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Abstract

In this thesis we investigate the stationary propertiesfandation process of a class of nontopological
solitons, namelyQ-balls. We explore both the quantum-mechanical and clalsstability of Q-balls
that appear in polynomial, gravity-mediated and gaugetated potentials. By presenting our detailed
analytic and numerical results, we show that absolutelylstaon-thermat)-balls may exist in any
kinds of the above potentials. The latter two types of paddnare motivated by Affleck-Dine baryoge-
nesis, which is one of the best candidate theories to sot/pribsent baryon asymmetry. By including
guantum corrections in the scalar potentials, a naturallynéd condensate in a post-inflationary era
can be classically unstable and fragment igtdballs that can be long-lived or decay into the usual
baryons/leptons as well as the lightest supersymmeridictest This scenario naturally provides the
baryon asymmetry and the similarity of the energy densitwben baryons and dark matter in the Uni-
verse. Introducing detailed lattice simulations, we artiae the formation, thermalisation and stability
of these-balls depend on the properties of models involved with ssypametry breaking.
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FIG. 1: Ring formation after the collision of a pair ¢f-balls [1].

“What one man can invent, another can discover”

— Sherlock Holmes.



Chapter 1

Introduction

1.1 The Standard Model to the theory of supersymmetry

All of the complexities around us come from the mixtures ofnpnaimple events. With this belief,
theoretical particle physicists have developed our utidieding on the extremely small scales of physics
(around the size of atoms and even smaller scales). Almiost tile theoretical predictions have been
supported well by the experimental results to date, and newmwow that the Standard Model (SM) is
the fundamental theory to understand the dynamics of ele@aneparticles, like photons and protons.
In the SM, the simplicities are symmetries, such that a figdrided person sees the left-handed person
in a mirror. The SM in particle physics consists of the migiof the three independent groups of the
symmetries, each of which can describe one of the four furedéahforces (electromagnetic, weak and
strong forces) except gravity. The most familiar one amdrant might be the electromagnetic force
generated through the exchange of photons; for instaneetrehically positive charged objects repel
each other where photons (massless gauge bosons) are kethenmaediators to generate the repulsion
force. Similarly, the two other forces come from the exchemngf the corresponding mediators.
W+ andZ (massive gauge) bosons and gluons. These mediators inglptotons are named as gauge
bosons, each of which has its own strength (coupling). Wthiéestrong force tightly binds protons and
neutrons together, the weak force is involved in radioaatigcay. Both forces work only in an atom
scale, but the strength of the weak force is smaller than tieeod the strong force by a factor ®6°;

in fact, the weak force i20%? times stronger than the gravitational force, which worksiminfinite

distance range, like the electromagnetic force.

Under the conjecture that the physics above some energy sisauld be described by one symmetry
group parameter, Glashoet al. successfully unified the two symmetry groups for electronegig
and weak forces by introducing the higher (electroweak)ragtny group [2, 3]. The energy scale
of this unified theory (hereafter, the electroweak theosyauiound a fewl0? GeV, below which the

unified electroweak symmetry inevitably breaks down. Thismetry-breaking mechanism requires



hypothetical objects, Higgs bosons [4], which give risehe masses of both weak gauge bosons and
other elementary particles, namely quarks and leptonssetieeoretical accomplishment in the SM
have been in good agreement with the independent expesmdf®, HERA, and Tevatron run-1 & -Il;

typically, the different massive weak gauge bosons weréweeffied in high precision.

Despite the agreement with these extensive experimert§Nhhas still several shortcomings. Higgs
bosons have not yet been found, and the detection of theselgsis still an active research field.
Without Higgs bosons, there are no appealing explanatidnstiie weak gauge bosons have nonzero
masses. Moreover, the quantum corrections to the Higgs beassme quadratically divergent unless
the divergence is canceled out (renormalisation). Thidlera is known as théierarchy problem
Furthermore, the SM contains far too many parameters to bsistent with the observations in the
sense of beauty. Theoretical high energy physicists lediglhat the physics above the electroweak
scale should also unify the strong force. It implies that weld merge the strong force and electroweak
interactions into the one theory known as the Grand Unifiegofies (GUTS). Independently, Einstein

attempted to unify the electromagnetic force with gravitimately.

Can we actually unify the theory of the strong force and tkeetebweak theory at the high energy scale?
The three different gauge strengths for electromagnetekwand strong forces are determined by the
ways of the divergence cancellations. Unfortunately,flhe strengths do not meet each other precisely
atthe GUTs energy scale (10'®> GeV). How about the unification to gravity? This problem isited to

the hierarchy problem. The SM cannot include the theory a¥igy since the quantum effects on gravity
give unavoidable infinitied,e. nonrenormalisabilitites. The energy scale, at which bathngum and
gravitational effects are equally significant, is expedtetde around the Planck scale (10'° GeV),
and it is is far beyond the electroweak scale. The failurgb@®funifications are understandable, given
that the Planck (or GUTS) scale corresponds to the earlg@gighof the thermal history of the Universe
from zero to10~*3 (or 10~3) seconds just after the “Big Bang”. Hence, we ended up fgilmunify

the three different forces as well as to solve the hierarchiplpm.

One of the particularly exciting solutions for these praoideis the addition of an exotic symmetry,
supersymmetry (SUSY), to the SM gauge groups. The enerdy stdhe theory of SUSY lies in
between the electroweak scale and the GUTs scale; ther&Sal8Y solves the hierarchy problem.
More nicely, the theory predicts the same matching pointlierthree gauge strengths at the GUTs
scale. Thus, the discovery of SUSY would be one of the biggastesses in the 21st theoretical

physics, and may solve other cosmological problems as welisduss shortly.

1.2 The Big Bang theory to cosmic inflation models

The recent developments of observational equipments Iréveaetailed thermal history of our Uni-
verse, starting from Big Bang to present (13.7 billion ygafhe Big Bang Theory or BBT for short

is based on both general relativity and the cosmologicalggwles in which the energy density of our



Universe was uniformly distributed over the large scalethedspace-time topology of the Universe has
been flat for a long time. In other words, there are no speegbns in the Universe, where some small
special regions play no important roles of the history ammblogy of the Universe. To describe such
a simple profile over the largest observable scale of the é&¥s@; modern cosmologists often use the
following technical words: homogeneity and isotropy. Thea#l scales of the Universe, on the other
hand, consist of the inhomogeneous regions which are g@essies, and clusters of galaxies. In 1922,
Friedmanret al. solved the Einstein equation with the cosmological prilespand proposed that the
Universe should be expanding. In the two years later, Hulrdasured the distances and the receding
speeds of 18 galaxies; he then concluded that each galaagmdeed receding from us with the linear
relation between the distance and the speed, known as thalédetkpansion. As a smoking gun of the
cosmological principles, Penzias and Wilson discoveredigbtropic cosmic microwave background

radiation (CMB) which has a black body spectrum with the lemperature?.73 Kelvin [5].

The present individual observations, Wilkinson Microw#rasotropy Probe (WMAP) [6], Sloan Dig-
ital Sky Survey [7] and Type la supernova (SNle), determime precise magnitude of the Hubble
expansion rate. They also back up a homogeneous and isofnafile of the Universe on scales larger
than~ 100 Mpc. The history of the Universe is now well understood frdra first few minutes after
the Big Bang. At the few minutes cosmic time, nucleosynth&sok place, creating light nucles,g.
hydrogen, helium, and lithium, while carbon and the heagiements were rarely produced in the inte-
rior of stars far more later. The observations of the abuoéawf those light elements are in excellent
agreement with the recent theoretical predictions. In fthet*He abundances are correctly calculated
within 1 — 2% [8], and the semi-analytic estimations on the abundancdewaterium3He, and’Li are
accurate within a factor of — 3 [9]. These great successes of Big Bang Nucleosynthesis JBBtthe

detection of the Hubble expansion have firmly built up the BBT

The BBT predicts that the early Universe was extremely hadt @ense due to the fact of the Hubble
expansion. In such small and high-energy environment, tfaaiym effects are not negligible; indeed,
there are a number of issues of the BBT. We present the fiveiplénproblems from now on. First, no
information can travel faster than the speed of light acogytb the standard BBT. Therefore, the Uni-
verse should consist of patches of the causally conneaggzh® In this sense, each of the disconnected
regions should be uncorrelated with those neighbors. Hewdehe actual temperature distribution of
the CMB is almost isotropic over a large scale which is muchdathan the predicted scale, only about
2 degrees on the sky, from the BHE. the horizon probleniThe second issue is a fine-tuning problem
on the space-time topologihe flatness probleniThe Friedmann equations give the three possibilities
of the topology, depending on the total dimensionless gndegsity(2 of the Universe. The value 61

has been extremely close to unity for billions of years, welfer= 1 corresponds to the flat space-time
geometry. Itimplies that the “God” must fine-tune the valfi€do remain to be unity for the extremely
long history of the Universe. This is because any small dapafrom the flat space-time leads to the
other two kinds of topologies obtained by the Friedmann gquos. The third problem is the production

of magnetic monopolewhich may naturally exist in many extensions to the SM. A metiz monopole



is a theoretical object, but it has not yet been detectediitlaiverse. In fact, we cannot obtain a single
side of the magnet (either the north or south pole) even whemdalf. The origin of thembalance
between matter (baryons) and anti-matter (anti-baryasgnother controversial puzzle. In BBN, the
amount of ordinary matter density, relative to the number density of radiation, namely the baryon-
to-photon ration,, /1., can explain the light element abundances, but it says mp#tout the origin of
the ratio. The physics within the BBT suggests that both dwasyand anti-baryons should be equally
created, conserving their charges. It implies that all efélements (atoms, galaxies, and even human
beings) should not exist now since the annihilations betweatter and anti-matter take place instantly.
The final question of the BBT is the existence of the non-lwwugimassive mattedark matter Ac-
cording to the luminosity distribution of a given galaxyethnalytically predicted rotation velocity of
the galaxy at large radius is slower than the observed véfuplies that a large amount of invisible

massive matter must exist in the galaxy.

How can we solve these problems of the BBT? First of all, westiamodify theveryearly epoch of the
Big Bang cosmology. The widely accepted solutions of the fireee problemsthe horizon problem,
the flathess problepandmagnetic monopole problemequire that a rapid space-time expansion should
take place in the very short era just after the Big Bang. Tdesj called cosmic inflation or just infla-
tion, is compatible with many observational results. The &xpansion of inflation gives the reasons
why the temperature of the CMB is almost same for any direstend how the causally disconnected
regions are correlated due to the past explosive expanaiditionally, inflation stretches out the past
curved space-time and dilutes the primordial inhomoggnaitisotropy, and the density of the exotic
particles, such as magnetic monopoles. The other two prahtbe asymmetry between baryons and

anti-baryonsanddark matter will be discussed in the following sections.

Is inflation alternative to the BBT? The inflation models ca@ngate the weaknesses of the BBT, such
as an origin of the cosmological principles and the genemadf of the large scale structure of the
Universe through quantum fluctuations. These density faiitins deviated from the homogeneous
and isotropic values are expected to be nearly scale-amaaind Gaussian, which impressively agree
with the WMAP data. Inflation itself is not a complete theorgther, it is a modification model of the
successful BBT. Inflation has however several problems,Attbough the inflation energy scale should
be around the GUTs scale, we do not know what the origin ofrtfiation is. Further, the temperature
of the very early Universe was proposed to be nearly zersduniflation, but the early era of the Big
Bang Universe should be hot. This discrepancy implies tleah@ed a dynamical mechanism to heat up
the cold Universe after inflation, jointing to the onset of Big Bang cosmology. In a typical scenario
of reheating the very early Universe, the dominated enezggunt for the rapid expansion was released
to create the usual SM particles, and in principle the Uisigavas thermalised by the random motions

and scatterings of the created particles.

Let us itemize the two problems that we did not answer lpatyon asymmetrgnddark matter It will
turn out that these two problems are related each otherhaplausible solutions could be made by the

use of the inflation theory and the new theory of particle pisysiamely SUSY.



1.3 The two quantities in particle cosmology

— baryon asymmetry and dark matter

The present asymmetry between baryons and anti-baryolns loriverse is one of the most mysterious
problems in cosmology and particle physics. Indeed, no@atnation of anti-baryons has been detected
in our observable Universe. From the current several oktens (CMB anisotropy measurements,
SNIle data, and BAO peak measurements) [5], the energy gleidiaryons is only about 4.6% of the
total energy density of the Universe. The remainder of thergghcomponents consist of both dark

matter (23.3%), and dark energy (72.1%). The baryon-tagrhi@tio is also given in [10],

™~ (47— 6.5) x 10710 (1.1)

Ty
The ratio of the dimensionless energy density between datkemand baryons is independently ob-

tained in [11]

Qpumr
Q

= 5.65 + 0.58. (1.2)

This thesis deals with a number of issues related to therpoigihe above two quantities.

The first quantity, Eq. (1.1), is larger by a factoriéf than that predicted within the conventional BBT
where the quantity was assumed to be zero. In 1985, withiSkhef particle physics, Shaposhniket/
al.[12] considered a model based on electroweak physics taiedgple origin of this baryon abundance,
the so-called electroweak baryogenesis. It satisfies ttiekwewn Sakharov’s conditions required for
successful baryogenesis [13], namely baryon number ptimaiiche violation of discrete symmetries
[charge conjugation (C) and charge parity (CP)], and depaftom thermal equilibrium. The magni-
tude of the CP violation of the SM is, however, far too smalptoduce the present observed baryon
asymmetry. To solve these problems within both BBT and tkeetedweak baryogenesis, we require
SUSY in addition to the usual gauge symmetry group of the $Mhé minimal super-symmetric ex-
tension of the SM (MSSM), Affleckt al.[14] and Dineet al.[15] proposed a more successful baryoge-
nesis scenario, known as Affleck-Dine (AD) baryogenesisattsolve a number of severe cosmological
problems, such as gravitino and moduli overproductionciigire harmful for successful BBN. More
strikingly, AD baryogenesis may also provide the mechanismbtain the second quantity, Eq. (1.2),

which implies that the baryonic matter and dark matter ceblakre the same origin.

How does AD baryogenesis naturally provide the quantitigsds. (1.1, 1.2) ? Let us now look at the
original AD baryogenesis scenario in the MSSM in more ddfail a review see [16]). The MSSM

has nearly 300 flat directions, some of which are uplifted {58 breaking effects arising from non-
renormalisable terms, and we can parametrise one of theiftadtidns in terms of a complex scalar
field known as an AD field, which consists of a combination afiatis and/or sleptons (supersym-
metric partners of quarks and leptons). During an inflatipregooch in the very early Universe, the

AD field evolves to a large field expectation value, and sgaiarid sleptons form homogeneous con-



densate. After inflation, the motion of the AD field can be kidkalong the phase direction due to
the A-terms arising from the nonrenormalisable terms, Wisie essential for the baryon generation.
Through thermal scattering, the AD condensate decays lirtasual baryons/leptons and the lightest
SUSY particles (which are candidates for dark matter), tBeb&ryogenesis then becomes complete.
By including radiative and/or thermal corrections to thessygerm of the scalar potentials, it alters the
above standard AD baryogenesis scenario and gives a rigtyaf cosmological implications [17].
In this alternative scenario, the AD condensate can beickdlssunstable against spatial perturbations,
and fragment to bubble-like objects, eventually evolvimpia stable nontopological soliton, the SUSY
@-ball [18], which is a candidate for self-interacting colarkd matter. The fraction of th@-balls could
also contribute to the number density of baryons. With aémergy SUSY breaking scalds ~ 1—10
TeV and a plausible chargg ~ 1025 (baryon number) of the SUSY-balls, Laineet al.[19] found

-2 -1/2
ny ~10 ]\/[S Q QDILI
— ~ 10 = — ~ 10 1.3
Ny <TeV) <1026 ’ Qp ’ (1.3)

which are the correct orders of magnitude required in Eq§, (12).

1.4 (@Q-ball and its stability

What exactly is a soliton an@-ball? A soliton is a nonlinear and nondissipative solutidrich ap-
pears in a large variety of both classical and quantum fieddrh The energy density of this solution is
smooth, and compacted in a finite region space, and solit@msgelves behave as the usual elementary
particles of the SM. Because of the origin of their stahilityere exist two types of solitonise. topologi-

cal solitons and nontopological solitons. A conserved Reetharge stabilises nontopological solitons,
unlike the case of topological solitons whose stability iswed by the presence of conserved topo-
logical charges. In a pioneering work by Freidberg, Lee, &inlih [20], nontopological solitons were
introduced in a successful quantum chromodynamics (hadnodel. Later, Coleman [21] proposed
that it was possible for a new class of non-topological snftto exist within a self-interacting scalar
field theory by introducing the notion of @-ball. His model had a continuous unbroken global U(1)
charge®, which corresponds to an angular motion with angular vgjagiin the U(1) internal space.
Once formed, &)-ball is absolutely stable if five conditions are satisfietl gxistence conditionits
potential should grow slower than the quadratic mass tenah tlais can be realised through a number
of routes such as the inclusion of radiative or finite tempeeacorrections to a bare mass, or nonlinear
terms in a polynomial potential, (Zbsolute stability condition the energyE (or mass) of &)-ball
must be lower than the corresponding energy that the cmllecf the lightest possible scalar particle
guanta could have, (2Jassical stability condition the -ball should be stable to linear fluctuations;
with the threshold of the stability being located at the $aqbdbint of the Euclidean action, (dission
condition- the energy of a singl€§-ball must be less than the total energy of the smalldralls that

it could in principle fragment into, (5)ecays into fermionsa @-ball should not couple with fermions

strongly. If coupling with light/massless fermions, tfeball evaporates via the surface area. For the



first condition to be satisfied, we require
w- < |w| < wy, (1.4)

wherew- are the lower and upper limits af that theQ-ball can have. The lower limit ~ w_ can
define thin-wall@Q-balls, whilst the upper limitv ~ w, can define “thick-wall’Q-balls. Although
the thin-wallQ-ball can actually have a thin-wall thickness, the “thickivlimit does not imply that
the “thick-wall” Q-ball has to have a large thickness which is comparable tsi#teeof the core size.

In chapter 2 of this thesis, we review the fundamental priggeof Q-balls with a complete classical
stability analysis given in Appendix A, following the origal work in [20]. As a first nontrivial example
of standard)-balls, in chapter 3 we inspect both analytically and nuoadly the stationary properties
of a single@-ball in an arbitrary number of the spatial dimensions witfeaeral polynomial potential,
working in the both thin- and thick-wall limits. We discovie connection of the analyses between the

virial relation and the thin- and thick-wall approximat&miving an important quantity defined by

Eg o Q7. (1.5)

1.5 Supersymmetric()-balls

From a phenomenological point of view, the most interesérgmples are the SUS¥-balls aris-
ing within the MSSM. Since they suffer from evaporationfukfon, dissociation and decay into light
fermions [22], SUSYQ-balls are generally not stable but long-lived. The stgb#ind cosmological
consequences [such as Egs. (1.1, 1.2)] of tligdmlls depend on how SUSY is broken in the hidden
sector, transmitting to the observable sector throughedlee€cmessengers. In the gravity-mediated [23]
or gauge-mediated scenarios [24], the messengers conespspectively either to supergravity fields
or to some heavy particles charged under the gauge groue &Nh So far, no reliable stability anal-
yses on these SUSY)-balls have been performed analytically as well as numiyicén chapter 4,
we, therefore, present a thorough stability analysis ofSb&Y Q-balls with flat potentials arising in
both gravity-mediated and gauge-mediated models. We shatithe associate@-matter formed in
gravity-mediated potentials can be stable against dec&ystieir own free-particles as long as the cou-
pling constant of the nonrenormalisable term is small, dad &ll of the possible three-dimensional
Q-ball configurations are classically stable. Three-dinmra gauge-mediate@-balls can be abso-
lutely stable in the “thin-wall” limit, but are completelyngtable in the “thick-wall” limit. In both of the
above models, we also obtain the values cé.g.1/+ = 3/4 for “thin-wall” Q-balls in gauge-mediated
potentials. This example turns out that thésdalls are the most energetically compact state given a

sufficiently large charge, recalling Eq. (1.5).



1.6 Observational limits on-balls

Can we detect the signals ¢J-balls through observations? The current experiments énstrarch
for SUSY Q-balls are sensitive to electrically neuti@tballs (SENS) [25] and electrically charged
Q-balls (SECS) [26] where the present and past experimeatatad the estimations from the future
experiments are summarised in Fig. 1.1 for SENS and Fig.dr. 8ECS. The core of a SENS has a
large vacuum expectation value of squark, slepton, andiggdfields, where the symmetry of the
strong force (colour confinement, which is the binding of amssand baryons, composed of two and
three quarksy), respectively) is broken. If a nucleon enters into thisafimement region, it dissociates
into three quarks, some of which may be absorbed by the SENSinfiplies that the following reaction
may happernyg — g, releasing the energy; 1 GeV/nucleon, wherég is the anti-quark of a quarlg).
Moreover, a similar process to proton decay may take plamenarthe thin-wall region of the SENS.
From the Japan-US large underground water Cherenkov det&per-Kamiokande [27], an upper
bound on the SENS flux has been obtained, which is equivalegiving the lower bound on the mass
of the SENSj.e.

4
M
Eg > [4.0 x 10", 1.2 x 103, 5.6 x 10?] (ﬁ/) GeV, (1.6)

with the respective cross sectidisl, 1, 10] mb, whereM is a typical SUSY breaking scale appeared
in Eqg. (1.3). On the other hand, for a sufficiently large cleasy SECS whose effective radius~isl

A comparable to an atom size accompanied with electron sltasgs the energy due to the interaction
with nuclei and electrons of the traversed medium. In theMBahd MACRO experiments [26], which
are designed to be sensitive to SECS, it also gives the ugperdoon the SECS flux and equivalently
the lower bound on the SECS mass with the electrical ch&rge- 137, i.e.

pL
Eg > 2.5x 107 (gr/cm2> GeV, (1.7)

wherep and L are the density and length of the electronic medium. Thespitdsest experimental limit

from Super-Kamiokande Il [25] is
Q = 10*, (1.8)

cf. Eq. (1.3); the future Cherenkov detectors are expectedlitetn these limits further.
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FIG. 1.1: Figure 1 (a) cited from [27] plots the several bounds om #ind mass for SENS7Z;, = 0) where

Zq is an electric charge antl/, (or equivalentlyEg) is the mass of SENS. The diagonal line corresponds to
the flux estimated under the assumption that dark mattereirgétaxy & 0.3GeV /cm®) is mainly from SENS.
Therefore, the regions 4, which is above this diagonal I;ajled out. The region 1 is also experimentally banned
by Gyrlyanda[28], BAKSAN[29], and Kamiokand€[30]; similarly, the region 2 is also excluded by tBeiper-
Kamiokandeexperiments. The future experiments, suciTA$31] and OA[32], will clarify the region 3. Figure

1 (b) shows the bounds for the char@eand the SUSY breaking scalds for SENS in the regions 5,6, and 7
where each regions was obtained by the same experiments i@gtbns 1, 2 and 3, respectively. Below the 'B-Ball
Stability Limit’ line, the region 8 is excluded so that théoaled region isQQ > 1022 where SENS can be dark
matter or part of it.
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FIG. 1.2: Figure 6 (a) also cited from [27] plots the the flux and srfas SECS withZ, = 137 instead of SENS.
The region 4 above the diagonal line is also excluded as &eftde can also exclude the regions 1 and 2 by the
present and past experiments suchK&K [33], AKENO[34], UCSDII [35], MACRO[36, 37, 38],0YA[39],
NORIKURA[40], SKYLAB[41], KITAMI [42], andMICA [43], and by the future experiments,g. AMS44, 45].
Similarly, Figure 6 (b) is plotted as Figure 1 (b).
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1.7 @Q-ball formation

The final big question, which is the main goal of this thesighhbe '"How do@-balls form and interact
with each other in the very early Universe ?’. The dynamias fmnmation of@@-balls involve nonlin-
ear, nonperturbative, and out-of-equilibrium processgmsch generally require numerical simulations.
With different relative phases and initial velocities beem twoQ-balls in a polynomial potential, we
found rings form after the collision of a pair of thig-balls [1], e.g.see Fig. 1. It has been found [46]
that similar ring-like solutions are responsible for theited states from the ground statg-ball) by
introducing extra degrees of freedoine. spatial spins and twists. Further, the méirball formation
process has been examined in gauge-mediated and gravitizted models [47, 48]; however, those
previous analyses used initial conditions, which were ehasder a simple assumption, and the lattice
simulations were too small and short to reproduce sat@facesults. With more generic initial con-
ditions and much larger and longer lattice simulations, wesent, in chapter 5, both analytically and
numerically the consistent analysis from the AD dynamicth® subsequent semiclassical evolution,
i.e. Q-ball formation, in both gravity-mediated and gauge-mestianodels. We obtain analytically the
elliptic motions in the AD dynamics as the analogy of the vkelbwn planetary motiond.é. Kepler-
problem). By solving the equations of motion i3 & 1 (and2 + 1)-dimensional lattice witt5123 (and
5122) lattice units, we find that thé&)-ball formation goes through three distinct stages as a hufde
reheating process in the very early Universe after inflatjme-thermalisationbubble collisionsand
mainthermalisation The second stage of thig-ball formation lasts rather long compared to the first

stage, and the main thermalisation process is unique dhe farésence of “thermal thin-wajl-balls”.

1.8 Outline of the thesis

This thesis is organised as follows. In chapter 2, we inteedilhe fundamental aspects @tballs.
We then show the detailed stability analysis and statiopaoperties of both thin- and thick-wal)-
balls in a general polynomial potential in chapter 3 [49].lléwing this analysis, we study both the
classical and quantum-mechanical stability(@balls in the MSSM flat potentials in chapter 4 [50].
With numerical lattice simulations, we investigate howsb&USYQ-balls form in chapter 5 [51].
Finally, we summarise our main results and discuss poskiblee work in chapter 6. Six appendices
are included. We present the complete classical stabifiglyais of@-balls in Appendix A. For the
analysis of gravity-mediate@-balls, we find an exact solution in Appendix B, and show tlassical
stability of the @-balls in the thick-wall limit with a Gaussian ansatz in Appéx C. We find the
equations of motion for multi-scalar fields in Appendix D.Appendix E, we obtain elliptic forms for
the orbits of AD fields. In Appendix F we prove Bertrand’s thexo that there are only two potential

forms allowed to be closed “planetary” orbits.
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Chapter 2

Foundations

2.1 Introduction

In a pioneering paper published in 1985 [21], Sidney Colestaowed that it was possible for a new
class of non-topological solitons [20] to exist within afsateracting system by introducing the notion
of a Q-ball (for reviews see [16, 17, 52, 53]). Once formedyall is absolutely stable if the five
conditions, one of which is shown in Eq. (1.4), are satisfilte lower limit,w ~ w_, of the existence
conditionin Eq. (1.4) can define thin-wéb-balls, either without [21] or with [54, 55] the wall thickeg
being taken into account, while the upper limit,~ w, can define thick-walQ-balls in [18] which

may be approximated by a simple Gaussian ansatz [56].

There is a vast literature on nontopological solitons, udaig Q-balls. They have been seen to be
solutions in Abelian gauge theories [57, 58, 59, 60, 61],an-Abelian theories [62, 63, 64], in non-
Abelian gauge theories [65, 66, 67], in self-dual (Maxwelthern-Simons theory [68, 69, 70, 71], in
noncommutative complex scalar field theory [72], in (noaén sigma models [73, 74], and in hadron
models which include fermionic interactions [57, 75, 7@&] veell as in the presence of gravity [77, 78,
79, 80]. Q-balls themselves have been quantized either by cano@@hbf by path integral schemes
[81, 82]. With thermal effects, it has been shown tgaballs coupled to light/massless fermions are
able to non-perturbatively and semi-classically evapoastay on their surface [22, 83, 84]; however, at
sufficiently low temperatures they become stable, indeed then tend to grow [19, 85]. The authors
in [20, 86] have discussed and analysed the spatially eksttdes of)-balls, including radial modes or
spatially dependent phase excitations. A more generalanatical argument concerning the stability
of solitary waves can be found in [87, 88, 89]. Stand@rballs exist in an arbitrary number of space
dimensionsD and are able to avoid the restriction arising from Derritkisorem [90] because they are
time-dependent solutions. A related class of object@4oalls are known as oscillons [91, 92, 93] or
as |-balls [94], and recent attention has turned to the dycsof these time-dependent, nonlinear, and

metastable configurations [95, 96, 97].



In this chapter we review the important stationary progsrtif a standar@-ball in an arbitrary number

of spatial dimension®. By introducing aQ-ball ansatz in Sec. 2.2, we obtain powerful tools, Legendre
relations and characteristic slopes, in Sec. 2.3 and Séclr?Sec. 2.5, we then obtairtaball equation
and the existence condition, which requires certain i&giris on the allowed potentials. In Sec. 2.7 we
obtain four types of)-ball stability conditions. By scaling @-ball solution, we find the characteristic
slopes, depending on the ratio between the surface enedgyod@ntial energy, in Sec. 2.8. In Appendix
A, we show a general classical stability analysigballs, following [52]. This chapter contains work

that is published in [49].

2.2 Q-ball ansatz

We consider a complex scalar fieldn Minkowski spacetime of arbitrary spatial dimensidnwith a
U(1) potential bounded b¥ (|¢|) > 0 for any values of:

S = /dDHx\/—_gE, (2.1)
where £ = —%g‘“’@u(bT&,(b—Uﬂ(bD. (2.2)

The metric isds? = g, dz*dx” = —dt? + h;jdz'dz? andg is the determinant of,.,,, wherey, v run

from0to D, andi, j denote spatial indices running frahto D. Now, using the standard decomposition

of ¢ in terms of two real scalar fields = o', the energy momentum tenséf, = ——A=2% +
(symmetrising factors) and the conserved U(1) global currgpty ;) via the Noether theorem, we

obtain

T = (8,000 +0%0,00,0) + gu L, (2:3)

ju,U(l) = 0'28#9. (24)

Using a basis of vecto{snﬁl)} Wherenf;) is time-like anchf;) are space-like unit vectors oriented along
the spatial-direction, the above currents give the definitions of epelgnsitypr, charge density,

momentum flux?; and pressure:

PE = Twné‘t)n’(’t); po = juné‘t); P = Twné)né); p= Twné)n’(’i). (2.5)

Defining the D dimensional volumé/, bounded by § D — 1)-sphere, the Noether charges (energy,

momenta, and U(1) charge) become

E:/ PE; Pi:/ P, Q= PQ; (2.6)
Vb Vb Vb

where [, = [ dP2+/h. Minimising an energy with a fixed charg@ for any degrees of freedom,

we find the@-ball (lowest) energyE, by introducing a Lagrange multiplier and settingn)’ =
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(=1,0,0,...,0):

Eqg = E—l—w(Q—/V pQ), (2.7)
— WO+ /V <% {(';2 020 — w)? + (Vo)? + JQ(W)?} n Uw> , (2.8)
= w@+ Swjj (2.9)

2 ¢ = 492 etc... andw will turn out to be the rotation frequency in the U(1)

_ 1,2
whereU, = U — w0 =<

internal space. The presence of the positive definite temnisyi (2.8) suggests that the lowest energy
solution is obtained by setting = 0 = § — w = V4. The Euclidean actioi,, and the effective

potentialU,, in Egs. (2.8, 2.9) are finally given by

1 1
S, = / (Vo) +U,, U,=U-— -w?? (2.10)
vy 2 2

The second term if/,, comes from the internal spin of the complex field. FollowirrgeBiberg et. al

[20], it is useful to define the functional

Gr= [ §(Vop +U =g~ (3*) 1=5.+ (54°) 1 (211)
v 2 2 2

Where%w2 is the corresponding Lagrange multiplier ahe: fVD a2

Given that the spherically symmetric profile is the minimunergy configuration [98], we are lead to

the standard stationary-ball ansatz at zero-temperature

¢ = o(r)e™". (2.12)

Substituting Eq. (2.12) into Eq. (2.5), we find

1 1

pE = 50'2 +U+ 502w2, pQ = wo?, (2.13)
1

Py _ 5o_/2 o Uu.)7 Pz — 0, (214)

whereo’ = % andp, is a radial pressure given in terms of the radially oriented vectorn! =

(0,1,0,...,0). Without loss of generality, we set bathand@ as positive.

2.3 Legendre relations

It is sometimes difficult to comput&, directly, but using Legendre relations often helps [20]oun

case, from Eq. (2.9) and Eq. (2.11) we find

s,

45w dGr 1,
dw

= -Q, = Zw (2.15)
e T

dEq
=< =w,
Sw

dQ

because&)-ball solutions give the extrema &fy, S,,, andG with respecttd), w, andl, respectively.

These variables match the corresponding “thermodynamme$or, w, @, S., andG correspond
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to the internal energy, chemical potential, particle numéed “thermodynamic” potentials [19]. After
computingS,, or G, one can calculat& or %wQ using the second or third relation in Eq. (2.15), and

can computélg using Eq. (2.9) or Eq. (2.11)e.
dsS.,
SwHszm—)EQ:wQ+Sw, (2.16)
or similarly G; — w? = dd—cjf — Eq = Gr+ (3w?) I, S, = Gr — (3w?) I. We shall make use of

this powerful technique later.

2.4 The characteristic slope

Let us define
_ Eq

=00
If v is not a function ofv, we can obtain the following proportional relation using first expression
of Eq. (2.15)

7 (w) (2.17)

Eg x Q7. (2.18)

2.5 Q-ball equation and existence condition

Let us consider the actiof = — [ dtS,, in Eq. (2.1) with our ansatz Eq. (2.12) and the following

boundary condition on 8D — 1)-sphere which represents spatial infinity

o'l = 0 onthe O — 1)-sphere (2.19)

Varying S, with respect tar, we obtain the&)-ball equation:

d?¢c D-—1do dU.
e 2.2
dr? + r dr do 0, (2.20)

d (1 [(do\? D—1 (do\*
—=(— ) —-U, = — — ] <o. 2.21
<ﬁdr <2 <dr) U) r <dr) <0 ( )

There is a well known mechanical analogy for describing@hball solution of Eq. (2.20) [21], and

that comes from viewing Eq. (2.20) in terms of the Newtonignainics of an unit-mass particle with
positiono, moving in potential-U,, with a friction %, wherer is interpreted as a time co-ordinate.
Moreover,pg = wo? can be considered as the angular momenturiNote that the friction term is

proportional to?=1, and hence becomes significant for higtand/or smalk. According to Eq. (2.21),

the “total energy”; (%)2 — U, is conserved foD = 1 and/orr — oo, implying that in that limit the
Q-balls have no radial pressure, see the first expression qPEgl). Of course these are really field

theory objects and consequently more restrictions apply:

17 is realised as an inertia moment in this mechanical anal@tyyZ0].
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e no symmetry breaking, in other word$r — large) = 0; U” (0 = 0) = m? > 0 with an effective

massm,
e regularity conditions’(r = 0) = 0,
o reflection symmetry under — —o.

Note that Eq. (2.20) coupled with the boundary condition dl9) impliesc(r) is a monotonically
decreasing functiori,e. o/ < 0 when the solution is nodeless. In fact, according to Eqd(2.20)
and the above conditions, our mechanical analogy impligsatparticle with an unit mass initially at
rest should be released somewhere on its potential, evgnteaching the origin at large (but finite)
time and stopping there due to the presence of a positionbarmependent friction. It implies that the
initial “energy” of the particle will monotonically decrea due to the friction term, and eventually lose
all of the energy when it will reach at the origin,= 0. These requirements constrain the allowed forms
of the U(1) potentials: for example if the local maximum oé tbffective potential-U.,, is less thard,
the “particle” can not reach the origin, a process knownragershooting. To avoid undershooting we
require

max(—U,) > 0 < min (g) < w? (2.22)

g

If —U, is convex atr = 0, the “particle” cannot stop at the origin, a situation tedweershooting

such that
d?U
do?

d?U,
do?

<0ew?<
o=0

(2.23)

o=0

Combining Egs. (2.22, 2.23), we find the conditionwror the existence of a singl@-ball at zero-

temperature:

wo < |w| < wy, (2.24)
where we have defined the lower limif = min (2§) = 2% ooy 2 0 o4 (w) is the nonzero
value ofo whereU,, (o (w)) is minimised (see Figs. 2.1 and 4.1), and the upper limit= ﬁi’{ -
Here, we defined the maximum of the effective potential to tbe,dw) (i.e. % oy (w) = 0); thTJS,
w2 =2 o andU,_(o4+) = 0 whereo, = o4 (w_). Moreover,o_(w) satisfieslU,,(c_(w)) = 0

for o_(w) # 0. Noticeo_ (w) ~ o4 (w) whenw ~ w_. The casew_ = 0, corresponds to degenerate
vacua potentials (DVPs), while the other case, # 0, does not have degenerate vacua (NDVPS). In
Figs. 2.1 and 4.1, we indicate the above introduced paramete(w) andw_, using typical original

and effective potentials for both DVP (left) and NDVP (righwhich we will use later.

The existence conditiom Eq. (2.24) restricts the allowed form of the potentiglwhich implies that
the potential should grow less quickly than the quadraticté.e. mass term) for small values of
hence, U(1) potentials must have a nonlinear interacti@n gnis weakly attractive [52]. In chapter 3
we examine the case of polynomial potentials and restrictedves to the case aff = m?, wherem

is a bare mass in the potentials. In chapter 4 we extend olysiallowing us to investigate the case,
w? > m?, needed since the potentials include one-loop radiatiuections to the bare mass. Here,

the potential which we will consider in the gravity-meditaodels i) = Ugyqv + Un g, WhereUn g
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is a nonrenormalisation term (to be discussed in Sec. 4d), a

_ 1l 55 o’
Ugrav = §m g 1 + Kln W . (225)

Here, K is a constant factor arising from the one-loop correctioth &his the renormalisation scale.

When the sign of{ is negative()-balls may exist subject to the coupling constant/ifiz.

bvp NDVP

.03 . . . . . 0.3 . . .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2.1: Parameters(w) in two typical potentiald/(c) = 10> — Ao* + Bo® wherewy = m = 1 and the
effective potentials-U,, are plotted for various values of degenerate vacua potential (DVP) with= %, B= %
on the left and non-degenerate vacua potential (NDVP) with 1, B = % on the right. The DVP has degenerate
vacua in the original potentiatU (red solid line) where we set— = 0. The NDVP does not have degenerate
vacua, but withv = w_ = 0.5 (sky-blue dot-dashed line) the effective potentid/,, does have degenerate vacua.
The two lines in the lower limitv = w_ show thato_ (w) — o+ (w) where we have defined the maximum of
the effective potential to be at; (w) andU,, (0 (w)) = 0 for o_(w) # 0. The purple dotted-dashed lines show
o—(w) — 0 with the thick-wall limitw = w. With some values ab (green dotted lines) satisfying the existence

condition Eq. (2.20), both potentials show the values-ofw) clearly.

2.6 Thin- and “thick-wall” @Q-balls

2.6.1 Definitions

To proceed with analytical arguments, we consider the tmitilg values ofw or oy (w) = ¢(0) that

describe

e thin- wall Q-balls whenv ~ w_ or equivalentlyoy(w) ~ o (w), (2.26)

e “thick-wall” Q-balls whernw ~ w or equivalentlyoy(w) ~ o_ (w).
Note, the “thick-wall” limit does not imply that the “thickall” Q-ball has to have a large thickness
which is comparable to the size of the core size. For the eréhin-wall limit, w = w_, thin-wall
Q-balls satisfy,%? = v(w_)w_, see Eq. (2.17). In particular Coleman demonstrated th&zlike
profile for @-balls, which generally exist fav_ # 0, satisfiesy = 1, which implies that the charg@
and energytg are proportional to the volume [see Eq. (2.18)], and he ddlies Q-matter [21]. We

will not be consideringy-ball solutions that exist in a false vacua whefe < 0 [54]. When it comes
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to obtaining@Q-ball profiles numerically, we will adopt a standard shogtinethod which fine-tunes the
“initial positions” oy (w) subject tar_ (w) < og(w) < o4 (w), in order to avoid botlundershootingnd

overshooting

2.6.2 The infinitesimal variables:e¢, and m,,

For later convenience, we define two positive definite qtiasti,, andm,,,,

o = Ualor () = 30702 ) ~ Uloy (@),
~ % (w2 — w%) Ui, (2.27)
me = m? - (2.28)

which can be infinitesimally small for either thin- or thigkall limits. By assuming; (w) ~ o4 (w-) =
o4 in the thin-wall limit, we immediately obtain the seconddim Eq. (2.27). Let us remark upon im-
portant exceptions, which we will discuss in chapter 4, sihet the above assumption is fine for the
polynomial and gravity-mediated cases, while for gaugeliated potentials which are extremely flat,
the assumption; (w) ~ o4, can not hold because, (w) does not exist. Therefore, we will not use
the variable:, for the case of the gauge-mediated potentials. Indeedl itusn out that the “thin-wall”
Q-balls in the gauge-mediated cases do not have a thin-vielirtess. Further, the variable? can not

be infinitesimally small when we consider the gravity-meeliecasesw? £ m?.

2.7 Four kinds of stability

2.7.1 Absolute stability

When the volumé/p approaches infinity [52] and/av is outside the limits of Eq. (2.24), then plane
wave solutions may exist around the vacudidf¢|). The equation of motion fop becomes a free
Klein-Gordon equation whose solution can be writtenpas: Nei!k*—«rt) wherew, = vm? + k2
and the normalisation factay = ,/MLVD has been calculated fro@. Then, the energy of the plane
wave solution is proportional toy, and @ linearly: E¢,ce = wp@ — Efree >~ m() wWhere we have
taken the infrared limit, to obtain the second relation. €hergyE .. can be interpreted as the energy
of a collection of() free particle quanta with the rest massesFurthermore, one might expect that the
Q-ball energy approachdsy,.. in the “thick-wall” limit, w ~ w, since thel)-ball profiles approach

zero exponentially at infinity [52]:

Egw =wt) > Efree = mQ. (2.29)

Hence, theibsolute stability condition for aQ-ball becomes

E,
Eq(w) < Efree & 662 < m. (2.30)
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We would expect Eq. (2.30) to be the strongest condition whi@-ball solution has to satisfy. If the
@-ball has decay channels into other fundamental scalaicfggrivhich have the lowest mass,,;,,,

we need to replace: by m,,., in Eq. (2.30).

2.7.2 Classical stability

Theclassical stability[20, 52] can be defined in terms of the mass-squared of theifitiohs around a
Q@-ball solution. For zero mass fluctuations this correspdaadszero modei,e. translation and phase
transformation of thé&)-ball solution. Using collective coordinates and Eq. (2\2Bich extremises,,,
such a mode should be treated with special efforts. Sinceadletbanalysis can be found in Appendix A
and the literature [20, 52], we simply state the final restiicl implies theclassical stabilitycondition
is ,

%% <0 ddb‘;“ >0,

(2.31)

where we have used Eq. (2.15) in the second relation of E8L)2Sincev and(@ have the same sign,
the sign of% signals whether the solution is classically stable. Therfalation of Eq. (2.31) indicates
the presence of an extreme charge in the parameter spacéved will later see that the extreme charge
at some critical value = w,. turns out to be the minimum allowed). Let us remark on theattaristic
slope ofEq /@ as a function ofv:

d (EQ\ _ 5.dQ

where we have used Eq. (2.9) and Eqg. (2.15). Sificés positive definite forD > 2 as we will see,
the classically stablé€)-balls should satisfyd% (%) > 0. The conditions from both Eg. (2.31) and

Eq. (2.32) must be same.

2.7.3 Stability against fission

Suppose that the total energy of tpballs is less than the energy of a singleball carrying the same
total charge. The singl@-ball naturally decays into two or more with some releasanefgy. As shown

in [52], the stability condition againéissionfor a Q-ball is given by

d2EQ dw
< — < 2.33
a0 _O@dQ <0, ( )

where we have used Eq. (2.15), going from the first expredsiadhe next expression in Eq. (2.34).
Note that this is the same condition as we found above in Rg31(2.32), so the condition for classical

stability is identical to that of stability against fission.

Trying to summarise the stability so far, we can categolised types of &)-ball: i.e.absolutely stable,
meta-stable, or unstabig-balls. Absolutely stabl€)-balls are stable quantum mechanically as well as

classically; meta-stabl@-balls decay into free particle quanta, but are stable usiched| fluctuations;
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whereas completely unstahigballs sometimes calle@-clouds [99] decay into lower enerdy-balls

or free particle quanta.

2.7.4 Stability against fermions

If coupling with light/massless fermions(ball decays through the surface aréaf the object. This
decay rate is suppressed by Pauli blocking, and the authd22] computed the upper bound on the
rate per unit surface area fQ-matter
dQ _ w? .
dtdA — 19272

(2.34)

For a small Yukawa coupling limit, they also obtained theajerate for general)-ball profile cases.

The rate in Eq. (2.34) can be used to compute the life-timaefX-ball.

2.8 Virial theorem

Derrick’s theorem restricts the existence of static naridiscalar field solutions in terms of the num-
ber of spatial dimensions. For example in a real scalar fleddry, non-trivial solutions exist only in
one-dimensione.g.Klein-Gordon kink. @Q-balls (or any nontopological solitons), however, avoid th
constraint because they are time-dependent (stationalotjans [18, 56]. We can easily show this and
in doing so obtain useful information about the scaling jgrtips of the)-balls as a function of dimen-
sionality as well as the ratio between their surface andmisteenergies. Following [56], we begin by
scaling theQ-ball ansatz, Eq. (2.12), using a one-parameter famity «ar, whilst keeping@ fixed.
Defining a surface energy = fVD %0’2, a potential energy/ = va U, and recalling that the charge

satisfieq) = Iw, we see that the energy of tlieball, Eq. (2.9), becomes

Q2
Eq = S+U+ . (2.35)
21
Now, under the scaling — ar, thenEqg — Ef, where 86%’ = 0 because thg-ball solutions are
a=1

the extrema (minima) af'g. Evaluating this, we obtain the virial relation relatiigandS

2
DU:—(D—2)8+D§—I >0 (2.36)

where we have used our earlier notatiéh,> 0, for any values or. The case of) = 0 recovers

Derrick’s theorem, showing no time-independent solutimng) > 2 [56].
UsingS = DQ—?Z (D-2+D %)71 from Eq. (2.36), the characteristic slope Eq. (2.17) is

-1
fy(w)f—gle(DQwLD%) : (2.37)

For D > 2, we can see/(w) > 1 becauseS, U > 0, which implies thatS,, is positive definite for

D > 2, see Eq. (2.10), whilé,, is positive forD = 1 only wheni/ > S.
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Let us consider three cases for> 2: (i) S < U, (i) S ~ U, and (iii))S > U. They lead to predictions

for w-independent characteristic slopgs

1 for(i) S<U,
v~ (2D —-1)/2(D—1) for(ii) S~U, (2.38)
(D-1)/(D-2) for (i) S>U.

All of the @-balls in the range ofv are classically stable because the teriig,/Q, monotonically
increase as a function af, see Egs. (2.32, 2.38). The first case (i) corresponds toxtnenee thin-
and thick-wall limitsw ~ w+ as will see. In the second case (i), the potential energy ike@same
order as the surface energy which me&rendi/ have equally virialised. This case will turn out to be
that of the thin-wall limit for DVPs when the surface effeet® included. At present it is not known
what kind of Q-ball potentials correspond to the third case; however, kesiortly find a duality
relation between this case and the second case. Noticenttia caseS > U for D = 2, we obtain
the characteristic slope;, > 1, from Eq. (2.37). Similarly forD = 1, the characteristic slopes are
obtained, i.ey ~ 1, > 1, ~ 0, respectively for (i), (ii), and (iii). We will use theseD analytic results
to interpret numerical results of one-dimensio@aballs in the thin-wall limit. We note a nice duality
which appears in Egs. (2.37, 2.38) between the two c8sed/ andS > U. In particular forS ~ U

in D dimensions, the same result fpis obtained (to leading order) ihx D dimensions whes > U.

Suppose /U = const. over a large range of within the existence condition Eq. (2.24) except w.
whereEq /w4 @ ~ 1. We can find an approximate threshold valudor a-ball to be absolutely stable
using Egs. (2.29, 2.38):

1 for (i),

Wa _ "

o 2P0 for (ii), (2.39)
D=2 for (ii).

Roughly speakingy-balls are classically and absolutely stable ik w, because of Egs. (2.30, 2.32)
and Eq. (2.38). These approximations can and will be judtliig our numerical results in polynomial
potentials in chapter 3, however they will not hold in otherdals introduced in chapter 4. We will find
that the virial relation is a powerful tool enabling us to fimplpropriate values @f, as opposed to the
rather complicated computations we will have to perfornmhia following two chapters by introducing
detailed@-ball profiles and specific potential forms. We should poiat @ caveat in this argument,
the assumption we are making here, that most of@Healls have an identical energy ratiyi/ over

a range ofv, does of course rely on the specific form of the potential. \A&ehto remind the readers
that the virial relation Eq. (2.36) gives only the relatiatlweenS andl/ if the system allows the time-
dependent solution§)-balls, in Eq. (2.12) to exist.

To sum up, the virial theorem induces the characteristipedd=q. (2.38) with the time-dependent non-
linear solutions in the system, and gives the approximatiealrvalues forw, in Eq. (2.39) without

requiring a knowledge of the detailed profiles and potefdiahs.
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Chapter 3

()-balls in polynomial potentials

3.1 Introduction

Standardy-balls exist in an arbitrary number of space dimensibrand are able to avoid the restriction
arising from Derrick’s theorem [90] because they are tilmpahdent solutions. A number of examples
include polynomial models both fap = 3 [100, 101] and for arbitrary) [56], Sine-Gordon models
[102], parabolic-type models [103], confinement modelsA[1005, 106, 107], two-field models [20,
108], and flat models with supersymmetry broken by gravitgliaiton [101], and by gauge mediation
[19, 109, 110]. Returning to the caseldf= 3, phenomenologically, it turns out that theballs present

in models with gravity-mediated supersymmetry breakireyguasi-stable but long-lived, allowing in
principle for these-balls to be the source of both the baryons as well as theskgisupersymmetric
particle dark matter [111]. On the other harighballs in models of gauge-mediated supersymmetry
breaking can be a dark matter candidate as they can be aldgditable [17]. Both types af-balls

have been shown to be able to provide the observed barypheton ratio [19].

The dynamics and formation @p-balls involve solving complicated non-linear systemsjchigen-
erally require numerical simulations. The dynamics of t@eballs in flat Minkowski space-time
depends on parameters, such as the relative phases betve@enand the relative initial velocities
[109, 112, 113]. In addition, the main formation processtigh the Affleck-Dine mechanism [14] has
been extensively examined in both gauge-mediated [4 Ajtgrenediated [48, 114, 115], and running
inflaton mass models [116]. As analysing individgaballs is difficult in its own right, it is extremely
challenging to deal with multipl€)-balls. A number of analytical approaches to address teatibave
been made over the past few years).[117, 118, 119, 120, 121, 122]. Multiple therm@iballs have

been described in a statistical sense in [114, 123].

In this chapter, we aim to analytically address stationaopprties of a singl€)-ball with polynomial
potentials in an arbitrary number of spatial dimensidhs The work will draw on earlier work of

Correia and Schmidt [124] who derived analytic propert@stfie thin- and “thick-wall” limits ofQ-



balls in D = 3. Recently, Gleiser and Thorarinson [56] proved the absadtability for thin-wall
Q@-balls using the virial theorem. We generalise the mainltesi [56, 124] to the case of arbitrary
spatial dimensions, and in doing so both analytically preaind numerically confirm the unique values
of the angular velocity, in Eq. (2.39) for the absolute stability of thg-balls via the thin-wallQ-
ball approximations. Moreover, we obtain the classicabifitga conditions for the thin- and “thick-
wall” approximations, and discover the connections betvibe virial relation and thin- or “thick-wall”

approximation for the characteristic slop€g /w@Q.

This chapter is organised as follows. By introducing a nunolbdifferent ansatze, we present a detailed
analysis of the solutions in the thin-wall limit in Sec. 3 2nd in the “thick-wall” limit in Sec. 3.2.2. In
order to obtain minimise the numerical errors, we obtainrzegal asymptotic profile in Sec. 3.2.3. We
then demonstrate the advantages of using two particulaified@dnsatze in Sec. 3.3, where we present
detailed numerical results for the case of both degeneratenan-degenerate underlying potentials.

Finally, we conclude in Sec. 3.4. This chapter is partialiplshed in [49].

3.2 Thin- and thick-wall approximations

In this section we obtain approximate solutionsdpballs in D-dimensions based on the known thin-
and thick-wall approximations for the radial profileg-) of the fields. Moreover, we show how we can
then use these results to verify the solutions we obtainéueiprevious chapter for(w) in Eq. (2.38).
Further, we are able to test the solutions against detailetenical solutions in the next section, Sec. 3.3.
We start with two simple ansatze for the radial profiles,egp4dike function for the thin-wall case ~

w_ and a Gaussian function for the “thick-wall” case~ w.. In both cases, we evaluate, @, Eq,

as well as the conditions for classical and absolute stafiBfore modifying the ansatze. Following
that, we repeat the same calculations using our more pHlysioativated ansatze via the Legendre
transformation technique described in Eq. (2.16). Let usroent briefly on the form of the potential.
We see that in the thin-wall limitrg(w) ~ o (w), with our modified ansatz, although in principle we
do not have to restrict ourselves to particular potentiaks are not be able to investigate cases where
the effective potential is extremely flat; hence, we havenit lour investigation to situations. We will
consider flat potential cases in chapter 4. In the “thickFahit, w ~ w,, we have to restrict our
analysis to the case of polynomial potentials of the form:

1
Uo) = §m202 — Ao"™ + Bo? for p>n, (3.1)

wheren > 3, with the nonlinear couplingsl > 0 andB > 0. To ensure the existence ¢f-ball
solutions, we will restrictd, B, n andp later. We expect the thin-wall approximation to be valid for
generalQ-ball potentials in which th€)-ball contains a lot of charge, with?> ~ w2 > 0. In this limit,

we can define a positive infinitesimal parameterin Eq. (2.27), and the effective mass aroundw)
is given by,u?(w) = d;%b+ (w)- The other extreme case corresponds to the “thick-wallitliaiich

is valid for Q-balls containing a small amount of charge, and it satisfies~ w? = m?. For later
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convenience, in this limit, we use a positive infinitesimatgmetern?, defined in Eq. (2.28).

3.2.1 Thin-wall Q-ball
3.2.1.1 Step-like ansatz = w_

At a first step, we review the standard results in the thin-approximation originally obtained by

Coleman [21]. Adopting a step-like ansatz for the profile wéev

o forr < Ro,
or)=2¢ °° @ (3.2)
0 for Rg <,
where Rg and oy will be defined in terms of the underlying parameters, by mising theQ-ball

energylg. We can easily calculatg,,, @), andEq:

1 2 2 2 1 Q2
Sw = (UO — 5(4} 0’0) VD, Q = (,‘JO'OX/D7 EQ = 50—8—VD + UQVD, (33)

wherely = U(oy) andVp = Vp(r = Rg). Note that Eq. (3.3) satisfies the Legendre transformation
results, Eq. (2.16), as we would have hoped. Since the aiisgit£3.2), neglects the surface effects, we
are working in the regimé/ > S in Eq. (2.38). Therefore, we should be able to reproducedbelt,

v = f—g ~ 1, with this solution. To see this, we note that the two term&inare the contributions
from the charge and potential energies.. These two cotiiigiare virialised in thak is extremised
with respect td/p, for a fixed charge), i.e.0Eq /0Vplg = 0; henceVp = Q+/1/(203U,). This then
fixesRg because we know for@ — 1)-sphere}p = R—éQD_l, whereQp_1 = [dQp_;1 = FQ(“D—D//;).
HereI' is gamma function. Substitutinigy into £ [the third expression in Eq. (3.3) ] and minimising

it with respect tar(, we obtain

2
Eq =@Q-min ( E) = Qu- = w2oi Vp, (3.4)

D)
k)

where we have used Eq. (2.24) in which = min (2,%)

0

. Thus, we recover Eg. (2.38) in the

O0=0 4

limit &4 > S. Finally, we remind the reader that we have obtained thermagd energyfg, with

respect td/p (R¢g) andoy in the extreme limitw = w_, where we find

09 =04. (3.5)

Eq. (3.5) implies that the “particle” spends a lot of “timebando . because the effective potential
—U,, aroundo. is “flat”. Note that) and E, are proportional to the volumiép in Egs. (3.3, 3.4) just

as they are for ordinary matter, in this case Coleman call@dmatter [21].

3.2.1.2 The modified ansatzy ~ o

Having seen the effect of an infinitely thin-wall, it is nadito ask what happens if we allow for a more

realistic case where the wall has a thickness associatedt®iModifying the previous step-like ansatz
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to include this possibility [124, 125] will allow us to indlie surface effects [21, 54, 55] and is applicable
for a wider range ofv than in the step-like case = w_. Using the results, we will examine the two

different types of potentials, DVPs and NDVPs, which leathesdifferent cases of Eq. (2.38).

Following [124], the modified ansatz is written as

oy —s(r) forr < Rg,
o(r) =4 a(r) for Rg <r < Rg + 0, (3.6)
0 for Rg +6 <,

where as before the core siZ&;, the wall thickness), the core profiles(r), and the shell profile
a(r) will be obtained in terms of the underlying parameters byerisingsS,, in terms of a degree of
freedomRg. Continuity of the solution demands that we smoothly cargithe profile atr = Rg,

namelyo, — s(Rg) = 6(Rg) and—s'(Rg) = ¢'(Rg).

We expand/,, to leading order aroundl, , to giveU,,(c) ~ —e,, + $1%s*> wheres(r) = o —o(r). In
terms of our mechanical analogy, the “particle” will stapando - for a long “time”. Once it begins to
roll off the top of the potential hill, the damping due to fian (x (D — 1)/r) becomes negligible and

the “particle” quickly reaches the origin. Therefore, wa ceturally assume

Rg > 6, (3.7)

whered is the wall thickness. We know that(0) = —s'(0) = 0, s’(Rg) # 0, ands’(r) > 0. Using
Eq. (2.20), the core profilg(r) for r < R, satisfies the Laplace equation:

D -1
s+ ———5 — s =0 (3.8)
T
whose solution is

s(r) = r1=2) (C’llgfl(ur) + CQK%?l(/LT)) (3.9)

wherel andK are, respectively, growing and decaying Bessel functiOpsndCs are constants. Since
s(0) is finite ands’(r) > 0, itimplies thatC, := 0. Sincel, (z) ~ z”/2I'(v + 1) for smallz = pr and
v#—1,-2,-3...; thus,s(0) is finite:

D/2—1

i

S(O) ~ Clm =04

— 00 (3.10)

which gives a relation betweefl; andoy. In addition, the analytic solution is regular at= 0:

s'(0) ~ 0. For larger ~ Rg, Eq. (3.9) leads to

= I (3.11)

where we are assuming

w>1/Rg, (3.12)
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and have used the approximatify(z) ~ \/62? for largez = ur. As already mentioned, we note that
this result is not strictly valid for extremely flat poteri$ig.e. u ~ 1/ R, because the expansion is only
valid for z = pr > 1. We will therefore only be applying it to the cases where fifiective potential is

not very flat.

Turning our attention to the shell regimey, < r» < Rg + §. Considering the “friction” term in
Eqg. (2.20), we see that it becomes less important for largempared to the first and third terms in

Eq. (3.8), because

dU,,
ds

‘D 1 (3.13)

Rq

D—-1
s'(Ro)| ~ | —=—u?s(Rg)| < 1?s(Rg) =~ s"(Rg) ~
pRq =R
ke LQ

where we have made use of Egs. (3.11, 3.12). Imposing catyticenditions, namely, — s(Rg) =
(Rq), —s'(Rg) = d'(Rg), EQ. (2.20) without the “friction” term becomes
d*s  dU,

il vl = 14
dr? do 0, (3.14)

whereg (r) is defined as being the solution to Eq. (3.14). With the céowlit (Rg) = 04 — s(Rg) and
Eq. (3.10), we finds(Rg) ~ o4 in the thin-wall limit. Therefore,

7(Rg) > s(Rq). (3.15)

Although Eg. (2.19) does not hold exactly, the “total en(i:-rgé/(fl—‘j)2 — U, ~ 0 with Eq. (2.19),
is effectively conserved with the radial pressprevanishing outside th€-ball core, see Eq. (3.14).
This fact implies that the surface and effective potentiargies virialise with equal contributions,
Sohetl =~ Ushenl — %wQsheu, where we have introduced shell and core regimes defined by, =
Op_1 fORQ drrP= F(r,...)and Xgpen = Qp_1 fgg’” drrP=YF(r,...) for some quantityX and a
functionF'(r,...). Usingo’ < 0 and the conditiom (Rg + ¢) = 0, the thickness of th€)-ball can be

written asé(w) = foa(RQ) \/‘;—"T. Sinced is real and positive, we have to impose

5(RQ) <o_, (3.16)

recallingU,, (o) = 0 for o_ # 0.

With the use of Eg. (2.16), we turn our attention to extrengghe Euclidean actiof,, in Eq. (2.10)
for the degree of freedoifl. Using the obtained valuB, we will differentiateS,, with respect tav

to obtain( as in Eq. (2.15) which leads us to tfeball energyE as in Eqg. (2.9) and the characteristic
slopeEq/w@. For convenience we splf,, into the core parS;°™® for r < Rg and the shell part
Sshell for Rg < r < Rg + 6 using Eq. (3.6). Using/p = %QD_l > 0Vp = Rg*QD_l >
0*Vp = Ry *Qp_o and Egs. (3.8, 3.11), we find,

o P ) @)

1
e =~V ey +OVp - (EMSQ(RQ)) s (

where the first termg,,, in Eq. (3.17) comes from the effective potential energyilevthe second and

third terms arise from the surface energy. Siages an infinitesimal parameter in the other thin-wall
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limit w ~ w_, it gives
1

Z/lcore =~ §WQCOT6' (318)

The effective potential energy balances the surface enertlye shell [see Eq. (3.14)], therefore by

introducing the definitio” = foa(RQ) do/2U,,, we see
5 (Rq)
Sshell  — Qp / dorP=1\/2U,(0) < Qp_1(Rg + 0)P7'T, (3.19)
0
2 Qp_1 D—1 6’
— OVp-T+0*Vp - (D-1)6-T ) +O(RY™, =5) - T, (3.20)
Qp_s R

where we have used the fact that the integrand has a peak=ai?y + ¢ in the second relation of
Eq. (3.19) [126] and Taylor-expandéft + §)P~! in going from Eq. (3.19) to Eq. (3.20) because of
our approximation Eq. (3.7). Combining both expressions. E8;17, 3.20), we obtain

Sw _ Siore + Sj}hell7 (321)

~ —e,-Vp+71-0Vp+h-0°Vp, (3.22)

wherer =T + %,LLS2(RQ). Note that whilel" in 7 contains the equally virialised surface and effective
potential energies from the shell, the second tér/mQ(RQ) contains a surface energy term from the
core. Moreover, we have definéd= gg—:; {(D —1)6-T— %%MSQ(RQ)} which is negligible
compared tar because of the assumptions, Egs. (3.7, 3.12). Thereforajiv@ke into account only

the first two terms ir6,,, Eqg. (3.22). Itis also important to realise that

7(Rq) o4 ot
T= do+/2U,, —|—/ do/2U,,_ —>/ do/2U,,_ = const (3.23)
/0 5’(RQ) 0

which is independent ab and D in the limit of w — w_, where we have used the extreme thin-wall
limit w = w_ explicitly. Our modified ansatz is not only valid in the extre limit w = w_ but also

in the limit w ~ w_ as long asr depends o “weakly”. Note that the condition of Eq. (3.16) also
ensures that is positive and real. In addition, the second term in the éxgiression of Eq. (3.23) is

negligible compared to the first teriire.

1
Sshell =~ Z/{shell - §wQshell > 8(107'6 (324)

because o#; ~ 5(Rg), see Eq. (3.15).

We can make progress by using the Legendre transformatigg.q2.16), which implies that we need

0Su
9Rg

to find the extrema of,, with fixedw, i.e. 0. This is equivalent to the virialsation between

andr. Then one can compute the core radius,

T

Rg=(D—1) (3.25)

Cw

Note that this implies that one-dimensional thin-wigdballs do not exist due to the positivity & and

one of our assumption8y > §. By using Egs. (3.22, 3.25) and Eq. (2.16), we can computdébized
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guantities to compare with the results we obtained usingtéyelike ansatz, in particular Egs. (3.3, 3.4),

and we can confirm that the classical stability condition(®2¢1) is satisfied:

T €w
Sw D oVp = D_1 Vb >0, Qw) ~ WU-Q#VD7 (3.26)
Eq ~ wolVp+ % V. (3.27)
2D —1 w?
- _ = 2
“QI3p=1) "D -1e?)’ (328
D 2 2 D 2 2
wd@ - _Deloy | Doy (3.29)
Q dw €w €w

We can see the virialisation betweenande¢,, for the second and third terms in Eqg. (3.26). As in
Eq. (3.4), thefirst term aF, in Eq. (3.27), is a combination of an energy from the chargemotential
energy from the core throughout the volume, while the newséterm, called the surface tension,
represents the equally virialised surface and effectiterg@l energies from the shell as in Eq. (3.24).
In the limitw ~ w_, ¢, becomes zero which implies Eq. (3.18). We have also $egn; > Score-

USingu = ucore + ushella S = 8(107'6 + Sshell ~ Sshellr and EqS (3181 324); we obtain

U~nS+w Q (3.30)

which we will use shortly. Since the characteristic funetfify /@, increases monotonically as a func-
tion of w and S, > 0, i.e. % (%) > 0 or we found Eg. (3.29), the classical stability condition
Egs. (2.31, 2.32) is satisfied without specifying any dethipotential forms. However, the physical
properties of the finite thickness thin-wél-balls do depend on the vacuum structures of the underly-
ing potential. To demonstrate this we consider two casesfdegenerate vacuum potentials (NDVPS)
with w_ # 0 and degenerate vacuum potentials (DVPs) with= 0 (see red solid lines in Fig. 2.1).
Suppose that the thin-wal)-balls have identical features over a large range ofve can find the ap-

proximate threshold frequency, using Egs. (2.29, 2.38) as we assumed when we obtained B).(2.

NDVPs: This type of potential reproduces the results we obtaindeqin(3.4) corresponding to the
regimel{ > S which corresponds to the existence(@matter in that the charge and energy is propor-
tional to the voluméd/p due to the negligible surface tension in Eq. (3.27). Herteeptodified ansatz
Eq. (3.6) can be simplified into the original step-like amdaq. (3.3) with negligible surface effects in
the extreme limitv = w_. To see that, we need to recall the definition.of in Eq. (2.22). We can
realise thaju is the same order as_ except the case of_ = 0. Usingu ~ w_, we can show that
2wQ > Score ~ s1s*(Rg)OVp Where we have used Egs. (3.12, 3.15). Using Egs. (3.18, ar#)
%wQ > S.ore Which we just showed, we can obtain the desired rdgutt S. Similarly Eq. (3.28)

in the limitw ~ w_ simplifies to givef—g ~ 1 which is the result of Eq. (2.38) with the cagde> S.
Using Eq. (3.28) and Eqgs. (2.29, 2.38), we can also find thiearvaluew, for absolute stability

we D-1 (2D — 1) w?
= (H\/HWW) (3.31)
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Finally, thin-wall Q-balls in NDVPs are classically stable without the need far detailed potential
forms; however, the absolute stability condition for~ w_ depends on the spatial dimensiadnsand

on the massn.

DVPs: For the case of the presence of degenerate minima where- 0, sincee,, = %w%Q, we
immediately see from Eq. (3.28) that

Eg 2D — 1

0= 50-] (3.32)

which reproduces Eq. (2.38) for the caseSf~ U. As in NDVPs, we know Eg. (3.30) in the limit
w ~ w_, but the second term_() becomes zero in the present potentials. It follows that. ~ 0
andUsperr =~ Sshetl > Score from EQ. (3.24); hence§ ~ U. In other words, most of th@-ball energy

is concentrated within the shell. In addition, the chatgend energy, are not scaled by the volume,
which implies the modified ansatz does not recover the sirapgatz as opposed to NDVPs. Using
Egs. (3.32,2.18), it impliefg o« Q*P~1/P=1) which reproduces the three dimensional results
obtained in [124].

Finally, let us recap, the key approximations and condétiwa have made in this modified ansatz. They
are Egs. (3.7, 3.12, 3.16, 3.23) fbr> 2. The estimates we have arrived at for the thin-walballs are
valid as long as the core size is much larger than the wakiigiss, the effective potential is not too flat
aroundo ., the core thickness and surface tension/D are positive and real, andis insensitive to
bothw andD. With the extreme limitv — w_, the@-balls in DVPs recover the simple step-like ansatz,
while the ones in NDVPs do not. One-dimensio@aballs do not support thin-wall approximation due

to the absence of the friction term in Eq. (2.20).

3.2.2 “Thick-wall” @Q-ball
3.2.2.1 Gaussian ansatz

As we have started with the simple step-like ansatz in thewall approximation, a Gaussian function
is a simple approximate profile to describe the “thick-wélFballs in the limitw ~ w, [56]. Using a

Gaussian ansatz

(1) = oo(w) exp (—) , (3.33)

we will extremiseS,, with respect tary(w) and R with fixed w, instead of minimisingEq with fixed
Q. Notice that the slope ¢’ /o become®r/R? which is linearly proportional te and the solution is

regular at- = 0: ¢/(0) = 0. By neglecting higher order terifi in Eq. (3.1) with Eq. (3.33). which we
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will justify shortly, one can obtain straightforwardly

Q = (g)D/Q wag(w)RD, (3.34)
1 D 2\ /?
5. = <§mi + 1~ Ao ) (2) ) 9 (335)
D/2
Eg ~ l% (m* +w?) + % — Aoy (w) (%) ] % (3.36)

Eq. (2.16) can be easily checked in Egs. (3.34, 3.35), an@d326). The firsté@) and last termsin
Eq. (3.36) are the potential energy terms; the second t?u@ comes from the charge energy, and the
surface energy term appears in the third te%%. By finding the extrema a$,,, with respect targ(w)

with -25=— — 0, it defines the underlying parametey(w) as

doo(w)
2D\ 1 (n\D/2]V"2 2\
_ 2 i I v ~
Jdm)[@ﬂw+R2)7“4<2) } »<2A) o_(w) (3.37)

where we have neglected the surface term and used the apaition D/2 ~ O(1) in the second

relation of Eq. (3.37). We are then able to check the Gaussiaatz naturally satisfies the other “thick-
wall” limit og(w) ~ o_(w) — 0 sincem,, is a positive infinitesimal parameter in the limit,~ w,
and justify the fact that we have neglected the higher orten 8 in Eq. (3.1). Using the first relation
of Eq. (3.37), one needs to extremiSg with respect to another degree of freeddhwith % =

which determinegi:
2(2—-D)
mg

R= > 0. (3.38)

The reality condition or? implies that the Gaussian ansatz is valid only for= 1. The width of the
gaussian functio? in Eq. (3.38) becomes very large in the “thick-wall” limit,, — 0; thus, we can
justify that the surface terms in Egs. (3.36, 3.37) are gégk. Therefore, we are looking at the regime
U > S which should lead us te ~ 1 as in the first case of Eq. (2.38). To do this for= 1 we
substitute Eq. (3.37) intQ, Eg, S.:

_ T 9 _ (1 1\ 2miQ
Q = QwUO(w)R, Sw—(2 n) " > 0, (3.39)
Eq (1 1 11\ [2m?
m = <2+n)+<2n)(w2 1)%1, (3.40)

where we have considered the “thick-wall” limit ~ m in the second relation of Eq. (3.40). We
can check Eq. (2.38) and the analytic continuation Eg. (2.29the same limit, the Euclidian action

becomes an infinitesimally small positive valug; — 0T,

Using the second relation (w) in Eqg. (3.37) and Eq. (3.38), one can find

“’@:1—“’—2( 1 —1)—>_‘*’_2( 1 —1)§0, (3.41)

Q dw m2 \n—2 m2 \n—2

where we have used the fact that, is a positive infinitesimal parameter in the limit,~ w, going

from the first relation to the second one. Eq. (3.41) showsttieaclassical stability condition clearly
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depends on the non-linear powerin the potential Eq. (3.1)n < 6. This is contradictory because
Eq. (3.40) gives(% (%3) — =1+ % which impliesn < 4 for the other classical stability condition
using Eg. (2.32). We will shortly see that this contradictlmetween Eq. (2.31) and Eg. (2.32) is an
artefact of the Gaussian ansatz. Moreover, our conclusiounld state that the Gaussian approximation
is approximately valid only foDD = 1. These awkward consequences are improved with the folpwin

physically motivated ansatz.

3.2.2.2 The modified ansatz

Having considered the case of the simple Gaussian ansiiwiiod the spirit of [56], we found some
problems for the classical stability. To fix these, we needaenmealistic ansatz [18, 87, 88, 101, 124].
To do this we drop an explicit detailed profile to describeickhwall” @Q-balls and rescale the field
profile so as to work in dimensionless units whilst extragtnit the explicit dependence arfrom S,,..

As in the thin-wall approximation with the modified ansatz will again make use of the technique

Eq. (2.16) to obtain other physical quantities frép.

We begin by defining: = aé andr = b7 with « andb which will depend onv. Substituting them into

Eqg. (2.10) with the potential Eq. (3.1) we obtain:

' 1 2 1
S, = bPQp_, / P! {5 (%) 67 + Sa’m25? — Aa"G" + Bap&p} :
— D a QQ .d~~D—1l 52 1 52 _ 5" 1L 9OBR2aP 267
= b D—1 rr 5 {J + o o+ a o } ,
~ milu/(n—Q)—D+2A2/(2—n)QD_1Sn (3.42)

with the rescaled actiofi,, = [ di7P~? (%&’2 + f]) with U = 152 — 15", and we have neglected
the higher order term involvings, which will be justified shortly. In going from the first lin® the
second one in Eq. (3.42), we have set the coefficients of thigtlfiree terms in the brackets to be unity
in order to explicitly remove ther dependence from the integral #),. In other words we have set

o (%)2 = 1a®m?2 = Aa™. This implies,a = (%})1/(”_2) = o_(w) andb = m . Then we can
justify that the higher order term involved witB is negligible due tor_ (w) — 0 in the “thick-wall”
limit. Crucially S,, is independent af, and is positive definite [18, 101, 124]. Adopting the poweérf
approach developed in Eq. (2.16), giveénwe can differentiate it to obtai@ and then use the Legendre

transformation to obtaifry. This is straightforward and yields

4
Qw) = umﬂbf)/(ﬂ—?)—f:’ (—2 — D+ 2> A_Q/("_Q)QDASm
n—
~ mi/(n72)fD, (3.43)
4
EQ — mf}/("_Q)_D |:mi —+ w2 (—2 — D+ 2):| A_Q/R_QQDflsna
n—
m? 4 -
") 1+—;’<—D+2> ]HwQ- (3.44)
w n—2

The first term involvingm? in the first line Eq. (3.44) is the energy contributed by tharge, while

the second term is dominated by the effective potentialgndrencel/ > S. Therefore, we can also
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recover the resuly ~ 1 in the “thick-wall” limit w ~ w, as we would expect from Eg. (2.38) when

U > S. Since andEq should be positive definite, it places the constraint [101]

4

n —

D<—+2 (3.45)

With the condition Eq. (3.45), it is easy to see tlsat — 07 in the “thick-wall” limit, w ~ w where

m?2 — 0T. There is another constraint emerging from the need foraghgisn to be classically stable:

w dQ w? 4 w? 4
-~ — - D - —-D) < A4
Q dw m2 (n2 ) - m2 (n2 )_0’ (3.46)
4
& D< (3.47)
n—2

which coincides with Eg. (3.41) in the caselof= 1. Notice that the modified ansatz is valid not only
for D = 1 butalsoD < —%-+2in Eq. (3.45). FoD = 3 this result matches that of [124]. The classical
stability condition, Eq. (3.47), is consistent with the dder () andE, to be finite. Eq. (3.47) is more
restrictive than that given in Eq. (3.45). Furthermore, Wwewd check the relation Eq. (2.32) for the
characteristic functiotg /@ in terms ofw. It follows that- (%3) ~1-2 (ﬁ - D+ 2)_1 >0,
which requires the same condition as Eq. (3.47). With thisdad Eq. (3.44), itimplies that the “thick-
wall” Q-balls with condition Eq. (3.47) are both classically andalbtely stable. The fact reproduces
the previous results for the casedf= 2 andn = 4, p = 6 (6-th order potential) in [127] using the
Hoelder inequality. Unlike the Gaussian ansatz Eq. (3.88),modified ansatz now shows consistent

results between Eq. (2.31) and Eq. (2.32).

Let us remark on the validity of our analysis following [101h this section we have used a modified
ansatz which has involved a re-scalingradndr in such a way as to leave us with a dimensionless action
S,. There are restrictions on our ability to do this as first paihout in [101] for the case dp = 3.

We can generalise this to oilir dimensional case. Given that tiieball solutions extremisé,,, we
may rescale or ¢ introducing a one-parameter rescaling~ ar or o — Ao which will deform the
original solution. DefiningX (o) = Sy, [ar, o(ar)] andY (\) = S,[Ao(r)], we impose the condition
that the actiorf,, is extremised when = X = 1, which implies2X|,_, = 0 = 4X|,_,. Itis possible

to show that these conditions imply that consistent sahsti@quire the same condition as Eq. (3.45).
The three dimensional case leads to the resuk; 6, as originally obtained in [124]. The particular
choice ofn = 4 which we will investigate shortly implie® < 4 for the validity of our “thick-wall”
approximation with the modified ansatz. Moreover, “thickiv ()-balls become classically unstable

for D > 3 as can be seen from Eq. (3.47).

What have we learnt from extending the ansatz beyond thed&ausne? We have seen that they have
lead to different results. For instance, the Gaussian aresstentially is valid only foD = 1 and
has a contradiction, whereas the solutions based on thdistbdnsatz are valid fab which satisfies

Eq. (3.45) and give consistent results Eq. (3.47) for atasitability.
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3.2.3 Asymptotic profile

The generic asymptotic profiles for largén polynomial potentials can be obtained by naively igngrin

the higher order terms in the polynomial potentials Eq.)8rld linearising th&)-ball Eq. (2.20):

D—-1
o + o —m?o=0. (3.48)
We then obtain the analytic solution
— " D-1
o(r)~FE T Pemer o T o + my,, (3.49)
2my, o 2r

whereF is a constant which is determined later. Note that we have theefact that the modified Bessel
function of the second kind has the relatiai (r) ~ /5-e~" for larger and any real number. The
second expressions in Eq. (3.49) gives a condition to snhootimtinue our numerical solutions to the

asymptotic profiles at some large radius: R, ..

As we will see in the next section, our numerical results iriclvtwe obtain the fullQ-ball solution

support the modified ansatze introduced in the previousosefor both thin- and “thick-wall” cases.

3.3 Numerical results

In this section we obtain numerical solutions f@rballs using the polynomial potential in Eq. (3.1),
whered > 0, B > 0, p > n > 2. We shall confirm the results obtained analytically using th
modified ansatze for both the thin- and “thick-wall*balls. Recall that/,,(c) = U (o) — 2w?0?, with
U,(0_) = 0 ando (w) marks the maximum of the effective potential/,, whereo (w) # 0. For a

particular casep = 2(n — 1), we find

o_(w) =

A- A ommz) "
( = ) , (3.50)

2Bp

An + +/(An)? — 4Bpm?2 i)
or(w) = . (3.51)

Also, for convenience, we set

A2
wy =m=1, w_zwl—ﬁz()@AngB, (3.52)

where we recall the definitions af, andw_ are thatu? = Y |,_, = m? andU,, (o) = 0. Setting

w_ = 0in Eq. (3.52) implies that/(¢) in EQ. (3.1) has degenerate vacuarat 0, +o, whilst the
original potentialy/ with w_ # 0 does not have degenerate vacua. In this section, we shaidertwo
examples of the potentiél, which can be seen as the red solid lines in Fig. 2.1. The degenvacua
potential (DVP) on the left has_ = 0 (A = v/2B) and the non-degenerate vacua potential (NDVP)
on the righthasv_ = 0.5 (4 = \/W). In order to determine actual values férand B, we define

04 (wy) = 1 and setr = 4, p = 6 for both cases; hencel, = 3, B =3 inDVPandA =1, B = 2

in NDVP. Figure 2.1 also includes plots of the effective migds for various values a.
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Numerical techniques and parameters To obtain the-ball profile we need to know the initial “po-

sition” op(w) = o(r = 0). This is done using a shooting method, whereby we initiallgss at a
value of oy (w), then solve Eq. (2.20) for th@-ball profile, and depending on whether we overshoot
or undershoot the required final valueqgfwe modify our guess far,(w) and try again. Throughout
our simulations, we need to specify the following three $mpatametersg, £, n which, respectively,
determine our simulation sizg, ., the radiusi,,,, at which we can match the analytic and numerical

solutions, and the core siZ&;. The smoothly continued profile is computed up-te: R,,4.

Shooting method Let us consider an effective potentiall/,, which satisfies the&)-ball existence

condition Eq. (2.24). We have to initially guess, subject to it be being in the appropriate region
o_(w) < 0o(w) < o4 (w). For example it might be. = 7= There are then three possibilities,
the particle could overshoot, undershoot, or shoot prgp€he last case is unlikely unless we are really
“lucky”. If it overshoots then we would find(ro) < 0 at some “time™ro. If that were to happen we
could update’d, too}, = (’OG% as our nextguess. On the other hand if it undershoots, theci’ of

the “particle” might be positive at some “timey;, o’ (ryy) > 0. If that were to happen we might update
ol tool = b;”’oi as our next guess. After repeating the same procedures sayes, we obtain the
finely-tuned initial “position”oo(w) ~ ¢& as our true value. To be compatible with numerical errors,

our numerical simulation should be stopped with an appad@accuracy parameteriseddy

€>o(ry = Tmaz) > 0, (3.53)

wherer,,., is the size of our simulations, ardneasures the numerical accuracy where a small value
of e corresponds to good numerical accuracy. Unfortunatelitia profiles still have small numerical
errors for larger. To compensate for these errors, the profiles should cantmthe analytical ones

smoothly at some point= R,,, using the following technique.

Matching analytic and numerical solutions atR,,,, In order to smoothly continue to the asymp-

totic profile which satisfies the second relation in Eq. (3at3he continuing poink,,., the following
condition is required:

D-1 !

L fmy + mum| g (3.54)

2r Tnum

where the parameter should be relatively small. Hence, we can find the appropipabfile in the

whole space

B Onum (T) forr < Runa, (3.55)
o(r) = .
Unum (Rllna/) (M) (Dil)/Q e_mW(Tl_Ranﬂ/) for Rana S r S Rmal‘)

T

where we have computdd using Eq. (3.49) and our simulations are carried out up$o R,
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Core size and wall thickness of thin-wallQ-ball Using Eqg. (3.11), we can define the core size

R and the numerical wall thickness,,.,(w) by the slope-¢’ /o with the following condition
— K + < n
r a Onum

Rg.
Notice that the definition of,,..,, (w) is differentfrom the definitionin Eq. (3.7) wheféw) = foa(RQ) \/ZUT'

(3.56)

(3.57)

5num = Rana -

Numerical parameters We have run our code in two different regimes.ofor both DVP and NDVP

because the profiles for largeare needed to look into larger simulation sizg,,, compared to the ones
for smallw. Because of numerical complications, we do not conduct iooulations near the extreme
thin-wall limit, i.e.w ~ w_. However, by solving close to the thin-wall limit, our nuriead results
for og(w) ~ o4 (w) andRg > d,um allow us to recover the expected properties of thin-walballs
with the modified ansatz Eq. (3.6). Finally, our results presd here correspond to the particular sets

of parameters summarised in Table 3.1.

DVP
w € Tmaz | Bmags ¢ n
0.38-0.73 || 4.0x107%2 | 30 200 | 8.0x1073 | 1.0x10° 1!
0.73-0.99999| 1.0x10-° 40 200 | 8.0x1073 | 1.0x10~!
NDVP
w € Tmaz | Bmaa £ Ui
0.60-0.85 3.0x1073 30 200 | 8.0x1073 | 1.0x10~ 1!
0.85-0.99999| 1.0x10-° 50 200 | 8.0x1073 | 1.0x10~!

TABLE 3.1: The numerical parameters in DVP (top) and in NDVP (bujto

3.3.1 Stationary properties in DVP and NDVP

We devote a large part of this section to justifying the poagly obtained analytical results in the thin-

and “thick-wall” approximations by obtaining the appraid numerical solutions.

Profiles with our numerical algorithm  In the top two panels of Fig. 3.1 the two red lines (one dotted

and one with circles) show the numerical slopes’/o for the case ofD = 3 for two values ofw.
These are then matched to the analytic profiles (green datis) in order to achieve the full profile as
given in Eg. (3.55). Recall that we expect in general for allies ofw, the analytic fits to be accurate
for larger, the numerical fits to be most accurate for smadind there to be an overlap region where
they are both consistent with each other as seen in Fig. 3elha¥e also plotted in dot-dashed purple
lines our analytic fits, Eq. (3.56), for the slopes of the thiall cores fromr = 0.5. We should remind

the reader that this fit only really works for the case of smatlecause we are dealing with thin-wall
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Q-balls. Notice, it is clear from the purple dot-dashed littest the core sizes cannot be determined by

this technique for the case= 0.9 ~ w,.

The bottom two panels show the full profiles satisfying Eg5%3 for arbitraryD up toD = 5. We have
been able to obtain th@-ball profiles in the whole parameter spacexcept for the extreme thin-wall
regionw ~ w_. Both DVP and NDVRQ-balls have profiles with similar behaviours in that as thetish

dimension increases, so does their core size.

2.0 2.0 T T T
i numerical data in ©=0.60

analytic slope in ©=0.60

numerical data in ©=0.38
analytic slope in ©=0.38

m in ©=0. mg,in 0=0.60
1 core analytical slope in ©=0.38 1 - core analytical slope in ©=0.60
15 i numerical data in ©=0.90 L5 j numerical data in ©=0.90
L analytic slope r in ©=0.90 ] H analytic slope in ©=0.90
myin 0=0.90 - Y H mg,in 0=0.90
core analytical slope in ©=0.90 N core analytical slope in ©=0.90
1.0 - A ————— e ] 1.0 - A
6 /o N 5 /o
05 | OOM 777777777777777777777777777777777 B 05 |
K VP §
0.0 -t . . . : 0.0
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r r
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08 % \ ®=0.38 in 3D 1 08t } ®=0.60 in 3D
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06 F\ G
G 05 Ly c
04F |\t
0.3
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01 + Dvp NDVP
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FIG. 3.1: The top two panels show the numerical slopes/o for the case oD = 3 for two values ofv for both
DVP (left) and NDVP (right). The red (one-dotted and one wiititles) lines show the numerical slopes and the
green dotted lines with two different widths the correspoganalytic solutions. The purple dot-dashed lines with
two different widths show the analytic fits for the core predil The bottom two panels show the f@#ball profile

as described in Eq. (3.55) for a number of values @ind D. Note how the core size increases with

Criteria for the existence of a thin-wall Q-ball with core size R, The top and middle panels of Fig. 3.2

show the numerical results for (w) andd,,.../Rq againstw for a number of spatial dimensiods.
For the case oD > 3 itis clear from the top panels that tiieballs are well described by the thin-wall
result Eq. (3.50) for most values of with the range increasing d3 increases. The case 6f = 2 is
less clear, it appears to asymptote onto the line. We beliere is a solution that exists for that case
for small values ofu. An important point is that for the approximation to be valid are working in the
regimed,...,/Rg < 1 which can be seen to be true from the middle panels (again Wie/b¢he case

of D = 2 is heading below the lin&, ...,/ Ro = 1 for smallw.
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These results are consistent with our analytic solutionfride thick-walled@-balls given by Eq. (3.6),

subject to the criteriag(w) ~ o4 (w) andRg 2 dpum, €ven thoughy ~ w.

For D = 1 we see in the top panels thaf(w) exactly matches _ (w), (the orange dot-dashed lines).
The bottom two panels in Fig. 3.2 show the core sizgf thin-wall Q-balls which satisfy our criterion
Eq. (3.56). Recall thakg in Eq. (3.25) is a function ab assuming- depends o weakly; thus, we
plot the numerical core sizes comparing them with our areyapproximation for DVP and NDVP,

respectively

2(D — D) Thum 2(D = 1)Thum
DVP ) NDVP
Rg"" ~ — Rg ~ 7@]2 —7) (3.58)

where the parameter,,,,,, is computed numerically (see Table 3.2). The presented ricahe€ore
sizes match excellently with the analytical fittings over @evrange ofw. Some numerical errors
appear around ~ w. since we cannot determine the “thin-wall” cores with thighteique, see the top
two panels in Fig. 3.1. Table 3.2 shows analytical and nuraévialues ofr using Eq. (3.23) and the
above fitting technique. We confirm that the values ¢4 part of the surface tensieti D in Eq. (3.27))
are nearly constant, depending slightly@nTherefore, the assumptions we made for thin-abhalls

are valid as long as(w) ~ o (w) andRg 2 dnum.

Configurations  Fig. 3.3 illustrates the configurations of charge dengify(top) and energy density
pe (bottom), in both DVP (left) and NDVP (right). Each of the D\&Rergy densities around ~ w_
has a spike within the shells, while those spikes are noeptées NDVP. The presence of spikes can
contribute to the increase in surface enefgyvhich accounts for the different observed ratio £/

in the two cases, whet# is the potential energies. Otherwise, DVP and NDVP model Isemilar
profiles in Fig. 3.1. Moreover, we have numerically checkeat €)-balls for D > 2 generally have
positive radial pressures, whereas th@ radial pressures are always zei@. 10’2 = U, due to
Eq. (2.14).

1
2

Virialisation and characteristic slope Eq /w@ The top panels in Fig. 3.4 illustrate the ratiSgl/

and the four bottom ones show the characteristic slopeBofw@ againstw in both the thin-wall
(middle-panels) and “thick-wall” (bottom-panels) limitdccording to our analytic arguments Eq. (3.30),
we expectS/U ~ 1 in the extreme limitv ~ w_ = 0 in DVP. Similarly, we expec/U ~ 0 in the
same extreme thin-wall limit = w_ = 0.5 for NDVP. The latter case corresponds to the existence
of Q-matter with the simple step-like ansatz Eq. (3.2). Althowge are unable to probe these pre-
cise regimes, we believe the slopes of the curves indicatedhe heading in the right direction. The
characteristic slopes(w) = Eq/w(@ in the thin-wall limit in the two middle panels lie nearby the
analytical ones, Egs. (3.28, 3.32), as longraév) ~ o4 (w) (see Fig. 3.2) except for theD cases
because foi) < 2 the profiles are not well fitted by thin-wall predictions. damly, the characteristic
slopesEq /w(@ in the “thick-wall” limit in the bottom two panels agree withur analytical predictions
Eq. (3.44) using the modified ansatz rather than with Eq0j3uding the simple Gaussian ansatz. We

have confirmed that the analytic characteristic slopes&ith(3.44) can not apply to higher dimensions
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FIG. 3.2: The initial “positions”oo(w) (top), onum /R¢ (Middle), and the core sizd3; (w) (bottom). The top
panels show + (w), Egs. (3.50, 3.51) as black and orange dot-dashed linesatdggly. The middle panels show
the range of values @b for a given value ofD in which the core thickness is smaller than the core sizeyaialr
assumption we have to make. In the bottom panel, the anallytare sizes in Eq. (3.58) are plotted with the
numerical ones for the following ranges;0.38 — 0.40], [0.38 —0.55], [0.38 — 0.60], [0.38 —0.70] in DVP, and
[0.60 — 0.62], [0.60 — 0.65], [0.60 — 0.75], [0.60 — 0.85] in NDVP and forD = 2, 3, 4, 5, respectively. As can
be seen, the fits are excellent. The range afallues chosen have been based on the results shown in theaop t
panels and correspond to that range where the thinép4ialls are solutions (except f@ = 2).

DVP || 0.19| 0.20| 0.23| 0.25| 0.26
NDVP || 0.16 | 0.17| 0.21| 0.22 | 0.23

TABLE 3.2: The values of ;.. and7,., in terms of D in DVP and NDVP, see Egs. (3.23, 3.25).

D > 4 in the “thick-wall” limit, see Eq. (3.45). Around the “thiewall” limit w ~ w, the behaviours
in both potentials ar€ < U (see top panel), which implies, ~ w( as predicted in Egs. (3.40, 3.44);

hence we can verify that the solutions are continued to the farticle solutions, see Eq. (2.29). Our
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FIG. 3.3: The configurations for charge dengity (top) and energy densipy (bottom) computed using Eq. (2.13)
for both DVP (left) and NDVP (right). The presence of spikég g in DVPs contributes to their increased surface
energies.

physically motivated modified ansatze in both the thin- &héck-wall” limits, therefore, have clear

advantages over the simple ansatze in Egs. (3.2, 3.33).

Q-ball stability Fig. 3.5 shows the classical and absolute stability lines(feballs. Table 3.3 in-
dicates the approximate analytical values.gfderived by Egs. (2.39, 3.31), which can be compared
to the numerically obtained critical valuesfor the stabilities denoted by., ws, wen, wq, andwy

in Table 3.4. These are defined l%% =4 (%—Q)‘ =0, Eg/Q|,, = m, and
Ws Weh

= 0 respectively. TheD analytical plots of% (%) in the thin- and “thick-wall” limits,

d?S.
dw?

dw
aQ

wr
Egs. (3.29, 3.47), can be seen to match the correspondingnezahdata in the appropriate limits of
w. We have confirmed numerically that for both DVP and NDVP sase= w; ~ w, =~ wcp, SE€
Table 3.4. This can be easily understood from Eqgs. (2.32)28d Eq. (2.34).

Recall Eq. (3.47) witm = 4 leads to the classical stability conditidn < 2 for the “thick-wall” case.
The top panels in Fig. 3.5 demonstrate that “thick-w&}balls in D > 3 are classically unstable.
In Table 3.4, one can check that the absolute stability ¢mmdis more severe than the classical one.
We then categorise into three types@dball [20]: absolutely stabl&)-balls for w < w,, meta-stable
Q-balls for w, < w < w,, Which are not quantum-mechanically stable but classicsthble, and

completely unstabl@-ballsfor w. < w.
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FIG. 3.4: The ratio ofS /U whereS andi/ are surface and potential energies (top panels), the deasiic slope
v(w) = Eg/wQ in the thin-wall-like limit,w ~ w_, with the analytic lines Eq. (3.28) (middle panels), andha t
“thick-wall-like” limit, w ~ w,, (bottom panels), with the analytic lines Eqgs. (3.40, 3.44)
Both analytical valuess, in DVP and NDVP in Table 3.3 agree well with the numerical oimres
Table 3.4. Generally speaking, the higher dimensi@pialls are more stable classically as well as
guantum mechanically. Moreover, thin-w#)l-balls are always classically stable as demonstrated in
Eq. (3.29), but the classical stability of “thick-wall)-balls is model- and- dependentas in Eq. (3.47).
The one- and two- dimension@+balls have a much richer structure than the thin- and “thveld” Q-
balls. Itis a challenging task to understand their interiatedorofiles [128].

dG

Legendre relations Fig. 3.6 shows the Legendre relatio% V.o w, —Be v, Q, and4er v, 1,2

which can be used to check Eq. (2.15). We have also checkedlidéy of the Legendre transforma-

tions in Egs. (2.9-2.11). Since the numerical results matotanalytical ones, these results strengthen
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the validity of our analytic arguments.
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D|S>U | S~UorDVP | NDVP | S« U
3 0.50 0.80 0.86 1
4 0.67 0.86 0.90 1
5 0.75 0.89 0.92 1

TABLE 3.3: Virial relations:w, in terms of space dimensiad and ratioS /i, see Eq. (2.39)

DVP NDVP
Wq We Ws Weh wr Wq We Ws Weh wr
0.82 | 092 | 092 | 092 | 092 || 0.87 | 0.94 | 094 | 0.94 | 0.94
0.86 | 0.96 | 096 | 0.96 | 0.96 || 0.89 | 0.97 | 097 | 0.97 | 0.97
0.882| 0.983| 0.993| 0.983| 0.983| 0.910| 0.985| 0.996| 0.991| 0.985

o b wly

TABLE 3.4: The critical values for classical stability, absolstability and stability against fission in DVP and
NDVP using Egs. (2.30, 2.31, 2.32) and Eq. (2.34). The aiii@lues are defined by2| = %5

dw?
Ws

£ (%’) ‘ =0,Eq/Qlw, =m,and 5—5 = 0. The numerical values af, coincide with the analytic ones
Weh Wy
in Table 3.3. We have confirmed numerically that= wy ~ ws ~ wep.
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3.4 Conclusion

We have numerically and analytically explored the statigmaoperties of a singl€)-ball for an arbi-
trary spatial dimensio in a class of polynomial potentials. By linearising tfeball Eq. (2.20) or
rescalingS,,, we have been able to consider the two limiting cases cafledtin- and “thick-wall”
@-balls. The step-like ansatz of Eq. (3.2) can describe Wafi-Q-balls in the extreme limiv = w_,
whereas the modified ansatz Eq. (3.6) is applicable,{o)) ~ o (w) which leads to wider range of
parameter space and of course includes the previous limit. On the other h#malJimit w ~ w, is
used to describe “thick-wallp-balls in both the Gaussian ansatz Eg. (3.33) and our modifisdtz for

the “thick-wall” case.

The thin-wall approximation is valid foD > 2. Since the step-like ansatz in the thin-wall approx-
imation does not have surface effects, the characterigeds simplyy = 1, Eq. (3.4). With the
modified ansatz including surface effects, the classiediildy for thin wall Q-balls does not depend on
D in Eq. (3.29), but the absolute stability condition Eq. (3.8oes. Throughout the analysis, we have
assumed Egs. (3.7, 3.12), and imposed Eq. (3.16) expligitiych differs from the analysis in [124].
Without these approximations, our calculations, in patdcEgs. (3.19, 3.20) and Eq. (3.22), become
inconsistent; similarly, the last assumption Eq. (3.16ugas that the shell thickness of the thin-wall
Q-ballis real. The mechanical analogies and the numerisaltenaturally explain and validate our un-
derlying assumptions: the core sizes of @pualls are much smaller than their corresponding thickness
as seen in the middle two panels of Fig. 3.2, and the surfarstote depends weakly an as seen in
Table 3.2. With these assumptions, thin-w@iballs forw < w, are absolutely stable. Moreover, the
characteristic slopes coincide with those derived usiegvitial theorem. This follows from our anal-
ysis of the relative contributions between the potential surface energies. The slopes have two types
in either non-degenerate vacua potentials (NDVPSs) or dagémvacua potentials (DVPSs): thin-wah
balls in NDVPs have a large energy from the charge; hencesutiace energy is less effective than the
potential energy. They support the existenc&lafatter in the extreme limity = w_. “Thick-wall”
Q-balls in DVPs, however, have negligible energy from therghaompared to surface and potential
energies; thus, the surface energy is well virialised withfotential energy. As seen in the left-bottom
panel of Fig. 3.3, the configurations of energy density haakp within the shells, which contribute to
the surface energy. It would be worthwhile understandimgé¢hpeaks in terms of our modified ansatz.
Even in the extreme thin-wall limit, the charge and energihef)-balls in NDVPs are not proportional

to the volumej.e. no Q-matter.

“Thick-wall” @-ball solutions naturally tend to the free charged and magsrticle solutions Eq. (2.29).
With the simple Gaussian ansatz we have extremisedith respect tar, and R with fixed w, while

the approaches in [56] are th&t, is extremised with respect to only. By extremising with respect to
two degrees of freedom we are able to recover the expectatise$ Eqgs. (3.37, 3.40) unlike in [56].
The Gaussian ansatz, however, is valid onlyfoe= 1 because of Eq. (3.38), and gives contradictory re-

sults for the condition for classical stability. In ordertanove these drawbacks in the Gaussian ansatz,
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we introduced another modified ansatz and used the Legegldt®mns to simplify the computations of
S., @ andEg. We obtained a consistent classical stability condition@a}7) which depends ob
and the non-linear power of the polynomial potential Eq. (3.1). Not surprisinglyrawmerical results
suggest that the modified ansatz is much better than the @awsssatz in the bottom two panels of
Fig. 3.4. With the same panels, the validity condition Eg4%53 in the modified ansatz has also been

confirmed numerically.

In Egs. (2.39, 3.31) and Table 3.5, the analytical and nwakrésults found the critical value, sub-
ject to the assumption that the higher dimensiapddalls could be treated with the thin-wall approxi-
mation over a wide range of valueswf In summary, the higher dimensior@iballs can be simplified
into the thin- and “thick-wall” cases, while it is more challging and interesting to understand station-
ary properties of one- and two-dimensiogaballs. For example, thoge-balls embedded iBD space
(called@-strings andl-walls [129]) or extended-balls (nontopological strings [130] arigtballs with

spatial spins and/or twists [46]) may exist in the formaidthree dimensional-balls [1].

The properties of non-thermél-balls we discussed in this chapter can lead to differensequences
compared to thermal oneisg. in the evolution of the Universe. The thermal effects(@balls induce
subsequent radiation and evaporation. The Affleck-Dinehaeism provides a natural homogeneous
condensate during an inflationary era, these fluctuatianthan amplified to nonlinear objects, namely
Q-balls if the pressure of the AD condensate is negative. ©hadtion, dynamics, and thermalisation
might have phenomenological consequences in our presaetrse,e.g.gravitational waves [131] and

baryon-to-photon ratio.

Model Polynomial potentials
Q-ball type Thin-wall “Thick-wall”
Assumptions || Rg > 6,1/u; o9 ~ o4 andr does not depend an None
Potential type DVPs NDVPs Both
1/v D=1 1 1
Absolute stability O O A
Classical stability O O A

TABLE 3.5: Key analytical results for the case of polynomial ptitds. Recall that the-independent character-
istic slopey = Eq/wQ leads to the proportionality relatiafig oc Q/7. The symbols() and A, indicate that
Q-balls are stable or can be stable subject to certain conditrespectively. Recall that we may need the condition
o(Rg) < o_ in our thin-wall analysis; the readers should also note dbatthick-wall” analysis is valid as long
as it satisfies Eq. (3.45). Thg-balls in the “thick-wall” limit are absolutely and clasalty stable subject to the
condition Eq. (3.47).
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Chapter 4

()-balls in MSSM flat potentials

4.1 Introduction

Q-balls have recently attracted much attentions in cosmyo]24] and astrophysics [26, 25, 132, 133,
134]. A Q-ball is a nontopological soliton, and a number of scaladfibleory models have been

proposed to support the existence of nontopological swito

From a phenomenological point of view, the most interestixagmples are probably the supersymmetric
Q-balls arising within the framework of the Minimal Superaymtric Standard Model (MSSM), which
naturally contains a number of gauge invariant flat directioMany of the flat directions can carry
baryon (B) or/and lepton (L) number which is/are essentalAffleck-Dine (AD) baryogenesis [14].
Following the AD mechanism, a complex scalar (AD) field acgsiia large field value during a period
of cosmic inflation and tends to form a homogeneous condentbet AD condensate. In the presence
of a negative pressure [111, 117], the condensate is ursighinst spatial fluctuations so that it devel-
ops into nonlinear inhomogeneous lumps, nandglpalls. The stationary properties and cosmological
consequences of thg-balls depend on how the Supersymmetry (SUSY) is brokendrhttiden sec-
tor, transmitting to the observable sector through scedathessengers. In the gravity-mediated [23] or
gauge-mediated scenarios [24], the messengers correspapettively either to supergravity fields or

to some heavy particles charged under the gauge group diathéssd model.

Q-balls can exist in scalar field potentials where SUSY is brothrough effects in the supergravity
hidden sector [135]. This type @j-balls can be unstable to decay into baryons and the lightgsr-
symmetric particle dark matter, such as neutralinos [1§@&lyitinos [137, 138, 139] and axinos [140].
Recently, McDonald [141] has argued that enhan@eokll decay in AD baryogenesis models can ex-
plain the observed positron and electron excesses detegtPAMELA [142, 143], ATIC [144] and
PPB-BETS [145]. By imposing an upper bound on the reheagingperature of the Universe after infla-
tion, this mode of decay througp-balls has been used to explain why the observed barybyp)caind
dark matter Q ps) energy densities are so similar [146, 147], {8, /2, = 5.65 £ 0.58 in Eq. (1.2)



[11].

Scalar field potentials arising through gauge-mediatedYSbi®aking [23] tend to be extremely flat.
Using one of the MSSM flat directions, namely Q€L direction (wher&) andd correspond to squark
fields andL to a slepton field), which has a nonzero valueBof- L and therefore does not spoil AD
baryogenesis via the sphaleron processes that vidlateL [147], Shoemaker and Kusenko recently
explored the minimum energy configuration for baryo-leptap-balls, whose scalar field consists of
both squarks and sleptons [148]. It had been assumed todhttpat the lowest energy state of the
scalar field corresponds to being exactly the flat directimwever in [148, 149], the authors showed
that the lowest energy state lies slightly away from the flegadions, and that the reliQ-balls, which
are stable against decay into both protons/neutrons (hayymd neutrinos/electrons (leptons) [22], may
end up contributing to the energy density of dark matter [, 150]; thus, th&)-balls can provide
the baryon-to-photon ratio [19], i.ew,/n., ~ (4.7 — 6.5) x 10~'? in Eq. (1.1) [10] wherey, andn.,

are, respectively, the baryon and photon number densitigeiUniverse.

In this chapter we examine analytically and numericallydlassical and absolute stability ¢fballs
using flat potentials in the two specific models mentioned/abtn order to study the possible existence
of lower-dimensional)-balls embedded in 3+1 dimensions, we will work in arbitrspgtial dimensions
D; although of course thé = 3 case is of more phenomenological interest. Previous wddi,[1
111, 147] on the gravity-mediated potential has used edrseplike or Gaussian ansatz to study the
analytical properties of the thin and thick-wé}tballs. Introducing more physically motivated ansatze,
we will show that the thin-wall)-balls can be quantum mechanically stable against decaytheir
own free particle quanta, that both thin and thick-w@iball solutions obtained are classically stable
against linear fluctuations, and confirm that a Gaussiantaisa physically reasonable one for the
thick-wall Q-ball. The one-dimension&)-balls in the thin-wall limit are excluded from our analylc
framework. The literature ofY-balls with gauge-mediated potentials has tended to usst atefile

in approximately flat potentials. We will present an exacifie for a generalised gauge-mediated flat

potential, and show that we naturally recover results presty published in [19, 23, 147].

The rest of this chapter is organised as follows. Sectiomp#doRides a detailed analyses for gravity-
mediated potentials, and in Sec. 4.3 we investigate theafesgeneralised gauge-mediated potential.
We confirm the validity of our analytical approximations witomplete numerica-ball solutions in
Sec. 4.4 before summarising in Sec. 4.5. In Appendix B, waioldn exact solution for the case
of a logarithmic potential, and in Appendix C, we confirm tlia¢ adoption of a Gaussian ansatz is
appropriate for the thick-walD-ball found in the gravity-mediated potentials. This cleayig published

in [50].
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4.2 Gravity-mediated potentials

The MSSM consists of a number of flat directions where SUSYotdnoken. Those flat directions are,
however, lifted by gauge, gravity, and/or nonrenormalsafteractions. In what follows the gravity
interaction is included perturbatively via the one-looprections to the bare mass in Eq. (2.25) and

the nonrenormalisable interactiori$ z), which are suppressed by high energy scales such as thek gran
unified theory scalé/;; ~ 10'® GeV or Planck scale,; ~ 10'® GeV. Here,mn is of order the SUSY
breaking scale which could be the gravitino massns,,, evaluated at the renormalisation scale
[135]. We note that, following the majority of work in this fik we will ignore A-term contributions
(U(1) violation terms), thermal effects [151, 152] whichnee from the interactions between the AD
field and the decay products of the inflaton, and the Hubldedad terms [153] which gives a negative
mass-squared contribution during inflation. It is possihiat their inclusion could well change the

results of the following analysis.

The scalar potential we are considering at present is [133], 1

U=U,u+Usp = m20? (14 K1 il AP o 4.1
= Ugrav NR—QTTLO’ + n M2 + n—40 ()

where we used Eq. (2.25) is a factor for the gaugino correction, which depends on #telftections,

. . B . . . . 2
andM is the renormalisation scale. Alsas a dimensionless coupling constant, &hdr = %a”,

wheren > 2. If the MSSM flat directions include a large mass top qué&fkcan be positive an then
@-balls do not exist. For flat directions that do not have adarmss top quark component, we typical
find K ~ —[0.01 — 0.1] [111, 154]. The power. of the nonrenormalisable term depends on the flat
directions we are choosing along which we maintain R pafis/examples of the directions involving
squarks, the:°dd® direction has: = 10, whilst theu“ucde direction requires = 6. A complete list

of the MSSM flat directions can be found in Table 1 of [15]. ®iitlee potential in Eq. (4.1) fak < 0

could satisfy the)-ball existence condition in Eq. (2.24), whese > m, Q-balls naturally exist.

In the rest of this chapter, we will focus on potentials of thiem of Eq. (4.1) for generaD(> 1) and

w andn(> 2) so thatM andm,, have the same mass dimensiob, — 1)/2, asc. It means that the
parameters\/ andm,, are only physical foD = 3. For several cases efandD, the termUy g can

be renormalisable, but we will generally call it the nonnenalisable term for the future convenience.
The readers should note that the potential Eq. (4.1) has deeved only with ' = 1 supergravity

in D = 3; therefore, the potential form could well be changed in ptlimensions. Furthermore, the
logarithmic correction breaks down for smalland the curvature of Eg. (4.1) at= 0 is finite due to
the gaugino mass, which affects our thick-wall analysis twedt dynamics. However, we concentrate
our analysis on this potential form for arbitrafy, n and any values of for two main reasons. The
first is that it contains a number of general semiclassicglies expected of all the potentials, and the

second is that it offers the opportunity to consider the Iedinensionaty-balls embedded i = 3.

In Appendix B, we obtain the exact solution of Eq. (2.20) wiik potentiall/ = U,,4.; however, exact

solutions of the general potentidlin Eq. (4.1) are fully nonlinear and can be obtained only nucady.
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Therefore, we will analytically examine the approximatkitions in both the thin and thick-wall limits.
Before doing so, we shall begin by imposing a restriction\oim Eq. (4.1) in order to obtain stable
Q@-matter in NDVPs. With the further restrictions dnand | K|, we can proceed with our analytical
arguments, and we will finally obtain the asymptdfieball profile for larger which will be used in the

numerical section, Sec. 4.4.

4.2.1 The existence of absolutely stablg-matter

As we have seen, the first restriction on the parameters iif4en). is K < 0 to satisfy Eq. (2.24).
Further, we need to restrict the allowed values of the patameto ensure that we obtain absolutely
stable)-matter. Notice thaf)-matter exists in NDVPs, whilst the extreme thin-w@Hballs in DVPs
will not be Q-matter as we showed in chapter 3.

2U We | — 0, we shall find the

2
a
a o4

range of values ok for which absolutely stabl@-matter solutions exist. Moreover, we will obtain the

By using the definitions ofs_ ando, namely,w? =

and
.

curvaturey, which is proportional toX’|, of the effective potentidl,, ato .

The effective potential for Eq. (4.1) can be rewritten inmerof new dimensionless variablés =

o/M, & =w/m,and

22
62 = ||717742 > 0, (42)
mpl m
as
1
Uy = 5M2m2&2 (1-&%—2|K|ng) + M*m?*B*". (4.3)
After some simple algebra and introducibg = 25 |5, and % ~ =0, we obtain
o+
K|\ 1 ||
= ——— ) 52 = — 24 2|K| - 2|K|In | ——— ). 4.4
o= (igm) ¢ =g ek (s @

Notice thatw? = 0 corresponds to DVPs wher@-matter solutions do not exist, whilst the extreme
thin-wall Q-balls do exist and are absolutely stable against their avamtp as we will see. In NDVPs,
Q-matter solutions exist and are absolutely stable whena? < 1, see Eq. (2.30). Combining these
facts and using the second relation in Eq. (4.4), we havedhstint on\ for stableQ)-matter solutions

to exist, namely

|K|e™? n—2 5 |K|e™?
_z = 4.5
n—2 P\ gE) < P <o (45)
Kle=t ml*m? n—2 Kle=t mly *m?
|n L 5 7]1\’47172 exp (_—2|K| ) < N? < |n L 5 ]\1;[”72_, (4.6)

where we have used Eq. (4.2) to go from Eq. (4.5) to Eq. (4.6)ethe lower limit of \|? corresponds
to @2 = 0, whilst the upper limit corresponds @@ = 1. The inequality in Eq. (4.6) implies that if
the coupling constant of the nonrenormalisable term in Eq. (4.1) is too small, tiveloes not support

the existence of)-balls, whereas a largk coupling leads to unstabl@-matter. With the following
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parameter setp = M = 1, |K| = 0.1, n = 6 and the lower/upper limits g8 in Eq. (4.5), Fig. 4.1
shows the inverse potentials in Eqg. (4.3) and their inveffeetive potentials-U,, with various values
of w. The lower limit,3? = % exp (7\_}2{\) corresponds to DVPs case with = 0, whilst in the

|Kle”*
1

upper limit, 3% = , the potentials do not have degenerate vacua with= 1, hence are called

NDVPs. By substituting the values 6F into Eq. (4.4), we obtain the values®f indicated in Fig. 4.1.

Finally we can obtain the curvaturg?(w) = £
g

do?

X evaluated ab_ , i.e.
p? = P (w-) = m?|K|(n —2) o< |K], (4.7)

which implies that a small logarithmic correctipi’| < O(1) in Eq. (4.1) gives an “extremely” flat

effective potential/,, compared to the quadratic term® aroundo = o, for a givenn ~ O(10°~1).

1. 10° : : : . . ! . . . 60
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FIG. 4.1: Parameters . (w) for a potential of the forn/ (o) = 10? (1 — |K|Ino?) + B°0° (effective poten-
tial U, = U — tw?0?) with |[K| = 0.1. The left hand figure corresponds to the case of a DVP \ith=

ML exp (—27) ~ 1.90 x 107", whilst the right hand side s the NDVP wig? = 1 ~ 9.20 x 107,

see Eq. (4.5). The coloured lines in each plot correspondffereht values ofv. The variablesr (w) is defined
as the maximum of the inverse effective potentidl,, where aso_ (w) corresponds te-U, (o—(w)) = 0 for

o_(w) # 0. Recallingw_ = 0in DVP, the DVP has degenerate vacuaat0) = e'/* exp (ﬁ) ~ 1.91 x 10

(red-solid line), whilst the NDVP does not. The inverse efifee potential-U,, with w_ = 1 in NDVP (green-
dashed line), however, has degenerate vacua &v_) = e'/* ~ 1.28, see the first relation in Eq. (4.4). For the
lower limit w ~ w_ (green-dashed lines), we could see = ¢!/, whilst the purple dotted-dashed lines show
o_(w) — 0 near the thick-wall like limitv = 3.0 ~ w4 wherew; > 1.

4.2.2 Thin-wall Q-balls for oy ~ 0., Rg > 9,1/, D > 2

For the extreme limitv = w_, Coleman demonstrated that the steplike ansatz [21] iScaiyié to the

case of NDVPs because the surface effects of the thin@afall in this limit are not significant. There
are situations though where we would like to explore theaegiroundv = w_, corresponding to
oo ~ o4 (w), and to do this we need to include surface effects. In ch&pter explained how to do this
under the assumption®tq /6, pRqg > 1, 0(Rg) < 0-(w), 04(w) ~ 04 (w-) = o4, and that the
surface tensiom ~ fo'” da\/m does not depend “sensitively” an Here,Rp, ¢ are, respectively,
the @-ball core size and the shell thickness. We note that in [126leman assumdd,, ~ U,,_ in the

shell region, and this is equivalent to sayimgRg) < o—(w). In what follows we will be making use

of Coleman’s approach. By requiring this ®fRg) < o_(w), we can guarantee real values of shell
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thickness) and surface tension. The assumption, in which does not depend an, is related to the

assumptionss ;. (w) ~ o4 andU,, ~ U,,_ in the shell region.

Under these assumptions and for> 2, we now apply the previous thin-wall analysis developed in

chapter 3 to the present potential Eq. (4.1). The ansatxéndiy Eq. (3.6)

oy —s(r) for0<r < Ry,
o(r) =14 a(r) for Rop <r < Rg + 6, (4.8)
0 forRg +0 <,

whereRg, ¢, the core profiles(r), and the shell profile (r) will be obtained in terms of the underlying

potential by extremising., with respect tak. Each of the profile functions satisfies

D-1
S”+—S/7/LS
r

dU,
-1 o w
7 do |

0, (4.9)
= 0. (4.10)

By recalling Eq. (2.27), we have previously found that in E8i25-3.29)j.e.

Rog ~ (D-1) l; S, ~ %GVD >0; Q~ waiVD, (4.12)
€w
Eq 2D — 1 w?
— ~ — 4.12
wQ 2(D—-1) 2(D—-1)w?’ ( )
w dQ 2Dw?
- =~ 11— ——F <0 4.13
Q dw w? —w? <% ( )

where we have taken the thin-wall limit ~ w_ in the last inequality. Notice that our analytical work

cannot apply for the D thin-wall Q-ball, see the first expression in Eq. (4.11).

NDVPs: This type of potential supports the existence(@imatter that corresponds to the regime
U > S. The@-matter can be absolutely as well as classically stabldfoextreme limitv ~ w_, when
the coupling constank for the nonrenormalisable term in Eq. (4.1) satisfies E®)(4.he characteristic
slope is given by the first case of Eq. (2.38), and the chargesaprgy are linearly proportional to the

volumeVp.

DVPs: With the presence of degenerate minimain Eq. (4.1), in ér&pive obtained the ratid/S ~

1, which corresponds to the second case of Eq. (2.38). Thegelzrd energy are not proportional to
the volumeV/}, itself in this case; hence, we cannot see the existenégmiatter in the extreme limit
w = w_ = 0. Instead we can find the proportional relation simply from €g18) and Eq. (4.12),
namelyEq o Q2(P~1)/(2D=1),

Our main approximations are based on the assumptipnso_., Rg > 6, 1/u, andU,, ~ U,,_ in the
shell region. In what follows we will see through numericiahglations that our analytic results agree
well with the corresponding numerical results even in a™fettential choicd K| = 0.1, m = M =

1, n = 6, which implies thatl /i ~ 1.58, see Eq. (4.7).
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4.2.3 Thick-wall Q-balls for 5* < |K| < O(1)

In chapter 3 we studied “thick-wall®)-balls in general polynomial potentials, and extractedtbat
explicitw dependence from the integral i), by reparameterising terms in the Euclidean actignn
terms of dimensionless quantities and by neglecting highdgr terms. We then made use of the tech-
nique Eq. (2.16) and obtained consistent classical andwatbsstability conditions, Egs. (2.30, 2.31).
For our present potential, Eq. (4.3), which satisfies thelitmm, 3? < |K| < O(1), we will be able to
ignore the nonrenormalisable term by introducihg- o/M and3? in Eq. (4.2). We can then obtain
the stability conditions using the same technique as beflordeed for the limito > O(m), we will
seed(r) ~ O(e) < O(1) wheree is a small dimensionless constant (ragtin Eq. (2.27)), and see
g0 = 6(0) > &(r) for anyr becauser(r) is a monotically decreasing function in termsrof Since
the leading order of the logarithmic ter@? In 5, in Eq. (4.3) is ofO(e?) using the L'Hopital’s rules,
we can ignore the nonrenormalisable term in Eq. (4.3) at dyéniming of our analysis. To confirm this,
in Appendix C we will keep all terms in Eq. (4.3) by introdugia Gaussian ansatz and show that the
results below [Egs. (4.19, 4.20)] can also be recoverednthéesame assumptios?t < |K| < O(1).

By adapting the techniques introduced in Eq. (2.16), in shissection we will show how to obtain the

thick-wall solutions without involving the Gaussian arzsat

First of all we introduce two characteristic limits: the “derate limit’w > O(m) and the “extreme”
limit w > m. We will seedy ~ 5_(w) — 0T which leads tor_ (w) < O(1) in the “extreme limit”,
and then even in the “moderate limit” we will see that the cbutions from the nonrenormalisable
term are negligible and that_(w) is a monotonically decreasing function in termswof Under the
conditions3? < |K| < O(1) in Eq. (4.3), we obtain

(%)2 = 1-2[K|Ino_(w) +26%6"*(w) ~ 1 — 2|K|log5—(w), (4.14)
[K|m? d5_(w) _ 526" 2(w)]
o @) dw | TR | <o (4.15)
m2
& wZO(m), 5—(w)~eXp{2|K|°;12} —0, (4.16)

where we used/,, (6_ (w)) = 0 to obtain Eq. (4.14). It follows that_ (w) < O(1) for the thick-wall
limit w > m, and we can ignore the nonrenormalisable term. Since Etp)#nplies thatd‘};—y <0

in the limit6_ (w) < O(1), 5_(w) is a monotonically decreasing function. Therefore, we cgoie
the contributions from the nonrenormalisable term upst@> O(m) which we call the “moderate
limit” with the notation '~’ as seen in the second relations of Eqgs. (4.14, 4.15), idstEthe “extreme”
limit w > m with the notation ~'. Thus, we obtain the desired results of the second relation
EqQ. (4.16). From Eq. (4.14), the logarithmic term may beSo®(1) for |[K| < O(1), 2 < O(1) in

the “moderate” limit, which implies that the “moderate lifris valid even whenv ~ O(m).

Let us definex(r) andr throughs (r) = aa(r) andr = b7 wherea andb will be obtained in terms of

the underlying parameters. By substituting these repaiiaateparameters ands into Eg. (2.10), and
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neglecting the nonrenormalisable term due to 'the L'Hélfstrules’, we obtain

1 (aM\? [da\?
~ On_ ~~D-1;D ) + (&M ac
Sw D 1/dTT b {2 ( b ) (df)

1 2 1
— gm*a® M’ (1 - (ﬁ) —2|K]| 1na) o® + m?|K|a* M2 1na2} o (417)
m

= a*M?*P~25(a), (4.18)

whereS (a(7/b)) = Qp_; [ diFP~! {% (%)2 —1a2(1 - 111042)}, which is independent ab. In

going from Eq. (4.17) to Eqg. (4.18) we have set the coeffisiaitthe three terms in the brackets of

Eq. (4.17) to be unity in order to explicitly remove thedependence from the integral f),. In other

words, we have set = e~ /2 exp {T‘;‘Fﬁ} ~e V26 (W), b= m\}ﬁ' Following Eg. (2.16), we

can differentiate Eq. (4.18) with respectiao obtain@ and then use the Legendre transformation to
obtainE¢. Coupled with Egs. (2.30, 2.31) we obtain both the classindlabsolute stability conditions.

This is straightforward and yields

2w Eq m*| K|
— S5, —=~1 1, 4.19
@ m?| K| w@ - 22 ( )
d (Eq m?| K| w dQ 2w? 2w?
— [ =L ~ 1- 1>0, =—<~1-— — <0 4.20
dw < Q > 202 TQdw m?|K]| - m?|K]| . (4.20)

where we have taken the “extreme” limit > m as indicated by -'. Eq. (4.19) implies that the
characteristic slope for the thick-wal}-balls are tending towards the caSe< U/ in Eq. (2.38) and
Eq. (4.20) shows that th@-balls are classically stable. These results are indepeied®. In Appendix

C we will generalise the results of Egs. (4.19, 4.20) by aidgpan explicit Gaussian ansatz without

neglecting the nonrenormalisable term.

Before finishing this subsection, let us comment on possédsilto have absolutely stable thick-wéjt
balls in the casd k| < O(1), 5% < O(1). The results present above still hold even in the “moderate
limit” w ~ O(m) for the present case. Thus, the thick-w@Hballs, if they exist, can be absolutely

stable when the following conditions from Egs. (2.30, 4.4 met:
1++/1-2|K 1
Y < %" K| <3, 87 < 0). (4.21)

m

w_ <m,

It follows that for | K| > 1/2, the thick-wallQ-balls are always absolutely unstablewlf > m, we
know w > w_ in both the “moderate” and “extreme” limits, hence the thieall Q-ball is always
absolutely unstable again, see Eq. (2.30). Notice thatdheiton 32 < |K| impliesw_ < O(m),
see Eq. (4.5), so the first condition in Eq. (4.21) can befsadisThis then leaves only a small window
of the parameter space for absolutely stable thick-@alialls. In the numerical section, Sec. 4.4, we
will confirm that the thick-wallQ-ball can be absolutely stable against decay into their owantp by

choosing suitable parameters, Le. = 0, 3% ~ 1.90 x 10—}, and|K| = 0.1.

4.2.4 Asymptotic profile for larger and 5% < | K| < O(1)

In order to obtain the full numerical profiles over all valugso, we should analytically determine the

asymptotic profile for large in the potential Eq. (4.1) which satisfie# < |K| < O(1) as in the
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previous subsection. As long as the value  &fatisfiess > R, whereR,, is some large length scale
and depends on, we can assume that the friction term in Eq. (2.20) and theermrmalisable term in
Eq. (4.1) are negligible for large Hence, th&)-ball equation Eq. (2.20) reduces to the one-dimensional

and integrable form

o = We (4.22)
do
whereU, ~ im?c? (1 - (%)2 — |K|log (]f—;)) Equation (4.22) implies that the profile has a
symmetry under the variation efbecause Eq. (4.22) does not depend emnplicitly. Multiplying both
sides of Eq. (4.22) by leads to
/a ?;:) \/‘;—% =R, —, (4.23)
where we have used the boundary conditiari$¢sc) — 0, U, (c(c0) — 0) — 0 ando’(r) < 0. After

some elementary algebra, the final asymptotic profile besome

) 2K |\M
o(r) = MeMme/2m’ exp <%(r - TW)Q) , (4.24)
/
L] (_1) — 2K\, (4.25)
dr o
wherer,, = R, — /2% — 2Kl 160 (%)/(Uﬂm). Equation (4.24) is a consequence of the sym-

metry in Eq. (4.22) under the translation— r — r,, from a Gaussian profile as seen in Eq. (B.1) of
Appendix B. Furthermore, Eq. (4.25) depends on the parasmete M, |K|in Eq. (4.1). We will later
use the relation Eq. (4.25) as a criterion that must be sdigfiobtaining full numerical profiles for all

values ofw.

We finish this section by recapping the key results we havieetkfor the case of the gravity-mediated
potential, Eqg. (4.1), in both the thin and thick-wall limitdn the thick-wall limit, we imposed the
restrictions3? < |K| < O(1) on the potential to ignore the nonrenormalisable term. i tiits,

we have derived the characteristic slopes in Egs. (4.19)4dd the classical stability conditions in
Egs. (4.13, 4.20) and shown that theballs are classically stable in both cases. The thin-éall
balls in DVPs are always absolutely stable, @nhanatter in NDVPs can be absolutely stable when the
coupling constant for the nonrenormalisable term satigfgeg4.6); whilst absolutely stab{@-balls in

the thick-wall limit may exist only for Eq. (4.21). Finallyye obtained the general asymptotic profile,
Eq. (4.24), for large-.

4.3 Gauge-mediated potential

The gauge-mediated scalar potential can be written in @tiadorm in the low energy regime for scales
up to the messenger scalég, and carries a logarithmically (extremely) flat piece in thgh energy

regime [23, 24]. This extreme flatness means that the thih-@«ball we used in Eg. (4.8) cannot
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be applied to this situation, and so we now turn our attenttoy-balls in extreme flat potentials.
We will generalise the results of [24] to an arbitrary numbgspatial dimensions and show that the
known Q-ball profiles in [19, 24] are naturally recovered by our mgemeral ansatz. Moreover, we
will investigate both the classical and absolute stabditthese-balls. The gauge-mediated potential,
which we will use in this section, is approximated by [11091L.2

Im?20? foro(r) < o(R),

oy~ ] ® (4.26)
Uy = const. foro(R) < o(r),

whereU, and R are free parameters that will be determined by imposing @ition that leads to a
smooth matching of the profiles atR), Uy = im?c?(R). Notice thatQ-balls exist within0 < w <
m in EQ. (4.26), and the potential does not have degeneratm\athoughu_ ~ 0. Since Eg. (4.26) is
not differentiable at(R), we can approximate Eqg. (4.26) by

1
Ugauge = 5m*A” (1 - e—UZ/AZ) (4.27)

which we will use in the numerical section, Sec. 4.4. Notd tha= ¢(R) corresponds to the scale
below which SUSY is broken, so that, = 1m?A? in Eq. (4.26). The potential Eq. (4.27) differs
from the one used in [155], but is similar to the potentialdige[156]. Fig. 4.2 shows the inverse
potential Eq. (4.27) and the inverse effective potentiatsvarious values of with m = 1, A? = 2,
which impliesUy = 1. The red-solid line shows the inverse potential of Eq. #(204qu4¢), and the
sky-blue dotted-dashed line corresponds to the inversergtia potential of Eq. (4.26). For sufficiently
large and smalb, the two potentials in Egs. (4.26, 4.27) have similar betwayibut we can see the
difference in the intermediate region@fwherel < o < 3. Hence, we can expect that profiles around
the thick-wall limit are different between the potentiaiisce the thick-wall profiles are constructed in
the particular region]l < o < 3; hence it may lead to the different stationary properties stability

conditions.

Using Eq. (2.27), th&)-ball equation, Eq. (2.20), in the linearised potential @R26) becomes

D-1
ol et ——0 e FWOre = 0,fr0<r <R, (4.28)
T

D—-1
e + nghell — miashe” = 0,forR<r, (4.29)
where the profiles should be imposed to satisfy the boundamgitons,o’ < 0, ¢(0) = o =

finite, o(00) = o’(00) =0, ¢'(0) = 0. The solutions are

Uco7'e(r) =A Tl_D/QJD/Qfl(WT) for0 <r< R7

(4.30)
Ushell(T) =B TliD/QKD/Q_l(mwT’) forR < T,

whereJ and K are Bessel and modified Bessel functions respectively, edtistantsd and B. By
introducingoo, and expanding'p /51 (wr) for smallwr in oc,rc(r), and by using the conditiobiy =

1,22 i
sm?os, . (R) we obtain

D/2—1
2 1
A =ool'(D/2) <$> , Up = §m2B2R2’DK123/2_1(me). (4.31)
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0.0 5.0 10.0 15.0 20.0

FIG. 4.2: The inverse potentialUyqu ge in EQ. (4.27) (red-solid line) withn, = 1, A? = 2 which impliesU = 1
and the inverse effective potentiald/., for different values ofv. In order to compare between Eq. (4.26) and
Eq. (4.27), we plot the inverse quadratic potential with shg-blue dotted-dashed line. The two potentials are
asymptotically similar, but they are different around theeimediate region af, wherel < o < 3.

Since the energy density is smooth and finite everywhere,ave to impose a smooth continuity con-
dition to the profilesrcore(R) = ospen (R) andoy,,,..(R) = 0%, (R), which gives

A Kpja—1(myuR) _ my,Kpja(me, R) (4.32)
B JD/Q_l(wR) WJD/Q(WR) ' '

We will see that the particular value of, does not change important features such as the stability

condition and characteristic slope of theball solutions. Using Eq. (4.32) we obtain the following

important identities, which we will make use of later [157]:

J R K wR
wor@R o KopmeR) (4.33)
Jpja-1(wR) Kpja—1(myuR)
IppWR)JppaWR) (@)2 Kp/a(muR)Kps—s(meR) (4.34)
I} a1 (WR) w K3,y 1 (muR) ’

where we used the recursion relatiofis 1 (2) + Ju41(z) = 2£J,(2), Ku—1(2) — Kuy1(2) =
—2L K, (z) for any realy andz. We can easily finds”¢ = UgVp + (20core(R)0%ore(R)) OV

core

andS: ! = — (Logpeu(R)oly., (R)) OVp, and then using,, = Scome + Sshell it follows that
S, = UsVp, (4.35)

where we have again used the continuity relations. (R) = ospei (R) ando’,

core

(R) = o4pen(R). TO
find the charg&), we do not make use of the Legendre relatipn- f% in Eq. (2.16), becausRk is
a function ofw, and is determined by Eq. (4.33). However, we can obfaby substituting Eq. (4.30)
directly into Eq. (2.10):

Q (4.36)

w

_ DUOVD KD/Q(me)KD/Q,Q(me)
K/%/271(me) ’
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where we have used Egs. (4.31, 4.32) and Eq. (4.34), as wibleaslation,[ dy yZﬁ(y) =
[% (Zﬁ(y) - Zﬂ,l(y)Z#H(y))}, [110, 157]. Herey is real, andZ can be either the Bessel function

J or the modified Bessel functioR’, and we have used the following recursion relations to olitze

mdeﬂmtemtegralz ”iuJ =dzJuz1, Juo1—Jup1 = pa zdji“ tuKy, =—2 Kyg1, K1+

dz
_ dK,,
Ky = —29%,

For future reference we obtain explicit expressionsiidor case with an odd number of spatial dimen-

sions. Eq. (4.33) can be solved explicitly in termgdfo give

wR = arctan <i> , forD =1, (4.37)
mey
wR = 7 — arctan (i) , forD =3, (4.38)
My

where we have usedss(z) = /= (S”“I(””) cos(x )), Jip(@) = y/Zsin(z), J_ip(z) =
,/W—chos(ac), Kgjo(x) = ( ) Kijo(x) = /957" = K_q/5(z). We will discuss
the classical stability foQ-baIIs inD = 1, 3 in the numerical section, in which we will show stability

plots arising from Eqgs. (4.37, 4.38).

4.3.1 *“Thin-wall-like” limitfor m,R,wR > O(1)

We now discuss both the classical and absolute stabilityaofyg-mediated)-balls in arbitrary di-
mensionsD, in the limitm,, R, wR > 1, which implies that the “core” siz& is large compared to
1/my, 1/w. As we will see in the numerical section, Sec. 4.4, the limit turn out to be equivalent
to the thin-wall limitw ~ w_ ~ 0. Recall that this potential does not have degenerate vddsiag
Egs. (4.35, 4.36),

S, =~ @ {1+0(muR)™ "}, (4.39)

where we have uselim .| K,(z) ~

l\)

e ? [1 + 4“ L L Oz~ )}. The characteristic slope
follows

Eq D+1
Eq ,D+1 4.40
0 o) (4.40)
from which we see immediately from Eq. (2.18) that we recdher published results of [24, 129],
namelyE « QP/(P+1 . From Egs. (2.30, 4.40), the “thin-wall-like)-ball is absolutely stable since

the present limits will cover the thin-wall limit ~ w_ ~ 0 as we stated.

We can also obtain an explicit expression fftw) and 42 in the limitsm,, R > 1 andwR > |p* — 1|,

wherepu (~ O(1)) is the argument of the Bessel function:

D+1
wR = (—Jr) m — arctan (i) , (4.41)
4 My,
dR R 1 R
— = —— | 1- ~——, 4.42
dw w < me> w ( )
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Notice that Eq. (4.41) foD = 3 reproduces the given profile in [19, 24], and it coincideswlite exact
expression derived in Eq. (4.38). Using Egs. (4.36, 4.4tk (4.42), we obtain

Q ~ Vol D , (4.43)
w
w d@
X D1 4.44
0 dw <0, (4.44)

which shows that thé)-ball in this limit is classically stable. One can also chéckh @ ~ —% =

Eq

DUyVp /w from Eq. (4.42) andd% (7) o~ % > 0 from Eg. (4.40), which are respectively consis-
tent with Eq. (4.44) and with the result in Eq. (2.31).

4.3.2 “Thick-wall” limitfor D=1, 3, ...

Having just discussed the “thin-wall-like” properties fanbitrary D, we turn our attention now to the
the other limit,w ~ w,. This is much more difficult to analytically explore becal=e (4.34) can
only give a closed form expression f&rfor the case wher® is an odd number of spatial dimensions.

Therefore, we will concentrate here on the interestingsasg.D = 1, 3.

D = 3 case: From Eqg. (4.38) and recalling that in the “thick-wall” limit,, — 0, w ~ w; = m, we

obtainR ~ L. 4E ~ _ 2 and py substituting these into Eq. (4.36) we find

~ L 4
w dQ w? w?
e R I AN A 4.45
Q dw + m2 - m2 ’ (4.45)
Eq 1+ 20 (4.46)
= — — .
w@® 6w ’

which shows that the three-dimensional “thick-wal)*ball is classically unstable. This fact is consis-
tent with the relation thagiw (%3) =1l-ge - —g2= <0 where we have used Eq. (4.46). It also

6m.,

follows that the “thick-wall’@Q-ball is not absolutely stable, and the solution will deaafrée particles

satisfyingEg — m@ which is the first case of Eq. (2.38).

D =1 case: Asinthe caseD = 3, Eq. (4.37) implieskR — 0, d—f o~ fmmz in the “thick-wall”

d ww3

limit. Using the above results, we obtain

w dQ m?  w? w?

a_dw ~ —1- "l + pc — ) > 0, (4.47)
E 1\
_wg = 1+ (1 +— R) — 1. (4.48)

Note that the approximate value in Eq. (4.47) is the same ag4th). Then the one-dimensional

“thick-wall” @-ball is also classically unstable. This fact is again cstesit with the result that

2

d (E—Q) ~1+m,R— 2 — R _, f‘jj—R < 0. As in the three-dimensional case, the “thick-wall”

dw Q w? me

Q-ball is not absolutely stable, and the solution decaysitstfree particles.
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4.3.3 Asymptotic profile

The asymptotic profile for the largeregime in this model can be described by the contributiomfro

the quadratic term in the potential Eq. (4.26), from whioh pinofile is Eq. (3.49), such that

T D1 o D -1
2my, o 2r

+ my, (4.49)

whereFE is a constant. Note that we have used the fact that the modigedel function of the second
kind has the relatiori(,,(r) ~ /5-e~" for larger and any rea:. We will use the criterion in the

second expression of Eq. (4.49) in the following section.

Summarising our most important results in the generalisadyg-mediated potential, the “thin-wall-
like” Q-ballis classically stable for a genera] whilst it is absolutely stable as seen in Egs. (4.40, 4.44).
On the other hand, for “thick-wallp-balls in D = 1, 3, the@-balls are both classically and absolutely
unstable, as can be seen from Eqgs. (4.45, 4.46) and Eqs, 4448J. Finally we obtained the general
asymptotic profile Eq. (4.49) for large

4.4 Numerical results

In this section, we obtain exact numerical solutions@eballs for both the gravity-mediated potential
in Eq. (4.3) and the gauge-mediated potential in Eq. (4.2#) dimensionless parameters by setting
m = M = 1andA? = 2. We adopt the 4th-order Runge-Kutta algorithm and usuabtiing methods
to solve the second order differential equations Eq. (2{0)full details see the numerical techniques
developed in chapter 3). The raw numerical data contairgefor larger, thus we introduce the
previously obtained analytical asymptotic profiles to hedmtrol these uncertainties. In particular we
use Eq. (4.25) for the gravity-mediated potential and EgiQ¥for the gauge-mediated case. Using
these techniques, the numerical profiles match smoothlycantinuously onto the analytic ones. In
order to check the previously obtained analytic resultscateulateQ)-ball properties numerically over
the whole parameter spaceexcept around the extreme thin-wall limit= w_, because it is difficult

to obtain reliable numerical results in that limit.

4.4.1 Gravity-mediated potential

We shall investigate gravity-mediated potentials with whmwices ofA in Eq. (4.1) for|K| = 0.1 and
n = 6, which can be seen as the red solid lines in Fig. 4.1. The ehoiiche parameters/| and

n, are simply from phenomenological reasons. The degeneaatea potential (DVP) on the left has

w_=0(p%= ‘K‘fl exp (—‘—]2(‘) ~ 1.90 x 10~ <« O(1)), and the nondegenerate vacua potential
(NDVP) on the righthasy . = 1 (3% = % ~ 9.20 x 1073 < O(1)), recalling Eq. (4.5). Fig. 4.1

also shows plots of the inverse effective potentialg, for various values of. Because of numerical
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complications, we are unable to fully examine the propsitig¢he extreme thin-wall limit; however, by
solving close to this wall limit, our numerical results regeothe expected analytical results we derived
in Egs. (4.12, 4.13). With the above choice of parametees¢cthvature. of U, ato; (w—) = o4 In

EqQ. (4.7) isu? ~ 0.4 which implies thatl /i ~ 1.58. From the first relation in Eq. (4.4), we have found
o4 ~ 1.28in NDVP ando; ~ 1.91 x 10% in DVP. Since we have assumétly > 1/u, o9 ~ o4 in
our thin-wall analysis for the gravity-mediated potentiaé see that it breaks down when the core size
R becomes the same orderlgg: and/oroy + o.. Although the full definition of the core sizB, is
presented in chapter 3, it is very time consuming to evalitateperly in the simulations; hence, in this
analysis we have used a more naive approach, in which we Iséiveag¢ed the value of = Rg when
the field profile drops quickly from its core value. For thecthivall limit, we required the condition
B% < |K| < O(1), which is satisfied with the above chosen parameter setehéime analysis is valid
forw > O(1). Because of the choice ¢i| = 0.1 < O(1) andw_ = 0 in NDVP, we will see our

analysis holds even fas ~ O(1).

Hybrid profile:  The numerical profiles have errors for langehich correspond to either undershoot-
ing or overshooting cases; thus, to minimise the errorsenélgion of large: we replace the numerical
data by the predicted asymptotic analytical profile usirgdhterion Eq. (4.25) to obtain the solution

for the whole range of. We then have the hybrid profile which can be written as

O num (1), forr < Ruum,
U(T) = Onum (Rnum) exp (_‘_I;‘R%um - %Rnum) (450)
_IKp? o (Bonum)
X exp D) + Rnum|K| + p (R ) r for Rnum <r< Rma;m

whereo,,...,, is the numerical raw dat,, ..., is determined by (—o”’, ... /opum) —1lr=r,,,,. < 0.001,
and we have seR,,.., = 60 throughout our numerical simulations in this subsectior NWive calcu-

lated the following numerical properties using the abovierluyprofile, Eq. (4.50), foD = 1, 2, 3:

Profile: In the top two panels of Fig. 4.3 (DVP on the left and NDVP onfigat), the red-solid and
blue-dotted lines show the numerical slopes’ /o for two typical values ofv in D = 3. We smoothly
continue them to the corresponding analytic profiles by tlhmds just described in the numerical
techniques, see green-dashed and purple-dotted-daskedTihe linear lines correspond to the Gaus-
sian tails in EqQ. (4.24) and for the caseswof= 0.14 (DVP) andw = 1.01 (NDVP) corresponding

to the thin-wall solution we see that it is shifted from thégor to » ~ 21. The middle panels show
the obtained hybrid profiles of Eq. (4.50) for the variousueal ofw and D. The higher the spatial
dimension, the larger the core sigeballs can have. The energy density configuratiopé-) can be
seen in the bottom panels of Fig. 4.3. Outside of the corelsebVP profiles fow ~ w_, we can see
the same features as we saw in the polynomial potentials vestigated in chapter 3, namely, highly
concentrated energy density spikes. In NDVP, however, jiiie@s cannot be seen. The presence of the
spike contributes to the increase in the surface en&rgyhich in turn leads to the different virialisation

ratio for S/U wherel/ is the potential energy, as can be seen in Eq. (2.38).
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FIG. 4.3: The top two panels show the three-dimensional nuniesiocpes—o’ /o for two typical values ofv for
both DVP (left) and NDVP (right). The raw numerical data @slid and blue-dotted lines) matches continuously
on to the analytical asymptotic profiles for largégreen-dashed and purple-dotted-dashed lines). The lines
correspond to the Gaussian tails in Eq. (4.24), where we earhe large shifts in the thin-wall limits of. The
middle and bottom panels show, respectively, the hybridilpmEg. (4.50) and the energy density configurations
for the various values af and D. The spikes of the energy density configurations exist irDf® case but not in
the NDVP case.

Criterion for the existence of a thin-wall Q-ball:  Fig. 4.4 shows the numerical results for(w)

againstv for both types of potentials — DVP (left) and NDVP (right). Qunain analytical approximation
relies onop(w) ~ oy (w) ~ o = oy(w_), where we have found ~ 1.28 ~ O(1) in NDVP
ando,. ~ 1.91 x 10?2 > O(1) in DVP. The3D thin-wall Q-ball (green-crossed dots) appears for
a wider range ofv than the2D @Q-ball (red-plus signs) in DVP as well as NDVP. For each case, t
approximation can be valid, respectively, upido~ 0.24 or w ~ 1.04 with about10% errors for the
3D case. Near the thick-wall limiv ~ wy for both potentials, we seey, ~ o¢_ — 0. The one-
dimensional values (skyblue-circled dots) always liesan Note that in the3D regionw = 0.53 for

DVP, we can seeg(w) < O(10%), which implies that the contribution from the nonrenorrsatile term
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in Egs. (4.14, C.8), i.e5%5* < O(1073) < O(1), O(|K]), is negligible compared to other terms in
Egs. (4.14, C.8). Hence, our analytic solution still holdthie limitw ~ O(1) as discussed in Sec.4.2.3.
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FIG. 4.4: The initial valueso(w) = o(0) is plotted againsv. In the two panels the black-dashed and orange
dotted-dashed lines shaw. (w), and these lines become closer éor= w_ for both types of the potentials DVP
(left, w— = 0) and NDVP (rightw_ = 1). Sinceoy ~ o4+ = o4 (w—) for D = 2,3 in the regionv ~ w_ where

o4+ ~ 1.28 in NDVP ando ~ 1.91 x 10% in DVP, our analytical results in Sec.4.2.2, are valid irs tiggion.

Virialisation and characteristic slope: Fig. 4.5 shows th&)-ball properties plotted against the ratio

of S/U whereS andl/ are the surface and potential energies (top panels), anchdracteristic slope
Eq/w@ (bottom panels). For the DVP case where the thin-@aball satisfiesry ~ o it appears to

be heading towardS/U/ ~ 1 asw — w_ = 0 [see Eq. (2.38)], in all three cases. Also we predict that
the thin-wallQ-ball in NDVP hasS /U ~ 0 [see Eq. (2.38)], and that it is consistent with what can be
seen in the top right panel around= w_ = 1. The bottom panels show analytically and numerically
the characteristic slopeS, /w@ in both the thin and thick-wall limits. The analytic thin-ivéines
(purple-dotted line fo2 D and blue-dotted line fo3 D) based on Eq. (4.12) are well fitted for the NDVP
case with the corresponding numerical dots (red plus-dwt8® and green crossed-dots fdD) as
long aso ~ o, see the criteria in Fig. 4.4. For the DVP case, our numediatd is seen to be heading
in the right direction. The numerical solutions for both esén the thick-wall region are well fitted
by the analytic solution in genera} given by the orange-dotted-dashed lines, in the secontioelaf

Eq. (4.19) or Eqg. (C.12). From the virial relation Eq. (2.8&%) D = 1, we can only predict the extreme
values of thel D characteristic slopey, in either the DVP or NDVP case once we know wisdi/ is.

To obtain that we rely on the numerical simulations and frbentbp two panels in Fig. 4.5, we see that
for the DVP case wittD = 1, S/U appears to be heading towards unity, implying> 1 in Eq. (2.38),
whereas for the NDVP case/i/ < 1, implyingy — 1 in Eq. (2.38). Comparing these with the bottom

two panels we see the behaviour foappears to follow these predictions.

Q-ball stability:  Fig. 4.6 shows plots for both the classical (top panels) dsodlate stability (bottom
panels) with the stability threshold lines (black-dasHed}the cases of DVP (left) and NDVP (right).
Let us consider the classical stability case first. For tle-wall regime in DVP, notice that the nu-

merical data ofg% (red-dot-circles fo D and green-dot-crosses f8D) are heading towards the
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FIG. 4.5: The top panels show the ratigZ/ whereS andi/ are the surface and potential energies, and the bottom
panels show the numerically obtained characteristic slBp¢wQ, in 1D (skyblue circled-dots)2D (red plus-
dots) and3D (green crossed-dots). For comparison, in the bottom patredsthin-wall analytic lines obtained
using Eg. (4.12) are also shown (purple-dotted line Zdr and blue-dotted line foBD) as are the thick-wall
analytic lines obtained from Eqgs. (4.19, C.12) (orangeaedbtiashed for alD). The analytic lines match well with
the numeric data in the appropriate limits, especially fier NDVP case.

analytic lines of Eq. (4.13). For the thick-wall case, on ditieer hand, the analytical lines of Eg. (4.20)
(orange-dotted-dashed) fit excellently with the numeritzh in all dimensions, because Eq. (4.20) is
independent oD. Furthermore, thé)-ball is classically stable over all values ©fexcept for thel D
thin-wall case where our analytical work cannot be appli. saw this feature of unstablé thin-

wall Q-balls for the case of polynomial models in the left-top dasfeFig. 3.5 in chapter 3. For the
absolute stability in the bottom panels, the analyticatdiusing Eq. (4.12) and Egs. (4.19, C.12) are
matched with the numerical dots for both the thin and thiethwmits. Here, we note how well the
three-dimensional)-ball (and also the higher dimensional ones as predictethapter 3) can be de-
scribed simply by our thin and thick-wal}-balls. As our parameter set satisfies Eq. (4.21), we can see
that absolutely stabl@-balls exist in DVP near the thick-wall limit. Because of ttteice ofw_ = 1,
the@-ball in the NDVP case, however, is always absolutely urstabd most of the features are similar
in terms of D. The analytical lines (top-right panel) in NDVP agree witle torresponding numerical

data qualitatively better than the lines for DVP.

To sum up our discussion of the gravity-mediated model, oafydical estimates of the characteristic
slope and other properties of tlieballs are well checked against the corresponding nuniessalts,

even though we set a “flatter” potential witR'| = 0.1 < O(1).
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FIG. 4.6: Classical stability for the top panels and absolutkiltafor the bottom panels for both DVP (left) and
NDVP (right). The black-dashed lines indicate the stapifitresholds for both classical and absolute stability in
all panels.Q-balls found below the lines are stable either (both) ctadlsi or (and) absolutely. In the top panels,
the analytical lines using Egs. (4.13, 4.20) agree well jtagively with the corresponding numerical data for the
thick-wall regimes, but not well in the thin-wall regimes.olever the numerical plots look qualitatively similar
to the analytical lines in the thin-wall limit as seen witletpolynomial models in the left-top panel of Fig. 3.5 in
chapter 3. In addition, the analytical lines B /m@ using Egs. (4.12, C.12) match the numerical lines for both
the thin and thick-wall limits.

4.4.2 Gauge-mediated potential

This subsection presents numerical results showing theepties of gauge-mediatégiballs withm =

1, A2 = 2in Eq. (4.27). Although we have obtained analytical resigtthe potential, Eq. (4.26), the
potential is neither analytic nor smooth for all Therefore, we shall use the approximate potential,
Eq. (4.27), see Fig. 4.2 and we expect that Eq. (4.27) is aldaiapproximation especially for the thin-
wall limit w and largeD. We will also see and explain the expected discrepanciésxist between the

numerical and analytic results.

Hybrid profile:  As we saw in earlier examples the numerical profiles we havaindd have errors
for larger, which correspond to either undershooting or overshootimgs, we replace the numerical
data in that regime by the exact asymptotic analytic sahstiwe obtained using the second relation
of Eq. (4.49) to smoothly continue the numerical solutiomshte corresponding analytical ones. The

hybrid profile in this model is

num forr < Ryum,
ory = | 7l ! (4.51)

Onum (Rnum) (M)(D—l)/Q eimw(riRm“n) for Rnum <r< Rmaxa

r
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whereo ..., is the numerical raw dat,,..., is determined by2=L + m, + (0}, /Tpum) | < 0.001,

and we have again sét,,.. = 60. We have calculated the following numerical propertiengshe

above hybrid profile, Eq. (4.51), up 0 = 3.

Profile and energy density configuration: Fig. 4.7 shows the three-dimensional numerical slopes

—o' /o for two values ofw (top), hybrid profiles (left-bottom) as in Eq. (4.51), ané #tonfigurations
for energy density (right-bottom). In the top panel, the rawmerical data (red-solid and blue-dotted
lines) is matched smoothly onto the continuous asymptatfilps Eq. (4.51) for large (green-dotted
and purple-dashed lines). By fixing the numerical raw daitaguthe technique Eq. (4.51), we show the
profiles for various values @ and D, see the left-bottom panel. Also the peaks of the energyityens

cannot be observed in the whole rangeso&ee the right-bottom panel.
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FIG. 4.7: The top panel shows the three-dimensional numeriogksl-o’/o for two values ofw. The raw nu-
merical data (red-solid and blue-dotted lines) matchesginhpto the corresponding analytical asymptotic profiles
for larger (green-dotted and purple-dashed lines). Both the left-ragid-bottom panels show, respectively, the
hybrid profiles Eq. (4.51) and the energy density configaratifor the various values of and D. The spikes of
energy density configurations do not exist even in the thafi-linits.
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Characteristic slope: In Fig. 4.8, we plot both the numeric and analytic charasterslopesg /wQ
(orange-dashed line farD and blue-dotted line fay D). By substituting Egs. (4.37, 4.38) into Eq. (2.10)

and Eq. (4.36), we have obtained the analytic slopes cayéhia whole range ab. The3D analytic
line agrees with the numerical data except near the thidkdingt. Similarly, the 1D analytic line
agrees well only in the thin-wall limit. The origin of the digpancies in the analytic versus numerical
fits are the differences between the potentials themseheeq4.26) and Eq. (4.27)]. These differences
are largest between < o < 3 which in turn affects the region aroudd < w < 1.0, see Fig. 4.2 and

Fig. 4.8.
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FIG. 4.8: The numeric characteristic slopEs /wQ and the analytic lines (orange-dashed lineffar and blue-

dotted line for3D) which are calculated using Egs. (4.37, 4.38) in the whohgeaofw. The 3D analytic line

agrees with the numeric data well except near the thick-ivait. Similarly the 1D analytic line agree well only
in the extreme thin-wall limit.

Q-ball stability; Fig. 4.9 illustrates the stability af-balls: classical stability in the left panel and
absolute stability in the right panel. The black-dasheddiin both panels indicate their respective
stability thresholds wher€-balls under the lines are stable. We calculate the andiggs for D =

1, 3 by substituting Egs. (4.37, 4.38) into Eg. (4.36) and déferating it with respect ta. The3D
numerical data can be matched with the analytic lines in Iia¢hthin and thick-wall limits. As in
Eq. (4.45), the three-dimension@tball in the thick-wall limit is classically unstable. Theimerical
thick-wall Q-ball in 1D is classically stable which differs from the prediction iq.E4.47). In the right
panel, the analytic line fob = 3 agrees with the numerical data except in the thick-walltlinfiere the
analytical lines for both D and3D do not match the corresponding numerical data. Furtherntioee

thick-wall Q-ball in 1 D is absolutely unstable as predicted analytically in EGi&}.but this fact cannot
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be observed numerically. The reasons for this discrepamcg@before a problem with our choice of

potentials. We can see that the thin-w@Hballs for anyD are both classically and absolutely stable.
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FIG. 4.9: The stability of@-balls — Classical (left panel) and absolute (right panefle black-dashed lines in the
two panels indicate the stability thresholds for both dzdsand absolute stability whex@-balls under the lines
are classically/absolutely stable. The analytic linesfoe 1, 3 are calculated by substituting Egs. (4.37, 4.38)
into Eq. (4.36) and differentiating it with respectto

To recap, our numerical results in the gauge-mediated caggeaerally well fitted by our analytical es-
timations. Observed discrepancies between the analytiedictions and numerical data arise from the
artifact of our approximated smooth potential Eq. (4.27)tfe generalised gauge-mediated potential
Eq. (4.26). We have confirmed that the thin-w@Hballs for anyD are both absolutely and classically

stable.

4.5 Conclusion and discussion

We have explored stationary propertiegpballs in two kinds of flat potentials, which are the gravity-

mediated potential, Eq. (4.1), and the generalised gauggiated potential, Eq. (4.26). Generally, the
gauge-mediated potential is extremely flat compared to itheity one; therefore, we cannot apply our

thin-wall ansatz Eq. (4.8) to the gauge-mediated case. ri&atising the gauge-mediated potential, we
obtained the analytical properties instead. For both piatidgpes, we both analytically and numerically

examined characteristic slopes as well as the stabilithef-balls in the thin and thick-wall limits.

Our main analytical results are summarised in Table 4.1.

This present chapter is of course related to chapter 3. ThdiKerences are that in the present work on
thin-wall Q-balls we are assuming the valueaf (w) for the thin-wall limitw ~ w_ depends weakly
on w and we have replaced the assumptigiRy) < o_(w) by the equivalent assumption (made
by Coleman)l, ~ U, _ in the Q-ball shell region [125]. These in turn are related to thevimes
requirement that the surface tensiordepends weakly o, which can be translated into the main
assumptionsRg > 6,1/p,00 ~ o4, andU,, ~ U, _ in the shell region. Furthermore, our analytic
work agrees well with the numerical results for small cuuva: with |K| = 0.1; however, it is not

clear that our analytic framework still holds even in theeca$| K| < O(1), which corresponds to a
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case where the potential is extremely flat, see Eq. (4.7).

Q-balls in gravity-mediated potentials: It is possible to obtain absolutely stabigmatter with a

small coupling constant, Eq. (4.6), for the nonrenormalisaerm in Eq. (4.1). FofK| « O(1), a
gravity-mediated potential cannot be really considereflaiswhich allows us to apply our previous
results, Eqgs (3.25-3.29), in chapter 3 to describe thewrh€Q-ball wheresy ~ o . In the thick-wall
limit by reparameterising parametersSp and neglecting the nonrenormalisable term under the condi-
tions 3% < |K| < O(1), we have obtained the stationary properties of@hball. We showed that the
“thick-wall” @-ballis classically stable, and demonstrated that undésiceconditions Eq. (4.21) it can
be absolutely stable. Although this analysis is much sinthkn the analysis associated with imposing a
Gaussian ansatz developed in appendix C, the former agalysimed that the nonrenormalisable term
is negligible at the beginning of the analysis. In the lattealysis, we have kept all terms in Eq. (4.3)
and shown that the nonrenormalisable term is indeed nbtgigi the limitw = O(m). Our results,
Egs. (4.20, C.12), for the thick-wal)-ball have recovered the previous results obtained in [158]
without any contradictions for classical stability comalits as opposed to the case of using a Gaussian
ansatz in a general polynomial potential in which we shovmead the ansatz led to a contradiction and
corrected it by introducing a physically motivated ansatzhapter 3. This is because the Gaussian
ansatz, Eq. (C.1), becomes the exact solution, Eq. (B.1hdargravity-mediated potential in the limit
w 2 O(m) where the nonrenormalisable term is negligible. In FigS.ahd 4.6 the analytical lines
agree well with the corresponding numerical plots in boghttiin-wall and thick-wall limits. Under our
numerical parameter sets, theballs in DVP are both classically and absolutely stableap t$ m,
while all of the@-balls in NDVP are absolutely unstable because of our chaice= m. We believe
that an absolutely stabl@-matter exists in NDVP when we take < m. Since theQ-balls in both
potential types are always classically stable, as can beisdhe top two panels of Fig. 4.6 except for
the case ofl D @-balls in the thin-wall limit to which our analytical work naot be applied since it
holds only forD > 2. We have also found the asymptotic profile Eq. (4.24) for aigible values ab,

see the top two panels in Fig. 4.3.

Our analytical estimations on the valuegf% do not agree well with the numerical results, because
oo % o4. Nevertheless the other analytical properties are wedldfigsspecially in NDVP, see bottom
panels in Figs. 4.5 and 4.6. The DVP in Eq. (4.1) for srh&ll is extremely flat as the gauge-mediated
potential in Eq. (4.26), where both of the potentials have~ 0. Notice that the asymptotic profile
for the former case has a Gaussian tail, while the latter Ipriffidetermined by the usual quadratic
mass term, see Eqgs. (4.24, 4.49). By assuming that the dfesdtseare much smaller than the core
effects in the thin-wall limit, the difference of the tailarc be negligible. Indeed, we can see the thin-
wall numerical lines for both the classical stability ané ttharacteristic slope look qualitatively and
guantitatively similar to each other, as can be seen in bathdp/bottom left panels of Fig. 4.6 and the
panels of Fig. 4.9. Notice that the spikes of energy densithé gauge-mediated potential cannot be

seen even though_ ~ 0, see Fig. 4.7.
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Furthermore, we know that the potentld), .., can be approximated bym?M2/K152=2IK1 for small
|K| < O(1), then the potential in Eq. (4.1) looks similar to the confiesthmodel in [105, 106]. By

neglecting the nonrenormalisable terms in the thick-wallt] we can easily obtain the characteristic

24+|K|[(D=1)
2+|K[(D—-2) —

depend o but does depend oR and|K|. It follows thatFEg o« @'/ from Eq. (2.18). This result is

slope,y = 1, [16] by following the same technique as in Eg. (2.16), whildes not

obviously worse than our main results in Egs. (4.19, C.189,sottom two panels in Fig. 4.5, because
we know that the Gaussian ansatz Eq. (C.1) can be the exatiosoEq. (B.1) forU = Uyy.q.; thus, it

is not so powerful to approximaté,,.,,, by $m?A?K1g2=21K1 for small| K|

Q@-balls in gauge-mediated potentials: For the gauge-mediated potential in Eq. (4.26), we obtained

the full analytic results inD = 1, 3 over the whole range ab using Egs. (4.37, 4.38), see Fig. 4.8
and Fig. 4.9. In the “thin-wall” limit form, R, wR > O(1), we reproduced the previously obtained
results, Eq. (4.40), in [24, 110, 129] and showed that theybaith classically and absolutely stable in
Egs. (4.40, 4.44). The one- and three-dimensional “thiek“wQ-balls, on the other hand, are neither
classically nor absolutely stable, see either Eqgs. (4.4/B)4or Egs. (4.45, 4.46), respectively. Since
the potential, Eq. (4.26), is not differentiable everywshewe have used the approximate potential,
Eq. (4.27), instead in the numerical section, Sec. 4.4..Bigsand 4.9 show that the numerical re-
sults agree with the analytical results in the thin-wallitinThe numerical data near the “thick-wall”
limit and/or in thel D case differ from the analytic lines since the profiles are oted in the region
where the two potentials between Eq. (4.27) and Eq. (4.26)dfierent, see Fig. 4.2. This differences
come from the artifact of our approximated smooth potefal(4.27) against the generalised gauge-

mediated potential Eq. (4.26).

The 3D Q-balls: Although we have showr-ball results for an arbitrary number of spatial dimen-
sionsD, only three-dimensional cases are phenomenologicadyesting.Q-balls in flat potentials give
the proportional relatiog o Q'/7, wherey generally depends oR. The actual values aff/~ for
three-dimensional thin-wat)-balls are%, 1, and% in DVP, NDVP of gravity-mediated potentials and
in gauge-mediated potentials respectively. It implies tha gauge-mediategd-balls would be formed
in the most energetically compact state for a large chgygeo it is likely that such formed-balls
would have survived any possible decay processes and thevageoration until the present day, and

possibly become a dark matter candidate [146].

Dynamics and cosmological applications: The dynamics of a pair of one-dimensioriballs has

been recently analysed using momentum flux [159]. For a lsegaration between th@-balls, the

profiles develop the usual exponential tait,”~", in general polynomial potentials and in [159] the
authors showed that there was a solitonic force between.tReafiles in the gravity-mediated models
and other confinement models, however, have different agtiopails, which may affect the detailed

dynamics and th&-ball formation [48, 113, 160, 161].
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In a cosmological setting (thermal background), SUY¥alls are generally unstable via evaporation,
diffusion, dissociation, and/or decay into todays baryand lightest supersymmetric particles, if the
AD field couples with the thermal plasma, which are decay petslfrom inflaton, and/or if the field
possesses a lepton number for the MSSM flat directions [1417], Following our detailed analytical
and numerical analyses of both gravity-mediated and gawvediated)-balls, it is clear that this whole

area of dynamics and cosmological implications of th@dealls deserves further analyses.

Model Gravity-mediated potentials
Q-ball type Thin-wall Thick-wall
Conditions A B2 <K S0(1)
Assumptions || Rg > 6,1/p; 09 ~ o4 andU,, ~ U,,_ in shell None
Potential type DVPs NDVPs Both
1/ Q%Bj) 1
Absolute stability O A A
Classical stability O O A
Model Gauge-mediated potentials
Q-ball type Thin-wall Thick-wall
Conditions None D=1,3,..
Assumptions | R> 1/m,,,1/w None
Potential type NDVPs
1/y DLH 1
Absolute stability O X
Classical stability O X

TABLE 4.1: Key analytical results. Recall that theindependent characteristic slope= Eq/w@ leads to the
proportionality relationfo o« @/ The symbols(), x, A, indicate thatQ-balls are stable, unstable, or can be
stable with conditions, respectively. The symhio] means that we may need the conditjéf] < O(1). Since the
Gauge-mediated potentials are extremely flat for a large ¥iglue, the potentials do not have degenerate vacua.
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Chapter 5

Affleck-Dine dynamics, ()-ball

formation and thermalisation

5.1 Introduction

The present baryon asymmetry in the Universe is one of theé mgsterious problems in cosmology
and particle physics (for a review see [16, 162]). Within 8tandard Model (SM), electroweak baryo-
genesis was suggested as a way to explain the inequalityebatthe baryon and anti-baryon num-
ber, and recent developments have shifted into constguetitheory of reheating the Universe [163].
Electroweak baryogenesis satisfies the well-known Sakfsattaree conditions required for successful
baryogenesis [13], namely baryon number production, C dndi@lation, and the process taking place
out-of-equilibrium; however, the predicted CP violatiorthe electroweak baryogenesis is too small to
explain the present observed baryon number. By satisfhiagbove three conditions, the Affleck-Dine
(AD) baryogenesis [14], which was proposed in the theoaéframework beyond the SM, namely, the
Minimal Supersymmetric Standard Model (MSSM), is a morecessful scenario to tackle this puzzle,
since it may solve problems of gravitino and moduli overprcitbn and give rise simultaneously to the
ordinary matter and dark matter in the Universe. The MSSMrhasy gauge-invariant flat directions
along which R parity is preserved. The flat directions atedifoy supersymmetry (SUSY) breaking ef-
fects arising from nonrenormalisable terms, which give B)W{olation through A-terms. In the original
scenario of the AD baryogenesis, one can parametrise ot dfatt directions in terms of a complex
scalar field known as an AD field (or AD condensate which cassisa combination of squarks and/or
sleptons fields). The AD field evolves to a large field expémtatalue during an inflationary epoch in
the early Universe. After inflation, the orbit of the AD fieldrt be kicked along the phase direction
due to the A-terms which generate the U(1) charge (baryptattenumber), and then the A-terms be-
come negligible, where the AD field rotates towards the dlobaimum of the scalar potential. Hence,

the generated global U(1) charge is fixed and the orbit of tBefiald rotates around the origin of the



complex field-spacesf. the anomaly mediated models [164]. After the AD condensatays into the

usual baryons and leptons, AD baryogenesis becomes canplet

The trajectory of the AD field is identical to the planetanpits in the well-known Kepler-problem
as we will show later, replacing the Newtonian potential byisotropic harmonic oscillator potential
[165]. This coincidental classical-mechanics reducti@swoted for the orbits of a probe brane in the
branonium system [166, 167]. As general relativity pregtidhat planetary orbits precess by adding the
relativistic correction to the Newtonian potential, welgite similar events occur for the orbits of AD

fields, which are disturbed by quantum and nonrenormaksafficts instead.

By including quantum corrections [111, 135] and/or therefédcts [151] in the mass term of the stan-
dard AD scalar potentials, the AD condensate is classicaifable against spatial perturbations due to
the presence of negative pressure [168], and fragmentshtadslike objects, eventually evolving into
@-balls [21]. Lee pointed out [117] th&-balls may form due to bubble nucleation (first order phase
transition) [125, 169], even in the case that the condensatassically stable against the linear spatial

perturbations.

We explored the complete stability analysis@fballs at zero-temperature in polynomial potentials
in chapter 3 and in MSSM flat potentials in chapter 4. Ladteal. [19] investigated the stability of
Q-balls in a thermal bath. The stability of the thermal SU@Yballs is different from the one of the
standard “cold"Q-balls, since they suffer from evaporation [19], diffusidr70], dissociation [147],
and decays into light/massless fermions [22]. Thereforestr8USY(Q-balls are generally not stable
but long-lived, and may thermalise the Universe by decayitmbaryons on their surface [171], which
could solve the gravitino and moduli over-production pesb$ without fine-tuning. The SUSH-balls

in gravity-mediated (GRV-M) models are quasi-stable detginto the lightest SUSY particles (LSP
dark matter), and the fraction of the baryons from @wballs may give the present baryon number,
which can explain Eqg. (1.2), namely the similarity of the gyyedensity between the observed baryons
and dark matter [146, 147]. The SUSY-balls in gauge-mediated (GAU-M) models, however, can be
extremely long-lived so that thogg-balls are candidates for cold dark matter [146] and may tiiee

present observed baryon-to-photon ratio Eq. (1.1) [19].

The dynamics and formation @-balls have been investigated numerically. With differesiative
phases and initial velocities, the authors [100] found agd#&ansfer from oné&-ball to the other and
interesting ring formation after the collision. It has bdeand [46] that similar ring-like solutions are
responsible for the excited states from the ground statedll) by introducing extra degrees of freedom:
spatial spins [86] and twists [172]. The formation@fballs after inflation have been investigated in
both GRV-M models [48] and GAU-M models [47, 173], in which SYis broken by either gravity or
gauge interactions. As we will show, tiigball formation involves nonequilibrium dynamics, which i

related to reheating problem in cosmology.

The reheating process after the inflation period involvedinear, out-of-equilibrium, and nonperturba-

tive phenomena so that it is extremely hard to construct@hfer the whole process, see the 2 particle
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irreducible effective action as a remarkable approach,[175, 176]. In the first stage of reheating
(preheating, it is currently well known that the fluctuations at low momnt are amplified, which leads
to explosive particle production. After preheating, théseguent stages towards equilibrium are de-
scribed by the wave kinetic theory of turbulence; Miataal. [177] recently estimated the reheating
time and temperature. These turbulent regimes appear ig@ Variety of nonequilibrium processes,
and indeed, the evolution @j-ball formation experiences the active turbulence at wisitalge, many
bubbles collide as observed in the next stage of tachyoweiegating [178, 179]. During this bubble-
collision stage within the reheating scenario, it is bedthat gravitational waves may be emitted from
the stochastic motion of heavy objects [179, 180, 181]. Tioblem of gravitational wave emissions
has been discussed only in the fragmentation stagg-b&ll formation so far [161, 182, 183], but not

in the collision stage as opposed to the preheating cases.

In this chapter, we show analytically and numerically tmeGRV-M and GAU-M models the approx-
imate trajectory of the AD fields is, respectively, eitherragessing spiral or shrinking trefoil due to
guantum, nonrenormalisable, and Hubble expansion effébtseover, we explicitly present an expo-
nential growth of the linear spatial perturbations in botbdmls. By introducing + 1 (and2 + 1)-
dimensional lattice simulations, we identify that the exn in Q-ball formation involves nonequilib-
rium dynamics, including turbulent stages. Following thengering work on the turbulent thermali-
sation by Michaet. al. [177], we obtain scaling laws for the evolution of variandesing theQ-ball

formation.

This chapter is divided as follows. We explore both anaéltjcand numerically the dynamics of the
AD field in Sec. 5.2. In Sec. 5.3, we study the late evolutiothefAD fields and the process @Fball
formation, introducing detailed numerical lattice resulEinally, we conclude and discuss our results
in Sec. 5.4. Three appendices are included. We obtain thatiegs of motion and their perturbed
equations for multiple scalar fields in an fixed expandingkigamund in Appendix D. In Appendix E,
we find elliptic forms for the orbits of AD fields. To obtain tltendition of closed orbits of the AD
fields, we prove Bertrand’s theorem in Appendix F. This chajs based on work published in [51],
where the reader should note that we use slightly differetations from the ones introduced in chapters

2-4.

5.2 The Affleck-Dine dynamics

In this section we investigate an equation for the orbit oAfnhcondensate, which coincides with the
well-known orbit equation in the centre force problem inssiaal dynamics,e. planetary motions so

that we sometimes call the AD condensate, “AD planet”. Ferlibund orbits, the effective potential
should satisfy the condition where the curvature at the mimn of the effective potential should be
positive. In the presence of the Hubble expansion, the @fiepotential depends on time; thus, the

full solution of the orbit equations can be obtained nunalycexcept for the case that the AD field is
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trapped by a quadratic potential when it can be solved anallyt In appendix E, we obtain the exact
orbit in this exceptional case when the Hubble expansiosssimed to be small and adiabatic. The
orbit of the AD planet, or more precisely an eccentricity lné &lliptic motion in the complex field-
space, is determined by the initial charge and energy demsibrder to obtain analytic expressions of
the orbit in more general potential cases in which we are nmbegested, we restrict ourself to work in
Minkowski spacetime and on the orbit which should be nedrlyutar. In this case, we also obtain the
perturbed orbit equation and necessary conditions foedlasbits where the orbits come back to their
original positions after some rotations around the mininaithe effective potential. By approximating
phenomenologically motivated models that appear in the MI&&d using the results in appendix E, we
present, in this section, analytic motions of the nearlgudar orbits and the pressure of the AD planets.

Further, we check these analytic results with full numésctutions.

Let us consider a motion of AD fields in an expanding univer# wcale factora(¢t) and Hubble
parametef] = a/a, where an over-dot denotes the time derivative. We invetgtithe AD field after
they start to rotate around the origin of the effective ptigds and the value of the U(1) chargg

is fixed due to negligible contributions from A-terms. By degposing the complex (AD) fielg as
o(t) = o(t)e’?), wheres and@ are real scalar fields, the equations of motiondar) andd(t) (see

Egs. (D.8, D.9) in appendix D) are

d

5raHs+ Y — o, (5.1)
do

. .9 . d

§+3H0+260 = 0 = L2y, (5.2)
o dt

where the conserved comoving charge density is defingehby: a®c26, and the effective potentials
areVy =V(o) + %. Note that we will usé/_ shortly. From Eq. (D.10), the energy density and

pressure are given by

1. 1,
PE = 502 + Vi, p= 502 - V_. (5.3)

With various values of the charge density, Fig. 5.1 shows typical effective potentidfs in Minkowski

spacetime where we set= H = 1. The potentials shown in Fig. 5.1 will be used later.

Given an initial charge and energy density (or equivaleimityal momenta and position), the AD field

oscillates around the valug,., which is defined by

av.

= 4
=l =0, (5.4)

Ocr

where the orbit becomes circular when it starts from theeeg(0) = o, (0) = 0. This orbit is

bounded when the curvature is positive

>V
do?

> 0. (5.5)

Ocr

For example, given a power-law potential such tiiat= \;0! where \; is a dimensionful coupling

constant and is the real power of the homogeneous fieldthe condition given by Eq. (5.5) implies
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FIG. 5.1: We show the effective potentialg;. = V(o) + 9 againstr in two types of potentials which we call

252!

the gravity mediated model (GRV-M Model) on the left and tleige mediated model (GAU-M Model) on the
right. The potential in the GRV-M Model has the following foyV (o) = 16° (1 — |K|Ino?) +bZ0®, where, we
set|K| = 0.1 andb? = &L ~ 9.20 x 1072, The potential in the GAU-M Model i¥ (o) = In (1 + o2) + b*0®,
where we seb? ~ 10~0. We choose the following values of,: red-solid line forpg ~ 2.36 x 10~° and
green-dashed line fgrg = 1/e ~ 3.68 x 107" in the GRV-M Model and red-solid line fgig ~ 1.40 x 10* and
green-dashed line fgrg ~ 1.41 x 102 in the GAU-M Model.

that bound orbits exist far< —2 and0 < [ if Ay > 0andfor—2 <[ < 0if A\; < 0, where we used
Eq. (5.4). Another example is the case that a scalar potént@garithmic,i.e. V = A5 In o where the
coupling constani, is positive. In this case, Eq. (5.5) is automatically satfiWWe investigate these

two cases in more detail in appendix E.

3/2
Let us rescale the field(t) aso(t) = (%) &(t) whereqy is the value ofu(¢) at an initial time. It

follows that the equations of motion in Egs. (5.1, 5.2) are

. (3., 8a). A (a)'dV(0) d5q
(22422 — =0 =0 5.6
7 (4 i 2a) Tt (ao) 5 ’ at (5:6)

where we definegg = 520 = ag °pg, and the terms involvingi? andii/a are negligible under the

assumption of an adiabatic Hubble expansienH? < 1, i < a.

By introducing a new variablej(¢t) = 1/4(t), and using the second expression in Eqg. (5.6), the first

expression in Eg. (5.6) becomes the well-known orbit equéti the centre force problem such that

24 1 (a\’av
—t == — ] — = J(u,t). 57
02 +u 7 (&0) a (a,t) (5.7)

QU

Notice thatJ(u, t) depends on time caused by the Hubble expansion, wheream#reépendence in
J vanishes when the potentiilis given by a quadratic mass terfi}/?¢2, where)M is a mass of the

AD field, ¢. We also discuss this case in appendix E.

5.2.1 Model A and Model B for MSSM flat potentials

Let us introduce two models that appear in the MSSM in whicls$ls broken due to either gravity or
gauge interactions, and approximate their models in omdebtain the orbit expressions in Minkowski
spacetime. The former case in the MSSM, the so-called grav@diated (GRV-M) model, has a scalar
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potential

1 5 5 o2 A2
V:§m0 <1+K1HM*2)+WJ, (5.8)

wherem is of order of the SUSY breaking scale, which could be theigrevmass scale; , evaluated

at the renormalisation scald, [135]. Also, A is a coupling constant for the nonrenormalisable term,
which is suppressed by a high energy scalg,the Planck scale:,; ~ 10'® GeV. Here K is a factor
from the gaugino-loop correction, whose value is typicdlly~ —[0.01 — 0.1] when the flat direction
does not have a large top quark component [111, 154]; thuspweentrate on the case Bf < 0 from
now on. The powern of the nonrenormalisable term depends on the flat directibagxamples of the
directions involving squarks, the'd“dc direction has: = 10, whilst theu“u“d“e® direction isn = 6.

For |K| < O(1), the first two terms in Eq. (5.8) can be approximatedﬁﬁfwa?—mm, we then
find that

M? A2
V(o) ~ TJZ + WO’” for n >1 (5.9)
pl
which we call 'Model A, where we set/? = m2M 2" and has a mass-dimensioﬁ;—l ~ 1, since
[ =2—2|K|for|K| <« O(1). For small values of, we confirm that the poweris not approximately

2 — 2|K, so we will find a value of numerically in that case later.

In another scenario in which SUSY is broken by gauge intayast the so-called gauge-mediated
(GAU-M) model, the scalar potential has the curvature withélectroweak mass at a low energy scale,
whilst it grows logarithmically at the high energy scale {@hmeans that the potential is nearly flat

similar to the case df= 0 in Eq. (5.9)). The scalar potential in this scenario is

o\’ 2
V ~mjn 1+<M) +E;Iﬂ, (5.10)

pl

where) is the messenger scale ((0* GeV) above which the potential grows logarithmically ang
is the same scale dd,. We, thus, sef/; = my for later convenience. Then, the scalar potential at
high energy scales is approximately given by [146]
2
)\2
V:mﬂ(ﬁd—FTTM. (5.11)
m¢ mpl

In what follows we assume the orbit of the AD condensate isrdained by the high energy scale where

oer > myg, calling this case, Eq. (5.11), 'Model B'.

Using the results in Appendix E, we obtain the following qtitées, 1V, ® and(w) by assuming that
the dominant contribution in Model A and B is, respectiveither a power-law or logarithmic term,
each of which corresponds to the first term in Egs. (5.9, Sréspectively. Here, we have definéds

a phase difference when the radial fielgjoes from the minimum value through the maximum one and
back to the same minimum point, see Eq. (E.30); in additjen,is given by a value of the equation of
state averaged over a rotation of the orbit, see Eq. (E.2dfe that we have defined an averaged value

for a quasi-periodic quantit’ over an one rotation in the orbit, namelX) = %fOT dtX(t). The
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sub-dominant terms (nonrenormalisable terms) perturbitbiés via infinitesimally small quantities,
andep, where the subscripts correspond to the names of modetlinded above. Thus, the main

contributions are either Eqgs. (E.31, E.32) or Egs. (E.335E.

5211 Model AV (o) = 2ol 4 2 on

pl

By recalling Eq. (5.5), we obtain the following relation fer> [ in Model A in Minkowski spacetime:

11+ 2)M20!2

2 _
W 2

(1+ca). (5.12)

n(n+2)  2x?2

= T0+2) WU" ! « 1, which is assumed to be

where we have defined a positive parametgr=

infinitesimally small. We also obtaifi? ~ (I +2) ( + H—HeA) > 0, whereg is defined in Eq. (E.24).
Substitutings into Egs. (E.30, E.21), we obtaih and (w):

s l—n

° = (U maa) o
(1-2) (1+ealEB0=) 4l(n—1)

s ((+2)(1+eaf) Nl+2<1+ Am) o

From Eq. (5.13), the orbits fdr= 2 — 2| K| ~ 2 are nearly closed, but it is perturbed by the nonrenor-
malisable term involved with 4. The result is that the periapsis appears to precess wreepeghession
rate can be obtained from Eq. (5.12). The denominator oféira tnvolvinge 4 in the second expres-
sion of Eq. (5.14) has — 2 ~ —2|K| <« O(1), which implies that it would be possible to have the
non-negligible contribution from the term, even though< O(1). From now on, we restrict ourself
to regions where this is not the case; therefore, the dorhic@mtributions are the leading orders in
Egs. (5.12, 5.13) and Eq. (5.14), which correspond to Eq81(EE.32) and Eq. (E.33). From Eq. (5.14)

with e 4 ~ 0, our results recover the result published in [118, (w) ~ f@.
5.2.1.2 ModelB V(o) = mé In (0/mg)” + #7,40"
By introducing another infinitesimally small positive pareter,cp = 51 E)A % < 1, we obtain the
following relations in Model B in Minkowski spacetime:
W2~ 4:;35 (1+ep), b \if (1 - ﬁ@g) ~ 2% (5.15)
w 1-2In (oc;) + 2 Tep _— 616

14+2In ("”) + 563
Since we are working in the high-energy regimg, >> m, the pressure of the AD condensate is likely

to be negative, see Eq. (5.16). From the second expresseq. ¢5.15) ford, the orbits are not closed
and it should look like the trefoil, see Eq. (E.34).

In an expanding universe, the above orbits for Model A andfBesfrom the Hubble damping so that
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the orbits are naively expected to be precessing spiralrorishg trefoil in the field-space, respectively.

5.2.2 Numerical results

In this subsection we present numerical results to checlatiadytic results, which we found in the
previous subsection. To do so, we use the full potentials, £48, 5.10), instead of Egs. (5.9, 5.11),
and then solve Eq. (5.1) numerically in Minkowski spacetasevell as in an expanding universe. We
adopt the 4th order Runge-Kutta method with various setsitidi conditions, such as, ands?. Since

our analytical work holds as long a$ < O(1), we are concerned with the two cases: a nearly circular

orbit with 2 = 0.1 and a more elliptic orbit witlk?> = 0.3. First of all, we parametrise Egs. (5.8, 5.10)

by introducing dimensionless variables:= o /M,, b? = 22 — |K|e=1/4, { = mt, X = mx
mym
in the GRV-M Model ands = o/M,, b> = XM7 4 — Mt % = M,x in the GAU-M Model.

mrd
Since we know thatn ~ 102 GeV, M, ~ 101(§lGeV, my ~ 10'® GeV; hence, we can séf ~
9.20 x 1072 ~ O(10~2) in the GRV-M Model, where we choos$&’| = 0.1. Notice that these choices
are the same as the ones used in chapter 4 [50]. On the othérwarknow thatm, ~ M, ~ 10%
GeV, hence, we can sét ~ 1073 in the GAU-M Model, where we choose~ 102 as used in the
GRV-M case. Notice that we can obtain the rescaled charggtgi¢ipy and energy densityz, such that
po = mMZ2pq, pp =m>*M?2pE inthe GRV-M Model anghg = M3p0, pr = M2pE inthe GAU-M
Model.

Therefore, our rescaled potentials in GRV-M and GAU-M medel a flat-direction with. = 6 are,

respectively,
1
Vo= 502(1—2|K|1n0)+b§06, (5.17)
V. = In(1+0°%) +b%", (5.18)

where we omit over-rings for simplicity. The variables thppear within the rest of this subsection are
dimensionless. We can also obtain the ratio defined by amgensity relative to (a mass multiplied
by a charge density), where the mass corresponds tw M, in either GRV-M or GAU-M Model,

respectively.

In order to obtain appropriate initial values®f0), &(0) andd(0) satisfying the conditions,, €5 <
O(1) and not giving too small charge densities, we shall showwaheed to choose only the initial
values off(0) in both GRV-M and GAU-M models. First, by ignoring the nonoemalisable term
in Eq. (5.17) for the GRV-M Model, we obtain., = exp (—ﬁ (92(0) + |K| - 1)) = 0(0) from
Eq. (5.4), where we set.,. := ¢(0), which implies that we are setting the initial phase tGhg2. Since

& has the maximum value at = o.,., we can set(0) := £%0(0)4/62(0) — | K|/2 from Eq. (E.14),
which implies that 4 ~ 12620(0) from the definition. We notice that(0) > O(1) for §(0) < O(1);
hence, it breaks the conditiony < O(1). We can also see that(0) < O(1) for 4(0) > O(1),
so the charge density is suppressed exponentially. Ttrerefee are concerned with the following

two cases:f(0) = /2 and 1.0, which give, respectivelys 4 ~ 1.20 x 107, pg ~ 2.36 x 107>
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andes ~ 1.58 x 1072, pg ~ 3.68 x 10~L. Similarly, in the GAU-M Model, we choose that, =

\ /9.%(0) —1:=0(0),5(0) := £%/1 — 362(0) ande s = 12b%0%(0) from the definition ot 5. Here, we

also set the initial phase 8sr/2 due too., := ¢(0). With this fact and the approximation,,. > O(1),

we need to havé(0) < O(1). In addition, we should have(0) < ©(10°) due to the condition,
ep < O(1). Therefore, we choos#(0) = /2 x 10~! and /2 x 102 which gives, respectively,
ep ~ 1.16 x 10723, pg ~ 1.40 x 10" andep ~ 1.20 x 10717, pg ~ 1.41 x 102

Using the above initial conditions, we initiate the numatisimulations with 8 different sets of the

initial values in the GRV-M Model and the GAU-M Model sumnsed in Table 5.1, where we call each

of the parameter-sets 'SET-1, SET-2,..., and SET-8'. In Fif), we also show, with the various charges

which we introduced above, the effective potentid|sfor the GRV-M potential given by Eq. (5.17) in

the left panel and for the GAU-M potential given by Eq. (5.18)he right panel. After had carried out

many trial numerical simulations, we found that the besetstepdt is dt = 1.0 x 10~ in the GRV-M
case andlt = 1.0 x 1072 in the GAU-M case.

| SET| Model |  6(0) a(0) PQ caorep [ | pr/og
i 0.1 1.46
X V2 ~4.09% 1073 | ~2.36x 107° | ~1.20 x 10711 0.3 151
3 | GRV-M 0.1 1.06
A 1.0 ~6.07x 107! | ~3.68x 107! | ~ 1.58 x 1072 0.3 1.09
= 0.1] 4.00 x 1071
6 V2 x 1071 ~ 9.95 ~1.40 x 10! | ~1.16 x 1023 0.3 4.03 x 107!
, | GAUM 0.1 7.22 x 1072
8 V2x1072 | ~1.00x10% | ~1.41x10% | ~1.20x 1077 0.3 | 7.25 x 1072

TABLE 5.1: We show 8 different parameter sets in both the GRV-M aAt)-® cases, where we call each of
the parameter-sets 'SET-1, SET-2,..., and SET-8'. Thailrparameters of(0) ands(0) can be obtained by the

values off(0). We also seb(0)

2

37 in all cases, and show the valueseof for the GRV-M Model and the

values ofe g for the GAU-M Model. By substituting these values and chngghe values of the third eccentricity
e? = 0.1 and0.3, we obtain the dimensionless energy-to-(mass multipliediarge) ratiospz/po. Note we are

using the dimensionless quantities.

5.2.2.1 The orbit of an Affleck-Dine “planet” in Minkowski sp acetime

First, we present numerical results in Minkowski spacetimarder to check our analytical results. We

then give the ansatze that are motivated by our analytigisols, in an expanding universe in the next

sub-subsection.

The motion of o (t)

In Fig. 5.2, we show the numerical solutions using the GRV-dleptial with

Eq. (5.17) (left) and using the GAU-M potential with Eq. (8)Xright), and compare them with the cor-




responding analytic solutions which are given by Eq. (E.16ing the initial values whose parameter
sets can be seen in Table 5.1, we plot the numeric and anabltitions in Fig. 5.2. In the top-left
panel, the numerical plots (red-plus dots for SET-1 and-bhass dots for SET-2) have the same am-
plitudes as the analytical ones (green-dashed line for B&fid purple-dotted-dashed line for SET-2),
we, however, can see the significant differences for theuiagies of each oscillation. We notice that
these discrepancies come from the artifact of our choideiwit 2 — 2| K| in Eg. (5.9), since the choice
is not appropriate for < O(1), recallingos(0) ~ 4.09 x 10~2 in SET-1 and SET-2. Shortly, we will
obtain numerically this powdr and show that the semi-analytic solutions we obtained Imatth the
numerical ones. With SET-3 and SET-4, we can seedf@tis not so small as opposed to the previous
casesj.e.o(0) ~ 6.07 x 10~1; thus, in the left-bottom panel of Fig. 5.2 we can see a niceeagent
between the numerical plots (red-plus dots for SET-3 and-bhess dots for SET-4) and the analytic
plots (skyblue-dotted-dashed line for SET-3 and blackedbline for SET-4).

Similarly, we show the numerical and analytic plots for thAUWEM potential in the right-panels of
Fig. 5.2 using the parameter-sets: for SET-5 and SET-6 imi¢jit-top panel and for SET-7 and SET-
8 in the right-bottom panel. By changing the values of thedtlsccentricitys? (see TABLE 5.1),
the numerical plots deviate slightly from our analytic bri@ the right-top and right-bottom panels of
Fig. 5.2 as we can expect; in particular, we can see that alytmvalues of both the frequencies and
amplitudes o2 (¢) are larger than the numerical ones, and this difference eaignificantly reduced

when the orbits of the AD planets is nearly circular with= 0.1.

As we have seen in the left-top panel of Fig. 5.2, our anakdloe,! = 1.8, in Eq. (5.9) are not good
enough to reproduce the numerical solutions singe < O(1). Therefore, we set a trial function,
f(o) = 10° + 2055, where a numerical value is found by using the 'fit command in the numerical
software called 'gnuplot’. We find that = 1.86002 := [ is the best value af, where we fitted this trial
function f (o) onto the numerical full potential in Eq. (5.17) for the ramfer € [1.0 x 1072 — 1.0 x
1073], recallingo(0) ~ 4.09 x 10~3in SET-1 and SET-2. Using this value @fas the value of instead
of | = 1.8, we plot the semi-analytic evolution for*(¢) in Fig. 5.3 (green-dashed line for SET-1 and
purple-dotted-dashed line for SET-2) against the cornedimgy numerical plots (red-plus dots for SET-1

and blue-cross dots for SET-2). Now, our semi-analytictsamhs match with the numerical solutions.

The average values ofv(¢t) Using Egs. (5.14, 5.16), we show both numerical val(es,.,) and

(semi-)analytical valuew,,.) of the averaged equation of state in Table 5.2. For all cabesAD
condensate has a negative pressure and one can say thattbeaalivalues are of the same order as

analytic values.

The values of®d In TABLE 5.3, we show the numerical and (semi-)analytic eslwf® in both the
GRV-M Model and GAU-M Model, which are analytically obtathan Sec. 5.2.1. Our analytical values

agree well with the numerical values. These values sugpastte orbits in the GRV-M Model and
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FIG. 5.2: Using the parameter sets summarised in Table 5.1, wah@aumerical evolution fos?(t) in both
the GRV-M Model (left) and the GAU-M Model (right). In all theanels except the case for the left-top panel,
the numerical plots (red-plus dots and blue-cross dot®eagell with the corresponding analytic lines, which are
obtained from Sec. 5.2.1. The disagreements between theriuainand analytic plots in the left-top panel come
from the artifact that the analytical estimated value; 1.8, in Eq. (5.9).
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FIG. 5.3: Substituting the numerical value= 1.86002, into Eqg. (5.9), we plot the semi-analytic evolution for
o (t). The semi-analytic solutions agree with the numericaltsahs.

GAU-M Model are nearly either elliptic or trefoil, respegctly.
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[ (w) ] the GRV-M Model v.s. Model A |

SET-1] SET-2 SET-3 SET-4
(Wnum) || =242 x 1072 | =447 x 1072 | —4.45 x 1072
(Wana) || —3.63 x 1072 —5.00 x 1072 |
[ (w) ] the GAU-M Model v.s. Model B |
SET-5 SET-6 SET-7] SET-8
(Wpum) || —6.43x 1071 | —6.45 x 10~ | —8.00 x 10~*
{(Wana) —6.43 x 10T —8.04 x 1071

TABLE 5.2: Using Egs. (5.14, 5.16), we show the both numericales{w,...) and analytical value$wqnq )

for the averaged equations of state. The value&uf,.) in SET-1 and SET-2 are semi-analytically obtained by
substituting = 1.86002 into Eq. (5.9). For all cases, the AD condensate has a negaéssure, and these analytic
estimates are reasonable against the numerical values.

| @ | the GRV-M Model v.s. Model A | the GAU-M Model v.s. Model B |
SET-1 SET-2 SET-3| SET-4 || SET-5| SET-6 | SET-7 | SET-8
Dpum || 1.591 1.590 1.605| 1.604 || 2.210 | 2.206 | 2.221 | 2.217
Dune || 1.612 (analytic) or 1.599 (semi-analytic) 1.605 2.221 2.221

TABLE 5.3: We show the numerical and (semi-)analytic value®dh both the GRV-M Model and GAU-M
Model, which are analytically obtained in Section 5.2.1.

5.2.2.2 The orbit of an Affleck-Dine “planet” in an expandinguniverse

We carry out our numerical simulation in an expanding urseaevhen the inflaton field, which is trapped

by a quadratic potential, starts to coherently oscillateiad the vacuum during the reheating era. Then

the evolution of the Hubble expansiof(¢), and scale factor(t), follows as ordinary nonrelativistic
2/3

3(%150) anda(t) = ag (%) , Where

ao is given by the value af(t) att = 0 and we setio = 0.1. We also set the initial time ag = 4 x 10>

for the GRV-M Model and, = 4 x 10* for the GAU-M Model. Notice that with this choice of our

(zero-pressure) matter, see Eq. (E.33).Fer2, we findH =

simulation starts from the same physical time because vealesthe time by eithen ~ 102 GeV or

M, ~ 10* GeV, respectively. We again solve the equation of motion,(&q.), numerically using the
4th order Runge-Kutta method and compare them with follgweinsatze we will introduce. In order to
see the significant effects from Hubble expansion, we useSEThe GRV-M Model and SET-7 in the

GAU-M Model as the initial parameters.

In an expanding spacetime, one can guess that our anahgfats in Minkowski spacetime should be
changed. In particular, the amplitudea(ft) may decrease due to the Hubble damping as we saw in the
quadratic case in appendix E.1, and similarly the frequéiian Eq. (5.5) should be changed. Hence,
the orbit of the AD planet can be a precessing spiral or shrgnkefoil in either GRV-M or GAU-M

Model as one can see [184]. Let us give an ansatzfér),

to \™ — to \* 3m
2(¢) = 0 52 (14 &2 cos : 0 R 5.19
a*(t) (t—i—ﬁo o +ecos | W —— + 5 ( )

Here, we use the Minkowskian values&)hndw, and will obtain the possible values af - in both

2/3
models. From Egs. (5.4, 5.5) by ignoring the nonrenormiléserm and recalling(t) = ag (%)

we can find the following proportionality relations:., (t) oc (t 4 to) =%/ (+2) ~ (t + t)=2/C=I1KD
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andW(t) o (t + to) = ~ (t+ t0)2 X7 in Model A, where we usetl= 2 — 2|K|. In Model B,

we obtaino., o (t + to)~2 andW (¢) o (¢ + to)?. Therefore, we set; = m, ag = 722’&([("
in Model A, anda; = 4, as = —2 in Model B. We believe that our ansatze are valid as long as th

nonrenormalisable term does not play a role, and the frexyueithe coherent rotatio®@ (W (¢)), is
rapid compared to the Hubble expansion réléH). The latter restriction implies that the rotation time

scale is much shorter than the time scale of the Hubble eigane. W ~1(¢) > H ! [185].

The motion of o?(¢t) InFig. 5.4, we plot the evolution ef? (t) with the numerical data (red-plus dots)
for the GRV-M Model (left) and for the GAU-M Model (right) analith the analytic data (green-dotted

lines) using our ansatze Eq. (5.19). The readers shoulgamerthe Minkowskian cases of SET-3 (left
bottom panel) and SET-7 (right bottom panel) in Fig. 5.2 with corresponding expanding background
cases. For both potential cases, the amplitudes¢f) decrease in time as we expected, and our
analytic plots excellently agree with the correspondinmatical results. In the left panel of Fig. 5.4,
the difference between the analytic line and the numeritsdaises in the late time. We believe that
this comes from the artifact of the approximationios 2 — 2|K| in the GRV-M Model, Eq. (5.17),
since the values aof?(t) decrease to the region where the above approximation daé¢®lhi.e. for

o < O(1) as we saw in the left-top panel of Fig. 5.2.

0.5

14000
0.4 b 12000
7( 17 [7% o
X‘ ¥ %§+f:ﬁﬂ%ﬁm 10000 £ 7% S A
0.3 ] 7y YWOLS VAV AY A A
W i WO "‘W!' Y f ,—'ﬁ(“ ﬁ o
Fw co | M VAV
0.2 b 6000 -
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. analytic line with SET-3 - 2000 |- analytic line with SET-7 - ]
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0 . . . . . . . 0 . . . . .
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FIG. 5.4: We plot the evolution of?(t) with the numerical data (red-plus dots) for the GRV-M Modeftj and
for the GAU-M Model (right) and with the analytic data (gredotted lines) by using our ansatze introduced in
Eq. (5.19).

The motion of the equation of state:w(t) = p(t)/pr In Fig. 5.5, we plot the numerical values of

the equation of state, which is given byt) = p(t)/pr, wherep(t) andpg in Eq. (5.3) are the pressure
and energy density of the AD condensate. The averaged peesger the rotations seems to be negative
in the GRV-M Model, see the left panel; whereas, the pressute GAU-M Model is always negative,
see the right panel. The frequencies of the rotationf@r) in both cases are, respectively, similar as
the corresponding frequencies®f(t), see Fig. 5.4; however, the phases are different from thegsha

of o%(t) approximately byr.
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FIG. 5.5: Using the initial conditions with SET-3 (right-panali)d SET-7 (left-panel) in Table 5.1, we plot the
numerical values of the equation of state which are givewy = p(t)/pr, wherep(t) andpg are the pressure
and energy density of the AD condensate.

In summary, we have analytically obtained the nearly cacwalrbits for both the GRV-M Model and
the GAU-M Model in Egs. (5.17, 5.18) approximated by Model#daviodel B in Egs. (5.9, 5.11). We
then checked that the semi-analytic results in Eqgs. (5.13)%nd Egs. (5.15, 5.16) and our ansatze
in Eq. (5.19) agree well with the corresponding numericalls obtained by solving Egs. (5.1, E.12)
numerically. In the rest of this chapter, we investigatel#tte evolution for the AD condensates once
the spatial perturbations generated by quantum fluctuatothermal noise from the early oscillation

[151] become non-negligible due to the negative pressuasgnted in Table 5.2 and Fig. 5.5.

5.3 @-ball formation and thermalisation in Minkowski spacetime

In this section we analyse the late evolution of the AD comsdégs in both the GRV-M and GAU-M
models, in which we find that the spatial perturbations arpldi®d exponentially due to the presence
of the negative pressure, and the presence of negativaupeesgpports the existence of nontopological
solitons,i.e. Q-balls. As a process of reheating the Universe, the dynaafitise Q-ball formation

is a nonequilibrium, nonperturbative, and nonlinear pssc@and it includes three distinct stagpse-
thermalisation(linear perturbation)driven turbulencebubble collisions), anthermalisationtowards
thermal equilibrium. As opposed to the reheating processfimd that the driven turbulence stage
lasts longer and the subsequent thermalisation proce#féegedt, which is caused by the presence of
nontopological soliton solutions. During the turbulergggts, we find scaling laws for the variances of
fields and for the spectra of the charge density. In additmadopt numerical lattice simulations to
solve classical equations of motion in Minkowski spacetimbere our numerical code is developed
from LATfield [186], and we present the detailed nonlineadt annequilibrium dynamics (some videos

are available [1]).
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5.3.1 Linear evolution — Pre-thermalisation

The late evolution, after the AD condensate forms, dependthe properties of the models. In the
standard AD baryogenesis scenario [14], the condensag¥iged by the quadratic potential, Eq. (E.1),
decays into thermal plasma that may provide our presentharieptons in the Universe. By including
guantum and/or thermal corrections in the mass term as in(&ds 5.10), the subsequent evolution
may be different from the standard AD scenario since the Adensate has a negative pressure. The
negative pressure, which causes the attractive force amparigles in the condensate, amplifies the
linear spatial fluctuations exponentially. We see this eqmial growth for the linear perturbations
in nearly circular orbit cases with the growth raig,, and obtain the most amplified wave-number
k=, Which give a rough estimate on the nonlinear titRg, and the radii of bubbles created just after
the system enters into a nonlinear regime. As long as thempations are much smaller than the

background field values, we call this initial linear pertatibn stage,pre-thermalisatioh

5.3.1.1 Arbitrary and circular orbits

Let us consider the linear spatial instability for an AD cendate in Minkowski spacetime. First, we
perturb the AD fieldp with the linear fluctuationsjo anddf. Equations of motion fodo anddé are

given by Egs. (D.11, D.12),
S0 — (v2 Ty v”) S0 — 20080 = 0, (5.20)
. 2 . 20 .
50 + 2260 — V250 + —Z (050 - d50) —0. (5.21)
g g
Let us rescaléo anddé in the following form
8o ~ Jope® DX 50 5D Hikex (5.22)

Notice that both of the exponent§t) should be the same in each expressioritoanddd in terms of
a function of the wave numbér;, because we are concerned only with linear perturbatiamsstuting

Eq. (5.22) into Egs. (5.20, 5.21), we obtain

S+82+K2 -2+ V" 208 oo
A o ~ 0, (5.23)
20 (s~ 2) §2 4 265 42 60

whereV” = ”57‘2/ and we ignore the terni$, assuming that the linear evolution is adiabati,S2 > S
(WKB approximation). Notice that this assumption is vieldtonly at the beginning of this linear
evolution as we will see in the numerical subsection, Se8.35.The nontrivial solution fos can be

obtained by taking the determinant of the matrix in Eq. (3.B&mely
8 2 — 54 20 53 2 N2 " 52
F(S(h). k) = §'+ =5 +(2k L3021V )s

+§ (1 =362+ V") $ 112 (k2 — @2 + V") =0, (5.24)
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Notice that the terms involving vanish if the orbit of the AD field is exactly circular. By loilg for

the most amplified modk?,, which is defined by2Z |, = 0 from Eq. (5.24), it implies that

|42
k’!TL

2 _ Y . . .

==V —S(S+ f) >0, (5.25)
2 o

where the inequality comes from the reality condition fgy. By considering this mode in Eq. (5.25)

and by solvingF'(S(k), k2,) = 0 in Eq. (5.24), the solution of the quadratic equation$gr = S (k =

k) is

2 (50°-v) 29\/(9'2 - v'/)2 +2(2)" (362 - v)
2 (402 - (2)°)

in which we are interested in the growing mode. Re(S,,) > 0. Substituting Eq. (5.26) into

Sy = , (5.26)

Eqg. (5.25), we may obtain the most amplified mode. Althoughk itather hard to analytically solve

Eq. (5.24), we know that only one instability band existsdwractly circular orbits wheré = 0;
0<k’><6>-V"(0), (5.27)

whered ando = o, are time-independent due to the circular orbits.

In addition, we can estimate a possible nonlinear timg when the spatial averaged variance, (War
becomes comparable to the corresponding homogeneous énoHere, we have defined \Var) =
(6(x,t) — 7)%, and a hat and a bar denote an original field and a spatialgaefahe field, respectively.
Notice that the nonlinear time in [147, 187] is defined by theetwhen the linear fluctuatiofv for the
most amplified mode becomes comparable to the homogeneods:trowever, our definition is better
as we will see in the numerical subsection, Sec. 5.3.3. Thdirear time with our definition can be

given by

- tNL .
Var(c) ~ dodexp (2N<S>T) ~ §op exp (/ 2 <Sm>) ~ g, (5.28)
ta
00

1
St~ t*+.—1n (—) . (529)
<Sm> 50’0

Here, we have approximated tk<a$‘> ~ <Sm> and that the orbits ove¥ rotations with the period,
Eq. (E.17), can be expressed by the integral form as shown.i(5B228). As we assumed, the spatially

averaged variance of this field is not fully developed ovemaldes excepk = k,,, until ¢ ~ t,, where

t. is a typical time scale when the variance starts to grow viighgrowth rate<5‘m>.

Our main interest in this pre-thermalisation stage is thr@wion of the number of particles in terms
of modes, so that we considgy, as the particle number here. For a free field theory, both ef th
positive and negative charged particle occupation nunmdrslop equally. The present case, however,
gives different consequences due to the presences of eraniimeractions and the initial inequality of

a charge density (baryon asymmetry). Without loss of gditgreve can focus on the case where the
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positive charge is initially present. Since the charge igissgiven bypg = 6 29 we can approximately

obtain the evolution in the linear regime using Egs. (5.2),5.
po =~ o> (t)V240. (5.30)

Hence, the charge density evolves due to the linear fluciati the phase field. Letf(t) be the
amplitude of Fourier-transformed positive and negativargh densityn™(x, ), which are defined
through the following decompositiop, = n™(x,¢) — n™ (x,t). Notice that the Fourier transformed
functions,n,f, are related to, but are potentially different from the esponding quantum mechanical
expressionsii = alax, iy = blby andQ = [dPrpq = [ ghkx (f — 7). Here,i; are
occupation numbers for positive and negative chargedgbestin a free field theory, and., aL, by, and

b,t are the annihilation/creation operators for both of theiplas, respectively. Since we are interested
in the growing mode for the positive charge densjgl(t) in Eqg. (5.30) which is initially zero except

the zero-momentum mode, it implies that using Eq. (5.22)

t . .
nf(t) ~ k266 | dio®(F)elS®)

to

)

SY(t—to )
gTe< ) (t—to) o el (t=to),
(5)

wheret, is found numerically and we assumed(t) ~ o2, going from the first line to the second

~  Kk*66|o (5.31)

one. Therefore, the evolution of the positive charged gartiumber for a modé is proportional to
6(3(1@))@40)_

Summarising our results, Egs. (5.25, 5.26) are generaligabf the known results [116, 173, 188], in
which the orbit of the AD field was assumed to be exactly caculVe also obtained the nonlinear time

tnrz in EQ. (5.29) and the exponential growth of the particle nanib Eq. (5.31).

5.3.1.2 Nearly circular orbits in Model A and B

Using the results obtained in the previous subsection, wecompute the most amplified mo@k%)
and the growing mod:éSm> averaged over one rotation of the nearly circular orbitstii@r models
introduced in Section 5.2.1e. Model A and Model B. We shall confirm that these values are timees
as the cases when the orbits are exactly circular, whichi@mphat the instability band, Eq. (5.27),

could exist even for the present nearly circular orbit cases

Model A:  Substituting the expressions/o, 62 andV” cf. Egs. (E.16, E.18) and Eq. (5.12)), into
Eq. (5.26), we obtain the averaged growing factor and thet moplified mode for Model A where
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M? > 0:

. L 2=-DM [ioh? (1+2)(2n—1-2)
<Sm> = E 2 (H 2(n+2)(I —2) EA)’ (5.32)

oy MPIR2-D(+6)0l? (1+2)(4n — 12 — 1% + 2nl)
(k) = 32 ( n+ 20 =2 +6) ”‘)’

where we substituted Eg. (5.32) into Eq. (5.25) to ob(akiﬁw and these results are consistent with the

(5.33)

case for the exactly circular orbit. In order to satigh?,) > 0, we should havé < —6, 0 < < 2,
and Eq. (5.32) implies that the condensate is unstable siggpatial fluctuations when the pressure is

negative with) < [ < 2, see Eq. (E.32).

We can recover the results [116] th<af>‘m> ~ # (1 + '%') and(k2) ~ m?K]| (1 - %) by
settingl = 2 — 2|K| in Egs. (5.32, 5.33) and ignoring the nonrenormalisable tes done in [116],
ie. <Sm> ~ KM (1 - '%‘) oo™l and(k2,) ~ | K| M2 (1 - %) o1, These are of the same
order as their results, recalling thag? X! ~ O(1) dueto| K| < O(1).

Model B:  Similarly, we can also obtain the averaged growing factakthie most amplified mode for
Model B from Eq. (5.15)

. m? g 3mi / o(n—3)
~__ ¢ _n AN A )
(8m) = e (1= i3en) - 00 =5 (1= Sapes) 5349

which to leading order reproduces the results [173], whieeeAD orbit was assumed to be exactly

circular and the nonrenormalisable term was ignored.

Before we finish this subsection, let us remark upon the iclalsand absolute stability of AD conden-
sates. Lee found [117] the dispersion relation for the wa¥disear fluctuations from Eq. (5.24) when
the orbits of the AD field are bounded. In the longwave-ledigtiit, there exists one massive and one
massless mode. The massless mode can be interpreted asridenswe whose sound speed should be
real for the classical stability reason, and the squarastval the sound speed is related to the value of
(w) in Eq. (E.21). Therefore, this stability condition for theusd waves corresponds to the sign of the
pressure in the AD condensate. In other words, the AD corade&s a negative pressure if the sound
speed is imaginary; equivalently, it is classically un&against spatial fluctuations. The zero-pressure
AD condensate whose energy density is minimised with reagpeny degrees of freedom is equivalent
to the@-matter phase as Coleman discussed in [21], where the ablyadtablel)-matter can be excited

by classically stable sound waves.

5.3.2 Non-linear evolution and nonequilibrium dynamics
5.3.2.1 Driven (Stationary) and free turbulence

Even when the perturbations are fully developed to suppembnlinear solutions, the system is still far

from thermal equilibrium. Indeed, the system enters inteerstochastic stages, 'turbulence regimes’,
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where the strength of the turbulent behaviour depends ofRégnolds” number [189]. As a theory of
reheating of the Universe, a general nonequilibrium sysfees through two different turbulence stages,
going from driven turbulence to free turbulence. A majorrggeransfer from the zero mode takes place
during driven turbulence. Garcia-Bellidd. al. [131] observed that bubbles form and collide during
this stage in tachyonic preheating, and they proposedldiubble collisions can be an active source
of gravitational waves [190]. In the usual reheating sci@sathis stage terminates when the energy left
out in the zero-mode becomes smaller than the energy sto@tiér modes (created particles). Since
the energy exchange between zero-mode and other modes &oegligible, the particle distribution
is self-similar in time (free turbulence) and evolves tosgthermal equilibrium. In the free turbulence
stage, the quantum effects change the late time evolutgnifisiantly, and the created particles are
distributed following Bose-Einstein statistics rathearthin a classical manner. As long as an active
and stable energy source exists in momentum space, we dkpédhe driven turbulence stage lasts
for a long time. In the case d@-ball formation, we expect that this active energy souraeesponds

to the excited states a-balls; hence, the driven turbulence stage may last longempared to the
linear perturbation regime as opposed to the usual releliiiverse scenarios. Note that during this
thermalisation stage the transition from the classicaluangum regime becomes important [177]; in
the rest of this chapter we concentrate on the case whergdtensis governed by classical evolution

all the time.
In turbulent stages, the scaling law can be found [177]:
Var(o) o t¥, (5.35)

where the powep depends on the parameters of the modelg,the relativistic values op arep =

_1
2m—1

the number with which particles mainly interact. For theeftarbulence regime, the particle number

in the driven turbulence regime and= f% in the free turbulence regime. Heray, is

distribution follows a scaling law from the time,... when the free turbulence turns on, namely
_ 4
Nk (t) =1 2m-1 Nk, (ﬁ = tfree); (536)

wherek, = kt~ 71,

5.3.2.2 Thermal equilibrium state in the presence of nontoplogical solitons

In this sub-subsection, we show that the condition of theatieg pressure is the same as the existence
condition of Q-balls, Eq. (2.24). This does not always mean that the djyatiastable condensate
evolves toward€)-balls; with given initial conditions, the condensate magplee into other thermo-

dynamically favoured states in which the free energy is miséd.

The ansatz of non-thermg)-balls claims thaé, which corresponds to the “chemical potential’is
constant, and that the radial fietfdshould be time-independent and depend on the radifithe Q-ball,

i.e.¢= a(r)e™tin Eq. (2.12). Hence, the existence conditiontbballs at zero-temperature is
min 2V c WP e d*v

i w z7

62 )~ dé?
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This condition implies that the potential should grow lesigly than a quadratic term; thus, it is equiv-
alent to the fact that the AD condensate has a negative peeksu < 2 in Eq. (5.9), see Eq. (E.32).
Notice that this condition only tells us thét-balls may appear after an unstable AD condensate frag-
ments. The evolution to the thermal equilibrium state ibeahard to compute analytically, and it is
related to stability problems of thig-balls [19, 50]. Therefore, we conduct numerical latticadations

that give the entire processes of nonlinear as well as cegailibrium evolution.

5.3.3 Numerical results

In this subsection, we present detailed numerical residtn fattice simulations for both GRV-M and
GAU-M models with the parameter sets, SET-3 and SET-7 showrable 5.1; we then check our
analytical results obtained in the previous sections. dleoto solve the second-order partial differential
equations%—v%jt(‘iiTE)/T = 0, with the potentialsintroduced in Egs. (5.17, 5.18), wethsdollowing
appropriate parameterdx = 0.2, dt = 0.02 in the GRV-M Models andiz = 5.0, dt = 0.2 in the
GAU-M Model, which minimise the numerical errors. Hede, is the fundamental lattice space aftd

is the time step. Note that the variables in this subsectiemarmalized by appropriate energy scales
as in Sec. 5.2.2. We then conduct- 1 (and?2 + 1)-dimensional lattice simulations withil 23 (and
5122) lattice units, imposing a periodic boundary condition.r@itial conditions areg, = ¢o + ¢
and, = do + 6o, where the initial fluctuationsjé, andddy, are of a Gaussian noise, which are
responsible for “quantum” fluctuations. Their fluctuatipfig, anddgo, are of orderl0—? in GRV-M
case and of order0—3 in GAU-M case. In order to visualise these detailed evohytive use a 3D

software, 'VAPOR’ [191], and some videos of our numericalulés are available in [1].

5.3.3.1 Pre-thermalisation

The initial evolution —Non-adiabaticity: In the top two panels of Fig. 5.6, we plot the amplitude of

nj (), where we took the average of (¢) over the axes ok. We show the amplitudes of; (¢) for
the GRV-M Model in the left panel and for the GAU-M Model in thight panel at two different time
steps. In the panels, we indicate the analytical valuesehibst amplified modek,, obtained from
Egs. (5.33, 5.34) with black-dashed vertical lines. In tHeV&/ Model, the amplitude witht = 30
(green-dashed line) is a little noisy to see the first peakn terms ofk. Our analytical estimate,
kn ~ 2.88 x 1071, is located at a more infrared region than the péint &, ~ 3.40 x 10—, and
the periodic structure can be seen in the higher-momentacesgn the GAU-M Model, on the other
hand, we can confirm that our analytical valée= k,, ~ 1.22 x 1072, agrees with the numerical
value,k; ~ 1.70 x 1072, in the green-dashed line; however, the analytical valyeags in a slightly
more infrared region. We also observe the periodic strecituthe higher-momentum modes as was
reported in [173]. In the middle panels (GRV-M Model on lefidathe GAU-M Model on right), we
compare both the zero-mode? (red-solid lines), and the homogeneous field, (green-plus dots),

shown in the bottom panels of Fig. 5.2. The middle panels th bases show that the zero-mode does
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not decay quickly, and it oscillates aroum8l = o2,.. We can also check that our numerical parameters
are appropriate, minimising numerical errors. In the botfmanels of Fig. 5.6, we plot the evolution
of ny(t) for the modes botl,, (red-solid lines) and; (green-dashed lines). In the left bottom panel,
we can see the exponential growth of the amplitude in the GRModel for both modes, and step-
like particle production exists at the beginning of the etioln as broad resonant preheating [1G3] (
Eqg. (5.30)), and it begins to create the particles expoatytafterwards. The particles are produced
quickly when the zero-mode? () increases in time at the beginning, see the middle paneis.igthe
different feature of the evolution compared to the case sdmant preheating, where particle production
for the broad resonance occurs nonadiabatically when tireermede (inflaton field) crosses the zero
axis. In the right bottom panel, we can see more clearly the-Kte particle creations for both modes,
and then this step-like evolution smooths out, which leadhié exponential particle production as in
the GRV-M case. We believe that the adiabatic conditi®ng S2, is “softly” violated only in this
initial stage since we can not see the clear exponentialthratnthe beginning of this evolution. In the
next paragraph, we discuss the late linear evolution whismtimadiabatic evolution ceases, and show

that our analytical results agree much better with our nisakones more nicely.

Up to the nonlinear time: In Fig. 5.7, we show the evolution of the various physicalgites in the

late stage of linear perturbations;’ o2 and Vafo). The top panels plot the amplitude of with
various times in both the GRV-M Model (left) and the GAU-M Maldright). Notice that we plot them
against the logarithmic scale bfas opposed to the linear scale shown in the top panels of EigFbr

all time steps shown there, our analytical value#:,gf(in black-dashed vertical lines) agree well with
the first peak modé;, at which the amplitudes are most amplified. Notice that #gm®amomentum
mode does not decay in both cases. After the first peak of tipditadte is well developed, the second
peak appears in the spectra, and later the third peak canrbly lobserved. Roughly speaking, the
nt" peaks appear around the values which/ggemultiplied byn. These higher peaks are suppressed
by rescattering processes in which a particle from the fiestkpiransfers some of its momentum to
a particle from the zero-momentum modes (AD condensat®&g)].[1Later, all modes of the particle
spectran;’, develop quickly, but the first peak is still visible. The miel panels illustrate the evolution
of a zero-mode fiel&2 and the variance of the field Mar) up to the nonlinear timeé = tx.. As
we saw in the top panels, the zero mode does not decay everiteftaonlinearity comes in, whilst
the variance of the field develops exponentially from- 140 in the GRV-M Model (left) and from

t ~ 600 in the GAU-M Model (right). This delay of the exponential grth comes from the fact that
the other modes do not evolve initially except the magge thus, we can set these timestagiefined

in Eq. (5.29). We fit a functionx exp (QSnum(t - t*)), against the exponential evolution for the
variations, where we obtaifi,,,.,, ~ 4.45 x 1072 in the GRV-M Model andS,,.,,,, ~ 6.72 x 10=3 in
the GAU-M Model, which match satisfactorily with the anadgti ones in Egs. (5.32, 5.34), where we
computed a£<5'm> ~ 4.20 x 102 in the GRV-M Model and<5'm> ~ 7.07 x 1073 in the GAU-M
Model. From the middle panels, the nonlinear time is appnaxely bothty;, ~ 420 in the GRV-M
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FIG. 5.6: In the top two panels, we plot the amplitudengf(¢) at two different time steps for the GRV-M Model
in the left panel and the GAU-M Model in the right panel, where took the average of;f (¢) over the axes of
k. The black-dashed vertical lines indicate the analytiedli®s of the most amplified modés, obtained from
Egs. (5.33, 5.34). In the middle panels (GRV-M Model on leftlahe GAU-M Model on right), we compare the
zero-modes? (red-solid lines) and the homogeneous fiefd(green-plus dots) obtained in the bottom panels of
Fig. 5.2. In the bottom panels of Fig. 5.6, we plot the evolutof »;" (¢) for both analytic valueg,, (red-solid
lines) and numerical valugs (green-dashed lines) af{ shown in the top two panels.

Model andty;, ~ 2200 in the GAU-M Model, and these values agree well with our ati@lystimates

in Eq. (5.29), where the analytical values d@rg, ~ 262 + 140 ~ 422 in the GRV-M Model and
typ ~ 1628 4+ 600 ~ 2228. In the bottom panels, we plot the evolution of the amplitwg‘efor the
first peak mode (red-plus dots), second peak mode (greess-dads) and the analytical most amplified
modes (purple squared-cross dots). The numerical valubs ekponents for the most amplified modes
k., in blue long-dotted lines,&,um ~ 4.55 x 10~2 in the GRV-M Model andS,,,,,,, ~ 7.11 x 10~3 in

the GAU-M Model) match with the analytical ones in Egs. (5.834). The second peaks in black
short-dotted lines start to grow &t 220 in the GRV-M Model and at ~ 1300 in the GAU-M Model,

and we can set these values@defined in Eq. (5.31). The initial behaviour of the amplitwdsecond
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peak ofn;” seems to be quasi-periodic, which implies thsit for the modef:, is pure imaginary, see
Eq. (5.22) ¢f. the bottom panels of FIG. 5in [167]). Surprisingly, the gtbhwates for the second peaks
are about twice as large as the values of t<m> andS,,..,, for Var(c) andk;. Note that the initial
evolution fork, is not adiabatic, so that the growth rates are not stricthoeential as we have seen in
the bottom panels of Fig. 5.6. For example, the growth of tist fieaksk,, (or k1), in the GAU-M
Model is not exponential initially, but it becomes exporiainas the growth of the second peak mode

ko.
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FIG. 5.7: The top panels plot the amplitude of with various times in both the GRV-M Model (left) and the
GAU-M Model (right). The analytical values of the most anfigll modek,,, in black-dashed vertical lines agree
with the first peakk;, of the spectra in both cases. The middle panels show thet@mlof zero-mode fieldy2
(red-plus dots), and the variance of the field, (dar(green-cross dots), up to the nonlinear titne ¢y, where
we can setyz ~ 420 in the GRV-M Model and n 1, ~ 2200 in the GAU-M Model. In the bottom panels, we plot
the evolution of the amplitudez for the firstk, (red-plus dots), second pe&k (green-cross dots) modes and the
analytical most amplified modés,, (purple squared-cross dots).
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Bubbles pinched out of filaments: In Fig. 5.8, we show snapshots of the positive charge density
nT(x) for the GRV-M Model (left panels) and the GAU-M Model (righapels) around ~ ¢y,

where 'Timestep’ in the panels denotes the actual time dividy 10 in the GRV-M Model and the
actual time divided byl0? in the GAU-M Model. The colour bars illustrate the values hé positive
charge density. We can see long-wavelength objects (soregttalled 'filaments’) in both cases, and
the charge in some regions is compactified into spheres atembpanels. These filaments and bubbles
correspond to nonlinear solutions, which may be nontopgoddgtrings [130] and the excited states of
Q-balls, respectively. The radii of these bubbles are of Hmaesorder as the wave-length which cor-
responds to the most amplified modgs,. As we will see in the next subsection, these bubbles grow
by colliding and merging each other. Note that this bubbéation is nothing to do with bubble nucle-
ation in first-order phase transition as opposed to the ¢cglgel 7], in which case the AD condensate is

classically stable against spatial perturbations, bugjpantum mechanically.

TimaStep: 23

TimaStep: 40

;

TimasStep: 41 TimaStep: 24

FIG. 5.8: In the top and bottom panels, we show snapshots of ttivgosharge density, ™ (x) for the GRV-M
Model (left panels) and the GAU-M Model (right panels) ardun~ ¢, where 'Timestep’ in the panels denotes
the actual time divided by0 in the GRV-M Model and the actual time divided b§? in the GAU-M Model, and
the colour bars illustrate the values of the positive chalgsity. After the nonlinearity is fully developed, many
bubbles form, which are pinched out of “highly” concentthbharged filaments.
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5.3.3.2 Nonlinear evolution

Bubble collisions and mergers: In Fig. 5.9, we show snapshots of the positive charge defwitye

GRV-M Model in different time steps up to= 6000, where 'Timestep’ in the figure denotes the actual
simulation time divided byl0? and the colour bars illustrate the values of the positivegdaensity.
After the system goes into a nonlinear regime, we can see dufeys in the first few panels of the
snapshots, and those lumps merge into larger lumpy objettally, we can see a large cluster, which
consists of a complicated inner structure, see the lastskioap Recall that we are using the periodic

boundary condition.

FIG. 5.9: We show snapshots of the positive charge density foGiRe-M Model in different time stepst(=
1000, 2000, 3000, 4000, 5000 and 6000), where 'Timestep’ in the figure denotes the actual simatatime
divided by10% and the colour bars illustrate the values of the positivegddensity. A few created lumps collide
and merge into a large cluster by the end.

Fig. 5.10 shows the detailed evolution of the positive chalgnsity for the GAU-M Model in different
time steps up te = 60000, where 'Timestep’ in the figure denotes the actual simutetime divided
by 103 and the colour bars illustrate the values of the positivegdadensity. A large number of small
bubbles can be observed, and nearby bubbles collide anderimtoglarger bubbles. In the final panel,
there are smaller number of bubbles left (compare to thedasel). We believe that this time arrow is
followed because the total energy of large bubbles is smthldan the total energy of smaller bubbles,
fission stability of@-balls in Eq. (2.34). These large bubbles are able to camygelamount of charge

inside of them as we saw in the left-bottom panel of Fig. 4.€hapter 4 in the “thin-wall'Q-ball limit.

The differences in the evolution between GRV-M and GAU-M migccome from a number of facts,
e.g.different initial conditions, stability conditions and mentum fluxes due to asymptotic profiles at

a large distance from the cores.

96



FIG. 5.10: We illustrate the detailed evolution of the positiveige density for the GAU-M Model in different
time steps{ = 10000, 20000, 30000, 40000, 50000 and 60000), where 'Timestep’ in the figure denotes the
actual simulation time divided by0® and the colour bars illustrate the values of the positivegidensity. There
are smaller number of bubbles left by the end.

Distributions of the negative charge density: We show snapshots of the negative charge density for

the GRV-M Model (left panel) at = 6000 and the GAU-M Model (right panel) @ = 1.0 x 10° in

Fig. 5.11, where the colour bars illustrate the values ofithgative charge density. These times corre-
spond to the same physical times as in the final snapshotgef %0 and 5.10. The values of charge
density in both models are much smaller than the values dgtiy@sharge density in Figs. 5.9 and 5.10.
This implies that we are observing the plots of thermal pasather than charged (nonlinear) lumps.
Their distributions are quite different from each other. eTiregative charge density for the GRV-M
Model is surrounded by the large positive charged clusten s$e the last panel of Fig. 5.9, and it
is distributed all over the lattice; whereas, for the GAU-Modél the distributions of the negative
charged plasma are highly concentrated only around thacdf the lumps (compare the last panel of
Fig. 5.10).

Driven turbulence: The top panels of Fig. 5.12 show the evolution of the zero-er(oeld-solid lines)

and the variations fos (dotted-dashed purple lines), whose latter evolution aredfiby a function,

x t7, (black dashed lines), whefg is a numerical value as the power of Eq. (5.35). For both nsodel
(GRV-M Model on the left panel and the GAU-M Model on the rigianel), the asymptotic evolution
after the linear perturbation regime is overlapped by theefion, wherey; ~ 0.121 for the GRV-M
Model andy; ~ 0.235 for the GAU-M Model. Our analytic values can be matched byirsgp ~ 0.111
with m = 5 in the GRV-M Model andg ~ 0.250 with m = 3 in the GAU-M Model, see Eq. (5.35).
Hence, we could identify this regime as driven (station&uybulence, and the main dynamics in each
model is caused by either a “five-particle” interaction dr#te-particle” interaction, respectively. Note

that our nonrenormalisation term hag&iterm in both models. In the middle and bottom panels of

97



<'
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FIG. 5.11: We present the snapshots of the negative charge yléosithe GRV-M Model (left panel) at =

6.0 x 10® and the GAU-M Model (right panel) at = 6.0 x 10*, where the colour bars illustrate the values of
the negative charge density. The negative charge for the-KBRibdel is surrounded by the large positive charged
cluster; however, the distribution spreads out over thicaspace, whereas the negative charge for the GAU-M
Model is concentrated around the positive charged lumpsjaoe them to the last panels of Figs. 5.9 and 5.10].
Fig. 5.12, we plot, respectively, the amplitudes:gf andn,, at different times for the GRV-M Model
(left panels) and the GAU-M Model (right panels). F@F of the GRV-M Model, the amplitudes of the
high momentum modes grow in time, whilst the lower momentundes do not decay completely and
stay for a long time. We fit a functions £~72, (yellow dotted lines) where, is a numerical value onto
the spectra at = 6700 for the region where the function is fitted as shown in blackhaal lines. We
find thaty, ~ 1.62 for then; case andy, ~ 0.37 for then; case. In the right middle and bottom
panels, we plot the amplitudes nf for the GAU-M Model in various times. The amplitudes of the
high momentum modes decrease as opposed to the GRV-M cadhessiopes of the spectra f@f at

t = 63000 in yellow-dotted lines are steeper than the GRV-M case, /e fit the numerical spectra
by the following values shown in black dashed lings:~ 3.95 for then; case andy, ~ 1.74 for the

n, case.

5.3.3.3 From driven turbulence to near equilibrium — Thermadlisation:

In order to significantly reduce the simulation time, we ganut2 + 1-dimensional lattice simulations
with the same initial conditions as used in the- 1-dimensional cases, where our lattice units are
reduced fromb122 to 5122. In the top panels of Fig. 5.13 (GRV-M Model in the left panafe the
GAU-M Model in the right panels), we illustrate the evolutiof the zero-mode and the variancesof
and in the bottom panels we plot the energy density (at3.5 x 10° in the left-bottom panel and at

t = 1.7 x 107 in the right-bottom panel) instead of the charge densitptogare with the&-ball profiles

at zero-temperature, which we obtained in Figs. 4.3 andvchapter 4. The colour bars in the bottom
panels of Fig. 5.13 illustrate the values of energy densitte that we are using the same parameters
for the GRV-M Model as the ones used in chapter 4, whilst thiemtal for the GAU-M Model used
there is a generalised version of our present potential =40}, so the profiles in the GAU-M Model

should look similar only qualitatively, but not quantitagly. From the top panels, we can also see, in
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FIG. 5.12: Left panels (GRV-M Model) and right panels (GAU-M Mddehe top panels show the evolution of
zero-mode (red-solid lines) and the variations dofdotted-dashed purple lines), whose latter evolution aiexfi
by a function,x ¢7*, (black dashed lines) where we numerically obtain the vafug . In the middle and bottom
panels, we plot, respectively, the amplitudesiffandn;; in different times for both models, and we fit them by a
function of x k™72 where~, is also numerically obtained.

particular the GRV-M Model, the scaling exponent evolutituming the driven turbulence stage after the
pre-thermalisation ends as confirmed in the top panels o5-1®. The subsequent evolution, however,
is different between each other and also unique apart frohaeacteristic free turbulence stage. These
features of the thermalisation process are caused by stablimear solutions, namely)-balls”; in the
GRV-M Model (left panels), the variance does not evolve thath after the driven turbulence stage
ends and we can see thin walled like charged lumps in the eadhs left-bottom panel. In the GAU-M
Model (right panels) the variance has a step-like evolytagrwhich stage we confirmed that two (or
sometimes more) charged lumps collide and merge into arléug®. The collision rate is very low
since the motions of these “heavy” bubbles are nonreldtyibut we expect that there will be only

one single@-ball left ultimately as similar as the GRV-M case. Gengtalle observe that almost all
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of the total energy is trapped into these lumps, where weadsfirm that the total charge is absorbed
into these lumps, as reported in [47, 48]. As the “thin-wgFballs in the GAU-M Model do not have
an extremely thin-wall thickness [50], the profiles seenhia tight bottom panel do not have such a
thin-shell thickness. Note that the “thick-watD-balls in the GAU-M Model may suffer from classical
instability and fission against spatial perturbations atbtihe@-ball solutions, and decay into smaller
@-balls as opposed to the case of “thick-wal)-balls in the GRV-M Model. The reader should also
notice that the potential for the GAU-M Model in the presease is different from Egs. (4.26, 4.27) in
chapter 4, which may change the classical stability ofghealls in the “thick-wall” limit. Furthermore,
the stability of@-balls is related to their own charggso that the initial ratioF /(m@), can also cause
the different evolution. Therefore, we believe that thelation is very sensitive to the parameters of the
models used and the initial conditions. It is worth mentigpiin the left-bottom panel, that the value
of charge density within the charged cluster is slightlgérthan the value of the thin-wal)-balls in
the zero-temperature case [compare to right bottom partggo#.3 in chapter 4]. We believe that this
is because this charged cluster appears in the thermal twacidy in which the thermal effects change

their profiles.
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FIG. 5.13: Left panels (GRV-M Model) and right panels (GAU-M Mddm 2 + 1 dimensions: the top panels
show the evolution of the zero-mode (red-solid lines) amdvriations foro (dotted-dashed purple lines). In the
bottom panels, we plot the energy density(at 3.5 x 10° in the left-bottom panel and at= 1.7 x 107 in the
right-bottom panel) instead of the charge density to compaQ-ball profiles seen in Figs. 4.3 and 4.7 in chapter
4, where the colour bars illustrate the values of energyitlen&/e can see that almost all of the charge is trapped
into bubbles which may be “thin-walk)-balls, recall that we are imposing a periodic boundary @wrd
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Let us recap our findings in this section. We have shown in BRV-M and GAU-M models that
the AD condensate that has a negative pressure is genematghle against linear fluctuations, and the
fluctuations evolve exponentially. The condition for thegence of the negative pressure corresponds to
the existence condition @j-balls, and under our initial conditions shown in Table Své&,observed that
almost all of the total charge is trapped into a single (anel\g spherical lump(s) (“therma)-balls”™)

by the end of our numerical simulations. In the intermediatgons between the initial exponential
amplification stage and thermalisation stage in the presehnthe nonlinear solutions, we identified
that the driven turbulence is active; we then found the sgadixponent evolution for the varianceaf

and we saw that this stage lasts relatively much longer theagdse of tachyonic reheating.

5.4 Conclusion and discussion

In this chapter we have discussed both analytically and migally two main issues: the dynamics
of Affleck-Dine (AD) condensates and their subsequent noitieggum dynamics in the presence of
nonlinear solutions. We showed that the AD dynamics hasaheedeatures as the orbital motions of
planets, replacing the gravitational force by an isotrdmemonic oscillator force. As the relativistic
correction to the Newtonian potential gives a precessiothi® planetary orbit, the orbits of AD fields
are disturbed by the nonrenormalisable and quantum ca@neerms. Note that the essential origin of
these corrections is physically different. In the presesfca negative pressure of the AD condensate,
we have shown that the condensate is classically unstatideha evolution of the system is similar to
the dynamics of reheating of the Univerge, pre-thermalisatiofbubble collisionsindthermalisation
Adopting lattice simulations, we found that the thermdi@maprocess occurs in the presence of charged
lumps, which merge into a single (or a few) “thermal thin4edlQ-ball(s)”, absorbing most of the

homogeneous charge distributed initially on the lattice.

In Sec. 5.2, we introduced two phenomenological modelsvatail by the MSSMi.e. the gravity-
mediated (GRV-M) model and gauge-mediated (GAU-M) modeé &litained the frequencies of the
rotation for the nearly circular orbits, and showed that¢dbadensate can have a negative pressure in
both cases, see Sec. 5.2.1. Furthermore, we checked nattyeoigr analytic results with the various

cases in both a non-expanding and expanding universe.

Our analytic expressions have a number of advantages. |exisdng literature on preheating for
complex scalar fields [193, 194, 195], the motion of the caxcalar field is assumed to be of an
elliptical form, but their ansatz does not hold [compareexpressions in Egs. (E.5, E.16) and Eqg. (5.19)
and their ansatz]. In the multi-flat direction cases, ouhditeexpressions of the AD field give the exact
Mathieu equation if the interaction term between the AD fi¢ldnd another field, that parametrises

another flat direction, is given iy |4|?| x|, whereg is a coupling constant between them. The previous
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literature [195, 196, 197] suggested that the resonant Spi8leating for nearly circular orbits is not
effective since the characteristic dimensionless quantis much less than unity, recalling that broad
resonant preheating (nonadiabatic evolution) occurg for 1. This statement also holds for our case
when the orbit of the AD field is nearly circular because et <2 wherees? is the third eccentricity of

the orbits, recalling that nearly circular orbits corresgdo the case of? < 1.

We obtained the successful ansatze, Eq. (5.19), for nemdylar orbits in an expanding universe (see
also the top panels in Fig. 5.4), but our analytical expmsscould be improved by the action variable
technique as a real scalar field case [198]. These issuesdmrstanding analytic forms of the orbits
are related to the dynamics of spinning scalar fields, whahlme responsible for the early- and late-
time exponential expansions of the Universe (spinflatidd®[land spintessence [200]) since the AD
condensate can possess a negative pressure, which céntsatisondition of slow-roll inflationyw <
—1/3. In[201], the authors discussed an oscillating field resfizla for dark energy (see a recent review
[202]), and it gives a constraint on the power of a power-lateptial in order to obtain the attractor
solutions [203]. As in the case of real scalar fields, a comptalar field has been investigated, see for
example [204, 205, 206]. Following our analytical work, @a@ investigate the further analysis on dark
energy for a complex scalar field and their late evolutionriheo to place constraints on parameters of

the models, avoidin@-ball formation.

In Sec. 5.3, we explored the late evolution of AD fields in Mimiski spacetime in both GRV-M and
GAU-M models. As the usual nonequilibrium dynamics, we fosgd that the dynamics of tlig-ball
formation goes through three distinct regimpee-thermalisationbubble collision(driven turbulence)
andthermalisation We showed analytically that the AD condensate is unstajaat spatial perturba-
tions if the condensate has a negative pressure, and thelpions grow exponentially. The presence
of the negative pressure satisfies the existence condifioftlzalls as well as the fact that the sound
wave of the perturbation has an imaginary value of the sopegd Assuming the adiabatic linear
evolution, we have analytically shown that the perturbatitor the most amplified mode = %, in

Eq. (5.25) grows with the exponefif, in Eq. (5.26), which we obtained by taking the average over on
rotation of the orbits of the AD field. In the previous litaweg [116, 173], these values were obtained
by ignoring the nonrenormalisable term and by assumingttiebrbit is circular. By including the
nonrenormalisable term and considering more generatiellipbits, we recovered their results as the
leading order term of our solutions in Sec. 5.3.1.2. We dem&d that the nonlinear time is delayed
compared to the time which the authors in [147] obtaineaesthe other modes are not well developed
when the most amplified mode starts to grow exponentiallythWur 3 + 1-dimensional numerical
lattice simulations, which were run for a much longer timéhwnuch larger simulation sizes than the
past lattice simulations in [47, 48, 116, 173, 182], our gh@lresults were shown to be robust. We
found that the adiabatic condition is violated at the bejigrstage of the linear perturbations as seen
in broad resonant preheating. In the driven turbulenceestag observed that many bubbles form and

collide/merge into larger bubbles in both GRV-M and GAU-M dets. Note that these bubbles are
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nothing to do with the bubbles due to first order phase trimmsitBy concerning with the variance of
the radial fields, we have seen that the evolution follows a scaling exporaantls a signature of the
driven turbulence [177]. As opposed to the case of tachymm@beating, this driven turbulence stage, in
our case, lasts for a longer time, which may be caused by #®epce of classical nonlinear solutions,
i.e.“Q-balls”. We saw in ou + 1-dimensional numerical results that a thermalisationestajually
exists where the evolution for the variance of a field has feint scaling law from the one which
appears in the driven (first) turbulence stage. We beliezeghantum effects should be non-negligible
in this late turbulence stage, and the classical therntais@rocess, in our case, should be different
from the corresponding quantum-mechanical thermalisati®ince the thermalisation process is gen-
erally extremely long, a lattice simulation in an expandiagkground encounters serious problems in
the ultra-violet limits; thus, we ignored the Hubble exgansn our lattice simulations. By considering
the quantum-mechanical effects as well as Hubble expayisisrworth investigating the cosmological

consequences.

In the context of a (p)reheating scenario, it has been stggdgs31] that the collision of bubbles during
the driven turbulence stage can be an effective source witgtianal waves, which can be detected by
LIGO [207] and LISA [208] in the near future. We noticed thhistanalysis should be applicable to
the same driven turbulence stage of théall formation, which was initially proposed in [49]. The
problem of gravitational waves emitted in the fragmentastage has been discussed [182], while the

analysis in the driven turbulence stageball formation still remains to be done.

Moreover, we assumed that the A-terms in the scalar poteiMiaEq. (5.8) and Eq. (5.10), are neg-
ligible at the beginning of the analysis, whéreis independent of the phase fiedd However, those
terms are essential to generate the baryon/lepton numitiee iAD baryogenesis, and the dynamics of
the AD field and the formation af)-balls may be affected by the A-terms. Recall that the comskr
global charge (baryon number) stabilise@#all. With the inclusion of the A-term i, the authors
in [209] showed that thé&)-balls can be unstable for a strong coupling constant of therf, however
they also claimed that the previously published stabilitglgsis on)-balls should not be affected dras-
tically since the coupling constant of the A-term is very weader the realistic cosmological situation.

Therefore our analysis in this chapter is still valid.
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Chapter 6

Conclusions

In this thesis we have studied the stability and detailedh&dion process of)-balls in polynomial
potentials and physics beyond the SM, namely the MSSM. Bydtieg quantum corrections as well as
thermal corrections in the MSSM scalar potentials, the Abdemsate may possess a negative pressure,
whose presence implies that this condensate may fragmentdmtopological solitons, known &%
balls. Past work [18, 47, 48, 111] has failed to convincindgmonstrated the necessary conditions
to understand the stability and formation of thégdalls. A proper treatment may significantly alter
the existing cosmological estimates for the presence ofMimlls; and this research background on
@-balls gave our initial motivations to explore these san$ in more detail. Our primary goal in this
thesis has been to understand h@vballs form and interact with each other in the very earlyudnse,

and we have solved a number of questions related to this iksoreghout this thesis.

In chapter 2, we reviewed the fundamental aspects of stdrigdalls. By introducing two powerful
analytical tools, the Legendre transformation and thelitieorem, we presented a remarkable way of
calculating the charg® and energyFg of a Q-ball, and obtained the relations of their classical and
absolute stability conditions. By scalingtaball solution and imposing the ratio between the surface
and potential energy of thg-ball, we obtained the virial relations and characterisitipesy, which give

an important proportional relationg. F o« Q'/7, see Egs. (2.15, 2.38). We also obtained the threshold
values for absolute stability @p-balls in the parameter spagein Eq. (2.39). These values agree with

the corresponding numerical results in polynomial potdsin chapter 3, see Tables 3.3 and 3.4.

Following the pioneering work on nontopological solitons,Q-balls, by Friedberg, Lee and Sirlin [20]
and Sidney Coleman [21], in chapter 3 we explored both thelatesand classical stability conditions
of standard)-balls in a general polynomial potential, which can appeaaraeffective potential with
guantum/thermal corrections. In the extreme lower limitofhamelyw = w_, we defined thin-wall
Q-balls, which have generally an infinitesimally small thielss outside of their core. For potentials

without degenerate vacua (NDVPs), we showed that a stepli&file is the appropriate ansatz in the



extreme thin-wall limit, and we found that the energy of theball grows linearly as the charge,
which is consistent with the result obtained with the viralation in chapter 2. We also found that
the solution is absolutely stable against their own quédrtaywn as@-matter as ordinary matter with
a zero-pressure. We noticed that thismatter phase is not generally equivalent to the state, ictwh
the AD condensate has a negative pressure, and suffers fratialsperturbations, fragmenting into
inhomogeneous states, see chapter 5. In order to investigatwall Q-balls including a finite size of
the shell thickness, we introduced a modified ansatz whighlid for a more wider parameter space

in addition tow = w_. We then recovered the solution of thematter phase{ = w_) as the extreme
case in NDVPs, and obtained new features of the stabilitgitioms in polynomial potentials both with
and without degenerate vacua cades,DVPs and NDVPs. With our modified ansatz for thin-wall
Q-balls, the condition for classical stability does not deghen the number of spatial dimensions, but
the absolute stability condition does. Moreover, the cttaréstic slopes coincide with those derived
using the virial theorem as found in the extreme thin-watlili The values of the characteristic slopes

~ depend on the presence of degenerate vacua in potengalshether NDVPs or DVPs, such that

1/y = 1in NDVPs andl /y = 22(3:}) in DVPs, recallingEy « Q'/7. On the contrary, for the upper
limit of the parameter space we defined “thick-wall’Q-balls, which do not actually imply that the
@-balls have a large shell thickness compared to the coresgize we cannot define explicitly both of
the sizes in this limit. We confirmed that the “thick-wa)-ball solutions naturally tend to free-particle
solutions. We also pointed out that a Gaussian ansatz impolial potentials has several drawbacks,
whilst the other modified ansatz solved these problems andbiagned the general classical stability
condition in Eq. (3.47) under the validity condition Eq.48). With this fact and Eq. (3.44), it implies
that the “thick-wall” Q-balls are absolutely stable. We should, however, stateatl&aussian ansatz is
actually valid for one of the MSSM flat scalar potentials, gravity-mediated potentials, as shown in

chapter 4. The key analytic results in chapter 3 were suns@@in Table 3.5.

In the late '90s, Alexander Kusenko and Mikhail Shaposhwiid] and Kari Engvist and John Mc-
Donald [111] discovered SUSY nontopological soliton siolus in the MSSM, which implies that these
solutions may have rich cosmological consequences. Folgpaur analyses developed in chapter 3,
we obtained, in chapter 4, both analytically and numenjoadiw stability and stationary properties of
both thin- and thick-wal()-balls at zero-temperature in both gravity-mediated andjganediated po-
tentials. In gravity-mediated potentials in which SUSY isken by gravity interactions, we found that
thin-wall Q-balls can be quantum-mechanically and classically stagéénst their own quanta as long
as the coupling constant of the nonrenormalisable term &l&nough. The values of the characteristic
slopesy are the same as the ones computed in chapter 3 for thingbadllls in polynomial potentials.
Further, we showed that the “thick-wall)-balls are classically stable against linear perturbatemd
may be quantum-mechanically stable under the conditiong42j1). As stated, a Gaussian ansatz in
this model does not have any contradictions since the saluti the “thick-wall” limit becomes the
exact Gaussian solution, Eq. (B.1), examined in appendiA€.another example of)-balls in the

MSSM flat potentials, we exploreg@-balls in gauge-mediated models in which SUSY is broken by a
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gauge interaction. Generally speaking, the gauge-metjatentials are extremely flat compared to the
gravity-mediated and polynomial ones; therefore, we caoldapply our thin-wall ansatz Egs. (3.6, 4.8)
to the present case. Instead, by linearising the gaugeategipotentials, we obtained the full analytic
results over the whole range af see Figs. 4.8 and 4.9. In particular, we showed thatQHealls

in the “thin-wall-like” limit are absolutely stable in Eg4{40), while the one- and three-dimensional
“thick-wall” Q-balls are completely unstable, see Eqs. (4.47, 4.48) or (B, 4.46), respectively.
The energy ratio by unit charge for the “thin-wad}-balls in the gauge-mediated models is lower com-
pared to ones computed with the other models, namely= DLH in E o< Q'/7. Thus, we can use this
stable and energetically compdgtball solution to explain the present dimensionless endagsity of
dark matterQ2p,s, in the Universej.e. Qpy ~ 0.23. Our key analytic results were summarised in

Table 4.1.

It has been noted [18, 111] that an AD condensate with a negattessure fragments in@-balls, and
Sinta Kasuya and Masahiro Kawasaki [47, 48] showed nunmiritet the bubble-like objects actually
form from the decays of the condensate with classical Esiimulations with both gravity-mediated and
gauge-mediated models. Their original work@+ball formation, however, was not done in a consistent
way from the perspective of the dynamics in the AD mechanésrd, their analytic results were not well
checked; therefore, in chapter 5 we reexamined the dynawhite AD mechanism and the late evo-
lution which includes ©-ball” formation and the thermalisation process in both eledWe identified
that the dynamics for the motion of the AD field has the sameguties as orbital motions of the usual
planets, replacing the gravitational force by an isotrdy@emonic oscillator force. By including non-
renormalisable terms and quantum corrections in the massii¢he scalar potentials, the motion of the
AD fields in both models is disturbed in a similar way as thecpssesion of planetary orbits occurs due
to the relativistic corrections on the Newtonian potentilirthermore, we explicitly showed that the
presence of a negative pressure in the AD condensate letigsttoree consequences, all of which arise
from the same origin, such as the spatial instability adgdinsar spatial perturbations, imaginary val-
ues of the sound speed, and meeting the existence condit@+balls. By adopting + 1-dimensional
lattice simulations with more realistic initial conditisin both gravity-mediated and gauge-mediated
models, we investigated both analytically and numeridhkydetailed processes@fball formation, in
which we found that the evolution of the system goes throhglsame three distinct stages as a model of
reheating in the early Universieg. pre-thermalisationbubble collisiongdriven turbulence), and main
thermalisation Following the wave kinetic theory of turbulence origiygiroposed by Raphael Micha
and Igor Tkachev [177], we obtained the scaling exponenftahe variance of a field during bubble
collisions. Moreover, we found numerically that the claasthermalisation process is unique due to
the presence of charged lumps, which merge into a single f@ewp“thermal thin-walled@-ball(s)”,

absorbing most of the homogeneous charge initially disteith over the lattice space.

In summary, we have explored the stability and stationaoperties ofQ-balls in polynomial poten-

tials and the MSSM flat potentials, and the detailed fornmgtimcess in the latter phenomenologically
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interesting potentials, adopting with lattice simulasoriWe showed that non-thermal “thin-wall)-
balls, which contain a lot of charge (baryons/leptons),lmaabsolutely stable in any types of the above
potentials, which implies that theggballs, in particular “thin-wall'@Q-balls in gauge-mediated poten-
tials, are likely to survive from thermal effects, diffusiaissociation, and decays into fermions. Those
Q-balls may still exist in the present Universe as invisiblatter,i.e. dark matter. This fact naturally

provides the two quantities in Eq. (1.3) [19].

As our future work, it is worth investigating the possihjliof gravitational wave emission from the
collisions of charged bubbles during the thermalisati@gstas we saw in our lattice simulations. We
are also interested in studying the stability and formadio@-balls in hybrid inflation models, which are
motivated by SUSY D-term and F-term inflation models and thgirmal nontopological soliton model

in [20]. As mentioned at the end of the previous chapter, wainbd the successful ansatze for nearly
circular orbits of the AD fields in an expanding universe. Buit analytic expressions could be improved
by the action variable technique as a real scalar field c&8}.[These issues on understanding analytic
forms of the orbits are related to the dynamics of spinnirajesdields, which can be responsible for
the early- and late- time exponential expansions of the éis® (spinflation and spintessence) since the
AD condensate can possess a negative pressure, which iy e condition of slow-roll inflation.
Following our analytical work, one can investigate the liertanalysis on dark energy for a complex
scalar field and their late evolution in order to place caists on parameters of the inflation models,

avoiding@-ball formation.

Further, we assumed to ignore the effects of gauge fieldseost#itionary properties @j-balls and the
cosmological consequences in our entire thesis. Howdweiintlusion of the gauge fields may affect
the detailed)-ball profile as pointed out in [57]. Inside the gauggeball, the local gauge symmetry
should be broken by the non-zero field value. Then, the chanafée for the large gauge@-ball has

a peak around the surface due to the Coulomb repulsion, @nd &xists a maximum charge. These
are different features from the non-gauggdballs; thus, we believe that the stability analysis shdndd
well modified. Another question arises that 'Can we prediietabservable cosmological consequences
caused by the gauge field in the MSSM?’. Regarding this quesKkari Engvist, Asko Jokinen, and
Anupam Mazumdar computed the magnitude of the magnetig fiefc?® Gauss, generated along the
MSSM flat direction [210]. This value is the same order as tlagmnitude for the observed magnetic
field in the clusters of galaxies [211]. The above two ideabath the stability of the gaugeg-balls
and their cosmological consequences in the MSSM can be btoagether; it is worth estimating the

magnitude of the magnetic field in the presence of the gagybdlls.

Finally, with the forthcoming data from the high-energy exments, such as LHC [212], the gravita-
tional wave detector®.g.LIGO [207] and LISA [208], and the detectors of cosmic micem& back-
ground radiation, WMAP [6] and PLANCK [213], we believe thhese experimental data may shed
light on the origin of the two quantities, Egs. (1.1, 1.2)the future.
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“Many of life’s failures are people who did not realize

how close they were to success when they gave up”

— Thomas Edison.
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Appendix A

Classical stability

Nontopological solitong,e. Q-balls, can be classically stable for a small nonlinear inggonstant,
say g, when the fluctuations around the solution are of a harmosdillator form. It implies that
the energy islgy = Eg)) + > NN + $)Qn + ... in the language of quantum field theory, where
Eg) ~ O(1/¢?) is theQ-ball energy V' is the “occupation number” of th&'th normal mode, anf

is the characteristic frequency of the fluctuations. Héresecond term if, is of O(¢”) and the higher
order terms are suppressed by the small nonlinear couptingtantg, i.e. O(¢?, g%, ...) [52]. The
case(2% = 0, corresponds to the zero modle, translations and phase transformations from@aieall
solution. A classically stabl€-ball has fluctuations witi2%, > 0, whilst if 2%, < 0, the fluctuations
exponentially grows, which means the solution is claskiaahstable. The canonical quantisation of
the solitons is a matter of ordering the canonical variabteghat one needs to additionally impose the

equal time canonical commutation relations on the vargfdethe purpose [20, 52].

In this appendix we present the complete classical stalgtialysis ofQ-balls in a number of spatial
dimensionsD, following the original work in [52]. In order to show the elsical stability, we have to
adopt the Hamiltonian formalism, starting from the Lagmfgrmalism. Introducing collective coor-
dinates and concerning the zero-modes, we obtain all pesiti zero eigenvalues for the fluctuations
around theQ-ball solution subject to the condition that the charge ef@hball should decrease as a
function ofw. Therefore, we can show that tlig-ball solutions are classically stable against linear

fluctuations.

Let us begin with perturbing the lowest energy solutian a soliton solutiong (x — R(t)) with complex
fluctuationsy(¢,x — R(t)) = xr + ix1, WhereR(¢) is the location of the soliton ang/| ~ O(e) < o.

Here,c is a small quantity compared to the background fieldHence, the field
¢p=e*D(o+y), (A.1)

whereo satisfies the)-ball equation Eq. (2.20). We can expagdvith a complete set of complex
functions f,,(X): x = Y0 0 an(t)fn(X) for n > D 4 2. Note thatg,(t) is a real function due
to the factord(t) in Eq. (A.1). We shall defing), o 0o and fpy; < o fork =1, 2,..., D with



qr = Ri(t), gp+1 = 0(t), so thatf; are orthonormal fof, j =1to o, i.e. [ fF f; = &;;, where we
defined [ = fVD, see Eq. (2.6). By imposing the U(1) symmetry and the Lorentariance for the

perturbed solution, we must have the conditions

/ax; =0, /XRVU =0. (A.2)

A.1 The second-order variations with the Lagrange formalisn

Using Eq. (A.1) and collective coordinateg, = Ry (t) andgpi1 = 6(t), it is tedious but straightfor-
ward to express the lagrangiah= K (q, ¢) — V (¢), up to second order, where the kinetic and potential

terms are, respectively,

1. 1-

K = /§|¢I2=§q'mijq'j=Ko+K1+K2+---a A3
1

vo— /§|V¢|2+U(|¢>|):V0+V1+V2+---- (A.4)

Here, a tilde denotes the inverse vectors of the originalorecThe components d#1,; are

Mpiips1 = /{U2+20XR+X?{+X%},
My = My, = / {0k0Ok 0 4 20100k X R + Ok X RO XR + Ok X 10K X1},
Mpiig=Mppy1 = /{*2X13k0 + xrOkXT — X1OKXR}

Mosin=Mupis = 5 [l = Fixe+ U+ 001},

1
Min = Mus = =5 [ U+ 1000 = ilh = £}
Mnn’ = Mn’n = /f;:fn’ = 57171"

The matrixM can be expanded as a series of the infinitesimally small duant

M = Mo(e%) + Mi(e") + Ma(e?) + O(e%) .. ., (A.5)
where
So 0 0 A B J F G 0
Mo=| 0 I 0|, Mi=| B ¢ E |, Ma=| G H 0 (A.6)
0 0 1 J E 0 0 0 0

Here, we defined the matrices, column vectors, and scalars as
So = Modrr 11/027

A=2/5k03k'XR : BZQ/XlakUa CZQ/UXR,
E=Mnpy1 , J=Mpn,

F:/akXRak’XR+akXIak’XI , G =X10kXR — XROKXI, H:/X%erf,,
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where M, = % [(Vo)? and the tildes are denoted as the inverse matrices (veatbthp original

matrices (vectors) again. Therefore, the componenis of Eq. (A.3) is given by
1. 1. 1.
Ko = 5GMoijaj, Ki = 56Muigqj, K2 = 56Maig;. (A7)

The potential terms in Eq. (A.4) can be also expressed by

Vo = /%(VU)Q-FU(U), (A.8)

i = w2/UXR, (A.9)

Va %/{XR <V2 + %) XR+ X1 <V2 + %%) XI} , (A.10)
where we usefl| ~ J+XR+’2<—§+O(63) andU (|¢|) ~ U(J)+XR%+§%+X—§%§Z¥ +0(3)+

A.2 The Hamilton formalism with canonical transformations

In order to consider the modes of the fluctuatign# is useful to switch the Lagrange formalism to the
Hamiltonian formalism. Let us impose canonical transfdiores with Eq. (A.3) and Eq. (A.4), we then

obtain

oL
04

pi = Myjd; — 6 = M;;'pj, (A.11)

wherepp = 6%2 ~ O(¢) andp; = 68_>'<LI ~ O(¢)forn,m = D+2,D+3,.... Hence, the Hamiltonian

H(q, p) is given by
1
H =p;ig; — L = 5f;l-/\/tgjlpj +V(q) = Ho+ Hy + Ha + ..., (A.12)
which is independent af, andgp 1; thus, the Hamiltonian equations for the soliton momedntand

the charge) give conserved quantitie$}, = *Sﬂ =0andQ = faq.aTHﬂ = 0. In the centre of mass

frame?l, we can set

L L
Py oL _ 0, Q= 2—9 = const. (A.13)

BT
Using Eq. (A.5), the inverse matrix o¥1 can be expanded by
M7 Mgt — MGPAMGE + MPAMG T AMG - (A.14)

We obtain the kinetic terms in Egs. (A.3, A.7) as

Ko = S(Q _ @ A.15

0o = 5(@ ), Kl**ﬁ OXRs (A.15)
1 2Q . Q?

Ky, = 3 zﬂ: {Pi -7 (PnMup. D11+ MpDy1nPn) + Tz |MD+1,n|2}

2 2 2 2
+ %{MLO<2/X[VU) +%(2/JXR) }%{/x?ﬁx?}. (A.16)

10ne can find the results in an arbitrary frame in [20].
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To ensure that the fluctuatiognis of order ofe, we set
Hy = (v* — Q*?) /UXR =0—Q = Iw, (A.17)

where we chose the positive sign for b@ghrandw without loss of generality. Usin@ = Iw, we can
reduce Egs. (A.8-A.10) and (A.15-A.16) to

Hy = DM+ Iw, (A.18)
1
Hy = 53 Ipa—wMpiral® + Ve + Vi, (A.19)
where
1 . 2w? 2
VR = §/XRhRXR+ e (/UXR) ; (A.20)
1 . 202 2
= - —_— . A.21
Vi 2/XIhIX1+ M (/XIVU) ( )

Here, the differential operatots; andh;in Eq. (A.20) and Eq. (A.21) are defined by

. PU

2
. 1d
o= -l (A.23)
o do

As a result, we found the second-order Hamiltonianin Eq. (A.19), with which we will be able to

examine the stability of the perturbations using the Hamilin equations.

A.3 Positive eigenvalues

In order to show the classical stability @Fball solutions, we need to impose a condition for the charge
of the @-ball, which implies all eigenvalued,z andA;, for Vr andVr in Egs. (A.20, A.21) should be

positive definite or zero. Those eigenvalues are given by

oV - 4w?

—2 = hpxp+—0 /UXR = ARrXr, (A.24)
6)(3 I

oV “ 4w?

T — hixvi 4 2 ve - (/v(m) - Arxr. (A.25)
dxr So

Our first task is to show thdty has only one negative eigenvalue, and that the rest of themalhr
positive or zero, whilst we will show that all eigenvaluesiof are positive definite or zero. Each
of the zero-modes should be treated with special effortsesthese modes are translation and phase
invariant modes of th&)-ball solutions. Finally, we are able to prove that the flations around the
Q-ball solution are of the usual harmonic oscillation forningsthe Hamiltonian equations subject to
the condition that the chargg of the Q-ball should monotonically decrease as a functiowoThis is

our main aim to prove from now on.
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A.3.1 Eigenvalues forhy and h;

Let ¢ r; andy;; be the eigenstates éf; andh;, such that

hrbri = AriUri,  h1vrj = Aijbry, (A.26)

whereAr; and;; are the corresponding eigenvalues.

A.3.1.1 One negative eigenvalue fat ;

Here, we show that there is only one negative eigenvaldéﬂof By differentiating Eg. (2.20) with

respect ta),, we obtain the zero—eigenfunctionsfo&,
hpdwo = 0. (A.27)

The eingenfunctiong),.o, come from the translational invariance, o (x+1), wheren is a small quan-
tity which is responsible for the translation from tfeball solution. The eigenfunctions correspond to
p-states ofiz, which have a number of spatial dimensidnsi.e. g, o Oro. Since the lowest s-state
eigenvalue of.z must be lower than the lowest p-state eigenvalue, therésexideast one negative
eigenvalue of s-states fér; whose corresponding eigenfunctions are s-waved hese eigenfunctions
1; will be used to obtain the positive eigenvalueg for Vr in the next subsection. Before doing so,

we have to be concerned with the eigenvaluesifpandf; in more detail.

Theorem : iLR must have only one negative eigenvalue in order for Vi > 0.

Proof

If .z had two negative eigenvalugs, < A_; < 0 < Ao, one canexpandasc = o_19_1 +0_s1_s
andxr = c_19_1 + c_21_o, where the under-indices are denoted as the correspordergfenctions

and factors for the eigenvalugds;, A\_». HenceVy in Eq. (A.24) becomes

Los 2 2w? 2 2
Vr = 5 (Cfl)‘—l + 072)\_2) + T (0710'_1 + 0720—2) ) (A28)
1 c 2
1 {< 2 ) A1+ cQQAz} <0, (A.29)
2 O_10_9

c_2
o_1

where without loss of generality we have sef = ——20_5 in the last step. The inequality holds due

to A_s < A_1 < 0. The proof of the theorem is complete.

A.3.1.2 Positive and zero eigenvalues f(frf

Next, we will show that all eingenvalues bf are positive or zero. From Eq. (2.20) and Eq. (A.23), we

obtain
hio =0, (A.30)

which leads to one zero s-state eigenfunctiorﬁzgf Y19 x o. Sinceo has no node [52], the other

eigenvalues ok are positive definite.
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A.3.2 Positive and zero eigenvalues fovy and V;

Our next task is to establish that all eigenvalue¥gfand)’; should be positive definite or zerice.
Ar >0, A;>0. (A.31)

Let Wr; and ¥y, be the real eigenfunctions fa/z and V;, respectively. Note tha¥ p;, and U,
are orthonormal, namely Uz, Vr; = [¥;;¥;; = §;;. As one can expect, we obtain the zero-

eigenfunctions ar& ;. < dyo and¥;y x o.

First of all, let us considey; in Eq. (A.21). We expang; with a complete set o¥';; with ¢;; =

Im(q;), which implies that
X1 :Zqu\P]j. (A32)
J

Since the first and second terms of the RHS in Eq. (A.21) aréiyp®slefinite, we obtaim;; > 0.
Recalling the translational invariance Eq. (A.2) and Eq2@), we obtain the zero-eigenfunctidre.

Vo o< o with Ajg = 0, cf. Eq. (A.30).

Secondary, we will considérr. We expandyr with a complete set ol ; except the s-statgr; =
Re(q;):

/
XR = Z qri ¥V Ri- (A.33)

Here, a prime denotes the summation ovexcept zero-eigenvalue. Recalling the phase invariance
Eq. (A.2) and Eqg. (A.27), we obtain the zero-eigenfunctiamelyV g; o« dpo with Ag, = 0, where

we used Eg. (A.2) again, see Eq. (A.27). We can then expressrtergyE|f] with a functionf =

o+ eVg,

E[f]=FEy+ Ey + E3+... = Ey + €2 Ar + O(¢?), (A.34)

whereF, corresponds to the lowest energy solutiog,the Q-ball solution. Without s-state waves, we

obtainAr > 0.

By including the s-states o¥ z;, we will show the positivity ofAg;, where we definee = Ag;.
We definey; as a complete set of s-state eigenfunctions, which satisfeethe orthonormal relation,
fz/;iz/;j = d;;. Recalling thaﬁRwi = \o; whered; < 0 < \p < ..., we expandl p; ando in terms
of ¢; with the amplitudes;; ando,, i.e.

Vg = Z cii, 0= ZUH/%- (A.35)

2

Using Egs. (A.35, A.24), we obtain

4w? 9
Aj—z+TZaj ¢; =0, (A.36)

J
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where we multiplied); and integrated over the space in Eq. (A.24). Sincis arbitrary, the solution
for G(z), where

4w? o7
G@):H% s =0, (A.37)
1 J
J
corresponds to s-state eigenvalued gf.
Note that
dG .
g > 0, Eg\ni G(Z) = Fo0, )\j < ARj < )\j+1. (A38)

Since it is required to havér > 0, we should impose that
M<O0<A <A <. <~ G(O) <0, (A39)

2
where G(0) = 1 ;A Z )\—7 (A.40)
J

We will now show thatz(0) = %ﬁ which implies that we should have a monotonically decregsi
) <

function@ in terms ofw due toG (0 Recalling Eq. (A.17), we obtain

B ' wo@Q 2w [ Oo
5Q715w+2w/050 & 0dw + 7| "0 (A.41)
Differentiating Eq. (2.20) with respect to, we obtain
im@ = 2wo. (A.42)
Ow
Multiplying > .o; on the eigen-equationzty; = A;1;, we then obtain
~ O
Zthwi =o0. (A.43)

By comparing Eq. (A.42) with Eq. (A.43), we fing- g—" x )% St By multiplying Z ojv;, inte-

w

grating over space, and using the orthonormal relationgbtain

0o o?
oo = %Xijk_f (A.44)

Using this, we finally obtain from Eq. (A.40)

G(0) = RHSInEqg. (A.41) (A.45)
_ woQ
= Qo (A.46)

Hence, the charge3d(w) of Q-ball should decrease in termswfto satisfy Eq. (A.39). It follows that
the condition, Eq. (2.31), namely

wdQ

O =0 (A.47)

ensures that the eigenvalues in Eq. (A.24) are all positieem. It will turn out that Eq. (A.47) corre-

sponds to the classical stability condition f@fball solutions as we will see in the next section.

To sum up, we showed that the eigenvalues in Egs. (A.24, AaR53ll positive or zero subject to the

condition Eq. (A.47).
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A.4 Harmonic oscillations

In this section, we show that the perturbations are of thalusarmonic oscillator form, which implies
that all of the frequencies of the perturbations should la& rén order to show this, we have to be
concerned with the kinetic term in the second-order Hamiéto H> in Eq. (A.19) and consider the
Hamiltonian equations fof{,. Let us construct the eigenfunctions excluding the zererdignctions,

which we found in the previous sections. We then obtain

i !
XR = Z qri(t)Vri(x), x1= Z qrj ()W (x). (A.48)
2 J
The canonical variables are
PR1 pI1 qR1 qr1
prR=| pPr2 |, pr=| P2 |, =1\ ar2 |, =1\ a2 |- (A.49)

We then express Eq. (A.20) and Eq. (A.21) as

1. 1.
Vr = §QRARQR, Vi = §QIAIQI; (A.50)

whereA i andA; are diagonal matrices. Henddy in Eq. (A.19) becomes

L. _ 1. - 1. ~
Hy = §(pRPR +prpr) + §QR(AR +IT)gr + §QI(AI +TIT)qs

+ prlar — pilqr, (A.51)

wherel is a real matrix whose components are

Lij = -w / UriVr;. (A.52)
. Pr qr . .
Introducing column vector® = andQ = , We obtain the second-order Hamilto-
pr qr
nian,
1~ 1~ ~ 1 P 1 = P
Hy, = §PP + §QAQ +P=ZQ = 3 . , (A.53)
Q 2 A Q
1. (1 2
= 30| - 1, (A.54)
= A
Ar +TIT 0 - 0 I P
where we sef\ = ~ , 2=-E= ~ ,andn = . Hence,
0 Ar+1IT -T 0 Q
the Hamiltonian equation fafl; is
on = A
— = . A.55
9 Loz | (A.55)
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By imposing the normal mode solutign= 7y,
N (t) oc e 9N (A.56)

we will show that there exist only real solutions far; subject to the condition Eq. (A.47). The solu-

tionsQy in Eq. (A.55) are the roots of the following quadratic eqoafi
—c1 + Oy + Q% =0. (A.57)
Here,c; ande, are given by

. [ Ar 0 L[ 0 —ar
¢ =R Ry, c =Rl ) Ry, (A.58)
0 A; 2% 0

whereR y is the coordinate column vector fgx,, which satisfies the normalisation conditi(R]jVRN =

1. Then, the solutions of Eq. (A.57) are
On =5 [~eo (G +4e1)'V?]. (A59)

Sincec; is real and positive from Eq. (A.31) and is real, we obtain real values 6fy. Therefore,

@-balls are classically stable against the spatial pertimhasubject to the condition Eq. (A.47).
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Appendix B

An exact solution

In this appendix we will show that a Gaussian profile is an esatution of the@-ball equation in
Eq. (2.20) withU,, = Ugpqw — sw?0?, whereUy,,, is defined in Eq. (2.25). Notice that the potential
U,rav becomes negative fer/21X1 01 < o; hence, the system is not bounded from below. The addi-
tional contribution from the non-renormalisable teffy r compensates the negative term and supports
the existence of)-balls in the system. Although the Gaussian exact solusaroilonger a solution for
the full potentiallUy,..., + Unr in EQ. (4.1), the solution we will obtain here provides himtsuggesting

a reasonable ansatz for the thick w@Hball as we will see in appendix C.

Let us consider the following Gaussian profile:

M) 7 (B.1)

Osol (T’) = Pw €XP ( 9
where we will see thatr, M, and|K | are the same parameters as in Eq. (4.1) andill be shortly
determined in terms of the underlying parameters. By sultistg Eq. (B.1) into the left-hand side of

Eq. (2.20) it leads to

2 2
_ M2y g
Ugrav = -0 <1 |K|1n(M) ) (B.2)
and
D—-1 m?2
=M © ), B.3
p exp( 5 T 2|K|m2) (B-3)

where we set the integration constant as zero. Recal m? — w?. Note that the constadt/ has the
same mass dimensiofi) — 1)/2, asc so that the only physical casefis = 3. The profile, Eq. (B.1),
is an exact solution fot/,,, with the “core” radiuskqg = \/W [147], which is very large
compared withn~! for small|K| < O(1), and satisfies the boundary conditions balls, namely
0’(0) = 0 = o(c0) = o’(c0), see chapter 2. In the extreme limit>> m, we obtainp,, — 0 for
|K| < O(1) which impliesoy = o(0) — 0. For largeo, the potential becomes asymptotically flat,
tending towards an infinite negative value. By adding the-remormalisable ternVy r, the potential

Ugrav 18 lifted for largec in EQ. (4.1), then the full potenti@f,, ., + Unr is bounded from below, see



Sec. 4.2.1. We can see the ansatz given in [147] corresportlds tase wherg,, ~ M, which is valid

only for |K| < O(1) andw ~ m, see Eq. (B.3).
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Appendix C

Gaussian ansatz in gravity-mediated

potentials

In this appendix, we will investigate the thick-wdll-ball in gravity-mediated models by introducing
a Gaussian ansatz and keeping all terms in Eq. (4.3) as oppogbe analysis in Sec.4.2.3. By us-
ing this profile we can perform the Gaussian integrations, witl obtain the generalised results of
Egs. (4.19, 4.20) in Sec. 4.2.3. The test profile for the case,O(m), coincides with the solutioa,,

in Eq. (B.1), which implies that the nonrenormalisable téfmr in Eq. (4.1) is negligible.

To recap, the notation we have adopted in Eq. (4.3)is /M, & = w/m, 3? is defined in Eq. (4.2)
and we are considering the casenof> 2. To begin with we introduce a Gaussian ansatz inspired by

Eq. (B.1) for the potential Eq. (4.3)
G(r) = A\, exp(—r21r%/2), (C.1)

wheresy = 5(0) = A, = finite, and\,, . will be functions ofw implicitly. A, should not be
confused with the coupling constakin Eq. (4.1). Both\, andk,, can be determined by extremising
the Euclidean actio§,,; hence, the actual free parameter here will be anlyt is crucial to note that
Aw €annot be infinite in the thick-wall limit since we know th&t is finite and tending to 0. If the
nonrenormalisable teriiy r is negligible, we can expedt, ~ p,/M ~ 6_(w) andx? ~ |K|m? due
to Eq. (B.1), which implies that the “core” radiug, of the thick-wallQ-ball is Rg ~ +/2/m?|K].

For the extreme thick-wall limit > m, we shall also confirm\, — 0, which meang, — 0.

By substituting Eqg. (C.1) into Eqg. (2.10) with the potent. (4.3), we obtair®) and S,, using the

following Gaussian integration§p_; fOOO drrP—1e—kr® — (%)D/2 forrealk whereQp_, = IE(WD—D//;).



Thus,

Q = M3*xPlPuN2k;P, (C.2)
So = M’mPPr;P [A(kw, A) + Bw, M)+ C(A)] (C.3)

— D>‘(.2u 2 2

where A(k,, \o) = T(nw + | K|m*?),
m2\2 w?
B(w, \y) = 5 (1—W—2|K|1n)\w),

9\ P/2

C) = m?B\" (—) : (C.4)
n

Notice thatA(k,, A,) comes from the gradient term and the logarithmic terny jnand depends on
both x,, and \,. Similarly, B(w, \.) is given by the quadratic term in the potential Eq. (4.3) and
depends both oh,, and explicitly onw, whereas” (), ) arises simply from the nonrenormalisable term
in the potential. An alternative (but in this case more caogpéd) approach to obtai@ would be the

use of Legendre transformations in Eq. (2.16).

By extremisings,, in terms of the two free parametets and )\ :

05,  9S.

we obtain
A2 k2 C 2X2 K
A+B+O=“TF”“, A+B+%=mT“||, (C.6)

which implies that

2
Ky

D/2
me =Kl - -2 (2) 20 ©7)

m2 -
where we have eliminated the+ B terms in the two expressions of Eq. (C.6). Using Eq. (C.7)thad

second expression of Eq. (C.6), we obtain the relationsdetw and )\,

2 2(n+ D) — nD 2\ /2
Y= L4 |K[(D—1—2mny) + 20 D) =D gy (—) : (C.8)
m 2 n
14+ |K|(D—1-2In),) for|K|~O(1),
N [K|( n ) |K|~O(1) (C.9)
1—-2|K|ln A\, for |[K| < O(1),
d}\w )\ww )\ww
oo ~_ 0 C.10
deo K2k~ T Km2 = (C.10)

where we have differentiated Eq. (C.8) with respecitto obtain Eq. (C.10) and have definétas
F=1—(n— Q)W%AZ—Q (2)P2 =14 % (k2 — m?|K|). Equations (C.7, C.8)
imply that bothx,, and ), are functions ofv; however, these are not solvable in closed forms unless
the particular limits, which were introduced in Sect.4,2& taken, as we will now show. Comparing
Egs. (C.8, C.10) with Egs. (4.14, 4.15), we can see an extraibation of O(|K|) in Eq. (C.8), which

is not present in Eq. (4.14). This difference(d — 1)| K| arises because in calculating Eg. (C.8) we
have used\,,, whereas we have useéd. (w) in obtaining Eq. (4.14), and although related they are not

precisely the same. In the extreme thick-wall limits>> m, and from Eq. (C.8) this implies, — 0%
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(recall from Eq. (C.1) thak,, has to remain finite). Considering the nonrenormalisalbte te Eq. (C.8),

the fact thap3? < |K| < O(1) and\, — 0T with n > 2, implies that this term is subdominant and can
be ignored. As long a&,, < O(1), thenF ~ 1 and the second relation of Eq. (C.10) follows, which
implies that),, is a monotically decreasing function in termsuaf The limit A, ~ O(1) corresponds
tow 2 O(m), see Eq. (C.8). We will call this the “moderate limit” and regent it by ~’. The other
casew > m (or equivalently\, < O(1)), we shall call the “extreme limit” and represent it by’.
Depending on the logarithmic strength|éf|, we can obtain Eg. (C.9), which leads to the approximate

expressions foA,, and can also obtair,, from Eq. (C.7)

pw/M  for|K| ~ O(1) K2
Aw ~ —0; —5 ~ |K|— |K|for K| < O(1), (C.11)
7_(w) for|K|<O(1) m

wherex,, is independent ab in both the “moderate” and “extreme” limits.

Using Egs. (C.2, C.3) and Eq. (C.6), we obtain the charatteslope in both the “moderate” and “ex-

treme” limits,

Eq K2 m?|K|
29 14w
w@® + 2w? + 2w?

1. (C.12)

In order to show their classical stability, we shall diffetiate) with respect tav using Egs. (C.7, C.8)
and Eq. (C.10):

w dQ 202 D(n—-2), , 9
i N - —m?|K
Q dw m2|K|F[ 42, (KJ“’ m| |) ’
2w? 2w?
~ 1- — 0 C.13
w2 K] k] < (€19
d (Eqg 1 s  (n—2w? , 5
L) - - W2 2 2K
dw ( Q ) 2w? [K‘” + m?|K|F (K‘” m’| |) ’
2
SO i (C.14)
2w?

where we have taken the “moderate limit’ and “extreme lingitid useds? ~ m?|K| and F =

1+ % (k2 —m?|K|) ~ 1. The classical stability condition Eq. (C.13) is consisteith

Eq. (C.14), and is consistent with Egs. (2.31, 2.32). Thidifferent from the result we obtained for
the polynomial potentials [see Eq. (3.41) in chapter 3] dose in that case the Gaussian ansatz does
not give the exact solution unlike here in Eq. (C.1) whereogsibecome the exact solution Eq. (B.1)
in both limits. The results, Egs. (C.12, C.13) and Eq. (C.14)poth the “moderate” and “extreme”
limits recover the key results, Egs. (4.19, 4.20), and adependent ofD; hence, the thick-wall)-

balls for all D have similar properties. We can also see the small additeffects arising from the

nonrenormalisable term in Egs. (C.13, C.14).

Let us summarise the important results we found in this agipeBy introducing a Gaussian test profile
Eq. (C.1) inspired by the exact solution Eq. (B.1) {9y,...,, we computed the Euclidean actiSp and
the charge&) using Gaussian integrations. Then, we extremisgéh terms of),, andk,, in Eq. (C.5),
which gave the relations of botky, andx,, as a function ofv. By introducing two limits called “mod-

erate limit” and “extreme limit”, we confirmed that the arsdEq. (C.1), approaches Eq. (B.1) in the
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“moderate limit”. We established that the results Eqgs. 2C(.13) and Eq. (C.14) recovered the previ-
ous results in Egs. (4.19, 4.20) which are obtained simplyeparametrising irb,, and extracting the
explicit w-dependence from the integral i), with U = Uy,..., where the nonrenormalisable term was

neglected at the beginning of the analysis by applying Ipit# rules.

In addition, we would like to emphasise the main differenbesveen our work and other earlier
analyses in the literature [147, 158]. The analytical frenorx adopted in [158] is valid only for
|[K| =1, D = 3, n = 4. Our work has shown that this can be generalised to arbitraeger
values ofD andn(> 2) under the conditiong? < |K| < O(1), and that the thick-wali-ball can be
classically stable. In Sect.4.2.3, we also found that tfekitvall -ball may be absolutely stable under
certain additional conditions, Eq. (4.21). Furthermoneg¥st and McDonald in [147] analytically ob-
tained the same “core” size of thick-wal-balls, although they obtained a slightly different valoe f
Eq/Q (see their Eq. (112)). The reason for this is because thsatamssumed,, ~ 1 in Eq. (C.1) by
simply neglecting the nonrenormalisable term, which imgthat the third term aB(w, \,) and term
C(\,) in Eg. (C.4) are absent. Hence, their analysis is valid&r< O(1) andw ~ m, see Eq. (B.3).
We, however, have kept all the terms in Eq. (4.3) and used & gemeral ansatz, which can be applied
for |[K| < O(1) andw Z O(m) with the restricted coupling constant of the nonrenorraalis term
3% < |K|. In summary, in this appendix we have extensively investiganalytically both the absolute

and classical stability af-balls in Eq. (C.12) and Eq. (C.13).
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Appendix D

Perturbations on multiple scalar fields

In this appendix we obtain Euler-Lagrange equations fotiplelscalar fields>* with a symmetric field
space metrici ., () = Gpa (), following the notations in [214, 215]. Our aim is to obtaguations of
motion for the background homogeneous (zero-mode) figlds) and the perturbed fields” (¢, x) ina

fixed unperturbed background (Friedmann-Robertson-Wtketric,g,,, = diag(—1, a(t), a(t), a(t)),
wherea(t) is the scale factor an = a/a is the Hubble parameter. Here, an over-dot denotes the time-
derivative. As the simplest nontrivial example of the npléiscalar fields, we find equations of motion
for a complex scalar field = ¢® whereg andd are real scalar fields and the system possesses a U(1)

symmetry.
Let us start off with the following action
1 . a . .
S = /d4$v -9 (_gguyGab(@)au(p a1/; SDb - V(‘P)) ) (Dl)

whereg = det(g,,) andV () is a potential forp. By applying the action principle, we obtain the

Euler-Lagrange equation fagr

=0, (V=00 Gl ') = 50 G D" 0,8" + Ve ©2)

and the energy momentum tensor
Tos = Guadu 02 + g |~ 59 G008 ~ V()] (D.3)
Here, we defineds ;. = d;f;cb, and so on. The energy density and pressure can be givép 215]
pp = 30" Cudug" e+ V(p), (D.4)
p = *%g“”Gabaﬁtsﬁ“@u@b — V(). (D.5)

By pertubing the fields ag® = ¢*(t) + d“ (t, x) where|p| > ||, the homogeneous part gives, from
Eq. (D.2),

D
" HBHE + GV =0, (D.6)



where the covariant derivativd)/dt, can be defined by the “Christoffel symbols, = 1Gx
(Gacp + Gape — Gre,a); thus, 2o = La 40 5bge. On the other hand, we can obtain the equations
of motion for the pertubed fieldgp from Eq. (D.2)

D2

D v ° a a . . C a a ce
G0t G0 — () 0" A0 (Vb = GG GV, (D7)

where we used?2dp® = §¢* + 72 ¢P6pc, defined the “Riemann tensors” a8 , = v, — %  +
dt be cd bd,c be,d
vee, — V5. s., and denoted the covariant derivative as the usual ndifonNotice that we used

~ ~ 2
Vo= 85(0) = 50|+ 00" sl

+ ..
©

When the system has@(2) ~ U(1) symmetry fory, = (6, é) and a flat field metric ig¥,, =
diag(1, 62), we can obtaind, = —5; v, = 72, = 1/6. We then induce Eq. (D.6) with a potential
V(o) to

G4 3Ho— o+ Y 0, (D.8)
do
.. .92 .
0+3HO+ =60 = 0. (D.9)
ag

Here, the third term in Eq. (D.8) corresponds to “centrifuigace” due to a spin in the field space,
and the third term in Eq. (D.9) corresponds to the “Colliaride”. In addition, the energy density and
pressure can be given by from Egs. (D.4, D.5)

_ 1 -2 242 _ 1 -2 242\
pE—2(a +09)—|—V, p—2(0 +09) V. (D.10)
Furthermore, Eq. (D.7) gives
.. . 2 . 2 . .
S0 + 3Hdo — ((Z) + 6% — d—Z) S0 — 20050 = 0, (D.11)
a g
. 25\ . 2 20 )
50+ (SH + —") 50 — (Z) 30 + —f (050 . znsa) —0. (D.12)
g a g

We use Egs. (D.8, D.9) to concern the orbits of AD condensat8ec. 5.2, and use Egs. (D.11, D.12)

to investigate the linear spatial instability of the consites in Sec. 5.3.
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Appendix E

The orbit of an Affleck-Dine “planet”

In this appendix, we obtain an exact orbit form in a quadiadiential case when the Hubble expansion
is assumed to be small and adiabatic. The orbit of an AD figlthare precisely an eccentricity of the
elliptic motion in the complex field-space, is determinedthg initial charge and energy density. In
order to obtain analytic expressions of the orbit in moreegahpotential cases in which we are more
interested, we restrict ourself to work in Minkowski spatet and on the orbit which should be nearly
circular. We then obtain the perturbed orbit equation arakssary conditions for closed orbits, where
the orbits come back to their original positions after sootations around the minimum of the effective
potential. By including the effects of the Hubble expansionSec. 5.2.2 we shall introduce ansatze,
which are inspired by our solutions obtained in Minkowskasgtime. Our numerical results support
the ansatze, assuming that the rotation frequé¥idg always much greater than the Hubble expansion
H [185].

E.1 The exact orbit in an expanding universe

The exact orbit expressions of an AD field in an expandingensig can be obtained with a quadratic

potential,

V==

M 2:”—[2(“‘))3&2, (E.1)

a

3/2
whereM is a mass of the field and we have rescaled the fieldo(t) = (%) &(t). From now
on, we solve the orbit equations, Eq. (5.6), &t) at first, and then solve them fax0), replacing the
time-dependence ié(¢) by a phase variable. We then show that the orbits fér(¢) andu(6) are of

the usual elliptic forms with a third eccentricity.



E.1.1 The orbit for 5(¢)

In this subsection we obtain an expression for the arbi} with the quadratic potential Eq. (E.1) by
solving Eq. (5.6). Substituting Eq. (E.1) into Eq. (5.6) agdoring the terms involvingZ? andi/a,

we obtain

R p~2 ds
F-2yMe=0 & LE, (E.2)
o dt

B ~2
wherejp = 1 (‘Zl—j)QwL LM252 4+ 29 o 4% pp, which is approximately conserved. Sinkés; (52) =

2466 = 2pp — 2M?252, Eq. (E.2) leads to a harmonic oscillator form,

&, 2(~2  PE
ﬁ(a )= —4M (a — W) (E.3)
whose solution is
F(t) = % + Acos[2M (t + to)] , (E.4)
= % (1+e®cos[2M(t +to)]) . (E.5)

Here, B is some constant value and we $gtas a time when the AD field starts to rotate. We have

. . .. 12 52 —52 . .
also defined a third eccentricity = Aﬁ]g = Zmae—Tmin where the apocentral and pericentral points

G raetOmin
are, respectively, given by?,,, = % + Aands?,, = % — A. Notice that the circular orbit case
corresponds te? = 0, which implies that2,,. = 52 ,,,, and also note that the eccentricity is real and

has a value between 0 and 1 in the present quadratic potential

We can obtain the period of this orbit,

T=—. (E.6)

Substituting Eq. (E.4) intg g, we obtainA = 7”32’51\72\%. From the above expressions fgrand A,
we can obtainﬂ% = /1 — &%, Using this and Eq. (E.4), it ends up with

_ e _ My1 - &t

0(t) = 52 14e2cos[2M(t+to)]’ E.7)

For the circular orbits witlz?> = 0, 6 is time-independent as we can expect, and the ratig( M 5q),

is unity. While for the radial orbits with? = 1, we obtaind = 0 andpg/(Mpg) > 1 as expected.

E.1.2 The orbit for a(0) = 5-1(0)

What follows is that we expreggt) as a function of) by using the second expression in Eq. (5.6) and
Eq. (E.4). We then obtain

tan(6 — 6y) = Omin an (M(t+to)), (E.8)

Um ax

1In an inverse-squared central force, the first eccentrizity be larger than equal 1, which corresponds to the cases tige

orbits are parabola or hyperbola.
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dx 2
ai-+az cosx = 2 2 x
1+as \/‘H*az

whered, is an integration constant and we used the following intéfgrenula, |

(a1—az2) tan(%)

1793

to = 6o = 0, which implies that the orbit at = 0, 7/2 gives, respectivelyy = 0, 7/2, recalling
Eq. (E.6). By comparing Eg. (E.4) to Eq. (E.8), we obtain

Arctan ) with some real valueg, anda,. Without loss of generality, we can choose

~2 ~2
~2 ag g,

0 — max® min : E.Q
a*(0) 52, cos?0 + 62, sin> 0 (E9)
. 1 cos?0 sin%0
@0 = =+ (E.10)
5—72na:n + 5—72rnn
= W (1 — 52 COS(QG)) . (Ell)

Hence, we can see thét= 0 whens = 6,4, andd = 7/2 wheng = 6,,,;,,. Finally, we obtain the
expressions for the orbits as the usual elliptic forms in. g, E.11). For the circular orbits = 0,

we can obtaini? = const. from Eq. (E.11) as expected.

E.2 The nearly circular orbits in Minkowski spacetime

Without the Hubble expansion, we can investigate a neantylir bounded orbit of an AD field in gen-
eral potentials which satisfy Eq. (5.5). For this reasoncaecentrate on the case of a non-expanding
background in this section, and obtain a time-dependenesgjon for the nearly circular orbits as in
Eq. (E.5). We then find the expression that depends on theplzesn Eq. (E.10). Moreover, we obtain
conditions for closed orbits, in which the perturbations expanded up to 1st order (for the complete

proof of the condition up to 4th order, see appendix F for Bad’s theorem [217]).

E.2.1 The orbit for o(¢)

In Minkowski spacetime, we can find an expression for thetarbi) in a general potentid’ (o) as
in Eqg. (E.5). Notice that the tilde variables are the samenaslde ones in the present non-expanding
background. Recall the equation of motion, Eq. (5.1), in Rdinski spacetime,

o+ % =0. (E.12)
do

Suppose that the orbit that is nearly circularsds) = o., + 6(t) whereo., > |J|, recallingo,, is
defined by Eq. (5.4). Substituting this expressionddnto Eq. (E.12) and keepingterms up to 1st

order, we obtain a harmonic oscillator form
6+ W32 =0, (E.13)

where the readers should recall the condition, Eq. (5.5)h® bound orbits, an@l’ is constant since

we are working in Minkowski spacetime.
Thus, the solution of Eq. (E.13) is

0(t) = ocr B cos(Wt), (E.14)
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whereB is a small positive dimensionless constant, Pe< 1 due too., > ||, and we have set the
differentiation constant to bigto ensure that (0) = 0yq.. We find thato,a, = 0o (1 + B), 0min =

oer(1 = B), andopmazOmin =~ 02, (1+ O(B?)). These giveB = Zmas—Imin g, — Zmostomin,

Omaz+0min

2 2
and2B ~ Zpa:—Tpin — 2 where we have used the definition of the third eccentribig.can check

max min

that the condition2B ~ £? < 1, is consistent with the fact that the orbit is nearly circul8ince

Omaz = Omin = 0 @andpg is constant, we can equatewith pg andpg using Egs. (E.14, 5.5):

2(pE - V+ (007')) 2(pE — V+ (007')) e?
B |2\PE— Yal0er)) _ ~ 5«1, E.15
V W2o2. T\ @V, Feh T 2 S (E15)

Oc

where a prime denotes the differentiation with respeet.tBinally, we obtain
o*(t) = a2, (1 + &% cos(Wt) + O(eh) , (E.16)
wherelV is given by Eq. (5.5) [compare with Eq. (E.5)]. Now, we can ulefihe period-

= — E.17
r== (E.17)

which reproduces Eg. (E.6) as the case With= 2. Using Egs. (5.2, 5.4), we can also find
Vol
0= 1+ ¢e2cos (Wt) (E18)
Using Eq. (5.3), let us compute the pressure of this AD cosatnwhose orbit is described by Eq. (E.16).
By expanding/_ (¢) aroundr = o, and using Eq. (E.16), we obtaif. (o) ~ V_ (ac,.)+% cos (Wt)+
% (W2 - %) cos? (Wt)+...,where we have assumed that the higher order teris iare neg-

ligible. Therefore,

W252 4 2 3
p o~ % (1 — 9 cos2 (Wt)) —V(oer) + ;g (1 — 2¢? cos (Wt) + 554 cos? (Wt)> ,
0(17'
Po
& ) = V() +g e (E.19)

Here, we have defined an averaged value over one rotatioreiortit, Eq. (E.16), namelyX) =
%fOT dtX (t) where X is some quasi-periodic quantity andis determined by Egs. (E.17,5.5). The
result, Eq. (E.19), can be easily understood by the factttteaiveraged pressure corresponds to the
value atoc = o, since the orbit oscillate around.. andés.. = 0, c.f. a real scalar field case [185].
Similarly, we can obtain the averaged energy density

2
oh |, Wit

(pE) = V(oer) + 272, 16 )

(E.20)

where we have kept the contribution from the term involdigHence, the averaged equation of state

is given by

2

o~ V(oer)

P 202, er

<ME<—>=p2 : (E.21)
PE 53+ V(oer) + W202.64/16
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E.2.2 The orbit for u(9) = o=1(0)

In order to obtain &-dependent expression of the orbit as Eq. (E.10), let uchwtite variabler to
u(f) = 1/0(0). In Minkowski spacetime, where we can again drop the tildéabdes here, the orbit
equation Eq. (5.7) is

du 1 d_V _

Let ug, which is independent df, be the value of a circular orbit (i.e,y = 1/0.,). We then consider

an orbitu(#) that deviates slightly frona, with a fluctuationn(0), i.e. u = ug + n, whereug > |n|.

Sincedss =0 = d;;;(’, Eq. (E.22) implies that, = J(ug). By expanding/(u) aroundu = wug, we
obtainJ(u) ~ ug+n % ]UO + ..., where we are evaluating the derivatives@t Hence, we can obtain

the perturbed orbit equation fg(6)

d’n 9

- = E.2

oz T =0, (E.23)
wheres? =1 — —31{ \UO which should be positive for bounded orbits. Note that tlisdition, 3> > 0,

is equivalent to the previous condition, Eq. (5.5), since

ol 3V + oV
62 = —2W2 = T ) (E-24)
pQ Tcr
where we used the fagt’ = Z—%’ ato = o, from Eq. (5.4). The solution of Eq. (E.23) is
n = upC cos(80 + bp), (E.25)

whereC andf, are constants, aril< C' < 1 due to the fact that, > |n|. We can then show' = B
by equating the value @' with pg andpg. Substitutingu into pr and expanding’(«) aroundu = u

up to second order, we can find

1 [2005 — Vi1 2
C=— CngE(l/ ‘)/+( [u)) _ .. 5 (E.26)
O\ TaE|, tee
dV (u)

where we useo‘% = = + péuo = 0 from Eq. (5.4). The relation’ = A, is obtained
uo uo

by changing the variable back toc [compare Eq. (E.26) with Eq. (E.15)].
Let us chooséd, = 7 in Eq. (E.25), then we obtain

u = up(l—Ccos(f0)), (E.27)

u? ug [1—2C cos(89) + O(C?)] . (E.28)

12

Notice that0) < C' < 1 which is consistent with the condition for nearly circulabits > < 1, as

we have seen in appendix E.2.1 and Eq. (E.26). We can alsohfatd ... = 7 for 8¢ = 0 and

Omin = 1";6 for g6 = .
To show that the orbit(6) in Eq. (E.28) has a similar form as Eq. (E.11), let us comphgedllowing
relations:o?, ., + 02, ~ 202 (1+ O(C?)), 02,,, — 02, ~402.C (1+ O(C)) ando?,,, 02, ~

min
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ot (14 O(C?)). Hence, we obtain} ~ % and2C ~ <2, which imply that Eq. (E.28) is of

mazx” min

similar orbit form as Eq. (E.11). As we computed going from E£10) to Eqg. (E.11), where for this
case we deduce Eq. (E.11) from Eq. (E.10), we finally obtain
,  cos? g@ sin? g@

v — = (E.29)

max min

In the next subsection, we obtain the conditions for clogbit®using Eq. (E.29) [216].

E.2.3 Conditions for closed orbits and equations of state

Let us define an angi&, which is the phase difference as the orbit goes from uoC ton = —uC,

V/

) -
V' 4oV

(E.30)

T
-

where we used Eq. (E.24). For closed orbits, the angle mu# tiee value that isr multiplied by

a rational number, i.ed = 7T§ whereq, r € Z; therefore,3 should be the rational number. In
order to obtain ther-independent value fo®, the potentials can be of the form%{;—”L(Jrconst.),

my In (o/mg)” (+const.), and etc. Here) andm, are constant real values, and we should have
I < —2, 0 < [ for bound orbits, whereas we may havé < [ < 0 for bound orbits whed/2? < 0,
recalling Eq. (5.5). The constant terms in the potentiats ad extra energy for the orbits, and it does

not play a significant role, so that we consider the potentiathout the constant terms. The former
Mot

power-law potential casé; = ~5%, gives
m
= , E.31
VIi+2 ( )
which implies that the closed orbits exist for= (-1), 2, 7, .... Using Egs. (E.19, E.20) and
Eq. (5.5), we obtain
I —2)M?%5, I +2)M?ol, I(1+2)M?0! 2
) = L2 en -y o LR 200 yye W20 (E.32)

which implies that the bound orbits of the AD condensate hasgative pressure fdr< 2. In the
computation ofp, Eq. (E.20), we safely ignored thé term. We note that the bound orbits for=
(—1,) 2 are closed. For the quadratic potential case 2, the averaged pressure is zero, in which the
AD condensate corresponds to an example of nonrelatidstitdark matter [185]. In addition, using
Egs. (E.21, E.32) we can find

(w) ~ ——. (E.33)

On the other hand, the latter logarithmic potential cas%ln (o/my)?, leads to

T 2
P=—n~—, E.34
V2 o3 ( )

which corresponds to the former power-law case with 0. Similarly, using Egs. (E.19, E.20) and

Eq. (5.5), we obtain

4m?
), (pp) ~m} <1+21n ") w?=_—2 (E.35)
@

2 )
UCT

(p) zm;ﬁ <121n



which implies that the AD condensate has a negative preBsurg, > mg exp (%) In the computation

of pg, Eq. (E.20), we safely ignored thé term again. Using Egs. (E.21, E.35), we obtain

- 1-2In (;7)

~ m (E.36)

e

In Eq. (E.35), we cannot clearly see the correspondencefétbase fot = 0, but we can findV? ~ 0

and(w) ~ —1 for my < o, as the case with= 0.

Let us comment on the pressure when the AD orbit is exactliakadhich corresponds to the zero-
charge density case as for real fields [185]. In this casefigltko (¢) coherently oscillates around the
vacuum if the potential follows a power-law, i.¥. oc ¢! for I > 1, and(w) has the same expression as
Eq. (E.33), but it gives a negative pressurelfer [ < 2. Note that the lower bound éfensures to be a

coherent oscillation for the radially oscillating AD fieldad real scalar fields.

In summary, we have obtained analytically the explicit @gsions, Eqgs. (E.5, E.11), for the orbit of the
AD fields in a quadratic potential under an expanding un&gaad approximately obtained the elliptic
orbit expressions, Egs. (E.16, E.29), for nearly circuldits in Minkowski spacetime in potentials

which satisfy the condition Eq. (5.5) for bound orbits.
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Appendix F

Proof of Bertrand’s theorem

In Bertrand’s theorem [217], there are only two allowed ptitd forms for closed "planetary” orbits:
isotropic harmonic force and inverse-squared force. Edc¢heocentral forces gives dynamical sym-
metries: the Fradkin tensor [218] and Runge-Lenz vectd®,[2P0, 221, 222, 223, 224], respectively.
These dynamical charges are obtained both classicallg tlssnalgebra of Poisson bracket [225] and
guantum-mechanically using the corresponding Lie algielifse abelian case [226] and the non-abelian
case [227]. In this appendix we prove Bertrand’s theorer it consistent notations with ones for

the orbits in the AD fields obtained in Appendix E.

In order to show Bertrand’s theorem in the abelian case anihkowski spacetime [228], we expand
an elliptic orbit perturbed from the circular orbit up to 4hder, and show that the allowed values of
3? defined in Eq. (E.24) are only and4, which correspond to the above two types of potentiads,

isotropic harmonic force and inverse-squared force.
Recalling thatp, = 020 andpr = 36 + Vi, whereV, (o) = V(o) + p3 /202, we obtains =

2(pg — V) > 0. For the motion ot (¢) going froma,,.,, througho,., and too ..., by recalling

Eq. (E.30) we can obtain,

D o
max 2
20 — 2/ 9 = / do—P2 (F.1)
0 Omin o? 2(PE - V+)
e f(V4)
= V2pq / AV, — =, (F.2)
Vo V PE — Vi
where we split the integration into two parts, |9";M + f;’:” and then changed the integration
variable fromo to V.. Here, we definedf(V,) = # (0—11 - 0'_12) whereo; = o — z ando, =

o +y, and we assumed that the orbit is “nearly” circular, b, > =, y > 0. Recall® = 7/5in
Eq. (E.30) wheres should be a rational number for closed orbits as we founderitiear perturbation
analysis in Appendix E.2.3. Sing&V/, ) is an Abel's equation [229], by multiplying/\/V, — pz on
both sides of Eq. (F.2), whefié, is some value of/, , and then by integrating it oveiz from V (o.,.)



to V., we obtain

. L2 G, (F3)

a(Vy)  o(Vi)  Brg

i i dy — y—ai
where we changed the order of_the integrations, used theﬂarfnm = 2Arctan ( ary),
and finally replaced the variablé. by V.. By taking the square of Eq. (F.3), we obtain

1 1\ 8
_ =—— (Vo —-Vy). F.4
(s~ 7)) o (VW) 4

Consider the RHS of Eq. (F.4) by expandivig aroundo = o, up to 4th order ofc andy. Recalling

thatoy = 0., — x andoy = o, + y, Whereo,,. > x,y > 0, we obtain

ZCQ .T3 .T4
Vi=V(oer) = ?VP(%-) - EV+<3>(ac,.) + ﬂvﬁ“) (0er) + O(z°), (F.5)
2 3 4
Yy Yy Yy
= SV (o) + GV 0e) + 57V (0er) + O0), (F.6)
Wherer)(acr) = d;;/; , f) (Oer) = d;;/; , and so on. Itimplies that we can equateith

cr

y such thate = y(1 + cy +C£ly2 + O(y?)) with real values¢ andd. By substituting this expression for
x into Eq. (F.5) and comparing it to Eq. (F.6) for each orderg,df leads to

3
V-',(- )(Ucr) Cod= 2

o= : (F.7)
3V (00r)

\
Q

For the LHS of Eq. (F.4), we again expanmd , up to 4th order ofy, put the results together into LHS
of Eq. (F.4), and then compare between the LHS and RHS of E4).fgr each orders af. Thus, we

obtain

(F.8)

2
Jcr Ocr

32 = U—ij’(am-); 5c + 8 ( L. i) = L;))(U”) :
rQ 2Vi7 (oer)
where the first relation corresponds to Eq. (E.24). Equd#d®) implies that the potentials should have
the following restricted form¥V (o) = MT2052—2 + Ao + Ao, whereM andAy, ; are constants. The
constraint from Eq. (E.30) implies thAt = 0 since the angl@ should be independent effor closed

orbits. Using Eq. (F.8) and the fafz’f)(ocr) = 0in Eqg. (5.4), we finally obtain
g2 =1, 4. (F.9)

Hence, the proof of the theorem is complete. We can obtairpeoturbatively the exact orbit expres-

sions for the cases ¢f* = 1, 4, see [230].
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