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Abstract

Large scale patterns in the seabed often occur in the nearshore zone of sandy

beaches. A widely occurring bed pattern is the crescentic bar. These bed patterns

develop under moderate wave conditions, and form a lunate shaped alongshore

pattern in front of a coast. Over recent years, knowledge concerning the develop-

ment, occurrence, and characteristics of these bed patterns has been significantly

expanded through field studies and modelling attempts. An example of such a

model is the linear stability analysis, which describes the initial development of

crescentic bed patterns along an undisturbed beach.

To date, comparisons between field measurements and modelling results have

been general in nature. The purpose of this research is to investigate whether a

linear stability analysis, which is useful for understanding the physics of emerging

bed-forms, can be used to make quantitative predictions in the field. To this

end a morphodynamical linear stability model (Morfo60, [Calvete et al., 2005])

is used to describe the development of crescentic bed patterns at the coast at

the USACE Field Research Facility in Duck, North Carolina, USA. Wave, tide

and bathymetry data recorded at Duck over a two month period in 1998 are

used to model the development of these morphodynamical patterns. The model

predictions are compared with field observations made at Duck, over the same two

month period, reported by van Enckevort et al. [2004].

A direct comparison shows that predicted length scales of crescentic bed pat-

terns are similar to those observed. However, the model predictions show more
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fluctuations than are observed in the field. This is because the model describes

the development of crescentic bed patterns starting from an alongshore constant

bed, whereas in reality bed patterns already exist in most situations.

An algorithm is developed to overcome these fluctuations and identifies the

more physically significant model predictions based on large growth rates and

consistency in length scales. The moments at which physically significant model

predictions occur correspond better with field observations than the original model

predictions.

The effects of pre-existing bed-forms on the development of crescentic bed

patterns are investigated using a non-linear model (Morfo55, [Garnier, 2006]).

Results show that pre-existing bed patterns can have significant effects, however,

the finally dominant length scale, the linear growth and decay rates, and the

migration rate can be accurately described by a linear stability model. Pre-existing

length scales that exhibit significant linear growth will remain and undergo further

development, whereas length scales that are outside the linear growth rate curve

decay and give rise to a bed pattern with a bigger linear growth rate.

The conclusions drawn from the research concerning pre-existing bed patterns

are applied to improve predictions linear stability model. This results in consider-

able improvements in the comparison of model predictions with field observations,

for certain periods of time.
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Chapter 1

Introduction

Norfolk village being swallowed by the sea, The Independent, 2008
’Happisburgh’s sea defences built in 1959 have crumbled away’

Erosion threat to protect sites, The Times, 2006
’Britain is going to have to learn to let go of certain places due to climate
change’

Stark warning on Britain’s shrinking coast, The Independent, 2008
’Stretches of Britain’s coastline are doomed due to the rising sea and plans
will soon have to be drawn up to evacuate people from the most threatened
areas’

Living on the edge, The Guardian, 2006
’About 1,062,000 flats and houses, 82,000 businesses, 2.5 million people and
2 million acres of agricultural land, worth about £120 billion in all, are at
risk from flooding and erosion brought on by global sea level rise’



(a) (b)

Figure 1.1: (a) Warning for the dangers of rip currents. (b) Coastal erosion at Hap-

pisburgh, UK.

1.1 Coastal management

Sea level rise combined with the increasing severity of storms make research con-

cerning the evolution of beaches and the nearshore region of great importance,

not only to coastal engineers but also to the millions of people living, working and

holidaying in coastal areas (see Fig. 1.1(a), [http://ripcurrents.noaa.gov ]).

Coastal defences form the defence against storms, flooding and coastal ero-

sion. However, current coastal defences in the UK were designed with ’yester-

days’ storms and sea levels in mind. Ever increasing impacts of human presence

in coastal areas (see Fig. 1.1(b), [http://www.happisburgh.co.uk ]), crumbling de-

fences and expected increase in severity of storms, combined with sea level rise due

to global warming, will cause more and more challenges in coastal management

[Dodson, 2009].

The management of the coastal zone is aimed at avoiding flooding and erosion

and, where appropriate, creating pleasurable and safe environments for recreation.
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Along with the seabed, beaches and coastal defence structures, waves, tides and

currents form an interactive system that changes on wide-ranging spatial and tem-

poral scales.

Hard defences such as sea walls and groins can form a final line of defence

against floodings as well as reducing beach erosion. However, hard defences not

only reduce possibilities for recreation, they can also cause negative effects down

the coast and locally, by impairing the natural beach evolution. For example,

groins block alongshore currents, trapping sediment at the location of the groins,

but causing increased erosion downstream of the groined beach. Sea walls form

a hard structure blocking storm waves from eating away dunes. However, be-

cause the sediment exchange between the beach and dune systems is disrupted,

sea walls can actually cause beach erosion, as happened at the stretch of beach

between Winterton and Happisburgh [Environment Agency, 2008].

Consequently, recent developments in coastal management are more orientated

towards maintaining the natural beach evolution. Soft defences, such as beach

nourishments, are a common practice in many countries [Hamm et al., 2002; Han-

son et al., 2002], whilst shoreface nourishments form a new cheaper solution to

mitigate beach erosion [Grunnet and Ruessink, 2005; Klein, 2006]. Both soft

coastal management solutions involve the deposition of sand to compensate for

coastal erosion and improve the protection of the coastline against the impact

of storms. Where hard defences attempt to reduce natural beach evolution, soft

defences only attempt to mitigate its impact with respect to coastal defence and
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Figure 1.2: A schematic description of the dissipative and reflective beach state

[adopted from Wright and Short, 1984].

recreational purposes.

1.2 Natural beaches

Natural undisturbed sandy beaches generally show non-uniform cross shore beach

profiles. A natural beach can be divided into different beach states as a result

of different forcing conditions: From a shallow highly dissipative beach, occurring

generally during winter storms to a steep, fully reflective beach generally composed

of coarse material. In between both extreme beach states, a wide range of different

beach states is observed: Moderately dissipative beaches will develop an offshore

bar that shows rhythmic bed patterns, such as transverse or crescentic bars, al-
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Figure 1.3: A schematic description of the crescentic bed pattern and the correspond-

ing water circulation [adopted from Wright and Short, 1984].

though transverse bars are more commonly observed closer to the shoreline. More

reflective beaches generally develop a (tidal) terrace closer to the shore, along with

ridge and runnel circulation patterns and beach cusps [Wright and Short, 1984].

Natural beaches form an interactive and dynamic system with tides, currents, and

waves [Wright et al., 1986]. Different bed patterns, such as beach cusps and cres-

centic bed patterns develop under different forcing conditions [Blondeaux, 2001].

Changing wave and tidal circumstances therefore result in changing beach states

and bed patterns [van Enckevort et al., 2004].

1.3 Crescentic bed patterns

A widely occurring bed pattern in front of sandy beaches is the crescentic bar

[van Enckevort et al., 2004] (see Fig. 1.3). Many beaches around the world dis-

play alongshore bars at a certain distance from the beach [van Enckevort and

Ruessink, 2003b]. Under certain conditions, these bars will deform into lunate

shaped bed-forms along a beach, called crescentic bars, with length scales varying
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from 30 to 3000 m [Blondeaux, 2001]. The existence of crescentic bed patterns

has been shown to correspond with water circulation cells [Fredsoe and Deigaard,

1992]. Water moves onshore on the crest of the crescentic bed patterns, and off-

shore in the shoals. The offshore water motion, called rip currents, represents a

danger for bathers (see Fig. 1.1(a)). Both rip currents and crescentic bed patterns

interact with nourishments, and for the successful application of nourishments, the

ability to make predictions of the development of crescentic bed-forms and rip cur-

rents, with a reasonable degree of accuracy and within limited periods of time is

therefore of significant importance.

1.4 Understanding natural beaches

For the successful application of coastal defences, understanding of the natural

behaviour of beaches is necessary [Ojeda et al., 2008]. The processes behind the

behaviour of natural beaches have been investigated over the last decades. Field

measurement techniques, such as Argus imaging [Lippmann and Holman, 1989],

have greatly expanded the knowledge concerning the occurrence of bed patterns.

Further, a wide range of modelling techniques have been applied to the study of

natural beach behaviour: From empirical formulations to describe specific pro-

cesses [eg. Plant et al., 2006]; the description of the development of bed patterns

due to forcing templates [eg. Bowen and Inman, 1971] or free instabilities [eg.

Falqués et al., 2000]; to full time-domain models describing actual beach locations

with a high degree of accuracy [eg. Klein and Schuttelaars, 2006]. Each type of

model furthers the understanding of the dynamics of the nearshore bed evolution
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with regards to hydrodynamic conditions. Empirical models tend to focus on re-

lating different measured quantities with each other, while models based on the

Newtonian equations attempt to describe the evolution of the seabed as a result

of physical relationships.

1.5 Linear stability analysis

An example of a model based on physical relationships is the linear stability anal-

ysis, which investigates whether, for example, an alongshore uniform shoreline is

stable, or whether crescentic bed patterns would develop under certain forcing

conditions. This type of model needs less calculation time and input data to pro-

duce a prediction for the development of the nearshore seabed than traditional

time-domain models. However, such a model assumes alongshore constant condi-

tions and can only describe the initial development of bed patterns. Until now,

both limitations have restricted the use of this type of model mainly to the in-

vestigation of the effects of different physical processes and model settings on the

development of crescentic bed patterns. Despite these limitations, comparisons of

linear stability analysis results with field data have shown similar crescentic bed

pattern characteristics [Deigaard et al., 1999; Falqués et al., 2000; Calvete et al.,

2005; van Leeuwen et al., 2006].

Linear stability models have the potential for providing useful information to

engineers. They not only provide information concerning the likelihood of devel-

oping bed patterns (and accompanied rip channels), but can also give insight into
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the length scale of emerging bed-forms and the time over which they are likely

to develop. Additionally, they can provide information concerning the migration

rates of bed-forms. In a quasi-alongshore uniform coast this information informs

the engineer of how likely crescentic bed patterns and rip currents are to form,

and their approximate alongshore spacing - information which is very useful for

assessing bather safety and beach erosion. Both of these aspects also impact on

shoreface nourishment projects, in that shoreface nourishments have the potential

to develop into, or trigger rip current systems. This information can, moreover,

be provided in very small computational times and with limited data input, com-

pared to traditional time-domain models.

To date, a comprehensive comparison of this type of model prediction with a

large number of field observations has not been carried out, but could show the

extent to which a linear stability analysis can accurately describe the development

of crescentic bed patterns and rip spacings. Such a study is carried out in the re-

search presented in this thesis. In order to do so, actual field data from a specific

site is compared with linear stability model predictions of the development of cres-

centic bed patterns under the same wave, tidal and topographical circumstances.

1.6 Research goal and questions

This research presents a study of the capabilities of a linear stability model in pre-

dicting crescentic bed pattern developments through direct comparison with field

observations. The objective is to examine whether a linear stability analysis can
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generate similar bed pattern predictions as are observed in reality, under the same

circumstances. The model used is Morfo60 [Calvete et al., 2005] and the observed

data are from the USACE Field Research Facility in Duck, North Carolina, USA,

during a two month period in 1998, this data has previously been analysed by van

Enckevort et al. [2004].

The main research questions are formulated as follows:

� How capable is a linear stability analysis in describing the observed

development of crescentic bed patterns under variable wave forc-

ing?

A direct comparison of Argus field observations of the development of cres-

centic bed patterns, with model predictions made by the linear stability model

Morfo60, using wave, tidal and bathymetric conditions as they were measured

during the observation period.� Can current understanding of the development of crescentic bars

be applied to improve the implementation of linear stability anal-

ysis predictions?

Development of an algorithm to overcome limitations inherent to linear sta-

bility models. This algorithm is tested for the Duck site comparison to exam-

ine the extent to which it can improve the predictive skills of linear stability

analysis in describing the actual development of crescentic bed patterns.� How do pre-existing crescentic bed patterns interfere with the de-

velopment of crescentic bed patterns?
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A non-linear stability model is used to investigate the implications of assum-

ing an alongshore constant beach profile in the linear stability model.� To what extent can a linear stability analysis be of use in describ-

ing the development of crescentic bed patterns, when crescentic

bed-forms already exist?

Conclusions drawn from the previous research question are applied on the

Duck site comparison of linear stability analysis results with field observa-

tions.

1.7 Thesis outline

Chapter 2: Morphodynamics in the nearshore zone: Background

An overview of current and past research in the field of modelling and observ-

ing nearshore morphodynamics. Secondly, a description of the physics involved

in nearshore coastal dynamics. Finally, a description of the modelling techniques

used in this research is presented.

Chapter 3: A field test of a linear stability model for crescentic bars

A comparison between the linear stability model results created using the wide

variety of input data from Duck and field observations is presented. An analysis

of the effects of input parameters on the model predictions, including a more thor-

ough sensitivity analysis of the effects of beach evolution and tidal variation on the

crescentic bed pattern characteristics is given. The development of an algorithm

to emphasise the more physically significant model predictions is described and a
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direct comparison of field observations with the model predictions and physically

significant developments is presented.

Chapter 4: Non-linear analysis of pre-existing crescentic bed pat-

terns

A brief comparison of the linear and non-linear stability model results is presented.

The effects of pre-existing bed patterns on the development of crescentic bed pat-

terns is examined using a non-linear stability model.

Chapter 5: Pre-existing bed patterns in a linear stability model

Knowledge obtained from the research concerning pre-existing crescentic bed pat-

terns is applied to the interpretation of the linear results for the Duck site in order

to establish to what extent this can improve the comparison with field observa-

tions.

Chapter 6: Conclusions and recommendations

Presentation of the answers to research questions posed. Finally, an overview of

possible research topics that lead from this PhD research is given.



Chapter 2

Morphodynamics in the

nearshore zone: Background

2.1 Literature

In this section an overview of the more recent publications concerning the develop-

ment of crescentic bed patterns will be presented. The section is divided into four

parts; firstly an introduction of the nearshore zone is given, presenting a descrip-

tion of various terms. Secondly a brief look at field observations and measurements

of processes and bed-forms is presented. Then a description of the mathemati-

cal models used to describe these processes is given. Finally, characteristics of

crescentic bed patterns are discussed.

2.1.1 The nearshore zone

As water depth decreases, waves propagating towards a shore start to sense the

bed and the orbital particle motion underneath a wave becomes increasingly hori-
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zontal [Svendsen, 2006]. When the wave height and the water depth are of similar

order, wave breaking can occur [Mei, 1989]. The location where waves first start

to break is called the breaker line, dividing the shoaling zone (offshore of the

breaker line) from the surf zone [Mei, 1989]. The surf zone can be defined in

general terms, as the region where waves are breaking and extends from the dry

beach to the seaward limit of breaking, or the breaking line [Dean and Dalrymple,

1984]. However, variable wave conditions mean that wave breaking on real beaches

is not constantly occurring at the same location. Furthermore, tidal variation and

wave run-up create an area at the beach that is only submerged for certain periods

of time. It is, therefore, more realistic to define the surf zone as the area of the

beach that is always submerged, with the offshore boundary at the alongshore bar

crest (where wave breaking generally occurs during most wave conditions).

The surf zone is the area where wave energy is converted to turbulence and heat

[Fredsoe and Deigaard, 1992]. Wave energy dissipation gives rise to the formation

of currents, due to radiation stresses. Longuet-Higgins and Stewart [1964] de-

scribe radiation stresses as ’the excess flow of momentum due to the presence of

waves’. In front of many beaches, the water motion shows horizontal circulation

patterns in and out of the surf zone. Waves approaching the shore at an oblique

angle can result in dominant water motion along the beach, the alongshore cur-

rent. Both circulation patterns and the alongshore current are well documented

in front of many beaches [Fredsoe and Deigaard, 1992; Bowen and Inman, 1969].

Beaches generally do not have a constant beach slope, since the wave climate of-
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ten results in alongshore bars and terraces being formed [Fredsoe and Deigaard,

1992]. A range of different factors give rise to various beach states. The two

extreme beach states are the dissipative and reflective beach [Wright and Short,

1984]. Dissipative beaches are very mild sloping beaches with several along-

shore bars at different distances from the shore, which are generally associated

with spilling breakers. This form of wave breaking results in a continual decrease

in wave height, while the wave propagates forward [Sorensen, 1993]. Highly re-

flective beaches show, on the other hand, very steep beach faces, with a constant

beach slope. The type of wave breaking, in this case, is more likely to be surging,

which is progressing towards a standing or reflecting wave [Sorensen, 1993].

In between both extremes, a range of different beach states and breaker types

are observed. Where the two extreme beach states are generally uniform along

the shore in the surf zone, the intermediate beach states show a wide range of

three dimensional bed-forms [Wright and Short, 1984]. These bed-forms generally

occur in combination with flow patterns and interact with both waves and cur-

rents. The flow patterns can give rise to rip currents (see Fig. 2.1), which are

strong offshore-directed currents that form inside the surf zone, and flow through

a trough between surf zone bed-forms out of the surf and into the shoaling zone.

[Wright and Short, 1984]

A moderately dissipative beach will show one or more alongshore bars that

can deform into crescentic bed-forms under the right forcing conditions [Wright

and Short, 1984]. A crescentic bar (see Fig. 2.2(a)) is a rhythmic lunate shaped
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(a)

(b)

Figure 2.1: The formation of rip currents under (a) normal, and (b) oblique wave

incidence [The Open University, 1989].
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(a)

(b)

Figure 2.2: (a) Crescentic bed patterns at Duck, North Carolina, USA. The bar pat-

tern shows up as a white band in the Argus image. [Dodd et al., 2003].

(b) Transverse bed patterns at Duck. [Konicki and Holman, 2000].
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bed-form that forms out of an alongshore constant bar, during moderate wave

conditions [Blondeaux, 2001]. A less dissipative beach will generally give rise to

the development of transverse bars (see Fig. 2.2(b)). These bed-forms run per-

pendicularly or obliquely from a bar or beach into the sea [Konicki and Holman,

2000] and are separated by rip currents [MacMahan et al., 2005]. The ridge and

runnel system combines a dissipative tidal berm in combination with a reflective

beach. Beach cusps can be found at reflective beaches and develop due to the

run up and backwash of waves [Inman and Guza, 1982]. However, many interme-

diate beach states also locally display a reflective beach profile at the swash zone,

giving rise to beach cusps. Mega cusps result from the water motion circulation

pattern originating from surf zone bed-forms, such as crescentic bars. These bed-

forms generally mirror offshore bed-forms in length [Wright and Short, 1984].

2.1.2 Field measurements

Many techniques exist to monitor the nearshore zone and surf zone processes, from

probing techniques to determine the bed level, and pressure gauges to determine

wave characteristics, to remote imaging techniques determining the location of

offshore bed-forms. In the past, elaborate techniques were employed to obtain

quantitative information of nearshore processes. The seabed level was measured

using echo sounding and physical probing techniques [Wright and Short, 1984],

while waves and currents were monitored using visual observations and drifters

[MacMahan et al., 2007]. Pressure gauges could give information about the wave

field [van Enckevort et al., 2004], and velocity sensors were used to measure the
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surf zone water circulation patterns [Wright et al., 1979]. Additionally, physical

reproductions of the surf zone in laboratories provided a means of studying specific

processes and investigating the development of certain bed-forms under idealised

circumstances [Bowen and Inman, 1969]. However, scaling problems and a differ-

ence in the representation of processes in a 2D and 3D laboratory environment

complicate the application of this knowledge to real scenarios [Kamphuis, 1995].

The current state of field data collection incorporates these techniques but also

enables researchers to analyse surf zone dynamics remotely from the shore. Lidar,

Radar and improved photographic image processing techniques reveal nearshore

processes, the development of bed-forms, and erosion and accretion patterns at

the beach [van Enckevort et al., 2004; Holman and Stanley, 2007; Thornton et al.,

2007]. In particular, the introduction of the Argus imaging technique by Lippmann

and Holman [1989] greatly expanded the quantitative and qualitative database

available to coastal researchers. Prior to this, bathymetric measurements were

cumbersome and labour intensive to obtain. The Argus imaging technique [Lipp-

mann and Holman, 1989] (discussed in section 3.2.4) can provide highly detailed

and very frequent information about the changing bathymetry and is applied ex-

tensively [Holman and Stanley, 2007]. Initially, Argus was mainly used to reveal

the bar crest position along a stretch of beach [van Enckevort et al., 2004]. Re-

cently, however, this technique has also been applied to the study of other pro-

cesses. For example, the swash beach morphology can be examined due to images

of the variable shoreline positions under different tidal levels, while wave conditions

can be observed by sampling intensity variations over a number of wave periods
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[Holman and Stanley, 2007]. Alongshore current velocities can also be observed

in Argus images, by measuring the drift of foam inside the surf zone [Chickadel

et al., 2003].

The numerous techniques used in the monitoring of the nearshore zone and bed-

forms have resulted in a range of processes and bathymetries being documented.

Different beach states were described by Wright and Short [1984] and also ob-

served on the Australian Gold Coast [Wright et al., 1986]. Field observations

as well as reproduction of rip currents and circulation patterns under labora-

tory circumstances were presented by Bowen [1969]. An extensive description of

field observations prior to the Argus imaging technique is presented by Komar

and Holman [1986], where both beach cusps and crescentic bars are reported in

combination with rip currents and beach erosion. Recently, remote data collection

expanded the data available to researchers enormously. Wide ranging beach states

were observed, as well as transitions between the different beach states due to sea-

sonal changes in the wave climate [Lafon et al., 2005; Castelle et al., 2007]. Rip

currents and circulation patterns spanning the different beach states, resulting in

the development of different bed-forms, have been widely reported [van Enckevort

and Ruessink, 2003a; van Enckevort et al., 2004; Castelle et al., 2007].

The relationship between field observations and wave conditions has shown that

during storms, most three dimensional bed-forms, such as transverse and crescentic

bars, are removed, and only alongshore constant bars persist [van Enckevort et al.,

2004; Lafon et al., 2005; Ribas and Kroon, 2007]. However, the alongshore bar itself
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can also migrate as a result of various wave conditions. Offshore bar migration has

been observed extensively during high wave conditions, while shoreward migration

generally corresponds to mild wave conditions [Wright et al., 1986; Plant et al.,

1999; Pope et al., 2007]. Different bed patterns evolve under different forcing

circumstances. Crescentic bed-forms develop during moderate wave conditions

[van Enckevort et al., 2004], while transverse bars generally develop under milder

wave conditions [Ribas and Kroon, 2007]. The angle at which waves approach the

shore is of importance for the formation of either bed-form. Crescentic bed-forms

generally develop at normal and near normal wave angles, with increased bed

pattern lengths for oblique wave angles. Transverse bars evolve only when waves

approach the shore at an oblique angle, and disappear when the waves approach

the shore perpendicular to the coast [Ribas and Kroon, 2007].

It is common that beaches show a combination of bed-forms, either in sequence

or simultaneously. Over time, variable forcing conditions can cause different bed-

forms to develop. However, several bed-forms can also occur at the same time

and location. Beaches can show both a transverse bar profile at the beach or

nearshore bar, and crescentic bed-forms at the offshore bar, [for instance: Castelle

et al., 2007]. Double-barred systems can even show two systems of crescentic

bed-forms that can show coupled or non-coupled behaviour, depending on the

significance of the bed-forms, the size of the circulation patterns [Ruessink et al.,

2007] and the forcing conditions [Castelle et al., 2007].
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2.1.3 Modelling of the nearshore zone morphology

Observations of morphodynamics and coastal processes are not the only type of

research carried out to further the understanding of coastal processes. Mathemat-

ical modelling techniques were developed in order to understand the formation of

bed patterns as well as to analyse relationships between different processes. Two

main types exist for the analysis of the development of morpho- and hydrodynam-

ics in the coastal zone.

Empirical models describe a certain characteristic as a result of certain in-

put parameters, without including the physical processes involved. This type of

modelling technique consists of a function that is aimed to fit the data. An exam-

ple of this is presented by Plant et al. [1999], where a relationship between wave

height and bar position is investigated. This model was later extended, to include

the sinuosity of the alongshore bar into the analysis [Plant et al., 2006].

A second type of model, the process based model uses the physical (Newto-

nian) equations to describe coastal processes. This model can use survey data as

input to physical equations to describe wave transformation, water motion, and

sediment transport in an attempt to describe the resulting physical processes as

erosion and accretion. It can also be used to describe the formation of rip currents

and bed-forms as well as to investigate more idealised circumstances [Fredsoe and

Deigaard, 1992]. A more comprehensive description of this modelling technique

will be presented in section 2.2.
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In the past, it was assumed that circulation patterns and bed-forms in the

nearshore zone were the result of a forcing template in the wave conditions. For

example, the theory of edge waves describes fluctuations in the free surface el-

evation due to the release of long wave group energy, when short waves break as

the driving force for the development of water circulation patterns and bed-forms

[Fredsoe and Deigaard, 1992]. This theory has been described by many authors,

and several attempts are made to relate edge waves with the formation of bed-

forms and circulation processes [Bowen, 1969; Wright and Short, 1984; Wright

et al., 1986]. Current understanding suggests, however, that the driving force be-

hind the formation of bed-forms in the surf zone and the accompanying circulation

patterns is due to the evolution of free instabilities in the coastal system [Hino,

1974]. Self-organisation of waves, currents, erosion and accretion gives rise to

the development of a wide range of bed-forms, depending on the local conditions

[Coco and Murray, 2007]. Initially, this modelling technique was mainly used to

describe nearshore circulation patterns and shear waves [Bowen and Holman, 1989;

Dodd and Thornton, 1990; Falqués and Iranzo, 1994]. Recently however, this type

of model has been used extensively for research concerning the formation and evo-

lution of surf zone bed-forms [see Blondeaux, 2001; Dodd et al., 2003; Coco and

Murray, 2007; Falqués et al., 2008, for several reviews on this topic].

Within the range of process-based models, different types of modelling tech-

niques exist. A full time-domain model describes the temporal evolution of the

nearshore zone and can use wave, tide and bathymetric data from a specific field

location to describe the temporal evolution of this beach and surf zone with a high
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level of accuracy. This type of model is even able to investigate the effects of hu-

man interference, such as shoreface nourishments [Grunnet et al., 2004]. However,

this modelling technique also has limitations. The predictive skills of the model

are closely linked with the amount and quality of field measurements that can

be implemented into the model. Secondly, the elaborate equations make model

predictions time consuming and challenging to obtain [Garnier, 2006; Klein, 2006].

Alternatively, process-based models can be used to describe more idealised

circumstances to investigate the occurrence of quasi-rhythmic features and other

phenomena and are used to understand the physics behind these phenomena. This

modelling technique is called a stability analysis, where the stability of the bed

and water motions in the surf zone are investigated under certain forcing circum-

stances. If circulation patterns arise and bed patterns start to develop, the system

is called unstable [Deigaard et al., 1999]. This modelling technique is a useful tool

to investigate the driving forces behind the evolution of different bed-forms and

has been applied in the description of crescentic bars, transverse bars, rip currents,

cuspate features and circulation patterns [eg. Blondeaux, 2001; Dodd et al., 2003].

This modelling technique can be split into two different analyses: the linear sta-

bility analysis, which only describes the initial development of instabilities, and

the non-linear stability analysis, which describes the long term evolution of

instabilities.

A linear stability analysis only uses a limited part of the modelling equations

to give insight into the initial development of perturbations such as crescentic
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bars. In this type of model only the linear terms concerning the perturbations are

included in the equations. Such a model can, therefore, only describe the initial

development of perturbations, since for very small perturbations the influence of

the non-linear terms is assumed to be negligible [eg. Dodd et al., 2003].

A non-linear stability analysis can describe the evolution of bed-forms and cir-

culation patterns as they arise from an undisturbed initial situation, using the full

non-linear equations. This model can be a full time-domain model, used to analyse

specific settings and conditions. For instance, Delft3D is used to describe the phys-

ical circumstances at Terschelling by Grunnet et al. [2004], but also to investigate

to what extent various hydrodynamic circumstances influence the development of

bed perturbations [Smit et al., 2008]. This model can give information concerning

the long term development of bed-forms and flow patterns, however, it is also more

time consuming and more prone to develop numerical instabilities than a linear

stability analysis [Garnier, 2006].

Finally, a weakly non-linear stability analysis analysis incorporates linear

stability techniques, but attempts to mitigate its limitations. First a linear sta-

bility analysis is used to determine the initial growth rate, and then incorporates

non-linear terms to describe the evolution of the bed using terms of the Ginzburg-

Landau equation [Schielen et al., 1993].

2.1.4 Characteristics of crescentic bars and rip channels

In the last decade, work on understanding the physics of the formation of mor-

phodynamical features such as crescentic bed patterns has yielded insights into
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the growth and kinematics of these bed-forms. Stability analyses, in particular,

have furthered our understanding of these bed patterns, which result from the

interaction between waves, currents and beach morphology.

Stability analyses predict emerging bed patterns with similar length scales to

those observed in reality. Deigaard et al. [1999], Damgaard et al. [2002], and Cal-

vete et al. [2005] show that the alongshore wavelength of bed patterns is between

50 and 1000 m. Field observations show a similar range of observed length scales

[van Enckevort et al., 2004; Blondeaux, 2001], but spacings are generally between

200 and 500 m [Komar and Holman, 1986]. Lafon et al. [2005] suggests a slight

negative correlation between wave height and length scale of the bed-forms in

their observations of Truc Vert beach in France. However, van Enckevort et al.

[2004] observe the opposite at Duck (USA), Miyazaki (Japan) and the Gold Coast

(Australia)

Under constant wave conditions, the formation time of crescentic bed patterns

is about 1 to 3 days [Falqués et al., 2008], but under changing wave conditions

the development of crescentic bed patterns can take up to 3 weeks [van Enckevort

et al., 2004]. Tidal variation can also slow down the development of crescentic bars

significantly [Castelle et al., 2007]. The growth rates of crescentic bed patterns

in stability analyses vary, but growth rates that are similar to field observations

are presented by Deigaard et al. [1999], Falqués et al. [2000], Calvete et al. [2005],

Klein and Schuttelaars [2006], Dronen and Deigaard [2007] and Smit et al. [2008].
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While the overall migration of crescentic bed patterns along the coastline is

small over several days due to changing wave conditions [Lafon et al., 2005; Turner

et al., 2007], observed daily migration rates can be as big as 180 m/day [van Enck-

evort and Ruessink, 2003b]. Generally, however, migration rates are in the order

of tens of metres a day [Falqués et al., 2008] and similar migration rates are pre-

dicted by stability analyses [Deigaard et al., 1999; Dronen and Deigaard, 2007;

Falqués et al., 2008].

A comparison between a linear stability analysis and a full time-domain model

was presented by Damgaard et al. [2002], showing that similar length scales can

be obtained. Klein and Schuttelaars [2006] showed that either model predicted

the initial formation of similar crescentic bed pattern spacings, at double-barred

beaches. Further, the initial growth predicted by the non-linear model corre-

sponded with the linear growth rate.

Linear stability models have been used in previous studies to examine the

physics behind the development of crescentic bed patterns. The coupling between

the developing topography and the flow was first presented by Deigaard et al.

[1999], while the ’bed-surf‘ coupling and the influence of different stirring func-

tions was studied by Falqués et al. [2000]. This research showed that the ratio of

stirring function (α) and the water depth (D) is important for the determination

of which bed pattern will develop. The stirring function describes the tendency

of the waves to mobilise sediment. Transverse bars develop for a stirring function

which is constant over depth, in other words α
D

decreases offshore. Crescentic bed
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patterns would develop if the stirring function is increasing offshore in the surf

zone.

Stability analyses have also been used to investigate the sensitivity of bed

pattern formation to physical parameters. The effect of different wave conditions

was examined using a linear stability analysis by Deigaard et al. [1999], Calvete

et al. [2005] and Ribas et al. [2003]. Calvete et al. [2005] showed that length

scales and growth rates increase for increasing wave heights, while increased wave

angles result in increased length scales, but decreased growth rates. Deigaard

et al. [1999], on the other hand, found that increased wave angles only result in

decreasing growth rates for extreme wave angles and that the length scale remains

similar, although, increased wave angles also resulted in decreased wave heights

at the breaker line, reducing the nearshore processes. Ribas et al. [2003] showed

that crescentic bed patterns are only obtained for moderate wave angles, and that

for very oblique wave angles, oblique bars develop. The influence of the wave

period was investigated by Calvete et al. [2005]. Here it was found that longer

wave periods result in increased growth rates, and slightly increased length scales.

However, the wave angle and the wave height have a stronger influence on the

length scale of the crescentic bed patterns, than the wave period.

Non-linear stability analyses were also used to carry out sensitivity analyses

of the evolution of crescentic bed-forms to various wave conditions [Garnier et al.,

2008; Smit et al., 2008]. Results presented by Garnier et al. [2008] showed (simi-

lar to [Calvete et al., 2005]) that increased wave heights result in increased initial

growth rates, and slightly bigger bed pattern lengths, while increasing wave angles
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result in reduced growth rates in combination with increased length scales and mi-

gration rates. Changes in the wave period did not seem to have significant effects

on either the growth rate or length scale. Variation of the wave conditions at a

double-barred beach, investigated by Smit et al. [2008], suggested that increased

wave heights result in increased initial growth rates and increased length scales at

the outer bar, while increased wave angles reduce the growth rate and result in an

increase in length scale of the inner and the outer bar bed-forms. The effects of

wave groups on the formation of rip channels have been studied by Reniers et al.

[2004], using a non-linear model. The results were compared with field observa-

tions, and showed a coupling between the computed edge wave motions and rip

channels.

Different cross shore bed profiles have been studied by Deigaard et al. [1999],

Damgaard et al. [2002], Garnier et al. [2007] and Calvete et al. [2007]. Deigaard

et al. [1999] related the crescentic bed pattern characteristics to the dimensions

of the trough between the bar and the shoreline. Increased trough depths re-

sult in increased growth rates and length scales, while increased trough widths

result in increased length scales, but decreased growth rates. This relationship

between trough width and length scale of the bed patterns was also observed by

Damgaard et al. [2002], for both a linear and a non-linear stability analysis. Cal-

vete et al. [2007] observes similar relationships, but reported that an increase in

trough width does not result in a change in the growth rate. Calvete et al. [2007]

showed that even slight changes in the bathymetry can cause significant differences

in the characteristics of the developing bed-forms, however clear relations between
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bathymetric characteristics and the developing bed-forms are difficult to observe,

since the change in one bed parameter, generally affects the overall bathymetry.

Garnier et al. [2007] used both a linear and a non-linear stability analysis to ex-

amine whether crescentic bed patterns would develop from a plain beach and a

barred beach. Linear results suggested that only transverse bars would develop

on a plain beach, while both types of bed patterns could develop on a barred

beach. Non-linear results of a barred beach suggested that crescentic bars and

transverse bars might coexist, with the transverse bed pattern occurring in front

of the shoreline, and the crescentic bed pattern at the bar.

The interaction between the evolution of crescentic bed-forms and transverse

bed-forms was examined by Caballeria et al. [2002] and Garnier et al. [2007].

Caballeria et al. [2002] showed that transverse bars and crescentic bars develop

from the same instability mechanism, but that crescentic bed-forms would de-

velop under higher wave conditions than transverse bars. For intermediate waves

a combination of both bed-forms can develop, where an offshore crescentic bar

coexists with nearshore transverse bars. Garnier et al. [2007] suggested that the

initial stages of barred beach development give rise to transverse bars, but that

crescentic bars would subsequently develop giving rise to transverse bars at the

shoreline with the same length scale as the crescentic bed patterns further offshore.

Finally, the effects of different dissipation functions were examined by van

Leeuwen et al. [2006]. Random waves are shown to break at a wider range of wa-

ter depths, reducing the growth rate and length scale of the crescentic bed-forms
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and give rise to the development of transverse bed patterns.

2.1.5 In summary

The presented literature overview shows that the knowledge concerning the devel-

opment, occurrence and characteristics of nearshore zone rhythmic bed patterns

has expanded significantly over the recent years. The advent of Argus imaging

technique made it possible to observe the development of bed patterns over much

longer periods, and under much wider circumstances than had been previously

possible [Holman and Stanley, 2007]. The development in modelling techniques

have created an ever-expanding base of understanding of the driving forces for the

formation and characteristics of these bed-forms. However, comparisons of field

measurements and observations with modelling results have to-date been general

in nature. Only general similarities between length scales, growth rates and mi-

gration rates have been presented: see Deigaard et al. [1999], Falqués et al. [2000],

Damgaard et al. [2002], Calvete et al. [2005] and van Leeuwen et al. [2006].

This thesis presents a direct comparison between field observations and model

predictions. The temporal evolution of a barred beach with crescentic bed pat-

terns under changing wave conditions is compared with model predictions made

by a linear stability model. Field measurements of the development of crescentic

bars over two months at Duck (USA), carried out by van Enckevort et al. [2004],

are compared with model predictions using the bathymetric, tidal and wave data

from this period at Duck. A linear stability analysis can provide information
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concerning the length scale of crescentic bed patterns as well as their migration

rate and the initial rate at which these bed-forms develop. The field observations

reveal, in particular detail, the development in the length scale of the crescentic

bed-forms and this characteristic is, therefore, the main focus of the comparison

(presented in chapter 3).

This research is not only of interest from a scientific point of view, in that it

investigates to what extent a linear stability analysis can actually describe real

world scenarios, but these predictions can also be of use for coastal engineers.

Furthermore, the likelyhood of the development of rip currents can be assessed

using this type of model, facilitating the assessment of bather safety. More fun-

damentally, rip / crescentic bar systems have an accompanying signature at the

shore [Wright and Short, 1984], where mega-cusps frequently mirror the crescentic

bars, so that their presence has an impact on beach erosion. Both these aspects

also impact on shoreface nourishment projects, as these have the potential for de-

veloping into, or triggering rip systems [Ojeda et al., 2008]. This information can,

moreover, be provided in very small computational times compared to traditional

time-domain models.

A linear stability analysis assumes an alongshore uniform beach profile. This

causes serious limitations in the direct applicability of knowledge obtained from

a linear stability analysis in real-world scenarios. The beach at Duck generally

shows rhythmic features, and only after storms can a (semi-) alongshore-uniform

beach be observed [van Enckevort et al., 2004]. The effects of these pre-existing
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bed patterns are investigated using a non-linear model (in chapter 4). Conclusions

drawn from this additional research are applied in the subsequent comparison of

the linear stability predictions with field observations of Duck (chapter 5).



2.2 Theoretical background

2.2.1 Short waves

Waves can occur in many ways and forms. In oceans and seas, the most inter-

esting form of wave for engineering purposes is the surface gravity wave. These

progressive waves occur at the interface between the atmosphere and the ocean.

The restoring force of such waves lies with gravity, which will return the displaced

water surface to its equilibrium position. A wide range of natural influences can

force the development of such waves, ranging from wind, the effects of sun and

moon (tides) to the effects of earthquakes [The Open University, 1989].

Monochromatic surface gravity waves are periodic features, whose wave length

and height are defined as the horizontal distance between two crests (L [m]) and

the vertical distance between the wave crest and trough (H [m]). The time it

takes for a wave to pass a constant position in space is called the wave period (T

[s]) and the speed at which waves propagate (c [m/s]) is given by:

c =
L

T
. (2.1)

Assuming that waves are small in height with respect to their length, as well as

to the water depth (D [m]), i.e.:

H

L
≪ 1 ,

H

D
≪ 1

they can be reasonably described by [Sorensen, 1993]:

η(x, t) =
H

2
sin(ωwt− κx) , (2.2)
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where η [m] describes the surface displacement, κ is the wave number (k = 2π
L

), t

represents time, x is the direction of wave propagation and and ωw represents the

wave angular frequency (ωw = 2π
T

). A relation can be derived between κ and ωw,

called the dispersion relation [Dean and Dalrymple, 1984]:

ω2
w = gκ tanh(κD) , (2.3)

where g stands for the gravitational acceleration (g = 9.81 [m/s2]). The propaga-

tion velocity of the wave can now be written as:

c =

√

g

κ
tanh(κD) (2.4)

The wave energy density is the energy per wave length, and comprises the kinetic

energy and the potential energy. The wave energy can be written as [Komar,

1998]:

E =
1

8
ρgH2 , (2.5)

where ρ is the water density (ρ = 1024 [kg/m3]). Realistic waves in a sea or ocean

have a random distribution of different wave heights, and periods. The random

distribution of the wave height can be described by various measures; Hrms is used

in (2.5).

The speed at which wave energy propagates is called the group velocity (cg [m/s])

and is given by [Sorensen, 1993]:

cg =
c

2

(

1 +
2κD

sinh(2κD)

)

(2.6)

In shallow water, the wave energy propagates at the same speed as the waves,

while in deep water, the propagation speed of the wave energy is only half that of

the actual waves [Dean and Dalrymple, 1984].



2.2. THEORETICAL BACKGROUND 35

Figure 2.3: The coordinate system for (a) normal, and (b) oblique wave incidence,

applied to describe the nearshore dynamics [originally from Garnier, 2006].
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Waves can approach the shore at an oblique angle (θ) which creates alongshore

current (V0) in front of the beach. An overview of the coordinate system used in

this thesis is shown in Fig. 2.3, which will be further explained in the following

section.

2.2.2 Governing equations

The models used in this research describe the combined results of wave and water

motion and the evolution of the seabed. Two models are used, a linear stability

model, and a full time-domain model, which can be used to carry out a non-

linear stability analysis. Each model describes the interaction between the water

motions and the seabed in the nearshore region according to the same equations

and same coordinate system (see Fig. 2.3). The driving forces of the system are the

short gravity waves that propagate into the modelling domain from the offshore

modelling boundary. In the nearshore region, wave transformation and breaking

occurs. The two dimensional shallow water equations are derived from the Navier-

Stokes equations, by depth averaging and averaging over the wave period [Mei,

1989; Phillips, 1966]. These 2D shallow water equations describe the conservation

of mass and momentum:

Water mass conservation equation

∂D

∂t
+

∂

∂xj
(Dvj) = 0 , (2.7)

where j = 1, 2; −→x = (x1, x2) = (x, y) and −→v = (v1, v2) = (u, v) and D is the total

water depth. x and y are the cross- and alongshore coordinates, and u and v the

cross- and alongshore depth-averaged velocities, respectively.



2.2. THEORETICAL BACKGROUND 37

Momentum equations

∂vi

∂t
+ vj

∂vi

∂xj

= −g∂zs

∂xi

− 1

ρD

∂

∂xj

(S ′
ij − S ′′

ij) −
τbi
ρD

, (2.8)

where i, j = 1, 2, with the summation being on j. This results in two equations,

one for the momentum in x-direction and in y-direction. zs is the mean sea level

over the wave period: (zs(x, y, t) = 1
T

∫ T

0
η dt); zb is the mean bed level and D

is the total mean water depth (D = zs − zb).
−→τb represents the bed shear stress

(−→τb = (τb1 , τb2) = (τbx
, τby

)). S ′
ij is the radiation stress term and S ′′

ij represents the

Reynolds stresses [Calvete et al., 2005].

The left hand side of (2.8) represents the acceleration of water particles in

space (x, y) and time (t). The right hand side of the equation describes the

sources of increase and decrease in momentum. The first term on the right hand

side describes the pressure gradients, while the radiation stress gradients (S ′
ij)

describe how changes in wave energy result in changes in the momentum and the

Reynolds’ stresses describe how turbulence in the water affects the momentum.

Finally, −→τb describes the loss of momentum due to bed friction.

Wave energy equation

The wave energy density term (E) is present in the momentum conservation equa-

tion via the radiation stresses. The wave energy equation describes how energy

within the waves propagates and transforms, while the waves propagate towards

the shore, and its derivation can be found in Phillips [1966]; Mei [1989].

∂E

∂t
+

∂

∂xi

((vi + cgi)E) + S ′
ij

∂vj

∂xi

= −D , (2.9)
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where i, j = 1, 2. The wave energy conservation equation is a combination of the

wave action equation [Mei, 1989] and a description of the loss of wave energy due

to wave breaking and currents (D). The radiation stresses (S ′
ij) represent the

transfer between wave energy and water motion.

Wave phase equation

Waves change due to the presence of currents and the changing bathymetry in the

nearshore region [Svendsen, 2006]. The effects of currents on the wave phase are

described by the ’conservation of waves’ equation [Phillips, 1966]:

∂Φ

∂t
+ σ + vj

∂Φ

∂xj
= 0 , (2.10)

where σ is the intrinsic wave frequency, as observed when moving with the current,

and Φ is the wave-averaged wave phase and can be described as:

η = H
2

sin(Φ)

= H
2

sin(
∫

κj dxj −
∫

ωw dt)

The relation between the wave phase and the wave vector (−→κ = (κ1, κ2) =

(κx, κy)) and the wave frequency (ωw) can be given as:

∂Φ

∂xj

= κj ,
∂Φ

∂t
= −ωw

The relation between the the intrinsic wave frequency (σ) and the absolute

frequency (ωw) can then be given by [Svendsen, 2006]:

ωw = σ + vjκj

When no currents exist, the intrinsic frequency (σ) and the absolute frequency

(ωw) are therefore the same.
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Sediment mass conservation equation

The system of equations used to describe the nearshore system is completed with

the addition of an equation describing the evolution of the seabed. This equa-

tion couples the hydrodynamic variables presented above with the bottom level

[Soulsby, 1997]:

∂zb

∂t
+

1

1 − p

∂qi
∂xi

= 0 (2.11)

where p is the porosity of the sediment and −→q represents the sediment flux (−→q =

(q1, q2) = (qx, qy)).

2.2.3 Parametrisation

The governing equations include various parameters that need defining. The fol-

lowing section presents the parameterisations used in this research.

Wave radiation stresses

Longuet-Higgins and Stewart [1964] describe radiation stresses as ’the excess flow

of momentum due to the presence of waves’. The radiation stress tensor from

linear wave theory can be written as [Mei, 1989]:

S ′
ij = E

(cg
c

κiκj

κ2
+

(cg
c
− 1

2

)

δij

)

(2.12)

where the Kronecker delta (δij) is defined as:

δij =















1, if i = j

0, if i 6= j
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Reynolds stresses

Water motions vary in a random manner in space and time in oceans. Reynolds

stresses represent dissipation through small scale turbulent processes [Phillips,

1966].

S ′′
ij = ρνtD

( ∂vi

∂xj
+
∂vj

∂xi

)

, (2.13)

where νt is the horizontal eddy viscosity. The Battjes [1975] model was chosen as

empirical representation of the horizontal eddy viscosity (νt):

νt = M
(D
ρ

)
1

3

Hrms , (2.14)

where M represents a dimensionless parameter that characterises the turbulence.

Bed shear stress

The friction of the bed on the water motion is extremely complex and a wide

range of empirical formulations exist [Soulsby, 1997]. Both linear friction as well

as friction according to Feddersen et al. [2000] are applied in this research. Lin-

ear friction describes the bed shear stress for weak currents, with respect to the

wave orbital velocity, as a function of the wave orbital velocity at the edge of the

modelling boundary layer (urms) and the depth-averaged water motion (v) [Mei,

1989]:

−→τb = ρ
2

π
cdurms

−→v , (2.15)

where cd represents the drag coefficient, and is given by:

cd =
( 0.4

ln(D/zrl) − 1

)2

, (2.16)

where zrl is the roughness length due to the grain size and the occurrence of ripples

on the seabed. urms in (2.15) represents the wave orbital velocity at the edge of
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Figure 2.4: (a) The alongshore constant bed level as measured in Duck (August 1998),

and (b) the linear friction (black) and the friction according to Feddersen

et al. [2000] (2.18) (grey), for moderate offshore wave conditions (Hrms =

1.15 m, Tp = 7.6 s and θ = 18.7o).

the boundary layer:

urms =
Hrms√
π

|κ|
σ

cosh(|κ|zrl)

cosh(|κ|D)
(2.17)

The linear equation is suitable to describe near-normal wave incidence. How-

ever, strong alongshore currents result in an underestimation of bed shear stress

[Feddersen et al., 2000]. In order to describe bed friction accurately for more ex-

treme wave angles the Feddersen friction is used, as it was applied in Morfo60

[Ribas et al., 2007].

τbi
= ρcd

urms√
2
vi

(

aFed. + 2
|−→v |2
u2

rms

)
1

2

(2.18)

A Feddersen friction coefficient (aFed.) of 1.16 gives good agreement for a random

wave field at Duck [Ruessink et al., 2001].

The difference between (2.15) and (2.18) becomes apparent when waves ap-
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proach the shore at an moderately oblique wave angle (θ = 18.7o) (see Fig. 2.4).

The linear friction curves depict significantly smaller peaks than the curve accord-

ing to the description of the bed shear stress from Feddersen et al. [2000].

Dissipation

Wave breaking is the process whereby wave energy is dissipated and the wave

height decreases. Wave breaking can occur due to the interaction with currents,

or wind, or between waves, but the main reason for waves to break close to the

shoreline is the interaction of waves with the seabed. Regular waves start to

break at a specific cross shore point, which is dependent on the water depth. A

random wave distribution results in a wider cross shore region where waves start

to dissipate energy. A formulation to describe the wave energy dissipation as a

result of the interaction of the waves with the seabed for random waves is derived

by Thornton and Guza [1983]:

D =
3
√
π

16
B3fpρg

H5
rms

γ2
bD

3

(

1 − 1

(1 + (Hrms/γbD)2)5/2

)

, (2.19)

where B3 is the wave dissipation coefficient, fp represents the absolute frequency

peak of the wave field (fp = σ/2π) and γb represents the breaking index [Thornton

and Guza, 1983]. However, the Thornton and Guza [1983] dissipation formulation

results in significant and unrealistic dissipation far offshore, as can be seen in Fig.

2.5. A more accurate description of the dissipation is presented by Church and

Thornton [1993]:

D =
3
√
π

16
B3fpρg

H3
rms

D

(

1 − 1

(1 + (Hrms/γbD)2)5/2

){

1 + tanh
[

8
(Hrms

γbD
− 1

)]}

(2.20)
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Figure 2.5: (a) The alongshore constant bed level according to Yu and Slinn [2003], and

(b) the dissipation rate according to Thornton and Guza [1983] and Church

and Thornton [1993], for moderate offshore wave conditions (Hrms = 1.15

m, Tp = 7.6 s and θ = 18.7o).

(2.19) and (2.20) result in a very similar dissipation profiles for mild wave condi-

tions. For moderate and severe wave conditions, (2.20) results in dissipation closer

to the shore, which corresponds to the expected location of wave breaking (see Fig.

2.5). (2.20) results in a slight reduction of the rate at which bed-forms develop.

For extreme wave conditions also a slight reduction in the prevalent length scale of

the developing bed patterns can be observed for the dissipation function described

by Church and Thornton [1993].

Volumetric sediment flux

In order to describe the evolution of the seabed, a formulation of the total load

sediment transport is used Soulsby [1997]:

−→q = α(x)−→v − γ(x)
−→∇h , (2.21)
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where
−→∇ is the horizontal gradient operator:

−→∇ = (∇1,∇2) = ( ∂
∂x
, ∂

∂y
). α is the

stirring function, γ represents the bedslope coefficient and the sediment flux (−→q )

is given by:

−→qsvr = As|−→v |
[(

|−→v |2 +
0.018

cd
u2

rms

)
1

2 − ucrit

]2.4( −→v
|−→v | − γ∇h

)

(2.22)

−→q =















−→qsvr, if
(

|−→v |2 + 0.018
cd
u2

rms

)
1

2

> ucrit

0, otherwise

The sediment mobility constant (As) depends on the sediment characteristics and

the water depth, and can be split up into a part representing the suspended load

(Ass) and the bedload transport (Asb) Soulsby [1997]:

Ass = 0.012d50D−0.6
∗

[(srds−1)gd50]1.2

Asb = 0.005h(d50/D)1.2

[(srds−1)gd50]1.2 ,

where d50 is the median grain size, srds is the relative density of sediment. D∗

represents the dimensionless grain size (D∗ =
[

g(srds−1)
µ2

]
1

3

d50), where µ [m2/s2] is

the kinematic viscosity.

The critical velocity (ucrit) for sediment transport is given by:

ucrit =















0.19(d50)
0.1 log10

D
d50
, 0.0001 ≤ d50 ≤ 0.0005 m

8.5(d50)
0.6 log10

D
d50
, 0.0005 ≤ d50 ≤ 0.002 m
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2.2.4 Dynamic unknowns

The unknowns of the dynamical system of equations are [Calvete et al., 2005]:� Depth and time averaged flow in the cross- and alongshore direction: u(x, y, t)

and v(x, y, t)� Mean sea level: zs(x, y, t)� Wave energy density: E(x, y, t)� Wave phase: Φ(x, y, t)� Mean bed level: zb(x, y, t)



2.3 Stability analysis

In the past, the formation of rhythmic patterns has been attributed to hydrody-

namic forcing conditions, where the dominant water motion forced the develop-

ment of bed-forms [Fredsoe and Deigaard, 1992]. However, although forcing tem-

plates are still being used to describe the development of rip channels [MacMahan

et al., 2007], the self-organisation of the depth- and wave-averaged water mo-

tion and the bed evolution are now generally assumed to dominate the formation

of these bed-forms [Falqués et al., 2008]. The stability analysis is a modelling

technique to describe the development of rhythmic bed-forms as a result of free

instabilities in the coupled system of water motion and bed evolution. Feedback

between the bottom and the water motion is essential for the development of bed-

forms [Dodd et al., 2003].

It can be said that two types of stability analysis exist, that were already

introduced in section 2.1: the linear and non-linear stability analysis.

Both modelling techniques will be discussed in the following sections. A

schematic description both a linear and a non-linear stability analysis can be seen

in Table 2.1.

2.3.1 Linear stability analysis

The development of rhythmic features on the seabed form the main focus of many

linear stability analyses. To investigate the initial development of these bed-forms,

an initial depth- and wave-averaged time-invariant equilibrium state is considered,

the basic state. This basic state is composed of a steady topography and water
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motion. Instabilities, such as rhythmic bed patterns, are not present yet. These

stable conditions, are computed as a result of offshore wave forcing conditions as

well as the bed profile [Calvete et al., 2005].

The second step in a linear stability analysis is the introduction of rhythmic

perturbations to the basic state. These perturbations are assumed to be small

compared to the values of the basic state, and non-linear perturbation terms in

the governing equations can therefore be excluded. The various different perturba-

tion length scales result in different characteristics of the developing bed patterns.

The linear growth rate of various initial length scales gives insight into the rate

at which rhythmic features with different length scales will develop. A pertur-

bation length scale that grows is called unstable, whereas a perturbation that

decreases in height, in order for the basic state to re-establish, is called stable.

It is assumed that the length scale that shows the biggest linear growth rate will

dominate the development of other length scales. This dominant length scale is

called the ’fastest growing mode’ (FGM).

A linear model can describe the initial stages of development, within short

computational times. It can give insight into the initial length scale, rate of de-

velopment, alongshore migration rate and initial orientation of bed-forms. Linear

growth occurs as long as perturbations are small. When bed-forms evolve beyond

this point, non-linear terms become significant. The short computation times

make this type of modelling a potentially interesting tool for coastal engineers if

the limitations of a linear stability analysis can be accounted for. A linear stability

analysis, Morfo60, will be introduced in section 2.4.
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2.3.2 Non-linear stability analysis

A non-linear stability analysis can give insight into the long term development of

bed-forms. This type of model is generally not designed as a stability analysis,

but can be a depth- and wave-averaged full time-domain model used to examine

morphodynamical instabilities. Alternatively, a weakly non-linear model can use a

reduced system of equations to examine the non-linear behaviour of a short range

of length scales around the linear FGM [Falqués et al., 2008] or to examine the

finite amplitude behaviour of bed-forms, whose amplitude is still small compared

to the basic state parameters [Dodd et al., 2003].

In section 2.5, the non-linear model Morfo55 will be introduced [Garnier, 2006].

This non-linear model forms an extension to an already existing model, Morfo50

[Caballeria et al., 2002]. This model uses the full non-linear equations to describe

the temporal evolution of the surf and shoaling zone. The model is used as a

stability analysis by implementing an undisturbed beach. This undisturbed beach

is perturbed to give rise to the development of rhythmic bed patterns. The non-

linear model describes how a wide range of length scales would initially develop,

but that soon the fastest linear growing mode will dominate. Over time, non-

linear effects will increase in importance, and the development of bed-forms slows

down, until an equilibrium height is reached.
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Fully non-linear equations

A full time-domain model

Initial assumptions: Initial assumptions:

• Constant wave forcing • Constant wave forcing
Hrms, Tp, θ Hrms, Tp, θ

• Alongshore uniformity • Alongshore uniformity
∂
∂y

= 0 ∂
∂y

= 0

• Time invariance
∂
∂t

= 0

⇓ ⇓
Basic state Start of run

Subsequent conditions: Subsequent conditions:

• Sinusoidal perturbations Initial perturbation:
∂
∂y

= ik • Random perturbations

• Exponential growth • ’Dirac function’
∂
∂t

= ωr

• Linearisation

Linear stability analysis Non-linear stability analysis

Morfo60 Morfo55

Table 2.1: Model set-up for a linear and a non-linear stability analysis.
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Figure 2.6: The basic state profiles of (a) the wave height, (b) the mean free surface

elevation, (c) the bed level, and (d) the alongshore velocity, for the same

moderate offshore wave conditions (Hrms = 1.15 m, Tp = 7.6 s and θ =

18.7o).

2.4 Morfo60

Morfo60 is a comprehensive morphodynamical linear stability model, describing

the development of nearshore bed patterns as a free instability of the coastal

system. The shallow water equations in combination with descriptions of the bed

evolution, the wave phase and the energy density, form the model framework (see

Calvete et al. [2005] for more details).
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2.4.1 Basic state

The approach used in Morfo60 is standard for linear stability models, where a sta-

bility analysis determines if disturbances imposed on an equilibrium state grow or

decay. In Morfo60 the equilibrium state represents the alongshore uniform solution

of (2.7) - (2.11) for a given wave forcing (offshore wave height (Hrms), wave period

(Tp) and offshore wave angle (θ)) and cross shore beach profile (zb = −Z0(x)),

along with the resulting flow for θ 6= 0: ~v = (0, V0(x)), free surface elevation

(zs = η0(x)), wave energy (E = E0(x)) and phase field (Φ = Φ0(x)).

An example of the cross shore distributions of several variables is given in

Fig. 2.6. The bed profile (Fig. 2.6(c)) originates from field measurements at

Duck (see section 3.2.2) and shows two alongshore bars. A moderate wave height

(Hrms = 1.15 m) is applied at the modelling boundary and wave energy dissipa-

tion occurs at the onshore bar and in front of the beach (see Fig. 2.6(a)). Fig.

2.6(b) depicts the mean free surface elevation of the basic state (Zs0
). Offshore

set-down can be observed, whilst when waves begin to break, set-up is predicted.

The moderate wave angle (θ = 18.7o) at the modelling boundary results in a sig-

nificant alongshore current at the onshore bar and in front of the shoreline, as can

be seen in Fig. 2.6(d). Different offshore wave conditions will result in different

basic state profiles, and therefore give rise to a different FGM .
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2.4.2 Perturbations

The model introduces perturbations of arbitrary length scales (λ = 2π
k

) into the

basic state:

u = u(x)eωt+iky (2.23)

v = V0(x) + v(x)eωt+iky (2.24)

zs = Zs0
(x) + zs(x)e

ωt+iky (2.25)

E = E0(x) + e(x)eωt+iky (2.26)

Φ = Φ0(x, t) + φ(x)eωt+iky . (2.27)

zb = −Z0(x) + h(x)eωt+iky (2.28)

Substituting (2.23) - (2.27) into (2.7) - (2.11) results in a system of equations

that defines an eigenvalue problem. Its solution determines the characteristics of

each of the perturbation length scales. The growth rate (ωr), the migration rate

(cm = ωi

k
), where ω is composed of an imaginary and a real part (ω = ωr + iωi),

and the eigenfunctions for each perturbation variable are obtained for each length

scale (λ) in a range of physically plausible length scales (λ ≈ 50 - 6000 m). It is

assumed that the fastest growing perturbation length scale (λFGM) will dominate
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Figure 2.7: (a) The growth rate of various bed pattern length scales (λ = 2π
k ), and (b)

the corresponding migration rate, for moderate offshore wave conditions

(Hrms = 1.15 m, Tp = 7.6 s and θ = 18.7o).

the development of other length scales.

In a linear stability model, the equations are simplified by assuming that values

of variables in the equilibrium state are significantly bigger than the perturbations

and that non-linear terms of the perturbations can therefore be neglected. In real-

ity, the effects of the non-linear terms in the equations become more important as

the height of the perturbations increase, resulting in a reduction in the accuracy

of the predictions of a linear stability analysis, as bed features evolve.

Fig. 2.7(a) depicts the initial linear growth rate for the range of physically

plausible length scales under the same offshore wave conditions, as were applied

in the basic state. λFGM is the length scale with the highest growth rate (k = 0.012
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[rad/m], λ = 523 m). The migration rate (cm) for growing bed pattern length

scales, is depicted in Fig. 2.7(b).

The Morfo60 computer model solves the perturbed equations using a spectral

method [Iranzo and Falqués, 1992]. The terms in the equations are expanded into

polynomials. The different physical variables (u, v, e, zs, zb and φ) are expressed

as a finite sum of N + 1 so-called basis functions, here Chebyshev polynomials

of the first kind (N being the number of grid points). These are defined by:

Tk(x) = cos(k cos−1 x), for k = 0, 1, 2, . . . [Canuto et al., 1988]. These expansions

are substituted into the governing equations and a spectral method is used to solve

the resulting equations.

The spectral method is chosen because it allows computational nodes to be

distributed efficiently where variations are most rapid (generally close to the shore-

line) [Calvete et al., 2005]. The method used here is a collocation method in which

we insist that the equations are solved exactly at the computational nodes (i.e.

collocation points). This, in combination with the boundary conditions, gives for

each governing equation N + 1 equations with N + 1 unknowns, the unknowns

being the ‘amplitudes‘ or ‘weights‘ of each Chebyshev polynomial. The number of

collocation points is therefore critical for numerical convergence. Model runs with

various numbers of collocation points have been carried out, and 300 points have

been used throughout since they produced consistent results.

In the present study, both the perturbed effects of refraction over the current

and the depth perturbation terms are excluded from (2.10), excluding perturbed
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Figure 2.8: The effect of the inclusion of perturbed effects of refraction over the current

and the depth perturbation terms on the growth rate curve.

terms in the wave phase equation. The influence of these terms on the physically

accurate predictions of the growth rate and length scale of crescentic bed patterns

is minor, as was shown in van Leeuwen et al. [2006] and can be seen in Fig. 2.8.

However, especially smaller length scales (k = 2π
λ

) show a wide range of numerical

results when these terms are included. These numerical results obscure the deter-

mination of a physically plausible fastest growing mode. These terms are therefore

excluded from the perturbed part of the wave phase equation for all future runs

made by the linear stability analysis.

The solution to the eigenvalue problem not only gives insight into the length

scale, growth rate and migration rate of the perturbations, but can also give

the cross- and alongshore distribution of the perturbations for different variables.

These eigenfunctions show how the initial development of these variables will cause

perturbations onto the basic state profiles. The eigenfunctions of the wave height

(Hrms), mean surface elevation (zs), bed level (zb) and the alongshore velocity

(v) are depicted in Fig. 2.9. The eigenfunctions are arbitrary in amplitude. The
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Figure 2.9: The real and imaginary part of the perturbation profiles of (a) the wave

height, (b) the mean free surface elevation, (c) the bed level, and (d)

the alongshore velocity, for the same moderate offshore wave conditions

(Hrms = 1.15 m, Tp = 7.6 s and θ = 18.7o).
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Figure 2.10: (a) The total bed profile (contour) and currents (arrows), (b) the total

wave height distribution, and (c) the perturbed mean free surface eleva-

tion, for the dominant length scale (λFGM ), for moderate offshore wave

conditions (Hrms = 1.15 m, Tp = 7.6 s and θ = 18.7o).

eigenfunctions generally show a peak between 80 and 100 m offshore. This peak

corresponds well with the location of the nearshore bar, since crescentic bed pat-

terns mainly develop at this bar.

By applying an arbitrary amplitude (A) to these eigenfunctions (f ′), the full

alongshore distribution (F ) of different variables can be obtained.

F (x, y) = F0(x) + Af ′(x)eiykF GM , (2.29)
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where f ′ = f ′
r + if ′

i and F0 is the basic state alongshore constant distribution of a

variable. The cross and alongshore distribution of various characteristic variables

under the previously presented offshore wave conditions, is shown in Fig. 2.10.

The oblique wave angle results in a strong alongshore current, and the oblique

orientation of especially the bed patterns (Fig. 2.10(a)) and the free surface ele-

vation (Fig. 2.10(c)).

Settings used to describe the evolution of crescentic bed patterns at Duck are

presented in Table 2.2. A wide range of different wave conditions will be examined.

Therefore, both the description of the friction by Feddersen et al. [2000] and the

dissipation formulation by Church and Thornton [1993] will be used to describe

realistic circumstances for the evolution of bed-forms.
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Name Parameter Unit Value
General

Gravitational acceleration g m/s2 9.81
Offshore boundary xmax m 4000
Minimum depth at shoreline Dmin m 0.2
Range of examined length scales λ m 57 − 6283
Bed profile computed from measurements at Duck from August to November, 1998

Dissipation

According to Church and Thornton [1993]
Coefficient of wave dissipation B3 − 2.2
Breaking index γb − 0.42
Bed roughness length zrl m 0.01

Reynolds stresses

Turbulence parameter M − 1.0

Friction

According to Feddersen et al. [2000]
Friction coefficient aFed. − 1.16

Sediment

Median grain size d50 m 2.0×10−4

Kinematic viscosity µ m2/s2 1.3×10−6

Sediment porosity p − 0.4
Relative sediment density srds − 2.65
Bedslope coefficient γ m2/s 1.6
Sediment porosity p − 0.4

Table 2.2: Settings used in the linear stability analysis Morfo60.



2.5 Morfo55

The main objective of this research is to investigate to what extent a linear sta-

bility analysis can describe the development and evolution of bed-forms, as they

are observed in reality. The limitations of a linear stability analysis make the

accuracy of such a model doubtful for the prediction of the long term evolution

of bed patterns under changing forcing conditions. To this end, a non-linear sta-

bility analysis is used to investigate to what extent a linear stability analysis can

correctly describe circumstances that are originally beyond the capabilities of a

linear stability analysis. The inability to accurately predict bed pattern evolu-

tion after the initial stages as well as the assumption of an alongshore constant

bed profile are significant limitations. A non-linear stability analysis can describe

the evolution of bed-forms from their beginnings until bed-forms reach their final

height and this type of model can also describe pre-existing bed patterns.

Morfo55 is a full time-domain model that describes developments in the nearshore

zone. The model uses the same depth- and wave averaged equations as Morfo60.

However, these equations are not linearised, in order to preserve the complete de-

scription of the temporal evolution of perturbations (see Garnier [2006] for more

details). This model is not designed solely as a non-linear stability analysis tool

and has been used to investigate a much wider range of nearshore situations [eg.

Garnier, 2006]. However, Morfo55 can be used to carry out a non-linear stabil-

ity analysis. For this purpose, settings are restricted in order to investigate the

stability of a certain nearshore system, of water motions and bed evolution (see

Table 2.1).
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The non-linear Morfo55 model uses a finite difference scheme to discretise the

basic governing equations [Garnier et al., 2006]. The key difference between the

spectral method used in the Morfo60 model and the finite difference method used

in Morfo55 is that in the finite difference method the equations are approximated

to obtain a solution, whereas in the spectral method the solution is being approx-

imated. While a finite difference method replaces the continuum equation by an

equation on grid points, the spectral method expresses the solution as a truncated

expansion in a set of basis functions [Press et al., 1989].

A central finite-difference method on a regular rectangular grid is used for the

spatial derivatives ((fx)i,j =
fi+1,j−fi−1,j

2∆x
+ O((∆x)2)). The discretised variable f

can be approximated at a half space step in each directions as:

fk
i±1/2,j =

fk
i,j + fk

i±1,j

2
, fk

i,j±1/2 =
fk

i,j + fk
i,j±1

2
, (2.30)

where the discretised variable (f) at the central node at time k is defined as:

fk
i,j = f(x(i), y(j), t(k)) (2.31)

The grid distribution in the cross shore direction is set at ∆x = 2.5 m to obtain

numerical convergence. The grid distribution in the alongshore direction is set at

∆y = 10 m, to ensure sufficient detail in the description of short crescentic bed

patterns (λ ≥ 100 m).

The explicit Adams–Bashforth scheme is used for the temporal derivatives.
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Figure 2.11: A numerical analogue of a Dirac-delta function with an amplitude of 3

cm, applied to excite all frequencies to the same extent.

The flux of different variables in time (Ψf) can be formulated as:

∂f

∂t
= Ψf , (2.32)

where f corresponds to any of the unknowns: D, u, v, E, Φ or zb. The flux (Ψf)

includes all the terms of the equation of f except the term of the temporal deriva-

tive. The temporal discretisation using the Adams-Basforth scheme subsequently

becomes:

fk
i,j − fk−1

i,j

∆t
=

3

2
Ψfk−1

i,j
− 1

2
Ψfk−2

i,j
, (2.33)

where k is the time index: k ∈ [2, Nt] (Nt representing the total modelled period),

k = 0 corresponds to the initial conditions, while the value of the variables for

k = 1 is obtained using the Euler first order scheme [Garnier, 2006].

Similar conditions are created as are implemented in the basic state of the lin-

ear stability analysis. An alongshore constant beach profile is implemented, along

with constant wave forcing at the modelling boundary. Instead of investigating the

characteristics of a wide range of perturbation length scales, as happens in a linear

stability analysis, all perturbation length scales are excited simultaneously. This

can be done by applying an initial perturbation to the system. Previously, small
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scale random perturbations have been used. These perturbations subsequently ex-

cite a wide range of different length scales. However, random perturbations may

not excite all length scales to the same extent, if they are not truly random. This

means that some length scales will start with a bigger initial amplitude than other

length scales. Alternatively, a numerical analogue of a Dirac-delta function can

be introduced to the system. This derived ’Dirac function’ is a spike in the cross-

and alongshore distribution of a certain variable (here generally the seabed) (see

Fig. 2.11). This spike excites all perturbation length scales to the same extent,

resulting in the initial development of all these bed-forms.

Time-domain simulations can develop numerical instabilities. The model car-

ries out an iterative process in time, where small fluctuations can quickly over-

whelm any physical development of bed-forms. The sensitivity of the model to

input settings, makes that a much narrower range of conditions can be applied

than what is possible with a linear stability analysis. The settings used by Morfo60

(Table 2.2) are determined to give a physically accurate description of the physics

involved, for the very wide range of wave conditions that occur at Duck. The

settings used for the non-linear runs (Table 2.3) differ from the settings applied

in Morfo60. The settings used in Morfo55 have been applied successfully previ-

ously [e.g. Garnier, 2006; Garnier et al., 2008] and have been shown to reduce

the risk of the development of numerical instabilities. The main differences are

the application of linear friction instead of Feddersen et al. [2000] friction and

the dissipation function of Thornton and Guza [1983]. Both differences are of

particular importance for the implementation of extreme wave conditions, when
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Name Parameter Unit Value
General

Gravitational acceleration g m/s2 9.8
Offshore boundary xmax m 250
Alongshore domain width ymax m 2000
Minimum bed level at shoreline zmin m 0.25
Range of examined length scales λ m 100 − 1000
Morphological time step δtmorph s 3.0
Bed profile according to Yu and Slinn [2003]

Dissipation

According to Thornton and Guza [1983]
Coefficient of wave dissipation B3 − 1.0
Breaking index γb − 0.6
Bed roughness length zrl m 0.01

Reynolds stresses

Turbulence parameter M − 1.0

Friction

Linear friction is applied
Bottom friction coefficient cd − 0.001 (constant)

Sediment

Median grain size d50 m 2.5×10−4

Kinematic viscosity µ m2/s2 1.3×10−6

Sediment porosity p − 0.4
Relative sediment density srds − 2.65
Bedslope coefficient γ m2/s 5
Sediment porosity p − 0.4

Table 2.3: Settings used in the non-linear model Morfo55.

waves approach the shore under a moderate to large oblique angle. However, the

non-linear stability analysis will be used to investigate the capacities of a linear sta-

bility analysis in a non-linear regime, and forcing conditions will be mild, creating

only minor differences between linear friction and Feddersen et al. [2000] friction,

and between dissipation according to Thornton and Guza [1983] and Church and

Thornton [1993].
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Figure 2.12: (a)-(d) The development of bed patterns at four moments in time under

constant oblique wave forcing (Hrms = 0.9 m, Tp = 7.5 s and θ = 5o) at

the modelling boundary (xmax = 250 m). (e) The continuous temporal

evolution of one alongshore transect (white areas are crests, whereas black

represents troughs). (f)-(i) The alongshore transect at each of the four

moments in time.
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The temporal evolution of the nearshore region can most easily be depicted

by showing the evolution of the seabed (see Fig. 2.12). The top row of figures

depict how bed-forms evolve, and migrate under mild oblique wave conditions

(Hrms = 0.9 m, Tp = 7.5 s and θ = 5o). The initial bed profile is alongshore con-

stant, derived by Yu and Slinn [2003], originally from Lippmann et al. [1999]. At

the start of the run, a ’Dirac function’ is placed in the centre of the domain, at the

alongshore bar. This ’Dirac function’ forms the starting point for the development

of crescentic bed patterns. However, the oblique wave forcing causes the perturba-

tion to migrate and so the first bed-forms (Fig. 2.12(a)) appear up-current from

the original location of the ’Dirac function’. Also note that the periodic along-

shore boundaries make migrating bed-forms re-appear at the down-current end of

the modelling domain. Fig. 2.12(a)-(d) show not only how bed patterns migrate,

but also that the area where bed patterns occur, expands in the alongshore di-

rection. Whereas initially only one bed-form exists due to the ’Dirac function’,

this expands gradually towards the alongshore modelling boundaries. The white

lines in Fig. 2.12(a)-(d) represent a specific alongshore perturbation profile. These

alongshore transects are depicted in Fig. 2.12(f)-(i) for the same moments in time

as Fig. 2.12(a)-(d). The continuous temporal evolution of this specific alongshore

profile is depicted in Fig. 2.12(e). Not only expand the perturbations in along-

shore direction, but the amplitude also increases, reaching a stable height after

around 45 days.

Since the purpose of the non-linear results is to investigate to what extent a

linear stability analysis can accurately describe field observations, characteristics
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Figure 2.13: (a) The alongshore distribution of the bed perturbation after 35 d (black)

and 38 d (grey). The Fourier analysis of the perturbation profiles after

35 and 38 d. (c) The reconstructed perturbation profiles as a result of

the two most dominant frequencies of the Fourier analysis.
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of the evolution of bed patterns from the non-linear model should be made com-

parable to the predictions by a linear stability analysis.

Argus field observations analysed by van Enckevort et al. [2004] give the ob-

served bed pattern length scale in time. This length scale can be compared with

λFGM of a linear stability analysis. A Fourier analysis is carried out to determine

the dominant length scale of the output of Morfo55. A Fourier analysis attempts

to express a signal (f) as a summation of periodic functions of different wave

lengths.

f(y) =
a0

2
+

∞
∑

n=1

[an cos(ny) + bn sin(ny)] (2.34)

Fig. 2.13(a) depicts the alongshore bed perturbation at 35 and 38 days from

the start of the run. Fig. 2.13(b) subsequently depicts the Fourier analysis of

either signal. The Fourier analysis suggests that the dominant length scale is 200

m (k = 0.0314 [rad/m]). The dominant length scale is assumed to correspond

with λFGM of the linear stability analysis.

The number of length scales that can be observed in a run of Morfo55 is lim-

ited: The periodic boundaries at the alongshore ends of the domain force the

variables at one end of the domain to be mirrored at the other end. This means

that once the bed is covered with bed patterns, only a whole number of bed pat-

terns with this periodicity can exist within the modelling domain. Secondly, the

Fourier analysis can also only observe length scales that form a function of the

total modelling width.

A second important variable that is of interest for the investigation of non-
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linear effects, is the linear growth rate. A non-linear stability analysis describes

the non-linear evolution, and therefore the growth rate is not linear for the entire

period of development. However, linear growth occurs initially when the bed-

forms start to develop. The determination of the linear growth rate is based on

the change in amplitude of the length scales in the Fourier analysis (Ampf) (see

Fig. 2.13(b)). For each length scale, the amplitude can be determined at each

time step (Ampf =
√
a2 + b2). The change in amplitude is used to calculate the

linear growth rate:

ωr =
ln(Ampft=j+1

/Ampft=j
)

δt
(2.35)

When the linear growth rate is constant in time, for a specific length scale, this

means that this length scale develops linearly, and only linear terms in the equa-

tions would be sufficient to describe the development of this length scale accurately.

Finally, the migration rate of bed-forms (cm) can be determined by calculating

the displacement in the periodic output of the Fourier analysis (see Fig. 2.13(c)).

The displacement between the peaks in the curve of the dominant mode at day

35 (black line) and at day 38 (grey line) gives the migration of this length scale

over these three days.

In the following chapter, linear stability results are compared with field obser-

vations by van Enckevort et al. [2004], using settings that closely represent the

field conditions. Chapter 4 subsequently gives an analysis of the influence of pre-

existing bed patterns on the development of bed patterns, using the non-linear

stability analysis.



Chapter 3

A field test of a linear stability

model for crescentic bars*

3.1 The Duck research facility

The Field Research Facility of the United States Army Corps of Engineers at

Duck is used to collect numerous kinds of morpho-dynamical data. Duck is

located at a barrier island in front of the American East coast (Fig. 3.1,

[http://www.frf.usace.army.mil/frf.shtml ]). Sediment sizes at Duck vary at dif-

ferent cross shore locations, coarser sand can be found at the breaker line (D50 ≈

0.25 mm), while fine sand can be found further offshore (D50 ≈ 0.125 mm)

[Stauble, 1992; Gallagher et al., 1998]. The offshore yearly averaged root mean

square wave height (Hrms) in this area is 0.63 m and the averaged peak wave pe-

riod (Tp) is 9.1 s [van Enckevort et al., 2004]. During storm surges the wave height

*The results from this chapter have been presented at the River Coastal and Estuarine

Management Conference, (2007), Enschede, The Netherlands. The approach presented in section
3.5.2 has appeared in the conference proceedings under [Tiessen et al., 2007]. The other parts
of this chapter will be published in Coastal Engineering, shortly.
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Figure 3.1: The Duck research facility. The facility is located on a barrier island off

the East coast of the United States. The pier is located in the middle

of the research facility. The beaches around the pier are monitored for

bathymetry measurements.

can increase to more than 3 m and the wave period can reach more than 15 s. The

tidal variation at Duck is between 1 and 1.3 m. Over the years many researchers

have used data from Duck [Lippmann and Holman, 1989; Stauble, 1992; Konicki

and Holman, 2000; Elgar et al., 2001; Alexander and Holman, 2004; van Enckevort

et al., 2004; Plant et al., 2006].
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Figure 3.2: Wave conditions during the two month observation period at Duck at the

8 m water depth contour. The wave height (Hrms) is plotted versus the

wave angle (θ), while the wave period (Tp [s]) is shown in the grey scale

of the dots.

3.2 Field data

In this section a description of the data collected at Duck, which is used in this

project will be introduced. The model uses wave, bathymetry and tidal data to

create predictions of the occurrence and characteristics of crescentic bed patterns.

These predictions will be compared with field observations (in section 3.3) that

were obtained by van Enckevort et al. [2004] using the Argus imaging technique,

which will also be briefly described in this section.

3.2.1 Wave conditions

The offshore wave conditions used in Morfo60 were recorded at Duck at about 8

m water depth, around 1000 m offshore. These wave conditions are refracted back
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to the offshore modelling boundary at a water depth of around 35 m. Wave con-

ditions were recorded at 3 hour intervals. Wave data recorded over a two month

period in 1998, from August 20th (day 232) until October 22nd (day 294), are used

to generate model predictions of the development of crescentic bed patterns at

Duck, resulting in 500 different recorded wave conditions and model predictions.

The wave angles were recorded from the North and are corrected to describe wave

angles normal to the shoreline (the shoreline is determined to be orientated at a

−19o angle from the North). Positive wave angles correspond with waves coming

from the North to North-West, where negative wave angles correspond to waves

coming from the West to South-West.

A wide range of wave angles were measured (Fig. 3.2), up to ±60o. Large wave

heights (Hrms > 1 m) generally occur for wave angles of approximately ±20o. The

wave period is shown in the grey scale of the dots. The distribution of the wave

period shows a clear separation between positive and negative wave angles. Waves

approaching the shore from the North to North-West only occur for short wave

periods of less than 8 seconds. Large wave angles from the South-West are not

restricted in the wave period, reaching up to 16 seconds.

To correctly calculate the wave conditions offshore, the bathymetry needs to be

known. Two factors influence the bathymetry: firstly the variability of the seabed.

Seasonal variation in the wave conditions causes differences in the bathymetry over

time. Secondly, tidal variation causes variable water depths.
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Figure 3.3: The measured bathymetry of the nearshore region at Duck at August 12th

1998. The white lines show the location of the measurements, the thick

white dotted lines represent the area around the pier that is excluded from

the analysis.
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Figure 3.4: The evolution of the alongshore averaged bed profile over 1998. The verti-

cal white lines represent dates when bathymetry surveys were carried out.

’<’ and ’>’ on the top of the figure represent the start and the finish of

the observation period.
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3.2.2 Bathymetry

An alongshore constant beach profile is used to describe the seabed. This beach

profile is obtained using field measurements from Duck. Once a month the bed

level was measured over a 1000 m wide stretch of beach (Fig. 3.3), out to water

depths of about 8 m. Two alongshore bars exist, the nearshore bar is located

around 80 m offshore at a depth of around 1.5 m, while an offshore bar is located

around 250 − 300 m offshore, at a water depth between 3 and 4 m. Wave breaking

generally occurs in front of the onshore bar, although during high wave conditions

wave energy dissipation can also partially occur at the offshore bar. The pier,

located in the middle of the scanned beach area, causes a significant disturbance

in the formation of crescentic bed patterns (see Fig. 3.1). The impact on the

water flow and wave propagation [Elgar et al., 2001], results in an increased water

depth offshore, while close to the shore the water depth is generally less than the

surrounding area (Fig. 3.3). The pier area was excluded from the analysis of the

Argus images, presented by van Enckevort et al. [2004], and is also excluded in

this research.

Apart from variation of the bar location in the alongshore and cross shore di-

rection due to the presence of bed patterns, seasonal changes can also be observed.

In this research, the profiles obtained during the monthly bathymetry surveys are

averaged in the alongshore direction and subsequently smoothed using a cross

shore weighted average to reduce fluctuations. A 200 m wide area around the pier

is excluded from the calculation of the alongshore averaged beach profile (see Fig.

3.3). It is assumed that the bed changes linearly in between the cross shore profiles
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Figure 3.5: The tidal variation at Duck during the observation period.

created by the monthly surveys (Fig. 3.4). Prior to the observation period, a rapid

change in the nearshore region occurred, when an onshore terrace deformed into

an alongshore bar. Crescentic bed patterns are generally predicted by Morfo60 to

develop around this onshore bar.

3.2.3 Tide

The mean water level variation at Duck was recorded at 6-minute intervals (see

Fig. 3.5). This not only included the tidal variation, but also surges due to

weather conditions. The sum of both the tidal variation and surge at Duck is

generally between 1 and 1.5 m [van Enckevort et al., 2004]. This variation in water

depth (the term tide subsequently refers to the total mean water level variation) is

implemented in Morfo60 by shifting the bed profile. During high tides, the bed is

moved downwards resulting in an increased water depth over the bar; at low tide

the bed is moved up leading to a decreased water depth over the bar. The bed is
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(a) (b)

Figure 3.6: Argus imaging at Duck: (a) A snapshot of a beach section at Duck. (b)

A time-averaged (timex) image of the same beach section, revealing the

position of the alongshore bar.

also adjusted in the cross shore direction to account for the increased (decreased)

distance between the bars and the shore line.

3.2.4 Argus images

Argus imaging data collected at Duck is considered although it does not form

part of the analysis presented in this research; findings using this data were pre-

viously published by van Enckevort et al. [2004]. The Argus imaging system is

based on wave breaking to determine the location of bed patterns [Lippmann

and Holman, 1989]. Waves break when the water becomes shallow. If the water

depth decreases very abruptly, more wave breaking will occur. An example of a

steep reduction of water depth can be found at bars in front of the shore. Wave

breaking produces foam and bubbles, which can be seen in a picture (Fig. 3.6(a),

[http://www.frf.usace.army.mil/frf.shtml ]). If the picture is taken over a longer

period of time, more waves will break at different locations along the shore, creat-
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ing a band of white foam and bubbles (Fig. 3.6(b)). If there are different cameras

at different angles to the shore, these different images can be merged and rotated

such that a 180o view can be obtained of bed patterns as they occur nearshore.

Argus imaging is a new way of obtaining highly detailed and very frequent data

of the nearshore seabed. This way of field observations is still in development and

more and more applications are invented for this way of obtaining data [Holman

and Stanley, 2007].

Apart from limitations of the photo analysis [Holman and Stanley, 2007], van

Enckevort and Ruessink [2001] showed that changes in wave height and water level

can cause significant changes in the observed bar crest position. If there are no

alongshore variations in the forcing conditions and the seabed, these effects are

similar along a stretch of beach. However, the influence of the pier on the wave

height (under oblique wave incidence) can result in local changes of the observed

bar crest [Elgar et al., 2001]. In the results presented by van Enckevort et al.

[2004] a variable area around the pier is removed to exclude the local effects of the

pier from their analysis.



3.3 Development over time

In order to examine to what extent a linear stability analysis can be used for the

correct prediction of the development of crescentic bars, a comparison of model

predictions and field observations in time is presented. Fig. 3.7 shows the mea-

sured wave and tidal data along with results of the Morfo60 experiments. In Fig.

3.7(a), several durations with large wave heights can be identified. The periods

after three storms (day 237, day 264 and day 273) are subsequently examined in

more detail. The first of these events is especially severe, when a hurricane makes

landfall close to Duck.

Length scale predictions from Morfo60 (λFGM) immediately after a storm are

significantly larger than those predicted in between storms. During and immedi-

ately after storms, length scales between 500 and 1000 m are predicted. In between

storms, length scale predictions decrease to between 150 and 400 m, until new high

wave conditions occur, and the length scale increases. A similar trend is evident

in the field data: during the initial development after a storm, length scales (λobs.)

between 500 and 800 m are observed, while in the ensuing days this decreases to

typical values of around 300 m. This bed pattern length is observed until a new

storm occurs [van Enckevort et al., 2004]. The relative error between the observed

length scales and the predicted length scales (δλobs., λF GM
= 1

N

∑N
j=1 |

λobs.j
−λF GMj

λobs.j

|)

is 0.44.

Field observations show a more gradual bed pattern development after storms

than the model predictions. Model predictions fluctuate more rapidly over time

due to changing forcing conditions (wave and tide) and because the model does
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Figure 3.7: Morfo60 model predictions and corresponding wave conditions during the
observation period. (a, b, c) depict the forcing wave conditions (wave
height (Hrms), wave period (Tp) and angle of the incoming waves (θ)) as
they were collected at the wave gauge in front of the Duck coast. (d)
shows the tidal variation at the same time as the wave records, as it was
recorded at the pier at Duck. (e, f, g) show the resulting bed pattern
length (λFGM ), growth rate (ωr) and migration rate (cm) as predicted by
Morfo60. (e) shows both the predicted length scale (solid line) and the
field observations (×). The horizontal axis represents time in all graphs,
from August 20th 1998 (day 232), until October 22nd 1998 (day 294).
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not take pre-existing bed patterns into account. An algorithm to identify the more

physically meaningful model predictions will be presented in section 3.5.

High wave conditions generally coincide with increased growth and migration

rates. Predicted migration rates are generally small, but can be as big as 200

m/day during high wave conditions. In reality, migration rates of up to 60 m/day

are observed at Duck during this period [van Enckevort et al., 2004], although

at other locations migration rates up to 180 m/day occur [van Enckevort and

Ruessink, 2003b].

A second major influence on the model predictions is the tidal level. Tidal vari-

ation strongly influences the growth rate. The growth rate decreases for increased

tidal levels.

The effects of the wave angle and the wave period on the model predictions

cannot be observed distinctly in these plots.

Fig. 3.8 shows the corresponding accumulated growth for each wave number

(kFGM = 2π
λF GM

) over the two month observation period. The accumulated growth

is the sum of the predicted growths (
∑

ωr∆t) for each length scale during the

modelled period. Two length scales with significantly larger accumulated growths

can be identified: kFGM = 0.011 and 0.023 rad/m (λFGM = 570 and 273 m, respec-

tively). These peaks roughly correspond to the length scales observed in the field

[van Enckevort et al., 2004]: around 500 to 800 m (immediately after a storm),

and around 300 m (in between storms).
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Figure 3.8: The accumulated growth (
∑

ωr∆t) for each wave number (kFGM = 2π
λF GM

)

for all model predictions during the observation period.

Large variations occur in the model predictions due to the changing forcing

conditions in combination with the assumed alongshore constant beach profile.

Before these variations are addressed and a closer comparison between field ob-

servations and model predictions is presented, an analysis of the relationships

between the different forcing conditions and crescentic bed pattern characteristics

of the model predictions is given.



3.4 Relationships between input and output pa-

rameters

In using Morfo60 to reproduce the development of crescentic bed patterns over

the 2-month period at Duck, changes in several parameters were implemented;

i) changing wave conditions; ii) changing tidal levels; iii) gradual change in the

beach profile. The impact of these different conditions on the model predictions

(growth rate, migration rate and length scale) are examined.

3.4.1 Wave conditions

The effects of changing wave conditions on the development of crescentic bed

patterns has been studied before (Deigaard et al. [1999], Calvete et al. [2005]).

In these sensitivity analyses the effects of changes in individual wave parameters

were investigated; the combined effects of actual wave data were not presented.

Fig. 3.9 shows the effects of the different wave conditions recorded at Duck on all

model predictions. The effect on the model predictions of reversing the sign of the

incident wave angle whilst keeping other forcing conditions the same is limited to

reversing the migration direction and orientation of the bed patterns. The reason

for showing both negative and positive wave angles is to illustrate the potential

range of different wave conditions and therefore model predictions for the different

wave angles.

Calvete et al. [2005] presented a sensitivity analysis of the Morfo60 model for

different wave conditions. It was observed that large wave heights or wave angles
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Figure 3.9: The distribution of the recorded wave conditions and model predictions.

The data is distributed between wave height (Hrms) on the x axis and

wave angle (θ) on y axis. The grey scale of the dots depicts the value of

(a) the wave period (Tp) and the output parameters: (b) λFGM , (c) ωr,

and (d) |cm|.
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resulted in increased length scales of crescentic bed patterns. The distribution of

different wave conditions at Duck and the resulting predicted bed pattern lengths

are shown in Fig. 3.9(b). The strong influence of the wave angle on the pre-

dicted length scale can also be observed in these results. Increased length scales

are predicted for increased wave heights, although the largest length scales occur

for moderate wave conditions (0.6 < Hrms < 1.4 m) and extreme wave angles

(θ < −30o).

Calvete et al. [2005] also showed that increased wave heights or wave periods,

or a decrease in wave angle would result in increased growth rates of the pre-

dicted bed pattern. The influence of the wave conditions at Duck on the growth

rate (Fig. 3.9(c)) reveals that the highest growth rates do not, however, occur

for the highest waves and greatest wave periods, but for more moderate condi-

tions (0.6 < Hrms < 1.2 m and 8 < Tp < 12 s). Large wave heights generally

correspond with increased wave angles while increased wave periods correspond

with small waves or increased wave angles, reducing the growth rate in both cases.

The greatest growth rates occur for small wave angles (|θ| < 10o). These findings

suggest that under field conditions growth rates and length scales may not exhibit

the relationships generated in the reported sensitivity analyses, and that these

characteristics depend on the range of occurring forcing conditions.

The influence of the wave conditions on the migration rate was not presented

by Calvete et al. [2005]. The wave data distribution at Duck (Fig. 3.9(d)) shows

that increased wave heights (Hrms > 0.8 m) together with moderate wave angles
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(20o < |θ| < 40o) correspond with large migration rates. Wave angles that are

larger still are not only accompanied by decreased wave heights, but also by a

sharp decrease in wave periods, both resulting in decreased migration rates.

Finally, the distribution of the different crescentic bed pattern characteristics

can be compared. Comparing the length scale and migration rates in Fig. 3.9(b)

and 3.9(d) suggests that predictions of large length scale crescentic bed patterns

(λFGM > 800 m) generally correspond with large migration rates (cm > 120

m/day). Also interesting to note is that the greatest growth rates roughly cor-

respond with more moderate length scales (λFGM < 700 m) and migration rates

(|cm| < 100 m/day).

3.4.2 Bed profile

Several bed profiles were investigated to study the effects of the changing along-

shore constant bed profile. The bed profile at the start and at the end of the

observation period are tested as well as the profile described by Yu and Slinn

[2003] (see Fig. 3.10(a)). The Yu and Slinn [2003] profile is an approximated

description of the beach profile measured at Duck in October 1990, and is used

previously by Calvete et al. [2005]. The bed profiles at the start and the end of

the observation period, both show two alongshore bars, while in the Yu and Slinn

[2003] profile only the onshore bar occurs. The major difference between the pro-

files at the start and the end of the observation period is the lower (0.2 m) onshore

bar at the start of the observation period. The onshore bar in the Yu and Slinn

[2003] profile is more similar to the bar profile at the end of the observation period.
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Figure 3.10: The different wave energy distributions for different bed profiles (at the

start of the observation period, at the end and the Yu and Slinn [2003]

profile).
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Figure 3.11: The growth rate (ωr [1/d]) as a function of the wave number (k [rad/m])

for different bed profiles.
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Moderate wave conditions (Hrms = 1 m, Tp = 8 s, θ = 3o) are applied at the

modelling boundary and Morfo60 model output for the three different bed profiles

results in three different wave energy distribution plots (Fig. 3.10(b)) and growth

rate curves (Fig. 3.10). The reduction of the wave energy in front of the onshore

bar gives an indication of the growth rate of crescentic bed patterns which form

at this cross shore location. A growth rate curve depicts the predicted growth

rate (ωr) for each examined perturbation length scale (λ = 2π
k

), for a certain set

of forcing conditions described in the basic state. The biggest growth rate within

one curve represents the length scale that is assumed to dominate the other length

scales (λFGM). The growth rate curves for the three different bed profiles show

a similar shape, and the fastest growing mode is occurring for similar k values

(k ≈ 0.029 rad/m, λ ≈ 216 m). However, the actual growth rate is different

for the different cases; the occurrence of an offshore bar reduces the growth rate

(ωr = 2.3 1/d for the Yu and Slinn [2003] profile, compared to ωr = 2.0 1/d for the

profile at the end of the observation period), and a lower onshore bar also results

in a decreased growth rate (ωr = 1.2 1/d for the profile at the start of the observa-

tion period). The different growth rate curves correspond well with the observed

reduction in the wave energy in front of the onshore bar. Due to the absence of

the offshore bar, the wave energy plot for the Yu and Slinn [2003] profile depicts

a higher energy level in front of the onshore bar. Whereas, energy is dissipated

in front of the offshore bar for the other two bed profiles. The reduction in wave

energy on and in front of the onshore bar is less for the bed profile with a lower

onshore bar height, reducing the height of the growth rate curve for the profile at
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the start of the observation period.

The results are consistent with findings of Calvete et al. [2007], concerning the

height of the onshore bar; an increased bar height results in increased growth rates

of the crescentic bed patterns. Secondly, the existence of an offshore bar results

in a decrease of predicted growth rates (similar to Klein et al. [2003]).

In comparison with the influence of other input parameters, the effect of the

gradual change in bed profile on the length scale, growth rate and migration rate of

crescentic bed patterns is negligible. Changes in waves and the tide have a much

stronger influence on the predicted bed pattern characteristics. Tidal variation

results in significantly larger changes in the beach profile than the gradual change

seen in the alongshore averaged beach profile itself. Tidal variation results in a bed

height variation up to 2 m, whereas changes in the alongshore averaged seabed

just result in a 20 cm difference between the start and end of the observation

period. In the runs carried out to describe the development of crescentic bed

patterns at Duck, both tidal variation and the alongshore averaged bed change

over time. Since this change is mainly the result of the tidal variation, the effects of

variation of the alongshore constant bed level are included in the following section,

concerning tidal variation.

3.4.3 Tidal variation

Tidal variation has not been considered in previous research that uses a linear sta-

bility analysis to describe the development of crescentic bed patterns. Therefore
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Figure 3.12: The cross shore bed profiles and wave energy distributions for different

tidal levels (tide = −1 m, −0.5 m, 0 m, 0.5 m and 1 m). The location of

the shoreline is varied for different tidal levels to ensure that the peak of

the onshore bar occurs at the same location.

a more extensive analysis of the effects of tidal variation on the model predictions

is presented here. The analysis comprises two kinds of results. First a sensitivity

analysis is presented of the effects of variation of the tidal level on crescentic bed

pattern characteristics. Secondly, the influences of the actual conditions at Duck

on the model predictions are investigated.

Sensitivity analysis

Moderate wave conditions (Hrms = 1 m, Tp = 8 s and θ = 3o) are applied at the

offshore modelling boundary, using the bed profile at the start of the observation

period in order to represent characteristic post storm conditions. The effect of
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Figure 3.13: The growth rate (ωr) as a function of the wave number (k) for moderate

wave conditions (Hrms = 1 m, Tp = 8 s and θ = 3o) for different tidal

levels (tide = −1 m, −0.5 m, 0 m, 0.5 m and 1 m). The fastest growing

crescentic mode is shown with a +, while × represents the FGM of

transverse bars.

tidal variation on the model predictions of Morfo60 is examined using five differ-

ent tidal levels (−1 m, −0.5 m, 0 m, 0.5 m and 1 m) (see Fig. 3.12).

The variation of the tidal level and the resulting change of water depth above

the two bars (Fig. 3.12(a)) cause the wave energy to decrease at different cross

shore locations for different tidal levels (Fig. 3.12(b)). The decrease in wave en-

ergy in front of the onshore bar is suggestive of the development of crescentic bed

patterns at this location. At the highest tidal levels energy dissipation occurs

mainly at the shoreline, and the decrease in wave energy on top of the onshore

bar is limited, and non-existent on top of the offshore bar. However, the lowest
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tidal levels cause waves to break already offshore, and to a limited extent at the

onshore bar, with hardly any wave energy reaching the shoreline.

Fig. 3.13 shows the growth rate curves for the different tidal levels. The growth

rate curves for each tidal level apart from the highest tide (T ide = 1 m) actually

comprise two separate growth rate curves, which correspond to different bed pat-

terns. The switch from one curve to the other is apparent in the abrupt change

in dωr/dk. The first curve (peak shown with a ’+’) occurs around k ≈ 0.02− 0.05

rad/m (λ ≈ 125 − 315 m), and describes the development of crescentic bed pat-

terns. The second curve (peak shown with ’×’) occurs around k ≈ 0.1 − 0.25

rad/m (λ ≈ 25 − 67 m), and describes the development of a bed pattern previ-

ously described as transverse bars [Ribas and Kroon, 2007]. Therefore, as k is

increased the fastest growing bed-form at that value of k switches from a crescen-

tic to a transverse bar at some point (apart from for the highest tidal level, where

only the development of transverse bars is predicted). The focus of this research

lies with the development of crescentic bed patterns and so pattern length scales

< 57 m (k > 0.11 rad/m) are not taken into consideration.

The growth rate of the crescentic bed patterns is strongly influenced by the

tidal level, with predicted growth rates decreasing for larger tidal levels, and in fact

for 1 m tidal level no growth is predicted. Increased growth rates for smaller tidal

levels are the result of increased wave breaking on the nearshore bar (Fig. 3.12),

and therefore more wave stirring and increased sediment transport rates [Falqués

et al., 2000]. Also λFGM of the crescentic bed patterns decreases for low tidal levels.
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Figure 3.14: The wave number (kFGM ) and the growth rate (ωr) of the fastest growing

crescentic mode as a function of the tidal level (tide = −1 m, −0.5 m, 0

m, 0.5 m and 1 m) for different wave conditions (default case: Hrms = 1

m, Tp = 8 s, and θ = 3o, the legend shows which wave parameter is

altered). The different wave conditions represent different circumstances

at Duck. The tidal level is depicted next to each data point. In some

cases no development of crescentic bed patterns is predicted for higher

tidal levels, in which case the line is truncated.

The effects of the tidal level for different wave conditions are examined in detail

in Fig. 3.14. A consistent relationship between tidal level and the growth rate

and length scale of crescentic bed patterns can be observed. λFGM increases from

lowest to highest tidal levels. This change in length scale is, however, mostly

limited to the lowest tidal levels. Conversely, the growth rate decreases from

lowest to highest tidal level, and the change is limited to the highest tidal levels.
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This change in growth rate is the result of increased wave breaking on top of the

onshore bar for low tidal levels. The highest tidal levels result in wave breaking

at the shore and the development of transverse bars (see Fig. 3.13), as the peak

in the transverse bar curve exceeds that for the crescentic bars. As the tidal level

decreases, wave breaking shifts gradually to the onshore bar, resulting in increased

stirring, sediment transport rates, and growth rates there [Falqués et al., 2000].

For the lowest tidal levels, wave breaking starts to occur on top of the offshore bar,

with the beach being saturated further onshore, resulting in similar growth rates

regardless of further reduction in tidal levels. The predicted migration rates of

crescentic bed patterns are not presented in this figure, but this research showed

that increased tidal levels generally result in increased migration rates. The reason

for the increase in length scale of the crescentic bars at high tidal levels is not

clear. It would be tempting to ascribe the decrease in length scale as tidal level

falls to greater refraction before the waves break on the onshore bar, but a similar

relationship is observed for normally incident waves.

As was shown by Calvete et al. [2007], small changes in bathymetry can sig-

nificantly influence the length scale and in particular the growth rate of crescentic

bars. Changes in bathymetry characteristics (crest height, trough depth, offshore

beach slope etc.) all influence the growth rate and length scale. The tidal vari-

ation at Duck causes significant changes in most of these measures concurrently,

however the observed relationships between the tidal level and the length scale and

growth rate of crescentic bed patterns do not obviously correspond with the be-

haviours reported by Calvete et al. [2007]. It should also be noted that changes in

the length and time scale in Fig. 3.14 greatly exceed those shown in Calvete et al.
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Figure 3.15: (a) The alongshore spacing (λFGM ), (b) the growth rate (ωr), and (c) the

migration rate (cm) of the fastest growing mode as a function of the tidal

level, for all wave data recorded at Duck during the observation period.

[2007]. This is because the changes in beach profile (due to tidal level changes)

greatly exceed those examined by Calvete et al. [2007], where, moreover, changes

in only one part of the profile were examined in each experiment; here, the tidal

changes affect all parts of the profile simultaneously.

Effects of the tide on the Duck results

In Fig. 3.15 the model predictions for Duck are plotted against the tidal level.

There is some evidence that small tidal levels do indeed result in increased growth

rate predictions, which is expressed in the moderate correlation coefficient (ρ =

PN
j=1

(Aj−A)(Bj−B)
q

PN
j=1

(Aj−A)2
PN

j=1
(Bj−B)2

, where A and B represent different variables, and N is

the number of field observations) between these two parameters: ρT ide, ωr
= -0.32.
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Changes in the predicted bed pattern length scale due to tidal variation are less

clearly visible (ρT ide, λ = 0.22). The largest λFGM predictions occur for larger tidal

levels, but a shift in length scale due to changes in tidal level is not visible in

this graph. Fig. 3.15(c) depicts the effects of changes in the tidal level on the

migration rate of the predicted bed patterns. No clear relation between the two

parameters can be identified (ρT ide, |cm| = −0.02) since changes in the migration

rate are strongly influenced by changing wave conditions (see section 3.4.1).



3.5 Physically significant developments algorithm

3.5.1 Introduction

As mentioned in section 3.3, the Morfo60 predictions of the crescentic bed pattern

length scale can vary widely from one wave record to the next. This variation

suggests frequent changes in the development of crescentic bed patterns, whilst in

reality a gradual development is observed in between storms. These model varia-

tions are, in fact, the direct result of changing tidal and wave conditions recorded

at Duck and applied in Morfo60. Linear stability analyses have a significant limi-

tation in that they do not take into account the pre-existing bed patterns, which

may influence the subsequent morphological evolution.

The discrepancy between the fluctuating nature of the model predictions and

the more gradual development in the field observations makes it challenging to

apply knowledge obtained from a linear stability analysis of the development of

crescentic bed patterns for engineering or management purposes. Similarities be-

tween predictions and field observations can nonetheless be observed. For instance

both show large crescentic bed pattern length scales after storms and more moder-

ate length scales in between storms. Secondly, Fig. 3.7 and Fig. 3.8 show that the

λFGM -values over the two month period are similar to corresponding λobs.-values

after and in between the storms.

If a linear stability analysis is to be of use for engineers and managers in de-

scribing the development of crescentic bars or the occurrence of rip channels, an

approach must be developed whereby physically more significant information can
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be extracted. Correspondingly, the goal is to develop a physically based algorithm

that can extract the physically more meaningful model predictions.

Differences between field observations and model predictions suggest that the

influence of antecedent model predictions is necessary for the correct description

of the development of crescentic bed patterns. Fig. 3.8 shows that the fastest

growing length scales are similar to the observed length scales. This suggests that

if the growth rate of the model predictions is taken into account, the predicted

fastest growing length scales during the 2 month observation period will be similar

to field observations.

One limitation of a stability analysis cannot be implemented in the physically

significant developments algorithm (the PSD algorithm). The linearised equa-

tions reduce the capabilities of such a model to only the initial development of

bed patterns. The linear stability model should therefore specifically be orien-

tated at periods when initial developments of bed patterns occur in the field. In

other words, the main strength of this algorithm lies in the prediction of physically

meaningful model predictions post-storm.

In the following section several versions of the algorithm are presented and ex-

amined. The results from the most suitable algorithm are compared with the field

observations, and determined is the extent to which this algorithm improves the

prediction of observed length scales, compared with the original Morfo60 results.
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3.5.2 Testing different algorithms

The algorithm is based on two assumptions. (1) It is more likely that a certain

length scale will be observed at a certain time, if prior to this moment, the model

has predicted similar length scales (λFGM) of crescentic bed patterns. (2) The

growth rate (ωr) of the bed pattern is a measure of the “importance” of the pre-

diction. In other words, model predictions with larger growth rates are more likely

to be observed.

The algorithm is designed to show when a significant event occurs. These

significant events are periods when the predicted length scale of crescentic bed

patterns (λFGM) and the field observations (λobs.) are likely to show similarities.

A significant development is defined as a period of time when both the bed-form

grows by a significant factor and consistent length scales (λFGM) are predicted. In

the determination of physically significant events only the fastest growing mode

at each time step is taken into consideration.

The cumulative growth factor describes the amount of change in the height of

a bed pattern (h) from one time to another (see also Falqués [2006]), and is given

by:

hj=m

hj=n
= exp

[

m
∑

j=n

ωrj
∆t

]

(3.1)

where the duration over which the accumulated growth (
∑

ωrj
∆t, see section 3.3)

is determined, is between t = n∆t and t = m∆t and ∆t is the time between the

field measurements (3 hours). n increments between the model predictions at the

start and at the end of the observation period (n = 1 → 500). For each value
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Table 3.1: The characteristics of the PSD algorithm for the three different cases.

λsig. [m]
(

λ+ [m], λ− [m]
)

Significance*

Case 1 λn λsig. − 100, λsig. + 100
∑m

j=n Πj < 0.5
∑m

j=n(1 − Πj)

Case 2
Pm

j=n λj

m−n
(1 − 1

4
)λsig., (1 + 1

4
)λsig.

∑m
j=n Πj < 0.5

∑m
j=n(1 − Πj)

Case 3

Pm
j=n ωrj

λj
Pm

j=n ωrj

2π
10∆k+ksig.

, 2π
−10∆k+ksig.

∑m
j=n Πjωrj

< 0.5
∑m

j=n(1 − Πj)ωrj

* ”Significance” stands for the determination of the maximum number of results outside

the bandwidth, which is still allowed within a significant event.

of n, m increments between n and the moment when a threshold minimum of

cumulative development is reached. The minimum cumulative development is set

at 50 % of the initial bed pattern height (
hj=m

hj=n
= 1.5); thus for this period of time

to be identified as a significant event we must have growth by a factor of 1.5 or

more. Further, model predictions must show consistent length scales over time.

This is quantified using a constant bed pattern length scale (λsig.).

Different versions of the algorithm defining physically significant developments

have been developed. Here, three different cases will be presented (see table 3.1).
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Case 1

The most basic version of the PSD algorithm consists of the initial value (j = n)

of λ to be used as the constant bed pattern length (λsig. = λn). Consistency in

length scale is assumed if λ− < λsig. < λ+. This band width (λ−, λ+) is set at 100

m around λsig.. Finally, an event is only assumed to be significant if the number

of length scale predictions outside the band width is limited. The number of bed

pattern length scales outside the band width (λ−, λ+) is compared to that of those

inside this range:
m

∑

j=n

Πj < 0.5
m

∑

j=n

(1 − Πj) , (3.2)

where Πj = 0 when λj is inside the band width, and Πj = 1 for length scales

outside the band width.

The results of the first version of the PSD algorithm are shown in Fig. 3.16.

The algorithm observes physically significant developments during most of the ob-

servation period. Instead of emphasising the more important model predictions,

the main effect is the dampening of fluctuations in the original predictions of

Morfo60.

The focus of this research is on post storm conditions. The current settings

of the PSD algorithm do not specify these conditions clearly, though. The sig-

nificant developments seem to occur during periods in between storms, when low

wave conditions occur. For these periods, the model predicts small bed pattern

lengths and growth rates. For low wave conditions, the bed pattern length predic-

tions are rather constant. Due to the fixed value of (λ−, λ+), these slow growing

bed patterns can become physically significant developments. In regions of longer
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Figure 3.16: The PSD algorithm results for case 1: (a) the measured wave height

in time, (b) the predicted length scale along with the PSD algorithm

results, (c) the predicted growth rate. The grey line depicts the normal

Morfo60 results, while the thick grey line represents the moments where

physically significant events occur (λsig.).
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Figure 3.17: The accumulated growth for each wave number for the modelled period

of time. The total length of the bars represent the total accumulated

growth, while the white part of each bar represents the growth during

PSD periods.

bed pattern length predictions, few periods with significant developments are ob-

served, due to the increased spacing between adjacent length scales (λ = 2π
k

, ∆k =

0.001 rad/m).

Fig. 3.17 shows which part of the accumulated growth is covered by the PSD

algorithm. The fastest growing length scales according to the model predictions are

hardly included in the PSD algorithm results. Since under low wave conditions,

more constant bed pattern length scale predictions occur, the PSD algorithm is

most suitable for shorter length scales (k > 0.02 rad/m).
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Case 2

A more sophisticated formulation of the PSD algorithm quantifies the consistency

in the predicted length scales differently. Instead of using a fixed value for the con-

stant bed pattern length (λsig.), in the second case the value of λsig. is determined

as an average of the bed pattern lengths included.

λsig. =

∑m
j=n λj

m− n
(3.3)

While the number of included model results (m) increases, the average will be

composed of more bed pattern length predictions. Due to different spacings be-

tween adjacent length scales (λ = 2π
k

), the use of a constant value for the margin

for constant wave length predictions (λ−, λ+) is not optimal. In this case, ∆λ

is a fraction of λsig., and is chosen to produce significant developments during

post-storm periods. These settings are case sensitive, and will change for different

locations and forcing conditions.

λ+ = (1 − 1

4
)λsig. , λ− = (1 +

1

4
)λsig. (3.4)

The number of bed patterns that is allowed outside this range is set as in case 1.

The physical developments determined for the second case (see figure 3.18), fo-

cus more around the high wave conditions. The PSD algorithm identifies periods

with predictions of fast growth rates. These periods correspond with high wave

conditions and generally longer bed pattern predictions. In this case, the value of

(λ−, λ+) is dependent on λsig., which results in the exclusion of most small bed

pattern lengths as physically significant developments. The settings used in case 2

exclude most periods, for not showing consistency in length scale in combination
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Figure 3.18: The PSD algorithm results for case 2. The grey line depicts the normal

Morfo60 results, while the thick grey line represents the moments where

physically significant events occur (λsig.).
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Figure 3.19: The accumulated growth for each wave number for the modelled period

of time. The total length of the bars represent the total accumulated

growth, while the white part of each bar represents the growth during

PSD periods.
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with significant growth. The algorithm focuses at high wave conditions during

storms, and does not describe the post storm periods. As can be seen in Fig.

3.19, the algorithm focuses on the fastest growing bed pattern length scales, but

only a limited part of the development of the fastest growing bed pattern length

scales is captured by the applied version of the PSD algorithm.

Case 3

In the final case it is assumed that faster growing bed pattern lengths will dominate

slower growing length scales. To express this assumption in this PSD algorithm,

the constant bed pattern length scale is quantified using a weighted, averaged bed

pattern length scale (λsig.):

λsig.j =

∑m
j=n ωrj

λj
∑m

j=n ωrj

. (3.5)

The band width within a constant bed pattern length scale is assumed (λ−, λ+),

is given by:

λ+ =
2π

10∆k + ksig.
, λ− =

2π

−10∆k + ksig.
(3.6)

where ∆k represents the step size in which length scales are examined in the linear

stability analysis (∆k = 0.001 rad/m) and the significant wave number ksig. = 2π
λsig.

.

Finally, an event is only assumed to be significant if the amount of growth of length

scale predictions outside the band width is limited. The accumulated growth of

the bed pattern length scales outside the band width (λ−, λ+) is compared to that

of those inside this range:

m
∑

j=n

Πjωrj
< 0.5

m
∑

j=n

(1 − Πj)ωrj
(3.7)

Thus, the threshold for a significant event to occur is met when more than 67 %

of the accumulated growth occurs in the range (λ−, λ+).
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Figure 3.20: The PSD algorithm results for case 3. The grey line depicts the normal

Morfo60 results, while the thick grey line represents the moments where

physically significant events occur (λsig.).

The use of a band width (λ−, λ+) that is dependent on the ksig., results in a

bandwidth that is related to the distance between adjacent length scales. This

means that for short length scales (λ−, λ+) is small, whereas for longer bed pattern

lengths this increases. The use of the growth rate (ωr) for determining whether a

development is significant or not (3.7), results in more specific significant develop-

ments for fast growth rates. The results for this case, shown in Fig. 3.20, indicate

that the PSD algorithm has now focused only on high wave conditions and post

storm periods, that correspond with fast growth rate predictions.

Fig. 3.21 shows the Morfo60 predictions of the cumulative growth for each length

scale (λ = 2π
ky

) for the full two-month period, along with the significant cumulative
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Figure 3.21: The accumulated growth for each wave number for the modelled period

of time. The total length of the bars represent the total accumulated

growth, while the white part of each bar represents the growth during

PSD periods.
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Figure 3.22: Predicted length scales (λFGM : ×) and length scales according to the

PSD algorithm (λsig.: •), versus the observed length scales (λobs.) of the

crescentic bed patterns. The solid line represents perfect correspondence

between predicted length scales and those from field observations.

growth as it is determined in the third case. The significant developments algo-

rithm can identify the fastest growing length scales, and these correspond with

length scales observed directly after high wave conditions [van Enckevort et al.,

2004].

3.5.3 Comparison with field observations

The final version of the PSD algorithm described the post-storm periods to the

fullest extent, but does not include mild wave condition periods where develop-

ment of bed patterns is small. This version of the PSD algorithm will be further

examined, by comparing its predictions of bed pattern length scales with field ob-

servations, and by comparing its predictive skills with those of the original linear

stability model results.
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Figure 3.23: Significant developments after (a) the first, (b) second, and (c) third

storm. Shown are the evolution of the observed bed pattern length: λobs.

(×), the model predictions: λFGM (grey line), and the outcome of the

significant developments algorithm: λsig. (thick black line).

In Fig. 3.22 λFGM and the length scale according to the PSD algorithm (λsig.)

are compared with λobs.. The predicted length scales are both significantly big-

ger and smaller than the observed length scales due to the models sensitivity to

changes in wave conditions. Especially during low wave conditions, the model pre-

dicts smaller length scales than are observed in reality, although the effect of this

is not shown in full in this figure since during this time field observations of the

bar position were not available due to lack of wave energy dissipation on top of the

bar. λsig. shows a closer correspondence with λobs. than does λFGM : δλobs., λF GM
=

0.44, while δλobs., λsig.
= 0.29. Note that for λsig. >350 m there is a large scatter

in λobs.; during post storm periods a wide range of bed pattern length scales was
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observed along the beach (ranging from 300 to 1000 m) by van Enckevort et al.

[2004]. In the comparison presented here only alongshore-averaged λobs.-values are

plotted, creating discrepancies between predicted and observed length scales. In

reality, most λsig.-values will be observed at some point along the coast during

post storm periods.

It is assumed that immediately after storms pre-existing bed patterns are re-

moved, so that the assumption of quasi-alongshore uniformity is valid, thus allow-

ing for a better comparison with linear stability predictions. Therefore we now

examine these post-storm periods, when new crescentic bed patterns are, in the-

ory, evolving. The duration of these post-storm periods is set between the peak in

the wave height during the storm and the moment when the wave height (Hrms)

becomes less than 0.5 m. This time corresponds roughly with the moment in time

when field observations do not show significant changes in the bed pattern length

scale until a new storm occurs [van Enckevort et al., 2004].

In these periods λsig. corresponds better with λobs. than does λFGM : see Fig.

3.23. The PSD algorithm has an averaging effect on the length scale model pre-

dictions. In particular during the first days after the first storm (Fig. 3.23(a)),

but also to a lesser extent after the third storm (Fig. 3.23(c)), the PSD algorithm

describes increased length scales, similar to the field observations, which gradu-

ally decrease to more moderate length scales. After the second storm period (Fig.

3.23(b)), λsig. increases compared to earlier values, but λobs. shows no significant

increase. This may be due to pre-storm bed-forms still being present after this
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particular storm, preventing the evolution of new patterns.

The assumption that the original raw model predictions correspond better with

field observations during post-storm periods can be examined by calculating the

relative error between the λFGM and λobs. for these periods and comparing this with

the relative error over the entire observation period. However, the relative error for

only post-storm periods increases, compared to the relative error over the entire ob-

servation period. ([δλobs., λF GM
]post storm = 0.46, while [δλobs., λF GM

]entire period = 0.44).

Also the relative error between the λsig. and λobs. increases if only post-storm peri-

ods are taken into account: [δλobs., λsig.
]post storm = 0.35, while [δλobs., λsig.

]entire period =

0.29. This increase can be attributed to the incorrect predictions after the sec-

ond storm, when we have reason to believe that the pre-existing bed-forms are

not removed completely. These pre-existing bed patterns cause the development

of crescentic bed patterns to be different from that predicted by a linear sta-

bility analysis. If only the first and third post-storm period would be taken

into account, the relative errors would be: [δλobs., λF GM
]post storm 1&3 = 0.39, while

[δλobs., λsig.
]post storm 1& 3 = 0.25. This shows that the linear model (and the PSD

algorithm) can predict the initial development of crescentic bed patterns more

accurately than the periods in between storms. The difference is limited though,

since most field observations occur during post-storm periods.



3.6 Discussion

The previous sections show that a linear stability analysis can be used to describe

the actual development of crescentic bed patterns with some success. It also high-

lights limitations in the use of a linear stability analysis, and it shows that the

subsequent application of an algorithm to emphasise the physically more mean-

ingful model predictions can yield predictions closer to observations.

An alongshore uniform beach profile is assumed as the initial profile in the

Morfo60 runs. This profile is assumed to occur after storms, when it has been as-

sumed that all pre-existing bed patterns are removed [Komar and Holman, 1986].

In reality, alongshore variations occur. Existing bed patterns may not only in-

fluence the subsequent development of bed patterns and cause changes in growth

rate and length scale from those predicted, but may also grow themselves, in a

way that does not necessarily correspond with the predictions of the development

of crescentic bed patterns according to a linear stability analysis.

A phase or response time difference occurs between the Argus observations

analysed in van Enckevort et al. [2004] and the Morfo60 model predictions. The

Argus images depict developed bed patterns, where Morfo60 predicts initial de-

velopment. In other words, a linear stability analysis results in a bed pattern

growth rate and spacing that are expected to develop, based only on the wave

data, the alongshore uniform bathymetry and the tidal records at one instance.

Previous predictions may bear little relation to these. On the other hand observed

bed-forms must already have been growing for some time. This response time dif-
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ference between field observations and model predictions is unaccounted for. The

time necessary for the Argus system to detect a bed pattern depends not only on

the growth rate, but also on the height and shape of pre-existing bed patterns,

the overall bathymetry, the tidal level and the wave conditions. Argus images will

only reveal the existence of crescentic bed patterns if wave breaking occurs on

top of these features. The PSD algorithm partially addresses this response time

difference by identifying periods of time with consistent length scale predictions.

The post-storm period of time when field observations are compared with re-

sults of the PSD algorithm is determined using the wave height. When the wave

height falls below 0.5 m, a stable situation has generally developed. After this

point observed length scales of the crescentic bed patterns do not change signif-

icantly, until the next storm occurs. The period of time when a linear stability

analysis can produce valid bed pattern length predictions is unknown, but is likely

to be linked to the accumulated growth (
∑

ωr∆t) of consistent bed patterns, as

is assumed in the PSD algorithm.

The alongshore constant beach profile used by Morfo60 changes linearly in

between field measurements. In reality, changes in the quasi-alongshore constant

profile may occur abruptly during storm periods. Changes in the beach profile are

small but can have a significant effect on the model predictions [Calvete et al.,

2007]. Calvete et al. [2007] note that an increase in shore-to-bar-crest distance

results in an increased length scale of predicted crescentic bars. It is therefore

possible that (abrupt) bar movement not recorded in bathymetric measurements
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for the observation period might also be resulting in length scale differences be-

tween model and observations.

The influence of the pier at Duck on the developing bed patterns is only par-

tially accounted for. The pier is located in the middle of the observations area,

and causes a depression of the seabed underneath the pier. This depression was

excluded from the field observations made by van Enckevort et al. [2004] and is

also excluded from the model calculations (as was mentioned in section 3.2.2). A

second effect of the pier structure is the influence on the wave climate [Elgar et al.,

2001]. Wave conditions and currents can be altered when passing through the pier

structure, causing locally different circumstances for the development of crescentic

bed patterns. Spatial variation of the bed pattern length scales are observed by

van Enckevort et al. [2004], especially post storm. The causes of these variations

are not specified, though. A linear stability analysis assumes an alongshore homo-

geneous wave field. Where a wave field varies on the spatial and temporal scale

there is some evidence that bed-form spacings can correlate with this modulation

[Reniers et al., 2004].

The accuracy of Argus field observations is not discussed in this paper (see

Lippmann and Holman [1989]). Apart from limitations of the photo analysis [Hol-

man and Stanley, 2007], van Enckevort and Ruessink [2001] showed that changes

in wave height and water level can cause significant changes in the observed bar

crest position and that the evolution of the bar crest cannot be observed during

low wave conditions [van Enckevort et al., 2004]. The influence of the pier on
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the wave height (under oblique wave incidence) can result in local changes of the

observed bar crest [Elgar et al., 2001], and consequently in the results presented

by van Enckevort et al. [2004]. Lastly, but very significantly, the field observations

show a wide spread of observed length scales immediately after storms (ranging

from 300 to 1000 m); this variation is not taken into account in the comparison

with the the model predictions, where only the alongshore averaged wave length

is considered.



3.7 Conclusions

A linear stability analysis can predict the regeneration of crescentic bars at Duck

after storms to a moderate degree of accuracy (δλobs., λF GM
=0.44). The linear sta-

bility model results (Morfo60) show increased length scale predictions after storms,

similar to what is observed in field measurements after the first and third storm

[van Enckevort et al., 2004]. Field observations after the second storm do not show

increased length scales immediately after the storm, possibly due to the existence

of pre-existing bed patterns. Within a couple of days after a storm, the length

scale of the crescentic bed patterns gradually decreases in both the observations

and the predictions of the linear stability analysis. The model predicts length

scales that are of the same order as the observed length scales. Immediately after

the first and third storm length scales between 500 and 800 m can be observed.

Also in between storm periods, length scales similar to those predicted are ob-

served; observed and predicted length scales vary between 150 and 400 m.

Tidal variation strongly influences the growth rate of bed patterns. Small tidal

levels result in increased growth rates, as stirring and sediment transport rates in-

crease for smaller tidal levels. The tidal level also affects the length scale and

migration rate. An increase in tidal level results in bigger bed pattern lengths and

migration rates, although the effect of the tidal level on the length scale and migra-

tion rate are minor compared to the influence of wave conditions. Although high

tidal levels during storms are causing the greatest damage to coastal defences, our

research suggests that lower tidal levels cause increased development of nearshore

crescentic bed-forms.
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Observations show the gradual development and change of the crescentic bed

patterns, while a linear stability analysis always assumes an alongshore uniform

beach and is therefore more affected by changes in the wave conditions and the

tidal variation. Predicted bed patterns show much more variability in time than

field observations. These fluctuations obscure a direct comparison of field obser-

vations with model predictions (although these do indicate the range of possible

responses to the wave conditions). To overcome this a physically significant devel-

opment (PSD) algorithm was developed, which can identify the more physically

relevant model predictions with respect to growth rate and consistent length scale.

This algorithm applied to the linear stability analysis results shows closer agree-

ment with the observed bed patterns for the entire observation period (δλobs., λsig.
=

0.29) and yields post-storm model predictions of length scales that are more similar

to observed length scales in two of the three post-storm periods examined. This,

therefore, partially addresses the limitations inherent in a linear stability analysis,

producing more physically meaningful predictions. The conclusion is that a linear

stability analysis can be a useful tool for coastal engineers, although further work

on refining the algorithm and its limitations is required, as well as investigations

on bathymetries that are more regularly measured.

The PSD algorithm can identify similar length scales of crescentic bed pattern

as are observed in reality, to a moderate degree of accuracy. Limitations of the

use of a linear stability analysis still exist, though. A linear stability analysis is
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quick in generating results using only limited amounts of input data, compared to

traditional time-domain models. However, the linearised equations create a situ-

ation where only the initial development of bed perturbations can be predicted.

Secondly, the assumption of a alongshore constant beach profile is possibly valid

immediately post-storm, but not suitable for all wave data (as is done so far).

As mentioned before, the PSD algorithm was designed to emphasise the more

physically significant model predictions. The algorithm partially compensates the

effects of the assumed alongshore constant bed profile, in that it excludes short-

term insignificant model predictions, whose length scales do not correspond with

previous predictions. However, the PSD algorithm is not intended to address the

limitations of a linear stability analysis. In the next part of this thesis, a first

step will be made to mitigate the limitations of a linear stability analysis by in-

vestigating the effects of pre-existing bed-forms on the development of crescentic

bed patterns. Where so far linear stability analysis predictions were mainly com-

pared to field observations during the early stages of post-storm redevelopment,

the next part of this thesis is aimed at investigating to what extent linear stability

predictions can still be of value after this initial period.



Chapter 4

Non-linear analysis of pre-existing

crescentic bed patterns

A linear stability analysis predicts the initial development of rhythmic features,

starting from an alongshore constant beach. In the previous chapter, it was shown

that a linear stability analysis can describe the evolution of crescentic bed pat-

terns from an alongshore uniform beach, that is assumed to occur after a storm,

with reasonable accuracy. However, the linear model predicted less well when

the bed already showed pre-existing bed-forms. When wave conditions change, a

(a) (b)

Figure 4.1: Two Argus images of a crescentic bar, showing how, starting from (a) a

crescentic bed patterns with a big length scale, a bed-form breaks up (b)

due to a change in wave conditions [van Enckevort et al., 2004].
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linear stability analysis describes significantly different behaviour from that ob-

served in reality. During higher waves immediately after a storm peak, crescentic

bed patterns with big length scales are generally observed [van Enckevort et al.,

2004]. When the wave conditions settle down, a gradual decrease in length scale

is observed by van Enckevort et al. [2004]. This breaking up of bed patterns

(see Fig. 4.1) cannot be described correctly by Morfo60, which shows more rapid

changes in the predicted length scale, due to changing wave conditions. Klein and

Schuttelaars [2006] previously studied the effects of pre-existing bed-forms on the

evolution of the nearshore seabed using a non-linear model. However, these results

were limited in range and focused on the differences in evolution of the nearshore

and offshore bar. The decay of pre-existing bed patterns was presented. However,

the long term development and rise to dominance of a bed pattern with a differ-

ent length scale could not be determined due to limitations in the modelled period.

The goal of this part of the research is to investigate to what extent pre-existing

bed-forms interact with the evolution of crescentic bed-forms, and to what extent

these bed-forms negate the predictions made by a linear stability analysis. To this

end, a non-linear stability analysis is undertaken, using a fully non-linear finite

difference model: Morfo55 [Caballeria et al., 2002; Garnier, 2006] (introduced in

section 2.5). This non-linear stability analysis can describe a wide range of initial

conditions, including alongshore variability of the bed. This model can therefore

include pre-existing bed-forms and calculate the effects of these initial disturbances

on the natural evolution of crescentic bed-forms.
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Firstly, a comparison between the linear stability analysis used in the previous

sections (Morfo60) and the non-linear model (Morfo55) is presented. Secondly,

the non-linear evolution of an alongshore uniform undisturbed nearshore bed is

investigated. Thereafter, a wide range of pre-existing bed-forms is implemented

into the model to see to what extent the development of crescentic bed patterns

is affected by this. A closer look at various characteristics of the bed pattern

evolution is presented.



4.1 Linear compared to non-linear results

The non-linear stability analysis, used to investigate the effects of pre-existing bed-

forms, and the linear stability analysis, used for the prediction of length scales of

crescentic bars that were compared with the Duck field observations in chapter

3, describe the same processes using the same equations. However, differences

also exist (see section 2.3 for more details). In order to examine to what ex-

tent results from the non-linear stability analysis can improve the predictive skills

of the linear stability analysis in describing the temporal evolution of crescentic

bed patterns, a comparison between the linear and non-linear model is carried out.

The various physical parameters are set to the same values for both the linear

and non-linear model. In general, settings of the linear stability analysis were

adapted to correspond better with the settings applied in the non-linear stabil-

ity analysis (presented in Table 2.12). Where the linear stability analysis only

describes the initial evolution, a full non-linear model describes the long term

temporal evolution. This makes the non-linear model more prone to develop nu-

merical instabilities and therefore more sensitive to the model settings than a

linear model. Settings that were altered in either the linear model, or the non-

linear model, which do not correspond with the settings presented in Table 2.12,

will be discussed below.

The basic state bed profile from Morfo60 is used as initial bed profile in

Morfo55. This option in Morfo55 was, however, implemented incorrectly. The

bed level (zb) was calculated as the sum of the water depth (D) and the free sur-
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face elevation (zs), where the opposite should be applied. The description of the

bed profile in Morfo55 is altered to give the correct interpretation

The second discrepancy between the input bed profile originating from the lin-

ear model and the reproduced description by Morfo55 was due to application of a

initial bed level at the shoreline (zbmin
). Morfo60 applies a boundary condition at

the shoreline for the total depth (Dmin, where D = zb + zs) while Morfo55 uses a

boundary condition for the bedlevel (zbmin
). In Morfo55, this minimum bed level

was added to the overall bed level, which originated from the linear model. This

meant that the entire bed profile was shifted downwards, to create a minimum bed

level at the shoreline. Morfo60, on the other hand, determined at what location

the minimum depth (Dmin) would be reached, and set this at the minimum cross

shore location. This, in effect, results in the removal of the part of the bed profile

closest to the shore but, apart from this alteration, retains the original profile and

therefore stays closer to reality than the non-linear model. The boundary condi-

tion applied in the non-linear model is altered to represent the boundary condition

of the linear model.

Another significant difference between Morfo55 and Morfo60 is the differ-

ent shoreward boundary condition for the velocity profile. Both models assume

vi(x = 0) = 0 m/s. However, where Morfo60 assumes the shoreline to be where

the water depth is zero (D = 0), Morfo55 assumes that the shoreline is where

the bed level reaches the minimum value (zb = zbmin
). At the onshore modelling

boundary (D = Dmin) of Morfo60 does the velocity not reach zero, since only
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assumed is that vi → 0 at D = 0. In Morfo55, the alongshore velocity is forced to

zero at the minimum bed level by applying a different boundary condition. Here it

is assumed that vi(x1) = 1
3
vi(x2)). The discrepancy between both models’ applica-

tion of this boundary condition results in the velocity profiles showing significant

differences near the shore. This affects the predicted characteristics of the evolving

bed-forms, and therefore obscures a comparison between both models. To make

the applied boundary conditions match more closely, several solutions have been

tested. The presented results are created using a different boundary condition for

Morfo55, based on the velocity profile in Morfo60: vi(x1) = 0.93vi(x2).

To get the closest correspondence between Morfo60 and Morfo55, different

offshore wave conditions are applied due to the different locations of the offshore

boundary of Morfo60 and Morfo55. The applied wave conditions correspond with

moderate conditions at Duck, occurring in between storm periods. For Morfo60

(at x = 1000 m): Hrms = 0.85 m, Tp = 7.5 s and θ = 9o, while for Morfo55 (at

x = 250 m): Hrms = 0.88 m, Tp = 7.5 s and θ = 5o. Shoaling forces the wave

height at 250 m offshore to be slightly higher than at 1000 m offshore, while the

different wave angle is the result of refraction of waves while approaching the shore

[Dean and Dalrymple, 1984]. Finally, both models apply a minimum water depth

at the shoreline. For Morfo55, the minimum bed level (zmin) is set at 0.15 m,

while the minimum water depth (Dmin) is set at 0.1 m. Both minimum depths are

reduced compared to standard runs, to reduce differences in the nearshore zone.
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Figure 4.2: A comparison between the basic state profiles of Morfo55 and Morfo60.

Shown are the basic state profiles of (a) the wave height, (b) the mean free

surface elevation, (c) the bed level, and (d) the alongshore velocity.
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4.1.1 Basic state

Fig. 4.2 shows a comparison between the basic state cross shore profiles of some

characteristic model variables for Morfo60 and Morfo55. The basic state profiles

of the non-linear model show the cross shore distribution of the amplitude of each

variable at 3.5 days from the start. The model has a brief start-up period, when

the wave conditions build up and a stable cross shore distribution of wave energy,

as well as various other processes is established. This start-up period is finished

after 3.5 days and the evolution of bed-forms has not yet started in earnest at this

moment.

The bed profiles of Morfo55 and Morfo60 match very well, as can be seen in

Fig. 4.2(c). However, the difference in minimum onshore water depth as well as

the fact that the furthest onshore grid point is located at 2.5 m offshore in the

Morfo55 run, mean that the Morfo60 results progress further onshore. Fig. 4.2(a)

and 4.2(b) show the basic state profile of the wave height (Hrms [m]) and free

surface elevation (zs [m]) for both Morfo55 and Morfo60. Both models show near-

perfect agreement for both variables, even though different onshore and offshore

conditions are applied. Fig. 4.2(d) shows the alongshore basic state velocity (V0

[m/s] in Morfo60). The newly applied boundary condition for Morfo55 means

that the velocity profile close to the shore closely reproduces the Morfo60 results;

the minor differences in this graph are due to the limited number of gridpoints

nearshore in Morfo55, compared to Morfo60.
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Figure 4.3: (a) The growth rate curves for different γ-values for Morfo60. (b) The

calculated equivalent growth rate curves for different γ-values for Morfo55

at day 3.5. The growth rate curve of Morfo55 for γ = 1.0 [m2/s] is unstable

in time, indicating that for this value of γ linear growth might not occur.

4.1.2 Perturbations

The evolution of bed-forms in Morfo60 and the comparison between field obser-

vations and model predictions, presented in chapter 3, focused around the length

scale of the bed-forms (λ = 2π
k

) and the growth rate (ωr). It is therefore of impor-

tance to analyse the similarities and differences in the linear growth rate curves

of the linear and non-linear models. To this end, the linear growth of different

length scales is calculated using a Fourier analysis of Morfo55 output, 3.5 days

from the start. At this moment, the different γ values show the most stable linear

development and therefore the most complete linear growth rate curve (see also

Fig. 4.6).

Fig. 4.3 shows the growth rate curves for different values of the downslope term
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(γ [m2/s]) for Morfo60 (a) and Morfo55 (b). The γ-value represents to what extent

bed-forms experience downslope movement of sediment. This term counteracts the

sediment accumulation at the location of bed patterns, and causes saturation of

the development when bed-forms reach their final height. A high γ-value results

in increased downslope movement of sediment, and therefore a slower evolution of

bed-forms. Generally, a value of γ = 1.6 [m2/s] is used [Soulsby, 1997], to describe

physically plausible evolution of bed-forms (this value was used to reproduce the

evolution of bed-forms at Duck by Morfo60). For Morfo55 runs that show tempo-

ral evolution over long periods of time, a bigger γ-value is used (γ = 5 [m2/s]).

This value reduces the speed at which bed-forms evolve, and results in a more

gradual evolution of the seabed.

The growth rate curve of Morfo60 (Fig. 4.3(a)) clearly shows the sensitivity of

ωr to various γ-values, with decreasing growth rates for increasing γ-values. For

γ > 3, no growing bed-forms are predicted. The results from the non-linear model

show similar behaviour (Fig. 4.3(b)), where increasing values of γ also result in

decreasing growth rate curves. There is good agreement between the shape of the

linear and non-linear curves, resulting in very similar length scales of the fastest

growing modes. However, Morfo55 predicts significantly bigger growth rates than

Morfo60 for the same value of γ. Differences in the growth rate curves are investi-

gated, but have not been resolved. The difference is not the result of variations in

the number of grid points, in either Morfo55 or Morfo60. Furthermore, although

the growth rate curves calculated from the non-linear model results change in time,

these changes are minor; differences generally occur outside the physical domain
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(λ < 100 m), and the growth rate of the fastest growing mode does generally not

alter during the linear growth period. The reason for the difference in the growth

rate curves of Morfo55 and Morfo60 could be the result of a different application

of the downslope term. Large γ-values result in a bigger difference between ei-

ther growth rate curves than small γ-values. However, a small γ-value or even

a non-existent downslope term generally results in a crash of the Morfo55 model

and otherwise the growth rate curve is very instable in time, complicating the

comparison between Morfo55 and Morfo60 results.

Nonetheless, the shape of the growth rate curve is strikingly similar and cor-

responding fastest growing length scales are predicted by both models. The sim-

ilarities suggest that bed-forms with the same length scale will initially develop

under the same circumstances for both models, although at different evolution

rates, depending on the value of γ.

The different migration rates of Morfo55 and Morfo60 for various γ-values dur-

ing the initial development of various length scales are presented in Fig. 4.4. The

results only show the physically plausible results. Migration rates for length scales

that do not grow are excluded for Morfo60, and Fig. 4.4(b) only depicts migration

rates that are reasonably consistent in time. Similar to the growth rate curves in

Fig. 4.3, the migration rate increases for smaller γ-values. The non-linear model

predicts smaller migration rates than the linear model, but the shape and peak of

the migration rate curves of Morfo55 and Morfo60 are similar.
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Figure 4.4: (a) The migration rate curves for different γ-values for Morfo60. (b) The

calculated migration rate curves for different γ-values for Morfo55 at day

3.5. The number of plotted results is reduced and only include the physi-

cally plausible results.

For a further analysis of the development of perturbations in Morfo60 and

Morfo55, a comparison of the eigenfunctions of the FGM is presented (see Fig.

4.5). The eigenfunctions of the non-linear stability results are created using the

cross- and alongshore output at day 14. It was decided to display the eigenfunc-

tions at this moment because the perturbation profiles already display a signifi-

cant amplitude, even though linear growth is still being predicted for the dominant

mode. At each cross shore location, a Fourier transformation is taken of the along-

shore profile, for various perturbed variables. For each cross shore location only

the output of the Fourier analysis for the dominant length scale is taken into ac-

count, creating a cross shore eigenfunction of the fastest growing mode of various

variables. The amplitudes of the eigenfunctions in Morfo55 are dimensional and,
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Figure 4.5: The real and imaginary parts of the eigenfunctions for both Morfo55 and

Morfo60, for γ = 3.0 [m2/s]. The eigenfunctions are phase shifted, to syn-

chronise the phase of the Morfo55 and Morfo60 results. Secondly, Morfo60

results are non-dimensional and are therefore scaled to fit the amplitude

of the Morfo55 results.
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in principle, physically meaningful. In Morfo60, perturbations are assumed to be

small and amplitudes are arbitrary, the amplitudes of eigenfunctions of different

variables are proportional to each other, however. The maximum amplitude of the

eigenfunction of the bed perturbation in Morfo55 is therefore taken as a measure

for the Morfo60 eigenfunctions; all eigenfunctions are scaled to make the maximum

amplitude of the bed perturbation the same as in Morfo55:

fj = ǫf ∗
j , ǫ =

max |zbpb
(Morfo55)|

max |zbpb
(Morfo60)| , (4.1)

where j = 1, 2 = real, imaginary, f ∗
j represents the original Morfo60 eigenfunc-

tions, fj are the scaled eigenfunctions, and ǫ is the scaling factor, defined as the

fraction of the maximum bed pattern perturbation height in Morfo55 over that of

Morfo60.

Results show very similar behaviour for the bed level (zb [m]), free surface ele-

vation (zs [m]) and the alongshore velocity (v [m/s]) for the linear and non-linear

model. Slight differences can be observed, due to different boundary conditions.

The alongshore velocity (v), for instance, shows a different distribution close to

the shoreline for Morfo55, compared to Morfo60. Other minor differences are due

to the fact that what is shown as eigenfunction of Morfo55 is the dominant length

scale of a Fourier analysis of the perturbation distribution at this time, which

can already be affected by non-linear effects. The eigenfunctions of zb, η and v

of the non-linear model show very similar behaviour to that of the linear model.

However, the wave height eigenfunction (Hrms) of Morfo55 shows very different

behaviour from the Morfo60 eigenfunction as well as a much smaller amplitude.

An explanation for this difference has not been found during the research carried
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out in this project, and could be addressed in the future.

The results presented in this section show that a non-linear model can describe

the implementation of forcing conditions in terms of basic state cross shore profiles

that are nearly the same as those of a linear stability model. Similar results are

also predicted for the perturbed state, although here differences become apparent.

Differences between the output of the linear and non-linear evolution of pertur-

bations are, however, limited. Conclusions drawn from research carried out with

a non-linear model can, therefore, be applied to improve the understanding and

application of linear stability analysis results, and to improve the interpretation

of linear results with regard to reality. Future research can be carried out to fur-

ther investigate and address the differences between linear and non-linear model

results.



4.2 Undisturbed evolution

To understand the impact of pre-existing crescentic bed-forms on the formation

and evolution of these bed-forms, understanding of undisturbed evolution is neces-

sary. The plain alongshore bed is initially perturbed by a ’Dirac function’, a 0.03

m high spike in the middle of the modelling domain at 50 m from the shoreline.

This spike excites all bed pattern length scales to the same extent, and forms

the focus point of the initial development of bed-forms. The applied physical pa-

rameter settings used for these runs fit within a range of settings that have been

applied before with success [Garnier et al., 2008]. These settings are very similar

to those used in the previous section and give rise to crescentic bed-forms with

very similar characteristics. The wave height is slightly higher than the previously

applied wave height (Hrms = 0.9 m) and the original boundary condition for the

alongshore velocity is applied. A big downslope term is applied (γ = 5 [m2/s]) to

create circumstances where bed-forms form and develop gradually in time, making

it easier to observe the different stages of development. The minimum bed level

at the shoreline is increased to 0.25 m. The model cannot describe bed-forms

that exist above the waterline. The minimum nearshore bed level is increased to

avoid nearshore perturbations evolving at this location to become too big. The

increased bed level at the shoreline causes differences in the development of bed

patterns at the shoreline, however, the focus of this research is the analysis of the

development of crescentic bed-forms that occur further offshore. The minimum

bed level is implemented in the original way by moving the bed downwards. This

change in zbmin
does not have significant impacts on the bed evolution, while it

expands the time domain over which bed patterns develop.
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Figure 4.6: The evolution of the bed under normal wave incidence. (a) The evolution of

the alongshore bed profile at 50 m offshore (white areas are crests, whereas

black represents troughs), (b and c) the dominant length scale at each time

step, (d) the development in height of various characteristic length scales,

including the finally dominant mode, and (e) the linear growth rate of each

of these length scales.

Normally incident waves are applied in Fig. 4.6, to study the natural evolution

of crescentic bed-forms. Evolution of crescentic bed-forms starts from the centre,

and gradually expands towards the longshore boundaries of the modelling domain

due to the position of the ’Dirac function’ (Fig. 4.6(a)). After the initial stages

when no dominant length scale exists, two length scales quickly become signifi-

cant (Fig. 4.6(c)); λ = 166 and 181 m, (k = 0.038 and 0.035 rad/m, respectively).
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Figure 4.7: The evolution of the bed under oblique wave incidence forcing (θ = 5 o).

Results are presented in the same way as in Fig. 4.6. (f) is added to this

figure describing the migration rate of various characteristic length scales.

Although λ = 166 m initially shows the fastest development, λ = 181 m is the

final dominant mode (Fig. 4.6(d)). Fig 4.6(e) depicts the linear growth rate for

these dominant length scales. Constant linear growth rates can be observed for

both length scales from around the third day until day 20, when non-linear effects

cause a more gradual evolution of the bed patterns. The linear growth rate is very

similar for both length scales, since both length scales correspond to the peak in

the growth rate curve (see Fig. 4.8).
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The undisturbed development of crescentic bed-forms under oblique wave forc-

ing (θ = 5o) is shown in Fig. 4.7. The initial formation of bed patterns starts at

the centre of the domain, however, by the time the bed patterns becomes visible

in Fig. 4.7(a), it has migrated toward the upper end of the domain. Bed-forms

that migrate out of the top of the modelling domain, reappear at the bottom end,

due to the application of alongshore periodic boundaries. The dominant length

scale stabilises around λ = 200 m (k = 0.031 rad/m) (Fig. 4.7(b)), with a final

amplitude of around 0.28 m. Length scales around this dominant length scale also

evolve, but show smaller linear growth rates (Fig. 4.7(e)). The migration rate

of the developing bed-forms is very constant at 21.8 m/d (Fig. 4.7(f)). Migra-

tion rates of other significant length scales (λ = 181 and 220 m) are similar to

this value; for λ = 181 m, the migration rate is 22.7 m/d, while for λ = 222 m,

cm = 20.7 m/d. Fig. 4.9 shows the migration rate curve at the same time as when

the growth rate curves were determined. The migration rates observed over time

in Fig. 4.7(f) correspond well with the initial migration rate curve.

Although slight changes in the dominant length scale occur over time, it can

be concluded that under these circumstances undisturbed morphological evolution

can be correctly predicted by a linear stability analysis, as long as the amplitude

of the perturbations is small. The finally dominant length scale corresponds with

fastest growing modes of the linear growth rate curve and although non-linear

effects end the linear evolution and cause the further development of bed-forms to

be non-linear, the bed-form characteristics do not significantly change.
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Figure 4.8: The growth rate curves for both normal wave incidence (black line) and

waves approaching the shore under an oblique angle (θ = 5o) (grey line)

after 5 days. The circles represent the average linear growth rates for

various characteristic length scale, over the periods in time when constant

linear growth is predicted: For normal wave incidence: Day 3 to 20, see

Fig. 4.6(e) and for oblique wave incidence: day 5 to 43, see Fig. 4.7(e).
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Figure 4.9: The migration rate rate curve for waves approaching the shore under an

oblique angle (θ = 5o) after 5 days (grey line). The circles represent the

average migration rates in time for some characteristic length scales (see

Fig. 4.7(f)).



0 5 10 15 20 25 30 35 40 45

500

1000

1500

maximum amplitude = 0.35 m

y 
[m

]

d

Time [d]

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

25

50

T
im

e 
[d

] e

k [rad/m]
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0

0.25

0.5

ω
r [1

/d
]

a

Time = 0 d

b

Time = 7 d

c

Time = 50 d

Figure 4.10: The evolution of the bed under normal wave incidence when long pre-

existing bed patterns are implemented. (a) the bed profile at the begin-

ning of the run, (b) the bed-forms breaking up, and (c) the bed profile at

the end of the run. (d) the evolution of one transect (at 50 m offshore) of

the perturbation distribution in time, (e) The evolution of the dominant

length scale (thick black line, scale on left) and the growth rate curve for

the undisturbed bed (dashed grey line, scale on right).

4.3 Evolution of pre-existing bed patterns

To study the effects of pre-existing bed-forms on the (linear) evolution of crescentic

bed-forms under constant wave forcing, a wide range of bed patterns are applied.

Two types of moderate wave conditions are applied (Hrms = 0.9 m, Tp = 7.5 s,

θ = 0o and Hrms = 0.9 m, Tp = 7.5 s, θ = 5o), whose undisturbed evolution was

presented in the previous section. Pre-existing bed-forms are implemented using

output from Morfo60. Eigenfunctions of length scales that are not the fastest

growing mode are used to construct realistic bed pattern profiles as initial con-
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ditions for each run. Various length scales and amplitudes have been studied;

twelve pre-existing length scales have been investigated, ranging from 100 m to

1000 m in length. The range of examined pre-existing bed-forms exceeds the linear

growth range for the applied moderate wave conditions, however. The effects of,

in particular, pre-existing length scales that show no initial linear development

are of interest for this research. Bigger wave conditions (Hrms = 1.5 m, Tp = 7.5

s and θ = 0o) are applied in the linear stability analysis to determine physically

plausible descriptions of the bed perturbations for this wide range of bed patterns,

since the model can only give physically accurate predictions of bed pattern length

scales that show positive linear growth. Three amplitudes were applied for each

of these initial bed patterns (Ampini. = 0.05, 0.15 and 0.25 m). However, for the

examination of the effects of various initial amplitudes, a wider range of initial

amplitudes has been applied for a single length scale (λini. = 500 m). Three types

of evolution can be determined: breaking up of bed-forms, merging of bed-forms

and bed-forms undergoing further growth.

An example of the effects of pre-existing bed-forms is presented in Fig. 4.10,

where 1000 m long bed-forms with an amplitude of 0.25 m were implemented under

normal wave forcing. The dominant length scale for undisturbed development

(λFGM), is significantly smaller (181 m) than the initial pre-existing length scale

(λini. = 1000 m). The three plots of the bed profile (Fig. 4.10(a), (b) and (c))

show the breaking up of pre-existing bed-form, and the formation of bed patterns

that are closer to λFGM . The full temporal evolution of one alongshore transect is

depicted in Fig. 4.10(d). This graph clearly shows how the initial bed-form first
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decreases in amplitude, before a new bed-form arises. The change of the dominant

length scale in time, along with a growth rate curve of the undisturbed evolution

of bed-forms under the same wave forcing is depicted in Fig. 4.10(e). This figure

shows that although the bed-form breaks up, the linear FGM length scale does

not arise. The final length scale (λfinal) is, however, significantly closer to λFGM

and the maximum growth rate than λini..

The plotted dominant length scale over time (Fig. 4.10(e)) forms a slightly

schematic description of what is being predicted by the model. The plot is de-

rived from 4.10(d), using the Fourier analysis. This means that only one alongshore

transect is selected for the analysis of the dominant length scale. The cross shore

location of this alongshore profile is at 50 m offshore, which is where the ’Dirac

function’ is applied in the undisturbed evolution case. However, this location is

not at the top of the alongshore bar and not necessarily the location of the maxi-

mum crescentic bed pattern amplitude. The first signs of a changing perturbation

profile could therefore develop at a different location than that analysed in this

figure, since the cross shore location where the pre-existing bed-form breaks up

is dependent on the pre-existing bed-form characteristics and the applied forcing

conditions. Secondly, the development of the new bed patterns can result in locally

and temporarily different dominant length scales. As can be seen in Fig. 4.10(d)

around day 7, the crests of the new bed-form interrupt the pre-existing troughs

before the original crests break up. This means that for a short period of time

a bed pattern will be observed that differs from either the pre-existing or final

length scales. This is, however, a local phenomenon, which might not be observed

at the bar crest. It can, therefore, be assumed that although the original and
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Figure 4.11: The evolution under normal wave incidence of the bed when pre-existing

bed patterns are implemented that have a length scale that is significantly

shorter than λFGM . The results are presented in the same way as in Fig.

4.10.

finally dominant length scale observed in Fig. 4.10(d) are a correct representation

of the overall behaviour, the observed breaking up of bed-forms at this location is

only a limited representation of the overall processes. The point in time when the

dominant bed-form changes at this location only forms a measure for the speed

at which this change occurs. It was therefore decided to plot only the initial and

finally dominant length scales. The point in time when the dominant length scale

changes in Fig. 4.10(e) is determined to be the last point in time when the initial

length scale is still dominant, indifferent of previous or subsequent changes in the

dominant length scale.

When λini. ≪ λFGM similar behaviour to λini. ≫ λFGM can be observed (Fig.
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Figure 4.12: The evolution under normal wave incidence of the nearshore seabed when

the pre-existing bed patterns have a length scale that is close to the

optimum length scale in the undisturbed development. The results are

presented in the same way as in Fig. 4.10.

4.11). The disappearance of a short pre-existing bed-form is however more ex-

tensive and the development of the final bed-form takes longer, compared to a

bed-form that breaks up. It seems that the pre-existing bed-form is wiped-out

more extensively, before a new bed-form arises, compared to λini. ≫ λFGM (see

Fig. 4.10). The length scale of the newly developing bed-form is, for this case, the

same as for the undisturbed development (Fig. 4.6(e)).

For λini. ≈ λFGM different behaviour can be observed (see Fig. 4.12). The

pre-existing bed-form remains and does not break up to form shorter bed pat-

terns. The pre-existing bed-form undergoes further growth, and quickly reaches

its maximum amplitude of 0.3 m. This amplitude is slightly less than the final
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Figure 4.13: Examples of the evolution of the nearshore seabed when pre-existting

bed patterns are implemented, under oblique wave incidence (θ = 5o).

The results are presented in the same way as in Fig. 4.10(d, e).

amplitude of λFGM (max(Amp(λFGM)) = 0.35 m).

The way in which oblique waves interact with pre-existing bed-forms was also

investigated. To this end, the same (shore normal) pre-existing bed-forms were

applied. Three examples of the evolution of crescentic bed patterns under oblique

wave incidence, for a rhythmically disturbed initial bed are shown in Fig. 4.13.

Similar results as for normal wave incidence can be observed. Long initial bed-

forms break-up, short bed-forms merge, and a pre-existing bed-form with a length

scale close to λFGM undergoes further growth. The development of λfinal to its

final height generally takes longer than for the normal wave incidence due to the

lower linear growth rate. Furthermore, whereas bed patterns under normal wave

incidence remain stationary, oblique wave angles cause migration of the bed-forms.

For instance, Fig. 4.13(e) only shows the initial stages of development of the finally
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Figure 4.14: The evolution of various pre-existing bed pattern length scales (colour)

and amplitudes (Ampini. = 0.05, 0.15 and 0.25 m) (thickness) and the

development of new bed patterns under normal wave incidence, in com-

parison with the growth rate curve for undisturbed development (grey

field).

dominant length scale. The oblique wave incidence causes the final bed-forms to

migrate. The initial bed-forms in Fig. 4.13(c, e) migrate as well, but the initial

bed-form for λini. ≫ λFGM does not seem to migrate (Fig. 4.13(a)).

A wide range of different pre-existing bed-forms is examined, to study their

effects on the evolution of crescentic bed-forms under normal and oblique wave

incidence. For each pre-existing length scale, three pre-existing amplitudes are ex-

amined (Ampini. = 0.05, 0.15, 0.25 m). To present the outcomes of all pre-existing
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bed-forms, for normal or oblique wave incidence, a plot similar to Fig. 4.13(b, d,

f) is selected. Fig. 4.14 and 4.15 show the outcomes of various different length

scales in the colour of the lines, and the thickness of the lines represents the initial

amplitude, where the thinnest line represents the smallest initial amplitude. The

period of dominance of the pre-existing and final length scale is shown in the left

y-axis. The grey field in the background represents the growth rate curve for the

undisturbed development, while the scale of the growth rate curve is shown on the

right y-axis.

Fig. 4.14 shows the results for normal incidence wave forcing. The results

show a clear relationship between the initial length scale and the final length

scale, which depends on the difference between the initial length scale and λFGM

of the undisturbed case.

It is noteworthy, that λini. = 333, 500 and 100 m (kini. = 0.019, 0.012 and

0.063 rad/m, respectively) become λFGM = 166 m, (kFGM = 0.038 [rad/m]), while

λini. = 1000, 400 and 111 m (kini. = 0.006, 0.016 and 0.057 rad/m, respectively)

become λfinal = 200 m (kfinal = 0.031 rad/m). Finally, for λini. ≈ λFGM (133 <

λini. < 286 m (0.022 < kini. < 0.047 rad/m)), the pre-existing bed patterns remain

and undergo further growth.

Whether bed patterns break up or undergo further growth seems to be closely

related to the position of various initial length scales along the linear growth rate

curve. Length scales that show significant linear growth in the undisturbed case

remain when implemented as pre-existing bed-forms, while bed-forms that are

outside the linear growth rate curve disappear when introduced to the system as
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a pre-existing bed-form.

The finally dominant length scale that develops when the initial bed-forms

break up or merge, is not always λFGM but can also be a length scale that is

close to this dominant length scale (Fig. 4.14). For instance, λini. = 1000 m

(kFGM = 0.006 [rad/m]) breaks up into a length scale that is not the dominant

length scale, but much closer to it than the pre-existing length scale (λfinal = 200

m, k = 0.031 [rad/m]). The effect of the different initial amplitudes seems to

be limited, appearing to influence only the duration until the dominant length

scale changes; a bigger initial amplitude generally increases the rate of change and

forces a more rapid development towards the finally dominant length scale than

smaller amplitudes. However, this is not consistent for all λini. values, which might

reflect the limitations inherent to the choice of cross shore location for which the

temporal evolution is determined. The evolution of λini. = 111 m (kini. = 0.057

[rad/m]) takes much longer than for the other initial length scales. The runs for

this initial length scale were continued beyond the period shown in Fig. 4.14,

and the pre-existing bed-form with the largest initial amplitude merges to become

λfinal = 200 m (kfinal = 0.031 [rad/m]) within the following days. Finally, the

results presented so far suggest that there can be a long period of time before

a bed-form breaks up or merges. In reality, these changes occur more quickly.

New bed-forms generally arise within several days of the moment when new wave

conditions occur. However, these runs were carried out using a very high value of

γ. This creates circumstances that result in numerically stable model runs, but do

not necessarily describe accurately the speed at which bed patterns form. Model
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Figure 4.15: The development of various pre-existing bed pattern length scales

(colour) and amplitudes (thickness) and the evolution of new bed pat-

terns under oblique wave incidence, in comparison with the growth rate

curve for undisturbed development (grey field).

results show, therefore, a much more gradual development than would be observed

in reality.

Waves approaching the shore at an oblique angle show similar behaviour as

observed with normal wave incidence (Fig. 4.15). However, the range of remaining

bed-forms and the linear growth rate curve of the undisturbed development are

shifted, due to the changed wave conditions. Under these conditions, fewer pre-

existing bed-forms remain and develop, due to the limited range of linear growth

rate curve.
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It is noteworthy that λini. = 286, 250, 200 and 166 m (kini. = 0.022, 0.025,

0.031 and 0.038 rad/m, respectively) remain and undergo further growth, while

the other length scales break up or merge: λini. = 1000, 400, 166, 133 and 100 (kini.

= 0.006, 0.016, 0.047, 0.057 and 0.063 rad/m, respectively) break up or merge to

become λfinal = λFGM= 200 m (kFGM = 0.031 rad/m). λini. = 500 (kini. = 0.0013

rad/m) breaks up to become λfinal = 250 m (kfinal = 0.025 rad/m), and 333 m

(kini. = 0.019 rad/m) breaks up to become λfinal = 166 m (kfinal = 0.038 rad/m).

The relationships between settings are similar to the relationships observed with

the normal wave incidence. The time domain was extended for the oblique wave

incidence case, since the linear growth rate is significantly smaller. However, most

bed-forms break up or merge in the early stages of development.

Results presented so far show that the development of bed patterns when pre-

existing bed-forms are present is significantly influenced by these initial pertur-

bations. However, the behaviour predicted by the non-linear model suggests that

although a linear model describes the evolution of the nearshore seabed when pre-

existing bed-forms are implemented incorrectly, the non-linear development can

be related to the linear growth rate curve. When a length scale of the pre-existing

bed-form shows significant linear growth, this bed-form will remain and develop,

while a bed pattern with a length scale outside the linear growth rate curve will

break-up or merge to become the fastest growing length scale, or a length scale

close to this. The evolution of bed-forms, even for changing wave conditions and

with pre-existing bed-forms, therefore, seems to be closely related to the (linear)

development of bed-forms at an undisturbed beach.



4.4 Output analysis of pre-existing bed-forms

The results presented in the previous section contain a large amount of data, which

gives more insight into the linear and non-linear evolution of crescentic bed-forms,

as well as the interaction with pre-existing bed-forms. The following section is

an analysis of the effects of various pre-existing bed pattern characteristics on the

evolution of crescentic bed-forms. The focus is on characteristics that are also

described in a linear stability analysis.

4.4.1 Length scale

The effect of various initial length scales on the evolution of crescentic bed patterns

is presented in Fig. 4.14 and 4.15. For a pre-existing length scale to persist, its

undisturbed (linear) growth rate seems to be critical. When bed-forms break up or

merge, λfinal is not always the λFGM . For λini. ≫ λFGM , the original bed patterns

break up and split into a factor of the original length scale: Thus e.g. λini. =

1000 m, under both normal and oblique wave incidence, splits into λfinal = 200

m. This applies to more initial length scales (see Table 4.1).

Values of λini. that are significantly smaller than λFGM decrease in height for a

prolonged period, before giving rise to new bed-forms (see Fig. 4.11). The newly

arising length scale is, in this case, not a whole-number factor of the original length

scale. These shorter pre-existing bed-forms disappear almost completely from the

Fourier analysis before giving rise to λFGM .

Finally, a clear relationship between the initial length scale and the rate of

change is not apparent; the duration before a bed-form breaks up decreases with a
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θ = 0o θ = 5o

λini. λfinal factor λini. λfinal factor

1000 m 200 m 5 1000 m 200 m 5

666 m 222 m 3 666 m 222 m 3

500 m 166 m 3 500 m 250 m 2

400 m 200 m 2 400 m 200 m 2

333 m 166 m 2 333 m 166 m 2

286 m 286 m − 286 m 286 m −

250 m 250 m − 250 m 250 m −

200 m 200 m − 200 m 200 m −

166 m 166 m − 166 m 166 m −

133 m 133 m − 133 m 200 m 0.67

111 m 200 m 0.56 111 m 200 m 0.56

100 m 166 m 0.60 100 m 200 m 0.50

Table 4.1: The initial and finally dominant length scales for normal and oblique wave

incidence, as well as the factor by which the number of bed-forms along a

certain beach width increases.
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Figure 4.16: (a) The evolution of the seabed when bed patterns pre-exist for oblique

wave incidence (λini. = 500 m, Ampini. = 0.15 m). (b) The development

of the amplitude of the initial pre-existing bed patterns is depicted as

a solid black line in graph, while the final length scale is depicted as a

dashed black line and the total amplitude evolution is depicted by a grey

line.

decreasing length scale, for most λini. ≫ λFGM . However, λini. = 333 m (k = 0.018

[rad/m]) is not consistent with this theory. For λini. ≪ λFGM a similar relationship

can be observed, but the duration before the length scale changes is much longer

for these cases.

4.4.2 Amplitude

The evolution of the amplitude of the bed patterns can give information concern-

ing the speed at which bed-forms reach their final height and the time at which the

dominant length scale changes. Fig. 4.16 shows an example of the evolution of the
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alongshore seabed (Fig. 4.16(a)) as well as the total amplitude and the develop-

ment of the amplitude of the pre-existing and final length scale at this cross shore

location, for oblique wave incidence (Fig. 4.16(b)). The results created under

normal wave incidence show similar behaviour to those of oblique wave incidence.

However, oblique waves result in a more gradual evolution of the seabed and a

later change of the dominant bed pattern length scale and therefore display the

processes involved more clearly.

The initially implemented length scale is 500 m, and Ampini. = 0.15 m. This

length scale is longer than λFGM and breaks up. The new dominant length scale

is 250 m. The total amplitude describes very closely the demise of the initial per-

turbation and consequently the rise of the final bed pattern. ’▽’ represents the

time when the total amplitude is minimal, and roughly corresponds to the location

where the dominant length scale changes from λini. to λfinal. ’△’ depicts the first

time when the total amplitude is within 95 % of the final total amplitude (from

now on called Ampend). This measure is chosen in preference to the time that the

maximum total amplitude is reached, since the bed is generally still in develop-

ment at this moment in time. ’◦’ depicts the amplitude of the finally dominant

length scale at the time when the pre-existing bed-form is at its maximum height

(Ampmin(λfinal)). This is assumed to be the starting point of the evolution of this

length scale and gives insight into the duration and speed at which λfinal develops.

After 1.8 days, a peak in the bed pattern height can be observed. This peak

is not the result of physical growth of the initial bed-form, but due to a shift in
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the cross shore location of this bed pattern. The implemented pre-existing bed

patterns were obtained by the linear stability analysis, using more extreme wave

conditions than are applied here. An increased wave height gives rise to a higher

and wider growth rate curve and, therefore, to a wider range of physically plau-

sible predictions of crescentic bed pattern length scales. However, different wave

conditions cause the predicted cross shore location of bed-forms to vary. The in-

creased wave height, used to create all the pre-existing bed patterns, predicts the

maximum height of the pre-existing bed-forms to be further offshore than would

be the case for the current wave conditions. When more moderate wave conditions

are applied, a shoreward shift of the pre-existing bed pattern occurs during the

first couple of days. Since both graphs only depict the evolution of an alongshore

transect that is located rather close to the shore, this shift of bed pattern location

is observed as a rise in amplitude. Bed evolution up until this moment is therefore

due to this change in offshore location of the bed-form, and does not necessarily

describe the development of, or response to, pre-existing bed-forms which forms

the focus of this research. Behaviour of the pre-existing bed-forms, as well as the

newly developing final bed pattern up until this point in time (the first 1.8 days),

are therefore not analysed further.

To investigate the effects of various initial amplitudes, a wide range of ini-

tial amplitudes has been examined using only one pre-existing bed pattern length

scale (λini. = 500 m). The effects of the initial amplitude of the pre-existing bed

pattern on the time and level of the minimum and final total amplitude are pre-

sented in Fig. 4.17(a, b, c). The time at which the minimum total amplitude
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Figure 4.17: The time at which the minimum amplitude (Ampmin) is reached as well as

when 95 % of the amplitude at the end of the modelling period (Ampend)

is surpassed, for (a) various initial amplitudes, (b) the minimum final

amplitude, (c) final total amplitude, and (d) the minimum amplitude

(after 1.8 days) of the finally dominant length scale (Ampmin(λfinal)).
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occurs decreases with increasing initial amplitudes. For Ampini. = 0.01 m this

point is reached after around 12 days, whilst for Ampini. = 0.35 m Ampmin(total)

is reached after 6 days. Correspondingly, the time when 95 % of Ampend is reached

decreases also for increasing amplitudes. When Ampini. = 0.01 m, it takes over

70 days before 95 % of the final amplitude (Ampend) is reached. For bigger values

of Ampini. this decreases to less than 20 days for Ampini. = 0.35 m. The height

of Ampend is reasonably constant for various Ampini. (see Fig. 4.17(c)), while

Ampmin(λfinal) (Fig. 4.17(b)) significantly increases for increasing Ampini..

A possible reason for the increasing value of the minimum total amplitude

(Ampmin(total)) for increasing values of Ampini. is the minimum amplitude of the

finally dominant length scale (Ampmin(λfinal)) (see Fig. 4.17(d)). Ampmin (λfinal)

is determined at the time when the pre-existing bed pattern amplitude is at its

maximum (after 1.8 days). The development of bed-forms is generally assumed

to be a function of the amplitude (for instance for linear growth rate), and a

small value of Ampmin(λfinal) will result in a longer period of development than a

higher value of Ampmin(λfinal), resulting in a longer period of time before 95 % of

Ampend is reached, as can be seen in Fig. 4.17(a). Assuming that the growth rate

of λfinal and the decrease rate of λini. are both linear (which will be discussed in

the following section), an explanation can be derived for the changing time when

Ampmin(total) is reached. The linear increase of Ampini. corresponds roughly in

an exponential increase of Ampmin(λfinal) (Fig. 4.17(d)). An increase of Ampini.

would result in a longer period of dominance of λini., however the corresponding

exponential increase of Ampmin(λfinal) results in an even more rapid increase to
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Figure 4.18: The time at which the minimum total amplitude of the bed perturbations

occurs (grey) as well as the time when 95 % of the total final amplitude is

reached (black), for various initial amplitudes (Ampini. = 0.05 m (’△’),

0.15 m (’◦’) and 0.25 m (’2’)) for both (a) normal, and (b) oblique

wave incidence. The dashed vertical lines represent the range within the

initial length scales which do not break up or merge, but undergo further

growth.

dominance of λfinal, and therefore a shorter period of time before Ampmin(total)

is reached.

For various initial length scales, the same relationships between the initial am-

plitude and the time of the minimum and final amplitude can be observed as for

λini. = 500 m. Fig. 4.18 demonstrates the effect of the various initial bed pattern

length scales on the times at which Ampmin(λfinal) and 95 % of the amplitude at

the end of the modelling period (Ampend) are reached for both normal and oblique

wave incidence. The changes due to the initial length scale are significantly larger

than the effects of the initial amplitude. Where, for normal wave incidence, a pre-
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existing length scale of 1000 m with an initial amplitude of 0.25 m takes around

27 days to reach 95 % of its final amplitude, a pre-existing length scale of 333

m reaches this point within 15 days. The bed for both λini. = 1000 and 111 m

(kini. = 0.006 and 0.057 [rad/m], respectively) (θ = 0o, Ampini. = 0.05 m) is still

in development when the runs finish and the amplitude is therefore still increasing.

The time when 95 % of Ampend is reached is therefore at the end of the modelling

period.

A minimum amplitude is not shown for length scales that do not break up,

but undergo further growth (shown between the dashed lines), since these length

scales only increase in amplitude. In this context, the length scales just outside

this region are striking (for θ = 0o: kini. = 0.019 and 0.057 [rad/m], and for

θ = 5o:kini. = 0.019 [rad/m], in particular). These initial length scales do not

persist but break up or merge to form a different final length scale. However,

these initial length scales possess positive linear growth rates, as can be seen in

Fig. 4.14 and 4.15. The development of crescentic bed patterns is different for

these initial length scales, since these pre-existing length scales grow initially but

then become dominated by a length scale closer to λFGM . Most of these initial

bed-forms do not display a local minimum amplitude, as a result of this.

The difference between the normal wave incidence scenario and that when

θ = 5o is mainly an increase in time before 95 % of the final amplitude is reached.

This is due to the reduced linear growth rate of the undisturbed development for

θ = 5o (see Fig. 4.8).
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If λini. ≪ λFGM , significantly larger periods occur before Ampmin(total) and

95 % of Ampfinal are reached, for both normal and oblique wave incidence. An

explanation for this behaviour can be seen in Fig. 4.19. Results show both the

different initial length scales and initial amplitudes that break up or merge. The

length scales that undergo further growth are not included in these figures since

these do not show a minimum length scale.

Both normal wave incidence and oblique wave incidence results show that both

Ampmin(total) and Ampmin(λfinal) increase for increasing values of Ampini. and

kini., for kini. < 0.035 [rad/m]. A possible reason for this is the increased steepness

of the pre-existing bed patterns. Both an increase in kini. as well as an increase

in Ampini. result in an increased steepness of of the bed profile and, therefore, a

more non-linear regime, causing Ampmin(λfinal) to increase.

For kini. > 0.035 rad/m, the results are less clear. A very limited num-

ber of data points are available for the normal wave incidence scenario, how-

ever, for oblique wave incidence a bigger number of results is available. Fig.

4.19(d) depicts increasing values of Ampmin (λfinal) for increasing kini. values,

while the value of Ampmin(total) decreases under oblique wave incidence. While

for kini. < 0.035 rad/m, an increase in Ampmin(λfinal) generally results in an in-

creased Ampmin(total), the opposite seems to happen for kini. > 0.035 rad/m. The

reason for this seems not to be with the rise of the finally dominant bed-form, but

with the demise of the pre-existing bed-form.
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Figure 4.19: The minimum total amplitude of the bed perturbations, for various initial

amplitudes (black) and the corresponding minimum values of the ampli-

tude of the final length scale (grey) are plotted using different scales on

the y-axis, for (a, b) normal, and (c, d) oblique wave incidence. The am-

plitudes for kini. < 0.035 [rad/m] are plotted in a separate graph (a, c),

since these are significantly bigger than those of kini. > 0.035 [rad/m] (b,

d)). The different initial amplitudes are depicted using different markers.
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So far, it is unknown why and how Ampmin(λfinal) is dependent on λini.. At the

start of the run all length scales, apart from λini., are undisturbed, but within the

first couple of time steps length scales that form a factor of λini. start to develop.

In the following days, λfinal shows the most rapid development and dominates the

other length scales. A possible explanation might be that the non-linear solution

to the system of equations consists of higher harmonics of the original bed pattern

length scale, but not of the lower harmonics [Schielen et al., 1993]:

ψ(x, y, t) = ψ0 + ǫ2ψ02 + ǫ3ψ03 + . . .

+Ec[ǫψ11ǫ
2ψ12 + ǫ3ψ13 + . . .] + c.c.

+E2
c [ǫ

2ψ22 + ǫ3ψ23 + . . .] + c.c.

+E3
c [ǫ

3ψ33 + . . .] + c.c.

+ . . . ,

where ψ stands for the solution of the system of equations and Ej
c = ejkcx+ωct

[Schielen et al., 1993].

The time for the finally dominant bed-form to develop is not the main focus

of this research. The increased γ-value in the sediment transport causes a much

more gradual development than what would be expected in reality. The focus of

this research lies in the processes involved in the occurrence of a changing domi-

nant length scale and the influence of pre-existing bed-forms on the characteristics

of finally dominant bed-forms, and not on the specific characteristic moments in

time. The conditions simulated here are highly idealised since only one pre-existing

length scale is implemented for each case. In reality, a wider range of pre-existing

bed-forms will exist at any time, resulting in a wider range of length scales being
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Figure 4.20: The final total amplitude of the bed perturbations, for various initial

amplitudes for (a, c, e) normal, and (b, d, f) oblique wave incidence.

The value of Ampend is shown in the grey scale of the dots, the crosses

represent model runs where the bed patterns are still in development at

the end of the model run.
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excited when changing wave conditions cause the dominant length scale to change.

The amplitude at the end of the modelling period (Ampend) of the bed-forms

that break up or merge shows remarkable correspondence with Ampend of bed pat-

terns that remain and undergo further development (see Fig. 4.20). An example

of this behaviour can be seen for λini. = 500 m (kini. = 0.013 [rad/m]) (θ = 5o),

this initial length scale breaks up into λfinal = 250 m (kfinal = 0.035 [rad/m])

and the amplitude of a fully developed bed pattern is around 0.25 m. This is the

same value as Ampend, for λini. = 250 m, suggesting that a pre-existing pattern

does not affect the final amplitude.

4.4.3 Growth rate

The PSD algorithm used in section 3.5 determines the physically most likely dom-

inant length scale at different moments in time using the linear growth rate as well

as the length scale from linear stability model predictions. This linear growth rate

gives information about the initial evolution of bed-forms. It was assumed that

when the model predicts significant growth over a period of time for similar length

scales, this was more likely to correspond with real physical growth, than when

either the model predicts small growth rates, or variable length scales. However,

the linear growth rate, in theory, only describes the development of bed-forms

accurately when non-linear effects are negligible. This means that the model pre-

dictions only form an accurate representation of the evolving bed for a period of

time when bed patterns are small. Pre-existing bed patterns cause uncertainty
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Figure 4.21: The evolution of (a) the amplitude, and (b) the linear growth rate,

for oblique wave incidence, and initial conditions λini. = 500 m and

Ampini. = 0.15 m. The initial pre-existing length scale evolution is de-

picted as a solid line, while the final length scale is depicted as a dashed

line.

in the accuracy of predictions made by a linear stability analysis, since it is not

known to what extent linear growth dominates the evolution of bed-forms at this

stage. The current model results, using a non-linear model, can give insight into

the range of the linear regime in predicting the evolution of bed-forms accurately,

when pre-existing bed-forms exist.

Linear growth rates can be calculated by determining the rate of change in the

amplitude of various length scales, using Fourier analysis (see section 2.5). Fig.

4.6(e) and 4.7(e) depict the linear growth rate for the undisturbed development

of bed-forms under normal and oblique wave incidence. The graphs show that
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constant linear growth occurs from day 3 to 20 for normal wave incidence and

between day 3 and 45 for oblique wave incidence. A constant linear growth rate

suggests that the development of bed-forms can be described accurately by linear

terms alone. After these constant linear growth periods, non-linear terms increase

in importance and cause the growth to slow down. The period of linear growth

for the undisturbed cases suggests that a linear stability analysis can accurately

describe the development of crescentic bed patterns during this period.

Fig. 4.21(a) depicts the evolution of the amplitude of the initially and finally

dominant length scale, for the case of λini. = 500 m and Ampini. = 0.15 m, for

oblique wave incidence. The linear growth rate of the finally dominant mode as

well as the linear decay rate of the initial bed pattern are depicted in Fig. 4.21(b).

The first couple of days show non-linear behaviour, when the amplitude of

the perturbations in this alongshore profile increase due to a cross shore shift of

the peak of the pre-existing crescentic bed-form (see section 4.4.2). The develop-

ment of λfinal shows a clear linear growth period (’◦’), from this moment onwards.

Also, the disappearing pre-existing bed pattern shows a brief period of linear decay

(’2’). The behaviour of the decreasing pre-existing bed-form beyond this period

becomes fluctuating. The amplitude of the pre-existing bed-forms is very small,

and the dominant mode has shifted to λfinal, making the linear decay rate of λini.

from this moment onwards, the result of other effects.

Linear growth and decay only occur when the linear growth and decay rate are
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Figure 4.22: (a) The periods of linear growth and decay of the initial perturbation

(solid) and the final length scale (dashed) in time, for various initial

amplitudes (λini. = 500 m). (b) The mean value of the growth and decay

rate for the initial length scales, and (c) the final length scales.

constant; this is quantified as a change of < 2 % in between two time steps (0.35

days). Another requisite is that the minimum period of linear growth is at least a

day (4 time steps). For decaying pre-existing bed patterns, a third criteria is that

the amplitude of the bed patterns should be bigger than a certain value. This

value is set at 0.002 m. This is because the actual linear decay of the pre-existing

bed-form prior to this point is interesting, while the fluctuations afterwards are

the result of non-linear effects, due to the interference and dominance of λfinal.

The effects of different initial amplitudes on the linear growth rate are pre-

sented in Fig. 4.22 (θ = 5o, λini. = 500 m). The period of linear growth of λfinal

reduces for increasing Ampini. (see Fig. 4.22(a)). This is due to the increasing

value of Ampmin(λfinal) for increasing values of Ampini. (see Fig. 4.17(d)). A
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Figure 4.23: The linear growth and decay rates for various initial length scales and

amplitudes (Ampini. = 0.05 m (’△’), 0.15 m (’◦’) and 0.25 m (’2’))

for both (a) normal, and (b) oblique wave incidence. These results are

compared with the linear growth starting from an undisturbed bed, after

five days of development (grey line). The dashed lines show the range of

length scales that remain and do not break up or merge.

bigger value of Ampmin(λfinal) results in a more rapid development, and there-

fore a shorter linear growth period. The duration of the linear decay of λini. is

also related to the value of Ampini.. An increase in initial amplitude of λini. re-

sults in an increase in decay period for Ampini. ≤ 0.2 m. However, for values

of Ampini. that are larger still, a decrease in the decay period can be observed,

and for Ampini. = 0.35 m linear decay cannot be determined. This is because

the formation of the final length scale also happens faster, and soon dominates

the linear decay. The growth rate during the linear growth periods as well as the

linear decay rate are quasi-constant for various Ampini. values (see Fig. 4.22(b, c)).
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For various values of λini., a wide range of growth and decay rates can be

observed (see Fig. 4.23). The figure only shows the behaviour of the initial pre-

existing bed patterns. Length scales that do not break up or merge, but undergo

further growth (in between the dashed lines) exhibit positive linear growth, while

length scales that are outside this range decrease and therefore show negative

growth rates. The pre-existing growth and decay rates show a close correspon-

dence with the undisturbed growth rate curve. Differences mainly occur for disap-

pearing bed-forms with big length scales (kini. < 0.02 [rad/m]), where the decay

rate of the pre-existing bed-forms is much bigger than what is observed for the

undisturbed development.

Not all Ampini. show linear growth and decay rates. Only when Ampini. is

small do bed forms that remain show linear growth. The moment when the linear

growth rate becomes significantly influenced by non-linear effects, and ceases to be

constant, is generally when Amp(total) of this transect reaches between 0.10 and

0.14 m. This threshold amplitude (Ampthres.) can be related to Ampend(total):

when Amp(total) reaches between 0.4 and 0.6 of Ampend(total), non-linear effects

will become significant and a linear model becomes unsuitable to describe the

ongoing development. Ampthres. is variable for different initial and final length

scales and initial amplitudes, however, Ampthres. ≈ 0.5Ampend seems to form an

indication of a boundary for linear development. This threshold amplitude is of

interest for the determination of linear growth for pre-existing bed-forms that do

not break up or merge. If the amplitude of the pre-existing bed-forms lies above

the threshold amplitude, the development of this bed-form cannot accurately be
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described using only linear growth. However, the cross shore location of Ampthres.

is not at the maximum height of the initial pre-existing bed pattern (Ampini.),

and so Ampini. cannot be directly compared with Ampthres.. it would be more

correct to compare the amplitude of the pre-existing bed-form at day 1.8 (see

Fig. 4.16(b)), when the shift in cross shore location of the pre-existing bed-form

creates a peak in the amplitude of the pre-existing bed-forms, with the threshold

amplitude for linear growth.

Ampini-values of 0.25 m result in a corresponding peak amplitude after 1.8

days of around 0.15 m. This amplitude is generally above the threshold for linear

growth and the initial bed-forms show no constant linear growth. Length scales

that do not break up or merge and Ampini. = 0.15 m can occasionally result in

linear growth, whereas Ampini. = 0.05 m always shows linear growth (see Fig.

4.23). Whether linear growth is observed for initial amplitudes of 0.15 m seems

to be dependent on the growth rate of the particular length scale. Linear growth

is only assumed to exist when the the linear growth rate is close to constant over

a day. The period of linear growth is reduced when the growth rate is big: the

amplitude quickly reaches the threshold amplitude, and non-linear effects will take

effect. If the period of linear growth is less than one day, this is determined to

be too short to be regarded as linear growth. This occurs in particular for initial

length scales that are close to the FGM for normal wave incidence, since these

length scales show the highest linear growth rate.

Length scales that are on the boundary between decay and growth show dif-

ferent behaviour; for θ = 0o these length scales are: λini. = 333 and 111 m (kini. =
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0.019 and 0.057 [rad/m], respectively), and for θ = 5o: λini. = 333 m (kini. = 0.019

[rad/m]). As was described in section 4.4.2, these length scales show limited linear

growth in the undisturbed case (see Fig. 4.14 and 4.15), but are at some point

overwhelmed by faster developing length scales that occur in the centre of the

growth rate curve. These initial length scales generally show only a very gradual

increase or decrease in amplitude, and no linear growth. However, for one case

linear growth is determined (θ = 0o, k = 0.057 [rad/m] and Ampini. = 0.05 m),

which closely corresponds with the growth rate for the undisturbed case (grey line).

Figure 4.23(a, b) gives insight into the behaviour observed in Fig. 4.19(d),

which shows that althoughAmpmin(λfinal) increases for increasing kini., Ampmin(total)

decreases. Results presented in 4.19(a, c) suggest the opposite: for increasing

kini., the increasing Ampmin(λfinal) causes a more rapid development of λfinal,

and therefore a higher level of Ampmin(total). Results presented in Fig. 4.23(a, b)

show a second contribution to the determination of the total minimum amplitude:

the decay rate of the pre-existing bed-form also affects Ampmin(total). The min-

imum total amplitude decreases, because the decay rate of λini. rapidly increases

for increasing k-values, even while Ampmin(λfinal) increases.

The linear growth rate of the finally dominant length scales is shown in Fig.

4.24, for both normal (a, c, e) and oblique wave incidence (b, d, f). The undis-

turbed growth rate (originating from Fig. 4.8) of various length scales is taken

as benchmark for the growth rate of bed patterns that develop under pre-existing

conditions. Growth rates of the finally dominant length scales correspond well
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Figure 4.24: The linear growth rates of λfinal (in colour) for various initial amplitudes

(Ampini. = 0.05 m (’△’), 0.15 m (’◦’) and 0.25 m (’2’)), compared with

the linear growth for the undisturbed bed (after 5 days) (grey line), (a,

c, e) for normal, and (b, d, f) oblique wave incidence.
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with the growth rate in the undisturbed case, although the evolution of bed-forms

from pre-existing bed patterns predict slightly smaller growth rates than what is

observed in the undisturbed case. Smaller initial amplitudes are generally closer

to the undisturbed growth rate than bigger initial amplitudes, and this effect is

stronger for length scales that do not break up or merge. This is due to the non-

linear effects that cause reduced or non-existent linear growth rates.

4.4.4 Migration rate

The migration rate of bed-forms has not been a major topic of investigation for

the comparison of field observations with linear stability predictions presented in

chapter 3. The field observations by van Enckevort et al. [2004] suggest migration

rates of less than 40 m/d, but a day-to-day listing of the observed migration rates

is not presented. However, migration rates are predicted by the linear stability

analysis, and investigated is how these are affected by pre-existing bed-forms.

Previous research using a non-linear stability analysis has studied the devel-

opment of one bed pattern length scale from both an alongshore constant, and a

randomly disturbed beach. Migration rates have thus been relatively easy to ob-

tain. Visual inspection of the results showed how rapidly a bed pattern migrated

along a coast [Garnier, 2006]. However, the introduction of pre-existing bed-forms

makes a visual determination of the migration rate insufficient. In this case the

objective is to determine both the migration rate of the pre-existing bed-form as

well as the finally dominant length scale. This behaviour is obscured by the decay
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Figure 4.25: (a) The evolution of the nearshore bed in time when pre-existing bed

patterns exist for oblique wave incidence (λini. = 500 m, Ampini. = 0.15

m). (b, c) The reconstructed bed profile according to the Fourier analysis

output for λini. and λfinal. (d) The migration rate of the initial pre-

existing bed-form and finally dominant length scale. The grey line at

day 7 in (d) represents the moment when the dominant mode shifts from

λini. to λfinal.
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Figure 4.26: The migration rate of the pre-existing and the finally dominant bed-forms

for various initial amplitudes (λini. = 500 m, θ = 5o).

and growth of either bed-form, making visual determination unsuitable.

To calculate the migration rate of various length scales, a Fourier analysis is

used to separate the various different processes corresponding to different length

scales. The contribution of both λini. and λfinal are shown in Fig. 4.25(b, c).

The shift in alongshore location of bar crests in both graphs gives the migration

rate of both length scales (Fig. 4.25(d)). For λfinal this migration rate is rather

constant, at around 18 m/d. The migration rate of λini. changes in time. Initially

the migration rate fluctuates and averages around 0 m/d. When the final length

scale becomes dominant, the migration rate of λini. converges to the migration rate

of λfinal. The initial length scale diminishes in height, and the physical relevance

of the migration rate after the dominant bed-form has become λfinal, is therefore

reduced. For the quantification of the migration rate of both the initial and final
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Figure 4.27: The migration rate of the initial pre-existing bed-forms with different

length scales and amplitudes for oblique wave incidence. The average

migration rate is plotted over the period for which λini. is dominant.

The undisturbed migration rate (at day 5) of various length scales is

plotted as a grey line. The dashed lines show the range within which the

length scales remain, and do not break up or merge.

length scale, the average migration over the period of dominance of either length

scale is chosen.

The influence of Ampini. on the migration rate of both the pre-existing bed-

forms and the finally dominant bed patterns is limited (see Fig. 4.26). The

migration rate of the final length scale is not dependent on the initial amplitude.

The migration rate of the initial length scale seems to be influenced by the initial

amplitude, since the migration rate is negative for small initial bed patterns, but

becoming positive for big pre-existing amplitudes. The reason for the changing
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initial migration rate is the way this value is calculated and not due to changes in

the migration rate in time. The migration rate is an average over the period where

λini. is dominant. This decreases for increasing Ampini., reducing the number of

negative migration rates that occur after day 5 that are included in calculation of

the average migration rate (see Fig. 4.25(b)).

The migration rate of various initial bed-forms closely corresponds to the undis-

turbed migration rate curve (see Fig. 4.27). The migration rate curve for the

undisturbed development was determined at day 5 of the modelling period. The

migration rate curve fluctuates more in time than the growth rate curve, and

the slight differences that occur between the pre-existing migration rate and the

undisturbed migration rate can partially be attributed to this. The undisturbed

migration rate curve at this time is depicted since it shows the most complete

migration rate curve without non-physical fluctuations. Migration rates of the

pre-existing bed-forms fluctuate (see Fig. 4.25(b)), but the average migration

rate corresponds well with the undisturbed migration rate at day 5, especially

for shorter length scales. It can also be concluded that the initial amplitude of

the pre-existing bed-forms does not influence the migration rate significantly. Mi-

gration rates of length scales that are not breaking up or merging (in between

the dashed lines) are an average of the migration rates over the entire modelling

period. A possible explanation for why these length scales show a slightly lower

migration rate than what is observed for the undisturbed development, is that

during the initial stages of the run the migration rate is zero. This is probably

due to the fact that wave conditions are still building up in the early stages of



4.4. OUTPUT ANALYSIS OF PRE-EXISTING BED-FORMS 178

0.025 0.03 0.035 0.04
15

20

25

c m
 (

λ fin
al

) 
[m

/d
]

 

 

Amp
ini.

 = 0.05 m

undisturbed
λ

ini.
 = 1000 m

λ
ini.

 = 666 m

λ
ini.

 = 500 m

λ
ini.

 = 400 m

λ
ini.

 = 333 m

λ
ini.

 = 286 m

λ
ini.

 = 250 m

λ
ini.

 = 200 m

λ
ini.

 = 166 m

λ
ini.

 = 133 m

λ
ini.

 = 111 m

λ
ini.

 = 100 m

0.025 0.03 0.035 0.04
15

20

25

c m
 (

λ fin
al

) 
[m

/d
]

Amp
ini.

 = 0.15 m

0.025 0.03 0.035 0.04
15

20

25

k
final

 [rad/m]

c m
 (

λ fin
al

) 
[m

/d
]

Amp
ini.

 = 0.25 m

Figure 4.28: The migration rate of λfinal for different Ampini. (Ampini. = 0.05 m

(’△’), 0.15 m (’◦’) and 0.25 m (’2’)), for oblique wave incidence. The

average migration rates are plotted over the period for which each λfinal

is dominant. The corresponding migration rate for the undisturbed evo-

lution (after 5 days) is depicted as a grey line.
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development, and because of the appearance of the pre-existing bed-forms; the

implemented pre-existing bed-forms are designed to be shore normal. During the

first days, the orientation of the bed pattern changes, while the constant migration

rate establishes.

The migration rate of the finally dominant length scales (Fig. 4.28) is generally

slightly underpredicted compared to the undisturbed migration rate. However, the

difference between the undisturbed migration rate (grey line) and the migration

rate of finally dominant length scales (’2’, ’◦’ and ’△’) seems to be rather constant,

suggesting that the undisturbed migration rate at this moment in time (after five

days) might be a slight over-estimation of the average migration rate in time.



4.5 Discussion

To investigate the effects of pre-existing bed-forms on the development of crescen-

tic bed patterns, a wide range of different pre-existing length scales, amplitudes

and different wave conditions were examined. The results obtained show a clear

relationship between the development of an undisturbed beach and the evolution

of the nearshore zone in the case of pre-existing bed patterns.

A linear model has limitations that make difficult the direct application of

model results to predict the development of crescentic bed-forms according to

changing wave conditions. A non-linear model has more freedom to accurately

describe field conditions. However, in order to observe specific behaviour that is

related to the effects of pre-existing bed-forms, many conditions were set to create

circumstances that resulted in the gradual evolution of bed-forms and the aim

was not necessarily to create model predictions that are directly comparable with

reality.

The time before a bed-form reaches its final height is significantly longer in the

runs carried out in this research than is observed in reality. Observed bed-forms

generally reach a final height within three weeks [van Enckevort et al., 2004]. The

time before bed-forms reach a final height during these runs is dependent on var-

ious factors. The duration of the development of bed-forms is influenced by the

value of the downslope term (γ) and the moderate wave conditions. The pre-

existing bed characteristics resulted in development times ranging from 10 to over

100 days. Characteristics, such as the time at which a bed-form reaches its max-
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imum height and the time when the dominant bed pattern length scale changes,

are therefore not comparable with reality. However, other characteristics, such as

the linear growth rate, the final amplitude and the migration rate, give a good

insight into the processes involved in the evolution of crescentic bed-forms from

an initial state where bed-forms already exist.

The initial amplitude of the finally dominant length scale (Ampmin(λfinal))

depends on various factors: Not only will a bigger initial amplitude of the pre-

existing bed-form result in an increased initial excitement of the finally dominant

length scale, but also the initial pre-existing length scale will cause variations in

the excitement of the range of length scales close to λFGM . Length scales that form

a factor of the pre-existing length scale show a bigger initial amplitude (Ampmin),

which subsequently results in a more rapid evolution, compared to other bed pat-

tern length scales. The results presented in this chapter suggest, therefore, that

when a pre-existing bed pattern breaks up, this will give rise to a new bed pat-

tern whose length scale is closer to λFGM of the undisturbed development, and

also forms a factor of λini.. In reality, a single dominant mode is generally not

observed [van Enckevort et al., 2004]. This means that a much wider range of dif-

ferent length scales will be initially excited than what is assumed for these runs.

A more realistic approach could be to implement random perturbations onto the

pre-existing bed-forms, to cause large initial amplitudes for a wider range of bed

pattern length scales. However, runs that included random perturbations show

that although a wider range of length scales develop, the finally dominant length

scale does not change. The application of random perturbation, however, also



4.5. DISCUSSION 182

results in a more disturbed development of bed-forms, making the analysis more

complicated. It is noteworthy that pre-existing length scales that are significantly

shorter than λFGM merge to become λFGM . The finally dominant length scale of

these short pre-existing bed-forms is therefore not a whole number factor of the

initial length scale, which results in smaller Ampmin values of the finally dominant

bed-forms.

The periodic boundaries at either end of the alongshore modelling domain and

the limitations of a Fourier analysis result in a reduction in the number of length

scales that develop within the model runs. Only bed-forms that form a factor of the

total width of this stretch of beach (2000 m) can be implemented as pre-existing

bed-forms and can develop into a finally dominant length scale. This means that

only a limited number of long pre-existing bed-forms can be examined. The appli-

cation of moderate wave conditions, however, results in the development of finally

dominant length scales that are reasonably short (λFGM = 200 m (θ = 0o) and

λFGM = 166 m (θ = 5o)), and the range of possible length scales in that region is

large enough to give quantified predictions of the finally dominant length scale.

In setting up the conditions for the non-linear model runs, the results from

the linear stability analysis were used to create the pre-existing bed-forms. The

Morfo60 output only gives physically accurate descriptions of bed pattern length

scales that have a positive linear growth. A wide range of pre-existing length scales

were generated by the application of extreme wave conditions (Hrms = 1.5 m, Tp =

7.5 s and θ = 0o). The cross shore location of the peak in the bed perturbation
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is, however, further offshore than for the pre-existing runs of the non-linear model

under moderate wave conditions, due to the increased wave height. The discrep-

ancy between the offshore location of the peak in the bed pattern perturbation

according to the extreme wave conditions in Morfo60 and the more moderate runs

in Morfo55 is resolved at the start of each run: The bed patterns shift shorewards

and reach the new optimum location after 1.8 days (see Fig. 4.16).

A second concern related to the application of linear stability results to create

pre-existing bed-forms is the physical appearance of the bed-forms. In a linear

stability analysis, bed patterns are assumed to be very small. The appearance of

bed patterns according to the linear stability analysis might, therefore, not exactly

correspond to the actual appearance of bed-forms of bigger initial amplitudes.

Results from the non-linear model suggest that bed-forms not only grow in height

but also expand in the cross shore direction, and this may not be represented by

the linear model.



4.6 Conclusions

Results from a non-linear stability analysis of the effects of pre-existing bed-forms

on the evolution and development of crescentic bed patterns, show that the exis-

tence of bed-forms at the start of the modelling period causes significant changes to

the evolution of the nearshore seabed. The effects of these pre-existing bed-forms

are, however, closely linked to the undisturbed evolution of bed-forms, i.e. when

bed patterns develop from an alongshore constant beach profile. Pre-existing bed-

forms, therefore, do not necessarily negate predictions made by a linear stability

analysis. The existence of pre-existing bed-forms makes it necessary to interpret

the predictions made by a linear stability analysis with care.

Non-linear stability analysis results of the evolution of the nearshore seabed

with pre-existing crescentic bed-forms show that pre-existing bed patterns with

a length scale that is close to the dominant length scale of the undisturbed case

(λFGM) will undergo further growth and reach a final height within a short period

of time. Initial length scales that are outside the linear growth rate curve of the

undisturbed development will decrease in prominence and give rise to crescentic

bed patterns with a length scale close to λFGM . When a pre-existing bed pattern

breaks up, the finally dominant length scale generally forms a factor of the pre-

existing length scale, this finally dominant length scale is closer to λFGM than the

pre-existing length scale.

The rate of growth and decay of the pre-existing bed-forms as well as the

finally dominant bed pattern both closely correspond to the undisturbed growth
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rate curve. The development of pre-existing bed-forms with a length scale close to

λFGM shows a similar linear growth to the undisturbed growth of that length scale,

but only if the initial amplitude is small and the non-linear effects are negligible.

If a new bed-form arises from a pre-existing bed pattern, a period of linear growth

can also be observed. The growth rate of the newly arising bed-form is again very

similar to the undisturbed growth rate of that length scale. Pre-existing bed-forms

that are outside the undisturbed growth rate curve will decrease and give rise to

the development of a length scale closer to λFGM . The rate of decay of the pre-

existing bed-forms corresponds well with the negative part of the growth rate curve

of the undisturbed development. However, the agreement is stronger for length

scales that are shorter than λFGM , than for length scales that are significantly

larger.

Different final length scales result in slight changes in the final amplitude and

migration rate, which are similar to those observed in the undisturbed scenario.

The migration rate of decreasing initial length scales, during their period of dom-

inance, also corresponds with the undisturbed migration rate.

The results presented in this chapter show that the non-linear evolution from a

periodically disturbed bed can be partially described using only a linear stability

analysis. The finally dominant length scales are, independent of the pre-existing

length scale, always near the peak of the undisturbed growth rate curve. There

is also strong agreement between the growth rate and migration rate of both the

growing and declining bed-forms and the final amplitude of the finally dominant

length scale.



Chapter 5

Pre-existing bed patterns in a

linear stability model

The results obtained using the non-linear model have shown that results from a

linear stability model can be used to describe the development of bed-forms when

bed patterns pre-exist. This chapter introduces a possible application of this

knowledge to predict the development of crescentic bed patterns using a linear

stability model, and describes the development of an algorithm to implement this

new understanding.

5.1 Assumptions of the pre-existing algorithm

In the comparison of linear stability model predictions of the development of cres-

centic bed patterns with field observations (presented in chapter 3), each set of

wave and tidal conditions resulted in a separate linear growth rate curve. The

fastest growing mode (FGM) of each of these runs was assumed to dominate

the development of the other length scales. However, the investigation into pre-
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existing bed-forms has revealed that the entire linear growth rate curve is of im-

portance, including the length scales that show linear decay rates. Pre-existing

bed patterns, whose length scale shows significant linear growth under the present

forcing circumstances, will remain and undergo further development. However,

when the length scale of a pre-existing bed-form lies outside the range of currently

growing modes, then this length scale will decay. The rate of initial decay of this

pre-existing bed pattern corresponds to the linear decay rate of this length scale

under the existing forcing conditions.

The implementation of the results obtained in chapter 4, has resulted in the

following assumptions for a pre-existing bed-forms (PEB) algorithm, which can

be applied to the linear stability results for the Duck conditions:

� After a storm, existing bed patterns are wiped out and all length scales start

with the same initial amplitude (Amp0).� The amplitude of different length scales develops according to rate of growth

or decay for that length scale, as presented in the linear growth rate curve.

The growth rate curve changes over time, due to changing forcing conditions,

and this will affect the development of the amplitude of different length

scales.� For any moment in time, it is assumed that any length scale cannot be

smaller than a certain threshold. Decaying amplitudes can therefore not

decay beyond Amp0.
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Figure 5.1: The positive part of the growth rate curve is extrapolated in order to obtain

negative growth rates for length scales that are outside the positive part

of the growth rate curve. The maximum decay rate is set at the negative

value of the growth rate of the FGM . The results from Morfo60 are

displayed in grey dots, with an approximation of the physically accurate

modes depicted as a grey line. The extrapolated results are shown as a

black line.� The most likely length scale to be observed in reality is assumed to be the

length scale with the biggest amplitude at each time step; the dominant

length scale (λd).� With the increase in amplitude of the bed patterns, the importance of non-

linear effects in the governing equations also increases, reducing the accuracy

of linear stability analysis predictions. A maximum amplitude (Ampmax)

is therefore established to determine the moment when linear results are

assumed to become inaccurate.
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The Morfo60 model produces the same number of solutions to the system of

equations, as there are computational nodes (Nx = 300), for each examined length

scale (Nλ = 109) and set of wave conditions (Nt = 500). The data stored from the

Morfo60 runs of Duck did, however, not contain all the decaying modes. As the

focus so far has been on the prediction of the FGM , only the biggest growth rates

of each length scale were stored for each set of wave conditions. The available

data of the Duck model runs, therefore, only gives a very limited insight into the

decay of bed patterns.

A large number of decaying solutions to the system of equations are numerical

in nature, making the determination of the physically accurate decaying modes

difficult. The ideal solution would be to do two sets of runs, one with, for exam-

ple, double the number of computational nodes than the other one, for each length

scale and each set of wave conditions. Numerical results change in growth rate,

whereas physical results would remain approximately constant, making it possible

to identify decay rates of the length scales that are outside the growth rate curve.

However, this approach is cumbersome, and for a first analysis presented here, a

different approach was chosen.

In order to be able to describe decaying bed patterns, the rate of decay of

length scales that do not show linear growth is determined using a linear extrapo-

lation based on the two smallest growing modes on either side of the growth rate

curve. It is assumed that the rate of decay cannot exceed the maximum rate of

growth under each set of forcing conditions: The rate of decay is limited to the

negative value of the growth rate of the FGM : ωrmin
= −ωrF GM

.
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Figure 5.2: (a) Two different growth rate curves, at two time steps. (b) The devel-

opment of the amplitude of various length scales according to the growth

rates at the subsequent times. All length scales start with an amplitude

of 0.025 m.

An example of the growth rate as well as the extrapolated rate of decay are

presented in Fig. 5.1. In this figure, all solutions to the system are displayed

(grey dots). In order to demonstrate the accuracy of the extrapolation, more

than just the biggest growth rate for each length scale is shown. The extrapo-

lated results (black line) show a slight underestimation of the negative part of the

growth rate curve (grey line) when the decay rate does not exceed −ωrF GM
. When

the modelled decay rate exceeds −ωrF GM
, extrapolated decay rates significantly

underpredict the actual development. However, overall, a reasonably accurate de-

scription of the rate of decay can be achieved this way.

The development of the amplitude of different length scale can be described
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by (see Fig. 5.2):

Amp(kg, tj+1) = Amp(kg, tj)e
ω(kg ,tj)∆t , (5.1)

where kg = 0.001− 0.11 [rad/m], tj represents the points in time when wave data

were recorded, which have been modelled individually in Morfo60 (j = 1 − 500),

and ∆t represents the time step between two wave data records (∆t = 3 hours).

The runs presented in chapter 3 have shown that the development of bed

patterns up to half their final height is the result of linear growth. The field

measurements at Duck generally display an alongshore variation in the bar height

of around 1 m, and therefore it is assumed that the maximum amplitude (Ampmax)

is 25 cm.

The initial amplitude of all length scales after a storm (Amp0) is set at 2.5

cm. The results presented in chapter 4 have shown that the initial amplitude of

the finally dominant bed-form (Ampmin(λfinal)) can be as high as 2.5 cm, when

a single pre-existing bed pattern length scale is implemented (see Fig. 4.19). In

reality, even after a storm, it is assumed that initial perturbations are at least as

big as this value.

The determination of the value of both Amp0 and Ampmax is rather arbitrary.

The period for which the predictions of a linear stability analysis are assumed to

be accurate, is therefore arbitrary as well. However, the period of time over which

bed-forms grow by a factor of ten, as is used here, seems to correspond well with

the previously presented time periods of linear growth after each storm (presented

in section 3.5).



5.2 Comparison with field observations

The development of the dominant length scale according to the PEB algorithm

is based on the entire growth rate curve for the various wave conditions and tidal

levels recorded at Duck (see Fig. 5.3(a)). The implementation of the PEB algo-

rithm can be seen in Fig. 5.3(b), where the evolution of the amplitudes of different

length scales is depicted. The change from a filled plot, to only contour lines (at

day 247 and 280) depicts the change from a linear regime to a supposedly non-

linear regime, since the amplitude of the dominant length scale (Ampd) surpasses

Ampmax. However, the development beyond this moment in time is depicted since

both Amp0 and Ampmax are determined arbitrarily and the development may (un-

der different initial and final conditions) still be defined to be within the range

of a linear stability model. Fig. 5.3(c) depicts the normalised amplitude over

time. At each time step, the value of the maximum amplitude is set at 1, and the

amplitudes of all other length scales are scaled to this value.

A comparison of field observations with the PEB algorithm shows that im-

mediately after the first and third storm (day 237 and 273), the predicted length

scales correspond well with field observations. Both field observations and model

predictions show the occurrence of a wide range of length scales. The PEB al-

gorithm, however, overpredicts the length scale in between storms. This occurs

especially after the first and second storms. After the first storm, a long period of

relatively low wave activity results in stable bed-form length scales for both the

algorithm and the observations. However, the PEB algorithm shows no develop-

ment of shorter length scales during the initial post-storm stages, and when the



5.2. COMPARISON WITH FIELD OBSERVATIONS 193

240 245 250 255 260 265 270 275 280 285 290 295

200

400

600

800

1000 aω
r

λ 
[m

]

240 245 250 255 260 265 270 275 280 285 290 295

200

400

600

800

1000
bAmp

λ 
[m

]

cAmp
norm.

λ 
[m

]

Time [d]
240 245 250 255 260 265 270 275 280 285 290 295

200

400

600

800

1000

Figure 5.3: (a) The positive part of the growth rate curves predicted by Morfo60 for

the different wave and tidal data over time recorded at Duck. The field

measurements are shown in open black circles. (b) The development of

the amplitudes of different length scales in time, according to the PEB

algorithm. (c) the normalised amplitude of various bed pattern length

scales at each time step. The vertical black lines represent storms (at day

237, 264 and 273). At these points in time, the amplitude of the various

bed pattern length scales is set back to Amp0. The change from a filled

plot to only contour lines (at days 247 and 280) depicts the points in time

when Ampd surpasses Ampmax.
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Figure 5.4: The results from the PEB algorithm after the second storm, when pre-

existing bed patterns are preferentially initially excited. (a) The distribu-

tion of Amp0 over the different length scales. Pre-existing length scales

(λ = 300 − 360 m) are excited twice as much as the other length scales.

(b) The normalised amplitude of various bed pattern length scales at each

time step after the second storm.

wave conditions settle down, these shorter length scales do not become dominant.

Contrastingly, the field observations show a significant decrease in length scale

after the first days.

As was previously presented, the observed length scale after the second storm

does not alter from the pre-storm conditions, suggesting that the pre-existing bed

patterns are not fully wiped out. During this period, the PEB algorithm shows

a significant overprediction of the dominant length scale compared to the field

observations. However, the results presented in Fig. 5.3(b) show that the devel-

opment of bed patterns is very small. If the observed pre-existing length scales
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Figure 5.5: The development in time of the dominant length scale (a), the dominant

amplitude (b) and the dominant migration rate (c). The solid vertical lines

represent the storms, whereas the dashed vertical lines represent points in

time when Ampd surpasses Ampmax.

were to be excited more in Amp0 than the other length scales, this would result

in the continued dominance of these pre-existing length scales, after the second

storm (see Fig. 5.4). However, this is not included in the ongoing comparison of

model predictions with field observations, since knowledge concerning the occur-

rence of pre-existing bed patterns after this storm does not exist and an accurate

description of the distribution of Amp0 cannot be derived.

The predicted development after the third storm corresponds well with the

field observations. Compared to the less accurate predictions after the first storm,

it can be concluded that the occurrence of bigger growth rates for a longer period

of time results in a longer period of development of the bed patterns after the

third storm, resulting in a better correspondence.
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Figure 5.6: The observed length scale at Duck in time (’◦’) along with the original

Morfo60 results (’×’), the output of the PSD algorithm (grey line) and

the PEB algorithm (black line). The solid vertical lines represent the

storms, whereas the dashed vertical represent the points in time when

Ampd surpasses Ampmax.

The dominant length scale (λd) as well as the amplitude (Ampd) and the

migration rate (cmd
) of the dominant length scale at each time step are depicted

in Fig. 5.5. The amplitude development shows a direct correspondence with the

growth rate in Fig. 5.3(a). Periods with significant growth rates (after the first

and third storm) result in significant amplitude gains. The determination of the

migration rate is a direct result of conclusions drawn in chapter 4. The migration

rate at a certain point in time is that of λd according to the migration rate curve at

this moment, and not the migration rate of the FGM predicted at that moment.

The migration rate distribution in time, however, shows a very similar behaviour

to the original migration rate of the Morfo60 results (presented in section 3.3).
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Figure 5.7: The predicted length scales according to the original Morfo60 results

(λFGM : ×), according to the PSD algorithm (λsig.: •) and according

to the PEB algorithm (λd: ◦), versus the observed length scales (λobs.)

of the crescentic bed patterns at Duck. The solid line represents perfect

correspondence between predicted length scales and those from field ob-

servations.

Generally, the migration rate is small, but can be as high as 200 m/d during

extreme wave conditions.

A comparison between the observed and predicted length scale of crescentic

bed patterns is presented Fig. 5.6 and 5.7. Both figures show the results from

each of the previously presented attempts to use a linear stability model to de-

scribe real-world conditions. The actual Morfo60 output shows a very high rate of

fluctuation (Fig. 5.6), due to the assumption of an alongshore uniform beach pro-

file and the changing forcing conditions. The PSD algorithm identifies the more

physically significant predictions at certain periods in time, and gives a much more
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accurate description of the occurring bed-forms at these moments. Finally, the

PEB algorithm shows a very gradual development of the dominant length scale.

However, this algorithm also shows a continuous overprediction of the length scales

occurring in between storms (see Fig. 5.7).

The implementation of the knowledge obtained from the study of pre-existing

bed patterns only improves the predictive skills of the linear stability analysis

locally, and the overall relative error of the PEB algorithm results is the same

as the original raw Morfo60 results ([δλobs., λF GM
]entire period = [δλobs., λd

]entire period =

0.44). The development of crescentic bed patterns after the third storm shows

a closer correspondence between field observations and PEB algorithm predic-

tions. Wave conditions do not settle down as quickly as after the first storm,

and a similar evolution of the bed pattern length scale is predicted with the

PEB algorithm as that observed in the field, resulting in a small relative er-

ror. ([δλobs., λF GM
]Post storm 3 = 0.37 and [δλobs., λd

]Post storm 3 = 0.18).

A comparison between the predictions made by the PEB algorithm and the

PSD algorithm shows that the PSD algorithm corresponds much more closely

with the field observations much more closely than the PEB algorithm. However,

where the PSD algorithm attempts only to identify periods in time where predic-

tions and observations might converge, the PEB algorithm attempts to describe

the continuous evolution of the bed patterns. The overall relative error between

field observations and the PEB algorithm is therefore larger than the relative er-

ror of the periods predicted by the PSD algorithm. However, the relative error for



5.2. COMPARISON WITH FIELD OBSERVATIONS 199

the PEB algorithm after storm 3 is the same as the error by the PSD algorithm.

A possible improvement in the comparison between model predictions and field

observations could be achieved through the combination of both algorithms. The

PEB algorithm can be used for the accurate implementation of pre-existing bed

patterns and an algorithm similar to the PSD algorithm can subsequently be used

to identify the specific periods in time when predictions made by a linear stability

model are assumed to be similar to field observations.



5.3 Discussion

The pre-existing bed-forms algorithm presented in this chapter is a first attempt

at including the effects of pre-existing bed patterns into an analysis made by a

linear stability model, in describing real-world conditions. This algorithm shows

that the gradual evolution of the bed pattern length scale, as observed in the field,

can be described by a linear stability analysis. However, discrepancies between

model predictions and field observations remain significant. Improvements in the

design of the algorithm might improve the comparison, although more field data

is needed for the accurate quantification of such alterations.

The predictions made by the PEB algorithm generally show an overprediction

of the dominant bed pattern length scale, compared to the field observations. Only

directly after a storm do the results of the algorithm partially correspond with the

observations made in the field. However, field observations suggest a continuous

presence of short bed pattern length scales during the entire observation period.

This is not predicted by the PEB algorithm, which predicts only bigger length

scales to occur after a storm. A possible explanation might be that the model set-

up favours longer length scales. The application of a description of the friction by

Feddersen et al. [2000] resulted in a reduction of the predicted length scale of the

FGM for oblique wave incidence (see section 2.2). However, it might be that the

model settings still favour bigger length scales. An alternative explanation is that

the model underpredicts the growth rate under mild wave conditions, resulting in

the lack of development of shorter length scales during mild wave conditions in

between storms. Alternatively, it might be that the error lies in the assumption
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that all bed patterns are wiped out during each storm. It may be that periodic

perturbations of shorter length scales still exist after a storm. Such a phenomenon

was shown in our data to occur after the second storm, but it might be that this

also occurs after the first and third storms.

The discrepancy between the field observations and the PEB algorithm can

be partially accounted for by the assumption of a single dominant length scale at

each time step. Both the field observations as well as the PEB algorithm show

that a wide range of length scales exist immediately after a storm. In both cases,

the actual occurrence of a wide range of length scales is reduced to one value.

However, this single value is determined in a different way for the PEB algorithm

than for the field observations: In the field observations, an average of the observed

bed pattern length scales is shown, whereas the PEB algorithm only shows one

single dominant length scale.

A first attempt at describing the decay rate of bed patterns is presented in

this chapter. However, the extrapolation of the positive part of the growth rate

curve in order to obtain decay rates is inaccurate. Not only does the extrapola-

tion not exactly follow the physical predictions, but the lower limit of decay of

−ωrF GM
is inaccurate for shorter length scales. A more precise method would use

all eigenvalues of the system, and identify the physically meaningful predictions

by comparing the results of two different runs, one using twice the number of com-

putational nodes as the other. Numerical results can then be identified as these

will occur at different locations in the growth rate plot, whereas physical results
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will remain at the same position along the growth rate curve.

The comparison with field observations has shown that the PEB algorithm

only accurately predicts the development of crescentic bed patterns for brief pe-

riods of time. A careful determination of Amp0 and Ampmax may result in an

improved comparison with reality. Both the determination of Amp0 and Ampmax

are rather arbitrary in the presented study. A value of Amp0 that is dependent

on the pre-existence of different length scales will cause more accurate predictions

over longer periods of time, for instance after the second storm. A more accurate

determination of the value of Ampmax might result in time periods during which

the development of crescentic bed patterns is more accurately described by the

PEB algorithm. However, without further knowledge concerning the amplitude

of the bed patterns at different stages of their development under real world con-

ditions, the determination of a more accurate value of either Amp0 or Ampmax

is very complicated. The monthly bathymetric data collected at Duck are over a

short domain, inhibiting the identification of specific bed patterns. Furthermore,

the frequency at which these measurements are carried out is too low for the ac-

curate determination of the final height of bed patterns.

Finally, the moment in time when Amp0 is applied might be incorrect. It is as-

sumed that at the peak of the storm, all bed patterns are erased, and immediately

afterwards bed patterns start to re-develop. However, crescentic bed patterns

might only develop under more moderate circumstances that occur later, when

the storm has passed. This would mean that the applied reset after each storm
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(Amp0) would occur at a later stage, reducing the number of large length scales

that is currently predicted during the first stages of post-storm development and

possibly making the predictions by the PEB algorithm correspond more closely

with field observations.



5.4 Conclusions

Research concerning the effects of pre-existing bed patterns (presented in chapter

4) have shown that pre-existing bed patterns initially show linear growth or de-

cay, depending on the position of the length scale on the occurring linear growth

rate curve. This understanding is implemented into the PEB algorithm, which

is aimed at including the effects of pre-existing bed patterns into linear stability

model predictions. The algorithm assumes that the amplitudes of all length scales

develop according to the predicted linear growth and decay rates of these length

scales.

A comparison between results from the PEB algorithm and field observations,

as well as similar comparisons using the original linear stability model results and

the physically significant (PSD) developments algorithm have shown that the

PEB algorithm can describe the development of crescentic bed patterns, as was

observed at Duck, at a higher accuracy for certain periods of time than the orig-

inal linear stability results. Predictions made by the PSD algorithm generally

correspond better with field observations than the PEB algorithm results. How-

ever, the PSD algorithm only shows predictions where field observations are most

likely to converge with model predictions, whereas the PEB algorithm gives a

continuous description of the dominant length scale.

The limitations imposed by a linear stability model and the field observations,

mean that the discrepancies between predictions and field observations are gener-

ally significant. Including the effects of pre-existing bed patterns into the model
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predictions of a linear stability analysis results in significantly improved predic-

tions after the third storm ([δλobs., λF GM
]Post storm 3 = 0.37 and [δλobs., λd

]Post storm 3 =

0.18). After the first and second storms, however, the PEB algorithm signifi-

cantly overpredicts the occurring length scale. In particular, the behaviour after

the second storm is different compared to the field observations. This might be

due to the possibly incomplete wipe-out of pre-existing bed patterns during this

storm, whereas the PEB algorithm assumes a complete reset of the system at

that point in time.



Chapter 6

Conclusions and

recommendations

6.1 Answers to research questions

Question 1: How capable is a linear stability analysis in describing the

observed development of crescentic bed patterns under variable wave

forcing?

A linear stability model is used to describe the development of crescentic bed

patterns at Duck. The modelled conditions closely correspond with recorded con-

ditions over a two month period. Field observations of the crescentic bed pattern

length scale over the same period at Duck by van Enckevort et al. [2004] are used

for the comparison with model predictions. The results show that a linear stability

analysis can predict the regeneration of crescentic bars at Duck after storms to a

moderate degree of accuracy (relative error: δλobs., λF GM
=0.44). In line with the

findings of van Enckevort et al. [2004], after storms, longer length scales are pre-
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dicted than in between storms, when wave conditions are mild. Immediately after

a storm, length scales between 500 and 800 m are predicted and can be observed.

In between storm periods, observed and predicted length scales vary between 150

and 400 m.

However, fluctuations in the wave and tidal conditions cause the linear stability

analysis predictions to show a much larger fluctuation than is actually observed.

For each set of wave data, a linear stability analysis predicts the initial development

of bed patterns, starting from an alongshore constant beach profile. Frequently

changing wave conditions and tidal levels, therefore, cause fluctuating predictions

of the bed pattern characteristics. In reality, a much more gradual development

of bed-forms occurs after storms, and changes in the dominant length scale only

occur gradually when wave conditions change more permanently.

Question 2: Can current understanding of the development of cres-

centic bars be applied to improve the implementation of linear stability

analysis predictions?

To overcome the discrepancy between the fluctuating nature of linear stability

analysis predictions and the gradual development of bed patterns in nature, a

physically significant development (PSD) algorithm is developed. This algorithm

can identify the more physically relevant model predictions with respect to growth

rate and consistent length scale. Application of this algorithm to the results of

the linear stability model produces a closer agreement between the predicted and

observed bed patterns occurs (δλobs., λsig.
= 0.29). The PSD algorithm partially

addresses the limitations inherent in a linear stability analysis, however, it cannot
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give continuous predictions over time.

Question 3: How do pre-existing crescentic bed patterns interfere with

the development of crescentic bed patterns?

A non-linear stability analysis is used to investigate the effects of pre-existing bed

patterns on the development of crescentic bed patterns, under constant wave forc-

ing. A wide range of pre-existing bed pattern length scales and amplitudes was

examined, along with two different offshore wave conditions. Results show that

pre-existing bed patterns with a length scale that is close to the dominant length

scale of the undisturbed case (λFGM) will undergo further growth and reach a final

height within a short period of time. Initial length scales that are outside the lin-

ear growth rate curve of the undisturbed development will decrease in prominence

and give rise to crescentic bed patterns with a length scale close to λFGM .

Not only can the finally dominant length scale be related to the linear growth

rate curve for the undisturbed development, also the migration rate and linear

growth and decay rate of pre-existing bed patterns and the finally dominant length

scales correspond to the values from a linear model.

Question 4: To what extent can a linear stability analysis be of use

in describing the development of crescentic bed patterns, when these

bed-forms already exist?

An algorithm developed to implement the knowledge obtained from the investi-

gation of the effects of pre-existing bed patterns is applied to the linear stability

modelling results. This algorithm determines the dominant length scale over time,
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based on the evolution of the amplitude of all length scales according to the com-

plete growth rate curve, including decaying modes. The growth rate curve changes

in time due to variations in the wave and tidal data, causing the amplitude of dif-

ferent length scales to dominate at different moments in time. A comparison of the

outcomes of this algorithm with reality shows that although discrepancies remain

in the overall comparison, significant improvements in the comparison between

model predictions and field observations can be made during certain durations by

implementing this algorithm.



6.2 Conclusion

In summary, we conclude that a linear stability analysis can describe the devel-

opment of crescentic bed patterns for real-world cases with a reasonable degree

of accuracy, but that an algorithm can be useful to overcome limitations of this

modelling technique. The model predictions display fluctuations that are not ob-

served in the field, due to the assumption of an alongshore constant bed profile

under changing wave and tidal conditions. Over the course of this research, two

algorithms have been developed that take into account the effects of both these

fluctuations and the effects of pre-existing bed patterns. Firstly, the physically

significant developments algorithm shows that, by identifying the periods where

significant growth is predicted in combination with a relatively constant bed pat-

tern length scale, better agreement can be achieved between predictions and ob-

servations, for the moments in time identified as significant periods. The second

algorithm takes into account the interaction of pre-existing bed patterns on the de-

velopment of crescentic bed patterns. This algorithm can give predictions for the

entire period with a reasonable degree of accuracy. However, extensive knowledge

of the occurring pre-existing bed patterns after storms, can improve the model

predictions significantly. The results presented in this thesis have shown that a

linear stability model, in combination with an algorithm for the identification of

the more meaningful model results, can be used as a tool for coastal engineers

to predict the development of crescentic bed patterns, and the likelyhood of the

occurrence of rip channels under changing forcing conditions.



6.3 Recommendations for further research

6.3.1 Comparison of linear model predictions with reality

The research presented in this thesis is based on the comparison of a single set

of model runs by a linear stability model with one set of field observations. A

more comprehensive investigation into the capabilities of a linear stability model

in describing real-world conditions accurately would include other field sites. The

available data, as well as the characteristics from this site, should fit the modelling

attempt:

The field data available from the Field Research Facility of the United States

Army Corps of Engineers at Duck is very extensive. A wide array of wave, tidal and

bathymetric data is collected over the past decennia. This makes Duck an ideal

source of data for coastal modelling. In this research only Argus images are used

for the validation of the model predictions. Argus images only reveal the length

scale of the observed bed patterns. Real bathymetric information concerning the

development of the bed patterns could be used for a more extensive comparison

of model predictions with field measurements. For instance, the development in

height could be compared with the predicted growth rate curve. The bathymetric

data at Duck consists of monthly measurements over a 1000 m long stretch of

beach. Both the frequency as well as the length are insufficient for a successful

quantification of crescentic bed pattern growth.

The characteristics of the field site should correspond with the assumed con-

ditions in the model. The model assumes an alongshore constant, open coast and

field data should therefore originate from a site whose conditions could be accu-
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rately described by a linear stability model.

Various processes have been excluded from the modelling attempt. A more

extensive investigation into the effects of these assumptions, could reveal which

processes are critical for a more accurate description of field measurements.

Both the linear and non-linear stability analysis describe the nearshore zone

in 2D. The depth varying processes, such as undertow, are not included. The

effects of these processes are assumed to be limited, however, onshore and offshore

migration of sediment could not be accurately described by this type of model.

Currently, the alongshore average bed profile is fixed in both models, and only

nearshore bed patterns can develop. The exclusion of 3D processes, mean that

alongshore bars would disappear if the bed profile would not be fixed. As a result

of this, bar migration cannot be described by either model. The position of the bar

changes under different wave conditions. During storms, the bar migrates offshore,

while during mild conditions the onshore bar migration occurs. The sparse bathy-

metric measurements at Duck only reveal that limited migration occurs between

the start of the modelled period and the end of the modelled period. However, no

further data is available and the bar could have migrated significantly in between.

Different bar characteristics would result in significant changes to the predicted

crescentic bed patterns [Calvete et al., 2007].

Differences between Morfo55 and Morfo60 results could also be investigated

further. Although differences are limited, a better agreement could be useful for a

more extensive incorporation of findings from the non-linear model in the analysis
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by Morfo60.

A difference between Morfo60 and Morfo55 is that in Morfo60 the phase equa-

tion is excluded from the analysis of the perturbations. It was shown (in Fig.

2.8) that the influence on the growth rate curve is limited to smaller length scales.

However, the accurate inclusion of this equation could give a more correct descrip-

tion of the occurring processes and therefore result in a better correspondence with

reality.

The use of a more comprehensive model would enable us to incorporate more

processes and variables into our modelling attempt. From the inclusion of the

pier, to a variable grain size distribution, and a beach which shows pre-existing

bed patterns.

Finally, refinements in the algorithms and their application could improve the

predictive skills of the linear stability model. Combination of the PEB algorithm

(for the inclusion of pre-existing bed patterns) and the PSD algorithm (for the

identification of the moments in time when model results are most likely to corre-

spond with field observations) might improve the comparison with reality. Also,

a better understanding of the development of the bed patterns during a storm,

might be of interest. It is assumed that all pre-existing bed patterns are wiped-

out during a storm. However, especially after the second storm, strong indications

exist that bed patterns remain, and dominate the subsequent period. This under-

standing could be easily included into the PEB algorithm. However, knowledge

about the size of these pre-existing bed patterns is necessary for the accurate im-
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plementation. Finally, the assumption that the development of new crescentic bed

patterns starts immediately after the peak of the storm, might need refinement.

Still persistent high wave conditions could inhibit the development of crescentic

bars for a longer period of time, until more moderate wave conditions occur.

6.3.2 Comparison of a time-domain model with reality

Limitations that occur when using a linear stability model to investigate the de-

velopment of crescentic bed patterns according to real-world conditions, could be

overcome with the use of a more comprehensive model. Such a model could then

be used to investigate which processes need including for a more accurate descrip-

tion of the development of bed patterns in the nearshore. This study might show

similarities with the research presented in chapter 4, when the influence of pre-

existing bed patterns was investigated. The use of a more comprehensive model

to describe the actual development of crescentic bed patterns in time could reveal

which processes excluded from a linear stability analysis, might be critical for the

accurate description of the development of crescentic bed patterns. The depres-

sion at the pier, tidal variation, as well as pre-existing variability of the alongshore

beach profile could be investigated, in oder to determine their influence on the de-

velopment of crescentic bed patterns.

6.3.3 Shoreface nourishments

Many coastlines across the world are under threat of erosion, and human interfer-

ence is deemed necessary for the preservation of both the beach and the coastal

zone. Shoreface nourishments are a new means of storm protection and erosion
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mitigation in areas where hard defences (such as groins and seawalls) or beach

nourishments are unsuitable. van Leeuwen et al. [2007] investigated the effects

of shoreface nourishments using a linear stability analysis. However, results from

this research suggest that an investigation using a non-linear model, could reveal

both the sheltering effect of the beach behind the shoreface nourishment, and the

influence of this type of human interference on the development of rhythmic fea-

tures, such as crescentic bed patterns. The nourishment could even become part

of the nearshore system, forming a second alongshore bar, which might also give

rise to the development of crescentic bed patterns.
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