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Abstract

In this thesis we present numerical simulation studies of fluid-immersed granu-

lar systems using models of varying scales and complexities. These techniques

are used to examine the effects of an interstitial fluid on the dynamics of dense

granular beds within a number of vibrated systems.

After an introduction to the field of granular materials, we present the tech-

niques used to model both the granular dynamics and the fluid flow. We in-

troduce various multiscale techniques to couple the motion of the granular and

fluid phases. An extensive comparison between these techniques is conducted

for some well-known systems. The fluid-grain coupling techniques are applied to

some larger systems in order to determine under what situations the approaches

are most suitable.

An investigation concerning three-dimensional fluid-driven convection within

vertically vibrated fluid-immersed granular beds is then presented. Here we ob-

serve granular piling and determine that this is a result of fluid-driven convective

cycles within the bed which may be strengthened through the presence of wall

friction. Our simulations capture this convective behaviour and lead to a detailed

understanding of the mechanisms behind the phenomenon.

Under a wide range of conditions a system of fluid-immersed fine grains within

a vibrated partitioned cell will transfer in their entirety into just one of the

segments through a linking channel at the cell base. We perform an experimental

and numerical study in order to understand the principle mechanisms behind the

“partition instability”. We determine that the instability arises due to the fluid

experiencing less resistance to its motion when flowing through the shallower

granular column during vibration. A simple analytical model is developed which

captures this behaviour.
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It is commonly known that large dense intruders may rise rapidly to the

surface of a granular bed when subjected to a vertical vibrational force. We

next present an experimental and numerical study to determine the principle

mechanism associated when the granular bed is immersed in a fluid, the fluid-

enhanced Brazil nut effect. Our key finding is that the behaviour of the intruder

is sensitive to the detailed fluid and particle flow in its vicinity. An analytical

approach is developed to model the rising of a dense intruder in a vibrating

fluid-immersed porous bed.

Finally a brief study is presented into the behaviour of a vibrated system

of fluid-immersed particles held within a zero-gravity environment. We conduct

simulations which are able to reproduce the behaviour of a collection of particles

suspended magnetically in a vibrating fluid.
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Chapter 1

Introduction

This thesis concerns the behaviour of fluid-immersed granular beds subjected to

vertical vibration for a variety of systems, in particular granular heaping, Faraday

tilting, the “partition instability”, the fluid-enhanced “Brazil nut” effect, and

granular suspensions. This chapter provides a brief introduction to the field of

Granular Dynamics and its wider importance and applications. We then follow

with a brief description of granular systems which are coupled to the dynamics

of a fluid. The chapter concludes with an outline for the remainder of the thesis.

1.1 Granular Systems

Granular materials are defined as large conglomerations of discrete macroscopic

particles which are characterised by a loss of energy whenever they interact

through collisions. If they are non-cohesive then the forces between them are

only repulsive so that the shape of the material is determined by external bound-

aries and gravity. Such a definition describes a vast array of systems, from nuts or

sugar granules contained in a jar to the huge piles of coal at power stations. Since

granular systems are constantly in our lives, an understanding of their dynamical

behaviour is of great importance, especially within industry. The pharmaceu-

tical, agricultural and construction-based industries rely heavily on mixing and

separation of a vast array of granular materials. The motivation for gaining a

better understanding of these materials is high. For example, it is estimated that

a high proportion of capacity of many industrial plants is wasted due to prob-

1



Chapter 1. Introduction 2

lems related to the transport of these materials (Ennis et al. 1994). A small

improvement in efficiency due to a development of our understanding could have

a significant impact on these industries.

Engineers have traditionally classified granular materials depending on their

size; rubble is defined as being of greater size than >5 mm, grains have a generic

size of 0.1–5 mm, powder 10–100 µm, superfine powder 1–10 µm and hyperfine

powder which are otherwise known as latex spheres have a size of 0.1–1 µm. In

this thesis, however, we only concern ourselves with grains since many of the

dynamical behaviours and effects observed using these particles may be easily

reproduced within both experiments and numerical computer simulations.

Despite the seemingly simple nature of granular materials, these materials

behave differently from any of the other familiar forms of matter; they can be

considered an additional state of matter in their own right. As we have already

noted, the behaviour of granular systems are greatly affected by their internal

collisions. A collection of grains are able to dissipate energy quickly through

a large number of internal collisions so that an unagitated system with a large

amount of internal energy will soon come to rest. It is observed that within multi-

particle collisions energy is lost due to the inelasticity of collisions. An example

of this dissipation may be seen if a bean bag is picked up and then dropped from

a height of a few meters. In this instance we see that the bean bag does not

bounce upon landing as all the kinetic energy is lost through millions of internal

collisions between the beans.

Another important factor that contributes to the unique properties of granular

materials is that ordinary temperature plays no role. On first inspection granular

flows may be viewed favourably in comparison to a dense gas as they both consist

of discrete particles with negligible cohesive forces between them. The energy

scale of an ideal gas is kBT while the relevant energy scale of our granular system

is the potential energymgd gained when a grain of massm is raised by its diameter

d in the Earth’s gravitational field g. A simple comparison for a sand grain held

at room temperature shows that this potential energy is 1012 times kBT , which

makes ordinary thermodynamic arguments for the treatment of granular materials

irrelevant.
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Granular materials are not solid, liquid or gas, yet they can behave like any

of these states under the appropriate conditions. We find that when no energy

is input into a granular system the particles will automatically settle into a solid

state. If packed tightly enough the particles assume a “jammed state”; this occurs

when the particles occupy a certain fraction of the overall bed volume. In this

state the grains may support loading to the surface interface, as may be observed

when a person walks along a beach of dry sand.

Those who have poured cereal into a breakfast bowl will also be aware that

a collection of solid grains can behave like a fluid. Cereal “flows” out of the

box and quickly forms the shape of the bowl upon relaxation. These “fluidised”

states are achieved if the kinetic energy of the grains overcomes the inelastic losses

sufficiently to allow the grains to flow. A characteristic of this state is that the

grains have a lower packing fraction than in the jammed state.

If the packing fraction is reduced further the grains may even exhibit the

properties of a gas. This may be achieved if the grains are shaken strongly within

a cell such that the mechanical energy input into the system is high and the

inelastic granular collisions are infrequent so that little energy is lost. For some

further reading on granular systems we suggest the review articles by Jaeger

(1996) and Kudrolli (2004).

The science of granular matter has a long history with many of the original

insights made by engineers who considered how to treat these materials. Some

of the original classical contributions were made in the 18th and 19th centuries.

Amongst the first contributions were those made by Coulomb (1773) who pro-

posed the idea of static friction and then Reynolds (1885) who introduced the

ideas of bed dilation, which implies that a compacted granular material must ex-

pand in order for it to undergo any shear. More recently the topic has attracted

condensed-matter physicists and other scientists, as well as engineers, who study

complex systems and consider granular matter as a model of more complex mate-

rials. As an example of this sand-pile avalanches have been used as a macroscopic

picture for the motion of flux lines in type-II superconductors (de Gennes 1966).

It is the dynamical motion of grains, as in the systems first noticed by Faraday

(1831), that this thesis is concerned with.
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In this section we have introduced grains inhabiting dry systems. However,

within the bulk of this thesis we are concerned with the dynamical behaviour of

grains held within a fluid. We introduce such systems in the next section.

1.2 Fluid-Grain Systems

The majority of granular systems are affected in some way by the interstitial fluid

in which they are immersed. The only exceptions to this are within experiments

that are performed in a cell in which the fluid has been removed or in granular

systems which exist outside the Earth’s atmosphere like an asteroid belt. The

effect of the fluid on the granular system depends on the size of the material.

When the size of the body is substantial the fluid effects are known to be negli-

gible, but for fine particles and powders (∼10 µm) in air and particles (∼1 mm)

immersed in water, the effects of the fluid are appreciable.

Examples of fluid-immersed granular systems occur in many places in nature.

These range from the creation of structures such as meanders and ox bow lakes in

Brazil to the huge recurring sand dunes in the Sahara desert. Understanding the

mechanics of sand-pile formation may even answer interesting questions as to why

dunes have been discovered and continue to survive on the surface of Mars. There

are also more dynamic fluid-immersed granular systems which society has a great

incentive to understand better. These include the evolution of snow avalanches

at ski resorts induced by strong winds and the more rare events of devastating

tsunami’s created by large sedimentations of rocks into the sea.

The size of the particles immersed in the fluid makes a great difference to the

behaviour and hence its classification. As an example a collection of extremely

fine particles, of size <10−9 m, submerged in a liquid may dissolve to create an

homogenous solution. These particles are able to change the dynamic properties

of the fluid, including density and viscosity. When larger particles with sizes in

the range 10−9–10−6 m are submerged in a water-based fluid we create a colloid.

These particles are suspended and dispersed evenly throughout the fluid. As the

spheres suspended within the colloid are of similar scale to the fluid molecules

the grains are thermally agitated by the fluid particles and experience Brownian
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motion. Examples of colloids include mayonnaise and milk. If the size of the

particles are increased further so that the diameters are in the range 10−6–10−4

m then the particles do not dissolve and a heterogeneous solution like soup is

created. If shaken vigorously the particles will disperse throughout the fluid;

however, if left for a long period of time they will settle on the cell base. These

particles are affected by macroscopic characteristics of the fluid such as density

and viscosity. In this thesis the fluid-grain systems we are concerned with involve

grain sizes in the range 10−4–10−2 m. These particles demonstrate a wide variety

of behaviours when immersed within fluids and are greatly affected by the fluid

density and viscosity.

The field of fluid-immersed granular systems began in earnest when Faraday

(1831) observed that a pile of granular material displays convection cycles and

will sustain its own shape if vibrated on a flat surface. Faraday’s questions about

how fluids affect the dynamic behaviour of grains went largely unanswered for

the next century. Over this period not much work was done on the field of

fluid-immersed granular materials; however, it has been only been in the last two

decades that the field has received a lot more interest. Recently such things as

sedimentation, pattern formation, granular avalanches and segregation have all

been and continue to be studied. With the advent of high-speed computers it is

now possible to study these topics and understand the mechanisms in detail.

1.3 Thesis Outline

So far in this chapter we have given a brief introduction to two fields of study,

namely dry granular systems and the special case of granular systems immersed

in fluid. These fields permeate many aspects of our lives and, as a consequence,

are of considerable interest. Due to the vastness and complexity of these fields

we are only able to study a selection of fluid-immersed granular effects in which

we try to determine the mechanisms which give rise to their behaviours.

I now give a brief outline of the remainder of this thesis and what each chapter

will include.

The bulk of the research that I undertook involves simulating complex granu-



Chapter 1. Introduction 6

lar systems numerically on a computer. Thus the first part of this thesis, Chapter

2 and Chapter 3, is concerned with the development of my own code. We intro-

duce several models and algorithms used to simulate systems of fluid-immersed

granular beds. At the end of this part we perform a series of well-known nu-

merical tests which assess the accuracy and efficiency of the models. These in-

clude determining the drag coefficient dependency on the Reynolds number for

a falling sphere and measuring the pressure beneath a thrown granular bed over

a single vibration cycle. The second part of the thesis, Chapter 4 and Chapter

5, involves applying several of the microscopic fluid-grain models to the study

of the Faraday tilting and heaping effects in three dimensions and then to the

“partition instability”. We compare results when applying different simulation

techniques and determine which approaches give the best results in each situa-

tion while simultaneously examining the dynamics of each effect. The third part

of the thesis, Chapter 6 and Chapter 7, use one simulation technique to study the

fluid-enhanced Brazil nut effect and zero-gravity fluid-immersed granular suspen-

sions. The final chapter summarises the main conclusions from the thesis.

I now give a brief outline of what each chapter will include.

Chapter 2: Computational Techniques

Here we introduce a number of approaches that can be used to model compu-

tationally a system of fluid-immersed grains. The chapter begins by focusing

on granular modelling techniques and then proceeds to give a detailed descrip-

tion of the Molecular Dynamics approach which we use throughout the course of

this thesis. We then discuss the approach used to model the fluid. Here we use

the governing equations of fluids, the Navier–Stokes equations, to solve the fluid

motion on a spatially discretised Marker-and-Cell grid mesh using a fractional-

time-step operator-splitting method otherwise known as the Projection Method.

Later we bring these phases together and describe several different approaches to

coupling the momentum transfer between the fluid and granular phases.

The first model described to resolve the fluid-grain coupling is an analytical

model developed by Kroll which may be solved numerically to determine the

flight of a porous bed within an incompressible fluid. The analytical Modified
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Kroll model which is able to simulate granular beds thrown in dense fluids is also

described. Two models are then outlined which are based on using empirically

determined bed equations to resolve the fluid-grain coupling. These are the Sim-

ple Drag and Navier–Stokes models. The Navier–Stokes model is the first model

we introduce which evaluates the fluid motion in addition to the granular motion.

Within this model the grains are treated as local disturbances to the fluid flow

and so the fluid resolution is determined on a scale larger than the size of the

particles. We then describe two microscopic fluid-grain coupling models in which

the fluid is resolved on a scale smaller than the size of the particles, such that

fluid flow effects around the particles may be studied. These are the Particle

Template and the Fluid Spring models. At the end of this chapter some simple

comparisons between the fluid-grain coupling models are performed.

Chapter 3: Accelerated Systems

Within this chapter we consider how accelerated systems must be treated within

our simulations. We then simulate thrown fluid-immersed granular beds to de-

termine suitable parameters for our simulations. In the last part of the chapter

a vibrated fluid-immersed bed is simulated and results are compared using the

Modified Kroll, the Navier–Stokes, the Particle Template and the Fluid Springs

models.

Chapter 4: Heap Formation

Here we present an investigation into three-dimensional heap formation using

two of the fluid-grain coupling models, namely the Navier–Stokes and the Fluid

Springs models. This chapter studies the mechanism through which a fluid-

immersed granular bed will tilt and then maintain its shape through convection.

The effects of friction-driven convection on this fluid-immersed granular system

are also investigated. At the end of the chapter we simulate a fluid-immersed

granular heap like that observed by Faraday (1831).
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Chapter 5: Partition Instability

Here we investigate the “partition instability”, where a system of fluid-immersed

grains vibrated within a partitioned cell, connected by holes at the base and top,

will spontaneously move into just one of the columns. We present an experimental

and theoretical study of the process and propose a mechanism for the instability

which is related to the fluid-driven convection mechanism discussed in the heaping

chapter. At the end of the chapter we use this knowledge to propose a simple

analytical model for the fluid-driven partition instability based on two coupled

granular beds vibrated within an incompressible fluid.

Chapter 6: Fluid-Enhanced Brazil Nut Effect

Here we present an experimental and theoretical investigation of the fluid-enhanced

Brazil nut effect where a large intruder rises to the surface of a bed of light host

particles within a water-filled cell. Simulations are used to capture the behaviour

first observed within experiments and also to investigate the rising mechanism.

We show that when using a full microscopic fluid model, such as the Fluid Springs

model, to simulate the Brazil nut effect the intruder rises but when using the Sim-

ple Drag model for the same system the Brazil nut does not rise. We are therefore

able to show that the fluid and grain flow in close vicinity to the intruder are sig-

nificant in the fluid-enhanced Brazil nut effect. At the end of the chapter we

propose an analytical approach to model an intruder within a porous granular

bed submerged in an incompressible fluid.

Chapter 7: Zero-Gravity Fluid-Immersed Granular Suspensions

Here we perform a brief theoretical investigation of a vibrated system of dense

particles in a viscous fluid held in a weightless environment. The particles form

thick granular layers, spanning the cross-section of the cell, perpendicular to the

direction of the container vibrations. The effect is believed to arise due to steady

streaming flows developing within the cell. Our simulations are able to capture

similar effects observed in experiments.
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Chapter 8: Conclusions

Here we review the concepts discussed in the previous chapters and propose some

ideas for future work.



Chapter 2

Computational Techniques

In this chapter we describe the Molecular Dynamics method used to model gran-

ular interactions. The particle collision methods described are the Linear Spring-

Dashpot scheme and Kuwabara and Kono’s (1987) collision system.

We then introduce the fluid model for which the overall governing equations

of fluid mechanics describe the fluid motion, namely the Navier–Stokes equations.

The fluid algorithm is then described and the section is ended by simulating lid-

driven Cavity Flow within a three-dimensional cell for which there are well-known

results.

We then describe the way in which the fluid and granular motion may be

coupled. We begin with the analytical Kroll model which considers the flight

of a fluid-immersed porous bed in a vibrated cell. Models which operate within

a Molecular Dynamics framework, including the Simple Drag model and the

Navier–Stokes model are then described. The Navier–Stokes model is the first

model we discuss which uses both Molecular Dynamics to describe the particle

motion and the Navier–Stokes equations to model the fluid. In these models the

particles are small compared to the fluid grid. Later we introduce a couple of

microscopic fluid flow models, namely the Particle Template and Fluid Springs

models, which model the fluid on a scale small compared to the particle size. We

then perform some numerical tests with these fluid particle coupling models to

examine the circumstances in which they are most suitable.

10
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2.1 Particle Modelling

There are several different ways in which particle-particle interactions can be

modelled. These methods fall into two main categories, hard-sphere and soft-

sphere models.

The hard sphere (Event-Driven) approach is based on the idea that a collision

between two grains is instantaneous, i.e. the collision time is zero tc = 0. This

means that two particles coming into contact will instantaneously collide. An

efficient algorithm for this method was developed by Lubachevsky (1991), which

is split into two parts. The first part uses an algorithm to determine when the next

particle collision will be, given that we know the particle positions, velocities and

all other dynamic characteristics of the particles (friction coefficient, coefficient

of restitution etc.). All of the particles are then moved forward in time to when

the collision occurs. The second part of the algorithm implements the collision

dynamics for the particles in contact, so that the velocities are updated. This

process then repeats itself ad infinitum. The Event-Driven model works well in

dilute systems, such as gases, but fails in very dense systems. In highly populated

granular regions the model breaks down as spheres come to rest and remain

in contact with other spheres, effectively reducing the time between successive

collisions to zero. The system slows dramatically as the event list increases to

infinity. As our systems will often be densely packed another technique will be

needed to resolve the particle interactions.

Stochastic approaches offer a very different way of modelling the particle in-

teractions. Unlike the Event-Driven method the exact times and places of the

particle collisions are not calculated, an example of this type of approach is the

Direct Simulation Monte Carlo method which was first proposed by Bird (1994).

This is another two-process simulation. Firstly the particles are assorted ran-

domly into boxes and then set to move freely. Secondly, two particles, within a

selection of boxes, are chosen to collide at random. The success of the collision

is proportional to the relative velocity between the two particles. Extra parame-

ters must be introduced since the colliding particles may not be in contact with

each other. This method is often used in dilute systems to study thermodynamic

limits, however, the method is not suitable for our simulations as microscopic
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granular behaviour such as convection is not captured.

Soft particle techniques, as the name suggests, allow a slight overlap of the

particles during collisions. The result of this is that the collision is not instan-

taneous and has a discrete time associated with it. When the particles collide,

the interaction forces are a function of the collision overlap and collision velocity.

Multiple particle collisions are also possible and the forces on the particles are

determined by summing the individual collision forces. This type of technique

is known as Molecular Dynamics (MD) and uses Newton’s laws of motion as its

foundations. MD manages to capture the essentials of particle collisions in a real-

istic manner and for this reason it is possible to apply it to a much wider class of

systems (both rapid and slow flows) than hard-sphere models (rapid flows only).

We describe the Molecular Dynamics technique in the following section. For a

review of particle modelling techniques see the article by Herrmann (1997).

2.1.1 The Molecular Dynamics Technique

Modelling collisions between real particles is difficult, due to surface imperfec-

tions and the non-spherical nature of real grains. For ease, within this thesis

we assume the particles are spherical. However, the modelling of realistic defor-

mations during particle collisions is still considered to be much too complicated.

For this reason we use the the MD technique in which the overlap of the two

particles and the velocities are considered the most important quantities in de-

termining the collision dynamics. The particles only interact when the overlap

δn = (r1 + r2) − (r1 − r2) .n̂ is positive. Here n̂ is the unit vector connecting the

centres of the two spheres and ri and ri are the particle radii and position vectors

of particle i respectively. A schematic diagram of two colliding particles is shown

in Figure 2.1.

We will be describing two soft-sphere techniques; the Linear Spring-Dashpot

model and a second model that uses an elastic repulsive Hertzian contact force

and a viscous dissipative force proposed by Kuwabara and Kono (1987).
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Fig. 2.1: Schematic diagram of two discs with different radii colliding. The overlap

in this figure is exaggerated.

Linear Spring-Dashpot Model

The first force acting on particle 1 from 2 is an elastic repulsive force

Fel = −knδ0

(

δn
δ0

)νc

n̂ δn > 0 (2.1)

= 0 δn < 0.

Here kn is the elastic modulus and δ0 is a normalisation constant dependent on

the non-linearity νc and the number of dimensions. Using Fel on its own leads to

elastic particle collisions in which no energy is lost during the interaction process.

Most real collisions, however, lose energy and so we define a second dissipative

force in the normal direction,

Fd1 = γnδ̇n

(

δn
δ0

)φc

n̂. (2.2)

Here γn is a normal viscous dissipation coefficient and φc is another non-linearity

parameter. δ̇n is the time derivative of δn also known as the relative collision

velocity in the normal direction.
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Both of these forces act along the line connecting the two particle centres,

however, only frictionless spheres do not have forces acting in the tangential

direction. For a lot of granular phenomenons it is necessary to include a sliding

frictional force. Coulomb’s criterion states that the restoring force is proportional

to the normal force Fn and the coefficient of friction µ. Thus the frictional force

becomes:

Ffriction = − δ̇t

|δ̇t|
µFnt̂, (2.3)

where δ̇t is the relative velocity of the colliding particles in the tangential direction.

t̂ is a unit vector in the collision frame perpendicular to n̂ which opposes the

tangential relative velocity. Fn is calculated from the total instantaneous normal

forces of the collision, Fn = |Fel +Fd1|. Rotational motion is not included within

the collision model and is discussed at the end of the section.

All of the above forces are dependent on the instantaneous configuration of

the granular particles. As the collision proceeds, the forces between the collid-

ing pair will change as the relative velocities and overlap between the particles

continuously evolve.

It is important to assign values to the dimensionless parameters, νc and φc, in

equations 2.1 and 2.2, that have relevance to the type of system being modelled.

In the elastic force equation, (2.1), if the non-linearity constant νc = 1 then

the particles interact by Hooke’s law for springs. Thus kn may alternatively be

known as the spring constant. Equivalently, the dissipative force, (2.2), operates

by checking relative velocities at the contacts and may be envisioned as resulting

from dash-pots acting in the normal direction at the contact when φc = 0. If we

assign these values, we end up with the Linear Spring-Dashpot model (LSD) for

particle-particle interactions.

We also consider another collision model which arises from the dimensionless

parameters within equations 2.1 and 2.2 being set to νc = 3/2 and φc = 1/2. The

resulting collision model is comprised of an elastic repulsive Hertzian force term

and a viscous dissipative term. We describe it in more detail in the following

section.
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Hertzian Model

The first force in this model is an elastic Hertzian force term obtained when

νc = 3/2 is substituted into the elastic repulsive force equation 2.1. This term,

when used independently of any dissipative term, is referred to as the Hertzian

collision scheme. For our purposes we require a dissipative term such as that

proposed by Kuwabara and Kono (1987), which we describe below. The elastic

Hertzian force term may be given as

Fhz = −k̃nδn
3/2n̂, (2.4)

where k̃n is approximated using measurable properties of the particle:

k̃n =
4

3

√
reffEeff . (2.5)

Here reff and Eeff are functions of the radii and Young’s Modulus’ of the colliding

particles otherwise known as the effective radius and effective Young’s modulus.

reff and Eeff may be calculated using:

reff =
r1r2
r1 + r2

(2.6)

and
1

Eeff
=

(1 − ν2
1)

E1
+

(1 − ν2
2)

E2
, (2.7)

where Ei and νi are the Young’s Modulus and Poisson ratio of sphere i.

A dissipative force that compliments the Hertzian force term was suggested

by Kuwabara and Kono (1987) and may be given as:

Fd2 = γ̃nδn
1/2δ̇nn̂. (2.8)

Here γ̃n is a normal viscous dissipation coefficient which is chosen so that the

collision mimics real particle interactions.

As with the LSD model both Fhz and Fd2 act along the line connecting the

two particle centres. Friction may also be applied in the tangential direction by

calculating Fn = |Fhz + Fd2| and substituting this value into Coulomb’s friction

equation 2.3 (provided µ is non-zero). By combining equations 2.4 and 2.8 we

obtain the Damped Hertzian (DH) collision model.
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Throughout my simulations the particle rotations are not included. Particle

rotations result from the torque applied by the tangential friction forces. However,

even in the absence of fluid, the rotational energy of the particles is considerably

lower than the translational kinetic energy (Luding 1995). This reduced rota-

tional activity in combination with the damping effects that the fluid has on the

rotation of immersed particles, allows particle rotation to be neglected from the

simulations presented in this thesis. Modelling particle rotations also significantly

increases the computing power required for negligible difference to overall results.

2.1.2 Equations of Motion

A method of evolving the particle motion is now required. MD is based around

Newton’s laws of motion, in particular Newton’s second law of motion which is

given by:

mr̈ = Fcollision + Fsystem. (2.9)

Here r is the position vector of the centre of the particle and m is its mass.

Fcollision is the force on the particle due to collisions with other particles and

boundaries and Fsystem is the force on the particle due to all other external forces

such as gravity, fluid drag and magnetic forces.

It is usually not possible to solve the equations of motion analytically and as

a consequence we use numerical methods to discretise the temporal coordinates

within equation 2.9. This allows us to determine approximately the trajectory

of the particle so that if we know the dynamic properties of the particles at the

current time t we may predict the position and velocity of the particle at time

t + ∆t. Here ∆t is defined as the time-step between each simulation iteration.

In this section we describe two methods by which the particle trajectories may

be solved numerically in time, namely the Verlet and the “predictor-corrector”

algorithms.

Verlet Algorithm

Newton’s Second law is useful for determining the acceleration of the particle

given the external forces acting upon it. However, to obtain an equation by

which we are able to advance the particle positions from a current time of t to a



Chapter 2. Computational Techniques 17

new time t+ ∆t we must perform two Taylor expansions on the position vector

r, one going forward in time and one going backwards:

r (t+ ∆t) = r (t) + ṙ (t) ∆t+
1

2
r̈ (t) (∆t)2 +

1

6

...
r (t) (∆t)3 + . . .

r (t− ∆t) = r (t) − ṙ (t) ∆t+
1

2
r̈ (t) (∆t)2 − 1

6

...
r (t) (∆t)3 + . . . . (2.10)

Here ṙ, r̈ and
...
r are first, second and third time derivatives of the position vector,

r. The values ṙ and r̈ are otherwise known as the velocity and acceleration. If

we then sum these two equations and rearrange we obtain the Verlet equation

(Allen and Tildesley 2000a):

r (t+ ∆t) = 2r (t) − r (t− ∆t) + r̈ (t) (∆t)2 +O
(

(∆t)4) . (2.11)

Here we see that the first, ṙ (t), and third,
...
r (t), time derivatives have been

eliminated by summing the two Taylor expansions together. It is reasonable

to ignore the ∆t4 and any higher-order terms since they are small. The Verlet

equation tells us that if the current, r (t), and old, r (t− ∆t), position vectors are

known it is possible to determine the future position, r (t+ ∆t). The acceleration

of each particle, r̈, may be calculated using Newton’s second law, equation 2.9,

in which we determine the collisional and other system forces acting upon each

particle and divide by the mass.

Verlet also developed a method of computing the particle velocities, which are

most commonly used within MD to determine the dissipative force terms when a

pair of particles collide inelastically. They are also important when coupling the

motion of grains to the surrounding fluid, as discussed later in section 2.4. The

velocities may be obtained from the formula

v (t) =
r (t) − r (t− ∆t)

∆t
. (2.12)

This method for determining the future particle positions and the velocities, oth-

erwise known as the Verlet algorithm, is a simple one stage process which requires

only the old granular positions to be stored. It is otherwise a very fast method

of evolving the particle trajectories.

Other particle trajectory methods include the “predictor-corrector” algorithm.

This is different from the Verlet equation as it has several steps to determine the

particle motion. We describe it here.
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Predictor-Corrector Algorithm

The new positions, velocities and accelerations are predicted from their current

values by performing Taylor expansions about time t:

rp (t+ ∆t) = r (t) + ∆tṙ (t) +
1

2
∆t2r̈ (t) +

1

6
∆t3

...
r (t) + . . .

ṙp (t+ ∆t) = ṙ (t) + ∆tr̈ (t) +
1

2
∆t2

...
r (t) + . . .

r̈p (t+ ∆t) = r̈ (t) + ∆t
...
r (t) + . . .

...
r p (t+ ∆t) =

...
r (t) + . . . . (2.13)

The superscript marks that these are the “predicted” values, which will be “cor-

rected” soon. The next stage of the algorithm involves determining the accel-

eration of the particles from the new positions, rp, using Newton’s second law,

equation 2.9. These may then be compared with the predicted accelerations from

equation 2.13 to obtain the size of the error within the prediction step:

∆r̈ (t+ ∆t) = r̈c (t+ ∆t) − r̈p (t+ ∆t) . (2.14)

This error and the predicted values from equation 2.13 are used in a correction

step. The idea being that the new “corrected” values are a better approximation

to the true positions, velocities etc. These corrected values are calculated using

rc (t+ ∆t) = rp (t+ ∆t) + c0∆r̈ (t+ ∆t)

ṙc (t+ ∆t) = ṙp (t+ ∆t) + c1∆r̈ (t+ ∆t)

r̈c (t+ ∆t) = r̈p (t+ ∆t) + c2∆r̈ (t+ ∆t)

...
r c (t+ ∆t) =

...
r p (t+ ∆t) + c3∆r̈ (t+ ∆t) . (2.15)

Gear (1967) discussed the coefficients c0, c1, c2, c3 . . . and found the best

choice for optimum stability depended on the number of position derivatives and

the order of the differential equations being solved. Note that here it is second-

order since we use the second order time derivative of the position to compare

between the predicted and corrected values in equation 2.14

The decision of which algorithm to use comes down to which method allows

for the largest time-step and thus the fastest simulation speed. Both of these

methods have similar errors associated with them, so choosing between them for
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accuracy is trivial. The main difference is that the Verlet method is a one-step

process, whereas Gear’s predictor-corrector algorithm is made up of two steps

and requires more data to be stored. Therefore, in all my simulations the Verlet

method is implemented due to its simplistic nature.

The choice of time-step ∆t is vital within collision dynamics. In an ideal

system the time-step would be infinitely small so the collisions are resolved con-

tinuously rather than in small discrete steps. However, this is impossible due to

the limited capacity of modern computers and entirely unnecessary as granular

systems can run perfectly well for finite time-steps. The main priority of a suc-

cessful algorithm is to duplicate the classical trajectory as closely as possible and

to permit the use of a long time-step ∆t. A limiting factor on the maximum

size of ∆t arises because a large time-step leads to excessive particle overlapping

during collisions. This results in a net increase in the energy of the particles in

a process which repeats itself until the simulation “blows up”. For example, a

system of elastic bronze particles with diameters 150 µm and spring constants

kn=3000 kg s−2 will experience large energy increases for time-steps ∆t > 1.5 µs

(Milburn 2006). A time-step therefore must be chosen so that each collision is

resolved sufficiently but also allows the simulation to run as fast as possible.

Within both the LSD and DH contact models we may increase the simulation

speed by modifying the spring constant kn or k̃n within equations 2.1 and 2.4. A

smaller spring will increase the collision duration and allow for a larger time-step.

How this may be done is discussed in greater detail for the LSD model in the next

section. It should be noted, however, that collision dynamics best mimic nature

for a particular spring constant and so varying kn or k̃n may lead to unrealistic

particle interactions. For example, a small spring constant will lead to a large

deformation of the granules.

2.1.3 Linear Spring-Dashpot Scheme

In the case of the LSD model it is possible to analytically solve the equations to

determine the contact duration and the coefficient of restitution, e. This infor-

mation is useful in simulations when choosing a suitable ∆t and spring constant
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kn. The coefficient of restitution of two colliding particles is defined as the ratio

of velocities before and after interaction and is expressed in the form

v.n̂ = −e (v0.n̂) , (2.16)

where v0 and v are the relative velocities of the interacting particles before and

after collision. The collision dynamics can essentially be modelled as a harmonic

oscillator with weak damping. Thus it is possible to determine analytically what

the contact duration tc and coefficient of restitution e of a particle collision are

by using

tc =
π

ω
, (2.17)

and

e = exp

(−πηd

ω

)

. (2.18)

Here ω is the angular frequency and ηd is a damping parameter. These may be

calculated using:

ω =
√

ω0
2 − η2

d, (2.19)

and

ηd =
γn

2m12
. (2.20)

Here m12 is the reduced mass defined as:

m12 =
m1m2

m1 +m2
, (2.21)

where mi is the mass of particle i. ω0 is the angular frequency without damping,

which is a function of the spring constant, kn, and the reduced mass:

ω0
2 = kn/m12. (2.22)

Here the spring constant kn may be chosen so that realistic particle hardness and

collision durations are achieved.

By using the above relations it is possible to determine analytically what

viscous dissipation coefficient in equation 2.2 is necessary to obtain a specific

value of e:

γn =

(

4m12 kn (ln e)2

π2 + (ln e)2

)1/2

. (2.23)
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This is useful for computer simulations as we may chose e without concerning

ourselves with the resulting damping parameter γn. Thus in our simulations we

always chose a time-step such that ∆t < 1
10
tc. This way we ensure that our

particle collisions are stable.

2.1.4 Particle Boundary Conditions

An important part of the system is what happens at the system boundaries. In

our simulations it is possible to model either periodic boundaries or walls and

each condition has useful applications. Periodic boundary conditions allow the

particles to leave through one edge of the system and re-enter through the side

directly opposite. Thus by using periodic boundary conditions we may reproduce

the behaviour of very large systems whilst only actually modelling a very small

one. In other scenarios it is necessary to insert walls, as very often we perform

simulations which model real-world experiments. In an elastic collision between

a particle and the wall, no momentum is passed to the wall and the particle

rebounds with the same magnitude of velocity. The particle in effect behaves as

if it has collided with an infinitely massive particle.

2.1.5 Molecular Dynamics Algorithm

So far we have shown how the collision forces between particles and boundaries

are resolved. We now describe an algorithm which checks for collisions between

particles within each time-step. This proceeds as follows:

a) We check whether there are any overlapping particles in the system. This

is done by testing every possible pair of spheres to see if they lie within a

distance δn < (r1 + r2) of each other. This condition ensures that collisions

are resolved for overlapping particles only. If the system is not periodic the

same checks are made with walls.

b) The collision forces and any other system forces acting upon each particle

are evaluated. We then use Newton’s second law, equation 2.9, to determine

each particle’s acceleration, r̈.
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c) Particle positions and velocities are updated using the Verlet algorithm

equations 2.11 and 2.12.

However, this method is not the most efficient way of evolving a dense granular

system. This is because at each time-step every particle checks with all other

particles for collisions, regardless of position. This means that the same priority is

given to checking for collisions between two spheres on opposite sides of the system

and two particles in very close proximity. Clearly a far from efficient method. An

approach designed to dramatically reduce the number of collision checks has been

devised and is known as the “nearest neighbour” algorithm (Allen and Tildesley

2000b). Here the particles only check for overlap with other particles in close

proximity and not with spheres long distances apart. The method consists of

dividing the system into boxes and then separating the particles, depending on

their positions, into these boxes. Two arrays are needed to order the checking

of the collisions. One array is used to assign a “head” particle in each box and

another is used to create a list which points to another particle in the box which

has not yet been checked. Once a particle has checked for collisions with other

particles in the box it inhabits, it then checks the surrounding boxes for collisions.

As described in Section 2.1.2 a small time-step was chosen to resolve the particle

collisions sufficiently. This means that the maximum distance moved by the

particles within each time-step is many magnitudes less than the box sizes so

that only the nearest neighbour boxes need to be checked for collisions. Figure

2.2 illustrates how a particle in box 12 will only have to make checks for collisions

with four other boxes, namely 8, 13, 17 and 18. Following the same rules boxes

6, 7, 11, 16 will perform similar checks for collisions with particles inhabiting box

12. Figure 2.2 shows the case of a two-dimensional system, in which each box

checks for collisions with 4 other boxes. Note that in a three-dimensional system

because of the extra dimension we must check for collisions with 13 boxes.

This algorithm reduces the number of checks made from being proportional

to N2 down to order N , where N is the number of particles. The opera-

tion may be optimised further for faster simulations by varying the size of the

“nearest neighbour” boxes. For optimal simulation efficiency boxes are reduced

to roughly the size of the particle diameter. This way the particles only check for
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Fig. 2.2: Diagram displays how boxes are ordered in a two-dimensional system.

The arrows illustrate how boxes check for collisions with other boxes in the nearest

neighbour algorithm. Here a particle in box 12 checks for collisions with particles

contained in boxes 8, 13, 17 and 18.

collisions within a small radius.

The granular algorithm may be summarised well in Figure 2.3. The repeatable

part of this algorithm is performed every time-step.

2.1.6 Comparison of Soft-Sphere Techniques

In the final part of this section we perform a comparison between the soft-sphere

collision models that are described in section 2.1.1. These are the Hertzian, the

LSD and the DH models. We focus on stainless steel-stainless steel collisions,

for which we are able to compare our soft sphere models to experimental results

obtained by Stevens and Hrenya (2005). For these studies we place two grains,

with bead properties as shown in Table 2.1, next to each other so that they are

in contact but not overlapping. We then give both beads equal and opposite

velocities in the direction of the other sphere so that the particle motion and

collision axis are in the same plane. The only forces that act upon the particles
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Fig. 2.3: Flow-chart showing the Molecular Dynamics algorithm for the particle

model.
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Parameter V alue

Grain density ρg 8030 kg m−3

Radius r 1.27 cm

Young’s modulus E 1.93×1011 kg m−1 s−2

Poisson ratio ν 0.35

Table 2.1: Properties of the stainless steel particles used for testing different soft-

sphere collision models.

Name Input 1 Input 2

Hertz k̃n = 1.942×109 kg s−2 −
Linear Spring-Dashpot kn = 5.160×107 kg s−2 γn = 5.58×100 kg s−1

Damped Hertzian k̃n = 1.942×109 kg s−2 γ̃n = 3.41×104 kg s−1

Table 2.2: The stainless steel parameters are chosen to match e = 0.879 and tc =

81.3 µs at a relative impact velocity of δn = 0.84 m s−1. The bead properties in

table 2.1 are used in equations 2.5 and 2.23 to determine the values of k̃n and γn.

The other inputs are calculated numerically.

are collisional forces from the MD models. Each of the models require input

parameters for the elastic and dissipative terms, which are chosen such that the

values of the coefficient of restitution, e, and the collision duration, tc, match

experimental results for a particle velocity. The velocity is chosen to be in the

middle of the impact velocity range that we study. The specific input values are

shown in Table 2.2.

We do three specific behavioural comparisons between the soft-sphere models.

These are; the normal force Fn vs the collision overlap δn shown in Figure 2.4, the

coefficient of restitution e vs the relative impact velocity Vimp shown in Figure

2.5, and the duration of the collision, tc, vs Vimp shown in Figure 2.6.

Figure 2.4 plots the predicted force against the particle overlap for our soft-

sphere models at an impact velocity of Vimp = 0.84 m s−1. In this graph, the

trajectories for each particle collision form loops, the upper part of the loop

representing the force profile as the particles move towards each other, whilst the
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Fig. 2.4: Force profile over duration of collision as a function of the overlap. Diagram

shows stainless steel system where input parameters were chosen to match e = 0.879

at an impact velocity of δn = 0.84 m s−1.

bottom part of the loop represents the force profile as the particles repel each

other. The area enclosed within the curve is the total energy lost during the

collision. As expected, the Hertzian contact model has identical approach and

rebound curves as it is an elastic model with no energy lost during the collision.

When examining the models qualitatively we find that the LSD model gives a non-

zero force as the particle overlap tends to zero. This is repulsive in the approach

phase and attractive in the rebound phase. We also find that the DH collision

model displays an attractive force (F < 0) just before contact is lost between the

particles at small values of the overlap δn. However, unlike the LSD model the

force within the DH model does return to zero as δn → 0. This attraction occurs

because the dissipative attractive forces are larger than the elastic repulsive forces

for small overlaps as the particles move apart. Note that no cohesion between

the particles occurs because as the particles slow down the elastic repulsive forces

ensure that the particles remain repellent of one another. The attractive forces

during collisions predicted by our MD models are unphysical, however, the effect

is only slight and still allows for realistic overall collision dynamics (overlap,

coefficient of restitution, collision duration) to be realised. In dense systems

with large numbers of inelastic collisions this artefact of the collision schemes is
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Fig. 2.5: Velocity dependence of the coefficient of restitution for stainless steel

system using different MD models. Input parameters are chosen to match e = 0.879

at an impact velocity of δn = 0.84 m s−1.

completely unnoticed.

Figure 2.5 demonstrates the variation of the coefficient of restitution with

the relative impact velocity for colliding stainless steel spheres. We find that

when using the LSD and Hertzian models we obtain the same e regardless of

the impact velocity. The experimental stainless steel collision data (Stevens and

Hrenya 2005) gives a sloping downward trend which is best captured by the DH

model. The coefficient of restitution is constant, e = 1.0 and e = 0.879, for all

impact velocities when using the elastic Hertzian and LSD schemes respectively

to model the steel particle collisions. In this test the DH model is able to mimic

real collisions more accurately than the LSD and Hertzian models.

Figure 2.6 shows the effect of varying the impact velocity on the collision

duration tc for our stainless steel spheres. In real stainless steel particles collisions

(Stevens and Hrenya 2005) tc decreases as Vimp increases. This behaviour is best

captured by the DH and Hertzian models. The LSD model gives a collision

duration which is independent of the impact velocity and so does not capture the

experimental collision dynamics as well.

In summary, within real stainless steel collisions (Stevens and Hrenya 2005)

an increase in the impact velocity Vimp reduces the coefficient of restitution e and
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Fig. 2.6: Velocity dependence of the collision durations for stainless steel system

using different MD models. Input parameters are chosen to match e = 0.879 at an

impact velocity of δn = 0.84 m s−1.

collision duration tc. Within our collision models e may be predicted to decrease

(DH) or remain constant (LSD and Hertzian) as Vimp increases. The collision

duration tc may be predicted to decrease (DH and Hertzian) or remain constant

(LSD) with increasing Vimp. Therefore the DH model developed by Kuwabara and

Kono (1987) gives the best quantitative agreement with real collisions, with good

agreement of the variation of tc and e with impact velocity. This suggests the

particle collisions operate within a viscoelastic regime for this range of Vimp. Thus

in simulations where collision dynamics are important to the overall properties

of the system, I will always use the DH model. The LSD model is still useful as

it is easy to set up computationally.

If the spring constant is reduced, kn and k̃n, in both the LSD and DH collision

models for fixed e we are able to substantially increase the collision duration as

shown in Figure 2.7. With a longer collision duration it is possible to increase the

time-step and hence speed up the simulation. However, the collisions only mimic

real interactions for a particular set of parameters. Therefore by reducing kn or

k̃n the collision dynamics become less realistic as the collision overlap increases
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Fig. 2.7: The collision duration plotted as a function of the spring constant strength.

The inset shows the maximum particle overlap as a function of the spring con-

stant. The data from the Linear Spring-Dashpot model (solid-line) and the Damped

Hertzian model (broken-line) are both plotted. Input parameters are chosen to

match e = 0.9 at a relative impact velocity of δn = 1.0 m s−1.

at a similar rate to the collision duration (see Figure 2.7 inset). A realistic spring

constant k̃n for the DH model may be predicted using equation 2.5, which uses

measurable properties of the particles. Any k̃n less than this value will lead

to larger deformations and unrealistic collision dynamics. In some simulations,

however, it is possible to use the LSD and DH collision models with reduced

spring constants. For example, in sedimenting beds where collisions are rare

and do not affect the overall system properties, the LSD collision model may be

implemented.

2.2 The Fluid Model

In this section we discuss the simulation method used to model the fluid. There

are many different ways in which we may do this although the most popular

modern methods predominantly fall into two groups. The first group involves

discretising and solving fluid equations on a lattice while the second group of

techniques involve modelling the fluid as a finite number of “particles” which

move within a framework of various flow conditions.
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One popular method used to simulate fluids, which falls into the first type

of technique described above, involves the use of a lattice and is accordingly

named the Lattice Boltzmann method. Here, instead of solving the governing

equations of fluids, Navier–Stokes equations, the discrete Boltzmann equation is

solved to simulate the flow of a Newtonian fluid. By simulating the interaction

of a limited number of fluid “packets” on a triangular lattice the viscous flow

behaviour emerges automatically from the flow and collision processes of the

particles.

Some popular methods which fall into the second category include Dissipative

Particle Dynamics (DPD) and Smoothed Particle Hydrodynamics (SPH) in which

the fluid is modelled as fluid packets. These models apply short range forces

between the fluid “particles” in such a way that the viscous flow behaviour is

captured.

The approach that we use within this thesis falls into the first type of technique

above and is based on spatially and temporally discretising the Navier–Stokes

equations onto a staggered rectangular lattice. The Navier–Stokes equations de-

scribe the motion of fluid substances and are able to model the physics of a large

variety of fluid phenomenon with high accuracy. We prefer this model as it is

easy to code and the underlying domain is rectangular which enables the use

of fast Fourier techniques within the fluid solver (see section 2.2.1). Questions

also remain regarding the accuracy of the DPD and SPH models since they are

essentially fitting their dynamics to match those of the Navier–Stokes equations.

Models of this complexity are also unnecessary for the types of systems that we

will be simulating in this thesis.

The Navier–Stokes equations, in an inertial frame of reference, may be given

as:

ρ

(

∂v

∂t
+ (v.∇)v

)

= −∇P + η∇2v + ρf . (2.24)

Here v, P and ρ are the fluid velocity, pressure and density. η is the dynamic

viscosity and is related to the kinematic viscosity, ν, via the following equation:

ν =
Dynamic Viscosity

ρ
=
η

ρ
. (2.25)

The first and second terms in equation 2.24 are the unsteady and convective

accelerations, which together are known as the material derivative. The unsteady
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acceleration is the change in the fluid velocity with time, while the convective

acceleration is the time independent acceleration of the fluid with respect to

space. The third term is the pressure gradient term and the fourth is the viscous

diffusion of momentum. f is the volume body force on the fluid and is usually

equal to gravity or any other force on the fluid such as that from a magnetic field.

The Navier–Stokes equations are non-linear partial differential equations in

most real situations. The only exception is the case of creeping flow where the

Reynolds number is very low, i.e. Re ≪ 1. The Reynolds number is a dimension-

less measure of the ratio of inertial forces to viscous forces, and consequently it

quantifies the relative importance of these types of force for given flow conditions.

It is typically defined as follows:

Re =
Dynamic Pressure

Shearing Stress
=
vsL

ν
. (2.26)

Here vs is the mean fluid velocity and L is the characteristic length of the system.

The Navier–Stokes equations are derived by applying Newton’s Second law to

fluid motion and arise from the mass and momentum conservation equations for

a fluid. The mass conservation equation may be given as:

∂ρ

∂t
+ ∇. (ρv) = 0. (2.27)

In this thesis we focus our attentions on incompressible fluids i.e. those fluids

whose density does not alter in space and time (∂ρ
∂t

= 0 and ∇ρ = 0). By

expanding equation 2.27 and substituting in the conditions for the density we

obtain the incompressibility constraint:

∇.v = 0. (2.28)

2.2.1 The Fluid Algorithm

We now need to find a way of solving the Navier–Stokes equations such that we

are able to apply it to a range of fluid flow problems within our simulations.

One of the basic assumptions of the Navier–Stokes equations is that the fluid is

continuous. However, the approach we use requires the Navier–Stokes equations

to be spatially discretised so that local values of the fluid velocity and pressure are

determined on a grid which covers the whole of the fluid system. We then use a
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Fig. 2.8: Typical Marker-and-Cell (MAC) mesh in two dimensions, displaying the

layout of velocities and pressure on the cell. Here vx(i,j) and vy(i,j) are the horizontal

and vertical fluid velocities at position (x, y) = ((i + 0.5)∆, (j + 0.5)∆), where

v = vxi + vyj.

projection method and proceed in time by using a fractional-time-step operator-

splitting method (Chorin 1968). The grid we use for spatially discretising the

Navier–Stokes equations 2.24 is a staggered Marker-and-Cell (MAC) mesh as

shown in Figure 2.8 (Harlow and Welch 1965). It should be noted that the

configuration of the single lattice grid cell shown in Figure 2.8 is part of a much

larger mesh which spans the entire fluid system. The grid is configured so that

the fluid pressure is determined within the centre of each cell, while the fluid

velocities are calculated along the midpoint of each box edge. The fluid velocities

are determined perpendicular to the surface of the mesh cell, so that the horizontal

component of the velocities are calculated on the vertical edges of the cell and the

vertical components of the velocities are calculated on the horizontal box edges.

Constructing the grid in this way has several computational advantages over a

standard grid system in which all of the fluid properties are determined upon the

centres of each cell. This is because there are fewer numerical instabilities due

to mesh decoupling within the staggered MAC mesh and it also exhibits greater

accuracy.
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Expanding equation 2.28 in two dimensions gives:

∂vx

∂x
+
∂vy

∂y
= 0, (2.29)

where vi is the fluid velocity along the i–axis. If equation 2.29 is spatially discre-

tised onto our staggered MAC grid in figure 2.8 we obtain:

vx(i+ 1/2, j) − vx(i− 1/2, j)

∆
+
vy(i, j + 1/2) − vy(i, j − 1/2)

∆
= 0 (2.30)

This equation illustrates that the volume of fluid entering the cell through the

side-walls must be equal to the volume of fluid leaving the cell. In essence no new

fluid may be created or destroyed within each time-step.

The discretisation of the Navier–Stokes equations in time is explicit and first

order. Index n refers to values at time, tn = n∆t, and index n + 1 to those at

time tn+1 = (n+ 1)∆t. By discretising the Navier–Stokes equations 2.24 in time

we obtain
vn+1 − vn

∆t
= − (vn.∇)vn −∇pn+1 + ν∇2vn + gn, (2.31)

where p = P/ρ and the fluid body force has been set equal to gravitational acceler-

ation. The problem we now have is that at time tn we know the fluid velocity field,

vn, and the pressure field, pn, but wish to determine the future fluid velocity and

pressure fields, vn+1 and pn+1 using the time-discretised Navier–Stokes equations

and the incompressibility constraint. We achieve this by employing an explicit

fractional-time-step operator-splitting method which satisfies the incompressibil-

ity constraint in equation 2.28. Thus we introduce a provisional “velocity” v∗

which has no physical meaning into equation 2.31, such that:

(vn+1 − v∗) − (vn − v∗)

∆t
= − (vn.∇)vn −∇pn+1 + ν∇2vn + gn. (2.32)

Equation 2.32 is now split into two smaller equations which are mathematically

equivalent to the single equation we started with:

v∗ − vn

∆t
= − (vn.∇)vn + gn + ν∇2vn, (2.33)

vn+1 − v∗

∆t
= −∇pn+1. (2.34)

To obtain equations 2.33 and 2.34 an explicit method has been used, however, it

is possible to use a semi-implicit method, which can allow for a larger time-step.
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By taking the divergence of equation 2.34 and substituting in the incompress-

ibility constraint, equation 2.28, we are able to eliminate the fluid velocity vn+1

to obtain the Poisson equation:

∇.v∗

∆t
= ∇2pn+1. (2.35)

The steps above are often considered to be a projection of equations 2.33 and

2.34 onto a divergence free subspace of the velocity vector field. The pressure

equation 2.35 is used to remove the “perpendicular” velocity components con-

tained in v∗, and thus the term “projection method” is often used to describe

this process. The future fluid velocity, vn+1, has been eliminated from the two

equations, 2.33 and 2.35 which allows us to solve these equations simultaneously.

Firstly one obtains the virtual fluid velocity, v∗, from equation 2.33 using the cur-

rent values of the local fluid velocities. Then the future fluid pressure, pn+1, are

obtained by solving the diffusion equation 2.35 using a fast Fourier transforms

(FFT) method (Frigo and Johnson 2005; Frigo and Johnson 2006). Using the

fluid pressure field pn+1 and virtual fluid velocity field v∗ within equation 2.34 it

is then possible to compute the future fluid velocities vn+1. Thus the fluid model

algorithm proceeds as follows:

a) The local fluid velocities and pressures are initially discretised onto the

staggered MAC grid.

b) The “virtual” fluid velocities, v∗, are calculated from equation 2.33, using

the current local fluid velocities.

c) Input v∗ into equation 2.35 to determine the fluid pressure field, pn+1, either

by the relaxation method or by using a FFT method.

d) Use the pressure pn+1 and the virtual fluid velocity v∗ fields in equation

2.34 to calculate the new fluid velocity field, vn+1.

This algorithm can be repeated as required until a dynamic equilibrium is reached.

2.2.2 Fluid Boundary Conditions

An important consideration for the fluid system is what happens to the fluid flow

at the boundaries. In this thesis the boundaries are treated as solid walls which
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Fig. 2.9: Field variables near a wall.

fluid is unable to flow through, however, as with the granular system, periodic

conditions are also possible. The boundaries are positioned on the edge of the

Eulerian cells such that only horizontal fluid velocities lie on the vertical wall

boundaries and only vertical fluid velocities lie on the horizontal wall boundaries.

In three dimensions a similar arrangement occurs for the front and back bound-

aries. Figure 2.9 shows this arrangement for a two-dimensional system near a wall.

A rigid wall can be of two types, a no-slip and a free-slip surface, depending on

the type of boundary properties required. A no-slip surface is one in which there

is zero fluid velocity on the wall, while a free-slip boundary is one in which the

fluid just has zero velocity normal to the surface. The no-slip boundaries mimic

real systems best and can be imagined conceptually as the outermost “particles”

of fluid nearest the wall sticking to the surface. The free-slip surface can be used

to represent a plane of symmetry or moving surface. We impose no-slip boundary

conditions for the majority of this thesis.

The fluid boundary conditions are enforced by imposing rules on the fluid

flow and pressure variables within the cells adjacent to the wall. Figure 2.9 shows

a sample two-dimensional system of the important fluid flow and pressures on

either side of a solid boundary necessary for enforcing the conditions. In a real

system, fluid is unable to escape through the boundary walls. Thus the fluid

velocity across the vertical wall is set to zero, i.e. vx = 0. For a no-slip wall

the boundary condition tangential to the wall is set to v′y = −vy. This condition

forces the fluid flowing vertically to zero on the boundary as the wall lies on the
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midpoint of these velocities. The corresponding free-slip condition is v′y = vy.

Analogous conditions are applied on all other walls. The pressure condition for

vertical walls may be derived as P ′ = P , while for horizontal walls an extra

term is introduced to enforce the hydrostatic pressure condition P ′ = P + g∆.

The boundary conditions on the fluid are usually sufficient to enforce no-slip

conditions. This means that in our code the pressure condition is not required to

resolve the fluid algorithm. These boundary conditions are enforced during each

time-step.

2.2.3 Cavity Flow

As a minor digression we may use the fluid model to simulate lid-driven cavity

flows. This fluid problem is possibly the most studied area of computational

fluid dynamics and is often used as a benchmark problem for testing numerical

methods for accuracy and efficiency. This study gives us an opportunity to discuss

some other important aspects of viscous fluid regimes.

The properties of the cavity flow problem are characterised by its Reynolds

number, given by

Re =
U.L

ν
, (2.36)

where U and L are the characteristic velocities and lengths of the system. The

Reynolds number, Re, gives us an indication as to which viscous regime the fluid

system lies in.

An important consideration for the simulation is what time-step, ∆t, we

should use within the fluid model. The larger the time-step ∆t the faster the

simulation will run, however, if the time-step is too large errors accumulate and

the fluid becomes unstable. By performing an error analysis (Anderson 1995) on

the time and space discretised Navier–Stokes equations inD dimensions Anderson

was able to derive two conditions for the fluid time-step:

∆t ≤ 1

2D

ρ∆2

η
(2.37)

and

∆t <
∆

Dvmax
. (2.38)
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Parameter V alue

Time-step ∆t 10−6 s

Cavity size (x–axis) 10 mm

Cavity size (y–axis) 10 mm

Lattice spacing ∆ 50 µm

ushear 0.1–1.0 m s−1

Fluid density ρ 1000 kg m−3

Dynamic viscosity η 10−3 kg m−1 s−1

Re 1000–10000

Table 2.3: Parameters for lid-driven cavity flow system.

If the time-step does not obey the inequalities 2.37 and 2.38 then the error

becomes progressively larger and will quickly cause the numerical solution to

“blow up”.

We now return to our lid-driven cavity problem where we set up a two-

dimensional cell completely filled with water of density ρ = 1000 kg m−3 and

viscosity 1×10−3 kg m−1 s−1. We impose free-slip boundary conditions on the

top surface which moves with velocity ushear from left to right. No-slip boundary

conditions are imposed on the bottom and two side walls. The rest of the cavity

parameters are shown in table 2.3. The fluid in the cell initially begins stationary.

After a few seconds the flow becomes steady and a large vortex is created within

the cavity. Figure 2.10 shows the streamfunction contours within the cavity for

Reynolds numbers of Re = 1000, Re = 5000 and Re = 10000 which are deter-

mined when the shear velocity and cell length are used within equation 2.36. The

streamfunction, ψ, allows us to plot the flow streamlines which are defined as the

family of curves instantaneously tangent to the flow vectors for incompressible

fluids. The streamfunction may be calculated using the relation:

dψ = −vydx+ vxdy. (2.39)

Figure 2.10 shows how for each Reynolds number a large vortex forms which

dominates the centre of the cavity. Several secondary vortices also form in the

corners of the cell, in particular in the top left corner and in both corners at the
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bottom of the cell. The fluid in the main vortex moves around in a clockwise

motion, whilst the secondary vortices move anti-clockwise, in the opposite direc-

tion to the main flow. In Figure 2.10(a) we see that, for Re = 1000, there are

two auxiliary vortices in both corners at the bottom of the cavity with fluid flow

moving in an anticlockwise direction. In Figure 2.10(b) as the Reynolds number

increases to Re = 5000, we observe that the two bottom vortices become larger

while an extra anti-clockwise flowing vortex develops in the top left. In Figure

2.10(c), for Re = 10000, all of the secondary vortices grow larger and an extra

vortex develops in the bottom right which flows in a clockwise direction. Figure

2.10 shows that as Re is increased the trend is for the secondary vortices to grow

and for new ones to develop.

In Figures 2.11 and 2.12 we measure the velocity profiles of the cavity. We

calculate the normalised vx and vy velocities along a vertical and horizontal line

through the centre of the cavity and plot them in Figures 2.11 and 2.12 respec-

tively. The area on either side of the lines are equal due to fluid incompressibility.

As Re increases the maximum velocities occur nearer the boundaries and the ve-

locity profile becomes more linear across the cell. Our results agree well with the

comprehensive simulations carried out by Erturk (2005).

We now move onto describing the methods through which the fluid and gran-

ular phases may be coupled. One way in which this is possible is through the

analytical Kroll model which may be solved numerically to determine the flight

of a fluid-immersed porous granular bed within a vibrating cell. This can be

used as a comparison to some of the microscopic fluid-grain coupling techniques

introduced later.

2.3 The Kroll Model

We have already separately described how we model granular and fluid systems in

sections 2.1 and 2.2 respectively. To simulate a coupled system of fluid-immersed

grains we must develop a technique that models the momentum transfer between

the fluid and grains both accurately and efficiently. There are many different

methods in which we may model the fluid and grains interactions, however, before
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(a) (b) (c)

Fig. 2.10: Streamfunction contours within a two-dimensional lid-driven cavity flow

system for Reynolds numbers (a) 1000, (b) 5000 and (c) 10000. The system param-

eters are shown in Table 2.3.
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Fig. 2.11: The normalised vx velocity profile along a vertical line passing through

the centre of the cavity for Reynolds numbers of (a) 1000, (b) 5000 and (c) 10000

within the two-dimensional lid-driven cavity flow system.
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Fig. 2.12: The normalised vy velocity profile along a horizontal line passing through

the centre of the cavity for Reynolds numbers of (a) 1000, (b) 5000 and (c) 10000

within the two-dimensional lid-driven cavity flow system.
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Fig. 2.13: Schematic diagram of porous bed within a vibrating cell.

we describe any of them we introduce the analytical Kroll model. This approach

predicts the flight of a fluid-immersed porous granular bed in a vibrated cell and

produces results very comparable to those measured within experiments. Later we

introduce a modified version of the Kroll model which accounts for the presence

of a dense fluid.

The Kroll model (1954) is a theoretical numerical technique which is useful in

determining the bed flight of a porous bed in a vibrated system. In this method

the bed of particles are assumed to behave as a porous plug, which does not dilate

during flight. The fluid is treated as massless and incompressible, such that as

the cell is vibrated the bed lifts from the cell base and fluid flows downwards

through the bed to occupy the space beneath. A schematic representation of this

setup may be seen in Figure 2.13.

The vibration of the cell is considered to be sinusoidal with maximum am-

plitude A0 and frequency f such that the position of the cell base zc may be

obtained using:

zc = A0 sin (ωt) + A0. (2.40)

The speed of vibration is therefore

żc = A0ω cos (ωt) (2.41)
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and the acceleration is

z̈c = −A0ω
2 sin (ωt) . (2.42)

Here ω = 2πf is the angular frequency. When describing vibrating systems an

important parameter is the dimensionless maximum acceleration, Γ. This pa-

rameter is the ratio of the maximum vibrational acceleration to the gravitational

acceleration g and is given by:

Γ =
A0ω

2

g
. (2.43)

If Γ > 1 then in the early part of the cycle, when the cell is simultaneously

moving upwards and decelerating, the bed of particles will lift off from the base.

This occurs when the cell accelerates downwards faster than the gravitational

acceleration. Thus we may determine the phase angle of take-off, θto, as:

θto =
180

π
sin−1

(

1

Γ

)

. (2.44)

After take-off the granular bed is moving relative to the cell and so fluid moves

through the bed into the space beneath in order to conserve volume. Due to fluid

motion through the bed the particles experience a drag force.

We define z as the position of the lower edge of the granular bed in the

laboratory frame so that the acceleration of the bed, z̈, can be determined by

applying Newton’s laws of motion to the bed when in flight:

hA (1 − φ) ρgz̈ = −hA (1 − φ) ρgg − A (P0 − P1) . (2.45)

Here ρg is the density of the grains and h and A are the height and cross-sectional

area of the bed. P0 and P1 are the pressure above and below the bed respectively.

The porosity, φ, of the bed, is defined as the ratio of fluid within a given volume

and is calculated using:

φ = 1 − Volume occupied by spheres

Total volume of bed
. (2.46)

In the Kroll model the porosity is assumed to be unchanged throughout the bed

flight. On the right hand side of equation 2.45 the first term is a gravitational

acceleration term and the second is an acceleration term due to the pressure drop
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across the bed. By dividing equation 2.45 by the mass of the grains hA (1 − φ) ρg

we may simplify the bed acceleration to:

z̈ = −g − ∇P
ρg (1 − φ)

. (2.47)

To determine the bed acceleration z̈ the pressure gradient across the bed, ∇P ,

must be evaluated. It is possible to model ∇P approximately using an empirical

equation such as Darcy’s law (1856).

Darcy’s law relates the pressure drop to the fluid flow through a dense porous

medium:

v = −κ
η
∇P (2.48)

Here κ is the permeability of the bed and v is superficial velocity, which is defined

as the volumetric flow rate per unit area with respect to a static bed of grains.

For the specific case of a porous bed of spherical particles with porosity φ moving

in one dimension the equation becomes:

−∇P =
180η (1 − φ)2

d2φ3
v. (2.49)

If we define the velocity of the bed in the frame of reference of the cell as

u = ż−żc, then the superficial velocity of the fluid with respect to the bed becomes

v = −u. We then substitute Darcy’s law into equation 2.47 and rearrange to

obtain a first-order differential equation describing the flight of the bed:

u̇+ γu+ g + z̈c = 0. (2.50)

Here γ = 180η(1−φ)
d2ρgφ3 depends on the bed equation used to determine the pressure

drop across the bed (Section 2.4.4). This model, however, does not consider

the fluid density and the upthrust resulting from the vibrating fluid within the

cell. When the fluid has a low density like air, we may use the Kroll model

with confidence, however, when the fluid is dense like water the Kroll model loses

validity. Thus a numerical model which accounts for a dense fluid is necessary

to successfully model these systems. This leads us to describe the Modified Kroll

model.
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2.3.1 The Modified Kroll Model

If the density of the fluid, ρ, is considered and we examine the pressure across

the three phases of the vibrated system; above, within and below the bed during

flight we are able to obtain the equation of motion (Smith et al. 2005):

u̇

(

1 +
ρ (1 − φ)

ρgφ

)

+
ρg − ρ

ρg

(g + z̈c) + γu = 0. (2.51)

Here γ takes the same form as in the Kroll model such that γ = 180η(1−φ)
d2ρgφ3 and is

again dependent on the bed equation used to determine the pressure drop across

the bed (Section 2.4.4).

The two differences between equations 2.50 and 2.51 are the added mass cor-

rection, which appears in the first term of equation 2.51, and the buoyancy cor-

rection, which appears in the second term. If the density of the fluid is reduced

towards zero, ρ→ 0, equation 2.51 tends towards equation 2.50. This shows that

in low density limits the Kroll model is a valid approach for bed flight analysis.

The Kroll and Modified Kroll (MK) models are able to accurately reproduce

experimental data and so may be used for comparisons against other fluid-grain

models. However they are not good on their own for thorough fluid-grain analysis

as granular micro-behaviour is not considered.

2.4 Fluid-Grain Coupling with Bed Equations

We now describe several fluid-grain models in which the grains are modelled

within the framework of the Molecular Dynamics technique. There are several

methods of doing this that are easy to code including the Pressure model, the

Simple Drag model, the Resistor Network model and the Navier–Stokes model,

however, some of these are either too simplistic or do not offer sufficient fluid

detail for our purpose.

There are three types of models that we focus on in this thesis. The first

are models in which the particles experience the fluid but the fluid does not

experience the particles, namely the Simple Drag model. The second are models

in which the particles experience the fluid and the fluid experiences the particles,

namely the Navier–Stokes model. Here the grains are small in comparison to the
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size of the fluid grid and require the use of bed equations to couple the fluid grain

motion. The third type are models in which the particles and fluid experience

each other and the grains are large in comparison to the fluid grid, so that the

fluid is everywhere, including “inside” the particles. The two models we describe

of this kind are the Particle Template model and the Fluid Springs model. The

methods by which the fluid and grains are coupled are very different for each

model approach. The first coupling technique requires a fluid drag force term to

be applied explicitly onto the particles, while the models with bed equations treat

the grains as local disturbances to the fluid motion. In the models in which fluid

is everywhere the particles encapsulate a large number of fluid grid points. The

fluid is then forced to match the motion of the particle in which it is immersed.

The first approach we describe in the next section is the Simple Drag model

which is the most basic fluid-grain coupling model that we report in this thesis

and is a model in which the grains move within a homogeneous background fluid

and experience a drag force, the form of which is based on the empirical bed

equations.

The second approach we describe which requires a bed equation is the Navier–

Stokes algorithm. This approach includes the governing equations of fluids, the

Navier–Stokes equations, to resolve the fluid motion and MD to model the particle

motion. A momentum transfer term is used to couple the two phases together,

the form of which is also dependent on the empirical bed equation used. There

have been several bed equations developed which estimate the pressure drop as

fluid flows through a densely packed porous granular bed. We describe the bed

equations in more detail in section 2.4.4.

2.4.1 The Simple Drag Model

The essence of the Simple Drag (SD) model is that the granular bed particles

interact, according to MD technique, and then experience a drag force due to

the presence of an homogeneous background fluid. We treat the fluid as a single

entity which moves with the cell so that its velocity relative to the container is

zero.

To find the force on a single particle, we first consider the force acting on the
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whole of the bed. In the limit of steady flow one can show that the force on the

bed is:

Fbed = V (−∇P ) . (2.52)

Here V is the total volume of the fluid and grains within the bed and ∇P is

the pressure gradient across the bed. The average force on each particle may be

determined by dividing the total force on the bed, from equation 2.52, by the

number of grains contained within the bed, N , so that we obtain:

FDrag =
Fbed

N
. (2.53)

The number of particles N may be estimated by dividing the volume of grains

within the bed by the volume of a single particle Vp, such that N = (1 − φ)V/Vp.

Substituting this relation into equation 2.53 gives

FDrag =
Vp (−∇P )

1 − φ
. (2.54)

The pressure gradient across the bed, −∇P , is determined using an empirical

bed equation such as Darcy’s (1856)

−∇P =
180η (1 − φ)2

d2φ3
V0, (2.55)

where V0 is the superficial velocity and d is the average diameter of the particles

in the bed. We usually assume a constant porosity across the bed corresponding

to a random packing fraction φ = 0.42, however, it is possible to calculate local

porosities so that the drag force may be applied more accurately. FDrag is applied

explicitly onto all the particles in a manner as to oppose the direction in which

the particle is moving.

We also apply a buoyancy and gravitational force explicitly onto the particles

as this information is not obtained from the fluid pressure gradient in equation

2.54. The buoyancy force is equal to the the weight of the volume of fluid displaced

by the particle and is applied in an upward direction

Fbuoyoncy = ρVpg, (2.56)

where g is the gravitational acceleration.
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Thus the overall equation of motion for the particles within the SD model

may be given by

mr̈ = Fcollision + FDrag + Vp (ρ− ρg) g, (2.57)

where Fcollision are the forces on the particles due to collisions with walls and with

other particles.

In the next section we describe the other model which uses bed equations,

namely the Navier–Stokes model.

2.4.2 The Navier–Stokes Algorithm

The Navier–Stokes (NS) model is based on an additional momentum transfer

term within the Navier–Stokes equations which couples the fluid to the granular

motion. An associated drag force which conserves momentum is also applied onto

the grains. The coupling force term for the NS model is derived by combining

the momentum conservation equations for the fluid and the granular bed. We are

able to derive a modified version of the Navier–Stokes equations which include a

momentum transfer term, β ′, between the fluid and grains:

∂v

∂t
+ v.∇v = −∇p+ ν∇2v + g − β ′

φρ
. (2.58)

Here p = P/ρ. It is possible to estimate β ′ by applying equation 2.58 to steady

one-dimensional fluid flow through a porous plug of porosity φ. In this situation

the unsteady and convective acceleration, and the diffusive terms become zero.

Neglecting gravity, we obtain:

−∇p =
β ′

φρ
. (2.59)

In such a system it is possible to use an empirical bed equation such as Darcy’s

law (equation 2.55) to estimate the pressure gradient. Thus an approximation to

the momentum transfer term is obtained:

β ′ =
180η (1 − φ)2

d2φ2
V0. (2.60)

The superficial velocity with respect to the static bed V0 is calculated using

V0 = φ (v − u). Here v is the internal fluid velocity and u is the local grain
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velocity. The internal fluid velocity refers to the actual speed with which the

fluid flows through the bed. Thus we obtain:

β ′ =
180η (1 − φ)2

d2φ
(v − u) . (2.61)

Therefore using Darcy’s law we obtain the fluid momentum equation:

∂v

∂t
+ v.∇v = −∇p + η∇2v + g − β (v − u) , (2.62)

where β = 180η(1−φ)2

ρd2φ2 . When using different bed equations, such as Ergun’s or Di

Felice’s (see section 2.4.4 ), the form of β will change.

Due to the presence of grains the incompressibility constraint becomes:

∇. (φv + (1 − φ)u) = 0. (2.63)

As we did within the fluid algorithm in Section 2.2.1 we introduce the fictitious

velocity component, v∗, into the time-discretised momentum transfer equation.

We use the projection method to split equation 2.62 into two equations which are

then solved simultaneously:

v∗ − vn

∆t
= −vn.∇vn + ν∇2vn + gn − β (vn − u) , (2.64)

vn+1 − v∗

∆t
= −∇pn+1. (2.65)

These are similar to equations 2.33 and 2.34 but with an extra fluid momentum

term. Taking the divergence of equation 2.65 and using the modified incom-

pressibility constraint, equation 2.63, we obtain the second-order pressure solver

equation:

∇2pn+1 =

1
φ

[∇φ. (v∗ − u) + (1 − φ)∇.u] + ∇.v∗

∆t
. (2.66)

We find that the Navier–Stokes algorithm is similar to the fluid model al-

gorithm described in section 2.2.1. The main difference is that the momentum

transfer field, β (v − u), must be determined on the MAC grid mesh in order

to calculate the virtual velocity v∗ in equation 2.64. The virtual velocity field

values v∗ are then substituted along with the local grain velocities u into equa-

tion 2.66 and is solved using FFT methods to obtain the updated pressure field,

pn+1. It is then possible to obtain the new velocities at time tn+1 = (n+ 1) ∆t

by substituting the pressure field, pn+1, back into equation 2.65.
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2.4.3 Granular Techniques

In the NS model algorithm, the dynamic granular properties, φ and u, are in-

troduced. To evolve the fluid-grain phases these particle attributes need to be

resolved onto the same grid as the fluid properties. One method of accomplishing

this is using the grid-mapping technique, where the properties of each grain are

interpolated onto the staggered MAC mesh. The properties of each grain are

smoothed onto the four nearest fluid grid points (eight points in three dimen-

sions) using a bilinear interpolation technique. We are then able to determine

the momentum transfer term β (v − u) on each grid point in equation 2.64.

If the particle position is given by (x, y) the kernel, si, used to interpolate the

particle attributes onto one of the nearest grid points with position (xi, yi) may

be calculated using:

si (r − ri) =

(

1 − |x− xi|
∆

)(

1 − |y − yi|
∆

)

(2.67)

where
2D
∑

i

si = 1 (2.68)

and

|x− xi|, |y − yi| < ∆. (2.69)

Here D is the number of dimensions and ∆ is the length of the grid cell. Figure

2.14 shows the area-weighted form of the kernel in two dimensions. The granular

attributes contributions to each lattice position are proportional to the area of

the rectangle opposite the lattice point. For example in Figure 2.14 the kernel for

point (x1, y1) may be evaluated by calculating the normalised area of the shaded

region.

We showed in Section 2.2.1 that fluid velocity components are staggered on

the MAC grid, such that the horizontal component of the fluid velocity exists

on the vertical walls and the vertical components exist on the horizontal walls

of the cells. When determining the momentum transfer each component of the

grain velocity must be smoothed onto the same grid-point as the corresponding

component of the fluid velocity. Thus for each dimension that our simulations are

modelled in, a new set of kernels must be evaluated. Similarly the local porosities
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∆

∆

(x1,y1)

(x3,y3) (x4,y4)

Fig. 2.14: Bilinear interpolation in two dimensions of a particle’s properties

smoothed onto the four nearest fluid grid-points. Here the shaded region shows

the area-weighted form of the kernel for the lattice point (x1, y1).

are also evaluated on each fluid lattice point. The arrangement of the staggered

grids in two dimensions is shown in figure 2.15. Here a particle situated in the

top right of the lattice cell has its attributes smoothed onto two different sets of

grid-points corresponding to the x and y components of the velocities.

Using this smoothing process one ends up with a staggered grid with the local

grain velocities and bed porosities, as well as the fluid velocities, defined upon it.

2.4.4 Empirical Bed Equations

In fluid dynamics, bed equations are phenomenologically derived constitutive

equations that describe steady fluid flow through a porous bed of grains. So far

we have used only Darcy’s law to determine the momentum transfer term, β,

however, it is possible to utilise other bed equations in the SD and NS models.

Darcy’s law, equation 2.49, gives a linear relationship between the flow rate

and the pressure gradient. This relation is predominantly used for low fluid flow

velocities as it loses validity at higher flow rates in dense granular beds. Ergun

(1952) determined experimentally a bed equation which included a Darcy like

term and a term proportional to the square of the fluid velocity. Ergun’s equation
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x

v i−1,j+1x

i−1,jv

yv i,j

i,j−1vy

v i,jx

x i,j+1v

yv i+1,j

vy i+1,j−1

Fig. 2.15: Arrangement of staggered grids for a two-dimensional system. The fluid

velocities are shown as an indication of which component of the grain attributes are

interpolated onto each grid-point. Here the horizontal grain velocities are interpo-

lated onto the vx points and the vertical velocities onto the vy points.

is expressed as:

−∇P =

[

150η (1 − φ)2

d2φ3
+

1.75ρ (1 − φ) |V0|
dφ3

]

V0. (2.70)

Ergun’s empirical bed equation was derived for densely packed beds and is

unable to accurately model dilute beds as well, i.e. φ > 0.8. Wen and Yu (1966)

proposed a relationship valid in fluid regions with a low granular content which

can be given as:

−∇P =
3

4

(1 − φ) ρCd

φd
φ−2.65|V0|V0. (2.71)

Here Cd is the fluid drag coefficient for a single particle which can be calculated

using:

Cd =

[

0.63 +
4.8

R0.5
ep

]2

. (2.72)

The particle Reynolds number, Rep, is not to be confused with the fluid Reynolds

number from equation 2.36 and is dependent on the superficial fluid velocity, V0,

so that:

Rep =
d|V0|
ν

. (2.73)
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When using a combination of Ergun, and the Wen and Yu relationships there

is a discontinuity in the pressure gradient. Di Felice (1994) proposed an empirical

relationship which agreed with both Ergun’s equation in dense regions and Wen

and Yu’s equation in the dilute range. Di Felice’s equation is given as:

−∇P =
3

4

(1 − φ) ρCd

φd
φ−χ|V0|V0, (2.74)

where χ is flow dependent and is given as:

χ = 3.7 − 0.65 exp

[

−(1.5 − log10Rep)
2

2

]

. (2.75)

The choice of bed equation depends largely on the system in question. The

Ergun equation is very simple computationally, whereas Wen and Yu’s, and Di

Felice’s are more complex and require greater computational power. Di Felice’s

equation is valid over a wider range of porosities than the other bed equations,

and thus can be used in simulations where there exists both dilute and dense

granular beds. We note that in a vibrated cell the bed equations may not be

completely accurate as they are empirical fits to steady flow through a bed of

grains. However, in this thesis we simulate systems with low f and Γ so the

associated errors should be small. Throughout the course of this thesis the choice

of bed equation will always be specified wherever used.

2.4.5 Drag Force

We have shown how the fluid experiences the particle motion in the form of

an additional momentum transfer term in the NS equation 2.62. However, to

conserve momentum within the system an equal and opposite force to that applied

to the fluid must be applied to the particles. This force is applied explicitly onto

the particles at the same time as when the fluid velocities are updated. The form

described here is similar in form to that used in the SD model in Section 2.4.1:

FDrag =
1
6
πd3 (−∇P )

1 − φ
. (2.76)

We obtain the pressure gradient, ∇P , across the bed from one of the empirical

bed equations described in section 2.4.4. To find the local porosity, φ, and the

pressure gradient ∇P on the position of the particle we use a bilinear interpolation

technique described in section 2.4.3.
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2.5 Fluid Grain Template Models

In the previous sections we introduced the Simple Drag and Navier–Stokes models

which use empirical bed equations to couple the fluid and grains interactions.

The bed equations require a fluid regime in which the MAC grid mesh is of a

much greater size than the particles. As the fluid resolution is low we are unable

to investigate microscopic fluid behaviour around the grains. Therefore in this

section two models are introduced in which the fluid grid is small in relation to

the particle size, namely the Particle Template (PT) and the Fluid Springs (FS)

models. These two models share similar features as neither use empirical bed

equations to determine the momentum transfer between the two phases. Instead

the models define the size of the grains on a scale much larger than the MAC

grid so that the fluid is everywhere including “inside” the particles. The fluid

grid-points encapsulated by the particles are forced, via different methods, to

share the same velocity as the particle. The particles also experience an effective

“drag force” from the fluid to resist the motion of the particles. The PT model

sets the velocities of the encapsulated fluid points to be equal to the particle

covering them. A fluid drag force is then applied onto the particle by calculating

the volume integral of the stress-tensor divergence over all the encapsulated fluid

grid-points. The momentum transfer in FS model is based on imaginary “springs”

exerting equal and opposite forces between the fluid and grains so that the motion

of the two phases converges.

We note that, in the models detailed in this section, no external vibration is

applied to the cell. Therefore in all equations of motion the cell is held stationary.

We consider the special situation of a fluid-grain system in an accelerated frame

of reference in section 3.1.

We describe these two models in more detail in the following sections. We

begin with the Particle Template model.

2.5.1 Particle Template Model

The PT model involves creating a template which is the same size and shape as

the moving particle. Each template is superimposed onto the MAC grid points
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that are covered by the immersed body. The fluid points that lie within the

template are then forced to have the same velocity components as the moving

particle (Ristow 1996; Ristow 1997; Kalthoff et al. 1997).

The fluid is governed by the Navier–Stokes equations

∂v

∂t
+ (v.∇)v = −1

ρ
∇P + ν∇2v + g, (2.77)

where P is the pressure of the fluid in the reference frame which is stationary

with respect to the cell. Since we are dealing with an incompressible fluid the

continuity equation is:

∇.v = 0. (2.78)

As with the NS model we use the projection method to solve the fluid equa-

tions. We discretise and then introduce an intermediate virtual fluid velocity, v∗,

to split equation 2.77 into two new equations as follows:

v∗ − vn

∆t
= − (vn.∇)vn + ν∇2vn + gn, (2.79)

vn+1 − v∗

∆t
= −1

ρ
∇Pn+1. (2.80)

Once the intermediate fluid velocity, v∗, has been calculated, the particle tem-

plate is placed over the velocity field. We then replace the velocities of the inter-

mediate fluid velocity grid-points v∗ encapsulated by the particle template with

the velocity of the particle. This acts to enforce the no-slip boundary condition

around each template. Figure 2.16 shows this schematically in two dimensions.

All the fluid points within the particle boundary that have their velocities set

to that of the templates are coloured black whilst the fluid points outside the

particle are coloured white.

By taking the divergence of equation 2.80 and substituting the continuity

equation 2.78 into the resulting expression we obtain the following Poisson equa-

tion:

∇2Pn+1 =
ρ

∆t
∇.v∗. (2.81)

We solve this equation using either the relaxation method or the FFT approach

to find the new pressure field Pn+1. This pressure field is then used within 2.80

to update the new fluid velocity field, vn+1.
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Fig. 2.16: Schematic drawing of template upon staggered grid. Filled circles rep-

resent the fluid points contained within the template which have their velocity

replaced with that of the particle. Points outside the template are shown as empty

squares.

The corresponding fluid force on the particle is calculated by evaluating a

volume integral over the template of the divergence of the stress-tensor given by:

Ff =

∫

V

−∇P + η∇2v dV. (2.82)

The fluid force acting on the particle, given in equation 2.82, captures both

the viscous drag forces and the buoyancy forces which are experienced by the

immersed particle.

The equation of motion of a particle in the laboratory reference frame is

therefore:

mr̈ = Ff + Fc +mg, (2.83)

where m and r̈ are the mass and acceleration of the particle respectively and Fc is

the total force due to collisions with other particles and walls. The collision forces

can be modelled using either the LSD or the DH models, described in detail in

section 2.1.

For the particle motion to remain accurate and stable the template associated

with each particle must encapsulate a large number of lattice points. This is

because as the template moves across the lattice both the number of the grid

points covered by the particle and the positions of the grid points in relation to
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the particle vary. If the template contains only a few lattice points this has a

significant effect on the integration of the stress-tensor.

The Particle Template method is very effective when studying fluid flow pat-

terns around a small number of grains, i.e. less than ten spheres. For a high level

of accuracy each particle must cover a large number of fluid grid points which re-

quires the use of a small lattice spacing compared to the size of the particle. Due

to the limits of modern computers, the largest size of the MAC grid mesh that

we may simulate is restricted. The dilemma is that to study a large number of

particles we must reduce the number of fluid grid-points covered by each particle,

which reduces the accuracy of any results attained.

One approach that is stable when fewer lattice points are covered by each

particle is the Fluid Springs model (Fogelson and Peskin 1988; Glowinski et al.

1999; Glowinski et al. 1999; Glowinski et al. 1999). As with the PT model the

fluid is defined on a grid with lattice spacing much smaller than the size of the

particle. However, the model differs in that on each grain we create a template of

grid-points which moves with the particle. This grid is the same size and shape

as the fluid grid mesh so that there are always a constant number of points on

each template during the simulation. For each lattice point on the template, we

predict the difference in the future fluid and grain paths and then correct the

motion using damped “springs”. These springs force the two phases to converge

so that the fluid grid-points encapsulated by the immersed spheres share the same

velocity as the particle that embodies them.

This method combines both sufficient computational accuracy with numerical

efficiency and allows the study of several thousand, in principle arbitrarily shaped,

interacting particles. The method we use and now describe is detailed by Höfler

and Schwarzer (2000), which follows a similar method used by Fogelson and

Peskin (1988).

2.5.2 Fluid Springs Model

The model can be separated into three parts; firstly the fluid equations, secondly

the motion of the suspended particles, and thirdly their mutual coupling. Af-

terwards we summarise the FS model algorithm. The first two sections I have
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discussed previously but will include here for completeness. The main difference

between this model and the PT model is the coupling between the two phases

which is discussed here in detail.

Fluid

Our starting point is the Navier–Stokes force equations describing the motion of

a Newtonian fluid with inertia:

V ρ
∂v

∂t
+ V ρ (v.∇)v = −V∇P + V η∇2v + V f . (2.84)

Here V , ρ and η denote the fluid volume, density and dynamic viscosity. v and

P are the fluid velocity and pressure, respectively, and f is a volume force term.

If we divide each term by the mass of the fluid ρV we obtain:

∂v

∂t
+ (v.∇)v = −∇p + ν∇2v +

1

ρ
f . (2.85)

Here p = P/ρ and ν = η/ρ are the reduced pressure and kinematic viscosity

respectively. We do not consider the time independent gravity contribution to

f explicitly, but cancel it against the hydrostatic pressure and omit both terms

from equation 2.85. The corresponding buoyancy forces will be taken into ac-

count explicitly in the equations of motion of the suspended particles. As usual

the liquid is considered as incompressible, i.e. ∇.v = 0, however, this is not a

necessary condition for the coupling technique.

Again the incompressibility technique is satisfied via an explicit fractional-

time-step operator-splitting method. By introducing a “virtual” velocity, v∗, in

order to split the one velocity equation 2.85 into two, we obtain:

v∗ − vn

∆t
= − (vn.∇)vn + ν∇2vn +

1

ρ
fn, (2.86)

vn+1 − v∗

∆t
= −∇pn+1. (2.87)

Here the subscript n and n+1 denote the values at tn = n∆t and tn+1 = (n+ 1) ∆t

respectively.

Taking the divergence of equation 2.87 and substituting the incompressibility

constraint eliminates vn+1 leaving:

∇2pn+1 =
∇.v∗

∆t
. (2.88)
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The fluid equations must be solved subject to the boundary and initial condi-

tions implied by the confining geometry, in our case a quadrilateral volume, which

is either limited by fixed walls on which no-slip conditions hold or periodically

repeated in space.

One fluid time-step consists of first computing the virtual velocity v∗ from

equation 2.86, which provides the information for the source terms of the pressure

equation 2.88. The pressure values are then substituted into equation 2.87 to

calculate the updated velocities vn+1. Finally the boundary conditions are applied

to the fluid motion to ensure no-slip conditions.

Particle-Fluid Coupling

The method that we detail here manages to enforce the no-slip boundary, which is

the main challenge facing any method that couples the particle and fluid motion.

Instead of implementing the no-slip boundary conditions by modifying coefficients

of the discretised system or employing grid adaptivity as in finite-volume or finite

element techniques, we use the body-force term in the Navier–Stokes equations

to implement constraints acting on the fluid such as to mimic the presence of

rigid particles at appropriate regions in the flow. These regions move as the

particle moves across the grid and contain sufficiently many grid-points in order

to represent the geometry of the physical particles. Since the lattice points are

fixed in space, but the particles move, the association of grid-points to particle

representing regions will change in the course of the simulation.

In more detail, the computation of the motion of a physical particle i is de-

composed into two contributions. A moving liquid volume element Vi of the same

shape as the particle makes up the first contribution. We imagine this particle

moving within the rest of the fluid, just as if it were a solid particle of fluid den-

sity ρ with mass Mf
i = Viρ. In my simulations I only model spherical objects,

however, as will become clear this approach is not limited to regular disks or

spheres.

The second contribution is a particle template that also has the shape of the

rigid physical particle, but it carries the mass M t
i . These values complement the

contribution of the fluid particle as their sum are equal to the mass of the physical
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Fig. 2.17: Cross-section of a sphere illustrating a typical configuration of reference

points rr
ij on a particle template i in two dimensions. The template has radius 100

mm with a reference point spacing of 10 mm. All crosses illustrate coordinates of

rr
ij vectors which are relative to the centre of mass of sphere located at (0.0, 0.0).

particle i, i.e, Mi = Mf
i +M t

i .

We must now describe how to achieve rigid coupling between the template and

the associated fluid element. We first describe the template which requires the

introduction of ni reference positions rr
ij , j = 1, ..., ni distributed over the volume

of template i. The rr
ij are vectors relative to the centre of mass of template i.

The density and location of the tracers should in general be chosen such that the

number of fluid lattice cells contained within the template volume should equal

the controlling number of tracers. Therefore the spacing between lattice points

should resemble the MAC grid so that each tracer controls a fluid of volume ∆D,

where D is the number of dimensions. Figure 2.17 shows a typical configuration

of reference points for a particle of radius R = 100 mm and constant reference

point spacing of ∆ = 10 mm. The radial density of reference points nr is defined

as:

nr =
R

∆
. (2.89)

In Figure 2.17 the radial density nr is equal to 10. The higher the value of nr the

better the reference points approximate the shape of the immersed particle. The

spatial coordinates, xr
ij, associated with each reference point, change only due to
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the movement and rotation of the rigid template such that:

xr
ij (t) = xi (t) + Oi (t) .r

r
ij , (2.90)

where Oi is a matrix describing the instantaneous orientation and xi is the po-

sition of the centre of mass of the template. In two dimensions Oi is obtained

by forming the rotation matrix associated with one angular degree of freedom of

the particle. In three dimensions we can use quaternions to represent the particle

orientation and compute the rotation matrix Oi.

Associated with each reference position is a tracer xm
ij , j = 1, ..., ni which

tracks the motion of the fluid so that

ẋm
ij = v

(

xm
ij

)

. (2.91)

Here ẋm
ij is defined as the velocity of fluid at the position xm

ij . Therefore on every

reference point we are able to determine the velocity of the template ẋr
ij and the

fluid ẋm
ij .

Now we are able to obtain an explicit numerical scheme for the computation

of the force density f constraining the fluid motion as follows. This part of the

algorithm works by predicting the difference in the future fluid and template

paths and then correcting the motion using a damped “spring” which forces the

two phases to converge.

We define ǫij as the difference between the positions of the particle i and

fluid tracer elements j at future time t + ∆t and ǫ̇ij as the difference in the

respective velocities at future time t+ ∆t. Both ǫij and ǫ̇ij assume that the fluid

and template velocities do not change over the following time-step. Therefore we

obtain:

ǫij = ẋm
ij ∆t− ẋr

ij∆t, (2.92)

ǫ̇ij = ẋm
ij − ẋr

ij . (2.93)

We then generate an additive contribution fij to the force density in the fluid

which tends to drive the fluid tracer back to the reference position and diminish

the relative velocity between the particle and fluid tracer element. The fluid-

template rigid coupling force acting on each reference point is given by:

f r
ij = −kiǫij − 2γiǫ̇ij, (2.94)
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where ki is a “spring” constant and γi a damping constant. ki must be chosen large

enough so that |ǫij | ≪ ∆ holds at all times. Similarly, the dissipation controlled

by γi must be small enough to be negligible against the external physical sources

of energy dissipation. To determine fn in equation 2.86 the fluid-template rigid

coupling forces f r
ij are interpolated from the template reference points onto the

four nearest MAC grid points (eight in three dimensions). The kernels used to

interpolate the rigid coupling force onto the fluid lattice points are given in section

2.4.3.

In order to estimate the largest spring constant ki we can use for a given time-

step ∆t we consider a couple of masses connected by a linear spring. The two

masses being a fluid element ∆Mf = ρ∆D and the mass of the particle template

M t
i = Mi −Mf

i . By calculating the reduced mass of the particle template and

fluid element:

Mr =
M t

i ∆Mf

M t
i + ∆Mf

, (2.95)

we may obtain a time scale of oscillation for the coupling,

Tcoupling = 2π

√

Mr

niki

. (2.96)

We achieve stability when ∆t = Cstcoupling and Cs is a coupling coefficient

that determines the ratio of time-steps to the timescale of the coupling oscillation.

Thus ki may be calculated using:

ki = Cs
2 × 4π2 Mr

ni∆t2
. (2.97)

If γi is chosen so that its value is close to the aperiodic damping of the particle

template, it is able to eliminate small but unphysical oscillations of the particles.

In the case of fixed tracer positions we obtain γi =
√
kiMt. In three dimensions

the value of γ is less important and it is possible to use γ = 0.

Particle Motion

The constraint force distribution that we have imposed on the fluid to guarantee

quasi-rigid fluid motion must be cancelled by applying equal and opposite forces

on the particles to ensure momentum is conserved. Therefore via Newton’s laws

the “spring” associated with each reference-point-tracer pair exerts an equal and
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opposite force to f r
ij from equation 2.94 onto the template so that:

Fij = kiǫij + 2γiǫ̇ij . (2.98)

Here Fij is the force acting on particle template i at the location of reference

point j. To find the total force on the template we sum Fij over all reference

points j.

Gravity and buoyancy must be taken into account in an explicit force, Fs
i ,

defined on the particle:

Fs
i = −Mig + ρVig = (ρ− ρg)Vig, (2.99)

where ρg is the particle density and Vi is the volume (or area in two dimensions).

We define the force contributions from collisions with all other particles and with

the walls as Fc
i .

Therefore the equation of motion of the particle template is:

Mir̈ = Fs
i + Fc

i +
∑

j

Fij . (2.100)

Verlet’s equations, which are based on Newton’s laws of motion, are then used to

update the positions and velocities of the particles (see section 2.1.2).

Summary

To summarise, the modelling of a rigid heavy particle requires the “freezing” of

the region of fluid occupying the space of the particle. This region is then coupled

to a particle template whose dynamical properties supplement those of the fluid

in such a fashion that the coupled system behaves just as the modelled particle

would.

The algorithm that we use within each time-step of the FS model simulations

proceeds as follows. First we calculate the fluid, ẋr
ij, and template velocities,

ẋm
ij , for each reference point. We then calculate the predicted difference in the

positions and velocities between the fluid and template, ǫij and ǫ̇ij , at time t+∆t

using equations 2.92 and 2.93. We then correct the motion using equation 2.94

which determines the constraint-forces, f r
ij , on each template reference point.

The constraint-force distribution is then imposed on the fluid grid via a bilinear
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interpolation technique. Equation 2.86 is used to evaluate the intermediate fluid

velocity field, v∗, which make up the source terms of the diffusion equation 2.88

to give the new pressure field. We then evaluate the new fluid velocity field using

equation 2.87. An equal and opposite force from the constraint forces is applied

to the particle template using equation 2.98. The collisional, gravitational and

buoyancy forces acting on the particle are all calculated and the motion of the

particles can be stepped forward in time using Verlet’s method.

Figure 2.18 illustrates, as a flow chart, the sequence of steps that must be

performed at each time-step in the simulation.

2.6 Numerical Results

In the following sections we will perform some numerical simulations to compare

and test some of the models described earlier in the chapter. In particular we

will focus on the application of the Navier–Stokes, the Particle Template and the

Fluid Springs models to a series of well known tests. Throughout this section we

focus on the selection of the coupling coefficient Cs, from equation 2.97, within

the FS model as varying Cs can significantly affect the strength of the coupling

between the fluid and template. If Cs is small then the constraint forces associated

with each reference point are weak and the velocity of the fluid does not converge

to the velocity of the immersed particle. In extreme cases of Cs ≪ 1 there is

little fluid and grain coupling and the particles behave as if they are in a vacuum.

Conversely if Cs is “large” then the coupling is unstable.

We also consider the radial reference point density nr as it was observed

in Figure 2.17 that the larger nr is, the better the template reference points

approximate the shape of the immersed body. However, increasing nr slows the

computer simulations and limits the potential size of the systems we wish to

model. A good starting point is to investigate a falling cylinder within a box.

2.6.1 Falling Cylinder

In this section we simulate a falling cylinder in a two-dimensional cell using the

PT and FS models. The orientation of the cylinder is fixed, with the axis which
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Fig. 2.18: Flow-chart for the Fluid Springs model algorithm.
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Parameter V alue

Cylinder density ρg 1100 kg m−3

Cylinder radius r 0.5–2.0 cm

Cell size (x–axis) 10.0 cm

Cell size (y–axis) 30.0 cm

Fluid density ρ 1000 kg m−3

Fluid viscosity η 0.01 kg m−1 s−1

Time-step ∆t 100 µs

Lattice spacing ∆ 78.125–2500 µm

nr 2–64

Cs 0.01–1.00

Table 2.4: Table of simulation parameters for the falling cylinder problem.

runs through the cylinders length, being aligned (along the z–axis) constantly

perpendicular to the two axes under consideration.

The density of the cylinder is set to be greater than that of the fluid, so that

under the influence of gravity it will fall through the liquid, increasing its speed

until viscous forces balance the gravitational pull. At this point the cylinder is

said to have reached its terminal velocity.

In the first part of this section we investigate the effect of varying the fluid

coupling coefficient, Cs, for a falling cylinder with a large radial reference point

density nr when just using the FS model. We set up a cylinder of diameter 1 cm

and density ρg = 1100 kg m−3 in a fluid-filled cell. The fluid lattice spacing is

∆ = 156.25 µm so that nr = 32. The fluid has the same density as water, i.e.

ρ = 1000 kg m−3 but is ten times as viscous so that η = 0.01 kg m−1 s−1. The

other variables are summarised in table 2.4.

Figure 2.19 plots the vertical velocity of the cylinder against time for Cs val-

ues spanning the range 0.01–1.00. When the particle is released, the particle

accelerates under the influence of gravity. The particle motion is opposed by the

buoyancy force which is constant and the viscous drag force. For low velocities

the particle velocity increases linearly as the viscous drag is low. As the velocity
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Fig. 2.19: Vertical velocity plotted against time for a cylinder of diameter 1 cm

and radial lattice density nr = 32 using the FS model. Each line corresponds to a

different Cs value. The insert is a close up of the end point of the runs.

increases the viscous drag forces increase and slow the acceleration of the cylinder.

Eventually the viscous fluid drag and the gravitational forces acting on the par-

ticle are equal as the cylinder reaches its terminal velocity. The insert in Figure

2.19 shows that the terminal velocity of the cylinder is approximately constant

in the range Cs = 0.25–1.00. Counter-intuitively as the coupling coefficient Cs

is reduced towards 0.01 the terminal velocity reduces also. Above Cs > 1.0 the

fluid-grain coupling becomes unstable. The overall dispersion of velocities is very

low which shows that for large nr varying the fluid-grain coupling coefficient does

not greatly affect the terminal velocity.

When simulating systems containing just a single particle, a large radial refer-

ence point density of nr = 32 is acceptable as the overall fluid lattice is unlikely to

be very large. If we extended this simulation to several hundred spheres in three

dimensions with the same radial reference point density we would require a huge

MAC grid mesh. However this is inefficient and unnecessary as for a reduced nr

we may still obtain accurate and stable results. The second test in this chapter

involves varying the radial reference point density, nr, for falling cylinders using

both the PT and FS models. We fix the cylinder to a diameter of 1 cm and vary

the lattice spacing in the range ∆ = 78.125–2500 µm so that nr = 2–64. In the
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FS model Cs is fixed to 0.5. The system parameters are again summarised in

Table 2.4.

Figures 2.20 and 2.21 plot the vertical velocities of the falling cylinders against

time for the PT and FS models. The different curves correspond to nr in

the range 2–64. We find that for large nr the velocity curves agree very well

between the two models, as both have similar terminal velocities. However, as

nr is reduced the terminal velocities of the cylinders decrease and there is less

agreement between the models. As nr decreases, the drag force experienced by

the cylinder increases due to the reference points over-estimating the size of the

cylinder. Also as nr is reduced the cylinder velocity curves become more jagged

due to lattice effects. These effects are especially prominent in the PT curves

(Figure 2.20). This is because, in the PT model, as the cylinders fall the number

of lattice points encapsulated by the cylinder and positions of these lattice points

relative to its centre of mass constantly change. Whereas, in the FS approach

the number and positions of points relative to the template are fixed.

The velocity curves obtained using the FS model have less dispersion between

the terminal velocities than those obtained using the PT model. We also find

that the curves converge to a common solution for a lower radial point density

of nr ≈ 8 within the FS model compared to nr ≈ 32 in the PT model. The FS

model, therefore, produces smoother and more accurate results for lower nr than

the PT model.

Within an infinite fluid the terminal velocity of the cylinders is a function of

the size of the cylinder, however, in a confined geometry, the width of the cell plays

an important role. If a single falling cylinder has its diameter increased whilst

all other parameters remained unchanged, the terminal velocity will increase.

However, for larger cylinders the drag increases as the fluid finds it increasingly

difficult to squeeze past the particle.

To test how the geometry affects the cylinders within each of the PT and

FS models we plot the terminal velocities of a range of falling cylinder systems

against the value D/L. This is a ratio of the cylinder diameter to cell width. In

these simulations we fix the constraint force coefficient Cs in the FS model to 0.5

and use a large reference point density of nr = 32 in both models. The simulation
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Fig. 2.20: Vertical velocity against time for a cylinder of diameter 1 cm for a range

of fluid lattice sizes and radial densities nr. Fluid and particle coupling is modelled

using the Particle Template model.
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Fig. 2.21: Vertical velocity against time for a cylinder of diameter 1 cm for a range

of fluid lattice sizes and radial densities nr. Fluid and particle coupling is modelled

using the Fluid Springs model.
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Parameter V alue

Cylinder density ρg 1100 kg m−3

Cylinder diameter D 1.0–4.0 cm

Cell size (x–axis) 5–20 cm

Cell size (y–axis) 30 cm

Fluid density ρ 1000 kg m−3

Fluid viscosity η 0.01 kg m−1 s−1

Time-step ∆t 100 µs

Lattice spacing ∆ 156.25 µm

nr 32

Cs 0.5

Table 2.5: Table of simulation parameters for the Ristow test problem.

parameters for both models are summarised in Table 2.5 and the resulting data

is shown in Figures 2.22 and 2.23. Curves of quadratic least squares are fitted

to the terminal velocity data sets, vt(D/L), for fixed cylinder diameters over the

range of D/L values. By extrapolating the curves to zero, D/L→ 0, the terminal

velocities, v∞t (D), for an infinite fluid system may be approximated. Each set of

data may then be normalised using its infinite fluid system velocity, v∞t (D), to

give the function:

f(D/L) =
vt(D/L)

v∞t (D)
. (2.101)

For larger D the function f (D/L) may be approximately linear with D/L, how-

ever, some curves, particularly D = 1.0 cm, are often approximated better with

quadratic equations of the form:

f(D/L) ≈ 1 − c1
D

L
− c2

(

D

L

)2

. (2.102)

Figures 2.24 and 2.25 display the normalised terminal velocities for cylinders

diameters D = 1.5–4.0 cm using the PT and FS models. The solid lines in these

figures are quadratic least square fits to all of the shown data points, the form of

which are shown in equation 2.102. For the PT model the quadratic coefficients

are c1 = 0.922 and c2 = 0.237, while for the FS model they are c1 = 0.878 and
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Fig. 2.22: Terminal velocity plotted against ratio of the cylinder diameter to the

width of the cell D/L for the Particle Template model. From the top line down the

curves correspond to diameters of, 1.0 cm, 1.5 cm, 2.0 cm, 2.5 cm, 3.0 cm, 3.5 cm

and 4.0 cm. The solid lines are quadratic fits to the data.
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Fig. 2.23: Terminal velocity plotted against ratio of the cylinder diameter to width

of the cell D/L for the Fluid Springs model. From the top line down the curves

correspond to diameters of, 1.0 cm, 1.5 cm, 2.0 cm, 2.5 cm, 3.0 cm, 3.5 cm and 4.0

cm. The solid lines are quadratic fits to the data.
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Fig. 2.24: Normalised terminal velocity plotted against ratio of the cylinder diameter

to the width of the cell D/L for Particle Template model. Solid line is quadratic

least squares fit to all the data shown with equation f(x) = 1−0.922(D
L

)−0.237(D
L

)2.
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Fig. 2.25: Normalised terminal velocity plotted against ratio of the cylinder diameter

to the width of the cell D/L for Fluid Springs model. Solid line is quadratic least

squares fit to all the data shown with equation f(x) = 1 − 0.878(D
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Fig. 2.26: The drag coefficient CD as a function of the Reynolds number for a

cylinder falling through viscous water. Data from the Particle Template model

(pluses) and from the Fluid Springs model (stars) are shown. The solid line is the

empirical curve, CD ≈ 1 + 10

R
2/3

e

, proposed by White (1991) for a falling cylinder.

c2 = 0.301. These results are both in good agreement with those reported by

Ristow (1997):

f (D/L) ≈ 1 − 1.14
D

L
. (2.103)

We note that the agreement between Figures 2.24 and 2.25 is so strong that on

first impression the figures appear identical, however they do in fact show different

data.

Drag Curve

Figure 2.26 plots the drag coefficient, CD, against the Reynolds number Re for

a single falling cylinder using both the PT and FS models. We determine the

characteristic Reynolds number of this system using

Re =
U 2R

ν
, (2.104)

while the usual definition of CD is

CD =
Drag Force

1
2
ρU2(Projected Area)

. (2.105)
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Here the projected area for the cylinder is the area normal to the particle motion.

We determine the drag force when the cylinder has reached its terminal velocity

so that the viscous drag and gravitational forces are equal. Therefore the char-

acteristic velocity U is the terminal velocity of the cylinder in an infinite system,

v∞. For a cylinder of volume πR2Lc the drag coefficient is evaluated using:

CD =
(ρg − ρ) πR2Lcg

1
2
ρv∞2 (Lc2R)

=
ρg − ρ

ρ

πRg

v∞2
. (2.106)

We have chosen the radial reference point density nr to be 32 for both the PT

and FS models and Cs = 0.5 within the FS model. The mass of the cylinder is

varied from ρg = 1000.1–10000 kg m−3 while the box width is fixed to 10 cm.

The remaining parameters are as in Table 2.5. To determine v∞ the terminal

velocities are corrected using our quadratic fits from equation 2.102. The solid

line in Figure 2.26 is an empirical curve to experimental data proposed by White

(1991) which is given by:

CD ≈ 1 +
10

R
2/3
e

. (2.107)

The fluid flow around the particle is steady for systems with a Reynolds number

below Re ≈ 230 (Chen et al. 1995). Above this Reynolds number the fluid flow

around the particle becomes increasingly unsteady. Figure 2.26 shows that the

simulations agree well with experimental data and are able to capture the drag

coefficient in the transition from steady to unsteady flow.

In the next section we extend our study from a single falling particle to the

sedimentation of an entire bed of grains.

2.6.2 Sedimenting Cylinders

We now consider the case of multiple cylinders falling in a fluid-filled two-dimensional

cell. These simulations serve as a useful comparison between the NS, PT and FS

models. Here we simulate the motion of 200 sedimenting cylinders of diameter

2 mm in a large square cell of side length 44 mm. The fluid lattice spacing is

∆ = 0.1 mm in the PT and FS models and ∆ = 4.4 mm in the NS model so

that the fluid resolution is 44 times greater in the PT and FS models than in

the NS model. We introduce the LSD model to treat collisions as they are not

significant to the system behaviour. We also set Cs to 0.5 in the FS model. The
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Parameter V alue

Number of particles 200

Cylinder diameter 2 mm

Cylinder density ρg 1050 kg m−3

Fluid density ρ 1000 kg m−3

Fluid viscosity η 1×10−2 kg m−1 s−1

e 0.9

K 1000 kg s−2

Cell size (x–axis) 44 mm

Cell size (y–axis) 44 mm

∆ (NS model) 4.4 mm

∆ (PT & FS models) 0.1 mm

∆t 10−4 s

Table 2.6: Table of simulation parameters for sedimenting cylinders.

parameters shared by each system are shown in Table 2.6. At t = 0 s the sedi-

menting particles are stationary and positioned in a lattice like arrangement. To

induce some interesting sedimentation configurations these particles were given

small dispersions around the rigid lattice positions.

Figure 2.27 shows the initial configuration of grains for the three models at

t = 0 s. The particles are released and Figures 2.28, 2.29 and 2.30 show the

positions of the particles and instantaneous fluid flows within the NS, PT and FS

model at times, t, of 1.5 s, 3.0 s and 4.5 s. Due to the low fluid resolution within

the NS model simulations we find that a couple of channels of very fast falling

cylinders form. This is very different to the PT and FS model simulations, whose

flow patterns in Figures 2.29 and 2.30 agree very well with each other. We see

that the grains fall together at approximately the same rate with several channels

of faster flowing fluid forming briefly. Due to the higher fluid resolution the PT

and FS models are able to mimic sedimenting systems more realistically.

The histories of the averaged vertical and horizontal translational cylinder

velocities and positions for the three models are shown in Figure 2.31. Good
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Fig. 2.27: Sedimentation of 200 fluid-immersed cylinders. Here the initial starting

positions for the cylinders are shown.

agreement is achieved between the three models. For further information on

sedimenting beds see the thesis by Kuusela (2005).

So far we have only considered two-dimensional systems. In the next section

we simulate a falling sphere in three dimensions and determine the corresponding

drag curve.

2.7 Falling Sphere

We now consider the case of a falling sphere in three dimensions. Here we study

the dependence of the drag coefficient on the Reynolds number for the PT and

FS models and compare to well known empirical results. These simulations are

similar to those simulations performed in two dimensions to obtain Figure 2.26.

We drop a sphere of diameter 10 mm in a cell of width 50 mm filled with fluid

of density 1000 kg m−3 and viscosity 1×10−2 kg m−1 s−1. The lattice spacing

is 3.125×10−4 m so that there are nr = 16 reference points across each particle.

The mass of the sphere is varied from ρg = 1100–10000 kg m−3 so that the sphere

falls with a range of speeds.

Figure 2.32 plots the drag coefficient, CD, against the Reynolds number Re

for a single falling sphere using both the PT and FS models. The characteristic
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Fig. 2.28: Sedimentation of 200 cylinders using the Navier–Stokes model. From top

to bottom the plots are at t = 1.5 s, t = 3.0 s and t = 4.5 s. The vectors in this

plot show the instantaneous fluid velocities and have been scaled by a factor 0.5

for visual purposes. This means that if unchecked the fluid “particles” would move

these distances in 0.5 s. As a reference the length of the cell is 44 mm.
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Fig. 2.29: Sedimentation of 200 cylinders using the Particle Template model. From

top to bottom the plots are at t = 1.5 s, t = 3.0 s and t = 4.5 s. The vectors in this

plot show the instantaneous fluid velocities and have been scaled by a factor 0.05

for visual purposes. This means that if unchecked the fluid “particles” would move

these distances in 0.05 s. As a reference the length of the cell is 44 mm.



Chapter 2. Computational Techniques 77

Fig. 2.30: Sedimentation of 200 cylinders using the Fluid Springs model. From top

to bottom the plots are at t = 1.5 s, t = 3.0 s and t = 4.5 s. The vectors in this

plot show the instantaneous fluid velocities and have been scaled by a factor 0.05

for visual purposes. This means that if unchecked the fluid “particles” would move

these distances in 0.05 s. As a reference the length of the cell is 44 mm.
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Fig. 2.31: Bed data for 200 sedimenting cylinders when using different fluid-grain

coupling models. The (a) average vertical bed velocity and the (b) average horizon-

tal bed velocity are both plotted against time t. Similarly the (c) average vertical

position of the bed and the (d) average horizontal position of the bed are plotted

against time t. The curves correspond to the Navier–Stokes model (dashed lines),

the Particle Template model (dotted lines) and the Fluid Springs model (solid lines).
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Fig. 2.32: The drag coefficient CD as a function of the Reynolds number for a sphere

falling through viscous water. Data from the Particle Template model (pluses) and

from the Fluid Springs model (stars) are shown. The solid line is the empirical

curve CD ≈ 24
Re

+ 6
1+

√
Re

+ 0.4 proposed by White (1991) for a falling sphere.

Reynolds number Re of this system and the drag coefficient CD are determined

using equations 2.104 and 2.105 respectively. The solid line in Figure 2.26 is an

empirical curve for a falling sphere proposed by White (1991) and is given by:

CD ≈ 24

Re

+
6

1 +
√
Re

+ 0.4. (2.108)

We see that Figure 2.32 shows excellent agreement between the two models

and the empirically determined curve. Thus the simulations are again able to

capture the transition from unsteady to steady flow regimes.

2.8 Lubrication

In this section we give a brief introduction into lubrication and then discuss

whether viscous forces are captured by the FS model.

Lubrication forces arise from fluid being squeezed between two close solid sur-

faces. These hydrodynamic viscous forces initially received considerable attention

in tribology in the late 1970’s, where tribology is the study of interacting surfaces

in relative motion. Later Davis (1986) obtained both analytical and numerical
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Fig. 2.33: Schematic representation of two approaching spherical particles in a

viscous fluid.

solutions for collisions between two spheres surrounded by thin isoviscous liquid

layers. The form of the force often used in simulations without lubrication is

detailed by Lian et al. (2001) and Zhang et al. (2005).

Figure 2.33 shows a schematic representation of two approaching fluid-immersed

particles. The particles have radii r1 and r2 and positions r1 and r2 and approach

each other with velocities v1 and v2. Figure 2.33 introduces the quantity s which

is defined as the smallest gap between the two particle surfaces. The gap, s, and

relative velocity v12 between the particles are calculated using

s = (r1 − r2) · n̂− (r1 + r2) , (2.109)

and
ds

dt
= −(v1 + v2) = v12, (2.110)

where n̂ is a unit vector connecting the centre of the two particles. For a fluid-

grain system without any lubrication forces the hydrodynamic viscous force, FL,

may be introduced and implemented through the well known equation (Davis

et al. 1986; Lian et al. 2001):

FL = −6πηr∗2

s
v12. (2.111)

The force opposes the direction of relative particle motion and is dependent on

the fluid viscosity, η, the effective particle radius, r∗, and the gap between the

surfaces s. The effective radius r∗ is related to the radii of the two approaching
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spheres by the following expression:

1

r∗
=

1

r1
+

1

r2
. (2.112)

In the case of a sphere of radius r1 colliding with a wall we assume r2 = ∞ such

that r∗ = r1.

The force FL is applied over a limited range of s values because as, s→ 0, an

unphysical infinite lubrication force results, otherwise known as “Stokes paradox”.

Thus a lower limit for the gap over which the force is effective smin is introduced.

The minimum gap smin over which the force is applied is ambiguous and is thought

to mainly depend on the roughness of the particle surface preventing s approach-

ing zero. However, even for perfectly smooth particles a minimum molecular

distance of smin = 4×10−10 m due to molecular repulsion will remain when the

surfaces make “physical” contact. An upper limit smax below which the force is

significant is also applied. This is assumed to be smaller than the particle radius

of the order 0.1r∗ − r∗. In reality lubrication is a long range force, however ap-

plying the force over a large range of s dramatically reduces simulation speeds.

The s range, therefore, over which the lubrication force is effective is limited.

Due to the individual nature of each system the gaps smin and smax are at best

empirical fits. The use of FL allows the modelling of viscous damped collisions

more closely, although not with 100% accuracy.

We now test if there are any hydrodynamic viscous forces present when the FS

model is used to model the fluid-grain coupling. We do this by colliding a single

spherical particle with a solid surface in a water-filled cell and recording the par-

ticle velocity before and after the collision. Since the particle will slow regardless

of whether the wall is present due to fluid drag we also compare our results to

the situation where the particle moves through the fluid without colliding with

any surface.

We set up a cell of horizontal cross-section Lx×Ly = 3.625 mm×3.625 mm

and height Lz = 14.5 mm which is filled with water of density ρ = 1000 kg m−3

and viscosity η = 1×10−3 kg m−1 s−1. A single particle of density ρg = 4500

kg m−3 and radius rI = 362.5 µm is then inserted into the cell and given an

initial velocity of v0. The particle then moves downwards along the z–axis of

the cell until it collides with the bottom wall. Gravity is neglected from the
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Fig. 2.34: s/rI plotted against time t for a particle approaching and colliding with

a solid wall. The particle initially starts a gap s0 = 0.2rI–5.0rI from the wall.

system so that the particle experiences only viscous and collisional forces. The

particle collisions are elastic so that if the same particle collided with the wall in a

vacuum the coefficient of restitution e would be 1.0. This allows us to isolate the

hydrodynamic effect of fluid being squeezed between the surfaces during collisions.

When the particle is initially released within the cell it loses a significant amount

of its velocity within just a few time-steps. This is because the fluid surrounding

the particle is initially stationary and the microscopic fluid flow fields which allow

fluid to flow past the particle take a few time-steps to develop.

Figure 2.34 plots the scaled gap s/rI = (zI − rI)/rI between the particle and

the wall against time t. Here zI is the vertical position of the intruder within the

cell. The particle is given an initial velocity in each run of v0 = 0.26 m s−1 and is

released from a range of initial gaps s0 = 0.2rI–5.0rI . After a few time-steps the

particle velocity vI settles to approximately 0.14 m s−1. We find that the further

away the particle begins from the wall the lower the intruder’s speed is on impact

due to fluid drag slowing the particle.

Figure 2.34 shows that for small initial separations s0 ≤ 1.4 × rI the particle

collides with the wall and then moves away. The particle loses some velocity

in the collision and then continues to decelerate due to fluid drag until it stops

completely at an equilibrium distance seq from the wall. We find that as the
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Fig. 2.35: The equilibrium distance seq/rI as a function of impact velocity vI for a

particle approaching and colliding with a solid.

initial distance s0 increases the intruder speed on impact decreases and as a

result seq reduces. As s0 increases further to 1.8rI the equilibrium distance seq

reduces also, however, the particle behaves differently to those in earlier runs.

Here the intruder initially moves away from the wall and decelerates until it is

stationary, the particle then moves slightly back towards the wall before stopping

completely. These “oscillations” continue to become stronger so that as s0 is

increased to 3.0rI the final resting position of the particle seq gets closer to the

wall. Similar oscillations have been observed in the analytical study of colliding

spheres (Davis et al. 1986). As s0 is increased to 5.0rI the oscillations become so

large that the particle’s final position is touching the wall having initially moved

away. Figure 2.34 shows that if the particle initially stops within s = rI of the

wall it experiences an attractive force which causes it to move back towards the

wall.

Figure 2.35 plots the scaled equilibrium distance seq/rI against the collision

impact velocity vI for the particles from Figure 2.34. As vI is increased in the

range 0.08 → 0.12 m s−1 there is only a small increase in seq from 0.0 →∼ rI .

Between vI = 0.12 m s−1 and vI = 0.13 m s−1 the equilibrium distance increases

rapidly. Above vI > 0.13 m s−1 the equilibrium distance seq increases less quickly
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so that an s-curve is created by the data. Figure 2.35 shows that if the particle is to

“escape” the wall after collision it must have an impact velocity vI above ∼ 0.12 m

s−1. In the impact velocity range 0.08–0.12 m s−1 the particle experiences damped

oscillations until it stops. This oscillating behaviour is due to the lubrication

forces experienced by the particle when in close contact with the wall. The

particle motion is damped due to fluid friction as it is squeezed back and forth

between the two surfaces.

Below vI = 0.08 m s−1 the equilibrium separation is seq = 0.0. If the only fluid

drag force experienced by the particle was proportional to its velocity, as with

Stokes Drag, we would expect the separation curve in Figure 2.35 to equal zero

only when the impact velocity is zero. This shows that the particle experiences a

further hydrodynamic drag force which has a significant impact on the collision

dynamics.

To determine the effect of the walls we measure the coefficient of restitution

e for the particle-wall collisions using the expression:

v = −evI . (2.113)

Here vI and v are the velocities of the sphere before and after the collision. We

wish to measure how much the thin fluid layer between the surfaces has on the

velocity by calculating the coefficient of restitution. To do this we measure the

particle velocity as it moves towards and away from the wall at a fixed distance

s from the wall. We record the velocities for a range of gaps s = 0.05rI − 0.50rI

and plot the results in Figure 2.36.

Figure 2.36 plots e as a function of the distance from the wall that the initial

and final velocities are measured. The results are obtained for a particle with an

initial gap of s0 = rI from the wall. We observe that for small s the restitution

coefficient is close to unity since the collision with the wall is elastic. As the gap

s increases e reduces rapidly until s ≈ 0.5rI where the coefficient of restitution is

approximately 0.1.

The problem with measuring e in this way is that the particle has to move

through the fluid to where the initial and final velocities are recorded. During

this time the particle is also slowed due to viscous fluid forces. This makes it

difficult to determine whether the particle is slowing due to lubrication or fluid
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Fig. 2.36: e as a function of the gap s/rI that the velocities, vI and v, are measured.

The particle collides with a solid wall (solid-line) and an imaginary wall (dashed-

line). e is calculated over a range spanning s = 0 − 0.5rI , while the insert shows

the imaginary wall data plotted over a range of s = 0 − 10rI .

drag effects. For this reason we have measured the input and output velocities of

the particle moving past an imaginary wall and then calculated e in the same way

as we did for the particle-wall collisions. By making this comparison we are able

to isolate the effect of the wall on the particle velocity. The simulation is set up

so that the particle collides with the imaginary wall with the same velocity as it

did for the real one. The results of both the real and imaginary wall simulations

are plotted Figure 2.36. The results from the collisions with the imaginary wall,

in the inset, show that e reduces over a large s range. For the same range that the

real wall collisions are measured e reduces to just 0.9. This shows that the effect

of fluid drag over a range this small is minimal, which means that the majority of

the particle slowing is due to lubrication effects. When s = 0.5rI the restitution

coefficient is still reducing faster than for the equivalent velocity in the imaginary

wall simulations. This shows that the lubrication forces are effective over a range

greater than s = 0.5rI within our simulations.

The quantitative comparison between the FS model simulations and exper-

iments is difficult. This means that the choice of coefficient of restitution e in

fluid-immersed particle collisions is somewhat arbitrary. For consistency with our
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other models we therefore include a coefficient of restitution e which will further

dampen particle collisions in our FS model simulations.

2.9 Computation

All of the codes used within this thesis were developed from scratch using C pro-

gramming language. The code was compiled using Gnu library and some further

optimisation tools. The simulations were all submitted to the High Performance

Computing (HPC) facility at the University of Nottingham and were run on sin-

gle compute nodes. The nodes within the HPC facility are split into five separate

clusters. The executable files of our codes are submitted to just one of the clus-

ters each time in a task array format. All of the clusters contain nodes with a

minimum CPU performance of 2.2×AMD Opteron 2.2 GHz single core and a

minimum RAM of 2 GB.

All of the simulations in the following chapters yielded results within timescales

of a few days to a maximum of two weeks.

2.10 Summary

In this chapter we have described the simulation methods used to model our

fluid-grain systems. The first part of the chapter was concerned with outlining

the MD technique used to model the grains. Within this section we described the

contact forces we may use including the LSD and DH contact force models. We

then performed some comparisons to show under what conditions each model is

best suited. We showed that to achieve realistic collisions the DH model allowed

for the largest time-step and thus the best computational efficiency. If contact

forces do not affect the system behaviour then LSD contact forces are suitable.

We then briefly discussed the approach used to model the fluid. This approach

was based on spatially discretising the governing equations of fluids, the Navier–

Stokes equations, on a staggered MAC mesh and solving using the projection

method with suitable boundary conditions.

We then discussed several approaches in which we may couple the granular and

fluid phases. The first model we described is the analytical Kroll model. This
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model considers the forces experienced by a porous granular bed when shaken

in an air-filled cell. We manage to determine an equation of motion for the

flight of the bed. To determine the flight of a body within a dense fluid we

modify the Kroll model to include buoyancy and added mass corrections within

the flight equation. Both of these models capture fluid-immersed granular bed

behaviour very accurately despite modelling the bed as a porous body. We then

described two models which use empirical bed equations to couple the fluid and

grain phases. The first model uses MD to determine the particle interactions and

couples the fluid and grain phases using a drag force based on a bed equation.

This force is applied explicitly onto the grains so that it opposes the direction of

particle motion. The model is appropriately named the Simple Drag model. The

second model modifies the Navier–Stokes equations for incompressible fluids to

include a term, based on a bed equation, which estimates the momentum transfer

between the fluid and grain phases. The resulting model, which is called the NS

model, reproduces the effects of a fluid-immersed granular bed where the grains

are individually modelled using MD.

We then introduce two models in which the fluid grid is small in relation to the

particle size. These two models share common features as neither use bed equa-

tions to determine the momentum transfer between the fluid and grains. Instead

the forces are determined through a template. The first model we described was

the PT model where the particles’ motions are determined individually using MD

and the fluid is solved using the Navier–Stokes equations. In order to couple the

fluid and grain motion the fluid lattice points immersed within the particle are

forced to share the same velocity as the particle while the corresponding force on

the particle is calculated by taking an integral of the stress-tensor divergence over

the template. The second model we describe is the FS model. This model differs

from the PT model in that on each grain we create a template of grid-points

which moves with the particle. For each lattice point on the template, we predict

the difference in the future fluid and grain paths and then correct the motion

using an imaginary damped spring which forces the two phases to converge.

The second half of this chapter was concerned with comparing the models

and determining under which conditions they were most suitable. We found that
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in two dimensions the FS model was stable and able to achieve more accurate

results with fewer lattice points contained within its volume than for the same

parameters in the PT model. In the last part of the chapter we observed that the

FS model is able to capture lubrication effects that arise when fluid is squeezed

from between two close surfaces.



Chapter 3

Accelerated Systems

In this chapter we discuss fluid-immersed granular beds which are subjected to

vertical vibrations. First, we consider how to treat the vibrations within our

simulations in the simplest way possible. We then simulate a fluid-immersed

packed bed as it is thrown from a surface using the Fluid Springs model. These

results are compared with the Modified Kroll model so that we may determine

which simulation parameters work best. In the last part of the chapter we simulate

a thrown granular bed and compare results obtained using four models detailed in

Chapter 2, namely the Modified Kroll (MK), the Navier–Stokes (NS), the Particle

Template (PT) and the Fluid Springs (FS) models.

3.1 Treatment of Vibrated Systems

So far we have only considered sedimentation, where the fluid-grain system is held

stationary; however, in this thesis we will be simulating several vibrated granular

systems. Thus, to make our simulations easier to compute, we must consider how

to treat a vibrated cell of fluid-immersed grains in the simplest possible way. For

the majority of systems with which we are concerned, the fluid and grains are

constantly excited through vibration; however, in order to keep the simulations

as simple as possible we change the reference frame from that of the laboratory

to that of the cell, which allows simpler computation of the no-slip boundary

conditions at the walls and on the particles themselves. As a consequence we

must include an acceleration term in the equation of motion for the particles,

89
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which will be equal and opposite to the acceleration of the cell in the reference

frame of the laboratory. The equation of motion for a single particle, equation

2.9, is therefore modified to become

mr̈ = Fcollision + Fsystem −ma (t) , (3.1)

where a (t) is the time-dependent acceleration of the cell as observed in the frame

of reference of the laboratory. The particle position r is now taken to be in the

reference frame of the vibrating cell. Fcollision and Fsystem are the collisional forces

and any other system forces experienced by the particles respectively.

We must also consider how the hydrostatic pressure gradient force acting on

the fluid-immersed particles is modified within the vibrating cell. The hydrostatic

pressure within the fluid will oscillate with the vibration of the cell and may be

given as

∇Phydrostatic = ρg′, (3.2)

where g′ is the “modified” gravity and is obtained using:

g′ = g − a (t) , (3.3)

where g is the gravitational acceleration. Thus, to account for the cell acceler-

ations, the fluid motion equations for the PT model, equation 2.77 and the NS

model, equation 2.62, are modified so that g is replaced by g′. The fluid motion

equation in the FS model may be modified but it is not necessary as the fluid drag

force on the particles are not determined through the hydrostatic fluid pressure.

Within the remainder of this chapter we consider the properties of a thrown

fluid-immersed granular bed.

3.2 Thrown Beds

So far we have only simulated a single falling sphere in three dimensions (section

2.7). However, in this section we consider a three-dimensional fluid-immersed

granular bed system within an oscillating cell. We have two specific objectives

for the thrown bed simulations. These are: to find suitable simulation parameters

for the FS model, and to compare simulation results obtained with the MK, NS,
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PT and FS models. To our knowledge the PT and FS models have not previously

been used to simulate vibrating densely-packed granular beds.

3.2.1 Fluid Springs Model

We first focus on finding parameters that allow for accurate and efficient simu-

lations within the FS model. In section 2 we simulated two-dimensional systems

using a large value of the radial reference point density nr. However, extending

these simulations into three dimensions for the same nr can result in an extremely

large MAC grid, which is computationally very time consuming to simulate. Thus

we wish to find parameters for three-dimensional simulations which produce ac-

curate results in an efficient and stable manner. We found in the previous section

that for large nr the PT and FS models gave convergent results, but as nr was

reduced the results produced with the FS model were more accurate (see Fig-

ures 2.20 and 2.21). Therefore we simulate a vibrated system of densely-packed

fluid-immersed grains with the radial density of reference points nr reduced to 3.

A three-dimensional template of radial reference point density nr = 3 contains

approximately as many reference points as a two-dimensional template of nr = 6.

We model 600 water-immersed spherical particles in a cell vibrated vertically

along the z–axis. Gravity acts along this axis also. The particles within the

bed are either glass or bronze and have a 10% dispersion in diameters to prevent

crystallisation. The grain interactions were modelled using the LSD collision

model with a large spring constant and the vessel was given periodic boundary

conditions along the x–axis and y–axis so that wall effects do not affect the flight

of the grains. The remaining simulation parameters are given in Table 3.1.

Within each simulation, the particles are initially set up in a lattice-like ar-

rangement throughout the cell and then allowed to settle under the influence of

gravity. Once the grains are at rest the cell is shaken to remove transient effects

with a trajectory of

zc = A sin (ωt) . (3.4)

Here zc is the position of the cell base and A and ω are the vibration amplitude

and angular frequency respectively. After the bed has been vibrated for a second

both the base pressure and the gap between the bottom edge of the bed and the
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Parameter V alue

Number of particles 600

Particle diameter 630–770 µm

Glass density ρglass 2500 kg m−3

Bronze density ρbronze 8900 kg m−3

K 3000 kg s−2

e 0.2

Fluid density ρ 1000 kg m−3

Fluid viscosity η 8.91×10−4 kg m−1 s−1

Cell size (x–axis) 4 mm

Cell size (y–axis) 4 mm

Cell size (z–axis) 30 mm

Cs 0.1–2.0

∆t 10−5 s

f 20 Hz

Γ 2.0

Table 3.1: Simulation parameters used to model a fluid-immersed granular bed held

in a vibrated cell.

cell base are measured. The data is then averaged over 40 cycles. Each vibration

cycle begins at a phase angle of θ = 0◦, which corresponds to when the cell is

moving upwards with maximum velocity żc = Aω.

Figure 3.1 plots the pressure and gap curves for vibrated water-immersed glass

and bronze beds over the course of a single vibration cycle. The various dashed

curves correspond to Cs values spanning 0.1–2.0 while results from the MK model,

which have been shown to agree well with experimental results (López-Alcarez

2007), are plotted as a solid line. Ergun’s bed equation 2.70 has been used to

couple the fluid and grain motion within the MK model. Figures 3.1(a) and

3.1(b) show the pressure curves for the glass and bronze beds with the additional

hydrostatic pressure due to oscillation effects removed. Figures 3.1(c) and 3.1(d)

show the gap between the bottom edge of the bed and the cell base for the
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Fig. 3.1: Pressure and flight curves obtained from a thrown water-immersed granular

bed system. The system was modelled using the Fluid Springs model for Cs values

in the range 0.1–2.0 for a system with nr = 3. All results are averaged over 40

cycles. The system was shaken with vibration parameters f = 20 Hz and Γ = 2.0.

Plots (a) and (b) show the measured base pressures with the additional hydrostatic

pressure due to oscillation effects removed. Plots (c) and (d) show the gap between

the base of the cell and the lowest edge of the bed. The left plots are for a system

of glass particles with density 2500 kg m−3, and the right plots are for a system

of bronze particles with density 8900 kg m−3. The solid lines are results from the

theoretical Modified Kroll model.
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glass and bronze beds also. Figures 3.1(c) and (d) show that the granular bed

is thrown and lands within each vibration cycle. As the bed is thrown in the

early part of the cycle, incompressible fluid flows downwards through the bed.

Later in flight, as the bed lands, fluid flows upwards through the beds and an

overpressure develops. The pressure curves in Figure 3.1 converge for Cs values

in the range 0.5–2.0 and that these curves demonstrate excellent agreement with

the MK model. For Cs values below 0.5 the shapes of the pressure curves are

severely altered and agreement with the MK model worsens.

Figures 3.1(c) and 3.1(d) show that as Cs reduces the maximum heights that

the beds are thrown increases. This is because as Cs reduces the fluid-grain

coupling weakens and the grains experience less drag from the fluid and so are

thrown higher. For both glass and bronze beds the strongest agreement between

the FS and MK models is when Cs = 0.5. The value of Cs may be determined

empirically in this way for different fluid-grain systems.

3.2.2 Comparison between Models

We now perform the same thrown bed simulations using the MK, NS and PT

models in addition to the FS model. Ergun’s empirical bed equation 2.70 has

been used implement the coupling between the fluid and grain phases in the MK

and NS models. As in Section 3.2.1 we measure the pressure across the bed and

the gap evolution over the course of a vibration cycle. Within both the PT and

FS models we set nr to 3, while in the FS model we set Cs = 0.5 for the glass

and bronze systems. The remaining parameters for the models are summarised in

Table 3.1. Figure 3.2 shows the pressure and height curves for a water-immersed

bed of glass and bronze particles.

Figure 3.2 shows excellent agreement between the MK, NS and FS models.

However, we find that the PT model is unable to model the pressure and thrown

heights of the bed accurately. Therefore, when we wish to simulate dense granular

beds in three dimensions with a microscopic fluid model we chose the FS model

rather than the PT model.
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Fig. 3.2: Pressure and flight curves obtained from a thrown water-immersed granular

bed system. All results are averaged over 40 cycles. The system was shaken with

vibration parameters f = 20 Hz and Γ = 2.0. Plots (a) and (b) show the measured

base pressures with the additional hydrostatic pressure due to oscillation effects

removed. Plots (c) and (d) show the corresponding gaps between the base of the

cell and the lowest edge of the bed. The left plots are for a system of glass particles

of density 2500 kg m−3 and the right plots are for bronze particles of density 8900

kg m−3. The curves correspond to the Modified Kroll (solid-line), the Navier–

Stokes (dashed-line), the Particle Template (dotted-line) and the Fluid Springs

(dot-dashed-line) models. In the Fluid Springs model Cs = 0.5 for both the glass

and bronze beds.
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3.3 Summary

Within this chapter we studied fluid-immersed granular beds subjected to vertical

oscillations. The fluid and grains were both simulated in three dimensions. We

initially observed that the FS model was able to model the behaviour of a thrown

bed. This showed that the FS method was able to model fluid flowing through

packed beds in an unsteady flow regime.

Later in the chapter we simulated a thrown bed using four models described

in Chapter 2. Here we found that the NS and FS models could capture the

behaviour of a thrown porous bed accurately while the PT model was unable to

do so for the same parameters. We found that the NS model simulations were

able to capture the behaviour of the thrown bed despite using Ergun’s empirical

bed equation which was developed for steady flow through packed granular beds.

In the next chapter we extend our simulations to investigate the phenomena

of heap formation.



Chapter 4

Heap Formation

In this chapter we study convection within a fluid-immersed granular bed held in a

vertically vibrated cell. We compare results obtained using the Simple Drag (SD),

the Navier–Stokes (NS) and the Fluid Springs (FS) models. The chapter begins

by demonstrating wall-driven convection effects using the SD model. We then

show that convection is enhanced when the hydrostatic fluid motion is modelled

using the NS and FS models. Our principle finding is that convection is a fluid-

driven effect which is enhanced by the presence of some wall friction. At the end

of the chapter we simulate the formation of a heap in three dimensions.

4.1 Introduction

A granular bed resting on a horizontal surface may gain energy if the surface is

vibrated either by periodic tapping or by continuous sinusoidal oscillations. The

grains will leave the plane if the maximum acceleration of the boundary is greater

than gravity. The granular temperature of the bed of grains decreases mainly

through inelastic collisions with other particles contained in the bed. If during

one vibration cycle, more energy is fed into a granular bed through mechanical

agitation than is lost through energy dissipation, the bed is able to flow like a

fluid and is said to be “fluidised”.

Faraday (1831) noted that fine particles may spontaneously form conical piles

when placed on an oscillating horizontal surface. Grains are said to “avalanche”

down the pile surface, the shape of the pile being maintained by movement of

97
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grains upwards through the bed due to air flow. Likewise, within a vertically

vibrated cell, a body of grains that form a pile within the centre of the cell

may be observed to “Faraday tilt” (Pak et al. 1995). Here the granular bed

symmetry is broken and the pile migrates to one edge of the box so that the bed

slopes downwards across the cell and grains cascade down the top surface to be

replenished by grains moving upwards within the bed.

Faraday tilting is a well-known effect for fine granular beds in air and is

caused by the influence of the horizontal component of the fluid flow, set up once

any deviation from horizontal symmetry occurs (Leaper et al. 2005; Thomas

et al. 2000; Thomas and Squires 1998). The mechanism for tilting within a two-

dimensional water-immersed bed is described in full by Milburn et al. (2005).

As the bed of grains are thrown from their supporting platform, fluid is drawn

through the bed to fill the void below. The fluid will prefer to flow through the

shallower parts of the bed so any asymmetry within the bed leads to preferential

fluid flow through the regions with least resistance, i.e. the shallowest parts of

the bed. The resulting horizontal fluid flow beneath the bed whilst it is still in

flight is directed towards any deeper regions of the bed. This flow carries grains

with it causing the deeper regions of the bed to become more pronounced. As

the asymmetry grows so does the preferential path of the fluid flow through the

bed leading to an increasingly tilted configuration. One finds that the tendency

for Faraday tilting is stronger at lower frequencies and at lower amplitudes of

vibration. This tendency extends to higher frequencies for finer and deeper beds

(Milburn et al. 2005).

The chapter is organised as follows. Firstly we simulate a vibrated fluid-

immersed granular bed within a walled cell with varying wall friction to induce

convection within the bed. In this first case the fluid-grain coupling is modelled

using the SD model (Biswas et al. 2003). We then simulate the same system

using two models which include hydrodynamic information about the fluid and

grain motion, namely the NS and FS models. We show that both of these models

are able to capture Faraday tilting. The results obtained with each model are

then compared. To our knowledge this is also the first time the NS and FS models

have been used to model three-dimensional fluid-grain systems. At the end of the
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chapter we simulate a “Faraday heap” using the FS model.

4.2 Quantifying Convection

The convective flow needs to be quantified. We use a similar measure to the

one used by Taguchi (1991). In order to measure the strength of the flow of

convection, we introduce the cell-to-cell flow J. This field may be calculated in

three dimensions; however, in our simulations we construct a cell with greatest

dimensions along the x and z axes. The vibrations and gravity also act along the

z–axis. The other cell length (y–axis) is approximately ∼7 particles deep and so

little convection occurs in this direction. Thus the majority of convective motion

is in the x–z plane and so we divide the whole space into two-dimensional cells

of ∆ × ∆ squares. The positions of the particles are measured at the beginning

of each cycle (θ = 0◦) which corresponds to when the granular bed sits on the

base of the cell and the vibrating vessel moves upwards with maximum velocity

żc = Aω. The recording times occur at times t = nT , where n is an integer and

T is the period of vibration. At the end of each cycle of vibration the distance

that each particle has moved over the course of that cycle is calculated. We then

attribute half of the displacement of each particle to the cell that the particle has

come from and half to the cell that the particle currently resides in. If, after one

vibration, the particle has remained in the same cell, then all the displacement

is attributed to that cell. The convective motion may be averaged over many

cycles to give the average convective behaviour of the system. We define the

displacement convective field, J, as

〈J (X, Y )〉 =

〈

1

2

∑

i

[(δi (X, Y ; t) + δi (X, Y ; t− T )) (ri (t) − ri (t− T ))]

〉

t

,

(4.1)

where ri is the position of the particle i and δi(X, Y ; t) = 1 when particle i resides

in the cell with integer labels X and Y at time t. This means that cell (X, Y )

spans the space X∆ < x < (X + 1)∆ and Y∆ < y < (Y + 1)∆, where x and y

are the horizontal and vertical coordinates respectively.

An overall measure of the convection may be determined by summing the
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displacement field over all cells. Thus:

J =

(

∑

X,Y

|J (X, Y )|2
)

1

2

. (4.2)

4.3 Simple Drag System

We begin our studies by simulating 2500 spherical bronze particles immersed in

water in a vibrating sealed cell using the SD model to couple the fluid and grain

motion. Our aim is to see whether convection occurs within a fluid-immersed

granular bed when using a model in which the fluid is homogeneous and is not

affected by the presence of particles.

The grains are immersed in water with density ρ = 1000 kg m−3 and viscosity

η = 1×10−3 kg m−1 s−1. The fluid drag force, FDrag, experienced by the grains

takes the form:

FDrag =
Vp (−∇P )

1 − φ
, (4.3)

where Vp is the volume of the particle and φ is the bed porosity. Since we

are dealing with a densely packed granular bed we can determine the pressure

gradient across the bed, −∇P , using Ergun’s empirical bed equation (Ergun

1952) (See section 2.4.4):

−∇P =

[

150η (1 − φ)2

d2φ3
+

1.75ρ (1 − φ) |V0|
dφ3

]

V0. (4.4)

Here d is the average particle diameter and Vo is the superficial velocity with

respect to the container. The porosity across the bed is given a constant value of

φ = 0.42 corresponding to the grains being randomly packed.

The bronze particles have densities ρg = 8900 kg m−3 and diameters 700

µm with a 10% dispersion in size to avoid crystallisation in the presence of cell

oscillations, the equation of motion of a particle of density ρg and mass m = ρgVp

in the SD model becomes

mr̈ = FCollision + FDrag + Vp (ρ− ρg)g
′, (4.5)

where r is the particle position in the frame of reference of the moving cell and

g′ is the modified gravity. g′ is applied in the vertical direction (z–axis) and is
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Parameter V alue

Number of particles 2500

Particle density ρg 8900 kg m−3

Particle diameter d 700 µm

K 1500 kg s−2

e 0.2

µ 0.2

µW 0.0–1.0

Fluid density ρ 1000 kg m−3

Dynamic viscosity η 10−3 kg m−1 s−1

Time-step ∆t 10−5 s

Cell size (x–axis) 20 mm

Cell size (y–axis) 5 mm

Cell size (z–axis) 20 mm

f 10–30 Hz

Γ 3.0

Table 4.1: Parameters for tilting simulations using the Simple Drag model.

the sum of gravity, g, and the acceleration of the system, a (t), such that:

g′ = g − a (t) . (4.6)

The model is described in greater detail in section 2.4.1.

In the simulation the particles are initially placed randomly within the box

in such a way as to ensure that none of the particles are overlapping. The box

is held stationary and the particles are allowed to settle under the influence of

gravity onto the cell base. Both box vibration and the coupling force between

the fluid and grains are then initiated. We fix the dimensionless acceleration

constant to Γ = 3.0 and vary the wall friction coefficient µW in the range 0.0–1.0

for three different frequencies of f = 10, 20 and 30 Hz. As Γ > 1 the granular

bed is thrown and lands during each vibration cycle. The simulation parameters

for this system are summarised in Table 4.1.

Figure 4.1 shows snapshots of the time evolution of the granular bed vibrated
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(a) (b)

(c) (d)

Fig. 4.1: Evolution of 2500 water-immersed bronze particles shaken with vibration

parameters f = 10 Hz and Γ = 3.0 with a wall friction parameter of µW = 1.0.

Snapshots are taken at (a) t = 0 s, (b) t = 10 s, (c) t = 40 s and (d) t = 150 s.

Fluid and grain interactions are modelled using the Simple Drag model. The grains

are coloured for visual purposes only.

with parameters f = 10 Hz and Γ = 3.0 for a wall friction value of µW = 1.0. All

of the images are displayed in the x–z plane as this is where the majority of the

convection occurs. In the y–z plane the particles move in a random manner so

that there is no noticeable convection. The bronze particles have been coloured

in layers as a visual aid so that the behaviour of the bed may be monitored.

Figure 4.1(a) shows that the granular bed surface is initially level. However, as

the simulation proceeds a domed surface soon develops in the middle of the box,

as seen after t = 10 s in Figure 4.1(b). The grains from within the bulk of the

pile then begin to break through the bed surface while the top layer of grains
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(a) (b) (c)

Fig. 4.2: Convection flow diagrams for a walled system without a microscopic fluid

model. Fluid and grain motion is coupled using the Simple Drag model. From left

to right the diagrams correspond to wall friction coefficients of (a) µW = 0.0, (b)

µW = 0.6 and (c) µW = 1.0 vibrated at f = 10 Hz and Γ = 3.0. Within each plot

the arrows show the distance and direction that the grains would move in (a) 80 s,

(b) 25 s and (c) 20 s. As a reference of scale the length of the cell wall is 20 mm.

cascade down the heap slopes towards the container walls. Figure 4.1(c) shows

that at t = 40 s the grains that have previously avalanched down the bed slope

now move downwards parallel to the side walls. After 150 s the bulk of grains

in the bed have been mixed, apart from a small region of grains in the bottom

centre of the box which remains largely untouched.

The size and shape of the pile is sustained by two convective cycles which

rotate in opposite directions to each other. Within both convective cycles, grains

on the top surface initially avalanche down the domed surface and then continue

downwards once they have reached the side walls. From the bottom edges of the

cell the grains move inwards. The cycle is completed as grains move upwards

through the bulk of the bed and emerge through the domed surface.

The convection cycles can be seen more clearly in Figure 4.2 for wall friction

values of µW = 0.0, 0.6 and 1.0 and vibration parameters f = 10 Hz and Γ = 3.0.

The figure shows the average granular displacement field over the course of a

vibration cycle J. The data is obtained after t = 20 s once the convective motion

is established within the bulk of the bed. Only the granular motion is shown as

the SD model does not capture hydrodynamic fluid flow.

Figure 4.2 shows that as µW is increased, the granular convective flow increases

also. In Figure 4.2(a) when µW = 0.0 the grains move very little. This state may
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Fig. 4.3: The variation of the convection parameter J with the wall friction µW

when using the Simple Drag model to couple the fluid and grain interactions. The

symbols correspond to frequencies of f = 10 Hz (diamonds), f = 20 Hz (squares)

and f = 30 Hz (circles). The solid lines connecting the data points are for visual

purposes only. All results were obtained for Γ = 3.0.

be regarded as a control and illustrates how densely packed particles vibrated

in a frictionless cell may move randomly. In Figure 4.2(b) the wall friction is

increased to µW = 0.6 and we see that the grains have organised themselves into

two convective cells which both move upwards through the centre of the heap

and downwards at the box edges. In Figure 4.2(c) the wall friction is increased

to µW = 1.0 and the convective pattern and granular flow strengthens further.

In Figure 4.2 we notice that the least granular motion is in the bottom centre of

the box.

As µW is increased for fixed f and Γ the granular convection increases and the

domed surface becomes more pronounced. This is illustrated further in Figure

4.3 which plots the convection parameter J calculated using equation 4.2 against

µW for frequencies f = 10, 20 and 30 Hz. Here all convection data was collected

and averaged for 30 s of real time. The points are joined up for visual purposes

only.

Figure 4.3 shows how J varies with wall friction µW and frequency f when the

fluid and grains are coupled using the the SD model. As µW increases the convec-



Chapter 4. Heap Formation 105

tion parameter J increases for all our frequency curves. In the range µW = 0.0–0.2

convection J remains approximately constant for all the frequency curves; how-

ever, above µW = 0.2 the convection increases almost linearly. The presence of

wall friction is, therefore, the major driving factor of convection within the SD

model simulations. Secondly, we notice that as the frequency f increases the

convection decreases. This is because at lower frequencies a greater amount of

energy is input into the bed. The convection process arises because the parti-

cles experience differential drag dependent on their positions within the bed and

hence they follow different paths. We find that those particles nearest the walls

experience increased drag due to wall friction and are therefore not thrown as

high. The particles nearest the walls are forced downwards and underneath the

thrown bed so that convection cycles are created, a process which is often referred

to as wall-driven convection (Zeilstra et al. 2008). Without wall friction there is

only granular motion due to random granular interactions.

4.4 Microscopic Fluid Models

We now wish to perform similar simulations for two of the microscopic fluid

models described previously in Section 2.1: the Navier–Stokes model and the

Fluid Springs model. The results obtained with these models are compared with

each other and against those obtained using the SD model in the previous section.

The simulation parameters used in the NS and FS model simulations are

shown in Tables 4.2 and 4.3. The fluid and grain motion within the NS model

simulations are coupled using the empirical bed equation developed by Ergun

(1952) and shown in equation 4.4. The simulations are set up and initiated in

exactly the same way as they were for the SD model in the previous section. Here

the grains are allowed to settle solely under the influence of gravity until they

rest on the base of the cell. Once the grains are at rest, the cell vibrations and

the fluid-grain coupling are turned on.

Figures 4.4 and 4.5 are made up of a series of snapshots illustrating the evo-

lution of the NS and FS model simulations respectively using vibrational param-

eters f = 10 Hz and Γ = 2.0. Both figures show that the granular beds within
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Parameter V alue

Number of particles 2500

Particle density ρg 8900 kg m−3

Particle diameter d 700 µm

Spring constant K 1500 kg s−2

e 0.2

µ, µW 0.2

Fluid density ρ 1000 kg m−3

Dynamic viscosity η 1×10−3 kg m−1 s−1

Lattice spacing ∆ 1.66×10−3 m

Time-step ∆t 10−5 s

Cell size (x–axis) 20 mm

Cell size (y–axis) 5 mm

Cell size (z–axis) 20 mm

f 10–30 Hz

Γ 1.5–4.0

Table 4.2: Parameters for tilting simulation using the Navier–Stokes model.
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Parameter V alue

Number of particles 2500

Particle density ρg 8900 kg m−3

Particle diameter d 700 µm

Spring constant K 1500 kg s−2

e 0.2

µ, µW 0.2

Fluid density ρ 1000 kg m−3

Dynamic viscosity η 1×10−3 kg m−1 s−1

Lattice spacing ∆ 116.7×10−6 m

nr 3

Cs 1.5

Time-step ∆t 10−4 s

Cell size (x–axis) 20 mm

Cell size (y–axis) 5 mm

Cell size (z–axis) 20 mm

f 10–30 Hz

Γ 1.5–4.0

Table 4.3: Parameters for tilting simulation using the Fluid Springs model.
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(a) (b)

(c) (d)

Fig. 4.4: Evolution of 2500 water-immersed bronze particles shaken with vibration

parameters f = 10 Hz and Γ = 2.0. Snapshots are taken at (a) t = 0 s, (b) t = 3

s, (c) t = 6 s and (d) t = 11 s. Fluid and grain interactions are modelled using the

Navier–Stokes model.
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(a) (b)

(d)(c)

Fig. 4.5: Evolution of 2500 water-immersed bronze particles shaken with vibration

parameters f = 10 Hz and Γ = 2.0. Snapshots are taken at (a) t = 0 s, (b) t = 3

s, (c) t = 6 s and (d) t = 11 s. Fluid and grain interactions are modelled using the

Fluid Springs model.
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each simulation ultimately form a tilt which spans the entire width of the con-

tainer. These “Faraday tilts” prove to be very stable and once formed remain

in these configurations for the duration of timescales available to our computer

simulations.

Figure 4.4 shows how the tilt develops when the fluid and grain coupling is

modelled using the NS model. Figure 4.4(a) shows the initial system configuration

at t = 0 s. Here the granular bed begins level. Once the system has started

vibrating the grains begin to build up at the box edges. Hence two tilts develop

which both slope downwards from the cell walls towards the middle of the box

as observed in Figure 4.4(b). As the NS model simulations progress any slight

size inequalities between the two piles at the cell edges leads to one of the piles

growing and the other reducing in size. The configuration is observed in Figure

4.4(c) where grains begin to congregate nearest the right wall. The transferring

of grains from the smaller tilt to the larger tilt continues so that eventually one of

the piles becomes so large that it spans the entire width of the box. We observe

this after t = 11 s in Figure 4.4(d). We also notice that short columns of particles

a single grain in width form near both walls. This is an artefact of the low fluid

resolution and no-slip boundary conditions being insufficient to force particles in

this orientation apart.

Similar behaviour is observed when using the FS model in Figure 4.5. Here

the snapshots are taken at the same moments in real time as those from the NS

model (Figure 4.4). Again, two piles develop and compete for space within the

cell. Eventually one pile dominates and that ends up spanning the entire width

of the container.

The diagrams within Figures 4.4 and 4.5 are very similar despite being pro-

duced by two models with very different fluid resolutions and fluid-grain coupling

methods. The main difference we find in the figures is that there are no single

particle columns near the walls within the FS model.

The results obtained with the NS and FS models are in stark contrast to

those obtained when the SD model is used to couple the fluid and grain motion.

When using the SD model friction-driven convection leads to the grains forming

a domed surface in the box centre which slopes downwards towards the cell edges
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(a) (b) (c)

Fig. 4.6: Flow diagrams for 2500 water-immersed bronze particles shaken with

vibration parameters of f = 10 Hz and Γ = 2.0. Plots show the (a) grain motion,

(b) fluid motion and (c) combined granular and fluid motion for the Navier–Stokes

model simulations in the frame of reference of the vibrating cell. The cycle phase is

θ = 135◦ and the arrows show the distance the grains or fluid would move in 0.02

s. As a reference of scale the length of the cell is 20 mm.

(a) (b) (c)

Fig. 4.7: Flow diagrams for 2500 water-immersed bronze particles shaken with

vibration parameters of f = 10 Hz and Γ = 2.0. Plots show the (a) grain motion,

(b) fluid motion and (c) combined granular and fluid motion for the Navier–Stokes

model simulations in the frame of reference of the vibrating cell. The cycle phase is

θ = 225◦ and the arrows show the distance the grains or fluid would move in 0.02

s. As a reference of scale the length of the cell is 20 mm.

(Figure 4.1). In the NS and FS models there is substantially more grain motion

and instead the particles form tilts which span the width of the cell, as in Figures

4.4 and 4.5.

Figures 4.6, 4.7, 4.8 and 4.9 show vector plots of the granular flow, fluid flow

and combined granular and fluid motion once the tilt has been fully established

for the NS and FS models at two stages within the vibration cycle. Figure 4.6
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(a) (b) (c)

Fig. 4.8: Flow diagrams for 2500 water-immersed bronze particles shaken with

vibration parameters of f = 10 Hz and Γ = 2.0. Plots show the (a) grain motion,

(b) fluid motion and (c) combined granular and fluid motion for the Fluid Springs

model simulations in the frame of reference of the vibrating cell. The cycle phase is

θ = 135◦ and the arrows show the distance the grains or fluid would move in 0.02

s. As a reference of scale the length of the cell is 20 mm.

(a) (b) (c)

Fig. 4.9: Flow diagrams for 2500 water-immersed bronze particles shaken with

vibration parameters of f = 10 Hz and Γ = 2.0. Plots show the (a) grain motion,

(b) fluid motion and (c) combined granular and fluid motion for the Fluid Springs

model simulations in the frame of reference of the vibrating cell. The cycle phase is

θ = 225◦ and the arrows show the distance the grains or fluid would move in 0.02

s. As a reference of scale the length of the cell is 20 mm.

shows the flow within the cell at a phase angle of θ = 135◦, corresponding to the

point in the cycle when the grains are thrown and are moving upwards relative

to the container. Figure 4.7 shows the flow at θ = 225◦, when the grains are

are moving downwards relative to the container. Both of these figures have been

produced using the NS model. From left to right the figures show the granular

flow, the fluid flow and the combined granular and fluid flow. All the data has
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Granular (mm s−1) Fluid (mm s−1) Combined (mm s−1)

θ = 135◦
NS 49.8 44.0 34.6

FS 18.8 42.1 42.5

θ = 225◦
NS 84.4 62.8 25.4

FS 35.9 51.3 49.7

Table 4.4: Typical speeds of the grains, fluid and combined granular and fluid flow

at a position of x = 10 mm and y = 5 mm in the bed. The flows are obtained using

the Navier–Stokes and Fluid Springs model simulations.

been averaged over one second of real time. To obtain the combined granular and

fluid flow we perform a weighted sum of fluid velocities, v, and the grain velocity

data u at each fluid grid-point using the formula:

w = φv + (1 − φ)u, (4.7)

where w is the combined grain and fluid velocity and φ is the fluid porosity.

Similarly figures 4.8 and 4.9 show the flow vector fields for the FS model at

phase angles of θ = 135◦ and θ = 225◦ respectively. To obtain the three flow

vector fields we use a different process to that used to obtain the NS model flows.

This is because within the FS model the “fluid” flow contains information about

both the grains and fluid as wherever the particles overlap the lattice grid the

fluid and grain velocities converge. This is explained in detail in Section 2.5.2.

To obtain the grain velocities we search the fluid lattice in our simulations to

determine whether a grid point is occupied by a particle. When averaged one

obtains the granular flow vector field and, from the unoccupied lattice sites the

fluid flow vector field is obtained.

To compare the two models we also measure typical speeds within the grain

and fluid phases from each set of simulations. The measurements are taken half

way along the base and a quarter of the way up the cell so that the speeds are

determined within the bed at approximate coordinates of x = 10 mm and y = 5

mm. The results are shown in table 4.4.

Figures 4.6, 4.7, 4.8 and 4.9 show that there is good agreement between the

NS and FS models in both the thrown and landing phases of the cycle with
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only slight differences in some of the flow directions. Table 4.4 shows that the

granular flow in the NS model is approximately 2.5 times greater than those in

the FS model, while the fluid and combined flows are comparable.

We believe that these slight differences in the flow could arise because the NS

model essentially models the granular bed as a porous plug. Therefore as the

granular bed is thrown fluid passes through the grains to fill the void beneath.

Whereas, in the FS model the particle motion is imposed onto the fluid lattice.

This means that on the lattice sites not occupied by particles the fluid moves in

a similar direction to the particles.

Therefore convection is observed within both the NS and FS models. As

another test we use the models to measure the pressure underneath the bed

during the cycle.

Pressure Curves

Figures 4.10 and 4.11 plot the pressure drop ∆P across the bed at the bottom of

the cell against the phase angle θ. The pressure drop data is recorded once the

tilt is fully established and spans the entire box. The various curves correspond

to different positions along the cell base and are labelled as percentages of the

total cell width. The pressure curves are measured beginning on the side of the

box with the lowest bed height. The data is averaged over 100 vibration cycles.

In both Figures 4.10 and 4.11 the pressure drop across the bed, ∆P , is equal

to 0 Pa until the bed is thrown from the cell base. At this point an underpressure,

∆P < 0 Pa, develops as fluid is forced to flow through the bed to fill the gap

below. Later in the cycle as the bed falls, an overpressure, ∆P > 0 Pa, develops

as fluid passes upwards through the bed. This becomes stronger and peaks as the

bed lands, after which there is a sharp reduction in the pressure until ∆P = 0 Pa

is reached at the end of the vibration cycle. The different curves in Figures 4.10

and 4.11 show that, when moving along the base towards where the bed depth

is greatest, both the underpressure in the early part and the overpressure in the

later part of the cycle are greater than for the shallower part of the tilting bed.

Therefore we see that a pressure gradient develops along the cell base.

This pressure gradient may be predicted from Kroll’s model (1954) which
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Fig. 4.10: ∆P as a function of phase angle θ for vibration parameters of f = 10 Hz

and Γ = 2.0. The curves correspond to pressure measurements taken at different

points along the base (measured from the edge with lowest bed depth), i.e. 20%

along the base (solid-line), 40% (dotted-line), 60% (dashed-line) and 80% (dot-dash-

line). The fluid and grains were coupled using the Navier–Stokes model.

0 90 180 270 360
θ (degrees)

-400

-200

0

200

400

600

800

∆P
 (

Pa
)

20%
40%
60%
80%

Fig. 4.11: ∆P as a function of phase angle θ for vibration parameters of f = 10 Hz

and Γ = 2.0. The curves correspond to pressure measurements taken at different

points along the base (measured from the edge with lowest bed depth), i.e. 20%

along the base (solid-line), 40% (dotted-line), 60% (dashed-line) and 80% (dot-dash-

line). The fluid and grains were coupled using the Fluid Springs model.
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states that the pressure drop is proportional to the height of the bed and the

fluid velocity

∆P = Khv. (4.8)

The pressure gradient drives the fluid towards the deeper part of the bed early in

the vibration cycle and then towards the shallow part of the bed in the later part.

The fluid flow accelerates grains so that particles move towards the deeper part

of the bed in the early part of the cycle and then later when the flow reverses the

particles decelerate. Therefore the pressure gradient along the base drives the

convection and tilt creation. As soon as the bed surface is uneven fluid passes

through the bed region with least resistance, i.e. the shallower sections, and then

moves beneath the bed towards the region with greatest depth dragging grains

with it. The convective motion is self-enforcing because as the tilt becomes larger

the preferential paths through the shallower regions strengthen.

When comparing the pressure drop data in Figures 4.10 and 4.11, obtained

using the NS and FS models respectively, we observe that all of the corresponding

curves between the figures share approximately the same peak in the overpres-

sures. However, the lowest underpressures are only shared for the shallower parts

of the bed (20% and 40%) but not for deeper parts of the bed (60% and 80%)

where the NS model peaks are up to 50% greater than the FS model peaks. We

also notice that the shape of the curves are slightly different, with the FS model

curves peaking at a slightly later phase angle and then returning to zero slower

than in the NS model simulations. There is also a greater underpressure when

the bed lands within the FS model simulations.

We note that when the Modified Kroll (MK) model (described in section 2.3.1)

is used to determine the base pressure of the same system the peak overpressure

is ∆P = 912 Pa while the lowest underpressure is ∆P = −353 Pa. To calculate

these pressure peaks the average height of the bed, h = 8.74 mm, and average bed

porosity, φ = 0.45, were used. By studying the pressure curves in Figures 4.10

and 4.11 we see that the pressure peaks produced with the MK model are greater

than all of those produced by the NS and FS models. This suggests that the

fluid convection dramatically reduces the peak pressures produced within tilted

beds. The enhanced fluid flow through the shallower sections of the bed during
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bed motion substantially reduces the scale of the pressure drops across the deeper

parts of the bed.

Convection Parameter

We now study the effect of varying the vibrational parameters on the convection

parameter J for the NS and FS model respectively. Figures 4.12 and 4.13 plot the

convection parameter J against Γ for frequencies of f = 10, 20 and 30 Hz. The

convection parameter is plotted on a logarithmic scale as the convection varies

over a large range. The results obtained by the two microscopic fluid models are

very similar. Both models illustrate that for fixed f as Γ increases convection

increases also (moving along the curves in Figures 4.12 and 4.13). Additionally

the figures show that if Γ is fixed and the frequency is increased J is reduced

(moving between the curves in Figures 4.12 and 4.13). Comparing these results

to those obtained with the SD model in Figure 4.3 we observe that convection is

approximately 400–2000 times greater when using a microscopic fluid model.

4.4.1 Wall Friction

In this section the microscopic fluid models have shown that convection is greatly

influenced by the presence of a hydrostatic fluid as illustrated by comparing Fig-

ures 4.12 and 4.13 to Figure 4.3. We have also found that convection is strength-

ened if either Γ increases or f decreases. In Section 4.3 the same system was

simulated using the SD model and it was found that wall friction, µW , greatly

affected the total convection J . Figure 4.3 showed that as µW → 0 convection is

substantially reduced until eventually the only grain motion is through random

inter-grain interactions. We now perform similar tests using the microscopic fluid

models to see what affect varying the wall friction has on fluid convection J .

Figures 4.14 and 4.15 plot the convection parameter J against wall friction

µW when using the NS and FS models respectively. The cell is shaken with three

different vibration frequencies, f = 10, 20, and 30 Hz for a vibration amplitude

corresponding to Γ = 3.0. Figure 4.14 shows that for each frequency curve within

the NS model simulations the general trend is that J increases slowly as µW

increases, however, for much of the curves J remains reasonably constant. The
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Fig. 4.12: The convection parameter J as a function of Γ when using the Navier–

Stokes model to couple the fluid and grain interactions. The different lines corre-

spond to frequencies of f = 10 Hz (diamonds), f = 20 Hz (squares) and f = 30 Hz

(circles).
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Fig. 4.13: The convection parameter J as a function of Γ when using the Fluid

Springs model to couple the fluid and grain interactions. The different lines corre-

spond to frequencies of f = 10 Hz (diamonds), f = 20 Hz (squares) and f = 30 Hz

(circles).
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Fig. 4.14: The convection parameter J as a function of the wall friction µW when

2500 water-immersed bronze particles are shaken with a vibration amplitude cor-

responding to Γ = 3.0. The fluid and grain interactions are coupled using the

Navier–Stokes model. The different lines correspond to frequencies of f = 10 Hz

(diamonds), f = 20 Hz (squares) and f = 30 Hz (circles).
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Fig. 4.15: The convection parameter J as a function of the wall friction µW when

2500 water-immersed bronze particles are shaken with a vibration amplitude cor-

responding to Γ = 3.0. The fluid and grain interactions are coupled using the

Fluid Springs model. The different lines correspond to frequencies of f = 10 Hz

(diamonds), f = 20 Hz (squares) and f = 30 Hz (circles).



Chapter 4. Heap Formation 120

only anomalies are when µW = 0.0 for f = 20 Hz and 30 Hz where we find the

convection is significantly less.

Similar results are obtained to those in Figure 4.14 when using the FS model.

In Figure 4.15 we observe that the convection increases as wall friction increases

until µW = 0.4, at which point J peaks in the f = 20 Hz and f = 30 Hz curves.

After this point J reduces slightly as µW → 1.0. The convection when f = 10

Hz is roughly constant as µW is increased. Therefore, the f = 10 Hz curves are

approximately the same in both models, however, the f = 20 Hz and 30 Hz curves

are slightly different with the convection reducing in the FS model for friction

greater than µW > 0.4.

Overall Figures 4.3, 4.14 and 4.15 show that the effect of increasing µW on

the convection is very different when using microscopic fluid models to when the

SD model was used. Figure 4.3 showed that when using the SD model as µW

is reduced towards 0.0 convection decreases and the motion consists primarily of

random granular interactions. However, Figures 4.14 and 4.15 show that when

using a microscopic fluid model as µW is reduced towards 0.0 J reduces but there

is still a significant amount of convection. The amount of convection present

within the NS and FS models is still several magnitudes stronger than that found

in the SD model. Therefore convection is primarily a fluid-driven effect, which is

enhanced by the presence of some wall friction.

In the next section we test whether convection is affected by the presence of

the walls by simulating a fluid-immersed granular heap on a vibrating surface.

4.4.2 Heaps

In all the systems we have simulated so far the cells have had walls. Here we

test whether the convection process is affected by the removal of the walls. We

simulate 4000 water-immersed bronze particles within a large vibrating cell, with

periodic boundary conditions on the side walls so that any particles which exit

through one edge of the box reappear on the opposite edge. Similarly the fluid

velocity is periodic in space so that on opposite walls the fluid flow is equal:

v[0,y] = v[Lx,y] (4.9)
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and

v[x,0] = v[x,Ly]. (4.10)

Here Li is the length of the cell along the i–axis. The cell has cross-section

Lx×Ly = 32.7 mm×32.7 mm and height Lz = 9.8 mm. Compared to the tilting

simulations the horizontal cross-section of the container has been extended. This

is so that grains are no longer forced to remain in contact with the boundaries.

Instead the grains are able to form a heap in the middle of the cell base. The fluid

and grain interactions are modelled only with the FS model in this simulation.

Due to the difficulties of simulating large MAC grids, the axis along which

gravity and the cell oscillations are applied (z–axis) is reduced. This limits the

vibration amplitudes that are possible as a large Γ leads to grains coming into

contact with the top surface of the cell during flight. If the pile is thrown with too

much energy, the pile is destroyed upon landing. Therefore the box is vibrated

with a low vibration amplitude corresponding to Γ = 1.5. As the simulations are

very computer intensive the particles begin as a pile.

Figure 4.16 shows the evolution of the heap. The grains are initially dropped

from a lattice configuration into a small cell which sits in the centre of our large

cell. The cell is fluid-less and has an area a quarter of the size of the large cell.

This initial configuration is shown in Figure 4.16(a). Here the grains are falling

into the cell which sits in centre of the box. The walls of the cell are not shown

so that we may view the grains.

Once the grains have relaxed the cell walls are removed so that the grains

spread out within the large cell. This “invisible” cell enables us to begin the

simulation with a granular pile already formed. Once the grains have settled the

fluid drag forces and cell oscillations are initiated. Figure 4.16(b) shows that

at t = 0 s the majority of grains make up the bulk of a pile; however, there

are still many particles spread across the cell. As the cell is vibrated the pile

increases slightly in height and many of the loose grains are pulled towards the

pile. After t = 10 s there is a clear heap and only a few grains are not contained

within the pile, as shown in Figure 4.16(c). This behaviour is a result of fluid

being pulled upwards and then downwards through the bed as the granular pile is

thrown. The fluid motion leads to large convective cycles forming within the bed
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Fig. 4.16: Evolution of 4000 water-immersed bronze spheres of diameter 700 µm

shaken sinusoidally with vibration parameters of f = 10 Hz and Γ = 1.5. Only

the cell base is shown here for visual purposes and the fluid and grain interactions

are modelled using the Fluid Springs model. Figure (a) shows the grains as they

initially settle within an imaginary container. Figures (b) and (c) show the granular

heap at times t = 0 s and t = 10 s. The images on the left are a side-view of the

cell while the images on the right give a view of the cell from above.
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which strengthens the heap shape and height. As the granular heap is thrown

upwards there is significant resistance to the fluid passing through the pile to the

area beneath. The fluid experiences less resistance if it moves beneath the bed

from the heap edges. This motion drags loose grains inwards so that the pile is

strengthened and grows in height. As the bed lands the pile spreads out slightly

and the loose grains decelerate. After a while all of the grains are contained

within the pile and there is a clear heap boundary. These simulations reproduce

some of the early heaping phenomena observed by Faraday (1831).

4.5 Summary

We found in our SD model simulations the main driver of convection was wall

friction. However, when using a microscopic fluid model such as the NS or FS

models a granular tilt develops as a result of the fluid passing through the bed

region where it experiences least resistance. We found that “fluid-driven” convec-

tion occurred in the NS and FS model simulations regardless of the wall friction

µW . To check that the presence of walls did not influence convection we simu-

lated a granular pile in a wall-less cell which showed that a pile is maintained and

strengthened by the fluid-driven convection. We conclude that “Faraday tilting”

is a fluid-driven effect that may be strengthened by the presence of wall friction.

When studying the “Faraday tilting” effect the NS and FS models give similar

results and are very comparable. However, for ease of use and speed the NS model

is preferred. We note that the FS model was able to capture all of the behaviour of

the tilting simulations that the NS model captured despite not using any empirical

bed equations to couple the fluid and grain motion. The FS model also did not

have any noticeable boundary effects which we saw in the NS model simulations

which manifested itself in unrealistic particle columns at the wall edges.
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Partition Instability

Under a wide range of conditions a system of fluid-immersed fine grains within

a vibrated partitioned cell will transfer in their entirety into just one of the

segments through a linking channel at the cell base. In this chapter we perform a

thorough experimental and numerical study of the “partition instability” in order

to understand the mechanism for this behaviour. Numerical simulations are first

carried out using the Navier–Stokes model which incorporates a bed equation

to couple the fluid and grain motion and then later simulations using the Fluid

Springs model are undertaken. At the end of the chapter an analytical approach

is proposed to model the fluid-driven partition instability based on two coupled

granular beds vibrated within an incompressible fluid.

5.1 Introduction

It is commonly observed that a system of grains under vertical vibration exhibits

spatial instabilities (van der Weele 2008). In particular grains held in a space

which is partitioned into segments linked by connecting holes may move into

just one segment, the phenomenon of the “partition instability” (Akiyama and

Shinomura 1991; Akiyama and Shinomura 1993; Akiyama et al. 2001; Chen and

Wei 1998; Eggers 1999; Maeno 1996; van der Meer et al. 2002; Ohtsuki et al.

1998; van der Weele et al. 2001). There are a number of quite distinct physical

mechanisms leading to this behaviour.

The inelastic nature of granular materials has been shown to provide a mecha-

124
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nism for the partition instability (Eggers 1999). Within a collection of kinetically

active grains, dense regions will experience frequent dissipative collisions and

the grains there will lose energy more rapidly than those in less dense regions.

The system will spontaneously condense in the more dense regions which become

even more dense as they rapidly lose energy. This is the phenomenon of inelastic

collapse (Goldhirsch and Zanetti 1993; McNamara and Young 1994). Related

behaviour of this type is dramatically displayed by grains held in a vertically

vibrated box which is divided by a vertical partition either of finite height or

containing a small elevated hole (Eggers 1999; van der Meer et al. 2002; van der

Weele et al. 2001). If there are more grains on one side of the partition, then

those grains will experience greater dissipation and be less kinetically active; they

will bounce less high than those on the other side of the partition where there are

fewer grains. This disparity in kinetic activity may cause a net flow of grains over

the partition, or through the hole, from the minority side to the majority side.

Under suitable conditions of vibration all of the grains may move to one side of

the partition (Eggers 1999; van der Meer et al. 2002; van der Weele et al. 2001).

For an illustration of Eggers’ collapse see Figure 5.1. Similar behaviour has also

been observed within vibrated granular mixtures. Furthermore, for particular

vibratory conditions, this instability may lead to periodic oscillatory motion of

the grains from one side to the other (Hou et al. 2008; Lambiotte et al. 2005;

Viridi et al. 2006).

In this chapter we study a second mechanism which can give rise to a spatial

instability, namely, the interaction between fine grains and a background fluid.

This process may be illustrated for a fluid-immersed granular bed within a ver-

tically vibrating partitioned cell with two connecting holes, one at the top and

one at the bottom of the cell. Under vibration the granular bed spontaneously

moves into just one of the segments via a gradual transfer of grains through the

connecting hole at the base of the cell.

Ohtsuki et al. (1998) studied one such system consisting of fine grains in

air vibrated within a partitioned cell. They observed that the presence of air

influences the height difference between the beds on either side of the cell. Chen

and Wei (1998) have suggested that this height difference may be due to the air-
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Fig. 5.1: Schematic illustration of inelastic collapse experiments performed by Eg-

gers (1999). Here a vertically vibrated cell is partitioned into two equal sized seg-

ments with a small hole connecting the two halves. Grains, represented here as

black dots, initially begin equally distributed between the two columns. When vi-

brated dense regions will experience frequent inelastic collisions and will lose energy

more rapidly than less dense regions. As a result the granular temperature within

the dense regions reduces and these grains will spontaneously condense. Inelastic

collapse follows as the granular temperature of the dense regions reduces so that

they become even denser. Depending on where the hole in the partition is situated

it is possible for all the grains to eventually occupy just one column.

driven mechanism of Pak et al. (1995), used to explain Faraday heaping (1831).

Akiyama et al. (1991) have carried out a detailed study of the influence of air

on the behaviour of vertically vibrated grains in a symmetrically partitioned box.

Unfortunately, the granular convection allowed by their wide box dimensions may

well have contributed to the complex phenomena which they observed.

Here, we present an experimental and computational study of a water-immersed

bed of barium titanate spheres vibrated within a partitioned cell in which the two

identical columns are linked by two holes, one at the base and, importantly, a

further hole in the partition, positioned well above the grains to allow fluid cir-

culation. The two columns are of restricted horizontal dimensions to reduce the

effects of tilting and of convection currents. Over a range of frequencies and am-

plitudes of vibration we observe that the granular bed spontaneously moves into

one of the columns, so that few grains occupy the opposing column.
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The use of a fluid such as water offers a number of advantages for investigating

partition instabilities. Firstly, water enables larger particles to be used, making

the observation of the granular dynamics considerably simpler than for air. For

non-turbulent fluid flow, the effects of fluid drag on the granular dynamics scale

approximately as ρgd
2/η , where ρg is the density of the granular material, d is

the grain diameter and η is the dynamic viscosity of the surrounding fluid (Leaper

et al. 2005). This expression is a measure of the dissipation of fluid velocity and

must be matched between different systems to ensure the acceleration affects are

similar. At 20oC, water is about 50 times more viscous than air. This suggests

that similar effects may be observed in water for particles ∼7 times larger in

diameter than for the equivalent behaviour exhibited by fine particles in air.

The increased damping provided by a liquid such as water (Gondret et al.

2002) reduces the granular temperature of a thrown bed maintaining the poros-

ity, φ, closer to the value appropriate to a random packing of spheres. This

makes comparison with the theory which we will develop later more straightfor-

ward than would be the case for a fluid such as air. Finally, the use of water

eliminates the effects of static electricity which often slow and otherwise modify

the dynamics of dry granular systems when they are shaken vigorously for long

periods, particularly within an insulating box (Leaper et al. 2005).

Our studies begin with observations of the “partition instability” within ex-

periments.

5.2 Experimental Methods

All of our experiments were performed in collaboration with Hector Pacheco-

Martinez, who is also studying within Nottingham University’s Granular Dy-

namics Group. To conduct the experiments a water-tight partitioned cell was

constructed from PMMA, a cross-section of which is shown schematically in Fig-

ure 5.2. The cell is divided into two columns of identical dimensions by a central

partition, each column being 90 mm high and 10 mm×10 mm in horizontal cross

section. The columns are linked by a gap at the bottom of the central partition,

spanning the depth of the cell from front to back. The gap is 4 mm high and 10
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Fig. 5.2: Schematic representation of experimental setup. The partition cell is fixed

to a stand which is screwed onto a pair of vibrating loudspeakers. The granular bed

is shown as a shaded region within the cell, while the bungs, which ensure that no

air bubbles enter the cell, are highlighted at the top of the cell. The values of the

cell dimensions highlighted here are given in table 5.1.

mm in depth while the partition is 2 mm thick. A further substantial 7 mm gap

spanning the depth of the cell at the top of the partition allows the free flow of

fluid between the two columns in a region above the grains.

The experiments have been performed using spherical barium titanate grains

of density 4500 kg m−3 and diameters spanning the range 600–850 µm to avoid

gross crystallisation effects. The grains are inserted into the cell through one of

two upper holes. The cell is then filled with water of density 1000 kg m−3 and

viscosity η = 8.91×10−4 kg m−1 s−1, which has been pumped prior to experiments

to remove dissolved air. The cell is shaken to release any air bubbles trapped

within the grains and then refilled and sealed. The total number of grains is

such that h1 + h2 = 40 mm and they are distributed between the two columns so

that the beds are given an initial height difference of h2 − h1 = 4 mm. Here hi

is the height of the granular bed within column i, as shown in Figure 5.2. The

experimental parameters are summarised in table 5.1.

During experiments the cell is vibrated sinusoidally with frequency f on a
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Parameter V alue

Particle density 4500 kg m−3

Particle diameter 600–850 µm

Total bed height h1 + h2 40 mm

Fluid density ρ 1000 kg m−3

Dynamic viscosity η 8.91×10−4 kg m−1 s−1

Cell size (x–axis) Wcell 22 mm

Cell size (y–axis) 10 mm

Cell size (z–axis) Hcell 90 mm

w1 10 mm

w2 2 mm

hg1 4 mm

hg2 4 mm

f 15 Hz

Γ 2.25–3.50

Table 5.1: Parameters for experimental partition system.

loudspeaker in a direction ±0.2o off vertical (Leaper et al. 2005). The motion

is monitored using cantilever capacitance accelerometers which display the di-

mensionless maximum acceleration Γ. A photograph of the experimental setup

illustrating how the partitioned cell is fixed to the speaker is shown in figure 5.3.

Vibration is applied and the height of the granular columns in the right and

left segments are studied as a function of the total time of vibration, the heights

being measured through the use of a high speed camera. This camera, usually

operated at 1000 frames per second, also allows the study of granular motion

within each cycle.
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Fig. 5.3: Photograph of experimental setup. Here the partitioned cell is screwed

to the loudspeaker. A signal generator (not seen here) produces a sinusoidal signal

of desired frequency and is fed into the loudspeaker via an amplifier. Above the

cell are the capacitance cantilever accelerometers, which monitor the vibrational

motion of the loudspeakers. The white wires connect the accelerometers to a digital

voltmeter which displays the maximum acceleration output in the form of Γ.
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Fig. 5.4: Snapshots from experiments illustrating the time-evolution of water-

immersed barium titanate particles of diameter 700 µm shaken within the par-

titioned cell for vibration parameters of f = 15 Hz and Γ = 2.5. Here the grains are

given a small initial difference in the heights. As the cell is vibrated the particles

migrate into the right-hand column.

5.3 Experimental Results

As the system is vibrated we find that over time the particles migrate through

the lower hole from the shallower bed into the taller bed. Eventually almost all

the grains occupy just one of the columns, with only a small percentage of grains

inhabiting the gap and the base of the opposite column. Figure 5.4 illustrates

this motion within the partitioned cell for vibration parameters of f = 15 Hz and

Γ = 2.5. By analysing footage from a high speed camera we have observed in

detail the motion of grains between columns within each cycle. In the first part

of the cycle the grains are thrown and particles are drawn from the shallower to

the deeper bed whilst both beds are in flight. In the second part of the cycle

as the two beds land a smaller number of particles are forced back towards the

shallower bed. On average we find that the motion of grains is greater during

flight than on landing, thus the particles gradually migrate from the shallower

to the deeper granular bed. Eventually the flow of grains moving backwards and

forwards between the columns evens out so that there is no net granular movement

over the vibration cycle and the system is said to be in “dynamic equilibrium”.

This means that, over the course of one cycle, the grains move from the shallower

towards the deeper granular bed at the same rate as particles move from the

deeper to the shallower bed. Thus if we were to take a snapshot of the system once
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Fig. 5.5: The variation in height difference ∆h as a function of time for a system

of barium titanate grains fully immersed in water. The cell was vibrated at f = 15

Hz and vibration amplitudes corresponding to, from right to left, Γ = 2.25 (circles),

Γ = 2.50 (squares), Γ = 3.00 (triangles) and Γ = 3.50 (diamonds). The inset shows

that the data can be collapsed onto a single curve, as described in the text.

each cycle the overall arrangement of the granular beds would appear unchanged,

however, the motion of grains within each cycle may still be substantial.

We define ∆h = |h1−h2| as the magnitude of the difference in height between

the two granular columns. Figure 5.5 plots ∆h against time, t, for water-immersed

barium titanate vibrated at f = 15 Hz with vibrational accelerations in the range

Γ = 2.25–3.50. The error bars were obtained from averaging the data sets over 10

independent runs. Figure 5.5 shows that the transfer of grains into the deeper bed

initially accelerates as ∆h increases and then continues at an almost constant rate

until nearly all the grains are in the deeper bed. Subsequently the net transfer of

grains decelerates until a steady state is reached in which a small number of grains

move backwards and forwards between the two columns. The last experimental

points plotted are at ∆h = 32 mm as beyond this point the results become erratic

and difficult to measure.

Unsurprisingly as Γ is increased the total time taken for the grains to migrate

into one column reduces due to the increased amount of mechanical energy within

the beds driving the grain transfer process. The inset to Figure 5.5 shows that
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the data for different values of Γ can be collapsed onto a single curve when plotted

against a rescaled time t/τ , where τ = 100Γ−2.6 s. This strong dependence on

Γ results from the non-linear flight dynamics of the bed within the fluid and the

variation of bed porosity with vibratory conditions.

We note that, when experiments are performed with the gap through the

partition at the top of the cell sealed, there is no transfer of grains from the

shallower to the deeper granular bed. In fact if vibrated for a long period of time

the granular beds then end up of equal height.

5.4 Simulations

To gain insight into the physical mechanisms which lead to the instability for-

mation, and in order to be able to study features not readily accessible from

experiment, we have also carried out numerical simulations. Initially we tried to

simulate the partition instability using a particle fluid model in which the grains

operate in a MD framework, the fluid motion is governed by the Navier–Stokes

equations and the fluid particle coupling is introduced through the use of an em-

pirical bed equation (Kuipers et al. 1993). Models of this type have been used

effectively to simulate Faraday tilting (see Chapter 4) and the separation of a bi-

nary mixture (van Gerner et al. 2007; Milburn et al. 2005). Using these models

we were able to simulate the partition instability, but as we see in Section 5.4.1

we were unable to obtain agreement with certain aspects of our experimental

results. As a result for the majority of this chapter we employ an alternative

simulation approach, the Fluid Springs (FS) model, which is described in detail

in Section 2.5.2. This model uses a fluid grid lattice small in scale compared to

the size of the particles and does not use bed equations to couple the fluid and

grain interactions.

Within this section we present results obtained using the Navier–Stokes (NS)

model and show the limitations of using an approach based on bed equations.

We then present simulation results for the same system using the FS model. In

the last part of the section we compare the use of the NS and FS models when

simulating the Partition Instability.
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Parameter V alue

Number of particles 2700

Particle density 4500 kg m−3

Particle diameter 600–850 µm

Young modulus E 6.7×1010 kg m−1 s−2

Poisson ratio σ 0.30

µ, µW 0.52

Total bed height h1 + h2 40 mm

Fluid density ρ 1000 kg m−3

Dynamic viscosity η 1×10−3 kg m−1 s−1

Lattice spacing ∆ 2 mm

Cell size (y–axis) 2.5 mm

∆t 10−5 s

f 15 Hz

Γ 2.25–3.50

Table 5.2: Parameters for the partition instability simulations when using the

Navier–Stokes model. The cell parameters are the same as those found in table

5.1 except for the “front to back” cell depth along the y–axis.

5.4.1 Navier–Stokes Model

We begin by using the NS model to simulate a two column system similar to the

experimental setup described in section 5.2. Each column has the same width

and height as in experiment, 10 mm and 90 mm respectively, while the depth

of the cell is reduced to 2.5 mm for computational speed. The connecting gaps

between the two columns at the base and top of the cell both have a width of

2 mm and respective heights of 4 mm and 7 mm. We use 2700 barium titanate

particles of density ρg = 4500 kg m−3 and diameters in the range 600–850 µm to

prevent crystallisation. The particles are distributed throughout the partitioned

cell and then allowed to settle under the influence of gravity. As the grains settle

the cell is not vibrated and the particles do not experience any fluid drag forces.

At rest the total height of both columns is 40 mm and as with the experimental
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system the initial height difference is set to h2 − h1 = 4 mm. The cell is vibrated

sinusoidally at f = 15 Hz over several Γ values.

The particle interactions are modelled using the Damped Hertzian (DH) model

described in section 2.1.1. The DH model best replicates the contact forces ex-

perienced by real particle interactions. This is important within the partition

instability simulations as the effect on the dynamics and overall timescales of

the grain “hardness” can be significant. Coulomb friction between particles is

also included. Here the coefficient of friction µ was chosen to be 0.52 which was

determined experimentally from angle of repose measurements.

The fluid and grain coupling interactions are modelled using Di Felice’s em-

pirical bed equation (1994), given in equation 2.74 by:

−∇P =
3

4

(1 − φ) ρCd

φd
φ−χ|V0|V0. (5.1)

Here φ is the bed porosity, d is the average particle diameter, Cd is the fluid

drag coefficient, χ is a flow dependent variable and V0 is the superficial fluid

velocity through the bed (for more information see section 2.4.4). Di Felice’s

bed equation is an empirical fit to the pressure drop experienced by steady flow

through a porous granular bed in both low and high porosity regimes. The

simulation parameters are given in table 5.2, while the cell dimensions in table

5.1, apart from the y–axis length, are still relevant.

Figure 5.6 plots ∆h against time t when the water-immersed barium titanate

particles are vibrated at f = 15 Hz for four vibrational accelerations in the range

Γ = 2.25–3.50. The plot shows that as the partition cell is vibrated the grains

move towards the bed of greater depth until virtually all the grains occupy just

one of the cell columns. The rate of grain transfer increases with ∆h in an

exponential-like manner until the grains abruptly reach equilibrium at ∆h ≈ 40

mm. As was observed in experiments Figure 5.6 shows that as Γ is increased

the total time that the system takes to reach equilibrium decreases. In the early

stages of the simulation the Γ curves are almost indistinguishable. This means

that once the grains have transfered into one column the total span of the curves

is very low.

These characteristics are very different to the experimental results in Figure

5.5 where the grain transfer process initially accelerated and then proceeded lin-
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Fig. 5.6: The height difference ∆h plotted against time t for 2700 water-immersed

barium titanate particles vibrated in a partitioned cell at f = 15Hz for Γ in range

of 2.25–3.50. Fluid grain interactions are modelled using the Navier–Stokes model.

early before slowing at the end. Despite both the experiments and the NS model

simulations accelerating with increasing ∆h the shape of the curves are markedly

different. In the simulations we find that ∆h reaches equilibrium very abruptly,

with little slowing in the grain transfer process while in experiments ∆h increases

linearly until ∆h ≈ 32 mm after which it slows more steadily towards equilib-

rium. We also find that within experiments the curves are more distinguishable

and span a greater amount of time.

We find that the NS model simulations are unable to accurately model the

dynamics of the partition instability. This is because the fluid and grains are

coupled using bed equations which are empirical fits to experimental data for

steady fluid flow passing through a porous granular bed. They were not developed

to model oscillatory fluid flow through systems of complex geometries. We have

observed that the NS model is unable to model the fluid and grain flow within

the lower channel in a realistic manner. Instead we find that the granular beds

in each column behave independently. The majority of grain motion is in the

vertical direction and large gaps appear beneath each bed with little horizontal

motion through the gap. This is very different to experiments where hardly

any gap develops beneath the granular bed during flight and there is significant
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Parameter V alue

Number of particles 2700

Particle density 4500 kg m−3

Particle diameter 600–850 µm

Young modulus E 6.7×1010 kg m−1 s−2

Poisson ratio σ 0.30

µ, µW 0.52

Total bed height h1 + h2 40 mm

Fluid density ρ 1000 kg m−3

Dynamic viscosity η 10−3 kg m−1 s−1

Lattice spacing ∆ 120.83×10−6 m

Cell size (y–axis) 2.5 mm

nr 3

CS 1.8

∆t 1×10−4 s

f 15 Hz

Γ 2.25–3.50

Table 5.3: Parameters for the partition instability simulations when using the Fluid

Springs model. The cell parameters are the same as those found in table 5.1 except

for the “front to back” cell depth along the y–axis.

horizontal granular motion through the bottom channel. In experiments we find

that the grains firstly move towards the deeper bed and then, as the grains land,

towards the shorter bed so that the horizontal granular motion through the lower

channel is comparable to the vertical motion of the beds.

It is this partial coupling of the fluid and grains within the gap which ex-

plains why the behaviour of the NS model system in Figure 5.6 is so different to

the experimental data in Figure 5.5. This leads us to simulating the partition

instability using the FS model, which we do in the following section.
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(a) (b) (c)

Fig. 5.7: Snapshots from simulation showing the time evolution of 2700 water-

immersed barium titanate particles of diameter 600–850 µm vertically vibrated

within the partitioned cell at f = 15 Hz and Γ = 2.5. The timings are a) t = 0 s,

b) t = 10 s and c) t = 25 s.

5.4.2 Fluid Springs Model

We now simulate the partition instability using FS model simulations. In the

same way as we did for the NS model the particle interactions are modelled

within an MD framework using the DH collision model. The fluid is modelled

using the global equations for fluids, namely the Navier–Stokes equations. The

momentum transfer between the particles and fluid is modelled using the method

detailed in section 2.5.2. One requirement of the FS model is that the particles

are large in comparison to the fluid lattice grid. Thus the grid spacing ∆ is set to

120.83×10−6 m such that there are 6 lattice points across each particle diameter

and the radial reference point density is nr = 3. As in the NS model the particles

are initially distributed throughout the partitioned cell which is held stationary as

the grains are allowed to settle under the influence of gravity. Once the particles

are settled on the base of the partitioned cell the vibrations begin. The simulation

parameters are summarised in table 5.3, while the cell dimensions may be found

in table 5.1 except for the “front to back” cell depth which was again reduced to

2.5 mm.

Figure 5.7 shows the evolution of the partition instability for Γ = 2.5 at times
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Fig. 5.8: Variation of ∆h with time, t at f = 15 Hz. Solid curves from right to left

are for Γ = 2.25, 2.5, 3.0 and 3.5. The experimental data has also been plotted for

comparison.

of t = 0 s, 10 s and 25 s. The columns are given an initial height difference of

∆h = 4 mm as in experiments. At t = 10 s the grains have appreciably transfered

into the right hand column and by t = 25 s almost all of the grains in the left

hand column have moved through the gap in the base into the right hand column.

At this point the columns are in dynamic equilibrium.

Figure 5.8 plots ∆h against time for vibration parameters f = 15 Hz and

Γ = 2.25, 2.50, 3.00, 3.50 for the FS model simulations. We have also included

the results from experiments within the figure. Here we see that the agreement

between simulation and the experimental results is very good, except at the lowest

value of Γ used, 2.25. For this value of Γ the agreement is not as good, which

we believe is due to the fact that in the experiments the barium titanate grains

are slightly non-spherical and tend to jam within the gap. At low Γ there is not

enough agitation to maintain the smooth flow of grains found at higher Γ. Figure

5.8 also shows how as Γ is increased the time taken to reach the equilibrium

height reduces as was the case in experiments.

In the next section we briefly study the main differences observed when the

NS and FS models simulate the partition instability.



Chapter 5. Partition Instability 140

5.4.3 Comparison between Microscopic Fluid Models

In this section we compare simulation results obtained using the NS and FS mod-

els. Figure 5.8 showed that we are able to achieve excellent agreement between

the FS model and the experiments. However, earlier in Figure 5.6 we saw that the

NS model failed to capture the qualitative behaviour of the partition instability

observed in experiments. We propose that this is because the NS model is unable

to capture the fluid-grain coupling behaviour within the gap.

In Figure 5.9 we show the granular motion within the partition instability at

four points within the vibration cycle; θ = 0◦, 90◦, 180◦ and 270◦. Here, the

granular beds within the NS model are thrown significantly higher than the beds

in the FS model. The behaviour of the granular beds when using the FS model

simulations agrees better with what has been observed within experiments, where

very little gap develops beneath the coupled beds during flight. No figure of the

experiment has been included due to the quality of images achieved with the high

speed camera.

Given the good agreement between the FS model simulations and experi-

ments we will now use simulations alone to investigate in detail the instability

mechanism. In the next section we study flow data through the columns and

the connecting channel to develop our understanding of the partition instability

effect.

5.5 Flow Graphs

Within this section we investigate the partition mechanism through data obtained

from the FS model simulations. Figures 5.10 and 5.11 compare the granular flow

within each column and the fluid flow within each column respectively. Both

figures show data for one cycle of vibration after t = 1 s for vibrational parameters

f = 15 Hz and Γ = 2.5. In these figures a positive value of the flow means that

the fluid or grains were flowing upwards through the column.

Figure 5.10 shows that grains within each column experience upward motion in

the early part of the cycle and then downward motion in the later part. The grains

within the shallow bed are thrown upwards with a much smaller velocity than
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Fig. 5.9: One cycle of vibration for the granular bed within the partitioned cell

when shaken with vibration parameters of f = 15 Hz and Γ = 2.5. The bed on

the left was modelled using the Fluid Springs model while the bed on the right was

modelled using the Navier–Stokes model. The figures correspond to (a) θ = 0◦, (b)

θ = 90◦, (c) θ = 180◦ and (d) θ = 270◦.
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Fig. 5.10: The grain velocities within each column plotted against the phase angle

θ. The data shows a vibration cycle after t = 1 s when shaken with vibration

parameters of f = 15 Hz and Γ = 2.5. The simulations were performed using Fluid

Springs model.
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Fig. 5.11: The fluid velocities within each column plotted against the phase angle

θ. The data shows a vibration cycle after t = 1 s for vibration parameters f = 15

Hz and Γ = 2.5. The simulations were performed using Fluid Springs model.
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Fig. 5.12: The fluid and grain velocities through the lower connecting channel within

the partitioned cell plotted against the cycle phase. The data shows the vibration

cycle at t = 1 s for vibration parameters f = 15 Hz and Γ = 2.5.

those within the deeper column. Both beds decelerate during flight, however, the

shallower bed decelerates at an earlier stage than the deeper bed. This leads to

the shallower bed falling and landing before the deeper bed. As the shallower bed

lands it experiences a sharp upward acceleration in the grain motion at θ ≈ 240◦.

This corresponds to the moment the deep bed lands and pushes grains through

the gap back towards the shallower bed. The average velocity remains negative,

however, as the majority of grains are still falling. The granular motion towards

the shallow bed occurs as the deep bed collapses. As the deep bed motion slows

rapidly the shallow bed is able to resume its falling motion. Figure 5.10 shows

that the average downward granular motion continues despite the beds having

already landed (after θ = 270◦). This corresponds to the beds expanding during

flight and taking time to land.

The motion of the beds may be explained by interpreting Figure 5.11 which

follows the motion of the fluid within each column over the course of a cycle. Here

we see the fluid flows through the shallow column with similar behaviour to what

was observed within a single column thrown bed system (see Section 3.2). In

the early part of the cycle the bed is thrown upwards and fluid flows downwards

through the bed. Later in the cycle the bed falls and fluid flows upwards through
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Fig. 5.13: The fluid flow velocity through the upper connecting channels plotted

against the phase angle θ. The data shows a vibration cycle after t = 1 s for

vibration parameters of f = 15 Hz and Γ = 2.5.

the bed to occupy the space above. This is in contrast to the fluid flow observed

within the column containing the deep bed. Here the fluid flows in the opposite

direction to the fluid within the shallow column. Instead we find that the fluid

flow in the deeper bed column moves in the same direction as the deep granular

beds. Therefore as the beds are thrown the fluid exerts a greater amount of drag

on the shallower bed than on the deeper bed. Hence, the shallower bed is not

thrown as high and lands before the deep bed as observed in Figure 5.10.

Figure 5.12 shows the flow of the fluid and grains through the bottom con-

necting channel over the course of a cycle early in the transfer process. In this

graph a positive value indicates flow towards the deep bed. In the early part

of the cycle as the beds are thrown both the fluid and grains flow towards the

deep bed. In the later part of the cycle, as both beds land, the fluid and grains

accelerate sharply towards the shallow bed. Over the course of a vibrational cycle

the granular flow is approximately proportional to the fluid flow. We also notice

that in the early part of the cycle the grain motion slightly lags that of the fluid

as the grains are accelerated by the fluid flow.

Finally, we plot the fluid flow through the upper connecting channels over the

course of a cycle after t = 1s. This flow is shown in Figure 5.13. As with earlier
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figures a positive value in this graph indicates flow towards the deep bed. The

flow through the upper channel is made up entirely of fluid. In the early part of

the cycle the flow in the upper connecting channel moves towards the deep bed.

As the beds are thrown, fluid in the upper channel is drawn towards the shallow

bed. Later in the cycle, as the beds land the fluid then moves towards the deeper

column. We note that if the top channel is sealed then there is no transfer of

grains through the lower channel. This shows that the fluid flow through the top

hole is significant within the transfer process.

5.6 Instability Mechanism

We now consider the possible mechanism for the partition instability. Two lim-

iting cases can readily be described. In the first, the resistance to fluid flow

through the bottom gap far exceeds that through either bed. Under vibration

each granular column is thrown independently and will develop an under-pressure

proportional to its height. The pressure drop under the deeper bed early in flight

will be greater than beneath the shallower bed causing grains to move in the

direction of the deeper bed. Later in flight the changing pressure reduces the

particles’ velocities but is not sufficient to reverse the direction of grain motion.

A second possibility is that the coupling between the two columns is such that

the resistance to fluid flow through the lower hole is far less than that through

either bed. Both columns experience a common under-pressure which can only

be achieved if more fluid flows through the shallower bed rather than through the

deeper bed. This fluid flow also transports grains towards the deeper granular

column.

In order to test which, if either, mechanism is dominant we determine from

simulation the pressure beneath each column for vibrational parameters f = 15

Hz and Γ = 2.5. Figures 5.14 (a) and (b) show the pressure drop ∆P across the

bed on each side of the partition at times t = 10 s and t = 30 s. The inset in

Figure 5.14 (a) shows the variation of h2/h1 with time t. The variation of pressure

throughout a cycle shows that ∆P is approximately the same on both sides of the

partition. For example, by t = 30 s the height ratio is h2/h1 ≈ 15 while the ratio
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Fig. 5.14: Under-pressure drop across the bed on each side of the partition plotted

against the phase angle θ for the deep column (solid-line) and the shallow column

(dashed-line) for vibration parameters f = 15Hz and Γ = 2.5. The top figure is at

t = 10 s and the bottom figure is at t = 30 s. The data was averaged over 5 cycles.

The insert in the top figure shows the height ratio h2/h1 against time, t.
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Fig. 5.15: Ratio of pressure drops, ∆P2/∆P1, as a function of the height ratios

h2/h1. The solid line is a guide to the eye.

of pressures on the two sides ∆P2/∆P1 is only 1.5. Furthermore, the pressure

curves throughout a cycle on either side of the partition can be scaled onto each

other. Figure 5.15 plots the ratio of pressure drops, ∆P2/∆P1, across each bed

against the ratio of the heights of the two bed depths, h2/h1, as grains move from

one column to the other. The figure shows that as h2/h1 increases ∆P2/∆P1 only

increases slowly and eventually levels at approximately 1.55 as h2/h1 reaches 21.

These results show that, for our experimental geometry, the resistance to fluid

flow through the bottom gap is low, the second scenario described previously. In

the next section we propose an analytical model based on the Kroll model which

captures this mechanism.

5.7 Coupled Column Kroll Model

In this section we propose a semi-analytical approach to model the transfer of

grains between two coupled columns, namely the Coupled Column Kroll model.

The approach we use is based on the numerical Kroll model described in section

2.3. We extend these ideas to the present experimental situation, that of two

coupled columns, an arrangement shown schematically in figure 5.16 where the

variables and parameters of the two columns are labelled 1 and 2.
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In essence the two granular beds are treated as independent porous beds which

interact when fluid flows between the columns through the bottom channel. The

resistance to the flow through the bottom channel is much smaller than through

either column so we may reasonably approximate that there is no resistance to

flow. In reality, however, the flow does experience a resistance due to the presence

of grains in the channel. As there is no resistance to flow in our analytical model

the pressure is equal across the base for the entire flight duration.

We suppose that the two beds experience under-pressures ∆P1 and ∆P2 when

in flight which may be related to the fluid flow through each bed such that we

have ∆P1 = h1K1v1 and ∆P2 = h2K2v2. Here vi is the fluid flow through column

i, defined as the volumetric flow rate per unit area and Ki is the permeability

of bed i. The permeability is a measure of the ability of a porous material to

transmit fluids. It is dependent on the size and shape of the particles and how

densely packed they are. The pressure ratio consequently satisfies

∆P2

∆P1
=
h2K2v2

h1K1v1
. (5.2)

As noted above this pressure ratio is approximately constant throughout the

transfer process. For simplicity we fix ∆P2/∆P1 = 1.0. Consequently the pressure

drop across each bed is proportional to its depth. The small variation of the

pressure ratio with height, shown in Figure 5.15, can be included in the analytical

model by using a best fit to the simulated data. However, such variation does

not significantly change the predicted dependence of ∆h on t.

Note that were the two columns to be connected by a long tube, this condition

would be replaced by ∆P2/∆P1 = h2/h1. In this limit the resistance to flow

through the gap is high and the two beds are assumed to be thrown independently.

During bed flight there will be a movement of fluid, at velocity v, through

the lower coupling hole. The fluid flow being driven by the different fluid flows

through each bed. No pressure resistance developes as the instantaneously moves

through the gap to no re For this motion to occur there must be a corresponding

flow through the upper hole, high in the partition. Using variables u1 = ż1 − żc

and u2 = ż2 − żc, conservation of fluid volume requires that

u1 + v1 = −Arv = −u2 − v2, (5.3)
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Fig. 5.16: Representation to illustrate how the pressure, the positions of the bed

and fluid velocities are defined within a two column system. Here vi are defined as

the superficial fluid velocities. The arrows show the direction of up and define our

instantaneous fluid direction, meaning flow can be in the opposite direction.

where Ar is the ratio of the cross-sectional areas of the channels to the lower

coupling hole. Applying Newton’s laws to the two beds as before we obtain

u̇1 + g = K ′

1v1 − z̈c (5.4)

and

u̇2 + g = K ′

2v2 − z̈c. (5.5)

While both beds are in flight Equations 5.2, 5.3, 5.4 and 5.5 may be solved to

find u1, u2, v1 and v2. Using these values, v may be obtained from Equation 5.3.

To solve these equations K ′

i was based on Ergun’s equation and obtained using

K ′

i(ui) =
180 (1 − φ) η

φ3ρgd2
+

1.75ρ

φ3ρgd
|ui|. (5.6)

It is found that the two strongly coupled beds do not follow the same flight

path and that one lands before the other. We suppose that grains only move

through the lower channel from one column to the other while both beds are in

flight. As a simple approximation we suppose that the velocity of grains through

the bottom gap u is obtained using

u = cvΓ (5.7)



Chapter 5. Partition Instability 150

0 5 10 15 20 25 30 35
Time (s)

0

5

10

15

20

25

30

35

∆h
 (

m
m

)

Γ=2.25
Γ=2.50
Γ=3.00
Γ=3.50

Fig. 5.17: The height difference ∆h plotted against t using experimental data and

results obtained with the Coupled Column Kroll model. The cell was vibrated at

f = 15 Hz and amplitudes in the range Γ = 2.25–3.50.

where c is a constant fitting parameter. The net transfer of grains during a cycle

is assumed to be proportional to the volume flow of fluid through the hole and

how strongly the bed is fluidised by the vibration. This assumption is reasonable

as Figure 5.12 demonstrates. This model has been implemented numerically.

Figure 5.17 shows a comparison between the experimental data and the Cou-

pled Column Kroll model. Here the single fitting parameter c has been chosen

to be 0.019. The analytical model provides a good fit to the experimental data.

However, it is unable to accurately capture the final stage of the grain transfer

when the rate begins to slow. As in experiment, the Coupled Column Kroll model

data can be collapsed onto a single curve by rescaling time by τ = 100Γ−2.6 s.

The analytical model enables us to better understand the mechanism which

drives the grain transfer. When the beds are thrown, an under-pressure develops

across the base of the cell and thus fluid flows downwards through the beds to

fill the space left beneath. The shallower bed provides less resistance to the

downward flowing fluid and thus fluid is drawn from the shallower side through

the hole to the deeper side. The fluid accelerates grains in the direction of the

flow, from the shallower to the deeper column. As the beds begin to fall in

the second half of the cycle an over-pressure develops beneath the beds and the
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fluid flow is reversed. Fluid is forced upwards through the beds to fill the void

above. Again the shallower bed provides less resistance to the upward moving

fluid so fluid now flows through the channel from the deeper bed to the shallower

bed. However, the shallower bed lands first, thus reducing the transfer of grains

back from the deeper bed. Over a cycle there is a net transfer of grains from the

shallower to the deeper column, hence the instability. The process is repeated and

accelerates as the increasing ∆h leads to less resistance to fluid flow through the

shallower column and greater resistance through the deeper column. Eventually

an equilibrium is established when as many grains move into the deeper column

in the early part of the cycle as move back into the shallower column when the

beds lands. At this stage the columns are in a dynamic equilibrium which usually

occurs when the vast majority of grains reside in one column only.

5.8 Summary

We have investigated the water-driven partition instability, in which grains trans-

fer from one side of a partitioned cell to the other through a lower connecting

hole. We observed the instability effect in experiments and then used simulations

which were able to accurately reproduce this process and provide insight into the

instability mechanism. The transfer of grains results from the greater flow of fluid

through the shallower column of grains as the beds are thrown by the vibration.

The behaviour can be captured by a two-column coupled Kroll model.

This research has also shown that the Fluid Springs model is able to simulate

systems of complex geometry with excellent accuracy. In the next chapter we use

the FS model to simulate a large intruder within a system of dense particles in

the fluid-enhanced Brazil nut effect.



Chapter 6

Fluid-Enhanced Brazil Nut Effect

A large dense intruder under suitable conditions will rise to the surface of a

granular bed when vibrated vertically, the Brazil nut effect. In this chapter we

study the fluid-enhanced Brazil nut effect in which the granular bed is immersed in

a fluid. We initially observe and study the effect within experiments. Simulations

are then used to reproduce the effect and study, in detail, the important fluid and

grain motion around the intruder which are responsible for the rising mechanism.

At the end of the chapter an analytical approach is proposed to model the rising

mechanism of the Brazil nut.

6.1 Introduction

A large heavy object, often referred to as an “intruder”, rises to the top of a bed of

smaller particles under the influence of vertical vibration in what is known as the

“Brazil nut effect” (BNE) (Harwood 1977; Williams 1976). Several competing

mechanisms have been proposed to explain this behaviour. In one, known as

“ratcheting” (Williams 1976; Bridgewater et al. 1969; Rosato et al. 1987), small

grains fall beneath the large particle as the vibrated bed expands. When the bed

settles to its rest state the intruder is elevated by these smaller particles which fell

beneath it. In a second mechanism, often referred to as “convection-driven”, the

entire granular bed moves in vertical convection rolls, with broad upward moving

regions at the centre of a shaken cell and narrow downward moving regions along

the edges (Rátkai 1976; Knight et al. 1993; Cooke et al. 1996; Poschel and

152
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Herrmann 1995; Gallas et al. 1996). In the convection-driven case, segregation

occurs because the larger intruder particle cannot re-enter the downward flow and

thus remains at the top of the bed. Both of these mechanisms tend to segregate

large particles above smaller ones.

More recently the effects of interstitial air have been investigated and shown

to dramatically influence the motion of the intruder through a fine granular bed

(Möbius et al. 2001; Naylor et al. 2003; Yan et al. 2003). Möbius et al. (2001)

showed that the presence of air strongly influences the rising of the intruder.

Naylor et al. (2003) demonstrated that not only the presence of air but also the

motion of air coupled to the granular bed plays a key role in the intruder’s be-

haviour. The effects of air pressure have been investigated by Yan et al. (2003).

A model to describe the air-driven BNE has been proposed (Möbius et al. 2005).

This model treats the fluid as being compressible and ignores any direct interac-

tion between the intruder and the bed during flight.

The influence of air on granular segregation has also been investigated both

in experiment (Burtally et al. 2002) and simulation (Biswas et al. 2003; Zeilstra

et al. 2008; Wylie et al. 2008). Under vertical vibration almost complete segrega-

tion occurs with one component rising to the top or forming a sandwich structure.

Similar effects have also been observed for larger grains in water (Leaper et al.

2005). Under horizontal vibration, where the role of gravity can be ignored,

segregation into a striped configuration occurs (Sánchez et al. 2004).

In all these cases the basic mechanism responsible for the BNE or segregation

is the fact that the fluid provides a differential drag force which influences the two

components differently. Indeed simulations which model the fluid as a drag force

are able to reproduce segregation and single particle rising effects (Biswas et al.

2003; Wylie et al. 2008; Sánchez et al. 2004). More sophisticated techniques in

which there is two-way coupling between the fluid and granular phases have also

been used to investigate segregation effects (Zeilstra et al. 2008).

In this chapter we describe experiments and simulations carried out to inves-

tigate the behaviour of a large intruder in a shallow bed of smaller particles held

in a vertically vibrated water-filled cell. We use the Fluid Springs model in which

the fluid is resolved on a scale smaller than the host particles. Our key finding is
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that the behaviour of the intruder is sensitive to the detailed fluid and particle

flow in its vicinity. The use of such a microscopic fluid model allows us to ac-

curately simulate the experimental system and to identify the principal physical

mechanism that causes the intruder to rise. To our knowledge, no simulations

of vibrated binary granular systems have been carried out in which the fluid is

resolved on a scale that is smaller than the smallest particles. Indeed if the same

system is simulated using the Simple Drag model in which the particle drag force

is based on a bed equation, this form of rising does not occur.

6.2 Experimental Methods

All of our experiments were performed in collaboration with Hector Pacheco-

Martinez, who is also studying within Nottingham University’s Granular Dy-

namics Group. The experiments are conducted in a water-tight cell constructed

from soda glass of dimensions 40 mm×10 mm in the horizontal plane and 43 mm

tall. The bulk of the granular bed is made up of host glass spheres of density 2500

kg m−3 with mean radii of 1 mm and a spread of sizes in the range 0.85–1.15 mm

to avoid gross crystallisation effects. We use a steel “Brazil nut” of density 7750

kg m−3 and radius 3.5 mm. The grains are inserted through one of two upper

holes in the box until the bed has a height of 26mm. The cell is then filled with

water of density 1000 kg m−3 and dynamic viscosity 1×10−3 kg m−1 s−1. The

cell is thin enough that we are able to view the steel intruder motion within the

bed through the front wall. As we did with the partition instability experiments

in section 5.2, the cell is shaken to remove any air bubbles trapped within the

granular bed. More water is then added and the cell is sealed using bungs so

that no visible air bubbles are contained within its volume. After each run the

cell is removed from the vibratory apparatus and the steel ball is returned to the

base of the cell. An image of the cell with the intruder half way up the bed is

shown in Figure 6.1. The use of such a cell geometry allows for easy viewing of

the intruder through the front glass surface.

During experiments the box is vibrated sinusoidally with frequency f in

a direction within ±0.2o of vertical in a manner which ensures accurate one-
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Fig. 6.1: Image of the experimental setup showing the water-filled cell, the glass

granular bed and the steel Brazil nut. The intruder is positioned half way up the

bed.

dimensional motion (Leaper et al. 2005). Again, as with the partition instability

experiments, the vibration is monitored using cantilever capacitance accelerome-

ters which display the dimensionless maximum acceleration Γ. The experiments

are monitored through the use of a high speed camera, which allows the study of

the intruder and surrounding granular motion within each cycle.

6.3 Experimental Results

Figure 6.2 illustrates how a steel Brazil nut rises through a fluid-immersed glass

bed when vibrated with parameters f = 15 Hz and Γ = 3.5. The intruder initially

begins on the cell base away from the front and back walls. On the application

of vertical sinusoidal vibration the intruder rises rapidly through the bed until it

eventually emerges through the bed surface. Once the Brazil nut reaches the top

of the bed it does not then re-enter the granular bulk. We note that the Brazil

nut remains away from the front and back walls during rising.

Figure 6.3 plots the gap between the lowest point of the intruder and the base

of the cell, H , against time, t, for vibration parameters f = 15 Hz and Γ = 3.5,

4.0 and 4.5. H was measured at the beginning of each cycle when there is no gap
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Fig. 6.2: Snapshots from experiments illustrating how a water-immersed steel Brazil

nut rises through a glass granular bed when vibrated with parameters f = 15 Hz

and Γ = 3.5. The intruder initially begins in the bottom of the bed away from the

wall and remains so while rising through the bed.

between the cell base and the bottom of the bed and the cell is moving upwards

with velocity żc = Aω. We define this position of the cell to correspond to a

phase angle θ = 0◦. The error bars were obtained from averaging the intruder

trajectories over five independent runs.

Figure 6.3 shows that under vibration the large intruder will rise through the

bed until it eventually breaks the bed surface. For all the vibratory conditions we

have investigated we find that the vertical motion of the Brazil nut accelerates as

it moves upwards through the bed. Figure 6.3 shows that as Γ is increased the

speed with which the intruder rises increases due to the greater amount of energy

input into the intruder and bed.

Under the vibratory conditions that we have investigated, there is very little

convective motion of the bed in the absence of the intruder. With the intruder

present, the upward motion of the Brazil nut drives two vertical convection rolls

within the cell. This shows that, in our system, the intruder does not rise due to

convective effects alone. We have also carried out experiments in the absence of

the liquid. We find that, under the same vibratory conditions, the bed is highly

fluidised and the intruder either rises slowly or remains within the bed. Clearly,

the presence of the liquid has a strong effect on the intruder’s behaviour.

We note that there is some dependence of intruder rise time on the position

in the cell between the front and back faces. Intruders that are in contact with

one of these faces rise typically about 15% faster than those initially positioned

in the middle. In our experiments we try to start with the intruder away from
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Fig. 6.3: Intruder gap H plotted against time, t, when vibrated vertically with

parameters f = 15 Hz and Γ = 3.5 (circles), Γ = 4.0 (diamonds) and 4.5 (squares).

The error bars correspond to the standard error calculated over five independent

trajectories.

these walls.

We now perform numerical simulations of the experimental system. This

allows us to obtain detailed information about the intruder mechanism that is

otherwise unattainable from experiments.

6.4 Simulations

In this section we perform simulations, firstly using the Fluid Springs (FS) model

and then using the Simple Drag (SD) model. These simulations attempt to re-

produce the results obtained within experiments. These models are described in

detail in Sections 2.5.2 and 2.4.1. We present results for particles that interact

through the Damped Hertzian (DH) contact forces described in detail in Section

2.1.1. We have observed that the total time taken by the steel intruder to rise

through the bed is greatly affected by the “hardness” of the spheres. Therefore we

use real particle properties to model the granular interactions accurately. Within

these collisions the damping parameter was chosen so that the coefficient of resti-

tution is 0.2 for relative impact velocity of 0.25 m s−1. However, we note that
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Parameter V alue

Number of particles 1350

Host density ρH 2500 kg m−3

Host Diameter dH 2 mm

Host Young modulus EH 7.02×1011 N m−2

Host Poisson ratio σH 0.24

Intruder density ρI 7750 kg m−3

Intruder diameter dI 7 mm

Intruder Young modulus EI 21.1×1011 N m−2

Intruder Poisson ratio σI 0.30

e 0.2

µ, µW 0.25

Fluid density ρ 1000 kg m−3

Dynamic viscosity η 10−3 kg m−1 s−1

Time-step ∆t 5×10−7 s

Cell size Lx (x–axis) 40 mm

Cell size Ly (y–axis) 10 mm

Cell size Lz (z–axis) 43 mm

f 15 Hz

Γ 3.5–4.5

Table 6.1: Parameters for Brazil nut simulations using the SD model.

the global behaviour is rather insensitive to this value due to lubrication effects,

which are captured by the Fluid Springs model as demonstrated in Section 2.8.

Tangential frictional forces between the grains themselves and between the

grains and the walls of the cell are also important to the BNE. Coulomb’s friction

between particles is also included using equation 2.3. Here the coefficient of

friction µ was chosen to be 0.25 between particles and between particles and

walls, a value that was found to best match simulation with experiment.

For both the FS and SD simulations we chose our parameters appropriate to

model a steel intruder vibrated in a water-immersed glass bed. We use a system
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Parameter V alue

Lattice spacing ∆ 3.33×10−4 m

Fluid time-step ∆t 1.0×10−4 s

Host Cs 0.6

Host nr 3

Intruder Cs 0.5

Intruder nr 10.5

Table 6.2: Parameters for Brazil nut simulations using the FS model. These are in

addition to those shown in Table 6.1.

of 1350 spherical glass particles of equal radii, rH = 1 mm, with a 10% variation

in size to avoid crystallisation. The steel intruder has radius rI = 3.5 mm. The

density of the host material is ρH = 2500 kg m−3 and the density of the intruder

is ρI = 7750 kg m−3. The water has a density ρ = 1000 kg m−3 and viscosity

η = 1 × 10−3 kg m−1 s−1. The cell used has the same dimensions as those used

in experiments.

To improve numerical efficiency within the FS model, we use time-steps of

5×10−7 s to resolve the particle motion and 1×10−4 s for the fluid motion. The

simulation parameters for the SD and FS models are summarised in tables 6.1

and 6.2 respectively.

The simulation arrangements are set up in a similar way for both coupling

techniques. The grains are randomly distributed throughout the cell and then

allowed to settle onto the cell base until completely at rest. The grains settle

under the influence of gravity only. In the FS model simulations the cell is then

shaken with fluid drag acting upon the particles so that transient effects may

be removed. During this time the large intruder is fixed to the cell base. After

one second of vibration the intruder is released from the cell base at a time

corresponding to a phase angle of θ = 0◦. The intruder is then allowed to rise

through the bed and data is recorded. Within both simulation models the cell is

vibrated at frequency f = 15Hz for vibration amplitudes corresponding to Γ =

3.5, 4.0 and 4.5.
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(a) (b)

(c) (d)

Fig. 6.4: A sequence of snapshots showing the time evolution of a large steel intruder

within a glass bed immersed in fluid and vibrated vertically at f = 15 Hz and

Γ = 3.5. The times, t, correspond to (a) 0 s, (b) 2 s, (c) 5 s and (d) 8 s.

6.4.1 Fluid Springs Model

Figure 6.4 shows the time-evolution of the large steel Brazil nut within the bed

of glass particles, simulated using the Fluid Springs model. The images show

vertical cross-sections through the centre of the bed. The bed is immersed in

a water-filled cell with the steel sphere initially positioned in the middle of the

cell base. The system is vibrated vertically at f = 15 Hz for Γ = 3.5. As the

system evolves the steel sphere moves upwards through the bed until eventually it

emerges through the bed surface. During the motion the intruder remains in the

bulk of the bed, away from the front and back walls. Once reaching the surface,

the particle remains there for timescales accessible to simulation.

Figure 6.5 shows the gap between the intruder’s lower surface and the cell

base, H , plotted against time, t, for vibration parameters f = 15 Hz and Γ = 3.5,

4.0 and 4.5. H is recorded at the beginning of each cycle of vibration when

θ = 0◦. The simulation data presented in Figure 6.5 was averaged over five

independent runs as in the experiments. Here we observe that the Brazil nut
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Fig. 6.5: Simulation results using the Fluid Springs model for the intruder gap H

as a function of time, t, for a steel intruder in a water-immersed glass bed. The

vibration parameters are f = 15 Hz and Γ = 3.5, 4.0 and 4.5. The error bars

show the standard error calculated from five independent trajectories. The lines

are polynomial fits to the corresponding experimental data, Figure 6.3, included

here for comparison.

rises upwards through the bed for all of the vibration amplitudes considered. As

in experiments, when Γ is increased the overall rise time of the intruder reduces.

Figure 6.5 shows that the simulation results give very good agreement with those

obtained in experiments.

We note that in the experiments, the rise times are sensitive to the cleanliness

of the granular bed. Consequently, the grains and cell were cleaned prior to

each experimental session. Similarly, the simulations are sensitive to the friction

parameter µ.

As was noted within experiments, the Brazil nut rises at a faster rate when

in contact with either the front or back cell wall. Figure 6.6 plots the gap, H ,

as a function of time, t, for the steel intruder when it is either fixed to the front

wall or fixed in a plane half way between the front and back cell walls. The error

bars again show the standard error calculated from five independent runs. Figure

6.6 shows that the Brazil nut rises considerably faster when fixed to the front

wall. This is because the glass grains within the granular bed are able to move
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Fig. 6.6: Simulation results for the intruder gap H as a function of time, t, for a

steel intruder fixed either on the front wall (squares) or half way between the front

and back walls (circles). The vibration parameters are f = 15 Hz and Γ = 3.5. The

error bars show the standard error calculated from five independent trajectories.

The system is simulated using the Fluid Springs model.

downwards past the large intruder easier when the intruder is fixed to the front

surface.

Figure 6.7 plots the normalised intruder position between the front and back

walls, ynorm, against time, t. We evaluate the normalised position using ynorm =

(yI − rI) / (Ly − 2rI), where yI is the position of the intruder within the cell along

the y–axis. Five runs are performed with the intruder initially positioned on the

front wall and five runs are performed with the intruder initially placed in the

centre of the cell base. The intruder trajectories have been plotted while the

intruder is contained within the bed. When the Brazil nut reaches the surface of

the bed we stop recording the intruder position as it is then free to move wherever

within the cell. In both instances we observe that the intruder does not move far

from its initial position. When the intruder begins on the front wall only once

does the Brazil nut move towards the middle. Similarly when initially positioned

in the middle of the cell the Brazil nut only once moves towards the front or back

wall, which occurs very near the surface of the bed. As in Figure 6.6 we observe

that the intruder emerges from the bed faster when initially positioned on the
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Fig. 6.7: Simulation results for the normalised position of the intruder between the

front and back walls, ynorm = (yI − rI) / (Ly − 2rI), as a function of time, t, for a

steel intruder in a water-immersed glass bed. The intruder is free to move within

the cell and is initially placed either on the front wall (dashed-lines) or half way

between the front and back walls (solid-lines). The vibration parameters are f = 15

Hz and Γ = 3.5. The system is simulated using the Fluid Springs model.

front wall. The movement of the intruder between the front and back walls may

contribute to the standard error obtained within experiments and simulations,

figures 6.3 and 6.4.

6.4.2 Simple Drag Model

The same system is now simulated using the SD model. This model couples the

particles to the surrounding fluid using a drag force which is applied explicitly

onto the particles in a manner which opposes the direction of motion of the

particles. The strength of the drag force is determined using Ergun’s empirical

bed equation, equation 2.70. Note that in models of this type the fluid influences

the particles, but the particles do not influence the fluid.

In these simulations we find that the Brazil nut does not rise from its initial

starting position for all of the vibration amplitudes we study. The main difference

between the FS and SD models is that, in the SD model, the fluid influences the

particles but the particles do not influence the fluid. This difference in behaviour
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suggests that the motion of the intruder is sensitive to details of the fluid flow.

The fluid and grain motion around the intruder will be discussed in the following

section.

6.4.3 Fluid-Enhancing Mechanism

Figure 6.8 shows the time-averaged fluid and granular flow around the Brazil nut

when in flight for vibration parameters f = 15 Hz and Γ = 3.5. The flows were

recorded once every vibration cycle at a phase angle of θ = 90◦. The results were

averaged over 101 cycles of vibration, the duration for which the intruder remains

within the bed.

Figure 6.8(a) shows the fluid flow while Figure 6.8(b) shows the corresponding

granular flow. Figure 6.8(a) shows that as the intruder is thrown fluid is forced

upwards and away from the space above the intruder while simultaneously be-

ing drawn towards the space beneath. Figure 6.8(b) shows that the grains are

strongly influenced by the fluid and follow a similar trajectory. In particular the

horizontal motion of the fluid below the intruder drags grains sideways eliminat-

ing any tendency for a void to develop beneath the intruder. It is this void-filling

ratcheting mechanism that is responsible for the fluid-enhanced BNE.

Note that the sideways motion of the glass grains is substantially reduced in

the SD model simulations because it is damped by the fluid as shown in Figure 6.9.

Here we observe that no grains move horizontally towards the gap that develops

beneath the intruder as it is thrown upwards. For this reason the intruder does

not rise when using the SD model for the parameters which we have used.

We now propose an analytical approach which may be solved numerically to

model the ascension of the Brazil nut.

6.5 Analytical Model

The connection between the Γ dependent rise times and the drag forces on the

intruder as a result of the fluid and granular bed can be described by a simple

analytical model. This model takes into account the interactions between the

bed, the intruder and fluid flow during each cycle and enables us to deduce the
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(a)
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Fig. 6.8: Average (a) fluid and (b) grain motion relative to the centre of mass of

the steel intruder using the Fluid Springs model. Both results were obtained at a

phase angle of θ = 90◦ when the granular bed is moving upwards relative to the cell.

The vibration parameters were f = 15 Hz and Γ = 3.5. The flows were averaged

over 101 vibration cycles, the time taken for the intruder to reach the surface. The

arrows in the centre of the Brazil nut shows the sphere velocity relative to the cell of

94 mm s−1 at this stage of the cycle. The magnitude of the fluid and grain velocity

vectors are drawn to the same scale.
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Fig. 6.9: Average grain motion relative to the centre of mass of the steel intruder

using the Simple Drag model. The results were obtained at a phase angle of θ = 90◦

when the granular bed was moving upwards relative to the cell. The vibration

parameters were f = 15 Hz and Γ = 3.5. The flow was averaged over 900 vibration

cycles. The arrow in the centre of the Brazil nut shows the sphere velocity relative

to the cell of 80 mm s−1 at this stage of the cycle. The magnitude of the grain

velocity vectors are drawn to the same scale.

net displacement of the intruder. Our model differs from that of Möbius et al.

(2005) as the fluid is treated as being incompressible and an explicit drag force

is included to model the intruder-grain interactions during flight.

The model can be considered in two parts: during the first part we describe

how we treat the granular bed and in the second part we describe how the Brazil

nut’s motion is coupled to that of the bed. Finally a quantitative comparison

between the analytical results and those obtained through experiments is given.

In our simple model the bed is treated as a fluid-immersed porous medium

which is thrown from the base during each vibration cycle; the trajectory is

calculated using Newton’s laws of motion. The intruder is modelled as a dense

object which is allowed to move vertically through the bed in both an upwards

and downwards direction.

If the glass granular bed and steel intruder are thrown independently from a

surface they follow the same trajectories. When the granular bed and intruder
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Fig. 6.10: Schematic diagram of a Brazil nut rising through a porous bed in a

vibrating cell.

are then immersed in a fluid and thrown from the same surface the granular bed

will land first as it experiences greater drag. The key finding of our simulations

was that grains fill gaps beneath the intruder as it is thrown due to the two-

dimensional fluid motion dragging grains into the gaps. To examine this motion

a microscopic fluid model was necessary, however, this effect may be modelled in

an analytical model by enforcing a condition so that gaps beneath and above the

intruder are always filled. Thus when the intruder is immersed in the granular bed

its flight is cut short and ends the moment the granular bed lands. This means

that in each cycle the intruder is elevated by a small amount as it is unable to

complete its trajectory. In addition a frictional drag force is applied explcitly on

the intruder to couple the Brazil nut motion to the bed.

A schematic representation of the intruder immersed in the granular bed is

shown in Figure 6.10. We now describe how the different parts of the model are

constructed in more detail.



Chapter 6. Fluid-Enhanced Brazil Nut Effect 168

Granular Bed

Despite the presence of the large intruder the granular bed is treated as a single

homogeneous porous medium which is made up of host particles of radii rH .

The bed is treated as being several orders of magnitude more massive than the

intruder so that any momentum transfer from the intruder to the bed is considered

to be negligible and can therefore be ignored. The granular bed is thrown and

lands within each vibration cycle, without dilation, according to Newton’s laws

of motion. The fluid is treated as incompressible with density ρ and dynamic

viscosity η so that as the cell is vibrated the bed lifts off from the cell base and

fluid flows through the bed to occupy the space beneath. As the bed lands fluid

flows in the opposite direction upwards through the bed providing drag to the

granular bed motion. We use the Modified Kroll model, described in Section

2.4.1, to model the flight of the bed. The equation of motion of the bed may be

given as

u̇

(

1 +
ρ(1 − φ)

ρHφ

)

+
ρH − ρ

ρH
(g + z̈c) + γu = 0, (6.1)

where u = ż − żc is the rate of change of the gap between the cell base and the

bottom edge of the porous bed. φ is the bed porosity, which for convenience is

fixed to be the random packing fraction of φ = 0.42. Although in simulations

there may be variations in the porosity with height we assume that these are small

and φ is uniform across the bed. g and z̈c are the accelerations due to gravity and

motion of the base, respectively. The drag parameter γ is related to the pressure

gradient across the bed ∇P through the equation γu = −∇P/(1 − φ)ρH . In our

model −∇P is determined using the empirical bed equation of Ergun

∇P =

[

37.5η (1 − φ)2

r2
Hφ

3
+

0.875ρ (1 − φ) |u|
rHφ3

]

u. (6.2)

Dense Intruder

The large intruder has density ρI and radius rI and is restricted to only move

upwards and downwards in a vertical direction within the bed. We have seen

already that as the intruder is thrown and falls within each vibration cycle it

drags host particles with it. Thus it is assumed that at the moment the granular

bed lands the intruder also lands, but in a slightly elevated position. In the
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simulations there is a small amount of downward penetration by the Brazil nut,

however, this motion is ignored in the analytical model as it is difficult to capture

accurately. The force within the analytical model is applied explicity to the Brazil

nut and its equation of motion in the vertical direction, relative to the box, may

be written in the general form

ρIVI
d2zI

dt2
= −(ρI − ρ)VI(g + z̈c) + Fd. (6.3)

Here MI is the intruder mass and Fd is the drag force on the intruder due to

presence of the fluid and the granular bed. The drag force is the sum of two

further forces, Fd = Ffluid + Fbed. Here Ffluid is the drag on the intruder due to

the presence of the fluid and Fbed is the drag due to the presence of the bed.

To determine the fluid drag on the intruder, Ffluid, a simple drag force of the

form seen in Section 2.4.1 is used:

Ffluid =
4
3
πrI

3 (−∇P )

1 − φ
. (6.4)

The pressure gradient across the bed is again obtained using Ergun’s empirical

bed equation 6.2. This is a similar force to that experienced by the granular bed,

however, a further force is required to model the collisions of the intruder with

the host particles as it moves through the bed.

The force on the intruder due to the presence of the granular bed is dependent

on many factors including relative velocity, material densities, packing fractions

and friction. The motivation for our form of the force came from related experi-

ments where dense spheres penetrate static beds of noncohesive granular spheres

(Ambroso et al. 2005; Tsimring and Volfson 2003). Here it was experimentally

determined that for low impact velocities the frictional force dominates and has a

height dependence (Ambroso et al. 2005). In our model the intruder and granular

bed always move in a similar direction so that the relative velocity is small and

this approximation may be applied. Thus in our model we assume a frictional

force Fbed which opposes the relative motion and is assumed to have a depth

dependence of the form

Fbed = α

[

1 − exp

(

−h− (zI − z + rI)

l

)]

v

|v| . (6.5)

Here v = żI − ż is the relative velocity between the intruder and the distant bed

particles, h is the height of the bed, α is the force strength and l is a length.
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Both α and l are fitting parameters which we assume to be dependent on Γ. This

variation of force with intruder depth is assumed to have the same form as the

time-averaged density profile of host grains because, during flight, the intruder

only interacts with grains locally. The density profile has been argued to be

well approximated by a Fermi function (Hayakawa and Hong 1997) and the form

used here is an expansion for agitated beds. The length l is a measure of the

fluidisation of the bed and the force strength α is related to the weight of grains

pushed by the intruder in the convection cycles. The bed force, Fbed, goes to zero

as the intruder emerges from the bed.

We note that the form for Fbed that we have assumed is the same as that

derived by Janssen (1895) for the depth dependence of the stress in a static

granular bed. However, in the static case the length l is related to the saturation

of the stress due to side-wall friction.

Analytical Model Results

In this section we compare results produced using the analytical model to those

obtained from experiments.

Figure 6.11 plots the the intruder rise time curves, predicted by the analytical

model, for vibration parameters f = 15 Hz with Γ = 3.5, 4.0 and 4.5. On the

same graph we have plotted the experimental points for comparison. The best

fit parameters used within the analytical model are as follows: for Γ = 3.5; α =

9.83×10−3 N and l = 4.0 mm, for Γ = 4.0; α = 1.208×10−2 N and l = 4.2

mm and for Γ = 4.5; α = 1.445×10−2 N and l = 4.5 mm. In each case l is of

the order of a few grain diameters and α is the same order of magnitude as the

effective weight of grains pushed by the intruder. These values are consistent

with the assumptions of the model. The force strength α increases with Γ due

to the greater force experienced by the intruder as it is thrown and collides with

the granular bed. The length-scale l increases with Γ also due to the greater

fluidisation of the bed. Figure 6.11 shows that the analytical model is able to

capture the intruder trajectories reasonably accurately.
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Fig. 6.11: The lines show the intruder gap H plotted against time, t, predicted by

the analytical model. The experimental data points are also shown for comparison.

The vibration parameters are f = 15 Hz and Γ = 3.5 (dotted-line and circles), 4.0

(dashed-line and diamonds) and 4.5 (solid-line and squares).

6.6 Summary

We have shown experimentally that the presence of a liquid can dramatically

influence the behaviour of a dense intruder in a vibrated granular bed. Specifi-

cally, a large steel intruder was observed to rise rapidly to the surface of a bed

of water-immersed glass particles when subjected to vertical vibration. To gain

insight into this behaviour, we modelled the effect using simulations and found

that a fluid-grain coupling technique based on a microscopic fluid-particle model

was able to capture the process, both qualitatively and quantitatively. The sim-

ulations allowed a detailed investigation into the mechanism.

At the beginning of each vibration cycle the steel and glass particles are thrown

upwards. Due to its larger mass and size, the steel intruder is slowed less by the

fluid drag than the glass spheres. As the intruder is thrown upwards the void

beneath it, that would be created due to the relative motion, is quickly filled

with grains dragged by the fluid. Later in the cycle the intruder falls, reversing

the direction of fluid flow, which in turn decelerates the motion of the grains

beneath it. However, due to the grains’ inertia, this flow is insufficient to return
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them to their original position. This rearrangement is also strengthened as it is

easier for the grains to move into a low density region, rather than in the opposite

direction. The net result is that the intruder draws fluid and grains beneath it as

it is thrown and later in the cycle lands on these particles increasing its vertical

position. It is this fluid-enhanced ratcheting mechanism that causes the Brazil

nut to rise rapidly through the bed.

Finally, a simple analytical approach to model the fluid-enhanced BNE was

described. Our model introduces a drag force between the intruder and the bed

which allow us to accurately predict the trajectories of the intruder.



Chapter 7

Zero-Gravity Fluid-Immersed

Granular Suspensions

A system of fluid-immersed grains vibrated within a zero-gravity environment

will form layers perpendicular to the cell oscillations. In this chapter we under-

take a computational study reproducing effects observed in similar experiments

performed within a magnet.

7.1 Introduction

In the last few years there has been a lot of interest in pattern formation involving

granular materials (Aranson and Tsimring 2006). For example, dry granular beds

under vibration have been found to form surface patterns (Melo et al. 1995) or

stripes (Mullin 2000). If grains are immersed in a fluid they may exhibit a wide

range of pattern formation behaviour due to the interaction between the particles

and the fluid.

In experiments performed by Wunenburger et al. (2002) a system of spherical

grains, vibrated horizontally on a surface within a water-filled cell, will align per-

pendicular to the direction of oscillation. The interaction leading to the alignment

was suggested to occur due to the steady streaming effect induced by the oscillat-

ing motion of grains relative to the fluid (Riley 2001). Steady streaming is defined

as the non-zero flow that results from calculating the time-average of a fluctu-

ating flow for the non-linear terms in the Navier–Stokes equation. Such steady

173
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streaming is a result of the viscous nature of fluid and the Reynolds stresses that

occur in the main body of the fluid. In other experiments performed by Voth

et al. (2002), at around the same time as Wunenburger’s, it was found that

fluid-immersed particles vibrated vertically on a horizontal surface form regular

lattices. Voth et al. proposed a model based on steady streaming to explain the

attractive part of the interaction which leads to the formation of the pattern.

Klotsa et al. (2007) then examined a simpler system containing just two spheres

in a fluid-filled cell under horizontal vibration. They studied how a pair of par-

ticles always align in a direction perpendicular to oscillation with the spheres

separated by a well defined distance. More recently Klotsa et al. (2009) focused

on chain formation within experiments and simulations. This study showed that

the returning steady streaming flows perpendicular to the oscillations induces a

strong attractive force towards the free ends of the chains. Thus, providing the

vibrated cell is sufficiently wide, roaming single particles and short chains will be

drawn into the free end of the chain enhancing its length.

Beysens et al. (2008) have observed ordering phenomena of bubbles within an

oscillating fluid. Their experiments investigated the liquid-vapour phase transi-

tion of hydrogen during high frequency (f = 10–25 Hz) and low amplitude (0.3–

0.47 mm) vibrations in a weightless environment. Gravity effects were negated

using a strong magnetic-field gradient. The experiments were performed near the

liquid-vapour critical point. It was observed that, as the system was vibrated,

vapour bubbles nucleate and grow in the liquid phase. When these bubbles grew

to a sufficient size the bubbles would move with a different velocity to the oscil-

lating fluid. The bubbles then ordered themselves in planes perpendicular to the

vibration motion.

Due to the moving fluid-vapour interfaces associated with these experiments it

is difficult to recreate such a system within simulations. One possible solution is

to shake fluid-immersed grains, instead of the vapour bubbles, in a system without

gravity. Grains immersed in an oscillating fluid will move with a different velocity

to the fluid. As there is no gravity the particles will be affected by the resulting

streaming effects only.

Similar effects may be reproduced in experiments using fluid-immersed dia-
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Fig. 7.1: Snapshot from experiments showing layer configuration of 50 µm diam-

eter water-immersed bismuth particles when shaken within a magnetic field. The

experiments were performed within an Oxford Instruments Minimum Condensed

Volume (MCV) superconducting magnet with a maximum central field of 17 T and

maximum field gradient of BdB/dz = 1470 T2 m−1. Here the oscillations are in a

vertical direction perpendicular to the granular layers.

magnetic particles held within a strong inhomogeneous field. The magnetic field

is tuned so that the particles are weightless at some height within the magnet.

Thus, when the cell is shaken, the particles will experience drag relative to the

fluid and streaming flows are formed. However, due to the magnetic field gra-

dients there is only a small area over which the particles are weightless. Figure

7.1 shows a snapshot of shaken water-immersed bismuth particles within a strong

magnetic field in experiments performed at Nottingham University. Here we see

that the bismuth particles organise themselves into distinct layers perpendicular

to the oscillation motion.

In the next section we detail results obtained from simulations studying pat-

tern formation of fluid-immersed granular suspensions within a zero-gravity sys-

tem.
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Parameter V alue

Number of particles 720

Particle density 4000 kg m−3

Particle diameter 2 mm

Spring constant kn 3000 kg s−2

e 0.2

µ, µW 0.2

Fluid density ρ 1000 kg m−3

Dynamic viscosity η 4×10−3 kg m−1 s−1

Lattice spacing ∆ 3.33×10−4 m

Cell length LX , LY , LZ 33.3 mm

nr 3

CS 1.0

∆t 1×10−4 s

f 50 Hz

Γ 5.0

Table 7.1: Parameters for the zero-gravity fluid-immersed granular suspension sim-

ulations when using the Fluid Springs model.

7.2 Simulations

In order to study granular pattern formation in vibrated zero-gravity fields we

perform simulations. We use 720 spherical particles of diameter 2 mm and density

4000 kg m−3. The particles and fluid are held in a cubic cell of dimensions

LX = LY = LZ = 33.3 mm, where Li is the cell length along the i–axis. In

these suspension simulations the inter-particle collisions are rare due to the fluid

streaming flows holding particles apart. Hence realistic collisions dynamics are

not necessary, so for computational efficiency the contact forces are modelled

using the LSD collision scheme, described fully in section 2.1.1. We use a spring

constant of kn = 3000 kg s−2 in equation 2.1 and choose γn so that the coefficient

of restitution e is equal to 0.2. Friction between particles, µ, and friction between

particles and walls, µW , are both set to 0.2.
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The fluid used has a viscosity four times that of water so that η = 4×10−3 kg

m−1 s−1 whereas the fluid density is the same as water ρ = 1000 kg m−3. The

fluid-grain coupling model we use is the FS model, described comprehensively in

Section 2.5.2. At all times there is no gravitational force acting upon the particles

or fluid. The cell is shaken sinusoidally in the vertical direction with vibration

parameters f = 50 Hz and Γ = 5.0. The simulation parameters are summarised

in Table 7.1.

Figure 7.2 shows snapshots of the shaken particle system as it evolves with

time. The particles are initially dispersed randomly within the cell, as shown in

Figure 7.2(a). Soon after shaking starts the grains begin to converge and order

themselves into “layers” perpendicular to the vibration motion as seen in Figure

7.2(b). After just 5 s the grains have ordered themselves into two distinguishable

layers which span the entire cross-section of the box as seen in Figure 7.2(c).

At 5 s the layers are still forming and there are a few free particles and smaller

groups of particles which have not yet merged with a larger layer. We also observe

that some parts of the layers are often two or more particles thick. These layer

configurations are stable as we find that once the grains group into layers they

remain so. However, after t = 15 s, we observe that the thicker parts of the

layers are less stable. In Figure 7.2(d) we notice that the thick part of the top

layer “forks” into two thinner layers on the right-hand edge of the cell. When a

granular layer forks it means that it splits vertically into thinner layers which are

still attached together. By t = 75 s all of the free particles have merged into the

two layers. This configuration is stable for the timescales accessible to us.

Thus we see that there are behavioural similarities between the chains and

the layers. We find that the layers position themselves a reasonable distance

apart within the box perpendicular to the vibration motion as was observed in

the chain simulations and experiments of Klotsa et al. (2009). Klotsa et al.

noted that chains are highly unstable when they are more than one particle thick

parallel to the oscillations. Any excess grains tend to be repelled due to the

strong streaming flows perpendicular to the chain. This is very different to the

behaviour exhibited by the layers in Figure 7.2 which are very often more than

one particle in thickness. The layer configuration may not always be completely
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(a) (b)

(c) (d)

(e) (f)

Fig. 7.2: Snapshots from simulation showing the time evolution of 720 fluid-

immersed spheres of diameter 2 mm vertically vibrated within a cubic cell at f = 50

Hz and Γ = 5.0. The timings correspond to (a) t = 0 s, (b) t = 1 s, (c) t = 5 s, (d)

t = 15 s, (e) t = 40 s and (f) t = 75 s.



Chapter 7. Zero-Gravity Fluid-Immersed Granular Suspensions 179

stable, as evidenced by the layers forking, but once the grains are within the

layers they remain so indefinitely.

We have performed some simulations which have allowed the study of the basic

characteristics and behaviours of fluid-immersed granular beds shaken within a

weightless environment. We summarise the main properties we observed in the

next section.

7.3 Summary

In this section we make a note of the main characteristics we observed within the

simulations and suggest where the studies of such systems may be taken in the

future. The main behaviours that we observed were these:

a) The grains form layers perpendicular to the vibration motion after initially

being positioned in a randomised state. The layers are the natural state for

the particles to reside.

b) The layers will initially choose to be a single particle diameter in thickness.

As grains are added to the layer it will grow until it spans the entire cell

cross-section. On the addition of further grains the layer will grow in thick-

ness so that it may be two or more grains thick in the direction normal to

vibration. This configuration is also stable unlike that seen in the chains

(Klotsa et al. 2009).

c) There is some level of repulsion between layers as the two thick layers are

not attracted to one another within the cell.

d) The layers are stable as no particles leave the layer once they have merged

with it.

e) If the layer becomes thick, i.e. more than a single particle deep, the layer

is prone to “forking”. Here the layer splits into two or more thinner layers

which are still attached to the bulk of the bed. This behaviour may be seen

in the later time periods of Figure 7.2 and tends to occur near the cell walls.
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In this chapter we have observed some of the zero-gravity granular suspension

characteristics, however, this study has been brief and there are many things

which are not understood which would require attention in the future. We would

want to study the flows around the layers and explain how it is possible for thick

layers to be stable. We would also want to understand the attractive and repulsive

forces between layers and why thick layers fork into thinner layers.



Chapter 8

Concluding Remarks

A brief review of the main findings of the research are presented in this chap-

ter. We also include some suggestions for future work involving fluid-immersed

granular systems.

8.1 Chapter Review

In the first chapter of this thesis we introduced the reader to the vast field that

is granular dynamics. We underline the widespread occurrence of granular mate-

rials and their pervasiveness into many aspects of our daily lives. We emphasise

the importance of these materials within many industries including the pharma-

ceutical, agricultural and construction-based industries as well as their complex

and often counter-intuitive behaviours. The chapter finishes by introducing the

reader to fluid-grain systems. The vast majority of granular systems, unless held

within a vacuum, will in some way be affected by the interstitial fluid in which

they are immersed. It is important to understand how and why granular mate-

rials are affected by fluid and it is these interactions in a range of systems that

this thesis is concerned with.

In Chapter 2 we described the simulation methods used to model our fluid-

grain systems. The first part of the chapter was concerned with outlining the

Molecular Dynamics (MD) technique used to model the grains. Within this sec-

tion we described the contact forces used including the Linear Spring-Dashpot

(LSD) and the Damped Hertzian (DH) collision schemes. We then performed
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some comparisons to show under what conditions each model was best suited.

We showed that the DH collision scheme allowed for the largest time-step and

thus the best computational efficiency. If contact forces do not affect the system

behaviour then LSD contact forces are suitable. We then briefly discussed the

approach used to model the fluid. This approach was based on spatially dis-

cretising the governing equations of fluids, the Navier–Stokes equations, onto a

staggered Marker-and-Cell mesh and solving using the projection method with

suitable boundary conditions.

We then discussed several approaches in which we may couple these two

phases. The first model we described was the analytical Kroll model. This

model considers the forces experienced by a porous granular bed when shaken

in an air-filled cell in order to determine an equation of motion for the flight of

the bed. To determine the flight of a body within a dense fluid we introduce

a modified version of the Kroll model, the MK model, which includes buoyancy

effects that appear when fluid inertia is considered. Both of these models capture

behaviour very accurately despite modelling the bed as a porous body. We then

described two models which use empirical bed equations to couple the fluid and

grain phases. The first model uses MD to determine the particle interactions and

couples the fluid and grain phases using a drag force based on a bed equation.

This force is applied explicitly onto the grains in such a manner that opposes

the direction of particle motion. The model is appropriately named the Simple

Drag (SD) model. The second model modifies the Navier–Stokes equations for

incompressible fluids to include a term which estimates the momentum transfer

between the fluid and grains using a bed equation. The resulting model, which is

called the Navier–Stokes (NS) model, reproduces the effects of a fluid-immersed

granular bed where the grains are individually modelled using MD.

We then introduced two models in which the fluid grid is small in relation

to the particle size. These two models share common features as neither use

bed equations to determine the momentum transfer between the fluid and grains.

Instead the forces are determined through a template. The first model we de-

scribed was the Particle Template (PT) model where the particles’ motions are

determined individually using MD and the fluid is solved using the Navier–Stokes
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equations. In order to couple the fluid and grain motion the fluid lattice points

immersed within the particle are forced to share the same velocity as the particle

while the corresponding force on the particle is calculated by taking an integral

over the template of the stress-tensor divergence. The second model we described

was the Fluid Springs (FS) model. This model differs from the PT model in that

on each grain we create a template of grid-points which moves with the particle.

For each lattice point on the template, we predict the difference in the future

fluid and grain paths and then correct the motion using an imaginary damped

spring which forces the two phases to converge.

The second half of this chapter was concerned with making comparisons be-

tween the models and determining under which conditions they were most suit-

able. We found that in two dimensions the FS model was stable and able to

achieve more accurate results with fewer lattice points contained within its vol-

ume than for the same parameters in the PT model. In the last part of the

chapter we observed that the FS model is able to capture hydrodynamic lubri-

cation effects that arise when fluid is squeezed from the space between two close

surfaces.

In Chapter 3 we studied fluid-immersed beds within oscillating systems in

three dimensions. We found that the NS and FS models could capture the be-

haviour of a thrown porous bed accurately while the PT model was unable to

do so for similar simulation parameters. We showed that the NS and FS models

were able to model fluid flowing through packed beds in unsteady flow regimes.

In Chapter 4 we studied heap formation in a three-dimensional system using

the SD, NS and FS models. The first simulations we performed were using the

SD model, where we found that a water-immersed granular bed in a vibrated cell

forms a domed surface whose maximum height is in the centre of the cell. We

observed that this piling was a result of friction-driven convection and that as

the wall friction parameter was increased the granular convection increased also.

We then performed simulations in a similar system using the NS and FS models.

Here we found that the convection is primarily driven by fluid and is considerably

stronger than the friction driven convection in the SD model simulations. In the

NS and FS model simulations the granular bed forms a tilt which spans the
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entire cell rather than forming a dome in the middle. In order to investigate the

effect of walls on tilting within the FS and NS model simulations some further

simulations were performed. We observed that convection is stronger, in the

NS and FS model simulations, in the presence of some wall friction. The last

simulations were performed in the absence of side walls with periodic boundary

conditions which showed that a pile is maintained and strengthened because of

the presence of fluid-driven convection. We concluded that “Faraday tilting” is a

fluid-driven effect that may be enhanced by the presence of wall friction.

Studying Faraday tilting also allowed us to compare results obtained with

the NS and FS models for a well-known effect. We observed that the two models

achieved very comparable results and found that the FS model was able to capture

all of the behaviours of the tilting simulations despite not requiring an empirical

bed equation to couple the fluid-grain interactions. The advantage of the NS

model over the FS model was that the results were obtained considerably faster.

However, the NS model had some unrealistic boundary effects which were not

observed within the FS model.

In Chapter 5 we investigated the fluid-driven partition instability. Here we

studied the behaviour of a water-immersed system of spherical barium titanate

particles in a rectangular cell which was divided into two columns, linked by two

connecting holes, one at the top and one at the bottom of the cell. Under vibration

the grains spontaneously move into just one of the columns via a gradual transfer

of grains through the connecting hole at the base of the cell. The effect was

first studied within experiments. We then focused on developing simulations to

accurately model this process and provide insight into the instability mechanism.

The first model used to simulate the partition instability was the NS model which

was unable to accurately capture the coupling between the fluid and grains within

the bottom connecting channel. We later used the FS model which provided

excellent agreement with experimental results. The transfer of grains was found

to arise from the greater flow of fluid through the shallower column of grains as

the beds are thrown during vibration. This leads to grains transferring at an

accelerating rate as the height difference between the granular columns increases.

At the end of the chapter we proposed a simple analytic model to describe the
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fluid-driven partition instability based on two coupled granular beds vibrated

within an incompressible fluid. This model was able to capture the instability

process over a range of vibrational amplitudes using a single fitting parameter.

In Chapter 6 we studied the fluid-enhanced “Brazil nut effect”. Here a

large heavy intruder held within a water-filled rectangular cell will rise through

a bed of smaller host particles when a vertical oscillating force is applied. A

detailed experimental investigation was carried out to investigate the behaviour of

a large steel intruder in a shallow bed of smaller glass particles held in a vertically

vibrated water-filled cell. As we did with the partition instability we performed

simulations so that the rising mechanism may be studied in greater detail than is

possible within experiments. The Brazil nut is thrown a greater height than the

surrounding bed particles during each vibration cycle. In simulations performed

with the FS model we showed that the role of an incompressible fluid is crucial

to the rising mechanism. As the intruder is thrown it moves through the bed

and drags fluid and hence particles behind it. When the intruder falls it lands

on some of these dragged grains which elevates its original position by a small

amount. In simulations performed using the SD model to couple the granular

and fluid motion for the same parameters we found that the large intruder does

not rise from its original position. The SD model simulations confirmed the role

of fluid in the intruder rising process. At the end of the chapter we proposed

an analytical approach to model the ascension of a large intruder held within a

fluid immersed porous bed in a vibrating cell. The analytical model used the

Modified Kroll model to determine the flight of the porous bed while the forces

on the immersed intruder are made up from a fluid drag component and a force

based on the vertical density profile of a granular bed. We then showed that an

analytical model of this form was able to accurately model the fluid-enhanced

Brazil nut effect.

In Chapter 7 we conducted a brief theoretical study of zero-gravity fluid-

immersed granular suspensions. These simulations were performed using the FS

model for dense grains in a viscous fluid. After initially being positioned in a

randomised state we showed that the natural state of grains is to form layers

perpendicular to the vibration motion. We observed that layers are repulsive of
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one another. We also found that, unlike the two-dimensional case of chains, layers

more than a single particle thick are stable. The layers are stable as no particles

shoot off and they do not break up into smaller layers. However, we observed

that if the layer is thick, i.e. more than a single particle deep, the layer is prone

to “forking”. Here the layer splits into two or more thinner layers that are still

attached to the bulk of the bed.

8.2 Future Work

Following the work presented in this thesis a number of possible research paths

can be suggested.

In chapter 2 we introduced the FS model and later investigated the strength

of the imaginary spring constant necessary to simulate the fluid-grain coupling

accurately for various sets of parameters. We would want to further the inves-

tigation and find how the fluid springs constant varies with the number of fluid

points contained within the particle in three-dimensional simulations. If possible

an empirical relation could be determined.

In chapter 5 our investigation of the partition instability has been extensive,

however, it could be further improved. We find that the instability occurs at cer-

tain vibrational parameters but not at others. We would suggest the investigation

of when the instability onsets as vibration strength is increased.

In chapter 7 we investigated pattern formation of fluid-immersed grains vi-

brated in a cell held within a weightless environment. There were several be-

haviours of the patterns that we have been unable to explain due to the brief

nature of our study. We would want to examine the flows around the layers and

explain how it is possible for thick layers to be stable when parallel chains are

unstable (Klotsa et al. 2009). We would also want to understand the forces

between layers and why thick layers fork into thinner layers.

Throughout this thesis we have shown that the FS model may be used effec-

tively to simulate a variety of fluid-immersed granular systems. Within chapter 2

we showed that the FS model was able to accurately simulate fluid-grain systems

when held within oscillatory fluid flows. In chapters 4 and 5 we showed that
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the model was able to simulate large vibrated granular systems to a high level

of accuracy. Later in chapter 6 we used the FS model to simulate a bidisperse

system and observe microscopic flow around a large rising intruder. Our thesis

has shown a wide variety of systems that may be simulated with the FS model.

Some suggestions for topics of further study would include sedimenting particles

within magnetic fields and sand avalanches. We would also suggest studying two

component particle separation using the FS model to see if a model which in-

cludes microscopic fluid flow affects the separation dynamics or can reveal more

about the process. We would also suggest the study of tilt oscillations of two

component granular mixtures when held within a small fluid-filled vibrated cell.

Another interesting study would be whether the FS model may be extended to

handle non-Newtonian fluids through the use of a shear thickening viscous term

or another similar technique. Another area with a vast array of options for study

would be the investigation of non-spherical objects within fluids using either the

PT or FS models. We would be interested in whether the irregular particle shapes

affect the dynamic behaviour of many of the phenomena already studied within

granular dynamics.

Finally, due to the potential application of our research to the industrial pro-

cessing of granular materials, we would encourage the reproduction of our ex-

periments and simulations at an industrial scale. All of our simulations have

been carried out in systems containing just a few thousand particles. To validate

our findings, our simulations should be carried out in larger systems and our

experiments should be carried out in larger cells.
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López-Alcarez, P. (2007, January). Controlling the fluid-driven separation of

vertically vibrated granular mixtures. Ph. D. thesis, University of Notting-

ham.

Lubachevsky, B. D. (1991). How to simulate billiards and similar systems.

Journal of computational physics 94, 255–283.

Luding, S. (1995). Granular materials under vibration: Simulations of rotating

spheres. Physical Review E 52, 4442.

Maeno, Y. (1996). Numerical investigation of surface level instability due to a

tube in a vibrating bed of powder. Physica A 232, 27–29.

McNamara, S. and W. R. Young (1994). Inelastic collapse in 2 dimensions.

Physics Review E 50, 28–31.



BIBLIOGRAPHY 193

Melo, F., P. B. Umbanhowar, and H. L. Swinney (1995). Hexagons, kinks and

disorders in oscillated granular layers. Physical Review Letters 75, 3838.

Milburn, R. J. (2006, January). The dynamics of vibrated fluid-particle systems.

Ph. D. thesis, University of Nottingham.

Milburn, R. J., M. A. Naylor, A. J. Smith, M. C. Leaper, K. Good, M. R.

Swift, and P. J. King (2005). Faraday tilting of water-immersed granular

beds. Physics Review E 71, 011308.
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(López-Alcarez 2007) (Lubachevsky 1991) (Maeno 1996) (McNamara and Young

1994) (van der Meer et al. 2002) (Melo et al. 1995) (Milburn et al. 2005)
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