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Abstract 

Over the last thirty years radiocarbon dating has been widely used in 

archaeology and related fields to address a wide-range of chronological questions. 

Because of some inherent stochastic factors of a complex nature, radiocarbon dat- 

ing presents a rich source of challenging statistical problems. The chronological 

questions posed commonly involve the interpretation of groups of radiocarbon 

determinations and often substantial amounts of a priori information are available. 

The statistical techniques used up to very recently could only deal with the 

analysis of one determination at a time, and no prior information could be 

included in the analysis. However, over the last few years some problems have 

been successfully tackled using the Bayesian paradigm. In this thesis we expand 

that work and develop a general statistical framework for the Bayesian interpreta- 

tion of radiocarbon determinations. 

Firstly we consider the problem of radiocarbon calibration and develop a 

novel approach. Secondly we develop a statistical framework which permits the 

inclusion of prior archaeological knowledge and illustrate its use with a wide- 

range of examples. We discuss various generic problems some of which are, 

replications, summarisation, floating chronologies and archaeological phase struc- 

tures. The techniques used to obtain the posterior distributions of interest are 

numerical and, in most of the cases, we have used Markov chain Monte Carlo 

(MCMC) methods. We also discuss the sampling routines needed for the imple- 

mentation of the MCNIC methods used in our examples. Thirdly we address the 

very important problem of outliers in radiocarbon dating and develop an original 

methodology for the identification of outliers in sets of radiocarbon determina- 

tions. We show how our framework can be extended to permit the identification 

of outliers. Finally we apply this extended framework to the analysis of a sub- 

stantial archaeological dating problem. 
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Chapter 1 

Introduction 

1.1 History of radiocarbon dating 

"Nuclear physical data indicate that cosmic-ray neutrons produce 14 C and 3 He 

from atmospheric nitrogen, the radiocarbon being the principal product. The pur- 

pose of this letter is (... ) to suggest that radiocarbon might be found in living 

matter 

Hidden among hundreds of volumes in the store of the University of Notting- 

ham Science Library, one can find this extract in a two page letter sent by W. 

Libby in 1946 to the journal Physics Review (Libby 1946). It contains a theoreti- 

cal analysis that predicted the content of radiocarbon in all living matter. Libby 

conjectured that cosmic rays, when entering the earth's atmosphere, split nitrogen 

into Helium-3 and Carbon-14,14C (radiocarbon). The 14C is then incorporated imýo 

the biosphere in the form of carbon dioxide, and absorbed first by plants for pho- 

tosynthesis and consequently by all living matter in the food chain. He postulated 

that by this process, all living matter would eventually contain radiocarbon. 

Carbon has three n aturally occurring isotopes, 12C, 13 C and 
14C. Of these, 

only 14C is radioactive. This means that 14C is an unstable atom and eventually 

will decay (by emission of an electron) to Nitrogen-14. This decay process fol- 

lows the 'law of radioactive decay' 

Moexp 
In2 

t 
TI 12 

where M is the 14C/ 12C ratio remaining after a time t, having started with a 

14C/12 C ratio of MO, and TI/2 is called the 'half-life'. The 'mean life' is given by 
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L1-12. 
For 14C, it is currently estimated that TI/2 = 5730 years but, for the 

In2 

purpose of radiocarbon dating Libby's value of TI/2 : -- 5568 years is used, with 

the corresponding mean life of r= 8033. 

If we suppose that 14C is created by cosmic rays at a constant rate and since 

it is constantly decaying, as seen above, we can expect the 14C in the biosphere to 

remain at an equilibrium level. In the 1946 letter to Physics Review, Libby 

obtained an estimate of such an equilibrium level based on some theoretical con- 

siderations. Libby proceeded to validate his predictions using experimental obser- 

vations, and one year later he and his colleagues published a paper in the journal 

Science explaining that (Anderson et al. 1947), 

"It has recently been suggested (Libby (1946)] ( ... ) that (... ) all carbon in living 

matter ( ... ) should be radioactive to the extent of 10 disintegrations/minute/gram. 
In view of the 5000-year half-life of radiocarbon ( ... ) it was further expected that it 

should be absent from such geologically "old" carbon sources as petroleum, coal, 
or limestone. These predictions were investigated by examining the radiocarbon 
activity of two series of isotopically enriched samples of methane. The first series 
was derived from petroleum methane (referred as petromethane) and the other from 
the Patapsco Sewage Plant of the city of Baltimore (referred as bibmethane). 
Measurements on the enriched biomethane samples established the activity of "liv- 
ing" carbon to be 10.5 disintegrations/minute/gram, in good agreement with the 

predicted value. On the other hand, enrichment of petromethane by a factor of 25 
failed to show activity beyond the limits of experimental error, in line with the 

theory that cosmic rays produce our activity. " 

Thus the basis for radiocarbon dating had been established. When living 

matter dies, it is removed from the biosphere and consequently its 14C Starts 

decaying without being replaced by more 14 C atoms from the environment. The 

14C/ 12 C ratio in an organism at death (Mo in Equation 1.1) should be approxi- 0 

mately the same as the equilibrium 14C/12 C ratio in the atmosphere. By measur- 

ing the 14C/12 C ratio in an 'old' object (M in Equation 1.1) containing organic 

matter, one can use the 'law of radioactive decay' to estimate its age, t, which is 

given by 
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-Tln(MIMo). 

(In practice the 13C/ 12 C ratio present in a sample has to be accounted for when 

calculating the 14C/12 C ratio, see Gillespie 1986, chapter 4, for details. ) 

The above ideas were first proposed by Libby who also proceeded to demon- 

strate that the distribution of 14C could be considered to be uniform around the 

world (although very recently some doubts about this global uniformity have 

emerged, see Pearson and Stuiver 1993). He continued the research into radiocar- 

bon dating and in 1949 he and his colleagues published the first paper containing 

dates produced by this method (Libby et al. 1949), 

"Having established the world-wide uniformity of the radiocarbon assay at the 
present time, it seems logical assumption that this would have been true in ancient 
times. Assuming this (... ) one can calculate the specific [14C] activity to be 

expected at any given time interval elapsed since the removal of any carbonaceous 
material from equilibrium with the life cycle. For living materials this probably 
coincides with the time of death 

The first two items to be dated were wood samples from two Egyptian tombs 

of 'well established age'. The estimated ages resulted in good agreement with the 

expected ages, confirming the possibility of being able to date organic matter 

using radiocarbon. A purely theoretical consideration of cosmic radiation had 

evolved into a practical means for age determination. 

Since 1949 radiocarbon dating has been used intensively, principally within 

archaeological research (other applications of radiocarbon dating can be found in 

geology, hydrology, earth and environmental sciences among other disciplines). 

The technique has been refined and has evolved into a highly sophisticated pro- 

cess involving both chemical and physical procedures. In the next Section we 

briefly review the techniques and the processes involved in radiocarbon dating. 

However, it is not our intention to explain the processes in great detail. A more 
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detailed exposition can be found in Bowman (1990) or Gillespie (1986). 

1.1.1 Radiocarbon dating 

As seen above, the basic principle of radiocarbon dating is to measure the 

proportion of 14C in the object to be dated and compare it with the 'equilibrium 

level' in the atmosphere in order to obtain an approximation to its age, using the 

law of radioactive decay. 

The objects to be dated need to contain organic matter. The most commonly 

dated objects or materials are wood, charcoal, seeds, bone, sediments and peat. 

Because the half-life of radiocarbon is around 5000 years the effective range for 

radiocarbon dating is from 200 to 25,000 years, making it especially useful for 

archaeology. The process of radiocarbon dating basically consists of measuring 

the ratio 14C/ 12C in the organic matter contained in the object to be dated. Let- 

ting this ratio be M, we have that the age for the object is 

-, rln(MIMO), 

where MO is the equilibrium level in the atmosphere and r(= 8033) is the 'mean 

life' of 14 C as defined above. In radiocarbon dating Mo is a constant known as 

the 'modem standard' (see Gillespie 1986, p. 21). 

There are two ways of measuring the 14C/12 C ratio, the indirect method and 

the direct method, the latter being the most common one. The indirect method 

('conventional radiocarbon dating') consists of measuring the electrons emitted 

when the 14 C atoms decay. The measurements typically take between 10 and 72 

hours, and from that the 14C/ 12 C ratio is measured up to some precision (the 

4counting error'). The direct method use the technique of 'accelerator mass 

spectrometry' ('AMS radiocarbon dating'), which directly measures the amount of 
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14 C atoms in the sample, up to some precision (the 'counting error'). This is a 

new technique which has only been generally available since . 
1986. More details 

about both conventional and AMS radiocarbon dating can be found in Aitken 

(1990, chapter 4). 

For both conventional and AMS radiocarbon dating, the carbon contained in 

the objects to be dated (charcoal, wood, seeds, bone, etc. ) needs to be isolated. 

This involves physical and chemical processes that may increase the imprecisions 

in the measuring of the 14C/ 12 C ratio. Combining these imprecisions with the 

counting error, the radiocarbon dating laboratories calculate an error, or standard 

deviation, for the estimation of the 14C/ 12 C ratio from which they calculate the 

object's age with an error or standard deviation (see Bowman 1990, chapter 3, for 

a more detailed discussion). 

Thus, the final result of a radiocarbon dating process is a radiocarbon deter- 

mination that consists of an estimated 'radiocarbon year' y and an error, or stan- 

dard deviation a, reflecting the uncertainty in the process. In this thesis we will 

write radiocarbon determinations in the form Y±a, for example 1400±70, and 

this notation should cause no confusion. The meaning of a 'radiocarbon year' 

will be explained in the next Section. 

1.1.2 The need to calibrate 

Normally it is not possible to obtain the precise date for objects found in 

archaeological or geological excavations and, for this reason, it is difficult to 

assess the accuracy of the radiocarbon dating technique. Nevertheless, by count- 

ing the rings in trees and measuring their widths (a technique known as 'dendro- 

chronology') one can obtain samples of wood of known age. By radiocarbon dat- 

ing such samples it is possible to evaluate the accuracy of radiocarbon 
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determinations. In fact, by dating wood samples of known age, differences 

between the radiocarbon and the true ages soon became apparent. Thus it was 

clear that there was a problem with the technique, the problem being related to the 

assumption that the equilibrium 14C/12 C ratio in the atmosphere had remained 

constant through time. Subsequent research has shown that cosmic radiation 

varies through time and is affected by factors like sunspots, variations in 

geomagnetism and the like (a review on the subject can be found in Damon et al. 

1989). Consequently the atmospheric 14C/12 C ratio varies through time. 

Since the initial 14C/ 12 C ratio in an organism (that is the 14C/ 12 C ratio in an 

organism at death) is considered to be approximately the same as the atmospheric 

14C/12C ratio, Mj) in Equation 1.2 will not be constant as it is dependent on the 

atmospheric 14C/12 C ratio existing when the sample died. Indeed, we do not 

know the corresponding MO for all samples and thus an approximate value is 

used, the 'modem standard', to calculate the 'radiocarbon age' of the samples (t 

in Equation 1.2). This radiocarbon age will then differ from the true (calendar) 

age of the samples depending on how much their initial 14C/12 C ratio differed 

from the 'modern standard'. This is the reason why radiocarbon determinations 

are measured in 'radiocarbon years' since they generally differ from calendar 

years. The process of transforming from radiocarbon years to calendar years is a 

problem of statistical calibration and is known as 'radiocarbon calibration'. 

Over the last 20 years the international radiocarbon community has invested 

much effort in dating wood samples of known age so as to relate radiocarbon 

years to calendar years. However, until 1986 there were only low precision 

results and much discussion took place concerning the general applicability of the 

data and other technical details (see Section 2.3 for a bibliographical review of 

the subject). Most of the difficulties have now been overcome and definite results 

have been obtain by Pearson and Stuiver (1986), Stuiver and Pearson (1986) and 
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Pearson et. al. (1986). The results of these three papers form the basis of what 

the radiocarbon community calls 'the internationally agreed high-precision cali- 

bration curve'. This consists of approximately 460 dendrochronologically deter- 

mined calendar years tk'S spaced approximately every 20 years from 7200 BC to 

1950 AD, each one associated with a set of replicated radiocarbon determinations 

that give the average result xk±ak. We call Itki (Xk±ak)] a 'calibration observa- 

tion' and the whole of the vector z= ([tl, (xj±cj)],..., [t, (x,, ±a,, )]) the 'high- 

precision calibration data'. Typically the ak's have values in the range of 10 to 

20 years. These values are small in comparison to the standard deviation of a 

typical radiocarbon determination, which is in the range of 40 to 80 years. This is 

the reason why z is called high-precision calibration data. 

The tl, 's above and, unless clearly stated, all dates (and variables represent- 

ing dates) are measured in 'years before present', which are the number of years 
before 1950 AD. 'years BP' (Before Present) is then used when referring to 

calendar years, and 'years bp' when referring to radiocarbon years (this is a stan- 
dard notation in radiocarbon and archaeology). When we say 5,500 calendar 

years BP (or radiocarbon years bp) one can think of it as -5,500 years with year 

0 BP (bp) equal to 1950 AD ie. 3,551 BC since year '0' does not exists. There- 

fore the tk's above are measured in years BP, since they represent calendar years, 

and the Xk'S in years bp, since they represent radiocarbon years. In all of the 

plots we present, the Y axis corresponds to the calendar years but inverting its 

direction. As a result of this, older (ie. large) years BP are to the left of the plot 

and younger (ie. small) years BP are to the right (see Figures 1.1,1.2,1.3 or 1.4). 

Radiocarbon years are plotted in the 'y' axis (with its usual direction). This lay- 

out has been adopted by radiocarbon laboratories and archaeologists for some 

years and we will use it in this thesis. To ilýustrate these ideas we have plotted a 

portion of the high-precision calibration data in Figure 1.1. 
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1300 

1260 

radiocarbon 
1220 

years bp 
(Xk: ý 47k) 1180 

1140 

1100 

1200 1160 1120 1080 1040 1000 
Calendar years BP Yk) 

Figure 1.1 
Section of the high-precision calibration data. 

The dots represent the (tkv Xk) points 
and the lines are from Ok 

9 Xk - 6k) to (tk 
1 Xk + (70- 

There is still discussion about how the high-precision calibration data should 

be used to create a calibration curve so that for every calendar year we could 

obtain its corresponding radiocarbon year. One possibility is to smooth the data 

21 using the variances qk2's, but a common practise is to neglect the aj s and use a 

piece-wise linear approximation, passing through the points (tk, xk)'s. This latter 

method results in a simple-to-use and, since the standard deviations of Pearson 

and Stuiver's data are relatively small, a reasonably accurate calibration curve. 

(This subject will be discussed in more detail in Section 2.3 and in Chapter 3. ) 

Throughout this thesis we denote the piece-wise linear calibration curve by 

, u(-) which is defined as 

xk 
0-tk-I 

+Xk-I 
( tk-o ); 

tk > t9 >- tk 
- 1, k=1,2,..., n, (1.3) 

( 

tk- tk-I 

) 

tk- tk-I 
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letting to =0 and xo = 0. A plot showing the piece-wise linear calibration curve, 

, u(O), for approximately the last 9000 years, is given in Figure 1.2. The actual 

calibration process will be introduced in the next Section where we study the 

basic statistical model for the radiocarbon determinations. 

8000 

7000 

6000 

5000 
JUM 

radiocarbon 4000 
years bp 

3000 

2000 

1000 

0 

9000 8000 7000 6000 5000 4000 3000 2000 1000 0 
0 calendar years BP 

Figure 1.2 
Piece-wise linear calibration curve y(O) 

calculated using the high-precision calibration data. 

1.2 Basic model and calibration 

Suppose- we haye a radiocarbon determination y±a associated with an 

unknown calendar year 0. The calendar year 0 corresponds to the year in which 

the organic material contained in the dated object died and is what we call 'the 

calendar year associated with the object'. As we said above, transforming from 

radiocarbon years to calendar years is known as radiocarbon calibration. 
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Therefore, within the Bayesian framework, radiocarbon calibration consists of 

finding f(O I y, a), the posterior distribution of 0 given the determination y± cr. 

The most common and widely accepted assumption in the statistical analysis 

of radiocarbon determinations is that they are normally distributed, having the 

'true' radiocarbon age as mean and the reported laboratory error as standard devi- 

ation. This assumption is made (explicitly or implicitly) by the vast majority of 

the researchers in the field (see Libby 1954, Ward and Wilson 1978, Litton and 

Leese 1991) and we will follow this convention. In other words, suppose u is the 

'true' radiocarbon age of the dated object, then 

ju, a- N(y, a2). 

The above normal model has been assumed because the radiocarbon determi- 

nations arise by counting the number of 14 C atoms decaying in a period of time. 

This will have a Poisson distribution which can be approximated by a normal dis- 

tribution. However, at the present time, the error in a radiocarbon determination 

is no longer based entirely on the 'counting error', but on other factors as well. 

The way this error is calculated depends somewhat on the radiocarbon laboratory, 

but it is usually carried out by a process of adding error factors. The usual statist- 

ical practise is to assume these additional errors are normal and so the overall 

error will be normal. There is no clear experimental evidence to suggest that such 

(L,, - assumption is not reasonable and therefore the normal errors model is generally 

accepted. 

However, if we find a strong reason to believe that the normal model is 

incorrect, it could be substituted by, for example, a heavy-tailed distribution like 

the 't' distribution or any other distribution considered suitable. This will obvi- 

ously affect any statistical technique used in the interpretation of radiocarbon 

determinations, including those presented in this work. Nevertheless, due to the 
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flexibility of the statistical tools adopted here, the techniques presented could be 

adapted to work with a different choice of a basic model. We do not, however, 

intend to explore this possibility within this thesis. 

Within the Bayesian framework the basic model for radiocarbon determina- 

tions has been established following similar ideas to those presented above (see 

Naylor and Smith 1988, Litton and Leese 1991). If we have a radiocarbon deter- 

mination y±a associated with the calendar year 0, we assume that 

0, er - N(, u(0), U2), 

where ju(O) 
is the piece-wise linear calibration curve. Therefore the model states 

that a radiocarbon determination is normally distributed with mean equal to ji(O), 
t, rvf- 2 thelradiocarbon age corresponding to year 0, and variance cr , which represents 

the experimental errors. Given the above model we assume a to be known and, 

given a prior distribution for 9, we calculate f(O I y, a) using Bayes' theorem. 

As mentioned above, the standard deviation, cy, reported for a radiocarbon 

determination y±a is evaluated by the radiocarbon laboratory theoretically as 

well as empirically and, strictly speaking, depends on the observed radiocarbon 

year y. It is not rigorously correct to assume it to be known. However, it is not 

at all clear what other approach could be followed. Furthermore, statistical arti- 

cles on radiocarbon dating generally use this approach: see Naylor and Smith 

(1988), Clark (1979), Ward and Wilson (1978), Law (1975), Aitchison et al. 

(1989). Thus, at present, assuming a to be known seems to be the only practical 

and viable way to proceed. 

To facilitate notation we are going to avoid explicitly conditioning on a and 

simply write 

N(, u(O), a2). 
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This convention will be followed throughout the thesis. 

Now, using a vague prior distribution for 0, the resulting posterior distribu- 

tion is 

f(O I y) - exp 
(y 

2a2 

0.01 

0.01 

0.01, 

() 

3400 3200 3000 2800 
Calendar years BP 

Figure 1.3 
Histogram showing the posterior distribution on the calendar scale 

for radiocarbon determination 2900 ± 80. 

0.01 

0.01 

oft 

0 

5600 5400 5200 5000 
Calendar years BP 

Figure 1.4 
Histogram showing the posterior distribution on the calendar scale 

for radiocarbon determination 4700 ± 60. 

Given the definition of the piece-wise linear calibration curlVe, U(19), it is 

necessary to calculate f(O I y) using numerical methods. Histograms showing 

examples of such distributions can be found in Figures 1.3 and 1.4. We have 

chosen two determinations from different parts of the calibration curve, 2900±80 
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and 4700±60. The magnitude of the standard deviations are typical of the errors 

one would expect from a routine radiocarbon analysis. 

The distributions f(O I y) tend to have uncommon (to statisticians) shapes. 

Usually they have peaks or flat areas with not much regularity or symmetry. This 

results in multimodal distributions that differ greatly from the usual distributions 

used in other areas of statistics. These 'unpleasant' features of the distributions 

f(O I y) are caused by the non-monotonic nature of the calibration curve P(O). A 

powerful tool for understanding why, is to examine the derivative of AO I y), that 

is 

f, (o I Y) C-C 
(Y-/'(O)) 

u'(0) exp 
(Y_, U(O))2 

C2 

1 

2c 2 

Note that the sign of this derivative is given by the term 
(Y_'4(O)) 

a2 
P" (0), If 

li(O) >y the sign of the derivative is the sign of -#'(0) and thus f(O I y) is 

increasing when 4(0) is decreasing and vice versa. When ji(O) < y, f(O I y) 

increases and decreases with 4(0). Indeed, the global maximums of f(O I y) are 

at li(O) =y (the 'crossings'). f'(0 I y) does not exists at the knots of the calibra- 

tion data since 4(0) is not smooth there. This is reflected with unsmooth 'spikes' 

in f(O I Y). 

The above analysis can be well illustrated with a plot of a particular f(O I y) 

and the relevant part of #(0). In Figure 1.5 we do this with the same determina- 

tion (4700 ± 60) as for Figure 1.3. We have calculated the actual density f(O I y) 

and not a histogram-like approximation, otherwise the fine details of f(O I y), that 

we are trying to observe, would be smoothed out in the histogram's ten year bins. 

(Note, however, that the radiocarbon community prefers to use histograms since 

they are easier to understand and interpret by -non- statisticians. ) 
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Figure 1.5 
Posterior distribution in the calendar scale 

for radiocarbon determination 4700 ± 60 and 
the relevant part of the piece-wise linear calibration curve. 

From Figure 1.5 we see that before 5450 BP the distribution f(O I y) 

increases and decreases inversely with y(O), giving a 'mirror' image of U(O). 

Note that if #(0) is approximately constant on a region, (y-, U(O)) will be approxi- 

mately constant as well and this will be reflected with a 'flat' region in f(O I y), 

as for 5420 to 5380 BP in Figure 1.5. For the rest of the calendar scale, where 

11(o) < y, f(O I y) simply 'mimics' the calibration curve and, of course, damps to 

zero as (y-, 4(0)) increases. 

It is difficult to interpret distributions like the ones shown in Figures 1.3 and 

1.4 since 0 represents a fixed year in the past. What does a probability distribu- 

tion for 0 mean in such context? This problem has been one of the major sources 

of confusion in radiocarbon dating. The basis of our (Bayesian) interpretation is 
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the following. We do not believe G to be intrinsically random in any sense, rather 

we take the probability distribution of 0 to represent our up-to-date knowledge 

about the year 0. Thus it is not the year 0, but our knowledge about such a year 

that is uncertain. The uncertainty is then measured using the probability distribu- 

tion f(O I y). 

Good ways of summarising such distributions f(O I y) are difficult to 

envisage. Point estimates like the 'maximum a posteriori' estimator (MAP esti- 

mator, the maximum of f(O I y)) are obviously inappropriate due to the multimo- 

dality and asymmetry of the distributions. Highest posterior density sets (HPD 

sets) can be of some use but, in general, our experience tell us that the histograms 

themselves are the most adequate tools for interpreting the distributions f(O I y). 

Indeed, a good understanding of histograms and density functions (and probabil- 

ity) is needed before histograms like the ones in Figures 1.3 and 1.4 can be inter- 

preted. 

1.3 The importance of dating 

In this thesis we will be mostly interested in the interpretation of radiocarbon 

determinations in archaeology. Ultimately our aim will be to develop sound sta- 

tistical techniques to date a wide variety of archaeological 'phenomena', using 

radiocarbon determinations. We may ask ourselves, however, why should we be 

interested in dating in the first place? In this and subsequent Sections we will 

address this question explaining the importance of dating to archaeology. We will 

then mention the different dating techniques used in archaeology and within that 

the important r6le of radiocarbon dating. We do this not only to motivate our 

work, but to give us a perspective on the relevant factors to be considered in the 

interpretation of radiocarbon determinations. 
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Measuring time is one of the most important components in the organisation 

of any society. Meetings, schedules, news, elections, history are almost unthink- 

able for us without the presence of accurate and reliable measures of time. Much 

the same is true in archaeology. The organisation of knowledge about events in 

the past is fundamentally based on the measuring of time, the time-elapsed or pre- 

cise dates. This has been accurately explained by Renfrew (1973, p. 21), 

"Dating is crucial to archaeology. Without a reliable chronology the past is 

chaotic: there is no way of relating or ordering people, events and cultures into 
the coherent narrative which the prehistorian seeks to construct. " 

Indeed, dating is one of the most crucial parts of archaeology, and of all the 

dating techniques available, radiocarbon dating is the most widely used. Below 

we briefly review the most common dating techniques and how they are used in 

archaeology. 

1.3.1 Dating techniques 

Archaeologists use a series of tools and techniques for measuring time and 

obtaining dates. Throughout the development of archaeology several dating tech- 

niques have been used. Before the l9th century, the understanding of the past (as 

with many other parts of human activity) was based on theology. A prime exam- 

ple is the work of Archbishop Ussher who used the genealogical records in the 

Bible to date the 'Creation' to October 23 ffi 4004 BC. 

With the development of rationalism, new approaches to dating appeared. 

These new approaches were more concerned with the logical organisation of the 

archaeological evidence available and less with theological dogma. Archaeolo- 

gists used historical records and a progression of logical reasoning to date events 

in the past. By a detailed cross-matching of recorded events with calendars of 
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ancient civilisations, European archaeologists of the 19th and first half of the 20 th 

centuries constructed a chronology for the past (Renfrew 1973, p. 27), 

"Until the discovery of radiocarbon dating ( ... ) there was really only one reliable 
way of dating events in European prehistory ( ... ) This was by the early records of 
the great civilizations, which extended in some cases as far back as 3000 BC. 
Before that, there were no written records anywhere. " 

Indeed, only the tiny proportion of prehistoric events described in inscriptions or 

records of ancient civilisations can be accurately dated. For the rest of prehistory, 

dating was still a matter of broad estimates or, more likely, pure speculation. 

As more systematic techniques for excavation were developed, stratigraphic 

relationships between contexts on archaeological sites were identified and chrono- 

logical relationships began to be identified. The stratigraphic relationships on a 

site can provide us with very reliable chronological orderings for events and con- 

texts in the past. Such chronologies are, however, only relative. That is, with 

stratigraphic relationships we may observe that 'A is before B' and 'B is before 

C', but very rarely can we obtain any estimates for the absolute position of A, B 

or C in time. Another problem of stratigraphy is that it is normally restricted to a 

single archaeological site and, therefore, using stratigraphy alone to build more 

complex chronologies is virtually impossible (see Orton 1980, p. 60 for further 

discussion). 

Apart from stratigraphy, archaeologists can make use of other sources of 

information to obtain chronologies. These include the cross-matching of stylistic 

characteristics in pottery and the comparison of typological features in tools or 

weapons etc. (see Orton 1980 p. 81-88, Renfrew 1973 p. 40-52 or Fedick and 

Taube 1991 for examples of this). Again, such chronologies tend to be only rela- 

tive and restricted to particular ancient cultures or archaeological sites. 
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The above dating techniques were the only ones available to archaeologists 

until the development of nuclear physics in the 1940's. With these advances in 

science came the invention of radiocarbon dating and other science-based dating 

techniques. Apart from radiocarbon dating, there are other dating techniques that 

use scientific principles to date objects. These include, potassium-argon dating, 

uranium-series dating, fission-track dating, thermoluminescence dating etc. (see 

Aitken 1990 for a review of these subjects). Also, there are other dating tech- 

niques based on the scientific study of environmental changes, these include den- 

drochronology, pollen records, ice-core variations etc., and others based on bio- 

logical principles like amino acid racernization. However, radiocarbon dating is, 

by far, the most commonly used science-based dating technique in archaeology. 

1.3.2 The r6le of radiocarbon dating in archaeology 

Radiocarbon dating has been of principal importance for European archaeol- 

ogy and has resulted in what is known as the 'radiocarbon revolution' (Renfrew 

1973). Before the appearance of radiocarbon dating it was considered that the 

European civilizations originally came from Egypt and Greece, and that all monu- 

ments in Europe were 'inspired' by those sophisticated civilizations. Fifty years 

ago it was believed that Stonehenge or the megalithic tombs of western Europe 

were the result of the diffusion of ideas from the Near East civilizations. Within 

this framework, the Egyptian and the Mesopotamian cultures were seen as the ear- 

liest and original civilizations in the old world. Renfrew comments that (Renfrew 

1973) 

"It comes, then, as a shock to learn that all this is wrong. The megalithic cham- 
bered tombs of western Europe are now [radiocarbon] dated earlier than the 
Pyramids ( ... ). In fact Stonehenge, the remarkable and enigmatic structure, can now 
be claimed as the world's oldest astronomical observatory. The traditional view of 
prehistory is now contradicted at every point. " 
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Many changes have arisen since European archaeologists experienced such 

'shock'. Apart from rebuilding the whole of the old world's chronology, 

archaeologists needed to change several basic assumptions of their way of 

thought, all prompted by the evidence of radiocarbon dating. 

In the rest of the world, radiocarbon dating might not have created such a 

'revolution' but even there it has proved to be one of the most essential tech- 

niques for archaeological research. It has been used to help understand the spread 

of humans into Polynesia (Kirch et al. 1989, Kirch et al. 1991), and early human 

settlement in the American continent (Gowlett 1986, Bada et al. 1984), to fix two 

Mayan calendar systems to our modem calendar (Fedik and Taube 1991) and for 

hundreds of other applications it has brought both small and large changes in 

world archaeology. 

Although radiocarbon dating is employed in a wide variety of problems, in 

broad terms, it is used in archaeology for one or more of three major purposes. 

(i) Dating objects - an example is the dating of the 'Shroud of Turin' (see 

Damon et al. 1989b) and learning about its authenticity (see Section 4.4). 

Dating events or contexts with some type of relative chronological ordering - 

it is becoming more common in archaeology to have information about rela- 

tive orderings in time of given archaeological events or contexts (eg. A 

predates B) arising from other types of dating techniques apart from 

radiocarbon (stratigraphy, for example). Radiocarbon dating is then used to 

find an absolute chronology for such events or contexts (see, for example, 

Section 5.3). 
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(iii) Dating all other sorts of archaeological events or contexts - it might be the 

case that archaeologists do not have information from other types of (relative 

or absolute) dating techniques and radiocarbon is the only practical way to 

obtain reasonable dates (see Section 5.2). 

Before attempting to analyse a set of radiocarbon determinations for its 

interpretation within a specific archaeological problem, one basic distinction needs 

to be understood. This is the distinction between dating objects, (i) above, and 

dating (archaeological) contexts, (ii) and (iii) above. We discuss this problem in 

the next Section. 

1.4 Interpreting radiocarbon determinations 

As we have said before, radiocarbon dating is a technique used to estimate 

the age of some types of objects containing organic matter. In practice, archaeol- 

ogists find a wide range of objects or materials suitable for radiocarbon dating, 

from which they select some to be radiocarbon dated. The radiocarbon laboratory 

then performs the necessary analysis on these and returns to the archaeologists the 

corresponding radiocarbon determinations. Archaeologists (and statisticians 

working with them) then have to analyse and interpret the estimates for the age of 

these objects found on the site under study. But, what was the purpose of dating 

such objects in the first place? Why estimate the age of a heap of charcoal, a 

piece of wood or a collection of beans? 

Apart from very specific exceptions, radiocarbon determinations are of no 

interest if viewed as estimates of the age of isolated objects. It is only when 

archaeologists relate such objects, and the corresponding determinations, to the 

context or contexts they are working with that radiocarbon dating proves its full 

worth and importance. Bowman has explained this point clearly stating that 
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(Bowman 1990, p. 50) 

"The archaeologist is therefore faced with an incomplete and unrepresentative set 
of data from which a complete whole most be inferred. A process of logic is used 
to link past events with contexts and features, such as stratigraphic levels and post 
holes, and to link these with artefacts found within them. If the artefact is organic 
it can be radiocarbon dated, but it is rare that a date for the artefact per se is 

required; instead it is assumed that the radiocarbon result will also date the event. " 

How should we use radiocarbon determinations to date 'contexts and features' 

found on archaeological sites? We believe that the first step to be taken towards 

solving this question is to recognise the fact that the interpretation of radiocarbon 

determinations should be vie-ea in relation to what 'contexts and features' are 

needed to be dated. 

As we have pointed out above, radiocarbon determinations are only of use 

for archaeology when related to the archaeological contexts under study. There- 

fore it is crucial that the statistical techniques used for the interpretation of 

radiocarbon determinations include considerations about the relationship between 

the radiocarbon determination available and the 'contexts and features' of interest. 

We believe that only then can a correct interpretation of radiocarbon determina- 

tions be achieved and thus radiocarbon determinations can be used to date those 

6contexts and features'. Furthermore, other dating information might be present 

in a specific problem. For example, some stratigraphical relationships between 

contexts might be known. The interpretation of the corresponding radiocarbon 

determinations ought to consider this and thus the statistical techniques used 

should allow for all these factors to be included in the analysis. However, apart 

from some isolated examples, this will involve far more complicated techniques 

than the calibration of a single determination explained above. Throughout the 

thesis we will see that the Bayesian framework provides a suitable methodology 

for developing such statistical techniques. 
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1.5 Plan of thesis 

The thesis will be developed as follows. In Chapter 2 we present a biblio- 

graphical review of the most important papers on the statistical analysis of 

radiocarbon determinations. In this review we try to identify the typical problems 

of the interpretation of radiocarbon determinations considered in the literature and 

the inadequacies and limitations of the existing statistical techniques used to 

tackle them. Based on this we then try to identify the crucial factors that need to 

be considered for the correct interpretation of radiocarbon determinations. 

In Chapter 3 we analyse the radiocarbon calibration problem and develop a 

novel calibration procedure. We present some simple examples using this new 

calibration procedure and compare it with other existing techniques. In Chapter 4 

we develop a (Bayesian) statistical framework for the interpretation of radiocar- 

bon determinations. This framework tries to overcome the limitations of other 

approaches reviewed in Chapter 2 by allowing archaeological considerations to be 

explicitly included in the analysis and interpretation. The calibration procedure 

developed in Chapter 3 is used and a series of techniques for finding the posterior 

distributions of interest are presented. In Chapter 5 we then give a variety of 

examples, showing how our framework is applied in different situations. The typ- 

ical problems of interpreting radiocarbon determinations reviewed in Chapter 2 

are considered and solutions from within our framework are proposed. 

In Chapter 6 we analyse the robustness of our framework to the presence of 

outliers. The problem of outliers in radiocarbon dating is discussed and a novel 

approach for their identification is proposed. Our framework (developed in 

Chapter 4) is then extended to allow for the presence of outliers. Two examples 

are presented where this extended framework is applied and an outlier 

identification procedure is carried out in each case. In Chapter 7 we present a far 

more detailed example where our extended statistical framework is used to 
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interpret a series of radiocarbon determinations arising from an archaeological site 

in Germany. The archaeological characteristics of the site are studied and, using 

our extended framework, we develop a statistical model for the analysis of the 

radiocarbon determinations available. An outlier identification procedure is car- 

ried out and the radiocarbon determinations are then interpreted in a way that is 

consistent with the archaeology of the site. In Chapter 8 we present some con- 

cluding thoughts on our work. 
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Chapter 2 

Bibliographical review 

2.1 Introduction 

In this Chapter we review the relevant publications about the analysis and 

interpretation of radiocarbon determinations. There are now hundreds of papers 

relating to the topic of radiocarbon dating, including a journal (Radiocarbon) 

exclusively dedicated to the subject. A large proportion of the publications are 

devoted to the analysis of the chemical and physical processes involved. We will 

not study this problem, since the radiocarbon dating process is a highly- 

specialised scientific area. Instead, we focus attention from the point of view of 

the users of radiocarbon (principally archaeologists) and on the analysis and 

interpretation of a set of radiocarbon determinations reported by the laboratories. 

We consider three main points, namely, 

(a) the reliability of radiocarbon dating, 

(b) the calibration of radiocarbon determinations 

and 

(c) the interpretation of radiocarbon determinations. 

In the next Section we mention briefly some publications that shed light on 

point (a). This is done so that we may understand the reliability of radiocarbon 

dating in order that we can develop our work appropriately in the succeeding 

Chapters. A more critical review is presented in Sections 2.3 (calibration) and 2.4 
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(interpretation) where we discuss the publications relevant to points (b) and (c). 

The review of points (b) and (c) represents an important part of our work, where 

we identify the typical problems of calibration and interpretation of radiocarbon 

determinations and analyse the limitations of the techniques other authors have 

used to tackle them. At the end of the Chapter we give a final discussion identi- 

fying the problems to be considered later in the thesis. 

2.2 Reliability of radiocarbon dating 

2.2.1 Introduction 

Below we present a brief outline of some interlaboratory studies directed at 

assessing the reliability of the radiocarbon dating process. We do not intend to 

give an in-depth analysis of these studies, nor do we present further research on 

this subject (for a more comprehensive review see Scott et al. 1990 and Scott 

et al. 1990b). Rather, we are exclusively interested in this topic from the point of 

view of the radiocarbon user. From this perspective it is important to establish 

how reliable the radiocarbon dating technique is and, given this information, to 

make realistic interpretations of radiocarbon determinations. 

Three major interlaboratory studies have been undertaken in the last 15 

years, the last one being the most important and extensive. In the next Section we 

describe all these studies and focus particular attention on the last one (the Inter- 

national Collaborative Study, ICS) discussing its developments and conclusions. 

2.2.2 Overview of some interlaboratory studies 

The first formal interlaboratory study is reported in Otlet et al. (1980). Eight 

laboratories, all from the UK, finished the study. Five sets of benzene samples 
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were prepared having 14C levels equivalent to radiocarbon ages of 20,000,10,000, 

5,000,2,000 and 200% modem. The benzene samples needed little or no pretreat- 

ment and thus the only source of variability was related to the counting process. 

The study concluded that results from the eight laboratories were in agreement 

and that the standard errors quoted satisfactorily reflected the uncertainties in the 

process. However, the study Tecognised its limitations and recommended further 

interlaboratory comparisons including a wider range of samples and a world-wide 

laboratory part icipation. 

The first international interlaboratory study was carried out in the early 

1980's and the summary of its results are contained in ISG (1982). This project 

is known as the International Study Group (ISG). 20 radiocarbon laboratories 

from around the world completed the study. The laboratories were asked to rou- 

tinely date eight wood samples referred to as time points 1-8. A piece of wood of 

200 years growth was used to provide all the samples. Eight sets of samples were 

cut, each set containing samples of the same 10 year tree-ring growth. For each 

time point the laboratories were therefore measuring the same radiocarbon age 

and thus the corresponding determinations could be compared. 

The determinations obtained at each time point were compared against 'con- 

sensus values' (eg. the weighted average of determinations). The variability of 

the determinations was then assessed and this compared with the standard errors 

reported by the laboratories (or cr in a determination y±a). The variability was 

analysed for individual laboratories and for the study group as a whole. 

The ISG observed some 'systematic laboratory bias ( ... ) and a level of varia- 

bility not entirely explained by the quoted error'. For some time points, differ- 

ences were observed of up to 700 radiocarbon years. It was concluded that 

quoted standard errors needed to be multiplied by a factor of between 1.65 to 3.0 

to obtain a more realistic standard error. The study group recommended 'further 
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research of an intercalibrative nature involving different sample types and ages'. 

The most extensive interlaboratory study is known as the International Colla- 

borative Study (ICS), see Scott et at. (1989), Aitchison et al. (1990b) and Scott 

et al. (1990c). 50 laboratories participated in the study over a period of 4 years. 

Several samples were given to the laboratories to be radiocarbon dated at three 

different stages. At each stage, the sample pretreatments increased in complexity. 

In addition, replicated samples were submitted for dating both within and across 

the laboratories. Therefore, the internal and external consistency of the labora- 

tories could be assessed. To achieve this three mains points were considered. 

Internal laboratory variability. That is, how consistent each laboratory is 

when dating samples of the same radiocarbon age, and to what extent their 

quoted errors explain the observed variability. 

(ii) Variability due to sample pretreatment and laboratory type. That is, to what 

extent pretreatments and laboratory type (conventional and AMS dating) 

influence the dating process. 

(iii) External variability and systematic laboratory biases. That is, the con- 

sistency between laboratories when dating samples of the same radiocarbon 

age, and to what extent their quoted errors explain the observed variability. 

With respect to internal variability, the radiocarbon determinations of repli- 

cate samples performed by each laboratory were compared and from this the inter- 

nal consistency of each laboratory was assessed. In relation to the external varia- 

bility, for each group of samples a consensus value was calculated ('the median') 

and using this the 'laboratory offset' was measured. Based on this offset sys-. 

ternatic biases were measured and the external variability was assessed. 
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By comparing results from the three stages, it was evident that pretreatments 

increased variability in the dating process. In addition some differences in the 

source of variability was observed for the different laboratory types. Of even 

greater concern was the fact that at each stage, outlying determinations appear 

with some frequency, with offsets of up to 500 radiocarbon years. In this sense 

Scott et al. (1990c) conclude that, in general, the quoted standard errors do 

account for internal laboratory variability. However, they also conclude that sys- 

tematic biases occur between laboratories and that they find (Scott et al. 1990c) 

11 widespread evidence that quoted errors do not adequately describe the variation 
amongst laboratories 

In the concluding report of the international workshop on intercomparison of 

radiocarbon laboratories Baxter (1990) states that, of the laboratories participating 

in the ICS 

"Two labs grossly overestimate errors but most labs seriously underestimate their 
errors by a factors of 2 to 3 times. Only 7 labs from 38 passed all three very basic 
desirable performance criteria 

To this, Baxter adds that laboratory 'bias, of 50-250 years, is common'. On the 

whole these findings do not differ greatly from the previous conclusions of the 

intemational Study Group (ISG). 

Although these conclusions might seem alarming, the same ICS has helped 

the radiocarbon community to detect some sources of error and improve the 

overall quality of their analyses. Baxter (1990) comments that 

"many labs have already used this study [ICSI to identify their problems, change 
their procedures and reduce errors" 
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Furthermore, protocols for quality assurance have been developed to improve the 

performance of the radiocarbon laboratories (see Switsur 1990, Long and Kalin 

1990). In this respect, Scott et al. (1990c) state that 

"Users of radiocarbon dates may be assured of the continuation of a program for 
improvement in what is a complex scientific field. " 

2.2.3 Discussion 

In the light of the above discussion and from the point of view of the 

radiocarbon user, we believe that two major issues should be considered in rela- 

tion to the reliability of radiocarbon dating. Firstly, due to improved quality con- 

trol protocols and to the permanent commitment of the radiocarbon laboratories to 

providing better results, it is reasonable to expect a 'good' reliability from 

radiocarbon dating (specially for radiocarbon analyses performed after the late 

1980's). Secondly, given the complexity of the whole radiocarbon dating process 

and supported by the evidence obtained from the interlaboratory studies, errors 

can be expected. Therefore we believe that in interpreting radiocarbon determina- 

tions a compromise between credibility and caution should be undertaken with 

respect to the reliability of the radiocarbon dating technique. This compromise 

can be summarised by two major points. 

(i) The radiocarbon user should expect the best quality control and performance 

from the radiocarbon laboratories. Thus a radiocarbon determination y±a 

returned by a laboratory may be assumed to be a reliable estimate of the 

radiocarbon age for the sample analysed. Furthermore, cr may be considered 

to be a realistic measure of the error in the dating process. 
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(ii) Point (i) should be treated with caution since mistakes in the dating process 

cannot be ruled out. This implies that the presence of erroneous (outlying) 

determinations, with offsets ('shifts' in the radiocarbon age) of any magni- 

tude, cannot be dismissed when interpreting radiocarbon determinations. 

In this thesis, point (i) is assumed when developing our calibration method 

and the statistical framework for the interpretation of radiocarbon determinations 

(in Chapters 3 and 4, and 5 respectively). This is, of course, in relation to our 

basic model which assumes that, given a radiocarbon determination y±a, 

Y_ N(, U, a2), where y is the 'true' radiocarbon age for the sample dated and a is 

known. Thus no further error or correction is introduced and a is assumed to 

represent a realistic measure for the error in the determination. However, in 

Chapter 6 point (ii) is considered and the robustness of our framework to the pres- 

ence of outliers is analysed. A novel approach for the problem of outliers in 

radiocarbon dating is proposed and our statistical framework is extended to allow 

for the presence of outliers. This extended framework then takes into account in a 

more realistic way the reliability of the radiocarbon dating technique discussed 

here. 

2.3 Calibration 

2.3.1 Introduction 

By radiocarbon dating dendrochronologically dated samples, the accuracy of 

radiocarbon determinations was assessed. At the early stages of radiocarbon dat- 

ing some imprecisions became apparent but it was difficult to distinguish sys- 

tematic errors from the standard errors reported for the determinations. Two basic 

assumptions Libby made when developing radiocarbon dating were that, 
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(i) the atmospheric 14C level is uniform around the globe 

and 

(ii) the atmospheric 14C level has remained constant through time. 

While assumption (i) above has been found to be reasonable on the basis of 

experimental data (although very recently some doubts about this have surfaced, 

see Pearson and Stuiver 1993), assumption (ii) was challenged. De Vries (1958) 

demonstrated that there have been some significant changes in the atmospheric 

14C 
, at least over the last 400 years. A more detailed study by Willis et al. 

(1960) covering the last 1300 years came to the same conclusion. Soon theoreti- 

cal arguments appeared explaining the genesis of such variations (related to 

geomagnetism and solar activity) and by the mid 1960's it was generally accepted 

that assumption (ii) was incorrect. 

Thus radiocarbon determinations reported in radiocarbon years had to be 

calibrated onto the calendar scale and therefore measured in calendar years in 

order to be of use in archaeology. The elements of a radiocarbon calibration data 

set are divided in three parts, namely 

(i) a calendar year t (obtained by the dendrochronological date of the tree-ring 

sample), 

(ii) a radiocarbon year x 

and 

(iii) the associated standard error a for x. 
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Therefore a calibration data set consists of 

lltlq X1±47lb It29 X2±47219 ... 9 
Itn 

9 Xn ± Orn 

How can we use the I tk 7 Xk ± 6k I'S to calibrate a radiocarbon determination? 

Firstly, we assume the existence of a function r(-) such that, for any given 

calendar year 0, r(O) is the corresponding true radiocarbon year. That is, r(O) is 

the calibration curve. Thus Xk = r(tk) + ek and, assuming normality, 

2) 
xk - N(r(tk)g 6i 

Secondly, from the calibration data we need to approximate r(O) and then develop 

a methodology to transform a given radiocarbon determination y±a onto the 

calendar scale. Broadly speaking this represents the problem of radiocarbon cali- 

bration. Below we discuss the calibration data set to be used in the thesis and 

review the relevant publications on radiocarbon calibration. 

2.3.2 The radiocarbon calibration data 

Since the late 1960's much effort has been invested by the radiocarbon com- 

munity to radiocarbon date dendrochrono logically dated samples and thus obtain 

estimates of the radiocarbon age of wood of known calendar age (calibration 

data). At the 'Twelfth Nobel symposium' held at Uppsala University in 1969 

three calibration data sets were presented, and are described in Damon (1970), 

Ralph and Michael (1970) and Suess (1970). Of these three data sets the Suess 

data is the most extensive, ranging from 5200 BC to the present. 

In the early 1970's several questions about the radiocarbon calibration data 

were still unresolved. The most basic concern was related to the global 
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applicability of the results. That is, would the 14C level found in a series of rings 

taken from a specific tree be a reliable estimate of the worldwide atmospheric 14c 

level at the time indicated by those rings? By comparing the 14C level of modem 

tree-ring samples from around the globe, Ralph et al. (1973) conclude that the 14c 

levels are in good agreement and, 'on the average', independent of the origin of 

the tree-ring samples. Therefore, global applicability of the calibration data can 

be assumed. By combining the calibration data sets mentioned above Ralph et al. 

(1973) construct a calibration data set spanning the period 1849 AD to 4769 BC. 

This calibration data set, together with that of Suess, were frequently used in the 

1970's for the calibration of radiocarbon determinations. 

In order to accurately calibrate radiocarbon determinations we need calibra- 

tion data to be as precise and reliable as possible. Using larger tree-ring samples 

and following an international agreement on the standards to be observed for 

radiocarbon dating, a huge effort has been made to create a high-precision calibra- 

tion data set, with standard deviations as low as 10 to 20 years. 

The systematic high-precision radiocarbon dating of tree-ring samples began 

at Seattle in 1973 (M. Stuiver) and at Belfast in 1975 (G. W. Pearson). The 

results of these two research groups is contained in Stuiver and Pearson (1986), 

Pearson and Stuiver (1986) and Pearson et al. (1986), and constitutes what the 

radiocarbon community refers to as the 'Internationally agreed high-precision cali- 

bration curve'. We will refer to this data as the 'high-precision calibration data'. 

At present the international radiocarbon community has agreed that this is the data 

which should be used for radiocarbon calibration, and therefore we will use this 

data in this thesis. (Very recently other calibration data sets have appeared 

although the whole of the international radiocarbon community has not to agree 

on their usage, see Pearson and Stuiver 1993. ) 
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2.3.3 Early approaches for calibration 

One of the first published estimates of the radiocarbon calibration curve, 

r(O), is given in Suess (1970) where 'The curves are drawn by hand. The cali- 

bration procedure recommended basically involves calculating r-'(y-Uy+CF) 

where y±a is the determination to be calibrated. That is, the inverse image of 

the one-s'icrLk region (y-a, y+q) is computed over the calibration curve (we dis- 

cuss this calibration procedure in greater detail below). In relation to this Suess 

(1970) explains that 

"Because of the peculiar windings of the calibration curve, one particular radiocar- 
bon content may indicate several [calendar] dates ( ... ). In general, these several 
dates will lie within the limits of experimental error of the particular radiocarbon 
measurements and then, in such cases, it will only be possible to establish the time 
interval during which the sample had originated. For certain periods of time, this 
time interval will be quite large. " 

Indeed, due to a combination of long-term and short-term components in the 

variations of the atmospheric 14C 
, 'kinks' or 'wiggles' are found in the calibration 

curve. It took a long time for the radiocarbon community to accept that the varia- 

tions observed in the calibration data are a result of the complicated nature of r(O) 

and not a result of misleading or erroneous data. It is now generally accepted that 

such wiggles are an inherent feature of r(O) and should not be totally smoothed by 

an estimation procedure. The result is that the estimated calibration curve will be 

non-monotonic and 'wiggly'. 

Suess's estimate was one of the first given for the calibration curve. 

Although these estimation and calibration methods are quite informal, undoubtly 

they provide a starting point for the understanding of the radiocarbon calibration 

problem. 
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A more systematic approach was developed by Ralph et al. (1973). They 

combine the different calibration data available at that time and create a single 

calibration data set. After testing some smoothing procedures to approximate r(O) 

they conclude that (Ralph et al. 1973) 

"a 9-cell floating average centered on its mid-point seems to be the best choice 
since it resulted in a relatively smooth curve, but it did also preserve the major 
deviations and most of the minor ones expressed in the raw data ( ... )" 

Thus it seems that the major preoccupation when estimating r(O) is, 

to have a smooth curve 

and 

to follow the 'kinks' in the data (ie. the estimated curve should not be too 

smooth). 

The procedure Ralph et al. (1973) used for calibration is clearly informal 

based on common-sense and intuition. However, they do give an extensive table 

of radiocarbon years in decades and their corresponding calendar years. Since 

r(O) is non-monotonic, a radiocarbon year y can correspond to one or several 

calendar years. Ralph er al. (1973) divide this into three cases. 

"The majority of the corrections for radiocarbon dates (... ) are found to be single 
crossings. If the radiocarbon date follows the curve closely for a distance (usually 

a relatively short one) we designate this distance as a span. In those cases where a 
radiocarbon date crosses the curve two or more times, we most consider an overall 
range ( ... ) Of course, it is possible for a range to have a span and/or a crossing 
within the range (... ) An example of the use of tables for a single crossing is as 
follows: The radiocarbon date of A. D. 1750 crosses the curve at the dendrochrono- 
logically determined date of A. D. 1650. Thus the correction for this date is 100 ± 

10 years ( ... ) The ± 10 years expresses the statistical uncertainty of the [calibration 

curve) and must be added to the standard statistical error ( ... ) of the radiocarbon 
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date. " 

The basic problem with this procedure is that Ralph et al. continue with the 

concept of a date with an associated standard error, even after calibration. Given 

the normal model used, a (uncalibrated) radiocarbon determination can be satis- 

factorily summarised in terms of a mean and a standard error (y±C). However 

the corresponding distribution in the calendar scale of a radiocarbon determination 

is complicated, often multimodal, and sometimes not very smooth. Therefore it is 

not necessarily true that a calibrated date can be satisfactorily summarised using a 

central date and an error term. At present this procedure is not commonly used, 

and in general the radiocarbon, community does not consider it valid. This pro- 

cedure is not used in the thesis. 

2.3.4 Two major contributors 

A critical review of calibration can be found in Renfrew and Clark (1974) 

where several implications of the radiocarbon calibration process are discussed. 

They note that (Renfrew and Clark 1974) 

"Radiocarbon determinations of dendrochronologically dated samples cannot sim- 
ply be applied directly and without further thought to yield 'calibrated dates' " 

They define the calibration function r(O) and the 'inverse calibration func- 

tion' ('r-'(O)') but correctly argue that such a 'function, does not exist due to the 

non-monotonicity of r(O). From that it is clear that we need to approximate r(O) 

and not its 'inverse'. Although they attempt to approximate r(O) using some 

smoothing procedures they explain that (Renfrew and Clark 1974) 

"Calibration of radiocarbon dates requires only the existence of some smooth 
curve, which is simply a good fit to the data ( ... )" 
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They study the calibration procedure in the following way. Firstly they con- 

sider the case in which r(O) is exactly known. This might be the case when we 

ignore the standard errors in the calibration data (the uk's defined earlier). Then 

to calibrate a radiocarbon determination y±a they consider the set 

r -'(y - 7c, y +, ya). 

That is, the inverse image over r(O) of the confidence set (y - 7a, y+ ya), where 

the confidence a of the set is given by the value of y. The resulting C will then 

be a 100a% 'calibrated confidence set'. Usually C will consist of several uncon- 

nected intervals. We call this the 'confidence intervals calibration method'. 

A problem we note with this procedure is that, since the radiocarbon age is 

not considered to be uniformly distributed over (y -ya, y +, yer) and r(O) is not 

linear, the resulting distribution for the calendar age will not be uniform over C. 

The set C is a union of open intervals (since (y-ya, y+, ya) is open and r(O) con- 

tinuous) but the probability of each interval is not necessarily proportional to its 

length. This could easily lead to erroneous interpretations and, indeed, potentially 

important information is being lost. As seen in Chapter 1, it is not difficult to 

calculate the whole of the resulting distribution in the calendar scale when we 

suppose r(O) to be known (in that case we use the piece-wise linear calibration 

curve u(O)) and we see no reason why a confidence interval like C should be pre- 

ferred. 

Secondly, Renfrew and Clark consider the case in which r(O) is known but 

only approximately. They then suppose that r(O) r= (EI(O)q E2(0))q where the func- 

tions -01, -02 represent the 'confidence band' for the calibration curve. They pro- 

pose a procedure for calibration which consists in considering 

EI '(Y 
- YCF, Y+ 7Cr) U £2 '(Y 

- YO, Y 7Cr)- 
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That is, the inverse image of the confidence interval (y - -Ya, y+ ya) over the 

'confidence band' for r(O). The principal problem with this procedure is that C 

does not represent a confidence set of the same confidence level as 

(y-ya, y+, ra). C is bigger than necessary. They sketch a procedure to find 

'exact' confidence sets C, but it is not developed in detail. 

A more formal approach can be found in Clark (1979). Here Clark studies 

the calibration data sets available and states a general model for calibration. He 

casts doubt about the general applicability of the calibration data and in his sta- 

tistical model explicitly introduces distinctions between different calibration data 

sets. This is done in the following way. Let Itkv(Xk-, j±qk, j)1 be the calibration 

observation measured at laboratory j for the calendar year tki then the model 

states that 

xk, j = r(tk) + Hj + fk + ek, j - 

The terms Hj's represent 'systematic errors between laboratories', the fk's 

'the intrinsic variability of contemporaneous samples due to local changes in the 

14C levels' and ek. j 'the net errors of measurements' arising from the qkjs. 

Clark then explains that, due to evidence about the uniformity of the levels 

of the atmospheric 14 C around the globe, and due to the improved quality assu - 

r Qn Le- in the radiocarbon process, the following assumptions can be made. 

(i) There are no systematic errors between laboratories (Hk -": 0)- 

(ii) The distribution of 14C in the earth's atmosphere is uniform and varies uni- 

formly around the world (fk = 0). 
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According to the above assumptions Clark states his simplified model 

Xk = r(tk) + ek 

where Itk, (Xk: ýqk)j are the combined calibration observations for all laboratories 

and ek - N(O, ak2). One of the main features of this model for calibration is that 

it does include the standard errors reported in the calibration data (the ak's). 

Clark then uses a 'convolution-smoothing' (CS-) estimator to approximate 

r(O). He explains that 

because of the computational difficulties in fitting cubic splines to over 700 
data-points, we used ( ... )a simple but similar method in which the estimate of ( ... ) 
[r(O)] was chosen by cross-validation from a class of convolution-smoothed first 

order interpolating splines ( ... )" 

The resulting calibration curve is 'almost linear with very few wiggles'. Using 

the 'confidence intervals calibration method' explained above Clark (1979) 

develops a procedure to calculate 'exact' confidence regions. However, this pro- 

cedure is difficult to implement and 'unwieldy to be useful in practice'. Clark 

then calculates a 'somewhat conservative' confidence region that for the case of 

the CS-estimator used for r(O) is 

(0: y-d < f(0) < y+dj 

where f(O) is the CS-estimator of the calibration curve (r(O)) and d is a positive 

number dependent upon the error related to the estimation of f(O), the error of the 

determination (a) and upon the chosen confidence level. These confidence 

regions are similar to those suggested before by Renfrew and Clark (1974) but 

with a correct assessment of d. 

In addition to the inadequacies of this 'confidence intervals calibration 

method' alluded to earlier, the extension of this approach to more complicated 
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scenarios, where one has a set of radiocarbon determinations and perhaps prior 

information relating them, is not clear. A particular scenario of this kind is con- 

sidered by Clark (1979) in which, for a set of radiocarbon determinations 

IYI : ý0719 Y2±472,... 7Ym±(T,,, ], associated with the calendar years OD029-10mt we 

have Oj = a+ Ij, where the 1j's are known constants and a is unknown. That is, 

we know the differences of the associated calendar years for any two determina- 

tions yj, yj, (Oj-0j, ), but we do not know their absolute position in the calendar 

scale. The problem then is to estimate a (and consequently have estimates for all 

the Oj's) using the radiocarbon determinations. 

The above problem is known in archaeology as dating a 'floating chronol- 

ogy'. Cases like this normally arise when we have samples from tree-rings and 

the differences Oj-0j, are obtained by counting the rings separating each sample. 

Clark sketches four methods for estimating a of which, the first three basically 

use the same technique as for simple calibration. For method four he explains that 

"In the case of a floating chronology from an archaeological site, there may be 

considerable prior information concerning a, expressible as a prior density. If our 
prior information regarding ( ... ) [r(O)] can also be expressed in terms of prior den- 

sities, one can use standard Bayesian methods to give a posterior density for a" 

However, he only suggests the idea and does not develop a technique based on 

Bayesian methods to estimate a. (In Section 5.3 we return to this problem of 

dating floating chronologies. ) 

2.3.5 Recent deyelopments 

Pearson and Stuiver (1986) use the high-precision calibration data to develop 

a calibration technique based on a piece-wise linear calibration Curve. They 

recommend transforming the interval (y-c, y+a) onto the calendar scale 
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(basically using the set r-'(y-a, y+a)) but no means are provided for assigning 

probability to the resulting region on the calendar scale. However, they seem to 

recognise that such procedure was only provisional since (Pearson and Stuiver 

1986) 

"The non-linear transform of a Gaussian standard deviation around a 14 C age into 

calendar AD/BC (BP) ages leads to very complex probability distributions that can 
only be calculated with the aid of computers. We are currently developing suitable 
programs for these probability calculations ( ... ). " 

The 'computer programs' are now widely available and the software is known as 

TALIB' (Stuiver and Reimer 1986,1993). At present, it appears that CALIB is 

the most commonly used computer program for the calibration of radiocarbon 

determinations. 

Besides CALIB, other authors have developed computer programs for the 

calibration of radiocarbon determinations using the high-precision calibration 

data. Aitchison et al. (1989) present a comparative study of the eight most well 

known of such programs. In the programs studied there is no agreed method for 

calibration. Furthermore, the presentation (graphics, layouts etc. ) and other 

details vary greatly from program to program. However, for the calibration of a 

single radiocarbon determination y±a there are only two basic methods used. 

(A) Calculating C= r-1(y-7c, y+, ya), (the 'calibrated confidence intervals 

method'). 

(y - r(o))2 (B) Calculating f(O) =K exp (the 'probability distribution 

method'). 
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All the programs use variations of the these two methods. Aitchison et al. 

(1990) follow method (A). Leese (1988), Otlet ('personal communication'), Paz- 

dur and Michczynska (1989), van der Plicht et al. (1990), Robinson (1986) and 

Weninger (1986) follow method (B). Stuiver and Reimer (1986) (CALIB) offers 

the option of using either. The variations include the following. 

(i) The choice of the calibration curve r(O). 

(ii) For method (A), the choice of y and the graphical layout for the confidence 

intervals in C. 

(iii) For method (B), the choice of K and the presentation of f(O). 

In all but one of the programs the choice for r(O) is the piece-wise linear 

calibration curve u(O). Van der Plicht et al. (1990) uses a cubic spline fitting 

approximation, but the resulting calibrated distributions are almost identical to 

those obtained using #(0). 

As mentioned earlier, Clark (1979) studies method (A) and gives exact and 

'conservative' values for y to obtain calibrated confidence intervals of correct 

size. Thus if method (A) is preferred, Clark's technique should be used. How- 

ever, we have explained the inadequacies of this calibration method and we prefer 

not to use it. 

Method (B) is a particular case of the calibration method we use in this 

thesis, with K defined so that f(O) is normalised to one. Some authors do not 

insist on normalising f(O) (Weninger 1986) and discuss alternative choices for K. 

In fact, Stuiver and Reimer (1993) allow the option of choosing K so that the 

maximum of f(O) is 1. We see no sensible reason for not normalising f(O) to one, 
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particularly as it will be interpreted as a probability density. In the programs that 

use method (B), a. combination of histograms and highest posterior density (HPD) 

regions for different probabilities and quantiles are given. However, we do not 

intend to present a detailed comparison of the graphical methods used by each of 

the programs for the presentation of histograms, HPD regions or the like. 

With respect to the standard errors reported in the calibration data (the ak's), 

various approaches are followed. Pazdur and Michczynska (1989), Robinson 

(1986) and van der Plicht et al. (1990) decided to neglect them. Otlet, Leese 

(1988) and Weninger (1986) calculate s2 = a2+a, 2, where a, estimates the stan- 

dard deviation in the curve based on the ak's and is commonly fixed at 10 or 20 

years. From that they calibrate y±s. A third method, used by Aitchison et al. 

(1990) and Stuiver and Reimer (1986) is to give a 'confidence band' for r(e) cen- 

tred at the piece-wise linear calibration curve. That is, 

r(O) E (9(0) + a(O), y(O) - a(O)) and cr(O) is a linear interpolation of ak and ak - 1, 

where tk ý> 0> tk-,. From this Renfrew and Clark (1974) calibrated confidence 

intervals method is used (discussed above). 

None of these methods for including the standard errors ck's in the calibra- 

tion process are thoroughly justified by their authors. Under certain conditions 

each of these methods can be justified. However, the estimates obtained for the 

standard deviation in the calibration curve can only be seen as informal approxi- 

mations. In this thesis we prefer to develop a stochastic model for r(O) using 

observational data for the atmospheric 14C levels through time. From that, we 

formally estimate its standard deviation based upon the ak's. This represents the 

basis for our novel approach to calibration, which includes the standard devia- 

tions ak's (this will be developed in Chapter 3). 
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2.3.6 Discussion 

We believe that before deciding on the specific graphical presentation and 

layout for any calibration results, a satisfactory method for calibration must 

developed. Based upon the Bayesian framework one can see that the correct 

method for calibration, using the piece-wise linear calibration curve and neglect- 

ing the errors in the calibration data, is the one given in Chapter 1. For the 

specific case of vague prior information about 0, method (B) above will give the 

same results as the Bayesian method. From this a wide range of possibilities can 

be used to present and summarise f(O), from a simple histogram to complicated 

graphical layouts to plot HPD regions or quantiles of f(O). Under certain cir- 

cumstances, however, the standard deviation of the calibration curve should be 

considered. In Chapter 3 we discuss this issue and develop the calibration pro- 

cedure to be used in the thesis. 

In summary, it can be seen from the discussion in the previous Sections that 

there is no single established method with which to calibrate radiocarbon determi- 

nations. On the contrary, each researcher (or group of researchers) tends to have 

their own preferred calibration method and to present their results differently. An 

even bigger problem occurs when we need to introduce archaeological information 

into the analysis. Only two of the eight studied programs claim to have the facil- 

ity to do so. The first is a basic implementation of Aitchison et al. (1991), and 

we discuss their approach in Section 2.4.3. The second is an implementation of 

the ideas presented by Weninger (1986), which we discuss in Section 2.4.4. 
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2.4 Interpretation of radiocarbon determinations 

2.4.1 Introduction 

We now discuss some of the relevant publications concerning the interpreta- 

tion of radiocarbon determinations. In doing so we consider a wide variety of 

problems and study several different statistical techniques. We attempt to identify 

typical problems in the analysis and interpretation of radiocarbon determinations, 

and the techniques others have previously used to tackle them. Throughout the 

review we focus attention on the crucial factors that must be considered in any 

interpretation problem. We highlight both the strengths and weaknesses of the 

existing techniques. 

This Section of the bibliographical review represents a central part of the 

thesis. It is here that we try to identify the underlying problems in the analysis 

and interpretation of radiocarbon determinations. The majority of the papers con- 

sidered below are concerned with specific interpretation problems. We will, how- 

ever, try to avoid discussing details relevant only to particular examples and con- 

centrate on the global characteristics of the problems. This will then provide a 

basis for our own general approach to be developed in later Chapters. 

2.4.2 Early work 

Libby (1954), in one of the first published list of radiocarbon determinations, 

briefly discusses the interpretation of a set of determinations. The archaeological 

dating problem studied by Libby is related to the ascension of 'Hammurabi of 

Babylon'. The Babylonian calendar gives dates for the ascension of some of 

Hammurabi's predecessors over a period of at least 350 years. However, this 

calendar provides only relative dates since its relationship to our calendar is not 

completely known. A charred beam from the remains of a house thought to be of 
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the reign of a predecessor of Hammurabi was divided to produce three samples, 

each of which was radiocarbon dated. By fixing the date of the beam using 

radiocarbon, it was possible to relate the ancient Babylonian calendar to the 

modem calendar and hence date the ascension of Hammurabi of Babylon. 

To combine the three determinations obtained and give an estimate for the 

age of the charcoal beam, Libby (1954) proposed using a weighted average 'using 

the inverse square of the counting errors as weighting factors'. Thus the weighted 

average is a 2(yj a1 -2 +Y2 (Tj- 2 +Y3 aj-2) where a-2 = CJ-2+a; ý 2+ ai -2. However, 

later he writes 

"It is probably better, however, to take the arithmetical average since there are 
undoubtedly other errors than the counting errors. " 

To obtain a final date, Libby takes the arithmetic mean Y ý-- (YI +Y2+Y3)13 

although the variance he associates with it is a2 as calculated above. Assuming 

that the age for the sample is normally distributed with mean y and variance cr 2, 

he estimates that with a 95% probability the organic materials in the charred beam 

died between 2205 and 1887 BC. 

One obvious problem with Libby's (1954) procedure is that it does not 

include calibration. This, of course, can be understood since at that time it was 

not suspected that radiocarbon determinations needed to be calibrated to obtain 

calendar dates. On the other hand, a very important issue is how and when to 

average a set of determinations to give a single 'date'. Given the standard Gaus- 

sian model for radiocarbon determinations it can be seen that, if we are to average 

the determinations, a weighted average (or pooled mean) should be preferred over 

an arithmetic average, in contrast to what Libby did. Of even greater concern is 

when this should be done. We now discuss this problem in some depth. 
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One point to be appreciated before attempting a statistical analysis. of a set of 

radiocarbon determinations is the need to distinguish between two basic cases, 

Case I, when we have a series Of radiocarbon determinations taken from 

the same object (as in Libby's case above) 

and 

Case II, when we have a series of radiocarbon determinations taken 

from different objects. 

In this thesis, to distinguish between Case I and Case 11, we will call Case I 

the case representing a set of replications, with all other sets of radiocarbon deter- 

minations belonging to Case II, unless stated otherwise. There is a crucial differ- 

ence in the statistical techniques to be used for these two cases. The above dis- 

tinction was first clearly identified by Ward and Wilson (1978). Previous to that, 

Spaulding (1958), Polach and Golson (1966) and Leach (1972) considered the sta- 

tistical analysis of various sets of radiocarbon determinations but do not make this 

distinction. 

Another early work is Law (1975) who performs an analysis of a set of 

radiocarbon determinations from a site in New Zealand. Law does not distinguish 

between Case I and Case IL and does not clearly establish any specific statistical 

model. However, the section 'Association of the sample with the event [trying to 

be] dated' is of some interest. He explains that contextual information from the 

site must be taken into account to correctly associate the samples with the events 

under study. Through this association, it is hoped that the context or events con- 

sidered could be correctly dated. Unfortunately, Law (1975) was unable to 

include contextual information in his statistical analysis. 
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An interesting paper concerning the averaging of radiocarbon determinations 

is Long and Rippeteau (1974). They propose the usage of the 'pooled mean' 

mm 
yp = C2 

1 Yj 
with a -2 =1 (2.1) 22 

j j=l aj j=l a 

and make use of a 'Chauvet's rejection criterion' (Chauvet 1863). This criterion 

consists of rejecting any observation for which Jyj-yp I> ya where 

P[IZ I >, y] = 

and Z- N(O, 1). This appears to be an ad hoc criterion that has several contr- 

oversial components, for example, the choice of the threshold 1/2m or the depen- 

dence of yj and yp. The gross inadequacies of this criterion are discussed by Bar- 

nett and Lewis (1984), Renfrew and Clark (1974) as well as by Ward and Wilson 

(1978). 

We believe that Long and Rippeteau's discussion on 'When averaging is 

appropriate' in which they urge us 'to understand non-statistical discrimination in 

selecting the dates to be averaged' is extremely important. This, albeit implicitly, 

raises the issue of the archaeological context on which we are working, and how it 

relates to the statistical techniques we are attempting to use. That is, we believe, 

one of the principal issues to be taken into account in the interpretation of 

radiocarbon determinations. In fact, to their credit, Long and Rippeteau (1974) 

distinguish correctly between Case I 'replicate runs on identical sample material' 

and Case II. Discussing whether or not to average radiocarbon determinations in 

Case 11 problems, they note that this 'will involve judgements based upon 

archaeological ( ... ) knowledge'. We believe this to be a highly relevant comment 

since only then can a set of determinations be averaged in a meaningful way. We 

continue to study this problem in Section 4.4. 
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2.4.3 Ward and Wilson (1978) 

Probably the most influential and widely quoted work on the statistical 

analysis of sets of radiocarbon determinations is that of Ward and Wilson (1978). 

The techniques they propose are now routinely used by archaeologists and 

radiocarbon laboratories. The paper is primarily concerned with how and when it 

is reasonable to average a set of determinations and obtain a single date. 

Ward and Wilson make a large critique of the previous publications up to 

that time, clearly state the difference between Case I and Case II problems, and 

propose a significance test for each case. Unfortunately, they did not have the 

advantage of the availability of a high-precision calibration curve and, as a result, 

any critique of their paper should be put in perspective. In a later paper, Wilson 

and Ward (1981), they discuss the problem of outliers but a review of this paper 

is deferred to Chapter 6, which is specifically concerned with this subject. 

The approach Ward and Wilson (1978) follow is based on classical 

hypothesis testing. Given a Case I set of radiocarbon determinations (replica- 

tions) tylial, Y2±62, --- I ym±6m) they consider the model 

}: ' =p+ 

where y is the 'true' radiocarbon age for all determinations and 

ei - N(O a3) j91, 

'To test the hypothesis that the series of determinations are consistent (ie. all have 

effectively the same [radiocarbon] age)' (they do not state an alternative 

hypothesis) they propose using the test statistic 

m12 
T yp -Yi (2.2) 

C2 j j=l 
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where yp is the pooled mean from Equation 2.1. Given the above model, T has a 

chi-square distribution with m-1 degrees of freedom. They then write 

"If the determinations are judged not to be significantly different [using statistic 7) 

then they can be combined, the pooled mean being [yP ](... )" 

and the variance of this pooled mean being c2 as given in Equation 2.1. They 

never explain, though, why we should use such a pooled mean to combine the 

determinations. (In Chapter 4 it will be proved that, under certain conditions, for 

Case I problems, yp is a sufficient statistic and is the maximum likelihood estima- 

tor for u. ) 

The above statistical test is currently widely used and is given in basic texts 

on radiocarbon dating (see Bowman 1990 p. 58, Gillespie 1986 p. 30, Aitken 1990 

p. 95). 

Ward and Wilson propose a different model for Case II sets of radiocarbon 

determinations, which cannot be considered to be replicates. In Case I the model 

supposes a unique radiocarbon year ju common to all Yj's, whereas in Case II 

each Yj has its own radiocarbon mean lij, since the determinations do not arise 

from the same object. The proposed model is 

y= (2.3) i lli+Ei+fj+gj 

where 

j2) ej - N(O, er 

and 

fj - N(O, af2) and gj - N(O, crg2). 

Ward and Wilson do not make use of any calibration data set and thus no explicit 
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calibration procedure is used by them. However, in this latter model the error 

terms fj and gj are introduced to account for the 'error factor in the calibration 

curve' and for the 'sunspot effect', respectively. Based on informal considera- 

tions, they then estimate that af = 50 and ag = 70 (taking ej, fj and gj to be 

independent). 

They go on to consider the following hypothesis test for Case 11 

Ho : Al ý-- #2 -'ý ... -,: ILM 

H, : not HO, (2.4) 

to test the hypothesis that all determinations belong to the same radiocarbon year. 

Then they propose the test statistic T' similar to T (in Equation 2.2) but using 
222 +a 2 instead of 2. If Ho is not rejected at some significance level Si = Ci + CY 19 17i 

a (that is, T< Qa, m-1, where is the upper 100 a% quantile of a chi- 

square distribution with m -I degrees of freedom), then the determinations may 

be combined using the pooled mean yp. 

Of course, Ho does not tell us what happens on the calendar scale since the 

lij's refer to the radiocarbon ages of the sample. Since the calibration curve is 

non-monotonic, there is not a one-to-one relationship between radiocarbon and 

calendar years. Therefore, even if we knew that 41 == o42 == ---=A, the dated 

objects may have very different calendar ages (0j's), with differences as large as 

200 years, see Figure 2.1. Given the availability of the high-precision calibration 

data, we believe that any statistical analysis should now use a model based on 

calibration (similar to the one presented in Equation 1.4). Ward and Wilson's 

approach represents only an approximation relevant only before the calibration 

data was available. In fact, in relation to the problem considered, it would be 

necessary to test the hypothesis HO : 01 = 02 0,, against H, : not HO. 

That is, the determinations are associated with the same calendar year, rather than 
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Figure 2.1 
The calendar years 

01 = 2708,62 = 2605,03 = 2589,04 = 2539,65 = 2498 

spanning more than 200 years all have the same radiocarbon age (2478 bp). 

testing that they all have the same radiocarbon age, as it is the case above. 

Furthermore, despite knowing that the objects have similar calendar ages, we 

still have the question of whether, archaeologically speaking, it makes any sense 

to combine the determinations. This problem was mentioned by Ward and Wilson 

(1978) 

"If the estimates of the real dates are judged not to be significantly different [using 

their T' test] and, if from archaeological considerations, it is deemed appropriate, 
then the radiocarbon determinations can be combined. " 

and has been addressed by other authors (for example Bowman 1990, p. 60). The 

sad truth is that the T'-test has been misused (see, for example, Pazdur and Krza- 

nowski 1991, Saville et al. 1987, Nydal 1989, Hassan an Robinson 1987, Aitken 

1990 and Stuiver and Reimer 1993), despite the warnings of Ward and Wilson and 
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other authors. Moreover, there is a tendency to use the uncorrected T-test for 

hypothesis HO (in Equation 2.4) when the problem is obviously of Case IL Then, 

if HO is not rejected, the determinations are combined into a pooled mean which 

is then calibrated. To investigate the inadequacies of this procedure we consider a 

set of m calendar years 01,02,... 0,,, evenly spaced within a period of time 

(, 8,, 8 + 1). We then simulate yj with distribution 

yj I Gj - N(, u(Oj), C2) 

for some fixed C2 , and calculate the corresponding T. We repeat this process n 

times and record the number of times Ho would be rejected at significance level a 

(that is T>Q,,, 
m-,, where Q,,, m-l is the upper 100a% quantile of a chi-square 

distribution with m-1 degrees of freedom). In Figures 2.2 and 2.3 we find plots 

of the percentage of rejections for different values of P, I and a2 with m 

5 and n=5000 and 100a = 5%. 

The peculiar behaviour of the T-test in these circumstances is due to the 

shape of the calibration curve. Note that this behaviour depends not only on a2 

but also on the actual position of the period of time (8, P+ I). From Figure 2.2 we 

see that the procedure is likely to reject Ho for I= 150, a= 40 and P= 4050 BP 

(more than 50% of rejections), whereas for P= 4550 BP it is considerably less 

likely (less than 20% of rejections), as seen in Figure 2.3. This is an unacceptable 

characteristic of the T-test when wrongly applied to Case Il samples. 

As part of our critique of Ward and Wilson (1978), we make one general 

remark that is linked to our general disagreement with the foundations of classical 

statistics. Long and Rippeteau (1974) in their discussion about the significance 

(classical) test of hypotheses HO, in Equation 2.4, say 
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Figure 2.2 
Percentage of rejections for the T-test, 

for a=0.95, m=5, n= 5000, p= 4050 and a= 40,50 and 60. 
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Figure 2.3 
Percentage of rejections for the T-test, 

for a=0.95, m=5, n= 5000, p= 4550 and a= 40,50 and 60. 
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"A probability test is given ( ... ) to help distinguish whether, for example, art occu- 
pation floor was accumulated in an "instant" of time (several years, or sequential 
seasons, or less), or if the spread of radiocarbon dates probably indicates a real 
time spread suc h as many decades or centuries. " 

Suppose now that somehow we can overcome the problems of calibration men- 

tioned before and that we propose a significance test to 'help distinguish whether 

( ... ) an occupation floor was accumulated in an "instant" of time. The problem 

we foresee with such tests is that they are based, essentially, on a confidence 

level. Therefore, what we call 'instant' of time would depend on the choice of 

this confidence level. We are never given (in Ward and Wilson 1978 nor else- 

where) the relationship between such confidence level and the 'instant' of time 

(like its length, for example). This means that, what we call an 'instant' of time, 

will depend on what confidence level we are using, and we have no means to 

establish such dependency. This raises the following questions. 

Should what we call a 'instant' of time be based on archaeological considera- 

tions? 

Should we, at least, know how long our 'instant' of time is? 

We believe that the answer to both of the above questions is 'yes' and, there- 

fore, we find significance tests unsatisfactory within this context, at least in the 

way they have been presented up until now. Moreover, significance tests for a 

point null hypothesis (like HO) have been criticised previously by several authors 

(Lindley 1957, Hays and Winkler 1970 chapter 7, Barnett 1973 chapter 5). In 

summary, to quote Berger (1985, p. 135) 

"In the face of this overwhelming evidence that classical testing of a point null 
[hypothesis] is misleading, we must seek a better approach. Of course, we basi- 

cally recommend the subjective Bayesian apprbach ( ... )" 
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2.4.4 Other major contributors 

In a series of papers, Ottaway and her colleagues present a major contribu- 

tion to the interpretation of radiocarbon determinations, by recognising the 

archaeological desire to summarise sets of determinations. The problem of sum- 

marising a set of radiocarbon determinations is quite common in archaeology. In 

this case the determinations are supposed to give evidence about the time-span of 

a given archaeological phenomenon. Statistical techniques are then needed to 

estimate this 'time-span' given the determinations. 

Ottaway (1973) proposes a technique to surnmarise a given set of radiocar- 

bon determinations Yl: ýý71? Y2±629 ... 1 Ym±'7m- She avoids using averages (or 

the pooled mean) of determinations because 'one can see that this approach is 

meaningless'. The technique she proposes is called 'interquartile range' or 

'dispersion diagrams', and consists of ordering the radiocarbon ages, yj's, in the 

radiocarbon scale and highlighting the first 25%, the middle 50% and the last 25% 

of the data, with predefined grey-shadowed boxes. This is called the 'interquartile 

range' for the determinations. Only the radiocarbon ages yj's are considered, and 

the standard deviations aj's are ignored. This constitutes a purely graphical tech- 

nique with no probabilistic model stated that has the following characteristics. 

(i) It does not consider the standard deviations reported for the radiocarbon 

determinations. 

(ii) It does not consider the archaeological context to which the radiocarbon 

deteTMinations are related. 

Later she proposes to 'correct' (calibrate) the radiocarbon determinations by 

finding the intercepts of the yj's with the calibration curve, and using these 
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intercepts (calendar years) to form a dispersion diagram as before, but now on the 

calendar scale. 

There are several problems with this approach. A major concern is related to 

the arbitrary choice of the 25%, 50% and 75% intervals. Ottaway explains that 

(Ottaway 1973) 

"it may be that the expansion to include two-thirds or three-quarters of the known 
dates will give empirically the more meaningful results, but this is a problem for 

the future. At the present the simplicity of the inter-quartile range has everything 
to commend it. " 

Another major concern with dispersion diagrams is that the standard devia- 

tions are not included in the analysis. This has the consequence that a Tadiocar- 

bon determination has the same influence whether is low-precision (Cr = 60-80) 

or high-precision (a = 15-20). As a result of this, a set of high-precision deter- 

minations would have exactly the same dispersion diagram as a set of low- 

precision determinations if the radiocarbon ages reported (the yj's) happen to be 

the same. Ottaway defends her technique by saying (Ottaway 1973) 

"the way the data are plotted in dispersion diagrams already contains within it a 
good reflection of the uncertainties of the data, and one does not need the apparent 
extra information given by the standard deviation 

We do not agree with the above statement that the standard deviations 

reported represent 'apparent extra information'. If we neglect the Cj's we will be 

losing important, and not 'apparent', information. The aj's are carefully assessed 

by the radiocarbon laboratories based on the imprecisions arising from the dating 

process (counting periods, pretreatments etc. ) that may vary from sample to sam- 

ple. Indeed, determination 1400±70 is less precise than determination 1400±40 

given the standard deviation reported by the laboratory and this should always be 
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taken into account in the succeeding analysis and interpretation. 

The next paper in the series is Ottaway (1986) which considers the 'calibra- 

tion of groups of [radiocarbon] measurements', using data from a site in lower 

Bavaria, Germany. She Proposes the use of dispersion diagrams but then poses 

the question, 

"Is it more sensible to construct an interquartile range with uncalibrated dates ( ... ) 

and then calibrate the range, or to calibrate each date and then construct an inter- 

quartile range? ( ... ) the two methods give notably different values. " 

This question is difficult to answer, not having any clear statistical frame- 

work to refer to. Again in Ottaway (1986), the standard deviations are not con- 

sidered in the analysis. 

The last paper we review in this Section is Aitchison et al. (1991). This 

paper attempts to overcome the problems of the 'dispersion diagrams' by using 

the high-precision calibration curve and including the standard deviations reported 

I for the radiocarbon determinations. The aim is to estimate 'the duration of an 

archaeological phenomenon' using a set Of radiocarbon determinations. The 

approach used is based on the following principle 

"Any formal approach must start with the assumption that there exists a frequency 
distribution (with respect to the historical time-scale) of all possible artefacts: or 
materials from the phenomenon which might be sampled. " 

Here they try to define a 'population' or sample space from which the sam- 

ples, and eventually, the radiocarbon determinations arise. We believe, though, 

that the definition of such a sample space is difficult if not impossible and intro- 

duces a number of questions. Does a broken artefact count as one individual in the 

population or as several (the materials resulting from the debris)? Do Aitchison 
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et al. refer to the materials that in the past existed or the ones that we can actu- 

ally find in the present? Radiocarbon dating is only capable of dating some type 

of materials, does this represent a problem? What is the relationship of 'all possi- 

ble artefacts or materials' to the duration of the 'archaeological phenomenon' to 

which the artefacts relate? Is it the same for all archaeological phenomena? 

In order to implement their approach, Aitchison et al. (1991) propose to esti- 

mate the frequency distribution of 'all possible artefacts or materials' and then to 

estimate its lower and upper quartiles (similar to the dispersion diagrams men- 

tioned earlier). They use a 'kernel density estimation' technique based on Silver- 

man (1986). Given a set of radiocarbon determinations YI ± 171 J2: ý 172 Ym ± lq,, ý 

they proceed as follows. 

(i) Solve the equations 

yj = p(O). (2.5) 

This results in a series of Ojj's where yj = y(Oij) for all i (with proper 

ranges for all indices), see Figure 2.4. Recall that Equation 2.5 may have 

several solutions due to the non-monotonicity of the piece-wise linear cali- 

bration curve p(O). 

(ii) Consider all the Ojj's found in (i) as a sample for kernel density estimation. 

The estimated density therefore belongs to the calendar scale and is taken to 

represent the distribution of 'all possible artefacts or materials'. 

One basic assumption of kernel density estimation is that the sample values 

are independent. Clearly the Ojj's are not necessarily independent. Referring to 

Figure 2.4, it is clear that given 01.1 we know yj since 

Yi 
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Figure 2.4 
Solutions for the equation yj = y(O). 

and we can then calculate the rest of the Oi,, 's. 

We believe that Aitchison et al. (1991) is a work that is controversial both 

because of its archaeological assumptions and because the Ojj's do not necessarily 

satisfy the statistical assumptions required. In addition, no provision is made for 

further archaeological considerations to be incorporated into the statistical 

analysis, like archaeological phases, floating chronologies or known relationships 

between the dates. Estimating the duration of a particular archaeological 

phenomenon using radiocarbon is a very important problem in the interpretation 

of radiocarbon determinations. In Section 4.3.5 we present a novel approach to 

this problem using our Bayesian method. 

2.4.5 Archaeological wiggle matching 

The technique of archaeological wiggle matching (AWM) was presented in 

Weninger (1986) and PeaTson (1986) and has been used in some publications 
including Baillie and Pilcher (1988), Manning and Weninger (1992), Baillie 



-61 

(1990) and Clymo et al. (1990). Other earlier attempts to tackle problems of 

AWM without using the high-precision calibration data can be. found in Clark and 

Renfrew (1972), Clark and Sowray (1973) and Clark and Morgan (1983). The 

latter group of papers are based on a technique to date floating tree-ring chronolo- 

gies that was formally presented by Clark (1979) and reviewed in Section 2.3.4. 

Here we concentrate on the former group of papers which make use of the high- 

precision calibration data. 

In the explanation of the problems considered by AWM, Weninger (1986) 

states that 

"Cultural phenomena known by Comparative Stratigraphy to be sequential appear 
to overlap on the radiocarbon scale. A rectification is not achieved by calibrating 
either the dates or the radiocarbon scale. Calibration does not put dates into their 
correct order and it does not guarantee that the real sample age is known. " 

The aim, therefore, is to combine known archaeological (relative) chronolo- 

gies with radiocarbon determinations to obtain absolute chronologies. In other 

words, to fix in time the relative chronologies using radiocarbon. Their technique 

consists of the following steps. 

(i) Ordering the radiocarbon determinations according to the archaeological 

chronology ie. the object dated by determination yj±aj is known to be ear- 

lier than the object dated by determination yj+l ±aj+l (but not taking into 

account the the values of yj±aj and yj+, ±aj+,, only the archaeological 

information). 

(ii) Plotting yj - aj, yj, yj + aj along evenly spaced vertical lines, the gap between 

the lines being n calendar years. 
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(iii) Using a graph of the high-. precision calibration curve, with the same scale for 

radiocarbon years (y axis) and calendar years (x axis) as for the plot in (ii) 

and attempt to find a section on the curve that would match (at least approxi- 

mately) the pattern of the radiocarbon determinations plot from (ii). This 

could be done by using a transparent slide for the plot in (ii). 

(iv) Repeating steps (ii) and (iii) with different gaps of n calendar years until a 

'satisfactory' match is found. 

This 'satisfactory' match then provides an estimate for the calendar age for 

each of the dated objects. Clearly these estimates include the a priori relative 

chronological information, available. 

Weninger's opinion about his own AWM method is that 

"AWM is the art of making good guesses. I would define "good guesses" as being 
hypotheses reproducible in an inter-archaeologists study group. " 

There are obvious difficulties in comparing a highly subjective technique 

with other more formal techniques, methods or frameworks. The principal prob- 

lem is comparing how good our 'good guesses' are. That is, what measure should 

we use to compare one wiggle match with another? We do sympathise with 

Weninger's concern about the necessity of introducing archaeological considera- 

tions into the analysis of radiocarbon data. However, this can be done in a con- 

sistent way resulting in reproducible techniques by an inter-archaeologists study 

group , with the help of a trained (Bayesian) statistician. We therefore paraphrase 

Weninger by saying that 'Bayesian statistics is, partly, a methodology to perform 

consistent and coherent good guesses'. Finally, we agree with Weninger's state- 

ment that 
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"Further research should turn up with a better mathematical approach. " 

Pearson (1986) presents a more mathematical approach to the problem of 

AWM. He concentrates on dating floating tree-ring chronologies. In this case the 

radiocarbon determinations arise from samples of tree-rings where the number of 

rings between successive samples is known. Therefore, if 191902--0.. are the 

associated calendar years for the determinations we have 

i i- i 

where I is known. Here we suppose that 0.. > 0. 
-1 > ... > 02 > 01 and thus 01 iI 

represents the calendar age for the outermost (youngest) ring of the tree-ring chro- 

nology. Since the 1j's are known it is only needed to estimate 01 and the rest of 
i 

the 9j's can then be calculated since Oj = 01 + 7, Ik 
- 

k=2 

Pearson (1986) uses a technique based on least squares to estimate 01. The 
Mi2 

basic idea is to minimise the sum of squares yj-il 01+ 1 Ik as a func- 
I 

k=2 j=1 

)I 

tion of 01. Pearson assumed that ai ?= C2 for all determinations. However, if the 

aj 2ýs were different, the least squares method could easily be extended to estimate 
01 by finding the minimum of 

S(01) =1+ Ik 1 

C2 
yi-P ol 7, 

j=l jI k=2 

As explained in Pearson (1986), one can see that, given 01, S('01) has a chi- 

square distribution (using the common calibration model for radiocarbon determi- 

nation,; presented in Chapter 1) and therefore confidence intervals can be calcu- 

lated. Unfortunately, this technique can only be used when the IA: 's are known 

and seems difficult to generalise to more complicated cases when little or no 

information is available about the 1j's. Therefore there is a need to seek a more 

general approach to tackle the problems of AWM. This will be addressed in 
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Section 5.3 where we develop an approach to the problem using our (Bayesian) 

method. 

2.4.6 'El Castillo' determinations 

Harrison and Wainwright (1991) analyse a set of radiocarbon determinations 

arising from 'El Castillo', a site in Teruel, Spain. They explain that 

"A big problem with using radiocarbon determinations is the difficulty encountered 
with converting the irregular recalibrated values into calendar dates and of combin- 
ing them. This paper takes six new determinations and by including the archaeo- 
logical evidence, aims to produce simple estimates. " 

The problem is to incorporate a chronological phases structure in the analysis, 

using a set of six radiocarbon determinations. That is, there is a series of 

archaeological phases identified in the site which are known to have some relative 

chronological ordering. For each phase there are one or more determinations 

associated with it. On the basis of some archaeological considerations Harrison 

and Wainwright use only four of these determinations. One further determination 

is rejected because it 'falls out of chronological sequence' and thus the analysis is 

performed with only three determinations which we denote by 

Y1 ±(71 9 Y2±62ý Y3±63- 

The calendar dates associated with these determinations, 01,027 03, are then 

taken to predate and postdate the boundaries for three consecutive phases in the 

site. That is, 01 predates the beginning of phase I and 02 postdates its ending, 02 

predates the beginning and 03 postdates the ending of phase 11 and 03 predates the 

beginning of phase III. Thus, using years BP, it is known that 

01 ý" 02 ýý' 03 
- 
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Harrison and Wainwright's (1991) first approach to dating the three archaeological 

phases in 'El Castillo' can be explained in the following way. What is required is 

the most likely period in which the phases occurred. Since phase I occurred 

between 01 and 02 then, given the length, v, of this phase, the probability that the 

phase occurred in any period of time a to a-v is equal to 

Pl(a, v) = P[01 > a, a-v > 02 1 Yll Y21- 

Harrison and Wainwright assume that this probability is equal to P[01 > 

aI yl]P[a-v " 02 1 Y21- Using basically the same calibration procedure 

explained in Chapter 1, they obtain P[Oj <aI yj] for j=1,2,3, and hence 

PI(a, v) can be calculated. Therefore Harrison and Wainwright assume, albeit 

implicitly, that given the determinations yj and y2,01 and 02 are independent. It 

is unlikely that this is the case since, a prior!, we know that 01 ýý' 02 (they do not 

discuss this problem). Of even greater concern is their method for estimating the 

most likely period in which phase I occurred. They find a* and v. such that 

PI(a v max Pi(a, v). 
a, v 

Although this approach might be intuitively appealing it presents serious prob- 

lems. Since P[a-v ý> 02 1 Y21 < P[a > 02 1 Y21 then it is straightforward to see 

that v. =0, and therefore the most likely period of time for phase I would be of 

no length. Surprisingly, Harrison and Wainwright give 2057 BC and 10 years as 

estimates for a* and v* (a similar analysis is given for phase II and no analysis 

for phase III). 

These authors recognise that the estimates for the time in which the three 

phases occurred should include the three determinations simultaneously, since it is 

known that 01 ýý' 02 *'** 03. They therefore introduce a second approach to the 

problem saying that 
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"To rectify this, one can limit the time ranges used. and combine all dates to- give a 
delimited three-way probability" 

which is defined as 

P3(, dt) = max (P[a > 01 > a-. dt, a-vl-, dt > 02 > a-vl-2At, 
a, v,. v, 

a-vl-V2-2'At > 03 > a-vl- V2 - 3At I YI 1 
Y29 Y3 

Again, it is assumed that given the determinations, t919 02 and 03 are 

independent and P[Oj <aI yj] is used to calculate P3(At). This represents the 

probability that 01 9 02 and 03 belong to three consecutive periods of time, each of 

length At, and separated by v, and V2. Therefore, according to the first analysis, 

phase I should have occurred between a-At and a-v, -At and phase II between 

a-vl-2At and a_V1_V2-2At. According to the second analysis, phase I is 

claimed to be between a and a-At, phase 11 between a-v, -At and a-vl-2At 

and phase III between a_V1_V2_2At and a-vj_V2-3At. Given a 'time-span' 

At one can find a*, vl* and v; to maximise the above probability to obtain P3(At). 

Using ad hoc graphical methods At is estimated to be 40 years and hence the 

three periods of time for the phases are obtained using the corresponding values 

for a*, vl' and v; that give P3(40). ,, 

Although the techniques proposed by Harrison and Wainwright (1991) are 

controversial and perhaps contradictory, we believe that their basic principle is 

highly relevant. As stated above, the intention is to combine the known archaeo- 

logical information available (chronological ordering in the phases, phase lengths) 

with the radiocarbon determinations. This idea is emphasised throughout the 

paper recognising the fact that, otherwise, a sensible interpretation of the 'EI Cas- 

tillo' determinations cannot be satisfactorily. achieved. Using the Bayesian frame- 

work, combining a priori archaeological information and radiocarbon determina- 

tions can be done in an explicit and consistent manner. In fact, using our 
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Bayesian methodology, in Section 5.3 we study and propose solutions to problems 

similar to the one discussed here. 

Moreover, Harrison and Wainwright reject one determination because its 

calibrated distribution falls outside of the time periods indicated by other distribu- 

tions associated with the same context ('falls out of chronological sequence'). 

However, this rejection is based only on intuitive ideas and ad hoc informal com- 

parisons that cannot be consistently reproduced in other analyses. Again, using 

the Bayesian framework, the accordance (or discordance) of a group of determina- 

tions can be measured and the rejection of a determination can be formally 

included as part of the analysis. Using the extended statistical framework to be 

developed in Chapter 6, a full analysis of this type can be performed. 

2.4.7 Bayesian approaches 

In this final Section we review publications concerning the interpretation of 

radiocarbon determinations that utilise the Bayesian framework. These publica- 

tions are dominated by an interest in new modelling approaches, with the aim of 

introducing specific considerations into the statistical analysis depending on the 

archaeological problem at hand. Based upon complex models and sound statisti- 

cal techniques, complicated archaeological dating problems are tackled. The 

Bayesian framework is then used to combine sets of radiocarbon determinations 

with relevant archaeological (chronological) information in a consistent manner. 

The first'paper we study is Helskog and Schweder (1989), they explain that 

"The problem at hand is to estimate the number of contemporaneous houses (units) 
at any given time t. [from a site in Norway]" 
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They have m radiocarbon determinations arising from charcoal found in m 

houses in the site. The radiocarbon determinations were calibrated using the 

Ralph et al. (1973) procedure explained in Section 2.3.3. Helskog and Schweder 

follow the recommendations of Ralph et al. and consider the calibrated determi- 

nations to be normally distributed (see below). In the paper, only the calibrated 

results are given, the uncalibrated determinations are not given. (We have dis- 

cussed the inadequacies of such an approach in Section 2.3.3. ) 

The procedure that these authors use is basically as follows. Let the occupa- 

tion period of each house be equal to L years. Let rj be the date when house j 

was abandoned, uj the deposition time of the jth charcoal sample taken from 

house i and yj ± aj the determination arising from that sample. Then Helskog and 

Schweder (1989) state that 

yj I up rj - N(uj, aj2). (2.6) 

Since there is no further information about the time of deposition for each sample 

within the occupation period of the houses, uj is assumed uniform with 

uj I -rj -U (-rj. -rj 

and the prior distribution of -rj is uniform within some wide margins. (Note that, 

since we are using years BP, Tj, the date of abandonment of house j, is smaller 

than the beginning of the occupation Tj+L. ) Applying Bayes' theorem, Helskog 

and Schweder obtain 

f(-rj I yj) - 

That is, the posterior distribution of the date of the abandonment of house j given 

the radiocarbon determination performed for that house. Using these distributions 

they calculate the expected number of houses occupied at time t (for fixed L), 

N(t I y). They do this by noticing that, given r= (rj, T2,... ' r, ), the number of 



-69- 

houses occupied at any time t is 

m 
N(t, T) = 1: I(t)(T,. 

-r, +L)g 
j=l 

where I(t) is the indicator function. That is, a house j is occupied at a time t if 

tE (Tj. - -rj+L). Therefore, the expected number of houses occupied at time t is 

N(t I y) =f N(t, T)f(, r I y) dr. 

m 
Therefore, since f(-r I y) = 11 f(, rj I yj) and T, +L) (viewed as a function of 

j=1 
, rj) is equal to krj)(t-L, 1), we have 

mI 
N(t I y) =Iff(, rj I yj ) drj. 

J=j I-L 

Helskog and Schweder then calculate and plot N(t I y) for L= 50,75 and 100 

years. They conclude that the maximum number of houses occupied at the same 

time is between 1.8 and 3.5, although this is obviously extremely dependent on 

the value of L. We believe that using a fixed value of L is a severe constraint 

which could be avoided by introducing a prior distribution for L and then integrat- 

ing out L to calculate N(t I 

As we stated above, we are only given 'calibrated' determinations. If we 

were given the original uncalibrated determinations, the model could be extended 

by changing Equation 2.6 to 

yj I up rj - N(At(uj), aj2), 

where yj is now the original (uncalibrated) radiocarbon determination, measured 

in radiocarbon years (and # is the piece-wise linear calibration curve). 

Helskog and Schweder's (1989) paper is important because it clearly intro- 

duces archaeological considerations into the statistical analysis. We believe that 
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only in this way can the problem of estimating the number of contemporaneous 

houses be achieved. In this dating problem it is crucial to introduce into the 

analysis considerations about, 

(i) the longevity of the houses 

and 

(ii) the relationship between deposition time of an object and its radiocarbon 

determination. 

This can only be done by proper statistical modelling and the introduction of 

some type of prior information. Only the Bayesian framework PTOVides a means 

of addressing the archaeological questions. (We continue to study this problem in 

Section 5.4. ) 

The next paper we review is Naylor and Smith (1988). This paper represents 

a major contribution to the Bayesian interpretation of radiocarbon determinations. 

The archaeological problem studied is from the Iron Age hillfort in Danebury, 

England. There are a total of 65 radiocarbon determinations and 'each of the 65 

samples is associated with a pottery shard or fragment'. The problem was con- 

sidered previously by Onon (1983) who was unable to include the calibration pro- 

cess in the analysis. Naylor and Smith (1988) explain that, 

"The 65 radiocarbon dates are thus accepted by the archaeologists as the dates for 
the 65 associated pottery fragments. ( ... ) individual fragments are regarded as 
being classified into one of four phases, which we refer to as Ceramic Phases 1-4. 
These phases are regarded as abutting nonoverlapping periods of stylistically con- 
sistent production ( ... )" 

They use a= (a, a2,..., a5) to represent the beginning and end for each of 

the four phases with the assumption that 
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a, > a2 > a3 > a4 > a5, 

in other words, the phases do not overlap. Using Oij to 'denote the actual date of 

manufacture of the original pot' j assigned to ceramic phase i, they assume 

f(Ojj I i, a) = f(Ojj I aj, aj, j). They explain that this distribution 'could reflect 

assumptions that seem appropriate about the relative r4te- of Production of pottery 

They choose f(Ojj I aj, aj, j) to be a uniform distribution on (ai, aj, j), 

that is 

1 
if ai ,1> Oij > ai f(Oij aj, aj, 1) aj, I- ai 

0 otherwise. 

Finally they assume that 

2 
yi, j - N(, u(Oi, j aij). (2.7) 

To calculate the posterior distribution of a they use a 'method based on interac- 

tive rescaling of Gauss-Hermite Cartesian product rules', using there own com- 

puter software. The posterior distribution of a is then used to give evidence 

about when the beginning and end of the different ceramic phases occurred. 

Therefore in their analysis Naylor and Smith (1988) successfully combined 

archaeological information (ceramic stylistic phases) with the radiocarbon deter- 

minations available, to estimate the ages of occurrence of the different ceramic 

phases identified in Danebury. 

Naylor and Smith's (1988) paper contains two technical errors. The first one 

is that they consider the year 0 BP as 1983 AD. This is erroneous and should be 

corrected to 1950 AD. The second error is that they use an old calibration data 

set instead of the high-precision calibration data available since 1986. 
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Besides these two technical errors there are a number of further questions 

that should be considered. It is unclear what the relationship is between the pot- 

tery and the samples dated ('charcoal, grain and animal bone'). The model states 

that each radiocarbon determination is associated with a ceramic pot, this in turn 

is associated with a ceramic phase. What is the nature of this relationship? How 

are we going to infer the relationship between the radiocarbon determinations and 

the ceramic phases? In the paper there is no clear discussion about this problem 

but it is implicitly included in the modelling assumption in Equation 2.7, by stat- 

ing that the determinations yij's have an associated calendar year Oij equal to the 

'manufacturing of the original pot'. This implies that in the year the organic 

matter in object j died then, the pot it relates to was manufactured. This could 

well be a reasonable assumption but was not clearly explained nor discussed in 

the paper. 

To finish with this bibliographical review we are going to study three papers. 

Litton and Leese (1991), Buck et al. (1991) and Buck et al. (1992). These three 

papers are closely related to each other, as well as to Naylor and Smith (1988). 

Litton and Leese (1991) present the basic modelling ideas of Naylor and 

Smith (1988) in a clearer archaeological exposition. They consider the basic 

model 

N(ji(O), a 

where 0 is the associated calendar age for determination y±cr and #(-) is the 

piece-wise linear calibration curve. The calibration of the radiocarbon determina- 

tions is therefore explicitly included in the model. Buck et al. (1991) and Buck 

et al. (1992) also use this model. 

The combination of NayloT and Smith (1988) and Litton and Leese (1991) 

leads to a new approach to the statistical analysis and interpretation of sets of 
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radiocarbon determinations that is based on the Bayesian framework. This new 

approach is followed up by Buck et al. (1991) and Buck et al. (1992). The 

former is a paper directed at archaeologists and includes a basic exposition of the 

Bayesian framework with some illustrative examples. They present a very simple 

example from a site called 'Skara Brae' to illustrate the Bayesian methodology. 

In this case they have four events represented by the calendar years 01,02,193 and 

04 which, a priori, have the ordering 

01 ý> 02 -> 03 > 04 
- 

They introduce this information in the analysis through the joint prior distribution 

D919 02,193,04). Then they calculate the posterior distributions of each of the 

events given the radiocarbon determinations. Therefore these posterior distribu- 

tions not only consider the radiocarbon determinations but also the above prior 

information about the chronological ordering of 01,02? 03 and 04. 

Buck et al. (1992) is a slightly more technical paper directed mainly at sta- 

tisticians and archaeological scientists. They introduce the use of the 'Gibbs 

sampler' technique to approximate the posterior distributions of the parameters. 

In this paper a further example from a site called 'Runnymede Bridge' is 

presented. This example has four events represented by 01 9 02,03 
f 04 but, 

a priori it is known that 01 ý" 02,01 ýý' 03 and 01 > 04. This information is then 

explicitly introduced into the analysis via the specification of the joint prior distri- 

bution f(01,02,03,04). The posterior marginal distributions f(Oj I y) are calcu- 

lated using the 'Gibbs sampler' technique (see Section 4.3.4). Again, the result- 
ing distributions will not only be based on the radiocarbon determinations but also 

on the archaeological information available (the a priori chronological ordering of 

the Oj's). 
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As a further, though more complicated example, Buck et al. (1992) recon- 

sider the Danebury radiocarbon determinations with a larger archaeological expla- 

nation. They study the model involved and relaxed the assumption of abutting 

phases, as used by Naylor and Smith (1988). Possible inadequacies of the abut- 

ting phases assumption clearly emerge by comparison with the case of overlap- 

ping phases. In the latter model each ceramic phase i is represented by its begin- 

ning ai and its end 6i and they assume that 

ai > fli 

(in the abutting phases case it is assumed that fli = aj_, j). Then they use the 

Gibbs sampler to obtain the posterior distributions for the ai's and Pi's. We 

believe that this represents a more satisfactory approach to the 'Danebury' prob- 

lem that could give archaeologists a clearer insight. 

Taken together, Naylor and Smith (1988), Litton and Leese (1991), Buck 

et al. (1991) and Buck et al. (1992) represent a novel approach to the interpreta- 

tion of sets of radiocarbon determinations. The basis of this (Bayesian) approach 

consists of the following points. 

Understanding the archaeological dating problem at hand. 

(ii) Establishing a basic statistical model that includes calibration. 

(iii) Building a mathematical ýstatistical) model to relate the archaeological dat- 

ing problem with the radiocarbon determinations and including in the 

analysis relevant a priori information available. 

(iv) Combining (ii) and (iii) consistently using the Bayesian framework to obtain 

results interpretable within the archaeological dating problem in (i). 
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In this thesis we will adopt this same basic approach, iMPTOVing it with our 

own original ideas and techniques, as we believe that only in this way can sound 

interpretations of radiocarbon determinations be achieved. In all the examples 

reviewed in this Section it has been crucial to include in the analysis the relevant 

available archaeological (chronological) information and combine it with the 

radiocarbon determinations. The Bayesian framework for statistical inference pro- 

vides a consistent method for doing precisely that. 

2.4.8 Discussion 

From the bibliographical review concerning publications relevant to the 

interpretation of radiocarbon determinations, one immediate conclusion can be 

drawn: there is no unified procedure for analysing and interpreting a set of 

radiocarbon determinations. Since the advent of radiocarbon dating, various 

methods have been proposed, but none has been universally accepted by the 

radiocarbon community. Moreover, the methods or techniques used tend to be 

rather ad hoc and directed at very specific examples or, at best, have only limited 

scope. From the papers reviewed above we can identify the following typical 

problems in the interpretation of radiocarbon determinations. 

When and how to average a set of determinations to give a single date. This 

represents a very common problem that has been studied by several authors 

of which we have mentioned Spaulding (1958), Polach and Golson (1968), 

Leach (1972), Law (1975), Long and Rippeteau (1974) and Ward and Wilson 

(1978). 

(ii) How to summarise a set of radiocarbon determinations to give evidence 

about the time-span or duration of a given archaeological phenomenon. 
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Some authors have studied this problem and of these we mentioned Ottaway 

(1973), Ottaway (1986) and Aitchison et al. (1991). 

(iii) How to obtain an absolute chronology of events from known relative chrono- 

logical orderings (or 'fix' a floating chronology) using radiocarbon dating. 

This is a very common and important problem that has been studied by 

several authors. Of these we have mentioned Clark and Renfrew (1972), 

Clark and Sowray (1973), Clark (1979), Clark and Morgan (1983), Wen- 

inger (1986), Pearson (1986), Baillie and Pilcher (1988), Manning and Wen- 

inger (1992), Baillie (1990), Clymo et al. (1990) and Buck et al. (1992). 

(iv) How to date archaeological phases known to have some chronological order 

using radiocarbon dating. This problem has been addressed by several 

authors of which we mentioned Harrison and Wainwright (1991), Naylor and 

Smith (1988) and Buck et al. (1991). 

We have reviewed and criticised the different approaches used by all of these 

authors and of these, the Bayesian approach seems to be the most promising. 

However, problems (i) to (iv) can all be classified as being within the statistical 

analysis and interpretation of radiocarbon determinations and as yet no global 

methodology has been developed to tackle them. This motivates the major objec- 

tive of this thesis: to, use the Bayesian framework and develop a general statisti- 

cal framework for the interpretation of radiocarbon determinations. Such a frame- 

work is given in Chapter 4 and then used in the remainder of the thesis to provide 

solutions to problems of the type (i) to (iv). (More specifically, problem (i) is 

principally studied in Section 4.4, problems (ii) and (iii) in Sections 5.2 and 5.3 

respectively and in Section 5.6 we address problem (iv). ) We show then that all 

of these problems (and several others) can be studied within a global framework 
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for the analysis and interpretation of radiocarbon determinations. 

2.5 Discussion 

Given the wide range of problems and the number of papers reviewed here, it 

is not difficult to realise that the area of radiocarbon dating and in particular the 

problem of interpreting radiocarbon determinations, is influenced by several, 

perhaps, contradictor/ schools of thought. However, we can conclude three major 

points that havegenerally been accepted. 

(i) The standard deviations now reported do reflect the uncertainties in the 

radiocarbon dating process (before calibration), although there is always the 

risk of a mistake in the radiocarbon dating process that could generate an 

erroneous determination (outlier). 

(ii) There is generally accepted calibration data, with (possibly) global applica- 

bility (the high-precision calibration data). 

(iii) There is no general methodology for the interpretation of radiocarbon deter- 

minations. 

In relation to point (i), we have assumed throughout good reliability of the 

radiocarbon dating process, considering radiocarbon determinations to be good 

estimates for the radiocarbon age of the samples dated. However, we consider the 

outlier problem to be a crucial element in the analysis and interpretation of 

radiocarbon determinations and this is studied in Chapter 6 where a novel 

approach to the problem is explained. 
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With respect to point (ii), the calibration data we use is the high-precision 

calibration data.. However, there is still some controversy about the process of 

calibration to be used. Several techniques have been proposed but none achieved 

a general acceptance. In Chapter 3 we analyse this problem, developing a novel 

approach for the calibration of radiocarbon determinations. 

In relation to point (iii), the interpretation of radiocarbon determinations is 

an even more controversial field. Several techniques have been proposed but an 

agreed core looks very remote. However, we have stressed the fact that in order 

to achieve a proper interpretation of radiocarbon determinations we need to 

include in the statistical analysis other sorts of information apart from the deter- 

minations themselves. We need to include considerations about the type of dating 

problem we are working with and its relation with the determinations. So far, 

only the techniques outlined in Naylor and Smith (1988), Litton and Leese (1991), 

Buck et al. (1991) and Buck et al. (1992) allow this possibility. It is achieved by 

using a satisfactory calibration procedure and relying on a consistent framework 

for statistical inference (the Bayesian framework). 

We believe that to aim at an ultimate solution to the statistical analysis and 

interpretation of sets of radiocarbon determinations would be an illusion. Instead, 

in this thesis we consider a more skeptical, or rather humble, possibility. What 

we are proposing is, based on the Bayesian method, to build a general framework 

to tackle the most common statistical problems in the interpretation of radiocar- 

bon determinations. The framework represents a possibility -a tested possibility. 
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Chapter 3 

Calibration 

t 

As discussed in Section 1.2, the model currently proposed for the calibration 

of a radiocarbon determination y± a associated with the calendar year 0 (the year 

in which the organic matter in the the object to be dated died) is 

N(y(O), C2), 

where u(O) is the piece-wise linear calibration curve. Given the high-precision 

calibration data (see Section 1.1.2) 

Q rl 9 
(XI : ýOýOlv I t2s (XI 162)b... 

s 
Itn, (Xn : ý4701)9 

we have 4(0) defined to be 

I'M = Xk 
O-tk-I 

+Xk-l( 
tl'- 0 ); 

tk ý> 0> tk- 1, k 
( 

tk- tk-1 

) 

tk- tk-I 

where to =0 and xo = 0. An obvious limitation of the above model is that we are 

neglecting any uncertainty in the calibration data. In other words, we are assum- 

ing that the xt's are not subject to any sampling error and therefore that P(O) is 

known exactly. The rationale used to justify this is that, since they are based on 
2 replicated samples, the variances (ai 's) are small in comparison with the variance 

of an individual radiocarbon determination reported from a laboratory (typical 

values for the ak's are 10 to 20 years, whereas a routine determination has a stan- 

dard deviation of 40 to 80 years). Nevertheless, as radiocarbon techniques 

improve we may be working with high-precision determinations with standard 

deviations of 15 years or less. In such circumstances it may be important to 

2? include the ai s within the calibration process. This problem has not been 
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tackled before within the Bayesian framework and is the subject of this* Chapter. 

3.1 Modelling the calibration curve 

As has been previously pointed out, it is generally accepted by the radiocar- 

bon community that the radiocarbon calibration curve should follow the 'jumps' 

in the calibration data and thus have numerous 'wiggles'. It is considered not to 

be linear nor monotonic nor smooth, but is believed to be continuous. Thus, 

something substantially more complicated than a piece-wise linear fit or a cubic- 

spline may be needed to obtain a reliable modelling approximation. The approach 

we are going to take is to model the calibration curve as a stochastic process. 

Firstly, we denote the calibration curve by r(O) and leave P(O) exclusively for the 

particular case of the piece-wise linear calibration curve, as defined in Equation 

1.3. Secondly, using some basic assumptions we will model r(O) and, using some 

experimentally derived data, we will develop an alternative calibration process. 

From the radiocarbon calibration data we know that Xk: ý6k is a radiocarbon 

determination, and is associated with the calendar year Ik. This means that (as in 

Section 1.2) 

2 
r(tk) I Xkv 6k2 - N(Xk, Crk ). 

2 If we ignore the variances, ai , then we have r(tk) ""ý Xk (as it is the case for 

AWO). Now instead of knowing r(tk) = xk, we think of r(tk) as a random variable 
2 normally distributed with mean Xk and variance ai . The problem is then to 

extend the definition of r(O) for 0# tk that is, for the calendar years between the 

knots. This will be done in the next Section. 
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3.1.1 The process r(O) 

From Equation 3.1 we know the distribution of r(tA, ) given the calibration 

data. We then need to model r(O) between the knots of the calibration data in 

order to extend its definition to all of the calendar scale. Now, the intervals 

between the knots on the calendar scale are about twenty years. To model the 

behaviour of r(O) in such intervals we will utilise information regarding the 

annual changes in the atmospheric 14C/12 C ratio. We make the assumption that 

r(O) depends only on the two nearest knots, that is 

f(r(O) I z) = f(r(O) I Zk? Zk-1); tk -* 
0 

1> tk-1, k=1,2,..., n. (3.2) 

In other words, given the calibration data z, the calibration curve in the interval tk 

to tk-I depends only on (xk, ak2) and (xk-,, akLj). 

Let M(O) be the atmospheric 14C/12 C ratio at year 0 BP. If an object has an 

associated calendar age 0, then using the 'law of radioactive decay' (Equation 

1.1) the 14C/ 12 C ratio, M, in the object at the present time is given by 

M= M(O)exp( - (3.3) 

On the other hand, the radiocarbon age for an object with a current 14C/12 C ratio 

M is 

-rln mo (3.4) 

where MO is a constant known as the modern standard. 

The idea now is to use information we have about the process M(O), the 

atmospheric 14C/12 C ratio through time, to find a model for r(O). Given the cali- 

bration curve r(O), we note that t= r(O). Combining this with Equations 3.3 and 
3.4 we obtain 
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r(0) mo (M("», 
and hence that 

M(O - 1) 
(3.5) 

M(O) 
) 

The interpretation of Equation 3.5 is that r(O- 1) is equal to r(O) minus one 

year minus some 'distortion' represented by the term 

, rln 
M(O-1) ( 

M(O) 
)I 

which is dependent on the relative change of the atmospheric 14C/ 12C ratio from 

year 0 to year 0- 1. Within the radiocarbon literature, a common way to measure 

M(O) is to use the value A14C, measured in 'parts per mil', which is defined (see 

Stuiver and Polach 1977) as 

M(O 
A 14C 

=( 
MO 

)_I ) 
101. 

If we let 

M(O 
A(e) =( 

MO 

)_I )103 

(3.6) 

then, from Equation 3.5, we have 

r(G- 1) = r(O)- I- Tiln(A(O- 1)10-3+ 1) - ln(A(O) 10-3+1)1. 

The annual variation of atmospheric 14C/ 12C ratio has been measured experi- 

mentally in terms of A14C. Jong (1981) and Stuiver and Quay (1981) report that 

this variation has different long, medium and short-term behaviours. Since the 

knots of the calibration data are approximately every twenty years we are only 

interested in the very short-term variation. Damon et. al. (1989) performed 

hyper-fine measurements of such levels and from their analysis we can see that in 
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the very short-term, A(6) varies within the range of ±3 parts per mil. This makes 

the term A(tg)10-3 small and thus we can use the approximation ln(x + 1) - x. 

Hence 

r(o - 1) = r(G)- 1 _, rf, &(O_ 1) _A(O)l 10-3. (3.7) 

Letting 

a(e) = [, &(0_1)_A(O))10-3, (3.8) 

we obtain 

r(O - 1) = r(O) -I - ra(O). (3.9) 

This means that r(O- 1) is equal to r(O) minus one year minus the distortion term 

which now is represented by ra(O). 

We need to make some modelling assumptions about a(O) to continue with 

our analysis. We expect the process a(O) to be influenced by many factors such 

.I as cosmic radiation, sunspots, geomagnetism, etc. and hence its behaviour will be 

complex. However, since the atmospheric 14C/12 C ratio varies around an 'equili- 

brium level' we would expect E[a(O)] = 0. Furthermore, we will assume that 

a(O) is stationary and that Vta(O)] =s2. 

As a first approximation we are going to suppose that a(O) is a Gaussian 

white noise process. That is 

a(O) - N(O, s 

where the a(O)'s are independent. We appreciate that it is quite likely that a(O) 

will have some correlation structure and thus the 'white noise' model for it may 

not be a good choice. Nevertheless, the 'white noise' model will facilitate our 

analysis and will also give us results that can be generalised for more complicated 
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model choices for a(0)2, In the next Section we will study the adequacy of the 

'white noise' model and also consider an alternative model for a(O) with a corre- 

lation structure. 

It is simple to see that given the 'white noise' model for a(O), r(O) will have 

a normal distribution for every 0. Thus we only need now to calculate E[r(O)] 

and V[r(O)] to have a complete specification for r(O). To do this we use the auxi- 

liary process X(O) = r(O) -0 and Equation 3.9 becomes 

X(o - 1) = X(O) -, ra(o). 

From Equation 3.2 we see that, given the calibration data z, X(O) is equal to 
MO) I Zk1 Zk-1) for tk >0>, tk-j. This means that we only need to know the 

distribution for X(O) given Zk and zk-, to have a complete definition for the distri- 

bution of X(O) (and thus for r(O)). 

Given Zk it is easy to see from the above formula that 

X(tk-0) 
-2 X(tk)-, v[a(tk- 1)+a(tk- 2) +... + a(tk- 0) 1 

for integer 0>0. Now, letting il(i - 1) =- ra(tk - i), we have 

X(tk-0) "z X(tk)+17(0)+17(1)+ 
---+17(0-1)- 

(Note that q(i) has mean 0 and standard deviation 4V--[-t7(i)] = s-r calendar years. ) 

Letting 

r(0) = J7(O) + TI(I )+--. + n([ 01 - 1) 

we have 

X(tk - 0) ý-- X(tk) +Y(O) 

where y(O) is defined to be 0. Notice from Equation 3.1 that X(tk) ý 
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N(xk - tk, qk2). Assuming that X(tk) and y(6) are independent then we on'ly need to 

calculate the distribution of 7(0) to know the distribution Of X(tk-0)- We will do 

this by identifying y(O) with a 'Wiener process' (if we rescale the tl(i)'s to have 

variance 1). That is, letting I= tk-tk-It we see from Billingsley (1968, p. 62-65) 
1 

that ; Wy(O) is the sum of random variables that converges in distribution to the 

Wiener process W(t), with t=0, when 1, the number of elements in the series, is 

large. 

Given now both Zk and Zk-I we have X(tk-1) -': X(tk-1) and thus we should 

have y(l) ý'- X(tk-l)-X(tk). From Billingsley (1968, p. 62-65) we see that 

'ý- 
IY(0)- 

(X(tk-1)-X(tk»( 0)1 

771 1 
is the sum of random variables that converges in distribution to the 'Brownian 

Bridge' WO(t) with t=0. Thus, conditional upon both Zk and zk- 11 X(tk - 0) is 
I 

approximately equal in distribution to 

X(tk) + IX(tk-1)-X(tk) 
- 1(01)+wo(01 ) STT1- 

Since E WO 0, it is simple to see that (using Equation 3.1) 
1 (0)] 

EIX(tk-O)l 1 (Xk-tk)+(O)(Xk-l-tk-l)g 

and, since EIX(tk-O)l = E[r(tk-0)1-(tk-O)i the above expression implies that 

E[ r(O) I Zk 1 Zk 
-I 

Xk 
O-tk-I 

+ Xk 
-I( 

tk-O 
= Ao); 

( 

tk-tk-1 

) 

tk-lk-I 

) 

l, k ýý' 0> tk-1. k=1,2,.... 

where to =0 and xo = 0. 

In other words, the expectation of the calibration curve is the piece-wise 

linear calibration curve #(0), as defined in Equation 1.3. This was to be 
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anticipated since E[r(tk) I zk, zk-I xk = li(tk) and thus the above expectation 

is simply the linear interpolation of this property between the knots. Since r(O) is 

normally distributed we only need now to calculate V[r(O)] to have a complete 

specification for r(O). This is not difficult to do since 

V[wo(, 
)] 

and from this we see that 

+ 
(Sr)2 0)2ai 2+(0)2ai VIX(tk - 0) 1 

The above formula can then be rearranged to give the following expression 

I 
((I _ tg)2ak2 +192 ý_ 

I+ 
ST 

2 
VIX(tk-19)] ý-- Uk 

if -1 
for 0<0<, 1, since VIX(tk)] 6, k2 (see Equation 3.1). Remembering that 

V[X(tk-t9)] = V[r(tk-0)] and that I= tk-tk-1 we have 

(Sr)2(O O-tk-1 
2+( tk-0 tk- 1 )(tk - 0) 

V[ r(0) 
tk - tk- 1 tk-tk-1 

) 

Uký- 1+ (tk - tk- 1)9 

tk ý> 0 tk 
- 1, kn 

where to =0 and co = 0. 

(3.12) 

It is important at this point to stop and summarise what we have done so far. 

Given Equation 3.1 and Equation 3.2, and the assumption that a(O) is a Gaussian 

white noise process, we have extended the definition of r(O) to the entire calendar 

scale. That is, we now know that 

r(0) - N(p(O), a2 (0» (3.13) 

where a2(0) = V[r(O)l and u(O) is the piece-wise linear calibration curve. This 

means that r(O) is now modelled as a calibration curve that varies around p(O) 

(the piece-wise linear calibration curve) with variance a 2(0). Notice that at each 
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knot, tki the variance corresponds to the variance reported in the high-precision 

calibration data for that knot, 2. Away from the knots, er2(0) is a piece-wise ai 

quadratic function of 0 that depends on the variances at the nearest knots, and on 

s, the variance of the white noise process a(O). Note that a 2(t9) increases as we 

move away from one knot and decreases when approaching the next (see Figure 

3.2, in the next Section). This is to be expected since we have only observed r(O) 

at the knots. Consequently, the variance must be smaller where we have observed 

r(O) than where we have not. 

Later in Section 3.2 we develop a new calibration method for radiocarbon 

determinations based upon the process r(O). This new calibration method will 

consider the variances N in the high-precision calibration data, now included ai 

through the variance of r(O), that were neglected in the calibration method used in 

Chapter 1. Note that to do so we need to estimate s. In the next Section this will 

be carried out using some published data. 

3.1.2 Estimation of s 

The atmospheric 14C/ 12 C ratio is influenced by several factors and consti- 

tutes a very complex process which can vary greatly over a period of hundred 

years. However, within the range of one to twenty years, the atmospheric 
14C/12 C ratio is reasonable stable (Stuiver and Quay 1981) and has been estimated 

by measuring the 14C/ 12 C ratio in tree-rings. This is done in terms of A(O) (see 

Equation 3.6) and from that we calculate a(O) using Equation 3.8. Now, only 

short-lived trees have rings wide enough and so suitable for a radiocarbon 

analysis. Therefore it is only possible to obtain values of a(O) for the last hun- 

dred years. In fact, at the present time it is difficult to detect the natural varia- 

tions of atmospheric 14C/12 C ratio' because of the radioactive contamination aris- 

ing from nuclear testing that has occurred since 1950. Thus, measurements of 



-88- 

a(O) are possibly available only for the period 1900 to 1950. Measurements for 

A(O), the atmospheric 14C/12 C ratio in year 0, are given by Damon et. al. (1989), 

who made such measurements on an annual basis for the period 20-0 BP (1930-50 

AD). A plot showing the values of a(O) can be seen in Figure 3.1. 

0.004 

0.002 

a(O) 

-0.002 

-0.004 

20 15 10 50 
0 calendar years BP 

Figure 3.1 
Plot of values of a(O) taken from Damon et. al. (1989), 

for the units of a(O) see Equations 3.6 and 3.8. 
(0 BP is equivalent to 1950 AD. ) 

The sample standard deviation of a(O) is 0.00235. If we use this as an 

approximation for the standard deviation, s, of a(O) we have 

a(O) - N(O, (0.00235)2). 

Since -r = 8033 (the radiocarbon mean life) we have sr = 19. Using this we can 

calculate a 2(0) in Equation 3.13, which is the estimated variance for the 
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calibration curve at any point. 

We know that C2 (tk) 
-": ak2, the variance of the calibration curve at a knot is 

the variance reported in the high-precision data for that knot. Between knots, this 

variance will increase and decrease to match the variance for the next knot, fol- 

lowing a 'Brownian Bridge like' process. To illustrate this phenomenon we 

present in Figure 3.2 a section of the piece-wise linear calibration curve U(O) 

(which is the expectation of r(O)) and the curves #(O)+a(O) and y(O)-c(O). The 

process then varies around y(O) with standard deviation cr(O). 

3100-- 

3050 

3000- 
radiocarbon 

years bp 
2950- 

2900- 

2850-- 
3250 

Figure 3.2 
Section of the piece-wise linear calibration curve y(O) and U(O) ± a(O) (sr = 19). 

The calibration curve r(O) varies around U(O) with variance CT'(0). 

From Figure 3.2 we notice that the standard deviation a(6) seems large in 

comparison to the variances at the knots. This may be a consequence of two fac- 

tors. These are 

3200 3150 3100 3050 
0 calendar years BP 
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a(O) cannot be represented by a 'white noise' process 

and 

(ii) overestimating s. 

Both (i) and (ii) seem possible. As we only have very few measurements for 

a(9), then it is likely that we could be overestimating s, if we use an estimate for 

the sample variance. Of even bigger concern is the independence of the a(O)'s. 

To study this we plotted the first values of the observed autocorrelation function 

pk in-Figure 3.3. 

I- 

Correlation 
0.5- 

Pk 
-0.5- 

-1 11111 
01234 

Lag k 

Figure 3.3 
First five values of the sample autocorrelation 

function for the process a(6). 

From Figure 3.3 we see that some correlation structure in a(O) seems possi- 

ble. Moreover recalling the definition of a(O) we see that 

a(o) = 
[, &(0) -I &(O_ 1)) 10-3 

9 

which is the first difference of the annual atmospheric 14C/12 C ratio A(O). Indeed, 

we might expect the annual atmospheric 14C/12 C ratios to be correlated. In par- 

ticular we expect that A(O) may be dependent upon the atmospheric 14C/12 C ratios 

of the previous few years, and thus an AR(p) model for A(O) seems reasonable. 

That is 
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p 
A(O) OjA(O-j)+z(O), 

j=l 

where the Oj's are constants and z(O) is Gaussian white noise. Taking this as a 

model for A(O), it is easy to see that a(O) will be an ARMA(p, 2) model. It will 

be very difficult to obtain reliable estimates for the parameters Oj's since we have 

very little data for A(O). Fortunately, as we will see, for the purposes of estimat- 

ing the variance of the calibration curve r(O), this will not be necessary. 

Given the above considerations it seems reasonable to suppose that a(O) is an 

ARMA(p, m) process. Assuming a(O) to be stationary we see that (Box and Jen- 

kins 1976, p. 79) 

2 Pk *-- CO. 
k=l 

That is, a(O) has a correlation structure that damps to zero as the 'lag' k 

increases. 

Using this it is easy to see from Billingsley (1968, p. 174) that 

V[WO( 
(I- )(I 

+2p*), 

where p' Pk (see Equation 3.11). Here the term p* accounts for the corre- 
k=1 

lation structure in a(O). Hence using Equation 3.12 we have 

er 
2( 0) = 

0- tk-1 
2 

erk2 + 
tk -02 

Uký- 1+ 
't 

2(0 
- lk 

-1 
Xtk - 0) 

' 

( 

tk - tk 
-1)( 

tk-tk-1 

) 

(tk - tk 
-1) 

tk >0> tk 
- 1, k=1,2, - .., n. 

where to = 0, ao =0 and A= s-rý-l+-Fp-'7. 

(3.14) 

It is difficult to estimate p because of the small amount of data available for 

a(O). In fact, none of the pk's can be estimated with any reasonable reliability. 

However, since we expect the atmospheric 14C/12 C ratios to depend only on the 
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previous few years, it is reasonable to expect that only the first one or two terms 

in Pk will be significant. The first few sample autocorrelations are -0.27, 
k=1 

-0.08, -0.10,0.04 and thus we would expect p* = -0.4. This will give us 

;L= svý17+27 = 8.5, resulting in a smaller value for a2(0) between the knots. 

We present in Figure 3.4 a section (same as in Figure 3.2) of the piece-wise linear 

calibration curve u(O) and the curves u(O)+cr(O) and 4(0)-C(O) based on the 

latest model for a(O). 

3100 

3050 

3000 

radiocarbon 
years bp 

2950 

2900 

2850 

Figure 3.4 
Section of the piece-wise linear calibration curve #(0) and 4(0) ± cr(O) 

wi th srý17+ 
ip 5' 

= 8.5. 
The calibration curve r(O) varies around U(O) with variance a 2(0). 

From the above discussion we observe that A in Equation 3.14 is in the range 

of 8.5 to 19 (radiocarbon years) and we expect 19 to be an overestimate. In the 

next Section we develop a new calibration procedure for radiocarbon determina- 

tions that uses the variance for the calibration curve a2(0). Then in Section 3.3 

we compare the resulting posterior distributions for the calendar dates of some 

3250 3200 3150 3100 3050 
0 calendar years BP 
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radiocarbon determinations using this new calibration method and the one 

presented in Chapter 1. We prefer to be 'pessimistic' and will use the estimate of 

A= 19 to perform the calculations. Even so, the differences between the results 

obtained using the calibration method given here and the one presented in Chapter 

1 are, apart from some exceptions, negligible. 

3.2 Calibration 

Within the Bayesian framework there is an established method for calibration 

problems when we have random observations as with the Pearson and Stuiver data 

(or even with random knots, which is not our case). A standard reference for this 

subject is Aitchison and Dunsmore (1975, chapter 10). Suppose we want now to 

calibrate a new radiocarbon determination y±a. Given its 'true' radiocarbon age 

t, we have 

t, t3.2 - N(t, a2). 

Again for simplicity we avoid explicitly conditioning on a2 and simply write 

yIt. Let 0 be the associated calendar year of determination y±cr. It is easy to 

see from Section 3.1 that given a particular calendar year 0, its corresponding 

radiocarbon age is equal to r(O), which is normally distributed with mean /1(0) and 

variance a 2(0). Therefore we have 

tI tg _ N(gtq), C2(19)). 

The process of calibration consists of finding fty 10) from the distributions 

of f(y I t, 0) and f(t 10), and then using fty 10) for our likelihood (the 'cali- 

brated likelihood'). It is easy to see that 

f(Y 10) =f AY 1 t, 0)f(t 1 0)dt. 
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Firstly, to evaluate the integral, we note that given both t and 69, y only depends 

on t (the radiocarbon age), and this means that fty I t, 0) = fty I t). Secondly, 

we note that both functions in the integral represent normal densities, and using a 

standard result, we have 

N(li(O), a2(o) + a2). 

Thus our likelihood is again normal as in Section 1.2, but now corrected with 

the variance a2(0), reflecting the errors in the calibration data. Using a vague 

prior distribution for 0, we have that the posterior distribution for 0 given y is 

a2(o) +2 
exp f(o I Y) - 2(o) + Cr2 7c a12a 

To facilitate the notation we let 0)2(g) = a2(g) + C2 and thus y19- 

N(ß(0), 0)2 (0» and 

f(O I Y) -1 exp 
I-1( 

0)2(o) 
(3.15) 

0)(0) 2 

In subsequent Chapters we will work with sets, or groups of sets, of radiocarbon 

determinations represented byyj±cj's oryi, j±ai, j's. We will use the functions 

22 
-)+cý and o)ý-(Ojj) = a2(0i, j)+ai2 O)i (0j) =a (Oj IWj, (3.16) 

to denote the overall variances. This notation should cause no confusion. 

3.3 Examples 

Following the considerations of Section 3.1.2, we calculate C2(0) and the 

resulting f(O I y) from Equation 3.15 using numerical integration. Examples of 

these distributions can be found in Figures 3.5 and 3.6. These arise from the 

same determinations as for the distributions in Figures 1.3 and 1.4 (which were 
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Figure 3.5 
Histograms showing the posterior distribution for 

radiocarbon determination 2900±80, considering the errors (above) 

and not considering the errors in the calibration data (below). 

0.06- 

0.04- 

0.02- 

0- 9.. L 
0.06 

0.04- . ..... 

0.02- 

5600 5400 5200 5000 
Calendar years BP 

Figure 3.6 
Histograms showing the posterior distribution for 

radiocarbon determination 4700±60, considering the effors (above) 

and not considering the errors in the calibration data (below). 

calculated with the conventional caHbration procedure given in Chapter 1). 

Comparing the distributions in Figure 3.5 and in Figure 3.6 we see that there 

is little difference between using the conventional calibration technique presented 

in Section 1.2 and the alternative technique presented here. From the point of 
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view of archaeological interpretation, there is virtually no difference. The stan- 

dard deviations for the radiocarbon determinations in this case are 80 and 60 

(whereas the standard deviations for the calibration data, Uk's, for this section of 

the calendar scale are between 15 to 20 years). 

0.12- 
0.09- 
0.06- 
0.03- 

0 0.12 
0.09- 
0.06- 
0.03- 

0 
5600 5400 5200 5000 

Calendar years BP 

Figure 3.7 
Histogram showing posterior distribution for 

radiocarbon determination 4700 ± 25, not considering the errors (above) 

and considering the errors in the calibration data (below). 

If we now reduce the standard deviation we see that differences start to 

appear. In Figure 3.7 we have a comparison of the distributions with standard 

deviation of 25, and in Figures 3.8 and 3.9 for standard deviations of 15 and 5 

respectively. These standard deviations correspond to high-precision radiocarbon 

determinations, or alternatively an averaged determination derived from several 

4replications'. 

From Figures 3.5 to 3.9 we note that for a standard deviation of 5 there are 

substantial differences in the resulting posterior distributions depending on the 

calibration technique used. Such differences become less evident as we have 

higher standard deviations, and even with a standard deviation as low as 25 years, 

the difference could possibly be neglected. In general, any difference will depend 
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5600 5400 5200 5000 
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Figure 3.8 
Histogram showing posterior distribution for 

radiocarbon determination 4700 ± 15, not considering the errors (above) 

and considering the errors in the calibration data (below). 
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Figure 3.9 
Histogram showing posterior distribution for 

radiocarbon determination 4700 ± 5, not considering the errors (above) 

and considering the errors in the calibration data (below). 

upon the section of the calibration curve we are working with. However, it seems 

that only if we are dealing with very low standard deviations (of 25 to 15 years or 

less) we will find a difference which could be of archaeological significance. In 

such circumstances, the errors in the calibration curve should be incorporated into 

the calibration method employed. Otherwise we could be working with artificially 



-98- 

precise calibrated distributions. 

Given the complicated modelling and the simulation techniques to be used in 

Chapters 4,5,6 and 7, a fast and simple calibration process will be much appreci- 

ated. The calibration process explained here does involve several more calcula- 

tions than the conventional one given in Chapter I and, in some situations, may 

represent an important extra computational cost. For practical reasons, in some of 

the examples presented in the next Chapters we have not used the calibration pro- 

cess developed in this Chapter since the standard deviations of the samples are 

larger than 30 or 40 years. However, in the majority of the examples we have 

used our novel calibration process. 

3.4 Comparison with other estimates for the variance in r(O) 

In recent developments concerning the calibration of radiocarbon determina- 

tions, some authors have proposed other estimates for the variance in the calibra- 

tion curve (see Section 2.3.5). These estimates usually arise from practical con- 

siderations and/or intuitive ideas. From these we identify three types of estimates. 

a02(0) = 0. That is, the variance in the calibration curve is considered small 
in relation to the variance of a determination to be calibrated and thus may 

be ignored (we used this estimate in Chapter I and is used by Pazdur and 

MichczynEka 1989, Robinson 1986 and van der Plicht 1990, among others, in 

their calibration methods) . 

(ii) Another estimate is a, 2(0) =k2, where k= 10 or 20, depending on where on 

the calendar scale we are. This estimate is simply based on the common 
21 

values for the ai s which are precisely in the range of 102 to 202 (Leese 

1988 and Weninger 1986 propose this estimate in their calibration methods). 
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(iii) An estimate for the standard deviation (and thus, by squaring, for the vari- 

ance) in the calibration curve proposed by Stuiver and Reimer (1986) is the 

linear- interpolation of the standard deviations ak's between consecutive 

knots. That is 

up(o) = 
O-lk-l 

ak+ 
tk-o )ak-1; 

tk ýý' 0 >- tk-,, k 
( 

tk- tk-I 

)( 

tk- tk-I 

To these we must add our estimate a2(0) that can be interpreted as a qua- 

dratic interpolation of the variances 2 's (see Equation 3.14). To compare these 6i 

estimates we plot all of them in Figure 3.10 in a particular section of the calendar 

scale. 

402 

yearS2 302 
202 
102 

k= 20 
k= 10 

Figure 3.10 

Plot comparing various estimates for the variance in the calibration curve, 
in a particular section of the calendar scale. 

As seen in Figure 3.10, the different estimates proposed for the variance in 

the calibration curve are small in comparison to our estimate of a 2(0) (although 

we must remember that this represents a 'pessimistic' estimate for the variance in 

r(O)). Evidently, this wil I have the consequence that the calibration method 

developed in this Chapter will produce distributions with the higher spread (vari- 

222 
ance) followed by those using qý(O) or ai(O) and those using ad(O) . To 

3400 3300 3200 3100 3000 
0 calendar years BP 
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Figure 3.11 
Histograms showing posterior distributions for radiocarbon determination 3500±20, 

(a) using our method developed in this Chapter (using u2(6)), 
(b) using a constant variance in the calibration curve (a, 2(o) = 202 

(c) using Stuiver and Reimer's (1986) method (using 2 (0)) and 
(d) ignoring the variance in the calibration curve. 

illustrate this in Figure 3.11 we present an example of the resulting distributions 

when we calibrate the determination 3500±20 using a2(0), a, 02, a2(0) 2(0) =2P 

and q02(0). Here we use a low standard deviation (20) to appreciate the differ- 

ences in the calibration methods. The 95% HPD regions for these three distribu- 

tions are 3870 to 3680 BP, 3840 to 3710 BP, 3830 to 3710 BP and 3830 to 3710 

BP, respectively. In this case we see a difference of 30 to 40 years on either side 

of the HPD regions, between using our calibration method and using C, 2(0) = 202, 

2 
ai (0) or a02(0) (with the latter three methods give effectively the same results). 
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In the preyious Section we haye compared the calibration methods using 

a 2(0) and u02(0) (histograms (a) and (d) in Figure 3.11). From that comparison 

we conclude that, only if we are working with low standard errors (25 to 20 years 

or less) the calibration methods developed here (using a2(0)) and the calibration 

method that ignores the variances ak2's (using a02(0)) will produce different distri- 

butions, from the point of view of archaeological interpretation. Since our cali- 

bration method gives the maximum modification from the resulting distributions 

where the ak2 vs are ignored, therefore all methods (described above) should pro- 

duce equivalent distributions if we are working with standard deviations of 30 to 

40 years or more. Again we stress the fact that if we are working with high- 

precision determinations, the variance in the calibration curve should be con- 

sidered in the calibration process to be used. 
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Chapter 4 

Statistical framework 

4.1 Introduction 

In this Chapter we develop a general framework within which we can tackle 

the statistical problems associated with the interpretation of radiocarbon determi- 

nations. Then in Chapter 5 the archaeological dating problems identified in 

Chapter 2 will be re-examined in the light of this framework. This will be carried 

out by considering a series of examples covering a wide variety of problems. 

In the earlier Chapters we focused our attention on the radiocarbon calibra- 

tion technique and some statistical problems related to it. Specifically, we studied 

the calibration problem and developed our own calibration method in Chapter 3. 

We believe that the interpretation of radiocarbon determinations involves a wider 

range of problems than those exclusively related to the radiocarbon dating tech- 

nique. A radiocarbon determination commonly represents only a part of a com- 

plex dating problem in which other (relative or absolute) dating techniques are 

also involved. In Chapter 1 we have mentioned that the principal aim of radiocar- 

bon dating a series of samples is not just to date the samples themselves but to 

date the context from which they arise. That is, in most situations, there is an 

underlying archaeological dating problem that ought to be addressed when inter- 

preting a series of radiocarbon determinations. 

We believe that the correct interpretation of radiocarbon determinations and 

thus, the development of sound statistical techniques for the analysis of radiocar- 

bon determinations, can only be achieved if viewed as part of the problem of 

archaeological dating in general. This will underpin our approach to developing 
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our statistical framework. In the next Section we will shift our attention to the 

archaeological dating problem in general and try to understand the usage of 

radiocarbon dating from that perspective. This will give us a general outlook on 

the problem and provide the basis for the framework that will be developed in 

Section 4.3. 

4.2 Dating in archaeology 

As we have explained in Chapter 2 and elsewhere in the thesis, radiocarbon 

dating is a technique for dating objects (as are most science-based dating tech- 

niques). Archaeological dating is, however, a much wider problem than simply 

the dating of individual objects. Only rarely do dates of individual objects allow 

archaeologists to answer directly the chronological questions they pose. 

Objects logical 
Archaeological 

dated link 
dating 

problem 

Figure 4.1 
A process of logic is needed to link the objects dated 

with the archaeological dating problem under study. 
Without such linkage, the dates for the objects have 

only a limited (or null) usage for archaeological dating. 

Regardless of what scientific techniques are used to obtain the dates, there is 

in general a great deal of careful thought required in order to link the dates of the 

objects to the archaeological dating problem under study. A Process of logic is 

needed to link the dates of the objects submitted for (radiocarbon) dating with the 

corresponding archaeological context or phenomena, see Figure 4.1. This is a 

crucial factor to be considered in archaeological dating since, without such 
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linkage, the dates for the objects are of only limited use to archaeologists. 

As a further complication, uncertainties can appear at each and every step of 

the archaeological dating process. There are uncertainties in the radiocarbon dat- 

ing process, in the chronological relationships between contexts and in the evalua- 

tion of the relationships between the dated objects and the archaeological contexts 

or phenomena under study. It is here that reliable statistical techniques have a 

crucial r6le in archaeological dating, where it is necessary to measure those uncer- 

tainties and combine the different available sources of evidence in a coherent way. 

As a result of this, we see that the problem of dating in archaeology cannot be 

viewed simply as the application of a given tool or technique. On the contrary, it 

must be viewed as a combination of several methods and techniques and as an 

interdisciplinary and cooperative field of work for archaeologists, physicists, 

chemists, historians and statisticians (among others). 

In Chapter 2 we have examined some archaeological dating problems that 

illustrate the problems outlined above. In Section 2.4.5 we have reviewed the 

problem of fixing a floating chronology using radiocarbon dating. Weninger 

(1986) comments that the principal difficulty is that, 

"Cultural phenomena known by Comparative Stratigraphy to be sequential appear 
to overlap on the 14C scale. " 

A chronological sequence known a priori by stratigraphy, appears not to be 

in accordance with the radiocarbon determinations available. Radiocarbon deter- 

minations, viewed in an isolated way, have little meaning within the correspond- 

ing archaeological dating problem at hand. Only when, through a process of cali- 

bration, the relationships between the radiocarbon determinations (and thus 

between the objects radiocarbon dated) and the stratigraphic sequence is 
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understood and properly modelled, can we use the determinations to date the chro- 

nology. (We return to consider this problem in Section 5.3. ) 

As another example we mentioned the archaeological dating problem exam- 

ined by Helskog and Schweder (1989) (see Section 2.4.7). In this case the prob- 

lem was to 'estimate the number of contemporaneous houses at any given time t' 

from a site in Norway. A detailed model was used to include in the statistical 

analysis the relationships between the objects radiocarbon dated and the occupa- 

tion and longevity of the houses. Without suchIdetailed model, the number of 
'I, 

contemporaneous houses cannot be inferred from the radiocarbon determinations. 

In order to avoid the semantic difficulties of using terms like archaeological 

4contexts', 'phases', 'events', we will use the general term 'archaeological dating 

phenomena' or simply 'phenomena'. The actual definition of such phenomena 

will depend on the particular problem under study. The framework to be con- 

structed in the next Section is only of use when such archaeological dating 

phenomena are properly defined and their relationship with the dated objects is 

well understood. It is intended that the framework will provide, 

(i) a modelling approach to the calibration of radiocarbon determinations, 

an approach to the statistical modelling of the archaeological phenomena 

under study and to the statistical modelling of the relationships between the 

phenomena and the objects dated, 

an interpretation of the usage of probability and statistical models within the 

context of archaeological dating 

and 
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(iv) a series of techniques for the implementation of the Bayesian paradigm that 

provide us with a methodology that consistently combines (i) and (ii), to 

obtain results coherent in the light of (iii). 

4.3 The statistical framework 

As we stated above, we want to develop a general framework within which 

we can tackle a wide variety of statistical problems arising in the interpretation of 

radiocarbon determinations. We will proceed as follows. In the next Section we 

present a modelling approach to develop the models needed for the statistical 

analysis. We do this in the light of the archaeological dating problem discussed 

above. We then identify the posterior distributions to be calculated and give an 

interpretation of probability within this context. Later we present a series of tech- 

niques to calculate the posterior distributions needed and, in Section 4.3.5, present 

an example to illustrate how this framework may be applied. Further illustrative 

examples will be presented in Chapter 5. 

4.3.1 Modelling approach 

Now we try to clarify the above ideas and express them in terms of proba- 

bilistic modelling. Suppose that we have a set of radiocarbon determinations 

YI :ý 61 2 Y2 : ý'72 9 ... t y.. ±cr,, and suppose that, given their associated calendar years 

01,02,... '0. (ie. Oj represents the calendar year in which the organic material 

contained in sample j died), the determinations are independent. Following the 

calibration process presented in Chapter 3 we have that 

yj I Oj - N(, u(Oj), wj2(0j)), 

0)2(0j) = Cr2+a2(O where jj j) (see Equation 3.14) and, since given the Oj's the 
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radiocarbon determinations are independent, we have 

Ay 10) = Il f(yj 1 Oi) 
j=I 

where y -= (Y 11 Y21 ... 9y.. ) and 0= (01,02,..., 0 .. ). 

The approach we propose for our modelling is to'suppose that the prior dis- 

tribution of each Oj is in a parametric form given by a vector of parameters 

V/ = (VI, y/2,..., iyj. The y1i's will then be used to model the characteristics of 

the archaeological phenomena under study. The Vfj's can represent a wide variety 

of aspects depending on the phenomena to hand. They could represent, for exam- 

ple, boundaries of some archaeological phases, dates in the past, the elapsed time 

between particular events, etc. We will then represent the known relationships 

between the Oj's and the phenomena by stating the conditional prior distribution 

f(O I vf). 

With the above modelling approach we attempt to overcome one of the most 

common sources of confusion in the interpretation of radiocarbon determinations. 

In Chapters I and 2 we have seen that a process of calibration must be taken into 

account before the radiocarbon determinations can be of use for archaeological 

dating. Without calibration the relationship between the radiocarbon determina- 

tions and the phenomena appears to be unclear, perhaps ambiguous or even con- 

tradictory. On the other hand, there is archaeological information about the rela- 

tionship between the samples radiocarbon dated and the archaeological 

phenomena. This information can normally be used to elicit the relationship 

between the associated calendar years Oj's (of the samples) and the phenomena. 

Thus, only through a process of calibration given by the model fty 10), is the 

relationship between the radiocarbon determinations and the archaeological 

phenomena established, when the distribution fto I Vf) is stated. 
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Apart from the above modelling we may have further prior information about 

the phenomena such as a maximum time-span for a phase or an absolute position 

in the calendar scale for an event, which may be translated into a prior distribu- 

tion for V. Denote this prior distribution by f(yf). 

Given the above modelling approach, the problem of archaeological dating is 

that of finding the posterior distribution of V/ namely f(yr I y) and, if of any 

relevance, the posterior distribution of 0 namely f(O I y). These two distributions 

are obtained, using Bayes' theorem, from the joint posterior distribution of the 

two parameters. That is 

f(0, vf 1 y) - f(y 10, Yf)f(0, vf) 

(see Section 4.3.4 for a more detailed discussion). 

Since the archaeological phenomena under study are represented by yr, the 

posterior distribution f(yf I y) will then represent the current knowledge about the 

position in the calendar scale of the phenomena. This is a result of 

the basic modelling assumptions (calibration) involved in radiocarbon dating 

represented by the model f(y 10), 

the relationship between the associated calendar years (and thus, of the 

radiocarbon determinations) and the archaeological phenomena under study, 

represented by the distribution f(O I Vr), 

(iii) the relevant prior information available about the archaeological phenomena 

represented by the prior distribution f(VI) 

and 
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(iv) the consistent combination of (i), (ii) and (iii) given by the Bayesian frame- 

work. 

To clarify and simplify the modelling process presented here, we find it use- 

ful to represent dependencies (hierarchies) of parameters using a graphical form. 

In Figure 4.2 we find the 'hierarchy diagram' of our modelling approach 

explained above. 

Figure 4.2 
Hierarchy diagram of the modelling approach 

for our framework. 

The diagram in Figure 4.2 tells us that the full conditional distribution of a 

parameter (or vector of parameters) depends only on the parameters haying nodes 

directly linked to that parameter's node. That is, the full conditional distribution 

of Vf, f(V I y, 0), is actually equal to f(V 10) since the corresponding node for V 

is not linked to the corresponding node for y. 

Our modelling approach to the archaeological dating problem is illustrated in 

the above diagram. The relationship the radiocarbon determinations maintain with 

the archaeological phenomena under study is stated only through the associated 

01 calendar years ý s. Thus, only the distributions fty 10) and f(O I Vr) are part of 

our model. The unclear a priori relationship between y and Vf is of no concern to 

us. A posteriori this relationship is clarified, and archaeological dating is 

achieved, when Bayes' theorem is applied to calculate f(Vf I y). This has a direct 

interpretation within the general archaeological dating problem, in which a pro- 

cess of logic is needed to link the objects radiocarbon dated with the phenomena 
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before archaeological dating can be achieved (see Figure 4.1). Such logical link- 

age will be introduced in our modelling through the specification of f(O I yf). 

Besides telling us the corresponding dependencies, hierarchy diagrams give 

us a quick and clear means of viewing our model. At this stage the advantages of 

using such 'hierarchy diagrams' do not seem obvious since, perhaps, the model- 

ling process and dependencies were already clear. Nevertheless, as our models 

increase in complexity and a more detailed description of the relationships 

between the parameters is needed, we believe that hierarchy diagrams will prove 

their usefulness and benefit our understanding. 

4.3.2 Interpretation of probability within the dating problem 

From the above modelling approach we see that Oj is taken to represent 'the 

calendar date at which the organic material contained in sample j died'. The par- 

ticular definition of yr depends on the archaeological dating phenomena under 

study, but in general the yfi's are taken to represent well defined dates or lengths 

of time (in the calendar scale) that are part of the phenomena. After having 

defined both 0 and V/ we continue to build our model by defining the prior distri- 

butions f(O I yi) and f(VI). Using Bayes' theorem we then calculate f(yf I y) and 

f(O I y) and, based on those probability distributions, we derive our conclusions. 

But, what is the interpretation for the (prior or posterior) distributions of 0 and 

yr? Or, in general, 

What does the probability distribution for a calendar date in the past 

mean? 

For certain definitions of probability the answer to the above question may 

seem difficult. It might even seem that the idea of having a probability 
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distribution for a calendar date in the past is absurd. Nothing like that happens if 

we adopt a subjective definition of probability, as is the case here since we are 

working within the Bayesian framework. The interpretation of probability within 

the dating problem is quite straightforward using a subjectivist approach, in which 

probability is taken to represent degrees of knowledge or belief about uncertain- 

ties (see DeGroot 1970, Berger 1985, de Finetti 1974). Our interpretation is as 

follows. 

Even though we consider each Oj to be a random variable, we do not con- 

sider the calendar year Oj to be intrinsically random in any sense, but rather we 

consider the probability distribution of Oj to represent the knowledge we have 

about this calendar date in the light of present knowledge. Then the radiocarbon 

determination yj improves our (prior) knowledge about Oj by means of computing 

the distribution of Oj given yj via Bayes' theorem. A similar interpretation should 

apply to V/ depending on the specific archaeological dating phenomena under 

study. Therefore, within this framework, the probability distribution for a param- 

eter representing a calendar date in the past is a measure of the knowledge we 

have about such a date. 

In the trivial case, there may be dates known with complete precision and 

thus known with probability 1. For example, I know with probability I that 

World War II ended in 1945 AD. In more realistic cases of archaeological dating, 

we may have a complete probability distribution representing a calendar year in 

the past. For example, a priori we may know that the organic material contained 

in a given object died at any time 0 before the arrival of Columbus in the Ameri- 

can continent and after the 11 th Century AD. Since we have no further informa- 

tion about the position of 0 within this period it seems then reasonable to 

represent such prior knowledge about 0 with an uniform distribution from 450 

(1500 AD) to 950 BP (1000 AD). Suppose that we then submit the object for 
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radiocarbon dating and we receive the determination 700±60 bp. After that, 

using the calibration procedure explained in Section 1.2, we calculate the 

corresponding posterior distribution for 0 (see Figure 4.3). 

0.015 

0 

Figure 4.3 
Prior distribution for 0, uniform in 450,950 BP 

and the corresponding posterior distribution 

given determination 700 ± 60. 

Our knowledge about 0 has been modified and improved in the sense that we 

now, a posteriori, know with probability near to 1 that 0 should belong to the 

period of time 3W to 540 BP. Furthermore, we know that the shortest period in 

the calendar scale with probability 0.95 where 0 should be is 740 to 550 BP (that 

is, 1210 to 1400 AD). (In this artificial example we used the calendar year 670 

BP, ie. 1280 AD, to 'create' the 'determination' 700±60, noticing that 

#(670) = 700. ) 

4.3.3 Consistency 

Several authors have discussed the 'consistency' of the Bayesian framework 

(Jeffreys 1961, de Finetti 1974, DeGroot 1970, Berger 1985) 
. Consistency in this 

context means non self-contradictory. The Bayesian framework works within the 

axioms of probability, which are known to be consistent. In a given statistical 

problem, provided we can represent our knowledge in terms of probability 

950 850 750 650 550 450 
BP 
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distributions, we will be consistent. 

In the last Section we discussed that, within the archaeological dating prob- 

lem, there are uncertainties about the position in time of some specific archaeo- 

logical phenomena. DeGroot (1970) proved (chapter 6), under mild conditions, 

that if our 'uncertainties' follow some basic and simple rules of 'rational 

behaviour', then there exists a probability distribution to describe those 'uncer- 

tainties'. In our context this implies that, if our uncertain knowledge about the 

position in time of the archaeological phenomena follows some basic rules of 

rationale, we must be able to represent such knowledge with a probability distri- 

CL bution. Suchl representation will then be consistent since the axioms of probabil- 

ity are so. 

If we then observe the value of some of the 'unknowns' (evidence), like the 

value of a particular radiocarbon determination, Bayes' theorem tells us how to 

evaluate the effect this has on the rest of the 'unknowns. Thus for Bayesian 

statistics, learning from data in a consistent way comes solely as a result of work- 

ing within the axioms of probability, since Bayes' theorem is a consequence of 

those axioms. Thus, the statistical framework here presented is consistent simply 

because the Bayesian framework is so. 

4.3.4 Posterior distributions and MCMC methods 

In this Section we will concentrate on the implementation of the Bayesian 

paradigm within our statistical framework. That is, calculate the posterior distri- 

butions of interest. From the above discussion on modelling we see that we have 

a hierarchical model using the vectors of parameters V and 0 and the data (the 

radiocarbon determinations) y. The densitY f(y 10, V) is equal to f(y 10) 

L(y 10), the likelihood, and from Equation 4.1 we see that 
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mm11f1( (yj _, U(oj))2 ) I. L(y 10) = rl L(yj I Oj) - 11 -' exp 
j=l Wj2(o j=l wj(Oj) 2ý j) 

where 
ý(O. ) = Uý+C2(oj ). Also we have the prior densities f(O I Vf) and f(yf). O)j ij 

As stated before we need ftyr I y) and, if relevant, f(O I y) (these are the posterior 

densities of Vf and 0) which will be obtained by applying Bayes' theorem. The 

approach we take is to calculate f(O, yr I y) and from that integrate out yr or 0 to 

obtain f(O y) or f(Vr I y), respectively. In more detail, Bayes' theorem states 

that 

y) 
Ay 10, vf)f(0, v) 

fff(y 10, yf)f(0, Vi) d0d 

But fty 10, Vf) = L(y 10) and f(O, yf) = f(O I V&(Vt), and therefore 

f(o, Y) = 
L(y I O)f(O I V)f(yf) 

ff L(y I O)f(O I yf)f(yf) d0d Vf 

From this we have 

AV I Y) - 
L(y I O)f(O I V)f(V) dO 

f 
ff L(y I O)f(O I yf)f(yr) d0dV 

and 

f(O I Y) - 
L(y I O)f(O I Vf)f(yf) dVt. 

f 
ffL(y I O)f(O I yt)f(VI)dOdVr 

f(yf I y) and f(O I y) are difficult to interpret since they are multidimensional dis- 

tributions. It is commonly more useful to obtain the marginal distributions of the 

Oj's and the yfi's, which are 

f(vi I Y) =f... fff(Vi I y) d V, ... dVI-I dVj, j d V, 

with a similar expression for f(Oj I y). 

The above integrals are often difficult to evaluate. In fact, analytical 

methods are discarded since L(y 10) (as seen above) includes both 4(0) and C2(0) 



-115 - 

which both have a numerical definition (piece-wise linear and piece wise qua- 

dratic, see Equations 1.3 and 3.14). Hence numerical methods need to be used. 

However, apart from the simplest models, standard numerical methods for integra- 

tion will be difficult or impossible to implement due to the large dimensionality of 

the parameters 0 and Vi. 

Fortunately for us, methods for approximating posterior distributions like the 

ones above, with complicated forms and high dimensionalities, have recently been 

developed allowing us to obtain f(yli I y) and f(Oj I y) (or nearly any other poste- 

rior distribution or posterior moments of interest). These are sampling-resampling 

Monte Carlo methods commonly known as 'Markov chain Monte Carlo' (MCMC) 

methods (see Geman and Geman 1984, Gelfand and Smith 1990). Since 1990 

there has been important progress in the development of MCMC methods and 

these have been applied in many areas, solving problems that otherwise would 

have been impossible to tackle (see Carlin et al. 1992, Stephens 1994, Gilks et al. 

1993). A review of the subject can be found in Smith and Roberts (1993). Here 

we present a basic explanation of the 'Gibbs sampler', which is a special case of 

MCNIC methods. 
Suppos .e we have an n -dimensional parameter u, whose posterior istri u- 

tion is denoted by f(U) ý_- f(UltU2t 
... 'Un), We denote the full posterior condi- 

tional distributions by 

f(U 11 U2, U3 t.... Un), 

AU21UItU39 
... v Un )q 

f(Un I UllU2---, Un-1)- 
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The Gibbs sampler involves sampling from the full conditional distributions 

for the parameters in our model and generating a 's amp] ing-resampling' scheme to 

approximate the posterior distribution under investigation f(u) or any of its margi- 

nals or moments. The Gibbs sampling scheme consists in choosing initial values 
(0) for U2, U3, -- -ý Un 1 (say U2 , UIO) (0)). Then u(1) is generated from the condi- ?.... Un I 

tional distribution 

(0), U (0),..., u 
f(Ul 1 U2 3 

Next UP) is generated from the conditional distribution 

(1), (0) (0». AU21U1 U3 --Un 

The process continues up to generating u (1) from the conditional distribution 
n 

(1), U (, ),..., u (1) Au. I ul 2 n-1) 

and having u(l) - (ul(l) u2(l),..., u, (')). This process of passing from u(k) to u 
(k+l) 

92n 

forms a Markov process and Geman and Geman (1984) have shown that, under 

fairly general conditions 

d 
u (k) 

-* u -f(u) as k -4 

it can also be proved that, for any measurable function 

s (k)) Y, g(u -4 E[g(u)] as s 
S k=l 
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Given the above Markov process for large k, u (k) can be seen as a realisation 

of u. From this we can then use the first of the above results to generate an 

independent 'sample' for u. Clearly subsequent u (k)? s will be correlated. How- 

ever, this can be avoided by either of two different methods. The first one is, 

using different starting values u(o) run the chain s times and thus obtain 
(k) (k) (k) UI tU2 1---. u. which can be seen as an independent sample for u. The second 

method is to run a single chain but only consider u Wt s at suitable spacings, this 

after leaving the chain to run for a large number of iterations ('the bum-in 

period') to allow for convergence. That is, taking u (k)7 s for k= kl+iq, i= 

1,2,..., s. This then will avoid correlation and thus we will obtain an independent 

sample for u. Using either method we can then approximate any marginals or 

posterior moments for u given the sample just obtained. There is still controversy 

as to which method should be used (multiple runs or a single run). However, the 

latest thinking suggests that the latter should be preferred. That is, taking u (k)? s 

for k=k, + iq, i=1,2,..., s as an independent sample for u (see Geyer 1992). 

This is the sampling scheme we use in our examples. 

Now using the second result above we can approximate some moments for u 

(for example the expectation of u using g(u) = u). In this case, though, the uMis 

need not be independent and we can use all the elements in a single chain to 

approximate the desired moments or expectations E[g(u)]. 

If we are interested in approximating the marginals for ui denoted by f(ui), 

we may take UI ýk, +iq) as a sample for ui. The density of ui is then approximated 

with, for example, a histogram of such a sample. However, Gelfand and Smith 

(1990) argue that a procedure that might be more efficient is to approximate f(uj) 

pointwise by averaging the full conditionals of ui for each u(kl+'q). That is 

1 (k),. 
U 

Sk) (k) (k)) Aui) =-I flui I ul I-Ilui+ll ... 1 Un 
s i=1 
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where k=k, + iq. 

A crucial issue in the MCMC methodology is how to select the values of kj, 

q and s, that is the bum-in period, the spacings and the sample size, in order to 

obtain convergence and proper approximations for the marginals or posterior 

moments required. In the last few years much research has appeared studying this 

issue and indeed the values given for kj, q and s will depend on the specific prob- 

lem at hand. Smith and Roberts (1993) list some cases of MCMC implementation 

for which some convergence properties can be predicted. There are also some 

methods to monitor convergence while sampling, see Gelman and Rubin (1992), 

Raftery and Lewis (1992) and Roberts (1992). In general, however, these 

methods are difficult to apply and the convergence analysis of MCMC methods is 

commonly carried out by checking for consistency in the results. Smith and 

Roberts (1993) recommend that we run the whole process with different kj, q and 

s values and different starting values u(O), and verify that our results are similar, 

thus giving a high degree of confidence that convergence has been achieved. 

Before presenting an explanation of how to apply MCMC methods within the 

framework presented here, we need to introduce some notation. If we have any 

vector u then, unless clearly stated, ui is the i th component of such vector and u-i 

is the vector ("I 
tU2 s ... 1uj-jsujj,..., u,, ). Also we will denote the indicator func- 

tion by I(x)A, which is defined as 

IWA -': 
I if xc-A 10 

if x otA. 

Using Bayes' theorem, it is easy to see that the full posterior conditional dis- 

tributions for our framework are 

f(Oj I y, O-j, Vf) - L(y I O)f(Oj I O-j, V), (4.2) 

for j=1,2,..., m, where f(Oj I O-j, Vf) -c f(O I V) viewed as a function of Op 
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Similarly we see that 

f(yt 1 y, 0) - L(y 1 0)f(yf 10). 

Since we are working with a hierarchical model, L(y 10) is independent of V/ and 

then 

f(v 1 f(V 10) - f(0 1 Vf)f(Vf) 

or 

f(vi 1 yf-i, 0) - f(0 1 vt)f(vi 1 vf-i) (4.3) 

for i=1,2,..., n, where f(Vi I V- j) - f(V) viewed as a function of V/j. Then using 

these full conditionals for the Oj's and the V/j's, we can use a MCMC method (like 

the Gibbs sampler) to approximate f(vy I y) or any marginal f(Oj I y) or ftyli I y) 

of interest. 

In Equations 4.2 and 4.3 we find the distributions f(Oj I O-j, vf) and 

f(y/j I Vf-j). These distributions arise from f(O I Vf) and f(Vf) respectively. Since 

in most problems we are going to use MCMC methods it would be more useful to 

elicit our prior information about 0 and in terms of these conditional prior dis- 

tributions. These distributions are normally easier to state since they are univari- 

ate, unlike f(O I yf) and f(yr). 

4.3.5 An example 

To clarify ideas we give an example of how the framework explained is 

applied to a specific dating problem. Here we concentrate on the modelling and 

the techniques needed to calculate the posterior distributions of interest. Using 

this same model, we later analyse a specific set of radiocarbon determinations. 
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Suppose that we have a set of radiocarbon determinations 

Y1 :ý 61 tY2: ý 62 9 ... ? ym±a,,, associated with the (unknown) calendar years 

01,02,..., 0,,. Suppose further that we are working with a single archaeological 

phenomenon. This can be, for example, the occupation of a particular archaeolog- 

ical site or the existence of a given culture, with the consequence that the calendar 

years 01 9029 ... 1 0. belong to the time-span of the archaeological phenomenon. 

This is a common problem in archaeology in which there is usually little or no 

prior information about the internal relationship between the Oj's such as, for 

example, chronological orderings or further internal subgroupings. In such cir- 

cumstances archaeologists wish to summarise the radiocarbon determinations and 

make inferences about the phenomenon's time-span and/or its duration, ideally 

trying to combine the evidence of the radiocarbon determinations with the 

archaeological information they have about the phenomenon. We will call this 

the 'summarisation problem'. 

According to our framework, we need to define Vf and then state the distribu- 

tions fty 10), f(Oj I 0-p Vf) and ftyli I yr-i) according to the relationship between 

the objects radiocarbon dated and the phenomenon under study. In this respect, 

the crucial point is that we know that the objects radiocarbon dated died within 

the time-span of the phenomenon under study. We define V= (a, P) (here 

V/1 =a and yf2'= P) and then P will represent the beginning and a the end, on the 

calendar scale, of the phenomenon under study (years BP). Now f(y 1 0) is given 

by Equation 4.1 and, since we supposed that we have only vague prior informa- 

tion about internal relationships between the Oj's, we have f(oj I O-j, V/) = 
f(oj I Vf). One possible definition for f(Oj I Vf) = f(Oj I a, P) that may be suitable 

for several specific cases of the summarisation problem is 

oj I a, P-U (a, fl); j=1,2,..., 

That is, the Oj's are uniformly distributed over a period of time beginning at P 
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and finishing at a (years BP). This type of distribution could be slightly general- 

ised by only stating that the distribution of Oj I a, P has support on (a, P) and not 

restricting it to be uniform. However, this will require more archaeological infor- 

mation to be available. In the light of no further information along these lines we 

proceed then with the uniform case. 

An example of the prior distributions for a and P is 

U( a,, bl) and P- U( a2, b2) (4.4) 

for some positive a, < b, < a2 < b2. That is, uniform distributions with some 

(wide) margins that do not overlap. Since the distributions do not overlap we can 

suppose that a and P are independent and thus, f(a I P) = f(a) and f(B I a) = 

f(B). However, in some cases it might be necessary to state a more informative 

prior for a and, 8 depending on the prior information available, possibly with bell- 

shaped distributions with support on (a, fl). 

We now create the hierarchy diagram for the summarisation problem to clar- 

ify the whole modelling process. We do. it in two stages. The general hierarchy 

diagram is given in Figure 4.4. 

Figure 4.4 
General hierarchy diagram for the summarisation problem. 

Since we are using the model from Equation 4.1 and we suppose that the yj's are 

independent, a more detailed (and informative) hierarchy diagram for this model 

can be seen in Figure 4.5. Note that the nodes corresponding to a and P are 
I 

joined together since the full conditional distribution of a depends on P and vice 

versa. 
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Figure 4.5 
Hierarchy diagram for the summarisation problem. 

Now, we need the posterior distribution f(V I y), which in this example is 

f(a,, 6 I y). 

This distribution will then represent the current knowledge about the time-span (8 

to a) of the archaeological phenomenon under study given the radiocarbon deter- 

minations y and the prior distributions for a and 8. 

Using Equations 4.2 and 4.3 we see that the full conditional distributions of 

the parameters in the summarisation problem are 

f(oj I y, O-j, a,, B) = f(oj I yj, a, P) - 

1 
exp 

((yj 
_ 11(o j ))2, )l 

O)j2(o 
I(oj)(a, P) 

O)j(oj) 2 j) 

f(a 1 Y, 0, ß) = f(a 1 0, ß) - (ß - a)-- I(a)(0, �, i, ý(�»f(a 1 

f(fl 1 0, a) = f(fl 1 0, a) - (fl-a)-' l(fl)( (o), ý)ftfl I 

where max(O) and min(O) are the maximum and the minimum of the components 



- 123 - 

of 0 respectively. 

If we take f(a) and f(p) as the priors in Equation 4.4, we can then suppose 

f (a, P) = f(a)f(, 8) and the full conditionals for a and P will be 

f(a 10, ß) - (ß - a)-' I(a)(�,. 

and 

f(p I b2), 

where b= min(min(O), bl) and a= max(max(O), a2)- 

Once having the above distributions we can implement a MCMC method, 

like the Gibbs sampler, to approximate the posterior distributions of a and P and, 

therefore, find the limits for the time-span of the archaeological phenomenon 
b 

under study. To sample from a 10, P we first obtain K-1 f (, 8-a)-mda (thus 
al 

is the normalisation constant). Second we obtain F,,, 10, #(a 

fK (8 - a)-'da. From that we solve the equation F,, 1 0, p(a) =u to obtain 
a, 

a 
P-b 

I(I-b ) M-1 
(I-U)+u 

P-al 

Then, simulating a value, u, from the uniform distribution U(O, 1) will give us a 

simulated value, a*, for a 10, P. Similarly for fl 10, a we see that 

a-a 

a-a (I-u)+u 
ýb2-a 

where U- U(O, 1). However, to sample from f(Oj I yj, a, P) we need a numeri- 

cal method since such distributions cannot be stated analytically (given the 

definitions of u(6) and a2(0)). Several methods can be applied, for example, 
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rejection or inversion methods. In our calculations we choose the method of 

inversion by numerical solution. That is, to normalise and use numerical integra- 

tion to find the value 0* such that F9, I yJ, (0 u, where again U- U(O, 1) 

(see Devroye 1986 for further details). 

In Section 5.2 we analyse a specific example of the summarisation problem 

with radiocarbon determinations related to a pre-Hispanic culture in Peru. We 

will see that the framework developed here is relatively simple to implement and 

is able to provide meaningful answers to the archaeological questions posed. 

4.4 Replications 

In this Section we study the dating problem in which we have a set of repli- 

cated radiocarbon determinations. The statistical analysis of replications fits 

within our framework and represents an important, although technical, problem 

that needs to be addressed. We have introduced this problem in Section 2.2.2, 

where we reviewed other approaches. Here we present our own approach. 

The problem is as follows. We have a set of radiocarbon determinations 

1Y1±1711Y2±629---, Ym±(: r,, j all associated with a single calendar year 0. That is, 

we are assuming that 0 is the calendar year in which the organic material con- 

tained in the m samples radiocarbon dated died. The main interest in this problem 

is to use the radiocarbon determinations to increase our knowledge about the posi- 

tion in the calendar scale of 0. In the next Section we will study a replications 

dating problem in which this is the case. In general, however, the problem of 

replications is not considered on its own but as part of a more complex dating 

problem. For this reason it is of prime interest for us to have a correct approach 

to this basic problem. 
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In the light of the statistical framework presented in this Chapter, for the 

case of replicatiops, the parameter yr will be non-random letting f(O) = f(O I Vf) 

be the prior distribution for 0. Given 0 we suppose that the determinations are 

independent and thus L(y 10) = rlf(yj 10). In this case our analysis consists of 
M 

j=1 
finding 

f(O I y) - L(y I O)f(O). 

That is, the posterior distribution of 0 given the determinations y. We present the 

corresponding hierarchy diagram for this case in Figure 4.6. 

Figure 4.6 
Hierarchy diagram for the replications problem. 

In the interpretation of replicated radiocarbon determinations it is common 

practice among the radiocarbon community to use the pooled mean to summarise 

the determinations and make any subsequent inferences. Using the conventional 

calibration model explained in Chapter 1, we will prove below that the pooled 

mean is a sufficient statistic. However, we will see that using the new calibration 

procedure expounded in Chapter 3 (considering the variance in the calibration 

curve), the pooled mean is not necessarily a sufficient statistic. 
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Using the calibration procedure presented in Chapter I and using Equation 

1.4 we see that, 

yj 10 - N(, u(O), aj 2) 

for i=1,2,..., m and therefore the likelihood is 

m1m (y - '4(o))2 L(y 1 0) = 11 (2naj2) -'I exp -- 
lj=l 

21 
j=l 

M 
I (Yj _, 4(o))2 

If we complete the square in the expression 
j=1 

- aj 2 it is easy to see that 

m 'I 
expl - -IC(y)) exp 

1 ((M 
y _JU(O))2)1 

fl (21raj2 (4.5) L(y 10) = 

lj=l 
)12 

(T 
2 

where 

yj 
)2 

C-2 C21 
Li 

, and C(y) 
LYX 

(T2 MY 
j22 Ig2 j=l jjj j=l 

Using the factorisation theorem (Mood et al. 1974, p. 307), we deduce that the 

pooled mean, my, is a sufficient statistic for y. Given a prior distribution for 0, 

f(O), we then have 

f(O I y) = f(O I my) - exp 
1-1(cwo) 

2 
my) 

2) 
f(o). 

2a 

This means that, using the above model in which we neglect the variance in the 

calibration curve, we can use the pooled mean as a summaTy for our replications 

sample and not lose information. However, when we turn to consider the variance 

in the calibration curve this is not necessarily the case. The model now is 

yj 10 _ N(. U(O), a)j2(o)) (4.6) 

ý(O) = Cý+a2(0) (see Equation 3.14). The likelihood will have a similar where OIj i 

expression to the one above but substituting ý(O) for 07.2 But notice now that Wj iI 
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the factorisation of L(y 10) found above does not imply the sufficiency of the 

pooled mean since Qy) will depend on 0 (actually the proof is not applicable at 
M 

all since in this case my =a 21 Y is not the pooled mean). To prove that Y 

J=I 
the pooled mean is not necessarily a sufficient statistic using this model, we con- 

sider a countcrexampIc. We take the determinations 1200,1230 and 1250, all 

with standard deviation a= 20, and calculate the posterior distribution of the 

associated calendar year 0 using this latter model (and a vague prior distribution 

for 0). That is, 

(y. _ß(0»2 f(0 1 y) - 
jI, 

ij(0) exp 2j (0) 

where m=3. We then calculate f(O I my) to compare it with f(O I y) (if my is 

sufficient then these two densities should be equal). To do this we need to calcu- 

late the distribution f(my 10). We know that my 10 is a weighted average of nor- 

mally distributed random variables (the (yj I 0)'s) and thus my 10 has a normal 

distribution. Given that in this case we have equal variances, it is easy to see that 

m. 10 - N(, u(0), a2lnl+a2(0)lm). Using this we then compute f(O I m. ), with a 

vague prior distribution for 0 (the pooled mean is 1226.6 with standard deviation 

11.5). 

In Figure 4.7 we display histograms of both f(O I y) and f(O I my), and since 

they are not identical, we conclude that the pooled mean is not necessarily a 

sufficient statistic. However, only if the variances aj 2 's are small will there be a 

noticeable difference in the distributions. Otherwise we could suppose that 
2 

aj - a; + cr-(O) and thus the pooled mean will be sufficient. 

The above analysis tells us that, potentially, we might be losing information 

when using the pooled mean to summarise a set of replicated radiocarbon determi- 

nations. However, this will only occur when we have determinations with very 

low standard deviations. In any case, to avoid a potential loss of important 
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Figure 4.7 
Histograms for 0y (above) and 01 my (below), considering the errors in the 

calibration curve, for the determinations 1200.1230 and 1250 with a= 20. 
Since the histograms are not identical, my (the pooled mean) 

is not necessarily a sufficient statistic. 

information, we would recommend reporting the actual radiocarbon determina- 

tions and not only the pooled mean. 

Using a tcchnique prescnted by Lchnmann and Schefff (1950) it is not 

difficult to prove that, if the standard deviations aj's are equal, then 
mm -3 Y-Yi, Y-)-: ' is a sufficient statistic. This technique consists of analysing the 
.Ij. 1 j) 

ratio fty I O)lf(x 10). Thcn any statistic t(. ) such that t(y) = i(x) if and only if 

f(Y I O)IAX 10) is not dependent upon 0, is sufficient (and, actually, minimal). 

If we take yj - N(p(O), W; (O)) and xj - N(p(O), o)j2(0)) for j=1,2,..., m then 

f(y 1 0) 
11(( 2-xj2)-2ß(O)(xj-yj) 

f(X 10) - exp - :ý 
wj2(O) 

)l. 
(4.7) 

Now, if the standard deyiations aj's are equal, and thus ,j2 (0) = 0) 2(g), we haye 

,n f(y 10) 
yj _X = cxpi - yj2-, 

m 
xj2)-2P(0)(, 

j 
j» 

. "(") EZZ Ax 10) m1=1 
=i 



- 129- 

mmmm 
Thus I yj xj and I Yj, xj' if and only if fty I O)lf(x 0) is not 

j=1 j=1 j=1 j=1 
dependent upon 0 and therefore 

m 2) yi, I yj 
j=l 

is a sufficient statistic. From Equation 4.7 it seems, however, that if the standard 

errors aj's are not equal the only sufficient statistic available would be the sample 

itself. The latter is commonly the case for sets of replicated samples and conse- 

quently the above result will be of only limited use. 

4.4.1 Example: The Shroud of Turin 

Since the development of AMS radiocarbon dating, which only requires very 

small amounts of organic material (milligrammes), it has been possible to test the 

authenticity or otherwise of the 'Shroud of Turin' (widely believed to have been 

used to wrap the body of Christ). More technical details may be found in Damon 

et al. (1989b). 

Our interest in this problem is that the samples all come from a single object 

(the Shroud) and therefore we can state that all twelve radiocarbon analyses per- 

formed on it should relate to the same calendar year. A strip (approximately 

lOx7Omm) was cut from the Shroud and divided into three samples which were 

sent, along with control samples, to the Arizona, Oxford and Zurich AMS labora- 

tories to be radiocarbon dated. The laboratories made four, three and five deter- 

minations respectively (see Table 4.1). 

The Shroud of Turin was first displayed in the 1350's AD (ie. about 600 BP, 

Damon el al. 1989b). Therefore the organic matter in the Shroud should have 

died before that date and thus we state the lower boundary of 600 BP for the 

support of the prior distribution of 0. We decided to state a uniform prior 
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Laboratory Sample Det. 
& sample id. (rep. ) 

Arizona AM 591± 30 
AA-3367 Al. 2 690± 35 

Al. 3 606±41 
AIA 701 33 

Oxford 01.1 795 65 
2575 01.2 730±45 

01.3 745± 55 

Zurich Z1.1 733 ±61 

ETH-3883 ZI. 2 722± 56 
ZI. 3 635 ± 57 
ZIA 639±45 
ZI. 5 679± 51 

Table 4.1 
Radiocarbon determinations for the 'Shroud of Turin', from 

Damon et. al. (1989), all are AMS datings using different pretreatments. 

distribution for 0, say 0- U(600, b) for some suitable large b (uninformative). 

We used all twelve radiocarbon determinations and, employing the procedure 

explained above, including the variance in the calibration curve, calculated the 

posterior distribution of 0 which is given in Figure 4.8. For comparison, in Fig- 

ure 4.9 we present the corresponding posterior distribution for 0 found when we 

do not consider the variance in the calibration curve. As explained above, in such 

a case we can use the pooled mean as a sufficient statistic for the data (the pooled 

mean in this case is 679 ± 12). Note that, given the magnitude of the standard 

deviations for the determinations (more than 30 years), the variance in the calibra- 

tion curve could be neglected and thus there is nearly no difference between the 

two methods. 

Note from Figure 4.8 that the whole of the posterior distribution for 0 (100% 

HPD region) lies between 1270 and 1310 AD (680-640 BP). This means that our 
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Figure 4.8 
Histogram for the posterior distribution of 0, 

the 'Shroud of Turin', considering the variance in the 
calibration curve. 
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BP 

Figure 4.9 
Histogram for the posterior distribution of 0, 

the 'Shroud of Turin', not considering the variance in the 

calibration curve. 

evidence shows that the organic materials contained in the Shroud died in this 

period. Of course we expect the Shroud's manufacture and possibly its first exhi- 

bition to have occurred soon after its organic materials died. Thus it seems likely 

that it was made some time between 1300 and 1350 AD, just as concluded in 

Damon et al. (1989b). 

4.4.2 Comment 

Of course, as we have mentioned before, there is the question of, when can a 

set of radiocarbon determinations be considered a set of replications? Strictly we 

700 650 600 

700 650 600 
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must have definite evidence telling us that the organic material contained in all 

the objects radiocarbon dated died in the same year. Thus, if we state our model 

as in Equation 4.6,0 would represent such a calendar year. Cases of this can be, 

for example, two parts of a bone, bones of two people known to have been killed 

in the same battle, seeds known to belong to the same harvest or, as above, three 

pieces of a shroud. As a modelling approximation we could consider a set of 

determinations to form a set of replications if the associated calendar years are 

known to be very similar. This could be, for example, two different tree rings in 

a small piece of timber. However, unless we have definitive evidence about this, 

we do not recommend considering any other sets of radiocarbon determinations as 

a set of replications. 

If we have two radiocarbon determinations y, ±al and Y2 ± q2 arising from 

two different objects, and we state our model as in Equation 4.6, we will be 

assuming that the organic materials in both of the objects died in precisely the 

same calendar year (0). If both 'objects' cannot be considered to have the same 

(or very similar) associated calendar years, it is difficult to have a correct 

interpretation for the meaning of 0. What would 0 represent if we cannot assume 

that both objects are associated with the same calendar year? 

As discussed in Section 2.2.2, where we reviewed other approaches, there is 

the idea that if a set of radiocarbon determinations are close together (measured 

with some statistical test) then the associated calendar years for the determina- 

tions will be close together. Thus the set of radiocarbon determinations can be 

modelled as a set of replications. We discussed also in Section 2.2.2 the evident 

inadequacies of such an approach because the radiocarbon calibration curve is 

non-monotonic. Thus, even if the radiocarbon determinations are judged to be 

similar, or with 'no significant difference', we cannot assume them to be associ- 

ated with the same calendar year, unless we have other archaeological information 
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available. Moreover, there is still the possibility of one or more outliers in a sam- 

ple and we must consider how they would affect the posterior distribution of 0. 

We leave the discussion of this problem until Chapter 6. 
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Chapter 5 

Examples 

5.1 Introduction 

In this Chapter we present a series of examples to illustrate how our statisti- 

cal framework developed in the previous Chapter, can be applied to the analysis 

and interpretation of sets of radiocarbon determinations related to various dating 

problems. Here we concentrate on the technical side of the problem, studying the 

models that can be used in each situation and calculating the posterior distribu- 

tions of interest. Although less emphasis is given to the archaeological soundness 

of the problem, in each case we comment upon the appropriateness of the models 

used and how they could be improved and/or generalised. Later, in Chapter 7, we 

will present a detailed analysis and interpretation of a set of radiocarbon determi- 

nations related to a complex dating problem. In this example more emphasis is 

given to the elicitation of the relevant archaeological information needed to build 

the corresponding statistical model, and the archaeological soundness of the 

resulting analysis. 

By presenting a series of examples in this Chapter, we intend to tackle the 

statistical problems related to the interpretation of radiocarbon determinations 

reviewed in Chapter 2 (note that we have already considered the 'replications' 

problem in Section 4.4). In Section 5.2 we continue to present a novel approach 

to the 'summarisation problem', introduced in Chapter 4, thus providing an alter- 

native to the existing approaches reviewed in Section 2.4.4. In Section 5.3 we 

present a series of examples related to the problem of 'archaeological wiggle 

matching' (AWM) reviewed in Section 2.4.5. New and, we believe, more realistic 

models than those considered by the original authors are formulated. The 
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'contemporaneous houses' dating problem reviewed in Section 2.4.7 is analysed in 

Section 5.4 in the light of our framework. A slight generalisation is given which 

includes our calibration method in the analysis. In Section 5.5 we present an 

interesting interpretation problem related to peat growth, where a quite complex 

model is used in the analysis. Finally, in Section 5.6 we present a general 

approach to tackle the problems of dating archaeological phases using radiocarbon 

determinations. Problems of this type have been studied before within the Baye- 

sian framework (reviewed in Section 2.4.7) and here we develop an extension of 

that work. 

5.2 The Chancay culture: a summarisation problem 

We continue our analysis of the summarisation problem defined in Section 

4.3.5 using a set of radiocarbon determinations arising from an archaeological 

research originating in Peru. Pazdur and Krzanowski (1991) report on a study of 

the pre-Hispanic Peruvian culture called 'Chancay'. There are 13 radiocarbon 

determinations from samples of wood taken from tombs associated with this cul- 

ture (see Table 5-1). 

Sample id. Det. Sample id. Det. 

Gd-2819 520±60 Gd-5672 830±50 
Gd-3396 430± 30 Gd-5823 670±40 
Gd-5304 460± 50 Gd-5824 1140±50 
Gd-5307 970± 50 Gd-6189 1070±60 
Gd-5309 910 ± 35 Gd-6196 810±70 
Gd-5310 1000± 50 Gd-6197 900±70 
Gd-5312 390±45 

Table 5.1 
Radiocarbon determinations for the 'Chancay' culture, Peru, 

Pazdur and Krzanowski (1991). 
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In this problem, each sample radiocarbon dated is clearly associated with the 

Chancay culture, since the samples were taken from tombs known to belong to the 

Chancay. The aim of the analysis of the radiocarbon determinations is to estimate 

the duration, in the calendar scale, of the Chancay culture which, in this case, is 

the archaeological phenomenon of interest. We will use the modelling approach 

developed in Section 4.3.5 to estimate the beginning, P, and the end, a, of this 

phenomenon. Pazdur and Krzanowski used a combination of heuristic techniques 

and computer software to reach their conclusions about the time-span occurrence 

of the Chancay culture on the basis of the radiocarbon determinations available. 

No formal statistical procedure was used by them. They proceed as follows. 

Using a computer program for calibration, explained in Pazdur and 

Michczynska (1989), they calibrate each of the 13 determinations separately. 

From that they calculate the corresponding 95% HPD regions (in the calendar 

scale) for each determination. Their estimate given for the time-span of the Chan- 

cay culture is the maximum to the minimum calendar years covered by the HPD 

regions. That is, if Hj is the 95% HPD region corresponding to determination yj 
13 

then, letting A=U Hj, their estimate for the time-span is max(A) to min(A) years 
j=1 

BP. (Note that it might be the case that (min(A), max(A)) is not equal to A; this 

issue is not discussed by Pazdur and Krzanowski. ) Evidently, this procedure will 

depend strongly on the probability chosen for the HPD sets. However, no meas- 

ure is given for the accuracy of the estimates obtained and, since no statistical 

model is introduced, it is not clear how such a measure could be obtained. More- 

over, no provision is given to allow for further archaeological information to be 

included in the analysis. The approach we present below avoids these problems. 

In this example we have Y111711Y21a2ý. -Y13'a13 associated with the 

(unknown) calendar years 01,02,... . 013. As explained before, our modelling 

approach to the summarisation problem takes the parameter V/ from our 
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framework to be Vf = (a, P) and assumes that 

Oj I a, P- U(a, P) 

for j=1,2,..., 13. That is, given a and P, Oj has a uniform distribution within 

the beginning, P, and the end, a of the time-span of the Chancay culture. This 

represents the a priori knowledge that each sample is equally likely to have died 

at any time within the period of the Chancay culture. In this case, this seems to 

be an appropriate, assumption since we have no prior information about the calen- 

dar dates for the wood samples taken from the tombs. We also assume that, given 

a and fl, the Oj's are independent (that is, f(O I a,, 8) = flf(Oj I a,, B)) and we 
j=1 

take uniform prior distributions for both a and 6, as in Equation 4.4. That is 

a- U( a,, bl) and P- U( a2, b2)- 

Although the choice of a uniform distribution for both a and 8 might represent a 

strong constraint in this case, it is appropriate for the representation of the prior 

information available for a andfi. 

The Chancay culture is pre-Hispanic, and this means that the end of its time- 

span (a) should be before the invasion of Peru by Pizarro in the 16 th century. In 

view of this we decided to set a, equal to 400 BP (1550 AD) as a late bound for 

the prior distribution of a. However, little is known about how early the Chancay 

Culture began so we decided to set bl, a2 and b2 in a less informative way giving 

them extreme values (b, = 600, a2 = 601 and b2 = 3000). On the whole, the 

prior information used is vague (apart from the value of a, ), meaning that the 

posterior distributions of a and j6 will be based more on the radiocarbon determi- 

nations, and less on archaeological considerations. 

The full conditionals for the parameters in our model are 

f(Oi I Y, O-j, a, P) = f(Oj I yj, a, P) - 
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(yj _. U(oj))2 
expi -2 I(Oj)(a. 0), ýTj(oj) 

f(a 10, ß) - (ß - a)-' I(iX)(�, b) 

and 

f(P I (fi-a)-m I(fl)(a, b, )q 

where b= min(min(O), bl) and a= max(max(O), a2)- 

For practical reasons and since the standard deviations are large (> 30), in 

this case we use the calibration procedure explained in Chapter 1. Thus we 

assume that O)j 2 (0j) = a) 2. We use the Gibbs sampling technique to obtain the 

marginal posterior distributions of a and P, shown as histograms in Figure 5.1. 

0.16 

0.12 

0.08 

0.04 

0 
1600 1400 1200 1000 800 600 400 

Calendar years BP 

Figure 5.1 
Histograms for the posterior distributions of P (left) and a (right), 

Chancay culture's summarisation problem. 

From the marginal distributions of a and P we see that, given the current 

sample, the 95% HPD region for a is approximately 480 to 400 BP, ie. 1470 to 

1550 AD, and for P 1200 to 950 BP, ie. 850 to I 100 AD. The modes are at 

a= 440 and P= 1020 BP, ie. 1510 and 930 AD respectively. 

The final conclusion of Pazdur and Krzanowski for the time-span of the 

Chancay culture, on the basis of the radiocarbon datings performed, is from 1000 
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to 470 years BP (950 to 1480 AD). This in broad terms coincides with our range. 

However, we must mention that, in order to obtain their conclusion, Pazdur and 

Krzanowski removed from the sample the earliest and the latest radiocarbon deter- 

minations. They explained that the determinations removed belong to charcoal 

taken from tombs thought to be totally plundered, and for this reason their relation 

with the Chancay culture is 'incierta' (uncertain). We agree that in some cases 

there are radiocarbon determinations that have an uncertain relationship with the 

archaeological phenomena under study. In such circumstances we could, from the 

beginning, exclude such radiocarbon determinations from the analysis (or have 

never sampled the material in the first place). It might be possible as well, using 

the techniques presented here, to consider such 'uncertain relationships' in the 

analysis via the specification of the prior distributions and avoid the removal of 

(very expensive) data. (For example, if yj has an uncertain relationship with the 

Chancay culture, we could define its prior distribution as f(Oj I a, P) = 

wf, (Oj I a, #)+(I-w)f2(0j), where fl(Oj I a, fl) is the uniform distribution used 

before, w is a measure for that uncertainty and f2(0j) is some alternative distribu- 

tion. ) 

On the other hand, there are objects that on archaeological grounds do have a 

clear relationship with the phenomena, but whose corresponding radiocarbon 

determinations do not fit with our prior knowledge nor with the rest of the 

radiocarbon determinations performed. This leads to the problem of outliers in 

the sample, a topic that will be discussed in detail in Chapter 6 where we will 

reanalyse the Chancay data from that view point. 

5.3 Floating chronologies 

Suppose that we have a set of radiocarbon determinations 

YI ±CrI 
tY2: 

ý0721- 
I ym ±cr,,, associated with the (unknown) calendar years 
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01,02,..., Om. We have a 'floating chronology' when we have prior information 

about the relative. dates Oj - Oj_ 1 for j=2,3,..., m. In archaeology there are two 

common examples of this. The first one is when the radiocarbon determinations 

arise from tree-rings and we have counted the number of rings in between sam- 

ples. This is generally known as a 'tree-ring chronology'. In this case we can 

assume that we have, with no loss of generality, 

0. -0. - I. for j=2,3,..., m i J-1 -i 

with Ij >0 known. 

The second case is when the radiocarbon determinations arise from samples 

taken from a 'stratigraphical sequence', for which we know that the associated 

calendar years must have a specific ordering and thus we have some knowledge 

about the relative dates Oj-Oj-,. Here we can assume, with no loss of generality, 

that we know (apriori) 

O-Oj-l >0 for j= 2,3,..., M. i 

Furthermore, given the specific problem at hand we might have further prior 

information about the relative dates Oj-Oj-,, for example, maximum and 

minimum time spans or a distribution for their length, etc. Note that in both cases 

we are assuming that 

Om -" Om 
-1 ý" --- ý" 02 ýý' t9l - 

Problems of this type have been studied by other authors and some tech- 

niques have been proposed to tackle special examples (reviewed in Sections 2.3.4 

and 2.4.5). To refer to those techniques some authors use the term 'archaeologi- 

cal. wiggle matching' (AWM). Our approach considers the general case and is as 

follows. 
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Since the former case of floating chronologies explained above is a special 

case of the latter, we develop the general methodology with the latter case in 

mind. According to our framework we need to define V/ and then define 

f(Vfj I Vf-j) and f(Oj I O-j, Vf). In this problem we will be mainly interested in 

the posterior distributions of the Oj's, since the problems of floating chronologies 

are completely determined in terms of those parameters. We then consider V to 

be non-random and concentrate our modelling in defining f(Oj I O_j). 

yj) (9j 

Y2 ) 02 

Y3 ) 03 

Figure 5.2 
Hierarchy diagram for the general case 

of a floating chronology. 

Since we have assumed that 0. > 0,,, 
-, > ... > 02 > 01, it is clear that 

f(Oj I O-j, yi) should have support contained in the interval (Oj-,, Oj+, ). From 

this it seems reasonable to assume that f(Oj I O-j) = f(Oj I Oj-,, Oj+, ). That is, 

a priori, given 0j 
-j, 

Oj depends only upon Oj-j and 0. +1 (indeed, for 01 and 0,,, 

we have f(Ol 10-1) = f(Ol 102) and f(O.. 10-,, ) = f(O. I The 

corresponding hierarchy diagram for this problem is presented in Figure 5.2. 
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The key point in this problem is that we have prior information about the 

relative dates Oj-Oj-,, which ought to be included in the analysis. We will 

include this information via the specification of f(Oj I Oj-,, Oj+, ). A sufficiently 

general procedure for doing this (that works correctly in our examples) is to 

assume that, apriori, the relative dates Oj-Oj-l are independent. Therefore, 

given that the prior information about Oj-Oj-l is defined with the density (or 

mass) function gj, we have 

-0 -I)gj+I(oj+I -0j) f(oj 1 0-j) = f(oj 1 0j-" oj+1) oc 9j(oj j 

for j=2,3,... ' m-1 and, 

f(01 102) == 92(02-01) and f(O�, 10�, 
-1) =g (0�, - 0�, 

-, 
). 

We use the distribution f(y 10) as in Equation 4.1, that is 

yj I Oj - N(y(Oj), o)j2(0j)) 

Wý(O. ) = (1? +C2(19 (where jji j)) and we assume that, given the Oj's, the yj's are 

independent and therefore 

f(Y 10) = ri f(Yi 1 Oi). 
j=I 

The full conditionals are 

f(Oj I Y, O-j) = f(Oj I Y, Oj-l, oj+l) - 
II(( 

-IU(O 1 yj 1))2 (0- -- exp +j0 U)j2(o 
gj j oj gj Ij ;; 

j(oi) 2 j) 

Then, different cases of floating chronologies will be modelled using dif- 

ferent functions gj's. This will be illustrated in the next Sections by the use of 

two examples. 
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5.3.1 A tree-ring chronology 

We now turn to the case of 'tree-ring chronologies'. As stated before we 

have 

0. -0. -1. i J-1 -i 

with Ij >0 known for j=2,3,.., m, with the corresponding hierarchy diagram 

shown in Figure 5.3. Since Oj = Oj- 1+ Ij, we represent in our hierarchy diagrams 

deterministic relationships using a double arrowed linkage, as seen in Figure 5.3. 

YM 

Figure 5.3 
Hierarchy diagram for a tree-ring floating chronology. 

Double arrowed linkages mean deterministic dependencies. 

Since the 1j's are known, in this case Oj-Oj_l = Ij with probability one and, 

therefore, using the above functions gj's we have 

gi (x) =1 
if x= li 10 

if x# ii. 
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Here it is only necessary to calculate the distribution of 01 (the 'base' of the 
i 

chronology) and the rest of the Oj's can then be calculated since Oj = 01 + Y, Ik 

k=2 

The distribution is given by 

m 
-1 

(- p2 
f(ol I y) - 11 1 lexp 

-1m 
yj 

( 

go 

J= I O)j(0j) 2 
j=l 

f)j2(oj) 

i 
where Oj = 01 +I Ik- In this case we can use a numerical integration procedure 

k=2 

to find f(Oi I Y). 

IjI Det. I 

1 1270±15 
2 1292±15 
3 1268±15 
4 1263±15 
5 1290±15 

Table 5.2 

Radiocarbon determinations from 'Ardnagross Horizontal Mill', 

Pearson (1986). Tree-ring chronology, 20 year gaps between samples, 
determination I (youngest) to determination 5 (oldest). 

To illustrate our methodology we use an example reported by Pearson 

(1986). The problem is to date a floating tree-ring chronology using radiocarbon. 

Five consecutive blocks of 20 tree-rings taken from a piece of wood belonging to 

the 'Ardnagross Horizontal Mill' were radiocarbon dated. The piece of wood 

could not be dendrochronologically dated (for reasons unspecified by Pearson 

1986) and so radiocarbon was used to date the wood. 

Here we have m=5 and Oj-Oj-l = Ij = 20. The determinations are given in 

Table 5.2. Unfortunately, the laboratory identifications are not given in Pearson 

(1986). Using numerical integration we obtained the posterior distribution for the 

base of the chronology 01 shown in Figure 5.4. 
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0 

Figure 5.4 
Posterior distribution for the base of the 

floating tree-ring chronology 'Ardnagross Horizontal Mill'. 
The MAP estimator is 1180 BP. 

Pearson (1986), using a technique based on least squares (reviewed in Sec- 

tion 2.4.5), which consists of finding 01 such that 

mIi 

k) 

12 
S(01) =I T2 yi- A' 01+ 7, 

j=l j k=2 

has a minimum, found the 'best' match for the base of the chronology. This 

minimum occurs when 01 = 1185. Using our methodology the maximum 

a posteriori (MAP) estimator for the posterior distribution of 01 is 1180 (see Fig- 

ure 5.4). The difference between the 'best' point estimates in both cases arises 

from the fact that in our analysis (since the variances aj 2) s are quite small) we are 

considering the variance a 2(0) in the calibration curve. If we had neglected the 

variance a2(0) We would have that f(Ol I y) - exp(-0.5 S(01)) and thus the MAP 

estimator will coincide with the minimum of S(01). When the variance a 2(0) is 

included in the analysis this is not necessarily the case. 

To illustrate the above in Figure 5.5 we have plotted the radiocarbon deter- 

minations used in this example, along with the relevant part of the calibration 

curve p(O) and y(O) - of 0) and p(O) + a(O). Note that at 01 = 1180 the radiocar- 

bon determinations coincide with knots of the calibration curve (since the 

1220 1200 1180 1160 1140 
01 calendar years BP 
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01 = 1180 

1400 

radiocarbon 1300 

years bp 

1200 

Figure 5.5 
Wiggle match, using u(0) and a(O), for the floating tree-ring chronology 

reported in Pearson (1986), for the MAP estimator of 01. 

The circles represent the yj's and the lines are from yj - aj to yj + aj. 

radiocarbon determinations are spaced every 20 years). At the knots the variance 

a 2(0) is smallest since we have observed the calibration curve there and, there- 

fore, our method prefers, as a point estimate, 01 = 1180. If we neglect the vari- 

ance a 2(o), the resulting technique makes no distinction between points on the 

calibration curve (knots or outside knots) and therefore the best point estimate 

will be the minimum of the squares S(01). 

As seen above, the method of least squares and our Bayesian method are in 

agreement, at least for the case of point estimates. But: how can we assess the 

precision of the least squares match? How sure are we about such a match? We 

believe that, in general, a probability distribution for the base of the chronology 

1300 1250 1200 1150 
Calendar years BP 



- 147- 

01 gives a much more reliable and informative measure for dating floating tree- 

ring chronologies using radiocarbon. (For example, using our method, we can say 

that the 95% HPD region for 01 is 1200 to 1160 BP. ) 

5.3.2 A floating chronology 

To study the problems of archaeological wiggle matching (AWM), in the 

light of our methodology, we analyse a data set used by Manning and Weninger 

(1992), where the technique of AWM was fully illustrated. Surprisingly, the 

'floating chronologies' used in that paper were not formed of a series of radiocar- 

bon determinations for which their associated calendar years were chronologically 

ordered. Rather, the 'floating chronologies' consisted of a series of archaeological 

phases which were stratigraphically ordered, with several radiocarbon determina- 

tions related to each phase (we discuss problems of this kind in Sections 2.4.7 and 

5.6). 

The actual approach followed by Manning and Weninger was to calculate the 

'pooled means' of each group of determinations and use such pooled means as 

'radiocarbon determinations' associated with a single calendar year. Using these 

averaged 'determinations' they then applied their techniques for AWM. 

In Weninger (1986) and Manning and Weninger (1992) the underlying 

assumptions involved in the usage of pooled means was not discussed. We have 

discussed the potential inadequacies of such an approach in Sections 2.4.3 and 

4.4. Nevertheless, and only for the sake of comparing techniques, we study the 

'floating chronology' found in Manning and Weninger (1992), where the 'determi- 

nations' quoted are actually 'pooled means' (the real data is not published in that 

paper). 
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Schicht j pooled mean Schicht j pooled mean 

6 1 2825±67 12 7 2982± 15 
8 3 2952±33 13 8 2949±29 
9 4 2980±50 14 9 3121±24 
10 5 2899±37 16 11 3136± 17 
11 61 2965±45 1 17 12 1 3190±55 

Table 5.3 
Pooled means from a stratified sequence of radiocarbon determinations 

for the Late Bronze Age at Kastanas, Greece. 
Taken from Manning and Weninger (1992). 

The archaeological problem considered is that of dating a series of chrono- 

logically ordered 'Schichten' (layers) from Kastanas, Greece. Radiocarbon deter- 

minations where obtained for 11 Schichten and the corresponding pooled means 

were calculated. On archaeological grounds the pooled mean for Schicht 18 was 

rejected as an outlier and thus we only use the remaining 10 pooled means. These 

pooled means are presented in Table 5.3. 

The key feature in the problem is that successive numbered Schichten are 

known to be chronologically ordered. The AWM technique used by Manning and 

Weninger (1992) allows only the possibility of a fixed length of time between 

Schichten. That is, they assumed, perhaps unrealistically, that the time elapsed 

between successive Schichten was equal. In other words, if 

01 9 03,04 ý---t 09 ý 011 9 012 are the associated calendar years for the pooled means 

in each Schicht, then 

03 - 01 = 21 

0. -0. -I=4,5,..., 9,12 1 J-1 -i 

011-09 = 21 

for some fixed 1. Then they fixed I at multiples of 5, for 10 to 60 years 
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10,15,..., 60) and concluded that the best match was when 1 35. The 

corresponding value for Oj given by their method at each value of I was then 

averaged and hence they could calculate a 'standard deviation'. These 'averaged' 

dates, together with the standard deviations, are given in Table 5.4 column (i). 

Schicht (i) 
BP 

(ii) 
BP 

(iii) 
yrs 

(iv) 
BP 

(v) 
BP 

(vi) 
yrs 

(vii) 
BP 

6 2995±75 2956 48 2860-3050 2970 38 2900-3040 
8 3060-+50 3038 38 2960-3100 3043 32 2980-3100 
9 3090-+40 3079 32 3020-3130 3077 30 3020-3130 

10 3125±25 3120 26 3060-3100 3111 29 3050-3160 
11 3160-+20 3160 24 3120-3200 3147 27 3100-3200 
12 3190-+25 3201 17 3160-3250 3184 24 3140-3230 
13 3225±30 3242 16 3200-3270 3223 23 3180-3260 
14 3255±35 3283 17 3250-3320 3270 20 3220-3300 
16 3320±50 3365 24 3325-3410 3352 22 3320-3400 
17 3350±65 3405 1 23 1 3360-3460 1 3387 25 1 3340-3440 

Table 5.4 
Column (i): average best fit found by Manning and Weninger (1992) 

for the wiggle matching of ten Schichten from Kastanas, Greece. 
Columns (ii) to (vii): posterior means, standard deviations and 95% HPD regions 

in our analysis for priors I= 10,15,..., 60 and 1i - G(5,7). 

We reanalyse this data using our Bayesian methodology as follows. Firstly 

we assume that the time elapsed between successive Schichten is equal. We 

maintain the assumption that I= 10,15,..., 60 and assume that, a priori, any of 

those values is equally likely. Thus, forj = 4,5,..., 9,12 we have 

gj(x) =I/ 11 if x= 10,15,..., 60, 

and for j=3 and j= 11 

gj(x) =1/ 11 if x= 20,40,..., 120. 

In this case we have the likelihood 
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12 0»2 j 
L(y 101,1) -n1 exp -1 

(yj -- g( 

j=I 0)j(0j) 2 wil( oi 
jo2.10 

where Oj = 01 + (j - 1) 1. 

0.025 

(a) 

3100 

0.5 

(b) 

0 

Figure 5.6 
(a) Marginal posterior density for Schicht 6,01, 

and (b) marginal posterior mass function of 1. 

With the above definition for the functions gj's we calculate the posterior 

marginal distributions of 01 and I shown in Figure 5.6. Also, in Table 5.4 we 

present the posterior mean and standard deviation and the 95% HPD regions for 

each Oj in columns (ii), (iii) and (iv) respectively. In this case the choice of a 

discrete prior distribution for I is reflected in a spiky distribution for 01, as seen 

in Figure 5.6. Note that the most likely values for I are 40 and 45 with 35 next. 

This contrasts to Manning and Weninger's (1992) 'best' estimate for I of 35 

years. 

3000 2900 2800 
01 calendar years BP 

10 20 30 40 50 60 70 80 90 
1 years 



- 151 - 

Secondly we relax two assumptions made by Manning and Weninger (1992). 

These are: 

The times between successive Schichten (1j) are equal. 

(ii) The times between successive Schichten (1j) are a multiple of 5 between 10 

and 60 inclusive. 

We do this by assuming the lj's to have a Gamma prior distribution. We 

took the parameters a=5 and b=7 to allow the 1j's some chance of being less 

than 10 and greater than 60 years, and maintain the prior expectation equal to 35 

years, as was the case in the former analysis. Here then, a prior!, P(Ij < 

10) = 0.01 and P(Ij > 60) = 0.07, see Figure 5.7. 

0.04- 

0.02- 

0- IIIT 
T- IIII1 -1 

o 10 20 30 40 50 60 70 80 90 100 
Calendar years 

Figure 5.7 
Prior density for the intervals Ij - G(5,7). 

Here we allow the 1j's to be less than 10 and greater than 60 

since P(lj < 10) - 0.01 and P(Ij > 60) - 0.07. 

In terms of the functions gj's we have 

ei(x) =x 
a-I exp(-X/b) for x>0, ba I'(a) 

forj = 4,5,..., 9,12 and a=5 and b=7. Since 03 - ol = 13 and 011 - 09 = 111 we 

expect that, a priori, 13 and 11, are twice the length of the rest of the 1j's. There- 

fore, for j=3,11 we have 
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gi W=x 
2a-I 

exp(-x/b) for x>0 b 2a r(2a) 

(since 2z - G(2a, b) if z- G(a, b)). 

0 3 . 
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0 3 - . 
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0 3 . 09 

0 3 . 
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3500 3400 3300 3200 3100 3000 2900 2800 
Calendar years BP 

Figure 5.8 
Marginal posterior densities for the Oj's assuming different and 

independent intervals li's with prior 11 - G(5,7), 
for the ten Schichten from Kastanas, Greece. 

Using the full conditionals given in Equation 5.1 we implemented the Gibbs 

sampler and, after checking for convergence, obtained the distributions for Oj Iy 

shown in Figure 5.8. 
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In columns (v) and (vi) of Table 5.4 we give the posterior mean and standard 

deviation of each Oj and in column (vii) the 95% HPD regions for each Oj. By 

comparing these columns with column (i) in the same Table, it can be seen then 

that the heuristic estimates of Manning and Weninger (1992) have some agree- 

ment with our results, though our standard deviations are smaller. In addition, by 

comparing columns (iv) and (vii) (the HPD regions for both analyses) we see that 

our results do not drastically change from the first to the second analysis per- 

formed. This tells us that results will be similar if we maintain similar priors. 

We do not believe that the posterior distributions shown in Figure 5.8 have a 

definitive archaeological relevance since we have not analysed the consequences 

of transforming the original set of radiocarbon determinations into a series of 

pooled means. Moreover, it might be the case that the original set of radiocarbon 

determinations should be studied as an 'archaeological phases' problem and not 

viewed as a AWM problem (we will study archaeological phases problems in later 

Sections). This might lead to a more relevant means of analysis so giving the 

archaeologists more interpretable results. 

5.4 Contemporaneous houses 

In Section 2.4.7 we reviewed a problem first reported by Helskog and 

Schweder (1989). The problem is one of dating and checking for contemporane- 

ous use of a set of houses from two adjacent sites in Norway. Radiocarbon deter- 

minations have been performed on charcoal belonging to 11 out of 23 houses. 

Unfortunately, the uncalibrated radiocarbon determinations were not given by 

Helskog and Schweder. We were unable to locate the determinations from the 

lists of results given in the journal Radiocarbon, and we did not get a response to 

a letter addressed to one of the authors. Therefore, our intention in this Section is 

to illustrate how this problem can be analysed within our statistical framework but 
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because of the lack of original data we are unable to compare results. 

We study a slightly more general problem in which we have several radiocar- 

bon determinations performed for each house (Helskog and Schweder 1989 stu- 

died the problem having only one determination per house). Suppose we have n 

houses and ml determinations performed for house i. In this case we have a set 

of radiocarbon determinations formed by 

yi, j ± aij; for i=1,2,..., n and j=1,2,..., mi 

and associated with the calendar years Ojj's. Let ui, j be the deposition time of 

sample j belonging to house i, ri the year of abandonment of house i and Ii the 

occupation longevity of house i. 

Here we define the parameter yr from our framework as V= 

(TI, Ili 'r2,12, ... irng 
In)- We assume (as in Helskog and Schweder 1989) that the 

disposition time of all samples is similar to the associated calendar year for each 

determination and thus Ojj = uj, j. Using the model in Equation 4.1 we have 

yi, j I oij, ri, Ij - N(, u(Oi, j), Wý-(Ojj)) ill 

(where wjý-(Ojj) = qj' 2(0,. 
j j+a and we assume that, given the oj's, the yij's are 

independent. 

Since the occupation period of house i is rj+lj to ri (years BP), given both 

, rj and Ii, the Ojj's should all belong to that period of time. That is, the organic 

matter contained in sample ij should have died within the period of occupation of 

house i. Furthermore, assuming that the samples are equally likely to have died 

at any time within the occupation period of the houses we have 

oij I 

'ri , li - U(, ri , ri + li) - 
Now, the deposition of one sample should not affect the deposition of another 
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sample and thus we assume that, given Vf, the Ojj's are independent. That is 

n m. 
f(O I vf) =H 

fl Aoij I Ti, li). 
i=l j=l 

Helskog and Schweder assumed that -ri has a vague prior distribution and 
n 

that Ij and rj were independent (that is, f(yf) = rl f(Ij)f(, rj)). Here we maintain 
i=1 

these two assumptions. However, they assumed that Ii was fixed and equal for all 

houses. This latter assumption is relaxed here. An abbreviated hierarchy diagram 

for this model is presented in Figure 5.9 

Figure 5.9 
Abbreviated hierarchy diagram for the 'contemporaneous houses' problem. 

The nodes above correspond to house i only. The complete diagram 
would be a series of the above diagram for i=1,2,..., n. 

There are no other links than the ones shown. 

From Equations 4.2 and 4.3, and the above considerations about f(yf) it is 

easy to see that the full conditionals are 

f(Oi, j I yij, O-jj, -ri, li) -1 exp 
I (y,. j -. U(O,. j))2 1( oi 

O)i. j(oi, j) 

1-2 

(014(oij) 

I 

n 
f('ri I Oi, li) - rl I(Oi, 

j)(, ri. Ti + li) 
i=l 
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and 

In 

i 
Ali I oi 

I Ti) - 7! -n l(ei, j)(ri, Ti + 

where Oi ; -- (00 ý Oi, 2 9. ,*q Oi,., ). Note that the full conditional for ri is actually a 

uniform distribution on max(Oj)-Ij, min(Oi) and that I(Oi. j)(,,, viewed as a 

function of Ij, is equal to 1(Ii)(max(Oj)--rj, 
m). Therefore we have 

-ri I Oi, li - U(max(Oi)-li, min(Oi)) 

and 

1 
Ali 1 Oi, Vi) i 

It is not difficult to sample from either of the above distributions (provided 

f(Ij) has a simple form). Using a MCMC method we can then obtain f(Vf I y). As 

stated in our framework, we should then base our conclusions using that distribu- 

tion. As stated before, what we want to know is the number of contemporaneous 

houses at any time t. This can be calculated from f(V I y). To see this we note 

that, given V, the number of contemporaneous houses at any time t is 

n 
N(t, l(t)(,,, 

Therefore, the expected number of contemporaneous houses at any time t, 

given y, is 

N(t I y) = E[N(t, V) I yj =f N(t, VI)f(Vr I y)dvy. 

One can then implement a MCMC method to obtain f(V I y) and after that calcu- 

late the above integral to obtain N(t I y). This is not the most desirable way to 

proceed since the (MCMC) sampling process itself can give us an estimate for 

N(t I y), by noticing that 
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d 
N(t, ig(')) -+ N(t I y) as s -4 

(see Section 4.3.4). 

Note that N(t I y) will not be a function of the li's, as opposed to what Hel- 

skog and Schweder obtained. Still, there is the question about the assumption that 

Oij = ui, j. That is, the time of deposition of the samples is equal to their associ- 

ated calendar years. This assumption could be relaxed by letting Oij = ujj + dij 

where dij represents the time elapsed between the death of sample ij and its 

deposition. Several options can be followed, from using a single d= dij for all 

determinations or giving the dij's a prior distribution. We do not explore this 

possibility any further. 

5.5 Peat cores 

Large parts of the earth are covered by peat and the study of peat cores is an 

important discipline that, among other things, helps us to understand environmen- 

tal change. It is known that peat accumulates and decays through time and there- 

fore an underlying relationship between peat depth and peat age can be expected. 

By performing chemical and botanical analyses of peat at successive depths one 

can obtain a picture cý environmental change for the area under investigation. 

Therefore, it is crucial for environmental scientists to have a clear description for 

peat depth and age in order to understand the chronology of environmental change 

(see Clymo 1991 for a review of the subject). 

In general, however, the relationship between peat depth and peat age is 

difficult to establish. It is here that radiocarbon dating plays an important r6le in 

peat core study, since it is used to help establish such a relationship. Peat cores 

are commonly extracted in cylindrical samples and sliced to generate a series of 

peat samples at various depths. Some of these samples are then radiocarbon 
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dated. It is then expected, using the corresponding determinations and some other 

theoretical considerations, to obtain a description for depth against age for the 

peat core under study. 

Evidently there are a series of technical difficulties to be solved before a 

realistic description of peat depth against age can be achieved using radiocarbon 

dating. Here we have a series of radiocarbon determinations yj±aj, 

Y2±072-* IYM±(T,, ý arising from peat samples taken at successive depths 

xl, x2,... )xm. Since peat age increases with depth, the associated calendar years 

for the radiocarbon determinations (the calendar years at which the organic 

materials contained in the peat samples died) 01to2l. 
-Om should be ordered. 

That is (using years BP) 0,, ý > 0,,, 
-, > ... > 01. 

Furthermore, based upon theoretical considerations about peat growth below 

a certain fixed depth xO, and using the rate, p, at which mass is added (on an area 

basis) at depth xO and the proportional rate of mass decay, a; the following model 

has been proposed (see Clyrno 1991 for details). It is proposed that, for the dry 

mass M accumulated (on an area basis) below xO, we have 

L[I 
-exp(-a(O-Oo))], (5.2) 

a 

where 0 is the age of the peat below xO and 00 is the age of the peat at depth xO. 

Therefore the model relates the age of the peat with the cumulative dry mass 

which, in turn, is related to peat depth. 

As can be seen from the above, several factors are involved in this problem. 

ideally, all of the aboye considerations should be combined to obtain a description 

for peat depth and its age using the evidence of the radiocarbon detenninations 

available for the core under study. Undoubtedly, this will involve radiocarbon 

calibration and further statistical modelling to obtain satisfactory results. 
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Given that the Oj's are known, a priori, to be chronologically ordered, wig- 

gle matching techniques have been used to tackle this problem (see Clymo et al. 

1990). However, results have not been totally satisfactory (we have discussed 

some of the inadequacies of wiggle matching techniques in Sections 2.4.5 and 

5.4). The principal technical difficulty here is to consistently combine radiocar- 

bon calibration, the theoretical considerations about peat growth explained above 

and the radiocarbon determinations available. This cannot be done using wiggle 

matching techniques. 

The statistical framework explained in Chapter 4 allows us to tackle this 

problem and consistently combine all the factors explained above. Below we 

present an example of how this can be done. 

5.5.1 An example 

Clymo et al. (1990) present a study on a peat core sampled from Southwest 

Scotland. The peat core is 50cm deep and samples were taken to be radiocarbon 

dated approximately every 2cm below the summer water table. Details of these 

determinations can be found in Table 5.5. Here we present an analysis of these 

determinations and obtain a description for peat depth and age. 

Dry mass is easily measured. For the peat core under study there is a clear 

linear relationship between cumulative dry mass and depth below the summer 

water table (see Clymo et al. 1990, figure 1). This means that Equation 5.2 can 

be rewritten as 

x= xo+Lf I -exp(-a(0-00))]. (5.3) 
a 

Here xo (= 24cm) is the depth for the summer water table and 00 is the age for 

the peat at that depth. p'=ap for some fixed a, and p and a are defined as in 
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j Depth 

xj cm 

Sample id. Det. 

1 26 UB-2773 120±60 
2 28 UB-2774 220±60 
3 30 UB-2775 110±50 
4 32 UB-2776 50±66 
5 34 UB-2777 125±60 
6 36 UB-2778 205±55 
7 38 UB-2779 285±55 
8 40 UB-2780 255± 55 
9 42 UB-2781 110±60 

10 44 UB-3165 434±35 
11 46 UB-3166 404±31 

Table 5.5 
Radiocarbon determinations from Ellergower Moss core EK3. 

Baillie (personal communication). 

Equation 5.2. 

Therefore, once knowing 00, a and p' we would know the relationship 

between depth and age (below xO). Unfortunately none of these parameters are 

known exactly and thus need to be estimated using radiocarbon. Using OUT frame- 

work, it is not difficult to tackle this problem. Here we define 

v= (00, a, 

Then we note, expressing Equation 5.3 in terms of the depths xj's, that given iy, 

Oj =A (xj) = 00- 
1 log 1-a (xj - xO) 
aIp. 

I- 

Thus, we know a priori that (0 1 Vf) = (AV, (xj), AW(x2),... 'AV, (xm)) with probabil- 

ity one. That is, given Vf the Oj's are known (since xo and XIIX29-. -? xm are 

known ie. the depth of the summer water ! able and the depth for the samples 

radiocarbon dated). 
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We use the distribution f(y 10) as in Equation 4.1, that is 

yj I Oj - N(y(0j), wj2(0j)) 

ý(O. ) = (7ý+C2(0 (where o)j ,i ý)) and we assume that, given the Oj's, the yj's are 

independent and therefore 

f(y 10) = rl Ayi 1 Oi). 
j=l 

To this point we have defined Vf, fty 10) and f(O I Vf) and thus f(yf) (the 

prior distribution for V/) is left to be defined. We expect that the age of peat at 

the summer water table is independent of the rate of mass accumulation and decay 
a 

and thus we assume that f(yf) = f(OO)f(a, p). Furthermore, I-P, (X"' - XO) must 

be greater than zero (so A,, (x) is well defined) and since a is a proportion, fta, p') 

must have support contained in 

>a>0 and 
p> (X. - XO). 
a 

The above parameters have been estimated before for other peat cores, using 

both formal and informal techniques (see Clymo 1991, Warner et. al 1993, Smith 

and Clymo 1984). In principle, reliable a priori information about Oo, a and p' 

can be used in the analysis and modelled with the distribution ftyf). These param- 

eters change for different geographical areas and therefore it is difficult to have 

information -about 00, a and p' in a truly general sense. Little can be said about 

00, however, from previous experience and in very broad terms, typical values for 

a and p (in the northern hemisphere) are a= IX10-4 to 5x1 0-4 yr-1 and 

p=0.003 to 0.007 gr CM-2 yr-1. It will be very difficult to decide whether these 

figures apply to our example or not. With this in mind, and considering that 

p' = ap where a= 10 gr-1 cm3, we have decided to give a and p' a uniform 

prior distribution over the (very) wide margins 0.01 >a>0 and 0.3 > P' >0 
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(with 
L> 

(x,,, -xo)), and we let f(OO) be vague. 
a 

From the above discussion it is not difficult to see that the posterior distribu- 

tion for Vf is 

MII (#(A (xj)) _ yj)2 f(yr I y) = f(OO, a, p' I y) - 11 - exp 
j=I o)j (A 

, 
(xj )) 

12 

o)j (A 
. 

(xj 

for 0.01 >a>0,0.3 > p' >0 and 
P' 

> (x,,, -xo). We used numerical integra- 
a 

tion techniques to find f(VI I y) and the posterior marginals f(OO I y) and 

f(a, p' I y). We present plots of these posterior marginals in Figures 5.10 and 

5.11 respectively. The 95% HPD region for 00, the age for the peat at the sum- 

mer water table, is 250 to 85 BP and the mode for the distribution (the MAP 

estimator) is at 212 BP. 

0.015 

0.01 

0.005 

0 

Figure 5.10 
Posterior distribution for the age of the peat 

at the summer water table. 

Note that the joint posterior distribution -for a and p' is wide spread over the 

area chosen for the prior distribution of those parameters. However, there is a 

high peak in the region 0<a<0.004 and 0.05 < p' < 0.1. The mode for the 

whole distribution is (0.0016,0.76). This translates to a=0.0016 and p=0.076. 

The point estimate for p approximately coincides with previous values reported 

for that parameter. However, our point estimate for a is 2 to 3 times higher than 

values previously reported. Experts on the subject might argue that a part of the 

220 165 110 55 0 
Calendar years BP 
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Figure 5.11 
Joint posterior distribution for a (x-axis) and p' (y-axis), 
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Figure 5.12 

Plot describing the relationship between peat depth and age. 
A vertical line at depth x describes, based on the gray scale, 

the posterior density function for the age of the peat at that depth. 
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a priori region chosen for a and p** represents physically impossible values and 

thus need to be reduced to a more sensible region. Further collaboration with the 

experts involved should result in more satisfactory prior elicitation. 

As stated before, the principal objective of this study is to establish the rela- 

tionship between peat depth and peat age. In our model this relationship is deter- 

mined by V/. However, since we have an estimate for Vf given by a posterior 

probability distribution, the current knowledge we have about peat depth and age 

has a degree of uncertainty. The current knowledge we have about that relation- 

ship is represented by the distribution of A. I Y(x). That is, for each depth x, we 

have a random variable A., I Y(x) the distribution of which represents the current 

knowledge we have about the age for the peat at depth x. It is not difficult to 

calculate the distribution for A. I y(x) using f(yf I y). To obtain a convenient and 

interpretable summary of these distributions we proceed as follows. 

For each depth (every 0.2cm) we calculate the density function of A. I Y(x) 

and plot this function with a single vertical line using a grey scale. The conjunc- 

tion of all these plots results in a complete description for AV I y(x). This is 

shown in Figure 5.12. 

Figure 5.12 gives us a clear description for peat depth and age. Furthermore, 

if required, we can calculate the most likely age period for peat at certain depth 

(using Aw I y(x)). For example, the 95% HPD region for the age of peat at depth 

35cm is approximately 300 to 200 years BP. 

We believe that the above approach for analysing the age of peat cores can 

give the environmental scientists reliable and interpretable results. Note that, 

using our framework, the important factors involved in this problem have been 

introduced into the analysis. Namely, radiocarbon calibration (included in the 

model fty 10)), the theoretical considerations about peat growth and the 
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radiocarbon determinations available. Further research could analyse other data 

sets available from various parts of the world. In addition, other models for peat 

growth (A, (x) above) could be considered and, indeed, the priors used (eg. 

f(a, p')) can be changed to be of use in other peat core studies. We are confident 

that this will help in the understanding of peat growth. 

5.6 Working with phases 

In this Section we present a series of techniques to tackle the problems of the 

interpretation of radiocarbon determinations when complicated 'archaeological 

phases' are involved. Here we do not base our study on a particular archaeologi- 

cal dating problem but try to consider general techniques that could be used. in 

Naylor and Smith (1988) and Buck et al. (1992), reviewed in Chapter 2, examples 

involving complicated archaeological phase structures have been studied and com- 

plex models have been us6i to date them by combining the prior information and 

the available radiocarbon determinations. In this Section we present a series of 

techniques to deal with phase structures such as those that could appear in a 

specific archaeological dating problem. In Chapter 7 we will use the techniques 

presented here to aid in the analysis and interpretation of a set of radiocarbon 

determinations. 

In broad terms, the archaeological dating problem studied is the following. 

There are a series of time periods, or phases, identified by the archaeologists for 

the problem under study, that need to be dated using radiocarbon. These could be 

a series of stratified periods of occupation in a site, a series of periods of stylisti- 

cally similar pottery production, the reign of a series of kings in a given culture, 

etc. For each phase there is a set of radiocgbon determinations associated with 

it. Furthermore, prior knowledge might be available about relative chronological 

orders among the phases and/or about their lengths or absolute position in time. 
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It is then expected that, by combining all of these factors, the phases could be 

dated in the calendar scale. Below we give further details and explain how this 

problem can be tackled using our framework. 

5.6.1 A general setting 

Here we present a general setting for the analysis of complicated phase struc- 

tures. Firstly, we give some notational conventions and explain the assumptions 

made. Secondly, we present an example and go on to discuss the general sam- 

pling techniques needed to be able to approximate the posterior distributions of 

interest. 

Suppose that we have a set of m radiocarbon determinations and that there 

are n phases which need to be dated. Let yi, j±aij be determination j associated 

with phase i, and mi be the number of determinations associated with phase i 
n 

(thus mi m). Let 6j, j be the associated calendar year for determination yij. 

We define the vector 

Oi ": (0i. 1 1 
Oi, 2? I 

oi, 
mj)ý 

with an equivalent definition for yi. Furthermore, we define 0 as the vector con- 

taining all the Ojj's and y the vector containing all the yi. j's. We use the term 

'phase' to mean a 'period of time'. In terms of our framework, we will represent 

the archaeological phases which need to be dated using the parameter y/. 

Now, let V2j be the beginning and V2j-j the end of phase i, for 

1,2,..., n. We assume that, for a fixed i, the associated calendar years Oid's 

all belong to the phase V2j to V/2i-,. That is, the calendar year in which the 

organic matter in sample Q died belongs to the phase which the sample is related 

to (phase i). 
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Here, considering our general framework, we define 

Vf = (Yfl 
v V2 t---9 Vf2n )- 

That is, V/ represents the periods of time (in the calendar scale) covered by the 

phases under study. 

It is common with problems of this kind to assume that the beginning or end 

of one phase coincides with the beginning or end of another phase or phases. 

This means that, in some examples, some y1j's will be the same. To represent this 

we use the set e(i), where kE e(i) if and only if V/j = Vk. 

The problem now is to define f(y 10), f(O I Vf) and f(yi) and, given these, 

obtain the . posterior distribution f(yf I y). This posterior distribution will 

represent the knowledge we have about the position in time for the phases under 

study, considering our prior information (given by f(O I Yf) and ftyf)) and the 

radiocarbon determinations y. Thus the primary objective of our analysis will be 

to calculate f(VI I y). 

Using the model in Equation 4.1 we have 

yi. j I Oij - N(, u(Oi, j), Wý-(Ojj)) I. j 

(where 0)ý. (O. Cý. +a2(0,, j)). We assume that, given the Ojj's, the yi. j's are I, ] Ili Ili 

independent and thus 

f(y 10) = 11 Ilf(yi, j 1 Oi. j). i=I j=I 

From the above, it is clear that, given Vi2i and V2i-i, Oij E (V2j-1, V/2j) with pro- 

bability' one. From this it seems reasonable to assume that f(Oj, j I O-jj, Vf) = 

f(Oj'j I O_jj, Vf2j_j, V/2j). In addition, there might be cases in which the associ- 

ated calendar years Oij are known, apriori, to maintain some chronological 
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order. This information can be introduced in our analysis when we specify 
f(Oj'j I O-jj, yf2i-,, Vf2j) (for example, given O-jj, Ojjj > Oij > Ojj-j). How- 

ever, here we assurne that 

f(Oi, 
j 

I 0-ij, V2i-Iv V20 "": 
AOQ I V2i-l? V20- 

Furthermore, it seems reasonable to expect that, knowing the position in time 

for the phases, the associated calendar years are independent. That is, we assume 

that given Vf, the Ojj's are independent. This means that 

n m, 
f(O I V) : -- rl 11 f(Oi, 

j 
I V2i-I 1 V2i)- (5.4) 

i=i i=l 

The actual definition for f(Oi, j I V2j-1, V2j) will obviously depend on the 

problem at hand. If we have little or no information that indicates that the 

organic matter contained in sample ij should have died in a specific part of the 

phase i, then we can assume that 

Oij IV- U(V2i-l? V20- 

That is, sample ij is, a priori, equally likely to have died at any time within 

phase i. If, for example, sample ij is thought to have died near to the end of 

phase i, then f(Oi, j I yf2i-,, Vf2j) can be chosen as a skewed distribution towards 

Vf2j_1 - 
However, we will assume a uniform prior for Oij. With this in mind, in 

Figure 5.13 we present the hierarchy diagram for the parameters involved in phase 

j, namely, Oij forj = 1,2,..., mi and y/2j-j and Vf2j. 

As discussed above, there may be further chronological prior information 

relating the beginning and end of the phases under study. For example, we may 

know, a priori, that phase i ended before phase i +I began. That is, we know that 

V/2, _, > yf2(i+, ); see Figure 5.14. This information can be introduced in our 
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Yi, 2 ) Gi. 2 )-*ýVV-l 

V2vi 

Figure 5.13 
Hierarchy diagram for the parameters involved in phase i. 

analysis by defining 

V2i-I I Yf-(2i-1) - U(V2(i+l)v V2i) 

(note that, since V/2j-j is the end of phase i, we should always have V2, -I ': ý V2i)- 

time 
Phase 

-15 
V2i V2i-I 

Phase 
-e ; 10 

V2(i + 1) 1+1 V2(i + I)- I 

Figure 5.14 

Diagram representing the relative position for the beginning and end 
for two phases. Here the end of phase i is before the beginning of phase i+ 

A very general way of representing chronological relationships among the 

y1i's like the ones discussed above, is to assume that 

(Vi I V/-i) - U(ai(W-i), bi(yr-j)). 

This means that, a priori, V/j depends upon Vf-i only through the functions ai and 
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bi, which are the boundaries for the prior uniform distribution of y/j. That is, 

given Vf-j, yfi is uniformly distributed within the period of time bi(yf-j) to 

ai(yf-i). 

The above assumptions may restrict the wide range of possibilities of the 

general framework stated in Chapter 4. However, from our experience of some 

archaeological dating problems studied we see that the above setting gives a wide 

enough range of possibilities. In fact, the archaeological phases problems studied 

by Naylor and Smith (1988) and Buck et al. (1992) (and the phases problem stu- 

died in Chapter 7) can be included within the above setting. 

5.6.2 Form of the full conditionals 

Using the general setting discussed above and using Equations 4.2 and 4.3, it 

is easy to see that the full conditionals for our parameters are, 

Aoij I Yq 0-(i, j)i Vf) -": AOQ I YQ9 Yf2i-It Vf2i) c"-' 

exp 
(yi, j -, U(oi, j)), (5.5) 2 (0,, j) 

l(oi-Aw., 
- V'o 

O)i, j(oi. j) 2 O)i, j 

)I 

. 
(Oi, j) = Cri2 +a 2(oi, 

j ), and li j where mjý 

f(Vfi 1 Y, 01 V-i) = f(Vli 101 Vf-i) - f(0 1 y/) bi(Vi-i»- 

Note that the full conditionals f(Oi. j I yi, j, V2j-1, V2j) are similar to the distribu- 

tions for the calibrated calendar year of a determination y± or, with vague prior, 

found in Chapter 3 (see Figures 3.5 or 3.6), but restricted to (V2i-l, V2i)- 

To analyse the form of the full conditionals for the Vi's we look at the pro- 

duct f(O I Vf) b, (W-, ))' To facilitate notation we call g(yfi) = 
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ftyli 10, yr-j). From Equation 5.4 we see that f(O I iy) is a product of uniform 

densities. From those uniform densities, we only consider the ones that include 

V/i as a parameter. Now note that, if i= 2k-1 then 

Mk mk 

rl f(Oi, j 
I Vig V2k) oc (V2k-Vi)-Mkrl I(Oi. j)(V,,. V,. ) 

j=l j=l 

with a similar expression if i= 2k. We must remember that Y/i can represent the 

beginning and end of several phases. The set e(i) tells us that 2k e e(i) if and only 

if Vi = V2k and thus yfi is the beginning of phase k and that 2k-l E e(i) if and 

only if Y/i = V2k-I and, therefore, Vi is the end of phase k. From this it is not 

difficult to see that 

g(Vi) =K 

-mk 

Mk 

V2k-I 

2k e e(i) 

I(t9k, j)(V,, 
-,, vi) 

Ix 

Mk 
ri 

(V2k - Vi) - mk rl 

(2k 1) e e(i) 

I 

j=l 

I(Vi)(ai(V-, ), bi(yl-i))- 

l(ok, j)(Vi. V. ) 

I 

Here the first set of products accounts for when Vi is the end of a phase and the 

second set for when Vi is the beginning of a phase, and K is the normalisation 

constant. Now we need to express the above indicator functions 
yf, ), 

and I(Vi)(aj(vp-j), bj(Vt-j)) in terms of Vi, after which we obtain 

g(yfi) K rl (Vi-V2k-, )-Mk rl (V2k-Yi)-Mk 

I 

2k e e(i) (2k - 1) e e(i) 

where 

a= max max(Ok), ai(yt-i) 
I 

2k rz e(i) 
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min min(Ok) bi(yf-i) 
1(2k-1) 

e e(i) 

I- 

Therefore, we can see that g(yfi) has the form 

K s1l (VI - yfi I(Vi)(,, b), (5.6) 

where s=1 or -1 (arising from the changes of sign due to switching the 
(Vfi - yf2j)'s to (V/21 

- yfi)), q, are some positive integers and K is the normalisation 

constant. 

From the above considerations we can conclude that 

f(vi 1 Y, 0, gr-i) = I(Vli)(a, b) 
P(Yfi) 

where P(Vfi) is a polynomial positive on [a, b], to ensure integration, with its roots 

at some Vk's- 

Note that for some cases, there might be parameters that are actually 

4repeated' in our setting. If for example, the beginning of phase i is the ending of 

phase i+1 then we have V/2i = yf2(jj. )- 1. We prefer, though, to maintain both 

parameters and make our modelling more explicit. We call the complete vector V/ 

the 'explicit' parameters, and the corresponding vector ly', for which all the 

parameters are different, the 'actual' parameters. 

5.6.3 An example 

We present an example to illustrate the general setting discussed above. We 

use a hypothetical phases problem to illustrate our approach. suppose we have 

four archaeological phases in a site and assume that the prior distribution avail- 

able can be represented with the priors explained above. Suppose, for example, 

that the beginning and end for each phase are known, apriori, to maintain a 
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time 
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2 

le 30 4 
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Figure 5.15 
Diagram representing the known, a priori, relative chronological relationships 

among the phases in our hypothetical example. The vertical line means 
that the end of phases 3 and 4 coincides with the beginning of phase 2. 

Figure 5.16 
Hierarchy diagram for our hypothetical example. 

The nodes P 1, P2, P3 and P4 represent the yi, j's and the Ojj's in 

phases PI, P2, P3 and P4 respectively. 

relative chronological order, which we represent by the diagram in Figure 5.15. 

Using the notation presented above, the hierarchy diagram for the parameters 

in this example can be seen in Figure 5.16. To abbreviate our diagram we use the 

nodes P 1, P2, P3 and P4 which represent the Yjj's and the Ojjs in phases 
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P 1, P2, P3 and P4 respectively. (We have described the dependencies among 

these latter parameters in Figure 5.14. ) 

Here time runs upwards in our hierarchy diagram, thus, for example, in the 

diagram presented in Figure 5.16, V7 is earlier than y/2 (yf7 > V/2) etc. This will 

be true, though, only in between nodes sharing a link. Double arrowed linkages 

mean that the parameters are equal, thus Vf4 = y/5 = V/7 and vertical links are only 

left to link the boundaries of groups. Therefore we have yf3 < Vf2, Vf2 < V7 and 

y/4 = Vr5 = yf7. These chronological relationships can be introduced in our 

analysis using the prior distributions f(yli I yf-j) defined previously. For example 

V2 I V-2 - U( max(yf3, y/i ), v7). 

Here, of course, a2(V-2) = max(V3, V/1) and b2(V-2) = V7- 

We choose our 'actual' set of parameters to be 

V= (VII V21 V37 V41 V67 V8)- 

After this and following the above discussion on the form of the full condi- 

tionals, it is not difficult to find the full conditionals for our parameters. For 

example, the full conditional for V4 depends on max(02), V/3 and, since 

V/4 = y/5 = yf7, it also depends on min(03), min(04). iy2, V/6 and V/8 (see Figure 

5.16). From the conclusions of the previous Section we can see that 

f( V/4 109 Vf- 4) '2-' ( V/4 - V/3 )- M2( y/6- V/4 )-M3( vf8 - vf4 )-M4 I(Vf4)(a, 
b) 

where a= max(max(02). V2) and b= min(03, OS). The Test of the full condition- 

als can be found in a similar way. 
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5.6.4 Sampling techniques 

Considering the above discussion on the form of the full conditionals, we 

only need to sample from two types of distributions whose densities are given in 

Equations 5.5 and 5.6. These are the full conditionals for the Ojj's and the full 

conditionals for the yfi's. 

In previous Sections we have discussed how to sample from the distributions 

f(Oij I y, O-ij, Vf) (see Section 4.3.5). In this case we need, either to integrate 

numerically to find the cumulative distribution function F(Oij) and then find 0-) 
Ili 

such that G(O!. )) =u where U- U(O, 1), or to use a rejection type algorithm for Ili t 

the simulation. As we have pointed out before, analytical methods are discarded 

due to the non-analytical definition of the calibration curve p(O) and the variance 

function a 2(0). However, we do not discuss this problem any further. 

We then concentrate our attention on sampling from the distributions 

f(yli 1 0, V-i). If we let g(yri) = f(yfi I y, O, vy-i), we have seen that 

g(vi) =K IW(a, b) (5.7) 
P(vi) 

where P(V/i) is a polynomial with the form SrI (Y/I _ Vi)q, positive in [a, b] with 
I 

S=I or -1 and q, some positive integers (see Equation 5.6). Elsewhere we have 

seen how to sample from g(Vi) when P(Vi) -ý (V2k - VOMA (see Section 4.3.5). In 

this case it is possible to find the inverse of the cumulative distribution function 

of yfi and from that we have 

Vi N= V2k 
V2k-b 

V2k-b 

-U) V12 
. k-a) 

where U- U(O, 1). Then by simulating a value u from a uniform distribution 

U(O, 1), we obtain a simulated value tgi(*) for yfi. Similarly, when P(Vfi) = 
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( Yfi - Vf2k 
-I 

)'kwe have 

Vi M 
"": V2k 

-I 

a- V2k- 11 

M-1 a- Vf2k- I (1-u)+u 
j(b-V'2k-1) 

where U- U(O, 1). 

For the general case P(Vfi) = srj (VII-Vi)ql, it is not possible to find an 
I 

analytical expression for the inverse of the cumulative distribution function and 

thus to obtain similar results to the ones above. Nevertheless, it is very simple 

(though it might not be very efficient) to perform a rejection type algorithm to 

simulate a value for Vi, given the following Lemma. 

Lemma: The maximum of g(Vi) in Equation 5.7 is either at a or at b. 

Proof: for the purposes of this proof and with no loss, of generality, we let 

n 
P(Vi) 

": 
11 (Vk- yfi)qk. 

k=l 

Since g(V1j) is a density function, P(Vi) >0 in [a, b]. We want to prove that the 

minimum of P(Vi) in [a, b] is either at a or at b since g(Vi) =K l(V)(a. b)- P(Vi) 

Given the above definition for P(V/j), it is clear that the VIk's are the roots of 

p(Vi), each with multiplicity qk, With no loss of generality we can assume that 

VI < V/2 < ... < V, From this it is clear that the derivative of P(Vfi), P'(Vti), has 

a root in (Vfk, y1k, j) for k=1,2,..., n-I since P(V/k) =0 and P(VA; +, ) = 0. Each 

of the ylk's is a root of P'(Vi) of multiplicity qk-11 this means that P(Vj) has at 

least 

nn 
n-I + (qk- 1) qk 

k=l 

(k=l 

real roots. But these are all the roots of P'(V/i) and therefore P"(V) =0 has one 
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and only one root in (Vfi, Vi I) for k=1,2,..., n-1. 

Note that, if b< iyj or V/,, < a, then [a, b] is not contained in an interval 

(Vlk, ylk, l) and thus P'(Vi) has no roots in [a, bl. Therefore, the minimum of 

P(yfi) is either at a or at b. Suppose then that [a, b] is contained in one of the 

intervals (Vfk, ytt, j); let this interval be (VI, 

Now, suppose that P(V/i) is minimal at x in (a, b). Therefore x is the only 

root of P'(Vi) in (y/j, V/1, I). Note that (since P(VI) =0 and P(VI) >0 in (a, b)) 

P(a) > P(x) > P(Vfl) with V/1 <a<x. From this we see that there exists a 

X" E (V/j, X) such that P(x') = P(x) and therefore P'(Vfi) has a root in (x', x). But 

this is not possible since x is the only root for P'(Vj) in (V/I, Vl+, ). This means 

that P(Vfi) cannot have a minimum in (a, b) and therefore the minimum for P(Vfi) 

in [a, b] is either at a or at b. 

Using the above result it is very simple to simulate a value for Vf. We just 

follow the simplest case of the rejection algorithm. 

(i) Take M= max(g(a) 1K, g(b) 1K). 

(ii) Generate r, - U(O, 1) and r2 - U(Os 1). 

(iii) If Mr2 *- g(a+(b-a)r, )IK take V/(*) = a+(b-a)rl as a simulated 

value for y/j, otherwise repeat (ii) and (iii). 

The above procedure is efficient because we do not need to normalise g(V1j), 

since we only need the definition for g(Vj)1K, and because we do not need to find 

the maximum of g(vi) using a numerical method, which is normally time- 

consuming. After having a set of suitable software routines and data structures, 

the implementation of a MCMC method to find the posterior distributions of 
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interest turns out not to be all that difficult, at least for problems that match with 

the setting explained here. This will give us more time to concentrate our atten- 

tion on, among other factors, the modelling process and assessing the convergence 

of the parameters in the MCMC method used. 

Here we have presented a series of techniques to tackle the statistical prob- 

lems of dating archaeological phases using radiocarbon. A very wide range of 

possibilities is covered and we have shown how to calculate the full conditional 

distributions for the parameters involved and perform the sampling. This will 

give us the posterior distribution f(yf I y), that represents the current knowledge 

about the position in time for the phases under study. In the study of specific 

examples the assumptions made here should be analysed and, if necessary, 

corrected to be appropriate for the characteristics of the problem. This might 

result, however, in more complex full conditionals and sampling techniques. We 

believe that the study of archaeological phase structures using radiocarbon dating 

techniques will benefit from the ideas presented here. 
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Chapter 6 

Robustness 

6.1 Introduction 

In this Chapter we study the robustness of our statistical framework to the 

presence of outliers. Firstly, we will see that radiocarbon dating is especially 

prone to the generation of outliers and thus it is desirable that the statistical ana- 

lyses used for the interpretation of radiocarbon determinations must allow for 

their presence. Secondly, in Section 6.2 we present a general review in which we 

briefly discuss the different statistical approaches used to detect outliers. Among 

these we will characterise the outlier problem in radiocarbon dating and identify 

an approach that is suitable for radiocarbon dating. 

In Section 6.3 we then present a novel approach to the problem of outliers in 

radiocarbon dating. It is based on a new 'slippage' model that extends our basic 

model for radiocarbon determinations and is intended to help in the identification 

of outliers. We then use this new model to develop our 'extended framework' 

that now allows for outliers. Although the fundamental idea used to extend our 

model has been widely explored in the statistics literature, here we propose an 

original generalisation of the 'location-shift' modelling approach for the 

identification of outliers. 

in this Chapter we present two examples to illustrate our approach. In 

Chapter 7 we present a far more detailed analysis of a set of radiocarbon determi- 

nations where the robustness techniques advocated here are used within a complex 

model. 
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6.1.1 Outliers in radiocarbon dating 

In Chapter 2 we discussed the reliability of radiocarbon dating. There we 

pointed out that outliers, that is, mistaken or discordant determinations, appear 

with relatively high frequency in radiocarbon dating. Baillie (1990) made an 

interesting study of the reliability of radiocarbon determinations. He analysed a 

series of radiocarbon analyses performed in an interlaboratory study involving 30 

laboratories. Using dendrochronology, Baillie (1990) obtained the correct calen- 

dar age for a series of samples radiocarbon dated by the laboratories. He con- 

cludes that, for determinations taken until the early 1980's, about one-third were 

highly biased, (Baillie 1990) 

"( ... ) the most damning for routine radiocarbon analysis is the 34% [of determina- 

tions] outside 200 radiocarbon years. From this, it would seem that a full one- 
third of all radiocarbon dates are effectively useless from the point of view of tight 
chronological research. " 

As Baillie explains, laboratories are continuously trying to improve their pro- 

cedures and have, indeed, succeeded in providing better results. However, labora- 

tories are not solely responsible for the quality of radiocarbon analyses. We can 

mention four main sources of error, three of which are outside control of the 

laboratories, which can affect the determinations and lead to the production of 

outlying radiocarbon determinations. 

(a) The quality of the care taken in the archaeological sampling in order to 

ensure that the samples can realistically provide results for the events we 

wish to date (see Bowman 1990 chapter 5). 



- 182- 

(b) The quality of the care taken in handling the samples on site in order to 

avoid contamination with older or younger material (see Bowman 1990 p. 

27-28). 

(c) The quality of the care taken in sample handling and preparation in the 

laboratory to ensure that the samples undergo appropriate pretreatment and 

do not become contaminated before analysis for radiocarbon can take place 

(see Bowman 1990 p. 28-30). 

(d) Other non-controllable random factors that can appear during the whole pro- 

cess (see Scott et al. 1990 and 1990b). 

The radiocarbon laboratories have only some control over factor (c) and no 

control over (a), (b) or (d). This means that radiocarbon laboratories can be pro- 

ducing top quality determinations with good estimates of the dating errors and 

still these determinations may be erroneous (outliers) since they may be discor- 

dant with 

(i) prior knowledge about the dating problem under study 

and 

(ii) other determinations available for the dating problem. 

The outlier problem is not exclusively confined to radiocarbon laboratories 

and the correct assessment of the radiocarbon age and standard error involved in 

the dating process. On the contrary, it is a problem that involves both the labora- 

tories and, specially, the users of radiocarbon since they are to suffer the most 

from the consequences of mistaken determinations. 
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Broadly speaking we estimate that, given the improved quality control proto- 

cols followed by laboratories since the late 1980's, at the present time I in 10 of 

all radiocarbon determinations obtained are discordant or mistaken and thus may 

be considered outliers. From this we see that of prime concern for archaeologists 

is the robustness of any statistical method used with a set of radiocarbon determi- 

nations to the presence of outliers. 

At this point we envisage two questions that need attention. 

(i) How robust is our statistical framework to the presence of outliers? 

(ii) How can we improve our framework to allow for the possibility of outliers? 

In the next Section we will analyse (i) through an example. It will not be 

difficult to notice the potentially unsatisfactory response Of OUT models to the 

presence of outliers and the necessity Of improving the robustness of our frame- 

work. Then in Section 6.2 we will present a general discussion of outliers in 

statistics in order to have a better understanding of the problem within the context 

of radiocarbon dating. From that, in Section 6.3 we will then consider (ii) where 

we formally define what we understand by an outlier and introduce a novel 

approach to the problem within the context Of radiocarbon dating. 

6.1.2 The summarisation problem: robustness to outliers 

In Section 4.2.5 we studied the summarisation problem in which we were 

interested in the time-span and absolute position on the calendar scale of an 

archaeological phenomenon. Having a set of radiocarbon determinations yj ± aj's 

associated with the calendar years Oj's we proposed Vf = (a, P) and 



- 184 - 

U(a, 

and thus P and a represent the boundaries on the calendar scale for the time-span 

of the archaeological phenomenon under study. Then in Section 5.1 we studied a 

specific summarisation problem using data from the Thancay culture' in Peru 

(reported by Pazdur and Krzanowski 1991), using the prior knowledge that 

a> 400 BP. 

In other examples presented in Chapter 4 we used the above idea of having 

Oj I a, P- U(a, P), commonly combined with other groups of determinations and 

more detailed prior information about the Oj's and the boundaries a and P. For 

example, we studied complicated archaeological phase structures related to groups 

of determinations, having 

Oij I Vl2i-17 V12i - U(V'2i-li Vf2i) 

and different types of prior information about the Vi's. The modelling used in the 

summarisation problem then represents a basic idea that forms part of several 

other more complicated modelling approaches. Therefore, it is of prime interest 

to analyse the robustness of this basic model, expecting this will give us an idea 

of the robustness of our framework in general. 

To demonstrate the robustness to the presence of outliers of the modelling 

used in the summarisation problem, we revisit the Chancay culture dating prob- 

lem, but now we introduce a fake, outlying, determination to the set of radiocar- 

bon determinations available (see Table 5.1 in Section 5.2). The fake determina- 

tion is 1400±70 which is some 400 years away from the main bulk of the other 

determinations. The resulting marginal posterior distributions of a and P can be 

seen in Figure 6.1. The marginal posterior distributions obtained before, without 

the fake determination, are reproduced in the same Figure for comparison. We 

note that there is a substantial difference in the distribution of P from the original 
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distribution obtained before. With the original sample the 95% HPD region for P 

is 1200 to 940 BP, whereas including the fake determination the same region 

changes to 1400 to 1080 BP. 
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Figure 6.1 
Histograms for the posterior distributions of fl (left) and a (right), 

for the Chancay culture summarisation problem, with the original sample (below) 

and with the fake outlier determination 1400±70 (above) 

This example tells us that the presence of a single erroneous, outlying, 

radiocarbon determination can affect the whole of our posterior distributions and 

therefore all conclusions drawn from them. Indeed, the extent to which an outly- 

ing determination affects our inferences will depend on the model and prior infor- 

rnation used for each problem. In this example, and since we are estimating the 

beginning and end of the Chancay culture, the (fake) evidence of an outlying, 

early, determination will affect our posterior knowledge about the beginning, fl, of 

the culture. Note, however, that an outlying, late, determination cannot affect 

substantially our posteriori knowledge about a since we have the prior knowledge 

that a> 400 BP. 
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The above example gives us evidence that our techniques might have an 

unsatisfactory response to outliers, with the potential danger of giving us non- 

robust inferences. Since, as indicated above, outliers are common in radiocarbon 

dating, we should consider them in our analyses in order to be able to make 

robust and reliable inferences. 

Before we do so, we review and criticise a former approach to the problem 

of outliers in radiocarbon dating (the problem of outliers in radiocarbon dating 

has not been studied before using the Bayesian framework). 

6.1.3 Previous approaches 

At present there is no widely accepted technique or methodology to tackle 

the problems of outliers in radiocarbon dating. However, it is common practice in 

the interpretation of radiocarbon determinations to remove determinations as 

outliers, normally relying on informal and heuristic considerations. In the case of 

replications (a series of determinations considered to be associated with the same 

calendar year), Ward and Wilson (1978) proposed a statistical test to test 'that the 

series of determinations are consistent' (we reviewed this work in Section 

2.4.3). Although this test was not designed to identify of outliers, it is sometimes 

used for that purpose in mind. The test statistic is 

yp -yj) 
2 

----- 
a: 2-1 

j=l j 

where yp is the pooled mean (see Equation 2.1). Under the assumption that all 

determinations have the same radiocarbon age, T has a chi-square distribution 

with m-1 degrees of freedom. If the resulting T is large and 'significant' (at 

some significance level), then the determinations are considered not to be con- 

sistent and the presence of an outlying radiocarbon determination in the sample is 
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suspected. 

Although the T-test cannot be used to identify outliers, in a later paper Wil- 

son and Ward (1981) develop a procedure that, based on statistic T, groups the 

determinations from a given sample to identify outliers. However, we have not 

found any reported applications of the techniques described in this paper. Below 

we discuss Wilson and Ward (1981) in greater detail. 

They diyide their study in three different cases namely, Case I, Case Ha and 

CaseIIb. In Case I we have a sample of replicated determinations (replications). 

In Case Ila we do not have replicated determinations but expect a similar 

radiocarbon age for the determinations. Case Ub is the same as Case Ila but a 

4sampling error' is introduced. 

Given a set of radiocarbon determinations YI±CýlqY2±62q---qym±q,,,, for 

Case I samples Wilson and Ward (1981) consider the model 

yj + ej 

where ej - N(O, a 2) 
. They propose to test the null hypothesis 

Ho : yj = ju 
(j = 1,2,..., M) 

against the alternative H, that uj is equal to 01 or 02 (with at least one jUj equal 

to either values), where 01 and 02 are the radiocarbon ages of two different 

groups. In other words, we are testing the hypothesis that the sample represents 

one group with a single radiocarbon age against the alternative that the sample 

represents two groups with different radiocarbon ages. 

To test HO Wilson and Ward (1981) order the determinations according to 

their radiocarbon age and then use the test statistic A= maxAk where 

114 = T[l. 
ml-T[l, k]-T[k+l, nl- 
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Here T[p, q] is the T statistic given above but only considering the elements p to q 

of the ordered sample. Wilson and Ward give 95% upper quantiles for the distri- 

bution of A under HO to perform the test. They explain that, if HO is rejected (at 

some significance level), the sample may be split into two groups containing the 

determinations y, to Yk* and Yk*+1 to y,,,, of the ordered sample, where k- AA* 

The test can then be applied to subgroups of the sample and obtain subgroups of 

determinations 'judged to be homogeneous by applying the A-criterion', at some 

significance level. It is then re-t, 55vrm that if an outlier is present in the sample, it 

will form a group on its own. 

For Case Ha samples Wilson and Ward (1981) propose the model 

Y= uj+ej+ i fj + gj 

a2 where ej - N(O, j ), fj - N(O, af2) and gj - N(O, ag2) are normal errors (com- 

monly taken to be independent) that account for the error arising from calibration 

(commonly af = 50 and crg = 70, see Section 2.4.3). No explicit calibration 

method is used. They propose to test HO as above using basically the same test 

statistic A as in Case I samples and, if necessary, proceed to split the sample in 

subgroups. 

Note that in the above two cases, it is assumed that the sample has a single 

radiocarbon age, u, under the null hypothesis HO (or within each group, 01 or 02, 

under HI). That is, we expect that the only variation in the sample is due to the 

standard errors aj's and, in Case Ila, to errors arising from calibration. Wilson 

and Ward (1981) explain that in most archaeological examples this cannot be 

assumed and a 'sampling error' must be considered. For example, we might be 

sampling from a specific stratigraphic layer that could have lasted several hun- 

dreds years and, therefore, we cannot assume that the samples have the same 

radiocarbon age. They then Propose the following model for Case IIb samples 
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gj+rj+ej+fj+gj 

2- 
where ej, fj, gj are defined as above and rj - N(O, a) is the sampling error (on the 

radiocarbon scale). Here a2 is unknown and must be estimated from the determi- 

nations. They then propose to test HO as above (in this case the test statistic is 

more complex although similar to A), and split the sample if necessary. 

To illustrate their techniques we reconsider the Chancay culture data (studied 

in the previous Section) with the fake outlying determination 1400±70. The dat- 

ing problem here is to estimate the beginning, fl, and the end, a, of the Chancay 

culture. We know that the objects radiocarbon dated all belong to the Chancay 

and from that we wish to estimate a and P (in the previous Section we used the 

prior knowledge that a< 400 BP). Since the objects dated all belong to the 

Chancay culture, that could have lasted several hundreds of years, we cannot 

assume a single radiocarbon age and, therefore, we have a Case IIb sample. That 

is, we need to include sampling error rj in our model. 

However, using Wilson and Ward (1981) techniques it is not clear how to 

introduce into the analysis the characteristics of the dating problem under study. 

That is, it is not clear how to estimate the beginning and end of the Chancay 

culture and identify outliers. The Wilson and Ward A-criterion is fixed and can- 

not adapt to suit the various situations that could appear. They seem to recognise 

the limitations of their techniques and explain that 

"It must be stressed that ( ... ) [the] assumption of normality for rj may not be par- 
ticularly realistic but we have made it for comparative mathematical simplicity. it 
is not easy to decide the form of the actual true age distribution in real time of the 
site or strata or series of sites from which we are sampling, let alone the conver- 
sion of this actual age distribution in real time to the distribution in radiocarbon 
years b. p! " 
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We believe that the sampling error term rj cannot be used to properly model 

the characteristics of the dating problem under study. Thus Wilson and Ward 

(1981) techniques can hardly be used for this example. However, to illustrate 

their technique, we applied their A-criterion to the Chancay data set including the 

fake outlying determination 1400±70. Firstly, we performed the test without 

sampling error (Case IIa) and, at 95% significance level, split the sample into 5 

subgroups. Here the fake determination is contained in a group of its own. 

Secondly, we consider sampling error and, at 95% significance level, there was no 

evidence to split the sample (including the fake determination). As a further illus- 

tration, in Figure 6.2, we present these results, together with our estimates for a 

and P. In any case, we must stress the fact that grouping the determinations does 

not solve the dating problem at hand. 

As a general critique to Wilson and Ward (1981), we make the following 

remarks. As explained before in Section 2.4.3, the Ward and Wilson's (1978) T- 

test has a series of inadequate characteristics arising from the fact that no calibra- 

tion method is used. Grouping radiocarbon determinations according to their T 

values, which is the basic idea behind Wilson and Ward (1981), cannot be an 

acceptable procedure for the identification of outliers since, 

no calibTation procedUTe is used 

and 

(ii) no archaeological considerations can be used in the analysis. 

Point (i) is itself a sufficiently important issue that alone questions the vali- 

dity of their procedure. Moreover, we believe that (ii) represents a crucial factor 

in the correct identification of outliers. As seen in previous Chapters, the models 

used for the analysis and interpretation of radiocarbon determinations vary 
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Figure 6.2 
Radiocarbon determinations for the Chancay culture (left) and histograms 

for the posterior distributions of a (right) and P (left), 

considering and not considering the outlying determination 1440±70. 
We also present the posterior modes for a and P and their corresponding 
radiocarbon ages. The determinations are divided into groups (a) to (e) 

according to Wilson and Ward (1981), Case Ila. 

depending on the archaeological dating phenomena under study. For this reason 

the judgement of what is or what is not an outlier must depend on the specific 

model used to explain the determinations and thus, ultimately, depends on the 

archaeological phenomena of interest. We must then seek statistical techniques 

that allow us to include archaeological considerations into the analysis and, in 

addition, are robust to the presence of outliers. 

To our knowledge, no other technique for the identification of outliers in 

radiocarbon data has been proposed. In the remainder of the Chapter we will try 

to develop a methodology to identify outliers in radiocarbon data. 
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6.2 Outliers in statistics 

The detection of outliers and the development of methods that are robust 

against outliers are very important topics in statistics. In general outliers are data 

points that have unexpected or exceptional values. As explained before, in this 

Section we will try to present the problem of outliers in radiocarbon dating within 

the global perspective of outliers in statistics. This will, hopefully, give us insight 

into what approach should be followed to improve the robustness of our frame- 

work to the presence of outliers. 

Barnett and Lewis (1978,1984) and Barnett (1978) have studied the problem 

of outliers from a global perspective. Barnett (1978) points out that, before any 

specific technique or method can be considered, the outlier problem at hand 

should be put in the perspective of three 

"( ) fundamental inteff elated questions: 

(i) what are the possible causes of outliers in statistical data? 

(ii) in what way do outliers influence data analysis, OR what are our different pos- 
sible aims at processing outliers? 

(iii) what probabilistic models might be employed to explain the presence of 
outliers? " 

We will briefly discuss (i) to (iii) in turn. 

With respect to the possible causes for the generation of outliers, Barnett 

(1978) points out that they can be classified within three groups, namely: 

(i) The 'inherent' causes. These produce extreme or extraordinary data points 

but that, given the characteristics of the specific problem under study, are 

expected to occur with some frequency and are considered an inherent part 
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of the problem modelled. 

(ii) The 'measurement causes'. These represent mistakes in the production of 

the data, from a mislocation of a decimal point to malfunctions in measure- 

ment instruments. 

(iii) The 'execution causes' which are mistakes taken in the sampling process, 

specifically, the inclusion in the sample of an individual not belonging to the 

sample space. 

Once we have identified the causes for outliers in a particular statistical 

problem, we should decide our aims at processing outliers. Indeed, this will 

depend on the causes identified for the generation of outliers. In broad terms we 

can distinguish two general aims, namely, 

(i) to 'accommodate' outliers with the rest of the data 

and 

(ii) to 'identify' outliers, and question their presence and validity, within the rest 

of the data. 

in general, if we have identified 'inherent' causes for the generation of 

outliers, this suggests that we should aim to accommodate them within the rest of 

the data. This is commonly carried out using robust techniques that explain the 

data as a single whole. As opposed to this, if we suspect 'measurement, or 'exe- 

cution' causes, this suggests that we should aim to identify outliers and question 

their presence within the rest of the data. Commonly this is carried out using a 

principal or central model that explains most of the data and alternative models 

that explain outliers. 
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Finally we should consider a suitable probabilistic model to explain the pres- 

ence of outliers in a particular problem. This, of course, will be dependent on the 

causes identified for the presence of outliers and the aims at processing them. In 

a very general way one can mention three modelling approaches that have been 

used to explain outliers in statistical data, namely: 

The 'inherent' modelling approach. In this case all data yj - F, where F 

explains both outliers and non-outliers. This approach is commonly 

appropriate to accommodate outliers within the rest of the data. 

(ii) The 'mixture model' approach. In this case, given that yj is not an outlier 

yj -F 

where F represents the central model that explains most of the data, whereas 

if yj is an outlier 

yj - 

where G represents the alternative model that explains all outliers. This 

approach models the expectation that some (few) data points were generated 

by a different process (modelled with G) than the rest and is used to identify 

outliers (those data points better explained with model G). 

The 'slippage model' approach. This model states that, given that yj is not 

an outlier, 

yj -F 

where F represents the central model, and given that yj is an outlier 

yj - Fj 
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where Fj represents an alternative model that explains the presence of yj as 

an outlier. In this case we are trying to model the presence of mistaken data 

points, each one generated by a particular (extraordinary) process modelled 

with Fj. This approach is used to identify outliers (those better explained 

with an alternative model Fj). 

Several authors have considered the above modelling approach to tackle the 

problem of outliers in statistical data. Within Bayesian statistics we can mention 

Dawid (1973), Hill (1974), O'Hagan (1979), among others, that have studied 

'inherent' modelling approaches to accommodate outliers within the Test of the 

sample. In contrast to this, mixture and slippage models have been proposed for 

the identification of outliers by, among others, Box and Tiao (1968), Abraham and 

Box (1978) and Guttman et al. (1978). These latter models can be described as 

follows. 

Box and Tiao (1968) propose a 'scale-inflated mixture model' for outliers in 

normal samples. That is, given that yj is not an outlier 

yj I a2 - N(O, a2) 

and given that yj is an outlier 

yj I b, C2 - N(O, ba 2), 

for b>1. Here outliers are though to be generated by a (single) alternative 

model that has a higher variance than the model generating the rest of the sample. 

Abraham and Box (1978) propose a 'location-shift mixture model' for 

outliers in normal samples. The model proposed is 

yj 1 4,8,0j, a2 - N(y + 80j, C2) 

where the random variable Oj is defined as 
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11 if yj needs a shift 
0 otherwise. 

We then interpret 'yj needs a shift' as 'yj is an outlier'. Here then, if Oj = 0, yj is 

explained with the model N(u, a2) and if Oj = 1, yj is explained with the 'shifted 

model' N(u + 8, C2). 

Guttman et al. (1978) propose a 'location-shift slippage model' for outliers 

in normal samples. Their model states that, given that yj is not an outlier, 

yj I U, ar2 - N(u, a2) 

and, given that yj is an outlier, 

yj I 
'U, 

5j, C2 - N(u + 8j, a2) 

Here outliers are explained by (several) alternative 'shifted' models N(, u + 8j, C2). 

As opposed to Abraham and Box's (1978) approach where only one type of 

4shifted' model is allowed, in this case various shifts are considered. Thus a sam- 

ple may have an upper and a lower outlier at the same time (positive and negative 

8j 1s, respectively). 

Using this general discussion on outliers in statistics we will consider the 

problem in radiocarbon data. This we do in the next Section. 

6.2.1 What can we do? 

In this Section we discuss a suitable approach to the problem of outliers in 

the analysis and interpretation of radiocarbon data. In turn we will discuss (i) the 

causes of outliers, (ii) our aims at processing outliers and (iii) the models we can 

use to explain the presence of outliers in radiocarbon data. Our approach will 

then be based on this discussion and developed in later Sections. 



- 197 - 

It is indeed worrying for us to note that at least two of the three general 

causes for the production of outliers mentioned in the previous Section, can be 

observed in the radiocarbon dating process, namely: 

(i) Measurement causes. Even with the best quality control protocols, the pro- 

duction of outlying radiocarbon determinations due to the chemical and phy- 

sical processes involved cannot be discounted. The complex and sophisti- 

cated processes involved in radiocarbon dating are indeed error prone and 

not even the best laboratories in the world could guarantee perfection. 

Furthermore, contamination on site due to improper handling of samples by 

archaeologists can lead to misleading determinations. Thus factors (b), (c) 

and (d), mentioned in Section 6.1.1, can be classified as measurement causes 

for the generation of outliers in radiocarbon data. 

(ii) Execution causes. The sampling process is always a factor of error in 

archaeology. Occasionally samples taken from excavations are mistakenly 

related to contexts they do not belong to. This is a result of both misjudge- 

ments by archaeologists in the excavation process and by truly unforeseeable, 

circumstances. We then classify factor (a), mentioned in Section 6.1.1, as an 

execution cause for the generation of outliers in radiocarbon data. 

Therefore we can say that we expect outliers in radiocarbon dating to be 

related both to measurement and execution errors. Moreover, in comparison to 

other statistical contexts, outliers in radiocarbon dating are far more common (we 

mentioned before that we would expect I in 10 determinations to be highly 

biased). 

Why is it then that we continue to call 'outliers', data points known to be 

affected by measurement and execution errors with relatively large frequency? 
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Should we continue to understand outliers in radiocarbon dating as 'erroneous' or 

'mistaken' determinations or perhaps view them as 'correct and extreme' data 

points? 

The answers to the above questions are not complicated. Provided we can 

trust our model and prior information about the dating problem under study, 

outliers will be erroneous determinations independently of their frequency. The 

statistical analysis of sets of radiocarbon determinations represents a very special 

case in which there is substantial or even abundant prior information about the 

processes involved in the problem. Even if we have not established a formal pro- 

babilistic model, the samples submitted for a radiocarbon analysis are, in most of 

the cases, related to archaeological contexts that provide (at least broad) informa- 

tion about the age of the samples. A sample submitted for radiocarbon dating 

cannot have a completely arbitrary age. 

For example, we could obtain a radiocarbon determination with 'modem 14C 

activity' (less than 50 years of age) or a determinations with 'background 14C 

activity' (more that 30,000 years of age). For the vast majority of archaeological 

contexts such determinations are discordant with the dating problem under study 

and it is common practice to reject them as erroneous, excluding them from the 

subsequent analysis and interpretation. From the above we conclude the follow- 

ing. 

Outliers in radiocarbon. dating are discordant and mistaken determinations 

that appear with (unfortunately) relatively large frequency and are related to 

measurement and execution errors. With this respect, we wish then to identify 

discordant determinations (outliers), present in radiocarbon data and, if necessary, 

remove them from subsequent analysis and interpretation. 
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However, it is not clear when can we identify a radiocarbon determination as 

'discordant' apart from the obviously extreme cases of modem and background 

14 C activity. An explicit statististical approach will be needed to measure the 

accordance (or discordance) of radiocarbon determinations with the model, prior 

information and other determinations available in order to identify outliers in a 

specific dating problern. 

In the previous Section we mentioned two general modelling approaches to 

identify outliers, namely, the mixture and slippage models. For the case of 

radiocarbon dating, we do not have information about a particular type of process 

that would generate all outliers, as is the case for a mixture model. We would 

expect any sort of extreme determinations (high or low radiocarbon age) and, in 

principle, a single set of determinations can have both upper and lower outliers at 

the same time. With this in mind we believe that the slippage modelling approach 

is the most appropriate to model the presence of discordant radiocarbon determi- 

nations. That is, discordant determinations will be those better explained with a 

'discordant model' Fj than with the central model F. In this way any sort of 

discordancies, appropriate to each determination, can be modelled. This is the 

approach we will try to implement here. 

In addition, we must remember that one of the basic principles of the Baye- 

sian framework is that uncertainty should be measured with a probability distribu- 

tion. Undoubtedly there will be a degree of uncertainty about the accordance or 

discordance of a particular determination with the rest of the factors in a given 

dating problem. That is, there will always be a degree of uncertainty as to when a 

determination can be considered an outlier or not. Therefore, in order to measure 

that uncertainty with a probability distribution our approach ought to formally 

define the event that any 'determination yj is an outlier'. 
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We mentioned in the previous Section mixture and slippage models, namely, 

the scale-inflated and the location-shift mi9ture models and the location-shift slip- 

page model. Certainly, the idea of modelling discordant radiocarbon determina- 

tions with different degrees of location-shifts seems very appealing. That is, if Yj 

is not discordant, yj - N(IL, aj 2) and if yj is discordant yj - N(y + 8j, aj 2 ). There- 

fore we should explore an approach similar to Guttman's et al. (1978) location- 

shift slippage model. However, we want to formally define the event that any 

'determination Yj is an outlier'. In this respect, Abraham and Box's (1978) loca- 

tion shift mixture model approach is the more appealing since they explicitly 

define such an event'when introducing the random variable Oj. That is, if 

Oj = 0, yj - N(, u, Tj 2) and if Oj= l, yj -N(ji+6, cj 2 ), thus yj is an outlier if 

Oj = 1. (We will introduce calibration and further details in the next Section. ) 

An obvious alternative would be to inflate the variance of each determina- 

tion, a similar idea to Box and Tiao's (1968) scale-inflated model. That is, if yj is 

an outlier yj - N(4, b qj 2) for b>1. In principle, this approach seems as valid as 

the location-shift approach. However, we believe that the scale-inflated option 

does not properly describe the general outlier generation process present in 

radiocarbon data. 

If we inflate the variance we would examine for changes in the precision of 

each determination. That is, we would doubt about the validity of the standard 

error aj reported by the laboratories and, in fact, we would attribute the genera- 

tion of outliers to changes in the variances ,j2. This is not precisely what we are 

trying to do since what we are trying to examine is the overall accuracy of the 

determinations and not only their precision. 

For example, suppose that a sample submitted for radiocarbon dating is 

expected to have a radiocarbon age of around 600 radiocarbon years bp and the 

determination reported turns out to be 1600±50 bp. Suppose that the reason for 
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this discordancy is that the sample was thought to belong to some context 

although, for unfortunate circumstances, it did not (of course, this represents an 

texecution' error that was not suspected before submitting the sample for dating). 

The radiocarbon determination reported may still correctly represent the radiocar- 

bon age for the sample dated and, therefore, the determination may still be pre- 

cise. An increase in the variance 502 cannot 

alone explain the discordancy and therefore a shift on the radiocarbon scale 

should be suspected. 

We therefore intend to use a combination of the modelling approaches sug- 

gested by Abraham and Box (1978) and Guttman et al. (1978) to tackle the prob- 

lem of outliers in radiocarbon dating, that is, a location-shift slippage modelling 

approach. This we do in the next Section. 

6.3 Our approach 

6.3.1 Shift outliers 

The aim now is to improve our general methodology in order to have an 

explicit and satisfactory way to deal with outliers in radiocarbon dating. For the 

reasons explained above, we propose a combined version of the approaches first 

presented by Abraham and Box (1978) and Guttman et al. (1978). Suppose that 

we have a set of radiocarbon determinations YI ±611 Y2: ý 62, ... ) Y.. ±q.. associ- 

ated with the (unknown) calendar years 191,02, ... 9 Om. The basic idea then is to 

state that yj is an outlier if yj needs a shift 5j (on the radiocarbon scale) in order 

that it be in accordance with the rest of the sample. 



-202- 

We formalise this by stating that 

yj I Oj, 8j, oj - N( p(Oj)+oj8j, O)j 2 (0j)) 

(W 2(o 2+ a2(o j j) =a jj where 

A. =II 
if yj needs a shift 

, Fj 0 otherwise 

and we interpret 'needs a shift' as 'is an outlier'. In other words, a mistake in the 

radiocarbon dating process will be modelled by a shift in yj from the true 

radiocarbon year #(0j). To illustrate this, in Figure 6.3, we present the hierarchy 

diagram for the extended basic model yj I Oj, 8j, 0j. 

Figure 6.3 

Hierarchy diagram for the extended basic model. 

We assume Oj and o5j to be independent, a vague prior distribution for 8j and 

a prior probability 

P[oj = 11 = pj 

which represents the prior belief that determination yj is an outlier. In general, if 

a sample is believed, a priori, to be affected by one of the factors (a)-(d) 

(explained in Section 6.1.1), this could be reflected in a bigger pj for the 

corresponding determination. If we are to be 'fair' in our analysis we must state 

pj before the radiocarbon determination is seen and not, for example, give a 

higher pj to a determination that looks, a posteriori, like an outlier from 
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examination of the data. To avoid such a misleading usage of this methodology 

we could state a single p= pj for all j=1,2,..., m before any determination is 

observed and thus be sure that the prior distribution of each Oj is indeed a priori. 

The key idea of this methodology is to obtain the posterior distributions of 

each Oj, that is, P[Oj =11A. In other words, the posterior probability that yj is 

an outlier. To calculate P[Oj =II yj we will need to include in the analysis the 

parameter Vf from our framework and define f(O I Vf) and ftyf) to introduce the 

characteristics of the dating problem under study (we discuss this issue in the next 

Section). Therefore, the posterior probability P[Oj =II y] that yj is an outlier 

will not only be based on the data y. It will consider 

(i) the calibration curve and the variance in the calibration curve (since we are 

using u(O) and a 2(0) in our model) 

(ii) the relationship between the objects radiocarbon dated and the dating 

phenomena of interest (introduced in the analysis via f(O I V)) 

and 

(iii) further prior information about the phenomena under study (described by 

AV)) - 

To summarise, what we identify a*s an outlier will very much depend on the 

dating problem considered. Below we formalise these ideas. 

6.3.2 The extended framework 

According to the framework presented in Chapter 4 we need to define Vf, the 

model f(y 10) and the prior distributions f(O I Vf) and f(yf). The initial step is to 



-204- 

define Vf according to the specific dating phenomena under study. In Chapter 5 

we have already presented various examples of this. As discussed above, our 

approach to identify outliers is to use the model 

yj I Oj, gj, oj - N(. u(Oj)+oj8j, wj2(0j)) 

(where ý(O. ) = a? + a2(oj)). 10i ii 

Therefore, within this extended framework, the model (likelihood) is 

L(y 10, Vf, 8,0) = L(y 10,8,0) and, assuming that given the Oj's the determina- 

tions are independent, we have 

L(y 10,8,0) = IIL(yj 1 Oj, 8j, Oj) - 
j=I 

+ &»2 m 
exp 

(yj - woj) oj j 
2 0)2(0) j=l 0)j(0j) jj 

Now, when we define the distributions f(O I Vf) and f(yf), the radiocarbon 

determinations, y, are not (and must not be) considered since these distributions 

are stated a priori. Thus, the specification of such distributions cannot be 

influenced by the shifts 8j's, on the radiocarbon scale, that might affect the deter- 

minations when these are observed. Outliers in radiocarbon dating arise as a 

result of several different factors, some of which might be produced on site by the 

archaeologists. However, the fact is that outliers manifest only on the radiocar- 

bon scale through the values observed for the yj's. Thus outliers are modelled as 

shifts on the radiocarbon scale and, a priori, the relationship between 0 and yr is 

not influenced by such shifts. This means that 01 Vf is (and must be) independent 

of the 8j's and of the Oj's. 

Therefore, given a specific dating problem the prior distributions f(O I Vf) 

and f(iy) should Temain the same whetheT we use the above methodology to allow 

for outliers or our former methodology discussed in Chapters 4 and 5. (This has 
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the immediate consequence that the methodology to identify outliers presented 

here can be applied to all of the examples presented in Chapter 5. ) 

Let 8 -: (451,162 
7 ... 8. ) and 0-ý (01,029 

.... 0,., ). From the above discussion 

we can see that the prior distributions f(O I Vf) and f(vy) do not depend on 8 nor 

on 0 and therefore we can see that, for the full conditionals of the V/j's, 

f(Vfi 1 0,0) = f(vi 10, v-i) - f(0 1 Oftvi 1 vt-i). 

These full conditionals are identical to the full conditionals for the yfi's 

given before in Chapter 4. To illustrate this, in Figure 6.4 we present the hierar- 

chy diagram for the parameters involved in this extended framework. As a result 

of this, the full conditionals for the y/j's remain the same and, therefore, 

all the techniques and routines for sampling from them. 

Figure 6.4 

Hierarchy diagram for the extended framework. 

The full conditionals for the Oj's do change and these are 

f(oj 1 Y, Oj, v, 6,0) - 
I-I((, 4(oj) - (yj _ oj 6j ))2 

f(o exp 0)2(o) 
jI 0-il 

O)j ( Oj )2jj 

However, these distributions are the same as the ones used in Chapter 5 for sam- 

pling the t9j's, but now using at every step the shifted radiocarbon age yj-0j, 5j 

instead of yj. Thus, in principle, the routines implemented before could be easily 
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modified to be used here. 

Using the prior distributions 

P[oj =II= pj (6.1) 

for the Oj's and assuming a vague prior for the 8j's, independent of 0, the rest of 

the full conditionals are 

8j I y, 0,3-j, 0- N(yj-#(Oj), o)j2(0j)) v ý0(- oi'ý- 
-/ 

and 

f(oj 1 y, 0,8, O-j) - pjOJ(1-pj)'-oiexp -i 
woj) - (yj - oj 8j »2 

(02(0) j 

Since the full conditionals for the 8j's are normal and for the Oj's are Ber- 

noulli distributions (that need normalising), it is not difficult to sample from them. 

Using a MCMC method we will be able to obtain estimates of the distributions of 

Oj I y, thereby giving the probability of each determination being an outlier, given 

the current sample. 

Below we present two examples to illustrate how this extended framework 

can be used. We reconsider the replications and the summarisation problems stu- 

died before. 

6.4 Examples 

6.4.1 Replications 

We now reconsider the replications problem studied before in Section 4.4, in 

the light of our extended framework presented above. Let us suppose that we 
have a set of radiocarbon determinations Yl±l7lY2±62t---qym±(Tm which are 
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associated with the same calendar year. That is, we are working with a set of 

replicated determinations and we have that Oj = 0, for j=1,2,..., m, where Oj is 

the associated calendar year for each determination. In that case our model is 

yj 10, öj, oj - N( 
ju 

(0) + oj 8j, o)j2(0» 

(where ý(O) = aý + C2(0)). As in Section 4.4, in this case the vector V/ from our O)i i 

general framework is not random and thus we concentrate our attention the pos- 

terior distributions of 0,8 and 0. The full conditionals in this case are (assuming 

that the determinations are independent given 0) 

0C 
M1 

exp -i((, 
U(O) - (yj _0 j 16 j ))2 

f(O), f(O I Y, 3,0) ri 
0)2(o) j =I O)j(O) 27 

0)2(0»1 Sj 1 Y, 0,8-j, N(Yj-P(O), j 

and 

I 1((, U(O)-( -08))2 f(Oj I y, 0,8, pj0j(l-pj)'-Ojexp _ 
yj jj 

2 O)j2(0) 

where f(O) is the prior distribution for 0. 

To illustrate this application of our methodology we reconsider the set of 

radiocarbon determinations arising from the Shroud of Turin (see Table 4.1 in 

Section 4.4), now using our extended framework to investigate for outliers in the 

sample. Since all determinations arise from a single object (the Shroud) we can 

assume that we have a set of replications and thus Oj =0 as above. Furthermore, 

since the Shroud was first displayed in the 1350's (AD), we know that 0> 600 

BP. 

For comparison, and before we proceqd with our analysis, we applied the 

T-test and Wilson and Ward's (1981) A-criterion to the Shroud data (explained in 

Section 6.1.2). The T statistic is equal to 20.9 and therefore, with a 95% 
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r. c. 700 
years bp 
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Figure 6.5 
Radiocarbon determinations for the Shroud of Turin and our estimate for their 

associated calendar year shown as a histogram. The determinations where 
divided into subgroups (a) and (b), according to Wilson and Ward's (198 I)A -criterion. 

confidence level, the sample is 'not consistent'. We then applied Wilson and 

Ward's (1981) A-criterion, Case I, to cluster the determinations and obtained two 

subgroups using a significance level of 95%. The subgroups are shown in Figure 

6.5. Note that the sample spans more that 200 radiocarbon years and, perhaps for 

th is reason, it was rejected as having a single radiocarbon age, according to the 

T-test. As seen in Figure 6.5 two subgroups are then formed using the A- 

criterion. However, this picture will change substantially when we use our 

methodology, that includes calibration, and evaluates the problem on the calendar 

scale. 

800 750 700 650 600 550 
Calendar years BP 
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We take all 12 radiocarbon determinations and, using a single prior probabil- 

ity Pi = 0.1 for i=1,2,..., 12, calculated the posterior probabilities P[ Oj =IIy] 

using the Gibbs sampler. The results can be seen in Table 6.1, column (iv). 

Sample j (j) Pj Pj 
(rep. ) 

ALI 1 1 0.23 0.20 
Al. 2 2 6 0.11 0.11 
A1.3 3 2 0.12 0.11 
AIA 4 7 0.15 0.17 

01.1 5 12 0.35 - 
01.2 6 9 0.21 0.22 
01.3 7 11 0.19 0.21 

Z1.1 8 10 0.14 0.15 
ZI. 2 9 8 0.13 0.14 
ZI. 3 10 3 0.08 0.08 
ZIA 11 4 0.08 0.08 
ZI. 5 12 5 0.07 0.07 

Table 6.1 
Posterior probabilities of each radiocarbon determination being an 

outlier (Pj = P[Oj =II y]), the 'Shroud of Turin', 

using a single prior probability pj = 0.1. 
Complete sample, column (iv), and having removed 
determination 01.1 as a possible outlier, column (v). 

From Table 6.1 we see that determination 01.1 (i = 5) has a noticeably large 

p. = p[O. =I y] of more than 0.3 and we might wish therefore to consider jj 

rejecting it as an outlier. This determination is the earliest (highest radiocarbon 

age) of all, see Figure 6.5. (Note that all determinations in Figure 6.5 can be 

identified using the score (j) shown in Table 6.1, column (ii), that gives the rank 

of each determination according to its radiocarbon age, eg. (5) = 12. ) 

It will always be difficult to decide when to remove determinations as 

outliers. In this case there is evidence, perhaps not conclusive, of determination 
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01.1 being an outlier since P5 = 0.35. However, determinations ALI, 01.2 and 

01.3 all have Pj's that give us some evidence of these determinations being 

outliers. We decided only to remove the determination with the biggest Pj, that is 

01.1. If we remove determination 01.1 and run the Gibbs sampler again with the 

remaining 11 determinations we obtain the posterior probabilities shown in Table 

6.1, column (v). We see no further clear evidence of outliers this time. The 

corresponding distributions for 0 can be seen in Figure 6.6. Also, for comparison, 

we have reproduced in the same Figure the original distribution using the com- 

plete sample. 

0.6 

0.3 

0 

0.6 

0.3 

0 

Figure 6.6 
Histograms for the posterior distribution of 0, the 'Shroud of Turin', 

with the original sample, found in Chapter 4, (above) and 
with a possible outlier removed (below). 

Note now, from Figure 6.5, that the range on the radiocarbon scale covered 

by the determinations 'compresses' to a much smaller range when transformed 

onto the calendar scale and for this reason the posterior distribution for 0 is not 

wide spread. This is a result of the steep section of the calibration curve we are 

working on. Our analysis then gives only some evidence about discordancies in 

700 650 600 
0 BP 
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the sample. This contrasts with the T-test, that does not include calibration, 

where the sample is considered 'not consistent'. 

In this example the resulting posterior distributions, using the complete and 

the reduced samples, are nearly the same. This comes as a result of having, as 

part of our prior information, 0> 600 which, in this case, gives robustness to our 

inferences. As stated before, the extent to which extreme determinations will 

affect our results in specific examples depends on the model and prior information 

used. The Pj's above give us evidence about how in accordance the determina- 

tions are with 

(i) the model used, 

(ii) the prior information used 

and 

(iii) the rest of the determinations. 

This accordance (or discordance) may or may not show in our results. How- 

ever, the fact is that now we have a clear and explicit measure (Pj) for such 

'accordance' that will provide us with evidence about how accurately the factors 

in our problem fit to each other. No comparable techniques have been 

developed within the context of radiocarbon dating and we have confidence that 

this represents an improvement to our general methodology that, hopefully, will 

result in more robust results. Below and in Chapter 7 we give further examples of 

this. 
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6.4.2 The summarisation problem: detecting outliers 

We now turn to consider outliers in more complicated models where the Oj's 

are not necessarily equal, discussing how our methodology is applied in the 'sum- 

marisation problem'. We reconsider the summarisation problem studied in the 

introduction of the Chapter, originally considered by Pazdur and Krzanowski 

(1991). To illustrate our outlier methodology, we include in the sample the fake 

determination 1400 ± 70. 

From the discussion given Section 6.3, we see that the full conditionals and 

sampling techniques for, 8 and a, the beginning and end of the phenomenon under 

study, remain the same as previously. We use the prior probability pj = 0.1 for 

1,2,..., 14 of any determination being an outlier. We then calculate, using the 

Gibbs sampling technique, the posterior probability that each determination is an 

outlier, and these probabilities are reported in Table 6.2, columns (iii) and (vii). 

Q) pi Pi j (j) Pj Pj 
4 0.10 '0.09 8 7 0.09 0.09 

2 2 0.10 10.10 9 5 0.13 0.13 
3 3 0.10 0.09 10 13 0.09 0.17 
4 10 0.10 0.10 11 12 0.09 0.10 
5 9 0.09 0.09 12 6 0.10 0.09 
6 11 0.11 0.11 13 8 0.08 0.08 
71 1 0.09 1 0.09 1 14 1 14 1 0.39 

Table 6.2 

Posterior probabilities of each radiocarbon determination being an outlier 
(Pj = P[Oj =II y]), Chancay culture summarisation problem, with pj = 0.1. 

Columns (iii) and (vii) include the fake determination 1400± 70 and 
columns (iv) and (viii) do not (original sample). 

Note that Pj = P[Oj =II yj for the fake determination is noticeably large 

(0.39), whereas for the rest of the determinations it is approximately 0.1 (the same 

as the prior pj's) meaning that we have almost no new evidence of any of these 
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determinations being an outlier. However, the fake determinatio n now is 

(aposteriori) nearly 4 times more likely to be an outlier on the basis of the 

current sample, thus prompting us to remove it. If we do so we obtain the poste- 

rior probabilities found in columns (iv) and (viii) of Table 6.2, with no further 

clear evidence of outliers. The posterior distributions of a and 8 should then be 

based on this corrected sample. This, of course, is the original sample. 

Note that the probabilities Pj's do not substantially change when calculated 

considering the fake determination or using the original sample (besides P14)- 

However, Plo does increases from 0.09 to 0.17. This determination is the earliest 

of the original sample. When P10 is calculated including the fake determination, 

y1o is well within the period for the Chancay culture, transformed onto the 

radiocarbon scale. If the fake determination is removed, y1o becomes the earliest 

and thus more likely to be an outlier, with respect to the current sample and prior 

information used (see Figure 6.2 in Section 6.1.3). Of course, the evidence that 

y1o is an outlier is only marginal. The posterior probability of each determination 

being an outlier does depend on the current sample, the model used and the priors 

f(O I ty) and f (ty). 

On the other hand, Pazdur and Krzanowski (1991) in their analysis of the 

Chancay radiocarbon data, obtained the range 1000 to 470 BP (950 to 1480 AD) 

for the Chancay culture. This range coincides with our estimates using the origi- 

nal sample. However, to obtain their range, Pazdur and Krzanowski removed as 

4outliers' the earliest and the latest of the determinations available. As stated 

above, using our methodology, we see no clear evidence of outliers in the sample. 

in fact, the latest of all determinations (YO has P7 = 0.09. This means that now, 

a posteriori, that determination is less likely to be an outlier than before the sam- 

ple was observed (since we started with the prior P7 = 0.1). This contrasts and, 

perhaps, contradicts Pazdur and Krzanowski's heuristic procedure. 
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6.5 Remarks 

We have developed, then, an extended general framework to tackle the prob- 

lems of the analysis and interpretation of radiocarbon determinations. Now this 

extended framework allows for outliers. Note that, as opposed to other 

approaches, we have not developed a specific technique but a general methodol- 

ogy for the problem of outliers in radiocarbon data. The methodology can then be 

applied to a variety of dating problems using radiocarbon, by specifying the prior 

distributions f(O I yr) and f(ty). Note as well that the framework presented in 

Chapter 4 is a particular case of the framework presented here, if we let pj = 0. 

That is, assigning a zero prior probability for outliers in the sample. 

In presenting this methodology various alternatives come to our attention. 

We have used 'shifts' on the radiocarbon scale (8j's) to explain outliers in 

radiocarbon data. We used the radiocarbon scale since outliers manifest 

aposteriori through the values of the determinations and therefore on the 

radiocarbon scale. An interesting modification would be to consider shifts on the 

calendar scale. For example, yj I Oj, yj, Oj - N(, u(Oj +, yjoj), qj2). This could 

model the possibility of a mistake in the assignment of a sample to a particular 

event or phase. Also we could consider using both shifts on the radiocarbon and 

calendar scales. However, we do not explore these possibilities any further. 

We think that the techniques developed here can be of great benefit in the 

statistical investigation of a set of radiocarbon determinations. Also we are 

confident that, using this extended framework we can provide inferences, robust to 

the presence of outliers, making our assumptions explicit. 

In the next Chapter we consider a dating problem arising from an archaeo- 

logical site in Bavaria, Germany, where 13 radiocarbon determinations are avail- 

able. For this example we have undertaken joint research with an archaeologist 



-215 - 

and studied the excavation reports of the site. A complete model for the dating 

problem is suggested using the extended framework proposed in this Chapter. An 

outlier identification analysis is then developed within a complicated model 

including four archaeological phases and further prior information. It is then 

shown how the extended framework developed here can be easily applied to a real 

archaeological dating problem. 
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Chapter 7 

The Galgenberg site: Robust estimates 

7.1 Introduction 

In this Chapter we concentrate our attention on how to model the characteris- 

tics of a particular archaeological dating problem and by using our techniques 

obtain robust estimates of the dates of the archaeological phenomena of interest. 

We will study a late Neolithic site in Germany and use the extended framework 

developed in the preceding Chapter to date a series of related events using the 

available radiocarbon determinations. 

In previous Chapters, we have focussed our attention on developing our 

framework and on the technical details of how it is applied to a variety of 

archaeological examples. However little attention was given to the archaeology 

involved in these examples as we relied on other authors' considerations and 

assumptions. In contrast to this, now we concentrate on the archaeology involved 

in the problem by making our own interpretation of the site. We will study its 

characteristics and deduce a relative chronological sequence for some events 

observed within the stratigraphy. The archaeological dating problem will be 

defined and modelled mathematically. Then using our extended framework we 

will try to identify possible outliers within the determinations available. Finally 

we will obtain robust estimates for the dates of various events involved in the 

problem that will be interpreted within the archaeology of the site. 
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7.2 The mathematical modelling of a new dating problem 

In this Section we briefly discuss the mathematical and statistical modelling 

of a new dating problem. This then will provide a basis for the development of 

the statistical model involved in the GaIgenberg dating problem that we discuss in 

later Sections. In Chapter 4 we proposed a general modelling approach for the 

statistical analysis of sets of radiocarbon determinations. There we defined the 

vector y, denoting the radiocarbon determinations, 0, denoting the associated 

calendar years for the determinations (the calendar years in which the organic 

materials in the dated objects died) and Vf, which is taken to represent 'aspects' 

(calendar dates for events, lengths of phases etc. ) of the archaeological dating 

phenomena of interest. The modelling process consists of, 

(i) defining f(y 10) (the likelihood), 

(ii) defining V/ according to the specific dating phenomena under study, 

(iii) defining the prior distribution f(O I V) 

and 

(iv) defining the prior distribution f(VI). 

In this Chapter we are interested on the 'elicitation' process necessary to 

complete the steps (i) to (iv) and so obtain a realistic and reliable mathematical 

model for the problem under study. To achieve this we will consider (i) to (iv) in 

tum. 

To allow for outliers, in Chapter 6 we introduced the parameters 8j and Oj. 

The 8j ýs represent 'shifts', on the radiocarbon scale, for each determination and 
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the Oj indicates whether determination yj is an outlier or not (see Section 6.3). 

Given a set of radiocarbon determinations we have 

yj I Oj, op 8j - N(. u(Oj) + oj 8j, wj2(0j)) 

O)j2(O 2 
a j+ a2(O where 1), u(Oj) is the piece-wise linear radiocarbon calibration 

2(0 
curve and a 1) is the variance for the calibration curve (see Equations 1.3 and 

3.14). It is then assumed that, given the Oj's, the yj's are independent and there- 

fore we have 

f(y 10,6,0) = 11 Ayi 1 Oi, Oi, si). 
j=l 

f(y 10,0j, 5j) takes into account the calibration process, necessary for radiocar- 

bon dating. Therefore our framework provides fty 10,0,8) and should not be 

considered part of the elicitation Process. 

Given the above, we see that the elicitation process, understood as the ques- 

tions the statistician should ask in order to build a realistic statistical model for 

the dating problem under study, should then concentrate on (ii) to (iv) above. 

That is, defining Vf, f(O I V/) and ftyf). These distributions are stated a priori and 

thus are independent of (the value of) the determinations y. This implies that: 

The mathematical modelling, as far as archaeologists are concerned, 

does not involve the values of the radiocarbon determinations. It does 

not involve either the radiocarbon calibration curve or the technicalities 

of the calibration process to be used. 

We have stressed before that radiocarbon dating is a technique for dating 

objects and that dating in archaeology is, commonly, a more complex problem 

than that. In Chapter 4 we mentioned that a 'logical link' needs to be established 

between the dates for the objects and the archaeological phenomena of interest. 
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The dates for the objects, viewed in an isolated way, have little or no meaning. It 

is not until the relationship between such dates and the phenomena is understood 

that proper archaeological dating can be achieved. 

In radiocarbon dating, the 'dates' for the objects dated refer, after calibra- 

tion, to the calendar years in which the organic material contained in the objects 

died. We call these the associated calendar years for the objects, denoted by 0. 

Thus the distribution f(O I Vf) models the relationship between the (associated 

calendar years for the) objects radiocarbon dated and the relevant 'aspects' of the 

archaeological dating phenomena Vf. This is the way that the 'logical link' 

between the objects dated and the phenomena is introduced into the analysis, by 

definingf(O I Vf). 

Therefore the elicitation process centres upon the following crucial question: 

What is the relationship between the associated calendar years of the 

objects radiocarbon dated (0) and the archaeological phenomena of 

interest? 

Undoubtedly, this question will need to be addressed and properly answered 

before attempting to define f(O I V) and f(vy). Indeed, before attempting to 

address the above question the archaeological dating phenomena must be defined 

and before trying to state f(O I Vf) and f(V), V must be defined. At this point the 

problem widens considerably and little can be said in a truly general sense about 

the choice for the distributions f(O I Vf) and f(V) and the definition of V. This 

can vary as much as types of dating problems do in archaeology. We have, how- 

ever, presented in former Chapters a variety of examples (along with the example 

to be developed here) that give some ideas along these lines. 
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One issue that is worth considering relates to when in the elicitation process 

Vf should be defined. Certainly we need an appropriate definition for Vf to 

represent the relevant 'aspects' of the dating phenomena. It is clear that this can- 

not be achieved if the relationship between the associated calendar years and the 

phenomena has not been understood. Therefore, to conclude, we can say that the 

basis for the elicitation process involved in the modelling of a particular dating 

problem consists of the following sequence of steps. 

(i) To understand that at this point the values for the radiocarbon determinations 

are not relevant, nor are the technicalities of the calibration process. 

To address the question: What is it that we are trying to date, that is to say, 

what are the archaeological dating phenomena of interest? 

(iii) To address the question: What is the relationship between the associated 

calendar years for the objects radiocarbon dated and the archaeological dat- 

ing phenomena of interest? 

(iv) In the light of (iii), try to define Vf. 

(v) Attempt to define f(O I yi) and f(yf) according to (iii) and (iv). 

7.3 The Galgenberg site 

Now we start our study of the Galgenberg dating problem. We first discuss 

the characteristics of the site and try to understand the dating problem at hand. in 

the next Section we will review other authors' approaches to the interpretation of 

the radiocarbon determinations available for the Galgenberg site. Second, 
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following the points (i) to (v) stated above, we will in Section 7.5 identify the 

archaeological dating phenomena for the Galgenberg and proceed to develop the 

mathematical model for interpreting the determinations. 

The Galgenberg site is situated in the Isar valley, about 7km from Landshut, 

Bavaria. The site was first discovered in the early 1980's and has been excavated 

over a period of years. Although other occupation periods can be identified, the 

archaeological research has focussed on the 'Late Neolithic' activity. On the 

basis of the ceramics found, the Galgenberg has been classified as belonging to 

the 'Cham' Late Neolithic cultural group associated with that region. Broadly 

speaking, the time period expected for the Late Neolithic in that part of Bavaria is 

around 3000 to 2500 BC. 

The Galgenberg is one of the few Cham group sites for which dating evi- 

dence is available. The site has a r6le to play in developing a chronology for the 

zone since it interacts with other Neolithic groups chronologically. By making 

the Galgenberg site chronology clearer it is expected that OUT understanding of the 

whole Neolithic chronology for the zone will be improved. In turn this will affect 

our understanding of other related cultural periods and of the archaeology of the 

area. 

From our point of view, the Galgenberg presents a dating problem that has 

been studied over a number of years by other authors. As we will see, several 

questions have arisen in relation to the events we wish to date and those that can 

actually be dated, and the statistical analysis that should be followed. Thus the 

Galgenberg gives us an opportunity to show the potential of our framework and 

present what, we believe, is an acceptable and interesting analysis of this dating 

problem, in which we address some of the qupstions previously posed. 



-222- 

The archaeological research on the Galgenberg has been carried out by a 

British team and Ottaway (1988) presented a report on the excavations conducted 

up to that time. The Galgenberg is an oval site of around 40m by 60m in size and 

is surrounded by a ditch some 2m to 1.8m in depth. Several features have been 

studied. Stratigraphical relations, artefact typology and some faunal, molluscan, 

botanical and ceramic materials have been evaluated. Ottaway highlights two 

events within the occupation period of interest, both of which have been clearly 

identified, namely 

(i) a fire of palisade fence posts, 

and 

(ii) a fire of posts near the entrance of the site. 

These two fires can be identified in different parts of the stratigraphy and we will 

refer to them as the fires of fences (i) and (ii). 

It is likely that the site was occupied at two different periods and the fires 

marked their (accidental or violent) end and can be taken to represent the termina- 

tion of two different periods of occupation. As well, 'detailed artefact analysis' 

supports the presence of two occupation periods (Ottaway 1988). 

Thirteen charcoal samples which can be related to the stratigraphy in the site 

were submitted for radiocarbon dating. The majority of the samples were taken 

from the burnt fences and the rest from other parts of the stratigraphy. Details of 

the corresponding radiocarbon determinations can be found in Table 7.1 (the way 

we group the determinations will be clarified in later Sections). 
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Sample id. Group I Sample id. Group III 

GrN- 12561 4255±40 GrN-12563 4150±60 
GrN-14429 4310±60 GrN-12564 4210±60 

UB-2551 4285± 85 

Sample id. Group 11 Sample id. Group IV 

GrN-12699 4510± 30 GrN-12562 4290±45 
GrN-12700 4225± 30 
GrN-12701 4280± 35 
GrN-12702 4385± 35 
GrN-14426 4420± 35 
GrN-14427 4245±50 
GrN-14428 4500±80 

Table 7.1 
Radiocarbon determinations available for the Galgenberg site, 

taken from Aitchison el al. (1991). 

7.3.1 Previous approaches 

Ottaway (1988) used two approaches to analysing the radiocarbon determina- 

tions, though at that point in time she had only nine determinations available 

(determination UB-2551 and determinations GrN-x, for x less than 14426 in Table 

7.1). Firstly she grouped those determinations arising from samples taken from 

the burnt materials from fences (i) and (ii) mentioned above. In total, she 

grouped seven of the nine determinations. She then had two groups, each one 

trelating' to a fire. Using these, she calculated the pooled mean for each group. 

This gave her, after calibration, some evidence about the position in time for the 

fires. The calibration procedure used appears to be the 'calibrated confidence 

interval' technique explained in Section 2.3.4. 

The pooled means for each group were 4350±20 and 4180±40, correspond- 

ing to the materials of fence (i) and fence (ii). After calibrating both pooled 

means, Ottaway obtains the calendar time periods 3030-2920 BC and 2880-2700 
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BC, respectively. Ottaway (1988) explains that it is likely that these time periods 

"( ) date two separate events, namely: 

i) a fire of palisade fence posts between 3030-2920 Cal. BC, and ii) a fire of posts 
near the entrance between 2880 and 2700 Cal. BC. " 

However, the organic materials contained in the samples grouped cannot be 

considered to have died in the same calendar year. That is, the associated calen- 

dar years for the samples in each group cannot be assumed to be the same since 

they belong to different objects. Thus, strictly speaking, the determinations 

grouped cannot be considered as replicated samples and therefore the usage of 

pooled means for each group is not completely satisfactory (we have discussed 

this problem in Section 4.4.2). 

Secondly, Ottaway (1988) considers the determinations as a whole and 

creates a 'dispersion diagram' on the radiocarbon scale to assess the occupation 

period for the site. This represents a graphical technique that does not include 

calibration and is intended to give a summary of the radiocarbon determinations. 

This statistical approach is clearly outlined in Ottaway (1986) where the problems 

of dispersion diagrams are analysed. Since no probabilistic model is used, it is 

not clear how to calibrate those dispersion diagrams. (We have reviewed both 

dispersion diagrams and this latter paper in Section 2.4.4. ) 

A further statistical analysis for the determinations arising from the Galgen- 

berg was carried out in Aitchison et al. (1991). They develop a new statistical 

technique to overcome the problems of dispersion diagrams (in Section 2.4.4 we 

have reviewed the statistical techniques developed by Aitchison et al. 1991 giving 

our comments and critique). In this analysis the fires (i) and (ii) are not taken 

into account, nor any information about the stratigraphy in the site. They used all 

the thirteen determinations available and estimated the 'floruit' for the site. The 
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floruit is taken to represent 

"( ... ) the period of time when the middle 50% of artefacts or materials from culture 
were produced ( ... )" 

It is concluded that the estimated 95% interval for the floruit is (approxi- 

mately) 3100 to 2800 BC. Since all the thirteen determinations were included in 

the analysis, such a time period estimates the floruit for the site as a whole. 

The above approaches did not include in the analysis any information about 

the stratigraphy in the site nor the relationship between the associated calendar 

years for the charcoal samples and the fires of the fences (i) and (ii). We believe 

that a correct interpretation of the determinations available for the Galgenberg site 

can only be achieved if such crucial information is included in the statistical 

analysis. In the next Sections we will develop our own approach to the problem 

trying to include these considerations in the analysis. Then, at the end of Sec- 

tion 7.6, we will compare the above estimates with our results. 

7.4 The dating problem 

Two different events can be identified from the excavations at the Galgen- 

berg site, namely, the fires of the fences (i) and (ii) mentioned before. These fires 

mark the ending of the two main occupation periods observed in the site. We 

then infer that the dating problem for the Galgenberg is to date those fires, expect- 

ing this to give us a clear chronology for the site. 

The objects radiocarbon dated are charcoal samples, the majority belonging 

to the actual palisades or materials that formed the fences. The rest of the sarn- 

pies were taken from specific parts of the stratigraphy in the site and, broadly 

speaking, could be placed in relation to the fires (i) and (ii). 
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However, we must note that using radiocarbon dating, the fires of the fences 

cannot be directly dated. Some of the materials dated did belong to the fences but 

they cannot have died when the fires occurred. It is obvious that the construction 

of a fence must have occurred before the fire. Therefore, the organic materials 

forming the fences must have died before both the construction and the fire of the 

corresponding fence. The radiocarbon determinations then give us some direct 

evidence about the date for the construction of the fences only and thus we cannot 

aim at dating the fires (i) and (ii) directly. However, using the determinations, we 

could attempt to give early and, with further considerations, late boundaries for 

their position in time. That is, in archaeological terms, a 'terminus post quem' 

and, possibly, a 'terminus ante quem' for such events. 

To simplify our discussion we identify the following events as 

Cl - construction of fence (i), 

Fl - fire of fence (i), 

C2 - construction of fence (ii) 

and 

F2 - fire of fence (ii). 

A key feature in the Galgenberg site is that Cl, FI and C2 and F2 are strati- 

graphically separated and must be chronologically ordered, the presence of two 

burnt horizons in several ditch sections appears to guarantee this sequence. That 

is, C1 and F1 must have occurred before C2 and F2. We then identify as the 

archaeological dating phenomena for this problem the events Cl, Fl, C2 and F2. 

From this, our approach to the dating problem will be as follows. Following the 
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guidelines for modelling discussed in Section 7.2, we will first deduce the rela- 

tionship between the objects or materials radiocarbon dated and the relative chro- 

nology provided by Cl, Fl, C2 and F2 (the phenomena). Secondly, using the 

techniques presented in Chapters 4, we will be able to include such considerations 

in our modelling defining Vf, f(O I Vf) and f(yr) accordingly and obtain a statistical 

analysis that will give us results interpretable in the light of the archaeological 

phenomena observed in the site, that is, Cl, F1, C2 and F2. 

7.4.1 Grouping the determinations 

The radiocarbon samples are of two types, those belonging to the fences and 

those taken from the stratigraphy. From the former samples we create groups II 

and III and from the latter samples, groups I and IV. Now we give a brief 

description of the groups (the corresponding radiocarbon determinations are given 

in Table 7.1): 

Group I, stratigraphically earliest: 

GrN-12561 Charcoal from westem ditch butt, primary fill/deposit. 

GrN-14429 Charred stake in ditch bottom. 

Group 11, first destruction level in ditches (fence (i)): 

GrN-12699 Charred posts collapsed into western ditch. 

GrN-12700 ti 

GrN-12701 ti 

GrN-12702 

GrN-14426 Charred stake: 'I. destruction level in ditch'. 

GrN-14427 

GrN-14428 
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Group III, second destruction level in ditches (fence (ii)): 

GrN-12563 Charred collapsed palisade posts, eastern part of entrance of 

western ditch, destruction horizon above primary deposit. 

GrN-12564 It 

UB-2551 Charred collapsed palisade post, eastern ditch, apparently second 

destruction. 

Group IV Latest stratigraphically: 

GrN-12562 Charcoal from final recut of western forework. 

What is now necessary is to understand the relationships between these 

groups of samples and the archaeological phenomena observed in the site, in other 

words, to understand the chronological relationships of the above groups with the 

events Cl, Fl, C2 and F2. By understanding the logical sequence of events we 

will suggest such a relationship, thus finding a 'logical link' between the objects 

radiocarbon dated and the phenomena CI, F1, C2, F2. 

7.4.2 The relative chronology 

As pointed out before, the wood used to construct the fences must have died 

before the corresponding fence was erected and, subsequently, burnt. Thus the 

associated calendar years for the determinations included in groups II and III must 

be earlier than CI and C2, respectively. 

Now, it is very likely that the ditches found at the Galgenberg site were dug 

while the construction of the fences was in progress. In fact, it is probable that 

the non-wooden materials forming the ramparts (turf, soil) were dug out from the 

ditches. Assuming that the deposition of material in group I is indeed the earliest 

fill in the ditch then the date of deposition must be close in time to the construc- 

tion of fence (i), that is, Cl. The organic materials contained in the samples 
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forming group I should have died before deposition and thus we estimate that 

their associated calendar years should be, at the latest, contemporaneous with C1. 

In other words, the associated calendar years for the determinations included in 

group I must be earlier than or contemporaneous with Cl. 

Furthermore, there is evidence that the sample in group IV is the latest strati- 

graphically. Assuming that this sample is indeed a product of the late activity in 

the site, we can say that its associated calendar year postdates F2. 

Thus we have now 'located' all the samples within the relative chronology 

given by C1, Fl, C2 and F2. To clarify this discussion, in Figure 7.1 we present 

a diagram representing the chronological ordering of the groups of determinations 

I, II, III, and IV with such events. 

Group I 
Cl, FI C2, F2 Group IV 

Group Il 

> 

Group III 

time 
Figure 7.1 

Chronological relationships assumed for the Galgenberg site. 

Continuing with our analysis of the objects radiocarbon dated we can add the 

following considerations to the relative chronology stated above. It is very likely 

that the wood used in the site, for building fences or other purposes, belonged to 

relatively short-lived trees. This arises as a technological constraint since small 

short-lived trees are easier to fell and cut. Assuming this is the case, and no 

wood was reused, it can be expected that the internal rings in the trees had a max- 

imum age of 50 to 70 years at felling (see Barfield 1991, figure 1, for a con- 

venient analogy). However, we adopt a more conservative duration of 100 years 

for the wood used in the site. 
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Furthermore, since the associated calendar years for the determi nations of 

both group I and II predate Cl, the latest possible age for the tree-rings in the 

samples of those groups should be the same. Similarly, the latest possible age for 

the rings in the samples of group III should be before C2. To clarify this we 

represent the following events by: 

a, - earliest possible age for the rings in the samples of group I. 

a2 - earliest possible age for the rings in the samples of group II. 

P- latest possible age for the rings in the samples of groups I and II. 

q3 - earliest possible age for the rings in the samples of group 111. 

#3 - latest possible age for the rings in the samples of group III. 

and 

114,1 - associated calendar year for the sample in group IV. 10 

From this we see that the above discussion on the age of the wood used in 

the site means that (using years BP) 

0<a, -P < 100,0 < a2-P < 100 and 0< a3 _J63 < 100- 

At this point we are now able to give a complete description of the assumed 

relative chronology for the Galgenberg site, combining a,, a2, P, %, #3 and 04,1 

with the events Cl, Fl, C2 and F2. We do this using the diagram presented in 

Figure 7.2. 
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early 
time 

30 

max 
100 yr 

late 

a, 

IV 

9 Cl, Fl fi3 C2, F2 

D2 

III III 
a3 

Illux 
100 yr max 

100 yr 

Figure 7.2 
Relative chronology for the Galgenberg site. 

Roman numbers represent where the corresponding groups of 
determinations should 'lie'. 

In the next Section we will build the complete mathematical model for the 

Galgenberg dating problem. Note that, as stated before, we have not considered 

the values of the radiocarbon determinations to build this relative chronology and 

these will not be used in the model. The determinations will be useMater in Sec- 

tion 7.5 to find the posterior distributions of interest. 

7.4.3 Mathematical modelling 

In this Section we develop the formal mathematical model for the Galcren- 
CP 

berg dating problem. We will model the chronological relationships between the 

different events defined in the site using the techniques discussed in Chapters 4 

and 5. We will also adopt the robustness techniques presented in Chapter 6, and 
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in the following Sections present an outlier identification analysis and our final 

estimates. 

Using the notation and techniques presented in Section 5.6, it is not difficult 

to obtain a model for the relative chronology assumed in the Galgenberg dating 

problem. Let yi, j±ui, j be the j"' determination from group i associated with the 

calendar year Oij. As explained before, in Section 7.2, we need to define yr and 

the prior distributions f(O I Vf) and f(yf). This with respect to the dating problem 

of interest and the relationship between the determinations and the dating 

phenomena. We will proceed as follows. 

The associated calendar years Oj. j can all be located within the relative chro- 

nology for the site explained above. For example, given a, and fl we know that 

OIj c: (, 8, a, ) with probability one (see Figure 7.2). To facilitate our discussion 

we state that, given Vf, each Oij belongs to the phase yf2i to V2j-1. Then we 

define 

V= (Yfl, V/2,..., v8) = (fl, a,, 6, a2, & a3,0,03) 

and we assume that 

Oij IV- U(V2i 
-11 

V12i) 

and 

4 mi 
Ao I V) = 11 flf(oi, 

j 
I yf). 

i=lj=l 

(Here we have m, = 2, M2 = 7, M3 =3 and M4 = l-) 

That is, we translate the early and late boundaries for the phase containing 

each group to a,, a2, X a3, P3. For group IV, P3 provides an early boundary, 

but no late boundary is defined within the relative chronology of the site. Thus 

we have defined V/7 = 0. Furthermore, since we have no prior information about 
the position of each Oj, j within the phase V/2j to V2i-l, we use a uniform prior 
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distribution for Ojj within that phase. 

The relative chronology is completely modelled when we define f(yr) as the 

distribution with support in 

P ý" P3 
9 

and 

0<a, -P < 100,0 < a2-P < 100 and 0< a3-fl3 'ýý 100- 

To clarify the ideas we present, in Figure 7.3, the corresponding hierarchy 

diagram for the modelling of the Galgenberg dating problem (following the con- 

ventions given in Section 5.6.2). 

rigure 7.3 
Hierarchy diagram for the Galgenberg modelling. 

We identify Vf = (fl, a,, fl, a2, P31 a3l 0,03)- 
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We will include the robustness techniques discussed in Chapter 6, using the 

model 

yi, j I Oij, 3ij, ýjj - N(. u(Oi, j) + oij 8i. j , w1li(Oij)) 

ai2 
2(19ij)). (where o)ý-(Ojj) = j+a In this case, and only for practical reasons, we 1. j 

do not consider the variance in the calibration curve a 2(0) since the the determi- 

nations used are not high-precision (the standard deviations are higher than 30 

years). That is, we assume 0)?. (Oi'j) =_ 2. Thus it is not difficult to calculate I'j aij 

the full conditionals for all the parameters of interest using the techniques, 

presented in Section 5.6 and 6.4. These are 

f(0i, j 1 Yi 0-(ij)i Vg 169 0) : -- f(Oij 1 Yi. ii VV-19 Vf2i, 169 0) oc 

exp 
I-I((, u(Oi, i) - (Yij - oij bij ))2 

2 ai 2-i 

for i=1,2,3,4 and j=1,2,..., mi. Since 

f(vi 1 0, vf-i�6,0) = Avi 10, V-i) - f(0 1 Of(vi 1 vt-i) 

for i=1,2,3,4 we have 

f(al 10, a2, A a3, P3) "- (a, _p)-2 I(al )(max(O, ), P+ 100) 1 

f(a2 10, a,, P, a3,03) c>c (a2 _p)-7 l(a2)(max(92). P+ 100)9 

A8 10, al, a2l a3 9 
63) cc (a, _#)-2(a2_, 8)-7 I(fi)(a, b) 

where 

max(max(al, a2)- 100, #3) and 

min(min(Ol), min(02)), 
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and 

f(a3 10, a,, a2, A P3) 04 (a 3 _p 3 )-3 I(a3 )(max(03), P3 + 100) 

and 

f(ß3 10, al, a29 ß, a3) - (a3 _ß 3 )-3 ß31 IA )(max(a3 
-1 00s t94.1 ), min(O, » - 

The remainder of the full conditionals are 

!. ) ýO, - oý ý -Z ij Si, j 1 0,8-(1, j), 0~ N(yij-p(0j, j), criýj 71 

and 

- 
I( (. U(Oi. j) - (Yi 

,j_6,. j 0,. j))2 
f(oi, j I y, 0,8,0-(i, j)) - p, hj(I-pj, j)l-Oi, Jexp 

2 Ci2 
,j 

)II 
where pi, j is the prior probability that determination yi, j ± ai, j is an outlier. 

In Section 5.6 we have discussed general guidelines for sampling from the 

above full conditionals. Once we have appropriate sampling routines, a MCMC 

method can be implemented to find the posterior distributions required. In partic- 

ular the posterior probabilities Pjj = P[0jj =11 y], will give us evidence about 

the presence of outliers in the sample. We present and discuss these results in the 

next Sections. 

7.5 Outlier identification 

Given the model developed above, we are now able to combine consistently 

the considerations about the relative chronology of events in the Galgenberg site 

and the radiocarbon determinations available. Our initial step will be to analyse 

the posterior probabilities 

pij = ploij =IIA 
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to identify possible outliers. As discussed in Chapter 6, these probabilities pro- 

vide us with evidence about how well in accordance determination yi, j (the jh 

determination from group i) is with, 

(i) the rest of the determinations, 

and 

the relative chronology for the site. 

In Table 7.2 we present each of these probabilities for the thirteen determina- 

tions involved in the problem. As suggested in Chapter 6, we are using a single 

prior probability of 0.1 for any determination being an outlier. That is, a priori, 

we expect I in 10 determinations to be discordant or outliers. In Figure 7.4 we 

present the posteriOT marginal diStTibutions for the parameters a,, a2, fl, a3v fl3 

and 04,1 of the Galgenberg chronology. 

Sample id. PI. j Sample id. P3, j 

GrN-12561 0.07 GrN-12563 0.08 
GrN-14429 0.09 GrN-12564 0.08 

UB-2551 0.14 

Sample id. P2, j Sample id. P4,1 

GrN-12699 0.98 GrN-12562 0.42 
GrN-12700 0.10 
GrN- 12701 0.07 
GrN-12702 0.07 
GrN-14426 0.10 
GrN-14427 0.08 
GrN-14428 0.18 

Table 7.2 
Posterior probabilities of each determination being an outlier 

for the Galgenberg dating problem. 



-237 - 
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Calendar years BP 

Figure 7.4 
Marginal posterior distributions for the parameters of 

the chronology of the Galgenberg dating problem. 

Apart from two posterior probabilities the rest of the Pjj's shown in Table 

7.2 remain basically the same as the prior value of 0.1. That is, we have no con- 

clusive evidence, a posteriori, that the corresponding determinations are mislead- 

ing (outliers) given that, a priori, we expected I in 10 determinations to be 

outliers. The two determinations that do have conspicuous posterior probabilities 

Pi, j's are GrN-12699, from group 11 (with 0.98), and GrN-12562, from group IV 

(with 0.42). 

P2.1 attributed to determination GrN-12699 is very large (>0.9). This 

determination differs from the other determinations in its group, having the 

highest radiocarbon age of all and a very low standard deviation (30 years, see 

Table 7.1). The rest of the determinations in its group have more or less the same 

Pj, j as the prior, 0.1, and therefore we have no new evidence about those determi- 

nations being outliers. Thus we have very conclusive evidence that determination 
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GrN-12699 is not in accordance with the rest of the determinations and the prior 

information about the relative chronology of the site. It seems clear that, to 

obtain robust and reliable estimates, we should remove this determination and re- 

run our analysis using the corrected set of determinations (we will do this in the 

next Section). 

a 

4600 

4400 
radiocarbon 

years bp 

4200 

4000 

......... ... 

................ 

................................................. 

5300 5100 4900 4700 4500 
Calendar years BP 

Figure 7.5 
Section of the piece-wise linear calibration curve 

along with the radiocarbon determinations from group II and the range (P(, O*, a; )). 
(o) corresponds to determination GrN-12699 detected as a probable outlier. 

To illustrate the above we proceed as follows. We note that the Oij's of 

group II are contained in (8, a2). Since the posterior distributions of a2 and 6 

are more or less symmetric and not wide-spread, the MAP estimators, a2 and 

give good summaries for the posterior distributions of these parameters. There- 

fore, we would expect the determinations of group 11 to lie approximately within 
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the range 4(8 a2 ). Considering this, we present in Figure 7.5 the determinations 

of group II, together with a2., #(, 6*, a2 ) and the relevant part of the calibration 

curve. It can then be seen that determination GrN-12699 is about 4 to 5 standard 

deviations away from the range jt(fl * a*), as opposed to the rest of the determina- 2 

tions in its group, which are within approximately one standard deviation of that 

range. 

A more complicated case is the one presented by determination GrN-12562. 

The corresponding P4,1 is more than 0.4. This gives us some, although perhaps 

not conclusive, evidence that the determination is not in accordance with the rest 

of the sample and the prior information used in the analysis. Therefore it might 

be considered as an outlier. We must note, however, that this determination is the 

only one in group IV. It might seem paradoxical that a determination that stands 

alone in a group has a strong probability of being an outlier. 

How can we call a determination that stands alone an outlier? 

This apparent paradox is easily explained by noticing that determination 

GrN-12562 does not stand alone, simply because it is not interpreted on its own. 

There is detailed prior information that links this determination with the rest. 

Specifically, we stated that it was the 'latest stratigraphically' A ýý, 04.1). There- 

fore, we can still say that the determination is, to some extent, not in accordance 

with the other determinations (in other groups) and with the prior information 

used (the relative chronology of the site). To illustrate this we present, in Figure 

7.6, the 95% highest posterior density region for P3 transformed onto the 

radiocarbon scale, along with determination GrN-12562 and the relevant part of 

the calibration curve. We see then that deteymination GrN-12562 is I to 5 stan- 

dard deviations above that range. According to our model, we would have 

expected it to be within or below that range. 
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Figure 7.6 
Section of the piece-wise linear calibration curve 

along with radiocarbon determination GrN-12562 (group IV) and the 
95% HPD region for P3 transformed onto the radiocarbon scale. 

Determination GrN-12562 is identified as a possible outlier. 

However, since there are no other determinations in group IV that might help 

us balance what is happening, in this case it is difficult to decide whether determi- 

nation GrN-12562 is erroneous (an outlier) or whether there is a piece of our prior 

information that is not accurate (related to the assumption that 83 > 04.1 ). it 

seems, though, that if we wish to make robust inferences and derive robust esti- 

mates from these determinations, then determination GrN-12562 should not b. - 

considered. 
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7.6 Robust estimates 

We now reconsider the Galgenberg dating problem but remove determina- 

tions GrN-12699, from group II, and GrN-12562, from group IV, which we con- 

sider to be outliers. Removing determination GrN-12699 represents no technical 

difficulty since we only need to reduce the number of elements in group II to 6, 

that is M2 = 6. However, removing determination GrN-12562 does present some 

complications since this determination was the only one forming group IV and 

now we do not have any determination associated with the 'late activity' in the 

site. Thus, our relative chronology changes slightly since now we do not have 

any 'terminus ante quem' for the fire of fence (ii) (or F2). This revised relative 

chronology is outlined in Figure 7.7 where 04,1 is removed. 

early 
time " late 

C2, F2 

max I 
: 01 100 yr max 

100 yr 

Figure 7.7 
Relative chronology for the Galgenberg site, with 04.1 not included in the sequence. 

Roman numbers represent where the corresponding groups of 
determinations should 'lie'. 

max 
100 yr 
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The mathematical modelling needs slight alteration, but making the neces- 

sary modifications presents no technical difficulty. We avoid going through 

further technical details and concentrate on interpreting the results. 

We re-ran our analysis omitting determinations GrN-12699 and GrN-12562 

and obtained the posterior probabilities of each determination being an outlier 

shown in Table 7.3. The corresponding marginal distributions for the parameters 

are shown in Figure 7.8. 

Sample id. Pid Sample id. P3. j 

GrN- 12561 0.07 GrN-12563 0.08 
GrN-14429 0.09 GrN-12564 0.11 

UB-2551 0.18 

Sample id. P2, j Sample id. P4,1 

GrN-12699 rmv. GrN-12562 rmv. 
GrN-12700 0.10 
GrN- 12701 0.07 
GrN-12702 0.07 
GrN-14426 0.10 
GrN-14427 0.08 
GrN-14428 0.19 

Table 7.3 
Posterior probabilities of each determination being an outlier. 

The Galgenberg dating problem, with determinations 
GrN-12699 and GrN-12562 removed as possible outliers. 

We consider the Pij's shown in Table 7.3. The posterior probabilities 

observed remain at around the prior value of 0.1 and thus we have, a posteriori, 

no further clear evidence for outliers in the sample. The resulting posterior distri- 

butions do not vary greatly from the marginal distributions obtained with the 

former analysis, as seen in Figures 7.4 and 7.8. However, since in this case we 

have removed 04.1 
. the earliest date in the model, the distributions of a3 and . 

83 

adjust to this. They are now less spread and shifted about 100 years later. 
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Figure 7.8 
Posterior marginal distributions for the relevant parameters 
of the Galgenberg dating problem, with two determinations 

removed as possible outliers. 
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At this point we are able to interpret the posterior distributions of interest 

and give our final estimates. The interpretation of the results is focussed on the 

relevant archaeological phenomena observed in the site. That is, the construction 

and fire of the fences (i) and (ii), or Cl, Fl, C2 and F2. As seen in the diagram 

presented in Figure 7.7, the sequence of events Cl, F1 is predated by P and post- 

dated by P3. Thus we have a 'terminus post quem' and a 'terminus ante quem' 

for these events. The sequence C2, F2 is predated by, 83 but we have no parame- 

ter that postdates it. Thus, in this case, we only have a 'terminus post quem' for 

the events. 

We then concentrate our interpretation on the posterior distributions fl Iy 

and #3 1 Y. In principle we should try to interpret the joint posterior distribution 

01 P3 1 y. Fortunately for us 
- 
these two parameters seem, a posteriori, to be 

independent since their correlation is estimated to be -0.007 (estimated from the 

MCMC sample obtained) and thus we do not lose information by considering the 
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marginals only. As pointed out above, the sequence Cl, F1 should have occurred 

after P and before #3 and the sequence C2, F2 after 63. The posterior distribu- 

tions f(P I y) and A03 I y) then represent the current knowledge, based on the 

relative chronology of the site and the radiocarbon determinations available, about 

the position in time (on the calendar scale) of P and 83. What remains now is to 

examine those posterior distributions and observe where in time Cl, Fl, C2 and 

F2 should be located. The 95% highest posterior density regions of these distri- 

butions are (approximately) 4850 to 4820 BP for P and 4740 to 4560 BP for 83. 

Broadly speaking, we can say that the sequence Cl, F1 lies in the region 4850 to 

4820 BP and 4740 to 4560 BP (and C2 after that last range). However, given the 

relative chronology of the site, we believe that in this case a better interpretation 

of the distributions f(P I y) and f(#3 I y) can be achieved if we analyse the 

corresponding cumulative distribution functions. 

Since the sequence Cl, Fl. should have occurred after 8, then C1, FI 

occurred after any time tj with probability P[tj <81 y]. Similarly, F1 occurred 

before any time t2 with probability P1t2 ý" P3 101 and C2 occurred after any time 

t3 with probability PP3 < J63 1 y]. These probabilities are or can be calculated 

from the cumulative distribution functions of P and 83. In Figure 7.9 we present 

these distributions together with the probable position in the calendar scale for the 

events Cl, Fl, and C2. 

The position in time for the events Cl, Fl and C2 provided in Figure 7.9 are 

only tentative and must be interpreted as time ranges (in the direction of the 

arrows attached to each event) rather than point estimates. Note that, since we do 

not have a 'terminus post quem' for C2 (in thi's corrected model), its time range is 

not bounded. Using the distributions presented in Figure 7.9, any probabilities at 

any level or inter-quantile ranges can be approximated for P and P3. From that, 

probable time ranges for Cl, Fl and C2 can be estimated with any desired 
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Figure 7.9 
Cumulative posterior distribution functions for, 6 (a) and 03 (b) 

and the probable position in time (given as ranges) for the events 
Cl, Fl, construction and fire of fence (i) and C2, construction of fence (ii). 

(c) and (d), are estimates of the calendar dates for the fires of fences (i) and (ii) 

respectively, given by Ottaway (1988). (e) is the estimate of the floruit of 
the site, as given by Aitchison et al. (1991). 

probability. Note that two occupation periods could be distinguished within the 

chronology for the site. This is in relation to the fences (i) and (ii). Broadly 

speaking, the first occupation period can be estimated as being between 2970 to 

2750 BC (between Cl and C2) and the second after 2750 BC (after C2). 

Also in Figure 7.9 we have indicated estimates given by other authors. Otta- 

way (1988) gave as estimates for the dates of fires (i) and (ii) the time ranges 

3030 to 2920 BC and 2880 to 2700 BC respectively, see Figure 7.9. Aitchison 

et al. (1991) gave as an estimate for the floruit of the site the time range 3100 to 

2800 BC seen in Figure ý. 9. In both of these analyses littie or no information 

about the relative chronology of the site was used nor was the relationship 

between the objects radiocarbon dated and' the events of interest clearly esta- 

blished (we have discussed both of these analyses in Section 7.3.1). In particular, 
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the fact that the determinations cannot be used to date the fires (i) and (ii) (171 and 

F2) directly was never considered. In contrast to this, we include such considera- 

tions in our statistical analysis stating that the associated calendar years for the 

determinations predate the construction of the fences and thus predate the fires Fl, 

and F2. The difference in the various approaches can be seen in Figure 7.9 and 

understood in that perspective. Our estimates are, broadly speaking, 100 to 150 

years later than those of Ottaway (1988) or Aitchison et al. (1991). Besides this 

we have not given any precise estimate for the date of the fire (ii). This comes as 

a result of our robust analysis and of inherent limitations found in the interpreta- 

tion process. 

It now seems clear that the inclusion in the statistical analysis of, what we 

believe to be, crucial prior information explains the differences between our esti- 

mates and those reported by other authors. In this respect, we believe that we 

have achieved a more realistic interpretation of the Galgenberg dating problem. 

7.7 Conclusions 

At the beginning of our analysis we stated that the Galgenberg dating prob- 

lem was to date the fires (i) and (ii). The estimates obtained, though, were not for 

the dates of the fires themselves, but for the construction of the fences (i) and (ii) 

(Cl and C2). The fire of fence (i), Fl, occurred any time between Cl and C2. 

According to Figure 7.9, this time range can be broadly estimated as 2950 BC to 

2750 BC. To give a more precise range, we would need some information about 

the time elapsed between the construction and the fire of fence (i). That is, the 

time elapsed between Cl and Fl. For F2 we can only say that it occurred after 

C2, that is, some time after about 2750 BC. Similarly, in order to give a more 

precise date for F2 we would need some information about the time elapsed 
between C2 and F2. For example, it could be argued that the posts in a fence will 
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deteriorate and may therefore only last, say, 50 years or less. However, we do not 

have enough knowledge about the Galgenberg site to support this kind of reason- 

ing and therefore the above datings for F1 and F2 represent our best estimates, 

given present knowledge. 

At this point we would like to review what we have achieved so far with the 

Galgenberg dating problem. Using the published reports for the excavations at 

the site, we deduced a series of chronological relationships among events 

observed in the stratigraphy. This gave us a relative chronology for a series of 

events that, according to our understanding, must have occurred in the site. Given 

the characteristics of the samples radiocarbon dated we formed four groups from 

them and deduced the chronological relationships between those groups and the 

relative chronology of the site. 

Using our statistical framework we were able to include in the analysis the 

relative chronology identified for the site and its 'logical link' with the samples 

radiocarbon dated. The resulting statistical analysis developed then enabled us to 

combine the radiocarbon determinations with the relative chronology of the site 

and thus, in some sense, to date the events observed in the stratigraphy. 

Furthermore, a robustness analysis was carried out to investigate how well in 

accordance the radiocarbon determinations were with the model and prior infor- 

mation used. As a result of this, two determinations were removed as probable 

outliers and a piece of our prior information reconsidered. We expect that this 

will give us more robust datings. 

Since several archaeological considerations were included in the analysis, the 

datings obtained could be interpreted in relation to the events observed in the site. 

Relevant posterior probabilities were calculated and we were able to obtain prob- 

able time ranges for these events, on the calendar scale. 
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As a final comment we would like to mention the factors involved in the 

analysis. 

(i) A basic model for radiocarbon determinations that allows for the possibility 

of outliers. 

(ii) Calibration including the variance in the calibration curve. 

(iii) The relative chronology of the site. 

Bayes' theorem has allowed us to combine in a consistent manner the above 

factors with the radiocarbon determinations available and obtain estimates of the 

dates for the archaeological events of interest. We must remark, however, that 

such estimates could only be obtained given the assumptions involved in (i), (ii) 

and (iii). In particular, this is true of the relative chronology assumed for the site 

which includes the relevant archaeological information available for the dating 

problem. Indeed, all those assumptions are open to discussion and we do not 

expect them to be accepted without comment or criticism. Moreover, since one's 

current knowledge and understanding is always limited, it is likely that further 

considerations about the archaeology in the site could be used to improve our 

analysis. Therefore, the dates obtained here can only be believed if our assump- 

tions are accepted. 
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Chapter 8 

Discussion 

The topics considered in this thesis may be broadly divided into three 

groups, namely 

(i) radiocarbon calibration of one radiocarbon determination, 

statistical analysis and interpretation of sets of possibly related radiocarbon 

determinations 

and 

(iii) robustness of our analyses to outliers. 

in the light of these, in this Chapter we present some final thoughts for the thesis. 

With respect to point (i), we discussed radiocarbon calibration in Chapter 3 

where we developed the calibration method used later in the thesis. This 

represents an original technique for radiocarbon calibration which, as opposed to 

most other approaches, attempts to take into account the observed variability for 

the calibration data. We have compared our calibration technique with others and 

concluded that, when the standard deviations of the determinations to be cali- 

brated are small, it is important to consider that variability. 

Our calibration technique takes into account the yearly variation of the 

atmospheric 14C 
, a(G). Using our method, to calibrate radiocarbon determinations 

it is necessary to have an estimate for the variance and correlation structure of 

that process. Since we have access to only small amounts of data relating to the 
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process a(O), we could only obtain broad estimates for this variability. As a 

result of this, in our examples we used what may well be an overestimate for the 

variance of a(O). Further research is needed to investigate this matter and to 

establish a more accurate estimate. 

In relation to point (ii), in Chapters 4,5 and 6 we have presented a general 

statistical framework for the analysis and interpretation of radiocarbon determina- 

tions. This framework provides a powerful tool for the statistical analysis of sets 

of radiocarbon determinations associated with a wide range of dating problems. 

Using the Bayesian paradigm it is possible to include in the analysis archaeologi- 

cal prior knowledge about the characteristics of the dating problem under study. 

We have addressed, and proposed solutions to, many common problems encoun- 

tered in the interpretation of radiocarbon determinations. Furthermore, the frame- 

work provides a general approach which is not restricted to the study of specific 

examples but is applicable to a much wider variety of problems. 

We have presented a series of examples that illustrate how our framework is 

applied. In some cases, despite not using very sophisticated mathematical tech- 

niques, we have addressed important dating problems. However, since many 

problems have large number of unknown parameters, we have used Markov chain 

Monte Carlo (MCMC) methods to obtain the posterior distributions of interest. 

Nevertheless, several questions may arise when applying our framework. A 

very important issue is how to define reliably the prior distributions involved in 

the analysis. That is, how should the knowledge elicitation process be carried 

out? In the examples used in this thesis we have presented various different pri- 

ors and discussed some alternatives. In particular, in Chapter 7 we have presented 

a study of how the prior distributions ar6 elicited in a specific dating problem and 

given some general ideas to tackle the elicitation problem. We acknowledge that, 

for our approach to work, careful elicitation must be carried out to ensure that the 
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prior distributions used, correctly reflect the characteristics of the dating problem 

under study. Therefore, further important research is required to consider the eli- 

citation problems involved in the interpretation of radiocarbon data. This will 

necessarily involve the users of radiocarbon dating (mainly archaeologists) and 

thus far-reaching interdisciplinary collaboration. 

Another important issue to be considered is the sensitivity of our analyses to 

changes in prior specification. That is, to what extent our estimates will be 

affected if the priors used are slightly altered. This is an important problem since, 

in most real situations, there is ncýa unique prior that describes the knowledge 

available about the dating problem under study. It is commonly the case that a 

set of similar priors could be used. In those circumstances our results should not 

dramatically change from one prior choice to other. In some of the examples 

presented in Chapter 5 we briefly discussed changes in prior specification and how 

the resulting analysis is affected. Further research should not only look at specific 

examples but try to address the sensitivity problem in a general way. 

We used numerical techniques to implement the Bayesian paradigm and 

obtain the posterior distributions of interest. In most of the cases we have used 

MCMC methods, more specifically, the Gibbs sampler. This involves large 

amounts of time both in terms of developing and debugging computer software 

and CPU. Given the present availability of very powerful computers, however, 

the need for CPU time is less and less problematic. The complexity of the sam- 

pling routines required commonly demands complex software development and a 

meticulous debugging process. For our approach to be of wide applicability it will 

be necessary to have well-tested and efficient routines. The routines will involve 

sampling, integration and data handling. A well-designed environment for 

developers would be desirable. In any case, a close collaboration between the 

users of radiocarbon and statisticians will always be required to perform the 
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analyses and develop the software that may be needed in specific applications. 

We need to mention also that there is a disadvantage in using numerical 

methods. That is, they give little insight into what results should be expected and 

how the statistical techniques actually work. It would be desirable to obtain a 

better analytical understanding of the techniques used and to gain insight into 

how, algorithmically, data and priors are transformed into posterior estimates. 

However, the chances of attaining such an understanding seem remote given the 

nature of the likelihood used. 

Finally, considering point (iii) above, in Chapters 6 and 7 we have discussed 

the problem of outliers in radiocarbon data. We believe that we have presented 

an interesting approach that can successfully be used in a wide variety of prob- 

lems. Since it is based on a general methodology, our approach is not restricted 

to specific problems. On the contrary, we have attempted to tackle the problem of 

outliers in radiocarbon data using an original methodology which has widespread 

applicability. 

Our methodology for identifying outliers in radiocarbon data is based on 

simple intuitive ideas formalised within a well-defined statistical model. It pro- 

vides us with interpretable results, obtaining the posterior probability of each 

determination being an outlier. Here we have presented three examples of how 

this methodology can be applied. More examples need to be studied of various 

dating problems and data sets to explore the performance of the methodology. 

To model the presence of outliers we have used shifts on the radiocarbon 

scale. Subsequent research should consider shifts on the calendar scale and, given 

that, decide upon a clear strategy as to what type of shifts should be used in 

specific situations. Also, there is the problem of specifying the prior probability 

of each determination being an outlier. In Chapters 6 and 7 we used a prior 
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probability of 0.1 of any determination being an outlier. This probability is not 

definitive and could, perhaps, be reduced if appropriate. On the other hand, in 

some circumstances, it may be necessary to introduce uncertainty. For example, 

we could consider a 'beta' prior distribution and thus have a degree of uncertainty 

for the prior probability of each determination being an outlier. 

To conclude, we can say that we have developed an interesting and powerful 

statistical framework for the Bayesian interpretation of radiocarbon determina- 

tions. Using our framework we have been able to tackle, successfully we believe, 

statistical problems associated with various archaeological problems that in the 

past have been the source Of great confusion. Several further issues need to be 

addressed, some of which we have oveLinea . above. More examples and theoreti- 

cal work need to be developed to improve our framework and facilitate its appli- 

cation. Indeed, much else needs to be done. 
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