorhabditis_anisomorpha_SB12 Teratorhabditis_palmarum_DF501					C-AACC-AAT C-GGTC-ATT	
Teratorhabditis_synpapillata_S					C-GGTC-TC-	
Caenorhabditis_briggsae_PB102		GATTAAG	CCATGCATG-	CTTT-GA	T-TCAT-CA-	A
Caenorhabditis_elegans_N2					T-TCAT-CA-	
NUCLEOTIDES INCLUDED						

Caenorhabditis_sp_CB5161		0 80 GATTAAG				
Caenorhabditis_sp_PS1010		AA-GATTAAG				
Caenorhabditis_japonica		AAAGATTAAG				
Caenorhabditis_sp_DF5170 Caenorhabditis_sp_SB341		AAAGATTAAG AAAGATTAAG				
Caenorhabditis_plicata		AAAGATTAAG				
Caenorhabditis_vulgaris		GATTAAG				
Caenorhabditis_sonorae		AAAGATTAAG				
Caenorhabditis_drosophilae		AAAGATTAAG				
Phasmarhabditis_hermaphrodita Phasmarhabditis_neopapillosa		TGTCTCAAAG TGTCTCAAAG				
Phasmarhabditis_neopapillosa		AAAGATTAAG				
Pellioditis_mediterranea_SB173		AAAGATTAAG				
Pellioditis_marina		AAAGATTAAG				
Prodontorhabditis_wirthi Crustorhabditis scanica		AAAGATTAAG GATTAAG				
Dolichorhabditis_sp_CEW1						
Oscheius_sp_DF5000		AAAGATTAAG				
Oscheius_sp_BW282		AAAGATTAAG				
Oscheius_myriophila_EM435		GATTAAG				
Oscheius_insectivora Oscheius_dolichuroides		AAAGATTAAG AAAGATTAAG				
Rhabditis_blumi_DF5010		GACTAAG				
Rhabditis_sp_PS1191		AAAGATTAAG				
Rhabditis_sp_PS1010						
Rhabditis_myriophila_EM435 Rhabditis colombiana		GATTAAG				
Rhabditis_colombiana Rhabditella_axei_DF5006		GATTAAG				
Rhabditella_sp_DF5044		AAAGATTAAG				
Cuticularia_sp_PS2083						
Necator_americanus		ATTAAG				
Kalicephalus_cristatus Ancylostoma_caninum		AAAGACTAAG AAAGATTAAG				
Angiostrongylus_cantonensis		ATTAAG				
Angiostrongylus_costaricensis			A	GGAGTT	C-AGCT-TC-	AA
Angiostrongylus_malaysiensis						
Angiostrongylus_dujardini Angiostrongylus_vasorum						
Aulurostrongylus_abstrusus		AAAGGTTAAG				
Didelphostrongylus_hayesi		AAGATT-AAG				
Crenosoma_mephitidis		AAGATTGAAG				
Crenosoma_vulpis		AAAGATTACA				
Otostrongylus_circumlitus Troglostrongylus_wilsoni		GATTAAG GATTAAG				
Filaroides_martis		GATTAAG				
Oslerus_osleri		GATTAAG	CCATGCATGT	CGAGTT	C-AACT-TC-	AA
Parafilaroides_decorus		ATTAAG				
Metastrongylus_salmi Metastrongylus_elongatus		TTAAG AAAGATTAAG				
Skrjabingylus_chitwoodrum		AAAGATTAAG				
Parelaphostrongylus_odocoilei		ATTAAG				
Muelerius_capillaris						
Protostrongylus_rufescens		AAAGATTAAG				
Halocercus_invaginatus Pseudalius_inflexus						
Stenurus_minor		ATTAAG	CCATGCATGT	CGAGTT	C-AGCT-TC-	AA
Torynurus_convolutus		ATTAAG				
Syngamus_trachea Stephanurus_dentatus		AAAGATTAAG AAAGATTAAG				
Nematodirus_battus		AAAGATTAAG				
Strongylus_equinus		AAAGATTAAG				
Labiostrongylus_bipapillosus		AAAGATTAAG				
Petrovinema_poculatum Cylicocyclus_insignis		AAAGATTAAG				
Cyllcocyclus_insignis Chabartia_ovina		AAAGATTAAG AAAGATTAAG				
Cyclodontostomum_purvisi		AAAGATTAAG				
Zoniolaimus_mawsonae		AAAGATTAAG				
Hypodontus_macropi		AAAGATTAAG				
Deletrocephalus_dimidiatus Dictyocaulus_eckerti_P7B8		AAAGATTAAG -AAGATTAAG				
Dictyocaulus_capreolus_P3B2		-AAGATTAAG				
Dictyocaulus_spP6A1		-AAGATTAAG				
Dictyocaulus_filaria		-AAGATTAAG				
Dictyocaulus_capreolus_P2C10		-AAGATTAAG				
Dictyocaulus_viviparus Haemonchus_spV3091		-AAGATTAAG				
Haemonchus_contortus		AAAGATTAAG				
Haemonchus_placei	TGCTCAGTTT	AAAGATTAAG	CCATGCATGT	CGAGTT	C-ATCT-TT-	GAA
NUCLEOTIDES INCLUDED						

Bestonchus_simils TO 0 100 110 110 Ottorigia_leptospicularis TOCIDATI ANAGRITANO CATAGONATI CON-GTT-TC -ANAGRITANO CA							
Ostartagia.ostartagi.os	Haemonchus similis		0 0.				
Octorregia_leptoppicularis TOCTCADTT TARACATTAGA CCANCENT COL-OT C C-ATCT-A- AAAATTAGA CCANCENT COL-OT C C-ATCT-A- AAAATTAGA CCANCENT COL-OT C ATCT-A- AAAATTAGA CCANCENT COL-OT C ATCT-C- AAAAATTAGA CCANCENT COL-OT C ATCT-C- ATCT-CANTTA AAAAATTAGA CCANCENT COL-OT C ATCT-C- ATCT-CANTTAGA CANCENT COLACTIC COL-OT C ATCT-C- ATCT-CANTTAGA CANCENT COLACTIC COLACTIC-CANTTAGA CANCENT C AAAATTAGA CCANCENT CANCENT CANCENT CANACTAGA CCANCENT CANCENT CANCENT CANACTAGA CCANCENT CANCENT CANCENT CANACTAGA CCANCENT COLACTIC C ATAATTAGA CANCENT CANCENTAGA CANCENT CANC							
Haligeosombides_polygyrus TOCTCADTT AAAACTTAAD CCATCORTT CA-0T-T- C-NTCT-A- AA Teichostromgylus mythonis TOCTCADTT AAAACTTAAD CCATCORTT CA-0T-T- C-NTCT-T- AA Teichostromgylus mythonis TOCTCADTT AAAACTTAAD CCATCORTT CA-0T-T- C-NTCT-T- AA Alidostomm_cygni TOCTCADTT AAAACTTAAD CCATCORTT CA-0T-T- C-NTCC-T- AA Alidostomm_cygni TOCTCADTT AAAAACTTAAD CCATCORTT CA-AGC-T- C-NTCC-T- - AA Aratococphalus_lifelus TOCTCADTT AAAAACTTAAD CCATCORTT CA-AGC-CA- T-CATAA-AB -CCTAA-AB Arguillicols cressens TOCTCADTT AAAACTTAAD CCATCORTT T-AAAC-CA- CTATAA-AB -CTATAA-AB -CTATAA-AB -CTATAA-AB -CTATAA-AB CCTATAATAB CATCORTT TAAACTTAAD TOCTCADTT AAAACTTAAD CCATCORTT TAAAACTTAAD CCATCORTT TAAACTTAA -CTATAA CCTATAATAB CCATCORTT TAAAACTTAAD CCATCORTT TAAAACTTAA CCATCAATAB CCATCAATAB CCATCAATAB CCATCAATAB CCATTAAAA		TGCTCAGTTT	AAAGATTAAG	CCATGCATGT	CGAGTT	C-ATCT-AA-	AA
Trichostrongylus_colubriformia TGCTCAGTTI ANAGATTAG CCATCEANGE GGA-GTC C-AUTC-AT- GATAGENERGY GGA-GTC C-AUTC-AT- AAAAATAAG CCATCOATGA GCATCOATGAG CCATCOATGAG CGA-C-T-C C-AUTC-A-C- AAAAAATAAG CCATCOATGAG CGATCOATGAG CGA							
Tetrabothriostrongylus mychonis TGCTGATTI AMAGATTAG CATOCATT CGA-GT2 C-AUTT-C Nicolina, cameroni TGCTGATTI AMAGATTAG CATOCATT, CGA-GT2 C-AUTT-C Purptaemilus_listini TGCTGATT, AMAGATTAG CATOCATT, CGA-GT2 C-AUTT-C Purptaemilus_listini TGCTGATT, AMAGATTAG CATOCATT, CGA-GT2 C-AUTT-C Purptaemilus_listini TGCTGATT, AMAGATTAG CATOCATT, CGA-GT2 C-AUTTAG, CGATGAT, AMAGATTAG CATOCATT, CGA-GT2 C-AUTTAG, CGATGAT, CGATGA							
Herpestrong/Um_prithonis TCCTCAGTTI ALAGATTAGE CCATCCATT, C CA-TCT - C - ALTCT - C							
Nicollina_cmesoni TGCTCAGTT AAAGATTAG CATCCATG CGA-GT-T C-ACTOC-CT							
Filarisena_flagrifer TCCTCAGTRA AAACATTAG CCATCCATC CGA-CT-T C-ATCATC							
Amidoctama_gygni TGCTCATT ALAGACTAGE CATOCATOR CGA-CT-T C-ACT-T C-ACTAC-CA Brugtasemilus_listimi							
Brumesamilus_ressus							
Anguilloola_crassus	Teratocephalus_lirellus	TC	AAAGATTAAG	CCATGCATGT	CTAA-GCA	T-GAGC-CA-	ATTAA-TG
Dracunculus_medianenis							
Dracunculus_ess_y.V104							
pracunclus sp. J. 3164							
philosena_sp_A							
philometra obturnss							
Acanthocheilonema_vitese							
Loa loa -GCTUGTUTC AAAGATTAMG CCATCOLTG TTA-CT-T C -AAATAAA - CCTUTATATG Dirofilaria immitis	Camallanus_oxycepahalus						
Onchoerera.errialis TGCTTGTCC AAAGATTAAG CCATGCATTC CFAA-GT-T C-AAATAAA - CCTATAATG Brugia.malayi AAAGATTAAG CCATGCATTC CFAA-GT-T C-AAATAAA - CCTATAATG Brugia.malayi AAAGATTAAG CCATGCATTC TGAA-GT-T C-AAATAAA - CCTATAATG Setaria.digitata							
<pre>pirofilaria_immitis</pre>							
Brugia malayi							
Wuchersria bancrofii							
Licomosoides_signedontis							
Gnathostoma_heoprograms Gnathostoma_heoprograms Gnathostoma_heoprograms Gnathostoma_heoprograms Gnathostoma_heoprograms Gnathostoma_heoprograms Gnathostoma_heoprograms Gnathostoma_heoprograms Gnathostoma_heoprograms Gnathostoma_heoprograms Gnathostoma_heoprograms Hysaloptera_lurgida Heoprograms GramsGrams GramsGrams GramsGrams GramsGrams GramsGrams GramsGrams GramsGrams Helasi_lacrymalis Helasi_lacrymalis Helasi_lacrymalis Helasi_lacrymalis GramsGrams GramsGrams GramsGrams GramsGrams GramsGrams Helaschen Helaschen Helaschen Sergen Helaschen					GT-CT	C-AAATAAA-	-CCTATAAAG
Gnathostoma_binuclestum TGCTTGTCTC AAAGGTTAAG CCATGCATGT CTGC-GT-G C-CAAC-TCCTCGAA-AA Physaloptera_lata							
Gnathostoma_binucleatum TOCTTGTCC CAAGGTTAAG CCTACACT-C -TTGAA-AA Physaloptara_turgida							
Physeloptera_litata							
Physeloptera_turgida							
Ascarophis_arctica							
Thelazia_lacrymalis							
Aphelenchus_symmae							
aphelencholdes_fragariaeTGCTTGTCTAAAGATTAAGCCATGCATGTGCAAGTT-AGTATAA-CABursaphelelenchus_spTGCTTGTCTAAAGATTAAGCCATGCATGTATAA-GT-AT-AANC-GATATAA-CABenicycliophora_conidaTGCTTGTCTAAAGATTAAGCCATGCATGTATAA-GT-AC-AACGC-CTTAGAA-AGParatylenchus_thorneiTGCTTGTCTAAAGATTAAGCCATGCATGTATAA-GT-AC-AACGC-CTTAGAA-AGPratylenchus_angustusTGCTTGTCTAAAGATTAAGCCATGCATGTATAA-GT-AC-AAAC-CCTTAGAA-AGDitylenchuls_angustusTGCTTGTCTAAAGATTAAGCCATGCATGTATAA-GT-AC-AAAC-GCTTTAA-GCJuenchorhynchus_maximusTGCTTGTCTAAAGATTAAGCCATGCATGTATAA-GG-ATTTAA-TCGloodera_pallida							
Bursaphelelenchus_sp							
Deladenus_spTGCTTGTCTAAAGATTAAGCCATGCATGTATAA-GTAT-ANC-GATTTTA-TCCriconema_sp							
Criconema_sp							
Paratylenchus_dianthusTGCTTGTCTCAAGGATTAAGCCATGCATGATAA-GTAC-AAAC-CTCTTTAA-GCPylenchulus_semipentransTGCTTGTCTCAAGGATTAAGCCATGCATGATAA-GTAT-AAAC-GCTTTAA-GCDitylenchus_anystusCTCAAGGATTAAGCCATGCATGTTAA-GTAT-AAAC-GATTTAA-GCDitylenchus_maximusTGCTTGTCTCCAAGGATTAAGCCATGCATGTTAA-GTAT-AAAC-GATTTAA-TCTylenchorhynchus_maximusTGCTTGTCTCCAAGGATTAAGCCATGCATGATAA-GTAT-AAAC-GATTTAA-TCGlobodera_pallida							
Pratylenchus_thorneiTGCTTGTCTCAAGGATTAAGCCATGCATGATAA-GTAT-AAAC-GCTTAA-GCTylenchuls_semipentransCTCAAGGATTAAGCCATGCATGCTAA-GTAT-AAAC-GATTAA-CCSubanguina_radicolaTGCTTGTCTCAAGGATTAAGCCATGCATGTTAA-GTAT-AAAC-GATTAATCSubanguina_radicolaTGCTTGTCTCAAGGATTAAGCCATGCATGATAA-GTAT-AAAC-GATTTAT-CGlobodera_pallidaTGCTTGTCTCAAGGATTAAGCCATGCATGATAA-GTAT-AAAC-GATTTAT-CGlobodera_pallidaTGCTTGTCTCAAGGATTAAGCCATGCATGATAA-GTAT-AACC-GATTTAT-CGlobodera_pallidaTGCTTGTCTCAAGGATTAAGCCATGCATGATAA-GTAT-AACC-GACCAGACACHelicotylenhcus_robustusTGCTTGTCTCAAGGATTAAGCCATGCATGATAA-GTAT-AACC-TGCCAGACACMeloidogyne_incognita_KTTGCTTGTCTCAAGGATTAAGCCATGCATGATAA-GTTT-AACC-GTCCAGACACMeloidogyne_invanicaT-TTGTTTAAGATTAAGCCATGCATGATAA-GTTT-AATC-GTTTATCMeloidogyne_kiguaTGCTTGTCTCAAGGATTAAGCCATGCATGATAA-GTTT-AATC-GCTTTACMeloidogyne_kiguaTGCTTGTCTCAAGGATTAAGCCATGCATGATAA-GTTT-AATC-GCTTTCCMeloidogyne_kiguaTGCTTGTCTCAAGATTAAGCCATGCATGATAA-GTTT-AATC-GCTTACCMeloidogyne_kiguaTGCTTGTCTCAAGATTAAGCCATGCATGATA-GTTT-A	Hemicycliophora_conida	TGCTTGTCTC	AAAGATTAAG	CCATGCATGT	ATTA-GTA	C-AAGC-CT-	TAACA-AG
Tylenchulus_semipentransCTC AAAGATTAAG CCATGCATGT CTAA-GTA T-AAAC-GACTTGA-ACDitylenchus_angustusC AAAGATTAAG CCATGCATGT ATAA-GTA T-AAAC-GATTTAT-CSubanguina_radicolaTGCTTGTCC AAAGATTAAG CCATGCATGT ATAA-GTA T-AAAC-GACTTGA-CCGeocenamus quadriferTGCTTGTCC AAAGATTAAG CCATGCATGT ATAA-GTA T-AAAC-GACTTAA-TCGlobodera_pallida							
Ditylenchus_angustusAAAGATTAAGCCATGCARGTCTAAA-GTTT-AAAC-GATTAATCSubanguina_radicolaTGCTTGTCCAAAGATTAAGCCATGCARGTATAA-GTAT-AAAC-GATTAATCGeocenamus_quadriferTGCTTGTCCAAAGATTAAGCCATGCARGTATAA-GTAT-AAAC-GATTAA-CCGlobdera_pallida							
Subanguina_radicolaTGCTTGTCTCAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GATTTTA-TCTylenchorhynchus maximusTGCTTGTCTCAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GACTTGA-TCGloodera_pallidaAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GACTTGA-TCGloodera_pallidaAAGATTAAGCCATGCATGTATAA-GTAT-AACC-TGCCAGACACAHelicotylenhcus_dihystera-GCTTGTCTCAAGATTAAGCCATGCATGTATAA-GTAT-AACC-TGCCAGA-CAMeloidogyne_incognita_KTTGTTGTTCTAAGATTAAGCCATGCATGTATAA-GTTT-AACC-TGCCAGA-CAMeloidogyne_duytsiTGCTTGTCTAAGATTAAGCCATGCATGTATAA-GTTT-AATC-GTTTATCMeloidogyne_duytsi							
Tylenchorhynchus_maximusTGGTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GACTTGA-TCGeocenamus_qudriferTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GATTTTA-TCGlobodera_pallida							
Globodera_pallida							
Scutellonema_bradys-GCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTAT-AACC-TGCCAGA-CAHelicotylenhcus_dihysteraTCTCAAAGATTAAGCCATGCATGTTAA-GTAT-AACC-TGCCAGA-CAMeloidogyne_arenariaTGTTTTCTCAAAGATTAAGCCATGCATGTATAA-GTAT-AACC-TGCCAGA-CAMeloidogyne_incognita_KT							
Helicotylenhus_dihysteraTCTCAAAGATTAAGCCATGCATGTCTAA-GTAT-AACC-TGCCAGA-CARotylenchus_robustusTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTAT-AACC-TGCCAGA-CAMeloidogyne_incognita_KTTGTATAA-GTTT-AATC-GTTTATCMeloidogyne_javanicaTGTCCATGCATGTACAGGTTAA-GTTT-AATC-GTTTATCMeloidogyne_artielliaTGTTTAAAGATTAAGCCATGCATGTACA-GTTT-AATC-GTTTATCMeloidogyne_axiguaTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTTT-AATC-GTTTTCACMeloidogyne_haplaTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTTT-AATC-GTTTTACMeloidogyne_mairitimaTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTTT-AATC-GTTTTACMeloidogyne_microtylaTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTTT-AATC-GTTTTACMeloidogyne_microtylaTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTTT-AATC-GTTTTACMeloidogyne_microtylaTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTTT-AATC-GATTTACMeloidogyne_microtylaTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GATTTACMeloidogyne_microtylaTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GATTTACMeloidogyne_microtylaTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-							
Rotylenchus_robustusTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTAT-AACC-TGCCAGA-CAMeloidogyne_arenariaTGTTATTTCAAAGATTAAGCCATGCATGTATAA-GTTT-AATC-GTTTATCMeloidogyne_javanica	_ -						
Meloidogyne_arenariaTGTTTATTTCAAAGATTAAGCCATGCATGTATAA-GTTT-AATC-GTTTATCMeloidogyne_incognita_KT							
Meloidogyne_incognita_KT							
Meloidogyne_artielliaTTGTTTT AAAGATTAAG CCATGCATGT ACAA-GTT T-AATC-GCATTAGCMeloidogyne_duytsi-GCTTGTCTC AAAGATTAAG CCATGCATGT ATAA-GTT T-AATC-GTTTTCACMeloidogyne_haplaTGCTTGTCTC AAAGATTAAG CCATGCATGT ATAA-GTT T-AATC-GTTTTTCMeloidogyne_haplaTGCTTGTCTC AAAGATTAAG CCATGCATGT ATAA-GTT T-AATC-GCATTAGCMeloidogyne_maritimaTGCTTGTCTC AAAGATTAAG CCATGCATGT ATAA-GTT T-AATC-GTTTTACMeloidogyne_microtylaTGCTTGTCTC AAAGATTAAG CCATGCATGT ATAA-GTT T-AATC-GTTTTACMaloidogyne_microtylaTGCTTGTCTC AAAGATTAAG CCATGCATGT ATAA-GTT T-AATC-GTTTTACNacobbus_aberransTGCTTGTCTC AAAGATTAAG CCATGCATGT ATAA-GTA T-AAAC-GACTTGA-TCPratylenchoides_magnicaudaCTTA AAAGATTAAG CCATGCATGT ATAA-GTA T-AAAC-GACTTGA-TCHirschmanniella_spJH_2003CT AAAGATTAAG CCATGCATGT ATAA-GTA T-AAAC-GACTTGA-TCRadopholus_similisCA AAGATTAAG CCATGCATGT ATAA-GTA T-AAAC-GACTTGA-TCPratylenchus_goodeyi_VFC AAAGATTAAG CCATGCATGT ATAA-GTA T-AAAC-GACTCGA-TCPhilippine Sequence 1CA AAGATTAAG CCATGCATGT ATAA-GTA C-AAAC-GACTCGA-TCPhilippine Sequence 3							
Meloidogyne_duytsi-GCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTTT-AATC-GTTTTC-ACMeloidogyne_exiguaTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTTT-AATC-GATTTTTCMeloidogyne_ichinoheiTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTTT-AATC-GATTTTACMeloidogyne_maritimaTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTTT-AATC-GCATTTACMeloidogyne_microtylaTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTTT-AATC-GTTTTTACMacobbus_aberransTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTTT-AAAC-GACTTGA-TCPratylenchoides_magnicaudaTTTTAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GACTTGA-TCRadopholus_similisCTAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GACTTGA-TCPratylenchus_goodeyi_VFCAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GACTTGA-TCPhilippine Sequence 2CAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GACTCGA-TCPhilippine Sequence 3CAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GACTCGA-TCPhilippine Sequence 5							
Meloidogyne_exiguaTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTTT-AATC-GATTTTTCMeloidogyne_haplaTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTTT-AATC-GTATTTACMeloidogyne_ichinoheiTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTTT-AATC-GTATTAACMeloidogyne_microtylaTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTTT-AATC-GTTTTTACNacobbus_aberransTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTAT-AATC-GACTTGA-TCPratylenchoides_magnicaudaTTTAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GACTTGA-TCRadopholus_similisCAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GACTTTGA-TCPratylenchoides_thylactus_clone2GCTTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GACTTGA-TCPhilippine Sequence 3CAAGGATTAAGCCATGCATGTATAA-GTAT-AAAC-GACTTGA-TCPhilippine Sequence 5CAAGGATTAAGCCATGCATGTATAA-GTAT-AAAC-GACTTGA-TCPhilippine Sequence 6CAAGGATTAAGCCATGCATGTATAA-GTAT-AAAC-GACTTGA-TCPhilippine Sequence 1CAAGGATTAAGCCATGCATGTATAA-GTAT-AAAC-GACTTGA-TCPhilippine Sequence 7CAAGGATTAAGCCATGCATGTATAA-GTAC-AAAC-GACTCGA-TCPhilippine Sequence 1							
Meloidogyne_haplaTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTTT-AATC-GTATTTACMeloidogyne_ichinoheiTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTTT-AATC-GCATCAGCMeloidogyne_maritimaTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTTT-AATC-GTTTTACMeloidogyne_microtylaTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTTT-AATC-GTTTTACNacobbus_aberransTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GACTTGA-TCPratylenchoides_magnicaudaTTTAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GATTTA-TCPratylenchoides_milisCTAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GATTTA-TCPratylenchus_goodeyi_VFCCAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GACTCGA-TCPhilippine Sequence 1CCAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GACTCGA-TCPhilippine Sequence 5CCAAGGATTAAGCCATGCATGTATAA-GTAT-AAAC-GACTCGA-TCPhilippine Sequence 5CCAAGGATTAAGCCATGCATGTATAA-GTAT-AAAC-GACTCGA-TCPhilippine Sequence 7							
Meloidogyne_ichinoheiTGCTTGTCTCAAAGATTAAGCCATGCATGTATCA-GTTT-AATC-GCATCAGCMeloidogyne_maritimaTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTTT-AATC-GTTTTACMeloidogyne_microtylaTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTTT-AATC-GTTTTACNacobbus_aberransTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GATTTTACPratylenchoides_mitteriTTTAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GATTTTA-TCPratylenchoides_magnicaudaCTCAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GATTTA-TCRadopholus_similisCTCAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GATTTA-CGPratylenchus_goodeyi_VFCAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GACTTGA-TCBoleodorus_thylactus_clone2GCTTTGTCTAAAGATTAAGCCATGCATGTATAA-GTAC-AAAC-GACTCGA-TCPhilippine Sequence 1CAAAGGATTAAGCCATGCATGTATAA-GTAC-AAAC-GACTCGA-TCPhilippine Sequence 5CAAAGGATTAAGCCATGCATGTATAA-GTAC-AACG-TCTCGA-ACPhilippine Sequence 7							
Meloidogyne_maritimaTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTTT-AATC-GTTTTACMeloidogyne_microtylaTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTTT-AATC-GTTTTTACNacobbus_aberransTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GACTTGA-TCPratylenchoides_ritteriTTTAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GATTTTA-TCPratylenchoides_magnicaudaTTTAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GATTTTA-TCRadopholus_similisCTCAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GACTTGA-TCBoleodorus_thylactus_clone2GCTTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GAATAGCPhilippine Sequence 1							
Nacobbus_aberransTGCTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GACTTGA-TCPratylenchoides_magnicaudaTTTAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GATTTTA-TCPratylenchoides_magnicaudaTTTAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GATTTTA-TCRadopholus_similisCAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GATTTGA-TCPratylenchus_goodeyi_VFCAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GACTCGA-TCBoleodorus_thylactus_clone2GCTTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTAC-AAAC-GACTCGA-TCPhilippine Sequence 1CAAGGATTAAGCCATGCATGTATAA-GTAC-AAAC-GACTCGA-TCPhilippine Sequence 5CAAGGATTAAGCCATGCATGAGGAGTTC-AACG-TAAPhilippine Sequence 6							
Pratylenchoides_ritteriTTT AAAGATTAAG CCATGCATGT ATAA-GT-A T-AAAC-GATTTTA-TCPratylenchoides_magnicaudaTTT AAAGATTAAG CCATGCATGT ATAA-GT-A T-AAAC-GATTTTA-TCHirschmanniella_spJH_2003CTC AAAGATTAAG CCATGCATGT ATAA-GT-A T-AAAC-GATTTTA-TCRadopholus_similisCTC AAAGATTAAG CCATGCATGT ATAA-GT-A T-AAAC-GACTTGA-TCPratylenchus_goodeyi_VFC AAAGATTAAG CCATGCATGT ATAA-GT-A T-AAAC-GAATAGCBoleodorus_thylactus_clone2GCTTTGTCT AAAGATTAAG CCATGCATGT ATAA-GT-A C-AAAC-GACTCGA-TCPhilippine Sequence 1		TGCTTGTCTC	AAAGATTAAG	CCATGCATGT	ATAA-GTT	T-AATC-GT-	TTTTAC
Pratylenchoides_magnicauda							
Hirschmanniella_spJH_2003CTC AAAGATTAAG CCATGCATGT ATAA-GTA T-AAAC-GACTTTGA-TCRadopholus_similisCTC AAAGATTAAG CCATGCATGT ATAA-GTA T-AAAC-GACTTGA-TCPratylenchus_goodeyi_VFC AAAGATTAAG CCATGCATGT ATAA-GTA T-AAAC-GCATAGCBoleodorus_thylactus_clone2GCTTTGTCTC AAAGATTAAG CCATGCATGT ATAA-GTA C-AAAC-GACTCGA-TCPhilippine Sequence 1C AAAGATTAAG CCATGCATGT ATAA-GTA C-AAAC-GACTCGA-TCPhilippine Sequence 2							
Radopholus_similis AAAGATTAAG CCATGCATGT C-AA-GTA TAAATC-GAAACGPratylenchus_goodeyi_VFC AAAGATTAAG CCATGCATGT ATAA-GTA T-AAAC-GCAACGBoleodorus_thylactus_clone2GCTTTGTCC AAAGATTAAG CCATGCATGT ATAA-GTA C-AAAC-GACTCGA-TCPhilippine Sequence 1C AAAGATTAAG CCATGCATGA GGAGTT C-AGCT-TTAAPhilippine Sequence 3AAGGATTAAG CCATGCATGA GGAGTT C-AGCT-TTAAPhilippine Sequence 5							
Pratylenchus_goodeyi_VFCAAAGATTAAGCCATGCATGTATAA-GTAT-AAAC-GCATAGCBoleodorus_thylactus_clone2GCTTTGTCTCAAAGATTAAGCCATGCATGTATAA-GTAC-AAAC-GACTCGA-TCPhilippine Sequence 1AAGGATTAAGCCATGCATGAAGGCT-TTAAPhilippine Sequence 2AAGGATTAAGCCATGCATGAGGT-GTTC-AAAC-GACTCGA-TCPhilippine Sequence 3AAGGATTAAGCCATGCATGAGGTTC-AACG-TAAPhilippine Sequence 4							
Boleodorus_thylactus_clone2GCTTTGTCTC AAAGATTAAG CCATGCATGT ATAA-GTA C-AAAC-GACTCGA-TCPhilippine Sequence 1							
Philippine Sequence 2 AAGGATTAAG CCATGCATGA GGAGTT C-AGCT-TT- Philippine Sequence 3		GCTTTGTCTC	AAAGATTAAG	CCATGCATGT	ATAA-GTA	C-AAAC-GA-	CTCGA-TC
Philippine Sequence 3							
Philippine Sequence 4 T CTAA-GTA CATG-TG- Philippine Sequence 5							
Philippine Sequence 5							
Philippine Sequence 6 T ATAAAGTT C-ATCA TTTT Philippine Sequence 7 CTTT-GA T-TCAT-CA A Tahiti Sequence 1							
Philippine Sequence 7 CTTT-GA T-TCAT-CA- A Tahiti Sequence 1							
Tahiti Sequence 1							
NUCLEOTIDES INCLUDED	-						
	NUCLEOTIDES INCLUDED						

Tahiti Sequence 2		90 10	0 110 120 C-AGCT-TTAA
Thailand Sequence 1			AATAAC-CTATAAAG
Ogasawara Sequence 1			CATG-TGTATTTAAC
Ogasawara Sequence 2			C-ATTG-TAA
Ivory Coast Sequence 1			C-AACT-TCAA
Ivory Coast Sequence 2 Ivory Coast Sequence 3			C-AACT-TTAAA C-AACT-TCAA
Ivory Coast Sequence 4			C-AACT-TCAA
Ivory Coast Sequence 5			AATAAC-CTATAAAG
Ivory Coast Sequence 6			C-AACT-TCAA
Ivory Coast Sequence 7			C-AACT-TCAAA C-AACG-TAA
Singapore Sequence 1 Singapore Sequence 2			AATAAC-CTATAAAG
Singapore Sequence 3			
Singapore Sequence 4			C-AACT-TCAA
Nigerian Sequence 1			
Nigerian Sequence 2			C-ATCTAAA C-AACT-TCAAA
Nigerian Sequence 3 NUCLEOTIDES INCLUDED			
	 130 140		
Gordius_aquaticus	GTG-AAA-CC GCGAATGGCT		
Priapulus_caudatus	GTG-AAA-CC GCGAATGGCT		
Brachionus_plicatilis Chordodes_morgani	GTG-AAA-CC GCGAATGGCT GTG-AAA-CC GCGAATGGCT		
Paractinolaimus_macrolaimus	GTG-AAG-CC GCGAATAGCT		
Aporcelaimellus_obtusicaudatus	GTG-AAG-CC GCGAATAGCT		
Wilsonema_schuurmansstekhoveni	GTG-AAG-CC GCGAATGGCT	CATTAC-AAC AGCCA-CTGT	-TTACTTGAT CTT-GA-CT-
Mesodorylaimus_sp_cf_nigritul	GTG-AAG-CC GCGAATAGCT		
Mesodorylaimus_bastiani	GTG-AAG-CC GCGAATAGCT		
Mesodorylaimus_japonicus Pungentus_spPDL_2005	GTG-AAG-CC GCGAATAGCT GTG-AAG-CC GCGAATAGCT		
Allodorylaimus_sp	GTG-AAG-CC GCGAATAGCT		
Eudorylaimus_carteri	GTG-AAG-CC GCGAATAGCT		
Microdorylaimus_sp	GTG-AAG-CC GCGAATAGCT		
Longidorus_elongatus	GTG-AAG-CC GCGAATAGCT		
Xiphinema_rivesi Tylencholaimus_sp	GTG-AAG-CC GCGAATAGCT GTG-AAG-CC GCGAATAGCT		
Anoplostoma_spBHMM_2005	GTA-AAG-CC GCGAATGGCT		
Adoncholaimus_fuscus	GTG-AAG-CC GCGAATGGCT		
Enoplus_meridionalis	GTG-AAG-CT GTGAATGGCT		
Enoplus_brevis_U88336	GTG-AAG-CT GTGAATGGCT		
Enoplus_communis Enoploides_brunettii	GTG-AAG-CT GTGAATGGCT GTG-AAA-CC GCAAATGGCT		
Syringolaimus striatocaudatus	GTG-AAG-CC GCGAATGGCT		
Ironus_dentifurcatus	GTA-AAG-CC GCGAATAGCT		
Calyptronema_maxweberi	GTGTAAG-CC GCGAATGGCT		
Viscosia_spBHMM_2005	GTG-AAG-CC GCGAATAGCT		
Viscosia_viscosa Pontonema_vulgare	GTG-AAG-CC GCGAATAGCT GTG-AAG-CT GCTAATGGCT		
Oncholaimus_spBHMM_2005	TGT-AAA-CC GCGAATGGCT		
Alaimus_sp_PDL_2005	GCA-AAG-CC GCGAATGGCT	CATTAC-AAC AGCCA-TAGT	-TTATTAGAT CTT-AC-TT-
Prismatolaimus_intermedius	GTA-AAG-CC GCGAATGGCT		
Tobrilus_gracilis Tripyla_cf_filicaudata_JH_2004	GCA-AAG-CC GCACATGGCT GTA-AAG-CC GCGAATGGCT		
Bathylaimus_sp	GTA-AAG-CC GCGAATGGCT GTA-AAG-CC GCGAATAGCT		
Bathylaimus_assimilis	GTA-AAG-CC GCGAATAGCT		
Bathylaimus_spBHMM_2005	GTA-AAG-CC GCGAATAGCT	CATTAC-AAC AGCCA-TAGT	-TTATTAGAT AGT-TC-AT-
Tripyloides_spBHMM_2005	GTA-AAG-CC GCGAATAGCT		
Trischistoma_monohystera	GTA-AAG-CC GCGAATGGCT GTA-AAG-CC GCGAATGGCT		
Mermis_nigrescens Mylonchulus_arenicolus	GTA-AAG-CC GCGAATGGCT GTA-AAG-CC GCGAATGGCT		
Anatonchus_tridentacus	GTA-AAG-CC GCGAATGGCT		
Mononchus_truncatus	GTA-AAG-CC GCGAATGGCT	CGGTAT-AAC AGCCG-CTGT	-TTATTAGAT TTT-AG-TT-
Prionchulus_muscorum	GTA-AAG-CC GCGAATGGCT		
Clarkus_sp	GTA-AAG-CC GCGAATGGCT		
Trichinella_spiralis Trichinella_papuae	GTG-AAG-CC GCGAATGGCT GTG-AAG-CC GCGAATGGCT		
Trichinella_britovi	GTG-AAG-CC GCGAATGGCT		
Trichinella_murrelli	GTG-AAG-CC GCGAATGGCT		
Trichinella_pseudospiralis	GTG-AAG-CC GCGAATGGCT		
Trichinella_nativa	GTG-AAG-CC GCGAATGGCT		
Trichinella_zimbabwensis Trichinella_nelsoni	GTG-AAG-CC GCGAATGGCT GTG-AAG-CC GCGAATGGCT		
Trichuris_suis	GIG-AAG-CC GCGAAIGGCI GTG-AAG-CC GCGAAIGGCI		
Trichuris_trichiura	GTT-AAG-CC GCGAATGGCT		
NUCLEOTIDES INCLUDED	-mm-mmm-mm mmmmmmmmm	mmmmmm-mmm mmmmmm-mmmm	-mmmmmmmm mmm

	130	140) 150) 160) 17	0 180
Trichuris_muris Tylolaimophorus_minor	GTG-AAG-CC GCG-AAG-CC					
Paratrichodorus_pachydermus	GTG-AAG-CC					
Paratrichodorus_anemones	GCG-AAG-CC					
Trichodorus_primitivus	GTG-AAG-CC					
Axonolaimus_helgolandicus Ascolaimus_elongatus	GTG-AAG-CC GTG-AAG-CC					
Odontophora_rectangula	GTG-AAG-CC					
Cylindrolaimus_sp202149	GTG-AAG-CC	GCGAATCGCT	CATTAC-AAC	AGCCA-TAGT	-TTACTTGAT	CTT-AA-AA-
Tylocephalus_auriculatus	GTG-AAG-CC					
Plectus_acuminatus_BS9 Plectus_aquatilis	GTG-AAG-CC GTG-AAG-CC					
Anaplectus_sp	GTG-AAA-CC					
Anisakis_sp_WKT	GTG-AAA-CC					
Anisakis_sp_Nadler	GTG-AAA-CC					
Contracaecum_multipapillatum Pseudoterranova_decipiens	GTG-AAA-CC GTG-AAA-CC					
Raphidascaris_acus	GTG-AAA-CC					
Terranova_caballeroi	GTG-AAA-CC					
Ascaris_suum	GTG-AAA-CC					
Ascaris_lumbricoides Baylisascaris_procyonis	GTG-AAA-CC GTG-AAA-CC					
Baylisascaris_transfuga	GTG-AAA-CC					
Parascaris_equorum	GTG-AAA-CC					
Porrocaecum_depressum	GTG-AAA-CC GTG-AAA-CC					
Toxascaris_leonina Heterocheilus_tunicatus	GTG-AAA-CC					
Goezia_pelagia	GTG-AAA-CC					
Hysterothylacium_fortalezae	GTG-AAA-CC					
Hysterothylacium_pelagicum Hysterothylacium_reliquens	GTG-AAA-CC GTG-AAA-CC					
Iheringascaris_inquies	GTG-AAA-CC					
Toxocara_canis	GTG-AAA-CC					
Nemhelix_bakeri	GTG-AAA-CC					
Raillietnema_spV3060 Cruzia_americana	GTG-AAA-CC GTG-AAA-CC					
Heterakis_sp_14690	GTG-AAA-CC					
Heterakis_gallinarum	GTG-AAA-CC					
Paraspidodera_sp_21303	GTG-AAA-CC GTA-AAT-CC					
Chromodora_nudicapitata Chromadora_spBHMM_2005	GTA-AAI-CC					
Atrochromadora_microlaima	GTA-AAT-CC					
Chromadorina_germanica	GTA-AAT-CC					
Chromadorita_tentabundum Dichromadora_spBHMM_2005	GTA-AAG-CC GTA-AAT-CC					
Neochromadora_BHMM_2005	GTA-AAG-CC					
Spilophorella_paradoxa	GTT-AAG-CC					
Paracanthonchus_caecus Paracyatholaimus_intermedius	GTG-AAG-CC GTG-AAG-CC					
Praeacanthonchus punctatus	GTG-AAG-CC					
Praeacanthonchus_sp	GTG-AAG-CC					
Cyatholaimus_spBHMM_2005	GTG-AAG-CC					
Spirinia_parasitifera Acanthopharynx_micans	GTG-AAG-CC GTG-AAG-CC					
Xyzzors_sp	GTG-AAG-CC					
Metachromadora_sp	GTG-AAG-CC					
Metachromadora_remanei Catanema sp	GTG-AAG-CC GTG-AAG-CC					
Eubostrichus_dianae	GTG-AAG-CC					
Eubostrichus_topiarus	GTG-AAG-CC					
Eubostrichus_parasitiferus	GTG-AAG-CC					
Laxus_oneistus Laxus_cosmopolitus	GTG-AAG-CC GTG-AAG-CC					
Leptonemella_sp	GTG-AAG-CC					
Robbea_hypermnestra	GTG-AAG-CC					
Stilbonema_majum	GTG-AAG-CC					
Monoposthia_costata Nudora bipapillata	GTG-AAA-CT GTG-AAG-CC					
Calomicrolaimus_parahonestus	GTG-AAA-TC	GCGAATAGCT	CATTAC-AAC	AGCCA-TTGT	-TTCTTGGAT	CTT-AC-TT-
Calomicrolaimus_spBHMM_2005	GTG-AAA-TC					
Molgolaimus_demani Diplogaster_lethieri	GTG-AAA-TC ATG-AAT-CT					
Aduncospiculum_halicti	CTG-AAT-CT					
Pristionchus_lheritieri	ATG-AAT-CT	GCGAACGGCT	CATTATTAAC	ACCCG-TAAT	-CTACCCAGT	TTT-CG-TA-
Pristionchus_pacificus	ATG-AAT-CT					
Pristionchus_pacificus Sabatieria_punctata_STRAIN_343	ATG-AAT-CT GTA-AAG-CC					
Sabatieria_punctura_pinairA_515 Sabatieria_sp355_BHMM_2005	GTA-AAG-CC					
NUCLEOTIDES INCLUDED	-mm-mmm-mm	mmmmmmmmm	mmmmmm-mmm	mmmmm-mmmm	-mmmmmmmmm	mmm

	I	1 1	1 1			
	130	5 14	0 150	160) . 17(180
Sabatieria_celtica Sabatieria_punctata_STRAIN_200			CATTAC-AAC CATTAC-AAC			
Sabatieria_punctata_STRAIN_223			CATTAC-AAC			
Sabatieria_sp210_BHM_2005			CATTAC-AAC			
Setosabatieria_hilarula Desmolaimus zeelandicus			CATTAC-AAC CATTAC-AAC			
Terschellingia_longicaudata			CATTAC-AAC			
Cyartonema_elegans			CATTAC-AAC			
Tridentulus_sp Diploloimelleideg meuli			CATTAC-AAC CATTAC-AAC			
Diplolaimelloides_meyli Diplolaimella_diavengatensis			CATTAT-AAC			
Geomonhystera_disjuncta			CATTAC-AAT			
Sphaerolaimus_hirsutus			CATTAC-AAC			
Theristus_acer Daptonema_procerus			CATTAC-AAC CATTAC-AAC			
Daptonema_hirsutum			CATTAC-AAC			
Daptonema_normandicum			CATTAC-AAC			
Daptonema_oxycerca Daptonema_setosum			CATTAC-AAC CATTAC-AAC			
Desmodora_communis			CATTAC-AAC			
Desmodora_ovigera			CATTAC-AAC			
Metadesmolaimus_sp Dentostomella_sp			CATTAC-AAC CATTAT-AAC			
Bunonema_franzi			CATTAC-AAC			
Bunonema_sp	GCA-AAT-CC	GCGGACGGCT	CATTAC-AAC	AGAGC-TAAT	-TTTCTTGAT	TTT-GA-CG-
Seleborca_complexa Acrobeloides nanus			CATTAT-AAC CATTAT-AAC			
Acrobeloides bodenheimeri			CATTAT-AAC			
Acrobeloides_sp_PS1146			CATTAT-AAC			
Acrobeles_ciliatus			CATTAA-TAC			
Acrobeles_sp_PS1156 Acrobeles complexus WCUG2			CATTAA-TAC CATTAA-TAC			
Cephaloboides_sp_SB227			CATTAG-AGC			
Cephalobus_cubaensis			CATTAT-AAC			
Cephalobus_spPS1143 Cephalobus_spPS1196			CATTAT-AAC CATTAT-AAC			
Cephalobus_oryzae_PS1165			CATTAT-AAC			
Cervidellus_alutus			CATTAT-AAC			
Pseudacrobeles_variabilis Triligulla_aluta			CATTAT-AAC CATTAT-AAC			
Zeldia_punctada			CATTAT-AAC			
Myolaimus_sp_U81585			CATTAT-AAC			
Rhabditophanes_spKR3021 Brevibucca_spSB261			CATTAT-AAC CATTAT-AAC			
Halicephalobus_gingivalis			CATTAC-AAC			
Panagrobelus_stammeri			CATTAC-AAC			
Plectonchus_spPDL0025 Turbatrix_aceti			CATTAC-AAC CATTAT-AAC			
Panagrellus_redivivus			CATTAC-AAC			
Panagrellus_redivivus_PS1163			CATTAC-AAC			
Panagrolaimus_subelongatus Panagrolaimus_davidi			CATTAT-AAC CATTAT-AAC			
Panagrolaimus_cf_rigidus_AF40			CATTAT-AAC			
Panagrolaimus sp. Sourhope ED2			CATTAT-AAC			
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2			CATTAT-AAC CATTAT-AAC			
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2			CATTAT-AAC			
Panagrolaimus sp. Sourhope ED2	ACG-AAA-CC	GCGTATGGCT	CATTAT-AAC	AGCTA-AAAT	-TTACTTGAT	TTT-GA-CT-
Steinernema_carpocapsae			CATTAC-AAC			
Strongyloides_stercoralis Strongyloides_ratti			CATTAA-ATC CATTAT-AAC			
Diploscapter_sp_PS1897	GTG-AAG-CT	GCGCACGGCT	CATTAG-CAC	GGTTT-CGAC	CTTTTTCGGA	TAT-CT
Diploscapter_sp_PS2017			CATTAG-CAC			
Heterorhabditis_bacteriophora Heterorhabditis_hepialus			CATTAG-AGC CATTAG-AGC			
Heterorhabditis_zelandica			CATTAG-AGC			
Parasitorhabditis_sp_SB281			CATTAT-AAC			
Rhabditoides_inermiformis Rhabditoides_inermis_DF5001			AATTAT-ACC CATTAT-ATC			
Rhabditoides_regina_DF5012			CATTAC-AAC			
Poikilolaimus_oxycerca_SB200	GTG-AAA-CC	GCGAATGGCT	CATTAC-AAC	AGCTA-TAAT	-TTACTTGAT	GTT-GA-CT-
Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604			CATTAC-AAC CATTAC-AAC			
Distolabrellus veechi DwF1604 Distolabrellus veechi DF5024			CATTAC-AAC			
Choriorhabditis_dudichi	GAG-AAA-CT	GCGTACGGCT	CATTAG-AGC	AGATA-TGCA	-CTTGTCGAG	GTT-Y
Protorhabditis_sp			CATTAG-AAC			
Protorhabditis_sp_DF5055 Cruznema_tripartitum_DF5015			CATTAG-AGC CATTAG-AGC			
NUCLEOTIDES INCLUDED			mmmmmm-mmm			

Mesorhabditis sp PS1179	130 GGT-AGA-CT GTGAACGG	15 15 CATTAT-22C			
Mesorhabditis_sp_rb1175 Mesorhabditis_spiculigera_SB15	GTG-GTA-CT GTGAACGG				
Mesorhabditis_anisomorpha_SB12	GTT-AGA-CT GTGAACGG				
Teratorhabditis_palmarum_DF501 Teratorhabditis_synpapillata_S	GCC-CAT-CT GCGAACGG ACC-TAT-CT GCGAACGG				
Caenorhabditis_briggsae_PB102	-TG-AAA-TT GCGTACGG				
Caenorhabditis_elegans_N2	-TG-AAA-TT GCGTACGG				
Caenorhabditis_sp_CB5161	-TG-AAA-TT GCGTACGG				
Caenorhabditis_sp_PS1010 Caenorhabditis_japonica	-TG-AAA-TT GCGTACGG -TG-AAA-TT GCGTACGG				
Caenorhabditis_sp_DF5170	-TG-AAA-TT GCGTACGG				
Caenorhabditis_sp_SB341	-AG-AAA-CT GCGAACGG				
Caenorhabditis_plicata Caenorhabditis_vulgaris	-TG-AAA-TT GCGTACGG -TG-AAA-TT GCGTACGG				
Caenorhabditis_sonorae	GAG-AAA-CT GCGAACGG				
Caenorhabditis_drosophilae	-TG-AAA-TT GCGTACGG				
Phasmarhabditis_hermaphrodita	TAG-AAA-CT GCGTACGG AAG-AAA-CT GCGAACGG				
Phasmarhabditis_neopapillosa Phasmarhabditis_neopapillosa	GTG-AAA-CT GCGAACGG				
Pellioditis_mediterranea_SB173	GTG-AAA-CT GCGAACGG				
Pellioditis_marina	GTG-AAA-CT GCGAACGG				
Prodontorhabditis_wirthi Crustorhabditis_scanica	ATG-AAA-CT GCGGACGG GTT-CGA-CT GTGAACGG				
Dolichorhabditis_sp_CEW1	GTG-AAA-CT GCGAACGG				
Oscheius_sp_DF5000	GTG-AAA-CT GCGAACGG				
Oscheius_sp_BW282 Oscheius_myriophila_EM435	GTG-AAA-CT GCGAACGG CTG-AAA-CT GCGAACGG				
Oscheius_insectivora	GTG-AAA-CT GCGAACGG				
Oscheius_dolichuroides	GTG-AAA-CT GCGAACGG				
Rhabditis_blumi_DF5010 Rhabditis_sp_PS1191	CGG-AAT-CG GCGAACGG GGG-AAATCA GCGGCTAG				
Rhabditis sp PS1010	-TG-AAA-TT GCGTACGG				
Rhabditis_myriophila_EM435	CTG-AAA-CT GCGAACGG	CT CATTAG-AGC	AGCTA-TCAT	-TCTCTTCGG	ATA-TC-C
Rhabditis_colombiana	GTG-AAA-CT GCGAACGG				
Rhabditella_axei_DF5006 Rhabditella_sp_DF5044	CTG-AAA-CT GCGAACGG CTG-AAA-CT GCGAACGG				
Cuticularia_sp_PS2083	GTG-AAA-CC GCGAATGG				
Necator_americanus	GAG-AAA-CT GCGAACGG				
Kalicephalus_cristatus Ancylostoma_caninum	GAG-AAA-CT GCGAACGG GAG-AAA-CT GCGAACGG				
Angiostrongylus_cantonensis	GTG-AAA-CT GCGAACGG				
Angiostrongylus_costaricensis	GTG-AAA-CT GCGAACGG				
Angiostrongylus_malaysiensis Angiostrongylus_dujardini	GTG-AAA-CT GCGAACGG GTG-AAA-CT GCGAACGG				
Angiostrongylus_vasorum	GTG-AAA-CT GCGAACGG				
Aulurostrongylus_abstrusus	GTG-AAA-CT GCGAACGG				
Didelphostrongylus_hayesi Crenosoma mephitidis	GTG-AAA-CT GCGAACGG GTG-AAA-CT GCGAACGG				
Crenosoma_wlpis	GTG-AAA-CT GCGAACGG				
Otostrongylus_circumlitus	GTG-AAA-CT GCGAACGG				
Troglostrongylus_wilsoni Filaroides_martis	GTG-AAA-CT GCGAACGG GTG-AAA-CT GCGAACGG				
Oslerus osleri	GTG-AAA-CT GCGAACGG				
Parafilaroides_decorus	GTG-AAA-CT GCGAACGG	CT CATTAG-AGC	AGATG-TCAT	-TTATTCGGA	AAA-TC
Metastrongylus_salmi	GTG-AAA-CT GCGAACGG				
Metastrongylus_elongatus Skrjabingylus_chitwoodrum	GTG-AAA-CT GCGAACGG GTG-AAA-CT GCGAACGG				
Parelaphostrongylus_odocoilei	GTG-AAA-CT GCGAACGG	CT CATTAG-AGC	AGATG-TCAT	-TTATTCGGA	AAA-TC-C
Muelerius_capillaris	GTG-AAA-CT GCGAACGG				
Protostrongylus_rufescens Halocercus_invaginatus	GTG-AAA-CT GCGAACGG GTG-AAA-CT GCGAACGG				
Pseudalius_inflexus	GTG-AAA-CT GCGAACGG				
Stenurus_minor	GTG-AAA-CT GCGAACGG				
Torynurus_convolutus Syngamus_trachea	GTG-AAA-CT GCGAACGG GAG-AAA-CT GCGAACGG				
Stephanurus_dentatus	GAG-AAA-CT GCGAACGG				
Nematodirus_battus	GAG-AAA-CT GCGAACGG				
Strongylus_equinus Labiostrongylus_bipapillosus	GAG-AAA-CT GCGAACGG GAG-AAA-CT GCGAACGG				
Labiostrongylus_bipapillosus Petrovinema_poculatum	GAG-AAA-CT GCGAACGG				
Cylicocyclus_insignis	GAG-AAA-CT GCGAACGG	CT CATTAG-AGC	AGATG-TCAC	-TTATTCGGA	AAG-TC
Chabartia_ovina	GAG-AAA-CT GCGAACGG				
Cyclodontostomum_purvisi Zoniolaimus_mawsonae	GAG-AAA-CT GCGAACGG GAG-AAA-CT GCGAACGG				
Hypodontus_macropi	GAG-AAA-CT GCGAACGG				
Deletrocephalus_dimidiatus	GAG-AAA-CT GCGAACGG				
Dictyocaulus_eckerti_P7B8 Dictyocaulus_capreolus_P3B2	GTG-AAA-CT GCGAACGG GTG-AAA-CT GCGAACGG				
NUCLEOTIDES INCLUDED	-mm-mmm-mm mmmmmmmm				

Dictyocaulus_sp._P6A1 Dictyocaulus_filaria Dictyocaulus capreolus P2C10 Dictyocaulus viviparus Haemonchus_sp._V3091 Haemonchus_contortus Haemonchus_placei Haemonchus_similis Ostertagia_ostertagi Ostertagia_leptospicularis Nippostrongylus_brasileinsis Heligmosomoides_polygyrus Trichostrongylus_colubriformis Tetrabothriostrongylus mackerr Herpestrongylus_pythonis Nicollina_cameroni Filarimena_flagrifer Amidostomum_cygni Teratocephalus_lirellus Brumptaemilius_justini Anguillicola_crassus Dracunculus_medinensis Dracunculus_oesophageus Dracunculus_sp._V3104 Philonema_sp_A Philometra_obturans Camallanus_oxycepahalus Acanthocheilonema_viteae Loa loa Onchocerca_cervicalis Dirofilaria_immitis Brugia_malayi Wuchereria_bancrofti Litomosoides_sigmodontis Setaria_digitata Gnathostoma_turgidum Gnathostoma_neoprocyonis Gnathostoma_binucleatum Physaloptera_alata Physaloptera_turgida Ascarophis_arctica Spinitectus_carolini Thelazia_lacrymalis Aphelenchus_avenae Aphelenchoides_fragariae Bursaphelelenchus_sp Deladenus sp Criconema_sp Hemicycliophora_conida Paratylenchus_dianthus Pratylenchus_thornei Tylenchulus_semipentrans Ditylenchus_angustus Subanguina_radicola Tylenchorhynchus_maximus Geocenamus_quadrifer Globodera_pallida Scutellonema_bradys Helicotylenhcus_dihystera Rotylenchus robustus Meloidogyne_arenaria Meloidogyne_incognita_KT Meloidogyne_javanica Meloidogyne_artiellia Meloidogyne_duytsi Meloidogyne_exigua Meloidogyne hapla Meloidogyne_ichinohei Meloidogyne_maritima Meloidogyne_microtyla Nacobbus aberrans Pratylenchoides ritteri Pratylenchoides_magnicauda Hirschmanniella_sp._JH_2003 Radopholus_similis Pratylenchus_goodeyi_VF Boleodorus_thylactus_clone2 Philippine Sequence 1 NUCLEOTIDES INCLUDED

....|....|||||||||| 130 140 150 160 170 180 GTG-AAA-CT GCGAACGGCT CATTAG-AGC AGATG-TAAT -TTATTCGGA ATT-AT-T--GTG-AAA-CT GCGAACGGCT CATTAG-AGC AGATG-TAAT -TTCATCGGA AAA-TC-C--GTG-AAA-CT GCGAACGGCT CATTAG-AGC AGATG-TAAT -TTATTCGGA ATT-AT-t--GTG-AAA-CT GCGAACGGCT CATTAG-AGC AGATG-TAAT -TTATTCGGA ATT-AT-T--GAG-AAA-CT GCGAACGGCT CATTAG-AGC AGATG-TCAT -TTATTCGGA ACG-TC----GAG-AAA-CT GCGAACGGCT CATTAG-AGC AGATG-TCAT -TTATTCGGA AAA-TC----GAG-AAA-CT GCGAACGGCT CATTAG-AGC AGATG-TCAT -TTATTCGGA ACA-TC----GAG-AAA-CT GCGAACGGCT CATTAG-AGC AGATG-TCAT -TTATTCGGA ACG-TC----GAG-AAA-CT GCGAACGGCT CATTAG-AGC AGATG-TCAT -TTATTCGGA AAG-TC----GAG-AAA-CT GCGAACGGCT CATTAG-AGC AGATG-TCAT -TTATTCGGA ACG-TC----GAG-AAA-CT GCGAACGGCT CATTAG-AGC AGATG-TCAT -TTATTCGGA AAA-TC----GTG-AAG-CC GCGAATAGCT CATTAC-AAC AGCCA-TTGT -TTACTTGAT CTT-GA-TA-GTC-AAA-CC GCGTACGGCT CATTAT-AAC AGCCA-TAAT -ATACTTGAC GTT-GA-CT-GTG-AAA-CC GCGAACGGCT CATTAT-AAC AGCTA-TAAT -TTACTTGGT CTT-GA-TA-GTG-AAA-CC GCGAACGGCT CATTAC-AAC AGCTA-TTAT -ATACTTGAT CTT-GG-AT-GTG-AAA-CC GCGAACGGCT CATTAC-AAC AGCTA-TTAT -ATACTTGAT CTT-GA-TT-GTG-AAA-CC GCGAACGGCT CATTAC-AAC AGCTA-TTAT -ATACTTGAT CTT-GA-TT-GTG-AAA-CC GCGAACGGCT CATTAC-AAC AGCTA-TTAT -ATACTTGAT TCT-GA-TT-GTG-AAA-CC GCGAACGGCT CATTAC-AAC AGCTA-TTAT -TTACTTGAT TTT-GA-TT-GTG-AAA-CC GCGAACGGCT CATTAC-AAC AGCCA-TAAT -ATACTTGAT GTT-GA-TT-GTG-AAA-CC GCGAACGGCT CATTAT-AAC AGCTA-TAAT -GTACTTGAT GTT-GA-TT-GTG-AAA-CC GCGAACGGCT CATTAT-AAC AGCTA-TAAT -GTACTTGAT GTT-GA-TT-GTG-AAA-CC GCGAACGGCT CATTAT-AAC AGCTA-TAAT -GTACTTGAT GTT-GA-TT-GTG-AAA-CC GCGAACGGCT CAT--T-AAC AGCTA-TAAT -GTACTTGAT GTT-GA-TT-GTG-AAA-CC GCGAACGGCT CATTAT-AAC AGCTA-TAAT -GTACTTGAT GTT-GA-TT-GTG-AAA-CC GCGAACGGCT CATTAT-AAC AGCTA-TAAT -GTACTTGAT GTT-GA-TT-GTG-AAA-CC GCGAACGGCT CATNAT-NAC AGCCTCTAAT -GTACCTGAT GCT-GA-CT-GTG-AAA-CC GCGAACGGCT CATTAT-AAC AGCTA-TAAT -GTACTTGAT GTT-GA-TT-GTG-AAA-CC GCGAATGGCT CATTAC-GAC AGCTA-TGAT -TTACTTGAT CTT-GA-TA-GTG-AAA-CC GCGAATGGCT CATTAC-GAC AGCTA-TGAT -TTACTTGAT CTT-GA-TA-GTG-AAA-CC GCGAATGGCT CATTAC-GAC AGCTA-TGAT -TTACTTGAT CTT-GA-TA-GTG-AAA-CC GCGAACGGCT CATTAT-AAC AGCTA-TAAT -GTACTTGAT CTT-GA-TC-GTG-AAA-CC GCGAACGGCT CATTAT-AAC AGCTA-CAAT -GTACTTGAT CTT-GA-TT-GTG-AAA-CC GCGAACGGCT CATTAT-AAC AGCTA-TAAT -GTACTTGAT CTT-GA-TA-GTG-AAA-CC GCGAACGGCT CATTAT-AAC AGCTA-TAAT -GTACTTGAT CTT-GA-TA-GTG-AAA-CC GCGAACGGCT CATTAT-AAC AGCTA-TAAT -GTACTTGAT GTT-GA-TT-GTG-AAA-CC GCGAACGGCT CATTAC-AAC AGGTA-TAAT -TTACTTGAT CTT-GA-AA-GCG-AAA-CT GCGAACGGCT CATTAC-AAC AGATA-TAAT -TTACTTGTT CTA-TT-CC-GCG-AAA-CT GCGAACGGCT CATTAC-AAC AGATA-TAAT -TTACTAGTT CTT-GA-TC-GTG-AAA-CC GCGAACGGCT CATTAT-AAC AGCTA-TAAT -TTACTTGAT TTT-CA-CT-GTG-AAA-CC GCGAACGGCT CATTAC-AAC AGCTA-TAAT -CTACTCGGT CTT-GA-AC-GTG-AAA-CC GCGAACGGCT CATTAC-AAC AGCCA-TAAT -TTACTCGAT CTT-GA-AC-GTG-AAA-CC GCGAACGGCT CATTAT-AAC AGCTA-TAAT -TTACTAGAC CTT-GA-GC-GTG-AAA-CT GCGTACGGCT CATTAC-AAC AGCAA-TAAT -TTACTTGAT CTT-GA-CA-GAG-AAA-CC GCGAACGGCT CATTAT-AAC AGCTA-TGAT -TTACTTGAT CTT-GA-AC-GTG-AAA-CC GCGAACGGCT CATTAC-AAC AGCTA-TGAT -TTACTTGAT CTT-GA-CC-GTG-AAA-CC GCGAACGGCT CATTAT-AAC AGCTA-TAAT -TTACTTGAT CTT-GA-CT-GTG-AAA-CC GCGAACGGCT CATTAT-AAC AGCTA-TAAT -TTACTTGAT CTT-GA-CA-GTG-AAA-CC GCGAACAGCT CATTAT-AAC AGCTA-TAAT -TTACTTGAT CTT-GA-CT-GGG-AAA-CT GCGTACGGCT CATTAC-ACC AGCTA-TAAT -TTACTTGAC CTT-GA-CT-GGG-AAA-CT GCGTACGGCT CATTAC-ACC AGCTG-TAAT -TTACTTGAC CTT-GA-CA-GGG-AAA-CT GCGTACGGCT CATTAC-ACC AGCCT-TAAT -TTACTTGAC CTT-GA-CA-GGG-AAA-CT GCGTACGGCT CATTAC-ACC AGCCT-TAAT -TTACTTGAC CTT-GA-CA-GAG-AAA-CC GCGAACGGCT CATTAC-AAT GGCCA-TTAT -TTACTTGAT CTT-GA-TT-GAG-AAA-CC GCGAACGGCT CATTAC-AAT GGCCA-TTAT -TTACTTGAT CTT-GA-TT-GAG-AAA-CC GCGAACGGCT MAWWAC-AAT GGCCA-TGAT -TTACTTGAT CTT-GA-TT-GAG-AAA-CC GCGAACGGCT CATTAC-AAT GGCCA-TTAT -TTACTTGAT CTT-GA-CA-GAG-AAA-CC GCGAACGGCT CATTAC-AAT GGCCA-TGAT -TTACTTGAT CTT-GA-TA-GAG-AAA-CC GCGATCGGCT CATTAC-AAT GGCCA-TGAT -TTACTTGAT CTT-GA-TT-GAG-AAA-CC GCGAACGGCT CATTAC-AAT GGCCA-TGAT -TTACTTGAT CTT-GA-TA-GAG-AAA-CC GCGAACGGCT CATTAC-AAT AGCCA-TTAT -TTACTTGAT CTT-GA-TCA GAG-AAA-CC GCGAACGGCT CATTAC-AAT GGCCA-TGAT -TTACTTGAT CTT-GA-TTA GAG-AAA-CC GCGAACGGCT CATTAC-AAT GGCCA-TGAT -TTACTTGAT CTT-GA-TA-GTG-AAA-CC GCGAACGGCT CATTAT-AAC AGCTA-TAAT -TTACTTGAT CTT-GA-CA-GTG-AAA-CC GCGAACGGCT CATTAT-AAC AGCTA-TAAT -TTACTTGAT CTT-GA-CT-GTG-AAA-CC GCGAACGGCT CATTAT-AAC AGCTA-TAAT -TTACTTGAT CTT-GA-CT-GTG-AAA-CC GCGAACGGCT CATTAT-AAC AGCTA-TAAT -TTACTGGAT CTT-GA-CA-ATG-AAA-CC GCAAACGGCT CATTAC-ACC AGCAG-TGAT -CTATTTGAC CTT-GA-TA-GTG-AAA-CT GCGAACGGCT CATTAC-AAC AGCTG-TAAT -TTACTTGAT CTT-GA-AA-GTG-AAA-CC GCGAACGGCT CATTAT-AAC AGCTA-TAAT -TTACTTGAT CTT-GA-CA--TG-AAA-CT GCGAACGGCT CATTAG-AGC AGATG-TGAT -TTATTCGGA AAA-TC----

Philippine Sequence 2	130 GTG-AAA-CT) 15(CATTAG-AGC			
Philippine Sequence 3			CATTAG-AGC			
Philippine Sequence 4			CATTAT-AAC			
Philippine Sequence 5			CATTAG-AGC			
Philippine Sequence 6 Philippine Sequence 7			CATTAG-AGC CATTAG-AGC			
Tahiti Sequence 1			CATTAG-AGC			
Tahiti Sequence 2	GTG-AAA-CT	GCGAACGGCT	TATTAG-AGC	AGATG-TGAT	-TTATTCGGA	AAA-TC
Thailand Sequence 1			CATTAC-AAC			
Ogasawara Sequence 1 Ogasawara Sequence 2			CATTAT-AAC CATTAG-AGC			
Ivory Coast Sequence 1			CATTAG-AGC			
Ivory Coast Sequence 2			CATTAG-AGC			
Ivory Coast Sequence 3			CATTAG-AGC			
Ivory Coast Sequence 4 Ivory Coast Sequence 5			CATTAG-AGC CATTAC-AAC			
Ivory Coast Sequence 6			CATTAG-AGC			
Ivory Coast Sequence 7			CATTAG-AGC			
Singapore Sequence 1			CATTAG-AGC			
Singapore Sequence 2 Singapore Sequence 3			CATTRC-AAC CATTAG-AGC			
Singapore Sequence 3 Singapore Sequence 4			CATTAG-AGC CATTAG-AGC			
Nigerian Sequence 1	-TG-AAA-CT	GCGAACGGST	CATTAG-AGC	AGATG-TTAT	-TTATTCGGA	AAA-TA
Nigerian Sequence 2			CATTAG-AGC			
Nigerian Sequence 3 NUCLEOTIDES INCLUDED			CATTAG-AGC mmmmmm-mmm			
NOCLEOTIDES INCLODED						
Gordius_aquaticus) 200 CACA) 21(TGGATAAC			
Priapulus_caudatus			TGGATAAC			
Brachionus_plicatilis			TGGATAAC			
Chordodes_morgani Paractinolaimus_macrolaimus			TGGATAAC TGGATAAC			
Aporcelaimellus_obtusicaudatus			TGGATAAC			
Wilsonema_schuurmansstekhoveni			TGGATAAC			
Mesodorylaimus_sp_cf_nigritul			TGGATAAC			
Mesodorylaimus_bastiani Mesodorylaimus_japonicus			TGGATAAC TGGATAAC			
Pungentus_spPDL_2005			TGGATAAC			
Allodorylaimus_sp	ATCT-	TACT	TGGATAAC	TGTGGCAATT	CTAGAGCTAA	TACATGCA-A
Eudorylaimus_carteri			TGGATAAC			
Microdorylaimus_sp Longidorus_elongatus			TGGATAAC TGGATAAC			
Xiphinema_rivesi			CGGATAAC			
Tylencholaimus_sp			TGGATAAC			
Anoplostoma_spBHMM_2005			AGGATAAC			
Adoncholaimus_fuscus Enoplus_meridionalis			TGGATAAC TGGATACC			
Enoplus_brevis_U88336			CGGATACC			
Enoplus_communis			CGGATACC			
Enoploides_brunettii Syringolaimus_striatocaudatus			TGGATACC			
Ironus_dentifurcatus			TGGATAAC TGGATAAC			
Calyptronema_maxweberi	TAC	TACA	TGGATAAC	TGTGGTAATT	CTACAGCTAA	TACACGCT-C
Viscosia_spBHMM_2005			TGGATAAC			
Viscosia_viscosa Pontonema_vulgare			TGGATAAC TGGATAAC			
Oncholaimus_spBHMM_2005			TGGATAAC			
Alaimus_sp_PDL_2005			TGGATAAC			
Prismatolaimus_intermedius			TGGATAAC			
Tobrilus_gracilis Tripyla_cf_filicaudata_JH_2004			TGGATAAC TGGATAAC			
Bathylaimus_sp			TGGATAAC			
Bathylaimus_assimilis			TGGATAAC			
Bathylaimus_spBHMM_2005			TGGATAAC			
Tripyloides_spBHMM_2005 Trischistoma_monohystera			TGGATAAC TGGATAAC			
Mermis_nigrescens			TGGATAAC			
Mylonchulus_arenicolus	TCT	TACT	TGGATAAC	TGTGGCAATT	CTAGAGCTAA	TACATGCA-C
Anatonchus_tridentacus			TGGATAAC			
Mononchus_truncatus Prionchulus_muscorum			TGGATAAC CGGATAAC			
Clarkus_sp			TGGATAAC			
Trichinella_spiralis		ATCA				
Trichinella_papuae		TACA	TGGATAAC	TGTGGTAATT	CTAGAGCTAA	TACACGCA-C
		TACA ATCA		TGTGGTAATT TGTGGTAATT	CTAGAGCTAA CTAGAGCTAA	TACACGCA-C TACACGCA-C

Trichinella_murrelli	190			0 220 TGTGGTAATT		
Trichinella_pseudospiralis				TGTGGTAATT		
Trichinella_nativa				TGTGGTAATT		
Trichinella_zimbabwensis				TGTGGTAATT		
Trichinella_nelsoni				TGTGGTAATT		
Trichuris_suis Trichuris_trichiura				TGTGGAAATT TATGGAAATG		
Trichuris_muris				TGTGGAAATT		
Tylolaimophorus_minor				TGTTGTAATT		
Paratrichodorus_pachydermus				TGCGGTAATT		
Paratrichodorus_anemones				TGCGGTAATT TGCGGTAATT		
Trichodorus_primitivus Axonolaimus helgolandicus				TGTGGTAATT		
Ascolaimus_elongatus				TGTGGTAATT		
Odontophora_rectangula				TGTGGTAATT		
Cylindrolaimus_sp202149				TGTGGTAATT		
Tylocephalus_auriculatus Plectus_acuminatus_BS9				TGTGGTAATT TGTGGTAATT		
Plectus_aquatilis				TGTGGTAATT		
Anaplectus_sp				TGTGGTAATT		
Anisakis_sp_WKT				TGTGGTAATT		
Anisakis_sp_Nadler				TGTGGTAATT		
Contracaecum_multipapillatum Pseudoterranova_decipiens				TGTGGTAATT TGTGGTAATT		
Raphidascaris_acus				tgtggtaatt		
Terranova_caballeroi				TGTGGTAATT		
Ascaris_suum				TGTGGTAATT		
Ascaris_lumbricoides				TGTGGTAATT		
Baylisascaris_procyonis Baylisascaris_transfuga				TGTGGTAATT TGTGGTAATT		
Parascaris_equorum				TGTGGTAATT		
Porrocaecum_depressum				TGTGGTAATT		
Toxascaris_leonina				TGTGGTAATT		
Heterocheilus_tunicatus Goezia_pelagia				TGTGGTAATT TGTGGTAATT		
Hysterothylacium_fortalezae				TGTGGTAATT		
Hysterothylacium_pelagicum				TGTGGTAATT		
Hysterothylacium_reliquens				TGTGGTAATT		
Iheringascaris_inquies				TGTGGTAATT		
Toxocara_canis Nemhelix_bakeri				TGTGGTAATT TGAGGTAATT		
Raillietnema_spV3060				TGTGGTAATT		
Cruzia_americana				TGTGGTAATT		
Heterakis_sp_14690				TGTGGTAATT		
Heterakis_gallinarum Paraspidodera_sp_21303				TGTGGTAATT TGTGGTAATT		
Chromodora_nudicapitata				TGTTCAAAAG		
Chromadora_spBHMM_2005				TGTGGAAAAG		
Atrochromadora_microlaima				TGTGGAAAAG		
Chromadorina_germanica				TGTGGAAAAT		
Chromadorita_tentabundum Dichromadora_spBHMM_2005				TGTGGAAAAT TGTGGAAAAG		
Neochromadora_BHMM_2005				TGTGGTAATT		
Spilophorella_paradoxa	CC	TACT	TGGATACC	TGTGGTAATT	CTAGAGCTAA	TACACGCA-C
Paracanthonchus_caecus				TGTGGTAATT		
Paracyatholaimus_intermedius Praeacanthonchus_punctatus				TGTGGTAATT TGTGGTAATT		
Praeacanthonchus_sp				TGTGGTAATT		
Cyatholaimus_spBHMM_2005				TGTGGTAATT		
Spirinia_parasitifera				TGTGGTAATT		
Acanthopharynx_micans				TGTGGTAATT		
Xyzzors_sp Metachromadora sp				TGTGGTAATT TGTGGTAATT		
Metachromadora_remanei				TGTGGTAATT		
Catanema_sp				TGTGGTAATT		
Eubostrichus_dianae				TGTGGTAATT		
Eubostrichus_topiarus Eubostrichus parasitiferus				TGTGGTAATT		
Laxus_oneistus				TGTGGTAATT TGTGGTAATT		
Laxus_cosmopolitus				TGTGGTAATT		
Leptonemella_sp		TACT	TGGATAAC	TGTGGTAATT	CTAGAGCTAA	TACATGCA-A
Robbea_hypermnestra				TGTGGTAATT		
Stilbonema_majum Monoposthia_costata				TGTGGTAATT CGTAGTAATT		
Nudora_bipapillata				TGTGCTAATT		
Calomicrolaimus_parahonestus				TGTGGTAATT		
Calomicrolaimus_spBHMM_2005				TGTGGTAATT		
Molgolaimus_demani				TGTGGTAATT		
NUCLEOTIDES INCLUDED		mmmm	uuuuunmmmm——	mmmmmmmmm	uuuunmmmmm	mmmmmm – –

Diplogaster_lethieri	19 TCC-	0 200 АААА				
Aduncospiculum_halicti		TAAA				
Pristionchus_lheritieri		AAAA				
Pristionchus_pacificus	TCC-	AAAA	CGGATATC	TGCGTTAATT	TTGGAGCTAA	TACGTGCA-C
Pristionchus_pacificus		AAAA				
Sabatieria_punctata_STRAIN_343		TACT				
Sabatieria_sp355_BHMM_2005 Sabatieria_celtica		TACT TACT				
Sabatieria_punctata_STRAIN_200		TACT				
Sabatieria_punctata_STRAIN_223		TACT				
Sabatieria_sp210_BHM_2005		TACT				
Setosabatieria_hilarula		TACT				
Desmolaimus_zeelandicus		TACT				
Terschellingia_longicaudata Cyartonema_elegans		TACT TACT				
Tridentulus_sp		TACT				
Diplolaimelloides_meyli		TACT				
Diplolaimella_diavengatensis	C	TACT	TGGATAAC	TGTGGTAATT	CTAGAGCTAA	TACATGCCT-
Geomonhystera_disjuncta		TACT				
Sphaerolaimus_hirsutus		TACT				
Theristus_acer Daptonema_procerus		TACT TACT				
Daptonema_procerus Daptonema_hirsutum		TACT				
Daptonema_normandicum		TACT				
Daptonema_oxycerca		TACT				
Daptonema_setosum		TACT				
Desmodora_communis Desmodora_ovigera		TACT TACT				
Metadesmolaimus_sp		TACT				
Dentostomella_sp		TACG				
Bunonema_franzi		CAAG				
Bunonema_sp		CAAT				
Seleborca_complexa		CCTACT				
Acrobeloides_nanus Acrobeloides_bodenheimeri		CCTACT CCTACT				
Acrobeloides_podemeimein Acrobeloides_sp_PS1146		CCTACT				
Acrobeles_ciliatus		CCTACT				
Acrobeles_sp_PS1156		CCTACT				
Acrobeles_complexus_WCUG2		CCTACT				
Cephaloboides_sp_SB227 Cephalobus_cubaensis		CTATG CCTACT				
Cephalobus_cubaensis Cephalobus_spPS1143		CCTACT				
Cephalobus_spPS1196		CCTACT				
Cephalobus_oryzae_PS1165	CAAT	CCTACT	TGGATAAC	TGTGGTAATT	CTAGAGCTAA	TACATGCA-T
Cervidellus_alutus		CCTACT				
Pseudacrobeles_variabilis		CCTACT CCTACT				
Triligulla_aluta Zeldia_punctada		CCTACT				
Myolaimus_sp_U81585		TACT				
Rhabditophanes_spKR3021	C	TAGT	TGGATAAC	TGAGGTAATT	CTTGAGCTAA	TACACGCAAT
Brevibucca_spSB261		TACT				
Halicephalobus_gingivalis Panagrobelus_stammeri		TAAA TCTTACA				
Plectonchus_spPDL0025		CCTACA				
Turbatrix_aceti		TACA				
Panagrellus_redivivus		CCTATA				
Panagrellus_redivivus_PS1163		CCTATA				
Panagrolaimus_subelongatus Panagrolaimus_davidi		TCCTACA TCCTACA				
Panagrolaimus_cf_rigidus_AF40		TCCTACA				
Panagrolaimus sp. Sourhope ED2	TTTA	TCCTACA	TGGATAAC	TGTGGTAATT	CTGGAGCTAA	TACATGCA-T
Panagrolaimus sp. Sourhope ED2		TCCTACA				
Panagrolaimus sp. Sourhope ED2		TCCTACA				
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2		TCCTACA TCCTACA				
Steinernema_carpocapsae		TTTAAA				
Strongyloides_stercoralis		TACA				
Strongyloides_ratti		TAGT				
Diploscapter_sp_PS1897		CAAT				
Diploscapter_sp_PS2017 Heterorhabditis_bacteriophora		CAAT TTTT				
Heterorhabditis_hepialus		TTTT				
Heterorhabditis_zelandica		TCTT				
Parasitorhabditis_sp_SB281		CGTA				
Rhabditoides_inermiformis		TACA				
Rhabditoides_inermis_DF5001 Rhabditoides_regina_DF5012		TCTA CTTA				
Poikilolaimus_oxycerca_SB200		TACT				
NUCLEOTIDES INCLUDED		mmmm				

	190	200	0 21	22	0 23	0 240
Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604					CTGGAGCTAA CTGGAGCTAA	
Distolabrellus veechi DF5024					CTGGAGCTAA	
Choriorhabditis_dudichi					CTGGAGCTAA	
Protorhabditis_sp					CTGGAGCTAA	
Protorhabditis_sp_DF5055 Cruznema_tripartitum_DF5015					CTGGAGCTAA CTGGAGCTAA	
Mesorhabditis_sp_PS1179					CTGGAGCTAA	
Mesorhabditis_spiculigera_SB15					CTGGAGCTAA	
Mesorhabditis_anisomorpha_SB12					CTGGAGCTAA	
Teratorhabditis_palmarum_DF501					CTGGAGCTAA	
Teratorhabditis_synpapillata_S Caenorhabditis_briggsae_PB102					CTGGAGCTAA CTGGAGCTAA	
Caenorhabditis_elegans_N2					CTGGAGCTAA	
Caenorhabditis_sp_CB5161					CTGGAGCTAA	
Caenorhabditis_sp_PS1010					CTGGAGCTAA	
Caenorhabditis_japonica Caenorhabditis_sp_DF5170					CTGGAGCTAA CTGGAGCTAA	
Caenorhabditis_sp_SB341					CTGGAGCTAA	
Caenorhabditis_plicata					CTGGAGCTAA	
Caenorhabditis_vulgaris					CTGGAGCTAA	
Caenorhabditis_sonorae Caenorhabditis_drosophilae					CTGGAGCTAA CTGGAGCTAA	
Phasmarhabditis_hermaphrodita					CTGGAGCTAA	
Phasmarhabditis_neopapillosa					CTGGAGCTAA	
Phasmarhabditis_neopapillosa					CTGGAGCTAA	
Pellioditis_mediterranea_SB173 Pellioditis_marina					CTGGAGCTAA CTGGAGCTAA	
Prodontorhabditis wirthi					CTGGAGTTAA	
Crustorhabditis_scanica					CTGGAGCTAA	
Dolichorhabditis_sp_CEW1					CTGGAGCTAA	
Oscheius_sp_DF5000					CTGGAGCTAA	
Oscheius_sp_BW282 Oscheius_myriophila_EM435					CTGGAGCTAA CTGGAGCTAA	
Oscheius_insectivora					CTGGAGCTAA	
Oscheius_dolichuroides					CTGGAGCTAA	
Rhabditis_blumi_DF5010					CTGGAGCTAA	
Rhabditis_sp_PS1191 Rhabditis_sp_PS1010					CTGGAGCTAA CTGGAGCTAA	
Rhabditis_myriophila_EM435					CTGGAGCTAA	
Rhabditis_colombiana					CTGGAGCTAA	
Rhabditella_axei_DF5006					CTGGAGCTAA	
Rhabditella_sp_DF5044 Cuticularia_sp_PS2083					CTGGAGCTAA CTGGAGCTAA	
Necator_americanus					CTGGAGCTAA	
Kalicephalus_cristatus					CTGGAGCTAA	
Ancylostoma_caninum					CTGGAGCTAA	
Angiostrongylus_cantonensis Angiostrongylus_costaricensis					CTGGAGCTAA CTGGAGCTAA	
Angiostrongylus_malaysiensis					CTGGAGCTAA	
Angiostrongylus_dujardini					CTGGAGCTAA	
Angiostrongylus_vasorum Aulurostrongylus_abstrusus					CTGGAGCTAA CTGGAGCTAA	
Didelphostrongylus_hayesi					CTGGAGCTAA	
Crenosoma_mephitidis						TACATGCG-A
Crenosoma_vulpis						TACATGCG-A
Otostrongylus_circumlitus Troglostrongylus_wilsoni						TACATGCG-A TACATGCG-A
Filaroides_martis						TACATGCG-A
Oslerus_osleri						TACATGCG-A
Parafilaroides_decorus						TACATGCT-A
Metastrongylus_salmi Metastrongylus_elongatus						TACATGCG-A TACATGCG-A
Skrjabingylus_chitwoodrum					CTGGAGCTAA	
Parelaphostrongylus_odocoilei						TACATATG-C
Muelerius_capillaris						TACATGCA-A
Protostrongylus_rufescens Halocercus_invaginatus						TACATGCG-A TACATGCT-a
Pseudalius_inflexus						TACATGCI-a TACATTCT-A
Stenurus_minor		CAAT	TGGATAAC	TGCGGTAATT	CTGGAGCTAA	TACATGCT-A
Torynurus_convolutus						TACATGCT-A
Syngamus_trachea Stephanurus_dentatus						TACATGCG-A
Stephanurus_dentatus Nematodirus_battus						TACATGCG-A TACATGCG-T
Strongylus_equinus		CTAT	TGGATAAC	TGCGGCAATT	CTGGAGCTAA	TACATGCA-A
Labiostrongylus_bipapillosus						TACATGCG-A
Petrovinema_poculatum Cylicocyclus_insignis						TACATGCA-A TACATGCG-A
NUCLEOTIDES INCLUDED					mmmmmmmmmm	

Chabartia ovina	190) 200) 210 TGGATAAC			
Cyclodontostomum_purvisi			TGGATAAC			
Zoniolaimus_mawsonae			TGGATAAC			
Hypodontus_macropi Deletrocephalus_dimidiatus			TGGATAAC TGGATAAC			
Dictyocaulus_eckerti_P7B8			TGGATAAC			
Dictyocaulus_capreolus_P3B2						TACATGCG-A
Dictyocaulus_spP6A1 Dictyocaulus_filaria			TGGATAAC			TACATGCG-A TACATGCA-A
Dictyocaulus_capreolus_P2C10						TACATGCG-A
Dictyocaulus_viviparus			TGGATAAC			
Haemonchus_spV3091						TACATGCA-A
Haemonchus_contortus Haemonchus_placei			TGGATAAC			TACATGCA-A TACATGCA-A
Haemonchus_similis			TGGATAAC			
Ostertagia_ostertagi			TGGATAAC			
Ostertagia_leptospicularis Nippostrongylus_brasileinsis			TGGATAAC TGGATAAC			
Heligmosomoides_polygyrus			TGGATAAC			
Trichostrongylus_colubriformis			TGGATAAC			
Tetrabothriostrongylus mackerr Herpestrongylus_pythonis			TGGATAAC TGGATAAC			
Nicollina_cameroni			TGGATAAC			
Filarimena_flagrifer			TGGATAAC			
Amidostomum_cygni Teratocephalus_lirellus			TGGATAAC TGGATAAC			
Brumptaemilius_justini			TGGATAAC			
Anguillicola_crassus			TGGATAAC			
Dracunculus_medinensis Dracunculus_oesophageus			TGGATAAC TGGATAAC			
Dracunculus_spV3104			TGGATAAC			
Philonema_sp_A			TGGATAAC			
Philometra_obturans			TGGATAAC TGGATAAC			
Camallanus_oxycepahalus Acanthocheilonema_viteae			TGGATAAC			
Loa_loa			TGGATAAC			
Onchocerca_cervicalis			TGGATAAC			
Dirofilaria_immitis Brugia_malayi			TGGATAAC TGGATAAC			
Wuchereria_bancrofti	ATCC	AACG	TGGATAAC	TGTGGCAATT	CTAGAGCTAA	TACATGCA-C
Litomosoides_sigmodontis			TGGATAAC			
Setaria_digitata Gnathostoma_turgidum			TGGATAAC TGGATATC			
Gnathostoma_neoprocyonis			TGGATATC			
Gnathostoma_binucleatum			TGGATATC			
Physaloptera_alata Physaloptera_turgida			TGGATAAC TGGATAAC			
Ascarophis_arctica			TGGATAAC			
Spinitectus_carolini			TGGATAAC			
Thelazia_lacrymalis Aphelenchus_avenae			TGGATAAC TGGATAAC			
Aphelenchoides_fragariae			CGGATAAC			
Bursaphelelenchus_sp			TGGATAAC			
Deladenus_sp Criconema_sp			TGGATAAC CGGATAAC			
Hemicycliophora_conida	CCAC	TACA	AGGATAAC	TGTGGTAATT	CTAGAGCTAA	TACTTGCA-C
Paratylenchus_dianthus			TGGATACC			
Pratylenchus_thornei Tylenchulus_semipentrans			TGGATAAC CGGATAAC			TACATGCA-C TACGTGCA-C
Ditylenchus_angustus	TATA	CTACA	TGGATAAC	TGTGGTAATT	CTAGAGCTAA	TACATGCA-C
Subanguina_radicola			TGGATAAC			
Tylenchorhynchus_maximus Geocenamus_quadrifer			TGGATAAC			TACATGCA-C
Globodera_pallida			TGGATAAC			
Scutellonema_bradys			TGGATAAC			
Helicotylenhcus_dihystera Rotylenchus_robustus			TGGATAAC TGGATAAC			
Meloidogyne_arenaria			TGGATAAC			
Meloidogyne_incognita_KT			TGGATAAC			
Meloidogyne_javanica Meloidogyne_artiellia			TGGATAAC TGGACAAC			
Meloidogyne_duytsi			TGGACAAC			
Meloidogyne_exigua			TGGATAAC			
Meloidogyne_hapla Meloidogyne_ichinohei			TGGACAAC TGGATAAC			
Meloidogyne_maritima			TGGACAAC			
Meloidogyne_microtyla			TGGACAAC			
Nacobbus_aberrans NUCLEOTIDES INCLUDED			TGGATAAC mmmmmmmm			
		uuuuuu				

···· ··· 190					
TCC-	TACT	TGGATAAC	TGTGGTAATT	CTAGAGCTAA	TACATGCA-C
TCC-	TACT	TGGATAAC	TGTGGTAATT	CTAGAGCTAA	TACATGCA-C
CACC	TACM	TGGATAAC	TGTGGTAATT	CTAGAGCTAA	TACATGCA-C
ACC-	TACT	TGGATAAC	TGTGGTAATT	CTAGAGCTAA	TACATGCA-C
CCCA	CACA	CGGATAAC	TGTGGTAATT	CTAGAGCTAA	TACGTGCA-C
ATCC	TACT	TGGATAAC	TGTGGTAATT	CTAGAGCTAA	TACATGCA-C
	CTAT	TGGATAAC	TGCGGTAATT	CTGGAGCTAA	TACATGCG-T
	CTAT	TGGATAAC	TGCGGTAATT	CTGGAGCTAA	TACATGCG-T
	CTAT	TGGATAAC	TGCGGCAATT	CTGGAGCTAA	TACACGTA-A
TAAA	TCCTACA	TGGATAAC	TGTGGTAATT	CTGGAGCTAA	TACATGCA-C
	CTTT	TGGATAAC	TGCGGCAATT	CTGGAGCTAA	TACATGCG-A
	TTCG	AGGATAAC	TGCGGTAATT	CTGGAGCTAA	TACATGCG-A
	TATA	TGGATAAC	TGCGGAAATA	CTGGAGCTAA	TACATGTC-A
	CTAT	TGGATAAC	TGCGGTAATT	CTGGAGCTAA	TACATGCG-T
	CTAT	TGGATAAC	TGCGGTAATT	CTGGAGCTAA	TACATGCG-T
TCC-	TACT	TGGATAAC	TGTGGTAATT	CTAGAGCTAA	TACATGCA-C
TAAA	TCCTACA	TGGATAAC	TGTGGTAATT	CTGGAGCTAA	TACATGCA-C
	TATTT	TGGATAAC	TGTGGTAATT	CTGGAGCTAA	TACATGCA-T
	CAAT	TGGATAAC	TGCGGTAATT	CTGGAGCTAA	TACATGCG-A
	AAAC	TGGATAAC	TGCGGTAATT	CTGGAGCTAA	TACATGCG-A
	TAATT	TGGATAAC	TGCGGTAATT	CTGGAGCTAA	TACATGCT-A
	GAAT	TGGATAAC	TGCGGTAATT	CTGGAGCTAA	TACATGCG-A
TCC-	TACT	TGGATAAC	TGTGGTAATT	CTAGAGCTAA	TACATGCA-C
	GAAT	TGGATAAC	TGCGGTAATT	CTGGAGCTAA	TACATGCG-A
	GAAT	TGGATAAC	TGCGGTAATT	CTGGAGCTAA	TACATTCT-A
	ATCTAT	TGGATAAC	TGCGGCAATT	CTGGAGCTAA	TACACGTA-A
TCC-	TACT	TGGATAAC	TGTGGTAATT	CTAGAGCTAA	TACATGCA-C
	AATA	TGGATAAC	TGCGGAAATA	CTGGAGCTAA	TACATGCA-A
	GAAT	TGGATAAC	TGCGGTAATT	CTGGAGCTAA	TACATGCG-A
	TAAC	TGGATAAC	TGCGGTAATT	CTGGAGCTAA	TACATGCG-A
	CTTT	TGGATAAC	TGCGGCAATT	CTGGAGMTAA	TACATGCG-A
	ATAT	TGGATAAC	TGCGGTAATT	CTGGAGCTAA	TACATGCT-A
	mmmm	mmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmm

Pratylenchoides_ritteri Pratylenchoides_magnicauda Hirschmanniella_sp._JH_2003 Radopholus_similis Pratylenchus_goodeyi_VF Boleodorus_thylactus_clone2 Philippine Sequence 1 Philippine Sequence 2 Philippine Sequence 3 Philippine Sequence 4 Philippine Sequence 5 Philippine Sequence 6 Philippine Sequence 7 Tahiti Sequence 1 Tahiti Sequence 2 Thailand Sequence 1 Ogasawara Sequence 1 Ogasawara Sequence 2 Ivory Coast Sequence 1 Ivory Coast Sequence 2 Ivory Coast Sequence 3 Ivory Coast Sequence 4 Ivory Coast Sequence 5 Ivory Coast Sequence 6 Ivory Coast Sequence 7 Singapore Sequence 1 Singapore Sequence 2 Singapore Sequence 3 Singapore Sequence 4 Nigerian Sequence 1 Nigerian Sequence 2 Nigerian Sequence 3

NUCLEOTIDES INCLUDED

Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni Mesodorylaimus_sp_cf_nigritul Mesodorylaimus_bastiani Mesodorylaimus_japonicus Pungentus_sp._PDL_2005 Allodorylaimus_sp Eudorylaimus_carteri Microdorylaimus_sp Longidorus_elongatus Xiphinema_rivesi Tylencholaimus_sp Anoplostoma_sp._BHMM_2005 Adoncholaimus_fuscus Enoplus_meridionalis Enoplus_brevis_U88336 Enoplus_communis Enoploides_brunettii Syringolaimus_striatocaudatus Ironus_dentifurcatus Calyptronema_maxweberi Viscosia_sp._BHMM_2005 Viscosia_viscosa Pontonema_vulgare Oncholaimus_sp._BHMM_2005 Alaimus_sp_PDL_2005 Prismatolaimus intermedius Tobrilus gracilis Tripyla_cf_filicaudata_JH_2004 Bathylaimus_sp Bathylaimus_assimilis Bathylaimus_sp._BHMM_2005 Tripyloides_sp._BHMM_2005 Trischistoma_monohystera Mermis nigrescens Mylonchulus_arenicolus NUCLEOTIDES INCLUDED

300 AAAAGCTCCG ACC----- ---- ---- GTATGGGAAG AGCGCTTTT-AAACG-TCGA ATC----- ----- GCGAGGTTCG ACTGCTTTT-AAAAGCTCTG CCC----- ------ GCAAGGAACG AGCGCATTT-AAAAGCTCCG CCC------ ----- GCAAGGAACG AGCGCATTT-ACAAGCTCCG ACC----- ---- TTACGGGACG AGCGCATTT-AAAAGCTCCG ACC----- ----- GCAAGGGACG AGCGCATTT-AAAAGCTCTG ACC----- ---- GCAAGGAACG AGCGCATTT-AAAAGCTCTG CCCT----- ----- TCACGGAAAG AGCGCATTT-TAAAGCTCTG CCC----- ---- ------ GTAAGGAACG AGCGCATTT-TAAAGCTCCG CCC------ ----- GAAAGGAACG AGCGCATTT-TAAAGCTCTG CCC------ GCAAGGAACG AGCGCATTT-TAAAGCTCTG ACC----- ---- GAAAGGAACG AGCGCATTT-AAAAGCTCAG ACT----- ---- GAAAGGAATG AGCGCATTT-AAAAGCTCGT TTC----- ----- ----- GCAAGATTCG AGCGCATTT-AAAAGCTCCG CCC------ ------ ----- GCAAGGAACG AGCGCATTT-TTATATCCAG ACC----- ---- TTACGGAATG GATGCAGTT-CAAAACCCCG AC------ ----- ---- -TAACGAAGG GGTGCGTTT-TTATGCCCTG ACT----- ---- TCACAGGAAG GGCGCGGTT-TTAAGTCCAG ACC----- TCACGGAACG GACGCGGTT-TTAAGTCCAG ACCT----- ---- -CACGGAACG GACGCGGTT-CAAAGCCCTA TTGC----- -----AG GGCGCATTT-TTATGCTCAG ACC----- ---- ---- TTACGGAATG AGCGCATTT-CAAAGCCCTG ACC----- ---- ---- GTAAGGAAGG GGTGCACTT-CAAAACCCCA ACT----- ----- -TTACGGAGG GGTGCGTTT-CAAAACCCAA CCT----- ---- ---- ---- --TACGGTGG GGTGCGTTT-CAAAACACCC GACT----- ---- TCGATGGAGG GGTGCGATTT CAAAGCCCTG ACT----- ---- ---- ---- --TCGGAAAG GGTGCGTTA-TGAAGCCGAA ACC----- ---- TTACGGAATC GGCGCATTT-GAAAGCTCTG ACC----- ---- ----- GTTCGGGAGG AGCGCATTT-CAAAGCTCGG AC------ ---- TCACG-AACG AGCGCATTT-CAAAGCTTCG ACC----- ---- TTACGGAAGG AGCGCATTT-CAAA-CGGCA CCC------ ----- TTATGGGAGC CGCGCTTTT-CAAA-CTGTG ACTTC----- ------GC AAGAAGAAGC AGTGCTTTT-TCAA-CTCTG ACC----- ---- TTACGGAAGG AGCGCGTTT-GAAAGCTCGG ACC----- ---- TTCGGGAAAG AGCGCATTT-GAAAGCTCCG ACCC----- ----- TTGAGGAAAG AGCGCATTT-_____ ____

	 25	···· ···· 0 26			
Anatonchus_tridentacus		ACC			
Mononchus_truncatus		ACC			
Prionchulus_muscorum		ACC			
Clarkus_sp Trichinella_spiralis		ACC ACTG			
Trichinella_papuae		ACTG			
Trichinella_britovi		ACTG			
Trichinella_murrelli		ACTG			
Trichinella_pseudospiralis Trichinella_nativa		ACTA ACTG			
Trichinella_zimbabwensis		ACTG			
Trichinella_nelsoni	AAAAACTTCA	ACTG	 	AATTGGTTGA	AGTGCTTTT-
Trichuris_suis		TCGCG			
Trichuris_trichiura Trichuris_muris		TCGC GCGC			
Tylolaimophorus_minor		ACC			
Paratrichodorus_pachydermus	TAAA-CGACG	ACC	 	TTACGGAAGT	CGTGCATTT-
Paratrichodorus_anemones		ACC			
Trichodorus_primitivus Axonolaimus_helgolandicus		ACC ACC			
Ascolaimus_elongatus		ACC			
Odontophora_rectangula		ACC			
Cylindrolaimus_sp202149		ACC			
Tylocephalus_auriculatus Plectus_acuminatus_BS9		ACC ACC			
Plectus_aquatilis		ACC			
Anaplectus_sp		ACC			
Anisakis_sp_WKT Anisakis sp Nadler		AT AT			
Contracaecum_multipapillatum		AT			
Pseudoterranova_decipiens		AT			
Raphidascaris_acus		AA			
Terranova_caballeroi		AA			
Ascaris_suum Ascaris_lumbricoides		AT AA			
Baylisascaris_procyonis		AT			
Baylisascaris_transfuga		AT			
Parascaris_equorum Porrocaecum_depressum		AT AA			
Toxascaris_leonina		AT			
Heterocheilus_tunicatus	CARAGCICCG	AC	 	TC-GTCGACG	AGCGCATCT-
Goezia_pelagia	CAAAGCTCCG	AA	 	TT-TTTGACG	AGCGCATCT-
Goezia_pelagia Hysterothylacium_fortalezae	CAAAGCTCCG CAAAGCTCCG	AA AA	 	TT-TTTGACG TC-TTTGACG	AGCGCATCT- AGCGCATCT-
Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_pelagicum	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG	AA	 	TT-TTTGACG TC-TTTGACG TT-TTTGACG	AGCGCATCT- AGCGCATCT- AGCGCATCT-
Goezia_pelagia Hysterothylacium_fortalezae	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG	AA AA AA	 	TT-TTTGACG TC-TTTGACG TT-TTTGACG TT-TTTGACG	AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT-
Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_pelagicum Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG	AA AA AA AA AA	 	TT-TTTGACG TC-TTTGACG TT-TTTGACG TT-TTTGACG TT-TTTGACG TT-TTTGACG	AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT-
Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_pelagicum Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG	AA AA AA AA AA AT AT	 	TT-TTTGACG TC-TTTGACG TT-TTTGACG TT-TTTGACG TT-TTTGACG TT-TGTGACG TT-T-TGACG	AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT-
Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_pelagicum Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG	AA AA AA AA AA	 	TT-TTTGACG TC-TTTGACG TT-TTTGACG TT-TTTGACG TT-TTTGACG TT-TGTGACG TT-T-TGACG TT-T-TGACG	AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- GGCGCATCT-
Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_pelagicum Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_spV3060	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG	AA AA AA AT AT AT AC AT	 	TT-TTTGACG TC-TTTGACG TT-TTTGACG TT-TTTGACG TT-TTTGACG TT-TGTGACG TT-T-TGACG TC-GTTGACG AATGACG	AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- GGCGCATCT- AGCGCATCT- AGCGCATCT-
Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_pelagicum Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_sp.v3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG	AA AA AA AT AT AC AT AT		TT-TTTGACG TC-TTTGACG TT-TTTGACG TT-TTTGACG TT-TTGACG TT-TGGACG TT-T-TGACG TC-GTGACG AATGACG TTTGACG	AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- GGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT-
Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_pelagicum Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_spV3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CGAAGCTCTG	AA AA AA AA AT		TT-TTTGACG TC-TTTGACG TT-TTTGACG TT-TTTGACG TT-TGTGACG TT-T-TGACG TC-GTTGACG TC-GTTGACG ATGACG TTTGACG -T-TTTGACG	AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT-
Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_pelagicum Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_sp.v3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CGAAGCTCCG CGAAGCTCTG CGAAGCTCAA	AA AA AA AT AT AC AT AT		TT-TTTGACG TC-TTTGACG TT-TTTGACG TT-TTTGACG TT-TGTGACG TT-T-TGACG TT-T-TGACG TC-GTTGACG AATGACG TTTGACG GC-AAGCTTG	AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- ACCGCACTT-
Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_pelagicum Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_sp.v3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_spBHM_2005 Atrochromadora_microlaima	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CGAAGCTCCG CGAAGCTCCG CGAAGTCCCG TCAAGTCCCG	AA AA AA AA AT AT AT AT AT AT AT AT AT Common A AT AC AT AT AC AT AC AC AC AC AC AC AC		TT-TTTGACG TC-TTTGACG TT-TTTGACG TT-TTTGACG TT-TTGACG TT-T-TGACG TT-T-TGACG TC-GTTGACG AATGACG TTTGACG GC-AAGCTTG TC-CGGAAGG TT-CGGAAGG	AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- ATCGCACTT- AGCGCATTT- GACGCATTT- GACGCATTT-
Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_sp.v3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_microlaima Chromadorina_germanica	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CGAAGCTCCG CGAAGCTCTG CGAAGCTCCG TCAAGTCCCG AACACCCA	AA AA AA AA AT AT AT AT AT AC AT AC AT AC AT AC AT AC AC AC AC AC AC AC AC AC		TT-TTTGACG TC-TTTGACG TT-TTTGACG TT-TTTGACG TT-TGACG TT-TGACG TT-T-TGACG TC-GTGACG AATGACG GC-AAGCTTG GC-AAGCTTG TT-CGGAAGG TT-CGGAAGG	AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- GACGCATTT- GACGCATTT- CTGGCAATT-
Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_pelagicum Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_spV3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_spBHMM_2005 Atrochromadora_microlaima Chromadorina_germanica	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CGAAGCTCCG CGAAGCTCCG CGAAGCTCCG CGAAGCTCCG TCAAGTCCCG TCAAGTCCCG TCAAGCCCTA	AA AA AA AA AT AT AT AT AC AT AC AT AC		TT-TTTGACG TC-TTTGACG TT-TTTGACG TT-TTTGACG TT-TGTGACG TT-TGTGACG TT-T-TGACG TC-GTTGACG ATGACG TTTGACG GC-AAGCTTG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-TGGAAAG	AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATTT- GACGCATTT- CTGGCAATT- GGCGCATTT-
Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_sp.v3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_microlaima Chromadorina_germanica	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CGAAGCTCCG CGAAGCTCCG CGAAGCTCCG TCAAGTCCCG ACAG-CCA TCAAGCCCTA	AA AA AA AA AT AT AT AT AT AC AT AC AT AC AT AC AT AC AC AC AC AC AC AC AC AC		TT-TTTGACG TC-TTTGACG TT-TTTGACG TT-TTTGACG TT-TTGACG TT-TGACG TT-T-TGACG TC-GTTGACG AATGACG TTTGACG GC-AAGCTTG GC-AAGCTTG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG	AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- GGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- GACGCATTT- GACGCATTT- CTGGCAATT- GACGCATTT- GACGCATTT- GACGCATTT-
Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_pelagicum Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_sp.V3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_spBHM_2005 Atrochromadora_microlaima Chromadorina_germanica Chromadorita_tentabundum Dichromadora_BHM_2005 Neochromadora_BHMM_2005 Spilophorella_paradoxa	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CGAAGCTCCG CGAAGCTCCG TCAAGTCCCG ACAGCCA TCAAGCCCCA TCAAGCCCCA	AA AA AA AT AT AT AT AT AT AC AC <tr tr=""></tr>		TT-TTTGACG TC-TTTGACG TT-TTTGACG TT-TTTGACG TT-TTGACG TT-T-TGACG TT-T-TGACG TC-GTTGACG AATGACG GC-AAGCTTG GC-AAGCTTG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TGACGGGCCG TTACGGCGGG	AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATTT- GACGCATTT- GACGCATTT- GGCGCATTT- GGCGCATTT- GGCGCATTT- GGCGCATTT-
Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_spV3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_spBHMM_2005 Atrochromadora_microlaima Chromadorina_germanica Chromadorita_tentabundum Dichromadora_spBHMM_2005 Neochromadora_BHMM_2005 Spilophorella_paradoxa Paracanthonchus_caecus	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CGAAGCTCCG CGAAGCTCCG CGAAGCTCCG TCAAGCCCCA TCAAGCCCCA TCAAGCCCCA TCAAGCCCCA TCAAGCCCCA CAAACCCCG	AA AA AA AA AT AT AT AC AT AC AT AC AC AC		TT-TTTGACG TC-TTTGACG TT-TTTGACG TT-TTTGACG TT-TGTGACG TT-TGTGACG TT-T-TGACG TC-GTTGACG C-AATGACG GC-AAGCTTG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TGACGGCCGG TTACGTGCGG TT-CGGAAGG	AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATTT- GACGCATTT- GACGCATTT- GGCGCATTT- GGCGCATTT- GGTGCATTT-
Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_gpV3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_spBHMM_2005 Atrochromadora_microlaima Chromadoria_germanica Chromadoria_spBHMM_2005 Neochromadora_BHMM_2005 Spilophorella_paradoxa Paracqutholaimus_intermedius	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CGAAGCTCCG CGAAGCTCCG CGAAGCTCCG TCAAGTCCCG AACAGCCA TCAAGCCCTA TCAAGCCCCA CAAACCCCG CAAACCCCG CAAACCCCG	AA AA AA AA AT AT AT AT AT AC AT AC AC <tr td=""> <tr td=""></tr></tr>		TT-TTTGACG TC-TTTGACG TT-TTTGACG TT-TTTGACG TT-TTGACG TT-T-GACG TC-GTTGACG C-ATGACG C-ATGACG G-AACCTTG GC-AACCTTG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG	AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- GGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATTT- GACGCATTT- CTGGCATTT- GGCGCATTT- GGCGCATTT- GGTGCATTT- GGTGCATTT- GGTGCATTT-
Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_pelagicum Hysterothylacium_reliquens Theringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_sp.V3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_spBHMM_2005 Atrochromadora_microlaima Chromadorina_germanica Chromadorita_tentabundum Dichromadora_BHMM_2005 Neochromadora_BHMM_2005 Spilophorella_paradoxa Paracanthonchus_caecus Paraecanthonchus_punctatus Praeacanthonchus_sp	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CGAAGCTCCG CGAAGCTCCG CGAAGCTCCG TCAAGTCCCG AACAGCCA TCAAGCCCCA TCAAGCCCCA CAAACCCCG GAAACCCCG GAAAGCCCCG GAAAGCCCCG GAAGCCCCG	AA AA AA AA AT AT AT AT AT AT AT AT AT AC AT AC AC <tr td=""> <tr td=""></tr></tr>		TT-TTTGACG TC-TTTGACG TT-TTTGACG TT-TTTGACG TT-TTGACG TT-T-TGACG TC-GTTGACG TC-GTTGACG CAATGACG AATGACG TTTGACG GC-AAGCTTG GC-AAGCTTG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGGAGG TT-CGGGAGG TT-CGGGAGG	AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- ACGCGCATTT- GACGCATTT- GACGCATTT- GGCGCATTT- GGTGCATTT- GGTGCATTT- GGCGCATTT- GGCGCATTT- GGCGCATTT- GGCGCATTT- GGCGCATTT- GGCGCATTT-
Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_pelagicum Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_sp.v3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_spBHM_2005 Atrochromadora_microlaima Chromadoria_germanica Chromadoria_germanica Chromadoris_tentabundum Dichromadora_spBHM_2005 Neochromadora_BHM_2005 Spilophorella_paradoxa Paracanthonchus_caecus Paracyatholaimus_intermedius Praeacanthonchus_punctatus Praeacanthonchus_sp Cyatholaimus_spBHM_2005	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG TCAAGTCCCG ACAGCCA TCAAGTCCCG TCAAGCCCCA TCAAGCCCCA CAAACCCTG GAAAGCCCG GAAAGCCCG CAAACCCTG CAAACCCTG	AA AA AA AT AT AT AT AT AT AT AT AC AC <tr td=""> <tr td=""></tr></tr>		TT-TTTGACG TC-TTTGACG TT-TTTGACG TT-TTTGACG TT-TTGACG TT-TGACG TT-T-TGACG TC-GTGACG ATGACG CTTTGACG GC-AAGCTTG GC-AAGCTTG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TTACGTGCGG TTACGTGCGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG	AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATTT- GACGCATTT- GACGCATTT- GGCGCATTT- GGTGCATTT- GGTGCATTT- GGCGCATTT- GGCGCATTT- GGCGCATTT- GGCGCATTT- GGCGCATTT- GGCGCATTT- GGCGCATTT- GGCGCATTT- GGCGCATTT- GGCGCATTT-
Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Railliatnema_spV3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_spBHMM_2005 Atrochromadora_microlaima Chromadoria_germanica Chromadoria_germanica Chromadora_spBHMM_2005 Neochromadora_BHMM_2005 Spilophorella_paradoxa Paracanthonchus_caecus Paracyatholaimus_intermedius Praeacanthonchus_sp Cyatholaimus_spBHMM_2005 Spirinia_parasitifera	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CGAAGCTCTG CGAAGCTCTG CGAAGCTCCG TCAAGTCCCG TCAAGTCCCG TCAAGCCCTA TCAAGCCCTA TCAAGCCCTG CAAACCCTG GAAACCCTG GAAGCCCCG CAAACCCCG GAAGCCCCG AAAGCCCCG AAAGCCCCG AAAGCCCCG AAAGCCCCG	AA AA AA AA AT AT AT AT AT AC AT AC AT AC AC <tr td=""> <tr td=""></tr></tr>		TT-TTTGACG TC-TTTGACG TT-TTTGACG TT-TTTGACG TT-TTTGACG TT-TGACG TC-GTTGACG CC-GTTGACG CC-AATGACG CC-AATGACG GC-AAGCTTG GC-AAGCTTG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG	AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATTT- GACGCATTT- GACGCATTT- GGCGCATTT- GGTGCATTT- GGTGCATTT- GGTGCATTT- GGCGCATTT- GGCGCATTT- GGCGCATTT- GGCGCATTT- GGCGCATTT- GGCGCATTT- GGCGCATTT- AGTGCATTT- AGTGCATTT-
Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_pelagicum Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_sp.v3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_spBHM_2005 Atrochromadora_microlaima Chromadoria_germanica Chromadoria_germanica Chromadoris_tentabundum Dichromadora_spBHM_2005 Neochromadora_BHM_2005 Spilophorella_paradoxa Paracanthonchus_caecus Paracyatholaimus_intermedius Praeacanthonchus_punctatus Praeacanthonchus_sp Cyatholaimus_spBHM_2005	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CGAAGCTCCG CGAAGCTCCG TCAAGTCCCG TCAAGTCCCG TCAAGCCCTA TCAAGCCCCA CAAACCCTG GAAACCCCG GAAACCCCG CAAACCCCG CAAACCCCG CAAACCCCG CAAACCCCG CAAACCCCG CAAACCCCG CAAACCCCG CAAACCCCG CAAACCCCG CAAACCCCG CAAACCCCG CAAACCCCG CAAACCCCG CAAACCCCG	AA AA AA AT AT AT AT AT AT AT AT AC AC <tr td=""> <tr td=""></tr></tr>		TT-TTTGACG TC-TTTGACG TT-TTTGACG TT-TTTGACG TT-TTGACG TT-TGACG TC-GTTGACG TC-GTTGACG C-AATGACG AATGACG GC-AAGCTTG GC-AAGCTTG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG	AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- GGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATTT- GACGCATTT- GACGCATTT- GGCGCATTT- GGTGCATTT- GGTGCATTT- GGTGCATTT- GGCGCATTT- GGCGCATTT- GGCGCATTT- GGCGCATTT- GGTGCATTT- GGTGCATTT- GGTGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT-
Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_reliquens Theringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_sp.V3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_spBHMM_2005 Atrochromadora_microlaima Chromadoria_germanica Chromadoria_spBHMM_2005 Neochromadora_BHMM_2005 Spilophorella_paradoxa Paracquthonchus_caecus Paracquthonchus_punctatus Praeacanthonchus_pHMM_2005 Spirinia_parasitifera Acanthopharynx_micans	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CGAAGCTCCG CGAAGCTCCG TCAAGTCCCG ACAGCCA TCAAGCCCCG CAAAGCCCCG GAAAGCCCCG GAAACCCTG GAAACCCCG CAAACCCCG CAAACCCCG CAAACCCCG CAAACCCCG CAAACCCCG CAAACCCCG CAAACCCCG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG	AA AA AA AA AT AT AT AT AT AT AT AT AC AT AC		TT-TTTGACG TC-TTTGACG TT-TTTGACG TT-TTTGACG TT-TTGACG TT-TGACG TT-T-TGACG TC-GTTGACG C-AAGCTTG GC-AAGCTTG GC-AAGCTTG GC-AAGCTTG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG TTGCGGAAGG TTGCGGAAGG	AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATTT- GACGCATTT- GACGCATTT- GGCGCATTT- GGTGCATTT- GGTGCATTT- GGCGCATTT- GGCGCATTT- GGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT-
Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_spV3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_spBHMM_2005 Atrochromadora_microlaima Chromadoria_germanica Chromadoria_germanica Chromadora_spBHMM_2005 Neochromadora_BHMM_2005 Spilophorella_paradoxa Paracanthonchus_caecus Paracyatholaimus_intermedius Praeacanthonchus_sp Cyatholaimus_spBHMM_2005 Spirinia_parasitifera Acanthopharynx_micans Xyzzors_sp Metachromadora_sp.	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CGAAGCTCCG CGAAGCTCCG CGAAGCTCCG TCAAGCCCCG TCAAGCCCCG TCAAGCCCCG CAAACCCCG GAAAGCCCCG GAAAGCCCCG GAAAGCCCCG CAAACCCCG CAAACCCCG CAAAGCTCCA CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG	AA AA AA AA AT AT AT AT AT AT AT AC AT AC AT AC		TT-TTTGACG TC-TTTGACG TT-TTTGACG TT-TTTGACG TT-TTTGACG TT-TGACG TT-TGACG TC-GTTGACG CC-GTTGACG CC-AATGACG CC-AAGCTTG GC-AAGCTTG GC-AAGCTTG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG TTGCGGAAGG TTGCGGAAGG	AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATTT- GACGCATTT- GACGCATTT- GGTGCATTT- GGTGCATTT- GGTGCATTT- GGTGCATTT- GGTGCATTT- AGTGCATTT- AGTGCATTT- AGTGCATTT- AGTGCATTT- AGTGCATTT- AGTGCATTT- AGTGCATTT- AGTGCATTT- AGTGCATTT- AGTGCATTT- AGTGCATTT- AGTGCATTT- AGTGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT-
Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_reliquens Theringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_sp.V3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_sp.BHMM_2005 Atrochromadora_microlaima Chromadoria_germanica Chromadoria_tentabundum Dichromadora_sp.BHMM_2005 Neochromadora_BHMM_2005 Spilophorella_paradoxa Paracqutholaimus_intermedius Praeacanthonchus_puctatus Praeacanthonchus_pi Cyatholaimus_sp.BHM_2005 Spirinia_parasitifera Acanthopharynx_micans Xyzzors_sp Metachromadora_sp Metachromadora_remanei Catanema_sp	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CGAAGCTCCG CGAAGCTCCG TCAAGTCCCG TCAAGTCCCG TCAAGCCCCA TCAAGCCCCG GAAACCCTG GAAACCCTG GAAACCCTG CAAACCTCG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG ACAAGCTCCG	AA AA AA AA AT AC		TT-TTTGACG TC-TTTGACG TT-TTTGACG TT-TTTGACG TT-TTTGACG TT-TGACG TT-TGACG TC-GTTGACG AATGACG TTTGACG GC-AAGCTTG GC-AAGCTTG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG TTGCGGAAGG TTGCGGAAGG TTGCGGAAGG TTCCGGAAGG	AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- GGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATTT- GACGCATTT- GACGCATTT- GGCGCATTT- GGTGCATTT- GGTGCATTT- GGTGCATTT- GGTGCATTT- GGTGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT-
Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_spV3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_spBHMM_2005 Atrochromadora_microlaima Chromadoria_germanica Chromadoria_germanica Chromadora_spBHMM_2005 Neochromadora_BHMM_2005 Spilophorella_paradoxa Paracanthonchus_caecus Paracyatholaimus_intermedius Praeacanthonchus_sp Cyatholaimus_spBHMM_2005 Spirinia_parasitifera Acanthopharynx_micans Xyzzors_sp Metachromadora_sp.	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CGAAGCTCTG CGAAGCTCCG TCAAGCCCCA TCAAGCCCCA TCAAGCCCCA GAAACCCCG GAAACCCCG GAAACCCCG CAAACCCCG CAAACCCCG CAAACCCCG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG TCAGCCCCG CCAAGCTCCG CCAAGCTCCG	AA AA AA AA AT AT AT AT AT AT AT AC AT AC AT AC		TT-TTTGACG TC-TTTGACG TT-TTTGACG TT-TTTGACG TT-TTTGACG TT-T-TGACG TC-GTTGACG TC-GTTGACG C-ATGACG GC-AAGCTG GC-AAGCTG GC-AAGCTG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TTCGGGAAGG TTGCGGAAGG TTGCGGAAGG TTGCGGAAGG TTGCGGAAGG TTGCGGAAGG TTGCGGAAGG	AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATTT- GACGCATTT- GACGCATTT- GGCGCATTT- GGTGCATTT- GGTGCATTT- GGTGCATTT- GGTGCATTT- AGTGCATTT- AGTGCATTT- AGTGCATTT- AGTGCATTT- AGTGCATTT- AGTGCATTT- AGTGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT-
Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_spV3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_spBHMM_2005 Atrochromadora_microlaima Chromadoria_germanica Chromadoria_germanica Chromadora_spBHMM_2005 Neochromadora_BHMM_2005 Spilophorella_paradoxa Paracanthonchus_caecus Paracyatholaimus_intermedius Praeacanthonchus_sp Cyatholaimus_spBHMM_2005 Spirinia_parasitifera Acanthopharynx_micans Xyzzors_sp Metachromadora_sp Hetachromadora_remanei Catanema_sp Eubostrichus_danae Eubostrichus_parasitiferus	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CGAAGCTCCG CGAAGCTCCG CGAAGCTCCG CGAAGCTCCG TCAAGCCCCA TCAAGCCCCA TCAAGCCCCG GAAAGCCCCG GAAAGCCCCG GAAAGCCCCG CAAAGCTCCG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG	AA AA AA AA AT AT AT AT AT AT AT AT AC AT AC AT AC		TT-TTTGACG TC-TTTGACG TT-TTTGACG TT-TTTGACG TT-TTTGACG TT-TGACG TT-TGACG TC-GTTGACG C-AATGACG GC-AAGCTTG GC-AAGCTTG GC-AAGCTTG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TTACGGAAGG TTACGGAAGG TTGCGGAAGG TTGCGGAAGG TTGCGGAAGG TTTGCGAAGG TTTGCGAAGG TTTGCGAAGG	AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATTT- GACGCATTT- GGCGCATTT- GGTGCATTT- GGTGCATTT- GGTGCATTT- GGTGCATTT- AGTGCATTT- AGTGCATTT- AGTGCATTT- AGTGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT-
Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_sp.V3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_sp.BHMM_2005 Atrochromadora_microlaima Chromadoria_germanica Chromadoria_germanica Chromadora_sp.BHMM_2005 Neochromadora_BHMM_2005 Neochromadora_BHMM_2005 Spilophorella_paradoxa Paracyatholaimus_intermedius Praeacanthonchus_punctatus Praeacanthonchus_punctatus Praeacanthonchus_sp Cyatholaimus_sp.BHM_2005 Spirinia_parasitifera Acanthopharynx_micans Xyzzors_sp Metachromadora_sp Metachromadora_remanei Catanema_sp Eubostrichus_dianae Eubostrichus_parasitiferus Laxus_oneistus	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CGAAGCTCCG CGAAGCTCCG TCAAGCCCCG TCAAGCCCCG TCAAGCCCCG GAAACCCCG GAAACCCCG GAAACCCCG CAAACCTCG CAAACCTCG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG	AA AA AA AA AT AC		TT-TTTGACG TC-TTTGACG TT-TTTGACG TT-TTTGACG TT-TTTGACG TT-T-TGACG TC-GTTGACG TC-GTTGACG ATGACG GC-AAGCTTG GC-AAGCTTG GC-AAGCTTG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG TTGCGGAAGG TTGCGGAAGG TTGCGGAAGG TTGCGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG	AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- GGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- GACGCATTT- GACGCATTT- GGCGCATTT- GGCGCATTT- GGTGCATTT- GGTGCATTT- GGTGCATTT- AGTGCATTT- AGTGCATTT- AGTGCATTT- AGCGCATTT-
Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_reliquens Theringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_sp.V3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_spBHMM_2005 Atrochromadora_microlaima Chromadoria_germanica Chromadoria_germanica Chromadoria_germanica Chromadora_spBHMM_2005 Neochromadora_BHMM_2005 Spilophorella_paradoxa Paracanthonchus_caecus Paracyatholaimus_intermedius Praeacanthonchus_punctatus Praeacanthonchus_sp Cyatholaimus_sp.BHM_2005 Spirinia_parasitifera Acanthopharynx_micans Xyzzors_sp Metachromadora_sp Metachromadora_remanei Catanema_sp Eubostrichus_topiarus Eubostrichus_parasitiferus Laxus_oneistus Laxus_cosmopolitus	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CGAAGCTCCG TCAAGTCCCG TCAAGTCCCG TCAAGCCCA TCAAGCCCA CAAACCCTG GAAACCCTG GAAACCCTG CAAACCCCG CAAACCCCG CAAACCCCG CAAACCCCG CCAAGCTCCA CCAAGCTCCG TCAGGCTCCG TCAGCTCCG TCAGCTCCG TCAAGCTCCG TCAAGCTCCG TCAAGCTCCG TCAAGCTCCG TCAAGCTCCG TCAAGCTCCG	AA AA AA AA AT AC		TT-TTTGACG TT-TTTGACG TT-TTTGACG TT-TTTGACG TT-TTGACG TT-TGACG TC-GTTGACG TC-GTTGACG C-TTTGACG GC-AAGCTTG GC-AAGCTTG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TTCGGAAGG TTACGGAAGG TTACGGAAGG TTGCGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG	AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATTT- GACGCATTT- GACGCATTT- GGCGCATTT- GGTGCATTT- GGTGCATTT- GGTGCATTT- GGTGCATTT- AGCGCATTT- AGTGCATTT- AGTGCATTT- AGTGCATTT- AGTGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT- AGCGCATTT-
Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_sp.V3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_sp.BHMM_2005 Atrochromadora_microlaima Chromadoria_germanica Chromadoria_germanica Chromadora_sp.BHMM_2005 Neochromadora_BHMM_2005 Neochromadora_BHMM_2005 Spilophorella_paradoxa Paracyatholaimus_intermedius Praeacanthonchus_punctatus Praeacanthonchus_punctatus Praeacanthonchus_sp Cyatholaimus_sp.BHM_2005 Spirinia_parasitifera Acanthopharynx_micans Xyzzors_sp Metachromadora_sp Metachromadora_remanei Catanema_sp Eubostrichus_dianae Eubostrichus_parasitiferus Laxus_oneistus	CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CAAAGCTCCG CGAAGCTCCG TCAAGCCCG TCAAGCCCG TCAAGCCCCA TCAAGCCCCG GAAACCCTG GAAACCCTG CAAACCCTG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCG CCAAGCTCCA CCAAGCTCCA CCAAGCTCCA	AA AA AA AA AT AC		TT-TTTGACG TT-TTTGACG TT-TTTGACG TT-TTTGACG TT-TTTGACG TT-T-TGACG TC-GTTGACG TC-GTTGACG C-AATGACG GC-AAGCTTG GC-AAGCTTG GC-AAGCTTG GC-AAGCTG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TT-CGGAAGG TTCGGGAAGG TTGCGGAAGG TTGCGGAAGG TTGCGGAAGG TTGCGGAAGG TTGCGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG TTACGGAAGG	AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATCT- AGCGCATTT- GACGCATTT- GACGCATTT- GGCGCATTT- GGCGCATTT- GGTGCATTT- GGTGCATTT- AGCGCATTT- AGTGCATTT- AGTGCATTT- AGCGCATTT-

Robbea_hypermnestra
Stilbonema_majum
Monoposthia_costata
Nudora_bipapillata
Calomicrolaimus_parahonestus
Calomicrolaimus_spBHMM_2005
Molgolaimus_demani Diplogaster lethieri
Aduncospiculum_halicti
Pristionchus_lheritieri
Pristionchus_pacificus
Pristionchus_pacificus
Sabatieria_punctata_STRAIN_343
Sabatieria_sp355_BHMM_2005
Sabatieria_celtica
Sabatieria_punctata_STRAIN_200
Sabatieria_punctata_STRAIN_223
Sabatieria_sp210_BHM_2005
Setosabatieria_hilarula
Desmolaimus_zeelandicus
Terschellingia_longicaudata
Cyartonema_elegans Tridentulus_sp
Diplolaimelloides_meyli
Diplolaimella_diavengatensis
Geomonhystera disjuncta
Sphaerolaimus_hirsutus
Theristus_acer
Daptonema_procerus
Daptonema_hirsutum
Daptonema_normandicum
Daptonema_oxycerca
Daptonema_setosum
Desmodora_communis
Desmodora_ovigera
Metadesmolaimus_sp
Dentostomella_sp Bunonema_franzi
Bunonema_sp
Seleborca_complexa
Acrobeloides_nanus
Acrobeloides_bodenheimeri
Acrobeloides_sp_PS1146
Acrobeles_ciliatus
Acrobeles_sp_PS1156
Acrobeles_complexus_WCUG2
Cephaloboides_sp_SB227
Cephalobus_cubaensis
Cephalobus_spPS1143
Cephalobus_spPS1196 Cephalobus_oryzae_PS1165
Cervidellus_alutus
Pseudacrobeles_variabilis
Triligulla aluta
Triligulla_aluta Zeldia punctada
Triligulla_aluta Zeldia_punctada Myolaimus_sp_U81585
Zeldia_punctada Myolaimus_sp_U81585 Rhabditophanes_spKR3021
Zeldia_punctada Myolaimus_sp_U81585 Rhabditophanes_spKR3021 Brevibucca_spSB261
Zeldia_punctada Myolaimus_sp_U81585 Rhabditophanes_spKR3021 Brevibucca_spSB261 Halicephalobus_gingivalis
Zeldia_punctada Myolaimus_sp_U81585 Rhabditophanes_spKR3021 Brevibucca_spSB261 Halicephalobus_gingivalis Panagrobelus_stammeri
Zeldia_punctada Myolaimus_sp_U81585 Rhabditophanes_spKR3021 Brevibucca_spSB261 Halicephalobus_gingivalis Panagrobelus_stammeri Plectonchus_spPDL0025
Zeldia_punctada Myolaimus_sp_U81585 Rhabditophanes_spKR3021 Brevibucca_spSB261 Halicephalobus_gingivalis Panagrobelus_stammeri Plectonchus_spPDL0025 Turbatrix_aceti
Zeldia_punctada Myolaimus_sp_U81585 Rhabditophanes_spKR3021 Brevibucca_spSB261 Halicephalobus_gingivalis Panagrobelus_stammeri Plectonchus_spPDL0025 Turbatrix_aceti Panagrellus_redivivus
Zeldia_punctada Myolaimus_sp_U81585 Rhabditophanes_spKR3021 Brevibucca_spSB261 Halicephalobus_gingivalis Panagrobelus_stammeri Plectonchus_spPDL0025 Turbatrix_aceti Panagrellus_redivivus Panagrellus_redivivus_PS1163
Zeldia_punctada Myolaimus_sp_U81585 Rhabditophanes_spKR3021 Brevibucca_sp.SB261 Halicephalobus_gingivalis Panagrobelus_stammeri Plectonchus_sp.PDL0025 Turbatrix_aceti Panagrellus_redivivus Panagrellus_redivivus_PS1163 Panagrolaimus_subelongatus
Zeldia_punctada Myolaimus_sp_U81585 Rhabditophanes_spKR3021 Brevibucca_spSB261 Halicephalobus_gingivalis Panagrobelus_stammeri Plectonchus_spPDL0025 Turbatrix_aceti Panagrellus_redivivus Panagrellus_redivivus_PS1163 Panagrolaimus_subelongatus Panagrolaimus_davidi
Zeldia_punctada Myolaimus_sp_U81585 Rhabditophanes_spKR3021 Brevibucca_spSB261 Halicephalobus_gingivalis Panagrobelus_stammeri Plectonchus_spPDL0025 Turbatrix_aceti Panagrellus_redivivus Panagrellus_redivivus_PS1163 Panagrolaimus_subelongatus Panagrolaimus_davidi Panagrolaimus_cf_rigidus_AF40
Zeldia_punctada Myolaimus_sp_U81585 Rhabditophanes_spKR3021 Brevibucca_spSB261 Halicephalobus_gingivalis Panagrobelus_stammeri Plectonchus_spPDL0025 Turbatrix_aceti Panagrellus_redivivus Panagrellus_redivivus_PS1163 Panagrolaimus_subelongatus Panagrolaimus_davidi Panagrolaimus_cf_rigidus_AF40 Panagrolaimus_sp. Sourhope ED2
Zeldia_punctada Myolaimus_sp_U81585 Rhabditophanes_sp_KR3021 Brevibucca_spSB261 Halicephalobus_gingivalis Panagrobelus_stammeri Plectonchus_spPDL0025 Turbatrix_aceti Panagrellus_redivivus Panagrellus_redivivus_PS1163 Panagrolaimus_subelongatus Panagrolaimus_davidi Panagrolaimus_davidi Panagrolaimus_sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2
Zeldia_punctada Myolaimus_sp_U81585 Rhabditophanes_spKR3021 Brevibucca_spSB261 Halicephalobus_gingivalis Panagrobelus_stammeri Plectonchus_spPDL0025 Turbatrix_aceti Panagrellus_redivivus Panagrellus_redivivus_PS1163 Panagrolaimus_subelongatus Panagrolaimus_davidi Panagrolaimus_cf_rigidus_AF40 Panagrolaimus_sp. Sourhope ED2
Zeldia_punctada Myolaimus_sp_U81585 Rhabditophanes_spKR3021 Brevibucca_spSB261 Halicephalobus_gingivalis Panagrobelus_stammeri Plectonchus_spPDL0025 Turbatrix_aceti Panagrellus_redivivus Panagrellus_redivivus_PS1163 Panagrolaimus_subelongatus Panagrolaimus_davidi Panagrolaimus_cf_rigidus_AF40 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2
Zeldia_punctada Myolaimus_sp_U81585 Rhabditophanes_sp_KR3021 Brevibucca_spSB261 Halicephalobus_gingivalis Panagrobelus_stammeri Plectonchus_spPDL0025 Turbatrix_aceti Panagrellus_redivivus Panagrellus_redivivus_PS1163 Panagrolaimus_davidi Panagrolaimus_cf_rigidus_AF40 Panagrolaimus_sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae
Zeldia_punctada Myolaimus_sp_U81585 Rhabditophanes_sp_KR3021 Brevibucca_sp_SB261 Halicephalobus_gingivalis Panagrobelus_stammeri Plectonchus_sp.PDL0025 Turbatrix_aceti Panagrellus_redivivus Panagrellus_redivivus_PS1163 Panagrolaimus_davidi Panagrolaimus_davidi Panagrolaimus_cf_rigidus_AF40 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2
Zeldia_punctada Myolaimus_sp_U81585 Rhabditophanes_spKR3021 Brevibucca_sp.SB261 Halicephalobus_gingivalis Panagrobelus_stammeri Plectonchus_sp.PDL0025 Turbatrix_aceti Panagrellus_redivivus Panagrellus_redivivus_PS1163 Panagrolaimus_davidi Panagrolaimus_davidi Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti
Zeldia_punctada Myolaimus_sp_U81585 Rhabditophanes_spKR3021 Brevibucca_spSB261 Halicephalobus_gingivalis Panagrobelus_stammeri Plectonchus_spPDL0025 Turbatrix_aceti Panagrellus_redivivus Panagrolaimus_redivivus_PS1163 Panagrolaimus_davidi Panagrolaimus_cf_rigidus_AF40 Panagrolaimus_sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897
Zeldia_punctada Myolaimus_sp_U81585 Rhabditophanes_sp_KR3021 Brevibucca_spSB261 Halicephalobus_gingivalis Panagrobelus_stammeri Plectonchus_spPDL0025 Turbatrix_aceti Panagrellus_redivivus Panagrolaimus_redivivus_PS1163 Panagrolaimus_subelongatus Panagrolaimus_davidi Panagrolaimus_cf_rigidus_AF40 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS2017
Zeldia_punctada Myolaimus_sp_U81585 Rhabditophanes_sp_KR3021 Brevibucca_spSB261 Halicephalobus_gingivalis Panagrobelus_stammeri Plectonchus_spPDL0025 Turbatrix_aceti Panagrellus_redivivus Panagrellus_redivivus_PS1163 Panagrolaimus_davidi Panagrolaimus_davidi Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS107 Heterorhabditis_bacteriophora
Zeldia_punctada Myolaimus_sp_U81585 Rhabditophanes_sp_KR3021 Brevibucca_spSB261 Halicephalobus_gingivalis Panagrobelus_stammeri Plectonchus_spPDL0025 Turbatrix_aceti Panagrellus_redivivus Panagrolaimus_redivivus_PS1163 Panagrolaimus_subelongatus Panagrolaimus_davidi Panagrolaimus_cf_rigidus_AF40 Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS2017

TCAAGCTCCG	CCC			TCACGGAAGG	AGTGCATTT-
CAAAGCTCCG	ACC			TTACGGAAAG	AGCGCATTT-
ACAAACCCCG	ACT			TCT-GGGAGG	GGCGCATTT-
AAAAGCCCAA	GTT			TCTTG	GGTGCATTT-
ACAAGTTCCG	ACG			TAAGGAGG	AACGCATTT-
ACAAGTTCCG	ACG			TAAGGAGG	AACGCATTT-
TCAAGTTCCA	ACG			CAAGAAGG	AACGCATTT-
CAAAGCACCG	CCA			GCAATGGTAG	TGCGCACAT-
CGAGTCAATG	GCC			TC-ACGGCGT	TGCGCACTT-
CAAAGCACCG	CCA			GCAATGGTAG	TGCGCACAT-
CAACGTGCTG	CTA			GCAATAGTGG	CACGCACTT-
CAACGTGCTG	CTA			GCAATAGTGG	CACGCACTT-
TAAAGCTCTG	ACC			TTACGGGACG	AGCGCATTT-
TAAAGCTCTG	ACC			TTACGGGACG	AGCGCATTT-
TAAAGCTCCG	ACC			TTACGGAACG	AGCGCATTT-
CAAAGCTCCG	ACC			TTACGGGACG	AGCGCATTT-
TGAAGCTCTG	ACC			TTCGGGGGACG	AGCGCATTT-
TCAACACICIG	ACC			TTCCCCCAACG	AGIGCGIII-
TAAGCCCCCG	ACC			TTCCCCAAC	GGTGCATTT-
TCAAGACCCG	ACC			CAAGGACG	GTCGCAATT-
CTAATCCCCG	ATC			GCAAGTGACG	GGAGCACTT-
TGTAGCTCTG	ATC			GTAAGTGATG	AGCGCATTT-
CTAAGGGCCG	AAC			TCACGTGACG	CTTGCATTT-
-GAAGCCCTG	ACC			TTTTGGGATG	GGTGCACTT-
TCGAGCTCCG	CCC			GCAAGGAACG	AGCGCATTT-
TCGAGCCCCG	ACT			TCACAGGACG	GGCGCATTT-
TCGAGCTCCG	ACT			TAACAGGACG	AGCGCATTT-
TCGAGCTCTG	ACC			-TTTGGGACG	AGTGCATTT-
TCGAGCCCCG	ACT			TCACAGGACG	GGCGCATTT-
TCGAGCTCCG	ACT			TAACAGGACG	AGCGCATTT-
ACAAGCTCCG	ACC			TTACGGAAGG	AGCGCATTT-
TCCAAGCICCG	ACCTT			11-IGGAAGG	AGIGCGITI-
CAAAGCTCTG	AT			TTATTTGTGG	AGCGCATCT-
CGATGCCCTG	ACC			GTGAGGAAAG	GGTGCAGTT-
CGATGCCCCG	ACC			GCAAGGAAAG	GGTGCAGTT-
TAAAGCTCCG	ACC			TCACGGGAAG	AGTGCATTT-
TAAAGCTCTG	ACC			TCACGGGAAG	AGTGCATTT-
TAAAGCTCTG	ACC			TCACGGGAAG	AGTGCATTT-
CTAAGCTCTG	CCT			TCACGGGTAG	AGTGCATTT-
CTAAGCTCTG	CCT			TCACGGGTAG	AGTGCATTT-
TAAAG-CAIG	ACC			TCCCCCCCA	AGTGCATTT-
TAAAGCTCTG	ACC			TCACGGGAAG	AGTGCATTT-
TAAAGCTCTG	ACC			TCACGGGAAG	AGTGCATTT-
TAAAGCTCTG	ACC			TCACGGGAAG	AGTGCATTT-
TAAAGCTCTG	ACC			TAACGGGAAG	AGTGCATTT-
TAAAGCTCTG	ACC			TTCCGGGAAG	AGTGCATTT-
TAAAGCTCTG	ACC			TAACGGGAAG	AGTGCATTT-
			GT		
			C		
			C		
			TT		
AAAAGATTAT	ACA		TT	TTTATGTATA	ATTGCGTAT-
			CT		
			CT		
			CT		
			TT		
			TT		
CAATGCCCCA	ACT			TCGGAAGG	GGTGCAATT-

Heterorhabditis_hepialus
Heterorhabditis_zelandica
Parasitorhabditis_sp_SB281
Rhabditoides_inermiformis Rhabditoides_inermis_DF5001
Rhabditoides_regina_DF5012
Poikilolaimus_oxycerca_SB200
Poikilolaimus_regenfussi_SB199
Distolabrellus veechi DWF1604
Distolabrellus veechi DF5024 Choriorhabditis_dudichi
Protorhabditis_sp
Protorhabditis_sp_DF5055
Cruznema_tripartitum_DF5015
Mesorhabditis_sp_PS1179
Mesorhabditis_spiculigera_SB15 Mesorhabditis_anisomorpha_SB12
Teratorhabditis_palmarum_DF501
Teratorhabditis_synpapillata_S
Caenorhabditis_briggsae_PB102
Caenorhabditis_elegans_N2
Caenorhabditis_sp_CB5161
Caenorhabditis_sp_PS1010 Caenorhabditis_japonica
Caenorhabditis_sp_DF5170
Caenorhabditis_sp_SB341
Caenorhabditis_plicata
Caenorhabditis_vulgaris
Caenorhabditis_sonorae Caenorhabditis_drosophilae
Phasmarhabditis_hermaphrodita
Phasmarhabditis_neopapillosa
Phasmarhabditis_neopapillosa
Pellioditis_mediterranea_SB173
Pellioditis_marina Prodontorhabditis_wirthi
Crustorhabditis_scanica
Dolichorhabditis_sp_CEW1
Oscheius_sp_DF5000
Oscheius_sp_BW282
Oscheius_sp_BW282 Oscheius_myriophila_EM435
Oscheius_sp_BW282
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_insectivora Oscheius_dolichuroides Rhabditis_blumi_DF5010
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_insectivora Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1191
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_insectivora Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1191 Rhabditis_sp_PS1010
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_insectivora Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1191 Rhabditis_sp_PS1010 Rhabditis_myriophila_EM435
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1191 Rhabditis_myriophila_EM435 Rhabditis_colombiana
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_insectivora Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1191 Rhabditis_sp_PS1010 Rhabditis_colombiana Rhabditella_axei_DF5006 Rhabditella_sp_DF5044
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_insectivora Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1191 Rhabditis_myriophila_EM435 Rhabditis_colombiana Rhabditella_axei_DF5006 Rhabditella_sp_DF5044 Cuticularia_sp_PS2083
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1010 Rhabditis_myriophila_EM435 Rhabditis_colombiana Rhabditella_axei_DF5006 Rhabditella_sp_DF5044 Cuticularia_sp_PS2083 Necator_americanus
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1010 Rhabditis_sp_PS1010 Rhabditis_colombiana Rhabditis_colombiana Rhabditella_axei_DF5006 Rhabditella_sp_PF5044 Cuticularia_sp_PS2083 Necator_americanus Kalicephalus_cristatus
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1010 Rhabditis_myriophila_EM435 Rhabditis_colombiana Rhabditella_axei_DF5006 Rhabditella_sp_DF5044 Cuticularia_sp_PS2083 Necator_americanus
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1010 Rhabditis_myriophila_EM435 Rhabditella_axei_DF5006 Rhabditella_sp_PF5044 Cuticularia_sp_PF5043 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_costaricensis
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1010 Rhabditis_sp_PS1010 Rhabditis_colombiana Rhabditella_axei_DF5006 Rhabditella_sp_DF5044 Cuticularia_sp_PS2083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_costaricensis Angiostrongylus_malaysiensis
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_insectivora Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1010 Rhabditis_sp_PS1010 Rhabditis_colombiana Rhabditis_colombiana Rhabditella_axei_DF5006 Rhabditella_sp_PF5044 Cuticularia_sp_PF5044 Cuticularia_sp_PF5044 Cuticularia_sp_PF5044 Cuticularia_sp_F5044 Cuticularia_sp_IS2083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_cantonensis Angiostrongylus_malaysiensis Angiostrongylus_dujardini
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_insectivora Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1191 Rhabditis_sp_PS1010 Rhabditis_colombiana Rhabditella_axei_DF5006 Rhabditella_sp_DF5044 Cuticularia_sp_PF2083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_costaricensis Angiostrongylus_malaysiensis Angiostrongylus_dijardini Angiostrongylus_vasorum
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_insectivora Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1010 Rhabditis_sp_PS1010 Rhabditis_colombiana Rhabditis_colombiana Rhabditella_axei_DF5006 Rhabditella_sp_PF5044 Cuticularia_sp_PF5044 Cuticularia_sp_PF5044 Cuticularia_sp_PF5044 Cuticularia_sp_F5044 Cuticularia_sp_IS2083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_cantonensis Angiostrongylus_malaysiensis Angiostrongylus_dujardini
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1010 Rhabditis_sp_PS1010 Rhabditis_colombiana Rhabditis_colombiana Rhabditella_axei_DF5006 Rhabditella_sp_PF5044 Cuticularia_sp_PS2083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_cantonensis Angiostrongylus_castaricensis Angiostrongylus_malaysiensis Angiostrongylus_dujardini Angiostrongylus_vasorum Aulurostrongylus_abstrusus Didelphostrongylus_hayesi Crenosoma_mephitidis
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_insectivora Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1191 Rhabditis_myriophila_EM435 Rhabditis_colombiana Rhabditella_axei_DF5006 Rhabditella_sp_DF5044 Cuticularia_sp_PS2083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_cantonensis Angiostrongylus_malaysiensis Angiostrongylus_malaysiensis Angiostrongylus_uadjardini Angiostrongylus_vasorum Aulurostrongylus_abstrusus Didelphostrongylus_hayesi Crenosoma_mephitidis Crenosoma_vulpis
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1191 Rhabditis_sp_PS1010 Rhabditis_colombiana Rhabditella_axei_DF5006 Rhabditella_sp_DF5044 Cuticularia_sp_PS2083 Necator_americanus Kalicephalus_cristatus Anglostrongylus_cantonensis Angiostrongylus_cataricensis Angiostrongylus_dujardini Angiostrongylus_dujardini Angiostrongylus_abstrusus Didelphostrongylus_hayesi Crenosoma_wulpis
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1191 Rhabditis_sp_PS100 Rhabditis_colombiana Rhabditella_axei_DF5006 Rhabditella_sp_PF2044 Cuticularia_sp_PS2043 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_cantonensis Angiostrongylus_malaysiensis Angiostrongylus_dujardini Angiostrongylus_dujardini Angiostrongylus_dastrusus Didelphostrongylus_abstrusus Didelphostrongylus_hayesi Crenosoma_mephitidis Crenosoma_ulpis Otostrongylus_circumlitus Troglostrongylus_wilsoni
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1191 Rhabditis_sp_PS1010 Rhabditis_colombiana Rhabditella_axei_DF5006 Rhabditella_sp_DF5044 Cuticularia_sp_PS2083 Necator_americanus Kalicephalus_cristatus Anglostrongylus_cantonensis Angiostrongylus_cataricensis Angiostrongylus_dujardini Angiostrongylus_dujardini Angiostrongylus_abstrusus Didelphostrongylus_hayesi Crenosoma_wulpis
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_insectivora Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1191 Rhabditis_sp_PS1010 Rhabditis_colombiana Rhabditella_axei_DF5006 Rhabditella_sp_DF5044 Cuticularia_sp_PS2083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_costaricensis Angiostrongylus_costaricensis Angiostrongylus_dujardini Angiostrongylus_dastrusus Didelphostrongylus_hayesi Crenosoma_mephitidis Crenosoma_vulpis Otostrongylus_circumlitus Troglostrongylus_wilsoni Filaroides_martis Oslerus_osleri Parafilaroides_decorus
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1191 Rhabditis_sp_PS1010 Rhabditis_colombiana Rhabditella_axei_DF5006 Rhabditella_sp_P5044 Cuticularia_sp_PS2083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_cantonensis Angiostrongylus_malaysiensis Angiostrongylus_dujardini Angiostrongylus_dujardini Angiostrongylus_abstrusus Didelphostrongylus_hayesi Crenosoma_mephitidis Crenosoma_vulpis Otostrongylus_circumlitus Troglostrongylus_wilsoni Filaroides_martis Oslerus_osleri Parafilaroides_decorus Metastrongylus_salmi
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1191 Rhabditis_sp_PS1010 Rhabditis_colombiana Rhabditella_axei_DF5006 Rhabditella_sp_PF5044 Cuticularia_sp_PF5044 Cuticularia_sp_PS2083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_costaricensis Angiostrongylus_malaysiensis Angiostrongylus_malaysiensis Angiostrongylus_dijardini Angiostrongylus_dajardini Angiostrongylus_abstrusus Didelphostrongylus_hayesi Crenosoma_mephitidis Crenosoma_vulpis Otostrongylus_vilsoni Filaroides_martis Oslerus_osleri Parafilaroides_decorus Metastrongylus_salmi
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1010 Rhabditis_sp_PS1010 Rhabditis_colombiana Rhabditis_colombiana Rhabditella_axei_DF5006 Rhabditella_axei_DF5006 Rhabditella_sp_PF5044 Cuticularia_sp_PS2083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_castaricensis Angiostrongylus_castaricensis Angiostrongylus_castaricensis Angiostrongylus_dujardini Angiostrongylus_dastrusus Didelphostrongylus_hayesi Crenosoma_wulpis Otostrongylus_circumlitus Troglostrongylus_wilsoni Filaroides_martis Oslerus_osleri Parafilaroides_decorus Metastrongylus_elongatus Skrjabingylus_chitwoodrum
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1191 Rhabditis_sp_PS1010 Rhabditis_colombiana Rhabditella_axei_DF5006 Rhabditella_sp_PF5044 Cuticularia_sp_PF5044 Cuticularia_sp_PS2083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_costaricensis Angiostrongylus_malaysiensis Angiostrongylus_malaysiensis Angiostrongylus_dijardini Angiostrongylus_dajardini Angiostrongylus_abstrusus Didelphostrongylus_hayesi Crenosoma_mephitidis Crenosoma_vulpis Otostrongylus_vilsoni Filaroides_martis Oslerus_osleri Parafilaroides_decorus Metastrongylus_salmi
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1191 Rhabditis_sp_PS100 Rhabditis_colombiana Rhabditella_axei_DF5006 Rhabditella_sp_P5044 Cuticularia_sp_P5044 Cuticularia_sp_P5044 Cuticularia_sp_PS2083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_cantonensis Angiostrongylus_dujardini Angiostrongylus_dujardini Angiostrongylus_dujardini Angiostrongylus_abstrusus Didelphostrongylus_hayesi Crenosoma_mephitidis Crenosoma_vulpis Otostrongylus_wilsoni Filaroides_martis Oslerus_osleri Parafilaroides_decorus Metastrongylus_slami Metastrongylus_candrus Skrjabingylus_chitwoodrum Parelaphostrongylus_docilei Muelerius_capillaris
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1191 Rhabditis_sp_PS1010 Rhabditis_colombiana Rhabditella_axei_DF5006 Rhabditella_axei_DF5006 Rhabditella_sp_PF2044 Cuticularia_sp_PF2044 Cuticularia_sp_PS2083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_costaricensis Angiostrongylus_costaricensis Angiostrongylus_malaysiensis Angiostrongylus_dijardini Angiostrongylus_dabstrusus Didelphostrongylus_hayesi Crenosoma_mephitidis Crenosoma_vulpis Otostrongylus_circumlitus Troglostrongylus_wilsoni Filaroides_martis Oslerus_osleri Parafilaroides_decorus Metastrongylus_elongatus Skrjabingylus_chitwoodrum Parelaphostrongylus_odocoilei Muelerius_capillaris Protostrongylus_rufescens Halocercus_invaginatus
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1191 Rhabditis_sp_PS1010 Rhabditis_colombiana Rhabditis_colombiana Rhabditella_axei_DF5006 Rhabditella_sp_PF5044 Cuticularia_sp_PF5044 Cuticularia_sp_PF5044 Cuticularia_sp_PS2083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_castaricensis Angiostrongylus_castaricensis Angiostrongylus_dujardini Angiostrongylus_dujardini Angiostrongylus_dujardini Angiostrongylus_dusorum Aulurostrongylus_hayesi Crenosoma_mephitidis Crenosoma_vulpis Otostrongylus_circumlitus Troglostrongylus_wilsoni Filaroides_martis Oslerus_osleri Parafilaroides_decorus Metastrongylus_elongatus Skrjabingylus_chitwoodrum Parelaphostrongylus_odocoilei Muelerius_capillaris Protostrongylus_rufescens Halocercus_invaginatus Pseudalius_inflexus
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1191 Rhabditis_sp_PS1010 Rhabditis_so_Oscheius_doliss Rhabditis_colombiana Rhabditella_axei_DF5046 Rhabditella_sp_PF5044 Cuticularia_sp_PS2083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_cantonensis Angiostrongylus_cantonensis Angiostrongylus_dujardini Angiostrongylus_dujardini Angiostrongylus_dujardini Crenosoma_mephitidis Crenosoma_wephitidis Crenosoma_vulpis Otostrongylus_circumlitus Troglostrongylus_wilsoni Filaroides_martis Oslerus_osleri Parafilaroides_decorus Metastrongylus_clongatus Skrjabingylus_chitwoodrum Parelaphostrongylus_udescens Halocercus_invaginatus Pseudalius_inflexus Stenurus_minor
Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1191 Rhabditis_sp_PS1010 Rhabditis_colombiana Rhabditis_colombiana Rhabditella_axei_DF5006 Rhabditella_sp_PF5044 Cuticularia_sp_PF5044 Cuticularia_sp_PF5044 Cuticularia_sp_PS2083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_castaricensis Angiostrongylus_castaricensis Angiostrongylus_dujardini Angiostrongylus_dujardini Angiostrongylus_dujardini Angiostrongylus_dusorum Aulurostrongylus_hayesi Crenosoma_mephitidis Crenosoma_vulpis Otostrongylus_circumlitus Troglostrongylus_wilsoni Filaroides_martis Oslerus_osleri Parafilaroides_decorus Metastrongylus_elongatus Skrjabingylus_chitwoodrum Parelaphostrongylus_odocoilei Muelerius_capillaris Protostrongylus_rufescens Halocercus_invaginatus Pseudalius_inflexus

 250	···· ····) 260			···· ···) 290	···· ····) 300
CTATGCCCCA	ACT			TCGGAAGG	GGTGCAATT-
CTATCCCCCA	ACT			TCGGAAGG	CCTCCAATT-
agaamma	ACI			IC GONNOG	GGIGCAAII
GCGCTTC				G	GCGICAIII-
				GTAAGGAACG	
CAAAACCCAG	ATC			GTAAGAGGCG	GGTGCACTT-
GACCTT				CG	GGTTCATTT-
CAAAGCTCTG	ACA			CCCTCGG	AGCGCATTT-
CAAAGCTCTG	ACA			CCCTCGG	AGCGCATTT-
GCACGGGCAA	CCG				-TGTCATTT-
GCACGGGCAA	CCG				-TGTCATTT-
				ACGGAGG	
				CAAGTACG	
CAAACCTTCC	AAG			CAATTCCA	AGTGCAGTT-
				-TTCGGAAGG	
				G	
				G	
GCGTGCTTCG	G				-CACCACTT-
TCGTGCTTCG	G				-CACCACTT-
				TAAGGCGG	
				CAAGGCGG	
				CAAGGCGG	
				CAAGGACG	
				CAAGGCGG	
ATTA A COCOTTO	ACG			TAAGGAGA	GGIGCAAII-
				TAAGGAGG	
				CAAGGAGG	
CTAAGCCCCA	ACG			TAAGGCGG	GGTGCAATT-
CTAAGCCCTG	ACG			CAAGGAGG	GGTGCAATT-
TTAAACCTCA	ACG			TAAGGCGA	GGTGCAATT-
CAATGCTCAG	TTT			CGGCTG	AGTGCAGTT-
CAATGCTCAG	TTT			CGGCTG	AGTGCAGTT-
TAAAGCCTCG	ACT			TCGGAAGA	GGTGCAGAT-
TTAAGCCTCG	ACT			TCGGAAGA	GGTGCAGTT-
				TCGGAAGA	
				TAAGTCAG	
				YTCTGA	
CAAAAGCTAG	GCTCG			CTTA	GCTGCAGGT-
				GTCTA	
				GAAGA	
CAAAACCTCG	ACTTT			GAAGA	GGTGCAGAT-
TAAAACCCCG	ACTTT			GAAGG	GGTGCAGTT-
AAAAAGCTAG	ATTC			GTCTA	GCTGCAGGT-
				ACAC	
				GAAGG	
				GACG	
				GAAGA	
				TCACGAAG	
				GGTG	
TAAAGCCCAT	CCTTACG			GGTG	GGIGCAGAI-
				CGG-	
ATAAACCCTG	ACT			TTCGAAAG	GGTGCAATT-
TTATACCCTG	ACT			TTTGAAAG	GGTGCAATT-
ATAAACCCTG	ACT			TTCGAAAG	GGTGCAATT-
ATAAACCCTG	ACT			TTCGAAAG	GGTGCAATT-
ATAAACCCTG	ACT			TTCGAAAG	GGTGCAATT-
				TTCGAAAG	
TTAAGCCCTA	ACT			TTCGAAAG	GGTGCAATT-
				TTCGAAAG	
				TTCGGAAG	
				TTTGAAAG	
				TTCGAAAG	
				TTTGAAAG	
				CT-GTGAAAG	
				TTTGAAAG	

Syngamus_trachea Stephanurus_dentatus Nematodirus battus Strongylus_equinus Labiostrongylus_bipapillosus Petrovinema_poculatum Cylicocyclus_insignis Chabartia_ovina Cyclodontostomum_purvisi Zoniolaimus_mawsonae Hypodontus_macropi Deletrocephalus_dimidiatus Dictyocaulus_eckerti_P7B8 Dictyocaulus_capreolus_P3B2 Dictyocaulus_sp._P6A1 Dictyocaulus_filaria Dictyocaulus_capreolus_P2C10 Dictyocaulus_viviparus Haemonchus_sp._V3091 Haemonchus_contortus Haemonchus_placei Haemonchus_similis Ostertagia_ostertagi Ostertagia_leptospicularis Nippostrongylus_brasileinsis Heligmosomoides_polygyrus Trichostrongylus_colubriformis Tetrabothriostrongylus mackerr Herpestrongylus_pythonis Nicollina_cameroni Filarimena_flagrifer Amidostomum_cygni Teratocephalus_lirellus Brumptaemilius_justini Anguillicola_crassus Dracunculus_medinensis Dracunculus_oesophageus Dracunculus_sp._V3104 Philonema_sp_A Philometra_obturans Camallanus_oxycepahalus Acanthocheilonema_viteae Loa_loa Onchocerca_cervicalis Dirofilaria_immitis Brugia_malayi Wuchereria_bancrofti Litomosoides_sigmodontis Setaria_digitata Gnathostoma_turgidum Gnathostoma_neoprocyonis Gnathostoma_binucleatum Physaloptera_alata Physaloptera_turgida Ascarophis_arctica Spinitectus_carolini Thelazia_lacrymalis Aphelenchus_avenae Aphelenchoides_fragariae Bursaphelelenchus_sp Deladenus_sp Criconema_sp Hemicycliophora_conida Paratylenchus_dianthus Pratylenchus_thornei Tylenchulus_semipentrans Ditylenchus_angustus Subanguina_radicola Tylenchorhynchus_maximus Geocenamus_quadrifer Globodera_pallida Scutellonema_bradys Helicotylenhcus_dihystera Rotylenchus_robustus Meloidogyne_arenaria Meloidogyne_incognita_KT Meloidogyne_javanica Meloidogyne_artiellia NUCLEOTIDES INCLUDED

 250	···· ····) 260				 300
GTAAACCCTG	ACT			TTCGAAAG	GGTGCAGTT-
ATAAGCCCTG	ACT			TTCGAAAG	CCTCCAATT-
ITAGGCCCTG	ACT			IIIGAAAG	GGIGCAAII-
ATAAACCCTG	ACT			TTCGAAAG	GGIGCAAII-
ATAAACCCTG	ACT			'I'I'CGAAAG	GGTGCAATT-
	ACT				
ATAAACCCTG	ACT			TTCGAAAG	GGTGCAATT-
ATAAACCCTG	ACT			TTCGAAAG	GGTGCAATT-
ATAAACCCTG	ACT			TTCGAAAG	GGTGCAATT-
ATAAACCCTG	ACT			TTCGAAAG	GGTGCAATT-
ATAAACCCTG	ACT			TTCGAAAG	GGTGCAATT-
	ACT				
	ACT				
	ACG				
TAAAACCCCG	ACT			TTTGAAAG	GGTGCAATT-
AATAACCCTG	ACG			TT-TTGAAAG	GGTGCAGTT-
TAAAACCCTA	ACG			TTTGAAAG	GGTGCAATT-
TAGAACCCTG	ACT			TTTGAAAG	GGTGCAATT-
	ACT				
	ACT				
ATAAACCUIG	ACT			TTTGAAAG	GGIGCAAII-
	ACT				
	ACT				
TTAAACCCTG	ACT			111CGAAAG	GGTGCAATT-
	ACT				
AGAAACCCTG	ACT			TTTGAAAG	GGTGCAATT-
AGAAACCCTG	ACT			TTTGAAAG	GGTGCAATT-
	ACT				
	ACT				
CAAAGCTCAG	ACC			TTTCGGGACG	AGCGCATTT-
	ATT				
	ATT				
CAAAGCTCCG	GAT			TTTATTGACG	AGCGCATCT-
	AGA				
	ATT				
	AAT				
	ACTAC				
	AT				
	AC				
CAAAGCICCG	AC			TTTT-GAACG	AGCGCAICI-
CAAAGCTCCG	AC			TTTT-GGACG	AGCGCATCT-
	AC				
	AA				
	AT				
	AC				
CAAAGCTCCG	AC			TTTT-GGACG	AGCGCATCT-
CAAAGCTCCG	AC			TCTG-TGACG	AGCGCATTT-
CAAAGCTCCG	AC			TTTG-TGACG	AGCGCATTT-
CAAAGCTCCG	AC			TCTG-TGACG	AGCGCATTT-
CAAAGCTCTG	AC		T	TTCGGATG	AGCGCATCT-
CAAAGCTCTG	AC		T	TTTGGACG	AGCGCATCT-
CAAAGCTCCG	AC		T	TTACTGGACG	AGCGCATCT-
CAAAGCTCCG	AC		TT	TTAGTGGACG	AGCGCATCT-
	AC				
	AC				
	TTCA				
	CC				
	ACC				
CGATGCTGTC	CC			TCGCGGGGGC-	AGTGCATTT-
	TC				
	CC				
	AC				
	TC				
	ACC				
	ACC				
	ACC				
	ACC				
	ATCTT				
	ATCCCTT				
	ATCCTC				
CAAAGCTCCG	ATCCCTT			GCTGGAGAGG	AGCGCATTT-
TAAAGCTTTG	TCC			TTACGG-AAA	AGCGCATTT-
	TCC				
	TCC				
	ACCCTTT				

	25	0 26	0 270	280	29	300
Meloidogyne_duytsi		TCC				
Meloidogyne_exigua		TCC				
Meloidogyne_hapla Meloidogyne_ichinohei		TCC ACCC				
Meloidogyne_maritima		TCC				
Meloidogyne_microtyla		TCC				
Nacobbus_aberrans	AAAAGCTCCG	ACC			TAAAGGAAAG	AGCGCATTT-
Pratylenchoides_ritteri		ACC				
Pratylenchoides_magnicauda		ACC				
Hirschmanniella_spJH_2003		ACC				
Radopholus_similis Pratylenchus_goodeyi_VF		AAC ATCCGCGCTT				
Boleodorus_thylactus_clone2		ACC				
Philippine Sequence 1		ACT				
Philippine Sequence 2	ATAAACCCTG	ACT			TTCGAAAG	GGTGCAATT-
Philippine Sequence 3		ACT				
Philippine Sequence 4		TCT				
Philippine Sequence 5		ACT ACT				
Philippine Sequence 6 Philippine Sequence 7		ACG				
Tahiti Sequence 1		ACT				
Tahiti Sequence 2		ACT				
Thailand Sequence 1	CAAAGCTCCG	AT			TTGAAG	AGCGCATCT-
Ogasawara Sequence 1		ACT				
Ogasawara Sequence 2		TTT				
Ivory Coast Sequence 1		ACT				
Ivory Coast Sequence 2 Ivory Coast Sequence 3		ACT ACT				
Ivory Coast Sequence 4		ACT				
Ivory Coast Sequence 5		AT				
Ivory Coast Sequence 6		ACT				
Ivory Coast Sequence 7	TAAAACCCTG	ACT			TTTGGAAG	GGTGCAATT-
Singapore Sequence 1		ACT				
Singapore Sequence 2		AT				
Singapore Sequence 3		ACG ACT				
Singapore Sequence 4 Nigerian Sequence 1		ACT				
Nigerian Sequence 2		ACT				
Nigerian sequence 5	GINAACCCIG	ACT			TATGAAAG	GGTGCAGTT-
Nigerian Sequence 3 NUCLEOTIDES INCLUDED		ACT				
NUCLEOTIDES INCLUDED Gordius_aquaticus	 31 A-TTAGA	 0 32 acaaaacta	 0 330 ACG	····· ···· 0 340	····. 0 350	···· ···· 0 360
NUCLEOTIDES INCLUDED Gordius_aquaticus Priapulus_caudatus	 31 A-TTAGA A-TTAGA	 0 32 ACAAAAACTA CC-AAACCAA	 0 330 ACG TCG	 0 34	 0 350	 0 360
NUCLEOTIDES INCLUDED Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis	 31 A-TTAGA A-TTAGA A-TTAGA	 0 32 ACAAAAACTA CC-AAACCAA CCAAAACCAA	 0 330 ACG TCG TGG	 0 34	 0 350 GG 	
NUCLEOTIDES INCLUDED Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani	 31 A-TTAGA A-TTAGA A-TTAGA A-TTAGA	 0 321 ACAAAAACTA CC-AAACCAA CCAAAACCAA ACAAAAACTA	 0 330 ACG TCG TGG ACA	 0 344	 0 350 	 0 360 CG TTTCG TCG
NUCLEOTIDES INCLUDED Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis	 31 A-TTAGA A-TTAGA A-TTAGA A-TTAGAA	 0 32 ACAAAAACTA CC-AAACCAA CCAAAACCAA	 0 331 ACG TCG ACA TCA	 b	 D.351 	 D 360 TTTCG TCG TTTCG
NUCLEOTIDES INCLUDED Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus	 31 A-TTAGA A-TTAGA A-TTAGA A-TTAGAA A-TTAGAA A-TTAGAA	 0 32: ACAAAAACTA CC-AAACCAA CCAAAACCAA ACAAAACTA TAAAAACCAA	 0 330 ACG TCG ACA TCA TCG	 	 0	 D 360 TTTCG TCG TTTCG TTTCG
NUCLEOTIDES INCLUDED Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni Mesodorylaimus_sp_cf_nigritul	 31 A-TTAGA A-TTAGA A-TTAGA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA	 0 32/ ACAAAAACTA CC-AAACCAA ACAAAACCAA ACAAAAACCAA TAAAAACCAA CCAAAACCAA TAAAAACCAA	 0 33 ACG TCG TGG TCA TCG TCG	 D 341) 350 	 D 360 TTTCG TCG TTTCG TTTCG CTTCG CTTCG
NUCLEOTIDES INCLUDED Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni Mesodorylaimus_pof_nigritul Mesodorylaimus_bastiani		 0 32/ ACAAAAACTA CC-AAACCAA CCAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA	 0 33 ACG TGG TGG TCA TCA TCG TCG TCG	 D 341	 D 351 	 D 360 TTTCG TCG TTTCG TTTCG CTTCG CCTCG TTTCG
NUCLEOTIDES INCLUDED Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni Mesodorylaimus_bastiani Mesodorylaimus_japonicus	 31 A-TTAGA A-TTAGA A-TTAGA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA	 0 32: ACAAAAACTA CC-AAACCAA CCAAAACCAA ACAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA	 0 331 ACG TCG ACA TCG TCG TCG TCG TCG TCG	 0	 D 351 	TTTCG TTTCG TTTCG TTTCG CTTCG CCTCG CTTCG CTTCG CTTCG
NUCLEOTIDES INCLUDED Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni Mesodorylaimus_sp_cf_nigritul Mesodorylaimus_japonicus Pungentus_spPDL_2005	 31 A-TTAGA A-TTAGA A-TTAGA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA	 0 32: ACAAAAACTA CC-AAACCAA CCAAAACCAA ACAAAAACAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA		 	 D.35 	 D 360 TTTCG TCG TTTCG CTTCG CCTCG TTTCG CTTCG TTTCG TTTCG
NUCLEOTIDES INCLUDED Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni Mesodorylaimus_sp_cf_nigritul Mesodorylaimus_bastiani Mesodorylaimus_japonicus Pungentus_spPDL_2005 Allodorylaimus_sp	 31 A-TTAGA A-TTAGA A-TTAGA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA	 0 32 ACAAAAACTA CC-AAACCAA CCAAAACCAA ACAAAAACTA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA			 0.350 	
NUCLEOTIDES INCLUDED Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni Mesodorylaimus_sp_cf_nigritul Mesodorylaimus_japonicus Pungentus_spPDL_2005	 31 A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA	 0 32: ACAAAAACTA CC-AAACCAA CCAAAACCAA ACAAAAACAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA	 0 33 ACG TGG TCA TCG TCG TCG TCG TCG TCG TCG TCG TCG	 D 341	 D 350 	 D 360 TTTCG TCG TTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG
NUCLEOTIDES INCLUDED Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni Mesodorylaimus_pof_nigritul Mesodorylaimus_bastiani Mesodorylaimus_bastiani Mesodorylaimus_paponicus Pungentus_spPDL_2005 Allodorylaimus_sp Eudorylaimus_carteri	 31 A-TTAGA A-TTAGA A-TTAGA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA	 0 32/ ACAAAAACTA CC-AAACCAA ACAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA	 0 33(ACG TGG TGG TCA TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG	 D.341	 D.351 	 D 360 TTTCG TTTCG TTTCG TTTCG CTTCG CTTCG TTTCG TTTCG CTTCG CTTCG CTTCG
NUCLEOTIDES INCLUDED Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni Mesodorylaimus_pot_nigritul Mesodorylaimus_bastiani Mesodorylaimus_japonicus Pungentus_spPDL_2005 Allodorylaimus_sp Eudorylaimus_carteri Microdorylaimus_sp	 31 A-TTAGA A-TTAGA A-TTAGA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA	 0 32 ACAAAAACTA CC-AAACCAA CCAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA	 0 331 ACG TCG ACA TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG		 D 35 	
NUCLEOTIDES INCLUDED Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni Mesodorylaimus_pof_nigritul Mesodorylaimus_japonicus Pungentus_sp.pDL_2005 Allodorylaimus_sp Eudorylaimus_sp Eudorylaimus_sp Eudorylaimus_sp Longidorus_elongatus Xiphinema_rivesi Tylencholaimus_sp	 31 A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA	 0 32/ ACAAAAACTA CC-AAACCAA ACAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA	 0 33 ACG TGG TCA TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG	 D 341	 DGG GG GG GG GG 	 D 360 TTTCG TCG TTTCG TTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CCTCG
NUCLEOTIDES INCLUDED Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni Mesodorylaimus_pof_nigritul Mesodorylaimus_japonicus Pungentus_spPDL_2005 Allodorylaimus_sp Eudorylaimus_sp Eudorylaimus_sp Longidorus_elongatus Xiphinema_rivesi Tylencholaimus_sp Anoplostoma_spBHMM_2005	 31 A-TTAGA A-TTAGA A-TTAGA A-TTAGAA	 0 32/ ACAAAAACTA CC-AAACCAA ACAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA	 ACG TGG TGG TCA TCG		 D 351 	
<pre>Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni Mesodorylaimus_sp_cf_nigritul Mesodorylaimus_japonicus Pungentus_spPDL_2005 Allodorylaimus_sp Eudorylaimus_sp Eudorylaimus_sp Longidorus_elongatus Xiphinema_rivesi Tylencholaimus_sp Anoplostoma_spBHMM_2005 Adoncholaimus_fuscus</pre>	 31 A-TTAGA A-TTAGA A-TTAGA A-TTAGAA	 0 32 ACAAAACTA CC-AAACCAA CCAAAACCAA ACAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA	 0 33(ACG TCG TCG TCA TCG		 D 351 	 D 360 TTTCG TTTCG TTTCG TTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG
<pre>Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni Mesodorylaimus_sp_cf_nigritul Mesodorylaimus_japonicus Pungentus_spPDL_2005 Allodorylaimus_sp Eudorylaimus_sp Eudorylaimus_sp Longidorus_elongatus Xiphinema_rivesi Tylencholaimus_sp Anoplostoma_spBHMM_2005 Adoncholaimus_fuscus Enoplus_meridionalis</pre>	 31 A-TTAGA A-TTAGA A-TTAGA A-TTAGAA	 0 32 ACAAAACTA CC-AAACCAA ACAAAACTA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA			 D 35 	
NUCLEOTIDES INCLUDED Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni Mesodorylaimus_pof_nigritul Mesodorylaimus_japonicus Pungentus_sp.PDL_2005 Allodorylaimus_sp Eudorylaimus_sp Eudorylaimus_carteri Microdorylaimus_sp Longidorus_elongatus Xiphinema_rivesi Tylencholaimus_sp Anoplostoma_sp.BHMM_2005 Adoncholaimus_fuscus Enoplus_meridionalis Enoplus_brevis_U88336	 31 A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA	 0 32/ ACAAAAACTA CC-AAACCAA ACAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA	 0 33 ACG TGG TCA TCG		 D 350 	 D 360 TTTCG TCG TTTCG TTTCG CTT
<pre>Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni Mesodorylaimus_sp_cf_nigritul Mesodorylaimus_japonicus Pungentus_spPDL_2005 Allodorylaimus_sp Eudorylaimus_sp Eudorylaimus_sp Longidorus_elongatus Xiphinema_rivesi Tylencholaimus_sp Anoplostoma_spBHMM_2005 Adoncholaimus_fuscus Enoplus_meridionalis</pre>	 31 A-TTAGA A-TTAGA A-TTAGA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA	 0 32 ACAAAACTA CC-AAACCAA CCAAAACCAA ACAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA	 0 33 ACG TGG TGG TCA TCG		 D 351 	 D 360 TTTCG TCG TTTCG TTTCG CTTCG
NUCLEOTIDES INCLUDED Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni Mesodorylaimus_sp_cf_nigritul Mesodorylaimus_spaponicus Pungentus_sp.PDL_2005 Allodorylaimus_sp Eudorylaimus_sp Eudorylaimus_sp Longidorus_elongatus Xiphinema_rivesi Tylencholaimus_sp Anoplostoma_sp.BHMM_2005 Adoncholaimus_fuscus Enoplus_meridionalis Enoplus_brevis_U88336 Enoplus_communis Enoploides_brunettii Syringolaimus_striatocaudatus	 31 A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA	 0 32 ACAAAAACTA CC-AAACCAA CCAAAACCAA ACAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TCAA-ACCAA CCAAAACCAA ACAAAACCAA			 D 351 	 CG TTTCG TTTCG TTTCG TTTCG CTTCG CTTCG CTTCG CTTCG CTTCG TCT-A-AAA CCCATAAA CCCATAAA CCCATAAA CCTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG
NUCLEOTIDES INCLUDED Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni Mesodorylaimus_gr_f_nigritul Mesodorylaimus_japonicus Pungentus_sp.PDL_2005 Allodorylaimus_sp Eudorylaimus_sp Eudorylaimus_carteri Microdorylaimus_sp Longidorus_elongatus Xiphinema_rivesi Tylencholaimus_sp Anoplostoma_sp.BHMM_2005 Adoncholaimus_fuscus Enoplus_meridionalis Enoplus_communis Enoplus_communis Enoploides_brunettii Syringolaimus_striatocaudatus Ironus_dentifurcatus	 31 A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA G-TTACA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA	 0 321 ACAAAAACTA CC-AAACCAA ACAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA CCAAAACCAA ACAAAACCAA	 0 330 ACG TCG TCA TCG		 D 350 	 TTTCG TCG TTTCG TTTCG TTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCGT CTTCGT CTTCGT CTTCGT CTTCGT CTTCGT CTTCGT CTTCGT CTTCGT CTTCGG CTTCGG CTTCGG CTTCGG CTTCGG CTTCGG CTTCGG CTTCGG CTTCGG CTTCGG CTTCGG CTTCGG CTTCGG
NUCLEOTIDES INCLUDED Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni Mesodorylaimus_pof_nigritul Mesodorylaimus_japonicus Pungentus_sp.PDL_2005 Allodorylaimus_sp Eudorylaimus_sp Eudorylaimus_sp Eudorylaimus_sp Longidorus_elongatus Xiphinema_rivesi Tylencholaimus_sp Anoplostoma_sp.BHMM_2005 Adoncholaimus_fuscus Enoplus_brevis_U88336 Enoplus_communis Enoploides_brunettii Syringolaimus_striatocaudatus Ironus_dentifurcatus Calyptronema_maxweberi	 31 A-TTAGA A-TTAGA A-TTAGA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA G-TTACT	 0 32 ACAAAAACTA CC-AAACCAA ACAAAACCAA ACAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA CCAAAACCAA ACAAAACCAA ACAAAACCAA ACAAAACCAA	 ACG TGG TGG TCA TCG		 D 350 	 D 360 TTTCG TCG TTTCG TTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCGT CTTCGT CTTCGT CTTCGT CTTCGT CTTCGT CTTCGT CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG CTTCG
NUCLEOTIDES INCLUDED Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni Mesodorylaimus_pof_nigritul Mesodorylaimus_japonicus Pungentus_spPDL_2005 Allodorylaimus_sp Eudorylaimus_sp Eudorylaimus_sp Eudorylaimus_sp Longidorus_elongatus Xiphinema_rivesi Tylencholaimus_sp Anoplostoma_spBHNM_2005 Adoncholaimus_fuscus Enoplus_meridionalis Enoplus_communis Enoploides_brunettii Syringolaimus_striatocaudatus Ironus_dentifurcatus Calyptronema_maxweberi Viscosia_spBHMM_2005	 31 A-TTAGA A-TTAGA A-TTAGA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGA	 0 32 ACAAAAACTA CC-AAACCAA ACAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA CCAAAACCAA ACAAAACCAA ACAAAACCAA ACAAAACCAA			 D 351 	 D 360 TTTCG TCG TTTCG TTTCG CTTCG
NUCLEOTIDES INCLUDED Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni Mesodorylaimus_poticus Pungentus_sp.cf_nigritul Mesodorylaimus_japonicus Pungentus_sp.PDL_2005 Allodorylaimus_sp Eudorylaimus_sp Eudorylaimus_sp Longidorus_elongatus Xiphinema_rivesi Tylencholaimus_pp Anoplostoma_sp.BHMM_2005 Adoncholaimus_fuscus Enoplus_communis Enoploides_brunettii Syringolaimus_striatocaudatus Ironus_dentifurcatus Calyptronema_maxweberi Viscosia_sp.BHMM_2005 Viscosia_viscosa	 31 A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGA G-TTACT	 0 32 ACAAAACTA CC-AAACCAA CCAAAACCAA ACAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA CCAAAACCAA ACAAAACCAA ACAAAACCAA TCAA-ACCAA			 D 351 	 D 360 TTTCG TTTCG TTTCG TTTCG CTTCG
NUCLEOTIDES INCLUDED Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni Mesodorylaimus_sp_cf_nigritul Mesodorylaimus_japonicus Pungentus_sp.PDL_2005 Allodorylaimus_sp Eudorylaimus_sp Eudorylaimus_carteri Microdorylaimus_sp Longidorus_elongatus Xiphinema_rivesi Tylencholaimus_sp Anoplostoma_sp.BHMM_2005 Adoncholaimus_fuscus Enoplus_meridionalis Enoplus_brevis_U88336 Enoplus_communis Enoploides_brunettii Syringolaimus_striatocaudatus Ironus_dentifurcatus Calyptronema_maxweberi Viscosia_sp.BHMM_2005 Viscosia_viscosa Pontonema_vulgare	 31 A-TTAGA A-TTAGA A-TTAGA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGA	 0 327 ACAAAAACTA CC-AAACCAA ACAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA ACAAAACCAA ACAAAACCAA ACAAAACCAA ACAAAACCAA ACAAAACCAA ACAAAACCAA ACAAAACCAA ACAAAACCAA ACAAAACCAA ACAAAACCAA ACAAAACCAA ACAAAACCAA	 ACA TCG		 D 350 	 TTTCG TCG TTTCG TTTCG TTTCG CTTCG
NUCLEOTIDES INCLUDED Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni Mesodorylaimus_poticus Pungentus_sp.cf_nigritul Mesodorylaimus_japonicus Pungentus_sp.PDL_2005 Allodorylaimus_sp Eudorylaimus_sp Eudorylaimus_sp Longidorus_elongatus Xiphinema_rivesi Tylencholaimus_pp Anoplostoma_sp.BHMM_2005 Adoncholaimus_fuscus Enoplus_communis Enoploides_brunettii Syringolaimus_striatocaudatus Ironus_dentifurcatus Calyptronema_maxweberi Viscosia_sp.BHMM_2005 Viscosia_viscosa	 31 A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGA G-TTACT G-TTACT	 0 32 ACAAAACTA CC-AAACCAA CCAAAACCAA ACAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA CCAAAACCAA ACAAAACCAA ACAAAACCAA TCAA-ACCAA			 D 350 	 D 360 TTTCG TCG TTTCG TTTCG CTTCG
<pre>Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni Mesodorylaimus_bastiani Mesodorylaimus_japonicus Pungentus_spPDL_2005 Allodorylaimus_gp Eudorylaimus_gp Eudorylaimus_sp Eudorylaimus_sp Longidorus_elongatus Xiphinema_rivesi Tylencholaimus_fuscus Enoplostoma_spBHMM_2005 Adoncholaimus_fuscus Enoplus_communis Enoploides_brunettii Syringolaimus_striatocaudatus Ironus_dentifurcatus Calyptronema_maxweberi Viscosia_viscosa Pontonema_vulgare Oncholaimus_predius Alaimus_predius Prismatolaimus_intermedius</pre>	 31 A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGA G-TTACT G-TTACT A-TTAGA	 0 32/ ACAAAACTA CC-AAACCAA ACAAAACTA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA CCAAAACCAA ACCAAAACCAA ACAAAACCAA ACAAAACCAA TCAA-ACCAA TCAA-ACCAA			 D 351 	 D 360 TTTCG TCG TTTCG TTTCG CTTCG
<pre>Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni Mesodorylaimus_sp_cf_nigritul Mesodorylaimus_japonicus Pungentus_sp.PDL_2005 Allodorylaimus_sp Eudorylaimus_carteri Microdorylaimus_sp Eudorylaimus_sp Longidorus_elongatus Xiphinema_rivesi Tylencholaimus_fuscus Enoplus_meridionalis Enoplus_brevis_U88336 Enoplus_communis Enoploides_brunettii Syringolaimus_striatocaudatus Ironus_dentifurcatus Calyptronema_maxweberi Viscosia_spBHMM_2005 Viscosia_viscosa Pontonema_vulgare Oncholaimus_gracilis</pre>	 31 A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA G-TTACT G-TTACT GATTACT G-TTACT G-TTACT G-TTACT A-TTAGA	 0 321 ACAAAAACTA CC-AAACCAA CCAAAACCAA ACAAAAACTA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TCAA-ACCAA ACAAAACCAA ACAAAACCAA TCAA-ATCAA TCAA-ACCAA TCAA-ACCAA TCAA-ACCAA TCAA-ACCAA	0 331 ACG TCG TCA TCA TCA TCG) 350 	 TTTCG TCG TTTCG TTTCG TTTCG CTTCG
<pre>Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni Mesodorylaimus_bastiani Mesodorylaimus_japonicus Pungentus_spPDL_2005 Allodorylaimus_gp Eudorylaimus_gp Eudorylaimus_sp Eudorylaimus_sp Longidorus_elongatus Xiphinema_rivesi Tylencholaimus_fuscus Enoplostoma_spBHMM_2005 Adoncholaimus_fuscus Enoplus_communis Enoploides_brunettii Syringolaimus_striatocaudatus Ironus_dentifurcatus Calyptronema_maxweberi Viscosia_viscosa Pontonema_vulgare Oncholaimus_predius Alaimus_sp.PDL_2005 Prismatolaimus_intermedius</pre>	 31 A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGAA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA A-TTAGA G-TTACT G-TTACT G-TTACT G-TTACT G-TTACA A-TTAGA	 0 32 ACAAAACTA CC-AAACCAA CCAAAACCAA ACAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA TAAAAACCAA CCAAAACCAA ACAAAACCAA TCAA-ACCAA TCAA-ACCAA TCAA-ACCAA TCAA-ACCAA TCAA-ACCAA TCAA-ACCAA	0 331 ACG TCG TGG TCG TCG TCG <th></th> <th> D 350 </th> <th> TTTCG TCG TTTCG TTTCG CTTCG</th>		 D 350 	 TTTCG TCG TTTCG TTTCG CTTCG

Bathylaimus_sp
Bathylaimus_assimilis Bathylaimus_spBHMM_2005
Tripyloides_spBHMM_2005
Trischistoma_monohystera
Mermis_nigrescens
Mylonchulus_arenicolus Anatonchus_tridentacus
Mononchus_truncatus
Prionchulus_muscorum
Clarkus_sp
Trichinella_spiralis Trichinella_papuae
Trichinella_britovi
Trichinella_murrelli
Trichinella_pseudospiralis Trichinella_nativa
Trichinella_zimbabwensis
Trichinella_nelsoni
Trichuris_suis Trichuris_trichiura
Trichuris_muris
Tylolaimophorus_minor
Paratrichodorus_pachydermus
Paratrichodorus_anemones Trichodorus_primitivus
Axonolaimus_helgolandicus
Ascolaimus_elongatus
Odontophora_rectangula Cylindrolaimus_sp202149
Tylocephalus_auriculatus
Plectus_acuminatus_BS9
Plectus_aquatilis
Anaplectus_sp Anisakis_sp_WKT
Anisakis_sp_Nadler
Contracaecum_multipapillatum
Pseudoterranova_decipiens Raphidascaris_acus
Terranova_caballeroi
Ascaris_suum
Ascaris_lumbricoides Baylisascaris_procyonis
Baylisascaris_procyonis Baylisascaris_transfuga
Parascaris_equorum
Porrocaecum_depressum
Toxascaris_leonina Heterocheilus_tunicatus
Goezia_pelagia
Hysterothylacium_fortalezae
Hysterothylacium_pelagicum Hysterothylacium_reliquens
Iheringascaris_inquies
Toxocara_canis
Nemhelix_bakeri Pailliotnoma gn V2060
Raillietnema_spV3060 Cruzia_americana
Heterakis_sp_14690
Heterakis_gallinarum
Paraspidodera_sp_21303 Chromodora_nudicapitata
Chromadora_spBHMM_2005
Atrochromadora_microlaima
Chromadorina_germanica Chromadorita_tentabundum
Dichromadora_spBHMM_2005
Neochromadora_BHMM_2005
Spilophorella_paradoxa
Paracanthonchus_caecus Paracyatholaimus_intermedius
Praeacanthonchus_punctatus
Praeacanthonchus_sp
Cyatholaimus_spBHMM_2005 Spirinia parasitifera
Cyatholalmus_spBHMM_2005 Spirinia_parasitifera Acanthopharynx_micans
Spirinia_parasitifera Acanthopharynx_micans Xyzzors_sp
Spirinia_parasitifera Acanthopharynx_micans Xyzzors_sp Metachromadora_sp
Spirinia_parasitifera Acanthopharynx_micans Xyzzors_sp

A-TTAGA ACAAAACCAA TCG-CTTCA-	3)	350)	0 34	0 33		31
A-TTRGA ACAAAACCAA TCGCGG CTTA A-TTRGA ACAAAACCAA TCGGG CTT	C	CTT	GTG				ACAAAACCAA	A-TTAGA
A-TTRGA ACAMACCA TCG CCT A-TTRGA TCAAAACCA TCG CG CTT A-TTRGA CCAAAACCA TCG CG A-TTRGA CCAAAACCA TCG ACG A-TTRGA CCAAAACCA TCG AG CTT A-TTRGA CCAAAACCA TCG AG CTT A-TTRGA CCAAAACCA TCG AG CTT A-TTRGA CCAAAACCA TCG CG CG TT A-TTRGA CAAAACCA CG CG CG TT A-TTRGA CAAAAACCA ACG CG CG TT A-TTRGA CAAAAACCA ACG CG CG CT A-TTRGA CAAAAACCA ACG CG CG CT A-TTRGA CAAAAACCA ACG CG CG CT A-TTRGA CAAAAACCA ACG CG CC A-TTRGA CAAAAACCA ACG CG CC A-TTRGA CAAAACCA ACG CG CC A-TTRGA CAAAACCA TCG CG CC A-TTRGA CTAAACCA TCG CG CG CC A-TTRGA CTAAACCA TCG CG CG CT A-TTRGA CAAAACCA TCG CG CC CC CTTAGA CCAAAACCA TCG CG CC CT A-TTRGA <td>C</td> <td>CTT</td> <td>GTG</td> <td></td> <td></td> <td>TCG-CTTCA-</td> <td>ACAAAACCAA</td> <td>A-TTAGA</td>	C	CTT	GTG			TCG-CTTCA-	ACAAAACCAA	A-TTAGA
A-TTRGA ACAAAACCAA TCG	C	TTT	TGG			TCG-CGCTG-	ACAAAACCAA	A-TTAGA
A-TTRGA CCAAAACCAA TCG A-CTTGGA CGAAACCAA TCG A-TTRGA CCAAAACCAA TCG A-G CTTT A-TTRGA CCAAAACCAA TCG A-G CTT A-TTRGA CCAAAACCGA TCG A-G CTT A-TTRGA CCAAAACCGA ACG CGC TCT A-TTRGA CAAAAACCGA ACG CGC TCT A-TTRGA CAAAAACCGA ACG CGC GCT A-TTRGA CAAAAACCGA ACG CGC GCG A-TTRGA CAAAAACCGA ACG CGC GCC A-TTRGA CAAAAACCGA ACG CGC GCC A-TTRGA CAAAAACCAA TCG CGC GCC CTAACAACACAA TCG CGCG GCC GCC A-TTRGA ACAAAACCAA TCG GCGC GCC CTTAGA CAAAACCAA TCG GCGC GCC CTTAGA ACAAAACCAA TCG GCGC GCC CTTAGA ACAAAACCAA TCG GCGC GCC CTTAGA ACAAAACCAA TCG GCGC	C	CTT	CTA			TCGCG-	ACAAAACCAA	A-TTAGA
A-TTRGA CCAAAACCAA TCG CGG TTT A-TTRGA CCAAAACCAA TCG	C	CTT	-GG			TCG	ACAAAACCAA	A-TTAGA
A-TTRGA CCAAAACCAA TCG CCAAACCAA TCG CCACACCAA TCG CCACACCAA TCG CCCAAACCAA TCG CCCAAACCAA TCG CCCAAACCAA TCG CCCAAACCAA TCG CCCAAACCAA CCG CCCAACCCAA CCG CCCCACCCACCACCACCACCACCACCACCACCACCACCA								
A-TTRGA CCAAAACCAA TCG CCAATCG CCAATCG CCAATCG CCAATCG CCAATCG CCAATCG CCAATCG CCAATCG CCACTT ATTAGA								
A-TTRGA CCAAAACCAA TCG								
A-TTRGA CCAAAACCAA TCG								
A-TTIGAA CAAAAACCAA TCG A-TTIGAA CAAAAACCGA ACG A-TTIGAA CAAAAACCA CCG A-TTIGAA CAAAAACCA CCG A-TTIGAA CAAAAACCAA TCG A-TTIGAC ACAAAACCAA TCG A-TTIGAA ACAAAACCAA TCG A-TTIGAA ACAAAACCAA TCG A-TTIGAA ACAAAACCAA TCG A-TTAGA ACAAAACCAA TCG A-TTAGA ACAAAACCAA TCG A-TTAGA CAAAAACCAA TCG ACAAAACCAA<	C	CTT	-AG			TCG	CCAAAACCAA	A-TTAGA
A-TTAGAA- CAAAAACCGA CGG TTT- A-TTAGAA- CAAAAACCGA ACG CGG TTT- A-TTAGA- CAAAAACCAA TCG CCG CC A-TTAGA- ACAAAACCAA TCG CGC CCA A-TTAGA- ACAAAACCAA TCG CT CGC A-TTAGA- ACAAAACCAA TCG CT CC CC AAACCAA TCG CT CAACAAACCA C	C	CTT	-GG			TCG	CCAAAACCAA	A-TTAGA
A-TTRGAA- CAAAAACCGA CGG TTT								
A-TTRGAA- CAAAAACCGA CGG TTT								
A-TTAGAA- CAAAAACCGA CGG TTT A-TTAGAA- CAAAAACCGA CGG TTT A-TTAGAA- CAAAAACCGA ACG CGG TTT A-TTAGAA- CAAAAACCGA ACG CGG TTT A-TTAGA- CAAAAACCAA TCG CGC CCC A-TTAGA- ACAAAACCAA TCG CGC CGC CGC A-TTAGA- ACAAAACCAA TCG CTT CGC CT CGC CGC CT CGC CGC								
A-TTAGAA- CAAAAACCGA CGG TTT- A-TTAGAA- CAAAAACCGA ACG CGG TTT- A-TTAGAA- CAAAAACCGA ACG CGG TTT- A-TTAGA- CAAAAACCAA TCG CGC CCA A-TTGGT- ACAAAACCAA TCG CGC CGC A-TTGGT- ACAAAACCAA TCG CGC CGC A-TTAGA- ACAAAACCAA TCG CTT- CGC CGC CGC A-TTAGA- -AAAACCAA TCG CTT- CGC CTT- A-TTAGA- AAAACCAA TCG CTT- A-TTAGA- AAAAACCAA TCG CGC CTT- A-TTAGA- AAAAACCAA TCG GCC TT- A-TTAGA- AAAAACCAA TCG GCC TT- A-TTAGA- ACAAAACCAA TCG GCC TT- A-TTAGA- TTAAAACCAA TCG TTC A-TTAGA-								
A-TTAGAA- CAAAAACCGA ACG								
A-TTAGAA- CAAAAACCGA ACG ACG CGG TTT A-TTAGAA- CAAAAACCAA TCG CGC CGC A-TTTGAA- ACAAAACCAA TCG CGC CGC CGC A-TTGGT ACAAAACCAA TCG CGC TT - TTAGA CCAAAACCAA TCG CTT - TTAGA ACAAAACCAA TCG CTT - TTAGA ACAAAACCAA TCG - CTT - TTAGA ACAAAACCAA TCG - GCC TT - - TTAGA ACAAAACCAA TCG - GGC TT - - TTAGA ACAAAACCAA TCG - GGC TT - - TTAGA CCAAAACCAA TCG - GGC TT - - TTAGA TCAAACCAA TCG - - TTAGA TTAGA TTAGA <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
A-TTAGA CAAAAACCAA TCG								
A-TTRGA ACAAAACCAA TCG								
A-TTIGA ACAAAACCAA TCG								
A-TTGGT ACAAACCAA TCGG								
A-TTAGAT -CTAAACCAA TCGG								
G-TTAGA CC-ABACCAB TCG								
G-TTAGA CC-ABACCAB TCG	A	GCA	GCC			TCGG	-CTAAACCAA	A-TTAGT
G-TTAGAAAAAACCAA TCGGTC TTGTC CTTGTC A-TTAGAACAAAACCAA TCG	C	TT	GTC			TCG	CC-AAACCAA	G-TTAGA
A-TTAGA TTAGACCAA TCG								
A-TTAGA ACAAAACCAA TCGGGC TT								
A-TTAGA ACAAAACCAA TCG								
A-TTAGA ACAAAACCAA TCG								
A-TTAGA								
A-TTAGA CCAAAACCAA TCG								
A-TTAGA CCAAAACCAA TCG								
A-TTAGA CCAAAACCAA TCG								
A-TTAGA ACAAAACCAA TCG								
A-TTAGA TTAAAACCAA TCG								
A-TTAGA TTAAAACCAA TCG								
A-TTAGA TTAAAACCAA TCG								
A-TTAGA TTAAAACCAA TCG								
A-TTAGA TTAAAACCAA TCG								
A-TTAGA TTAAAACCAA TCG								
A-TTAGA TTAAAACCAA TCG GGT TT A-TTAGA TTAAAACCAA TCG								
A-TTAGA TTAAAACCAA TCG -GGT TT A-TTAGA TTAAAACCAA TCG -GGT TT A-TTAGA TTAAAACCAA TCG								
A-TTAGA TTAAAACCAA TCG GGT TT A-TTAGA TTAAAACCAA TCG GGT TT A-TTAGA TTAAAACCAA TCG	-CG	TT	GGT			TCG	TTAAAACCAA	A-TTAGA
A-TTAGA TTAAAACCAA TCG GGT TT A-TTAGA TTAAAACCAA TCG								
A-TTAGA TTAAAACCAA TCG GGT TT A-TTAGA TTAAAACCAA TCG GGT TT A-TTAGA TTAAAACCAA TCG GGT TT A-TTAGA TTAAAACCAA TCG								
A-TTAGA TTAAAACCAA TCG -GGT TT A-TTAGA TTAAAACCAA TCG -GGT TT A-TTAGA TTAAAACCAA TCG								
A-TTAGA TTAAAACCAA TCG GGT TT A-TTAGA TTAAAACCAA TCG GGT CT A-TTAGA TTAAAACCAA TCG GGT TT A-TTAGA TTAAAACCAA TCG								
A-TTAGA TTAAAACCAA TCGGGT TT A-TTAGA TTAAAACCAA TCG								
A-TTAGA TTAAAACCAA TCG -GGT TT A-TTAGA TTAAAACCAA TCG -GGT TT A-TTAGA TTAAAACCAA TCG								
A-TTAGA TTAAAACCAA TCG GGT TT A-TTAGA TTAAAACCAA TCG GGT TT A-TTAGA TTAAAACCAA TCG	-CG	CT	GGT			TCG	TTAAAACCAA	A-TTAGA
A-TTAGA TTAAAACCAA TCGGC CT A-TTAGA TTAAAACCAA TCG	-CG	TT	GGT			TCG	TTAAAACCAA	A-TTAGA
A-TTAGA TTAAAACCAA TCGGAC CT A-TTAGA TTAAAACCAA TCG	-CG	TT	GGT			TCG	TTAAAACCAA	A-TTAGA
A-TTAGA TTAAAACCAA TCG GGT TT A-TTAGA TTAAAACCAA TCG GGT TT A-TTAGA TTAAAACCAA TCG								
A-TTAGA TTAAAACCAA TCG GGT TT A-TTAGA TTAAAACCAA TCG GGT TT A-TTAGA TTAAAACCAA TCG								
A-TTAGA TTAAAACCAA TCG GGT TT A-TTAGA TTAAAACCAA TCG GGT TT A-TTAGA TTAAAACCAA TCG								
A-TTAGA TTAAAAGCCAA TCG GGT TT A-TTAGA TTAAAACCAA TCG								
A-TTAGA TTAAAACCAA TCGGAT TT A-TTAGA TTAAAACCAA TCG								
A-TTAGA TTAAAACCAA TCG -GGT TT A-TTAGA TTAAAACCAA TCA								
A-TTAGA TTAAAACCAA TCA GGT TT-TGT A-TTAGA TTAAAACCAA TCA								
A-TTAGA TTAAAACCAA TCA -GGT TT A-TTAGA TTAAAACCAA TCG								
A-TTAGA TTAAAACCAA TCG GC YT C-TTAGA -AAAGACCAA TTG GC TT G-TTAGA ACAAGACCAA TTGGC TT G-TTAGA ACAAGACCAA TTG								
C-TTAGAAAAGACCAA TTGGC TTGC TTGC TTGC TTGC TTGC TTGC TTGC TTGC TTGC TT								
G-TTAGA ACAAGACCAA TTG G-TTAGA GC TT G-TTAGA ACAAGACCAA TTGGC TT A-TTAGA ACAAGACCAA TTG								
G-TTAGA ACAAGACCAA TTG GC TT A-TTAGT ACAAGACCAA TTG GC TT G-TTAGA ACAAGACCAA TTG GC TT G-TTAGA ACAAAACCAA TTGGC TT GC TT A-TTAGA ACAAAACCAA TTGGC TT ACT								
A-TTAGT ACAAGACCAA TTG GC TTGC TT A-TTAGA ACAAGACCAA TTG GC TT G-TTAGA ACAAGACCAA TTGGC TT A-TTAGA ACAAGACCAA TTGGC TT A-TTAGA ACAAAACCAA TTG								
A-TTAGA ACAAAACCAA TTG GC TTGC TT G-TTAGA ACAAGACCAA TTG GC TT A-TTAGA ACAAAACCAA TTGGC TT A-TTAGA ACAAAACCAA TTG								
G-TTAGA ACAAGACCAA TTG GC TT A-TTAGA ACAAAACCAA TTG GC TT A-TTAGA ACAAAACCAA TTG GC TT A-TTAGA ACAAAACCAA TCGGC TT GC TT A-TTAGA ACAAAACCAA TCGGC TT GC TT A-TTAGA ACAAAACCAA TCG								
A-TTAGA ACAAAACCAA TTG GC TT A-TTAGA ACAAAACCAA TTG GC TT A-TTAGA ACAAAACCAA TCG GC TT A-TTAGA ACAAAACCAA TCG GC TT A-TTAGA ACAAAACCAA TCGGC TT GC TT A-TTAGA ACAAAACCAA TCGGC TT GC TT A-TTAGA ACAAAACCAA TCG								
A-TTAGA ACAAAACCAA TTG GC TT A-TTAGA ACAAAACCAA TCG GC TT A-TTAGA ACAAAACCAA TCG GC TT A-TTAGA ACAAAACCAA TCGGC TT GC TT A-TTAGA ACAAAACCAA TCGGC TT GC TT A-TTAGA ACAAAACCAA TCG								
A-TTAGA ACAAAACCAA TCG GAC TT A-TTAGA ACAAAACCAA TCG GGC TT A-TTAGA ACAAAACCAA TCG GGC TT A-TTAGA ACAAAACCAA TCGGGC TT A-TTAGA ACAAAACCAA TCG								
A-TTAGA ACAAAACCAA TCG GGC TT A-TTAGA CCAAGACCAA TCG GC TT A-TTAGA CCAAGACCAA TCA GC TC G-TTAGA CCAAGACCAA TCA								
A-TTAGA ACAAAACCAA TCG GGC TT A-TTAGA ACAAAACCAA TCG GGC TT A-TTAGA ACAAAACCAA TCG GC TT A-TTAGA CCAAGACCAA TCA GC TT A-TTAGA CCAAGACCAA TCA GC TC G-TTAGA CCAAGACCAA TCA								
A-TTAGA ACAAAACCAA TCG GCC TT A-TTAGA ACAAAACCAA TCG GAC TT A-TTAGA CCAAGACCAA TCA GCC TT A-TTAGA CCAAGACCAA TCA								
A-TTAGA ACAAAACCAA TCGGAC TT A-TTAGA CCAAGACCAA TCA								
A-TTAGA CCAAGACCAA TCAGGC TT A-TTAGA CCAAGACCAA TTAGGC TC G-TTAGA CCAAGACCAA TCA		TT	GGC			TCG	ACAAAACCAA	A-TTAGA
A-TTAGA CCAAGACCAA TCAGGC TT A-TTAGA CCAAGACCAA TTAGGC TC G-TTAGA CCAAGACCAA TCA		TT	GAC			TCG	ACAAAACCAA	A-TTAGA
A-TTAGA CCAAGACCAA TTAGGC TC G-TTAGA CCAAGACCAA TCAGGC TT A-TTAGA CCAAGACCAA TCG								
G-TTAGA CCAAGACCAA TCA GGC TT A-TTAGA CCAAGACCAA TCG								
A-TTAGA CCAAGACCAA TCG GGC TC								
m-mmmmm mmmm-mmmmm mmm								

Catanema_sp	A-TTAGG	0 32 CCAAAACCAA			
Eubostrichus_dianae		CCAAAACCAA			
Eubostrichus_topiarus	A-TTAGA	ACAAAACCAA	TCA	 GGC	TCCGG
Eubostrichus_parasitiferus		CCAAAACCAA			
Laxus_oneistus Laxus cosmopolitus		CCAAAATCAA CCAAAATCAA			
Leptonemella_sp		CCAAAAICAA			
Robbea_hypermnestra		CCAAGACCAA			
Stilbonema_majum	A-TTAGA	CCAAAACCAA	TCA	 GGC	TTCGG
Monoposthia_costata		TAAAAGGCTG			
Nudora_bipapillata Calomicrolaimus_parahonestus		ACAAAACCAA ACTAAACCAA			
Calomicrolaimus sp. BHMM 2005		ACTAAACCAA			
Molgolaimus_demani		ACTAAACCAA			
Diplogaster_lethieri		TCAAGACCTA			
Aduncospiculum_halicti		ACAAGACCAA			
Pristionchus_lheritieri		TCAAGACCTA TCAAGGCCGA			
Pristionchus_pacificus Pristionchus_pacificus		TCAAGGCCGA			
Sabatieria_punctata_STRAIN_343		ACAAAACCAA			
Sabatieria_sp355_BHMM_2005		АСААААССАА			
Sabatieria_celtica		ACAAAACCAA			
Sabatieria_punctata_STRAIN_200		ACAAAACCAA			
Sabatieria_punctata_STRAIN_223 Sabatieria_sp210_BHM_2005		ACAAAACCAA ACAAAACCAA			
Setosabatieria_hilarula		ACAAAACCAA			
Desmolaimus_zeelandicus	A-TTAGA	CCAAAACCAA	TCG	 GTC	TTCGG
Terschellingia_longicaudata		ACAAAACCAA			
Cyartonema_elegans		ACAAAACCAA			
Tridentulus_sp Diplolaimelloides_meyli		ACAAGACCAT CCAAAGCCAT			
Diplolaimella_diavengatensis		TCAAGACCA-			
Geomonhystera_disjuncta		TCAAGACTAA			
Sphaerolaimus_hirsutus		GCAAAACCAA			
Theristus_acer		СТААААСТАА			
Daptonema_procerus Daptonema_hirsutum		TCAAAACCAA CCAAAACCAA			
Daptonema_normandicum		ACAAAACCAA			
Daptonema_oxycerca	A-TTAGC	TCAAAACCAA	TCA	 GCT	TCGG
Daptonema_setosum		CCAAAACCAA			
Desmodora_communis		CCAAGACCAA			
Desmodora_ovigera Metadesmolaimus_sp		CCAAGACCAA CCAAAACCAA			
Dentostomella_sp		CTACAACCAA			
Bunonema_franzi		TCAAAACCAA			
Bunonema_sp		ACAAAACCAA			
Seleborca_complexa Acrobeloides nanus		ACAAAACCAA ACAAAACCAA			
Acrobeloides_bodenheimeri		ACAAAACCAA			
Acrobeloides_sp_PS1146		АСААААССАА			
Acrobeles_ciliatus		ACAAAACCAA			
Acrobeles_sp_PS1156 Acrobeles_complexus_WCUG2		ACAAAACCAA ACAAAACCAA			
Cephaloboides_sp_SB227		ACAAAACCAA ACAA-ACCAT			
Cephalobus_cubaensis		ACAAAACCAA			
Cephalobus_spPS1143	A-TTAGA	ACAAAACCAA	GCG	 GCT	TCGG
Cephalobus_spPS1196		ACAAAACCAA			
Cephalobus_oryzae_PS1165		ACAAAACCAA ACAAAACCAA			
Cervidellus_alutus Pseudacrobeles_variabilis		ACAAAACCAA			
Triligulla_aluta		ACAAAACCAA			
Zeldia_punctada	A-TTAGG	ACAAAACCAA	GCG	 GCT	TCGG
Myolaimus_sp_U81585		CCAAAACCAA			
Rhabditophanes_spKR3021 Brevibucca_spSB261		TTAA-ACTA- CCGAAACCAA			
Halicephalobus_gingivalis		ACAAAACCAA			
Panagrobelus_stammeri		ACAAAACCAA			
Plectonchus_spPDL0025		ACAAAACCAA			
Turbatrix_aceti		ACAAAACCAT			
Panagrellus_redivivus Panagrellus_redivivus_PS1163		ACAAAACCAA ACAAAACCAA			
Panagrellus_redivivus_PS1163 Panagrolaimus_subelongatus		TTAAAACCAA			
Panagrolaimus_davidi		TTAAAACCAA			
Panagrolaimus_cf_rigidus_AF40		TTAAAACCAA			
Panagrolaimus sp. Sourhope ED2		TTAAAACCAA			
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2		TTAAAACCAA TTAAAACCAA			
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2		TTAAAACCAA			
NUCLEOTIDES INCLUDED		mmmm-mmmmm			

Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_bacteriophora Heterorhabditis_hepialus Heterorhabditis_zelandica Parasitorhabditis_sp_SB281 Rhabditoides_inermiformis Rhabditoides_inermis_DF5001 Rhabditoides_regina_DF5012 Poikilolaimus_oxycerca_SB200 Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604 Distolabrellus veechi DF5024 Choriorhabditis_dudichi Protorhabditis_sp Protorhabditis_sp_DF5055 Cruznema_tripartitum_DF5015 Mesorhabditis_sp_PS1179 Mesorhabditis_spiculigera_SB15 Mesorhabditis_anisomorpha_SB12 Teratorhabditis_palmarum_DF501 Teratorhabditis_synpapillata_S Caenorhabditis_briggsae_PB102 Caenorhabditis_elegans_N2 Caenorhabditis_sp_CB5161 Caenorhabditis_sp_PS1010 Caenorhabditis_japonica Caenorhabditis_sp_DF5170 Caenorhabditis_sp_SB341 Caenorhabditis_plicata Caenorhabditis_vulgaris Caenorhabditis_sonorae Caenorhabditis_drosophilae Phasmarhabditis_hermaphrodita Phasmarhabditis_neopapillosa Phasmarhabditis_neopapillosa Pellioditis_mediterranea_SB173 Pellioditis_marina Prodontorhabditis_wirthi Crustorhabditis_scanica Dolichorhabditis_sp_CEW1 Oscheius_sp_DF5000 Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_insectivora Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1191 Rhabditis_sp_PS1010 Rhabditis_myriophila_EM435 Rhabditis_colombiana Rhabditella_axei_DF5006 Rhabditella_sp_DF5044 Cuticularia_sp_PS2083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_cantonensis Angiostrongylus_costaricensis Angiostrongylus_malaysiensis Angiostrongylus_dujardini Angiostrongylus_vasorum Aulurostrongylus_abstrusus Didelphostrongylus_hayesi Crenosoma_mephitidis Crenosoma_vulpis Otostrongylus_circumlitus Troglostrongylus_wilsoni Filaroides_martis Oslerus_osleri Parafilaroides_decorus Metastrongylus_salmi Metastrongylus_elongatus Skrjabingylus_chitwoodrum NUCLEOTIDES INCLUDED

		···· ···· 0 320				
2	A-TTAGTA-	J 320 TTAAAACCAA	GCA	340	350 TT) 360 CTTCG
		TCAAAACCAA				
	A-TTAGAT	AAAAAACCAA	TGA		C	TTCGG
		TTAA-ACCAT				
		CCAA-ACCAA				
	A-TIAGG	CCAA-ACCAA ACAG-ACCAA	TCG		TC	CTTGG
		ACAG-ACCAA				
	A-TTAGA	ACAG-ACCAA	TCG		TC	CTCGG
		TTCACCAA				
		ACAAAACCAA				
		CTTATACCAG TTCACTAA				
		ACAAAACCAA				
9		ACAAAACCAA				
		ATCACCAA				
		ATCACCAA				
		ACAG-ACCAA CCAA-ACCAA				
	A-TTAGC	GAAG-ACCAA	TCC		TC	CTCGG
		GCAA-ACCAA				
_	A-TTAGA	TTCACCAA	CCG		C	TTCGG
5	A-TTAGA	TTCACCAA	CCA		C	CGG
2 1	A-ICAGA A-TTAGA	CGAC-ACCAA -TCG-ACCAA	CCG		C	стСGG ТТДСС
S		-TCG-ACCAA				
	A-TTAGA	ACAG-ACCAA	ACG		TT	TTCGG
		ACAG-ACCAA				
		ACAG-ACCAA				
		ACAA-GCCAG ACAG-ACCAA				
		ACAG-ATCAA				
	A-TTAGA	ACAG-ACCAA	CCG		TC	CTAACCG
		TTAC-ACCAA				
		ACAG-ACCAA ACAG-ACCAA				
	A-TTAGA	ACAA-ATCAA	ACG		TT	TTCGG
		ACGA-ACCAA				
		ACGA-ACCAA ACAA-ACCAA				
3		TCAA-ACCAA				
		ACAA-ACCAA				
		GAAG-GCCAA				
		TTCACCAA GCAA-ACCAA				
		TCAA-ACCAA				
	A-TTAGT	ACAA-ACCAA	TCG		TC	TTCGG
		ACAA-ACCAA				
		ACAA-ACCAA TCAA-ACCAA				
		ACAA-ATCAA				
		ACAA-ACCAA				
		ACAA-GCCAG				
		ACAA-ACCAA				
		ACAA-ACCAA ACAA-ACCAA				
		ACAA-ACCAA				
	A-TTAGA	ACAAAACCAA	TCG		GC	TTTGG
		GCAA-ATCAA				
		GCAA-ATCAG GCAA-ATCAA				
		GCAA-ATCAA				
		GCAA-ATCAA				
		GCAA-ATCAA GCAA-ATCAA				
		GCAA-ATCAA				
		GCAA-ATCAA				
		GCAA-ATCAA				
		GCAA-ATCAA GCAA-ATCAA				
		GCAA-ATCAA GCAA-ATCAA				
		GCAA-ATCAA				
		GCAA-ATCAA				
		GCAA-ATCAA GCAA-ATCAA				
		GCAA-ATCAA GCAA-ATCAA				
	A-TTAGA	GCAA-ATCAA	TCA		TT	TACGG
		GCAA-ATCAG				
		mmmm-mmmmm				

Parelaphostrongylus_odocoilei	31	• •-	0 33 TCA			
Muelerius_capillaris			TCA			
Protostrongylus_rufescens			TCA			
Halocercus_invaginatus			TCA			
Pseudalius_inflexus Stenurus_minor			TCA TCA			
Torynurus_convolutus			TCA			
Syngamus_trachea			TCA			
Stephanurus_dentatus			TCA			
Nematodirus_battus			TCT			
Strongylus_equinus Labiostrongylus_bipapillosus			TCA TCA			
Petrovinema poculatum			TCA			
Cylicocyclus_insignis			TCA			
Chabartia_ovina			TCA			
Cyclodontostomum_purvisi			TCA			
Zoniolaimus_mawsonae Hypodontus_macropi			TCA TCA			
Deletrocephalus_dimidiatus			TCA			
Dictyocaulus_eckerti_P7B8			TGA			
Dictyocaulus_capreolus_P3B2			TGA			
Dictyocaulus_spP6A1			TGA			
Dictyocaulus_filaria Dictyocaulus_capreolus_P2C10			TCA TGA			
Dictyocaulus_viviparus			TGA			
Haemonchus_spV3091			TCA			
Haemonchus_contortus	A-TTAGA	GCAA-ATCAA	TCA		CT	TTCGG
Haemonchus_placei			TCA			
Haemonchus_similis			TCA			
Ostertagia_ostertagi Ostertagia_leptospicularis			TCA TCA			
Nippostrongylus_brasileinsis			TCA			
Heligmosomoides_polygyrus			TCA			
Trichostrongylus_colubriformis			TCA			
Tetrabothriostrongylus mackerr			TCA			
Herpestrongylus_pythonis Nicollina_cameroni			TCA TCA			
Filarimena_flagrifer			TCA			
Amidostomum_cygni			TCA			
Teratocephalus_lirellus	A-TTAGA	ACAAAACCAA	TCG		GGC	TTCGG
Brumptaemilius_justini			TCG			
Anguillicola_crassus			TCG			
Dracunculus_medinensis Dracunculus_oesophageus			GTC TCG			
Dracunculus_spV3104			TCG			
Philonema_sp_A	A-TTAGA	TTAAAACCAA	TCGGGCATAT	AACTTCATTC	GTGGAGTGAT	AGG
Philometra_obturans			TCGAGATGGT			
Camallanus_oxycepahalus			TCG			
Acanthocheilonema_viteae Loa_loa			TCG TCG			
Onchocerca_cervicalis			TCG			
Dirofilaria_immitis			TCGGAACAAA			
Brugia_malayi	A-TTAGA	TTAAAACCAA	TCG		GATT	ATTAATTTTA
Wuchereria_bancrofti			TCG			
Litomosoides_sigmodontis Setaria_digitata			TGG TCG			
Gnathostoma_turgidum			TCG			
Gnathostoma_neoprocyonis			TCG			
Gnathostoma_binucleatum	A-TTAGA	ACAAAACCAA	TCG		AGC	TTCGG
Physaloptera_alata			TCG			
Physaloptera_turgida			TCG			
Ascarophis_arctica Spinitectus_carolini			TCG TCG			
Thelazia_lacrymalis			TGG			
Aphelenchus_avenae	A-TTAGA	TCAAAACCAA	GCG		G-C	TTCG
Aphelenchoides_fragariae			TCT			
Bursaphelelenchus_sp			TTT			
Deladenus_sp Criconema sp			GCG GCG			
Hemicycliophora_conida			GCG			
Paratylenchus_dianthus	A-TTTGA	GCAAAACCAG	GCG		G-C	TTCGG
Pratylenchus_thornei	A-TTAGA	ACAAAACCAA	GCG		G-C	TTCGG
Tylenchulus_semipentrans			GCG			
Ditylenchus_angustus			GCG			
Subanguina_radicola Tylenchorhynchus_maximus			GCG GCG			
Geocenamus_quadrifer			GCG			
Globodera_pallida	G-TTCGCC	ACAAAACCAA	GCG		C-C	TTCGG
NUCLEOTIDES INCLUDED	m-mmmmm	mmmm-mmmmm	mmm			

Scutellonema bradys
Helicotylenhcus dihystera
Rotylenchus_robustus
Meloidogyne_arenaria
Meloidogyne_incognita_KT
Meloidogyne_javanica
Meloidogyne_artiellia
Meloidogyne_duytsi
Meloidogyne_exigua
Meloidogyne_hapla
Meloidogyne_ichinohei
Meloidogyne_maritima
Meloidogyne microtyla
Nacobbus_aberrans
Pratylenchoides_ritteri
Pratylenchoides_magnicauda
Hirschmanniella_spJH_2003
Radopholus_similis
Pratylenchus_goodeyi_VF
Boleodorus_thylactus_clone2
Philippine Sequence 1
Philippine Sequence 2
Philippine Sequence 3
Philippine Sequence 4
Philippine Sequence 5
Philippine Sequence 6
Philippine Sequence 7
Tahiti Sequence 1
Tahiti Sequence 2
Thailand Sequence 1
Ogasawara Sequence 1
Ogasawara Sequence 2
Ivory Coast Sequence 1
Ivory Coast Sequence 2
Ivory Coast Sequence 3
Ivory Coast Sequence 4
Ivory Coast Sequence 5
Ivory Coast Sequence 6
Ivory Coast Sequence 7
Singapore Sequence 1
Singapore Sequence 2
Singapore Sequence 3
Singapore Sequence 4
Nigerian Sequence 1
Nigerian Sequence 2
Nigerian Sequence 3
NUCLEOTIDES INCLUDED

Gordius_aquaticus Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni Mesodorylaimus_sp_cf_nigritul Mesodorylaimus_bastiani Mesodorylaimus_japonicus Pungentus_sp._PDL_2005 Allodorylaimus_sp Eudorylaimus_carteri Microdorylaimus_sp Longidorus_elongatus Xiphinema_rivesi Tylencholaimus_sp Anoplostoma_sp._BHMM_2005 Adoncholaimus_fuscus Enoplus_meridionalis Enoplus_brevis_U88336 Enoplus_communis Enoploides_brunettii Syringolaimus_striatocaudatus Ironus_dentifurcatus Calyptronema_maxweberi Viscosia_sp._BHMM_2005 NUCLEOTIDES INCLUDED

310	ACAAAACCAA) 340		
	ACAAAACCAA				
	ACAAAACCAA ACAAAACCAC				
	ACAAAACCAC				
	ACAAAACCAC				
	ACAAAACCAT				
	ACAAAACCAA				
	ACAAAACCAC				
	ACAAAACCAA				
	GCAA-ATCAA				
	GCAA-ATCAA				
	ACAG-ACCAA				
	GAAA-ACCAA				
	GCAA-ATCAA				
	ACAA-ACCAA				
A-TTAGA	ACAG-ACCAA	ACG		TT	TTCGG
A-TTAGA	GCAA-ATCAA	TCA		TT	TTCGG
A-TTAGA	GCAA-ATCAA	TCA		TT	TTCGG
A-TTAGA	TTAAAACCAA	TCA		GGC	CTTCATTGGG
A-TTAGT	TGAAAACCAA	GCA		TC	TTCGG
A-TTAGT	ACGA-ACTGA	TCG		TC	TTCGG
A-TTAGA	GCAA-ATCAA	TCA		TT	TACGG
A-TTAGA	GCAA-ATCAA	TCA		TT	TACGG
A-TTAGA	GCAA-ATCAA	TCA		TC	TACGG
A-TTAGA	GCAA-ATCAA	TCA		TC	TACGG
A-TTAGA	TTAAAACCAA	TCA		GGC	CT-TCATCGG
A-TTAGA	GCAA-ATCAA	TCA		TC	TACGG
A-TTAGA	GCAA-ATCAA	TCA		TC	TCCGG
A-TTAGT	ACAG-ACCAA	TCG		TC	TTCGG
A-TTAGA	TTAAAACCAA	TCA		GGC	CTTCTTTGGG
A-TTAGA	ACAG-ACCAA	ACG		TT	TTCGG
A-TTAGA	GCAA-ATCAA	TCA		TC	TACGG
A-TTAGA	GCAA-ATCAG	TCA		TT	TTCGG
	GCAA-ATCAA				
	GCAA-ATCAA				
	mmmm-mmmmm				

370 38	30 39	0 400) 410	420
		-TTTTTGGTG	ACTCTGGA	TAACTTTGT-
GCCCG	T	TCTTTTGGTG	ACTCTGGA	TAACCTTGC-
CAAGATCC C	T	TTGTATGGTG	ACTCTGGA	TAACTTTGT-
	GT	TTTTGTGGTG	ACTCTGGA	TAACTTTGT-
GCCTG		TAATTTGGTG	AATCTGAA	TAACTTT
GCCCG		TAATTTGGTG	AATCTGAA	TAACTTT
GCCTG	A	GACGTTGGTG	ACTCTGAA	TAACTGA
GCTCG		TAATTTGGTG	AATCTGAA	TAACTTT
GCCCG		TTTATTGGTG	AATCTGAA	TAACTTT
GCTCG		TAATTTGGTG	AATCTGAA	TAACTTT
GCCCG		TAATTTGGTG	AATCTGAA	TAACTTT
GCTCG		TAATTTGGTG	AATCTGAA	TAACTTT
GTTCG		TAATTTGGTG	AATCTGAA	TAACTTT
GCTCG		TAATTTGGTG	AATCTGAA	TAACTTT
GCCCG		CTGTTTGGTG	AATCTGAA	TAACTTT
GCCCG		TAATTTGGTG	AATCTGAA	TAACTTT
GTCCG		TGATTTGGTG	AATCTGAA	TAACTTT
TG		CCATTTGGTG	AATCTGAA	TAACCCA
GCCTG		AAAACTGGTG	AAACTGAA	CAATTTA
CCCGG		TTTTTTGGTG	ACTCTGAA	TAACTCT
CCCGG		TTTTTTGGTG	ACTCTGAA	TAACTCT
CCCGG		TTTTTTGGTG	ACTCTGAA	TAACTCT
CG		CCGTTTGGTG	GATCTGAA	TAACTTT
TCCG		CCTTTTGGTG	AATCTGAA	TACCTCA
GCTCG		TCAATTGGTG	AATCTGAA	TAATTTT
GTCTG		CATTCAAGTG	ATTTTAGA	CAATTTA
GTCTG		AATCCAAGTG	ATATTGAA	CAATTTA
		-mmmmmmmmm	m––mmmmmmm	mmmmmm

Viscosia_viscosa
Pontonema_vulgare
Oncholaimus_spBHMM_2005
Alaimus_sp_PDL_2005 Prismatolaimus_intermedius
Tobrilus_gracilis
Tripyla_cf_filicaudata_JH_2004
Bathylaimus_sp
Bathylaimus_assimilis
Bathylaimus_spBHMM_2005
Tripyloides_spBHMM_2005 Trischistoma monohystera
Mermis_nigrescens
Mylonchulus_arenicolus
Anatonchus_tridentacus
Mononchus_truncatus
Prionchulus_muscorum Clarkus_sp
Trichinella_spiralis
Trichinella_papuae
Trichinella_britovi
Trichinella_murrelli
Trichinella_pseudospiralis
Trichinella_nativa
Trichinella_zimbabwensis Trichinella_nelsoni
Trichuris_suis
Trichuris trichiura
Trichuris_muris
Tylolaimophorus_minor
Paratrichodorus_pachydermus
Paratrichodorus_anemones
Trichodorus_primitivus Axonolaimus_helgolandicus
Ascolaimus_elongatus
Odontophora_rectangula
Cylindrolaimus_sp202149
Tylocephalus_auriculatus
Plectus_acuminatus_BS9
Plectus_aquatilis Anaplectus_sp
Anisakis_sp_WKT
Anisakis_sp_Nadler
Contracaecum_multipapillatum
Pseudoterranova_decipiens
Raphidascaris_acus
Terranova_caballeroi Ascaris_suum
Ascaris_lumbricoides
Baylisascaris_procyonis
Baylisascaris_transfuga
Parascaris_equorum
Porrocaecum_depressum
Toxascaris_leonina Heterocheilus_tunicatus
Goezia_pelagia
Hysterothylacium_fortalezae
Hysterothylacium_pelagicum
Hysterothylacium_reliquens
Hysterothylacium_reliquens Iheringascaris_inquies
Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis
Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri
Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis
Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_spV3060
Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_spV3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum
Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_spV3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303
Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_spV3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata
Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_spV3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_spBHMM_2005
Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_spV3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata
Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_spV3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_spBHMM_2005 Atrochromadora_microlaima Chromadorina_germanica
Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_spV3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_spBHMM_2005 Atrochromadora_microlaima Chromadorina_tentabundum Dichromadora_spBHMM_2005
Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_spV3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_spBHMM_2005 Atrochromadora_microlaima Chromadorina_germanica Chromadoria_tentabundum Dichromadora_spBHMM_2005 Neochromadora_BHMM_2005
Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_spV3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_spBHMM_2005 Atrochromadora_microlaima Chromadorina_germanica Chromadorina_tentabundum Dichromadora_spBHMM_2005 Spilophorella_paradoxa
Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_spV3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_spBHMM_2005 Atrochromadoria_germanica Chromadorita_tentabundum Dichromadora_spBHMM_2005 Neochromadora_BHMM_2005 Spilophorella_paradoxa Paracanthonchus_caecus
Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_spV3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_spBHMM_2005 Atrochromadora_microlaima Chromadorina_germanica Chromadorina_tentabundum Dichromadora_spBHMM_2005 Spilophorella_paradoxa
Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_spV3060 Cruzia_americana Heterakis_gpl1690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_spBHMM_2005 Atrochromadora_microlaima Chromadorita_tentabundum Dichromadora_spBHMM_2005 Neochromadora_BHMM_2005 Spilophorella_paradoxa Paracanthonchus_caecus Paracyatholaimus_intermedius

370) 380	390) 400) 410) 420
GTCTG			ATGTCAAATG	ATATTGAA	CAATTA
GACIG			CTCTTTCCTC	AGAIIGAA	TAACTCA
GCCCG			TTCTTTGGTG	AATCTGAA	TAACTCT
GCATTGTT	GCG		TAATTTGGTG	AGTCTGAA	TAACTTG
GTGCTTG-			TGTTTTGGTG	ACTCTGAA	TAACTTA
GCTTG			ATTGTTGGTG	ACTCTGAA	TAACTAA
GCTTG			TGTTTTGGTG	ACTCTGAA	TAACTAA
		A			
		A			
		A A			
		A			
		A			
		A			
CGAATGTT	GAACGTCGAA	A	CTGTTTGGTG	AATCTGAA	TAACTATT
		TCCGCGA			
		TCCGCGA			
		CA			
		T			
T			GTCTTTGGTG	GATCTGAA	TAACTCA
T			GTCTTTGGTG	GATCTGAA	TAACTCA
CCT			GTGTTTGGTG	GATCTGAA	TAACTCA
		A			
					TAACTATG
CCCG			TCAATTGGTG	ACTCTGAA	TAACTATA
CCCG CCCG			TCAATTGGTG TCAATTGGTG	ACTCTGAA ACTCTGAA	ТААСТАТА ТААСТАТА
CCCG CCCG CCCG			TCAATTGGTG TCAATTGGTG TTTGTTGGTG	ACTCTGAA ACTCTGAA ACTCTGAA	TAACTATA TAACTATA TAACTATA
CCCG CCCG CCCG			TCAATTGGTG TCAATTGGTG TTTGTTGGTG TCAATTGGTG	ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA	TAACTATA TAACTATA TAACTATA TAACTAAG
CCCG CCCG CCCG CCCG CCCG			TCAATTGGTG TCAATTGGTG TCTGTTGGTG TCAATTGGTG TCAATTGGTG	ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA	TAACTATA TAACTATA TAACTATA TAACTAAG TAACTAAG
CCCG CCCG CCCG CCCG CCCG CCCG			TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TAAATTGGTG TCAATTGGTG	ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA	TAACTATA TAACTATA TAACTATA TAACTAAG TAACTATA TAACTATA TAACTATA
CCCG CCCG CCCG CCCG CCCG CCCG CCCG			TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TAAATTGGTG TCAATTGGTG TCAATTGGTG	ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA	TAACTATA TAACTATA TAACTATA TAACTAAG TAACTATA TAACTATA TAACTATA TAACTATA
CCCG CCCG CCCG CCCG CCCG CCCG CCCG			TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG	ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA	TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA
CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG			TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG	$\begin{array}{l} \mathtt{A}\mathtt{CTCTGAA}\\ \mathtt{A}\mathtt{CTCTGAA} \end{array}$	TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA
			TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG	$\begin{array}{l} \texttt{A}\texttt{CTCTGAA}\\ \end{array}$	TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA
CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG			TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG	ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA	TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATT TAACTATG
CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG			TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG	ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA	TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATG TAACTATG
CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG			TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TTGTTGGTG TTCGTTGGTG TTTGTTGGTG	ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA	TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATG TAACTATG TAACTATG TAACTATA
			TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TTGGTGGTG TTTGTTGGTG TTTGTTGGTG TTTGTTG	$\begin{array}{l} \label{eq:alpha} A &= -\operatorname{CTCTGAA} \\ \mbox{A} &= -\operatorname{CTCTGAA} \\ \$	TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG
			TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCTGTTGGTG TTTGTTGGTG TTTGTTGGTG TTTGTTGGTG	$\begin{array}{l} ACTCTGAA\\ ACTCTGAA\\$	TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG
			TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TTGTTGGTG TTTGTTGGTG TTTGTTGGTG TTTGTTG	$\begin{array}{l} \mathtt{A} = -\mathtt{CTCTGAA} \\ \mathtt{CTCTGAA} \\ \mathtt{CTCTCTGAA} \\ \mathtt{CTCTCTCTGAA} \\ \mathtt{CTCTCTGAA} \\ \mathtt{CTCTCTGAA} \\ \mathtt{CTCTCTCTGAA} \\ CTCT$	TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATA
			TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TTGTTGGTG TTGTTGGTG TTTGTTGGTG TTTGTTG	$\begin{array}{l} \mathtt{A} = -\mathtt{CTCTGAA} \\ \mathtt{A} = \mathtt{CTCTGAA} \mathtt{A} = \mathtt{CTCTGAA} \\ \mathtt{A} = \mathtt{CTCTGAA} \\ \mathtt{A} = CTCTGAA$	TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG
CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG			TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TTGATTGGTG TTGTTGGTG TTTGTTGGTG TTTGTTGGTG TTTGTTG	ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA	TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATG
			TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TTTGTTGGTG TTTGTTGGTG TTTGTTGGTG TTTGTTG	ACTCTGAA ACTCTGAA	TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG
			TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TTGTTGGTG TTTGTTGGTG TTTGTTGGTG TAAATTGGTG TCATTGGTG TCATTGGTG TCATTGGTG TCATTGGTG TCATTGGTG TTCATTGGTG TTCATTGGTG	ACTCTGAA ACTCTGAA	TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATG TAGCTATC TAGCTA
			TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TTGTTGGTG TTTGTTGGTG TTTGTTGGTG TAAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG	ACTCTGAA ACTCTGAA	TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAGCTATG TAGCTATG TAGCTATA TAGCTATA
			TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TTGTTGGTG TTTGTTGGTG TTTGTTGGTG TTTGTTG	ACTCTGAA ACTCTGAA	TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAGCTATG TAGCTATG TAGCTATG TAGCTATG TAGCTATG TAGCTATG TAGCTATG TAGCTATG TAGCTATG TAGCTATA GAAGAAA
			TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TTGTTGGTG TTTGTTGGTG TTTGTTGGTG TTTGTTG	ACTCTGAA ACTCTGAA	TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATG
			TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TTGTTGGTG TTTGTTGGTG TTGTTGGTG TCATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATGGTG TCAATGGTG TCAATGGTG TCAATGGTG TCAATGGTG TCAATGGTG TCTATTGGTG	ACTCTGAA ACTCTGAA	TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAGCTATC TAGCTATC TAGCTATA TAGCTATA CAACTTA CAACTTA CAACTTA
CCCG CCA CCA CCA			TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TTGTTGGTG TTGTTGGTG TTTGTTGGTG TTGTTG	ACTCTGAA ACTCTGAA	TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAGCTATG TAGCTATG TAGCTATC TAGCTATA GAGGAAA CAACTTA TAACTATA CAACTATA
CCCG CCA CCA CCA CCA			TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TTGTTGGTG TTGTTGGTG TTGTTGGTG TCATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCTATTGGTG TCTATTGGTG TCTATTGGTG TCAATTGGTG	ACTCTGAA ACTCTGAA	TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAGCTATC TAGCTATC TAGCTATC TAGCTATC TAGCTATA GAGGAA CAACTTA TAACTATC TAACTATA CAACTTA TAACTATC TAACTATC TAGCTATA CAACTTA TAACTATC TAACTATC TAACTATC TAACTATC TAACTATC TAACTATC TAACTAC
			TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TTGTTGGTG TTTGTTGGTG TTTGTTGGTG TTGTTG	ACTCTGAA AATCTGAG AATCTGAG AATCTGAA	TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAGCTATC TAGCTATC TAGCTATC TAGCTATC TAGCTATC TAGCTATA GAAGAAA CAACTTA TAACTAC TAACTAC TAACTAC TAACTAC TAACTAC TAACTAC TAACTAC TAACTAC TAACTAC TAACTAC TAACTAC
			TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCATTGGTG TTGTTGGTG TTGTTGGTG TTGTTGGTG TCATTGGTG TCATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCTATTGGTG TCTATTGGTG TCTATTGGTG TCTATTGGTG TCTATTGGTG TCTATTGGTG TCTATTGGTG TCTATTGGTG TCTATTGGTG TCTATTGGTG TCTATTGGTG TCTATTGGTG	ACTCTGAA AATCTGAG AATCTGAA AATCTGAA AATCTGAA AATCTGAA	TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAGCTATG TAGCTATG TAGCTATG TAGCTATG TAGCTATA TAGCTATA TAGCTATA TAGCTATA TAGCTATA TAGCTATA TAGCTATA CAACTTA TAACTAC TAACTAC TAACTAC TAACTAC TAACTAC TAACTAC
			TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TTGTTGGTG TTTGTTGGTG TTTGTTGGTG TTGTTG	ACTCTGAA AATCTGAA AATCTGAA AATCTGAA AATCTGAA	TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG CAACTATA CAACTATA CAACTATA TAACTAC TAACTAC TAACTAC TAACTAC TAACTAC TAACTAC TAACTAC TAACTAC
			TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TTGTTGGTG TTTGTTGGTG TTTGTTGGTG TTTGTTG	ACTCTGAA AATCTGAG AATCTGAA AATCTGAA AATCTGAA AATCTGAA	TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAGCTATG TAGCTATG TAGCTATG TAGCTATG TAGCTATG TAGCTATG TAGCTATG TAGCTATG TAGCTATG TAGCTATG CAACTTA CAACTTA CAACTTA CAACTAC TAACTAC TAACTAC TAACTAC TAACTAC TAACTAC TAACTAC TAACTAC TAACTAC TAACTAC TAACTAC TAACTAC TAACTAC TAACTAC TAACTAC TAACTAC
CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCA			TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCAATTGGTG TCATTGGTG TCATTGGTG TTGTTGGTG TTGTTGGTG TTGTTGGTG TTGTTG	ACTCTGAA AATCTGAG AATCTGAA AATCTGAA AATCTGAA AATCTGAA AATCTGAA AATCTGAA	TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATA TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG TAACTATG CAACTTA CAACTTA CAACTTA CAACTTA CAACTTA CAACTTA TAACTAC

Praeacanthonchus_sp Cyatholaimus_sp._BHMM_2005 Spirinia_parasitifera Acanthopharynx_micans Xyzzors_sp Metachromadora_sp Metachromadora_remanei Catanema_sp Eubostrichus_dianae Eubostrichus_topiarus Eubostrichus_parasitiferus Laxus_oneistus Laxus_cosmopolitus Leptonemella_sp Robbea_hypermnestra Stilbonema_majum Monoposthia_costata Nudora_bipapillata Calomicrolaimus_parahonestus $\texttt{Calomicrolaimus_sp._BHMM_2005}$ Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_lheritieri Pristionchus_pacificus Pristionchus_pacificus Sabatieria_punctata_STRAIN_343 Sabatieria_sp._355_BHMM_2005 Sabatieria_celtica Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_223 Sabatieria_sp._210_BHM_2005 Setosabatieria_hilarula Desmolaimus_zeelandicus Terschellingia_longicaudata Cyartonema_elegans Tridentulus_sp Diplolaimelloides_meyli Diplolaimella_diavengatensis Geomonhystera_disjuncta Sphaerolaimus_hirsutus Theristus_acer Daptonema_procerus Daptonema_hirsutum Daptonema_normandicum Daptonema_oxycerca Daptonema_setosum Desmodora_communis Desmodora_ovigera Metadesmolaimus_sp Dentostomella_sp Bunonema_franzi Bunonema_sp Seleborca_complexa Acrobeloides_nanus Acrobeloides_bodenheimeri Acrobeloides_sp_PS1146 Acrobeles_ciliatus Acrobeles_sp_PS1156 Acrobeles_complexus_WCUG2 Cephaloboides_sp_SB227 Cephalobus_cubaensis Cephalobus_sp._PS1143 Cephalobus_sp._PS1196 Cephalobus_oryzae_PS1165 Cervidellus_alutus Pseudacrobeles_variabilis Triligulla_aluta Zeldia_punctada Myolaimus_sp_U81585 Rhabditophanes_sp._KR3021 Brevibucca_sp._SB261 Halicephalobus_gingivalis Panagrobelus_stammeri Plectonchus_sp._PDL0025 Turbatrix_aceti Panagrellus_redivivus Panagrellus_redivivus_PS1163 NUCLEOTIDES INCLUDED

CCCG					
ICCG			TAGITIGGIG	AAICIGAA	
CIG			TAATCIGGIG	ACICIGAA	TAACTTT
CCIA			GIAICIGGIG	ACICIGAA	TAACTTT
CTG			GAATCTGGTG	ACTCTGAA	TAAC1"1"1"
CTG			ACTTTTGGTG	ACTCTGAA	TAACI'I'I'
TCTG			TTTTCTGGTG	ATTCTGAA	TAACTCT
CCIG			acommocia	AAICIGAA	
CCIG			CCGITIGGIG	ACICIGAA	TAACIGI
CIG			TGATTIGGIG	ACICIGAA	TAACIGI
CIG			TGATTIGGIG	ACICIGAA	TAACIGI
CIG		m	ACTING	ACICIGAA	TAACITI
TCIG		1	TCATCCCATC	ACICIGAA	TAACIGI
1CGC			TERICCERIC	AIICAIGA	TAACICG
CCG			TTCTTTCCTC	AAICIGAA	TAACICC
CCG			TTCTTTCCTC	AAICIGAA	TAACICC
			CCACTTCGIG	ΔCTCTCAA	
CG			CTGTTTGGTG	AATCTGAA	TAACCCA
CG			TCAGTTGGTG	AATCTGAA	TAACCCG
CCG			TACTTTGGTG	ACTCTGGA	TAACATC
CCG			TGTTTTGATG	ACTCTGAA	TAATCCA
CTGT			CACATTGGTG	AATCTGAA	TAACTGA
GCAGC			AAGTTTGGTG	ACTCTGAA	TAACTCA
CTG			TTCACTGGTG	AATCTGAA	TAACTAC
CG			TTTTCTGGTG	AATCTGAA	TAACTAC
ACTG			TGGTTTGGTG	AATCTGAA	TAACTGA
CTG			TTCACTGGTG	AATCTGAA	TAACTAC
CCG			TTTTCTGGTG	AATCTGAA	TAACTAC
CTG			TAATCTGGTG	ACTCTGAA	TAACTTA
TCTG			TAATTTGGTG	ACTCTGAA	TAACTTT
CG			TTTTCTGGTG	AATCTGAA	TAACTAC
CG			TGTTTTGTTG	ACTCTGAA	TAACCAT
CTG			TTTATGGTTG	ACTCATAG	TAACTGA

	370	 D 390			
Panagrolaimus_subelongatus					
Panagrolaimus_davidi					
Panagrolaimus_cf_rigidus_AF40					
Panagrolaimus sp. Sourhope ED2					
Panagrolaimus sp. Sourhope ED2					
Panagrolaimus sp. Sourhope ED2					
Panagrolaimus sp. Sourhope ED2					
Panagrolaimus sp. Sourhope ED2		TT			
Steinernema_carpocapsae Strongyloides_stercoralis		G			
Strongyloides_ratti					
Diploscapter_sp_PS1897					
Diploscapter_sp_PS2017					
Heterorhabditis_bacteriophora					
Heterorhabditis_hepialus					
Heterorhabditis_zelandica					
Parasitorhabditis_sp_SB281	CG	 	TAAAGTGATG	AATCTGAA	TATCTT
Rhabditoides_inermiformis	TCG	 T	TTGTTTGTTG	ACTCTGAA	TAACTCA-
Rhabditoides_inermis_DF5001					
Rhabditoides_regina_DF5012					
Poikilolaimus_oxycerca_SB200					
Poikilolaimus_regenfussi_SB199					
Distolabrellus veechi DWF1604					
Distolabrellus veechi DF5024					
Choriorhabditis_dudichi		G			
Protorhabditis_sp					
Protorhabditis_sp_DF5055					
Cruznema_tripartitum_DF5015 Mesorhabditis sp PS1179					
Mesorhabditis_sp_rs1179 Mesorhabditis_spiculigera_SB15		GTTGT			
Mesorhabditis_anisomorpha_SB12					
Teratorhabditis_palmarum_DF501					
Teratorhabditis_synpapillata_S					
Caenorhabditis_briggsae_PB102					
Caenorhabditis_elegans_N2					
Caenorhabditis_sp_CB5161					
Caenorhabditis_sp_PS1010					
Caenorhabditis_japonica					
Caenorhabditis_sp_DF5170					
Caenorhabditis_sp_SB341	ACG	 	TTGACTGTTG	ACTCTGAA	TAATGCA-
Caenorhabditis_plicata					
Caenorhabditis_vulgaris					
Caenorhabditis_sonorae					
Caenorhabditis_drosophilae					
Phasmarhabditis_hermaphrodita					
Phasmarhabditis_neopapillosa					
Phasmarhabditis_neopapillosa					
Pellioditis_mediterranea_SB173					
Pedllioditis marina					
Prodontorhabditis_wirthi					
Crustorhabditis_scanica Dolichorhabditis sp CEW1					
Oscheius_sp_DF5000					
Oscheius_sp_BW282					
Oscheius_sp_Bw202 Oscheius_myriophila_EM435					
Oscheius_insectivora					
Oscheius_dolichuroides					
Rhabditis_blumi_DF5010					
Rhabditis_sp_PS1191					
Rhabditis_sp_PS1010					
Rhabditis_myriophila_EM435					
Rhabditis_colombiana					
	ACG				TATCGTA-
Rhabditella_axei_DF5006		 	AAGTTTGTTG	ACICIGAA	111100111
Rhabditella_axei_DF5006	ACG CCG	 	TTTGTTGTTG	ACTCTGAA	TAACTTA-
Rhabditella_axei_DF5006 Rhabditella_sp_DF5044 Cuticularia_sp_PS2083 Necator_americanus	ACG CCG ATG	 	TTTGTTGTTG TAGTTTGCTG	ACTCTGAA ACTCTAAA	TAACTTA- TAACGCT-
Rhabditella_axei_DF5006 Rhabditella_sp_DF5044 Cuticularia_sp_PS2083 Necator_americanus Kalicephalus_cristatus	ACG CCG ATG ATG	 	TTTGTTGTTG TAGTTTGCTG TAGTTTGCTG	ACTCTGAA ACTCTAAA ACTCTGAA	TAACTTA- TAACGCT- TAACGCT-
Rhabditella_axei_DF5006 Rhabditella_sp_DF5044 Cuticularia_sp_PS2083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum	ACG CCG ATG ATG GTG	 	TTTGTTGTTG TAGTTTGCTG TAGTTTGCTG TAGTTTGCTG	ACTCTGAA ACTCTAAA ACTCTGAA ACTCTAAA	TAACTTA- TAACGCT- TAACGCT- TAACGCT-
Rhabditella_axei_DF5006 Rhabditella_sp_DF5044 Cuticularia_sp_PS2083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_cantonensis	ACG CCG ATG ATG GTG ATG	 	TTTGTTGTTG TAGTTTGCTG TAGTTTGCTG TAGTTTGCTG TAGTTTGCTG	ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA	TAACTTA- TAACGCT- TAACGCT- TAACGCT- TAACGCA-
Rhabditella_axei_DF5006 Rhabditella_sp_DF5044 Cuticularia_sp_PS2083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_cantonensis Angiostrongylus_costaricensis	ACG CCG ATG GTG ATG ATG	 	TTTGTTGTTG TAGTTTGCTG TAGTTTGCTG TAGTTTGCTG CAGTTTGCTG	ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA	TAACTTA- TAACGCT- TAACGCT- TAACGCT- TAACGCA- TAACGCA-
Rhabditella_axei_DF5006 Rhabditella_sp_DF5044 Cuticularia_sp_P52083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_cantonensis Angiostrongylus_costaricensis Angiostrongylus_malaysiensis	ACG CCG ATG GTG ATG ATG ATG	 	TTTGTTGTTG TAGTTTGCTG TAGTTTGCTG TAGTTTGCTG CAGTTTGCTG CAGTTTGCTG	ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA	TAACTTA- TAACGCT- TAACGCT- TAACGCT- TAACGCA- TAACGCA- TAACGCA-
Rhabditella_axei_DF5006 Rhabditella_sp_DF5044 Cuticularia_sp_PS2083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_cantonensis Angiostrongylus_costaricensis Angiostrongylus_malaysiensis Angiostrongylus_dujardini	ACG CCG ATG ATG ATG ATG ATG	 	TTTGTTGTTG TAGTTTGCTG TAGTTTGCTG TAGTTTGCTG CAGTTTGCTG CAGTTTGCTG TAGTTTGCTG	ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA	TAACTTA- TAACGCT- TAACGCT- TAACGCA- TAACGCA- TAACGCA- TAACGCA- TAACGCA-
Rhabditella_axei_DF5006 Rhabditella_sp_DF5044 Cuticularia_sp_PS2083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_cantonensis Angiostrongylus_costaricensis Angiostrongylus_malaysiensis Angiostrongylus_dujardini Angiostrongylus_vasorum	ACG ATG ATG ATG ATG ATG ATG ATG		TTTGTTGTTG TAGTTTGCTG TAGTTTGCTG TAGTTTGCTG CAGTTTGCTG CAGTTTGCTG TAGTTTGCTG TAGTTTGCTG	ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA	TAACTTA TAACGCT TAACGCT TAACGCT TAACGCA TAACGCA TAACGCA TAACGCA TAACGCA
Rhabditella_axei_DF5006 Rhabditella_sp_DF5044 Cuticularia_sp_PS2083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_cantonensis Angiostrongylus_costaricensis Angiostrongylus_malaysiensis Angiostrongylus_dujardini Angiostrongylus_vasorum Aulurostrongylus_abstrusus	ACG CCG ATG ATG ATG ATG ATG ATG ATG		TTTGTTGTTG TAGTTTGCTG TAGTTTGCTG TAGTTTGCTG CAGTTTGCTG CAGTTTGCTG TAGTTTGCTG TAGTTTGCTG TAGTTTGCTG	ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA	TAACTTA- TAACGCT- TAACGCT- TAACGCA- TAACGCA- TAACGCA- TAACGCA- TAACGCA- TAACGCA-
Rhabditella_axei_DF5006 Rhabditella_sp_DF5044 Cuticularia_sp_P52083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_cantonensis Angiostrongylus_costaricensis Angiostrongylus_dujardini Angiostrongylus_dujardini Angiostrongylus_dusorum Aulurostrongylus_abstrusus Didelphostrongylus_hayesi	ACG CCG ATG ATG ATG ATG ATG ATG ATG ATG		TTTGTTGTTG TAGTTTGCTG TAGTTTGCTG TAGTTTGCTG CAGTTTGCTG CAGTTTGCTG TAGTTTGCTG TAGTTTGCTG TAGTTTGCTG TAGTTTGCTG	$\begin{array}{l} \label{eq:alpha} A & - \mbox{CTCTGAA} \\ A & - \mbox{CTCTGAA} $	TAACTTA- TAACGCT- TAACGCT- TAACGCA- TAACGCA- TAACGCA- TAACGCA- TAACGCA- TAACGCA- TAACGCA-
Rhabditella_axei_DF5006 Rhabditella_sp_DF5044 Cuticularia_sp_PS2083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_cantonensis Angiostrongylus_cantonensis Angiostrongylus_malaysiensis Angiostrongylus_dujardini Angiostrongylus_vasorum Aulurostrongylus_abstrusus Didelphostrongylus_hayesi Crenosoma_mephitidis	ACG ATG ATG ATG ATG ATG ATG ATG ATG ATG ATG		TTTGTTGTTG TAGTTTGCTG TAGTTTGCTG TAGTTTGCTG CAGTTTGCTG CAGTTTGCTG TAGTTTGCTG TAGTTTGCTG TAGTTTGCTG TAGTTTGCTG TAGTTTGCTG	ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA ACTCTGAA	TAACTTA- TAACGCT- TAACGCT- TAACGCA- TAACGCA- TAACGCA- TAACGCA- TAACGCA- TAACGCA- TAACGCA- TAACGCA-
Rhabditella_axei_DF5006 Rhabditella_sp_DF5044 Cuticularia_sp_P52083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_cantonensis Angiostrongylus_costaricensis Angiostrongylus_dujardini Angiostrongylus_dujardini Angiostrongylus_dusorum Aulurostrongylus_abstrusus Didelphostrongylus_hayesi	ACG ATG ATG ATG ATG ATG ATG ATG ATG ATG ATG ATG		TTTGTTGTTG TAGTTTGCTG TAGTTTGCTG TAGTTTGCTG CAGTTTGCTG CAGTTTGCTG TAGTTTGCTG TAGTTTGCTG TAGTTTGCTG TAGTTTGCTG TAGTTTGCTG TAGTTTGCTG	$\begin{array}{l} \mathtt{A} = -\mathtt{CTCTGAA} \\ \mathtt{A} = -\mathtt{CTCTAAA} \\ \mathtt{A} = -\mathtt{CTCTGAA} \end{array}$	TAACTTA- TAACGCT- TAACGCT- TAACGCA- TAACGCA- TAACGCA- TAACGCA- TAACGCA- TAACGCA- TAACGCA- TAACGCA- TAACGCA-

Troglostrongylus_wilsoni Filaroides_martis Oslerus_osleri Parafilaroides_decorus Metastrongylus_salmi Metastrongylus_elongatus Skrjabingylus_chitwoodrum Parelaphostrongylus_odocoilei Muelerius_capillaris Protostrongylus_rufescens Halocercus_invaginatus Pseudalius_inflexus Stenurus_minor Torynurus_convolutus Syngamus_trachea Stephanurus_dentatus Nematodirus_battus Strongylus_equinus Labiostrongylus_bipapillosus Petrovinema_poculatum Cylicocyclus_insignis Chabartia_ovina Cyclodontostomum_purvisi Zoniolaimus_mawsonae Hypodontus_macropi Deletrocephalus_dimidiatus Dictyocaulus_eckerti_P7B8 Dictyocaulus_capreolus_P3B2 Dictyocaulus_sp._P6A1 Dictyocaulus_filaria Dictyocaulus_capreolus_P2C10 Dictyocaulus_viviparus Haemonchus_sp._V3091 Haemonchus_contortus Haemonchus_placei Haemonchus_similis Ostertagia_ostertagi Ostertagia_leptospicularis Nippostrongylus_brasileinsis Heligmosomoides_polygyrus Trichostrongylus_colubriformis Tetrabothriostrongylus mackerr Herpestrongylus_pythonis Nicollina_cameroni Filarimena_flagrifer Amidostomum_cygni Teratocephalus_lirellus Brumptaemilius_justini Anguillicola_crassus Dracunculus_medinensis Dracunculus_oesophageus Dracunculus_sp._V3104 Philonema_sp_A Philometra_obturans Camallanus_oxycepahalus Acanthocheilonema_viteae Loa_loa Onchocerca_cervicalis Dirofilaria_immitis Brugia_malayi Wuchereria_bancrofti Litomosoides_sigmodontis Setaria_digitata Gnathostoma_turgidum Gnathostoma_neoprocyonis Gnathostoma_binucleatum Physaloptera_alata Physaloptera_turgida Ascarophis_arctica Spinitectus_carolini Thelazia_lacrymalis Aphelenchus_avenae Aphelenchoides_fragariae Bursaphelelenchus_sp Deladenus_sp Criconema_sp Hemicycliophora_conida Paratylenchus_dianthus NUCLEOTIDES INCLUDED

 370				
ATG		TAGTTTGCTG	ACTCTGAA	TAACGCA
ATG	 	TAGTTTGCTG		TAACGCT
	TA			
	TA			
	TA			
	CAA			
	TA			
	TA			
	IA			
	T			
	TTCTCGT			
	T			
	T			
	TT			
	 	-mmmmmmmmm	ııı––mmmmmmm	111mmmmm – – – –

		I
		120
Pratylenchus_thornei	CCG TCCATTGTTG ACTCAGAA TAACTAA	
Tylenchulus_semipentrans	CCGTTTTTGCTG ACTCAGAA TAACTAA	
Ditylenchus_angustus Subanguina_radicola	CCG TGTTTTGTTG ACTCAAAA TAACTCA TCG TTTTTTGTTG ACTCAGAA TAACTAA	
Tylenchorhynchus_maximus	CCG TCCAATGTTG ACTCAGAA TAACTAA	
Geocenamus_quadrifer	CCG TCCGCAGTTG ACTCAGAA TAACTAA	
Globodera_pallida	GCG TCCAGTGTTG ACTCAGAA CAACTAA	
Scutellonema_bradys Helicotylenhcus_dihystera	TCG TTCAGTGTTG AACCAGAA CAACTAA GCG TCCATTGCTG AACCAGAA CAACTCA	
Rotylenchus_robustus	GCG TTCAGTGTTG ACTCAGAA TAACTAA	
Meloidogyne_arenaria	CTG CTTCTTGTTG ACTCAGAA TAACTTA	
Meloidogyne_incognita_KT	CTG CTTCTTGTTG ACTCAGAA TAACTTA	
Meloidogyne_javanica Meloidogyne_artiellia	CTG CTTYTTGTTG ACTCAGAA TAACTWACTGTCAA ACGTTTGTTG ACTCAGAA TAACTAA	
Meloidogyne_duytsi	CTG CTTCTTGTTG ACTCAGAA TAACTAA	
Meloidogyne_exigua	CTG CCTTTTGTTG ACTCAGAA TAACTAA	
Meloidogyne_hapla	CTG CTTCTTGTTG ACTCAGAA TAACTAA	
Meloidogyne_ichinohei	CTG TTCATTGTTG ACTCAGAA TAACTCA CTG CTTCTTGTTG ACTCAGAA TAACTAA	
Meloidogyne_maritima Meloidogyne_microtyla	CTG CTTCTTGTTG ACTCAGAA TAACTAA	
Nacobbus_aberrans	CCG TCCACTGTTG AACCAGAA TAACTAA	
Pratylenchoides_ritteri	CCG TTCGCAGTTG ACTCAGAA TAACTAA	
Pratylenchoides_magnicauda	CCG TTCGCAGTTG ACTCAGAA TAACTAA	
Hirschmanniella_spJH_2003 Radopholus_similis	CCG CCATGAGTTG ACTCAGAA TAACTAA GGG TTGAGTGTTG AATCAGAG CAACTAA	
Pratylenchus_goodeyi_VF	CCG TCCATTGTTG ACTCAGAA TAACTAA	
Boleodorus_thylactus_clone2	A-CGG-TGCT CG TGATTTGTTG ACTCAGAA TAACTAA	
Philippine Sequence 1	ATG TAGTTTGCTG ACTCTGAA TAACGCA	
Philippine Sequence 2	ATG TAGTTTGCTG ACTCTGAA TAACGCA ACGCGGCTGTTG ACTCTGAA TAACGCT	
Philippine Sequence 3 Philippine Sequence 4	ACG TTTTGTGTTG AACTGAA TATACGCI	
Philippine Sequence 5	GTG TAGTTTGCTG ACTCTAAA TAACGCT	
Philippine Sequence 6	ACG TTGTTTGTTG ACTCTGAA TATCGTA	
Philippine Sequence 7	ACG TTGTTTGTTG ACTCTGAA TAAAGCA	
Tahiti Sequence 1 Tahiti Sequence 2	ATG TAGTTTGCTG ACTCTGAA TAACGCAATG TAGTTTGCTG ACTCTGAA TAACGCA	
Thailand Sequence 1	CCTG TTCATTGGTG ACTCTGAA TAGCTTA	
Ogasawara Sequence 1	ATG TTTAGTGTTG AAACTGAA TATATCT	
Ogasawara Sequence 2	GCG TTGTTTGTTG ACTCTGAA TACCAAG	
Ivory Coast Sequence 1	ATG TAGTTTGCTG ACTCTGAA TAACGCA	
Ivory Coast Sequence 2 Ivory Coast Sequence 3	ATG TAGTTTGCTG ACTCTGAA TAACGCAATG TAGTTTGCTG ACTCTGAA TAACGCA	
Ivory Coast Sequence 4	ATG TAGTTTGCTG ACTCTGAA TAACGCA	
Ivory Coast Sequence 5	CCTG TTCATTGGTG ACTCTGAA TAGCTTA	
Ivory Coast Sequence 6	ATG TAGTTTGCTG ACTCTGAA TAACGCA-	
Ivory Coast Sequence 7 Singapore Sequence 1	ATG TAGTTTGCTG ACTCTGAA TAACGCAACG CGGCTGTTG ACTCTGAA TAACGCT	
Singapore Sequence 2	CCTG TTCATTGGTG ACTCTGAA TAGCTTA	
Singapore Sequence 3	ACG TTGTTTGTTG ACTCTGAA TAAAGCA	
Singapore Sequence 4	ATG TAGTTTGCTG ACTCTGAA TAACGCA	
Nigerian Sequence 1 Nigerian Sequence 2	ATG TAGTTTGCTG ACTCTGAA TAACGCA GTG TAGTTTGCTG ACTCTAAA TAACGCT	
Nigerian Sequence 3	ATG TAGTTTGCTG ACTCTGAA TAACGCA	
NUCLEOTIDES INCLUDED		
		1
		180
Gordius_aquaticus	GCCGATCGCACGGTCTCGT-ACCGGC GACGTATCT- TTCAAATG TCTGC-CTT	
Priapulus_caudatus	GCTGATCGCACGGTCTCGC-ACCGGC GACGTATCT- TTCAAATG TCTGC-CTT	
Brachionus_plicatilis Chordodes_morgani	GCTGATCGCATGGCCTAGA-GCCGGC GACGTATCT- TTCAAGTG TCTGC-CCT GCCGATCGCATGGTCTCGT-ACCGGC GACGTATCT- TTCAAATG TCTGC-CTT	
Paractinolaimus_macrolaimus	GCCAATCGCACAGTCCTA -GT-ACTGGC GATGTATCT- TTCAAGTG TCTGC-CTT	
Aporcelaimellus_obtusicaudatus	GCCAATCGCACAGTCCTA -GT-ACTGGC GATGTATCT- TTCAAGTG TCTGC-CTT	ΓA
Wilsonema_schuurmansstekhoveni	GCTGATCGCATGGTCTTT -GT-ACCGGC GACGTATCT- TTCAAGTG TCTGC-CTT	
Mesodorylaimus_sp_cf_nigritul Mesodorylaimus_bastiani	GCCAATCGCACAGTCCTA -GC-ACTGGC GATGTATCT- TTCAAGTG TCTGC-CTT	
Mesodorylaimus_bastiani Mesodorylaimus japonicus	GCCAATCGCACAGTCCTA -GT-ACTGGC GATGTATCC- TTCAAATG TCTGC-CTT GCCAATCGCACAGTCCTA -GT-ACTGGC GATGTATCT- TTCAAGTG TCTGC-CTT	
Pungentus_spPDL_2005	GCCAATCGCACAGTCCTA -GT-ACTGGC GATGTATCT- TTCAAGTG TCTGC-CTT	
Allodorylaimus_sp	GCCAATCGCACAGTCCTA -GT-ACTGGC GATGTATCT- TTCAAGTG TCTGC-CTT	
Eudorylaimus_carteri	GCCAATCGCACAGTCCTA -GT-ACTGGC GATGTATCT- TTCAAGTG TCTGC-CTT	
	GCCAATCGCACAGTCCTA -GT-ACTGGC GATGTATCT- TTCAAGTG TCTGC-CTT	ΓA
Microdorylaimus_sp		רא
Microdorylaimus_sp Longidorus_elongatus	GCTGATCGCACGGTC-TA -GT-ACCGGC GAMGTATCT- TTCAAGTG TCTGC-CTT	
Microdorylaimus_sp		٢A
Microdorylaimus_sp Longidorus_elongatus Xiphinema_rivesi Tylencholaimus_sp Anoplostoma_spBHMM_2005	GCTGATCGCACGGTC-TA -GT-ACCGGC GAMGTATCT- TTCAAGTG TCTGC-CTT GCCGATCGCACGGTCCTA -GT-ACCGGC GACGTATCT- TTCAAGTG TCTGC-CTT GCCAATCGCACGGTCCTA -GT-ACCGGC GATGTATCT- TTCAAGTG TCTGC-CTT G-TGATCGCACGGTCTTT -GT-ACCGGC GACATATCC- TTCAAATG TCTGC-CTT	ГА ГА ГА
Microdorylaimus_sp Longidorus_elongatus Xiphinema_rivesi Tylencholaimus_sp Anoplostoma_spBHMM_2005 Adoncholaimus_fuscus	GCTGATCGCACGGTC-TA -GT-ACCGGC GAMGTATCT- TTCAAGTG TCTGC-CTT GCCGATCGCACGGTCCTA -GT-ACCGGC GACGTATCT- TTCAAGTG TCTGC-CTT GCCAATCGCACGGTCCTA -GT-ACCGGC GACGTATCT- TTCAAGTG TCTGC-CTT G-TGATCGCACGGTCTTT -GT-ACCGGC GACATATCC- TTCAAACG TCTGC-CTT GCTGATCGCACGGTCTAT -GC-ACCGGC GACATGTCT- TTCAAACG TCTGC-CTT	ГА ГА ГА ГА
Microdorylaimus_sp Longidorus_elongatus Xiphinema_rivesi Tylencholaimus_sp Anoplostoma_spBHMM_2005	GCTGATCGCACGGTC-TA -GT-ACCGGC GAMGTATCT- TTCAAGTG TCTGC-CTT GCCGATCGCACGGTCCTA -GT-ACCGGC GACGTATCT- TTCAAGTG TCTGC-CTT GCCAATCGCACGGTCCTA -GT-ACCGGC GATGTATCT- TTCAAGTG TCTGC-CTT G-TGATCGCACGGTCTTT -GT-ACCGGC GACATATCC- TTCAAATG TCTGC-CTT	ГА ГА ГА ГА ГА

			1 1	1 1		
	430					
Enoplus_brevis_U88336					TTCAAATG	
Enoplus_communis Enoploides_brunettii					TTCAAATG TTCAAATA	
Syringolaimus_striatocaudatus					TTCAAATG	
Ironus_dentifurcatus					TTCAAATG	
Calyptronema_maxweberi Viscosia_spBHMM_2005					TTCAAACG TTCAAATG	
Viscosia_sp:_bhmh_2005 Viscosia_viscosa					TTCAAATG	
Pontonema_vulgare					TTCAAATG	
Oncholaimus_spBHMM_2005 Alaimus_sp_PDL_2005					TTCAAATG TTCAAATG	
Prismatolaimus intermedius					TTCAAATG	
Tobrilus_gracilis					TTCAAATG	
Tripyla_cf_filicaudata_JH_2004 Bathylaimus_sp					TTCAAATG TTCAAATG	
Bathylaimus_sp Bathylaimus_assimilis					TTCAAATG	
Bathylaimus_spBHMM_2005	GCAGATCGCA	CGGTCTA-	-GT-ACCGGC	GACGCATCT-	TTCAAATG	TCTGC-CTTA
Tripyloides_spBHMM_2005					TTCAAATG	
Trischistoma_monohystera Mermis_nigrescens					TTCAAATG TTCAAATG	
Mylonchulus_arenicolus					TTCAAATG	
Anatonchus_tridentacus					TTCAAATG	
Mononchus_truncatus Prionchulus_muscorum					TTCAAATG TTCAAATG	
Clarkus_sp					TTCAAATG	
Trichinella_spiralis					TTCAAGTG	
Trichinella_papuae Trichinella_britovi					TTCAAGTG TTCAAGTG	
Trichinella_murrelli					TTCAAGTG	
Trichinella_pseudospiralis	TCTGATCGCA	TGGTCTA-	-GC-ACCGGC	GACATCACT-	TTCAAGTG	TCTGC-CTTA
Trichinella_nativa					TTCAAGTG	
Trichinella_zimbabwensis Trichinella_nelsoni					TTCAAGTG TTCAAGTG	
Trichuris_suis					TTGAAATG	
Trichuris_trichiura					TTGAAACG	
Trichuris_muris Tylolaimophorus_minor					TTGAAATG TTCAAATG	
Paratrichodorus_pachydermus					TTCAAGTG	
Paratrichodorus_anemones					TTCAAGTG	
Trichodorus_primitivus Axonolaimus_helgolandicus					TTCAAGTG TCCAAGTG	
Ascolaimus_elongatus					TCCAAGTG	
Odontophora_rectangula	GCTGATCGCA	TGGTCTC-	-GC-ACCGGC	GACGTATCT-	TCCAAGTG	TCTGC-CTTA
Cylindrolaimus_sp202149					TCCAAGTG	
Tylocephalus_auriculatus Plectus_acuminatus_BS9					TTCAAGTG TTCAAGTG	
Plectus_aquatilis					TTCAAGTG	
Anaplectus_sp					TTCAAGTG	
Anisakis_sp_WKT Anisakis_sp_Nadler					ATCAAGTG ATCAAGTG	
Contracaecum_multipapillatum					ATCAAGTG	
Pseudoterranova_decipiens					ATCAAGTG	
Raphidascaris_acus Terranova_caballeroi					ATCAAGTG ATCAAGTG	
Ascaris_suum					ATCAAGTG	
Ascaris_lumbricoides					ATCAAGTG	
Baylisascaris_procyonis Baylisascaris_transfuga					ATCAAGTG ATCAAGTG	
Parascaris_equorum					ATCAAGTG	
Porrocaecum_depressum					ATCAAGTG	
Toxascaris_leonina					ATCAAGTG	
Heterocheilus_tunicatus Goezia pelagia					ATCAAGTG ATCAAGTG	
Hysterothylacium_fortalezae					ATCAAGTG	
Hysterothylacium_pelagicum					ATCAAGTG	
Hysterothylacium_reliquens Iheringascaris_inquies					ATCAAGTG ATCAAGTG	
Toxocara_canis					ATCAAGTG	
Nemhelix_bakeri	GCTGATCGCA	TGGTCTA-	-GT-ACCGGC	GACGTGTCT-	ATCAAGTG	TCTGC-CTTA
Raillietnema_spV3060 Cruzia_americana					ATCAAGTG ATCAAGTG	
Cruzia_americana Heterakis_sp_14690					ATCAAGTG ATCAAGTG	
Heterakis_gallinarum	GCTGATCGCA	TGGTCTT-	-GA-ACCGGC	GACGTGTCT-	ATCAAGTG	TCTGC-CTTA
Paraspidodera_sp_21303					ATCAAGTG	
Chromodora_nudicapitata Chromadora_spBHMM_2005					TTCATGTG TTCAAGTG	
Atrochromadora_microlaima					TTCAAGTG	
Chromadorina_germanica					TTCAAGTG	
NUCLEOTIDES INCLUDED	mmmmmmmm——				mmmmm	mmmmm – mmmm

Chromadorita_tentabundum	43 GCTGATCGCA				0 470 TTCAAGTG	
Dichromadora_spBHMM_2005					TTCAAGTG	
Neochromadora_BHMM_2005	GCTGATCGCA	CGGTCTC-	-GT-ACCGGC	GACGTATCC-	TTCAAGTG	TCTGC-CTTA
Spilophorella_paradoxa					TTCAAGTG	
Paracanthonchus_caecus					TTCAAGTG	
Paracyatholaimus_intermedius Praeacanthonchus_punctatus					TTCAAGTG TTCAAGTG	
Praeacanthonchus_punctatus					TTCAAGTG	
Cyatholaimus_spBHMM_2005					TTCAAGTG	
Spirinia_parasitifera					TTCAAGTG	
Acanthopharynx_micans	GCTGATCACA	CGGTCCTC	-GC-ACCGGT	GACATATCT-	TTCAAGTG	TCTGC-CCTA
Xyzzors_sp					TTCAAGTG	
Metachromadora_sp					TTCAAGTG	
Metachromadora_remanei					TTCAAGTG	
Catanema_sp Eubostrichus_dianae					TTCAAGTG TTCAAGTG	
Eubostrichus_topiarus					TTCAAGTG	
Eubostrichus_parasitiferus					TTCAAGTG	
Laxus_oneistus					TTCAAGTG	
Laxus_cosmopolitus	GCTGATCACA	CGGTCCTA	-GC-ACCGGT	GACATATCT-	TTCAAGTG	TCTGC-CCTA
Leptonemella_sp					TTCAAGTG	
Robbea_hypermnestra					TTCAAGTG	
Stilbonema_majum Monoposthia_costata					TTCAAGTG TTCAAATT	
Nudora_bipapillata					CAGGAGGG	
Calomicrolaimus_parahonestus					TTCAAGTG	
Calomicrolaimus_spBHMM_2005					TTCAAGTG	
Molgolaimus_demani	GCAGATCGCA	TGGTCTA-	-GT-ACCGGC	GACATATCT-	TTCAAGTG	TCTGC-CTTA
Diplogaster_lethieri					GTCGAGCG	
Aduncospiculum_halicti					TTCGAGTG	
Pristionchus_lheritieri					GTCGAGCG	
Pristionchus_pacificus Pristionchus_pacificus					GTCGAGTG GTCGAGTG	
Sabatieria_punctata_STRAIN_343					TTCAAGTG	
Sabatieria_sp355_BHMM_2005					TTCAAGTG	
Sabatieria_celtica	TCCGATCGCA	CGGTCTC-	-GC-ACCGGC	GACGCATCT-	TTCAAGTG	TCTGC-CTTA
Sabatieria_punctata_STRAIN_200	GCCGATCGCA	CGGTCTC-	-GT-ACCGGC	GACGTATCT-	TTCAAGTG	TCTGC-CTTA
Sabatieria_punctata_STRAIN_223					TTCAAGTG	
Sabatieria_sp210_BHM_2005					TTCAAGTG	
Setosabatieria_hilarula Desmolaimus_zeelandicus					TTCAAGTG TTCGAGTG	
Terschellingia_longicaudata					TTCAAGTG	
Cyartonema_elegans					TTCAAGTG	
Tridentulus_sp	GCAAATCACA	TGGTCTC-	-GT-ACCGGT	GATGTATCT-	TTCAAGTG	TCTGC-CTTA
Diplolaimelloides_meyli	GCAGATCGCA	TGGGCTC-	-GT-CCCGGC	GACAAATCT-	TTCAAGTG	TCTGC-CTTA
Diplolaimella_diavengatensis					TTCAAGTG	
Geomonhystera_disjuncta Sphaerolaimus hirsutus					TTCAAGTG TTCAAGTG	
Theristus_acer					TTCAAGTG	
Daptonema_procerus					TTCAAGTG	
Daptonema_hirsutum					TTCAAGTG	
Daptonema_normandicum	GCAGATCGCT	T-CGGTCTC-	-GT-ACCGGC	GATGTATCC-	TTCAAGTG	TCTGC-CTTA
Daptonema_oxycerca					TTCAAGTG	
Daptonema_setosum					TTCAAGTG	
Desmodora_communis Desmodora_ovigera					TTCAAGTG TTCAAGTG	
Metadesmolaimus_sp					TTCAAGTG	
Dentostomella_sp					ATCAAGTA	
Bunonema_franzi					TTCAAGAC	
Bunonema_sp					ATCAAGTC	
Seleborca_complexa					TTCAAGTA	
Acrobeloides_nanus Acrobeloides bodenheimeri					TTCAAGTA TTCAAGTA	
Acrobeloides_podemeimein Acrobeloides_sp_PS1146					TTCAAGTA	
Acrobeles_ciliatus					TTCGAGTT	
Acrobeles_sp_PS1156	GCTGATCGCA	TGGTCTT-	-GC-ACCGGC	GACGTGTCT-	TTCGAGTT	TCTGC-CGTA
Acrobeles_complexus_WCUG2	GCTGATCGCA	TGGTCTT-	-GC-ACCGGC	GACGTGTCT-	TTCGAGTT	TCTGC-CGTA
Cephaloboides_sp_SB227					ATTAGGTG	
Cephalobus_cubaensis					TTCAAGTA	
Cephalobus_spPS1143					TTCAAGTA	
Cephalobus_spPS1196 Cephalobus_oryzae_PS1165					TTCAAGTA TTCAAGTA	
Cervidellus_alutus					TTCAAGTA	
Pseudacrobeles_variabilis					TTCAAGTA	
Triligulla_aluta					TTCAAGTA	
Zeldia_punctada					TTCAAGTA	
Myolaimus_sp_U81585					TTCAAGTT	
Rhabditophanes_spKR3021					TATAAGTA	
NUCLEOTIDES INCLUDED	aututututututututututututututututututut				mmmmm	manana - mmmm

	. 430	 440				
Brevibucca_spSB261	ACAGCTGATC					
Halicephalobus_gingivalis	CGACCATACG					
Panagrobelus_stammeri Plectonchus_spPDL0025	GCTGATCGCA GCTGATCG-C A-					
Turbatrix_aceti	GCTAATCGCG -					
Panagrellus_redivivus	GCTGATTGCA					
Panagrellus_redivivus_PS1163 Panagrolaimus_subelongatus	GCTGATTGCA GCTGATCGTA					
Panagrolaimus_davidi	GCTGATCGTA					
Panagrolaimus_cf_rigidus_AF40	GCTGATCGTA					
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2	GCTAATCGTA GCTAATCGTA					
Panagrolaimus sp. Sourhope ED2	GCTAATCGTA					
Panagrolaimus sp. Sourhope ED2	GCTGATCGTA					
Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae	GCTGATCGTA GTTAATCGCA					
Strongyloides_stercoralis	TCGAATCGCA					
Strongyloides_ratti	GCTGATT					
Diploscapter_sp_PS1897 Diploscapter_sp_PS2017	GTCTATCG-T GTCTATCG-T					
Heterorhabditis_bacteriophora	GCATATCG-G					
Heterorhabditis_hepialus	GCATATCG-G -					
Heterorhabditis_zelandica Parasitorhabditis sp SB281	GCATATCG-G GCAGACCG-C					
Rhabditoides_inermiformis	GCTGATCGCA					
Rhabditoides_inermis_DF5001	GCCGATCGCT -					
Rhabditoides_regina_DF5012	CAGACCGCAT GCTGATCGCA					
Poikilolaimus_oxycerca_SB200 Poikilolaimus_regenfussi_SB199	GCTGATCGCA					
Distolabrellus veechi DWF1604	GCAGACCGCA	-TGCGAAA-	-GC-GGCGGC	GATTCACGT-	AATTA	ACTGC-CCTA
Distolabrellus veechi DF5024	gcagaccgca					-
Choriorhabditis_dudichi Protorhabditis_sp	GTTAATCG-T GTCTATCG-T					
Protorhabditis_sp_DF5055	GTATCTCG-T -	-CGGTTTA-	TCCGAC	GAATAACGG-	AAGGCTTT	TCTGC-CCTA
Cruznema_tripartitum_DF5015	GTGAATCG-T					
Mesorhabditis_sp_PS1179 Mesorhabditis_spiculigera_SB15	GCAGACCG-C GCAGACCG-C					
Mesorhabditis_anisomorpha_SB12	GCAGTCCG-C -	-GCTTGCG-	CAAGCCGGCG	GCGGTTCGT-	-GCGATTG	ACTGT-CCTA
Teratorhabditis_palmarum_DF501	GCAGACCG-C					
Teratorhabditis_synpapillata_S Caenorhabditis_briggsae_PB102	GCAGACCG-C GTTTACTG-T					
Caenorhabditis_elegans_N2	GTTTACTG-T -	-CAGTTTC-	-GACTGAC	TCTATCCGG-	AAAGGGTG	TCTGC-CCTT
Caenorhabditis_sp_CB5161	GTTTACTG-T					
Caenorhabditis_sp_PS1010 Caenorhabditis_japonica	GTTTAGTG-T GTTTACTG-T					
Caenorhabditis_sp_DF5170	GTTTACTG-T -					
Caenorhabditis_sp_SB341	GTTTATCG-T					
Caenorhabditis_plicata Caenorhabditis_vulgaris	GCAAACTG-T GTTTACTG-T					
Caenorhabditis_sonorae	GTGTATCG-T -	-CGGAGCA-	-ATCCGAC	GAAGGCCGA-	AACGAGTG	TCTGC-CCTA
Caenorhabditis_drosophilae Phasmarhabditis_hermaphrodita	GTTTACTG-T TT-TATCG-G					
Phasmarhabditis neopapillosa	TT-TATCG-G					
Phasmarhabditis_neopapillosa	GCTTATCG-A -					
Pellioditis_mediterranea_SB173 Pellioditis_marina	GCTTATCG-A					
Prodontorhabditis_wirthi	GTTCATTG-T					
Crustorhabditis_scanica	GACCGCAT-G -					
Dolichorhabditis_sp_CEW1 Oscheius_sp_DF5000	GTATATCG-A TGTATCGA-C					
Oscheius_sp_BW282	GTTTATCG-G -					
Oscheius_myriophila_EM435	GTTTATCG-G -					
Oscheius_insectivora Oscheius_dolichuroides	GTTTATCG-G GTATATCG-A					
Rhabditis_blumi_DF5010	GTTTATCG-G -					
Rhabditis_sp_PS1191	GTGGATCG-A -					
Rhabditis_sp_PS1010 Rhabditis_myriophila_EM435	GTTTAGTG-T GTTTATCG-G -(
Rhabditis_colombiana	GTTTACCG-G					
Rhabditella_axei_DF5006	GCTGATCG-A	-CGGTTT	-ACCTGTC	GACGATCGG-	AGAAGGAG	TCTGC-CCTA
Rhabditella_sp_DF5044 Cuticularia_sp_PS2083	GCTAATCG-A GCTGATCGCA					
Necator_americanus	GCATATCG-G					
Kalicephalus_cristatus	GCATATCG-G -	-CGGCTT	-GTCCGCC	GATATTCCG-	AAAAAGTG	TCTGC-CCTA
Ancylostoma_caninum Angiostrongylus_cantonensis	GCATATCG-G GCATATCG-G					
Angiostrongylus_costaricensis	GCATATCG-G -					
Angiostrongylus_malaysiensis	GCATATCG-G -					
NUCLEOTIDES INCLUDED	mmmmmmmm——				mmmmm	mmmmm—mmmm

	 430			···· ····) 460		
	GCATATCG-G	CGGCTT	-GTTCGCC	GATAATCCG-	AAAAAGTG	TCTGC-CCTA
_					AAAAAGTG	
S					AAAAAGTG AAAAAGTG	
					AAAAAGTG	
	GCATATCG-G	CGGCTT	-GTTCGCC	GATAATCCG-	AAAAAGTG	TCTGC-CCTA
					AAAAAGTG	
					AAAAAGTG AAAAAGTG	
					AAAAAGIG	
					AAAAAGTG	
					AAAAAGTG	
					AAAAAGTG	
ilei					AAAAAGTG AAAAAGTG	
TTET					AAAAAGTG	
					AAAAAGTG	
					AGAAAGTG	
					AAAAAGTG	
					AAAAAGTG AAAAAGTG	
					AAAAGGTG	
					AAAAAGTG	
					AAAAAGTG	
					AAAAAGTG	
sus					AAAAAGTG AAAAAGTG	
					AAAAAGTG AAAAAGTG	
					AAAAAGTG	
	GCATATCG-G	CGGCTT	-GTCCGCC	GATATTCCG-	AAAAAGTG	TCTGC-CCTA
					AAAAAGTG	
					AAAAAGTG	
5					AAAAAGTG AAAAAGTG	
в2					AAAAAGTG	
					AAAAAGTG	
					AAAAAGTG	
C10					AAAAAGTG	
					AAAAAGTG AAAAAGTG	
					AAAAAGIG AAAAAGTG	
					AAAAAGTG	
					AAAAAGTG	
_					AAAAAGTG	
s sis					AAAAAGTG AAAAAGTG	
515					AAAAAGTG	
ormis					AAAAAGTG	
ckerr					AAAAAGTG	
					AAAAAGTG AAAAAGTG	
					AAAAAGIG AAAAAGTG	
					AAAAAGTG	
	GCTGATCGCA	TGGTCTT-	-GC-ACCGGC	GACTCATCT-	TTCAAGTG	TCTGC-CTTA
					ATCAAGTG	
					ATCAAGTG ATCAAGTA	
					ATCAAGTA	
					ATCAAGTA	
					ATCAAGTG	
					ATCAAGTA	
					ATCAAGTG ATCAAGTG	
					ATCAAGTG	
					ATCAAGTG	
					ATCTCAAGTG	
					ATCAAGTG	
					ATCAAGTG	
					ATCAAGTG ATCAAGTG	
					ATCAAGTA	
	GCTGATCGCA	CGGTCTC-	-GC-ACCGGC	GACATGTCA-	ATCAAGTA	TCTGC-CTTA
					ATCAAGTA	
					ATCAAGTG	
					ATCAAGTG ATCAAGTG	
					ATCAAGTA	
	GCTGATCGCA	TGGTCTT-	-GT-ACCGGC	GACGTATCT-	CACAAGTG	TCTGC-CTTA
	mmmmmmmm				mmmmm	mmmmm – mmmm

Angiostrongylus_dujardini Angiostrongylus_vasorum Aulurostrongylus_abstrusus Didelphostrongylus_hayesi Crenosoma_mephitidis Crenosoma_vulpis Otostrongylus_circumlitus Troglostrongylus_wilsoni Filaroides_martis Oslerus_osleri Parafilaroides_decorus Metastrongylus_salmi Metastrongylus_elongatus Skrjabingylus_chitwoodrum Parelaphostrongylus_odocoi Muelerius_capillaris Protostrongylus_rufescens Halocercus_invaginatus Pseudalius_inflexus Stenurus_minor Torynurus_convolutus Syngamus_trachea Stephanurus_dentatus Nematodirus_battus Strongylus_equinus Labiostrongylus_bipapillos Petrovinema_poculatum Cylicocyclus_insignis Chabartia_ovina Cyclodontostomum_purvisi Zoniolaimus_mawsonae Hypodontus_macropi Deletrocephalus_dimidiatus Dictyocaulus_eckerti_P7B8 Dictyocaulus_capreolus_P3B Dictyocaulus_sp._P6A1 Dictyocaulus_filaria Dictyocaulus_capreolus_P2C Dictyocaulus_viviparus Haemonchus_sp._V3091 Haemonchus_contortus Haemonchus_placei Haemonchus_similis Ostertagia_ostertagi Ostertagia_leptospicularis Nippostrongylus_brasileins Heligmosomoides_polygyrus Trichostrongylus_colubrifo Tetrabothriostrongylus mac Herpestrongylus_pythonis Nicollina_cameroni Filarimena_flagrifer Amidostomum_cygni Teratocephalus_lirellus Brumptaemilius_justini Anguillicola_crassus Dracunculus_medinensis Dracunculus_oesophageus Dracunculus_sp._V3104 Philonema_sp_A Philometra_obturans Camallanus_oxycepahalus Acanthocheilonema_viteae Loa_loa Onchocerca_cervicalis Dirofilaria_immitis Brugia_malayi Wuchereria_bancrofti Litomosoides_sigmodontis Setaria_digitata Gnathostoma_turgidum Gnathostoma_neoprocyonis Gnathostoma_binucleatum Physaloptera_alata Physaloptera_turgida Ascarophis_arctica Spinitectus_carolini

Thelazia_lacrymalis NUCLEOTIDES INCLUDED

Aphelenchus_avenae	430 440 GCTGATCGTATGGTCTT-	
Aphelenchoides_fragariae	GCTTATCGCACGACTTT-	
Bursaphelelenchus_sp	GCTTATCGCATGGTCTC-	
Deladenus_sp	GCTGATCGCATGGTCTT-	
Criconema_sp	GCTGATCGCATGGGCTT-	
Hemicycliophora_conida	GCTGACCGCATGGGCTT-	
Paratylenchus_dianthus	GCTGATCGCATGGGCTT-	
Pratylenchus_thornei	GCTGATCGTACGGTCTT-	
Tylenchulus_semipentrans	GCTGATCGTATGGGCTT-	
Ditylenchus_angustus	GCTGATCGCATGGTCTT-	
Subanguina_radicola	GCTGATCGCATGGTCTT-	-GC-ACCGGC
Tylenchorhynchus_maximus	GCTGATCGCATGGTCTT-	-GT-ACCGGC
Geocenamus_quadrifer	GCTGATCGCATGGTCTT-	-GC-ACCGGC
Globodera_pallida	GCTGATCGCACGGTCTT-	-GT-ACCGGC
Scutellonema_bradys	GCTGATCGCACGGTCCT-	
Helicotylenhcus_dihystera	GCTGATCGCACGGTCTT-	
Rotylenchus_robustus	GCTGATCGCACGGTCTT-	
Meloidogyne_arenaria	GCTGACCGCATGGCCTT-	
Meloidogyne_incognita_KT	GCTGACCGCATGGCCTT-	
Meloidogyne_javanica	GCTGACCGCATGGCCYT-	
Meloidogyne_artiellia	GCTGACCGCACGGCCTT- GCTGACCGCATGGCCTT-	
Meloidogyne_duytsi Meloidogyne_exigua	GCTGACCGCATGGCCTTA	
Meloidogyne_hapla	GCTGACCGCATGGCCAA-	
Meloidogyne_ichinohei	ACTGACCGCACGGCCCC-	
Meloidogyne_maritima	GCTGACCGCATGGCCTT-	
Meloidogyne_microtyla	GCTGACCGCATGGCCTA-	
Nacobbus_aberrans	GCTGACCGCATGGTCTT-	
Pratylenchoides_ritteri	GCTGATCGCATGGTCTT-	-GA-ACCGGC
Pratylenchoides_magnicauda	GCTGATCGCATGGTCTT-	-GA-ACCGGC
Hirschmanniella_spJH_2003	GCTGATCGCATGGCCTT-	-GC-GCCGGC
Radopholus_similis	GCTGAGCGCACGGTCTT-	
Pratylenchus_goodeyi_VF	GCTGACCGCATGGTCTT-	
Boleodorus_thylactus_clone2	GCTGATCGCATGGTCTT-	
Philippine Sequence 1	GCATATCG-GCGGCTT	
Philippine Sequence 2	GCATATCG-GCGGCTT	
Philippine Sequence 3 Philippine Sequence 4	GTTTATCG-TCGGTTT GCTGATCGTATGGTCTT-	
Philippine Sequence 5	GCATATCG-GCGGCTT	
Philippine Sequence 6	GCTTATCG-ACGGTCT	
Philippine Sequence 7	GTTTACTG-TCAGTTTC-	
Tahiti Sequence 1	GCATATCG-GCGGCTT	
Tahiti Sequence 2	GCATATCG-GCGGCTT	
Thailand Sequence 1	GCTGATCGCATGGTCTT-	-GT-ACCGGC
Ogasawara Sequence 2	GCTGATCGTATGGTCTT-	-GT-ACCGAC
Ogasawara Sequence 1	TCTATCGGCGGTTT	-ATCCGCT
Ivory Coast Sequence 1	GCATATCG-GCGGCTT	
Ivory Coast Sequence 2	GCATATCG-GCGGCTT	
Ivory Coast Sequence 3	GCATATCG-GCGGCTT	
Ivory Coast Sequence 4	GCATATCG-GCGGCTT	
Ivory Coast Sequence 5 Ivory Coast Sequence 6	GCTGATCGCATGGTCTT- GCATATCG-GCGGCTT	
Ivory Coast Sequence 7	GCATATCG-GCGGCAT	
Singapore Sequence 1	GTTTATCG-TCGGTTT	
Singapore Sequence 2	RCTGATCGCATGGTCTT-	
Singapore Sequence 3	GTTTACTG-TCAGTTTC-	
Singapore Sequence 4	GCATATCG-GCGGCTT	
Nigerian Sequence 1	GCATATCG-GCGACTT	
Nigerian Sequence 2	GCATATCG-GCGGCTT	
Nigerian Sequence 3	GCATATCG-GCGGCTT	-GTTCGCC
NUCLEOTIDES INCLUDED	mmmmmmmm	
		1 1
	 490 500	
Gordius_aquaticus	TCA-ACTGTC GATGGTAGGT	

Gordius_aquaticus
Priapulus_caudatus
Brachionus_plicatilis
Chordodes_morgani
Paractinolaimus_macrolaimus
Aporcelaimellus_obtusicaudatus
Wilsonema_schuurmansstekhoveni
Mesodorylaimus_sp_cf_nigritul
Mesodorylaimus_bastiani
Mesodorylaimus_japonicus
Pungentus_spPDL_2005
Allodorylaimus_sp
Eudorylaimus_carteri
NUCLEOTIDES INCLUDED

430 GCTGATCGTA GCTTATCGCA GCTGATCGCA GCTGATCGCA GCTGATCGCA GCTGATCGCA GCTGATCGTA	TGGTCTT- CGACTTT-	-GT-ACCGAC			
GCTTATCGCA GCTGATCGCA GCTGATCGCA GCTGATCGCA GCTGATCGCA	CGACTTT-		GACGTATCT-	TTCAAGTA	TCTGC-CTT
GCTTATCGCA GCTGATCGCA GCTGATCGCA GCTGACCGCA GCTGATCGCA		-AC-GTCGCC			
GCTGATCGCA GCTGATCGCA GCTGACCGCA GCTGATCGCA	TGGTCTC-		GAAATTACA-	TTCAAGTA	TCTGC-CTT
GCTGATCGCA GCTGACCGCA GCTGATCGCA		-GT-ACCGGC	GAAGTTTCT-	TTCAAGTA	T-TGC-TTT
GCTGATCGCA GCTGACCGCA GCTGATCGCA	TGGTCTT-	-GT-ACCGGC	GACGTGTCT-	TTCAAGTA	TCTGC-CTT
GCTGACCGCA GCTGATCGCA					
GCTGATCGCA					
GCTGATCGTA					
	CGGTCTT-	-GT-ACCGAC	GACGTGTCT-	TTCAAGTT	TCTGC-CTT
GCTGATCGTA	TGGGCTT-	-GT-CCCGAC	GACGTGTCT-	TTCAAGTG	TCTGC-CTT
GCTGATCGCA	TGGTCTT-	-GT-ACCGGC	GATGTGTCA-	TTCAAGTA	TCTGC-CTT
GCTGATCGCA					
GCTGATCGCA					
			GACGTGTCT-		
			GACGTGTCT-		
GCTGATCGCA	CGGTCCT-	GGT-ACCGGC	GACGTGTCT-	TTCAAGTG	TCTGC-CTT
GCTGATCGCA	CGGTCTT-	-GC-ACCGGC	GACGTGTCT-	TTCAAGTG	TCTGC-CTT
			GACGTGTCT-		
			GGCGTGTCT-		
			GGCGTGTCT-		
GCTGACCGCA	TGGCCYT-	-GT-GCCGSC	GGCGTGTCT-	TTCAAGCG	TCCAC-TTT
GCTGACCGCA	CGGCCTT-	-GT-GCCGGC	GGCGTGTCT-	TTCAAGCG	TCCAC-TTT
			GGCGTGTCT-		
			GGCGTGTCT-		
			GGCGAATCT-		
ACTGACCGCA	CGGCCCC-	-GA-GCCGGC	GGCGTGTCA-	TTCAAGTG	TCTAC-TTT
GCTGACCGCA	TGGCCTT-	-GT-GCCGGC	GGCGTGTCT-	TTCAAGCG	TCCAC-TTT
			GGCGTGTCT-		
			GGCATGTCT-		
			GACGTGTCT-		
GCTGATCGCA	TGGTCTT-	-GA-ACCGGC	GACGTGTCT-	TTCAAGTA	TCTGC-CTT
GCTGATCGCA	TGGCCTT-	-GC-GCCGGC	GACGTGTCT-	TTCAAGTA	TCTGC-CTT
GCTGAGCGCA	CGGTCTT-	-GC-ACCGGC	GCCGTATCA-	TTCGAGCT	TCTGC-CCT
			GGCGTGTCT-		
			GACGTGTCT-		
			GATAATCCG-		
GCATATCG-G	CGGCTT	-GTTCGCC	GATAATCCG-	AAAAAGTG	TCTGC-CCT
GTTTATCG-T	CGGTTT	-ATCCGAC	GAAAACCGA-	AAGAAGTG	TCTGC-CCT
GCTGATCGTA	TGGTCTT-	-GT-ACCGAC	GACATGTCA-	TTCAAGTG	TCTGA-TCT
GCATATCG-G	CGGCTT	-GTCCGCC	GATATTCCG-	AAAAAGTG	TCTGC-CCT
			GATGATCGA-		
			TCTATCCGA-		
GCATATCG-G	CGGCTT	-GTTCGCC	GATAATCCG-	AAAAAGTG	TCTGC-CCT
GCATATCG-G	CGGCTT	-GTTCGCC	GATAATCCG-	AAAAAGTG	TCTGC-CCT
GCTGATCGCA	TGGTCTT-	-GT-ACCGGC	GACGTGTCT-	ATCAAGTG	TCTGC-CTT
			GACATGTCA-		
			GAAATCTGC-		
			GATATTCCG-		
			GATATTCCG-		
GCATATCG-G	CGGCTT	-GTTCGCC	GATATTCCG-	AAAAAGTG	TCTGC-CCT
GCATATCG-G	CGGCTT	-GTTCGCC	GATATTCCG-	AAAAAGTG	TCTGC-CCT
			GACGTGTCT-		
			GATATTCCG-		
			GATATTCCG-		
GTTTATCG-T	CGGTTT	-ATCCGAC	GAAAACCGA-	AAGAAGTG	TCTGC-CCT
RCTGATCGCA	TGGTCTT-	-GT-ACCGGC	GACGTGTCT-	ATCAAGTG	TCTGC-CTT
			TCTATCCGA-		
			GATATTCCG-		
			GATATTCCG-		
			GATATTCCG-		
GCATATCG-G	CGGCTT	-GTTCGCC	GATATTCCG-	AAAAAGTG	TCTGC-CCT
mmmmmmmm——				mmmmm	mmmmm – mmm
 490	500) 510) 520	530) 5
	GATGGTAGGT	TATGCGCCT-	ACCATGGTCG	TAACGGG-TA	ACGGAGAAT
		TATGTGCCT-	ACCATGGCTG	TAACGGG-TA	ACGGGGAAT

490) 500) 510) 520) 530) 540
TCA-ACTGTC	GATGGTAGGT	TATGCGCCT-	ACCATGGTCG	TAACGGG-TA	ACGGAGAATC
TCA-ACTTTC	GATGGTAGAT	TATGTGCCT-	ACCATGGCTG	TAACGGG-TA	ACGGGGAATC
TCA-ACTTTC	GATGGTAAGC	GATTTGCCT-	ACCATGGTTG	TAACGGG-TA	ACGGGGAATC
TCA-ACTGTC	GATGGTAGGT	TATATGCCT-	ACCATGGTTG	TAACGGG-TA	ACGGAGAATC
TCA-ACTTTC	GATGGTAGGT	TATACGCCT-	ACCATGGTAG	TAACGGG-TA	ACGGAGAATA
TCA-ACTTTC	GATGGTAGGT	TATACGCCT-	ACCATGGTAG	TAACGGG-TA	ACGGAGAATA
TCA-ACTTTC	GATGGTAGTT	TATGTGCCT-	ACCATGGTTG	TTACGGG-TA	ACGGAGAATA
TCA-ACTTTC	GATGGTAGGT	TATACGCCT-	ACCATGGTAG	TAACGGG-TA	ACGGAGAATA
TCA-ACTTTC	GATGGTAGGT	TATACGCCT-	ACCATGGTAT	TAACGGG-TA	ACGGAGAATA
TCA-ACTTTC	GATGGTAGGT	TCTACGCCT-	ACCATGGTAG	TAACGGG-TA	ACGGAGAATA
TCA-ACTTTC	GATGGTACGC	TATACGCCT-	ACCATGGTAG	TAACGGG-TA	ACGGAGAATA
TCA-ACTTTC	GATGGTACGC	TATACGCCT-	ACCATGGTAG	TAACGGG-TA	ACGGAGAATA
TCA-ACTTTC	GATGGTACGC	TATACGCCT-	ACCATGGTAG	TAACGGG-TA	ACGGAGAATA
mmm-mmmm	mmmmmmmmm	mmmmmmmm-	mmmmmmmmm	mmmmmmm-mm	mmmmmmmmm

	 490 500	 510 520 530 540
Microdorylaimus_sp		CT- ACCATGGTAG TAACGGG-TA ACGGAGAATA
Longidorus_elongatus		CT- ACCATGGTAG TAACGGG-TA ACGGAGAATA
Xiphinema_rivesi		CT- ACCATGGTAG TAACGGG-TA ACGGAGAATA
Tylencholaimus_sp Anoplostoma_spBHMM_2005		CT- ACCATGGTAG TAACGGG-TA ACGGAGAATA CT- ACCATGGTTG TTACGGG-TA ACGGAGAATT
Adoncholaimus_fuscus		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATC
Enoplus_meridionalis		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Enoplus_brevis_U88336		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATT
Enoplus_communis		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATT
Enoploides_brunettii Syringolaimus_striatocaudatus		CT- ACCATGGTTG TTACGGG-TA ACGGAGAATT CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Ironus_dentifurcatus		CT- ACCATTGTGA TAACGGG-TA ACGGAGAATT
Calyptronema_maxweberi		CT- ACGGTGGTTA TAACGGG-TA ACGGAGAATC
Viscosia_spBHMM_2005		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATT
Viscosia_viscosa		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATC CT- ACCATGGTTG TAACGGG-TA ACGGAGAATT
Pontonema_vulgare Oncholaimus_spBHMM_2005		CI- ACCAIGGIIG IAACGGG-IA ACGGAGAAII CT- ACCATGGTTG TAACGGG-TA ACGGAGAATC
Alaimus_sp_PDL_2005		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Prismatolaimus_intermedius		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Tobrilus_gracilis		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Tripyla_cf_filicaudata_JH_2004		CT- ACCATGGGTT TTACGGG-TA ACGGAGAATC
Bathylaimus_sp Bathylaimus_assimilis		CT- ACCATGGTGA TAACGGG-TA ACAGAGAATA CT- ACCATGGTGA TAACGGG-TA ACAGAGAATA
Bathylaimus_spBHMM_2005		CT- ACCATGGTGA TAACGGG-TA ACAGAGAATA
Tripyloides_spBHMM_2005		CT- ACCATGGTGA TAACGGG-TA ACAGAGAATA
Trischistoma_monohystera		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Mermis_nigrescens Mylonchulus_arenicolus		CT- ACCATGGTTA TAACGGG-TA ACGGAGAATA CT- ACCATGGTTA TAACGGG-TA ACGGAGAATT
Anatonchus tridentacus		CT- ACCATGGTTA TAACGGG-TA ACGGAGAATT
Mononchus_truncatus		CT- ACCATGGTTA TAACGGG-TA ACGGAGAATA
Prionchulus_muscorum		CT- ACCATGGTTA TAACGGG-TA ACGGAGAATA
Clarkus_sp Trichinella_spiralis		CT- ACCATGGTTA TAACGGG-TA ACGGAGAATT CT- ACCATGGTGA TAACGGG-TA ACGGAGAATC
Trichinella_papuae		CT- ACCATGGTGA TAACGGG-TA ACGGAGAATC
Trichinella_britovi		CT- ACCATGGTGA TAACGGG-TA ACGGAGAATC
Trichinella_murrelli		CT- ACCATGGTGA TAACGGG-TA ACGGAGAATC
Trichinella_pseudospiralis		CT- ACCATGGTGA TAACGGG-TA ACGGAGAATC
Trichinella_nativa Trichinella_zimbabwensis		CT- ACCATGGTGA TAACGGG-TA ACGGAGAATC CT- ACCATGGTGA TAACGGG-TA ACGGAGAATC
Trichinella_nelsoni		CT- ACCATGGTGA TAACGGG-TA ACGGAGAATC
Trichuris_suis		IT- ACCATGGTGA CAACGGT-TA ACGGAGAATC
Trichuris_trichiura		TT- ACCATGGTGA CAACGGT-TA ACGGAGAATC
Trichuris_muris Tylolaimophorus_minor		IT- ACCATGGTGA CAACGGT-TA ACGGAGAATC CT- ACCATGGTTG TAACGGA-TA ACGGAGAATA
Paratrichodorus_pachydermus		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Paratrichodorus_anemones		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Trichodorus_primitivus		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Axonolaimus_helgolandicus Ascolaimus_elongatus		CT- ACCATGGTIG TAACGGG-TA ACGGAGAATA CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Odontophora_rectangula		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Cylindrolaimus_sp202149		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Tylocephalus_auriculatus		CT- ACCATGGTTG TTACGGG-TA ACGGAGAATA
Plectus_acuminatus_BS9 Plectus_aquatilis		CT- ACCATGGTTG TTACGGG-TA ACGGAGAATA CT- ACCATGGTTG TTACGGG-TA ACGGAGAATA
Anaplectus_sp		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Anisakis_sp_WKT		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Anisakis_sp_Nadler		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Contracaecum_multipapillatum Pseudoterranova_decipiens		CT- ACCATGGTIG TAACGGG-TA ACGGAGAATA
Raphidascaris_acus		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Terranova_caballeroi		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Ascaris_suum Ascaris_lumbricoides		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Baylisascaris_procyonis		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Baylisascaris_transfuga		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Parascaris_equorum		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Porrocaecum_depressum		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Toxascaris_leonina Heterocheilus_tunicatus		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Goezia_pelagia		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Hysterothylacium_fortalezae	TCA-ACTGTC GATGGTAGTT TATGTGCC	CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Hysterothylacium_pelagicum		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Hysterothylacium_reliquens Iheringascaris_inquies		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Toxocara_canis		CI- ACCAIGGIIG IAACGGG-IA ACGGAGAAIA CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Nemhelix_bakeri	TCA-ACTTTC GATGGTAGTT TATGTGCC	CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Raillietnema_spV3060		CT- ACCATGGTTG TTACGGG-TA ACGGAGAATA
Cruzia_americana NUCLEOTIDES INCLUDED		CT- ACCATGGTTG TAACGGG-TA ACGGAGAATA nm- mmmmmmmmmm mmmmmmm-mm mmmmmmmmmm

Heterakis_sp_14690	490 TCA-ACTTTC	500 датсстастт				
Heterakis_gallinarum	TCA-ACTTTC (
Paraspidodera_sp_21303	TCA-ACTTTC (
Chromodora_nudicapitata Chromadora_spBHMM_2005	TCA-ACTGTC (TCA-ACTGTC (
Atrochromadora microlaima	TCA-ACTGTC					
Chromadorina_germanica	TCA-ACTGTC (GATGGTAGTT	TATTGGACT-	ACCATGGTTG	TAACGGG-TA	ACGGAGAATT
Chromadorita_tentabundum	TCA-ACTTTC (
Dichromadora_spBHMM_2005 Neochromadora_BHMM_2005	TCA-ACTGTC (TCA-ACTTTC (
Spilophorella_paradoxa	TCA-ACTTTC (
Paracanthonchus_caecus	TCA-ACTTTC (
Paracyatholaimus_intermedius	TCA-ACTGTC					
Praeacanthonchus_punctatus Praeacanthonchus_sp	TCA-ACTTTC (TCA-ACTTTC (
Cyatholaimus_spBHMM_2005	TCA-ACTTTC (
Spirinia_parasitifera	TCA-ACTTTC (
Acanthopharynx_micans	TCA-ACTGTC					
Xyzzors_sp Metachromadora_sp	TCA-ACTTTC (TCA-ACTTTC (
Metachromadora_remanei	TCA-ACTTTC (
Catanema_sp	TCA-ACTTTC (
Eubostrichus_dianae	TCA-ACTTTC (TCA-ACTTTC (
Eubostrichus_topiarus Eubostrichus_parasitiferus	TCA-ACTITC (
Laxus_oneistus	TCA-ACTTTC (
Laxus_cosmopolitus	TCA-ACTTTC (
Leptonemella_sp Robbea hypermnestra	TCA-ACTTTC (TCA-ACTTAC (
Stilbonema_majum	TCA-ACTIAC (
Monoposthia_costata	TCA-ACTTTC (
Nudora_bipapillata	TCA-ACTTTC (
Calomicrolaimus_parahonestus Calomicrolaimus sp. BHMM 2005	TCA-ACTTTC (TCA-ACTTTC (
Molgolaimus_demani	TCA-ACTITC (
Diplogaster_lethieri	TCA-ACTATT (
Aduncospiculum_halicti	TCA-ACTTTC (
Pristionchus_lheritieri Pristionchus_pacificus	TCA-ACTATT (TCA-ACTATT (
Pristionchus_pacificus	TCA-ACTATT (
Sabatieria_punctata_STRAIN_343	TCA-ACTTTC (
Sabatieria_sp355_BHMM_2005	TCA-ACTTTC (TCA-ACTGTC (
Sabatieria_celtica Sabatieria_punctata_STRAIN_200	TCA-ACTGIC (
Sabatieria_punctata_STRAIN_223	TCA-ACTTTC (
Sabatieria_sp210_BHM_2005	TCA-ACTTTC (
Setosabatieria_hilarula Desmolaimus_zeelandicus	TCA-ACTGTC (TCA-ACTGTT (
Terschellingia_longicaudata	TCA-ACTTTC (
Cyartonema_elegans	TCA-ACTTTC (
Tridentulus_sp Diplolaimelloides_meyli	TCA-ACTTTC (TCA-ACTTTC (
Diplolaimella_diavengatensis	TCA-ACTITC (
Geomonhystera_disjuncta	TCA-ACTGTC (
Sphaerolaimus_hirsutus	TCA-ACTTTC (
Theristus_acer Daptonema_procerus	TCA-ACTTTC (TCA-ACTTTC (
Daptonema_hirsutum	TCA-ACTTTC (
Daptonema_normandicum	TCA-ACTTTC (
Daptonema_oxycerca Daptonema setosum	TCA-ACTTTC (TCA-ACTTTC (
Desmodora_communis	TCA-ACTGTC (
Desmodora_ovigera	TCA-ACTTTC (
Metadesmolaimus_sp	TCA-ACTTTC (
Dentostomella_sp Bunonema_franzi	TCA-ACTTTC (TCA-ACTTCC (
Bunonema_sp	TCA-ACTTCC (
Seleborca_complexa	TCA-ACTTTC (
Acrobeloides_nanus	TCA-ACTTTC					
Acrobeloides_bodenheimeri Acrobeloides_sp_PS1146	TCA-ACTTTC (TCA-ACTTTC (
Acrobeles_ciliatus	TCA-ACTTTC (
Acrobeles_sp_PS1156	TCA-ACTTTC (GATGGTAGTG	TATCTGACT-	ACCATGGTGA	TCACGCG-TA	ACGGAGAATA
Acrobeles_complexus_WCUG2	TCA-ACTTTC (TCA-ACCT (
Cephaloboides_sp_SB227 Cephalobus_cubaensis	TCA-ACCT (
Cephalobus_spPS1143	TCA-ACTTTC (GATGGTAGTG	TATCTGACT-	ACCATGGTGA	TCACGCG-TA	ACGGAGAATA
Cephalobus_spPS1196	TCA-ACTTTC (
NUCLEOTIDES INCLUDED	mmm-mmmm r	uuuuummmmmm	uauuunmmmmm –	uuuuunmmmmmm	uuuuunmmm—mm	mannann

L65	490) 520 ACCATGGTGA		
105				ACCATGGIGA		
ilis				ACCATGGTGA		
				ACCATGGTGA ACCATGGTGA		
				ACCATGGIGA		
3021				ACCATGGTGT		
				ACAGTGGTTG		
alis				GTTATGGTGT GCCATGGTGT		
25				GCCATGGTGT		
				AATGTGGTGT		
PS1163				GACGTGGTTG GACGTGGTTG		
gatus				TATATGGTTT		
-				TATATGGTTT		
lus_AF40				TATATGGTTT		
chope ED2 chope ED2				TATATGGTTT TATATGGTTT		
chope ED2				TATATGGTTT		
chope ED2				TATATGGTTT		
chope ED2				TATATGGTTT		
ae alis				ACCATGGTGG ACCATGGTAT		
				ACCATGGTTG		
7				ACCGTGGTTG		
7 sionhoma				ACCGTGGTTG		
riophora Lus				ACCATGGTTA ACCATGGTTA		
lica				ACCATGGTTA		
3B281				ACCATGGTGA		
rmis DF5001				ACCATGGTTG ACCATGGTTG		
75012				ACTAGGGTGA		
a_SB200				ACCATGGTTG		
si_SB199				ACCATGGTTG		
DWF1604 DF5024				ACCATGGTGA ACCATGGTGA		
ni				ACCATGGTTA		
				ACCATGGTTG		
)55				GCCATGGTTG		
OF5015 79				ACCATGGTTA ACCATGGTCG		
gera_SB15				ACCATGGTGA		
pha_SB12				ACCATGGTTG		
cum_DF501 pillata_S				ACCATGGTGA ACCATGGTGA		
ae_PB102				ACCATGGTTG		
3_N2				ACCATGGTTG		
L61)10				ACCATGGTTG ACCATGGTTG		
ca				ACCATGGTTG		
L70				ACCATGGTTG		
11				ACCATGGTTA		
a Ls				GCTATGGTTG ACCATGGTTG		
3				ACCATGGTTA		
nilae				ACCATGGTTG		
phrodita pillosa				ATCATGGTTG		
pillosa				ATCATGGTTG ACCATGGTTA		
nea_SB173				ACCATGGTTA		
				ACCATGGTTA		
chi Ca				GACGTGGTTG ACCATGGTGA		
SW1				ACCATGGTGA		
				ACCATGGTGA		
(4)5				ACCATGGTTA		
4435				ACCATGGTTA ACCATGGTTA		
3				ATCATGGTGA		
)	TCA-ACT	GACGGTAGTC	TATTAGTCT-	ACCGAGGTTA	TCACGGG-TA	ACGGAGAATA
				ACCATGGTTA		
EM435				ACCATGGTTG ACCATGGTTA		
				ACCATGGTTA		
06				ACCATGGTGA		
				ACCATGGTGA mmmmmmmmmm		

Cephalobus_oryzae_PS11 Cervidellus_alutus Pseudacrobeles_variabi Triligulla_aluta Zeldia_punctada Myolaimus_sp_U81585 Rhabditophanes_sp._KR3 Brevibucca_sp._SB261 Halicephalobus_gingiva Panagrobelus_stammeri Plectonchus_sp._PDL002 Turbatrix_aceti Panagrellus_redivivus Panagrellus_redivivus_ Panagrolaimus_subelong Panagrolaimus_davidi Panagrolaimus_cf_rigid Panagrolaimus sp. Sour Steinernema_carpocapsa Strongyloides_stercora Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_bacter Heterorhabditis_hepial Heterorhabditis_zeland Parasitorhabditis_sp_S Rhabditoides_inermiform Rhabditoides_inermis_D Rhabditoides_regina_DF Poikilolaimus_oxycerca Poikilolaimus_regenfus Distolabrellus veechi Distolabrellus veechi Choriorhabditis_dudich Protorhabditis_sp Protorhabditis_sp_DF50 Cruznema_tripartitum_D Mesorhabditis_sp_PS117 Mesorhabditis_spiculig Mesorhabditis_anisomory Teratorhabditis_palmar Teratorhabditis_synpap Caenorhabditis_briggsa Caenorhabditis_elegans Caenorhabditis_sp_CB51 Caenorhabditis_sp_PS10 Caenorhabditis_japonic Caenorhabditis_sp_DF51 Caenorhabditis_sp_SB34 Caenorhabditis_plicata Caenorhabditis_vulgari Caenorhabditis_sonorae Caenorhabditis_drosoph Phasmarhabditis_hermap Phasmarhabditis_neopap Phasmarhabditis_neopap Pellioditis_mediterran Pellioditis_marina Prodontorhabditis_wirt Crustorhabditis_scanic Dolichorhabditis_sp_CE Oscheius_sp_DF5000 Oscheius_sp_BW282 Oscheius_myriophila_EM Oscheius_insectivora Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1191 Rhabditis_sp_PS1010 Rhabditis_myriophila_E Rhabditis_colombiana

Rhabditella_axei_DF500 Rhabditella_sp_DF5044 NUCLEOTIDES INCLUDED

	490 50	0 51	0 52	0 530	540
Cuticularia_sp_PS2083 Necator americanus	TCA-ACTTTC GATGGTAGTT TCA-ACCT GATGGTAGTC				
Kalicephalus_cristatus	TCA-ACCT GATGGTAGTC				
Ancylostoma_caninum	TCA-ACCT GATGGTAGTC				
Angiostrongylus_cantonensis Angiostrongylus_costaricensis	TCA-ACCT GATGGTAGTC TCA-ACCT GATGGTAGTC				
Angiostrongylus_malaysiensis	TCA-ACCT GATGGTAGTC				
Angiostrongylus_dujardini	TCA-ACCT GATGGTAGTC				
Angiostrongylus_vasorum	TCA-ACCT GATGGTAGTC				
Aulurostrongylus_abstrusus Didelphostrongylus_hayesi	TCA-ACCT GATGGTAGTC TCA-ACCT GATGGTAGTC				
Crenosoma_mephitidis	TCA-ACCT GATGGTAGTC				
Crenosoma_vulpis	TCA-ACCT GATGGTAGTC				
Otostrongylus_circumlitus Troglostrongylus_wilsoni	TCA-ACCT GATGGTAGTC TCA-ACCT GATGGTAGTC				
Filaroides_martis	TCA-ACCT GATGGTAGTC				
Oslerus_osleri	TCA-ACCT GATGGTAGTC	TATTAGTCT-	ACCATGGTTA	TTACGGG-TA	ACGGAGAATA
Parafilaroides_decorus	TCA-ACCT GATGGTAGTC				
Metastrongylus_salmi Metastrongylus_elongatus	TCA-ACCT GATGGTAGTC TCA-ACCT GATGGTAGTC				
Skrjabingylus_chitwoodrum	TCA-ACCT GATGGTAGTC				
Parelaphostrongylus_odocoilei	TCA-ACCT GATGGTAGTC				
Muelerius_capillaris	TCA-ACCT GATGGTAGTC TCA-ACCT GATGGTAGTC				
Protostrongylus_rufescens Halocercus invaginatus	TCA-ACCT GATGGTAGTC				
Pseudalius_inflexus	TCA-ACCT GATGGTAGTC				
Stenurus_minor	TCA-ACCT GATGGTAGTC				
Torynurus_convolutus Syngamus_trachea	TCA-ACCT GATGGTAGTC TCA-ACCT GATGGTAGTC				
Stephanurus_dentatus	TCA-ACCT GATGGTAGTC				
Nematodirus_battus	TCA-ACCT GATGGTAGTC				
Strongylus_equinus	TCA-ACCT GATGGTAGTC TCA-ACCT GATGGTAGTC				
Labiostrongylus_bipapillosus Petrovinema_poculatum	TCA-ACCT GATGGTAGTC				
Cylicocyclus_insignis	TCA-ACCT GATGGTAGTC				
Chabartia_ovina	TCA-ACCT GATGGTAGTC				
Cyclodontostomum_purvisi Zoniolaimus_mawsonae	TCA-ACCT GATGGTAGTC TCA-ACCT GATGGTAGTC				
Hypodontus_macropi	TCA-ACCT GATGGTAGTC				
Deletrocephalus_dimidiatus	TCA-ACCT GATGGTAGTC				
Dictyocaulus_eckerti_P7B8 Dictyocaulus_capreolus_P3B2	TCA-ACCT GATGGTAGTC TCA-ACCT GATGGTAGTC				
Dictyocaulus_spP6A1	TCA-ACCT GATGGTAGTC				
Dictyocaulus_filaria	TCA-ACCT GATGGTAGTC				
Dictyocaulus_capreolus_P2C10	TCA-ACCT GATGGTAGTC				
Dictyocaulus_viviparus Haemonchus_spV3091	TCA-ACCT GATGGTAGTC TCA-ACCT GATGGTAGTC				
Haemonchus_contortus	TCA-ACCT GATGGTAGTC				
Haemonchus_placei	TCA-ACCT GATGGTAGTC				
Haemonchus_similis Ostertagia_ostertagi	TCA-ACCT GATGGTAGTC TCA-ACCT GATGGTAGTC				
Ostertagia_leptospicularis	TCA-ACCT GATGGTAGTC				
Nippostrongylus_brasileinsis	TCA-ACCT GATGGTAGTC				
Heligmosomoides_polygyrus Trichostrongylus_colubriformis	TCA-ACCT GATGGTAGTC TCA-ACCT GATGGTAGTC				
Tetrabothriostrongylus mackerr	TCA-ACCT GATGGTAGTC				
Herpestrongylus_pythonis	TCA-ACCT GATGGTAGTC	TATTAGTCT-	ACCATGGTTA	TTACGGG-TA	ACGGAGAATA
Nicollina_cameroni	TCA-ACCT GATGGTAGTC TCA-ACCT GATGGTAGTC				
Filarimena_flagrifer Amidostomum_cygni	TCA-ACCT GATGGTAGTC				
Teratocephalus_lirellus	TCA-ACTTTC GATGGTAGAT				
Brumptaemilius_justini	TCA-ACTTTC GATGGTAGTT				
Anguillicola_crassus Dracunculus_medinensis	TCA-ACTGTC GATGGTAGTT TCA-ACTTTC GATGGTAGTT				
Dracunculus_oesophageus	TCA-ACTTTC GATGGTAGTT				
Dracunculus_spV3104	TCA-ACTTTC GATGGTAGTT				
Philonema_sp_A Philometra_obturang	TCA-ACTTTC GATGGTAGTT				
Philometra_obturans Camallanus_oxycepahalus	TCA-ACTTTC GATGGTAGTT TCA-ACTTTC GATGGTAGTT				
Acanthocheilonema_viteae	TCA-ACTTTC GATGGTAGTT	TATGTGCCT-	ACCATGGTTG	TAACGGG-TA	ACGGAGAATA
Loa_loa	TCA-ACTTTC GATGGTAGTT				
Onchocerca_cervicalis Dirofilaria_immitis	TCA-ACTTTC GATGGTAATT TCA-ACTTTC GATGGTAGTT				
Brugia_malayi	TCA-ACTITIC GATGGIAGII				
Wuchereria_bancrofti	TCA-ACTTTC GATGGTAGTT	TATGTGCCT-	ACCATGGTTG	TAACGGG-TA	ACGGAGAATA
Litomosoides_sigmodontis	TCA-ACTTTC GATGGTAGTT				
Setaria_digitata Gnathostoma_turgidum	TCA-ACTTTC GATGGTAGTT TCA-ACTTTC GATGGTAGGT				
NUCLEOTIDES INCLUDED	mmm-mmmm mmmmmmmmm				

6	490 500 510 520 530 540
Gnathostoma_neoprocyonis Gnathostoma_binucleatum	TCA-ACTTTC GATGGTAGGT TATGTGCCT- ACCATGGTTG TAACGGG-TA ACGGAGAATA TCA-ACTTTC GATGGTAGGT TATGTGCCT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Physaloptera_alata	TCA-ACTITE GATGGTAGTI TATGTGCCT- ACCATGGTIG TAACGGG-TA ACGGAGAATA
Physaloptera_turgida	TCA-ACTTTC GATGGTAGTT TATGTGCCT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Ascarophis_arctica	TCA-ACTTTC GATGGTAGTT TATGTGCCT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Spinitectus_carolini	TCA-ACTTTC GATGGTAGTT TATGTGCCT- ACCATGGTTG TAACGGG-TA ACGGAGAATA
Thelazia_lacrymalis	TCA-ACTTTC GATGGTAGTT TATGTGCCT- ACCATGGTTG TAACGGG-TA ACGGAGAATA TCA-ACTTTC GATGGTAGTG TAGTGGACT- ACCATGGTTG TGACGGG-TA ACGGAGGATA
Aphelenchus_avenae Aphelenchoides_fragariae	TCA-ACTITIC GATGGTAGIG TAGIGGACI- ACCAIGGIIG IGACGGG-IA ACGGAGGAIA TCA-ACTITIC GATGGTAGIG TATTGGACT- GCCAIGGIGT IGACGGG-IA ACGGAGGAIA
Bursaphelelenchus_sp	TCA-ACTATC GTTGGTAGTT TATTGGACT- ACCATGGTGT TGACGGG-TA ACGGAGAATC
Deladenus_sp	TCA-ACTTTC GATGGTAGTG TATCTGACT- ACCATGGTGG TGACGGG-TA ACGGGGGGATA
Criconema_sp	TCA-ACTTTC GATGGTAGTG TACGTGACT- ACCATGGTTG TGACGGG-TA ACGGAGGATA
Hemicycliophora_conida Paratylenchus_dianthus	TCA-ACTTTC GATGGTAGTG TACGTGACT- ACCATGGTTG TGACGGG-TA ACGGAGGATA TCA-ACTTTC GATGGTAGTG TACGTGACT- ACCATGGTGT TGACGGG-TA ACGGAGGATA
Pratylenchus_thornei	TCA-ACTITC GATGGTAGTG TATCTGACT- ACCATGGTGG TGACGGG-TA ACGGAGGATA
Tylenchulus_semipentrans	TCA-ACTTTC GATGGTAGTG TACGTGACT- ACCATGGTGT TGACGGG-TA ACGGAGGATA
Ditylenchus_angustus	TCA-ACTTTC GACGGTAGTG TATTGGACT- ACCGTGGTGG TGACGGG-TA ACGGAGGATA
Subanguina_radicola	TCA-ACTTTC GATGGTAGTG TATCTGACT- ACCATGGTGG TGACGGG-TA ACGGAGGATA
Tylenchorhynchus_maximus Geocenamus_quadrifer	TCA-ACTTTC GATGGTAGTG TATCTGACT- ACCATGGTGA TGACGGG-TA ACGGAGGATA TCA-ACTTTC GATGGTAGTG TATCTGACT- ACCATGGTGG TGACGGG-TA ACGGAGGATA
Globodera_pallida	TCA-ACTITIC GATGGTAGTG TACCTGACT- ACCATGGTGA TGACGGG TA ACGGAGGATA
Scutellonema_bradys	TCA-ACTTTC GATGGTAGTG TACCTGACT- ACCATGGTTG TGACGGG-TA ACGGAGGATC
Helicotylenhcus_dihystera	TCA-ACTTTC GATGGTAGTG TACCTGACT- ACCATGGTTG TGACGGG-TA ACGGAGGATA
Rotylenchus_robustus	TCA-ACTTTC GATGGTAGTG TACCTGACT- ACCATGGTGA TGACGGG-TA ACGGAGGATA
Meloidogyne_arenaria Meloidogyne incognita KT	TCA-ACTT GACGGGAGCA TAATCGACT- CCCGTGGTGG TGACGGA-TA ACGGAGGATC TCA-ACTT GACGGGAGCA TAATCGACT- CCCGTGGTGG TGACGGA-TA ACGGAGGATC
Meloidogyne_javanica	TCA-AMTT GACGGGAGCA TAATCGACT- CCCGTGGTGG TGACGGA-TA ACGGAGGATC
Meloidogyne_artiellia	TCA-ACTT GACGGGAGTA TAATCGACT- CCCGTGGTGG TGACGGA-TA ACGGAGAATC
Meloidogyne_duytsi	TCA-ACTT GACGGGAGCA TAACCGACT- CCCGTGGTGG TGACGGA-TA ACGGAGGATC
Meloidogyne_exigua	TCA-ACTT GACGGGAGCA TAATCGACT- CCCGTGGTTG TGACGGA-TA ACGGAGGATC
Meloidogyne_hapla Meloidogyne ichinohei	TCA-ACTT GACGGGAGCA TAATCGACT- CCCGTGGTGG TGACGGA-TA ACGGAGGATC TCATACTT GATGTTAGTA TCAGTGGCT- AACATGGTGG TGACGGA-TA ACGGAGGATC
Meloidogyne_maritima	TCA-ACTT GACGGGAGCA TAATCGACT- CCCGTGGTGG TGACGGA-TA ACGGAGGATC
Meloidogyne_microtyla	TCA-ACTT GACGGGAGCA TAATTGACT- CCCGWGGTGA TGACGGA-TA ACGGAGGATC
Nacobbus_aberrans	TCA-ACTTTC GATGGTAGCG TATCTGCCT- ACCATGGTGA TGACGGG-TA ACGGAGGATA
Pratylenchoides_ritteri Pratylenchoides_magnicauda	TCA-ACTTTC GATGGTAGTG TATCTGACT- ACCATGGTGG TGACGGG-TA ACGGAGGATA TCA-ACTTTC GATGGTAGTG TATCTGACT- ACCATGGTGG TGACGGG-TA ACGGAGGATA
Hirschmanniella_spJH_2003	TCA-ACTITC GATGGTAGTG TATCTGACT- ACCATGGTGG TGACGGG-TA ACGGAGGATA
Radopholus_similis	TCA-ACTTTC GACGGTAGTG TCTCTGGCT- ACCGTGGTGG TGACGGG-TA ACGGAGGATC
Pratylenchus_goodeyi_VF	TCA-ACTTTC GATGGTAGTG TCAGTGACT- ACCATGGTGG TGACGGT-TA ACGGAGGATC
Boleodorus_thylactus_clone2	TCA-ACTTTC GATGGTAGTG TATCTGACT- ACCATGGTTG TGACGGG-TA ACGGAGGATA TCA-ACCT GATGGTAGTC TATTAGTCT- ACCATGGTTA TTACGGG-TA ACGGAGAATA
Philippine Sequence 1 Philippine Sequence 2	TCA-ACCI GAIGGIAGIC IAIIAGICI- ACCAIGGIIA IIACGGG-IA ACGGAGAAIA TCA-ACCI GAIGGIAGIC TATIAGICI- ACCAIGGIIA IIACGGG-IA ACGGAGAAIA
Philippine Sequence 3	TCA-ACCA GATGGTAGCC TATTAGACT- ACCATGGTTA TAACGGG-TA ACGGAGAATC
Philippine Sequence 4	TCA-ACTTTC TATATAAGTA TATAGTACT- TATATGGTTT TGACGGA-TA ACGGAGTATT
Philippine Sequence 5	TCA-ACCT GATGGTAGTC TATTAGTCT- ACCATGGTTA TTACGGG-TA ACGGAGAATA
Philippine Sequence 6 Philippine Sequence 7	TCA-ACCT GATGGTAGTC TATTAGTCT- ACCATGGTTA TCACGGG-TA ACGGAGAATA TCA-ACTA GATGGTAGTT TATTGGACT- ACCATGGTTG TTACGGG-TA ACGGAGAATA
Tahiti Sequence 1	TCA-ACCT GATGGTAGTC TATTAGTCT- ACCATGGTTA TTACGGG-TA ACGGAGAATA
Tahiti Sequence 2	TCA-ACCT GATGGTAGTC TATTAGTCT- ACCATGGTTA TTACGGG-TA ACGGAGAATA
Thailand Sequence 1	TCA-ACTTTC GATGGTAGTT TAAATGCCT- ACCATGGTTG TTACGGG-TA ACGGAGAATA
Ogasawara Sequence 1 Ogasawara Sequence 2	TCA-ACTTTC TATATAAGTA TATAGTACT- TATATGGTTT TGACGGA-TA ACGGAGTATT TCA-ACTA GATGTTAGTC TATTAGTCT- AACATGGTTG TAACGGG-TA ACGGAGAATC
Ivory Coast Sequence 1	TCA-ACCT GATGGTAGTC TATTAGTCT- ACCATGGTTA TTACGGG-TA ACGGAGAATA
Ivory Coast Sequence 2	TCA-ACCT GATGGTAGTC TATTAGTCT- ACCATGGTTA TTACGGG-TA ACGGAGAATA
Ivory Coast Sequence 3	TCA-ACCT GATGGTAGTC TATTAGTCT- ACCATGGTTA TTACGGG-TA ACGGAGAATA
Ivory Coast Sequence 4	TCA-ACCT GATGGTAGTC TATTAGTCT- ACCATGGTTA TTACGGG-TA ACGGAGAATA
Ivory Coast Sequence 5 Ivory Coast Sequence 6	TCA-ACTTTC GATGGTAGTT TAAATGCCT- ACCATGGTTG TTACGGG-TA ACGGAGAATA TCA-ACCT GATGGTAGTC TATTAGTCT- ACCATGGTTA TTACGGG-TA ACGGAGAATA
Ivory Coast Sequence 7	TCA-ACCT GATGGTAGTC TATTAGTCT- ACCATGGTTA TTACGGG-TA ACGGAGAATA
Singapore Sequence 1	TCA-ACCA GATGGTAGCC TATTAGACT- ACCATGGTTA TAACGGG-TA ACGGAGAATC
Singapore Sequence 2	TCA-ACTTTC GATGGTAGTT TAAATGCCT- ACCATGGTTG TTACGGG-TA ACGGAGAATA
Singapore Sequence 3	TCA-ACTA GATGGTAGTT TATTGGACT- ACCATGGTTG TTACGGG-TA ACGGAGAATA TCA-ACCT GATGGTAGTC TATTAGTCT- ACCATGGTTA TTACGGG-TA ACGGAGAATA
Singapore Sequence 4 Nigerian Sequence 1	TCA-ACCI GAIGGIAGIC IAIIAGICI- ACCAIGGIIA IIACGGG-IA ACGGAGAAIA TCA-ACCI GAIGGIAGIC TATIAGICI- ACCAIGGIIA IIACGGG-IG ACGGAGAAIA
Nigerian Sequence 2	TCA-ACCT GATGGTAGTC TATTAGTCT- ACCATGGTTA TTACGGG-TA ACGGAGAATA
Nigerian Sequence 3	TCA-ACCT GATGGTAGTC TATTAGTCT- ACCATGGTTA TTACGGG-TA ACGGAGAATA
NUCLEOTIDES INCLUDED	mmm-mmmm mmmmmmmmmmmmmmmmmmmmmmmmmmm
Gordius_aquaticus	AGGGTT-CG- ATTCCGGA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA
Priapulus_caudatus	AGGGTT-CG- ATTCCGGA GAGGGAGCAT GAGAAACGGC TACCACATCC AAGGAAGGCA
Brachionus_plicatilis	AGGGTT-CG- ATTCCGGA GAGGGAGCAT GAGAAACGGC TACCACATCT ACGGAAGGCA
Chordodes_morgani Paractinolaimus_macrolaimus	AGGGTT-CG- ATTCCGGA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ACTCCGGA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA
Aporcelaimellus_obtusicaudatus	AGGGTI-CG- ACTCCGGA GAGGGAGCCI GAGAAACGGC IACCACATCC AAGGAAGGCA AGGGTT-CG- ACTCCGGA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA
NUCLEOTIDES INCLUDED	mmmmm—mm— mmmmm——mmm mmmmmmmmmmmmmmmmm

Wilsonema schuurmansstekhoveni Mesodorylaimus_sp_cf_nigritul Mesodorylaimus bastiani Mesodorylaimus_japonicus Pungentus_sp._PDL_2005 Allodorylaimus_sp Eudorylaimus_carteri Microdorylaimus_sp Longidorus_elongatus Xiphinema rivesi Tylencholaimus_sp Anoplostoma_sp._BHMM_2005 Adoncholaimus_fuscus Enoplus_meridionalis Enoplus_brevis_U88336 Enoplus_communis Enoploides_brunettii Syringolaimus_striatocaudatus Ironus_dentifurcatus Calyptronema_maxweberi Viscosia_sp._BHMM_2005 Viscosia_viscosa Pontonema_vulgare Oncholaimus_sp._BHMM_2005 Alaimus_sp_PDL_2005 Prismatolaimus_intermedius Tobrilus_gracilis Tripyla_cf_filicaudata_JH_2004 Bathylaimus_sp Bathylaimus_assimilis Bathylaimus_sp._BHMM_2005 Tripyloides_sp._BHMM_2005 Trischistoma_monohystera Mermis_nigrescens Mylonchulus_arenicolus Anatonchus_tridentacus Mononchus_truncatus Prionchulus_muscorum Clarkus_sp Trichinella_spiralis Trichinella_papuae Trichinella_britovi Trichinella_murrelli Trichinella_pseudospiralis Trichinella_nativa Trichinella_zimbabwensis Trichinella nelsoni -Trichuris_suis Trichuris_trichiura Trichuris_muris Tylolaimophorus_minor Paratrichodorus_pachydermus Paratrichodorus anemones Trichodorus primitivus Axonolaimus helgolandicus Ascolaimus_elongatus Odontophora_rectangula Cylindrolaimus_sp._202149 Tylocephalus_auriculatus Plectus_acuminatus_BS9 Plectus_aquatilis Anaplectus sp Anisakis_sp_WKT Anisakis_sp_Nadler Contracaecum_multipapillatum Pseudoterranova_decipiens Raphidascaris acus Terranova_caballeroi Ascaris suum Ascaris lumbricoides Baylisascaris_procyonis Baylisascaris_transfuga Parascaris_equorum Porrocaecum_depressum Toxascaris leonina Heterocheilus tunicatus Goezia_pelagia Hysterothylacium fortalezae NUCLEOTIDES INCLUDED

....|....||||||||| 550 560 570 580 590 600 AGGGTT-CG- ACTCC--GGA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA 600 AGGGTT-CG- ACTCC--GGA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-YG- ACTCC--GGA GAGGGAGCCT GWGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT GAGAAATGGC TACCACATCC AAGGAAGGCA AGGGTT-TG- ATTCC--GGA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-TG- ATTCC--GGA GAGGGAGCCT GAGAAATGGC TACCACATCC AAGGAAGGCA AGGGTT-TG- ATTCC--GGA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-TG- ATTCC--GGA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-TG- ATTCC--GGA GAGGGAGCCT GAGAAATGGC TACCACATCC AAGGAAGGCA AGGGTT-TG- ATTCC--GGA GAGGGAGCCT GAGAAATGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ATACC--GGA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT GAGAAATGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT GAGAAKCGGC TACCACATCC AAGGAAGGCA AGGGTT-TG- ACTCT--GGA GAGGCAGCCT GAGAGACGGC TACCACATCC AAGGAAGGCA AGGGTT-TG- ACTCT--GGA GAGGCAGCCT GAGAGACGGC TACCACATCC AAGGAAGGCA AGGGTT-TG- ACTCT--GGA GAGGGAGCCT GAGAGACGGC TACCACATCC AAGGAAGGCA AGGGTT-TG- ACTCT--GGA GAGGGAGCCT GAGAGACGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ATTCC--GGA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA AGG-TT-CG- ACTCC--GGA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT GAGAAATGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- GCTCC--GGA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTTTCG- ACTCC--GGA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT GAGAAATGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA RAGGGAGCCT GAAAAATGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT GAGAAATGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA

	550					
agicum				GAGAAACGGC GAGAAACGGC		
iquens es				GAGAAACGGC		
65				GAGAAACGGC		
				GAGAAACGGC		
60				GAGAAACGGC		
	AGGGTT-CG-	ACTCCGGA	GAGGGAGCCT	GAGAAACGGC	TACCACATCC	AAGGAAGGCA
	AGGGTT-CG-	ACTCCGGA	GAGGGAGCCT	TAGAAACGGC	TACCACATCC	AAGGAAGGCA
L	AGGGTT-CG-	ACTCCGGA	GAGGGAGCCT	TAAAAACGGC	TACCACATCC	AAGGAAGGCA
03				GAGAAACGGC		
ata				GAGATACGGC		
2005				GAGATACGGC		
laima				GAGATACGGC		
ca				GAGATACGGC		
ndum				GAGAAACGGC GAGATACGGC		
M_2005 005				GAGAAACGGC		
xa				GAGAAACGGC		
us				GAGAAACGGC		
ermedius				GAGAAACGGC		
ctatus				gagaaacggc		
				GAGAAACGGC		
M_2005				GAGAAACGGC		
a	AGGGTT-CG-	ACTCCGGA	GAGGGAGCCT	GAGAAATGGC	TACCACATCC	AAGGAAGGCA
S				GAGAAATGGC		
				GAGAAATGGC		
				GAGAAATGGC		
ei				GAGAAATGGC		
				GAGAAATGGC		
~				GAGAAATGGC GAGAAATGGC		
s iferus				GAGAAATGGC		
iterus				GAGAAATGGC		
				GAGAAATGGC		
				GAGAAATGGC		
				GAGAAATGGC		
	AGGGTT-CG-	ACTCCGGA	GAGGGAGCCT	GAGAAATGGC	TACCACATCC	AAGGAAGGCA
	AGGGTT-CG-	ATTCCGGA	GAGGGAGCCT	GAGAAACGGA	TACCACATCC	AAGGAAGGCA
				TAAAAACGGC		
honestus				GAGAAACGGC		
BHMM_2005				GAGAAACGGC		
				GAGAAACGGC		
				TAGAAACGGC		
ti eri				GAGAAACGGC TAGAAACGGC		
us				TAGAAACGGC		
us				TAGAAACGGC		
STRAIN_343				GAGAAACGGC		
HMM_2005				GAGAAACGGC		
	AGGGTT-CG-	ACTCCGGA	GAGGGAGCCC	GAGAAACGGC	TACCACATCC	AAGGAAGGCA
STRAIN_200	AGGGTT-CG-	ACTCCGGA	GAGGGAGCCT	GAGAAACGGC	TACCACATCC	AAGGAAGGCA
STRAIN_223				GAGAAATGGC		
HM_2005				GAGAAACGGC		
ula				GAGAAACGGC		
cus				GAGAAACGGC		
caudata				GAGAAACGGC GAGAAACGGC		
				GAGAAACGGC		
yli				GAGAAACGGC		
gatensis				GAGAAACGGC		
cta				GAGAAACGGC		
us	AGGGTT-TG-	ATTCCGGA	GAGGGCGCCC	GAGAAATGGC	GACCACTTCC	AAGGAAGGCA
	AGGGTT-CG-	ACTCCGGA	GAGGGAGCCT	GAGAAACGGC	TACCACTTCT	AAGGAAGGCA
	AGGGTT-CG-	ACTCCGGA	GAGGGAGCCT	GAGAAACGGC	TACCACTTCT	AAGGAAGGCA
				GAGAAACGGC		
m				GAGAAACGGC		
				GAGAAACGGC		
				GAGAAACGGC		
				GAGAAATGGC		
				GAGAAATGGC GAGAAACGGC		
				GAGAAACGGC		
				GAGAAACGGC		
				GAGAAACGGC		
				GAGAAATCGC		
				GAGAAATCGC		
imeri	AGGGTT-CG-	GCTCCGGA	GAGTTCGCCT	GAGAAATCGC	GAACACATCT	AAGGAAGGCA
46				GAGAAATCGC		
1	mmmmmm-mm-	mmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

Hysterothylacium_pela Hysterothylacium_reli Iheringascaris_inquie Toxocara_canis Nemhelix_bakeri Raillietnema_sp._V306 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_2130 Chromodora_nudicapita Chromadora_sp._BHMM_2 Atrochromadora_microl Chromadorina_germanic Chromadorita_tentabun Dichromadora_sp._BHMM Neochromadora_BHMM_20 Spilophorella_paradox Paracanthonchus_caecu Paracyatholaimus_inte Praeacanthonchus_punc Praeacanthonchus_sp Cyatholaimus_sp._BHMM Spirinia_parasitifera Acanthopharynx_micans Xyzzors_sp Metachromadora_sp Metachromadora_remane Catanema_sp Eubostrichus_dianae Eubostrichus_topiarus Eubostrichus_parasiti Laxus_oneistus Laxus_cosmopolitus Leptonemella_sp Robbea_hypermnestra Stilbonema_majum Monoposthia_costata Nudora_bipapillata Calomicrolaimus_parah Calomicrolaimus_sp._E Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halict Pristionchus_lheritie Pristionchus_pacificu Pristionchus_pacificu Sabatieria_punctata_S Sabatieria_sp._355_BH Sabatieria_celtica Sabatieria_punctata_S Sabatieria_punctata_S Sabatieria_sp._210_BH Setosabatieria_hilaru Desmolaimus_zeelandic Terschellingia_longic Cyartonema_elegans Tridentulus_sp Diplolaimelloides_mey Diplolaimella_diaveng Geomonhystera_disjund Sphaerolaimus_hirsutu Theristus_acer Daptonema_procerus Daptonema_hirsutum Daptonema_normandicum Daptonema_oxycerca Daptonema_setosum Desmodora_communis Desmodora_ovigera Metadesmolaimus_sp Dentostomella_sp Bunonema_franzi Bunonema_sp Seleborca_complexa Acrobeloides_nanus Acrobeloides_bodenhei Acrobeloides_sp_PS114

NUCLEOTIDES INCLUDED

Acrobeles_ciliatus Acrobeles_sp_PS1156 Acrobeles complexus WCUG2 Cephaloboides_sp_SB227 Cephalobus_cubaensis Cephalobus_sp._PS1143 Cephalobus_sp._PS1196 Cephalobus_oryzae_PS1165 Cervidellus_alutus Pseudacrobeles_variabilis Triligulla_aluta Zeldia_punctada Myolaimus_sp_U81585 Rhabditophanes_sp._KR3021 Brevibucca_sp._SB261 Halicephalobus_gingivalis Panagrobelus_stammeri Plectonchus_sp._PDL0025 Turbatrix aceti Panagrellus_redivivus Panagrellus_redivivus_PS1163 Panagrolaimus_subelongatus Panagrolaimus_davidi Panagrolaimus_cf_rigidus_AF40 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_bacteriophora Heterorhabditis_hepialus Heterorhabditis_zelandica Parasitorhabditis_sp_SB281 Rhabditoides_inermiformis Rhabditoides_inermis_DF5001 Rhabditoides_regina_DF5012 Poikilolaimus oxycerca SB200 Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604 Distolabrellus veechi DF5024 Choriorhabditis_dudichi Protorhabditis_sp Protorhabditis_sp_DF5055 Cruznema tripartitum DF5015 Mesorhabditis_sp_PS1179 Mesorhabditis_spiculigera_SB15 Mesorhabditis_anisomorpha_SB12 Teratorhabditis_palmarum_DF501 Teratorhabditis_synpapillata_S Caenorhabditis_briggsae_PB102 Caenorhabditis_elegans_N2 Caenorhabditis_sp_CB5161 Caenorhabditis_sp_PS1010 Caenorhabditis_japonica Caenorhabditis_sp_DF5170 Caenorhabditis_sp_SB341 Caenorhabditis_plicata Caenorhabditis_vulgaris Caenorhabditis_sonorae Caenorhabditis_drosophilae Phasmarhabditis_hermaphrodita Phasmarhabditis_neopapillosa Phasmarhabditis_neopapillosa Pellioditis_mediterranea_SB173 Pellioditis marina Prodontorhabditis_wirthi Crustorhabditis scanica Dolichorhabditis_sp_CEW1 Oscheius sp DF5000 Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_insectivora Oscheius dolichuroides NUCLEOTIDES INCLUDED

....|....||||||||| 550 560 570 580 590 600 AGGGTT-CG- ACTCC--GGA GAGTTCGCCT GAGAAATCGC GAACACATCT AAGGAAGGCA 600 AGGGTT-CG- ACTCC--GGA GAGTTCGCCT GAGAAATCGC GAACACATCT AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGTTCGCCT GAGAAATCGC GAACACATCT AAGGAAGGCA AGGGTT-CG- TCTCC--GGA GAGGGAGCCT TAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- GCTCC--GGA GAGTTCGCCT GAGAAATCGC GAACACATCT AAGGAAGGCA AGGGTT-TG- ACTCC--GGA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT GAGAAACGGC TACCAACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGCAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- TCTCC--GGA GAGAATGCCT TAAAAACGGC TTTCACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAAATCGCCT GAGAAACGGC GTTTACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAAATCGCCT GAGAAACGGC GTTTACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAAAACGCCT GAGAAACGGC GGTTACATCC AAGGAAGGCA ATGGTT-CG- ACTCC--GGA GAAATAGCCT GAGAAACGGC TTTTACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAAATAGCCT GAGAAACGGC TTTTACATCC AAGGAAGGCA AGGGTA-CG- ACTCC--GGA GAAAATGCCT GAGAAACGGC GTTTACATCC AAGGAAGGCA AGGGTT-TG- ACTCC--GGA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ATTCC--GGA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA GGGGTT-TG- ACTCC--GGA GAGGGAGCCT TAGAAACGGC TACCACATCC AAGGAAGGCA GGGGTT-TG- ACTCC--GGA GAGGGAGCCT TAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT TAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT TAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT TAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-TG- ACTCC--GGA GAGGATGCCT TAGAAACGGC AACCACATCT AAGGAAGGCA AGGGTT-CG- ACTCC--GTA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT GAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-TG- ACTCC--GGA GAAGATGCCT TAGAAACGGC AACTACATCC AAGGAAGGCA AGGGTT-TG- ATTCC--GGA GAGGGAGCCT GAGAAACGGC TACCACATCT AAGGAAGGCA AGGGTT-TG- ATTCC--GGA GAGGGAGCCT GAGAAACGGC TACCACATCT AAGGAAGGCA AGGGTT-TG- ACTCC--GGA GAGGATGCCT TAGAAACGGC AACCACATCT AAGGAAGGCA AGGGTT-TG- ACTCC--GGA GAGGATGCCT TAGAAACGGC AACCACATCT AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT TAGAAACGGC TACCACATCC AAGGAAGGCA GGGGTT-TG- ACTCC--GGA GAGGGAGCCT TAGAAACGGC TACCACATCC AAGGAAGGCA GGGGTT-CG- ACTCC--GGA GAGGCAGCCT TAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT TAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-TG- ACTCC--GGA GAGGATGCCT GAGAAACGGC AACCACATCT AAGGAAGGCA AGGGTT-TG- ACTCC--GGA GAGGATGCCT GAGAAACGGC AACCACATCT AAGGAAGGCA AGGGTT-TG- ACTCC--GGA GAGGATGCCT GAGACACGGC AACCACATCT AAGGAAGGCA AGGGTT-TG- ACTCC--GGA GA-GTATCCT GAGAGACGGC AAACACATCT AAGGAAGGCA AGGGTT-TG- ACTCC--GGA GAGTATGCCT GAGAGACGGC AAACACATCT AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT TAGAAACGGC TACCACGTCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT TAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT TAGAAACGGC TACCACGTCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT TAGAAACGGC TACCACGTCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT TAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT TAGAAACGGC TACCACGTCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT TAGAAACGGC TACCACATCC AAGGAAGGCA ATG-TT-CG- TCTCC--GGA GAGGCCGCCT TAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-TG- ACTCC--GGA GAGGATGCCT KAGAAACGGC AGCCACATCT AAGGAAGGCA AGGGTT-CG- GCTCC--GGA GAGGGAGCCT TAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- ACTCC--GGA GAGGGAGCCT TAGAAACGGC TACCACATCC AAGGAAGGCA AGGGTT-CG- GCTCC--GGA GAGGGAGCCT TAGAAACGGC TACCACATCC AAGGAAGGCA

	55					
Rhabditis_blumi_DF5010 Rhabditis_sp_PS1191		ACTCCGGA ACTCCGGA				
Rhabditis_sp_PS1010		ACTCCGGA				
Rhabditis_myriophila_EM435		ACTCCGGA				
Rhabditis_colombiana		ACTCCGGA				
Rhabditella_axei_DF5006		ACTCCGGA				
Rhabditella_sp_DF5044 Cuticularia_sp_PS2083		ACTCCGGA ATTCCGGN				
Necator_americanus		ACTCCGGA				
Kalicephalus_cristatus	AGGGTT-CG-	ACTCCGGA	GAGGGAGCCT	TAGAAACGGC	TACCACATCC	AAGGAAGGCA
Ancylostoma_caninum		ACTCCGGA				
Angiostrongylus_cantonensis Angiostrongylus_costaricensis		ACTCCGGA ACTCCGGA				
Angiostrongylus malaysiensis		ACTCCGGA				
Angiostrongylus_dujardini		ACTCCGGA				
Angiostrongylus_vasorum		ACTCCGGA				
Aulurostrongylus_abstrusus		ACTCCGGA				
Didelphostrongylus_hayesi Crenosoma_mephitidis		ACTCCGGA ACTCCGGA				
Crenosoma_wulpis		ACTCCGGA				
Otostrongylus_circumlitus		ACTCCGGA				
Troglostrongylus_wilsoni	AGGGTT-CG-	ACTCCGGA	GAGGGAGCCT	TAGAAACGGC	TACCACATCC	AAGGAAGGCA
Filaroides_martis		ACTCCGGA				
Oslerus_osleri Parafilaroides_decorus		ACTCCGGA ACTCCGGA				
Metastrongylus_salmi		ACTCCGGA				
Metastrongylus_elongatus		ACTCCGGA				
Skrjabingylus_chitwoodrum		ACTCCGGA				
Parelaphostrongylus_odocoilei		ACTCCGGA				
Muelerius_capillaris Protostrongylus_rufescens		ACTCCGGA ACTCCGGA				
Halocercus_invaginatus		ACTCCGGA				
Pseudalius_inflexus	AGGGTT-CG-	ACTCCGGA	GAGGGAGCCT	TAGAAACGGC	TACCACATCC	AAGGAAGGCA
Stenurus_minor		ACTCCGGA				
Torynurus_convolutus Syngamus_trachea		ACTCCGGA ACTCCGGA				
Stephanurus_dentatus		ACTCCGGA				
Nematodirus_battus		ACTCCGGA				
Strongylus_equinus		ACTCCGGA				
Labiostrongylus_bipapillosus		ACTCCGGA				
Petrovinema_poculatum Cylicocyclus_insignis		ACTCCGGA ACTCCGGA				
Chabartia_ovina		ACTCCGGA				
Cyclodontostomum_purvisi		ACTCCGGA				
Zoniolaimus_mawsonae		ACTCCGGA				
Hypodontus_macropi Deletrocephalus dimidiatus		ACTCCGGA ACTCCGGA				
Dictyocaulus_eckerti_P7B8		ACTCCGGA				
Dictyocaulus_capreolus_P3B2	AGGGTT-CG-	ACTCCGGA	GAGGGAGCCT	TAGAAACGGC	TACCACATCC	AAGGAAGGCA
Dictyocaulus_spP6A1		ACTCCGGA				
Dictyocaulus_filaria Dictyocaulus_capreolus_P2C10		ACTCCGGA ACTCCGGA				
Dictyocaulus_viviparus		ACTCCGGA				
Haemonchus_spV3091	AGGGTT-CG-	ACTCCGGA	GAGGGAGCCT	TAGAAACGGC	TACCACATCC	AAGGAAGGCA
Haemonchus_contortus		ACTCCGGA				
Haemonchus_placei Haemonchus similis		ACTCCGGA				
Ostertagia_ostertagi		ACTCCGGA ACTCCGGA				
Ostertagia_leptospicularis		ACTCCGGA				
Nippostrongylus_brasileinsis		ACTCCGGA				
Heligmosomoides_polygyrus		ACTCCGGA				
Trichostrongylus_colubriformis Tetrabothriostrongylus mackerr		ACTCCGGA ACTCCGGA				
Herpestrongylus_pythonis		ACTCCGGA				
Nicollina_cameroni		ACTCCGGA				
Filarimena_flagrifer		ACTCCGGA				
Amidostomum_cygni		ACTCCGGA				
Teratocephalus_lirellus Brumptaemilius_justini		ACTCCGGA ACTCCGGA				
Anguillicola_crassus		ACTCCGGA				
Dracunculus_medinensis	AGGGTT-CG-	ACTCCGGA	GAGGGAGCCT	GAGAAACGGC	TACCACTTCC	AAGGAAGGCA
Dracunculus_oesophageus		ACTCCGGA				
Dracunculus_spV3104		ACTCCGGA				
Philonema_sp_A Philometra_obturans		ACTCCGGA ACTCCCAGGA				
Camallanus_oxycepahalus		ACTCCGGA				
Acanthocheilonema_viteae		ACTCCGGA				
Loa_loa		ACTCCGGA				
NUCLEOTIDES INCLUDED	mmmmmm-mm-	mmmmm – – mmm	ummmmmmmmm	ummmmmmmmm	ummmmmmmmm	ummmmmmmm

	···· ··· 550			···· ····) 580		
				GAGAAACGGC		
				GAGAAACGGC GAGAAACGGC		
	AGGGTT-CG-	ACTCCGGA	GAGGGAGCCT	GAGAAACGGC	TACCACATCC	AAGGAAGGCA
5				GAGAAACGGC GAGAAACGGC		
				GAGAAACGGC		
8	AGGGTT-CG-	ACTCCGGA	GAGGGAGCCT	GAGAAACGGC	TACCACATCC	AAGGAAGGCA
				GAGAAACGGC		
				GAGAAACGGC GAGAAACGGC		
	AGGGTT-CG-	ACTCCGGA	GAGGGAGCCT	GAGAAACGGC	TACCACATCC	AAGGAAGGCA
				GAGAAACGGC		
				GAGAAACGGC GAGACACGGC		
2	AGGGTT-CG-	ACTCCGGA	GAGGGAGCCT	TAGAAACGGC	TACCATGTCT	AAGGACAGCA
				TAGAAACGGC		
				GAGAAATGGC GAGAAATGGC		
				GAGAAATGGC		
				GAGAAATGGC		
				GAGAAATGGC GAGAAATGGC		
	AGGGTT-TG-	ACTCCGGA	GAAGGGGCCT	GAGAAATGGC	CACTACGTCT	AAGGATGGCA
				GAGAAATGGC		
5				GAGAAATGGC GAGAAATGGC		
				GAGAAATGGC		
				GAGAAATGGC		
a				GAGAAATGGC GAGAAATGGC		
				GAGAAATGGC		
	AGGGTT-CG-	ACTCCGGA	GAAGGGGCCT	GAGAAATGGC	CACTACGTCT	AAGGATGGCA
				GAGAAATCGC		
				GAGAAATGGC GAGAAATGGC		
				GAGAAATGGC		
				GAGAAATGGC		
				GAGAAATGGC GAGAAATGGC		
				GAGAAATGGC		
				GAGAAATGGC		
ıda				GAGAAATGGC GAGAAATGGC		
2003				GAGAAATGGC		
				GAGAAATGGC		
me2				GAGAAATGGC GAGAAATGGC		
				TAGAAACGGC		
				TAGAAACGGC		
				TAGAAACGGC GAGAAACGGC		
				TAGAAACGGC		
				TAGAAACGGC		
				TAGAAACGGC TAGAAACGGC		
				TAGAAACGGC		
	AGGGTT-CG-	ACTCCGGA	GAGGGAGCCT	TAGAAACGGC	TACCACATCC	AAGGAAGGCA
				GAGAAACGGC		
				TAGAAACGGC TAGAAACGGC		
	AGGGTT-CG-	ACTCCGGA	GAGGGAGCCT	TAGAAACGGC	TACCACATCC	AAGGAAGGCA
				TAGAAACGGC		
				TAGAAACGGC TAGAAACGGC		
	AGGGTT-CG-	ACTCCGGA	GAGGGAGCCT	TAGAAACGGC	TACCACATCC	AAGGAAGGCA
				TAGAAACGGC		
				TAGAAACGGC TAGAAACGGC		
				TAGAAACGGC		
	AGGGTT-CG-	ACTCCGGA	GAGGGAGCCT	TAGAAACGGC	TACCACATCC	AAGGAAGGCA
				TAGAAACGGC TAGAAACGGC		
				TAGAAACGGC		
				mmmmmmmmm		

Onchocerca_cervicalis Dirofilaria_immitis Brugia_malayi Wuchereria_bancrofti Litomosoides_sigmodontis Setaria_digitata Gnathostoma_turgidum Gnathostoma_neoprocyonis Gnathostoma_binucleatum Physaloptera_alata Physaloptera_turgida Ascarophis_arctica Spinitectus_carolini Thelazia_lacrymalis Aphelenchus_avenae Aphelenchoides_fragariae Bursaphelelenchus_sp Deladenus_sp Criconema_sp Hemicycliophora_conida Paratylenchus_dianthus Pratylenchus_thornei Tylenchulus_semipentrans Ditylenchus_angustus Subanguina_radicola Tylenchorhynchus_maximus Geocenamus_quadrifer Globodera_pallida Scutellonema_bradys Helicotylenhcus_dihystera Rotylenchus_robustus Meloidogyne_arenaria Meloidogyne_incognita_KT Meloidogyne_javanica Meloidogyne_artiellia Meloidogyne_duytsi Meloidogyne_exigua Meloidogyne_hapla Meloidogyne_ichinohei Meloidogyne_maritima Meloidogyne_microtyla Nacobbus_aberrans Pratylenchoides_ritteri Pratylenchoides_magnicaud Hirschmanniella_sp._JH_20 Radopholus_similis Pratylenchus_goodeyi_VF Boleodorus_thylactus_clor Philippine Sequence 1 Philippine Sequence 2 Philippine Sequence 3 Philippine Sequence 4 Philippine Sequence 5 Philippine Sequence 6 Philippine Sequence 7 Tahiti Sequence 1 Tahiti Sequence 2 Thailand Sequence 1 Ogasawara Sequence 1 Ogasawara Sequence 2 Ivory Coast Sequence 1 Ivory Coast Sequence 2 Ivory Coast Sequence 3 Ivory Coast Sequence 4 Ivory Coast Sequence 5 Ivory Coast Sequence 6 Ivory Coast Sequence 7 Singapore Sequence 1 Singapore Sequence 2 Singapore Sequence 3 Singapore Sequence 4 Nigerian Sequence 1 Nigerian Sequence 2 Nigerian Sequence 3 NUCLEOTIDES INCLUDED

	 610					
Gordius_aquaticus		CAAA-TTACC	CACTCC	GGCACG-	GGGAGG	-TAGTG-ACG
Priapulus_caudatus Brachionus_plicatilis					GGGAGG GGGAGG	
Chordodes_morgani					GGGAGG	
Paractinolaimus_macrolaimus					GAGAGG	
Aporcelaimellus_obtusicaudatus					GAGAGG	
Wilsonema_schuurmansstekhoveni Mesodorylaimus_sp_cf_nigritul					AGGAGG GAGAGG	
Mesodorylaimus_sp_ci_nigiitui Mesodorylaimus_bastiani					AAGAGG	
Mesodorylaimus_japonicus					GAGAGG	
Pungentus_spPDL_2005					GAGAGG	
Allodorylaimus_sp Eudorylaimus_carteri					GAGAGG GAGAGG	
Microdorylaimus_sp					GAGAGG	
Longidorus_elongatus					GAGAGG	
Xiphinema_rivesi					GAGAGG	
Tylencholaimus_sp Anoplostoma_spBHMM_2005					GAGAGG AGGAGG	
Adoncholaimus_fuscus					GGGAGG	
Enoplus_meridionalis					GGGAGG	
Enoplus_brevis_U88336					GGGAGG	
Enoplus_communis Enoploides brunettii					GGGAGG GGGAGG	
Syringolaimus_striatocaudatus					GGGAGG	
Ironus_dentifurcatus					GGGAGG	
Calyptronema_maxweberi Viscosia_spBHMM_2005					GGGAGG GGGAGG	
Viscosia_viscosa					GGGAGG	
Pontonema_vulgare	GCAG-GCACG	CAAA-TTACC	CACTCCG	GCACGG-	GGAGG	-TAGTG-ACG
Oncholaimus_spBHMM_2005					GGGAGG	
Alaimus_sp_PDL_2005 Prismatolaimus intermedius					GTGAGG GGGAGG	
Tobrilus_gracilis					GGGAGG	
Tripyla_cf_filicaudata_JH_2004					GGGAGG	
Bathylaimus_sp					AGGAGG	
Bathylaimus_assimilis Bathylaimus_spBHMM_2005					AGGAGG GGGAGG	
Tripyloides_spBHMM_2005					GGGAGG	
Trischistoma_monohystera					GGGAGG	
Mermis_nigrescens Mylonchulus_arenicolus					GGGAG AGGAGG	
Anatonchus_tridentacus					GGGAGG	
Mononchus_truncatus					GGGAGG	
Prionchulus_muscorum Clarkus_sp					GGGAGG GGGAGG	
Trichinella_spiralis					GGGAGG	
Trichinella_papuae	GCAG-GCGCG	CAAA-TTACC	CACTCCC	AGCTTG-	GGGAGG	-TAGTG-ACG
Trichinella_britovi					GGGAGG	
Trichinella_murrelli Trichinella_pseudospiralis					GGGAGG GGGAGG	
Trichinella_nativa					GGGAGG	
Trichinella_zimbabwensis					GGGAGG	
Trichinella_nelsoni Trichuris_suis					GGGAGG	
Trichuris_trichiura					GGGAGG	
Trichuris_muris	GCAG-GCACG	CAAA-TTACC	CACTCCC	AGATCG-	GGGAGG	-TAGTG-ACG
Tylolaimophorus_minor					GGGAGG	
Paratrichodorus_pachydermus Paratrichodorus_anemones					AGGAGG AGGAGG	
Trichodorus_primitivus					CGGAGG	
Axonolaimus_helgolandicus					AGGAGG	
Ascolaimus_elongatus Odontophora_rectangula					AGGAGG AGGAGG	
Cylindrolaimus_sp202149					AGGAGG	
Tylocephalus_auriculatus					AGGAGG	
Plectus_acuminatus_BS9					AGGAGG	
Plectus_aquatilis Anaplectus sp					AGGAGG AGGAGG	
Anisakis_sp_WKT					AGGAGG	
Anisakis_sp_Nadler	GCAG-GCGCG	CAAA-TTACC	CACTCTC	GGCATG-	AGGAGG	-TAGTG-ACG
Contracaecum_multipapillatum Pseudoterranova decipiens					AGGAGG AGGAGG	
Pseudoterranova_decipiens Raphidascaris_acus					AGGAGG	
Terranova_caballeroi	GCAG-GCGCG	CAAA-TTACC	CACTCTC	GGCATG-	AGGAGG	-TAGTG-ACG
Ascaris_suum					AGGAGG	
Ascaris_lumbricoides Baylisascaris_procyonis					AGGAGG AGGAGG	
Baylisascaris_transfuga					AGGAGG	
NUCLEOTIDES INCLUDED					mmmmmm	

Parascaris_equorum	
	G
Porrocaecum_depressum	G
Toxascaris_leonina	G
Heterocheilus_tunicatus	G
Goezia_pelagia	G
Hysterothylacium_fortalezae	G
Hysterothylacium_pelagicum	G
Hysterothylacium_reliquens	G
Iheringascaris_inquies	G
Toxocara_canis	G
Nemhelix_bakeri	G
Raillietnema_spV3060	G
Cruzia_americana	G
Heterakis_sp_14690	G
Heterakis_gallinarum	G
Paraspidodera_sp_21303	G
Chromodora_nudicapitata Chromadora_spBHMM_2005	G
Atrochromadora_spshmm_2005	G
Chromadorina_germanica	G
Chromadorita_tentabundum	G
Dichromadora_spBHMM_2005	G
Neochromadora_BHMM_2005	G
Spilophorella_paradoxa	G
Paracanthonchus_caecus	G
Paracyatholaimus_intermedius	G
Praeacanthonchus_punctatus	G
Praeacanthonchus_sp	G
Cyatholaimus_spBHMM_2005	G
Spirinia_parasitifera	G
Acanthopharynx_micans	G
Xyzzors_sp	G
Metachromadora_sp	G
Metachromadora_remanei	G
Catanema_sp	G
Eubostrichus_dianae	G
Eubostrichus_topiarus	G
Eubostrichus_parasitiferus	G
Laxus_oneistus	G
Laxus_cosmopolitus	G
Leptonemella_sp	G
Robbea_hypermnestra	G
Stilbonema_majum Monoposthia_costata	G
Nudora_bipapillata	G
Calomicrolaimus_parahonestus	G
caromiciorarmus_paranonescus	G
Calomicrolaimus sp. BHMM 2005	G
Calomicrolaimus_spBHMM_2005 Molgolaimus_demani	G
Molgolaimus_demani	G
Molgolaimus_demani Diplogaster_lethieri	G
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti	6
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_lheritieri	
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti	
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_lheritieri Pristionchus_pacificus Pristionchus_pacificus	
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_lheritieri Pristionchus_pacificus	
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_lheritieri Pristionchus_pacificus Pristionchus_pacificus Sabatieria_punctata_STRAIN_343	
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_lheritieri Pristionchus_pacificus Pristionchus_pacificus Sabatieria_punctata_STRAIN_343 Sabatieria_sp355_BHM_2005 Sabatieria_celtica Sabatieria_punctata_STRAIN_200	
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_lheritieri Pristionchus_pacificus Pristionchus_pacificus Sabatieria_punctata_STRAIN_343 Sabatieria_gp355_BHMM_2005 Sabatieria_gpunctata_STRAIN_200 Sabatieria_punctata_STRAIN_223	
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_lheritieri Pristionchus_pacificus Pristionchus_pacificus Sabatieria_punctata_STRAIN_343 Sabatieria_geltica Sabatieria_celtica Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_223 Sabatieria_sp210_BHM_2005	
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_lheritieri Pristionchus_pacificus Sabatieria_punctata_STRAIN_343 Sabatieria_sp355_BHMM_2005 Sabatieria_celtica Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_223 Sabatieria_sp210_BHM_2005 Setosabatieria_hilarula	
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_pacificus Pristionchus_pacificus Sabatieria_punctata_STRAIN_343 Sabatieria_sp355_BHM_2005 Sabatieria_celtica Sabatieria_punctata_STRAIN_223 Sabatieria_punctata_STRAIN_223 Sabatieria_sp210_BHM_2005 Setosabatieria_hilarula Desmolaimus_zeelandicus	
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_pacificus Pristionchus_pacificus Sabatieria_punctata_STRAIN_343 Sabatieria_celtica Sabatieria_celtica Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_223 Sabatieria_punctata_STRAIN_223 Sabatieria_sp210_BHM_2005 Setosabatieria_hilarula Desmolaimus_zeelandicus Terschellingia_longicaudata	
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_lheritieri Pristionchus_pacificus Pristionchus_pacificus Sabatieria_punctata_STRAIN_343 Sabatieria_gp355_BHMM_2005 Sabatieria_celtica Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Setosabatieria_hilarula Desmolaimus_zeelandicus Terschellingia_longicaudata Cyartonema_elegans	
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_lheritieri Pristionchus_pacificus Sabatieria_punctata_STRAIN_343 Sabatieria_punctata_STRAIN_200 Sabatieria_celtica Sabatieria_punctata_STRAIN_200 Sabatieria_STRAIN_200 Sabatieria_STRAIN_200 Sabatieria_STRAIN_200 Sabatieria_STRAIN_200 Sabatieria_STRAIN_200 Sabatieria_STRAIN_200 Sabatieria_STRAIN_200 Sabatieria_STRAIN_200 Sabatieria_STRAIN_200 Sabatieria_STRAIN_200 Sabatieria_STRAIN_200 Sabatieria_STRAIN_200 Sabatieria	
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_pacificus Pristionchus_pacificus Sabatieria_punctata_STRAIN_343 Sabatieria_punctata_STRAIN_200 Sabatieria_celtica Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_223 Sabatieria_punctata_STRAIN_223 Sabatieria_punctata_STRAIN_223 Sabatieria_punctata_STRAIN_223 Sabatieria_punctata_STRAIN_223 Sabatieria_punctata_STRAIN_223 Sabatieria_punctata_STRAIN_223 Tridentuls_sp Diplolaimelloides_meyli	
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_pacificus Pristionchus_pacificus Sabatieria_punctata_STRAIN_343 Sabatieria_sp355_BHM_2005 Sabatieria_celtica Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_223 Sabatieria_sp210_BHM_2005 Setosabatieria_hilarula Desmolaimus_zeelandicus Terschellingia_longicaudata Cyartonema_elegans Tridentulus_sp Diplolaimelloides_meyli	
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_pacificus Pristionchus_pacificus Sabatieria_punctata_STRAIN_343 Sabatieria_celtica Sabatieria_celtica Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Setosabatieria_hilarula Desmolaimus_zeelandicus Terschellingia_longicaudata Cyartonema_elegans Tridentulus_sp Diplolaimelloides_meyli Diplolaimella_diavengatensis Geomonhystera_disjuncta	
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_pacificus Pristionchus_pacificus Sabatieria_punctata_STRAIN_343 Sabatieria_gp355_BHMM_2005 Sabatieria_gpunctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_puncta_STRAIN_200 Sabatieria_puncta_spharesis Geomonhystera_disjuncta Sphaerolaimus_hirsutus	
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_lheritieri Pristionchus_pacificus Sabatieria_punctata_STRAIN_343 Sabatieria_punctata_STRAIN_200 Sabatieria_celtica Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_StRAIN_200 Sabatieria_punctas_sphaerolaimus_hirsutus Theristus_acer	
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_pacificus Pristionchus_pacificus Sabatieria_punctata_STRAIN_343 Sabatieria_golicus Sabatieria_celtica Sabatieria_celtica Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_Sphaerolainus_hisutus Theristus_acer Daptonema_procerus	
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_pacificus Pristionchus_pacificus Sabatieria_punctata_STRAIN_343 Sabatieria_punctata_STRAIN_200 Sabatieria_celtica Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_puncta_Strainus_relaimus_relaimus_hirsutus Theristus_acer Daptonema_procerus Daptonema_hirsutum	
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_pacificus Pristionchus_pacificus Sabatieria_punctata_STRAIN_343 Sabatieria_gpunctata_STRAIN_2005 Sabatieria_celtica Sabatieria_punctata_STRAIN_2000 Sabatieria_punctata_STRAIN_2000 Sabatieria_punctata_STRAIN_2000 Sabatieria_punctata_STRAIN_2000 Sabatieria_punctata_STRAIN_2000 Sabatieria_punctata_STRAIN_2000 Sabatieria_punctata_STRAIN_2000 Sabatieria_punctata_STRAIN_2000 Sabatieria_punctata_STRAIN_2000 Sabatieria_punctata_STRAIN_2000 Sabatieria_punctata_STRAIN_2000 Sabatieria_punctada_STRAIN_2000 Setosabatieria_hilarula Desmolaimus_zeelandicus Terschellingia_longicaudata Cyartonema_elegans Tridentulus_sp Diplolaimelloides_meyli Diplolaimelloides_meyli Diplolaimella_diavengatensis Geomonhystera_disjuncta Sphaerolaimus_hirsutus Theristus_acer Daptonema_procerus Daptonema_hirsutum Daptonema_normandicum	
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_lheritieri Pristionchus_pacificus Sabatieria_punctata_STRAIN_343 Sabatieria_punctata_STRAIN_200 Sabatieria_celtica Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctas_Statienta_logans Tridentulus_sp Diplolaimelloides_meyli Diplolaimella_diavengatensis Geomonhystera_disjuncta Sphaerolaimus_hirsutus Theristus_acer Daptonema_procerus Daptonema_hirsutum Daptonema_oxycerca	
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_pacificus Pristionchus_pacificus Sabatieria_punctata_STRAIN_343 Sabatieria_gpunctata_STRAIN_2005 Sabatieria_celtica Sabatieria_punctata_STRAIN_2000 Sabatieria_punctata_STRAIN_2000 Sabatieria_punctata_STRAIN_2000 Sabatieria_punctata_STRAIN_2000 Sabatieria_punctata_STRAIN_2000 Sabatieria_punctata_STRAIN_2000 Sabatieria_punctata_STRAIN_2000 Sabatieria_punctata_STRAIN_2000 Sabatieria_punctata_STRAIN_2000 Sabatieria_punctata_STRAIN_2000 Sabatieria_punctata_STRAIN_2000 Sabatieria_punctada_STRAIN_2000 Setosabatieria_hilarula Desmolaimus_zeelandicus Terschellingia_longicaudata Cyartonema_elegans Tridentulus_sp Diplolaimelloides_meyli Diplolaimelloides_meyli Diplolaimella_diavengatensis Geomonhystera_disjuncta Sphaerolaimus_hirsutus Theristus_acer Daptonema_procerus Daptonema_hirsutum Daptonema_normandicum	
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_pacificus Pristionchus_pacificus Sabatieria_punctata_STRAIN_343 Sabatieria_punctata_STRAIN_343 Sabatieria_punctata_STRAIN_200 Sabatieria_celtica Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Satosabatieria_hilarula Desmolaimus_zeelandicus Terschellingia_longicaudata Cyartonema_elegans Tridentulus_sp Diplolaimella_diavengatensis Geomonhystera_disjuncta Sphaerolaimus_hirsutus Theristus_acer Daptonema_normandicum Daptonema_normandicum Daptonema_setosum Desmodora_communis	
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_pacificus Pristionchus_pacificus Sabatieria_punctata_STRAIN_343 Sabatieria_punctata_STRAIN_243 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_Station_200 Tridentulus_sp Diplolaimelloides_meyli Diplolaimella_diavengatensis Geomonhystera_disjuncta Sphaerolaimus_hirsutus Theristus_acer Daptonema_procerus Daptonema_normandicum Daptonema_oxycerca Daptonema_setosum	
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_pacificus Pristionchus_pacificus Sabatieria_punctata_STRAIN_343 Sabatieria_punctata_STRAIN_243 Sabatieria_punctata_STRAIN_243 Sabatieria_celtica Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_StrAIN_200 Sabatieria_logens Tridentulus_sp Diplolaimelloides_meyli Diplolaimella_diavengatensis Geomonhystera_disjuncta Sphaerolaimus_hirsutus Theristus_acer Daptonema_procerus Daptonema_hirsutum Daptonema_normandicum Daptonema_setosum Desmodora_communis Desmodora_communis Desmodora_covigera	
Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_lheritieri Pristionchus_pacificus Sabatieria_punctata_STRAIN_343 Sabatieria_punctata_STRAIN_200 Sabatieria_celtica Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_200 Setosabatieria_hilarula Desmolaimus_zeelandicus Terschellingia_longicaudata Cyartonema_elegans Tridentulus_sp Diplolaimelloides_meyli Diplolaimelloides_meyli Diplolaimella_diavengatensis Geomonhystera_disjuncta Sphaerolaimus_hirsutus Theristus_acer Daptonema_procerus Daptonema_normandicum Daptonema_oxycerca Daptonema_comunis Desmodora_comigera Metadesmolaimus_sp	

	610			GGCATG-		
				GGCATG-		
				GGCATG-		
				GGCATG-		
				GGCATG-		
				GGCATG-		
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	GGCATG-	AGGAGG	-TAGTG-ACG
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	GGCATG-	AGGAGG	-TAGTG-ACG
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	GGCATG-	AGGAGG	-TAGTG-ACG
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	GGCATG-	AGGAGG	-TAGTG-ACG
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	GGCATG-	AGGAGG	-TAGTG-ACG
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	GGCATG-	AGGAGG	-TAGTG-ACG
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	GGCATG-	AGGAGG	-TAGTG-ACG
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	AGCACG-	AGGAGG	-TAGTG-ACG
				AGCATG-		
				GGCACG-		
				AGTGCG-		
				AGCTCG-		
				AGTTCG-		
				AGAACG-		
				AGAACG-		
				AGTTCG-		
				AGAACG- AGTTCG-		
				AGCTCG-		
				AGCTCG-		
				AGTACG-		
				AGTACG-		
				AGCTCG-		
				AGTACG-		
				AGCTCG-		
				AGAACG-		
				AGTTTG-		
				AGTTTG-		
				AGCCCG-		
				AGCTCG-		
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	AGCTCG-	AGGAGG	-TAGTG-ACG
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	AGCTCG-	AGGAGG	-TAGTG-ACG
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	AGAACG-	AGGAGG	-TAGTG-ACG
	GCAG-GCACG	CAAA-TTACC	CACTCTC	AGAACG-	AGGAGG	-TAGTG-ACG
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	AGATCG-	AGGAGG	-TAGTG-ACG
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	AGTACG-	AGGAGG	-TAGTG-ACG
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	AGCTCG-	AGGAGG	-TAGTG-ACG
	GCAG-GCGCG	CAAA-TTACA	CAATGAC	AGCAAATTG-	TTGATG	-TAGTG-ACA
	GCAG-GCGCG	CAAA-TTACA	CAATGAC	AGCAAAATG-	TTGATG	-TAGTG-ACA
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	GGCATG-	AGGAGG	-TAGTG-ACG
5	GCAG-GCGCG	CAAA-TTACC	CACTCTC	GGCATG-	AGGAGG	-TAGTG-ACG
				GGCACG-		
				AATTCG-		
				AATGCG-		
				AATTCG-		
				AATTCG-		
				AATTCG-		
43				GGCACG-		
				GGCACG-		
				AGTACG-		
00				GGCACG-		
23				GGCACG-		
25						
				GGCACG- AGTACG-		
				GGCACG- AGCACG-		
				AGCACG-		
				GGTATG-		
				AGAACG-		
				AGTACG-		
				AGCACG-		
				AGATTG-		
				AGTACG-		
				GGCACG-		
				GGCACG-		
				GGCACG-		
				GGCACG-		
				GGCACG-		
				AGCTCG-		
				AACTCG-		
				GGCACG-		
				GGCATG-		
	mmmm – mmmmm	mmmm-mmmmm	mmmmmmm	mmm	mmmmmm	-mmmmm-mmm

Bunonema_franzi	610 GCAG-GCGCG			0 640 AGCACG-		
Bunonema_sp	GCAG-GCGCG	CAAA-TTACC	CACTCTC	AGTACG-	AGGAGG	-TAGTG-AAT
Seleborca_complexa				AGCACG-		
Acrobeloides_nanus Acrobeloides_bodenheimeri				AGCACG- AGCACG-		
Acrobeloides_podemeimein Acrobeloides_sp_PS1146				AGCACG-		
Acrobeles_ciliatus				AGCACG-		
Acrobeles_sp_PS1156				AGCACG-		
Acrobeles_complexus_WCUG2				AGCACG-		
Cephaloboides_sp_SB227 Cephalobus_cubaensis				TTA AGCACG-		
Cephalobus_spPS1143				AGCACG-		
Cephalobus_spPS1196				AGCACG-		
Cephalobus_oryzae_PS1165				AGCACG-		
Cervidellus_alutus Pseudacrobeles_variabilis				AGCACG- AGCACG-		
Triligulla_aluta				AGCACG-		
Zeldia_punctada				AGCACG-		
Myolaimus_sp_U81585				GGCACG-		
Rhabditophanes_spKR3021				AGTTAA-		
Brevibucca_spSB261 Halicephalobus_gingivalis				AGTTCG- AGTGCG-		
Panagrobelus_stammeri				AGTACG-		
Plectonchus_spPDL0025				AGTACG-		
Turbatrix_aceti				GGTTCG-		
Panagrellus_redivivus				AGTACG-		
Panagrellus_redivivus_PS1163 Panagrolaimus_subelongatus				AGTACG- AGTACG-		
Panagrolaimus_davidi				AGTACG-		
Panagrolaimus_cf_rigidus_AF40				AGTTCG-		
Panagrolaimus sp. Sourhope ED2				AGTACG-		
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2				AGTACG- AGTACG-		
Panagrolaimus sp. Sourhope ED2 Panagrolaimus sp. Sourhope ED2				AGTTCG-		
Panagrolaimus sp. Sourhope ED2				AGTTCG-		
Steinernema_carpocapsae				AGTTCG-		
Strongyloides_stercoralis				AGTTAA-		
Strongyloides_ratti Diploscapter_sp_PS1897				AGTTAA- AAAA		
Diploscapter_sp_PS2017				AAAA		
Heterorhabditis_bacteriophora				TAATCG-		
Heterorhabditis_hepialus				TAATCG-		
Heterorhabditis_zelandica Parasitorhabditis_sp_SB281				TAATCG- AATKCG-		
Rhabditoides_inermiformis				AGTACG-		
Rhabditoides_inermis_DF5001				AATACG-		
Rhabditoides_regina_DF5012				AGTTCG-		
Poikilolaimus_oxycerca_SB200				GGTGCT- AGTACG-		
Poikilolaimus_regenfussi_SB199 Distolabrellus veechi DWF1604				AGIACG-		
Distolabrellus veechi DF5024				AATTCG-		
Choriorhabditis_dudichi				TATAG		
Protorhabditis_sp				TCAAA		
Protorhabditis_sp_DF5055 Cruznema_tripartitum_DF5015				gaaaa AATT		
Mesorhabditis_sp_PS1179				AATTCG-		
Mesorhabditis_spiculigera_SB15				AATGCG-		
Mesorhabditis_anisomorpha_SB12				AGTGCG-		
Teratorhabditis_palmarum_DF501 Teratorhabditis synpapillata S				AATTCG- AATTCG-		
Caenorhabditis_briggsae_PB102				GAGT		
Caenorhabditis_elegans_N2	GCAG-GCGCG	AAAC-TTATC	CACTGTT	GAGT	ATGAGA	-TAGTG-ACT
Caenorhabditis_sp_CB5161				GAGT		
Caenorhabditis_sp_PS1010 Caenorhabditis_japonica				GATT GAGT		
Caenorhabditis_sp_DF5170				GTGT		
Caenorhabditis_sp_SB341				GACA		
Caenorhabditis_plicata				GGGT		
Caenorhabditis_vulgaris				GAGT		
Caenorhabditis_sonorae Caenorhabditis_drosophilae				GACA GTGT		
Phasmarhabditis_hermaphrodita				CTTT		
Phasmarhabditis_neopapillosa				CTTT		
Phasmarhabditis_neopapillosa				TCA		
Pellioditis_mediterranea_SB173				ACA		
Pellioditis_marina Prodontorhabditis_wirthi				TCA ATAG		
Crustorhabditis_scanica						-TAGTG-ACA
NUCLEOTIDES INCLUDED	mmmm-mmmmm	mmmm-mmmmm	mmmmmmm	mmm	mmmmmm	-mmmmm-mmm

Dolichorhabditis_sp_CEW1 Oscheius_sp_DF5000 Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_insectivora Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1191 Rhabditis_sp_PS1010 Rhabditis_myriophila_EM435 Rhabditis_colombiana Rhabditella_axei_DF5006 Rhabditella_sp_DF5044 Cuticularia_sp_PS2083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_cantonensis Angiostrongylus_costaricensis Angiostrongylus_malaysiensis Angiostrongylus_dujardini Angiostrongylus_vasorum Aulurostrongylus_abstrusus Didelphostrongylus_hayesi Crenosoma_mephitidis Crenosoma_vulpis Otostrongylus_circumlitus Troglostrongylus_wilsoni Filaroides_martis Oslerus_osleri Parafilaroides_decorus Metastrongylus_salmi Metastrongylus_elongatus Skrjabingylus_CHITWOODRUM Parelaphostrongylus_odocoilei Muelerius_capillaris Protostrongylus_rufescens Halocercus_invaginatus Pseudalius_inflexus Stenurus_minor Torynurus_convolutus Syngamus_trachea Stephanurus_dentatus Nematodirus_battus Strongylus_equinus Labiostrongylus_bipapillosus Petrovinema_poculatum Cylicocyclus_insignis Chabartia_ovina Cyclodontostomum_purvisi Zoniolaimus_mawsonae Hypodontus_macropi Deletrocephalus_dimidiatus Dictyocaulus_eckerti_P7B8 Dictyocaulus_capreolus_P3B2 Dictyocaulus_sp._P6A1 Dictyocaulus_filaria Dictyocaulus_capreolus_P2C10 Dictyocaulus_viviparus Haemonchus_sp._V3091 Haemonchus_contortus Haemonchus_placei Haemonchus_similis Ostertagia_ostertagi Ostertagia_leptospicularis Nippostrongylus_brasileinsis Heligmosomoides_polygyrus Trichostrongylus_colubriformis Tetrabothriostrongylus mackerr Herpestrongylus_pythonis Nicollina_cameroni Filarimena_flagrifer Amidostomum_cygni Teratocephalus_lirellus Brumptaemilius_justini Anguillicola_crassus Dracunculus_medinensis Dracunculus_oesophageus NUCLEOTIDES INCLUDED

 610					
GCAG-GCGCG			ACA		-TAGTG-ACT
			TCA		
GCAG-GCGCG	TAAC-TTATC	CACTACT	TCA	GTGAGA	-TAGTG-ACT
GCAG-GCGCG	TAAC-TTATC	CACTACT	TCA	GTGAGA	-TAGTG-ACT
			TCA		
			TCA		
GCAG-GCGCG	TAAC-TTATC	CACTACC	AATA	GTGAGA	-TAGCG-ACA
GCAG-GCGCG	TAAC-TTATC	CACTACC	GACA	GTGAGA	-TAGTG-ACA
			GATT		
GCAG-GCGCG	TAAC-TTATC	CACTACT	TCA	GTGAGA	-TAGTG-ACT
GCAG-GCGCG	TAAC-TTATC	CACTACT	TCA	GTGAGA	-TAGTG-ACT
			TTA		
			TTA		
GCAG-GCGCG	CAAA-TTACC	CACTGGA	GGTGCT-	CCAAGG	-TAGTG-ACT
GCAG-GCGCG	TAAC-TTATC	CACTCTT	GAAGAG-	ATGAGA	-TAGTG-ACT
			GAAGAG-		
			GAAGAG-		
GCAG-GCGCG	AAAC-TTATC	CAATCTT	GAATAG-	ATGAGA	-TAGTG-ACT
GCAG-GCGCG			GAATAG-	ATGAGA	-TAGTG-ACT
			GAATAG-		
GCAG-GCGCG	AAAC-TTATC	CAATCTT	GAATAG-	ATGAGA	-TAGTG-ACT
GCAG-GCGCG	AAAC-TTATC	CAATCTT	GAATAG-	ATGAGA	-TAGTG-ACT
			GAATAG-		
			GAATAG-		
GCAG-GCGCG	AAAC-TTATC	CAATCTT	GAATAG-	ATGAGA	-TAGTG-ACT
			GAATAG-		
			GAATAG-		
GCAG-GCGCG	AAAC-TTATC	CAATCTT	GAATAG-	ATGAGA	-TAGTG-ACT
GCAG-GCGCG	AAAC-TTATC	CAATCTT	GAATAG-	ATGAGA	-TAGTG-ACT
			GAATAG-		
			GAATAG-		
GCAG-GCGCG	AAAC-TTATC	CAATCTT	GAATAG-	ATGAGA	-TAGTG-ACT
GCAG-GCGCG	AAAC-TTATC	CAATCTT	GAATAG-	ATGAGA	-TAGTG-ACT
			GAATAG-		
GCAG-GCGCG	AAAC-TTATC	CAATCTT	GAATAG-	ATGAGA	-TAGTG-ACT
GCAG-GCGCG	AAAC-TTATC	CAATCTT	GAATAG-	ATGAGA	-TAGTG-ACT
			GAATAG-		
			GAATAG-		
GCAG-GCGCG	AAAC-TTATC	CAATCTT	GAATAG-	ATGAGA	-TAGTG-ACT
GCAG-GCGCG	AAAC-TTATC	CAATCTT	GAATAG-	ATGAGA	-TAGTG-ACT
			GAATAG-		
GCAG-GCGCG	TAAC-TTATC	CACTCTT	GAAGAG-	ATGAGA	-TAGTG-ACT
GCAG-GCGCG	TAAC-TTATC	CACTCTT	GAAGAG-	ATGAGA	-TAGTG-ACT
			GAATAG-		
			GAAGAG-		
GCAG-GCGCG	TAAC-TTATC	CACTCTT	GAAGAG-	ATGAGA	-TAGTG-ACT
GCAG-GCGCG	TAAC-TTATC	CACTCTT	AAAGAG-	ATGAGA	-TAGTG-ACT
			AAAGAG-		
GCAG-GCGCG	TAAC-TTATC	CACTCTT	GAAGAG-	ATGAGA	-TAGTG-ACT
GCAG-GCGCG	TAAC-TTATC	CACTCTT	GAAGAG-	ATGAGA	-TAGTG-ACT
			GAAGAG-		
			GAAGAG-		
			GAAGAG-		
GCAG-GCGCG	AAAC-TTATC	CAATCTT	GAAGAG-	ATGAGA	-TAGTG-ACT
			GAAGAG-		
			GAAGAG-		
			GAATAG-		
GCAG-GCGCG	AAAC-TTATC	CAATCTT	GAAGAG-	ATGAGA	-TAGTG-ACT
			GAAGAG-		
			GAACAG-		
			GAACAG-		
GCAG-GCGCG	AAAC-TTATC	CAATCTT	GAACAG-	ATGAGA	-TAGTG-ACT
GCAG-GCGCG			GAACAG-	ATGAGA	-TAGTG-ACT
			GAAGAG-		
			GAAGAG-		
GCAG-GCGCG	AAAC-TTATC	CAATCTT	GAATAG-	ATGAGA	-TAGTG-ACT
			GAAGAG-		
			GAAGAG-		
			GAAGAG-		
GCAG-GCGCG	AAAC-TTATC	CAATCTT	GAAGAG-	ATGAGA	-TAGTG-ACT
			GAAGAG-		
			GAAGAG-		
GCAG-GCGCG	AAAC-TTATC	CAATCTT	GAAGAG-	ATGAGA	-TAGTG-ACT
GCAG-GCGCG	TAAA-TTACC	CAATCTC	AGCACG-	AGGAGG	-TAGTG-ACG
			GGCATG-		
			AGAACG-		
GCAG-GCGCG	CAAA-TTACC	CACTCTC	AGCTAAG-	AGGAGG	-TAGTGAACG
GCAG-GCGCG	CAAA-TTACC	CACTCTC	AGCAAG-	AGGAGG	-TAGTG-ACG
			mmm		
annan munulli		ininititi			uuuuu

	610) 630	640) 650) 660
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	AGCAAG-	AGGAGG	-TAGTG-ACG
		CAAA-TTACC				
		CAAA-TTACC				
		CAAA-TTACC				
		CAAA-TTACC				
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	AGAATG-	AGGAGG	-TAGTG-ACG
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	AGAATG-	AGGAGG	-TAGTG-ACG
		CAAA-TTACC				
		CAAA-TTACC				
		CAAA-TTACC				
		CAAA-TTACC				
		CAAA-TTACC				
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	GGCATG-	AGGAGG	-TAGTG-ACG
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	GGCATG-	AGGAGG	-TAGTG-ACG
		CAAA-TTACC				
		CAAA-TTACC				
		CAAA-TTACC				
		CAAA-TTACC				
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	GGCATG-	AGGAGG	-TAGTG-ACG
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	GGCATG-	AGGAGG	-TAGTG-ACG
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	AGAACG-	AGGAGG	-TAGTG-ACG
		CAAC-TTATC				
		AAAA-TTACC				
		CAAA-TTACC				
		CAAA-TTACC				
		CAAA-TTACC				
		CAAA-TTACC				
		CAAA-TTACC				
		CAAA-TTACC				
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	AGAATG-	AGGAGG	-TAGTG-ACG
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	AGAACG-	AGGAGG	-TAGTG-ACG
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	AGAACG-	AGGAGG	-TAGTG-ACG
		CAAA-TTACC				
		CAAA-TTACC				
		CAAA-TTACC				
		CAAA-TTACC				
		CAAA-TTACC				
		CAAA-TTACC				
		CAAA-TTACC				
	GCAG-GCGCG	CAAA-TTACC	MACTTTC	GGCTCC-	AGGAGG	-TAGTG-ACG
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	GGCACG-	AGGAGG	-TAGTG-ACG
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	GGCTCG-	AGGAGG	-TAGTG-ACG
		CAAA-TTACC				
		CAAA-TTACC				
		CAAA-TTACC				
		CAAA-TTACC				
		CAAA-TTACC				
		CAAA-TTACC				
		CAAA-TTACC				
		CAAA-TTACC				
3	GCAG-GCGCG	CAAA-TTACC	CACTCTC	AGAACG-	CGGAGGAG	GTAGTG-ACG
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	AGCATG-	AGGAGG	-TAGTG-ACG
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	AATTCG-	AGGAGG	-TAGTG-ACG
2		CAAA-TTACC				
		AAAC-TTATC				
		AAAC-TTATC				
		TAAC-TTATC				
		AAAA-TTACC				
		TAAC-TTATC				
	GCAG-GCGCG	TAAC-TTATC	CACTACT	TCA	GTGAGA	-TAGTA-ACT
	GCAG-GCGCG	AAAC-TTATC	CACTGTT	GAGT	ATGAGA	-TAGTG-ACT
	GCAG-GCGCG	AAAC-TTATC	CAATCTT	GAATAG-	ATGAGA	-TAGTG-ACT
	GCAG-GCGCG	AAAC-TTATC	TAATCTT	GAATAG-	ATGAGA	-TAGTG-ACT
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	AGCATG-	AGGAGG	-TAGTG-ACG
		AAAA-TTACC				
		TAAC-TTATC				
		AAAC-TTATC				
		AAAC-TTATC				
		AAAC-TTATC				
		AAAC-TTATC				
		CAAA-TTACC				
		AAAC-TTATC				
		AAAC-TTATC				
	GCAG-GCGCG	TAAC-TTATC	CACTACA	$\mathrm{T}\mathrm{T}\mathrm{T}\mathrm{T}$	GTGAGA	-TAGAG-ACG
	GCAG-GCGCG	CAAA-TTACC	CACTCTC	AGTATG-	AGGAGG	-TAGTG-ACG
		AAAC-TTATC				
		AAAC-TTATC				
		AAAC-TTATC				
		mmmm-mmmmm				

Dracunculus_sp._V3104 Philonema_sp_A Philometra_obturans Camallanus_oxycepahalus Acanthocheilonema_viteae Loa loa Onchocerca_cervicalis Dirofilaria_immitis Brugia_malayi Wuchereria_bancrofti Litomosoides_sigmodontis Setaria_digitata Gnathostoma_turgidum Gnathostoma_neoprocyonis Gnathostoma_binucleatum Physaloptera_alata Physaloptera_turgida Ascarophis_arctica Spinitectus_carolini Thelazia_lacrymalis Aphelenchus_avenae Aphelenchoides_fragariae Bursaphelelenchus_sp Deladenus_sp Criconema_sp Hemicycliophora_conida Paratylenchus_dianthus Pratylenchus_thornei Tylenchulus_semipentrans Ditylenchus_angustus Subanguina_radicola Tylenchorhynchus_maximus Geocenamus_quadrifer Globodera_pallida Scutellonema_bradys Helicotylenhcus_dihystera Rotylenchus_robustus Meloidogyne_arenaria Meloidogyne_incognita_KT Meloidogyne_javanica Meloidogyne_artiellia Meloidogyne_duytsi Meloidogyne_exigua Meloidogyne_hapla Meloidogyne_ichinohei Meloidogyne_maritima Meloidogyne_microtyla Nacobbus_aberrans Pratylenchoides_ritteri Pratylenchoides_magnicauda Hirschmanniella_sp._JH_2003 Radopholus_similis Pratylenchus_goodeyi_VF Boleodorus_thylactus_clone2 Philippine Sequence 1 Philippine Sequence 2 Philippine Sequence 3 Philippine Sequence 4 Philippine Sequence 5 Philippine Sequence 6 Philippine Sequence 7 Tahiti Sequence 1 Tahiti Sequence 2 Thailand Sequence 1 Ogasawara Sequence 1 Ogasawara Sequence 2 Ivory Coast Sequence 1 Ivory Coast Sequence 2 Ivory Coast Sequence 3 Ivory Coast Sequence 4 Ivory Coast Sequence 5 Ivory Coast Sequence 6 Ivory Coast Sequence 7 Singapore Sequence 1 Singapore Sequence 2 Singapore Sequence 3 Singapore Sequence 4 Nigerian Sequence 1

NUCLEOTIDES INCLUDED

			1 1	1 1	1 1	1 1
	610	620				
Nigerian Sequence 2	GCAG-GCGCG I					
Nigerian Sequence 3 NUCLEOTIDES INCLUDED	GCAG-GCGCG A mmmm-mmmmm m					
		1 1	1 1	1 1		1 1
	670	 680				
Gordius_aquaticus	ATAAATAACA A					
Priapulus_caudatus Brachionus_plicatilis	ATAAATAACA A AAAAATAACA A					
Chordodes_morgani	ATAAATAACA A					
Paractinolaimus_macrolaimus	AAAAATAACG A					
Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni	AAAAATAACG A AAAAATAACG A					
Mesodorylaimus_sp_cf_nigritul	AAAAATAACG A					
Mesodorylaimus_bastiani	AAAAATAACG A					
Mesodorylaimus_japonicus Pungentus_spPDL_2005	AAAAATAACG A AAAAATAACG A					
Allodorylaimus_sp	AAAAATAACG A					
Eudorylaimus_carteri	AAAAATAACG A					
Microdorylaimus_sp Longidorus_elongatus	AAAAATAACG A AAAAATAACG A					
Xiphinema_rivesi	AAAAATAACG A					
Tylencholaimus_sp	AAAAATAACG A					
Anoplostoma_spBHMM_2005 Adoncholaimus_fuscus	AAGAATAACA G AAAAATAACA A					
Enoplus_meridionalis	AAAAATAACG A					
Enoplus_brevis_U88336	AAAAATAACG A					
Enoplus_communis Enoploides_brunettii	AAAAATAACG A AAAAATAACG A					
Syringolaimus_striatocaudatus	AAAAATAACG A	AG-ACGGTTC	TCTACGA	GGTCC-GTCA	TC-GGAATGA	GTA-CAATTT
Ironus_dentifurcatus	AAAAATAACG A					
Calyptronema_maxweberi Viscosia_spBHMM_2005	AAAAATAACG A AAAAATAACA A					
Viscosia_viscosa	AAAAATAACA A					
Pontonema_vulgare Oncholaimus_spBHMM_2005	AAAAATAACA A AAAAATAACA A					
Alaimus_sp_PDL_2005	AAAAATAACA A					
Prismatolaimus_intermedius	AAAAATAACG A					
Tobrilus_gracilis Tripyla_cf_filicaudata_JH_2004	AAAAATAACG A AAGAATAACG A					
Bathylaimus_sp	AAAAATAACG A					
Bathylaimus_assimilis	AAAAATAACG A					
Bathylaimus_spBHMM_2005 Tripyloides_spBHMM_2005	AAAAATAACG A AAAAATAACG A					
Trischistoma_monohystera	AAAAATAACG A					
Mermis_nigrescens	AAAAATAACG A					
Mylonchulus_arenicolus Anatonchus tridentacus	AAAAATAACA A AAAAATAACG A					
Mononchus_truncatus	AAAAATAACG A	AG-ACGGTCC	TCTTTGA	GGCCT-GTCA	TC-GGAATGG	GTA-CAATTT
Prionchulus_muscorum Clarkus_sp	AAAAATAACG A AAAAATAACG A					
Trichinella_spiralis	AAAAATAACG A					
Trichinella_papuae	AAAAATAACG A					
Trichinella_britovi Trichinella_murrelli	AAAAATAACG A AAAAATAACG A					
Trichinella_pseudospiralis	AAAAATAACG A					
Trichinella_nativa Trichinella_zimbabwensis	AAAAATAACG A AAAAATAACG A					
Trichinella_nelsoni	AAAAATAACG A					
Trichuris_suis	AAAAATAACG G					
Trichuris_trichiura Trichuris_muris	AAAAATAACG G AAAAATAACG G					
Tylolaimophorus_minor	AAAAATAACG A					
Paratrichodorus_pachydermus	AAAAATAACG A					
Paratrichodorus_anemones Trichodorus_primitivus	AAAAATAACG A AAAAATAACG A					
Axonolaimus_helgolandicus	AAAAATAACG A	AG-ATGGTTC	TCTATGA	GGCCC-ATTA	TC-GGAATGA	GTA-CAATTC
Ascolaimus_elongatus	AAAAATAACG A					
Odontophora_rectangula Cylindrolaimus_sp202149	AAAAATAACG A AAAAATAACG A					
Tylocephalus_auriculatus	AAAAATAACG A	AG-GCGGTTC	TCTATGA	GGCCC-GCTA	TC-GGAATGA	GTA-CAATTT
Plectus_acuminatus_BS9	AAAAATAACG A					
Plectus_aquatilis Anaplectus_sp	AAAAATAACG A AAAAATAACG A					
Anisakis_sp_WKT	AAAAATAACG A	AG-ACCGTTC	TCTCTGA	GGCCG-GTTA	TC-GGAATGG	GTA-CAATTT
Anisakis_sp_Nadler Contracaecum_multipapillatum	AAAAATAACG A AAAAATAACG A					
NUCLEOTIDES INCLUDED	mmmmmmmmm m					

	1 1			1 1		
	67	0 680	0 690	J 70	0 71	0 720
Pseudoterranova_decipiens Raphidascaris_acus		AG-ACCGTTC AG-ACCGTTC				
Terranova_caballeroi	AAAAATAACG	AG-ACCGTTC	TCTCTGA	GGCCG-GTTA	TC-GGAATGG	GTA-CAATTT
Ascaris_suum Ascaris_lumbricoides		AG-ACCGTTC AG-ACCGTTC				
Baylisascaris_procyonis		AG-ACCGTTC				
Baylisascaris_transfuga		AG-ACCGTTC				
Parascaris_equorum Porrocaecum_depressum		AG-ACCGTTC AG-ACCGTTC				
Toxascaris_leonina		AG-ACCGTTC				
Heterocheilus_tunicatus		AG-ACCGTTC				
Goezia_pelagia Hysterothylacium_fortalezae		AG-ACCGTTC AG-ACCGTTC				
Hysterothylacium_pelagicum	AAAAATAACG	AG-ACCGTTC	TCTATGA	GGCCG-GTTA	TC-GGAATGG	GTA-CAATTT
Hysterothylacium_reliquens Iheringascaris_inquies		AG-ACCGTTC AG-ACCGTTC				
Toxocara_canis		AG-ACCGTTC				
Nemhelix_bakeri		AG-ACCGTTC				
Raillietnema_spV3060 Cruzia_americana		AG-ACCGTTC AG-GCCGTTC				
Heterakis_sp_14690		AG-ACCGTTC				
Heterakis_gallinarum		AG-ACCGTTC				
Paraspidodera_sp_21303 Chromodora_nudicapitata		AG-GCCGTTC AG-ACAGTCT				
Chromadora_spBHMM_2005		AG-ACAGTCT				
Atrochromadora_microlaima		AG-ACAGTCT				
Chromadorina_germanica Chromadorita_tentabundum		AG-ACAGTCT AG-ACAGTTC				
Dichromadora_spBHMM_2005		AG-ACAGTCT				
Neochromadora_BHMM_2005		AG-ACAGTTC				
Spilophorella_paradoxa Paracanthonchus_caecus		AG-ACAGTTC AG-ATGGTTC				
Paracyatholaimus_intermedius		AG-ACGGTTC				
Praeacanthonchus_punctatus		AG-ACGGTTC AG-ACGGTTC				
Praeacanthonchus_sp Cyatholaimus_spBHMM_2005		AG-ACGGIIC AG-ATGGTTC				
Spirinia_parasitifera	AAAAATAACG	AG-ATGGTTC	TCTATGA	GGCCC-ATCA	TC-GGAATGG	GTA-CAATTT
Acanthopharynx_micans Xyzzors_sp		AG-ACGGTTC AG-ATGGTTC				
Metachromadora_sp		AG-ACGGTTC				
Metachromadora_remanei		AG-ACGGTTC				
Catanema_sp Eubostrichus_dianae		AG-ACGGTTC AG-ACGGTTC				
Eubostrichus_topiarus		AG-ACGGTTC				
Eubostrichus_parasitiferus		AG-ACGGTTC				
Laxus_oneistus Laxus cosmopolitus		AG-ACGGTTC AG-ACGGTTC				
Leptonemella_sp		AG-ACGGTTC				
Robbea_hypermnestra Stilbonema_majum		AG-ACGGTTC AG-ACGGCTC				
Monoposthia_costata		AG-GCGGTCC				
Nudora_bipapillata		AG-ACGGTTC				
Calomicrolaimus_parahonestus Calomicrolaimus_spBHMM_2005		AG-ACAGTTC				GTA-CAACCC GTA-CAACCC
Molgolaimus_demani		AG-ACAGTTC				
Diplogaster_lethieri		AG-ACAGATC				
Aduncospiculum_halicti Pristionchus_lheritieri		AG-ACAGATC AG-ACAGATC				
Pristionchus_pacificus		AG-ACAGATC				
Pristionchus_pacificus		AG-ACAGATC				
Sabatieria_punctata_STRAIN_343 Sabatieria_sp355_BHMM_2005		AG-ACGGATC AG-ACGGATC				
Sabatieria_celtica	AAAAATAACG	AG-ACGGATC	TCTTTGA	GGCCC-GTTA	TC-GGAATGA	GAA-CAATTC
Sabatieria_punctata_STRAIN_200		AG-ACGGATC				
Sabatieria_punctata_STRAIN_223 Sabatieria_sp210_BHM_2005		AG-ACGGATC AG-ACGGATC				
Setosabatieria_hilarula	AAAAATAACG	AG-ACGGATC	TCTTTGA	GGCCC-GTTA	TC-GGAATGA	GAA-CAATTC
Desmolaimus_zeelandicus Terschellingia_longicaudata		AG-GCGTCTC AG-GCGGTTC				
Terschellingia_longicaudata Cyartonema_elegans		AG-GCGGTTC AG-GCGGTTC				
Tridentulus_sp	AAAAATACCA	AG-CCGAGGC	TCATTGA	GTTTC-GGCA	TT-GGAATGA	GAA-CAATCT
Diplolaimelloides_meyli Diplolaimella_diavengatensis		AG-AGGAGGC AG-GTGAGGC				
Geomonhystera_disjuncta		AG-GIGAGGC AG-GCGATGC				
Sphaerolaimus_hirsutus	AAAAATATCG	AG-CTGGTAG	TCTTTCGA	TTATC-AGCA	TC-GGAATGA	GAA-CAATAT
Theristus_acer Daptonema_procerus		AG-ATGGGAC AG-ATAACCC				
Daptonema_hirsutum						GTA-CAATCT
NUCLEOTIDES INCLUDED	mmmmmmmmm	mm-mmmmmmm	mmmmm	mmmmm-mmmm	mm-mmmmmmm	mmm-mmmmmm

Daptonema_normandicum Daptonema_oxycerca Daptonema setosum Desmodora_communis Desmodora_ovigera Metadesmolaimus_sp Dentostomella_sp Bunonema franzi Bunonema_sp Seleborca_complexa Acrobeloides_nanus Acrobeloides_bodenheimeri Acrobeloides_sp_PS1146 Acrobeles_ciliatus Acrobeles_sp_PS1156 Acrobeles_complexus_WCUG2 Cephaloboides_sp_SB227 Cephalobus_cubaensis Cephalobus sp. PS1143 Cephalobus_sp._PS1196 Cephalobus_oryzae_PS1165 Cervidellus_alutus Pseudacrobeles_variabilis Triligulla_aluta Zeldia_punctada Myolaimus_sp_U81585 Rhabditophanes_sp._KR3021 Brevibucca_sp._SB261 Halicephalobus_gingivalis Panagrobelus_stammeri Plectonchus_sp._PDL0025 Turbatrix_aceti Panagrellus_redivivus Panagrellus_redivivus_PS1163 Panagrolaimus_subelongatus Panagrolaimus_davidi Panagrolaimus_cf_rigidus_AF40 Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae Strongyloides_stercoralis Strongyloides_ratti Diploscapter_sp_PS1897 Diploscapter_sp_PS2017 Heterorhabditis_bacteriophora Heterorhabditis_hepialus Heterorhabditis_zelandica Parasitorhabditis_sp_SB281 Rhabditoides_inermiformis Rhabditoides_inermis_DF5001 Rhabditoides_regina_DF5012 Poikilolaimus_oxycerca_SB200 Poikilolaimus regenfussi SB199 Distolabrellus veechi DWF1604 Distolabrellus veechi DF5024 Choriorhabditis_dudichi Protorhabditis_sp Protorhabditis_sp_DF5055 Cruznema_tripartitum_DF5015 Mesorhabditis_sp_PS1179 Mesorhabditis_spiculigera_SB15 Mesorhabditis_anisomorpha_SB12 Teratorhabditis_palmarum_DF501 Teratorhabditis_synpapillata_S Caenorhabditis_briggsae_PB102 Caenorhabditis_elegans_N2 Caenorhabditis_sp_CB5161 Caenorhabditis_sp_PS1010 Caenorhabditis_japonica Caenorhabditis_sp_DF5170 Caenorhabditis_sp_SB341 Caenorhabditis_plicata Caenorhabditis_vulgaris Caenorhabditis_sonorae Caenorhabditis_drosophilae NUCLEOTIDES INCLUDED

....|....||||||||| 670 680 690 700 710 720 AAAAATAACG AG-ACGATTC TCTTTT--GA GTATC-GTCA TC-GGAATGA GAA-CAATCC AAAAATAACG AG-ATAACCC GCTATC--GC GAGTT-ATCA TC-GGAATGA GTA-CAATTT AAAAATAACG AG-ATAACCC GCTCTA--GC GAGTT-ATCA TC-GGAATGA GTA-CAATCT AAAAATAACG AG-ACGGTTC TCTTT---GA GGCCC-GTCA TC-GGAATGG GTA-CAATCT AAAAATAACG AG-ACGGTTC TCTAT---GA GGCCC-GTCA TC-GGAATGG GTA-CAACTT AAAAATAACG AG-ATAACCC GCTCTA--GC GAGTT-ATCA TC-GGAATGA GTA-CAATCT AAAAATAACG AG-ACCGTTC TCAAT---GA GGCCG-GTTA TC-GGAATGA ATA-CAATTT AGAAATAACA AA-GTAGATG TCTTT---GA TGTCT-ACTA TT-GGAATGG GTA-CAATTT AGAAATAACA AA-GCAGATG TCTCT---GA TGTCT-GCTA TT-GGAATGG GTA-CAATTC AAAAATAACG AG-ACCGTTC TCTTT---GA GGCCG-GTCA TC-GGAATGG GTA-CAATTT AAAAATAACG AG-ACCGTTC TCTTAT--GA GGCCG-GTCA TC-GGAATGG GTA-CAATTT AAAAATAACG AG-ACCGTTC TCTTAT--GA GGCCG-GTCA TC-GGAATGG GTA-CAATTT AAAAATAACG AG-ACCGTTC TCTTT---GA GGCCG-GTCA TC-GGAATGG GTA-CAATTT AAATATAAAG AG-ACCAATC CTCT----G GATTG-GTTA TT-TCAATGA GAT-GAGCTT AAAAATAACG AG-ACCATTC TCTCAT--GA GGCTG-GTCA TC-GGAATGG GTA-CAATTT AAAAATAACG AG-ACCGTTC TCTTAT-GGA GGCCG-GTCA TC-GGAATGG GTA-CAATTT AAAAATAACG AG-ACCGTTC TCTTAT--GA GGCCG-GTCA TC-GGAATGG GTA-CAATTT AAAAATAACG AG-ACCGTTC TCTTAT--GA GGCCG-GTCA TC-GGAATGG GTA-CAATTT AAAAATAACG AG-ACCGTTC TCTT-T-GA GGCCG-GTCA TC-GGAATGG GTA-CAATTT AAAAATAACG AG-ACCGTTC TCTTCT-GA GGCCG-GTCA TC-GGAATGG GTA-CAATTT AAAAATAACG AG-ACCGTTC TCTTT---GA GGCCG-GTCA TC-GGAATGG GTA-CAATTT AAAAATAAC- AG-ACCGTTC TCTTCT--GA GGCCG-GTCA TC-GGAATGG GTA-CAATTT AAAAATAACG AG-GATGTCT TCTTT---GA GGCCA-TCTA TC-GTAATGA GTA-CAATTC AAAAATGACA AG-GCTACAA ATTTT---GT TTGTA-GTCA TT-GGAAATC TTC-GAGTCT AAAAATAACA AG-GGCGTAC TCTTT---GA GGCCG-CCTA TT-GGAATGG GTA-CAATTT TGAAATGACN AGATANGTTN TGTAT---AG AATNT-ANCA TT-GGAATGG TTT-AATTAC AGAAATGACA AGGCTTACTC CTTAT---GG GGTGA-GTCA TT-GGAATGG GTA-CAATTT TGAAATGACA AGGCTTATTC CTTAT---GG AATGA-GTCA TT-GGAATGG GTC-CAATTT TGAAATGGCA GAATCCTTTT CTTTA--TGG AACGG-ATTA TT-GCAATGA TGT-GAGTTT AGAAGTGACA AGATCTGTCM CTTCG---GG GGCGG-GTCA TT-GGAATGG TTK-GAATTT AGAAGTGACA AGATCTGTCC CTTCG---GG GGCGG-GTCA TT-GGAATGG TTT-GAATTT AGAAATGACA AGATCTATTC CTTCG---GG GATGG-ATCA TT-GGAATGG TTT-GATTTT AAAAATAACA AG-ACTGGTC GCTTT---GC GAACA-GTTA TT-GGAATGG GTA-CAATTT AAAAATGACA ACCAAATATT ATTAT---TA ATATT-TGGA TT-GAAAATC TTC-AAGTTT AAAAATGACA ACCAAATATT ATTTT---TA GTATT-TGGA TT-GAAAATC TTC-AAGTTT AAAAATATAA AA-TCCCTCC CTCAT----G GGAGG-GATA TT-TAAATGA GTA-GAGGTT AAAAATATAA AA-TCCCTCC CTCAT----G GGAGG-GATA TT-TAAATGA GTA-GAGGTT AAAAATAAAA AG-ACCATTC CT-AT----G GAACG-GTTA TT-TCAATGA GTA-GATCTT AAAAATAAAA AG-ACCATTC CT-AT---G GAACG-GTTA TT-TCAATGA GTA-GATCTT AAAAATAAAA AG-ACCATTC CTAT----G GAACG-GTTA TT-TCAATGA GTA-GATCTT ACAACTAACG AG-ACTGCTC CCTAC---GG GAACA-GTCA TC-GAAATGG GTA-CAATTT ACAACTAACG AG-ACCGTTC TCTTT---GA GGCCG-GTTA TC-GGAATGG GTA-CAATTT AACAATAACG AG-ACAGCTC TCTTT---GA GGGTT-GTTA TC-GGAATGG GTT-CAATCT ACCAATAACG AG-ACTCAGA CCTTT---GG TTTGA-GTCA TC-GGAATGG GTC-CAAAGT AACAATAACG AG-ACCGTCT TCTAT---GA GGCCG-GTTA TC-GGAATGG GTA-CAATTT AACAATAACG AG-ACCGTCT TCTTT---GA GGCCG-GTTA TC-GGAATGG GTA-CAATTT ACAACTAACG AG-ACTGCGT CCTAT---GG GCGCA-GTCA TC-GAAATGG GTA-CAATTT ACAACTAACG AG-ACTGCGT CCTAT---GG GCGCA-GTCA TC-GAAATGG GTA-CAATTT AAACATAAAA AG-ACCATTC CGTTC----G GAGCG-GTTT TT-TCAATGA ATA-GAGTTT AACAATATAA AA-TCCCTCC CAAAT----G GGAGG-GATA TT-TAAATGA GTA-GAGGTT AAGAATAAAA AA-CCCTACC CTTAG----G GGTGG-GGTA TT-TGAATGA GTG-AAGTTC ANACATAAAA AG-ACCATTC CTAAC----G GAACG-GTTA TT-TCAATGA TAC-GAGTGT ACAACTAACG AG-ACTGCTC CCTAT---GG GAACA-GTCA TC-GAAATGG GTA-CAATTT ACAACTAACG AG-ACTGCTT CCTAT---GG GAGCA-GTCA TC-GAAATGG GTA-AAATTC ACGAATAACG AG-ACTGTTC CCTCT---GG GAACA-GTCA TC-GAAATGG GTC-TAACAC ACAACTAACG AG-ACTGCTC CTACG----G GAACA-GTCA TC-GAAATGG GTA-CAATTT ACAACTAACG AG-ACTGCTC CCTAT---GG GAACA-GTCA TC-GAAATGG GTA-CAATTT AAAAATATAA AG-ACTCATC CTTTT----G GATGA-GTTA TT-TCAATGA GTT-GAATAC AAAAATATAA AG-ACTCATC CTTTT----G GATGA-GTTA TT-TCAATGA GTT-GAATAC AAAAATATAA AG-ACTCATC CTTTT----G GATGA-GTTA TT-TCAATGA GTT-GAATAT AAAAATATAA AG-ACTCATC CTTTT----G GATGA-GTTA TT-TCAATGA GTT-GAATTT AAAAATATAA AG-ACTCATC CTTTT----G GATGA-GTTA TT-TCAATGA GTT-GAATAT AAAAATATAA AG-ACTCATC CTTCG----G GATGA-GTTA TT-TCAATGA GTT-GAATAT AAAAATAAAA AG-ACCCCTC CCAAC----G GAGGG-GTTA TT-TCAATGA GTT-GAATAC AAAAATAGAA AG-AGTCATT CTTTAT---G GATGA-CTCA TT-TCAATGA GTT-GATTAT AAAAATATAA AG-ACTCATC CTTTT----G GATGA-GTTA TT-TCAATGA GTT-GAATAC AAAAATAAAA AG-ACCCCTC CTTT----G GAGGG-GTTA TT-TCAATGA GTT-GAATAC AAAAATATAA AG-ACTCATC CTTC----G GGATGAGTTA TT-TCAATGA GTT-GAATAT

	 67		 0 69			
Phasmarhabditis_hermaphrodita			TTTCTA			
Phasmarhabditis_neopapillosa	GAACATAAAA	AG-ACTCATC	TTTCTA	GATGG-GTTA	TT-TCAATGA	GTT-GAACTT
Phasmarhabditis_neopapillosa			CTATG			
Pellioditis_mediterranea_SB173 Pellioditis_marina			CTATG CTATG			
Prodontorhabditis_wirthi			CCTATGG			
Crustorhabditis_scanica			TCTATGA			
Dolichorhabditis_sp_CEW1 Oscheius_sp_DF5000			CTAACG -TAACG			
Oscheius_sp_BW282			CTCACG			
Oscheius_myriophila_EM435			CTCACG			
Oscheius_insectivora			CTTACG			
Oscheius_dolichuroides Rhabditis_blumi_DF5010			CTAACG CTCTG			
Rhabditis_sp_PS1191			CACTG			
Rhabditis_sp_PS1010			CTTTTG			
Rhabditis_myriophila_EM435 Rhabditis_colombiana			CTCACG CTTACG			
Rhabditella_axei_DF5006			CTTTG			
Rhabditella_sp_DF5044			CTTTG			
Cuticularia_sp_PS2083			TCTATGA			
Necator_americanus Kalicephalus_cristatus			CTATG CTATG			
Ancylostoma_caninum			CTATG			
Angiostrongylus_cantonensis			CTATG			
Angiostrongylus_costaricensis Angiostrongylus_malaysiensis			CTATG CTATG			
Angiostrongylus_dujardini			CTATG			
Angiostrongylus_vasorum			CTATG			
Aulurostrongylus_abstrusus			CTATG CTATG			
Didelphostrongylus_hayesi Crenosoma_mephitidis			CTATG			
Crenosoma_vulpis			CTATG			
Otostrongylus_circumlitus			CTATG			
Troglostrongylus_wilsoni Filaroides_martis			CTATG CTATG			
Oslerus_osleri			CTATG			
Parafilaroides_decorus			CTATG			
Metastrongylus_salmi Metastrongylus_elongatus			CTATG CTATG			
Skrjabingylus_chitwoodrum			CTATG			
Parelaphostrongylus_odocoilei			CTATG			
Muelerius_capillaris Protostrongylus_rufescens			CTATG CTATG			
Halocercus_invaginatus			CTATG			
Pseudalius_inflexus			CTATG			
Stenurus_minor			CTATG CTATG			
Torynurus_convolutus Syngamus_trachea			CTATG			
Stephanurus_dentatus			CTATG			
Nematodirus_battus			CTATG CTATG			
Strongylus_equinus Labiostrongylus_bipapillosus			CTATG			
Petrovinema_poculatum	ААААТАААА	AG-ACCATTC	CTATG	GAACG-GTCA	TT-TCAATGA	GTT-GATCAT
Cylicocyclus_insignis			CTATG			
Chabartia_ovina Cyclodontostomum_purvisi			CTATG CTATG			
Zoniolaimus_mawsonae	АААААТАААА	AG-ACCATTC	CTATG	GAACG-GTCA	TT-TCAATGA	GTT-GATCAT
Hypodontus_macropi			CTATG			
Deletrocephalus_dimidiatus Dictyocaulus eckerti P7B8			CTATG CTATG			
Dictyocaulus_capreolus_P3B2			CTATG			
Dictyocaulus_spP6A1			CTATG			
Dictyocaulus_filaria Dictyocaulus_capreolus_P2C10			CTATG CTATG			
Dictyocaulus_viviparus			CTATG			
Haemonchus_spV3091	АААААТАААА	AG-ACCATTC	CTATG	GAACG-GTCA	TT-TCAATGA	GTT-GATCAT
Haemonchus_contortus Haemonchus_placei			CTATG CTATG			
Haemonchus_place1 Haemonchus_similis			CTATG			
Ostertagia_ostertagi	АААААТАААА	AG-ACCATTC	CTATG	GAACG-GTCA	TT-TCAATGA	GTT-GATCAT
Ostertagia_leptospicularis			CTATG			
Nippostrongylus_brasileinsis Heligmosomoides_polygyrus			CTATG CTATG			
Trichostrongylus_colubriformis			CTATG			
Tetrabothriostrongylus mackerr			CTATG			
Herpestrongylus_pythonis Nicollina_cameroni			CTATG CTATG			
NUCLEOTIDES INCLUDED			mmmmmm			

Filarimena flagrifer Amidostomum_cygni Teratocephalus lirellus Brumptaemilius justini Anguillicola_crassus Dracunculus_medinensis Dracunculus_oesophageus Dracunculus_sp._V3104 Philonema_sp_A Philometra_obturans Camallanus_oxycepahalus Acanthocheilonema_viteae Loa loa Onchocerca_cervicalis Dirofilaria_immitis Brugia_malayi Wuchereria_bancrofti Litomosoides_sigmodontis Setaria_digitata Gnathostoma_turgidum Gnathostoma_neoprocyonis Gnathostoma_binucleatum Physaloptera_alata Physaloptera_turgida Ascarophis_arctica Spinitectus_carolini Thelazia_lacrymalis Aphelenchus_avenae Aphelenchoides_fragariae Bursaphelelenchus_sp Deladenus_sp Criconema_sp Hemicycliophora_conida Paratylenchus_dianthus Pratylenchus_thornei Tylenchulus_semipentrans Ditylenchus_angustus Subanguina_radicola Tylenchorhynchus_maximus Geocenamus_quadrifer Globodera_pallida Scutellonema_bradys Helicotylenhcus_dihystera Rotylenchus_robustus Meloidogyne_arenaria Meloidogyne_incognita_KT Meloidogyne_javanica Meloidogyne_artiellia Meloidogyne_duytsi Meloidogyne_exigua Meloidogyne_hapla Meloidogyne_ichinohei Meloidogyne_maritima Meloidogyne_microtyla Nacobbus aberrans Pratylenchoides ritteri Pratylenchoides_magnicauda Hirschmanniella_sp._JH_2003 Radopholus_similis Pratylenchus_goodeyi_VF Boleodorus_thylactus_clone2 Philippine Sequence 1 Philippine Sequence 2 Philippine Sequence 3 Philippine Sequence 4 Philippine Sequence 5 Philippine Sequence 6 Philippine Sequence 7 Tahiti Sequence 1 Tahiti Sequence 2 Thailand Sequence 1 Ogasawara Sequence 1 Ogasawara Sequence 2 Ivory Coast Sequence 1 Ivory Coast Sequence 2 Ivory Coast Sequence 3 Ivory Coast Sequence 4 Ivory Coast Sequence 5 NUCLEOTIDES INCLUDED

AAAAATAAAA AG-ACCATTC CTAT----G GAACG-GTTA TT-TCAATGA GTT-GATCAT AAAAATAACG AG-ACCGTTC TCTAT---GA GGCCG-GTTA TC-GGAATGG GTA-CAATTT AAAAATAACG AG-ACCGTTC TCTWT---GA GGCCG-GTTA TC-GGAATGG GTA-CAATTT AAAAATAACG GG-GCCGTTC TCTTT---GA GGCCG-GTTA CC-GGAATGG GTA-CAATCT AAAAATAACG AG-ACCGTTC TCATT---GA GGCCG-GTTA TC-GGAATGG GTA-CAATTT AAAAATAACG GG-ACCGTTC TCATT---GA GGCCG-GTTA TT-GGAATGG GTA-CAATTT AAAAATAACG AG-ACCGTTC TCATT---GA GGCCG-GTTA TC-GGAATGG GTA-CAATTT AAAAATAACG AG-ACCGTAC TCAAT---GA GGCCG-GTTA TC-GGAATGG GTA-CAATTT AAAAATAACG AG-ACCGTAC TCGAT---GA GGCCG-GTTA TC-GGAATGG GCA-CAATCT AAAAATAACG AG-ACCGTTC TCTTC---GA GGCCG-GTTA TC-GGAATGA GTA-CAATTT AAAAATAACG AG-ACCGTTC TCTTT---GA GGCCG-GTTA TC-GGAATGG GTA-CAATTT AAAAATAACG AG-ACCGTTC TCTTT---GA GGCCG-GTTA TC-GGAATGG GTA-CAATTT AAAAATAACG AG-ACCGTTC TCTTT---GA GGCCG-GTTA TC-GGAATGG GTA-CAATTT AAAAATAACG AG-ACCGTTC TCTAT---GA GGCCG-GTTA TC-GGAATGG GTA-CAATTT AAAAATAACG AG-ACCGTTC TCTTT---GR GGCCG-GTTA TC-GGAATGG GTA-CAATTT AAAAATAACG AG-ACCGTTC TCTTT---GA GGCCG-GTTA TC-GGAATGG GTA-CAATTT AAAAATAACG AG-ACCGTTC TCTTT---GA GGCCG-GTTA TC-GGAATGN NTA-AAATTT AAAAATAACG AG-ACCGTTC TCTTT---GA GGCCG-GTTA TC-GGAATGG GTA-CAATTT AAAAATAACG AA-ACCGATC TCAAT---GA GGCCG-GTTA TC-GGAATGA GTC-ACGCTT AAAAATAACG AA-ACCGATC TCAAT---GA GGCCG-GTTA TC-GGAATGA GTC-ACGCTT AAAAATAACG AA-ACCGATC TCAAT---GA GGCCG-GTTA TC-GGAATGA GTC-ACGCTT AAAAATAACG AG-ACCGTTC TCTTT---GG GGCCG-GTTA TC-GGAATGG GTA-CAATTT AAAAATAACG AG-ACCGTTC TCTTT---GA GGCCG-GTTA TC-GGAATGG GTA-CAATTT AAAAATAACG AG-ACCGTTC TCTTC---GA GGCCG-GTTA TC-GGAATGG GTA-CAATTT AAAAATAACG AG-ACCGTTC TCTTC---GA GGCCG-GTTA TC-GGAATGG GTA-CAATTT AAAAATAACG AG-ACCGTTC TCTTT---GA GGCCG-GTTA TC-GGAATGG GTA-CAATTT AAAAATAACG AG-ACCGTTC TCTAT---GA GGCCG-GTCA TC-GGAATGG GTA-CAATCT AGAAATAACA AG-TCCGTTC TCTTT---GA GGTCG-GACA TT-GGAATGG ATG-AAATCT AGAAATAACG AG-ATCGTTC TCTTT---GA GGTCG-GTTA TT-GGAATGA GTA-CAATCC AGAAATAACG AG-ACCGTTC TCTAC---GA GGCCG-GTCA TC-GGAATGG GTA-CAATCC AAAAATAACA AG-GCTGTTC TCTAC---GA GGCCA-GCCA TT-GGAATGG GTA-CAACAC AAAAATAACA AG-GCCGTTC TCTTAT--GA GGCCG-GCCA TT-GGAATGG GTA-CAACTC AAAAATAACA AG-GCCGTTC TCTTT---GA GGCCG-GCCA TT-GGAATGG GTA-CAACTT AGAAATAACG AG-GCCGTTC TCTTT---GA GGCCG-GTCA TC-GGAATGG GTA-CAATTT AAAAATAACG AG-ACCGTTC TCTAC---GA GGCCG-GTCA TC-GGAATGG GTA-CAACTC AGAAATAACG AG-ACCGTTC TTTTT---AA GGCCG-GTCA TC-GGAATGG GTA-CAATTT AAAAATAACG AG-ACCGTTC TCTAT---GA GGCCG-GTCA TC-GGAATGG GTA-CAATCT AGAAATATCG AG-ACCGTTC TCTTAA--GA GGCCG-GTCA TC-GGAATGG GTA-CAATTT AGAAATAACG AG-ACCGTTC TCTAC---GA GGCCG-GTCA TC-GGAATGG GTA-CAATTT AGAAATAACG AG-ACCGATC TCTTAT--GA GGCCG-GTCA TC-GGAATGG GTA-CAATTT AGAAATAACG AG-GCCGTAC TCTTAC--GA GGCCG-GTCA TC-GGAATGG GTA-CAATTT AGAAATAACA AG-ACCGTTC TCTTAC--GA GGCCG-GTTA TT-GGAATGG GTA-CAATTT AGAAATAACG AG-ACCGTTC TCACAA--GA GGCCG-GTCA TC-GGAATGG GTA-CAATCT AGAAATAACG AG-ACTGTTC TCTTT---GA GGCCG-GTCA TC-GGAATGG GTA-CAATTT AGAAATAACG AG-ACTGTTC TCTTT---GA GGCCG-GTCA TC-GGAATGG GTA-CAATTT AGAAATAACG AG-ATTGTTC TCTTT---GA GGCCG-GTCA TC-GGAATGG GTA-CAATTT AGAAATAACA AG-ACCGTTC TCTTCA--GA GGCCG-GTCA TT-GGAATGG GTA-CAACTT AGAAATAACG AG-ATCGTTC TCTTAT--GA GGCCG-GTCA TC-GGAATGG GTA-CAATTT AGAAATAACG AG-ACCGTTC TCTTT---GA GGCCG-GTCA TC-GGAATGG GTA-CAATTT AGAAATAACG AG-GTCGTTC TCAAAT--GA GGCCG-GTCA TC-GGAATGG GTA-CAATTT AGAAATAACG AG-GCCGTTC TCTTCT--GA GGCCG-GTCA TC-GGAATGG GAA-AAATTT AGAAATAACG AG-ATCGTTC TCTTAT--GA GGCCG-GTCA TC-GGAATGG GTA-CAATTT AGAAATAACG AG-ATCGTTC TCATAT--GA GGCCG-GTCA TC-GGAATGG GTA-CAATTT AGAAATAACG AG-ACAGTTC TCTTAT--GA GGCCT-GTCA TC-GGAATGG GTA-CAATCT AGAAATAACG AG-ACCGTTC TCTAC---GA GGCCG-GTCA TC-GGAATGG GTA-CAATTT AGAAATAACG AG-ACCGTTC TCTAC---GA GGCCG-GTCA TC-GGAATGG GTA-CAATTT AGAAATAACG AG-ACTGTTC TCTTCA--GA GGCCA-GTCA TC-GGAATGG GTA-CAATTT AGAAATAACG AG-GCCGTTC TCATAC--GA GGCCG-GCCA TT-GGAATGG AAG-AGGTTT AGAAATAACG AG-ACCGTTC TCTTCA--GA GGCCG-GTCA TC-GGAATGG GTA-CAATCC AGAAATAACG AG-GCCGTTC TCTAT---GA GGCCG-GTCA TC-GGAATGG GTA-CAATCT AAAAATAAAA AG-ACCATTC CTAT----G GAACG-GTTA TT-TCAATGA GTT-GATCAT AAAAATAAAA AG-ACCATTC CTAT----G GAACG-GTTA TT-TCAATGA GTT-GATCAT AAAAATAGAA AG-GGTAATC CTCT----G GATTT-CCTA TT-TCAATGA GTT-GAGCCC AGAAATGACA AG-ATCTATT CCTTCG--GG GATGG-ATCA TT-GGAATGG TTT-GATTTT AAAAATAAAA AG-ACCATTC CTAT----G GAACG-GTCA TT-TCAATGA GTT-GATCAT AAAAATAAAA AG-GCCAATC CTAT----G GATCG-GTTA TT-TCAATGA GCT-GAGCTT AAAAATATAA AG-ACTCATC CTTTT----G GATGA-GTTA TT-TCAATGA GTT-GAATAC AAAAATAAAA AG-ACCATTC CTAT----G GAACG-GTTA TT-TCAATGA GTT-GATCAT AAAAATAAAA AG-ACCATTC CTAT----G GARCG-GTTA TT-SCAATGA GTC-GWTCAT AAAAATAACA AG-ACCGTTC TCTT---AGA GGCCG-GTTA TT-GGAATGA GTA-CAATTT AGAAATGACA AGATCTATTC CTTCG---GG GATGG-ATCA TT-GGAATGG TTT-GATTTT GTACATAAAA AG-ACTCATC TTTC---TA GATGG-GTTA TT-TCAATGA GTT-GAACTT AAAAATAAAA AG-ACCATTC CTAT----G GAACG-GTCA TT-TCAATGA GTT-GATCAT AAAAATAAAA AG-ACCATTC CTAT----G GAACG-GTCA TT-TCAATGA GTT-GATCAT AAAAATAAAA AG-ACCATTC CTAT----G GAATCGGTCA TT-TCAAKGA GTT-GATCAT AAAAATAAAA AG-ACCATTC CTAT----G GAACG-GTCA TT-TCAATGA GTT-GATCAT AAAAATAACA AG-ACCGTTC TCTAT---GA GGCCG-GTTA TT-GGAATGA GTA-CAATTT

		0 690 70	
Ivory Coast Sequence 6	AAAAATAAAA AG-ACCATTO	CTATG GAACG-GTC	A TT-TCAATGA GTT-GATCAT
Ivory Coast Sequence 7	AAAAATAAAA AG-ACCATTO	CTATG GAACG-GTC	A TT-TCAATGA GTT-GATCAT
Singapore Sequence 1	AAAAATAGAA AG-GGTAATO	CTCTG GATTT-CCT	A TT-TCAATGA TTT-GAGCCC
Singapore Sequence 2	AAAAATAACA AG-ACCGTTC	TCTTAGA GGCCG-GTT	A TT-GGAATGA GTA-CAATAT
Singapore Sequence 3	AAAAATATAA AG-ACTCATC	CTTTTG GATGA-GTT	A TT-TCAATGA GTT-GAATAC
Singapore Sequence 4	AAAAATAAAA AG-ACCATTO	CTATG GAACG-GTC	A TT-TCAATGA GTT-GATCAT
Nigerian Sequence 1	AAAAATAAAA AG-ACCATTO	CTATG GAACG-GTC	A TT-TCAATGA GTT-GATCAT
Nigerian Sequence 2	AAAAATAAAA AG-ACCATTO	CTATG GAACG-GTC	A TT-TCAATGA GTT-GATCAT
Nigerian Sequence 3	AAAAATAAAA AG-ACCATTO	CTATG GAACG-GTC	A TT-TCAATGA GTT-GATCAT
NUCLEOTIDES INCLUDED	mmmmmmmmm mm-mmmmmm	n mmmm—————m mmmmm—mmm	n mm-mmmmmmm mmm-mmmmmm
	···· ···· ···· ···· 730 74		
Gordius_aquaticus	A-AATCCTTT AACGAGGATC	TATTGGAG	
Brianulug gaudatug			

Priapulus_caudatus Brachionus_plicatilis Chordodes_morgani Paractinolaimus_macrolaimus Aporcelaimellus_obtusicaudatus Wilsonema_schuurmansstekhoveni Mesodorylaimus_sp_cf_nigritul Mesodorylaimus_bastiani Mesodorylaimus_japonicus Pungentus_sp._PDL_2005 Allodorylaimus_sp Eudorylaimus_carteri Microdorylaimus_sp Longidorus_elongatus Xiphinema_rivesi Tylencholaimus_sp Anoplostoma_sp._BHMM_2005 Adoncholaimus_fuscus Enoplus_meridionalis Enoplus_brevis_U88336 Enoplus_communis Enoploides_brunettii Syringolaimus_striatocaudatus Ironus_dentifurcatus Calyptronema_maxweberi Viscosia_sp._BHMM_2005 Viscosia_viscosa Pontonema_vulgare Oncholaimus_sp._BHMM_2005 Alaimus_sp_PDL_2005 Prismatolaimus_intermedius Tobrilus_gracilis Tripyla_cf_filicaudata_JH_2004 Bathylaimus_sp Bathylaimus_assimilis Bathylaimus_sp._BHMM_2005 Tripyloides_sp._BHMM_2005 Trischistoma_monohystera Mermis nigrescens Mylonchulus_arenicolus Anatonchus tridentacus Mononchus_truncatus Prionchulus muscorum Clarkus_sp Trichinella_spiralis Trichinella_papuae Trichinella_britovi Trichinella_murrelli Trichinella_pseudospiralis Trichinella_nativa Trichinella_zimbabwensis Trichinella_nelsoni Trichuris_suis Trichuris_trichiura Trichuris_muris Tylolaimophorus_minor Paratrichodorus_pachydermus Paratrichodorus_anemones Trichodorus_primitivus Axonolaimus_helgolandicus Ascolaimus_elongatus Odontophora_rectangula Cylindrolaimus_sp._202149 NUCLEOTIDES INCLUDED

A-AATCCTTT AACGAGGATC TATTGGAG A-AAACCCTT AACGAGGATC TATTGGAG A-AATCCTTT AACGAGGATC TATTGGAG A-AATCCTTT AACGAGGATC TATTGGAG A-AATCCTTT AACGAGGATC TATTGGAG A-AACCCTTT AACGAGGACC TATGAGAG A-AATCCTTT AACGAGGATC TATTGGAG A-AATCCTTT ATCGAGGATC TATTGGAG A-AATCCTTT AACGAGGATC CATTGGAG A-AATCCTTT AATGAGGATC TATTGGAG A-AATCTTTT ATCGAGGATC TATTGGAG A-AATCATTT ATCGAGGATC TATTGGAG A-AATCATTT ATCGAGGATC TATTGGAG A-AATCATTT ATCGAGGATC TATTGGAG A-AATCATTT ATCGAGGATC TATTGGAG A-AATCCTTT AACGAGGATC AATTGGAG A-AATCCTTT AACGAGGAT- TATTGGAG A-AATCCTTT AACGAGGATC TATTGGAG A-AATCCTTT AACGAGGAAC TATTGGAG A-AATCCTTT AACGAGGATC TATTAGAG A-AATCTTTT AACGAGGATC TATTAGAG A-AAAACTTT AACGAGGATC TATTAGAG A-AATCTTTT AACGAGGATC TATTAGAG A-AATCTTTT AACGAGGATC TATTAGAG A-AATCTTTT AACGAGGATC TATTAGAG A-CACACGCT AACGAGTAGC AATTGGAG A-CACAAGCT CGGCTAAATC TATTGGAG A-CATAAGTT CGGCTAAATC TATTGGAG A-CATAAGCT CGGCTAATTC TATTGGAG A-AATCCTTT AACGAGGATC TATTGGAG A-AATCCTTT AACGAGGATC TATTGGAG A-AATCCTTT AATGAGGATC TATTGGAG A-AATCCTTT AACGAGGATC TATTGGAG A-AACCTTTT AACGAGGATC TACGAGAG A-AACCTTTT AACGAGGATC TACGAGAG A-AACCTTTT AACGAGGATC TACGAGAG A-AACCCTTT AACGAGGATC TACGAGAG

Tylocephalus_auriculatus Plectus_acuminatus_BS9 Plectus aquatilis Anaplectus_sp Anisakis_sp_WKT Anisakis_sp_Nadler Contracaecum_multipapillatum Pseudoterranova_decipiens Raphidascaris_acus Terranova caballeroi Ascaris_suum Ascaris_lumbricoides Baylisascaris_procyonis Baylisascaris_transfuga Parascaris_equorum Porrocaecum_depressum Toxascaris_leonina Heterocheilus_tunicatus Goezia_pelagia Hysterothylacium_fortalezae Hysterothylacium_pelagicum Hysterothylacium_reliquens Iheringascaris_inquies Toxocara_canis Nemhelix_bakeri Raillietnema_sp._V3060 Cruzia_americana Heterakis_sp_14690 Heterakis_gallinarum Paraspidodera_sp_21303 Chromodora_nudicapitata Chromadora_sp._BHMM_2005 Atrochromadora_microlaima Chromadorina_germanica Chromadorita tentabundum Dichromadora_sp._BHMM_2005 Neochromadora_BHMM_2005 Spilophorella_paradoxa Paracanthonchus_caecus Paracyatholaimus_intermedius Praeacanthonchus_punctatus Praeacanthonchus_sp Cyatholaimus_sp._BHMM_2005 Spirinia_parasitifera Acanthopharynx_micans Xyzzors sp Metachromadora_sp Metachromadora_remanei Catanema sp Eubostrichus_dianae Eubostrichus_topiarus Eubostrichus_parasitiferus Laxus oneistus Laxus cosmopolitus Leptonemella sp Robbea_hypermnestra Stilbonema_majum Monoposthia costata Nudora_bipapillata Calomicrolaimus_parahonestus Calomicrolaimus_sp._BHMM_2005 Molgolaimus_demani Diplogaster_lethieri Aduncospiculum_halicti Pristionchus_lheritieri Pristionchus_pacificus Pristionchus_pacificus Sabatieria_punctata_STRAIN_343 Sabatieria_sp._355_BHMM_2005 Sabatieria_celtica Sabatieria_punctata_STRAIN_200 Sabatieria_punctata_STRAIN_223 Sabatieria_sp._210_BHM_2005 Setosabatieria_hilarula Desmolaimus_zeelandicus Terschellingia_longicaudata Cyartonema_elegans Tridentulus_sp NUCLEOTIDES INCLUDED

A-AACCCTTT AACGAGGACC TATGAGAG A-AACCCTTT AACGAGGACC TATGAGAG A-AACCCTTT AACGAGGACC TATGAGAG A-AACCCTTT AACGAGGACC TATGAGAG A-AACCCGTT AACGAGGATC TATGAGAG A-AACCCGTT AACGAGGAAC TATGAGAG A-AACCCGTT AACGAGGATC TATAAGAG A-AACCCGTT AACGAGGATC TATGAGAG A-AATCCGTT AACGAGGATC TATGAGAG A-AATCCGTT AACGAGGATC TATGAGAG A-AACCCGTT AACGAGGATC TATGAGAG A-AACCCTTT AACGAGGATC TATTGGAG A-AACCCGTT AACGAGGATC TATTGGAG A-AACCCTTT AACGAGGATC TATTGAAG A-AACCCTTT AATGAGGATC TATTGGAG A-AACCCTTT AATGAGGATC TATTGGAG A-AACCCTTT AACGAGGATC TACTGGAG A-AACCCTTT AACGAGGATC TATTGGAG A-AAAAATTT AACGATA-TC AATTGGAG A-AACCCTTT AACGAGGATC AATTGGAG A-AACCCTTT AACGAGGATC TATTGGAG A-AACCCTTT AACGAGGATC TATTGGAG A-AACCCTTT AACGAGGATC TATTGGAG A-AAGACTTT AACGAAG-TC TATGGGAG A-AACCCTTT AACGAGGATC TATGAGAG A-AAGACTTT AACGAAG-TC TATGGGAG A-AAGACTTT AACGAAG-TC TATGGGAG A-AAGACTTT AACGAAG-TC TATGGGAG A-AATCCTTT AACGAGGATC TAGCGGAG A-AACGACTT ACCGAATT-C TATCAGAG A-AATCCTTT AACGAGGATC TAGCGGAG A-AATCCTTT AACGAGGATC TAGCGGAG A-AATCTTTT AACGAGGATC TAGTGGAG

	730	0 740	C
Diplolaimelloides_meyli Diplolaimella_diavengatensis		AACGAGGATC AACGAGTAAC	
Geomonhystera_disjuncta		GGCAAGGATC	
Sphaerolaimus_hirsutus	A-AATGTGTT	ATCGAGTAAC	TAGCAGAG
Theristus_acer		AACGAGGACC	
Daptonema_procerus Daptonema_hirsutum		AACGAGGACC AACGAGGACC	
Daptonema_normandicum		AACGAGGACC	
Daptonema_oxycerca		AACGAGGACC	
Daptonema_setosum		AACGAGGACC	
Desmodora_communis		AACGAGGATC	
Desmodora_ovigera Metadesmolaimus_sp		AACGAGGATC AACGAGGACC	
Dentostomella_sp		AATGAGGATC	
Bunonema_franzi		AACGAGGACC	
Bunonema_sp		AACGAGGATC	
Seleborca_complexa Acrobeloides_nanus		AACGAGTATC AACGAGTATC	
Acrobeloides_bodenheimeri		AACGAGTATC	
Acrobeloides_sp_PS1146		AACGAGTATC	
Acrobeles_ciliatus		AACGAGTATC	
Acrobeles_sp_PS1156 Acrobeles_complexus_WCUG2		AACGAGTATC AACGAGTATC	
Cephaloboides_sp_SB227		TTCGAGGACC	
Cephalobus_cubaensis		AACGAGTATC	
Cephalobus_spPS1143		AACGAGTATC	
Cephalobus_spPS1196		AACGAGTATC	
Cephalobus_oryzae_PS1165 Cervidellus_alutus		AACGAGTATC AACGAGTATC	
Pseudacrobeles_variabilis		AACGAGTATC	
Triligulla_aluta	A-AACCCTTT	AACGAGTATC	TATGAGAG
Zeldia_punctada		AACGAGTATC	
Myolaimus_sp_U81585 Rhabditophanes_spKR3021		AACGAGGATC CGTT-GG-TA	
Brevibucca_spSB261		AACGAGGATC	
Halicephalobus_gingivalis		AAAGATTATC	
Panagrobelus_stammeri		AACGATTATC	
Plectonchus_spPDL0025		AACGAACG-C	
Turbatrix_aceti Panagrellus_redivivus		CAAATTTG-C CTAGATTATC	
Panagrellus_redivivus_PS1163		CTAGATTATC	
Panagrolaimus_subelongatus		AAAGAGTATC	
Panagrolaimus_davidi		AAAGAGTATC	
Panagrolaimus_cf_rigidus_AF40 Panagrolaimus sp. Sourhope ED2		AAAGAGTATC AAAGAGTATC	
Panagrolaimus sp. Sourhope ED2		AAAGAGTATC	
Panagrolaimus sp. Sourhope ED2	A-AAATCATT	AAAGAGTATC	AATGAGAG
Panagrolaimus sp. Sourhope ED2		AAAGAGTATC	
Panagrolaimus sp. Sourhope ED2 Steinernema_carpocapsae		AAAGAGTATC AACGAGGACC	
Strongyloides_stercoralis		TGTTGGTAAA	
Strongyloides_ratti		TGTTGGTAAA	
Diploscapter_sp_PS1897		TTCGAGAAAC	
Diploscapter_sp_PS2017 Heterorhabditis_bacteriophora		TTCGAGAAAC TTCGAGTATC	
Heterorhabditis_hepialus		TTCGAGTATC	
Heterorhabditis_zelandica		TTCGAGTACC	
Parasitorhabditis_sp_SB281		AACGAGGATC	
Rhabditoides_inermiformis		AACGAGGATC	
Rhabditoides_inermis_DF5001 Rhabditoides_regina_DF5012		ATCGAGGATC AACGATGATC	
Poikilolaimus_oxycerca_SB200		AACGAGGATC	
Poikilolaimus_regenfussi_SB199		AACGAGGATC	
Distolabrellus veechi DWF1604 Distolabrellus veechi DF5024		AACGAGGATC AACGAGGATC	
Choriorhabditis_dudichi		TATGAGGATC	
Protorhabditis_sp		TTCGAGAAAC	
Protorhabditis_sp_DF5055		CTCGAGAAAC	
Cruznema_tripartitum_DF5015		GTAAAGGAAC	
Mesorhabditis_sp_PS1179 Mesorhabditis_spiculigera_SB15		AACGAGGATC AACGAGGATC	
Mesorhabditis_spicurigera_sB15 Mesorhabditis_anisomorpha_SB12		AACGAGGATC	
Teratorhabditis_palmarum_DF501		AACGAGGATC	
Teratorhabditis_synpapillata_S		AACGAGGATC	
Caenorhabditis_briggsae_PB102		TTCGAGTATC	
Caenorhabditis_elegans_N2 Caenorhabditis_sp_CB5161		TTCGAGTAGC TTCGAGTAGC	
Caenorhabditis_sp_C55101 Caenorhabditis_sp_PS1010		TTCGAGTAAC	
NUCLEOTIDES INCLUDED		mmmmmmmmm	

Caenorhabditis_japonica Caenorhabditis_sp_DF5170 Caenorhabditis_sp_SB341 Caenorhabditis_plicata Caenorhabditis_vulgaris Caenorhabditis_sonorae Caenorhabditis_drosophilae Phasmarhabditis_hermaphrodita Phasmarhabditis_neopapillosa Phasmarhabditis_neopapillosa Pellioditis_mediterranea_SB173 Pellioditis_marina Prodontorhabditis_wirthi Crustorhabditis_scanica Dolichorhabditis_sp_CEW1 Oscheius_sp_DF5000 Oscheius_sp_BW282 Oscheius_myriophila_EM435 Oscheius_insectivora Oscheius_dolichuroides Rhabditis_blumi_DF5010 Rhabditis_sp_PS1191 Rhabditis_sp_PS1010 Rhabditis_myriophila_EM435 Rhabditis_colombiana Rhabditella_axei_DF5006 Rhabditella_sp_DF5044 Cuticularia_sp_PS2083 Necator_americanus Kalicephalus_cristatus Ancylostoma_caninum Angiostrongylus_cantonensis Angiostrongylus_costaricensis Angiostrongylus_malaysiensis Angiostrongylus_dujardini Angiostrongylus_vasorum Aulurostrongylus_abstrusus Didelphostrongylus_hayesi Crenosoma_mephitidis Crenosoma_vulpis Otostrongylus_circumlitus Troglostrongylus_wilsoni Filaroides_martis Oslerus_osleri Parafilaroides_decorus Metastrongylus_salmi Metastrongylus_elongatus Skrjabingylus_chitwoodrum Parelaphostrongylus_odocoilei Muelerius_capillaris Protostrongylus_rufescens Halocercus_invaginatus Pseudalius_inflexus Stenurus_minor Torynurus_convolutus Syngamus_trachea Stephanurus_dentatus Nematodirus_battus Strongylus_equinus Labiostrongylus_bipapillosus Petrovinema_poculatum Cylicocyclus_insignis Chabartia_ovina Cyclodontostomum_purvisi Zoniolaimus_mawsonae Hypodontus_macropi Deletrocephalus_dimidiatus Dictyocaulus_eckerti_P7B8 Dictyocaulus_capreolus_P3B2 Dictyocaulus_sp._P6A1 Dictyocaulus_filaria Dictyocaulus_capreolus_P2C10 Dictyocaulus_viviparus Haemonchus_sp._V3091 Haemonchus_contortus Haemonchus_placei Haemonchus_similis Ostertagia_ostertagi NUCLEOTIDES INCLUDED

	730		
	A-AATTATTC	TTCGAGTAGC	AAGGAGAG
	A-AATCGTTC	TTCAAGTAAC	AAGGAGAG
	A-AATGATTC A-AACTAATC	TTCGAGGACC	CAGGAGAG AAGGAGAG
	A-AATGATTC	TTCGAGTAAC TTCGAGTAGC	AAGGAGAG
	A-AATGATTC	TTCGAGGACC	CAGGAGAG
	A-AATCGTTC	TTCAAGTAAC	AAGGAGAG
	A-AATAGTTC	TTCGAGGACC	CAGTGGAG
	A-AATAGTTC	TTCGAGGACC	CAGTGGAG
	A-AATAGCTC	TTCGAGGACC	CAGTGGAG
3	A-AATAGCTC	TTCGAGGACC	CAGTGGAG
	A-AATAGCTC	TTCGAGGACC	CAGTGGAG
	A-AAAATATC	TCCGAGAAAC	TAAGAGAG
	A-AACCCTTT	AACGAGGATC	TATGAGAG
	A-AATAGCTC	TATGAGGACC	TAATGGAG
	A-AATAGCTC	TATGATGATC	TAGTGGAG
	A-AATAGCTC	TTCGAGGATC	TAGTGGAG
	A-AATAGCTC	TTCGAGGATC	TAGTGGAG
	A-AATAGCTG	TTCGAGGACC	TAGTGGAG
	A-AATAGCTC	TATGATGATC	TAGTGGAG
	A-AACAGCTC A-AATAGCTC	TTTGAGTAAC TTTGAGTAAC	AAGTGGAG TAGTGGAG
	A-AACAATTC	TTCGAGTAAC	AAGGAGAG
	A-AATAGCTC	TTCGAGGATC	TAGTGGAG
	A-AATAGCTC	TTCGAGGACC	TAGTGGAG
	A-AATAGCTC	TTCGAGGACC	CAGTGGAG
	A-AATAGCTC	TTCGAGGACC	CAGTGGAG
	A-AACCCTTT	AACGAGGATC	TATGAGAG
	A-AACCTTTT	TTCGAGGATC	AAGTGGAG
	A-AACTTTTT	TTCGAGGATC	AAGTGGAG
	A-AACCTTTT	TTCGAGGATC	AAGTGGAG
	A-AACCTTTT	TTCGAGTATC	CAGTGGAG
	A-AACCTTTT	TTCGAGTATC	AAGTGGAG
	A-AACCTTTT	TTCGAGTATC	AAGTGGAG
	A-AACCTTTT	TTCGAGTATC	AAGTGGAG
	A-AACCTTTT	TTCGAGTACC	AAGTGGAG
	A-AACTTCTT A-AACATATT	TTCGAGTATC	AAGTGGAG
	A-AACCITITI A-AACCITITI	TTCGAGTATC TTCGAGGATC	AAGTGGAG AAGTGGAG
	A-AACCTTTT	TTCGAGGATC	AAGTGGAG
	A-AACCTTTT	TTCGAGGATC	AAGTGGAG
	A-AACCTTTT	TTCGAGGATC	AAGTGGAG
	a-AACCTTTT	TTCGAGTATC	AAGTGGAG
	A-AACATTTT	TTCAAGTATC	AAGTGGAG
	A-AACCTTTT	TTCGAGTATC	AAGTGGAG
	A-AACCTTTT	TTCGAGTATC	AAGTGGAG
	A-AACCTTTT	TTCGAGTATC	AAGTGGAG
	A-AACATTTT	TTCGAGGATC	AAGTGGAG
	A-AACCTTTT	TTCGAGTATC	AAGTGGAG
	A-AACGTTTT A-AACCTTTT	TTCGAGTATC	AAGTGGAG
	A-AACCIIII A-AACTATTT	TTCGAGTATC TTCGAGTATC	AAGTGGAG GAGTGGAG
	A-AACTATTT A-AACTTTTT	TTCGAGTATC	AAGTGGAG
	A-AACCTTTT	TTCGAGTATC	AAGTGGAG
	A-AACCTTTT	TTCGAGTATC	AAGTGGAG
	A-AACCTTTT	TTCGAGGATC	AAGTGGAG
	A-AACTTTTT	TTCGAGGATC	AAGTGGAG
	A-AACCTTTT	TTCGAGGATC	AAGTGGAG
	A-AACCTCTT	TTCGAGGATC	AAGTGGAG
	A-AACCTTTT	TTCGAGGATC	AAGTGGAG
	A-AACCTCTT	TTCGAGGATC	AAGTGGAG
	A-AACCTCTT	TTCGAGGATC	AAGTGGAG
	A-AACCTTTT	TTCGAGGATC	AAGTGGAG
	A-AACCTTTT	TTCGAGGATC	AAGTGGAG
	A-AACCTTTT	TTCGAGGATC	AAGTGGAG
	A-AACCTTTT A-AACCTTTT	TTCGAGGATC	AAGTGGAG
		TTCGAGGATC TTCGAGTATC	AAGTGGAG GAGTGGAG
	A-AACGTTTT A-AACGTTTT	TTCGAGTATC	GAGTGGAG
	A-AACGIIIII A-AACGTTTT	TTCGAGTATC	GAGIGGAG
	A-AACCATTT	TTCGAGTATC	AAGTGGAG
	A-AACGTTTT	TTCGAGTATC	GAGTGGAG
	A-AACGTTTT	TTCGAGTATC	GAGTGGAG
	A-AACCTTTT	TTCGAGGATC	AAGTGGAG
	m-mmmmmmmm	mmmmmmmmm	mmm

Ostertagia_leptospicularis Nippostrongylus_brasileinsis Heligmosomoides_polygyrus Trichostrongylus_colubriformis Tetrabothriostrongylus mackerr Herpestrongylus_pythonis Nicollina_cameroni Filarimena_flagrifer Amidostomum_cygni Teratocephalus_lirellus Brumptaemilius_justini Anguillicola_crassus Dracunculus_medinensis Dracunculus_oesophageus Dracunculus_sp._V3104 Philonema_sp_A Philometra_obturans Camallanus_oxycepahalus Acanthocheilonema_viteae Loa_loa Onchocerca_cervicalis Dirofilaria_immitis Brugia_malayi Wuchereria_bancrofti Litomosoides_sigmodontis Setaria_digitata Gnathostoma_turgidum Gnathostoma_neoprocyonis Gnathostoma_binucleatum Physaloptera alata Physaloptera turgida Ascarophis_arctica Spinitectus_carolini Thelazia_lacrymalis Aphelenchus_avenae Aphelenchoides_fragariae Bursaphelelenchus_sp Deladenus_sp Criconema_sp Hemicycliophora_conida Paratylenchus_dianthus Pratylenchus_thornei Tylenchulus_semipentrans Ditylenchus_angustus Subanguina_radicola Tylenchorhynchus_maximus Geocenamus_quadrifer Globodera_pallida Scutellonema_bradys Helicotylenhcus_dihystera Rotylenchus_robustus Meloidogyne_arenaria Meloidogyne_incognita_KT Meloidogyne_javanica Meloidogyne artiellia Meloidogyne_duytsi Meloidogyne_exigua Meloidogyne hapla Meloidogyne_ichinohei Meloidogyne_maritima Meloidogyne_microtyla Nacobbus aberrans Pratylenchoides_ritteri Pratylenchoides_magnicauda Hirschmanniella_sp._JH_2003 Radopholus_similis Pratylenchus_goodeyi_VF Boleodorus_thylactus_clone2 Philippine Sequence 1 Philippine Sequence 2 Philippine Sequence 3 Philippine Sequence 4 Philippine Sequence 5 Philippine Sequence 6 Philippine Sequence 7 Tahiti Sequence 1 Tahiti Sequence 2 Thailand Sequence 1 NUCLEOTIDES INCLUDED

....|....|....|....|.... 730 740 A-AACCTTTT TTCGAGGATC AAGTGGAG A-AACCTTTT TTCGAGGAAC AAGTGGAG A-AACCTTTT TTCGAGGATC CAGTGGAG A-AACCTTTT TTCGAGGATC AAGTGGAG A-AAACTTTT TTCGAGGATC AAGTGGAG A-AACCCTTT AACGAGGATC TATGAGAG A-AACCCGTT AACGAGGATC TATGAGAG A-AACCCTTT AACGAGGATC TATGAGAG A-AACCTGTT AACGAGGACC TATGAGAG A-AACCTGTT AACGAGGATC TATGAGAG A-AACCTGTT AACGAGGATC TATGAGAG A-AACCCGTT AACGAGGATC TATGAGAG A-AACCCGTT AACGAGGATC AATGAGAG A-AAGCCGTT AACAAGGATC TATGAGAG A-AACCTGTT AACGAGGATC TATGAGAG A-AACCCGTT AACGAGGATC TATGAGAG A-AACCCGTT AACGAGGATC TATGAGAG A-AACCTGTT AACGAGGATC TATGAGAG A-AACCTGTT AACGAGGATC TATGAGAG A-AACCCGTT AACGAGGATC TATGAGAG A-AACCTGTT AACGAGGATC TATGAGAG A-AACCCGTT AACGAGGATC TATGAGAG A-AACCCTCT AACGAGGATC TATGAGAG A-AACCCTCT AACGAGGATC TATGAGAG A-AACCCTCT AACGAGGATC TATGAGAG A-AACCCGTT AACGAGGATC TATGAGAG A-AACCCGTT AACGAGGATC TATGAGAG A-AACCCGTT AACGAGGATC TATGAGAG A-AACCCGTT AACGAGGATC TATGAGAG A-AACCTGTT AACGAGGATC TATGAGAG A-AACCCTTT AACGAGTATC TATGAGAG A-AACAATTT CATGAGTACC TACGAGAG A-GACATTTT AACGAGTATC TACGAGAG A-AACCCTTT AACGAGTATC TATGAGAG A-AACCCTTT AACGAGTATC AATGAGAG A-AACCCTTT AACGAGTATC AATGAGAG A-AACCCTTT AACGAGTATC AATGAGAG A-AACCCTTT AACGAGTATC TATGAGAG A-AACCCTTT AACGAGTATC AATGAGAG A-AACCCTTT GACGAGTATC TATGAGAG A-AACCCTTT AACGAGTATC AAGCAGAG A-AACCCTTT AACGAGTATC AAGCAGAG A-AACCCTTT AACGAGTATC AAGCAGAG A-AACCCTTT AACGAGTATC TACGAGAG A-AACCCTTT AACGAGTATC AAGCAGAG A-AACCCTTT AACGAGTATC AAGGAGAG A-AACCCTTT AACGAGTATC AAGCAGAG A-AATCCTTT ATCGAGTATC TACGAGAG A-AACCCTTT AACGAGTATC AAGCAGAG A-AACCCTTT AACGAGTATC AAGCAGAG A-AACCCTTT AACGAGTATC TATGAGAG A-AACCCTTT AACGAGTATC TATGAGAG A-AACCCTTT AACGAGTATC TATGAGAG A-AACCCTTT AACGAGTATC TATGAGAG A-AAACCCCC ATTGAGTATC TACGAGAG A-AACCCTTT AACGAGTATC TATGAGAG A-AACCCTTT AACGAGTATC TATGAGAG A-AACCTTTT TTCGAGTATC CAGTGGAG A-AACCTTTT TTCGAGTATC CAGTGGAG A-AATAGCTC TTGGATGACC CAG..... A-AAACCATT AAAGAGTATC AATGAGAG A-AACCTTTT TTCGAGGATC AAG..... A-AATAGCTC TACGAGGACC CAGTGGAG A-AATGATTC TTCGAGTAGC AAG..... A-AACCTTTT TTCGAGTATC CAGTGGAG A-AATCTTTT CTTGAGTATC CAG..... A-AATCCGTT AACGAGGATC TATGAGAG

Ogasawara Sequence 1
Ogasawara Sequence 2
Ivory Coast Sequence 1
Ivory Coast Sequence 2
Ivory Coast Sequence 3
Ivory Coast Sequence 4
Ivory Coast Sequence 5
Ivory Coast Sequence 6
Ivory Coast Sequence 7
Singapore Sequence 1
Singapore Sequence 2
Singapore Sequence 3
Singapore Sequence 4
Nigerian Sequence 1
Nigerian Sequence 2
Nigerian Sequence 3
NUCLEOTIDES INCLUDED

730) 740)
A-AAACCATT	AAAGAGTATC	AATGAGAG
A-AATAGTTC	TTCGAGGACC	CAGTGAGG
A-AACCTTTT	TTCGAGTATC	AAGTGGAG
A-AACCTTTT	TTCGAGTATC	AAGTGGAG
A-AACCTTTT	TTCGAGTATC	GAATGGAG
A-AACCTTTT	TTCGAGTATC	AAGTGGAG
A-AATCCGTT	AACGAGGATC	TATGAGAG
A-AACCTTTT	TTCGAGTATC	AAGTGGAG
A-AACCTTTT	TTCGAGTATC	AAGTGGAG
A-AATAGCTC	TTGAT-GACC	CAGTGGAG
A-AATCCGTT	AACGAGGATC	
A-AATGATTC	TTCGAGTAGC	AAGGAGAG
A-AACCTTTT	TTCGAGTATC	AAGTGGAG
A-AACCTTTT	TTCGAGTATC	AAGTGGAG
A-AACCTTTT	TTCGAGGATC	AAGTGGAG
A-AACCTTTT	TTCGAGTATC	AAGTGGAG
m-mmmmmmmm	mmmmmmmmm	mmm

Appendix 6.3: Log likelihood scores of the different models used for comparison for the (A) the Nematoda and (B) the Rhabditida within Nematoda using the SSU rRNA gene to determine the phylogenetic positions of the nematode sequences from a trial population of *Achatina fulica* and *Laevicaulis alte* in the Philippines. A total of 376 unambiguously aligned nucleotide sites of the 5' end of the SSU rRNA gene were used. Log Likelihood Ratio Tests for both the Nematoda and the Rhabditida revealed GTR+ Γ as the optimal model. Note that the K2P and F81 models are non-nested and therefore cannot be compared using LRT.

(A) N	lematoda
-------	----------

(B) Rhabditida

Model	Log-Likelihood Score	Model	Log-Likelihood Score
JC	21909.35435	JC	14354.91018
JC+Γ	19844.13051	JC+Г	13100.12574
F81	21.855.63587	F81	14325.96300
F81+Γ	19747.80473	F81+Γ	13031.31768
K2P	21623.78574	K2P	14234.74221
K2P+Γ	19518.62434	K2P+Γ	12957.97008
HKY85	21549.39123	HKY	14192.26735
НКҮ85+Γ	19361.80971	$HKY+\Gamma$	12844.49245
TN93	21435.08416	TrN93	14129.30390
TN93+Γ	19353.15979	ΤΝ93+Γ	12846.67437
GTR	21370.61122	GTR	13930.31599
GTR+Γ	19339.54695	GTR+Γ	12725.79552

Appendix 6.4: Alignment of the full-length SSU rRNA gene for the Metastrongylina and and two Trichostrongylina outgroups. Positions included for the phylogeny analyses were marked by "m" within "NUCEOTIDES INCLUDED"

	1 1		1 1	1 1	1 1	1 1
		···· ···· 0 20		0 4		
Angiostrongylus cantonensis						
Angiostrongylus costaricensis						
Angiostrongylus malaysiensis						AGGA
Angiostrongylus dujardini						AGGA
Angiostrongylus vasorum						AGGA
Aelurostrongylus abstrusus			CGATATATGT	TCAGTTAAAA	GGTTAAGCCA	TGCACGAGGA
Didelphostrongylus hayesi			TATATGCT	CAGTTAAAAG	ATT-AAGCCA	TGCATGTGGA
Crenosoma mephitiditis			TATATGCT	CAGTTAAAAG	ATTGAAGCCA	TGCATGTGGA
Otostrongylus circumlitus					GATTAAGCCA	TGCATGTCGA
Troglostrongylus wilsoni					GATTAAGCCA	TGCATGTTGA
Filaroides martis						
Oslerus osleri						
Parafilaroides decorus						
Metastrongylus salmi						
Skrjabingylus chitwoodorum						
Parelaphostrongylus odocoilei						
Muellerius capillaris						
Halocercus invaginatus						
Pseudalius inflexus						
Stenurus minor						
Torynurus convolutus						
Nematodirus battus		ATTCTGTCAG				
Nippostrongylus brasiliensis						
NUCELOTIDES INCLUDED						mmmm
				 0 10		
Angiostrongylus cantonensis	7		0 9	0 10	0 11	0 120
Angiostrongylus cantonensis Angiostrongylus costaricensis	7 GTTCAGCTTT	0 . 80) 9 TGCGAACGGC	0 10 TCATTAGAGC	0 11 AGATGTGATT	0 120 TATTCGGAAA
	7 GTTCAGCTTT GTTCAGCTTC	0 80 -AAGTGAAAC) 9 TGCGAACGGC TGCGAACGGC	0 10 TCATTAGAGC TCATTAGAGC	0 11 AGATGTGATT AGATGTGATT	0 120 TATTCGGAAA TATTCGGAAA
Angiostrongylus costaricensis	7 GTTCAGCTTT GTTCAGCTTC GTTCAGCTTC	0 80 -AAGTGAAAC -AAGTGAAAC) 9 TGCGAACGGC TGCGAACGGC TGCGAACGGC	0 10 TCATTAGAGC TCATTAGAGC TCATTAGAGC	0 11 AGATGTGATT AGATGTGATT AGATGTGATT	0 120 TATTCGGAAA TATTCGGAAA TATTCGGAAA
Angiostrongylus costaricensis Angiostrongylus malaysiensis	7 GTTCAGCTTT GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC	0 80 -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC	TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC	0 10 TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC	0 11 AGATGTGATT AGATGTGATT AGATGTGATT AGATGTCATT	0 120 TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA
Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini	7 GTTCAGCTTT GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC	0 8 -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC	TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC	0 10 TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC	0 11 AGATGTGATT AGATGTGATT AGATGTGATT AGATGTCATT AGATGTCATT	0 120 TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA
Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum	7 GTTCAGCTTT GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAACTTC	0 8 -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC	TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC	0 10 TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC	0 11 AGATGTGATT AGATGTGATT AGATGTGATT AGATGTCATT AGATGTCATT AGATGTCATT	0 120 TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA
Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis	GTTCAGCTTT GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTT	0 AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC	TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC	0 10 TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC	0 11 AGATGTGATT AGATGTGATT AGATGTGATT AGATGTCATT AGATGTCATT AGATGTCATT	0 120 TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA
Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus	GTTCAGCTTT GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTT GTTCAGCTTT GTTCAGCTTC	0 -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC	TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC	0 10 TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC	0 11 AGATGTGATT AGATGTGATT AGATGTGATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT	0 120 TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TAATCGGAAA TATTCGGAAA TATTCGGAAA
Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni	GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC	0 -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC	TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC	0 10 TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC	0 11 AGATGTGATT AGATGTGATT AGATGTGATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT	0 120 TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA
Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis	GTTCAGCTTT GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC	0 -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC	TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC	0 10 TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC	0 11 AGATGTGATT AGATGTGATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT	0 120 TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA
Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri	GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTT GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC	0 -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC	TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC	0 10 TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC	0 11 AGATGTGATT AGATGTGATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT	0 120 TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA
Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus	GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC	0 -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC	TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC	0 10 TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC	0 11 AGATGTGATT AGATGTGATT AGATGTGATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT	0 120 TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA
Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus abstrusus Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi	GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAACTTC GTTCAACTTC	0 -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC	TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC	0 10 TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC	0 11 AGATGTGATT AGATGTGATT AGATGTGATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT	0 120 TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA
Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi Skrjabingylus chitwoodorum	GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC	0 -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC	TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC	D 10 TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC	0 11 AGATGTGATT AGATGTGATT AGATGTGATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT	0 120 TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA
Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi Skrjabingylus chitwoodorum Parelaphostrongylus odocoilei	GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTT GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAACTTC GTTCAACTTC GTTCAACTTC GTTCAACTTC	0 -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC	TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC	0 10 TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC	0 11 AGATGTGATT AGATGTGATT AGATGTGATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT	0 120 TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA
Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi Skrjabingylus chitwoodorum Parelaphostrongylus odocoilei Muellerius capillaris	GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAACTTC GTTCAACTTC GTTCAACTTC	0 -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC	TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC	D 10 TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC	0 11 AGATGTGATT AGATGTGATT AGATGTGATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT	0 120 TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA
Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus vasorum Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus vilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi Skrjabingylus chitwoodorum Parelaphostrongylus odocoilei Muellerius capillaris Halocercus invaginatus	GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAACTTC GTTCAACTTC GTTCAACTTC GTTCAACTTC GTTCAACTTC GTTCAACTTC	0 -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC AAGTGAAAC AAGTGAAAC AAGTGAAAC AAGTGAAAC AAGTGAAAC	TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC	D 10 TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC	0 11 AGATGTGATT AGATGTGATT AGATGTGATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT	0 120 TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA
Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi Skrjabingylus chitwoodorum Parelaphostrongylus odocoilei Muellerius capillaris Halocercus invaginatus Pseudalius inflexus	GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAACTTC GTTCAACTTC GTTCAACTTC GTTCAACTTC GTTCAACTTTC GTTCAACTTTC GTTCAACTTTC	 AAGTGAAAC 	TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC	D 10 TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC	0 11 AGATGTGATT AGATGTGATT AGATGTGATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT	0 120 TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA
Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi Skrjabingylus chitwoodorum Parelaphostrongylus odocoilei Muellerius capillaris Halocercus invaginatus Pseudalius inflexus Stenurus minor	GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAACTTC GTTCAACTTC GTTCAACTTC GTTCAACTTC GTTCAACTTC GTTCAACTTC GTTCAACTTC GTTCAGCTTC	0 -AAGTGAAAC	TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC	D 10 TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC	0 11 AGATGTGATT AGATGTGATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT	0 120 TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA
Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus chitwoodorum Parelaphostrongylus odocoilei Muellerius capillaris Halocercus invaginatus Pseudalius inflexus Stenurus minor Torynurus convolutus	GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAACTTC GTTCAACTTC GTTCAACTTC GTTCAACTTC GTTCAACTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC	0 -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC	TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC TGCGAACGGC	D 10 TCATTAGAGC	0 11 AGATGTGATT AGATGTGATT AGATGTGATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT	0 120 TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA TATTCGGAAA
Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi Skrjabingylus chitwoodorum Parelaphostrongylus odocoilei Muellerius capillaris Halocercus invaginatus Pseudalius inflexus Stenurus minor Torynurus convolutus Nematodirus battus	GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTT GTTCAGCTTT GTTCAGCTTT GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC	0 -AAGTGAAAC	TGCGAACGGC TGCGAACGGC	D 10 TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC TCATTAGAGC	0 11 AGATGTGATT AGATGTGATT AGATGTGATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT	0 120 TATTCGGAAA
Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus chitwoodorum Parelaphostrongylus odocoilei Muellerius capillaris Halocercus invaginatus Pseudalius inflexus Stenurus minor Torynurus convolutus	GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAACTTC GTTCAACTTC GTTCAACTTC GTTCAACTTC GTTCAGCTTT GTTCAGCTTT GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC GTTCAGCTTC	0 -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC -AAGTGAAAC	TGCGAACGGC TGCGAACGGC	D 10 TCATTAGAGC	0 11 AGATGTGATT AGATGTGATT AGATGTGATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT AGATGTCATT	0 120 TATTCGGAAA

	130) 140) 150) 160) 170	180
		GATAACTGCG				
s	ATCC-TATTG	GATAACTGCG	GTAATTCTGG	AGCTAATACA	TGCGTATAAA	CCCTGACTTT
		GATAACTGCG				
		GATAACTGCG				
		GATAACTGCG				
		GATAACTGCG				
		GATAACTGCG				
		GATAACTGCG GATAACTGCG				
		GATAACTGCG				
		GATAACTGCG				
		GATAACTGCG				
		GATAACTGCG				
	ATCC-AATTG	GATAACTGCG	GTAATTCTGG	AGCTAATACA	TGCGATTAAA	CCCTGACTTT
	TTCC-AATTG	GATAACTGCG	GTAATTCTGG	AGCTAATACA	TGTGATTAAA	CCCTGACTTT
i		GATAACTGCG				
		GATAACTGCG				
		GATAACTGCG				
		GATAACTGCG				
		GATAACTGCG				
		GATAACTGCG GATAACTGCG				
		GATAACTGCG				
•		mmmmmmmmmm				
	190) 220		
		GCAATTATTA				
s		GCAATTATTA				
		GCAATTATTA				
		GCAATTATTA				
		GCAATTATTA				
		GCAATTATTA				
		GCAATTATTA GCAATTATTA				
		GCAATTATTA				
		GCAATTATTA				
		GCAATTATTA				
	-TGAAAGGGT	GCAATTATTA	GAGCAAATCA	ATCATCTACG	GATGTAGTTT	GCTGACTCTG
	-TGAAAGGGT	GCAATTATTA	GAGCAAATCA	ATCATTTTCG	GATGTAGTTT	GCTGACTCTG
	-TGAAAGGGT	GCAATTATTA	GAGCAAATCA	ATCATTTACG	GATGTAGTTT	GCTGACTCTG
		GCAATTATTA				
i		GCAATTATTA				
		GCAATTATTA				
		GCAATTATTA				
		GCAATTATTA GCAATTATTA				
		GCAATTATTA				
		GCAATTATTA				
		GCAATTATTA				
		mmmmmmmmm				
	250) 260) 270) 280) 290) 300
						TGCCCTATCA
s						TGCCCTATCA
		CATATCGGCG				TGCCCTATCA
						TGCCCTATCA
						TGCCCTATCA
						TGCCCTATCA
						TGCCCTATCA
						TGCCCTATCA
						TGCCCTATCA
	AATAACGCAG	CATATCGGCG	GCTTGTTCGC	CGATATTCCG	AAAAAGTGTC	TGCCCTATCA
						TGCCCTATCA
						TGCCCTATCA
	AATAACGCAG	CATATCCCCC	COTTOTTOCC		7 7 7 7 7 7 CTCTC	TCCCCTATCA

AATAACGCAG CATATCGGCG GCTTGTTCGC CGATAATCCG AAAAAGTGTC TGCCCTATCA

AATAACGCAG CATATCGGCG GCTTGATCGC CGATATTCCG AAAAAGTGTC TGCCCTATCA AATAACGCAG CATATCGGCG GCTTGTTCGC CGATATTCCG AAAAAGTGTC TGCCCTATCA

AATAACGCAG CATATCGGCG GCTTGTTCGC CGATATTCCG AAAAAGTGTC TGCCCTATCA

AATAACGCAG CATATCGGCG GCTTGTTCGC CGATATTCCG AGAAAGTGTC TGCCCTATCA

AATAACGCAG CATATCGGCG GCTTGTTCGC CGATATTCCG AAAAAGTGTC TGCCCTATCA

AATAACGCAG CATATCGGCG GCTTGTTCGC CGATATTCCG AAAAAGTGTC TGCCCTATCA AATAACGCAG CATATCGGCG GCTTGTTCGC CGATATTCCG AAAAAGTGTC TGCCCTATCA

AATAATGCAG CATATCGGCG GCTTGACCGC TGATAATCCG AAAAAGTGTC TGCCCTATCA

AATAACGCAG CATATCGGCG GCTTGTCCGC TGATATTCCG AAAAAGTGTC TGCCCTATCA

Angiostrongylus cantonensis Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi Skrjabingylus chitwoodorum Parelaphostrongylus odocoilei Muellerius capillaris Halocercus invaginatus Pseudalius inflexus Stenurus minor Torynurus convolutus Nematodirus battus Nippostrongylus brasiliensis NUCELOTIDES INCLUDED

Angiostrongylus cantonensis Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi Skrjabingylus chitwoodorum Parelaphostrongylus odocoilei Muellerius capillaris Halocercus invaginatus Pseudalius inflexus Stenurus minor Torynurus convolutus Nematodirus battus Nippostrongylus brasiliensis NUCELOTIDES INCLUDED

Angiostrongylus cantonensis Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi Skrjabingylus chitwoodorum Parelaphostrongylus odocoilei Muellerius capillaris Halocercus invaginatus Pseudalius inflexus Stenurus minor Torynurus convolutus Nematodirus battus Nippostrongylus brasiliensis NUCELOTIDES INCLUDED

ACCTGATGGT AGTCTATTAG TCTACCATGG TTATTACGGG TAACGGAGAA TAAGGGTTCG ന്നത്ത്വത്ത് നന്നത്ത്വന്നത്ത് നന്നത്ത്വന്നത്ത്വന്നത്ത്വന്നത്ത്വന്നത്ത്വന്നത്ത്വന്നത്ത്വന്നത്ത്വന്നത

Angiostrongylus cantonensis Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi Skrjabingylus chitwoodorum Parelaphostrongylus odocoilei Muellerius capillaris Halocercus invaginatus Pseudalius inflexus Stenurus minor Torynurus convolutus Nematodirus battus Nippostrongylus brasiliensis NUCELOTIDES INCLUDED

Angiostrongylus cantonensis Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi Skrjabingylus chitwoodorum Parelaphostrongylus odocoilei Muellerius capillaris Halocercus invaginatus Pseudalius inflexus Stenurus minor Torynurus convolutus Nematodirus battus Nippostrongylus brasiliensis NUCELOTIDES INCLUDED

420 ACTCCGGAGA GGGAGCCTTA GAAACGGCTA CCACATCCAA GGAAGGCAGC AGGCGCGAAA תוחומות המתוחות המתוחות

CTTATCCAAT CTTGAATAGA TGAGATAGTG ACTAAAAATA AAAAGACCAT TCCTATGGAA CTTATCCAAT CTTGAATAGA TGAGATAGTG ACTAAAAATA AAAAGACCAT TCCTATGGAA CTTATCCAAT CTTGAATAGA TGAGATAGTG ACTAAAAATA AAAAAACCAT TCCTATGGAA CTTATCCAAT CTTGAATAGA TGAGATAGTG ACTAAAAATA AAAAGACCAT TCCTATGGAA CTTATCCAAT CTTGAATAGA TGAGATAGTG ACTAAAAATA AAAAGACCAT TCCTATGGAA CTTATCCAAT CTTGAATAGA TGAGATAGTG ACTAAAAATA AAAAAACCAT TCCTATGGAA CTTATCCAAT CTTGAATAGA TGAGATAGTG ACTAAAAATA AAAAGACCAT TCCTATGGAA CTTATCCAAT CTTGAATAGA TGAGATAGTG ACTAAAAATA AAAAGACCGT TCCTATGGAA CTTATCCAAT CTTGAATAGA TGAGATAGTG ACTAAAAATA AAAAGACCAT TCCTATGGAA CTTATCCAAT CTTGAATAGA TGAGATAGTG ACTAAAAATA AGAAGACCAT TCCTATGGAA

490) 520	···· ····) 530	
CGGTTATTTC	AATGAGTTGA	TCATAAACCT	TTTTTCGAGT	ATCCAGTGGA	GGGCAAGTCT
CGGTTATTTC	AATGAGTTGA	TCATAAACCT	TTTTTCGAGT	ATCAAGTGGA	GGGCAAGTCT
CGGTTATTTC	AATGAGTTGA	TCATAAACCT	TTTTTCGAGT	ATCAAGTGGA	GGGCAAGTCT
CGGTTATTTC	AATGAGTTGA	TCATAAACCT	TTTTTCGAGT	ATCAAGTGGA	GGGCAAGTCT
CGGTTATTTC	AATGAGTTGA	TCATAAACCT	TTTTTCGAGT	ACCAAGTGGA	GGGCAAGTCT
CGGTCATTTC	AATGAGTTGA	TCATAAACTT	CTTTTCGAGT	ATCAAGTGGA	GGGCAAGTCT
CGGTTATTTC	AATGAGTTGA	TCTTAAACAT	ATTTTCGAGT	ATCAAGTGGA	GGGCAAGTCT
CGGTCATTTC	AATGAGTTGA	TCATAAACCT	TTTTTCGAGG	ATCAAGTGGA	GGGCAAGTCT
CGGTTATTTC	AATGAGTTGA	TCATAAACCT	TTTTTCGAGG	ATCAAGTGGA	GGGCAAGTCT
CGGTGATTTC	AATGAGTTGA	TCATAAACCT	TTTTTCGAGG	ATCAAGTGGA	GGGCAAGTCT
CGGTTATTTC	AATGAGTTGA	TCATAAACCT	TTTTTCGAGT	ATCAAGTGGA	GGGCAAGTCT
CGGTCATTTC	AATGAGTTGA	TCATAAACAT	TTTTTCAAGT	ATCAAGTGGA	GGGCAAGTCT
CGGTTATTTC	AATGAGTTGA	TCATAAACCT	TTTTTCGAGT	ATCAAGTGGA	GGGCAAGTCT
CGGTCATTTC	AATGAGTTGA	TCATAAACCT	TTTTTCGAGT	ATCAAGTGGA	GGGCAAGTCT
CGGTCATTTC	AATGAGTTGA	TCATAAACAT	TTTTTCGAGG	ATCAAGTGGA	GGGCAAGTCT
CGGTCATTTC	AATGAGTTGA	TCATAAACCT	TTTTTCGAGT	ATCAAGTGGA	GGGCAAGTCT
CGGTCATTTC	AATGAGTTGA	TCATAAACGT	TTTTTCGAGT	ATCAAGTGGA	GGGCAAGTCT
CGGTTATTTC	AATGAGTTGA	TCATAAACTA	TTTTTCGAGT	ATCGAGTGGA	GGGCAAGTCT
CGGTTATTTC	AATGAGTTGA	TCATAAACTT	TTTTTCGAGT	ATCAAGTGGA	GGGCAAGTCT
CGGTTATTTC	AATGAGTTGA	TCATAAACCT	TTTTTCGAGT	ATCAAGTGGA	GGGCAAGTCT
CGGTTATTTC	AATGAGTTGA	TCATAAACCT	TTTTTCGAGT	ATCAAGTGGA	GGGCAAGTCT
CGGTCATTTC	AATGAGTTGA	GCTTAAACCT	TTTTTCGAGG	ATCAAGTGGA	GGGCAAGTCT
CGGTCATTCC	AATGAGTTGA	TCATAAACCT	TTTTTCGAGG	AACAAGTGGA	GGGCAAGTCT
mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm
			···· ····) 580		

Nippostrongylus brasiliensis NUCELOTIDES INCLUDED

Angiostrongylus cantonensis Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi Skrjabingylus chitwoodorum Parelaphostrongylus odocoilei Muellerius capillaris Halocercus invaginatus Pseudalius inflexus Stenurus minor Torynurus convolutus Nematodirus battus

Angiostrongylus cantonensis Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi Skrjabingylus chitwoodorum Parelaphostrongylus odocoilei Muellerius capillaris Halocercus invaginatus Pseudalius inflexus Stenurus minor Torynurus convolutus Nematodirus battus Nippostrongylus brasiliensis NUCELOTIDES INCLUDED

GGTGCCAGCA GCCGCGGTAA TTCCAGCTCC ACTAGTGTAA ATCGTCATTG CTGCGGTTAA GGTGCCAGCA GCCGCGGTAA TTCCAGCTCC ACTAGTGTAA ACCGTCATTG CTGCGGTTAA GGTGCCAGCA GCCGCGGTAA TTCCAGCTCC ACTAGTGTAA ATCGTCATTG CTGCGGTTAA ממומת המומת המ

620 630 640 610 650 AAAGCTCGTA GTTGGATCTG AGTTGCATGC AATGATTCGC CTTTGGCGTT AATCATTGTT AAAGCTCGTA GTTGGATCTG AGTTACATGC AATGATTCGC CTTTGGCGTT AATCATTGTT AAAGCTCGTA GTTGGATCTG AGTTGCATGC AATGATTCGC CTTTGGCGTT AATCATTGTT AAAGCTCGTA GTTGGATCTG AGTTGCATGC AATGGTTCGC CTTTGGCGTT AATCATTGTT AAAGCTCGTA GTTGGATCTG AGTTGCATGC AATGATTCGC CTTTGGCGTT AATCATTGTT AAAGCTCGTA GTTGGATCTG AGTTGCATGC AGTGGTTCGC CTTTGGCGTT AATCACTGTT AAAGCTCGTA GTTGGATCTG AGTCATATGC AATGATTCGC TATTAGCGTT AATTATTGTT AAAGCTCGTA GTTGGATCTG AGTCGCATGC AGTAGTTCGC CTTTGGCGTT AATTACTGTT AAAGCTCGTA GTTGGATCTG AGTCGCATGC AATGGTTCGC CTTTGGCGTT AATCATTGTT AAAGCTCGTA GTTGGATCTG AGTCACATGC AGTGATTCGC CTTTGGCGTT AATCATTGTT AAAGCTCGTA GTTGGATCTG AGTCGCATGC AGTGGTTCGC CTTTGGCGTT AATCATTGTT AAAGCTCGTA GTTGGATCTG AGTCGCATGC AGTGGTTCGC CCTTGGCGTT AATCACTGTT AAAGCTCGTA GTTGGATCTG AGTCACATGC AATGATTCGC CTTTGGCGTT AATCATTGTT AAAGCTCGTA GTTGGATCTG AGTCGCATGC AGTGATTCGC CTTTGGCGTT AATCACTGTT AAAGCTCGTA GTTGGATCTG AGTCACATGC AATGATTCGC CTTTGGCGTT AATTATTGTT AAAGCTCGTA GTTGGATCTG AGTCGCATGC AATGATTCGC CTTTGGCGTT AATCATTGTT AAAGCTCGTA GTTGGATCTG AGTCGCATGC AATGATTCGC CTTTGGCGTT AATTATTGTT AAAGCTCGTA GTTGGATCTG AGTCACATGC AATTGGTTGC CTTTGGCGTT AATCATTGTT AAAGCTCGTA GTTGGATCTG AGTCACATGC AATAATTCAC CTTTGGTGTT AATTATTGTT AAAGCTCGTA GTTGGATCTG AGTCACACGC AATGATTCGC CTTTGGCGTT AATCATTGTT AAAGCTCGTA GTTGGATCTG AGTCACACGC AATGATTCGC CTTTGGCGTT AATCATTGTT AAAGCTCGTA GTTGGATCTG AGTCACATGC AGTGGTTCGC CTTTGGCGTT AATCGCTGTT AAAGCTCGTA GTTGGATCTG AGTTACATGC AG-TGGTTAC CTTTGGTGTT AATCGCTGTT

	670					
Angiostrongylus cantonensis	GTGACTATTT	GCTGGT	TTTCTATTGA	AATTTCGATT	TCTTTAGTGG	CTAGCGAGTT
Angiostrongylus costaricensis	GTGACTATTT	GCTGGT	TTTCTATTGA	AATCTCGATT	TCTTTAGTGG	CTAGCGAGTT
Angiostrongylus malaysiensis	GTGACTATTT	GCTGGT	TTTCTATTGA	AATTTCGATT	TCTCTAGTGA	CTGGCGAGTT
Angiostrongylus dujardini	GTGACTATTT	GCTGGT	TTTCTATTGA	AATCTCGATT	TCTTTAGTGG	CTAGCGAGTT
Angiostrongylus vasorum	GTGACTATTT	GCTGGT	TTTCTATTGA	AATTTCGATT	TCTTTAGTGG	CTAGCGAGTT
Aelurostrongylus abstrusus	GCGACTATTT	GCTGGT	TTTCTGCAGA	GATTTCGATT	TCTGTAGTGG	CTAGCGAGTT
Didelphostrongylus hayesi	GTGACTAGCA	TTGCTGGT	TTTCTATTGA	GATTTCGATT	TCATTAGTGA	CTAGCGAGTT
Crenosoma mephitiditis	GTGACTATTT	GCTGGT	TTTCTATTGA	AATTTCGATT	TCTTTAGTGG	CTAGCGAGTT
Otostrongylus circumlitus	GTGACTATTT	GCTGGT	TTTCTATTGA	AATTTCGATT	TCTTTAGTGG	CTAGCGAGTT
Troglostrongylus wilsoni	GTGACTATTT	GCTGGT	TTTCTATTGA	AATTTCGGTT	TCTTTAGTGG	CTAGCGAGTT
Filaroides martis	GTGACTATTT	GCTGGT	TTTCTATTGA	AATCTCGATT	TCTTTAGTGG	CTAGCGAGTT
Oslerus osleri	GTGACTATTT	GCTGGT	TTTCTATTGA	AATTTCGGTT	TCTTTAGTGA	CTAGCGAGTT
Parafilaroides decorus	GTGACTATTT	GCTGGT	TTTCTATTGA	GATTTCGATC	TCTTTAGTGG	CTAGCGAGTT
Metastrongylus salmi	GTGACTATTT	GCTGGT	TTTCTATTGA	AATTTCGGTT	TCTTTAGTGG	CTAGCGAGTT
Skrjabingylus chitwoodorum	GTGACTATTT	GCTGGT	TTTCTATTGA	GATTTCGATT	TCAATAGTGG	CTAGCGAGTT
Parelaphostrongylus odocoilei	GTGACTATTT	GCTGGT	TTTCTATTGA	AATTTCGATT	TCTATAGTGG	CTAGCGAGTT
Muellerius capillaris	GTGACTATTT	GCTGGT	TTTCTATAGT	AATTTCGATT	TCTATAGTGG	CTAGCGAGTT
Halocercus invaginatus	GTGACTATCT	RTGCTGGT	TTTCTATTGA	GATTTCGATT	TCAATAGTGG	CTAGCGAGTT
Pseudalius inflexus	GTGACTATTT	GCTGGT	TTTCTATTGA	AATTTCGATT	TCTATAGTGG	CTAGCGAGTT
Stenurus minor	GTGACTATTT	GCTGGT	TTTCTATTGA	AATTTCGATT	TCTTTAGTGG	CTAGCGAGTT
Torynurus convolutus	GTGACTATTT	GCTGGT	TTTCTATTGA	AATTTCGATT	TCTTTAGTGG	CTAGCGAGTT
Nematodirus battus	GTGACTATTT	GCTGGT	TTTCTATTGA	GGTTTCGATC	TCTTTAGTGG	CTAGCGAGTT
Nippostrongylus brasiliensis	GTGACTATTT	GCTGGT	TTTCTATTAA	AGCTTCGGCT	TTTTTAGTGG	CTAGCGAGTT
NUCELOTIDES INCLUDED	mmmmmmmmm	mmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmmm	mmmmmmmmm

Angiostrongylus cantonensis Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi Skrjabingylus chitwoodorum Parelaphostrongylus odocoilei Muellerius capillaris Halocercus invaginatus Pseudalius inflexus Stenurus minor Torynurus convolutus Nematodirus battus Nippostrongylus brasiliensis NUCELOTIDES INCLUDED

730) 740) 750) 760) 77() 780
TACTTTGAAT	AAATTAAAGT	GCTCAGAACA	AGCGTTT	GCTTGAATGG	TCGATCATGG
TACTTTGAAT	AAATTAGAGT	GCTCAGAACA	AGCGTTT	GCTTGAATGG	TCGATCATGG
TACTTTGAAT	AAATTAGAGT	GCTCAGAACA	AGCGTT T	GCTTGAATGG	TCGATCATGG
TACTTTGAAT	AAATTAGAGT	GCTCAGAACA	AGCGTTT	GCTTGAATGA	TCGATCATGG
TACTTTGAAT	AAATTAGAGT	GCTCAGAACA	AGCGTTT	GCTTGAATGG	TCGATCATGG
TACTTTGAAT	AAATTAGAGT	GCTCAGAACA	AGCGTT T	GCTTGAATGA	TCGATCATGG
TACTTTGAAT	AAATTAGAGT	GCTCAGAACA	AGCGTT T	GCTTGAATGG	TCGATCATGG
TACTTTGAAT	AAATTAGAGT	GCTCAGAACA	AGCGTT T	GCTTGAATGG	TCGATCATGG
TACTTTGAAT	AAATTAGAGT	GCTCAGAACA	AGCGTTT	GCTTGAATGG	TCGATCATGG
TACTTTGAAT	AAATTAGAGT	GCTCAGAACA	AGCGTTT	GCTTGAATGG	TCGATCATGG
TACTTTGAAT	AAATTAGAGT	GCTCAGAACA	AGCGTTT	GCTTGAATGG	TCGATCATGG
TACTTTGAAT	AAATTAGAGT	GCTCAGAACA	AGCGTTT	GCTTGAATGG	TCGATCATGG
TACTTTGAAT	AAATTAGAGT	GCTCAGAACA	AGCGTT T	GCTTGAATGG	TCGATCATGG
TACTTTGAAT	AAATTAGAGT	GCTCAGAACA	AGCGTT T	GCTTGAATGG	TCGATCATGG
TACTTTGAAT	AAATTAGAGT	GCTCAGAACA	AGCGTT T	GCTTGAATGG	TCGATCATGG
TACTTTGAAT	AAATTAAAGT	GCTCAGAACA	AGCGTTT	GCTTGAATGG	TCGATCATGG
TACTTTGAAT	AAATTAGAGT	GCTCAGAACA	AGCGTTA-CA	GCTTGAATGT	GTGATCATGG
TACTTTGAAT	AAATTAGAGT	GCTCAAAACA	AGCGTTACGT	GCTTGAATGT	GTGATCATGG
TACTTTGAAT	AAATTAGAGT	GCTCAGAACA	AGCGTT T	GCTTGAATGG	TCGATCATGG
TACTTTGAAT	AAATTAGAGT	GCTCAGAACA	AGCGTTT	GCTTGAATGG	TCGATCATGG
TACTTTGAAT	AAATTAGAGT	GCTCAGAACA	AGCGTTT	GCTTGAATGG	TCGATCATGG
TACTTTGAAT	AAATTAGAGT	GCTCAGAACA	AGCGTTT	GCTTGAATGG	TCGATCATGG
TACTTTGAAT	AAATTAGAGT	GCTCAGAACA	AGCGTT T	GCTTGAATGG	TCGATCATGG
mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmm	mmmmmmmmm	mmmmmmmmm

840 AATAATAAAA GAGGACTTCG GTTCTATTTA TTGGTTCAGG AACTGAAGTA ATGATTAAGA

AATAATAAAA GAGGACTTCG GTTCTATTTA TTGGTTCAGG AACGGAAGTA ATGATTAAGA AATAATAAAA GAGGACTTCG GTTCTATTTA TTGGTTCAGG AACTGAAGTA ATGATTAAGA AATAATAAAA GAGGACTTCG GTTCTATTTA TTGGTTCAGG AACTGAAGTA ATGATTAAGA AATAATAAAA GAGGACTTCG GTTCTATTTA TTGGTTCAGG AACTGAAGTA ATGATTAAGA AATAATAAAA GAGGACTTCG GTTCTATTTA TTGGTTCAGG AACTGAAATA ATGGTTAAGA AATAATAAAA GAGGACTTCG GTTCTATTTA TTGGTTCAGG AACTGAAATA ATGATTAAGA AATAATAGAA GAGGACTTCG GTTCTATTTA TTGGTTCAGG AACTGAAATA ATGGTTAAGA AATAATAAAA GAGGACTTCG GTTCTATTTA TTGGTTCAGG AACTGAAATA ATGGTTAAGA

	850					
is						
s						
ei						
s						
5						
	910					
	GACGCCCTAA	AGCGAAAGCA	TTTGCCAAGA	ATGTCTTCAT	TAATCAAGAA	CGAAAGTCAG
is	GACGCCCTAA	AGCGAAAGCA	TTTGCCAAGA	ATGTCTTCAT	TAATCAAGAA	CGAAAGTCAG
s						
ei						
s						
5						
	970	980) 990) 100	0 10	LO 1020
is						
s						
	ACCORDICANAC	COOMMENCAM	A G G G G G G G G G G G G G G G G G G G	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		A TOTA COOM

Angiostrongylus cantonensis Angiostrongylus costaricensi Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi Skrjabingylus chitwoodorum Parelaphostrongylus odocoile Muellerius capillaris Halocercus invaginatus Pseudalius inflexus Stenurus minor Torynurus convolutus Nematodirus battus Nippostrongylus brasiliensis NUCELOTIDES INCLUDED

Angiostrongylus cantonensis Angiostrongylus costaricensi Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi Skrjabingylus chitwoodorum Parelaphostrongylus odocoilei Muellerius capillaris Halocercus invaginatus Pseudalius inflexus Stenurus minor Torynurus convolutus Nematodirus battus Nippostrongylus brasiliensis NUCELOTIDES INCLUDED

970) 980) 990) TO(10 101	102
AGGTTCGAAG	GCGATTAGAT	ACCGCCCTAG	TTCTGACCGT	AAACTATGCC	ATCTAGCGAT
AGGTTCGAAG	GCGATTAGAT	ACCGCCCTAG	TTCTGACCGT	AAACTATGCC	ATCTAGCGAT
AGGTTCGAAG	GCGATTAGAT	ACCGCCCTAG	TTCTGACCGT	AAACTATGCC	ATCTAGCGAT
AGGTTCGAAG	GCGATTAGAT	ACCGCCCTAG	TTCTGACCGT	AAACTATGCC	ATCTAGCGAT
AGGTTCGAAG	GCGATTAGAT	ACCGCCCTAG	TTCTGACCGT	AAACTATGCC	ATCTAGCGAT
AGGTTCGAAG	GCGATTAGAT	ACCGCCCTAG	TTCTGACCGT	AAACTATGCC	ATCTAGCGAT
AGGTTCGAAG	GCGATTAGAT	ACCGCCCTAG	TTCTGACCGT	AAACTATGCC	ATCTAGCGAT
AGGTTCGAAG	GCGATTAGAT	ACCGCCCTAG	TTCTGACCGT	AAACTATGCC	ATCTAGCGAT
AGGTTCGAAG	GCGATTAGAT	ACCGCCCTAG	TTCTGACCGT	AAACTATGCC	ATCTAGCGAT
AGGTTCGAAG	GCGATTAGAT	ACCGCCCTAG	TTCTGACCGT	AAACTATGCC	ATCTAGCGAT
AGGTTCGAAG	GCGATTAGAT	ACCGCCCTAG	TTCTGACCGT	AAACTATGCC	ATCTAGCGAT
AGGTTCGAAG	GCGATTAGAT	ACCGCCCTAG	TTCTGACCGT	AAACTATGCC	ATCTAGCGAT
AGGTTCGAAG	GCGATTAGAT	ACCGCCCTAG	TTCTGACCGT	AAACTATGCC	ATCTAGCGAT
AGGTTCGAAG	GCGATTAGAT	ACCGCCCTAG	TTCTGACCGT	AAACTATGCC	ATCTAGCGAT
AGGTTCGAAG	GCGATTAGAT	ACCGCCCTAG	TTCTGACCGT	AAACTATGCC	ATCTAGCGAT
AGGTTCGAAG	GCGATTAGAT	ACCGCCCTAG	TTCTGACCGT	AAACTATGCC	ATCTAGCGAT
AGGTTCGAAG	GCGATTAGAT	ACCGCCCTAG	TTCTGACCGT	AAACTATGCC	ATCTAGCGAT
AGGTTCGAAG	GCGATTAGAT	ACCGCCCTAG	TTCTGACCGT	AAACTATGCC	ATCTAGCGAT
AGGTTCGAAG	GCGATTAGAT	ACCGCCCTAG	TTCTGACCGT	AAACTATGCC	ATCTAGCGAT
AGGTTCGAAG	GCGATTAGAT	ACCGCCCTAG	TTCTGACCGT	AAACTATGCC	ATCTAGCGAT
AGGTTCGAAG	GCGATTAGAT	ACCGCCCTAG	TTCTGACCGT	AAACTATGCC	ATCTAGCGAT
AGGTTCGAAG	GCGATTAGAT	ACCGCCCTAG	TTCTGACCGT	AAACTATGCC	ATCTAGCGAT
AGGTTCGAAG	GCGATTAGAT	ACCGCCCTAG	TTCTGACCGT	AAACTATGCC	ATCTAGCGAT
$\mathfrak{m}\mathfrak{m}\mathfrak{m}\mathfrak{m}\mathfrak{m}\mathfrak{m}\mathfrak{m}\mathfrak{m}\mathfrak{m}\mathfrak{m}$	$\mathfrak{m}\mathfrak{m}\mathfrak{m}\mathfrak{m}\mathfrak{m}\mathfrak{m}\mathfrak{m}\mathfrak{m}\mathfrak{m}\mathfrak{m}$	mmmmmmmmm	mmmmmmmmm	mmmmmmmmmm	mmmmmmmmm

CCGATGGGGT ATTGTTGCCT TGTCGAGGAG CTTCCCGGAA ACGAAAGTCT TTCGGTTCCT CCGATGGGGT ATTATTGCCT TGTCGAGGAG CTTCCCGGAA ACGAAAGTCT TTCGGTTCCT CCGATGGGGT ATTGTTGCCT TGTCGAGGAG CTTCCCCGGAA ACGAAAGTCT TTCGGTTCCT CCGATGGGGT ATTGTTGCCT TGTCGAGGAG CTTCCCGGAA ACGAAAGTCT TTCGGTTCCT CCGATGGGGT ATATTTGCCT TGTCGAGGAG CTTCCCGGAA ACGAAAGTCT TTCGGTTCCT CCGATGGGGT ATTGTTGCCT TGTCGAGGAG CTTCCCGGAA ACGAAAGTCT TTCGGTTCCT ന്നത്ത്വന്തത് നന്നത്ത്വന്ത് നന്തത്ത്വന്തത്ത് നന്തത്ത്വന്ത് നന്തത്ത്വന്തത്ത്വന്ത് നന്തത്ത്വന്ത

Angiostrongylus cantonensis Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi Skrjabingylus chitwoodorum Parelaphostrongylus odocoilei Muellerius capillaris Halocercus invaginatus Pseudalius inflexus Stenurus minor Torynurus convolutus Nematodirus battus Nippostrongylus brasiliensis NUCELOTIDES INCLUDED

Angiostrongylus cantonensis Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi Skrjabingylus chitwoodorum Parelaphostrongylus odocoilei Muellerius capillaris Halocercus invaginatus Pseudalius inflexus Stenurus minor Torynurus convolutus Nematodirus battus Nippostrongylus brasiliensis NUCELOTIDES INCLUDED

109	90 110	0 112	10 112	20 113	30 1140
GGGGTAGTAT	GGTTGCAAAG	CTGAAACTTA	AAGAAATTGA	CGGAATGGCA	CCACCAGGAG
GGGGTAGTAT	GGTTGCAAAG	CTGAAACTTA	AAGAAATTGA	CGGAATGGCA	CCACCAGGAG
GGGGTAGTAT	GGTTGCAAAG	CTGAAACTTA	AAGAAATTGA	CGGAATGGCA	CCACCAGGAG
GGGGTAGTAT	GGTTGCAAAG	CTGAAACTTA	AAGAAATTGA	CGGAATGGCA	CCACCAGGAG
GGGGTAGTAT	GGTTGCAAAG	CTGAAACTTA	AAGAAATTGA	CGGAATGGCA	CCACCAGGAG
GGGGTAGTAT	GGTTGCAAAG	CTGAAACTTA	AAGAAATTGA	CGGAATGGCA	CCACCAGGAG
GGGGTAGTAT	GGTTGCAAAG	CTGAAACTTA	AAGAAATTGA	CGGAATGGCA	CCACCAGGAG
GGGGTAGTAT	GGTTGCAAAG	CTGAAACTTA	AAGAAATTGA	CGGAATGGCA	CCACCAGGAG
GGGGTAGTAT	GGTTGCAAAG	CTGAAACTTA	AAGAAATTGA	CGGAATGGCA	CCACCAGGAG
GGGGTAGTAT	GGTTGCAAAG	CTGAAACTTA	AAGAAATTGA	CGGAATGGCA	CCACCAGGAg
GGGGTAGTAT	GGTTGCAAAG	CTGAAACTTA	AAGAAATTGA	CGGAATGGCA	CCACCAGGAG
GGGGTAGTAT	GGTTGCAAAG	CTGAAACTTA	AAGAAATTGA	CGGAATGGCA	CCACCAGGAG
GGGGTAGTAT	GGTTGCAAAG	CTGAAACTTA	AAGAAATTGA	CGGAATGGCA	CCACCAGGAG
GGGGTAGTAT	GGTTGCAAAG	CTGAAACTTA	AAGAAATTGA	CGGAATGGCA	CCACCAGGAG
GGGGTAGTAT	GGTTGCAAAG	CTGAAACTTA	AAGAAATTGA	CGGAATGGCA	CCACCAGGAG
GGGGTAGTAT	GGTTGCAAAG	CTGAAACTTA	AAGAAATTGA	CGGAATGGCA	CCACCAGGAG
GGGGTAGTAT	GGTTGCAAAG	CTGAAACTTA	AAGAAATTGA	CGGAATGGCA	CCACCAGGAG
GGGGTAGTAT	GGTTGCAAAG	CTGAAACTTA	AAGAAATTGA	CGGAATGGCA	CCACCAGGAG
GGGGTAGTAT	GGTTGCAAAG	CTGAAACTTA	AAGAAATTGA	CGGAATGGCA	CCACCAGGAG
GGGGTAGTAT	GGTTGCAAAG	CTGAAACTTA	AAGAAATTGA	CGGAATGGCA	CCACCAGGAG
GGGGTAGTAT	GGTTGCAAAG	CTGAAACTTA	AAGAAATTGA	CGGAATGGCA	CCACCAGGAG
GGGGTAGTAT	GGTTGCAAAG	CTGAAACTTA	AAGAAATTGA	CGGAATGGCA	CCACCAGGAG
GGGGTAGTAT	GGTTGCAAAG	CTGAAACTTA	AAGAAATTGA	CGGAATGGCA	CCACCAGGAG
mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

	115	50 116	50 117	70 118	30 119	90 1200
	TGGAGCCTGC	GGCTTAATTT	GACTCAACAC	GGGAAAACTC	ACCCGGCCCG	GACACCGTAA
s	TGGAGCCTGC	GGCTTAATTT	GACTCAACAC	GGGAAAACTC	ACCCGGCCCG	GACACCGTAA
5	TGGAGCCTGC	GGCTTAATTT	GACTCAACAC	GGGAAAACTC	ACCCGGCCCG	GACACCGTAA
	TGGAGCCTGC	GGCTTAATTT	GACTCAACAC	GGGAAAACTC	ACCCGGCCCG	GACACCGTAA
	TGGAGCCTGC	GGCTTAATTT	GACTCAACAC	GGGAAAACTC	ACCCGGCCCG	GACACCGTAA
	TGGAGCCTGC	GGCTTAATTT	GACTCAACAC	GGGAAAACTC	ACCCGGCCCG	GACACCGTAA
	TGGAGCCTGC	GGCTTAATTT	GACTCAACAC	GGGAAAACTC	ACCCGGCCCG	GACACCGTAA
	TGGAGCCTGC	GGCTTAATTT	GACTCAACAC	GGGAAAACTC	ACCCGGCCCG	GACACCGTAA
	TGGAGCCTGC	GGCTTAATTT	GACTCAACAC	GGGAAAACTC	ACCCGGCCCG	GACACCGTAA
	TGGAGCCTGC	GGCTTAATTT	GACTCAACAC	GGGAAAACTC	ACCCGGCCCG	GACACCGTAA
	TGGAGCCTGC	GGCTTAATTT	GACTCAACAC	GGGAAAACTC	ACCCGGCCCG	GACACCGTAA
	TGGAGCCTGC	GGCTTAATTT	GACTCAACAC	GGGAAAACTC	ACCCGGCCCG	GACACCGTAA
	TGGAGCCTGC	GGCTTAATTT	GACTCAACAC	GGGAAAACTC	ACCCGGCCCG	GACACCGTAA
	TGGAGCCTGC	GGCTTAATTT	GACTCAACAC	GGGAAAACTC	ACCCGGCCCG	GACACCGTGA
	TGGAGCCTGC	GGCTTAATTT	GACTCAACAC	GGGAAAACTC	ACCCGGCCCG	GACACCGTAA
ei.	TGGAGCCTGC	GGCTTAATTT	GACTCAACAC	GGGAAAACTC	ACCCGGCCCG	GACACCGTAA
	TGGAGCCTGC	GGCTTAATTT	GACTCAACAC	GGGAAAACTC	ACCCGGCCCG	GACACCGTAA
	TGGAGCCTGC	GGCTTAATTT	GACTCAACAC	GGGAAAACTC	ACCCGGCCCG	GACACCGTAA
	TGGAGCCTGC	GGCTTAATTT	GACTCAACAC	GGGAAAACTC	ACCCGGCCCG	GACACCGTAA
	TGGAGCCTGC	GGCTTAATTT	GACTCAACAC	GGGAAAACTC	ACCCGGCCCG	GACACCGTAA
	TGGAGCCTGC	GGCTTAATTT	GACTCAACAC	GGGAAAACTC	ACCCGGCCCG	GACACCGTAA
	TGGAGCCTGC	GGCTTAATTT	GACTCAACAC	GGGAAAACTC	ACCCGGCCCG	GACACCGTAA
1	TGGAGCCTGC	GGCTTAATTT	GACTCAACAC	GGGAAAACTC	ACCCGGCCCG	GACACCGTAA
	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm

		 10 122				
sis		ATTGAAAGCT				
ensis	GGATTGACAG	ATTGAAAGCT	CTTTCTCGAT	TTGGTGGTTG	GTGGTGCATG	GCCGTTCTTA
nsis		ATTGAAAGCT				
i		ATTGAAAGCT				
15		ATTGAAAGCT ATTGAAAGCT				
i		ATTGAAAGCT				
-		ATTGAAAGCT				
3		ATTGAAAGCT				
-		ATTGAAAGCT				
		ATTGAAAGCT				
	GGATTGACAG	ATTGAAAGCT	CTTTCTCGAT	TTGGTGGTTG	GTGGTGCATG	GCCGTTCTTA
	GGATTGACAG	ATTGAAAGCT	CTTTCTCGAT	TTGGTGGTTG	GTGGTGCATG	GCCGTTCTTA
		ATTGAAAGCT				
ım		ATTGAAAGCT				
oilei		ATTGAAAGCT				
		ATTGAAAGCT				
		ATTGAAAGCT				
		ATTGAAAGCT				
		ATTGAAAGCT				
		ATTGAAAGCT				
		ATTGAAAGCT ATTGAAAGCT				
nsis		mmmmmmmmmm				
	1 1		1 1	1 1	1 1	
		70 128				
sis		CGATTTGTCT				
ensis		CGATTTGTCT				
nsis	GTTGGTGGAG	CGATTTGTCT	GGTTTATTCC	GATAACGAGC	GAGACTCTAG	CCTGCTAAAT
i	GTTGGTGGAG	CGATTTGTCT	GGTTTATTCC	GATAACGAGC	GAGACTCTAG	CCTGCTAAAT
	GTTGGTGGAG	CGATTTGTCT	GGTTTATTCC	GATAACGAGC	GAGACTCTAG	CCTGCTAAAT
15		CGATTTGTCT				
i		CGATTTGTCT				
		CGATTTGTCT				
3		CGATTTGTCT				
		CGATTTGTCT				
		CGATTTGTCT CGATTTGTCT				
		CGATTTGTCT				
		CGATTTGTCT				
ım		CGATTTGTCT				
oilei		CGATTTGTCT				
		CGATTTGTCT				
		CGATTTGTCT				
	GTTGGTGGAG	CGATTTGTCT	GGTTTATTCC	GATAACGAGC	GAGACTCTAG	CCTGCTAAAT
	GTTGGTGGAG	CGATTTGTCT	GGTTTATTCC	GATAACGAGC	GAGACTCTAG	CCTGCTAAAT
	GTTGGTGGAG	CGATTTGTCT	GGTTTATTCC	GATAACGAGC	GAGACTCTAG	CCTGCTAAAT
		CGATTTGTCT				
nsis		CGATTTGTCT				
	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm	mmmmmmmmm
				50 136		
sis		TTATTGA				
ensis nsis		TTACTGT TTATTGA				
nsis i		TTATTGA TTACTGT				
-		TTATTGT				
15		TTTTCAC				
1		TTTTCAC				

AGTGACTAGA TTTTTAT--- -GTCTAGTCT ACTTCTTAGA GGGATAAGCG GTGTTTA-GC

AGTGACTGGA TTTTTAT--- -GTCTAGTCT ACTTCTTAGA GGGATAAGCG GTGTTTA-GC

AGTGACAAGA TTTTTAT--- -GTCTAGTCT ACTTCTTAGA GGGATAAGCG GTGTTTA-GC

AGTGACTAGA TTTTTAT--- -GTCTAGTCT ACTTCTTAGA GGGATAAGCG GTGTTTA-GC

AGTGACTAGA TTTTTGT--- -GTCTAGTCT ACTTCTTAGA GGGATAAGCG GTGTTTA-GC

AGTGACTAGA TTTTTAC--- -GTCTAGTTT ACTTCTTAGA GGGATAAGCG GTGTTTA-GC

AGTGACTAGA TTTTTAT--- -GTCTAGTCT ACTTCTTAGA GGGATAAGCG GTGTTTA-GC AGTGACTAGA TTTTTAC--- -GTCTAGTCT ACTTCTTAGA GGGATAAGCG GTGTTTA-GC

AGTGACTAGA TTATTAT--- -GTCTAGTCT ACTTCTTAGA GGGATAAGCG GTGTTTA-GC AGTGACTAGA TACGTAT--- -GTCTAGTCT ACTTCTTAGA GGGATAAGCG GTGTTTA-GC

AGTGACTAGA TTCTTAT--- -GTCTAGTCA ACTTCTTAGA GGGATAAGCG GTGTTTA-GC

AGTGACTAGA TTCTTTTGTG TGTCTAGTCT ACTTCTTAGA GGGATAAGCG GTGTTTA-GC

AGTGACTAGA TTTTTGT--- -GTCTAGTCT ACTTCTTAGA GGGATAAGCG GTGTTTA-GC

AGTGACTAGA TTTTTGT--- -GTCTAGTCT ACTTCTTAGA GGGATAAGCG GTGTTTA-GC AGTGACTAGA TTTTTGT--- -GTCTAGTCT ACTTCTTAGA GGGATAAGCG GTGTTTA-GC

AGTGCCTGGA TTTTTAC--- -GTCCAGTCT ACTTCTTAGA GGGATAAGCG GTGTTTA-GC

AGTGGCTGAA TTTTCAT--- -GTTCAGTCT ACTTCTTAGA GGGATAAGCG GTGACTA-GC

Angiostrongylus cantonens: Angiostrongylus costarice Angiostrongylus malaysiens Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusu Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi Skrjabingylus chitwoodoru Parelaphostrongylus odoco Muellerius capillaris Halocercus invaginatus Pseudalius inflexus Stenurus minor Torynurus convolutus Nematodirus battus Nippostrongylus brasiliens NUCELOTIDES INCLUDED

Angiostrongylus cantonens: Angiostrongylus costarice Angiostrongylus malaysiens Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusu Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi Skrjabingylus chitwoodoru Parelaphostrongylus odoco: Muellerius capillaris Halocercus invaginatus Pseudalius inflexus Stenurus minor Torynurus convolutus Nematodirus battus Nippostrongylus brasiliens NUCELOTIDES INCLUDED

Angiostrongylus cantonens Angiostrongylus costarice Angiostrongylus malaysien; Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi Skrjabingylus chitwoodorum Parelaphostrongylus odocoilei Muellerius capillaris Halocercus invaginatus Pseudalius inflexus Stenurus minor Torynurus convolutus Nematodirus battus Nippostrongylus brasiliensis NUCELOTIDES INCLUDED

CGCACGAGAT TGAGCGATAA CAGGTCTGTG ATGCCCTTAG ATGTCCGGGG CTGCACGCGC CGCACGAGAT TGAGCGATAA CAGGTCTGTG ATGCCCTTAG ATGTTCGGGG CTGCACGCGC CGCACGAGAT TGAGCGATAA CAGGTCTGTG ATGCCCTTAG ATGTTCGGGG CTGCACGCGC CGCACGAGAT TGAGCGATAA CAGGTCTGTG ATGCCCTTAG ATGTCCGGGG CTGCACGCGC CGCACGAGAT TGAGCGATAA CAGGTCTGTG ATGCCCTTAG ATGTTCGGGG CTGCACGCGC CGCACGAGAT TGAGCGATAA CAGGTCTGTG ATGCCCTTAG ATGTCCGGGG CTGCACGCGC CGCACGAGAT TGAGCGATAA CAGGTCTGTG ATGCCCTTAG ATGTCCGGGG CTGCACGCGC CGCACGAGAT TGAGCGATAA CAGGTCTGTG ATGCCCTTAG ATGTTCGGGG CTGCACGCGC CGCACGAGAT TGAGCGATAA CAGGTCTGTG ATGCCCTTAG ATGTCCGGGG CTGCACGCGC CGCACGAGAT TGAGCGATAA CAGGTCTGTG ATGCCCTTAG ATGTTCGGGG CTGCACGCGC CGCACGAGAT TGAGCGATAA CAGGTCTGTG ATGCCCTTAG ATGTCCGGGG CTGCACGCGC CGCACGAGAT TGAGCGATAA CAGGTCTGTG ATGCCCTTAG ATGTCCGGGG CTGCACGCGC ന്നത്ത്വന്നത്ത് നന്നത്ത്വന്നത് നന്നത്ത്വന്ന നന്നത്ത്വന്നത്ത്വന്നത്ത്വന്നത്ത്വന്നത്ത്വന്നത്ത്വന്നത്ത്വന്നത്ത്വന്നത

Angiostrongylus cantonensis Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi Skrjabingylus chitwoodorum Parelaphostrongylus odocoilei Muellerius capillaris Halocercus invaginatus Pseudalius inflexus Stenurus minor Torynurus convolutus Nematodirus battus Nippostrongylus brasiliensis NUCELOTIDES INCLUDED

Angiostrongylus cantonensis Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi Skrjabingylus chitwoodorum Parelaphostrongylus odocoilei Muellerius capillaris Halocercus invaginatus Pseudalius inflexus Stenurus minor Torynurus convolutus Nematodirus battus Nippostrongylus brasiliensis NUCELOTIDES INCLUDED

1500 GCTACAATGG AAGAATCAGC TGGCCTATCC ATTGCCGAAA GGTATTGGTA AACCGTTGAA GCTACAATGG AAGAATCAAC TGGCCTATCC ATTGCCGAAA GGTATTGGTA AACCGTTGAA GCTACAATGG AAGAATCAGC TGGCCTACCC ATTGCCGAAA GGTATTGGTA AACCGTTGAA GCTACAATGG AAGAATCAAC TGGCCTATCC ATTACCGAAA GGTATTGGTA AACCGTTGAA GCTACAATGG AAGAATCAGC TGGCCTATCC ATTGCCGAAA GGTATTGGTA AACCGTTGAA GCTACAATGG AAGAATCAGT TGGCCTATCC ATTGCCGAAA GGTATTGGTA AACCGTTGAA GCTACAATGG AAGAATCAGC TGGCCTATCC ATTGCCGAAA GGTATTGGTA AACCGTTGAA GCTACAATGG AAGAATCAGC TGGCCTATCC ATTGCCGAAA GGTATTGGTA AACCGTTGAA GCTACAATGG AAGAATCAGC TGGCCTATCC ATTACCGAAA GGTATTGGTA AACCGTTGAA GCTACAATGG AAGAATCAGC TGGCCTATCC ATTGCCGAAA GGTATTGGTA AACCGTTGAA GCTACAATGG AAGAATCAGC TGGCCTATCC ATTACCGAAA GGTATTGGTA AACCGTTGAA GCTACAATGG AAGAATCAGC TGGCCTATCC ATTGCCGTAA GGTATTGGTA AACCGTTGAA GCTACAATGG AAGAATCAGC TGGCCTATCC ATTACCGAAA GGTATTGGTA AACCGTTGAA GCTACAATGG AAGAATCAGC TGGCTTATCC ATTGCCGAAA GGTATTGGTA AACCGTTGAA GCTACAATGG AAGACGCAGC TGGCTTATCC ATTGCCGAAA GGTATTGGTA AACCGTTGAA GCTACAATGG AAGAATCAGC TGGCTTATCC ATTGCCGTAA GGTATTGGTA AACCGTTGAA GCTACAATGG AAGATGCAGC TGGCCTATCC ATTGCCGAAA GGTATTGGTA AACCGTTGAA GCTACAATGG AAGATGCAGC TGGCCTATCC ATTGCCGAAA GGTATTGGTA AACCGTTGAA GCTACAATGG AAGAATCAGC TGGCCTATCC ATTACCGAAA GGTATTGGTA AACCGTTGAA GCTACAATGG AAGAATCAGC TGGCCTATCC ATTGCCGAAA GGCATTGGTA AACCGTTGAA

1560 ACTCTTCCGT GACCGGGATA GGGAATTGTA ATTATTTCCC TTGAACGAGG AATTCCTAGT ACTCTTCCGT GACCGGGATA GGGAATTGTA ACTATTTCCC TTGAACGAGG AATTCCTAGT ACTCTTCCGT GACCGGGATA GGGAATTGTA ATTATTTCCC TTGAACGAGG AATTCCTAGT

....|....||||||||| 1570 1580 1590 1600 1610 162 AAGTGTGAGT CATCAGCTCA CGCTGATTAC GTCCCTGCCA TTTGTACACA CCGCCCGTCG Angiostrongylus cantonensis Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini | | 1660 1630 1640 1650 1670 1680 Angiostrongylus cantonensis CTGTCCGGGA CTGAGCTGTC TCGAGAGGAC TGCGGACTAC TGTATTGAGG CCTTCGGGTC CTGTCCGGGA CTGAGCTGTC TCGAGAGGAC TGCGGACTAC TGTATTGAGG CCTTCAGGTC CTGTCCGGGA CTGAGCTGTC TCGAGAGGAC TGCGGACTAC TGTATTGAGG CCTTCGGGTC CTGTCCGGGA CTGAGCTGTC TCGAGAGGAC TGCGGACTAC TATATTGAGG CCTTCGGGTC CTGTCCGGGA CTGAGCTGTC TCGAGAGGAC TGCGGACTGC TGTATTGAGG CCTTCGGGTC CTGTCCGGGA CTGAGCTGTC TCGAGAGGAC TGCGGACTGC TGTATTGAGG CCTTCGGGTC CTGTCCGGGA CTGAGCTGTC TCGAGAGGAC TGCGGACTGC TGTATTGAGG CCTTCGGGTC CTGTCCGGGA CTGAGCTGTC TCGAGAGGAC TGCGGACTAC TGTATTGAGG CCTTCGGGTC CTGTCCGGGA CTGAGCTGTC TCGAGAGGAC TGCGGACTAC TGTATTGAGG CCTGCGGGTC CTGTCCGGGA CTGAGCTGTC TCGAGAGGAC TGCGGACTAC CGTATTGAGG CCTTCGGGTC CTGTCCGGGA CTGAGCTGTC TCGAGAGGAC TGCGGACTAC TGTATTGAGG CCTCCGGGTC CTGTCCGGGA CTGAGCTGTC TCGAGAGGAC TGCGGACTGC TGTATTGAGG CTTTTGGGTC CTGTCCGGGA CTGAGCTGTC TCGAGAGGAC TGCGGACTAC TGTATTGAGG CCTTCGGGTC CTGTCCGGGA CTGAGCTGTC TCGAGAGGAC TGCGGACTGC TGTATCGAGG CTTTCGGGTC CTGTCCGGGA CTGAGCTGTC TCGAGAGGAC TGCGGACTGC TGTATCGAGG CTTTCGGGTC

Angiostrongylus cantonensis Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi Skrjabingylus chitwoodorum Parelaphostrongylus odocoilei Muellerius capillaris Halocercus invaginatus Pseudalius inflexus Stenurus minor Torynurus convolutus Nematodirus battus Nippostrongylus brasiliensis NUCELOTIDES INCLUDED

614

GCGATATAGC GGGAAA-CAG TTCAATCGCA ATGGCTTGAA CCGGGTAAAA GTCGT-AACA GCAATATGGC GGGAAA-CAG TTCAATCGCA ATGGCTTGAA CCGGGTAAAA GTCGT-AACA GCGATATAGC GGGAAA-CAG TTCAATCGCA ATGGCTTGAA CCGGGTAAAA GTCGT-AACA GCGATATGGC GGGAAA-CAG TTCAATCGCA ATGGCTTGAA CCGGGTAAAA G.....

Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi Skrjabingylus chitwoodorum Parelaphostrongylus odocoilei Muellerius capillaris Halocercus invaginatus Pseudalius inflexus Stenurus minor Torynurus convolutus Nematodirus battus

1620 AAGTGTGAGT CATCAGCTCA CGCTGATTAC GTCCCTGCCA TTTGTACACA CCGCCCGTCG AAGTGTGAGT CATCAGCTCA CGTTGATTAC GTCCCTGCCA TTTGTACACA CCGCCCGTCG AAGTGTGAGT CATCAGCTCA CGCTGATTAC GTCCCTGCCA TTTGTACACA CCGCCCGTCG AAGTGTGAGT CATCAGCTCA CGCTGATTAC GTCCCTGCCA TTTGTACACA CCGCCCGTCG AAGTGTGAGT CATTAGCTCA CGCTGATTAC GTCCCTGCCA TTTGTACACA CCGCCCGTCG AAGTGTGAGT CATCAGCTCA CGCTGATTAC GTCCCTGCCA TTTGTACACA CCGCCCGTCG

Angiostrongylus costaricensis Angiostrongylus malaysiensis Angiostrongylus dujardini Angiostrongylus vasorum Aelurostrongylus abstrusus Didelphostrongylus hayesi Crenosoma mephitiditis Otostrongylus circumlitus Troglostrongylus wilsoni Filaroides martis Oslerus osleri Parafilaroides decorus Metastrongylus salmi Skrjabingylus chitwoodorum Parelaphostrongylus odocoilei Muellerius capillaris Halocercus invaginatus Pseudalius inflexus Stenurus minor Torynurus convolutus Nematodirus battus Nippostrongylus brasiliensis NUCELOTIDES INCLUDED

Nippostrongylus brasiliensis NUCELOTIDES INCLUDED

> 1740 GCGATATGGC GGGAAA-CAG TTCAATCGCA ATGGCTTGAA CCGGGTAAAA GTCGT-AACA GCGATATGGC GGGAAA-CAG TTCAATCGCA ATGGCTTGAA CCGGGTAAAA GTCGT-AACA GTGATATGGC GGGAAA-CAG TTCAATCGCA ATGGCTTGAA CCGGGTAAAA GTCGT-AACA GCGGTATGGC GGGAAA-CAG TTCAATCGCA ATGGCTTGAA CCGGGTAAAA GTCGT-AACA

GCGGTATAGC GGGAAA-CAG TTCAATCGCA ATGGCTTGAA CCGGGTAAAA GTCGT-AACA GCGGTATGGC GGGAAAACAG TTCAATCGCA ATGGCT-GAA CCGGG-AAAA GTCGT-AACA GTGATATGGT GGGAAA-CAG TTCAATCGCA ATGGCTTGAA CCGGGTAAAA GTCGT-AACA GCGGTATGGC GGGAAA-CAG TTCAATCGCA ATGGCTTGAA CCGGGTAAAA GTCG..... GCGGTATGGT GGGAAA-CAG TTCAATCGCA ATGGCTTGAA CCGGGTAAAA GTCGT-AACA GCGATATAGT GGGAAA-CAG TTCAATCGCA ATGGCTTGAA CCGGGTAAAA GTCGT-AACA GCGATATGGC GGGAAA-CAG TTCAATCGCA ATGGCTTGAA CCGGGTAAAA GTCGT-A...

GTGGTATAGC GGGAAA-CAG TTCAATCGCA ATGGCTTGAA CCGGGTAAAA GTCGT-AACA GCGATATGGC GGGAAA-CAG TT..... GCGATATGGC GGGAAA-CAG TTCAATCGCA ATGGCTTGAA CCGGGTAAAA G..... GTGATATGGC GGAAAA-CAG TTCAATCGCA ATGGCTTGAA CCGGGTAAAA GTCGT-AACA GCGATATGGC GGGAAA-CAG TTCAATCGCA ATGGCTTGAA CCGGGTAAAA GTCGT-AACA GCGATATGGC GGGAAA-CAG TTCAATCGCA ATGGCTTGAA CCGGGTAAAA GTCGT-AACA GCGGTATGGC GGGAAA-CAG TTCAATCGCA ATGGCTTGAA CCGGGTAAAA GTCGT-AACA GCGGTATGGC GGGAAA-CAG TTCAATCGCA ATGGCTTGAA CCGGGTAAAA -TCGT-AACA mmmmmmmmm mmmmmm-mmm mm.....

	17	50 170	50 17'	70
Angiostrongylus cantonensis	AGGTATCTG.			
Angiostrongylus costaricensis	AGGTATCTG.			
Angiostrongylus malaysiensis	AGGTATCTG.			
Angiostrongylus dujardini	AGGTATCTG.			
Angiostrongylus vasorum				
Aelurostrongylus ABSTRUSUS	AGGTATCTGT	AGGTGAACCT	GCAGATGGAT	CATCG
Didelphostrongylus hayesi	AGGTATCT			
Crenosoma mephitiditis	AGGTATCT			
Otostrongylus circumlitus	AGGTATCTGT	AGGTGAACCT	GG	
Troglostrongylus wilsoni	AGG			
Filaroides martis	AG			
Oslerus osleri	AGGTATCTGT	AGGT		
Parafilaroides decorus				
Metastrongylus salmi	AGGTAT			
Skrjabingylus chitwoodorum	AGGTATCTGT	AGG		
Parelaphostrongylus odocoilei				
Muellerius capillaris				
Halocercus invaginatus				
Pseudalius inflexus	AG			
Stenurus minor	AGGTAT			
Torynurus convolutus	AGG			
Nematodirus battus	AGGTATCTGT	AGGTGAACCT	GCAGATGGAT	CATCG
Nippostrongylus brasiliensis	AGGTATCTGT	AGGTGAACTG		
NUCELOTIDES INCLUDED				

Appendix 6.5: Log likelihood scores of the different models used for comparison for the Sub-order Metastrongylina using 1628 unambiguously aligned nucleotide sites from the near full-length SSU rRNA gene. Log Likelihood Ratio Tests revealed GTR+ Γ as the optimal model. Note that the K2P and F81 models are non-nested and therefore cannot be compared using LRT.

Model	Log-Likelihood Score
JC	4572.59040
JC+ Γ	4273.02522
F81	4555.55232
F81+ Γ	4256.28503
K2P	4495.17230
K2P+ Γ	4193.80011
HKY	4477.60518
ΗΚΥ+Γ	4172.09473
TN93	4475.64206
TN93+Γ	4172.09461
GTR	4455.11204
GTR+Γ	4149.04297

Appendix 7.1: Log likelihood scores of the different models used for comparison for the (**A**) the Nematoda and (**B**) the Rhabditida within Nematoda using SSU rRNA gene to determine the phylogenetic positions of the nematode type sequences from global populations of *Achatina fulica*, African populations of *Achatina* sp. and Philippine populations of *Laevicaulis alte*. A total of 376 unambiguously aligned nucleotide sites of the 5' end of the SSU rRNA gene were used. Log Likelihood Ratio Tests for both the Nematoda and the Rhabditida reveal GTR+ Γ as the optimal model. Note that the K2P and F81 models are non-nested and therefore cannot be compared using LRT.

(A) Nematoda

(B) Rhabditida

Model	Log-Likelihood Score	Model	Log-Likelihood Score
JC	22626.94349	JC	14988.30034
JC+Γ	20485.39787	JC+Γ	13664.52274
F81	22551.59800	F81	14962.62351
F81+Γ	20366.41757	F81+Γ	13565.99042
K2P	22346.17796	K2P	14843.88334
K2P+ Γ	20156.78913	K2P+ Γ	13508.78184
HKY85	22261.34758	HKY	14795.57154
НКҮ85+Γ	19983.22991	ΗΚΥ+Γ	13374.22988
TN93	22163.39719	TN93	14760.22240
TN93+Γ	19957.42496	TN93+Γ	13388.72096
GTR	22099.17630	GTR	14645.08708
GTR+Γ	19963.29509	GTR+Γ	13341.76120