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Abstract

TH IS thesis explores a variety of topics in two-dimensional arithmetic geometry, in-
cluding the further development of I. Fesenko'sadèlic analysis and its relations with
rami�cation theory, model-theoretic integration on valued �elds, and Grothendieck
duality on arithmetic surfaces.

I. Fesenko's theories of integration and harmonic analysis for higher dimensional
local �elds are extended to an arbitrary valuation �eld F whose residue �eld is a local
�eld; applications to local zeta integrals are considered.

The integral is extended to F n , where a linear changeof variables formula is proved,
yielding a translation-invariant integral on GL n (F ).

Non-linear changesof variables and Fubini's theorem are then examined. An inter-
esting example is presented in which imperfectness of a positive characteristic local
�eld causesFubini's theorem to unexpectedly fail.

It is explained how the motivic integration theory of E. Hr ushovski and D. Kazh-
dan can be modi�ed to provide a model-theoretic approach to integration on two-
dimensional local �elds. The possible uni�cation of this work with A. Abbes and
T. Saito's rami�cation theory is explored.

Relationships between Fubini's theorem, rami�cation theory, and Riemann-Hurwitz
formulae are established in the setting of curves and surfaces over an algebraically
closed �eld.

A theory of residues for arithmetic surfaces is developed, and the reciprocity law
around a point is established. The residue maps are used to explicitly construct the
dualising sheafof the surface.
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CH A PTER 1

Introduction

1.1 Background, motivation, and brief summary

1.1.1 Zeta and L-functions

Let K be a global �eld; that is, either a number �eld with ring of integers OK , or the
function �eld of a smooth, projective curve C over a �nite �eld. To eachpoint x of C or
prime x of OK , one associatesthe non-archimedean local �eld

K x = Frac cOx ;

and it is now well acceptedthat one ought to study K via the family of thesecomple-
tions:

Q2

BB
BB

BB
BB

R

Q3 Q

Q5

||||||||
Q7

Of course, we have included the completion R of Q at in�nity in our diagram, and in
general we must consider the archimedean places x of a number �eld K , from which
we form archimedean local �elds K x .

The ring of adèlesof K is the restricted product of theselocal �elds; i.e.

AK := f (ax )x 2
Y

x

K x : ax 2 cOx for almost all xg;

where `almost all' means `all but �nitely many', and we ignore this condition at the
in�nite placesif K is a number �eld, for then Ox doesnot exist. The ring of adèlesmay
be easily topologised to become a locally compact, Hausdorf f ring, and one then has
available the powerful tools of the theory of locally compact, abelian groups, including
harmonic analysis and Pontryagin duality . Using thesetools, K. Iwasawa [ Iwa92] and
J.Tate [Tat67] independently proved in the '50s that the zeta function of K ,

� K (s) :=
Y

x

(1 � jk(x)j � s)� 1;

(the product does not include archimedean x), or more generally the twist of the zeta
function by a Hecke character, has a meromorphic continuation to the entire complex
plane and satis�es a functional equation which relates � K (s) to � K (1 � s) in terms of
arithmetic and geometric data such asthe discriminant and genus.

1



CH A PTER 1: IN TRODUCTION

Of course, these results on � K were already known. In the case of curves over
global �elds, they are due to E. Artin, F. K. Schmidt, and O. Teichmüller (see[Roq02]
[Roq04] [Roq06] for a historical survey); for number �elds, E. Hecke. However , the
Tate-Iwasawa method is notable not only for its elegance,ef�ciency (Hecke's original
proof for twisted zeta functions of number �elds, using higher dimensional theta func-
tions, and described in [Neu99], is very technical) and uni�cation of the geometric and
arithmetic worlds, but also for essentially providing the foundation of the Langlands
programme: it establishesfor the algebraic group GL 1 the otherwise conjectural and
mysterious Langlands correspondence.

The Hasse-Weil zeta function � X may be de�ned for an arbitrary schemeX of �nite
type by

� X (s) =
Y

x2 X 0

(1 � jk(x)j � s)� 1;

where x runs over the closed points of X . This in�nite product converges for < (s) >
dim X , and thereby de�nes an analytic function on that half-plane. If X is a curve over
a �nite �eld, or X = SpecOK with K a number �eld, then we recover the aforemen-
tioned � K . So long as X is regular, � X is conjectured to have a meromorphic continu-
ation to the entire complex plane, and to satisfy a precisefunctional equation, formu-
lated by J.-P. Serre [Ser65], which relates� X (s) to � X (dim X � s) in terms of arithmetic
and geometric invariants of X .

Schemesof �nite type are either geometric or arithmetic. The �rst are varieties over
a �nite �eld, while the secondare models over OK of a variety over a number �eld K .
For example, an arithmetic surface X can be obtained by starting with a curve over Q,
removing denominators in the equations de�ning the curve, and then allowing these
equations to de�ne curves X p over Fp for all primes p, simply by reducing the coef�-
cients of the equation; X should be imagined as the family of curves (X p)p, together
with the original curve over Q.

When X is a smooth, projective variety over a �nite �eld (the geometric case),then
Serre's conjectures follow from Weil's conjectures, proved by A. Grothendieck,
P. Deligne, and A. Weil using the beautiful theory of étale cohomology. However , it
is here that the arithmetic and geometric worlds part. The tools of étale cohomology
fail to apply properly to arithmetic varieties, for various mathematical and metamath-
ematical reasons.Establishing Serre's conjecturesfor the zeta function of an arithmetic
variety is perhaps the most signi�cant open problem in arithmetic geometry.

The zeta function � X even of an arithmetic surface X is a mysterious object. In fact,
since

� X (s) =
Y

p

� X p (s);

this zeta function encodesnot only the geometric data of every reduction X p, but also
the arithmetic structureof how the reductions X p vary with p. It is astonishing that each
� X p satis�es a functional equation relating s to 1 � s, while the conjectural functional
equation for � relatess to 2 � s. If the generic �br e of X over the number �eld K is an
elliptic curve E, then

� X (s) �
� K (s)� K (s � 1)

L E (s)
;

where L E (s) is the L-function of E and � means `equal up to some less interesting
factors'. The study of the main conjectural properties of L E thus becomesequivalent
to the investigation of � X .

2



CH A PTER 1: IN TRODUCTION

1.1.2 Two-dimensional local �elds

I was once asked, in responseto a description of my research, “Why two?”, to which
I replied “Because it is smaller than three, but bigger than one.”. My interlocutor re-
ceived this with great delight. Flippancy aside, I ought at least to justify the title of this
thesis. Many new problems appear when passing from one-dimensional arithmetic ge-
ometry, which is the study of number �elds, to the caseof arithmetic surfaces,which
is dimension two. In climbing then to dimension three, similar, not new, but similar,
problems reoccur. Undoubtedly , if we master arithmetic surfacesthen we shall under-
stand how to generaliseour techniques to higher dimensional arithmetic varieties. So
we shall often focus on arithmetic surfacesfor the sakeof concreteness.

A two-dimensionallocal �eld is a complete, discrete valuation �eld F whose residue
�eld F is a usual local �eld (which can be a called a one-dimensional local �eld). The
reader who harbours the slightest doubt toward our arguments in the previous para-
graph should now formulate for himself the de�nition of an n-dimensional local �eld.
The simplest example of a two-dimensional local �eld is Qp(( t)) with residue �eld Qp.

Justas local �elds are used to study the local properties of global �elds,
two-dimensional local �elds may be used to study two-dimensional schemes,as we
now explain. Begin with a two-dimensional, domain A which is �nitely generated
over Z, with �elds of fractions F . Let 0 C p C m C A be a chain of primes in A and
consider the following sequenceof localisations and completions:

A  Am  cAm  
�

cAm

�

p0
 

\�
cAm

�

p0
 

�
\�
cAm

�

p0

�

0
= Frac

�
\�
cAm

�

p0

�

k k
Am;p Fm;p

which we now explain in greater detail. It follows from excellenceof A that p0 := p cAm

is a radical ideal of cAm; we then localise and complete at p0, and again use excellence
to deduce that 0 is a radical ideal in the resulting ring, i.e. A m;p is reduced. The total
�eld of fractions Fm;p is therefore isomorphic to a �nite dir ect sum of �elds, and eachis
a two-dimensional local �eld.

Geometrically then, let X be a two-dimension schemeof �nite type (i.e. a surface
over a �nite �eld, or an arithmetic surface). Fix a closed point x 2 X , and a curve
(= irr educible, one-dimensional subscheme)y containing x. Carrying out the above
procedure, with A = OX ;x and p being the local equation for y at x, we obtain a �nite
dir ect sum of two-dimensional local �elds Fx;y . Two-dimensional adèlic theory aims to
study X via the family (Fx;y )x;y . Chapter 7 is an adèlic study of Grothendieck duality
of an arithmetic surface over its base; the more familiar methods using cohomology
groups are replaced by explicit calculations involving two-dimensional local �elds.

Mor eover, just as one-dimensional local �elds allowed us to simultaneouslystudy
both number �elds and curves over �nite �elds, we hope that two-dimensional adèlic
theory can give a uniform approach to arithmetic and geometric surfaces.

1.1.3 Integration on two-dimensional local �elds

We may now explain the main content of this thesis: integration on two-dimensional
local �elds. Since the Tate-Iwasawa method allows us to so rapidly deduce the main
properties of zeta functions in dimension one, but the zeta function of an arithmetic
surface remains so perplexing, it is natural to ask if the Tate-Iwasawa method can be
extended. S.Bloch, K. Kato, A. Parshin, and J.Tate have all dreamt of such a theory;
we quote Parshin:

3
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“ For a long time the author has beenadvocating the following:

Problem. Extend Tate-Iwasawa's analytic method to higher dimensions.

The higher adèleswere intr oduced exactly for this purpose.

Problem. Develop ameasuretheory and harmonic analysis on n-dimensional
local �elds.

Note that n-dimensional local �elds are not locally compact topological
spacesfor n > 1 and by Weil's theorem the existenceof the Haar measure
on a topological group implies its locally compactness.”

– A. Parshin, Higher dimensionallocal�elds andL-functions, in [FK00]:

As Parshin observes, two-dimensional local �elds are not locally compact (in any
reasonabletopology), and therefore the powerful theory of harmonic analysis which
Tate and Iwasawa used is no longer available. This thesis contributes towards the de-
velopment of a suitable replacement.

I. Fesenko[Fes03] [Fes05] [Fes06] was the �rst to seriously develop theories of inte-
gration and harmonic analysis on higher-dimensional local �elds, and there was later
work by H. Kim and K.-H. Lee [KL04] [KL05]. Chapter 2 �rst presentsmy reinterpr e-
tation and generalisation of Fesenko'slocal theories, and this is then used to study zeta
functions on two-dimensional local �elds.

1.1.4 Non-commutative theory

In the study a global �eld K , it is now understood that a great deal of arithmetic infor -
mation is contained not only in the adèle ring AK and the idèle group A�

K , but also in
G(AK ), where G is a (suitable) algebraic group over K . In stepping from AK to G(AK )
we will almost always �nd ourselves in the non-commutative world, and the old tools
of harmonic analysis must be replaced by those of representation theory.

The most immediate non-commutative generalisation of Tate-Iwasasatheory is due
to R. Godement and H. Jacquet [GJ72], who proved that the L-function L(� ; s) as-
sociated to an automorphic, cuspidal representation � of GL n (AK ) has a meromor-
phic continuation to the whole complex plane and satis�es the functional equation
L(� ; s) = "(� ; s)L (e� ; 1 � s). According to Langlands' conjectures, this L -function is
nothing other than the L-function associatedto a Galois representation of K .

To generalise Godement and Jacquet's work, the representation theory of p-adic
groups, and all other aspectsof the Langlands programme to higher dimensions, a
necessary�rst step is to extend the integration theory on a higher dimensional local
�eld F to produce a translation invariant integral on G(F ), with G an algebraic group.
This hasbeenpreviously studied by Kim and Lee [KL04] [KL05] for GL n and SL n , and
is the main motivation of chapters 3 and 4.

In chapter 3, the integration theory of chapter 2 is extended to GL n (F ). This requires
proving a linear change of variables formula for integrals on F n . Chapter 4 then con-
siders certain non-linear changesof variables which might appear when generalising
the theory to other algebraic groups.

1.1.5 Model theory of valued �elds: a historical overview

The art of using model theory to study valued �elds was initiated by J. Ax and
S. Kochen [AK65a] [AK65b] [AK66] [Ax67] and Y. Ershov. Ax and Kochen used el-
ementary ultrapr oduct methods to study Artin's conjecture on solutions to homoge-
neous equations. A �eld F is said to be C2 if and only if every homogeneousequation
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in F of degree d in > d2 variables has a zero in F . The �eld Fp(( t)) is C2, and Artin
conjectured that the samewas true for Qp. If (Ap)p2 P is a collection of non-empty sets
indexed by an in�nite set P, and U is a non-principal ultra�lter on P, recall that the
ultraproductof the (Ap)p with respectto U is

Y

p2 I

Ap

,

U =
Y

p2 I

Ap

,

� ;

where � denotes the equivalence relation

(ap)p � (a0
p)p , f p 2 P : ap = a0

pg 2 U:

If eachAp has some additional structure (e.g is a ring, group, etc. or is equipped with
an order, valuation, etc), then the same will usually be true of the ultrapr oduct. Ax
and Kochen took an ultrapr oduct U on the set of rational primes, and proved that the
valued �elds

Y

p

Qp

,

U;
Y

p

Fp(( t))

,

U

are isomorphic. One may then appeal to �oš' theorem [BS69, 5.§2], which states that
an elementary statement concerning the structuresA p is true in the ultrapr oduct if and
only it is true for almost all p, where `almost all' means`on a set belonging to U'. Since
the notion of `being C2 for a �xed d' canbe expressedby an elementary statement, they
deduce that, for any �xed degreed, there is P(d) > 0 such that for all primes p > P(d),
any homogeneousequation in Qp with > d2 variables hasa zero.

The next history of interest to us is the quanti�er elimination result of A. Macintyr e
[Mac76] for the p-adics. Macintyr e studied Qp as a model of the language L Mac which
now bears his name, which is the language of rings equipped with additional unary
predicates (Pn )n� 2 denoting the set of n th powers. He proved that this language is
suf�cient to eliminate quanti�ers in the theory of Qp. The power of Macintyr e's result is
that it provides explicit information about the de�nable subsetsof Qp. J.Denef [Den84]
extended this study by proving a cell decomposition result, giving even further insight
into the structure of such sets,and used it to show that the the Igusa local zeta function

� Ig(f ; s) =
Z

Zn
p

jf (x)js dx

is a rational function of p� s. Here f 2 Zp[X 1; : : : ; X n ], j � j denotes the p-adic absolute
value, and dx is a Haar measure on Qn

p .
This rationality had previously beenestablishedby J.Igusa (see[ Igu00] for the proof)

using the resolution of singularities of p-adic manifolds. The importance of Igusa's
result lies in the following interpr etation. Letting N m denote the number of zerosof f in
(Zp=pmZp)n , it had been conjectured by Z. Borevich and I.Shafarevich [BS66, 1.§5.ex9]
that the associatedPoincaréseries

P(T) =
1X

m=1

NmTm

was a rational function of T; but straightforwar d manipulations reveal that this is the
caseif and only the local zeta function � Ig(f ; s) is a rational function of p� s.

A remaining problem with Igusa's local zeta function was to suppose that f had Z
coef�cients and study the behaviour of the zeta functions � Ig,p(f ; s) as p varies. The
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�rst results in this dir ection were obtained by J.Pas[Pas89], who generalised the quan-
ti�er elimination and cell-decomposition results for Qp to the caseof a Henselian val-
uation �eld of residue characteristic zero. Pasapplied this cell-decomposition to the
ultrapr oduct

Q
p Qp=U and used �oš' theorem to describe the Denef-type decomposi-

tions required to evaluate � Ig,p(f ; s) in a manner independent of p (at least, for p large
enough). The �nal conclusion was that the degreesof the denominators and numera-
tors of the � Ig,p(f ; s) (asrational functions in p� s) were bounded independently of p.

A stronger uniformity result which one might expect to be true would be that the
� Ig,p(f ; s) would even be uniformly rational; that is, that there exists a rational function
Q(T) 2 Q(T) such that � Ig,p(f ; s) = Q(p� s) for p suf�ciently large. This, however, is
false, and we offer the following `explanation'. The structure of � Ig,p(f ; s) is essentially
encoding rami�cation information about singularities related to f , or about the action
of Frobenius on certain cohomology groups with varying p; but the arithmetic aspectof
this data meansthat it is controlled not by polynomials, but rather by congruences.To
give a speci�c example, take f (X ) = X 2 + 1; if � Ig,p(f ; s) were to be uniformly rational
for large p, then it would follow that there exists Q0(T) 2 Q(T) such that

Q0(p) = # f x 2 Fp : x2 + 1 = 0g

for p � 0. But the number of solutions to X 2 + 1 = 0 in Fp is determined by p mod 4,
so this is absurd.

Motivic integration has rapidly developed since it was intr oduced by M. Kontsevich
in a lecture at Orsay in 1995,and has beensubjected to several reincarnations due �rst
to R.Cluckers, J.Denef, and F. Loeser[CL08] [DL98] [DL01] [DL02b] [DL02a], and then
by E. Hr ushovski and D. Kazhdan [HK06] [HK08]. The Cluckers-Denef-Loesertheory
basically gives a geometric interpr etation and uni�cation of integration over dif ferent
p-adic �elds. WhereasPas deduced his uniformity result for Igusa zeta functions at
dif ferent p via cell-decomposition in residue characteristic zero, the fundamental idea
of motivic integration is that it is not only more ef�cient, but even more insightful, to
dir ectly integrate in residue characteristic zero.

Hr ushovski and Kazhdan developed their theory of motivic integration partly in or-
der to obtain uniformity results for p-adic integrals over towers of rami�ed extensions
of Qp, which was lacking from the Cluckers-Denef-Loeser theory. Their theory is an
incredible sophistication and formalisation of the Ax-Kochen-Ershov principle, which
states that the entire theory of a valued �eld of residue characteristic zero reduces to
the theory of the value group and residue �eld.

Hr ushovski and Kazhdan only brie�y mention the problem of integration on two-
dimensional local �elds [HK06, §9.4], and I have struggled to understand their long
and dif �cult paper for sometime (in fact, Ivan gave me a copy in my PhD interview!).
The major dif �culty is that in usual motivic integration, the values of the integrals are
varieties over the residue �eld, but in two-dimensional integration we wish to obtain
Haar measurable sets over the residue �eld. With the kind help of Hr ushovksi and
Kazhdan during a trip a Jerusalem and subsequent ponderings while at Harvar d, the
main idea has becomeclear in recent months, and chapter 5 explains in detail how to
apply their model theoretic techniques to two-dimensional integration. Theseresults
are only valid for two-dimensional local �elds of residue characteristic zero, such as
Qp(( t)) ; extending this theory, as well as motivic integration, to �nite residue charac-
teristic is considered in subsection 6.1.3.

6
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1.1.6 Rami�cation

One dimensional rami�cation theory, in which one studies the rami�cation properties
of extensions of global and (one-dimensional) local �elds, is a beautiful and complete
theory (good referencesare [FV02] [Ser79] [Neu99]). Mor eover, the passagefrom the
local to the global is well understood, with global invariants typically expressedas
products of the corresponding local invariants.

Extending the rami�cation theory to higher dimensional local �elds, or, more gen-
erally, complete discrete valuation �elds with imperfect residue �eld was, for a long
time, a signi�cant open problem. A theory has now beendeveloped by A. Abbes and
T. Saito [AS02] [AS03] using rigid geometry; some alternative approachesare due to
J.Borger [Bor04b] [Bor04a], K. Kato [Kat89] [Kat94], and I. Zhukov [Zhu00] [Zhu03].
Subsection6.1.2provides a summary of Abbes and Saito's theory.

However , the global situation in higher dimensions remains mysterious, even for
algebraic surfaces over a �nite �eld. The Grothendieck-Ogg-Shafarevich formula for
a curve expressesglobal information (the Euler characteristic of an `-adic sheaf on a
dense open subset of the curve) in terms of the Euler characteristic of the curve and
local rami�cation data. An open problem which has attracted many of the best arith-
metic geometersincluding S.Bloch, P. Deligne, and K. Kato is that of �nding a higher-
dimensional generalisation. For arithmetic surfaces,partial results have beenobtained
by Saito[Sai91] for `-adic sheavesof dimension 1, using abelian rami�cation theory and
two-dimensional class�eld theory, and by Abbes [Abb00], using the rami�cation the-
ory he developed with Saito. Chapter 6 studies the Riemann-Hurwitz formula, which
is a special caseof Grothendieck-Ogg-Shafarevich, and investigates to what extent in-
tegration theory can be useful in understanding rami�cation.

In dimension one, the theories of Tate-Iwasawa and Godement-Jacquetcapture ram-
i�cation data such as the conductor using the properties of local zeta functions, and
this was part of the motivation for studying the two-dimensional local zeta functions
in chapter 2.

1.2 The writing and reading of this thesis

A few wor ds on this thesis' history may be useful. The majority of my �rst year as a
PhD student was occupied by the study of class �eld theory, automorphic represen-
tations, and model theory, the reading of various of Fesenko's papers, and research
into higher-dimensional integration. This culminated in the writing of three papers
[Mor08d] [Mor08c] [Mor08b], which, with only minor modi�cations (removal of intr o-
ductions and summaries of earlier work, etc.) form chapters 2, 3, and 4.

I spent a signi�cant portion of my secondyear learning Grothendieck-style algebraic
geometry and motivic integration. Excluding section 6.1on rami�cation, I wr ote most
of chapter 6 (as the paper [Mor08a]) during this period, while I was wondering about
the importance of integration theory.

In my thir d year, thanks to the Cecil King Travel Scholarship, I visited the Insti-
tut des Hautes Études Scienti�ques, Paris, for one month, the Hebrew University of
Jerusalem for two weeks, and Harvar d University , Boston, for six weeks. While at the
IHÉS, C. Soulé suggested,asFesenkohad earlier, that an adèlic interpr etation of dual-
ity was an interesting goal; although he had in mind `-adic duality , I was interested in
Grothendieck duality at the time and this work is contained in chapter 7, which was
not written in its �nal form until May 2009,initially as the article [Mor09].

Chapter 5 on model theoretic integration and most of section 6.1werewritten during
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Juneand July 2009after, as I have already mentioned, a long personal battle with the
subject.

The chapters were initially written as separate papers, and this will undoubtedly
be clear to the astute reader. However , wishing not to frustrate the reader, I have re-
moved duplicated material asfar asis possible while simultaneously leaving the chap-
ters largely independent. I hope that the reader notices a variation of mathematical
maturity between chapters 2, 3, 4, 6 (minus 6.1) and chapters 5, 7, as they were written
at least a year apart.

I would suggest to the reader that he begins with the intr oduction (where else?),
including the summaries of the chapters and the basicsof higher dimensional integra-
tion. Chapters 2, 3 and 4 could then be looked at brie�y , to gain some intuition for
two-dimensional integration. Sections 5.1, 6.1, 7.1 are quite discursive and therefore
may be more enjoyable to read. The rest of chapter 5 is then probably only accessible
to model theorists (sorry); the restof chapters 6 and 7 are independent of the restof the
thesis (and of each other), and have a �avour closer to `normal' algebraic/arithmetic
geometry.

1.3 Detailed summaries

1.3.1 Chapter 2: Integration on valuation �elds over local �elds

Let F be a valuation �eld with value group � and ring of integers OF , whose residue
�eld F is a non-discrete, locally compact �eld (i.e. a local �eld: R, C, or
non-archimedean). Given a Haar integrable function f : F ! C, we consider the
lift, denoted f 0;0, of f to OF by the residue map, aswell asthe functions of F obtained
by translating and scaling

x 7! f 0;0(�x + a)

for a 2 F , � 2 F� . We work with the spacespanned by these function as f varies.
A simple linear independence result (proposition 2.1.5) is key to proving that an inte-
gral taking values in C� (the complex group algebra of � ), under which f 0;0 has valueR

F f (u) du, is well de�ned.
The integration yields a translation invariant measure, explained in section 2.2. For

example, in the caseof C(( t)) , the set Stn + tn+1 C[[t]] is given measure � (S)X n in
R[X ; X � 1], where S is a Lebesguemeasurablesubsetof C of �nite measure � (S).

In section 2.3, the �rst elements of a theory of harmonic analysis are presented for
�elds which are self-dual in a certain sense. For this we must enlarge our space of
integrable functions by allowing twists by a certain collection of additive characters;
the central result is that the integral hasa uniquetranslation-invariant extension to this
larger classof functions. A Fourier transform may then be de�ned in the usual way; a
double transform formula is proved.

The short section 2.4 explains integration on the multiplicative group of F . Here

we generalise the relationship d
�
x = jxj � 1d+ x between the multiplicative and additive

Haar measuresof a local �eld.
If F is a higher dimensional local �eld then the main results of the aforementioned

sectionsreduce to results of Fesenkoin [Fes03] and [Fes06]. However , the results here
are both more general and abstract; in particular , if F is archimedean then we provide
proofs of claims in [Fes03] regarding higher dimensional archimedean local �elds, and
whereasthosepapers work with complete �elds, we require no topological conditions.
This more abstract approach to the integration theory appears to be powerful; we will
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use it to deduce the existenceof a translation invariant integral on GLn (F ) in chapter 3
and prove Fubini's theorem for certain repeatedintegrals over F � F in chapter 4.

In the �nal sectionsof the chapter, we consider various zeta integrals. In section 2.5,
parts of the theory of local zeta integrals over F are lifted to F . In doing so we are led
to consider certain diver gent integrals related to quantum �eld theory and we suggest
a method of obtaining epsilon constants from such integrals.

We then consider zeta integrals over the local �eld F ; a `two-dimensional' Fourier
transform f 7! f � is de�ned (following Weil [Wei95] and [Fes03] in the non-archimedean
case)and we prove, following the approachesof Tate and Weil, that it leads to a local
functional equation, with appropriate epsilon factor, with respectto s goesto 2 � s:

Z (g� ; ! � 1; 2 � s) = " � (! ; s)Z (g; ! ; s):

See proposition 2.6.17 for precise statements. After explicitly calculating some
� -transforms we use this functional equation to calculate the � -epsilon factors for all
quasi-characters! . Theseresults on zeta integrals and epsilon factors are then used to
prove that � is an automorphism of the Schwartz-Bruhat spaceS(F ), which, though
important, appears not to have been considered before. When F is archimedean we
de�ne a new � -transform and consider someexamples.

In section 2.7, zeta integrals over the two-dimensional local �eld F are considered
following [Fes03]. Lacking a measure theory on the topological K -group K top

2 (F ) (the
appropriate object for class�eld theory of F ; see[Fes91]), a zeta integral over (a sub-
group of) F� � F� is considered:

� (f ; �; s) =
Z F� � F�

f (x; y) � � t(x; y)jt(x; y)js charT (x; y) d
�
xd

�
y:

Meromorphic continuation and functional equation are established for certain `tame
enough' quasi-characters; in these cases the functional equation, and explicit L-
functions and epsilon factors, follow from properties of the � -transform on F . Our
results are compared with [Fes03].

The advantagesof our new approach to the integration theory are apparent in these
chapters on local zeta integrals. Our approach is to lift known results up from the local
�eld F , rather than try to generalise the proof for a local �eld to the two-dimensional
�eld. For example, we therefore immediately know that many of our local zeta func-
tions have meromorphic continuation. Appar ently complicated integrals on F reduce
to familiar integrals over F wheremanipulations are easier;for example, we may work
at the level of F even though we are calculating epsilon factors for two-dimensionalzeta
integrals. The weaknessis that it doesnot seemto allow much wild rami�cation infor -
mation to be obtained.

The appendices are used to discuss some results which would otherwise interr upt
the chapter. Firstly, the set-theoretic manipulations in [Fes03] (used to prove that the
measure is well-de�ned) are reproved here more abstractly. Secondly we discusswhat
we mean by a holomorphic function taking values in a complex vector space;this al-
lows us to discussmeromorphic continuation of our zeta functions.

1.3.2 Chapter 3: Integration on product spacesand GL n of a valuation �eld
over a local �eld

As discussed above, to generalise the non-commutative theory of local and global
�elds to higher dimensions, and particularly to generalise Godement-Jacquettheory,
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one must �rst develop a translation-invariant integration theory on GL n of higher di-
mensional local �elds. That is the subjectof this chapter.

F , � , etc. continue to be as in chapter 2. In section 3.1, the integral on F developed
in chapter 3 is extended to F n using repeated integration. So that Fubini's theorem
holds, we consider C(�) -valued functions f on F n such that for any permutation � of
f 1; : : : ; ng the repeatedintegral

Z F

: : :
Z F

f (x1; : : : ; xn ) dx� (1) : : : dx� (n)

is well de�ned, and its value doesnot depend on � ; such a function is called Fubini.
Now supposethat g is aSchwartz-Bruhat function on F

n
; let f be the complex-valued

function on F n which vanishesoff On
F , and satis�es

f (x1; : : : ; xn ) = g(x1; : : : ; xn )

for x1; : : : ; xn 2 OF . f is shown to be Fubini in the secondsection. In proposition 3.2.12
it is shown that if a 2 F and � 2 GL n (F ), then x 7! f (a + � x) is also Fubini and

Z F n

f (a + � x) dx = j det � j � 1
Z F n

f (x) dx (� )

where j � j is an absolute value on F . The main result of the thir d section, theorem
3.2.4, easily follows: there exists a space of Fubini functions L (F n ; GL n ) such that
L (F n ; GL n ) is closed under af�ne changes of variable, with (� ) holding for
f 2 L (F n ; GL n ).

Next, just as in the classical caseof a local �eld, we look at C(�) -valued functions
� on GL n (F ), for which � 7! � (� )j det � j � n belongs to L (F n2

), having identi�ed F n2

with the spaceof n � n matrices over F . This leads to an integral on GL n (F ) which
is left and right translation invariant, and which lifts the Haar integral on GL n (F ) in a
certain sense.

Finally we discussextending the theory to the caseof an arbitrary algebraic group.

1.3.3 Chapter 4: Fubini' s theorem and non-linear changes of variables over
a two-dimensional local �eld

This chapter considersthe issueof Fubini's theorem and non-linear polynomial changes
of variables for integration over a two-dimensional local �eld.

To extend the approach in chapter 3 from GL n to an arbitrary algebraic group it is
necessaryto have a theory of integration on �nite dimensional vector spacesover F
which behaveswell under certain non-linearchangesof variable (for the GL n theory,
linear changesof variable suf�ced). Mor eover, for use in applications, it is essential
that Fubini's theorem concerning repeated integrals is valid. This chapter considers
the problem of establishing whether the equality

Z F Z F

g(x; y � h(x)) dydx =
Z F Z F

g(x; y � h(x)) dxdy

holds for appropriate functions g and polynomials h. Mor eover, the methods used
appear to be suitable for changesof variables much more general than (x; y) 7! (x; y �
h(x)) .

The chapter beginsby describing the action of polynomials on F . Given apolynomial
h 2 OF [X ], and a translated fractional ideal b + tA OF � OF , we show how to write
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f x 2 OF : h(x) 2 b + tA OF g as a �nite disjoint union of translated fractional ideals;
here t is a local parameter of F as a discrete valuation �eld. If a + t cOF is one of
these translated fractional ideals, it is also important to understand the behaviour of
the function

h : a + tcOF ! b+ tA OF :

The impetus of this chapter is conjecture 4.2.1, which we rapidly reduce to the fol-
lowing: if f is a Schwartz-Bruhat function on F � F , f 0 = f 0;0 is the lift of f to F � F ,
and h 2 F [X ] is a polynomial, then surely

Z F Z F

f 0(x; y � h(x)) dydx =
Z F Z F

f 0(x; y � h(x)) dxdy:

In section 4.2 the conjecture is shown to be true if h is linear or if all coef�cients of h
belong to OF .

The technically dif �cult caseof when h contains coef�cients not in OF is taken up
in the next section. Intr oduce a polynomial q 2 F [X ] and integer R < 0 by the three
conditions h(X ) = h(0) + tRq(X ), q 2 OF [X ], and q =2 tOF [X ]. We give explicit
expressionsfor the integral of

RF f 0(x; y � h(x)) dx in terms of the decomposition of
setsof the form f x 2 OF : q(x) 2 b+ t � ROF g; the conjecture easily follows if R = � 1 so
long asq, the image of q in F [X ], is not a purely inseparablepolynomial. When R < � 1
calculations becomedif �cult, and the function y 7!

RF f 0(x; y � h(x)) dx can fail to be
integrable, meaning that the conjecture fails; however, we presentexamplessuggesting
that the spaceof integrable functions could be extended so asto remedy this de�cit.

We then consider the possibility that F has positive characteristic and q is purely
inseparable. When R = � 1 it is shown that

Z F Z F

f 0(x; y � h(x)) dydx =
Z

F

Z

F
f (x; y) dydx

but Z F Z F

f (x; y � h(x)) dxdy = 0:

Soif f hasnon-zero Haar integral over K � K then the conjecture drastically fails. This
fascinating result provides an explicit example to show that the work of Hr ushovski
and Kazhdan really can fail in positive characteristic, and we discuss its relationship
with rami�cation theory.

In the �nal section we summarise the results obtained and discuss possible futur e
work in this dir ection.

1.3.4 Chapter 5: Two-dimensional integration à la Hrushovski-Kazhdan

Here we explain how Hr ushovski and Kazhdan's model theoretic integration theory
can be applied to two-dimensional integration.

The �rst section describesthe main results of the chapter without model theory, for
the reader unversed in the discipline; since it is thoroughly explained there,with moti-
vation, we say no more about it here.

After a section on the possible �rst order languages which can be used to describe
valued �elds, and recalling standard results on which theories admit the elimination
of quanti�ers in their languages, the main content of the chapter begins with section
5.3, in which we analyse de�nable sets in a valued �eld of residue characteristic zero.
We work in a theory of valued �elds which eliminates �eld quanti�ers, and we allow
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arbitrary structure on the residue �eld so that we can later specialiseto the casewhen
the residue �eld is Qp or R, say. In particular , we establish that de�nable setswithout
any topological interior are necessarily contained inside a proper Zariski closed set;
this seemingly technical result has many useful consequences.For example, we use it
to deduce that de�nable functions are smooth away from a proper Zariski closed set.

Wethen recall the notion of V-minimality for a theory of valued �elds, which plays an
important role in [HK06]. Finally, we generalise,from the algebraically closedsituation
to the caseof a two-dimensional local �eld, Hr ushovski and Kazhdan's main decom-
position result which statesthat any de�nable subsetof the valued �eld is isomorphic
to lifts of setsfrom the residue �eld and value group.

1.3.5 Chapter 6: Rami�cation, Fubini' s theorem, and Riemann-Hurwitz for -
mulae

This chapter grew from the author 's attempt to understand better the role of integra-
tion, particular Fubini's theorem, in geometry and rami�cation theory. The �rst section
is really a continuation of the previous chapter. We �rst outline a possible methodol-
ogy for using model theory to understand the rami�cation theory of complete discrete
valuation �elds of Abbes and Saito,and then explain why this gives hope that it will be
possible to unify the Hr ushovksi-Kazhdan integration theory with rami�cation theory,
thereby developing a motivic integration theory which is valid in �nite characteristic.

The main part of the chapter then begins with a section reviewing the concept of an
Euler characteristic for a �rst order structure in model theory. The discussion is purely
algebraic for the bene�t of readersunfamiliar with model theory, and various examples
are given.

Once an Euler characteristic is interpr eted asan integral, it is natural to ask whether
Fubini's theorem holds; that is, whether the order of integration can be interchanged
in a repeated integral. In the second section we consider �nite morphisms between
smooth curves over any algebraically closed �eld, and show that Fubini's theorem is
almost equivalent to the Riemann-Hurwitz formula. Mor e precisely, in characteristic
zero the two are equivalent and so Fubini's theorem is satis�ed, whereasin �nite char-
acteristic the possible presenceof wild rami�cation implies that, for any Euler charac-
teristic, interchanging the order of integration is not always permitted.

Section6.4discussesa notion weaker than the full Fubini property: a so-calledstrong
Euler characteristic [Kra00] [KS00]. We show that over an algebraically closed �eld of
characteristic zero, there is exactly one strong Euler characteristic (over the complex
numbers, this is the usual topological Euler characteristic).

Wethen return to �nite morphisms between algebraic varieties, this time considering
surfaces.Again, Fubini's theorem is related to a Riemann-Hurwitz formula, originally
due to Iversen [Ive70]. Our methods provide a new proof of his result and we discuss
the situation in �nite characteristic.

1.3.6 Chapter 7: An explicit approach to residues on and canonical sheaves
of arithmetic surfaces

This chapter studies arithmetic surfacesusing two-dimensional local �elds associated
to the scheme,and thus further develops the adèlic approach to higher dimensional
algebraic and arithmetic geometry. We study residuesof dif ferential forms and give an
explicit construction of the dualising sheaf. While considerable work on these topics
has been done for varieties over perfect �elds by Lipman, Lomadze, Parshin, Osipov,
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Yekutieli, et al., the arithmetic casehas been largely ignored. The chapter begins with
a discussion of its relation to this earlier work, where we provide extensive references.

In section 7.2 we consider a two-dimensional local �eld F of characteristic zero and
a �xed local �eld K � F . We intr oduce a relative residue map

ResF : 
 cts
F =K ! K ;

where 
 cts
F =K is a suitable spaceof `continuous' relative dif ferential forms. In the case

F �= K (( t)) , this is the usual residue map; but if F is of mixed characteristic, then
our residue map is new (though essentially contained in Fesenko'sadèlic analysis and
Osipov's study of algebraic surfaces- seesubsections7.1.3and 7.1.6). Functoriality of
the residue map is established with respectto a �nite extension F 0=F, i.e.

ResF TrF 0=F = ResF 0 :

In section 7.3we prove the reciprocity law for two-dimensional local rings, justifying
our de�nition of the relative residue map for mixed characteristic �elds. For example,
suppose A is a characteristic zero, two-dimensional, normal, complete local ring with
�nite residue �eld, and �x the ring of integers of a local �eld OK � A. To eachheight
one prime yCA one associatesthe two-dimensional local �eld Frac cAy and thus obtains
a residue map Resy : 
 Frac A=K ! K . We prove

X

y

Resy ! = 0

for all ! 2 
 Frac A=K . The subsequent section restatesthese results in the geometric
language.

Next we turn to the study of the canonical sheaf of an arithmetic surface. In section
7.5we recall various resultsabout local complete intersection curves from aperspective
suitable for our work. Section 7.6 establishesan important local rami�cation result,
generalising a classicalformula for the dif ferent of an extension of local �elds. Let B be
a Noetherian, normal ring, and

A = B [T1; : : : ; Tm ]=hf 1; : : : ; f m i

a normal, complete intersection over B which is a �nitely generatedB -module; assume
that the corresponding extension F=M of fraction �elds is separable. Letting J 2 A be
the determinant of the Jacobianmatrix of f 1; : : : ; f m , we prove that

f x 2 F : TrF =M (xA ) � B g = J � 1A:

In other wor ds, the canonical and dualising sheavesof A=B are the same. The proof
reduces to the casewhen A, B are complete discrete valuation rings with an insepa-
rable residue �eld extension; for more on the rami�cation theory of complete discrete
valuation �elds with imperfect residue �eld, seethe discussion above and references
therein.

Finally, in section 7.7, we use our local residue maps and results on complete in-
tersections to explicitly construct the dualising sheaf of an arithmetic surface. Let
OK be a Dedekind domain of characteristic zero with �nite residue �elds; its �eld
of fractions is K . Let � : X ! S = SpecOK be a �at, surjective, local complete
intersection, with smooth, connected, generic �br e of dimension 1. To each closed
point x 2 X and integral curve y � X containing x, our local residue maps de�ne
Resx;y : 
 1

K (X )=K ! K � (x) (= � (x)-adic completion of K ), and we prove

13
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Theorem 1.3.1. ThecanonicalsheafofX ! S is explicitly givenby, for openU � X ,

! X =S(U) = f ! 2 
 K (X )=K : Resx;y (f ! ) 2 bOK ;� (x) for all x 2 y � U andf 2 OX ;yg

wherex runs overall closedpointsofX insideU andy runs overall curvescontainingx.

1.4 Precisebasics of higher dimensional integration

Having informally discussedthe problem of higher dimensional integration, we should
presenta precisesummary of the basicsof the theory so that the reader knows what is
ahead.

Let F be a valuation �eld with value group � and ring of integers OF , whose residue
�eld F is a (one-dimensional) local �eld. We assumethat the valuation splits, and �x a
splitting t : � ! F� . C(�) denotes the �eld of fractions of the complex group algebra
C� of � ; the basiselement of the group algebra corresponding to  2 � shall be written
asX  rather than as  . We �x a choice of Haar measure on F .

1.4.1 Integration on F

Here we summarise the integration theory which will be developed in sections 2.1and
2.4of chapter 2.

De�nition 1.4.1. For g a function on F taking values in an abelian group A, set

g0 : F ! A

x 7!

(
g(x) x 2 OF

0 otherwise.

Mor e generally, for a 2 F ,  2 � , the lift of g at a;  is the A-valued function on F
de�ned by

ga; (x) =

(
g((x � a)t(�  )) x 2 a + t( )OF

0 otherwise

Note that g0;0 = g0 and ga; (a + t( )x) = g0(x) for all x 2 F .

De�nition 1.4.2. Let L denote the spaceof complex-valued Haar integrable functions
on F . A simplefunction on F is a C(�) -valued function of the form

x 7! ga; (x) X �

for someg 2 L , a 2 F ,  ; � 2 � .
Let L (F ) denote the C(�) spaceof all C(�) -valued functions spanned by the simple

functions; such functions are said to be integrableon F .

Remark 1.4.3. Note that the spaceof integrable functions is the smallest C(�) spaceof
C(�) -valued functions on F with the following properties:

(i) If g 2 L , then g0 2 L (F ).

(ii) If f 2 L (F ) and a 2 F then L (F ) contains x 7! f (x + a).

(iii) If f 2 L (F ) and � 2 F � then L (F ) contains x 7! f (�x ).

14
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In fact, it is clear that if f is simple then for a 2 F and � 2 F � , the functions x 7!
f (x + a) and x 7! f (�x ) are also simple.

The basic result on existenceand properties of an integral will be follows:

Theorem 1.4.4. Thereis auniqueC(�) -linear functional
RF onL (F ) whichsatis�es

(i)
RF lifts theHaar integralon F : for g 2 L ,

Z F

(g0) =
Z

g(u) du;

(ii) Translationinvariance:for f 2 L (F ), a 2 F ,

Z F

f (x + a) dx =
Z F

f (x) dx;

(iii) Compatibilitywith multiplicative structure: for f 2 L (F ), � 2 F � ,

Z F

f (�x ) dx = j� j � 1
Z F

f (x) dx:

Heretheabsolute value of � is de�nedby j� j = j�t (� � (� )) jX � (� ) , andwehaveadoptedthe
customaryintegralnotation

RF (f ) =
RF f (x) dx.

Proof. Seechapter 2, especially proposition 2.1.12and lemma 2.4.1.

Remark 1.4.5. If ga; is the lift of a Haar integrable function, then

Z F

ga; (x) dx =
Z

g(u) du X  :

1.4.2 Integration on F � F

Now we summarise the integration theory for the product spaceF � F . Proofs of this
material may be found for the more general caseof F n in section 3.1of chapter 3.

De�nition 1.4.6. A C(�) -valued function g on F � F is said to be Fubini if and only if
both its repeatedintegrals exist and are equal. That is, we require:

(i) for all x 2 F , the function y 7! g(x; y) is integrable, and then that the function
x 7!

RF g(x; y) dy is also integrable;

(ii) for all y 2 F , the function x 7! g(x; y) is integrable, and then that the function
y 7!

RF g(x; y) dx is also integrable;

(iii)
RF RF g(x; y) dxdy =

RF RF g(x; y) dydx.

Similarly , an integrable complex valued function f on K � K will be called Fubini if
and only if both its repeatedintegrals exist and are equal.

15
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Remark 1.4.7. Recall that the existenceand equality of the repeatedintegrals of a com-
plex valued function on K � K does not imply its integrability on K � K (see e.g.
[Rud87, example 8.9c])which is why we have separately imposed that condition. How-
ever, in our applications we will restrict to well enough behaved functions for this sub-
tle problem to be irr elevant.

Fubini's theorem implies that almost all (in the senseof failing off a set of measure
of zero) the horizontal and vertical sections of any integrable function on K � K are
integrable. Therefore any integrable function on K � K dif fers off a null set from some
Fubini function. However , there is no satisfactory theory of lifting null setsfrom K to
F , so we restrict attention to Fubini functions on K � K .

Any function in the Schwartz-Bruhat spaceof K � K is Fubini; recall that if K is
archimedean theseare the smooth functions of rapid decay at in�nity , and if K is non-
archimedean theseare the locally constant functions of compact support.

Also seeremark 3.1.3.

The main properties of the collection of Fubini functions on F � F are the following:

Proposition 1.4.8. The collectionof Fubini functions on F � F is a C(�) -spacewith the
followingproperties:

(i) If g is Fubini on F � F , thensois (x; y) 7! g(� 1x + a1; � 2y + a2) X  for any ai 2 F ,
� i 2 F� ,  2 � , with repeatedintegral

Z F Z F

g(� 1x + a1;� 2y + a2) X  dxdy

= j� 1j� 1j� 2j� 1
Z F Z F

g(x; y) dxdyX  :

(ii) If f is Fubini on K � K , then

f 0(x; y) :=

(
f (x; y) x; y 2 OF ;

0 otherwise,

is Fubini onF � F , with repeatedintegral

Z F Z F

f 0(x; y) dxdy =
Z

K

Z

K
f (u; v) dudv:

Proof. Seelemma 3.1.5and proposition 3.1.8.

Remark 1.4.9. The proposition implies that if f is Fubini on K � K , a1; a2 2 F ,  1;  2 2
� , then the function g = f (a1 ;a2 );( 1 ; 2 ) of F � F de�ned by

f (a1 ;a2);( 1 ; 2) (a1 + t( 1)x; a2 + t( 2)y) = f 0(x; y)

for all x; y 2 F is Fubini. The function g is said to be the lift of f at (a1; a2); ( 1;  2).
Proposition 1.4.8implies

Z F Z F

g(x; y) dxdy =
Z F Z F

g(x; y) dydx =
Z

K

Z

K
f (u; v) dudvX  1 +  2 :

Also seeremark 3.1.9.
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1.5 Future directions

To �nish the intr oduction, we mention several areas related to this thesis which de-
mand investigation.

1.5.1 Mathematical physics

The �eld R(t), and certain subspacesof R(( t)) , may be identi�ed with spacesof func-
tions. In particular , tR[t] may be identi�ed with a subspaceof the spaceof continuous
paths [0; 1] ! R which vanish at 0 i.e. Wiener space. It would be interesting to under-
stand relations between Wiener measure and the two-dimensional measure.

The Feynman integral is a mysterious tool of mathematical physics which can be
used to make very accurate predictions in quantum �eld theory by computing inte-
grals over certain in�nite-dimensional spacesof paths. Finding a rigor ous mathemat-
ical de�nition of these integrals is a major open problem in mathematical physics; see
[JL00] for discussion of the problems. The archimedean two-dimensional local �eld
C(( t)) contains many subspaces,such as C[t], which may be identi�ed with spacesof
continuous paths in the complex plane, and it is expected that two-dimensional inte-
gration will give new mathematical insights into Feynman's path integral. Evidence
of the relations between quantum �eld theory and the measure on archimedean two-
dimensional local �elds may be found in sections16,18of [Fes06] and example 2.5.6of
chapter 2.

The values of diver gent integrals in quantum �eld theory, after renormalisation, ap-
pear asepsilon factors in our local zeta integrals (example 2.5.6). The duality provided
by a functional equation would provide arithmetic arguments for the values of such
integrals. It would be very interesting to investigate whether this arithmetic value co-
incides with the physical value.

There are relations between the geometric Langlands programme and conformal
�eld theory (see e.g. [Fre07]). Hence suitable physical interpr etations of this work
and its extensionsmay provide insight into problems of �eld theory.

1.5.2 Model-theoretic integration

As discussed in subsection 5.1.4, there are remaining problems with the Hr ushovski-
Kazhdan style integration on two-dimensional local �elds of residuecharacteristiczero.
However , it seemsthat thesedif �culties are closeto being resolved.

A dif ferent idea, which I did not manage to explore during the past three years, is
Fesenko'sidea of understanding higher dimensional integration using nonstandard (in
the model-theoretic sense)techniques. The Haar measureon a locally-compact, abelian
group may be interpr eted as a hyper�nite counting measure [Gor97], and so perhaps
it is possible to interpr et the integral on a two-dimensional local �eld asa nonstandard
limit of Haar measuresin somesense.

1.5.3 Rami�ed zeta integrals

The proof of the functional equation in section 2.7 can surely be extended to a wider
classof functions and characters. In particular there should be a theory for rami�ed
characterswhich encodesinteresting rami�cation data related to the Abbes and Saito
theory.
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1.5.4 Non-linear change of variables and Fubini' s theorem

As discussed above regarding translation invariant integration on algebraic groups
over two-dimensional local �elds, it is important to understand the behaviour of the
integral on F n with respectto non-linear changesof variables and to investigate the va-
lidity of Fubini's theorem. In residue characteristic zero I believe that continued work
using the techniques of chapter 5 will produce all expected results. In �nite residue
characteristic the problem is more mysterious, as proposition 4.4.1shows, and related
to rami�cation theory; hopefully work on the programme outlined in subsection 6.1.3
on uniting integration theory with rami�cation theory will provide insight.

1.5.5 Integration on algebraic groups

Seesection 3.4.

1.5.6 Two-dimensional Langlands

Two-dimensional Langlands, if it exists, is deeply mysterious. Perhaps a study of suit-
able representationsof GL n (F ), with F a two-dimensional local �eld, involving inte-
gration and non-commutative zeta integrals would be useful.

1.5.7 Arithmetic surfaces

Seesubsection 7.1.7.
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Integration on valuation �elds over local �elds

This chapter develops the basic higher dimensional integration theory and harmonic
analysis, and contains applications to two-dimensional local zeta functions.

Notation

Let � be a totally ordered abelian group and F a �eld with a valuation � : F � ! �
with residue �eld F , ring of integers OF and residue map � : OF ! F (also denoted
by an overline). Supposefurther that the valuation is split; that is, there exists a homo-
morphism t : � ! F � such that � � t = id � . The splitting of the valuation induces a
homomorphism � : F � ! F

�
by x 7! xt (� � (x)) (often called the angular component

map). Assume also that � contains a minimal positive element, denoted 1 (this is not
essential,but convenient for many examples).

Setsof the form a + t( )OF are translatedfractionalideals;  is referred to as the height
of the set.

C(�) denotes the �eld of fractions of the complex group algebra C� of � ; the basis
element of the group algebra corresponding to  2 � shall be written asX  rather than
as  . With this notation, X  X � = X  + � . Note that if � is a freeabelian group of �nite
rank n, then C(�) is isomorphic to the rational function �eld C(X 1; : : : ; X n ).

The residue �eld F is assumed to be a non-discrete, locally compact �eld, i.e. a
local �eld. We �x a choice of Haar measure on F ; occasionally, for convenience, we

shall assumethat OF has measure one. The measure on F
�

is chosen to satisfy d
�
x =

jxj � 1d+ x.

These assumptions hold for a higher dimensional local �eld. For basic de�nitions
and properties of such �elds, see[FK00].

Indeed, suppose that F = Fn is a higher dimensional local �eld of dimension n � 2:
we allow the casein which F1 is an archimedean local �eld. If F1 is non-archimedean,
instead of the usual rank n valuation v : F � ! Zn , let � be the n � 1 components of v
corresponding to the �elds Fn ; : : : ; F2; note that v = (� F � � ; � ). If F1 is archimedean,
then F may besimilarly viewed asa valuation �eld with value group Zn� 1 and residue
�eld F1.

The residue �eld of F with respect to � is the local �eld F = F1. If F is non-
archimedean, then the ring of integers OF of F with respect to the rank n valuation
is equal to � � 1(OF ), while the groups of units O�

F with respectto the rank n valuation
is equal to � � 1(O�

F
).
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2.1 Integration on F

In this section we explain the basic theory of integration on F ; a summary of the main
results can be found in subsection 1.4.1. The following de�nition is fundamental:

De�nition 2.1.1.Let f bea function on F taking values in an abelian group A; let a 2 F ,
 2 � . The lift of f at a;  is the A-valued function on F de�ned by

f a; (x) =

(
f ((x � a)t(�  )) x 2 a + t( )OF ;

0 otherwise.

In other wor ds,

f 0;0(x) =

(
f (x) x 2 OF ;

0 otherwise.

and f a; (a + t( )x) = f 0;0(x) for all x.

It is useful to understand how lifted functions behaveon translated fractional ideals:

Lemma 2.1.2. Let f a; bea lifted function asin thede�nition; let b 2 F , � 2 � . Thenfor all x
in OF ,

case� >  :

f a; (b+ t(� )x) =

(
f ((b� a)t(�  )) b 2 a + t( )OF ;

0 otherwise.

case� =  :

f a; (b+ t(� )x) =

(
f ((b� a)t(�  ) + x) b 2 a + t( )OF ;

0 otherwise.

case� <  :

f a; (b+ t(� )x) =

(
f ((b+ t(� )x � a)t(�  )) x 2 (a � b)t(� ) � 1 + t( � � )OF ;

0 otherwise.

In particular, in this �nal case,if x; y 2 OF aresuchthat f a; (b+ t(� )x) andf a; (b+
t(� )y) arenon-zero, thenx = y.

Proof. This follows from the de�nition of a lifted function by dir ect veri�cation.

Let L denote the spaceof complex-valued, Haar integrable functions on F .

Remark 2.1.3.

(i) For a 2 F;  2 � , let L a; denote the spaceof complex valued functions on F of
the form f a; , for f 2 L . Supposea1 + t( 1)OF = a2 + t( 2)OF . Then  1 =  2 and

f a1 ; 1 (x) = f a2 ; 2 (x + a2 � a1) = ga2 ; 2 (x)

where g 2 L is the function g(y) = f (y + (a2 � a1)t(�  2)) . Hence L a1 ; 1 = L a2 ; 2 .

(ii) Given a lifted function f a; and � 2 F , the translated function x 7! f a; (x + � ) is
the lift of f at a � � ; 
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De�nition 2.1.4. For J = a + t( )OF a translated fractional ideal of F , de�ne L (J ) to
be the spaceof complex-valued functions of F of the form f a; , for f 2 L . Intr oduce an
integral on L (J ) by

Z J

: L (J ) ! C; f a; 7!
Z

F
f (u) du:

By remarks 2.1.3and translation invariance of the Haar integral on F , the integral is
well-de�ned (i.e. independent of a;  ).

Proposition 2.1.5. The sum, inside the spaceof all complex-valuedfunctions on F , of the
spacesL (J ), asJ variesoverall translatedfractionalideals,is adirectsum.

Proof. Let J i , for i = 1: : : ; n, be distinct translated fractional ideals, of height  i say.
Supposef i 2 L (J i ) for eachi , with

P
i f i = 0; we may suppose that  1 �  2 � � � � �  n .

Fix a value of i satisfying 1 � i < n. If  i =  n , then J i and Jn are disjoint translated
fractional ideals, and so f i is constantly zero on Jn . Else i <  n , and then the �rst case
of lemma 2.1.2implies that f i is constant on Jn .

Therefore f n = �
P n� 1

i=1 f i is constant on Jn , implying that f n is the lift of a constant
function, and therefore that it is zero (for L contains no other constant function). The
proof now follows by induction.

This linear independence result clearly allows us to extend the
RJ , as J varies over

all translated fractional ideals, to a single functional:

De�nition 2.1.6. Let L (F )C be the spaceof complex-valued functions spanned by L (J )
for all translated fractional ideals J . Let

RF : L (F )C ! C(�) denote the unique linear
map such that if f 2 L (J ) for someJ of height  , then

RF (f ) =
RJ (f ) X  .

L (F )C will be referred to as the spaceof complex-valued, integrablefunctions on F .

Remarks 2.1.3 imply that L (F )C is closed under translation from F and that
RF is

translation invariant. We will of courseusually write
RF f (x) dx in place of

RF (f )

Remark 2.1.7. If A were an arbitrary C-algebra and elements c 2 A were given for
each 2 � , we could de�ne an A-valued linear translation invariant integral on L (F )
by replacing X  by c in the previous de�nition. However , using X  ensurescompat-
ibility of the integral with the multiplicative group F � , in that it implies the existence
of an absolute value with expectedproperties; seelemma 2.4.1.

This phenomenon also appearswhen extending the integration theory to F n , M n (F ),
and GL n (F ); one must take into account the action of GL n (F ) on F n in order to de-
velop a satisfactory theory; seesection 3.4.

Remark 2.1.8. Let us check to what extent L (F )C and
RF depend on the choice of the

splitting t.
Let t0 be another splitting of the valuation: that is, t 0 is a homomorphism from � to

F� with � � t0 = id � . Then there is a homomorphism u : � ! O�
F which satis�es

t( ) = u( )t0( ) for  2 � . Let g 2 L , a 2 F , and  2 � ; let f be the lift of g at a;  with
respect to t, and f 0 the lift of g at a;  with respect to t0. Thus, by de�nition, f and f 0

both vanish off J = a + t( )OF = a + t0( )OF , and for x 2 OF ,

f (a + t( )x) = g(x); f 0(a + t0( )x) = g(x):

Therefore f 0(a + t( )x) = g(u( )
� 1

x) and so
RJ (f 0) = ju( )j

R
g(y) dy = ju( )j

RJ (f ).

21



CH A PTER 2: IN TEGRATION ON VA LUATION FIELDS OVER LOCA L FIELDS

Let
RJ;t 0

(resp.
RF;t 0

) denote the integral over J (resp. F ) with respect to t 0; the

previous paragraph proves that
RJ = ju( )j

RJ;t 0
. Let � : C(�) ! C(�) be the C-

linear �eld automorphism of C(�) given by � (X  ) = ju( )jX  , for  2 � . Then for all
f 2 L (F )C, the identity

Z F

f (x) dx = �

 Z F;t 0

f (x) dx

!

follows.
Sothe integral is well-de�ned up to an automorphism of C(�) .

Regarding absolute values, we have the following attractive result:

Proposition 2.1.9. If f belongsto L (F )C, thensodoesx 7! jf (x)j.

Proof. We may write f =
P n

i=1 f i ; here J i , for i = 1: : : ; n, are distinct translated frac-
tional ideals, of height  i say, and f i 2 L (J i ). We may also assumethat  1 � � � � �  n .

The statement with L in place of L (F )C is true by de�nition of Haar integrability;
hence the statement is true for L (J ), where J is any translated fractional ideal. So if
n = 1 we are done, and we now assumen > 1, proving the result by induction.

In the sameway as in the proof of proposition 2.1.5, eachfunction f i , for 1 � i < n,
is constant on Jn . Let a be any element of Jn . Then the following identities hold:

jf j = j
n� 1X

i =1

f i j +

 

jf j � j
n� 1X

i =1

f i j

!

charJn

= j
n� 1X

i =1

f i j +

 

jf n +
n� 1X

i =1

f i (a)j � j
n� 1X

i =1

f i (a)j

!

charJn

= j
n� 1X

i =1

f i j + jf +
n� 1X

i =1

f i (a)j � j
n� 1X

i =1

f i (a)j

The proof will be complete if we can show that

jf n +
n� 1X

i =1

f i (a)j � j
n� 1X

i =1

f i (a)j (� )

belongs to L (F )C. Write f n = ga; n for some g 2 L ; then the function (� ) is the lift at
a;  n of the Haar integrable function jg +

P n� 1
i=1 f i (a)j � j

P n� 1
i=1 f i (a)j.

Although L (F )C is closed under taking absolute values, the following examples
show that there is someunusual associatedbehaviour, and that there is no clear de�ni-
tion of a `null function' on F :

Example 2.1.10. Intr oduce f 1 = char0;0
f 0g, the characteristic function of t(1)OF , and f 2 =

� 2char0;
S where S is a Haar measurablesubsetof F with measure 1 and  is a positive

element of � . Let f = f 1 + f 2.

(i) Firstly we claim that the following hold:

Z F

jf (x)j dx = 0;
Z F

f (x) dx = � 2X  :
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Indeed, the second identity is immediate from the de�nition of the integral. For
the �rst identity , note that asin the proof of the previous proposition (with n = 2),

jf j = jf 1j + jf 2 + f 1(0)j � jf 1(0)j:

Further, f 1(0) = 1 and the function jf 2 + 1j is identically 1. Sojf j = char0;0
f 0g, from

which the �rst identity follows.

(ii) Secondly, the considerations above imply

Z F

jf (x)j dx =
Z F

jf 1(x)j dx = 0;
Z F

jf (x) � f 1(x)j dx = 2X  :

(iii) Finally, consider the translated function f 0(x) = f (x � a), where a is any element
of F not in OF . Then f 0and f have disjoint support and so

Z F

jf (x) � f 0(x)j dx =
Z F

jf (x)j + jf 0(x)j dx

=
Z F

jf (x)j dx +
Z F

jf 0(x)j dx = 0

by translation invariance of the integral. Also,
RF f (x) � f 0(x) dx = 0. Thus

g = f � f 0 provides an example of a complex-valued integrable function on F
such that

RF jg(x)j dx =
RF g(x) dx = 0, but where the components of g in L (J ),

for all J , are lifts of non-null functions.

As will become apparent in the study of harmonic analysis, it is more natural to
integrate C(�) -valued functions on F than complex-valued ones,sowe de�ne our main
classof functions as follows:

De�nition 2.1.11.A C(�) -valued function on F will be said to be integrableif and only
if it has the form x 7!

P
i f i (x) pi for �nitely many f i 2 L (F )C and pi 2 C(�) . The

integral of such a function is de�ned to be

Z F

f (x) dx =
X

i

Z F

f i (x) dx pi :

This is well de�ned. The C(�) spaceof all such functions will be denoted L (F ); the
integral is a C(�) -linear functional on this space.

In other wor ds, L (F ) = L (F )C 
 C C(�) and the integral is extended in the natural
way. The integrable functions which are complex-valued are precisely L (F )C � L (F ),
so there is no ambiguity in the phrase `complex-valued, integrable function'.

For the sakeof completeness,we summarise this section as follows (also seesubsec-
tion 1.4.1):

Proposition 2.1.12. L (F ) is the smallestC(�) spaceof C(�) -valuedfunctionson F which
containsga; for all g 2 L , a 2 F ,  2 � . There is a (necessarilyunique) C(�) -linear
functional

RF on L (F ) whichsatis�es

Z F

ga; (x) dx =
Z

F
g(u) du X  :

L (F ) is closedundertranslationand
RF is translationinvariant.
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Remark 2.1.13. Examination of the proofs in this section leads to the the following
abstraction of the theory:

Let F 0; � 0; t0; � 0satisfy the sameconditions asF; � ; t; � , except that we do not suppose
F

0
is a local �eld. Let L be an arbitrary �eld, and L 0 an L spaceof L -valued functions

on F
0
, equipped with an L-linear functional I , with the following properties:

(i) L 0 is closed under translation from F
0

and I is translation invariant (i.e. f 2 L 0

and a 2 F
0
implies y 7! f (y + a) is in L 0with image under I equal to I (f )).

(ii) L 0contains no non-zero constant functions.

Let L 0(F 0) be the smallest L (� 0) spaceof L (� 0)-valued functions on F which contains
f a; for f 2 L 0, a 2 F 0,  2 � 0. Then there is a (necessarily) unique L(� 0)-linear func-
tional I F 0

on L 0(F 0) which satis�es I F 0
(f a; ) = I (f ) X  . Further, the pair L 0(F 0); I F 0

satisfy (i) and (ii) with the �eld L(� 0) in place of L .
In particular , supposeF is a threedimensional local �eld, say, with �rst residue �eld

F2 (a two-dimensional local �eld), and F = F1 a local �eld. Then the integral on F
canbe obtained either by lifting the Haar integral to F2 and then (by using this remark)
lifting again to F , or by following the arguments of this section and lifting the Haar
integral dir ectly to F .

This `transitivity' of lifting the integral is also presentin E. Hr ushovski and D. Kazh-
dan's motivic integration theory; see[HK06, §12.2]

2.2 Measure theory

We now produce a measure theory from the integration theory; results of [Fes03] are
recovered and extended.

De�nition 2.2.1. A distinguishedsubsetof F is a set of the form a + t( )� � 1(S), where
a 2 F ,  2 � , and S is a subsetof F of �nite Haar measure.  is said to be the levelof
the set.

Let D denote the set of all distinguished subsetsof F ; let R denote the ring of sets
generated by D (seeappendix 2.A for the de�nition of `ring').

Remark 2.2.2. Note that the characteristic function of a distinguished seta+ t( )� � 1(S)
is precisely the lift of the characteristic function of S at a;  . Proposition 2.1.5proves
that if a1 + t( 1)� � 1(S1) = a2 + t( 2)� � 1(S2), then  1 =  2 and S1 is a translate of S2. In
particular , the level is well de�ned.

Lemma 2.2.3. Let A i = ai + t( i )� � 1(Si ), i = 1; 2, bedistinguishedsetswith non-empty
intersection.

(i) If  1 =  2, thenA1 \ A2 andA1 [ A2 aredistinguishedsetsof level 1.

(ii) If  1 6=  2, thenA1 � A2 if  1 >  2, andA2 � A1 if  2 >  1.

Proof. This is immediate from the de�nition of a distinguished set.

Referring to appendix 2.A, it hasjust beenshown that D is a d-classof sets.By propo-
sition 2.A.9, the characteristic function of any set in R may be written as the dif ference
of two sums, each of characteristic functions of sets in D ; therefore the characteristic
function of any set in R belongs to L (F )C.
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De�nition 2.2.4. De�ne the measure � F (W ) of a set W in R by

� F (W ) =
Z F

charW (x) dx:

By the properties of the integral, � F is a translation-invariant, �nitely additive set
function R ! R� (the real group algebra of � ). For a distinguished set A = a +
t( )� � 1(S), remark 2.2.2implies

� F (A) =
Z F

(charA ) =
Z F

(chara;
S ) = � (S) X  ;

where � denotes our choice of Haar measure on F . The following examples demon-
strate someunusual behaviour of this measure:

Example 2.2.5.

(i) For  2 � , the set t( )OF = t( � 1)� � 1(f 0g) is distinguished, with measure zero.

(ii) Let S be a subsetof F of �nite measure. The set � � 1(F nS) = OF n� � 1(S) belongs
to R and has measure � � (S). Compare this with example 2.1.10

(iii) � F is not countably additive. Indeed, write F asa countable disjoint union of sets
of �nite measure; F =

F
i Si say. Then OF =

F
i � � 1(Si ) has measure zero, whileP

i � F (� � 1(Si )) = 1 .

(iv) Suppose that F = R. Set A2n� 1 = nt (� 1) + � � 1([0; 1=n]) and A2n = nt (� 1) +
� � 1(R n [0; 1=n]) for all natural numbers n. Then � F (A2n� 1) = 1=n, � F (A2n ) =
� 1=n, and

F
i A i =

F
n nt (� 1) + OF = t(� 1)� � 1(N) hasmeasure 0.

The series
P

i � F (A i ) is conditionally convergent in R (i.e. convergent, but not
absolutely convergent). By a theorem of Riemann (seee.g. [Apo74, chapter 8.18]),
there exists, for any real q, a permutation � of N such that

P
i � F (A � (i ) ) converges

to q. But regardlessof the permutation, � F (
F

i A � (i ) ) = 0.

Let us consider a couple of examples in greater detail and give a more explicit de-
scription of the measure:

Example 2.2.6.

(i) Supposethat F is an n-dimensional, non-archimedean, local �eld, with local pa-
rameters t1; : : : ; tn . We view F asa valued �eld over the local �eld F = F1, rather
than over the �nite �eld F0. The results of this section prove the existenceof a
�nitely additive set function � F on the appropriate ring of sets,taking values in
R[X � 1

2 ; : : : ; X � 1
n ], which satis�es

� F (a + t r 1
1 : : : t r n

n OF ) = q� r 1 X r 2
2 : : : X r n

n

for a 2 F and integers r i . Here OF denotes the ring of integers of F with respect
to the rank n valuation, and q is the cardinality of of F0.

However , we have not made use of any topological property of F ; in partic-
ular, this result holds for an arbitrary �eld with value group Zn� 1 and a non-
archimedean local �eld as residue �eld. This measure theory therefore extends
that developed in [Fes03], while also providing proofs of statements in [Fes03]
for the casein which the local �eld is archimedean.

Fesenko also extends his measure to be countably additive under certain hy-
potheses, a result which we will require in the model theoretic study of two-
dimensional integration in section 5.
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(ii) Supposethat F = F (( t)) , the �eld of formal Laurent seriesover F , or F = F (t),
the rational function �eld (here we write t = t(1)). Then a typical distinguished
set has the form

a(t) + Stn + tn+1 F [[t]] (Laurent seriescase)
a(t) + Stn + tn+1 F [t] (rational functions case)

for a(t) 2 F , and S � F of �nite Haar measure. Sucha set has measure � (S)X n ,
where � denotesour choice of Haar measure on F .

2.3 Harmonic analysis on F

Now we develop elementsof a theory of harmonic analysis on F .

De�nition 2.3.1. Supposethat  : F ! S1 is a homomorphism of the additive group
of F into the group of complex numbers of unit modulus. Then  is said to be a good
characterif it is trivial, or if it satis�es the following two conditions:

(i) There exists f 2 � such that  is trivial on t(f)OF , but non-trivial on t(f � 1)OF ; f
is said to be the conductorof  .

(ii) The resulting character  of the additive group of F de�ned by  (x) =  (t(f �
1)x), for x 2 OF , is continuous.

The conductor of the trivial charactermay be said to be �1 . The induced characteron
F as in (ii) will always be denoted  .

The de�nition of a good character is designed to replace the continuity assumption
which would be imposed if F had a suitable topology.

Example 2.3.2. Supposethat F = F (( t)) , the �eld of formal Laurent seriesover F (here
t(1) = t). Let  F be a continuous character of F . Then

P
i ai t i 7!  F (an ) is a good

characterof F of conductor n + 1 and induced character  F .

Recallthat � : F� ! F
�

is the `angular component map', de�ned by � (� ) = �t (� � (� )) .

Lemma 2.3.3. Supposethat  is a goodcharacterof F of conductorf; let � 2 F . Then
x 7!  (�x ) is a goodcharacterof F , with conductorf � � (� ); thecharacterinducedon F by
x 7!  (�x ) is y 7!  (� (� )y) (assuming� 6= 0).

Proof. This is easily checked.

Given  ; � as in the previous lemma we will write  � for the translated character
x 7!  (�x ) (and we employ similar notation for charactersof F ).

Before proceeding,we must make a simple assumption:

Weassumethat anon-trivial goodcharacter existson F .

By the previous lemma we may (and do) assumefurther that  has conductor 1, and
we �x such a character for this section. With this choice of conductor, x 2 OF implies
 (x) =  (x). We will take Fourier transforms of integrable functions g on F with
respectto the character  ; that is, bg(x) =

R
g(y) (xy) dy.
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2.3.1 Extending the integral to twisted functions

Let L (F;  ) denote the C(�) spaceof C(�) -valued functions on F spanned by f  � , for
f 2 L (F ), � 2 F ; taking � = 0 we seethat L (F ) � L (F;  ). Our immediate aim is
proposition 2.3.7, which statesthat the integral on F hasa unique translation invariant
extension to this spaceof functions.

Remark 2.3.4. Such a character certainly exists on a higher local �eld. Indeed, such a
�eld is self-dual: if  ;  1 are good characterswith  non-trivial then there is � 2 F �

such that  (x) =  1(�x ) for all x 2 F . For more details, see[Fes03] section 3.

It is convenient for the following results to write L  (where  2 � ) for the sum of
the spacesL (J ) over all translated fractional ideals of height  ; this sum is dir ect by
proposition 2.1.5. Note that if f 2 L  and a 2 F with � (a) >  then f (x + a) = f (x) for
all x 2 F .

Certain products of an integrable function with a good characterare still integrable:

Lemma 2.3.5. LetJ = a + t( )OF bea translatedfractionalidealand� 2 F . If  = � � (� ),
then � charJ is thelift of  (�a ) � (� ) at a;  ; if  > � � (� ), then � is constantly (�a ) on
J .

Therefore,if  � � � (� ) andf is in L  thenf  � is alsoin L  .

Proof. The identities may be easily veri�ed by evaluating on a + t( )OF . The �nal
statement follows by linearity .

In contrast with the previous lemma we now consider the case < � � (� ):

Lemma 2.3.6. Let � i ;  i be�nitely many(1 � i � m, say)elementsof F; � respectively, and
let f i 2 L  i for eachi . Supposefurther that � (� i ) < �  i for eachi and that

P
i f i  � i is

integrableon F . Then
RF P

i f i (x) � i (x) dx = 0.

Proof. The result is proved by induction on m. Let y 2 t(� � (� m ))OF satisfy  � m (y) 6=
1. The functions

x 7!
X

i

f i (x + y) � i (x + y) =
X

i

 � i (y)f i (x + y) � i (x)

x 7!
X

i

 � m (y)f i (x) � i (x)

are integrable on F , the �rst having integral equal to that of
P

i f i  � i by translation
invariance of

RF . Taking the dif ferenceof the two functions, noting that f m (x + y) =
f m (x), and applying the inductive hypothesis, obtains

Z F X

i

f i (x) � i (x) dx =  am (y)
Z F X

i

f i (x) � i (x) dx;

which completes the proof.

The �rst main result of this section may now be proved:

Proposition 2.3.7.
RF hasa uniqueextensionto a translation-invariant,C(�) -linear func-

tional onL (F;  ).
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Proof. To prove uniqueness, suppose that I is a translation-invariant C(�) -linear func-
tional on L (F;  ) which vanishes on L (F ). We claim that I is everywher e zero; by
linearity it suf�ces to check that I vanishes on f  � for f 2 L  (any  2 � ) and
� 2 F . If  > � � (a), then f  � is integrable by lemma 2.3.5and so I (f  � ) = 0. If
 � � � (� ), then let y 2 t(� � (� ))OF satisfy  � (y) 6= 1; as in lemma 2.3.6the identity
I (f  � ) =  � (y)I (f  � ) follows from translation invariance of I . This completes the
proof of uniqueness.

To prove existence,suppose �rst that f 2 L (F;  ) is complex-valued, and write f =P
i f i  � i , for �nitely many � i 2 F , and f i 2 L  i say. Attempt to de�ne

I (f ) =
X

i :  i �� � (� i )

Z F

f i (x) � i (x) dx:

We claim that this is well-de�ned. Indeed, if f = 0, then function
X

i :  < � � (� i )

f i  � i = �
X

i :  �� � (� i )

f i  � i

lies in L (F ) by lemma 2.3.5. By lemma 2.3.6, the function has integral equal to zero,
and so

0 =
Z F X

i :  �� � (� i )

f i (x) � i (x) dx =
X

i :  �� � (� i )

Z F

f i (x) � i (x) dx:

This proves that I is well-de�ned.
I extendsto L (F;  ) by setting I (

P
j gj X  j ) =

P
j I (gj ) X  j for �nitely many complex-

valued gj in L (F ) and  j in � . Translation invariance of I follows from translation
invariance of

RF .

We shall denote the extension of
RF to L (F;  ) by the samenotation

RF .

Remark 2.3.8. The previous results may be easily modi�ed to prove that there is a
unique extension of

RF to a translation-invariant C(�) -linear function on the space
spanned by f 	 , for f 2 L (F ) and 	 varying over all good characters.

Example 2.3.9. Supposethat F is non-archimedean, with prime � and residue �eld of
cardinality q. Let w = (� F � � ; � ) be the valuation on F with value group Z � � (ordered
lexicographically from the right), with respect to which F has residue �eld Fq. Let
a 2 F ,  2 � , j 2 Z; then

Z F

 a(x) chart ( )� � 1 (� j OF ) (x) dx =

8
>><

>>:

0  < � � (a)
R

� j OF
 (� (a)y) dyX   = � � (a)

RF chart ( )� � 1 (� j OF ) (x) dx  > � � (a)

Supposefurther , for simplicity , that  is trivial on � OF but not on OF , and that the
Haar measure on F has beenchosensuch that OF has measure 1; then

Z

� j OF

 (� (a)y) dy =

(
0 j � � � F (� (a))

q� j j > � � F (� (a))

Therefore
Z F

 a(x) chart ( )� � 1 (� j OF )(x) =

(
0 w(a) < (� j + 1; �  )

q� j X  w(a) � (� j + 1; �  );
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Finally, aschart ( )� � 1 (� j O �
F

) = chart ( )� � 1 (� j OF ) � chart ( )� � 1 (� j +1 OF ) , it follows that

Z F

 a(x) chart ( )� � 1 (� j O �
F

) (x) dx =

8
><

>:

0 w(a) < (� j; �  )

� q� j � 1X  w(a) = (� j; �  )

q� j (1 � q� 1)X  w(a) > (� j; �  )

Compare with the example in [Fes03, §7].

2.3.2 The Fourier transform

Now that we can integrate functions twisted by characters,we may de�ne a Fourier
transform on F :

De�nition 2.3.10. Let f be in L (F;  ). The Fourier transform of f , denoted bf , is the
C(�) -valued function on F de�ned by bf (x) =

RF f (y) (xy) dy.

The Fourier transforms on F and F are related asfollows:

Proposition 2.3.11. Let g beHaar integrableon F , and 2 � , a;b 2 F ; setf = ga;  b, the
productofa lifted function with agoodcharacter. Then

bf =  (ab)bg� b;�   a X 

wherebg is theFouriertransformofg with respectto  .

Proof. By de�nition of the Fourier transform, x 2 F implies

bf (x) =
Z F

ga; (y) ((b+ x)y) dy: (� )

This is zero if  < � � (b + x), i.e. if x =2 � b + t(�  )OF . Conversely, suppose that
x = � b+ t(�  )x0, where x0 2 OF ; then the integrand in (� ) is

ga;  t (�  )x0 =  (t(�  )ax0)ga;  
a;
x0

;

an identity which is easily checkedby evaluating on a + t( )OF . So

bf (x) =  (t(�  )ax0)
Z F

ga; (y) 
a;
x0

(y) dy

=  (t(�  )ax0)bg(x0) X 

=  (a(x + b))bg(x0) X  ;

which completes the proof.

Let S(F;  ) denote the subspaceof L (F;  ) spanned over C(�) by functions of the
form ga;  b, for g a Schwartz-Bruhat function on F ,  2 � , a;b 2 F . Recall that the
Schwartz-Bruhat spaceon F is invariant under the Fourier transform and that there
exists a positive real � such that for any Schwartz-Bruhat function g, Fourier inversion
holds: bbg(x) = �g (� x) for all x 2 F . The following proposition extends theseresults to
F :

Proposition 2.3.12. ThespaceS(F;  ) is invariant under the Fourier transform. For f in

S(F;  ), adoubletransformformulaholds:bbf (x) = �f (� x) for all x 2 F .
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Proof. By linearity it suf�ces to consider the casef = ga;  b, for  2 � , a;b 2 F , and g a
Schwartz-Bruhat function on F . Then bf =  (ab)bg� b;�   aX  belongs to S(F;  ) and so

bbf =  (ab)  (� ba)bbg
� a;

 � bX
�  X  = (bbg)� a;  � b;

by proposition 2.3.11. Apply the inversion formula for g to complete the proof.

Remark 2.3.13.Let us consider the dependenceof the theory on the choiceof character
 ; let  0 be another good character of F . In the interesting caseof a higher local �eld,
self-duality implies that  0 =  � for some � 2 F� ; so we will restrict to this caseand
assumehenceforth  0 =  � . Then L (F;  ) = L (F;  0), where L (F;  0) is de�ned in the
sameway as L (F;  ) but replacing  by  0; further , the uniqueness of the extension of
RF given by proposition 2.3.7shows that this extension doesnot depend on  .

Let f be the conductor of  0, and  0 the induced characterof F ; thus  0(x) =  0(t(f �
1)x) for x 2 OF . By lemma 2.3.3,  0 =  � (� ) , and f = 1 � � (� ).

Let g be Haar integrable on F , and  2 � , a;b 2 F ; set f = ga;  0
b. Let �f denote the

Fourier transform of f with respectto  0; then for y 2 F ,

�f (y) =
Z F

f (x) 0(yx) dx

= \ga;  �b (�y )

=  (�ab )bg� �b; �  (�y ) a(�y ) X  ;

by proposition 2.3.11. Further, y 7! bg� �b; �  (�y ) is the lift of v 7! bg(� (� )v) at � b;�  �
� (� ), an identity easily proved (or seethe proof of lemma 2.4.1below). Also, bg(� (� )v) =
�g(v), where �g is the Fourier transform of g with respect to  

0
, and so the analogue of

proposition 2.3.11follows:

�f =  0(ab)�g� b;�  � � (� )  0
a X  :

For f in S(F;  0) = S(F;  ), the analogue of proposition 2.3.12now follows: ��f =
��g� a;  0

� b X � � (� ) . That is,
��f (x) = � 0f (� x) X f� 1

for all x 2 F , where � 0 is the double transform constant associatedto  0 (seethe para-
graph preceding proposition 2.3.12).

2.4 Integration on F�

In this section, we consider integration over the multiplicative group F � . By analogy
with the caseof a local �eld, we are interested in those functions � of F � for which
x 7! � (x)jxj � 1 is integrable on F , where j � j is a certain modulus de�ned below.

Let j�j = j�j F denote the absolutevalue on F normalised by the condition
R

g(�x ) dx =
j� j � 1

R
g(x) dx for g 2 L , � 2 F� . First we lift this absolute value to F :

Lemma 2.4.1. Let f beaC(�) -valuedintegrablefunction on F and� 2 F � . Thenthescaled
function x 7! f (�x ) alsobelongsto L (F ), and

Z F

f (�x ) dx = j� (� )j � 1X � � (� )
Z F

f (x) dx

(for thede�nition of � referbackto thenotationsintr oducedat thestart of thechapter).
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Proof. By linearity we may assumethat f is the lift of a function from L ; f = ga; say.
Then for all x 2 � � 1(a + t( )OF ),

f (�x ) = g((�x � a)t(�  )) = g(� (� ) (x � � � 1a)t(� (� ) �  ))

So the function x 7! f (�x ) is the lift of the function y 7! g(� (� )y) at � � 1a;  � � (� ).
This has integral

Z

F
g(� (� )y) dy X  � � (� ) = j� (� )j � 1

Z

F
g(y) dy X  X � � (� )

= j� (� )j � 1X � � (� )
Z F

f (x) dx;

asrequired.

Remark 2.4.2. Lemma 2.4.1remains valid if L (F ) is replaced by L (F;  ).

The lemma and remark suggest the follows de�nition:

De�nition 2.4.3.Let � be in F � ; the absolutevalueof � is de�ned to be j� j = j� (� )jX � (� ) .
Let L (F� ;  ) be the set of C(�) -valued functions � on F � for which x 7! � (x)jxj � 1,

a function of F� , may be extended to F to give a function in L (F;  ). The integral of
such a function over F � is de�ned to be

Z F�

� (x) d
�
x =

Z F

� (x)jxj � 1 dx;

where the integrand on the right is really the extension of the function to F .

Remark 2.4.4. There is no ambiguity in the de�nition of the integral over F � , for x 7!
� (x)jxj � 1 can have at most one extension to L (F;  ). This follows from the fact that
L (F;  ) doesnot contain charf 0g.

L (F� ;  ) is a C(�) -space of C(�) -valued functions, and
RF�

is a C(�) -linear func-
tional. Mor eover, the integral is invariant under multiplication in the following sense:

Proposition 2.4.5. If � belongsto L (F � ;  ) and � is in F� , then x 7! � (�x ) belongsto

L (F� ;  ) and
RF�

� (�x ) d
�
x =

RF�
� (x) d

�
x.

Proof. Let x 7! � (x)jxj � 1 be the restriction to F � of f 2 L (F;  ), say. Then x 7!
� (�x )jxj � 1 = j� j� (�x )j�x j � 1 is the restriction to F � of x 7! j� jf (�x ), which belongs to
L (F;  ) by lemma 2.4.1. By the samelemma,

Z F�

� (�x ) d
�
x =

Z F

j� jf (�x ) dx

= j� jj � j � 1
Z F

f (x) dx

=
Z F�

� (x) d
�
x;

asrequired.

Example 2.4.6. We compute a couple of integrals on F � :
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(i) Let g be Haar integrable on F , a 2 F ,  2 � , and assume0 =2 a + t( )OF . Let � be
the restriction of ga; to F� . Then � 2 L (F� ;  ), and

Z F�

� (x) d
�
x = jaj � 1

Z F

ga; (x) dx:

Indeed, x 2 a+ t( )OF implies � (x) = � (a), and sox 7! � (x)jxj � 1 is the restriction
of jaj � 1ga; to F� .

(ii) Let g be Haar integrable on F
�

, and let � be the function on F � which vanishes
off O�

F and satis�es � (x) = g(x) for x 2 O�
F . Then � 2 L (F� ;  ) and

Z F�

� (x) d
�
x =

Z

F
g(x)jxj � 1 dx:

Indeed, let h be the extension of x 7! g(x)jxj � 1 to F de�ned by h(0) = 0. Then h
is Haar integrable on F , and h0;0 2 L (F ) restricts to the function of F � given by
x 7! � (x)jxj � 1.

In this way, the integral on F � lifts the Haar integral on F
�

, just as integral on F
lifts the Haar integral on F .

2.5 Local zeta integrals

In the remainder of this chapter we will discuss(generalisations of) local zeta integrals.
We begin by summarising the main results of local zeta integrals for the local �eld F ;
see[Mor05, chapter I.2]. Let g be a Schwartz-Bruhat function on F , ! a quasi-character
of F

�
, and s complex. The associatedlocal zeta integral on F is

� F (g; ! ; s) =
Z

F
�

g(x)! (x)jxjs d
�
x;

this is well-de�ned (i.e. the integrand is integrable) for < (s) suf�ciently large. As-
sociated to ! there is a meromorphic function L(! ; s), the local L-function, with the
following properties:

(AC) Analytic continuation, with the poles `bounded' by the L-function: for all
Schwartz-Bruhat functions g, � F (g; ! ; s)=L(! ; s), which initially only de�nes a
holomorphic function for < (s) suf�ciently large, in fact hasanalytic continuation
to an entire function

ZF (g; ! ; s)

of s.

(L) `Minimality' of the L-function: there is a Schwartz-Bruhat function g for which

ZF (g; ! ; s) = 1

for all s.

(FE) Functional equation: there is an entire function "(! ; s), such that for all Schwartz-
Bruhat functions g,

ZF (bg; ! � 1; 1 � s) = "(! ; s)ZF (g; ! ; s):

Mor eover, " (! ; s) is of exponential type, i.e. " (! ; s) = aqbs for some complex a
and integer b.
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Having lifted aspects of additive measure, multiplicative measure, and harmonic
analysis from the local �eld F up to F , we now turn to lifting these results for local
zeta integrals. Later, in section 2.7, we will assumethat F is a two-dimensional local
�eld and consider a dif ferent, more arithmetic, local zeta integral. To avoid confusion
between the two we may later refer to those in this section as being one-dimensional;
the terminology is justi�ed by the fact that this section concernslifting the usual (one-
dimensional) zeta integrals on F up to F .

De�nition 2.5.1. For f in S(F;  ), ! : O�
F ! C� a homomorphism, and s complex, the

associated(one-dimensional)localzetaintegral is

� 1d
F (f ; ! ; s) =

Z F�

f (x)! (x)jxjs charO�
F

(x)d
�
x;

assuming that the integrand is integrable on F � .

Remark 2.5.2. The integral is taken over O�
F , instead of the full multiplicative group of

the �eld, becausethis will be more natural in the later study of two-dimensional zeta
integrals.

We will focus on the situation where ! is trivial on 1 + t(1)OF ; that is, there is a
homomorphism ! : F

�
! C� such that ! (x) = ! (x) for all x 2 O�

F . If this induced
homomorphism ! is actually a quasi-character(i.e. if it is continuous), then we will say
that ! is a good(multiplicative) character; just as for additive characters, this imitates a
continuity condition.

Restricting to such tame charactersis a de�nite problem with the current theory. The
dif �cult of twisting additive charactersby rami�ed multiplicative charactersalso ap-
pears in motivic integration; for example, the current theories of motivic Igusa zeta
functions [DL98] and motivic exponential sums [Clu08a] [Clu08b] do not apply to ram-
i�ed characters.

2.5.1 Explicit calculations and analytic continuation

We perform explicit calculations to obtain formulae for local zeta integrals attached to
a good character:

Lemma 2.5.3. Let ! bea goodcharacterof O�
F ; let f = ga;  b bethe product of a lifted

function anda character, where g is Schwartz-Bruhaton F , a;b 2 F ,  2 � . Thenwehave
explicit formulaefor thelocalzetaintegralsin thefollowingcases:

(i) Supposethat � (a) < min(  ; 0); or that 0 < � (a) <  ; or that 0 <  � � (a). Then
f (x)! (x)jxjs charO�

F
(x) = 0 for all x 2 F , s 2 C.

(ii) Suppose0 = � (a) <  . Thenf (x)! (x)jxjs charO�
F

(x) = ! (a)jajsf (x) for all x 2 F ,
s 2 C; thelocalzetaintegral is well-de�nedfor all s andis givenby

� 1d
F (f ; ! ; s) = ! (a)jajs� 1

Z F

f (x) dx:

(iii) Suppose0 =  � � (a). Thenthe localzetaintegral is well-de�nedfor < (s) suf�ciently
large,andis givenby

� 1d
F (f ; ! ; s) =

(
� F (g1 b; ! ; s) if � (b) � 0

0 if � (b) < 0

whereg1 is theSchwartz-Bruhatfunction on F givenby g1(u) = g(u � a).
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Proof. In any of the casesin (i), f vanisheson O�
F ; so f (x) charO�

F
(x) = 0 for all x 2 F .

In case(ii), a + t( )OF is contained in O�
F , and x 2 a + t( )OF implies ! (x)jxjs =

! (a)jajs; this implies that f (x)! (x)jxjs charO�
F

(x) = f (x)! (a)jajs charO�
F

(x) for all x 2

F , s 2 C. Mor eover, for all x 2 F , these results again imply f (x)jxj � 1 = f (x)jaj � 1;

therefore f is integrable over F � , with
RF�

f (x) d
�
x =

RF f (x) dx:
Finally we turn to case(iii). First note that ga; ! j � js� 1 charO�

F
is the lift of g1! j �

js� 1 char
F

� at 0; 0. Now, if < (s) is suf�ciently large then the theory of local zeta integrals
for F implies that g1! j � js� 1 char

F
� is integrable on F ; thus f ! j � js� 1 charO�

F
is the

restriction to F� of (g1! j � js� 1 char
F

� )0;0 b, a function which belong to L (F;  ).
By de�nition of the integral on F � it follows that (for < (s) suf�ciently large) f ! j �

js� 1 charO�
F

belongs to L (F� ;  ), and

Z F�

f (x)! (x)jxjs charO�
F

(x) d
�
x =

Z F

(g1! j � js� 1 char
F

� )0;0(x) b(x)dx

=

8
><

>:

RF (g1! j � js� 1 char
F

� )0;0(x) dx if � (b) > 0
RF (g1! j � js� 1 char

F
�  b)0;0(x) dx if � (b) = 0

0 if � (b) < 0

=

8
><

>:

R
g1(u � a)! (u)jujs� 1 char

F
� (u) du if � (b) > 0

R
g1(u � a)! (u)jujs� 1 char

F
� (u) b(u) du if � (b) = 0

0 if � (b) < 0

=

8
><

>:

� (g1; ! ; s) if � (b) > 0

� (g1 b; ! ; s) if � (b) = 0

0 if � (b) < 0

asrequired.

Remark 2.5.4. Let ! and f = ga;  b be as in the statement of the previous lemma. The
lemma treatsall possible relations between � (a),  , and 0 with the exception of � (a) �
 < 0. There are interesting complications in this case:since f charO�

F
= f (0) charO�

F
,

we wish to calculate

� 1d
F (f ; ! ; s) = f (0)

Z F�

 b(x)! (x)jxj charO�
F

(x) d
�
x:

For example, if  b hasconductor 1 then

 b! j � js charO�
F

= ( b! j � js char
F

� )0;0

and so the zeta integral is formally given by

� 1d
F (f ; ! ; s) = f (0)

Z

F
�

 b(x)! (x)jxjs d
�
x:

If F were �nite then this would bea Gausssum over a �nite �eld, a standard ingredient
of local zeta integrals; with F a local �eld it is unclear how to interpr et this but the
following examplesprovide insight.

Example 2.5.5. SupposeK = F is non-archimedean and consider the formal integral
Z

F
�

 K (x)! (x) d
�
x
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with  K an additive character and ! a multiplicative quasi-character with < (! ) > 0
(recall that this is de�ned by j! (x)j = jxj< (! ) for all x). If n is a suf�ciently small
integer, then we have a convergent integral

Z

w � 1(n)
 K (x)! (x) d

�
x = 0;

wherew is the discretevaluation of F ; sofor n suf�ciently small the value of the integral
Z

f x :w(x)� ng
 K (x)! (x) d

�
x

does not depend on n. It seemsreasonableto adopt this value as the meaning of the

expression
R

F
�  K (x)! (x) d

�
x.

Example 2.5.6. SupposeF = R and we wish to understand the formal integral
Z 1

0
e2� ix dx:

Replacing 2� i by somecomplex � with < (� ) < 0 gives a true integral with value
Z 1

0
e�x dx = � 1=�:

Similarly we have Z 0

�1
e�x dx = 1=�

for < (� ) > 0. This suggeststhat, formally ,
Z

R
e2� ix dx = �

Z 0

1
e2� ix dx +

Z 1

0
e2� ix dx = 0

and Z

R
e2� ix sign(x) dx = �

Z 0

�1
e2� ix dx +

Z 1

0
e2� ix dx = � i=�

where sign(x) is the sign (� ) of x.
The �rst of these integrals is already taken into account by our measure theory: if

F = R((t)) and  is the character de�ned by  (
P

n an tn ) = e2� ia 0 (seeexample 2.3.2),
then  charOF belongs to L (F;  ) and

RF  (x) charOF (x) dx = 0. But  charOF is also
the lift of x 7! e2� xi at 0; 0 so formally

RF  (x) charOF (x) dx =
R

R e2� ix dx.
Suchmanipulations of integrals arecommon in quantum �eld theory (seee.g. [JL00])

and I am grateful to Dr. JormaLouko for discussionsin this subject. That such integrals
appear here further suggestsa possible relation between this theory and Feynman path
integrals. Mor e evidence for such relations may be found in sections 16 and 18 of
[Fes06].

Ignoring the complications causedby this dif �cult casewe may now deduce the �rst
main properties of some local zeta functions. Appendix 2.Bexplains what is meant by
a C(�) -valued holomorphic function.

Proposition 2.5.7. Let ! bea goodcharacterof O�
F , and let f bein S(F;  ); assumethat f

maybewritten asa �nite sumof termsf =
P

i gai ; i
i  bi pi whereeachgai ; i

i  bi is treatedby
oneof thecasesof lemma2.5.3andpi 2 C(�) . Then
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(i) For < (s) suf�ciently large, the integrandof the local zetaintegral � 1d
F (f ; ! ; s) is inte-

grableoverF� andsothelocalzetaintegral is well-de�ned.

(ii) � 1d
F (f ; ! ; s)=L(! ; s) hasentireanalyticcontinuation:that is, thereis aC(�) -valuedholo-

morphicfunctionZ 1
F (f ; ! ; s) onC whichequals� 1

F (f ; ! ; s)=L(! ; s) for < (s) suf�ciently
large.

(iii) Thereis somefunction g 2 S(F;  ) for whichZ 1
F (g; ! ; s) = 1 for all complexs.

Proof. The results follow by linearity , the previous lemma, and the main properties of
local zeta integrals on F .

It is important to extend this result to all f in S(F;  ); therefore the complication
discussedin remark 2.5.4must be resolved.

Remark 2.5.8. Wesaya few wor ds about functional equations. There is no result assat-
isfactory as for zeta functions of a one-dimensional local �eld, and there is no reason
why there should be due to the charO�

F
factor appearing in our de�nition of the local

zeta integrals. The most interesting issue here is making a functional equation com-
patible with the dif �culties causedby remark 2.5.4; this should indicate correctness(or
not) of examples 2.5.5and 2.5.6.

2.6 Local functional equations with respect to s goes to 2 � s

In this sectionwe continue our study of local zetafunctions, considering the problem of
modifying the functional equation (FE)on F so that the symmetry is not s goesto 1� s,
but instead s goesto 2� s. This is in anticipation of the next sectionon two-dimensional
zeta integrals, where such a functional equation is natural.

Sincethis section is devoted to the residue �eld F , we write K = F . We �x an non-
trivial additive character  K of K (until proposition, 2.6.13where we consider depen-
dence on this choice). Fourier transforms of complex-valued functions are taken with
respectto this character (and the measure which was �xed at the start of the chapter):
bg(y) =

R
g(x) K (xy) dx.

The two main proofs of (FE) are Tate's [Tat67] using Fubini's theorem, and Weil's
[Wei95] using distributions. For Weil, a fundamental identity in the non-archimedean
caseis

\g(� �) = j� j � 1bg(� � 1 �) (� )

for � 2 K � , where we write g(� �) for the function x 7! g(�x ), notation which we shall
continue to use.

The aim of this section is to replace the Fourier transform with a new transform so
that (� ) holds with j� j � 2 in place of j� j � 1. This leads to a modi�cation of the local
functional equation, with j � j2 in place of j � j; seepropositions 2.6.1and 2.6.24.

2.6.1 Non-archimedean case

We assume�rst that K is a non-archimedean local �eld, with residue �eld Fq. The fol-
lowing proposition precisely explains the importance of the identity
\g(� �) = j� j � 1bg(� � 1 �):

Proposition 2.6.1. Supposethat g 7! g� is a C-linear endomorphismof theSchwartz-Bruhat
spaceS(K ) of K whichsatis�es,for some�xed integern,

g(� �) � = j� j � n g� (� � 1 �)
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for all g 2 S(K ), � 2 K � . Let ! bea quasi-characterof K � . Thenthere is a uniqueentire
function " � (! ; s) whichsatis�es

ZK (g� ; ! � 1; n � s) = " � (! ; s)ZK (g; ! ; s)

for all g 2 S(K ), � 2 K � .

Proof. Let gbeaSchwartz-Bruhat function on K , and � 2 K � . Then for < (s) suf�ciently
large to ensure integrability , the identity

� K (g(� �); ! ; s) = ! (� ) � 1j� j � s� K (g; ! ; s)

holds. Conversely, for < (s) suf�ciently small, the assumedproperty of � implies that

� K (g(� �) � ; ! � 1; n � s) = ! (� ) � 1j� j � s� K (g� ; ! � 1; n � s):

Therefore, for all complex s,

ZK (g(� �); ! ; s) = ! (� ) � 1j� j � sZK (g; ! ; s)

and
ZK (g(� �) � ; ! � 1; n � s) = ! (� ) � 1j� j � sZK (g� ; ! � 1; n � s):

Hence the C-linear functionals � on S(K ) given by

g 7! ZK (g; ! ; s)

and
g 7! ZK (g� ; ! � 1; n � s)

(for �xed s) eachsatisfy �( g(� �)) = ! (� ) � 1j� j � s�( g) for all g 2 S(K ), � 2 K � . But the
spaceof such functionals is one-dimensional (seee.g. [Mor05, I.2]) (for ! 6= j � j � s) and
there is f 2 S(K ) such that ZK (f ; ! ; s) = 1 for all s (property (L) of local zeta integrals;
seebeginning of section 2.5); this implies the existenceof an entire function " � (! ; s) as
required.

Remark 2.6.2. Supposethat � maps S(K ) ontoS(K ). Then there is g 2 S(K ) such that
ZK (g� ; ! � 1; n � s) = 1 for all s and so " � (! ; s) is nowhere vanishing.

Our aim now is to investigate the epsilon factors attached to a particular transform �

which satis�es g(� �) � = j� j � 2g� (� � 1 �). Let w : K � ! Z be the discrete valuation of K
and � 2 K a �xed prime.

De�nition 2.6.3. De�ne
r : K ! K ; x 7! � w(x)x

(and r (0) = 0).
For g a complex-valued function on K , denote by W g the function

W g(x) =

(
g(� � w(x)=2x) if w(x) is even

g(� (� w(x)� 1)=2x) if w(x) is odd

(and W g(0) = g(0)).
Assuming that W g is integrable on K , de�ne the � -transform(with respectto � ) of g

by
g� = dW g � r :
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Remark 2.6.4. Compare this de�nition with [Wei95] and [Fes03, §15], where Fesenko
de�nes the transform on two copies of a two-dimensional local �eld F � F .

The � -transform depends on choice of prime � . We may also denote by r the com-
position operator r (g) = g � r .

The spaceof Schwartz-Bruhat functions S(K ) is closed under the � -transform.

It is easyto verify that the � -transform has the desired property:

Lemma 2.6.5. Supposethat g is a Schwartz-Bruhaton K andthat � 2 K � . Then

g(� �) � = j� j � 2g� (� � 1 �):

Proof. If x 2 F� , then W (g(� �))( x) = W (g)( � w(� ) �x ). Hence

\W (g(� �)) = j� w(� ) � j� 1dW g(� � w(� ) � � 1 �):

Evaluating this at r (x) yields

g(� �) � (x) = j� j � 2dW g(� � w(� ) � � 1� w(x)x) = j� j � 2g� (� � 1x):

Remark 2.6.6. Mor e generally, the previous lemma holds for any complex valued g for
which W g and W (g(� �)) are both integrable.

We now � -transform several functions. Let � be the measure of OK under our chosen
Haar measure and let d be the conductor of  K .

Example 2.6.7. Suppose g = char� r OK . Then W g = char� 2r OK
, which has Fourier

transform �q � 2r char� d� 2r OK
. Sothe � -transform of g is

g� = �q � 2r char� dd= 2e� r OK
;

where dd=2e denotes the least integer not strictly lessthan d=2. Compare this with the
Fourier transform

bg = �q � r char� d� r OK
:

Example 2.6.8. Supposeh = char1+ � r OK with r � 1. Let x 2 K � . If w(x) is even, then
W h(x) = 1 if and only if x 2 1 + � r OK ; if w(x) is odd, then W h(x) = 1 if and only if
� � 1x 2 1 + � r OK . So

W h = char1+ � r OK + char� (1+ � r OK ) ;

whence
dW h = �q � r char� d� r OK

 K + �q � r � 1 char� d� r � 1OK
 K (� �):

For the remainder of this example assume� = 1, d = 0, r = 2; we shall compute the
double � -transform h�� .

It may be easily checkedthat if x 2 K , then

char� � 2OK
(r (x))  K (r (x)) =

8
><

>:

0 if x =2 � � 1OK

 K (� � 1x) if x 2 � � 1O�
K

1 if x 2 OK
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and

char� � 3OK
(r (x))  K (� r (x)) =

8
><

>:

0 if x =2 � � 1OK

 K (x) if x 2 � � 1O�
K

1 if x 2 OK :

From the identity for dW h it now follows that

h� = q� 2( K (� � 1 �) + q� 1 K ) char� � 1O�
K

+ q� 2(1 + q� 1) charOK :

Seth1 =  K (� � 1 �) char� � 1O�
K

, h2 = q� 1 K char� � 1O�
K

; it may be checkedthat

W h1 =  K (� � 1 �) char� � 1O�
K

+  K char� � 2O�
K

W h2 = q� 1 K char� � 1O�
K

+ q� 1 K (� �) char� � 2O�
K

Standard Fourier transform calculations now yield

[W h1 = q char� � � 1+ � OK
� char� � � 1+ OK

+ q2 char� 1+ � 2OK
� q char� 1+ � OK

[W h2 = char� 1+ � OK � q� 1 charOK + q char� � � 1+ � 2OK
� char� OK :

Further, by example 2.6.7, \W (charOK ) = charOK , and so

q2 \W (h� ) = q char� � � 1+ � OK
� char� � � 1+ OK

+ q2 char� 1+ � 2OK
� q char� 1+ � OK

+ char� 1+ � OK + q char� � � 1+ � 2OK
� char� OK + charOK :

Now, x 2 K � implies w(r x) is even, and so

q2 \W (h� ) � r = q2 char� 1+ � 2OK
�r � q char� 1+ � OK �r

+ char� 1+ � OK �r � char� OK �r + charOK �r

= q2 char� 1+ � 2OK
� q char� 1+ � OK

+ char� 1+ � OK � char� OK + charOK :

That is,
h�� = q� 2 charO�

K
� q� 1(1 � q� 1) char� 1+ � OK + char� 1+ � 2OK

:

Note that although the de�nition of the � -transform depends on choice of prime � ,
the double � -transform h�� of h doesnot. This will be proved in general below.

Theseexampleswerespeci�cally chosento allow us to compute explicit formulae for
the epsilon factors " � (! ; s):

Example 2.6.9. Wecalculate the epsilon factor attached to the � -transform for the trivial
character 1. Suppose for simplicity that OK has measure 1 under our chosen Haar
measure.

Let f = charOK . Example 2.6.7 implies f � = char� dd= 2e� r OK
; it is a standard calcu-

lation that ZK (f ; 1; s) = 1 � q� 1 and ZK (f � ; 1; 2 � s) = (1 � q� 1)qdd=2e(s� 2) for all s.
Therefore

" � (1; s) = qdd=2e(s� 2)

for all s.
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Example 2.6.10. We now calculate the epsilon factor attached to the � -transform for
rami�ed quasi-characters.Continue to suppose that that OK hasmeasure 1.

Let ! be a quasi-character of K � of conductor r > 0; that is, ! j1+ � r OK = 1 but
! j1+ � r � 1OK

6= 1
Let h = char1+ � r OK ; so � K (h; ! ; s) is constantly m, the measure of 1 + � r OK under

d
�
x = jxj � 1dx. The aim is now to calculate � K (h� ; ! � 1; 2 � s) without calculating h� . By

example 2.6.8, W h = h + h(� � 1�), and so dW h = bh + q� 1bh(� �). Therefore

� K (h� ; ! � 1; 2 � s) =
Z

K �

bh(� w(x)x)! (x) � 1jxj2� sd
�
x

+ q� 1
Z

K �

bh(� w(x)+1 x)! (x) � 1jxj2� sd
�
x

=
X

n2 Z

qn(s� 2)
Z

w � 1(n)

bh(� nx)! (x) � 1d
�
x

+ q� 1
X

n2 Z

qn(s� 2)
Z

w � 1(n)

bh(� n+1 x)! (x) � 1d
�
x

=
X

n

qn(s� 2) ! (� ) � n
Z

O�
K

bh(� 2n x)! (x) � 1d
�
x

+ q� 1
X

n

qn(s� 2)! (� ) � n
Z

O�
K

bh(� 2n+1 x)! (x) � 1d
�
x

But by Tate'scalculation [Tat67] when calculating the epsilon factor in this samecase,
Z

O�
K

bh(� N x)! (x) � 1d
�
x =

(
q� r =2m� 0(! � 1) if N = d � r

0 otherwise,

where � 0(! � 1) is the rootnumberof absolute value one

� 0(! � 1) = q� r =2
X

�

! � 1(� ) K (� d� r � );

the sum being taken over cosetrepresentativesof 1 + � r OK in O�
K .

Therefore

� K (h� ; ! � 1; 2 � s) =

(
q(d� r )( s� 2)=2! (� )(r � d)=2q� r =2m� 0(! � 1) d � r even

q(d� r � 1)(s� 2)=2� 1! (� )(1+ r � d)=2q� r =2m� 0(! � 1) d � r odd

= qd(r � d)=2e(2� s) ! (� )d(r � d)=2eq� r =2� d� r m� 0(! � 1)

where � d� r = 1 if r � d is even and = q� 1 if r � d is odd. Finally, as we have already
observed that � K (h; ! ; s) = m for all s, and L(! ; s) = 1 for such a character, we obtain

" � (! ; s) = qd(r � d)=2e(2� s) ! (� )d(r � d)=2eq� r =2� d� r � 0(! � 1):

Remark 2.6.11. Mor e generally, if OK has measure � under our chosenHaar measure,
then eachof the epsilon factors above is multiplied by a factor of � .

Let us now consider what happens when we take the double transform f �� . If ! is
rami�ed with conductor r , then

" � (! ; s)" � (! � 1; 2 � s) = � 2q2d(r � d)=2e� 2
d� r q� r � 0(! � 1)� 0(! )

= � 2q2d(r � d)=2e� 2
d� r q� r ! (� 1)� 0(! )� 0(! )

= � 2qr � d� d� r q� r ! (� 1)

= � 2q� d� d� r ! (� 1):
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If we declare the conductor of an unrami�ed characterto be0 then this formula remains
valid for unrami�ed ! .

Therefore two applications of the functional equation imply that for all f 2 S(K ), all
characters! of conductor r � 0, and all complex s,

� K (f �� ; ! ; s) = � 2q� d� d� r ! (� 1)� K (f ; ! ; s): (y)

We will now proceedto useour results on epsilon factors to deduce properties of the
� -transform; the idea is to use identities between zeta integrals to obtain identities be-
tween the functions. The following result is clearly of great importance in this method:

Lemma 2.6.12.Let f 2 S(K ) andsupposethat � K (f ; ! ; s) = 0 for all quasi-characters! and
complexs; thenf = 0.

Proof. Let f be in S(K ). Then f � f (0) charOK belongs to S(K � ) and so the zeta in-
tegral � K (f (0) charOK ; ! ; s) is well-de�ned for all s and belongs to C[qs; q� s]. Indeed,
it suf�ces to observe that S(K � ) is spanned by chara+ � m OK where w(a) > m, and

� K (chara+ � m OK ; ! ; s) = q� w(a)s
R

a+ � m OK
! (s) d

�
x.

However , for ! = 1 the trivial character,

� K (f (0) charOK ; 1; s) = f (0)m(1 � q� s)� 1

where m is the multiplicative measure of O�
K . So the assumption that � K (f ; 1; s) = 0

implies f (0)(1 � q� s)� 1 2 C[qs; q� s] as a function of s. This is false unless f (0) = 0;
therefore f (0) = 0 and so f 2 S(F � ).

Sonow � K (f ; ! ; 1) is well-de�ned for all characters! of F � and equals ef (! ), where
edenotes Fourier transform on the group K � ; so ef is a function on the dual group of
X (K � ) of K � . By the injectivity of the Fourier transform (seee.g. [GRS64, chapter IV])
from L 1(K � ) to C(X (K � )) our hypothesis implies that f = 0.

We will now use the weak functional equation (y) to prove results about the
� -transform. Recall that the transform depends on the choice of both non-trivial ad-
ditive character and prime; surprisingly , the double � -transform does not depend on
choice of prime:

Proposition 2.6.13. The double� -transform doesnot dependon choiceof prime � . If the
character K is replacedby someothercharacter, with conductord0 say, and we assumethat
d0 � d mod 2, thenthedouble� -transformis multiplied by aconstantfactorof qd0� d.

Proof. Write more generally D i for the double � -transform with respectto prime � i and
character  i

K for i = 1; 2; let di be the conductor of  i
K and assumed1 � d2 mod 2.

Equation (y) implies that for all f 2 S(K ), all characters! of conductor r � 0, and all
complex s,

� K (D1f ; ! ; s) = � 2q� d1 � d1 � r ! (� 1)� K (f ; ! ; s)

= qd2 � d1 � K (D2f ; ! ; s):

Lemma 2.6.12implies now that D1f = qd2 � d1 D2f , revealing the independence from
the prime and claimed dependenceon the conductor of the character.

We use (y) again, this time to prove that � is an automorphism of S(K ). It is in-
teresting that we are using properties of zeta integrals and epsilon factors to deduce
properties of � ; one would usually work in the other dir ection but the author could
�nd no dir ect proof and it is very satisfying to apply zeta integrals to such a problem!
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Proposition 2.6.14.The� -transformis a linearautomorphismofS(K ).

Proof. Let D denote the double � -transform on S(K ) with respect to our chosenchar-
acter (we have shown that it does not depend on choice of prime); let D 1 denote the
double � -transform on S(K ) with respect to a character  1

K with conductor d1 6� d
mod 2. Equation (y) implies that for all f 2 S(K ), all characters! of conductor r � 0,
and all complex s,

� K (D1Df ; ! ; s) = � 2q� d1 � d1 � r ! (� 1)� K (D f ; ! ; s)

= � 4q� d� d1 � d� r � d1 � r ! (� 1)2� K (f ; ! ; s)

= � 4q� d� d1 q� 1� K (f ; ! ; s)

as � d� r � d1 � r = q� 1 for all r .
Lemma 2.6.12now implies that D1Df = � 4q� d� d1 q� 1f for all f 2 S(K ). Therefore �

is injective. Replacing D 1D by DD1 in the argument similarly shows that � is surjective.

Remark 2.6.15. The key to the previous proof is the identity � d� r � d1 � r = q� 1, which
removesthe dependenceon the conductor r of the multiplicative character. There is no
clear way to relate zeta integrals of f �� with those of f in a manner independent of the
character;so we were forced to transform four times!

The following result shows that if  K has conductor 0 then the � -transform and
Fourier transform agreeon functions lifted from the residue �eld K :

Proposition 2.6.16.Assumethat theconductorof  K is 0. Leth beacomplex-valuedfunction
on K and r an integer;let f = h0;r bethe lift of h at 0; r (that is, f vanishesoff � r OK and
satis�esf (� r x) = h(x) for x 2 OK ). Thenf � = q� r � 1 bf .

Proof. Supposeinitially that r = � 1; to prove the assertion it suf�ces to consider func-
tions f = chara+ OK for a 2 � � 1OK . For such an f it is easily checked that W (f ) = f
and f � = bf .

For arbitrary r , note that x 7! f (� r +1 x) satis�es the hypotheses for the r = � 1 case;

lemma 2.6.5and the corresponding result for the Fourier transform, namely \f (� �) =
j� j � 1 bf (� �) for � 2 K � , imply f � = q� r � 1 bf .

Let us summarise the main results of this section concerning local zeta integrals, the
� -transform, and related epsilon factors.

Proposition 2.6.17.Let ! beaquasi-characterofK � . Then

(AC*) Analytic continuation, with the poles`bounded'by the L-function: for all Schwartz-
Bruhat functionsg, � K (g; ! ; s)=L(! ; s), whichinitially only de�nesaholomorphicfunc-
tion for < (s) suf�ciently large,in facthasanalyticcontinuationto an entirefunction

ZK (g; ! ; s)

of s.

(L*) `Minimality' of theL-function: thereis aSchwartz-Bruhatfunction g for which

ZK (g; ! ; s) = 1

for all s.
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(FE*) Functional equation: there is an entire function " � (! ; s), such that for all Schwartz-
Bruhat functionsg,

ZK (g� ; ! � 1; 2 � s) = " � (! ; s)ZK (g; ! ; s):

Moreover, " � (! ; s) is ofexponentialtype;that is, " � (! ; s) = aqbs for somecomplexa and
integerb.

Proof. Properties (AC*) and (L*) are just (AC) and (L) becausethey are independent of
the chosentransform. (FE*) is proposition 2.6.1and the epsilon factors were shown to
be of exponential type by explicit calculation in examples 2.6.9and 2.6.10.

Remark 2.6.18. For applications to zeta-integrals on two-dimensional local �elds we
will require the � -transform and zeta integrals for functions de�ned on the product
spaceK � K . As S(K � K ) = S(K ) 
 S(K ), we may just de�ne the � -transform on
S(K � K ) by (f 
 g) � = f � 
 g� and linearity .

Supposethat ! is a quasi-characterof K � � K � ; write ! (x; y) = ! 1(x)! 2(y) for quasi-
characters ! i of K � . The decomposition S(K � K ) = S(K ) 
 S(K ) and previous
proposition imply

(i) For all f 2 S(K � K ), the integral � K � K (f ; ! ; s) =
RR

f (x; y)! (x; y)jxjsjyjs d
�
xd

�
y is

well-de�ned for < (s) largeenough. Mor eover, s 7! � K � K (f ; ! ; s)=(L (! 1; s)L (! 2; s))
has analytic continuation to an entire function ZK � K (f ; ! ; s).

(ii) There is f 2 S(K � K ) such that ZK � K (f ; ! ; s) = 1 for all s.

(iii) For all f 2 S(K � K ), there is a functional equation:

ZK � K (f � ; ! � 1; 2 � s) = " � (! 1; s)" � (! 2; s)ZK � K (f ; ! ; s)

for all s. Note that " � (! 1; s)" � (! 2; s) is of exponential type.

2.6.2 Archimedean case

Now suppose that K is an archimedean local �eld. Rather than present a version of
proposition 2.6.1using tempered distributions, we will just de�ne and investigate an
analogue of the � -transform. The existenceof an s goesto 2� s functional equation will
be shown as in [Tat67], via Fubini's theorem.

De�nition 2.6.19. Intr oduce

r : K ! K ; x 7! jxjx:

Note that this r is a bijection with inverse x 7! xjxj �
1
2 (for x 2 K � ). Given a complex-

valued function f on K , de�ne its � -transform by

f � = \f � r � 1 � r ;

assuming that f � r � 1 is integrable.

Remark 2.6.20. Note that the archimedean and non-archimedean r maps have the
sameform: r x = � (x)x where � is a splitting of the absolute value.

This archimedean � -transform has an integral representation similar to the Fourier
transform:
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Lemma 2.6.21.Letg beacomplex-valuedfunction on K suchthat x 7! g(x)jxj is integrable.
Theng� is well-de�nedand

g� (y) = 2
Z

K
g(x) K (r (yx)) jxj dx:

Proof. By de�nition of the � -transform,

g� (y) =
Z

g � r � 1(u) K (ur (y)) du =
Z

g(ujuj �
1
2 ) K (uyjyj) du:

To obtain the desired expression,changevariables x = ujuj1=2 = r � 1(u) in the integral.

Remark 2.6.22. The previous lemma is enough to prove that if f is a Schwartz func-
tion on K , then both f � and f �� are well-de�ned. Unfortunately , it is false that the
� -transform of a Schwartz function is again a Schwartz function, as the following ex-
ample shows.

Example 2.6.23.We � -transform the Schwartz function g(x) = e� � x2
on R with additive

character e2� ix . Firstly, g � r � 1(x) = e� � sign(x)x , where sign(x) is the sign (� ) of x, and
so

\g � r � 1(y) =
Z 1

0
e� � xe2� ixy dx +

Z 1

0
e� � xe� 2� ixy dx:

A standard calculation from the calculus of residues is
R1

0 e� �x eibx dx = 1=(� � ib)

for real �; bwith � > 0. Therefore \g � r � 1(y) = 2� =(� 2 + 4� 2y2) and so

g� (y) =
2�

� 2 + 4� 2y4

which doesnot decayrapidly enough to bea Schwartz function. Sinceg� r � 1 is not dif-
ferentiable at 0, this is in agreementwith the duality provided by the Fourier transform
between smoothnessand rapid decrease.

We now prove an s goesto 2 � s functional equation:

Proposition 2.6.24.Supposethat ! is aquasi-characterof K � . If f ; g areSchwartzfunctions
on K for whichf � ; g� arealsoSchwartz,then

� K (f ; ! ; s)� K (g� ; ! � 1; 2 � s) = � K (f � ; ! � 1; 2 � s)� K (g; ! ; s)

for all complexs. Here we write zetafunctions where we strictly meantheir meromorphic
continuation.

Proof. One imitates Tate'smethod, using the representationof the � -transform given by
lemma 2.6.21to show that

� K (f ; ! ; s)� K (g� ; ! � 1; 2 � s) = 2
Z Z Z

K 3
f (x)g(z) K (r (xyz)) jxyzj! (y) � 1jyj � s dxdydz

for s with < (s) = 1 � < (! ); here < (! ) is the exponent of ! , de�ned by j! j = j � j< (! ) .
This expressionis symmetric in f and g, from which follows

� K (f ; ! ; s)� K (g� ; ! � 1; 2 � s) = � K (f � ; ! � 1; 2 � s)� K (g; ! ; s):

Apply the identity theorem to deduce that this holds for all complex s.
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Example 2.6.25. Suppose that K = R; let g(x) = e� � x2
, f = g � r . Assume that

 R(x) = e2� ix , and that the chosen measure is Lebesguemeasure; then bg = g which
implies here that f � = f . For s complex of positive real part,

� K (f ; 1; s) =
1
2

� � s=4�( s=4) =
1
2

� K (g; 1; s=2):

The previous proposition implies that if h; h� are Schwartz on R, then

� K (h� ; 1; 2 � s) =
� (s� 2)=4�((2 � s)=4)

� � s=4�( s=4)
� K (h; 1; s)

= 2s=2� 1� s=2
�

cos
� � s

4

�
�

� s
2

�� � 1
� K (h; 1; s);

by the sameGamma function identities used in [Tat67].

Remark 2.6.26. If f is a Schwartz function and ! a quasi-character, then we know that
� K (f ; ! ; s)=L(! ; s) analytically continues to an entire function; also, f may be chosen
such that � K (f ; ! ; s) = L(! ; s). However, asexample 2.6.23demonstrates, the standard
choice of f may be such that f � is not Schwartz.

Theauthor suspectsthat if f is aSchwartz function on R for which f � is alsoSchwartz,
then � K (f ; 1; s)=(� � s=4�( s=4)) will analytically continue to an entire function; more-
over, we have seenin the previous example that this denominator satis�es the `mini-
mality' condition (i.e. it occurs as a zeta function). This would justify calling
� � s=4�( s=4) the local L-function for � .

2.7 Two dimensional zeta integrals

In this, the �nal section of the chapter, we apply the integration theory to the study of
two-dimensional local zeta integrals.

2.7.1 Non-archimedean case

F is now a non-archimedean, two-dimensional local �eld. Thus � = Z and F is com-
plete with respectto the discrete valuation � , with residue �eld F a non-archimedean
(one-dimensional) local �eld; the residue �eld of F is Fq. The rank two ring of integers
of F is OF = � � 1(OF ). Let t1; t2 be local parameters for F which satisfy t2 = t(1) and
t1 = � , where � is the prime of F which was used to de�ne the � -transform on K = F
in the previous section.

Let K top
2 (F ) denote the second topological K -group of F (see [Fes00]); recall that

K top
2 (F ) is the appropriate object for class�eld theory of F (see[Fes91] for details). We

recall those properties of K top
2 (F ) which we shall use:

(i) A border map of K -theory de�nes a continuous map @: K top
2 (F ) ! F

�
which

satis�es
@f u; t2g = u; @f u; vg = 1 (for u; v 2 O�

F ):

@doesnot depend on choice of t1; t2. Intr oduce an absolute value

j � j : K top
2 (F ) ! R> 0; � 7! j@(� )jF :

(ii) Let U be the subgroup of K top
2 (F ) whose elementshave the form f u; t1g+ f v; t2g,

for u; v 2 O�
F . K top

2 (F ) decomposes as a dir ect sum Zf t1; t2g � U. Note that
jnf t1; t2g + uj = q� ns for n 2 Z, u 2 U.
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(iii) For any quasi-character � : K top
2 (F ) ! C� , there exist complex s and a character

� 0 : U ! S1 such that

� (nf t1; t2g + u) = � 0(u)q� ns (for n 2 Z; u 2 U):

The real part of s is uniquely determined by � and is said to be, as in the one-
dimensional case,the exponent of � (denoted < (� )).

De�nition 2.7.1. Intr oduce T = O�
F � O�

F , T+ = OF � OF , and a surjective homomor -
phism

t : T ! K top
2 (F ); (�; � ) 7! f �; t2g + f t1; � g + w(� )f t1; � t2g

for �; � 2 O�
F .

Note that u; v 2 O�
F and i; j 2 Z implies t(t i

1u; t j
1v) = (i + j )f t1; t2g+ f t1; vg + f u; t2g.

Remark 2.7.2. Compare with [Fes03]. t depends on the choiceof local parameters t 1; t2.
T+ is the closureof T in the two-dimensional topology of F ; its relation to T is the same
as F to F

�
in the one-dimensional local theory, the adèle group A to the idèle group

A� in the one-dimensional global theory, or the matrix algebra M n to the group GL n in
R. Godement and H. Jacquet'sgeneralisation [GJ72] of Tate's thesis.

Note that (x; y) 2 T implies jt(x; y)j = jxj jyj 2 R> 0.

Given a C(X ) (= C(�)) -valued function f on T + , a quasi-character � of K top
2 (F ),

and complex s, Fesenkosuggestsin [Fes03] the following de�nition for the associated
(two-dimensional) local zeta integral:

� (f ; �; s) = � 2d
F (f ; �; s) =

Z F� � F�

f (x; y) � � t(x; y)jt(x; y)js charT (x; y) d
�
xd

�
y;

assuming that the integrand is integrable on F � � F� ; integration on this space is a
simple union of the integration theory on F � (section 2.4) and the basic theory for
F � F (summarised in subsection 1.4.2).

We now prove analytic continuation, and moreover a functional equation, for a class
of functions f and characters� ; we write f 0 for the lift of f 2 S(F � F ) at (0; 0); (0; 0)
(see1.4.2for the de�nition).

Proposition 2.7.3. Let� beaquasi-characterofK top
2 (F ) andsupposethat � � t factorsthrough

theresiduemapT ! F
�

� F
�

. Let ! i bethequasi-charactersof F
�

de�nedby � � t(x; y) =
! 1(x)! 2(y). De�ne L F (�; s) = L(! 1; s)L (! 2; s), a product of two L-functions for F , and
"F (�; s) = " � (! 1; s)" � (! 2; s), a productof two epsilonfactorsfor F . Then

(AC2) For all f 2 S(F � F ), thezetafunction � (f 0; �; s) is well-de�nedfor < (s) suf�ciently
large.Moreover,

� (f 0; �; s)=LF (�; s)

hasanalyticcontinuationto an entirefunction,Z (f 0; �; s).

(L2) Thereis f 2 S(F � F ) suchthat Z (f 0; �; s) = 1 for all s.

(FE2) Forall f 2 S(F � F ), a functionalequationholds:

Z (f � 0; � � 1; 2 � s) = "F (�; s)Z (f 0; �; s):

for all s. Moreover, " F (�; s) is of exponentialtype; that is " F (�; s) = aqbs for some
complexa andintegerb.
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Proof. By de�nition of the integral on F � � F� and a similar argument to example 2.4.6
(i), we have

� (f 0; �; s) =
Z

F
�

Z

F
�

f (u; v)! 1(u)! 2(v)jujsjvjs d
�
ud

�
v;

which we denoted � F � F (f ; ! 1 
 ! 2; s) in remark 2.6.18. That is, since we are only
considering functions f which lift from F � F , the zeta integral over OF � OF reduces
to a zeta integral over F � F . All required results follow from that remark.

Remark 2.7.4. The previous example highlights the interest of lifting the � -transform
up to F in a similar way to how we lifted the Fourier transform. Then it may bepossible
to generalise this proposition to more functions on OF � OF than simply those which
lift from F � F . However , it is unclear whether this would produce anything essentially
new.

Remark 2.7.5. Having calculated epsilon factors for the � -transformation in section 2.6,
we have formulae for the two-dimensionalepsilonfactors

"F (�; s) = " � (! 1; s)" � (! 2; s):

For example, if ! 1 is rami�ed with conductor r > 0 but ! 2 is unrami�ed, then

"F (�; s) = q(d(r � d)=2e�d d=2e)(2 � s) � (t1; 1)d(r � d)=2eq� r =2� d� r � 0(! � 1
1 )

where d is the conductor of the additive characteron F used to de�ne the � -transform.

There is another relation between zeta integrals on F and F which we now discuss;
�rst we need a lemma:

Lemma 2.7.6. Let g bea complex-valuedfunction on F and s complexsuchthat gj � j2s is
integrableon F

�
. Letw : F

�
! Z bethediscretevaluationon F ; intr oduce

g0 : F
�

� F
�

! C; (x; y) 7! g(� min( w(x);w(y)) � w(x)x) jxyjs:

Theng0 is integrableoverF
�

� F
�

, with integral

Z Z
g0(x; y) d

�
xd

�
y = � (O�

F
)
1 + q� s

1 � q� s

Z
g(x)jxj2sd

�
x;

where� is themultiplicativeHaarmeasureon F
�

.

Proof. The integral of g0over F
�

� F
�

is

X

n2 Z

X

m2 Z

Z

w � 1(n)

Z

w � 1(m)
g(� min (n;m )� m x)q� s(n+ m)� 2 dxdy:

Split the inner summation over m < n and m � n, and then interchange the order of
the double summation

P
n

P
m<n ; elementary manipulations complete the proof.

De�nition 2.7.7. Intr oduce a `generalisedresidue map':

� 2 : T+ � ! F ; (t i 1
1 t i 2

2 u; t j 1
1 t j 2

2 v) 7! tmin( i 1 ;j 1)
1 tmin( i 2 ;j 2)

2 u

where u; v 2 O�
F and i 1; i2; j 1; j 2 2 Z.
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Remark 2.7.8. The map � 2, when restricted to T, factors through K top
2 (F ):

� 2(t i
1u; t j

1v) = @(min( i; j )f t1; t2g + f t1; vg + f u; t2g)

where i; j 2 Z, u; v 2 O�
F .

� 2 provides a new method for lifting zeta integrals from F to F :

Proposition 2.7.9. Let ! beaquasi-characterofF
�

, s complex,andg acomplex-valuedfunc-
tion on F suchthat g ! 2 j � j2s is integrableon F

�
; let � = ! � @. Then the zetaintegral

� (g � � 2; �; s) is well-de�nedand

� (g � � 2; �; s) = � (O�
F

)
1 + q� s� c

1 � q� s� c � F (g; ! ; 2s + c);

wherec 2 C is de�nedby ! = ! 0 j � jc with ! 0 acharacterofF
�

trivial on � .

Proof. For (x; y) 2 T,

g � � 2(x; y) � � t(x; y) jt(x; y)sj jxj � 1 jyj � 1

= g(� min (w(x);w(y)) � w(x)x) ! (x� w(y) ) jxyjs� 1

= g(� min (w(x);w(y)) � w(x)x) ! 0(x) jxy js+ c� 1

= g(� min (w(x);w(y)) � w(x)x) ! 0(� min( w(x);w(y)) � w(x)x) jxyjs+ c� 1;

so that (x; y) 7! g � � 2(x; y) � � t(x; y) jt(x; y)s j jxj � 1 jyj � 1 is the lift of

(u; v) 7! g(� min (w(u);w(v)) � w(v) u) ! 0(� min( w(u);w(v)) � w(u) u) juvjs+ c� 1

at (0; 0); (0; 0).
The result now follows from the previous lemma.

This is enough to deduce analytic continuation of somemore zeta functions:

Corollary 2.7.10. Let ! beaquasi-characterofF
�

, L (! ; s) theassociatedL-function,andg a
Schwartz-Bruhatfunction on F ; let � = ! � @. Then

(i) For< (s) suf�ciently large,thezetaintegral � (g � �; �; s) is well-de�ned.

(ii) Theholomorphicfunction� (g� �; �; s)=(L (! ; s)(1� � (f t 1; t2g)q� s)� 1), initially de�ned
for < (s) suf�ciently large,hasanalyticcontinuationto an entirefunction.

Proof. This follows from the corresponding results for local zeta functions on F , the
previous proposition, and the identity � (f t 1; t2g) = ! (� ) = q� c where c is as in the
previous proposition.

It hasbeenuseful throughout for � � t to factor through the residuemap T ! F
�

� F
�

.
In the next two examples we consider some situations in which this happens. Let L , a
two-dimensional local �eld, be a �nite abelian extension of F and let � be a character
of K top

2 (F ) which vanishes on NL=F K top
2 (L ). So � corresponds, via two-dimensional

class�eld theory, to a characterof Gal(L=F ).

Example 2.7.11.SupposeL=F is separablewith jL : F j = jL : F j; i.e. L=F is unrami�ed
asan extension of complete discrete valuation �elds.

Then @induces a surjection K top
2 (F )=NL=F K top

2 (L ) ! F
�

=NL=F L
�

. Further, the
separability assumption implies L=F is an abelian extension of local �elds, so that
jF

�
=NL=F L

�
j = jL : F j = jL : F j = jK top

2 (F )=NL=F K top
2 (L )j; thus the aforementioned

induced surjection is an isomorphism. Therefore � factors through @.
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Example 2.7.12. Suppose L = F , p - jL : F j, and t 2 2 NL=F L� (`a totally tamely
rami�ed extension in the secondparameter').

Then (x; y) 2 T implies t(x; y) � f t1; �( y)g mod NL=F K top
2 (L ) (see[Fes91]), where

� is the projection
� : F� = ht1i � ht2i � F�

q � VF ! F�
q :

Here VF is the two-dimensional group of principal units of F .
Therefore thereexistsa tamely rami�ed quasi-character! of F

�
such that � � t(x; y) =

! (y) for (x; y) 2 T.

Theseexamplesshow that our functional equation applies to all `suf�ciently unram-
i�ed' characters; but do observe that in example 2.7.11, the residue extension L=F is
allowed to be as rami�ed asdesired. The proof of the functional equation in [Fes03] is
valid whenever all relevant functions are integrable, and proposition 2.7.3is certainly a
special case.However , it appears that if � is rami�ed then certain interesting functions
fail to be integrable.

The failur e of the integral to work in the rami�ed setting is a serious dif �culty , which
may only be overcome through a systematic comparison of the current theory with the
rami�cation theory of two-dimensional local �elds. Seesection 6.1 for some thoughts
on the subject.

2.7.2 Archimedean case

Now suppose that F is an archimedean, two-dimensional local �eld; that is, � = Z,
F is complete with respect to the discrete valuation � , and the residue �eld F is an
archimedean local �eld. The classi�cation of complete discrete valuation �elds (see
e.g. [FV02, II.5]) implies that F is isomorphic to a �eld of Laurent series C(( t)) or
R(( t)) , where we write t = t(1).

The correct way to use topological K -groups for class�eld theory and zeta integrals
of such �elds is not clear, so we content ourselves with making a few remarks about
generalising the results in the non-archimedean casewithout appealing to K -groups.

Given Schwartz functions f ; g on F for which f � ; g� are also Schwartz, and ! a quasi-
character of O�

F which factors through the residue map O�
F ! F

�
, proposition 2.6.24

implies that

Z F�

f 0;0(x) ! (x)jxjs charO�
F

(x) d
�
x

Z F�

(g� )0;0(x) ! (x) � 1jxj2� s charO�
F

(x) d
�
x

is invariant under interchanging f and g. There is an analogous result for integrals
over O�

F � O�
F .

An extension of F cannot be wildly rami�ed in any sense,and so by analogy with
examples 2.7.11and 2.7.12we expect arithmetic characterson O�

F (or O�
F � O�

F ) to lift
from F

�
. Hence this functional equation may be satisfactory in the archimedean case.

Indeed, in the caseF = C((t)) , the �nite abelian extensions of F have the form
C((t1=n)) for natural n. A character attached to such an extension is surely a purely
imaginary power of j � j; this lifts to O�

F from F
�

.
If F = R((t)) , then F has maximal abelian extension C((t 1=2)) , with subextensions

R((t1=2)) and C((t)) . A character attached to the extension C((t 1=2)) is O�
F ! f� 1g :

x 7! sign(x), which again lifts from F
�

.
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2.A Rings generated by d-classes

This appendix gives a clear exposition of the calculations required to develop the mea-
sure theory of section 2.2 from the integration theory; many of the manipulations here
are inspir ed by [Fes03] and [Hal50].

De�nition 2.A.1. Let A be a collection of subsetsof someset 
 .
A is said to be a ring if it is closed under taking dif ferencesand �nite unions.
A is said to be a d-classif it contains the empty set and satis�es the following: A; B

in A with non-trivial intersection implies A contains A \ B and A [ B . Elements of a
d-classare called d sets.

Example 2.A.2. The following are examplesof d-classes.

(i) The collection of �nite intervals of R, open on the right and closed on the left,
together with the empty set.

(ii) The collection of translates of somechain of subgroups of a group, together with
the empty set.

We �x for the remainder of this appendix a d-classon someset.

Lemma 2.A.3. Let A i bed sets,for i = 1; : : : ; n. Thenthere exist disjoint d setsB j , j =
1; : : : ; m suchthat eachB j is aunion ofsomeof theA i andsuchthat

S
i A i =

F
j B j

Proof. A simple induction on n.

Informally , the result statesthat any �nite union of d setsmay be re�ned to a disjoint
union.

De�nition 2.A.4. A setof the form A n
F

i A i for somed setsA; A1; : : : ; An , with A i � A
for eachi , is said to be a dd set.

Remark 2.A.5.

(i) Consider a setof the form X = A n
S

i A i for d setsA; A1 : : : ; Am , where we make
no assumption on disjointness or inclusions. Then X = A n

S
i A \ A i ; lemma

2.A.3 implies that X is a dd set.

(ii) The identity (A n
F

i A i ) \ (B n
F

j B j ) = (A \ B ) n (
F

i A i [
F

j B j ) and lemma
2.A.3 imply that dd setsare closed under �nite intersection.

De�nition 2.A.6. A �nite disjoint union of dd setsis said to be a dddset.

Lemma 2.A.7. Thedifferenceof two dd setsis adddset.

Proof. For arbitrary setsA; A0; B ; (B j ) j with B j � B , the identity

(A n A0) n (B n
G

j

B j ) = (A n (B [ A0)) t
G

j

((B j \ A) n A0)

is easily veri�ed. Replace A0 by a disjoint union of d sets and use remark 2.A.5 to
complete the proof.

Proposition 2.A.8. Thedifferenceof two dddsetsis a dddset.Theunion of two dddsetsis a
dddset.
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Proof. The dif ferenceof two ddd setsmay be written as a �nite disjoint union of sets
of the form

T
E i n D i , a �nite intersection of dif ferencesof dd sets; such a set is an

intersection of ddd setsby lemma 2.A.7. By De Mor gan's laws, this may be rewritten
as a disjoint union of intersections of dd sets. Hence the dif ferenceof two ddd sets is
again a ddd set.

Let D1; : : : ; Dn and E1; : : : ; Em be disjoint dd sets.Then
F

i D i [
F

j E j is the disjoint
union of the following threesets:

W1 =
G

i

D i \
G

j

E j

W2 =
G

i

D i n
G

j

E j

W3 =
G

j

E j n
G

i

D i .

W2 and W3 are ddd setsby lemma 2.A.3. Further, W1 =
F

i;j (D i \ E j ) is a ddd set by
remark 2.A.5.

Proposition 2.A.9. Thecollectionof all dddsetsis a ring; indeed,it is thering generatedby
thed-class.

Proof. This is the content of the previous result.

2.B C(�) -valued holomorphic functions

We brie�y explain the required theory of holomorphic functions from the complex
plane to C(�) , though C(�) could be replaced with an arbitrary complex vector space.

De�nition 2.B.1. Supposef is a C(�) -valued function de�ned on someopen subsetof
the complex plane. We shall say that f is holomorphic at a point of U if and only if, in
someneighbourhood U0 of this point,

f (z) =
nX

i =1

f i (z)pi ;

for some f 1; : : : ; f n , complex-valued holomorphic functions of U0, and p1; : : : ; pn , ele-
ments of C(�) .

Although the de�nition of holomorphicity is a local one, we can �nd a global repre-
sentation of any such function on a connectedset:

Proposition 2.B.2. Let (pi ) i 2 I beany basisfor C(�) overC, andlet (� i ) i 2 I betheassociated
coordinateprojectionsto C. Let f beaC(�) -valuedholomorphicfunction on someopensubset
U ofC. Then

(i) � i � f is acomplex-valuedholomorphic(in theusualsense)function of U.

(ii) If U is connectedthen there is a �nite subsetI 0 of I and complex-valuedholomorphic
functionsf i , for i 2 I 0, of U suchthat

f (x) =
X

i 2 I 0

f i (z)pi

for all z 2 U.
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Proof. Let us suppose that

f (z) =
nX

j =1

f j (z)qj (� )

for all z in someopen U0 � U, where the f j are complex valued holomorphic functions
of U0 and q1; : : : ; qn 2 C(�) . Then each qj is a linear sum (with complex coef�cients)
of �nitely many pi ; therefore there is �nite I 0 � I such that f (z) =

P
i 2 I 0

f i (z)pi for all
z 2 U0, where eachf i is a sum of �nitely many f j . Sofor any i 2 I ,

� i � f jU0 =

(
f i i 2 I 0

0 i =2 I 0

therefore � i � f is holomorphic on U0.
But f is holomorphic, so eachpoint of U hasan open neighbourhood where f can be

written asin (� ); therefore � i � f is holomorphic on all of U. This proves (i).
(ii) follows from (i) as soon as it is known that there are only �nitely many i in I for

which � i � f is not identically zero on U. But the identity theorem of complex analysis
implies that if � i � f is not identically zero on U, then it is not identically zero on any
open set U0 � U. So chooseU0 as at the start of the proof and write f jU0 as in (� ); if
� i � f is not identically zero on U0, then i 2 I 0. Sofor all z 2 U,

f (z) =
X

i 2 I 0

� i � f (z) pi :

Although it is very easy to prove, the identity theorem here is fundamental, for else
we would not be assured of the uniqueness of analytic continuations:

Proposition 2.B.3. Supposethat f is aC(�) -valuedholomorphicfunction onsomeconnected
opensubsetU of C. Supposethat thezerosof f havea limit point in U; then f is identically
zero onU.

Proof. Let (pi ) i 2 I and (� i ) i 2 I be as in the previous proposition. By the usual identity
theorem of complex analysis, each � i � f vanishes everywher e; therefore the same is
true of f .

Enough has now been proved to discuss analytic continuation of C(�) -valued func-
tions asrequired in section 2.5.
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Integration on product spacesand GL n of a valuation
�eld over a local �eld

We work with the same notation as chapter 2; our aim is to extend the integration
theory to �nite dimensional vector spacesand GL n over F .

3.1 Repeated Integration on F n

In this section we extend the integral on F to the product spaceF n for n a positive
integer. We do this by using the integral over F to de�ne repeated integrals. The idea
is simple, though the notation is not. A summary of the theory for n = 2 was given in
subsection1.4.2.

Given a sequencex1; : : : ; xn of n terms, and r such that 1 � r � n, the notation

x1; : : : ; _x r ; : : : ; xn = x1; : : : ; x r � 1; x r +1 ; : : : ; xn

denotes the sequenceof n � 1 terms obtained by removing the r th term.
We intr oduce the largest spaceof functions for which all repeatedintegrals exist and

are equal:

De�nition 3.1.1. Let f be a C(�) -valued function on F n . The inductive de�nition of f
being Fubini, and the repeatedintegralof f , are asfollows:

If n = 1, then f is Fubini if and only if it is integrable, and the repeated integral of f
is de�ned to be its integral

RF f (x) dx.
For n > 1, f is Fubini if and only if it satis�es the following conditions:

(i) For eachr with 1 � r � n, and all x1; : : : ; _x r ; : : : ; xn in F , the function

xr 7! f (x1; : : : ; xn )

is required to be integrable on F , and then the function

(x1; : : : ; _x r ; : : : ; xn ) 7!
Z F

f (x1; : : : ; xn ) dxr

is required to be Fubini on F n� 1.

(ii) Then we require that the repeatedintegral of

(x1; : : : ; _x r ; : : : ; xn ) 7!
Z F

f (x1; : : : ; xn ) dxr

does not depend on r . The repeated integral of f on F n is de�ned to be the
common value of thesen repeatedintegrals on F n� 1.
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The repeatedintegral of a Fubini function f on F n will be denoted
RF n

f (x) dx.

The repeatedintegral is a C(�) -linear functional on the C(�) -spaceof all Fubini func-
tions on F n .

Remark 3.1.2. Informally , a C(�) -valued function f is Fubini if and only if, for each
permutation � of f 1; : : : ; ng, the expression

Z F

: : :
Z F

f (x1; : : : ; xn ) dx� (1) : : : dx� (n)

is well de�ned and its value does not depend on � . The repeated integral of f is of
course the common value of thesen! integrals.

Remark 3.1.3. We will also be interested in repeatedintegrals of complex-valued func-
tions on F

n
. Sincethe integration theory on F doesnot allow for functions on F which

are perhaps only de�ned off a null set, we must ensure that such functions do not
arise. Therefore we de�ne a complex-valued function g on F

n
to be Fubini if it is Haar

integrable and satis�es the obvious rewording of de�nition 3.1.1. Informally , such a
function is Fubini if and only if it is Haar integrable and eachpartial integral

Z
: : :

Z
g(u1; : : : ; un ) du� (1) : : : du� (r )

is de�ned for all u� (r +1) ; : : : ; u� (n) 2 F , where � is any permutation of f 1; : : : ; ng and
1 � r � n. Fubini's theorem then implies that the value of the repeatedintegral

Z F

: : :
Z F

g(u1; : : : ; un ) du� (1) : : : du� (n)

is independent of � .
Fubini's theorem and induction on n imply that any integrable function on F

n
is

almost everywher e equal to a Fubini function.
Any continuous complex-valued function on F with compact support is Fubini, asis

any Schwartz function if F is archimedean. Sothe classof Fubini functions is still large
enough for applications in representation theory, harmonic analysis, etc.

In fact, most Fubini functions on F n encountered in this paper will be of the follow-
ing form, which is a generalisation of the notion of a simple function (seesubsection
1.4.1)on F :

De�nition 3.1.4. Let f be a Fubini function on F n ; the inductive de�nition of f being
strongly Fubini is as follows:

If n = 1, then g is strongly Fubini if and only if it is a simple function.
For n > 1, g is strongly Fubini if and only if the following hold: For each r with

1 � r � n, and eachx1; : : : ; _x r ; : : : ; xn in F , we require that

xr 7! f (x1; : : : ; xn )

is a simple function on F , and then that

(x1; : : : ; _x r ; : : : ; xn ) 7!
Z F

f (x1; : : : ; xn ) dxr

is strongly Fubini on F n� 1.
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The property of being strongly Fubini is preservedunder translation and scaling, as
is the weaker property of being Fubini. For � = (� 1; : : : ; � n ) in F� n (n copies of F� ,
not the group of n th powers of F� ), write j� j =

Q
i j� i j, where j � j is the absolute value

intr oduced in theorem 1.4.4; for x 2 F n write �x to denote the coordinate-wise product
�x = (� 1x1; : : : ; � nxn ).

Lemma 3.1.5. Supposef is a strongly Fubini (resp.Fubini) function on F n . Fora 2 F n and
� 2 F� n , thefunctionsx 7! f (x + a) andx 7! f (�x ) arestronglyFubini (resp.Fubini), with
repeatedintegrals

Z F n

f (x + a) dx =
Z F n

f (x) dx;
Z F n

f (�x ) dx = j� j � 1
Z F n

f (x) dx:

Proof. This is a simple induction on n; the casen = 1 is remark 1.4.3.

A continuing theme of this thesis is showing how integrals constructed at the level
of F lift Haar integrals on F . For the integral on F , this is the identity

Z F

g0(x) dx =
Z

g(u) du

for Haar integrable g on F .
Wewill denote by t : � n ! F n the product of n copiesof t; the value of n will be clear

from the context. Similarly , we write � or an overline for the the residue map On
F ! F

n
.

Given a = (a1; : : : ; an ) 2 F n and  = ( 1; : : : ;  n ) 2 � n , there is a product of translated
fractional ideals given by

a + t( )On
F =

nY

i =1

ai + t( i )OF :

Now we may generalisethe notion of lifting a function:

De�nition 3.1.6. For g a function on F
n

taking values in an abelian group A, set

g0 : F n ! A

x 7!

(
g(x) x 2 On

F

0 otherwise.

Again, more generally, for a 2 F n ,  2 � n , the lift of g at a;  is the A-valued function
on F de�ned by

ga; (x) =

(
g((x � a)t(�  )) x 2 a + t( )On

F

0 otherwise.

Of course,g0 = g0;0 and ga; (a + t( )x) = g0;0(x) for all x 2 F n .

Remark 3.1.7. It is a straightforwar d observation that a section of a lifted function is
again a lifted function. To be precise,suppose that f = ga; is a lifted function as in the
de�nition, r is such that 1 � r � n, and x1; : : : ; _x r ; : : : ; xn 2 F . Then the function

xr 7! f (x1; : : : ; xn )

of F is identically zero unless x i 2 ai + t( i )OF for all i 6= r .
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If in fact x i 2 ai + t( i )OF for all i 6= r , then

xr 7! f (x1; : : : ; xn )

is the lift of
ur 7! g(� 1; : : : ; � r � 1; ur ; � r +1 ; : : : ; � n )

at ar ;  r , where � i := (x i � ai )t(�  i ) 2 OF for i 6= r .
This generalisesto s-dimensional sections of f for any s with 1 � s � n. We shall

frequently employ the casess = 1 and s = 2.

We may now prove the fundamental result that the repeated integral on F n lifts the
Haar integral on F

n
:

Proposition 3.1.8. Supposeg is a Fubini function on F
n
. Theng0 is strongly Fubini on F n ,

with repeatedintegral
Z F n

g0(x) dx =
Z

F
n

g(u) du:

Proof. Let r be such that 1 � r � n, and �x x1; : : : ; _x r ; : : : ; xn 2 F . The previous remark
and the casen = 1 (contained in theorem 1.4.4) imply that x r 7! g0(x1; : : : ; xn ) is simple
and integrable on F with integral

( R
g(x1; : : : ; x r � 1; ur ; x r +1 ; : : : ; xn ) dur x i 2 OF for all i 6= r

0 otherwise:

That is,

(x1; : : : ; _x r ; : : : ; xn ) 7!
Z F

g0(x1; : : : ; xn ) dxr

is the lift of the everywher e de�ned Haar integrable function

(u1; : : : ; _ur ; : : : ; un ) 7!
Z

g(u1; : : : ; un ) dur

on F
n� 1

.
The result now follows easily by induction on n.

Remark 3.1.9. Mor e generally, suppose f = ga; is the lift of a Fubini function to F n ;
here g is Fubini on F

n
, a 2 F n and  2 � n . Then the proposition and the invariance of

being strongly Fubini under translation and scaling (lemma 3.1.5) imply f is strongly
Fubini on F n , with repeatedintegral

Z F n

f (x) dx =
Z

F
n

g(u) du X
P n

i =1  i :

Remark 3.1.10.Using a similar inductive argument as in the previous proposition and
the details of the proof in subsection2.3on harmonic analysis on F , there is no dif �culty
in showing that if g is a Fubini function on F

n
and  : F ! S1 is a good character on

F , then
x 7! ga; (x) (b1x1 + : : : bnxn )

is Fubini on F n , for any b 2 F n (though, of course, one must replace the integrability
condition in the de�nition of a Fubini function on F n by the condition that it belongs
to the enlarged spaceL (F;  )).

Similarly , it is straightforwar d to generalisethe results of subsection 2.3.2on Fourier
transforms to F n . Also seeremark 3.2.14.
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3.2 Linear changesof variables in repeated integrals

With the basicsof repeated integrals in place, we turn to the interaction of the theory
with GL n (F ). We shall write the action of GL n (F ) on F n as a left action, though we
also write elementsof F n asrow vectors; given � 2 GL n (F ) and x = (x1; : : : ; xn ) 2 F n ,
� x means

� x = �

0

B
@

x1
...

xn

1

C
A :

Given a function f on F n , we write f � � for the function x 7! f (� x). SL n (F ) denotes
the determinant 1 subgroup of GL n (F ). Thesenotation also apply to F in place of F .

De�nition 3.2.1.A complex-valued function g on F
n

is said to beGL-Fubini if and only
if g � � is Fubini for all � 2 GL n (F ).

Remark 3.2.2. Any continuous complex-valued function with compact support is GL-
Fubini, as is any Schwartz function when F is archimedean; this follows from remark
3.1.3and the invariance of theseproperties under GL n (F ). In the following results this
is the sort of function to have in mind.

De�nition 3.2.3. Let L (F n ; GL n ) be the C(�) spaceof C(�) -valued functions spanned
by ga; � � for g GL-Fubini, � 2 GL n (F ), a 2 F n ,  2 � n .

The aim of this section is the following result:

Theorem 3.2.4.Everyfunction in L (F n ; GL n ) is Fubini onF n . If f 2 L (F n ; GL n ), a 2 F n ,
and � 2 GL n (F ), thenthe functionsx 7! f (x + a) andx 7! f (� x) belongto L (F n ; GL n ),
with repeatedintegralsgivenby

Z F n

f (x + a) dx =
Z F n

f (x) dx;
Z F n

f (� x) dx = j det � j � 1
Z F n

f (x) dx

The theorem will be proved through several smaller results. First we recall the Iwa-
sawa decomposition, where we abbreviate `unipotent upper triangular ' to u.u.t.

Lemma 3.2.5. Let � bein GL n (F ). ThenthereexistA in GL n (OF ), a u.u.t. U in GL n (F ),
andadiagonal� in GL n (F ) suchthat � = AU � .

Proof. When � = Z and F is complete with respect to the discrete valuation � , this
is the standard Iwasawa decomposition. However , the standard proof is valid in the
generality in which we require it (seee.g. [Bum97, Proposition 4.5.2]).

This decomposition allows us to restrict attention to upper triangular matrices, for
the GL n (OF ) term can be `absorbed' into the function:

Lemma 3.2.6.L (F n ; GL n ) is spannedoverC(�) byfunctionsoftheformx 7! g0 � U(�x + a),
for g GL-Fubini onF

n
, U au.u.t. matrix, � 2 F � n , anda 2 F n .

Proof. Let g be GL-Fubini on F
n
, � 2 GL n (F ), a 2 F n and  2 � n . Let A; U; � be the

Iwasawa decomposition of
0

B
@

t(�  1)
...

t(�  n )

1

C
A � ;
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as in lemma 3.2.5. For x in F n , the identity ga; � � (x) = g0 � AU �( x � � � 1a) holds.
Now note that g0 � A = (g � A)0 where A is the image of A in GL n (F ). So x 2 F n

implies ga; � � (x) = (g � A)0(U(�x + b)) , where � 2 F � n is de�ned by

� =

0

B
@

� 1
. . .

� n

1

C
A ;

and b = � �� � 1a. We have written ga; � � in the required form, and this is enough to
complete the proof.

We now prove special casesof the main theorem as well as some technical lemmas.
Particular attention is given to the casen = 2, for it is required several times later in
inductions.

Lemma 3.2.7. Letg beGL-Fubini on F
2

andsetf = g0. Let � 2 F andsete = � � 1t(� (� ))
if � 6= 0, ande = 0 otherwise;set� 0 = min( � (� ); 0).

There exists� 2 SL 2(F ), independentof g, suchthat, for any x 2 F , the function y 7!
f (x + �y ; y) equals

(
thelift of v 7! g � � (xt (� � 0); v) at � xet(� � 0); � � 0 if x 2 t(� 0)OF

0 otherwise.

Proof. If � = 0 then we are just considering a section of a Fubini function and so � = id
suf�ces by remark 3.1.7. Henceforth assumethat � 6= 0.

We �rst consider the case� = t(� ) for some � 2 � ; so e = 1. Consider, for any x 2 F ,
the section

Dx : F ! C

y 7! f (x + t(� )y; y):

We make the following claim, dependent on the sign of � , regarding D x :
case:� < 0.

Dx =

(
lift of v 7! g(v; � xt (� � )) at � xt (� � ); � � if x 2 t(� )OF

0 otherwise.

case:� = 0.

Dx =

(
lift of v 7! g(v + x; v) at 0; 0 if x 2 OF

0 otherwise

case:� > 0.

Dx =

(
lift of v 7! g(x; v) at 0; 0 if x 2 OF

0 otherwise.

We shall prove the case� = 0. For any x; y 2 F , f (x + y; y) vanishes unless x + y
and y both belong to OF ; henceDx is identically zero unless x 2 OF . Assuming that
x 2 OF , it remains to verify that

Dx = lift of v 7! g(v + x; v) at 0; 0:

Both sidesvanish off OF and are seento agreeon OF by dir ect evaluation. This proves
the claim in this case. The other casesare proved by similar arguments and we omit
the details.
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If � � 0 and x 2 OF , then Dx is also the lift of a function at � x; 0:
case:� = 0.

Dx = lift of v 7! g(v; v � x) at � x; 0

case:� > 0.
Dx = lift of v 7! g(x; v � x) at � x; 0

The proof when � 2 t(�) is completed by setting:
case:� < 0.

� =
�

0 1
� 1 0

�

case:� = 0.

� =
�

0 1
� 1 1

�

case:� > 0.

� =
�

1 0
� 1 1

�

In the general case,write � = e� 1t(� ), with � = � (� ) and e 2 O�
F ; let � 0 =

�
e� 1 0
0 1

�
.

Also intr oduce f 0(x; y) = f (e� 1x; y), which is the lift of (u; v) 7! g(e� 1u; v) = g� � 0(u; v)
(a Fubini function on F

2
) at 0; 0. By the caseabove, there exists � 2 SL 2(F ) such that

x 2 F implies y 7! f 0(x + t(� )y; y) = f (e� 1x + �y ; y) equals
(

the lift of v 7! g � � 0� (xt (� � 0); v) at � xt (� � 0); � � 0 if � (x) � � 0

0 otherwise.

Hence y 7! f (x + �y ; y) = f 0(ex + t(� )y; y) equals
(

the lift of v 7! g � � 0� (e xt (� � 0); v) at � ext(� � 0); � � 0 if � (x) � � 0

0 otherwise.

As � 0�
�

e 0
0 1

�
has determinant 1, this completes the proof.

Remaining with the casen = 2, we now extend the previous lemma slightly in prepa-
ration for the induction on n:

Lemma 3.2.8. Let g beGL-Fubini on F
2
, a 2 F ,  2 � ; setf = g(0;a);(0; ) . Let � 2 F and

set� = min(� (� ) +  ; 0).
Thereexistb;c 2 F (independentof g) and� 2 SL 2(F ) (independentof g anda) suchthat

x 2 F impliesthat y 7! f (x + �y ; y) equals
(

thelift of v 7! g � � ((x � c)t(� � ); v) at b; � � if x 2 c + t(� )OF

0 otherwise

Proof. Let e = � � 1t(� (� )) if � 6= 0, and e = 0 otherwise. For x in F the previous lemma
implies that y 7! g0(x + t( )�y ; y) equals

(
the lift of v 7! g � � (xt (� � ); v) at � xet(� � ); � � if x 2 t(� )OF

0 otherwise
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for some � 2 SL 2(F ) (independent of g by the previous lemma, and clearly indepen-
dent of a).

For x; y 2 F , the identity

f (x + �y ; y)

= g0(x + �y ; (y � a)t(�  ))

= g0(x + �a + t( )� (y � a)t(�  ); (y � a)t(�  ))

=

(
g � � ((x + �a )t(� � ); ((y � a)t(�  ) + xet(� � )) t(� )) if x + �a 2 t(� )OF

0 otherwise

follows. Setb = a � ext( � � ) and c = � �a to complete the proof.

Remark 3.2.9.The proper interpr etation of the previous two lemmas is available through
Hr ushovski and Kazhdan's work [HK06]. They prove, in aprecisesensewhich requires
model theory and Grothendieck groups, that any bijection at the valued �eld level with
Jacobian1 (such asour (x; y) 7! (x + �y ; y)) descendsto a bijection at the residue �eld
level, also with Jacobian1 (such asu 7! � u, with � as in the statement of our lemmas).
Their deeper result is the converse:bijections at the residue �eld level may be lifted.

However , our result is not entirely a special caseof theirs, since their methods work
only in residue characteristic zero, whereasthe lemmas above hold in general.

The following result extends the previous lemma to the caseof arbitrary n � 2; it is a
slightly technical proof by induction:

Lemma 3.2.10. Let g beGL-Fubini on F
n
, a 2 F ,  2 � ; set f = g(0;:::;0;a);(0;:::;0; ) . Let

� i 2 F for 1 � i � n � 1. Then

(i) Forall x1; : : : ; xn� 1 2 F , thefunction of F

xn 7! f (x1 + � 1xn ; : : : ; xn� 1 + � n� 1xn ; xn )

is integrableandsimple.

(ii) Further, there exist � 2 SL n (F ), � 2 � n� 1, and c 2 F n� 1 suchthat the function of
F n� 1

(x1; : : : ; xn� 1) 7!
Z F

f (x1 + � 1xn ; : : : ; xn� 1 + � n� 1xn ; xn ) dxn

is thelift of

(u1; : : : ; un� 1) 7!
Z

g � � (u1; : : : ; un ) dun X  �
P n � 1

i =1 � i

at c;� . Also, � maybechosento beindependentof g anda.

Proof. The proof is by induction on n.
Let � n� 1 = min( � (� n� 1) +  ; 0). Let � 1; : : : ; � n� 2 be in OF ; the function

(xn� 1; xn ) 7! f (� 1; : : : ; � n� 2; xn� 1; xn )

is the lift of
(un� 1; un ) 7! g(� 1; : : : ; � n� 2; un� 1; un );
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which is GL-Fubini, at (0; a); (0;  ); this is just a generalisation of remark 3.1.7to a two
dimensional section. By the previous lemma, there exist b;cn� 1 2 F and � 2 SL 2(F ),
all independent of � 1; : : : ; � n� 2, such that for all xn� 1 2 F ,

xn 7! f (� 1; : : : ; � n� 2; xn� 1 + � n� 1xn ; xn )

equals the lift of

un 7! g(� 1; : : : ; � n� 2; � ((xn� 1 � cn� 1)t(� � n� 1); un ))

at b; � � n� 1 if xn� 1 2 cn� 1 + t(� n� 1)OF , and equals 0 otherwise.

Also denote by � the element of SL n (F ) given by
�

I n� 2 0
0 �

�
, where I n� 2 denotes

the n � 2 by n � 2 identity matrix.
Now take � n� 1 2 cn� 1 + t(� n� 1)OF ; so � n� 1 = cn� 1 + t(� n� 1)� 0

n� 1, say. We have just
shown that

(x1; : : : ; xn� 2; xn ) 7! f (x1; : : : ; xn� 2; � n� 1 + � n� 1xn ; xn )

is the lift of
(u1; : : : ; un� 2; un ) 7! g � � (u1; : : : ; un� 2; �

0
n� 1; un );

which is GL-Fubini, at (0; : : : ; 0; b); (0; : : : ; 0;  � � n� 1). By the inductive hypothesis, the
following hold:

(i) For all x1; : : : ; xn� 2 2 F ,

xn 7! f (x1 + � 1xn ; : : : ; � n� 1 + � n� 1xn ; xn )

is a simple, integrable function.

(ii) There exists � 0 2 SL n� 1(F ) (independent of � n� 1, g, b) and � i 2 � , ci 2 F (1 � i �
n � 2), such that

(x1; : : : ; xn� 2) 7!
Z F

f (x1 + � 1xn ; : : : ; � n� 1 + � n� 1xn ; xn ) dxn

is the lift of

(u1; : : : ; un� 2) 7!
Z

g � � � 0(u1; : : : ; un� 2; �
0
n� 1; un ) dun X  � � n � 1 �

P n � 2
i =1 � i

at (c1; : : : ; cn� 2); (� 1; : : : ; � n� 2).

It follows that

(i) For any x1; : : : ; xn� 1 in F ,

xn 7! f (x1 + � 1xn ; : : : ; xn� 1 + � n� 1xn ; xn )

is asimple, integrable function (this function is zero unlessx n� 1 2 cn� 1+ t(� n� 1)OF ,
in which casethe statement follows from (i) above).

(ii) The function

(x1; : : : ; xn� 1) 7!
Z F

f (x1 + � 1xn ; : : : ; xn� 1 + � n� 1xn ; xn ) dxn

is the lift of

(u1; : : : ; un� 1) 7!
Z

g � � � 0(u1; : : : ; un ) dun X  �
P n � 1

i =1 � i

at (c1; : : : ; cn� 1); (� 1; : : : ; � n� 1).
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This completes the proof.

The previous lemma was concernedwith the caseof a matrix dif fering from the iden-
tity only along the left-most column. We now consider an arbitrary u.u.t. matrix:

Proposition 3.2.11.Supposeg is GL-Fubini onF
n
, a 2 F n ,  2 � n , � 2 � ; setf = ga; X � .

LetU beau.u.t. matrix in GL n (F ). Thenf � U is strongly Fubini on F n , with
Z F n

f � U(x) dx =
Z F n

f (x) dx:

Proof. The proof is by induction on n.
For any n, we claim that it suf�ces to prove the special casea = 0,  = 0, � = 0. We

may clearly assume� = 0 by linearity . For x 2 F n the identity

f (Ux) = ga; (Ux) = g0;0((Ux � a)t(�  ))

= g0 � U1(t(�  )(x � U � 1a))

holds, where U1 is the u.u.t. matrix

U1 =

0

B
@

t(�  1)
...

t(�  n )

1

C
A U

0

B
@

t( 1)
...

t( n )

1

C
A :

Assuming the special case,we may conclude that g0 � U1 is strongly Fubini, with re-
peated integral equal to that of g0. Thus f � U dif fers from a strongly Fubini function by
translation and scaling and henceis itself strongly Fubini (lemma 3.1.5), while compat-
ibility between the repeatedintegral on F n and Haar integral on F

n
(proposition 3.1.8)

implies
Z F n

f � U(x) dx = jt( )j
Z F n

g0(x) dx

= X
P n

i =1  i

Z

F
n

g(u) du

=
Z F n

f (x) dx:

This completes the proof of the claim; so now assumea = 0,  = 0, � = 0.
For eachr with 1 � r � n, we must now prove that

(i) For x1; : : : ; _x r ; : : : ; xn 2 F , the function of F , x r 7! f � U(x1; : : : ; xn ), is simple
and integrable.

(ii) The function of F n� 1

(x1; : : : ; _x r ; : : : ; xn ) 7!
Z F

f � U(x1; : : : ; xn ) dxr

is strongly Fubini, with repeatedintegral equal to that of f .

The inductive step depends on decomposing U in a certain way. Write

U =

0

B
B
B
B
@

1 � 1;2 � � � � 1;n
. . . . . .

...
. . . � n� 1;n

1

1

C
C
C
C
A
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and observe that U(x1; : : : ; xn ) = (x1 +
P n

i=2 � 1;i x i ; : : : ; xn� 1 + � n� 1;n xn ; xn ). Let V be
the u.u.t. matrix obtained by setting to zero all entries in the r th row and r th column of
U, apart from the 1 in the r; r -place. Let V 0be the n � 1 by n � 1 u.u.t. matrix obtained
by removing the r th row and r th column of U. Then there exist � r +1 ; : : : ; � n 2 F such
that the u.u.t. matrix P de�ned by

P(x1; : : : ; xn ) = (x1 + � 1;r xr ; : : : ; x r � 1 + � r � 1;r xr ; x r +
nX

i = r +1

� i x i ; x r +1 ; : : : ; xn )

satis�es U = PV.
We are now equipped to begin the main part of the proof. The previous lemma (if

r > 1; it follows straight from the de�nition of a strongly Fubini function if r = 1)
implies that for �xed x1; : : : ; _x r ; : : : ; xn 2 F , the function

xr 7! f ((x1 � � 1;r

nX

i = r +1

� i x i ) + � 1;r xr ; : : :

: : : ; (x r � 1 � � r � 1;r

nX

i = r +1

� i x i ) + � r � 1;r xr ; x r ; : : : ; xn )

is simple and integrable on F . Therefore

xr 7! f (x1 + � 1;r xr ; : : : ; x r � 1 + � r � 1;r xr ; x r +
nX

i = r +1

� i x i ; x r +1 : : : ; xn )

= f � P(x1; : : : ; xn )

is a translate of a simple, integrable function and hence is itself simple and integrable
by remark 1.4.3. Replacing x1; : : : ; _x r ; : : : ; xn by V 0(x1; : : : ; _x r ; : : : ; xn ) implies that the
function

xr 7! f � PV (x1; : : : ; xn )

= f � U(x1; : : : ; xn )

is simple and integrable, proving (i).
The previous lemma (if r > 1) and translation invariance (any r ) of the integral also

imply that

f 0 : F n� 1 ! C(�) ; (x1; : : : ; _x r ; : : : ; xn ) 7!
Z F

f � P(x1; : : : ; xn ) dxr

is the lift of

(u1; : : : ; _ur ; : : : ; un ) 7!
Z

g � � (u1; : : : ; un ) dur X �
P n � 1

i =1 � i

at b;� for someb 2 F n� 1, � = (� i ) 2 � n� 1, � 2 SL n (F ).
The inductive hypothesis with function f 0and matrix V 0implies that f 0� V 0is strongly

Fubini with repeatedintegral equal to that of f 0. But the repeatedintegral of f 0 is
Z

F
n

g � � (u) du X �
P n � 1

i =1 � i X
P n � 1

i =1 � i =
Z

F
n

g(u) du

=
Z F n

f (x) dx
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by remark 3.1.9, and

f 0� V 0(x1; : : : ; _x r ; : : : ; xn ) =
Z F

f � PV (x1; : : : ; xn ) dxr

=
Z F

f � U(x1; : : : ; xn ) dxr ;

which proves (ii).

Proposition 3.2.12.Letg beGL-Fubini onF
n
, a 2 F n ,  2 � n , � 2 � ; setf = ga; X � . Let

� 2 GL n (F ); thenf � � is strongly Fubini onF n , with

Z F n

f � � (x) dx = j det � j � 1
Z F n

f (x) dx:

Proof. We claim that it suf�ces to prove the special casea = 0,  = 0, � = 0. This claim
follows in the same way as the beginning of proposition 3.2.11. Now assumea = 0,
 = 0, � = 0.

Write � = AU � asin lemma 3.2.5. Then f � A = (g � A)0 where A is the image of A in
GL n (F ); proposition 3.1.8implies

Z F n

f � A(x) dx =
Z

F
n

g � A(u) du

= j det Aj � 1
Z

F
n

g(u) du

= j det Aj � 1
Z F n

f (x) dx:

Proposition 3.2.11implies that f � AU is strongly Fubini, with

Z F n

f � AU (x) dx =
Z F n

f � A(x) dx:

Finally, lemma 3.1.5implies that f � AU � is strongly Fubini, with

Z F n

f � AU �( x) dx = j det � j � 1
Z F n

f � AU (x) dx:

Sincedet � = det A det � , the proof is complete.

The previous proposition extends by linearity to all of L (F n ; GL n ) and so the main
theorem 3.2.4is proved!

Remark 3.2.13. Suppose F is a two-dimensional local �eld, with OF = � � 1(OF ) the
rank two ring of integers. Assume that our chosen Haar measure on F assigns OF
measure 1. Then for any � 2 GL n (F ) and a 2 F n , the characteristic function of a +
� (On

F ) belongs to L (F n ; GL n ), and

Z F n

chara+ � (On
F ) (x) dx = j det � j 2 C(X ) = C(�) :

Kim and Lee [KL05] have also developed a measure theory on F n . Their measurable
setsare the algebra of setsgenerated by ? , F n and a + � (On

F ) for a 2 F n , � 2 GL n (F );
the measure assignedto a + � (On

F ) is j det � j, as in the approach of this chapter.
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However , the measure of Kim and Leedoesnot take values in C(X ), but rather in an
additive monoid consisting of elements0 and �X i , � 2 R> 0, i 2 Z; addition is de�ned
by

�X i + � 0X j =

8
><

>:

�X i if i < j

(� + � 0)X i if i = j

� 0X j if i > j:

If S is a measurable set in the approach of Kim and Lee, then charS will belong to
L (F n ; GL n ); expanding the value of the integral in R((X )) we may write

Z F n

charS(x) dx =
X

i � I

� i X i ;

where � i 2 R and � I 6= 0. Kim and Lee assign S measure � I X I ; this truncation of the
measure is suitable for de�ning a convolution of functions on GL n (F ) and for ensuring
� -additivity .

Remark 3.2.14.Whether the extension of the integral to L (F n ; GL n ) is compatible with
harmonic analysis on F n (remark 3.1.10) is indisputable; the integral surely extends to
the C(�) spaceof functions on F n generated by

x 7! ga; � � (x)  (b1x1 + � � � + bnxn )

with g Schwartz-Bruhat on F
n
, a;b 2 F , and � 2 GL n (F ).

Unfortunately , the author can see no easy way of proving this, except by simply
modifying all the proofs of this section to include twisted functions.

3.3 Invariant integral on GLN (F )

We will now consider integration on the spaceof matrices M N (F ) and its unit group
GL N (F ).

Let n = N 2 and identify M N (F ) with F n via an isomorphism T : F n ! M N (F ) of F
vector spaces.Let L (M N (F )) be the C(�) spaceof C(�) -valued functions f on M N (F )
for which f T belongs to L (F n ; GL n ); set

Z M N (F )

f (x) dx =
Z F n

f T(x) dx:

Remark 3.3.1. The spaceL (M N (F )) doesnot depend on the choiceof the isomorphism
T sinceL (F n ; GL n ) is invariant under the action of GL n (F ), and the functional

RM N (F )

depends on T only up to a scalarmultiple from jF � j = f �X  : � 2 jF
�

j;  2 � g.
L (M N (F )) is closed under translation, and

RM N (F ) is a translation invariant C(�) -
linear functional on the space.

Of course, integrating on M N (F ) is no harder than integrating on F n . We are really
interested in GL N (F ), for which we proceedby analogy with subsection 2.4

De�nition 3.3.2.Let L (GL N (F )) denote the spaceof C(�) -valued functions � on GL N (F )
such that � 7! � (� )j det � j � n may be extended to all of M N (F ) to give a function in
L (M N (F )) .
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The integral of � over GL N (F ) is de�ned by

Z GL N (F )

� (� ) d� =
Z M N (F )

� (x)j det xj � n dx;

where the integrand on the right is really the extension of the function to M N (F ).

Remark 3.3.3. For the previous de�nition of the integral to be well de�ned, we must
show that if f 1; f 2 2 L (M N (F )) are equal when restricted to GL N (F ) then f 1 = f 2.

It suf�ces to prove that if f 2 L (F n ; GL n ) vanishesoff someZariski closed set (other
than F n ), then f is identically zero. By a locally constantfunction g on F n , we mean
a function such that for each a 2 F n , there exists  2 � such that, if " 1; : : : ; "n 2 F
have valuation greater than  , then f (a1 + � 1; : : : ; an + � n ) = f (a1; : : : ; an ). If g1, g2

are locally constant, then so are g1 + g2 and g1 � A for any af�ne transformation of F n .
But a lifted function is locally constant and so any function in L (F n ; GL n ) is locally
constant. It is now enough to show that if p is a polynomial in F [X 1; : : : ; X n ], such that
p(� 1; : : : ; � n ) = 0 whenever "1; : : : ; "n 2 F have large enough valuation, then p is the
zero polynomial. This is easily proved by induction on n.

This calculation even meansthat we may enlarge the spaceL (F n ; GL n ) by adjoining
the characteristic functions of all proper Zariski closed sets,and extend the integral by
insisting that such sets have zero measure. Ignoring proper Zariski closed sets is an
essentialpart of the model-theoretic approach to integration in chapter 5.

The integral is translation invariant, asdesired:

Proposition 3.3.4. Suppose� belongsto L (GL N (F )) and� 2 GL N (F ). Thenthefunctions
� 7! � (� � ) and� 7! � (� � ) alsobelongto L (GL N (F )) , with

Z GL N (F )

� (� � ) d� =
Z GL N (F )

� (� ) d� =
Z GL N (F )

� (� � ) d� :

Proof. Let r � (resp. l � ) denote the element of GL n (F ) (identi�ed with GL(M N (F ))
via. T) de�ned by right (resp. left) multiplication by � . Let � 7! � (� )j det � j � n be the
restriction of f 2 L (M N (F )) to GL N (F ), say. The function

� 7! � (� � )j det � j � n

= j det � jn � (� � )j det � � j � n

= j det � jn � � r � (� )j det(r � � )j � n

is the restriction of j det � jn f � r � 2 L (M N (F )) to GL N (F ).
Theorem 3.2.4therefore implies that

Z GL N (F )

� (� � ) d� =
Z M N (F )

j det � jn f � r � (x) dx

= j det � jn j det r � j� 1
Z M N (F )

f (x) dx

= j det � jn j det r � j� 1
Z GL N (F )

� (� ) d� :

Note that det � is the determinant of � asan N � N matrix, and det r � is the determinant
of r � asan automorphism of the N 2-dimensional spaceM N (F ).
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To complete the proof for r � it suf�ces to show that det r � = det � n . Let ei;j denote
the N � N matrix with a 1 in the i; j position and zeros elsewhere. With respectto the
ordered basis

e1;1; e1;2; : : : ; e1;N ; e2;1; : : : ; e2;N ; : : : ; eN ;1; : : : ; eN ;N ;

r � actsas the block matrix 0

B
@

� t

. . .
� t

1

C
A

( t denotes transpose),which hasdeterminant det � n , as required.
The proof with l � in place of r � dif fers only in notation, except that one should use

the ordered basis

e1;1; e2;1; : : : ; eN ;1; e1;2; : : : ; eN ;2; : : : ; e1;N ; : : : ; eN ;N

instead.

Sowe have obtained a translation invariant integral on the algebraic group GL N (F ).
Just as the integrals on F and F n lift the usual Haar integral on F and F

n
, so too

does this integral incorporate the Haar integral on GL N (F ). To demonstrate this most
clearly, it is prudent to now assumethat the chosenisomorphism T restricts to an OF -
linear isomorphism On

F ! M N (OF ). Thus T descendsto a F -linear isomorphism T :
F

n
! M N (F ) which makes the diagram commute:

On
F

T�� � �! M N (OF )
?
?
y

?
?
y

F
n

�� � �!
T

M N (F );

where the vertical arrows are coordinate-wise residue homomorphisms. This will en-
sure a functoriality between our algebraic groups at the level of F and at the level of
F .

Remark 3.3.5. This assumption holds if we identify M N (F ) with F n2
in the most nat-

ural way, via the standard basis of F n2
and the basis of M N (F ) used in proposition

3.3.4.

Further, we now normalise the Haar measures on M N (F ) and GL N (F ) in the fol-
lowing way: give M N (F ) the Haar measure obtained by pushing forwar d the product
measure on F

n
via T, and then give GL N (F ) the standard Haar measure dGL N u =

j det uj � ndM N u. Such normalisations are not essential, but otherwise extraneous con-
stants would appear in formulae below. It will be useful to call a complex-valued func-
tion on M N (F ) GL-Fubini if its pull back to F

n
via T is GL-Fubini in the sensealready

de�ned. Again, note that aSchwartz-Bruhat function on M N (F ) is certainly GL-Fubini.
We have already de�ned what is meant by the lift of a Haar integrable from F or F

n
.

The following is a trivial generalisation:

De�nition 3.3.6. Let G denote either of the algebraic groups M N , GL N . Given a com-
plex valued function g on G(F ), let g0 be the complex valued function on G(F ) de�ned
by

g0 : G(F ) ! C

x 7!

(
g(x) x 2 G(OF )

0 otherwise.
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Then the compatibility between the integrals on M N at the level of F and F is the
following:

Proposition 3.3.7. Supposethat g is a complex-valued,GL-Fubini function on M N (F ) (e.g.
aSchwartz-Bruhatfunction on M N (F )). Theng0 belongsto L (M N (F )) , and

Z M N (F )

g0(x) dx =
Z

M N (F )
g(u) du:

Proof. By the existenceof T and its compatibility with T we have an equality of func-
tions on M N (F ):

(gT
� 1

)0T = g0:

The de�nition of the integral on M N (F ) therefore implies
Z M N (F )

g0(x) dx =
Z F n

(gT
� 1

)0(x) dx:

Taking G to be n copies of the additive group, we showed in proposition 3.1.8that the
result corresponding to this one holds; so

Z F n

(gT
� 1

)0(x) dx =
Z

F
n

gT
� 1

(u) du:

Finally, our normalisation of the Haar measure on M N (F ) implies
Z

F
n

gT
� 1

(u) du =
Z

M N (F )
g(u) du;

which completes the proof.

And now we prove the sameresult for GL N :

Proposition 3.3.8.Supposethatg isacomplex-valued,Schwartz-BruhatfunctiononGL N (F )
suchthat

f (u) :=

(
g(u)j det uj � n u 2 GL N (F );

0 det u = 0

is GL-Fubini on M N (F ). Theng0 belongsto L (GL N (F )) , and
Z GL N (F )

g0(� ) d� =
Z

GL N (F )
g(u) du:

Proof. The assumption on f and the previous proposition imply that f 0 belongs to
L (M N (F )) . Mor eover, � 2 GL N (OF ) implies

f 0(� ) = g(� )j det � j � n = g0(� )j det � j � n ;

sothat f 0 is an extensionof � 7! g0(� )j det � j � n from GL N (F ) to a function in L (M N (F )) .
Therefore g0 belongs to L (GL N (F )) , and

Z GL N (F )

g0(� ) d� =
Z M N (F )

f 0(x) dx

=
Z

M N (F )
f (u) du

=
Z

GL N (F )
g(u) du

where the secondequality follows from the previous proposition.
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Remark 3.3.9. If g decreasessuf�ciently rapidly towards the boundary of GL N (F ) in
M N (F ) then the hypothesis in the previous proposition will hold, i.e. f will be GL-
Fubini on M N (F ). In particular , if g is the restriction to GL N (F ) of a Schwartz-Bruhat
function on M N (F ) then (replacing g by gj det �js) the function

f (u) :=

(
g(u)j det ujs� n u 2 GL N (F );

0 det u = 0

is GL-Fubini on M N (F ), for s 2 C and < (s) suf�ciently large. The previous result now
implies

Z GL N (F )

g0(� )j det � js d� =
Z

GL N (F )
g(u)j det ujs du

(note that for any � 2 GL N (F ) in the support of g0, one has j det � js = j det � js 2 C� ).
Thus we can lift Godement-Jacquetzeta functions [GJ72] to GL N (F ) in the same

way as we lifted zeta integrals from F
�

to F� in section 2.5, though more work in this
dir ection is required.

3.4 Other algebraic groups and related problems

3.4.1 Integration over an arbitrary algebraic group

Having established an integral on GL N (F ), it would be useful also to be able to inte-
grate on algebraic subgroups such asSL N (F ) or BN (F ), the group of invertible upper
triangular matrices. Ar guments similar to those above will surely provide such an in-
tegral, but to establish such results for an arbitrary reductive algebraic group G we
require a more general abstract approach.

The author suspectsthat to eachreductive, algebraic group G there is a spaceof C(�) -
valued functions L (G(F )) on G(F ) and a linear functional

RG(F ) on these functions
with the following properties:

(i) Compatibility between F and F : if g is a `nice' (e.g. Schwartz-Bruhat) Haar in-
tegrable function on G(F ), then g0 (an obvious generalisation of de�nition 3.3.6)
belongs to L (G(F )) and

Z G(F )

g0(x) dx =
Z

G(F )
g(u) du:

(ii) Translation invariance: if f 2 L (G(F )) and � 2 G(F ), then x 7! g(x� ) is in
L (G(F )) , and

Z G(F )

f (x� ) dx =
Z G(F )

f (x) dx:

There should also be a left translation-invariant integral on G(F ), and this would
coincide with the right-invariant integral if G(F ) is unimodular .

Even in the simplest caseG = `additive group' these conditions are not enough to
make the integral unique in a reasonable way; this is discussed in remark 2.1.7 of
chapter 2. However , if we assume the existence of an absolute value which relates
the integrals on F� and F , the uniqueness does follow . We have observed a similar
phenomenon in this paper where we constructed the integral on F n to be compatible
with changeof variables from GL n (F ). Soto ensure uniqueness we should add to the
list the informal statement

(iii) Compatibility between the integrals over dif ferent algebraic groups.
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3.4.2 Subgroups of GLN

Once integration over algebraic subgroups of GL N (F ) has been established, there are
certain formulae which are expected to hold by analogy with the caseof a local �eld.
We quote two examples from [Car79]; for f a complex-valued, integrable function on
GL N (F ) (resp. on BN (F )),

Z

GL N (F )
f (g) dg =

Z

GL N (OF )

Z

B N (F )
f (kb) dk dRb

Z

B N (F )
f (b) dRb =

Z

� N (F )

Z

UN (F )
f (u� ) du d�;

where UN denotes the u.u.t. matrices, � N the diagonal matrices, and dR right Haar
measure (apart from BN , thesegroups are unimodular).

Writing these identities explicitly , one seesthat these formulae require the class of
integrable functions on GL N (F ) to be invariant under certain polynomial changesof
variables. It is therefore also important to extend the classof functions L (F n ; GL n ) so
that it is closed under the required changesof variables.

This is also precisely the sort of compatibility which may be important in (iii).

3.4.3 Non-linear change of variables

To develop integration on arbitrary algebraic groups and prove compatibility between
them we are lead to investigate non-linear change of variables on F n . Steps in this
dir ection are taken in chapter 4 in the caseof a two-dimensional local �eld (that is, F is
a complete discretevaluation �eld whose residue �eld is a local �eld). It is proved that
if f = ga; is the lift to F 2 of a Schwartz-Bruhat function on F

2
and h is a polynomial

over F then, assuming certain conditions, (x; y) 7! f (x; y � h(x)) is Fubini on F 2, and
so Z F 2

f (x; y � h(x)) dxdy =
Z F 2

f (x; y � h(x)) dydx =
Z F 2

f (x; y) dydx:

Note that the secondequality follows simply from translation invariance of the integral.
However , it is essential to make some assumptions on the singularities of h, for we

will also seein proposition 4.4.1that:

Proposition 3.4.1. SupposeF is a two-dimensionallocal�eld andF has�nite characteristic
p. Let h(X ) = t � 1X p, where t is a uniformiser of F , and let g beany Schwartz-Bruhat
function on F � F . Thenfor all y 2 F , thefunction x 7! g0(x; y � h(x)) is integrable,withRF g0(x; y � h(x)) dx = 0. Therefore

Z F Z F

g0(x; y � h(x)) dxdy = 0;

whereas Z F Z F

g0(x; y � h(x)) dydx =
Z Z

g(u; v) dvdu;

whichneednot bezero.

Whether this failur e of Fubini's theorem will causea problem in verifying existence
of integrals on algebraic groups is unclear. If such “wild” changesof variable do not
appear when changing charts on one's algebraicgroup, then this may not betoo serious
(preliminary work on SL 2(F ) suggestssomething interesting does happen in residue
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characteristic 2...). However , it is certainly an unexpected result; it appears to be a
measure-theoretic consequenceof the characteristic p local �eld F being imperfect. See
remark 4.4.2and subsection 6.1.3for further discussion.

3.4.4 Godement-Jacquet theory

To generalise Godement-Jacquettheory to a higher local �eld F , the immediate ques-
tion to ask is “What is a smooth representation of GL n (F )?”, and the second is “Ar e
the matrix coef�cients of a smooth representation integrable?”.

Whatever the answer to the �rst question, the answer to the second is surely “No,
the spaceof integrable functions on GL n (F ) is too small.”. In the residue characteristic
zero case(e.g. Qp(( t)) ), the methods of chapter 5 should produce a more extensive inte-
gration theory, and hopefully this will help to answer the �rst question. Unfortunately ,
developing a Godement-Jacquettheory in this casemay not produce any signi�cant
new insights into two-dimensional Langlands, becauseall the representationswill be
tame and the theory will reduce entirely to GL n (F ).
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Fubini' s theorem and non-linear changesof
variables over a two-dimensional local �eld

We consider non-linear changesof variables and Fubini's theorem for certain integrals
over a two-dimensional local �eld. An interesting example is presentedin which im-
perfectnessof a positive characteristic local �eld causesFubini's theorem to unexpect-
edly fail.

Notation

In this chapter F is a two-dimensional local �eld, i.e. a complete discretevaluation �eld
whose residue �eld K = F is a local �eld (R, C, or non-archimedean). We �x a prime t
of F and denote its ring of integers by OF . The residue map OF ! K is denoted x 7! x;
the discretevaluation is denoted � : F ! Z [ f1g . We �x a Haar measure on K .

The reason we work with a discrete valuation in this chapter, rather than the arbi-
trary valuation in chapters 2 and 3, is that several arguments proceedby induction on
the value group. By modifying the arguments it is likely that this restriction can be
eliminated.

The �xed prime t induces a splitting of the valuation given by

Z ! F� ; n 7! t(n) = tn ;

and therefore the integration theory developed in chapters 2 and 3 can be applied with
respect to this splitting. We recommend that the reader consult the summary of the
integration theories on F and F � F found in subsections1.4.1and 1.4.2respectively,
everywher e replacing “  2 � ” and “ t( )” by “ n 2 Z” and “ t n ”.

4.1 Decomposition results

Webegin by examining the action of polynomials on F ; the resultshold for any Henselian
discrete valuation �eld F with in�nite residue �eld.

Lemma 4.1.1. Supposeh(X ) is apolynomialoverF , that a + t cOF , b+ tA OF aretwo trans-
latedfractionalideals,andthat h(a + t cOF ) � b+ tA OF . Thenthere is a uniquepolynomial
 2 K [X ] whichgivesacommutativediagram

a + tcOF
h�� � �! b+ tA OF

a+ tc x7! x

?
?
y

?
?
y b+ tA x7! x

K �� � �!
 

K :

Moreover, deg � degh.
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Proof. There is certainly at most one function  making the diagram commute; but K
is an in�nite �eld so if two polynomials are equal as functions then they are equal as
polynomials. Sothere can be at most one polynomial  .

We may write h(a + tcX ) = h(a) + tRH (X ) where H 2 OF [X ] is a polynomial with
integer coef�cients, no constant term, and with non-zero image in K [X ] (i.e. not all
coef�cients of H are in tOF ). We clearly have a commutative diagram

a + tcOF
h�� � �! h(a) + tROF

a+ tc x7! x

?
?
y

?
?
y h(a)+ tR x7! x

K �� � �!
H

K ;

where H denotes the image of H in K [X ].
If A > R then the inclusion h(a + t cOF ) � b+ tA OF implies H is everywher e equal

to (b� h(a)) t � R ; but K in�nite then implies H is a constant polynomial and hence is
zero (since H has no constant term), which is a contradiction. Hence A � R, and we
may easily complete the proof:

If A = R then the desired commutative diagram is

a + tcOF
h�� � �! b+ tA OF

a+ tcx7! x

?
?
y

?
?
y b+ tA x7! x

K � � � � � � � � � � !
H + (h(a)� b)t � A

K ;

where the lower horizontal map is the function u 7! H (u) + (h(a) � b)t � A . If A < R
then the desired diagram is

a + tcOF
h�� � �! b+ tA OF

a+ tc x7! x

?
?
y

?
?
y b+ tA x7! x

K �� � � � � � � !
(h(a)� b)t � A

K ;

where the lower horizontal map is the constant function u 7! (h(a) � b)t � A .

De�nition 4.1.2. Supposeh(X ) is a polynomial over F , that a+ t cOF , b+ tA OF are two
translated fractional ideals, and that h(a + t cOF ) � b+ tA OF . The unique polynomial
 2 K [X ] which gives a commutative diagram

a + tcOF
h�� � �! b+ tA OF

a+ tc x7! x

?
?
y

?
?
y b+ tA x7! x

K �� � �!
 

K :

is said to be the residue�eld approximationof h with respectto the translated fractional
ideals.

Remark 4.1.3. Regarding the previous de�nition, the translated fractional ideals will
usually be clear from the context. The constant term of  depends not only on the sets
a + tcOF and b+ tA OF , but on the representativesa;bwe choose.
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When drawing the diagram above, we will henceforth omit the vertical maps, even
though they do depend on the choice of a;b. We will also follow the habit used in the
previous lemma of denoting a constant function on K by the value it assumes.

Much of this chapter is concerned with the problem of explicitly decomposing the
preimage of a set under a polynomial and describing the resulting residue �eld ap-
proximations. Here is a example to illustrate the ideas:

Example 4.1.4. Set q(X ) = X 3 + X 2 + t2 and assume char K 6= 2. The aim of this
example is to give explicit descriptions of the setsf x 2 OF : q(x) 2 tA OF g for A = 2; 3,
aswell asall associatedresidue �eld approximations.

Dir ectcalculations easily show that if x 2 OF , then q(x) 2 t2OF if and only if x 2 tOF

or x 2 � 1 + t2OF . Further, the residue �eld approximations are

tOF
q

�� � �! t2OF
?
?
y

?
?
y

K �� � �!
X 2+1

K

� 1 + t2OF
q

�� � �! t2OF
?
?
y

?
?
y

K �� � �!
X +1

K

Similarly , if we suppose x 2 OF then q(tx ) 2 t3OF if and only if x2 + 1 2 tOF ; and
q(� 1 + t2x) 2 t3OF if and only if x 2 � 1 + tOF .

If K contains a square root of � 1, let i denote a lift of it to OF ; then

f x 2 OF : q(x) 2 t3OF g = it + t2OF t � it + t2OF t � 1 � t2 + t3OF ;

with residue �eld approximations

it + t2OF
q

�� � �! t3OF
?
?
y

?
?
y

K � � � � � � � � � � � !
2iX + (i 2 +1) t � 1 � i

K

� it + t2OF
q

�� � �! t3OF
?
?
y

?
?
y

K � � � � � � � � � � � � !
� 2iX + (i 2+1) t � 1 + i

K

� 1 � t2 + t3OF
q

�� � �! t3OF
?
?
y

?
?
y

K �� � �!
X

K

If K does not contain a square root of � 1, then f x 2 OF : q(x) 2 t3OF g = � 1 � t2 +
t2OF , with the residue �eld approximation given by the thir d diagram above.

We now turn to generalising the example to an arbitrary polynomial; for later appli-
cations to integration the following results will allow us to reduce calculations to the
residue �eld, where we change variable according to the residue �eld approximation
polynomials for example, and then return to F .

The �rst decomposition result treats the non-singular part of the polynomial, and is
really just a rephrasing of Hensel's lemma:

Proposition 4.1.5. Let q(X ) bea polynomialwith coef�cientsin OF , of degree� 1 andwith
non-zero imagein K [X ]; let b 2 F .

(i) Supposethat q(a) = b for somea 2 OF andthat q0(a) 6= 0. Thenfor anyA � 1,

f x 2 OF : x = a andq(x) 2 b+ tA OF g = a + tA OF ;
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andtheresidue�eld approximationis `multiplicationby q0(a)':

a + tA OF
q

�� � �! b+ tA OF
?
?
y

?
?
y

K � � � � !
q0(a)X

K

(ii) Let ! 1; : : : ; ! r bethesimple(i.e. q0(! i ) 6= 0) solutionsin K to q(X ) = b; let �! i bea lift
by Henselof ! i to OF ; that is, q(! i ) = b. Thenfor anyA � 1,

f x 2 OF : q0(x) 6= 0 andq(x) 2 b+ tA OF g =
rG

i =1

�! i + tA OF :

Proof. (i) is essentially contained in the proof of Hensel's lemma and so we omit it. (ii)
easily follows.

We now consider the singular part, which is much more interesting and will be the
root of futur e dif �culties:

Proposition 4.1.6. Let q(X ) bea polynomialwith coef�cientsin OF , of degree� 1 andwith
non-zero imagein K [X ]; let b 2 F . ForA � 1 thereis a decomposition

f x 2 OF : q0(x) = 0 andq(x) 2 b+ tA OF g =
NG

j =1

aj + tcj OF

(assumingthis setis non-emptyi.e. that q(X )� bhasarepeatedrootin K ), wherea1; : : : ; aN 2
OF , andc1; : : : ; cN � 1 arepositiveintegers.

Proof. First supposeA = 1. Let a1; : : : ; aN be lifts to OF of the distinct solutions in K to
q(X ) = band q0(X ) = 0, and set cj = 1 for eachj . Then the required decomposition is

NG

j =1

aj + tcj OF :

We now determine the residue �eld approximation of q on eachaj + tcj OF asit will be
used later in corollary 4.3.5. So,for eachj , consider the Taylor expansion

q(aj + tX ) = q(aj ) + q0(aj )tX + q2(aj )t2X 2 + � � � + qd(aj )tdX d

where d = deg q. But q0(aj ) 2 tOF implies q(aj + tx ) 2 q(aj ) + t2OF for all x in OF ,
which is to say that

aj + tcj OF
q

�� � �! b+ tOF
?
?
y

?
?
y

K � � � � � � � � !
(q(aj )� b)t � 1

K

commutes, where the lower horizontal map is constant i.e. eachresidue �eld approxi-
mation associatedto the decomposition is constant.

We now suppose A > 1 and proceedby induction on A. Let u1; : : : ; uN 2 K be the
distinct solutions to q(X ) = band q0(X ) = 0, and write

Wj = f x 2 OF : x = uj and q(x) 2 b+ tA OF g
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for j = 1; : : : ; N . Since

f x 2 OF : q0(x) = 0 and q(x) 2 b+ tA OF g =
NG

j =1

Wj ;

it is enough to decomposeeachWj in the required manner, so we now �x a value of j ,
writing W = Wj and u = uj .

If W is empty then we are done; elseu hasa lift to a 2 OF such that q(a) 2 b+ tA OF ,
and we now �x such an a. Using the sameTaylor expansion asabove, there exist � � 1
and Q 2 OF [X ] such that q(a+ tX ) = q(a) + t � Q(X ) and Q(X ) 6= 0; in fact, q0(a) 2 tOF

implies � � 2, though we will not use this. Therefore

W = a + tf x 2 OF : Q(x) 2 (b� q(a)) t � � + tA� � OF g;

but also note that

(b� q(a)) t � � + tA� � OF = tA� � ((b� q(a)) t � A + OF ) = tA� � OF

by choice of a. Therefore W = a + tf x 2 OF : Q(x) 2 tA� � OF g, and it becomesclear
how the induction should proceed.

In fact, we must consider threecases,depending on the relative magnitudes of � and
A:

(i) A � � < 0. Then f x 2 OF : Q(x) 2 tA� � OF g = OF and Q(OF ) � OF � tA� � OF ;
therefore the residue �eld approximation is constant, given by the diagram

OF
Q

�� � �! tA� � OF
?
?
y

?
?
y

K �� � �!
0

K

This implies W = a + tOF with a constant residue �eld approximation:

a + tOF
q

�� � �! b+ tA OF
?
?
y

?
?
y

K �� � � � � � �!
(q(a)� b)t � A

K :

(ii) A � � = 0. Again, f x 2 OF : Q(x) 2 tA� � OF g = OF ; the residue �eld approxi-
mation is clearly

OF
Q

�� � �! OF
?
?
y

?
?
y

K �� � �!
Q

K

Therefore W = a + tOF , with residue �eld approximation

a + tOF
q

�� � �! b+ tA OF
?
?
y

?
?
y

K � � � � � � � � � � � � !
Q(X )+ (q(a)� b)t � A

K :
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(iii) A � � > 0. Here we may use the inductive hypothesis and proposition 4.1.5to
write

f x 2 OF : Q(x) 2 tA� � OF g =
G

i

di + tei OF ;

with residue �eld approximations  i (X ), say:

di + tei OF
Q

�� � �! tA� � OF
?
?
y

?
?
y

K �� � �!
 i

K

Therefore W =
F

i a + di t + tei +1 OF , with residue �eld approximations

a + di t + tei +1 OF
q

�� � �! b+ tA OF
?
?
y

?
?
y

K � � � � � � � � � � � � !
 i (X )+ (q(a)� b)t � A

K :

For q(X ) as in the previous two propositions, thesetwo decomposition results com-
pletely describe f x 2 OF : q(x) 2 b+ tA OF g in terms of � (degq)A translated fractional
ideals equipped with polynomial residue �eld approximations. Mor eover, the proof of
the secondresult gives some insight into how structure of the polynomial q effects the
resulting residue �eld approximations. For applications beyond thosedescribed in this
chapter, it will be necessaryto better understand how the decomposition varies with b
and A. For small A we have the following result:

Lemma 4.1.7. Let q(X ) bea polynomialwith coef�cientsin OF , of degree� 1 andsuchthat
q0hasnon-zero imagein K [X ]; let A = 1 or 2. Thereare�nitely manyb1; : : : ; bm 2 OF such
that if b 2 OF and f x 2 OF : q(x) 2 b + tA OF ; q0(x) = 0g is non-empty, then b � bi

mod tA OF for somei 2 f 1; : : : ; mg.

Proof. First suppose A = 1. Then f x 2 OF : q(x) 2 b+ tA OF ; q0(x) = 0g being non-
empty implies that b is the image under q of one of the �nitely many roots of q0.

Now supposethat A = 2. Then the argument is just the sameasfor A = 1, except it is
important to observethe following: if a1; a2 2 OF areequal modulo tOF , and q0(ai ) = 0
for i = 1; 2, then q(a1) = q(a2) mod t2OF . This follows from the Taylor expansion and
the fact that q0(ai ) 2 tOF .

Remark 4.1.8.Decomposition resultssimilar to the previous onesarecommon in model
theory; for example, in the theory of algebraically closed valued �elds [Rob77], every
de�nable subset of the �eld is a �nite disjoint union of points and `Swiss cheeses'.
Further, these decompositions are related to rami�cation theory and rigid geometry
through the Abbes-Saitotheory; seesubsection 6.1.2.

4.2 Non-linear changesof variables

In this section we investigate the behaviour of Fubini functions on F � F under certain
non-linear changesof variables. Mor e precisely, we consider the following:
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Conjecture 4.2.1. Let a1; a2 2 F , n1; n2 2 Z, and let h(X ) be a polynomial over F . Then
for any Schwartz-Bruhat function f on K � K , letting g = f (a1 ;a2);(n1 ;n2) be the lift of f
at (a1; a2); (n1; n2), the function

�( x; y) = g(x; y � h(x))

is Fubini on F � F , with repeatedintegral equal to that of f .

The conjecture is false in the generality in which we have stated it, though an impor -
tant special casehas already beentreated in chapter 3:

Theorem 4.2.2. With notationasin theconjecture,if degh � 1 thentheconjectureis true.

Proof. According to theorem 3.2.4, with n = 2, the function (x; y) 7! g(� (x; y)) is Fubini
on F � F for any � 2 GL 2(F ). If degh = 1 then the conjecture is a special caseof that
result; in fact, it essentially follows from lemma 3.2.7.

If degh = 0 then the conjecture follows from translation invariance of the integral;
seeproposition 1.4.8and remark 1.4.9.

Becauseof the previous theorem, we will have in mind polynomials h(X ) of degree
at least2, though our results are equally valid for lower degree.Wewill be interestedin
conditions on the data a1; a2; n1; n2; h such that the conjecture is true for all Schwartz-
Bruhat functions f . We assign to the data two invariants as follows:

De�nition 4.2.3.Let a1; a2; n1; n2; h bedata for the conjecture,and write h(a1+ tn1 X ) =
h(a1) + tRq(X ), where R 2 Z, q 2 OF [X ], and the image of q in K [X ] is non-zero. Note
that q(0) = 0.

The depthand normalisedpolynomialassociatedto the data are de�ned to be R � n2

and q(X ) respectively.

A summary of what we know about the validity of the conjecture, classi�ed by the
depth and normalised polynomial, may be found in section 4.5. The sensein which the
depth and normalised polynomial are invariants, and why they are useful, is given by
the following lemma in which we reduce the conjecture to a special case:

Lemma 4.2.4. Fix a polynomialq 2 OF [X ] with nonzero imagein K [X ] and no constant
term,andan integerR 2 Z. Thenthefollowingareequivalent:

(i) theconjecture is true for all dataa1; a2; n1; n2; h with depthR andnormalisedpolyno-
mial q;

(ii) theconjecture is true for all dataof theform 0; 0; 0; 0; h with depthR, normalisedpoly-
nomialq, andsuchthat h(0) = 0;

(iii) for all Schwartz-Bruhatfunctionsf on K � K , thefunction

(x; y) 7! f 0(x; y � tRq(x))

is Fubini;

(iv) for all Schwartz-Bruhatfunctionsf on K � K , thefollowing hold: for eachy 2 F , the
function x 7! f 0(x; y � tRq(x)) is integrable,thenthat y 7!

RF f 0(x; y � tRq(x)) dx
is integrable,and�nally that

Z F Z F

f 0(x; y � tRq(x)) dxdy =
Z

K

Z

K
f (u; v) dudv:
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Proof. Clearly (i)) (ii). The only data satisfying the conditions of (ii) are 0; 0; 0; 0; t R q,
and so (ii) , (iii).

(iii) ) (i): Soassume(iii), letting a1; a2; n1; n2; h be data for the conjecture with depth
R and normalised polynomial q. Let f be Schwartz-Bruhat on K � K and write g =
f (a1 ;a2);(n1 ;n2) . Note that h(a1 + tn1 X ) = h(a1) + tR+ n2 q(X ), and that therefore for all
x; y 2 F ,

g(a1 + tn2 x; a2 + tn2 y � h(a1 + tn1 x)) = f 0(x; y � t � n2 h(a1 + tn1 x))

= f 0(x; (y � t � n2 h(a1)) � tRq(x)) :

By (iii), this �nal function of (x; y) dif fers from a Fubini function by translation. So
(x; y) 7! g(x; y � h(x)) dif fers from a Fubini function only by translation and scaling,
and henceis itself Fubini, by proposition 1.4.8. Therefore we have proved (i).

(iii) , (iv): First note that for any x 2 F , the function y 7! f 0(x; y � tRq(x)) is just
the translation of y 7! f 0(x; y) by tRq(x); since f 0 is Fubini this is integrable, and
translation invariance of the integral implies

Z F

f 0(x; y � tRq(x)) dy =
Z F

f 0(x; y) dy:

But asa function of x this is integrable, again since f 0 is Fubini, and

Z F Z F

f 0(x; y � tRq(x)) dydx =
Z F Z F

f 0(x; y) dydx:

Now by remark 1.4.9and Fubini's theorem for K � K ,

Z F Z F

f 0(x; y) dydx =
Z

K

Z

K
f (u; v) dudv:

By the de�nition of a Fubini function, it now follows that (x; y) 7! f 0(x; y � tRq(x)) is
Fubini if and only if the dxdy repeated integral is well-de�ned and equalsR

K

R
K f (u; v)dudv, which is precisely what is stated in (iv).

With thesereductions at hand it is straightforwar d to establish the conjecture in the
caseof non-negative depth:

Theorem 4.2.5. Leta1; a2; n1; n2; h bedatafor theconjecture,andsupposethat theassociated
depthis non-negative.Thentheconjectureis true.

Proof. By the reductions, we suppose that q 2 OF [X ] is a polynomial with no constant
term and non-zero image in K [X ], that R � 0 is an integer, and we will prove condition
(iv) of the lemma above. Write h(X ) = tRq(X ), and let f be Schwartz-Bruhat on K � K .

The assumption on R implies that all coef�cients of h are integral, and for y 2 F we
have

f x 2 OF : y � h(x) 2 OF g =

(
OF y 2 OF ;

? y =2 OF :

Hence if y 2 OF , we seethat x 7! f 0(x; y � h(x)) is the lift of

u 7! f (u; y � h(u))

at 0; 0, where h is the image of h in K [X ]. If y =2 OF , then f 0(x; y � h(x)) = 0 for all x in
F .
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Integrating with respectto x therefore obtains
Z F

f 0(x; y � h(x)) dx =

( R
K f (u; y � h(u)) du y 2 OF ;

0 y =2 OF ;

which simply saysthat y 7!
RF f 0(x; y � h(x)) dx is the lift of

v 7!
Z

K
f (u; v � h(u)) du

at 0; 0.
Hence we may integrate with respectto y to get

Z F Z F

f 0(x; y � h(x)) dxdy =
R

K

R
K f (u; v � h(u)) dudv

=
R

K

R
K f (u; v � h(u)) dvdu

where the secondline follows from the �rst by Fubini's theorem on K � K . The result
now follows by translation invariance of the measure on K and lemma 4.2.4.

4.3 Negative depth

Having reduced the problem as far aspossible and treated the relatively easycase,we
discuss the caseof negative depth in this section and the following section 4.4.

For this section and the next we �x the following notation: R < 0 a negative integer
as the depth; a polynomial q 2 OF [X ] without constant term and with non-zero image
in K [X ] as the normalised polynomial; and a Schwartz-Bruhat function f on K � K .
Write � for the function of F � F given by �( x; y) = f 0(x; y � h(x)) , and q for the image
of q in K [X ].

In this section,we alsoassumethat qdoesnot have everywher evanishing derivative;
sinceq is non-zero and without constant term, this condition canonly fail to besatis�ed
if K has positive characteristic p and q(X ) is a purely inseparable polynomial i.e. a
polynomial in X p. We shall drop this assumption in section 4.4and seethat conjecture
4.2.1fails for such highly singular q.

Wewill study the conjecturefor data of depth R and normalised polynomial q through
condition (iv) of lemma 4.2.4. We will establish various conditions under which the
conjecture holds.

Intr oduce two sets:the non-singular part of q

Wns = f x 2 OF : q0(x) 6= 0g = f x 2 OF : q0(x) 2 O�
F g;

and the singular part

Wsing = f x 2 OF : q0(x) = 0g = f x 2 OF : q0(x) 2 tOF g:

By our assumption on q, the non-singular part Wns is non-empty. The corresponding
singular and non-singular parts of � are the restriction of � to thesesetsextended by
zero elsewhere:

� ns = � charWns� F

� sing = � charWsing� F :

Note that � = � ns + � sing.
The singular and non-singular parts are treatedseparately. Using the decomposition

result 4.1.5, we will now explicitly evaluate x 7! � ns(x; y) for any y 2 F :
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Proposition 4.3.1. For all y 2 F , the function x 7! � ns(x; y) is integrable,and y 7!
RF � ns(x; y) dx is thelift of

v 7!
X

! 2 K
q(! )= v
q0(! )6=0

Z

K
f (! ; � q0(! )u) du X � R

at 0; R; thesumis takenoverall simplesolutions! to q(! ) = v.
Moreover, this function y 7!

RF � ns(x; y) dx is integrableon F , with

Z F Z F

� ns(x; y) dxdy =
Z

K

Z

K
f (! ; u) d! du:

Proof. Firstly, for y =2 tROF , we have �( x; y) = 0 for all x 2 F . Now �x y = tRy0 2
tROF .

Then for � ns(x; y) to be non-zero, x must belong to

f x 2 Wns : y � tRq(x) 2 OF g = f x 2 Wns : q(x) 2 y0 + t � ROF g

= f x 2 OF : q(x) 2 y0 + t � ROF ; q0(x) 6= 0g

=
rG

i =1

�! i + t � ROF ;

where �! i are lifts by Hensel of the simple solutions ! i in K to q(! ) = y0 and the decom-
position is provided by the decomposition result 4.1.5; that proposition also implies
that there are commutative diagrams

�! i + t � ROF
q

�� � �! y0 + t � ROF
?
?
y

?
?
y

K �� � � �!
q0(! i )X

K :

So we write � ns(x; y) =
P r

i =1 gi (x), where gi is the restriction of x 7! � ns(x; y) to
�! i + t � ROF , extended by zero elsewhere; if x = �! i + t � Rx0 belongs to �! i + t � ROF then
the commutative diagram implies

� ns(x; y) = gi (x) = f (! i ; � q0(! i )x0):

Therefore gi is the lift of the Haar integrable function

u 7! f (! i ; � q0(! i )u)

at �! i ; � R, the integral of which is

Z F

gi (x) dx =
Z

K
f (! i ; � q0(! i )u) du X � R

by remark 1.4.5. By linearity , x 7! � ns(x; y) is integrable, with

Z F

� ns(x; y) dx =
rX

i =1

Z

K
f (! i ; � q0(! i )u) du X � R : (� )
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The previous paragraph considered a �xed value of y = t Ry0 in tROF . We now
consider the integral (� ) asa function of y; that is,

y 7!
Z F

� ns(x; y) dx:

Recall that ! 1; : : : ; ! r are the simple solutions in K to q(! ) = y0. Sowe may rewrite the
integral as

Z F

� ns(x; y) dx =
X

!

Z

K
f (! ; � q0(! )u) du X � R ;

where the sum is over the �nitely many ! in K which satisfy q(! ) = y0 and q0(! ) 6= 0.
Finally, by appendix 4.A, the function v 7!

P
! : q(! )= v
q0(! )6=0

R
K f (! ; � q0(! )u) du is in fact

Haar integrable on K with integral
Z

K

X

! : q(! )= v
q0(! )6=0

Z

K
f (! ; � q0(! )u) dudv =

Z

K

Z

K
f (! ; u) d! du:

Therefore y 7!
RF � ns(x; y) dx is integrable on F , with

Z F Z F

� ns(x; y) dxdy =
Z

K

Z

K
f (! ; u) d! du:

The proposition has an immediate corollary:

Corollary 4.3.2. If q0(X ) is no-wherevanishingon K , then� is Fubini.

Proof. If q0(X ) hasno roots in K , then � = � ns, so the previous proposition and lemma
4.2.4imply � is Fubini.

Mor egenerally, the proposition reducesthe problem to showing that the singularities
of q give no contribution to the integrals:

Corollary 4.3.3. Thefunction � is Fubini if andonly if the following hold: for eachy 2 F ,
thefunction x 7! � sing(x; y) is integrable,thenthat y 7!

RF � sing(x; y) dx is integrable,and
�nally that

Z F Z F

� sing(x; y) dxdy = 0:

Proof. This follows immediately from the identity � = � ns + � sing, the previous propo-
sition, lemma 4.2.4, and linearity .

We may verify the �rst requirement of corollary 4.3.3using the decomposition result
4.1.6:

Proposition 4.3.4. For eachy 2 F , the function x 7! � sing(x; y) is integrable,andwehave
thefollowingexplicit descriptionsof its integral:

If y =2 tROF , or if y 2 tROF but f x 2 OF : q(x) 2 t � Ry + t � ROF ; q0(x) = 0g is empty,
then

RF � sing(x; y) dx = 0.
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Otherwisewehavey 2 tROF andwrite

f x 2 OF : q(x) 2 t � Ry + t � ROF ; q0(x) = 0g =
NG

j =1

aj + tcj OF ;

wherethedecomposition(whichdependsony) is providedby thedecompositionresult 4.1.6; let
 j 2 K [X ] for j = 1; : : : ; N denotethecorrespondingresidue�eld actionsi.e.

aj + tcj OF
q

�� � �! t � Ry + t � ROF
?
?
y

?
?
y

K �� � �!
 j

K :

commutes.Then
Z F

� sing(x; y) dx =
X

j

0Z

K
f (aj ; �  j (u)) du X cj ;

where thesummation
P 0 is overthosej 2 f 1; : : : ; N g for which  j is not a constantpolyno-

mial.

Proof. By the de�nition of a lifted function, f 0 vanishes off OF � OF . So if f x 2 OF :
q(x) 2 t � Ry+ t � ROF ; q0(x) = 0g is empty for somey then x 7! � sing(x; y) is everywher e
zero and henceintegrable; note that this set is certainly empty if y =2 t ROF .

Now �x y = tRy0 2 tROF for the remainder of the proof. Then for x 2 F , � sing(x; y)
vanishesunless x belongs to

f x 2 Wsing : y � tRq(x) 2 OF g = f x 2 Wsing : q(x) 2 y0 + t � ROF g

= f x 2 OF : q(x) 2 y0 + t � ROF ; q0(x) = 0g

=
NG

j =1

aj + tcj OF ;

where the decomposition is as in the statement of the proposition; let  j be the corre-
sponding residue �eld approximations. Denote by gj the restriction of x 7! � sing(x; y)
to aj + tcj OF , extended by zero elsewhere. We shall now prove that eachgj is an inte-
grable function. Indeed, gj vanishes off aj + tcj OF , and if x = aj + tcj x0 2 aj + tcj OF ,
then

gj (x) = f 0(aj + tcj x0; tRy0 � tRq(aj + tcj x0))

= f 0(aj + tcj x0; tR (y0 � q(aj + tcj x0))

= f (aj + tcj x0; tR (y0 � q(aj + tcj x0)) )

= f (aj ; �  j (x0))

by de�nition of the residue �eld approximation  j . Thereforegj is a lifted function: it is
the lift of u 7! f (aj ; �  j (u)) at aj ; cj . Further, sincewe assumedf is Schwartz-Bruhat,
this function of u is Haar integrable on K solong as j is not constant, and therefore gj

is integrable on F , with

Z F

gj (x) dx =
Z

K
f (aj ; �  j (u)) du X cj :
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However , if  j is a constant polynomial, then gj = gj (aj ) charaj + tcj OF
, which is inte-

grable with zero integral by example 2.1.10.
By linearity , x 7! � sing(x; y) is integrable, with

Z F

� sing(x; y) dx =
X

j

0Z

K
f (aj ; �  j (u)) du X cj ;

asrequired. We emphasiseagain that the decomposition aj ; cj ;  j which we have used
to expressthe integral dependson y.

Corollary 4.3.5. If R = � 1 then� is Fubini.

Proof. Looking at the proof of decomposition result 4.1.6, we seethat if R = � 1 (i.e.
A = 1 in the notation of that result), then all the residue �eld approximations are
constant. Soby the previous proposition,

RF � sing(x; y) dx = 0 for all y 2 F . Corollary
4.3.3implies � is Fubini.

By proposition 4.3.4we now have a well de�ned function y 7!
RF � sing(x; y) dx; to

establish the validity of the conditions of corollary 4.3.3the next step is to prove that
this function of y is integrable. The complication in establishing its integrability is that
we lack explicit information on the variation of the sets

f x 2 OF : q(x) 2 y0 + t � ROF ; q0(x) = 0g

asy0 runs though OF .
We now presentsomeresults and calculations which reveal considerable insight into

why y 7!
RF � sing(x; y) dx can in fact fail to be integrable. We shall also give evidence

that this phenomenon is merely a result of the integration theory not yet being suf�-
ciently developed.

Proposition 4.3.6. Assumethat there existb1; : : : ; bm 2 OF suchthat if b 2 OF and f x 2
OF : q(x) 2 b + t � ROF ; q0(x) = 0g is non-empty, then b � bi mod t � ROF for some
i 2 f 1; : : : ; mg. Notethat this is satis�edif R = � 1 or � 2, by corollary 4.1.7.

Theny 7!
RF � sing(x; y) dx is a �nite sumof lifts of functionsof theform

v 7!
Z

K
f (a; �  (u) � v) du X c

for  2 K [X ] non-constant,a 2 K , andc � 1.

Proof. Let b1; : : : ; bm be as in the statement of the proposition; we also assume that
b1; : : : ; bm are distinct modulo t � ROF .

By proposition 4.3.4, if y 2 F is not in bi tR + OF for somei , then
RF � sing(x; y) dx = 0.

So letting Gi be the restriction of y 7!
RF � sing(x; y) dx to bi tR + OF , extended by zero

elsewhere,we have an equality of functions of y:

Z F

� sing(x; y) dx =
mX

i =1

Gi (y):

For convenienceof notation, we now �x some i and write G = G i , b = bi . Write

f x 2 OF : q(x) 2 b+ t � ROF ; q0(x) = 0g =
NG

j =1

aj + tcj OF ;
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with residue �eld approximations  j . We claim that G is the lift of

v 7!
NX

j =1

0
Z

K
f (aj ; �  j (u) � v) du X cj

at b� R ; 0 (the sum
P 0 is restricted to those j such that  j is not constant). Sosuppose

y = btR + y0 2 btR + OF . Then of courseyt � R + t � ROF = b+ t � ROF , and so

f x 2 OF : q(x) 2 yt � R + t � ROF ; q0(x) = 0g =
NG

j =1

aj + tcj OF ;

with the residue �eld approximations of this decomposition given by

aj + tcj OF
q

�� � �! t � Ry + t � ROF
?
?
y

?
?
y

K � � � � � � !
 j (X )� y0

K :

Proposition 4.3.4implies

G(y) =
Z F

� sing(x; y) dx =
NX

j =1

0
Z

K
f (aj ; �  j (u) � y0) du X cj ;

proving the claim, and completing the proof.

Remark 4.3.7. Suppose that the assumption of the previous proposition is satis�ed.
Then to establish integrability of y 7!

RF � sing(x; y) dx and prove it haszero integral, it
is enough to prove that for any a 2 K , non-constant  2 K [X ], and g Schwartz-Bruhat
on K , the lift of v 7!

R
K g(�  (u) � v) du at 0; 0 is integrable and haszero integral; let G

denote this function of F , that is,

G : F ! C

y 7!

( R
K g(�  (u) � y) du y 2 OF ;

0 otherwise.

ThenG may not beintegrableon F . Indeed, it is not hard to show that if G were to
belong to L (F ), the spaceof integrable functions, then G would be the lift at 0; 0 of a
Haar integrable function on K ; this Haar integrable function would then have to be
v 7!

R
K g(�  (u) � v) du, but the arguments to follow reveal that this function is Haar

integrable if and only if g = 0.
We now offer the following nonsenseargument for why G should be integrable, and

why
RF G(y) dy should be zero. As a lifted function, we evaluate the integral of G by

theorem 1.4.4to give

Z F

G(y) dy =
Z

K

Z

K
g(�  (u) � v) dudv

85



CH A PTER 4: FUBIN I ' S TH EOREM OVER A TWO-DIM EN SION A L LOCA L FIELD

and then apply Fubini's theorem for K and translation invariance of the integral to
deduce

Z F

G(y) dy =
Z

K

Z

K
g(�  (u) � v) dvdu

=
Z

K

Z

K
g(� v) dvdu

=
Z

K
du

Z

K
g(v)dv:

At this point it is clearwhy our arguments arenot valid: the function v 7!
R

K g(�  (u)�
v) du is not integrable on K . However , we may apply similar nonsenseto the function
charOF , which is the lift of charK , to deduce

Z F

charOF (x) dx =
Z

K
du:

Finally, example 2.1.10(i) implies
RF charOF (x) dx = 0 and so

Z F

G(y) dy =
Z

K
du

Z

K
g(v)dv

=
Z F

charOF (x) dx
Z

K
g(v)dv

= 0:

It should be possible to extend the measure theory on F so that thesemanipulations
become rigor ous. The key idea is that from the vantage point of F , the residue �eld
K truly has zero measure, as used above; so one expects Fubini's theorem on K to
hold for certain functions which, though not Haar integrable, are integrable in some
senseafter imposing the condition

R
K du = 0. Once this is properly incorporated into

the measure, the theory should becomeconsiderably richer. It should also yield new
methods to treatdiver gent integrals on K by lifting them to F , applying Fubini theorem
there,and then pulling the results back down to K ; this would be a refreshing contrast
to the main techniquessofar, which have centred around reducing integrals on F down
to K .

Example 4.3.8. Now we treat an example of depth � 3 in which the assumption of
proposition 4.3.6is not satis�ed. We assumeR = � 3, q(X ) = X 2, and char K 6= 2. The
decompositions required for the proposition are given by

f x 2 OF : q(x) 2 b+ t � ROF ; q0(x) = 0g

= f x 2 OF : x2 2 b+ t3OF ; x = 0g

=

8
>>>><

>>>>:

? b =2 t2OF ;

? b 2 t2OF but t � 2b =2 K 2;

b1=2 + t2OF t � b1=2 + t2OF b 2 t2OF and t � 2b 2 K � 2;

t2OF b 2 t3OF ;

where we use Hensel's lemma to take a square root in the thir d case. The associated
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residue �eld approximations in the �nal two casesare given by

b1=2 + t2OF
X 2

�� � �! b+ t3OF
?
?
y

?
?
y

K � � � � � � !
2b1=2 t � 1X

K

� b1=2 + t2OF
X 2

�� � �! b+ t3OF
?
?
y

?
?
y

K �� � � � � � �!
� 2b1=2 t � 1X

K

t2OF
X 2

�� � �! b+ t3OF
?
?
y

?
?
y

K �� � �!
� bt� 3

K :

Proposition 4.3.4therefore implies that for y 2 F ,
Z F

� sing(x; y) dx

=

8
>>>><

>>>>:

0 y =2 t � 1OF ;

0 y 2 t � 1OF but ty =2 K 2;
R

K f (0; � 2(yt)1=2u) du X 2 +
R

K f (0; 2(yt)1=2u) du X 2 y 2 t � 1OF and ty 2 K � 2;

0 y 2 OF :

Therefore y 7!
RF � sing(x; y) dx is the lift of

v 7!
Z

K
f (0; � 2v1=2u) + f (0; 2v1=2u) du X 2 charK � 2 (v)

at 0; � 1.
This function of F need not be integrable, but as in the previous remark, there is a

good argument to suggest that it should be,and why its integral should be zero:
Indeed, the function on the residue �eld has the form

J (v) =
X

! 2 K
q(! )= v
q0(! )6=0

Z

K
g(� q0(! )u) du

where g is a Schwartz-Bruhat function on K . Now replace the integrand by
g(� q0(! )u) charK (! ) and appeal to appendix 4.A to deduce

Z

K
J (v)dv =

Z

K

Z

K
g(u) charK (! ) d! du:

But arguing as in the proceeding remark,
R

K d! = 0, and so
R

K J (v) dv = 0. Of course,
the argument is nonsensebecauseJ is not integrable, but it should be after a suitable
extension of the measure.

4.4 Negative depth with q purely inseparably

We maintain all notation intr oduced at the beginning of the previous section but drop
the additional hypothesis that q0 is not everywher e zero. Instead, we now assumeK
has positive characteristic p and that q(X ) is purely inseparable.
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Whereasin the previous section conjecture 4.2.1could fail to hold becausethe inte-
gration theory is not yet suf�ciently developed, causing functions not to be integrable,
we will present a result now to show that if q is purely inseparable then all required
functions are integrable, but the conjecture is simply false!

First note that, in the notation of the previous section, q0 being everywher e zero im-
plies � = � sing. Secondly, proposition 4.3.4remains valid, so that x 7! �( x; y) is inte-
grable for any y 2 F and we have an explicit description of its integral.

Proposition 4.4.1. SupposeR = � 1. Thenbothrepeatedintegralsof � arewell-de�ned,but
f maybechosensothat

Z F Z F

�( x; y) dxdy 6=
Z F Z F

�( x; y) dydx:

Proof. Ar guing exactly as in corollary 4.3.5it follows that
RF � sing(x; y) dx = 0 for all

y 2 F , and therefore y 7!
RF � sing(x; y) dx = 0 is certainly integrable, with integral 0.

That is, Z F Z F

�( x; y) dxdy = 0:

The dydx integral of � was showed to make sensein lemma 4.2.4and have value

Z F Z F

�( x; y) dxdy =
Z

K

Z

K
f (u; v) dudv:

To complete the proof simply choosef to be any Schwartz-Bruhat function on K � K
such that

R
K

R
K f (u; v)dudv is non-zero.

Remark 4.4.2. The integration theory of chapter 2 is easily modi�ed to allow integra-
tion on a complete discrete valuation �eld whose residue �eld is any in�nite �eld
equipped with discrete counting measure; this is an elementary form of motivic in-
tegration. In that situation one may ask similar questions about changesof variables
and Fubini's theorem; results are generally easier to prove and closer to the analo-
gous results for a usual local �eld. In particular , if the residue �eld is perfect, then the
pathologies exhibited in this section no longer exist.

The failur e of Fubini's theorem appears therefore to be a measure-theoretic conse-
quence of the local �eld K being imperfect. Note that the set of pth powers of K have
zero measure, in stark contrast with in a perfect �eld. The approach to rami�cation
theory for complete discretevaluation �elds with imperfect residue �elds by A. Abbes
and T. Saito [AS02] [AS03] is basedon rigid algebraic geometry and usesdecomposi-
tion results similar to 4.1.6and 4.1.5; seesubsection6.1.2for a moredetailed discussion.
A deeper understanding of this failur e of Fubini's theorem will undoubtedly lead to
progressin the rami�cation theory of two-dimensional local �elds.

4.5 Summary and future work

Let us summarise our main results on conjecture 4.2.1. Given data a1; a2; n1; n2; h for
the conjecture, let q be the associatednormalised polynomial and R the depth; then:

(i) If degh (= degq) � 1 then the conjecture is true (theorem 4.2.2).

(ii) If R � 0 then the conjecture is true (theorem 4.2.5)
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(iii) If q0 is no-where vanishing on K then the conjecture is true (corollary 4.3.2).

(iv) If R = � 1 and q is not purely inseparable, then the conjecture is true (lemma 4.2.4
+ corollary 4.3.5).

(v) If R < � 1 and q is not purely inseparable, then y 7!
RF �( x; y) dx may fail to be

integrable and so the conjecture may fail; it appears that it is possible to increase
the spaceof integrable functions so that the conjecturebecomestrue (remark 4.3.7
+ example 4.3.8).

(vi) If R = � 1 but q is purely inseparable, then the conjecture fails and would con-
tinue to fail even if we increasedthe scopeof the integral (section 4.4).

(vii) If R < � 1 but q is purely inseparable, then similarly to case(v) calculations be-
come dif �cult. We have not included examples,but in all caseswhich the author
can explicitly evaluate,

RF RF �( x; y) dxdy = 0, Thus the conjecture seemsto fail
as in (vi).

The immediate task is evident: the integral must be extended to a wider class of
functions sothat the nonsensemanipulations in remark 4.3.7and example 4.3.8become
valid.

Secondly, we should consider more general changesof coordinates on F � F than
(x; y) 7! (x; y � h(x)) . Similar methods to those in this chapter will be required: �rstly
one needsto approximate the transformation at the level of K � K and �nd a suitable
decomposition. This will lead to integrals over K which can be explicitly evaluated as
well assome functions on F ; thesefunctions on F will perhaps be within the scopeof
the integral, or instead will provide further impetus for extending the integral.

4.A Evaluation of an important integral on K

Let K be a local �eld, f a Fubini function of K � K , and  2 K [X ] a polynomial with
 0not everywher e zero. We discuss the function of K given by

J (v) =
X

! 2 K
 (! )= v
 0(! )6=0

Z

K
f (! ; �  0(! )u) du:

Note that the assumption that f is Fubini implies that J is de�ned (i.e. not in�nite) for
all v. We will prove the following:

Proposition 4.A.1. Thefunction J is integrableonK , with
Z

K
J (v) dv =

Z

K

Z

K
f (! ; u) d! du:

Proof. The proof is an exercisein analysis over a local �eld. Let � = f x :  0(x) = 0g be
the �nite set of singular points of  .

Let v0 2 K and assumethat there is anon-singular solution to  (Y ) = v0. The inverse
function theorem for complete �elds (seee.g. [Igu00]) implies that there existsan open
disc V 3 v0, open discs 
 1; : : : ; 
 n , and K -analytic maps � i : V ! 
 i , i = 1; : : : ; n (that
is, representablein V by a convergent power series)with the following properties:

(i) 
 1; : : : ; 
 n are pairwise disjoint;
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(ii)  (
 i ) = V for eachi ; moreover,  j 
 i and � i are inverse dif feomorphisms between

 i and V ;

(iii) the non-singular solutions in K to  (Y ) = v0 are Y = � 1(v0); : : : ; � n (v0).

Mor eover, we claim that, possibly after shrinking the sets
 i , V , we may further assume

(iv) for any v 2 V , the non-singular solutions in K to  (Y ) = v areY = � 1(v); : : : ; � n (v).

For if not, then there would exist a sequence(xn )n in K such that xn =2
S

i 
 i for all
n and  (xn ) ! v0; the relative compactnessof  � 1(V ) now allows us to pass to a
convergent subsequenceof (xn ), giving an element x 2 K n

S
i 
 i which satis�es  (x) =

v0. But this contradicts (iii) and so proves our claim. Informally , the � i parametrise the
non-singular solutions of  (Y ) = v, for v 2 V .

For v 2 V , we deduce that

J (v) =
Z nX

i =1

f (� i (v); �  0(� i (v))u) du

and so
Z

V
J (v) dv =

nX

i =1

Z

K

Z

V
f (� i (v); �  0(� i (v))u) dvdu

=
X

i

Z

K

Z

V
j 0(� i (v)) j � 1f (� i (v); u) dvdu

=
X

i

Z

K

Z


 i

f (! ; u) d! du

=
Z

K

Z

 � 1 (V )
f (! ; u) d! du

by Fubini's theorem and an analytic change of variables v =  (! ). An elementary
intr oduction to change of variables in integrals over non-archimedean �elds may be
found in [VVZ94].

If J is replaced by J charA for any measurable subset A � V then this working is
easily modi�ed to show

Z

A
J (v) dv =

Z

K

Z

 � 1 (A )
f (! ; u) d! du: (� )

It is now easyto seethat  (K n �) admits a partition into countably many Borel sets
(A j )1

j =1 where (� ) holds with A j in place of A for eachA. Therefore
Z

K
J (v) dv =

X

j

Z

A j

J (v) dv

=
X

j

Z

K

Z

 � 1 (A j )
f (! ; u) d! du

=
Z

K

Z



f (! ; u) d! du

where 
 =  � 1( (K n �)) = K n  � 1( (�)) dif fers from K only by a �nite set. Sowe
have reachedthe desired result:

Z

K
J (v) dv =

Z

K

Z

K
f (! ; u) d! du:
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CH A PTER 5

Two-dimensional integration à la
Hrushovski-Kazhdan

We explain how the results of Hr ushovski and Kazhdan apply to integration on two-
dimensional local �elds of residue characteristic zero.

5.1 Summary, without model theory

We now explain rigor ously exactly how the model theoretic approach to integration
developed by E. Hr ushovski and D. Kazhdan in [HK06] applies to the problem of in-
tegration on two-dimensional local �elds. We focus on the caseof dimension two, but
there would be no essentialdif ferencecausedby considering higher dimensional local
�elds.

The results here are basedon the model theoretic calculations of the subsequentsec-
tions, but we are going to begin by presenting our main results avoiding model theory
as far aspossible, so that this section remains accessibleto the reader unversed in that
theory. As a result, a few technical issuesare omitted. The model theoretically inclined
reader will have no dif �culty in remoulding this discussion to his preferred shape,and
will hopefully feel nothing worse than slight satisfaction if he notices one of the omis-
sions.

For the remainder of this section we �x a two-dimensional local �eld F , and a uni-
formiser t 2 F . We set

RV(F ) = F� =1 + pF t f1g ;

where pF is the prime ideal of OF . The natural map F ! RV(F ), sending 0 to 1 , is
denoted rv. Our choice of t induces an isomorphism

RV(F )� := F� =1 + pF
�= F

�
� Z; ut r 7! (u; r );

which will be essential.

5.1.1 Motivation

A recurring idea in the development of the integration theory on a two-dimensional
local �eld F has beenthat the integral ought to reduce to Haar integration on the local
�eld F . Explicit phenomena of this appeared in the original de�nition in chapter 2,
the reduction in section 4.3of an integral on F to one of F which was then calculated
in appendix 4.A, and the way in which the invariant integral on GL n (F ) lifted the
Haar integral on GL n (F ) (proposition 3.3.8). We saw in remark 4.3.7that there seem
not to be enough integrable functions, and a major component of chapter 3 involved
proving that linear changesof variables of determinant 1 preservethe two-dimensional
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measure. We will mainly addressthe �rst two-pr oblems here: reducing the integral to
the residue �eld and increasing the scopeof the integral. Understanding its behaviour
under changesof variables is covered by one of the dif �culties discussedin subsection
5.1.4below.

A subset of F (or of F n ) will be called bounded if and only if it is bounded with
respect to the discrete valuation on F . A more subtle notion of boundedness is the
following:

De�nition 5.1.1. Firstly, call a subsetY � RV(F ) bounded if and only if rv � 1(Y ) � F
is bounded. Now, Y is two-dimensionallyboundedif and only if it is not only bounded,
but also eachsection

Yk := f y 2 F : (y; k) 2 Yg

is bounded in the local �eld F .
Here we have identi�ed F � =1 + pF with F

�
� Z, but the notion of two-dimensional

boundedness is easily seento be independent of the choice of uniformiser t.
The two notions of boundedness for Y � RV(F )n are de�ned similarly .

Let � F denote the measure on F intr oduced in section 2.2. As a reminder, � F is
characterisedby

� F (a + tk f x 2 OF : x 2 Sg) = � (S)T k 2 R(T)

for a 2 F , k 2 Z, and S � F of �nite Haar measure. Here � is a �xed Haar measure
on F , and we have replaced the X variable used in earlier chapters by T, to avoid
confusion asX is always used to denote certain setsin this chapter.

SupposeY � RV(F )� ; then it is easyto seethat

rv � 1(Y ) =
G

k2 Z

tk f x 2 OF : x 2 Ykg;

whereYk is the sectionof Y which appeared in the previous de�nition. If Y is bounded,
then Yk = ? for k � 0, and if Y is moreover two-dimensionally bounded, then

� F (tk f x 2 OF : x 2 Ykg) = � (Yk ) T k :

Although we mentioned in section 2.2 that � F is not always countably additive, Fes-
enko has shown in [Fes03, §6] that it can be consistently extended to certain countable
disjoint unions; if Y is two-dimensionally bounded, then

F
k2 Z tk f x 2 OF : x 2 Ykg

will be such a union, and so

� F (rv � 1(Y )) =
X

k2 Z

� (Yk) T k 2 R((T)) :

This all easily extends to two-dimensionally bounded Y � (RV(F )� )n , with

� F (rv � 1(Y )) =
X

k2 Zn

� (Yk )X k1+ ��� + kn 2 R((T)) :

However , the classof subsetsof F of the form rv � 1(Y ) for Y � RV(F )� is very small;
it is not even closed under translations. But if we also allow `measure-preserving'
maps, then we shall soon seein theorem 5.1.5that the situation is much better.
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5.1.2 Semi-algebraic sets

The readershould look forwar d at the notion of `structure' which will beused in section
6.2; indeed, it would be pro�table to skim that entire section before proceeding. We
assumehere for simplicity that F is a non-archimedean local �eld; for the archimedean
case,seeremark 5.1.6.

De�nition 5.1.2. Let A be the smallest structure on F satisfying the following proper-
ties:

(i) A (F n ) contains any Zariski closed set;

(ii) A (F ) contains both OF and OF := f x 2 OF : x 2 OF g.

A subset of F n belonging to A(F n ) will be called semi-algebraic; a function between
subsetsof F n and F m will be called semi-algebraic if and only if its graph � � F n+ m is
semi-algebraic.

In other wor ds, the semi-algebraic setsare those which are de�nable with respectto
the structure A .

We de�ne semi-algebraic subsets of F
n

in a similar way as for F n , by taking the
smallest structure which contains all Zariski closed setsand OF .

Example 5.1.3. Hopefully a few examples will convince the reader that semi-algebraic
setsare not too daunting:

(i) Any single point a 2 F n is semi-algebraic, becauseit is the image of a constant
polynomial.

(ii) If f 2 F [x1; : : : ; xn ], then f � 1(OF ) � F n is semi-algebraic. Indeed, it is the preim-
ageof asemi-algebraicsetunder asemi-algebraicfunction (the function f is semi-
algebraic becauseits graph is Zariski closed,henceis semi-algebraic).

(iii) If S is a compact open subset of F
n
, then X := a + � f x 2 On

F : x 2 Sg is semi-
algebraic, for any a 2 F n , � 2 GL n (F ). Indeed, decomposing S into a �nite,
disjoint union of products of translated fractional ideals, we seethat X is a �nite,
disjoint union of setsof the form a0+ � 0On

F , with a0 2 F n , � 0 2 GL n (F ); but such
setsare the image under a semi-algebraic map of a semi-algebraic set, henceare
semi-algebraic.

Example 5.1.4. As well as polynomial maps, semi-algebraic functions can include the
inverse of polynomial maps. For example, the group of principal units U 1

F = 1 + pF is
uniquely l-divisible for any l not divisible by char F , so that the map

f : U1
F ! U1

F ; x 7! x1=l

is well-de�ned. Mor eover, f is semi-algebraic, for the following reasons:

(i) by the previous example p1
F , henceU1

F , is semi-algebraic;

(ii) the polynomial x l is a semi-algebraic function, meaning that

� = f (x; y) 2 F 2 : x l = yg

is semi-algebraic;
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(iii) by permuting coordinates and intersection with U1
F � U1

F , we seethat

� 0 = f (y; x) 2 U1
F � U1

F : x l = yg

is semi-algebraic;but � 0is exactly the graph of f , and thereforef is semi-algebraic.

The advantage of working with the classof semi-algebraic objects is that it is large
enough to include all interesting setsand functions, while not so large that pathologies
appear. Here are several particularly attractive limitations, which are true in the case
charF = 0:

(i) Call a subsetof F n null if and only if it is contained in a proper Zariski closedsub-
setof F n . Then a semi-algebraic setX � F n is null if and only if it hasno interior
in the valuation topology on F . Hence the boundary @X of any semi-algebraic
set X � F n is null. Seeproposition 5.3.12and the subsequentcorollaries.

(ii) Let X � F n be semi-algebraic, and f : X ! F n a semi-algebraic function. Then
f is almost everywher e smooth; here `smooth' means in�nitely dif ferentiable in
the usual sensefor valued �elds, and `almost everywher e' means that we are
permitted to ignore a semi-algebraic null set. Seesubsection 5.3.2.

Soif X � F n and f : X ! F n are semi-algebraic, then there is a proper Zariski closed
setV � X such that X n V is open and f jX nV is smooth!

In fact, the class of semi-algebraic sets is slightly too large for integration theory,
becauseone rarely computes the measure of something like the set of squares (which
is semi-algebraic). Therefore we say that X � F n is quanti�er-freesemi-algebraicif and
only if it belongs to the algebra of subsetsof F n generated by f � 1(OF ) and f � 1(OF ),
where f varies over F [x1; : : : ; xn ]. In fact, the examplesof semi-algebraicsetspresented
above are all quanti�er -freesemi-algebraic.

Finally, we call a subset Y of (RV(F )� )n semi-algebraic if and only if each section
Yk � (F

�
)n is semi-algebraic, for all k 2 Zn . This is easily seennot to depend on the

choice of t which induces the splitting RV(F )� �= F
�

� Z.

5.1.3 Descent to RV

We may now precisely state the main result:

Theorem 5.1.5. AssumecharF = 0. LetX � F n beabounded,quanti�er-freesemi-algebraic
set.ThenX maybewritten asa disjoint union of semi-algebraicsetsX =

F s
i=0 X i suchthat

X 0 is null, and the remainingX i are of the following form: there are a semi-algebraicsubset
Yi � (RV(F )� )n , an integerN i � 1, anda semi-algebraicN i -to-1 mapf i : X i ! rv � 1(Yi )
whichis almosteverywheresmoothwith Jacobian= 1.

Proof. This result is obtained by modifying a similar result for algebraically closed val-
ued �elds due to Hr ushovski and Kazhdan. The preciseargument, for the model theo-
rists, is as follows:

Let L be the RV-expansion of the language L RV obtained by adjoining a unary pred-
icate to the RV-sort to denote a valuation subring of the residue �eld. Then F is an
L structure and we set T + = T(F ) and L + = L F . This theory is an RV-expansion
of H(0; 0)F , the parameter-extension of the theory of Henselian �elds. Hence we may
apply corollary 5.5.10, and the result immediately follows (since semi-algebraic really
meansT+ -de�nable).
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If each Yi in the previous lemma is actually two-dimensionally bounded, then, as
explained in subsection 5.1.1, we know exactly what the two-dimensional measure of
rv � 1(Yi ) is:

� F (rv � 1(Yi )) =
X

k2 Zn

� (f y 2 (F
�

)n : (y; k) 2 Yi g) T jkj 2 R((T)) :

Therefore,assumingthat � F extendsto a �nitely additive measurewhich ignoresproper
Zariski closed setsand which is preservedunder Jacobian1 smooth maps, we deduce

� F (X ) =
sX

i =1

N i � F (rv � 1(Yi )) 2 R((T)) : (y)

Conversely, we would like to usethe theorem to extend � F by using (y) asa de�nition.
That is, the theorem not only proves that the two-dimensional measure can be ex-

tended in at most one reasonableway, it also offers a de�nition of the measure for a
wide classof sets. Of course, the reader will already have noticed various dif �culties,
which we are compelled to discussnext.

Remark 5.1.6. There is no dif �culty in extending these results to archimedean two-
dimensional local �elds, i.e. R(( t)) or C(( t)) . One must modify the de�nitions of semi-
algebraic sets for both F and F , and in the proof of theorem 5.1.5one must use a dif-
ferent �rst order language.

5.1.4 The remaining problems

There are two problems which prevent us from immediately offering (y) asa de�nition
of � F (X ):

(i) the setsYi may not be two-dimensionally bounded, and therefore the de�nition
of � F (rv � 1(Yi )) doesnot make sense;

(ii) even if the Yi are two-dimensionally bounded, perhaps there is a dif ferent decom-
position of X , as

F
j X 0

j say, with the corresponding Y 0
j also two-dimensionally

bounded; then we need to show that
P

i N i � F (rv � 1(Yi )) =
P

j N 0
j � F (rv � 1(Y 0

j )) .

Example 5.1.7. This example is fundamental in Hr ushovski and Kazhdan's theory. Set
X = pF ; we will offer two decompositions of X .

Firstly, let Y = f (y; n) 2 RV(F ) : n > 0g. Then rv � 1(Y ) = pF n f 0g, so we have

X = f 0g t rv � 1(Y );

which is a valid decomposition since f 0g is Zariski closed.
Secondly, let Y 0 = f (1; 0)g � RV(F ), so that rv � 1(Y 0) = 1 + pF . Let f be the Jacobian

1 bijection x 7! x + 1. Then X = f � 1(rv � 1(Y 0)) is also a valid decomposition for X .
In a sensewhich we will not make precise,Hr ushovski and Kazhdan explain that,

in their setting of an algebraically closed valued �eld, this is the only ambiguity which
can arise in the decomposition of any set into RV lifts.

Now consider how the previous example interacts with the two-dimensional mea-
sure. In the �rst decomposition, Y is not two-dimensionally bounded (indeed, each
section Yn for n > 0 is all of F

�
), and so we cannot use this decomposition to de-

�ne � F (X ). But in the seconddecomposition, Y 0 is two-dimensionally bounded, with
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� F (rv � 1(Y 0)) = 0; hence we expect � F (X ) = 0, which is indeed true according to
example 2.2.5(i).

In this way, the non-uniqueness of a decomposition appears to be `orthogonal' to the
condition that the Yi appearing in the decomposition are two-dimensionally bounded.
The author is con�dent that further examination of Hr ushovski and Kazhdan's proof
of their corresponding result will lead to the elimination of problem (ii).

Problem (i) is moresubtle; it is unclear how to provide an intrinsic characterisation of
which semi-algebraic setsX admit a decomposition with all the Yi two-dimensionally
bounded. It is not even clear if the classof such sets is closed under unions (it is cer-
tainly closedunder disjoint unions) and intersections. Hopefully resolving problem (ii)
will lead to further insights.

5.2 Languages and known results

The remainder of this chapter is essentially a proof of theorem 5.5.9below, from which
corollary 5.5.10and the aforementioned theorem 5.1.5then follow . The remainder of
this chapter is presented in the language of model theory; we begin by collecting to-
gether somebasicresults pertaining to the model theory of valued �elds.

Fields

Let Tring ; L ring denote the theory and language of rings. This language has binary op-
erations + ; � ; � and constants 0; 1; the theory contains the obvious sentencessuch as
8x 8y (x + y = y + x) so that the models of Tring are precisely commutative, associative
rings with unit. Adjoining to Tring the sentence8x 9y (x 6= 0 ! xy = 1) obtains the
theory of �elds T�eld , formulated in the language of rings.

For algebraically closed �elds, one adds to T�eld a countable collection of sentences

8a0 : : : 8an� 1 9x (xn + an� 1xn� 1 � � � + a0 = 0) (all n � 2)

to obtain the theory ACF. This can be further augmented by

1 + � � � + 1| {z }
p times

= 0

to give ACF(p), the theory of algebraically closed �elds of characteristic p, for some
rational prime p > 0; alternatively , adding the negation of all these sentencesgives
ACF(0), the theory of algebraically closed �elds of characteristic zero.

A. Tarski establishedthat ACF admits elimination of quanti�ers in the languageL ring .
Mor eover, eachtheory ACF(p) (p � 0) is complete and model complete.

Ordered groups

Let Toag; L oag denote the theory and language of ordered abelian groups. This language
hasbinary operations + ; � , a binary relation � , and a constant 0; the models of Toag are
precisely abelian groups equipped with a total ordering which is compatible with the
group operation.

Adding to Toag the collection of sentences

8x 9y (x + � � � + x| {z }
n times

= y) (all n � 2)

yields Tdoag, the theory of divisible ordered abelian groups. This is complete and ad-
mits elimination of quanti�ers [Rob77].
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Valued �elds

There are many dif ferent languages for valued �elds, and although they are all essen-
tially the same, some are more convenient. The most basic language is obtained by
adding to L ring a single unary predicate O and to T�eld an additional sentence

8x (x =2 O ! x � 1 2 O);

so that O is interpr eted as a (possibly trivial) valuation subring of the �eld. One can
add further sentencessuch as

1 + � � � + 1| {z }
p times

6= 0 ^ (1 + � � � + 1| {z }
p times

)� 1 =2 O

to obtain the theory of valued �elds of characteristic 0 and residue characteristic p.
Even using the simple language L ring [ fO g, one can interpr et the residue �eld F and

value group �( F ) of any valued �eld F . Indeed,

�( F ) �= F� =O�

and
F = O=m;

where m = f X 2 F : X = 0 _ X � 1 =2 Og is the maximal ideal of O. Therefore there is
little changeto the model theoretic natureof the situation if we add an extra sort or two
to be interpr eted as the residue �eld or value group, together with additional function
symbols to representthe residue map and valuation.

However , the main theme of the model theory of valued �elds is understanding how
properties of the �eld F reduce to properties of the value group and residue �eld. The
convenient object which suits this purpose is

F� =1 + m:

Indeed, there is a natural exactsequence

1 ! F
�

! F� =1 + m ! �( F ) ! 0;

so that F� =1 + m wraps together the value group and residue �eld; in particular , if
the valuation is discrete, then a choice of a uniformiser will induce an isomorphism
F� =1 + m �= F � Z. Following Hr ushovski and Kazhdan, we shall therefore work
in the two-sorted RV-languageL RV , which we now describe. The �rst sort, denoted
VF, usesthe language L ring . The second sort, denoted RV, usesthe language obtained
by augmenting L oag with a unary predicate k� , a constant 1 , and a binary operation
+ : k � k ! k, where k is the union of k� and an imaginary constant 0. There is also
a function symbol rv : VF ! RV. The theory TRV contains all required sentencesto
ensure that if F = (VF (F ); RV(F )) is a model of TRV , then VF( F ) is a valued �eld,
RV(F ) = F� =1+ mt f1g , and rv is the natural quotient map, extended to all of VF(F )
by setting rv(0) = 1 ; the ordering � on RV(F ) is the partial ordering x � y , yx � 1 2
OF , with 1 being maximal. We write RV(F )� = F� =1+ m. One canof courseaugment
the theory TRV to ensurethat the models have appropriate characteristic,areHenselian,
are algebraically closed, etc. We shall be particularly interested in RV-expansions, in
which one adds additional structure only to the RV sort.

Formulated in any of theselanguages,the theory of algebraically closedvalued �elds
ACVF admits elimination of quanti�ers (essentially follows from A. Robinson's work

97



CH A PTER 5: TWO-DIM EN SION A L IN TEGRATION À LA H RUSH OVSKI-KA ZH DA N

[Rob77]), and the theories ACVF(p;p), ACVF(0; p), ACVF(0; 0) of algebraically closed
valued �elds with speci�ed characteristic and residue characteristic are complete. Fur-
ther, the theory H(0; 0) of Henselian valued �elds of residue characteristic zero admits
elimination of �eld quanti�ers (seee.g. [Pas89], [HK06, Prop. 12.9]).

5.3 Structure results for de�nable sets in a valued �eld

In this section we establish a variety of results describing the structure of de�nable sets
and maps in valued �elds. Our main tool is explicit, syntactical analysis of formulae,
similarly to Y. Yin's reworking of the Hr ushovski-Kazhdan theory for ACVF(0; 0) in
[Yin08].

Let (T; L ) be a theory of valued �elds formulated in an extension-by-parameters of
the language L RV ; assume(T; L ) admits the elimination of VF quanti�ers. The exam-
ples to have in mind arewhen T is an extensionof ACVF(0; 0) or H(0; 0) by parameters.
Let (T+ ; L + ) be an RV-expansion of (T; L ); we shall seelater that (T + ; L + ) also admits
the elimination of VF-quanti�ers (lemma 5.3.9).

Theselanguages have two types of terms: the VF terms, i.e those terms interpr eted
in eachmodel asan element of the VF sort, and the RV terms, de�ned analogously. The
VF terms of L + which do not include any variables are the sameas those of L , namely
terms of the form

g(c1; : : : ; cn ); (y)

with g 2 Z[x1; : : : ; xn ] and c1; : : : ; cn VF constants of L . The VF terms of L + which
do include variables (also the same as those of L ) are of the form f (x), where x are
VF variables and f is a polynomial whose coef�cients are all of the form (y). Sincethey
will appear often, we shall call polynomials like f (x) L -polynomials(it would beequally
correct to call them L + -polynomials, but we wish to emphasise that they are already
de�nable in the weaker language L ).

Expressions such as `de�nable', `equivalent', etc. mean `T + -de�nable',
`T+ -equivalent', etc. unless a pre�x is included to indicate otherwise.

Remark 5.3.1. Although we are only really interested in subsetsof VF n for all n, it is
more convenient to work with subsetsof VF n � RVm for all n; m, not least so that we
can follow Hr ushovski and Kazhdan asclosely aspossible.

From the perspective of measure theory, proper Zariski closedsetsarenegligible, and
so the following de�nition is convenient:

De�nition 5.3.2. A de�nable subset X � VF n � RVm will be said to be T + -null (or
simply null ) if and only if there is a non-zero L -polynomial g(x) such that X � g� 1(0) �
RVm , i.e.

T+ ` (x; y) 2 X ! g(x) = 0:

Note that this notion depends on the ambient spaceVF n � RVm . De�nable subsets
of RVm are not null, unlessempty, either by convention or degeneracyof the de�nition.
Wewill sometimessay `almost everywher e' to mean `away from a null set'. Wewill see
in proposition 5.3.12that a set is null if and only if it has no interior .

Lemma 5.3.3. Any de�nablesubsetofa null setis null, anda �nite union of null setsis null.

Proof. Obvious.
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5.3.1 Syntactical analysis of T+

We begin our syntactical analysis of formulae of (T + ; L + ) with somesimple results:

Lemma 5.3.4. Let � = � (x; y) bean RV term of L + , wherex areVF variablesandy areRV
variables.Thenwecanwrite

� = � 0(rv (f 1(x)) ; : : : ; rv (f s(x)) ; y)

where � 0 is an RV term of L + all of whosevariablesareof theRV sort,andthef i arenon-zero
L -polynomials(moreprecisely, � is equivalentto a termof thegivenform).

Proof. If � is atomic, then � is either a single RV variable or an RV constant; such ex-
pressionsare certainly of the required form. Now assumethat � is not atomic. Then
we may write � = g(� 1; : : : ; � m ) for a function symbol g and terms � 1; : : : ; � m ; note that
either g is a function symbol RV l ! RV for some l � 0, or g = rv, becausethere are no
other function symbols with values in RV.

It now follows by induction on the length of � that � = � 0(rv (� 1(x)) ; : : : ; rv(� s(x)) ; y),
whereeach� i is a VF term and � 0 is an RV term all of whose variables are of the RV sort.
But we observed above that any VF term � i (x) is an L -polynomial f i (x). Mor eover, if
any of the f i are identically zero, then T + ` rv(f i (x)) = 1 , so we may replacerv(f i (x))
by the constant 1 and absorb it into � 0.

Corollary 5.3.5. Let � = � (x; y) bean RV term of L + , where x are VF variablesand y are
RV variables. Then there is a null set N � VF n such that for any modelF j= T + and
a 2 VF(F )n nN (F ), thereis anopenneighbourhoodU ofa suchthat for all b 2 RV(F )m and
all " 2 U,

� (a; b) = � (a + "; b):

i.e. awayfromanull set,theterm � (x; y) is locallyconstantin x, independentlyofy.

Proof. We write � = � 0(rv (f 1(x)) ; : : : ; rv(f s(x)) ; y) satisfying the conditions of the pre-
vious lemma, set f = f 1 : : : f s, and put N = f � 1(0), which is a null set of VF n . Let
F j= T+ and a 2 VF( F )n n N (F ). Since rv : VF( F )� ! RV(F )� is continuous with
respect to the valuation topology on VF( F )� and discrete topology on RV(F )� , there
is an open neighbourhood U of a on which f does not vanish and on which rv f i is
constant for all i . This is exactly what is required.

The following classi�cation of atomic formulae is absolutely fundamental for the sub-
sequent results:

Lemma 5.3.6. Let � (x; y) bean atomicformulaof L + , or thenegationof an atomicformula;
assume� is not a tautologyor acontradiction.Theneither

(i) � is T-equivalentto a formula`g(x) = 0' for somenon-constant,L -polynomialg; or

(ii) � is T-equivalentto a formula`g(x) 6= 0' for somenon-constant,L -polynomialg; or

(iii) � is T + -equivalentto a formulaof theform

� 0(rv (f 1(x)) ; : : : ; rv(f s(x)) ; y);

where � 0(w1; : : : ; ws; y) is an atomicformula of L + (or the negationof an atomicfor-
mula),all ofwhosevariablesareof theRV sort,andf i arenon-constant,L -polynomials.
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Proof. By the very de�nition of an atomic formula, � is equal to R(� 1; : : : ; � r ) for some
relation symbol R and terms � i (or the negation of such an expression).

Case: At least one � i is a VF term. Well, the only relation symbol of L + accepting any
VF terms is the binary relation of equality = , and so � is �̀ 1(x) = � 2(x)' with VF-terms
� 1, � 2 (or it is the negation of this formula). So � 1 and � 2 are both L -polynomials, and
we set g(x) = � 1(x) � � 1(x). Then � is T-equivalent to `g(x) = 0' (in which case� is of
type (i)) or to `g(x) 6= 0' (in which case� is of type (ii)).

Case: All the � i areRV terms. Then according to lemma 5.3.4, each� i is T+ -equivalent
to a term of the form

� 0
i (rv (f (1)

i (x)) ; : : : ; rv(f s(i )
i (x)) ; y)

where the f k
i are non-zero L -polynomials and � 0

i is an RV term all of whose variables
are of the RV sort. It easily follows that � is of type (iii), with

� 0 = R(� 0
1(w(1)

1 ; : : : ; ws(i )
1 ; y); : : : ; � 0

r (w(1)
r ; : : : ; ws(r )

r ; y)) :

De�nition 5.3.7. Let � (x; y) be an atomic formula of L + , or the negation of an atomic
formula; assume� is not a tautology or a contradiction. We will say that � is of type(i),
(ii), (iii) according aswhich of the threecases� satis�es in the previous lemma.

Corollary 5.3.8. Let � (x; y) beanatomicformulaofL + , or thenegationofanatomicformula;
assume� is not a tautologyor a contradiction.If � is of type(ii) or (iii) thenthere is a null set
N suchthat for anymodelF j= T + anda 2 VF(F )n n N (F ), thereis an openneighbourhood
U ofa suchthat for all b 2 RV(F )m andall " 2 U,

F j= � (a; b) ( ) F j= � (a + "; b):

Proof. If � is T-equivalent to `g(x) 6= 0' then we may take N = g� 1(0). Else� is of type
(iii), and we proceedexactly as in corollary 5.3.5.

The following result seemsto be well-known among model theorists, but a reference
is hard to �nd, and so for the sake of completeness we present a proof in the same
style as our other results. Recall that we are assuming (T; L ) has elimination of VF
quanti�ers.

Lemma 5.3.9. T + haseliminationof VF quanti�ers in thelanguageL + .

Proof. Letting v denote a single VF variable; it is enough to take a formula � (v; x; y) of
L + with no VF quanti�ers and to rewrite

9v � (v; x; y)

without any VF quanti�ers.
By (the proof of) prenexnormal form, � is T + -equivalent to a formula of the form

Q1z1 � � � Qmzs

_

i

^

j

� i;j (v; x; y; z)

where z are RV variables, eachQi is 8 or 9, and each� i;j is an atomic formula of L + or
the negation of an atomic formula (and we may clearly assumethat each� i;j is neither
a tautology nor a contradiction, unless � itself is one, in which casewe are done). Let
I denote the set of those (i; j ) for which � i;j is of type (i) or (ii), and I 0 those (i; j ) for
which � i;j is of type (iii).
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For each (i; j ) 2 I , lemma 5.3.6 implies that � i;j is T-equivalent to a formula
`gi;j (v; x) � i;j 0', where � i;j is either = or 6= , and gi;j is an L -polynomial. We will use
? to denote either `no symbol' or `negation', so that ?� i;j is either � i;j or : � i;j ; in fact,
for each(i; j ) 2 I , chooseconditions ? = (?i;j )(i;j )2 I (2j I j such possibilities), and set

 ?(v; x) =
^

(i;j )2 I

?i;j � i;j :

Sothe sentence _

?

 ?(v; x)

is a tautology; here ? varies over the 2j I j combinations of `no symbol' or `negation'.
Now, 9v � (v; x; y) is T + -equivalent to the sentence

_

?

9v ( ?(v; x) ^ � (v; x; y)) ;

and it is therefore enough to eliminate the v quanti�er from � ? := `9v ( ?(v; x) ^
� (v; x; y)) ' for some �xed ? (now �xed for the remainder of the proof); further , since
 ? is independent of the variables z, we have

� ?(x; y) � 9v Q1z1 � � � Qmzs

_

i

^

j

( ?(v; x) ^ � i;j (v; x; y; z)) : (y)

Momentarily �x (i; j ) 2 I . If ?i;j is `negation', then the formula  ? ^ � i;j is a contra-
diction. On the other hand, if ?i;j is `no symbol', then  ? ^ � i;j �  ?. Intr oducing

I 00= f (i; j ) 2 I 0 : for all j 0 such that (i; j 0) 2 I , ?i;j 0 is `no symbol' g;

it follows that
_

i

^

j

( ?(v; x) ^ � i;j (v; x; y; z)) �
_ ^

(i;j )2 I 00

( ?(v; x) ^ � i;j (v; x; y; z))

�  ?(v; x) ^
_ ^

(i;j )2 I 00

� i;j (v; x; y; z):

Therefore � ? is T+ -equivalent to

9v

0

@ ?(v; x) ^ Q1z1 � � � Qmzs

_ ^

(i;j )2 I 00

� i;j (v; x; y; z)

1

A :

But now recall that for each(i; j ) 2 I 00, � i;j is of type (iii) and henceis T + -equivalent
to a formula

� i;j � � 0
i;j (rv (f (1)

i;j (v; x)) ; : : : ; rv(f (s(i;j ))
i;j (v; x)) ; y; z);

where � 0(w(1)
i;j ; : : : ; w(s(i;j ))

i;j ; y) is an atomic formula of L + (or the negation of an atomic
formula), all of whose variables are of the RV sort, and the f k

i;j are non-constant L -
polynomials. It is clear that � ? is T+ -equivalent to

9
(i;j )2 I 00

1� k� s(i;j )

wk
i;j

0

B
B
B
@

9v
^

(i;j )2 I 00

1� k� s(i;j )

wk
i;j = rv(f (k)

i;j (v; x))

^ Q1z1 : : : Qszs

_ ^

(i;j )2 I 00

� 0
i;j (w(1)

i;j ; : : : ; w(s(i;j ))
i;j ; y; z)

1

A :
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Finally,

9v
^

(i;j )2 I 00

1� k� s(i;j )

wk
i;j = rv(f (k)

i;j (v; x))

is a formula in L , and therefore is T-equivalent to a formula without VF-quanti�ers,
which completes the proof.

Remark 5.3.10. Now that we know T + has elimination of VF-quanti�ers in L + , the
usual proof of prenexnormal form implies that any formula � (x; y) of L + is equivalent
to one of the form

Q1z1; � � � Qm zs

_

i

^

j

� i;j (x; y; z)

where z are RV variables, eachQi is 8 or 9, and each� i;j is an atomic formula of L + or
the negation of an atomic formula (and we may clearly assumethat each� i;j is neither
a tautology nor a contradiction, unless � itself is one).

Applying lemma 5.3.6on the structure of atomic formulae to the � i;j appearing in
the remark, we will now begin to derive the promised structural results for de�nable
setsand functions.

Proposition 5.3.11.LetX � VF n � RVm beaT+ -de�nableset;thenthereexistsaquanti�er-
free,T-de�nablefunction h : VF n � RVm ! RV l (somel � 0) suchthat X consistsof �br es
ofh, i.e.T + ` h(x; y) = h(x0; y0) ! ((x; y) 2 X $ (x0; y0) 2 X ).

Proof. We write

X =

8
<

:
(x; y) 2 VF n � RVm : Q1z1; � � � Qm zs

_

i

^

j

� i;j (x; y; z)

9
=

;

according to the previous remark. Let I denote the set of pairs (i; j ) for which � i;j is of
type (i) or (ii), and I 0 those (i; j ) for which � i;j is of type (iii).

For (i; j ) 2 I 0, � i;j is T+ -equivalent to a formula

� 0
i;j (rv (f (1)

i;j (x)) ; : : : ; rv (f s(i;j )
i;j (x)) ; y; z);

where � 0(w(1)
i;j ; : : : ; w(s(i;j ))

i;j ; y) is an atomic formula of L + (or the negation of an atomic
formula), all of whose variables are of the RV sort, and the f k

i;j are non-constant L -
polynomials. Intr oduce

hi;j : VF n � RVm ! RVs(i;j ) � RVm ; (x; y) 7! (rv (f (1)
i;j (x)) ; : : : ; rv(f s(i;j )

i;j (x)) ; y):

Then hi;j is quanti�er -free,T-de�nable since the same is true of eachpolynomial f k
i;j ,

and further

T+ ` hi;j (x; y) = hi;j (x0; y0) ! (� i;j (x; y; z) $ � i;j (x0; y0; z))

Secondly, for (i; j ) 2 I , � i;j is T-equivalent to a formula gi;j (x)� i;j 0, where � i;j is either
= or 6= , and gi;j is an L -polynomial. For eachsuch (i; j ), intr oduce a `test function'

� i;j : VFn � RVm ! RV; x 7!

(
1 if gi;j (x) � i;j 0

1 if gi;j (x) 6� i;j 0:
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Then � i;j is quanti�er -free T-de�nable, and the formula � i;j (x; y; z) is T-equivalent to
�̀ i;j (x) = 1'.

Finally, set

h =
Y

(i;j )2 I 0

hi;j �
Y

(i;j )2 I

� i;j : VFn � RVm !
Y

(i;j )2 I

(RVs(i;j ) � RVm ) �
Y

(i;j )2 I 0

RV :

Then h is quanti�er -free,T-de�nable and evidently satis�es

T+ ` h(x; y) = h(x0; y0) ! (� i;j (x; y; z) $ � i;j (x0; y0; z))

for all i; j . This completes the proof

We now reach the topological characterisation of nullity (note that RV carries the
discrete topology):

Proposition 5.3.12. Let X � VF n � RVm bede�nable. ThenX is null if andonly if it has
emptyinterior.

Proof. The interior of the X is the de�nable set

X o = f (x; y) 2 X : 9 2 RV� 8"1; : : : ; "n 2 VF ((
^

i

rv( " i ) >  ) ! (x + " ; y) 2 X g:

The interior of a null set is certainly empty, so we need only consider the converse
assertion. SupposeX o = ; ; we may assumethat X 6= ; .

Write X in prenexnormal form

X =

8
<

:
(x; y) 2 VF n � RVm : Q1z1; � � � Qm zm

_

i

^

j

� i;j (x; y; z)

9
=

;

as in remark 5.3.10. Suppose for a contradiction that every � i;j is of type (ii) or (iii).
Then corollary 5.3.8implies that there is a null set N with the following property: for
any F j= T + and a 2 VF( F )n n N (F ) there is an open neighbourhood U of a such that
for all b 2 RV(F )m , all c 2 RV(F )s, and all " 2 U,

F j= � i;j (a; b; c) , F j= � i;j (a + "; b; c)

for all i; j , and so
(a; b) 2 X (F ) , (a + "; b) 2 X (F ):

But this implies X (F ) is open, contradicting X o = ; . We conclude that at least one � i;j

is of type (i), i.e. � i 0 ;j 0 � `g(x) = 0', say, for somenon-zero L -polynomial g.
Now setX 0 = X n g� 1(0); if X 0 = ; then we are done, so suppose not. Sincewe have

equivalent formulae

g(x) 6= 0 ^
_

i

^

j

� i;j (x; y; z) �
_

i 6= i 0

0

@g(x) 6= 0 ^
^

j

� i;j (x; y; z)

1

A ;

we seethat X 0 is de�ned by

X 0 =

8
<

:
(x; y) 2 VF n � RVm : Q1z1; � � � Qm zm

_

i 6= i 0

0

@g(x) 6= 0 ^
^

j

� i;j (x; y; z)

1

A

9
=

;
:
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So,by shrinking X to X 0 we have decreasedthe number of disjunctions appearing in
the prenexnormal form, and inserted a new formula of type (ii) into eachconjunction.

X 0 also has empty interior and so by an induction on the number of disjunctions in
the prenex formal form, we may assumethat it is a null set. Hence X is contained in
the null set X 0[ g� 1(0) and therefore is itself null.

Many useful results follow:

Corollary 5.3.13. Let X � VF n � RVm bea de�nableset. Thentheboundaryof X , namely
@X := X n Ao, is null. HenceX is thedisjoint union ofan opensetandanull set.

Proof. Since @X has no interior , this is an immediate consequenceof the previous
proposition.

Corollary 5.3.14.LetX � VF n � RVm bede�nableandlet f : X ! VF n0
� RVm0

beade�n-
ablefunction,with n0 > 0. Thentherearenon-zero VF-polynomialsg1(x; x0

1); : : : ; gn0(x; x0
n0)

suchthat
T+ ` f (x; y) = (x0; y0) ! gi (x; x0

i ) = 0

for all i = 1; : : : ; n0.

Proof. The graph of the function f cannot have any interior (since n0 > 0) and hence
the graph is null by the previous proposition; this implies the existenceof a non-zero
L -polynomial g such that

T+ ` f (x; y) = (x0; y0) ! g(x; x0) = 0:

Now just apply this result to each function X ! VF n0
� RVm0 proj

! VF � RVm0
; where

the secondarrow varies over the n0projection maps.

Corollary 5.3.15.ThesortsVF andRV are`orthogonal'in thefollowingways:

(i) LetY � RVm bede�nableandlet f : Y ! VF n beade�nablefunction. Thenf (Y ) is a
�nite set.

(ii) Supposethat ade�nablesetX � VF n admitsa�nite-to-one,de�nablemapf : X ! RV l

for somel � 0. ThenX is �nite.

Proof. (i): By the previous corollary, therearenon-zero L -polynomials g1(x1); : : : ; gn (xn )
such that f (Y) � f x 2 VF n : gi (x i ) = 0 for all ig; this is enough.

(ii): Let � be the graph of f . Then � cannot have any interior , for else there would
be an open ball B � X and y 2 f (X ) such that B � f yg � � , contradicting that f has
�nite �br es. By the previous proposition, there is a non-zero L -polynomial g such that
x 2 X implies g(x) = 0.

In fact, for eachi = 1; : : : ; n, let � i be the image of � under the projection

(projection to i th VF-coordinate) : VF n � RV l ! VF � RV l :

Although � i is not necessarily the graph of a function, eachsection

f x 2 VF : (x; y) 2 � i g;

for y 2 RV l , is still �nite and therefore has no interior . So, just as in the previous
paragraph, there is a non-zero, one variable, L -polynomial gi such that x 2 X implies
gi (x i ) = 0. As this holds for all i , we deduce that X is a �nite set.
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Corollary 5.3.16. Let X � VF n � RVm , Y � VF n0
� RVm0

, and f : X ! Y bede�nable.
Then

(i) thesetof y 2 Y for whichthe�br eX y is null is ade�nableset;

(ii) if n0 = 0, i.e.Y � RVm0
, thenX is null if andonly if every�br eX y , for y 2 Y , is null.

Proof. (i): The set of y 2 Y for which the �br e X y has non-empty interior is clearly
de�nable; by the previous proposition we are done.

(ii): The implication ) follows at once from the fact that a subsetof a null set is null.
Conversely, suppose that every �br e is null. Then, arguing similarly to the proof of (ii)
in the previous corollary, we seethat the graph � of f contains no interior , and hence
is null. Sothere is a non-zero VF-polynomial g(x) such that f (x) = y implies g(x) = 0;
i.e. X � g� 1(0), asrequired.

5.3.2 Structure of de�nable functions

We now turn our attention to de�nable functions. Our aim is to show that the classof
de�nable functions is not too large, and that any such function, at least off a null set, is
essentially of the following form:

De�nition 5.3.17.Let U � VF n beade�nable, non-empty open set,and f : U ! VF m a
de�nable function. Then we shall say that f is an implicit polynomialfunction if and only
if there are non-zero VF-polynomials g1(x; y); : : : ; gm (x; y) and an open set V � VF n0

with the following properties:

(i) for all x 2 U, gi (x; f (x)) = 0 for all i ;

(ii) for all x 2 U, f (x) is the unique y 2 V satisfying gi (x; y) for all i ;

(iii) the determinant of the Jacobianmatrix
�

@gi

@yj

�

1� i;j � m

is non-zero at (x; f (x)) , for all x 2 U.

In other wor ds, f is the implicit function de�ned by the polynomials (gi ) i on U � V .

Before we can prove our desired classi�cation, we must discuss some ideas of clas-
sical elimination theory which are closely related to elimination of quanti�ers. See
[Lan02, IV, §8].

Let k be a �eld of characteristic zero, and g(y) a polynomial in k[y]. The discriminant
Dg 2 k of g is obtained by evaluating a certain polynomial with integer coef�cients on
the coef�cients of g; also D g vanishes if and only if g and g0have a common zero in kalg.

Now replacek by k(x1; : : : ; xn ) and suppose that g 2 k[x; y]. Then the discriminant
Dg belongs to k[x]. We may factor g into a product of non-associated,irr educible poly-
nomials in k[x; y] as

g = gn1
1 : : : gns

s

and we henceforth assumethat

(i) none of the irr educible factors of g belong to k[x];

(ii) g hasno multiple factors, i.e. n i = 1 for all i .
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The �rst assumption implies that eachgi remains irr educible when viewed asa polyno-
mial in k(x)[y], and therefore g1 : : : gs is the decomposition of g into irr educible factors
in k(x)[y]. By assumption (ii), g therefore hasno repeatedroots in k(x)alg (this is where
we use the characteristic zero assumption), and so D g(x) is not the zero polynomial.
Further, the zeros � of D g(x) are exactly those � for which g(� ; y) and @g

@y (� ; y) have a

common zero in kalg. In other wor ds,

f x : 9y such that g(x; y) =
@g
@y

(x; y) = 0g = f x : Dg(x) = 0g;

and our assumptions imply that this is a proper Zariski closed set.

Proposition 5.3.18.LetX � VF n bede�nable,andf : X ! VF m ade�nablefunction. Then
there exist �nitely manydisjoint opensetsX r � X suchthat f jX r is an implicit polynomial
function for eachr , andsuchthat X n

F
r X r is null.

Proof. According to corollary 5.3.14, there are non-zero VF-polynomials g1(x; y1); : : : ;
gm (x; ym ) such that

gi (x; f (x) i ) = 0 for all x 2 X (y)

for all i . We may decompose eachgi into a product of irr educible VF-polynomials in
k[x; yi ], where k is the �eld of fractions of the constant VF-terms; i.e.

gi = gn(i; 1)
i; 1 : : : gn(i;s (i ))

i;s (i ) :

If any gi is divisible by a non-zero polynomial in k[x], then (y) implies that gi (x) = 0 for
all x 2 X , so that X is a null set and there is nothing more to show. Further, we may
replaceeachexponent n(i; j ) by 1 without affecting (y).

In conclusion, we may now supposethat the VF-polynomials g1; : : : ; gm satisfying (y)
also satisfy (i) and (ii) above.

The associatedJacobianmatrix

�
@gi

@yj

�

1� i;j � m
=

0

B
B
@

@g1
@y1

.. .
@gm
@ym

1

C
C
A

is diagonal, and each @gi
@yi

is not the zero polynomial, for elsegi would be a polynomial

in x. Let J (x; y) =
Q n0

i =1
@gi
@yi

be the determinant of the Jacobian.
Set

N i =
�

x 2 VF n : 9y 2 VF such that gi (x; y) =
@gi

@yi
(x; y) = 0

�
:

By the elimination theory discussed above, N i is a null set; set N =
S m

i=1 N i . The
importance of N is that if F j= T and a 2 X (F ) n N (F ), then eachgi (a; yi ) is not the
zero polynomial in yi , and henceit hasonly �nitely many solutions; therefore there are
only �nitely many y for which

g1(a; y1) = � � � = gm (x; ym ) = 0:

Continuing with this �xed model F and a 2 X (F ) n N (F ), the usual arguments
used in the implicit function theorem for a (usually complete) valued �eld imply the
following: there is an open neighbourhood U of a, and disjoint open V1; : : : ; Vl , such
that if x 2 U then, for each r = 1; : : : ; l , there is at most one y 2 Vr which satis�es

106



CH A PTER 5: TWO-DIM EN SION A L IN TEGRATION À LA H RUSH OVSKI-KA ZH DA N

gi (x; yi ) = 0 for all i . U and each Vr are de�ned in terms of a and the coef�cients of
eachgi ; hencethey are T +

a -de�nable. However , since the conditions we wish for them
to satisfy areexpressiblewithout a, we may, possibly after shrinking them, assumethey
are T+ -de�nable.

For eachr = 1; : : : ; l intr oduce Ur = f x 2 U : f (x) 2 Vr g; the (Ur )r are T+ -de�nable
and form a disjoint cover of the open set U. By construction, the restriction of f to
the restriction of the interior of each Ur is an implicit polynomial function (even on
all of Ur , but we have only de�ned implicit polynomial functions on open sets). Thus
we obtain a de�nable decomposition of U into a disjoint union of null sets (since the
boundary of eachUr is null by corollary 5.3.13) and open sets,such that the restriction
of f to eachof the opens is an implicit polynomial function.

Apply compactnessto complete the proof.

Corollary 5.3.19. Let X � VF n bede�nable,andf : X ! VF m a de�nablefunction. Then,
awayfromanull set,f is smooth(i.e. in�nity differentiable).

Proof. This follows from the previous proposition, since the usual calculations from
analysis show that an implicit polynomial function is smooth.

Corollary 5.3.20. Supposethat X � VF n � RVm andY � VF n � RVm0
are de�nably iso-

morphicsets.ThenX is null if andonly if Y is null.

Proof. Using similar arguments to those found in corollary 5.3.16, this may be reduced
to the caseof X � VF n , Y � VF n0

. If X is not null then the previous corollary implies
that f is a smooth injection on somenon-empty, open ball B � VF n . Familiar estimates
from analysis imply that f (B ) is open in VF n0

and therefore Y has interior; so Y is not
null.

5.3.3 Dimension theory

There is a very satisfactory dimension theory for T + ; as we shall not require it, we
content ourselveswith asummary. For more information see[HK06, §3.8]and [vdD89].

De�nition 5.3.21. Let X be a T + -de�nable subset of VF n � RVm . The T+ -dimension
(or simply dimension) of X , denoted dimT + X , is the smallest integer d such that for
some l � 0 there is a �nite-to-one, de�nable map X ! VF d � RVm0

.

Remark 5.3.22. Hr ushovski and Kazhdan call this the VF-dimension, since they also
intr oduce an RV-dimension; we have no need of the latter.

Lemma 5.3.23. Let f : X ! Y be a de�nable surjection betweende�nable sets
X � VF n � RVm , Y � VF n0

� RVm0
. Supposethat for eachF j= T + and b 2 Y(F ),

the�br eX b = f � 1(b) hasT +
b -dimension� d; thendimT + X � d + dimT + Y.

If dimT + Y = 0, thendimT + X = maxF;b dimT +
b

X b, whereF rangesoverall modelsofT +

andb 2 Y(F ).

Proof. A `�br e and compactness' argument lets us construct a T + -de�nable map g :
X ! VF d � RV l (for some l � 0) such that the restriction of g to each �br e of f is
�nite-to-one. Hence f � g is �nite-to-one and the �rst claim follows.

The second claim is now immediate, since each �br e certainly has dimension no
greater than that of X .

According to corollary 5.3.15, a subset of VF n with zero dimension is necessarily
�nite. Using this, and the previous lemma for an induction using �brations, one can
prove that the dimension of a de�nable set X � VF n is equal to the Zariski dimension
of its Zariski closure. Mor eover, X is null if and only if its dimension is < n.

107



CH A PTER 5: TWO-DIM EN SION A L IN TEGRATION À LA H RUSH OVSKI-KA ZH DA N

5.4 V-minimality

Hr ushovski and Kazhdan intr oduce a condition called V-minimality , which a theory
of valued �elds may or may not satisfy. This notion only concernsus in that we must
ensure that our theories of interest possessit; for much more information, see[HK06,
§3].

De�nition 5.4.1. Let (T; L ) be an extension of (ACVF; L RV). Then T is said to be C-
minimal if and only if for every F j= T and every TF -de�nable set X � VF , the set
X (F ) is a �nite Booleancombination of open balls, closed balls, and points.

Further, T is said to be V-minimal if and only if it is C-minimal and satis�es the fol-
lowing conditions:

(i) T extends ACVF(0; 0) and every parametrically T-de�nable relation on RV is al-
ready parametrically de�nable in ACVF(0; 0);

(ii) if F j= T then VF(F ) is `de�nably complete';

(iii) if F j= T, A � VF(F ), and B is an almost TA -de�nable closed ball, then B con-
tains a TA -algebraic point.

Finally, T is said to be effectiveif and only if every �nite, disjoint union of balls con-
tains a de�nable set which has exactly one point in eachball.

The following summarises everything we need to know:

Proposition 5.4.2. (ACVF(0; 0); L RV ) is V-minimal andeffective.If T is V-minimal (resp.
V-minimal andeffective),F j= T, andA � VF( F ) t RV(F ), thenTA is alsoV-minimal (resp.
V-minimal andeffective).

Proof. V-minimality of ACVF(0; 0) essentially follows from well-known properties of
the theory; see[HK06, Lemma 3.33]and also [Hol97]. The preservation of V-minimality
and effectivity under basechangeis discussedin [HK06, 6.0.1].

5.5 Descent to RV

Now we describe the main result of [HK06, §4] and then extend it to a wider classof
valued �elds. Wework with a theory (T; L ) of valued �elds formulated in a parameter-
and RV-expansion of the language L RV , and we assumethat it has elimination of VF-
quanti�ers; so both of the theories T and T + which appeared in section 5.3 are valid,
and the results we derived for T + in that section apply to T in this section. There are
threepossibilities for (T; L ) which interestus:

(i) parameter-expansionsof (ACVF(0; 0); L RV );

(ii) parameter-expansions of (H(0; 0); L RV ), the theory of Henselian valued �elds of
residue characteristic zero;

(iii) RV-expansionsof (ii).

We will treat eachcasein turn; `de�nable', etc. means`T-de�nable'.

De�nition 5.5.1. Supposethat Y is a de�nable subsetof RV m and that � : Y ! RVn is
a de�nable map; to this data we associatethe de�nable subsetof VF n � RVm

L(Y; � ) = f (x; y) 2 VF n � Y : rv(x) = � (y)g;

and call it the lift of Y; f .
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De�nition 5.5.2. Fix n � 0. A (T-) elementaryadmissibletransformationis, for any m � 0
a de�nable map VF n � RVm ! VF n � RVm of the form

(x; y) 7! (x1; : : : ; x i � 1; x i + a(x1; : : : ; x i � 1; y); x i +1 ; : : : ; xn ; y);

where a : VF i � 1 � RVm ! VF is somede�nable map. We also call the map

VFn � RVm ! VFn � RVm+1 ; (x; y) 7! (x; y; rv(x i ))

for any m � 0 and 1 � i � n an elementary admissible map.
A (T-) admissibletransformationis any composition of elementary admissible transfor-

mations
VF n � RVm ! VFn � RVm0

(necessarilym0 � m); note that such a map is injective.

Admissible transformations are also `measure-preserving', in the following sense:

Remark 5.5.3. Before the lemma we should say a wor d about dif ferentiation. Suppose
that X � VF n and f : X ! VF n0

are de�nable. Then the partial derivatives of f , if
they exist, are de�nable (and the set on which they exist is de�nable). Sincethey will
typically only exist away from a null set anyway, it is sensible only to consider their
existenceon the interior of X (recall that the boundary is null by corollary 5.3.13) so
that there are no issueswith forming f (a + ") for small " . If all the partial derivatives
exist, then we say that the Jacobianmatrix exists. Corollary 5.3.19 implies that the
Jacobiandoesexist away from a a null set.

Lemma 5.5.4. Let f : VF n ! VFn be the compositionof an admissibletransformation

VF n ! VFn � RVm0
followedby the projectionmap VF n � RVm0 proj

! VF n . Then, away
fromanull setofVF n , theJacobianmatrix of f existsandhasdeterminant= 1.

Proof. By adding extra variables and arguing by induction, it is essentially enough to
suppose that f is given by

f : VF 2 ! VF2; (x1; x2) 7! (x1; x2 + a(x1; rv(x2))) ;

for somede�nable function a : VF � RV ! VF; write f = (f 1; f 2). Firstly, @f 1
@x1

� 1 and
@f 1
@x2

� 0. Further, away from x2 = 0, the function x2 7! a(x1; rv(x2)) is locally constant

and so @f 2
@x2

(x1; x2) = 1. It remains only to consider @f 2
@x1

.
Let F j= T and take b 2 RV(F ). According to corollary 5.3.19, there is a Tb-de�nable

null set Nb � VF such that x 7! a(x; b) is dif ferentiable for x =2 N b. Then Nb is the zero
set of a polynomial with coef�cients which are Tb-de�nable, constant VF terms; but
adding b to the language does not increasethe constant VF terms, and so N b is already
T-de�nable. It follows that there is a T-de�nable setA � RV such that b 2 A(F ) and

rv( x2) =2 A =) x1 7! a(x1; rv (x2)) is dif ferentiable for x1 =2 Nb:

It follows by compactness that there is a null set N � VF such that, for any x 2 2
VF, x1 7! a(x1; rv(x2)) is dif ferentiable for x1 =2 N ; but then @f 2

@x1
(x1; x2) exists. This

completes the proof that the Jacobianexists off a null set.
Finally, off this null set, the Jacobianis a triangular matrix with 1s on the diagonal;

henceits determinant is 1.

Hr ushovski and Kazhdan's main decomposition result is as follows; recall that any
parameter extension of (ACVF(0; 0); L RV ) is V-minimal, by proposition 5.4.2.
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Proposition 5.5.5. Supposethat (T; L ) is V-minimal, and �x n � 0. Let X bea de�nable
subsetof VF n � RVm . Then X is a �nite disjoint union of de�nablesets,X =

F s
i=1 X i ,

eachof the following form: there area de�nablesetYi � RVm i (somem i � 0), a generalised
projection(seebelow)� i : Yi ! RVn , andan admissibletransformation� i : VF n � RVm !
VF n � RVm i suchthat

� i (X i ) = L(Yi ; � i ):

Moreover, if theprojectionmapX ! VF n is �nite-to-one, theneach� i is �nite-to-one; if X
is bounded,theneachYi is bounded.

Proof. This is the content of [HK06, §4].

By `generalisedprojection' in the statement of the previous proposition, we mean the
restriction to Yi of a map RVm i ! RVn of the form y 7! (y� (1) ; : : : ; y� (n) ), for some
� : f 1; : : : ; ng ! f 1; : : : ; m i g, e.g. (y1; y2; y3; y4) 7! (y3; y1; y1).

Following ideas found in [HK06, §12.4],our immediate aim now is to extend their
decomposition result from algebraically closed valued �elds to Henselian ones.

Lemma 5.5.6. Supposethat F j= ACVF(0; 0) (in thelanguageL RV), andthat F0 is asub�eld
of VF(F ) which is Henselianunder the restrictionof the valuation. Thenthe L RV structure
(F0; RV(F0)) is de�nably closedin F . In particular, any ACVF(0; 0)F0 -de�nablefunction
preservesF0-points.

Proof. We follow [HK06, Example 12.8].SinceF alg
0 is an elementary submodel of F , we

may replaceF by F alg
0 . Let Aut (F=F0) denote the automorphisms of the L RV structure

F which �x the substructure (F0; RV(F0)) . By the Henselian property of F0, any �eld
automorphism of VF( F )=VF (F0) automatically preservesthe valuation and therefore
belongs to Aut (F=F0). By Galois theory, VF( F0) is therefore the VF sort of the �xed sub-
structure of Aut (F=F0), and so VF(F0) � VF( dcl(F0)) ; henceVF(F0) = VF( dcl(F0)) .

Secondly, suppose that y 2 RV(dcl(F0)) . Then rv � 1(y) is an ACVF(0; 0)F0 -de�nable
closed ball of F ; but since ACVF(0; 0)F0 is V-minimal (by proposition 5.4.2), this ball
contains a ACVF(0; 0)F0 -de�nable point x. We have just proved that this means x 2
VF(F0), and therefore y = rv( x) 2 RV(F0), asrequired.

This is enough to passfrom the V-minimal caseto the Henselian case:

Proposition 5.5.7. Supposethat (T; L ) is a parameter-expansionof (H(0; 0); L RV ). Then
proposition5.5.5continuesto hold if the V-minimal theoryis replacedby T, solong asX is
quanti�er-freede�nable;further, eachX i ; Yi ; � i maybeassumedto bequanti�er-freede�nable.

Proof. We begin a few general remarks on the relation between the theories H(0; 0) and
ACVF(0; 0).

By the hypothesis, there is a Henselian �eld F and A � VF( F )
F

RV(F ) such that
T = H(0; 0)A . The valuation on F extends uniquely to F alg, making F alg into a model
of ACVF(0; 0), sinceH(0; 0) and ACVF(0; 0) are formulated in the samelanguage. Thus
we may add the parameters A to ACVF(0; 0) to obtain the theory ACVF(0; 0)A , so that
if L j= T then L alg j= ACVF(0; 0)A .

If X � VF n � RVm is a T-de�nable set, then let X alg denote the ACVF(0; 0)A -
de�nable set given by the sameformula. Assuming that X is de�ned without quanti-
�ers, then

X alg(L alg) \ (VF (L )n � RV(L)m ) = X (L)

for any L j= T. Conversely, if S � VF n � RVm is an ACVF(0; 0)A -de�nable set, then
we may assume that S is de�ned by a formula in L RV;A without quanti�ers and let
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SHens be the T-de�nable setde�ned by the sameformula; then SHens is de�ned without
quanti�ers and (SHens)alg = S.

We now begin the proof. By proposition 5.5.5, we may decompose X alg as X alg =
F s

i=1 X alg
i , with Yi ; � i ; � i asdescribed in that proposition. By the previous lemma, the � i

restrict to T-de�nable admissible transformations, and by the previous paragraph the
Yi may be restricted to give the required T-de�nable sets(Yi )Hens. In short, everything
restricts from L alg to L .

Remark 5.5.8. Sinceour main aim is to develop a theory of integration, it is quite rea-
sonable to restrict to quanti�er -freede�nable sets.Indeed, the projection (i.e. insertion
of a existential quanti�er) of a Lebesguemeasurable (resp. Borel) subset of R � R to
R can be extremely unpleasant, and certainly need not be Lebesguemeasurable (resp.
Borel); though, in fact, the projection of a Borel will beLebesguemeasurable. The study
of such problems leads to the theory of analytic setsand Polish spaces;seee.g. [Chr74].

Having restricted to the caseof a Henselian �eld, a standard `�br e and compact-
ness'argument lets us add additional structure at the RV level, following an outline in
[HK06, §12.1]. We abuse notation slightly by talking of the Jacobianof maps VF n !

VF n � RVm ; this really means the Jacobianof the composition VF n ! VF n � RVm proj
!

VF n .

Theorem 5.5.9. Let (T; L ) beas in the previousproposition,and let (T + ; L + ) bean RV-
expansionof (T; L ). Thenproposition5.5.5holdsfor T + in placeof theV-minimal theory, as
longasX is quanti�er-freeT + -de�nable.

Proof. For simplicity , we are actually going to prove the following slightly weaker re-
sult (the full result can be proved using similar arguments):

Let X � VF n beT+ -de�nable;thenX canbewritten asa disjoint union, X =
F s

i=1 X i of
T+ -de�nablesets,eachofthefollowingform: thereareaT + -de�nableYi � RVm i , ageneralised
projection� i : RVm i ! RVn , anda T+ -de�nablebijection� i : X i ! L (Yi ; � i ) with Jacobian
= 1 off anull set.

First recall proposition 5.3.11: there is a quanti�er -free,T-de�nable map h : VF n !
RV l for some l � 0 such that X consistsof �br esof h.

Let F j= T + and b 2 h(X )(F ). Then the �br e X b = h� 1(b) is quanti�er -free, Tb-
de�nable, and so, by the previous proposition, it is a disjoint union, X b =

F s
i=1 X i of

Tb-de�nable sets,eachof the following form: there are a Tb-de�nable set Yi � RVm i , a
generalised projection � i : Yi ! RVn , and a Tb-de�nable bijection � i : X i ! L (Yi ; � i )

such that the Jacobianof the composition X i
� i! L (Yi ; � i )

proj
! VFn equals 1 away from a

null set (becausewe saw in lemma 5.5.4that this is true for any admissible transforma-
tion).

Fix somei . In the usual way, � i extends to a T + -de�nable map �� i : U ! VF n � RVm i ,
where U is someT + -de�nable subsetof X which contains X i . Possibly after shrinking
U, we may also suppose, for eachy 2 h(U), that the following hold:

(i) the restriction of �� i to the �br e h� 1(y) \ U is injective and has Jacobianequal to 1
off a null set;

(ii) the image �� i (h� 1(y) \ U) is of the form L(Y; � i ) for someT + -de�nable Y � RVm i ;
here � i is the generalised projection associatedto Yi , but we view it as de�ned
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on all of RVm i ; note that this condition is de�nable becausenecessarily Y is the

image of �� i (h� 1(y) \ U) under VF n � RVm i
proj
! RVm i .

We now consider
e� i := �� i � h : U ! VF n � RVm i � RV l ;

which is certainly T + -de�nable and injective; moreover, using corollary 5.3.16, we see
that the Jacobianequalling 1 off a null set on any �xed �br e h � 1(y) \ U is enough
to imply that it = 1 off a null set on all of U. Let Y be the image of e� i (U) under

VF n � RVm i + l proj
! RVm i + l , and let e� denote the generalised projection given by the

composition

RVm i + l proj
! RVm i � i! RVn :

Sinceeach �� i (h� 1(y) \ U) is a lift, it is easyto check that

e� (h� 1(U)) = L(Y; e� ):

In fact, even more is true:

(y) If V is any de�nable subsetof h(U), then e� (h � 1(V ) \ U) = L(Y 0; e� ), where Y 0 is

the image of e� i (h� 1(V ) \ U) under VF n � RVm i + l proj
! RVm i + l .

Now vary i over 1; : : : ; s, writing Ui = U, eYi = Y, e� i = e� . Using (y) we may shrink
the (Ui ) i to ensure both that they are disjoint and that

F s
i=1 Ui is a family of �br esof h

which contains h� 1(b); setV = h(
F s

i=1 Ui ). To summarise:

(z) There is a T + -de�nable set V � h(X ) containing b, such that h� 1(V ) is a dis-
joint union of de�nable sets U1; : : : ; Us, each of the following form: there are a
T+ -de�nable eYi � RVm i + l , a generalised projection e� i : Yi ! RVn , and a T+ -
de�nable bijection e� i : Ui ! L ( eYi ; e� i ) with Jacobian= 1 away from a null set.

By compactness,there are �nitely many f V g as in (z) which cover h(X ). If V and
V 0, say, overlap then (y) allows us to replace V 0 by V 0 n V without affecting (z). The
required decomposition follows.

These decomposition results in terms of lifts of the form L(Y; � ) are, as we have
just seen,extremely convenient for model-theoretic manipulations, but for the concrete
applications there is a more aestheticreinterpr etation:

Corollary 5.5.10.Let (T + ; L + ) beasin thepreviousproposition,but assumefurther that T +

is a completetheory. Let X � VF n beT+ -de�nable. ThenX is a disjoint union of de�nable
sets,X =

F s
i=0 X i , with X 0 null and the remainingX i of the following form: there are a

de�nableYi � (RV� )n , an integerN i � 1, anda de�nablemapf i : X i ! rv � 1(Yi ) which is
everywhereN i -to-1 andhasJacobian= 1 awayfromanull set.

Proof. By �rst decomposing X asproved in the previous proposition, we may suppose
that there are a de�nable Y � RVm , a generalised projection � : Y ! RV n , and a
de�nable bijection � : X ! L(Y; � ) with Jacobian= 1 off a null set.

We claim �rst that � is �nite-to-one on Y . Let x 2 VF n ; then

L(Y; � ) \ f xg � RVm = f xg � � � 1(rv (x)) :

Hence � � 1(rv (x)) is T +
x -isomorphic, via the restriction of � � 1, to a subset of X ; but

according to corollary 5.3.15, this forces � � 1(rv (x)) to be �nite. This completes the
proof of the claim.
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SetY0 = Y n � � 1((RV� )n ). If x 2 L(Y0; � ), then at least one coordinate of x is zero;
henceL(Y0; � ) is a null set, and therefore X 0 := � � 1(L(Y0; � )) is also null by corollary
5.3.20. Since

L(Y; � ) = L(Y0; � ) t L (Y n Y0; � );

we may now replaceX , Y by X n X 0, Y n Y0 to assumethat � (Y ) � (RV� )n .
Let N � 0 be big enough so that all �br es of � have cardinality � N , and for j =

1; : : : ; N , put
Yi = f y 2 RVn : jYy j = j g:

The fact that Y1; : : : ; YN form a disjoint, de�nable cover of � (Y ) requiresthe complete-
nessof T + . So

L(Yj ; � ) =
NG

j =1

L(� � 1(Yj ); � )

and we setX j = � � 1(Yj ); clearly X =
F

j X j .
Let � : VF n � RVm ! VF n be the projection map. Its restriction induces a surjection

L(� � 1(Yj ); � )) ! rv � 1(Yj )

with �br esof cardinality j . Hence

f j := � � � : X j ! L (� � 1(Yj ); � )) ! rv � 1(Yj )

is everywher e j -to-1 and hasJacobian= 1 off a null set. Wehave produced the required
decomposition.

Remark 5.5.11. It appears to be possible to assumefurther in the statement of the pre-
vious corollary that each X i (apart from X 0) is open and that f i is a smooth cover
X i ! rv � 1(Yi ). The proof of this does not seemto easily follow from the decomposi-
tion results which we have stated, but rather from Hr ushovski and Kazhdan's proof of
their result. The idea is basically, at eachstageof the construction of the decomposition,
to throw out the setson which certain maps fail to be dif ferentiable, continuous, etc.;
such setswill all be null, and thesewill form X 0.

The previous theorem and corollary were the essential results required to complete
our proof of theorem 5.1.5; for the concrete applications to two-dimensional integra-
tion, refer back to section 5.1.
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Rami�cation, Fubini' s theorem, and
Riemann-Hurwitz formulae

We consider various relations between integration and rami�cation theories.

6.1 Rami�cation of local �elds

From section 6.2onwards, we will be considering rami�cation theory for geometric ob-
jects. The analogous problems in the local setting are closely related with the previous
chapter and canbediscussedindependently from the remaining material, so this initial
section focuseson local rami�cation theory. We begin with a reminder of the theory in
the perfect residue �eld case:

6.1.1 Perfect residue �eld

Fix a complete discrete valuation �eld F with perfect residue �eld F , and let F alg de-
note its algebraic closure. Fix a �nite Galois extension L=F with Galois group G, and
de�ne the usual rami�cation objectsas follows:

iL=F (� ) = minf � F (� (x) � x) : x 2 OF g;

Ga = f � 2 G : i L=F (� ) � a + 1g (a � � 1);

� L=F (a) = e� 1
L=F

Z a

0
jGx j dx (a � � 1)

= � 1 + e� 1
L=F

X

� 2 G

minf i L=F (� ); a + 1g:

One proves that � L=F is a strictly increasing, piecewise linear, function [� 1; 1 ) !
[� 1; 1 ), and de�nes the Hasse-Herbrandfunction  L=F : [� 1; 1 ) ! [� 1; 1 ) to be its in-
verse. The upperrami�cation �ltration on the Galois group is de�ned by Ga = G L=F (a) ,
for a � � 1.

The central results of the theory are the following (seee.g. [FV02, Chapter III] or
[Ser79, Part 2]):

Theorem 6.1.1(Herbrand). Let M =F bea Galoissubextensionof L=F . Then,for any a �
� 1, the imageof Gal(L=F )a under the restrictionmapGal(L=F ) ! Gal(M =F) is exactly
Gal(M =F)a.

Let k bean algebraically closed�eld of characteristic 0; in arithmetic applications this

will be Qalg
l or C.
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Theorem 6.1.2(Artin). TheArtin character

aL=F : G ! k; � 7!

(
� f L=F iL=F (� ) � 6= id

f L=K
P

� 2 Gnf idg iL=F (� ) � = id

is thecharacterof a �nite-dimensional,k representationof G.

Theorem 6.1.3(Non-commutative Hasse-Arf). Let (V; � ) bea �nite-dimensional,k repre-
sentationofG. Thentheconductor of � ,

f(� ) :=
1X

i =0

jG0 : Gi j� 1 dim V=VG i ;

is apositiveinteger.

The non-commutative Hasse-Arf theorem and Artin's theorem canbeeasily deduced
from one another, becausef(� ) = h� � ; aL=F i , where h�; �i is the inner product on the
spaceof classfunctions on G, and � � is the character of � . Using R. Brauer's theorem
on characters,one reduces the Hasse-Arf theorem to the casedim V = 1; Herbrand's
theorem then implies that it is enough to show that the upper rami�cation breaksof an
abelian extension L=F occur at integers. This is proved by explicit, local calculations.

6.1.2 Arbitrary residue �eld

Until the work of A. Abbes and T. Saito [AS02] [AS03] it was a signi�cant open prob-
lem to generalisethe rami�cation theory above to the caseof non-perfect residue �eld.
Geometrically, the importance of this lies in the following situation. If � : S1 ! S2 is
a �nite morphism between smooth, projective surfaces,over a �eld k which is allowed
to be perfect, then according to section 6.5, the rami�cation of � occurs along curves.
Let B � S1 be an irr educible curve with generic point y, and set

K (S1)y = Frac [OS1 ;y ;

this is a complete discrete valuation �eld whose residue �eld is k(B ). Mor eover, we
have a �nite extension

K (S1)y=K (S2)� (y) ;

whose rami�cation properties re�ect the local rami�cation of � along B . But k(B ) will
be imperfect and K (S1)y=K (S2)� (y) may have an inseparable residue �eld extension.

We now give a summary of the basicsof Abbes and Saito's theory. There is a more
extensiveoverview by L. Xiao [Xia07]. Let L=F bea �nite, Galois extension of complete
discrete valuation �elds with arbitrary residue �elds. Then OL is a complete intersec-
tion algebra over OF (since they are both regular local rings) and we may therefore
write

OL = OF [T1; : : : ; Tn ]=hf 1; : : : ; f n i

for a regular sequencef 1; : : : ; f n .
Now, for any real a � 1, one intr oduces the rigid space

X a
L=F = f x 2 (F alg)n : � F (x i ) � 0 all i; � F (f i (x)) � a all ig;

where � F : F alg ! Q [ f1g is the extension of the discrete valuation on F . By some
rigid geometry, model theory, or explicit calculations, it is known that X a

L=F may be
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written in a unique way as a disjoint union of closed balls (if n = 1, which one may
assumeif L=F is separable,this follows from our decomposition results 4.1.5and 4.1.6);
let � 0(X a

L=F ) denote this setof balls. As a ! 1 , X a
L=F will consist of jL : F j small balls;

conversely, X 0
L=F is a single large ball. A central idea of Abbes and Saito's theory is

to analyse the behaviour of X a
L=F as a varies; in particular , when it breaks into jL : F j

balls. This will soon be made precise.
The natural action of the absolute Galois group Gal(F alg=F) on X a

L=F induces an
action on � 0(X a

L=F ), which then factors transitively through G = Gal(L=F ).

Remark 6.1.4. To motivate what follows, let us brie�y suppose that F has perfect
residue �eld. Then it is not hard to prove:

Fora � � 1, � 2 G actstrivially on � 0(X
� L=F (a)+1
L=F ) if andonly if � 2 Ga.

(A nice sketch is given in [Xia07]). So,for any a � � 1, the kernel of the action of G on
� 0(X a+1

L=F ) is Ga.

Abbes and Saito take the �nal observation in this remark as the de�nition of the
upper �ltration in their theory:

De�nition 6.1.5. Let L=F be a �nite, Galois extension of complete discrete valuation
�elds. The upperrami�cation �ltration on G = Gal(L=F ), is de�ned, for a � � 1, by

Ga = Ker(G ! Aut (X a+1
L=F )) :

Starting from this de�nition of the upper rami�cation �ltration, Abbes and Saito de-
velop fully a rami�cation theory for F . Xiao has extended their work by establishing
the Hasse-Arf integrality theorem for certain conductors [Xia08a] [Xia08b].

Remark 6.1.6. Again suppose that F is perfect. The de�nition of the Hasse-Herbrand
function implies that

d L=F

da
(a) = e� 1

L=F jGaj� 1;

at least away from the rami�cation breaks,and therefore that

 L=F (a) = e� 1
L=F

Z a

� 1
jGx j� 1 dx � 1;

sinceboth sidesare = � 1 at a = � 1. But jG : Gx j = j� 0(X x+1
L=F )j, and so

 L=F (a) = f � 1
L=F

Z a+1

0
j� 0(X x

L=F )j dx � 1 (� )

for all a � � 1.
If we think of `the number of connected components' as a measure, then (� ) is a

repeated integral taken over certain �br es, and it is exactly the variation of the �-
bres which contributes to the interesting structure of the Hasse-Herbrand function.
Whether this repeated integral interpr etation of rami�cation can be more systemati-
cally exploited in the local setting is an interesting question.
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6.1.3 Model-theoretic integration in �nite residue characteristic

We�nish this discussion on rami�cation theory with someconjectural remarks on how
the Abbes-Saito approach to rami�cation may be compatible with the Hr ushovski-
Kazhdan integration theory. We work in a model theoretic setting, as in chapter 5:
T is a theory of algebraically closed valued �elds in a language L obtained by adding
parameters to L RV .

If T is a theory of residue characteristic zero, then we saw in 5.5that every de�nable
subset of VF n was isomorphic, by `measure-preserving' bijections, to a disjoint union
of setslifted from the RV-level (= the Residue �eld and Value group.) In �nite residue
characteristic this is known to fail. For example. suppose that T = ACVF(0; p) for

someprime p > 0; so Qalg
p is a model of T, and we consider

X 0 = f x 2 Qalg
p : � p(xp � x � p� 1) � 0g:

It is easy to check that X 0 contains no rational points (i.e. X 0 \ Qp = ? ), and it is
essentially this which prevents it from being realised asa lift from RV.

Note that the roots of T p � T � p� 1 generatea wild, totally rami�ed extension L of Qp

of degreep and conductor 1. Mor eover, if � is a root of T p � T � p� 1 then � � 1 is a prime
of L , with minimal polynomial T p + pX p� 1T � p; henceOL = Zp[T ]=hTp + pX p� 1T � pi .
Now consider the family of sets

X a
L=Qp

= f x 2 Qalg
p : � p(xp + pxp� 1 � p) � ag

which arise in the Abbes-Saitotheory; then X 0
L=F contains rational points, while X 1

L=F
doesnot, becausewhen a passesfrom 0 to 1 the rigid spacesplits into separableballs.

Hence we may detect the conductor of L=Qp by examining existence of rational
points in families of de�nable sets. Although we worked with a speci�c example, the
ideasappear to generaliseto arbitrary extensionsof valued �elds. The following there-
foreseemsto bean important programme of study, which the author intends to pursue:

Develop a model theoretic approach to rami�cation theory

Perhaps Abbes and Saito's theory, currently based on rigid geometry, can be redevel-
oped using the model theory of algebraically closed valued �elds. The existence of
de�nable points and numbers of de�nable components will replace their arguments
using rigid spaces,and model theory provides an ideal tool for the many �bration ar-
guments which appear in their work.

Mor eover, model theory may give a more re�ned rami�cation theory for higher di-
mensional local �elds, becauseit is often straightforwar d to `add additional structure'
to the residue �eld (e.g. insist the residue �eld is a local �eld), aswe saw in section 5.5.

Unify the rami�cation theory with Hrushovski-Kazhdan integration theory

According to theorem 5.1.5, de�nable subsetsof a valued �eld of residue characteristic
zero all `come from' the RV-level. As we just discussed, this fails in characteristic p,
with the main problem being the appearanceof de�nable sets related to rami�cation
theory. Perhaps a theory can be developed in which objectsassociatedwith the valued
�eld can be split apart, with one component coming from RV and the other encoding
rami�cation data. This rami�cation component will allow rami�cation invariants to
be associatedto the original object, which can provide `correction factors' for integrals
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over the RV component. This may lead to the proper understanding of proposition
4.4.1, a morepowerful theory of local zeta integrals, and a theory of motivic integration
in residue characteristic p.

6.2 Structures and Euler characteristics

Before we can tackle the main problems of this chapter, we must presentsomeelemen-
tary objects from model theory from a perspective suitable for this work. We must
understand what sort of sets we can measure and what it means to measure them.
This material is well-known but hopefully this explicit exposition will appeal to those
unfamiliar with model theory.

6.2.1 Structures

Given a set 
 , a ring of subsetsof 
 is de�ned to be a non-empty collection of subsets
R of 
 such that

A; B 2 
 =) A n B ; A [ B ; A \ B 2 
 :

It is enough to assumethat R is closed under dif ferencesand unions for this implies
it is closed under intersections. A ring of sets is said to be an algebraif and only if it
contains 
 .

Following van den Dries [vdD98] we de�ne a structure A = (A (
 n))1
n=0 on 
 to be

an algebra A(
 n ) of subsetsof 
 n for eachn � 0 such that

(i) if A 2 A(
 n ) then A � 
 ; 
 � A 2 A(
 n+1 );

(ii) f (x1; : : : ; xn ) 2 
 n : x1 = xng 2 A(
 n );

(iii) if � : 
 n+1 ! 
 n is the projection map to the �rst n coordinates, then A 2
A(
 n+1 ) implies � (A) 2 A(
 n ).

Given a structure, one refers to the setsin A (
 n) asbeing the de�nablesubsetsof 
 n . If
A � 
 n and f : A ! 
 m then f is said to be de�nable if and only if its graph belongs
to A(
 n+ m ).

Proposition 6.2.1. LetA beastructureon aset
 . Then

(i) if A 2 A(
 n); B 2 A(
 m ) thenA � B 2 A(
 n+ m );

(ii) if 1 � i < j � n, thenf (x1; : : : ; xn ) 2 
 n : x i = x j g is in A (
 n);

(iii) if � is a permutationof f 1; : : : ; ng, thenthefunction 
 n ! 
 n givenby permutingthe
indicesof thecoordinatesby � is de�nable.

Moreover, if A � 
 n andf : A ! 
 m is de�nable,then

(i) A is de�nable;

(ii) if B � A is de�nable,thenf (B ) is de�nable,andthefunction givenby restricting f to
B is de�nable;

(iii) if B 2 A(
 m ), thenf � 1(B ) 2 A(
 n );

(iv) if f is injective,thenits inverseis de�nable;

(v) if B � f (A) andg : B ! 
 l is de�nable,theng � f : A ! 
 l is de�nable.
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Proof. Theseare straightforwar d to check;proofs may be found in [vdD98].

Remark 6.2.2. If L is a �rst order language of logic, and 
 is an L -structure, then there
is a structure on 
 in which A(
 n ) consistsof precisely those setsof the form

f x 2 
 n : 
 j= � (x; b)g

where � (x; y) is a formula of L in variables x1; : : : ; xn ; y1; : : : ; ym and b 2 
 m ; that is,
those setswhich are de�nable with parameters in the senseof model theory.

Realistically, any structure in which we will be interestedwill arise in this way asthe
parameter-de�nable setsof some language. But for the reader lessfamiliar with logic,
the axiomatic approach above is more immediately appealing, though ultimately less
satisfying.

Example 6.2.3. We present some examples to explain what we can and cannot study
using structures.All are well-known.

(i) If 
 is an arbitrary set, we may take A(
 n ) to be the collection of all subsetsof

 n ; that is, every set is de�nable.

(ii) If k is an algebraically closed �eld, let A (kn ) be the ring of setsgenerated by the
Zariski closed subsetsof kn ; such setsare called constructible. It is known that
(A (kn ))n forms a structure on k. The dif �culty is establishing that such setsare
closed under projection; this may either be proved in a model theoretic setting,
where it is equivalent to establishing that the theory of algebraically closed �elds
admits quanti�er elimination, or it may be seenas a special caseof a result of
algebraic geometry concerning constructible subsetsof Noetherian schemes(see
e.g. [Har77] exercises3.17-3.19).

(iii) If k is an arbitrary �eld, then an af�ne subsetof kn is a setof the form a+ X where
a 2 kn and X is a k-subspaceof kn . Letting A(kn ) be the ring of setsgenerated
by af�ne subsetsof kn gives a structure on k.

(iv) If R is the real line, then let A (Rn ) bethe ring of setsgeneratedby f x 2 Rn : p(x) �
0g for p 2 R[X 1; : : : ; X n ]; the setsin A (Rn ) arecalled semi-algebraicsubsetsof Rn .
This gives a structure for R. Again, the dif �culty is verifying that such setsare
closed under projection.

(v) None of the following give structureson the real line: the Borel sets,the Lebesgue
measurablesets,the Suslin sets.

Sostructuresare typically quite coarsefrom the point of view of classicalanalysis and
measure theory.

6.2.2 Euler characteristics and the Grothendieck ring of a structure

Having intr oduced the setsof interest we now discuss what it means to take the mea-
sure of such a set.

De�nition 6.2.4. Let 
 be a set with a structure A . An Euler characteristicis a map �
from the de�nable setsto somecommutative ring R, i.e.

� :
1G

n=0

A(
 n) ! R;

which satis�es
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(i) if A; B 2 A(
 n ) are disjoint, then � (A t B ) = � (A) + � (B );

(ii) if A 2 A(
 n ), B 2 A(
 m ), then � (A � B ) = � (A)� (B );

(iii) if A 2 A(
 n), B 2 A(
 m ) and there is a de�nable bijection f : A ! B , then
� (A) = � (B ).

Remark 6.2.5. From the additivity of � , one might think that an Euler characteristic is
similar to a measure in the classicalsense.The vast dif ferencebetween the two is the
invariance of � under de�nable bijections. For example, if 
 is a �eld k, � 2 k� , and
multiplication by � is a de�nable map from k to itself, then � (A) = � (�A ) for de�nable
A � k; in other wor ds, scaling a set does not affect its size. Or if 
 is the real line and
x 7! x2 is de�nable, then for any de�nable A of the positive reals, � (f x 2 : x 2 Ag) =
� (A).

Some authors prefer the term generalisedEuler characteristicor additive invariant, to
avoid possible confusion with the topologicalEulercharacteristic� top for complex projec-
tive manifolds, de�ned asthe alternating sum of the Betti numbers.

Example 6.2.6. The easiestexample of an Euler characteristic is counting measure: let

 be a �nite set, A (
 n ) the algebra of all subsetsof 
 n , and set � (A) = jAj to de�ne a
Z-valued Euler characteristic.

Explicitly exhibiting more interesting Euler characteristics requires some work, so
we presenthere without proof some known examples using the structuresof example
6.2.3.

(i) Let k be a �eld, equipped with the structure generated by the af�ne subsets. If k
is in�nite then there is a unique Z[t]-valued Euler characteristic � which satis�es

� (a + X ) = tdim k X

where a 2 kn and X is a k-subspaceof kn .

(ii) Give R the structureof semi-algebraicsets.Then there is a unique Z-valued Euler
characteristic � which satis�es

� ((0; 1)) = � 1;

sometimes called the combinatorialEuler characteristic.

(iii) Give C the structure of constructible sets;then there is a unique Euler character-
istic � top which agreeswith the topological Euler characteristic for any projective
manifold.

De�nition 6.2.7. Let 
 be a set with structure A . The associated Grothendieckring,
denoted K 0(
) (though it does of course depend on the structure, not just the set 
 ),
is de�ned to be the free commutative unital ring generated by symbols [A] for A a
de�nable subsetof 
 n , any n � 0, modulo the following relations

(i) if A; B 2 A(
 n ) are disjoint, then [A t B ] = [A] + [B ];

(ii) if A 2 A(
 n ), B 2 A(
 m ), then [A � B ] = [A][B ];

(iii) if A 2 A(
 n), B 2 A(
 m ) and there is a de�nable bijection f : A ! B , then
[A] = [B ].
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Remark 6.2.8. The map A 7! [A] de�nes a K 0(
) -valued Euler characteristic on 
 ,
which is universal in the sensethat if � :

F 1
n=0 A(
 n ) ! R is an Euler characteristic,

then there is aunique ring homomorphism � 0 : K 0(
) ! R such that � (A) = � 0([A]) for
any de�nable A. Thus A 7! [A] is the most general Euler characteristic of a structure.

Note that if f xg � 
 n is a single point, and A � 
 m is de�nable, then projection
induces a de�nable isomorphism f xg � A ! A. So [f xg][A] = [A] for all de�nable A
and therefore [f xg]=1; more generally, [B ] = jB j for any �nite de�nable set B .

Remark 6.2.9. Extending the Euler characteristicto varieties. Assume that 
 = k is an
algebraically-closed �eld with the structure A of constructible subsets.Let V be a sep-
arated algebraic variety over k (our varieties in this chapter usually consist only of the
closed points of the corresponding scheme)and let A (V ) be the ring generated by the
Zariski closed subsetsof V , i.e. the algebra of constructible subsetsof V .

It is straightforwar d to prove that � uniquely extends to A(V ) in such a way that if
U � V is an af�ne open or closed subset,C � U is constructible, and i : U ! Ad

k is an
open or closed embedding for somed, then � (C) = � (i (C)) .

Remark 6.2.10. Extendingthemeasureto an integral. If 
 is a set equipped with a struc-
tur eand Euler characteristic � , then there is a unique R-linear map

R
d� from the space

of functions spanned by characteristic functions of de�nable sets to R which satis�esR
char A d� = � (A) for any de�nable A. We will allow ourselves to usetypical notation

for integrals, writing
R

f (x) d� (x).

6.3 Riemann-Hurwitz and Fubini' s theorem for curves

Here we relate Fubini's theorem for Euler characteristics to the Riemann-Hurwitz for-
mula for morphisms between curves; then we produce a startling result implying that
in �nite characteristic it is always possible for Fubini's theorem to fail.

Throughout this sectionk is an algebraically closed �eld of arbitrary characteristic,A
is the structureof constructible sets,and � is a �xed R-valued Euler characteristic on A .
By a curve C over k, in this section, we mean a smooth, one-dimensional, irr educible
algebraic variety over k; we only consider the closed points of C. Following remarks
6.2.9and 6.2.10, the spaceof integrable functions on C is the R-module generated by
characteristic functions of constructible sets;the integral on this spacewill be denotedR

C � d� .
Let � : C1 ! C2 be a non-constant morphism of curves. We will study whether

Fubini's theorem holds for the morphism � , which is to say that for each y 2 C2, the
�br e � � 1(y) is constructible, that y 7! � (� � 1(y)) is integrable, and �nally that � (C1) =R

C2
� (� � 1(y)) d� (y). The problem immediately simpli�es:

Lemma 6.3.1. Fubini's theorem holdsfor a separablemorphism� : C1 ! C2 of projective
curvesif and only if the following formula relating the Euler characteristicsof C1 and C2 is
satis�ed:

� (C1) = � (C2) deg� �
X

x2 C1

(ex (� ) � 1);

whereex (� ) is therami�cation degreeof � at x.

Proof. Let � � C1 be the �nite set of points at which � is rami�ed. Let y be a point of
C2. The �br e � � 1(y) is �nite; moreover, it contains exactly deg� points when y =2 � (�) .
Soeach�br e is certainly constructible and � (� � 1(y)) = j� � 1(y)j. Thus y 7! � (� � 1(y))
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is constant off the �nite set � (�) and henceis integrable on C2; integrating obtains
Z

C2

� (� � 1(y)) d� (y) = � (C2 n � (�)) deg� +
X

y2 � (�)

j� � 1(y)j:

The fundamental rami�cation equality
P

x2 � � 1(y) ex (� ) = deg� transforms this into

� (C2) deg� �
X

y2 � (�)

X

x2 � � 1(y)

(ex (� ) � 1);

which completes the proof.

Remark 6.3.2. Mor e generally, if char k = p > 0 and � : C1 ! C2 is a morphism
of projective curves which is not necessarily separable, then we decompose � as � =
� sep � F m ; here F is the Frobenius morphism of C1, � sep : C1 ! C2 is a separable
morphism, and m is a non-negative integer. The previous proof shows that Fubini
holds for � if and only if

� (C1) = � (C2) deg� sep �
X

x2 C1

(ex (� sep) � 1):

So Fubini holds for � if and only if it holds for the separable part � sep; in particular ,
Fubini holds for any purely inseparable morphism of projective curves

For this reasonwe are justi�ed in focusing our attention on separablemorphisms.

Remark 6.3.3. Mor e usually Fubini's theorem is concerned with measuring subsetsof
product spacevia repeated integrals; let us show that this is the same as our current
activity considering �br esof morphisms between projective curves.

Suppose � : C1 ! C2 is a separablemorphism of projective curves over k. Then �
is a �nite morphism, so that if U2 � C2 is a non-empty, af�ne, open subset then the
sameis true of U1 = � � 1(U2). Chooseclosed embeddings U1 ,! An

k , U2 ,! Am
k and let

� = f (x; � (x)) 2 An+ m
k : x 2 U1g be the graph of � jU1 .

It is immediate that the integral
R

kn

R
km char� (x; y) d� (y)d� (x) is well-de�ned and

equal to � (U1). Conversely, if we �x y 2 U2 then
R

kn char� (x; y) d� (x) = � (� � 1(y)) ;
arguing asin the previous lemma now obtains

Z

km

Z

kn
char� (x; y) d� (x)d� (y) = � (U2) deg� �

X

x2 U1

(ex (� ) � 1):

Sointerchanging the order of integration preservesthe value of the integral if and only
if

� (U1) = � (U2) deg� �
X

x2 U1

(ex (� ) � 1):

Further, C2 nU2 and � � 1(C2 nU2) = C1 nU1 are �nite setsand it is straightforwar d to
verify , similarly to the previous lemma, that

jC1 n U1j = jC2 n U2j deg� �
X

x2 C1nU1

(ex (� ) � 1):

Taking the sum of the previous two formulae shows that Fubini's theorem holds for
� : C1 ! C2 if and only if the repeatedintegrals of char� are equal.

122



CH A PTER 6: FUBIN I ' S TH EOREM A N D RIEM A N N -H URWITZ FORM ULA E

Recall that the Riemann-Hurwitz formula statesthat if � : C1 ! C2 is a non-constant
morphism of projective curves, then there are integers eex (� ) for each x 2 C1 (which
we shall call the Riemann-Hurwitz rami�cation degrees) such that eex (� ) � ex (� ), with
equality if and only if � is tamely rami�ed at x, and such that

2(1 � g2) = 2(1 � g1) deg� �
X

x2 C1

(eex (� ) � 1);

where gi is the genus of Ci . It is apparent that Fubini's theorem and the Riemann-
Hurwitz formula are related.

Remark 6.3.4. The non-negative integer eex (� ) � 1 is equal to the dif ferent of the exten-
sion OC1 ;x =OC2 ;� (x) of discrete valuation rings, though we will not use this fact.

Remark 6.3.5. It is useful to have some explicit examples of morphisms between pro-
jective curves. Let f (t) be a polynomial over k and let � f be the algebraic variety over
k which is the graph of f , i.e.

� f = f (x; y) 2 A2
k : y = f (x)g:

Let F : A1
k ! � f be the morphism F (x) = (x; f (x)) and let � : � f ! A1

k be the
projection map � (x; y) = y. Note that F is an isomorphism of algebraic varieties and
that � � F = f ; here we abusenotation and write f for the morphism A1

k ! A1
k induced

by the polynomial f (t). Let � �
f denote the projective closure of � f , obtained by adding

a single point at in�nity . The morphisms F; � ; f extend to morphisms F : P1
k

�=! � �
f ,

� : � �
f ! P1

k , f : P1
k ! P1

k .
Remark 6.3.3implies that the following are all equivalent:

(i) Fubini holds for f : P1
k ! P1

k ;

(ii) Fubini holds for f : A1
k ! A1

k ;

(iii) The repeatedintegrals of char� f are equal.

To make use of the examples afforded by the previous remark we now calculate the
rami�cation degrees:

Lemma 6.3.6. We retain the notation of the previousremark. The rami�cation degreesof
f : P1

k ! P1
k are

ea(f ) =

(
� t � a(f (t) � f (a)) a 2 k = A1

k

degf a = 1 ;

andtheRiemann-Hurwitzrami�cation degreesare

eea(f ) =

(
1 + � t � a(f 0(t)) a 2 k = A1

k

degf + (degf � degf 0� 1) a = 1 :

Here � t � a denotes the t � a-adic valuation on k(t).

Proof. The rami�cation degreesare clear so we only consider the Riemann-Hurwitz
degrees.

Write s = f (t) so that f : P1
k ! P1

k corresponds to the extension of function �elds
K (s) � K (t). A local coordinate ta 2 K (t) at a 2 k is t � a; a local coordinate sb 2 K (s)
at b = f (a) is s � b. By de�nition of the Riemann-Hurwitz rami�cation degree,

eea(f ) � 1 = � t � a

�
d

dta
sb

�
;
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writing f (t) � b = g(t � a) for somepolynomial g gives

� t � a

�
d

dta
sb

�
= � t � a(g0(t � a)) = � t � a(f 0(t)) :

Secondly, f (1 ) = 1 and local parameters there are given by t � 1, s� 1; therefore the
Riemann-Hurwitz rami�cation degreeat in�nity is given by

ee1 (f ) = � t � 1

�
1

f (t)

�
+ 1 = degf + (degf � degf 0� 1):

Example 6.3.7. For any integer m > 1 not divisible by char k, let f (t) = t m in remark
6.3.5. Then f : P1

k ! P1
k is unrami�ed away from 0 and in�nity , with e0(f ) = e1 (f ) =

m. Thus Fubini's theorem holds for f (or, equivalently , for the set � f � k � k) if and
only if � (P1

k) = m� (P1
k) � 2(m � 1); that is, if and only if (� (P1

k ) � 2)(m � 1) = 0.
However , now assume char k = p > 0 and set f (t) = t p � t . Then f : P1

k ! P1
k

is unrami�ed outside in�nity , where it is wildly rami�ed of degree p. Thus Fubini's
theorem holds for f (or, equivalently , for the set � f � k � k) if and only if � (P1

k ) =
p� (P1

k) � (p � 1); that is, if and only if (� (P1
k ) � 1)(p � 1) = 0.

Taking m = p + 1 in the previous two paragraphs shows that Fubini fails for one of
the sets� tp � t , � tp or that p is an idempotent in R.

The example shows that Fubini's theorem can fail when in �nite characteristic:

Theorem 6.3.8. Assumechark = p > 2 and that p 6= 1 in R. Thenthere existsa subsetof
k � k for whichFubini's theoremdoesnot hold.

Proof. If Fubini does hold for the sets � tp+1 and � tp+2 of the previous example then it
follows that � (P1

k ) = 2. But then Fubini does not hold for � tp � X , unless p � 1 = 0 in
R.

Now we prove the next main result, namely that Fubini's theorem forces� , our ar-
bitrary Euler characteristic on the algebra of constructible sets, to be the usual Euler
characteristic of a curve:

Theorem 6.3.9. Supposethat chark 6= 2 and that Fubini's theorem is true for any non-
constant,separable,tamemorphism� : C ! P1

k from a projectivecurve to the projective
line. Thenfor anyprojectivecurveC wehave� (C) = 2(1 � g), whereg is thegenusofC.

Proof. For any integer m > 1 not divisible by chark, the morphism f : P1
k ! P1

k induced
by f (t) = tm is separableand tame; thereforewe may apply Fubini's theorem to deduce
(� (P1

k ) � 2)(m � 1) = 0. Therefore � (P1
k) = 2, which agreeswith the desired genus

formula.
Now let C be a projective curve over k. By a classical result of algebraic geometry

[Ful69, prop 8.1] there is, for any n suf�ciently large (depending on the genus g of
C), a non-constant morphism � : C ! P1

k of degreen with the property that any �br e
contains at leastn � 1points. For n not divisible by chark such a morphism is separable
and tame; therefore we are permitted to apply Fubini's theorem, deducing

� (C) = 2deg� �
X

x2 C

(ex (� ) � 1):

But this is nothing other than the Riemann-Hurwitz formula for the morphism � ; so
we obtain � (C) = 2(1 � g) asclaimed.
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This allows us to strengthen the observation that Fubini fails in �nite characteristic:

Theorem 6.3.10. Supposethat chark 6= 2 and that Fubini's theorem is true for any non-
constant,separable,tamemorphismbetweenprojectivecurves.ThenFubini's theoremholdsfor
aseparablemorphismbetweenprojectivecurvesif andonly if themorphismis tame.

Proof. The previous result implies that � (C) = 2(1 � g) is the usual Euler characteristic
of any projective curve C. Suppose that � : C1 ! C2 is a separable morphism of
projective curves which is not everywher e tame. Then the Riemann-Hurwitz formula
tells us that

� (C1) = � (C2) deg� �
X

x2 C1

(eex (� ) � 1);

which is incompatible with Fubini's theorem for � as eex (� ) � ex (� ) for all x 2 C1 with
at least one value of x for which we do not have equality.

Remark 6.3.11. Mor e precisely, in the situation of the previous result, we have

� (C1) �
Z

C2

� (� � 1(y)) d� (y) =
X

x2 C1

dx (� );

where dx (� ) is de�ned by D x (� ) = ex (� ) � 1 + dx (� ); here D x (� ) denotes the dif ferent
of the extension OC1 ;x =OC2 ;� (x) of discretevaluation rings (seealso remark 6.3.4). dx (� )
measuresthe wild rami�cation at x.

An Euler characteristic is typically considered an objectof 'tame' mathematics [vdD98],
and so this formula is slightly surprising in that it expresseswild information purely
in terms of tame.

Remark 6.3.12. In proposition 4.4.1we saw that if F is a two-dimensional local �eld,
then the characteristic function of

� = f (x; y) 2 F : (x; y � t � 1xp) 2 OF � OF g

fails to satisfy Fubini's theorem with respectto the two-dimensional integral; in fact,
Z

F

Z

F
char� (x; y) dxdy = 0

and Z

F

Z

F
char� (x; y) dxdy = 1:

This is similar phenomenon to what we have just observed for the Euler characteristic
� .

Theseresults suggest interpr eting the Riemann-Hurwitz formula as a modi�ed `re-
peated integral', adjusted in a suitable way to ensure that Fubini's theorem holds. Per-
haps it is possible to modify the two-dimensional integration theory in a similar way
by taking into account additional rami�cation data assuggestedin section 6.1.3above.

6.4 Strong Euler characteristics

In the previous section, we in fact only considered interchanging the order of integra-
tion in morphisms all of whose �br es were �nite. This brief section is a study of the
possible Euler characteristics which do satisfy this restricted version of Fubini's theo-
rem.
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De�nition 6.4.1. Let 
 be a setwith structure A . An Euler characteristic � is said to be
strongif and only if whenever f : A ! B is a de�nable function between two de�nable
setssuch that there exists a positive integer n, with j� (f � 1(b)) j = n for all b 2 B , then
� (A) = n� (B ).

Remark 6.4.2. A strong Euler characteristic satis�es Fubini's theorem in a very weak
sense.For suppose � is an Euler characteristic, A � 
 n , B � 
 m are de�nable, and f :
A ! B is an n-to-1 mapping asin the de�nition; set � = f (x; y) 2 
 n � 
 m : x 2 A; y 2
B ; f (x) = yg. Then Fubini's theorem holds for char � if and only if � (A) = n� (B ).

It is straightforwar d to establish non-existence in certain casesand uniqueness in
others:

Theorem 6.4.3. Supposek is analgebraicallyclosed�eld, of �nite characteristic> 2, with the
structureof constructiblesets;thenno strongEuler characteristicexists.

Proof. This is just a restatement of theorem 6.3.8, where the counterexample did not
require � to satisfy the full Fubini property, but merely be strong.

Theorem 6.4.4. Supposek is analgebraicallyclosed�eld, ofcharacteristiczero,with thestruc-
tureofconstructiblesets;thenat mostonestrongEulercharacteristicexists,andit is Z valued.

Proof. Let � i be strong Euler characteristics, for i = 1; 2. The algebra of constructible
subsetsof kn is generated by the irr educible closed subsets,and therefore it is enough
to establish � 1(V ) = � 2(V ) for any irr educible closed V � kn ; this we do by induction
on the dimension d of V . Let V 0 be the closure of V in Pn

k ; then V 0n V has dimension
strictly lessthan that of V , and so,by the inductive hypothesis, it is enough to establish
� 1(V 0) = � 2(V 0).

Let f : V 0 ! Pd
k be a �nite projective morphism; this always exists (seee.g. [Liu02,

Lem. 6.4.27]). Let � � V 0 denote the points at which V 0 is non-singular or at which f
is not étale; this is closed in V 0 by [Liu02, Prop. 4.2.24,Cor. 4.4.12]. Sincemorphisms
of �nite type are closed, U := Pd

k n f (�) is an open subset of Pd
k , and it is non-empty

becauseit contains the generic point (here it is important to observe that K (V 0)=K (P1
k )

is a separableextension of �elds).
Hence the restriction of f to f � 1(U) is a �nite étale morphism to P1

k , i.e. an étale
cover, of degreem = jK (V 0) : K (P1

k)j; the assumption that each� i is strong implies

� i (f � 1(U)) = m� i (U)

for i = 1; 2. Mor eover, dim(V 0n f � 1(U)) and dim(f (�)) are both < d, and therefore the
inductive hypothesis lets us deduce

� 1(V 0) = � 1(f � 1(U)) + � 1(V 0n f � 1(U))

= m(� 1(Pd
k ) � � 1(f (�))) + � 2(V 0n f � 1(U))

= m(� 1(Pd
k ) � � 2(f (�))) + � 2(V 0n f � 1(U))

= m(� 1(Pd
k ) � � 2(Pd

k )) + � 2(V 0):

It remains only to prove that our two Euler characteristics agreeon Pd
k . Decomposing

projective space into a disjoint union of constructible sets Pd
k =

F d
i=0 A i

k and using
multiplicativity of each� i on products, we have �nally reduced the problem to proving
that � 1(A1

k) = � 2(A1
k ).

But the argument of the �rst paragraph of theorem 6.3.9, which is valid for any strong
Euler characteristic, establishesthat � i (A1

k ) = 1 for i = 1; 2.
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Remark 6.4.5. If k = C then a strong Euler characteristic does exist on the structure
of constructible sets, namely the topological Euler characteristic. This follows from
the classical result that if eX ! X is an n-sheetedcovering of a CW-complex X , then
� top ( eX ) = n� top (X ).

The Lefschetzprinciple (i.e. that the �rst order theory of algebraically closed �elds of
characteristic zero is complete; see[Che76] for a classicaldiscussion of this principle)
now implies that a strong Euler characteristic exists for any algebraically closed �eld
of characteristic zero.

Remark 6.4.6. The inclusion of this material is inspir ed by [Kra00] and [KS00], where
strong Euler characteristics (in fact, the de�nition of `strong' in thesepapers is slightly
stronger than the de�nition we have used) are discussedfrom the perspective of model
theory. In [KS00], it is proved that auniversal strong Euler characteristic

F 1
n=0 A(
 n) !

K s
0(
) exists,and soour previous theorem and remark prove that if k is an algebraically

closed �eld of characteristic zero, with the structure of constructible sets,then K s
0(k) =

Z.

6.5 Riemann-Hurwitz and Fubini' s theorem for surfaces

Now we generalise the results of section 6.3 from curves to surfaces. k continues to be
an algebraically closed �eld, and � is a �xed R-valued Euler characteristic on the struc-
tur e of constructible sets. In this section, 'surface' means a smooth, two-dimensional,
irr educible algebraic variety over k, whereas a 'curve' is merely a one-dimensional,
reduced, algebraic variety over k.

If � : S1 ! S2 is a �nite, separablemorphism between projective surfacesof degreen,
then let B � S2 be the setof y 2 S2 such that � � 1(y) doesnot contain n points. Zariski's
purity theorem (seee.g. [Liu02, ex. 8.2.15]or [Zar58]) statesthat B is equidimensional
of dimension one; let B1; : : : ; B r be its irr educible components, and let n i be the degree
of the morphism � j � � 1 (B i ) : � � 1(B i ) ! B i (note that the degreeis well-de�ned, as the
basecurve is irr educible, though the covering curve � � 1(B i ) may be reducible). Using
this data we may prove an analogue of lemma 6.3.1:

Theorem 6.5.1. Let � : S1 ! S2 bea �nite, separablemorphismbetweenprojectivesurfaces,
with notation as in the previousparagraph. Then Fubini holdsfor � (in the samesenseas
section6.3) if andonly if thefollowing formularelating� (S1) and� (S2) is satis�ed:

� (S1) = � (S2) deg� �
rX

i =1

(n � n i )� (B i ) +
X

y2 B

 

j� � 1(y)j � n +
rX

i =1

(n � n i )mi (y)

!

;

wherem i (y) denotesthenumberof localbranchesofB i at y. If � is astrongEulercharacteristic
thenthis formulaholds.

Proof. Wemust show that the right hand side of the formula is equal to the �br e integralR
S2

j� � 1(y)j d� (y).

The normalisation of B is by de�nition � B : eB =
F r

i =1
eB i ! B , where � i : eB i ! B i is

the normalisation of the irr educible curve B i . Write D = � � 1(B ), and let � D : eD ! D
be its normalisation in the sameway asB ; the functoriality of normalising implies that
there is an induced morphism e� : eD ! eB such that � B e� = � jD � D .

Let Z � B be a large enough �nite set of points such that Z includes all singular
points of the curve B , � � 1(Z ) includes all singular points of the curve � � 1(B ), and
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e� � 1(� � 1
B (Z )) includes all points of rami�cation of e� . Then � D and � B induce isomor-

phisms eD n e� � 1(� � 1
B (Z ) �= D n � � 1(Z ) and eB n � � 1

B (Z ) �= B n Z ; therefore
Z

B nZ
j� � 1(y)j d� (y) =

Z

eB n� � 1
B (Z )

j e� � 1(y)j d� (y)

=
Z

eB
j e� � 1(y)j d� (y) �

Z

� � 1
B (Z )

j e� � 1(y)j d� (y)

=
rX

i =1

Z

eB i

j e� � 1(y)j d� (y) �
X

y2 � � 1
B (Z )

j e� � 1(y)j:

Further, aswe saw in the proof of lemma 6.3.1,
Z

eB i

j e� � 1(y)j d� (y) = n i � ( eB i ) +
X

y2 eB i \ � � 1
B (Z )

(j e� � 1(y)j � n i ):

Since eB i n � � 1
B (Z ) \ eB i

�= B i n Z \ B i , we have � ( eB i ) = � (B i ) +
P

y2 Z \ B i
(mi (y) � 1);

combining the last few identities therefore gives
Z

B
j� � 1(y)j d� (y) =

X

i

n i � (B i ) +
X

i

n i

X

y2 B i \ Z

mi (y) �
X

i

jB i \ Z j

�
X

i

X

y2 eB i \ � � 1
B (Z )

n i +
X

y2 Z

j� � 1(y)j:

To complete the proof, combine this formula with
Z

S2

j� � 1(y)j d� (y) = n� (S2 n B ) +
Z

B
j� � 1(y)j d� (y)

= n� (S2) � n(
X

i

� (B i ) �
X

y2 Z

(c(y) � 1)) +
Z

B
j� � 1(y)j d� (y);

where c(y) denotes the number of irr educible components of B which passthrough y
(note that

P
y2 Z c(y) =

P
i jB i \ Z j).

Remark 6.5.2. When k = C and � = � top is the topological Euler characteristic, which
we have remarked earlier (remark 6.4.5) is a strong Euler characteristic, then the theo-
rem proves that

� top (S1) = � top (S2) deg� �
rX

i =1

(n � n i )� (B i ) +
X

y2 B

 

j� � 1(y)j � n +
rX

i =1

(n � n i )mi (y)

!

:

The Lefschetz principle now implies that the formula remains true if we replace k by
any algebraically closed �eld of characteristic zero, and � top (Si ) by the l-adic Euler
characteristic (=alternating sum of Betti numbers of l-adic étalecohomology of Si , =de-
greeof the secondChern classof Si ).

This generalisation of the Riemann-Hurwitz formula to surfacesis due to B. Iversen
[Ive70], who established it with purely algebraic techniques by studying pencils of
curves on the surfaces. Iversen remarks in his paper that a more topological proof
should be possible when k = C, and our approach provides that.
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Remark 6.5.3. A natural question now to ask is whether an analogue of the theorem
holds in higher dimensions. If X 1 ! X 2 is a �nite morphism between d-dimensional
smooth projective varieties over k, then the branch locus will be pure of dimension
d � 1, so one can hope to obtain results by induction on dimension. The dif �culty
which appears when the branch locus has dimension > 1 is that there is no functorial
way to desingularise. It is unclear to the author at present how signi�cant a problem
this is. The resulting formulae may even be too elaborate to be useful.

Remark 6.5.4. Another interesting question concerns the situation in characteristic p.
We noted in remark 6.3.11that, for curves, the dif ference between the Euler charac-
teristic and the integral over the �br es was a measure of the wild rami�cation. For
surfaces, the situation is more complex, since the wild rami�cation of surfaces is not
fully understood. However , assuming that there is no ferocious rami�cation present
(this is when inseparable morphisms between curves appear), I. Zhukov [Zhu05] has
successfully generalised Iversen's formula by de�ning appropriate rami�cation invari-
ants; this provides an explicit formula for

� (S1) �
Z

S2

j� � 1(y)j dy

in terms of the wild rami�cation of the cover.
The Riemann-Hurwitz formula for curves is a special caseof the Grothendieck-Ogg-

Shafarevich formula for `-adic shaves, and the problem of understanding Riemann-
Hurwitz for surfaces is a special caseof extending Grothendieck-Ogg-Shavarevich to
higher dimensional varieties. Assuming that a two-dimensional integration theory can
be developed which encodeslocal rami�cation data, as suggested in subsection 6.1.3,
then it may be possible to reproduce the arguments of theorem 6.5.1with a similarly
re�ned Euler characterstic, in such a way as to prove Riemann-Hurwitz for surfaces
without any restrictions on the rami�cation.
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An explicit approach to residues on and canonical
sheavesof arithmetic surfaces

We develop a theory of residues for arithmetic surfaces,establish the reciprocity law
around a point and use the residue maps to explicitly construct the dualising sheaf of
our surface. Theseare generalisations of known results for surfacesover a perfect �eld.

7.1 Introduction

As much for author 's bene�t asthat of the reader, we saya few wor ds about the relation
of this work to previous results of others:

7.1.1 An introduction to the higher adèlic method

We begin with a reminder of some material already contained in the intr oduction to
the thesis. A two-dimensional local �eld is a compete discrete valuation �eld whose
residue �eld is a local �eld (e.g. Qp(( t)) ); for an intr oduction to such �elds, see[FK00].
If A is a two-dimensional domain, �nitely generated over Z, with �elds of fractions F
and 0 C p C m C A is a chain of primes in A, then consider the following sequenceof
localisations and completions:

A  Am  cAm  
�

cAm

�

p0
 

\�
cAm

�

p0
 

�
\�
cAm

�

p0

�

0
= Frac

�
\�
cAm

�

p0

�

k k
Am;p Fm;p

which we now explain in greater detail. It follows from excellenceof A that p0 := p cAm

is a radical ideal of cAm; we may localise and complete at p0and again use excellenceto
deduce that 0 is a radical ideal in the resulting ring i.e. A m;p is reduced. The total �eld
of fractions Fm;p is therefore isomorphic to a �nite dir ect sum of �elds, and each is a
two-dimensional local �eld.

Geometrically, if X is a two-dimensional, integral schemeof �nite type over SpecZ
with function �eld F , then to eachclosed point x 2 X and integral curve y � X which
contains x, one obtains a �nite dir ect sum of two-dimensional local �elds Fx;y . Two-
dimensional adèlic theory aims to study X via the family (Fx;y )x;y , in the sameway as
one studies a curve or number �eld via its completions. Analogous constructions exist
in higher dimensions. Useful referencesare [HY96] [Par83, §1].
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7.1.2 The classical caseof a curve over a perfect �eld

This chapter is basedclosely on similar classicalresults for curves and it will be useful
to give a detailed account of that theory.

Smooth curves

Firstly, let C be a smooth, connected, projective curve over a perfect �eld k (of �nite
characteristic, to avoid complications with dif ferential forms). Wefollow the discussion
in [Har77, III.7.14]. For each closed point x 2 C one de�nes the residue map Resx :

 1

K (C)=k ! k, and one then proves the reciprocity law

X

x2 C0

Resx (! ) = 0;

for all ! 2 
 1
K (C)=k. Consider 
 1

K (C)=k asa constant sheafon C; then

0 ! 
 1
C=k ! 
 1

K (C)=k ! 
 1
K (C)=k=
 1

C=k ! 0

is a �asque resolution of 
 1
C=k, and the corresponding long exact sequenceof �Cech

cohomology is

0 ! 
 1
C=k(C) ! 
 1

K (C)=k !
M

x2 C0


 1
K (C)=k


 1
OC;x =k

! H 1(C; 
 1
C=k) ! 0: (y)

Now, the map
P

x Resx :
L

x2 C0

 1

K (C)=k=
 1
OC;x =k ! k vanisheson the image of 
 1

K (C)=k
(by the reciprocity law), and so induces

trC=k : H 1(C; 
 1
C=k) ! k;

which is the trace map of C=k with respectto the dualising sheaf 
 1
C=k.

Mor eover, duality of C may be interpr eted (and proved) adèlically as follows; see
[Ser88, II.§8]. For each x 2 C0, let K (C)x be the completion of K (C) at the discrete
valuation � x associatedto x, and let

AC = f (f x ) 2
Y

x2 C0

K (C)x : � x (f x ) � 0 for all but �nitely many xg

be the adèlic spaceof C. Also, let

A(
 1
C=k) = f (! x ) 2

Y

x2 C0


 1
K (C)x =k : � x (! x ) � 0 for all but �nitely many xg

be the dif ferential adèlic spaceof C. Then, under the pairing

AC � A(
 1
C=k) ! k; (( f x ); (! x )) 7!

X

x2 C0

Resx (f x ! x );

the orthogonal complement of A(
 1
C=k(D )) is

A(
 1
C=k(D ))? = AC (D ):
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Here D is a divisor on C, and AC (D ) (resp. A(
 1
C=k(D ))) is the subgroup of AC (resp.

A(
 1
C=k) for which � x (f x ) � � � x (D ) (resp. � x (! x ) � � x (D )) for all x. Mor eover, the

global elements,embedded diagonally, are self-dual:

K (C)? = 
 1
K (C)=k:

The exact sequence(y) generalisesto the twisted sheaf 
 1
C=k(D ), and thereby provides

an isomorphism A(
 1
C=k)=(
 1

K (C)=k + A(
 1
C=k(D ))) �= H 1(C; 
 1

C=k(D )) ; combining this
with the aforementioned adèlic dualities yields the non-degeneratepairing

L (D) � H 1(C; 
 1
C=k(D )) ! k;

where

L (D) := K (C) \ AC (D ) = f f 2 K (C) : � x (f ) � � � x (D ) for all x 2 C0g:

This is exactly duality of C=k.

Singular curves

Secondly, supposethat C is allowed to have singularities; we now follow [Ser88, IV.§3].
One may still de�ne a residue map at eachclosed point x; in fact, if � : eC ! C is the
normalisation of C, then

Resx =
X

x02 � � 1 (x)

Resx0 :

The sheafof regulardifferentials
 0
C=k is de�ned, for open U � X , by


 0
C=k(U) = f ! 2 
 1

K (C)=k : Resx (f ! ) = 0 for all closed points x 2 U and all f 2 OC;x g:

If U contains no singular points of C, then 
 0
C=k jU = 
 1

U=k. By establishing a Riemann-
Roch type result, it follows that 
 0

C=k is the dualising sheafof C=k. Analogously to the
smooth case,one explicitly constructs the trace map

trC=k : H 1(C; 
 0
C=k) ! k;

and, as in [Gre88], uses it and adèlic spacesto prove duality . See[Stö93] for more on
the theory of regular dif ferentials on curves.

7.1.3 The caseof a surface over a perfect �eld

There is alsoa theory of residueson algebraic surfaces,developed by A. Parshin [Par83]
[Par00], the founder of the higher dimensional adèlic approach to algebraic geometry.
Let X be a connected,smooth, projective surface over a perfect �eld k. To eachclosed
point x 2 X and curve y � X containing x, he de�ned a two-dimensional residue map

Resx;y : 
 2
K (X )=k ! k

and proved the reciprocity laws both around a point

X

y� X
y3 x

Resx;y ! = 0
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(for �xed x 2 X 0 and ! 2 
 2
K (X )=k) and along a curve

X

x2 X 0
x2 y

Resx;y ! = 0

(for �xed y � X and ! 2 
 2
K (X )=k). By interpr eting the �Cech cohomology of X adèli-

cally and proceeding analogously to the caseof a curve, these residue maps may be
used to explicitly construct the trace map

trX =k : H 2(X ; 
 2
X =k) ! k

and, using two-dimensional adèlic spaces,prove duality .
D. Osipov [Osi00] considers the algebraic analogue of our setting, with a smooth,

projective surface X over a perfect �eld k and a projective morphism f : X ! S to a
smooth curve. To eachclosedpoint x 2 X and curve y � X containing x, he constructs
a `direct image map'

f x;y
� : 
 2

K (X )=k ! 
 1
K (S)s =k;

where s = f (x) and K (S)s is the s-adic completion of K (S). He establishesthe reci-
procity law around a point, analogous to our theorem 7.4.1, and the reciprocity law
along a �br e. He usesthe (f x;y

� )x;y to construct f � : H 2(X ; 
 2
X =k) ! H 1(S; 
 1

S=k), which
he proves is the trace map.

Osipov then considers multiplicative theory. Let K 2(X ) denote the shea��cation
of X � U 7! K 2(OX (U)) ; then H 2(X ; K 2(X )) �= CH2(X ). Osipov de�nes, for each
x 2 y � X , homomorphisms

f � ( ; )x;y : K 2(K (X )) ! K (S)�s ;

and establishesthe reciprocity laws around a point and along a �br e. At least when
char k = 0, theseare then used to construct a map

CH2(X ) = H 2(X ; K 2(X )) ! H 1(C; O�
C ) = Pic(C);

which is proved to be the usual push-forwar d of cycles[Ful98, §1].

7.1.4 Higher dimensions

The theory of residues for surfaces was extended to higher dimensional varieties by
V. G. Lomadze [Lom81]. Let X be a d-dimensional, integral schemeof �nite type over
a �eld k. To eachcomplete �ag of integral subvarieties

x = hx0 � � � � � xdi ;

Lomadze associatesa residue map Resx : 
 d
K (X )=k ! K and proves the reciprocity law

X

x i

Resx ! = 0:

Here we have �xed a �ag x0 � � � � � x i � 1 � x i +1 � � � � � xn and vary the sum over all
i -dimensional integral subvarieties x i sitting between x i � 1 and x i +1 (if i = n then we
must assumeX is projective).

Lomadze also develops a higher dimensional relative theory, analogous to Osipov's
study of a surfaceover a curve.
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7.1.5 Explicit Grothendieck duality

It is an interesting problem whether Grothendieck duality [AK70] [Har66] canbe made
more explicit. The guiding example is that of a curve over a �nite �eld which we
discussed above, where the trace map may be constructed via residues. The duality
theorem is even equivalent to Poissonsummation on the ring of adèlesof the curve; the
simplest exposition of duality is probably that of [Mor91]. Using the Parshin-Lomadze
theory of residues, A. Yekutieli [Yek92] has explicitly constructed the Grothendieck
residue complex of an arbitrary reduced schemeof �nite type over a �eld.

For a far better summary of this problem than the author can provide, the reader
should consult the intr oduction to [Yek92] and others of Yekutieli's papers, e.g. [HY96]
[SY95].

7.1.6 Adèlic analysis

This chapter has many connections to I. Fesenko's programme of two-dimensional
adèlic analysis [Fes06] [Fes03] [Fes08b] [Fes08a], and is part of the author 's attempt
to understand the connection between adèlic analysis and more familiar methods in
algebraic geometry.

Two-dimensional adèlic analysis aims to generalisethe current rich theories of topol-
ogy, measure, and harmonic analysis which exist for local �elds, by which mathemati-
cians study curves and number �elds, to dimension two. In particular , Fesenkogen-
eralises the Tate-Iwasawa [Iwa92] [Tat67] method of studying the zeta function of a
global �eld to dimension two, giving a new approach to the study of the L-function
of an elliptic curve over a global �eld. The author hopes that the reader is satis�ed to
hear only the most immediate relations between this fascinating subjectand the current
chapter.

Let E be an elliptic curve over a number �eld K , with function �eld F = K (E), and
let E be a regular, proper model of E over the ring of integers OK . Then E satis�es the
sameassumptions of X in our main theorem 7.7.5below. Let  = 
 s2 S s : AK ! S1

be an additive characteron the adèlegroup of K , and let ! 2 
 1
F =K be a �xed, non-zero

dif ferential form. For x 2 y � E a point contained in a curve as usual, with x sitting
over s 2 S, intr oduce an additive character

 x;y : Fx;y ! S1; a 7!  s(Resx;y (a! )) ;

where Resx;y is the relative residue map which we will construct in section 7.4. If x is a
�xed point, then our reciprocity law will imply

X

y� X
y3 x

 x;y (a) = 0

for any a 2 F .
Mor eover, supposethat  is trivial on global elementsand that y is a �xed horizontal

curve; then Fesenkoalso proves [Fes08b, §27Proposition]
X

x2 X 0
x2 y[f archg

 x;y (a) = 0:

Weare deliberately vague here. Let us just say that we must adjoin archimedean points
to y, consider two-dimensional archimedean local �elds such asR((t)) , and de�ne suit-
able additive charactersat theseplaces;once thesehave beensuitably intr oduced, this
reciprocity law follows from adèlic reciprocity for the number �eld k(y).
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7.1.7 Future work

The author is thinking about several topics related to this chapter which may interest
the reader. Let X ! OK be an arithmetic surface.

Reciprocity along vertical curves

There is surely a reciprocity law for the residue maps (Resx;y )x along any �xed vertical
curve y � X . The author can currently only prove it for certain special cases,such as
when y is an entire irr educible vertical �br e.

Grothendieck duality

The canonical sheaf! X =S is the dualising sheaf. It should bepossible to useour residue
maps (Resx;y )x;y to construct the relative trace map

trX =S : H 1(X ; ! X =S) ! OK ;

and give an explicit adèlic proof of Grothendieck duality , similar to the existing work
of Yekutieli for varieties. This should follow relatively easily from the contents of this
chapter.

Horizontal reciprocity

If y is horizontal then such a reciprocity law does not make sensenaively, since the
residues Resx;y ! belong to dif ferent �elds as x varies across y. Of course, this is the
familiar problem that SpecOK is not a relative curve. As explained in the discussion of
Fesenko'swork above, this is �xed by taking into account the archimedean data. Such
results live outside the realm of algebraic geometry, and need to be better understood.

Two-dimensional Poisson summation

Perhaps it is possible to �nd a global duality result on X which incorporates not only
Grothendieck duality of X relative to S, but also the arithmetic duality on the basei.e.
Poisson summation. Such a duality would necessarily incorporate archimedean data
and perhaps be most easily expressedadèlically. In the caseof a regular, proper model
of an elliptic curve, this may already beprovided by one of Fesenko'sadditive dualities
[Fes08b, §32,Proposition].

Multiplicative theory

We have focused on additive theory, but as we mentioned while discussing Osipov's
work, there are natural multiplicative analogues. In fact, the `multiplicative residue
map' for mixed characteristic two-dimensional local �elds hasbeende�ned by K. Kato
[Kat83]. Fesenko'swork includes an adèlic interpr etation of the conductors of the spe-
cial �br es of E, but only under the assumption that the reduced part of each �br e is
semi-stable [Fes08b, §40, Remark 2]; similar results surely hold in greater generality
and are related to `conductor = discriminant' formulae [KS04] [LS00] [Sai88].

Mor eover, Fesenko'stwo-dimensional theta formula [Fes08b, 3.6] is an adèlic duality
which takes into account the interplay between the additive and multiplicative struc-
tur es. It is important to understand better its geometric interpr etation, at least in the
caseof an algebraic surface.

Perhaps it is also possible to study vanishing cycles[Sai87] using similar techniques.
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7.1.8 Notation

If A is a (always commutative) ring, then we write p C A to denote that p is an ideal
of A; this notation seemsto be common to those educated in Oxford, and lessfamiliar
to others. We write p C 1A to indicate that the height of p is 1. If p is prime, then
k(p) = FracA=p is the residue �eld at p. If A is a local ring, then the maximal ideal is
mA .

If F is a complete discrete valuation �eld, then its ring of integers is OF , with max-
imal ideal pF . The residue �eld k(pF ) will be denoted F ; this notation seemsto be
common among those affected by the Russian school of arithmetic geometry. Discrete
valuations are denoted � , usually with an appropriate subscript to avoid confusion.

If A is a B -algebra, the the spaceof relative Kahler dif ferentials is 
 A=B = 
 1
A=B .

Injective maps are often denoted by ,! , and surjective maps by !! .

7.2 Local relative residues

Here we develop a theory of residues of dif ferential forms on two-dimensional local
�elds. Recall that a two-dimensional local �eld is a complete discrete valuation �eld
F whose residue �eld F is a (non-archimedean, in this chapter) local �eld. We will
be interested in such �elds F of characteristic zero; when the local �eld F also has
characteristic zero then we say that F has equalcharacteristiczero; when F has �nite
characteristic, then F is said to be of mixedcharacteristic.

7.2.1 Continuous dif ferential forms

We begin by explaining how to construct suitable spacesof `continuous' dif ferential
forms.

For any Noetherian, local ring A and A-module N , we will denote by N sep the maxi-
mal Hausdorf f (=separated)quotient for the mA -adic topology, i.e.

N sep = N

,
1\

n=1

mn
A N :

Remark 7.2.1. Suppose that A=B is a �nite extension of Noetherian, local domains.
Then mA \ B = mB . Also, the �br e A 
 B k(mB ) is a �nite dimensional k(mB )-vector
space,and is therefore Artinian; hence mB A contains mn

A for n � 0. So for any B -
module N ,

N sep 
 B A = (N 
 B A)sep:

Lemma 7.2.2. Let A=B bea �nite extensionof Noetherian,local domains,which are R al-
gebras,where R is a Noetheriandomain. Assumethat 
 sep

B =R is a freeB -module,and that
FracA= FracB is aseparableextension.Thenthereis an exactsequence

0 ! 
 sep
B =R 
 B A ! 
 sep

A=R ! 
 A=B ! 0

ofA-modules.

Proof. The standard exactsequenceof dif ferential forms is


 B =R 
 B A ! 
 A=R ! 
 A=B ! 0:
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Since A is a �nite B -module, the space of dif ferentials 
 A=B is a �nitely generated,
torsion A-module. Apply sep to the sequenceto obtain, using remark 7.2.1,


 sep
B =R 
 B R

j
! 
 sep

B =R ! 
 A=B ! 0;

which is exact. It remains to prove that j is injective.
Let F , M , K be the �elds of fractions of A, B , R respectively, and let ! 2 
 sep

B =R be an

element of some chosenB -basis for this freemodule. Let D ! : 
 sep
B =R ! B send ! to 1

and vanish on all other elementsof the chosenbasis.This homomorphism extends �rst
to an M -linear map DM : 
 M =K ! M , and then to an F -linear map D F : 
 F =K ! F ;
this follows from the identi�cations 
 B =R 
 B M �= 
 M =K and 
 M =K 
 M F �= 
 F =K .
Finally, it induces an R-linear derivation D : A ! F by D(a) = D F (d(a)) , where
d : F ! 
 F =K is the universal derivation.

Let N � F be the A-module spanned by D(a), for a 2 A. This is a �nitely generated
A-module, for if a1; : : : ; an generate A as a B -module, then N is contained in the A-
module spanned by a1; : : : ; an ; D (a1); : : : ; D (an ). Thus the non-zero homomorphism
eD : 
 A=R ! N induced by D factors through 
 sep

A=R (by Nakayama's lemma). Fur-

ther, eD sends j (! ) 2 
 sep
A=R to 1 and vanishes on the images under j of the other basis

elements. It follows that j is injective.

Remark 7.2.3.Whether 
 sep
B =R is freeis closely related to whether B is a formally smooth

algebra over R; see[Gro64, Théorème 20.5.7]. M. Kurihara uses such relations more
systematically in his study of complete discretevaluation �elds of mixed characteristic
[Kur87].

Remark 7.2.4. Suppose that R is a Noetherian ring and A is a �nitely generated R-
algebra. Let p C A be a prime ideal. Then 
 A p =R = 
 A=R 
 A Ap is a �nitely generated

Ap-module, and the natural map 
 A p =R 
 A p
cAp ! 
 cA p =R gives rise to an isomorphism


 A p =R 
 A p
cAp

�= lim
 �
n


 cA p =R=pn 
 cA p =R = \
 cA p =R

(seee.g. [Liu02, exercise6.1.13]).
Therefore 
 sep

cA p =R
is a �nitely generated cAp-module (since it embeds into \
 cA p =R), and

it is thereforecomplete; so the embedding 
 sep
cA p =R

,! \
 cA p =R is actually an isomorphism.
Thus we have a natural isomorphism


 A=R 
 A cAp
�= 
 sep

cA p =R
:

Wewill occasionally give explicit proofs of resultswhich could otherwise bededuced
from this remark.

De�nition 7.2.5. Let F be a complete discrete valuation �eld, and let K be a sub�eld
of F such that Frac(K \ OF ) = K . The spaceof continuousrelativedifferentialsis


 cts
F =K := 
 sep

OF =K \O F

 OF F:

It is vector spaceover F and there is a natural surjection 
 F =K !! 
 cts
F =K .

Remark 7.2.6. Suppose that F , K are as in the previous de�nition, and that F 0 is a
�nite, separableextension of F . Using remark 7.2.1, one shows 
 cts

F 0=K = 
 cts
F =K 
 F F 0,

and therefore there is a well-de�ned trace map TrF 0=F : 
 cts
F 0=K ! 
 cts

F =K :
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7.2.2 Equal characteristic

We begin with residues in the equal characteristic case; this material is well-known
(see e.g. [Ser88]) so we are brief. Let F be a two-dimensional local �eld of equal-
characteristic zero. We assume that an embedding of a local �eld K (necessarily of
characteristic zero) into F is given; such an embedding will be natural in our applica-
tions. The valuation � F jK must be trivial, for elseit would be a multiple of � K (a com-
plete discretevaluation �eld hasa unique normalised discretevaluation) which would
imply K ,! F , contradicting our hypothesis on the characteristic of F ; so K � OF and
K ,! F , making F into a �nite extension of K .

Lemma 7.2.7. F hasauniquecoef�cient�eld whichcontainsK .

Proof. Setn = jF : K j. Suppose�rst that K 0=K is any �nite subextensionof F=K . Then
K 0 � OF and so the residue map restricts to a K -linear injection K 0 ,! F , proving that
jK 0 : K j � n. This establishesthat K hasat most one extension of degreen inside F (for
if there were two extensions then we could take their composite), and that if such an
extension exists then it is the desired coef�cient �eld (for then the residue map K 0 ,! F
must be an isomorphism).

SinceK is perfect, apply Hensel's lemma to lift to OF a generator for F =K ; the subex-
tension of F=K generated by this element hasdegreen, completing the proof.

This unique coef�cient �eld will be denoted kF ; it depends on the image of the em-
bedding K ,! OF , though the notation does not re�ect that. kF is a �nite extension
of K ; moreover, it is simply the algebraic closure of K inside F . When the local �eld
K � F has been �xed, we will refer to kF as the coef�cient �eld of F (with respectto
K , if we want to be more precise). Standard structure theory implies that choosing a
uniformiser t 2 F induces a kF -isomorphism F �= kF (( t)) .

Lemma 7.2.8. 
 sep
OF =OK

is afreeOF -moduleofrank1, with basisdt, wheret is anyuniformiser

ofF . Hence
 cts
F =K is aone-dimensionalvectorspaceoverF with basisdt.

Proof. Any derivation on OF which vanishes on OK also vanishes on K , and it even
vanishes on kF sincekF =K is a �nite, separableextension. Hence 
 OF =OK

= 
 OF =K =

 OF =kF

.
Fix a uniformiser t 2 F , to induce an isomorphism OF

�= kF [[t ]]. Then for any f 2 OF

and n � 0, we may write f =
P n

i=0 ai t i + gtn+1 , with a0; : : : ; an 2 kF and g 2 OF ; let
d : OF ! 
 OF =OK

be the universal derivation and apply d to obtain

d(f ) =
nX

i =0

ai it i � 1d(t) + g(n + 1)tn d(t) + tn+1 d(g):

It follows that d(f ) � df
dt d(t) 2

T 1
n=1 tn 
 OF =kF

. Taking the separatedquotient shows that
dt generates
 sep

OF =kF
; the existenceof the derivation d

dt implies that dt is not torsion.

The residuemapofF , relativeto K is de�ned by

resF : 
 cts
F =K ! kF ; ! = f dt 7! coeftt � 1 (f );

where the notation means that we take the coef�cient of t � 1 in the expansion of f .
Implicit in the de�nition is the choice of a kF -isomorphism F �= kF (( t)) .

It is well-known that the residue map doesnot depend on the choiceof uniformiser t.
Sincethe proof is straightforwar d in residue characteristic zero, we recall it. Any other
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uniformiser T has the form T =
P 1

i=1 ai t i with ai 2 kF and a1 6= 0; for j 2 Z n f� 1g,
we have

coeftt � 1

�
T j dT

dt

�
= coeftt � 1

�
1

j + 1
dT j +1

dt

�
= 0:

When j = � 1, we instead calculate asfollows:

coeftt � 1

�
T � 1 dT

dt

�
= coeftt � 1 ((a� 1

1 t � 1 � a� 2
1 a2 + : : : )(a1 + 2a2t + : : : )) = 1:

Finally, since the residue is continuous with respectto the discrete valuation topology
on 
 cts

F =K = F dt and the discrete topology on kF , we have

coeftt � 1

0

@
X

j ��1

bj T j dT
dt

1

A = b� 1;

and it follows that the residue map may also be de�ned with respect to the isomor-
phism F �= kF ((T)) .

Now we prove functoriality of the residue map. Note that if F 0 is a �nite extension
of F , then there is a corresponding �nite extension kF 0=kF of the coef�cient �elds.

Proposition 7.2.9. LetF 0bea �nite extensionof F . Thenthefollowingdiagramcommutes:


 cts
F 0=K

resF 0
�� � �! kF 0

TrF 0=F

?
?
y

?
?
y Trk F 0=k F


 cts
F =K

resF�� � �! kF

Proof. This is another well-known result, whose proof we give since it is easy in the
characteristic zero case.It suf�ces to consider two separatecases:when F 0=F is unram-
i�ed, and when F 0=F is totally rami�ed (as extensions of complete discrete valuation
�elds).

In the unrami�ed case,jkF 0 : kF j = jF 0 : F j and we may choosecompatible isomor-
phisms F �= kF (( t)) , F 0 �= kF 0(( t)) ; the result easily follows in this case.

In the totally rami�ed case,F 0=F is only tamely rami�ed, kF 0 = kF , and we may
choosecompatible isomorphisms F �= kF (( t)) , F 0 �= kF 0((T)) , where T e = t. We may
now follow the argument of [Ser88, II.13].

7.2.3 Mixed characteristic

Now we intr oduce relative residue maps for two-dimensional local �elds of mixed
characteristic. We take a local, explicit approach, with possible futur e applications to
higher local class �eld theory and rami�cation theory in mind. This residue map is
used by Fesenko[Fes03, §3] to de�ne additive characters in his two-dimensional har-
monic analysis.

Two-dimensional local �elds of mixed characteristic

We begin with a review of this classof �elds.

139



CH A PTER 7: A N EXPLICIT A PPROA CH TO A RITH M ETIC SURFA CES

Example 7.2.10.Let K be a complete discretevaluation �eld. Let K ff tgg be the follow-
ing collection of formal series

K ff tgg =

(
1X

i = �1

ai t i : ai 2 K for all i; inf
i

� K (ai ) > �1 ; and ai ! 0 as i ! �1

)

:

De�ne addition, multiplication, and a discrete valuation by

1X

i = �1

ai t i +
1X

j = �1

aj t j =
1X

i = �1

(ai + bi )t i

1X

i = �1

ai t i �
1X

j = �1

aj t j =
1X

i = �1

 
1X

r = �1

ar bi � r

!

t i

�

 
1X

i = �1

ai t i

!

= inf
i

� K (ai )

Note that there is nothing formal about the sum over r in the de�nition of multiplica-
tion; rather it is a convergent double seriesin the complete discrete valuation �eld K .
Theseoperations are well-de�ned, make K ff tgg into a �eld, and � is a discrete valua-
tion under which K ff tgg is complete. Note that K ff tgg is an extension of K , and that
� jK = � K , i.e. e(K ff tgg=K ) = 1.

The ring of integers of K ff tgg and its maximal ideal are given by

OK ff tgg =

(
X

i

ai t i : ai 2 OK for all i and ai ! 1 as i ! �1

)

;

pK ff tgg =

(
X

i

ai t i : ai 2 pK for all i and ai ! 1 as i ! �1

)

:

The surjective homomorphism

OK ff tgg ! K (( t)) ;
X

i

ai t i 7!
X

i

ai t i

identi�es the residue �eld of K ff tgg with K (( t)) .
Thealternative description of K ff tgg is asfollows. It is the completion of Frac(OK [[t ]])

with respectto the discretevaluation associatedto the height one prime � K OK [[t ]].

We will be interestedin the previous example when K is a local �eld of characteristic
0. In this case,K ff tgg is a two-dimensional local �eld of mixed characteristic.

Now suppose L is any two-dimensional local �eld of mixed characteristic of residue
characteristic p. Then L contains Q, and the restriction of � L to Q is a valuation which
is equivalent to � p, since � L (p) > 0; since L is complete, we may topologically close
Q to see that L contains a copy of Qp. It is not hard to see that this is the unique
embedding of Qp into L , and that L=Qp is an (in�nite) extension of discrete valuation
�elds. The corresponding extension of residue �elds is L=Fp, where L is a local �eld of
characteristic p.

The analogue of the coef�cient �eld in the equal characteristic caseis the following:

De�nition 7.2.11. The constantsub�eld of L , denoted kL , is the algebraic closure of Qp

inside L .
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Lemma 7.2.12. If K is anarbitrary �eld thenK is relativelyalgebraicallyclosedin K (( t)) . If
K is acompletediscretevaluation�eld thenK is relativelyalgebraicallyclosedin K ff tgg; soif
K is a local�eld ofcharacteristiczero, thentheconstantsub�eld of K ff tgg is K .

Proof. Suppose that there is an intermediate extension K (( t)) � L � K with L �nite
over K . Then each element of L is integral over K [[t]], hence belongs to K [[t]]. The
residue map K [[t]] ! K is non-zero on L , hencerestricts to a K -algebra injection L ,!
K . This implies L = K .

Now suppose K is a complete discrete valuation �eld and that we have an interme-
diate extension K ff tgg � M � K with M �nite over K . Then M is a complete discrete
valuation �eld with e(M =K ) = 1, since e(K ff Tgg=K ) = 1. Passing to the residue
�elds and applying the �rst part of the proof to K (( t)) implies f (M =K ) = 1. Therefore
jM : K j = 1, asrequired.

Let L be a two-dimensional local �eld of mixed characteristic. The algebraic closure
of Fp inside L is �nite over Fp (it is the coef�cient sub�eld of L ); so, if k is any �nite ex-
tension of Qp inside L , then f (k=Fp) is bounded above. But also e(k=Qp) < e(L=Qp) <
1 is bounded above. It follows that kL is a �nite extension of Qp.

Thus the process of taking constant sub�elds canonically associates to any
two-dimensional local �eld L of mixed characteristic a �nite extension kL of Qp.

Lemma 7.2.13. SupposeK is a completediscretevaluation�eld and
 =K is a �eld extension
with subextensionsF; K 0 suchthat K 0=K is �nite and separable,and F is K -isomorphicto
K ff Tgg. ThenthecompositeextensionF K 0 is K -isomorphicto K 0ff Tgg.

Proof. Let K 00bethe Galois closureof K 0over K (enlarging 
 if necessary);then the pre-
vious lemma implies that K 00\ F = K and therefore the extensionsK 00; F are linearly
disjoint over K (here it is essential that K 00=K is Galois). This implies that F K 00is K -
isomorphic to F 
 K K 00, which is easily seento beK -isomorphic to K 00ff Tgg. The result-
ing isomorphism � : F K 00! K 00ff Tgg restricts to an isomorphism F K 0 ! � (K 0)ff Tgg,
and this �nal �eld is isomorphic to K 0ff Tgg.

Lemma 7.2.14. SupposeL is a two-dimensionallocal�eld of mixedcharacteristic.Thenthere
is a two-dimensionallocal�eld M containedinsideL , suchthat L=M is a �nite extensionand

(i) M = L;

(ii) kM = kL ;

(iii) M is kM -isomorphicto kM ff Tgg.

Proof. The residue �eld of L is a local �eld of characteristic p, and therefore there is an
isomorphism L �= Fq(( t)) ; using this we may de�ne an embedding Fp(( t)) ,! L , such
that L=Fp(( t)) is an unrami�ed, separable extension. Since Qpff tgg is an absolutely
unrami�ed discrete valuation �eld with residue �eld Fp(( t)) , a standard structure the-
orem of complete discrete valuation �elds [FV02, Proposition 5.6] implies that there is
an embedding of complete discrete valuation �elds j : Qpff tgg ,! L which lifts the
chosenembedding of residue �elds. SetF = j (Qpff tgg), and note that f (L=F ) = jL :
Fp(( t)) j = logp(q) and e(L=F ) = � L (p) < 1 ; so L=F is a �nite extension.

Now apply the previous lemma with K = Qp and K 0 = kL to obtain M = F K 0 �=
kL ff tgg. Mor eover, Hensel's lemma implies that L , and therefore kL , contains the q � 1
roots of unity; so kL F = Fq � Fp(( t)) = L , and therefore M = L.

We will frequently use arguments similar to those of the previous lemma in order to
obtain suitable sub�elds of L .
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De�nition 7.2.15. A two-dimensional local �eld L of mixed characteristic is said to be
standardif and only if e(L=kL ) = 1.

The purpose of the de�nition is to provide a `co-ordinate'-fr eede�nition of the class
of �elds we have already considered:

Corollary 7.2.16. L is standardif andonly if there is a kL -isomorphismL �= kL ff tgg. If L is
standardandk0 is a �nite extensionofkL , thenLk 0 is alsostandard,with constantsub�eld k0.

Proof. Since e(kL ff tgg=kL ) = 1, the �eld L is standard if it is isomorphic to kL ff tgg.
Conversely, by the previous lemma, there is a standard sub�eld M � L with kM = kL

and M = L; then e(M =kM ) = 1 and e(L=kL ) = 1 (sincewe are assuming L is standard),
so that e(L=M ) = 1) and therefore L = M .

The secondclaim follows from lemma 7.2.13.

Remark 7.2.17. A �rst localparameterof a two-dimensional local �eld L is an element
t 2 OL such that t is a uniformiser for the local �eld L . For example, t is a �rst lo-
cal parameter of K ff tgg. Mor e importantly , if L is standard, then any isomorphism
kL ff tgg '! L is determined by the image of t, and conversely, t may be sent to any �rst
local parameter of L . This follows from similar arguments to those found in lemma
7.2.14above and 7.2.18below; seee.g. [FV02, Proposition 5.6] and [MZ95]. We will
abuse notation in a standard way, by choosing a �rst local parameter t 2 L and then
identifying L with kL ff tgg.

The residue map for standard �elds.

Here we de�ne a residue map for standard two-dimensional �elds and investigate its
main properties. As in the equal characteristic case,we work in the relative situation,
with a �xed standard two-dimensional local �eld L of mixed characteristic and a cho-
sen (one-dimensional) local �eld K � L . It follows that K is intermediate between Qp

and the constant sub�eld kL .
We start by studying spacesof dif ferential forms. Note that if we choosea �rst local

parameter t 2 L to induce an isomorphism L �= kL ff tgg, then the derivative d
dt : L ! L

is well-de�ned.

Lemma 7.2.18. Let t beany �rst localparameterof L . Then
 sep
OL =OK

decomposesasa direct
sum


 sep
OL =OK

= OL dt � Tors(
 sep
OL =OK

)

with OL dt free,andTors(
 sep
OL =OK

) �= 
 Ok L =OK

 Ok L

OL . Hence
 cts
L=K is aone-dimensional

vectorspaceoverL with basisdt.

Proof. First suppose that K = kL is the constant sub�eld of L . Then we claim that for
any f 2 OL , one hasdf = df

dt dt in 
 sep
OL =OK

.
Standard theory of complete discrete valuation �elds (seee.g. [MZ95]) implies that

there exists a map H : L ! O�
L [ f 0g with the following properties:

(i) H is a lifting, i.e. H (a) = a for all a 2 L ;

(ii) H (t) = t;

(iii) for any a0; : : : ; ap� 1 2 F , one has H (
P p� 1

i=0 ap
i t i ) =

P p� 1
i=0 H (ai )pt i .
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The �nal condition replacesthe Teichmuller identity H (ap) = ap which ones seesin
the perfect residue �eld case. We will �rst prove our claim for elements of the form
f = H (a). Indeed, for any n > 0, we expand a using the p-basist to write

a =
pn � 1X

i =0

apn
t i

for some a0; : : : ; apn � 1 2 L. Lifting, and using the Teichmuller -type property of H n
times, obtains

f =
pn � 1X

i =0

H (ai )pn
t i :

Now apply the universal derivative to reveal that

df =
pn � 1X

i =0

H (ai )pn
it i � 1dt + pnH (ai )pn � 1t i d(H (ai )) :

We may apply d
dt in a similar way, and it follows that df � df

dt dt 2 pn 
 OL =OK
. Letting

n ! 1 gives us df = df
dt dt in 
 sep

OL =OK
.

Now suppose that f 2 OL is not necessarily in the image of H . For any n, we may
expand f asa sum

f =
nX

i =0

f i � i + g� n+1

where � is a uniformiser of K (also a uniformiser of L ), f 0; : : : ; f n belong to the image
of H , and g 2 OL . Applying the universal derivative obtains

df =
nX

i =0

df i

dt
� i dt + � n+1 dg;

and computing df
dt gives something similar. We again let n ! 1 to deduce that df =

df
dt dt in 
 sep

OL =OK
. This completes the proof of our claim.

This proves that dt generates
 sep
OL =OK

, so we must now prove that it is not torsion.

But the derivative d
dt induces an OL -linear map 
 OL =OK

! OL which descendsto the
maximal separatedquotient and send dt to 1; this is enough. This completes the proof
in the casekL = K .

Now consider the general casekL � K . Using the isomorphism L �= kL ff tgg, we set
M = K ff tgg. The inclusions OK � OM � OL , lemma 7.2.2, and the �rst caseof this
proof applied to K = kM , give an exactsequenceof dif ferential forms

0 ! 
 sep
OM =OK


 OM OL ! 
 sep
OL =OK

! 
 OL =OM
! 0: (� )

Furthermor e,the isomorphism L �= M 
 K kL restricts to an isomorphism OL
�= OM 
 OK

OkL , and basechange for dif ferential forms gives 
 OL =OM
�= 
 Ok L =OK


 Ok L
OL ; this

isomorphism is given by the composition


 Ok L
=OK


 Ok L
OL ! 
 OL =OK

! 
 OL =OM
:

But this factors through 
 sep
OL =OK

, which splits (� ) and completes the proof.

143



CH A PTER 7: A N EXPLICIT A PPROA CH TO A RITH M ETIC SURFA CES

We may now de�ne the relativeresiduemapfor L=K similarly to the equal character-
istic case:

resL : 
 cts
L=K ! kL ; ! = f dt 7! � coeftt � 1 (f )

where the notation means that we expand f in kL ff tgg and take the coef�cient of t � 1.
Implicit in the de�nition is the choice of an isomorphism L �= kL ff tgg �xing kL . The
twist by � 1 is necessaryfor the futur e reciprocity laws.

Proposition 7.2.19. resL is well-de�ned,i.e. it doesnot dependon the chosenisomorphism
L �= kL ff tgg.

Proof. As we noted in remark 7.2.17, the chosenisomorphism is determined uniquely
by the choice of �rst local parameter. Let T 2 OL be another local parameter. Using
a similar lifting argument (which simulates continuity) to that in the �rst half of the
previous lemma, it is enough to prove

coeftt � 1

�
T i dT

dt

�
=

(
1 i = � 1

0 i 6= � 1:

Well, when i 6= � 1, then T i dT
dt = d

dt (i
� 1T i +1 ), which has t � 1 coef�cient 0, since this is

true for the derivative of any element.
Now, the image of T in L has the form T =

P 1
i=1 � i t

i , with � i 2 kL and � 1 6= 0. Hence
T �

P 1
i=1 ai t i mod pL , where eachai 2 kL is a lift of � i . Expanding the dif ference,a

principal unit, asan in�nite product obtains

T =

 
1X

i =1

ai t i

!
1Y

j =1

(1 + bj � j );

for some bj 2 OL , with � a uniformiser of kL (also a uniformiser of L ); we should
remark that the above summation is a formal sum in L �= kL ff tgg, while the product is
a genuinely convergent product in the valuation topology on L .

The map

L� ! kL ; � 7! coeftt � 1

�
� � 1 d�

dt

�

is a continuous (with respect to the valuation topologies) homomorphism, so to com-
plete the proof it is enough to verify the identities

coeftt � 1

�
� � 1 d�

dt

�
=

(
1 � =

P 1
i=1 ai t i ;

0 � = 1 + bj � j :

The �rst of theseidentities follows exactly as in the equal characteristic caseof subsec-
tion 7.2.2. For the secondcase,we compute

(1 + bj � j )� 1 d
dt

(1 + bj � j ) = (1 � bj � j + b2
j � 2j + : : : )

dbj

dt
� j

=
dbj

dt
� j �

d(2� 1b2
j )

dt
� 2j +

d(3� 1b3
j )

dt
� 3j + : : :

This is a convergent sum, each term of which has no t � 1 coef�cient; the proof is com-
plete.

We now establish the functoriality of residueswith respectto the trace map:
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Proposition 7.2.20. Supposethat L 0 is a �nite extensionof L , and that L 0 is alsostandard.
Thenthefollowingdiagramcommutes:


 cts
L 0=K

resL 0
�� � �! kL 0

TrL 0=L

?
?
y

?
?
y Trk L 0=k L


 cts
L=K

resL 0
�� � �! kL

Proof. Using the intermediate extension Lk L 0, we may reduce this to two cases:when
we have compatible isomorphisms L �= kL ff tgg, L �= kL 0ff tgg, or when kL = kL 0. The
�rst caseis straightforwar d, so we only treat the second.

By the usual `principle of prolongation of algebraic identities' trick [Ser88, II.13] we
may reduce to the caseL �= kL ff tgg, L �= kL ff Tgg with t = T e. The sameargument as
in the equal characteristic case[loc. cit.] is then easily modi�ed.

Extending the residue map to non-standard �elds.

Now suppose that L is a two-dimensional local �eld of mixed characteristic which is
not necessarily standard, and as usual �x a local �eld K � L . Choose a standard
sub�eld M of L with the sameconstant �eld as L and of which L is a �nite extension;
this is possible by lemma 7.2.14. Attempt to de�ne the relativeresiduemapfor L=K to be
composition

resL : 
 cts
L=K

TrL= M
! 
 cts

M =K
resM! kM = kL :

Lemma 7.2.21. resL is independentofchoiceof M .

Proof. Suppose that M 0 is another �eld with the same properties as M , and let ! 2

 cts

L=K . By an important structure result for two-dimensional local �elds of mixed char-
acteristic [Zhu95, Theorem 2.1]there is a �nite extensionL 0of L such that L 0is standard.
Using functoriality for standard �elds, we have

resM (TrL=M ! ) = jL 0 : L j � 1 resM (TrL 0=M ! ) = jL 0 : L j � 1 TrkL 0=kL
(resL 0(! ))

(here we have identi�ed ! with its image in 
 cts
L 0=K ). Since this expression is equally

valid for M 0 in place of M , we are done.

The de�nition of the residue in the general caseis chosento ensure that functoriality
still holds:

Proposition 7.2.22. Let L 0=L bea �nite extensionof two-dimensionallocal �elds of mixed
characteristic;thenthefollowingdiagramcommutes


 cts
L 0=K

resL 0
�� � �! kL 0

TrL 0=L

?
?
y

?
?
y Trk L 0=k L


 cts
L=K �� � �!

resL
kL

Proof. Let M be a standard sub�eld of L used to de�ne resL ; then M 0 = M kL 0 may be
used to de�ne resL 0. For ! 2 
 cts

L 0=K , we have

resL (TrL 0=L ! ) = resM (TrL=M TrL 0=L ! ) = resM (TrM 0=M TrL 0=M 0 ! ):

Apply functoriality for standard �elds to seethat this equals

TrkL 0=kL
(resM 0(TrL 0=M 0 ! )) = TrkL 0=kL

resL 0(! );

asrequired.
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Relation of the residue map to that of the residue �elds.

We �nish this study of residuesby proving that the residue map on a mixed character-
istic, two-dimensional local �eld L lifts the residue map of the residue �eld L . Mor e
precisely, we claim that the following diagram commutes


 sep
OL =OK

resL�� � �! OkL?
?
y

?
?
y


 L =K � � � � � � � � !
e(L=k L ) resL

kL

where some of the arrows deserve further explanation. The lower horizontal arrow is
e(L=kL ) times the usual residuemap for L (a local �eld of �nite characteristic);note that
K is a �nite sub�eld of L , and that kL is the constant sub�eld of L , which we identify
with the residue �eld of L . Also, the top horizontal arrow is really the composition


 sep
OL =OK

j
! 
 cts

L=K
resL! kL ; part of our claim is that resL � j has image in OkL .

Combining the identi�cations 
 L=K = 
 L =kL
and 
 cts

L=K = 
 cts
L=k L

with the natural

surjection 
 sep
OL =OK

!! 
 sep
OL =Ok L

, the problem is easily reduced to the caseK = kL ,

which we now assumeto be true.
Let us �rst suppose that L is a standard �eld (so that e(L=K ) = 1); write L = M for

later clarity, and let t 2 M be a �rst local parameter. Then 
 sep
OM =OK

= OM dt by lemma

7.2.18and so the image of 
 sep
OM =OK

inside 
 cts
M =K = M dt is OM dt. We need to show

that resM (f dt) = resM (f dt) for all f 2 OM ; this is clear from the explicit de�nition of
the residue map for M = K ff tgg.

Now suppose L is arbitrary , choosea �rst local parameter t 2 OL , and then choose
a standard sub�eld M such that M = L, kM = K , and t 2 M (seelemma 7.2.14). To
continue the proof, we must better understand the structure of 
 sep

OL =OK
. Let � L denote

a uniformiser of L , so that OL = OM [� L ]; let f (X ) 2 OM [X ] be the minimal polynomial
of � L , and write f (X ) =

P n
i=0 bi X i . We have our usual exactsequence

0 ! 
 sep
OM =OK


 OM OL ! 
 sep
OL =OK

! 
 OL =OM
! 0;

so that 
 sep
OL =OK

is generated by dt and d� L . Mor eover,

0 = d(f (� L )) = f 0(� L ) d� L + cdt; (y)

where c =
P n

i=0
dbi
dt � i

L . Further, using our exact sequenceto seethat dt is not torsion,
and from the fact that 
 OL =OM

�= OL =hf 0(� L )i (using the generator d� L ), it is easy to
check that (y) is the only relation between the generators dt and d� L .

We now de�ne a trace map TrOL =OM
: 
 sep

OL =OK
! 
 sep

OM =OK
asfollows:

TrOL =OM
(ad� L ) = TrL=M (� acf 0(� L )� 1) dt

TrOL =OM
(bdt) = TrL=M (b) dt

for a;b 2 OL . It is important to recall the classicaldif ferent formula ([Neu99, III.2]; also
seesection 7.6)

f 0(� )� 1OL = C(OL =OM ) (= f x 2 L : TrL=M (xOL ) � OF g);

to seethat this is well-de�ned. Furthermor e, if we basechange� 
 OL L, then we obtain
the usual trace map TrL=M : 
 cts

L=K ! 
 cts
M =K .
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By de�nition of the residue map on L, it is now enough to show that the diagram


 sep
OL =OK

TrO L =O M� � � � � � ! 
 sep
OM =OK?

?
y

?
?
y


 L =K �� � � �!
�j L :M j


 M =K

commutes. Well, for an element of the form bdt 2 
 sep
OL =OK

with b 2 OL , commutativity

is clear. Now consider an element ad� L 2 
 sep
OL =OK

; the image of this in 
 L =K is zero, so

we must show that TrOL =OM
(ad� L ) = 0 in 
 M =K . For this we recall another formula

relating the trace map and dif ferent, namely

TrL=M (� i
L f 0(� L )� 1OL ) = �

b i
e c

M OM ;

where i 2 Z, e = jL : M j, and b c denotes the greatest integer below (seee.g. [FV02,
Proposition III.1.4]). Sincef is an Eisenstein polynomial, � L ( dai

dt ) � e for all i , and so
� L (c) � e; by the aforementioned formula, TrL=M (cf 0(� L )� 1OL ) � � M OM . This is
what we needed to show, and completes the proof of compatibility between resL and
resL .

Corollary 7.2.23. LetL bea two-dimensionallocal�eld of mixedcharacteristic,andK � L a
local�eld. Thenthefollowingdiagramcommutes:


 sep
OL =OK

Trk L =K � resL
� � � � � � � � ! OK

?
?
y

?
?
y


 L=K � � � � � � � � � � � � � !
e(L=K ) Trk L =K � resL

K

Proof. It is enough to combine what we have just proved with the commutativity of

OkL

Trk L =K
� � � � �! OK

?
?
y

?
?
y

kL � � � � � � � � � � !
e(kL =K ) Trk L =K

K

7.3 Reciprocity for two-dimensional, normal, local rings

Now we consider a semi-local situation and prove the promised reciprocity law.
Let A be a two-dimensional, normal, complete, local ring of characteristic zero, with

�nite residue �eld of characteristic p; for the remainder of this section, we will refer to
thesecollective conditions as(y). Denote by F the �eld of fractions of A and by mA the
maximal ideal. For eachheight one prime y C A (we will sometimes write y C 1A), the
localisation Ay is a discrete valuation ring, and we denote by Fy = Frac cAy the corre-
sponding complete discrete valuation �eld. The residue �eld of Fy is F y = FracA=y.
Mor eover, A=y is a one-dimensional, complete, local domain, and so its �eld of frac-
tions is a complete discrete valuation �eld whose residue �eld is a �nite extension of
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the residue �eld of A=y, which is the sameas the residue �eld of A. Therefore Fy is a
two-dimensional local �eld of characteristic zero.

SinceA is already complete, there is no confusion causedby writing bAy instead of cAy

(note the dif ferent sized hats).

Lemma 7.3.1. Thereis a uniquering homomorphismZp ! A, andit is aclosedembedding.

Proof. The natural embedding j : Z ,! A is continuous with respect to the p-adic
topology on Z and the mA -adic topology on A since pnZp � j � 1(mn

A ) for all n � 0.
Therefore j extends to a continuous injection j : Zp ,! A, which is a closed embedding
sinceZp is compact and A is Hausdorf f.

Now suppose that � : Zp ! A is an arbitrary ring homomorphism. Then � � 1(mn
A )

is an ideal of Zp which contains pnZ; but every ideal of Zp is closed, and so it contains
pnZp. Therefore � is continuous; since � agreeswith j on Z, they are equal.

We �x a �nite extension OK of Zp inside A, where OK is the ring of integers of a
�nite extension K of Qp. For eachheight one prime y C A, we have K � Fy , and the
constant/coef �cient �eld ky = kFy of Fy is a �nite extension of K . There is a natural
map 
 F =K ! 
 cts

Fy =K , so we may de�ne the residuemapat y by

resy : 
 F =K ! ky ; ! 7! resFy (! ):

It is a nuisancehaving the residue maps associatedto dif ferent primes taking values in
dif ferent �nite extensionsof K , so we also intr oduce

Resy = Trky =K resy : 
 F =K ! K :

Our immediate aim, to be deduced in several stages,is the following reciprocity law:

Theorem 7.3.2. Let ! 2 
 F =K ; then for all but �nitely many heightoneprimesy C A the
residueresy(! ) is zero,and X

yC1A

Resy(! ) = 0

in K .

We will also prove an analogous result without the assumption that A is complete;
seetheorem 7.3.13.

7.3.1 Reciprocity for OK [[T]]

Webegin by establishing reciprocity for B = OK [[T ]]. Mor eprecisely, we shall consider
B �= OK [[T ]]; although this may seemto be a insigni�cant dif ference,it is important to
understand the intrinsic role of T, especially for the proof of proposition 7.2.19.

Lemma 7.3.3. Let B satisfyconditions(y) and alsoberegular; let OK � B bethe ring of
integersofalocal�eld, andassumethat K = k(mB ) andthat B =OK is unrami�ed (i.e.pK B =
mB ). Let � K beanyprimeofK .

Thenthereexistst 2 mB suchthat mB = h� K ; t i . If t is any suchelement,theneachf 2 B
maybeuniquelywritten asaconvergentseriesf =

P 1
i=0 ai t i , with ai 2 OK , andthis de�nes

an OK -isomorphismB �= OK [[T ]], with t 7! T.
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Proof. Since � K is non-zero in the k(mB )-vector spacemB =m2
B , which has dimension

two by regularity , there is t 2 B such that (the imagesof) � K ; t are a basisfor this space;
hencemA = h� K ; t i .

Now, B =tB is a one-dimensional, complete, regular, local ring, i.e. a complete dis-
crete valuation ring, in which � K is prime. Since tB is prime, tB \ OK = f 0g and so
OK ,! B =tB ; but these two complete discrete valuation �elds have the same prime
and sameresidue �eld, henceare equal.

Any seriesof the given form convergesin B becauseB is complete and ai t i belongsto
mi

B . Conversely, for any f 2 B we may write f � a0 mod tB for some a0 2 OK (since
B =tB = OK ); then replacef by t � 1(f � a0) and repeat the processto obtain the desired
expansion for f . If a series

P
i � I ai t i is zero, with aI 6= 0, then we get aI t I 2 t I +1 B ,

which contradicts the identity tB \ OK = f 0g.

Now let B , OK , � K , t satisfy the conditions of the previous lemma; set M = FracB .
Using the isomorphism B �= OK [[T ]], we may describe the height one primes y of B
(seee.g. [NSW00, Lemma 5.3.7]):

(i) p 2 y. Then y = � K B , and M y is a two-dimensional local �eld of mixed charac-
teristic which is K -isomorphic to K ff tgg and has constant �eld ky = K .

(ii) p =2 y. Then y = hB , where h 2 OK [t ] is an irr educible, Weierstrasspolynomials
(i.e. h = td + ad� 1td� 1 + � � � + a0, with ai 2 pK ), and M y is a two-dimensional
local �eld of equal characteristic. The coef�cient �eld ky is the �nite extension of
K generated by a root of h. Finally, M y is ky-isomorphic to ky(( ty)) , where ty is a
uniformiser at y, e.g. ty = h.

We need a convenient set of additive generatorsof M :

Lemma 7.3.4. EachelementofM is a �nite sumofelementsof theform

� n
K g
hr ;

with h 2 OK [t ] an irreducible,Weierstasspolynomial,r > 0, n 2 Z, andg 2 B .

Proof. We begin with an element of M of the form 1=(� r 1
1 � r 2

2 ), with � 1; � 2 distinct ir -
reducible elements of A, and r 1; r2 � 1. Set I = � r 1

1 A + � r 2
2 A; a standard lemma of

intersection theory is that mm
A � I for m � 0. Thus we may write � m

K = g1� r 1
1 + g2� r 2

2
for someg1; g2 2 B , and we deduce

1
� r 1

1 � r 2
2

=
� m

K g1

� r 2
2

+
� m

K g2

� r 1
1

:

Now, a typical element of M has the form a=b, with a;b 2 A. Since B is a unique
factorisation domain whose prime ideals are as described above, we may write b =
u� r

K hr 1
1 � � � hr s

s where u 2 B� , the hi are irr educible Weierstasspolynomials, and all the
exponents are > 0. Replacing a with u� 1a, we may suppose u = 1. Applying the �rst
part of the proof repeatedly decomposesa=binto a sum of the required form.

We also need to understand the spaceof relative dif ferential forms:

Lemma 7.3.5. 
 sep
B =OK

is a freeB -moduleof rankone,with basisdt. Foreachheightoneprime

y C B , thenatural map
 B =OK

 B bBy ! 
 bB y =OK

descendsto an isomorphism


 sep
B =OK


 B bBy
'! 
 sep

bB y =OK
:

Hencethereis an inducedisomorphism
 sep
B =OK


 B M y
'! 
 cts

M y =K .
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Proof. The �rst claim may be proved in an identical way to lemma 7.2.8. Alternatively ,
use remark 7.2.4to deduce that 
 sep

B =OK
= 
 OK [t ]=OK


 OK [t ] B .
If y is a height one prime of B then there is a natural map

� : 
 sep
B =OK


 B bBy = (
 OK [t ]=OK

 OK [t ]B )
 B bBy = 
 OK [t ]=OK


 OK [t ]
bBy ! 
 bB y =OK

!! 
 sep
bB y =OK

;

and we shall now construct the inverse of � . De�ne an OK -derivation of By by

d1 : By ! 
 sep
B =OK


 B bBy b=s7! db
 s� 1 � bds 
 s� 2

where b 2 B , s 2 B n y (this is well-de�ned). Mor eover, the right hand side is a �nite
bBy-module, hence is complete and separated for the y-adic topology; so d1 (which is
easily seento be y-adically continuous) extends from B y to bBy . This derivation then
induces a homomorphism of bBy-modules 
 bB y =OK

! 
 sep
B =OK


 B bBy , and this descends
to

 : 
 sep
bB y =OK

! 
 sep
B =OK


 B bBy

since 
 sep
B =OK


 B bBy is a �nitely generated bBy-module.
It is immediate that  � = id. It is also easy to seethat � (db) = db for any b 2 B y ;

sincesuch elementsare densein the Hausdorf f space
 sep
bB y =OK

, we deduce � = id.

In particular , we now know that the residue map at y, initially de�ned on 
 M =K ,
factors through its quotient 
 sep

B =OK

 B M . We may now prove reciprocity for B :

Theorem 7.3.6. Foreach! 2 
 sep
B =OK


 B M , thelocalresidueresy ! is zero for all but �nitely

manyy C1B , and X

yC1B

Resy ! = 0

in K .

Proof. By lemmas 7.3.4and 7.3.5, it is enough to consider the case! = f dt with

f =
� n

K g
hr ;

where h; r; n; g are as in lemma 7.3.4.
Let y = tyB be a prime with ty an irr educible, Weierstrasspolynomial. If t y 6= h, then

� n
K g=hr and t both belong to By , and so

coeftt � 1
y

�
� n

K g
hr

dt
dty

�
= 0

by a basic property of the residue map; i.e. resy(! ) = 0. This establishes our �rst
assertion. For the remainder of the proof, set y = hA; we must prove that

Resy(! ) + Res� K B (! ) = 0: (� )

Suppose for a moment that g belongs to OK [t ], and consider the rational function
�eld K (t) � M . For any point x of P1

K , let K (t)x be the completion of K (t) at the place
x; then K (t)x is a two-dimensional local �eld of equal characteristic. Let kx denote its
unique coef�cient �eld containing K , and let resx : 
 cts

L x =K ! kx denote the residue
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map. By the assumption on g we have ! 2 
 K (t)=K , and global reciprocity for P1
K

implies that
P

x2 P1
K

Trkx =K resx (! ) = 0.
Further, an argument as at the start of this proof proves that resx (! ) = 0 unless x

corresponds to the irr educible polynomial h, or x = 1 . Mor eover, in the �rst case,
K (t)x = M y , kx = ky , and resx (! ) = resy(! ). Therefore to complete the proof (with g
still a polynomial) it is necessaryand suf�cient to show that

res� K B (! ) = res1 (! ): (�� )

Note that the residue map on the left is for a two-dimensional local �eld of mixed
characteristic, while that on the right is for one of equal characteristic. This passage
between dif ferent characteristics is the key to the proof.

To prove (�� ), write t1 = t � 1, which is a local parameter at 1 , and expand h� r in
K (t)1 = K ((t1 )) as h� r =

P
i � I ai t i

1 , say. Sincehr is a Weierstrasspolynomial, it is
easily checked that ai ! 0 in K as i ! 1 ; therefore the series

P
i �� I a� i t i is a well-

de�ned element of M � k B = K ff tgg. Mor eover, since multiplication in both K ff tgg and
K (( t1 )) are given by formal multiplication of series,we deduce

hr
X

i �� I

a� i t i = 1;

i.e.
P

i �� I a� i t i is the seriesexpansion of h� r in M � k B = K ff tgg. Now let
P

i bi t i
1 be

the expansion of � n
K g=hr of K (t)1 ; then

P
i b� i t i is the formal expansion of � n

K g=hr in
M � k B , and so

res1

�
� n

K g
hr dt

�
= coeftt � 1

1

�
� n

K g
hr

dt
dt1

�

= coeftt � 1
1

 

� t � 2
1

X

i

bi t i
1

!

= � b1

= � coeftt � 1

X

i

b� i t i

= res� K B

�
� n

K g
hr dt

�
:

This completes the proof of identity (� ) for g 2 OK [t ]; to prove it in general and
complete the proof, it is enough to checkthat both sidesof (� ) are continuous functions
of g, with respectto the mB -adic topology on B and the discrete valuation topology on
K . This is straightforwar d, though tedious, and so we omit it.

7.3.2 Reciprocity for complete rings

Now we extend the reciprocity law to the general case. Fix both a ring A satisfying
conditions (y) and the ring of integers of a local �eld OK � A. Reciprocity for A will
follows in the usual way by realising A asa �nite extension of OK [[T ]]:

Lemma 7.3.7. Thereis a ring B betweenOK andA whichis OK -isomorphicto OK [[T ]], and
suchthat A is a �nite B -module.

Proof. By [Coh46, Theorem 16], A contains a subring B 0, over which it is a �nitely
generated module, and such that B0 is a two-dimensional, p-adic ring with residue
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�eld equal to that of A. Supposing that this residue �eld is Fq, we therefore have an
isomorphism i : Zq[[T ]] '! B0. By the uniqueness of the embedding Zp ,! A, it follows
that i (Zp) � OK . De�ne

j : OK [[T ]] = Zp[[T ]] 
 Zp OK ! A; f 
 � 7! i (f )�:

The kernel of j is a prime ideal of OK [[T ]] whose contraction to OK is zero. If the
kernel is non-zero then there is an Eisenstein polynomial h 2 OK [T ] such that that
h(i (T)) = 0 (this follows from the classi�cation of prime ideals in OK [[T ]] discussed
earlier), suggesting that i (T) is algebraic over OK and hence over Zp; this contradicts
the injectivity of i . Hence j is an isomorphism onto its image, asdesired.

Let B be as given by the previous lemma, and write M = FracB , F = FracA. We
now generalise lemma 7.3.5. However , note that if A can be written as the completion
of a localisation of a �nitely generated OK -algebra, then the following proof can be
signi�cantly simpli�ed, simply by imitating the proof of lemma 7.3.5; seealso lemma
7.3.11.

Lemma 7.3.8. 
 sep
A=OK

is a �nitely generatedA-moduleof rank 1. For eachheightoneprime

y C A, thenatural map
 A=OK

 A bAy ! 
 bA y =OK

descendsto an isomorphism


 sep
A=OK


 A bAy
'! 
 sep

bA y =OK
:

Hencethereis an inducedisomorphism
 sep
A=OK


 A Fy
'! 
 cts

Fy =K .

Proof. Lemmas 7.3.5and 7.2.2imply that there is a natural exactsequence

0 ! 
 sep
B =OK


 B A ! 
 sep
A=OK

! 
 A=B ! 0; (� )

which proves the �rst claim since 
 A=B is a �nitely generated, torsion A-module.
Now we are going to construct a commutative diagram with exact rows:

0 �� � �! 
 sep
B =OK


 B bAy �� � �! 
 sep
A=OK


 A bAy �� � �! 
 A=B 
 A bAy �� � �! 0

 0
B

x
?
? �=  A

x
?
?

x
?
? �=

0 �� � �! 
 sep
B y 0=OK


 bB y 0
bAy �� � �! 
 sep

bA y =OK
�� � �! 
 bA y = bB y

�� � �! 0

The top line is obtained by tensoring (� ) with bAy . For the bottom row, sety0 = y\ B , use
lemma 7.3.5to seethat 
 sep

B y 0=OK
is freeand that we may therefore apply lemma 7.2.2to

the tower of rings bAy � bBy0 � OK . In lemma 7.3.5we also constructed a natural map

 B =  : 
 sep
bB y =OK

! 
 sep
B =OK


 B bBy ;

its de�nition did not useany specialproperties of B and sowe may similarly de�ne  A .
Basechange B by bAy to obtain the isomorphism  0

B in the diagram. Finally, one may
seein a number of dif ferent ways that there is an isomorphism 
 A=B 
 A bAy

�= 
 bA y = bB y

which is natural enough so that the diagram will commute.
It follows that  A is an isomorphism, asrequired.
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The previous lemma implies that 
 sep
B =OK


 B F �= 
 sep
A=OK


 A F , and sowe have natural
trace maps

TrF =M : 
 sep
A=OK


 A F ! 
 sep
B =OK


 B M

TrFY =M y : 
 sep
B =OK


 B FY ! 
 sep
A=OK


 A M y ;

where Y is a height one prime of A and y = Y \ B . Using these we establish the
expectedfunctoriality for our residue maps:

Proposition 7.3.9. Let y bea �xed heightoneprimeof B . Thenfor all ! 2 
 sep
A=OK


 A F , we
have

Resy TrF =M (! ) =
X

Y jy

ResY (! );

whereY rangesoverthe(�nitely many)heightoneprimesofA sitting overy.

Proof. Set Ay = A 
 B By = (B n y) � 1A � F . Then Ay=By0 is a �nite extension of
Dedekind domains, with the maximal ideals of A y corresponding to the primes Y of A
(necessarily of height one) sitting over y. Therefore, for any x 2 L , one has the usual
local-global trace formula TrF =M (x) =

P
Y jy TrFY =M y (x). In terms of dif ferential forms,

TrF =M ! =
X

Y jy

TrFY =M y !

for all ! 2 
 sep
A=OK


 A F . Applying resy to eachside of this expressionand using propo-
sitions 7.2.9and 7.2.22obtains

resy TrF =M (! ) =
X

Y jy

TrkY =ky resY (! ):

Apply Trky =K to complete the proof.

Our desired reciprocity for A follows:

Theorem 7.3.10.Foreach! 2 
 sep
A=OK


 A F , thelocalresidueresy ! is zero for all but �nitely

manyy C1A, and X

yC1A

Resy ! = 0:

Proof. Standard divisor theory implies that any f 2 F � belongs to Ay for all but �nitely
many y C 1A. If f dg is a nonzero element of 
 sep

A=OK

 A F , then resY f dg = 0 for any

Y C 1A which satis�es the following conditions: p =2 Y and f ; g 2 A Y . Since all but
�nitely many Y satisfy theseconditions, we have proved the �rst claim.

We may now complete the proof with the usual calculation, by reducing reciprocity
via the previous proposition to the already-proved reciprocity for B :

X

Y C1A

Resy ! =
X

yC1B

X

Y jy

ResY !

=
X

yC1B

Resy(TrF =M ! )

= 0:
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7.3.3 Reciprocity for incomplete rings

We have thus far restricted out attention to complete local rings; we will now remove
the completenesshypothesis. We do not prove reciprocity in the fullest generality, but
restrict to those rings which will later arise from an arithmetic surface. Let OK be a
discretevaluation ring of characteristic zero and with �nite residue �eld, and A � OK a
two-dimensional, normal, local ring with �nite residue �eld of characteristic p; assume
further that A is the localisation of a �nitely generated OK -algebra.

SinceA is excellent, its completion bA is also normal; therefore bA satis�es conditions
(y), and bOK � bA is the ring of integers of a local �eld, ashas appeared in the previous
subsections.Write F = Frac bA and bK = Frac bOK .

The following global-to-local isomorphism is extremely useful for explicit calcula-
tions. Since the notation can look confusing, let us mention that if Y is a height one

prime of bA, then the completion of the discrete valuation ring ( bA)Y is denoted cbAY .

Lemma 7.3.11.LetY beaheightoneprimeof bA; thenthenatural map


 A=OK

 A

cbAY ! 
 sep
dbA Y = bOK

is an isomorphism.

Proof. One follows the proof of lemma 7.3.5almost exactly, replacing B by bA and OK [t ]
by A. The only additional observation which needs to be made is that the universal
derivation d : bA ! 
 sep

bA=OK
must be trivial on bOK , and therefore 
 sep

bA=OK
= 
 sep

bA= bOK
.

For Y C1 bA, the previous lemma gives us a natural isomorphism


 A=OK

 A FY

'! 
 cts
FY = bK

;

and we thus pull back the relative residue map of FY = bK to get

resY : 
 Frac A=K = 
 A=OK

 A FracA ! kY ;

where, asusual, kY denote the coef�cient/constant �eld of FY .
Mor e importantly , if y is instead a height one prime of A, then set

Resy =
X

Y jy

TrkY = bK resY : 
 Frac A=K ! bK

where Y rangesover the �nitely many height one primes of bA sitting over y.
We need a small lemma. We shall say that a prime of bA is transcendentalif and only

if its contraction to A is zero; such a prime has height one and does not contain p. The
transcendental primes are arti�cial in a sense;they have pathological properties (e.g.
if Y is transcendental then FracA � bAY ) and do not contain interesting information
about A.

Lemma 7.3.12. Let Y bea height oneprime of bA. If Y is not transcendentalthen it is a
prime minimal overy bA, where y = A \ Y . On the otherhand,if Y is transcendental,then
resY (! ) = 0 for all ! 2 
 Frac A=K .
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Proof. Sincey = A \ Y is non-zero by assumption, so is y bA. Sincey bA is contained in Y
there is a prime P C bA which is minimal over y bA and which is contained in Y . But then
P 6= 0 and we have a chain of primes 0 C P E Y; sinceY has height 1 in bA, we deduce
Y = P, i.e. Y is minimal over y bA.

If f dg is a element of 
 Frac A=K , then as we remarked above, f and g belong to bAY ;
therefore resY (f dg) = 0, just as in the proof of theorem 7.3.10.

The reciprocity law for A follows:

Theorem 7.3.13. For any ! 2 
 Frac A=K , the residueResy(! ) is non-zero for only �nitely
manyy C1A, and X

yC1A

Resy(! ) = 0

in bK .

Proof. Immediate from theorem 7.3.10and the previous lemma.

7.4 Reciprocity laws for arithmetic surfaces

Let OK be a Dedekind domain of characteristic zero and with �nite residue �elds; de-
note by K its �eld of fractions. Let X be a curve over OK ; more precisely, X is a normal
scheme,�at and projective over S = SpecOK , whose generic �br e is one dimensional
and irr educible. Theseassumptions are enough to imply that eachspecial �br e of X is
equidimensional of dimension one. Let � be the generic point of SpecOK ; closedpoints
will be denoted by s, and we set K s = Frac [OK ;s, which is a local �eld of characteristic
zero. Let 
 X =S denote the coherent sheafof relative dif ferential (one-)forms.

Let x 2 X be a closed point, and y � X a curve containing x; let s be the closed
point of S under x. Then A := OX ;x satis�es the conditions at the start of subsection
7.3.3, and contains the discrete valuation ring OK ;s. Also denote by y C OX ;x the local
equation for y at x; then y is a height one prime of A, and we denote by

Resx;y : 
 K (X )=K ! K s

the residue map Resy : 
 Frac A=K ! K s.

Theorem 7.4.1. Let ! 2 
 K (X )=K , andlet x 2 X bea closedpoint sitting overs 2 S. Then
for all but �nitely manycurvesy � X containingx, theresidueResx;y (! ) is zero,and

X

y� X
y3 x

Resx;y (! ) = 0

in thelocal�eld K s.

Proof. This is the simply the geometric statement of theorem 7.3.13.

7.5 Local complete intersection curves

The second part of the chapter now begins, in which we study the relative canonical
sheaf of an arithmetic surface. First we collect together several results about complete
intersections and relative canonical sheavesfor relative curves, many of which I learnt
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from Q. Liu's wonderful book [Liu02]. Let � : X ! S be a �at, surjective, local com-
plete intersection, between irr educible, Noetherian, excellent schemes;assumethat �
is smooth at the generic point of X . Theseassumptions are enough to imply that each
�br e X s is equidimensional of dimension

dim X s = dim X � dim S

and we assumethat these�br e are 1 dimensional, i.e. X is a relative curve over S. The
main example to have in mind is an arithmetic surface X over SpecOK , with OK a
Dedekind domain.

Locally, X ! S is given by

R ,! A = R[T1; : : : ; Tr ]=I

where R, A are excellent domains, and I is an ideal generated by a regular sequence
f 1; : : : ; f r � 1. Thereareessentially two dif ferent ways to study the behaviour of SpecA !
SpecR, either by embedding X into r -dimensional af�ne spaceover SpecR, or by view-
ing SpecA asa �nite cover of the af�ne line over SpecR. Thesewill both be important
to us, and will give dif ferent explicit information about the canonical sheaf.

SetF = K (X ) = FracA, K = K (S) = FracR.

7.5.1 Embedding the canonical sheaf into 
 K (X )=K

The A-module I =I 2 is freeof rank r � 1, with basisf 1; : : : ; f r � 1 (or rather, the imagesof
thesemod I 2), and there is a natural exactsequenceof A-modules

I =I 2 �! 
 R[T ]=R 
 R[T ] A ! 
 A=R ! 0

(in fact, the leftmost arrow is also injective, aswe shall seebelow in corollary 7.5.2).
The relativecanonicalmodule! A=R is

! A=R = HomA (det I =I 2; A) 
 A det(
 R[T ]=R 
 R[T ] A)

= HomA (det I =I 2; det(
 R[T ]=R 
 R[T ] A))

where det I =I 2 =
V r � 1

A I =I 2 and det(
 R[T ]=R 
 R[T ] A) =
V r

A (
 R[T ]=R 
 R[T ] A).

Since the generality elucidates the situation, suppose that P1
j

! P2 ! P ! 0 is an
exactsequenceof A-modules, where P1, P2 are freeof ranks r � 1, r respectively. Then
there is a natural map

P ! HomR

� V r � 1
A P1;

V r
A P2

�
; p 7! hn1 ^ � � � ^ nr � 1 7! j (n1) ^ � � � ^ j (nr � 1) ^ �pi

where �p 2 P2 denotes any lift of p. The fact that
V r

A P1 = 0 implies that this is well-
de�ned.

Applying this to our situation gives a map of A-modules

cA=R : 
 A=R ! ! A=R

which we will now examine in greater detail. Denote by t l the image of Tl in A; the
dif ferentials dt1; : : : ; dtr generate 
 A=R as a A-module, so it is enough to understand
cA=R (dtl ) for each l. Further, since det I =I 2 is an invertible A-module with basis f 1 ^
� � � ^ f r � 1 (we still identify the f l with their images mod I 2), it is enough to compute

cA=R (dtl )( f 1 ^ � � � ^ f r � 1) 2 det(
 R[T ]=R 
 R[T ] A):
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Well, chasing the de�nitions,

cA=R (dtl )( f 1 ^ � � � ^ f r � 1) = � (f 1) ^ � � � ^ � (f r � 1) ^ dTl

= df 1 ^ � � � ^ df r � 1 ^ dTl

= det(D l ) dT1 ^ � � � ^ dTr ;

where

D l =

0

B
B
B
@

@f 1
@T1

: : : : : : : : : @f 1
@Tr

...
...

@f r � 1
@T1

: : : : : : : : : @f r � 1
@Tr

0 : : : 1 : : : 0

1

C
C
C
A

(the single 1 in the �nal row occursin the l th column). Elementary matrix theory implies
that (� 1)r + l det D l is equal to the determinant of the matrix obtained from D l after
removing the �nal row and the l th column; denote this matrix by � l . We have proved
that

cA=R (dtl )( f 1 ^ � � � ^ f r � 1) = (� 1)r + l det(� l ) dT1 ^ � � � ^ dTr ;

where � l is the r � 1 by r � 1 matrix obtained by discarding the l th column (i.e. the @
@Tl

terms) from the Jacobianmatrix ( @f i
@Tj

) i;j .
The following fact about the matrices � l , l = 1; : : : ; r � 1 is very important to us:

Lemma 7.5.1. Thereexistsl in therange1 � l � r � 1 suchthat det � l is non-zero in A.

Proof. We have assumedthat the algebraic variety Spec(A 
 R K ) is generically smooth
over K , and therefore it contains a smooth closedpoint x 2 Spec(A 
 R K ). The Jacobian
condition for smoothnessassertsthat

rank J = r � dim OX ;x = r � 1;

where J = ( @f i
@Tj

) i;j is the Jacobianmatrix inside k(x) (a �nite extension of K ). This

means that there is l such that the matrix obtained by removing the l th column from J
is non-singular in k(x); that is, det � l =2 mX ;x , which is enough.

Corollary 7.5.2. Themap� : I =I 2 ! 
 R[T ]=R 
 R[T ] A is injective.

Proof. Let l be as provided by the previous lemma. It signi�cantly simpli�es the nota-
tion with matrices if we assumel = r , without making any essentialdif ferenceto the
proof. Recall that � is given by

� : I =I 2 ! 
 A[T ]=A 
 A[T ] B ; bmodI 7! db:

Since � (f i ) =
P r

j =1
@f i
@Tj

dTj , the matrix of � with respect to the basesf 1; : : : ; f r � 1 and
dT1; : : : ; dTr is

�
@f i

@t j

�

1� i � r � 1
1� j � r

=

0

B
@

@f 1
@Tr

� r
...

@f r � 1
@Tr

1

C
A

(our matrices act on row vectors on the right, rather than column vectors on the left).
If v =

P r � 1
i =1 ai f i is a typical element of I =I 2, then we seethat the identity � (v) = 0

implies (a1; : : : ; ar � 1)� r = 0, implying that v = 0 by assumption on � r .

157



CH A PTER 7: A N EXPLICIT A PPROA CH TO A RITH M ETIC SURFA CES

Mor e generally, if x is any smooth, closed point of a �br e of SpecA ! SpecR, then
the argument of the previous lemma shows that one can �nd l (depending on x) such
that det � l is non-zero in k(x), i.e. det � l is a unit in Ax = OX ;x . The explicit description
of cA=R then implies that

cA=R;x : 
 A=R 
 A Ax ! ! A=R 
 A Ax

is surjective. Further, since � is smooth at x, it is well-known that 
 A=R 
 A Ax is an
invertible Ax -module. It follows that cA=R;x is an isomorphism. Localising further at
the generic point � of X revealsthat

cA=R;� : 
 A=R 
 A F ! ! A=R 
 A F

is an isomorphism. Since ! A=R is an invertible A-module, it embeds into ! A=R 
 A F
and we thus obtain a canonical embedding

! A=R ,! ! A=R 
 A F �= 
 A=R 
 A F

of ! A=R into the one-dimensional F -vector space
 A=R 
 A F = 
 F =K .
Conversely, if l satis�es det � l 6= 0, then since A 
 R K is reduced, there is a closed

point x of Spec(A 
 R K ) for which det � l =2 mX ;x , and so x is a smooth point of the
variety Spec(A 
 R K ) and the previous argument applies. We summarise:

Proposition 7.5.3. There is a canonicalembeddingof ! A=R into 
 F =K inducedby cA=R . If l
satis�esdet � l 6= 0, thentheembeddingis explicitly givenby

! A=R ,! 
 F =K ; hf 1 ^ � � � ^ f r � 1 7! dT1 ^ � � � ^ dTr i 7! (� 1)r + l det(� l )� 1dtl :

Proof. This follows from the previous discussion and explicit description of cA=F . Note
that hf 1 ^ � � � ^ f r � 1 7! dT1 ^ � � � ^ dTr i is a basisfor the invertible A-module ! A=F and
that 
 F =K is a one-dimensional F -spacewith basisdt l .

7.5.2 Realising SpecA asa �nite cover of A1
R

From the perspective of rami�cation theory, it is useful to realiseX , at least locally, as
a �nite cover of the projective line over S. We now explain how this is done. Let l , in
the range 1 � l � r � 1, satisfy det � l 6= 0 (this exists by lemma 7.5.1).

Lemma 7.5.4. With l asabove,I \ R[Tl ] = 0, andsothesurjectionR[T] !! A restrictsto an
embeddingR[Tl ] ,! A; this makesA into a �nitely generated,�at R[Tl ]-module.

Proof. Denote by t l the image of Tl in A. Just as above, we have an exact sequenceof
A-modules

I =I 2 �! 
 R[T ]=R[Tl ] 
 R[T ] A ! 
 A=R [Tl ] ! 0;

where � is the A-linear map with matrix � l , with respectto the basesf 1; : : : ; f r � 1 and
dT1; : : : ; dTl � 1; dTl+1 ; : : : ; dTr . By assumption, this matrix is non-singular over F , and
so � is injective. Localising obtains an exactsequence

0 ! I =I 2 
 A F
� F! 
 R[T ]=R[Tl ] 
 R[T ] F ! 
 A=R [Tl ] 
 A F ! 0;

and then counting dimensions revealsthat � F is an isomorphism and 
 A=R [Tl ] 
 A F =
0. But 
 A=R [Tl ] 
 A F = 
 F =Frac R[t l ], and so F is a separable, algebraic extension of
FracR[t r ]. SinceF is �nitely generated over FracR, we now seethat F=FracR[t l ] is a
�nite, separableextension.
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Let C0denote the integral closureof R[t l ] inside F ; sinceR is excellent,R[t l ] is Nagata
and therefore C0 is a �nitely generated R[t l ]-module. Since C0 is integrally closed in
F , we have FracC0 = F . For any height one prime p of C0, the localisation C0

p is
a discrete valuation ring. Let C0

pA be the C0
p subalgebra of F generated by A; it is

easyto see,simply becauseC0
p is a discrete valuation ring, that it is impossible to have

proper inclusions F � C0
pB � C0

p. Therefore A � C0
p; but C0 is integrally closed, soT

pC1C0 C0
p = C0and therefore A � C0. Hence A is a �nitely generated R[t l ]-module.

As remarked in proposition 7.5.3, dtl is not A-torsion in 
 A=R ; using the natural maps

(
 R[Tl ]=R 
 R[Tl ] R[t l ]) 
 R[t l ] A ! 
 R[t l ]=R 
 R[t l ] A ! 
 A=R ;

we seethat dt l is not R[t l ]-torsion in 
 R[Tl ]=R 
 R[Tl ] R[t l ]. Explicitly , this means that if
g is a polynomial with coef�cients in R such that g(t l ) = 0, then g0(t l ) = 0. Now sup-
pose for a contradiction that R[Tl ] ! R[t l ] is not injective. Then t l is algebraic over K ;
further , 
 F =K is a one-dimensional F -vector space,and soF is a �nite, separableexten-
sion of a degree1 purely transcendental extension of K . This means that the minimal
polynomial g of t l over K is separable.Now take a 2 R so that ag hascoef�cients in R.
Then ag is nonzero, ag(t l ) vanishes,but ag0(t l ) 6= 0, giving the required contradiction.

Flatnessof R[t l ] ! A is proved below; seelemma 7.6.4, taking B = R[t l ].

We continue this study of �nite morphisms in the next section.

7.6 Finite morphisms, dif ferents and Jacobians

Supposethat A=B is a �nite extension of rings, with corresponding fraction �elds F=M
(assumedto be separable).The associatedcodifferent is the A-module

C(A=B) = f x 2 F : TrF =M (xA ) � B g:

The aim of this section is to prove that if A is a complete intersection over B , then
the codifferent is a free A-module generated by the determinant of a certain Jacobian
matrix.

I am grateful to L. Xiao for someinteresting discussions related to this section.

7.6.1 The caseof complete discrete valuation rings

We begin by treating the caseof complete discrete valuation rings. Let F=M be a �-
nite, separable extension of complete discrete valuation �elds, with rings of integers
OF =OM . In place of the codifferent, one usually considers the different D(OF =OM ),
which is the OF -fractional ideal de�ned by

C(OF =OM ) D(OF =OM ) = OF

i.e. the complement of the codifferent. Since OF =OM is a �nite extension of regular,
local rings, it is a complete intersection

OF = OM [T1; : : : ; Tm ]=hf 1; : : : ; f m i ;

and we set

J(OF =OM ) = det
�

@f i

@Tj

�

i;j
OF ;
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which we may aswell call the Jacobianideal. The fact that F=M is separableimplies that
the Jacobianideal is non-zero, and asargued several times in the previous section, we
have an exactsequence

0 ! hf 1; : : : ; f m i =hf 1; : : : ; f m i 2 �! 
 OM [T ]=OM

 OM [T ] OF ! 
 OF =OM

! 0:

The matrix of � with respectto the basesf 1; : : : ; f m and dT1; : : : ; dTm is the Jacobianma-
trix, and it easily follows (using the Iwasawa decomposition of GL m (F )) that
J(OF =OM ) = pl

F , where l = lengthOF

 OF =OM

; in particular , the Jacobianideal does
not depend on how we write OF asa complete intersection over OM .

We are going to prove that

J(OF =OM ) = D(OF =OM ): (J = D)

When F=M is monogenic (i.e. we may write OF = OM [� ] for some � 2 OF ), which is
the casewhenever the residue �eld extensionof F=M is separable,the equality J = D is
well-known; it statesthat D(OF =OM ) = g0(� ), where g is the minimal polynomial of �
over M . A proof may befound in [Neu99, III.2] (this referenceassumesthroughout that
the residue �eld extensions are separable, but the proof remains valid in the general
case).

Severaleasylemmas are required, �rstly a product formula:

Lemma 7.6.1. LetF 0bea �nite, separableextensionofF ; then

D(OF 0=OM ) = D(OF =OM )D(OF 0=OF )

and
J(OF 0=OM ) = J(OF =OM )J(OF 0=OF ):

Proof. The dif ferent result is well-known; seee.g. [Neu99, III.2]. We will prove the
Jacobianresult. Write OF 0 asa complete intersection over OF

OF 0 = OF [Tm+1 ; : : : ; Tm+ n ]=hf m+1 ; : : : ; f m+ n i ;

and denote by ef i a lift of the OF polynomials f i to OM [T1; : : : ; Tm+ n ], for i = m +
1; : : : ; m + n. Then

OF 0 = OM [T1; : : : ; Tm+ n ]=hf 1; : : : ; f m ; ef m+1 ; : : : ; ef m+ n i

representsOF 0 as a complete intersection over OM , and the Jacobianmatrix in OF 0

associatedto this complete intersection is

0

B
@

�
@f i
@Tj

�

i;j =1 ;:::;m
0

�
@f i
@Tj

�
i = m+1 ;:::;m+ n

j =1 ;:::;m

�
@f i
@Tj

�

i;j = m+1 ;:::;m+ n

1

C
A :

Sincethe determinant of this is the product of the determinants of the two square ma-
trices, we are done.

Lemma 7.6.2. Supposefurther that F=M is Galois.Thenthereexistsasequenceof intermedi-
ateextensionsF = Fs > � � � > F� 1 = M suchthat eachextensionF i =Fi � 1 is monogenic.
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Proof. Let F0 denote the maximal unrami�ed subextension of M inside F , and F1 the
maximal tamely rami�ed subextension (and set F � 1 = M ). Then F=F1 is an extension
whose residue �eld extension is purely inseparable, and whose rami�cation degree is
a power of p (= the residue characteristic, which we assume is > 0, for else we are
done); therefore Gal(F=F1) is a p-group, hencenilpotent, and so there is a sequenceof
intermediate �elds F = Fm > � � � > F1 such that eachFi is a normal extension of F1

and such that eachstep is a degreep extension.
Then OF0 = OF � 1 [� ] where � 2 OF0 is a lift of a generator of F 0=M . Also, OF1 =

OF0 [� ] where � is a uniformiser of F1. It remains to observe that any extension of
prime degreeFi =Fi � 1 is monogenic. Indeed, it is either totally rami�ed in which case
OF i = OF i � 1 [� 0] where � 0 is a uniformiser of Fi ; or elsethe rami�cation degreeis 1 and
OF i = OF i � 1 [� 0] where � 02 OF i is a lift of a generator of the degreep extension F i =F i � 1

(which may be inseparable).

Combining the previous two lemmas with the validity of J = D in the monogenic
case,we have proved that J = D for any �nite, Galois extension F=M . Now suppose
that F=M is �nite and separable,but not necessarilynormal, and let F 0 be the normal
closure of F over M . The product formula gives us

� F 0(D(OF 0=OM )) = eF 0=F � F (D(OF =OM )) + � F 0(D(OF 0=OF )) ;

and similarly for J. But the Galois caseimplies that J = D for F 0=M and F 0=F. We
deduce J(OF =OM ) = D(OF =OM ), which establishesour desired result. To summarise:

Theorem 7.6.3. Let F=M bea �nite, separableextensionof completediscretevaluation�elds.
Write OF asa completeintersectionoverOM asabove,andlet J 2 OF bethedeterminantof
theJacobianmatrix. ThenJ 6= 0 and

C(OF =OM ) = J � 1OF :

Proof. Replacing C(OF =OM ) by its complementary ideal D(OF =OM ), this is what we
have just proved.

The previous theorem is really an elementary result concerning the rami�cation the-
ory of complete discrete valuation �elds with imperfect residue �elds.

7.6.2 The higher dimensional case

We now generalisefrom complete discretevaluation rings to the general case.Let B be
a Noetherian, normal ring, and

A = B [T1; : : : ; Tm ]=hf 1; : : : ; f m i

a complete intersection over B which is a �nitely generated B -module; assumethat A
is normal (this is automatic if B is regular by Serre's criterion [Liu02, Corollary 8.2.24]).
Set F = FracA, M = FracB , and assume that F=M is separable. For a height one
prime y C B , the localisation B y is a discrete valuation ring, and we set M y = Frac cBy ;
use similar notation for A.

For any yC1B , it is clear that C(Ay=By) = C(A=B)Ay whereAy = (B ny) � 1A, which is
a Dedekind domain. A standard formula for extensionsof Dedekind domains [Neu99]
states

C(Ay=By) =
Y

06= Y CA y

Y � dY =y ;
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where dY=y = � Y (D( bAY =bBy)) (here � Y denotes the discrete valuation on FY ). But by
theorem 7.6.3, dY=y = � Y (J ), where J 2 A is the determinant of the Jacobianmatrix�

@f i
@Tj

�

i;j
. Therefore

C(Ay=By) = J � 1Ay :

To proceedfurther , we need the following result, which I learned from [Liu02, exercise
6.3.5]:

Lemma 7.6.4. A is �at overB .

Proof. Let q C A be a maximal ideal of A, and let p, Q denote its pullbacks to A,
k(p)[T1; : : : ; Tm ] respectively; we will �rst prove that (the images of) f 1; : : : ; f m form
a regular sequencein k(p)[T1; : : : ; Tm ]Q . Well, if they do not, then pick s minimally
so that f s is a zero divisor in k(p)[T1; : : : ; Tm ]Q=hf 1; : : : ; f s� 1i . This latter ring (call it
R) is the quotient of a regular, local ring by a regular sequence(by minimality of s),
and hence is Cohen-Macaulay [Mat89, §21]. Any Cohen-Macaulay local ring contains
no embedded primes (and so the zero-divisor f s belongs to a minimal prime of R)
and is equi-dimensional [Eis95, Corollaries 18.10and 18.11];together these imply that
dim R = dim R=hf si . Quotienting out by any other f i drops the dimension by at most
one (by Krull's principal ideal theorem), so we deduce

dim k(p)[T1; : : : ; Tm ]Q=hf 1; : : : ; f m i � dim k(p)[T1; : : : ; Tm ]Q � (m � 1):

But the ring on the left is a localisation of the �br e A 
 B k(p), which is a �nite dimen-
sional k(p)-algebra, and so is zero-dimensional. Hence dim k(p)[T1; : : : ; Tm ]Q � m � 1,
contradicting the fact that Q is a maximal ideal of k(p)[T1; : : : ; Tm ].

Secondly, sinceBp ! B [T1; : : : ; Tm ]Q is a �at map of local rings, and f 1 is not a zero-
divisor in k(p)[T1; : : : ; Tm ]Q , astandard criterion implies that B p ! B [T1; : : : ; Tm ]Q=hf 1i
is �at. Applying this criterion another m � 1 times, we deduce that

Bp ! B [T1; : : : ; Tm ]Q=hf 1; : : : ; f m i = Aq

is �at.
It is enough to check �atness at the maximal ideals of A, so we are done.

There is a natural map

C(A=B) ! HomB (A; B ); x 7! TrF =M (x �)

and non-degeneracy of the trace map for F=M implies that this is an isomorphism
of A-modules, where A acts on HomB (A; B ) by a � := � (a �). For any maximal ideal
m C B , the localisation Am is a �at (by the previous lemma), hence free, B m -module
of rank n = jF : M j; the importance of this is that it implies that C(A=B)A m is a free
Bm -module of rank n. Using this, we will deduce our main `dif ferent= Jacobian'result:

Theorem 7.6.5. Thecodifferent is an invertibleA module,with basisJ � 1, i.e.

C(A=B) = J � 1A:

Proof. It is enough to prove C(A=B)Am = J � 1Am for eachmaximal ideal m C B , and
therefore we will simply assumethat B is a local ring; asremarked above, this implies
that C(A=B) is freeof rank n. Mor eover, J � 1A is also freeof rank n, and so,by picking
a basisof F �= M n and identifying our two freesubmodules with submodules of M n ,
there is � 2 GL n (M ) such that � C(A=B) = J � 1A.
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Further, for any height one-prime yCB , theorem 7.6.3implies that (B ny) � 1C(A=B) =
(B n y) � 1J � 1A, implying that � 2 GL n (By). SinceB was assumed to be normal, B =T

yC1B By and so � 2 GL n (B ); therefore � C(A=B) = C(A=B), which completes the
proof.

Remark 7.6.6. If P is any A-module, then the natural pairing

HomA (P; C(A=B)) � P ! C(A=B)
TrF =M

! B

induces a B -linear map

HomA (P; C(A=B)) ! HomB (P; B );

which is easily checked to be an isomorphism (using non-degeneracy of Tr F =M ). Thus
C(A=B) is exactly the Grothendieck dualising module of SpecA ! SpecB (which is
projective since it is �nite, and �at by lemma 7.6.4).

One also has the relative canonical module

! A=B = HomA

 
m̂

A

hf 1; : : : ; f m i =hf 1; : : : ; f m i 2;
m̂

A

(
 B [T ]=B 
 B [T ] A)

!

;

and a natural map
A ! ! A=B ; b 7! b� ^ m (� )

where � is the map in the exactsequence

0 ! hf 1; : : : ; f m i =hf 1; : : : ; f m i 2 �! 
 B [T ]=B 
 B [T ] A ! 
 A=B ! 0:

Mor eover, (� ) is an isomorphism at any point x 2 SpecA at which SpecA ! SpecB
is smooth, such as the generic point since F=M is separable. This therefore de�nes a
natural embedding of A-modules ! A=B ,! F given by

hf 1 ^ � � � ^ f m 7! dT1; � � � ^ dTm i 7! J � 1

i.e. ! A=B
�= J � 1A. This is the generalisation of subsection 7.5.1to the caseof a �nite

extension, rather than one of relative dimension one.
In conjunction with theorem 7.6.5, we have produced a reasonablynatural (though it

depends on how we write A asa complete intersection over B ) isomorphism between
the dualising and canonical sheaves.

This material is surely known to experts, and there are similar results in [Kle80]; a
comprehensivediscussion must be buried somewhere in SGA or EGA1.

7.7 Explicit construction of the canonical sheaf for arithmetic
surfaces

Now we turn to the main global content of this chapter, namely using the residue maps
to construct the canonical sheafof an arithmetic surface. We begin with the af�ne case.

1J.-P. Serre gave a talk at Harvar d's `Basic Notions' seminar, 10 November 2003, entitled “W riting
Mathematics?”, in which he explains how to write mathematics badly. He explains that if you wish to
give a referencewhich can not be checkedby the reader, then you should ideally refer, without any page
references,to the complete works of Euler, but “if you refer to SGA or EGA, you have a good chance
also”. The reader interested in verifying this referenceshould consult timeframe 4.11–4.20of the video at
http://modular.fas.harvard.edu/edu/basi c/serr e/ .
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Let OK be a Dedekind domain of characteristic zero with �nite residue �elds; its �eld
of fractions is K . We suppose that we are given a �nitely generated, �at OK -algebra
A, which is normal and two-dimensional. Assume further that there is an intermediate
ring B

OK � B � A

such that B �= OK [T ] and such that A is a �nitely generated, �at B -module. Finally, set
F = FracA, M = FracB , and assumethat F=M is separable. It follows that 
 F =K is a
one-dimensional F -vector space,with basisdT.

If 0C y C x is a chain of primes in A, then A x is a two-dimensional, normal, local ring
containing the discrete valuation ring OK ;s(x) , where s(x) = OK \ x. Therefore, as in

section7.4, we have the residuemap Resx;y : 
 F =K ! K s(x) whereK s(x) = Frac \OK ;s(x) .
The situation is similar with B in place of A.

Webegin by establishing a functoriality result which we could have proved in section
7.3:

Proposition 7.7.1. Let ! 2 
 F =K , andlet 0 C y C x C B bea chainofprimesin B . Then

Resx;y TrF =M (! ) =
X

x0;y0

Resx0;y0(! )

wherethesumis takenoverall chains0C y0C x0C A suchthat x0sitsoverx andy0sitsovery.

Proof. Let x be a �xed maximal ideal of B ; then A 
 B cBx =
L

x0jx
dAx0 where x0 ranges

over the �nitely many maximal ideals of A sitting over x. The cBx -modules dAx0 are �at,
hence free, and so by choosing basesfor them we may de�ne trace maps Tr dA x 0=cB x

in
the usual way. Passingto the �elds of fractions obtains

TrF =M =
X

x0jx

TrFrac dA x 0=Frac cB x
;

a result which is of coursevery well known for Dedekind domains.
Let Y be a height one prime of cBx . Then, for ! 2 
 F =K ,

ResY TrF =M ! =
X

x0jx

ResY TrFrac dA x 0=Frac cB x
!

(� )
=

X

x0jx

X

Y 0jY

ResY 0 !

where Y 0 ranges over the height one primes of dAx0 sitting over Y , and equality (� )
follows from proposition 7.3.9. Now �x a height one prime y of B contained inside x;
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then

Resx;y TrF =M ! =
X

Y C cB x
Y jy

ResY TrF =M !

=
X

Y C cB x
Y jy

X

x0jx

X

Y 0jY

ResY 0 !

=
X

x0jx

X

y0CA x 0

y0jy

X

Y 0C dA x 0

Y 0jy0

X

Y 0jY

ResY 0 !

=
X

x0jx

X

y0CA x 0

y0jy

Resy0 ! ;

which is the required result.

We now intr oduce the following A-submodule of 
 F =K de�ned in terms of residues

WA=OK
= f ! 2 
 F =K : Resx;y (f ! ) 2 bOK ;s(x) for all 0 C y C x C A and f 2 Ayg:

Similarly de�ne WB =OK
.

Suppose that ! 2 WA=OK
and y C x is a chain in A. We remarked at the end of the

proof of theorem 7.3.6that eachresidue map on a two-dimensional, complete, normal
local ring is continuous with respectto the adic topology on the ring and the discrete
valuation topology on the local �eld (this is easy to prove for OK [[T ]] and follows in
the general caseusing functoriality). Therefore Resx;y (f ! ) 2 bOK ;s(x) for all f 2 cAx .

Another continuity argument even implies that this remains true for f 2 ( cAx )y .
Now, y cAx is a radical ideal of cAx ; localising and completing with respectto this ideal

obtains

( \( cAx )y =
M

Y jy

\( cAx )Y

where Y rangesover the height one primes of cAx sitting over y. EachOx;Y := \( cAx )Y is
a complete discrete valuation ring whose �eld of fractions is a two-dimensional local
�eld, which we will denote Fx;Y . Note that Resx;y =

P
Y ResFx;Y by de�nition.

Fix a particular height one prime Y0 of cAx over y. Since( cAx )y is densein
L

Y jy Ox;Y

with respectto the discretevaluation topologies, there is h 2 ( cAx )y which is Y0-adically
close to 1 and Y-adically close to 0 for Y 6= Y0. Mor e precisely, since each residue
map ResFx;Y is continuous with respect to the discrete valuation topologies on Fx;Y

and K s(x) , we may take h to satisfy

(i) ResFx;Y (hOx;Y ! ) � bOK ;s(x) for Y 6= Y0;

(ii) ResFx;Y 0
((h � 1)Ox;Y0 )! ) � bOK ;s(x) .

Replacing f by hf , it follows that ResFx;Y 0
(f ! ) 2 bOK ;s(x) for all f 2 ( cAx )y , and therefore

for all f 2 Ox;Y0 by continuity . To summarise:

Lemma 7.7.2. Let ! 2 
 F =K ; then! 2 WA=OK
if andonly if ResFx;Y (f ! ) 2 bOK ;s(x) for all

maximalidealsx C A, all heightoneprimesY C cAx , andall f 2 Ox;Y .
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Proof. The implication ( is trivial, and we have just proved ) .

Next we reduce the calculation of WA=OK
to that of WB =OK

:

Lemma 7.7.3. Let ! 2 
 F =K ; then! 2 WA=OK
if andonly if TrF =M (g! ) 2 WB =OK

for all
g 2 A.

Proof. The implication ( follows from proposition 7.7.1. Let us �x a chain y C x in B
and suppose that Resx;y (f TrF =M (g! )) 2 bOK ;s(x) for all g 2 A, f 2 By ; so

X

x0;y0

Resx0;y0(g! ) 2 bOK ;s(x) (� )

for all g 2 Ay by proposition 7.7.1. Since we have cAx = � x0jx
dAx0, it follows that if �

is a �xed maximal ideal of A over x, then there is h 2 A which is close to 1 � -adically
and close to 0 x0-adically for any other maximal ideal x0 6= � over x. Mor e precisely,
as we remarked at the end of the proof of theorem 7.3.6, each residue map on a two-
dimensional, complete, normal local ring is continuous with respectto the adic topol-
ogy on the ring and the discrete valuation topology on the local �eld (this is easy to
prove for OK [[T ]] and follows in the general caseusing functoriality); we may �nd h
such that

(i) Resx0;y0(hAx0! ) � OK ;s(x) for x0 6= � and y0C x0over y;

(ii) Res� ;y0((h � 1)A � ! ) � OK ;s(x) for y0C � over y.

Replacing g by gh in (� ) obtains
X

y0C�
y0jy

Res� ;y0(g! ) 2 bOK ;s(x)

for all g 2 A. This sum is equal to
X

y0C1 cA �
y0jy

Resy0(g! );

and we may now repeatthe argument, similarly to how we proved the previous lemma,
by completing at y instead of x, and using the fact that the residue map on a two-
dimensional local �eld is continuous with respectto the valuation topology. This gives
Res� ;y0(g! ) 2 bOK ;s(x) for all g 2 Ay0, for any y0C � over y. This completes the proof.

We may now establish our main result in the af�ne case,relating WA=OK
to the cod-

if ferent of A=B . The proof requires explicit arguments using residues, and uses the
results and notation of sections7.2and 7.3.

Theorem 7.7.4. WehaveWA=OK
= C(A=B)dT.

Proof. Since
 F =K = F dT it is enough, by the previous lemma, to prove that WB =OK
=

B dT. Let ! = h dT 2 
 M =K , where h 2 M ; we wish to prove h 2 B . As it makes the
argument slightly more conceptual, we shall prove this merely under the assumption
that B is smooth over OK (which is certainly true for B = OK [T ]). Fix a maximal
ideal x C B and write s = s(x), C = cBx , N = FracC for simplicity; let � 2 OK ;s be a
uniformiser at s.

166



CH A PTER 7: A N EXPLICIT A PPROA CH TO A RITH M ETIC SURFA CES

If y is a height one prime of C which doesnot contain � , then � � 1 2 Cy and so

Resy(f ! ) 2 bOK ;s for all f 2 cCy ( ) Resy(f ! ) = 0 for all f 2 cCy :

Note that in the notation earlier in this section, cCy = Ox;y . Further, non-degeneracy of
the trace map from the coef�cient �eld ky to K s implies

Resy(f ! ) = 0 for all f 2 cCy ( ) resy(f ! ) = 0 for all f 2 cCy :

Let t 2 Cy be a uniformiser at y; then ! = h dT
dt dt and it easily follows from the de�ni-

tion of the residue map on the equi-characteristic two-dimensional �eld N y bC = M x;y
�=

ky(( t)) that

resy(f ! ) = 0 for all f 2 cCy ( ) h
dT
dt

2 cCy :

Finally, we have identi�cations

cCy dT = 
 B =OK

 B cCy

�= 
 sep
cCy = bOK;s

= cCy dt;

with the isomorphism coming from lemma 7.3.11, and dT corresponding to dT
dt dt.

Hence dT
dt is a unit in cCy , and so

resy(f ! ) = 0 for all f 2 cCy ( ) h 2 Cy :

Now we consider the prime(s) containing � . The special �br e B =� B is smooth, and
so C=� C is a complete, regular, one-dimensional local ring, i.e. a complete discrete
valuation ring, and � C is prime in C. Therefore � C is the only height one prime of C
which contains � . Further, � is a uniformiser in the two-dimensional local �eld N � A =
M x;� A , and therefore by corollary 7.2.16there is an isomorphism F� C

�= k� C ff tgg, and
moreover k� C is an unrami�ed extension of K s. It easily follows from the de�nition of
the residue map in this casethat

res� C (f ! ) 2 Ok � bC
for all f 2 dC� C ( ) h 2 C� C :

The fact that the extension k� C =K of local �elds is unrami�ed now implies

Res� C (f ! ) 2 Ok � bC
for all f 2 dC� C ( ) h 2 C� C :

Hence,

ResM x;y (f ! ) 2 bOK ;s for all y C 1 cBx and f 2 Ox;y ( ) h 2 ( cBx )y for all y C 1 cBx :

But cBx is normal, so
T

yC1 cB x
( cBx )y = cBx . We deduce that ! belongs to WB =OK

if and
only if h 2 Bx for all x, which holds if and only if h 2 B . This completes the proof.

7.7.1 The main global result

All the required results have beenestablished,and we now may now presentthe proof
of our main theorem. Let OK be a Dedekind domain of characteristic zero with �nite
residue �elds; its �eld of fractions is K . Let � : X ! S = SpecOK be a �at, surjective,
local complete intersection, with smooth, connected,generic �br e of dimension 1.
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Theorem 7.7.5. Thecanonicalsheaf! X =S ofX ! S is explicitly givenby, for openU � X ,

! X =S(U) = f ! 2 
 K (X )=K : Resx;y (f ! ) 2 bOK ;� (x) for all x 2 y � U andf 2 OX ;yg

wherex runs overall closedpointsofX insideU andy runs overall curvescontainingx.

Proof. This reducesto the af�ne situation of U = SpecA, with

A = OK [T1; : : : ; Tr ]=I

where I is an ideal generated by a regular sequencef 1; : : : ; f r � 1 (we may also need to
localise OK away from �nitely many primes, but we will continue to write OK ).

By subsection7.5.1, we can choosel so that, setting B = OK [t l ], the extension A=B is
a �nite complete intersection with a separablefraction �eld extension. Further, ! A=OK

was identi�ed with det � l dtl � 
 K (X )=K , where � l is the matrix obtained by discard-
ing the l th column (i.e. the @

@Tl
terms) from the Jacobianmatrix ( @f i

@Tj
) i;j . Therefore � l is

exactly the Jacobianof the complete intersection A=B , and sodet � l = J in the notation
of section 7.6; moreover, by theorem 7.6.5, we have J � 1A = C(A=B). Combining this
with theorem 7.7.4completes the proof.
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