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Abstract

In this thesis we investigate the stationary properties andformation process of a class of nontopological

solitons, namelyQ-balls. We explore both the quantum-mechanical and classical stability ofQ-balls

that appear in polynomial, gravity-mediated and gauge-mediated potentials. By presenting our detailed

analytic and numerical results, we show that absolutely stable non-thermalQ-balls may exist in any

kinds of the above potentials. The latter two types of potentials are motivated by Affleck-Dine baryoge-

nesis, which is one of the best candidate theories to solve the present baryon asymmetry. By including

quantum corrections in the scalar potentials, a naturally formed condensate in a post-inflationary era

can be classically unstable and fragment intoQ-balls that can be long-lived or decay into the usual

baryons/leptons as well as the lightest supersymmeric particles. This scenario naturally provides the

baryon asymmetry and the similarity of the energy density between baryons and dark matter in the Uni-

verse. Introducing detailed lattice simulations, we arguethat the formation, thermalisation and stability

of theseQ-balls depend on the properties of models involved with supersymmetry breaking.
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The Physics ofQ-balls

FIG. 1: Ring formation after the collision of a pair ofQ-balls [1].

“What one man can invent, another can discover.”

– Sherlock Holmes.



Chapter 1

Introduction

1.1 The Standard Model to the theory of supersymmetry

All of the complexities around us come from the mixtures of many simple events. With this belief,

theoretical particle physicists have developed our understanding on the extremely small scales of physics

(around the size of atoms and even smaller scales). Almost all of the theoretical predictions have been

supported well by the experimental results to date, and now we know that the Standard Model (SM) is

the fundamental theory to understand the dynamics of elementary particles, like photons and protons.

In the SM, the simplicities are symmetries, such that a right-handed person sees the left-handed person

in a mirror. The SM in particle physics consists of the mixtures of the three independent groups of the

symmetries, each of which can describe one of the four fundamental forces (electromagnetic, weak and

strong forces) except gravity. The most familiar one among them might be the electromagnetic force

generated through the exchange of photons; for instance, electronically positive charged objects repel

each other where photons (massless gauge bosons) are known as the mediators to generate the repulsion

force. Similarly, the two other forces come from the exchanges of the corresponding mediators,i.e.

W± andZ (massive gauge) bosons and gluons. These mediators including photons are named as gauge

bosons, each of which has its own strength (coupling). Whilethe strong force tightly binds protons and

neutrons together, the weak force is involved in radioactive decay. Both forces work only in an atom

scale, but the strength of the weak force is smaller than the one of the strong force by a factor of106;

in fact, the weak force is1032 times stronger than the gravitational force, which works inan infinite

distance range, like the electromagnetic force.

Under the conjecture that the physics above some energy scale should be described by one symmetry

group parameter, Glashowet al. successfully unified the two symmetry groups for electromagnetic

and weak forces by introducing the higher (electroweak) symmetry group [2, 3]. The energy scale

of this unified theory (hereafter, the electroweak theory) is around a few102 GeV, below which the

unified electroweak symmetry inevitably breaks down. This symmetry-breaking mechanism requires



hypothetical objects, Higgs bosons [4], which give rise to the masses of both weak gauge bosons and

other elementary particles, namely quarks and leptons. These theoretical accomplishment in the SM

have been in good agreement with the independent experiments, LEP, HERA, and Tevatron run-I & -II;

typically, the different massive weak gauge bosons were well verified in high precision.

Despite the agreement with these extensive experiments, the SM has still several shortcomings. Higgs

bosons have not yet been found, and the detection of these particles is still an active research field.

Without Higgs bosons, there are no appealing explanations why the weak gauge bosons have nonzero

masses. Moreover, the quantum corrections to the Higgs massbecome quadratically divergent unless

the divergence is canceled out (renormalisation). This problem is known as thehierarchy problem.

Furthermore, the SM contains far too many parameters to be consistent with the observations in the

sense of beauty. Theoretical high energy physicists believed that the physics above the electroweak

scale should also unify the strong force. It implies that we could merge the strong force and electroweak

interactions into the one theory known as the Grand Unified Theories (GUTs). Independently, Einstein

attempted to unify the electromagnetic force with gravity ultimately.

Can we actually unify the theory of the strong force and the electroweak theory at the high energy scale?

The three different gauge strengths for electromagnetic, weak, and strong forces are determined by the

ways of the divergence cancellations. Unfortunately, all of the strengths do not meet each other precisely

at the GUTs energy scale (∼ 1015 GeV). How about the unification to gravity? This problem is related to

the hierarchy problem. The SM cannot include the theory of gravity since the quantum effects on gravity

give unavoidable infinities,i.e. nonrenormalisabilitites. The energy scale, at which both quantum and

gravitational effects are equally significant, is expectedto be around the Planck scale (∼ 1019 GeV),

and it is is far beyond the electroweak scale. The failures ofthe unifications are understandable, given

that the Planck (or GUTs) scale corresponds to the earliest period of the thermal history of the Universe

from zero to10−43 (or 10−34) seconds just after the “Big Bang”. Hence, we ended up failing to unify

the three different forces as well as to solve the hierarchy problem.

One of the particularly exciting solutions for these problems is the addition of an exotic symmetry,

supersymmetry (SUSY), to the SM gauge groups. The energy scale of the theory of SUSY lies in

between the electroweak scale and the GUTs scale; therefore, SUSY solves the hierarchy problem.

More nicely, the theory predicts the same matching point forthe three gauge strengths at the GUTs

scale. Thus, the discovery of SUSY would be one of the biggestsuccesses in the 21st theoretical

physics, and may solve other cosmological problems as we will discuss shortly.

1.2 The Big Bang theory to cosmic inflation models

The recent developments of observational equipments reveal the detailed thermal history of our Uni-

verse, starting from Big Bang to present (13.7 billion years). The Big Bang Theory or BBT for short

is based on both general relativity and the cosmological principles in which the energy density of our
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Universe was uniformly distributed over the large scale andthe space-time topology of the Universe has

been flat for a long time. In other words, there are no special regions in the Universe, where some small

special regions play no important roles of the history and topology of the Universe. To describe such

a simple profile over the largest observable scale of the Universe, modern cosmologists often use the

following technical words: homogeneity and isotropy. The small scales of the Universe, on the other

hand, consist of the inhomogeneous regions which are stars,galaxies, and clusters of galaxies. In 1922,

Friedmannet al. solved the Einstein equation with the cosmological principles, and proposed that the

Universe should be expanding. In the two years later, Hubblemeasured the distances and the receding

speeds of 18 galaxies; he then concluded that each galaxies was indeed receding from us with the linear

relation between the distance and the speed, known as the Hubble expansion. As a smoking gun of the

cosmological principles, Penzias and Wilson discovered the isotropic cosmic microwave background

radiation (CMB) which has a black body spectrum with the low temperature,2.73 Kelvin [5].

The present individual observations, Wilkinson MicrowaveAnisotropy Probe (WMAP) [6], Sloan Dig-

ital Sky Survey [7] and Type Ia supernova (SNIe), determine the precise magnitude of the Hubble

expansion rate. They also back up a homogeneous and isotropic profile of the Universe on scales larger

than∼ 100 Mpc. The history of the Universe is now well understood from the first few minutes after

the Big Bang. At the few minutes cosmic time, nucleosynthesis took place, creating light nuclei,e.g.

hydrogen, helium, and lithium, while carbon and the heavierelements were rarely produced in the inte-

rior of stars far more later. The observations of the abundances of those light elements are in excellent

agreement with the recent theoretical predictions. In fact, the4He abundances are correctly calculated

within 1 − 2% [8], and the semi-analytic estimations on the abundances ofdeuterium,3He, and7Li are

accurate within a factor of2−3 [9]. These great successes of Big Bang Nucleosynthesis (BBN) and the

detection of the Hubble expansion have firmly built up the BBT.

The BBT predicts that the early Universe was extremely hot and dense due to the fact of the Hubble

expansion. In such small and high-energy environment, the quantum effects are not negligible; indeed,

there are a number of issues of the BBT. We present the five principle problems from now on. First, no

information can travel faster than the speed of light according to the standard BBT. Therefore, the Uni-

verse should consist of patches of the causally connected regions. In this sense, each of the disconnected

regions should be uncorrelated with those neighbors. However, the actual temperature distribution of

the CMB is almost isotropic over a large scale which is much larger than the predicted scale, only about

2 degrees on the sky, from the BBT,i.e. the horizon problem. The second issue is a fine-tuning problem

on the space-time topology,the flatness problem. The Friedmann equations give the three possibilities

of the topology, depending on the total dimensionless energy densityΩ of the Universe. The value ofΩ

has been extremely close to unity for billions of years, whereΩ = 1 corresponds to the flat space-time

geometry. It implies that the “God” must fine-tune the value of Ω to remain to be unity for the extremely

long history of the Universe. This is because any small departure from the flat space-time leads to the

other two kinds of topologies obtained by the Friedmann equations. The third problem is the production

of magnetic monopoles, which may naturally exist in many extensions to the SM. A magnetic monopole
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is a theoretical object, but it has not yet been detected in our Universe. In fact, we cannot obtain a single

side of the magnet (either the north or south pole) even when cut in half. The origin of theimbalance

between matter (baryons) and anti-matter (anti-baryons)is another controversial puzzle. In BBN, the

amount of ordinary matter densitynb relative to the number density of radiationnγ , namely the baryon-

to-photon rationb/nγ , can explain the light element abundances, but it says nothing about the origin of

the ratio. The physics within the BBT suggests that both baryons and anti-baryons should be equally

created, conserving their charges. It implies that all of the elements (atoms, galaxies, and even human

beings) should not exist now since the annihilations between matter and anti-matter take place instantly.

The final question of the BBT is the existence of the non-luminous massive matter,dark matter. Ac-

cording to the luminosity distribution of a given galaxy, the analytically predicted rotation velocity of

the galaxy at large radius is slower than the observed value.It implies that a large amount of invisible

massive matter must exist in the galaxy.

How can we solve these problems of the BBT? First of all, we have to modify theveryearly epoch of the

Big Bang cosmology. The widely accepted solutions of the first three problems,the horizon problem,

the flatness problem, andmagnetic monopole problem, require that a rapid space-time expansion should

take place in the very short era just after the Big Bang. This idea, called cosmic inflation or just infla-

tion, is compatible with many observational results. The fast expansion of inflation gives the reasons

why the temperature of the CMB is almost same for any directions and how the causally disconnected

regions are correlated due to the past explosive expansion.Additionally, inflation stretches out the past

curved space-time and dilutes the primordial inhomogeneity, anisotropy, and the density of the exotic

particles, such as magnetic monopoles. The other two problems, the asymmetry between baryons and

anti-baryonsanddark matter, will be discussed in the following sections.

Is inflation alternative to the BBT? The inflation models compensate the weaknesses of the BBT, such

as an origin of the cosmological principles and the generation of of the large scale structure of the

Universe through quantum fluctuations. These density fluctuations deviated from the homogeneous

and isotropic values are expected to be nearly scale-invariant and Gaussian, which impressively agree

with the WMAP data. Inflation itself is not a complete theory;rather, it is a modification model of the

successful BBT. Inflation has however several problems, too. Although the inflation energy scale should

be around the GUTs scale, we do not know what the origin of the inflation is. Further, the temperature

of the very early Universe was proposed to be nearly zero during inflation, but the early era of the Big

Bang Universe should be hot. This discrepancy implies that we need a dynamical mechanism to heat up

the cold Universe after inflation, jointing to the onset of the Big Bang cosmology. In a typical scenario

of reheating the very early Universe, the dominated energy account for the rapid expansion was released

to create the usual SM particles, and in principle the Universe was thermalised by the random motions

and scatterings of the created particles.

Let us itemize the two problems that we did not answer yet:baryon asymmetryanddark matter. It will

turn out that these two problems are related each other, and the plausible solutions could be made by the

use of the inflation theory and the new theory of particle physics, namely SUSY.
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1.3 The two quantities in particle cosmology

– baryon asymmetry and dark matter

The present asymmetry between baryons and anti-baryons in the Universe is one of the most mysterious

problems in cosmology and particle physics. Indeed, no concentration of anti-baryons has been detected

in our observable Universe. From the current several observations (CMB anisotropy measurements,

SNIe data, and BAO peak measurements) [5], the energy density of baryons is only about 4.6% of the

total energy density of the Universe. The remainder of the energy components consist of both dark

matter (23.3%), and dark energy (72.1%). The baryon-to-photon ratio is also given in [10],

nb

nγ
≃ (4.7 − 6.5) × 10−10. (1.1)

The ratio of the dimensionless energy density between dark matter and baryons is independently ob-

tained in [11]

ΩDM

Ωb
= 5.65 ± 0.58. (1.2)

This thesis deals with a number of issues related to the origin of the above two quantities.

The first quantity, Eq. (1.1), is larger by a factor of109 than that predicted within the conventional BBT

where the quantity was assumed to be zero. In 1985, within theSM of particle physics, Shaposhnikovet

al. [12] considered a model based on electroweak physics to explain the origin of this baryon abundance,

the so-called electroweak baryogenesis. It satisfies the well-known Sakharov’s conditions required for

successful baryogenesis [13], namely baryon number production, the violation of discrete symmetries

[charge conjugation (C) and charge parity (CP)], and departure from thermal equilibrium. The magni-

tude of the CP violation of the SM is, however, far too small toproduce the present observed baryon

asymmetry. To solve these problems within both BBT and the electroweak baryogenesis, we require

SUSY in addition to the usual gauge symmetry group of the SM. In the minimal super-symmetric ex-

tension of the SM (MSSM), Afflecket al.[14] and Dineet al.[15] proposed a more successful baryoge-

nesis scenario, known as Affleck-Dine (AD) baryogenesis. Itcan solve a number of severe cosmological

problems, such as gravitino and moduli overproduction, which are harmful for successful BBN. More

strikingly, AD baryogenesis may also provide the mechanismto obtain the second quantity, Eq. (1.2),

which implies that the baryonic matter and dark matter couldshare the same origin.

How does AD baryogenesis naturally provide the quantities in Eqs. (1.1, 1.2) ? Let us now look at the

original AD baryogenesis scenario in the MSSM in more detail(for a review see [16]). The MSSM

has nearly 300 flat directions, some of which are uplifted by SUSY breaking effects arising from non-

renormalisable terms, and we can parametrise one of the flat directions in terms of a complex scalar

field known as an AD field, which consists of a combination of squarks and/or sleptons (supersym-

metric partners of quarks and leptons). During an inflationary epoch in the very early Universe, the

AD field evolves to a large field expectation value, and squarks and sleptons form homogeneous con-
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densate. After inflation, the motion of the AD field can be kicked along the phase direction due to

the A-terms arising from the nonrenormalisable terms, which are essential for the baryon generation.

Through thermal scattering, the AD condensate decays into the usual baryons/leptons and the lightest

SUSY particles (which are candidates for dark matter), the AD baryogenesis then becomes complete.

By including radiative and/or thermal corrections to the mass term of the scalar potentials, it alters the

above standard AD baryogenesis scenario and gives a rich variety of cosmological implications [17].

In this alternative scenario, the AD condensate can be classically unstable against spatial perturbations,

and fragment to bubble-like objects, eventually evolving into a stable nontopological soliton, the SUSY

Q-ball [18], which is a candidate for self-interacting cold dark matter. The fraction of theQ-balls could

also contribute to the number density of baryons. With a low-energy SUSY breaking scaleMS ∼ 1−10

TeV and a plausible chargeQ ∼ 1026 (baryon number) of the SUSYQ-balls, Laineet al. [19] found

nb

nγ
∼ 10−10

(
MS

TeV

)−2(
Q

1026

)−1/2

,
ΩDM

Ωb
∼ 10, (1.3)

which are the correct orders of magnitude required in Eqs. (1.1, 1.2).

1.4 Q-ball and its stability

What exactly is a soliton andQ-ball? A soliton is a nonlinear and nondissipative solutionwhich ap-

pears in a large variety of both classical and quantum field theory. The energy density of this solution is

smooth, and compacted in a finite region space, and solitons themselves behave as the usual elementary

particles of the SM. Because of the origin of their stability, there exist two types of solitons,i.e. topologi-

cal solitons and nontopological solitons. A conserved Noether charge stabilises nontopological solitons,

unlike the case of topological solitons whose stability is ensured by the presence of conserved topo-

logical charges. In a pioneering work by Freidberg, Lee, andSirlin [20], nontopological solitons were

introduced in a successful quantum chromodynamics (hadron) model. Later, Coleman [21] proposed

that it was possible for a new class of non-topological solitons to exist within a self-interacting scalar

field theory by introducing the notion of aQ-ball. His model had a continuous unbroken global U(1)

chargeQ, which corresponds to an angular motion with angular velocity ω in the U(1) internal space.

Once formed, aQ-ball is absolutely stable if five conditions are satisfied: (1) existence condition- its

potential should grow slower than the quadratic mass term, and this can be realised through a number

of routes such as the inclusion of radiative or finite temperature corrections to a bare mass, or nonlinear

terms in a polynomial potential, (2)absolute stability condition- the energyEQ (or mass) of aQ-ball

must be lower than the corresponding energy that the collection of the lightest possible scalar particle

quanta could have, (3)classical stability condition- theQ-ball should be stable to linear fluctuations;

with the threshold of the stability being located at the saddle point of the Euclidean action, (4)fission

condition- the energy of a singleQ-ball must be less than the total energy of the smallerQ-balls that

it could in principle fragment into, (5)decays into fermions- aQ-ball should not couple with fermions

strongly. If coupling with light/massless fermions, theQ-ball evaporates via the surface area. For the

7



first condition to be satisfied, we require

ω− ≤ |ω| < ω+, (1.4)

whereω∓ are the lower and upper limits ofω that theQ-ball can have. The lower limitω ≃ ω− can

define thin-wallQ-balls, whilst the upper limitω ≃ ω+ can define “thick-wall”Q-balls. Although

the thin-wallQ-ball can actually have a thin-wall thickness, the “thick-wall” limit does not imply that

the “thick-wall” Q-ball has to have a large thickness which is comparable to thesize of the core size.

In chapter 2 of this thesis, we review the fundamental properties ofQ-balls with a complete classical

stability analysis given in Appendix A, following the original work in [20]. As a first nontrivial example

of standardQ-balls, in chapter 3 we inspect both analytically and numerically the stationary properties

of a singleQ-ball in an arbitrary number of the spatial dimensions with ageneral polynomial potential,

working in the both thin- and thick-wall limits. We discoverthe connection of the analyses between the

virial relation and the thin- and thick-wall approximations, giving an important quantityγ defined by

EQ ∝ Q1/γ . (1.5)

1.5 SupersymmetricQ-balls

From a phenomenological point of view, the most interestingexamples are the SUSYQ-balls aris-

ing within the MSSM. Since they suffer from evaporation, diffusion, dissociation and decay into light

fermions [22], SUSYQ-balls are generally not stable but long-lived. The stability and cosmological

consequences [such as Eqs. (1.1, 1.2)] of theseQ-balls depend on how SUSY is broken in the hidden

sector, transmitting to the observable sector through so-called messengers. In the gravity-mediated [23]

or gauge-mediated scenarios [24], the messengers correspond respectively either to supergravity fields

or to some heavy particles charged under the gauge group of the SM. So far, no reliable stability anal-

yses on these SUSYQ-balls have been performed analytically as well as numerically. In chapter 4,

we, therefore, present a thorough stability analysis of theSUSYQ-balls with flat potentials arising in

both gravity-mediated and gauge-mediated models. We show that the associatedQ-matter formed in

gravity-mediated potentials can be stable against decays into their own free-particles as long as the cou-

pling constant of the nonrenormalisable term is small, and that all of the possible three-dimensional

Q-ball configurations are classically stable. Three-dimensional gauge-mediatedQ-balls can be abso-

lutely stable in the “thin-wall” limit, but are completely unstable in the “thick-wall” limit. In both of the

above models, we also obtain the values ofγ, e.g.1/γ = 3/4 for “thin-wall” Q-balls in gauge-mediated

potentials. This example turns out that theseQ-balls are the most energetically compact state given a

sufficiently large charge, recalling Eq. (1.5).
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1.6 Observational limits onQ-balls

Can we detect the signals ofQ-balls through observations? The current experiments in the search

for SUSYQ-balls are sensitive to electrically neutralQ-balls (SENS) [25] and electrically charged

Q-balls (SECS) [26] where the present and past experiment data and the estimations from the future

experiments are summarised in Fig. 1.1 for SENS and Fig. 1.2 for SECS. The core of a SENS has a

large vacuum expectation value of squark, slepton, and/or Higgs fields, where the symmetry of the

strong force (colour confinement, which is the binding of mesons and baryons, composed of two and

three quarks (q), respectively) is broken. If a nucleon enters into this deconfinement region, it dissociates

into three quarks, some of which may be absorbed by the SENS. This implies that the following reaction

may happen,qq → q̃q̃, releasing the energy,∼ 1 GeV/nucleon, wherẽq is the anti-quark of a quark (q).

Moreover, a similar process to proton decay may take place around the thin-wall region of the SENS.

From the Japan-US large underground water Cherenkov detector, Super-Kamiokande [27], an upper

bound on the SENS flux has been obtained, which is equivalent to giving the lower bound on the mass

of the SENS,i.e.

EQ > [4.0 × 1011, 1.2 × 1013, 5.6 × 1013]

(
MS

TeV

)4

GeV, (1.6)

with the respective cross sections[0.1, 1, 10] mb, whereMS is a typical SUSY breaking scale appeared

in Eq. (1.3). On the other hand, for a sufficiently large charge, a SECS whose effective radius is∼ 1

Å comparable to an atom size accompanied with electron clouds loses the energy due to the interaction

with nuclei and electrons of the traversed medium. In the SLIM and MACRO experiments [26], which

are designed to be sensitive to SECS, it also gives the upper bound on the SECS flux and equivalently

the lower bound on the SECS mass with the electrical chargeZQ = 137, i.e.

EQ > 2.5 × 107

(
ρL

gr/cm2

)
GeV, (1.7)

whereρ andL are the density and length of the electronic medium. The present best experimental limit

from Super-Kamiokande II [25] is

Q & 1024, (1.8)

cf. Eq. (1.3); the future Cherenkov detectors are expected to tighten these limits further.
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1.7 Q-ball formation

The final big question, which is the main goal of this thesis, might be ’How doQ-balls form and interact

with each other in the very early Universe ?’. The dynamics and formation ofQ-balls involve nonlin-

ear, nonperturbative, and out-of-equilibrium processes,which generally require numerical simulations.

With different relative phases and initial velocities between twoQ-balls in a polynomial potential, we

found rings form after the collision of a pair of theQ-balls [1], e.g.see Fig. 1. It has been found [46]

that similar ring-like solutions are responsible for the excited states from the ground state (Q-ball) by

introducing extra degrees of freedom,i.e. spatial spins and twists. Further, the mainQ-ball formation

process has been examined in gauge-mediated and gravity-mediated models [47, 48]; however, those

previous analyses used initial conditions, which were chosen under a simple assumption, and the lattice

simulations were too small and short to reproduce satisfactory results. With more generic initial con-

ditions and much larger and longer lattice simulations, we present, in chapter 5, both analytically and

numerically the consistent analysis from the AD dynamics tothe subsequent semiclassical evolution,

i.e.Q-ball formation, in both gravity-mediated and gauge-mediated models. We obtain analytically the

elliptic motions in the AD dynamics as the analogy of the well-known planetary motions (i.e. Kepler-

problem). By solving the equations of motion in a3 + 1 (and2 + 1)-dimensional lattice with5123 (and

5122) lattice units, we find that theQ-ball formation goes through three distinct stages as a model of

reheating process in the very early Universe after inflation: pre-thermalisation, bubble collisionsand

main thermalisation. The second stage of theQ-ball formation lasts rather long compared to the first

stage, and the main thermalisation process is unique due to the presence of “thermal thin-wallQ-balls”.

1.8 Outline of the thesis

This thesis is organised as follows. In chapter 2, we introduce the fundamental aspects ofQ-balls.

We then show the detailed stability analysis and stationaryproperties of both thin- and thick-wallQ-

balls in a general polynomial potential in chapter 3 [49]. Following this analysis, we study both the

classical and quantum-mechanical stability ofQ-balls in the MSSM flat potentials in chapter 4 [50].

With numerical lattice simulations, we investigate how those SUSYQ-balls form in chapter 5 [51].

Finally, we summarise our main results and discuss possiblefuture work in chapter 6. Six appendices

are included. We present the complete classical stability analysis ofQ-balls in Appendix A. For the

analysis of gravity-mediatedQ-balls, we find an exact solution in Appendix B, and show the classical

stability of theQ-balls in the thick-wall limit with a Gaussian ansatz in Appendix C. We find the

equations of motion for multi-scalar fields in Appendix D. InAppendix E, we obtain elliptic forms for

the orbits of AD fields. In Appendix F we prove Bertrand’s theorem that there are only two potential

forms allowed to be closed “planetary” orbits.
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Chapter 2

Foundations

2.1 Introduction

In a pioneering paper published in 1985 [21], Sidney Colemanshowed that it was possible for a new

class of non-topological solitons [20] to exist within a self-interacting system by introducing the notion

of aQ-ball (for reviews see [16, 17, 52, 53]). Once formed, aQ-ball is absolutely stable if the five

conditions, one of which is shown in Eq. (1.4), are satisfied.The lower limit,ω ≃ ω−, of the existence

condition in Eq. (1.4) can define thin-wallQ-balls, either without [21] or with [54, 55] the wall thickness

being taken into account, while the upper limit,ω ≃ ω+, can define thick-wallQ-balls in [18] which

may be approximated by a simple Gaussian ansatz [56].

There is a vast literature on nontopological solitons, includingQ-balls. They have been seen to be

solutions in Abelian gauge theories [57, 58, 59, 60, 61], in non-Abelian theories [62, 63, 64], in non-

Abelian gauge theories [65, 66, 67], in self-dual (Maxwell-) Chern-Simons theory [68, 69, 70, 71], in

noncommutative complex scalar field theory [72], in (nonlinear) sigma models [73, 74], and in hadron

models which include fermionic interactions [57, 75, 76], as well as in the presence of gravity [77, 78,

79, 80].Q-balls themselves have been quantized either by canonical [20] or by path integral schemes

[81, 82]. With thermal effects, it has been shown thatQ-balls coupled to light/massless fermions are

able to non-perturbatively and semi-classically evaporate away on their surface [22, 83, 84]; however, at

sufficiently low temperatures they become stable, indeed they then tend to grow [19, 85]. The authors

in [20, 86] have discussed and analysed the spatially excited states ofQ-balls, including radial modes or

spatially dependent phase excitations. A more general mathematical argument concerning the stability

of solitary waves can be found in [87, 88, 89]. StandardQ-balls exist in an arbitrary number of space

dimensionsD and are able to avoid the restriction arising from Derrick’stheorem [90] because they are

time-dependent solutions. A related class of objects toQ-balls are known as oscillons [91, 92, 93] or

as I-balls [94], and recent attention has turned to the dynamics of these time-dependent, nonlinear, and

metastable configurations [95, 96, 97].



In this chapter we review the important stationary properties of a standardQ-ball in an arbitrary number

of spatial dimensionsD. By introducing aQ-ball ansatz in Sec. 2.2, we obtain powerful tools, Legendre

relations and characteristic slopes, in Sec. 2.3 and Sec. 2.4. In Sec. 2.5, we then obtain aQ-ball equation

and the existence condition, which requires certain restrictions on the allowed potentials. In Sec. 2.7 we

obtain four types ofQ-ball stability conditions. By scaling aQ-ball solution, we find the characteristic

slopes, depending on the ratio between the surface energy and potential energy, in Sec. 2.8. In Appendix

A, we show a general classical stability analysis ofQ-balls, following [52]. This chapter contains work

that is published in [49].

2.2 Q-ball ansatz

We consider a complex scalar fieldφ in Minkowski spacetime of arbitrary spatial dimensionsD with a

U(1) potential bounded byU(|φ|) ≥ 0 for any values ofφ:

S =

∫
dD+1x

√−g L, (2.1)

where L = −1

2
gµν∂µφ

†∂νφ− U(|φ|). (2.2)

The metric isds2 = gµνdx
µdxν = −dt2 + hijdx

idxj andg is the determinant ofgµν , whereµ, ν run

from0 toD, andi, j denote spatial indices running from1 toD. Now, using the standard decomposition

of φ in terms of two real scalar fieldsφ = σeiθ, the energy momentum tensorTµν ≡ − 2√−g
δS

δgµν
+

(symmetrising factors) and the conserved U(1) global currentjµ,U(1) via the Noether theorem, we

obtain

Tµν = (∂µσ∂νσ + σ2∂µθ∂νθ) + gµνL, (2.3)

jµ,U(1) = σ2∂µθ. (2.4)

Using a basis of vectors{nµ
(a)} wherenµ

(t) is time-like andnµ
(i) are space-like unit vectors oriented along

the spatiali-direction, the above currents give the definitions of energy densityρE , charge densityρQ,

momentum fluxP̂i and pressurep:

ρE ≡ Tµνn
µ
(t)n

ν
(t); ρQ ≡ jµn

µ
(t); P̂i ≡ Tµνn

µ
(t)n

µ
(i); p ≡ Tµνn

µ
(i)n

ν
(i). (2.5)

Defining theD dimensional volumeVD bounded by a(D − 1)-sphere, the Noether charges (energy,

momenta, and U(1) charge) become

E =

∫

VD

ρE , Pi =

∫

VD

P̂i, Q =

∫

VD

ρQ, (2.6)

where
∫

VD
≡
∫
dDx

√
h. Minimising an energy with a fixed chargeQ for any degrees of freedom,

we find theQ-ball (lowest) energyEQ by introducing a Lagrange multiplierω and settingnµ
t =
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(−1, 0, 0, . . . , 0):

EQ = E + ω

(
Q−

∫

VD

ρQ

)
, (2.7)

= ωQ+

∫

VD

(
1

2

{
σ̇2 + σ2(θ̇ − ω)2 + (∇σ)2 + σ2(∇θ)2

}
+ Uω

)
, (2.8)

= ωQ+ Sω, (2.9)

whereUω = U − 1
2ω

2σ2, σ̇ ≡ dσ
dt etc... andω will turn out to be the rotation frequency in the U(1)

internal space. The presence of the positive definite terms in Eq. (2.8) suggests that the lowest energy

solution is obtained by settinġσ = 0 = θ̇ − ω = ∇θ. The Euclidean actionSω and the effective

potentialUω in Eqs. (2.8, 2.9) are finally given by

Sω =

∫

VD

1

2
(∇σ)2 + Uω, Uω ≡ U − 1

2
ω2σ2. (2.10)

The second term inUω comes from the internal spin of the complex field. Following Friedberg et. al

[20], it is useful to define the functional

GI ≡
∫

VD

1

2
(∇σ)2 + U = EQ −

(
1

2
ω2

)
I = Sω +

(
1

2
ω2

)
I, (2.11)

where1
2ω

2 is the corresponding Lagrange multiplier andI ≡
∫

VD
σ2.

Given that the spherically symmetric profile is the minimum energy configuration [98], we are lead to

the standard stationaryQ-ball ansatz at zero-temperature

φ = σ(r)eiωt. (2.12)

Substituting Eq. (2.12) into Eq. (2.5), we find

ρE =
1

2
σ′2 + U +

1

2
σ2ω2, ρQ = ωσ2, (2.13)

pr =
1

2
σ′2 − Uω, Pi = 0, (2.14)

whereσ′ ≡ dσ
dr andpr is a radial pressure given in terms of the radially oriented unit vectornµ

s =

(0, 1, 0, . . . , 0). Without loss of generality, we set bothω andQ as positive.

2.3 Legendre relations

It is sometimes difficult to computeEQ directly, but using Legendre relations often helps [20]. Inour

case, from Eq. (2.9) and Eq. (2.11) we find

dEQ

dQ

∣∣∣∣
Sω

= ω,
dSω

dω

∣∣∣∣
EQ

= −Q, dGI

dI

∣∣∣∣
Sω

=
1

2
ω2 (2.15)

becauseQ-ball solutions give the extrema ofEQ, Sω, andGI with respect toQ, ω, andI, respectively.

These variables match the corresponding “thermodynamic” ones:EQ, ω, Q, Sω, andGI correspond
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to the internal energy, chemical potential, particle number, and “thermodynamic” potentials [19]. After

computingSω orGI , one can calculateQ or 1
2ω

2 using the second or third relation in Eq. (2.15), and

can computeEQ using Eq. (2.9) or Eq. (2.11),i.e.

Sω → Q = −dSω

dω
→ EQ = ωQ+ Sω, (2.16)

or similarlyGI → 1
2ω

2 = dGI

dI → EQ = GI +
(

1
2ω

2
)
I, Sω = GI −

(
1
2ω

2
)
I. We shall make use of

this powerful technique later.

2.4 The characteristic slope

Let us define

γ(ω) ≡ EQ

ωQ
. (2.17)

If γ is not a function ofω, we can obtain the following proportional relation using the first expression

of Eq. (2.15)

EQ ∝ Q1/γ . (2.18)

2.5 Q-ball equation and existence condition

Let us consider the actionS = −
∫
dtSω in Eq. (2.1) with our ansatz Eq. (2.12) and the following

boundary condition on a(D − 1)-sphere which represents spatial infinity

σ′| = 0 on the (D − 1)-sphere. (2.19)

VaryingSω with respect toσ, we obtain theQ-ball equation:

d2σ

dr2
+
D − 1

r

dσ

dr
− dUω

dσ
= 0, (2.20)

⇔ d

dr

(
1

2

(
dσ

dr

)2

− Uω

)
= −D − 1

r

(
dσ

dr

)2

≤ 0. (2.21)

There is a well known mechanical analogy for describing theQ-ball solution of Eq. (2.20) [21], and

that comes from viewing Eq. (2.20) in terms of the Newtonian dynamics of an unit-mass particle with

positionσ, moving in potential−Uω with a friction D−1
r , wherer is interpreted as a time co-ordinate.

Moreover,ρQ = ωσ2 can be considered as the angular momentum1. Note that the friction term is

proportional toD−1
r , and hence becomes significant for highD and/or smallr. According to Eq. (2.21),

the “total energy”,12
(

dσ
dr

)2 −Uω, is conserved forD = 1 and/orr → ∞, implying that in that limit the

Q-balls have no radial pressure, see the first expression of Eq. (2.14). Of course these are really field

theory objects and consequently more restrictions apply:

1I is realised as an inertia moment in this mechanical analogy [21, 20].
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• no symmetry breaking, in other wordsσ(r → large) = 0; U ′′(σ = 0) ≡ m2 > 0 with an effective

massm,

• regularity condition:σ′(r = 0) = 0,

• reflection symmetry underσ → −σ.

Note that Eq. (2.20) coupled with the boundary condition Eq.(2.19) impliesσ(r) is a monotonically

decreasing function,i.e. σ′ < 0 when the solution is nodeless. In fact, according to Eqs. (2.19, 2.20)

and the above conditions, our mechanical analogy implies that a particle with an unit mass initially at

rest should be released somewhere on its potential, eventually reaching the origin at large (but finite)

time and stopping there due to the presence of a position- andD- dependent friction. It implies that the

initial “energy” of the particle will monotonically decrease due to the friction term, and eventually lose

all of the energy when it will reach at the origin,σ = 0. These requirements constrain the allowed forms

of the U(1) potentials: for example if the local maximum of the effective potential−Uω is less than0,

the “particle” can not reach the origin, a process known asundershooting. To avoid undershooting we

require

max(−Uω) ≥ 0 ⇔ min

(
2U

σ2

)
≤ ω2. (2.22)

If −Uω is convex atσ = 0, the “particle” cannot stop at the origin, a situation termed overshooting

such that
d2Uω

dσ2

∣∣∣∣
σ=0

< 0 ⇔ ω2 <
d2U

dσ2

∣∣∣∣
σ=0

. (2.23)

Combining Eqs. (2.22, 2.23), we find the condition onω for the existence of a singleQ-ball at zero-

temperature:

ω− ≤ |ω| < ω+, (2.24)

where we have defined the lower limitω2
− ≡ min

(
2U
σ2

)
= 2U

σ2

∣∣
σ+(ω−)

≥ 0, σ+(ω) is the nonzero

value ofσ whereUω(σ+(ω)) is minimised (see Figs. 2.1 and 4.1), and the upper limitω2
+ ≡ d2U

dσ2

∣∣∣
σ=0

.

Here, we defined the maximum of the effective potential to be at σ+(ω) (i.e. dUω

dσ

∣∣
σ+(ω)

= 0); thus,

ω2
− = 2U

σ2

∣∣
σ+

andUω−(σ+) = 0 whereσ+ ≡ σ+(ω−). Moreover,σ−(ω) satisfiesUω(σ−(ω)) = 0

for σ−(ω) 6= 0. Noticeσ−(ω) ≃ σ+(ω) whenω ≃ ω−. The case,ω− = 0, corresponds to degenerate

vacua potentials (DVPs), while the other case,ω− 6= 0, does not have degenerate vacua (NDVPs). In

Figs. 2.1 and 4.1, we indicate the above introduced parameters, σ±(ω) andω−, using typical original

and effective potentials for both DVP (left) and NDVP (right), which we will use later.

Theexistence conditionin Eq. (2.24) restricts the allowed form of the potentialU , which implies that

the potential should grow less quickly than the quadratic term (i.e. mass term) for small values ofσ;

hence, U(1) potentials must have a nonlinear interaction and Uω is weakly attractive [52]. In chapter 3

we examine the case of polynomial potentials and restrict ourselves to the case ofω2
+ = m2, wherem

is a bare mass in the potentials. In chapter 4 we extend our analysis allowing us to investigate the case,

ω2
+ ≫ m2, needed since the potentials include one-loop radiative corrections to the bare massm. Here,

the potential which we will consider in the gravity-mediated models isU = Ugrav +UNR, whereUNR
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is a nonrenormalisation term (to be discussed in Sec. 4.2), and

Ugrav ≡ 1

2
m2σ2

(
1 +K ln

(
σ2

M2

))
. (2.25)

Here,K is a constant factor arising from the one-loop correction and M is the renormalisation scale.

When the sign ofK is negative,Q-balls may exist subject to the coupling constant inUNR.

FIG. 2.1: Parametersσ±(ω) in two typical potentialsU(σ) = 1

2
σ2 − Aσ4 + Bσ6 whereω+ = m = 1 and the

effective potentials−Uω are plotted for various values ofω: degenerate vacua potential (DVP) withA = 4

3
, B = 8

9

on the left and non-degenerate vacua potential (NDVP) withA = 1, B = 2

3
on the right. The DVP has degenerate

vacua in the original potential−U (red solid line) where we setω− = 0. The NDVP does not have degenerate
vacua, but withω = ω− = 0.5 (sky-blue dot-dashed line) the effective potential−Uω does have degenerate vacua.
The two lines in the lower limitω = ω− show thatσ−(ω) → σ+(ω) where we have defined the maximum of
the effective potential to be atσ+(ω) andUω(σ−(ω)) = 0 for σ−(ω) 6= 0. The purple dotted-dashed lines show
σ−(ω) → 0 with the thick-wall limitω = ω+. With some values ofω (green dotted lines) satisfying the existence
condition Eq. (2.20), both potentials show the values ofσ∓(ω) clearly.

2.6 Thin- and “thick-wall” Q-balls

2.6.1 Definitions

To proceed with analytical arguments, we consider the two limiting values ofω or σ0(ω) ≡ σ(0) that

describe



• thin- wallQ-balls whenω ≃ ω− or equivalentlyσ0(ω) ∼ σ+(ω),

• “thick-wall” Q-balls whenω ≃ ω+ or equivalentlyσ0(ω) ≃ σ−(ω).

(2.26)

Note, the “thick-wall” limit does not imply that the “thick-wall” Q-ball has to have a large thickness

which is comparable to the size of the core size. For the extreme thin-wall limit, ω = ω−, thin-wall

Q-balls satisfy,EQ

Q = γ(ω−)ω−, see Eq. (2.17). In particular Coleman demonstrated that a step-like

profile forQ-balls, which generally exist forω− 6= 0, satisfiesγ = 1, which implies that the chargeQ

and energyEQ are proportional to the volume [see Eq. (2.18)], and he called thisQ-matter [21]. We

will not be consideringQ-ball solutions that exist in a false vacua whereω2
− < 0 [54]. When it comes
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to obtainingQ-ball profiles numerically, we will adopt a standard shooting method which fine-tunes the

“initial positions”σ0(ω) subject toσ−(ω) ≤ σ0(ω) < σ+(ω), in order to avoid bothundershootingand

overshooting.

2.6.2 The infinitesimal variables:ǫω and mω

For later convenience, we define two positive definite quantities,ǫω andmω,

ǫω ≡ −Uω(σ+(ω)) =
1

2
ω2σ2

+(ω) − U(σ+(ω)),

≃ 1

2

(
ω2 − ω2

−
)
σ2

+, (2.27)

m2
ω ≡ m2 − ω2, (2.28)

which can be infinitesimally small for either thin- or thick-wall limits. By assumingσ+(ω) ≃ σ+(ω−) ≡
σ+ in the thin-wall limit, we immediately obtain the second line in Eq. (2.27). Let us remark upon im-

portant exceptions, which we will discuss in chapter 4, suchthat the above assumption is fine for the

polynomial and gravity-mediated cases, while for gauge-mediated potentials which are extremely flat,

the assumption,σ+(ω) ≃ σ+, can not hold becauseσ+(ω) does not exist. Therefore, we will not use

the variableǫω for the case of the gauge-mediated potentials. Indeed, it will turn out that the “thin-wall”

Q-balls in the gauge-mediated cases do not have a thin-wall thickness. Further, the variablem2
ω can not

be infinitesimally small when we consider the gravity-mediated cases:ω2
+ 6∼ m2.

2.7 Four kinds of stability

2.7.1 Absolute stability

When the volumeVD approaches infinity [52] and/orω is outside the limits of Eq. (2.24), then plane

wave solutions may exist around the vacua ofU(|φ|). The equation of motion forφ becomes a free

Klein-Gordon equation whose solution can be written asφ = Nei(k·x−ωkt), whereωk =
√
m2 + k2

and the normalisation factorN =
√

Q
2ωkVD

has been calculated fromQ. Then, the energy of the plane

wave solution is proportional toωk andQ linearly: Efree = ωkQ → Efree ≃ mQ where we have

taken the infrared limit, to obtain the second relation. TheenergyEfree can be interpreted as the energy

of a collection ofQ free particle quanta with the rest massesm. Furthermore, one might expect that the

Q-ball energy approachesEfree in the “thick-wall” limit, ω ≃ ω+, since theQ-ball profiles approach

zero exponentially at infinity [52]:

EQ(ω = ω+) ≃ Efree ≃ mQ. (2.29)

Hence, theabsolute stability condition for aQ-ball becomes

EQ(ω) < Efree ⇔ EQ

Q
< m. (2.30)
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We would expect Eq. (2.30) to be the strongest condition which aQ-ball solution has to satisfy. If the

Q-ball has decay channels into other fundamental scalar particles which have the lowest massmmin,

we need to replacem bymmin in Eq. (2.30).

2.7.2 Classical stability

Theclassical stability[20, 52] can be defined in terms of the mass-squared of the fluctuations around a

Q-ball solution. For zero mass fluctuations this correspondsto a zero mode,i.e. translation and phase

transformation of theQ-ball solution. Using collective coordinates and Eq. (2.20) which extremisesSω,

such a mode should be treated with special efforts. Since a detailed analysis can be found in Appendix A

and the literature [20, 52], we simply state the final result which implies theclassical stabilitycondition

is
ω

Q

dQ

dω
≤ 0 ⇔ d2Sω

dω2
≥ 0, (2.31)

where we have used Eq. (2.15) in the second relation of Eq. (2.31). Sinceω andQ have the same sign,

the sign ofdQ
dω signals whether the solution is classically stable. The first relation of Eq. (2.31) indicates

the presence of an extreme charge in the parameter space ofω, (we will later see that the extreme charge

at some critical valueω = ωc turns out to be the minimum allowed). Let us remark on the characteristic

slope ofEQ/Q as a function ofω:

d

dω

(
EQ

Q

)
= −Sω

Q2

dQ

dω
≥ 0, (2.32)

where we have used Eq. (2.9) and Eq. (2.15). SinceSω is positive definite forD ≥ 2 as we will see,

the classically stableQ-balls should satisfyd
dω

(
EQ

Q

)
≥ 0. The conditions from both Eq. (2.31) and

Eq. (2.32) must be same.

2.7.3 Stability against fission

Suppose that the total energy of twoQ-balls is less than the energy of a singleQ-ball carrying the same

total charge. The singleQ-ball naturally decays into two or more with some release of energy. As shown

in [52], the stability condition againstfissionfor aQ-ball is given by

d2EQ

dQ2
≤ 0 ⇔ dω

dQ
≤ 0, (2.33)

where we have used Eq. (2.15), going from the first expressionto the next expression in Eq. (2.34).

Note that this is the same condition as we found above in Eqs. (2.31, 2.32), so the condition for classical

stability is identical to that of stability against fission.

Trying to summarise the stability so far, we can categorise three types of aQ-ball: i.e.absolutely stable,

meta-stable, or unstableQ-balls. Absolutely stableQ-balls are stable quantum mechanically as well as

classically; meta-stableQ-balls decay into free particle quanta, but are stable undersmall fluctuations;
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whereas completely unstableQ-balls sometimes calledQ-clouds [99] decay into lower energyQ-balls

or free particle quanta.

2.7.4 Stability against fermions

If coupling with light/massless fermions, aQ-ball decays through the surface areaA of the object. This

decay rate is suppressed by Pauli blocking, and the authors in [22] computed the upper bound on the

rate per unit surface area forQ-matter

dQ

dtdA
≤ ω3

−
192π2

. (2.34)

For a small Yukawa coupling limit, they also obtained the decay rate for generalQ-ball profile cases.

The rate in Eq. (2.34) can be used to compute the life-time of theQ-ball.

2.8 Virial theorem

Derrick’s theorem restricts the existence of static non-trivial scalar field solutions in terms of the num-

ber of spatial dimensions. For example in a real scalar field theory, non-trivial solutions exist only in

one-dimension,e.g.Klein-Gordon kink.Q-balls (or any nontopological solitons), however, avoid this

constraint because they are time-dependent (stationary) solutions [18, 56]. We can easily show this and

in doing so obtain useful information about the scaling properties of theQ-balls as a function of dimen-

sionality as well as the ratio between their surface and potential energies. Following [56], we begin by

scaling theQ-ball ansatz, Eq. (2.12), using a one-parameter familyr → αr, whilst keepingQ fixed.

Defining a surface energyS ≡
∫

VD

1
2σ

′2, a potential energyU ≡
∫

VD
U , and recalling that the charge

satisfiesQ = Iω, we see that the energy of theQ-ball, Eq. (2.9), becomes

EQ = S + U +
Q2

2I
. (2.35)

Now, under the scalingr → αr, thenEQ → E′
Q where

∂E′
Q

∂α

∣∣∣
α=1

= 0 because theQ-ball solutions are

the extrema (minima) ofEQ. Evaluating this, we obtain the virial relation relatingU andS

D U = −(D − 2)S +D
Q2

2I
≥ 0 (2.36)

where we have used our earlier notation,U ≥ 0, for any values ofσ. The case ofQ = 0 recovers

Derrick’s theorem, showing no time-independent solutionsforD ≥ 2 [56].

UsingS = DQ2

2I

(
D − 2 +D U

S
)−1

from Eq. (2.36), the characteristic slope Eq. (2.17) is

γ(ω) =
EQ

ωQ
= 1 +

(
D − 2 +D

U
S

)−1

. (2.37)

ForD ≥ 2, we can seeγ(ω) ≥ 1 becauseS, U ≥ 0, which implies thatSω is positive definite for

D ≥ 2, see Eq. (2.10), whileSω is positive forD = 1 only whenU ≥ S.

21



Let us consider three cases forD ≥ 2: (i) S ≪ U , (ii) S ∼ U , and (iii)S ≫ U . They lead to predictions

for ω-independent characteristic slopesγ:

γ ≃





1 for (i) S ≪ U ,
(2D − 1)/2(D− 1) for (ii) S ∼ U ,
(D − 1)/(D − 2) for (iii) S ≫ U .

(2.38)

All of the Q-balls in the range ofω are classically stable because the terms,EQ/Q, monotonically

increase as a function ofω, see Eqs. (2.32, 2.38). The first case (i) corresponds to the extreme thin-

and thick-wall limitsω ≃ ω∓ as will see. In the second case (ii), the potential energy is of the same

order as the surface energy which meansS andU have equally virialised. This case will turn out to be

that of the thin-wall limit for DVPs when the surface effectsare included. At present it is not known

what kind ofQ-ball potentials correspond to the third case; however, we will shortly find a duality

relation between this case and the second case. Notice that in the caseS ≫ U for D = 2, we obtain

the characteristic slope,γ ≫ 1, from Eq. (2.37). Similarly forD = 1, the characteristic slopes are

obtained, i.e.γ ≃ 1, ≫ 1, ≃ 0, respectively for (i), (ii), and (iii). We will use these1D analytic results

to interpret numerical results of one-dimensionalQ-balls in the thin-wall limit. We note a nice duality

which appears in Eqs. (2.37, 2.38) between the two casesS ∼ U andS ≫ U . In particular forS ∼ U
in D dimensions, the same result forγ is obtained (to leading order) in2×D dimensions whenS ≫ U .

SupposeS/U = const. over a large range ofω within the existence condition Eq. (2.24) exceptω ≃ ω+

whereEQ/ω+Q ≃ 1. We can find an approximate threshold valueωa for aQ-ball to be absolutely stable

using Eqs. (2.29, 2.38):

ωa

m
≃





1 for (i),
2(D−1)
2D−1 for (ii) ,

D−2
D−1 for (iii) .

(2.39)

Roughly speaking,Q-balls are classically and absolutely stable ifω < ωa because of Eqs. (2.30, 2.32)

and Eq. (2.38). These approximations can and will be justified by our numerical results in polynomial

potentials in chapter 3, however they will not hold in other models introduced in chapter 4. We will find

that the virial relation is a powerful tool enabling us to findappropriate values ofωa as opposed to the

rather complicated computations we will have to perform in the following two chapters by introducing

detailedQ-ball profiles and specific potential forms. We should point out a caveat in this argument,

the assumption we are making here, that most of theQ-balls have an identical energy ratioS/U over

a range ofω, does of course rely on the specific form of the potential. We have to remind the readers

that the virial relation Eq. (2.36) gives only the relation betweenS andU if the system allows the time-

dependent solutions,Q-balls, in Eq. (2.12) to exist.

To sum up, the virial theorem induces the characteristic slopes Eq. (2.38) with the time-dependent non-

linear solutions in the system, and gives the approximate critical values forωa in Eq. (2.39) without

requiring a knowledge of the detailed profiles and potentialforms.
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Chapter 3

Q-balls in polynomial potentials

3.1 Introduction

StandardQ-balls exist in an arbitrary number of space dimensionsD and are able to avoid the restriction

arising from Derrick’s theorem [90] because they are time-dependent solutions. A number of examples

include polynomial models both forD = 3 [100, 101] and for arbitraryD [56], Sine-Gordon models

[102], parabolic-type models [103], confinement models [104, 105, 106, 107], two-field models [20,

108], and flat models with supersymmetry broken by gravity mediation [101], and by gauge mediation

[19, 109, 110]. Returning to the case ofD = 3, phenomenologically, it turns out that theQ-balls present

in models with gravity-mediated supersymmetry breaking are quasi-stable but long-lived, allowing in

principle for theseQ-balls to be the source of both the baryons as well as the lightest supersymmetric

particle dark matter [111]. On the other hand,Q-balls in models of gauge-mediated supersymmetry

breaking can be a dark matter candidate as they can be absolutely stable [17]. Both types ofQ-balls

have been shown to be able to provide the observed baryon-to-photon ratio [19].

The dynamics and formation ofQ-balls involve solving complicated non-linear systems, which gen-

erally require numerical simulations. The dynamics of twoQ-balls in flat Minkowski space-time

depends on parameters, such as the relative phases between them, and the relative initial velocities

[109, 112, 113]. In addition, the main formation process through the Affleck-Dine mechanism [14] has

been extensively examined in both gauge-mediated [47], gravity-mediated [48, 114, 115], and running

inflaton mass models [116]. As analysing individualQ-balls is difficult in its own right, it is extremely

challenging to deal with multipleQ-balls. A number of analytical approaches to address that issue have

been made over the past few years,e.g.[117, 118, 119, 120, 121, 122]. Multiple thermalQ-balls have

been described in a statistical sense in [114, 123].

In this chapter, we aim to analytically address stationary properties of a singleQ-ball with polynomial

potentials in an arbitrary number of spatial dimensionsD. The work will draw on earlier work of

Correia and Schmidt [124] who derived analytic properties for the thin- and “thick-wall” limits ofQ-



balls inD = 3. Recently, Gleiser and Thorarinson [56] proved the absolute stability for thin-wall

Q-balls using the virial theorem. We generalise the main results of [56, 124] to the case of arbitrary

spatial dimensions, and in doing so both analytically predict and numerically confirm the unique values

of the angular velocityωa in Eq. (2.39) for the absolute stability of theQ-balls via the thin-wallQ-

ball approximations. Moreover, we obtain the classical stability conditions for the thin- and “thick-

wall” approximations, and discover the connections between the virial relation and thin- or “thick-wall”

approximation for the characteristic slopesEQ/ωQ.

This chapter is organised as follows. By introducing a number of different ansätze, we present a detailed

analysis of the solutions in the thin-wall limit in Sec. 3.2.1 and in the “thick-wall” limit in Sec. 3.2.2. In

order to obtain minimise the numerical errors, we obtain a general asymptotic profile in Sec. 3.2.3. We

then demonstrate the advantages of using two particular modified ansätze in Sec. 3.3, where we present

detailed numerical results for the case of both degenerate and non-degenerate underlying potentials.

Finally, we conclude in Sec. 3.4. This chapter is partially published in [49].

3.2 Thin- and thick-wall approximations

In this section we obtain approximate solutions forQ-balls inD-dimensions based on the known thin-

and thick-wall approximations for the radial profilesσ(r) of the fields. Moreover, we show how we can

then use these results to verify the solutions we obtained inthe previous chapter forγ(ω) in Eq. (2.38).

Further, we are able to test the solutions against detailed numerical solutions in the next section, Sec. 3.3.

We start with two simple ansätze for the radial profiles, a step-like function for the thin-wall caseω ≃
ω− and a Gaussian function for the “thick-wall” caseω ≃ ω+. In both cases, we evaluateSω, Q, EQ,

as well as the conditions for classical and absolute stability before modifying the ansätze. Following

that, we repeat the same calculations using our more physically motivated ansätze via the Legendre

transformation technique described in Eq. (2.16). Let us comment briefly on the form of the potential.

We see that in the thin-wall limit,σ0(ω) ≃ σ+(ω), with our modified ansatz, although in principle we

do not have to restrict ourselves to particular potentials,we are not be able to investigate cases where

the effective potential is extremely flat; hence, we have to limit our investigation to situations. We will

consider flat potential cases in chapter 4. In the “thick-wall” limit, ω ≃ ω+, we have to restrict our

analysis to the case of polynomial potentials of the form:

U(σ) =
1

2
m2σ2 −Aσn +Bσp for p > n, (3.1)

wheren ≥ 3, with the nonlinear couplingsA > 0 andB > 0. To ensure the existence ofQ-ball

solutions, we will restrictA, B, n andp later. We expect the thin-wall approximation to be valid for

generalQ-ball potentials in which theQ-ball contains a lot of charge, withω2 ≃ ω2
− ≥ 0. In this limit,

we can define a positive infinitesimal parameter,ǫω in Eq. (2.27), and the effective mass aroundσ+(ω)

is given by,µ2(ω) ≡ d2Uω

dσ2 |σ+(ω). The other extreme case corresponds to the “thick-wall” limit which

is valid forQ-balls containing a small amount of charge, and it satisfiesω2 ≃ ω2
+ = m2. For later
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convenience, in this limit, we use a positive infinitesimal parameter,m2
ω, defined in Eq. (2.28).

3.2.1 Thin-wall Q-ball

3.2.1.1 Step-like ansatzω = ω−

At a first step, we review the standard results in the thin-wall approximation originally obtained by

Coleman [21]. Adopting a step-like ansatz for the profile we write

σ(r) =





σ0 for r < RQ,

0 for RQ ≤ r,
(3.2)

whereRQ andσ0 will be defined in terms of the underlying parameters, by minimising theQ-ball

energyEQ. We can easily calculateSω, Q, andEQ:

Sω =

(
U0 −

1

2
ω2σ2

0

)
VD, Q = ωσ2

0VD, EQ =
1

2

Q2

σ2
0VD

+ U0VD, (3.3)

whereU0 ≡ U(σ0) andVD = VD(r = RQ). Note that Eq. (3.3) satisfies the Legendre transformation

results, Eq. (2.16), as we would have hoped. Since the ansatz, Eq. (3.2), neglects the surface effects, we

are working in the regimeU ≫ S in Eq. (2.38). Therefore, we should be able to reproduce the result,

γ =
EQ

ωQ ≃ 1, with this solution. To see this, we note that the two terms inEQ are the contributions

from the charge and potential energies.. These two contributions are virialised in thatEQ is extremised

with respect toVD for a fixed chargeQ, i.e.∂EQ/∂VD|Q = 0; hence,VD = Q
√

1/(2σ2
0U0). This then

fixesRQ because we know for a(D−1)-sphere,VD =
RD

Q

D ΩD−1, whereΩD−1 ≡
∫
dΩD−1 = 2πD/2

Γ(D/2) .

HereΓ is gamma function. SubstitutingVD intoEQ [the third expression in Eq. (3.3) ] and minimising

it with respect toσ0, we obtain

EQ = Q ·min
(√

2U0

σ2
0

)
= Qω− = ω2

−σ
2
+VD, (3.4)

where we have used Eq. (2.24) in whichω2
− = min

(
2U0

σ2
0

)∣∣∣
σ0=σ+

. Thus, we recover Eq. (2.38) in the

limit U ≫ S. Finally, we remind the reader that we have obtained the minimised energy,EQ, with

respect toVD(RQ) andσ0 in the extreme limit,ω = ω−, where we find

σ0 = σ+. (3.5)

Eq. (3.5) implies that the “particle” spends a lot of “time” aroundσ+ because the effective potential

−Uω aroundσ+ is “flat”. Note thatQ andEQ are proportional to the volumeVD in Eqs. (3.3, 3.4) just

as they are for ordinary matter, in this case Coleman called it Q-matter [21].

3.2.1.2 The modified ansatzσ0 ≃ σ+

Having seen the effect of an infinitely thin-wall, it is natural to ask what happens if we allow for a more

realistic case where the wall has a thickness associated with it? Modifying the previous step-like ansatz
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to include this possibility [124, 125] will allow us to include surface effects [21, 54, 55] and is applicable

for a wider range ofω than in the step-like caseω = ω−. Using the results, we will examine the two

different types of potentials, DVPs and NDVPs, which lead tothe different cases of Eq. (2.38).

Following [124], the modified ansatz is written as

σ(r) =





σ+ − s(r) for r < RQ,

σ̄(r) for RQ ≤ r ≤ RQ + δ,

0 for RQ + δ < r,

(3.6)

where as before the core sizeRQ, the wall thicknessδ, the core profiles(r), and the shell profile

σ̄(r) will be obtained in terms of the underlying parameters by extremisingSω in terms of a degree of

freedomRQ. Continuity of the solution demands that we smoothly continue the profile atr = RQ,

namelyσ+ − s(RQ) = σ̄(RQ) and−s′(RQ) = σ̄′(RQ).

We expandUω to leading order aroundσ+, to giveUω(σ) ∼ −ǫω + 1
2µ

2s2 wheres(r) = σ+ −σ(r). In

terms of our mechanical analogy, the “particle” will stay aroundσ+ for a long “time”. Once it begins to

roll off the top of the potential hill, the damping due to friction (∝ (D − 1)/r) becomes negligible and

the “particle” quickly reaches the origin. Therefore, we can naturally assume

RQ ≫ δ, (3.7)

whereδ is the wall thickness. We know thatσ′(0) = −s′(0) = 0, s′(RQ) 6= 0, ands′(r) > 0. Using

Eq. (2.20), the core profiles(r) for r < RQ satisfies the Laplace equation:

s′′ +
D − 1

r
s′ − µ2s = 0 (3.8)

whose solution is

s(r) = r(1−
D
2 )
(
C1ID

2 −1(µr) + C2KD
2 −1(µr)

)
(3.9)

whereI andK are, respectively, growing and decaying Bessel functions,C1 andC2 are constants. Since

s(0) is finite ands′(r) > 0, it implies thatC2 := 0. SinceIν(z) ∼ zν/2Γ(ν + 1) for smallz = µr and

ν 6= −1,−2,−3 . . . ; thus,s(0) is finite:

s(0) ∼ C1
µD/2−1

2Γ(D/2)
= σ+ − σ0 (3.10)

which gives a relation betweenC1 andσ0. In addition, the analytic solution is regular atr = 0:

s′(0) ≃ 0. For larger ∼ RQ, Eq. (3.9) leads to

s′

s
≃ µ− D − 2

r
→ µ, (3.11)

where we are assuming

µ ≫ 1/RQ, (3.12)
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and have used the approximationIν(z) ∼ ez
√

2πz
for largez ≡ µr. As already mentioned, we note that

this result is not strictly valid for extremely flat potentials, i.e.µ ≃ 1/RQ, because the expansion is only

valid for z ≡ µr ≫ 1. We will therefore only be applying it to the cases where the effective potential is

not very flat.

Turning our attention to the shell regimeRQ ≤ r ≤ RQ + δ. Considering the “friction” term in

Eq. (2.20), we see that it becomes less important for larger compared to the first and third terms in

Eq. (3.8), because
∣∣∣∣
D − 1

RQ
s′(RQ)

∣∣∣∣ ≃
∣∣∣∣
D − 1

µRQ
µ2s(RQ)

∣∣∣∣≪ µ2s(RQ) ≃ s′′(RQ) ≃
∣∣∣∣
dUω

ds

∣∣∣∣
r=RQ

(3.13)

where we have made use of Eqs. (3.11, 3.12). Imposing continuity conditions, namelyσ+ − s(RQ) =

σ̄(RQ), −s′(RQ) = σ̄′(RQ), Eq. (2.20) without the “friction” term becomes

d2σ̄

dr2
− dUω

dσ

∣∣∣∣
σ̄

= 0, (3.14)

whereσ̄(r) is defined as being the solution to Eq. (3.14). With the condition σ̄(RQ) = σ+ −s(RQ) and

Eq. (3.10), we find̄σ(RQ) ∼ σ+ in the thin-wall limit. Therefore,

σ̄(RQ) ≫ s(RQ). (3.15)

Although Eq. (2.19) does not hold exactly, the “total energy”, 1
2

(
dσ̄
dr

)2 − Uω ∼ 0 with Eq. (2.19),

is effectively conserved with the radial pressurepr vanishing outside theQ-ball core, see Eq. (3.14).

This fact implies that the surface and effective potential energies virialise with equal contributions,

Sshell ≃ Ushell − 1
2ωQshell, where we have introduced shell and core regimes defined byXcore =

ΩD−1

∫ RQ

0
drrD−1F (r, . . . ) andXshell = ΩD−1

∫ RQ+δ

RQ
drrD−1F (r, . . . ) for some quantityX and a

functionF (r, . . . ). Usingσ′ < 0 and the condition̄σ(RQ + δ) = 0, the thickness of theQ-ball can be

written asδ(ω) =
∫ σ̄(RQ)

0
dσ√
2Uω

. Sinceδ is real and positive, we have to impose

σ̄(RQ) < σ−, (3.16)

recallingUω(σ−) = 0 for σ− 6= 0.

With the use of Eq. (2.16), we turn our attention to extremising the Euclidean actionSω in Eq. (2.10)

for the degree of freedomRQ. Using the obtained valueRQ, we will differentiateSω with respect toω

to obtainQ as in Eq. (2.15) which leads us to theQ-ball energyEQ as in Eq. (2.9) and the characteristic

slopeEQ/ωQ. For convenience we splitSω into the core partScore
ω for r < RQ and the shell part

Sshell
ω for RQ ≤ r ≤ RQ + δ using Eq. (3.6). UsingVD =

RD
Q

D ΩD−1 ≫ ∂VD ≡ RD−1
Q ΩD−1 ≫

∂2VD ≡ RD−2
Q ΩD−2 and Eqs. (3.8, 3.11), we find,

Score
ω = −VD · ǫω + ∂VD ·

(
1

2
µs2(RQ)

)
− ∂2VD ·

(
ΩD−1

ΩD−2

(D − 2)

µ

1

2
µs2(RQ)

)
, (3.17)

where the first term,ǫω, in Eq. (3.17) comes from the effective potential energy, while the second and

third terms arise from the surface energy. Sinceǫω is an infinitesimal parameter in the other thin-wall
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limit ω ≃ ω−, it gives

Ucore ≃ 1

2
ωQcore. (3.18)

The effective potential energy balances the surface energyin the shell [see Eq. (3.14)], therefore by

introducing the definitionT ≡
∫ σ̄(RQ)

0 dσ
√

2Uω, we see

Sshell
ω = ΩD−1

∫ σ̄(RQ)

0

dσrD−1
√

2Uω(σ) <∼ ΩD−1(RQ + δ)D−1T, (3.19)

→ ∂VD · T + ∂2VD ·
(

ΩD−1

ΩD−2
(D − 1)δ · T

)
+ O(RD−1

Q ,
δ2

R2
Q

) · T, (3.20)

where we have used the fact that the integrand has a peak atr = RQ + δ in the second relation of

Eq. (3.19) [126] and Taylor-expanded(RQ + δ)D−1 in going from Eq. (3.19) to Eq. (3.20) because of

our approximation Eq. (3.7). Combining both expressions Eqs. (3.17, 3.20), we obtain

Sω = Score
ω + Sshell

ω , (3.21)

≃ −ǫω · VD + τ · ∂VD + h · ∂2VD, (3.22)

whereτ ≡ T + 1
2µs

2(RQ). Note that whileT in τ contains the equally virialised surface and effective

potential energies from the shell, the second term1
2µs

2(RQ) contains a surface energy term from the

core. Moreover, we have definedh ≡ ΩD−1

ΩD−2

[
(D − 1)δ · T − (D−2)

µ
1
2µs

2(RQ)
]

which is negligible

compared toτ because of the assumptions, Eqs. (3.7, 3.12). Therefore, wewill take into account only

the first two terms inSω, Eq. (3.22). It is also important to realise that

τ =

∫ σ̄(RQ)

0

dσ
√

2Uω +

∫ σ+

σ̄(RQ)

dσ
√

2Uω− →
∫ σ+

0

dσ
√

2Uω− = const (3.23)

which is independent ofω andD in the limit of ω → ω−, where we have used the extreme thin-wall

limit ω = ω− explicitly. Our modified ansatz is not only valid in the extreme limit ω = ω− but also

in the limit ω ∼ ω− as long asτ depends onω “weakly”. Note that the condition of Eq. (3.16) also

ensures thatτ is positive and real. In addition, the second term in the firstexpression of Eq. (3.23) is

negligible compared to the first term,i.e.

Sshell ≃ Ushell −
1

2
ωQshell ≫ Score (3.24)

because ofσ+ ∼ σ̄(RQ), see Eq. (3.15).

We can make progress by using the Legendre transformation ofEq. (2.16), which implies that we need

to find the extrema ofSω with fixedω, i.e. ∂Sω

∂RQ
= 0. This is equivalent to the virialsation betweenǫω

andτ . Then one can compute the core radius,

RQ = (D − 1)
τ

ǫω
. (3.25)

Note that this implies that one-dimensional thin-wallQ-balls do not exist due to the positivity ofRQ and

one of our assumptionsRQ ≫ δ. By using Eqs. (3.22, 3.25) and Eq. (2.16), we can compute thedesired

28



quantities to compare with the results we obtained using thestep-like ansatz, in particular Eqs. (3.3, 3.4),

and we can confirm that the classical stability condition Eq.(2.31) is satisfied:

Sω ≃ τ

D
∂VD =

ǫω
D − 1

VD > 0, Q(ω) ≃ ωσ2
+VD, (3.26)

EQ ≃ ω2σ2
+VD +

τ

D
∂VD, (3.27)

≃ ωQ

[
2D − 1

2(D − 1)
− ω2

−
2(D − 1)ω2

]
, (3.28)

ω

Q

dQ

dω
≃ 1 − Dω2σ2

+

ǫω
≃ −Dω

2σ2
+

ǫω
< 0. (3.29)

We can see the virialisation betweenτ and ǫω for the second and third terms in Eq. (3.26). As in

Eq. (3.4), the first term ofEQ, in Eq. (3.27), is a combination of an energy from the charge and potential

energy from the core throughout the volume, while the new second term τ
D , called the surface tension,

represents the equally virialised surface and effective potential energies from the shell as in Eq. (3.24).

In the limit ω ≃ ω−, ǫω becomes zero which implies Eq. (3.18). We have also seenSshell ≫ Score.

UsingU = Ucore + Ushell, S = Score + Sshell ∼ Sshell, and Eqs. (3.18, 3.24), we obtain

U ∼ S + ω−Q (3.30)

which we will use shortly. Since the characteristic function,EQ/Q, increases monotonically as a func-

tion of ω andSω > 0, i.e. d
dω

(
EQ

Q

)
> 0 or we found Eq. (3.29), the classical stability condition

Eqs. (2.31, 2.32) is satisfied without specifying any detailed potential forms. However, the physical

properties of the finite thickness thin-wallQ-balls do depend on the vacuum structures of the underly-

ing potential. To demonstrate this we consider two cases of non-degenerate vacuum potentials (NDVPs)

with ω− 6= 0 and degenerate vacuum potentials (DVPs) withω− = 0 (see red solid lines in Fig. 2.1).

Suppose that the thin-wallQ-balls have identical features over a large range ofω, we can find the ap-

proximate threshold frequencyωa using Eqs. (2.29, 2.38) as we assumed when we obtained Eq. (2.39).

NDVPs: This type of potential reproduces the results we obtained inEq. (3.4) corresponding to the

regimeU ≫ S which corresponds to the existence ofQ-matter in that the charge and energy is propor-

tional to the volumeVD due to the negligible surface tension in Eq. (3.27). Hence, the modified ansatz

Eq. (3.6) can be simplified into the original step-like ansatz Eq. (3.3) with negligible surface effects in

the extreme limitω = ω−. To see that, we need to recall the definition ofω− in Eq. (2.22). We can

realise thatµ is the same order asω− except the case ofω− = 0. Usingµ ∼ ω−, we can show that

1
2ωQ ≫ Score ∼ 1

2µs
2(RQ)∂VD where we have used Eqs. (3.12, 3.15). Using Eqs. (3.18, 3.24)and

1
2ωQ ≫ Score which we just showed, we can obtain the desired resultU ≫ S. Similarly Eq. (3.28)

in the limit ω ≃ ω− simplifies to giveEQ

ωQ ∼ 1 which is the result of Eq. (2.38) with the caseU ≫ S.

Using Eq. (3.28) and Eqs. (2.29, 2.38), we can also find the critical valueωa for absolute stability

ωa

m
=

D − 1

2D − 1


1 +

√
1 +

(2D − 1)

(D − 1)2
ω2
−
m2


 . (3.31)
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Finally, thin-wallQ-balls in NDVPs are classically stable without the need for the detailed potential

forms; however, the absolute stability condition forω ∼ ω− depends on the spatial dimensionsD and

on the massm.

DVPs: For the case of the presence of degenerate minima whereω− = 0, sinceǫω = 1
2ω

2σ2, we

immediately see from Eq. (3.28) that

EQ

ωQ
= γ ≃ 2D − 1

2(D − 1)
(3.32)

which reproduces Eq. (2.38) for the case ofS ∼ U . As in NDVPs, we know Eq. (3.30) in the limit

ω ≃ ω−, but the second termω−Q becomes zero in the present potentials. It follows thatUcore ≃ 0

andUshell ≃ Sshell ≫ Score from Eq. (3.24); hence,S ∼ U . In other words, most of theQ-ball energy

is concentrated within the shell. In addition, the chargeQ and energyEQ are not scaled by the volume,

which implies the modified ansatz does not recover the simpleansatz as opposed to NDVPs. Using

Eqs. (3.32, 2.18), it impliesEQ ∝ Q2(D−1)/(2D−1), which reproduces the three dimensional results

obtained in [124].

Finally, let us recap, the key approximations and conditions we have made in this modified ansatz. They

are Eqs. (3.7, 3.12, 3.16, 3.23) forD ≥ 2. The estimates we have arrived at for the thin-wallQ-balls are

valid as long as the core size is much larger than the wall thickness, the effective potential is not too flat

aroundσ+, the core thicknessδ and surface tensionτ/D are positive and real, andτ is insensitive to

bothω andD. With the extreme limitω → ω−, theQ-balls in DVPs recover the simple step-like ansatz,

while the ones in NDVPs do not. One-dimensionalQ-balls do not support thin-wall approximation due

to the absence of the friction term in Eq. (2.20).

3.2.2 “Thick-wall” Q-ball

3.2.2.1 Gaussian ansatz

As we have started with the simple step-like ansatz in the thin-wall approximation, a Gaussian function

is a simple approximate profile to describe the “thick-wall”Q-balls in the limitω ≃ ω+ [56]. Using a

Gaussian ansatz

σ(r) = σ0(ω) exp

(
− r2

R2

)
, (3.33)

we will extremiseSω with respect toσ0(ω) andR with fixedω, instead of minimisingEQ with fixed

Q. Notice that the slope−σ′/σ becomes2r/R2 which is linearly proportional tor and the solution is

regular atr = 0: σ′(0) = 0. By neglecting higher order termB in Eq. (3.1) with Eq. (3.33). which we

30



will justify shortly, one can obtain straightforwardly

Q =
(π

2

)D/2

ωσ2
0(ω)RD, (3.34)

Sω ≃
(

1

2
m2

ω +
D

R2
−Aσn−2

0 (ω)

(
2

n

)D/2
)
Q

ω
, (3.35)

EQ ≃
[

1

2

(
m2 + ω2

)
+
D

R2
−Aσn−2

0 (ω)

(
2

n

)D/2
]
Q

ω
. (3.36)

Eq. (2.16) can be easily checked in Eqs. (3.34, 3.35), and Eq.(3.36). The first (12
m2Q

ω ) and last terms in

Eq. (3.36) are the potential energy terms; the second term,1
2ωQ, comes from the charge energy, and the

surface energy term appears in the third term,DQ
R2ω . By finding the extrema ofSω with respect toσ0(ω)

with ∂Sω

∂σ0(ω) = 0, it defines the underlying parameterσ0(ω) as

σ0(ω) =

[(
m2

ω +
2D

R2

)
1

nA

(n
2

)D/2
]1/n−2

→
(
m2

ω

2A

)1/n−2

∼ σ−(ω) (3.37)

where we have neglected the surface term and used the approximationD/2 ≃ O(1) in the second

relation of Eq. (3.37). We are then able to check the Gaussianansatz naturally satisfies the other “thick-

wall” limit σ0(ω) ≃ σ−(ω) → 0 sincemω is a positive infinitesimal parameter in the limit,ω ≃ ω+,

and justify the fact that we have neglected the higher order termB in Eq. (3.1). Using the first relation

of Eq. (3.37), one needs to extremiseSω with respect to another degree of freedomR with ∂Sω

∂R = 0

which determinesR:

R =

√
2(2 −D)

m2
ω

≥ 0. (3.38)

The reality condition onR implies that the Gaussian ansatz is valid only forD = 1. The width of the

gaussian functionR in Eq. (3.38) becomes very large in the “thick-wall” limitmω → 0; thus, we can

justify that the surface terms in Eqs. (3.36, 3.37) are negligible. Therefore, we are looking at the regime

U ≫ S which should lead us toγ ≃ 1 as in the first case of Eq. (2.38). To do this forD = 1 we

substitute Eq. (3.37) intoQ, EQ, Sω:

Q =

√
π

2
ωσ2

0(ω)R, Sω =

(
1

2
− 1

n

)
2m2

ωQ

ω
> 0, (3.39)

EQ

ωQ
=

(
1

2
+

1

n

)
+

(
1

2
− 1

n

)(
2m2

ω2
− 1

)
→ 1, (3.40)

where we have considered the “thick-wall” limitω ≃ m in the second relation of Eq. (3.40). We

can check Eq. (2.38) and the analytic continuation Eq. (2.29). In the same limit, the Euclidian action

becomes an infinitesimally small positive value:Sω → 0+.

Using the second relationσ0(ω) in Eq. (3.37) and Eq. (3.38), one can find

ω

Q

dQ

dω
≃ 1 − ω2

m2
ω

(
4

n− 2
− 1

)
→ − ω2

m2
ω

(
4

n− 2
− 1

)
≤ 0, (3.41)

where we have used the fact thatmω is a positive infinitesimal parameter in the limit,ω ≃ ω+ going

from the first relation to the second one. Eq. (3.41) shows that the classical stability condition clearly
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depends on the non-linear powern in the potential Eq. (3.1):n ≤ 6. This is contradictory because

Eq. (3.40) givesd
dω

(
EQ

Q

)
→ −1 + 4

n which impliesn ≤ 4 for the other classical stability condition

using Eq. (2.32). We will shortly see that this contradiction between Eq. (2.31) and Eq. (2.32) is an

artefact of the Gaussian ansatz. Moreover, our conclusion should state that the Gaussian approximation

is approximately valid only forD = 1. These awkward consequences are improved with the following

physically motivated ansatz.

3.2.2.2 The modified ansatz

Having considered the case of the simple Gaussian ansatz following the spirit of [56], we found some

problems for the classical stability. To fix these, we need a more realistic ansatz [18, 87, 88, 101, 124].

To do this we drop an explicit detailed profile to describe “thick-wall” Q-balls and rescale the field

profile so as to work in dimensionless units whilst extracting out the explicit dependence onω fromSω.

As in the thin-wall approximation with the modified ansatz, we will again make use of the technique

Eq. (2.16) to obtain other physical quantities fromSω.

We begin by definingσ = aσ̃ andr = br̃ with a andb which will depend onω. Substituting them into

Eq. (2.10) with the potential Eq. (3.1) we obtain:

Sω = bDΩD−1

∫
dr̃r̃D−1

{
1

2

(a
b

)2

σ̃′2 +
1

2
a2m2

ωσ̃
2 −Aanσ̃n +Bapσ̃p

}
,

= bD
(a
b

)2

ΩD−1

∫
dr̃r̃D−1 1

2

{
σ̃′2 + σ̃2 − σ̃n + 2Bb2ap−2σ̃p

}
,

≃ m4/(n−2)−D+2
ω A2/(2−n)ΩD−1Sn (3.42)

with the rescaled actionSn =
∫
dr̃r̃D−1

(
1
2 σ̃

′2 + Ũ
)

with Ũ = 1
2 σ̃

2 − 1
2 σ̃

n, and we have neglected

the higher order term involvingB, which will be justified shortly. In going from the first line to the

second one in Eq. (3.42), we have set the coefficients of the first three terms in the brackets to be unity

in order to explicitly remove theω dependence from the integral inSω. In other words we have set

1
2

(
a
b

)2
= 1

2a
2m2

ω = Aan. This implies,a =
(

m2
ω

2A

)1/(n−2)

= σ−(ω) andb = m−1
ω . Then we can

justify that the higher order term involved withB is negligible due toσ−(ω) → 0 in the “thick-wall”

limit. Crucially Sn is independent ofω, and is positive definite [18, 101, 124]. Adopting the powerful

approach developed in Eq. (2.16), givenSω we can differentiate it to obtainQ and then use the Legendre

transformation to obtainEQ. This is straightforward and yields

Q(ω) = ωm4/(n−2)−D
ω

(
4

n− 2
−D + 2

)
A−2/(n−2)ΩD−1Sn,

∝ m4/(n−2)−D
ω , (3.43)

EQ = m4/(n−2)−D
ω

[
m2

ω + ω2

(
4

n− 2
−D + 2

)]
A−2/n−2ΩD−1Sn,

= ωQ

[
1 +

m2
ω

ω2

(
4

n− 2
−D + 2

)−1
]
→ ωQ. (3.44)

The first term involvingm2
ω in the first line Eq. (3.44) is the energy contributed by the charge, while

the second term is dominated by the effective potential energy; hence,U ≫ S. Therefore, we can also
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recover the resultγ ≃ 1 in the “thick-wall” limit ω ≃ ω+ as we would expect from Eq. (2.38) when

U ≫ S. SinceQ andEQ should be positive definite, it places the constraint [101]

D <
4

n− 2
+ 2. (3.45)

With the condition Eq. (3.45), it is easy to see thatSω → 0+ in the “thick-wall” limit, ω ≃ ω+ where

m2
ω → 0+. There is another constraint emerging from the need for the solution to be classically stable:

ω

Q

dQ

dω
≃ 1 − ω2

m2
ω

(
4

n− 2
−D

)
→ − ω2

m2
ω

(
4

n− 2
−D

)
≤ 0, (3.46)

⇔ D ≤ 4

n− 2
(3.47)

which coincides with Eq. (3.41) in the case ofD = 1. Notice that the modified ansatz is valid not only

forD = 1 but alsoD < 4
n−2 +2 in Eq. (3.45). ForD = 3 this result matches that of [124]. The classical

stability condition, Eq. (3.47), is consistent with the need forQ andEQ to be finite. Eq. (3.47) is more

restrictive than that given in Eq. (3.45). Furthermore, we should check the relation Eq. (2.32) for the

characteristic functionEQ/Q in terms ofω. It follows that d
dω

(
EQ

Q

)
≃ 1− 2

(
4

n−2 −D + 2
)−1

≥ 0,

which requires the same condition as Eq. (3.47). With this fact and Eq. (3.44), it implies that the “thick-

wall” Q-balls with condition Eq. (3.47) are both classically and absolutely stable. The fact reproduces

the previous results for the case ofD = 2 andn = 4, p = 6 (6-th order potential) in [127] using the

Hoelder inequality. Unlike the Gaussian ansatz Eq. (3.33),our modified ansatz now shows consistent

results between Eq. (2.31) and Eq. (2.32).

Let us remark on the validity of our analysis following [101]. In this section we have used a modified

ansatz which has involved a re-scaling ofσ andr in such a way as to leave us with a dimensionless action

Sn. There are restrictions on our ability to do this as first pointed out in [101] for the case ofD = 3.

We can generalise this to ourD dimensional case. Given that theQ-ball solutions extremiseSn, we

may rescaler or σ introducing a one-parameter rescaling,r → αr or σ → λσ which will deform the

original solution. DefiningX(α) ≡ Sn[αr, σ(αr)] andY (λ) ≡ Sn[λσ(r)], we impose the condition

that the actionSn is extremised whenα = λ = 1, which impliesdX
dα |α=1 = 0 = dY

dλ |λ=1. It is possible

to show that these conditions imply that consistent solutions require the same condition as Eq. (3.45).

The three dimensional case leads to the result,n < 6, as originally obtained in [124]. The particular

choice ofn = 4 which we will investigate shortly impliesD < 4 for the validity of our “thick-wall”

approximation with the modified ansatz. Moreover, “thick-wall” Q-balls become classically unstable

for D ≥ 3 as can be seen from Eq. (3.47).

What have we learnt from extending the ansatz beyond the Gaussian one? We have seen that they have

lead to different results. For instance, the Gaussian ansatz essentially is valid only forD = 1 and

has a contradiction, whereas the solutions based on the modified ansatz are valid forD which satisfies

Eq. (3.45) and give consistent results Eq. (3.47) for classical stability.
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3.2.3 Asymptotic profile

The generic asymptotic profiles for larger in polynomial potentials can be obtained by naively ignoring

the higher order terms in the polynomial potentials Eq. (3.1) and linearising theQ-ball Eq. (2.20):

σ′′ +
D − 1

r
σ′ −m2

ω σ = 0. (3.48)

We then obtain the analytic solution

σ(r) ∼ E

√
π

2mω
r−

D−1
2 e−mωr ⇔ −σ

′

σ
∼ D − 1

2r
+mω, (3.49)

whereE is a constant which is determined later. Note that we have used the fact that the modified Bessel

function of the second kind has the relationKµ(r) ≃
√

π
2r e

−r for larger and any real numberµ. The

second expressions in Eq. (3.49) gives a condition to smoothly continue our numerical solutions to the

asymptotic profiles at some large radiusr = Rana.

As we will see in the next section, our numerical results in which we obtain the fullQ-ball solution

support the modified ansätze introduced in the previous section for both thin- and “thick-wall” cases.

3.3 Numerical results

In this section we obtain numerical solutions forQ-balls using the polynomial potential in Eq. (3.1),

whereA > 0, B > 0, p > n > 2. We shall confirm the results obtained analytically using the

modified ansätze for both the thin- and “thick-wall”Q-balls. Recall thatUω(σ) = U(σ)− 1
2ω

2σ2, with

Uω(σ−) = 0 andσ+(ω) marks the maximum of the effective potential−Uω whereσ+(ω) 6= 0. For a

particular case,p = 2(n− 1), we find

σ−(ω) =

(
A−

√
A2 − 2Bm2

ω

2B

)1/(n−2)

, (3.50)

σ+(ω) =

(
An+

√
(An)2 − 4Bpm2

ω

2Bp

)1/(n−2)

. (3.51)

Also, for convenience, we set

ω+ = m = 1, ω− =

√
1 − A2

2B
≥ 0 ⇔ A ≤

√
2B, (3.52)

where we recall the definitions ofω+ andω− are thatω2
+ ≡ d2U

dσ2 |σ=0 = m2 andUω−(σ+) ≡ 0. Setting

ω− = 0 in Eq. (3.52) implies thatU(σ) in Eq. (3.1) has degenerate vacua atσ = 0, ±σ+, whilst the

original potentialU with ω− 6= 0 does not have degenerate vacua. In this section, we shall consider two

examples of the potentialU , which can be seen as the red solid lines in Fig. 2.1. The degenerate vacua

potential (DVP) on the left hasω− = 0 (A =
√

2B) and the non-degenerate vacua potential (NDVP)

on the right hasω− = 0.5 (A =
√

3B/2). In order to determine actual values forA andB, we define

σ+(ω+) = 1 and setn = 4, p = 6 for both cases; hence,A = 4
3 , B = 8

9 in DVP andA = 1, B = 2
3

in NDVP. Figure 2.1 also includes plots of the effective potentials for various values ofω.
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Numerical techniques and parameters To obtain theQ-ball profile we need to know the initial “po-

sition” σ0(ω) = σ(r = 0). This is done using a shooting method, whereby we initially guess at a

value ofσ0(ω), then solve Eq. (2.20) for theQ-ball profile, and depending on whether we overshoot

or undershoot the required final value ofσ, we modify our guess forσ0(ω) and try again. Throughout

our simulations, we need to specify the following three small parameters,ǫ, ξ, η which, respectively,

determine our simulation sizermax, the radiusRana at which we can match the analytic and numerical

solutions, and the core sizeRQ. The smoothly continued profile is computed up tor = Rmax.

Shooting method Let us consider an effective potential−Uω which satisfies theQ-ball existence

condition, Eq. (2.24). We have to initially guessσ0 subject to it be being in the appropriate region

σ−(ω) ≤ σ0(ω) < σ+(ω). For example it might beσ0
G = σ++σ−

2 . There are then three possibilities,

the particle could overshoot, undershoot, or shoot properly. The last case is unlikely unless we are really

“lucky”. If it overshoots then we would findσ(rO) < 0 at some “time”rO. If that were to happen we

could updateσ0
G toσ1

G =
σ0

G+σ−

2 as our next guess. On the other hand if it undershoots, the “velocity” of

the “particle” might be positive at some “time”rU , σ′(rU ) > 0. If that were to happen we might update

σ0
G to σ1

G =
σ++σ0

G

2 as our next guess. After repeating the same procedures sayN times, we obtain the

finely-tuned initial “position”σ0(ω) ≃ σN
G as our true value. To be compatible with numerical errors,

our numerical simulation should be stopped with an appropriate accuracy parameterised byǫ:

ǫ > σ(rU = rmax) > 0, (3.53)

wherermax is the size of our simulations, andǫ measures the numerical accuracy where a small value

of ǫ corresponds to good numerical accuracy. Unfortunately thefinal profiles still have small numerical

errors for larger. To compensate for these errors, the profiles should continue to the analytical ones

smoothly at some pointr = Rana using the following technique.

Matching analytic and numerical solutions atRana In order to smoothly continue to the asymp-

totic profile which satisfies the second relation in Eq. (3.49) at the continuing pointRana, the following

condition is required: ∣∣∣∣
D − 1

2r
+mω +

σ′
num

σnum

∣∣∣∣ < ξ, (3.54)

where the parameterξ should be relatively small. Hence, we can find the appropriate profile in the

whole space

σ(r) =





σnum(r) for r < Rana,

σnum(Rana)
(

Rana

r

)(D−1)/2
e−mω(r−Rana) for Rana ≤ r ≤ Rmax,

(3.55)

where we have computedE using Eq. (3.49) and our simulations are carried out up tor = Rmax.
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Core size and wall thickness of thin-wallQ-ball Using Eq. (3.11), we can define the core sizer =

RQ and the numerical wall thicknessδnum(ω) by the slope−σ′/σ with the following condition
∣∣∣∣
(
D − 2

r
− µ

)(
σ+ − σ

σ

)
+
σ′

num

σnum

∣∣∣∣ < η, (3.56)

δnum ≡ Rana −RQ. (3.57)

Notice that the definition ofδnum(ω) is different from the definition in Eq. (3.7) whereδ(ω) =
∫ σ̄(RQ)

0
dσ√
2Uω

.

Numerical parameters We have run our code in two different regimes ofω for both DVP and NDVP

because the profiles for largeω are needed to look into larger simulation sizermax compared to the ones

for smallω. Because of numerical complications, we do not conduct our simulations near the extreme

thin-wall limit, i.e. ω ≃ ω−. However, by solving close to the thin-wall limit, our numerical results

for σ0(ω) ≃ σ+(ω) andRQ ≫ δnum allow us to recover the expected properties of thin-wallQ-balls

with the modified ansatz Eq. (3.6). Finally, our results presented here correspond to the particular sets

of parameters summarised in Table 3.1.

DVP
ω ǫ rmax Rmax ξ η

0.38-0.73 4.0×10−2 30 200 8.0×10−3 1.0×10−1

0.73-0.99999 1.0×10−5 40 200 8.0×10−3 1.0×10−1

NDVP
ω ǫ rmax Rmax ξ η

0.60-0.85 3.0×10−3 30 200 8.0×10−3 1.0×10−1

0.85-0.99999 1.0×10−5 50 200 8.0×10−3 1.0×10−1

TABLE 3.1: The numerical parameters in DVP (top) and in NDVP (bottom).

3.3.1 Stationary properties in DVP and NDVP

We devote a large part of this section to justifying the previously obtained analytical results in the thin-

and “thick-wall” approximations by obtaining the appropriate numerical solutions.

Profiles with our numerical algorithm In the top two panels of Fig. 3.1 the two red lines (one dotted

and one with circles) show the numerical slopes−σ′/σ for the case ofD = 3 for two values ofω.

These are then matched to the analytic profiles (green dottedlines) in order to achieve the full profile as

given in Eq. (3.55). Recall that we expect in general for all values ofω, the analytic fits to be accurate

for larger, the numerical fits to be most accurate for smallr and there to be an overlap region where

they are both consistent with each other as seen in Fig. 3.1. We have also plotted in dot-dashed purple

lines our analytic fits, Eq. (3.56), for the slopes of the thin-wall cores fromr = 0.5. We should remind

the reader that this fit only really works for the case of smallω because we are dealing with thin-wall
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Q-balls. Notice, it is clear from the purple dot-dashed linesthat the core sizes cannot be determined by

this technique for the caseω = 0.9 ≃ ω+.

The bottom two panels show the full profiles satisfying Eq. (3.55) for arbitraryD up toD = 5. We have

been able to obtain theQ-ball profiles in the whole parameter spaceω except for the extreme thin-wall

regionω ≃ ω−. Both DVP and NDVPQ-balls have profiles with similar behaviours in that as the spatial

dimension increases, so does their core size.

FIG. 3.1: The top two panels show the numerical slopes−σ′/σ for the case ofD = 3 for two values ofω for both
DVP (left) and NDVP (right). The red (one-dotted and one withcircles) lines show the numerical slopes and the
green dotted lines with two different widths the corresponding analytic solutions. The purple dot-dashed lines with
two different widths show the analytic fits for the core profiles. The bottom two panels show the fullQ-ball profile
as described in Eq. (3.55) for a number of values ofω andD. Note how the core size increases withD.

Criteria for the existence of a thin-wallQ-ball with core sizeRQ The top and middle panels of Fig. 3.2

show the numerical results forσ0(ω) andδnum/RQ againstω for a number of spatial dimensionsD.

For the case ofD ≥ 3 it is clear from the top panels that theQ-balls are well described by the thin-wall

result Eq. (3.50) for most values ofω, with the range increasing asD increases. The case ofD = 2 is

less clear, it appears to asymptote onto the line. We believethere is a solution that exists for that case

for small values ofω. An important point is that for the approximation to be validwe are working in the

regimeδnum/RQ < 1 which can be seen to be true from the middle panels (again we believe the case

of D = 2 is heading below the lineδnum/RQ = 1 for smallω.
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These results are consistent with our analytic solutions for finite thick-walledQ-balls given by Eq. (3.6),

subject to the criteriaσ0(ω) ≃ σ+(ω) andRQ & δnum, even thoughω ∼ ω+.

ForD = 1 we see in the top panels thatσ0(ω) exactly matchesσ−(ω), (the orange dot-dashed lines).

The bottom two panels in Fig. 3.2 show the core sizesRQ of thin-wallQ-balls which satisfy our criterion

Eq. (3.56). Recall thatRQ in Eq. (3.25) is a function ofω assumingτ depends onω weakly; thus, we

plot the numerical core sizes comparing them with our analytical approximation for DVP and NDVP,

respectively

RDV P
Q ≃ 2(D − 1)τnum

ω2
; RNDV P

Q ≃ 2(D − 1)τnum

(ω2 − ω2
−)

(3.58)

where the parameterτnum is computed numerically (see Table 3.2). The presented numerical core

sizes match excellently with the analytical fittings over a wide range ofω. Some numerical errors

appear aroundω ≃ ω+ since we cannot determine the “thin-wall” cores with this technique, see the top

two panels in Fig. 3.1. Table 3.2 shows analytical and numerical values ofτ using Eq. (3.23) and the

above fitting technique. We confirm that the values ofτ (a part of the surface tensionτ/D in Eq. (3.27))

are nearly constant, depending slightly onD. Therefore, the assumptions we made for thin-wallQ-balls

are valid as long asσ0(ω) ≃ σ+(ω) andRQ & δnum.

Configurations Fig. 3.3 illustrates the configurations of charge densityρQ (top) and energy density

ρE (bottom), in both DVP (left) and NDVP (right). Each of the DVPenergy densities aroundω ∼ ω−

has a spike within the shells, while those spikes are not present in NDVP. The presence of spikes can

contribute to the increase in surface energyS, which accounts for the different observed ratio forS/U
in the two cases, whereU is the potential energies. Otherwise, DVP and NDVP models have similar

profiles in Fig. 3.1. Moreover, we have numerically checked thatQ-balls forD ≥ 2 generally have

positive radial pressures, whereas the1D radial pressures are always zero,i.e. 1
2σ

′2 = Uω due to

Eq. (2.14).

Virialisation and characteristic slopeEQ/ωQ The top panels in Fig. 3.4 illustrate the ratiosS/U
and the four bottom ones show the characteristic slopes ofEQ/ωQ againstω in both the thin-wall

(middle-panels) and “thick-wall” (bottom-panels) limits. According to our analytic arguments Eq. (3.30),

we expectS/U ≃ 1 in the extreme limitω ≃ ω− = 0 in DVP. Similarly, we expectS/U ∼ 0 in the

same extreme thin-wall limitω = ω− = 0.5 for NDVP. The latter case corresponds to the existence

of Q-matter with the simple step-like ansatz Eq. (3.2). Although we are unable to probe these pre-

cise regimes, we believe the slopes of the curves indicate they are heading in the right direction. The

characteristic slopesγ(ω) = EQ/ωQ in the thin-wall limit in the two middle panels lie nearby the

analytical ones, Eqs. (3.28, 3.32), as long asσ0(ω) ≃ σ+(ω) (see Fig. 3.2) except for the2D cases

because forD ≤ 2 the profiles are not well fitted by thin-wall predictions. Similarly, the characteristic

slopesEQ/ωQ in the “thick-wall” limit in the bottom two panels agree withour analytical predictions

Eq. (3.44) using the modified ansatz rather than with Eq. (3.40) using the simple Gaussian ansatz. We

have confirmed that the analytic characteristic slopes withEq. (3.44) can not apply to higher dimensions
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FIG. 3.2: The initial “positions”σ0(ω) (top), δnum/RQ (middle), and the core sizesRQ(ω) (bottom). The top
panels showσ±(ω), Eqs. (3.50, 3.51) as black and orange dot-dashed lines respectively. The middle panels show
the range of values ofω for a given value ofD in which the core thickness is smaller than the core size, a crucial
assumption we have to make. In the bottom panel, the analytical core sizes in Eq. (3.58) are plotted with the
numerical ones for the followingω ranges:[0.38− 0.40], [0.38− 0.55], [0.38− 0.60], [0.38− 0.70] in DVP, and
[0.60− 0.62], [0.60− 0.65], [0.60− 0.75], [0.60− 0.85] in NDVP and forD = 2, 3, 4, 5, respectively. As can
be seen, the fits are excellent. The range ofω values chosen have been based on the results shown in the top two
panels and correspond to that range where the thin-wallQ-balls are solutions (except forD = 2).

τ τana 2D 3D 4D 5D
DVP 0.19 0.20 0.23 0.25 0.26

NDVP 0.16 0.17 0.21 0.22 0.23

TABLE 3.2: The values ofτana andτnum in terms ofD in DVP and NDVP, see Eqs. (3.23, 3.25).

D ≥ 4 in the “thick-wall” limit, see Eq. (3.45). Around the “thick-wall” limit ω ≃ ω+, the behaviours

in both potentials areS ≪ U (see top panel), which impliesEQ ≃ ωQ as predicted in Eqs. (3.40, 3.44);

hence we can verify that the solutions are continued to the free particle solutions, see Eq. (2.29). Our
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FIG. 3.3: The configurations for charge densityρQ (top) and energy densityρE (bottom) computed using Eq. (2.13)
for both DVP (left) and NDVP (right). The presence of spikes of ρE in DVPs contributes to their increased surface
energies.

physically motivated modified ansätze in both the thin- and“thick-wall” limits, therefore, have clear

advantages over the simple ansätze in Eqs. (3.2, 3.33).

Q-ball stability Fig. 3.5 shows the classical and absolute stability lines for Q-balls. Table 3.3 in-

dicates the approximate analytical values ofωa derived by Eqs. (2.39, 3.31), which can be compared

to the numerically obtained critical valuesω for the stabilities denoted byωc, ωs, ωch, ωa, andωf

in Table 3.4. These are defined bydQ
dω

∣∣∣
ωc

= d2Sω

dω2

∣∣∣
ωs

= d
dω

(
EQ

Q

)∣∣∣
ωch

= 0, EQ/Q|ωa = m, and

dω
dQ

∣∣∣
ωf

= 0 respectively. The3D analytical plots ofω
Q

(
dQ
dω

)
in the thin- and “thick-wall” limits,

Eqs. (3.29, 3.47), can be seen to match the corresponding numerical data in the appropriate limits of

ω. We have confirmed numerically that for both DVP and NDVP cases ωc = ωf ≃ ωs ≃ ωch, see

Table 3.4. This can be easily understood from Eqs. (2.31, 2.32) and Eq. (2.34).

Recall Eq. (3.47) withn = 4 leads to the classical stability conditionD ≤ 2 for the “thick-wall” case.

The top panels in Fig. 3.5 demonstrate that “thick-wall”Q-balls inD ≥ 3 are classically unstable.

In Table 3.4, one can check that the absolute stability condition is more severe than the classical one.

We then categorise into three types ofQ-ball [20]: absolutely stableQ-balls for ω < ωa, meta-stable

Q-balls for ωa ≤ ω ≤ ωc, which are not quantum-mechanically stable but classically stable, and

completely unstableQ-balls for ωc < ω.
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FIG. 3.4: The ratio ofS/U whereS andU are surface and potential energies (top panels), the characteristic slope
γ(ω) ≡ EQ/ωQ in the thin-wall-like limit,ω ∼ ω−, with the analytic lines Eq. (3.28) (middle panels), and in the
“thick-wall-like” limit, ω ≃ ω+, (bottom panels), with the analytic lines Eqs. (3.40, 3.44).

Both analytical valuesωa in DVP and NDVP in Table 3.3 agree well with the numerical onesin

Table 3.4. Generally speaking, the higher dimensionalQ-balls are more stable classically as well as

quantum mechanically. Moreover, thin-wallQ-balls are always classically stable as demonstrated in

Eq. (3.29), but the classical stability of “thick-wall”Q-balls is model- andD- dependent as in Eq. (3.47).

The one- and two- dimensionalQ-balls have a much richer structure than the thin- and “thick-wall” Q-

balls. It is a challenging task to understand their intermediate profiles [128].

Legendre relations Fig. 3.6 shows the Legendre relations:dEQ

dQ v. ω, − dSω

dω v. Q, and dGI

dI v. 1
2ω

2

which can be used to check Eq. (2.15). We have also checked thevalidity of the Legendre transforma-

tions in Eqs. (2.9-2.11). Since the numerical results matchour analytical ones, these results strengthen
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FIG. 3.5: Classical stability using Eq. (2.31) for the top panelsand absolute stability using Eq. (2.30) for the bottom
panels. The3D analytical lines of Eqs. (3.29, 3.47) for classical stability agree with the corresponding numerical
data. Above the zero-horizontal axes in the top panels, theQ-balls are classically unstable. Similarly,Q-balls above
the horizontal axis,EQ = mQ, are absolutely unstable. The one dimensionalQ-balls are always classically stable.
The 1D slopesEQ/mQ have different behaviours depending on DVP and NDVP unlike the other dimensional
cases.

the validity of our analytic arguments.
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ωa

D S ≫ U S ≃ U or DVP NDVP S ≪ U
3 0.50 0.80 0.86 1
4 0.67 0.86 0.90 1
5 0.75 0.89 0.92 1

TABLE 3.3: Virial relations:ωa in terms of space dimensionD and ratioS/U , see Eq. (2.39)

DVP NDVP
D ωa ωc ωs ωch ωf ωa ωc ωs ωch ωf

3 0.82 0.92 0.92 0.92 0.92 0.87 0.94 0.94 0.94 0.94
4 0.86 0.96 0.96 0.96 0.96 0.89 0.97 0.97 0.97 0.97
5 0.882 0.983 0.993 0.983 0.983 0.910 0.985 0.996 0.991 0.985

TABLE 3.4: The critical values for classical stability, absolutestability and stability against fission in DVP and

NDVP using Eqs. (2.30, 2.31, 2.32) and Eq. (2.34). The critical values are defined bydQ
dω

˛

˛

ωc
= d2Sω

dω2

˛

˛

˛

ωs

=

d
dω

“

EQ

Q

”
˛

˛

˛

ωch

= 0, EQ/Q|ωa = m, and dω
dQ

˛

˛

˛

ωf

= 0. The numerical values ofωa coincide with the analytic ones

in Table 3.3. We have confirmed numerically thatωc = ωf ≃ ωs ≃ ωch.
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FIG. 3.6: The Legendre relations of Eq. (2.15) for both the DVP case (left panels) and the NDVP case (right
panels):

dEQ

dQ
= ω (top),− dSω

dω
= Q (middle), anddGI

dI
= 1

2
ω2 (bottom). Note the excellent agreement between

the analytical dotted lines and the numerical dots.

44



3.4 Conclusion

We have numerically and analytically explored the stationary properties of a singleQ-ball for an arbi-

trary spatial dimensionD in a class of polynomial potentials. By linearising theQ-ball Eq. (2.20) or

rescalingSω, we have been able to consider the two limiting cases called the thin- and “thick-wall”

Q-balls. The step-like ansatz of Eq. (3.2) can describe thin-wall Q-balls in the extreme limitω = ω−,

whereas the modified ansatz Eq. (3.6) is applicable toσ0(ω) ≃ σ+(ω) which leads to wider range of

parameter spaceω and of course includes the previous limit. On the other hand,the limit ω ≃ ω+ is

used to describe “thick-wall”Q-balls in both the Gaussian ansatz Eq. (3.33) and our modifiedansatz for

the “thick-wall” case.

The thin-wall approximation is valid forD ≥ 2. Since the step-like ansatz in the thin-wall approx-

imation does not have surface effects, the characteristic slope is simplyγ = 1, Eq. (3.4). With the

modified ansatz including surface effects, the classical stability for thin wallQ-balls does not depend on

D in Eq. (3.29), but the absolute stability condition Eq. (3.31) does. Throughout the analysis, we have

assumed Eqs. (3.7, 3.12), and imposed Eq. (3.16) explicitly, which differs from the analysis in [124].

Without these approximations, our calculations, in particular Eqs. (3.19, 3.20) and Eq. (3.22), become

inconsistent; similarly, the last assumption Eq. (3.16) ensures that the shell thickness of the thin-wall

Q-ball is real. The mechanical analogies and the numerical results naturally explain and validate our un-

derlying assumptions: the core sizes of theQ-balls are much smaller than their corresponding thickness

as seen in the middle two panels of Fig. 3.2, and the surface tension depends weakly onω as seen in

Table 3.2. With these assumptions, thin-wallQ-balls forω < ωa are absolutely stable. Moreover, the

characteristic slopes coincide with those derived using the virial theorem. This follows from our anal-

ysis of the relative contributions between the potential and surface energies. The slopes have two types

in either non-degenerate vacua potentials (NDVPs) or degenerate vacua potentials (DVPs): thin-wallQ-

balls in NDVPs have a large energy from the charge; hence, thesurface energy is less effective than the

potential energy. They support the existence ofQ-matter in the extreme limit,ω = ω−. “Thick-wall”

Q-balls in DVPs, however, have negligible energy from the charge compared to surface and potential

energies; thus, the surface energy is well virialised with the potential energy. As seen in the left-bottom

panel of Fig. 3.3, the configurations of energy density have peaks within the shells, which contribute to

the surface energy. It would be worthwhile understanding these peaks in terms of our modified ansatz.

Even in the extreme thin-wall limit, the charge and energy oftheQ-balls in NDVPs are not proportional

to the volume,i.e.noQ-matter.

“Thick-wall” Q-ball solutions naturally tend to the free charged and massive particle solutions Eq. (2.29).

With the simple Gaussian ansatz we have extremisedSω with respect toσ0 andR with fixedω, while

the approaches in [56] are thatEQ is extremised with respect to onlyR. By extremising with respect to

two degrees of freedom we are able to recover the expected results of Eqs. (3.37, 3.40) unlike in [56].

The Gaussian ansatz, however, is valid only forD = 1 because of Eq. (3.38), and gives contradictory re-

sults for the condition for classical stability. In order toremove these drawbacks in the Gaussian ansatz,
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we introduced another modified ansatz and used the Legendre relations to simplify the computations of

Sω, Q andEQ. We obtained a consistent classical stability condition Eq. (3.47) which depends onD

and the non-linear powern of the polynomial potential Eq. (3.1). Not surprisingly, our numerical results

suggest that the modified ansatz is much better than the Gaussian ansatz in the bottom two panels of

Fig. 3.4. With the same panels, the validity condition Eq. (3.45) in the modified ansatz has also been

confirmed numerically.

In Eqs. (2.39, 3.31) and Table 3.5, the analytical and numerical results found the critical valueωa sub-

ject to the assumption that the higher dimensionalQ-balls could be treated with the thin-wall approxi-

mation over a wide range of values ofω. In summary, the higher dimensionalQ-balls can be simplified

into the thin- and “thick-wall” cases, while it is more challenging and interesting to understand station-

ary properties of one- and two-dimensionalQ-balls. For example, thoseQ-balls embedded in3D space

(calledQ-strings andQ-walls [129]) or extendedQ-balls (nontopological strings [130] andQ-balls with

spatial spins and/or twists [46]) may exist in the formationof three dimensionalQ-balls [1].

The properties of non-thermalQ-balls we discussed in this chapter can lead to different consequences

compared to thermal ones,i.e. in the evolution of the Universe. The thermal effects onQ-balls induce

subsequent radiation and evaporation. The Affleck-Dine mechanism provides a natural homogeneous

condensate during an inflationary era, these fluctuations are then amplified to nonlinear objects, namely

Q-balls if the pressure of the AD condensate is negative. The formation, dynamics, and thermalisation

might have phenomenological consequences in our present universe,e.g.gravitational waves [131] and

baryon-to-photon ratio.

Model Polynomial potentials
Q-ball type Thin-wall “Thick-wall”

Assumptions RQ ≫ δ, 1/µ; σ0 ≃ σ+ andτ does not depend onω None
Potential type DVPs NDVPs Both

1/γ 2D−1
2(D−1) 1 1

Absolute stability © © △
Classical stability © © △

TABLE 3.5: Key analytical results for the case of polynomial potentials. Recall that theω-independent character-
istic slopeγ ≡ EQ/ωQ leads to the proportionality relationEQ ∝ Q1/γ . The symbols,© and△, indicate that
Q-balls are stable or can be stable subject to certain conditions, respectively. Recall that we may need the condition

¯σ(RQ) < σ− in our thin-wall analysis; the readers should also note thatour “thick-wall” analysis is valid as long
as it satisfies Eq. (3.45). TheQ-balls in the “thick-wall” limit are absolutely and classically stable subject to the
condition Eq. (3.47).
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Chapter 4

Q-balls in MSSM flat potentials

4.1 Introduction

Q-balls have recently attracted much attentions in cosmology [24] and astrophysics [26, 25, 132, 133,

134]. A Q-ball is a nontopological soliton, and a number of scalar field theory models have been

proposed to support the existence of nontopological solitons.

From a phenomenological point of view, the most interestingexamples are probably the supersymmetric

Q-balls arising within the framework of the Minimal Supersymmetric Standard Model (MSSM), which

naturally contains a number of gauge invariant flat directions. Many of the flat directions can carry

baryon (B) or/and lepton (L) number which is/are essential for Affleck-Dine (AD) baryogenesis [14].

Following the AD mechanism, a complex scalar (AD) field acquires a large field value during a period

of cosmic inflation and tends to form a homogeneous condensate, the AD condensate. In the presence

of a negative pressure [111, 117], the condensate is unstable against spatial fluctuations so that it devel-

ops into nonlinear inhomogeneous lumps, namelyQ-balls. The stationary properties and cosmological

consequences of theQ-balls depend on how the Supersymmetry (SUSY) is broken in the hidden sec-

tor, transmitting to the observable sector through so-called messengers. In the gravity-mediated [23] or

gauge-mediated scenarios [24], the messengers correspondrespectively either to supergravity fields or

to some heavy particles charged under the gauge group of the standard model.

Q-balls can exist in scalar field potentials where SUSY is broken through effects in the supergravity

hidden sector [135]. This type ofQ-balls can be unstable to decay into baryons and the lightestsuper-

symmetric particle dark matter, such as neutralinos [136],gravitinos [137, 138, 139] and axinos [140].

Recently, McDonald [141] has argued that enhancedQ-ball decay in AD baryogenesis models can ex-

plain the observed positron and electron excesses detectedby PAMELA [142, 143], ATIC [144] and

PPB-BETS [145]. By imposing an upper bound on the reheating temperature of the Universe after infla-

tion, this mode of decay throughQ-balls has been used to explain why the observed baryonic (Ωb) and

dark matter (ΩDM ) energy densities are so similar [146, 147], i.e.ΩDM/Ωb = 5.65± 0.58 in Eq. (1.2)



[11].

Scalar field potentials arising through gauge-mediated SUSY breaking [23] tend to be extremely flat.

Using one of the MSSM flat directions, namely theQdL direction (whereQ andd correspond to squark

fields andL to a slepton field), which has a nonzero value ofB − L and therefore does not spoil AD

baryogenesis via the sphaleron processes that violateB + L [147], Shoemaker and Kusenko recently

explored the minimum energy configuration for baryo-leptonic Q-balls, whose scalar field consists of

both squarks and sleptons [148]. It had been assumed to that point that the lowest energy state of the

scalar field corresponds to being exactly the flat direction;however in [148, 149], the authors showed

that the lowest energy state lies slightly away from the flat directions, and that the relicQ-balls, which

are stable against decay into both protons/neutrons (baryons) and neutrinos/electrons (leptons) [22], may

end up contributing to the energy density of dark matter [19,146, 150]; thus, theQ-balls can provide

the baryon-to-photon ratio [19], i.e.nb/nγ ≃ (4.7 − 6.5) × 10−10 in Eq. (1.1) [10] wherenb andnγ

are, respectively, the baryon and photon number densities in the Universe.

In this chapter we examine analytically and numerically theclassical and absolute stability ofQ-balls

using flat potentials in the two specific models mentioned above. In order to study the possible existence

of lower-dimensionalQ-balls embedded in 3+1 dimensions, we will work in arbitraryspatial dimensions

D; although of course theD = 3 case is of more phenomenological interest. Previous work [101,

111, 147] on the gravity-mediated potential has used eithera steplike or Gaussian ansatz to study the

analytical properties of the thin and thick-wallQ-balls. Introducing more physically motivated ansätze,

we will show that the thin-wallQ-balls can be quantum mechanically stable against decay into their

own free particle quanta, that both thin and thick-wallQ-ball solutions obtained are classically stable

against linear fluctuations, and confirm that a Gaussian ansatz is a physically reasonable one for the

thick-wallQ-ball. The one-dimensionalQ-balls in the thin-wall limit are excluded from our analytical

framework. The literature onQ-balls with gauge-mediated potentials has tended to use a test profile

in approximately flat potentials. We will present an exact profile for a generalised gauge-mediated flat

potential, and show that we naturally recover results previously published in [19, 23, 147].

The rest of this chapter is organised as follows. Section 4.2provides a detailed analyses for gravity-

mediated potentials, and in Sec. 4.3 we investigate the caseof a generalised gauge-mediated potential.

We confirm the validity of our analytical approximations with complete numericalQ-ball solutions in

Sec. 4.4 before summarising in Sec. 4.5. In Appendix B, we obtain an exact solution for the case

of a logarithmic potential, and in Appendix C, we confirm thatthe adoption of a Gaussian ansatz is

appropriate for the thick-wallQ-ball found in the gravity-mediated potentials. This chapter is published

in [50].
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4.2 Gravity-mediated potentials

The MSSM consists of a number of flat directions where SUSY is not broken. Those flat directions are,

however, lifted by gauge, gravity, and/or nonrenormalisable interactions. In what follows the gravity

interaction is included perturbatively via the one-loop corrections to the bare massm in Eq. (2.25) and

the nonrenormalisable interactions (UNR), which are suppressed by high energy scales such as the grand

unified theory scaleMU ∼ 1016 GeV or Planck scalempl ∼ 1018 GeV. Here,m is of order the SUSY

breaking scale which could be the gravitino mass∼ m3/2, evaluated at the renormalisation scaleM

[135]. We note that, following the majority of work in this field, we will ignore A-term contributions

( U(1) violation terms), thermal effects [151, 152] which come from the interactions between the AD

field and the decay products of the inflaton, and the Hubble-induced terms [153] which gives a negative

mass-squared contribution during inflation. It is possiblethat their inclusion could well change the

results of the following analysis.

The scalar potential we are considering at present is [111, 135]

U = Ugrav + UNR =
1

2
m2σ2

(
1 +K ln

(
σ2

M2

))
+

|λ|2
mn−4

pl

σn (4.1)

where we used Eq. (2.25),K is a factor for the gaugino correction, which depends on the flat directions,

andM is the renormalisation scale. Alsoλ is a dimensionless coupling constant, andUNR ≡ |λ|2
mn−4

pl

σn,

wheren > 2. If the MSSM flat directions include a large mass top quark,K can be positive and then

Q-balls do not exist. For flat directions that do not have a large mass top quark component, we typical

find K ≃ −[0.01 − 0.1] [111, 154]. The powern of the nonrenormalisable term depends on the flat

directions we are choosing along which we maintain R parity.As examples of the directions involving

squarks, theucdcdc direction hasn = 10, whilst theucucdcec direction requiresn = 6. A complete list

of the MSSM flat directions can be found in Table 1 of [15]. Since the potential in Eq. (4.1) forK < 0

could satisfy theQ-ball existence condition in Eq. (2.24), whereω+ ≫ m,Q-balls naturally exist.

In the rest of this chapter, we will focus on potentials of theform of Eq. (4.1) for generalD(≥ 1) and

ω andn(> 2) so thatM andmpl have the same mass dimension,(D − 1)/2, asσ. It means that the

parametersM andmpl are only physical forD = 3. For several cases ofn andD, the termUNR can

be renormalisable, but we will generally call it the nonrenormalisable term for the future convenience.

The readers should note that the potential Eq. (4.1) has beenderived only withN = 1 supergravity

in D = 3; therefore, the potential form could well be changed in other dimensions. Furthermore, the

logarithmic correction breaks down for smallσ and the curvature of Eq. (4.1) atσ = 0 is finite due to

the gaugino mass, which affects our thick-wall analysis andtheir dynamics. However, we concentrate

our analysis on this potential form for arbitraryD, n and any values ofσ for two main reasons. The

first is that it contains a number of general semiclassical features expected of all the potentials, and the

second is that it offers the opportunity to consider the lower-dimensionalQ-balls embedded inD = 3.

In Appendix B, we obtain the exact solution of Eq. (2.20) withthe potentialU = Ugrav; however, exact

solutions of the general potentialU in Eq. (4.1) are fully nonlinear and can be obtained only numerically.
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Therefore, we will analytically examine the approximate solutions in both the thin and thick-wall limits.

Before doing so, we shall begin by imposing a restriction onλ in Eq. (4.1) in order to obtain stable

Q-matter in NDVPs. With the further restrictions onλ and |K|, we can proceed with our analytical

arguments, and we will finally obtain the asymptoticQ-ball profile for larger which will be used in the

numerical section, Sec. 4.4.

4.2.1 The existence of absolutely stableQ-matter

As we have seen, the first restriction on the parameters in Eq.(4.1) isK < 0 to satisfy Eq. (2.24).

Further, we need to restrict the allowed values of the parameter λ to ensure that we obtain absolutely

stableQ-matter. Notice thatQ-matter exists in NDVPs, whilst the extreme thin-wallQ-balls in DVPs

will not beQ-matter as we showed in chapter 3.

By using the definitions ofω− andσ+, namely,ω2
− ≡ 2U

σ2

∣∣
σ+

and
dUω−

dσ

∣∣∣
σ+

= 0, we shall find the

range of values ofλ for which absolutely stableQ-matter solutions exist. Moreover, we will obtain the

curvatureµ, which is proportional to|K|, of the effective potentialUω atσ+.

The effective potential for Eq. (4.1) can be rewritten in terms of new dimensionless variablesσ̃ =

σ/M, ω̃ = ω/m, and

β2 =
|λ|2Mn−2

mn−4
pl m2

> 0, (4.2)

as

Uω̃ =
1

2
M2m2σ̃2

(
1 − ω̃2 − 2|K| ln σ̃

)
+M2m2β2σ̃n. (4.3)

After some simple algebra and introducingω̃2
− ≡ 2U

σ̃2 |σ̃+ and
dUω̃−

dσ̃

∣∣∣
σ̃+

= 0, we obtain

σ̃+ =

( |K|
(n− 2)β2

) 1
n−2

, ω̃2
− =

1

n− 2

[
n− 2 + 2|K| − 2|K| ln

( |K|
(n− 2)β2

)]
. (4.4)

Notice thatω̃2
− = 0 corresponds to DVPs whereQ-matter solutions do not exist, whilst the extreme

thin-wallQ-balls do exist and are absolutely stable against their own quanta as we will see. In NDVPs,

Q-matter solutions exist and are absolutely stable when0 < ω̃2
− < 1, see Eq. (2.30). Combining these

facts and using the second relation in Eq. (4.4), we have the constraint onλ for stableQ-matter solutions

to exist, namely

|K|e−1

n− 2
exp

(
−n− 2

2|K|

)
< β2 <

|K|e−1

n− 2
, (4.5)

⇔ |K|e−1

n− 2

mn−4
pl m2

Mn−2
exp

(
−n− 2

2|K|

)
< |λ|2 <

|K|e−1

n− 2

mn−4
pl m2

Mn−2
, (4.6)

where we have used Eq. (4.2) to go from Eq. (4.5) to Eq. (4.6). Here, the lower limit of|λ|2 corresponds

to ω̃2
− = 0, whilst the upper limit corresponds tõω2

− = 1. The inequality in Eq. (4.6) implies that if

the coupling constantλ of the nonrenormalisable term in Eq. (4.1) is too small, thenit does not support

the existence ofQ-balls, whereas a largeλ coupling leads to unstableQ-matter. With the following

50



parameter set,m = M = 1, |K| = 0.1, n = 6 and the lower/upper limits ofβ2 in Eq. (4.5), Fig. 4.1

shows the inverse potentials in Eq. (4.3) and their inverse effective potentials−Uω with various values

of ω. The lower limit,β2 = |K|e−1

4 exp
(
− 2

|K|

)
, corresponds to DVPs case withω− = 0, whilst in the

upper limit,β2 = |K|e−1

4 , the potentials do not have degenerate vacua withω− = 1, hence are called

NDVPs. By substituting the values ofβ2 into Eq. (4.4), we obtain the values ofσ+ indicated in Fig. 4.1.

Finally we can obtain the curvature,µ2(ω) ≡ d2Uω

dσ2

∣∣∣
σ+(ω)

, evaluated atω− , i.e.

µ2 ≡ µ2(ω−) = m2|K|(n− 2) ∝ |K|, (4.7)

which implies that a small logarithmic correction|K| ≪ O(1) in Eq. (4.1) gives an “extremely” flat

effective potentialUω compared to the quadratic termm2 aroundσ = σ+ for a givenn ∼ O(100−1).

FIG. 4.1: Parametersσ±(ω) for a potential of the formU(σ) = 1

2
σ2

`

1 − |K| lnσ2
´

+ β2σ6 (effective poten-
tial Uω = U − 1

2
ω2σ2) with |K| = 0.1. The left hand figure corresponds to the case of a DVP withβ2 =

|K|e−1

4
exp

“

− 2

|K|

”

∼ 1.90 × 10−11, whilst the right hand side is the NDVP withβ2 = |K|e−1

4
∼ 9.20 × 10−3,

see Eq. (4.5). The coloured lines in each plot correspond to different values ofω. The variableσ+(ω) is defined
as the maximum of the inverse effective potential−Uω where asσ−(ω) corresponds to−Uω(σ−(ω)) = 0 for

σ−(ω) 6= 0. Recallingω− = 0 in DVP, the DVP has degenerate vacua atσ+(0) = e1/4 exp
“

1

2|K|

”

∼ 1.91×102

(red-solid line), whilst the NDVP does not. The inverse effective potential−Uω with ω− = 1 in NDVP (green-
dashed line), however, has degenerate vacua atσ+(ω−) = e1/4 ∼ 1.28, see the first relation in Eq. (4.4). For the
lower limit ω ≃ ω− (green-dashed lines), we could seeσ+ = e1/4, whilst the purple dotted-dashed lines show
σ−(ω) → 0 near the thick-wall like limitω = 3.0 ∼ ω+ whereω+ ≫ 1.

4.2.2 Thin-wall Q-balls for σ0 ≃ σ+, RQ ≫ δ, 1/µ, D ≥ 2

For the extreme limitω = ω−, Coleman demonstrated that the steplike ansatz [21] is applicable to the

case of NDVPs because the surface effects of the thin-wallQ-ball in this limit are not significant. There

are situations though where we would like to explore the region aroundω = ω−, corresponding to

σ0 ≃ σ+(ω), and to do this we need to include surface effects. In chapter3 we explained how to do this

under the assumptions:RQ/δ, µRQ ≫ 1, σ(RQ) < σ−(ω), σ+(ω) ≃ σ+(ω−) ≡ σ+, and that the

surface tensionτ ≃
∫ σ+

0
dσ
√

2Uω− does not depend “sensitively” onω. Here,RQ, δ are, respectively,

theQ-ball core size and the shell thickness. We note that in [125], Coleman assumedUω ≃ Uω− in the

shell region, and this is equivalent to sayingσ(RQ) < σ−(ω). In what follows we will be making use

of Coleman’s approach. By requiring this orσ(RQ) < σ−(ω), we can guarantee real values of shell
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thicknessδ and surface tensionτ . The assumption, in whichτ does not depend onω, is related to the

assumptions:σ+(ω) ≃ σ+ andUω ≃ Uω− in the shell region.

Under these assumptions and forD ≥ 2, we now apply the previous thin-wall analysis developed in

chapter 3 to the present potential Eq. (4.1). The ansatz is given by Eq. (3.6)

σ(r) =





σ+ − s(r) for 0 ≤ r < RQ,

σ̄(r) for RQ ≤ r ≤ RQ + δ,

0 for RQ + δ < r,

(4.8)

whereRQ, δ, the core profiles(r), and the shell profilēσ(r) will be obtained in terms of the underlying

potential by extremisingSω with respect toRQ. Each of the profile functions satisfies

s′′ +
D − 1

r
s′ − µs = 0, (4.9)

σ̄′′ − dUω

dσ

∣∣∣∣
σ̄

= 0. (4.10)

By recalling Eq. (2.27), we have previously found that in Eqs(3.25-3.29),i.e.

RQ ≃ (D − 1)
τ

ǫω
; Sω ≃ τ

D
∂VD > 0; Q ≃ ωσ2

+VD, (4.11)

EQ

ωQ
≃ 2D − 1

2(D − 1)
− ω2

−
2(D − 1)ω2

, (4.12)

ω

Q

dQ

dω
≃ 1 − 2Dω2

ω2 − ω2
−
< 0, (4.13)

where we have taken the thin-wall limitω ≃ ω− in the last inequality. Notice that our analytical work

cannot apply for the1D thin-wallQ-ball, see the first expression in Eq. (4.11).

NDVPs: This type of potential supports the existence ofQ-matter that corresponds to the regime

U ≫ S. TheQ-matter can be absolutely as well as classically stable for the extreme limitω ≃ ω−, when

the coupling constantλ for the nonrenormalisable term in Eq. (4.1) satisfies Eq. (4.6). The characteristic

slope is given by the first case of Eq. (2.38), and the charge and energy are linearly proportional to the

volumeVD.

DVPs: With the presence of degenerate minima in Eq. (4.1), in chapter 3 we obtained the ratioU/S ∼
1, which corresponds to the second case of Eq. (2.38). The charge and energy are not proportional to

the volumeVD itself in this case; hence, we cannot see the existence ofQ-matter in the extreme limit

ω = ω− = 0. Instead we can find the proportional relation simply from Eq. (2.18) and Eq. (4.12),

namelyEQ ∝ Q2(D−1)/(2D−1).

Our main approximations are based on the assumptionsσ0 ≃ σ+, RQ ≫ δ, 1/µ, andUω ≃ Uω− in the

shell region. In what follows we will see through numerical simulations that our analytic results agree

well with the corresponding numerical results even in a “flat” potential choice|K| = 0.1, m = M =

1, n = 6, which implies that1/µ ∼ 1.58, see Eq. (4.7).
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4.2.3 Thick-wall Q-balls for β2 . |K| . O(1)

In chapter 3 we studied “thick-wall”Q-balls in general polynomial potentials, and extracted outthe

explicit ω dependence from the integral inSω by reparameterising terms in the Euclidean actionSω in

terms of dimensionless quantities and by neglecting higherorder terms. We then made use of the tech-

nique Eq. (2.16) and obtained consistent classical and absolute stability conditions, Eqs. (2.30, 2.31).

For our present potential, Eq. (4.3), which satisfies the condition,β2 . |K| . O(1), we will be able to

ignore the nonrenormalisable term by introducingσ̃ = σ/M andβ2 in Eq. (4.2). We can then obtain

the stability conditions using the same technique as before. Indeed for the limitω & O(m), we will

seeσ̃(r) ∼ O(ǫ) < O(1) whereǫ is a small dimensionless constant (notǫω in Eq. (2.27)), and see

σ̃0 ≡ σ̃(0) ≥ σ̃(r) for any r becausẽσ(r) is a monotically decreasing function in terms ofr. Since

the leading order of the logarithmic term,σ̃2 ln σ̃, in Eq. (4.3) is ofO(ǫ2) using the L’Hôpital’s rules,

we can ignore the nonrenormalisable term in Eq. (4.3) at the beginning of our analysis. To confirm this,

in Appendix C we will keep all terms in Eq. (4.3) by introducing a Gaussian ansatz and show that the

results below [Eqs. (4.19, 4.20)] can also be recovered under the same assumptionβ2 . |K| . O(1).

By adapting the techniques introduced in Eq. (2.16), in thissubsection we will show how to obtain the

thick-wall solutions without involving the Gaussian ansatz.

First of all we introduce two characteristic limits: the “moderate limit”ω & O(m) and the “extreme”

limit ω ≫ m. We will seeσ̃0 ≃ σ̃−(ω) → 0+ which leads tõσ−(ω) ≪ O(1) in the “extreme limit”,

and then even in the “moderate limit” we will see that the contributions from the nonrenormalisable

term are negligible and that̃σ−(ω) is a monotonically decreasing function in terms ofω. Under the

conditionsβ2 . |K| . O(1) in Eq. (4.3), we obtain

( ω
m

)2

= 1 − 2|K| ln σ̃−(ω) + 2β2σ̃n−2
− (ω) ∼ 1 − 2|K| log σ̃−(ω), (4.14)

|K|m2

2ωσ̃−(ω)

dσ̃−(ω)

dω
=

[
−1 + 2(n− 2)

β2σ̃n−2
− (ω)

|K|

]−1

∼ −1 < 0, (4.15)

⇔ ω & O(m), σ̃−(ω) ∼ exp

[
m2

ω

2|K|m2

]
→ 0, (4.16)

where we usedUω(σ̃−(ω)) = 0 to obtain Eq. (4.14). It follows that̃σ−(ω) ≪ O(1) for the thick-wall

limit ω ≫ m, and we can ignore the nonrenormalisable term. Since Eq. (4.15) implies thatdσ̃−(ω)
dω < 0

in the limit σ̃−(ω) < O(1), σ̃−(ω) is a monotonically decreasing function. Therefore, we can ignore

the contributions from the nonrenormalisable term up toω & O(m) which we call the “moderate

limit” with the notation ’∼’ as seen in the second relations of Eqs. (4.14, 4.15), instead of the “extreme”

limit ω ≫ m with the notation ’→’. Thus, we obtain the desired results of the second relationin

Eq. (4.16). From Eq. (4.14), the logarithmic term may be of. O(1) for |K| < O(1), β2 ≪ O(1) in

the “moderate” limit, which implies that the “moderate limit” is valid even whenω ∼ O(m).

Let us defineα(r) andr̃ throughσ̃(r) = aα(r) andr = br̃ wherea andb will be obtained in terms of

the underlying parameters. By substituting these reparamerised parametersα andr̃ into Eq. (2.10), and

53



neglecting the nonrenormalisable term due to ’the L’Hôpital’s rules’, we obtain

Sω ∼ ΩD−1

∫
dr̃r̃D−1bD

{
1

2

(
aM

b

)2(
dα

dr̃

)2

− 1

2
m2a2M2

(
1 −

( ω
m

)2

− 2|K| lna
)
α2 +

1

2
m2|K|a2M2α2 lnα2

}
, (4.17)

= a2M2bD−2S̃(α), (4.18)

whereS̃ (α(r̃/b)) ≡ ΩD−1

∫
dr̃r̃D−1

{
1
2

(
dα
dr̃

)2 − 1
2α

2(1 − lnα2)
}

, which is independent ofω. In

going from Eq. (4.17) to Eq. (4.18) we have set the coefficients of the three terms in the brackets of

Eq. (4.17) to be unity in order to explicitly remove theω dependence from the integral inSω. In other

words, we have seta = e−1/2 exp
[

m2
ω

2|K|m2

]
∼ e−1/2σ̃−(ω), b = 1

m
√

|K|
. Following Eq. (2.16), we

can differentiate Eq. (4.18) with respect toω to obtainQ and then use the Legendre transformation to

obtainEQ. Coupled with Eqs. (2.30, 2.31) we obtain both the classicaland absolute stability conditions.

This is straightforward and yields

Q ∼ 2ω

m2|K|Sω,
EQ

ωQ
∼ 1 +

m2|K|
2ω2

→ 1, (4.19)

d

dω

(
EQ

Q

)
∼ 1 − m2|K|

2ω2
→ 1 > 0,

ω

Q

dQ

dω
∼ 1 − 2ω2

m2|K| → − 2ω2

m2|K| < 0, (4.20)

where we have taken the “extreme” limitω ≫ m as indicated by ’→’. Eq. (4.19) implies that the

characteristic slope for the thick-wallQ-balls are tending towards the caseS ≪ U in Eq. (2.38) and

Eq. (4.20) shows that theQ-balls are classically stable. These results are independent ofD. In Appendix

C we will generalise the results of Eqs. (4.19, 4.20) by adopting an explicit Gaussian ansatz without

neglecting the nonrenormalisable term.

Before finishing this subsection, let us comment on possibilities to have absolutely stable thick-wallQ-

balls in the case,|K| < O(1), β2 ≪ O(1). The results present above still hold even in the “moderate

limit” ω ∼ O(m) for the present case. Thus, the thick-wallQ-balls, if they exist, can be absolutely

stable when the following conditions from Eqs. (2.30, 4.19)are met:

ω− < m,
ω

m
<

1 +
√

1 − 2|K|
2

, |K| < 1

2
, β2 ≪ O(1). (4.21)

It follows that for |K| ≥ 1/2, the thick-wallQ-balls are always absolutely unstable. Ifω− ≥ m, we

know ω > ω− in both the “moderate” and “extreme” limits, hence the thick-wall Q-ball is always

absolutely unstable again, see Eq. (2.30). Notice that the conditionβ2 . |K| impliesω− . O(m),

see Eq. (4.5), so the first condition in Eq. (4.21) can be satisfied. This then leaves only a small window

of the parameter space for absolutely stable thick-wallQ-balls. In the numerical section, Sec. 4.4, we

will confirm that the thick-wallQ-ball can be absolutely stable against decay into their own quanta by

choosing suitable parameters, i.e.ω− = 0, β2 ∼ 1.90 × 10−11, and|K| = 0.1.

4.2.4 Asymptotic profile for larger and β2 . |K| . O(1)

In order to obtain the full numerical profiles over all valuesof ω, we should analytically determine the

asymptotic profile for larger in the potential Eq. (4.1) which satisfiesβ2 . |K| . O(1) as in the
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previous subsection. As long as the value ofr satisfiesr > Rω whereRω is some large length scale

and depends onω, we can assume that the friction term in Eq. (2.20) and the nonrenormalisable term in

Eq. (4.1) are negligible for larger. Hence, theQ-ball equation Eq. (2.20) reduces to the one-dimensional

and integrable form

σ′′ =
dUω

dσ
, (4.22)

whereUω ≃ 1
2m

2σ2
(
1 −

(
ω
m

)2 − |K| log
(

σ2

M2

))
. Equation (4.22) implies that the profile has a

symmetry under the variation ofr because Eq. (4.22) does not depend onr explicitly. Multiplying both

sides of Eq. (4.22) bydσ
dr leads to

∫ σ(r)

σ(Rω)

dσ√
2Uω

= Rω − r, (4.23)

where we have used the boundary conditions:σ′(∞) → 0, Uω(σ(∞) → 0) → 0 andσ′(r) < 0. After

some elementary algebra, the final asymptotic profile becomes

σ(r) = MeMm2
ω/2m2

exp

(
−m

2|K|M
2

(r − rω)2
)
, (4.24)

d

dr

(
−σ

′

σ

)
= m2|K|M, (4.25)

whererω ≡ Rω −
√

m2
ω

m2 − 2|K|
M log

(
σ(Rω)

M

)
/(|K|m). Equation (4.24) is a consequence of the sym-

metry in Eq. (4.22) under the translationr → r − rω from a Gaussian profile as seen in Eq. (B.1) of

Appendix B. Furthermore, Eq. (4.25) depends on the parametersm, M, |K| in Eq. (4.1). We will later

use the relation Eq. (4.25) as a criterion that must be satisfied in obtaining full numerical profiles for all

values ofω.

We finish this section by recapping the key results we have derived for the case of the gravity-mediated

potential, Eq. (4.1), in both the thin and thick-wall limits. In the thick-wall limit, we imposed the

restrictionsβ2 . |K| . O(1) on the potential to ignore the nonrenormalisable term. In both limits,

we have derived the characteristic slopes in Eqs. (4.12, 4.19) and the classical stability conditions in

Eqs. (4.13, 4.20) and shown that theQ balls are classically stable in both cases. The thin-wallQ-

balls in DVPs are always absolutely stable, andQ-matter in NDVPs can be absolutely stable when the

coupling constant for the nonrenormalisable term satisfiesEq. (4.6); whilst absolutely stableQ-balls in

the thick-wall limit may exist only for Eq. (4.21). Finally,we obtained the general asymptotic profile,

Eq. (4.24), for larger.

4.3 Gauge-mediated potential

The gauge-mediated scalar potential can be written in quadratic form in the low energy regime for scales

up to the messenger scaleMS, and carries a logarithmically (extremely) flat piece in thehigh energy

regime [23, 24]. This extreme flatness means that the thin-wall Q-ball we used in Eq. (4.8) cannot
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be applied to this situation, and so we now turn our attentionto Q-balls in extreme flat potentials.

We will generalise the results of [24] to an arbitrary numberof spatial dimensions and show that the

knownQ-ball profiles in [19, 24] are naturally recovered by our moregeneral ansatz. Moreover, we

will investigate both the classical and absolute stabilityof theseQ-balls. The gauge-mediated potential,

which we will use in this section, is approximated by [110, 129]

U(σ) =





1
2m

2σ2 for σ(r) ≤ σ(R),

U0 = const. for σ(R) < σ(r),
(4.26)

whereU0 andR are free parameters that will be determined by imposing a condition that leads to a

smooth matching of the profiles atσ(R), U0 = 1
2m

2σ2(R). Notice thatQ-balls exist within0 < ω <

m in Eq. (4.26), and the potential does not have degenerate vacua althoughω− ≃ 0. Since Eq. (4.26) is

not differentiable atσ(R), we can approximate Eq. (4.26) by

Ugauge =
1

2
m2Λ2

(
1 − e−σ2/Λ2

)
(4.27)

which we will use in the numerical section, Sec. 4.4. Note that Λ = σ(R) corresponds to the scale

below which SUSY is broken, so thatU0 = 1
2m

2Λ2 in Eq. (4.26). The potential Eq. (4.27) differs

from the one used in [155], but is similar to the potential used in [156]. Fig. 4.2 shows the inverse

potential Eq. (4.27) and the inverse effective potentials for various values ofω with m = 1, Λ2 = 2,

which impliesU0 = 1. The red-solid line shows the inverse potential of Eq. (4.27) (−Ugauge), and the

sky-blue dotted-dashed line corresponds to the inverse quadratic potential of Eq. (4.26). For sufficiently

large and smallσ, the two potentials in Eqs. (4.26, 4.27) have similar behaviour, but we can see the

difference in the intermediate region ofσ where1 . σ . 3. Hence, we can expect that profiles around

the thick-wall limit are different between the potentials since the thick-wall profiles are constructed in

the particular region,1 . σ . 3; hence it may lead to the different stationary properties and stability

conditions.

Using Eq. (2.27), theQ-ball equation, Eq. (2.20), in the linearised potential Eq.(4.26) becomes

σ′′
core +

D − 1

r
σ′

core + ω2σcore = 0, for 0 ≤ r < R, (4.28)

σ′′
shell +

D − 1

r
σ′

shell −m2
ωσshell = 0, for R ≤ r, (4.29)

where the profiles should be imposed to satisfy the boundary conditions,σ′ < 0, σ(0) ≡ σ0 =

finite, σ(∞) = σ′(∞) = 0, σ′(0) = 0. The solutions are




σcore(r) = A r1−D/2JD/2−1(ωr) for 0 ≤ r < R,

σshell(r) = B r1−D/2KD/2−1(mωr) for R ≤ r,
(4.30)

whereJ andK are Bessel and modified Bessel functions respectively, withconstantsA andB. By

introducingσ0, and expandingJD/2−1(ωr) for smallωr in σcore(r), and by using the conditionU0 =

1
2m

2σ2
shell(R) we obtain

A = σ0Γ(D/2)

(
2

ω

)D/2−1

, U0 =
1

2
m2B2R2−DK2

D/2−1(mωR). (4.31)

56



FIG. 4.2: The inverse potential−Ugauge in Eq. (4.27) (red-solid line) withm = 1, Λ2 = 2 which impliesU0 = 1
and the inverse effective potentials−Uω for different values ofω. In order to compare between Eq. (4.26) and
Eq. (4.27), we plot the inverse quadratic potential with thesky-blue dotted-dashed line. The two potentials are
asymptotically similar, but they are different around the intermediate region ofσ, where1 . σ . 3.

Since the energy density is smooth and finite everywhere, we have to impose a smooth continuity con-

dition to the profilesσcore(R) = σshell(R) andσ′
core(R) = σ′

shell(R), which gives

A

B
=
KD/2−1(mωR)

JD/2−1(ωR)
=
mωKD/2(mωR)

ωJD/2(ωR)
. (4.32)

We will see that the particular value ofσ0 does not change important features such as the stability

condition and characteristic slope of theQ-ball solutions. Using Eq. (4.32) we obtain the following

important identities, which we will make use of later [157]:

ω
JD/2(ωR)

JD/2−1(ωR)
= mω

KD/2(mωR)

KD/2−1(mωR)
, (4.33)

JD/2(ωR)JD/2−2(ωR)

J2
D/2−1(ωR)

= −
(mω

ω

)2 KD/2(mωR)KD/2−2(mωR)

K2
D/2−1(mωR)

, (4.34)

where we used the recursion relationsJµ−1(z) + Jµ+1(z) = 2µ
z Jµ(z), Kµ−1(z) − Kµ+1(z) =

− 2µ
z Kµ(z) for any realµ andz. We can easily findScore

ω = U0VD +
(

1
2σcore(R)σ′

core(R)
)
∂VD

andSshell
ω = −

(
1
2σshell(R)σ′

shell(R)
)
∂VD, and then usingSω = Score

ω + Sshell
ω it follows that

Sω = U0VD, (4.35)

where we have again used the continuity relationsσcore(R) = σshell(R) andσ′
core(R) = σ′

shell(R). To

find the chargeQ, we do not make use of the Legendre relationQ = − dSω

dω in Eq. (2.16), becauseR is

a function ofω, and is determined by Eq. (4.33). However, we can obtainQ by substituting Eq. (4.30)

directly into Eq. (2.10):

Q =
DU0VD

ω

(
KD/2(mωR)KD/2−2(mωR)

K2
D/2−1(mωR)

)
, (4.36)
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where we have used Eqs. (4.31, 4.32) and Eq. (4.34), as well asthe relation,
∫
dy yZ2

µ(y) =[
y2

2

(
Z2

µ(y) − Zµ−1(y)Zµ+1(y)
)]

, [110, 157]. Here,µ is real, andZ can be either the Bessel function

J or the modified Bessel functionK, and we have used the following recursion relations to obtain the

indefinite integral:z dJµ

dz ±µJµ = ±z Jµ∓1, Jµ−1−Jµ+1 = 2
dJµ

dz , z
dKµ

dz ±µKµ = −z Kµ∓1, Kµ−1+

Kµ+1 = −2
dKµ

dz .

For future reference we obtain explicit expressions forR for case with an odd number of spatial dimen-

sions. Eq. (4.33) can be solved explicitly in terms ofR to give

ωR = arctan

(
ω

mω

)
, for D = 1, (4.37)

ωR = π − arctan

(
ω

mω

)
, forD = 3, (4.38)

where we have usedJ3/2(x) =
√

2
πx

(
sin(x)

x − cos(x)
)
, J1/2(x) =

√
2

πx sin(x), J−1/2(x) =
√

2
πx cos(x), K3/2(x) =

√
π
2xe

−x
(
1 + 1

x

)
, K1/2(x) =

√
π
2xe

−x = K−1/2(x). We will discuss

the classical stability forQ-balls inD = 1, 3 in the numerical section, in which we will show stability

plots arising from Eqs. (4.37, 4.38).

4.3.1 “Thin-wall-like” limit for mωR, ωR ≫ O(1)

We now discuss both the classical and absolute stability of gauge-mediatedQ-balls in arbitrary di-

mensionsD, in the limitmωR, ωR ≫ 1, which implies that the “core” sizeR is large compared to

1/mω, 1/ω. As we will see in the numerical section, Sec. 4.4, the limit will turn out to be equivalent

to the thin-wall limitω ≃ ω− ≃ 0. Recall that this potential does not have degenerate vacua.Using

Eqs. (4.35, 4.36),

Sω ≃ ωQ

D

{
1 + O((mωR)−1)

}
, (4.39)

where we have usedlim|z|→∞Kµ(z) ∼
√

π
2z e

−z
[
1 + 4µ2−1

8z + O(z−2)
]
. The characteristic slope

follows

EQ

ωQ
≃ D + 1

D
(4.40)

from which we see immediately from Eq. (2.18) that we recoverthe published results of [24, 129],

namelyE ∝ QD/(D+1). From Eqs. (2.30, 4.40), the “thin-wall-like”Q-ball is absolutely stable since

the present limits will cover the thin-wall limitω ≃ ω− ≃ 0 as we stated.

We can also obtain an explicit expression forR(ω) anddR
dω in the limitsmωR ≫ 1 andωR≫ |µ2− 1

4 |,
whereµ (∼ O(1)) is the argument of the Bessel function:

ωR =

(
D + 1

4

)
π − arctan

(
ω

mω

)
, (4.41)

dR

dω
= −R

ω

(
1 − 1

mωR

)
≃ −R

ω
. (4.42)
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Notice that Eq. (4.41) forD = 3 reproduces the given profile in [19, 24], and it coincides with the exact

expression derived in Eq. (4.38). Using Eqs. (4.36, 4.41) and Eq. (4.42), we obtain

Q ≃ VDU0D

ω
, (4.43)

ω

Q

dQ

dω
≃ −D − 1 < 0, (4.44)

which shows that theQ-ball in this limit is classically stable. One can also checkbothQ ≃ − dSω

dω =

DU0VD/ω from Eq. (4.42) andd
dω

(
EQ

Q

)
≃ D+1

D > 0 from Eq. (4.40), which are respectively consis-

tent with Eq. (4.44) and with the result in Eq. (2.31).

4.3.2 “Thick-wall” limit for D = 1, 3, . . .

Having just discussed the “thin-wall-like” properties forarbitraryD, we turn our attention now to the

the other limit,ω ≃ ω+. This is much more difficult to analytically explore becauseEq. (4.34) can

only give a closed form expression forR for the case whereD is an odd number of spatial dimensions.

Therefore, we will concentrate here on the interesting cases, e.g.D = 1, 3.

D = 3 case: From Eq. (4.38) and recalling that in the “thick-wall” limit,mω → 0, ω ≃ ω+ = m, we

obtainR ≃ π
2ω ,

dR
dω ≃ −R

ω , and by substituting these into Eq. (4.36) we find

ω

Q

dQ

dω
≃ −1 +

ω2

m2
ω

→ ω2

m2
ω

> 0, (4.45)

EQ

ωQ
= 1 +

πmω

6ω
→ 1, (4.46)

which shows that the three-dimensional “thick-wall”Q-ball is classically unstable. This fact is consis-

tent with the relation thatddω

(
EQ

Q

)
= 1 − πω

6mω
→ − πω

6mω
< 0 where we have used Eq. (4.46). It also

follows that the “thick-wall”Q-ball is not absolutely stable, and the solution will decay to free particles

satisfyingEQ → mQ which is the first case of Eq. (2.38).

D = 1 case: As in the caseD = 3, Eq. (4.37) impliesR → 0, dR
dω ≃ − m2

mωω3 in the “thick-wall”

limit. Using the above results, we obtain

ω

Q

dQ

dω
≃ −1 − m2

ω2
+
ω2

m2
ω

→ ω2

m2
ω

> 0, (4.47)

EQ

ωQ
= 1 +

(
1 +

1

mωR

)−1

→ 1. (4.48)

Note that the approximate value in Eq. (4.47) is the same as Eq. (4.45). Then the one-dimensional

“thick-wall” Q-ball is also classically unstable. This fact is again consistent with the result that

d
dω

(
EQ

Q

)
≃ 1 +mωR− m2

ω2 − ω2R
mω

→ −ω2R
mω

< 0. As in the three-dimensional case, the “thick-wall”

Q-ball is not absolutely stable, and the solution decays intoits free particles.
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4.3.3 Asymptotic profile

The asymptotic profile for the larger regime in this model can be described by the contribution from

the quadratic term in the potential Eq. (4.26), from which the profile is Eq. (3.49), such that

σ(r) ∼ E

√
π

2mω
r−

D−1
2 e−mωr ⇔ −σ

′

σ
∼ D − 1

2r
+mω, (4.49)

whereE is a constant. Note that we have used the fact that the modifiedBessel function of the second

kind has the relationKµ(r) ∼
√

π
2re

−r for larger and any realµ. We will use the criterion in the

second expression of Eq. (4.49) in the following section.

Summarising our most important results in the generalised gauge-mediated potential, the “thin-wall-

like” Q-ball is classically stable for a generalD, whilst it is absolutely stable as seen in Eqs. (4.40, 4.44).

On the other hand, for “thick-wall”Q-balls inD = 1, 3, theQ-balls are both classically and absolutely

unstable, as can be seen from Eqs. (4.45, 4.46) and Eqs. (4.47, 4.48). Finally we obtained the general

asymptotic profile Eq. (4.49) for larger.

4.4 Numerical results

In this section, we obtain exact numerical solutions forQ-balls for both the gravity-mediated potential

in Eq. (4.3) and the gauge-mediated potential in Eq. (4.27) with dimensionless parameters by setting

m = M = 1 andΛ2 = 2. We adopt the 4th-order Runge-Kutta algorithm and usual shooting methods

to solve the second order differential equations Eq. (2.20)(for full details see the numerical techniques

developed in chapter 3). The raw numerical data contains errors for larger, thus we introduce the

previously obtained analytical asymptotic profiles to helpcontrol these uncertainties. In particular we

use Eq. (4.25) for the gravity-mediated potential and Eq. (4.49) for the gauge-mediated case. Using

these techniques, the numerical profiles match smoothly andcontinuously onto the analytic ones. In

order to check the previously obtained analytic results, wecalculateQ-ball properties numerically over

the whole parameter spaceω except around the extreme thin-wall limitω = ω−, because it is difficult

to obtain reliable numerical results in that limit.

4.4.1 Gravity-mediated potential

We shall investigate gravity-mediated potentials with twochoices ofλ in Eq. (4.1) for|K| = 0.1 and

n = 6, which can be seen as the red solid lines in Fig. 4.1. The choice of the parameters,|K| and

n, are simply from phenomenological reasons. The degeneratevacua potential (DVP) on the left has

ω− = 0 (β2 = |K|e−1

4 exp
(
− 2

|K|

)
∼ 1.90 × 10−11 ≪ O(1)), and the nondegenerate vacua potential

(NDVP) on the right hasω− = 1 (β2 = |K|e−1

4 ∼ 9.20 × 10−3 ≪ O(1)), recalling Eq. (4.5). Fig. 4.1

also shows plots of the inverse effective potentials−Uω for various values ofω. Because of numerical
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complications, we are unable to fully examine the properties in the extreme thin-wall limit; however, by

solving close to this wall limit, our numerical results recover the expected analytical results we derived

in Eqs. (4.12, 4.13). With the above choice of parameters, the curvatureµ of Uω at σ+(ω−) ≡ σ+ in

Eq. (4.7) isµ2 ∼ 0.4 which implies that1/µ ∼ 1.58. From the first relation in Eq. (4.4), we have found

σ+ ∼ 1.28 in NDVP andσ+ ∼ 1.91 × 102 in DVP. Since we have assumedRQ ≫ 1/µ, σ0 ≃ σ+ in

our thin-wall analysis for the gravity-mediated potential, we see that it breaks down when the core size

RQ becomes the same order as1/µ and/orσ0 6∼ σ+. Although the full definition of the core sizeRQ is

presented in chapter 3, it is very time consuming to evaluateit properly in the simulations; hence, in this

analysis we have used a more naive approach, in which we have estimated the value ofr = RQ when

the field profile drops quickly from its core value. For the thick-wall limit, we required the condition

β2 . |K| . O(1), which is satisfied with the above chosen parameter set; hence, the analysis is valid

for ω & O(1). Because of the choice of|K| = 0.1 < O(1) andω− = 0 in NDVP, we will see our

analysis holds even forω ∼ O(1).

Hybrid profile: The numerical profiles have errors for larger which correspond to either undershoot-

ing or overshooting cases; thus, to minimise the errors in the region of larger we replace the numerical

data by the predicted asymptotic analytical profile using the criterion Eq. (4.25) to obtain the solution

for the whole range ofr. We then have the hybrid profile which can be written as

σ(r) =





σnum(r), for r < Rnum,

σnum(Rnum) exp
(
− |K|

2 R2
num − σ′

num(Rnum)
σnum(Rnum)Rnum

)

× exp
(
− |K|r2

2 +
(
Rnum|K| + σ′

num(Rnum)
σnum(Rnum)

)
r
)

for Rnum ≤ r ≤ Rmax,

(4.50)

whereσnum is the numerical raw data,Rnum is determined by| (−σ′
num/σnum)′−1|r=Rnum < 0.001,

and we have setRmax = 60 throughout our numerical simulations in this subsection. We have calcu-

lated the following numerical properties using the above hybrid profile, Eq. (4.50), forD = 1, 2, 3:

Profile: In the top two panels of Fig. 4.3 (DVP on the left and NDVP on theright), the red-solid and

blue-dotted lines show the numerical slopes−σ′/σ for two typical values ofω in D = 3. We smoothly

continue them to the corresponding analytic profiles by the methods just described in the numerical

techniques, see green-dashed and purple-dotted-dashed lines. The linear lines correspond to the Gaus-

sian tails in Eq. (4.24) and for the cases ofω = 0.14 (DVP) andω = 1.01 (NDVP) corresponding

to the thin-wall solution we see that it is shifted from the origin to r ≃ 21. The middle panels show

the obtained hybrid profiles of Eq. (4.50) for the various values ofω andD. The higher the spatial

dimension, the larger the core sizeQ-balls can have. The energy density configurationsρE(r) can be

seen in the bottom panels of Fig. 4.3. Outside of the cores of the DVP profiles forω ∼ ω−, we can see

the same features as we saw in the polynomial potentials we investigated in chapter 3, namely, highly

concentrated energy density spikes. In NDVP, however, the spikes cannot be seen. The presence of the

spike contributes to the increase in the surface energyS, which in turn leads to the different virialisation

ratio forS/U whereU is the potential energy, as can be seen in Eq. (2.38).
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FIG. 4.3: The top two panels show the three-dimensional numerical slopes−σ′/σ for two typical values ofω for
both DVP (left) and NDVP (right). The raw numerical data (red-solid and blue-dotted lines) matches continuously
on to the analytical asymptotic profiles for larger (green-dashed and purple-dotted-dashed lines). The linear lines
correspond to the Gaussian tails in Eq. (4.24), where we can see the large shifts in the thin-wall limits ofω. The
middle and bottom panels show, respectively, the hybrid profiles Eq. (4.50) and the energy density configurations
for the various values ofω andD. The spikes of the energy density configurations exist in theDVP case but not in
the NDVP case.

Criterion for the existence of a thin-wallQ-ball: Fig. 4.4 shows the numerical results forσ0(ω)

againstω for both types of potentials – DVP (left) and NDVP (right). Our main analytical approximation

relies onσ0(ω) ≃ σ+(ω) ∼ σ+ ≡ σ+(ω−), where we have foundσ+ ∼ 1.28 ∼ O(1) in NDVP

andσ+ ∼ 1.91 × 102 ≫ O(1) in DVP. The3D thin-wall Q-ball (green-crossed dots) appears for

a wider range ofω than the2D Q-ball (red-plus signs) in DVP as well as NDVP. For each case, the

approximation can be valid, respectively, up toω ∼ 0.24 or ω ∼ 1.04 with about10% errors for the

3D case. Near the thick-wall limitω ≃ ω+ for both potentials, we seeσ0 ≃ σ− → 0. The one-

dimensional values (skyblue-circled dots) always lie onσ−. Note that in the3D regionω & 0.53 for

DVP, we can seeσ0(ω) . O(102), which implies that the contribution from the nonrenormalisable term
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in Eqs. (4.14, C.8), i.e.β2σ̃4 . O(10−3) ≪ O(1), O(|K|), is negligible compared to other terms in

Eqs. (4.14, C.8). Hence, our analytic solution still holds in the limitω ∼ O(1) as discussed in Sec.4.2.3.

FIG. 4.4: The initial valueσ0(ω) ≡ σ(0) is plotted againstω. In the two panels the black-dashed and orange
dotted-dashed lines showσ±(ω), and these lines become closer forω = ω− for both types of the potentials DVP
(left, ω− = 0) and NDVP (right,ω− = 1). Sinceσ0 ≃ σ+ ≡ σ+(ω−) for D = 2, 3 in the regionω ∼ ω− where
σ+ ∼ 1.28 in NDVP andσ+ ∼ 1.91 × 102 in DVP, our analytical results in Sec.4.2.2, are valid in this region.

Virialisation and characteristic slope: Fig. 4.5 shows theQ-ball properties plotted against the ratio

of S/U whereS andU are the surface and potential energies (top panels), and thecharacteristic slope

EQ/ωQ (bottom panels). For the DVP case where the thin-wallQ-ball satisfiesσ0 ∼ σ+ it appears to

be heading towardsS/U ∼ 1 asω → ω− = 0 [see Eq. (2.38)], in all three cases. Also we predict that

the thin-wallQ-ball in NDVP hasS/U ∼ 0 [see Eq. (2.38)], and that it is consistent with what can be

seen in the top right panel aroundω = ω− = 1. The bottom panels show analytically and numerically

the characteristic slopesEQ/ωQ in both the thin and thick-wall limits. The analytic thin-wall lines

(purple-dotted line for2D and blue-dotted line for3D) based on Eq. (4.12) are well fitted for the NDVP

case with the corresponding numerical dots (red plus-dots for 2D and green crossed-dots for3D) as

long asσ0 ≃ σ+, see the criteria in Fig. 4.4. For the DVP case, our numericaldata is seen to be heading

in the right direction. The numerical solutions for both cases in the thick-wall region are well fitted

by the analytic solution in generalD given by the orange-dotted-dashed lines, in the second relation of

Eq. (4.19) or Eq. (C.12). From the virial relation Eq. (2.38)forD = 1, we can only predict the extreme

values of the1D characteristic slope,γ, in either the DVP or NDVP case once we know whatS/U is.

To obtain that we rely on the numerical simulations and from the top two panels in Fig. 4.5, we see that

for the DVP case withD = 1, S/U appears to be heading towards unity, implyingγ ≫ 1 in Eq. (2.38),

whereas for the NDVP caseS/U ≪ 1, implyingγ → 1 in Eq. (2.38). Comparing these with the bottom

two panels we see the behaviour forγ appears to follow these predictions.

Q-ball stability: Fig. 4.6 shows plots for both the classical (top panels) and absolute stability (bottom

panels) with the stability threshold lines (black-dashed)for the cases of DVP (left) and NDVP (right).

Let us consider the classical stability case first. For the thin-wall regime in DVP, notice that the nu-

merical data ofωQ
dQ
dω (red-dot-circles for2D and green-dot-crosses for3D) are heading towards the
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FIG. 4.5: The top panels show the ratioS/U whereS andU are the surface and potential energies, and the bottom
panels show the numerically obtained characteristic slopeEQ/ωQ, in 1D (skyblue circled-dots),2D (red plus-
dots) and3D (green crossed-dots). For comparison, in the bottom panels, the thin-wall analytic lines obtained
using Eq. (4.12) are also shown (purple-dotted line for2D and blue-dotted line for3D) as are the thick-wall
analytic lines obtained from Eqs. (4.19, C.12) (orange-dotted-dashed for allD). The analytic lines match well with
the numeric data in the appropriate limits, especially for the NDVP case.

analytic lines of Eq. (4.13). For the thick-wall case, on theother hand, the analytical lines of Eq. (4.20)

(orange-dotted-dashed) fit excellently with the numericaldata in all dimensions, because Eq. (4.20) is

independent ofD. Furthermore, theQ-ball is classically stable over all values ofω except for the1D

thin-wall case where our analytical work cannot be applied.We saw this feature of unstable1D thin-

wall Q-balls for the case of polynomial models in the left-top panel of Fig. 3.5 in chapter 3. For the

absolute stability in the bottom panels, the analytical lines using Eq. (4.12) and Eqs. (4.19, C.12) are

matched with the numerical dots for both the thin and thick-wall limits. Here, we note how well the

three-dimensionalQ-ball (and also the higher dimensional ones as predicted in chapter 3) can be de-

scribed simply by our thin and thick-wallQ-balls. As our parameter set satisfies Eq. (4.21), we can see

that absolutely stableQ-balls exist in DVP near the thick-wall limit. Because of thechoice ofω− = 1,

theQ-ball in the NDVP case, however, is always absolutely unstable and most of the features are similar

in terms ofD. The analytical lines (top-right panel) in NDVP agree with the corresponding numerical

data qualitatively better than the lines for DVP.

To sum up our discussion of the gravity-mediated model, our analytical estimates of the characteristic

slope and other properties of theQ-balls are well checked against the corresponding numerical results,

even though we set a “flatter” potential with|K| = 0.1 < O(1).
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FIG. 4.6: Classical stability for the top panels and absolute stability for the bottom panels for both DVP (left) and
NDVP (right). The black-dashed lines indicate the stability thresholds for both classical and absolute stability in
all panels.Q-balls found below the lines are stable either (both) classically or (and) absolutely. In the top panels,
the analytical lines using Eqs. (4.13, 4.20) agree well quantitatively with the corresponding numerical data for the
thick-wall regimes, but not well in the thin-wall regimes. However the numerical plots look qualitatively similar
to the analytical lines in the thin-wall limit as seen with the polynomial models in the left-top panel of Fig. 3.5 in
chapter 3. In addition, the analytical lines forEQ/mQ using Eqs. (4.12, C.12) match the numerical lines for both
the thin and thick-wall limits.

4.4.2 Gauge-mediated potential

This subsection presents numerical results showing the properties of gauge-mediatedQ-balls withm =

1, Λ2 = 2 in Eq. (4.27). Although we have obtained analytical resultsfor the potential, Eq. (4.26), the

potential is neither analytic nor smooth for allσ. Therefore, we shall use the approximate potential,

Eq. (4.27), see Fig. 4.2 and we expect that Eq. (4.27) is a suitable approximation especially for the thin-

wall limit ω and largeD. We will also see and explain the expected discrepancies that exist between the

numerical and analytic results.

Hybrid profile: As we saw in earlier examples the numerical profiles we have obtained have errors

for larger, which correspond to either undershooting or overshooting; thus, we replace the numerical

data in that regime by the exact asymptotic analytic solutions we obtained using the second relation

of Eq. (4.49) to smoothly continue the numerical solutions to the corresponding analytical ones. The

hybrid profile in this model is

σ(r) =





σnum(r) for r < Rnum,

σnum(Rnum)
(

Rnum

r

)(D−1)/2
e−mω(r−Rnum) for Rnum ≤ r ≤ Rmax,

(4.51)
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whereσnum is the numerical raw data,Rnum is determined by|D−1
2r +mω +(σ′

num/σnum) | < 0.001,

and we have again setRmax = 60. We have calculated the following numerical properties using the

above hybrid profile, Eq. (4.51), up toD = 3.

Profile and energy density configuration: Fig. 4.7 shows the three-dimensional numerical slopes

−σ′/σ for two values ofω (top), hybrid profiles (left-bottom) as in Eq. (4.51), and the configurations

for energy density (right-bottom). In the top panel, the rawnumerical data (red-solid and blue-dotted

lines) is matched smoothly onto the continuous asymptotic profiles Eq. (4.51) for larger (green-dotted

and purple-dashed lines). By fixing the numerical raw data using the technique Eq. (4.51), we show the

profiles for various values ofω andD, see the left-bottom panel. Also the peaks of the energy density

cannot be observed in the whole range ofω, see the right-bottom panel.

FIG. 4.7: The top panel shows the three-dimensional numerical slopes−σ′/σ for two values ofω. The raw nu-
merical data (red-solid and blue-dotted lines) matches smoothly to the corresponding analytical asymptotic profiles
for larger (green-dotted and purple-dashed lines). Both the left- andright-bottom panels show, respectively, the
hybrid profiles Eq. (4.51) and the energy density configurations for the various values ofω andD. The spikes of
energy density configurations do not exist even in the thin-wall limits.
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Characteristic slope: In Fig. 4.8, we plot both the numeric and analytic characteristic slopesEQ/ωQ

(orange-dashed line for1D and blue-dotted line for3D). By substituting Eqs. (4.37, 4.38) into Eq. (2.10)

and Eq. (4.36), we have obtained the analytic slopes covering the whole range ofω. The3D analytic

line agrees with the numerical data except near the thick-wall limit. Similarly, the 1D analytic line

agrees well only in the thin-wall limit. The origin of the discrepancies in the analytic versus numerical

fits are the differences between the potentials themselves [Eq. (4.26) and Eq. (4.27)]. These differences

are largest between1 . σ . 3 which in turn affects the region around0.9 . ω < 1.0, see Fig. 4.2 and

Fig. 4.8.

FIG. 4.8: The numeric characteristic slopesEQ/ωQ and the analytic lines (orange-dashed line for1D and blue-
dotted line for3D) which are calculated using Eqs. (4.37, 4.38) in the whole range ofω. The3D analytic line
agrees with the numeric data well except near the thick-walllimit. Similarly the1D analytic line agree well only
in the extreme thin-wall limit.

Q-ball stability; Fig. 4.9 illustrates the stability ofQ-balls: classical stability in the left panel and

absolute stability in the right panel. The black-dashed lines in both panels indicate their respective

stability thresholds whereQ-balls under the lines are stable. We calculate the analyticlines forD =

1, 3 by substituting Eqs. (4.37, 4.38) into Eq. (4.36) and differentiating it with respect toω. The3D

numerical data can be matched with the analytic lines in boththe thin and thick-wall limits. As in

Eq. (4.45), the three-dimensionalQ-ball in the thick-wall limit is classically unstable. The numerical

thick-wallQ-ball in 1D is classically stable which differs from the prediction in Eq. (4.47). In the right

panel, the analytic line forD = 3 agrees with the numerical data except in the thick-wall limit where the

analytical lines for both1D and3D do not match the corresponding numerical data. Furthermore, the

thick-wallQ-ball in 1D is absolutely unstable as predicted analytically in Eq. (4.48), but this fact cannot
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be observed numerically. The reasons for this discrepancy are as before a problem with our choice of

potentials. We can see that the thin-wallQ-balls for anyD are both classically and absolutely stable.

FIG. 4.9: The stability ofQ-balls – Classical (left panel) and absolute (right panel).The black-dashed lines in the
two panels indicate the stability thresholds for both classical and absolute stability whereQ-balls under the lines
are classically/absolutely stable. The analytic lines forD = 1, 3 are calculated by substituting Eqs. (4.37, 4.38)
into Eq. (4.36) and differentiating it with respect toω.

To recap, our numerical results in the gauge-mediated case are generally well fitted by our analytical es-

timations. Observed discrepancies between the analyticalpredictions and numerical data arise from the

artifact of our approximated smooth potential Eq. (4.27) for the generalised gauge-mediated potential

Eq. (4.26). We have confirmed that the thin-wallQ-balls for anyD are both absolutely and classically

stable.

4.5 Conclusion and discussion

We have explored stationary properties ofQ-balls in two kinds of flat potentials, which are the gravity-

mediated potential, Eq. (4.1), and the generalised gauge-mediated potential, Eq. (4.26). Generally, the

gauge-mediated potential is extremely flat compared to the gravity one; therefore, we cannot apply our

thin-wall ansatz Eq. (4.8) to the gauge-mediated case. By linearising the gauge-mediated potential, we

obtained the analytical properties instead. For both potential types, we both analytically and numerically

examined characteristic slopes as well as the stability of theQ-balls in the thin and thick-wall limits.

Our main analytical results are summarised in Table 4.1.

This present chapter is of course related to chapter 3. The key differences are that in the present work on

thin-wallQ-balls we are assuming the value ofσ+(ω) for the thin-wall limitω ≃ ω− depends weakly

on ω and we have replaced the assumptionσ(RQ) < σ−(ω) by the equivalent assumption (made

by Coleman)Uω ≃ Uω− in theQ-ball shell region [125]. These in turn are related to the previous

requirement that the surface tensionτ depends weakly onω, which can be translated into the main

assumptions:RQ ≫ δ, 1/µ, σ0 ≃ σ+, andUω ≃ Uω− in the shell region. Furthermore, our analytic

work agrees well with the numerical results for small curvatureµ with |K| = 0.1; however, it is not

clear that our analytic framework still holds even in the case of |K| ≪ O(1), which corresponds to a
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case where the potential is extremely flat, see Eq. (4.7).

Q-balls in gravity-mediated potentials: It is possible to obtain absolutely stableQ-matter with a

small coupling constant, Eq. (4.6), for the nonrenormalisable term in Eq. (4.1). For|K| 6≪ O(1), a

gravity-mediated potential cannot be really considered asflat, which allows us to apply our previous

results, Eqs (3.25-3.29), in chapter 3 to describe the thin-wall Q-ball whereσ0 ≃ σ+. In the thick-wall

limit by reparameterising parameters inSω and neglecting the nonrenormalisable term under the condi-

tionsβ2 . |K| . O(1), we have obtained the stationary properties of theQ-ball. We showed that the

“thick-wall” Q-ball is classically stable, and demonstrated that under certain conditions Eq. (4.21) it can

be absolutely stable. Although this analysis is much simpler than the analysis associated with imposing a

Gaussian ansatz developed in appendix C, the former analysis assumed that the nonrenormalisable term

is negligible at the beginning of the analysis. In the latteranalysis, we have kept all terms in Eq. (4.3)

and shown that the nonrenormalisable term is indeed negligible in the limitω & O(m). Our results,

Eqs. (4.20, C.12), for the thick-wallQ-ball have recovered the previous results obtained in [147,158]

without any contradictions for classical stability conditions as opposed to the case of using a Gaussian

ansatz in a general polynomial potential in which we showed that the ansatz led to a contradiction and

corrected it by introducing a physically motivated ansatz in chapter 3. This is because the Gaussian

ansatz, Eq. (C.1), becomes the exact solution, Eq. (B.1), inthe gravity-mediated potential in the limit

ω & O(m) where the nonrenormalisable term is negligible. In Figs. 4.5 and 4.6 the analytical lines

agree well with the corresponding numerical plots in both the thin-wall and thick-wall limits. Under our

numerical parameter sets, theQ-balls in DVP are both classically and absolutely stable up to ω . m,

while all of theQ-balls in NDVP are absolutely unstable because of our choice, ω− = m. We believe

that an absolutely stableQ-matter exists in NDVP when we takeω− < m. Since theQ-balls in both

potential types are always classically stable, as can be seen in the top two panels of Fig. 4.6 except for

the case of1D Q-balls in the thin-wall limit to which our analytical work cannot be applied since it

holds only forD ≥ 2. We have also found the asymptotic profile Eq. (4.24) for all possible values ofω,

see the top two panels in Fig. 4.3.

Our analytical estimations on the value ofω
Q

dQ
dω do not agree well with the numerical results, because

σ0 6∼ σ+. Nevertheless the other analytical properties are well fitted especially in NDVP, see bottom

panels in Figs. 4.5 and 4.6. The DVP in Eq. (4.1) for small|K| is extremely flat as the gauge-mediated

potential in Eq. (4.26), where both of the potentials haveω− ≃ 0. Notice that the asymptotic profile

for the former case has a Gaussian tail, while the latter profile is determined by the usual quadratic

mass term, see Eqs. (4.24, 4.49). By assuming that the shell effects are much smaller than the core

effects in the thin-wall limit, the difference of the tails can be negligible. Indeed, we can see the thin-

wall numerical lines for both the classical stability and the characteristic slope look qualitatively and

quantitatively similar to each other, as can be seen in both the top/bottom left panels of Fig. 4.6 and the

panels of Fig. 4.9. Notice that the spikes of energy density in the gauge-mediated potential cannot be

seen even thoughω− ≃ 0, see Fig. 4.7.
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Furthermore, we know that the potentialUgrav can be approximated by12m
2M2|K|σ2−2|K| for small

|K| ≪ O(1), then the potential in Eq. (4.1) looks similar to the confinement model in [105, 106]. By

neglecting the nonrenormalisable terms in the thick-wall limit, we can easily obtain the characteristic

slope,γ = 2+|K|(D−1)
2+|K|(D−2) ≃ 1, [16] by following the same technique as in Eq. (2.16), whichdoes not

depend onω but does depend onD and|K|. It follows thatEQ ∝ Q1/γ from Eq. (2.18). This result is

obviously worse than our main results in Eqs. (4.19, C.12), see bottom two panels in Fig. 4.5, because

we know that the Gaussian ansatz Eq. (C.1) can be the exact solution Eq. (B.1) forU = Ugrav; thus, it

is not so powerful to approximateUgrav by 1
2m

2M2|K|σ2−2|K| for small|K|.

Q-balls in gauge-mediated potentials: For the gauge-mediated potential in Eq. (4.26), we obtained

the full analytic results inD = 1, 3 over the whole range ofω using Eqs. (4.37, 4.38), see Fig. 4.8

and Fig. 4.9. In the “thin-wall” limit formωR, ωR ≫ O(1), we reproduced the previously obtained

results, Eq. (4.40), in [24, 110, 129] and showed that they are both classically and absolutely stable in

Eqs. (4.40, 4.44). The one- and three-dimensional “thick-wall” Q-balls, on the other hand, are neither

classically nor absolutely stable, see either Eqs. (4.47, 4.48) or Eqs. (4.45, 4.46), respectively. Since

the potential, Eq. (4.26), is not differentiable everywhere, we have used the approximate potential,

Eq. (4.27), instead in the numerical section, Sec. 4.4. Figs. 4.8 and 4.9 show that the numerical re-

sults agree with the analytical results in the thin-wall limit. The numerical data near the “thick-wall”

limit and/or in the1D case differ from the analytic lines since the profiles are computed in the region

where the two potentials between Eq. (4.27) and Eq. (4.26) are different, see Fig. 4.2. This differences

come from the artifact of our approximated smooth potentialEq. (4.27) against the generalised gauge-

mediated potential Eq. (4.26).

The 3D Q-balls: Although we have shownQ-ball results for an arbitrary number of spatial dimen-

sionsD, only three-dimensional cases are phenomenologically interesting.Q-balls in flat potentials give

the proportional relationEQ ∝ Q1/γ , whereγ generally depends onD. The actual values of1/γ for

three-dimensional thin-wallQ-balls are4
5 , 1, and 3

4 in DVP, NDVP of gravity-mediated potentials and

in gauge-mediated potentials respectively. It implies that the gauge-mediatedQ-balls would be formed

in the most energetically compact state for a large chargeQ, so it is likely that such formedQ-balls

would have survived any possible decay processes and thermal evaporation until the present day, and

possibly become a dark matter candidate [146].

Dynamics and cosmological applications: The dynamics of a pair of one-dimensionalQ-balls has

been recently analysed using momentum flux [159]. For a largeseparation between theQ-balls, the

profiles develop the usual exponential tail,e−mωr, in general polynomial potentials and in [159] the

authors showed that there was a solitonic force between them. Profiles in the gravity-mediated models

and other confinement models, however, have different asymptotic tails, which may affect the detailed

dynamics and theQ-ball formation [48, 113, 160, 161].
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In a cosmological setting (thermal background), SUSYQ-balls are generally unstable via evaporation,

diffusion, dissociation, and/or decay into todays baryonsand lightest supersymmetric particles, if the

AD field couples with the thermal plasma, which are decay products from inflaton, and/or if the field

possesses a lepton number for the MSSM flat directions [111, 147]. Following our detailed analytical

and numerical analyses of both gravity-mediated and gauge-mediatedQ-balls, it is clear that this whole

area of dynamics and cosmological implications of theseQ-balls deserves further analyses.

Model Gravity-mediated potentials
Q-ball type Thin-wall Thick-wall
Conditions N β2 . |K| . O(1)

Assumptions RQ ≫ δ, 1/µ; σ0 ≃ σ+ andUω ≃ Uω− in shell None
Potential type DVPs NDVPs Both

1/γ 2D−1
2(D−1) 1 1

Absolute stability © △ △
Classical stability © © △

Model Gauge-mediated potentials
Q-ball type Thin-wall Thick-wall
Conditions None D = 1, 3, ...

Assumptions R≫ 1/mω, 1/ω None
Potential type NDVPs

1/γ D
D+1 1

Absolute stability © ×
Classical stability © ×

TABLE 4.1: Key analytical results. Recall that theω-independent characteristic slopeγ ≡ EQ/ωQ leads to the
proportionality relationEQ ∝ Q1/γ . The symbols,©, ×, △, indicate thatQ-balls are stable, unstable, or can be
stable with conditions, respectively. The symbol,N, means that we may need the condition|K| 6≪ O(1). Since the
Gauge-mediated potentials are extremely flat for a large field value, the potentials do not have degenerate vacua.
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Chapter 5

Affleck-Dine dynamics,Q-ball

formation and thermalisation

5.1 Introduction

The present baryon asymmetry in the Universe is one of the most mysterious problems in cosmology

and particle physics (for a review see [16, 162]). Within theStandard Model (SM), electroweak baryo-

genesis was suggested as a way to explain the inequality between the baryon and anti-baryon num-

ber, and recent developments have shifted into constructing a theory of reheating the Universe [163].

Electroweak baryogenesis satisfies the well-known Sakharov’s three conditions required for successful

baryogenesis [13], namely baryon number production, C and CP violation, and the process taking place

out-of-equilibrium; however, the predicted CP violation in the electroweak baryogenesis is too small to

explain the present observed baryon number. By satisfying the above three conditions, the Affleck-Dine

(AD) baryogenesis [14], which was proposed in the theoretical framework beyond the SM, namely, the

Minimal Supersymmetric Standard Model (MSSM), is a more successful scenario to tackle this puzzle,

since it may solve problems of gravitino and moduli overproduction and give rise simultaneously to the

ordinary matter and dark matter in the Universe. The MSSM hasmany gauge-invariant flat directions

along which R parity is preserved. The flat directions are lifted by supersymmetry (SUSY) breaking ef-

fects arising from nonrenormalisable terms, which give a U(1) violation through A-terms. In the original

scenario of the AD baryogenesis, one can parametrise one of the flat directions in terms of a complex

scalar field known as an AD field (or AD condensate which consists of a combination of squarks and/or

sleptons fields). The AD field evolves to a large field expectation value during an inflationary epoch in

the early Universe. After inflation, the orbit of the AD field can be kicked along the phase direction

due to the A-terms which generate the U(1) charge (baryon/lepton number), and then the A-terms be-

come negligible, where the AD field rotates towards the global minimum of the scalar potential. Hence,

the generated global U(1) charge is fixed and the orbit of the AD field rotates around the origin of the



complex field-space,cf. the anomaly mediated models [164]. After the AD condensate decays into the

usual baryons and leptons, AD baryogenesis becomes complete.

The trajectory of the AD field is identical to the planetary orbits in the well-known Kepler-problem

as we will show later, replacing the Newtonian potential by an isotropic harmonic oscillator potential

[165]. This coincidental classical-mechanics reduction was noted for the orbits of a probe brane in the

branonium system [166, 167]. As general relativity predicted that planetary orbits precess by adding the

relativistic correction to the Newtonian potential, we will see similar events occur for the orbits of AD

fields, which are disturbed by quantum and nonrenormalisable effects instead.

By including quantum corrections [111, 135] and/or thermaleffects [151] in the mass term of the stan-

dard AD scalar potentials, the AD condensate is classicallyunstable against spatial perturbations due to

the presence of negative pressure [168], and fragments to bubble-like objects, eventually evolving into

Q-balls [21]. Lee pointed out [117] thatQ-balls may form due to bubble nucleation (first order phase

transition) [125, 169], even in the case that the condensateis classically stable against the linear spatial

perturbations.

We explored the complete stability analysis ofQ-balls at zero-temperature in polynomial potentials

in chapter 3 and in MSSM flat potentials in chapter 4. Laineet. al. [19] investigated the stability of

Q-balls in a thermal bath. The stability of the thermal SUSYQ-balls is different from the one of the

standard “cold”Q-balls, since they suffer from evaporation [19], diffusion[170], dissociation [147],

and decays into light/massless fermions [22]. Therefore, most SUSYQ-balls are generally not stable

but long-lived, and may thermalise the Universe by decayinginto baryons on their surface [171], which

could solve the gravitino and moduli over-production problems without fine-tuning. The SUSYQ-balls

in gravity-mediated (GRV-M) models are quasi-stable decaying into the lightest SUSY particles (LSP

dark matter), and the fraction of the baryons from theQ-balls may give the present baryon number,

which can explain Eq. (1.2), namely the similarity of the energy density between the observed baryons

and dark matter [146, 147]. The SUSYQ-balls in gauge-mediated (GAU-M) models, however, can be

extremely long-lived so that thoseQ-balls are candidates for cold dark matter [146] and may givethe

present observed baryon-to-photon ratio Eq. (1.1) [19].

The dynamics and formation ofQ-balls have been investigated numerically. With differentrelative

phases and initial velocities, the authors [100] found a charge transfer from oneQ-ball to the other and

interesting ring formation after the collision. It has beenfound [46] that similar ring-like solutions are

responsible for the excited states from the ground state (Q-ball) by introducing extra degrees of freedom:

spatial spins [86] and twists [172]. The formation ofQ-balls after inflation have been investigated in

both GRV-M models [48] and GAU-M models [47, 173], in which SUSY is broken by either gravity or

gauge interactions. As we will show, theQ-ball formation involves nonequilibrium dynamics, which is

related to reheating problem in cosmology.

The reheating process after the inflation period involves nonlinear, out-of-equilibrium, and nonperturba-

tive phenomena so that it is extremely hard to construct a theory for the whole process, see the 2 particle
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irreducible effective action as a remarkable approach [174, 175, 176]. In the first stage of reheating

(preheating), it is currently well known that the fluctuations at low momenta are amplified, which leads

to explosive particle production. After preheating, the subsequent stages towards equilibrium are de-

scribed by the wave kinetic theory of turbulence; Michaet. al. [177] recently estimated the reheating

time and temperature. These turbulent regimes appear in a large variety of nonequilibrium processes,

and indeed, the evolution ofQ-ball formation experiences the active turbulence at whichstage, many

bubbles collide as observed in the next stage of tachyonic preheating [178, 179]. During this bubble-

collision stage within the reheating scenario, it is believed that gravitational waves may be emitted from

the stochastic motion of heavy objects [179, 180, 181]. The problem of gravitational wave emissions

has been discussed only in the fragmentation stage ofQ-ball formation so far [161, 182, 183], but not

in the collision stage as opposed to the preheating cases.

In this chapter, we show analytically and numerically that in GRV-M and GAU-M models the approx-

imate trajectory of the AD fields is, respectively, either a precessing spiral or shrinking trefoil due to

quantum, nonrenormalisable, and Hubble expansion effects. Moreover, we explicitly present an expo-

nential growth of the linear spatial perturbations in both models. By introducing3 + 1 (and2 + 1)-

dimensional lattice simulations, we identify that the evolution inQ-ball formation involves nonequilib-

rium dynamics, including turbulent stages. Following the pioneering work on the turbulent thermali-

sation by Michaet. al. [177], we obtain scaling laws for the evolution of variancesduring theQ-ball

formation.

This chapter is divided as follows. We explore both analytically and numerically the dynamics of the

AD field in Sec. 5.2. In Sec. 5.3, we study the late evolution ofthe AD fields and the process ofQ-ball

formation, introducing detailed numerical lattice results. Finally, we conclude and discuss our results

in Sec. 5.4. Three appendices are included. We obtain the equations of motion and their perturbed

equations for multiple scalar fields in an fixed expanding background in Appendix D. In Appendix E,

we find elliptic forms for the orbits of AD fields. To obtain thecondition of closed orbits of the AD

fields, we prove Bertrand’s theorem in Appendix F. This chapter is based on work published in [51],

where the reader should note that we use slightly different notations from the ones introduced in chapters

2-4.

5.2 The Affleck-Dine dynamics

In this section we investigate an equation for the orbit of anAD condensate, which coincides with the

well-known orbit equation in the centre force problem in classical dynamics,i.e. planetary motions so

that we sometimes call the AD condensate, “AD planet”. For the bound orbits, the effective potential

should satisfy the condition where the curvature at the minimum of the effective potential should be

positive. In the presence of the Hubble expansion, the effective potential depends on time; thus, the

full solution of the orbit equations can be obtained numerically except for the case that the AD field is
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trapped by a quadratic potential when it can be solved analytically. In appendix E, we obtain the exact

orbit in this exceptional case when the Hubble expansion is assumed to be small and adiabatic. The

orbit of the AD planet, or more precisely an eccentricity of the elliptic motion in the complex field-

space, is determined by the initial charge and energy density. In order to obtain analytic expressions of

the orbit in more general potential cases in which we are moreinterested, we restrict ourself to work in

Minkowski spacetime and on the orbit which should be nearly circular. In this case, we also obtain the

perturbed orbit equation and necessary conditions for closed orbits where the orbits come back to their

original positions after some rotations around the minimumof the effective potential. By approximating

phenomenologically motivated models that appear in the MSSM and using the results in appendix E, we

present, in this section, analytic motions of the nearly circular orbits and the pressure of the AD planets.

Further, we check these analytic results with full numerical solutions.

Let us consider a motion of AD fields in an expanding universe with scale factora(t) and Hubble

parameterH = ȧ/a, where an over-dot denotes the time derivative. We investigate the AD field after

they start to rotate around the origin of the effective potentials and the value of the U(1) chargeρQ

is fixed due to negligible contributions from A-terms. By decomposing the complex (AD) fieldφ as

φ(t) = σ(t)eiθ(t), whereσ andθ are real scalar fields, the equations of motion forσ(t) andθ(t) (see

Eqs. (D.8, D.9) in appendix D) are

σ̈ + 3Hσ̇ +
dV+

dσ
= 0, (5.1)

θ̈ + 3Hθ̇ +
2

σ
σ̇θ̇ = 0 ⇔ dρQ

dt
= 0, (5.2)

where the conserved comoving charge density is defined byρQ ≡ a3σ2θ̇, and the effective potentials

areV± = V (σ)± ρ2
Q

2a6σ2 . Note that we will useV− shortly. From Eq. (D.10), the energy densityρE and

pressurep are given by

ρE =
1

2
σ̇2 + V+, p =

1

2
σ̇2 − V−. (5.3)

With various values of the charge densityρQ, Fig. 5.1 shows typical effective potentialsV+ in Minkowski

spacetime where we seta = H = 1. The potentials shown in Fig. 5.1 will be used later.

Given an initial charge and energy density (or equivalentlyinitial momenta and position), the AD field

oscillates around the valueσcr, which is defined by

dV+

dσ

∣∣∣∣
σcr

= 0, (5.4)

where the orbit becomes circular when it starts from there,i.e. σ(0) = σcr, σ̇(0) = 0. This orbit is

bounded when the curvature is positive

W 2 ≡ d2V+

dσ2

∣∣∣∣
σcr

> 0. (5.5)

For example, given a power-law potential such thatV = λ1σ
l whereλ1 is a dimensionful coupling

constant andl is the real power of the homogeneous fieldσ, the condition given by Eq. (5.5) implies
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FIG. 5.1: We show the effective potentials,V+ ≡ V (σ) +
ρ2

Q

2σ2 , againstσ in two types of potentials which we call
the gravity mediated model (GRV-M Model) on the left and the gauge mediated model (GAU-M Model) on the
right. The potential in the GRV-M Model has the following form,V (σ) = 1

2
σ2

`

1 − |K| ln σ2
´

+ b2
∗σ

6, where, we

set|K| = 0.1 andb2
∗ = |K|

4e
∼ 9.20 × 10−3. The potential in the GAU-M Model isV (σ) = ln

`

1 + σ2
´

+ b2σ6,
where we setb2 ∼ 10−30. We choose the following values ofρQ: red-solid line forρQ ∼ 2.36 × 10−5 and
green-dashed line forρQ = 1/e ∼ 3.68 × 10−1 in the GRV-M Model and red-solid line forρQ ∼ 1.40 × 101 and
green-dashed line forρQ ∼ 1.41 × 102 in the GAU-M Model.

that bound orbits exist forl < −2 and0 < l if λ1 > 0 and for−2 < l < 0 if λ1 < 0, where we used

Eq. (5.4). Another example is the case that a scalar potential is logarithmic,i.e.V = λ2 lnσ where the

coupling constantλ2 is positive. In this case, Eq. (5.5) is automatically satisfied. We investigate these

two cases in more detail in appendix E.

Let us rescale the fieldσ(t) asσ(t) =
(

a0

a(t)

)3/2

σ̃(t) wherea0 is the value ofa(t) at an initial time. It

follows that the equations of motion in Eqs. (5.1, 5.2) are

¨̃σ −
(

3

4
H2 +

3

2

ä

a

)
σ̃ −

ρ̃2
Q

σ̃3
+

(
a

a0

)3
dV (σ)

dσ̃
= 0,

dρ̃Q

dt
= 0, (5.6)

where we defined̃ρQ ≡ σ̃2θ̇ = a−3
0 ρQ, and the terms involvingH2 andä/a are negligible under the

assumption of an adiabatic Hubble expansion,i.e.H2 ≪ 1, ä≪ a.

By introducing a new variable,̃u(t) ≡ 1/σ̃(t), and using the second expression in Eq. (5.6), the first

expression in Eq. (5.6) becomes the well-known orbit equation in the centre force problem such that

d2ũ

dθ2
+ ũ = − 1

ρ̃2
Q

(
a

a0

)3
dV

dũ
≡ J(ũ, t). (5.7)

Notice thatJ(ũ, t) depends on time caused by the Hubble expansion, whereas the time-dependence in

J vanishes when the potentialV is given by a quadratic mass term,1
2M

2σ2, whereM is a mass of the

AD field, φ. We also discuss this case in appendix E.

5.2.1 Model A and Model B for MSSM flat potentials

Let us introduce two models that appear in the MSSM in which SUSY is broken due to either gravity or

gauge interactions, and approximate their models in order to obtain the orbit expressions in Minkowski

spacetime. The former case in the MSSM, the so-called gravity-mediated (GRV-M) model, has a scalar
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potential

V =
1

2
m2σ2

(
1 +K ln

σ2

M2
∗

)
+

λ2

mn−4
pl

σn, (5.8)

wherem is of order of the SUSY breaking scale, which could be the gravitino mass scalem3/2 evaluated

at the renormalisation scaleM∗ [135]. Also,λ is a coupling constant for the nonrenormalisable term,

which is suppressed by a high energy scale,e.g.the Planck scalempl ∼ 1018 GeV. Here,K is a factor

from the gaugino-loop correction, whose value is typicallyK ≃ −[0.01 − 0.1] when the flat direction

does not have a large top quark component [111, 154]; thus, weconcentrate on the case ofK < 0 from

now on. The powern of the nonrenormalisable term depends on the flat directions. As examples of the

directions involving squarks, theucdcdc direction hasn = 10, whilst theucucdcee direction isn = 6.

For |K| ≪ O(1), the first two terms in Eq. (5.8) can be approximated bym2M2|K|
∗

2 σ2−2|K|, we then

find that

V (σ) ≃ M2

2
σl +

λ2

mn−4
pl

σn for n > l (5.9)

which we call ’Model A’, where we setM2 ≡ m2M
2|K|
∗ andM has a mass-dimension,4−l

2 ≃ 1, since

l ≡ 2 − 2|K| for |K| ≪ O(1). For small values ofσ, we confirm that the powerl is not approximately

2 − 2|K|, so we will find a value ofl numerically in that case later.

In another scenario in which SUSY is broken by gauge interactions, the so-called gauge-mediated

(GAU-M) model, the scalar potential has the curvature with the electroweak mass at a low energy scale,

whilst it grows logarithmically at the high energy scale (which means that the potential is nearly flat

similar to the case ofl = 0 in Eq. (5.9)). The scalar potential in this scenario is

V ≃ m4
φ ln

(
1 +

(
σ

Ms

)2
)

+
λ2

mn−4
pl

σn, (5.10)

whereMs is the messenger scale (∼ 104 GeV) above which the potential grows logarithmically andmφ

is the same scale asMs. We, thus, setMs = mφ for later convenience. Then, the scalar potential at

high energy scales is approximately given by [146]

V ≃ m4
φ ln

(
σ

mφ

)2

+
λ2

mn−4
pl

σn. (5.11)

In what follows we assume the orbit of the AD condensate is determined by the high energy scale where

σcr ≫ mφ, calling this case, Eq. (5.11), ’Model B’.

Using the results in Appendix E, we obtain the following quantities,W, Φ and〈w〉 by assuming that

the dominant contribution in Model A and B is, respectively,either a power-law or logarithmic term,

each of which corresponds to the first term in Eqs. (5.9, 5.11), respectively. Here, we have definedΦ as

a phase difference when the radial fieldσ goes from the minimum value through the maximum one and

back to the same minimum point, see Eq. (E.30); in addition,〈w〉 is given by a value of the equation of

state averaged over a rotation of the orbit, see Eq. (E.21). Note that we have defined an averaged value

for a quasi-periodic quantityX over an one rotation in the orbit, namely〈X〉 ≡ 1
τ

∫ τ

0
dtX(t). The
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sub-dominant terms (nonrenormalisable terms) perturb theorbits via infinitesimally small quantitiesǫA

and ǫB, where the subscripts correspond to the names of models introduced above. Thus, the main

contributions are either Eqs. (E.31, E.32) or Eqs. (E.34, E.35).

5.2.1.1 Model A –V (σ) = M2

2 σl + λ2

mn−4
pl

σn

By recalling Eq. (5.5), we obtain the following relation forn > l in Model A in Minkowski spacetime:

W 2 =
l(l+ 2)M2σl−2

cr

2
(1 + ǫA) , (5.12)

where we have defined a positive parameter,ǫA ≡ n(n+2)
l(l+2)

2λ2

M2mn−4
pl

σn−l
cr ≪ 1, which is assumed to be

infinitesimally small. We also obtainβ2 ≃ (l+ 2)
(
1 + n−l

n+2ǫA

)
> 0, whereβ is defined in Eq. (E.24).

Substitutingβ into Eqs. (E.30, E.21), we obtainΦ and〈w〉:

Φ ≃ π√
l + 2

(
1 +

l − n

2(n+ 2)
ǫA

)
, (5.13)

〈w〉 =
(l − 2)

(
1 + ǫA

l(l+2)(n−2)
n(n+2)(l−2)

)

(l + 2)
(
1 + ǫA

l
n

) ≃ l − 2

l + 2

(
1 + ǫA

4l(n− l)

n(n+ 2)(l − 2)

)
. (5.14)

From Eq. (5.13), the orbits forl = 2 − 2|K| ≃ 2 are nearly closed, but it is perturbed by the nonrenor-

malisable term involved withǫA. The result is that the periapsis appears to precess where the precession

rate can be obtained from Eq. (5.12). The denominator of the term involvingǫA in the second expres-

sion of Eq. (5.14) hasl − 2 ≃ −2|K| ≪ O(1), which implies that it would be possible to have the

non-negligible contribution from the term, even thoughǫA ≪ O(1). From now on, we restrict ourself

to regions where this is not the case; therefore, the dominant contributions are the leading orders in

Eqs. (5.12, 5.13) and Eq. (5.14), which correspond to Eqs. (E.31, E.32) and Eq. (E.33). From Eq. (5.14)

with ǫA ≃ 0, our results recover the result published in [111],i.e. 〈w〉 ≃ − |K|
2 .

5.2.1.2 Model B –V (σ) = m4
φ ln (σ/mφ)

2
+ λ2

mn−4
pl

σn

By introducing another infinitesimally small positive parameter,ǫB ≡ n(n+2)λ2σn
cr

4m4
φmn−4

pl

≪ 1, we obtain the

following relations in Model B in Minkowski spacetime:

W 2 ≃
4m4

φ

σ2
cr

(1 + ǫB) , Φ ≃ π√
2

(
1 − n

2(n+ 2)
ǫB

)
∼ 2π

3
, (5.15)

〈w〉 =
1 − 2 ln

(
σcr

mφ

)
+ 2(n−2)

n(n+2)ǫB

1 + 2 ln
(

σcr

mφ

)
+ 2

nǫB
& −1. (5.16)

Since we are working in the high-energy regime,σcr ≫ mφ, the pressure of the AD condensate is likely

to be negative, see Eq. (5.16). From the second expression ofEq. (5.15) forΦ, the orbits are not closed

and it should look like the trefoil, see Eq. (E.34).

In an expanding universe, the above orbits for Model A and B suffer from the Hubble damping so that
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the orbits are naively expected to be precessing spiral or shrinking trefoil in the field-space, respectively.

5.2.2 Numerical results

In this subsection we present numerical results to check theanalytic results, which we found in the

previous subsection. To do so, we use the full potentials, Eqs. (5.8, 5.10), instead of Eqs. (5.9, 5.11),

and then solve Eq. (5.1) numerically in Minkowski spacetimeas well as in an expanding universe. We

adopt the 4th order Runge-Kutta method with various sets of initial conditions, such asρQ andε2. Since

our analytical work holds as long asε2 ≪ O(1), we are concerned with the two cases: a nearly circular

orbit with ε2 = 0.1 and a more elliptic orbit withε2 = 0.3. First of all, we parametrise Eqs. (5.8, 5.10)

by introducing dimensionless variables:σ̊ = σ/M∗, b2∗ =
λ2Mn−2

∗

mn−4
pl m2

= |K|e−1/4, t̊ = mt, x̊ = mx

in the GRV-M Model and̊σ = σ/Ms, b
2 =

λ2Mn−4
s

mn−4
pl

, t̊ = Mst, x̊ = Msx in the GAU-M Model.

Since we know thatm ∼ 102 GeV, M∗ ∼ 1010 GeV, mpl ∼ 1018 GeV; hence, we can setb2∗ ∼
9.20 × 10−3 ∼ O(10−2) in the GRV-M Model, where we choose|K| = 0.1. Notice that these choices

are the same as the ones used in chapter 4 [50]. On the other hand, we know thatmφ ∼ Ms ∼ 104

GeV; hence, we can setb2 ∼ 10−30 in the GAU-M Model, where we chooseλ ∼ 10−2 as used in the

GRV-M case. Notice that we can obtain the rescaled charge density ρ̊Q and energy densitẙρE , such that

ρQ = mM2
∗ ρ̊Q, ρE = m2M2

∗ ρ̊E in the GRV-M Model andρQ = M3
s ρ̊Q, ρE = M4

s ρ̊E in the GAU-M

Model.

Therefore, our rescaled potentials in GRV-M and GAU-M models for a flat-direction withn = 6 are,

respectively,

V =
1

2
σ2 (1 − 2|K| lnσ) + b2∗σ

6, (5.17)

V = ln
(
1 + σ2

)
+ b2σ6, (5.18)

where we omit over-rings for simplicity. The variables thatappear within the rest of this subsection are

dimensionless. We can also obtain the ratio defined by an energy density relative to (a mass multiplied

by a charge density), where the mass corresponds tom or Ms in either GRV-M or GAU-M Model,

respectively.

In order to obtain appropriate initial values ofσ(0), σ̇(0) andθ̇(0) satisfying the conditionsǫA, ǫB ≪
O(1) and not giving too small charge densities, we shall show thatwe need to choose only the initial

values ofθ̇(0) in both GRV-M and GAU-M models. First, by ignoring the nonrenormalisable term

in Eq. (5.17) for the GRV-M Model, we obtainσcr = exp
(
− 1

2|K|

(
θ̇2(0) + |K| − 1

))
:= σ(0) from

Eq. (5.4), where we setσcr := σ(0), which implies that we are setting the initial phase to be3π/2. Since

σ̇ has the maximum value atσ = σcr, we can seṫσ(0) := ε2σ(0)

√
θ̇2(0) − |K|/2 from Eq. (E.14),

which implies thatǫA ∼ 12b2∗σ
4(0) from the definition. We notice thatσ(0) ≫ O(1) for θ̇(0) ≪ O(1);

hence, it breaks the condition,ǫA ≪ O(1). We can also see thatσ(0) ≪ O(1) for θ̇(0) ≫ O(1),

so the charge density is suppressed exponentially. Therefore, we are concerned with the following

two cases:θ̇(0) =
√

2 and1.0, which give, respectively,ǫA ∼ 1.20 × 10−11, ρQ ∼ 2.36 × 10−5
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andǫA ∼ 1.58 × 10−2, ρQ ∼ 3.68 × 10−1. Similarly, in the GAU-M Model, we choose thatσcr =
√

2
θ̇2(0)

− 1 := σ(0), σ̇(0) := ε2
√

1 − 3
4 θ̇

2(0) andǫB = 12b2σ6(0) from the definition ofǫB. Here, we

also set the initial phase is3π/2 due toσcr := σ(0). With this fact and the approximation,σcr ≫ O(1),

we need to havėθ(0) ≪ O(1). In addition, we should haveσ(0) < O(105) due to the condition,

ǫB < O(1). Therefore, we choosėθ(0) =
√

2 × 10−1 and
√

2 × 10−2 which gives, respectively,

ǫB ∼ 1.16 × 10−23, ρQ ∼ 1.40 × 101 andǫB ∼ 1.20 × 10−17, ρQ ∼ 1.41 × 102.

Using the above initial conditions, we initiate the numerical simulations with 8 different sets of the

initial values in the GRV-M Model and the GAU-M Model summarised in Table 5.1, where we call each

of the parameter-sets ’SET-1, SET-2,..., and SET-8’. In Fig. 5.1, we also show, with the various charges

which we introduced above, the effective potentialsV+ for the GRV-M potential given by Eq. (5.17) in

the left panel and for the GAU-M potential given by Eq. (5.18)in the right panel. After had carried out

many trial numerical simulations, we found that the best time-stepdt is dt = 1.0× 10−4 in the GRV-M

case anddt = 1.0 × 10−3 in the GAU-M case.

SET Model θ̇(0) σ(0) ρQ ǫA or ǫB ε2 ρE/ρQ

1 0.1 1.46

2

√
2 ∼ 4.09 × 10−3 ∼ 2.36 × 10−5 ∼ 1.20 × 10−11

0.3 1.51

3
GRV-M

0.1 1.06

4
1.0 ∼ 6.07 × 10−1 ∼ 3.68 × 10−1 ∼ 1.58 × 10−2

0.3 1.09

5 0.1 4.00 × 10−1

6

√
2 × 10−1 ∼ 9.95 ∼ 1.40 × 101 ∼ 1.16 × 10−23

0.3 4.03 × 10−1

7
GAU-M

0.1 7.22 × 10−2

8

√
2 × 10−2 ∼ 1.00 × 102 ∼ 1.41 × 102 ∼ 1.20 × 10−17

0.3 7.25 × 10−2

TABLE 5.1: We show 8 different parameter sets in both the GRV-M and GAU-M cases, where we call each of
the parameter-sets ’SET-1, SET-2,..., and SET-8’. The initial parameters ofσ(0) andσ̇(0) can be obtained by the
values ofθ̇(0). We also setθ(0) = 3π

2
in all cases, and show the values ofǫA for the GRV-M Model and the

values ofǫB for the GAU-M Model. By substituting these values and choosing the values of the third eccentricity
ε2 = 0.1 and0.3, we obtain the dimensionless energy-to-(mass multiplied by charge) ratios,ρE/ρQ. Note we are
using the dimensionless quantities.

5.2.2.1 The orbit of an Affleck-Dine “planet” in Minkowski spacetime

First, we present numerical results in Minkowski spacetimein order to check our analytical results. We

then give the ansätze that are motivated by our analytic solutions, in an expanding universe in the next

sub-subsection.

The motion of σ2(t) In Fig. 5.2, we show the numerical solutions using the GRV-M potential with

Eq. (5.17) (left) and using the GAU-M potential with Eq. (5.18) (right), and compare them with the cor-
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responding analytic solutions which are given by Eq. (E.16). Using the initial values whose parameter

sets can be seen in Table 5.1, we plot the numeric and analyticsolutions in Fig. 5.2. In the top-left

panel, the numerical plots (red-plus dots for SET-1 and blue-cross dots for SET-2) have the same am-

plitudes as the analytical ones (green-dashed line for SET-1 and purple-dotted-dashed line for SET-2),

we, however, can see the significant differences for the frequencies of each oscillation. We notice that

these discrepancies come from the artifact of our choice with l = 2−2|K| in Eq. (5.9), since the choice

is not appropriate forσ ≪ O(1), recallingσ(0) ∼ 4.09 × 10−3 in SET-1 and SET-2. Shortly, we will

obtain numerically this powerl, and show that the semi-analytic solutions we obtained match with the

numerical ones. With SET-3 and SET-4, we can see thatσ(0) is not so small as opposed to the previous

cases,i.e.σ(0) ∼ 6.07 × 10−1; thus, in the left-bottom panel of Fig. 5.2 we can see a nice agreement

between the numerical plots (red-plus dots for SET-3 and blue-cross dots for SET-4) and the analytic

plots (skyblue-dotted-dashed line for SET-3 and black-dotted line for SET-4).

Similarly, we show the numerical and analytic plots for the GAU-M potential in the right-panels of

Fig. 5.2 using the parameter-sets: for SET-5 and SET-6 in theright-top panel and for SET-7 and SET-

8 in the right-bottom panel. By changing the values of the third eccentricityε2 (see TABLE 5.1),

the numerical plots deviate slightly from our analytic lines in the right-top and right-bottom panels of

Fig. 5.2 as we can expect; in particular, we can see that our analytic values of both the frequencies and

amplitudes ofσ2(t) are larger than the numerical ones, and this difference can be significantly reduced

when the orbits of the AD planets is nearly circular withε2 = 0.1.

As we have seen in the left-top panel of Fig. 5.2, our analyticvalue,l = 1.8, in Eq. (5.9) are not good

enough to reproduce the numerical solutions sinceσ(t) ≪ O(1). Therefore, we set a trial function,

f(σ) = 1
2σ

α + b2∗σ
6, where a numerical valueα is found by using the ’fit’ command in the numerical

software called ’gnuplot’. We find thatα = 1.86002 := l is the best value ofα, where we fitted this trial

functionf(σ) onto the numerical full potential in Eq. (5.17) for the rangeof σ ∈ [1.0 × 10−2 − 1.0 ×
10−3], recallingσ(0) ∼ 4.09×10−3 in SET-1 and SET-2. Using this value ofα as the value ofl instead

of l = 1.8, we plot the semi-analytic evolution forσ2(t) in Fig. 5.3 (green-dashed line for SET-1 and

purple-dotted-dashed line for SET-2) against the corresponding numerical plots (red-plus dots for SET-1

and blue-cross dots for SET-2). Now, our semi-analytic solutions match with the numerical solutions.

The average values ofw(t) Using Eqs. (5.14, 5.16), we show both numerical values〈wnum〉 and

(semi-)analytical values〈wana〉 of the averaged equation of state in Table 5.2. For all cases,the AD

condensate has a negative pressure and one can say that the numerical values are of the same order as

analytic values.

The values ofΦ In TABLE 5.3, we show the numerical and (semi-)analytic values ofΦ in both the

GRV-M Model and GAU-M Model, which are analytically obtained in Sec. 5.2.1. Our analytical values

agree well with the numerical values. These values suggest that the orbits in the GRV-M Model and
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FIG. 5.2: Using the parameter sets summarised in Table 5.1, we plot the numerical evolution forσ2(t) in both
the GRV-M Model (left) and the GAU-M Model (right). In all thepanels except the case for the left-top panel,
the numerical plots (red-plus dots and blue-cross dots) agree well with the corresponding analytic lines, which are
obtained from Sec. 5.2.1. The disagreements between the numerical and analytic plots in the left-top panel come
from the artifact that the analytical estimated value,l = 1.8, in Eq. (5.9).

FIG. 5.3: Substituting the numerical value,l = 1.86002, into Eq. (5.9), we plot the semi-analytic evolution for
σ2(t). The semi-analytic solutions agree with the numerical solutions.

GAU-M Model are nearly either elliptic or trefoil, respectively.
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〈w〉 the GRV-M Model v.s. Model A

SET-1 SET-2 SET-3 SET-4
〈wnum〉 −2.42 × 10−2 −4.47× 10−2 −4.45 × 10−2

〈wana〉 −3.63 × 10−2 −5.00 × 10−2

〈w〉 the GAU-M Model v.s. Model B

SET-5 SET-6 SET-7 SET-8
〈wnum〉 −6.43 × 10−1 −6.45× 10−1 −8.00 × 10−1

〈wana〉 −6.43 × 10−1 −8.04 × 10−1

TABLE 5.2: Using Eqs. (5.14, 5.16), we show the both numerical values〈wnum〉 and analytical values〈wana〉
for the averaged equations of state. The values of〈wana〉 in SET-1 and SET-2 are semi-analytically obtained by
substitutingl = 1.86002 into Eq. (5.9). For all cases, the AD condensate has a negative pressure, and these analytic
estimates are reasonable against the numerical values.

Φ the GRV-M Model v.s. Model A the GAU-M Model v.s. Model B

SET-1 SET-2 SET-3 SET-4 SET-5 SET-6 SET-7 SET-8
Φnum 1.591 1.590 1.605 1.604 2.210 2.206 2.221 2.217
Φana 1.612 (analytic) or 1.599 (semi-analytic) 1.605 2.221 2.221

TABLE 5.3: We show the numerical and (semi-)analytic values ofΦ in both the GRV-M Model and GAU-M
Model, which are analytically obtained in Section 5.2.1.

5.2.2.2 The orbit of an Affleck-Dine “planet” in an expandinguniverse

We carry out our numerical simulation in an expanding universe when the inflaton field, which is trapped

by a quadratic potential, starts to coherently oscillate around the vacuum during the reheating era. Then

the evolution of the Hubble expansion,H(t), and scale factor,a(t), follows as ordinary nonrelativistic

(zero-pressure) matter, see Eq. (E.33). Forl = 2, we findH = 2
3(t+t0)

anda(t) = a0

(
t+t0
t0

)2/3

, where

a0 is given by the value ofa(t) at t = 0 and we seta0 = 0.1. We also set the initial time ast0 = 4×102

for the GRV-M Model andt0 = 4 × 104 for the GAU-M Model. Notice that with this choice oft0 our

simulation starts from the same physical time because we rescaled the time by eitherm ∼ 102 GeV or

Ms ∼ 104 GeV, respectively. We again solve the equation of motion, Eq. (5.1), numerically using the

4th order Runge-Kutta method and compare them with following ansätze we will introduce. In order to

see the significant effects from Hubble expansion, we use SET-3 in the GRV-M Model and SET-7 in the

GAU-M Model as the initial parameters.

In an expanding spacetime, one can guess that our analyticalresults in Minkowski spacetime should be

changed. In particular, the amplitude ofσ(t) may decrease due to the Hubble damping as we saw in the

quadratic case in appendix E.1, and similarly the frequencyW in Eq. (5.5) should be changed. Hence,

the orbit of the AD planet can be a precessing spiral or shrinking trefoil in either GRV-M or GAU-M

Model as one can see [184]. Let us give an ansatz forσ2(t),

σ2(t) =

(
t0

t+ t0

)α1

σ̃2

(
1 + ε2 cos

(
W̃ ·

(
t0

t+ t0

)α2

· t+
3π

2

))
. (5.19)

Here, we use the Minkowskian values ofσ̃ andW̃ , and will obtain the possible values ofα1, 2 in both

models. From Eqs. (5.4, 5.5) by ignoring the nonrenormalisable term and recallinga(t) = a0

(
t+t0
t0

)2/3

,

we can find the following proportionality relations:σcr(t) ∝ (t + t0)
−4/(l+2) ≃ (t + t0)

−2/(2−|K|)

83



andW (t) ∝ (t + t0)
− 2(l−2)

l+2 ≃ (t + t0)
2|K|

2−|K| in Model A, where we usedl = 2 − 2|K|. In Model B,

we obtainσcr ∝ (t + t0)
−2 andW (t) ∝ (t + t0)

2. Therefore, we setα1 = 4
2−|K| , α2 = − 2−|K|

2|K|

in Model A, andα1 = 4, α2 = −2 in Model B. We believe that our ansätze are valid as long as the

nonrenormalisable term does not play a role, and the frequency of the coherent rotation,O(W (t)), is

rapid compared to the Hubble expansion rate,O(H). The latter restriction implies that the rotation time

scale is much shorter than the time scale of the Hubble expansion, i.e.W−1(t) ≫ H−1 [185].

The motion of σ2(t) In Fig. 5.4, we plot the evolution ofσ2(t) with the numerical data (red-plus dots)

for the GRV-M Model (left) and for the GAU-M Model (right) andwith the analytic data (green-dotted

lines) using our ansätze Eq. (5.19). The readers should compare the Minkowskian cases of SET-3 (left

bottom panel) and SET-7 (right bottom panel) in Fig. 5.2 withthe corresponding expanding background

cases. For both potential cases, the amplitudes ofσ2(t) decrease in time as we expected, and our

analytic plots excellently agree with the corresponding numerical results. In the left panel of Fig. 5.4,

the difference between the analytic line and the numeric plots arises in the late time. We believe that

this comes from the artifact of the approximation onl = 2 − 2|K| in the GRV-M Model, Eq. (5.17),

since the values ofσ2(t) decrease to the region where the above approximation does not hold, i.e. for

σ ≪ O(1) as we saw in the left-top panel of Fig. 5.2.

FIG. 5.4: We plot the evolution ofσ2(t) with the numerical data (red-plus dots) for the GRV-M Model (left) and
for the GAU-M Model (right) and with the analytic data (green-dotted lines) by using our ansätze introduced in
Eq. (5.19).

The motion of the equation of state:w(t) = p(t)/ρE In Fig. 5.5, we plot the numerical values of

the equation of state, which is given byw(t) ≡ p(t)/ρE , wherep(t) andρE in Eq. (5.3) are the pressure

and energy density of the AD condensate. The averaged pressure over the rotations seems to be negative

in the GRV-M Model, see the left panel; whereas, the pressurein the GAU-M Model is always negative,

see the right panel. The frequencies of the rotation forw(t) in both cases are, respectively, similar as

the corresponding frequencies ofσ2(t), see Fig. 5.4; however, the phases are different from the phases

of σ2(t) approximately byπ.
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FIG. 5.5: Using the initial conditions with SET-3 (right-panel)and SET-7 (left-panel) in Table 5.1, we plot the
numerical values of the equation of state which are given byw(t) ≡ p(t)/ρE, wherep(t) andρE are the pressure
and energy density of the AD condensate.

In summary, we have analytically obtained the nearly circular orbits for both the GRV-M Model and

the GAU-M Model in Eqs. (5.17, 5.18) approximated by Model A and Model B in Eqs. (5.9, 5.11). We

then checked that the semi-analytic results in Eqs. (5.12, 5.13) and Eqs. (5.15, 5.16) and our ansätze

in Eq. (5.19) agree well with the corresponding numerical results obtained by solving Eqs. (5.1, E.12)

numerically. In the rest of this chapter, we investigate thelate evolution for the AD condensates once

the spatial perturbations generated by quantum fluctuations or thermal noise from the early oscillation

[151] become non-negligible due to the negative pressure presented in Table 5.2 and Fig. 5.5.

5.3 Q-ball formation and thermalisation in Minkowski spacetime

In this section we analyse the late evolution of the AD condensates in both the GRV-M and GAU-M

models, in which we find that the spatial perturbations are amplified exponentially due to the presence

of the negative pressure, and the presence of negative pressure supports the existence of nontopological

solitons, i.e.Q-balls. As a process of reheating the Universe, the dynamicsof theQ-ball formation

is a nonequilibrium, nonperturbative, and nonlinear process, and it includes three distinct stages:pre-

thermalisation(linear perturbation),driven turbulence(bubble collisions), andthermalisationtowards

thermal equilibrium. As opposed to the reheating process, we find that the driven turbulence stage

lasts longer and the subsequent thermalisation process is different, which is caused by the presence of

nontopological soliton solutions. During the turbulent stages, we find scaling laws for the variances of

fields and for the spectra of the charge density. In addition,we adopt numerical lattice simulations to

solve classical equations of motion in Minkowski spacetime, where our numerical code is developed

from LATfield [186], and we present the detailed nonlinear and nonequilibrium dynamics (some videos

are available [1]).
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5.3.1 Linear evolution – Pre-thermalisation

The late evolution, after the AD condensate forms, depends on the properties of the models. In the

standard AD baryogenesis scenario [14], the condensate governed by the quadratic potential, Eq. (E.1),

decays into thermal plasma that may provide our present baryons/leptons in the Universe. By including

quantum and/or thermal corrections in the mass term as in Eqs. (5.8, 5.10), the subsequent evolution

may be different from the standard AD scenario since the AD condensate has a negative pressure. The

negative pressure, which causes the attractive force amongparticles in the condensate, amplifies the

linear spatial fluctuations exponentially. We see this exponential growth for the linear perturbations

in nearly circular orbit cases with the growth rateṠm, and obtain the most amplified wave-number

km, which give a rough estimate on the nonlinear timetNL and the radii of bubbles created just after

the system enters into a nonlinear regime. As long as the perturbations are much smaller than the

background field values, we call this initial linear perturbation stage, ’pre-thermalisation’.

5.3.1.1 Arbitrary and circular orbits

Let us consider the linear spatial instability for an AD condensate in Minkowski spacetime. First, we

perturb the AD fieldφ with the linear fluctuations,δσ andδθ. Equations of motion forδσ andδθ are

given by Eqs. (D.11, D.12),

δ̈σ −
(
∇2 + θ̇2 − V ′′

)
δσ − 2σθ̇δ̇θ = 0, (5.20)

δ̈θ +
2σ̇

σ
δ̇θ −∇2δθ +

2θ̇

σ2

(
σ ˙δσ − σ̇δσ

)
= 0. (5.21)

Let us rescaleδσ andδθ in the following form

δσ ∼ δσ0e
S(t)+ik·x, δθ ∼ δθ0e

S(t)+ik·x. (5.22)

Notice that both of the exponentsS(t) should be the same in each expression forδσ andδθ in terms of

a function of the wave numberk, because we are concerned only with linear perturbations. Substituting

Eq. (5.22) into Eqs. (5.20, 5.21), we obtain


 S̈ + Ṡ2 + k2 − θ̇2 + V ′′ −2θ̇Ṡ

2θ̇
(
Ṡ − σ̇

σ

)
Ṡ2 + 2σ̇Ṡ

σ + k2




 δσ

σδθ


 ≃ 0, (5.23)

whereV ′′ ≡ d2V
dσ2 and we ignore the terms̈S, assuming that the linear evolution is adiabatic,i.e. Ṡ2 ≫ S̈

(WKB approximation). Notice that this assumption is violated only at the beginning of this linear

evolution as we will see in the numerical subsection, Sec. 5.3.3. The nontrivial solution foṙS can be

obtained by taking the determinant of the matrix in Eq. (5.23), namely

F (Ṡ(k), k2) ≡ Ṡ4 +
2σ̇

σ
Ṡ3 +

(
2k2 + 3θ̇2 + V ′′

)
Ṡ2

+
2σ̇

σ

(
k2 − 3θ̇2 + V ′′

)
Ṡ + k2

(
k2 − θ̇2 + V ′′

)
= 0. (5.24)
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Notice that the terms involvinġσ vanish if the orbit of the AD field is exactly circular. By looking for

the most amplified modek2
m, which is defined by∂F

∂k2

∣∣
k2

m
= 0 from Eq. (5.24), it implies that

k2
m =

θ̇2 − V ′′

2
− Ṡ

(
Ṡ +

σ̇

σ

)
> 0, (5.25)

where the inequality comes from the reality condition forkm. By considering this mode in Eq. (5.25)

and by solvingF (Ṡ(k), k2
m) = 0 in Eq. (5.24), the solution of the quadratic equation forṠm ≡ Ṡ(k =

km) is

Ṡm =

σ̇
σ

(
5θ̇2 − V ′′

)
± 2θ̇

√(
θ̇2 − V ′′

)2

+ 2
(

σ̇
σ

)2 (
3θ̇2 − V ′′

)

2
(
4θ̇2 −

(
σ̇
σ

)2) , (5.26)

in which we are interested in the growing mode,i.e. Re(Ṡm) > 0. Substituting Eq. (5.26) into

Eq. (5.25), we may obtain the most amplified mode. Although itis rather hard to analytically solve

Eq. (5.24), we know that only one instability band exists forexactly circular orbits wherėσ = 0;

0 < k2 < θ̇2 − V ′′(σ), (5.27)

whereθ̇ andσ = σcr are time-independent due to the circular orbits.

In addition, we can estimate a possible nonlinear timetNL when the spatial averaged variance, Var(σ),

becomes comparable to the corresponding homogeneous modeσ. Here, we have defined Var(σ) ≡
(σ̂(x, t) − σ)

2, and a hat and a bar denote an original field and a spatial average of the field, respectively.

Notice that the nonlinear time in [147, 187] is defined by the time when the linear fluctuationδσ for the

most amplified mode becomes comparable to the homogeneous-mode; however, our definition is better

as we will see in the numerical subsection, Sec. 5.3.3. The nonlinear time with our definition can be

given by

Var(σ) ∼ δσ2
0 exp

(
2N
〈
Ṡ
〉
τ

)
∼ δσ2

0 exp

(∫ tNL

t∗

2
〈
Ṡm

〉)
∼ σ2

0 , (5.28)

⇔ tNL ∼ t∗ +
1〈
Ṡm

〉 ln

(
σ0

δσ0

)
. (5.29)

Here, we have approximated that
〈
Ṡ
〉
∼
〈
Ṡm

〉
and that the orbits overN rotations with the periodτ ,

Eq. (E.17), can be expressed by the integral form as shown in Eq. (5.28). As we assumed, the spatially

averaged variance of this field is not fully developed over all modes exceptk = km until t ∼ t∗, where

t∗ is a typical time scale when the variance starts to grow with the growth rate
〈
Ṡm

〉
.

Our main interest in this pre-thermalisation stage is the evolution of the number of particles in terms

of modes, so that we considerρQ as the particle number here. For a free field theory, both of the

positive and negative charged particle occupation numbersdevelop equally. The present case, however,

gives different consequences due to the presences of nonlinear interactions and the initial inequality of

a charge density (baryon asymmetry). Without loss of generality, we can focus on the case where the
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positive charge is initially present. Since the charge density is given byρQ = σ̂2 ˙̂
θ, we can approximately

obtain the evolution in the linear regime using Eqs. (5.1, 5.2),

ρ̇Q ≃ σ2(t)∇2δθ. (5.30)

Hence, the charge density evolves due to the linear fluctuation of the phase field. Letn±
k (t) be the

amplitude of Fourier-transformed positive and negative charge density,n±(x, t), which are defined

through the following decomposition,ρQ = n+(x, t) − n−(x, t). Notice that the Fourier transformed

functions,n±
k , are related to, but are potentially different from the corresponding quantum mechanical

expressions,̃n+
k ≡ a†kak, ñ

−
k ≡ b†kbk andQ =

∫
d3xρQ =

∫
d3k

(2π)3/2

(
ñ+

k − ñ−
k

)
. Here, ñ±

k are

occupation numbers for positive and negative charged particles in a free field theory, andak, a
†
k, bk and

b†k are the annihilation/creation operators for both of the particles, respectively. Since we are interested

in the growing mode for the positive charge densityn+
k (t) in Eq. (5.30) which is initially zero except

the zero-momentum mode, it implies that using Eq. (5.22)

n+
k (t) ≃ k2|δθ0|

∫ t

t0

dt̃σ2(t̃)e〈Ṡ(k)〉t̃,

∼ k2|δθ0|σ2
cr

e〈Ṡ〉(t−t0)

〈
Ṡ
〉 ∝ e〈Ṡ〉(t−t0), (5.31)

wheret0 is found numerically and we assumedσ2(t) ∼ σ2
cr, going from the first line to the second

one. Therefore, the evolution of the positive charged particle number for a modek is proportional to

e〈Ṡ(k)〉(t−t0).

Summarising our results, Eqs. (5.25, 5.26) are generalisations of the known results [116, 173, 188], in

which the orbit of the AD field was assumed to be exactly circular. We also obtained the nonlinear time

tNL in Eq. (5.29) and the exponential growth of the particle number in Eq. (5.31).

5.3.1.2 Nearly circular orbits in Model A and B

Using the results obtained in the previous subsection, we can compute the most amplified mode
〈
k2

m

〉

and the growing mode
〈
Ṡm

〉
averaged over one rotation of the nearly circular orbits forthe models

introduced in Section 5.2.1,i.e.Model A and Model B. We shall confirm that these values are the same

as the cases when the orbits are exactly circular, which implies that the instability band, Eq. (5.27),

could exist even for the present nearly circular orbit cases.

Model A: Substituting the expressions,σ̇/σ, θ̇2 andV ′′ cf. Eqs. (E.16, E.18) and Eq. (5.12)), into

Eq. (5.26), we obtain the averaged growing factor and the most amplified mode for Model A where
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M2 > 0:

〈
Ṡm

〉
≃ ± (2 − l)M

4

√
lσl−2

cr

2

(
1 +

(l + 2)(2n− l − 2)

2(n+ 2)(l − 2)
ǫA

)
, (5.32)

〈
k2

m

〉
≃ M2l(2 − l)(l + 6)σl−2

cr

32

(
1 +

(l + 2)(4n− 12 − l2 + 2nl)

(n+ 2)(l − 2)(l + 6)
ǫA

)
, (5.33)

where we substituted Eq. (5.32) into Eq. (5.25) to obtain
〈
k2

m

〉
and these results are consistent with the

case for the exactly circular orbit. In order to satisfy
〈
k2

m

〉
> 0, we should havel < −6, 0 < l < 2,

and Eq. (5.32) implies that the condensate is unstable against spatial fluctuations when the pressure is

negative with0 < l < 2, see Eq. (E.32).

We can recover the results [116] that
〈
Ṡm

〉
≃ m|K|

2

(
1 + |K|

2

)
and

〈
k2

m

〉
≃ m2|K|

(
1 − |K|

4

)
by

settingl = 2 − 2|K| in Eqs. (5.32, 5.33) and ignoring the nonrenormalisable term as done in [116],

i.e.
〈
Ṡm

〉
≃ |K|M

2

(
1 − |K|

2

)
σ
−|K|
cr and

〈
k2

m

〉
≃ |K|M2

(
1 − 5|K|

4

)
σ
−2|K|
cr . These are of the same

order as their results, recalling thatσ−2|K|
cr ∼ O(1) due to|K| ≪ O(1).

Model B: Similarly, we can also obtain the averaged growing factor and the most amplified mode for

Model B from Eq. (5.15)

〈
Ṡm

〉
≃

m2
φ√

2σcr

(
1 − n− 1

n+ 2
ǫB

)
,
〈
k2

m

〉
≃

3m4
φ

2σ2
cr

(
1 − 2(n− 3)

3(n+ 2)
ǫB

)
(5.34)

which to leading order reproduces the results [173], where the AD orbit was assumed to be exactly

circular and the nonrenormalisable term was ignored.

Before we finish this subsection, let us remark upon the classical and absolute stability of AD conden-

sates. Lee found [117] the dispersion relation for the wavesof linear fluctuations from Eq. (5.24) when

the orbits of the AD field are bounded. In the longwave-lengthlimit, there exists one massive and one

massless mode. The massless mode can be interpreted as the sound wave whose sound speed should be

real for the classical stability reason, and the squared value of the sound speed is related to the value of

〈w〉 in Eq. (E.21). Therefore, this stability condition for the sound waves corresponds to the sign of the

pressure in the AD condensate. In other words, the AD condensate has a negative pressure if the sound

speed is imaginary; equivalently, it is classically unstable against spatial fluctuations. The zero-pressure

AD condensate whose energy density is minimised with respect to any degrees of freedom is equivalent

to theQ-matter phase as Coleman discussed in [21], where the absolutely stableQ-matter can be excited

by classically stable sound waves.

5.3.2 Non-linear evolution and nonequilibrium dynamics

5.3.2.1 Driven (Stationary) and free turbulence

Even when the perturbations are fully developed to support the nonlinear solutions, the system is still far

from thermal equilibrium. Indeed, the system enters into more stochastic stages, ’turbulence regimes’,
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where the strength of the turbulent behaviour depends on the“Reynolds” number [189]. As a theory of

reheating of the Universe, a general nonequilibrium systemgoes through two different turbulence stages,

going from driven turbulence to free turbulence. A major energy transfer from the zero mode takes place

during driven turbulence. Garcia-Bellidoet. al. [131] observed that bubbles form and collide during

this stage in tachyonic preheating, and they proposed that the bubble collisions can be an active source

of gravitational waves [190]. In the usual reheating scenarios, this stage terminates when the energy left

out in the zero-mode becomes smaller than the energy stored in other modes (created particles). Since

the energy exchange between zero-mode and other modes becomes negligible, the particle distribution

is self-similar in time (free turbulence) and evolves towards thermal equilibrium. In the free turbulence

stage, the quantum effects change the late time evolution significantly, and the created particles are

distributed following Bose-Einstein statistics rather than in a classical manner. As long as an active

and stable energy source exists in momentum space, we expectthat the driven turbulence stage lasts

for a long time. In the case ofQ-ball formation, we expect that this active energy source corresponds

to the excited states ofQ-balls; hence, the driven turbulence stage may last longer compared to the

linear perturbation regime as opposed to the usual reheating Universe scenarios. Note that during this

thermalisation stage the transition from the classical to quantum regime becomes important [177]; in

the rest of this chapter we concentrate on the case where the system is governed by classical evolution

all the time.

In turbulent stages, the scaling law can be found [177]:

Var(σ) ∝ tp, (5.35)

where the powerp depends on the parameters of the models,e.g. the relativistic values ofp arep =

1
2m−1 in the driven turbulence regime andp = − 2

2m−1 in the free turbulence regime. Here,m is

the number with which particles mainly interact. For the free turbulence regime, the particle number

distribution follows a scaling law from the timetfree when the free turbulence turns on, namely

nk(t) = t−
4

2m−1nk∗(t = tfree), (5.36)

wherek∗ ≡ kt−
1

2m−1 .

5.3.2.2 Thermal equilibrium state in the presence of nontopological solitons

In this sub-subsection, we show that the condition of the negative pressure is the same as the existence

condition ofQ-balls, Eq. (2.24). This does not always mean that the spatially unstable condensate

evolves towardsQ-balls; with given initial conditions, the condensate may evolve into other thermo-

dynamically favoured states in which the free energy is minimised.

The ansatz of non-thermalQ-balls claims that˙̂θ, which corresponds to the “chemical potential”ω, is

constant, and that the radial fieldσ̂ should be time-independent and depend on the radiusr of theQ-ball,

i.e. φ̂ = σ̂(r)eiωt in Eq. (2.12). Hence, the existence condition ofQ-balls at zero-temperature is

min

(
2V

σ̂2

)
≤ ω2 <

d2V

dσ̂2

∣∣∣∣
σ̂=0

. (5.37)
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This condition implies that the potential should grow less quickly than a quadratic term; thus, it is equiv-

alent to the fact that the AD condensate has a negative pressure for l < 2 in Eq. (5.9), see Eq. (E.32).

Notice that this condition only tells us thatQ-balls may appear after an unstable AD condensate frag-

ments. The evolution to the thermal equilibrium state is rather hard to compute analytically, and it is

related to stability problems of theQ-balls [19, 50]. Therefore, we conduct numerical lattice simulations

that give the entire processes of nonlinear as well as out-of-equilibrium evolution.

5.3.3 Numerical results

In this subsection, we present detailed numerical results from lattice simulations for both GRV-M and

GAU-M models with the parameter sets, SET-3 and SET-7 shown in Table 5.1; we then check our

analytical results obtained in the previous sections. In order to solve the second-order partial differential

equations,d
2φ̂

dt2 −∇2φ̂+ dV
dφ̂†

= 0, with the potentials introduced in Eqs. (5.17, 5.18), we usethe following

appropriate parameters:dx = 0.2, dt = 0.02 in the GRV-M Models anddx = 5.0, dt = 0.2 in the

GAU-M Model, which minimise the numerical errors. Here,dx is the fundamental lattice space anddt

is the time step. Note that the variables in this subsection are normalized by appropriate energy scales

as in Sec. 5.2.2. We then conduct3 + 1 (and2 + 1)-dimensional lattice simulations with5123 (and

5122) lattice units, imposing a periodic boundary condition. Our initial conditions are,̂φ0 = φ0 + δφ0

and ˙̂
φ0 = φ̇0 + δφ̇0, where the initial fluctuations,δφ0 andδφ̇0, are of a Gaussian noise, which are

responsible for “quantum” fluctuations. Their fluctuations, δφ0 andδφ̇0, are of order10−5 in GRV-M

case and of order10−3 in GAU-M case. In order to visualise these detailed evolution, we use a 3D

software, ’VAPOR’ [191], and some videos of our numerical results are available in [1].

5.3.3.1 Pre-thermalisation

The initial evolution –Non-adiabaticity: In the top two panels of Fig. 5.6, we plot the amplitude of

n+
k (t), where we took the average ofn+

k
(t) over the axes ofk. We show the amplitudes ofn+

k (t) for

the GRV-M Model in the left panel and for the GAU-M Model in theright panel at two different time

steps. In the panels, we indicate the analytical values of the most amplified modeskm obtained from

Eqs. (5.33, 5.34) with black-dashed vertical lines. In the GRV-M Model, the amplitude witht = 30

(green-dashed line) is a little noisy to see the first peakk1 in terms ofk. Our analytical estimate,

km ∼ 2.88 × 10−1, is located at a more infrared region than the pointk = k1 ∼ 3.40 × 10−1, and

the periodic structure can be seen in the higher-momentum space. In the GAU-M Model, on the other

hand, we can confirm that our analytical value,k = km ∼ 1.22 × 10−2, agrees with the numerical

value,k1 ∼ 1.70 × 10−2, in the green-dashed line; however, the analytical value appears in a slightly

more infrared region. We also observe the periodic structure in the higher-momentum modes as was

reported in [173]. In the middle panels (GRV-M Model on left and the GAU-M Model on right), we

compare both the zero-mode,σ2 (red-solid lines), and the homogeneous field,σ2 (green-plus dots),

shown in the bottom panels of Fig. 5.2. The middle panels in both cases show that the zero-mode does
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not decay quickly, and it oscillates aroundσ2 = σ2
cr. We can also check that our numerical parameters

are appropriate, minimising numerical errors. In the bottom panels of Fig. 5.6, we plot the evolution

of nk(t) for the modes bothkm (red-solid lines) andk1 (green-dashed lines). In the left bottom panel,

we can see the exponential growth of the amplitude in the GRV-M Model for both modes, and step-

like particle production exists at the beginning of the evolution as broad resonant preheating [163] (cf.

Eq. (5.30)), and it begins to create the particles exponentially afterwards. The particles are produced

quickly when the zero-modeσ2(t) increases in time at the beginning, see the middle panels. This is the

different feature of the evolution compared to the case of resonant preheating, where particle production

for the broad resonance occurs nonadiabatically when the zero mode (inflaton field) crosses the zero

axis. In the right bottom panel, we can see more clearly the step-like particle creations for both modes,

and then this step-like evolution smooths out, which leads to the exponential particle production as in

the GRV-M case. We believe that the adiabatic condition,S̈ ≪ Ṡ2, is “softly” violated only in this

initial stage since we can not see the clear exponential growth at the beginning of this evolution. In the

next paragraph, we discuss the late linear evolution when this nonadiabatic evolution ceases, and show

that our analytical results agree much better with our numerical ones more nicely.

Up to the nonlinear time: In Fig. 5.7, we show the evolution of the various physical quantities in the

late stage of linear perturbations:n+
k , σ

2 and Var(σ). The top panels plot the amplitude ofn+
k with

various times in both the GRV-M Model (left) and the GAU-M Model (right). Notice that we plot them

against the logarithmic scale ofk as opposed to the linear scale shown in the top panels of Fig. 5.6. For

all time steps shown there, our analytical values ofkm (in black-dashed vertical lines) agree well with

the first peak modek1, at which the amplitudes are most amplified. Notice that the zero-momentum

mode does not decay in both cases. After the first peak of the amplitude is well developed, the second

peak appears in the spectra, and later the third peak can be barely observed. Roughly speaking, the

nth peaks appear around the values which arekm multiplied byn. These higher peaks are suppressed

by rescattering processes in which a particle from the first peak transfers some of its momentum to

a particle from the zero-momentum modes (AD condensates) [192]. Later, all modes of the particle

spectra,n+
k , develop quickly, but the first peak is still visible. The middle panels illustrate the evolution

of a zero-mode fieldσ2 and the variance of the field Var(σ) up to the nonlinear timet = tNL. As

we saw in the top panels, the zero mode does not decay even after the nonlinearity comes in, whilst

the variance of the field develops exponentially fromt ∼ 140 in the GRV-M Model (left) and from

t ∼ 600 in the GAU-M Model (right). This delay of the exponential growth comes from the fact that

the other modes do not evolve initially except the modekm; thus, we can set these times ast∗ defined

in Eq. (5.29). We fit a function,∝ exp
(
2Ṡnum(t− t∗)

)
, against the exponential evolution for the

variations, where we obtaiṅSnum ∼ 4.45 × 10−2 in the GRV-M Model andṠnum ∼ 6.72 × 10−3 in

the GAU-M Model, which match satisfactorily with the analytical ones in Eqs. (5.32, 5.34), where we

computed as
〈
Ṡm

〉
∼ 4.20 × 10−2 in the GRV-M Model and

〈
Ṡm

〉
∼ 7.07 × 10−3 in the GAU-M

Model. From the middle panels, the nonlinear time is approximately bothtNL ∼ 420 in the GRV-M

92



10
-2

10
-1

0.0 0.5 1.0 1.5 2.0

n
+

k

k

GRV-M Model

t=10
t=30

k=km  ∼  2.88•10
-1

10
2

10
3

10
4

 0  0.02  0.04  0.06  0.08  0.1

n
+

k

k

GAU-M Model

t=50
t=400

k=km  ∼  1.22•10
-2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

 0  5  10  15  20  25  30

σ2
(t

)

t

GRV-M Model

zero-mode of the field
homogeneous field

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  50  100  150  200  250  300  350  400

σ2
(t

)

t

GAU-M Model

zero-mode of the field
homogeneous field

10
-2

10
-1

 0  5  10  15  20  25  30

n
+

k
(t

)

t

GRV-M Model

k=km ∼  2.88•10
-1

k=k1 ∼  3.19•10
-1

10
1

10
2

10
3

10
4

 0  100  200  300  400

n
+

k
(t

)

t

GAU-M Model

k=km ∼  1.22•10
-2

k=k1 ∼  1.70•10
-2

FIG. 5.6: In the top two panels, we plot the amplitude ofn+

k (t) at two different time steps for the GRV-M Model
in the left panel and the GAU-M Model in the right panel, wherewe took the average ofn+

k
(t) over the axes of

k. The black-dashed vertical lines indicate the analytical values of the most amplified modeskm obtained from
Eqs. (5.33, 5.34). In the middle panels (GRV-M Model on left and the GAU-M Model on right), we compare the
zero-modeσ2 (red-solid lines) and the homogeneous fieldσ2 (green-plus dots) obtained in the bottom panels of
Fig. 5.2. In the bottom panels of Fig. 5.6, we plot the evolution of n+

k (t) for both analytic valueskm (red-solid
lines) and numerical valuesk1 (green-dashed lines) ofn+

k shown in the top two panels.

Model andtNL ∼ 2200 in the GAU-M Model, and these values agree well with our analytic estimates

in Eq. (5.29), where the analytical values aretNL ∼ 262 + 140 ∼ 422 in the GRV-M Model and

tNL ∼ 1628 + 600 ∼ 2228. In the bottom panels, we plot the evolution of the amplituden+
k for the

first peak mode (red-plus dots), second peak mode (green-cross dots) and the analytical most amplified

modes (purple squared-cross dots). The numerical values ofthe exponents for the most amplified modes

km in blue long-dotted lines, (̇Snum ∼ 4.55× 10−2 in the GRV-M Model andṠnum ∼ 7.11× 10−3 in

the GAU-M Model) match with the analytical ones in Eqs. (5.32, 5.34). The second peaksk2 in black

short-dotted lines start to grow att ∼ 220 in the GRV-M Model and att ∼ 1300 in the GAU-M Model,

and we can set these values ast0 defined in Eq. (5.31). The initial behaviour of the amplitudeof second
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peak ofn+
k seems to be quasi-periodic, which implies that〈S〉 for the mode,k2, is pure imaginary, see

Eq. (5.22) (cf. the bottom panels of FIG. 5 in [167]). Surprisingly, the growth rates for the second peaks

are about twice as large as the values of both
〈
Ṡm

〉
andṠnum for Var(σ) andk1. Note that the initial

evolution fork2 is not adiabatic, so that the growth rates are not strictly exponential as we have seen in

the bottom panels of Fig. 5.6. For example, the growth of the first peaks,km (or k1), in the GAU-M

Model is not exponential initially, but it becomes exponential as the growth of the second peak mode

k2.

FIG. 5.7: The top panels plot the amplitude ofn+

k with various times in both the GRV-M Model (left) and the
GAU-M Model (right). The analytical values of the most amplified modekm in black-dashed vertical lines agree
with the first peak,k1, of the spectra in both cases. The middle panels show the evolution of zero-mode field,σ2

(red-plus dots), and the variance of the field, Var(σ) (green-cross dots), up to the nonlinear timet = tNL, where
we can settNL ∼ 420 in the GRV-M Model andtNL ∼ 2200 in the GAU-M Model. In the bottom panels, we plot
the evolution of the amplituden+

k for the firstk1 (red-plus dots), second peakk2 (green-cross dots) modes and the
analytical most amplified modeskm (purple squared-cross dots).
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Bubbles pinched out of filaments: In Fig. 5.8, we show snapshots of the positive charge density

n+(x) for the GRV-M Model (left panels) and the GAU-M Model (right panels) aroundt ∼ tNL,

where ’Timestep’ in the panels denotes the actual time divided by10 in the GRV-M Model and the

actual time divided by102 in the GAU-M Model. The colour bars illustrate the values of the positive

charge density. We can see long-wavelength objects (sometimes called ’filaments’) in both cases, and

the charge in some regions is compactified into spheres, see bottom panels. These filaments and bubbles

correspond to nonlinear solutions, which may be nontopological strings [130] and the excited states of

Q-balls, respectively. The radii of these bubbles are of the same order as the wave-length which cor-

responds to the most amplified modes,km. As we will see in the next subsection, these bubbles grow

by colliding and merging each other. Note that this bubble creation is nothing to do with bubble nucle-

ation in first-order phase transition as opposed to the case in [117], in which case the AD condensate is

classically stable against spatial perturbations, but notquantum mechanically.

FIG. 5.8: In the top and bottom panels, we show snapshots of the positive charge densityn+(x) for the GRV-M
Model (left panels) and the GAU-M Model (right panels) around t ∼ tNL, where ’Timestep’ in the panels denotes
the actual time divided by10 in the GRV-M Model and the actual time divided by102 in the GAU-M Model, and
the colour bars illustrate the values of the positive chargedensity. After the nonlinearity is fully developed, many
bubbles form, which are pinched out of “highly” concentrated charged filaments.
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5.3.3.2 Nonlinear evolution

Bubble collisions and mergers: In Fig. 5.9, we show snapshots of the positive charge densityfor the

GRV-M Model in different time steps up tot = 6000, where ’Timestep’ in the figure denotes the actual

simulation time divided by102 and the colour bars illustrate the values of the positive charge density.

After the system goes into a nonlinear regime, we can see a fewlumps in the first few panels of the

snapshots, and those lumps merge into larger lumpy objects.Finally, we can see a large cluster, which

consists of a complicated inner structure, see the last snapshot. Recall that we are using the periodic

boundary condition.

FIG. 5.9: We show snapshots of the positive charge density for theGRV-M Model in different time steps (t =
1000, 2000, 3000, 4000, 5000 and6000), where ’Timestep’ in the figure denotes the actual simulation time
divided by102 and the colour bars illustrate the values of the positive charge density. A few created lumps collide
and merge into a large cluster by the end.

Fig. 5.10 shows the detailed evolution of the positive charge density for the GAU-M Model in different

time steps up tot = 60000, where ’Timestep’ in the figure denotes the actual simulation time divided

by 103 and the colour bars illustrate the values of the positive charge density. A large number of small

bubbles can be observed, and nearby bubbles collide and merge into larger bubbles. In the final panel,

there are smaller number of bubbles left (compare to the firstpanel). We believe that this time arrow is

followed because the total energy of large bubbles is smaller than the total energy of smaller bubbles,cf.

fission stability ofQ-balls in Eq. (2.34). These large bubbles are able to carry a large amount of charge

inside of them as we saw in the left-bottom panel of Fig. 4.9 inchapter 4 in the “thin-wall”Q-ball limit.

The differences in the evolution between GRV-M and GAU-M models come from a number of facts,

e.g.different initial conditions, stability conditions and momentum fluxes due to asymptotic profiles at

a large distance from the cores.

96



FIG. 5.10: We illustrate the detailed evolution of the positive charge density for the GAU-M Model in different
time steps (t = 10000, 20000, 30000, 40000, 50000 and60000), where ’Timestep’ in the figure denotes the
actual simulation time divided by103 and the colour bars illustrate the values of the positive charge density. There
are smaller number of bubbles left by the end.

Distributions of the negative charge density: We show snapshots of the negative charge density for

the GRV-M Model (left panel) att = 6000 and the GAU-M Model (right panel) att = 1.0 × 105 in

Fig. 5.11, where the colour bars illustrate the values of thenegative charge density. These times corre-

spond to the same physical times as in the final snapshots of Figs. 5.9 and 5.10. The values of charge

density in both models are much smaller than the values of positive charge density in Figs. 5.9 and 5.10.

This implies that we are observing the plots of thermal plasma rather than charged (nonlinear) lumps.

Their distributions are quite different from each other. The negative charge density for the GRV-M

Model is surrounded by the large positive charged cluster seen in the last panel of Fig. 5.9, and it

is distributed all over the lattice; whereas, for the GAU-M Model the distributions of the negative

charged plasma are highly concentrated only around the surface of the lumps (compare the last panel of

Fig. 5.10).

Driven turbulence: The top panels of Fig. 5.12 show the evolution of the zero-mode (red-solid lines)

and the variations forσ (dotted-dashed purple lines), whose latter evolution are fitted by a function,

∝ tγ1 , (black dashed lines), whereγ1 is a numerical value as the power of Eq. (5.35). For both models

(GRV-M Model on the left panel and the GAU-M Model on the rightpanel), the asymptotic evolution

after the linear perturbation regime is overlapped by the function, whereγ1 ∼ 0.121 for the GRV-M

Model andγ1 ∼ 0.235 for the GAU-M Model. Our analytic values can be matched by setting p ∼ 0.111

with m = 5 in the GRV-M Model andp ∼ 0.250 with m = 3 in the GAU-M Model, see Eq. (5.35).

Hence, we could identify this regime as driven (stationary)turbulence, and the main dynamics in each

model is caused by either a “five-particle” interaction or “three-particle” interaction, respectively. Note

that our nonrenormalisation term has aφ6 term in both models. In the middle and bottom panels of
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FIG. 5.11: We present the snapshots of the negative charge density for the GRV-M Model (left panel) att =
6.0 × 103 and the GAU-M Model (right panel) att = 6.0 × 104, where the colour bars illustrate the values of
the negative charge density. The negative charge for the GRV-M Model is surrounded by the large positive charged
cluster; however, the distribution spreads out over the lattice space, whereas the negative charge for the GAU-M
Model is concentrated around the positive charged lumps [compare them to the last panels of Figs. 5.9 and 5.10].

Fig. 5.12, we plot, respectively, the amplitudes ofn+
k andn−

k at different times for the GRV-M Model

(left panels) and the GAU-M Model (right panels). Forn±
k of the GRV-M Model, the amplitudes of the

high momentum modes grow in time, whilst the lower momentum modes do not decay completely and

stay for a long time. We fit a function,∝ k−γ2 , (yellow dotted lines) whereγ2 is a numerical value onto

the spectra att = 6700 for the region where the function is fitted as shown in black dashed lines. We

find thatγ2 ∼ 1.62 for then+
k case andγ2 ∼ 0.37 for then−

k case. In the right middle and bottom

panels, we plot the amplitudes ofn±
k for the GAU-M Model in various times. The amplitudes of the

high momentum modes decrease as opposed to the GRV-M case, and the slopes of the spectra forn±
k at

t = 63000 in yellow-dotted lines are steeper than the GRV-M case, where we fit the numerical spectra

by the following values shown in black dashed lines:γ2 ∼ 3.95 for then+
k case andγ2 ∼ 1.74 for the

n−
k case.

5.3.3.3 From driven turbulence to near equilibrium – Thermalisation:

In order to significantly reduce the simulation time, we carry out2 + 1-dimensional lattice simulations

with the same initial conditions as used in the3 + 1-dimensional cases, where our lattice units are

reduced from5123 to 5122. In the top panels of Fig. 5.13 (GRV-M Model in the left panelsand the

GAU-M Model in the right panels), we illustrate the evolution of the zero-mode and the variances ofσ,

and in the bottom panels we plot the energy density (att = 3.5 × 105 in the left-bottom panel and at

t = 1.7×107 in the right-bottom panel) instead of the charge density to compare with theQ-ball profiles

at zero-temperature, which we obtained in Figs. 4.3 and 4.7 in chapter 4. The colour bars in the bottom

panels of Fig. 5.13 illustrate the values of energy density.Note that we are using the same parameters

for the GRV-M Model as the ones used in chapter 4, whilst the potential for the GAU-M Model used

there is a generalised version of our present potential Eq. (5.10), so the profiles in the GAU-M Model

should look similar only qualitatively, but not quantitatively. From the top panels, we can also see, in
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FIG. 5.12: Left panels (GRV-M Model) and right panels (GAU-M Model): the top panels show the evolution of
zero-mode (red-solid lines) and the variations forσ (dotted-dashed purple lines), whose latter evolution are fitted
by a function,∝ tγ1 , (black dashed lines) where we numerically obtain the valueof γ1. In the middle and bottom
panels, we plot, respectively, the amplitudes ofn+

k andn−
k in different times for both models, and we fit them by a

function of∝ k−γ2 whereγ2 is also numerically obtained.

particular the GRV-M Model, the scaling exponent evolutionduring the driven turbulence stage after the

pre-thermalisation ends as confirmed in the top panels of Fig. 5.12. The subsequent evolution, however,

is different between each other and also unique apart from a characteristic free turbulence stage. These

features of the thermalisation process are caused by stablenonlinear solutions, namely “Q-balls”; in the

GRV-M Model (left panels), the variance does not evolve thatmuch after the driven turbulence stage

ends and we can see thin walled like charged lumps in the end, see the left-bottom panel. In the GAU-M

Model (right panels) the variance has a step-like evolution, at which stage we confirmed that two (or

sometimes more) charged lumps collide and merge into a larger lump. The collision rate is very low

since the motions of these “heavy” bubbles are nonrelativistic, but we expect that there will be only

one singleQ-ball left ultimately as similar as the GRV-M case. Generally, we observe that almost all
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of the total energy is trapped into these lumps, where we alsoconfirm that the total charge is absorbed

into these lumps, as reported in [47, 48]. As the “thin-wall”Q-balls in the GAU-M Model do not have

an extremely thin-wall thickness [50], the profiles seen in the right bottom panel do not have such a

thin-shell thickness. Note that the “thick-wall”Q-balls in the GAU-M Model may suffer from classical

instability and fission against spatial perturbations around theQ-ball solutions, and decay into smaller

Q-balls as opposed to the case of “thick-wall”Q-balls in the GRV-M Model. The reader should also

notice that the potential for the GAU-M Model in the present case is different from Eqs. (4.26, 4.27) in

chapter 4, which may change the classical stability of theQ-balls in the “thick-wall” limit. Furthermore,

the stability ofQ-balls is related to their own chargeQ so that the initial ratio,E/(mQ), can also cause

the different evolution. Therefore, we believe that the evolution is very sensitive to the parameters of the

models used and the initial conditions. It is worth mentioning, in the left-bottom panel, that the value

of charge density within the charged cluster is slightly larger than the value of the thin-wallQ-balls in

the zero-temperature case [compare to right bottom panel ofFig. 4.3 in chapter 4]. We believe that this

is because this charged cluster appears in the thermal background, in which the thermal effects change

their profiles.
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FIG. 5.13: Left panels (GRV-M Model) and right panels (GAU-M Model) in 2 + 1 dimensions: the top panels
show the evolution of the zero-mode (red-solid lines) and the variations forσ (dotted-dashed purple lines). In the
bottom panels, we plot the energy density (att = 3.5 × 105 in the left-bottom panel and att = 1.7 × 107 in the
right-bottom panel) instead of the charge density to compare theQ-ball profiles seen in Figs. 4.3 and 4.7 in chapter
4, where the colour bars illustrate the values of energy density. We can see that almost all of the charge is trapped
into bubbles which may be “thin-wall”Q-balls, recall that we are imposing a periodic boundary condition.
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Let us recap our findings in this section. We have shown in bothGRV-M and GAU-M models that

the AD condensate that has a negative pressure is generally unstable against linear fluctuations, and the

fluctuations evolve exponentially. The condition for the presence of the negative pressure corresponds to

the existence condition ofQ-balls, and under our initial conditions shown in Table 5.1,we observed that

almost all of the total charge is trapped into a single (and a few) spherical lump(s) (“thermalQ-balls”)

by the end of our numerical simulations. In the intermediateregions between the initial exponential

amplification stage and thermalisation stage in the presence of the nonlinear solutions, we identified

that the driven turbulence is active; we then found the scaling exponent evolution for the variance ofσ,

and we saw that this stage lasts relatively much longer than the case of tachyonic reheating.

5.4 Conclusion and discussion

In this chapter we have discussed both analytically and numerically two main issues: the dynamics

of Affleck-Dine (AD) condensates and their subsequent nonequilibrium dynamics in the presence of

nonlinear solutions. We showed that the AD dynamics has the same features as the orbital motions of

planets, replacing the gravitational force by an isotropicharmonic oscillator force. As the relativistic

correction to the Newtonian potential gives a precession for the planetary orbit, the orbits of AD fields

are disturbed by the nonrenormalisable and quantum correction terms. Note that the essential origin of

these corrections is physically different. In the presenceof a negative pressure of the AD condensate,

we have shown that the condensate is classically unstable, and the evolution of the system is similar to

the dynamics of reheating of the Universe,i.e. pre-thermalisation, bubble collisionsandthermalisation.

Adopting lattice simulations, we found that the thermalisation process occurs in the presence of charged

lumps, which merge into a single (or a few) “thermal thin-walled Q-ball(s)”, absorbing most of the

homogeneous charge distributed initially on the lattice.

In Sec. 5.2, we introduced two phenomenological models motivated by the MSSM,i.e. the gravity-

mediated (GRV-M) model and gauge-mediated (GAU-M) model. We obtained the frequencies of the

rotation for the nearly circular orbits, and showed that thecondensate can have a negative pressure in

both cases, see Sec. 5.2.1. Furthermore, we checked numerically our analytic results with the various

cases in both a non-expanding and expanding universe.

Our analytic expressions have a number of advantages. In theexisting literature on preheating for

complex scalar fields [193, 194, 195], the motion of the complex scalar field is assumed to be of an

elliptical form, but their ansatz does not hold [compare ourexpressions in Eqs. (E.5, E.16) and Eq. (5.19)

and their ansatz]. In the multi-flat direction cases, our analytic expressions of the AD field give the exact

Mathieu equation if the interaction term between the AD fieldφ and another fieldχ that parametrises

another flat direction, is given byg2|φ|2|χ|2, whereg is a coupling constant between them. The previous
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literature [195, 196, 197] suggested that the resonant SUSYpreheating for nearly circular orbits is not

effective since the characteristic dimensionless quantity q is much less than unity, recalling that broad

resonant preheating (nonadiabatic evolution) occurs forq ≫ 1. This statement also holds for our case

when the orbit of the AD field is nearly circular because ofq ∝ ε2 whereε2 is the third eccentricity of

the orbits, recalling that nearly circular orbits correspond to the case ofε2 ≪ 1.

We obtained the successful ansätze, Eq. (5.19), for nearlycircular orbits in an expanding universe (see

also the top panels in Fig. 5.4), but our analytical expressions could be improved by the action variable

technique as a real scalar field case [198]. These issues on understanding analytic forms of the orbits

are related to the dynamics of spinning scalar fields, which can be responsible for the early- and late-

time exponential expansions of the Universe (spinflation [199] and spintessence [200]) since the AD

condensate can possess a negative pressure, which can satisfy the condition of slow-roll inflation,w <

−1/3. In [201], the authors discussed an oscillating field responsible for dark energy (see a recent review

[202]), and it gives a constraint on the power of a power-law potential in order to obtain the attractor

solutions [203]. As in the case of real scalar fields, a complex scalar field has been investigated, see for

example [204, 205, 206]. Following our analytical work, onecan investigate the further analysis on dark

energy for a complex scalar field and their late evolution in order to place constraints on parameters of

the models, avoidingQ-ball formation.

In Sec. 5.3, we explored the late evolution of AD fields in Minkowski spacetime in both GRV-M and

GAU-M models. As the usual nonequilibrium dynamics, we proposed that the dynamics of theQ-ball

formation goes through three distinct regimes:pre-thermalisation, bubble collision(driven turbulence)

andthermalisation. We showed analytically that the AD condensate is unstable against spatial perturba-

tions if the condensate has a negative pressure, and the perturbations grow exponentially. The presence

of the negative pressure satisfies the existence condition of Q-balls as well as the fact that the sound

wave of the perturbation has an imaginary value of the sound speed. Assuming the adiabatic linear

evolution, we have analytically shown that the perturbations for the most amplified modek = km in

Eq. (5.25) grows with the exponentṠm in Eq. (5.26), which we obtained by taking the average over one

rotation of the orbits of the AD field. In the previous literature [116, 173], these values were obtained

by ignoring the nonrenormalisable term and by assuming thatthe orbit is circular. By including the

nonrenormalisable term and considering more general elliptic orbits, we recovered their results as the

leading order term of our solutions in Sec. 5.3.1.2. We also showed that the nonlinear time is delayed

compared to the time which the authors in [147] obtained, since the other modes are not well developed

when the most amplified mode starts to grow exponentially. With our 3 + 1-dimensional numerical

lattice simulations, which were run for a much longer time with much larger simulation sizes than the

past lattice simulations in [47, 48, 116, 173, 182], our analytic results were shown to be robust. We

found that the adiabatic condition is violated at the beginning stage of the linear perturbations as seen

in broad resonant preheating. In the driven turbulence stage, we observed that many bubbles form and

collide/merge into larger bubbles in both GRV-M and GAU-M models. Note that these bubbles are
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nothing to do with the bubbles due to first order phase transition. By concerning with the variance of

the radial fieldσ, we have seen that the evolution follows a scaling exponent law as a signature of the

driven turbulence [177]. As opposed to the case of tachyonicpreheating, this driven turbulence stage, in

our case, lasts for a longer time, which may be caused by the presence of classical nonlinear solutions,

i.e. “Q-balls”. We saw in our2 + 1-dimensional numerical results that a thermalisation stage actually

exists where the evolution for the variance of a field has a different scaling law from the one which

appears in the driven (first) turbulence stage. We believe that quantum effects should be non-negligible

in this late turbulence stage, and the classical thermalisation process, in our case, should be different

from the corresponding quantum-mechanical thermalisation. Since the thermalisation process is gen-

erally extremely long, a lattice simulation in an expandingbackground encounters serious problems in

the ultra-violet limits; thus, we ignored the Hubble expansion in our lattice simulations. By considering

the quantum-mechanical effects as well as Hubble expansion, it is worth investigating the cosmological

consequences.

In the context of a (p)reheating scenario, it has been suggested [131] that the collision of bubbles during

the driven turbulence stage can be an effective source of gravitational waves, which can be detected by

LIGO [207] and LISA [208] in the near future. We noticed that this analysis should be applicable to

the same driven turbulence stage of theQ-ball formation, which was initially proposed in [49]. The

problem of gravitational waves emitted in the fragmentation stage has been discussed [182], while the

analysis in the driven turbulence stage ofQ-ball formation still remains to be done.

Moreover, we assumed that the A-terms in the scalar potentials V , Eq. (5.8) and Eq. (5.10), are neg-

ligible at the beginning of the analysis, whereV is independent of the phase fieldθ. However, those

terms are essential to generate the baryon/lepton number inthe AD baryogenesis, and the dynamics of

the AD field and the formation ofQ-balls may be affected by the A-terms. Recall that the conserved

global charge (baryon number) stabilises aQ-ball. With the inclusion of the A-term inV , the authors

in [209] showed that theQ-balls can be unstable for a strong coupling constant of the A-term, however

they also claimed that the previously published stability analysis onQ-balls should not be affected dras-

tically since the coupling constant of the A-term is very weak under the realistic cosmological situation.

Therefore our analysis in this chapter is still valid.
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Chapter 6

Conclusions

In this thesis we have studied the stability and detailed formation process ofQ-balls in polynomial

potentials and physics beyond the SM, namely the MSSM. By including quantum corrections as well as

thermal corrections in the MSSM scalar potentials, the AD condensate may possess a negative pressure,

whose presence implies that this condensate may fragment into nontopological solitons, known asQ-

balls. Past work [18, 47, 48, 111] has failed to convincinglydemonstrated the necessary conditions

to understand the stability and formation of theseQ-balls. A proper treatment may significantly alter

the existing cosmological estimates for the presence of theQ-balls; and this research background on

Q-balls gave our initial motivations to explore these solutions in more detail. Our primary goal in this

thesis has been to understand howQ-balls form and interact with each other in the very early Universe,

and we have solved a number of questions related to this issuethroughout this thesis.

In chapter 2, we reviewed the fundamental aspects of standard Q-balls. By introducing two powerful

analytical tools, the Legendre transformation and the virial theorem, we presented a remarkable way of

calculating the chargeQ and energyEQ of aQ-ball, and obtained the relations of their classical and

absolute stability conditions. By scaling aQ-ball solution and imposing the ratio between the surface

and potential energy of theQ-ball, we obtained the virial relations and characteristicslopesγ, which give

an important proportional relation,i.e.E ∝ Q1/γ , see Eqs. (2.15, 2.38). We also obtained the threshold

values for absolute stability ofQ-balls in the parameter spaceω in Eq. (2.39). These values agree with

the corresponding numerical results in polynomial potentials in chapter 3, see Tables 3.3 and 3.4.

Following the pioneering work on nontopological solitons,i.e.Q-balls, by Friedberg, Lee and Sirlin [20]

and Sidney Coleman [21], in chapter 3 we explored both the absolute and classical stability conditions

of standardQ-balls in a general polynomial potential, which can appear as an effective potential with

quantum/thermal corrections. In the extreme lower limit ofω, namelyω = ω−, we defined thin-wall

Q-balls, which have generally an infinitesimally small thickness outside of their core. For potentials

without degenerate vacua (NDVPs), we showed that a step-like profile is the appropriate ansatz in the



extreme thin-wall limit, and we found that the energy of theQ-ball grows linearly as the chargeQ,

which is consistent with the result obtained with the virialrelation in chapter 2. We also found that

the solution is absolutely stable against their own quanta,known asQ-matter as ordinary matter with

a zero-pressure. We noticed that thisQ-matter phase is not generally equivalent to the state, in which

the AD condensate has a negative pressure, and suffers from spatial perturbations, fragmenting into

inhomogeneous states, see chapter 5. In order to investigate thin-wallQ-balls including a finite size of

the shell thickness, we introduced a modified ansatz which isvalid for a more wider parameter spaceω

in addition toω = ω−. We then recovered the solution of theQ-matter phase (ω = ω−) as the extreme

case in NDVPs, and obtained new features of the stability conditions in polynomial potentials both with

and without degenerate vacua cases,i.e. DVPs and NDVPs. With our modified ansatz for thin-wall

Q-balls, the condition for classical stability does not depend on the number of spatial dimensions, but

the absolute stability condition does. Moreover, the characteristic slopes coincide with those derived

using the virial theorem as found in the extreme thin-wall limit. The values of the characteristic slopes

γ depend on the presence of degenerate vacua in potentials,i.e. whether NDVPs or DVPs, such that

1/γ = 1 in NDVPs and1/γ = 2D−1
2(D−1) in DVPs, recallingEQ ∝ Q1/γ . On the contrary, for the upper

limit of the parameter spaceω we defined “thick-wall”Q-balls, which do not actually imply that the

Q-balls have a large shell thickness compared to the core sizesince we cannot define explicitly both of

the sizes in this limit. We confirmed that the “thick-wall”Q-ball solutions naturally tend to free-particle

solutions. We also pointed out that a Gaussian ansatz in polynomial potentials has several drawbacks,

whilst the other modified ansatz solved these problems and weobtained the general classical stability

condition in Eq. (3.47) under the validity condition Eq. (3.45). With this fact and Eq. (3.44), it implies

that the “thick-wall”Q-balls are absolutely stable. We should, however, state that a Gaussian ansatz is

actually valid for one of the MSSM flat scalar potentials,i.e. gravity-mediated potentials, as shown in

chapter 4. The key analytic results in chapter 3 were summarised in Table 3.5.

In the late ’90s, Alexander Kusenko and Mikhail Shaposhnikov [18] and Kari Enqvist and John Mc-

Donald [111] discovered SUSY nontopological soliton solutions in the MSSM, which implies that these

solutions may have rich cosmological consequences. Following our analyses developed in chapter 3,

we obtained, in chapter 4, both analytically and numerically new stability and stationary properties of

both thin- and thick-wallQ-balls at zero-temperature in both gravity-mediated and gauge-mediated po-

tentials. In gravity-mediated potentials in which SUSY is broken by gravity interactions, we found that

thin-wallQ-balls can be quantum-mechanically and classically stableagainst their own quanta as long

as the coupling constant of the nonrenormalisable term is small enough. The values of the characteristic

slopesγ are the same as the ones computed in chapter 3 for thin-wallQ-balls in polynomial potentials.

Further, we showed that the “thick-wall”Q-balls are classically stable against linear perturbations and

may be quantum-mechanically stable under the conditions Eq. (4.21). As stated, a Gaussian ansatz in

this model does not have any contradictions since the solution in the “thick-wall” limit becomes the

exact Gaussian solution, Eq. (B.1), examined in appendix C.As another example ofQ-balls in the

MSSM flat potentials, we exploredQ-balls in gauge-mediated models in which SUSY is broken by a
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gauge interaction. Generally speaking, the gauge-mediated potentials are extremely flat compared to the

gravity-mediated and polynomial ones; therefore, we couldnot apply our thin-wall ansatz Eqs. (3.6, 4.8)

to the present case. Instead, by linearising the gauge-mediated potentials, we obtained the full analytic

results over the whole range ofω, see Figs. 4.8 and 4.9. In particular, we showed that theQ-balls

in the “thin-wall-like” limit are absolutely stable in Eq. (4.40), while the one- and three-dimensional

“thick-wall” Q-balls are completely unstable, see Eqs. (4.47, 4.48) or Eqs. (4.45, 4.46), respectively.

The energy ratio by unit charge for the “thin-wall”Q-balls in the gauge-mediated models is lower com-

pared to ones computed with the other models, namely1/γ = D
D+1 in E ∝ Q1/γ . Thus, we can use this

stable and energetically compactQ-ball solution to explain the present dimensionless energydensity of

dark matter,ΩDM , in the Universe,i.e. ΩDM ∼ 0.23. Our key analytic results were summarised in

Table 4.1.

It has been noted [18, 111] that an AD condensate with a negative pressure fragments intoQ-balls, and

Sinta Kasuya and Masahiro Kawasaki [47, 48] showed numerically that the bubble-like objects actually

form from the decays of the condensate with classical lattice simulations with both gravity-mediated and

gauge-mediated models. Their original work onQ-ball formation, however, was not done in a consistent

way from the perspective of the dynamics in the AD mechanism,and their analytic results were not well

checked; therefore, in chapter 5 we reexamined the dynamicsof the AD mechanism and the late evo-

lution which includes “Q-ball” formation and the thermalisation process in both models. We identified

that the dynamics for the motion of the AD field has the same properties as orbital motions of the usual

planets, replacing the gravitational force by an isotropicharmonic oscillator force. By including non-

renormalisable terms and quantum corrections in the mass term of the scalar potentials, the motion of the

AD fields in both models is disturbed in a similar way as the precessesion of planetary orbits occurs due

to the relativistic corrections on the Newtonian potential. Furthermore, we explicitly showed that the

presence of a negative pressure in the AD condensate leads tothe three consequences, all of which arise

from the same origin, such as the spatial instability against linear spatial perturbations, imaginary val-

ues of the sound speed, and meeting the existence condition of Q-balls. By adopting3 + 1-dimensional

lattice simulations with more realistic initial conditions in both gravity-mediated and gauge-mediated

models, we investigated both analytically and numericallythe detailed processes ofQ-ball formation, in

which we found that the evolution of the system goes through the same three distinct stages as a model of

reheating in the early Universe,i.e. pre-thermalisation, bubble collisions(driven turbulence), and main

thermalisation. Following the wave kinetic theory of turbulence originally proposed by Raphael Micha

and Igor Tkachev [177], we obtained the scaling exponent lawfor the variance of a field during bubble

collisions. Moreover, we found numerically that the classical thermalisation process is unique due to

the presence of charged lumps, which merge into a single (or afew) “thermal thin-walledQ-ball(s)”,

absorbing most of the homogeneous charge initially distributed over the lattice space.

In summary, we have explored the stability and stationary properties ofQ-balls in polynomial poten-

tials and the MSSM flat potentials, and the detailed formation process in the latter phenomenologically
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interesting potentials, adopting with lattice simulations. We showed that non-thermal “thin-wall”Q-

balls, which contain a lot of charge (baryons/leptons), canbe absolutely stable in any types of the above

potentials, which implies that theseQ-balls, in particular “thin-wall”Q-balls in gauge-mediated poten-

tials, are likely to survive from thermal effects, diffusion, dissociation, and decays into fermions. Those

Q-balls may still exist in the present Universe as invisible matter,i.e. dark matter. This fact naturally

provides the two quantities in Eq. (1.3) [19].

As our future work, it is worth investigating the possibility of gravitational wave emission from the

collisions of charged bubbles during the thermalisation stage as we saw in our lattice simulations. We

are also interested in studying the stability and formationofQ-balls in hybrid inflation models, which are

motivated by SUSY D-term and F-term inflation models and the original nontopological soliton model

in [20]. As mentioned at the end of the previous chapter, we obtained the successful ansätze for nearly

circular orbits of the AD fields in an expanding universe. Butour analytic expressions could be improved

by the action variable technique as a real scalar field case [198]. These issues on understanding analytic

forms of the orbits are related to the dynamics of spinning scalar fields, which can be responsible for

the early- and late- time exponential expansions of the Universe (spinflation and spintessence) since the

AD condensate can possess a negative pressure, which can satisfy the condition of slow-roll inflation.

Following our analytical work, one can investigate the further analysis on dark energy for a complex

scalar field and their late evolution in order to place constraints on parameters of the inflation models,

avoidingQ-ball formation.

Further, we assumed to ignore the effects of gauge fields on the stationary properties ofQ-balls and the

cosmological consequences in our entire thesis. However, the inclusion of the gauge fields may affect

the detailedQ-ball profile as pointed out in [57]. Inside the gaugedQ-ball, the local gauge symmetry

should be broken by the non-zero field value. Then, the chargeprofile for the large gaugedQ-ball has

a peak around the surface due to the Coulomb repulsion, and there exists a maximum charge. These

are different features from the non-gaugedQ-balls; thus, we believe that the stability analysis shouldbe

well modified. Another question arises that ’Can we predict the observable cosmological consequences

caused by the gauge field in the MSSM?’. Regarding this question, Kari Enqvist, Asko Jokinen, and

Anupam Mazumdar computed the magnitude of the magnetic field, 10−30 Gauss, generated along the

MSSM flat direction [210]. This value is the same order as the magnitude for the observed magnetic

field in the clusters of galaxies [211]. The above two ideas onboth the stability of the gaugedQ-balls

and their cosmological consequences in the MSSM can be brought together; it is worth estimating the

magnitude of the magnetic field in the presence of the gaugedQ-balls.

Finally, with the forthcoming data from the high-energy experiments, such as LHC [212], the gravita-

tional wave detectors,e.g.LIGO [207] and LISA [208], and the detectors of cosmic microwave back-

ground radiation, WMAP [6] and PLANCK [213], we believe thatthese experimental data may shed

light on the origin of the two quantities, Eqs. (1.1, 1.2), inthe future.
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“Many of life’s failures are people who did not realize

how close they were to success when they gave up.”

– Thomas Edison.
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Appendix A

Classical stability

Nontopological solitons,i.e.Q-balls, can be classically stable for a small nonlinear coupling constant,

say g, when the fluctuations around the solution are of a harmonic oscillator form. It implies that

the energy isEQ = E
(0)
Q +

∑
N (NN + 1

2 )ΩN + . . . in the language of quantum field theory, where

E
(0)
Q ∼ O(1/g2) is theQ-ball energy,NN is the “occupation number” of theN th normal mode, andΩN

is the characteristic frequency of the fluctuations. Here, the second term inEQ is ofO(g0) and the higher

order terms are suppressed by the small nonlinear coupling constantg, i.e.O(g2, g4, . . . ) [52]. The

case,Ω2
N = 0, corresponds to the zero mode,i.e. translations and phase transformations from theQ-ball

solution. A classically stableQ-ball has fluctuations withΩ2
N > 0, whilst if Ω2

N < 0, the fluctuations

exponentially grows, which means the solution is classically unstable. The canonical quantisation of

the solitons is a matter of ordering the canonical variablesso that one needs to additionally impose the

equal time canonical commutation relations on the variables for the purpose [20, 52].

In this appendix we present the complete classical stability analysis ofQ-balls in a number of spatial

dimensionsD, following the original work in [52]. In order to show the classical stability, we have to

adopt the Hamiltonian formalism, starting from the Lagrange formalism. Introducing collective coor-

dinates and concerning the zero-modes, we obtain all positive or zero eigenvalues for the fluctuations

around theQ-ball solution subject to the condition that the charge of theQ-ball should decrease as a

function ofω. Therefore, we can show that theQ-ball solutions are classically stable against linear

fluctuations.

Let us begin with perturbing the lowest energy solution,i.e.a soliton solution,σ(x−R(t)) with complex

fluctuationsχ(t, x − R(t)) = χR + iχI , whereR(t) is the location of the soliton and|χ| ∼ O(ǫ) ≪ σ.

Here,ǫ is a small quantity compared to the background fieldσ. Hence, the fieldφ

φ = e−iθ(t) (σ + χ) , (A.1)

whereσ satisfies theQ-ball equation Eq. (2.20). We can expandχ with a complete set of complex

functionsfn(x): χ =
∑∞

n=D+2 qn(t)fn(x) for n ≥ D + 2. Note thatqn(t) is a real function due

to the factorθ(t) in Eq. (A.1). We shall definefk ∝ ∂kσ andfD+1 ∝ σ for k = 1, 2, . . . , D with



qk = Rk(t), qD+1 = θ(t), so thatfi are orthonormal fori, j =1 to∞, i.e.
∫
f∗

i fj = δij , where we

defined
∫

≡
∫

VD
, see Eq. (2.6). By imposing the U(1) symmetry and the Lorentzinvariance for the

perturbed solution, we must have the conditions
∫
σχI = 0,

∫
χR∇σ = 0. (A.2)

A.1 The second-order variations with the Lagrange formalism

Using Eq. (A.1) and collective coordinates,qk = Rk(t) andqD+1 = θ(t), it is tedious but straightfor-

ward to express the lagrangian,L = K(q, q̇)−V (q), up to second order, where the kinetic and potential

terms are, respectively,

K =

∫
1

2
|φ̇|2 =

1

2
˜̇qiMij q̇j = K0 +K1 +K2 + . . . , (A.3)

V =

∫
1

2
|∇φ|2 + U(|φ|) = V0 + V1 + V2 + . . . . (A.4)

Here, a tilde denotes the inverse vectors of the original vectors. The components ofMij are

MD+1,D+1 =

∫ {
σ2 + 2σχR + χ2

R + χ2
I

}
,

Mkk′ = Mk′k =

∫
{∂kσ∂k′σ + 2∂kσ∂k′χR + ∂kχR∂k′χR + ∂kχI∂k′χI} ,

MD+1,k = Mk,D+1 =

∫
{−2χI∂kσ + χR∂kχI − χI∂kχR} ,

MD+1,n = Mn,D+1 =
1

2

∫
{i(fn − f∗

n)χR + (fn + f∗
n)χI} ,

Mkn = Mnk = −1

2

∫
{(fn + f∗

n)∂kχR − i(fn − f∗
n)∂kχI} ,

Mnn′ = Mn′n =

∫
f∗

nfn′ = δnn′ .

The matrixM can be expanded as a series of the infinitesimally small quantity ǫ,

M = M0(ǫ
0) + M1(ǫ

1) + M2(ǫ
2) + O(ǫ3) . . . , (A.5)

where

M0 =




S0 0 0

0 I 0

0 0 1


 , M1 =




A B J

B̃ C E

J̃ Ẽ 0


 , M2 =




F G 0

G̃ H 0

0 0 0


 . (A.6)

Here, we defined the matrices, column vectors, and scalars as

S0 = M0δkk′ , I =

∫
σ2,

A = 2

∫
∂kσ∂k′χR , B = 2

∫
χI∂kσ, C = 2

∫
σχR,

E = Mn,D+1 , J = Mkn,

F =

∫
∂kχR∂k′χR + ∂kχI∂k′χI , G = χI∂kχR − χR∂kχI , H =

∫
χ2

R + χ2
I ,
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whereM0 ≡ 1
D

∫
(∇σ)2 and the tildes are denoted as the inverse matrices (vectors)of the original

matrices (vectors) again. Therefore, the components ofK in Eq. (A.3) is given by

K0 =
1

2
q̃iM0ijqj , K1 =

1

2
q̃iM1ijqj , K2 =

1

2
q̃iM2ijqj . (A.7)

The potential terms in Eq. (A.4) can be also expressed by

V0 =

∫
1

2
(∇σ)

2
+ U(σ), (A.8)

V1 = ω2

∫
σχR, (A.9)

V2 =
1

2

∫ {
χR

(
−∇2 +

d2U

dσ2

)
χR + χI

(
−∇2 +

1

σ

dU

dσ

)
χI

}
, (A.10)

where we used|φ| ≃ σ+χR+
χ2

I

2σ +O(ǫ3) andU(|φ|) ≃ U(σ)+χR
dU
dσ +

χ2
I

2σ
dU
dσ +

χ2
R

2
d2U
dσ2 +O(ǫ3)+. . . .

A.2 The Hamilton formalism with canonical transformations

In order to consider the modes of the fluctuationsχ, it is useful to switch the Lagrange formalism to the

Hamiltonian formalism. Let us impose canonical transformations with Eq. (A.3) and Eq. (A.4), we then

obtain

pi =
∂L

∂q̇i
= Mij q̇j → q̇i = M−1

ij pj, (A.11)

wherepR = ∂L
∂χ̇R

∼ O(ǫ) andpI = ∂L
∂χ̇I

∼ O(ǫ) for n,m = D+2, D+3, . . . . Hence, the Hamiltonian

H(q, p) is given by

H = p̃iq̇i − L =
1

2
p̃iM−1

ij pj + V (q) = H0 +H1 +H2 + ..., (A.12)

which is independent ofqk andqD+1; thus, the Hamiltonian equations for the soliton momentaPk and

the chargeQ give conserved quantities:̇Pk = − ∂H
∂q̇k

= 0 andQ̇ = − ∂H
∂q̇D+1

= 0. In the centre of mass

frame1, we can set

Pk =
∂L

∂q̇k
:= 0, Q =

∂L

∂θ̇
= const. (A.13)

Using Eq. (A.5), the inverse matrix ofM can be expanded by

M−1 ≃ M−1
0 −M−1

0 ∆M−1
0 + M−1

0 ∆M−1
0 ∆M−1

0 + . . . . (A.14)

We obtain the kinetic terms in Eqs. (A.3, A.7) as

K0 =
1

2

(
Q2I−1

)
, K1 = −Q

2

I2

∫
σχR, (A.15)

K2 =
1

2

∑

n

{
p2

n − 2Q

I
(p̃nMn,D+1 + MD+1,npn) +

Q2

I2
|MD+1,n|2

}

+
Q2

2I2

{
1

M0

(
2

∫
χI∇σ

)2

+
1

I

(
2

∫
σχR

)2
}

− Q2

2I2

{∫
χ2

R + χ2
I

}
. (A.16)

1One can find the results in an arbitrary frame in [20].
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To ensure that the fluctuationχ is of order ofǫ, we set

H1 =
(
ω2 −Q2I−2

) ∫
σχR := 0 → Q = Iω, (A.17)

where we chose the positive sign for bothQ andω without loss of generality. UsingQ = Iω, we can

reduce Eqs. (A.8-A.10) and (A.15-A.16) to

H0 = DM0 + Iω, (A.18)

H2 =
1

2

∑

n

|pn − ωMD+1,n|2 + VR + VI , (A.19)

where

VR =
1

2

∫
χRĥRχR +

2ω2

I

(∫
σχR

)2

, (A.20)

VI =
1

2

∫
χI ĥIχI +

2ω2

M0

(∫
χI∇σ

)2

. (A.21)

Here, the differential operatorŝhR andĥI in Eq. (A.20) and Eq. (A.21) are defined by

ĥR = −∇2 +
d2U

dσ2
− ω2, (A.22)

ĥI = −∇2 +
1

σ

dU

dσ
− ω2. (A.23)

As a result, we found the second-order HamiltonianH2 in Eq. (A.19), with which we will be able to

examine the stability of the perturbations using the Hamiltonian equations.

A.3 Positive eigenvalues

In order to show the classical stability ofQ-ball solutions, we need to impose a condition for the charge

of theQ-ball, which implies all eigenvalues,ΛR andΛI , for VR andVI in Eqs. (A.20, A.21) should be

positive definite or zero. Those eigenvalues are given by

δVR

δχR
= ĥRχR +

4ω2

I
σ

(∫
σχR

)
= ΛRχR, (A.24)

δVI

δχI
= ĥIχI +

4ω2

S0
∇σ ·

(∫
∇σχI

)
= ΛIχI . (A.25)

Our first task is to show that̂hR has only one negative eigenvalue, and that the rest of them are all

positive or zero, whilst we will show that all eigenvalues ofĥI are positive definite or zero. Each

of the zero-modes should be treated with special efforts since these modes are translation and phase

invariant modes of theQ-ball solutions. Finally, we are able to prove that the fluctuations around the

Q-ball solution are of the usual harmonic oscillation form using the Hamiltonian equations subject to

the condition that the chargeQ of theQ-ball should monotonically decrease as a function ofω. This is

our main aim to prove from now on.
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A.3.1 Eigenvalues for̂hR and ĥI

LetψRi andψIj be the eigenstates ofĥR andĥI , such that

ĥRψRi = λRiψRi, ĥIψIj = λIjψIj , (A.26)

whereλRi andλIj are the corresponding eigenvalues.

A.3.1.1 One negative eigenvalue for̂hR

Here, we show that there is only one negative eigenvalue ofĥR. By differentiating Eq. (2.20) with

respect to∂k, we obtain the zero-eigenfunctions ofĥR,

ĥR∂kσ = 0. (A.27)

The eingenfunctions,∂kσ, come from the translational invariance,i.e.σ(x+η), whereη is a small quan-

tity which is responsible for the translation from theQ-ball solution. The eigenfunctions correspond to

p-states of̂hR, which have a number of spatial dimensionsD, i.e.ψRk ∝ ∂kσ. Since the lowest s-state

eigenvalue of̂hR must be lower than the lowest p-state eigenvalue, there exists at least one negative

eigenvalue of s-states forĥR whose corresponding eigenfunctions are s-wavesψi. These eigenfunctions

ψi will be used to obtain the positive eigenvaluesΛR for VR in the next subsection. Before doing so,

we have to be concerned with the eigenvalues forĥR andĥI in more detail.

Theorem : ĥR must have only one negative eigenvalue in order for VR ≥ 0.

Proof

If ĥR had two negative eigenvaluesλ−2 < λ−1 < 0 ≤ λ0, one can expandσ asσ = σ−1ψ−1+σ−2ψ−2

andχR = c−1ψ−1 + c−2ψ−2, where the under-indices are denoted as the corresponding eigenfunctions

and factors for the eigenvaluesλ−1, λ−2. Hence,VR in Eq. (A.24) becomes

VR =
1

2

(
c2−1λ−1 + c2−2λ−2

)
+

2ω2

I

(
c2−1σ−1 + c2−2σ−2

)2
, (A.28)

=
1

2

{(
c−2

σ−1σ−2

)2

λ−1 + c2−2λ−2

}
< 0, (A.29)

where without loss of generality we have setc−1 = − c−2

σ−1
σ−2 in the last step. The inequality holds due

to λ−2 < λ−1 < 0. The proof of the theorem is complete.

A.3.1.2 Positive and zero eigenvalues for̂hI

Next, we will show that all eingenvalues ofĥI are positive or zero. From Eq. (2.20) and Eq. (A.23), we

obtain

ĥIσ = 0, (A.30)

which leads to one zero s-state eigenfunction ofĥI : ψI0 ∝ σ. Sinceσ has no node [52], the other

eigenvalues of̂hI are positive definite.
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A.3.2 Positive and zero eigenvalues forVR and VI

Our next task is to establish that all eigenvalues ofVR andVI should be positive definite or zero,i.e.

ΛR ≥ 0, ΛI ≥ 0. (A.31)

Let ΨRi and ΨIj be the real eigenfunctions forVR andVI , respectively. Note thatΨRi and ΨIj

are orthonormal, namely
∫

ΨRiΨRj =
∫

ΨIiΨIj = δij . As one can expect, we obtain the zero-

eigenfunctions areΨRk ∝ ∂kσ andΨI0 ∝ σ.

First of all, let us considerVI in Eq. (A.21). We expandχI with a complete set ofΨIj with qIj ≡
Im(qj), which implies that

χI =
∑

j

qIjΨIj. (A.32)

Since the first and second terms of the RHS in Eq. (A.21) are positive definite, we obtainΛIj ≥ 0.

Recalling the translational invariance Eq. (A.2) and Eq. (A.23), we obtain the zero-eigenfunction,i.e.

ΨI0 ∝ σ with ΛI0 = 0, cf. Eq. (A.30).

Secondary, we will considerVR. We expandχR with a complete set ofΨRi except the s-stateqRj ≡
Re(qj):

χR =
∑

i

′
qRiΨRi. (A.33)

Here, a prime denotes the summation overi except zero-eigenvalue. Recalling the phase invariance

Eq. (A.2) and Eq. (A.27), we obtain the zero-eigenfunction,namelyΨRk ∝ ∂kσ with ΛRk = 0, where

we used Eq. (A.2) again, see Eq. (A.27). We can then express the energyE[f ] with a functionf =

σ + ǫΨR,

E[f ] = E0 + E2 + E3 + ... = E0 + ǫ2ΛR + O(ǫ3), (A.34)

whereE0 corresponds to the lowest energy solution,i.e. theQ-ball solution. Without s-state waves, we

obtainΛR ≥ 0.

By including the s-states ofΨRi, we will show the positivity ofΛRi, where we definez ≡ ΛRi.

We defineψi as a complete set of s-state eigenfunctions, which satisfiesthe the orthonormal relation,
∫
ψiψj = δij . Recalling that̂hRψi = λiψi whereλ1 < 0 < λ2 < . . . , we expandΨRi andσ in terms

of ψi with the amplitudes,ci andσi, i.e.

ΨRi =
∑

i

ciψi, σ =
∑

i

σiψi. (A.35)

Using Eqs. (A.35, A.24), we obtain

λj − z +

4ω2

I

∑

j

σ2
j


 cj = 0, (A.36)
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where we multipliedψj and integrated over the space in Eq. (A.24). Sincecj is arbitrary, the solutionz

for G(z), where

G(z) = 1 +
4ω2

I

∑

j

σ2
j

λj − z
= 0, (A.37)

corresponds to s-state eigenvalues ofΛRi.

Note that

dG

dz
> 0, lim

z→λj±
G(z) = ∓∞, λj < ΛRj < λj+1. (A.38)

Since it is required to haveΛR ≥ 0, we should impose that

λ1 < 0 ≤ Λ1 < Λ2 < .. ⇔ G(0) ≤ 0, (A.39)

whereG(0) = 1 +
4ω2

I

∑

j

σ2
j

λj
. (A.40)

We will now show thatG(0) = ω
Q

dQ
dω , which implies that we should have a monotonically decreasing

functionQ in terms ofω due toG(0) ≤ 0. Recalling Eq. (A.17), we obtain

δQ = Iδω + 2ω

∫
σδσ ⇔ ω

Q

∂Q

∂ω
= 1 +

2ω

I

∫
σ
∂σ

∂ω
. (A.41)

Differentiating Eq. (2.20) with respect toω, we obtain

ĥR
∂σ

∂ω
= 2ωσ. (A.42)

Multiplying
∑

iσi on the eigen-equation̂hRψi = λiψi, we then obtain

∑

i

ĥR
σi

λi
ψi = σ. (A.43)

By comparing Eq. (A.42) with Eq. (A.43), we find12ω
∂σ
∂ω ∝ ∑

i
σi

λi
ψi. By multiplying

∑
j σjψj , inte-

grating over space, and using the orthonormal relations, weobtain
∫
σ
∂σ

∂ω
= 2ω

∑

i

σ2
i

λi
. (A.44)

Using this, we finally obtain from Eq. (A.40)

G(0) = RHS in Eq. (A.41), (A.45)

=
ω

Q

∂Q

∂ω
, (A.46)

Hence, the chargesQ(ω) of Q-ball should decrease in terms ofω to satisfy Eq. (A.39). It follows that

the condition, Eq. (2.31), namely

ω

Q

dQ

dω
≤ 0, (A.47)

ensures that the eigenvalues in Eq. (A.24) are all positive or zero. It will turn out that Eq. (A.47) corre-

sponds to the classical stability condition forQ-ball solutions as we will see in the next section.

To sum up, we showed that the eigenvalues in Eqs. (A.24, A.25)are all positive or zero subject to the

condition Eq. (A.47).
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A.4 Harmonic oscillations

In this section, we show that the perturbations are of the usual harmonic oscillator form, which implies

that all of the frequencies of the perturbations should be real. In order to show this, we have to be

concerned with the kinetic term in the second-order HamiltonianH2 in Eq. (A.19) and consider the

Hamiltonian equations forH2. Let us construct the eigenfunctions excluding the zero eigenfunctions,

which we found in the previous sections. We then obtain

χR =
∑

i

′
qRi(t)ΨRi(x), χI =

∑

j

′
qIj(t)ΨIj(x). (A.48)

The canonical variables are

pR =




pR1

pR2

...


 , pI =




pI1

pI2

...


 , qR =




qR1

qR2

...


 , qI =




qI1

qI2

...


 . (A.49)

We then express Eq. (A.20) and Eq. (A.21) as

VR =
1

2
q̃RΛRqR, VI =

1

2
q̃IΛIqI , (A.50)

whereΛR andΛI are diagonal matrices. Hence,H2 in Eq. (A.19) becomes

H2 =
1

2
(p̃RpR + p̃IpI) +

1

2
q̃R(ΛR + ΓΓ̃)qR +

1

2
q̃I(ΛI + Γ̃Γ)qI

+ p̃RΓqI − p̃IΓ̃qR, (A.51)

whereΓ is a real matrix whose components are

Γij = −ω
∫

ΨRiΨIj . (A.52)

Introducing column vectors,P ≡


 pR

pI


 andQ ≡


 qR

qI


, we obtain the second-order Hamilto-

nian,

H2 =
1

2
P̃P +

1

2
Q̃∆Q + P̃ΞQ =

1

2

̃
 P

Q




 1 Ξ

Ξ̃ ∆




 P

Q


 , (A.53)

=
1

2
η̃


 1 Ξ

Ξ̃ ∆


 η, (A.54)

where we set∆ =


 ΛR + ΓΓ̃ 0

0 ΛI + Γ̃Γ


, Ξ = −Ξ̃ =


 0 Γ

−Γ̃ 0


, andη =


 P

Q


. Hence,

the Hamiltonian equation forH2 is

∂η

∂t
=


 Ξ −∆

1 Ξ


 η. (A.55)
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By imposing the normal mode solutionη = ηN ,

ηN (t) ∝ e−iΩN t, (A.56)

we will show that there exist only real solutions forΩN subject to the condition Eq. (A.47). The solu-

tionsΩN in Eq. (A.55) are the roots of the following quadratic equation,

−c1 + c2ΩN + Ω2
N = 0. (A.57)

Here,c1 andc2 are given by

c1 = R
†
N


 ΛR 0

0 ΛI


RN , c2 = R

†
N


 0 −2iΓ

2iΓ̃ 0


RN , (A.58)

whereRN is the coordinate column vector forηN , which satisfies the normalisation condition,R
†
NRN =

1. Then, the solutions of Eq. (A.57) are

ΩN =
1

2

[
−c2 ± (c22 + 4c1)

1/2
]
. (A.59)

Sincec1 is real and positive from Eq. (A.31) andc2 is real, we obtain real values ofΩN . Therefore,

Q-balls are classically stable against the spatial perturbations subject to the condition Eq. (A.47).
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Appendix B

An exact solution

In this appendix we will show that a Gaussian profile is an exact solution of theQ-ball equation in

Eq. (2.20) withUω = Ugrav − 1
2ω

2σ2, whereUgrav is defined in Eq. (2.25). Notice that the potential

Ugrav becomes negative fore1/2|K|M < σ; hence, the system is not bounded from below. The addi-

tional contribution from the non-renormalisable termUNR compensates the negative term and supports

the existence ofQ-balls in the system. Although the Gaussian exact solution is no longer a solution for

the full potentialUgrav +UNR in Eq. (4.1), the solution we will obtain here provides hintsin suggesting

a reasonable ansatz for the thick wallQ-ball as we will see in appendix C.

Let us consider the following Gaussian profile:

σsol(r) = ρω exp

(
−|K|m2r2

2

)
, (B.1)

where we will see thatm, M, and|K| are the same parameters as in Eq. (4.1) andρω will be shortly

determined in terms of the underlying parameters. By substituting Eq. (B.1) into the left-hand side of

Eq. (2.20) it leads to

Ugrav =
m2

2
σ2

(
1 − |K| ln

( σ
M

)2
)

(B.2)

and

ρω = M exp

(
D − 1

2
+

m2
ω

2|K|m2

)
, (B.3)

where we set the integration constant as zero. Recallm2
ω ≡ m2 − ω2. Note that the constantM has the

same mass dimension,(D − 1)/2, asσ so that the only physical case isD = 3. The profile, Eq. (B.1),

is an exact solution forUgrav with the “core” radiusRQ =
√

2/m2|K| [147], which is very large

compared withm−1 for small |K| ≪ O(1), and satisfies the boundary conditions forQ-balls, namely

σ′(0) = 0 = σ(∞) = σ′(∞), see chapter 2. In the extreme limitω ≫ m, we obtainρω → 0 for

|K| . O(1) which impliesσ0 ≡ σ(0) → 0. For largeσ, the potential becomes asymptotically flat,

tending towards an infinite negative value. By adding the non-renormalisable termUNR, the potential

Ugrav is lifted for largeσ in Eq. (4.1), then the full potentialUgrav + UNR is bounded from below, see



Sec. 4.2.1. We can see the ansatz given in [147] corresponds to the case whereρω ≃M , which is valid

only for |K| ≪ O(1) andω ≃ m, see Eq. (B.3).
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Appendix C

Gaussian ansatz in gravity-mediated

potentials

In this appendix, we will investigate the thick-wallQ-ball in gravity-mediated models by introducing

a Gaussian ansatz and keeping all terms in Eq. (4.3) as opposed to the analysis in Sec.4.2.3. By us-

ing this profile we can perform the Gaussian integrations, and will obtain the generalised results of

Eqs. (4.19, 4.20) in Sec. 4.2.3. The test profile for the case,ω & O(m), coincides with the solutionσsol

in Eq. (B.1), which implies that the nonrenormalisable termUNR in Eq. (4.1) is negligible.

To recap, the notation we have adopted in Eq. (4.3) isσ̃ = σ/M, ω̃ = ω/m, β2 is defined in Eq. (4.2)

and we are considering the case ofn > 2. To begin with we introduce a Gaussian ansatz inspired by

Eq. (B.1) for the potential Eq. (4.3)

σ̃(r) = λω exp(−κ2
ωr

2/2), (C.1)

whereσ̃0 ≡ σ̃(0) = λω = finite, andλω, κω will be functions ofω implicitly. λω should not be

confused with the coupling constantλ in Eq. (4.1). Bothλω andκω can be determined by extremising

the Euclidean actionSω; hence, the actual free parameter here will be onlyω. It is crucial to note that

λω cannot be infinite in the thick-wall limit since we know thatλω is finite and tending to 0. If the

nonrenormalisable termUNR is negligible, we can expectλω ∼ ρω/M ∼ σ̃−(ω) andκ2
ω ∼ |K|m2 due

to Eq. (B.1), which implies that the “core” radiusRQ of the thick-wallQ-ball isRQ ∼
√

2/m2|K|.
For the extreme thick-wall limitω ≫ m, we shall also confirmλω → 0, which means̃σ0 → 0.

By substituting Eq. (C.1) into Eq. (2.10) with the potentialEq. (4.3), we obtainQ andSω using the

following Gaussian integrations:ΩD−1

∫∞
0 drrD−1e−kr2

=
(

π
k

)D/2
for realk whereΩD−1 ≡ 2πD/2

Γ(D/2) .



Thus,

Q = M2πD/2ωλ2
ωκ

−D
ω , (C.2)

Sω = M2πD/2κ−D
ω [A(κω, λω) +B(ω, λω) + C(λω)] , (C.3)

where A(κω, λω) ≡ Dλ2
ω

4
(κ2

ω + |K|m2),

B(ω, λω) ≡ m2λ2
ω

2

(
1 − ω2

m2
− 2|K| lnλω

)
,

C(λω) ≡ m2β2λn
ω

(
2

n

)D/2

. (C.4)

Notice thatA(κω, λω) comes from the gradient term and the logarithmic term inSω and depends on

both κω andλω . Similarly, B(ω, λω) is given by the quadratic term in the potential Eq. (4.3) and

depends both onλω and explicitly onω, whereasC(λω) arises simply from the nonrenormalisable term

in the potential. An alternative (but in this case more complicated) approach to obtainQ would be the

use of Legendre transformations in Eq. (2.16).

By extremisingSω in terms of the two free parametersκω andλω :

∂Sω

∂κω
= 0,

∂Sω

∂λω
= 0, (C.5)

we obtain

A+B + C =
λ2

ωκ
2
ω

2
, A+B +

nC

2
=
m2λ2

ω|K|
2

, (C.6)

which implies that

κ2
ω

m2
= |K| − (n− 2)β2λn−2

ω

(
2

n

)D/2

≥ 0, (C.7)

where we have eliminated theA+B terms in the two expressions of Eq. (C.6). Using Eq. (C.7) andthe

second expression of Eq. (C.6), we obtain the relations betweenω andλω

ω2

m2
= 1 + |K| (D − 1 − 2 lnλω) +

2(n+D) − nD

2
β2λn−2

ω

(
2

n

)D/2

, (C.8)

∼





1 + |K|(D − 1 − 2 lnλω) for |K| ∼ O(1),

1 − 2|K| lnλω for |K| < O(1),
(C.9)

dλω

dω
= − λωω

|K|m2F
∼ − λωω

|K|m2
< 0, (C.10)

where we have differentiated Eq. (C.8) with respect toω to obtain Eq. (C.10) and have definedF as

F ≡ 1− (n− 2)2(n+D)−nD
4

β2

|K|λ
n−2
ω

(
2
n

)D/2
= 1+ 2(n+D)−nD

4|K|m2

(
κ2

ω −m2|K|
)
. Equations (C.7, C.8)

imply that bothκω andλω are functions ofω; however, these are not solvable in closed forms unless

the particular limits, which were introduced in Sect.4.2.3, are taken, as we will now show. Comparing

Eqs. (C.8, C.10) with Eqs. (4.14, 4.15), we can see an extra contribution ofO(|K|) in Eq. (C.8), which

is not present in Eq. (4.14). This difference of(D − 1)|K| arises because in calculating Eq. (C.8) we

have usedλω , whereas we have used̃σ−(ω) in obtaining Eq. (4.14), and although related they are not

precisely the same. In the extreme thick-wall limitω ≫ m, and from Eq. (C.8) this impliesλω → 0+
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(recall from Eq. (C.1) thatλω has to remain finite). Considering the nonrenormalisable term in Eq. (C.8),

the fact thatβ2 . |K| . O(1) andλω → 0+ with n > 2, implies that this term is subdominant and can

be ignored. As long asλω < O(1), thenF ∼ 1 and the second relation of Eq. (C.10) follows, which

implies thatλω is a monotically decreasing function in terms ofω. The limit λω ∼ O(1) corresponds

to ω & O(m), see Eq. (C.8). We will call this the “moderate limit” and represent it by ’∼’. The other

case,ω ≫ m (or equivalentlyλω ≪ O(1)), we shall call the “extreme limit” and represent it by ’→’.

Depending on the logarithmic strength of|K|, we can obtain Eq. (C.9), which leads to the approximate

expressions forλω and can also obtainκω from Eq. (C.7)

λω ∼





ρω/M for |K| ∼ O(1)

σ̃−(ω) for |K| < O(1)
→ 0;

κ2
ω

m2
∼ |K| → |K| for |K| . O(1), (C.11)

whereκω is independent ofω in both the “moderate” and “extreme” limits.

Using Eqs. (C.2, C.3) and Eq. (C.6), we obtain the characteristic slope in both the “moderate” and “ex-

treme” limits,

EQ

ωQ
= 1 +

κ2
ω

2ω2
∼ 1 +

m2|K|
2ω2

→ 1. (C.12)

In order to show their classical stability, we shall differentiateQ with respect toω using Eqs. (C.7, C.8)

and Eq. (C.10):

ω

Q

dQ

dω
= 1 − 2ω2

m2|K|F

[
1 − D(n− 2)

4κ2
ω

(
κ2

ω −m2|K|
)]
,

∼ 1 − 2ω2

m2|K| → − 2ω2

m2|K| < 0, (C.13)

d

dω

(
EQ

Q

)
= 1 − 1

2ω2

[
κ2

ω +
(n− 2)ω2

m2|K|F
(
κ2

ω −m2|K|
)]
,

∼ 1 − m2|K|
2ω2

→ 1 > 0, (C.14)

where we have taken the “moderate limit” and “extreme limit”and usedκ2
ω ∼ m2|K| andF =

1 + 2(n+D)−nD
4|K|m2

(
κ2

ω −m2|K|
)
∼ 1. The classical stability condition Eq. (C.13) is consistent with

Eq. (C.14), and is consistent with Eqs. (2.31, 2.32). This isdifferent from the result we obtained for

the polynomial potentials [see Eq. (3.41) in chapter 3], because in that case the Gaussian ansatz does

not give the exact solution unlike here in Eq. (C.1) where it does become the exact solution Eq. (B.1)

in both limits. The results, Eqs. (C.12, C.13) and Eq. (C.14), in both the “moderate” and “extreme”

limits recover the key results, Eqs. (4.19, 4.20), and are independent ofD; hence, the thick-wallQ-

balls for allD have similar properties. We can also see the small additional effects arising from the

nonrenormalisable term in Eqs. (C.13, C.14).

Let us summarise the important results we found in this appendix. By introducing a Gaussian test profile

Eq. (C.1) inspired by the exact solution Eq. (B.1) forUgrav, we computed the Euclidean actionSω and

the chargeQ using Gaussian integrations. Then, we extremisedSω in terms ofλω andκω in Eq. (C.5),

which gave the relations of bothλω andκω as a function ofω. By introducing two limits called “mod-

erate limit” and “extreme limit”, we confirmed that the ansatz, Eq. (C.1), approaches Eq. (B.1) in the
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“moderate limit”. We established that the results Eqs. (C.12, C.13) and Eq. (C.14) recovered the previ-

ous results in Eqs. (4.19, 4.20) which are obtained simply byreparametrising inSω and extracting the

explicit ω-dependence from the integral inSω with U = Ugrav where the nonrenormalisable term was

neglected at the beginning of the analysis by applying L’Hôpital rules.

In addition, we would like to emphasise the main differencesbetween our work and other earlier

analyses in the literature [147, 158]. The analytical framework adopted in [158] is valid only for

|K| = 1, D = 3, n = 4. Our work has shown that this can be generalised to arbitraryinteger

values ofD andn(> 2) under the conditionsβ2 . |K| . O(1), and that the thick-wallQ-ball can be

classically stable. In Sect.4.2.3, we also found that the thick-wallQ-ball may be absolutely stable under

certain additional conditions, Eq. (4.21). Furthermore, Enqvist and McDonald in [147] analytically ob-

tained the same “core” size of thick-wallQ-balls, although they obtained a slightly different value for

EQ/Q (see their Eq. (112)). The reason for this is because their ansatz assumedλω ≃ 1 in Eq. (C.1) by

simply neglecting the nonrenormalisable term, which implies that the third term ofB(ω, λω) and term

C(λω) in Eq. (C.4) are absent. Hence, their analysis is valid for|K| ≪ O(1) andω ≃ m, see Eq. (B.3).

We, however, have kept all the terms in Eq. (4.3) and used a more general ansatz, which can be applied

for |K| . O(1) andω & O(m) with the restricted coupling constant of the nonrenormalisable term

β2 . |K|. In summary, in this appendix we have extensively investigated analytically both the absolute

and classical stability ofQ-balls in Eq. (C.12) and Eq. (C.13).
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Appendix D

Perturbations on multiple scalar fields

In this appendix we obtain Euler-Lagrange equations for multiple scalar fieldŝϕa with a symmetric field

space metricGab(ϕ̂) = Gba(ϕ̂), following the notations in [214, 215]. Our aim is to obtain equations of

motion for the background homogeneous (zero-mode) fieldsϕa(t) and the perturbed fieldsδϕa(t,x) in a

fixed unperturbed background (Friedmann-Robertson-Walker)metric,gµν = diag(−1, a(t), a(t), a(t)),

wherea(t) is the scale factor andH = ȧ/a is the Hubble parameter. Here, an over-dot denotes the time-

derivative. As the simplest nontrivial example of the multiple scalar fields, we find equations of motion

for a complex scalar field̂φ ≡ σ̂eiθ̂ whereσ̂ andθ̂ are real scalar fields and the system possesses a U(1)

symmetry.

Let us start off with the following action

S =

∫
d4x

√−g
(
−1

2
gµνGab(ϕ̂)∂µϕ̂

a∂ν , ϕ̂
b − V (ϕ̂)

)
, (D.1)

whereg ≡ det(gµν) andV (ϕ̂) is a potential forϕ̂. By applying the action principle, we obtain the

Euler-Lagrange equation for̂ϕ

1√−g∂ρ

(√−ggρνGcb∂νϕ̂
b
)

=
1

2
gµνGab,c∂µϕ̂

a∂ν ϕ̂
b + V,c, (D.2)

and the energy momentum tensor

Tµν = Gab∂µϕ̂
a∂ν ϕ̂

b + gµν

[
−1

2
gρσGab∂ρϕ̂

a∂σϕ̂
b − V (ϕ̂)

]
. (D.3)

Here, we definedGab,c ≡ dGab

dϕ̂c , and so on. The energy density and pressure can be given byTµν [215]

ρE = −1

2
gµνGab∂µϕ

a∂νϕ
b + V (ϕ), (D.4)

p = −1

2
gµνGab∂µϕ

a∂νϕ
b − V (ϕ). (D.5)

By pertubing the fields aŝϕa = ϕa(t)+δϕa(t,x) where|ϕ| ≫ |δϕ|, the homogeneous part gives, from

Eq. (D.2),

D

dt
ϕ̇a + 3Hϕ̇a +GabV,b = 0, (D.6)



where the covariant derivative,D/dt, can be defined by the “Christoffel symbols”γa
bc ≡ 1

2G
ad×

(Gdc,b +Gdb,c −Gbc,d); thus,D
dt ϕ̇

a ≡ d
dt ϕ̇

a+γa
bcϕ̇

bϕ̇c. On the other hand, we can obtain the equations

of motion for the pertubed fieldsδϕ from Eq. (D.2)

D2

dt2
δϕa + 3H

D

dt
δϕa −

(∇
a

)2

δϕa − γa
bcdϕ̇

bϕ̇cδϕd + (V ;a);dδϕ
d = GabGbc,dG

ceV,eδϕ
d, (D.7)

where we usedDdtδϕ
a = δϕ̇a + γa

bcϕ̇
bδϕc, defined the “Riemann tensors” asγa

bcd ≡ γa
bd,c − γa

bc,d +

γa
ceγ

e
bd − γa

deγ
e
bc, and denoted the covariant derivative as the usual notion′;′. Notice that we used

V,b ≡ ∂V
∂ϕ̂b (ϕ̂) ≃ ∂V

∂ϕ̂b (ϕ̂)
∣∣∣
ϕ

+ δϕc ∂2V
∂ϕ̂b∂ϕ̂c

∣∣∣
ϕ

+ . . . .

When the system has aO(2) ∼ U(1) symmetry forϕ̂a =
(
σ̂, θ̂

)
and a flat field metric isGab =

diag(1, σ̂2), we can obtainγ1
22 = −σ̂; γ2

12 = γ2
21 = 1/σ̂. We then induce Eq. (D.6) with a potential

V (σ) to

σ̈ + 3Hσ̇ − σθ̇2 +
dV

dσ
= 0, (D.8)

θ̈ + 3Hθ̇ +
2

σ
σ̇θ̇ = 0. (D.9)

Here, the third term in Eq. (D.8) corresponds to “centrifugal force” due to a spin in the field space,

and the third term in Eq. (D.9) corresponds to the “Colliori force”. In addition, the energy density and

pressure can be given by from Eqs. (D.4, D.5)

ρE =
1

2

(
σ̇2 + σ2θ̇2

)
+ V, p =

1

2

(
σ̇2 + σ2θ̇2

)
− V. (D.10)

Furthermore, Eq. (D.7) gives

δ̈σ + 3H ˙δσ −
((∇

a

)2

+ θ̇2 − d2V

dσ2

)
δσ − 2σθ̇δ̇θ = 0, (D.11)

δ̈θ +

(
3H +

2σ̇

σ

)
δ̇θ −

(∇
a

)2

δθ +
2θ̇

σ2

(
σ ˙δσ − σ̇δσ

)
= 0. (D.12)

We use Eqs. (D.8, D.9) to concern the orbits of AD condensatesin Sec. 5.2, and use Eqs. (D.11, D.12)

to investigate the linear spatial instability of the condensates in Sec. 5.3.
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Appendix E

The orbit of an Affleck-Dine “planet”

In this appendix, we obtain an exact orbit form in a quadraticpotential case when the Hubble expansion

is assumed to be small and adiabatic. The orbit of an AD field, or more precisely an eccentricity of the

elliptic motion in the complex field-space, is determined bythe initial charge and energy density. In

order to obtain analytic expressions of the orbit in more general potential cases in which we are more

interested, we restrict ourself to work in Minkowski spacetime and on the orbit which should be nearly

circular. We then obtain the perturbed orbit equation and necessary conditions for closed orbits, where

the orbits come back to their original positions after some rotations around the minimum of the effective

potential. By including the effects of the Hubble expansion, in Sec. 5.2.2 we shall introduce ansätze,

which are inspired by our solutions obtained in Minkowski spacetime. Our numerical results support

the ansätze, assuming that the rotation frequencyW is always much greater than the Hubble expansion

H [185].

E.1 The exact orbit in an expanding universe

The exact orbit expressions of an AD field in an expanding universe can be obtained with a quadratic

potential,

V =
M2

2
σ2 =

M2

2

(a0

a

)3

σ̃2, (E.1)

whereM is a mass of the fieldφ and we have rescaled the fieldσ, σ(t) =
(

a0

a(t)

)3/2

σ̃(t). From now

on, we solve the orbit equations, Eq. (5.6), forσ̃(t) at first, and then solve them for̃u(θ), replacing the

time-dependence iñσ(t) by a phase variableθ. We then show that the orbits for̃σ(t) andũ(θ) are of

the usual elliptic forms with a third eccentricityε2.



E.1.1 The orbit for σ̃(t)

In this subsection we obtain an expression for the orbitσ̃(t) with the quadratic potential Eq. (E.1) by

solving Eq. (5.6). Substituting Eq. (E.1) into Eq. (5.6) andignoring the terms involvingH2 and ä/a,

we obtain

¨̃σ −
ρ̃2

Q

σ̃3
+M2σ̃ = 0 ⇔ dρ̃E

dt
= 0, (E.2)

whereρ̃E ≡ 1
2

(
dσ̃
dt

)2
+ 1

2M
2σ̃2 +

ρ̃2
Q

2σ̃2 6= a−3
0 ρE , which is approximately conserved. Since1

2
d2

dt2 (σ̃2) =

˙̃σ2 + σ̃ ¨̃σ = 2ρ̃E − 2M2σ̃2, Eq. (E.2) leads to a harmonic oscillator form,

d2

dt2
(σ̃2) = −4M2

(
σ̃2 − ρ̃E

M2

)
(E.3)

whose solution is

σ̃2(t) =
ρ̃E

M2
+A cos [2M(t+ t0)] , (E.4)

=
ρ̃E

M2

(
1 + ε2 cos [2M(t+ t0)]

)
. (E.5)

Here,B is some constant value and we sett0 as a time when the AD field starts to rotate. We have

also defined a third eccentricityε2 ≡ AM2

ρ̃E
=

σ̃2
max−σ̃2

min

σ̃2
max+σ̃2

min
, where the apocentral and pericentral points

are, respectively, given bỹσ2
max ≡ ρ̃E

M2 + A andσ̃2
min ≡ ρ̃E

M2 − A. Notice that the circular orbit case

corresponds toε2 = 0, which implies that̃σ2
max = σ̃2

min, and also note that the eccentricity is real and

has a value between 0 and 1 in the present quadratic potential1.

We can obtain the periodτ of this orbit,

τ =
π

M
. (E.6)

Substituting Eq. (E.4) intõρE , we obtainA =

√
ρ̃2

E−M2ρ̃2
Q

M2 . From the above expressions forε2 andA,

we can obtainMρ̃Q

ρ̃E
=

√
1 − ε4. Using this and Eq. (E.4), it ends up with

θ̇(t) =
ρ̃Q

σ̃2
=

M
√

1 − ε4

1 + ε2 cos [2M(t+ t0)]
. (E.7)

For the circular orbits withε2 = 0, θ̇ is time-independent as we can expect, and the ratio,ρ̃E/(Mρ̃Q),

is unity. While for the radial orbits withε2 = 1, we obtainθ̇ = 0 andρ̃E/(Mρ̃Q) ≫ 1 as expected.

E.1.2 The orbit for ũ(θ) = σ̃−1(θ)

What follows is that we express̃σ(t) as a function ofθ by using the second expression in Eq. (5.6) and

Eq. (E.4). We then obtain

tan(θ − θ0) =
σ̃min

σ̃max
tan (M(t+ t0)) , (E.8)

1In an inverse-squared central force, the first eccentricitycan be larger than equal 1, which corresponds to the cases where the

orbits are parabola or hyperbola.
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whereθ0 is an integration constant and we used the following integral formula,
∫

dx
a1+a2 cos x = 2√

a2
1−a2

2

×

Arctan

(
(a1−a2) tan( x

2 )√
a2
1−a2

2

)
with some real valuesa1 anda2. Without loss of generality, we can choose

t0 = θ0 = 0, which implies that the orbit att = 0, τ/2 gives, respectively,θ = 0, π/2, recalling

Eq. (E.6). By comparing Eq. (E.4) to Eq. (E.8), we obtain

σ̃2(θ) =
σ̃2

maxσ̃
2
min

σ̃2
min cos2 θ + σ̃2

max sin2 θ
, (E.9)

⇔ ũ2(θ) =
1

σ̃2
=

cos2 θ

σ̃2
max

+
sin2 θ

σ̃2
min

, (E.10)

=
σ̃2

max + σ̃2
min

2σ̃2
maxσ̃

2
min

(
1 − ε2 cos(2θ)

)
. (E.11)

Hence, we can see thatθ = 0 whenσ̃ = σ̃max andθ = π/2 whenσ̃ = σ̃min. Finally, we obtain the

expressions for the orbits as the usual elliptic forms in Eqs. (E.5, E.11). For the circular orbitsε2 = 0,

we can obtaiñu2 = const. from Eq. (E.11) as expected.

E.2 The nearly circular orbits in Minkowski spacetime

Without the Hubble expansion, we can investigate a nearly circular bounded orbit of an AD field in gen-

eral potentials which satisfy Eq. (5.5). For this reason, weconcentrate on the case of a non-expanding

background in this section, and obtain a time-dependent expression for the nearly circular orbits as in

Eq. (E.5). We then find the expression that depends on the phaseθ as in Eq. (E.10). Moreover, we obtain

conditions for closed orbits, in which the perturbations are expanded up to 1st order (for the complete

proof of the condition up to 4th order, see appendix F for Bertrand’s theorem [217]).

E.2.1 The orbit for σ(t)

In Minkowski spacetime, we can find an expression for the orbit σ(t) in a general potentialV (σ) as

in Eq. (E.5). Notice that the tilde variables are the same as un-tilde ones in the present non-expanding

background. Recall the equation of motion, Eq. (5.1), in Minkowski spacetime,

σ̈ +
dV+

dσ
= 0. (E.12)

Suppose that the orbit that is nearly circular asσ(t) = σcr + δ(t) whereσcr ≫ |δ|, recallingσcr is

defined by Eq. (5.4). Substituting this expression forσ into Eq. (E.12) and keepingδ terms up to 1st

order, we obtain a harmonic oscillator form

δ̈ +W 2δ = 0, (E.13)

where the readers should recall the condition, Eq. (5.5), for the bound orbits, andW is constant since

we are working in Minkowski spacetime.

Thus, the solution of Eq. (E.13) is

δ(t) = σcrB cos(Wt), (E.14)
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whereB is a small positive dimensionless constant, i.e.B ≪ 1 due toσcr ≫ |δ|, and we have set the

differentiation constant to be0 to ensure thatσ(0) = σmax. We find thatσmax = σcr(1 + B), σmin =

σcr(1 − B), andσmaxσmin ≃ σ2
cr

(
1 + O(B2)

)
. These giveB = σmax−σmin

σmax+σmin
, σcr = σmax+σmin

2 ,

and2B ≃ σ2
max−σ2

min

σ2
max+σ2

min
= ε2, where we have used the definition of the third eccentricity.We can check

that the condition,2B ≃ ε2 ≪ 1, is consistent with the fact that the orbit is nearly circular. Since

σ̇max = σ̇min = 0 andρE is constant, we can equateB with ρE andρQ using Eqs. (E.14, 5.5):

B =

√
2(ρE − V+(σcr))

W 2σ2
cr

= σcr

√
2(ρE − V+(σcr))

(σ4V ′′)|σcr
+ 3ρ2

Q

≃ ε2

2
≪ 1, (E.15)

where a prime denotes the differentiation with respect toσ. Finally, we obtain

σ2(t) = σ2
cr

(
1 + ε2 cos(Wt) + O(ε4)

)
, (E.16)

whereW is given by Eq. (5.5) [compare with Eq. (E.5)]. Now, we can define the periodτ

τ =
2π

W
, (E.17)

which reproduces Eq. (E.6) as the case withW = 2M . Using Eqs. (5.2, 5.4), we can also find

θ̇ ≃

√
V ′/σ|σcr

1 + ε2 cos (Wt)
. (E.18)

Using Eq. (5.3), let us compute the pressure of this AD condensate whose orbit is described by Eq. (E.16).

By expandingV−(σ) aroundσ = σcr and using Eq. (E.16), we obtainV−(σ) ≃ V−(σcr)+
ε2ρ2

Q

σ2
cr

cos (Wt)+

ε4σ2
cr

8

(
W 2 − 6ρ2

Q

σ4
cr

)
cos2 (Wt)+ . . . ,where we have assumed that the higher order terms inV− are neg-

ligible. Therefore,

p ≃ W 2σ2
crε

4

8

(
1 − 2 cos2 (Wt)

)
− V (σcr) +

ρ2
Q

2σ2
cr

(
1 − 2ε2 cos (Wt) +

3

2
ε4 cos2 (Wt)

)
,

⇔ 〈p〉 ≃ −V (σcr) +
ρ2

Q

2σ2
cr

. (E.19)

Here, we have defined an averaged value over one rotation in the orbit, Eq. (E.16), namely〈X〉 ≡
1
τ

∫ τ

0 dtX(t) whereX is some quasi-periodic quantity andτ is determined by Eqs. (E.17, 5.5). The

result, Eq. (E.19), can be easily understood by the fact thatthe averaged pressure corresponds to the

value atσ = σcr since the orbit oscillate aroundσcr andσ̇cr = 0, c.f. a real scalar field case [185].

Similarly, we can obtain the averaged energy density

〈ρE〉 ≃ V (σcr) +
ρ2

Q

2σ2
cr

+
W 2σ2

crε
4

16
, (E.20)

where we have kept the contribution from the term involvingε4. Hence, the averaged equation of state

is given by

〈w〉 ≡
〈
p

ρE

〉
=

ρ2
Q

2σ2
cr

− V (σcr)

ρ2
Q

2σ2
cr

+ V (σcr) +W 2σ2
crε

4/16
. (E.21)
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E.2.2 The orbit for u(θ) = σ−1(θ)

In order to obtain aθ-dependent expression of the orbit as Eq. (E.10), let us switch the variableσ to

u(θ) ≡ 1/σ(θ). In Minkowski spacetime, where we can again drop the tilde variables here, the orbit

equation Eq. (5.7) is

d2u

dθ2
+ u = − 1

ρ2
Q

dV

du
≡ J(u). (E.22)

Let u0, which is independent ofθ, be the value of a circular orbit (i.e.u0 ≡ 1/σcr). We then consider

an orbitu(θ) that deviates slightly fromu0 with a fluctuationη(θ), i.e. u = u0 + η, whereu0 ≫ |η|.
Since du0

dθ = 0 = d2u0

dθ2 , Eq. (E.22) implies thatu0 = J(u0). By expandingJ(u) aroundu = u0, we

obtainJ(u) ≃ u0 + η dJ
du

∣∣
u0

+ . . . , where we are evaluating the derivatives atu0. Hence, we can obtain

the perturbed orbit equation forη(θ)

d2η

dθ2
+ β2η = 0, (E.23)

whereβ2 ≡ 1 − dJ
du

∣∣
u0

which should be positive for bounded orbits. Note that this condition,β2 > 0,

is equivalent to the previous condition, Eq. (5.5), since

β2 =
σ4

cr

ρ2
Q

W 2 =
3V ′ + σV ′′

V ′

∣∣∣∣
σcr

, (E.24)

where we used the factV ′ =
ρ2

Q

σ3 atσ = σcr from Eq. (5.4). The solution of Eq. (E.23) is

η = u0C cos(βθ + θ0), (E.25)

whereC andθ0 are constants, and0 < C ≪ 1 due to the fact thatu0 ≫ |η|. We can then showC = B

by equating the value ofC with ρQ andρE . Substitutingu into ρE and expandingV (u) aroundu = u0

up to second order, we can find

C =
1

u0

√√√√
2(ρE − V+(1/u0))
d2V (1/u)

du2

∣∣∣
u0

+ ρ2
Q

= B ≃ ε2

2
, (E.26)

where we useddV+(u)
du

∣∣∣
u0

= dV (u)
du

∣∣∣
u0

+ ρ2
Qu0 = 0 from Eq. (5.4). The relation,C = A, is obtained

by changing the variableu back toσ [compare Eq. (E.26) with Eq. (E.15)].

Let us chooseθ0 = π in Eq. (E.25), then we obtain

u = u0 (1 − C cos(βθ)) , (E.27)

u2 ≃ u2
0

[
1 − 2C cos(βθ) + O(C2)

]
. (E.28)

Notice that0 < C ≪ 1 which is consistent with the condition for nearly circular orbits ε2 ≪ 1, as

we have seen in appendix E.2.1 and Eq. (E.26). We can also find thatσmax = σcr

1−C for βθ = 0 and

σmin = σcr

1+C for βθ = π.

To show that the orbitu(θ) in Eq. (E.28) has a similar form as Eq. (E.11), let us compute the following

relations:σ2
max + σ2

min ≃ 2σ2
cr

(
1 + O(C2)

)
, σ2

max − σ2
min ≃ 4σ2

crC (1 + O(C)) andσ2
maxσ

2
min ≃
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σ4
cr

(
1 + O(C2)

)
. Hence, we obtainu2

0 ≃ σ2
max+σ2

min

2σ2
maxσ2

min
and2C ≃ ε2, which imply that Eq. (E.28) is of

similar orbit form as Eq. (E.11). As we computed going from Eq. (E.10) to Eq. (E.11), where for this

case we deduce Eq. (E.11) from Eq. (E.10), we finally obtain

u2 ≃ cos2 β
2 θ

σ2
max

+
sin2 β

2 θ

σ2
min

. (E.29)

In the next subsection, we obtain the conditions for closed orbits using Eq. (E.29) [216].

E.2.3 Conditions for closed orbits and equations of state

Let us define an angleΦ, which is the phase difference as the orbit goes fromη = u0C to η = −u0C,

Φ ≡ π

β
= π

√
V ′

3V ′ + σV ′′

∣∣∣∣
σcr

, (E.30)

where we used Eq. (E.24). For closed orbits, the angle must have the value that isπ multiplied by

a rational number, i.e.Φ = π r
q whereq, r ∈ Z; therefore,β should be the rational number. In

order to obtain theσ-independent value forΦ, the potentials can be of the forms,M2σl

2 (+const.),

m4
φ ln (σ/mφ)

2
(+const.), and etc. Here,M andmφ are constant real values, and we should have

l < −2, 0 < l for bound orbits, whereas we may have−2 < l < 0 for bound orbits whenM2 < 0,

recalling Eq. (5.5). The constant terms in the potentials add an extra energy for the orbits, and it does

not play a significant role, so that we consider the potentials without the constant terms. The former

power-law potential case,V = M2σl

2 , gives

Φ =
π√
l + 2

, (E.31)

which implies that the closed orbits exist forl = (−1), 2, 7, . . . . Using Eqs. (E.19, E.20) and

Eq. (5.5), we obtain

〈p〉 ≃ (l − 2)M2σl
cr

4
, 〈ρE〉 ≃

(l + 2)M2σl
cr

4
, W 2 =

l(l + 2)M2σl−2
cr

2
, (E.32)

which implies that the bound orbits of the AD condensate has anegative pressure forl < 2. In the

computation ofρE , Eq. (E.20), we safely ignored theε4 term. We note that the bound orbits forl =

(−1, ) 2 are closed. For the quadratic potential casel = 2, the averaged pressure is zero, in which the

AD condensate corresponds to an example of nonrelativisticcold dark matter [185]. In addition, using

Eqs. (E.21, E.32) we can find

〈w〉 ≃ l − 2

l + 2
. (E.33)

On the other hand, the latter logarithmic potential case,m4
φ ln (σ/mφ)2, leads to

Φ =
π√
2
∼ 2π

3
, (E.34)

which corresponds to the former power-law case withl = 0. Similarly, using Eqs. (E.19, E.20) and

Eq. (5.5), we obtain

〈p〉 ≃ m4
φ

(
1 − 2 ln

σcr

mφ

)
, 〈ρE〉 ≃ m4

φ

(
1 + 2 ln

σcr

mφ

)
, W 2 =

4m4
φ

σ2
cr

, (E.35)
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which implies that the AD condensate has a negative pressurefor σcr > mφ exp
(

1
2

)
. In the computation

of ρE , Eq. (E.20), we safely ignored theε4 term again. Using Eqs. (E.21, E.35), we obtain

〈w〉 ≃
1 − 2 ln

(
σcr

mφ

)

1 + 2 ln
(

σcr

mφ

) . (E.36)

In Eq. (E.35), we cannot clearly see the correspondence withthe case forl = 0, but we can findW 2 ≃ 0

and〈w〉 ≃ −1 formφ ≪ σcr as the case withl = 0.

Let us comment on the pressure when the AD orbit is exactly radial, which corresponds to the zero-

charge density case as for real fields [185]. In this case, thefield σ(t) coherently oscillates around the

vacuum if the potential follows a power-law, i.e.V ∝ σl for l > 1, and〈w〉 has the same expression as

Eq. (E.33), but it gives a negative pressure for1 < l < 2. Note that the lower bound ofl ensures to be a

coherent oscillation for the radially oscillating AD fieldsand real scalar fields.

In summary, we have obtained analytically the explicit expressions, Eqs. (E.5, E.11), for the orbit of the

AD fields in a quadratic potential under an expanding universe, and approximately obtained the elliptic

orbit expressions, Eqs. (E.16, E.29), for nearly circular orbits in Minkowski spacetime in potentials

which satisfy the condition Eq. (5.5) for bound orbits.
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Appendix F

Proof of Bertrand’s theorem

In Bertrand’s theorem [217], there are only two allowed potential forms for closed ”planetary” orbits:

isotropic harmonic force and inverse-squared force. Each of the central forces gives dynamical sym-

metries: the Fradkin tensor [218] and Runge-Lenz vector [219, 220, 221, 222, 223, 224], respectively.

These dynamical charges are obtained both classically using the algebra of Poisson bracket [225] and

quantum-mechanicallyusing the corresponding Lie algebrain the abelian case [226] and the non-abelian

case [227]. In this appendix we prove Bertrand’s theorem with the consistent notations with ones for

the orbits in the AD fields obtained in Appendix E.

In order to show Bertrand’s theorem in the abelian case and the Minkowski spacetime [228], we expand

an elliptic orbit perturbed from the circular orbit up to 4thorder, and show that the allowed values of

β2 defined in Eq. (E.24) are only1 and4, which correspond to the above two types of potentials,i.e.

isotropic harmonic force and inverse-squared force.

Recalling thatρQ = σ2θ̇ andρE = 1
2 σ̇ + V+, whereV+(σ) ≡ V (σ) + ρ2

Q/2σ
2, we obtainσ̇ =

√
2(ρE − V+) > 0. For the motion ofσ(t) going fromσmin, throughσcr, and toσmax, by recalling

Eq. (E.30) we can obtain,

2Φ = 2

∫ Φ

0

dθ =

∫ σmax

σmin

dσ
2ρQ

σ2
√

2(ρE − V+)
, (F.1)

=
√

2ρQ

∫ ρE

V0

dV+
f(V+)√
ρE − V+

, (F.2)

where we split the integration into two parts, i.e.
∫ σcr

σmin
+
∫ σmax

σcr
, and then changed the integration

variable fromσ to V+. Here, we definedf(V+) ≡ d
dV+

(
1
σ1

− 1
σ2

)
, whereσ1 = σcr − x andσ2 =

σcr + y, and we assumed that the orbit is “nearly” circular, i.e.σcr ≫ x, y > 0. RecallΦ = π/β in

Eq. (E.30) whereβ should be a rational number for closed orbits as we found in the linear perturbation

analysis in Appendix E.2.3. Sincef(V+) is an Abel’s equation [229], by multiplying1/
√
V̄+ − ρE on

both sides of Eq. (F.2), wherēV+ is some value ofV+, and then by integrating it overρE from V (σcr)



to V̄+, we obtain

1

σ1(V+)
− 1

σ2(V+)
=

2
√

2

βρQ

√
V+ − V (σcr), (F.3)

where we changed the order of the integrations, used the formula
∫ dy√

(y−a1)(a2−y)
= 2Arctan

(√
y−a1

a2−y

)
,

and finally replaced the variablēV+ by V+. By taking the square of Eq. (F.3), we obtain

(
1

σ1(V+)
− 1

σ2(V+)

)2

=
8

β2ρ2
Q

(V+ − V0) . (F.4)

Consider the RHS of Eq. (F.4) by expandingV+ aroundσ = σcr up to 4th order ofx andy. Recalling

thatσ1 = σcr − x andσ2 = σcr + y, whereσcr ≫ x, y > 0, we obtain

V+ − V (σcr) =
x2

2
V

(2)
+ (σcr) −

x3

6
V

(3)
+ (σcr) +

x4

24
V

(4)
+ (σcr) + O(x5), (F.5)

=
y2

2
V

(2)
+ (σcr) +

y3

6
V

(3)
+ (σcr) +

y4

24
V

(4)
+ (σcr) + O(y5), (F.6)

whereV (2)
+ (σcr) ≡ d2V+

dσ2

∣∣∣
σcr

, V
(3)
+ (σcr) ≡ d3V+

dσ3

∣∣∣
σcr

, and so on. It implies that we can equatex with

y such thatx = y(1 + cy + dy2 + O(y3)) with real values,c andd. By substituting this expression for

x into Eq. (F.5) and comparing it to Eq. (F.6) for each orders ofy, it leads to

c =
V

(3)
+ (σcr)

3V
(2)
+ (σcr)

; d = c2. (F.7)

For the LHS of Eq. (F.4), we again expandσ1, 2 up to 4th order ofy, put the results together into LHS

of Eq. (F.4), and then compare between the LHS and RHS of Eq. (F.4) for each orders ofy. Thus, we

obtain

β2 =
σ4

ρ2
Q

V
(2)
+ (σcr); 5c2 + 8

(
1

σ2
cr

+
c

σcr

)
=

V
(4)
+ (σcr)

2V
(2)
+ (σcr)

, (F.8)

where the first relation corresponds to Eq. (E.24). Equation(F.8) implies that the potentials should have

the following restricted form:V (σ) = M2

2 σβ2−2 + Λ1σ + Λ0, whereM andΛ0, 1 are constants. The

constraint from Eq. (E.30) implies thatΛ1 = 0 since the angleΦ should be independent ofσ for closed

orbits. Using Eq. (F.8) and the factV (1)
+ (σcr) = 0 in Eq. (5.4), we finally obtain

β2 = 1, 4. (F.9)

Hence, the proof of the theorem is complete. We can obtain non-perturbatively the exact orbit expres-

sions for the cases ofβ2 = 1, 4, see [230].
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