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Abstract

In this thesis we describe numerical simulations performed in one- and two-dimensions

to decipher the structural and velocity properties of a theoretical granular model called

the Random Force Model. We are interested in this model because the dynamical

and structural properties of non-equilibrium steady state granular media are still hotly

debated amongst the current literature despite there being several developed granular

kinetic theories.

Our study begins by an introduction to this field of granular materials and non-

equilibrium steady states. We report on the current state of affairs into the Random

Force Model: by defining the model; describing the wealth of previous research; out-

lining the disagreements that exist into the structural and velocity properties of the

systems. Next the methodology of performing Molecular Dynamic simulations is dis-

cussed which leads us to demonstrate that the Random Force Model settles into a

steady state whereupon the average kinetic energy per particle remains fixed.

The research of the thesis is commenced by observing that the one-dimensional

Random Force Model manifest multi-scaling behaviour brought on by the clustering

of particles within the system. This has not previously been observed. For high dissi-

pation we find that the distribution of nearest neighbour distances are approximately

renormalisable, such that a larger populated system has structural properties similar

to that of a smaller one, and devise a geometrical method of breaking the system into

spatial parts that accounts for some of the structural features seen in these systems.

We next study the structural and velocity behaviour of the two dimensional Random

Force Model. In previous literature it has been observed that the structure factor

exhibits fractal characteristics. It varies, for small k, as a power-law with an exponent

Df , referred to as the fractal dimension, but currently there is no consensus into what

form this might take. We conclusively show that the decay is unchanged with respect

to both dissipation and particle density. Furthermore we suggest that the power-law

decay has an exponent different from that given in any previous study. These structural
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features are subsequently suggested to be the hallmarks of anomalous behaviour found

in the locally dilute regions of the system. Ultimately these regions influences the

long distance behaviour of individual particles by affecting the distances travelled by

particles between consecutive collision.

The velocity distribution is known to strongly deviate away from Maxwell-Boltzmann

statistics, but again there is no consensus into the shape of the asymptotic high veloc-

ity tail. In this thesis we advocate that it is likely that the velocity distributions have

asymptotic shape which is universal over a range of dissipation and particle densities.

This invariance in behaviour of the large-scale structure and velocity properties of

the two-dimensional Random Force Model leads us to develop a new self-consistent

model based around the motion of single high velocity particles. The background mass

of low velocity particles are considered to be arrange as a fractal whereby the high

velocity particles move independently in ballistic trajectories between collisions. We

use this description to construct the overall velocity distribution which we expect to

correctly describe high velocity particles in the Random Force Model. We demonstrate

that the new model numerically describes the high velocity tail of the velocity distri-

bution and calculate the asymptotic shape to be approximately exponential. This new

theory incorporates the fractal nature of the structure of the system as well as the

dynamics of particles between collision.

Finally we propose a method of structure formation for these systems. We adopt a

previously suggested idea in which these systems are the result of grains self-organising

into a state of criticality and put forward another geometrical process that builds self-

similarity into the system by consecutively fracturing the system into smaller parts.

The resultant system has structural properties similar to the two-dimensional Random

Force Model.
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Reference of Notation

Within this thesis we often replace quantities with symbolic representation. It is impor-

tant to use a set of notation which is both clearly distinguishable (to prevent confusion

or misinterpretation) and logical. As far as possible we use commonly accepted nota-

tion (such as t for time, G for gravitational field strength) or alternative symbol when

a single notation is multiply defined (by different fields of physics). Below provides

tables of reference defining all common symbols used within the thesis:

Quantity Symbol

Particle Properties

ith Particle’s Position ri

ith Particle’s Velocity vi

A component of Particle Velocity v

Particle Mass M

Particle Radius r

Particle Diameter d

Free Path l

Mean free path l0

Collision Properties

A Force F

Normal Vector n̂

Tangential Vector t̂

Normal Coefficient of Restitution ε, εn

Tangential Coefficient of Restitution εt

Sliding Friction coefficient µ

Spring Constant ks

Dissipation Coefficients γn, γt
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Quantity Symbol

System Properties

Time t

Time-step ∆t

General Distance x

System Size L

Reduced Distance L′, x′

Distance Between Particles R

Phase Space k

Number of Particles N

Packing Fraction φ

Granular Temperature T

The Random Force η

Gaussian Noise Strength D

Probability Distributions

General Probability Distribution P (..), Q(..), R(..)

Velocity Distribution P (v)

Distribution of Free Path Pl(l)

1st Nearest Neighbour Distribution G1(R;N)

hth Nearest Neighbour Distribution Gh(R;N)

Spatial Correlation Function g(R)

Number of Particles around a Point C(R), n(R)

Structure Factor S(k)

Fractal Dimension Df

mth moment of x 〈xm〉
Number Dependence Exponents ξm, ζm

Crossover Velocity-scale vc

Other Velocity-scales v0, vA, vr

nth Level Distribution of Partition Lengths Pn(xn)

General Constants

An Integer i, j, g, h

Constants A,B,C,E,H

Exponents α, β, γ

A Random Number a, a i, a i,j
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Chapter 1

Introduction to Granular

Systems

Granular media is often underestimated because of its superficial similarity to classical

media of solid, liquid or gas but its attributes can be dramatic, unpredictable and

dangerous in real world environments. For example, avalanches in stable granular media

occur as a result of minute changes in conditions. One of the difficulties in studying

granular media is that despite its closeness to classical media we cannot describe it by

standard theories.

In this chapter we introduce dry granular dynamics and discuss the pitfalls and

successes of current attempts to describe its kinetic behaviour. This culminates in

the exposition of the Random Force Model and we discuss critically the associated

published literature. At the end of the chapter we outline the work contained in the

thesis.

1.1 What are Granular Materials?

Granular materials are found in many environments, from industrial processes such

as hoppers, grain silos and mixing vats; to domestic washing powders and salt pots.

Although individually the grains have solid properties, the collection of grains can

display properties of solid (stress chains, arching), fluid (flow, convection) or both

(piling). The vast variation in physical behaviour can lead to unexpected problems

when handling granular media: for example the flow of grains through a narrow pipe

can become blocked when a group of grains form a bridge across the cross-section of

the pipe strong enough to support the weight of grains above. To avoid undesirable

1
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results when using granular materials it is important to understand how collections of

granules behave.

Granular materials have long been of interest to scientists: for example, early clock

makers exploited sands ability to flow at a constant rate, regardless of the bulk weight

above, to manufacture sand timers that accurately measured the passage of time. The

nature of granular materials prevented description by simple general theories of solid,

liquid and gas. Instead properties of granular materials can change depending on the

quantity of grains and scale of the system. Until the advent of high performance

computing granular materials were difficult to model at sufficient sized systems. In

recent times the advances in computing have allowed detailed simulation studies to be

performed and several puzzling behaviours have been described which includes segre-

gation (Kudrolli 2004), pattern formation (Aranson and Tsimring 2006), ‘Brazil nut’

effect (Williams 1976) and clustering (Jaeger, Nagel, and Behringer 1996). It is now un-

derstood that the position, orientation and dissipation of individual grains play major

roles in causing these effects.

1.2 Non-Equilibrium States and Granular Cooling

Granular Systems are simple examples of non-equilibrium systems. When grains collide

they dissipate kinetic energy. They constantly require absorption of energy to keep them

in motion. The dissipation of the grain is quantified by a term called the coefficient

of restitution (ε) which determines the remaining centre of mass velocity, normal to a

collision, between a pair of grains after collision,

v′2 − v′1 = ε(v1 − v2), (1.1)

where vi, v′i are the normal velocity components before and afterwards of the ith particle.

Haff’s Law

The granular temperature of the system is defined to be the average kinetic energy of

a grain. When a collection of grains is left ‘unheated’, with no kinetic energy injected

into the system, it will cool as the granular temperature reduces each time a collision

occurs. If a granular gas (which we define to be energetic grains under no gravity

or other long-ranged force) is left unheated it will cool. Haff’s law predicts how the

granular temperature of granular gas decays with time. A cooling granular gas of

energetic grains under no gravity or other long-ranged force, is expected to have a
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granular temperature, T , that obeys Haff’s law as time progresses (Brilliantov and

Pöschel 2004):

Tt = T0

[
1 +

4√
π

(1 − ε)
φT

1/2
0

s∗(φ)d
t

]−2

, (1.2)

where φ is the packing fraction (a measure of the density of the gas of grains) and

s∗(φ) = (1 − φ)2/(1 − 7φ/16). Here t is the time and T0 is the starting granular

temperature at t = 0.

When the grains are weakly dissipative and each collision removes only a small

fraction of the grain’s energy, Haff’s law provides a good prediction for the cooling. In

contrast, when the gains are highly dissipative, each collision removes large fractions

of the grain’s energy and the grains cluster together which consequently means that

Haff’s law breaks down.

In the case of a one-dimensional system, its pathological nature ultimately leads

to chains of particles forming and the systems collapses to a singularity by an effect

called Inelastic Collapse, as noted in the papers of McNamara and Young (1992) and

McNamara and Young (1994). Inelastic collapse does not occur in higher dimension

systems and is otherwise prevented, through the use of a slight randomisation of velocity

just after collision, by treating the particle’s surface as rough.

Haff’s law is an example of applying hydrodynamical theory to granular media. The

failure of Haff’s law at moderate to high dissipations demonstrates that mean theory

and the principle of treating the distribution of grains as homogeneous is wrong and

instead the spatial structure of the system must be considered.

1.3 Steady State and Shaken Beds

Granular cooling can be prevented by the injection of kinetic energy into the system.

When a granular systems settles into a state with a steady granular temperature it

is said to be in a steady state. Here the rate of energy dissipation through collision

equals the rate of energy injected. Many types of granular systems form steady states,

these include: grains contained within a vertically vibrated box (Warr, Huntley, and

Jacques 1995; Olafsen and Urbach 1998; Losert, Cooper, Delour, Kudrolli, and Gollub

1999; Rouyer and Menon 2000; Blair and Kudrolli 2001; Baxter and Olafsen 2003;

Blair and Kudrolli 2003; Huan, Yang, Candela, Mair, and Walsworth 2004); rotating

drums of grains where a shear force is applied to gains at the boundaries (Schöllmann

1999; Lätzel, Luding, Herrmann, Howell, and Behringer 2003); electro-statically driven
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Fig. 1.1: The statistical behaviour of a simulated granular bed of shaken vertically by sinusoidal

vibration.

(a) The distribution of horizontal velocity mea-

sured at the highly fluidised top of the bed (solid

line), the densely packed bottom (dotted line) and

the intermediate region (dashed line).
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(b) The bed density, on log-linear scale, as a func-

tion of height. The circles show the approximate

positions of the three regions in the bed sampled.

systems (Kohlstedt, Snezhko, Sapozhnikov, Aranson, Olafsen, and Ben-Naim 2005) and

inclined planes of grains (Moka and Nott 2005).

In all of the above granular systems, the direction of travel for a particle perpen-

dicular to the driving mechanism is unbiased. However the statistical behaviour of the

grains cannot be described by equilibrium theories. Particularly, the velocity distribu-

tions of grains are not described by the Maxwell-Boltzmann distribution of velocities

(Herrmann, Luding, and Cafiero 2001; Barrat, Trizac, and Ernst 2005), except in dilute,

highly energetic and low dissipative granular gases.

One of the clearest demonstrations of the above point is the behaviour of granular

systems that are vertically vibrated. A granular bed, many grains in depth and with

low dissipation, is vertically excited under gravity through sinusoidal shaking of the

base of the container. The grains in the system cycle through: expansion, as the

grains are launched into the air; reorder; and collapse, as the grains fall under gravity

back into the container. Figure 1.1 shows an example of the statistical properties of

simulations of a shaken bed where 3000 spherical particles, with diameter 3mm and

density of 2500kgm−3, are contained in a box, of horizontal dimensions 0.25m×4.5mm

and height 0.36m, such that the average depth of the bed is about 36 grains. The

base of the box vibrates sinusoidally at a frequency 30Hz such that the is a maximum

acceleration of three times the gravitational field strength.

The horizontal velocity of the grain is strongly dependent on the height within the

bed where the grain is found (Kawarada and Hayakawa 2004). The vertical velocity of
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grains is strongly dependent on the mechanism of shaking. At the top of the bed the

density quickly decays with increasing height as the particles become more energetic

and gaseous-like. No distinct boundary can be seen between the top of the bed and

the air. The distribution of horizontal velocities of grains approximates Gaussian as

expected for a equilibrium system.

The bulk of the bed behave (on average over a cycle) liquid–like with constant

density profile independent of height. If walls are present convection cells can form

where grains circulate around in a vertical loop. The distribution of horizontal velocities

of grains are anomalous and distinctly non-Gaussian.

1.4 Granular Hydrodynamic Equations

One of the main reasons why the equilibrium theories, such as Maxwell-Boltzmann

statistics, fail is that these theories do not account for the dissipation and injection

of kinetic energy that occurs in granular systems. One method to characterise the

perturbations of the velocity distribution away from Gaussian involves measuring the

Sonine polynomial expansion of the velocity distribution (Brilliantov and Pöschel 2004)

in which the distribution is treated as a product of a Gaussian multiplied by a polyno-

mial. A drawback of this approach is that, as we move away from the central peak of

the distribution, more polynomial terms have to be included to remain accurate and

hence it becomes difficult to predict asymptotic high velocity behaviour. Alternatively

physicists would like to modify existing theories to incorporate collisional dissipation

and energy injection. These modified theories would then be solved to obtain new

solutions. The difficulty arises in how to include these additional energy terms.

Kinetic theories are mostly derived from the Boltzmann equation of motion. The

Boltzmann equation assumes that the state of a particle is separable from the system’s

other particles. In which case molecular chaos applies, such that there exists no cor-

relation between grain velocities. For a steady state of fluidised inelastic hard spheres

the Boltzmann equation is written as:

v · ∂f

∂r
+

F

M
· ∂f

∂v
= C(f) − E(f), (1.3)

where f is the distribution function that describes a grain in terms of position r,

velocity v and time t. The other terms comprise the forces acting on the particles

between collision F; the mass of a grain M ; the rate of change of f due to collisions

C(f); and the rate of change of f due to energy injection E(f).
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Frequently an assumption to the Boltzmann equation is that the system is spatially

homogeneous. Two criticisms can be made of these assumptions: first, many granular

systems are spatially homogeneous only on time average and not at any moment of

time; second, the dissipation of energy during collision in granular media leads to

notable correlation in particle velocity even at reasonably low dissipation. Despite these

drawbacks several granular kinetic theories have been developed the most notable of

which are now briefly outlined.

1.4.1 Some Specific Granular Kinetic Theories

One of the easiest methods to inject energy into a system is to uniformly thermalise

particles with a random force, to be described in more detail in section 1.5. The

Boltzmann equation can then be solved to obtain the distribution of velocity. In practice

it is very difficult to describe the complete velocity distribution and instead researchers

have opted to calculate the high velocity tail of the distributions. This has resulted in

a variety of solutions for the asymptotic behaviour of the velocity distribution P (v),

where v is a component of the velocity v.

The most commonly quoted approach was that taken in the paper of van Noije and

Ernst (1998). The system was assumed to be thermally heated by uncorrelated Gaus-

sian white noise. The Boltzmann equation was approximated as the Enskog-Boltzmann

equation for a uniform heated system. The high velocity tail of the distribution of ve-

locity was calculated as a stretched-exponential of the form P (v) = A exp(−B|v|3/2).

Later it was suggested by Barrat, Biben, Rácz, Trizac, and van Wijland (2002) that the

velocity distribution is more complicated with P (v) crossing over from A exp(−B|v|3/2)

to A′ exp(−B′|v|3) such that for systems with near-elastic collisions the cubic behaviour

was dominant over observable statistics.

An alternative approach is to use the Maxwell Model as an approximation for the

Boltzmann equation as was done by Ben-Naim and Krapivsky (2000). In this case the

collision rate is independent of the particle’s velocity. The collision integral, C(f), is

derived by just considering a collision between a pair of grains such that C(f) contains

both a single gain and a single loss term that deal with a grain achieving a speed v

after collision and a grain starting with a speed v respectively. The Maxwell Model is

solved by ignoring the gain term, which provides only minor corrections, and the high

velocity tail of the velocity distribution is calculated to be approximately exponential

of the form P (v) = A exp(−Bv).
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A third approach to solving the Boltzmann equation was published in the paper

of Ben-Naim, Machta, and Machta (2005). The Boltzmann equation is linearised by

studying only the fastest particles. The collision rate is chosen to be a power of the

relative difference in velocity between colliding grains. As the fastest grains are very

rare, they effectively see all other inbound grains as stationary and the collisions of the

system leads to a cascade (of one collision causing two further collisions which in turn

leads to four further collisions and so on) such that the energy contained per grain,

in the form of the velocities, reduces in value. The theory assumes the condition that

the energetic grains are uncorrelated to the slow grains and so the Boltzmann equation

can be linearised by taking the second grain’s velocity to be zero. Solving the equation

produces a power-law approximation for the high velocity tail of the distribution of

velocities.

In all these above theories the system is treated as homogeneous. One theory that

does include spatial variation was proposed by Puglisi, Loreto, Marconi, and Vulpiani

(1999). A system is broken up into a number of boxes with fixed width containing a

variable number of particles. Particles can move between boxes but the overall number

remains the same. The kinetic energy of the box is dependent on the number of particles

held within and the distribution of velocity for each box is assumed to be Gaussian with

standard deviation governed by the box’s kinetic energy. The total velocity distribution

of the system is thus equal to the sum of all boxes distribution of velocity and thereby

incorporates the structure of the system.

1.4.2 Applying Hydrodynamic Theories

In most granular systems the energy injection is both time and position dependent. For

example in shaken beds kinetic energy is only given to those grains that are both in

contact with the base and at the point in the cycle when the base is moving upwards.

The remainder of grains exchange energy through subsequent collision. For this rea-

son it is difficult to represent these systems by granular kinetic theories. Instead the

granular kinetic theories are tested against simpler systems where the driving energy

injection can be considered to act at all times over all grains. One such theoretical

granular system was proposed in Williams and MacKintosh (1996) and is known as the

Random Force Model.
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1.5 The Random Force Model

The Random force model is defined as a set of confined identical grains, from now on

referred to as particles, where kinetic energy is injected into the system by individually

applying a random force, statistically distributed as a Gaussian, to each particle. The

random force represents the overall effect of particles picking up successive packets of

energy, identically distributed, over an infinitesimal period of time such that the Central

Limit Theory applies.

These models are of particular relevance currently as several experiments have been

performed that form near approximations to the two-dimensional case. In the papers

of Reis, Ingale, and Shattuck (2006), Reis, Ingale, and Shattuck (2007a) and Reis,

Ingale, and Shattuck (2007b) a layer of identical spheres are trapped between two

glass plates, the lower of which is roughened. The plates are separated by just over

a particle diameter to create a quasi-two dimensional system. During experiment the

system is vertically vibrated and the roughened base acts as a source of random force

for the particles. Of particular interest, these researchers have measured the velocity

statistics of particles and compared the results against the granular kinetic theory of

van Noije and Ernst (1998). While most recently these researchers have claimed that

these experimental granular systems broadly mimic equilibrium systems as a result of

all spatial gradients being removed (Shattuck, Ingale, and Reis 2009).

Considering the simplicity of the Random Force Model and the level of study avail-

able in the literature it is surprising to find that unresolved conflicts remain about the

specific nature of these systems. For example, disagreement exists in both velocity

and structural properties of the two-dimensional case and arise from whether or not a

hydrodynamical description is believed to be applicable in these systems.

In these systems the slight correlation of particle velocity with its neighbour after

collision leads to clustering. The random force prevents the system from undergoing

Inelastic collapse by decorrelating the particles over time. This tendency of particles

to cluster puts into question any theories that suggest the system is homogeneous.

However much of the previous analysis of the Random Force Model assumes just that.

For example, Williams and MacKintosh (1996) states that the granular temperature

can be derived from mean field approach.

We now review the previous literature on the Random Force Model. We emphasise

three topics that are of particular interest us: can the granular temperature be described

by mean field theory, what are the structural features of these systems and what is the
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behaviour of the velocity statistics? In all the described papers energy is dissipated

through a reduction of velocity normal to the collision whilst tangentially the collision

is elastic. It is not clear whether ignoring tangential dissipation significantly affects the

dynamics or structure of these systems and is a question that will also be discussed

later.

1.5.1 Mean Field Temperature of One-dimensional Systems

One of the most influential studies into the properties of the one-dimensional Random

Force Model was performed by Williams and MacKintosh (1996). A system of N point-

like particles are contained within a interval of length L. The random force provides the

energy for the particles to move along the interval and energy is dissipated at collision,

such that there is a coefficient of restitution ε with value between zero and one. The

kinetic energy per particle, K, of the system in the steady state was calculated using

mean field theory and expressed in the following form:

K
3
2 (1 − ε2)N = CLΩ, (1.4)

where C is a numerical constant and the rate of energy input is given by ΩN . A key

assumption used for the equation is that the average distance between collision is equal

to the average density of particles L/N .

However, mean field theory ignores the spatial clustering that occurs in the system

for moderate/high dissipations. A clear indication that clustering is occurring in the

Random Force Model is given by Williams and MacKintosh with the two-particle

correlation function, defined as the density of particles a distance x away from a test

particle. For low coefficient of restitution, the two-particle correlation function has

small x behaviour that is a power-law decay of exponent −1/2. In an uncorrelated

system the correlation function would be a constant.

The explanation of the correlation was provided in the paper of Swift, Boamfá,

Cornell, and Maritan (1998) which explains, using the analogy to a single particle

trapped between dissipative walls, that clustered particles act as boundary walls to

free particles. The complete system is dominated by the breaking up of clusters of

particles where the dissipation of the cluster is near-inelastic.
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1.5.2 Structural Properties of a Two-dimensional System

The structure of a bed of particles can be quantified by a probability distribution called

the structure factor, S(k), which measures the Fourier transform of the correlations in

positions between pairs of particles. A specific definition of S(k) is given later in chapter

four of the thesis. The parameter k is inversely proportional to distance such that large

scale structure is described by small scale k-space. There is a general consensus amongst

the literature that the structure factor of the two-dimensional Random Force Model

varies as a power-law for small k of the form k−Df , but disagreement exists into the

exact value of the exponent Df . The earliest studies into the structure factor of the

Random Force Model were performed in the papers of Peng and Ohta (1998a) and

Peng and Ohta (1998b). The small scale power-law correlations of S(k) were measured

to be Ak−1.42 such that Df = 1.42. To this it was added that the observed exponent Df

does not change with coefficient of restitution but instead the scaling region reduces

in length with decreasing dissipation. The suggested explanation for the power-law

decay was that the system self-organising into critical state such that there were no

characteristic spatial- or temporal-scales in the correlations.

A year later a theoretical paper was written by van Noije, Ernst, Trizac, and Pag-

onabarraga (1999) to explain the power-law decay of S(k) using theory based on Hy-

drodynamical approach to a randomly driven inelastic hard sphere fluid. Their theory

predicted that the system would exhibit three spatial regimes: dissipative; standard;

and elastic, that determine the behaviour of spatial features at specific scales. The dis-

sipative regime was stated to be dominated by the dissipation effects and represented

features in S(k) when k . (1 − ε2)/4l0 (where l0 was the mean free path of a particle

between collision). Whereas the elastic regime was dominated by heat conduction and

described S(k) for k &
√

1 − ε2/2l0. The standard regime described the remainder of

S(k). Importantly the authors discussed whether or not these regimes could be seen in

a system of a given size and concluded that the power-law decay of S(k) was only appre-

ciable when the system has lengths of L > 4l0/(1 − ε2). Within the dissipative regime

the structure factor was derived to obey S(k) ∝ k−2. This relation was compared with

simulation data but accurate evaluation was not possible due to the data quality. It

was finally acknowledged that molecular chaos was violated for high inelasticity due to

short range velocity-velocity correlations which were not predicted by their theory.

Another set of values for Df can be derived from a third set of papers, those of

Puglisi, Loreto, Marconi, Petri, and Vulpiani (1998), Puglisi, Loreto, Marconi, and
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Vulpiani (1999) and Puglisi, Baldassarri, and Loreto (2002). In these papers a more

complicated model than the Random Force Model was used in which the particles were

acted on by both the random force and a drag term characterised by a relaxation time

τ . When τ was large compared to mean collision time the Random Force Model was

regained. Whereupon the structural measure of the integral of the pair correlation

function, C(R), was calculated to be a power-law with exponent d2. We calculate that

Df = d2 + 1 and therefore find that Puglisi et al. determine that 1.4 < Df < 1.9 such

that Df increases as the dissipation of the system reduces. As τ is made increasingly

large, such that the Puglisi et al. model approaches the Random Force Model, the

rise in value of Df with coefficient of restitution becomes steeper suggesting that it

might plateau at low values of coefficient of restitution but unfortunately these were

not measured.

The selection of papers described above highlight the variation of views held on

the form of the structural properties of the two-dimensional Random Force Model.

Although all papers agree that there are power-law correlations in the structure factor

for small k-space, they disagree on whether the power-law’s exponent is independent

of the coefficient of restitution and the exact value for the exponent of the power-law

decay which lies somewhere between 1.4 ≤ Df ≤ 2.0.

1.5.3 Velocity Properties of Multi-dimensional Systems

In many granular steady states there lacks a consensus among research groups about

the nature of the distribution of velocity. Even in the relatively simple Random Force

Model the exact determination of the high velocity tail of the distribution has not

been achieved. In early work on the two-dimensional Random Force Model the velocity

distribution was said to be Gaussian for all cases (Peng and Ohta 1998a; Peng and Ohta

1998b). However, on inspection of the data presented, it could be argued that these

distributions show some evidence of deviation away from Gaussian for large velocity.

This view was supported by the work done by Puglisi, Loreto, Marconi, and Vulpiani

(1999) where the system is said to exhibit strong spatial clustering and the velocity

distribution deviates away from Gaussian.

These velocity distributions were next thought of as functions with two regions

of behaviour such that the distribution crossed over from Gaussian for low velocity

to anomalous for high velocity. One of the most popular granular kinetic theories

to be tested against these systems was that derived by van Noije and Ernst (1998)
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whereby the high velocity tails of the velocity distribution is deduced to be stretched-

exponential of the form P (v) = A exp
(
−B|v|3/2

)
. However the credibility of fitting this

distribution to data was more recently put into doubt by the papers of Barrat, Trizac,

and Ernst (2005) and Barrat and Trizac (2003) who stated that the asymptotic limit of

the theory is of an order of magnitude for P (v) well beyond that which can be measured

in experiment or simulation. Nonetheless this theory was used by Moon, Shattuck, and

Swift (2001) in a study of the three dimensional Random Force Model. They argue

that the velocity distributions crossed over from A′ exp(−B′v2), for low velocities, to

A exp
(
−B|v|3/2

)
, for large velocities. On examination of the data presented only the

last points of the velocity distribution, representing highest velocities, can be fitted

with the trend lines of A exp
(
−B|v|3/2

)
. By our judgement it can equally be argued

that the asymptotic behaviour of the velocity distribution is described by a stretched-

exponential with some other valued exponent.

The Moon et al. paper made two more observations of relevance to our study.

First, they proposed that these distribution might have universal asymptotic behaviour

stating that ‘the crossover behaviour may occur at higher velocities as’ the coefficient

of restitution ‘approaches to 1.0’, and was based on the evidence that the crossover

point between Gaussian and anomalous statistics shifts as coefficient of restitution

varies. Second, they implied that mean field approximation, used by many kinetic

theories, is not valid in these systems, even at near-elastic and dilute cases, and hence

deviations in velocity statistics away from the predicted behaviour are caused by the

spatial correlation.

In contrast more recent studies of the Random Force Model contest the use of

A exp(−B|v|3/2). For example, the papers of van Zon and MacKintosh (2004) and

van Zon and MacKintosh (2005) state that the velocity distribution do not cross over

to A exp(−B|v|3/2) but rather may have a range of apparent exponents. Curiously

it is also claimed that spatial correlations play a minor or no role in the form of the

velocity distribution, contrary to that suggested by Puglisi, Loreto, Marconi, Petri, and

Vulpiani (1998).

These papers highlight the current state of play amongst the literature on the two-

dimensional Random Force Model’s distribution of velocity. Although it is known that

these distributions deviate away from being Gaussian there is no consensus into the

shape of the asymptotic velocity distribution, whether it can be described by a universal

curve or even if structure plays an important role in determining the shapes.
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1.6 Thesis outline

The purpose of this thesis is to show how structural features give rise to velocity prop-

erties. We show evidence that it is the structure of the Random Force Model that in-

fluence the motion of the high velocity particles. Consequently this thesis re-examines

many previous topics on the Random Force Model but provides a new interpretation

into what is occurring. Firstly, we ask: can the current hydrodynamical kinetic theo-

ries describe these systems? Secondly, we resolve some of the confusion concerning the

structure and velocity statistics of these systems, that is contained within current lit-

erature. Thirdly, we describe an alternative theory, for the velocity statistics, to those

already proposed which incorporates the structure of the system. We use this new

theory to model the correct behaviour of high velocity particles. Lastly, we propose a

mechanism for structure formation in these systems, based around an idea previously

mentioned but seemingly unexplored, whereby the particles self-organise into a critical

state. We now progress, in the remaining text, to briefly outline the layout of the

material contained within the main part of the thesis.

In Chapter Two we describe how to perform computer simulations of granular

media. We discuss the simulation of the one- and two-dimensional Random Force Model

and show that these systems form steady states where particles temporary arrange into

clusters, before breaking, at moderate to high dissipations.

In Chapter Three we study the one-dimensional Random Force Model and ask the

question: is hydrodynamic mean theory sufficient to describe the moments of velocity

and structure? The moments of velocity are found to show weak multi-scaling behaviour

that deviates away from that predicted by mean field theory. As a result these systems

do not have a well-defined thermodynamic limit in which the statistics of the system

are dependent only on the average linear density of particles in the system and not on

its size. We next study the structure of the system and observe strong multi-scaling

behaviour. It is proposed that, for systems of high dissipation, the structure is caused

by the system self-organising into a state of criticality. We finally describe a geometrical

method of fracturing the system into small regions that produces self-similar structure

and conclude that the structure produced by this method incorporates the correct kind

of structural features seen in the Random Force Model.
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In Chapter Four we investigate the structural properties of the two-dimensional

Random Force Model. Currently in the literature there remains two outstanding ques-

tions about these models: what is the large-scale structure of the system? how does the

velocity distributions behave at asymptotically large velocity? Previously it has been

shown that these models have structure factor’s that exhibit power-law correlations,

but the exact form is in dispute. This suggests that the structure factor exhibits a

fractal behaviour with a fractal dimension, Df , given by the exponent of the power-law

decay. We study the structure factor for a wide range of dissipation and densities, be-

yond that of any previous work, and accurately determine the shape of the power-law

decay. We calculate that Df has a value different to that described in previous works.

By introducing a coefficient of tangential restitution we can increase the dissipation of

the system beyond that obtained through normal dissipation alone. It is found that

the these power-law decays remain unchanged with any variation of density or dissipa-

tion. We now ask: how does this fractal behaviour affect the dynamics of individual

particles? The behaviour of S(k) is related back to the real-space arrangement of par-

ticles and we assert that although the bulk behaviour of the system is nominal it is the

fluctuations away in the regions that are locally dilute that particles fractally arrange.

We measure the distribution of distance travelled between collision and find the large

distance tail is influenced by the fractal structure present in the system.

In Chapter Five we study the velocity distributions of these systems and calculate

the shape of the high velocity tail. Importantly we show that the asymptotic behaviour

of the velocity distribution is of one shape given by a stretched-exponential. Again

this implies that the asymptotic limit of the distribution is unchanged with density of

particles and dissipation. Significantly we find that none of the previously described

granular kinetic theories can describe these velocity distributions and we conclude that

this is because the theories do not include any of the structural clustering present in

the system. We next create a new self-consistent theory for the Random Force Model

based around the behaviour of individual high velocity particles. The motion of each

particle is thought of as an accelerated walk between two collisions. This forms the

basis for a new model which we call the Single Particle Model. We derive an expression

for the velocity distribution by using the behaviour of a particle during a walk and

the probability of a particle travelling a distance l between collision. The structure

of the Random Force Model is incorporated into the calculation by imagining that

fast particles move through a fractal environment consisting of the remaining particles.
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The resultant shape of the asymptotic tail of the velocity distribution is a stretched-

exponential whereby the exponent is dependent only on the fractal dimension of the

Random Force Model’s structure and is consistent with that found in chapter four.

In Chapter Six we present a geometrical method for generating the type of large-

scale structural features seen in the two-dimensional Random Force Model. We deter-

mine a fractal dimension comparable to that measured in chapter four. The significance

of this work is that it allows us to perform the Single Particle Model without using any

measured data from simulated Random Force Models. Therefore for two-dimensional

systems we can predict features of both the structural behaviour and the high velocity

tail of the velocity distribution before performing simulation.

In Chapter Seven we provide some concluding remarks on the work provided by

this thesis. Each chapter is summarised and then general statements are made about

the Random Force Model as a whole. We finally discuss the relevance of this thesis to

the wider granular field and suggest some directions for further research based on the

material described here.



Chapter 2

Modelling Granular Systems

In chapter two we explain the computational methods used for modelling dry granular

media. We describe in detail the computational technique of molecular dynamics and

conclude the chapter by performing molecular dynamics simulation of the one- and two-

dimensional Random Force Model. These simulations represent systems that stabilize

into a steady state where the time average kinetic energy of particles remains constant.

2.1 Molecular Dynamics Technique

To run simulations successfully requires programmers to go through three stages:

selecting a method; implementation of the method; testing the method.

2.1.1 Selecting a Method

In computer simulations, granular systems are treated as a collection of particles in

a one or more dimensional space and time that continually interact with long-ranged

external forces, such as gravity, whilst instantaneously responding to any contacting

boundary conditions or colliding particles. The grains are often assumed to be a non-

rotating single sphere with spatial extent or a composite collection of spheres; such a

configuration is a simplification of true geometry and is made to optimize the method

of collision detection between grains.

During a collision between a pair of granular particles two important axioms hold:

first, the momentum of the collision is conserved:

v′
1 + v′

2 = v1 + v2, (2.1)

where v1, v2 are the pairs incoming velocity before collision and v′
1, v′

2 are the pairs

outgoing velocity after collision.

16



Chapter 2 Modelling Granular Systems 17

second, the energy of the collision is dissipated (through deformation, heating) such

that:

(v′
2 − v′

1) · n̂ = ε(v1 − v2) · n̂, (2.2)

where n̂ is the unit normal vector to the collision. The decay constant ε is called the

coefficient of restitution and takes values from zero to one. If the coefficient of

restitution is one then the two particles conserve energy during collision and the

collision is considered to be elastic. If the coefficient of restitution is zero then the two

particles after collision move as one and the collision is considered to be totally

inelastic.

In simulation it is not possible to model the true deformation that occurs as particles

collide and so simper models must be used where the collisions are modelled such that

the above two axioms are satisfied. Two common methods used in simulations are:

Event Driven (ED) (Lubachevsky 1991) and Molecular Dynamics (MD) (Herrmann

and Luding 1998).

In Event Driven simulation each collision is resolved at the moment of time it occurs.

The system of particles evolve in time using long-ranged forces until a pair of particles

come into surface contact. The collision is resolved by satisfying the two axioms and

the pair of particles are assumed to have finished colliding. The system then continues

to evolve in time until another collision is reached. Treating collisions as instantaneous

can be problematic as if a collision results in prolonged contact or multiple contacts

then the ED code will not progress the system beyond the point of contact and the

system experiences granular collapse where several particles cluster together.

In Molecular Dynamics particles evolve numerically using discrete time steps and

force equations. The collisions between soft particles [that dissipate energy through

temporary deforming during a collision] are treated as occurring over a finite time

rather than being instantaneous where a pair of colliding particles exert a repulsive

contact force on the other during the duration of contact. Using a discrete time step

allows the simulated particles to become partially overlapped and the extent of the

overlap represents the severity of the particle’s deformation (a situation which is not

possible with ED). MD induces larger errors than ED as we are approximating the

forces over the time step.

Which of the two methods is appropriate depends on the granular system being

modelled. ED is effective for dilute granular gases but breaks down when dealing with

large numbers of collisions such as occurs in dense granular beds. Hence it is sensible
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to use MD code in this research as many of the systems that are investigated involve

dense regions of grains.

Having chosen the appropriate simulation technique it is now time to construct

the algorithm that will model the time evolution of the system. All programs are

constructed in three stages: The bulk of the program consists of general methods that

deal with the physics of the collection of particles and non-system specific external

forces such as gravity; the program is tailored by applying system specific boundary

conditions such as vibrating walls; the program is initialised with physical properties

given to the collection of grains.

2.1.2 General Methods for running the Simulation

Molecular Dynamic modelling evolves the simulated spherical particles by a time step

∆t, using a numerical method such as the Verlet algorithm (Verlet 1967);

r(t + ∆t) = 2r(t) − r(t − ∆t) + a(t)∆t2, (2.3)

where r(t) is the particle’s position and a(t) is the particle’s acceleration at time t. As

the system is not relativistic, Newton’s second law is sufficient to relate the acceleration

of a particle to the force exerted on it, F, such that a(t) = F/M with M is the particle

mass. Allowing particle rotation requires further equations and shall be ignored.

The short ranged repulsive contact force of particles in collision can be represented

as the sum of forces that are normal and tangential to the surface of contact. Any forces

tangential to the surface of contact can be considered to result from the rubbing together

of the two particles. In the simplest model we can assume the spherical particles are

smooth and so we can ignore the tangential forces completely. The normal component

of the repulsive force can be considered to have an elastic and a dissipative component.

The Normal Elastic Force

In this thesis the normal elastic force of collision between particles is taken to obey

Hook’s law and the spring constant, ks, is chosen such that particles packed and at rest,

under gravity, satisfy Mg ≃ ksδr, where δr is the maximum overlap between particles

in contact and describes the softness/extent of deformity of the particle and g is the

gravitational field strength. The linear spring is used in preference to more realistic

collision force approximations, such as Hertzian contacts, because the calculations are

computationally less intensive and measured properties of the system are insensitive
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Fig. 2.1: Model of layout of contact between two particles that leads to a normal dissipative force,

Fn = Felast + Fdis. For clarity the overlap of the particles is exaggerated.

to internal changes of the collision as long as the resultant outcome of the collision

remains the same.

Such an arrangement means that for a pair of colliding particles the elastic force

acting on particle 1, as shown in figure 2.1, can be described as;

Felast =






−ks(d − |r1 − r2|)n̂1 |r1 − r2| < d,

0 otherwise.

(2.4)

where ri is the position of the centre of the ith particle and n̂1 is the unit vector normal

to the collision orientated out of the surface of particle 1. For spherical particles n̂1 is

calculated as n̂1 = − r1−r2
|r1−r2| . Collisional forces only occur whilst particles are in contact

and thus the elastic force is zero once the separation between particles exceeds the

diameter of a particle, d (assuming all particles have identical radii).

The Normal Dissipative Force

Real granular systems contain particles that dissipate energy as particles collide. The

loss of energy can be modelled through a dissipative force which acts against the relative

motion in a collision (Herrmann and Luding 1998), ensuring that whilst kinetic energy

is lost the total momentum is preserved.

During collision the extent of energy lost is determined by a fixed coefficient of
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restitution ε, as defined in equation 2.2. The dissipative force, Fdis, is the dash-pot

force normal to the collision (see figure 2.1);

Fdis =






−γn [(v 1 − v 2) · n̂1 ] n̂1 |r1 − r2| < d,

0 otherwise.

(2.5)

Here we consider that there are two particles colliding with velocities v1 and v2. The

dissipative force described is acting on particle 1 and n̂1 is the unit vector normal to

the collision out of the surface of particle 1. The dissipation coefficient γn can be shown

to be related to ε by:

γ 2
n =

(
ln(ε)

π

)2 4m12ks

1 +
(

ln(ε)
π

)2 , (2.6)

where m12 = m1m2/(m1 + m2) and m1,m2 are the masses of the two particles. The

second particle experiences an equal but oppositely directed dissipative force to that of

the first (Newton’s third law).

The Tangential Dissipative Force

In more complicated models we allow the particle’s surface to have microscopic rough-

ness, which does not affect the geometry of the particle but introduces tangential dis-

sipative forces.

Two possible methods for producing a tangential dissipative force during collision

are outlined below and are either sliding friction or tangential dash-pot force.

Friction between the particles affects the flow of the system by resisting the motion

of the particles. To simulate such systems a frictional constraint is added, but particle

rotation ignored. As materials collide, the roughness of their surfaces leads to a tan-

gential frictional force against the relative motion. Friction comes in two forms: static

and sliding. For the purposes of simplicity we shall assume that all friction is sliding.

The error produced by ignoring static friction should be small as most particles are

moving faster than the crossover limit. Thus we can describe the frictional force as

Ffric = −µ|Felast + Fdis|, where µ is the frictional coefficient and the total collision

force on particle 1, Fc, is given as;

Fc = (Felast + Fdis) n̂1 +
(v1 − v2) · t̂1∣∣∣(v1 − v2) · t̂1

∣∣∣
Ffric t̂1, (2.7)

where n̂1 and t̂1 are the normal and tangential unit vectors for the surface of contact

of particle 1 (figure 2.2). The tangential unit vector is defined from the normal unit
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Fig. 2.2: Model of layout of collision between particles that results in both a normal dissipative force,

Fn, and a tangential dissipative force, Ft.

vector by use of a 90 degrees rotation matrix, such that:

t̂1 =



 0 1

−1 0



 n̂1. (2.8)

.

Tangential Coefficient of Restitution

An alternative method of tangential dissipation is to introduce a tangential dash-pot

force Fdiss,t to the collision. Fdiss,t is defined by an associated tangential dissipation

coefficient γt such that:

Fdis,t =






−γt

[
(v 1 − v 2) · t̂1

]
t̂1 |r1 − r2| < d,

0 otherwise.

(2.9)

The tangential dissipation coefficient is determined by considering a fixed tangential

coefficient of restitution εt which characterises the energy lost in collision by the corre-

lation of particle momentum tangential to collision:

(v′
1 − v′

2) · t̂ = εt(v1 − v2) · t̂, (2.10)

where v′
1,v

′
2 are post collision velocity of the pair of particles and v1,v2 the initial

velocities. The equation 2.10 is analogous to equation 2.2. The time scale of collision
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is related to the spring constant by t = π
√

m12/ks. Thus the tangential coefficient of

restitution can be replaced by:

εt = exp

( −γtπ√
km12

)
. (2.11)

By rearrangement we obtain γt as:

γt = −
√

km12

π
ln(εt). (2.12)

To avoid confusion when using this form of dissipation we denote the normal coefficient

of restitution with εn.

Choosing a Time-step

For the Verlet algorithm to remain an accurate numerical method, we must ensure

that the time-step is sufficiently small. This is maintained by choosing a ∆t that is 10

times smaller than the collision time, for example ∆t ≤ 2π
√

M
ks

(derived from Newton’s

Second law).

When too large a time-step is used, for a given spring constant, the particles move

too far each iteration resulting in some collisions being ignored and incorrect amounts

of energy being dissipated during collision.

A compromise must be reached between size of time-step and spring constant.

Choosing a larger spring constant increases the hardness of the particle and reduces

the time constant of the collision, but requires a smaller time-step and hence increases

the computational time of the computer simulation.

Method for Efficient Collision Handling

Each advance of the system by a time step requires the calculation of all collisions

between particles; when using a computer each particle’s current position can be check

against all other particles to see if there is an overlap in their positions and hence a

collision. Such a method is both inefficient and unnecessary. The collisions between

particles are a result of short range forces and so only other particles that are near

(with centres less than a diameter away from the centre of the first particle) need to be

checked. The near particles are determined by using a grid which reduces the required

number of calculations a computer must run before all occurring collisions are checked

(Allen and Tildesley 1987).

The grid is created by splitting the system into an array of identical rectangular

boxes [the boxes must have dimensions larger than the diameter of the largest grain
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Fig. 2.3: Overlaying a grid of boxes onto the system allows collisions between neighbouring particles

to be identified using an efficient computational algorithm.

(a) A visual demonstration of

particles being assigned boxes

where each particle belongs to

the box in which their centre

lies.

(b) The nine neighbouring grid boxes, shown as shaded boxes in

the left-hand diagram, required for checking collisions on particles

contained within the central box. The right-hand diagrams show

the equivalent reduced number of boxes used in an efficient code.

and are most efficient if they have dimensions less than two grain diameters]. Each

particle is assigned to the box corresponding to its position (see figure 2.3(a)). For

a two dimensional system the computer only checks for collisions between a particle

contained within each box and particles within the same box [other particles may

be contained within the same box and might be in collision with the particle] and 8

neighbouring boxes (see left-hand side of figure 2.3(b)). An efficient code will only

require the checking of four neighbouring boxes and the box the particle is contained

within (see right-hand side of figure 2.3(b)), as the contact forces on both colliding

particles are simultaneously stored.

2.1.3 Boundary Conditions

Every system simulated must be bounded to prevent dilution of the granular medium

when the particles spread out. There are two types of boundary conditions that are used

in simulations called physical, or periodic: the former are computational representations

of container walls used in real experimental systems, the latter are used to enable a

small collection of simulated grains to appear to be a subset of a much larger group.

Physical barriers deflect the particle as if they are unmovable grains and can be

set to be dissipative or elastic. They can also provide a source of energy injection for

the system by vibrating or increasing the kinetic energy of particles that are in contact

with the barrier.
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Fig. 2.4: The arrangement of particles in order to achieve (a) hexagonal packing (b) square packing

and (c) uniform spread of particles. All lengths are measured in units of particle diameter.

Periodic boundaries require careful handling as a particle moving through the

boundary translates to the other side of the container. Therefore particles near a

periodic boundary must be able to interact with particles on the opposite boundary as

they are effectively neighbouring one-another.

Consideration is required before choosing the type of barriers to bound the system.

Physical boundaries are necessary for using vibration to drive the system and to model

the effects generated by the geometry of the box such as convection and arching. Pe-

riodic boundaries increase the apparent size/number of grains of the system but can

lead to net drifts of particles and cannot be used in non-tessellating boxes.

2.1.4 Initial Conditions

For a program to be initialised, sensible values must be provided to a set of parameters:

system parameters include length scales, gravitational field strengths and vibration

constraints such as frequency and amplitude; grain parameters include size, mass, initial

velocity and coefficients for friction and dissipation.

Most importantly the grains must be placed inside the system: inappropriate po-

sitioning could lead to a cascade of momentum as a particle inside another or wall

receives an extreme collisional force and explodes into other particles.

Three suitable techniques for placing particles are outlined. Hexagonal packing

minimises the occupied volume of the bed of grains, is a stable arrangement which

allows the maximum number of particles to fit in a volume such that for a rectangular

system Nmax = 2√
3

L1L2
d2 where L1, L2 are the systems dimensions (figure 2.4(a)). Square

packing provides a simple method for starting all particles at one end of the system

(figure 2.4(b)), but is an unstable arrangement that easily collapses into the more stable

hexagonal packing or becomes disordered. A uniform spread of particles allocates each
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particle an equal volume of the system such that the sum of volumes assigned to each

particle equals that of the system (figure 2.4(c)).

The first two techniques provide bed-like situations and are best used when the

grains of a system are likely to condense out into a crystalline structure. An example

is a bed of grains under gravity. The third technique is useful for its ability to quickly

reach a steady state where the particles are evenly spread out over the whole box. In

most systems the initial arrangements of particles does not affect the final outcome.

2.1.5 Energy Dissipation during Collision

When a pair of particle collides the centre of mass velocity decreases as energy is

dissipated. The fractional energy loss of the pair, for a one-dimensional collision, is

governed by:
∆T

T
= 1 − ε2. (2.13)

Similarly for a two-dimensional collision, in which we remove the angular dependence

of the energy loss by choosing the normal coefficient of restitution and the tangential

coefficient of restitution to be equal, εn = εt, the fractional energy loss is governed by:

∆T

T
= 1 − εn

2 + εt
2

2
. (2.14)

To demonstrate that our computer code does indeed obey the above collision prop-

erties, we simulate the collision of two particles. The table below shows four possible

collisions, inside the brackets are the value of the x- and y- components of the initial

position xi and velocity vi, r is the radius of the particle.

Simulation number x1 v1 x2 v2

1 (0,0) (1,0) (1,0) (0,0)

2 (0,0) (1,1) (1,1) (0,0)

3 (0,0) (0,1) (r, 1) (0,0)

4 (0,0) (1 + r, 1) (1,1) (0,0)

Table 2.1: The vector components of the initial position and velocity of two particles that are about

to undergo a collision. For simplicity the mass of each particle is 1kg.

Simulation 1 is a one-dimensional collision. Simulation 2 to 4 provides a sample of

possible two-dimensional collisions. In all the above simulations a frame of reference is

chosen such that the second particle is initially motionless. The fractional energy loss
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Fig. 2.5: The fractional energy lost per pair collision as a function of coefficient of restitution. The

solid line is the expected energy change from theory whilst the points are simulation data.
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(a) Simulation 1 with a time-step of ∆t = 1 × 10−5 and spring constant of ks = 5000kgs−2 (cross)

or ∆t = 1 × 10−6 and ks = 500000kgs−2 (plus).

0 0.2 0.4 0.6 0.8 1
 ε

0

0.2

0.4

0.6

0.8

1

¯¯
¯¯

¯¯
¯

 ∆
 T

   
T

(b) Simulation 2 (cross), Simulation 3 (plus) and Simulation 4 (circle), where a time-step of ∆t =

1 × 10−6 and spring constant ks = 500000kgs−2 is used.
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of these collisions are shown in figures 2.5(a), 2.5(b) and the simulation data agrees

reasonably with the predicted theory of equations 2.13 and 2.14.

2.2 The One-dimensional Random Force Model

We now briefly outline the routines required to run simulations of the one-dimensional

Random Force Model.

2.2.1 Computation of a Random Force

We develop routines for performing simulation of the one-dimensional Random Force

Model by calculating a discrete approximation for the random force and then deriving

the Newtonian equation of motion of each particle.

The random force acts continuously on all particles in the system, feeding in kinetic

energy to the system through the acceleration of the particles. The force exerted on

a particle i through the interaction with the random force is denoted by ηi(t) and

statistically behaves as Gaussian white noise, with magnitude controlled by the noise

strength, D. The interaction of the random force and particles is uncorrelated in respect

to time and different particles such that the correlator can be expressed as:

〈
ηi(t)ηj(t

′)
〉

= 2Dδ(t − t′)δi,j . (2.15)

In the simulation we use a discrete approximation for the random force, increasing

the particles momentum by ηi(t)∆t each time we evolve the system by a single time-

step, ∆t. We select values for the random force during simulation by using the Box

Muller Transformation Method(Abramowitz and Stegun 1965) in which ηi is calculated

from two generated random numbers using

ηi =
√

−2 ln(a1)

√
2D

∆t
cos (2πa2), (2.16)

where a1, a2 are random numbers generated from a uniform probability distribution

such that a1, a2 lies in the range 0 to 1. In this way the average increase of kinetic

energy per second of each particle due to the random force is kept fixed at D/M

regardless of the time-step used in simulation.

Particles of a one dimensional Random Force Model have a Newtonian equation of

motion given by:

M
dvi(t)

dt
= Fi,i+1 + Fi,i−1 + ηi(t), (2.17)



Chapter 2 Modelling Granular Systems 28

where Fi,j is the interaction force between particle i and its nearest neighbour j. Col-

lapse of the system is avoided because the random force continues to be exerted onto

the particles during particle collision.

Finite sampling of the Gaussian random force has one draw back: the time average

of the sum of the sampled random force does not equal 0. As a consequence, over time

the system will develop a net drift as the centre of mass of the system diffuses due to

the small net preference in direction of the sum of the random forces at any one time.

To ensure that no net drift of particles occurs we symmetrise the random force such

that at any given time all generated measurements of the random force are mapped to:

ηi(t) →



ηi(t) −
1

N

N∑

j=1

ηj(t)



 . (2.18)

As the number of particles in the system increases the adjustment reduces towards zero

signifying that the sampled random force is approaching that of the true random force.

Alternatively, instead of symmetrising the random force, we could periodically

translate the system to the centre of mass frame (as was done by Williams and MacK-

intosh (1996)) by subtracting the centre of mass velocity from the velocity of each

particle.

2.2.2 Simulation Details

The one-dimensional system is ideal for a preliminary study of the Random Force Model

because the dynamics of the particles are much simpler than for higher dimensional

systems due to the reduced number of the degrees of freedom. In the Model particles

cannot reorder and consequently collide only with those directly neighbouring. This

means that the particles can be treated as point-like objects without exhibiting loss in

behaviour. The dissipation of the system is maximised as the centre of mass velocity

of a pair of colliding particles is parallel to the normal of collision.

In simulation, the one-dimensional system consists of a line of particles with periodic

boundaries separated by a distance L. Each particle can be imagined to be a disk,

constrained to move along the one-dimensional line, such that the particle’s width is

two times the radius, r. The N particles are initially placed uniformly along a horizontal

line with spacing L/N and given a small initial random velocity of vi(0) = 0.1×a, where

a is a value picked at random from a uniform probability distribution U(a) such that

−0.5 ≤ a ≤ 0.5 and U(a) = 1. The inclusion of a small initial velocity increases the rate

of randomisation of the system but is quickly overwhelmed by the momentum increase
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generated by subsequent injections of energy by the random force. The table below

defines the following properties for the particles:

Particle Parameters Symbol Value

Radius r 1.5 mm

Mass M 3.53 × 10−5 kg

Spring constant ks 500, 000kgs−2

Noise strength D 1 × 10−8N2s

Table 2.2: List of fixed system properties for the Random Force Model.

These values are selected to be comparable with experiments such that particles

travel at realistic velocities but other choices can be made without changing the type of

behaviour seen. In chapter three we study the one-dimensional Random Force Model

for a range of systems containing between 100 and 10000 particles and the complete

spectrum of coefficient of restitution between 0.01 and 0.999.

Figure 2.6 show some of the possible arrangements of particles that occur during

simulation of the Random Force Model in which 600 particles are contained in an

interval of L = 0.8m. Each line of particles represents a snap-shot in time and particles

contained in a small section of the system are shown. Two dissipation states are

shown. In figure 2.6(a) particles have a high coefficient of restitution (ε = 0.9) and are

distributed nearly homogeneously, small fluctuations of density occur predominantly

through chance but also through the slight correlation of velocity of particles after

collision. The velocity of the particles are close to being uncorrelated with the position

of the particles.

In figure 2.6(b) particles have a low coefficient of restitution (ε = 0.1) and particles

have a stronger tendency to cluster with other particles. These clusters occur due to the

strong correlation in velocity between neighbours after collision and hence the fastest

particles are in general those found away from clustered regions.

2.2.3 Steady States

We wish to ensure that measurements are made once the system is in a steady state,

where the rate of energy gained by driving forces equals the rate of energy loss through

dissipation. In the steady state the exact nature of the initial conditions are ‘forgotten’.

The granular temperature, T , of the system is defined to be proportional to the
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Fig. 2.6: Three snaps shot of the position of particles in a small region of the system. The system

contains 100 particles with a system size of 0.8m. The different colours give an estimate of the particle

momentum, where darker shaded particles are faster.

(a) Low dissipation, ε = 0.9

(b) High dissipation, ε = 0.1

average kinetic energy of the system:

T =
1

N

N∑

i=1

|vi(t) − 〈v〉 |2, (2.19)

where 〈v〉 is the mean velocity. In the steady state the system has a granular temper-

ature that is constant over large time scales.

Figure 2.7 shows the granular temperature for the first six seconds of a system

containing 1000 particles and system size of L = 4m. Two different coefficients of

restitution are used. The solid line represents a system with low dissipation of ε = 0.9.

The particles are initially spread uniformly across the system. Within a very short time

(less than one second) the granular temperature becomes roughly constant (although

this is difficult to see from the figure, due to strong fluctuations in value of T , it will be

shown later that the time average behaviour of T is constant) and the system can be

considered to be in a steady state. The remaining two lines shown in the figure represent
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Fig. 2.7: A temperature verses time plot of the Random Force Model of 1000 particles in a 4m long

system progressing to steady state. The dissipation is ε = 0.9(solid line) or ε = 0.1(dashed and dotted

lines).

a system with high dissipation of ε = 0.1. Initially the particles are either uniformly

spread across the system (dotted line) or formed into a single cluster (dashed line).

Notice that the increase in granular temperature is finished after about one second of

simulation.

Three points on the granular temperature in the steady state can be made: first,

the initial condition of the system does not affect the outcome once the steady state has

been reached; second, the steady state granular temperature increases with increase in

coefficient of restitution; third, strong fluctuations in the granular temperature occur

due to clustering – in a cluster there are many more collisions, leading to a lowering of

the granular temperature.

The fluctuations in granular temperature can be smoothed out by using the time

average granular temperature, 〈T 〉, calculated in the simulation by the formula:

〈T 〉 =
1

NNt

Nt∑

τ=1

N∑

i=0

|vi(tτ ) − 〈v〉 |2, (2.20)

where Nt is the number of samples. Figure 2.8 shows the time average granular tem-

perature for a system containing 1585 particles and coefficient of restitution 0.1. It

requires a period of approximately 200 seconds to elapse in the simulation before the
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Fig. 2.8: The time average value of granular temperature when estimated over 20 second periods

(points) and a running average sampled over t seconds (error bars). The system contains 1585 particles

with coefficient of restitution of 0.1.

fluctuations in granular temperature have been reduced sufficiently.

2.3 The Two-dimensional Random Force Model

We next describe the methods required to simulate the two-dimensional Random Force

Model, which is studied in chapter four. We describe the general routines used to

represent the random force that acts on each particles in a two-dimensional system,

define the set-up of the various systems studies and discuss their geometrical properties.

We conclude by demonstrating that these systems form steady states.

2.3.1 Computation of a Random Force

Particles of a two-dimensional Random Force Model have a Newtonian equation of

motion given by:

M
dvi(t)

dt
=
∑

i6=j

Fi,j + ηi(t), (2.21)

where Fi,j is the particle-particle interaction term and ηi(t) is the random force. The

random force is assumed to have orthogonal components, ηx,i, ηy,i, that are independent

of one another and whose strength is controlled by a common noise strength D. The
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interaction of the random force and particles is uncorrelated with respects to time,

different particles and direction such that the correlator can be expressed as:

〈
ηz′,i(t)ηz′′,j(t

′)
〉

= 2Dδ(t − t′)δi,jδz′,z′′ . (2.22)

We select values for the random force during simulation using the Box Muller trans-

formation Method(Abramowitz and Stegun 1965) in which ηi is calculated from two

random numbers using:

ηi =



 ηx,i

ηy,i



 =
√

−2 ln(a1)

√
2D

∆t



 cos (2πa2)

sin (2πa2)



 , (2.23)

where a1, a2 are random numbers generated from a uniform probability distribution

such that a1, a2 lie in the range 0 to 1 while the vector component randomly orientates

the force ensuring independence of the orthogonal components.

To ensure that the simulation does not develop a net drift of particles we periodically

translate the system to the centre of mass frame by subtracting the centre of mass

velocity from the velocity of each particle.

2.3.2 Simulation Details

We describe the method of dissipation and geometric properties of the systems un-

der study and discuss the added complexity that develops in two-dimensional systems

as opposed to those of one dimensions. These consideration equally apply to higher

dimensional systems.

Particle Properties, Boundary Conditions and Method of Dissipation

In the two-dimensional Random Force Model particles are placed in a square system

with periodic boundaries of separation L. The noise strength remains fixed at D = 1×
10−8N2s. The particles are circular, with radius 1.5mm, each has a mass of 3.53×105kg

and their collisions are assumed to behave as if the particles are repelled by springs

with spring constant of 500 000kgs−2 that are damped so as to mimic dissipation. The

particles dissipate via a normal coefficient of restitution εn and a tangential coefficient

of restitution εt.

The simulation is initiated by distributing the collection of particles either with

square or hexagonal packing. Again each particle in the system is given a small non-

zero initial velocity which has orthogonal components (vx,i(0), vy,i(0)) that are picked
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from an uncorrelated random uniform distribution, as already described for one di-

mensions. For every simulation the system is allowed to evolve for one second from

initial conditions before measurements are taken. Doing so allows sufficient time for

the system to reach the steady state.

Added Complexity

In the one-dimensional Random Force Model three simplifications were present: parti-

cles can not reorder; particles must collide with neighbouring particles; particles collide

along the normal of collision maximising dissipation. However, in the two dimensional

random force model none of the above applies. In addition, particles cannot be treated

as point-like objects, because the chance in a two-dimensional system that two particles

have a centre of mass velocity that is parallel to the vector of the displacement between

the two is zero. Instead the collision needs to occur over the finite cross section of

the particle. Thus a second length scale, the particle’s diameter is introduced to the

system, independent to the system size.

For particles of radius r, the particle occupation of the system is given by the

packing fraction, defined as:

φ =
Nπr2

L2
(2.24)

A high packing fraction corresponds to a dense system where collisions are frequent

and a low packing fraction represents a dilute system where collisions are rare. The

maximum packing fraction occurs when all particles pack to minimise the volume of

the bed and the resulting lattices spans the complete area of the system. Geometrically

particles occupy the minimum amount of space when they are all hexagonally packed

with a packing fraction of φmax = π
2
√

3
≃ 0.907. As the packing fraction of the system

is reduced from 0.907 the particles become less jammed with fewer locked into regular-

crystals. Overall the system remains crystalline until the packing fraction is sufficiently

reduced that there is ample unoccupied space and particles can avoid being in contact.

At this point the system undergoes a phase transition from crystalline to granular liquid.

The packing fraction at which this occurs is known as the point of crystallisation which

is stated to occur for φc ≃ 0.719 in the paper of Reis, Ingale, and Shattuck (2006).

Decreasing the packing fraction beneath φc leads to increasingly dilute systems where

interaction between particles becomes less dominant and the particle’s motion is less

dependent on the behaviour of surrounding particles. In all cases the system cannot be

treated as uniform.
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Fig. 2.9: Snapshots of particle positions at a moment in time for a system in steady state.

(a) φ = 0.795, N = 4500 (b) φ = 0.707, N = 4000

(c) φ = 0.530, N = 3000 (d) φ = 0.353, N = 2000

Phase States

What are the physical changes that occur with decreasing packing fraction? Figure

2.9 shows a snap-shot of particle configuration for a simulation of the two-dimensional

Random Force Model where the system size is L = 0.2m. The coefficients of restitu-

tion are kept fixed at εn = εt = 0.2. The particles in the figures are highlighted in

three shades of colour corresponding to the speed of the particle relative to the root

mean square velocity. The fastest particles are black-shaded whereas the majority slow

moving particles are lightly-shaded.

The maximum number of particles that can be placed in the system without overlap

is 5132 whereas the point of regular crystallisation occurs at 4068 particles. Figure 2.9
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demonstrates the changes in state of the system as the number of particles are varied.

Figure (a) shows a system, with packing fraction above φc, where the population of

particles are crystallised. The extremely fast particles (compared to the bulk) are

constrained to small imperfections in the crystal. When the packing fraction is just

less than φc, see figure (b), some particles are detached from the rest, but the majority

remain in contact. As the packing factor further decreases, figures (c) and (d), more

of the particles becomes separate, with large distance (compared to diameter) between

them and clustered particles. These systems become increasingly dominated, as the

population of particles declines, by particle-particle interactions rather than particle-

cluster interaction. Eventually the packing fraction drops sufficiently that the system

is so dilute that particle interaction is rare and no durable clusters are seen.

2.3.3 Steady States

We demonstrate that away from the dense limit the simulation of the two-dimensional

Random Force Model settles, after a short time, into a steady state where the granular

temperature, as defined in equation 2.20, becomes constant. We simulate a system

with packing fraction of 0.353 such that the system size is L = 0.2m and there are

2000 particles. A moderate dissipation is used with coefficients of restitution equalling

εn = εt = 0.6.

Figure 2.10(a) plots mean averages of the granular temperature for the first 100

seconds. The system reaches a steady state within the first second of the simulation.

The measured value of granular temperature at any moment of time can fluctuate in

a range comparable to its mean temperature. As the mean granular temperature is

calculated for longer times the fluctuation in value becomes smaller.

Figure 2.10(b) plots the mean granular temperature of the system where the par-

ticles are initially arranged either in hexagonal packing; square packing; or uniformly

spread. In each case the granular temperature in the steady state is approximately

equal to 12m2s−2 and demonstrates that the initial conditions of the system do not

affect the two-dimensional Random Force Model.

2.4 Summary

In chapter two we explained how to simulate granular media in computers using the

technique of Molecular Dynamics. A system of grains are modelled as particles that

evolve independently in space until collision. During collision normal and tangential
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Fig. 2.10: A temperature verses time plot of a typical system moving to steady state.
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(a) The system has an initial state of hexagonal packing. The data shows averages over 0.05 sec-

onds(points); 0.5 seconds (dashed line) and 5 seconds (solid line).
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(b) The system has an initial state of either hexagonal packing(solid line), square packing(dashed

line) or uniform spreads(dotted line). The data sets are averages over 5 seconds.
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forces are calculated and used to modify the trajectory of the particle. Theses adjust-

ments of particle momentum represent the particle responding to a collision over a finite

time and preserve the two axioms of granular collision: momentum conservation and

energy dissipation. Energy dissipation is characterised by a coefficient of restitution

which takes values between zero and one. We demonstrate that Molecular Dynamic

simulations correctly model collisions by showing that the energy lost during a single

collision is equal to that expected from theory.

Finally we simulate the one- and two-dimensional Random Force Model. These

Models settle into a steady state where the granular temperature becomes constant.

Clustering of particles causes strong fluctuations to be present in the granular temper-

ature.

In the next chapter we study the one-dimensional Random Force Model. We are

interested in characterising the effects that spatial clustering has on properties of these

models. Particularly we show that these systems have multi-scaling velocity and struc-

tural features that are caused by clustering.



Chapter 3

Multi-Scaling Properties of a

One-dimensional Random Force

Model

In 1996 Williams and MacKintosh proposed, through mean field arguments, that the

average kinetic energy, K, of a point-like particle within a one-dimensional Random

Force Model, of length L′, was related to the total number of particles, N , by:

K
3
2 = CΩ(L′/N)/(1 − ε2), (3.1)

where C was a numerical constant, ΩN was the rate of energy input, ε was the coef-

ficient of restitution and L′/N was the average linear density of particles. Ever since

then it was thought that this relation was valid. However, upon testing we found from

our simulations of the one-dimensional Random Force Model that the measured ki-

netic energy per particle deviates notably away from this relation, with the deviation

becoming stronger as the coefficient of restitution is reduced.

This new observation provided the motivation for this chapter. We begin by study-

ing the second moment of the velocity distribution,
〈
v2
〉
, which is directly related to

K. The second moment of velocity has scaling that is dependent on the coupling be-

tween coefficient of restitution and particle number which has not been commented on

before. It is then contemplated that if the second moment of velocity shows anomalous

scaling then it is very likely that higher order moments of the velocity distribution will

do as well. We observe that each higher order moment of velocity has a different scal-

ing behaviour. This is a significant new observation because it implies that no single

velocity-scale can characterise all the moments of velocity. Instead there is a multi-

39
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scaling behaviour of the velocity distribution not described by any previous granular

kinetic theory.

This naturally leads us to ask: what is driving this multi-scaling behaviour? We

begin by examining which assumptions used in the arguments of Williams and MacKin-

tosh (1996) might break-down in these systems. One prominent assumption is that the

one-dimensional Random Force Model can be described as structurally homogeneous.

We show this to be invalid by illustrating that the moments of the distributions of near-

est neighbours exhibit strong multi-scaling behaviour with respect to N for a range of

coefficients of restitution. We shall have to understand what process might cause the

system to exhibit these behaviours. Through considering higher neighbour separation

distances we show that the highly dissipative one-dimensional Random Force Model is

approximately renormalisable and motivates us to use a mathematical multiplicative

bisection process to perform the reverse process of renormalisation. The multiplica-

tive bisection process captures similar hierarchical structure seen in the Random Force

Model and so merits further study.

3.1 The Second Moment of Velocity

This section is all about whether the arguments of Williams and MacKintosh (1996)

can really be applied to the one-dimensional Random Force Model. Since the work

of Williams and MacKintosh, the performance of computers has greatly improved and

we are now able to obtain better statistics, for a larger range of systems, than was

previously described. In this section we discuss the the derivation of Williams and

MacKintosh (1996) arguments for the second moment of velocity. We provide details

of the simulations performed and then examine the results obtained for the second

moment of velocity for a variety of coefficients of restitution. Importantly, we show

that the exact dependence on the number of particles of the second moment of velocity

is controlled by the extent of the dissipation, something that has not previously been

suggested.

The second moment of velocity, denoted by
〈
v2
〉
, in the centre of mass frame of the

system is related to the velocity probability distribution, P (v), by the relation:

〈
v2
〉

=

∫ ∞

−∞
v2P (v)dv. (3.2)

It is closely related to the granular temperature of the system, T , and the kinetic

energy, K, through the relation K = M
〈
v2
〉
/2. During simulation the second moment
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is calculated by the expression:

〈
v2
〉

=
1

NNt

Nt∑

τ=1

N∑

i=1

|vi(tτ )|2, (3.3)

where Nt is the number of samples taken.

3.1.1 Deriving a Scaling Relation

The moments of velocity are affected by several properties of the one dimensional

Random Force Model, which can be classified into three categories: noise strength;

unoccupied space; extent of dissipation. Let us now briefly describe each in turn.

The strength of the random force sets the energy-scale of the system. Changing the

value of the noise strength, D, or the particle mass, M , will effectively rescale time for

all the particles contained within the system. Systems that keep 2D/M2 fixed (with all

other parameters fixed) maintain identical dynamics where the average rate of increase

in momentum of a particle remains unchanged.

In one dimension a particle’s physical size is irrelevant to the dynamics of the system

as particles cannot go through one another, nor can they reorder. Thus all particles can

be treated as point-like. Only the unoccupied free volume of the system is available for

particles to move though. The total unoccupied length of the system is simply given

by

L′ = L − Nd. (3.4)

Hence systems which keep L′ fixed, regardless of particle radius, (whilst keeping all

other parameters, such as N and ε fixed) will have identical dynamical behaviour.

Consequently L′ is the only natural length-scale associated with a one-dimensional

system. We are now in a position to derive velocity-scale, v0, for the second moment

of velocity based on dimensional analysis and obtain that:

v0
3 ∼ DL′

M2
. (3.5)

The remaining quantities of the system, that of coefficient of restitution and particle

number, are dimensionless and cannot be pinned down using dimensional analysis. We

must therefore rely on physical theory to derive how these affect
〈
v2
〉
. One method is

to use mean field theory as was used by Williams and MacKintosh (1996) and their

arguments are as follows.

When a system of the one-dimensional Random Force Model is in a steady state

the rate of energy injection equals the rate of energy loss through dissipation during
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collision. The rate of energy injection, ∆Ein, is determined by the random force and is

proportional to the number of particles such that ∆Ein = ND/M . The rate of energy

loss through dissipation, ∆Eout, is equal to the average loss of energy during a collision,

given in equation 2.13 last chapter, multiplied by the rate of having a collision, τ . The

collision rate τ is determined by the total number of possible particle pairs that can

collide, which is N/2, divided by the time taken for a collision to occur, tc. It is at this

point that mean field theory is applied in order to determine tc. It is argued that the

distance a particle moves between collision is equal to the average distance a particle

is separated from a neighbour, which is L′/N . Therefore, given that the mean speed of

the particle between collision is 〈|v|〉 then tc is given by the distance between collision

divided by 〈|v|〉 and the collision rate τ is derived as τ = (N/2)×〈|v|〉×(N/L′). Thus the

rate of energy loss is the average energy lost per collision, which is (1−ε2)×M
〈
v2
〉
/2,

multiplied by the collision rate, which gives:

∆Eout =

(
N

2

)
×
(

N

L′ 〈|v|〉
)
×
(

1

2
M
〈
v2
〉
(1 − ε2)

)
. (3.6)

The equation of state can then be written as:

〈
v2
〉 3

2 =
4C

N

DL′

M2(1 − ε2)
, (3.7)

where we have applied a simple assumption: that the mean speed of a particle is propor-

tional to the root mean square velocity,
〈
v2
〉 1

2 , such that C is a numerical compensation

constant.

Thus we have arrived at scaling relation of Williams and MacKintosh for the second

moment of velocity. In the next section we proceed to test this relation by fitting the

the second moment of velocity to a power-law in N of the form:

〈
v2
〉

=

(
DL′

M2

) 2
3

× λ(ε)N−ξ2(ε), (3.8)

where λ(ε) and ξ2(ε) are dimensionless numbers dependent only on the coefficient of

restitution. If the arguments of Williams and MacKintosh are correct then ξ2 will equal

2/3. The implication of such a result would be that the system can be increased by

doubling particle number and system size without affecting the overall kinetic energy-

per-particle.

3.1.2 The Simulations

The systems we have studied have a population of particles ranging from 100 to 10000

and coefficients of restitution which lie between 0.1 and 0.99. For all simulation we keep
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Fig. 3.1: The average value of the second moment of velocity with respect to the number of particles

(N) with a fixed size system of reduced system size of L′ = 1. The data sets represent mean values and

are for (bottom set upwards) coefficients of restitution of 0.1, 0.5, 0.75, 0.87, 0.97 and 0.99 respectively.

The line fits are corresponding power laws defined by
˙

v2
¸

∝ N−0.528 (lower line) and
˙

v2
¸

∝ N−
2

3

(upper line).

the reduced system length fixed at L′ = 1 and so remove the dependence on system

size.

The population is chosen to be either 100; 158; 251; 398; 631; 1000; 1585; 2512;

3981; 6310; or 10000, such that the increase in population is logarithmic. The range of

particles used is sufficient to demonstrate that the variations we find are not due to the

finite size or number of particles of the system but are present as the system becomes

large (both in system size and numbers of particles). The coefficient of restitution has

values of: 0.10; 0.21; 0.37; 0.50; 0.60; 0.68; 0.75; 0.80; 0.84; 0.87; 0.90; 0.94; 0.97; or

0.99.

The simulations are performed by allowing 20 simulated seconds to elapse (for

the system to relax from initial conditions) before calculating the second moment of

velocity. We estimate the value of the second moment of velocity from 20 seconds of

data and sample either a total of fifty times for systems where N < 1000, or ten times

for the remaining larger systems. Only a single configuration is considered in this study

but the sample size is considered to be sufficient that the error is small.
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Fig. 3.2: The value of ξ2 for different coefficients of restitution. The dashed lines are constant fits of

0.528 and 2/3.

3.1.3 Dependence on Population Size

The measurements of the second moment of velocity are analysed in the following

way. First, we compare our measurements against that predicted from Williams and

MacKintosh theory. Second, we demonstrate that the measurements of all systems can

be collapsed onto a curve which depends only on the coefficient of restitution.

Figure 3.1 shows, for a selection of coefficients of restitution (that span over the

entire spectrum of dissipations), the measured results for the second moment of velocity

when compared against the number of particles. We attempt to fit power-law relations

of the form given in equation 3.7 over the available data sets. By inspection we can

observe that the near elastic data set, represented by a coefficient of restitution of 0.99,

fits a power-law close to (but less than) the homogeneous prediction of ξ2 = 2/3. As the

extent of dissipation of the system increases, the exponent ξ2 rapidly decreases towards

a value of ≃ 0.53. For any system, the value of the exponent ξ2 is found to lie within

the range:

0.53 . ξ2 <
2

3
. (3.9)

The data sets of figure 3.1 are fitted to equation 3.7 via a χ2 fitting program.

Figure 3.2 shows the estimated value of ξ2 obtained from the power law fits as a
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Fig. 3.3: A demonstration that the kinetic energy can be collapsed onto a universal curve (with respect

to restitution) via a compensation for for the number of particles in the system. Plots for five systems

are shown, containing either 631 (circle); 1585 (square); 2512 (diamond); 6310(up-triangle) or 10000

(left-triangle) particles.

function of coefficient of restitution. The decrease in value of exponent ξ2 with respect

to dissipation is more clearly represented in figure 3.2 where closer examination shows

that the dependence of the second moment of velocity is such that ξ2 is always distinctly

less than 2
3 .

We have ignored data for systems containing 100, 158 or 251 particles (the three

most dilute systems show significant difference in trend to the others). These dilute

systems are affected by large fluctuations of long duration that arise due to the small

number of particles and large average separation distance between neighbouring parti-

cles (with respect to particle size, typically of an order of diameter or more). Ignoring

these three allows a good fit to equation 3.7 to be achieved over the remaining systems.

We make two observations from figure 3.2: first, that the relation
〈
v2
〉
∼ N− 2

3 does

not hold in these models, when particles dissipate such that ε < 1; second, there exists

a range of dissipations, in the range 0 6 ε . 0.5, where ξ2 can be considered to be

approximately constant at a value of ≃ 0.53.

The first observation is strong evidence that these systems are inhomogeneous. As

a consequence the system behaviour does not remain unchanged as L′ is increased
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whilst L′/N remains fixed. In contrast the latter observation suggests that there is

an extensive range of coefficients of restitution where collisions are near-inelastic and

further dissipation has little effect on the dynamics. A similar observation was made

for a granular cooling gas (Ben-Naim, Chen, Doolen, and Redner 1999), where once a

cluster of particles reached a certain size a particle subsequently colliding behaved as

if the coefficient of restitution was effectively zero.

Finally, we demonstrate in figure 3.3 that the values of ξ2, given in figure 3.2, can

be used to collapse the second moments as a function of 1− ε2, onto a single curve for

all systems.

3.2 Higher order Moments of Velocity

We have so far discovered that the second moment of velocity does not scale with

linear density L′/N . Consequently this means that Williams and MacKintosh were

wrong to use mean field theory to suggest that L′/N was the average distance travelled

by a particle between collision. We are now interested in testing another assumption

made by Williams and MacKintosh: that the mean velocity scaled equivalently to the

root mean square velocity. We generalise this to mean that different order moments of

velocity exhibit similar scaling behaviour and so we ask the question: does the system

have simple scaling or multi-scaling?

The mth order moment of velocity, denoted by 〈|v|m〉, in the centre of mass frame

of the system, characterises the velocity probability distribution, P (v). The moments

are defined by the following relation:

〈|v|m〉 =

∫ ∞

−∞
|v|mP (v)dv. (3.10)

The moments of velocity are calculated in simulation by the expression:

〈|v|m〉 =
1

NNt

Nt∑

τ=1

N∑

i=1

|vi(tτ )|m, (3.11)

where Nt is the number of samples taken. If the velocity distribution P (v) scales with

the use of single velocity-scale then so do all the orders of the moment of velocity, such

that:

〈|v|〉 ∼
〈
|v|2
〉 1

2 ∼ . . . ∼ 〈|v|m〉
1
m where m = 1, 2, 3, ... (3.12)

Let us suppose that the mth moment of velocity is related to the number of particles

contained in a system by a simple power law:

〈|v|m〉 ∼
(

DL′

M2

)m
3

N−ξm(ε), (3.13)
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where ξm is a dimensionless number associated with the moment that is dependent

only on the coefficient of restitution and the moment’s order, m.

We find that equation 3.12 is only satisfied when

ξm(ε)

m
≡ κ(ε) where m = 1, 2, 3... (3.14)

Here κ(ε) is a constant with respect to m, dependent only on the value of the coefficient

of restitution. Thus in this section we will calculate the values of ξm/m for the one-

dimensional Random Force Model to test the validity of relation 3.14. If ξm/m is a

constant with respect to m then simple scaling exist; if not then the system exhibits

multi-scaling behaviour.

We discuss the details of the simulations performed and then examine the results

obtained for the 9 lowest moments of velocity for two extreme cases before generalising

to include a variety of coefficients of restitution.

The Simulations

We run simulations for 7 different systems containing 251, 398, 1000, 1585, 2512 or

3981 particles and measure the lowest nine moments of velocity. Systems containing

the two highest numbers of particles in the studied range (that of 6310 and 10000) are

avoided because the real computing time required to achieve sufficient output becomes

unacceptably large.

The simulation of each system is ran once from a single initial configuration. The

first 20 seconds of simulation goes without sampling to allow the system to reach the

steady state. The mean value of the mth moment of velocity is calculated 50 times from

20 seconds of simulation data by the method described in equation 3.11. The total time

the system evolves (from initial conditions to end) is thus equal to 20 + 50× 20 = 1020

seconds. These simulations are repeated for six coefficients of restitution representing

a cross-section of dissipations, namely ε = 0.001, 0.37, 0.68, 0.84, 0.94 and 0.999.

3.2.1 A Study of Two Extreme Cases

We first consider the two extreme cases: the near-elastic or the near-inelastic system.

The systems with ε = 0.999 are examples of a near-elastic system. Figure 3.4(a)

shows the value of the different moments of velocity. For each order of the moment of

velocity the obtained value of ξm/m is found to be nearly one-third. As the order of the

moment is increased each measured value of ξm/m is slightly different from the previous
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Fig. 3.4: The behaviour of higher moments for a fixed coefficient of restitution as a function of number

of particles. The sets of data represent progressively larger order of velocity moments as we move

vertically up the graph from the 1st(◦) through to the 9th(×) moment of velocity.
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(a) For a high coefficient of restitution. The dashed lines are power-law fits of ∝ N−0.328 (lower line)

and ∝ N−0.309(upper line).
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(b) For a low coefficient of restitution. The dashed lines are power-law fits of ∝ N−0.264 (lower line)

and ∝ N−0.228(upper line).
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Fig. 3.5: The change in behaviour of ξm/m with higher moment for the coefficients of restitution: 0.001

(plus); 0.37 (square); 0.68 (diamond); 0.84 (up-arrow); 0.94 (down-arrow) and 0.999 (cross).

and decreases away from one third. Hence the moments of velocity do not exhibit a

common scaling behaviour which suggests that the system violates the conditions for

homogeneity. Instead the particles have a slight tendency to cluster (even at near

elasticity) because of the loss of energy and slight correlation in velocity of pairs of

particles after collision.

The near-inelastic limit describes systems that dissipate sufficiently such that the

granular temperature is effectively independent of the coefficient of restitution. Systems

that behave this way were found to have coefficients of restitution less than 0.5. The

described results are for a selection of systems with a coefficient of restitution of 0.001.

The values of the different moments of velocity are displayed in figure 3.4(b).

What is immediately obvious from the figure is that there is only a weak variation in

behaviour of 〈|v|m〉
1
m with respect to N as we move between the different orders of the

moment of velocity. The exponent ξm decreases from ξm/m ≃ 0.26 towards ≃ 0.225.

It is clear that the velocity moments of highly dissipative systems are significantly

different in behaviour from that predicted in previous works where ξm/m = 0.333.
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3.2.2 General Dependence on Population Size

Can we strengthen these observations to extend to the whole range of possible dissi-

pation? From the estimates of the mth moment of velocity we determine more rigor-

ously the values of the power exponent ξm using equation 3.13 and a chi-square fitting

program. Figure 3.5 shows the values of the exponent ξm for the six coefficients of

restitution and illustrates three important points. First, the measured values of ξm/m

becomes closer to 0.333 as the system’s coefficient of restitution increases. Second, the

value of ξm/m becomes smaller with increasing m indicating that the velocity proba-

bility distribution does not have a single scaling behaviour (with respect to N) that

will allow the velocity axis to be rescaled such that the distribution collapses onto

a single ‘standard/ universal’ curve, but rather exhibits multi-scaling which prevents

data collapse. Third, for a variety of coefficients of restitution (see the data sets of

ε = 0.001, 0.37, 0.68, 0.84 in figure 3.5) as m becomes large ξm/m converges to the

same value such that:

ξm/m → k(m), (3.15)

where k(m) is a set of values determined by m but independent of coefficient of resti-

tution. For example, we previously found that the second moment of velocity had

ξ2/2 ≃ 0.264 when the coefficient of restitution was less than 0.5. We find similar re-

lations for higher order moments of velocity, for example, the fifth moment of velocity

has ξ5/5 ≃ 0.252 when ε . 0.68 and the sixth moment of velocity has ξ6/6 ≃ 0.247

when ε . 0.84. Moreover we can use figure 3.5 to project further and predict that by

the twelfth moment of velocity the data set of ε = 0.94 will have converged with that

of ε = 0.01, implying that the ξ12/12 has a fixed value for coefficients of restitution less

than 0.94. It can then be conjectured that as the order of the moment of velocity is

increased then ξm/m takes a fixed value for coefficients of restitution near to one.

3.2.3 Can Multi-Scaling be Observed through the Velocity Distribu-

tion?

We attempt to collapse the velocity distribution, for fixed coefficient of restitution, by

removing the dependence on particle number. We choose two extreme cases: the near-

inelastic (ε = 0.1) or the near-elastic (ε = 0.99) system. All other dissipating systems

are expected to have behaviour that falls in between these two cases.

Figures 3.6 and 3.7 show attempted collapses for the velocity distribution of sys-

tems containing between 100 and 1585 particle. These distributions are distinctly
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Fig. 3.6: The scaled velocity statistics of a high dissipative systems with ε = 0.1. Data sets are for

systems with particle populations of 100 (circle); 251(square); 631(diamond); 1585(up-triangle),
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(b) The velocity axis is scaled using the seventh moment
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Fig. 3.7: The scaled velocity statistics of a high dissipative systems with ε = 0.99. Data sets are for

systems with particle populations of 251(cross); 398(square); 631(diamond); 1000(down-triangle),

non-Gaussian. Figures 3.6(a) and (b) show that for the highest dissipations the veloc-

ity distributions cannot be collapsed by rescaling the velocity axis using a measured

moment of velocity. For low dissipation, figure 3.7, the velocity distribution collapses

much better with only slight divergence at large velocity.

These figures demonstrate that as the coefficient of restitution decreases the be-

haviour of different order moments becomes dissimilar, resulting in less of the ve-

locity distribution collapsing onto a single curve when rescaling the velocity axis by

v 7→ v/ 〈|v|m〉1/m.

3.3 The Structure of the System

The previous sections have demonstrated that the velocity distribution exhibits weak

multi-scaling behaviour. The remainder of the chapter is concerned with discussing

how multi-scaling arises.

We describe the structure of the systems by calculating the separation distance

between neighbouring particles. We study the moments of separation distances and

find that they obey similar power-law relations with respect to particle number as was

found for the velocity statistics. Next we study the full distributions of separation
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distance between nearest neighbour and describe the changes that occur with respect

to particle number and coefficient of restitution.

The latter part of the section is concentrated on the little understood near-inelastic

limit of the one dimensional Random Force Model. We show that these systems have

structural features that are self-similar.

A System of Point-like Particles

In one-dimensional geometry, particles can be treated as point-like. A system of N

particles with diameter d contained in a length L are equivalent to N point-like particles

contained in a reduced length L′. The space occupied by the particles has no affect on

the dynamics of the system. Each particle’s position has an equivalent reduced position

in the point-like particle system. The positions of particles (ri) are mapped to the

reduced particle positions (r′i) by a simple transformation. A single particle is used

as a reference and indexed as particle 1. The remaining particles are indexed as 2 to

N by consecutively labelling particles when travelling positively along the system in

a loop from the position of particle 1 until return. The position of every particle can

be translated by −r1 without effect, such that the position of particle 1 moves to the

origin. These new positions are then mapped onto the reduced coordinate system by

removing the space occupied by all particles that lie between the origin and the particle

in question, so that:

r′i =






ri − r1 − (i − 1)d ri − r1 > 0,

ri − r1 + L − (i − 1)d otherwise.

(3.16)

The transformation results in particle 1 remaining at the origin, r′1 = 0, and the other

particles are position between 0 and L′ inclusively.

An important feature of the reduced coordinate system is that contacting particles

occupy the same reduced position. Hence a chain of particles all in contact collapse

onto a single point, in the reduced coordinates, whilst the cluster’s length is contracted

to zero.

3.3.1 The Separation Distances between Neighbouring Particles

The separation distance between neighbouring particles, Ri,i+1, is defined as the effec-

tive difference in positions between particle i and i + 1 at a given sample time t:

Ri,i+1 =
∣∣r′i+1(t) − r′i(t)

∣∣ , (3.17)
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Fig. 3.8: The behaviour of higher moments of R for a coefficient of restitution of 0.1 as a function of

number of particles. The sets of data represent progressively larger order of velocity moments as we

move vertically up the graph from the 1st(◦) through to the 6th(▽) moment of separation distance.

The dashed lines represent power law fits of 1/N(lower line) and 2.4/N−0.6 (upper line).

the periodic nature of the system is accounted for through the relation r′j+N = r′j + L′.

The mth moment of the separation distance between neighbouring particles, 〈Rm〉,
is defined as the arithmetic average of the mth power of the separation distance between

consecutively neighbouring particles:

〈Rm〉 =
1

NNt

Nt∑

τ=1

N∑

i=1

(Ri,i+1(tτ ))
m , (3.18)

where Nt is the number of times sampled. It is calculated in simulations by the same

method described for the moments of velocity. The zeroth and first moment are deter-

mined on physical grounds: the zeroth moment of R equals one and the first moment

of R is determined to be:

〈R〉 =
1

N

N∑

j=1

|r′j+1 − r′j| =
1

N
((r′1 + L′) − r′1) =

L′

N
. (3.19)

The Number Dependence of the Moments

We repeat for these moments the type of measurements that were made for the mth

order moment of velocity using the same range of systems.
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Fig. 3.9: The behaviour of higher moments of separation distance with respect to number of particles

shown for coefficients of restitution of 0.1(plus), 0.37 (circle), 0.60 (up-triangle), 0.75 (down-triangle),

0.90 (cross) and 0.97 (star).

We hypothesise that the moment of separation distances is related to the number

of particles by a power-law of the form:

〈Rm〉 ∝ (L′)m N−ζm . (3.20)

Here ζm is an exponent that is dependent on the order of the moment and the extent of

dissipation. If the structure of the system exhibits multi-scaling behaviour then ζm/m

is not a constant with respect to m.

We first explore the near-inelastic regime. Figure 3.8 shows the data obtained for

the lowest 6 orders of the moment of separation, for a range of systems with fixed

coefficient of restitution of 0.1. The data sets obey the power-law hypothesis shown in

equation 3.20. The 1st moment of separation obeys the equation 3.19 with exponent

ζ1 constrained to be 1. As the order of the moment increases the exponent ζm changes

value such that ζm/m decreases from 1 towards ≃ 0.6. This implies that near-inelastic

systems have a structure that exhibit multi-scaling behaviour over the observable orders

of moments.

The next question we ask is this: does the multi-scaling behaviour continue to be

prominent as the dissipation of the system decreases? From the estimates of the mth
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moment of separation we determine more rigorously the values of the power exponent

ζm using the equation 3.20 and a chi-square fitting program. Figure 3.9 shows the value

of ζm/m for the 6 lowest orders of moments of separation distance and six coefficients

of restitution ranging between 0.10 and 0.97.

For each set of data, corresponding to a particular coefficient of restitution, a distinct

drop in value for ζm/m is observed as the value m increases. Significant decreases in the

value of ζm/m are still observed for a high coefficient of restitution, such as ε = 0.97.

In contrast the related velocity multi-scaling was much weaker.

The absolute value of 〈Rm〉, where m > 1, drops several orders of magnitude with

increasing coefficient of restitution corresponding to a reduced chance for a large separa-

tion distance occurring. This can be thought of as particles having a reduced tendency

to cluster near one another and hence more particles occupy the voids between dense

clumps. The measurements of moments of separations suggests that there exists strong

multi-scaling in the structure of the system over a large range of dissipations from

near elastic to highly inelastic systems. To understand further the significance of the

moments of separation we next study the complete distribution of nearest neighbour

separation distances.

3.3.2 The Nearest Neighbour Distribution

In a one-dimensional system, a particle can only collide with a particle that lies directly

either side of it. These two bounding particles are defined to be the particles nearest

neighbours, such that for the ith particle the nearest neighbours are the particles indexed

i − 1 or i + 1. The distribution of the nearest neighbour describes the time-average

probability that a consecutive neighbouring particle will be a distance R from the

current particle’s position:

G1(R;N) =
1

N

〈
N∑

i=1

δ(R − Ri,i+1)

〉
. (3.21)

The distribution is defined between R = 0 and R = L′ and is measured in simulation

uniformly in time via the same method described for the velocity statistics in Appendix

A.

The distribution of nearest neighbours provides a good method to study the struc-

ture of the system. Three features provide information about the systems structure.

The distribution must cut-off at R = L′, no particle can be separated from another by

more than the system size. If a distribution has a singularity at the zero separation
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Fig. 3.10: The nearest neighbour distribution for various systems containing 1585 particles and fixed

reduced system length of L′ = 1. The distributions are for systems of different coefficients of restitution:

0.1(circle); 0.37(diamond); 0.68(square); 0.8(triangle down); 0.94(triangle up); and 0.99(cross).

distance then particles are clustering. There is no single length-scale to the distribution

if the moment of separations exhibits multi-scaling.

We now describe characteristics of the nearest neighbour distributions as either the

extent of dissipation or population of particles is changed.

General Characteristics with Respect to Restitution of the System

First we consider the effect of the extent of dissipation on the structure of the system.

Figure 3.10 shows the distribution of nearest neighbour distances for systems containing

1585 particles for a variety of coefficients of restitution.

For systems of near-elastic particles, shown by the data set of ε = 0.99, the nearest

neighbour distribution exhibits a decay with respect to distance that is approximately

exponential. The observation is consistent with the idea that the system of particles can

be considered to be homogeneous as is the case for a gas of non-dissipating particles.

As the coefficient of restitution is decreased the distribution of nearest neighbours

quickly moves away from exponential, developing an effective singularity at zero sepa-

ration whilst particles achieving a large separation become increasingly likely.

Once the system’s dissipation is sufficiently large, notable variation in the large
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Fig. 3.11: The nearest neighbour distribution for various systems with low dissipation of ε = 0.1 and

fixed reduced system length of L′ = 1. The distributions are for systems containing the following

number of particles: 100(cross) 158(circle); 251(right triangle); 398(triangle down); 631(triangle up);

1000 (diamond); 1585(plus); 2512(square) and 3981(star).

scale shape of the distribution, with respect to coefficient of restitution, ceases and

the distribution of nearest neighbours becomes effectively independent of coefficient of

restitution. This happens for ε < 0.5. Only the small scale behaviour of the distribu-

tion, where R ≃ d, remains strongly influenced by the dissipation which results from

particles multiply colliding over a finite time during collision.

General Characteristics with respect to Number of Particles

We now study the effect of varying the number of particles contained in a system

with near-inelastic dissipation, although observations are valid for other dissipations.

Figure 3.11 shows the distribution of nearest neighbours for systems with a coefficient

of restitution of 0.1.

As the number of particles in the system drops it becomes more likely for large

separations to occur. This is in line with the increase in value of the average distance

between particles, given by the first moment of separation, as the number of particles

decreases. The distributions cannot be collapsed onto a single curve by any rescaling of
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Fig. 3.12: The nearest neighbour distribution for various systems with low dissipation of ε = 0.1 and

fixed reduced system length of L′ = 1 plotted as a function of − lnR. The distributions are for systems

containing the following number of particles: 100(cross) 158(circle); 251(right triangle); 398(triangle

down); 631(triangle up); 1000 (diamond); 1585(plus); 2512(square) and 3981(star). The dashed lines

demonstrate fits of the form (− ln(R))n
N

−1 where n
N

is a number dependent on N .

the axis R. For a small number of particles such as for N = 100, N = 158 or N = 251,

a point of inflection can be seen in the data. The inflection is present in all distributions

and represents the distance after which the nearest neighbour distribution must decay,

increasing more rapidly, until R = 1 and the probability is zero.

Logarithmic Behaviour in Highly Dissipative Systems

For the remainder of the chapter we are concerned with describing the behaviour of

near-inelastic systems. Specifically we study systems where the coefficient of restitution

equals 0.1. We ask the question: are the distributions of nearest neighbours of highly

dissipative systems described by a simple function?

The distributions of highly inelastic systems have two important properties: first,

they have no length scale that characterises the complete distribution; second, the

probability density of a particle being separated by a distance R from a neighbour

drops to 0 at the distance of the system size L′ and gets very large at R = 0. The
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simplest mathematical function that has both these properties is − ln(R) and hence we

ask the question: Can these distributions be related to − ln(R) in any way?

Figure 3.12 plots the distributions of nearest neighbours, shown in figure 3.11, as a

function of − ln(R) on a log-log graph. If the distributions appear straight then they

can be considered to satisfy a function of the form:

G1(R;N) ∝ (− ln(R))n
N
−1 , (3.22)

where nN is a power index determined by N .

The figure demonstrates that the nearest neighbour distribution can be considered

to behave as the logarithmic function, described above, for large R where G1(R;N) is

less than 10−2. At small R (typically of order of a particle diameter) the distributions

bend away from the suggested form. The deviation is partly due to finite bin-width of

the measured distribution where the binning method is insufficient to compensate for

the sharp increase in gradient of the distribution as R → 0. More importantly at these

small length scales particles are still strongly influenced by the aftermath of collision.

The key to understanding the structure of the system is to find a mechanism to

account for these logarithmic distributions.

3.3.3 Renormalisation and Self-Similarity of the Structure

The logarithmic characteristics of the nearest neighbour distribution of these highly dis-

sipative systems is the leading cause of the multi-scaling behaviour seen in the moments

of the distribution.

A well known example, that also shows anomalous scaling, are equilibrium systems

that are tuned into a state of criticality. These systems are known to exhibit struc-

tural self-similarity, whereby large-scale features are statistically similar to small-scale

features, and as such the system can be renormalised without loss in detail (Yeomans

1992). For example, in the Ising model of a critical 2N spin lattice it is possible to

renormalise the system through a process called decimation. This involves removing

every other site to leave N sites and subsequently rescaling all system lengths, by a

factor of one half. The resultant new system has the same structural characteristics as

the original and implies that the structure of every second site in the 2N spin lattice

has the same characteristics as the structure of every site in the N spin lattice.

Is it possible that the one-dimensional Random Force Model also has self-similar fea-

tures that would allow these system to be renormalised without changing its behaviour?
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To test this idea we would like to perform the equivalent process of decimation on these

systems.

Let us imagine that we perform two simulations of equivalent systems except for

particle number where one system contains N particles and the other 2N particles.

The larger populated system has more degrees of freedom than the smaller populated

system and these can be separated within the larger system by ignoring every other

particle such that we obtain a modified system with only N particles. This modified

system now appears to approximately mimic the look of the N particle system, except

for an increased energy-scale generated by the ignored particles acting as sources of

additional random noise. The increased energy-scale does not modify the behaviour

of the system, compared to the N particle system, and its effect can be removed by

adjusting the value of the random force’s noise strength D. If the properties of the

system were the same then it would be expected that the nearest neighbour distribution

of both systems should be similar. This would translate to comparing the distribution

of nearest neighbour distance in the N particle system to the distribution of second

nearest neighbours in the unaltered 2N particle system. We hence would conclude

that a particle within the 2N particle system perceives the second further particle as

if it was the adjacent particle within a N particle system and the ignored in-between

particles play the role of an additional sources of random force.

In this view we assumed that the ignored particles simply act as uncorrelated noise.

In reality the collision with these particles will bias the next collision due to memory

effects. These memory effects become weaker the longer time a particle has between

collisions due to the random force.

This simple hypothetical experiment motivates us to study higher order separation

distances as a way of judging if these systems can be renomalised such that large-

scale structure is self-similar to small-scale structure. The separation distance between

particle i and j is given as the absolute difference in the particle’s positions:

Ri,j = |r′j − r′i|. (3.23)

The hth nearest neighbour distribution, denoted Gh(R;N), describes the time averaged

probability that the ith particle is separated from particle i + h by a distance R. The

distribution is calculated by

Gh(R;N) =
1

N

〈
N∑

i=1

δ(R − Ri,i+h)

〉
, (3.24)
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such that when h equals one we obtain the nearest (or first) neighbour distribution.

We hypothesise that the hth neighbour distributions have the scaling property:

Gh(R;hN) = G1(R;N), (3.25)

where the reduced system length is fixed at L′ = 1. If this is the case a system of

hN particles can be renormalised to a system of N by picking every hth particle and

removing all others.

We test the above hypothesis by modelling systems containing number of particles

that are powers of two. The dissipation of all studied systems is equal to ε = 0.1.

Initially we simulate a system containing 512 particles and measure the nearest neigh-

bour distribution. Next we simulate systems containing 1024, 2048 and 4096 particles.

These systems are renormalisable with one another if: the 2nd nearest neighbour, for

the system N = 1024; the 4th nearest neighbour, for the system N = 2048; and the 8th

nearest neighbour distribution, for the system N = 4096; are identical to that of the

nearest neighbour distribution, for the system N = 512.

Figure 3.13 shows comparisons of pairs of hth neighbour distributions, for the de-

scribed systems. The 2hth neighbour distributions, corresponding to particle popula-

tions of 2N0, are vertically scaled onto the hth neighbour distribution, of systems with

particle populations of N0. The high distance tails of the distributions approximately

converge and demonstrates that to a certain extent large-scale structural features of

systems with large particle populations can be renormalised onto the smaller populated

systems. It is the correlations between neighbouring particles that prevent the system

being treated as completely renomalisable.

3.4 Multiplicative Fracture Process

In the previous section it was suggested that the Random Force Model of highly dissipa-

tive systems can be spatially renormalised. The implication is that systems containing

larger numbers of particles are structurally self-similar to lower occupied systems once

excess particles are ignored. This leads us to postulate a reverse process to renomali-

sation, whereby additional particles are placed into an system in order to generate the

structure of a system with more particles.

In this section we use a mathematical process for partitioning an interval into regions

to represent populating a system with particles that incorporates similar hierarchical
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Fig. 3.13: Comparison of neighbour distributions for various systems with low dissipation of ε = 0.1

and fixed reduced system length of L′ = 1.
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(a) The first neighbour of N = 512(plus) compared to the vertically

scaled Second Neighbour of N = 1024(cross)
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(b) The second neighbour of N = 1024(cross) compared to the ver-

tically scaled fourth neighbour of N = 2048(star)
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(c) The fourth neighbour of N = 2048(star) compared to the verti-

cally scaled eighth neighbour of N = 4096(circle)
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structure to that expected for a critical system. We compare it against the Random

Force Model and find reasonable agreement.

Physical Interpretation

The idea that a system with a large number of particles can be renomalised to become

a system with a smaller number of particles motivates us to purse the notion that we

can do the process of renomalisation in reverse. If we can renormalise a system by

removing half the particles then maybe we can generate a more populated system by

placing the same number of additional particles into the system.

Imagine that a more populated system is constructed from one containing fewer

point-particles by placing a new point-particle between all possible pairs of point-

particles. The simplest case would start with a system containing one point-particle

placed at a boundary. We obtain a system containing two particles by placing another

point-particle in the interval between the first particle and the opposing boundary (the

first particle itself) and then a system with 4 particles by placing 2 point-particles in

the two intervals bounded by the already placed two particles. By continuing the pro-

cess of placing particles in all available intervals (gaps between placed particles) we can

build up any system that contains 2n particles.

In the reduced coordinate system particles have no size and the system length can

be rescaled such that L′ 7→ 1. Consequently the position of particles represents the

boundaries of unoccupied intervals and the distance between neighbouring particles

the lengths of these intervals. In effect the system has been broken into N partitions.

By this interpretation we find that the distance between nearest neighbours can

equally be viewed as a partition length and the distribution of nearest neighbour dis-

tance can therefore be thought of as the distribution of partition lengths. We further

assume that the time average of the Random Force Model can be represented equiva-

lently by a configuration average of placing particles into the system.

3.4.1 Multiplicative Bisection Process

A class of models that can be used to perform the placing of particles into a system are

known as the multiplicative fracture process. A system of partitions is built up by con-

secutively breaking an interval into parts. The simplest case uses an interval of length

1 that is then repetitively bisected. Processes of this sort are known as multiplicative

bisection process (Krapivsky and Majumdar 2000; Sibuya and Itoh 1987). They in-
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Fig. 3.14: Bisection method
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volve breaking an interval into 2n parts such that the sum of all partition lengths totals

the length of the original interval. The routine of creating partitions is as follows.

The interval is broken up through n levels. Each level involves the process of

bisecting all available partitions. The boundaries of the two new partitions are assigned

to be the boundaries of the replaced partition and a randomly placed boundary that

lies between the previous two.

At the nth level there exists 2n partitions. The ith partition (where i = 1, 2, .., 2n)

has boundaries denoted by ri,n and ri+1,n such that ri,n < ri+1,n. The interval is

bounded by r1,n = 0 and r2n,n = 1. We progress to the n + 1th level by bisecting

all partitions. The position of each new boundary is determined probabilistically by

picking a value 0 ≤ ai ≤ 1, selected from a probability distribution U0(ai) and placing

boundaries as follows:

r2i,n+1 = ri,n, (3.26)

r2i+1,n+1 = ri,n + ai(ri+1,n − ri,n). (3.27)

The distribution U0(ai) is identical for all partitions regardless of width. The above

routine is repeated until the desired level is reached.

Figure 3.14 shows a pictorial representation of the process of partition formation

for the first two levels. At n = 0 only one partition exists and spans the whole interval

with a length 1. The symbols p q and r are independent probabilities representing

particular measurements of probability ai. The length of each partition are stated as

the product of the probabilities.

From the diagram it is clear that the length of any partition at the nth level,

xn, is simply the product of n independent values picked from the same probability

distribution U0(ai). Hence the length of a partition is given by (Redner 1990):

xn =

n∏

i=1

ai. (3.28)
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Obtaining the Probability Distribution of Partition Lengths

How do we obtain the distribution of partition lengths? One method is to numerically

simulate, repeatedly, the breaking of an interval into 2n partitions, following the routine

of the process outline previously and measure the average distribution of partitions

lengths. Alternatively at each level the probability that a partition is of a length

xn, denoted as Pn(xn) (the suffix n distinguishes the level the process is at), can

be represented by the recursion relation described in the paper of Sornette (1998).

The probability of getting xn+1 at the next level is simply the probability of starting

at a value xn multiplied by the probability of receiving a value a that allows the

product(axn) to equal xn+1, integrated over the complete set of allowed xn:

Pn+1(xn+1) =

∫ 1

xn+1

dxn

∫ 1

0
daPn(xn)U0(a) δ (xn+1 − axn) . (3.29)

A key element of the recursion relation is the partition probability U0(a). The

multiplicative bisection method puts no constraint on the form of the U0(a) except

that:

U0(a) = U0(1 − a) where 0 ≤ a ≤ 1. (3.30)

The distribution of partition lengths are progressively calculated from the zeroth to the

nth, using equation 3.29.

3.4.2 A Simple Case

In the simplest case, which we shall call the uniform bisection process, the partition

probability is assumed to be the uniform distribution, U0(a) = 1. No preference is made

in the placing of partition boundaries and the distance away from other boundaries is

neither minimised nor maximised.

The distribution of partition length, Pn(xn), is calculated using the relation 3.29,

which simplifies to:

Pn+1(xn+1) =

∫ 1

xn+1

dxn

xn
Pn(xn). (3.31)

At level zero (the unbroken interval) the probability distribution of partition lengths is

defined as:

P0(x0) = δ(x0 − 1). (3.32)

The delta function signifies that a single partition spans the complete interval. Pn(xn)

is calculated for the next three lowest levels as: level one,

P1(x1) =

∫ 1

x1

dx0

x0
δ(x0 − 1) = 1; (3.33)
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Fig. 3.15: Comparison of the solution for the bisection process obtained from equation 3.36(line) and

by numerical partition breaking process (circles).

level two,

P2(x2) =

∫ 1

x2

dx1

x1
= − ln(x2); (3.34)

level three,

P3(x3) = −
∫ 1

x3

dx2

x2
ln(x2) = ln(x3)

2 +

∫ 1

x3

dx2 ln(x2)
1

x2
=

(− ln(x3))
2

2
. (3.35)

Through induction we find that in general the distribution of partition lengths is of

the form:

Pn(xn) =
(− ln(xn))n−1

(n − 1)!
. (3.36)

As the number of levels tend to infinity the distribution limits to log-Gaussian (by

the Central Limit Theorem, as shown by Redner (1990)). However, in our study only

small values for n are used such that the Central Limit Theorem is not applicable and

equation 3.36 is sufficient.

We demonstrate that the above relation is correct in figure 3.15. An interval is parti-

tioned, by applying the bisection method nine times to obtain 29 partitions. We repeat

the process many times and measure the distribution of partition lengths. Equation

3.36 agrees well with the data obtained.

In general the uniform bisection process produces a distribution of partition lengths

that is a function of logarithmic distance. This feature is also present in the nearest
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neighbour distribution of the near-inelastic Random Force Model. A second feature

that gives us optimism that a process such as this is applicable to the highly dissipative

Random Force Model is the behaviour of the moments of partition length. The mth

moments of the partition length is calculated by the following expression:

〈xn
m〉 =

∫ 1

0
xn

mPn(xn) dxn

=
1

(1 + m)n
1

(n − 1)!

∫ ∞

0
z(n−1) exp(−z)dz

=
1

(1 + m)n
. (3.37)

The predicted moment of partition length is transformed into a function of the number

of partitions N by inserting N = 2n into equation 3.37 such that:

〈xn
m〉 = exp

(
− ln(N)

ln(2)
ln(1 + m)

)
= N

− ln(1+m)
ln(2) . (3.38)

The described form of the moments behaves as a power-law of N in the same fashion as

that already seen for the Random Force Model. Our task next is to ascertain whether

the Random Force Model quantitatively matches these two features of the partition

model: logarithmic function and power-law moments.

3.4.3 Comparison with data from the Random Force Model

The purpose of the following material is to investigate how well the fracture process

describes the structural behaviour of the one-dimensional Random Force Model. We

compare the distribution of partition lengths generated from the uniform bisection

process to the nearest neighbour distribution of the Random Force Model. We first

consider a system containing 1024 particles and then generalise over the range of studied

systems.

Comparison with a specific system

A simulation of the random force model for 1024 particles is performed to generate

the distribution of nearest neighbour distance. We next simulate the corresponding

uniform bisection process by the partitioning of an interval through nine stages such

that 29 partitions are achieved and calculate the distribution of partition lengths. Fig-

ure 3.16 shows the comparison between the two distributions and demonstrates that

good agreement, without the use of fitting parameters, is seen between the random

force model’s distribution of nearest neighbours and the uniform bisection process’s

distribution of partition lengths.
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Fig. 3.16: Comparison of the bisection process (circles) with first nearest neighbour distribution of 1D

Random Force Model (cross) when using N = 29 particles which is equivalent to n = 9 repetitions of

partition breaking.

Comparison with a range of systems

We now make comparisons over a range of systems containing between 100 and 3981

particles. Direct comparison between the multiplicative bisection process and the ran-

dom force system is not possible in most systems as the multiplicative bisection process

can only generate systems that contain integer powers of 2 particles. Instead we at-

tempt to collapse nearest neighbour distributions using the scaling relation suggested

by the fracture process.

If the Random Force Model has structure of the form determined by the multi-

plicative bisection process then the nearest neighbour distribution collapses onto one

curve by the map:

G1(R;N) 7→ AN [G1(R;N)]
1

n−1 , (3.39)

where n is related to N by N = 2n and AN is a numerical factor used to renormalise

the distributions. We choose AN to be:

AN = − ln(0.7) [G1(0.7;N)]−
1

n−1 , (3.40)

such that when R = 0.7 the collapsed distributions all have magnitude − ln(0.7). Figure

3.17 shows the nearest neighbour distributions of the Random Force Model transformed
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Fig. 3.17: The nearest neighbour distribution for various systems with low dissipation of ε = 0.1 and

fixed reduced system length of L′ = 1 plotted as a function of − lnR. The distributions are for systems

containing the following number of particles: 100(cross) 158(circle); 251(right triangle); 398(triangle

down); 631(triangle up); 1000 (diamond); 1585(plus); 2512(square) and 3981(star). The dashed line is

the function − ln(R) and n = 2N .

using the map 3.39. The data sets collapse onto one curve which suggests that in

general a multiplicative bisection process does describe the structure of the Random

Force Model.

Next we ask can we use a specific version of the multiplicative bisection process

such as the uniform bisection process? If the uniform bisection process describes the

structure of Random Force Model, then the collapsed curves will be parallel to the

function − ln(R), for all separation distances R (which we arrive at from equation

3.36). In figure 3.17 the dashed line represents the prediction of the uniform bisection

process.

For large values of − ln(R), corresponding to small/moderate separation distances

between particles, the slope of the multiplicative prediction and the collapsed data are

approximately the same.

As − ln(R) becomes smaller, corresponding to the larger separation distances, the

collapsed data of the nearest neighbour deviates away from the multiplicative predic-

tion. The most likely explanation is that the deviation occurs because particle interac-
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tion cannot be ignored and there is an increased tendency for the particles to be close

to each other that is not accounted for in the uniform bisection process. The resul-

tant effect on the distribution of nearest neighbours is that the singular peak of the

distribution becomes steeper and the tail of the distribution for large distances become

shallower than predicted by the uniform bisection process.

Behaviour of the Moments

We now quantify the differences between Random Force Model and uniform bisection

process by comparing the moments of separation distance of the two. It is not expected

that the moments of separation between theoretical and model will agree. Indeed this is

seen in the table below where the predicted (Process) and measured (Model) exponent

ζm is given for the first five moments:

mth Moment ζm(Predicted) ζm(Measured)

1 ln(2)
ln(2) = 1 1

2 ln(3)
ln(2) ≈ 1.58 1.729 ± 0.008

3 ln(4)
ln(2) ≈ 2 2.31 ± 0.03

4 ln(5)
ln(2) ≈ 2.32 2.81 ± 0.06

5 ln(6)
ln(2) ≈ 2.58 3.2 ± 0.1

Table 3.1: The comparison of the particle number behaviour of the mth moments of separation, where

〈Rm〉 = AN−ζm , between that predicted from the uniform bisection process and that measured from

data of the Random Force Model.

As the order of the moment increases the discrepancy between the predicted value

of ζm, given by equation 3.38, and the measured value, obtained from simulation of the

Random Force Model becomes more significant.

In conclusion the multiplicative bisection process captures the essence of the struc-

ture observed in the highly dissipative Random Force Model. The process treats every

region of the interval as a scaled down version of the original interval and thus intro-

duces self-similarity to the system. No preference is placed on the attraction between

particles and hence the process maximises randomness within the hierarchical struc-

ture. Clustered regions are represented by a collection of boundaries placed inside

successively smaller regions.

We compared one of the simplest multiplicative bisection process with data from
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the one-dimensional Random Force Model. Overall approximate agreement is found

in the shape of the nearest neighbour distribution between the process and the Model,

confirming the relevance of these processes as descriptions for the Model’s structure.

However, significant divergence occurs between the two solutions, for larger separation

distances, which advocates that the tendency of particles to be near each other is greater

than that suggested by the simplest process. Improvement to the multiplicative process

can be achieved by instead using a partition probability, U0(a), with a concave profile

such that there is an increased likelihood for a to take value near either zero or one.

For example using a profile of U0(a) ∼ a−A + (1 − a)−A, where A is a small constant,

produces Pn(xn) with similar qualitative characteristics upon collapse as the Random

Force Model. Unfortunately there is no clear indication as to what the exact profile of

U0(a) should be.

3.5 Summary

In this chapter we demonstrated that the one-dimensional Random Force Model had

multi-scaling properties through which the velocity distribution had a shape that was

non-universal with respect to system population.

The moments of a particle velocity exhibited a scaling behaviour, with respect to

particle number, that was not invariant to linear density, L′/N , nor preserve a common

scaling behaviour for the different orders of moment such that 〈|v|〉 ∝ 〈|v|m〉1/m. Instead

we observed that the the moments of velocity could be described by a power-law in N

of the form:

〈|v|m〉 ∝ N−ξm .

For the second moment of velocity we found that ξ2 took a value which lied in the

range 0.53 to 0.666. Furthermore, in general ξm/m was fixed in value over a range of

coefficients of restitution. For example, ξ2/2 ≃ 0.264 when ε < 0.5.

We next wanted to gain further insight into the cause of the multi-scaling behaviour

and postulated that the system’s structure played an important role. Thus the distri-

bution of nearest neighbours was measured and found to have moments of separation

between neighbouring particles that also showed strong multi-scaling behaviour.

The combination of these observations implied that these systems have no well-

defined thermodynamic limit but instead become more clustered as further particles

are placed in the interval of the system.
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For systems that exist in a near-inelastic state (ε → 0) the nearest neighbour dis-

tributions were shown to be power-law functions of the logarithmic separation distance

which only deviate at small separation distances where correlations between particles

become important. In these systems approximate renormalisation characteristics are

seen for large separation distances and implied that when particles were separated far

enough apart the intermediate particles could be ignored without loss of generality.

The ignored particles effectively became extra sources of random noise.

The renormalisation of the system provided motivation for a multiplicative bisection

process. The simplest case was described as the uniform bisection process. The process

had two features of relevance: firstly the distribution of partition lengths was a power-

law of − log(R); secondly the moments of the partition length were related to the

number of partitions by a power-law. We compared the process to the Random Force

Model by collapsing the nearest neighbour distributions. The time-average structure

of these systems was found to be sufficiently described by a multiplicative bisection

process. We speculate that it may also be possible to use other partition processes to

describe the structure of the Random Force Model for high coefficients of restitution.

Implications for Higher Dimensions

An intriguing feature of this chapter is that, when all other parameters are fixed, the

value of the mth moment of velocity converges for nearly all coefficients of restitution.

When studying the second moment of velocity we found that if the coefficient of resti-

tution was ε < 0.5 then the moments power-law dependence on N becomes fixed with

ξ2 ≃ 0.53. Similarly when we study the higher moments of velocity we find that for

coefficients of restitution ε < ǫm, where ǫm is a number that lies between 0 and 1,

that ξm is a fixed number independent of ε. Significantly the value of ǫm increases

towards one as the order of the moment, m, increases. We speculate that this means

that for a range of low to moderate dissipations the shape of the high velocity tail of

these distributions is independent of coefficient of restitution, which is suggestive from

the simple analysis of Appendix A. The physical grounding for this speculation is that

the system’s fast particles move the furthest and have forgotten the previous collision

as momentum gained through a particles interaction with the random force washes

out any remaining memory of the previous collision. In contrast, it is the low velocity

particles that are strongly dependent on the level of dissipation.

This property of the fast particle’s behaviour being independent of the extent of
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dissipation continues to be exhibited in higher dimensional Random Force Model. In

the next chapters we study the two-dimensional Random Force Model and show that

large-scale structural features and the shape of the high-velocity tails of the velocity

distribution are independent of coefficient of restitution and of particle numbers.

The dependence on particle numbers in the one-dimensional Model is in some sense

due to it being pathological: particles must collide and cannot reorder. In the two-

dimensional Model the moments of velocity only exhibit simple scaling.



Chapter 4

Fractal Properties of a

Two-dimensional Random Force

Model

We showed, in chapter one, that there exist two prominent questions in the literature

associated with the two-dimensional Random Force Model with inconsistent answers.

These are: what form does the large-scale structure take given that it exhibits fractal

properties? and what is the asymptotic form of the velocity distribution? In this

chapter we describe the structural properties of the two-dimensional Random Force

Model to determine the fractal properties of the system. To do this we reduce the

dissipation in a collision further than in previous work, using a tangential coefficient of

restitution, which has the effect of enhancing the fractal structure.

The first section of this chapter discusses the structure obtained by using Random

Force Model, specifically a distribution called the structure factor. We demonstrate that

the large-scale structure of systems, of sufficient size, have common fractal behaviour

irrespective of the systems dissipation, size and packing fraction.

The second section is concerned with understanding how the overall fractal structure

of the system affects the behaviour of individual particles. We study the distance

travelled by particles between consecutive collisions and find that those particles which

travel a long distance are influenced by the fractal background of particles.

75
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4.1 Structure Factor

The two-dimensional Random Force Model is thought to exhibit fractal structure,

as was demonstrated by Peng and Ohta (1998a). As a consequence the system is self-

similar on long length-scales. The structure of the system is quantified by a distribution

called the structure factor, S(k), which varies at small k as a power-law, Ak−Df . It is

the power-law which gives rise to the notion of fractal-like structure.

In chapter one we reviewed the current literature and found that disagreements exist

as to whether S(k) decays as k−2 (van Noije, Ernst, Trizac, and Pagonabarraga 1999)

or as k−1.4(Peng and Ohta 1998a). Puglisi, Loreto, Marconi, and Vulpiani (1999) found

that S(k) varied as k−1.4 to k−1.9 depending on the choice of coefficient of restitution.

In this section we attempt to unearth the small k behaviour of the structure factor.

We demonstrate that, as long as the system is of sufficient size, the large-scale structure,

as characterised by the exponent Df , is to a large extent unchanged, with only very

weak and unsystematic variation seen as the dissipation or density is varied. Instead the

variation of density and dissipation only affects the amplitude (A) of these structures

(and not the form) when we change the relative rate of dissipation compared to the

rate of energy injection.

Definition of the Structure Factor

The spatial correlation function, g(R), measures the probability that any two particles

are separated by a displacement R at any given moment in time. The vector structure

factor, S(k), is defined as the Fourier transform of the spatial correlation function g(R)

(Chaikin and Lubensky 1995):

S(k) = 1 +
N

L2

∫ ∫
(g(R) − 1) exp(−ik · R) d2R. (4.1)

Using our simulations, the vector structure factor is calculated by taking the time

average of the sum of the Fourier transforms of the separation distance over all possible

pairs of particles (including self-correlated pairs):

S(k) =
1

N

〈
N∑

i=1

N∑

j=1

exp (ik · (ri(t) − rj(t)))

〉
. (4.2)

We determine S(k) at discrete values of k such as:

k =
2πki

L
î +

2πkj

L
ĵ, (4.3)
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giving a magnitude k = 2π
L (ki

2 + kj
2)

1
2 , where ki, kj are integers. We can readily

calculate the circular averaged S(k) from these points by taking the angular average of

S(k).

The k-space coordinates are inversely proportional to the distance within the sys-

tem. Thus small k-space behaviour of S(k) corresponds to large-scale structural fea-

tures of the system and similarly large k-space behaviour corresponds to small scale

structural features.

For large k, the structure factor exhibits oscillations. The first peak occur at dis-

tances corresponding to the length scale of touching neighbouring particles, where

k ≃ 2π/d with d the diameter of the particles. Subsequent peaks occur periodically at

k ≃ 4π/d, k ≃ 6π/d and so on. The strength of the peaks gives an indication of the

extent of small-scale clustering occurring in the system.

For small k, the structure factor may exhibit one of several forms as k tends towards

0. Either S(k)− 1 tends to 0 (as in fluid) suggesting that the system appears homoge-

neous at large-scale; or it tends to a non-zero plateau (sticky colloids as described by

Zaccarelli, Saika-Voivod, Buldyrev, Moreno, Tartaglia, and Sciortino (2006)) suggest-

ing particles form clusters with characteristic size; or it tends to infinity as a power-law,

which suggests the system has fractal-like behaviour.

4.1.1 Large-scale Structure and the Dissipative Regime

We have carried out simulations to determine S(k) for larger systems than previously

studied so as to explore the small k region. The structure factor is found to have small

k behaviour that obeys a power-law of the form:

lim
k→0

S(k) = Ak−Df , (4.4)

where Df is called the fractal dimension of the systems large-scale structure. Such a

law has no associated characteristic length scale and hence is a fractal property. The

power-law decay holds true over a range of small k, which we will call the dissipative

regime in accordance with the naming convention of van Noije, Ernst, Trizac, and

Pagonabarraga (1999). We find that a useful upper-bound, k′, to the range of k is

given by k′ = kD where:

kD =
2 − εn

2 − εt
2

8l0
, (4.5)

with l0 the mean free path of a particle between collision, εn is the normal coefficient of

restitution and εt is the tangential coefficient of restitution. This is a generalisation of
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the ideas of van Noije et al. for inelasticity in which collisions are allowed to have tan-

gential dissipation (where one such method involves using εt, as shown in chapter two).

Including tangential dissipation allows us to simulate systems of higher dissipation than

normal dissipation alone.

Predicting the System Size at which the Dissipative Regime is Observable

The largest structural features of the system occur at length scales of the order of the

system size and as such the structure factor has a the minimum measurable value of k

given by kmin = 2π/L. When kmin is greater than kD the dissipative regime cannot be

observed and the system exhibits finite size effects. In these cases the limited system

size impedes the formation of large structure and prevents fractal structural behaviour

being exhibited. Therefore to study the dissipative regime of the structure factor a

sufficient system size of L > Lmin must be used, where Lmin is derived using equation

4.5 such that:

Lmin ≃ 2π

kD
≃ 16πl0

(2 − εn
2 − εt

2)
. (4.6)

The mean free path l0 incorporates the systems packing fraction and can be estimated

using mean field theory as

l0 =
L2

2dN
=

πd

8φ
, (4.7)

where φ is the packing fraction of the system, defined as φ = Nπr2/L2. We can

explicitly express Lmin in terms of the packing fraction as

Lmin ≃ 2π

kD
≃ 2π2

(2 − εn
2 − εt

2)

d

φ
. (4.8)

In practice we require more than one measurable k value to lie inside the dissipative

regime before any measurement of the power-law decay can be made. Hence the system

needs to have a size much larger than Lmin and the minimum effective system size is

given by

LEff = 2
√

2Lmin, (4.9)

such that the five lowest measurable values of k, that of: 2π
L ; 2

√
2π

L ; 4π
L ; 2

√
5π

L and 4
√

2π
L ,

lie within the dissipative regime, k < kD.

Results

In our studies we measure the fractal dimension Df of the power-law decay of S(k),

given in equation 4.4. The study into the structure factor is performed by varying

three types of quantities: system size; dissipation and density. First, the size of the
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system is changed for a given packing fraction. We show that reliable measurements

of the power-law decay are only made for system sizes and scales where structural

features are present of the order of the dissipative regime. We find that a power-law

of S(k) = Ak−1.4 is recovered at conditions described by (Peng and Ohta 1998a) but

later show that this is an artefact of using an insufficiently large system. Second,

we change the effective dissipation of the system, keeping the packing fraction fixed

and using a sufficiently large system. We vary both tangential and normal coefficients

of restitution and show that the behaviour of the structure factor is invariant to the

extent of dissipation. Third, the packing fraction of the system is changed by varying

the population of particles per unit area.

4.1.2 Increasing the Size of the System, L

We perform simulations where the packing fraction of the system is fixed and both

the size of the system, L, and the population of the particle, N , are increased so that

N/L2 is constant. We scale up the system by first simulating a system of size L = 0.1

and population N , then choosing integer multiples, j = 2, 4, 6, 8, 10 such that the new

system size is L′ = jL and particle population is N ′ = j2N . We simulate four packing

fractions, that of φ = 0.088; 0.177; 0.353 and 0.530. The particles are made extremely

dissipative with coefficients of restitution given as εn = 0.1 and εt = 0.1 such that all

collisions dissipate the same proportion of energy regardless of orientation. Such a large

dissipation maximises the range of k considered to be within the dissipative regime.

Observed effect on Large and Small Scale Features

Figures 4.1 and 4.2 overlay data on the structure factor of successively larger sized

systems of two packing fractions φ = 0.088 and 0.353. The minimum measured value

of k occurs when k = 2π/L. By increasing the system size we are able to extend the

form of S(k) further back towards a k of zero and study features of smaller k-order.

The large k behaviour of S(k) remains unchanged with increased size. The peaks of

the oscillations occur at k corresponding to the particle diameter which indicates that

the tendency for particles to cluster is not affected by the system size.

When the packing fraction of the system is sufficiently high the size of the system

does not have to be particularly large before the power-law decay of S(k) is visible, as

demonstrated in figure 4.2. As the packing fraction of the system becomes more dilute

it becomes difficult to simulate a system of sufficient size that the power-law decay can
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Fig. 4.1: The structure factor for a system with fixed density of 0.088 and dissipation of εn = εt = 0.1.

The data sets are for combinations of particle number and system size such that N = 500, L = 0.2m

(plus); N = 2000, L = 0.4m (cross); N = 4500, L = 0.6m (star); N = 8000, L = 0.8m (circle);

N = 12500, L = 1.0m (down-triangle) and N = 18000, L = 1.2m (square). The lines are power-law fits

of S(k) = Ak−1.63 (dashed) and S(k) = Ak−1.4(solid).

be seen, as demonstrated by figure 4.1.

Estimating the System Size at which the Dissipative Regime is Present

An estimate for the system size at which the dissipative regime can be observed is

obtained using the approach of van Noije et al. (1999). Their theory suggests that

when k < kD the structure factor can be considered to be in the dissipative regime. For

the packing fractions φ = 0.088 and φ = 0.353 we calculate kD to have values 0.057/d

and 0.223/d respectively, where d is the particle diameter. The vertically dotted lines

on figures 4.1 and 4.2 mark the predicted value of kD at which the structure factor

behaves as a power-law for k < kD. The figures show that kD provides a reasonable

estimate to the upper limit of the dissipative regime.

For the packing fractions φ = 0.088 and φ = 0.353 we predict that the dissipative

regime is only visible in data of the structure factor when system size is greater than

Lmin ≃ 2π
kD

≃ 0.330m or 0.084m respectively. The data is only usable, with at least

five points of S(k) lying inside the dissipative regime, if the system is larger than
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Fig. 4.2: The structure factor for a system with fixed density of 0.353 and dissipation of εn = εt = 0.1.

The data sets are for combinations of particle number and system size such that N = 500, L = 0.1m

(circle); N = 2000, L = 0.2m (plus); N = 8000, L = 0.4m (cross); N = 18000, L = 0.6m (diamond) and

N = 32000, L = 0.8m (star). The dashed line is a power-law fit of S(k) = Ak−1.63.

LEff ≃ 0.934m or ≃ 0.240m, respectively.

Measurement of the Power-Law Decay

We now attempt to estimate the fractal dimension of the structure factor for these

systems by fitting power-law functions (of the form described in equation 4.4) to the

dissipative regime of the structure factor across the range k < k′ where the constant k′

is an estimated upper limit to the dissipative regime. Three system scales are chosen,

corresponding to system sizes of L = 0.2m, 0.4m and 0.8m. Simulation of larger systems

are avoided as the measurement of small k behaviour of the structure factor becomes

significantly less reliable and more scattered since the huge population of particles

degrades computer performance. For example, transient effects take much longer time

to die away in the computing.

The following table shows the estimated fractal dimension of the structure for sys-

tems of fixed packing fraction and various system sizes. The lowest considered packing

fractions are difficult to simulate with a system at a sufficient scale in which power-law

decay is observable. In contrast the higher packing fractions require only a small sys-
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tem size before power-law behaviour is seen. The upper limit k′ is chosen to be equal

to kD if the system size satisfies LEff < L or 2kD else.

φ kDd LEff Df (L = 0.2) Df (L = 0.4) Df (L = 0.8)

0.177 0.112 0.48 1.30 ± 0.1 1.48 ± 0.02 1.55 ± 0.10

0.353 0.223 0.24 1.50 ± 0.04 1.60 ± 0.08 1.66 ± 0.09

0.530 0.334 0.16 1.63 ± 0.03 1.65 ± 0.02 1.60 ± 0.03

Table 4.1: The measured values of Df obtained for three packing fractions and three system sizes of

highly dissipative systems.

For system sizes smaller than LEff we find that the estimate of the fractal dimension

is consistently under-predicted. We obtained a estimated value for Df consistent with

the results Peng and Ohta (1998a) (where their system parameters are equivalent to

φ = 0.16, L = 0.21, εn = 0.1, εt = 1.0 and Df = 1.4 ) when the packing fraction is

φ = 0.177 and system size is L = 0.2. We also find a similar value when using Peng

and Ohta actual parameters. This suggests that Peng and Ohta considered a set of

parameters which the dissipative regime is not sufficiently visible. Hence data outside

the power-law decay was fitted and lead to the under-estimate in the value of Df . In

figure 4.1 we demonstrate that the structure factor agrees with a power-law fit of k−1.4

(shown as a solid line) only over the finite range of kd bounded between 2kDd − 0.05

to 2kDd.

For system sizes greater than LEff the fractal dimension Df settles into the range

1.60 to 1.66. Variation in value between subsequent system sizes lies well inside the

reported error tolerance of any single measurement. Hence the value of Df can be

considered to be reliable and approximately constant with any variation due to packing

fraction being very weak and masked by the fitting uncertainty. Even in the most dilute

system, shown in the table as φ = 0.177 at L = 0.8m, the measurement of exponent Df

improves to 1.64 ± 0.26 if the upper-bound k′ is decreased to 2kD/3 and demonstrates

how sensitive the measurement of Df is with respect to fluctuations in data quality.

In figures 4.1 and 4.2 we demonstrate that these constant values of Df , achieved

when L > LEff , are sufficient to describe the complete range of the power-law decay

from k of zero to k′ by drawing dashed-line power-law fits of exponent -1.63 through

the distributions.
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The results from the table suggest that, for systems of high dissipation and system

size that satisfies L > LEff , the fractal dimension Df is approximately constant over

the packing fractions considered. In the next section we investigate how far the fractal

dimension changes when either the dissipation of the collision or the packing fraction

of the system is varied.

4.1.3 Stability with Respect to Dissipation

In the previous section we discovered that the fractal dimension Df took a value around

1.63 ± 0.03 for a variety of packing fractions where the system had a very high dissi-

pation and a system size that was sufficiently large that 2π/L < kD. In these systems

the particles dissipate both normally and tangentially to the collision. We are now

interested in determining if Df remains fixed for all dissipation, as previously found by

Peng and Ohta. We test the hypothesis that the fractal dimension Df has one common

value for the complete spectrum of dissipations by considering three cases:

Case I, No tangential dissipation, εt = 1 ;

Case II, Maximum Tangential dissipation, εt = 0.1;

Case III, Minimal normal dissipation, εn = 0.9.

If the dissipative regime of the structure factor has common valued fractal dimension

for all three cases then we expect the same to hold true for all other combinations of

dissipation.

In all cases we simulate systems of a moderate density such that the packing fraction

is chosen to be φ = 0.530. The system size is chosen such that it is either L = 0.2m,

0.4m or 0.8m and the corresponding particle populations are either 3000, 12000 or

48000 respectively. For most coefficients of restitution the choice of size is sufficient

that the dissipative regime of S(k) is visible for at least one size of L.

We now discuss the different dissipation cases in more detail. Case I produces

systems where the dissipation extent is comparable with previous published works.

Colliding particles dissipate energy due to their velocity becoming slightly correlated

normally to the direction of collision. The quantity of energy that can be lost by

the collision is restricted because the collision does not affect the magnitude of the

velocities tangential to the collision. As a result a pair of colliding particles can never

become totally correlated. We can introduce further energy loss by allowing tangential

dissipation during collision, as is done in Case II and III. Case II maximises tangential

dissipation by using a very low coefficient of tangential restitution of fixed value 0.1
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whilst the normal coefficient of restitution is allowed to vary. When both normal and

tangential coefficients of restitution are set to zero, maximum dissipation is achieved and

pairs of particles become totally correlated (in velocity) at collision. Inelastic collapse

is prevented by the random force de-correlating the particles. An alternative approach

is given by Case III. Here the normal dissipation is kept to a minimum by using a high

coefficient of normal restitution of fixed value 0.9 and instead the tangential coefficient

of restitution is allowed vary. Again these colliding particles cannot become totally

correlated as the little momentum is lost normal to collision.

In the following sections we calculate the fractal dimension Df for the three dissi-

pation cases.

Case I, Systems where Dissipation is Normal to the Collision

In Case I, we simulate systems with a coefficient of normal restitution chosen in the

range 0.9 to 0.1, whilst the coefficient of tangential restitution is kept at 1. The system

scale is chosen such that L = 0.2m, 0.4m or 0.8m. We measure the structure factor

and best fit the dissipative regime to a power-law decay of equation 4.4 over the range

of k < k′. The exponent of the power-law determines the fractal dimension Df . The

limit k′ is chosen to be equal to kD, when the system satisfies LEff < L or 2kD else.

The following table tabulates the results, entries for systems where 2π/L < 2kD are

omitted.

εn kDd LEff Df (L = 0.2) Df (L = 0.4) Df (L = 0.8)

0.2 0.162 0.32 1.56 ± 0.05 1.62 ± 0.06 1.57 ± 0.06

0.3 0.154 0.34 1.59 ± 0.03 1.63 ± 0.10 1.58 ± 0.06

0.4 0.142 0.37 1.58 ± 0.03 1.64 ± 0.09 1.66 ± 0.07

0.5 0.127 0.42 N/A 1.61 ± 0.09 1.66 ± 0.07

0.6 0.108 0.49 N/A N/A 1.66 ± 0.05

Table 4.2: The measured values for Df for systems with a fixed packing fraction of 0.530 and various

dissipations in which εt is fixed at 1.0.

When the systems is too small in size, such that L < LEff , the estimated value of

Df is much too small resulting from the fitting over data points of S(k) that lie outside

the dissipative regime and with k of k > kD. By contrast, in sufficiently large systems

(bold data values), where L > LEff , the measured value for the fractal dimension,

Df , is found to be in the range 1.57 to 1.66. We suggest that Df may be considered
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Fig. 4.3: Variation of structure factor for a system with fixed packing fraction and tangential coefficient

of restitution 1. The four data sets represent different extents of normal dissipation such that εn = 0.2

(circle); εn = 0.4 (square); εn = 0.6 (diamond); εn = 0.8 (up-triangle). The dashed lines are power-law

fits of Ak−1.63.

approximately constant within the level of accuracy achieved here for two reasons: one,

no systematic trend in values is seen with respect to coefficient of normal restitution

or size of system (when L > LEff ); two, the variation in value of Df is of order,

or less than, that of any tolerance error of an individual measurement so cannot be

distinguished from fitting limitations.

The measurement of Df becomes increasingly difficult as higher coefficients of nor-

mal restitution are considered. For systems of packing fraction 0.530 measurement of

Df for lower dissipations than εn = 0.6 can not be made without using a system size

larger than L = 0.8. It is beyond the scope of this thesis to measure such systems as

increasing the system size further, to even say L = 1.0m, requires simulation of at least

75,000 particles which is computationally very demanding. We are left to conjecture

that the estimated value for Df will continue to remain within the range 1.57 to 1.66

for higher coefficients of restitution, beyond that accurately measured here, as long as

L > LEff .

We now demonstrate for a system of length 0.4m and particle population is 12000

that the dissipative regime of the structure factor is indeed described by power-laws
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Fig. 4.4: Variation of structure factor for a system with fixed packing fraction and tangential coefficient

of restitution 0.1. The five data sets represent different extents of normal dissipation such that εn = 0.1

(circle); εn = 0.3 (square); εn = 0.5 (diamond); εn = 0.7 (up-triangle) and εn = 0.9 (down-triangle).

The dashed lines are power-law fits of Ak−1.63.

of fixed fractal dimension Df . Figure 4.3 shows the structure factor for a range of

coefficients of normal restitutions. As the coefficient of normal restitution increases

the region of S(k) considered to be within the dissipative regime and approximately

a power-law decay reduces in correspondence with the reduction of value of kD. S(k)

exhibits no observable power-law decay for the system where εn = 0.8. For the remain-

ing systems (where εn is 0.6, 0.4 or 0.2) the dissipative regime of the structure factor

can be fitted by power-law decays of Ak−1.63, shown on figure as dashed lines, which

demonstrates that good agreement is achieved between power-law and S(k) when a

constant value for the fractal dimension is chosen.

Case II and III, Systems with Dissipation in both Directions

We now allow colliding particles to dissipate energy tangentially to the collision. Such

particles are contained in systems that obey dissipation of Case II or III. We demon-

strate that the dissipative regime of the structure factor are consistent with there being

a single value for the fractal dimension Df . No detailed determination of Df are carried

out. Instead data of the structure factor is fitted to by a power-law decay using the
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Fig. 4.5: Variation of structure factor for a system with fixed packing fraction and normal coefficient of

restitution 0.9. The five data sets represent different extents of tangential dissipation such that εt = 0.1

(circle); εt = 0.3 (square); εt = 0.5 (diamond); εt = 0.7 (up-triangle) and εt = 0.9 (down-triangle).

The dashed lines are power-law fits of Ak−1.63.

same value for Df as previously determined from data of Case I. We use systems of a

fixed size containing 12000 particles and width L = 0.4m.

We first study Case II dissipating systems. The systems are chosen to dissipate with

a coefficient of normal restitution picked from the range 0.9 to 0.1 whilst the coefficient

of tangential restitution is kept fixed at 0.1. In these systems particles in collision

separate normally to the collision with little tangential motion relative to one another.

The chance of re-collision is high for moderate to high dissipation values of εn.

Figure 4.4 shows the structure factor for a range of coefficients of normal restitu-

tion. The size of the system is sufficient that the dissipative regime can always be

observed whereas the upper limit of k (given by approximately kD) obeys kDd > 0.167

(determined when εn = 1). We find that within the dissipative regime these structure

factors are well approximated by power-law functions of Df ≃ 1.63, which we show in

the figure as dashed lines.

Remarkably these power-law fits are as good an approximation for the dissipative

regime of S(k) in moderate dissipation systems represented by εn = 0.9 as for highly
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dissipative systems represented by εn = 0.1. The statement adds weight to the conjec-

ture that Df is approximately independent of dissipation.

We now study Case III dissipating systems and find that the the same picture

emerges. Here the systems have coefficients of normal dissipation fixed at εn = 0.9

whilst tangential dissipation is chosen from εt = 0.9 to εt = 0.1.

Figure 4.5 shows the structure factor for a range of tangential restitutions. Again

we find that the dissipative regime of S(k) can be well described by power-law functions

where Df ≃ 1.63. Examples are shown by dashed-lines in the figure.

Thus we make the following conclusions about the effect of dissipation on the struc-

ture factor: one, the fractal dimension which characterises the dissipative regime of

the structure factor has a constant value independent of extent of dissipation; two,

the range of k that lies within the dissipative regime increases as the coefficients of

restitution become smaller.

4.1.4 Stability with Respect to Packing Fraction

Finally, we consider the effect of the packing fraction on the fractal dimension, Df .

We choose systems of moderate dissipation εn = 0.4 and no tangential dissipation.

We ensure that the dissipative regime of S(k) is observable at systems sizes that can

be practically simulated by choosing packing fractions that avoid being very dilute.

Instead we study packing fraction from φ = 0.353 to just above the crystalline limit

with φ = 0.795. The range of packing fractions is sufficiently broad and we believe

that no additional effects are seen for lower packing fractions as no structural change

in phase is known for packing fractions below 0.353. Instead only the range of k which

S(k) can be considered to be in the dissipative regime changes as the mean free path

of particles increases inversely with packing fraction.

Figure 4.6 shows the obtained structure factors for systems with a packing fraction

in the range 0.353 to 0.795 and system size of L = 0.4m. As the packing fraction

increases the large k oscillations of S(k) increases in amplitude corresponding to tighter

clustering between neighbouring particle as the unoccupied area of the system reduces.

When the packing fraction is beneath the crystallisation packing fraction φc = 0.719,

the range of k that lies within the dissipative regime of S(k) proportionally increases

with packing fraction. These structure factors have dissipative regimes that can be

fitted with a power-law decays of fixed exponent Df consistent with that shown in
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Fig. 4.6: Variation of structure factor for a system with fixed dissipation, εn = 0.4 and εt = 1.0

but varying packing fraction such that φ = 0.353 (circle); φ = 0.442 (square); φ = 0.530 (diamond);

φ = 0.619 (up-triangle); φ = 0.707 (down-triangle) and φ = 0.795 (cross). The dashed lines are

power-law fits of ∼ k−1.63.

previous sections, examples of which are shown by the dashed lines in figure 4.6.

The behaviour of the structure factor changes once the packing fraction exceeds

the liquid-crystalline phase transition (φc = 0.719) as seen by the data for φ = 0.795.

Here the large-scale oscillations spike, signifying that large numbers of particles are

packed as crystals. Similarly the small k behaviour of the structure factor changes and

power-law decay does not seem to occur.

We next calculate estimates for the fractal dimension, Df , for the range packing

fractions shown in the figure 4.6 and three system sizes, L = 0.2m, 0.4m or 0.8m. The

upper limit for the dissipative regime, k′, is chosen to be equal to kD, when the system

size is such that L > LEff or 2kD else. The table tabulates the measured values of Df :

When the system has both a packing faction beneath crystallisation and a system

size where L > LEff then the fractal dimension Df is measured to lie in the range

1.60-1.66. The value of Df is sufficiently similar (to within fitting error) across a range

of packing fractions that it can be considered to be approximately constant with any

variation weak beyond the accuracy of the data.
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φ kDd LEff Df (L = 0.2) Df (L = 0.4) Df (L = 0.8)

0.353 0.095 0.56 N/A 1.53 ± 0.11 1.54 ± 0.27

0.442 0.118 0.45 1.54 ± 0.24 1.57 ± 0.08 1.56 ± 0.14

0.530 0.142 0.38 1.58 ± 00.03 1.64 ± 0.09 1.66 ± 0.07

0.619 0.166 0.32 1.57 ± 0.04 1.62 ± 0.05 1.66 ± 0.07

0.707 0.189 0.29 1.44 ± 0.09 1.64 ± 0.04 1.65 ± 0.03

0.795 0.213 0.25 0.97 ± 0.04 1.04 ± 0.07 1.05 ± 0.05

Table 4.3: The measure values of Df for systems with a moderate fixed dissipation in which εn = 0.4

and εt = 1.0 and various packing fractions.

When the packing fraction exceeds the point of crystallisation, such as shown by φ =

0.795, the structure of the system changes and the measured Df drops to 1. However it

is uncertain if structure factors in the crystal limit have a power-law dissipative region

as particle mobility is severely restricted.

4.1.5 Brief Summary on Structure

We now give a brief summary of the structural properties of the two dimensional Ran-

dom Force Model. The structure factor has small k behaviour, called the dissipative

regime, that is described by a power-law decay. By choosing values of k less than kD we

ensure that we consider only S(k) that lies within the dissipative regime. Consequently

systems must be of size L > Lmin before the dissipative regime can be observed and

systems that are smaller can be considered to show strong finite size effects. The fractal

dimension, Df , determines the exponent of the power-law decay through equation 4.4.

We conclude, over the range of systems seen, that the fractal dimension of the large-

scale structure is both largely invariant to the extent of dissipation and the extent of

density when the packing fraction is below the point of crystallisation. We conjecture

that it continues to hold true for packing fractions below 0.353. We conclude that in

general Df takes a value in the range 1.63 ± 0.03. Any variation seen in the value of

Df is very weak and is masked by the fitting uncertainty.

4.2 Implications on Real Space Structure

It is now clear, from our studies describing the structure factor, that the Random

Force Model has k-space structural properties that are statistically fractal for small k.
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Fig. 4.7: The spatial correlation function for a system with a packing faction of 0.530, system size

L = 0.4m and dissipation εn = εt = 0.1. The dashed line is a constant fit of 0.98.

Nonetheless, it is not trivial how this relates back to the real-space occupied by the

particles. From the fractal nature of S(k) we can infer that the system is inhomoge-

neous. Consequently we would like to know: what this tells us about the arrangement

of the particles within the system?

Another standard measure of a systems structural behaviour is given by the angular

average spatial correlation function, g(R). It describes the time-average probability of

finding a particle a distance R away from another other particle. During simulation

g(R) is calculated using the following:

g(R) =
2L2

2πRN2

〈
N∑

i=1

N∑

j=i+1

δ(R − Rij)

〉
, (4.10)

where Rij is the separation distance between particle i and j at time t given by

Rij = |ri(t) − rj(t)|.
Figure 4.7 shows the typical form of g(R) obtained from simulation. For small

distance the spatial correlation oscillates with sharp peaks occurring at distances cor-

responding to particles in contact. The exact values of these peaks infer the extent of

clustering occurring within the system.

The large distance behaviour of g(R) tells us about how homogeneous the system
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is: a system that is truly homogeneous has a spatial correlation function that is flat

and constant, equal to one; a system that is inhomogeneous has a spatial correlation

function that decays towards a constant. The distributions of S(k) suggest the two-

dimensional Random Force Model is inhomogeneous but, as figure 4.7 demonstrates,

this is difficult to distinguish from the form of g(R) which weakly decays, for large

distance R such that g(R) appears nearly constant when compared to either the peak

value or the asymptotic value. Furthermore, the range of R is limited to R < L/2 as

larger R is strongly influenced by the periodic nature of the system boundaries. This

all means that it is very difficult to reliably measure the decay in g(R). We cannot be

sure of the value that g(R) tends to for large R as it need not be one and appears to

be affected by the finite size of the system.

Instead we use the behaviour of the structure factor to infer the large R behaviour

of g(R). Let us begin by making the simple hypothesis that g(R) approximately decays

towards one, for large R, by the simple form:

g(R) = 1 + AR−γ , (4.11)

where γ is a fixed undetermined exponent and A a fixed constant specific to the system.

The angular average spatial correlation function is related to the angular average

structure factor, S(k), by the relation (Chaikin and Lubensky 1995):

S(k) = 1 +
N

L2

∫
(g(R) − 1)

∫ 2π

0
exp(−ikR cos(θ)) dθ RdR

= 1 + 2π
N

L2

∫
(g(R) − 1) J0(kR) rdR, (4.12)

where the lower expression of identity 4.12 is obtained by using a zero-order Hankel

transform such that J0(x) is a Bessel function. k-space is related to real-space by

k = 2π/R and thus the large r behaviour of g(R) corresponds with the small k behaviour

of S(k). If for large distance g(R) obeys the hypothesis of relation 4.11 then, using

identity 4.12, we can determine the implication this has on the small k behaviour of

the structure factor. Thus for small k the structure factor is given by the integral:

S(k) − 1 ≈ 2πN

L2

∫
AR−γ J0(kR)RdR

≈ 2πN

L2

∫
A

z−γ

k−γ
J0(z)

zdz

k2

≈ A′kγ−2, (4.13)

where z is used as a substitution variable defined as z = kR and A′ is a constant of the

system. At small k the structure factor has a value much bigger than one and so S(k)
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is predicted to behave approximately as a power-law. This of course is only consistent

if γ is related to the fractal dimensional Df by γ = 2 − Df . Therefore the large R

behaviour of g(R) is approximately given by:

g(R) = 1 + ARDf−2. (4.14)

It should be noted that the g(R) dependence on R is not affected by choosing g(R)

to tend to some other value. In such case S(k) of equation 4.13 is described with an

additional delta function term that contribute only for k = 0 where S(k) is singular.

We are now interested in studying the local environment around a particle as it is

this that most affects a particles behaviour.

The average number of particles found within a distance R from a particular particle,

C(R), is given by :

C(R) ∝ 2π

∫ R

0
g(R′)R′dR′. (4.15)

The relation above implies that for large distance C(R) is given by:

C(R) ∼ 2πA′

Df
RDf + πR2. (4.16)

Hence the average number of particles found within a distance R scales normally with

distance, for large R (as the R2 term of C(R) dominates), and not as a fractal. Nonethe-

less it is not the average particle that leads to the anomalous properties of the system

but rather those particles that find themselves in locally dilute regions of the system. It

is the number of particles found within a distance R around these anomalous particles,

n(R), that can be shown to be fractal.

We can obtain the anomalous behaviour of the system by subtracting off the mean

field behaviour, such that n(R) is given by:

n(R) = C(R) − n ∼ A′′RDf , (4.17)

where n is the expected mean field behaviour if the system was homogeneous, which

goes as n ∼ R2, and A′′ a constant of the system. This anomalous behaviour can

be thought to be associated with particles found in dilute regions as the local density

can drop many orders beneath that suggested by the system’s packing fraction. In

comparison, the local density cannot increase as much above the average density and

particles within these regions are near-uniformly distributed.

Thus we arrive at the conclusion that the large-scale structure around particles in

low dense regions is fractal. With this new measure we are now open to discuss the

effect that the fractal structure has on the motion of an individual particle.
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4.3 The Distribution of Free Paths

We are now interested in understanding how these structural behaviours affect the mo-

tion of the individual particles in the system. We ask the question: what influence does

the fractal structure have on the behaviour of individual particles? In the system each

particle is surrounded by a local environment consisting of other particles and unoccu-

pied free volume. If the particles are arranged in a fractal structure then it is natural to

invert this idea and suggest that the unoccupied regions of the system are also fractally

sized. Between collision particles move through the unoccupied space and temporary

behave independently of the other particles. The larger the unoccupied space around

each particle the further it will travel before collision and hence the more uncorrelated

its motion becomes with respect to other particles. This in turn would be expected

to strongly affect the behaviour of the velocity properties of the system. Therefore we

propose to study the overall distance travelled by particles between collision as a first

step to understanding the behaviour of other properties of individual particles in the

system. This is different to the approach taken in one dimensions where we were able

to measure the separation distance between nearest neighbours.

The free path of a particle, li, is defined as the effective change in the position of

the particle between two consecutive collisions:

li = |ri(τ + t0) − ri(t0)|, (4.18)

where ri(t) is the ith particle’s position at time t, t0 is the initial time just after the

previous collision and τ is the time between successive collisions.

The distribution of free paths, Pl(l), is defined to be the probability that a particle

has travelled a free path l upon arrival at the next collision. We measure the free path

distribution for a range of systems sizes. For simplicity we choose only highly dissipative

systems, where εn = εt = 0.1, in order to maximise the length of the long distance tail

which is characterised by particles whose motion is dominated by the random noise.

We expect similar shaped long distance tails to be present in lower dissipative systems,

but these will begin at progressively longer length scales as the dissipation decreases.

The free path distribution, as with the structure factor, is also affected by the finite

size of the system. We measure the free path distribution and find that for all systems,

once the system is of sufficient size that finite size effects become irrelevant, the long

distance tail is describes by the same shape. This shape can be predicted by the theory

of Isliker and Vlahos (2003), using solely the fact that the large-scale structure of the
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Fig. 4.8: The free path distribution for a system with fixed density of 0.353. The data sets are

for combinations of particle number and system size such that N = 500, L = 0.1m (circle); N =

2000, L = 0.2m (square); N = 8000, L = 0.4m (diamond); N = 18000, L = 0.6m (up-triangle) and

N = 32000, L = 0.8m (down-triangle).

system is fractal. We find that this prediction matches the data over a large number of

decades and we determine the same value for Df by fitting the free path distribution

as was measured directly for the structure factor.

4.3.1 Finite Size Effects

Before we progress to predicting the shape of the free path distribution we must ensure

that the systems we study are sufficiently large that they do not exhibit any strong

finite size effects that might imped the formation of true long distance behaviour. In

this section we determine the minimum system size in which the free path distribution

stops exhibiting large finite size effects and find that the system must be much larger

than that required to see the power-law decay in the structure factor. The system is

expected to exhibit strong finite size effect when the system is either of insufficient size

that fractal structure is not observed or comparable in size to the length-scale, 2π/kD,

which defines when structural features can be treated as fractal.

We simulate the two-dimensional Random Force Model for a system with packing

fraction of 0.353 and dissipation εn = εt = 0.1. The size of the system is varied from
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L = 0.1m to L = 0.8m and we plot the free path distributions in figure 4.8. As the size

of the system increases it becomes more likely that a particle will travel a long distance

before colliding and is exhibited in the free path distribution by the long distance tail

becoming shallower. For this example packing fraction, we find that once the system

is larger than Lc ≈ 0.4m notable change in shape of Pl(l) ceases and implies that finite

size effects play only a minor role in larger systems. Significantly, we find that the

minimum system size at which finite size effects become irrelevant, Lc, is much larger

than that required to observe the power-law decay in the structure factor, where Lmin

is calculated to be only 0.085m. Hence we should ensure that we use only systems

where L ≥ Lc ≫ Lmin, say Lc ≈ 5Lmin, to avoid large deviation in the form of Pl(l)

due to finite size effects.

4.3.2 Estimating the long distance tail of Pl(l)

We are now ready to attempt to describe the free path distribution using theory. We

begin with knowledge of two properties of these systems: the large-scale environment

of particles is distributed as a fractal; on average a particle increases its velocity with

distance from collision. We based our approach of determining the free path distribution

on the methods employed in the paper of Isliker and Vlahos (2003). In this paper the

system is made up of background particles arranged in a static three-dimensional fractal

of dimension df . Particles detach from the fractal background and move ballistically

until collision with another particle within the fractal.

It requires a little thought to understand the relevance of Isliker and Vlahos work

to the two-dimensional Random Force Model. Statistically it is those particles which

achieve the highest velocity during a walk between collision that move the furthest.

In comparison, the remaining particles in the system act as background, where their

velocity is so low, compared to the fast particles, that the change in position of these

particles is insignificant compared to the free path of the fast particle. Thus, the high

velocity particles effectively see their environment as a static fractal background.

It should be noted that these arguments only apply to the extremely high velocity

particles that consequently travel a large distance. Therefore it is expect that only

the high distance tail of the free path distribution of the Random Force Model will

converge with that obtained for a particle undergoing a random walk through a fractal

environment.



Chapter 4 Fractal Properties of a Two-dimensional Random Force Model 97

Fig. 4.9: Pictorial representation of a fast particle moving a radial distance r and colliding within the

highlighted circular shell

We now sketch out the derivation of the free path distribution in two dimensions

following the arguments laid out by Isliker and Vlahos. The system has a background

of particles arranged in a fractal with dimension Df . The fractal dimension Df is the

same as that found for the small k power-law decay of the structure factor. The number

of particles found within a circle of radius R, around a point x, is expected to be:

n(R) = A

(
R

δ∗

)Df

, (4.19)

where δ∗ is the most probable value of the nearest neighbour distance. The number of

particles found in a circular shell, m(R)∆R, of radial thickness ∆R around point x is

given as:

m(R)∆R =
d

dR
n(R)∆R = A

Df

δ∗

(
R

δ∗

)Df−1

∆R. (4.20)

A fast particle starts at position x and travels radially a distance R in a random

direction. A pictorial representation is shown in figure 4.9. In the Random Force

Model high velocity particles approximately travel ballistically, with the random force

providing only minor alterations to the course. The probability of the particle, qR ∆R,

hitting a background particle in the circular shell R to R + ∆R is given by the ratio of

the total occupied length of the shell divided by the circumference of the shell:

qR ∆R = m(R)∆R
2ρ

2πR
= A

Dfρ

πδ2∗

(
R

δ∗

)Df−2

∆R, (4.21)

where ρ is the cross-sectional radius of an interaction between fast particle and back-

ground particle.

The probability of a particle, pR ∆R, moving freely for a distance R and then

colliding with a background particle is given by the product of the probability of going
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through n − 1 shells, successively without colliding, multiplied by the probability of

colliding in the nth shell:

pR ∆R =

n−1∏

i=0

(1 − qRi
δR)

︸ ︷︷ ︸
πR

qR δR. (4.22)

Each shell has a radial width δR and boundaries at radial distances Ri = i δR and

Ri+1 = (i + 1) δR. The product πR can be re-written as:

ln(πR) ≈
∫ R

0
−qR′ dR′, (4.23)

using the identity ln(1 + x) ≈ x for x ≪ 1. We solve the above integral and finally

arrive at the solution for pR ∆R:

pR ∆R = exp

(
−A

Dfρ

(Df − 1)πδ
Df
∗

RDf−1

)
× A

Dfρ

πδ2∗

(
R

δ∗

)Df−2

∆R. (4.24)

The distribution pR is the distribution of free paths, Pl(l), (where R is relabelled

as l) and we conclude that Pl(l) is of the form:

Pl(l) ≃ A0 exp(−ClDf−1) lDf−2. (4.25)

4.3.3 Comparison with data from the Random Force Model

In the last section we derived that the long distance tail of the free path distribution

of the Random Force Model is described by the expression 4.25. We will now put this

to the test and demonstrate that the proposed long distance shape of Pl(l) provides

a suitable solution over a large number of decades to simulated data of the Random

Force Model. Simulations are performed and the free path distribution calculated

for two systems of size L = 0.6, high dissipation where coefficients of restitution are

εn = εt = 0.1 and packing fraction either of 0.353 or of 0.530. The exact choice of

system parameters is irrelevant as long as: one, the system size is sufficient that the

measured structure factor, S(k), has an observable power-law decay; two, the statistics

of the free path distribution are sufficiently accurate and precise that an asymptotically

large free path can be seen. The above statements imply that decreasing either density

or dissipation of the system means that both the size of the system and the precision

of the free path distribution must increase.

We fit the expected free path distribution (equation 4.25) to the lowest decades of

data from the Random Force Model, where P (v) < 1, and determine that the best fit is

given when Df has the value 1.64± 0.07, for packing fraction of 0.363 (fitted over four
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Fig. 4.10: Comparison between the free path distributions generated from the Random Force Model

of packing fractions 0.353(plus) and 0.530 (cross), and the fit to equation 4.25 (dashed lines).

decades), or 1.61 ± 0.04 (fitted over six decades), for packing fraction of 0.530. These

values for Df are very near to that measured for the equivalent structure factors where

Df is determined as 1.66 ± 0.09 and 1.60 ± 0.03 for the respective packing fractions.

Figure 4.10 show the free path distribution for the two packing fractions as data

points. The dashed lines represent the best fit to equation 4.25 when Df is chosen to

be equal to 1.63. At large distance the fit and data converge over at least five decades,

as expected. Therefore equation 4.25 is sufficient to describe the long distance tail of

the free path distribution.

4.4 Summary

In this chapter we revisited a previously discussed question: what is the behaviour

of the large-scale structure of the two-dimensional Random Force Model? We found

that, for systems of sufficient size, the structure factor S(k), at k within the dissipative

regime, is always described by a power-law decay of the form S(k) = Ak−Df , where Df

is typically measured in the range 1.60 to 1.66. We find that the variation in value of

Df is very weak and not systematic suggesting that it can be treated as approximately

constant within the accuracy of our results. This decaying power-law is the hallmark
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of large-scale fractal structure, above that of the average behaviour, where no single

characteristic length scale can be used to describe the structure. We argued that

although the bulk of the system is distributed uniformly it is the fluctuations away

from homogeneity, in the dilute regions of the system, that is of most interest where

particles are found fractally arranged.

We next discussed the effect of the fractal structure on particle behaviour. We

measured the distribution of free paths, where the free path of a particle was define as

the displacement made by a particle between consecutive collisions. We found that for

systems of sufficient size, where finite size effects can be ignored, that the long distance

tail of the free path distribution is effected by the large-scale fractal structure of the

system and calculated it to be of the form:

Pl(l) ≃ A0 exp(−ClDf−1) lDf−2,

using the theory of Isliker and Vlahos (2003) whereby fast particles are treated as

ballistic while other particles make up the fractal environment.

Connecting the Structure to the Velocity

An important feature of the asymptotic shape of structure (long distance) is that it

remains unchanged with respect to dissipation and packing fraction once the system

is large enough that finite size effects can be ignored. Similarly in the next chapter

we find that for moderate to high dissipation the asymptotic shape of the velocity

distribution of these systems also remain unchanged with respect to dissipation. This

suggest that it is possible to relate the structural properties to the velocity statistics.

The high velocity particles of the systems are a result of the coupling of the structural

inhomogeneity of the system and the random force: Particles undergo an accelerating

walk between collisions but require a large amount of room to reach high velocity. Each

particle can be thought of as a single particle wandering through a fractal background

environment of other particles.

In the next chapter we introduce a two-dimensional Single Particle Model, which

we use to create a self-consistent theory, where the fractal behaviour of the structure

determines the asymptotic behaviour of the velocity statistics. We use this new model

to conclusively decide whether the velocity distribution is either non-universal with

respect to dissipation or if it is actually a crossover function ranging from Gaussian,

for low velocity, to a fixed determinable anomalous shape, for high velocity.



Chapter 5

Velocity Properties of a

Two-dimensional Random Force

Model

Amongst the literature there is much confusion about the shape of the velocity dis-

tribution for the multi-dimensional Random Force Model. This results from the fact

that it is difficult to measure the high velocity behaviour of particles within the system

to sufficient accuracy and the lack of an appropriate kinetic theory to describe these

systems. This chapter is about the measurement of the velocity distribution and the

development of a theory that incorporates the structural features of the system.

We describe the velocity distribution of the two-dimensional Random Force Model

and precede by using the standard approaches, applied by other research groups, in an

attempt to determine the high velocity tail of the distribution. The complete velocity

distributions is not described by any previously used granular kinetic theory. We further

show that, when the system is of moderate to high dissipation and of sufficient size, all

velocity distributions can be described by a stretched-exponential of fixed exponent.

We conjecture that other systems will also have velocity distributions of the same

asymptotic limit if better statistics could be obtained.

However caution must be applied when reading these results because the stan-

dard methods have significant drawbacks that bias the calculated stretched-exponential

shape of the velocity distribution. In the second section we show how the high velocity

tail of the distribution is generated through coupling the systems structural and veloc-

ity properties. It is the fractal structure that determines the shape of the high velocity

tail of velocity distribution.

101
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Instead of considering all N particles, we concentrate on the motion of one particle

in the fractal environment provided by the remainder. We call this the Single Particle

Model. When the fractal dimension of the environment is Df = 1.63 ± 0.03 then

the high velocity tail of the velocity distribution is approximately exponential. These

results are shown to be consistent with the data of the Random Force Model.

5.1 Observations using Standard Methods

It is widely held that the velocity distribution P (v), where v denotes a component of

velocity, of the two-dimensional Random Force Model represents a crossover function

that is Gaussian for low velocities and anomalous for high velocities. There is good

reason to assume that the distribution does behave in this way as there are two extreme

types of particles: those that are strongly influenced by post-collision velocity and

consequently are slow moving; those that are strongly influenced by the random force

and are fast moving with near-ballistic trajectories. For high velocities the distribution

is assumed to be a stretched-exponential, but its exact shape is still contested in the

literature. A prominent view (Moon, Shattuck, and Swift 2001) is that the high velocity

tail of the distribution of the Random Force Model obeys P (v) ≃ A exp(−B|v|3/2) as

described by the granular kinetic theory of van Noije and Ernst (1998). However van

Noije and Ernst assume that the system is homogeneous which requires us to ignore

the structural behaviour of these systems, in particular strong inhomogeneities in the

form of clustering. Consequently the relevance of van Noije and Ernst theory has been

put into doubt (van Zon and MacKintosh 2004).

Simple Scaling Moments

One major difference between the one-dimensional and two-dimensional Random Force

Model is the behaviour of the mth order moments of velocity, 〈|v|m〉. In the one-

dimensional case we found that the moments of velocity did not have expected scaling

behaviour suggested by Williams and MacKintosh (1996). We would now like to repeat

the mean field approach of Williams and MacKintosh for the two-dimensional case.

This involves deriving the equation of state for the two-dimensional Random Force

Model and follows identical steps taken in section 3.1.1. The only changes that occur are

in the derivation of the rate of the average loss of energy, which requires the inclusion of

the tangential coefficient of restitution as well as the normal coefficient of restitution,

and in the derivation of the average distance between collision, which we will now
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Fig. 5.1: A particle moving through the granular system. At any given time, only particles whose

centre lies within the shaded rectangle have a chance of colliding with the particle.

describe. For a two dimensional system the average distance a particle travels before

collision, l0, is given by average separation of particles found along the path of a particle.

Figure 5.1 shows a typical particle moving through the system. l0 is calculated as one

over the product of the number density of the system, N/L2, and the collision cross

section 2d, such that:

l0 =
L2

2dN
=

πd

8φ
. (5.1)

This leads to a equation of state for the two dimensional system of the form:

〈|v|〉3 =
C1

φ

Ddπ

M2(2 − εn
2 − εt

2)
, (5.2)

where 〈|v|〉 is the mean velocity between collision and C1 is a numerical compensation

constant used when assuming that 〈|v|〉2 = C1

〈
v2
〉
. We finally make the assumption

that all the moments of the velocity scale in the same way so that the above expression

can be written as 〈|v|m〉3/m ∝ 1/φ .

We now test this mean field theory prediction by measuring the moments of velocity

for packing fractions ranging from very dilute φ = 0.0014 to very dense φ = 0.84. In

each case we keep the scale of the system fixed, with the system size either L = 0.2m

or 0.4m, and allow the population of particles to vary. Further increases in system size

do not significantly change the findings. The dissipation of the system is chosen to

be εn = εt = 0.1, such that any deviation from mean field approach is most strongly

exhibited.

Figure 5.2 shows measurements of the 3rd, 6th, 9th and 12th moment of velocity as

a function of packing fraction. For low packing fraction of less than 0.1 all measured
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Fig. 5.2: The behaviour of the mth order moment of velocity with respect to packing fraction, φ.

The different order moments are distinguished by different patterns and the figure shows the 3rd

(unshaded) 6th (shaded), 9th (left slash lines) and 12th (vertical lines) moment of velocity whilst the

different shapes demonstrate invariance towards system scale where L is either 0.2m (circle) or 0.4m

(square). The dashed lines are power law fits of A/φ.

orders of the moments of velocity obey the expected mean field prediction of:

〈|v|m〉3/m ∝ 1/φ. (5.3)

The low packing fraction systems exhibit this apparent simple scaling because these

systems have velocity distributions dominated by the Gaussian peak such that the high

velocity tail of the distribution occurs at very large velocity-scales.

For higher packing fractions the moments of the velocity distribution deviate away

from the mean field prediction and a crossover in behaviour is observed. The moments

of the velocity distribution must tend to zero as the system moves towards maximum

packing and the particles become locked into place. Adjusting the size of the system

does not significantly alter the measured value of the moments of the velocity distribu-

tion for a given packing fraction.

The complex nature of the moments of velocity, for moderate to high packing frac-

tion, means that they are do not provide good insight for understanding the behaviour

of the velocity distribution. We are forced instead to study P (v) in its entirety.
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The Asymptotic Shape of the Velocity Distribution

The aim of this section is to determine the asymptotic shape of the velocity distri-

bution using standard approaches to show that it is different to any shape previously

suggested, particularly that proposed by van Noije and Ernst. We describe the shape

of the velocity distributions and comment on the changing form as the coefficients of

restitution or particle population is varied. Unlike previous studies we do not keep

εt = 1.0 and so are able to explore higher dissipative systems. The distribution of ve-

locity is measured in simulation by methods described in appendix A. We demonstrate

that asymptotic behaviour of the velocity distribution can be fitted with a stretched-

exponential distribution of the form P (v) ∼ exp(−|v/v0|α), where the exponent α is

consistently much lower than that required for Maxwell-Boltzmann statistics, α = 2.

However we caution against taking too much from the exact value of α measured as it is

difficult to determine the correct asymptotic high velocity shape due to finite statistics

and limitations of the fitting method and rather this value of α should be viewed as an

upper limit.

Nonetheless these methods of fitting are suitable to our needs and we vary the size

of the system to show that changes in asymptotic shape due to packing fraction are

removed when larger sized systems are studied. This leads us to the conclusion that

the variations seen in high velocity shape due to packing fraction of fixed sized systems

are only caused by finite size effects. Our investigation concludes by asking whether

all these systems (regardless of dissipation extent) can be described by just one type

of velocity distribution: a crossover distribution in which the behaviour crosses over

from Gaussian for low velocities to anomalous with an exponent fixed in value for high

velocities. This type of crossover distribution will be justified by theory later in this

chapter.

5.1.1 The Velocity Distribution for a Fixed System Size

We begin by discussing the general behaviour of the velocity distribution observed

from the simulation of the two-dimensional Random Force Model. For simplicity we

will consider only the case where the tangential coefficient of restitution equals that

of the normal coefficient of restitution; in this case the fractional energy lost of each

collision is the same regardless of orientation between the normal of the collision and

the centre of velocity of the colliding particle pair.
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General Trend with Respect Dissipation

We measure the velocity statistics for a range of dissipations. The density and size

of the system are fixed at a moderate packing fraction of 0.530 and system size of

L = 0.2m. Figure 5.3 shows the velocity probability distribution for a spectrum of

coefficients of restitution ranging from εn = εt = 0.1 to 0.9. The shown distribution

P ’(v) is a vertically scaled velocity distribution where the value at v = 1 is the same as

that measured for the velocity distribution of the system with dissipation εn = εt = 0.1

(which we denote as P0(v)). We transform the measured velocity distribution (P (v))

to P ’(v) by using the map:

P (v) 7→ P ’(v) = P (v)
P0(1)

P (1)
. (5.4)

The vertical rescaling of the distributions is used to emphasise any similarity in

shape within the asymptotic tails of the distributions. If the distributions have the

same shape at v > 1 then all points of the scaled distribution will collapse onto one

curve.

As the coefficients of restitution raises from zero, shown in figure 5.3(a), the velocity

distribution is increasingly dominated by the peak behaviour. Remarkably we find

that the asymptotic tail of the velocity distributions for systems with dissipation of

ε . 0.5 collapse onto one curve in the described way. These distributions have the

same asymptotic shape.

Physically the observation suggests that the fastest velocity particles have forgotten

about the extent of dissipation of the system and consider any subsequent collision to

be near-inelastic. Particles cluster in sufficient numbers that high velocity colliding

particles lose most of their momentum and become strongly correlated with the cluster.

We conjecture that the velocity distributions of higher coefficients of restitution,

shown in figure 5.3(b), have the same asymptotic shape but at probability densities

beyond the measured range of the distributions, an idea explored further in section

5.1.3.

General Trend with Respect to Population Number

We measure the velocity statistics for a range of packing fractions. The dissipation is

maximised by the use of low coefficients of restitution where εn = εt = 0.1. We vary

the density of the system from a low packing fraction of φ = 0.088 up to a high packing

fraction of 0.848 such that we crossover from systems of gaseous-like state to those that

are crystalline. The system size is fixed at a width L = 0.2m.
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Fig. 5.3: The vertically scaled velocity distribution for a system with L = 0.2, N = 3000 such that the

value at v = 1 are the same. Each data set represents a particular coefficient of restitution.
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(a) εn=εt=: 0.1(solid line); 0.2(dashed line); 0.3(dotted line); 0.4(dot-dash line); and 0.5(dot-dot-

dash line).
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(b) εn=εt=: 0.1(solid line); 0.6(long dash-dot line); 0.7(dash-dash-dot line); 0.8(circle); 0.9(square)

and 0.95(diamond).
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Fig. 5.4: The velocity distribution for a system with L = 0.2, εn = εt = 0.1. Each data set represents

a particular number of particles.
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(a) N=: 4800(cross); 4500(square); 4000(diamond), 3500(up-triangle) and 3000(circle).
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(b) N=: 3000(circle); 2500(square); 2000(plus), 1500(cross); 1000(star) and 500(left-triangle).
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Figure 5.4(a) covers the velocity distributions for systems with high packing fraction

that lie between φ = 0.848 and 0.530. Figure 5.4(b) shows the velocity distributions

for systems with low packing fraction that lie between φ = 0.530 and 0.088.

As the density of the system increases the granular temperature decreases. The

granular temperature reflects that time-scales between collision decreases in accordance

with the packing fraction but the rate of energy injection remains static. We scale out

the root mean square velocity from the velocity distributions to emphasize the change in

shape of the statistics that is beyond that explained through the granular temperature.

In all cases the slow moving particles, represented by the part of the velocity distribution

where v/vrms . 2, are dominated by the randomisation of velocities that occurs after

collision and here P (v) is well described by a Gaussian distribution. At higher velocities

the distribution becomes distinctly non-Gaussian, except at very high coefficients of

restitution. Let us consider figures 5.4(a) and 5.4(b) in turn.

In figure 5.4(a) we decrease the packing fraction of the system from φ = 0.848

(N = 4800) to φ = 0.530 (N = 3000). Between a packing fraction of φ = 0.530

(N = 3000) and φ = 0.707 (N = 4000) there is little change in the distribution,

signified by the collapse of these distributions onto one curve. These packing fractions

are below the liquid to crystalline transition point of φc h 0.719. For densities above

φc the distributions become less over populated with increased density, signified in the

figure by the reducing width of these distributions as the number of particles increase.

The interpretation is that particles become less able to move freely as the system

becomes more crystalline.

In figure 5.4(b) we decrease the density of the system from 0.530 (N = 3000) to

φ = 0.088 (N = 500). The high velocity tail of the velocity probability distribution

becomes significantly less over populated as the density decreases, signified by the

decrease in the width of the distribution with number of particles.

Simple Analysis of Asymptotic High Velocity Behaviour

We now quantitatively describe the change in behaviour of the velocity statistics as

either the number of particles or coefficient of restitution is varied. We assume that

the high velocity behaviour of the particles can be described by a simple stretched-

exponential with no other velocity factors such as power terms, of the form:

lim
v→∞

P (v) = A exp (−B|v|α) . (5.5)
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We use two-dimensional systems of fixed system size, L = 0.2m and dissipation such

that εn = εt.

The velocity distributions are fitted by comparing the frequency distribution P(v)

(where the value is equal to the number of particles measured to have a velocity com-

ponent of v) to the fit PT (v) = A0 exp(−B0|v|α). We select the lowest three decades

of data where P(v) = Xi has a value between 50000 and 50 and assume the error in

each point lies within ±
√

Xi (except for those denoted with † where the error is taken

as ±2
√

Xi). We are specifically interested in the values that the exponent α can take

in the fit PT whilst agreeing with reasonable accuracy to the real velocity probability

distribution. We use a chi-square fitting method to determine the best-fit of PT and

accept values for α if the reduced chi-square, χ2
r, is less than 1.2. In some respect this

method gives an upper bound for the exponent α as we cannot ensure that we are

measuring the asymptotic tail of the velocity distribution nor does the error weighting

guarantee the correct emphases placed on each data point as those with larger magni-

tude are assumed to have smaller error but those of smaller magnitude are nearer the

true asymptotic limit.

The table below shows for a variety of systems the ranges of α that are accepted

through the above outlined method. The columns represent systems with fixed dissi-

pation (where εn = εt ≡ ε) whilst the row are for systems containing constant packing

fractions.

φ ε = 0.01 ε = 0.40 ε = 0.55 ε = 0.70 ε = 0.95

0.088 1.48 ± 0.03 1.53 ± 0.08 1.43 ± 0.03 1.47 ± 0.43† 2.13 ± 0.13

0.177 1.45 ± 0.05 1.48 ± 0.08 1.38 ± 0.03 1.48 ± 0.08 2.13 ± 0.13

0.265 1.43 ± 0.08 1.33 ± 0.43† 1.40 ± 0.10 1.48 ± 0.48† 2.13 ± 0.58†
0.353 1.30 ± 0.10 1.33 ± 0.13 1.28 ± 0.03 1.40 ± 0.10 2.10 ± 0.10

0.442 1.25 ± 0.35† 1.20 ± 0.10 1.30 ± 0.10 1.38 ± 0.13 2.00 ± 0.60†
0.530 1.13 ± 0.13 1.23 ± 0.08 1.18 ± 0.08 1.33 ± 0.08 2.05 ± 0.15

0.619 1.10 ± 0.10 1.10 ± 0.10 1.10 ± 0.05 1.28 ± 0.13 2.08 ± 0.53†
0.707 1.18 ± 0.03 1.13 ± 0.08 1.08 ± 0.18 1.23 ± 0.13 1.98 ± 0.18

0.795 1.18 ± 0.03 1.18 ± 0.38† 1.13 ± 0.08 1.23 ± 0.08 2.05 ± 0.25

Table 5.1: Measurement of the exponent α for a wide range of systems spanning both packing fraction

and dissipation. The system size is fixed at L = 0.2m.

The data in the above table is consistent with the observations described earlier
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for variation of dissipation extent and particle number. From the table we conclude

that there exist a region of moderate to high dissipations (ε < 0.6) and moderate to

high packing fractions (φ & 0.530) in which the shape of the high velocity tail of P (v)

and the value of exponent α is approximately constant with no systematic variation

in value, with upper limit of α = 1.163 ± 0.017 obtained from the weighted average of

bold data values. However this value depends on the simple form we have chosen for

P (v) in equation 5.5 and the method of fitting.

In the following two sections we suggest that any variations in the apparent asymp-

totic shape of the velocity distribution are not real but instead are caused by two effects:

first, variation due to density is caused by finite size effects that are more prevalent in

dilute systems; second, variation due to dissipation is caused by the shifting value of

a crossover velocity of the velocity distribution such that good approximation to the

asymptotic limit requires higher velocities and lower probability scales with decreased

dissipation.

5.1.2 System Size Dependence and Stability with Respect to Packing

Fraction

We now wish to understand what causes the variation of shape of the velocity distribu-

tion as the density is made more dilute. Is it because there is some inherent change in

structure as particles become more gaseous-like with decreased density or is it simply

due to finite size effects?

We measure the velocity statistics for a variety of system sizes whilst keeping the

packing fraction and dissipation fixed. The system is kept in the high dissipation limit

by choosing the coefficients of restitution to be εn = εt = 0.1. We choose packing

fractions ranging between φ = 0.088 and 0.619 and scale up the system by enlarging

the system size and particle numbers. We choose an initial system size of L = 0.1m

with N particles and simulate subsequent systems by increasing the scale of the system

by up to a factor of j times, such that j takes values 1,2,4,6, 8,12 or 16. The new

systems have system length of jL and particle numbers of j2N .

In a well-behaved system once the system is of sufficient size, finite size effects are

irrelevant and the shape and magnitude of the velocity distribution remain unchanged

with further increases in system size.

Figures 5.5(a) and 5.5(b) show the change in shape of the velocity statistics as the

scale of the system is increased whilst the density remains fixed. From the figures it can
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Fig. 5.5: The velocity distribution for a system with fixed density. The data sets are for combinations

of particle number and system size
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(a) The packing fraction is 0.088 and N = 125, L = 0.1m (line); N = 500, L = 0.2m (plus);

N = 2000, L = 0.4m (cross); N = 4500, L = 0.6m (star); N = 8000, L = 0.8 (circle); N =

18000, L = 1.2m (square) and N = 32000, L = 1.6m (diamond).
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(b) The packing fraction is 0.619 and N = 3500, L = 0.2m (plus); N = 14000, L = 0.4m (cross) and

N = 31500, L = 0.6m (star).
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be seen that the asymptotic behaviour of velocity distribution becomes more over pop-

ulated with increasing system size. As the system scale increases the difference between

distributions becomes less pronounced. For example, when the system size is doubled

from L = 0.1m to L = 0.2m there is a distinct change in the tail of the distribution.

When the system is doubled from L = 0.4m to L = 0.8m the distinction between the

two resultant velocity statistics is far weaker and the tails of the distributions are al-

most indistinguishable from one another. As a consequence the asymptotic behaviour

of the velocity statistics is described by a stretched-exponential with exponent α that

reduces in value as the system becomes larger.

The table below demonstrates the above point for some of the more dilute systems

considered. The values of α are calculated by the same method as in section 5.1.1.

φ L = 0.1 L = 0.2 L = 0.4 L = 0.8

0.088 1.40 ± 0.05 1.53 ± 0.08 1.38 ± 0.03 1.33 ± 0.08

0.177 1.50 ± 0.10 1.45 ± 0.05 1.33 ± 0.08 1.23 ± 0.03

0.353 1.40 ± 0.10 1.30 ± 0.10 1.27 ± 0.08 1.13 ± 0.03

0.530 1.13 ± 0.18 1.10 ± 0.15 1.05 ± 0.10 1.13 ± 0.03

Table 5.2: Measurement of exponent α for highly dissipative systems of four packing fractions and a

range of system sizes.

The table demonstrates that as the system size increases the measured value of α

lowers towards that seen for higher densities and equivalent dissipation. No significant

variation in α with respect to system scale is observed for higher densities φ ≥ 0.530

suggesting that a constant value (unchanged with higher sizes) is reached, which for

these dissipation we estimated previously to have an upper-bound of value α = 1.163±
0.017.

These results suggest that the shape of the velocity statistics have two important

properties: first, the change in asymptotic shape as the density becomes very dilute

is due to a finite-size effect (probably caused by the fixed finite size of the particles)

rather than structural changes in the system; second, for systems of sufficient size the

exponent α characterizing the high velocity tails of the distributions is a constant value

for all packing fractions (beneath that of crystallisation).
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5.1.3 A Crossover in Particle Behaviour and Stability with Respect

to Dissipation

For the multi-dimensional Random Force Model the complete shape of the velocity

distribution P (v) is often described to fit a crossover function where the low velocity

particles obey Gaussian statistics and the high velocity particles are distributed by a

stretched-exponential with an exponent α much less than two (van Zon and MacKintosh

2004; Moon, Shattuck, and Swift 2001). The crossover velocity, vc, defines the velocity

scale at which the distribution is halfway from being Gaussian to being the anomalous

high velocity tail.

In the published literature it is typically assumed that systems at moderate dissipa-

tion (where tangential dissipation is prohibited) have velocity distributions where the

exponent α agrees with the granular kinetic theory described in van Noije and Ernst

(1998) such that α = 1.5. However, it is not clear why the kinetic theory of should be

valid in these systems. Instead, we propose that α = 1.5 is an anomaly of measurement

brought on by finite statistics and the choice of moderate dissipation. By using Ran-

dom Force Models comparable to previous studies, we show that with better statistics

the asymptotic behaviour of the velocity distribution has an exponent α which is much

lower than 1.5. The above point is significant because it means that the variation of ex-

ponent α with respect dissipation, seen in section 5.1.1, is caused by measuring over the

non-asymptotic part of the distribution brought on by the distribution’s high crossover

velocity and an insufficient number of measured decades. The crossover velocity can be

made more favourable through increasing the dissipation of the system, beyond that of

any previous study and there by shifting vc to smaller values. By doing so we find that

the high velocity tail of the velocity distribution can be fitted by stretched-exponential

with exponent much closer to 1.0 than 1.5 over a sizeable region. We suggest that for

all dissipations using a value for α such as 1.16 brings us nearer to the true exponent

of the high velocity tail.

Determining the Asymptotic Behaviour

We plot the velocity statistics by the method employed in the published paper of Moon,

Swift, and Swinney (2004) whereby − ln(− ln(P (v/vrms)/P (0))) is plotted against

ln(v/vrms) and compared with functions of the form:

f(v/vrms) = −α
T

ln(v/vrms) + C. (5.6)
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The constant C is free to change while α
T

is predetermined and represents a proposed

value for α (not its actual value). In this section we choose α
T

to be either 2, 1.5 or

1.16. Again we caution against taking too much from the use of particular values of α
T

as dividing P (v) through by P (0) affects the apparent slope of the high velocity tail of

P (v) shown in these plots. We will explain this effect more fully in the next section,

but for now we shall use this method as it is a standard approach used in the literature.

When attempting to fit f(v/vrms), with specific value of α
T
, three possible cases

arise: the velocity distributions do converge to a stretch exponential of α = α
T
, in which

case the line of fit touch the distributions and continue to go through the data points

as the velocity further increases; the velocity distributions are described by α < α
T
, in

which case the line of fit touches the data points at one point only and is considered

to be tangent to the data; the velocity distributions are described by α > α
T
, in which

case there does not exists a line of fit which will coincide with the velocity data without

crossing through.

The Asymptotic Behaviour of Systems with just Normal Dissipation

We first consider systems where only normal dissipation is present at collision. Our data

is comparable with work published in previous papers. We vary the normal coefficient

of restitution between 0.1 and 0.9. The tangential coefficient of restitution is kept fixed

at 1. We choose a moderate packing fraction of φ = 0.530, that is well away from being

crystalline, and a system size such that L = 0.4m and N = 12000.

Figure 5.6 shows the obtained velocity distributions, where figure (a) displays the

complete velocity statistics and figure (b) focusses on the high velocity tail. We attempt

to fit the data with functions of the form f(v/vrms) such that α
T

is selected to be either

α
T

= 2 or α
T

= 1.5.

We find, in line with other works, that the low velocity region of all data sets, where

v/vrms → 0, can be fitted by functions of f(v/vrms) with α
T

= 2 and represent the

Gaussian central peak of the velocity distribution. As the coefficient of restitution de-

creases less of the data can be fitted by a Gaussian curve, suggesting that the crossover

velocity vc shifts towards lower velocities with increasing dissipation.

The dashed lines on figure 5.6 represent functions of f(v/vrms) with α
T

= 1.5 that

are fitted such that they lie tangent to the data. The range of v that the dashed lines

approximately fit the data is very small, typically over ∆ ln(v/vrms) ≤ 1/4. Reducing

the normal coefficient of restitution improves the fit by reducing the crossover velocity
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Fig. 5.6: Crossover in behaviour of velocity distributions for a system with fixed packing fraction and

tangential coefficient of restitution 1. The four data sets represent different extents of normal dissipation

such that εn = 0.2 (circle); εn = 0.4 (square); εn = 0.6 (diamond); εn = 0.8 (up-triangle). The lines

are linear fits of −2 ln(v) + C(solid) and −1.5 ln(v) + C(dot-dash).
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to lower velocities. However, any agreement between the fit f(v/vrms) with α
T

= 1.5

and the data are false and instead a better fit can be obtained by choosing a different

value for exponent α.

We illustrate the above point by focussing, in more detail, on the high velocity

region of the data, where ln(v/vrms) > 1, as shown in figure 5.6(b). For high coefficient

of restitution, εn = 0.8, the dashed line (representing the best fit for α
T

= 1.5) only

goes through the data points representing highest v/vrms. Furthermore these points

have largest error and are least reliable. An alternative fit, that would cover more of

the data, would use f(v/vrms) with a exponent α greater than 1.5. For low restitutions,

such as εn = 0.2 and εn = 0.4, the data can be argued to be systematically deviating

above the dashed line, such that the relative difference between fit and data increases

with v. In this case the fitting function, f(v/vrms) with α
T

= 1.5, is tangent to the

data and suggests that a better value for exponent α is slightly less than 1.5.

Both these observations hint that α = 1.5 does not describe the high velocity tail

of P (v) and instead the velocity distribution is described by either a continuum of α

values that are dependent on density and coefficient of restitution, such that α takes

some value in the range 2 > α > 0; or there is a single value for α that is lower than

1.5. We would judge against the former possibility because the distributions shown

here do not appear to have unchanging shape at large v and thus these high velocity

tails are not in the asymptotic limit. Comparatively, it is the latter possibility that is

more supported by our work, where for a range of coefficients of restitutions, packing

fractions and large system sizes the exponent α (as a result of Df as will be shown

later) was fixed with an upper-bound of value 1.16 ± 0.02. Nonetheless, to pursue this

in more detail requires more of the high velocity tail of P (v) to be seen than can be

currently obtained by these moderately dissipative systems.

The Asymptotic Behaviour of Systems with High Tangential Dissipation

To increase the chance of seeing the asymptotic high velocity tail of P (v) the crossover

velocity of the distribution needs to be as small as possible. We achieve this by either

increasing the density of the system or increasing the dissipation of the system. Further

dissipation of the system can only be induced by allowing tangential dissipation. Hence

the tangential coefficient of restitution is minimised to εt = 0.1 and again the normal

coefficient of restitution is varied between 0.1 and 0.9.

Figure 5.7 shows the obtained velocity distributions. We fit the data sets with func-
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Fig. 5.7: Crossover in behaviour of velocity distributions for a system with fixed packing fraction

and tangential coefficient of restitution 0.1. The five data sets represent different extents of normal

dissipation such that εn = 0.1 (circle); εn = 0.3 (square); εn = 0.5 (diamond); εn = 0.7 (up-triangle)

and εn = 0.9 (down-triangle). The lines are linear fits of −1.5 ln(v)+C(dashed) and −1.16 ln(v)+C(dot-

dash).
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tions of f(v/vrms) where either α
T

= 1.5 (shown as dashed lines) or α
T

= 1.16 (shown

as dot-dashed line). Figure 5.7(a) shows the complete measured velocity distribution

from peak to tail. At the peak the distribution behaves as a Gaussian with α = 2. As

the velocity increases, typically ln(v/vrms) & 0, the measured exponent crosses over to

anomalous and decreases in value. We propose that the asymptotic value of α can be

given by 1.16 ± 0.02.

Figure 5.7(b) shows the high velocity region of the velocity distribution. As the

coefficient of restitution increases, the crossover velocity decreases towards zero and

the range of v/vrms over which functions of f(v/vrms) with α
T

= 1.16 agrees with

the data enlarges. In contrast, functions of f(v/vrms) with α
T

= 1.5 form tangents

to the velocity distribution and agreement becomes progressively worse with higher

dissipation. The range of velocities over which α
T

= 1.5 is a reasonable fit remains the

same as seen with just normal dissipation but the fit can no longer be said to represent

the asymptotic behaviour.

We conclude that the velocity distribution is well described by a crossover function

which changes from Gaussian to anomalous with increasing velocity. The asymptotic

behaviour is describe by a stretched-exponential with exponent much less than 1.5 and

closer to 1.16 ± 0.02. However it is not clear whether this is an accurate value for the

exponent.

5.1.4 Brief Summary on the Velocity Distribution

Here is a brief summary of the velocity statistics of the two-dimensional model. The

distribution of velocity P (v) is represented by a function which is Gaussian for low

velocities and then crosses over to a stretched-exponential, with exponent α, for high

velocities. These distributions have a crossover velocity, vc (the exact value of which is

not calculated), that represents the point at which the distribution changes from one

form to another. We find that there is no evidence to support the theory that the high

velocity tail of P (v) is a stretched-exponential with exponent α = 1.5. Instead we make

two statements about the velocity distribution: for systems of sufficient size and pack-

ing fraction beneath crystallisation, the high velocity shape of P (v) is approximately

packing fraction independent; for high dissipation all velocity distributions crossover to

the same large v shape of a stretched-exponential, with exponent α upper-bounded by

1.16 ± 0.02.

In general the crossover velocity vc increases as the dissipation or packing fraction of
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the system reduces. This is one reason why systems of low packing fraction exhibit an

apparent simple scaling of the moments of the velocity distribution, rather than a more

complicate scaling involving the two velocity-scales suggested by the crossover function.

In these cases P (v) is dominated by the central Gaussian peak. The increasing of value

of vc also means that it becomes more difficult to study the asymptotic high velocity

limit of the velocity distribution as lower probabilities must be measured. A physical

interpretation is that, as the dissipation of the system decreases, particles need to

travel faster before a collision in order for the collision to be treated as near-inelastic.

Subsequently the chance of a particle doing so becomes less likely.

Lastly, we conjecture that systems of low dissipation also have distributions of

velocity with asymptotically high velocity tails described by stretched-exponentials with

α . 1.16 ± 0.02. However the crossover velocity of these distribution is too large to

measure from simulation and the statement cannot be directly tested.

5.2 A Single Particle Model

In this section we use observations of a particle’s motion between collisions to construct

a single particle model. We demonstrate that the new model captures the behaviour

of high velocity particles of the highly dissipative Random Force Model.

5.2.1 A Physical Basis

In the Random Force Model, the motion of a target particle is a series of accelerating

walks separated by rapid loss of energy during interactions with other meandering

particles, see figure 5.8(a). Each walk can be considered to be independent from the

previous one as long as the background particles are not jammed and sufficient energy

is damped out during collision so that there is little memory of its previous speed.

Let us consider a particular walk of a particle which travels solely under the random

force a distance l before the next collision. The distance l is called the particle’s free

path; the mean free path is the average distance a particles moves between collision.

The free path is defined as the effective change in particle position between consecutive

collisions:

l = |ri(τ + t0) − ri(t0)|. (5.7)

Here ri(t) is the particle’s position at time t, t0 is the initial time just after previous

collision whilst τ is the time between collision (sometimes referred to as the free time

of the particle).
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Diagram 5.8(b) is a pictorial representation of the particle’s motion during the walk

from one collision to the next. Each number represents a collision between the particle

and another. Collision 1 is the previous collision of the particle whilst 2 and 3 represent

possible locations, relative to 1, of the next collision. As the system is isotropic the next

collision is equally likely to occur any where around the circumference of the marked

circle. If a particle with a free path l is selected at random in the system then we know

neither the net direction the particle travels before collision (demonstrate by the two

possible collisions 2 and 3 in the figure) nor the specific path the particle takes getting

from the initial to the next collision (two such allowed paths are shown in the figure).

Such a representation of the particle’s motion provides a basis for a single particle

model. We describe a particle walking between two collisions, separated by a free path

length of l, as a particle travelling within a circular region of radius l where the radial

distance represents the free path length. During a single walk, the particle experiences

a random force and moves from the centre until it reaches the boundary. The centre of

the interval is the position of the previous collision; the boundary represents the next

collision.

The behaviour of a complete system of many particle measured over a long time can

also be thought of in terms of singular particles moving within circular regions. During

the simulation, at some point, many particles travelled the the same free path length, l,

between collisions. The statistic behaviour of these particles during this particular walk

length, between collisions, is the same as the time average behaviour of a single particle

travelling between two collisions of distance l. This is equivalent in our new model to

the statistical behaviour of a particle travelling in any direction, without preference,

within the circle of length l.

Thus the complete behaviour of all particles within a system of the two-dimensional

Random Force Model can be represented by the average behaviour of particle travelling

a distance l between centre and boundary of a circle weighted by the probability of a

particle travelling that distance between a collision.

Hence we arrive at our Single Particle Model (SPM) representation of the Random

Force Model. A single pseudo-particle is continually placed at rest in the centre of

the circle. The circle is defined each time with a new radius l′. The particle moves

under Gaussian noise until it reaches the boundary. The radius l′ is chosen from the

probability distribution of free paths which ensures the correct weighting of free paths.
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Fig. 5.8: Developing a single particle model of the random force model.

(a) A pictorial demonstration of the motion

of a particle between several collisions. The

effective distance moved between collision is

denoted the free path; a particular one of

length l is shown.

(b) A particle moving between collisions

with a free path of l can only exist (with-

out having collided) within a circular region

of radius l (assuming the velocity cannot

change sign) centred on the previous colli-

sion.

This simple representation captures the physics of the high velocity particles driven

solely by the random force. The main approximations used in the representation are

that: the particle starts from rest each time; the particle’s displacement cannot exceed

that of l without collision; all possible paths inside the circle are valid. We considered

the validity of these three assumptions in turn.

Zero Initial Velocity

In the Random Force Model, a particle’s initial velocity, v0, can be neglected when its

current velocity, v, can be treated as the result of interaction with the random force

rather than collisions, such that v ≫ v0.

The distribution of post-collision velocity, P (v0) is defined as the probability that

a particle has a velocity v0 just after collision with another particle. When the post-

collisional distribution, P (v0), and overall velocity probability distribution, P (v), are

comparable, in gradient, then significant contributions to the velocity statistics come

from the initial velocity and the initial velocity cannot be assumed to be zero. The

velocity probability distributions (with unscaled velocities) of post-collisional velocities

and overall velocities are shown in figure 5.9, where (a) is for a highly dissipative system

and (b) a low dissipation system.
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In strongly dissipative systems a high proportion of a particle’s incoming energy is

removed during collision and thus the two velocity distributions are very dissimilar.

In particular the post-collision velocity distribution is much narrower. Therefore the

assumption of zero velocity is reasonable as long as we are interested in the high velocity

tail.

In near-elastic systems, little of the particles momentum is lost through collision

and thus the post-collision statistics become comparable with and mimics the overall

velocity statistics across the range of measurable velocities. Therefore the assumption

of zero initial velocity is poor and the Single Particle Model will not model the velocity

statistics of Random Force Model.

Absorbent Boundaries

A second approximation in the Single Particle Model is that the particle is stopped the

first time it reaches a distance l.

The statistical average velocity of a particle, started from rest at the origin, grows

proportional to its distance, as l
1
3 . The further a particle travels from the centre, the

faster the average velocity. Hence the opportunity for the particle to reverse direction

reduces with distance as it becomes more difficult to remove all the particle’s momentum

through the interaction between particle and the random force.

All Allowed Paths are Valid

The Single Particle Model assumes that the particle will move along any path that stays

within the boundary of the circle. In the real Random Force Model, when a particle

moves between consecutive collisions, separated by a distance l, other non-interactive

particles can lie within a distance l of the particle and not result in a collision. In

particular, the position of the particle of previous collision starts next to that of the

target particle.

In these cases it might be expected that for the Single Particle Model to work then

certain paths of the particle through the circle must be discounted as they represent

interactions with these other particles that are not allowed. However this is not the

case, because these disallowed paths have already been accounted for through particles

travelling within other circles of smaller radius than l. Also these circles are used

to generate the time average behaviour of a particle travelling a distance l between
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Fig. 5.9: The velocity distribution for a system of 12000 particles contained in a region with widths

L = 0.4m. The solid lines show the full velocity distribution while the dots show the post-collisional

velocity statistics, as described in the text.
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collision, not a particular case, and so there will always exist some occasion at which

any particular path within the circle will become valid.

5.2.2 SPM Integral Identity

The velocity distribution of the particle in the Single Particle Model can be derived

using Conditional Probability Theory. The distribution of free paths, Pl(l) (discussed

in chapter four), describes the probability weightings that a particle has been displaced

a distance l between successive collisions upon arrival at another collision. When a

particle is travelling along a walk of length l the distribution of velocities, Q(v, l), is

given as the probability of a particle having a velocity v knowing that it is travelling a

free path of length l.

The probability of a particle having a free path of length l and a velocity v (sometime

before collision), denoted P (v, l), is equal to the probability of having a velocity v when

travelling a length l multiplied by the probability of travelling a free path of length l:

P (v, l) = Q(v, l)Pl(l). (5.8)

The total probability that a particle has a velocity v, denoted P (v), is simply the

integral over all l of P (v, l), whereby:

P (v) =

∫ ∞

0
P (v, l) dl. (5.9)

By this process we derive the SPM Integral Identity:

P (v) =

∫ ∞

0
Q(v, l)Pl(l) dl, (5.10)

which describes the velocity distribution obtained from the Single Particle Model.

5.2.3 Performing Numerical Simulations

We have performed computational simulations of the Single Particle Model so as to

compare the generated velocity probability distribution with that obtained from the

equivalent simulation of the Random Force Model. When the key assumptions of the

Single Particle Model hold then the high energy particles of the Random Force system

are described sufficiently.

A computer simulation of the Single Particle Model can be performed by program-

ming the following routine.

Step one, a circular region is defined with absorbent boundaries at a radius l.
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Step two, the radius is chosen by selecting a value of l from the distribution of free

paths, Pl(l) (obtained earlier from simulation of the Random Force Model ), using the

Acception-Rejection Method (Abramowitz and Stegun 1965). Simply put, we generate

two random numbers l and p, from uniform distributions, and accept l if p < Pl(l).

Step three, a particle is placed at rest in the centre of the circular region. The parti-

cles position, r, and velocity, v, evolves with each time-step, ∆t, using the 1st order

algorithm:

rt+∆t = rt + vt∆t,

vt+∆t = vt +
F∆t

M
. (5.11)

The force F is the Gaussian random force calculated by the method described in equa-

tion 2.23.

Step four, the particle is allowed to move until the position satisfies |r| > l, in which

case the particle is assumed to have collided with the boundary.

Step five, the above routine is then repeated. The outline routine is repeated may times

and the velocity distribution compiled by sampling uniformly in time.

We perform numerical simulations of the Single Particle Model for a variety of sys-

tems where the system size is of L = 0.6m and dissipation is εn = εt = 0.1. Figure

5.10 shows comparisons of the velocity distribution obtained from the Random Force

Model and Single Particle Model. The solid lines represent the velocity statistics for

the Random Force Model whilst the dashed lines are vertically scaled distributions of

the Single Particle Model. The vertical scaling is required to compensate for the differ-

ences in shape for small velocities brought on by the Single Particle Model inadequacies

in describing particles travelling a small free path. Agreement between the model and

representation is remarkably good over many decades of P (v) which demonstrates that

the Single Particle Model gets the high velocity behaviour of the particles correct. For

low velocities the two distributions deviate: here the velocity distribution is strongly

dependent on the distribution of post-collisional velocities.

It is expected that the Single Particle Model will fail to describe the observable

behaviour of the Random Force Model for low dissipation systems because assumption

of zero initial momentum after collision becomes poor.
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Fig. 5.10: Comparison between the velocity statistics generated from the highly dissipative two-

dimensional random force model (data points) and the equivalent single particle model (solid line).

The distributions demonstrate agreement across a range of densities for a system of size L = 0.6 where

the packing fraction (particle numbers) is either 0.530 (27000) 0.353 (18000), narrowest to broadest

distribution respectively.

5.3 Self-Consistent Calculation of the Asymptotic

Behaviour of the Velocity Distribution

In the previous section we demonstrated that the Single Particle Model does indeed

capture the high velocity behaviour of particles within the Random Force Model. Now

we aim to determine the specific shape of high velocity tail of the velocity statistics,

P (v), from knowledge of the structure’s fractal dimension, Df , and achieve this by

solving the SPM Integral Identity, which was stated as:

P (v) =

∫ ∞

0
Q(v, l)Pl(l) dl.

In this expression the free path distribution, Pl(l), contains all the information about

the system’s structure and its form was previously determined in chapter four. Thus all

we require before solving SPM Integral Identity is to calculate the velocity distribution

of a particle contain within a circular region of fixed radius l, Q(v, l), which we now

proceed in doing.
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5.3.1 A Single Particle in a Circular System of Fixed Radius l

Imagine a case where the only information we are given about a target particle’s be-

haviour is that it will travel a distance l before colliding and starts at rest with no

velocity. In such a case a particle can be thought of as being placed in the centre of a

circle where the bounding circumference gives possible positions of the next collision.

The statistical behaviour of the particle is determined by repetitively placing a particle

into the middle of the circle and allowing the particle move, by picking up energy from

the random force, until the boundary is met. The velocity distribution of a particle in

this system is given by the probability density of the velocity of a particle conditional

on the free path being a fixed length l, Q(v, l).

To obtain an estimate of the exact form of these probability distributions we sim-

ulate the system using computers. The routine used is the same as that described for

the full Single Particle Model , in section 5.2.3, except that the boundary of the circle

remains fixed at a predetermined radius of length l. The particle’s velocity is sampled

uniformly in time and a velocity probability density distribution Q(v, l) is obtained.

We simulate a particle moving in a circle of radius l = 0.0036m, the figure 5.11

shows the obtained velocity distribution Q(v, l) as a solid line. It is worth noting two

features common to Q(v, l): firstly Q(v, l) has a cusp at the origin because all walks of

the particle (where a walk runs the duration between the time the particle initiates at

the origin with zero velocity until it reaches a distance l) start with the particle having

zero velocity; secondly the shape of Q(v, l) is independent of l such that all distributions

of Q(v, l) collapse by the rescaling of the velocity axis, using the map v 7→ v/l
1
3 .

We find that, for large v, Q(v, l) of figure 5.11 can be fitted by the Gaussian,

lim
v→∞

Q(v, l) ≈ A1 exp

(
−0.98

(
M2

2Dl

) 2
3

v2

)
, (5.12)

which we show in the figure as a solid line.

5.3.2 Solving the SPM Integral Identity

We have now brought ourselves to a position in which we can calculate the high velocity

tail of P (v) using the SPM Integral Identity.

Setting up the Integral

The velocity distribution, P (v), can always be expressed in the form of a stretched-

exponential multiplied by polynomial correctional terms, H(v), such that the velocity
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Fig. 5.11: The velocity statistics, Q(v, l), of a particle when contained within a circle of radius l =

0.0036m, given by data points. An asymptotic fit of 0.025 exp(−6.56|v|2) is shown as a solid line.

distribution is given as

P (v) ≃ H(v) exp (− |v/vA|α) ,

where α is a fixed power exponent and vA the scaling velocity associated with the high

velocity tail. Alternatively, P (v) can be expressed in terms of Q(v, l) and Pl(l), as

was given by the SPM Integral Identity. By the substitution in expressions for Q(v, l)

and Pl(l), obtained in earlier sections, the SPM Integral Identity can be calculated

approximately by using a steepest decent approach to solve the integral. Our choice

of method of integration is only valid for high velocity and so we begin by writing

out the large velocity approximate expressions for the components of the SPM Integral

Identity . The free path distribution (derived in chapter four) is stated (for large l) as

Pl(l) ≃ A0β lβ−1 exp(−Clβ),

where β = Df − 1; and the distribution Q(v, l) is Gaussian of the form

Q(v, l) ≃ A1 exp
(
−Bv2/l

2
3

)
,

where B = 0.98(M2/2D)
2
3 . Using these two expressions we re-express the SPM Integral

Identity as

H(v) exp (− |v/vA|α) =

∫ ∞

0
A2β lβ−1 exp

(
−Bv2/l

2
3

)
× exp(−Clβ) dl. (5.13)
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Here B,C are constants with respect to l and v where as A2 = A0 ×A1 is the normal-

isation constant. We next simplify the right-hand side of equation 5.13 through the

substitution of y = lβ, with which dy = β lβ−1 dl, such that:

H(v) exp (− |v/vA|α) =

∫ ∞

0
A2 exp (f(y)) dy, (5.14)

where the function f(y) is defined as:

f(y) = −Bv2/y
2
γ − Cy, (5.15)

and γ = 3β. The remaining integral in equation 5.14 is still too difficult to calculate

directly and so we instead reduce f(y) to a power-series where only the dominant

leading terms of v need be considered.

We start by expressing f(y) in the form of a Taylor series about y = ym, where

f(ym) is the maximum value of f(y), such that:

f(y) = f(ym) +
1

2
(y − ym)2

d2f(y)

dy2

∣∣∣∣
y=ym

+
1

6
(y − ym)3

d3f(y)

dy3

∣∣∣∣
y=ym

+ · · · (5.16)

This new expression for f(y) reduces the preceding complex expression down to a

simpler power series of y, with each of the derivatives of f(y) evaluated at y = ym, such

that their dependence on y is removed.

Our next step is to calculate expressions for both ym and the derivatives of f(y),

which we do so in the following few lines. The peak value of f(y) occurs when the first

order derivative, with respect to y, equals zero with its second order derivative having

value less than zero. The first order derivative of f(y), with respects to y, is evaluated

at y = ym and given by the equality

f ′(ym) =
df

dy

∣∣∣
y=ym

=
2

γ
× Bv2

ym
(2+γ)/γ

− C ≡ 0. (5.17)

Here we are using f ′(y) as shorthand notation for the first derivative and subsequently

will continue to use this type of notation for higher order derivatives. The expression

implies that the value of y at which f(y) is maximised is given by:

ym =

[
2Fv2

γ

] γ
γ+2

, (5.18)

where F = B/C.

Having obtained the identity of ym we are now able to calculate the second deriva-

tive, which is found to be

d2f(y)

dy2
= −2

γ
× (γ + 2)

γ
× Bv2

y(2+2γ)/γ
, (5.19)
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and evaluate f ′′(y) at y = ym to obtain the expression

f ′′(ym) =
d2f(y)

dy2

∣∣∣∣
y=ym

= −A3 v
2×

“

1− 2+2γ
2+γ

”

, (5.20)

where A3 contains the remaining fixed terms of γ, B and F . In fact higher order

derivatives can also be expressed in this way and we find that for the nth derivative of

f(y), evaluated at y = ym, we arrive at:

f (n)(ym) =
dnf(z)

dzn

∣∣∣∣
y=ym

= An+1 v
2×

“

1− 2+nγ
2+γ

”

, (5.21)

where An+1 contains the remaining fixed terms of γ, B and F .

It is at this point that we refer back to the Taylor expansion of f(y) and relate the

preceding expressions for f (n)(ym) to f(y) in order to simplify down the expansion to a

few leading terms. For large velocity, when evaluated at y = ym the magnitude of the

nth order derivative is very much smaller than the (n− 1)th order derivative, in such a

way that

|f ′′(ym)| ≫ |f (3)(ym)| ≫ |f (4)(ym)| ≫ · · · ≫ |f (n)(ym)| → 0. (5.22)

As a consequence only the first leading power-term of v in the Taylor expansion of f(y),

expression 5.16, needs to be considered whereas other powers are neglected. Hence f(y)

can simply be given as

f(y) ≈ f(ym) − A3

2
(y − ym)2 v

2×
“

1− 2+2γ
2+γ

”

+ O

(
v
2×

“

1− 2+3γ
2+γ

”)
, (5.23)

without too much loss in accuracy.

Approximate Integration

We are now in a position to approximate the solution for P (v) from the SPM Integral

Identity. Using the Taylor expansion of f(y) the equation 5.14 can be rewritten such

that:

H(v) exp (−|v/vA|α) ≈ A2 exp(f(ym))

∫ ∞

0
exp

(
(y − ym)2 f ′′(ym)

)
dy. (5.24)

We solve the above integral by substituting variables, using x = y − ym, to leave the

equality:

lim
v→∞

P (v) ≈ exp(f(ym))

∫ ∞

−ym

exp(f ′′(ym)x2) dx, (5.25)

then, for very large v, the value of ym can be treated as being very large and so the

remaining integral approximates to the form of standard identity:
∫ ∞

−∞
exp(−Ax2) dx =

√
π/A.
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Thus we finally obtain that the overall velocity distribution, P (v), is given asymptoti-

cally by

lim
v→∞

P (v) ≈ exp(f(ym)) ×
√
−π/f ′′(ym). (5.26)

All that is left is to replace f(ym) and f ′′(ym) with the relevant expressions.

The Dominant Exponential of P (v) and the Exponent α − β Relation

First, we ascertain the shape of the exponential part of P (v), contained within the

term exp(f(ym)). To do so we express the exponential terms of equation 5.14 by the

following equality:

−
∣∣∣∣

v

vA

∣∣∣∣
α

≡ −
[
B
( γ

2F

) 2
γ+2

+ C

(
2F

γ

) γ
γ+2

]
|v|

2γ
γ+2 . (5.27)

Thought this equality we not only are able to determine the exponent (α) of the

stretched-exponential part of P (v) but also its quantitive shape (through calculating

vA).

For the equality 5.27 to hold for all values of v the indexes of v must match and

so the index α equates to γ by the relation: α = 2γ/(γ + 2). Equivalently the relation

can be written as

α =
6β

3β + 2
, (5.28)

which represents the possible allowed combinations for the indexes in the velocity and

free path probability distributions. The relation 5.28 does not depend on constants B,

C.

From this exponent relation we can now predict the asymptotic shape of the velocity

statistics of the two-dimensional Random Force Model. Previously, we have shown that

the long distance tail of the free path distribution incorporates the system structure by

taking the form:

Pl(l) ≃ A exp(−ClDf−1) lDf−2,

where Df is the fractal dimension found for S(k) in which Df takes a value somewhere

in the range 1.63 ± 0.03. Therefore, as the value of exponent β is by definition given

by β = Df − 1, we determine that the velocity distribution, P (v), has a high velocity

tail of the form of a stretched-exponential with exponent α determined as:

α =
6β

3β + 2
=

6(Df − 1)

3Df − 1
≈ 3.78

3.89
≈ 0.972 ± 0.03. (5.29)

This solution suggest that the high velocity tail is very close to being exponential.
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Fig. 5.12: Comparison of the velocity distributions given by data from the Random Force Model(data

points) and the predicted asymptotic behaviour (line). Three highly dissipative systems (εn = εt = 0.1)

are shown with packing fractions of either φ = 0.619(star), φ = 0.530 (plus) or φ = 0.353 (cross).

Power-law Contribution and the Complete high Velocity Shape of P (v)

Having determined the dominant exponential term of P (v) we next ascertain the lead-

ing power contributions of v contained within H(v). In expression 5.26 H(v) was ap-

proximately given by
√

−π/f ′′(ym), with f ′′(ym) defined in equation 5.20, it therefore

follows that the leading term of H(v) is determined as:

H(v) ∼ v

“

2+2γ
2+γ

”

−1
. (5.30)

Again we can calculate an approximate magnitude of the power of H(v) by using a

suitable value for β = Df − 1, measured from simulation data of the Random Force

Model, and hence we determine that the leading power for H(v) is given by H(v) ∼
v0.49±0.02.

The full asymptotic shape of the velocity distribution can hence be written as:

lim
|v|→∞

P (v) = A0 exp

(
− |v/vA|

6(Df−1)

3Df−1

)
v

3(Df −1)

3Df−1 . (5.31)
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5.3.3 Comparison with data from the Random Force Model

With this derived form for P (v) we are now in the position to test and confirm that

this new theory not only predicts the correct high velocity shape but also determines

the correct gradient.

We simulate three highly dissipative systems, each with system size of L = 0.6m

and a packing fraction of either 0.353, 0.530 or 0.619. During the simulations we

calculate the free path distribution and use this to estimate the value of the constant C

by applying equation 5.3.2. We find that C approximately equals 78, 121 and 179 for

the three respective systems. Our choice of particle mass (M) and noise strength (D)

means that Q(v, l) is described for large v by exp(−Bv2/l
2
3 ), where B = 0.154. With

these values for C and B we can obtain the value of vA, which controls the gradient of

the high velocity tail ,using equation 5.27. vA is determined to be either 7.21, 9.48 or

11.60 for the three respective systems. These values thus represent predictions for the

shape of the high velocity tail of P (v).

In figure 5.12 we illustrate the good agreement that can be achieved, for large

velocities, between the predicted solution for P (v) and the real data obtained from

simulation of the Random Force Model. The data can be seen to agree over at least

four decades of data. As the packing fraction increases the agreement improves as the

crossover velocity (between the low-velocity behaviour described by a Gaussian and

the high velocity behaviour) in these distributions decreases towards zero and the high

velocity tail begins at lower velocity-scales.

As the agreement between the prediction and simulation data is so good and visible

at observable velocity scales this leads us to wonder why our direct measurements from

the Random Force Model data using standard practices could not extract a value for

exponent α close to one. The predicted value of α is significantly lower than the value

of 1.16 ± 0.02 measured directly from the velocity distribution of the Random Force

Model. The discrepancy is due to the method of analysis used previously. Firstly,

the previous method of curve fitting produces overestimates for the value of α as it

places more emphasis on higher parts of the distribution which are assumed to be more

reliable which is not the case. Secondly, the plots of − ln(− ln(P (v/vrms)/P (0))) against

ln(v/vrms) are misleading because they assume that the amplitude of the asymptotic

behaviour of P (v), A0, is equal to P (0). By using P (0) in these plots the central peak

is determined as a Gaussian but the asymptotic shape becomes distorted. Instead to

study asymptotic behaviour we must actually plot − ln(− ln(P (v/vrms)/A0)) against
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Fig. 5.13: Demonstration that asymptotic form of the velocity distribution predicted by Single Particle

Model is consistent with data from the Random Force Model . We choose a high dissipation system of

packing fraction φ = 0.530 and treat P ′ as equal to either P (0) (plus) or A0 (cross). The lines represent

linear fits of −1.15 ln(v) + const. (upper line) or −1.0 ln(v) + const. (lower line).

ln(v/vrms) such that the asymptotic shape is determined correctly at the expense of

distorting the low velocity Gaussian. This approach has a drawback as we first have

to know the asymptotic shape of P (v) in order to know the value of A0 and hence we

cannot and should not use these kinds of plots as a method to determine what the

asymptotic shape of P (v) is.

To demonstrate the effect of the two different approaches we plot, in figure 5.13,

− ln(− ln(P (v/vrms)/P
′)) against ln(v/vrms) for a two-dimensional Random Force Model

of packing fraction φ = 0.530, where N = 27000 and L = 0.6m, and the dissipation

is εn = εt = 0.1. We either choose P ′ to be either P (0) taken from the maxima of

the P (v) data or A0 calculated by fitting an exponential asymptotically to the data.

We find that the value of A0 is between seven and eight times larger than P0. The

figure shows that by changing the value of P ′ from P (0) to A0 we lower the apparent

value of exponent α without causing the apparent shape of the large velocity behaviour

to deviate from being stretched-exponential. Not only is the high velocity tail of the
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velocity distribution fitted by a simple exponential (α ≃ 1.00), but also the range of

high velocities for which it is a good fit is greater than the equivalent for a stretched-

exponential with exponent α = 1.16. Thus an exponential really does provides a better

description for the true asymptotic shape of the velocity distribution as predicted by

the Single Particle Model. Moreover, this diagram demonstrates how difficult it is to

get a reliable, unbiased measurement of α from the velocity distribution data alone.

5.3.4 Implications for lower Dissipation Systems

Having understood the behaviour of the highly dissipative systems we would now like

to understand the behaviour of lower dissipative systems. The Single Particle Model

tells us much more than the velocity distribution for the highly dissipative systems. In

all systems the behaviour of the particles changes from having a low velocity that is

influenced heavily by the memory of the previous collision to having a high velocity

influenced solely by the random force. As the dissipation of the system decreases the

velocity-scale at which a particle crosses over from one behaviour to the other rises and

higher velocities are required before the particle is memoryless such that it acts as a

particle in the Single Particle Model.

Given that the fractal dimension of the large scale structure of the Random Force

Model is unchanged with variation of dissipation, the Single Particle Model would

suggest that the asymptotic behaviour of the high velocity particles must be the same.

Therefore the velocity distribution of Random Force Model for any dissipation must

approximately tend to an exponential as v tends to infinity. Hence, let us propose that

P (v) is given by a simple crossover function, P0, which we define as

P0(v) = D exp

( −(v/vr)
2

1 + |(v/vc)|(2−α)

)
, (5.32)

where α is taken to be 1.00 for simplicity and the crossover velocity of the distribution

is simply given by vc. For low velocities the distribution is Gaussian with width deter-

mined by the velocity-scale vr. For high velocities the distribution is exponential with

width characterised by the velocity-scale vA = (vr)
2/vc.

Figure 5.14(a) demonstrates that the velocity distribution of the highly dissipative

Random Force Model, where tangential dissipation is maximised at 0.1, can be de-

scribed by the crossover function P0(v). P0(v) is obtained by best fitting to the data

and a close fit is achieved for low velocity scales as well as for high velocity. Figure

5.14(a) also illustrates that as the dissipation of the system decreases the high velocity

tail can superficially appear less exponential-like. This is because as the dissipation of
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Fig. 5.14: Demonstration on scaled velocity distributions that the crossover function P0(v) provides a

good description for P (v).
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(a) Here the tangential coefficient of restitution is fixed at 0.1 where as the normal coefficient of

restitution takes values of εn =: 0.1(circle); 0.4(diamond); 0.6(square) and 0.9 (up-triangle). The

lines are best fits for the crossover function described in the tables.
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(b) Here the tangential coefficient of restitution is fixed at 1.0 where as the normal coefficient of

restitution takes values of εn =: 0.2(circle); 0.4(diamond); 0.6(square) and 0.8 (up-triangle). The

lines are best fits for the crossover function described in the tables.
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the system reduces, the crossover velocity, vc, increases relative to the root mean square

velocity of the velocity distribution, and hence the true asymptotic tail is pushed out

towards higher velocity.

Using the measured fits of P0(v) we can make specific predictions about the velocity

scale and probability at which the velocity distribution crosses over from being Gaussian

to asymptotic behaviour. The high velocity tail of the distribution will occur at velocity

scales greater than the crossover velocity vc. In order to see this high velocity tail

in the data of P (v) we need to have data points with probability of value less than

P (vc) = P (0) exp(−(vc/vr)
2/2). The table below shows the values of vc and vr obtained

by fitting the velocity distribution with P0(v). The table also calculates the relative

number of decades required before the asymptotic behaviour of the distribution will

start to be seen.

εn, εt vr vc/vr P (vc)/P (0)

0.1, 0.1 0.168 1.524 0.313

0.2, 0.1 0.177 1.540 0.260

0.3, 0.1 0.186 1.743 0.219

0.4, 0.1 0.198 1.914 0.160

0.5, 0.1 0.213 2.141 0.101

0.6, 0.1 0.231 2.463 0.292

0.7, 0.1 0.253 2.927 0.0138

0.8, 0.1 0.282 3.784 7.78 × 10−4

0.9, 0.1 0.318 5.100 2.24 × 10−6

Table 5.3: The measurement of the value of the crossover velocity, vc and the relative probability of

this occurring by fitting P (v) of higher dissipation systems to a crossover distribution P0(v).

The table shows that for very high dissipation the high velocity tail is very long

relative to the peak and the tail of the distribution begins less than one decade down

from the peak of the distribution. Hence these distributions look very exponential like

in the tails. It is only when the dissipation of the systems is very low (see lowest three

entries in table) that the crossover velocity become large relative to the vr, even though

vr has changed very little in value between εn = 0.1 and εn = 0.9, with an increase

of only approximately 1.5 times in value for vr compared to approximately 5 times in

value for vc. Thus for these lower dissipation systems, the high velocity tail of P (v)

will begin at least 4 decades beneath the peak. The apparent tail of the distribution
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appears curved (see lowest data set in figure 5.14(a)) and stretched-exponential-like

because we can only simulate between 6 to 8 decades of P (v), in a reasonable amount

of time. This results in at most two decades of visible high velocity tail compared to

six decades of peak and crossover behaviour.

The situation worsens when studying moderate to low dissipative systems in which

dissipation tangential to the collision is prevented (εt = 1.0). Figure 5.14(b) illustrates

that in these systems functions of P0(v) can again be fitted to P (v) such that good

agreement is obtained over the complete range of velocity scales. While the table below

shows the corresponding values of vr and vc/vr and P0(vc)/P (0) for these systems.

εn, εt vr vc/vr P (vc)/P (0)

0.2, 1.0 0.337 3.877 5.45 × 10−4

0.3, 1.0 0.344 4.107 2.17 × 10−4

0.4, 1.0 0.352 4.469 4.59 × 10−5

0.5, 1.0 0.365 5.133 1.90 × 10−6

0.6, 1.0 0.389 6.469 8.16 × 10−10

0.7, 1.0 0.422 9.592 ∼ 10−20

0.8, 1.0 0.481 23.037 ∼ 10−115

Table 5.4: The measurement of the value of the crossover velocity, vc and the relative probability of

this occurring by fitting P (v) of lower dissipation systems to a crossover distribution P0(v).

Consequently in these cases, to have a good chance of seeing the high velocity tail

fairly low values of normal coefficient of restitution must be chosen, whereby εn < 0.5.

Once the dissipation of the system is significantly reduced and the coefficient of normal

restitution has risen, to say εn ≃ 0.6, the high velocity tail of P (v) is hidden beneath

probabilities that can be obtained through simulated data. It is thus not a surprise that

these velocity distributions appear to be non-universal at such low dissipations, whereby

the apparent high velocity tail is stretched-exponential with an exponent increasing

towards two as dissipation continues to reduce.

5.4 Summary

We began this chapter by measuring the velocity distributions of the Random Force

Model for a range of systems dissipation that included both normal and tangential

coefficients of restitution. With the inclusion of the tangential coefficient of restitution
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we have been able to raise the dissipation of the system to higher extents than has

previous been studied. We showed that the velocity distribution could be described by

a function that crossed over from being Gaussian distributed for low velocity, caused

by the randomisation of momentum at collision; to non-Gaussian stretched-exponential

behaviour for high velocity described by an exponent α. Importantly we showed that

the velocity distribution is not asymptotically described by P (v) = A exp(−|v/v0|1.5).

Instead the exponent of 1.5 is a fact of the finite accuracy.

These observations parallel those seen for a one-dimensional system. In both the

one- and two-dimensional Random Force Model there exists a range of high dissipations

where the distribution of velocity collapse onto one asymptotic shape.

The main purpose of the first section was to demonstrate how difficult it was to cal-

culate a reliable estimate for the value of α using standard methods. This results from

the fact that we do not know how to correctly weight the errors of the distributions or

how much of the high velocity tail of the distribution is visible. Therefore any estimate

we derive for the value of α is likely to be an overestimate of its true value. Hence it is

difficult to state anything more than a qualitative description of the asymptotic shape

of the velocity distribution.

We next provided a theory for the asymptotic shape of the velocity distribution for

the two-dimensional Random Force Model by focussing on the motion of a single fast

particle which we encapsulate in the description of the Single Particle Model. This

Single Particle Model treats high velocity particles as singular particles driven by a

random force through a fractal background environment until collision. Essential to

the model are the assumptions that these particles: have zero velocity after collision;

will collide when they first reach a distance of the free path length; can travel along

any viable path. These assumptions only hold for the highest velocity particles where

sufficient velocity is built up through successive interactions with the random force that

their motion is effectively ballistic and their initial momentum, after previous collision,

can be neglected.

The velocity distribution, P (v), is calculated by solving the SPM Integral Identity:

P (v) =

∫ ∞

0
Q(v, l)Pl(l) dl,

where Pl(l) is the probability a particle travels a free path l between collision and Q(v, l)

is the velocity distribution of a particle travelling a distance l. Through numerical

simulation we have showed that the SPM Integral Identity well describes the high

velocity tails of P (v) and we next derive the extreme asymptotic shape. The high
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velocity tail of Q(v, l) is determined to be Gaussian whereas the long distance tail of

the free path distribution is calculated using the theory of Isliker and Vlahos (2003) to

be of the form:

Pl(l) ≃ A0 exp(−ClDf−1) lDf−2,

where Df is the fractal dimension of the Random Force Model with a value that lies in

the range of 1.60 to 1.66. Thus, we predict that the velocity distribution is described by

a stretched-exponential with exponent α = 6(Df −1)/(3Df −1). This value of α is very

near unity such that the asymptotic shape of P (v) can be considered approximately

exponential. Incidentally an exponential is also predicted from the Maxwell Model of

the Boltzmann equation, but this is derived for different reasons.

We showed that P (v) is sufficiently described, over all v, by a crossover function

that is Gaussian for low velocities and exponential for high velocities, even for low

dissipation systems. Physically this distribution represents the change in behaviour

that occurs from particles losing memory of previous collisions as momentum is picked

up from the random force after a collision.

Significantly, the only value needed to be calculated from simulation is the fractal

dimension Df . Ideally we would like to predict Df as well, enabling us to calculate the

behaviour of the Random Force Model without performing any simulations. In the next

chapter we propose that the fractal dimension Df can be predicted using geometrical

considerations. We are motivated by the one-dimensional model where we showed that

there is some evidence that the system self-organises into a state of criticality. We now

ask ourselves the question: can the two-dimensional Random Force Model do the same

and what would this mean for the fractal dimension?



Chapter 6

Multiplicative Cascade Process

and Fractal Structure

In this chapter we hypothesise a mechanism to generate fractal structure of the type

observed for the two-dimensional Random Force Model. Using this mechanism we

measure a fractal dimension, Df , close to those obtained from our simulations of the

Random Force Model.

6.1 Self-Similarity

At the end of the paper of Peng and Ohta (1998a) it was suggested that the two-

dimensional Random Force Model might self-organise into a state of criticality. This

was suggested as an explanation for why these systems showed neither a characteris-

tic spatial-scale nor temporal-scale. From our studies, in chapter four, we confirmed

that the structure factor, S(k), has small k dependence that varies as a power-law.

This power-law is a fractal feature of the system and implies that features of different

length-scales show self-similarity towards one another. Therefore the system can rescale

its lengths without affecting its large-scale structural behaviour, as occurs during the

process of renormalisation. These arguments will only apply to the large-scale features

of the system which are described by the power-law decay of S(k). However, as the

size of the system is increased towards infinite extent more of the system features are

large-scale compared to the particle diameter and the system exhibit self-similarity over

a larger range of length-scales.

When we discussed the one dimensional Random Force Model we suggested that the

system had structure that was approximately renormalisable. We preceded to perform

142
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decimation on the particles during snap shots of a system with 2N particles in which we

removed every other particle from the system to leave only N particles. The remaining

system had half as many particles and had statistical structure that was approximately

similar to a N particle Random Force Model. This demonstrated that the structure of

these systems were statistically self-similar.

The corresponding method for renomalising a two-dimensional system is called

blocking. To demonstrate how this method works we use the example of the two-

dimensional Ising model of a critical 2N by 2N spin lattice. Each lattice site is either

occupied or not. The system is renormalised in the following way: first, the sites are

grouped into squares of four; second, the total number of occupied sites in each group

of four is counted; third, each square of four lattice points is reduced down to one

lattice site, which takes position at the average position of the four replaced lattice

points; fourth, the new site is chosen to be either occupied or not by using a majority

rule in which it is occupied if most of the original four sites were also occupied. The

result of the renormalisation is a N by N spin lattice with structural features that are

self-similar to the original 2N by 2N system.

These ideas of renormalisation can be applied to the two-dimensional Random Force

Model. In this case we split the system into 2N by 2N square boxes, of length L/2N .

The occupancy of each box is equal to the number of particles found within. The centre

of each box is equivalent to the lattice point described in the Ising model. The system

is renormalised by the same process, as outlined above for the Ising model, except that

instead of using a majority rule to determine the occupancy of a new box it is simply

assigned to be the sum of the occupancies of the four boxes it replaced.

Formulating the system in this way leads us to consider that, if we can remove struc-

tural features by merging boxes, then it might be possible to do the reverse process and

increase structure by breaking the boxes into smaller boxes. Imagine that we have a sys-

tem of N particles. Initially all we know is that the particles are distributed somewhere

in the square system and so we create a box spanning the whole system and give it an

occupancy of N . The structure of the system is then generated by the following routine.

One, the box is broken into four smaller square boxes, each with a side length half

that of the unbroken box. Two, we generate the occupancy of the four new boxes by

randomly assigning an integer proportion of the occupancy of the original unbroken

box to each. The total occupancy of the four new boxes equals that of the original
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unbroken box. Three, we then repeat the above process by breaking up all the new

boxes into four new boxes.

By repeatedly breaking the system into smaller boxes we obtain detail on the structure

of the system at smaller length-scales.

This method for the generating the structure has one limitation: the system can

only be broken down into smaller regions a finite number of times before each box

has a maximum occupancy of one particle, which means that only structural features

over a finite range of length-scales can be measured. An alternative method to particle

occupancy of a box is to treat the occupancy of each box as the probability of finding

a particle in that region. This has no effect on the generated macroscopic structural

properties but will change the microscopic features seen.

6.2 The Multiplicative Cascade Process

In this section we aim to describe a method of breaking a system into parts, which we

call the Multiplicative Cascade Process, in a way that captures the process outlined in

the previous section. Multiplicative Cascade Processes have been used successfully to

describe a variety of scientific systems, most notably that of turbulence (Kolmogorov

1941) and also in predicting the spatial distribution of rainfall (Over and Gupta 1996).

The process can be thought of as determining the probability that each region of the

system is occupied by a particle. The system is represented by an array of 2n by 2n

square regions where n is an integer. Each square region is identified by being the

(i + 1)th across in the x-direction and (j + 1)th down in the y-direction, where i and j

take integer values between 0 and 2n − 1. The position of the centre of the square is

given by the coordinates r(n) i,j where:

r(n) i,j =
L

2n



 i + 1/2

j + 1/2



 . (6.1)

The index n indicate the overall number of regions. Each region has an occupancy

given by the probability, m i,j(n), which takes a value between 0 and 1.

6.2.1 Outline of the Method

The general routine for Multiplicative Cascade Processes is as follows. The system is

consecutively broken into parts by progressing through a set number of levels. The

zeroth level encompasses the complete system by a single square region of extent L,
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Fig. 6.1: The diagram shows the splitting of the system space into squares for the first two levels of

the Multiplicative Cascade Process. The probability m i,j(n) of each square is shown at the centre of

each square as the product of random numbers. The symbols pi, ri and si and ti are random numbers

that satisfy
P4

i=1 si = 1.

with centre position of r 0,0(0) = L/2(1, 1). On reaching the nth level the system has

fractured into 4n smaller squares with centre positions as given in equation 6.1. To

progress from one level to the next, say from the nth to the n + 1th level, each and

every square region of length L/2n is broken up in to four smaller square sub-region

of extents L/2n+1. The probability m i,j(n) of the original square region is shared

amongst the four new square sub-regions without preference such that the sum of the

four squares probabilities equals the original unbroken square’s probability. The figure

6.1 demonstrates the Multiplicative Cascade Process that occurs when progressing from

the first to the second level.

Partitioning the probability m i,j(n) into four

There are many methods in which the probability of a square can be broken into

four parts. We outline one particular method of ‘probability breaking’ which we shall

call Uniformly breaking whilst Conserving Probability (UCP). At the nth level each

square is broken into four. The probability m i,j(n) of the square is shared by the four

replacement square by: first, generating four random numbers a 2i+g,2j+h, where g and

h takes values 0 and 1, using a uniform distribution such that 0 < a 2i+g,2j+h < 1; then,

calculating the new probabilities m 2i+g,2j+h(n + 1) of each replacement square using

the expression:

m 2i+g,2j+h(n + 1) = m i,j(n)
a 2i+g,2j+h

A 2i,2j
g, h = 0, 1. (6.2)
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The term A i,j normalises and correlates the four square sub-regions through:

A i,j = a i,j + a i+1,j + a i,j+1 + a i+1,j+1. (6.3)

The inclusion of A i,j ensures the conservation of probability between the nth and

(n + 1)th level. This method maximises the randomness of the partitions at each stage

of the process.

Other Methods of Probability Breaking

For the purpose of comparison, we now briefly describe three alternative methods of

‘probability breaking’ which are related to UCP but differ when calculating the random

numbers a i,j, a i+1,j, a i,j+1 and a i+1,j+1.

In the first method we do not ensure probability conservation by replacing equation

6.3 with A i,j = 1. We call this method UnonCP. In the second method, the probability

of each square is shared into four by using a symmetrised method such that:

a i,j = a i+1,j+1

a i+1,j = a i,j+1 ≡ 1 − a i,j. (6.4)

For each square we only need to calculate the value of a i,j to obtain the value of the

three other random numbers. We choose a i,j from a uniform distribution such that

0 < a i,j < 1/2. This method we call Symmetrised Cascade. The third method is given

in the paper of Meakin (1987). Four numbers, p 1, p 2, p 3, p 4, are predetermined (such

that the sum adds up to one) and simply randomly assigned once to the four random

numbers a 2i+g,2j+h. These models have been used before to generate a fractal. We

consider four possible Meakin models where the numbers, p i, are defined in the table

below:

Process p 1 p 2 p 3 p 4

Meakin 1 0.001 0.15 0.32 0.53

Meakin 2 0.02 0.32 0.32 0.34

Meakin 3 0.18 0.21 0.29 0.31

Meakin 4 0.07 0.26 0.32 0.36

Table 6.1: A sample selection of the allowed choices for the set of numbers, p i, that can used when

performing Meakin Model.
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Fig. 6.2: The structure factor obtained for various Multiplicative Processes: UCP (circle); UnonCP

(square); Symmetrised Cascade (diamond); Meakin 2 (up-triangle) and Meakin 4 (down-triangle). The

dashed lines is a power-law fits of Ak−1.63.

6.2.2 Comparison with data from the Random Force Model

The purpose of the following section is to demonstrate that Multiplicative Cascade

Processes can produced geometric structures of the form seen in the two-dimensional

Random Force Model. We define an equivalent measure to the structure factor and find

that these functions are described by a power-law decay whereby the exponent −Df

can have the same value for a variety of different versions of the Multiplicative Cascade

Process that is consistent with that seen for the Random Force Model.

The structure factor for the Multiplicative Cascade Process can be defined as:

S(k) =

〈
2n∑

i=1

2n∑

j=1

m i,j exp (i(k · r i,j)) ×
2n∑

i=1

2n∑

j=1

m i,j exp (−i(k · r i,j))

〉
, (6.5)

where r i,j is the position of the centre of the square described earlier and 〈.〉 represents

a configuration average. The angular average structure factor S(k) is calculated in the

same way as for the Random Force Model.

We simulate the discussed Multiplicative Cascade Processes by breaking square re-

gions into four until the eighth level is reached. In each case a system of length L = 1m
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is broken up into 256 × 256 squares, each of length 1/256 = 3.91 × 10−3m. This pro-

cess of breaking the system is repeated for a large number of runs and a configuration

average structure factor measured.

Figure 6.2 shows part of the structure factor obtained from different versions of

the Multiplicative Cascade Process given in 6.2.1. These distributions are displayed

vertically for clarity. The periodic features are due to the choice of square lattice and

the number of levels used. Running the Process to higher levels reduces these features.

In the figure we demonstrate, for a range of different variant of the Multiplicative

Cascade Process using dashed-line fits of the form S(k) = Ak−1.63, that it is possible to

fit the generated structure factor with a power-law that has an exponent Df of similar

value, around 1.63.

Having shown it is possible to describe these structure factors with an exponent

of fixed value we next more accurately determine Df by fitting the structure factor

to a power-law of the form S(k) = Ak−Df using a χ2 fitting program. The following

table shows the obtained measurements of the fractal dimension Df for the different

versions of the Multiplicative Cascade Process (except for Symmetrised Cascade which

is difficult to accurately fit):

Process Df

UCP 1.602 ± 0.066

UnonCP 1.595 ± 0.064

Meakin 1 1.287 ± 0.084

Meakin 2 1.596 ± 0.147

Meakin 3 1.828 ± 0.233

Meakin 4 1.689 ± 0.178

Table 6.2: The measured values of the fractal dimension Df for different Multiplicative Cascade Pro-

cesses where S(k) is fitted by Ak−Df .

The quoted errors arise form the systematic effects shown in figure 6.2. Our cal-

culation determines that that both the UCP and UnonCP gives values for Df that lie

with in the range 1.60 to 1.66 suggesting there is little difference between these two

solutions. In contrast, the Meakin models appear to give very different answers but

on closer examination we find that the Meakin models (that of 2, 3 and 4) can take a

value within the range 1.60 to 1.66.

Significantly, it is only with Meakin 1 that the range 1.60 to 1.66 does not lie within
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the allowed range of exponent Df . This model is different from the others as the

random number p 1 is effectively zero and hence makes a case in point because once

a square region has a probability (m i,j) of zero, then all subsequent divisions of the

square will also have probability zero. Therefore square region with probability of zero

are not structurally similar to other square regions in the system that have non-zero

probability. In consequence Meakin 1 should be considered separate from the rest.

Finally, as these models generally allow Df to be in the range 1.60 to 1.66 we speculate

that this may mean that the value of Df might be caused by the hierarchical nature

of the Multiplicative Cascade Process. Although we concede that to explore this idea

fully would require further work.

6.3 Summary

We suggested that the Random Force Model might represent an example of a system

that self-organises into a state of criticality. If these systems are critical then the self-

similarity of structural features allows the system to be renormalised into a smaller

system without loss of generality.

The Multiplicative Cascade Process provides a reverse method to the process of

renormalisation. A system is broken up into smaller parts by breaking each region into

four equal subregions. The probability of a region is considered to be the fraction of

total particles that lie within the region. The probability of the total region is shared

between the four sub-regions. By repeating the described routines a smaller system can

be subsequently broken up into smaller parts to restore the structure of a much larger

system. Regions of high probability represent clustered particles while low probability

regions are dilute regions.

We presented several possible routines to preform the ‘probability breaking’ in the

Multiplicative Cascade Process, the most notable was called UCP where the routine

outlined splitting the probability of a region into four random proportions and assigning

to each sub-region. For those routines of the Multiplicative Cascade Processes that

preserve self-similarity of the system we find the structure factor is a power-law decay

which could be described using an exponent Df that lies within the range 1.60 to 1.66.

We suggest that a routine similar to UCP provides a method worth further exploring

in regards to describing the structure of the Random Force Model as it represents a

Multiplicative Cascade Process which maximizes randomisation and avoids preselecting
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Fig. 6.3: A comparison of structure produced by Random Force Model and Multiplicative Cascade

Process for a system of φ = 0.442, N = 2500 and dissipation εn = εt = 0.2

(a) The Random Force Model (b) Multiplicative Cascade Process

particular values for the probabilities that would require further justification.

We end this chapter by showing that a Multiplicative Cascade Process can produce

configurations of particles that look similar macroscopically to the snap-shots taken

during simulation of the the Random Force Model. Microscopic features on scales

smaller than a particle are not expected to be the same. First we simulate the two-

dimensional Random Force Model for a system containing 2500 particles in a square

box of lengths L = 0.2m and high dissipation of εn = εt = 0.2. A snap-shot is taken

for the steady state system showing the configuration of particles at a moment in time

and is displayed in the left-hand image of figure 6.3.

We next generate an equivalent system using the Multiplicative Cascade Process

and breaking the system into square regions using the routines described for the UCP

method. The system starts with lengths of L = 0.2m and broken into 4n of length

ln = L/2n such that there are many more square regions than particles of the above

Random Force Model. This produces a probability density field, m i,j, across the system

which we use to determine where particles are placed. Each particle is circular with a

radius of r = 1.5mm and is placed such that it will not overlap another particle. We

place particles one at a time by randomly selecting an x and y coordinate and generating

a third random number p. We next determine which square region this corresponds

to by finding the integer value of i and j that satisfies i − 0.5 < x/ln < i + 0.5 and

j − 0.5 < y/ln < j + 0.5. We accept the x and y coordinates as the particle’s position

if both p < m i,j and another particle is not already occupying the spatial region.
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Otherwise we generate new values for x, y and p without placing the particle. We

repeat the routine until 2500 particles are placed. The right-hand image of figure 6.3

show an example of the particle arrangement achievable by using the Multiplicative

Cascade Process. From the figure we can see that the same type of open-spaces with

few particles are present in the system produced by the Multiplicative Cascade Process

as was seen in the Random Force Model.



Chapter 7

Concluding Remarks

The work presented in this thesis described a theoretical granular system called the

Random Force Model. We aimed to show that these systems formed structures which

consequently influenced the behaviour of the dynamics of particles within the system. In

doing so we reinterpreted the properties of the Random Force Model and resolved two

disagreements that lay amongst the published literature. Furthermore, we developed a

new theory based around a single particle that incorporated the structure of the system.

Importantly we tackled how the structure might arise using a hierarchical method. In

this final chapter we review the material presented within the previous six chapters and

discuss the general conclusions that we have formed about the Random Force Model.

We finish the thesis by suggesting future research that might be useful and interesting

to pursue on the back of the material described here.

7.1 Chapter Review

Chapter one provided an in-depth introduction into the topic of steady state non-

equilibrium granular systems. We discussed that in most granular kinetic theories the

granular system was assumed to be spatially homogeneous. One of the most widely

quoted theories was that given by van Noije and Ernst (1998) in which the velocity

distribution of individual particles, P (v), was assumed to behave asymptotically as

P (v) = A exp(−B|v|3/2). The problem with all these theories was their inconsistency

with the weight of evidence, drawn from performed experiments and simulations, that

granular media form structural features, caused by the slight tendency for granular

particles to cluster.

We then introduced the Random Force Model. These theoretical systems were

152
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thought to provided simple comparison with the granular kinetic theories. In the model

a d-dimensional system of N identical particles were energised by the continual injection

of random momentum on to each and every grain. Considering the apparent simplicity

of the model it was perhaps intriguing that there remained no consensus, amongst

the literature, on several key properties that dealt with velocity and structure of the

system. This lack of consensus provided the motivation for this research.

Chapter two gave instructions into performing simple simulations of granular media.

We outlined the computer algorithms, based around the methods of Molecular Dynam-

ics, that would be used to model one and two dimensional systems. We concluded the

chapter by utilising the simulation methods to model the one- and two-dimensional

Random Force Model and showed that these systems relaxed into a steady state with

a fixed granular temperature (on time-average).

Chapter three described the multi-scaling properties seen in simulations of the one-

dimensional Random Force Model. These scaling properties were not predicted by

the mean field theory given by Williams and MacKintosh (1996). Instead, we found

that the moments of the velocity distribution could not be characterised by a single

velocity-scale and therefore implied that the velocity distributions of systems for which

all quantities, except particle number, were constant would not be rescale onto a single

curve. Moreover, we found that for low coefficient of restitution, beneath 0.5, the gran-

ular temperature of the system was effectively independent of coefficient of restitution

and described by
〈
|v2|
〉
∝ N−0.53. Furthermore, it was found that the higher order

moments of velocity also became independent of dissipation for a range of coefficient

of restitution.

We next wanted to understand what caused this multi-scaling behaviour in the

velocities. We believed that the structure of the system was responsible for these be-

haviours and demonstrated that the moments of separation distance between nearest

neighbouring particles exhibited strong multi-scaling properties. Even systems with a

high coefficient of restitution showed significant multi-scaling structure, where previ-

ously it had been quoted to be near-homogeneous. We next measured the complete

distribution of nearest neighbour distances and found that for systems of high dissipa-

tion these could be identified with power-law functions of logarithmic distance. Such

functions had no characteristic length scale and subsequently motivated us to treat

the highly dissipative system with 2N particles as approximately renormalisable to the
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equivalent N particle system such that the second neighbour distribution for the 2N

particle system was similarly shaped to that of the nearest neighbour distribution for

the N particle system.

This finally lead us to formulate a hierarchical method, which we called the mul-

tiplicative bisection process, in which the system arranged itself such that self-similar

properties were exhibited. The multiplicative bisection process yielded a successful way

to collapse the distribution of nearest neighbours and thus demonstrated the relevance

of the process towards these highly dissipative systems.

Chapter four explored the structure factor in two dimensions. We found that the

structure factor, S(k), had a small k behaviour that was a power-law with an exponent

that is typically in the range 1.60 to 1.66. The value of Df remained largely unchanged

with variation of dissipation or packing fraction as long as the system was of sufficient

size. Instead, it was the region of k, within which S(k) fitted a power-law decay,

that decreased with dissipation. In terms of the real-space arrangement of particles,

the fractal features of S(k) described the anomalous behaviour of the locally dilute

regions of the system, where particles arrange fractally such that the number of particles

encountered within a growing area, around a fixed point, is less than that expected from

mean field theory.

We next considered how the fractal structure affected the motion of individual

particles and studied the distribution of free paths. We found that the long distance

tail was dependent on the structure and was described by a power-law multiplied by

a stretch-exponential predicted by modifying the theory given by Isliker and Vlahos

(2003), where high velocity ballistic particles travelled until collision with the fractal

background environment.

In chapter five we studied the velocity distribution, P (v), and confirmed that it was

well described by a crossover function in which for low velocities P (v) was Gaussian

distributed and for high velocities P (v) was a stretched-exponential with exponent α.

Again, as with the structure, we found that, over a range of dissipations and packing

fraction, α roughly maintained a fixed value once the system was of sufficient size and

we estimated that α had value nearer to one than 1.5. Furthermore we conjecture

that if better statistics could be obtained we would find that α remains unchanged for

all dissipations. This was based on the evidence in the available data that it was the

crossover velocity, vc, shifting to higher velocity scales rather than α increasing in value
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that caused the apparent non-universal behaviour in P (v) for low dissipation.

We next construct a Single Particle Model to self-consistently couple the structure

of the two-dimensional system to the velocity distribution. We described the fastest

particles of the system as singular particles that undergo a random acceleration in ve-

locity during walks between collision. In contrast the remaining low velocity particles

constituted a fractal background. The velocity distribution of the Random Force Model

can be calculated using the free path distribution, Pl(l), taken to be that predicted by

Isliker and Vlahos (2003), and the velocity distribution of a particle that undergoes a

walk of distance l between two collisions, Q(v, l). The distribution Q(v, l) is numerically

generated from simulation of a particle contained within a fixed radius disc and found

to have a high velocity tail which approached Gaussian. By combining these two com-

ponent distributions into the SPM Integral Identity we derived that the high velocity

tail of the velocity distribution, P (v), must tend to near-exponential with exponent α

related to the fractal dimension Df by α = 6(Df − 1)/(3Df − 1). We had therefore

pinned down the description of P (v) to a crossover function that changed from Gaus-

sian to near-exponential as the velocity scale increases. We finally demonstrated that

all velocity distributions, of the two-dimensional Random Force Model, regardless of

dissipation, could be described by crossover functions of this form and deduced that

the shape of P (v) could in fact be treated as universal. Significantly we stated that this

universal asymptotic behaviour was not seen for systems with low dissipation because

the crossover velocity was too large in value for the asymptotic behaviour of P (v) to

be seen in the measurable data.

We have thus arrive at the following physical understanding. Particles that travel

long distances between collision exhibit a crossover in behaviour as they move away

from the previous collision. For small distances the particles initial velocity after colli-

sion has a notable influence over its behaviour. As the particle travels further from the

previous collision the influence of the initial velocity is washed out by the momentum

gained through successive interaction with the random force and the knowledge of the

previous collision is lost. This process forms the basis of the two behaviours of the ve-

locity statistics. For low velocity the distribution is dominated by the initial conditions

of particles just after collision which is partly determined by the extent of dissipation.

These particles only know about the local environment and hence structural consid-

erations of the system are irrelevant. For high velocity the velocity distribution is

determined by memoryless high velocity particles and hence the distributions shape
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is not dependent on dissipation. Instead, these particles know about the wider envi-

ronment and thus the large-scale structure of the system plays an important role in

determining whether a particle can achieve a high velocity.

Finally, in chapter six we aimed to complete our theory for the two-dimensional

Random Force Model by purposing a method for arranging particles in the system

such that the fractal dimension, Df , of the system’s structure took a value near to one

and two thirds. As with the one-dimensional Model, we explored the implications on

the structure of the system of assuming that particles continually rearranged to remain

in a state of criticality, as previously implied to occur in these system by Peng and

Ohta (1998a). We presented a method for fracturing the system into small parts called

the Multiplicative Cascade Process in which the system was successively broken into

smaller parts by taking each region of the system and breaking it into four identically

sized subregions, such that each new subregion took a proportion of the replaced regions

probability. In these Processes the probability of each region referred to the likelihood

of finding one of the system’s particles there and structural self-similarity was induced

into the system through the hierarchical structure such that the resultant structure

factor had a power-law decay with an exponent consistent with Df . This gave us

optimism that an approach such as this could well provide the explanation for the

structure of the Random Force Model.

7.2 Future Work

The Random Force Model provides a clear demonstration that the structure of the

system is an important factor in determining the dynamics of the particles. Crucially

structural features are present even in relatively low dissipative systems and hence this

model provides a very relevant demonstration of the effects likely to be seen at the

level of dissipation obtainable in real experimental systems. We now outline several

extensions to the work covered in this thesis. These include further refinement of several

aspects of the model and the generalisation of theory to more experimental systems.

Let us begin by first discussing some refinements on the Single Particle Model that

could be explored in the process of more fully comprehending its importance. For

example, we still do not know how to correctly treat slow moving particles. This may

be improved by either replacing the assumption that particles have zero initial velocity

after collision with a better approximation, such as choosing some non-zero velocity
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picked from a distribution; or removing the assumption that particles will not reverse

direction before collision, as slow moving particles move at a similar rate to those they

collide with allowing them to be caught by the other particle. Another refinement

would be to prove conclusively an analytic expression that the high velocity tail of the

distribution Q(v, l) is Gaussian. A preliminarily attempt was made in Appendix B,

however it was found to be very difficult to obtain a simplified asymptotic expression

even for the one-dimensional case.

A more important extension of the thesis’s work will be to assert its importance on

finite experimental systems. One of the closest experimental systems to the Random

Force Model were those described by Reis, Ingale, and Shattuck (2006) whereby a quasi-

two-dimensional system of particles, are shaken vertically between narrowly separated

roughen base and smooth plate. It would be interesting to see how well our predictions

compare with their data as it is uncertain whether more dominant forces such as drag

friction play a role, which may change the system behaviour as is implied by Puglisi,

Loreto, Marconi, and Vulpiani (1999).

In systems where particles are known to be affected by drag as well as the random

force we would expect there to be competition on the particle’s motion between the

change in momentum generated by the random force and the loss of momentum through

the drag. For very high velocity the drag term always dominates over the random force.

In these types of systems there is clearly going to be a crossover in behaviour from that

driven by the random noise to that governed by the drag friction. Thus we would expect

that the velocity distribution of low packing fraction systems would visibly deviate away

from work described in this thesis and tend towards the Gaussian predicted by Puglisi,

Loreto, Marconi, and Vulpiani (1999). In contrast the higher packing fraction systems,

in which there is generally insufficient space for particles to pick up sufficient momentum

for drag to become the dominant force, should maintain the behaviour described in this

thesis over the observable statistics. Ultimately the asymptotic high velocity behaviour

of the statistics must be governed by the drag friction.

Finally it may of interest to further pursue the implications of treating these sys-

tems as a collection of self-organising particles that continually rearrange to maintain

large-scale fractal structure. In this thesis we promoted the above idea by introducing

Multiplicative Processes as a geometrical method to obtain the same type of fractal

structural features. We proposed that methods that maximises the randomness of

particle positioning within the hierarchical structure are likely to lead to the correct
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structural features. However, currently it is difficult to refine further without developing

precise physical arguments into why the system should organise in such a way.



Appendix A

Velocity Properties a

One-dimensional Random Force

Model

The dynamical behaviour of particles in the random force system describes how an

individual particle progresses through the system. At any given moment a particle has

a position and an instantaneous velocity (defined as the velocity of the particle at the

moment in time). The random force interacts with the particle by accelerating the

particle, changing its instantaneous velocity. Statistically over time all particles are

indistinguishable as the system does not break into regions of unique behaviour. Hence

we can describe the statistical behaviour of the particles motion by the instantaneous

velocity probability distribution.

In this appendix: we describe how to measure the velocity distribution through

simulation; we make general observation on the possible forms exhibited by the proba-

bility distribution of instantaneous velocity; we then attempt to describe the asymptotic

behaviours of these distributions by use of standard techniques.

A.1 Details of Technique used for Generating Velocity

Distribution

The following material outlines techniques used to generate the probability density

function of the velocity statistics of any particle in the system; methods for analysing

the shape of such a distribution; and measurements of the moments associated with

the distribution. Although this section has specifically described methods for obtaining

159
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statistics on the velocity of a particle the same principles can be employed in the

calculation of statistics of other quantities such as correlations between particles.

We assume that all particles in the system behave the same: There is no phase

separation or unique behaviour associated with any particular region of the system.

The Velocity distribution P (v), is defined to be the probability density function of any

particle in the system having an instantaneous velocity of magnitude v. Hence the

probability a particle has a velocity between vL and vU is given by the integral:

P (vL < v < vU ) =

∫ vU

vL

P (v) dv, (A.1)

and the distribution is normalised such that the total probability is 1:

∫ ∞

−∞
P (v) dv = 1. (A.2)

General Method for Calculating Distribution Through Simulation

In simulations we calculate discrete approximations to the true probability density

function. The distributions are calculated during the computer simulation through

sampling of all particles uniformly at a constant rate, typically at a rate of once every

1000∆t seconds (although the distribution should be invariant to the rate of sampling)

and tabulating into a frequency distribution, P(v), the details of which are as follows:

firstly the distribution is defined; secondly the statistics are generated and thirdly the

associated errors are calculated and the distribution normalised.

Lets us begin by defining the discrete approximation of the velocity distribution. We

identify the range of magnitudes of velocity, v, that we wish to consider v ∈ (vmin, vmax)

where the span is ensured to be sufficient such that the measured value of a particle

velocity does not fall out side this range (the likelihood of a particle falling outside

this range is so small that it is never seen over the times measured in the simulation).

This region of velocities is further subdivided into Nbin regions with widths spanning,

∆v, defined by ∆v = (vmax − vmin)/Nbin. Any sampled velocity that falls inside

the jth region is assumed to approximate the average value of the region Vj given by

Vj =
(
j − 1

2

)
∆v such that the sampled velocity become discretise with one of the

following set of values V1, V2, ..., VNbin
.

We now outline the steps required to populate the statistics during simulation.

Before sampling the probability density distribution P(v) is assumed to be 0 over all

v. Each time the ith particle is sampled its instantaneous velocity vi is mapped onto
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the discrete set of velocities Vj where the specific j is determined by:

j =
vi − vmin

∆v
. (A.3)

The value of the frequency distribution P(v) at velocity v = Vj then increments by 1.

The probability P(Vi) is thus the number of times at which v was measured to be Vi

and so the normalised probability distribution P (v) is obtained by dividing P(v) by

the total number of all possible measurements of v.

Having obtained measurements of the profile of the velocity probability distribution

we now need an estimate of the errors associated with each data point. The exact errors

on the distribution are unknown as change in velocities occur at random but for a large

sample the variation of estimated values can be assumed to be normal distributed about

the true value. Thus for an unnormalised velocity distribution where Xi is simply the

number of particles sampled that have a velocity Vi, the error associated to the velocity

is given as s
√

Xi such that:

P(Vi) = Xi ± s
√

Xi, (A.4)

where
√

Xi is the predicted standard error (σ) and s = 1, 2, 3 . . . such that there is a

68% chance the true value of P(Vi) lies within ±σ of the measured value, 95% chance

within ±2σ and 99% chance within ±3σ. The normalised probability distribution has

probabilities:

P (Vi) =
Xi

Ns
± s

√
Xi

Ns
, (A.5)

where Ns =
∑Nbin

i=1 Xi is the total number of particles sampled (over all times sampled)

and Nbin is the number of discrete bins that span the velocity distribution. Equation

A.5 can also be written in terms of the normalised probability xi such that:

P (Vi) = xi ± s

√
xi

Ns
. (A.6)

For clarity errors are not shown in general on the probability distributions unless specif-

ically used to preform a calculation or fit.

The precision of the distribution is affected in a number of ways including through

the size of the bin-width and the length of simulated time sampled.

Specific Method Used in the 1D Random Force Model Simulation

The details of the simulations are as follows.

Molecular dynamical simulations are carried out with a simulated 20 seconds being

allowed to elapsed before sampling. The velocity distribution is tabulated by taking
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snapshots of the system at regular intervals, of frequency 1./(1000∆t), and recording

the instantaneous velocities of the complete set of particles over a simulated time length

of 2000 seconds.

The velocity distribution is compiled by accepting particle velocities where 0 <

|v| < 6ms−1 such that the distribution consists of 5000 regions each of bin-width ∆v =

6/5000 = 1.2 × 10−3ms−3.

The accuracy of the velocity distribution is further improved by re-running the

simulation five times, each time using a different random seed value (to ensure unique

initial conditions). The five obtained distributions are merged into one which is then

renormalised such that
∫ vmax

vmin
P (v)dv = 1, where vmin, vmax are the maximum magni-

tude measured for the instantaneous velocity of a particle.

Fitting Curves to Measured Distributions

Once we have obtained a velocity distribution we may wish to test a hypothesised fit.

We fine tune the parameters of the fit by minimising the chi square value between the

fit and measured data.

The chi-square measurement is calculated by the following method. Let O(Vi) be

the actual measured value of P (Vi) obtained from simulation and s(Vi) the associated

error. If p(v) is a hypothesised fit of P (v) with Npar parameters. Then the expected

value of P (Vi) is given by E(Vi). A measure for the goodness-of-fit is given by chi-square

measurement, χ2:

χ2 =

Nbin∑

i=1

(
O(Vi) − E(Vi)

s(Vi)

)2

. (A.7)

The function p(v) is a good fit to the data if the reduced chi-square, χ2
r = χ2/(Nbin −

Npar) is close to 1.

An adaptive fitting method such as (William H. Press 1992) can be used to fine

tune p(v) by varying the parameters to minimise χ2
r and allows us to judge the appro-

priateness of such a fit.

A.2 The Variation of Shape with Respect to Dissipation

We show that the instantaneous velocity probability density takes a range of shapes that

change depending on the amount of dissipation occurring in the system. We examine

a typical set of systems where the number of particles is kept fixed whilst the extent of

dissipation is varied from near-elastic to totally inelastic. We choose the particular set



Appendix A Velocity Properties a One-dimensional Random Force Model 163

Fig. A.1: The family of velocity probability density distributions for a system containing 1000 particles

and the following coefficients of restitution (from outer to inner curve) 0.1; 0.37; 0.68; 0.8; 0.94 and

0.99.
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of systems populated by 1000 particles, however we have seen through simulation that

the exact number is irrelevant. The range of particles and coefficients of restitution

have been chosen to coincide with the work done by Williams and MacKintosh (1996)

and Puglisi et al. (1999), whilst heating (by the random force) during collision prevents

the system from inelastically collapsing at the highest dissipations.

Figure A.1 shows a selection of solutions for the velocity probability density dis-

tribution of a system containing 1000 particles for various coefficients of restitution.

We display the velocity probability density distributions on a linear-log plot shown in

figure A.1. The data shown is more accurate than any previously shown research, with

at least eight decades of the distribution achieved. Two points about the distributions

should be emphasise: first, the breath of the distributions becomes narrower as the

coefficient of restitution of the particles contained in the system increases, correspond-

ing to a reduction in the granular temperature of the steady state system; second, the

curvature of the distributions decreases with coefficient of restitution corresponding to

a relative increase in probability of a particle having a high velocity (where v ≫ vrms)

compared to the root mean square velocity.

The velocity distributions of figure A.1, and the other families of systems with fixed
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numbers of particles in the range considered, clearly show a trend towards a common

form as the coefficient of restitution approaches 0. Indeed the transition of shape of

the velocity probability density distribution with respect to coefficient of restitution

becomes more subtle as the coefficient of restitution approaches 0, with the greatest

difference in shape being between the velocity probability distributions of systems with

near elastic collisions, as demonstrated by the distributions representing coefficients

of restitution of 0.99, 0.94 and 0.8 in the figure A.1; whilst only minor changes occur

between the distributions representing coefficients of restitution of 0.68 or less.

In the following section we study the behaviour as the velocity becomes asymptotic

(|v| → ∞).

A.3 Measuring the Observable High Velocity Behaviour

We compare the asymptotic behaviour of the velocity statistics to the established idea

that these distributions asymptotically behave as stretched exponential. Here we de-

scribe the methods used to fit velocity distributions, then we analyse the results and

lastly discuss the major limitations of using these methods.

Let us assume that the high velocity behaviour of the particles can be described by

a stretch exponential of the form:

lim
v→∞

P (v) = A exp (−B|v|α) , (A.8)

where A, B and exponent α are constants dependent on the properties of the system.

Fitting the velocity distributions of the Random Force Model to that of a stretch

exponential has an appeal because of two features: first, the family of distributions

becomes more overpopulated at large velocities as the exponent α is decreased from

α = 2 (Gaussian) towards 0; second, if a set of systems are described by a distribution

with fixed exponent α then the distributions will collapse onto a single curve by the

linear rescaling of the velocity axis through the map of v 7→ v/v0 where v0 is a constant

scaling velocity.

Fitting the Distribution to a Stretch Exponential

We fit the velocity distributions by comparing the frequency distribution P(v) to the

fit PT (v) = A0 exp(−B0|v|α). Let us assume that the lowest few decades of the visi-

ble distribution mimic the asymptotic behaviour of the complete distribution whereby
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measurement was made over an infinite time period. We select the lowest two decades

of data where P(v) has a value between 5000 and 50 and assume the error in each

point lies with in ±
√

Xi. We ignore P(v) < 50 because we assume the error in these

data points to be too large for the data to be meaningful. We choose a chi-square

fitting method to determine the best-fit of PT (v) and accept values for α if the reduced

chi-square, χ2
r , between PT (v) and P(v) is less than 1.2 (or 1.3 in the case of †).

The table below shows ranges of α that are accepted through the above outlined

method for a variety of systems. The columns represent systems with fixed dissipation

whilst the row are for systems containing constant number of particles.

N ε = 0.1 ε = 0.37 ε = 0.68 ε = 0.80 ε = 0.94 ε = 0.99

398 0.98 ± 0.23 1.08 ± 0.23 1.10 ± 0.25 1.23 ± 0.23 1.60 ± 0.35 2.10 ± 0.05†
631 1.08 ± 0.23 1.08 ± 0.23 1.05 ± 0.20 1.20 ± 0.25 1.53 ± 0.33 2.13 ± 0.18

1000 0.88 ± 0.28 0.98 ± 0.23 1.05 ± 0.25 1.08 ± 0.28 1.35 ± 0.35 2.10 ± 0.45

1585 0.98 ± 0.23 0.95 ± 0.20 0.95 ± 0.20 1.08 ± 0.28 1.38 ± 0.43 2.18 ± 0.53

2512 0.93 ± 0.23 0.88 ± 0.12 0.88 ± 0.33 1.05 ± 0.35 1.28 ± 0.33 2.15 ± 0.40

3981 0.75 ± 0.25 0.98 ± 0.28 0.88 ± 0.33 1.15 ± 0.40 1.33 ± 0.48 1.88 ± 0.68

Table A.1: Measurement of exponent α for a wide range of systems.

The table demonstrates that, the value of exponent α is increased by either de-

creasing dissipation or the number of particles in the system. The increase in power

exponent α corresponds to the high velocity tails of the distributions becoming less

over-populated (when compared to a Gaussian).

We now ask: are these distributions consistent with current suggested granular kinetic

theory? The table of measured α for the probability density function obtained from

the Random Force Modelare compared against three asymptotic analytical stretched–

exponential solutions suggested, from kinetic theories, namely:

α = 1, the Laplace distribution;

α = 1.5, suggested by Ernst;

and α = 2, the Gaussian distribution.

The Laplace solution is consistent with the data for a broad range of systems, where

particles have moderate to high dissipation of a coefficient of restitution approximately

between 0.1 and 0.8. In contrast the remain two suggested solutions, derived by Ernst

and Maxwell-Boltzmann’s Gaussian distribution, do not span many dissipation extents
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and could even be described as coincidental. A Gaussian distribution might be expected

to be applicable for low dissipation systems, where particles behave near-elastically, and

is found to be a viable option for the asymptotic tail of the velocity distribution of a

system with coefficient of restitution 0.99. However even small reductions in coefficient

of restitution reduces α significantly from two. Similarly the Ernst derived solution

only provides a reasonable fit for systems with coefficients of restitution of around 0.94

and in some respects can be considered insignificant as there must exist a distribution

of α ≈ 1.5 if α decays with increasing dissipation between two and one.

An interpretation of these observations is that for systems with coefficients of resti-

tution less than 0.9 it is inappropriate to take a homogeneous approach and instead an

approach that accounts for the spatial clustering of the system should be used.

Limitations in Using the Fitting Method

Finally we discuss some of the limitations of curve fitting the data to stretch exponen-

tials. It is clear from the table of results that it is difficult to narrow down the possible

values of α. Indeed in some cases the variation in exponent α of viable stretched

exponentials is comparable to α.

To demonstrate the above point we take the system of N = 1585 and ε = 0.1. The

figure A.2 shows the frequency distribution as points and the following fits for PT (v):

(17.9 ± .3) × 108 exp
(
−7.220 ± .008|v|0.75

)
which fits the data with a χ2

r=1.16.

(50.3 ± .6) × 106 exp (−4.305 ± .005|v|) which fits the data with a χ2
r=1.05.

(84.5 ± .8) × 108 exp
(
−2.986 ± .003|v|1.20

)
which fits the data with a χ2

r=1.20.

These distributions represent best fits for the two extreme allowed values of α and also

a intermediate value (α = 1) around the middle of the range.

It is difficult to distinguish which of the solutions agrees better with the real data

over the fitting range shown, given by data pointed that lies between the two dotted

lines. It is possible to narrow down the range of values of α by including further data

from outside the fitting region. However using higher magnitude data (P(v) > 5000)

risks including more of the the distributions peak behaviour which may vastly differ

from the asymptotic limit and using lower order data (50 < P(v) < 1) has scatter (due

to finite sampling) that becomes so large that any one of these three fits can be still

considered to be a good fit.

A further consideration is that, because the velocity probability distribution may

only fit asymptotically to a stretch exponential, the precision (the order of magnitude
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Fig. A.2: The velocity distribution for a system with N = 1585, ε = 0.1 is curve-fitted between the

two dashed line and the solid lines represent three appropriate stretch exponentials (described in main

text).

available) of the data or the range of the distribution considered will affect the obtained

result by changing the measured value of the parameters obtained in curve fitting. The

significance being that the measured value of α is more likely to be too large than too

small.



Appendix B

A Single Particle in a

One-dimensional Interval

In appendix B we describe the behaviour of a single particle in a one-dimensional

interval with fixed absorbent boundaries at x = 0 and L. The particle is released at

rest with a uniform random initial position. This system is different to that used in the

Single Particle Model where particles are placed in the centre of the interval. However

this toy model might provide a way to analytically calculate the asymptotic shape of

the probability distribution Q(v, l).

B.1 Solving the Fokker-Planck Equation

Let us consider the following one-dimensional Fokker-Planck equation which describes

a succession of isolated particles with velocity v and position x governed by the wave

function P (x, v) that are injected uniformly across the system at a rate R with an

initial velocity v0.

v
∂P (x, v)

∂x
− ∂2P (x, v)

∂v2
= Rδ(v − v0). (B.1)

The Fokker-Plank equation is further constrained by three relevant properties:

Property I is that there exist a pair of finitely separated boundaries, at positions x = 0

and x = L, that are absorbent such that P (L, v < 0) = P (0, v > 0);

Property II is that the system is invariant of direction such that there is a reflective

symmetry in P (x, v) of P (x, v) = P (L − x,−v);

Property III is that the particles start from rest so that v0 → 0+.

To obtain the solution to the wave function P (x, v) governed by the above Fokker-

Plank equation we are going to follow the same methods as employed in the papers by

168
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Burkhardt, Franklin, and Gawronski (2000) and Masoliver and Porra (1996). In these

papers the solution is obtained by using the following steps: first Laplace transform

(with respect to x) the above Fokker-Plank equation to obtain a differential equation

in terms of Q(s, v) where Q(s, v) is the Laplace transform of P (x, v); then solve the

resulting differential equation for Q(s, v); next take the inverse Laplace transform of

the obtained solution Q(s, v) to give the solution for P (x, v); finally obtain an explicit

solution for the wave function P (x, v). The advantage of Laplace transforming the

Fokker-Plank equation is that the new equation contains only differentials in v rather

than both x and v, as was found in the original Fokker-Planck equation.

Let us now work through the four stages to obtain the solution for P (x, v). The

Fokker-Planck equation (B.1) can be considered to be made of three components;

P (x, v); ∂P/∂x; and Rδ(v − v0). To calculate the Laplace transform of the Fokker-

Planck equation consider each of its component in turn: The first transforms to,

L{P (x, v)} = Q(s, v) =

∫ ∞

0
exp(−sx)P (x, v)dx; (B.2)

the second to,

L
{

∂P

∂x

}
=

∫ ∞

0
exp(−sx)

∂P

∂x
dx (B.3)

= P exp(−sx)|∞x=0 + sQ(s, v)

= −P (0, v) + sQ(s, v);

and the third to,

L{Rδ(v − v0)} = R

∫ ∞

0
exp(−sx)δ(v − v0)dx (B.4)

= Rδ(v − v0)

[− exp(−sx)

s

]∞

x=0

= R
δ(v − v0)

s
.

Thus our Fokker-Panck equation B.1 is Laplace transformed to:

vsQ − ∂2Q

∂v2
= R

δ(v − v0)

s
+ P (0, v)v. (B.5)

If we consider only positive velocities, such that v > 0, we can neglect the second

term by applying the condition (Property I) that the systems boundaries are absorbent,

implying P (0, v) = 0 if v > 0, and the solution to equation B.5 can be written as
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(Abramowitz and Stegun 1965):

Q(s, v) = W (s)Ai(s
1
3 v) (B.6)

+Rπs−
4
3 Bi(s

1
3 v)

∫ ∞

v
duAi(s

1
3 u)δ(u − v0)

+Rπs−
4
3 Ai(s

1
3 v)

∫ v

0
duAi(s

1
3 u)δ(u − v0),

where W (s) is an arbitrary weight function and Ai(s),Bi(s) are Airy functions of s.

The weight function can be replace with an expression in terms of Q(s, v) by dif-

ferentiating equation B.7 with respect to v and evaluating at v = 0:

∂Q(s, v)

∂v

∣∣∣∣
v=0

= s
1
3 W (s)Ai′(0) + Rπs−1

(
Bi′(0)Ai(s

1
3 v0)Θ(v0)

)
, (B.7)

and hence the weight function is expressed as:

W (s) =
s−

1
3

Ai′(0)
∂Q(s, v)

∂v
− Rπs−

4
3
Bi′(0)
Ai′(0)

Ai(s
1
3 v0), (B.8)

whilst the solution of Q(s, v), stated in equation B.7 is described as:

Q(s, v) = s−
1
3
Ai(s

1
3 v)

Ai′(0)

[
∂Q(s, 0)

∂v

]
(B.9)

−Rπs−
4
3
Bi′(0)
Ai′(0)

Ai(s
1
3 v)Ai(s

1
3 v0)

+Rπs−
4
3 Bi(s

1
3 v)Ai(s

1
3 v0)Θ(v0 − v)

+Rπs−
4
3 Ai(s

1
3 v)Bi(s

1
3 v0)Θ(v − v0).

To obtain the solution for P (x, v) we inverse Laplace transform the above expression

of Q(s, v) (as suggested by equation B.2) which requires the use of the Convolution

theorem of Laplace transformations:

L{u(x) ∗ f(x)} = L
∫ x

0
u(y)f(x − y)dy = L{u(x)}L{f(x)},

in particular that of

L
{

f(x) ∗ dP (x, 0)

dv

}
= L

∫ x

0
f(x − y)

dP (y, 0)

dv
dy = L{f(x)}dQ(s, 0)

dv
, (B.10)

and

L{1 ∗ u(x)} = L
∫ x

0
u(x − y)dy =

1

s
L{u(x)}. (B.11)

The function f(x) required is defined in equation B.9 where L{f(x)} is s−
1
3 Ai(s

1
3 v)

and the inverse Laplace transform is calculated by the following:

f(x) = L−1
{

s−
1
3 Ai(s

1
3 v)
}

= (2 × 3
1
6 π)−1x− 2

3 exp

(
− v3

9x

)
,
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whilst u(x) takes the functions defined in equation B.9 as either

L{u1(x)} = s−
1
3 Ai(s

1
3 v)Ai(s

1
3 v0) or L{u2(x)} = s−

1
3 Ai(s

1
3 v)Bi(s

1
3 v0) such that:

u1(x) = L−1
{

s−
1
3 Ai(s

1
3 v)Ai(s

1
3 v0)

}
= (2 × 3

3
2 π)−1x−1(vv0)

1
2 exp

(
−v3 + v3

0

9x

)

×
[
I− 1

3

(
2(vv0)

3
2

9x

)
− I 1

3

(
2(vv0)

3
2

9x

)]
,

or

u2(x) = L−1
{

s−
1
3 Ai(s

1
3 v)Bi(s

1
3 v0)

}
= (6π)−1x−1(vv0)

1
2 exp

(
−v3 + v3

0

9x

)

×
[
I− 1

3

(
2(vv0)

3
2

9x

)
+ I 1

3

(
2(vv0)

3
2

9x

)]
,

where the Airy’s functions Ai(z) and Bi(z) can be expressed in terms of Bessel functions

Iv(z) such that

Ai(z) =
1

3

√
z

[
I− 1

3

(
2

3
z

3
2

)
− I 1

3

(
2

3
z

3
2

)]
, (B.12)

and

Bi(z) =

√
z

3

[
I− 1

3

(
2

3
z

3
2

)
+ I 1

3

(
2

3
z

3
2

)]
. (B.13)

Collating the above set of information together and removing the Airy derivatives,

via Ai′(0) = −3−
1
2 Bi′(0) = −3−

1
3 Γ
(

1
3

)−1
(where Γ(z) is a Gamma function) gives us

the full solution for P (x, u):

P (x, v) = −3
1
3 Γ
(

1
3

)

2 3
1
6 π

∫ x

0

dy

(x − y)
2
3

exp

(
− v3

9(x − y)

)
∂P (y, 0)

∂v
(B.14)

+
R

6

∫ x

0
dy y−1(vv0)

1
2 exp

(
−v3 + v0

3

9y

)[
I− 1

3

(
2(vv0)

3
2

9y

)
− I 1

3

(
2(vv0)

3
2

9y

)]

+
R

6

∫ x

0
dy y−1(vv0)

1
2 exp

(
−v3 + v0

3

9y

)[
I− 1

3

(
2(vv0)

3
2

9y

)
+ I 1

3

(
2(vv0)

3
2

9y

)]
.

The latter two integrals are the of the same form and thus equation B.14 simplifies to:

P (x, v) = −3−
1
2 Γ
(

1
3

)

2π

∫ x

0

dy

(x − y)
2
3

exp

(
− v3

9(x − y)

)
∂P (y, 0)

∂v
(B.15)

+
2R

6

∫ x

0
dy y−1(vv0)

1
2 exp

(
−v3 + v0

3

9y

)
I− 1

3

(
2(vv0)

3
2

9y

)
.

To progress any further towards an explicit solution for P (x, v) we need to substitute

out the derivative ∂P (y, 0)/∂v and to do that we consider the case where the velocity

is zero. The equation B.15 can be expressed in the following way when v = 0:

P (x, 0) = −3
1
2 Γ
(

1
3

)

2π

∫ x

0

dy

(x − y)
2
3

∂P (y, 0)

∂v
(B.16)

+
R

3

∫ x

0
dy y−1(vv0)

1
2 exp

(
−v0

3

9y

)
Γ

(
2

3

)−1

(vv0)
− 1

2 (9y)
1
3 ,
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where we replace Iν(z) by Iν(z) ≈ Γ(ν + 1)−1(z/2)ν as z → 0.

The above expression (equation B.16) still contains P (x, 0) and its derivative

∂P (x, 0)/∂v; however P (x, 0) can be eliminated by using Property II of the constraints

and the resulting expression further simplified by nullifying the initial velocity, v0 by

invoking Property III to leave the following expression:

0 ≡ P (x, 0) − P (L − x, 0) = −3
1
2 Γ
(

1
3

)

2π

∫ L

0

dy

|x − y| 23
∂P (y, 0)

∂v
(B.17)

+
R

Γ(2
3)

(∫ x

0
dy y−

2
3 −

∫ L−x

0
dy y−

2
3

)
.

A rearrangement of equation B.17 can be expressed as:

∫ L

0

dy

|x − y| 23
∂P (y, 0)

∂v
= 3R

[
x

1
3 − (L − x)

1
3

]
. (B.18)

To solve B.18 for ∂P (y, 0)/∂v we will first consider instead the Fromholm Integral

equation as stated in (Burkhardt, Franklin, and Gawronski 2000):

∫ 1

0
dy

R(y, u)

|x − y| 23
= F (x, u). (B.19)

The difference between F (x, u) and F (1 − x, u) can be described as:

∫ 1

0
dy

R(y, u) − R(1 − y, u)

|x − y| 23
= F (x, u) − F (1 − x, u) (B.20)

and has a known solution to R(y, u) of:

R(x, u) = −3−
1
2 Γ

(
1

3

)−1

Γ

(
5

6

)−2

x− 1
6

d

dx
(B.21)

×
∫ 1

x
dy

y
1
3

(y − x)
1
6

d

dy

∫ y

0
dz

F (z, u)

z
1
6 (y − z)

1
6

.

Consider the case where F (x, u) takes the form:

F (x, u) = 3Rx
1
3 (B.22)

We can express equation B.21 as two integrals II and III such that R(x, u) =

A(x) d
dxIII and III =

∫
dyB(y) d

dy II , where A(y), B(y) are functions of y. The solution

of R(x, u) is obtained by evaluating II , then using the result to calculate III and finally

differentiating III .

Let us first consider the calculation of II :
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II :=

∫ y

0

F (z, u)

z
1
6 (y − z)

1
6

dz. (B.23)

In general, equations of this form are solved by the identity

∫ t

0
zµ−1(t − z)ν−1dz = tµ+ν−1B(µ, ν),

where B(µ, ν) is a Beta function.

Hence the integral II is solved by the following: replace F (z, u) with that of equation

B.22; use a change of variable z = yz′ and implement the above identity.

II : = 3R

∫ y

0

z
1
6

(y − z)
1
6

dz (B.24)

= 3R

∫ 1

0

(yz′)
1
6

y
1
6 (1 − z′)

1
6

ydz′

= 3R y

∫ 1

0

z
1
6

(1 − z)
1
6

dz

= 3R y B

(
7

6
,
5

6

)
.

The second integral, III , is defined as:

III :=

∫ 1

x
dy

y
1
3

(y − x)
1
6

d

dy
II = 3R B

(
7

6
,
5

6

)∫ 1

x
dy

y
1
3

(y − x)
1
6

. (B.25)

To solve integral III a change of variables is applied three times in the following

order; z = y − x, z′ = z/(1 − x) and z′′ = 1 − z:

III := 3R B

(
7

6
,
5

6

)∫ 1−x

0

(z + x)
1
3

z
1
6

dz (B.26)

= 3R B

(
7

6
,
5

6

)
(1 − x)

5
6

∫ 1

0

[(1 − x)z′ + x]
1
3

(z′)
1
6

dz′

= 3R B

(
7

6
,
5

6

)
(1 − x)

5
6

∫ 1

0

[(1 − x)(1 − z′′) + x]
1
3

(1 − z′′)
1
6

dz′′

= 3R B

(
7

6
,
5

6

)
(1 − x)

5
6

∫ 1

0
[1 − (1 − x)z]

1
3 (1 − z)−

1
6 dz.

The process of reparametrizing Integral III has left it in the form of the following

Hypergeometric identity:

2F1(a, b; c;x) =
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − tx)−adt,

where c > b > 0 and thus III can be evaluated as:
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III := 3R B

(
7

6
,
5

6

)
(1 − x)

5
6
Γ (1) Γ

(
5
6

)

Γ
(

11
6

) 2F1

(
−1

3
, 1;

11

6
; 1 − x

)
. (B.27)

We have now reached a state where R(x, u) can be calculated using:

R(x, u) = −3−
1
2 Γ

(
1

3

)−1

Γ

(
5

6

)−2

x− 1
6

d

dx
III . (B.28)

The derivative of III can be calculated using the following generalised identity of

hypergeometric functions (Masoliver and Porra 1996)

d

dx
[xc

2F1(a, b; c + 1;x)] = cxc−1
2F1(a, b; c;x) ,

which implies that equation B.28 becomes the expression:

R(x, u) =
3−

1
2 × 5

2
R

[
Γ

(
1

3

)
Γ

(
5

6

)
Γ

(
11

6

)]−1

B

(
7

6
,
5

6

)

× [x(1 − x)]−
1
6 2F1

(
−1

3
, 1;

5

6
; 1 − x

)
. (B.29)

Let us now relate the above solution of R(x, u) back to the problem set out in B.18.

Choosing F (x, u) to have the form stated in equation B.22 has the benefit that the

equation B.20 can be considered to be the generalised form of equation B.18 when we

equate

∂P (y′, 0)
∂v

= R(y′, u) − R(1 − y′, u) (B.30)

and use a rescaled length dimension such that y′ = y/L. Thus the result of equation

B.29 implies that:

∂P (y, 0)

∂v
=

3−
1
2 × 5

2
R

[
Γ

(
1

3

)
Γ

(
5

6

)
Γ

(
11

6

)]−1

B

(
7

6
,
5

6

)[ y

L
(1 − y

L
)
]− 1

6

×
[

2F1

(
−1

3
, 1;

5

6
; 1 − y

L

)
− 2F1

(
−1

3
, 1;

5

6
;
y

L

)]
. (B.31)

The power of obtaining the above result is that we can now describe the rate ex-

pression P (x, v) set out in equation B.15 without referring to P (x, v) explicitly and

hence the solution becomes a regular integral of the form:

P (x, v) =
R

Γ
(

2
3

)



− Γ
(

1
6

)

2
√

3Γ
(

1
3

)
Γ
(

5
6

)
∫ x

0
dy

exp
(
− v3

9(x−y)

)

(x − y)
2
3

[ y

L
(1 − y

L
)
]− 1

6

×
[

2F1

(
−1

3
, 1;

5

6
; 1 − y

L

)
− 2F1

(
−1

3
, 1;

5

6
;
y

L

)]

+

∫ x

0
dy y−

2
3 exp

(
− v3

9y

)]
. (B.32)

Equation B.32 is difficult to solve exactly due to the nature of the hypergeometric

functions so further calculation of the above form is done by numerical integration.
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Fig. B.1: Comparison of numerical simulation data (circular points) with analytical solution (solid

line) for rate of particles arriving with a given velocity at the right-hand side boundary (x = L) of a

one-dimensional system with particle uniformly distributed at rest each time it reaches a boundary.

For simplicity the mass, separation and noise strength are set to unit.

B.2 What is the form of Q(v, l)?

Can we use this solution for P (x, v) to further derive the form of the Q(v, l) distribu-

tion? First, we demonstrate that the equation B.32 provides correct solution for these

systems. We numerically integrate equation B.32 by using a method such as QNG

non-adaptive Gauss-Kronrod integration (William H. Press 1992) to obtain P (x, v).

We also calculate P (x, v) directly from simulation using a system with a noise strength

of D/M2 = 1 and a system width of L = 1. The distribution of arriving velocities at

right-hand boundary (x = L) is calculate and then divided by the velocity to obtain

the probability density. The two solutions for P (x, v), at x = L, are shown in figure

B.1 where the line represents the numerical integration and the points the simulation

data. Both solutions agree until small velocities where numerical instabilities affect the

results.

We now attempt to calculate the velocity probability distribution of a free path l

(where L = 2l), Q(v, l), which is is defined by the integral:

Q(v, l) =

∫ 2l

0
P (x, v)dx. (B.33)
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Fig. B.2: Comparison of numerical simulation data (circular points) with analytical solution (solid

line) for the probability that a particle has a velocity v in one-dimensional system where the particle

uniformly distributed at rest each time it reaches a boundary. For simplicity the mass, separation and

noise strength are set to unit.

Using equation B.32 Q(v, l) is expressed as:

Q(v, L) =
R

Γ
(

2
3

)
∫ L

0
dyA(y)

∫ L−y

0
dz

exp
(
− v3

9(z)

)

(z)
2
3

, (B.34)

where the function A(y) contains all the remaining non-exponential components of the

form:

A(y) = 1 − Γ
(

1
6

)

2
√

3Γ
(

1
3

)
Γ
(

5
6

)
[ y

L
(1 − y

L
)
]− 1

6

×
[

2F1

(
−1

3
, 1;

5

6
; 1 − y

L

)
− 2F1

(
−1

3
, 1;

5

6
;
y

L

)]

We perform both a numerical integration and computer simulation and find that the

two solutions of Q(v, l) agree as shown in figure B.2.
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