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Abstract

THIs thesis explores a variety of topics in two-dimensional arithmetic geometry, in-
cluding the further development of I. Fesenko'sadélic analysis and its relations with
rami cation theory, model-theoretic integration on valued elds, and Grothendieck
duality on arithmetic surfaces.

I. Fesenko'stheories of integration and harmonic analysis for higher dimensional
local elds are extended to an arbitrary valuation eld F whose residue eld is alocal
eld; applications to local zetaintegrals are considered.

The integral is extended to F", where alinear change of variables formula is proved,
yielding atranslation-invariant integral on GL ,(F).

Non-linear changesof variables and Fubini's theorem are then examined. An inter-
esting example is presented in which imperfectness of a positive characteristic local
eld causesFubini's theorem to unexpectedly fail.

It is explained how the motivic integration theory of E. Hrushovski and D. Kazh-
dan can be modied to provide a model-theoretic approach to integration on two-
dimensional local elds. The possible unication of this work with A. Abbes and
T. Saito's rami cation theory is explored.

Relationships between Fubini's theorem, rami cation theory, and Riemann-Hurwitz
formulae are established in the setting of curves and surfaces over an algebraically
closed eld.

A theory of residues for arithmetic surfacesis developed, and the reciprocity law
around a point is established. The residue maps are used to explicitly construct the
dualising sheafof the surface.
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CHAPTER 1

Introduction

1.1 Background, motivation, and brief summary

1.1.1 Zeta and L-functions

Let K be aglobal eld; that is, either a number eld with ring of integers Ok, or the
function eld of a smooth, projective curve C over a nite eld. Toeachpoint x of C or
prime x of Ok , one associatesthe non-archimedean local eld

Ky = Frac©y;

and it is now well acceptedthat one ought to study K via the family of thesecomple-
tions:

Of course, we have included the completion R of Q at in nity in our diagram, and in
general we must consider the archimedean placesx of a number eld K, from which
we form archimedean local elds K.

Thering of adéle®f K is the restricted product of theselocal elds; i.e.

Y
Ak = f(ax)x 2 Ky :ax 2 O for almost all xg;

X

where “almost all' means “all but nitely many', and we ignore this condition at the
in nite placesif K isanumber eld, for then Oy doesnot exist. Thering of adélesmay
be easily topologised to become a locally compact, Hausdorff ring, and one then has
available the powerful tools of the theory of locally compact, abelian groups, including

harmonic analysis and Pontryagin duality. Using thesetools, K. lwasawa [lwa92] and
J.Tate [Tat67] independently proved in the '50sthat the zetafunction of K,

Y
k(= @ ki)Y
X
(the product does not include archimedean x), or more generally the twist of the zeta
function by a Hecke character, has a meromorphic continuation to the entire complex
plane and satis es a functional equation which relates ¢ (s) to k(1 ) in terms of
arithmetic and geometric data such asthe discriminant and genus.
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Of course, these results on ¢ were already known. In the case of curves over
global elds, they are due to E. Artin, F. K. Schmidt, and O. Teichmdller (see[Roq0Z
[Roq04 [Roq0Og for a historical survey); for number elds, E.Hecke. However, the
Tate-lwasawa method is notable not only for its elegance,ef ciency (Hecke's original
proof for twisted zetafunctions of number elds, using higher dimensional theta func-
tions, and described in [Neu99], is very technical) and uni cation of the geometric and
arithmetic worlds, but also for essentially providing the foundation of the Langlands
programme: it establishesfor the algebraic group GL ; the otherwise conjectural and
mysterious Langlands correspondence.

The Hasse-Weil zetafunction x may be de ned for an arbitrary schemeX of nite
type by Y

x (s) = @ jkei %)Y
X2Xo
where x runs over the closed points of X . This in nite product convergesfor <(s) >
dim X, and thereby de nes an analytic function on that half-plane. If X is a curve over
a nite eld, or X = SpecOk with K anumber eld, then we recoverthe aforemen-
tioned k. Solong asX is regular, x is conjectured to have a meromorphic continu-
ation to the entire complex plane, and to satisfy a precisefunctional equation, formu-
lated by J.-P Serre [Ser69, which relates x (s) to x (dim X s) in terms of arithmetic
and geometric invariants of X.

Schemesof nite type are either geometric or arithmetic. The rst are varieties over
a nite eld, while the secondare models over Ok of avariety over anumber eld K.
For example, an arithmetic surface X canbe obtained by starting with a curve over Q,
removing denominators in the equations de ning the curve, and then allowing these
equations to de ne curves X, over F for all primes p, simply by reducing the coef-
cients of the equation; X should be imagined as the family of curves (X ;)p, together
with the original curve over Q.

When X is a smooth, projective variety over a nite eld (the geometric case),then
Serre's conjectures follow from Weil's conjectures, proved by A. Grothendieck,
P. Deligne, and A. Weil using the beautiful theory of étale cohomology. However, it
is here that the arithmetic and geometric worlds part. The tools of étale cohomology
fail to apply properly to arithmetic varieties, for various mathematical and metamath-
ematical reasons.Establishing Serre's conjecturesfor the zeta function of an arithmetic
variety is perhaps the most signi cant open problem in arithmetic geometry.

The zetafunction x even of an arithmetic surface X is a mysterious object. In fact,
since %

x (s) = X, (8);
p
this zeta function encodesnot only the geometric data of every reduction X, but also
the arithmetic structur e of how the reductions X , vary with p. It is astonishing that each
x, satis es a functional equation relating sto 1 s, while the conjectural functional
equation for relatessto 2 s. If the generic br e of X over the number eld K isan
elliptic curve E, then
X (5) K(S)L K (s 1);
(S)

where Lg (s) is the L-function of E and means "equal up to some less interesting
factors'. The study of the main conjectural properties of L g thus becomesequivalent
to the investigation of .
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1.1.2 Two-dimensional local elds

| was once asked, in responseto a description of my reseach, “Why two?”, to which
| replied “Becauseit is smaller than three, but bigger than one.”. My interlocutor re-
ceived this with greatdelight. Flippancy aside, | ought at leastto justify the title of this
thesis. Many new problems appear when passing from one-dimensional arithmetic ge-
ometry, which is the study of number elds, to the caseof arithmetic surfaces,which
is dimension two. In climbing then to dimension three, similar, not new, but similar,
problems reoccur. Undoubtedly , if we master arithmetic surfacesthen we shall under-
stand how to generalise our techniques to higher dimensional arithmetic varieties. So
we shall often focus on arithmetic surfacesfor the sake of concreteness.

A two-dimensionalocal eld is a complete, discrete valuation eld F whose residue
eld F isausual local eld (which canbe acalled a one-dimensional local eld). The
reader who harbours the slightest doubt toward our arguments in the previous para-
graph should now formulate for himself the de nition of an n-dimensional local eld.
The simplest example of a two-dimensional local eld is Qp((t)) with residue eld Qp.

Justaslocal elds are usedto study the local properties of global elds,
two-dimensional local elds may be used to study two-dimensional schemes,as we
now explain. Begin with a two-dimensional, domain A which is nitely generated
over Z, with elds of fractions F. Let 0C pC m C A be a chain of primes in A and
consider the following sequenceof localisations and completions:

A AL A. . ‘. ‘. = Frac &,
po pO [ pO

K K

Am;p Fm;p

which we now explain in greater detail. It follows from excellenceof A that p®:= p&n,
is a radical ideal of &n,; we then localise and complete at p° and again use excellence
to deduce that O is a radical ideal in the resulting ring, i.e. A is reduced. The total
eld of fractions Fpp is thereforeisomorphic to a nite directsum of elds, and eachis
atwo-dimensional local eld.

Geometrically then, let X be a two-dimension schemeof nite type (i.e. a surface
over a nite eld, or an arithmetic surface). Fix a closed point x 2 X, and a curve
(= irreducible, one-dimensional subscheme)y containing x. Carrying out the above
procedure, with A = Ox.x and p being the local equation for y at x, we obtain a nite
dir ectsum of two-dimensional local elds Fy., . Two-dimensional adelic theory aims to
study X via the family (Fy, )xy. Chapter 7 is an adelic study of Grothendieck duality
of an arithmetic surface over its base;the more familiar methods using cohomology
groups are replaced by explicit calculations involving two-dimensional local elds.

Mor eover, just as one-dimensional local elds allowed us to simultaneouslystudy
both number elds and curves over nite elds, we hope that two-dimensional adélic
theory cangive a uniform approachto arithmetic and geometric surfaces.

1.1.3 Integration on two-dimensional local elds

We may now explain the main content of this thesis: integration on two-dimensional
local elds. Sincethe Tate-lwasawa method allows us to so rapidly deduce the main
properties of zeta functions in dimension one, but the zeta function of an arithmetic
surface remains so perplexing, it is natural to ask if the Tate-lwasawa method can be
extended. S.Bloch, K. Kato, A. Parshin, and J. Tate have all dreamt of such a theory;
we quote Parshin:
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“ For along time the author has beenadvocating the following:
Problem. Extend Tate-lwasawa's analytic method to higher dimensions.
The higher adéeleswere intr oduced exactly for this purpose.

Problem. Develop ameasuretheory and harmonic analysis on n-dimensional
local elds.

Note that n-dimensional local elds are not locally compact topological
spacesfor n > 1 and by Weil's theorem the existenceof the Haar measure
on atopological group implies its locally compactness.”

—A. Parshin, Higher dimensionalocal elds andL -functions in [FKOQ]:

As Parshin observes, two-dimensional local elds are not locally compact (in any
reasonabletopology), and therefore the powerful theory of harmonic analysis which
Tate and lwasawa used is no longer available. This thesis contributes towar ds the de-
velopment of a suitable replacement.

I. Fesenko[Fes03 [Fes03] [Fes0§ was the rst to seriously develop theories of inte-
gration and harmonic analysis on higher-dimensional local elds, and there was later
work by H. Kim and K.-H. Lee [KL04] [KLO5]. Chapter 2 rst presentsmy reinterpre-
tation and generalisation of Fesenko'slocal theories, and this is then used to study zeta
functions on two-dimensional local elds.

1.1.4 Non-commutative theory

In the study aglobal eld K, it is now understood that a greatdeal of arithmetic infor -
mation is contained not only in the adelering Ak and the idele group A, , but alsoin
G(Ak ), where G is a (suitable) algebraic group over K . In stepping from Ak to G(Ak)
we will almost always nd ourselvesin the non-commutative world, and the old tools
of harmonic analysis must be replaced by those of representation theory.

The most immediate non-commutative generalisation of Tate-lwasasatheory is due
to R. Godement and H. Jacquet[GJ73, who proved that the L-function L( ;s) as-
sociated to an automorphic, cuspidal representation of GL,(Ak) has a meromor-
phic continuation to the whole complex plane and satis es the functional equation
L( ;s) = "( ;s)L(e;1 s). According to Langlands' conjectures, this L-function is
nothing other than the L-function associatedto a Galois representation of K .

To generalise Godement and Jacquet'swork, the representation theory of p-adic
groups, and all other aspectsof the Langlands programme to higher dimensions, a
necessary rst step is to extend the integration theory on a higher dimensional local
eld F to produce atranslation invariant integral on G(F), with G an algebraic group.
This hasbeenpreviously studied by Kim and Lee [KL04] [KLO5] for GL, and SL,, and
is the main motivation of chapters 3 and 4.

In chapter 3, the integration theory of chapter 2 is extended to GL,(F). This requires
proving alinear change of variables formula for integrals on F". Chapter 4 then con-
siders certain non-linear changesof variables which might appear when generalising
the theory to other algebraic groups.

1.1.5 Model theory of valued elds: ahistorical overview

The art of using model theory to study valued elds was initiated by J. Ax and
S. Kochen [AK65a] [AK65b] [AK66] [Ax67] and Y. Ershov. Ax and Kochen used el-
ementary ultrapr oduct methods to study Artin's conjecture on solutions to homoge-
neous equations. A eld F is said to be C, if and only if every homogeneous equation

4
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in F of degreed in > d? variables has a zero in F. The eld Fp((t)) is Co, and Artin

conjectured that the samewas true for Q. If (Ap)p2p is acollection of non-empty sets
indexed by an in nite setP, and U is a non-principal ultra lter on P, recall that the
ultraproductof the (Ap)p with respectto U is

Y Y
A, U= A,
p21 p21

where denotesthe equivalence relation
(ap)p (@), fP2P:ay=agg2 U:

If eachAp has some additional structure (e.gis aring, group, etc. or is equipped with
an order, valuation, etc), then the same will usually be true of the ultrapr oduct. Ax
and Kochen took an ultrapr oduct U on the setof rational primes, and proved that the
valued elds

Y Y ’
Q U Fp((t)) U
p p

are isomorphic. One may then appeal to 08' theorem [BS69 5.82], which statesthat
an elementary statement concerning the structuresA, is true in the ultrapr oduct if and
only it is true for almost all p, where "almost all' means “on a setbelonging to U'. Since
the notion of “being C, for a xed d' canbe expressedby an elementary statement, they
deduce that, for any xed degreed, thereis P(d) > 0 suchthat for all primes p> P (d),
any homogeneous equation in Qp with > d? variables hasa zero.

The next history of interestto us is the quanti er elimination result of A. Macintyr e
[Mac76] for the p-adics. Macintyr e studied Qp asa model of the language L pmac Which
now bears his name, which is the language of rings equipped with additional unary
predicates (P,)n 2 denoting the set of n" powers. He proved that this language is
suf cient to eliminate quanti ers in the theory of Qp. The power of Macintyr e'sresultis
that it provides explicit information about the de nable subsetsof Q. J.Denef[Den84]
extended this study by proving a cell decomposition result, giving even further insight
into the structur e of such sets,and used it to show that the the Igusa local zeta function

Z
g(f;s) = e jf (x)j® dx

p

value, and dx is a Haar measure on QB.

This rationality had previously beenestablishedby J.lgusa (see[Igu00] for the proof)
using the resolution of singularities of p-adic manifolds. The importance of Igusa's
resultliesin the following interpr etation. Letting N, denote the number of zerosof f in
(Zp=p"Zp)", it had been conjectured by Z. Borevich and |.Shafarevich [BS66 1.85.ex9]
that the associatedPoincaré series

P(T) = NpT™

was a rational function of T; but straightforwar d manipulations reveal that this is the
caseif and only the local zetafunction 4(f;s) is arational function of p °.

A remaining problem with Igusa's local zeta function was to suppose that f had Z
coefcients and study the behaviour of the zeta functions |4 (f;s) as p varies. The

5
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rst resultsin this dir ection were obtained by J.Pas[Pas89, who generalisedthe quan-
tier elimination and cell-decomposition results for Q to the caseof a Henselian val-
uation eld oéresidue characteristic zero. Pasapplied this cell-decomposition to the
ultrapr oduct p Qp=U and used o8' theorem to describe the Denef-type decomposi-
tions required to evaluate g p(f;s) in a manner independent of p (at least, for p large
enough). The nal conclusion was that the degreesof the denominators and numera-
tors of the 4 (f;S) (asrational functions in p °) were bounded independently of p.

A stronger uniformity result which one might expectto be true would be that the
1g,p(f;S) would evenbe uniformly rational; that is, that there exists a rational function
Q(T) 2 Q(T) suchthat gp(f;s) = Q(p °) for p sufciently large. This, however, is
false, and we offer the following “explanation’. The structure of 4 (f;s) is essentially
encoding rami cation information about singularities related to f , or about the action
of Frobenius on certain cohomology groups with varying p; but the arithmetic aspectof
this data meansthat it is controlled not by polynomials, but rather by congruences.To
give aspecic example, take f (X) = X2+ 1;if ,4,(f;s) wereto beuniformly rational
for large p, then it would follow that there exists Qo(T) 2 Q(T) such that

Qo(p) = #fx 2 Fp:x?+ 1= 0g

for p 0. But the number of solutions to X2+ 1= 0in Fp is determined by p mod 4,
sothis is absurd.

Motivic integration hasrapidly developed sinceit was intr oduced by M. Kontsevich
in alecture at Orsay in 1995,and has beensubjectedto several reincarnations due rst
to R. Cluckers, J.Denef, and F. Loeser[CL08] [DL98] [DLO01] [DL02b] [DL02a], and then
by E. Hrushovski and D. Kazhdan [HKO06] [HK08]. The Cluckers-Denef-Loesertheory
basically gives a geometric interpr etation and uni cation of integration over different
p-adic elds. WhereasPasdeduced his uniformity result for Igusa zeta functions at
different p via cell-decomposition in residue characteristic zero, the fundamental idea
of motivic integration is that it is not only more ef cient, but even more insightful, to
dir ectly integrate in residue characteristic zero.

Hrushovski and Kazhdan developed their theory of motivic integration partly in or-
der to obtain uniformity results for p-adic integrals over towers of rami ed extensions
of Qp, which was lacking from the Cluckers-Denef-Loesertheory. Their theory is an
incredible sophistication and formalisation of the Ax-Kochen-Ershov principle, which
statesthat the entire theory of a valued eld of residue characteristic zero reducesto
the theory of the value group and residue eld.

Hrushovski and Kazhdan only briey mention the problem of integration on two-
dimensional local elds [HKO06, §9.4],and | have struggled to understand their long
and dif cult paper for sometime (in fact, lIvan gave me a copy in my PhD interview!).
The major dif culty is that in usual motivic integration, the values of the integrals are
varieties over the residue eld, but in two-dimensional integration we wish to obtain
Haar measurable sets over the residue eld. With the kind help of Hrushovksi and
Kazhdan during atrip a Jemusalem and subsequent ponderings while at Harvard, the
main idea has becomeclear in recentmonths, and chapter 5 explains in detail how to
apply their model theoretic techniques to two-dimensional integration. Theseresults
are only valid for two-dimensional local elds of residue characteristic zero, such as
Qp((t)); extending this theory, aswell as motivic integration, to nite residue charac-
teristic is considered in subsection 6.1.3
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1.1.6 Rami cation

One dimensional rami cation theory, in which one studies the rami cation properties
of extensions of global and (one-dimensional) local elds, is a beautiful and complete
theory (good referencesare [FV02] [Ser79 [Neu99]). Moreover, the passagefrom the
local to the global is well understood, with global invariants typically expressedas
products of the corresponding local invariants.

Extending the rami cation theory to higher dimensional local elds, or, more gen-
erally, complete discrete valuation elds with imperfect residue eld was, for a long
time, a signi cant open problem. A theory has how beendeveloped by A. Abbes and
T. Saito [AS0Z] [AS03] using rigid geometry; some alternative approachesare due to
J.Borger [Bor04b] [Bor044], K. Kato [Kat89] [Kat94], and |. Zhukov [Zhu0O0] [Zhu03].
Subsection6.1.2provides a summary of Abbes and Saito's theory.

However, the global situation in higher dimensions remains mysterious, even for
algebraic surfacesover a nite eld. The Grothendieck-Ogg-Shafarevich formula for
a curve expressesglobal information (the Euler characteristic of an “-adic sheafon a
dense open subset of the curve) in terms of the Euler characteristic of the curve and
local rami cation data. An open problem which has attracted many of the best arith-
metic geometersincluding S.Bloch, P. Deligne, and K. Kato is that of nding a higher-
dimensional generalisation. For arithmetic surfaces,partial results have beenobtained
by Saito[Sai9] for "-adic sheavesof dimension 1, using abelian rami cation theory and
two-dimensional class eld theory, and by Abbes [Abb0Q], using the rami cation the-
ory he developed with Saito. Chapter 6 studies the Riemann-Hurwitz formula, which
is a special caseof Grothendieck-Ogg-Shafarevich, and investigates to what extent in-
tegration theory can be useful in understanding rami cation.

In dimension one, the theories of Tate-lwasawa and Godement-Jacquetcapture ram-
i cation data such as the conductor using the properties of local zeta functions, and
this was part of the motivation for studying the two-dimensional local zeta functions
in chapter 2.

1.2 The writing and reading of this thesis

A few words on this thesis' history may be useful. The majority of my rst year asa
PhD student was occupied by the study of class eld theory, automorphic represen-
tations, and model theory, the reading of various of Fesenko's papers, and reseach
into higher-dimensional integration. This culminated in the writing of three papers
[Mor08d] [Mor08c] [Mor08b], which, with only minor modi cations (removal of intr o-
ductions and summaries of earlier work, etc.) form chapters 2, 3, and 4.

| spentasigni cant portion of my secondyear learning Grothendieck-style algebraic
geometry and motivic integration. Excluding section 6.1 on rami cation, | wr ote most
of chapter 6 (asthe paper [Mor08a]) during this period, while | was wondering about
the importance of integration theory.

In my third year, thanks to the Cecil King Travel Scholarship, | visited the Insti-
tut des Hautes Etudes Scienti qgues, Paris, for one month, the Hebrew University of
Jewusalem for two weeks, and Harvard University , Boston, for six weeks. While at the
IHES, C. Soulé suggested, as Fesenkohad earlier, that an adélic interpr etation of dual-
ity was an interesting goal; although he had in mind "-adic duality, | was interestedin
Grothendieck duality at the time and this work is contained in chapter 7, which was
not written in its nal form until May 2009, initially asthe article [Mor09].

Chapter 5 on model theoretic integration and most of section 6.1were written during
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Juneand July 2009after, as| have already mentioned, a long personal battle with the
subject.

The chapters were initially written as separate papers, and this will undoubtedly
be clear to the astute reader. However, wishing not to frustrate the reader, | have re-
moved duplicated material asfar asis possible while simultaneously leaving the chap-
ters largely independent. | hope that the reader notices a variation of mathematical
maturity between chapters 2, 3, 4, 6 (minus 6.1) and chapters 5, 7, asthey were written
at leasta year apart.

| would suggestto the reader that he begins with the intr oduction (where else?),
including the summaries of the chapters and the basicsof higher dimensional integra-
tion. Chapters 2, 3 and 4 could then be looked at briey , to gain some intuition for
two-dimensional integration. Sections5.1, 6.1, 7.1 are quite discursive and therefore
may be more enjoyable to read. The rest of chapter 5 is then probably only accessible
to model theorists (sorry); the restof chapters 6 and 7 are independent of the restof the
thesis (and of eachother), and have a avour closerto "normal' algebraic/arithmetic
geometry.

1.3 Detailed summaries

1.3.1 Chapter 2: Integration on valuation elds over local elds

Let F be avaluation eld with value group and ring of integers O, whose residue
eld F is a non-discrete, locally compact eld (i.e. a local eld: R, C, or
non-archimedean). Given a Haar integrable function f : F | C, we consider the
lift, denoted f %9, of f to O by the residue map, aswell asthe functions of F obtained
by translating and scaling

x 7' f2%9(x + a)

fora2 F, 2 F . Wework with the spacespanned by these function asf varies.

A simple linear independence result (proposition 2.1.5 is key to proving that an inte-
gral taking valuesin C (the complex group algebraof ), under which f %0 has value
£ f (u) du, is well de ned.

The integration yields a translation invariant measure, explained in section 2.2 For
example, in the caseof C((t)), the set St" + t"*1 CJ[[t]] is given measure (S)X" in
R[X;X 1], whereS is alebesguemeasurable subsetof C of nite measure (S).

In section 2.3, the rst elements of a theory of harmonic analysis are presentedfor
elds which are self-dual in a certain sense. For this we must enlarge our space of
integrable functions by allowing twists by a certain collection of additive characters;
the central result is that the integral hasa uniquetranslation-invariant extension to this
larger classof functions. A Fourier transform may then be de ned in the usual way; a
double transform formula is proved.

The short section 2.4 explains integration on the multiplicative group of F. Here

we generalisethe relationship dx = jxj 1d*x between the multiplicative and additive
Haar measuresof alocal eld.

If F is a higher dimensional local eld then the main results of the aforementioned
sectionsreduce to results of Fesenkoin [Fes03 and [Fes0§. However, the results here
are both more general and abstract; in particular, if F is archimedean then we provide
proofs of claims in [Fes03 regarding higher dimensional archimedean local elds, and
whereasthose papers work with complete elds, we require no topological conditions.
This more abstract approachto the integration theory appearsto be powerful; we will
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useit to deduce the existenceof a translation invariant integral on GL,(F) in chapter 3
and prove Fubini's theorem for certain repeatedintegrals over F  F in chapter 4.

In the nal sectionsof the chapter, we consider various zeta integrals. In section 2.5,
parts of the theory of local zetaintegrals over F are lifted to F. In doing sowe are led
to consider certain diver gent integrals related to quantum eld theory and we suggest
a method of obtaining epsilon constantsfrom such integrals.

We then consider zeta integrals over the local eld F; a ‘two-dimensional' Fourier
transform f 7! f isde ned (following Weil [Wei95] and [Fes03 in the non-archimedean
case)and we prove, following the approachesof Tate and Welil, that it leads to a local
functional equation, with appropriate epsilon factor, with respectto sgoesto 2 s:

Z(g:! H2 s)="(1;9Z(g!;9):

See proposition 2.6.17 for precise statements. After explicitly calculating some

-transforms we use this functional equation to calculate the -epsilon factors for all
guasi-characters! . Theseresults on zetaintegrals and epsilon factors are then used to
prove that is an automorphism of the Schwartz-Bruhat space S(F), which, though
important, appears not to have been considered before. When F is archimedean we
de ne anew -transform and consider some examples.

In section 2.7, zeta integrals over the two-dimensional local eld F are considered
following [Fes03. Lacking a measure theory on the topological K -group K;(’p(F) (the
appropriate objectfor class eld theory of F; see[Fes9]), a zeta integral over (a sub-
group of) F F is considered:

Ze
(f;; 9= f(xy)  txy)it(x; y)j® charr(x; y) dxdy:

Meromorphic continuation and functional equation are established for certain “tame
enough' quasi-characters; in these casesthe functional equation, and explicit L-
functions and epsilon factors, follow from properties of the -transform on F. Our
results are compared with [Fes03.

The advantages of our new approach to the integration theory are apparent in these
chapterson local zetaintegrals. Our approachis to lift known results up from the local
eld F, rather than try to generalisethe proof for alocal eld to the two-dimensional
eld. For example, we therefore immediately know that many of our local zeta func-
tions have meromorphic continuation. Apparently complicated integrals on F reduce
to familiar integrals over F where manipulations are easier;for example, we may work
at the level of F eventhough we are calculating epsilon factors for two-dimensionaketa
integrals. The weaknessis that it doesnot seemto allow much wild rami cation infor -
mation to be obtained.

The appendices are used to discuss some results which would otherwise interr upt
the chapter. Firstly, the set-theoretic manipulations in [Fes03 (used to prove that the
measure is well-de ned) are reproved here more abstractly. Secondly we discuss what
we mean by a holomorphic function taking values in a complex vector space;this al-
lows us to discuss meromorphic continuation of our zeta functions.

1.3.2 Chapter 3: Integration on product spacesand GL, of avaluation eld
over alocal eld

As discussed above, to generalise the non-commutative theory of local and global
elds to higher dimensions, and particularly to generalise Godement-Jacquettheory,



CHAPTER 1. INTRODUCTION

one must rst develop atranslation-invariant integration theory on GL , of higher di-
mensional local elds. That is the subjectof this chapter.

F, ,etc. continue to be asin chapter 2. In section 3.1, the integral on F developed
in chapter 3 is extended to F" using repeated integration. So that Fubini's theorem
holds, we consider C() -valued functions f on F" such that for any permutation  of

Ze Z.

is well de ned, and its value doesnot depend on ; suchafunction is called Fubini.
Now supposethat gis a Schwartz-Bruhat function onF"; let f bethe complex-valued
function on F" which vanishesoff O, and satis es

it isshown thatifa2 Fand 2 GL,(F),thenx 7! f (a+ x) isalsoFubini and
Z n Z o
f(a+ x)dx=jdet j 1! f (x) dx ()

where j jis an absolute value on F. The main result of the third section, theorem
3.2.4 easily follows: there exists a space of Fubini functions L(F";GL,) such that
L(F";GL,) is closed under afne changes of variable, with () holding for
f 2L(F";GLp).

Next, just asin the classical caseof a local eld, we look at C() -valued functions

on GL,(F), for which 7! ( )jdet j M belongsto L(F"*), having identied F"*
with the spaceof n n matrices over F. This leads to an integral on GL ,(F) which
is left and right translation invariant, and which lifts the Haar integral on GL ,(F) in a
certain sense.

Finally we discussextending the theory to the caseof an arbitrary algebraic group.

1.3.3 Chapter 4: Fubini' s theorem and non-linear changes of variables over
atwo-dimensional local eld

This chapter considersthe issueof Fubini's theorem and non-linear polynomial changes
of variables for integration over a two-dimensional local eld.

To extend the approach in chapter 3 from GL, to an arbitrary algebraic group it is
necessaryto have a theory of integration on nite dimensional vector spacesover F
which behaveswell under certain non-linearchangesof variable (for the GL , theory,
linear changesof variable suf ced). Moreover, for usein applications, it is essential
that Fubini's theorem concerning repeated integrals is valid. This chapter considers
the problem of establishing whether the equality

Z:Z, Z:Z.
g(x;y  h(x)) dydx = g(x;y  h(x)) dxdy

holds for appropriate functions g and polynomials h. Moreover, the methods used
appear to be suitable for changesof variables much more general than (x;y) 7! (X;y
h(x)).

The chapter begins by describing the action of polynomials on F. Given apolynomial
h 2 Og[X], and a translated fractional ideal b+ t*Of Of, we show how to write

10
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fx 2 O : h(x) 2 b+ tAOggasa nite disjoint union of translated fractional ideals;
here t is a local parameter of F as a discrete valuation eld. If a+ t°Of is one of
thesetranslated fractional ideals, it is also important to understand the behaviour of
the function

h:a+ tCOF I b+ tAOFZ

The impetus of this chapter is conjecture 4.2.1, which we rapidly reduce to the fol-
lowing: if f is a Schwartz-Bruhat function onF  F,f?= f%0jsthelift of f to F F,
and h 2 F[X]is apolynomial, then surely

Zo7Z¢ Z:Z¢
fOx;y  h(x)) dydx = fO(x;y  h(x)) dxdy:

In section 4.2 the conjecture is shown to be true if h is linear or if all coefcients of h
belong to Of.

The technically dif cult caseof when h contains coefcients not in Of is taken up
in the next section. Intr oduce a polynomial q 2 F[X] and integer R < 0 by the three
conditions h(X) = h(0) + tR%X), g 2 Opg[X], and g Z tOg[X]. We give explicit
expressionsfor the integral of Ff O(x;y  h(x))dx in terms of the decomposition of
setsof the form fx 2 Or : g(x) 2 b+t ROgg; the conjecture easily follows if R = 1so
long asq, the image of gin F[X ], is not a purely inse&@rable polynomial. WhenR < 1
calculations becomedif cult, and the function y 7! i O(x;y h(x)) dx canfail to be
integrable, meaning that the conjecture fails; however, we presentexamplessuggesting
that the spaceof integrable functions could be extended so asto remedy this de cit.

We then consider the possibility that F has positive characteristic and g is purely
inseparable. When R = 1it is shown that

Z:-Z. Z Z
fOy h(x)dydx= f(xy)dydx
F F

but Z:-Z;
f(x;y h(x))dxdy = 0:

Soif f hasnon-zero Haar integral over K K then the conjecture drastically fails. This
fascinating result provides an explicit example to show that the work of Hrushovski
and Kazhdan really can fail in positive characteristic, and we discuss its relationship
with rami cation theory.

In the nal section we summarise the results obtained and discuss possible futur e
work in this direction.

1.3.4 Chapter 5: Two-dimensional integration ala Hrushovski-Kazhdan

Here we explain how Hrushovski and Kazhdan's model theoretic integration theory
canbe applied to two-dimensional integration.

The rst section describesthe main results of the chapter without model theory, for
the readerunversed in the discipline; sinceit is thoroughly explained there, with moti-
vation, we say no more about it here.

After a section on the possible rst order languages which can be used to describe
valued elds, and recalling standard results on which theories admit the elimination
of quanti ers in their languages, the main content of the chapter begins with section
5.3 in which we analyse de nable setsin avalued eld of residue characteristic zero.
We work in atheory of valued elds which eliminates eld quantiers, and we allow

11
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arbitrary structure on the residue eld sothat we can later specialiseto the casewhen
the residue eld is Qp or R, say. In particular, we establish that de nable setswithout
any topological interior are necessarily contained inside a proper Zariski closed set;
this seemingly technical result has many useful consequences.For example, we use it
to deduce that de nable functions are smooth away from a proper Zariski closed set.

Wethen recallthe notion of V-minimality for atheory of valued elds, which plays an
important role in [HKO6]. Finally, we generalise,from the algebraically closed situation
to the caseof a two-dimensional local eld, Hrushovski and Kazhdan's main decom-
position result which statesthat any de nable subsetof the valued eld is isomorphic
to lifts of setsfrom the residue eld and value group.

1.3.5 Chapter 6: Rami cation, Fubini' stheorem, and Riemann-Hurwitz for-
mulae

This chapter grew from the author's attempt to understand better the role of integra-
tion, particular Fubini's theorem,in geometry and rami cation theory. The rst section
is really a continuation of the previous chapter. We rst outline a possible methodol-
ogy for using model theory to understand the rami cation theory of complete discrete
valuation elds of Abbes and Saito,and then explain why this gives hope that it will be
possible to unify the Hrushovksi-Kazhdan integration theory with rami cation theory,
thereby developing a motivic integration theory which is valid in nite characteristic.

The main part of the chapter then begins with a section reviewing the conceptof an
Euler characteristic for a rst order structurein model theory. The discussion is purely
algebraicfor the bene t of readersunfamiliar with model theory, and various examples
are given.

Once an Euler characteristic is interpr eted asan integral, it is natural to ask whether
Fubini's theorem holds; that is, whether the order of integration can be interchanged
in a repeated integral. In the second section we consider nite morphisms between
smooth curves over any algebraically closed eld, and show that Fubini's theorem is
almost equivalent to the Riemann-Hurwitz formula. More precisely, in characteristic
zero the two are equivalent and so Fubini's theorem is satis ed, whereasin nite char-
acteristic the possible presenceof wild rami cation implies that, for any Euler charac-
teristic, interchanging the order of integration is not always permitted.

Section6.4discussesanotion weaker than the full Fubini property: a so-called strong
Euler characteristic [Kra00] [KS0Q. We show that over an algebraically closed eld of
characteristic zero, there is exactly one strong Euler characteristic (over the complex
numbers, this is the usual topological Euler characteristic).

Wethen return to nite morphisms between algebraic varieties, this time considering
surfaces. Again, Fubini's theorem is related to a Riemann-Hurwitz formula, originally
due to Iversen [Ive70]. Our methods provide a new proof of his result and we discuss
the situation in nite characteristic.

1.3.6 Chapter 7: An explicit approach to residues on and canonical sheaves
of arithmetic surfaces

This chapter studies arithmetic surfacesusing two-dimensional local elds associated
to the scheme, and thus further develops the adélic approach to higher dimensional
algebraic and arithmetic geometry. We study residuesof differential forms and give an
explicit construction of the dualising sheaf. While considerable work on these topics
has beendone for varieties over perfect elds by Lipman, Lomadze, Parshin, Osipov,

12
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Yekutieli, et al., the arithmetic casehas beenlargely ignored. The chapter begins with
adiscussion of its relation to this earlier work, where we provide extensive references.

In section 7.2 we consider a two-dimensional local eld F of characteristic zero and
a xed local eld K F.Weintroduce arelative residue map

cts

Res @ (¢! K;
where &5  is a suitable spaceof “continuous' relative differential forms. In the case
F = K((t)), this is the usual residue map; but if F is of mixed characteristic, then
our residue map is new (though essentially contained in Fesenko'sadélic analysis and
Osipov's study of algebraic surfaces- seesubsections7.1.3and 7.1.6. Functoriality of
the residue map is established with respectto a nite extension F &F, i.e.

Res Trpor = Rego:

In section 7.3we prove the reciprocity law for two-dimensional local rings, justifying
our de nition of the relative residue map for mixed characteristic elds. For example,
suppose A is a characteristic zero, two-dimensional, normal, complete local ring with
nite residue eld, and x thering of integers of alocal eld Ok  A. To eachheight
one prime y C A one associatesthe two-dimensional local eld Frac A, and thus obtains
aresiduemap Res, : paca-x ! K. Weprove

X
Res ! =0
y

for all ! 2 gaca=k - The subsequent section restatesthese results in the geometric
language.

Next we turn to the study of the canonical sheaf of an arithmetic surface. In section
7.5we recall various results about local complete intersection curves from aperspective
suitable for our work. Section 7.6 establishesan important local rami cation result,
generalising a classicalformula for the dif ferent of an extension of local elds. Let B be
a Noetherian, normal ring, and

anormal, complete intersection over B which isa nitely generatedB-module; assume
that the corresponding extension F=M of fraction elds is separable. Letting J 2 A be

fx2 F :Treq (XA) Bg=J A

In other words, the canonical and dualising sheavesof A=B are the same. The proof
reducesto the casewhen A, B are complete discrete valuation rings with an insepa-
rable residue eld extension; for more on the rami cation theory of complete discrete
valuation elds with imperfect residue eld, seethe discussion above and references
therein.

Finally, in section 7.7, we use our local residue maps and results on complete in-
tersections to explicitly construct the dualising sheaf of an arithmetic surface. Let
Ok be a Dedekind domain of characteristic zero with nite residue elds; its eld
of fractions is K. Let : X ! S = SpecOk be a at, surjective, local complete
intersection, with smooth, connected, generic br e of dimension 1. To each closed
point x 2 X and integral curve y X containing X, our local residue maps de ne
Resy : ]k(X)=K I K () (= (x)-adic completion of K'), and we prove

13
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Theorem 1.3.1. ThecanonicakheabfX ! S isexplicitly givenby, foropenU X,
x=s(U) = f1 2 g (x)= :ReSey(f1)2 B¢, o forallx 2y U andf 2 Oxyg

wheex runs overall closedoointsof X insideU andy runs overall curvescontainingx.

1.4 Precisebasics of higher dimensional integration

Having informally discussedthe problem of higher dimensional integration, we should
presenta precisesummary of the basicsof the theory so that the reader knows what is
ahead.

Let F beavaluation eld with value group and ring of integers Og, whose residue
eld F is a(one-dimensional) local eld. We assumethat the valuation splits, and x a
splitting t: ! F . C() denotesthe eld of fractions of the complex group algebra
C of ;the basiselementof the group algebracorrespondingto 2 shall be written
asX rather than as . We x achoice of Haar measureon F.

1.4.1 Integration on F

Here we summarise the integration theory which will be developed in sections2.1and
2.40f chapter 2.

De nition 1.4.1. For g afunction on F taking values in an abelian group A, set
:F!I A

g(X) x2 Ok
0 otherwise.

X 7!

More generally, fora 2 F, 2 ,thelift ofgata; isthe A-valued function on F
de ned by

( -
olx at( ) x2a+t()OrF

a, X) =
g (x) 0 otherwise
Note that g%° = g® and g® (a+ t( )x) = g°(x) for all x 2 F.

De nition  1.4.2. Let L denote the spaceof complex-valued Haar integrable functions
on F. A simplefunction on F isaC() -valued function of the form

X 7! g* (x) X

forsomeg2 L,a2F, ; 2 .
Let L(F) denote the C() spaceof all C() -valued functions spanned by the simple
functions; such functions are said to be integrableon F.

Remark 1.4.3. Note that the spaceof integrable functions is the smallest C() spaceof
C() -valued functions on F with the following properties:

() Ifg2L,theng®2 L(F).
@i) ff 2L(F)anda2 F thenL(F) containsx 7! f (x + a).

(i) Iff 2L(F)and 2 F thenL(F)containsx 7! f(x ).

14
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In fact, it is clear that if f is simple thenfora2 F and 2 F , the functions x 7!
f(x+ a)andx 7! f (x ) arealsosimple.

The basicresult on existenceand properties of an integral will be follows:

R
Theorem 1.4.4. Theris auniqueC() -linearfunctional F on L (F) whichsatis es

() Re lifts theHaarintegralonF: forg 2 L,
Z . z
(@)= g(u)dy
(ii) Translationinvariance:forf 2 L(F),a2 F,
Z Z.
f(x+adx= f (x) dx;

(iii) Compatibilitywith multiplicative structure:forf 2 L(F), 2 F ,

Z Z
f(x)dx=jj ! fxdx
Herethe absolute value of RIS de neﬂbyj i=jt( ())jX O andwehaveadoptedhe
customaryintegral notation (f) = Ff (x) dx.
Proof. Seechapter 2, especially proposition 2.1.12and lemma 2.4.1 O

Remark 1.4.5.1f g% isthe lift of a Haar integrable function, then
Z z
g (x)dx= g(u)duX :

1.4.2 Integration onF F

Now we summarise the integration theory for the product spaceF F. Proofs of this
material may be found for the more general caseof F" in section 3.1 of chapter 3.

De nition 1.4.6. A C() -valued function gon F  F is said to be Fubini if and only if
both its repeatedintegrals exist and are equal. That is, we require:

(i) for a&x 2 F, the function y 7! g(x;y) is integrable, and then that the function
X 7! g(x; y) dy is also integrable;

(i) for a&y 2 F, the function x 7! g(x;y) is integrable, and then that the function
y 7! g(x y) dx is alsointegrable;

Re R

. Re Re F
(iii) g(x; y) dxdy = g(x; y) dydx.

Similarly, an integrable complex valued function f on K K will be called Fubini if
and only if both its repeatedintegrals exist and are equal.
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Remark 1.4.7. Recallthat the existenceand equality of the repeatedintegrals of a com-
plex valued function on K K does not imply its integrability on K K (seee.g.
[Rud87, example 8.9c])which is why we have separatelyimposed that condition. How-
ever, in our applications we will restrict to well enough behaved functions for this sub-
tle problem to beirr elevant.

Fubini's theorem implies that almost all (in the senseof failing off a set of measure
of zero) the horizontal and vertical sections of any integrable function on K K are
integrable. Therefore any integrable function on K K differs off anull setfrom some
Fubini function. However, there is no satisfactory theory of lifting null setsfrom K to
F, sowe restrict attention to Fubini functions on K K.

Any function in the Schwartz-Bruhat spaceof K K is Fubini; recall that if K is
archimedean theseare the smooth functions of rapid decay at in nity , and if K is non-
archimedean theseare the locally constant functions of compact support.

Also seeremark 3.1.3

The main properties of the collection of Fubini functions on F  F are the following:

Proposition 1.4.8. The collectionof Fubini functionson F  F is a C() -spacewith the
following properties:

() fgisFubinionF F,thensois(x;y) 7! g( 1x+ a1; 2y + ap) X foranya 2 F,
i 2F , 2 ,with repeateéhtegral
ZoZ¢
g( 1X+ ag; 2y + ap) X dxdy
Zo7Z¢
=j 4 Yoot g(x; y) dxdyX

(i) Iff isFubinionK K, then

f(Xy) Xy2Okg;

fO(x;y) ==
(3 y) 0 otherwise,

is FubinionF  F, with repeateéhtegral
Z.7Z; Z Z
f O(x; y) dxdy = f (u; v) dudv:
K K

Proof. Seelemma 3.1.5and proposition 3.1.8 O

Remark 1.4.9. The proposition implies that if f is FubinionK K,aj;;a2 F, 1; 22
,then the function g= f (@1:@2):( 1: 2) of F F de ned by

fana)iC 12 (g + t( 1)x; a2+ t( 2)y) = (%)

for all x;y 2 F is Fubini. The function g is said to be the lift off at(ai;az);( 1; 2).
Proposition 1.4.8implies

ZpZg ZeZg Z Z
g(x;y) dxdy = g(x;y) dydx = f (u;v)dudvX t* 2:
K K

Also seeremark 3.1.9
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1.5 Future directions

To nish the introduction, we mention several areasrelated to this thesis which de-
mand investigation.

1.5.1 Mathematical physics

The eld R(t), and certain subspacesof R((t)), may beidentied with spacesof func-
tions. In particular, tR[t] may beidentied with a subspaceof the spaceof continuous
paths [0;1]! R which vanish at 0i.e. Wiener space. It would be interesting to under-
stand relations between Wiener measure and the two-dimensional measure.

The Feynman integral is a mysterious tool of mathematical physics which can be
used to make very accurate predictions in quantum eld theory by computing inte-
grals over certain in nite-dimensional spacesof paths. Finding a rigor ous mathemat-
ical de nition of theseintegrals is a major open problem in mathematical physics; see
[JLOQ for discussion of the problems. The archimedean two-dimensional local eld
C((t)) contains many subspaces,such as C[t], which may be identi ed with spacesof
continuous paths in the complex plane, and it is expected that two-dimensional inte-
gration will give new mathematical insights into Feynman's path integral. Evidence
of the relations between quantum eld theory and the measure on archimedean two-
dimensional local elds may befound in sections16,18 of [Fes0§ and example 2.5.60f
chapter 2.

The values of diver gent integrals in quantum eld theory, after renormalisation, ap-
pear asepsilon factorsin our local zetaintegrals (example 2.5.9. The duality provided
by a functional equation would provide arithmetic arguments for the values of such
integrals. It would be very interesting to investigate whether this arithmetic value co-
incides with the physical value.

There are relations between the geometric Langlands programme and conformal
eld theory (seee.g. [Fre07). Hence suitable physical interpr etations of this work
and its extensionsmay provide insight into problems of eld theory.

1.5.2 Model-theoretic integration

As discussedin subsection 5.1.4 there are remaining problems with the Hrushovski-
Kazhdan style integration on two-dimensional local elds of residue characteristic zero.
However, it seemsthat thesedif culties are closeto being resolved.

A different idea, which | did not manage to explore during the past threeyears, is
Fesenko'sidea of understanding higher dimensional integration using nonstandard (in
the model-theor etic sense)techniques. The Haar measure on alocally-compact, abelian
group may be interpr eted as a hyper nite counting measure [Gor97], and so perhaps
it is possible to interpr et the integral on atwo-dimensional local eld asanonstandard
limit of Haar measuresin some sense.

1.5.3 Ramied zetaintegrals

The proof of the functional equation in section 2.7 can surely be extended to a wider
classof functions and characters. In particular there should be a theory for rami ed
characterswhich encodesinteresting rami cation data related to the Abbes and Saito
theory.
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CHAPTER 1. INTRODUCTION

1.5.4 Non-linear change of variables and Fubini' stheorem

As discussed above regarding translation invariant integration on algebraic groups
over two-dimensional local elds, it is important to understand the behaviour of the
integral on F" with respectto non-linear changesof variables and to investigate the va-
lidity of Fubini's theorem. In residue characteristic zero | believe that continued work
using the techniques of chapter 5 will produce all expectedresults. In nite residue
characteristic the problem is more mysterious, as proposition 4.4.1shows, and related
to rami cation theory; hopefully work on the programme outlined in subsection 6.1.3
on uniting integration theory with rami cation theory will provide insight.

1.5.5 Integration on algebraic groups

Seesection 3.4

1.5.6 Two-dimensional Langlands

Two-dimensional Langlands, if it exists, is deeply mysterious. Perhaps a study of suit-
able representations of GL,(F), with F atwo-dimensional local eld, involving inte-
gration and non-commutative zetaintegrals would be useful.

1.5.7 Arithmetic surfaces

Seesubsection7.1.7.
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CHAPTER 2

Integration on valuation elds over local elds

This chapter develops the basic higher dimensional integration theory and harmonic
analysis, and contains applications to two-dimensional local zetafunctions.

Notation

Let be atotally ordered abelian group and F a eld with avaluation :F !
with residue eld F,ring of integers O and residuemap : Ogf ! F (alsodenoted
by an overline). Supposefurther that the valuation is split; that is, there exists a homo-
morphism t: ! F such that t = id . The splitting of the valuation induces a
homomorphism :F ! F byx 7! xt( (x)) (often called the angular component
map). Assume alsothat contains a minimal positive element, denoted 1 (this is not
essential,but convenient for many examples).

Setsof the form a+ t( )Of are translatedfractionalideals is referred to asthe height
of the set.

C() denotesthe eld of fractions of the complex group algebra C of ; the basis
element of the group algebra correspondingto 2 shall bewritten asX rather than
as . With this notation, X X = X * . Note that if is afreeabelian group of nite

The residue eld F is assumed to be a non-discrete, locally compact eld, i.e. a
local eld. We x a choice of Haar measure on F; occasionally, for convenience, we

shall assumethat Og has measure one. The measure on F is chosento satisfy dx =
ivi 1t
jXj HdTx.

These assumptions hold for a higher dimensional local eld. For basic de nitions
and properties of such elds, see[FKOQ].

Indeed, supposethat F = F, is a higher dimensional local eld of dimension n 2
we allow the casein which F; is an archimedean local eld. If F4 is non-archimedean,
instead of the usual rank n valuation v : F ! Z" let bethen 1componentsofv
corresponding to the elds Fy;:::;Fp; notethatv = (& ; ). If Fyis archimedean,
then F may be similarly viewed asavaluation eld with value group Z" ! and residue
eld Fi.

The residue eld of F with respectto is the local eld F = Fi. If F is non-
archimedean, then the ring of integers O of F with respectto the rank n valuation
is equal to l(OE), while the groups of units O with respectto the rank n valuation
isequalto  *(O-).
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CHAPTER 2: INTEGRATION ON VALUATION FIELDS OVER LOCAL FIELDS

2.1 Integration onF

In this section we explain the basictheory of integration on F; a summary of the main
results can be found in subsection 1.4.1 The following de nition is fundamental:

De nition 2.1.1.Letf beafunction onF taking valuesin anabeliangroup A;leta2 F,
2 .Thelift of f ata; isthe A-valued function on F de ned by

(f((X at( ) x2a+t()OrF;
0

fa& (x)=
() otherwise.

In other words,
f (X) X 2 Of;
0 otherwise.

and f& (a+ t( )x) = f9%0(x) for all x.

f%9(x) =

It is useful to understand how lifted functions behave on translated fractional ideals:

Lemma 2.1.2. Letf & bealifted function asin thede nition; letb2 F, 2 . Thenforall x
in Og,

case > (
& (b+ t( )X) — f((b a)t( )) b2 a+t( )OF’
0 otherwise.
case =
( Th  A\+/ ) 7 .
N N (CRE TGRS 2;;;';(% 20e;
case <

( f(b+t()x at( ) x2( br() *+t(  )Of;

f& (b+ t( )x) = .
otherwise.

In particular, in this nal casejf x;y 2 O aresuchthatf® (b+ t( )x) andf® (b+
t( )y) arenon-zeo,thenx = y.
Proof. This follows from the de nition of alifted function by directveri cation. O
Let L denote the spaceof complex-valued, Haar integrable functions on F.
Remark 2.1.3.

() Fora2 F; 2 ,letL® denote the spaceof complex valued functions on F of
theform f& forf 2 L. Supposea; + t( 1)Of = ax+ t( 2)Or. Then ;= ,and

fari(x)=f%2(x+a a)= 9% ?(x)

whereg 2 L isthe function g(y) = f (y+ (a2 a))t( 2)). HencelL?3: 1t = L% 2,

(i) Given alifted function f2 and 2 F,the translated function x 7! f& (x+ )is
the lift of f ata X
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CHAPTER 2: INTEGRATION ON VALUATION FIELDS OVER LOCAL FIELDS

De nition 2.1.4.ForJ = a+ t( )Of atranslated fractional ideal of F,de ne L(J) to
be the spaceof complex-valued functions of F of the form f # ,for f 2 L. Intr oduce an
integral on L(J) by

Z, Z

L@)! C & 7 f(u)du
F
By remarks 2.1.3and translation invariance of the Haar integral on F, the integral is
well-de ned (i.e. independent of a; ).

Proposition 2.1.5. The sum, inside the spaceof all complex-valuedunctionson F, of the
spaces (J), asJ variesoverall translatedfractionalideals,is adirectsum.

Proof. Let J;, for i = 1:::;n, be digtinct translated fractional ideals, of height ; say.
Supposef; 2 L(J;) for eachi, with ; f; = 0; we may supposethat 1 2 n-
Fix avalue of i satisfying 1 i < n If i = n,thenJ; and J, aredisjoint translated

fractional ideals, and sof; is constantly zeroon J,. Else j < |, and then the rst case
of lemma 2.1.2impligs that f; is constanton J,.

Thereforef, = inzllfi is constant on J,, implying that f,, is the lift of a constant
function, and therefore that it is zero (for L contains no other constant function). The
proof now follows by induction. O

L , R .
This linear independence result clearly allows us to extend the 7, asJ varies over
all translated fractional ideals, to a single functional:

De nition 2.1.6.Let L(F)c bethe space(i{ complex-valued functions spannedby L (J)
for all translated fractional ideals J. Let L(F)c! RC() deﬁote the unique linear

map suchthat if f 2 L(J) for someJ of height ,then ' (f)= “(f) X .
L (F)c will bereferred to asthe spaceof complex-valued, integrablefunctions on F.

R
Remarks 2.1.3imply that L (F)c is closed under tr.ia_pslatlon from F andFEhat s
translation invariant. We will of course usually write f(x) dx in place of (f)

Remark 2.1.7. If A were an arbitrary C-algebra and elementsc 2 A were given for
each 2 ,we could de ne an A-valued linear translation invariant integral on L (F)
by replacing X by c in the previous de nition. However, using X ensurescompat-
ibility of the integral with the multiplicative group F , in that it implies the existence
of an absolute value with expectedproperties; seelemma 2.4.1

This phenomenon also appearswhen extending the integration theory to F", M (F),
and GL,(F); one must take into account the action of GL,(F) on F" in order to de-
velop a satisfactory theory; seesection 3.4.

Remark 2.1.8. Let us checkto what extent L(F)¢c and Rr depend on the choice of the
splitting t.

Let t°be another splitting of the valuation: that is, t°is a homomorphism from to
F  with t®= id . Then thereis a homomorphism u : ! Op which satis es
t( )=u( )ty )for 2 .Letg2L,a2F,and 2 ;letf bethelift of gata; with
respectto t, and f the lift of gata; with respectto t® Thus, by de nition, f and f©°
both vanish off J = a+ t( )Or = a+ t{ )Og, and for x 2 O,

fa+t()x)=gx®; fla+t9)x) = gX):

— 1_ R, —R —— Ry
Thereforef Ya+ t( )x) = gu( ) "X)andso “(f9=ju( )i gly)dy=ju( )i “(f).
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CHAPTER 2: INTEGRATION ON VALUATION FIELDS OVER LOCAL FIELDS

Rj.o0 Re.0 ; ;

Let ~ (resp. ") denote tf}g integral oiﬁer J (resp. F) with respectto t® the
previous paragraph provesthat ° = ju( )j >'. Let :C() ! C() be the C-
linear eld automorphism of C() given by (X )= ju( )jX ,for 2 . Thenfor all
f 2 L(F)c, the identity

f(x)dx = f (x) dx

follows.
Sothe integral is well-de ned up to an automorphism of C() .

Regarding absolute values, we have the following attractive result:
Proposition 2.1.9.If f belonggo L (F)c, thensodoes 7! jf (x)j.

Proof. We may write f = P in=1 fi; hereJ;, for i = 1:::;n, are distinct translated frac-
tional ideals, of height ; say, and f; 2 L(J;). We may also assumethat ; n-
The statement with L in place of L(F)c is true by de nition of Haar integrability;
hence the statementis true for L(J), where J is any translated fractional ideal. Soif
n = 1we are done, and we now assumen > 1, proving the result by induction.
In the sameway asin the proof of proposition 2.1.5 eachfunction fi,for 1 i < n,
is constanton J,,. Let a be any element of J,,. Then the following identities hold:

X 1 X 1
ifi=j  fij+ jfj j  fij char,

i=1 i=1 |
X 1 X 1 X 1 '

=) fij+ jfa+ fi(@) ] fi(@)j chary,
i=1 i=1 i=1
X 1 X 1 X 1

=j fj+jf+  fi@j ] fi(a)]
i=1 i=1 i=1

The proof will be complete if we canshow that

X 1 X 1
ifnt fi@) 1 fi(a) ()

i=1 i=1

belongsto L(F)c. Write f,, = g* » for spmeg 2 L; theB the function () is the lift at
a; , of the Haar integrable function jg+ [ ,*fi(@)j | ,'fi(a)j. O

Although L(F)c is closed under taking absolute values, the following examples
show that there is someunusual associatedbehaviour, and that thereis no clear de ni-
tion of a "null function' on F:

Example 2.1.10. Intr oduce f ; = char?;o%,
2chary where S is a Haar measurablesubsetof F with measure 1and s a positive
elementof .Letf =f1+ f,.

the characteristic function of t(1)Og,and f, =

(i) Firstly we claim that the following hold:
Z Z ¢
Jf(x)jdx = 0; f(x)dx= 2X :
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Indeed, the secondidentity is immediate from the de nition of the integral. For
the rst identity , note that asin the proof of the previous proposition (with n = 2),

jifi=ifa+jf2+ £2(0) jf2(0)j:

Further, f1(0) = 1 and the function jf, + 1j is identically 1. Sojf j = char?oo,from
which the rst identity follows.

(i) Secondly, the considerations above imply
Z: Z. Z¢
if (x)jdx = jfi(x)jdx = 0; if(x) fi(x)jdx = 2X

(iii) Finally, consider the translated function f {x) = f (x a), where ais any element
of F notin Og. Thenf %and f have disjoint support and so
Z Z
o0 F0idx = jf (x)j+ jf {x)j dx
Z . Z
jif (x)jdx + if{x)jdx =0

by translation invariance of the integral. Also, Rr f(x) fqx)dx = 0. Thus
g=f ng provides an Eg(ample of a complex-valued integrable function on F
such that jg(X)j dx = g(x) dx = 0, but where the components of gin L(J),
for all J, are lifts of non-null functions.

As will become apparent in the study of harmonic analysis, it is more natural to
integrate C() -valued functions on F than complex-valued ones,sowe de ne our main
classof functions asfollows:

De nition 2.1.11.A C(?;,-valued function on F will be said to be integrablef and only
if it hasthe form x 7!, f;(x)p; for nitely many f; 2 L(F)c and p; 2 C() . The
integral of such afunction is de ned to be
Z . X ZF
f(x)dx = fi(x)dxp;:
i
This is well de ned. The C() spaceof all such functions will be denoted L (F); the
integral is a C() -linear functional on this space.

In other words, L(F) = L(F)c ¢ C() and the integral is extended in the natural
way. The integrable functions which are complex-valued are preciselyL(F)c L(F),
sothereis no ambiguity in the phrase ‘complex-valued, integrable function'.

For the sake of completeness,we summarise this section asfollows (also seesubsec-
tion 1.4.0):

Proposition 2.1.12.L(F) is the smallestC() spaceof C() -valuedfunctionson F which

containsgél‘:;z foralg2 L,a2 F, 2 . Theris a(necessarilyunique)C() -linear
functional  on L (F) whichsatis es
Z Z

g® (x)dx= _ g(u)duX :
F

Re

L (F) is closedundertranslationand ° is translationinvariant.
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Remark 2.1.13. Examination of the proofs in this section leads to the the following
abstraction of the theory:
LetF® Gt% Ogatisfy the sameconditions asF; :t; ,exceptthat we do not suppose
Flisalocal eld. LetL bean arbitrary eld, and L%an L spaceof L-valued functions
=0 . . . , . . )
on F 7, equipped with an L-linear functional |, with the following properties:

(i) LOs closeéj under translation from Fand | is translation invariant (ie. f 2 LO
anda?2 F implies y 7! f (y + a) isin L°with image under | equalto I (f)).

(i) LO%contains no non-zero constant functions.

Let LYF9 bethe smallestL ( 9 spaceof L( 9-valued functions on F which contains
fa forf 2L%a2 F% 2 0 Thenthereis a(necessarily)unique L( 9-linear func-
tional 1F° on LYFY which satises I F°(f& ) = 1(f)X . Further, the pair LYF9;1F°
satisfy (i) and (i) with the eld L( 9 in placeof L.

In particular, supposeF is athreedimensional local eld, say, with rst residue eld
F, (a two-dimensional local eld), and F = F; alocal eld. Then the integral on F
canbe obtained either by lifting the Haar integral to F, and then (by using this remark)
lifting again to F, or by following the arguments of this section and lifting the Haar
integral directly to F.

This “transitivity' of lifting the integral is also presentin E. Hrushovski and D. Kazh-
dan's motivic integration theory; see[HKO06, §12.2]

2.2 Measure theory

We now produce a measure theory from the integration theory; results of [Fes03 are
recovered and extended.

De nition 2.2.1. A distinguishedsubsetof F is a setof the form a+ t( ) 1(S), where
a2 F, 2 ,andSisasubsetof F of nite Haar measure. is said to be the levelof
the set.

Let D denote the set of all distinguished subsetsof F; let R denote the ring of sets
generatedby D (seeappendix 2.A for the de nition of ‘ring’).

Remark 2.2.2. Note that the characteristic function of adistinguished seta+t( ) 1(S)
is precisely the lift of the characteristic function of S at a; . Proposition 2.1.5proves
thatif a;+ t( 1) 1(S1) = ax+t( 2) 1(S»),then ;= ,andS;isatranslate of S,. In
particular, the level is well de ned.

Lemma 2.2.3. LetA; = a + t( i) S, i = 1;2, bedistinguishedsetswith non-empty
intersection.

@) If 1= »,thenA;\ Ay andAi[ A, aredistinguishedsetsoflevel ;.
(i) If 16 ,,thenAy Ayif 1> ,,andAy  Aqgif 2> 4.
Proof. This is immediate from the de nition of a distinguished set. O

Referring to appendix 2.A, it hasjust beenshown that D is a d-classof sets. By propo-
sition 2.A.9, the characteristic function of any setin R may be written asthe difference
of two sums, each of characteristic functions of setsin D; therefore the characteristic
function of any setin R belongsto L (F)c.
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De nition 2.2.4.De ne the measure F (W) of asetW in R by

Z¢
F(W) = charw (x) dx:

By the properties of the integral, F is a translation-invariant, nitely additive set
function R ! R (the real group algebra of ). For a distinguished setA = a+
t( ) X(S), remark 2.2.2implies

Z Z
F(A) = (charp) = (char§ )= (S)X ;

where denotes our choice of Haar measure on F. The following examples demon-
strate some unusual behaviour of this measure:

Example 2.2.5.
() For 2 ,thesett( )Or =t( 1) I(f0g) is distinguished, with measure zero.

(i) Let S beasubsetof F of nite measure. Theset 1(FnS)= Ogn 1(S) belongs
to R and hasmeasure  (S). Compare this with example 2.1.10

(i) F isnot countably addli_live. Indeed, write f‘a;sacountable disjoint union of sets
f nite measure;F = i Si say. ThenOf = 1(Si) has measure zero, while
PO Msy=1.

(iv) Supposethat F = R. SetA,, 1 = nt( 1)+ ([0;1=n]) and Ao, = nt( 1)+
Y(R n[0;4=n]) for-all natural numbers n. Then F(Azn 1) = 1=n, "(Az) =
1=n,and _;Ai= _nt( 1)+ O =t( 1) *(N)hasmeasureO.

The series ; F(Aj) is conditionally convergentin R (i.e. convergent, but not
absolutely convergent). By atheorem of Riemann (seee.gd Apo74, chapter 8.18]),
there exists, for any real g, a permutation q;Nsuchthat . (A (i)) converges
to g. But regardless of the permutation, (' ;A i) = 0.

Let us consider a couple of examplesin greater detail and give a more explicit de-
scription of the measure:

Example 2.2.6.
(i) Supposethat F is an n-dimensional, non-archimedean, local eld, with local pa-

than over the nite eld Fq. The results of this section prove the existenceof a
nitely additive setfunction F on the appropriate ring of sets,taking values in
RIX, %1105 X, 1], which satis es

Fla+ t:itinOp) = q "X 52X e

for a2 F and integersri. Here Or denotesthe ring of integers of F with respect
to the rank n valuation, and g is the cardinality of of Fg.

However, we have not made use of any topological property of F; in partic-
ular, this result holds for an arbitrary eld with value group Z" ! and a non-
archimedean local eld asresidue eld. This measure theory therefore extends
that developed in [Fes03, while also providing proofs of statementsin [Fes03
for the casein which the local eld is archimedean.

Fesenko also extends his measure to be countably additive under certain hy-
potheses, a result which we will require in the model theoretic study of two-
dimensional integration in section 5.
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(i) Supposethat F = F((t)), the eld of formal Laurent seriesover F,or F = F(t),
the rational function eld (here we write t = t(1)). Then atypical distinguished
sethasthe form

a(t) + St" + t"*1F[[t]] (Laurent seriescase)
a(t) + St" + t"*1F[t] (rational functions case)

fora(t) 2 F,and S F of nite Haar measure. Sucha sethasmeasure (S)X ",
where denotesour choice of Haar measureon F.

2.3 Harmonic analysis on F

Now we develop elementsof atheory of harmonic analysison F.

De nition 2.3.1. Supposethat :F ! S?!isahomomorphism of the additive group
of F into the group of complex numbers of unit modulus. Then s said to be a good
characteif it is trivial, or if it satis es the following two conditions:

(i) Thereexistsf2 suchthat istrivial ont(f)Of, but non-trivial ont(f 1)Of;f
is said to be the conductorof

(i) The resulting character of the additive group of F dened by (X) = (t(f
1)x), for x 2 Og, is continuous.

The conductor of the trivial charactermay besaidtobe 1 . Theinduced characteron
F asin (ii) will always be denoted .

The de nition of a good characteris designed to replace the continuity assumption
which would beimposed if F had a suitable topology.

Example 2.3.2. Supposethat F = F((t)), the eld of formabLaurent seriesover F (here
t(1) = t). Let £ be acontinuous characterof F. Then ;at' 7! (an) is agood
characterof F of conductor n + 1 and induced character .

Recallthat :F ! F isthe angular componentmap’,dened by ( )=t ( ().

Lemma 2.3.3. Supposehat is a goodcharacterof F of conductorf; let 2 F. Then
x 7' (x) isagoodcharacteofF, with conductorf ( ); thecharacteinducedon F by
X7 (x)isy 7! ( ()y) (assuming 6 0).

Proof. This is easily checked. O

Given ; asin the previous lemma we will write for the translated character
x 7' (x ) (and we employ similar notation for charactersof F).
Before proceeding, we must make a simple assumption:

Weassumehat anon-trivial goodcharacter existsonF.

By the previous lemma we may (and do) assumefurther that hasconductor 1, and
we X such a characterfor this section. With this choice of conductor, x 2 O implies
“(X) = (x). We will take Fourier transforms of integrable functions g on F with
respectto the character ;thatis, b(x) = g(y) (xy)dy.
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2.3.1 Extending the integral to twisted functions

Let L(F; ) denotethe C() spaceof C() -valued functions on F spannedby f , for
f 2L(F), 2 F;takihng = Owe seethat L(F) L(F; ). Our immediate aim is
proposition 2.3.7 which statesthat the integral on F hasaunique translation invariant
extension to this spaceof functions.

Remark 2.3.4. Such a character certainly exists on a higher local eld. Indeed, such a
eld is self-dual: if ; ; are good characterswith  non-trivial then thereis 2 F
suchthat (x) = 1(x ) for all x 2 F. For more details, see[Fes03 section 3.

It is convenient for the following results to write L (where 2 ) for the sum of
the spacesL (J) over all translated fractional ideals of height ; this sum is direct by
proposition 2.1.5 Note thatif f 2L anda2 F with (a) > thenf(x+ a) = f (x) for
allx2 F.

Certain products of an integrable function with a good characterare still integrable:

Lemma 2.3.5. LetJ = a+ t( )Or beatranslatedfractionalidealand 2 F.If = (),
then char; isthelift of (a) ()ata; ;if > ( ),then isconstantly (a) on
J.

Theefoe, if ( Yandf isinL thenf isalsoinL .

Proof. The identities may be easily veried by evaluating on a + t( )Or. The nal
statement follows by linearity . O

In contrast with the previous lemma we now consider thecase <  ( ):

Lemma 2.3.6. Let ;; ; benitely many(1 i m, say)element®fF; respsctivelyand
letf; 2 L for eachiR %Jpposefurther that ( ) < i foreachi andthat f; | is

integrableonF . Then F fi(x) (x)dx = 0.
Proof. The result is proved by induction onm. Lety 2 t( ( m))Of satisfy _ (y) 6
1. The functions
X X
x7 o filx+y) (x+y)= Wfix+y) (X)
X
x 7! aWFi(x) (%)
i

P
are integrabIeFQn F, the rst having integral equal to that of ,f; , by translation
invariance of . Taking the difference of the two functions, noting that f (X + y) =
fm(x), and applying the inductive hypothesis, obtains

R0 000 a0 fi) G0

which completes the proof. O

The rst main result of this section may now be proved:

R
Proposition 2.3.7. F hasa unique extensionto a translation-invariant, C() -linear func-
tionalonL(F; ).
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Proof. To prove uniqueness, supposethat | is a translation-invariant C() -linear func-
tional on L(F; ) which vanishes on L(F). We claim that | is everywhere zero; by
linearity it sufces to check that | vanishes on f forf 2 L (any 2 ) and

2 F.If > (a), then f is integrable by lemma 2.3.5and sol(f ) = 0. If

( ),thenlety 2 t( ( ))Of satisfy (y) 6 1; asin lemma 2.3.6the identity

I(f )= (Y)I(f ) follows from translation invariance of . This completes the
proof of uniqueness.
p To prove existence,suppose rst thatf 2 L(F; ) is complex-valued, and write f =

ifi ,for nitely many ;2 F,andf; 2 L ' say. Attempt to de ne

X ZF
1(f) = fi) (0 dx:
i (i)

We claim that this is well-de ned. Indeed, if f = 0, then function

X X
fi P = fi
ic< () i: ()
liesin L(F) by lemma 2.3.5 By lemma 2.3.6 the function has integral equal to zero,
and so
Zg x X Z¢
0= fi(x) ,(xX)dx = fi(x) (x)dx:
i (i) i ()
This provesthat | is well-de ned. =
| extendsto L(F; ) by setting I ( R 1) = j I(g)X i for nitely many complex-
valued g in IR(F) and j in . Translation invariance of | follows from translation
invariance of . O

R
We shall denote the extensionof ' to L(F; ) by the samenotation

Remark 2.3.8. The p[:?wous results may be easily modied to prove that there is a

unigue extension of to a translation-invariant C() -linear function on the space
spannedby f ,forf 2 L(F)and varying over all good characters.

Example 2.3.9. Supposethat F is non-archimedean, with prime  and residue eld of
cardinality g. Letw= ( & ; ) bethevaluation on F with value group Z (ordered
lexicographically from the right), with respectto which F has residue eld Fq. Let
a2F, 2 ,j2Z;then

8
Z¢ U < @
al)charc) 1o)X = o ((AY)dyX = @
"char ) 1 i (x)dx > (a)

Supposefurther, for simplicity , that is trivial on Og but not on O, and that the
Haar measure on F hasbeenchosensuch that Oz has measure 1; then

Z ( .
( (@y)dy = _ J £( (@)
JOF— q ] J S E( (a))
Therefore
Z¢ 0 w@<(j+1 )

a(x)chary ) 1o (X) = q iX w@ (j+1 )
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Finally, aschart( ) 110 = chart( ) 1(10p) chart( ) 1(i710-) it follows that

8
Z, 20 w@ < (ji )
a)chan ) 1o, dx=_ gl X w@=( j; )
gl@ gbhXx w@> () )

Compare with the example in [Fes03 §7].

2.3.2 The Fourier transform

Now that we can integrate functions twisted by characters,we may de ne a Fourier
transform on F:

De nition 2.3.10.Letf bein L(F; ). The ngurier transform of f, denoted Ib, is the
C() -valued function on F de ned by Ib(x) = Tf (y) (xy)dy.

The Fourier transforms on F and F are related asfollows:

Proposition 2.3.11.Letg beHaarintegrableonF,and 2 ,a;b2 F;setf = g& |, the
productof alifted function with agoodcharacterThen

P= (ahp * X
wheef is the Fouriertransformof g with respecto .

Proof. By de nition of the Fourier transform, x 2 F implies
Z¢
)= g () ((b+ x)y)dy: ()

This is zero if < (b+ x),ie. if x 2 b+ t( )Og. Conversely, suppose that
Xx= b+ t( )Xo, wherexg2 Of;thentheintegrand in ( )is

o e = (C Daxe)g®

an identity which is easily checkedby evaluating ona+ t( )Of. So

Z F
f(x)

(t( )axo)  ¢* (y) g, (Y)dy

(t( )axo)h(Xo) X
(a(x + B)B(X0) X ;

which completes the proof. O

Let S(F; ) denote the subspaceof L(F; ) spanned over C() by functions of the
form g& |, for g a Schwartz-Bruhat function on F, 2 ,a;b2 F. Recallthat the
Schwartz-Bruhat spaceon F is invariant under the Fourier transform and that there
existsa positive real such that for any Schwartz-Bruhat function g, Fourier inversion

holds: B(x) = g ( x)for all x 2 F. The following proposition extends theseresults to
F:

Proposition 2.3.12. ThespaceS(F; ) is invariant under the Fourier transform. For f in
S(F; ),adoubletransformformulaholds:E’(x) = f ( x)forallx2F.
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Proof. By linearity it suf ces to consider the casef = g* ,for 2 ,a;b2F,andga
Schwartz-Bruhat function on F. Then 0= (abh >  2X belongsto S(F; ) and so

B= @ (bah® x x =@ u
by proposition 2.3.11 Apply the inversion formula for g to complete the proof. O

Remark 2.3.13.Let us consider the dependenceof the theory on the choice of character
: let °be another good character of F. In the interesting caseof a higher local eld,
self-duality implies that ©= for some 2 F ;sowe will restrict to this caseand
assumehenceforth °= . ThenL(F; )= L(F; 9, whereL(F; 9isdened in the
iameway asL(F; ) butreplacing by @ further, the uniqueness of the extension of

given by proposition 2.3.7shows that this extension does not depend on
Let f be the conductor of © and Othe induced characterof F;thus 9x) = qt(f
1)x) forx 2 Of.Bylemma2.3.3 °= " ,,andf=1 ().
Let g be Haar integrable on F,and 2 ,a;b2 F;setf = g& 8. Let f denote the
Fourier transform of f with respectto % thenfory 2 F,
Z¢
fyy= £ Yyx)dx

* b(y)
(ab)y ™ (y) a(y)X ;

by proposition 2.3.11 Further,y 7' § % (y )isthelift of v 7! b( ( )v) at b;

( ), anidentity easily proved (or seethe proof of lemma 2.4.1below). Also, f( ( )v) =
g(v), where g is the Fourier transform of g with respectto _0, and so the analogue of
proposition 2.3.11follows:

f= Qabg > ) Ox :

Forf in S(F; 9 = S(F; ), the analogue of proposition 2.3.12now follows: f =
g & 9.X () Thatis,
f(x)= %( x)x'?
for all x 2 F, where Yis the double transform constant associatedto ©(seethe para-
graph preceding proposition 2.3.12.

2.4 Integration onF

In this section, we consider integration over the multiplicative group F . By analogy
with the caseof alocal eld, we are interested in those functions of F for which
x 7! (x)jxj lisintegrable on F,wherej jis acertain modulus de ned hglow.

Letjj = jjg denotethe absolutevalue on F normalised by the condition  g(x ) dx =
ij Y gx)dxforg2 L, 2F .Firstwe lift this absolute value to F:

Lemma 2.4.1. Letf beaC() -valuedintegrablefunctiononF and 2 F . Thenthescaled
functionx 7! f ( x ) alsobelonggo L (F), and
Z Z
f(x)dx=j ()] X ) f(x)dx

(for thede nition of referbackto the notationsintr oducedat the start ofthe chapter).
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Proof. By linearity we may assumethat f is the lift of a function from L;f = g* say.
Thenforallx 2  1(a+ t( )Of),

f(x)=ga((x atC ))=g( ()X tat( () )

Sothe function x 7! f ( x ) is the lift of the function y 7! g( ( )y) at ‘la; ().
This hasintegral

Z Z

o (yydyx  O=j ()t _gy)ydyx x O

F F

Z¢
=i (O X O fdx;

asrequired. O

Remark 2.4.2. Lemma 2.4.1remains valid if L(F) is replaced by L (F; ).
The lemma and remark suggestthe follows de nition:

De nition 2.4.3.Let bein F ;the absolutesalueof isdened tobej j=j ( )jX ().
Let L(F ; ) bethe setof C() -valued functions on F for which x 7! (x)jxj %,
a function of F , may be extended to F to give a function in L(F; ). The integral of
such afunction over F is de ned to be
Z ¢ Z
(x)dx = ()jxj *dx;

where the integrand on the right is really the extension of the function to F.

Remark 2.4.4. There is no ambiguity in the de nition of the integral over F , for x 7!
(x)jxj ! can have at most one extension to L(F; ). This follows from the fact that
L(F; ) doesnot contain chary og.

R
L(F ; )isaC() -spaceof C() -valued functions, and Fisa C() -linear func-
tional. Mor eover, the integral is invariant under multiplication in the following sense:

Proposition ?R4'5' If belon%sto L(F ; and isin F ,thenx 7! (x ) belongsto
L(F ; )and & (x)dx= = (x)dx.

Proof. Let x 7! (x)jxj ® be the restriction to F of f 2 L(F; ), say. Then x 7!

(x)jxj *=jj (x)jx]j istherestriction to F of x 7! j jf (x ), which belongsto
L(F; ) by lemma 2.4.1 By the samelemma,
Zc Z
(x)dx = jJjf(x)dx
Z
=jiit  fx)dx
Z
= (x) dx;
asrequired. O

Example 2.4.6. We compute a couple of integrals on F :
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(i) LetgbeHaar integrable onF,a2 F, 2 ,andassume02a+ t( )Or.Let be
the restriction of g toF .Then 2 L(F ; ),and
Z Z e
(x)dx = jaj ¥ g* (x)dx:

Indeed, x 2 a+t( )Of implies (x) = (a),andsox 7! (x)jxj !isthe restriction
ofjaj g toF .

(i) Let g be Haar integrable on F , and let be the function on F which vanishes
off Op and satises (x) = g(X) forx 2 O..Then 2 L(F ; )and

Z. z
(x)dx = g(x)jxj *dx:
F

Indeed, let h be the extension of x 7! g(x)jxj *to F de ned by h(0) = 0. Then h
is Haar integrable on F, and h%°® 2 L (F) restricts to the function of F given by
x 70 (X)jxj L.

In this way, the integral on F  lifts the Haar integral on F ,just asintegral on F
lifts the Haar integral on F.

2.5 Local zetaintegrals

In the remainder of this chapter we will discuss (generalisations of) local zetaintegrals.
We begin by summarising the main results of local zeta integrals for the local eld F;
see[Mor05, chapter 1.2]. Let g be a Schwartz-Bruhat function on F,! aquasi-character

of F , and s complex. The associatedlocal zetaintegral on F is
Z

Flglis) = _ gk (X)jxj® dx;

this is well-de ned (i.e. the integrand is integrable) for <(s) suf ciently large. As-
sociated to ! there is a meromorphic function L(! ;s), the local L-function, with the
following properties:

(AC) Analytic continuation, with the poles “bounded' by the L-function: for all
Schwartz-Bruhat functions g, #(g;!;s)=L(! ;s), which initially only denes a
holomorphic function for <(s) suf ciently large, in fact hasanalytic continuation
to an entire function

Z:(g! ;)
of s.

(L) "Minimality' of the L-function: thereis a Schwartz-Bruhat function g for which
Ze(g;!;s) =1
for all s.

(FE) Functional equation: thereis an entire function "(! ;s), suchthat for all Schwartz-
Bruhat functions g,

Ze(g! 51 s)="(1;9)Zg(g:! ;)

Moreover, "(! ;s) is of exponential type, i.e. "(! ;s) = agPs for some complex a
and integer b.
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Having lifted aspectsof additive measure, multiplicative measure, and harmonic
analysis from the local eld F up to F, we now turn to lifting these results for local
Zetaintegrals. Later, in section 2.7, we will assumethat F is a two-dimensional local
eld and consider a different, more arithmetic, local zeta integral. To avoid confusion
between the two we may later refer to those in this section as being one-dimensional
the terminology is justied by the fact that this section concernslifting the usual (one-
dimensional) zetaintegrals on F up to F.

De nition 2.5.1.Forf in S(F; ),! : O ! C ahomomorphism, and s complex, the
associated(one-dimensionalpcalzetaintegralis
Z¢
I HIE f 00! (jxj° charg_ (x)dx;

assuming that the integrand is integrable on F .

Remark 2.5.2. The integral is taken over O, instead of the full multiplicative group of
the eld, becausethis will be more natural in the later study of two-dimensional zeta
integrals.

We will focus on the situation where! is trivial on 1+ t(1)Og; that is, there is a
homomorphism = : F | C suchthat! (x) = () for all x 2 O . If this induced
homomorphism 1~ is actually a quasi-character (i.e. if it is continuous), then we will say
that ! is a good(multiplicative) characterjust as for additive characters,this imitates a
continuity condition.

Restricting to such tame charactersis a de nite problem with the current theory. The
dif cult of twisting additive charactersby ramied multiplicative charactersalso ap-
pears in motivic integration; for example, the current theories of motivic Igusa zeta
functions [DL98] and motivic exponential sums [Clu08a] [Clu08b] do not apply to ram-
ied characters.

2.5.1 Explicit calculations and analytic continuation

We perform explicit calculations to obtain formulae for local zetaintegrals attached to
agood character:

Lemma 2.5.3. Let! bea goodcharacterof O; letf = g*  bethe productof a lifted
function and a characterwhee g is Schwartz-BruhaonF, a;b2 F, 2 . Thenwehave
explicitformulaefor thelocalzetaintegralsin thefollowing cases:
() Supposdhat (a) < min( ;0); orthat0 < (a) < ;orthatO < (a). Then
f (x)! (x)jxjscharOF (x) = Oforallx 2 F,s2 C.
(i) Suppos® = (a) < . Thenf (x)! (x)jxjscharOF (x) = ! (a)jajsf (x) forallx 2 F,
s 2 C;thelocalzetaintegralis well-de nedfor all s andis givenby
Z¢
s =1 (@ja® * f(x)dx:

(iii) Suppos® = (a). Thenthelocalzetaintegral is well-de nedfor <(s) suf ciently
large,andis givenby

o 5Tss) if (B O

1dsge . . —
F(fitis) = if (<0

whele g, is the Schwartz-BruhafunctiononF givenbyg;(u) = g(u  a).
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Proof. In any of the casesin (i), f vanisheson O ;sof (x) charOF (x) = Oforallx 2 F.

In case(ii), a+ t( )Of is contained in O, and x 2 a+ t( )Of implies ! (x)jxj® =
I (a)jaj®; this implies that f (x)! (x)jxjscharOF (x) = f(x)! (a)jajscharoF (x) for all x 2
F,s 2 C. Moreover, for all x 2 F, thlsse results agaF'sn imply f(x)jxj *= f(X)jaj 1
thereforef isintegrable over F , with F f(x)dx = o (x) dx:

Finally we turn to case(iii). First note that g& ! |° lcharOF is the lift of g1
N 1charE at0; 0. Now, if <(s) is suf ciently largethen the theory of local zetaintegrals
for F implies that g1 j° *char- is integrable on F; thus f!j j° lcharOF is the
restriction to F of (g1t j* *char- )%° p, afunction which belongto L(F; ).

By de nition of the integral on F it follows that (for <(s) suf ciently large)f!j
s lcharOF belongsto L(F ; ),and

Z. Z¢
F OO ()jxj* charg_(x)dx = (@] §° *charg )*(x) s(x)dx
S8R . :
2o (@f] j° teharg )*0dx if (B> 0
= (;uf j® Tohars %) dx if (B =0
0 if (<0
8R
2 (U T (u)juj® *charg (u)du if (b>0
= q(u T (ujuj® *chary (u) p(u)du if (B =0
'80 if (h<o0
2 (;ts)  if (>0
=, (@ g if (B=0
"0 if (<0
asrequired. O

Remark 2.5.4.Let! andf = g* beasin the statement of the previous lemma. The
lemma treatsall possible relations between (a), , and 0 with the exception of (a)
< 0. There are interesting complications in this case:since f charOF = f(0) charOF,
we wish to calculate
ZE
(51 55) = £(0) b(X)! (x)jxj charg_ (x) dx:

For example, if hasconductor 1then

ol j j*charg_ = (bt j*charg )%

and sothe zetaintegral is formally given by
Z

2(f;1;5) = £(0) _ )T (X)jxjS dx:

If F were nite then this woulg beaGausssum over a nite eld, astandard ingredient

of local zeta integrals; with F alocal eld it is unclear how to interpr et this but the
following examplesprovide insight.

Example 2.5.5. SupposeK = F is non-archimedean and consider the formal integral
Z

k (X)! (x) dx
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with g an additive characterand ! a multiplicative quasi-characterwith <(!') > 0
(recall that this is de ned by j! (x)j = jxj<() for all x). If n is a suf ciently small
integer, then we have a convergent integral

VA

K (X)! (x)dx = 0;

w 1(n)
wherew is the discretevaluation of F; sofor n suf ciently small the value of the integral

Z

k (X)! (x) dx

fx:w(x) ng

does not d%end on n. It seemsreasonableto adopt this value asthe meaning of the
expression = g (x)! (x) dx.

Example 2.5.6. SupposeF = R and we wish to understand the formal integral

z 1
e? X dx:
0
Replacing 2 i by somecomplex with <( ) < 0gives atrue integral with value
z 1
e dx= 1=
0
Similarly we have 7
0

e¥ dx = 1=
1
for <( ) > 0. This suggeststhat, formally,
z Z, Z,
e X dx = e X dx + e Xdx=0
R 1 0
and 7 Z, Z,
e? X sign(x) dx = e X dx + e Xdx= =
R 1 0
where sign(x) is the sign () of x.

The rst of theseintegrals is already taken in}p account by our measure theory: if
F = R((t)) and is the characterde n&d by ( ,ant") = € @ (seeexample 2.3.2,
then charp. belongsto L(F; )andRF (x) charg, (x) dx :RO. But charg, is also
the lift of x 7! € ¥ at0;0soformally ' (x)charo, (x)dx = L€ * dx.

Suchmanipulations of integrals are common in quantum eld theory (seee.g.[JLOQ)
and | am grateful to Dr. JormaLouko for discussionsin this subject. That suchintegrals
appear here further suggestsa possible relation between this theory and Feynman path
integrals. More evidence for such relations may be found in sections 16 and 18 of
[Fes04.

Ignoring the complications causedby this dif cult casewe may now deduce the rst
main properties of some local zeta functions. Appendix 2.Bexplains what is meant by
aC() -valued holomorphic function.

Proposition 2.5.7. Let! beagoodcharactgofOF, andletf bein S(F; ); assumdhat f
R H — i i I i
may bewritten asa nite sumoftermsf = ;g b Pi Whete eachg; b IS treatedoy

|
oneofthecase®flemma2.5.3andp; 2 C() . Then
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() For<(s) suf ciently large, the integrand of the local zetaintegral éd(f ;1 8) is inte-
grableoverF andsothelocalzetaintegralis well-de ned.

(i) 24(f;!;s)=L(T;s) hasentireanalyticcontinuation:thatis, therisaC() -valuedholo-
morphicfunctionZ (f ;! ;s) onC whichequals 2 (f ;! ;s)=L(I; s) for<(s) suf ciently
large.

(i) Theris someunctiong 2 S(F; ) forwhichZ2(g;! ;s) = 1forall complexs.

Proof. The results follow by linearity, the previous lemma, and the main properties of
local zetaintegrals on F. O

It is important to extend this result to all f in S(F; ); therefore the complication
discussedin remark 2.5.4must be resolved.

Remark 2.5.8. We say afew wor ds about functional equations. Thereis no result assat-
isfactory asfor zeta functions of a one-dimensional local eld, and there is no reason
why there should be due to the charOF factor appearing in our de nition of the local
zeta integrals. The most interesting issue here is making a functional equation com-
patible with the dif culties causedby remark 2.5.4 this should indicate correctness(or
not) of examples 2.5.5and 2.5.6

2.6 Local functional equations with respectto sgoesto2 s

In this sectionwe continue our study of local zetafunctions, considering the problem of
modifying the functional equation (FE)on F sothat the symmetry is not sgoesto 1 s,
but instead sgoesto 2 s. This isin anticipation of the next sectionon two-dimensional
zetaintegrals, where such a functional equation is natural.

Sincethis section is devoted to the residue eld F, we write K = F. We x an non-
trivial additive character g of K (until proposition, 2.6.13where we consider depen-
dence on this choice). Fourier transforms of complex-valued functions are taken with
respecttp this character (and the measure which was xed at the start of the chapter):
b(y) = a(x) «(xy)dx.

The two main proofs of (FE) are Tate's [Tat67] using Fubini's theorem, and Weil's
[Wei95] using distributions. For Weil, a fundamental identity in the non-archimedean
caseis

5 V=it ) ()
for 2 K ,wherewe write g( ) for the function x 7! g( x ), notation which we shall
continue to use.

The aim of this section is to replace the Fourier transform with a new transform so
that () holds with j j 2 in place of j j 1. This leads to a modi cation of the local
functional equation, with j j?in placeof j j; seepropositions 2.6.1and 2.6.24

2.6.1 Non-archimedean case

We assume rst that K is a non-archimedean local eld, with residue eld Fq. The fol-
lowing proposition precisely explains the importance of the identity

Y )=t
Proposition 2.6.1. Supposg¢hatg 7! g is aC-linearendomorphisnofthe Schwartz-Bruhat
spaces(K ) of K whichsatis es,for somexed integern,

o ) =ii"gC )
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forallg 2 S(K), 2 K . Let! beaquasi-characteof K . Thenthereis a unique entire
function™ (! ;s) whichsatis es

Zx(g:! Lin s)=" (1:9Zk(g;!;9)
forallg2 S(K), 2K

Proof. Let gbeaSchwartz-Bruhat function onK ,and 2 K . Thenfor <(s) suf ciently
large to ensure integrability , the identity

k(@ )59 =10) S k(g!;s)
holds. Conversely, for <(s) suf ciently small, the assumedproperty of implies that

k@)t hno9)=1() Y jsk@@:! Ln sy
Therefore, for all complex s,
Ze (9C )t =1 () Y %Z(g!ss)
and
Zk(9( )5 Bnos)=1() Y %Zk(gs! Hnoos)
Hence the C-linear functionals on S(K) given by

97! Zx (9;! ;)

and

97! Zx(g;! Ln 9
(for xed s)eachsatisfy (g( ) =!() % jS(gforalg2S(K), 2K .Butthe
spaceof such functionals is one-dimensional (seee.g. [Mor05, 1.2]) (for! 6 j j $)and
thereisf 2 S(K) suchthat Zx (f;! ;s) = 1for all s (property (L) of local zetaintegrals;
seebeginning of section 2.5); this implies the existenceof an entire function " (! ;s) as
required. O

Remark 2.6.2. Supposethat maps S(K) ontoS(K ). Then thereis g 2 S(K) such that
Zx(g ;! Ln s)=1forallsandso" (!;s)is nowherevanishing.

Our aim now is to investigate the epsilon factors attached to a particular transform
which satisesg( ) =jj 2g( ').Letw:K ! Zbethe discretevaluation of K
and 2 K a xed prime.

De nition 2.6.3.De ne
rcK 1 K: x70 Wy

(andr (0) = 0).
For g a complex-valued function on K, denote by W g the function

g W=2x) if w(x) is even

Wag(x) =
9= L Cwe0 D2y if wix) is odd

(and Wg(0) = 9(0)).
Assuming that Wg is integrable on K, de ne the -transform(with respectto ) of g

by
g =Wg r:
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Remark 2.6.4. Compare this de nition with [Wei95 and [Fes03 §15], where Fesenko
de nes the transform on two copies of atwo-dimensional local eld F F.

The -transform depends on choice of prime . We may also denote by r the com-
position operatorr (g) =g r .

The spaceof Schwartz-Bruhat functions S(K) is closed under the -transform.

It is easyto verify that the -transform hasthe desired property:
Lemma 2.6.5. Suppos¢hat g is a Schwartz-BruhabnK andthat 2 K . Then
o ) =iicg( )
Proof. If x 2 F ,then W(g( ))(x) = W(g)( V() x ). Hence
Wyg( ) =j WO j Mg YOt
Evaluating this atr (x) yields
g ) )=jj Mg MO T =jj2g(
]

Remark 2.6.6. Mor e generally, the previous lemma holds for any complex valued g for
which Wgand W (g( )) are both integrable.

Wenow -transform severalfunctions. Let bethe measure of Ok under our chosen
Haar measure and let d be the conductor of .

Example 2.6.7. Supposeg = char ro,. Then Wg = char 2o, , which has Fourier
transform q 2 char « 2o, - Sothe -transform of gis

g = g *char wee o, ;

wher e dd=2e denotes the leastinteger not strictly lessthan d=2. Compare this with the
Fourier transform
b= q "chara g, :

Example 2.6.8. Supposeh = chari+ ro, with r 1. Letx 2 K . If w(x) is even, then
Wh(x) = 1ifandonly if x 2 1+ 'O ;if w(x) is odd, then Wh(x) = 1if and only if
Ix21+ "Ok.So

Wh = chary+ ro, +char g+ roy);
whence
Wh=q "chars o, k+q " Ychara 1o, «k( )

For the remainder of this example assume = 1,d = 0,r = 2; we shall compute the
double -transform h
It may be easily checkedthat if x 2 K, then

8

20 if x 2 1Ok
char 20, (r (x)) k(r () =_ «( ') ifx2 1O,

"1 if x 2 Ok
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and 8
>0 ifx2 10«
char so, (r (X)) k( r (x) = S k(X)) ifx2 oy
1 if x 2 Ok :

From the identity for Wh it now follows that
h =qg?«( *)+q?’g)char .o +q *1+q *)charo, :
Sethy = k( 1) char 10, 1 ho=q ! g char 10, ; it may be checkedthat

Whi= k( 1)char 1OK+ k char 20,
Why=q ! k char 10, +q 1 «( ) char 20,

Standard Fourier transform calculations now vyield

Why=qchar 1, o, char 1,0, +@P char 14 20, qohar 1+ oy

Why = char 1+ o, q !charo, +qchar 1, 20, char o :
Further, by example 2.6.7, W(\charoK ) = charg, , and so

qz\)\/(h)z gchar 1, o, Char 1,0, +¢? char 4, 20, Qchar 1+ oy
+ char 1+ o, +qchar 1, 20, char o, + charo, :

Now, x 2 K implies w(r x) is even,and so

PW(h) r =cchar 1, 20, I qchar 14 o T
+char 1+ o, I char o, r + charg, r
- 2
= g char 1, 20, qchar 1+ o
+ char 1+ o, char o, + charg, :

That is,
h =q 2charOK q 1 q Ychar 14 o + char 44 20, :

Note that although the de nition of the -transform depends on choice of prime
the double -transform h of h doesnot. This will be proved in general below.

Theseexampleswere speci cally chosento allow usto compute explicit formulae for
the epsilon factors” (! ;s):

Example 2.6.9. We calculate the epsilon factor attachedto the -transform for the trivial
character 1. Suppose for simplicity that Ox has measure 1 under our chosen Haar
measure.

Letf = charo, . Example 2.6.7implies f = char =2 o, ; it is a standard calcu-
lation that Zx (f;1;s) = 1 q Yand Zx (f ;1;2 s) = (1 q Y)g©=2es 2 for all s.
Therefore

" (L;s) = 2 2

for all s.
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Example 2.6.10. We now calculate the epsilon factor attached to the -transform for
rami ed quasi-characters.Continue to suppose that that Ox hasmeasure 1.

Let ! be a quasi-character of K of conductor r > O; that is, ! ji+ ro, = 1 but
Pjas + 10, 61

Let h = chari+ ro,; SO k (h;!;s) is constantly m, the measure of 1+ 'Ok under
dx = jxj dx. The aim is now to calculate  (h ;! 1;2 s)without calculating h . By
example 2.6.8 Wh = 2+ h( 1),andsoWh= R+ q B( ). Therefore

k(i L2 ¢ = R( WO (x) Ljxj2 Sdx
K z
+q 1 h( w(x)+1 X)' (X) lejZ Sdx
K

Z
= Q62 R( "x)! (x) tdx
1
n2z wt(n) “ 7
+ q 1 qn(s 2) H( n+1x)! (X) ldx
7 n2z w t(n)
= ()" RO () T
n OKX Z
+ q 1 qn(s 2)|( ) n H( 2n+lx)! (X) 1dX
n OK

But by Tate's calculation [Tat67] when calculating the epsilon factor in this samecase,
Z

B( Nx)! (x) ldx = q™@mo(! ) ifN=d r
OK

0 otherwise,

where o(! 1) is the rootnumberof absolute value one

X
ol H=q™ 1)k (®")

the sum being taken over cosetrepresentativesof 1+ 'Ok in O, .
Therefore

q(d r)(s 2):2!( )(r d):2q r:2m 0(! 1) d r even
q(d r 1)(s 2)=2 1!( )(1+r d)=2q r=2m 0(! 1) d r odd

- qd(r d)=2e(2 s)!( )d(r d)=2eq 4mo(l Y
where ¢ , = 1ifr disevenand= q tifr disodd. Finally, aswe have already
observedthat ¢ (h;!;s) = mforall s,and L(! ;s) = 1for such acharacter, we obtain
(| ;S) — qd(r d)=2¢(2 S)|( )d(r d)=2(§q r=2 dr 0(| l):
Remark 2.6.11. Mor e generally, if Ox has measure under our chosenHaar measure,
then eachof the epsilon factors above is multiplied by afactor of

Let us now consider what happens when we take the double transform f . If | is
rami ed with conductor r, then

9T (B2 9= AU 9T gt ot T of!)
= 22 d=2e 2 g (1) o(1) of!)
:quddrqr!(l)
= 2q 4, S

k(h;! 12 g =

r=2
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If we declare the conductor of anunrami ed characterto be Qthen this formula remains
valid for unramied ! .

Therefore two applications of the functional equation imply that for all f 2 S(K), all
characters! of conductor r 0, and all complex s,

k( 5tis)= 2994 1 ( 1) k(f;!ss): v)

We will now proceedto useour results on epsilon factors to deduce properties of the
-transform; the idea is to use identities between zeta integrals to obtain identities be-
tween the functions. The following result is clearly of greatimportance in this method:

Lemma 2.6.12.Letf 2 S(K) andsuppos¢hat ¢ (f;! ;s) = Oforall quasi-characters and
complexs; thenf = 0.

Proof. Let f bein S(K). Thenf f(0)charo, belongsto S(K ) and so the zeta in-
tegral « (f (0) charp, ;! ;s) is well-de ned for all s and belongsto C[g®;q °]. Indeed,
it sufces to observe that S(KR) is spanned by charas mo, where w(a) > m, and
k(charar mo;!is)=q W@ g ! (s)dx.

However, for | = 1the trivial character,

k (f (0) charo, ;1;8) = f(O)m(1 q %) !

where m is the multiplicative measure of O, . Sothe assumption that ¢ (f;1;s) = 0
implies f(0)(1 q %) ! 2 C[g%;q S] asa function of s. This is false unless f (0) = O;
thereforef (0) = Oand sof 2 S(F ).

Sonow g (f;!;1)is well-de ned for all characters! of F and equals ! ), where
edenotes Fourier transform on the group K ; so f€is a function on the dual group of
X (K ) of K . By theinjectivity of the Fourier transform (seee.g.[GRS64 chapter IV])
from LY(K ) to C(X (K )) our hypothesis implies that f = 0. O

We will now use the weak functional equation (y) to prove results about the
-transform. Recall that the transform depends on the choice of both non-trivial ad-
ditive character and prime; surprisingly , the double -transform does not depend on
choice of prime:

Proposition 2.6.13. The double -transform doesnot dependon choiceof prime . If the
character g is replacedy someothercharacterwith conductord® say and we assumehat
d® d mod 2, thenthedouble -transformis multiplied byaconstantfactorofqdo d,

Proof. Write more generally D; for the double -transform with respectto prime ; and
character 'K for i = 1;2; let di be the conductor of k and assumed; do mod 2.
Equation (y) implies that for all f 2 S(K), all characters! of conductor r 0, and all
complex s,

k(Daf;1;8)= 2q % 4 1 ( 1) k(f;!;9)
= g% % (Daf ;1 ;9):

Lemma 2.6.12implies now that D;f = g® %D,f, revealing the independence from
the prime and claimed dependenceon the conductor of the character. O

We use (y) again, this time to prove that is an automorphism of S(K). It is in-
teresting that we are using properties of zeta integrals and epsilon factors to deduce
properties of ; one would usually work in the other direction but the author could
nd no directproof and it is very satisfying to apply zetaintegrals to such a problem!
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Proposition 2.6.14.The -transformis alinearautomorphisnmofS(K ).

Proof. Let D denote the double -transform on S(K) with respectto our chosenchar-
acter (we have shown that it does not depend on choice of prime); let D1 denote the
double -transform on S(K) with respectto a character & with conductor d; 6 d
mod 2. Equation (y) implies that for all f 2 S(K), all characters! of conductor r 0,
and all complex s,

k (D1Df;1;s)= 2 % 4 1 ( 1) (Df;!;s)
= g 99y (D2
= g9 % tk(filse)
as g r g r=49q Lforallr.

Lemma 2.6.12now implies that D;Df = 4q 9 %q If for all f 2 S(K). Therefore
is injective. ReplacingD 1D by DD in the argument similarly showsthat is surjective.
O

Remark 2.6.15. The key to the previous proof is the identity ¢ ; ¢, r = g 1, which
removesthe dependenceon the conductor r of the multiplicative character. Thereis no
clearway to relate zetaintegrals of f  with thoseof f in a manner independent of the
character; so we were forcedto transform four times!

The following result shows that if k has conductor O then the -transform and
Fourier transform agreeon functions lifted from the residue eld K:

Proposition 2.6.16.Assumehattheconductorof g is0. Leth beacomplex-valuetlunction
onK andr aninteger;letf = hO' bethelift ofh atO;r (thatis, f vanishesff 'Ok and
satis esf ( 'x) = h(X) forx 2 Ok ). Thenf =q " 0

Proof. Supposeinitially thatr = 1; to prove the assertionit suf ces to consider func-
tions f = chara+o, fora2 1Ok. Forsuchanf it is easily checkedthat W (f) = f
andf =

For arbitrary r, note that x 7! f ( "*1x) satis es the hypothesesfor ther = 1 case;
lemma 2.6.5and the corresponding result for the Fourier transform, namely f( ) =
jj M )Yfor 2K ,implyf =q' {0 O

Let us summarise the main results of this section concerning local zetaintegrals, the
-transform, and related epsilon factors.

Proposition 2.6.17.Let! beaquasi-charactenfK . Then

(AC*) Analytic continuation, with the poles’boundedby the L-function: for all Schwartz-
Bruhatfunctionsg,  (g;! ;s)=L(! ;s), whichinitially only de nesaholomorphidunc-
tion for <(s) suf ciently large,in facthasanalytic continuationto an entire function

Zk (g;! ;)
ofs.

(L*) "Minimality' oftheL-function: thereis a Schwartz-Bruhafunction g for which
Zx (g ;s)=1

forall s.
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(FE*) Functional equation: thete is an entire function " (! ;s), suchthat for all Schwartz-
Bruhatfunctionsg,

Zx(g:! L2 s)=" (1:9Zk(g;!;9):

Moreover" (! ;s) is ofexponentiatype;thatis,” (! ;s) = agPs for somecomplexa and
integerhb.

Proof. Properties (AC*) and (L*) are just (AC) and (L) becausethey are independent of
the chosentransform. (FE*)is proposition 2.6.1and the epsilon factors were shown to
be of exponential type by explicit calculation in examples 2.6.9and 2.6.10 O

Remark 2.6.18. For applications to zeta-integrals on two-dimensional local elds we
will require the -transform and zeta integrals for functions de ned on the product
spaceK K. AsS(K K)= S(K) S(K),we may just de ne the -transform on
S(K K)by(f g =f g and linearity.

Supposethat ! is a quasi-characterof K K ;write I (X;y) = ! 1(X)! 2(y) for quasi-
characters!; of K . The decomposition S(K K) = S(K) S(K) and previous
proposition imply

RR
(i) Forallf 2 S(K K),theintegral ¢ k(f;!;s)= f (X y)! (X Y)jxj5jyj® dxdy is
well-de ned for <(s) largeenough. Moreover,s 7!  k (f;!;s)=(L(! 1;S)L(! 2;9))
has analytic continuation to an entire function Zx « (f;!;s).

(i) Thereisf 2 S(K K)suchthat Zx k(f;!;s)= 1forall s.
(i) Forallf 2 S(K K),thereis afunctional equation:
Zx k(f 30 H2 9 =" (119)" (129)Zk «k(f;!;9)

for all s. Note that " (! 1;5)" (! 2;5) is of exponential type.

2.6.2 Archimedean case

Now suppose that K is an archimedean local eld. Rather than presenta version of
proposition 2.6.1using tempered distributions, we will just de ne and investigate an
analogue of the -transform. The existenceof an s goesto 2 s functional equation will
be shown asin [Tat67], via Fubini's theorem.

De nition 2.6.19.Intr oduce
r K ! K; x7!jxjx:

Note that this r is a bijection with inverse x 7! xjxj 2 (for x 2 K ). Given a complex-
valued function f on K, de ne its -transform by

assumingthatf r !isintegrable.

Remark 2.6.20. Note that the archimedean and non-archimedean r maps have the
sameform: r x = (x)x where is asplitting of the absolute value.

This archimedean -transform has an integral representation similar to the Fourier
transform:
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Lemma 2.6.21. Letg beacomplex-valueflinctiononK suchthatx 7! g(x)jx] is integrable.
Theng is well-de nedand
Z

g(y)=2 . g(x) «k (r (yx))jxjdx:

Proof. By de nition of the -transform,
Z Z

g(y)= g r Yu) k(ur(y)du= g(ujuj 2) k (uyjyj)du:

To obtain the desired expression,changevariables x = ujuj¥™ = r  (u) in the integral.
O

Remark 2.6.22. The previous lemma is enough to prove that if f is a Schwartz func-
tion on K, then both f and f are well-de ned. Unfortunately, it is false that the
-transform of a Schwartz function is again a Schwartz function, asthe following ex-
ample shows.

Example 2.6.23.We -transform the Schwartz function g(x) = e x? on R with additive
charactere? ™. Firstly,g r 1(x) = e S9"09% where sign(x) is the sign ( ) of x, and
SO Z, Z,

o r iy = e X ™ dx+ e Xe 2 gx:
0 0

R .
A standard calculation from the calculus of residuesis 01 e X eXdx = 1 ib)
for real ; bwith > 0. Thereforeg' r 1(y)= 2 =( 2+ 4 2y?) and so

g(y):m

which doesnot decayrapidly enough to be a Schwartz function. Sinceg r is not dif-
ferentiable at O, this is in agreementwith the duality provided by the Fourier transform
between smoothnessand rapid decrease.

We now prove an s goesto 2 s functional equation:

Proposition 2.6.24. Suppos¢hat! isaquasi-charactenfK . If f ;g are Schwartzfunctions
onK forwhichf ;g arealsoSchwartzthen

k(@:1s) k(@;! B2 )= k(f ;! L2 s)k(g!;s)

for all complexs. Here we write zetafunctions whele we strictly meantheir meiomorphic
continuation.

Proof. One imitates Tate's method, using the representation of the -transform given by

lemma 2.6.21to show that
Z 7Z 27

(19 k@it B2 9=2 1(992) k( (y2)ixyzit (y) Hiyi ©dxdydz

for swith <(s) = 1 <(!); here<(!) is the exponent of | , dened by jlj=j j<(').
This expressionis symmetric in f and g, from which follows

k(i1ss) k(g;! 52 s)= «(f ;' 52 s)k(g!;s):

Apply the identity theorem to deduce that this holds for all complex s. O
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Example 2.6.25. Suppose that K = R; let g(x) = e X2 f = g r . Assume that
r(X) = € X, and that the chosen measure is Lebesgue measure; then § = g which
implies herethat f = f. For s complex of positive real part,

1 1
K(f;l;s)zE s“‘(s=4)=§K(g;1;s=2):
The previous proposition implies that if h; h are Schwartz on R, then

©C 2% (@ 9=

h:1;2 s)= - h;1;s

K ( ) =4 (=4) K ( )
_ 52 1 s=2 S s 1 TR
=2 cos ) > k (h;1;s);

by the same Gamma function identities used in [Tat67].

Remark 2.6.26.If f is a Schwartz function and ! a quasi-character, then we know that

k (f;!;8)=L(!;s) analytically continues to an entire function; also, f may be chosen
suchthat « (f;!;s) = L(!;s). Howeverasexample 2.6.23demonstrates, the standard
choice of f may besuchthat f is not Schwartz.

Theauthor suspectsthat if f is a Schwartz function on R for which f isalsoSchwartz,
then « (f;L;s)=( 5™ ( s=4)) will analytically continue to an entire function; more-
over, we have seenin the previous example that this denominator satis es the “mini-
mality’ condition (i.e. it occurs as a zeta function). This would justify calling

$=4 ( s=4) the local L-function for

2.7 Two dimensional zetaintegrals

In this, the nal section of the chapter, we apply the integration theory to the study of
two-dimensional local zeta integrals.

2.7.1 Non-archimedean case

F is now a non-archimedean, two-dimensional local eld. Thus = Z and F is com-
plete with respectto the discrete valuation , with residue eld F anon-archimedean
(one-dimensional) local eld; the residue eld of F is Fq. The rank two ring of integers
of F is O = l(Of). Let tq1;to belocal parameters for F which satisfy t, = t(1) and
ty = ,where isthe prime of F which was usedto de ne the -transform onK = F
in the previous section.

Let Kg’p(F) denote the second topological K -group of F (see[Fes0Q); recall that
K;‘)p(F) is the appropriate objectfor class eld theory of F (see[Fes9] for details). We
recall those properties of K 2 (F) which we shall use:

(i) A border map of K -theory de nes a continuous map @: K, *(F) ! F which
satis es

@u;t,g=1u;, @u;vg=1 (for u;v 2 Op):
@does not depend on choice of t1;t,. Intr oduce an absolute value

j KPR R 7@ je

(i) Let U bethe subgroup of K ;Op(F) whose elementshave the form fu;t;g+ fv;tq,

for u;v 2 Og. Kg’p(F) decomposesas a direct sum Zftq;to,g U. Note that
jnfty;tog+uj=q ™“forn2 Z,u2 U.
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iii) For any quasi-character : K PPEYL C , there exist complex s and a character
2
0:U! Slsuchthat

(nfty;tog+ u) = o(u)g ™ (forn2 Z; u2 U):

The real part of s is uniquely determined by and is said to be, asin the one-
dimensional case,the exponent of (denoted <( )).

De nition  2.7.1.Introduce T = O OF,T+ = O Og, and a surjective homomor -
phism
T KYP(F) (3 )7 f; tag+ fty; g+ w()fty; tog

for ; 2 0Og.
Note that u;v 2 Op and i;j 2 Z implies t(thu;thv) = (i + j)fty;tag+ fty;vg+ fu;toeg.

Remark 2.7.2. Compare with [Fes03. t depends on the choice of local parametersty; ts.
T* isthe closure of T in the two-dimensional topology of F;its relation to T is the same
asF to F in the one-dimensional local theory, the adéle group A to the idéle group
A in the one-dimensional global theory, or the matrix algebra M, to the group GL,, in
R. Godement and H. Jacquet'sgeneralisation [GJ73 of Tate's thesis.

Note that (x;y) 2 T implies jt(x;y)j = jXjj¥j 2 R>o.

Given a C(X) (= C()) -valued function f on T*, a quasi-character of K 3P (F),
and complex s, Fesenkosuggestsin [Fes03 the following de nition for the associated
(two-dimensional) local zetaintegral:

Zg F
(f;; 9= #(f;; 9)= FOGy)  tOGy)it(x y)i® charr (x; y) dxdy;

assuming that the integrand is integrable on F F ; integration on this spaceis a
simple union of the integration theory on F (section 2.4) and the basic theory for
F F (summarised in subsection 1.4.2.

We now prove analytic continuation, and moreover afunctional equation, for a class
of functions f and characters :; we write f © for the lift of f 2 S(F  F) at (0;0); (0; 0)
(seel.4.2for the de nition).

Proposition 2.7.3.Let beaquasi-charactean;Op(F)andsuppothat t factorsthrough

theresiduemapT ! F  F . Let!; bethequasi-charactersfF de nedby  t(x;y) =
L1(X)! 2(Y). Dene Le(; s) = L(! 1;s)L(! »;s), a productof two L-functionsfor F, and
"e(:s)=" (11;9)" (! 2;), aproductoftwo epsilonfactorsfor F. Then

(AC2) Forallf 2 S(F F), thezetafunction (f9; ; s) is well-de nedfor <(s) suf ciently
large.Moreover
(f% 5 9)=Le(; 9)
hasanalytic continuationto an entirefunction, Z (f °; ; s).
(L2) Therisf 2 S(F F) suchthatZ(f%; ; s) = 1forall s.
(FE2) Forallf 2 S(F F), afunctionalequatiorholds:
zZ(F % L2 s)="g(;s)Z2(f%; 9):

for all s. Moreover"g(; s) is of exponentialtype; thatis "¢ (; s) = aoPs for some
complexa andintegerb.
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Proof. By de nition of the integral on F F and asimilar argument to example 2.4.6
(i), we have 7z Z

(% ;8= f(uv)! 1(u)! 2(v)jujSjvj® dudv;
F F

which we denoted = (f;!1 !2;s)in remark 2.6.18 That is, since we are only

considering functions f which lift from F  F, the zetaintegral over O  Of reduces
to azetaintegral over F  F. All required results follow from that remark. O

Remark 2.7.4. The previous example highlights the interest of lifting the -transform
up to F in asimilar way to how we lifted the Fourier transform. Thenit may be possible
to generalisethis proposition to more functions on O  Og than simply those which
lift fromF F.However, it is unclear whether this would produce anything essentially
new.

Remark 2.7.5. Having calculated epsilon factors for the -transformation in section 2.6,
we have formulae for the two-dimensionagpsilonfactors

(i s) =" (M1is)" (M 2rs):
For example,if ! 1 isramied with conductor r > Obut ! 5 is unrami ed, then

"F(; S) — q(d(r d)=2e d d=2¢)(2 s) (tl;l)d(r d):2eq r=2 dr O(! 11)

where d is the conductor of the additive characteron F usedto de ne the -transform.

There is another relation between zeta integrals on F and F which we now discuss;
rst we needalemma:

Lemma 2.7.6. Let g bea complex-valuedunction on F and s complexsuchthat gj % is
integrableonF . Letw :F ! Z bethediscetevaluationonF ; intr oduce

®:F  F I C (xy) 71 g( MWW wx) jxyjs:
Theng®isintegrableoverF ~ F , with integral
ZZ

z
1 + s - -
g y)dxdy = (O_) 7 g(x)jxi®dx;

F71 qS

whee isthemultiplicative Haar measueonF .

Proof. Theintegral of g?over F  F is

x x £ £ o
( min (n;m) mx)q s(h+m) dedyI

n2zm2z W '(n) w i(m)

Split the inner summatilgn gverm < n and m n, and then interchange the order of
the double summation | ., ;elementary manipulations complete the proof. [

De nition 2.7.7.Intr oduce a "generalisedresidue map':

2 TH UF,  (trtzu;titey) 71 (PintisdominGzia),

whereu;v 2 O andiy;izj1;j22 Z.
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Remark 2.7.8. Themap », when restricted to T, factors through K 5 (F):
2(t1u ! 1V) = @min(i; j)fty;tog+ fty;vg+ fu;taQ)
wherei;j 2 Z,u;v 2 O.
» provides a new method for lifting zetaintegrals from F to F:

Proposition 2.7.9. Let! beaquasi-characteofF , s complexandg acomplex-valuefunc-
tion on F suchthat g! 2j j% isintegrableonF :let = ! @ Thenthe zetaintegral
(g 2;; s)iswell-de nedand

1 q S C
(@ 2i:9)= (O << Fl@!:2s+0);
wherec 2 Cisde nedby! =14 j°with ! gacharacteofF trivial on

Proof. For (x;y) 2 T,
1, 1

g 20xy) VIO Y)SIixi Ty
= g( MnWEWE) wXxy1 (x W) jxyjs L
— g( min (w(X);w(Y)) W(Y)Y)! 0(7)joS+C 1

= ¢( min (w(x);w(y)) W(Y)y)! of min(w(x);w(¥)) W(Y)Y)jszw L

sothat (x;y) 7' g 2(x;y)  t(xy)jt(x;y)Sjixj tjyj !isthe lift of
(U;V) 71 g( min (w(u);w(v)) W(V)u)! 0( min(w(u);w(v)) W(u)u)juvjs+c 1

at (0;0); (0; 0).
The result now follows from the previous lemma. O

This is enough to deduce analytic continuation of some more zeta functions:

Corollary 2.7.10.Let! beaquasi-characteofF , L (! ;s) theassociated -function,andg a
Schwartz-BruhafunctiononF;let =! @ Then

(i) For<(s) suf ciently large,thezetaintegral (g ; ; s)iswell-de ned.

(i) Theholomorphidunction (g ; ; s)=(L(! ;s)(1  (ft1;t,g)g 3) 1),initially de ned
for <(s) suf ciently large,hasanalytic continuationto an entirefunction.

Proof. This follows from the corresponding results for local zeta functions on F, the
previous proposition, and the identity (fti;tog) = ' () = g ¢ wherecis asin the
previous proposition. O

It hasbeenuseful throughout for  tto factor through the residuemap T! F F .
In the next two exampleswe consider some situations in which this happens. Let L, a
two-dimensional local eld, be a nite abelian extension of F and let be a character
of K 3P (F) which vanisheson N ¢ K3P(L). So corresponds, via two-dimensional
class eld theory, to a characterof Gal(L=F).

Example 2.7.11.SupposeL=F is separablewith jL : Fj = jL : Fj;i.e. L=F isunrami ed
asan extension of complete discrete valuation elds.

Then @induces a surjection K P(F)=N ¢ K3P(L) I F =N, L . Further, the
separability assumption implies L=F is an abelian extension of local elds, so that
jJF =Nl j= L :Fj=jL:Fj= jKyP(F)=N ¢ K, P(L)j; thus the aforementioned
induced surjection is an isomorphism. Therefore factorsthrough @
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Example 2.7.12. SupposeL = F,p -jL : Fj,and t, 2 N L (atotally tamely
rami ed extensionin the secondparameter’).
Then (X;y) 2 T implies t(x;y) fty; ( y)g mod N K;(’p(L) (see[Fes9)), where
is the projection
cF = hi hai F

qg VF! Fqg

Here Vg is the two-dimensional group of principal units of F.

Thereforethere existsatamely rami ed quasi-character! of F suchthat t(x;y) =
L(y)for (x;y) 2 T.

Theseexamples show that our functional equation applies to all “suf ciently unram-
ied characters;but do observe that in example 2.7.11 the residue extension L=F is
allowed to be asrami ed asdesired. The proof of the functional equation in [Fes03 is
valid whenever all relevant functions are integrable, and proposition 2.7.3is certainly a
special case.However, it appearsthat if isramied then certain interesting functions
fail to be integrable.

The failur e of the integral to work in the rami ed setting is a serious dif culty , which
may only be overcome through a systematic comparison of the current theory with the
rami cation theory of two-dimensional local elds. Seesection 6.1for some thoughts
on the subject.

2.7.2 Archimedean case

Now suppose that F is an archimedean, two-dimensional local eld; thatis, = Z,
F is complete with respectto the discrete valuation , and the residue eld F is an
archimedean local eld. The classication of complete discrete valuation elds (see
e.g. [FV02 11.5]) implies that F is isomorphic to a eld of Laurent series C((t)) or
R((t)), where we write t = t(1).

The correctway to usetopological K -groups for class eld theory and zetaintegrals
of such elds is not clear, so we content ourselves with making a few remarks about
generalising the results in the non-archimedean casewithout appealing to K -groups.

Given Schwartz functions f ;gon F for which f ;g arealso Schwartz, and ! aquasi-

character of O which factors through the residue map O. ! F , proposition 2.6.24
implies that

Z Z
F20(x) 1 ()jxj* charg_(x)dx  (g)*(x) ! (x) *jxj* ° charg_(x) dx

is invariant under interchanging f and g. There is an analogous result for integrals
over O  Og.

An extension of F cannot be wildly ramied in any sense,and so by analogy with
examples 2.7.11and 2.7.12we expectarithmetic characterson O (or O  O;) to lift

from F . Hence this functional equation may be satisfactory in the archimedean case.
Indeed, in the caseF = C((t)), the nite abelian extensions of F have the form
C((t¥™")) for natural n. A character attached to such an extension is surely a purely
imaginary power of j j;this lifts to O from F .
If F = R((t)), then F has maximal abelian extension C((t™2)), with subextensions
R((t¥2)) and C((t)). A character attached to the extension C((t*™2)) is O ! f 1g:

x 7! sign(X), which again lifts from F .
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2.A Rings generated by d-classes

This appendix gives a clear exposition of the calculations required to develop the mea-
sure theory of section 2.2from the integration theory; many of the manipulations here
are inspir ed by [Fes03 and [Hal50].

De nition 2.A.1. Let A be acollection of subsetsof some set

A is said to bearing if it is closed under taking differencesand nite unions.

A is said to be a d-classf it contains the empty setand satis es the following: A; B
in A with non-trivial intersection implies A contains A\ B and A[ B. Elementsof a
d-classare called d sets.

Example 2.A.2. The following are examples of d-classes.

(i) The collection of nite intervals of R, open on the right and closed on the left,
together with the empty set.

(i) The collection of translates of some chain of subgroups of a group, together with
the empty set.

We x for the remainder of this appendix a d-classon some set.

Lemma 2.A.3. Let A; bed sets,fori = 1;:::;n. Thenther exis@lisjointgsetsBj ] o=
1;:::;m suchthat eactBj is aunion of someofthe Aj andsuchthat ; Aj = ;B

Proof. A simple induction on n. O

Informally , the result statesthat any nite union of d setsmay bere ned to a disjoint
union.

F
De nition 2.A.4. A setof the form An ; A; for somed setsA; Ag;:::;An, with A; A
for eachi, is said to be a dd set.

Remark 2.A.5.

: . S

(i) Consider asetof theform X = An ; A; for d setsA; Ay :::; A, Where we make
no assumption on disjointness or inclusions. Then X = An A\ A;; lemma
2.A.3implies that X isadd set.

F F F F
(i) Theidentity (An ,A;)\ (Bn j Bj) = (A\ B)n( ;A j B;j) and lemma
2.A.3imply that dd setsare closedunder nite intersection.

De nition 2.A.6. A nite disjoint union of dd setsis said to be a dddset.
Lemma 2.A.7. Thedifferenceoftwo dd setsis adddset.

Proof. For arbitrary setsA; Ag;B;(Bj); with B; B, the identity

G G
(AnAg)n(Bn Bj)=(AnB[ Ag)t ((Bj\ A)nAy)
j i
is easily veried. Replace Ay by a disjoint union of d setsand use remark 2.A.5 to
complete the proof. O

Proposition 2.A.8. Thedifferenceof two ddd setsis a ddd set. Theunion of two ddd setsis a
dddset.
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Proof. The di{.ferenceof two ddd setsmay be written asa nite disjoint union of sets
of the form  E; nDj, a nite intersection of differencesof dd sets; such a setis an
intersection of ddd setsby lemma 2.A.7. By De Morgan's laws, this may be rewritten
as a disjoint union of intersections of dd sets. Hence the difference of two ddd setsis
again addd set. = =
LetDq;:::;Dnand E1;:::; En bedisjoint dd sets.Then . Dj | J- E; is the disjoint

G G
W1= Di\ Ej

¢ G
W, = Din Ej

¢ ¢
W3 = Ej n D;.

j [

F
W, and W3 are ddd setsby lemma 2.A.3. Further, W; = ij (Di\ Ej)isaddd setby
remark 2.A.5. O

Proposition 2.A.9. Thecollectionofall ddd setsis aring; indeed,t is thering generatedy
thed-class.

Proof. This is the content of the previous result. O

2.B C() -valued holomorphic functions

We briey explain the required theory of holomorphic functions from the complex
plane to C() , though C() could bereplacedwith an arbitrary complex vector space.

De nition 2.B.1. Supposef isaC() -valued function de ned on some open subsetof
the complex plane. We shall say that f is holomorphic at a point of U if and only if, in
some neighbourhood Uy of this point,

X
f(z2)=  fi(@pi;
i=1

ments of C() .

Although the de nition of holomorphicity is alocal one,we can nd a global repre-
sentation of any such function on a connectedset:

Proposition 2.B.2. Let(pj)i2) beanybasisfor C() overC, andlet( )i betheassociated
coordinateprojectiongo C. Letf beaC() -valuedholomorphidunction on someopensubset
U of C. Then

(i) i f isacomplex-valuetiolomorphidin theusualsensejunctionofU.

(i) If U is connectedhentheris a nite subsetl o of | and complex-valuedholomorphic
functionsf, fori 2 |, of U suchthat
X
fx)= fi(@p

i2lg

forallz 2 U.

51



CHAPTER 2: INTEGRATION ON VALUATION FIELDS OVER LOCAL FIELDS

Proof. Let us suppose that
X

f(z)=  fj(2)q ()
j=1
for all zin someopen Uy U, wherethe f; are complex valued holomorphic functions
of Up and qu;:::;00 2 C() . Then eachq is alinear sum (with cqg;nplex coefcients)
of nitely many p;j; thereforethereis nite Io | suchthatf(z) = ;5 fi(z)pi for all
z 2 Up, where eachf; is asum of nitely many f;. Sofor anyi 2 1,

. fi 12lg
W= g e,
therefore ; f is holomorphic on Up.

But f is holomorphic, soeachpoint of U hasan open neighbourhood wheref canbe
written asin ( ); therefore ; f is holomorphic on all of U. This proves ().

(ii) follows from (i) assoon asit is known that there are only nitely many i in | for
which ; f isnot identically zero on U. But the identity theorem of complex analysis
implies that if ; f is not identically zero on U, then it is not identically zero on any
opensetUy U. SochooseUy as at the start of the proof and write fjy, asin (); if

i f isnotidentically zeroon Ug, theni 2 lo. Soforall z2 U,

X
f(z) = i f(2)pi
i21g
]

Although it is very easyto prove, the identity theorem here is fundamental, for else
we would not be assured of the uniqueness of analytic continuations:

Proposition 2.B.3. Supposehatf isaC() -valuedholomorphidunction on someconnected
opensubsetJ of C. Supposdhat the zewosoff havealimit pointin U; thenf is identically
zeoonU.

Proof. Let (pj)i2; and ( {)i2; be asin the previous proposition. By the usual identity
theorem of complex analysis, each ; f vanishes everywhere; therefore the sameis
true of f . O

Enough has now beenproved to discuss analytic continuation of C() -valued func-
tions asrequired in section 2.5.
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CHAPTER 3

Integration on product spacesand GL , of avaluation
eld over alocal eld

We work with the same notation as chapter 2; our aim is to extend the integration
theory to nite dimensional vector spacesand GL ,, over F.

3.1 Repeated Integration on F"

In this section we extend the integral on F to the product spaceF" for n a positive
integer. We do this by using the integral over F to de ne repeatedintegrals. The idea
is simple, though the notation is not. A summary of the theory for n = 2 was given in
subsection1.4.2

Given asequencexy;:::;Xp of nterms, andr suchthatl r n,the notation

denotesthe sequenceof n  1terms obtained by removing the r " term.
We intr oduce the largest spaceof functions for which all repeatedintegrals exist and
are equal:

De nition 3.1.1.Letf bea C() -valued function on F". The inductive de nition of f
being Fubini, and the repeatedhtegral of f , are asfollows:

If n = 1,then f is Fubini II_.E and only if it is integrable, and the repeatedintegral of f
is de ned to beits integral Ff (x) dx.

Forn > 1,f is Fubini if and only if it satis es the following conditions:

() Foreachrwith 1 r n,andall xq;:::;X;;:::;Xn in F, the function

is required to be Fubini on F" 1,

(i) Then we require that the repeatedintegral of
Z¢

does not depend on r. The repeated integral of f on F" is de ned to be the
common value of thesen repeatedintegrals on F" 1.
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Ren
The repeatedintegral of a Fubini function f on F" will be denoted F f (x) dx.

The repeatedintegral isaC() -linear functional on the C() -spaceof all Fubini func-
tionson F".

Remark 3.1.2. Informally , a C() -valued function f is Fubini if and only if, for each
permutation of f1;:::;ng, the expression

Ze Z.

is well de ned and its value does not depend on . The repeated integral of f is of
course the common value of thesen! integrals.

Remark 3.1.3. We will also beinterestedin repeatedintegrals of complex-valued func-
tions on F". Sincethe integration theory on F doesnot allow for functions on F which
are perhaps only de ned off a null set, we must ensure that such functions do not
arise. Therefore we de ne acomplex-valued function gon F" to be Fubini if it is Haar
integrable and satis es the obvious rewording of de nition 3.1.1 Informally, such a
function is Fubini if and only if it is Haar integrable and eachpartial integral

Z Z
Ao (VE T V1) e [V ST RN [V Ry
is de ned for all u (r+1) 3 U (ny 2 F, where is any permutation of f1;:::;ng and
1 r n.Fubini's theoremthen implies that the value of the repeatedintegral
Z. Zg

is independent of

Fubini's theorem and induction on n imply that any integrable function on F'is
almost everywher e equal to a Fubini function.

Any continuous complex-valued function on F with compact support is Fubini, asis
any Schwartz function if F is archimedean. Sothe classof Fubini functions is still large
enough for applications in representation theory, harmonic analysis, etc.

In fact, most Fubini functions on F" encountered in this paper will be of the follow-
ing form, which is a generalisation of the notion of a simple function (seesubsection
1.4.00onF:

De nition 3.1.4.Letf be a Fubini function on F"; the inductive de nition of f being
strongly Fubini is asfollows:

If n = 1, then gis strongly Fubini if and only if it is a simple function.

Forn > 1, gis strongly Fubini if and only if the following hold: For eachr with
1 r n,andeachxqy;:::;Xr;:::;Xn in F, we requirethat

is strongly Fubini on F" 1,
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The property of being strongly Fubini is preservedunder translation and scaling, as
is the weaker property of being Fubini. For = ( 1::::; n)in F " (n copiesof F ,
not the group of n™ powers of F ), write j j= "] ij, wherej jis the absolute value
intr oduced in theorem 1.4.4 for x 2 F" write x to denote the coordinate-wise product
X = ( 1X1;:155 nXn).

Lemma 3.1.5. Supposé is astrongly Fubini (resp.Fubini) functiononF". Fora2 F" and

2 F ", thefunctionsx 7! f (x+ a) andx 7! f ( x ) arestrongly Fubini (resp.Fubini), with
repeatedhtegrals

Zgn Z gn Z gn Z gn
f(x+ a)dx = f (x) dx; f(x)dx=jj!? f (x) dx:

Proof. This is a simple induction on n;the casen = lisremark 1.4.3 O

A continuing theme of this thesis is showing how integrals constructed at the level
of F lift Haar integrals on F. For the integral on F, this is the identity
Z z
¢°(x)dx = g(u)du

for Haar integrable gon F.

Wewill denotebyt: " ! F"the product of n copiesoft; the value of n will beclear
from the context. Similarly, we write  or an overline for the the residuemap O2 | F.

Givena= (ai;::;;ap) 2 F"and = ( 1;:::; n) 2 ", thereis aproduct of translated
fractional ideals given by

Y
a+t( )Of =  a+t()OF:
i=1

Now we may generalisethe notion of lifting a function:
De nition 3.1.6. For g afunction on = taking values in an abelian group A, set
Q:F"1 A

g(x) x2Of
0 otherwise.

X 7!

Again, moregenerally,fora2 F", 2 ", thelift ofgata; isthe A-valued function
on F de ned by

(C -

@ (x) = ol(x at )) x2a+t()Of
0 otherwise.

Of course,g® = g%° and g® (a+ t( )x) = g%°(x) for all x 2 F".

Remark 3.1.7. It is a straightforwar d observation that a section of a lifted function is
again alifted function. To be precise,supposethat f = g% isalifted function asin the
de nition, rissuchthatl r n,andXq;:::;X;;:::;Xn 2 F. Then the function

of F isidentically zerounlessx; 2 a; + t( j)Of foralli 6 r.
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If in factx; 2 a; + t( ;)Of for alli 6 r, then

Xp 70 (X15:005Xn)
is the lift of ~ ~ ~
Ur 7090 250005 ¢ U pe1sii55 p)

atar; r,where i == (x; a)t( )2 Ogfori6r.

This generalisesto s-dimensional sectionsof f for any swith 1 s n. We shall
frequently employ the casess= land s= 2.

We may now prove the fundamental result that the repeatedintegral on F" lifts the
Haar integral on F:

Proposition 3.1.8. Suppose is a Fubini function on F". Theng is strongly FubinionF ",
with repeateéhtegral
Z gn Z

g°(x) dx = - g(u) du:

Proof. Letr besuchthatl r n,and X Xi1;:::;Xr;:::;Xn 2 F. The previous remark

O(X1; 0% 13U X410 ;Xn)duy Xj 2 O foralli 6 r
0 otherwise:

That is, 7

onF" ..

The result now follows easily by induction on n. O
Remark 3.1.9. More generally, supposef = g% is the lift of a Fubini function to F";
here g is Fubini on F',a2 F"and 2 ".Thenthe proposition and the invariance of
being strongly Fubini under translation and scaling (lemma 3.1.5 imply f is strongly
Fubini on F", with repeatedintegral

Z o z o
f()dx=_ g(uduxX = i
F

Remark 3.1.10.Using asimilar inductive argument asin the previous proposition and
the details of the proof in subsection2.3on harmonic analysison F, thereis no dif culty
in showing that if gis a Fubini function on F" and :F ! S!is agood characteron
F, then

X 70 g% (x) (bixg+ ::iibxn)

is Fubini on F", for any b2 F" (though, of course, one must replace the integrability
condition in the de nition of a Fubini function on F" by the condition that it belongs
to the enlarged spaceL (F; )).

Similarly, it is straightforwar d to generalisethe results of subsection 2.3.2on Fourier
transforms to F". Also seeremark 3.2.14
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3.2 Linear changesof variables in repeated integrals

With the basicsof repeated integrals in place, we turn to the interaction of the theory

with GL,(F). We shall write the action of GL,(F) on F" asa left action, though we

alsowrite elementsof F" asrow vectors;given 2 GL,(F)andx = (X1;:::;Xn) 2 F",
X means 0 1

X = %Xslgz

n

Given afunction f on F", we write f for the function x 7! f ( x). SL,(F) denotes
the determinant 1 subgroup of GL,(F). Thesenotation also apply to F in place of F.

De nition 3.2.1.A complex-valued function gon F" is said to be GL -Fubiniif and only
if g  isFubini for all 2 GL(F).

Remark 3.2.2. Any continuous complex-valued function with compact support is GL -
Fubini, asis any Schwartz function when F is archimedean; this follows from remark
3.1.3and the invariance of theseproperties under GL ,(F). In the following results this
is the sort of function to have in mind.

De nition 3.2.3.Let L(F";GL,) bethe C() spaceof C() -valued functions spanned
by g* for gGL-Fubini, 2 GLx(F),a2 F", 2 n,

The aim of this sectionis the following result:

Theorem 3.2.4.Everyfunctionin L(F"; GL,) isFubinionF". Iff 2 L(F";GL,),a2 F",
and 2 GL,(F), thenthefunctionsx 7! f (x + a) andx 7! f( x) belongto L(F";GLy),
with repeatedhtegralsgivenby
Z |:n Z Fn Z Fn Z Fn
f(x+ a)dx = f (x) dx; f( x)dx = jdet j ! f (x) dx

The theorem will be proved through several smaller results. First we recall the lwa-
sawa decomposition, where we abbreviate “unipotent upper triangular ' to u.u.t.

Lemma 3.2.5. Let bein GL,(F). ThenthereexistA in GL,(Of), au.u.t. U in GL,(F),
andadiagonal in GL,(F) suchthat = AU

Proof. When = Z and F is complete with respectto the discrete valuation , this
is the standard lwasawa decomposition. However, the standard proof is valid in the
generality in which we require it (seee.g.[Bum97, Proposition 4.5.2]). O

This decomposition allows us to restrict attention to upper triangular matrices, for
the GL,(Of) term canbe “absorbed'into the function:

Lemma 3.2.6.L(F";GL,) isspannedverC() byfunctionsoftheformx 7! g° U(x +a),
forgGL-Fubinionfn, U au.ut. matrix, 2 F ",anda2 F".

Proof. Let g be GL-Fubini on F", 2 GL,(F),a2 F"and 2 ". LetA;U; bethe
Iwasawa decomposition of

1

K
t( n)

0
t( 1)
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asin lemma 3.2.5 For x in F", the identity g2 (x)=g® AU ( x 1a) holds.
Now note that g° A = (g A)° where A is the image of A in GL,(F). Sox 2 F"
implies g% (x) = (g A)°(U(x + b),where 2 F "isdened by
0 1

B . &

n

and b= la. We have written ¢g® in the required form, and this is enough to
complete the proof. O

We now prove special casesof the main theorem aswell assome technical lemmas.
Particular attention is given to the casen = 2, for it is required several times later in
inductions.

Lemma 3.2.7. Letg beGL -Fubini onF > andsetf = ¢°. Let 2 F andsete=  t( ( ))
if 6 0,ande= 0otherwiseset g = min( ( );0).

Therexists 2 SL,(F), independenbf g, suchthat, for anyx 2 F, thefunctiony 7!
f(x+ y;y)equals

thelift ofv 7' g (xt( o);v)at xet( o); o ifx2t(o)OF
0 otherwise.

Proof. If = Othen we are just considering a section of a Fubini function and so = id
suf ces by remark 3.1.7 Henceforth assumethat 6 0.
We rst considerthecase = t( ) forsome 2 ;soe= 1. Consider,foranyx 2 F,
the section
Dy:F! C
y 7 E(x+ t()ysy):

We make the following claim, dependent on the sign of , regarding Dy:
case: < 0.

( -
D. = lift of v 7! g(v; xt( ))at xt( ); if x 2 t( )Of
X 0 otherwise.

case: =0

lift of v7! glv+ X;v)at0;0 if x2 O

Dy = _

0 otherwise

case: > 0.

lift of v 7! g(X;v) at0;0 if x 2 Of
0 otherwise.

X:

We shall prove the case = 0. Forany x;y 2 F, f(x + y;y) vanishes unless x + y
and y both belong to Of; hence Dy is identically zero unless x 2 Og. Assuming that
x 2 O, it remainsto verify that

Dy = lift of v 7! g(v+ X;Vv) at0;0:

Both sidesvanish off O and are seento agreeon O by dir ectevaluation. This proves
the claim in this case. The other casesare proved by similar arguments and we omit
the details.
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If Oand x 2 Og, then Dy is alsothe lift of afunction at x;O:
case: = 0.

Dy = lift of v7! g(v;v X)at x;0
case: > 0.
Dy = lift of v7! g(X;v X)at x;0
The proof when 2 t() is completed by setting:
case: < 0.
_ 0 1
- 10
case: = 0.
_ 0 1
- 11
case: > 0.
_ 1 0
- 11
. _ L . 0. ®1O0
In the generalcasewrite = e “t( ),with = ( )ande2 O.;let = 0 1

Also introducef qx;y) = f (e x;y), which isthelift of (u;v) 7! g(& *u;v) =g Yu;v)
(a Fubini function on EZ) at 0;0. By the caseabove, there exists 2 SL,(F) such that
x 2 F implies y 7! fq{x + t( )y;y) = f(e x+ y ;y) equals

thelift of v7l g O (xt( o);v)at xt( o); o if (X) 0
0 otherwise.

Hencey 7! f (x + y ;y) = f Qex+ t( )y;y) equals

thelift of v7l g O (ext( o);v)at ext( o); o if (x) 0
0 otherwise.
0
1

As © has determinant 1, this completes the proof. O

o

Remaining with the casen = 2, we now extend the previous lemma slightly in prepa-
ration for the induction on n:

Lemma 3.2.8. Letg beGL -Fubini on F2 a2 F, 2 :setf = g@a:©@ ) Let 2 F and
set = min( ( )+ ;0).

Therexistb;c 2 F (independenbfg) and 2 SL»(F) (independentfg anda) suchthat
x 2 F impliesthaty 7! f (x + y ;y) equals

( -
thelift ofv 7! g ((x ot( );v)atb; ifx 2 c+ t( )Of
0 otherwise
Proof. Lete=  t( ( ))if 6 0,ande= 0otherwise. For x in F the previous lemma
implies thaty 7! g°(x + t( )y ;y) equals
( -
thelift of v7l g (xt( );v)at xet( ); if x2t( )Of
0 otherwise
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for some 2 SL»(F) (independent of g by the previous lemma, and clearly indepen-
dent of a).
For x;y 2 F, the identity

f(x+y,y)
=%(x+ yi(y at( )
?°(X+ a+t()(y at )y at )

g (x+a)yt )Wy at( )+xet( )Nt()) ifx+ a 2t()OF
0 otherwise

follows. Setb=a ext( Jandc= a to complete the proof. O

Remark 3.2.9. The proper interpr etation of the previous two lemmasis available through
Hrushovski and Kazhdan's work [HKO6]. They prove, in aprecisesensewhich requires
model theory and Grothendieck groups, that any bijection at the valued eld level with
Jacobianl (suchasour (x;y) 7! (x + vy ;y)) descendsto a bijection at the residue eld
level, alsowith Jacobianl (suchasu 7! u,with asin the statement of our lemmas).
Their deeper result is the converse: bijections at the residue eld level may be lifted.

However, our result is not entirely a special caseof theirs, since their methods work
only in residue characteristic zero, whereasthe lemmas above hold in general.

The following result extendsthe previous lemma to the caseof arbitrary n  2;it isa
slightly technical proof by induction:

Lemma 3.2.10. Letg beGL-FubinionF",a 2 F, 2 ;setf = g@mi0@)0in0) | et
i2Fforl i n 1. Then

Xn 7V E(Xa+ 1Xn;ii55Xn 1+ 0 1Xn;Xn)
is integrableandsimple.

(i) Further, thereexist 2 SL,(F), 2 " ! andc 2 F" ! suchthat thefunction of

Fn 1
z F
(X320 %Xn 1) 7! f(Xe+ 1Xn;ii5iXn 1+ n 1Xn;Xn) dXp
is thelift of
Z P
n 1
(Ug;::i;up 1) 7! g (ug;:::i;up)du, X =1
atc; . Also, maybechoserio beindependenbfg anda.
Proof. The proof is by induction on n.
Let h 1=min( ( n 1)+ ;0).Let 1;:::; n 2bein Of;the function
(Xn 1;Xn) 7V F(C 15000 n 25X 1, Xn)
is the lift of ~ ~
(Un 1;un) 70 9( 155255 1 2:Un 1;Un);
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which is GL-Fubini, at (0;a); (0; ); this is just a generalisation of remark 3.1.7to atwo
dimensional section. By the previous lemma, there existb;c, 1 2 F and 2 SL»(F),

equalsthe lift of

Un 7090 1005 20 ((Kn 1 G )E( n 1)iUn))

at b; n1ifXn 12¢cy 1+ t( n 1)Of, and equals O otherwise.
In 2 O

0 ,wherel, » denotes

Also denote by the element of SL,(F) given by

then 2byn 2identity matrix.
Now take n 12 ¢y 1+t(n 1)OF;SO n 1=Ch 1+ t(n 1) ,? 1, say. We have just
shown that

is the lift of

which is GL-Fubini, at(0;:::;0;b);(0;:::;0; n 1). By theinductive hypothesis, the
following hold:

Xn TV E(Xa+ 1Xn5iiiin 1+ n 1XnjXn)
is asimple, integrable function.

(i) Thereexists °2 SL, 1(F) (independent of , 1,g,.band {2 ,G2F (1 i
n 2),suchthat

Z¢
(X1;::5;%n 2) 7! f(Xe+ 1Xn;ii5 n 1+ 1XnXn) dXp
is the lift of
z P,
(ui;iiiiun 2) 70 g YUiiiniUn 25 p giUn)dug Xon ot e
at(cy;iiiscn 2)5( 1000 0 2).
It follows that
(i) Forany xi;:::;Xn 1inF,
Xn 7V F(X1+ 1Xn;iiiiXn 1+ n 1Xn;Xn)

isasimple, integrable function (this function is zerounlessx, 12 ¢, 1+t( n 1)OF,
in which casethe statement follows from (i) above).

(i) The function

Z¢
(X2;::55%Xn 1) 7! f(X1+ 1Xn;iiiXn 1+ n 1Xn;Xn) dXp
is the lift of
z
1
(ug;::;up 1) 7! g O(Ul;"';un)dunx =1t
at(c;iinin 1) 13ty no1)-
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This completes the proof. O

The previous lemma was concernedwith the caseof amatrix dif fering from the iden-
tity only along the left-most column. We now consider an arbitrary u.u.t. matrix:

Proposition 3.2.11.SupposegisGL—FubinionEn,a2 Fn, 2 " 2 ;setf = g& X .
LetU beau.u.t. matrix in GL,(F). Thenf U is strongly FubinionF ", with
Z g Z gn
f UX)dx= f (x) dx:

Proof. The proof is by induction on n.
For any n, we claim that it suf ces to prove the specialcasea= 0, =0, = 0. We
may clearly assume = 0by linearity. For x 2 F" the identity
f(Ux) = ¢g® (Ux) = g”°((Ux a)t( )
¢® Uit( )(x U 'a)

holds, where U; is the u.u.t. matrix
1 0
t( 1) t( 1)

U = %) gU%) g:
t( n) t( n)

Assuming the special case,we may conclude that g° U is strongly Fubini, with re-
peatedintegral equal to that of g°. Thus f U differs from astrongly Fubini function by
translation and scaling and henceis itself strongly Fubini (lemma 3.1.5, while compat-
ibility between the repeatedintegral on F" and Haar integral on = (proposition 3.1.8
implies

Z Fn Z Fn
fou)dx = jt( )] g°(x) dx
5 Z
=X = g(u)du
Z Fn F
= f (x) dx:
This completes the proof of the claim; sonow assumea=0, =0, =0.

Foreachr with 1 r n,we must now prove that

and integrable.

(i) Thefunction of F" 1

is strongly Fubini, with repeatedintegral equal to that of f .

The inductive step depends on decomposing U in a certain way. Write

0 1
1 1;2 1n

o TR
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P
and observethat U(Xq;:::;Xn) = (X1 + i”=2 1iXi;ii5:Xn 1+ n 1nXn;Xn). LetV be
the u.u.t. matrix obtained by setting to zero all entries in the r row and r™ column of
U, apart from the 1in ther;r-place. Let V%bethen 1byn 1 u.u.t. matrix obtained

X
P(X1;::5Xn) = (Xo+ Xl Xe 1+ ¢ 1 XeiXe + iXi; X410 Xn)
i=r+1
satises U = PV.

We are now equipped to begin the main part of the proof. The previous lemma (if
r > 1; it follows straight from the de nition of a strongly Fubini function if r = 1)

implies that for xed xi;:::;X;;:::;Xn 2 F, the function
Xy 7 ((x1 1r iXi)+t Xl
i=r+l1
xo
S I T iXi)* ¢ oLrXrsXryiii;Xn)
i=r+1

is simple and integrable on F. Therefore

X
Xp THE (X1 + 1o Xes i Xe 14 ¢ 1 Xes Xe + iXi;Xr41 1115 Xn)
i=r+1

function

is simple and integrable, proving (i).
The previous lemma (if r > 1) and translation invariance (any r) of the integral also
imply that

fOFD Y1 () (XepiiniXesiiiiXn) 7! foP(X1; i Xp) dXy
is the lift of
(ug;zis;uesiin;up) 70 g (ug;iii;up)due X S
atb; forsomeb2 F" 1, =(;)2 "1 2SL,(F).
Theinductive hypothesis with function f ®and matrix V %implies that f © V %s strongly

Fubini with repeatedintegral equal to that of f © But the repeatedintegral of f %is
Z Z

Pnl Pnl
.9 (WduX = PX = . g(u) du
F F

Z en

f (x) dx

1l
iy
1
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by remark 3.1.9 and

which proves (ii). O

Proposition 3.2.12.Letg beGL -Fubini onF",a2 F", 2 " 2 ;setf = g* X .Let
2 GLn(F); thenf is strongly Fubini on F ", with
Z Fn Z Fn
f (x)dx=jdet j? f (x) dx:

Proof. We claim that it suf ces to prove the specialcasea= 0, = 0, = 0. This claim
follows in the sameway asthe beginning of proposition 3.2.11 Now assumea = 0,
=0, =0
Write = AU asin lemma 3.2.5 Thenf A = (g A)°whereA is the image of A in
GLn(F); proposition 3.1.8implies

Z Fn Z
f AX)dx= _ g A(u)du
F z
= jdetA] ! g(u)du
v
Fn

= jdetAj ! f (x) dx:

Proposition 3.2.11implies that f AU is strongly Fubini, with
Z gn Zgn
f AU(X)dx = f  A(X)dx:

Finally, lemma 3.1.5implies thatf AU is strongly Fubini, with
Z gn Zen
f AU (x)dx=jdet j 1! f AU (x)dx:

Sincedet = detAdet ,the proofis complete. O

The previous proposition extends by linearity to all of L(F";GL,) and sothe main
theorem 3.2.4is proved!

Remark 3.2.13. SupposeF is a two-dimensional local eld, with O = 1(0g) the
rank two ring of integers. Assume that our chosenHaar measure on F assigns O
measure 1. Then for any 2 GL,(F) and a 2 F", the characteristic function of a +

(Of) belongsto L(F";GLp), and

Z Fn
chara, (op)(x)dx = jdet j2 C(X) = C() :

Kim and Lee[KLO5] have also developed a measure theory on F". Their measurable

setsare the algebra of setsgeneratedby ? ,F" anda+ (Op)fora2 F", 2 GL,(F);

the measure assignedto a+ (Og) isjdet j, asin the approach of this chapter.
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However, the measure of Kim and Lee doesnot take valuesin C(X), but rather in an

additive monoid consisting of elementsOand X ', 2 Rsq,i 2 Z; addition is de ned
by 8
2 X! ifi <j
X '+ °><J':>(+f)xi ifi=j
¢ if i >

If S is a measurable setin the approach of Kim and Lee, then chars will belong to
L(F";GL,); expanding the value of the integral in R((X)) we may write

Z Fn X )
chars(x) dx = X"
il

where ; 2 Rand | 6 0. Kim and LeeassignS measure | X'; this truncation of the
measure is suitable for de ning aconvolution of functions on GL ,(F) and for ensuring
-additivity .

Remark 3.2.14.Whether the extension of the integral to L (F"; GL ) is compatible with
harmonic analysison F" (remark 3.1.1Q is indisputable; the integral surely extendsto
the C() spaceof functions on F" generated by

x7'g*  (x) (bixp+  + baxp)

with g Schwartz-Bruhat on F", a;b2 F,and 2 GL,(F).
Unfortunately , the author can seeno easy way of proving this, except by simply
modifying all the proofs of this section to include twisted functions.

3.3 Invariant integral on GLy (F)

We will now consider integration on the spaceof matrices My (F) and its unit group
GLn (F).

Let n = N2 and identify My (F) with F" via anisomorphism T : F" ! My(F) of F
vector spaces.Let L(My (F)) bethe C() spaceof C() -valued functions f on My (F)
for which f T belongsto L(F";GL,); set

Z My (F) Z g
f(x)dx = f T(x) dx:

Remark 3.3.1. The spacelL (M (F)) doesnot depend on the choice of the isomoEPhism
T sinceL (F"; GLy) isinvariant under the action of GL ,(F), and the functional M (F)
dependson T only up to ascalarmultiple fromjF j=fX : 2jF j; 2 g

L(My (F)) is closed under translation, and Mn(F) is a translation invariant C() -
linear functional on the space.

Of course, integrating on My (F) is no harder than integrating on F". We are really
interestedin GL y (F), for which we proceedby analogy with subsection 2.4

De nition 3.3.2.Let L(GL \ (F)) denote the spaceof C() -valued functions on GL y (F)
suchthat 7! ( )jdet j " may be extended to all of My (F) to give a function in

L(Mn (F)).
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Theintegral of over GLy (F) isde ned by

Z GLy (F) Z My (F)
()d = (x)j detx] " dx:

where the integrand on the right is really the extension of the function to My (F).

Remark 3.3.3. For the previous de nition of the integral to be well de ned, we must
show that if f1;f> 2 L(My (F)) are equal when restricted to GL (F) then f1 = f».

It suf ces to provethatif f 2 L(F";GL,) vanishes off some Zariski closed set (other
than F"), then f is identically zero. By a locally constantfunction g on F", we mean
a function such that for eacha 2 F", thereexists 2 suchthat, if "1;:::;"n 2 F
have valuation greaterthan ,thenf(a;+ 1;:::;an+ n) = f(ag;:::;an). If g1, O
are locally constant,thensoareg; + go and g; A for any af ne transformation of F".
But a lifted function is locally constant and so any function in L(F";GL,) is locally

zero polynomial. This is easily proved by induction on n.

This calculation even meansthat we may enlarge the spaceL (F"; GL ) by adjoining
the characteristic functions of all proper Zariski closed sets,and extend the integral by
insisting that such sets have zero measure. Ignoring proper Zariski closed setsis an
essential part of the model-theor etic approachto integration in chapter 5.

The integral is translation invariant, asdesired:

Proposition 3.3.4. Suppose belongdo L (GL (F)) and 2 GLy (F). Thenthefunctions
7" ( )and 7! ( ) alsobelongtoL (GLy (F)), with

ZGLN(F) ZGLN(F) ZGLN(F)

( )d = ()d = ( )d:

Proof. Let r (resp. | ) denote the element of GL,(F) (identied with GL(My (F))
via. T) de ned by right (resp. left) multiplication by .Let 7! ( )jdet j " bethe
restriction of f 2 L(My (F)) to GLy (F), say. The function

70 ( )jdet j "
=jdet j" ( )jdet j "
=jdet " r ()jdet(r )j "

is the restriction of jdet j"f r 2 L(My(F)) to GLy (F).
Theorem 3.2.4therefore implies that

Z GLy (F) Z My (F)

( )d jdet j"f r (x)dx

Z My (F)
jdet j"jdetr j ! f (x) dx

= jdet j"jdetr j ()d:

Note that det isthe determinant of asanN N matrix, and detr isthe determinant
of r asan automorphism of the N 2-dimensional spaceM y (F).

66



CHAPTER 3: INTEGRATION ON PRODUCT SPACESAND GLj,

To complete the proof for r it suf ces to show that detr = det ". Let e; denote
the N N matrix with alin thei;j position and zeros elsewhere. With respectto the
ordered basis

r actsasthe block matrix 0 1
t

©@ . K

(! denotestranspose),which hasdeterminant det ", asrequired.
The proof with | in place of r differs only in notation, exceptthat one should use
the ordered basis

instead. O

Sowe have obtained atranslation invariant integral on the algebraic group GL y (F).
Just as the integrals on F and F" lift the usual Haar integral on F and F", so too
doesthis integral incorporate the Haar integral on GL y (F). To demonstrate this most
clearly, it is prudent to now assumethat the chosenisomorphism T restrictsto an Of -
linear isomorphism Of ! My (Og). Thus T descendsto a F-linear isomorphism T :
F" ! My (F) which makesthe diagram commute:

T

of ! Mn(OF)

? ?

y y

F' 1 My(F);
_

where the vertical arrows are coordinate-wise residue homomorphisms. This will en-
sure a functoriality between our algebraic groups at the level of F and at the level of
F.

Remark 3.3.5. This assumption holds if we identify My (F) with F"% in the most nat-
ural way, via the standard basis of F"* and the basis of My (F) used in proposition
3.34

Further, we now normalise the Haar measures on My (F) and GLy (F) in the fol-
lowing way: give My (F) the Haar measure obtained by pushing forwar d the product
measure on F via T, and then give GLy (F) the standard Haar measure dg U =
jdetuj "dwu, u. Suchnormalisations are not essential, but otherwise extraneous con-
stantswould appearin formulae below. It will be useful to call acomplex-valued func-
tion on My (F) GL-Fubinif its pull backto F" via T is GL-Fubini in the sensealready
de ned. Again, note that a Schwartz-Bruhat function on M (F) is certainly GL -Fubini.

We have already de ned what is meant by the lift of a Haar integrable from F or F.
The following is atrivial generalisation:

De nition 3.3.6. Let G denote either of the algebraic groups My, GLy . Given a com-
plex valued function gon G(F), let g° be the complex valued function on G(F) de ned

by

@ :G(F)! C
g(X) x 2 G(Of)
0 otherwise.

X 7!
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Then the compatibility between the integrals on My at the level of F and F is the
following:

Proposition 3.3.7. Suppos¢hat g is a complex-valuedGL -Fubini functionon My (F) (e.g.
a Schwartz-BruhafunctiononM y (F)). Theng® belonggo L (M (F)), and
Z My (F) z
g°(x) dx = g(u) du:
My (F)
Proof. By the existenceof T and its compatibility with T we have an equality of func-
tions on My (F):
(gT H°T = o
The de nition of the integral on M (F) therefore implies

2N ZE
g (x)dx = (gT H)Y(x)dx:

Taking G to be n copies of the additive group, we showed in proposition 3.1.8that the
result corresponding to this one holds; so
Z gn Z
(@7 H°)dx= _ gT “(u)du:
F

Finally, our normalisation of the Haar measure on My (F) implies
z z

gT “(u)du= g(u) du;
E" My (F)

which completes the proof. O

And now we prove the sameresult for GL  :

Proposition 3.3.8. Suppos¢hat gis acomplex-valuedschwartz-BruhafunctiononGL y (F)

suchthat ( o
g(u)jdetuj " u2 GLy(F);

f(u):=
W detu=0
is GL-Fubini onMy (F). ThengP belonggo L (GL (F)), and
Z 6Ly (F) VA
¢°()d = _ g(u) du
GLy (F)

Proof. The assumption on f and the previous proposition imply that f © belongs to
L(Mn (F)). Moreover, 2 GLy (Og) implies

foC) = g(idetTj "=g°( )idet j ";

sothat f ®isanextensionof 7! g°( )jdet j "from GLy (F) to afunction in L(My (F)).
Therefore g° belongsto L(GL y (F)), and

Z 6Ly (F) Z My (F)
()d = f O(x) dx
Z

= ~ f(u)du
ZM N (F)

= g(u) du
GLy (F)

wher e the second equality follows from the previous proposition. O
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Remark 3.3.9. If g decreasessuf ciently rapidly towards the boundary of GL \ (F) in
My (F) then the hypothesis in the previous proposition will hold, i.e. f will be GL-
Fubini on My (F). In particular, if g is the restriction to GL y (F) of a Schwartz-Bruhat
function on My (F) then (replacing g by gj det j®) the function

g(wjdetuj® " u2 GLy(F);

f(u) =
(u) 0 detu=0

is GL-Fubini on My (F), for s 2 C and <(s) suf ciently large. The previous result now
implies
Z GLy (F) VA
g’( )jdet j°d = g(u)j det uj® du
GLy (F)
(note that for any 2 GLy (F) in the support of g°, onehasjdet j$S= jdet=j2 C ).
Thus we can lift Godement-Jacquetzeta functions [GJ73 to GLy (F) in the same

way aswe lifted zetaintegrals from F to F in section 2.5, though more work in this
dir ection is required.

3.4 Other algebraic groups and related problems

3.4.1 Integration over an arbitrary algebraic group

Having established an integral on GLy (F), it would be useful also to be able to inte-
grate on algebraic subgroups suchasSL  (F) or By (F), the group of invertible upper
triangular matrices. Arguments similar to those above will surely provide such an in-
tegral, but to establish such results for an arbitrary reductive algebraic group G we
require a more general abstractapproach.

The author suspectsthat to eachreductive, algebraic group %there isaspaceof C() -

valued functions L(G(F)) on G(F) and a linear functional S(F) on these functions
with the following properties:

(i) Compatibility between F and F: if gis a ‘nice' (e.g. Schwartz-Bruhat) Haar in-
tegrable function on G(F), then g° (an obvious generalisation of de nition 3.3.6
belongsto L (G(F)) and

Z G(F) VA
(x)dx= g(u)du:
G(F)

(i) Translation invariance: if f 2 L(G(F)) and 2 G(F), then x 7! g(x ) isin

L(G(F)), and
(G(F)) Z o) Z o)
f(x )dx = f (x) dx:

There should also be a left translation-invariant integral on G(F), and this would
coincide with the right-invariant integral if G(F) is unimodular .

Even in the simplest caseG ="additive group' these conditions are not enough to
make the integral unique in a reasonableway; this is discussed in remark 2.1.7 of
chapter 2. However, if we assume the existence of an absolute value which relates
the integrals on F and F, the uniqueness does follow. We have observed a similar
phenomenon in this paper where we constructed the integral on F" to be compatible
with change of variables from GL,(F). Soto ensure uniqueness we should add to the
list the informal statement

(i) Compatibility between the integrals over different algebraic groups.
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3.4.2 Subgroups of GLy

Onceintegration over algebraic subgroups of GL \ (F) has been established, there are
certain formulae which are expectedto hold by analogy with the caseof alocal eld.
We quote two examples from [Car79]; for f a complex-valued, integrable function on
GLn (F) (resp.on By (F)),
Z Z Z
f(g)dg= _ f (kb dkdrb
ZGLN(F) ZGLN(O? Bn (F)

f (b) drb= f(u)dud;

Bn (F) n(F)  Un (F)

where Uy denotes the u.u.t. matrices, n the diagonal matrices, and dr right Haar
measure (apart from By, thesegroups are unimodular).

Writing these identities explicitly, one seesthat these formulae require the class of
integrable functions on GLy (F) to be invariant under certain polynomial changesof
variables. It is therefore also important to extend the classof functions L(F";GL,) so
that it is closed under the required changesof variables.

This is also precisely the sort of compatibility which may be important in (iii).

3.4.3 Non-linear change of variables

To develop integration on arbitrary algebraic groups and prove compatibility between
them we are lead to investigate non-linear change of variables on F". Stepsin this
dir ection are taken in chapter 4 in the caseof atwo-dimensional local eld (thatis, F is
acomplete discrete valuation eld whose residue eld isalocal eld). It is proved that
if f = g* isthelift to F2 of a Schwartz-Bruhat function on F?andhisa polynomial
over F then, assuming certain conditions, (x;y) 7! f(x;y h(x)) is Fubini on F 2, and
S0 7, Z 2 Z 2
f(x;y h(x))dxdy = f(x;y h(x))dydx = f (x;y) dydx:

Note that the secondequality follows simply from translation invariance of the integral.
However, it is essentialto make some assumptions on the singularities of h, for we
will also seein proposition 4.4.1that:

Proposition 3.4.1. Supposé is a two-dimensionalocal eld andF has nite characteristic
p. Leth(X) =t IX P, wheet is a uniformiserof F, and let g beany Schwartz-Bruhat
nctiononF F. Thenforally 2 F, thefunctionx 7! g°(x;y h(x)) is integrable with

FPocy h(x)dx = 0. Theefoe
Z:Z¢
g’(x;y  h(x)) dxdy = O;

wheeas Z:.Z; Z 7
o®(x;y  h(x)) dydx = g(u; v) dvdu;
whichneednot beze.

Whether this failur e of Fubini's theorem will causea problem in verifying existence
of integrals on algebraic groups is unclear. If such “wild” changesof variable do not
appear when changing charts on one's algebraic group, then this may not betoo serious
(preliminary work on SL(F) suggestssomething interesting does happen in residue
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characteristic 2...). However, it is certainly an unexpected result; it appears to be a
measure-theoretic consequenceof the characteristic p local eld F being imperfect. See
remark 4.4.2and subsection 6.1.3for further discussion.

3.4.4 Godement-Jacquet theory

To generalise Godement-Jacquettheory to a higher local eld F, the immediate ques-
tion to ask is “What is a smooth representation of GL ,(F)?”, and the secondis “Ar e
the matrix coefcients of a smooth representationintegrable?”.

Whatever the answer to the rst question, the answer to the secondis surely “No,
the spaceof integrable functions on GL ,(F) is too small.”. In the residue characteristic
zero case(e.g. Qp((t))), the methods of chapter 5 should produce a more extensive inte-
gration theory, and hopefully this will help to answer the rst question. Unfortunately ,
developing a Godement-Jacquettheory in this casemay not produce any signi cant
new insights into two-dimensional Langlands, becauseall the representationswill be
tame and the theory will reduceentirely to GL ,(F).
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CHAPTER 4

Fubini' stheorem and non-linear changes of
variables over atwo-dimensional local eld

We consider non-linear changesof variables and Fubini's theorem for certain integrals
over atwo-dimensional local eld. An interesting example is presentedin which im-
perfectnessof a positive characteristic local eld causesFubini's theorem to unexpect-
edly fail.

Notation

In this chapter F is atwo-dimensional local eld, i.e. acomplete discretevaluation eld
whose residue eld K = Fisalocal eld (R, C, or non-archimedean). We x aprime t
of F and denoteits ring of integersby Or. Theresiduemap O ! K isdenotedx 7! X;
the discretevaluation isdenoted :F! Z[ flg . We x aHaar measureon K .

The reasonwe work with a discrete valuation in this chapter, rather than the arbi-
trary valuation in chapters 2 and 3, is that several arguments proceedby induction on
the value group. By modifying the arguments it is likely that this restriction can be
eliminated.

The xed prime t induces asplitting of the valuation given by

Z! F; n7't(n)=1t";

and therefore the integration theory developed in chapters 2 and 3 can be applied with
respectto this splitting. We recommend that the reader consult the summary of the
integration theorieson F and F  F found in subsections1.4.1and 1.4.2respectively,
everywherereplacing”® 2 " and“t( )" by“n 2 Z” and “t"".

4.1 Decomposition results

Webegin by examining the action of polynomials on F ; the resultshold for any Henselian
discretevaluation eld F with in nite residue eld.

Lemma 4.1.1. Supposé(X ) is apolynomialoverF , thata+ t°Or, b+ tAOr aretwo trans-
latedfractionalideals,andthath(a+ t°Og) b+ tAOf. Thentheris a uniquepolynomial
2 K [X]whichgivesacommutativediagram

h

a+ t°Of ' b+ tAOF
2 2
? ?
a+tox7!xy Y b+ tAx71x
K ! K:

Moreoverdeg degh.
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Proof. There is certainly at most one function  making the diagram commute; but K
isaninnite eld soif two polynomials are equal asfunctions then they are equal as
polynomials. Sothere canbe at most one polynomial

We may write h(a+ t°X) = h(a) + tRH(X) where H 2 Og[X]is a polynomial with
integer coefcients, no constant term, and with non-zero image in K[X] (i.e. not all
coefcients of H arein tOg). We clearly have a commutative diagram

C h| R
at 't) Or ' h(a) +7t Of

? ?
a+tex7!xy yh(a)+ tRx71x
K ! K;

"

where H denotesthe image of H in K [X].

If A > R then the inclusion h(a+ t°Or) b+ tAOf implies H is everywher e equal
to (b h(a))t R;but K innite then implies H is a constant polynomial and henceis
zero (since H has no constant term), which is a contradiction. Hence A R, and we
may easily complete the proof:

If A = R then the desired commutative diagram is

h

a+ t°Of ! b+ tAOF
2 2
? 2
a+tex7!xy Y b+ tAx7Ix
K ! K;

H+(h(a) bt A

where the lower horizontal map is the function u 7! H(u) + (h(a) bt A. IfA < R
then the desired diagram is

a+ t°Of h! b+ tAOF
? 2
? ?
a+tox7!xy Y b+ tAx71x
K ! K;
(h(a) bt A
where the lower horizontal map is the constant function u 7! (h(a) bt A. O

De nition 4.1.2. Supposeh(X ) is apolynomial over F, that a+ t°Og, b+ tAOf aretwo
translated fractional ideals, and that h(a+ t°Og) b+ tAOg. The unique polynomial
2 K[X]which gives a commutative diagram

h

a+ t°Of I b+ tAOF
? 2
? ?
a+ t°x71xy Y b+tAX7IX
K ! K:

is said to be the residueeld appioximationof h with respectto the translated fractional
ideals.

Remark 4.1.3. Regarding the previous de nition, the translated fractional ideals will
usually be clear from the context. The constantterm of depends not only on the sets
a+ t°Or and b+ tAOg, but on the representativesa; bwe choose.
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When drawing the diagram above, we will henceforth omit the vertical maps, even
though they do depend on the choice of a;b. We will also follow the habit used in the
previous lemma of denoting a constant function on K by the value it assumes.

Much of this chapter is concerned with the problem of explicitly decomposing the
preimage of a set under a polynomial and describing the resulting residue eld ap-
proximations. Hereis a example to illustrate the ideas:

Example 4.1.4. Setq(X) = X3+ X2+ t?2 and assumecharK 6 2. The aim of this
example is to give explicit descriptions of the setsfx 2 Or : q(x) 2 tAOggfor A = 2;3,
aswell asall associatedresidue eld approximations.

Dir ectcalculations easily show that if x 2 O, then g(x) 2 t2Og if and only if x 2 tOf
orx 2 1+ t?O. Further, the residue eld approximations are

a, 2 2 a 2
tQ)F Pt ’9': 1+7t Of It g);:
? ? ? ?
y y y y
K ! K K ! K
X2+1 X +1

Similarly, if we suppose x 2 O then q(tx) 2 t30f if and only if x>+ 1 2 tOf; and
aq( 1+ t?x) 2 t30 ifandonly if x 2 1+ tOg.
If K contains asquareroot of 1, leti denotealift of it to O ; then

fx 2 Op 1 q(x) 2 t30gg=it + t°O t it +t°0Oet 1 t2+ t30¢;

with residue eld approximations

i 2 a, 3 ; 2 a, 3
It +‘% Or L t '()DF It +?t Of L t '()DF
? ? ? ?
y y y y
K ! K K ! K
2iX +(i2+)t 17 2iX +(i2+1)t 1+

24 43 a, 3
1tr)tO|: ! t9|:

? ?

y y

K ! K
X

If K doesnot contain asquareroot of 1,thenfx 2 O : q(x) 2 t30rg= 1 t2+
2 - . - - - . .
t<Og, with the residue eld approximation given by the thir d diagram above.

We now turn to generalising the example to an arbitrary polynomial; for later appli-
cations to integration the following results will allow us to reduce calculations to the
residue eld, where we change variable according to the residue eld approximation
polynomials for example, and then return to F.

The rst decomposition result treatsthe non-singular part of the polynomial, and is
really just arephrasing of Hensel's lemma:

Proposition 4.1.5. Letg(X) beapolynomialwith coef cientsin Og, ofdegee 1 andwith
non-zeoimagein K [X];letb2 F.

() Suppos¢hatg(a) = bforsomea 2 Or andthatg{@) 6 0. ThenforanyA 1,
fx 2 O : X = aandqg(x) 2 b+ t"Ogg= a+ t"Of;
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andtheresidueeld appioximationis “multiplication by gY@)":

a+t tAOF q! b+ tAOF
2 2

? ?
y y
K ! K
@)X
(i) Let! 1;:::;!, bethesimple(i.e.qY! ;) 6 0) solutionsin K tog(X) = b; let! ; beallift

by Henselof! ; to O ; thatis, g(! ;) = b. ThenforanyA 1,
G
fx 2 O : gdX) 6 Oandq(x) 2 b+ tAOpg= !+ tAOf:
i=1

Proof. (i) is essentially contained in the proof of Hensel's lemma and sowe omit it. (ii)
easily follows. O

We now consider the singular part, which is much more interesting and will be the
root of futur e dif culties:

Proposition 4.1.6. Letg(X) beapolynomialwith coef cientsin Og, ofdegee 1 andwith
non-zeoimagein K[X];letb2 F. ForA 1ltherisadecomposition

a
fx 2 O : gdx) = Oandq(x) 2 b+ t"Org= & +t90F

j=1
(assuminghis setis non-emptyi.e.thatg(X ) bhasarepeatedootin K ), wheras;:::;ay 2
Ofr,andcy;:::;cny larepositiveintegers.
Proof. First suppose A = 1. Let a;;:::;an belifts to O of the distinct solutions in K to
g(X) = band g{X) = 0, and setc = 1for eachj. Then the required decomposition is

a
a + t% Of:

=1

We now determine the residue eld approximation of gqon eacha; + t% O asit will be
used later in corollary 4.3.5 So,for eachj, consider the Taylor expansion

a(a + tX) = q(a) + f¥@)tX + g )t?X 2+  + gy(ay )t9X

whered = degq. But q{a;) 2 tOr implies g(a + tx) 2 g(a) + t2Of for all x in Ok,
which is to say that

) G a,
g + ‘gl Or . b+ ';OF
? ?
y y
K ! K
(a(a) bt *

commutes, where the lower horizontal map is constanti.e. eachresidue eld approxi-
mation associatedto the decomposition is constant.

distinct solutions to g(X ) = band g{X) = 0, and write
W; = fx 2 O : X = uj and g(x) 2 b+ t*Org
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a
fx2 O : gqx) = Oand g(x) 2 b+ t"Org=  W;;
j=1
it is enough to decomposeeachW; in the required manner, sowe now x avalue of j,
writing W = Wj andu = u;.

If W is empty then we are done; elseu hasalift to a2 Of suchthat g(a) 2 b+ tAOg,
and we now X such an a. Using the sameTaylor expansion asabove, there exist 1
and Q 2 Og[X]suchthat g(a+ tX ) = g(a)+t Q(X) and Q(X) 6 0;in fact,q{a) 2 tOf
implies 2, though we will not usethis. Therefore

W=a+tfx20r : Qx)2 (b q@)t +t* Ofg;
but also note that
(b q@nt +t* Og=t" (b g@)t *+Og)=t" O

by choice of a. ThereforeW = a+ tfx 2 O : Q(x) 2 t* Ogg, and it becomesclear
how the induction should proceed.
In fact, we must consider three casesdepending on the relative magnitudes of and

A:
i A < 0. Thenfx 2 O : Q(x) 2 tA Org= O and Q(Og) Of tA Of;
therefore the residue eld approximation is constant, given by the diagram
Q A
07F It 7OF
? ?
y y
K ! K
0
This implies W = a+ tOr with aconstantresidue eld approximation:
a A
a+7tO|: ! b+ 1‘1) Of
? ?
y y
K ! K:
(q(a) bt A
(i) A = 0. Again, fx 2 O : Q(x) 2 t* Org= Of;theresidue eld approxi-
mation is clearly
QI
O,)F ! O'J:
? ?
y y
!
Q
Therefore W = a+ tOf, with residue eld approximation
a A
a+7tOF ! b+ t') Of
? ?
y y
K ! K:
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(i) A > 0. Here we may use the inductive hypothesis and proposition 4.1.5to
write G
fx2 Op : Q(x)2t" Opg= d + t%Of;
[

with residue eld approximations (X), say:

d + 19 OF QA O

<
A <00

K !

F
ThereforeW = ; a+ dit + t© *1 Og, with residue eld approximations

a+ dit +t9*1 O 9 b+ tAOg
2 2
? ?
y y
K ! K:

(X)+ (a(@) Bt A
0

For q(X) asin the previous two propositions, thesetwo decomposition results com-
pletely describefx 2 Of : q(x) 2 b+ t*Orgin terms of (degg)” translated fractional
ideals equipped with polynomial residue eld approximations. Moreover, the proof of
the secondresult gives some insight into how structur e of the polynomial q effectsthe
resulting residue eld approximations. For applications beyond those described in this
chapter, it will be necessaryto better understand how the decomposition varies with b
and A. For small A we have the following result:

Lemma 4.1.7. Letq(X ) beapolynomialwith coef cientsin Og, ofdegee 1 andsuchthat

Proof. First suppose A = 1. Thenfx 2 Or : q(x) 2 b+ tAOg:g{X) = 0Og being non-
empty implies that bis the image under g of one of the nitely many roots of g°

Now supposethat A = 2. Thenthe argument is just the sameasfor A = 1, exceptit is
important to observethe following: if a;;a, 2 O areequal modulo tOr,andq{a) = 0
fori = 1;2,then g(a;) = q(az) mod t?Of . This follows from the Taylor expansion and
the fact that gYa;) 2 tOg . O

Remark 4.1.8. Decomposition results similar to the previous onesare common in model
theory; for example, in the theory of algebraically closed valued elds [Rob77], every
de nable subset of the eld is a nite disjoint union of points and “Swiss cheeses'.
Further, these decompositions are related to rami cation theory and rigid geometry
through the Abbes-Saitotheory; seesubsection 6.1.2

4.2 Non-linear changesof variables

In this sectionwe investigate the behaviour of Fubini functions on F  F under certain
non-linear changesof variables. Mor e precisely, we consider the following:
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Conjecture 4.2.1.Letaj;ar 2 F,nq;ny 2 Z,and let h(X ) bea polynomial over F. Then
for any Schwartz-Bruhat function f on K K, letting g = f (21:22)i("1in2) pethe lift of f
at (a1; ap); (n1; ny), the function

(xy)=90xy h(x)
is Fubini on F  F, with repeatedintegral equal to that of f .

The conjectureis false in the generality in which we have stated it, though an impor -
tant special casehas already beentreatedin chapter 3:

Theorem 4.2.2. With notationasin theconjectue,if degh 1 thentheconjectueistrue.

Proof. According to theorem 3.2.4 with n = 2, the function (x;y) 7! g( (x;y)) is Fubini
onF F forany 2 GL(F). If degh = 1then the conjecture is a special caseof that
result; in fact, it essentially follows from lemma 3.2.7.

If degh = 0 then the conjecture follows from translation invariance of the integral,
seeproposition 1.4.8and remark 1.4.9 O

Becauseof the previous theorem, we will have in mind polynomials h(X) of degree
atleast2, though our results are equally valid for lower degree.We will beinterestedin
conditions on the data a;; az; n1; ny; h such that the conjecture is true for all Schwartz-
Bruhat functions f . We assignto the data two invariants asfollows:

De nition 4.2.3.Let az; ap; n1;ny; h bedata for the conjecture,and write h(a;+t"1X) =
h(ap) + tRg(X), whereR 2 Z,q2 Or[X], and the image of qin K [X ] is non-zero. Note
that gq(0) = 0.

The depthand normalisedpolynomialassociatedto the data are de ned to be R n»
and q(X) respectively.

A summary of what we know about the validity of the conjecture, classi ed by the
depth and normalised polynomial, may be found in section 4.5. The sensein which the
depth and normalised polynomial areinvariants, and why they are useful, is given by
the following lemma in which we reduce the conjecture to a special case:

Lemma 4.2.4. Fix a polynomialg 2 Og [X] with nonzep imagein K [X] and no constant
term,andanintegerR 2 Z. Thenthefollowing are equivalent:

() theconjectueis true for all dataas; ay; n1; n»; h with depthR and normalisedpolyno-
mial g;

(i) theconjectueis true for all dataoftheform 0; 0; 0; 0; h with depthR, normalisedpoly-
nomialqg, andsuchthat h(0) = O;

(iii) forall Schwartz-Bruhafunctionsf onK K, thefunction
Gy) 70y tRq(x))
is Fubini;
(iv) for all Schwartz-Bruhafunctionsf onK K, thefollowing hold: for eachy 2 F, the
functionx 7! fO(x;y  tRq(x)) isintegrablethenthaty 7! © fO(x;y  tRg(x)) dx
is integrableand nally that

2.7, z z
fox;y  tRq(x)) dxdy = f (u;v) dudv:
K K
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Proof. Clearly (i)) (ii). The only data satisfying the conditions of (ii) are 0;0;0;0;tRq,
and so (ii), (iii).

(ii)) (i): Soassume(iii), letting ai;ay;n1;n2; h be data for the conjecture with depth
R and normalised polynomial g. Let f be Schwartz-Bruhat on K K and write g =
f (a1:22)i(n1n2) - Note that h(a; + t"1X) = h(ap) + tR*"2q(X), and that therefore for all
Xy2F,

fO(x;y t "h(ag + t"tx))
fOox; (y t "h(a) tRq(x)):

By (iii), this nal function of (x;y) differs from a Fubini function by translation. So
(x;y) 7' g(x;y h(x)) differs from a Fubini function only by translation and scaling,
and henceis itself Fubini, by proposition 1.4.8 Therefore we have proved (i).

(iii), (iv): First note that for any x 2 F, the function y 7! fO(x;y tRq(x)) is just
the translation of y 7! f9(x;y) by tRq(x); since f © is Fubini this is integrable, and
translation invariance of the integral implies

Z Z
fo0cy tRa)dy= fo0xy)dy:

9(a + t"°x; @z + t"?y  h(ag + t"'x))

But asa function of x this is integrable, again sincef © is Fubini, and
Z:-Z. Z:Z.
Fo0cy  tRq(x)) dydx = f O(x; y) dydx:

Now by remark 1.4.9and Fubini's theorem for K K,
Zpo7Z¢ Z Z
f O(x; y) dydx = f (u; v) dudv:
K K

By the de nition of a Fubini function, it now follows that (x;y) 7! f 9(x;y tRq(x)) is
uQipi if and only if the dxdy repeated integral is well-de ned and equals

« k F(u;v)dudv, which is precisely what is stated in (iv). O

With thesereductions at hand it is straightforwar d to establish the conjecture in the
caseof non-negative depth:

Theorem 4.2.5. Letay; az; n1; no; h bedatafor theconjectue,andsupposé¢hat theassociated
depthis non-negativeThentheconjectueis true.

Proof. By the reductions, we supposethat g 2 Og[X]is a polynomial with no constant
term and non-zeroimage in K[X],that R Ois aninteger, and we will prove condition
(iv) of the lemma above. Write h(X) = tRq(X), and let f be Schwartz-Bruhaton K K.

The assumption on R implies that all coefcients of h are integral, and for y 2 F we
have
OrF y2Orf;

fx 2 O : h(x) 2 Ogg=
Fy h(x) FO 2 y2Op:
Henceif y 2 Og, we seethat x 7! f%(x;y  h(x)) is the lift of
u7!'f(uy h(u)

at 0;0, whereh is the image of hin K [X]. If y 2 Og,thenf°(x;y h(x)) = Ofor all x in
F.
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Integrating with respectto x therefore obtains
Z¢

(R _
%y h(gydx= k(WY h(W)du Y2 Oe;

y 2 Of;
o Re : :
which simply saysthaty 7! fO(x;y h(x)) dx is the lift of
z
v7l  f(u;v h(u)du
K

at0; 0.
Hence we may integrate with respectto y to get
fOx;y  h(x)) dxdy

R R _

k k f(u;v  h(u)) dudv
R R _

= « g f(u;v  h(u)) dvdu

where the secondline follows from the rst by Fubini's theoremon K K. The result
now follows by translation invariance of the measure on K and lemma 4.2.4 O

4.3 Negative depth

Having reduced the problem asfar aspossible and treated the relatively easycase,we
discussthe caseof negative depth in this section and the following section 4.4.

For this section and the next we x the following notation: R < 0 a negative integer
asthe depth; a polynomial q2 Og[X] without constantterm and with non-zero image
in K [X] asthe normalised polynomial; and a Schwartz-Bruhat function f on K K.
Write  for the function of F F given by ( x;y) = f9(x;y h(x)), and gfor the image
of gin K [X].

In this section,we alsoassumethat gdoesnot have everywher evanishing derivative;
sinceqis non-zero and without constantterm, this condition canonly fail to be satis ed
if K has positive characteristic p and g(X) is a purely inseparable polynomial i.e. a
polynomial in X P. We shall drop this assumption in section 4.4and seethat conjecture
4.2.1fails for such highly singular g.

Wewill study the conjecturefor data of depth R and normalised polynomial gthrough
condition (iv) of lemma 4.2.4 We will establish various conditions under which the
conjecture holds.

Intr oduce two sets:the non-singular part of q

Whns = fx 2 O : gYX) 6 Og= fx 2 O : qqx) 2 O, g;
and the singular part
Wsing = fX2 O : gX) = 0g= fx 2 O : g{x) 2 tOrg:

By our assumption on g, the non-singular part Wys is non-empty. The corresponding
singular and non-singular parts of are the restriction of to these setsextended by
zero elsewhere:

ns = char‘Wns F

sing — CharWSing F-

NOte that = ns + sing.
The singular and non-singular parts are treated separately. Using the decomposition
result 4.1.5 we will now explicitly evaluatex 7! ns(x;y) for anyy 2 F:
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Eroposition 43.1. Forally 2 F, thefunction x 7! ps(X;y) is integrable,andy 7!
ns(X; y) dx is thelift of
x Z
v 7! fO; g )u)dux R
12k K
g(! )=v
a’(! )60
at0; R; thesumis takenoveralhsimpIesqutions! tog(!) = v.
Moreoverthis functiony 7! F ns(X; ¥) dx is integrableon F, with
Z:Z: Z Z
ns(X; y) dxdy = f(;u)d! du:
K K
Proof. Firstly, for y 2 tROg, we have ( x;y) = Ofor all x 2 F. Now x y = tRygy 2
tROE.
Thenfor ,s(x;y) to be non-zero, x must belong to

fX 2 Wps 1 g(x) 2 yo+t ROpg
fx2 Of : q(x) 2o+t ROg; g¥x) 6 Og
G

fx2Wns iy tRgx)2 Org

i+t ROF;
i=1

where! ; arelifts by Hensel of the simple solutions ! ; in K to q(! ) = Yy, and the decom-
position is provided by the decomposition result 4.1.5 that proposition also implies
that there are commutative diagrams

ROF N yo+ t ROE

_7_< DSV

! )X
. P, . -

Sowe write  ns(X;Y) = - Gi(X), where g is the restriction of x 7! s(X;y) to
I+t ROg, extended by zero elsewhere;if x = | j + t Rxgbelongsto !+t RO then
the commutative diagram implies

ns(X;y) = gi(x) = f(!i; q0(! i)Xo):

Therefore g; is the lift of the Haar integrable function

u7! (i gYti)u)

at!;; R,theintegral of which is
Z. z
g(x)dx= f(i; g u)dux R
K

by remark 1.4.5 By linearity, X 7! ns(X; y) is integrable, with
ns(X; y) dx = f( gt uydux R ()
K

i=1
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The previous paragraph considered a xed value of y = tRyg in tROg. We now
consider the integral ( ) asafunction of y; that is,

Z
y 7! ns(X; y) dx:

Recallthat ! 1;:::;!  arethe simple solutions in K to q(! ) = y,. Sowe may rewrite the

integral as z . « Z

ns(X; y) dx = f(s q0(| yu) du X R,

K
where the sum is over the nitely many ! in Kthich satjsfy q(! ) = y, and ') s 0.
Finally, by appendix 4.A, the function v 7! | .qu)=y « F(!; g{! )u) du is in fact

g% )60

Haar integrable on K with integral
Z  x Z Z Z
f(0; oY )u)dudv= f(1;u)d! du:
K K

K!:q(!):v K

%! )60

R
Thereforey 7! F ns(X; y) dx is integrable on F, with

Z:Z. zZ Z
ns(X; y) dxdy = f(!;u)d! du:
K K
]
The proposition has animmediate corollary:

Corollary 4.3.2.1f g{X) is no-wheevanishingonK , then is Fubini.
Proof. If g{X) hasnorootsin K ,then = g, sothe previous proposition and lemma
4.2.4imply  is Fubini. O

Mor e generally, the proposition reducesthe problem to showing that the singularities
of g give no contribution to the integrals:

Corollary 4.3.3. Thefunction is Fubini if andonly if tﬁefollowing hold: for eachy 2 F,
thefunctionx 7! ng(X; y) isintegrablethenthaty 7! F sing(X; ¥) dx is integrable and
nally that

Z-7Z¢
sing(X; y) dXdy =0
Proof. This follows immediately from theidentity = s+ sing, the previous propo-
sition, lemma 4.2.4 and linearity . O

We may verify the rst requirement of corollary 4.3.3using the decomposition result
4.1.6

Proposition 4.3.4. Foreachy 2 F, thefunctionx 7!  gin(X; y) is integrable,and we have
thefollowing explicit description®fits integral:

Ifﬁ%tROF,orify 2 tROE butfx 2 O : g(x) 2t Ry+t ROg; gdx) = Ogis empty
then © sing(X; y) dx = 0.
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Otherwisewehavey 2 tROr andwrite
¢}
fx20r :qx)2t Ry+t ROp; gAX) = 0g= & + t9Of;
=1

whelrethedecompositiofwhichdependsny) is providedby thedecompositionesult4.1.§ let

3 +190s 'l t Ry+t ROp

7
? ?
y y
K ! K:

j
commutesThen
Z X oZ |
sing(X; y) dx = < f(@; j(u)duX G

i

mial.

Proof. By the de nition of alifted function, f © vanishesoff O  Of. Soif fx 2 O :
a(x) 2t Ry+t ROg; g4x) = Ogis empty for someythenx 7! ng(X; y) is everywhere
zero and henceintegrable; note that this setis certainly empty if y 2 tROg.

Now x y = tRyg 2 tROE for the remainder of the proof. Thenfor x 2 F, ing(X; Y)
vanishes unless x belongsto

fX 2 Wsing : Yy tRa(x) 2 Org= fX 2 Wsing : g(X) 2 Yo+t ROpg
fx2 O : q(x) 2 yo+ t ROr; %) = Og

¢

aj + t90¢;
j=1
where the decomposition is asin the statement of the proposition; let ; bethe corre-
sponding residue eld approximations. Denote by g; the restriction of x 7! ging(X; y)
to & + t% Of, extended by zero elsewhere. We shall now prove that eachg; is an inte-
grable function. Indeed, g; vanishesoff a; + t“Or,and if x = a; + t%xg 2 g + t% O,
then

g (x) = fO%q + t9%0;tRyo  tRa(a + t%x0))
= 1% + t9x0;tR(yo q(a + t%xo))

= f (g + t9%0;tR(yo a(g + t9x0)))

=f(@; j(Xo)
by de nition of the residue eld approximation ;. Thereforeg; isalifted function: it is
the lift of u 7! f (& ; j(u)) ata ;¢ . Further, sincewe assumedf is Schwartz-Bruhat,

this function of u is Haar integrable on K solongas ; is not constanf and therefore g;
is integrable on F, with
Z z
g(x)dx=  f(g; j(u)duxXs:
K
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However, if ; is a constant polynomial, then g; = g (aj)charaj+tc,- or » Which is inte-
grable with zero integral by example 2.1.10
By linearity, X 7! sing(X; y) is integrable, with
Z. x oZ
sing(X; y)dx = f (aj , j (u)) duX;

; K

i
asrequired. We emphasiseagain that the decomposition a;; ¢ ; j which we have used
to expressthe integral dependsny. O

Corollary 4.3.5.IfR= 1then isFubini.

Proof. Looking at the proof of decomposition result 4.1.6 we seethat if R = 1 (i.e.
A = 1 in the notation of that result), thgp all the residue eld approximations are

constant. Soby the previous proposition, F sing(X; y) dx = Ofor all y 2 F. Corollary
4.3.3implies is Fubini. O

By proposition 4.3.4we now have a well de ned function y 7! Re sing(X; y) dX; to
establish the validity of the conditions of corollary 4.3.3the next step is to prove that
this function of y is integrable. The complication in establishing its integrability is that
we lack explicit information on the variation of the sets

fx2 O : q(x)2yo+t ROg; gIX) = Og

asyp runs though Okf.
We nowFE)resentsome results and calculations which reveal considerable insight into

why y 7! F sing(X; y¥) dx canin fact fail to be integrable. We shall also give evidence
that this phenomenon is merely a result of the integration theory not yet being suf -
ciently developed.

Or : qx) 2 b+t ROg; g4x) = Ogis non-empty thenb b modt ROr for some
i2f1::; n?_.g Notethat thisis satisedif R = 1or 2, bycowollary 4.1.7.
Theny 7! F sing(X; y) dx is a nite sumoflifts of functionsoftheform
Z
v7l  f(a; (u) v)duX®
K

for 2 K[X]non-constanta2 K,andc 1.

R
By proposition 4.3.4if y 2 F isnot irhhtR+ O for somei, then F sing(X; y) dx = 0.
Soletting G; be the restriction of y 71 © sing(X; y) dx to bitR + Of, extended by zero
elsewhere, we have an equality of functions of y:

sing(X; y)dx = Gi(y):
i=1

For convenience of notation, we now x somei and write G = G;, b= b. Write

¢]
fx2 Op :q(x)2 b+t ROr; gAX) = 0g= & + t9Of;
j=1
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with residue eld approximations ;. Weclaim that G is the lift of

N 2
v 7! f(@; ) v)duX®
j=1 K

P
atb R;0 (the sum Ois restricted to thosej suchthat ; is not constant). Sosuppose
y = btR + yg 2 bt? + Op. Thenof courseyt R+t ROg = b+t RO, and so
a
fx2 O :q(x) 2yt R+t ROp;gA%) = 0g= & + t9Of;
j=1

with the residue eld approximations of this decomposition given by

. G a R R
a + ‘g 1 O ! t "y +?t O

? ?

y y

K ! K:

i(X) Yo
Proposition 4.3.4implies
Z N 0Z B )
G(y) = sing(X; y) dXx = ) f@; j(u) Yo)duX™s;
j=1

proving the claim, and completing the proof. O

Remark 4.3.7. Suppose that the assu&wption of the previous proposition is satis ed.
Then to establishintegrability of y 7! F sing(X; y) dx and prove it has zero integral, it
is enough to prove that for any a 2 K, non-constant 2 K [X], and g Schwartz-Bruhat
onK, thelift ofv7! | g( (u) v)duatO;0isintegrable and haszero integral; let G
denote this function of F, that is,

G:F! C
(R
«9C (u) y)du y2OF;

y 7! .
0 otherwise.

ThenG may not beintegrableon F. Indeed, it is not hard to show that if G were to
belong to L (F), the spaceof integrable functions, then G would be the lift at 0;0 of a
HaarF'kntegrabIe function on K ; this Haar integrable function would then have to be
v7l . 9( (u) v)du, butthe arguments to follow reveal that this function is Haar
integrable if and only if g= 0.

Wenow offer the following nonsenseargument for why G should be integrable, and
why F G(y) dy should be zero. As alifted function, we evaluate the integral of G by
theorem 1.4.4to give

Z Z z

G(y)dy = . Kg( (u)  v)dudv
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and then apply Fubini's theorem for K and translation invariance of the integral to
deduce

Z . Z Z
G(y) dy

g (u) v)dvdu
VAN
g( v)dvdu
X Kz
du g(v)dv:
K K

R
At this point it is clearwhy our arguments are not valid: the function v 7! g(  (u)
V) du is not integrable on K. However, we may apply similar nonsenseto the function
charo, , which is the lift of chark , to deduce
Z . Z
charg, (x) dx = du:
K
. N & 1=
Finally, example 2.1.1(i) implies charp, (x) dx = Oand so
Z Z z
G(y) dy du g(v)dv
A Z
charo. (x)dx  g(v)dv
K

=0

It should be possible to extend the measure theory on F so that these manipulations
becomerigorous. The key idea is that from the vantage point of F, the residue eld
K truly has zero measure, as used above; so one expects Fubini's theorem on K to
hold for certain functions which, ttrggugh not Haar integrable, are integrable in some
senseafter imposing the condition |, du = 0. Oncethis is properly incorporated into
the measure, the theory should become considerably richer. It should also yield new
methods to treatdiver gent integrals on K by lifting them to F, applying Fubini theorem
there, and then pulling the results back down to K ; this would be arefreshing contrast
to the main techniques sofar, which have centred around reducing integrals on F down
toK.

Example 4.3.8. Now we treat an example of depth 3 in which the assumption of
proposition 4.3.6is not satis ed. WeassumeR = 3,q(X) = X ?2,and charK 6 2. The
decompositions required for the proposition are given by

fx 2 O : q(x) 2 b+t ROg; g4X) = Og
= f8X20F :x?2 b+ t30g; X = 0g

% ? b%tZOF;
K b2 t20¢ butt 2b2K 2
) E b2+ t20p t b2+ t20¢ b2 t?Of andt 202 K %
. tZOF b2 t3OF;

where we use Hensel's lemma to take a square root in the third case. The associated
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residue eld approximations in the nal two casesare given by

X 2

B2+ 120 X1 b+ t30f b2 + 120¢ | b+ t30¢
2 2 ? 2
? ? ? ?
y y y y
K ! K K ! K
bt=2t 1X 2pt=2t 1x
2 X? 3
t 9|: I b+ IZ)OF
? ?
y y
K 1 K:
bt 3
Proposition 4.3.4therefore implies that fory 2 F,
Z F
sing(X; y) dx
8
% 0 y2t 'Of;
% y2t 10r butty 2K?;
§ K f(0; 2(yt)¥*2u)duX?+ f(O 2(y)12u)duX?2 y2t 1Of andiy 2 K %
Yy 2 Of:

R
Thereforey 7!~ ging(X; y) dx is the lift of
z
v7!  f(0; 2v¥72u) + f (0;2v*2u) duX 2 chark 2(V)
K

at0o; 1.
This function of F need not be integrable, but asin the previous remark, there is a
good argument to suggestthat it should be, and why its integral should be zero:

Indeed, the function on the residue eld hasthe form
Z

X
J(v) = g( a¥!)u)du
12k K
q(! )=v
a%(! )60
where g is a Schwartz-Bruhat function on K. Now replace the integrand by
g( qY! )u) chark (! ) and appeal to appendix 4.A to deduce
Z Z Z

J(v)dv = g(u) charg (! ) d! du:
K K K

R R
But arguing asin the proceedingremark, , d! = 0,andso . J(v)dv = 0. Of course,
the argument is honsensebecausel is not integrable, but it should be after a suitable
extension of the measure.

4.4 Negative depth with gpurely inseparably

We maintain all notation intr oduced at the beginning of the previous section but drop
the additional hypothesis that g°is not everywhere zero. Instead, we now assumeK
has positive characteristic p and that (X ) is purely inseparable.

87



CHAPTER 4: FUBINI'S THEOREM OVER A TWO-DIMENSIONAL LOCAL FIELD

Whereasin the previous section conjecture 4.2.1could fail to hold becausethe inte-
gration theory is not yet suf ciently developed, causing functions not to be integrable,
we will presenta result now to show that if gis purely inseparable then all required
functions are integrable, but the conjecture is simply false!

First note that, in the notation of the previous section, g°being everywher e zero im-
plies = sing. Secondly, proposition 4.3.4remains valid, sothat x 7! ( x;y) is inte-
grable for any y 2 F and we have an explicit description of its integral.

Proposition 4.4.1. Suppos&k = 1. Thenbothrepeatedhtegralsof arewell-de ned,but
f maybechosersothat
( x;y)dxdy 6 ( x;y) dydx:

R
Proof. Arguing exactly as iﬂ corollary 4.3.5it follows that F sing(X; y) dx = O for all

y 2 F, and thereforey 7! F sing(X; y) dx = Qs certainly integrable, with integral 0.
That is, Z.7,

( x;y)dxdy = 0:

The dydx integral of was showed to make sensein lemma 4.2.4and have value
Z:Z: Z Z
( x;y)dxdy = f (u;v) dudv:
K K

To complgte the proof simply choosef to be any Schwartz-Bruhat function on K K
suchthat ,  f(u;v)dudvis non-zero. O

Remark 4.4.2. The integration theory of chapter 2 is easily modi ed to allow integra-
tion on a complete discrete valuation eld whose residue eld is any innite eld
equipped with discrete counting measure; this is an elementary form of motivic in-
tegration. In that situation one may ask similar questions about changesof variables
and Fubini's theorem; results are generally easierto prove and closer to the analo-
gous results for a usual local eld. In particular, if the residue eld is perfect, then the
pathologies exhibited in this section no longer exist.

The failur e of Fubini's theorem appears therefore to be a measure-theoretic conse-
quence of the local eld K being imperfect. Note that the setof p" powers of K have
Zero measure, in stark contrast with in a perfect eld. The approach to rami cation
theory for complete discrete valuation elds with imperfect residue elds by A. Abbes
and T. Saito [AS0Z] [ASOJ] is basedon rigid algebraic geometry and usesdecomposi-
tion results similar to 4.1.6and 4.1.5 seesubsection6.1.2for amore detailed discussion.
A deeper understanding of this failur e of Fubini's theorem will undoubtedly lead to
progressin the rami cation theory of two-dimensional local elds.

4.5 Summary and future work

Let us summarise our main results on conjecture 4.2.1 Given data a;; a; n1;no;h for
the conjecture, let g be the associatednormalised polynomial and R the depth; then:

() If degh(= degq) 1then the conjectureis true (theorem 4.2.2.

(i) If R Othen the conjectureis true (theorem 4.2.5
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(iii) 1f §°is no-where vanishing on K then the conjecture is true (corollary 4.3.2).

(iv) If R = 1landqgis not purely inseparable,then the conjectureis true (lemma 4.2.4
+ corollary 4.3.5.

(v) If R < 1landqgis not purely inseparable,theny 7! Re ( x;y)dx may fail to be
integrable and so the conjecture may fail; it appearsthat it is possible to increase
the spaceof integrable functions sothat the conjecture becomestrue (remark 4.3.7
+ example 4.3.8.

(vi) If R = 1but gis purely inseparable, then the conjecture fails and would con-
tinue to fail evenif we increasedthe scopeof the integral (section 4.4).

(vii) If R < 1but gis purely inseparable, then similarly to case(v) calculations be-
comedif cult. We havel_!goii:\;ncluded examples, but in all caseswhich the author
can explicitly evaluate, F ( x;y) dxdy = 0, Thus the conjecture seemsto fail
asin (vi).

The immediate task is evident: the integral must be extended to a wider class of
functions sothat the nonsensemanipulations in remark 4.3.7and example 4.3.8become
valid.

Secondly, we should consider more general changesof coordinates on F  F than
(x;y¥) 7! (x;y  h(x)). Similar methods to those in this chapter will berequired: rstly
one needsto approximate the transformation at the level of K K and nd a suitable
decomposition. This will lead to integrals over K which can be explicitly evaluated as
well assome functions on F; thesefunctions on F will perhaps be within the scope of
the integral, or instead will provide further impetus for extending the integral.

4.A Evaluation of animportant integral on K

Let K bealocal eld, f aFubini function of K K,and 2 K[X]apolynomial with
9not everywher e zero. We discussthe function of K given by
x Z
J(v) = f¢; 9 )u)du
12k K
(1)=v
9160

Note that the assumption that f is Fubini implies that J is de ned (i.e. not in nite) for
all v. Wewill prove the following:

Proposition 4.A.1. ThefunctionJ isintegrableonK , with
A Z Z
J(v)dv = f(;u)d du:
K K K
Proof. The proof is an exercisein analysis over alocal eld. Let = fx: 94x) = Ogbe
the nite setof singular points of
Letvg 2 K and assumethat thereis anon-singular solution to (Y) = vg. Theinverse
function theorem for complete elds (seee.g.[lgu00]) implies that there existsan open
discV 3 vg,opendiscs 1;:::; n,andK -analytic maps :V ! i,i=1:::;n (that
is, representablein V by a convergent power series)with the following propert|es.

(i) 1;:::; n arepairwise disjoint;
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(i) ( i) = Vforeachi;moreover, j , and ; areinverse diffeomorphisms between
iand V;
(iif) the non-singular solutions in K to (Y) = vpareY = 1(vo);:::; n(Vo).

For if not, then there would exist a sequence(Xn)n in K such that x, 2 , ; for all
nand (x,) ! Vo; the relative compactnessof (V) R_ROW allows us to passto a
convergent subsequenceof (x,), giving anelementx 2 Kn ; ; which satises (x) =
Vo. But this contradicts (iii) and so provesour claim. Informally , the ; parametrise the
non-singular solutions of (Y) = v,forv2 V.

Forv 2 V, we deduce that

Z x
J(v) = fFCiv): A i(v)u)du
i=1
and so
Z v Z Z
J(v)dv = fCi(v); A i(v)u)dvdu
v =1 K _V
x Z Z
= i i) M (i(v);u)dvdu
i K _V
x Z Z
= f(!;u)d! du
. K i
AR
= f(!;u)d du
K V)
by Fubini's theorem and an analytic change of variables v = (! ). An elementary

intr oduction to change of variables in integrals over non-archimedean elds may be
found in [VVZ94].
If J is replaced by J chara for any measurable subsetA  V then this working is
easily modi ed to show
Z Z Z

J(v)dv = f(!;u)d! du: ()
A K 1(A)

It is now easyto seethat (K n ) admits apartition into countably many Borel sets
(A )jl=l where () holds with A; in place of A for eachA. Therefore

Z X Z
J(v)dv = J(v) dv
X Z Z
= f(;u)d du
i K 1(A))
Z Z
= f(;u)d du
K
where = Y (Kn) =Kn I () differsfromK only by a nite set. Sowe
have reachedthe desired result:
Z Z Z
J(v)dv = f(!;u)d! du: O
K K K
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CHAPTER 5

Two-dimensional integration ala
Hrushovski-Kazhdan

We explain how the results of Hrushovski and Kazhdan apply to integration on two-
dimensional local elds of residue characteristic zero.

5.1 Summary, without model theory

We now explain rigorously exactly how the model theoretic approach to integration
developed by E. Hrushovski and D. Kazhdan in [HKO6] applies to the problem of in-
tegration on two-dimensional local elds. We focus on the caseof dimension two, but
there would be no essentialdif ferencecausedby considering higher dimensional local
elds.

The results here are based on the model theoretic calculations of the subsequentsec-
tions, but we are going to begin by presenting our main results avoiding model theory
asfar aspossible, sothat this section remains accessibleto the reader unversed in that
theory. As aresult, afew technical issuesare omitted. The model theoretically inclined
readerwill have no dif culty in remoulding this discussion to his preferred shape,and
will hopefully feel nothing worse than slight satisfaction if he notices one of the omis-
sions.

For the remainder of this sectionwe x atwo-dimensional local eld F, and a uni-
formiser t 2 F. We set

RV(F)=F =1+ pet flg ;

where pg is the prime ideal of Or. The natural map F ! RV(F), sendingQto 1 ,is
denoted rv. Our choice of t induces an isomorphism

RV(F) =F =l+pe=F Z; ut" 7! (T;r);

which will be essential.

5.1.1 Motivation

A recurring idea in the development of the integration theory on a two-dimensional
local eld F hasbeenthat the integral ought to reduceto Haar integration on the local
eld F. Explicit phenomena of this appeared in the original de nition in chapter 2,
the reduction in section 4.3 of an integral on F to one of F which was then calculated
in appendix 4.A, and the way in which the invariant integral on GL,(F) lifted the
Haar integral on GL,(F) (proposition 3.3.8. We saw in remark 4.3.7that there seem
not to be enough integrable functions, and a major component of chapter 3 involved
proving that linear changesof variables of determinant 1 preservethe two-dimensional
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measure. We will mainly addressthe rst two-pr oblems here: reducing the integral to
the residue eld and increasingthe scopeof the integral. Understanding its behaviour
under changesof variables is covered by one of the dif culties discussedin subsection
5.1.4below.

A subsetof F (or of F") will be called bounded if and only if it is bounded with
respectto the discrete valuation on F. A more subtle notion of boundedness is the
following:

De nition 5.1.1. Firstly, call asubsetY RV(F) bounded if and only if rv 1(Y) F
is bounded. Now, Y is two-dimensionallyboundedf and only if it is not only bounded,
but also eachsection

Ye:=fy2F :(y;k)2Yg

is bounded in the local eld F.

Herewe haveidentied F =1+ pg with F Z, but the notion of two-dimensional
boundednessis easily seento be independent of the choice of uniformiser t.

The two notions of boundednessfor Y RV(F)" arede ned similarly .

Let F denote the measure on F introduced in section 2.2 As areminder, F is
characterised by

Fla+ t“fx 2 OF : X2 Sg) = (S)TX2 R(T)

fora2 F,k2 Z,andS F of nite Haar measure. Here isa xed Haar measure
on F, and we have replaced the X variable used in earlier chapters by T, to avoid
confusion as X is always used to denote certain setsin this chapter.

SupposeY RV(F) ;thenit is easyto seethat

G
v 2(Y)=  tKfx 2 O : X2 Y0,
k2Z

where Y is the sectionof Y which appeared in the previous de nition. If Y is bounded,
thenY, = ? fork 0O,andif Y is moreover two-dimensionally bounded, then

Ftkfx 2 O 1 X2 Yeg) = (V) TK:

Although we mentioned in section 2.2that F is not always countably additive, Fes-
enko has shown in [Fes03 §6] that it can be consistently ex}_ended to certain countable
disjoint unions; if Y is two-dimensionally bounded, then = ,, t“fx 2 O : X 2 Yig
will be such aunion, and so

lew»=x (V) T 2 R(T)):
k27

This all easily extends to two-dimensionally bounded Y  (RV(F) )", with

lew»=x (Yoxkt ke 2 R(T)):
k2zn

However, the classof subsetsof F of the form rv 1(Y)forY RV(F) isvery small;
it is not even closed under translations. But if we also allow ‘measure-preserving'
maps, then we shall soon seein theorem 5.1.5that the situation is much better.
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5.1.2 Semi-algebraic sets

The readershould look forwar d at the notion of “structure' which will beusedin section
6.2 indeed, it would be pro table to skim that entire section before proceeding. We
assumehere for simplicity that F is a non-archimedean local eld; for the archimedean
case,seeremark 5.1.6

De nition 5.1.2. Let A be the smallest structure on F satisfying the following proper-
ties:

() A(F™) contains any Zariski closed set;
(i) A(F) contains both Or and O := fx 2 O : X 2 OzQ.

A subset of F" belonging to A(F") will be called semi-algebrajca function between
subsetsof F" and F™ will be called semi-algebraicif and only if its graph Fn+mis
semi-algebraic.

In other words, the semi-algebraic setsare those which are de nable with respectto
the structure A.

We de ne semi-algebraic subsets of E" in a similar way as for F", by taking the
smallest structur e which contains all Zariski closedsetsand O

Example 5.1.3. Hopefully afew exampleswill convince the readerthat semi-algebraic
setsare not too daunting:

() Any single point a 2 F" is semi-algebraic, becauseit is the image of a constant
polynomial.

(i) Iff 2 F[xq;::::%Xn], thenf 1(Og) F"issemi-algebraic. Indeed, it is the preim-
ageof asemi-algebraicsetunder asemi-algebraicfunction (the function f is semi-
algebraic becauseits graph is Zariski closed, henceis semi-algebraic).

(i) If S is a compact open subset of F" then X := a+ fx 2 Of : X 2 Sgis semi-
algebraic, for any a 2 F", 2 GL,(F). Indeed, decomposing S into a nite,
disjoint union of products of translated fractional ideals, we seethat X is a nite,
disjoint union of setsof the form a®+ P, with a®2 F", 92 GL,(F); but such
setsare the image under a semi-algebraic map of a semi-algebraic set, hence are
semi-algebraic.

Example 5.1.4. As well aspolynomial maps, semi-algebraic functions caninclude the
inverse of polynomial maps. For example, the group of principal units Ug = 1+ pe is
uniquely I-divisible for any | not divisible by charF, sothat the map

foURl UL x 7 xH
is well-de ned. Moreover, f is semi-algebraic, for the following reasons:
(i) by the previous example pt , hence U2, is semi-algebraic;
(i) the polynomial x'is a semi-algebraic function, meaning that
=f(xy)2F%:x' = yg

is semi-algebraic;
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(i) by permuting coordinates and intersection with U2 U?}, we seethat
O= f(y;x) 2 U2 U :x'=yg
is semi-algebraic;but is exactly the graph of f , and thereforef is semi-algebraic.

The advantage of working with the classof semi-algebraic objectsis that it is large
enough to include all interesting setsand functions, while not solarge that pathologies
appear. Here are several particularly attractive limitations, which are true in the case
charF = 0:

() Call asubsetof F" null if and only if it is contained in aproper Zariski closed sub-
setof F". Then asemi-algebraicsetX F"isnull if and only if it hasno interior
in the valuation topology on F. Hence the boundary @X of any semi-algebraic
setX F"isnull. Seeproposition 5.3.12and the subsequentcorollaries.

(i) LetX F" besemi-algebraic,andf : X ! F" asemi-algebraicfunction. Then
f is almost everywher e smooth; here "'smooth' meansin nitely differentiable in
the usual sensefor valued elds, and “almost everywhere' means that we are
permitted to ignore a semi-algebraic null set. Seesubsection 5.3.2

Soif X  F"andf : X ! F" aresemi-algebraic,then thereis a proper Zariski closed
setV X suchthat X nV isopenand f jx . is smooth!

In fact, the class of semi-algebraic setsis slightly too large for integration theory,
becauseone rarely computes the measure of something like the set of squares (which
is semi-algebraic). Therefore we saythat X  F" is quanti er-freesemi-algebraid and
only if it belongs to the algebra of subsetsof F" generatedby f 1(Og) and f 1(Of),

above are all quanti er -free semi-algebraic.
Finally, we call a subsetY of (RV(F) )" semi-algebraic if and only if each section

Yc« (F )" is semi-algebraic, for all k 2 Z". This is easily seennot to depend on the
choice of t which induces the splitting RV(F) = F  Z.

5.1.3 Descentto RV
We may now precisely state the main result:

Theorem 5.1.5. AssumecharF = 0. LetX F" beaboundedguanti er-Eeesemi-algebraic
set. ThenX maybewritten asa disjoint union of semi-algebraisetsX = = 7, X; suchthat
Xo is null, andtheremainingX; are of the following form: there are a semi-algebraisubset
Y; (RV(F) )", anintegerN; 1, andasemi-algebraidli-to-1 mapf; : X; ! rv 1(Y;)
whichis almosteverywhes smoothwith Jacobiar 1.

Proof. This result is obtained by modifying a similar result for algebraically closed val-
ued elds due to Hrushovski and Kazhdan. The preciseargument, for the model theo-
rists, is asfollows:

Let L be the RV-expansion of the language L ry obtained by adjoining a unary pred-
icate to the RV-sort to denote a valuation subring of the residue eld. Then F is an
L structure and we setT* = T(F) and L* = Lg. This theory is an RV-expansion
of H(0; 0)g, the parameter-extension of the theory of Henselian elds. Hence we may
apply corollary 5.5.1Q and the result immediately follows (since semi-algebraic really
meansT * -de nable). O
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If each; in the previous lemma is actually two-dimensionally bounded, then, as
explained in subsection 5.1.1, we know exactly what the two-dimensional measure of
rv 1Y) is:

Fiv YY) = X (fy 2 (F )" : (y;k) 2 Yig) T 2 R((T)):
k2zn

Therefore,assuminghat F extendsto a nitely additive measurewhich ignoresproper
Zariski closed setsand which is preservedunder Jacobianl smooth maps, we deduce

X
"(X)= NP Tv () 2 R((T)): )
i=1

Conversely, we would like to usethe theoremto extend F by using (y) asade nition.

That is, the theorem not only proves that the two-dimensional measure can be ex-
tended in at most one reasonableway, it also offers a de nition of the measure for a
wide classof sets. Of course, the reader will already have noticed various dif culties,
which we are compelled to discuss next.

Remark 5.1.6. There is no dif culty in extending these results to archimedean two-
dimensional local elds, i.e. R((t)) or C((t)). One must modify the de nitions of semi-
algebraic setsfor both F and F, and in the proof of theorem 5.1.50ne must use a dif-
ferent rst order language.

5.1.4 The remaining problems

There are two problems which prevent us from immediately offering (y) asa de nition
of F(X):

() the setsY; may not be two-dimensionally bounded, and therefore the de nition
of F(rv 1(Y;)) doesnot make sense;

(i) evenif the; aretv'\go-dimensionally bounded, perhapsthereis adif ferent decom-
position of X, as j XJ-0 say, with thepcorresponding on also two-dimensionally
bounded; then we needto show that = N; F(rv X(Yi)) = ;NP2 F(rv (Y9).

Example 5.1.7. This example is fundamental in Hrushovski and Kazhdan's theory. Set
X = pg;we will offer two decompositions of X .
Firstly, let Y = f(y;n) 2 RV(F) :n> 0g. Thenrv %(Y) = pr nf0g, sowe have

X = fogt rv 1(Y):

which is avalid decomposition sincef Qg is Zariski closed.

Secondly, let YO= f(1;0)g RV(F),sothatrv (Y% = 1+ pe. Letf bethe Jacobian
1bijection x 7! x+ 1. ThenX = f Yrv 1(Y9) is alsoavalid decomposition for X .

In a sensewhich we will not make precise,Hrushovski and Kazhdan explain that,
in their setting of an algebraically closed valued eld, this is the only ambiguity which
canarise in the decomposition of any setinto RV lifts.

Now consider how the previous example interacts with the two-dimensional mea-
sure. In the rst decomposition, Y is not two-dimensionally bounded (indeed, each

section Y,, for n > 0is all of F ), and so we cannot use this decomposition to de-
ne F(X). Butin the seconddecomposition, Y %is two-dimensionally bounded, with
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Firv (YY) = 0; hencewe expect F(X) = 0, which is indeed true according to
example 2.2.5i).

In this way, the non-unigueness of a decomposition appearsto be “orthogonal' to the
condition that the Y; appearing in the decomposition are two-dimensionally bounded.
The author is con dent that further examination of Hrushovski and Kazhdan's proof
of their corresponding result will lead to the elimination of problem (ii).

Problem (i) is more subtle; it is unclear how to provide an intrinsic characterisation of
which semi-algebraic setsX admit a decomposition with all the Y; two-dimensionally
bounded. It is not even clear if the classof such setsis closed under unions (it is cer-
tainly closedunder disjoint unions) and intersections. Hopefully resolving problem (ii)
will lead to further insights.

5.2 Languagesand known results

The remainder of this chapter is essentially a proof of theorem 5.5.9below, from which
corollary 5.5.10and the aforementioned theorem 5.1.5then follow. The remainder of
this chapter is presentedin the language of model theory; we begin by collecting to-
gether some basicresults pertaining to the model theory of valued elds.

Fields

Let Tring; L1ing denote the theory and language of rings. This language has binary op-
erations +; ; and constants0; 1; the theory contains the obvious sentencessuch as
8x 8y (x + y = y + x) sothat the models of T;ng are precisely commutative, associative
rings with unit. Adjoining to Tng the sentence8x9y(x 6 0! xy = 1) obtains the
theory of elds Tgq , formulated in the language of rings.

For algebraically closed elds, one addsto T ¢4 acountable collection of sentences

8ap:::8ap 1x(X"+ay X"t +ay=0) @@aln 2
to obtain the theory ACF. This can be further augmented by
+ +1=0
R
p times

to give ACF(p), the theory of algebraically closed elds of characteristic p, for some
rational prime p > 0; alternatively, adding the negation of all these sentencesgives
ACF(0), the theory of algebraically closed elds of characteristic zero.

A. Tarski establishedthat ACF admits elimination of quanti ers in the language L ying.
Mor eover, eachtheory ACF(p) (p  0) is complete and model complete.

Ordered groups

Let Toag; L 0ag denote the theory and language of ordered abelian groups. This language
hasbinary operations +; ,abinary relation ,and aconstantO; the models of To,q are
precisely abelian groups equipped with atotal ordering which is compatible with the
group operation.

Adding to Toag the collection of sentences

SXQV(T(L{ZL)f:y) @aln 2
n times

yields Tgoag, the theory of divisible ordered abelian groups. This is complete and ad-
mits elimination of quanti ers [Rob77].
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Valued elds

There are many different languages for valued elds, and although they are all essen-
tially the same, some are more convenient. The most basic language is obtained by
adding to Ling asingle unary predicate O and to T ¢4 an additional sentence

8x(x20! x '20);

so that O is interpr eted as a (possibly trivial) valuation subring of the eld. One can
add further sentencessuch as

Lt pr}60" @G+ *p T20
p times p times

to obtain the theory of valued elds of characteristic 0 and residue characteristic p.
Even using the simple language L ring [ fO g, one caninterpr etthe residue eld F and
value group ( F) of any valued eld F. Indeed,

(F)=F =0

and
F = O=m;

wherem= fX 2 F : X = 0_ X 2 Ogisthe maximal ideal of O. Therefore thereiis
little changeto the model theoretic nature of the situation if we add an extra sort or two
to be interpr eted asthe residue eld or value group, together with additional function
symbols to representthe residue map and valuation.

However, the main theme of the model theory of valued elds is understanding how
properties of the eld F reduceto properties of the value group and residue eld. The
convenient objectwhich suits this purpose is

F =1+ m:
Indeed, there is a natural exactsequence
1! F ! F=1+m! (F)! 0

so that F =1 + m wraps together the value group and residue eld; in particular, if
the valuation is discrete, then a choice of a uniformiser will induce an isomorphism

F =1+ m=F Z. Following Hrushovski and Kazhdan, we shall therefore work
in the two-sorted RV-languagel ry, Which we now describe. The rst sort, denoted
VF, usesthe language L ing. The secondsort, denoted RV, usesthe language obtained
by augmenting L oag With a unary predicate k , a constant 1 , and a binary operation
+ :k k! k,wherek isthe union of k and animaginary constant 0. Thereis also
a function symbol rv : VF ! RV. The theory Tgy contains all required sentencesto
ensure that if F = (VF(F);RV(F)) is a model of Try, then VF(F) is a valued eld,

RV(F)=F =1+ mt flg , and rv is the natural quotient map, extended to all of VF (F)
by setting rv(0) = 1 ;the ordering on RV(F) is the partial ordering x 'y, yx 12
Of,with 1 being maximal. Wewrite RV(F) = F =1+ m. One canof courseaugment
the theory Tgry to ensurethat the models have appropriate characteristic, are Henselian,
are algebraically closed, etc. We shall be particularly interested in RV-expansions, in
which one adds additional structure only to the RV sort.

Formulated in any of theselanguages,the theory of algebraically closedvalued elds
ACVF admits elimination of quanti ers (essentially follows from A. Robinson's work
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[Rob77]), and the theories ACVF(p;p), ACVF(0; p), ACVF(0; 0) of algebraically closed
valued elds with specied characteristic and residue characteristic are complete. Fur-
ther, the theory H(O; 0) of Henselian valued elds of residue characteristic zero admits
elimination of eld quanti ers (seee.g.[Pas89, [HKO06, Prop. 12.9]).

5.3 Structure results for de nable setsin avalued eld

In this sectionwe establish avariety of results describing the structure of de nable sets
and maps in valued elds. Our main tool is explicit, syntactical analysis of formulae,
similarly to Y. Yin's reworking of the Hrushovski-Kazhdan theory for ACVF(0;0) in
[Yin0g].

Let (T;L) be atheory of valued elds formulated in an extension-by-parameters of
the language L ry; assume(T; L) admits the elimination of VF quanti ers. The exam-
plesto havein mind arewhen T is an extension of ACVF (0; 0) or H(0; 0) by parameters.
Let (T*;L*) bean RV-expansion of (T;L); we shall seelater that (T * ;L") also admits
the elimination of VF-quanti ers (lemma 5.3.9.

Theselanguages have two types of terms: the VF terms, i.e those terms interpr eted
in eachmodel asan element of the VF sort, and the RV terms, de ned analogously. The
VF terms of L* which do not include any variables are the sameasthose of L, namely
terms of the form

g(ci; i Cn); v)

do include variables (also the same as those of L) are of the form f (x), where x are
VF variables and f is a polynomial whose coefcients are all of the form (y). Sincethey
will appear often, we shall call polynomials like f (x) L-polynomialgit would be equally
correct to call them L* -polynomials, but we wish to emphasisethat they are already
de nable in the weaker language L).

Expressions such as ‘denable’, ‘equivalent, etc. mean “T7*-de nable’,
‘T*-equivalent’, etc. unlessapre x isincluded to indicate otherwise.

Remark 5.3.1. Although we are only really interestedin subsetsof VF" for all n, it is
more convenient to work with subsetsof VF" RV™ for all n; m, not least so that we
canfollow Hrushovski and Kazhdan asclosely aspossible.

From the perspective of measure theory, proper Zariski closedsetsare negligible, and
sothe following de nition is convenient:

De nition 5.3.2. A de nable subset X VE" RV™ will be said to be T* -null (or
simply null) if and only if thereis anon-zero L-polynomial g(x) suchthatX g %(0)
RV™ i.e.

T" T (xy)2X! gix) =0

Note that this notion depends on the ambient spaceVF" RV™. De nable subsets
of Rv™ are not null, unlessempty, either by convention or degeneracyof the de nition.
Wewill sometimessay "almost everywhere'to mean "away from anull set'. Wewill see
in proposition 5.3.12that a setis null if and only if it has no interior .

Lemma 5.3.3. Any de nablesubsebfanull setis null, anda nite union of null setsis null.

Proof. Obvious. O

98



CHAPTER 5: TWO-DIMENSIONAL INTEGRATION A LA HRUSHOVSKI-KAZHDAN

5.3.1 Syntactical analysis of T*
We begin our syntactical analysis of formulae of (T* ;L") with some simple results:

Lemma 5.3.4.Let = (x;y)beanRV termofL™, wheex areVF variablesandy are RV
variables.Thenwe canwrite

where %isanRV termofL™* all of whosevariablesare ofthe RV sort,andthef; are non-zeo
L -polynomials(more precisely is equivalento aterm ofthegivenform).

Proof. If is atomic, then is either a single RV variable or an RV constant; such ex-
pressionsare certainly of the required form. Now assumethat is not atomic. Then
we may write = g( 1;:::; m) for afunction symbol gand terms 1;:::; n; note that
either g is afunction symbol RV' I RV for somel 0, or g = rv, becausethere are no
other function symbols with valuesin RV.

It now follows by induction on the length of that = Qrv( 1(x));:::;rv( s(X));Y),
whereeach jisaVFterm and %is anRV term all of whose variables are of the RV sort.
But we observed above that any VF term ;(x) is an L-polynomial f;(x). Moreover, if
any of the f; areidentically zero,thenT* ~ rv(fi(x)) = 1 , sowe may replacerv(f;(x))
by the constant1 and absorbit into © O

Corollary 5.3.5.Let = (x;y) beanRV termofL™, wheex are VF variablesandy are
RV variables. Thenther is a null setN VFE" suchthat for any modelF = T* and
a2 VF(F)" nN(F), theris anopenneighbounoodU ofa suchthatforallb2 RV(F)™ and
all" 2 U,

(&b = (a+"b:

i.e.awayfromanull set,theterm (x;y) islocallyconstantin x, independentiyofy.

Proof. Wewrite = Hrv(f1(x));:::;rv(fs(x));y) satisfying the conditions of the pre-
vious lemma, setf = fqi:::fg, and put N = f (0), which is a null setof VF". Let
FFE T"anda2 VF(F)" nN(F). Sincerv : VF(F) ! RV(F) is continuous with
respectto the valuation topology on VF(F) and discrete topology on RV(F) , there
is an open neighbourhood U of a on which f does not vanish and on which rvf; is
constant for all i. This is exactly what is required. O

Thefollowing classi cation of atomic formulae is absolutely fundamental for the sub-
sequentresults:

Lemma 5.3.6. Let (x;y) beanatomicformulaofL ™, or the negationof an atomicformula;
assume is not atautologyor a contradiction.Theneither

(i) is T-equivalento aformula’g(x) = 0' for somenon-constant] -polynomialg; or
(i) is T-equivalento aformula’g(x) 6 0' for somenon-constantL -polynomialg; or

(i)  isT*-equivalento aformulaoftheform

mula), all of whosevariablesare ofthe RV sort,andf; are non-constantL -polynomials.
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Proof. By the very de nition of an atomic formula, isequalto R( 1;:::; ;) for some
relation symbol R and terms ; (or the negation of such an expression).

Case At leastone j is a VF term. Well, the only relation symbol of L* accepting any
VF terms is the binary relation of equality =,and so is™ 1(x) = 2(x)' with VF-terms

1, 2 (or it is the negation of this formula). So ; and » are both L-polynomials, and
we setg(x) = 1(X)  1(X). Then is T-equivalent to 'g(x) = 0' (in which case is of
type (i)) or to 'g(x) 6 0' (in which case is of type (ii)).

Case All the j are RV terms. Then according to lemma 5.3.4 each  is T* -equivalent
to aterm of the form

where the f X are non-zero L-polynomials and lis an RV term all of whose variables
are of the RV sort. It easily follows that is of type (iii), with

O

De nition  5.3.7.Let (x;y) be an atomic formula of L™, or the negation of an atomic
formula; assume is not atautology or a contradiction. We will saythat is oftype(i),
(ii), (iii) according aswhich of the threecases satis es in the previous lemma.

Corollary 5.3.8.Let (x;y) beanatomicformulaofL ™, or thenegationof an atomicformula;
assume is not atautologyor a contradiction.If is of type(ii) or (iii) thentheris anull set
N suchthatforanymodelF  T* anda 2 VF(F)" nN (F), theris an openneighbounood
U ofa suchthatforallb2 RV(F)™ andall" 2 U,

FF @b() FF (@a+"b:

Proof. If is T-equivalent to ‘g(x) 6 0' then we may take N = g 1(0). Else is of type
(iii), and we proceedexactly asin corollary 5.3.5 O

The following result seemsto be well-known among model theorists, but a reference
is hard to nd, and so for the sake of completenesswe presenta proof in the same
style as our other results. Recall that we are assuming (T;L) has elimination of VF
guanti ers.

Lemma 5.3.9. T* haseliminationof VF quanti ersin thelanguagd. * .

Proof. Letting v denote a single VF variable; it is enough to take aformula (v;x;y) of
L* with no VF quanti ers and to rewrite

v (Vix;y)

without any VF quanti ers.
By (the proof of) prenexnormal form, is T*-equivalent to aformula of the form
N
Qizz  Qmzs i (V;X;Y;2)

i
where z are RV variables, eachQ; is 8 or 9, and each j; is an atomic formula of L™ or
the negation of an atomic formula (and we may clearly assumethat each ;; is neither
a tautology nor a contradiction, unless itself is one, in which casewe are done). Let
| denote the set of those (i; j) for which i is of type (i) or (i), and 1 °those (i; j) for
which j; is of type (iii).
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For each (i;j) 2 1, lemma 5.3.6 implies that ; is T-equivalent to a formula
g (v;x) i O, where j; is either = or 6, and g;; is an L-polynomial. We will use
? to denote either ‘'no symbol' or "negation’, sothat ? i; is either i; or: j;;in fact,
for each(i;j) 2 I, chooseconditions ? = (?;j )i )21 (2" such possibilities), and set

N

2(V;X) = IR
(i;j )21
Sothe sentence

2(V; X)

is a tautology; here ? varies over the 2'i combinations of *no symbol' or “negation'.
Now, 9v (v;x;y)is T* -equivalent to the sentence

TV ( o(vix)N (VX Y));

and it is therefore enough to eliminate the v quantier from -, = "9v( »(v;x) "

(v;Xx;y))' for some xed ? (now xed for the remainder of the proof); further, since
» is independent of the variables z, we have
N

2Xy) VQizz Qmzs  ( 2A0viX)™ i (V;iX1Y;2): v)
i
Momentarily x (i;j) 2 . If ?; is ‘negation’, then the formula -»”" ; is acontra-
diction. On the other hand, if ?;; is ‘'nosymbol', then »" j; ». Intr oducing

199= f(i;j) 2 1°: for all jo suchthat (i; jo) 2 I, 2, iS nosymbol'g;

it follows that/\

N
(2™ i (ixiy;z) (AN i (XY 2)
[ (i;j )2100 A
AV, x) N i (V;X;Y;2):
(i )21
Therefore - is T*-equivalent to
0 1
N
W@ 5(v;x)" Qizz  Qmzs (XY 2)A
(i )21

But now recall that for each(i;j) 2 1% ; is of type (i) and henceis T* -equivalent
to aformula .
g SvEL VX)) ifjs("’ D(vix):y;2);

i
where 0(wi(;jl); L ;wi(;js(i;j ) ,y) is an atomic formula of L* (or the negation of an atomic

formula), all of whose variables are of the RV sort, and the fi'ﬁ are non-constant L -
polynomials. It is clearthat - is T* -equivalent to

0
N
9wl %9\/ wl = rv(f ifjk)(v;x))
s(i;j 1k i
s(iij ) 1
N
- 1 (H1D) IS .
N Qqz1::: Qszs o (Wi(;j);:::;wi(;js(")),x,;)A.
(i )2100
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Finally, A
9v wl = rv(f ifjk)(v;x))
(iij )21
1k s(ifj)
is a formula in L, and therefore is T-equivalent to a formula without VF-quanti ers,
which completes the proof. O

Remark 5.3.10. Now that we know T* has elimination of VF-quantiers in L*, the
usual proof of prenexnormal form implies that any formula (x;y) of L * is equivalent
to one of the form A a
Q1z1; Qmzs ij (X;y;2)
i

where z are RV variables, eachQ; is 8 or 9, and each j; is an atomic formula of L™ or
the negation of an atomic formula (and we may clearly assumethat each ;; is neither
atautology nor a contradiction, unless itself is one).

Applying lemma 5.3.60n the structure of atomic formulae to the ; appearing in
the remark, we will now begin to derive the promised structural results for de nable
setsand functions.

Proposition 5.3.11.LetX VF" RV™ beaT"-de nableset;thentherexistsaquanti er-
free,T-de nablefunctionh : VF" RV™ ! RV! (somd 0) suchthat X consistsof bres
ofh,ie.T* * h(x;y) = h(x%y) ! (x;y)2X $ (x°y9 2 X).

Proof. We write

8 9
< N =
X=_ (xy)2VF" RV":Qiz;; Qmzs i (X;Y:2).
. | J 1
according to the previous remark. Let | denote the setof pairs (i; j) for which j; is of
type (i) or (i), and | °those (i; j ) for which ij Is of type (iii).
For (i;j) 219 i is T*-equivalent to aformula

& v (P )i v (ST (%) y: 2):;

where 0(wi(;j”; D ;wi(;js(i;j 2 ;y) is an atomic formula of L™ (or the negation of an atomic

formula), all of whose variables are of the RV sort, and the fi'ﬁ are non-constant L -
polynomials. Introduce

Then h;; is quanti er -free, T-de nable since the sameis true of each polynomial fi‘fj ,
and further

T hy (6y) = hig (x%y9 ! (Y28 i (x%y5%2)
Secondly, for (i;j) 2 I, i isT-equivalent to aformula g;; (X) i;j O,where j; iseither
= or 6, and g;; isanL-polynomial. For eachsuch (j; j ), intr oduce a “testfunction’
1 ifgj(x) i 0

i :VF" RV™I RV; x7! )
1 if g (x) 60
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Then j; is quanti er -free T-de nable, and the formula j; (X;y;Zz) is T-equivalent to

X [H] (X) = 1.
Finally, set
Y Y Y Y
h= hi; ij CVF" RVMI (RvSE)  Ry™) RV :

(ij)2r° ()21 (i )21 (ij)2r°
Then his quanti er -free, T-de nable and evidently satis es
T hxy) = hx%y9! (i (xy:2 8 15 x%y52)
for all i; j . This completesthe proof O

We now reach the topological characterisation of nullity (note that RV carries the
discrete topology):

Proposition 5.3.12.LetX VF" RV™ bede nable. ThenX is null if andonly if it has
emptyinterior.

Proof. The interior of the X is the de nable set
N

The interior of a null setis certainly empty, so we need only consider the converse

assertion. SupposeX ° = ;; we may assumethat X 6 ;.
Write X in prenexnormal form
8 9
< N =
X = (xy)2VF" RV":Qiz;; QmZm i (X;Y:2).
. | J 1
asin remark 5.3.10 Suppose for a contradiction that every ;; is of type (ii) or (iii).

Then corollary 5.3.8implies that thereis a null setN with the following property: for
anyF F T* and a2 VF(F)" nN (F) thereis an open neighbourhood U of a such that
forallb2 RV(F)M,allc2 RV(F)%,andall " 2 U,

FF ij@bo, FE ij(@+"bo
for all i; j, and so
(&b 2 X(F), (a+" b2 X(F):

But this implies X (F) is open, contradicting X ° = ;. We conclude that at leastone i;
is of type (i), i.e. iyj, 9(x)= 0,say, for somenon-zero L-polynomial g.

Now setX 9= X ng (0);if X 9= ; then we are done, so suppose not. Sincewe have
equivalent formulae

0 1
N N
9(x) 6 0"~ ij(y;z) T @g(x)8 07 i (xiyi2)A;
i i6ip j
we seethat X %is de ned by
8 0 19
< N =
X%= (x;y)2VF" RV™:Qiz;; Qmzm  @yx)8 0"  j(xiy;2)A.
) i6ig j !
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So, by shrinking X to X ®we have decreasedthe number of disjunctions appearing in
the prenexnormal form, and inserted a new formula of type (ii) into eachconjunction.

X %also has empty interior and so by an induction on the number of disjunctions in
the prenex formal form, we may assumethat it is a null set. Hence X is contained in
the null setX °[ g 1(0) and thereforeis itself null. O

Many useful results follow:

Corollary 5.3.13.LetX VF" RV™ beade nableset. Thentheboundaryof X , namely
@ = X nA?%isnull. HenceX is thedisjoint union of an opensetandanull set.

Proof. Since @X has no interior, this is an immediate consequenceof the previous

proposition. O
Corollary 5.3.14.LetX VF" RV™ bede nableandletf : X ! VF"®  RV™peade n-
ablefunction, with n®> 0. Thenthere are non-zeo VF-polynomialsgy (x; X3);:: 1 gno(x; X20)
suchthat

T fy) = %y gi(x;x) =0
foralli= 1;::::n%

Proof. The graph of the function f cannot have any interior (sincen®> 0) and hence
the graph is null by the previous proposition; this implies the existence of a non-zero
L -polynomial g such that

T fy) = (xX%yY ! gx;x) =0

Now just apply this result to eachfunction X ! vEn RV Y vE RV™ where
the secondarrow varies over the n°projection maps. O

Corollary 5.3.15. ThesortsVF andRV are "orthogonalin thefollowing ways:

(i) LetY RV™ bede nableandletf : Y ! VF" beade nablefunction. Thenf (Y) isa
nite set.

(i) Suppos¢hatade nablesetX VF" admitsa nite-to-one,de nablemapf : X | RV'
forsomd 0. ThenX is nite.

suchthat f (Y) fx 2 VF" :gi(xj) = Ofor all ig; this is enough.

(ii): Let bethe graph of f. Then cannot have any interior, for elsethere would
beanopenballB X andy 2 f(X) suchthat B fyg , contradicting that f has
nite br es. By the previous proposition, thereis a non-zero L -polynomial g such that
x 2 X implies g(x) = O.

In fact, for eachi = 1;:::; i bethe image of under the projection

I

Ly
=}
[}
—~+

(projection to i™ VF-coordinate) : VF" RV'! VF RV':
Although ; is not necessarilythe graph of a function, eachsection
fx2VF:(xy)2 ig

fory 2 RV', is still nite and therefore has no interior. So, just asin the previous
paragraph, there is a non-zero, one variable, L -polynomial g; suchthat x 2 X implies
gi (x;) = 0. As this holds for all i, we deduce that X is a nite set. O
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Corollary 5.3.16.LetX VF" RV™ Y VF"™ RvV™ andf : X ! Y bede nable.
Then

(i) thesetofy 2 Y forwhichthe breXy is null is ade nableset;
(i) ifn°=0,i.e.Y RV™ thenX is null if andonly if every breXy, fory 2 Y, is null.

Proof. (i): The setof y 2 Y for which the br e Xy has non-empty interior is clearly
de nable; by the previous proposition we are done.

(ii): Theimplication ) follows at oncefrom the fact that a subsetof a null setis null.
Conversely, supposethat every br eis null. Then, arguing similarly to the proof of (ii)
in the previous corollary, we seethat the graph of f contains no interior, and hence
is null. Sothereis anon-zero VF-polynomial g(x) suchthat f (x) = y implies g(x) = 0;
i.e.X g (0),asrequired. B O

5.3.2 Structure of de nable functions

We now turn our attention to de nable functions. Our aim is to show that the classof
de nable functions is not too large, and that any such function, at leastoff anull set,is
essentially of the following form:

De nition 5.3.17.LetU VF" beade nable, non-empty openset,andf :U! VF™a
de nable function. Thenwe shall saythat f is animplicit polynomialfunctionif and only
if there are non-zero VF-polynomials gi1(X;y);:::;dm(X;y) and an open setV VF"’
with the following properties:

(i) for allx 2 U, g(x;f(x)) = Ofor all i;
(i) for all x 2 U, f(x) isthe unique y 2 V satisfying gi(x;y) for all i;
(iii) the determinant of the Jacobianmatrix

@
Q@; 10 m

is non-zero at (x; f (x)), for all x 2 U.
In other words, f is the implicit function de ned by the polynomials (gj)i onU V.

Before we can prove our desired classi cation, we must discuss some ideas of clas-
sical elimination theory which are closely related to elimination of quanti ers. See
[Lan02, IV, 88].

Letk bea eld of characteristic zero, and g(y) a polynomial in k[y]. The discriminant
Dg 2 k of gis obtained by evaluating a certain polynomial with integer coefcients on
the coefcients of g; also D4 vanishesif and only if g and g°have acommon zero in k9.

Dg belongsto k[x]. We may factor g into a product of non-associated,irr educible poly-

nomials in k[x;y] as
Ns

g=grtiigl
and we henceforth assumethat
(i) none of the irreducible factors of g belong to k[x];

(i) ghasno multiple factors,i.e.nj = 1for alli.
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The rst assumption implies that eachg; remainsirr educible when viewed asa polyno-
mial in k(x)[y], and therefore g; : : : gs is the decomposition of g into irr educible factors
in k(x)[y]. By assumption (ii), g therefore has no repeatedroots in k(x)29 (this is where
we use the characteristic zero assumption), and so D 4(x) is not the zero polynomial.
Further, the zeros of D4(x) are exactly those for which g( ;y) and %(_;y) have a

common zero in k39, In other words,
fx 9y suchthat g(xiy) = @(Gy) = 09°= 1x: Dy(x) = Og

and our assumptions imply that this is a proper Zariski closed set.

Proposition 5.3.18.LetX VF" bede nable,andf : X ! VF™ ade nablefunction. Then
there exist nitely many disjoint oper]§etsxr X suchthatf jx, is animplicit polynomial

functionfor eachr, andsuchthat X n X, isnull.

Om (X; Ym) such that
g (x;f (x);) = Ofor all x 2 X )

for all i. We may decompose eachg; into a product of irreducible VF-polynomials in
K[x;yi], wherek is the eld of fractions of the constant VF-terms; i.e.

g = g{;‘ﬁ”” E gir;ls(l(;iS)(l)):
If any g is divisible by a non-zero polynomial in k[x], then (y) implies that g;(x) = 0 for
all x 2 X, sothat X is anull setand there is nothing more to show. Further, we may
replaceeachexponent n(i; j ) by 1 without affecting (y).

also satisfy (i) and (ii) above.
The associatedJacobianmatrix

0 @ 1
@ B > £
@i 10 m ' @m
@m
is diagonal, and each % is not the zero polynomial, for elseg; would be a polynomial
inx. LetJ(x;y) = ,”zol % be the determinant of the Jacobian.
Set

%(x;y) = 0

Ni = x2VF":9y2 VF suchthat gi(x;y) =

By the elimination theory discussed above, N; is a null set; setN = Si”ll Ni. The
importance of N isthatif F  Tanda 2 X(F) nN(F), then eachg;(a;y;) is not the
zero polynomial in y;j, and henceit hasonly nitely many solutions; therefore there are
only nitely many y for which

a(@y)= = gm(X;ym) = O

Continuing with this xed model F and a 2 X (F) nN(F), the usual arguments
used in the implicit function theorem for a (usually complete) valued eld imply the
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g(x;y;) = Ofor all i. U and eachV; are de ned in terms of a and the coefcients of
eachg;; hencethey are T, -de nable. However, since the conditions we wish for them
to satisfy are expressiblewithout a, we may, possibly after shrinking them, assumethey
are T* -de nable.

and form a disjoint cover of the open set U. By construction, the restriction of f to
the restriction of the interior of each U, is an implicit polynomial function (even on
all of U, but we have only de ned implicit polynomial functions on open sets). Thus
we obtain a de nable decomposition of U into a disjoint union of null sets(since the
boundary of eachU; is null by corollary 5.3.13 and open sets,such that the restriction
of f to eachof the opensis an implicit polynomial function.

Apply compactnessto complete the proof. O

Corollary 5.3.19.LetX VF" bede nable,andf : X ! VF™ ade nablefunction. Then,
awayfromanull set,f is smooth(i.e.in nity differentiable).

Proof. This follows from the previous proposition, since the usual calculations from
analysis show that an implicit polynomial function is smooth. O

Corollary 5.3.20.SupposghatX VF" RVM andY VF" RV™ arede nablyiso-
morphicsets.ThenX is null if andonly if Y is null.

Proof. Using similar arguments to those found in corollary 5.3.16 this may be reduced
to the caseof X  VF",Y VF"°.If X is not null then the previous corollary implies
that f is a smooth injection on somenon-empty, openball B VF". Familiar estimates
from analysis imply that f (B) is openin VF" and therefore Y hasinterior; soY is not
null. O

5.3.3 Dimension theory

There is a very satisfactory dimension theory for T*; aswe shall not require it, we
content ourselveswith asummary. For moreinformation see[HKO06, §3.8]and [vdD89].

De nition 5.3.21.Let X bea T*-de nable subsetof VF" RV™. The T* -dimension

(or simply dimension) of X, denoted dim+ X, is the smallest integer d such that for
. . 0

somel Othereisa nite-to-one, de nable map X ! VF¢ Rv™.

Remark 5.3.22. Hrushovski and Kazhdan call this the VF-dimension, since they also
intr oduce an RV-dimension; we have no need of the latter.

Lemma 5.3.23. Letf : X ! Y be a de nable surjection betweende nable sets
X VF" RV™ Y VF" RV™. SupposehatforeachF £ T* andb 2 Y(F),
the breXpy=f (b hasTg -dimension d;thendimy+ X d+ dimg+ Y.

If dimt+ Y = 0, thendim+ X = max,:;bding X, whee F rangesoverall modelof T
andb2 Y (F).

Proof. A " br e and compactness' argument lets us construct a T* -de nable map g :
X 1 VFY RV (for somel 0) such that the restriction of g to each br e of f is
nite-to-one. Hencef gis nite-to-one and the rst claim follows.

The second claim is now immediate, since each br e certainly has dimension no
greaterthan that of X . O

According to corollary 5.3.15 a subset of VF" with zero dimension is necessarily
nite. Using this, and the previous lemma for an induction using brations, one can
prove that the dimension of ade nable setX VF" is equal to the Zariski dimension
of its Zariski closure. Moreover, X is null if and only if its dimension is < n.
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5.4 V-minimality

Hrushovski and Kazhdan intr oduce a condition called V-minimality , which a theory
of valued elds may or may not satisfy. This notion only concernsus in that we must
ensure that our theories of interest possessit; for much more information, see[HKO06,
83].

De nition 5.4.1. Let (T;L) be an extension of (ACVF;Lgy). Then T is said to be C-
minimal if and only if for every F = T and every Tg-de nable set X VF, the set
X (F) is a nite Booleancombination of open balls, closed balls, and points.

Further, T is said to be V-minimal if and only if it is C-minimal and satis es the fol-
lowing conditions:

(i) T extends ACVF(0;0) and every parametrically T-de nable relation on RV is al-
ready parametrically de nable in ACVF(0;0);

(i) if F = T then VF(F) is "de nably complete’;

@iy f F E T,A VF(F),and B is an almost Ta-de nable closed ball, then B con-
tains a T -algebraic point.

Finally, T is said to be effectivaf and only if every nite, disjoint union of balls con-
tains a de nable setwhich has exactly one point in eachball.

The following summarises everything we need to know:

Proposition 5.4.2. (ACVF(0;0); L ry) is V-minimal and effective.If T is V-minimal (resp.
V-minimal andeffective)F £ T,andA VF(F)t RV(F), thenT, isalsoV-minimal (resp.
V-minimal and effective).

Proof. V-minimality of ACVF(0;0) essentially follows from well-known properties of
the theory; see[HKO06, Lemma 3.33]and also[Hol97]. The preservation of V-minimality
and effectivity under basechangeis discussedin [HK06, 6.0.1]. O

55 Descentto RV

Now we describe the main result of [HK06, 84] and then extend it to a wider classof
valued elds. Wework with atheory (T;L) of valued elds formulated in aparameter-
and RV-expansion of the language L ry, and we assumethat it has elimination of VF-
guanti ers; so both of the theories T and T* which appeared in section 5.3 are valid,
and the results we derived for T* in that section apply to T in this section. There are
three possibilities for (T; L) which interestus:

(i) parameter-expansionsof (ACVF(0;0);Lgrv);

(i) parameter-expansions of (H(0; 0); Lrv), the theory of Henselian valued elds of
residue characteristic zero;

(i) RV-expansionsof (ii).
We will treateachcasein turn; “de nable', etc. means'T-de nable'.

De nition 5.5.1. Supposethat Y is ade nable subsetof Rv™ andthat :Y ! RV"is
ade nable map; to this data we associatethe de nable subsetof VF" RV™

L(Y; )=f(xy) 2VF" Y rv(x) = (Y)g;
and call it the lift of Y;f .
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De nition 5.5.2.Fixn 0. A (T-) elementanyadmissibldransformationis, foranym 0
ade nable map VF" RV™ ! VE" RV™ of the form

wherea:VF' 1 RV™! VF issomede nable map. We also call the map
VE" RV™I VE" RV™L(x5y) 71 (X5 rv(Xi))

foranym Oandl1 i nanelementary admissible map.
A (T-) admissibléransformationis any composition of elementary admissible transfor-
mations
VF" RV™! VE" Rv™

(necessarilym® m); note that such a map is injective.
Admissible transformations are also ‘'measure-preserving', in the following sense:

Remark 5.5.3. Before the lemma we should say a word about dif ferentiation. Suppose
that X VF"andf : X ! VF" aredenable. Then the partial derivatives of f, if
they exist, are de nable (and the seton which they exist is de nable). Sincethey will

typically only exist away from a null setanyway, it is sensible only to consider their
existenceon the interior of X (recall that the boundary is null by corollary 5.3.13 so
that there are no issueswith forming f (a+ ") for small ". If all the partial derivatives
exist, then we say that the Jacobianmatrix exists. Corollary 5.3.19implies that the
Jacobiandoes exist away from aanull set.

Lemma 5.5.4. Letf : VF" ! VF" bethe compositionof an admissibletransformation

VE" 1 vEN RyM followedby the projectonmapVF" Rv™’ (V=L Then, away
fromanull setof VF", the Jacobiamatrix off existsandhasdeterminant= 1.

Proof. By adding extra variables and arguing by induction, it is essentially enough to
supposethat f is given by

fiVF21 VFZ (x1;X2) 7! (X1;X2 + a(X1; 1V(X2)));

for somede nable function a:VF RV ! VF;write f = (fq;f5). Firstly, % 1land

g(; 0. Further, away from x, = 0, the function x, 7! a(x1;rv(x2)) is locally constant

and s0 22(x3;x2) = 1. It remains only to consider 32,

Let F F T and take b2 RV(F). According to corollary 5.3.19 thereis a Ty-de nable
null setNy VF suchthat x 7! a(x; b) is differentiable for x 2 N,. Then Ny, is the zero
set of a polynomial with coefcients which are Ty-de nable, constant VF terms; but
adding bto the language does not increasethe constant VF terms, and so Ny, is already
T-de nable. It follows that thereis a T-de nable setA RV suchthatb2 A(F) and

rv(xz) 2 A=) xq 7! a(xq;rv(xy)) is differentiable for x1 2 Ny:

It follows by compactnessthat there is a null set N VF such that, for any x, 2
VF, x1 7! a(xy;rv(xy)) is differentiable for x; 2 N; but then %(xl;xz) exists. This
completes the proof that the Jacobianexists off anull set.

Finally, off this null set, the Jacobianis a triangular matrix with 1s on the diagonal;
henceits determinant is 1. O

Hrushovski and Kazhdan's main decomposition result is asfollows; recall that any
parameter extension of (ACVF (0; 0); L ry) is V-minimal, by proposition 5.4.2
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Proposition 5.5.5. Supposéhat (T;L) is V-minimal,and x n 0. LetX beaEe nable
subsetof VF"  RV™. ThenX is a nite disjoint union of de nablesets,X = >, Xj,
eachof the following form: there are a de nablesetY; RV™ (somem; 0), ageneralised
projection(seebelow) ; : Y; ! RV", andan admissibléransformation ; : VF" RV™ |
VF" RV™ suchthat
i(Xi) = L(Yi; i):

Moreoverif theprojectionmapX ! VF" is nite-to-one,theneach ; is nite-to-one;if X

is boundedtheneachy; is bounded.

Proof. This is the content of [HK06, &4]. O

By "generalisedprojection’ in the statement of the previous proposition, we mean the
restriction to Y; of amap RV™ | RV" of the form y 7! (y (1y;:::1Y (n)), for some

(fLng! f1iirimig, e.d. (Y Yz Yaiya) 70 (Ysi Y1 ya)-

Following ideas found in [HKO06, §12.4],our immediate aim now is to extend their
decomposition result from algebraically closed valued elds to Henselian ones.

Lemma 5.5.6. Suppose¢hat F  ACVF(0; 0) (in thelanguagd. ry), andthat Fg isasub eld
of VF (F) whichis Henselianunder the restriction of the valuation. Thenthe L gy structure
(Fo; RV(Fp)) is de nably closedin F. In particular any ACVF (0; 0)g,-de nablefunction
preservesg-points.

Proof. We follow [HKO06, Example 12.8]. SinceF(‘;"'g is an elementary submodel of F, we

may replaceF by Fé"'g. Let Aut (F=Fp) denote the automorphisms of the L gy structure
F which x the substructure (Fo; RV (Fg)). By the Henselian property of Fg, any eld
automorphism of VF(F)=VF (Fp) automatically preservesthe valuation and therefore
belongsto Aut (F=Fg). By Galois theory, VF(Fo) is thereforethe VF sort of the xed sub-
structure of Aut (F=Fp), and soVF(Fg) VF(dcl(Fg)); henceVF (Fg) = VF(dcl(Fg)).
Secondly, suppose that y 2 RV (dcl(Fo)). Then rv 1(y) is an ACVF (0; 0),-de nable
closed ball of F; but since ACVF (0;0)g, is V-minimal (by proposition 5.4.2, this ball
contains a ACVF(0; 0)g,-de nable point x. We have just proved that this meansx 2
VF (Fo), and thereforey = rv(x) 2 RV (Fg), asrequired. O

This is enough to passfrom the V-minimal caseto the Henselian case:

Proposition 5.5.7. Supposehat (T;L) is a parameter-expansioof (H(0;0);Lry). Then
proposition5.5.5 continuesto holdif the V-minimal theoryis replacedy T, solong asX is
guanti er-freede nable;further, eachX;Y;; i maybeassumedo bequanti er-freede nable.

Proof. We begin afew general remarks on the relation between the theories H(0; 0) and
ACVF(0;0). =

By the hypothesis, there is a Henselian eld F and A VF(F) RV(F) such that
T = H(0;0)a. The valuation on F extends uniquely to F 29, making F29 into a model
of ACVF(0; 0), sinceH (0; 0) and ACVF(0; 0) areformulated in the samelanguage. Thus
we may add the parameters A to ACVF(0; 0) to obtain the theory ACVF(0;0)a, sothat
if L T then La9 E ACVF(0;0)a.

If X VF" RV™ is a T-de nable set, then let X @9 denote the ACVF (0;0)a-
de nable setgiven by the sameformula. Assuming that X is de ned without quanti-
ers, then

X A9(LA9)\ (VF(L)" RV(L)M) = X (L)

for any L F T. Conversely, if S VF" RV™ is an ACVF(0;0)a-de nable set,then
we may assumethat S is de ned by aformula in Lgy.a without quantiers and let
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SHens bethe T-de nable setde ned by the sameformula; then Spens is de ned without
quanti ers and (Spens)?9 = S.

We now begin the proof. By proposition 5.5.5 we may decompose X @9 as X 29 =

is=1 Xia'g,with Yi; i; i asdescribedin that proposition. By the previous lemma, the

restrict to T-de nable admissible transformations, and by the previous paragraph the
Y; may be restricted to give the required T-de nable sets(Yi)nens- IN short, everything
restricts from L9 to L. O

Remark 5.5.8. Sinceour main aim is to develop a theory of integration, it is quite rea-
sonableto restrict to quanti er -freede nable sets.Indeed, the projection (i.e. insertion
of a existential quanti er) of a Lebesgue measurable (resp. Borel) subsetof R R to
R can be extremely unpleasant, and certainly need not be Lebesgue measurable (resp.
Borel); though, in fact, the projection of a Borel will be Lebesguemeasurable. The study
of such problems leadsto the theory of analytic setsand Polish spaces;seee.g.[Chr74].

Having restricted to the caseof a Henselian eld, a standard " br e and compact-
ness'argument lets us add additional structure at the RV level, following an outline in
[HKO06, §12.1]. We abuse notation slightly by talking of the Jacobianof maps VF" !

VEF" RV™; this really meansthe Jacobianof the composition VF" ! VF" Rv™ Rrel
VE",

Theorem 5.5.9. Let (T;L) beasin the previousproposition,and let (T*;L*) bean RV-
expansiorof (T;L). Thenproposition5.5.5holdsfor T* in placeof the V-minimal theory as
longasX is quanti er-freeT * -de nable.

Proof. For simplicity , we are actually going to prove the following slightly weaker re-
sult (the full result canbe proved using similar arguments):

LetX VF" beT™"-de nable;thenX canbewritten asadisjoint union, X = Fiszl X of
T* -de nablesets gactofthefollowingform: thereareaT * -de nableY; RV™i, ageneralised
projection ; : Rv™ | RV" andaT"-de nablebijection j : Xj ! L(Y;; i) with Jacobian
= 1 offanull set.

First recall proposition 5.3.11 thereis a quanti er -free, T-de nable map h : VF" !
RV' for somel  0suchthat X consistsof br esof h.
LetF F T* and b 2 h(X)(F). Thenthe br e Xy = h %(b) is quanti erF—free, Ty

de nable, and so, by the previous proposition, it is a disjoint union, X, = = _; X; of
Ty,-de nable sets,eachof the following form: there are a Ty-de nable setY; RV™i a
generalised projection ; : Y; ! RV", and a Ty-de nable bijection ; : X; ! L(Yi; i)

such that the Jacobianof the composition X; ' L(Yi; i) HovED equals 1 away from a
null set(becausewe saw in lemma 5.5.4that this is true for any admissible transforma-
tion).

Fix somei. In the usual way, ; extendstoaT*-denable map j:U! VF" Rv™,
where U is some T -de nable subsetof X which contains X . Possibly after shrinking
U, we may also suppose, for eachy 2 h(U), that the following hold:

(i) the restriction of ;tothe br eh (y)\ U is injective and has Jacobianequal to 1
off anull set;

(i) theimage ;(h (y)\ U)isof the form L(Y; ;) for someT*-denable Y RV™:
here ; is the generalised projection associatedto Y;j, but we view it as de ned
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on all of Rv™i; note that this condition is de nable becausenecessarilyY is the
image of i(h (y)\ U)under VF" RvM 1% Rymi
We now consider
g:=; h:U! VF" RV™ RV

which is certainly T*-de nable and injective; moreover, using corollary 5.3.16 we see
that the Jacobianequalling 1 off a null seton any xed breh (y)\ U is enough
to imply that it = 1 off a null seton all of U. Let Y be the image of ¢ (U) under

vEn  Rymitl B pymitl and let e denote the generalised projection given by the
composition
Rvm+! R Rymi 1 Ry
Sinceeach ;(h (y)\ U)isalift, it is easyto checkthat
e(h Y(U)) = L(Y;e):
In fact, even moreis true:

(y) If V is any de nable subsetof h(U), then e(h (V)\ U) = L(Y%e), whereY?Cis
the image of ¢(h 1(V)\ U)under VF" Ry™Mi+! Aol mymi+1

Now vary i over 1;:::;s,writing Ui = U, % = Y, eg= e. Using (y) we may shrink
the (U;); to ensure both that they pre disjoint and that  >_; U; is afamily of br esof h
which containsh 1(b); setV = h(" ;_; U;). To summarise:

(2) Thereis a T*-de nable setV h(X) containing b, such that h (V) is a dis-

T*-de nable ¢ RV™i*! a generalised projection e; : Y; ! RV", andaT*-
de nable bijection g : U ! L(¥;q) with Jacobian= 1away from anull set.

By compactness,there are nitely many fVg asin (2) which cover h(X). If V and
V9 say, overlap then (y) allows us to replace V°by V°nV without affecting (z). The
required decomposition follows. O

These decomposition results in terms of lifts of the form L(Y; ) are, as we have
just seen,extremely convenient for model-theor etic manipulations, but for the concrete
applications there is a more aestheticreinterpr etation:

Corollary 5.5.10.Let(T* ;L") beasin the previousproposition but assumeurther that T*

is acomplelt_eheory LetX  VF" beT*-de nable. ThenX is adisjoint union of de nable
sets,X = is=o Xi, with X null and the remainingX; of the following form: there are a
de nableY; (RV )", anintegerN; 1, andade nablemapf; : X; ! rv 1(Y;) whichis
everywhee N;-to-1 andhasJacobiar 1 awayfromanull set.

Proof. By rst decomposing X asproved in the previous proposition, we may suppose
that there are a de nable Y RV™, a generalised projection :Y ! RV" and a
de nable bijection :X ! L(Y; ) with Jacobian= 1 off anull set.

Weclaim rst that is nite-to-one onY. Letx 2 VF"; then

L(Y; )\ fxg RV™=fxg  (rv(x)):

Hence (rv(x)) is T, -isomorphic, via the restriction of 1 to a subsetof X ; but
according to corollary 5.3.15 this forces (rv(x)) to be nite. This completes the
proof of the claim.
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SetYo=Yn IRV )"). If x 2 L(Yo; ), then at least one coordinate of x is zero;
hencelL (Yo, ) isanull set,and therefore Xo :=  (L(Yo; )) is also null by corollary
5.3.20 Since

L(Y; )=L(Yo; )t L(Y nYo; );

we may now replaceX,Y by X nXp, Y nYpto assumethat (Y) (RV )".
Let N O bebig enough sothat all br esof have cardinality N, and for j =

Yi=fy2 RV ijYyj=jg

nessof T*. So
a
L(Yi; )= LC YY) )
j=1
L F
and we setX; = (Yj);clearly X =, Xj.
Let :VF" RV™! VFE" bethe projection map. Its restriction induces a surjection

LC 'Y 0! v A(Y))
with br esof cardinality j. Hence
fj = XU LC MY ot v Ny

is everywherej -to-1 and hasJacobian= 1 off anull set. We have produced the required
decomposition. O

Remark 5.5.11. It appearsto be possible to assumefurther in the statement of the pre-
vious corollary that each X; (apart from X;) is open and that f; is a smooth cover
Xi ! rv 1(Y;). The proof of this does not seemto easily follow from the decomposi-
tion results which we have stated, but rather from Hr ushovski and Kazhdan's proof of
their result. The idea is basically, at eachstageof the construction of the decomposition,
to throw out the setson which certain maps fail to be dif ferentiable, continuous, etc.;
such setswill all be null, and thesewill form Xj.

The previous theorem and corollary were the essential results required to complete
our proof of theorem 5.1.5 for the concrete applications to two-dimensional integra-
tion, refer back to section 5.1
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CHAPTER 6

Rami cation, Fubini' stheorem, and
Riemann-Hurwitz formulae

We consider various relations between integration and rami cation theories.

6.1 Ramication of local elds

From section 6.2onwards, we will be considering rami cation theory for geometric ob-
jects. The analogous problems in the local setting are closely related with the previous
chapter and can be discussedindependently from the remaining material, sothis initial
section focuseson local rami cation theory. We begin with a reminder of the theory in
the perfect residue eld case:

6.1.1 Perfectresidue eld

Fix a complete discrete valuation eld F with perfect residue eld F, and let F 29 de-
note its algebraic closure. Fix a nite Galois extension L=F with Galois group G, and
de ne the usual rami cation objectsasfollows:

iz () = minf £( (X) X):X2Ogg;
Ga=f ZZG:iL=F() a+1g (a 1);

L=F (8) = & . jGyjdx (a 1)
= 1l+e minfi ¢ ( );a+ 1g:

2G

=F

One proves that |- is a strictly increasing, piecewise linear, function [ 1;1 ) !
[ 1;1),andde nes the Hasse-Herbranfunction | :[ 1;1)! [ 1;1)tobeitsin-
verse. The upperrami cation Itration on the Galois group isde ned by G® = G __ (4,
for a 1

The central results of the theory are the following (seee.g. [FV02, Chapter Ill] or
[Ser79 Part 2)):

Theorem 6.1.1(Herbrand). LetM =F bea GaloissubextensiowfL=F . Then,for any a
1, theimageof GalL=F )? under the restrictionmap GalL=F) ! GalM =F) is exactly
Gal(M =F)2.

Let k bean algebraically closed eld of characteristicO; in arithmetic applications this
will be Q™% or C.
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Theorem 6.1.2(Artin). TheArtin character

FLeryi=r () 6 id

a -F : G! k, 7! . .
fLek 26nfiggi=Fr () = id

is thecharactefa nite-dimensional,k repesentatiorof G.

Theorem 6.1.3(Non-commutative Hasse-Arf). Let(V; ) bea nite-dimensional,k repie-
sentationof G. Thentheconductor of

*
f( ):=  jGo:Gij tdimv=VEi;
i=0

is a positiveinteger

The non-commutative Hasse-Arf theorem and Artin's theorem can be easily deduced
from one another, becausef( ) = h ;a -gi, where h; i is the inner product on the
spaceof classfunctions on G, and is the characterof . Using R. Brauer's theorem
on characters, one reducesthe Hasse-Arf theorem to the casedimV = 1; Herbrand's
theorem then implies that it is enough to show that the upper rami cation breaksof an
abelian extension L=F occur at integers. This is proved by explicit, local calculations.

6.1.2 Arbitrary residue eld

Until the work of A. Abbes and T. Saito [AS02] [AS0J] it was a signi cant open prob-
lem to generalisethe rami cation theory above to the caseof non-perfect residue eld.

Geometrically, the importance of this lies in the following situation. If :S;! Syis
a nite morphism between smooth, projective surfaces,over a eld k which is allowed
to be perfect, then accoring to section 6.5, the rami cation of occurs along curves.
LetB S; beanirreducible curve with generic point y, and set

this is a complete discrete valuation eld whose residue eld is k(B). Moreover, we
have a nite extension

K (S1)y=K(S2) (y);

whose rami cation properties re ect the local rami cation of along B. But k(B) will
be imperfect and K (S1)y=K(S2) (y) may have aninseparable residue eld extension.

We now give a summary of the basicsof Abbes and Saito's theory. There is a more
extensive overview by L. Xiao [Xia07]. Let L=F bea nite, Galois extensionof complete
discrete valuation elds with arbitrary residue elds. Then O, is a complete intersec-
tion algebra over Og (since they are both regular local rings) and we may therefore
write

Now, for any reala 1, one intr oducesthe rigid space
X&r = fx2 (FA)": £(x;) Oalli; g(fi(x)) aallig;

where ¢ : F39 1 Q[ flg is the extension of the discrete valuation on F. By some
rigid geometry, model theory, or explicit calculations, it is known that X *_. may be
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written in a uniqgue way as a disjoint union of closed balls (if n = 1, which one may
assumeif L=F is separable,this follows from our decomposition results 4.1.5and 4.1.9;
let o(X g ) denote this setof balls. Asa! 1, X2 will consistof jL : Fjsmall balls;
conversely, XE:F is a single large ball. A central idea of Abbes and Saito's theory is
to analyse the behaviour of X ?_. asa varies; in particular, when it breaksinto jL : Fj
balls. This will soon be made precise.

The natural action of the absolute Galois group Gal(F 29=F) on X ¢ induces an

actionon o(X 2 ), which then factors transitively through G = Gal(L=F).

Remark 6.1.4. To motivate what follows, let us briey suppose that F has perfect
residue eld. Thenit is not hard to prove:

Fora 1, 2 Gactstrivially on (X, & (aH) if andonlyif 2 Ga,.

(A nice sketchis given in [Xia07]). So,for any a 1, the kernel of the action of G on
o(X 1) is G2

Abbes and Saito take the nal observation in this remark as the de nition of the
upper ltration in their theory:

De nition 6.1.5. Let L=F be a nite, Galois extension of complete discrete valuation
elds. The upperrami cation ltration on G = Gal(L=F), is de ned, for a 1, by
G? = Ker(G! Aut(X1)):
Starting from this de nition of the upper rami cation Itration, Abbes and Saito de-

velop fully aramication theory for F. Xiao has extended their work by establishing
the Hasse-Arf integrality theorem for certain conductors [ Xia08a [Xia08h].

Remark 6.1.6. Again suppose that F is perfect. The de nition of the Hasse-Herbrand
function implies that
d =r
da
at leastaway from the rami cation breaks,and therefore that
Z

a
L=F (a) = e|_:l|: leXj ldX 1

(8 = e FiG% 1

sinceboth sidesare= lata= 1 ButjG:G*j=j o(X f_‘:*Fl )j, and so
z a+l
= (@) = f ¢ , Jo(X{Zp)idx 1 ()

for all a 1

If we think of “the number of connected components' as a measure, then () is a
repeated integral taken over certain br es, and it is exactly the variation of the -
bres which contributes to the interesting structure of the Hasse-Herbrand function.
Whether this repeated integral interpr etation of rami cation can be more systemati-
cally exploited in the local setting is an interesting question.
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6.1.3 Model-theoretic integration in nite residue characteristic

We nish this discussion on rami cation theory with some conjectural remarks on how
the Abbes-Saito approach to rami cation may be compatible with the Hrushovski-
Kazhdan integration theory. We work in a model theoretic setting, asin chapter 5:
T is atheory of algebraically closedvalued elds in alanguage L obtained by adding
parametersto Ly .

If T is atheory of residue characteristic zero, then we saw in 5.5that every de nable
subsetof VF" was isomorphic, by “measure-preserving' bijections, to a disjoint union
of setslifted from the RV-level (=the Residue eld and Value group.) In nite residue
characteristic this is known to fail. For example. supposethat T = ACVF(0;p) for

someprime p > 0; so leg is a model of T, and we consider
|
X0=fx2Qp?: p(x* x pl og

It is easyto check that X © contains no rational points (i.e. X2\ Qp = ?), anditis
essentially this which preventsit from being realised asa lift from RV.

Note that the rootsof TP T p !generateawild, totally rami ed extensionL of Qp
of degreep and conductor 1. Moreover,if isarootof TP T p ‘then lisaprime
of L, with minimal polynomial TP+ pXP 1T p;henceO = Zy[T]=hTP+ pXP 1T pi.
Now consider the family of sets

Xfog, = fx 2 QpY: ,(xP+pxP L p) ag
which arise in the Abbes-Saitotheory; then X E:F contains rational points, while X E:F
doesnot, becausewhen a passesfrom 0to 1the rigid spacesplits into separableballs.

Hence we may detect the conductor of L=Q, by examining existence of rational
points in families of de nable sets. Although we worked with a speci c example, the

ideas appear to generaliseto arbitrary extensionsof valued elds. The following there-
fore seemsto be animportant programme of study, which the author intends to pursue:

Develop amodel theoretic approach to rami cation theory

Perhaps Abbes and Saito's theory, currently basedon rigid geometry, can be redevel-
oped using the model theory of algebraically closed valued elds. The existence of
de nable points and numbers of de nable components will replace their arguments
using rigid spaces,and model theory provides an ideal tool for the many bration ar-
guments which appear in their work.

Mor eover, model theory may give amorere ned rami cation theory for higher di-
mensional local elds, becauseit is often straightforwar d to "add additional structure'
to the residue eld (e.g.insist the residue eld is alocal eld), aswe saw in section 5.5.

Unify the rami cation theory with Hrushovski-Kazhdan integration theory

According to theorem 5.1.5 de nable subsetsof avalued eld of residue characteristic
zero all ‘come from' the RV-level. As we just discussed, this fails in characteristic p,
with the main problem being the appearanceof de nable setsrelated to rami cation

theory. Perhaps a theory can be developed in which objectsassociatedwith the valued
eld can be split apart, with one component coming from RV and the other encoding
rami cation data. This ramication component will allow rami cation invariants to
be associatedto the original object, which can provide “correction factors' for integrals
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over the RV component. This may lead to the proper understanding of proposition
4.4.1, amore powerful theory of local zetaintegrals, and atheory of motivic integration
in residue characteristic p.

6.2 Structures and Euler characteristics

Before we cantackle the main problems of this chapter, we must presentsome elemen-
tary objects from model theory from a perspective suitable for this work. We must
understand what sort of sets we can measure and what it means to measure them.
This material is well-known but hopefully this explicit exposition will appeal to those
unfamiliar with model theory.

6.2.1 Structures

Given aset , aring of subsetsof is de ned to be anon-empty collection of subsets
R of suchthat
A;B2 =) AnB;A[B;A\ B2

It is enough to assumethat R is closed under differencesand unions for this implies
it is closed under intersections. A ring of setsis said to be an algebraif and only if it
contains

Following van den Dries [vdD98] we de ne astructureA = (A( ™)i_, on to be
analgebraA( ") of subsetsof " for eachn 0suchthat

@) ifA2A( ")thenA : A2 A( "My
(i) f(X1;::55%p) 2 "ix1=xpg2 A(");

i) if o "o " is the projection map to the rst n coordinates, then A 2
A( "1yimplies (A)2 A( M.

Given astructure, onerefersto the setsin A( ") asbeing the de nablesubsetsof ". If
A "andf : Al M then f is said to be de nable if and only if its graph belongs
to A( "TM).

Proposition 6.2.1. LetA beastructureonaset . Then
(i) ifA2A( ");B2A( MthenA B2A( ™M),
(i) if1 i<j nthenf(xg;:ii;xn) 2 "ixi=x5gisin A(");

(iiiy if isapermutationoffl;:::;ng, thenthefunction "! " givenby permutingthe
indicesofthecoordinatedy is de nable.

Moreoverif A nandf : Al M is de nable,then
() A isde nable;

(i) if B Aisde nablethenf (B) is de nable,andthefunction givenby restrictingf to
B isde nable;

(i) ifB 2 A( ™), thenf (B)2A( ");
(iv) if f isinjective,thenits inverseis de nable;

(v) ifB f(A)andg:B! 'isdenabletheng f :A! !isde nable.
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Proof. Theseare straightforwar d to check; proofs may be found in [vdD98]. O

Remark 6.2.2. If L is a rst order language of logic, and is an L-structure, then there
isastructureon in which A( ") consistsof precisely those setsof the form

fx2 ": EF (x;bg

where (Xx;y) is aformula of L in variables x1;:::;Xn;y1;:::;ym and b2 ™; that is,
those setswhich are de nable with parametersin the senseof model theory.

Realistically, any structurein which we will beinterestedwill arisein this way asthe
parameter-de nable setsof some language. But for the reader lessfamiliar with logic,
the axiomatic approach above is more immediately appealing, though ultimately less
satisfying.

Example 6.2.3. We presentsome examples to explain what we can and cannot study
using structures. All are well-known.

() If is an arbitrary set,we may take A( ") to be the collection of all subsetsof
N that is, every setis de nable.

(i) If k is an algebraically closed eld, let A(k") be the ring of setsgenerated by the
Zariski closed subsetsof k"; such setsare called constructible. It is known that
(A(kM)n forms a structure on k. The dif culty is establishing that such setsare
closed under projection; this may either be proved in a model theoretic setting,
where it is equivalent to establishing that the theory of algebraically closed elds
admits quanti er elimination, or it may be seenas a special caseof a result of
algebraic geometry concerning constructible subsetsof Noetherian schemes(see
e.g. [Har77] exercises3.17-3.19).

(i) If kisanarbitrary eld, then anafne subsetof k" is asetof the form a+ X where
a 2 k" and X is a k-subspaceof k". Letting A (k") be the ring of setsgenerated
by af ne subsetsof k" gives a structure on k.

(iv) If Ristherealline, thenlet A(R") bethering of setsgeneratedby fx 2 R" : p(x)
This gives a structure for R. Again, the dif culty is verifying that such setsare
closed under projection.

(v) None of the following give structureson the realline: the Borel sets,the Lebesgue
measurable sets,the Suslin sets.

Sostructuresare typically quite coarsefrom the point of view of classicalanalysis and
measure theory.

6.2.2 Euler characteristics and the Grothendieck ring of a structure

Having intr oduced the setsof interestwe now discusswhat it meansto take the mea-
sure of such a set.

Denition 6.2.4.Let beasetwith astructure A. An Euler characteristids a map
from the de nable setsto somecommutative ring R, i.e.

AC™! R,
n=0

which satis es
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@) if A;B 2 A( ") aredisjoint, then (At B)= (A)+ (B);
@y fA2A( "),B2A( M),then (A B)= (A) (B);

@iy it A2 A(",B 2 A( ™) and there is a de nable bijectionf : A ! B, then
(A)= (B).

Remark 6.2.5. From the additivity of , one might think that an Euler characteristic is
similar to a measure in the classicalsense. The vast dif ference between the two is the
invariance of under de nable bijections. For example,if isa eld k, 2 k ,and
multiplication by isade nable map from k to itself, then (A) = (A ) for de nable
A k;in other words, scaling a set does not affect its size. Or if is the realline and
x 7! x?is de nable, then for any de nable A of the positive reals, (fx?:x 2 Ag) =

(A).

Some authors prefer the term generalisedeuler characteristioor additive invariant, to
avoid possible confusion with the topologicaEulercharacteristic top for complex projec-
tive manifolds, de ned asthe alternating sum of the Betti numbers.

Example 6.2.6. The easiestexample of an Euler characteristic is counting measure: let
be a nite set,A( ") the algebra of all subsetsof ", and set (A) = jAjtodene a
Z-valued Euler characteristic.
Explicitly exhibiting more interesting Euler characteristics requires some work, so
we presenthere without proof some known examples using the structur esof example
6.2.3

() Letk bea eld, equipped with the structure generated by the af ne subsets. If k
isin nite then thereis a unique Z[t]-valued Euler characteristic which satis es

(a+ X) - tdimkx
wherea 2 k" and X is ak-subspaceof k".

(i) Give R the structure of semi-algebraic sets. Then thereis aunique Z-valued Euler
characteristic which satis es

©;1)= 1
sometimes called the combinatoriaEuler characteristic.

(iif) Give C the structure of constructible sets;then thereis a unique Euler character
istic p Which agreeswith the topological Euler characteristic for any projective
manifold.

De nition 6.2.7. Let be a set with structure A. The associated Grothendiecking,
denoted Ko() (though it does of course depend on the structure, not just the set ),
is de ned to be the free commutative unital ring generated by symbols [A] for A a
de nable subsetof ",anyn 0, modulo the following relations

@ if A;B 2 A( ") aredisjoint, then[At B]= [A]+ [B];
@y fA2A( "),B2A( M),then[A B]= [A]B];

@iy if A2 A("),B 2 A( ™M) and there is a de nable bijection f : A ! B, then
[A]l= [B].
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Remark 6.2.8. The map A 7! [A] de nesa Ko() -valued Euler characteristic on
which is universal in the sensethat if : ._,A( ") ! Risan Euler characteristic,
then thereis aunique ring homomorphism °: Ko() ! Rsuchthat (A) = Y[A]) for
any de nable A. Thus A 7! [A]is the most general Euler characteristic of a structure.

Note that if fxg " is a single point, and A M is de nable, then projection
induces a de nable isomorphism fxg A ! A. So[fxg][A] = [A] for all de nable A
and therefore [f xg]=1; more generally, [B] = jBj for any nite de nable setB.

Remark 6.2.9. Extendingthe Euler characteristido varieties. Assume that = k is an
algebraically-closed eld with the structure A of constructible subsets.Let V be a sep-
arated algebraic variety over k (our varieties in this chapter usually consistonly of the
closed points of the corresponding scheme)and let A (V) be the ring generated by the
Zariski closed subsetsof V, i.e. the algebra of constructible subsetsof V.

It is straightforwar d to prove that uniquely extendsto A (V) in such away that if
U Visanafne open or closedsubset,C U is constructible, andi : U! Aflisan
open or closed embedding for somed,then (C) = (i(C)).

Remark 6.2.10. Extendingthe measueto anintegral. If  is a setequipped with a struc-
ture and Euler characteristic , then thereis aunique R-linear map d from the space
gf functions spanned by characteristic functions of de nable setsto R which satis es

charAd = (A) fohany de nable A. Wewill allow ourselvesto usetypical notation
for integrals, writing  f (x)d (x).

6.3 Riemann-Hurwitz and Fubini' stheorem for curves

Here we relate Fubini's theorem for Euler characteristicsto the Riemann-Hurwitz for-
mula for morphisms between curves; then we produce a startling result implying that
in nite characteristicit is always possible for Fubini's theorem to fail.

Throughout this sectionk is an algebraically closed eld of arbitrary characteristic, A
is the structur e of constructible sets,and isa xed R-valued Euler characteristicon A.
By a curve C over k, in this section, we mean a smooth, one-dimensional, irr educible
algebraic variety over k; we only consider the closed points of C. Following remarks
6.2.9and 6.2.1Q the spaceof integrable functions on C is the R-module generated by
g@aracteristic functions of constructible sets;the integral on this spacewill be denoted

d .

Let : Cy ! C, beanon-constant morphism of curves. We will study whether
Fubini's theorem holds for the morphism , which is to say that for eachy 2 Cy, the
re *(y)is constructible, thaty 7! ( (y)) isintegrable, and nally that (Ci) =
c, ( L(y)) d (y). The problem immediately simpli es:

C

Lemma 6.3.1. Fubini's theoem holdsfor a separablenorphism : C; ! C, of projective
curvesif and only if the following formula relating the Euler characteristicof C; and C, is
satis ed:

X
(C1) = (C2)deg (e&x() 1)

x2Cq
wheree,( ) istherami cation degeeof atx.
Proof. Let C, bethe nite setof points at which is ramied. Lety be a point of
C,. The bre (y)is nite; moreover,it contains exactly deg points wheny 2 () .
Soeach br eis certainly constructible and ( 1(y)) = (y)j. Thusy 7! ( 1(y))
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is constant off the nite set () and henceis integrable on C,; integrating obtains
Z

X
( Yy)d (y)= (Can ()) deg + i i
©2 y2 ()

P
The fundamental rami cation equality 1(y)ex( ) = deg transforms this into

X X
(C2) deg (e&() 1)
y2 () x2 Xy)
which completes the proof. O
Remark 6.3.2. More generally, if chark = p> 0Oand : C; ! C,is a morphism

of projective curves which is not necessarily separable,then we decompose as =

sep F™; here F is the Frobenius morphism of Cq, sep : C1 ! Cy is a separable
morphism, and m is a non-negative integer. The previous proof shows that Fubini
holds for if and only if

X
(C1) = (C2)deg sep (&x( sep) 1)
x2C1

So Fubini holds for if and only if it holds for the separable part sep; in particular,
Fubini holds for any purely inseparable morphism of projective curves
For this reasonwe are justi ed in focusing our attention on separable morphisms.

Remark 6.3.3. More usually Fubini's theorem is concerned with measuring subsetsof
product spacevia repeatedintegrals; let us show that this is the same asour current
activity considering br esof morphisms between projective curves.

Suppose : Cy ! C,is aseparable morphism of projective curves over k. Then
is a nite morphism, sothat if U,  C, is a non-empty, af ne, open subsetthen the
sameis true of Uy =  1(Uy). Choose closed embeddings Uy | AR, Uz I A and let

= f(x (X)) 2 A"™: x 2 Uigbeghe graph of jy,.

It is immediate that the integral ., . char (X;p)d (y)d (x) is well-de ned and
equal to (Up). Conversely, if we x y 2 Uz then ,char (x;y)d (x) = ( y);
arguing asin the previous lemma now obtains

Z Z X

char (x;y)d (x)d (y) = (Uz)deg (ex() 1)

km kn x2Uy

Sointerchanging the order of integration preservesthe value of the integral if and only
if X
(U1) = (Uz)deg (e() 1)
x2U1
Further,ConU,and  %(C,nU,) = C;nUy are nite setsand it is straightforwar d to
verify, similarly to the previous lemma, that

X
JjC1nUyj = jCanUyjdeg (&() 1)

Xx2C1nU1

Taking the sum of the previous two formulae shows that Fubini's theorem holds for
:C1 ! Cyif and only if the repeatedintegrals of char are equal.
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Recallthat the Riemann-Hurwitz formula statesthatif :C;! C,isanon-constant
morphism of projective curves, then there are integers ex( ) for eachx 2 C; (which
we shall call the Riemann-Hurwitz rami cation degee$ such that ex( ) ex( ), with
equality if and only if istamely ramied atx, and such that

X
2(1 @) =2(1 0gi)deg (e() 1)
x2Cy

where g; is the genus of C;. It is apparent that Fubini's theorem and the Riemann-
Hurwitz formula arerelated.

Remark 6.3.4. The non-negative integer ex( ) 1lis equal to the different of the exten-
sion Oc, x=Oc,; (x) Of discrete valuation rings, though we will not usethis fact.

Remark 6.3.5. It is useful to have some explicit examples of morphisms between pro-
jective curves. Let f (t) be a polynomial over k and let ; bethe algebraic variety over
k which is the graph of f , i.e.

r=fo6y) 2ALy = f(0g
Let F : Al ! ¢ bethe morphism F(x) = (x;f(x)) and let : ¢ ! A bethe
projection map (Xx;y) = y. Note that F is an isomorphism of algebraic varieties and
that F = f;herewe abusenotation and write f for the morphism A} ! A} induced
by the polynomial f (t). Let . denote the projective closure of ¢, obtained by adding
a single point at in nity . The morphisms F; ;f extend to morphisms F : P& I £
(! PELTIRED PL

Remark 6.3.3implies that the following are all equivalent:

(i) Fubini holds for f : PL! Pg;

(i) Fubini holds for f : AL ! Al;

(iif) Therepeatedintegrals of char , are equal.

To make use of the examples afforded by the previous remark we now calculate the
rami cation degrees:
Lemma 6.3.6. We retain the notation of the previousremark. The rami cation degeesof
f P! PLare
f() f(@) a2k=AL
en(f) = v a(f () f(a)) 2= A
degf a=1;
andthe Riemann-Hurwitzrami cation degeesare

(1+ ¢ a(f QL) a2 k= A}

e(f) =
a(f) degf + (degf degf® 1) a=1:

Here ; ;denotesthet a-adic valuation on k(t).

Proof. The rami cation degreesare clear so we only consider the Riemann-Hurwitz
degrees.

Write s = f (t) sothat f : Pﬁ ! Pﬁ corresponds to the extension of function elds
K(s) K(t).A local coordinatet, 2 K(t)ata2 kist a;alocal coordinate s, 2 K (S)
atb= f(a)iss b Byde nition of the Riemann-Hurwitz rami cation degree,

d
e(f) 1= ¢ a Esb ;
a
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writing f(t) b= g(t a)for somepolynomial ggives

d
t a Esb = {algXt @)= ¢ a(fq):
a
Secondly, f (1 ) = 1 and local parameters there are given by t 1, s 1; therefore the
Riemann-Hurwitz rami cation degreeatin nity is given by

e (f)= 1 % + 1= degf + (degf degf® 1):

O

Example 6.3.7. For any integer m > 1 not divisible by chark, let f (t) = t™ in remark
6.3.5 Thenf : Pl ! Plisunramied away from 0and in nity ,with ey(f) = e, (f) =
m. Thus Fubini's theorem holds for f (or, equivalently, for the set k k)if and
only if (P} =m (P} 2(m 1) thatis,if andonly if ( (Pf) 2)(m 1)=0.

However, now assumechark = p > Oand setf(t) = tP t. Thenf : PL! P}
is unrami ed outside in nity , where it is wildly ramied of degreep. Thus Fubini's
theorem holds for f (or, equivalently, for the set k k) if and only if (P}) =
p (P) (p 1)thatis,ifandonlyif ( (P}) 1)(p 1)=0.

Taking m = p+ 1in the previous two paragraphs shows that Fubini fails for one of
the sets v ¢, v Orthat pisanidempotent in R.

The example shows that Fubini's theorem can fail when in nite characteristic:

Theorem 6.3.8. Assumechark = p > 2andthatp 6 1in R. Thenthere existsa subsetof
k  k for whichFubini'stheoemdoesot hold.

Proof. If Fubini does hold for the sets p«« and -+ of the previous example then it
follows that (Pﬁ) = 2. But then Fubini doesnot hold for  x,unlessp 1= 0in
R. U

Now we prove the next main result, namely that Fubini's theorem forces , our ar-
bitrary Euler characteristic on the algebra of constructible sets, to be the usual Euler
characteristic of a curve:

Theorem 6.3.9. Supposehat chark 6 2 and that Fubini's theoem is true for any non-
constant,separabletamemorphism : C ! P} from a projectivecurve to the projective
line. Thenfor any projectivecurveC wehave (C) = 2(1 g), wheegisthegenusofC.

Proof. For any integer m > 1not divisible by chark, the morphism f : Pt ! Plinduced
by f (t) = t™ is separableand tame; thereforewe may apply Fubini's theoremto deduce
( (PY) 2)(m 1) = 0. Therefore (Pi) = 2, which agreeswith the desired genus
formula.

Now let C be a projective curve over k. By a classical result of algebraic geometry
[Fule9, prop 8.1] there is, for any n suf ciently large (depending on the genus g of
C), anon-constant morphism : C ! P} of degreen with the property that any br e
contains atleastn 1 points. For n not divisible by chark suchamorphism is separable
and tame; therefore we are permitted to apply Fubini's theorem, deducing

X
(C) = 2deg (e() 1)
x2C

But this is nothing other than the Riemann-Hurwitz formula for the morphism ; so
we obtain (C) = 2(1 ¢) asclaimed. O
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This allows us to strengthen the observation that Fubini fails in nite characteristic:

Theorem 6.3.10. Supposdhat chark 6 2 andthat Fubini's theoemis true for any non-
constant separabldamemorphismbetweerprojectivecurves.ThenFubini's theoemholdsfor
aseparablenorphismbetweerprojectivecurvesif andonly if the morphismis tame.

Proof. The previous result implies that (C) = 2(1 @) is the usual Euler characteristic
of any projective curve C. Supposethat : C; ! C, is a separable morphism of
projective curves which is not everywher e tame. Then the Riemann-Hurwitz formula
tells us that X
(C1) = (C2)deg (e() 1)
x2Cq

which is incompatible with Fubini's theoremfor ases( ) e( ) for all x 2 C1 with
at least one value of x for which we do not have equality. O

Remark 6.3.11. Mor e precisely, in the situation of the previous result, we have
z X
1
(Cy) ('ond W= &)

C2 x2Cq

wheredy( )isdened by Dy( ) =e( ) 1+ di( );hereDy( ) denotesthe different
of the extension Oc, x=Oc,. (x) Of discretevaluation rings (seealsoremark 6.3.4. dx( )
measuresthe wild rami cation at x.

An Euler characteristicis typically considered an objectof 'tame' mathematics [vdD98],
and so this formula is slightly surprising in that it expresseswild information purely
in terms of tame.

Remark 6.3.12.In proposition 4.4.1we saw that if F is a two-dimensional local eld,
then the characteristic function of

=f(y)2F:(xy t ™xP)20g Ogg

fails to satisfy Fubini's theorem with respectto the two-dimensional integral; in fact,
Z Z
char (x;y)dxdy =0

F F

and Z Z
char (x;y)dxdy = 1:
F F
This is similar phenomenon to what we have just observed for the Euler characteristic

Theseresults suggestinterpr eting the Riemann-Hurwitz formula asa modied ‘re-
peatedintegral', adjusted in a suitable way to ensure that Fubini's theorem holds. Per-
haps it is possible to modify the two-dimensional integration theory in a similar way
by taking into accountadditional rami cation data assuggestedin section 6.1.3above.

6.4 Strong Euler characteristics

In the previous section, we in fact only considered interchanging the order of integra-
tion in morphisms all of whose br eswere nite. This brief section is a study of the
possible Euler characteristics which do satisfy this restricted version of Fubini's theo-
rem.
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De nition 6.4.1.Let beasetwith structure A. An Euler characteristic is said to be

strongif and only if wheneverf : A! B isade nable function betweentwo de nable

setssuch that there exists a positive integer n, with j (f 1(b))j = nfor all b2 B, then
(A) = n (B).

Remark 6.4.2. A strong Euler characteristic satis es Fubini's theorem in a very weak
sense.For suppose is an Euler characteristic, A "B M are de nable, and f :
A! B isann-to-1mapping asin the de nition; set = f(x;y)2 " M:x2Ay2
B; f (X) = yg. Then Fubini's theorem holds for char if and only if (A)=n (B).

It is straightforwar d to establish non-existence in certain casesand uniqueness in
others:

Theorem 6.4.3. Supposd is an algebraicallyclosedeld, of nite characteristic- 2, with the
structure of constructiblesetsthenno strong Euler characteristiexists.

Proof. This is just a restatement of theorem 6.3.8 where the counterexample did not
require to satisfy the full Fubini property, but merely be strong. O

Theorem 6.4.4. Supposé is analgebraicallylosedeld, ofcharacteristize, with thestruc-
tureof constructiblesetsthenat mostonestrong Euler characteristi@xists,andit is Z valued.

Proof. Let ; be strong Euler characteristics, for i = 1;2. The algebra of constructible
subsetsof k" is generated by the irr educible closed subsets,and therefore it is enough
to establish (V) = ,(V) for any irreducible closedV  k"; this we do by induction
on the dimension d of V. Let V%be the closure of V in P; then VOnV has dimension
strictly lessthan that of V, and so, by the inductive hypothesis, it is enough to establish

(VY = o(VI.

Letf : VOl Pf(’ be a nite projective morphism; this always exists (seee.g. [Liu02,
Lem. 6.4.27]). Let V %denote the points at which V%is non-singular or at which f
is not étale; this is closedin V%by [Liu02, Prop. 4.2.24,Cor. 4.4.12]. Since morphisms
of nite type are closed, U := Pﬂ nf() is an open subsetof P, and it is non-empty
becauseit contains the generic point (hereit is important to observethat K (V‘):K(Pﬁ)
is a separablextension of elds).

Hence the restriction of f to f 1(U) is a nite étale morphism to P}, i.e. an étale
cover, of degreem = jK (V9 : K (P&)j; the assumption that each ; is strong implies

(f YU) =m i)

for i = 1;2. Moreover, dim(Vonf (U)) and dim(f ()) areboth < d, and therefore the
inductive hypothesis lets us deduce

(V9

(f 2L+ (VOnf L))
m( (PR 1(FQ) + 2(V°nf HU))
m( 1(Pf)  2f() + 2vOnf 1(U))
m( 1(PY) 2P+ 2(VY:

It remains only to prove that our two Euler characteristics agreeorHDE. Decomposing
projective spaceinto a disjoint union of constructible sets Pf(" = ?:o Aik and using
multiplicativity of each ; on products, we have nally reducedthe problem to proving
that 1(A&) = 2(A&).

But the argument of the rst paragraph of theorem 6.3.9 which is valid for any strong
Euler characteristic, establishesthat i(Aﬁ) =1fori=1;2. O
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Remark 6.4.5. If k = C then a strong Euler characteristic does exist on the structure

of constructible sets, namely the topological Euler characteristic. This follows from

the classicalresult that if X ! X is an n-sheetedcovering of a CW-complex X, then
top(®) = N 1op(X).

The Lefschetz principle (i.e. that the rst order theory of algebraically closed elds of
characteristic zero is complete; see[Che7§ for a classical discussion of this principle)
now implies that a strong Euler characteristic exists for any algebraically closed eld
of characteristic zero.

Remark 6.4.6. The inclusion of this material is inspired by [Kra00] and [KS0(, where
strong Euler characteristics (in fact, the de nition of “strong' in these papers is slightly
stronger than the de nition we have used) are discussedfrom the perspie_ctive of model
theory. In [KS0Q, it is proved that a universal strong Euler characteristic ﬁ:o A( M
Kg§() exists,and soour previous theoremand remark prove that if k is an algebraically
closed eld of characteristic zero, with the structur e of constructible sets,then K 5(k) =
Z.

6.5 Riemann-Hurwitz and Fubini' stheorem for surfaces

Now we generalisethe results of section 6.3from curves to surfaces. k continues to be
an algebraically closed eld, and isa xed R-valued Euler characteristic on the struc-
ture of constructible sets. In this section, 'surface’ means a smooth, two-dimensional,
irreducible algebraic variety over k, whereasa ‘curve' is merely a one-dimensional,
reduced, algebraic variety over k.

If :S1! Spyisa nite, separablemorphism between projective surfacesof degreen,
thenletB S, bethe setofy 2 S, suchthat  1(y) doesnot contain n points. Zariski's
purity theorem (seee.g.[Liu02, ex. 8.2.15]or [Zar58]) statesthat B is equidimensional

of the morphism | 1(g,): L(Bj) ! Bj (note that the degreeis well-de ned, asthe
basecurve is irr educible, though the covering curve  1(B;) may be reducible). Using
this data we may prove an analogue of lemma 6.3.1

Theorem 6.5.1.Let :S;! S, bea nite, separablenorphismbetweerprojectivesurfaces,
with notation asin the previousparagraph. Then Fubini holdsfor (in the samesenseas
section6.d) if andonly if thefollowing formularelating (S1) and (S) is satis ed:

I

X X _ X
(S1) = (Sp) deg (n nj) (Bi)+ i Yy on+ (n n)mily)
i=1 y2B i=1

wherem;(y) denoteshenumberoflocalbranche®fB; aty. If isastrongEulercharacteristic
thenthis formulaholds.

roof. We must show that the right hand side of the formula is equal to the br eintegral
5, tyid (y). .

The normalisation of B isby de niton g :B= [_, B! B,where ;:B! Bjis
the normalisation of the irreducible curve B;. Write D =  (B),andlet p : 8! D
beits normalisation in the sameway asB ; the functoriality of normalising implies that
thereis an induced morphism €: B! B suchthat €= jp p.

Let Z B be a large enough nite set of points such that Z includes all singular
points of the curve B, 1(Z) includes all singular points of the curve  1(B), and

127



CHAPTER 6: FUBINI'S THEOREM AND RIEMANN-HURWITZ FORMULAE

e I Bl(Z)) includes all points of rami cation of €. Then p and g induce isomor-
phismsBn€ ( ;%(Z)=Dn Z)andBn ;'(Z) = B nZ;therefore

z z
i yid (y) = o 1 j€ Yy)id (y)
Bnz 7 n g (2) 7
= j® Xyid (y) & wid ()
B 5 1(2)
= 1€ *(yid (y) i€ Wi
iz1 B y2 12)

Further, aswe saw in the proof of lemma 6.3.],

Z X

i€ yid (y)=n; (8)+ (€ 'y n):
Bi y28\ L (2)

. 1 P
SinceBin z(Z)\ Bi = BinZ\ Bj,wehave (Bi)= (Bi)+ o7, (Mi(y) 1)
combining the last few identities therefore gives

Z . . X X X X . .
i 'yid (y= n B+ n mi (y) jBi\ Zj
B i [ y2Bi\ Z [
X X S
ni+ j Wi
boy2@i\ ,1(2) y2Z

To complete the proof, combine this formula with
Z Z
j 'y)id (y)=n (S2nB)+ j Hy)id (y)
82 B Z
X X N
n (S2) n( (Bi) (cly) 1)+ j ~(id (y);
i y2Z B

where c(y]:,denotes the ||_:;umber of irreducible components of B which passthrough y
(note that y2z cy)= iBi\ Zj). O

Remark 6.5.2.Whenk = Cand = o is the topological Euler characteristic, which
we have remarked earlier (remark 6.4.5 is a strong Euler characteristic, then the theo-
rem provesthat

X X . X |
op(S1) = 10p(S2) deg (n n) (Bi)+ i ‘i on+ (n npmi(y)
i=1 y2B i=1

The Lefschetz principle now implies that the formula remains true if we replacek by
any algebraically closed eld of characteristic zero, and 1, (S;) by the I-adic Euler
characteristic (=alternating sum of Betti numbers of |-adic étale cohomology of S;, =de-
greeof the second Chern classof S;).

This generalisation of the Riemann-Hurwitz formula to surfacesis due to B. Iversen
[Ilve70Q], who established it with purely algebraic techniques by studying pencils of
curves on the surfaces. lversen remarks in his paper that a more topological proof
should be possible when k = C, and our approach provides that.
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Remark 6.5.3. A natural question now to ask is whether an analogue of the theorem
holds in higher dimensions. If X; ! Xsisa nite morphism between d-dimensional
smooth projective varieties over k, then the branch locus will be pure of dimension
d 1, soone can hope to obtain results by induction on dimension. The dif culty

which appearswhen the branch locus has dimension > 1 is that there is no functorial
way to desingularise. It is unclear to the author at presenthow signi cant a problem
this is. The resulting formulae may even be too elaborate to be useful.

Remark 6.5.4. Another interesting question concernsthe situation in characteristic p.
We noted in remark 6.3.11that, for curves, the dif ference between the Euler charac-
teristic and the integral over the br eswas a measure of the wild rami cation. For
surfaces, the situation is more complex, since the wild rami cation of surfacesis not
fully understood. However, assuming that there is no ferocious rami cation present
(this is when inseparable morphisms between curves appear), |. Zhukov [Zhu05] has
successfully generalised Iversen's formula by de ning appropriate rami cation invari-
ants; this provides an explicit formula for

Z

(S1) i tyidy
S2

in terms of the wild rami cation of the cover.

The Riemann-Hurwitz formula for curves is a special caseof the Grothendieck-Ogg-
Shafarevich formula for "-adic shaves, and the problem of understanding Riemann-
Hurwitz for surfacesis a special caseof extending Grothendieck-Ogg-Shavarevich to
higher dimensional varieties. Assuming that atwo-dimensional integration theory can
be developed which encodeslocal rami cation data, as suggestedin subsection 6.1.3
then it may be possible to reproduce the arguments of theorem 6.5.1with a similarly
re ned Euler characterstic, in such a way asto prove Riemann-Hurwitz for surfaces
without any restrictions on the rami cation.
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CHAPTER 7

An explicit approach to residues on and canonical
sheavesof arithmetic surfaces

We develop atheory of residues for arithmetic surfaces, establish the reciprocity law
around a point and use the residue maps to explicitly construct the dualising sheaf of
our surface. Theseare generalisations of known results for surfacesover a perfect eld.

7.1 Introduction

As much for author 's bene t asthat of the reader, we say afew wor ds about the relation
of this work to previous results of others:

7.1.1 An introduction to the higher adelic method

We begin with a reminder of some material already contained in the intr oduction to
the thesis. A two-dimensional local eld is a compete discrete valuation eld whose
residue eld isalocal eld (e.g.Qp((t))); for anintroduction to such elds, see[FKOQ].
If A is atwo-dimensional domain, nitely generatedover Z, with elds of fractions F
and 0C pC mC A is achain of primes in A, then consider the following sequenceof
localisations and completions:

A AL A. . ‘. ‘. = Frac &,
pe pO [ pO
K K

which we now explain in greater detail. It follows from excellenceof A that p®:= p&p,
is aradical ideal of &,; we may localise and complete at p®and again use excellenceto
deduce that O is a radical ideal in the resulting ring i.e. A is reduced. The total eld
of fractions Fp,p is therefore isomorphic to a nite direct sum of elds, and eachis a
two-dimensional local eld.

Geometrically, if X is atwo-dimensional, integral schemeof nite type over SpecZ
with function eld F,then to eachclosedpoint x 2 X and integral curvey X which
contains x, one obtains a nite direct sum of two-dimensional local elds Fyy. Two-
dimensional adelic theory aims to study X via the family (Fy. )xy,in the sameway as
one studies a curve or number eld via its completions. Analogous constructions exist
in higher dimensions. Useful referencesare [HY96] [Par83 &1].

130



CHAPTER 7: AN EXPLICIT APPROACH TO ARITHMETIC SURFACES

7.1.2 The classical caseof acurve over aperfect eld

This chapter is basedclosely on similar classicalresults for curves and it will be useful
to give a detailed account of that theory.

Smooth curves

Firstly, let C be a smooth, connected, projective curve over a perfect eld k (of nite
characteristic, to avoid complications with dif ferential forms). Wefollow the discussion
in [Har77, 111.7.14]. For eachclosed point x 2 C one de nes the residue map Res; :

]k(C)=k Ik, and one then provesthe reciprocity law
X
Res(!) =0
x2Co
forall! 2 i(c):k. Consider i(c):k asa constant sheafon C; then
1 1 1 -1
0! zak! k@E=«' k@©== cx' O

is a asque resolution of é:k, and the corresponding long exact sequenceof Cech
cohomology is

M 1
K (C)=k
0! Z24(©)! k)=! COX Y HYye; Lyt o )
x2Co Ocx =k

L
Now,themap , Res : ,,c, i(cy=k= O, =k ' Kvanishesontheimageof i )

(by the reciprocity law), and soinduces
tre c HYC Eo)! ks
which is the trace map of C=k with respectto the dualising sheaf é:k.
Mor eover, duality of C may be interpr eted (and proved) adélically as follows; see

[Ser88 11.88]. For eachx 2 Cy, let K (C)x be the completion of K (C) at the discrete
valuation  associatedto x, and let

Y
Ac = f(fx) 2 K(C)x: x(fx) Ofor all but nitely many xg
x2Cq

be the adélic spaceof C. Also, let

Y
Al to0=F(x2 k() : x(1x) Oforall but nitely many xg
x2Co

be the dif ferential adélic spaceof C. Then, under the pairing

X
Ac  A( :(L::k) Pk ((Fx):(tx) 7! Res((fx! x);
x2Co

the orthogonal complement of A( _, (D)) is

A( &-(D))? = Ac(D):
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Here D is adivisor on C, and Ac(D) (resp. A( é:k(D))) is the subgroup of Ac (resp.
A( é:k) for which (f4) x(D) (resp. x(!x) x(D)) for all x. Moreover, the
global elements,embedded diagonally, are self-dual:

K(C) = k)=

The exactsequence(y) generalisesto the twisted sheaf é:k(D), and thereby provides
anisomorphism A( £_)=( & )= * Al £(D))) = HX(C; &, (D)); combining this
with the aforementioned adélic dualities yields the non-degenerate pairing

L(D) HYC; to(D)! k;
where
L(D):= K(C)\ Ac(D)=1ff 2K(C): «(f) x(D) for all x 2 Cqg:

This is exactly duality of C=k.

Singular curves

Secondly, supposethat C is allowed to have singularities; we now follow [Ser881V.83].
One may still de ne aresidue map at eachclosed point x; in fact,if : € ! Cisthe
normalisation of C, then X
Res = Reso:
x®2  1(x)

The sheafof regulardifferentials g:k isde ned, for openU X, by
(C’=k(U) =fl 2 i(C)=k :Res((f!') = Ofor all closedpoints x 2 U and all f 2 O¢cx0:

If U contains no singular points of C,then 2_jy = {_,. By establishing a Riemann-
Rochtype result, it follows that (C):=k is the dualising sheafof C=k. Analogously to the
smooth case,one explicitly constructs the trace map

tre= tHY(C; 220! K

and, asin [Gre89, usesit and adélic spacesto prove duality. See[St693 for more on
the theory of regular differentials on curves.

7.1.3 The caseof asurface over a perfect eld

Thereis alsoatheory of residueson algebraic surfaces,developed by A. Parshin [Par83
[Par0qQ, the founder of the higher dimensional adeélic approachto algebraic geometry.
Let X be a connected, smooth, projective surface over a perfect eld k. To eachclosed
point x 2 X and curvey X containing x, he de ned atwo-dimensional residue map

.2
Resey koo« K

and proved the reciprocity laws both around a point

X
Res.y! =0

X
{/3X
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for xed x 2 Xgand! 2 2 . ._)andalong acurve
K (X)=k
X
Resiyy ! =0
x2Xo
X2y

(for xed y X and! 2 ﬁ(x)zk). By interpr eting the Cech cohomology of X adéli-
cally and proceeding analogously to the caseof a curve, these residue maps may be
used to explicitly construct the trace map

try— s H2(X; 220! K

and, using two-dimensional adélic spaces,prove duality .

D. Osipov [OsiOQ] considers the algebraic analogue of our setting, with a smooth,
projective surface X over a perfect eld k and a projective morphism f : X | Stoa
smooth curve. To eachclosedpoint x 2 X and curvey X containing X, he constructs
a ‘directimage map'

£XY - 2 o 1 -
K (X )=k K (S)s=k’
where s = f (x) and K (S)s is the s-adic completion of K (S). He establishesthe reci-
procity law around a point, analogous to our theorem 7.4.1, and the reciprocity law
along a br e. He usesthe (f *¥)yy to construct f :H2(X; 2_)! H(S; i.),which
he provesis the trace map.

Osipov then considers multiplicative theory. Let K,(X) denote the shea cation
of X U 7! K2(Ox (U)); then H2(X;K (X)) = CH,(X). Osipov de nes, for each
X 2y X,homomorphisms

f Gy tKo(KOO) T K(S)s;

and establishesthe reciprocity laws around a point and along a br e. At least when
char k = 0O, theseare then used to construct a map

CH2(X) = H3(X;K2(X)) ! HYC;0.) = Pic(C);

which is proved to be the usual push-forwar d of cycles[Ful98, 81].

7.1.4 Higher dimensions

The theory of residues for surfaceswas extended to higher dimensional varieties by
V. G. Lomadze [Lom81]. Let X be a d-dimensional, integral schemeof nite type over
a eld k. Toeachcomplete ag of integral subvarieties

X = g Xqi;
Lomadze associatesaresidue map Res; : ﬂ(x)zk I K and provesthe reciprocity law
X
Res ! = 0
Xj
Herewe have xed a ag Xp Xi 1 Xi+1 Xn and vary the sum over all
i-dimensional integral subvarieties x; sitting between x; ; and xj+; (if i = n then we

must assumeX is projective).
Lomadze also develops a higher dimensional relative theory, analogous to Osipov's
study of a surface over a curve.
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7.1.5 Explicit Grothendieck duality

It is an interesting problem whether Grothendieck duality [AK70] [Har66] can be made
more explicit. The guiding example is that of a curve over a nite eld which we
discussed above, where the trace map may be constructed via residues. The duality
theorem is even equivalent to Poissonsummation on the ring of adélesof the curve; the
simplest exposition of duality is probably that of [Mor91]. Using the Parshin-Lomadze
theory of residues, A. Yekutieli [Yek92] has explicitly constructed the Grothendieck
residue complex of an arbitrary reduced schemeof nite type over a eld.

For a far better summary of this problem than the author can provide, the reader
should consult the intr oduction to [Yek92] and others of Yekutieli's papers, e.g. [HY96]
[SY95.

7.1.6 Adélic analysis

This chapter has many connections to |. Fesenko's programme of two-dimensional
adelic analysis [Fes06 [Fes03 [Fes08h [Fes083, and is part of the author's attempt
to understand the connection between adélic analysis and more familiar methods in
algebraic geometry.

Two-dimensional adélic analysis aims to generalisethe current rich theories of topol-
ogy, measure, and harmonic analysis which exist for local elds, by which mathemati-
cians study curves and number elds, to dimension two. In particular, Fesenkogen-
eralises the Tate-lwasawa [lwa92] [Tat67] method of studying the zeta function of a
global eld to dimension two, giving a new approach to the study of the L-function
of an elliptic curve over aglobal eld. The author hopesthat the readeris satis ed to
hear only the mostimmediate relations between this fascinating subjectand the current
chapter.

Let E be an elliptic curve over anumber eld K, with function eld F = K(E), and
let E be aregular, proper model of E over the ring of integers Ok . Then E satis es the
same assumptions of X in our main theorem 7.7.5below. Let = s s:Akx ! St
be an additive characteron the adélegroup of K,and let! 2 }::K bea xed, non-zero
differential form. Forx 2 y  E a point contained in a curve as usual, with x sitting
over s 2 S, intr oduce an additive character

xy - Fxy ! s, a7 s(Resey (a!));

where Resy is the relative residue map which we will construct in section 7.4. If x is a
xed point, then our reciprocity law will imply
X

xy(@ =0
Yax
foranya?2 F.
Mor eover, supposethat istrivial on global elementsand thaty isa xed horizontal
curve; then Fesenkoalso proves [Fes08h 827 Proposition]
X

xy (@) = O
X2Xo
x2y[f archg
We are deliberately vague here. Let us just say that we must adjoin archimedean points
to y, consider two-dimensional archimedeanlocal elds suchasR((t)), and de ne suit-
able additive charactersat these places;once these have beensuitably intr oduced, this
reciprocity law follows from adélic reciprocity for the number eld k(y).
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7.1.7 Future work

The author is thinking about several topics related to this chapter which may interest
the reader. Let X ! Ok be an arithmetic surface.

Reciprocity along vertical curves

Thereis surely areciprocity law for the residue maps (Resy.y )x along any xed vertical
curvey  X. The author can currently only prove it for certain special cases,such as
when y is an entire irr educible vertical br e.

Grothendieck duality

The canonical sheaf! y_g is the dualising sheatf. It should be possible to use our residue
maps (Resy )xy to construct the relative trace map

try=s : HY(X;! y2g) ! Ok;

and give an explicit adélic proof of Grothendieck duality, similar to the existing work
of Yekutieli for varieties. This should follow relatively easily from the contents of this
chapter.

Horizontal reciprocity

If y is horizontal then such a reciprocity law does not make sensenaively, since the
residues Res.y ! belong to different elds asx varies acrossy. Of course, this is the
familiar problem that SpecOg is not arelative curve. As explained in the discussion of
Fesenko'swork above,this is xed by taking into accountthe archimedean data. Such
results live outside the realm of algebraic geometry, and need to be better understood.

Two-dimensional Poisson summation

Perhapsit is possibleto nd a global duality result on X which incorporates not only
Grothendieck duality of X relative to S, but also the arithmetic duality on the basei.e.
Poisson summation. Such a duality would necessarily incorporate archimedean data
and perhaps be most easily expressedadelically. In the caseof aregular, proper model
of an elliptic curve, this may already be provided by one of Fesenko'sadditive dualities
[Fes08h §32,Proposition].

Multiplicative theory

We have focused on additive theory, but aswe mentioned while discussing Osipov's
work, there are natural multiplicative analogues. In fact, the ‘multiplicative residue
map' for mixed characteristic two-dimensional local elds hasbeende ned by K. Kato
[Kat83]. Fesenko'swork includes an adélic interpr etation of the conductors of the spe-
cial br esof E, but only under the assumption that the reduced part of each br e is
semi-stable [Fes08h 840, Remark 2]; similar results surely hold in greater generality
and are related to "conductor = discriminant’ formulae [KS04 [LS0Q [Sai8].

Mor eover, Fesenko'stwo-dimensional theta formula [Fes08h 3.6]is an adelic duality
which takesinto account the interplay between the additive and multiplicative struc-
tures. It is important to understand better its geometric interpr etation, at leastin the
caseof an algebraic surface.

Perhaps it is also possible to study vanishing cycles[Sai87 using similar techniques.
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7.1.8 Notation

If A is a (always commutative) ring, then we write p C A to denote that p is an ideal
of A; this notation seemsto be common to those educated in Oxford, and lessfamiliar
to others. We write p C A to indicate that the height of pis 1. If p is prime, then
k(p) = FracA=pis the residue eld atp. If A is alocal ring, then the maximal ideal is
Ma .

If F is a complete discrete valuation eld, then its ring of integers is Og, with max-
imal ideal pr. The residue eld k(pg) will be denoted F; this notation seemsto be
common among those affected by the Russian school of arithmetic geometry. Discrete
valuations are denoted , usually with an appropriate subscript to avoid confusion.

If A is aB-algebra,the the spaceof relative Kahler differentials is 5-g =

Injective maps are often denoted by | , and surjective maps by !

1
A=B *

7.2 Local relative residues

Here we develop a theory of residues of differential forms on two-dimensional local
elds. Recallthat a two-dimensional local eld is a complete discrete valuation eld

F whose residue eld F is a (non-archimedean, in this chapter) local eld. We will

be interested in such elds F of characteristic zero; when the local eld F also has
characteristic zero then we say that F has equalcharacteristizeo; when F has nite

characteristic, then F is said to be of mixedcharacteristic

7.2.1 Continuous dif ferential forms

We begin by explaining how to construct suitable spacesof “continuous' dif ferential
forms.

For any Noetherian, local ring A and A-module N, we will denote by N S€P the maxi-
mal Hausdorff (=separated) quotient for the mp -adic topology, i.e.

) \l
NS =N miN :
n=1

Remark 7.2.1. Suppose that A=B is a nite extension of Noetherian, local domains.
Thenma\ B = mg. Also, the bre A g k(mg) is a nite dimensional k(mg)-vector
space, and is therefore Artinian; hence mg A contains my for n 0. Sofor any B-
module N,

NP g A= (N gA)>*"

Lemma 7.2.2. Let A=B bea nite extensionof Noetherian,localdomains,which are R al-

gebraswheeke R is a Noetheriandomain. Assumethat SBefR is a freeB-module,and that

Frac A=FracB is aseparablextensionThentheris an exactsequence

sep sep
0! 2k BA! R!' as! O
of A-modules.

Proof. The standard exactsequenceof differential forms is

Bk BA! ar! amp! O
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Since A is a nite B-module, the spaceof differentials ,-g is a nitely generated,
torsion A-module. Apply S¢Pto the sequenceto obtain, using remark 7.2.1,

sep j sep .

=k BRU gr! A ! O
which is exact. It remainsto prove that j is injective.

Let F,M, K bethe elds of fractions of A, B, R respectively,and let! 2 Ee:pR be an
element of some chosenB -basisfor this freemodule. LetD, : ;% ! B send! to1
and vanish on all other elements of the chosenbasis. This homomorphism extends rst
toanM-linear map Dy : m=«x ! M,andthento anF-linear map Dg : r— ! F;
this follows from the identications g-g M = pyx and y—x ™M F = gx.
Finally, it induces an R-linear derivation D : A'! F by D(a) = Dg(d(a)), where
d:F! r=k IS the universal derivation.

LetN F bethe A-module spannedby D (a), for a2 A. Thisis a nitely generated

sep
A=R
ther, 8 sendsj(!) 2 ;. to 1 and vanishes on the images under j of the other basis
elements. It follows that j is injective. O

B : ar ! N induced by D factors through (by Nakayama's lemma). Fur-

Remark 7.2.3.Whether ¥ is freeis closely related to whether B is aformally smooth
algebra over R; see[Gro64, Théoréme 20.5.7]. M. Kurihara uses such relations more
systematically in his study of complete discretevaluation elds of mixed characteristic

[Kur87].

Remark 7.2.4. Suppose that R is a Noetherian ring and A is a nitely generated R-
algebra. Let pC A beaprime ideal. Then 5 -r = a=r A Apisa nitely generated

Ap-module, and the natural map a,-r A, Ap! &,=r Jivesrise to an isomorphism

— | —_" -\
Ap=R  Ap Ap = lim £p=R P  Ap,=R~  Ap=R
n

(seee.g.[Liu02, exercise6.1.13)).

Therefore > isa nitely generated Ap-module (sinceit embedsinto \; _.), and
R p=R

it is therefore complete; sothe embedding Zep_R ! \Asz is actually an isomorphism.

Thus we have a natural isomorphism -

_ A — sep .
A=R A M\p Asz

We will occasionally give explicit proofs of resultswhich could otherwise be deduced
from this remark.

De nition 7.2.5. Let F be a complete discrete valuation eld, and let K be asub eld
of F suchthat Frac(K \ Of) = K. The spaceof continuousrelativedifferentialsis

cts ._  Sep

F=K = O0pf=Kk\O ¢ OF F:
It is vector spaceover F and thereis a natural surjection p-x ! EEK.
Remark 7.2.6. Supposethat F, K are asin the previous de nition, and that FCis a
nite, separableextension of F. Using remark 7.2.1 oneshows &%, = &5 ¢ FO
and thereforethereis awell-de ned tracemap Treop @ &%, ! 25
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7.2.2 Equal characteristic

We begin with residues in the equal characteristic case;this material is well-known
(seee.g. [Ser88) so we are brief. Let F be a two-dimensional local eld of equal-
characteristic zero. We assume that an embedding of a local eld K (necessarily of
characteristic zero) into F is given; such an embedding will be natural in our applica-
tions. The valuation fgjk must betrivial, for elseit would be a multiple of ¢ (acom-
plete discretevaluation eld hasauniqgue normalised discrete valuation) which would
imply K ! F, contradicting our hypothesis on the characteristicof F;soK  Og and
K ! F,making F into a nite extension of K .

Lemma 7.2.7. F hasauniquecoef cient eld whichcontainsk .

Proof. Setn = jF : Kj. Suppose rst that K =K isany nite subextensionof F=K. Then
K® O and sothe residue map restricts to a K -linear injection K °! F, proving that
jK%:Kj n.This establishesthat K hasat most one extension of degreen inside F (for
if there were two extensionsthen we could take their composite), and that if such an
extension existsthen it is the desired coefcient eld (for then the residuemap K °} F
must be an isomorphism).

SinceK is perfect, apply Hensel'slemma to lift to O agenerator for F =K ; the subex-
tension of F=K generated by this element has degreen, completing the proof. O

This unique coefcient eld will be denoted kg ; it depends on the image of the em-
bedding K | Ok, though the notation does not re ect that. kg is a nite extension
of K; moreover, it is simply the algebraic closure of K inside F. When the local eld
K F has been xed, we will referto kg asthe coefcient eld of F (with respecto
K, if we want to be more precise). Standard structure theory implies that choosing a
uniformiser t 2 F induces a kg -isomorphism F = kg ((t)).

éer:OK is afreeOr -moduleofrank 1, with basisdt, wheet is any uniformiser

is aone-dimensionalectorspaceverF with basisdt.

Lemma 7.2.8.

cts
of F. Hence 2,

Proof. Any derivation on O which vanishes on Ok also vanisheson K, and it even
vanisheson kr sincekg =K is a nite, separableextension. Hence . -0, = o=k =
OF =kf *
Fix auniformiser t 2 F, to inqyce anisomorphism Og = kg [[t]]. Thenfor any f 2 Of
andn 0, we may write f = in=0 ait' + gt"*1 with ag;:::;a, 2 ke and g 2 Of; let
d:Or ! o.-0 bethe universal derivation and apply dto obtain

X .
df) = ait’ Ld(t) + g(n+ Dt"d(t) + t"Ld(g):
i=0
-
It follows that d(f) %d(t) 2 ﬁzl t" o, =« - Taking the separatedquotient shows that
dt generates &"_;the existenceof the derivation & implies that dt is not torsion. [

The residuemapofF, relativeto K is de ned by
res : 951 ke; ! = fdt7! coeft 1(f);

where the notation means that we take the coefcient of t ! in the expansion of f .
Implicit in the de nition is the choice of a kg -isomorphism F = kg ((t)).

It is well-known that the residue map doesnot depend on the choice of uniformiser t.
Sincethe proof is straightforwar d in residue characteristic zero, we recall it. Any other
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P .
uniformiser T hasthe form T = i1=1 ait' with a; 2 ke anda; 6 0;forj 2 Znf 1g,
we have

.dT 1 dri*t
coeft, T/ — = coeft — =0
T th i+ 1 dt
Whenj = 1, we instead calculate asfollows:
ldT 1; 1 2
coeft, 1 T *— = coefty :((a; "t a “ax+ ii)(ag+ 2apt+ 1)) = L

dt

Finally, since the residue is continuous with respectto the discrete valuation topology
on & = Fdtand the discretetopology on kg, we have

F=K
0 1

X
@ TIZ_A = ;
coeft; 1 . b gt b y;

and it follows that the residue map may also be de ned with respectto the isomor-
phism F = kg ((T)).

Now we prove functoriality of the residue map. Note that if Fis a nite extension
of F, then thereis a corresponding nite extension kgo=kg of the coefcient elds.

Proposition 7.2.9. LetF %bea nite extensiorof F. Thenthefollowing diagramcommutes:

cts reS,:'O
Flﬁ)zK H kg 0
? ?
TI’F O=Fy yTrkFosz
cts res,:' k|:

F=K

Proof. This is another well-known result, whose proof we give sinceit is easyin the
characteristic zero case.lt suf ces to consider two separatecases:when F %=F is unram-
ied, and when F%F is totally rami ed (asextensionsof complete discrete valuation
elds).

In the unrami ed case,jkro: kej = jF9: Fj and we may choosecompatible isomor-
phisms F = kg ((t)), F%= keo((1)); the result easily follows in this case.

In the totally ramied case,F%F is only tamely ramied, kro = kg, and we may
choosecompatible isomorphisms F = kg ((t)), F®= keo((T)), where T® = t. We may
now follow the argument of [Ser88 11.13]. O

7.2.3 Mixed characteristic

Now we introduce relative residue maps for two-dimensional local elds of mixed
characteristic. We take a local, explicit approach, with possible futur e applications to
higher local class eld theory and rami cation theory in mind. This residue map is
used by Fesenko[Fes03 83] to de ne additive charactersin his two-dimensional har-
monic analysis.

Two-dimensional local elds of mixed characteristic

We begin with areview of this classof elds.
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Example 7.2.10.Let K be acomplete discretevaluation eld. Let K fftgy be the follow-
ing collection of formal series

(4 )
Kfftgg= ait' @ 2 K for all i inf x(a)> 1 ;anda ! Oasi! 1
|
i=1

De ne addition, multiplication, and adiscrete valuation by

X _ b3 . b3 .
ait' + 3 th = (g + h)t'
i=1 j: 1 i=1 |
. . bS o
at' gt = alh , t
i=1 j=1 =1 =1
at = inf k(a)
|

i=1

Note that there is nothing formal about the sum over r in the de nition of multiplica-
tion; rather it is a convergent double seriesin the complete discrete valuation eld K.
Theseoperations are well-de ned, make K fftgginto a eld, and is a discrete valua-
tion under which K fftgg is complete. Note that K fftgy is an extension of K, and that
jk = k,ie.eKfftgg=K) = 1L
Thering of integers of K ff tgy and its maximal ideal are given by

(y )

Ok fig = at :a 20k forallianda;! 1 asi! 1

(XI )
PK fftg = ait' a2 pk forallianda! 1 asi! 1

i
The surjective homomorphism

L X ) X .
Ok g ! K((1); at' 70 aGt'

identi es the residue eld of K ff tggwith K ((t)).
Thealternative description of K ff tggis asfollows. It is the completion of Frac(Ok [[t]])
with respectto the discrete valuation associatedto the height one prime ¢ Ok [[t]].

Wewill beinterestedin the previous example when K is alocal eld of characteristic
0. In this case K fftgg is atwo-dimensional local eld of mixed characteristic.

Now supposel is any two-dimensional local eld of mixed characteristic of residue
characteristic p. Then L contains Q, and the restriction of | to Q is a valuation which
is equivalent to p, since (p) > O; since L is complete, we may topologically close
Q to seethat L contains a copy of Q. It is not hard to seethat this is the unique
embedding of Qp into L, and that L=Qp is an (in nite) extension of discrete valuation
elds. The corresponding extension of residue elds is L=Fp, whereL isalocal eld of
characteristic p.

The analogue of the coefcient eld in the equal characteristic caseis the following:

De nition 7.2.11. The constantsub eld of L, denoted Kk, is the algebraic closure of Qp
inside L.
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Lemma 7.2.12.If K isanarbitrary eld thenK is relativelyalgebraicallyclosedn K ((t)). If
K isacompletaliscretevaluation eld thenK is relativelyalgebraicallyclosedn K ff tgg; soif
K isalocal eld ofcharacteristizen, thenthe constantsub eld ofK fftggis K .

Proof. Supposethat there is an intermediate extension K ((t)) L K with L nite
over K. Then eachelement of L is integral over K [[t]], hence belongs to K [[t]]. The
residuemap K[[t]]! K isnon-zeroon L, hencerestrictsto aK -algebrainjection L |
K. Thisimplies L = K.

Now suppose K is a complete discrete valuation eld and that we have an interme-
diate extensionK fftgg M K with M nite over K. Then M is a complete discrete
valuation eld with e(M=K) = 1, since e KffTgg=K) = 1. Passingto the residue
elds and applying the rst part of the proof to K ((t)) implies f (M =K) = 1. Therefore
jM :Kj= 1,asrequired. O

Let L be atwo-dimensional local eld of mixed characteristic. The algebraic closure
of Fpinside L is nite over Fy (it is the coefcient subeld of L); so,if k is any nite ex-
tension of Qp inside L, then f (R:Fp) is bounded above. But also e(k=Qp) < &(L=Qp) <
1 is bounded above. It follows that k. is a nite extension of Q.

Thus the process of taking constant subelds canonically associates to any
two-dimensional local eld L of mixed characteristica nite extensionk, of Q.

Lemma 7.2.13. Suppos«& is acompletaliscietevaluation eld and =K isa eld extension
with subextension§&; K ° suchthat K =K is nite andseparableandF is K -isomorphicto
K ff T gg. Thenthe compositextensiorF K Cis K -isomorphido K %f T ¢g.

Proof. Let K °bethe Galois closure of K Pover K (enlarging if necessary)then the pre-
vious lemma implies that K %4 F = K and therefore the extensionsK %°F are linearly
disjoint over K (here it is essentialthat K °¢K is Galois). This implies that F K %is K -
isomorphic to F ¢ K ®which is easily seento beK -isomorphic to K °¢f T gy. The result-
ing isomorphism : FK % K 9f T g restricts to an isomorphism FK %! (K 9ff Tqp,
and this nal eld isisomorphic to K %f T g. O

Lemma 7.2.14. Supposé. is atwo-dimensionalocal eld of mixedcharacteristicThenthere
is atwo-dimensionalocal eld M containednsidelL, suchthat L=M is a nite extensiorand

() M =L;
(i) km = ki;
(iii) M isky -isomorphido ky ff T gg.

Proof. The residue eld of L isalocal eld of characteristic p, and therefore thereis an
isomorphism L = Fq((t)); using this we may de ne an embedding Fp((t)) ! L, such
that E:Fp((t)) is an unrami ed, separable extension. Since Q,fftgy is an absolutely
unrami ed discrete valuation eld with residue eld Fp((t)), a standard structure the-
orem of complete discrete valuation elds [FV02, Proposition 5.6]implies that thereis
an embedding of complete discrete valuation elds j : Qpfftgy ! L which lifts the
chosenembedding of residue elds. SetF = j(Qpfftg), and note that f (L=F) = jL :
Fp((1))j = logy(g) and e(L=F) = | (p) < 1 ;soL=F isa nite extension.

Now apply the previous lemma with K = Qp and K°%= k; to obtain M = FKO%=
k. fftgy. Moreover, Hensel's lemma implies that L, and thereforek, , containstheq 1
roots of unity; sok F = Fq Fp((t)) = L, and thereforeM = L. O

We will frequently use arguments similar to those of the previous lemma in order to
obtain suitable sub elds of L.
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De nition 7.2.15. A two-dimensional local eld L of mixed characteristic is said to be
standardif and only if e(L=k_) = 1.

The purpose of the de nition is to provide a "co-ordinate'-fr ee de nition of the class
of elds we have already considered:

Corollary 7.2.16.L is standardif andonly if thereis ak -isomorphisniL = k fftgy. If L is
standardandk®is a nite extensiorofk, , thenLk °is alsostandardwith constantsub eld k°

Proof. Since e(k, fftgg=k_) = 1, the eld L is standard if it is isomorphic to k,_fftgg.
Conversely, by the previous lemma, thereis astandard subeld M L with ky = k.
andM = L;thene(M=ky ) = 1and e(L=k,) = 1(sincewe are assuming L is standard),
sothat e(L=M) = 1) and thereforeL = M.

The secondclaim follows from lemma 7.2.13 O

Remark 7.2.17.A rst localparametenf a two-dimensional local eld L is an element
t 2 O_ such that t is a uniformiser for the local eld L. For example, t is a rst lo-
cal parameter of K fftgg. More importantly , if L is standard, then any isomorphism
k. fftay I L is determined by the image of t, and conversely, t may be sentto any rst
local parameter of L. This follows from similar arguments to those found in lemma
7.2.14above and 7.2.18below; seee.g. [FV02, Proposition 5.6] and [MZ95]. We wiill
abuse notation in a standard way, by choosing a rst local parametert 2 L and then

identifying L with k_fftgg.

The residue map for standard elds.

Here we de ne aresidue map for standard two-dimensional elds and investigate its
main properties. As in the equal characteristic case,we work in the relative situation,
with a xed standard two-dimensional local eld L of mixed characteristic and a cho-
sen (one-dimensional) local eld K L. It follows that K is intermediate between Q,
and the constantsub eld k.

We start by studying spacesof differential forms. Note that if we choosea rst local
parametert 2 L to induce an isomorphism L = k_fftgy, then the derivative % LD L
is well-de ned.

Lemma 7.2.18. Lett beany rst localparameteofL. Then J*_, ~decomposessadirect
sum

sep _ sep

o,.=0 = Oudt Tors( 5"4 )

with O dt free,and Tors( (S)eL”:OK) = 0, =0¢ Oy O. . Hence Etst is aone-dimensional

vectorspaceverL with basisdt.

Proof. First supposethat K = ki is the constant sub eld of L. Then we claim that for

anyf 2 O_,onehasd = Sdtin 5" .

Standard theory of complete discrete valuation elds (seee.g. [MZ95]) implies that
thereexistsamap H :L'! O, [ fOgwith the following properties:

(i) Hisalifting, i.e.H(a) = aforalla2 L;

(i) H(Y) = t;

_ P P |
(iii)y for anyap;:::;a, 12 F,onehasH( P 'aft)=" P H(a)rt.
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The nal condition replacesthe Teichmuller identity H(aP) = aP which ones seesin
the perfect residue eld case. We will rst prove our claim for elements of the form
f = H(a). Indeed, for any n > 0, we expand a using the p-basist to write

R
a= a”'t
i=0

times, obtains
X1 .
f= H@"t":
i=0
Now apply the universal derivative to reveal that

R _ .
d = H(a)Pit" *dt+ p"H(a)”" t'd(H (a)):
i=0

We may apply % in a similar way, and it follows that d %dt 2 p" o, =0, - Letting
n! 1 gvesusd = Gdtin §° .
Now supposethat f 2 O_ is not necessarilyin the image of H. For any n, we may

expand f asasum
X

f = fi i+ g n+1
i=0
where is a uniformiser of K (also a uniformiser of L), fo;:::;f, belong to the image
of H,and g 2 O_. Applying the universal derivative obtains

X di i n+1
d = — dt+ dg;
i=0 dt

and computing % gives something similar. We againletn ! 1 to deducethat d =

ddt in (S)eLp=OK . This completes the proof of our claim.
sep

This provesthat dt generates O, =0y *

But the derivative % induces an O -linear map o, -0, ! OL which descendsto the

maximal separated quotient and send dt to 1, this is enough. This completesthe proof
in the casek, = K.

Now consider the general casek, K. Using the isomorphism L = k_ fftgy, we set
M = Kfftg. The inclusions Ok Owm OL, lemma 7.2.2 and the rst caseof this
proof applied to K = ky , give an exactsequenceof differential forms

so we must now prove that it is not torsion.

sep sep .

0l o owOL! &6 ! o=0,! O ()
Furthermor e,theisomorphism L = M ¢ ki restrictsto anisomorphism O = Oy o,
O, , and basechange for differential forms gives o -0, = o, =0« 0, OL; this
isomorphism is given by the composition

0,0k O Ou!  o=oc ! o=on:
But this factors through  J°_g , which splits (') and completes the proof. O
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We may now de ne the relativeresiduemapfor L=K similarly to the equal character
istic case:
reg © 51 ke; ! =fdt7! coeft 1(f)

wher e the notation meansthat we expand f in k_fftgg and take the coefcient of t 1.
Implicit in the de nition is the choice of an isomorphism L = k_fftgg xing k_. The
twist by 1is necessaryfor the futur e reciprocity laws.

Proposition 7.2.19.res is well-de ned,i.e. it doesnot dependon the choserisomorphism
L = k_fftep.

Proof. As we noted in remark 7.2.17 the chosenisomorphism is determined uniquely
by the choice of rst local parameter. Let T 2 O, be another local parameter. Using
a similar lifting argument (which simulates continuity) to that in the rst half of the
previous lemma, it is enough to prove

(
T 1 i= 1
coeft; 1 TId = I
dt 0O i6 1

Well, when i 6 1,then T'9L = (i 1T1*1) which hast ! coefcient 0, since this is
true for the derivative of any element. P _

Noy_\; thei image of Tin L hastheform T = |11 it',with ; 2 k_ and ;6 0. Hence
T , 1 ait’ mod p_, where eacha; 2 k is alift of ;. Expanding the difference,a
principal unit, asanin nite product obtains

!
R Y .
T= at' 1+b ')
i=1 j=1

for somely 2 O, with  a uniformiser of k. (also a uniformiser of L); we should
remark that the above summation is aformal sumin L = k_fftgg, while the product is
agenuinely convergent product in the valuation topology on L.

The map
14

dt
is a continuous (with respectto the valuation topologies) homomorphism, soto com-
plete the proof it is enough to verify the identities
( 1 i L oath;
1+ b I:

L ! kg; 7! coeft; 1

d
ft 1= =
coeft; 1 pm 0

The rst of theseidentities follows exactly asin the equal characteristic caseof subsec-
tion 7.2.2 For the second case,we compute

1 ql+q221+::-%i

dy | AP, dE ) 4
dt dt dt

a+p ) *Saen )

This is a convergent sum, eachterm of which hasnot ! coefcient; the proof is com-
plete. O

We now establish the functoriality of residueswith respectto the trace map:
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Proposition 7.2.20. Supposéhat L %is a nite extensionof L, andthat L °is alsostandard.
Thenthefollowing diagramcommutes:

cts_K resL!O k,BO

? ?

Trioy Yy Trk ok
re

EI:SK i ke
Proof. Using the intermediate extension Lk o, we may reduce this to two cases:when
we have compatible isomorphisms L = k fftgy, L = koff tgg, or when k. = ki o. The
rst caseis straightforwar d, sowe only treatthe second.

By the usual "principle of prolongation of algebraic identities' trick [Ser88 11.13] we

may reduceto the caseL = k_fftgy, L = k_ ff Tggwith t = T€. The sameargument as
in the equal characteristic case[loc. cit.] is then easily modi ed. O

Extending the residue map to non-standard elds.

Now suppose that L is a two-dimensional local eld of mixed characteristic which is
not necessarily standard, and as usual x alocal eld K L. Choose a standard
subeld M of L with the sameconstant eld asL and of which L is a nite extension;
this is possible by lemma 7.2.14 Attempt to de ne the relativeresiduemapfor L=K to be
composition

Tr=m res
reg : o8 Mol TV g = ke

Lemma 7.2.21.res_isindependenbfchoiceofM .
Proof. Suppose that M °is another eld with the same properties asM, and let ! 2
Eth . By animportant structure result for two-dimensional local elds of mixed char-

acteristic [Zhu95, Theorem 2.1]thereis a nite extension L %of L suchthat L %is standard.
Using functoriality for standard elds, we have

resy (Trizm 1) = JLO%:Lj Tresu (Triom 1) = JLO L) 1T oo (resio(! )
(here we have identied ! with its image in gtg;K). Sincethis expressionis equally
valid for M %in place of M, we are done. O

The de nition of the residue in the general caseis chosento ensure that functoriality
still holds:

Proposition 7.2.22. Let L%L bea nite extensionof two-dimensionalocal elds of mixed
characteristicthenthefollowing diagramcommutes

cts resp ki o

T3
TrL0=Ly yTrkLosz

cts 1 k

LK e L

Proof. Let M be a standard sub eld of L used to de ne res_; then M %= Mk o may be

usedto de ne res o. For! 2 Et§=K , we have

res (Trpoo ') = resu(Tri=ym Trioep ) = resu (Tryogy Triogyo! ):
Apply functoriality for standard elds to seethat this equals
Try o=k, (resvo(Triogo! )) = Try o=k, reso(! );
asrequired. O
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Relation of the residue map to that of the residue elds.

We nish this study of residuesby proving that the residue map on amixed character-
istic, two-dimensional local eld L lifts the residue map of the residue eld L. More
precisely, we claim that the following diagram commutes

sep resy
OerOK ! Oy
? ?
y y
T=K Ik
e(L=k ) res

where some of the arrows deserve further explanation. The lower horizontal arrow is
e(L=k, ) times the usual residuemap for L (alocal eld of nite characteristic); note that
K isa nite subeld of L, and that k_ is the constant sub eld of L, which we identify
with the residue eld of L. Also, the top horizontal arrow is really the composition

o =0, o F* Kk ;part of our claim isthat res. j hasimage in O, .
Combining the identi cations g = 4 and 5 = EtjkL with the natural
surjection =P n P the problem is easily reduced to the caseK = ki,

O|_ =OK - O|_ =OkL
which we now assumeto betrue.
Let us rst supposethat L is astandard eld (sothat e(L=K) = 1); write L = M for

later clarity,and lett 2 M bea rst local parameter. Then ée“‘; -0 = Om dt by lemma
7.2.18and so the image of (S)e: _o, inside f, = M dtis Oy dt. We needto show

that re%(f_ dt) = resy (f dt) for all f 2 Oy ; this is clear from the explicit de nition of
the residue map for M = K fftg.

Now supposeL is arbitrary, choosea rst local parametert 2 O, and then choose
a standard subeld M suchthat M = L,ky = K,andt 2 M (seelemma 7.2.19. To
continue the proof, we must better understand the structur e of éeLp:OK . Let | denote
auniformiser ofL,sothabOL = Om|[ L] letf (X) 2 Opm [X] bethe minimal polynomial

of ,andwrite f(X)= [, bX ' We have our usual exactsequence
sep sep .
0! Oy =0 Owm O.! 0, =0k ! ooy ' 0
sothat >P__ isgeneratedby dtand d . Moreover,

O =0k
O=d(f( L) =fY L)d L+ cdt v)

P .
wherec= % L. Further, using our exactsequenceto seethat dt is not torsion,
and from the fact that o -o,, = OL=If Y )i (using the generatord ), it is easyto
checkthat (y) is the only relation between the generatorsdt and d | .

Wenow de ne atracemap Tro, -0, © o -0, ! on -0, asfollows:

Tro, -0, (@d ) = Triy ( acfy ) Yt
Tro, =0y, (bdt) = Tri—y (b dt

for a;b2 O. It isimportant to recall the classicaldifferent formula ([Neu99, 111.2]; also
seesection 7.6)

fq ) 'O =COL=0Om) (=fx2L:Tr-u(xOL) OFQ);

to seethat this is well-de ned. Furthermor e,if we basechange o, L, then we obtain

the usual tracemap Tri—y : &5 1 £ .
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By de nition of the residue map on L, it is now enough to show that the diagram

sep TrO|_=0|Y| sep
O|37=OK ' OM)=OK
? ?
y y
— | e
L= i LM M =
commutes. Well, for an element of the form bdt 2 (S)eLpzoK with b2 O_, commutativity

is clear. Now consider an elementad | 2 geLpzoK ; the image of this in  _ is zero, so

we must show that Trg, o, (ad ) = 0in . For this we recall another formula
relating the trace map and different, namely

. bi_
Triem ( LFX L) TOL) = MeCOM;

wherei 2 Z,e= jL : Mj, and b c denotesthe greatestinteger below (seee.g. [FV02,
Proposition 111.1.4]). Sincef is an Eisenstein polynomial, L(dditi efor all i, and so

L(©) & by the aforementioned formula, Tri -y (cfq L) *Op) M Om. This is
what we needed to show, and completes the proof of compatibility between res and

res-.
Corollary 7.2.23.LetL beatwo-dimensionalocal eld of mixedcharacteristicandK L a
local eld. Thenthefollowing diagramcommutes:

sep T feg g

01570k : &
? ?
y y
=K K

I
e(L=K )TrEL -k resc
Proof. It is enough to combine what we have just proved with the commutativity of

Tl'kL :F

< \J\.;,Q
A <o?

|
e(k|_ =K ) TTEL e

x|
2

7.3 Reciprocity for two-dimensional, normal, local rings

Now we consider a semi-local situation and prove the promised reciprocity law.

Let A be atwo-dimensional, normal, complete, local ring of characteristic zero, with
nite residue eld of characteristic p; for the remainder of this section, we will refer to
thesecollective conditions as(y). Denote by F the eld of fractions of A and by ma the
maximal ideal. For eachheight one prime y C A (we will sometimeswrite y C*A), the
localisation Ay is a discrete valuation ring, and we denote by F, = Frac& the corre-
sponding complete discrete valuation eld. The residue eld of Fy is fy = FracA=y.
Mor eover, A=y is a one-dimensional, complete, local domain, and soits eld of frac-
tions is a complete discrete valuation eld whose residue eld is a nite extension of
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the residue eld of A=y, which is the sameasthe residue eld of A. Therefore Fy is a
two-dimensional local eld of characteristic zero.

SinceA is already complete, there is no confusion causedby writing A)y instead of Ay
(note the different sized hats).

Lemma 7.3.1. Theris auniquering homomorphisnZ, ! A, andit is aclosecembedding.

Proof. The natural embedding j : Z ! A is continuous with respectto the p-adic
topology on Z and the ma-adic topology on A since p"Z, j (mk) foralln 0.
Therefore| extendsto acontinuous injection j : Z, ! A, which is aclosed embedding
since Z, is compact and A is Hausdorff.

Now supposethat :Z,! A s an arbitrary ring homomorphism. Then Hmh)
is an ideal of Z, which contains p"Z; but every ideal of Z,, is closed, and soit contains
p"Z,. Therefore is continuous; since agreeswith j on Z, they are equal. O

We x a nite extension Ok of Z, inside A, where Ok is the ring of integers of a
nite extension K of Q. For eachheight one prime y C A, we have K Fy, and the
constant/coef cient eld ky = kg, of Fy is a nite extensionof K. There is a natural
map g ! g‘yszK , Sowe may de ne the residuemapaty by

res,; . p=x ! ky; ! 7lres (!):

It is a nuisance having the residue maps associatedto dif ferent primes taking valuesin
different nite extensionsof K , sowe also intr oduce

Re%, = TrkyzK re% . E=K ! K:
Our immediate aim, to be deduced in several stages,is the following reciprocity law:

Theorem 7.3.2. Let! 2 (_«; thenfor all but nitely many heightoneprimesy C A the
residueres,(! ) is zeo, and X
Res(')=0
yClA
inK.

We will also prove an analogous result without the assumption that A is complete;
seetheorem 7.3.13

7.3.1 Reciprocity for Ok [[T]]

We begin by establishing reciprocity for B = Ok [[T]]. Mor e precisely, we shall consider
B = Ok [[T]]; although this may seemto be ainsigni cant difference,it is important to
understand the intrinsic role of T, especially for the proof of proposition 7.2.19

Lemma 7.3.3. Let B satisfy conditions(y) and alsoberegular;let Ok B bethering of
integersofalocal eld, andassuméhatK = k(mg) andthatB =Ok isunramied (i.e.px B =
mg). Let k beanyprimeofK .

Thenther existst 2 mg suchthatmg = h ;ti.ljf t is any suchelementtheneachf 2 B
may beuniquelywritten asa convegentseried = ilzo ait', with a; 2 Ok , andthis de nes
an Ok -isomorphisnB = Ok [[T]],witht 7! T.
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Proof. Since g is non-zero in the k(mg)-vector spacemg :mé, which has dimension
two by regularity, thereist 2 B suchthat (the imagesof)  ;t are abasisfor this space;
hencemp = h k ;ti.

Now, B=tB is a one-dimensional, complete, regular, local ring, i.e. a complete dis-
crete valuation ring, in which ¢ is prime. SincetB is prime, tB \ Ok = f0g and so
Ok | B=tB; but thesetwo complete discrete valuation elds have the same prime
and sameresidue eld, henceare equal.

Any seriesof the given form convergesin B becauseB is complete and a;t' belongsto
m‘B. Conversely, for any f 2 B we may write f ag mod tB for someag 2 Ok (since
B=tB = Ok );then replacef IQyt 1(f ag) and repeatthe processto obtain the desired
expansion for f. If aseries , | ait' is zero, with a 6 O, then we getat' 2 t'*1B,
which contradicts the identity tB \ O = f0g. O

Now let B, Ok, «,t satisfy the conditions of the previous lemma; setM = FracB.
Using the isomorphism B = Ok [[T]], we may describe the height one primes y of B
(seee.g.[NSWO0O, Lemma 5.3.7]):

(i) p2y. Theny = kB, and My is atwo-dimensional local eld of mixed charac-
teristic which is K -isomorphic to K ff tgg and has constant eld ky = K.

(i) p2Zy. Theny = hB,whereh 2 Ok [t] is anirreducible, Weierstrasspolynomials
(.e. h=1td+ay 1t 1+  + ap, with & 2 px), and My is a two-dimensional
local eld of equal characteristic. The coefcient eld Ky isthe nite extension of
K generated by aroot of h. Finally, My is ky-isomorphic to ky((ty)), wherety is a
uniformiser aty, e.g.ty = h.

We need a convenient setof additive generatorsof M :
Lemma 7.3.4. EachelemenbfM isa nite sumofelementoftheform
kY.
hr '
with h 2 Ok [t] anirreducibleWeierstasgolynomialr > 0,n 2 Z,andg2 B.

Proof. We begin with an element of M of the form 1= [* %2), with ;; , distinct ir-

reducible elements of A, and rq;r> 1. Setl = ilA + EZA; a standard lemma of
intersection theory isthat m' | form 0. Thus we may write ' = g1 [* + gp 52
for someg;; g 2 B, and we deduce
1 _ Qo KO,
ri ro — [ r. -
1 2 2 1

Now, a typical element of M has the form a=h with a;b 2 A. SinceB is a unique
factorisation domain whose prime ideals are as described above, we may write b =
u i hi* hiswhereu2 B ,the h; areirreducible Weierstasspolynomials, and all the
exponents are > 0. Replacing a with u 'a, we may supposeu = 1. Applying the rst
part of the proof repeatedly decomposesa=binto a sum of the required form. O

We also need to understand the spaceof relative differential forms:

Lemma 7.3.5. sBefoK is afreeB -moduleofrank one with basisdt. Foreactheightoneprime

y C B, thenaturalmap g-o, B E?y ! B, =0k descendt anisomorphism
sep | sep
B =0 B @y : E)y:OK .
. . . . sep ! cts
Hencethereis aninducedisomorphism 32, g My ! M=K -
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Proof. The rst claim may be proved in anidentical way to lemma 7.2.8 Alternatively ,
useremark 7.2.4to deducethat 3T = o, o ox [ B
If y is a height one prime of B then there is a natural map

sep _ _ .
B=O BF‘by = ( Ok [t]=0k Ok [t]B) B @V ~  Ok[t]=0k Ok [t]@y ! By=0x * By =0k ’

and we shall now construct the inverse of . De ne an Ok -derivation of By by

d:By! %, BBy b=s7'db s' bds s ?

whereb 2 B, s 2 B ny (this is well-de ned). Moreover, the right hand side is a nite
@y—module, hence is complete and separated for the y-adic topology; so d; (which is
easily seento be y-adically continuous) extends from By to @y. This derivation then

. . _ I sep .
induces a homomorphism of Ii‘f)y modules B0« ' B-=0x B @y,and this descends
to
sep | sep
@y:OK ' B=Ox B ®y
. sep . .
since a7, & Byisa nitely generated®,-module.

It is immediate that = id. It is also easyto seethat  (db) = dbfor any b2 By;

since such elements are densein the Hausdorf f space ;ep_o ,wededuce =id. O
y =0k

In particular, we now know that the residue map at vy, initially dened on =,

factors through its quotient 3%, s M. Wemay now prove reciprocity for B:

Theorem 7.3.6. Foreach 2 3%
=K

manyy C1B, and X
Res ! =0
yClB

8 M, thelocalresidueres, ! is zewofor all but nitely

in K.

Proof. By lemmas 7.3.4and 7.3.5 it is enough to consider the case! = f dt with

n
_ g.
= X9,

where h;r;n;gareasin lemma 7.3.4

Lety = tyB beaprime with ty anirreducible, Weierstrasspolynomial. If ty & h, then
k g=h" and t both belong to By, and so

R g dt

f =
coeft 1 % a,

by a basic property of the residue map; i.e. res,(! ) = 0. This establishesour rst
assertion. For the remainder of the proof, sety = hA; we must prove that

Res/(!)+ Res,g(!) = O: ()

Suppose for a moment that g belongs to Ok [t], and consider the rational function
eld K(t) M. Forany point x of P} , let K (t)x bethe completion of K (t) at the place
X; then K (t)x is atwo-dimensional local eld of equal characteristic. Let ky denote its

unique coefcient eld containing K, and let res, : f‘fzK I ky denote the residue
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map. By thqjassumption ongwe have! 2 )=k, and global reciprocity for PL
implies that x2PL Try =« resc(! ) = 0.

Further, an argument as at the start of this proof proves that res(! ) = 0 unless x
corresponds to the irreducible polynomial h, or x = 1 . Moreover, in the rst case,
K(t)x = My, kx = ky, and res (! ) = res,(! ). Therefore to complete the proof (with g
still a polynomial) it is necessaryand suf cient to show that

res .g(!)=res (!): ()

Note that the residue map on the left is for a two-dimensional local eld of mixed
characteristic, while that on the right is for one of equal characteristic. This passage
between dif ferent characteristicsis the key to the proof.

To prove (), write t; = b L which is a local parameter at 1 , and expand h " in
K()1 = K((ty))ash "=, | &t} ,say Sinceh" is aWeiersIgassponnomial, it is
easily checkedthat a; ! 0in K asi ! 1 ;thereforethe series ; | a it' is awell-
de ned elementof M g = Kfftgy. Moreover, since multiplication in both K ff tgg and
K ((t1 )) are given by formal multiplication of series,we deduce

. P
ie. ; ,a it'isthe seriesexpansion olgh "inM g = Kfftgg. Now let bt} be
the expansion of R g=h" of K (t); ;then ;b t' is the formal expansion of [ g=h'" in
M g, and so
k9
hr

Lo dt

dt h dty

res, coeft[l 1

X .
coeft »  t,% bty

= b X .
= coeft 1 bt
i
n
= res, g ﬁrgdt

This completes the proof of identity ( ) for g 2 Ok [t]; to prove it in general and
complete the proof, it is enough to checkthat both sidesof ( ) are continuous functions
of g, with respectto the mg -adic topology on B and the discrete valuation topology on
K . This is straightforwar d, though tedious, and sowe omit it. O

7.3.2 Reciprocity for complete rings

Now we extend the reciprocity law to the general case. Fix both aring A satisfying
conditions (y) and the ring of integers of alocal eld Ox  A. Reciprocity for A will
follows in the usual way by realising A asa nite extension of O [[T]]:

Lemma 7.3.7. Theris aring B betweerOx andA whichis Ok -isomorphido Ok [[T]], and
suchthat A isa nite B-module.

Proof. By [Coh46, Theorem 16], A contains a subring B, over which it is a nitely
generated module, and such that By is a two-dimensional, p-adic ring with residue
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eld equal to that of A. Supposing that this residue eld is Fq, we therefore have an

isomorphism i : Zg[[T]]! Bo. By the uniqueness of the embedding Z, ! A, it follows
thati(Zp,) Ok.Dene

J1OTlI= Zp[[T 2,0k ! A;  f 7Vi(f):

The kernel of j is a prime ideal of Ok [[T]] whose contraction to Ok is zero. If the
kernel is non-zero then there is an Eisenstein polynomial h 2 O [T] such that that
h(i(T)) = 0 (this follows from the classi cation of prime ideals in O [[T]] discussed
earlier), suggesting that i(T) is algebraic over Ok and henceover Zp; this contradicts
the injectivity of i. Hence| is anisomorphism onto its image, asdesired. O

Let B be asgiven by the previous lemma, and write M = FracB, F = FracA. We
now generaliselemma 7.3.5 However, note that if A can be written asthe completion
of a localisation of a nitely generated Ok -algebra, then the following proof can be
signi cantly simplied, simply by imitating the proof of lemma 7.3.5 seealso lemma
7.3.11

Lemma 7.3.8. 2%, isa nitely generatedh-moduleof rank 1. For eachheightoneprime
y C A,thenaturalmap a-o, A /by ! R, =Ox descend® anisomorphism
sep I' sep
A=O0x A /by : /byZOK .
sep cts

Hencethereis aninducedisomorphism =, A Fy'! FyoK -

Proof. Lemmas 7.3.5and 7.2.2imply that thereis a natural exactsequence

sep sep .
0! B=0x B Al A=Ox ! ase ! O ()

which provesthe rst claim since a-g is a nitely generated,torsion A-module.
Now we are going to construct acommutative diagram with exactrows:

sep sep
0 ! B=Ok, B A)y ! A=Oy, A A’y ! A=B A /by I 0
03 % %
B ?: A ? ?:
| Sep I sep | |
0 : By0=OK @yo /by . A)y -0k : A)y =®y ! 0

Thetop line is obtained by tensoring ( ) with /by. For the bottom row, sety®= y\ B, use
lemma 7.3.5to seethat >"__ is freeand that we may therefore apply lemma 7.2.2to

B OZOK
y
the tower of rings /*?y ®yo Ok . In lemma 7.3.5we also constructed a natural map
— . sep | sep .
B ’ @y:OK ’ B =0 B ®y’

its de nition did not useany special properties of B and sowe may similarly de ne 4.
Basechange g by /by to obtain the isomorphism g in the diagram. Finally, one may
seein anumber of different ways that there is anisomorphism g A /*?y = R=d,
which is natural enough sothat the diagram will commute.

It follows that A is anisomorphism, asrequired. O
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The previous lemmaimplies that 57, sF = 3%  aF,and sowe havenatural
trace maps
. sep | sep
Treay A=Ox A F! B=Ox B M
. sep sep .
TrFY=|VIy " B=0g B FY ! A=Og A My,

where Y is a height one prime of Aandy = Y \ B. Using these we establish the
expectedfunctoriality for our residue maps:

Proposition 7.3.9. Lety bea xed heightoneprimeof B. Thenforall! 2 3%~ A F,we

have X
Res Treav () = Res/ (!);

Yijy
wherY rangesoverthe ( nitely many)heightoneprimesof A sitting overy.

Proof. SetAy = A g By = (Bny) !A F. Then Ay=Byis a nite extension of
Dedekind domains, with the maximal ideals of Ay corresponding to the primes Y of A
(necessarily of height one) sitting overy. Therefore, for any x 2 L, one hasthe usual
local-global trace formula Tregoy (X) = Tre, =m, (X). In terms of dif ferential forms,

Yijy
X
Tr|:=M I = TrFY=My !

Yijy
forall! 2 3% ~ AF.Applying res; to eachside of this expressionand using propo-
sitions 7.2.9and 7.2.220btains

X

resy Treoy (V) = Try, =k, resy (! ):

Yiy

Apply Try, =x to complete the proof. O

Our desired reciprocity for A follows:

Theorem 7.3.10.Foreach 2 ZipoK a F, thelocalresidueres, ! iszeoforall but nitely
manyy CA, and X
Res ! = 0.
yClA
Proof. Standard divisor theory implies thatany f 2 F  belongsto Ay for all but nitely

many y C*A. If f dgis anonzero elementof 3 ~ A F,thenresy fdg = 0 for any

Y CIA which satis es the following conditions: p 2 Y and f;g 2 Ay. Sinceall but
nitely many Y satisfy theseconditions, we have proved the rst claim.

We may now complete the proof with the usual calculation, by reducing reciprocity
via the previous proposition to the already-proved reciprocity for B:

X X X
Res ! = Res, !
Y CLA ClB Yj
W8 Yy
= Res/(Trgav !)
yClB
=0
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7.3.3 Reciprocity for incomplete rings

We have thus far restricted out attention to complete local rings; we will nhow remove
the completenesshypothesis. We do not prove reciprocity in the fullest generality, but
restrict to those rings which will later arise from an arithmetic surface. Let O be a
discretevaluation ring of characteristic zero and with nite residue eld, and A Ok a
two-dimensional, normal, local ring with nite residue eld of characteristic p; assume
further that A is the localisation of a nitely generated O -algebra.

SinceA is excellent, its completion Ris also normal; therefore A satis es conditions
(y), and Ok ARisthe ring of integers of alocal eld, ashasappeared in the previous
subsections. Write F = FracR and ® = Frac® .

The following global-to-local isomorphism is extremely useful for explicit calcula-
tions. Sincethe notation can look confusing, let us mention that if Y is a height one

prime of A, then the completion of the discrete valuation ring (A’)Y is denoted ﬁ’y.

Lemma 7.3.11.LetY bea heightoneprimeofA’; thenthe natural map

sep
A=Ox A Ry !

%y :®K
is anisomorphism.

Proof. One follows the proof of lemma 7.3.5almost exactly, replacing B by AR and Ok [t]
by A. The only additional observation which needsto be made is that the universal

. . . I sep .. sep — sep
derivation d: R fw, Must betrivial on ®x , and therefore o, - O

ForY C1A, the previous lemma gives us a natural isomorphism

' cts .
A=OK A FY I FY =}b1

and we thus pull back the relative residue map of Fy=R to get

reSy | fFacA=k = A=0x A FracA! Kky;

where, asusual, ky denote the coefcient/constant eld of Fy.
Mor e importantly , if y is instead a height one prime of A, then set
X
Res = Tr _preS : fracask | R
Yijy

whereY rangesover the nitely many height one primes of /bsitting overy.

We need a small lemma. We shall say that a prime of R is transcendentaif and only
if its contraction to A is zero; such a prime has height one and does not contain p. The
transcendental primes are arti cial in a sense;they have pathological properties (e.qg.
if Y is transcendental then FracA /by) and do not contain interesting information
about A.

Lemma 7.3.12. Let Y bea heightoneprime of R. If Y is not transcendentathen it is a
prime minimal overy®R, wherey = A\ Y. On theotherhand,if Y is transcendentalthen
resy(! ) = Oforall! 2 graca=k -
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Proof. Sincey = A\ Y is non-zero by assumption, sois y/b. Sincey/b is contained in Y
thereis aprime P C AR which is minimal over y/Q and which is contained in Y. But then
P 6 0and we have achain of primes 0OC P E Y;sinceY hasheight 1in AR, we deduce
Y = P,i.e.Y is minimal over yA.

If fdgis aelementof gaca=k ,then aswe remarked above, f and g belong to Ry
thereforeresy (f dg) = 0, just asin the proof of theorem 7.3.10 O

The reciprocity law for A follows:

Theorem 7.3.13.Forany! 2 gaca=k , theresidueRes,(! ) is non-zep for only nitely
manyy C*A, and X
Res(!)=0
yClA

in 10.

Proof. Immediate from theorem 7.3.10and the previous lemma. O

7.4 Reciprocity laws for arithmetic surfaces

Let Ok be a Dedekind domain of characteristic zero and with nite residue elds; de-
note by K its eld of fractions. Let X beacurve over Ok ; more precisely, X is anormal
scheme, at and projective over S = SpecOg , whose generic br e is one dimensional
and irreducible. Theseassumptions are enough to imply that eachspecial br e of X is
equidimensional of dimension one. Let bethe generic point of SpecOy ; closed points
will be denoted by s, and we setK ¢ = Frac O« s, Which is alocal eld of characteristic
zero. Let x-g denote the coherent sheafof relative dif ferential (one-)forms.

Let x 2 X beaclosed point, andy X a curve containing x; let s be the closed
point of S under x. Then A := Ox x satis es the conditions at the start of subsection
7.3.3 and contains the discrete valuation ring Ok s. Also denote by y C Ox x the local
equation for y at x; then y is a height one prime of A, and we denote by

Resey & k)=« ! Ks
the residue map Res; :  praca=x ! Ks.

Theorem 7.4.1.Let! 2 g (x)=x,andletx 2 X beaclosedointsitting overs 2 S. Then
forall but nitely manycurvesy X containingx, theresidueRes (! ) is zeio, and

X
Resqy ()= 0
Yax
in thelocal eld K.
Proof. This is the simply the geometric statement of theorem 7.3.13 O

7.5 Local complete intersection curves
The second part of the chapter now begins, in which we study the relative canonical

sheafof an arithmetic surface. First we collect together several results about complete
intersections and relative canonical sheavesfor relative curves, many of which | learnt
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from Q. Liu's wonderful book [Liu02]. Let :X ! Shbea at, surjective, local com-
plete intersection, between irr educible, Noetherian, excellent schemes;assumethat
is smooth at the generic point of X . Theseassumptions are enough to imply that each
br e X5 is equidimensional of dimension

dmXg=dimX dimS

and we assumethat these br eare 1 dimensional, i.e. X is arelative curve over S. The
main example to have in mind is an arithmetic surface X over SpecOg , with Ok a
Dedekind domain.

Locally, X ! Sis given by

SpecR, either by embedding X into r-dimensional af ne spaceover SpecR, or by view-
ing SpecA asa nite cover of the af ne line over SpecR. Thesewill both be important
to us, and will give different explicit information about the canonical sheaf.

SetF = K(X) = FracA,K = K(S) = FracR.

7.5.1 Embedding the canonical sheafinto x (x)=x

The A-module 1 =12 isfreeof rank r 1, with basisfq;::::f, 1 (or rather, the images of
thesemod | ), and thereis a natural exactsequenceof A-modules

|:|2 ! R[T]=R R[T] Al A=R 10

(in fact, the leftmost arrow is alsoinjective, aswe shall seebelow in corollary 7.5.2.
The relativecanonicamodule! 5-g is

! A=R

Homa(det|=1%;A) A det( RITI=R  RT]A)
Homa (det I =12;det( rirj=r Ry A))

—12 = Vr 1,42 — r
wheredetl =< = A I =I<and det( R[TI=R R[T] A) = A( R[TI=R R[T] A).

Sincethe generality elucidates the situation, suppose that P4 ' P, P! Oisan
exactsequenceof A-modules, where P4, P, are freeof ranksr 1, r respectively. Then
thereis a natural map

PI Homg 'L 'PyY IRy i p7iMiA An 1 TLi()A A A pi
I Homgr 5 "P1; AP2; p7!'Mmyg Ny 17! j(n1) j(ne 1) " pi

\Y,
where p 2 P, denotes any lift of p. The fact that ~, P; = 0 implies that this is well-
de ned.
Applying this to our situation gives a map of A-modules

Ca=r (dt)) for eachl. Further, since detl =1 is an invertible A-module with basisf *
A £, 1 (we still identify the f; with their imagesmod | 2), it is enough to compute

ca=r (dt))(f1 A fr 1) 2 det( g R A):
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Well, chasing the de nitions,

(fy)n AN )N T,
= dl’\ Adr 1AdT|
det(D|) dT]_A n dTr;

Ca=r (dt)(f1 ™ ~fr 1)

where
0 @ ... ... ... @ 1
@ oo @
@ o o @
0 T 1 ::: 0

(the single 1in the nal row occursin the |™ column). Elementary matrix theory implies
that ( 1)"*'detD, is equal to the determinant of the matrix obtained from D, after
removing the nal row and the I column; denote this matrix by ;. We have proved
that
Casp (dt)(F1 ™ ~Afp )= ( D)Fldet( |)dTi A A dTy;
where |isther 1byr 1matrix obtained by discarding the I column (i.e. the ﬁ@?
terms) from the Jacobianmatrix (%})i;j .
The following fact about the matrices |,1 = 1;:::;r 1isvery important to us:

Lemma 7.5.1. Theeexistsl in therangel | r 1suchthatdet |isnon-zepin A.

Proof. We have assumedthat the algebraic variety Spec(A r K) is generically smooth
over K , and thereforeit contains a smooth closedpoint x 2 SpedA rK). The Jacobian
condition for smoothnessassertsthat

rankJ =r dimOxx=r1 1,

where J = (C%Ji)i;j is the Jacobianmatrix inside k(x) (a nite extension of K). This

meansthat thereis | such that the matrix obtained by removing the 1™ column from J
is non-singular in k(x); that is, det | 2 myx .x, which is enough. O

Corollary 7.5.2. Themap :1=I2! RIT]=R R[T] A isinjective.

Proof. Let | be asprovided by the previous lemma. It signi cantly simplies the nota-
tion with matrices if we assumel = r, without making any essential dif ferenceto the
proof. Recallthat is given by

1=121  Aga amB; bmodl 7! db:

Since (fj) = J_r:l @%fd'l'j , the matrix of with respectto the basesf;:::;f, 1 and
dTq;::::dT, is
r 0 @ 1
e g g
. H r .
@, L i - @ 1
@p
(our mgrices act on row vectors on the right, rather than column vectors on the left).
If v = {zll a;if ' is atypical element of | =12, then we seethat the identity (v) = O
implies (az;:::;a 1) r = O,implying that v = 0by assumption on . O
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Mor e generally, if x is any smooth, closed point of a br e of SpecA ! SpecR, then
the argument of the previous lemma shows that one can nd | (depending on x) such
that det |isnon-zeroin k(x),i.e.det jisaunit in Ax = Ox.x. The explicit description
of ca-r then implies that

Cazrx - A=R AAx! lapr aAx

is surjective. Further, since is smooth at x, it is well-known that A,-g A Ax iSan
invertible Ay-module. It follows that ca-r.x iS an isomorphism. Localising further at
the generic point  of X revealsthat

Ca=r; : AR AF! !'agr aF
is an isomorphism. Since! o-g is an invertible A-module, it embedsinto ! p-.x A F
and we thus obtain a canonical embedding

Pasr } 'a=r AF = ar aF

of I o_r into the one-dimensional F-vector space ao-r A F = p=.

Conversely, if | satises det | 6 0, then since A R K is reduced, thereis a closed
point x of SpeqA g K) for which det | 2 my ., and so x is a smooth point of the
variety SpedA r K) and the previous argument applies. We summarise:

Proposition 7.5.3. Theris acanonicakembeddingf! o_g into g—x inducedbyca-g. If |
satis esdet | 8 0, thentheembeddings explicitly givenby

acr | pox; K2~ A fp 170 dTaA AdTi 70 (1) det( ) tdty:

Proof. This follows from the previous discussion and explicit description of ca_g . Note
that Hf Ao 7T A A dT,i is abasisfor the invertible A-module ! o-r and
that g_k is aone-dimensional F-spacewith basisdt,. O

7.5.2 Realising SpecA asa nite cover of AL

From the perspective of rami cation theory, it is useful to realise X , at least locally, as
a nite cover of the projective line over S. We now explain how this is done. Let I, in
therangel | r 1, satisfydet | & 0(this existsby lemma 7.5.J).

Lemma 7.5.4. With | asabove| \ R[T|] = 0, andsothesurjectionR[T] ! A restrictsto an
embeddindR[T|] ! A;this makedA into a nitely generatedat R[T,]-module.

Proof. Denote by t; the image of T, in A. Justas above, we have an exact sequenceof
A-modules

=171 ju=rm) RMA! arm)! O

where is the A-linear map with matrix |, with respectto the basesf;:::;f, 1 and

so isinjective. Localising obtains an exactsequence

0! 1=12 AF Y gupermy rmF ! oasmm) aF! O

and then counting dimensions revealsthat f is anisomorphism and a-gr,; A F =
0. But a=rm] A F =  F=rracrpy]» @nd so F is a separable, algebraic extension of
FracR[t,]. SinceF is nitely generated over FracR, we now seethat F=FracR]t|]is a
nite, separableextension.
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Let C%enote the integral closure of R[t|] inside F; sinceR is excellent, R[t;] is Nagata
and therefore C%is a nitely generated R[t;]-module. Since CYis integrally closed in
F, we have FracC® = F. For any height one prime p of C9 the localisation CJ is
a discrete valuation ring. Let CSA be the C0 subalgebra of F generated by A; |t is
easyto see,simply becauseC0 is a discrete valuatlon ring, that it is impossible to have
proper inclusions F CoB  C). Therefore A  CJ; but Cis integrally closed, so

pClCOC Cland thereforeA C0 HenceAisa nltely generated R[t;]-module.

As remarked in proposition 7.5.3 dt; is not A-torsion in =g ; using the natural maps

( rmi=R RrRmMIRMD REy1A!'  RE=R REIA!  A=R:

we seethat dt; is not R[t|]-torsion in  gir1=r  r7,) R[U]. Explicitly , this meansthat if
g is a polynomial with coefcients in R suchthat g(t;) = 0, then g%t;) = 0. Now sup-
posefor a contradiction that R[T;]! RJt|]is not injective. Then t, is algebraic over K ;
further, g—x isaone-dimensional F-vector space,and soF is a nite, separableexten-
sion of a degree 1 purely transcendental extension of K. This meansthat the minimal
polynomial g of t; over K is separable.Now take a 2 R sothat ag hascoefcients in R.
Then agis nonzero, ag(t;) vanishes, but ag{t;) 6 0, giving the required contradiction.
Flatnessof R[t|]! A is proved below; seelemma 7.6.4 taking B = R[t;]. O

We continue this study of nite morphisms in the next section.

7.6 Finite morphisms, dif ferents and Jacobians

Supposethat A=B is a nite extension of rings, with corresponding fraction elds F=M
(assumedto be separable). The associatedcodiffeentis the A-module

C(A=B) = fx2F :Treoy (XA) Bag:

The aim of this section is to prove that if A is a complete intersection over B, then
the codifferent is a free A-module generated by the determinant of a certain Jacobian
matrix.

| am grateful to L. Xiao for someinteresting discussionsrelated to this section.

7.6.1 The caseof complete discrete valuation rings

We begin by treating the caseof complete discrete valuation rings. Let F=M bea -
nite, separable extension of complete discrete valuation elds, with rings of integers
Or=Owm . In place of the codifferent, one usually considers the different D (O =Op ),
which is the Of -fractional ideal de ned by

C(Or=Om ) D(Or=Owm ) = Of

i.e. the complement of the codifferent. Since Or =0y is a nite extension of regular,
local rings, it is a complete intersection

and we set
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which we may aswell call the Jacobiafdeal The fact that F=M is separableimplies that
the Jacobianideal is non-zero, and asargued several times in the previous section, we
have an exactsequence

0! Wy fmizfy i fmi?! o, =0y owmOF! op=0, ! O

The matrix of with respectto the basesf 1;:::;fm and dTy;:::;dTy, is the Jacobianma-
trix, and it easily follows (using the Iwasawa decomposition of GL(F)) that
J(Og=0pn) = p'F,whereI = IengthOF or =0y, ; IN particular, the Jacobianideal does

not depend on how we write O asacomplete intersection over Oy, .
We are going to prove that

J(Or=Onm ) = D(Or=Owm): (@ =D)

When F=M is monogenic (i.e. we may write O = Oy [ ]for some 2 Og), which is
the casewhenever the residue eld extensionof F=M is separable,the equality J = D is
well-known; it statesthat D(Og=Oy ) = gX ), where gis the minimal polynomial of
over M . A proof may befound in [Neu99, I11.2] (this referenceassumesthroughout that
the residue eld extensions are separable, but the proof remains valid in the general
case).

Severaleasylemmas are required, rstly aproduct formula:

Lemma 7.6.1. LetF %bea nite, separablextensiorof F ; then
D(OfFo=Om) = D(OfF =Om )D(OfFo=OF)

and
J(OF 0=Om ) = J(OF =Owm )J(OFOZOF)Z

Proof. The different result is well-known; seee.g. [Neu99, IIl.2]. We will prove the
Jacobianresult. Write Ogo asa complete intersection over Of

and denote by € a lift of the O polynomials fi to Oy [T1;:::; Tm+nl, fori = m +

represents Oro as a complete intersection over Oy, and the Jacobian matrix in Ogo
associatedto this complete intersection is

0 @ 1
% @ ij =1;:5m X )
a; |:r}1:1;:.:.:.;m+n @i i =m+1:m+n

Sincethe determinant of this is the product of the determinants of the two square ma-
trices, we are done. O

Lemma 7.6.2. Supposdurther that F=M is Galois.Thenther existsa sequencefintermedi-
ateextension$ = Fg > > F ; = M suchthat eachextensior;=F; 1 is monogenic.
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Proof. Let Fg denote the maximal unrami ed subextension of M inside F, and F; the
maximal tamely rami ed subextension (and setF ; = M). Then F=F; is an extension
whose residue eld extension is purely inseparable, and whose rami cation degreeis
a power of p (= the residue characteristic, which we assumeis > 0, for else we are
done); therefore Gal(F=F) is a p-group, hencenilpotent, and so there is a sequenceof
intermediate elds F = F, > > F; such that eachF; is a normal extension of F;
and such that eachstep is a degreep extension.

Then O, = Of ,[ ] where 2 O, is alift of a generator of Fp=M. Also, Of, =
Of,[ ] where is a uniformiser of Fi. It remains to observe that any extension of
prime degreeF;=F 1 is monogenic. Indeed, it is either totally ramied in which case
Of, = O, ,[ Qwhere PCisauniformiser of F;; or elsethe rami cation degreeis 1 and
O, = Of, || 9where °2 Of, is alift of agenerator of the degreep extension Fi=F 1
(which may be inseparable). O

Combining the previous two lemmas with the validity of J = D in the monogenic
case,we have proved that J = D for any nite, Galois extension F=M . Now suppose
that F=M is nite and separable,but not necessarily normal, and let F °be the normal
closure of F over M . The product formula gives us

Fo(D(Oro=Owm)) = €ro-r F(D(OF=Om)) + Fo(D(Oro=Of));

and similarly for J. But the Galois caseimplies that J = D for F&M and F&F. We
deduce J(Or =Op ) = D(Og =0y ), which establishesour desired result. To summarise:

Theorem 7.6.3. LetF=M bea nite, separablextensiorofcompletaliscretevaluation elds.
Write O asacompleténtersectionoverOy, asaboveandletJ 2 O bethe determinantof
theJacobiamatrix. ThenJ 6 0and

C(O=Opn ) = J 'Of:

Proof. Replacing C(Or =0y ) by its complementary ideal D(Or =Oy ), this is what we
have just proved. O

The previous theorem is really an elementary result concerning the rami cation the-
ory of complete discrete valuation elds with imperfect residue elds.

7.6.2 The higher dimensional case

We now generalisefrom complete discrete valuation rings to the general case.Let B be
a Noetherian, normal ring, and

a complete intersection over B which is a nitely generated B-module; assumethat A
is normal (this is automatic if B is regular by Serre's criterion [Liu02, Corollary 8.2.24]).
SetF = FracA, M = FracB, and assumethat F=M is separable. For a height one
prime y C B, the localisation By is a discrete valuation ring, and we setMy = Frac By;
use similar notation for A.

Forany yC!'B, it is clearthat C(A,=By) = C(A=B)A, whereA, = (Bny) A,which is
a Dedekind domain. A standard formula for extensionsof Dedekind domains [Neu99]
states %
C(Ay=By) = Y s

06 YCAy
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wheredy-, = v(D(Ry=B,)) (here v denotes the discrete valuation on Fy). But by
theorem 7.6.3 dy-y = v(J), whereJ 2 A is the determinant of the Jacobianmatrix

@
a .. - Therefore

j i)

C(Ay=B,) = J A
To proceedfurther, we need the following result, which | learned from [Liu02, exercise
6.3.5]:

Lemma 7.6.4. A is at overB.

Proof. Let g C A be a maximal ideal of A, and let p, Q denote its pullbacks to A,

R) is the quotient of a regular, local ring by a regular sequence(by minimality of s),
and henceis Cohen-Macaulay [Mat89, §21]. Any Cohen-Macaulay local ring contains
no embedded primes (and so the zero-divisor fg belongs to a minimal prime of R)
and is equi-dimensional [Eis95, Corollaries 18.10and 18.11];together theseimply that
dim R = dim R=f <i. Quotienting out by any other f; drops the dimension by at most
one (by Krull's principal ideal theorem), sowe deduce

dimKk(pP) [Ty 0 Tmlo=f ;i fmi dimk(P)[Te;:::5Tmlo (M 1):

But the ring on the left is a localisation of the br e A g k(p), which is a nite dimen-

sional k(p)-algebra, and sois zero-dimensional. Hencedimk(p)[T1;:::;Tmlo m 1,
contradicting the fact that Q is a maximal ideal of K(p)[T1;:::; Tm]
Secondly, sinceBp! B[Ty;:::; Tm]o isa at map of local rings, and f 1 is not a zero-

is at. Applying this criterion anotherm 1times, we deduce that
Bp! BTy Tmlo=fe; i fmi = Aq

is at.
It is enough to check atness at the maximal ideals of A, sowe are done. O

Thereis a natural map
C(A=B)! Homg(A;B); X 7! Treay (X))

and non-degeneracy of the trace map for F=M implies that this is an isomorphism
of A-modules, where A actson Homg (A;B) by a := (a ). For any maximal ideal
m C B, the localisation A, is a at (by the previous lemma), hence free, B ,,-module
of rank n = jF : Mj; the importance of this is that it implies that C(A=B)A, is afree
Bn-module of rank n. Using this, we will deduce our main “different= Jacobian'result:

Theorem 7.6.5. Thecodiffeentis aninvertible A modulewith basis] 1,i.e.
C(A=B) = J A:

Proof. It is enough to prove C(A=B)A,, = J A, for eachmaximal ideal mC B, and
therefore we will simply assumethat B is alocal ring; asremarked above, this implies
that C(A=B) is freeof rank n. Moreover,J *A is alsofreeof rank n, and so, by picking
abasisof F = M " and identifying our two free submodules with submodules of M ",
thereis 2 GL,(M) suchthat C(A=B)=J 1A.
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Further, for any height one-prime yCB, theorem 7.6.3implies that (Bny) 'C(A=B) =
@B ny) 13 1A, implying that 2 GLn(By). SinceB was assumedto be normal, B =
ycig By and so 2 GLn(B); therefore C(A=B) = C(A=B), which completes the
proof. O

Remark 7.6.6. If P is any A-module, then the natural pairing

Tr =M
Homa(P;C(A=B)) P! C(A=B) [ B
induces a B -linear map
Homa (P; C(A=B)) ! Homg(P;B);

which is easily checkedto be an isomorphism (using non-degeneracy of Trg4y ). Thus
C(A=B) is exactly the Grothendieck dualising module of SpecA ! SpecB (which is
projective sinceit is nite, and at by lemma 7.6.4.
One also hasthe relative canonical module
I p-g = Homp Woaoo fmiste i fmi?s ( BT B[]A)
A A

and a natural map

Al 1 ,g; b7lb "M ()

where isthe map in the exactsequence

0! Hyinfmizfy i fmi®! gr=s smA! a=m! O
Moreover, ( ) is an isomorphism at any point x 2 SpecA at which SpecA ! SpecB
is smooth, such asthe generic point since F=M is separable. This therefore de nes a
natural embedding of A-modules ! o_g ! F given by

HiA Af, 70dTy; AdTni 71 1

i.e. ! .5 = J lA. This is the generalisation of subsection 7.5.1to the caseof a nite
extension, rather than one of relative dimension one.

In conjunction with theorem 7.6.5 we have produced areasonably natural (though it
depends on how we write A asa complete intersection over B) isomorphism between
the dualising and canonical sheaves.

This material is surely known to experts, and there are similar results in [Kle80]; a
comprehensive discussion must be buried somewherein SGA or EGA™.

7.7 Explicit construction of the canonical sheaf for arithmetic

surfaces

Now we turn to the main global content of this chapter, namely using the residue maps
to construct the canonical sheafof an arithmetic surface. We begin with the af ne case.

1J.-P Serre gave a talk at Harvard's “Basic Notions' seminar, 10 November 2003, entitled “W riting
Mathematics?”, in which he explains how to write mathematics badly. He explains that if you wish to
give areferencewhich can not be checked by the reader, then you should ideally refer, without any page
references,to the complete works of Euler, but “if you refer to SGA or EGA, you have a good chance
also”. The readerinterestedin verifying this referenceshould consult timeframe 4.11-4.20f the video at
http://modular.fas.harvard.edu/edu/basi clserr el .

163



CHAPTER 7: AN EXPLICIT APPROACH TO ARITHMETIC SURFACES

Let Ok be a Dedekind domain of characteristic zero with nite residue elds; its eld
of fractions is K. We suppose that we are given a nitely generated, at Ok -algebra
A, which is normal and two-dimensional. Assume further that thereis an intermediate
ring B

Ok B A

suchthat B = Ok [T] and suchthat A is a nitely generated, at B-module. Finally, set
F = FracA, M = FracB, and assumethat F=M is separable. It follows that r_¢ isa
one-dimensional F-vector space,with basisdT.

If 0CyCx isachain of primes in A, then Ay is atwo-dimensional, normal, local ring
containing the discrete valuation ring Ok .5y, Where s(x) = Ok \ x. Therefore, asin
section7.4, we havethe residuemap Rescy ©  p=x ! Kgx) WhereK gy = FracOy -
The situation is similar with B in place of A.

We begin by establishing afunctoriality resultwhich we could have proved in section
7.3

Proposition 7.7.1.Let! 2 g_x,andletOCy C x C B beachainofprimesin B. Then

X
Rescy Treow (V) = Rescoyo(! )

xGy0

wherethesumis takenoverall chains0 C y°C x°C A suchthat x%sits overx andy®sits overy.

L

Proof. Let x bea xed maximal ideal of B;then A g By = g, A0 where x°ranges

over the nitely many maximal ideals of A sitting over x. The By-modules Ao are at,
hence free, and so by choosing basesfor them we may de ne trace maps Tr 4 -y in
the usual way. Passingto the elds of fractions obtains

X
Tr,::M = Tr

x9x

Frac A, o=Frac By’

aresult which is of coursevery well known for Dedekind domains.
Let Y be a height one prime of By. Then,for ! 2 p«,
X

Resy Treoy ! = Res, Tr

x%x
= Res,o!
xgx Y Gy

|
Frac Al o=Frac By °

where Y % ranges over the height one primes of Ao sitting over Y, and equality ()
follows from proposition 7.3.9 Now x a height one prime y of B contained inside x;
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then

X
Resy Treoy !

Y CBy
c
X7 x X
= Res/o!

ycB, X9x YJY

Yiy

X7 X X X

= Res/o!

x9x yOCA,oyocA oYY
Yoy y9y0
X X

Respo! ;
x%x yOCA 0
y9y
which is the required result. O

We now intr oduce the following A-submodule of - de ned in terms of residues
Waso, = f! 2 pok tResy(f!1) 2 O g forall0OCyCxCAandf 2 Ayg:

Similarly de ne Wg_o, .

Supposethat ! 2 Wa-o, andy C x is achain in A. We remarked at the end of the
proof of theorem 7.3.6that eachresidue map on a two-dimensional, complete, normal
local ring is continuous with respectto the adic topology on the ring and the discrete
valuation topology on the local eld (this is easyto prove for Ok [[T]] and follows in
the general caseusing functoriality). Therefore Res.y (f!) 2 @K s(x) for all f 2 Ay,
Another continuity argument evenimplies that this remainstrue for f 2 (&y)y.

Now, yA, is aradical ideal of A; localising and completing with respectto this ideal
obtains

M
(zp‘x)y: - (\AX)Y

Yiy

where Y rangesover the height one primes of A sitting over y. EachOy.y := (\AX)Y is
a complete discrete valuation ring whose eld of frafgtions is a two-dimensional local

eld, which we will denote Fyy . Note that Res.y =  Res,, by de nition.

Fix a particular height one prime Yg of &4 over y. Since(Ry)y is densein viy Oxy
with respectto the discretevaluation topologies, thereis h 2 (&y)y which is Yp-adically
closeto 1 and Y -adically closeto O for Y 6 Yg. More precisely, since eachresidue
map Res,, is continuous with respectto the discrete valuation topologies on Fy.y

and Ky, we may take h to satisfy
() Res,, (NOxy!) O gx) for Y 6 Yo;
(i) Res,, (h 1)Oxy)!) Ok .sp-

Replacingf by hf , it follows that ResFX;Yo(f )2 ch s(x) forall f 2 (&y)y, and therefore
for all f 2 Oy.y, by continuity . To summarise:

Lemma 7.7.2. Let! 2 g« ;then! 2 Wp_o, if andonlyif Res- ., (f!) 2 @K s(x) forall
maximalidealsx C A, all heightoneprimesY C By, andallf 2 Oy.y .
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Proof. The implication ( istrivial, and we have just proved) . O
Next we reduce the calculation of Wa-o, to that of Wg o, :

Lemma 7.7.3. Let! 2 p_;then! 2 Wy_o, if andonlyif Treoy (9! ) 2 Wg—o, forall
g2 A.

Proof. The implication ( follows from proposition 7.7.1 Letus x achainy C x in B
and supposethat Res.y (f Treoy (9!)) 2 ch six) forallg2 A, f 2 By;so

ReS(O;yo(g! ) 2 (bK iS(X) )

X0y 0

for all g 2 Ay by proposition 7.7.1 Sincewe have Ay = Xol-xﬂxo, it follows that if
isa xed maximal ideal of A over X, then thereis h 2 A which is closeto 1 -adically
and closeto 0 x%adically for any other maximal ideal x°6 over x. More precisely,
aswe remarked at the end of the proof of theorem 7.3.6 eachresidue map on a two-
dimensional, complete, normal local ring is continuous with respectto the adic topol-
ogy on the ring and the discrete valuation topology on the local eld (this is easyto
prove for Ok [[T]] and follows in the general caseusing functoriality); we may nd h
such that

(i) Reswoyo(hAyol ) Ok .s(x) for x°6 and y°C x%overy;
(i) Resyo((h 1)A 1) Ok .gx) for y°C overy.

Replacing g by gh in ( ) obtains

Res ;yo(g! ) 2 @K :5(X)
yoC
y9y
for all g 2 A. This sum is equal to
X
Respo(g! );
yOCLA
y9y
and we may now repeatthe argument, similarly to how we proved the previous lemma,
by completing at y instead of x, and using the fact that the residue map on a two-
dimensional local eld is continuous with respectto the valuation topology. This gives
Res . o(g') 2 @K s(x) for all g 2 Ayo, for any y°C overy. This completesthe proof. O

We may now establish our main result in the af ne case,relating W-o, to the cod-
ifferent of A=B. The proof requires explicit arguments using residues, and usesthe
results and notation of sections7.2and 7.3

Theorem 7.7.4. WehaveWa-o, = C(A=B)dT.

Proof. Since g_x = F dT it is enough, by the previous lemma, to prove that Wg o, =
BdT. Let! = hdT 2 y=«x,wWhereh 2 M; we wish to prove h 2 B. As it makesthe
argument slightly more conceptual, we shall prove this merely under the assumption
that B is smooth over Ok (which is certainly true for B = Ok [T]). Fix a maximal
ideal x C B and write s = s(x), C = By, N = FracC for simplicity; let 2 Ox.sbea
uniformiser ats.
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If y is a height one prime of C which doesnot contain ,then 12 Cy and so
Res/(f!) 2 Oy s forall f 2 €, () Res(f!)=0forallf 2 €y:

Note that in the notation earlier in this section, €, = Oy.,. Further, non-degeneracy of
the trace map from the coefcient eld ky to K implies

Res/(f!) = Oforallf 2 €, () res(f!)=0forallf 2€y:

Lett 2 Cy be auniformiser aty;then! = h‘é—I dt and it easily follows from the de ni-
tion of the residue map on the equi-characteristic two-dimensional eld Ny@ = Myy =
ky((t)) that

res(f!) = Oforallf 2 € () h(jj—-[ 2 €
Finally, we have identi cations
€ dT= o, BE= s@ip:@m = €ydt;

with the isomorphism coming from lemma 7.3.11 and dT corresponding to 9T dt.

dt
Hence 9T is aunit in €y, and so

res(f! )= Oforallf 2€, () h2Cy:

Now we consider the prime(s) containing . The special br e B= B is smooth, and
so C= C is a complete, regular, one-dimensional local ring, i.e. a complete discrete
valuation ring, and C is prime in C. Therefore C is the only height one prime of C
which contains . Further, is auniformiser in the two-dimensional local eld N A =
My. a,and therefore by corollary 7.2.16thereis an isomorphism F ¢ = k ¢fftg, and
moreover k ¢ isanunrami ed extension of K. It easily follows from the de nition of
the residue map in this casethat

resc(f1)2 0  forallf 2d ¢ () h2Cc:
The fact that the extensionk =K of local elds is unramied now implies
Resc(f!)20y ,forallf 2d ¢ () h2Cc:
Hence,
Resu,, (f!) 2 OcsforallyClByandf 2 Oxy () h2 (By)y for ally C1By:

T
But By is normal, so yClBX(Bx)y = B,. We deduce that ! belongsto Wg—o, if and
only if h 2 By for all x, which holds if and only if h 2 B. This completesthe proof. [

7.7.1 The main global result

All the required results have beenestablished,and we how may now presentthe proof
of our main theorem. Let Ok be a Dedekind domain of characteristic zero with nite
residue elds; its eld of fractionsisK.Let :X ! S = SpecOk bea at, surjective,
local complete intersection, with smooth, connected,generic br e of dimension 1.
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Theorem 7.7.5. Thecanonicakheal y-g5 of X ! Sisexplicitly givenby, foropend X,
x=s(U) = f1 2 g (x)= :ReSey(f1)2 O (o forallx 2y U andf 2 Oxyg

wheex runs overall closedoointsof X insideU andy runs overall curvescontainingx.

Proof. This reducesto the af ne situation of U = SpecA, with

localise Ok away from nitely many primes, but we will continue to write Ok ).

By subsection 7.5.1, we can choosel sothat, setting B = Ok [t], the extension A=B is
a nite complete intersection with a separablefraction eld extension. Further,! -0,
was identied with det | df K (X)=k » where | is the matrix obtained by discard-
ing the I column (i.e. the @@| terms) from the Jacobianmatrix (@%?)i;j . Therefore | is
exactly the Jacobianof the complete intersection A=B, and sodet | = J in the notation
of section 7.6, moreover, by theorem 7.6.5 we have J A = C(A=B). Combining this
with theorem 7.7.4completesthe proof. O
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