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Abstract

The subject of this thesis is the study of a particular opeamtium system consisting
of a resonator coupled to a superconducting single elettaosistor (SSET). The the-
oretical model we use is applicable to both mechanical apérsonducting stripline
resonators leading to a large parameter regime that carpbered. The SSET is tuned
to the Josephson quasi-particle resonance, in which thegoat occurs via Cooper
pairs coherently tunnelling across one junction followgdHhe incoherent tunnelling
of quasi-particles across the other. The SSET can be thaig® an artificial atom
since it has a similar energy level structure and transtioran atom. We investigate
to what extent the current and current noise through the S3EDe used to infer the
state of the resonator. In order to carry out these invastigeiwe describe the system
with a Born-Markov master equation, which we solve numdisica he evolution of
the density matrix of the system is described by a Liouvilsaperoperator. In order to
better understand the results we perform an eigenfunctiparesion of the Liouvillian,
which is useful in connecting the behaviour of the resontatdhe current noise. The
mixture of coherent and incoherent processes in the SSH§ teanteresting back ac-
tion effects on the resonator. For weak coupling the SSEF a&tin effective thermal
bath on the resonator. Depending on the operating pointeth@nator can be either
heated or cooled in comparison to its surroundings. In tggme we can use a set
of mean field equations to describe the system and also eapdutain aspects of the
behaviour with some simple models. For sufficient couplimg $SET can drive the
resonator into states of self-sustained oscillationshAttansition between stable and
oscillating states of the resonator we also find regions ahdstence between oscillat-
ing and fixed point states of the resonator. The current r®ades a way to identify
these transitions and the state of the resonator. The sydgenshows analogies with
guantum optical systems such as the micromaser. We cadhlatlinewidth of the
resonator and find deviations from the expected behaviour.
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Chapter 1

Introduction

There is always a desire to scale down devices to ever snsabdes. An example, of
relevance to this thesis, is electromechanical systemghwdonsist of an electronic
device coupled to a mechanical degree of freedom. The fickt davice is thought to
be Coulomb’s electrical torsion balance in 1785 [The idea of an electromechanical
system is simply to act as a transducer, converting mecalanition into a measurable
electrical signal or conversely to convert an applied eileait signal into mechanical
motion.

Devices atthe micron-scale are known as microelectronmécalsystems (MEMS).
MEMS devices are common place and find applications in tinyeable mirrors in
digital projectors, motion sensors for car air bags, vidameg controllers and micro-
biology [1-3]. With the great successes of devices at the micron-scaledtural
continuation is to the nano-scale and the creation of nactrelmechanical systems
(NEMS) [1, 2, 4-6].

At the nano-scale the mechanical part may be, a carbon riaaffi a small pil-
lar [8], a cantilever §] or a beam 10]. In figure 1.1 we show some examples of a few
of these devices. The device in figutelais a shuttle deviceg]. An ac voltage is
applied to the pillar (labelled 1) via the source and dragctlodes (labelled S and D).
When the pillar is driven at the correct frequency an enhiawece of the current is seen
corresponding to electrons tunnelling onto the pillar whear the source electrode
and off again when near the drain electrode. Devices of thid kay see applications
as a mechanical switciB].

In this thesis we are interested in devices of the type showfigure1.1c[10].
This consists of a single electron transistor (SET), [L2] where a freely suspended
beam is capacitively coupled to the island (see Se@ién The current through the
device is sensitive to the position of the beam and so codd@pplications in position
detection 3].

Due to the small size of the mechanical parts they have veagly hindamental



Figure 1.1. (a) Transistor with the island formed from from a nanome-
chanical pillar reproduced fron8[?. (b) Suspended carbon nanotube
forming the island of a transistor reproduced frofi’[ (c) Single elec-
tron transistor where one of the plates of the gate capaisitardoubly
clamped beam, reproduced frod0[°. The scale bar showsiin

2Reprinted from Superlattices and Microstructui@®,R. H. Blick and D. V. Scheible, A quantum elec-
tromechanical device: the electromechanical singlet@rillar, p397, copyright (2003), with permission
from Elsevier

PReprinted by permission from Macmillan Publishers Ltd: INet@31284), copyright (2004)

°Reprinted by permission from Macmillan Publishers Ltd: Itat@424291), copyright (2003)



frequencies, of the order 10Hz—1GHz. At these frequentiesievice can be suffi-
ciently cooled, in a dilution fridge, that the thermal fluations in energy of the beam,
kgT, are less than the spacing between energy states of a quaataomanic oscillator,
K2 [6]. This suggests that a quantum mechanical descriptiorcisssary for these de-
vices and that in the future it should be possible to obsemnezésting quantum effects
in NEMS [6)].

At the nano-scale charging effects cannot be neglected whiesidering metallic
objects [L1]. These lead to discrete energy levels in the metallic dGlanthe centre
of the SET. The device we consider in this thesis is a supeliaing SET (SSET),
so Cooper pairs as well as quasi-particle excitations takeip the transport through
the system, which leads to resonances in the current (sée@iB2c). We focus on a
particular resonance known as the Josephson quasi-pad{@P) resonancé4-17],
where Cooper pair tunnelling takes place at one junctioncaradi-particle tunnelling
at the other. Theoretical investigations of the SSET-rakmrsystem at this resonance
have led to predictions of a range of interesting effecthef$SET on the resonator
including cooling, driving into states of self-sustainextitlations and the formation
of non-classical stated48-24]. Experimental efforts have so far have focused on cool-
ing [21] and position detectior2p).

Although an interesting field of study NEMS have yet to unagabusly show
guantum behavioui26-28]. However, the theoretical methods we use can equally be
applied to other systems where a SSET couples to a harmorde.n®uperconduct-
ing stripline resonators support harmonic modes that atidii fridge temperatures are
almost unaffected by thermal noise. The strong couplindesfteonic devices to super-
conducting stripline resonators has also been an areaioé aesearch experimentally,
first with qubits 9], and more recently with a SSET at the JQP resonaB0g ¢x-
amples of which are shown in figuie2. It is thought that a superconducting stripline
resonator could provide a bus between qubits in a quantunpetem31].

Electronic devices such as the SSET are often known as miltéitoms. This is
because the energy level structure and transitions thatr dcthe solid state devices
are similar to those in atoms. We can therefore use many igpods and ideas from
guantum optics to investigate our device. The SSET int@rgetith a resonator shows
many similarities with an atom interacting with a light fielth later chapters of this
thesis we make some comparisons between features we find@seldeen in quantum
optical systems.

In a realistic model of any device it is important to take aggmf the surroundings
of the system we are interested in. Within a quantum fornarahis field is known as
open quantum system33, 33]. Interaction with the environment leads to dissipation
and can destroy the quantum nature of the device. Howeveraittion with the en-
vironment is also essential to perform measurements orysters, for instance there
would be no dc current at the JQP resonance without dissipati
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Figure 1.2. (a—c) False colour image of a qubit coupled to a supercon-
ducting stripline resonator reproduced frog8JP. (a) Green regions are
the silicon substrate and beige the central conductor aodngl planes
forming the cavity. (b) An expansion of one of the capacittrthe end

of the cavity. (c) The qubitis shown in blue fabricated in ¢jzg between
the central conductor and ground plane. (d,e) Supercoimdustripline
resonator coupled to a SSET, reproduced fr86}7 (d) Micrograph of
one end of the resonator showing an aluminium strip thanelsé&om the
middle of the resonator to the SSET. (e) Scanning electrenagiaph of

the SSET.

2Reprinted by permission from Macmillan Publishers Ltd: INat@31 162), copyright (2004)
bReprinted by permission from Macmillan Publishers Ltd: INat@49588), copyright (2007)



1.1. Outline

Experimentally the state of the resonator is not directlyeasible. The state must
be inferred, either from measurements performed on the S85®r the case of the
superconducting stripline resonator, emission from tivitgaan be measured. As we
show later the current through the SSET is only sensitivesévaaye properties of the
system, but the current noise can be used to reveal infosmabout the dynamics of
the resonator.

1.1 Outline

Chapter2 of this thesis contains the background material and metiisdd in the
following chapters to investigate the SSET-resonatoresyghat is the subject of this
thesis. It begins with a discussion of both normal and sugetacting single electron
transistors and the transport processes that occur. Thdicgwf the electronic device
to a resonator is also described along with a discussion@bfithe types of resonator
(mechanical and superconducting) that we can considerrérhainder of the chapter
is devoted to the master equation description of the systehitee methods by which
it can be used to calculate the steady-state and noise piespefrthe device.

Chapter3 begins with a discussion of how the state of the resonatogtisrohined
and the types of dynamical state that occur. The simplest stiathe resonator is
the fixed point state, where the resonator is damped by thd SR weak coupling
(between the SSET and resonator) the fixed point state isren#éihestate, since the
SSET behaves like an effective thermal bath for the resonHtthe system is tuned
so that the SSET gives energy to the resonator during the yQ@&tben, for sufficient
coupling, the resonator is driven into states of self-snsthoscillations, which we
refer to as a limit cycle state. We also observe states whegd fioint and limit cycle
states co-exist. An overview of the behaviour for a rangeasBmeters is given in
Chapter3, in order to identify regions of common behaviour. In partiz we identify
three frequency regimes of operation corresponding todbsemator being either much
faster, much slower or on the same time-scale as the SSEThEper finishes with a
comparison of the SSET-resonator system and the partiguéanrtum optical device of
a micromaser.

Chapter4 is devoted to an analysis of the regime, in which the resomatoains
in a thermal like state. The current through the SSET can peiced by a very sim-
ple model that assumes that the fluctuations in the positidheoresonator cause a
smearing out of the JQP current peak and a shift in the avgragi¢éion of the res-
onator causes a shift in the current peak. However, thislsimpdel is not sufficient
to capture the current noise, since it neglects both theigsaof the resonator and
the correlations between the SSET and resonator. Mean fjelatiens can be used to
describe the system but they do not form a closed set. Due Balussian nature of the
resonator distribution we can form a closed set of equatigrassuming that all third



1.1. Outline

order cumulants of the operators used to describe the systerero. These equations
provide an accurate description of the system in this reghvethen derive a second
simple model for the current noise that also includes theadyios of the resonator,
but still neglects correlations between the SSET and reson@his second model is
valid for a large external temperature or large externalglagof the resonator. Fi-
nally we investigate the finite frequency current noise is thgime. It is found that a
combination of the simple models and an eigenfunction esiparof the current noise
expressions can be used to understand the spectrum.

The focus of Chaptes is the transitions between dynamical states of the respnato
as a function of the parameters. We pay particular attemdidime region where the dy-
namics of the resonator is approximately bistable. In #xigme the resonator switches
slowly between two different dynamical states, which asmagted with two different
average currents through the SSET. Extensive use is madeafj@nfunction expan-
sion of the current noise in this chapter in order to connecttiations in the resonator
to the current noise.

Chaptef6 is the final major chapter of the thesis. It is concerned witither laser
analogies that can be explored in the device by focusing efirtiit cycle region. For
a laser the rate of phase diffusion is inversely proporfitmshe energy of the laser
cavity. Although we find this to be true to some extent, caltiahs of the rate of phase
diffusion for the SSET-resonator system show deviatioosifthe simple relationship
for the laser.

Chapter7 gives the conclusions of the thesis. There are also a nunfbep-o
pendixes that give further details of various parts of tresih and in addition a com-
parison with some recent experimental results in AppeBdix

Following Section2.5 and with the exception of Sectighl, the contents of this
thesis are the result of new investigations carried out batithor in collaboration with
Andrew Armour and Denzil Rodrigues. The main publicationhs results contained
in this thesis is in24]. This publication focused on the zero frequency curremseo
and contained some of the numerical results from Chéaptén the thermal regime it
included the results from Sectiods2 and4.3. Also introduced was the eigenfunction
expansion of the current noise along with most of the resafit€hapter5. In an
earlier publication, 22], some of the numerical methods as described in Se&ibn
and AppendixA were used. The work on phase diffusion described in Chajded
the work on quantum trajectories described in Sechigrwill be the subject of future
publications.



Chapter 2

SSET and Resonator System

This chapter begins with a discussion of the normal statglesialectron transistor
as this introduces many of the concepts required to understee superconducting
device. Sectior?.2then looks at a superconducting single electron trans{SI8ET)
and describes the resonant transport regimes. In partitid@osephson quasi-particle
(JQP) resonance, which form the focus of this thesis, isuidsed in detail. The master
equation for transport at the JQP resonance is also givectioB&.3 describes the
coupling of a resonator to a single electron transistor. dati®n2.4 we give the full
master equation description of the coupled SSET-resosgstem. The way in which
the master equation can be solved numerically is describ8ddtior2.5together with
details of the Liouville space description of the systemSéttion2.6 we introduce a
formalism for calculating the noise spectrum of a pair ofrapers in a general system.
Finally in Section2.7 we apply this formalism to the SSET at the JQP resonance to
calculate the current noise.

2.1 The single electron transistor

A single electron transistor (SET34] consists of a metal island linked to two leads
by two tunnel junctions with capacitanc€s, andC'r, as shown schematically in fig-
ure2.1 The left and right junctions form the source and drain ofttasistor and a
voltageVy; is applied across them. A capacitof,, forms a gate and has a voltagg
applied to it. The island has a charging enetfjy, which is the electrostatic energy
required to add an additional electron to the islahg,

2

Ec = o~
2CT

(2.1.1)

whereCr = Cf, +Cr+C, is the total capacitance of the island angt 1.6 x 10~1°C
is the elementary charge. For a large device the chargimggieesmall and can easily



2.1. The single electron transistor

—_ Vg
—G
Vs
1l m m L
C. Cr

Figure 2.1. Schematic diagram of a SET,;, andC'y are tunnel junctions
across which a voltagg, is applied.C| is the gate capacitor, which has
a voltageV, applied.

be overcome by thermal effects (/8. < kgT). For a small island, however, the total
capacitance is small and we can hdye> kpT, so for an electron to tunnel onto the
island a sufficiently large voltage bias must be applied @eoto overcome this energy
cost.

To understand the transport in the device we must consi@eertlergy change of
the system due to the tunnelling of a charge across each pirtbons. For the device
shown in figure2.1, assuming a positive bia¥{; > 0) and zero temperature so that
electrons only flow from left to right, the relevant energynbesAF;, and A E for
a single electron to tunnel across the left and right jumctiare 2],

1
AEL(n) = c% {g + CyVy + Vag (CR 4 ch> - ne}

=—FE.(2n+1—2n,) + creVys, (2.1.2)
AEg(n) = — {9 — C,V, + Vas (CL + 1Cg) + ne}
Cr 2 2

=FE.(2n—1—2ngy) + creVgs, (2.1.3)
wheren is theinitial number of excess charges on the island, = % is the
effective change in the number of charges on the island dietapplied gate voltage.
cp = 2459 andeg = 221 give the symmetry of the device and always sum
to unity [35, 36]. Tunnelling across the left hand junction changes» n + 1 and
tunnelling across the right hand junctien — n — 1. In order for an electron to
tunnel across a junction the energy change, as given byiequat.2or 2.1.3 must
be positive, which corresponds to the system moving to & stalower energy. The

conditions on the bias that must be applied (for tunnellmthie forward direction) for
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each of the two junctions are,

AEyp : cpeVys > E. (2n+ 1 — 2ny), (2.1.4)
AFEpR :creVas > —E.(2n — 1 —2n,), (2.1.5)

Taking the simple example of an initially neutral island £ 0), zero gate voltage
(V; = 0) and symmetric junctions:f, = cp = %). A drain source voltage afVy, >
2FE. is required for an electron to tunnel across either junctitar a second electron to
tunnel across the same junction (and so change the islamgechg two) will require
eVys > 6E,. Further increasind/ys allows states with larger numbers of electrons on
the island to be accessed. So long as the tunnelling condifar one junction are
met the current can flow. The reason being that increasiiy an electron tunnelling
across the left hand junction, results in a reduction of thergy required to tunnel
across the right hand junction. Similarly decreasingy an electron tunnelling across
the right hand junction, reduces the energy requiremertufamelling across the left
hand junction. The restriction of the allowed charge stafdise island due to charging
effects is known as Coulomb blockade.

A clear signature of these charging effects can be obsermatienentally as steps
in the current for increasing drain source voltage knowmasXoulomb staircas@7].

In order to observe the Coulomb staircase the junctionsldimeiasymmetric11].
To achieve this asymmetry we can still use equal capacitabgehave the junction
resistances very different. For example if the resistarideeright hand junction is
small then any electrons that tunnel onto the island viadfiéhnd junction can rapidly
tunnel off again through the right hand junction. The curisrthen controlled by the
ease with which electrons can tunnel across the left haradipm The result is a jump
in the current when a new island charge state becomes aulegddj.

By tuning the gate voltage the conditions for tunnelling enedified. For exam-
ple if n, = 1/2 an electron can tunnel from the left lead to the island‘at = 0
and so the blockade is removed entirely. A stability plogveh in figure2.2, can be
produced showing the regions where the Coulomb blockadeateshe charge state
of the island to a fixed value. Small adjustments in the galiage switch the device
from almost no current to a finite value. This allows the dewiz act as a very sen-
sitive electrometerdg], the sensitivity of which is limited by the temperature bét
device [L1].

2.2 The superconducting single electron transistor

Single electron transistors are typically made of Alummi[84, 38 and so at a low
enough temperature become superconducting. A singler@hetinsistor made en-
tirely from superconducting material and below the traositemperature is known
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Figure 2.2. Coulomb diamonds for a single electron transistor, wjth=

CR = % Within the diamond shapes the island has a fixed chargeafhd
no current can flow. FoVy, > 0 the Coulomb blockade conditions are
given in equationg.1.4and2.1.5 Equivalent conditions can be found for
transport in the opposite directiobig; < 0) [11].

as a superconducting single electron transistor (SSB9)) [In a superconductor the
main charge carriers are Cooper pairs. The tunnelling ofp€opairs across the junc-
tions is described by the Josephson effd€t.[In order for this tunnelling to occur the
Fermi energies on each side of the junction must be closégoraént. Cooper pair
tunnelling is a resonant process as opposed to the tungpelfielectrons in the SET,
which has a threshold energy requirement.

In bulk superconductor electrons exist as quasi-partiatiaions B9). At a bar-
rier it is the electron that tunnels through, although iséxas a quasi-particle on either
side. We are not concerned with the details of this process ded just refer to the
tunnelling of quasi-particles, se8q] for a detailed treatment.

The combination of the resonant tunnelling of Cooper paird imcoherent tun-
nelling of quasi-particles leads to a number of differentent processes in the SSET.
We discuss some of these in Sectib@.1 In this thesis we focus on a particular one
of these current processes, that of the Josephson quaisi@&IQP) cycle [4-17]. A
model of which is discussed in Secti@r2.2

2.2.1 Current Processes

In a superconductor a gap in the density of states opens &etimei energy of width
2A, whereA is the superconducting gap. Thus for a quasi-particle (p®sgd to
a Cooper pair) to tunnel across a junction between two sopdugtors requires an
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2.2. The superconducting single electron transistor

applied bias of at least this energy. For a pair of junctidresénergy requirements
calculated for the normal state SET will still hold, but ardéidnal energy of4A

is required 2A for each junction). There is a region of large current abodezan
source voltage ofA, the border of which shows the Coulomb diamond shape seen in
figure 2.2, see for exampled[l, 42]. The lowest value of the drain-source voltage at
which the quasi-particle current can flow corresponds,te= %

Other features occur for lower bias voltages than that reduior pure quasi-
particle current to flow. These are resonances involvingrdresport of Cooper pairs in
the system, which is described by Josephson tunneliggi]. The following Hamil-
tonian can be used to describe the Cooper pair tunnellirmsaane of the junctions,
between the states withandn + 2 excess charges on the islad]

E
Hep = ABpprzn+2)(n+2 — =~ ( In)n + 2| + |n + 2)n| ) (2.2.1)

where E; is the Josephson coupling energy between the two superctumduand
AE, 12 is the electrostatic energy difference between the twogehatates. Typi-
cally, E; andAE,, ,, 1o will be different for each of the two junctions. Evolutionder
the Hamiltonian describes an oscillation betweervttendn + 2 charge states of the
island, which corresponds to an AC current across the jonctiVvhenAE,, .o =0
the eigenstates of the Hamiltonian consist of a superpositf equal amounts of the
two charge states, which corresponds to the resonant timgnef Cooper pairs.

For the left hand junctionAE, ., can be calculated by using equatidri.2
which gives the energy to add an electron to the isIzaAtmEﬁWr2 will be the energy
required to add two electrons onto the island of the SET seplgr across the left hand
junction,

AEin_‘_2 =AEL(n)+AEL(n+1)=—4E.(n+1—ny) + 2creVys. (2.2.2)

For the right hand junction equati@il.3gave the energy to remove an electron from
the island across the right hand junction and\s6”?, ., , is,

AE[R, 1o =AER(n+2)+ AEgr(n+1) =4E. (n+1 —ny) + 2creVas. (2.2.3)

The Cooper pair resonance conditions are satisfied for Iméfse V,—V, plane for
different values of the initial island chargeg, as shown in figur@.3.

Cooper pair tunnelling alone will not lead to a DC currentehelt is necessary
to also have tunnelling of quasi-particles. &ty; = 2F,, as indicated in figur@.3,
there is a crossing between the Cooper pair resonance liifesnd) by n = 1. At this
crossing a particular current resonance known as the ddolskephson quasi-particle
(DJQP) or3e resonance occurglf]. At the DJQP resonance only one junction is
close to resonance for Cooper pair tunnelling at any one.tifrtee current flows in

11



2.2. The superconducting single electron transistor

Vg (mV)

0.1 ~0.05 0 0.05 0.1
Ve (V)

Figure 2.3. The lines indicate the positions of Cooper pair resonances i
the V,—Vys plane, as given by equatio@s2.2and2.2.3 The resonances
occur between the charge stateandn + 2. The parameters used are
taken from the experiment itf], Cr, = 210aF, Cr = 117aF, C, =
3.15aF, E. = 240 ueV andA = 198 ueV. Note that the system has a
negative bias applied iMpP] and there is a shift in the gate voltage due
to background charges that is not included here. Also ititare the
JQP cycle threshol@A + E.), the position of the DIJQP resonane@é.()
and the crossing point of the JQP resonances with the saamelisharge
(4E.).
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2.2. The superconducting single electron transistor

O) 2)

—{Fe{+
1) 1)

Figure 2.4. Double Josephson quasi-particle cycle (DIJQPRY), |0), |1)
and|2) correspond te-1, 0, 1 and2 excess electrons on the island.

the following cycle, which is shown in figur2.4. First one junction is on resonance
for Cooper tunnelling. A quasi-particle then tunnels asrth& second junction, which
switches the Cooper pair resonance to the second junctiosecAnd quasi-particle
tunnelling across the first junction then switches the sgdtack to the initial state of
the Cooper pair resonance at the first junction. It is knowth@8e resonance as three
electrons are transported through the SSET during the cycle

Inthis thesis we are going to study the Josephson quaséled@QP) resonancéf—
17]. For this resonance Cooper pair tunnelling is close tomasoe at only one junc-
tion. For a sufficiently large drain source voltage two gi@esiticles can tunnel se-
guentially across the other junction. Taken together thep@opair and quasi-particle
tunnelling lead to a cycle, in which 2 charges are transfetiheough the SSET. The
cycle is shown schematically in figu&e5 for Cooper pair tunnelling at the left hand
junction.

In addition to being near a resonance for Cooper pair tuimgethe JQP reso-
nance requires that the tunnelling of the two quasi-pa&did energetically favourable.
Throughout this thesis we choose the left hand junction tolbge to the Cooper pair
resonance and consider quasi-particle tunnelling onlyatright hand junction, al-
though the results would be equally valid for the reverse cakhe energy require-
ments for the quasi-particle tunnelling can be calculatecthfequatior?2.1.3with an
additional penalty oRA due to the superconducting gap. For an initial island charge
of ne, and following the tunnelling of a Cooper pair onto the islatross the left hand
junction there will ben + 2 excess electrons on the island. The energy changes for the
two quasi-particles to tunnel across the right-hand jumcéind return the island to the
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2.2. The superconducting single electron transistor

11~
0) 2)

-, 7
1)

Figure 2.5. The JQP cycle, Cooper pairs tunnel across the left hand junc-
tion, which is interrupted by the splitting of the Coopernsad the tun-
nelling of two quasi-particles through the right hand jumet |0), |1) and

|2) correspond to zero, one or two electrons on the island.

n state are,
AERr(n+2) —2A = E.(2n+ 3 — 2ny) + creVgs — 24, (2.2.4)
AEr(n+1) —2A =E.(2n+ 1 —2n,) + creVys — 2A. (2.2.5)

As before these changes must be positive. The second qaidisiiptunnelling requires
the higher voltage so as long as this condition is satisfieditst will also be satisfied.
For the JQP resonance there are two conditions that needntete

creVas = 2E. (n+1—ny), (2.2.6)
eVis > E. + 2A. (2.2.7)

The first is the condition for the Cooper pair resonance atdfiehand junction and
the second is the threshold voltage for quasi-particle éllimg whenon resonance
which is found by combining equatior®s2.5and2.2.6 Notice that the threshold is
independent of the island charge, gate charge and capesstamd is indicated on
figure2.3

Other processes such as Andreev reflecd@hdan also be observed in this system.
Throughout this thesis we assume that only the conditionthi® JQP resonance are
met and ignore all other transport processes.

There are several advantages of the JQP resonance that eighérimental inves-
tigation. The cycle is periodic in so unlike the supercurrent due to Cooper pair tun-
nelling alone it is not affected by quasi-particle poisapiwhere an unwanted quasi-
particle tunnels onto the island and blocks the superctuf88h The periodicity also
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2.2. The superconducting single electron transistor

means that it does not matter what the initial value . The Cooper pair and quasi-
particle tunnelling occur at different junctions so thegaeters for the two processes
can be individually tuned by constructing a very asymmaeteeice. For example the
device in f6] allowed the adjustment of the Josephson coupling energnatunc-
tion by applying a magnetic field. A high resistance tunnetjion formed the second
junction, so the current could be used as a probe of the stasgphson tunnelling.

2.2.2 Model of a SSET at the JQP resonance

A full master equation description of the SSET tuned to thE d€sonance can be de-
rived from a Hamiltonian for the microscopic degrees of fi@® of the systemd[7].
The Hamiltonian is split into two parts, the system consgstf the island charge and
the reservoir consisting of the unwanted degrees of freedliothe SSET. To obtain
the master equation the reservoir is traced out making BodnMarkov approxima-
tions [32, 33, 48]. The approximation made is that correlations in the resiedecay
fast in comparison to the time scales in the system.

The JQP resonance is periodic in the island charge as isfetearequatior?.2.6
and figure2.3. We label the states for an initially neutral island for siitipy, and
so consider just the three charge stdfes|1) and|2). As mentioned previously we
choose the Cooper pair tunnelling to be at the left hand joncfFrom equatior2.2.1
the Hamiltonian for the Cooper pair tunnelling part of theletion is,

Hsser = AE|2)(2] + % (10)2| + |2)0]) (2.2.8)

whereAE = AEO%2 = —4FE.(1 — ng) + 2creVas, is the detuning from the Cooper
pair resonance (equatich2.2 and E; is the Josephson coupling energy for the left
hand junction. This Hamiltonian describes an effectiveitjpdtween the zero and two
charge states. The evolution of the system is given by théemeguation17],

p(t) = —% [Hsser, p(t)] + Lapp(t), (2.2.9)
wherep(t) is the reduced density matrix of the systeB3][ describing just the three
charge states anfl,;, is a superoperator describing the quasi-particle tumeellWe
will come back to a full description of superoperators inti#er2.5.

The quasi-particle part of the evolution is dissipative eadses decoherence of the
qubit. It must include the two quasi-particle decays to tdile system from thé2)
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2.2. The superconducting single electron transistor

state back to th@9) state incoherently. The quasi-particle term is given1s; 2],

Capplt) =T |12 (0) 2411 - 5 (12421 (0}

o 1011 (0) 101 = 5 (1110

To1 +T1o

+ 211021 p(e) 11001 + 0)1] () 21|, (2:2.20)

whereTl's;, T';o are the tunnelling rates for the two processes &nd} is the anti-
commutator. The terms on the first two lines describe theiepeasicle decays from
|2) — |1) and|1) — |0) respectively and are of Lindblad forrdq]. The final term is
often omitted (e.g.47]). It describes part of the evolution of the off-diagonahdity
matrix elements corresponding to the coherence betweeh)thte and the other two
charge states. Since the Hamiltonian (equa®iéng does not generate any coherence
between the¢l) state and th&)) or |2) states these elements rapidly decay to zero and
have no influence on the dynamics of the rest of the systemeahaw below.

The quasi-particle tunnelling rate from left to right thgiua barrier is$0Q],

1 e

I'(e) = 2Rr / dE;or(Ei)f(Ei)or(Ei +¢)[1 — f(E; +¢)], (2.2.11)
whereRy is the junction resistancey,r)(£;) are the normalized density of states on
the left (right) of the barriers is the electrostatic energy change of the system (given
by equatior2.1.3 and f (E;) is the Fermi function,

1
" T+ exp (BifkpT)

f(E;) (2.2.12)
For a superconductor the density of states has a gap of &iltat the Fermi energy

E; =0,
||

VE? — A2
where®(x) is the Heaviside step function.
Near the JQP resonance the energy changes, for the twaitvassare given by,

o(E:) = O (lEi|-4), (2.2.13)

1

€91 = AER(Q) =eVys + E. — iAE, (2214)
1

10 = AER(l) = eVds — Ec — EAE, (2215)

where we have incorporated the definitionff: into equatior2.1.3 For the quasi-
particle tunnelling rates to be non-zero sufficient voltagest be applied in order to
overcome the superconducting gap as shown in figusa For the first quasi-particle
tunnelling the threshold is atVy, = 2A — E. + $AE and the second atVy, =
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Figure 2.6.(a) Tunnelling rates at JQP resonance for varying draincgour
voltage at zero temperature obtained from a numericaliatEg of equa-
tion 2.2.11 (b) Current at the JQP resonanexactis the current using
rates calculated from equati@2.11andapproxis the current assuming
that the rates are given B}s; at AE = 0. Parameters are the same as in
figure2.3

2A + E. + %AE. After the threshold is reached the increase in the tumgehates
are, to a good approximation, linear and giveniy 1o = (eVas & E.)/e? Ry where
the plus sign is fof'y; [42).

From the master equation it is straightforward to write d@anset of equations for
the SSET island charge and the coherence betwedfjthed|2) charge states. There
are five equations in total for which we use the notagigs(t) = Tr[|a)Xb| p(t)],

poolt) = 1= pra(t) — pas(t) (2.2.16)
pra(t) = Taupaat) — Tropua(4) (2.2.17)
pralt) = i3 (pual) — p2o(t)) — Torpaal) (22.19)
poo(t) = (=157 = T2 onlt) + i ((®) = palt) (22,29
pa0(t) = poa(t)! (2.2.20)

Two of the equations have been expressed in terms of thetbiteer. This can be done
because of the Hermitian nature of the density matrix (éqnat2.2Q and the normal-
isation of the density matrix Tp(t)] = poo(t)+ p11(t)+ p22(t) = 1 (equatior2.2.18.
Notice also that, as discussed below equafich1Q we do not require equations for
p10(t), po1(t), p12(t) or po1(t) in order to describe the evolution of the island charge.
The set of equations can be easily solved to find the steady-stobabilities for
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2.3. Coupling a resonator to a SET

each of the charge states. The current through the SSET aQReresonance is
then [L4, 51],

(I) = T'21p22(00) + I'igp11(00)
2€E3F21

IAE? +1erh + B3 (24 F2)

(2.2.21)

where thexo indicates that the probabilities are evaluated in the stastate. In this
thesis we will typically work in the regime of; < AI' so the width of the peak is
dominated by the quasi-particle tunnelling rate. Our chaitsmallF; is motivated
by the fact that this is the typical experimental regime fos device P1, 42] and is
convenient since we can assume that the quasi-particleflingiprocess is the dom-
inant source of decoherence in the system. Another sourdissipation is quantum
leakage due to the coupling to other charge states of thadi§t®], however, near to
AFE = 0 these couplings should be wedd[. In AppendixE we do consider a larger
value of E; in order to perform a comparison with recent experimed@4qnd include
some additional qubit dephasing as well.

In equation2.2.21the tunnelling ratd';, only appears in thé’; term so it is the
first quasi-particle rate that is most important. The rates have only a weak depen-
dence on the detuning. As shown in fig@.€bthe current peak is well approximated
by using only the rat&s; evaluated a\ ' = 0. Due to the insensitivity of the current
to a difference in rates we assume equal tunnelling rates,I'y; = 'y, throughout
and also neglect any dependence of the rate on the detuning.

2.3 Coupling aresonator to a SET

In Section2.1it was stated that a SET is a very sensitive electrometer.aes of
the sharp variation in current as a function of the SET op&gadoint changes in gate
charge can be detected to a high accuracy. The gate chargediepn both the gate
voltage and the gate capacitance. By allowing one of theaifmpglates to move the
device becomes a transducer converting the mechanicabmatithe capacitor plate
into a measurable change in curretf][ This method is applicable to nanomechanical
beams that are too small for other detection methods sucptesbinterferenced4].

Nanomechanical resonators can be fabricated at the samasithe SET as shown
in figure1.1d The beam is fabricated either from metal or from semicotaueith a
metal coating. The beam must then be under-etched to all@aribve freely B].

There are a number of different mechanical deformations@freomechanical res-
onator p5]. It is the flexural modes in the plane of the substrate to Wwile SET is
sensitive. The frequencies of the flexural modes for a doclbiyped beam are given
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2.3. Coupling a resonator to a SET

by [59],

2t | E
wi= 20 [ 2 o = 4.73,7.85,11.00,14.14, . .. (2.3.1)
12\ 120

where the beam has thicknesslengthl, Young’s modulust and densityp. The
beam is effectively stiffer to higher order modes of the bessrthey require more
bending p6] and hence more energy to produce a significant displacerient SET
coupled to the centre of the resonator, such as the deviggurefi.1d all even modes
will have a node at the position of the SET. We can assumehbh&ET couples only to
the fundamental mode. We also assume that the resonatafastheelastic so that the
modes are independent and we need only consider the fundi@hammonic mode.

So long as the displacement of the resonatpis much less than the initial sepa-
ration of the gate capacitor plates,we can assume that there is a linear dependence
of the capacitance on the displaceméi |

_ cA
T d+x

T

~ C,(0) (1 - E) : (2.3.2)

Cy(z)

wherese is the permittivity of the dielectric and the plate area.

The best sensitivity that can be obtained for continuougtipasdetection is the
quantum limit P5, 58, 59,

h
In 3m$2
The calculation of the quantum limit includes not only the@rtainty in the position
due to the uncertainty principle but also the back actiorhefrheasuring device. In
terms ofzqy, the best sensitivity achieved for a SET~NS00 zqr, [10].

During transport through the SET the charges tunnel on drtdeisland randomly
causing a fluctuating force on the resonator. This acts likadditional thermal bath
on the resonator. The thermal bath is characterized by aotef temperature that is
proportional toVys and always damps the resonatd7][ This back-action ultimately
limits the sensitivity of the device so that the quantumfticainnot be reached3, 60.

In a superconducting device the back-action is much ridherrder for DC current
to flow through the SSET energy must be lost or gained throusgipdition. In the
absence of the resonator this dissipation occurs in the lefatie SSET. Instead energy
can be exchanged with the resonator leading to energy Idke iresonator for positive
detuning and energy gain for negative detuning. In the wealplking regime, like the
SET, the SSET acts on the resonator like an effective thelathl [L8, 19], which is
the focus of Chaptes. The effective temperature of the SSET can be much lower
than that of the SET, which can lead to cooling of the resan@t]. In terms of
position detection, the reduced back-action has allowaditéties of ~ 4 xq;, to be
achieved 21, 25].

On the negative detuning side and for sufficiently strongptiog the transfer of

zqL = (2.3.3)
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2.4. Master equation description of the coupled system

energy into the resonator leads to driving into states dfsedtained oscillations. This
stronger coupling regime is investigated in Chapfeasnd6. In Chapter3 we describe
the various states of the resonator in more detail.

Mechanical resonators have typical frequencies 10—-1009 Eidl quality factors
103-10% [2]. Compared with the time-scale of the SSHT & 30 GHz from fig-
ure 2.69 the resonator is slow, which does not allow us to exploreréggme of a
fast resonator in comparison to the SSET. However, a numbeaevices have been
fabricated, in which a qubit is strongly coupled to a cavityda in a superconducting
stripline resonatord9 as shown in figured.2a—c The cavity is formed from a strip
of superconducting material patterned onto semiconduweithrground planes either
side. Capacitors at each end are the equivalent of the miiman optical cavity and
allow the resonator to be probed.

The superconducting cavity supports a number of modes dtreetelectric field
between the central conductor and the ground planes. Thedesware similar to the
harmonic flexural modes in the mechanical resonator. Thi gufabricated in the gap
between the central conductor and the ground plane as shofigure1.2c A gate
capacitance is formed between the qubit and the centramboidwhich provides the
coupling. Just like for the mechanical device we can asshateonly the fundamental
mode is important.

Recently a SSET has also been coupled to a supercondudiiplgnst resonator
experimentally 80. These resonators typically have frequenciedd GHz and by
using a high resistance tunnel junctibrcan be sufficiently reduced that we are in the
regime of a fast resonator. We are therefore justified inakpug all frequency regimes
for our device as both these types of resonator are desdriptite same Hamiltonian.
Typically we will use language and notation appropriatedanechanical resonator
and use the terms phonons and photons interchangeabletdoefxcitations.

2.4 Master equation description of the coupled system

Having introduced the device, that is the subject of thisiiewe now devote the
remainder of this chapter to methods used in the solution.u¥éea master equation
approach to describe the coupled dynamics of the SSET andats system, the
derivation of which is outlined in2]. The derivation is carried out in the same manner
described in Sectio.2.2for the SSET alone, in that the full Hamiltonian is first split
into system and reservoir parts. The reservoir is then drager by making Born and
Markov approximations. We make the assumption that botlcdlipling between the
system and reservoir and the coupling between the SSET aondatr is sufficiently
weak that the baths corresponding to the SSET and resoratindependentdl].
The full master equation is then a combination of the masjelagons for a SSET
(described in Sectiof.2.2 and for a resonator, with the addition of a coupling term
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2.4. Master equation description of the coupled system

between them in the Hamiltonian part.
The master equation describing the evolution of the reddesdity matrix,o(t),
of the SSET and resonator at the JQP resonance is give2Ppgd,

p(t) = =1 [Heor p()] + Lapp(t) + Lap(t)

= Lp(t). (2.4.1)

The first term describes the coherent evolution of the dgnsétrix under the Hamil-
tonian H.,, while the second and third terms describe the dissipaffeets of quasi-
particle tunnelling and the resonator’s environment regpely. We define the follow-
ing operators in terms of the three accessible charge stfites SSET for convenience,

po = [0X0], p1 = [1X1], p2 = [2)2],
¢ =102/, @ = [0)1], g2 = [1)2]. (2.4.2)

The Hamiltonian H..,, written in terms of these operators takes the form,

2
1
LA SMO%? £ M, (pr+ 2p2), (243)

E
H., = AFEpy — TJ (c—i—cT) + o

where AF is the detuning from the JQP resonangg, is the Josephson energy and
the resonator has frequen@y massn, momentum operatgrand position operatat.
The final term represents the linear coupling of the resanatihe charge on the SSET
island. The length scale; is the shift in the resonator position due to the addition of a
single electronic charge to the island. The coupling stifeiggconveniently expressed
in terms of the dimensionless parameter m;ZIQ .

Quasi-particle decay at the right hand junction is desdritne the superoperator
Lqp given in equatior?.2.10 In terms of the new SSET operators andffoe I'y; =
T'1o this becomes,

Lapp(t) =T (a1 +a2) p(t) (a} +al ) - g {pr+p2, (1)} (2.4.4)

wherel is the quasi-particle tunnelling rate afid -} is the anticommutator. Note that
as discussed below equatigr2.10the terqulp(t)qg andqu(t)qi can be neglected.
Due to our assumption that the SSET bath is unmodified, wereglected the (weak)
dependence df on the position of the resonatd®3]. The final term in equatio.4.1
represents the damping of the resonator by its externai@nwient.

(1+ 2iene) [z [, p (O] = T2 AP p(}], (2:45)

VYextmS)

Lap(t) = — o

wherevey is the damping rate ant.,, = (e"*/*sText — 1)1 where T, is the
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temperature of the resonator’s surroundings; gives the average occupation number
the resonator would have in the absence of coupling to thefSBie resonator bath
used here is the Brownian motion bath. An alternative chgiagbtained by making
the rotating wave approximation (RWA). The advantage ofRM¥A bath is that the
master equation will be of Lindblad form and so guaranteatipitg of the density
matrix. However, this is at the cost of losing translatioimahriance §2]. For weak
external damping, which is always the case here, the Brawniation bath will give a
positive density matrix and it is useful to keep translationvariance in order to derive
the correct mean field equations of the systeé®) 62, 63].

In the main part of this thesis we do not include any sourcesgbtierence in the
SSET other than the quasi-particles. We justify this in ®ohthe values of the pa-
rameters chosen. We choose a relatively small junctiosteesie of = Rye?/h = 1
throughout, whereRy is the junction resistancel’ ~ Vjs/eRx as shown in Sec-
tion 2.2.2 Also E;/eVys = 1/16 is used throughout so that; < Al corresponding
to strong dephasing by the quasi-particles. In this parantegime the quasi-particle
decay should be the dominant source of decoherence. Themmgtars are similar
to those used in the SSET-resonator experiments of Naik €8l In AppendixE
we investigate a recent experimeBO] where £; > Al and so include an additional
source of decoherence to show what effect this has on thiégebuterms of the res-
onator parameters we choose the external damping and fregsech that we can
solve the problem over the range of parameters we vary wdtilsbbserving a range
of behaviours.

2.5 Liouville space and the steady state solution of the
master equation

The whole master equation can be represented by the singgeaperator, known
as the Liouvillian. The Liouvillian operates in Liouvillpace where a Hilbert space
operatora becomes a vectdr)) and both pre- (left) and post- (right) multiplication of
the operatoa can be represented by an appropriate matrix multiplying[ 33, 63-67].
The inner product for two vectors in Liouville space is defires (a|b)) = Tr [a'b].
Using this notation equatiah4.1takes the form,

L 1o = £ lp(t)) (25.1)
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2.6. Formalism for calculating the noise spectrum of a paaperators

Since we are dealing with an open system, the Liouvilliarois-hlermitian and hence
has different right|r,,)), and left,|l,,)), eigenvectors,

Llrp) =Ap Irp)),
({lp| £=Xp (p] - (2.5.2)

We choose to label the set of eigenvalues such [thdt < |A;| < .... Neglecting
the possibility of degeneracy, we assume that the eigeorefdrm a complete or-
thonormal set{(l, |r,)) = Tr [lir,| = 6,4 [65]. The solution of equatio&.5.1can be
expanded in terms of the eigenvectorg’ao give,

() =Y _(lplp(0))e " Iry)

p=0

= [ro) + D _{lulp(@)e" Iry), (2.5.3)

p=1

where p(0) is an initial density matrix. For a master equation with alwieffined
steady state (such as the one we consider here) the lowestalge will be\y = 0,
a property which we used to obtain the second line above. fex eigenvalues must
obeyR (A\p>0) < 0[65], whereR indicates the real part, and the steady state density
operatoris|p(c0))) = |ro)). The normalization ofr)) is determined by Tip(¢)] = 1,
which gives((lo| = ({I|, wherel is the identity operator (in Hilbert space). While
|ro)) corresponds to the steady state, the eigenvedtg)sfor p > 0 each represent a
change to the steady state density matrix that decays erpaligwith rate—R (), ).

The problem of finding the steady state density matrix is ceduo finding the
right hand eigenvector of corresponding to the eigenvalig = 0. By truncating
the oscillator basis, equati@5.1can be solved numerically to find a few eigenvalues
and eigenvectors of. The numerical method and approximations that are made are
described in Appendii.

2.6 Formalism for calculating the noise spectrum of a
pair of operators

The steady-state of a system only gives information aboerta@e quantities. By also
calculating noise spectra, information about the dynarafche system can be ob-
tained. Of particular interest is the noise in the currenthef system as this directly
measurable in experiment and can provide important infiomabout the dynamics
of the resonator. In this section we discuss noise specganeral and show how they
are calculated for system operators. In Secfigiwe will apply this general formalism
to a calculation of the current noise through the SSET at@f riésonance.
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2.6. Formalism for calculating the noise spectrum of a paaperators

The symmetrized noise spectrum for any two operat@sdb is [68],

o0

Sap(w) = tlirgo 3 dr {{a(t +7),b(t)}) e, (2.6.1)

wherea(t) = a(t) — (a) and{a) = (a(o0)), which is the expectation value afin the
steady-state. The symmetrized noise spectrum has therpréhe, (w) = Sp o (—w).

For a pair of operators the problem is to evaluate the cdmeldunction in Fourier
space. Note that we are discussing fluctuations about theysttate of the system
represented by the limit— oo. Also note that here we have taken the Fourier trans-
form with a factor of 2 in front as ind8g]. Factors of 1 are used elsewhere (eGf]]
which lead to different numerical factors for the noise.

For system operators the quantum regression theorem (@R 13§ can be used
to evaluate the correlation function. A system operatoms that acts only on the
system Hilbert space. In order to apply the QRT we must rewthie expression so that
T >0,

Sap(w) = Jim, OOO dT( ({a(t+7),b(t)}) e + ({b(t +7),a(t)}) e—iw)
= Sapl@) + S (2.6.2)

where we have defined,

Sap(w) = lim OOO dr ({a(t +7),b(t)}) ™7 (2.6.3)
Sual) = Jim [ dr (Bt + ) alt))ye (2.6.4)

The QRT states that the two-time correlation function careleitten in the following

way [48],
tlingo (a(t+7)b(t)) = Tr [ae“"bp(c0)] T>0 (2.6.5)

wherea andb are system operators.
We first evaluaté‘;b(w). The integral to be performed is a Laplace transfo$§j,[

Sap(w) = /OOO dre™” lim [(a(t +7)b(t)) + (b(t)a(t + 7)) — 2 (a)D)]

t—o0o

= /000 dret™ [Tr [aeﬁpr(oo)} +Tr [aeﬁTp(oo)b} -2 (a)(b)}
=Tt [a (=i — £)7" (bp(o0) + pl(o0)b)] + — (a)b) (2.6.6)

1w

where we have used the QRT and takentthe oo limit in the second line and then
performed the Laplace transform in the final line. We corgimsing the Liouville
space notation introduced in Sectidh. We define symmetrized superoperatorsdor
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2.6. Formalism for calculating the noise spectrum of a paaperators

andb,

Alp(t))) =

Blp(t)) =

(ap(t) + p(t)a), (2.6.7)

(bp(t) + p(t)b) . (2.6.8)

N | N

In Liouville space equatioi.6.6becomes,
_ 2
Sitp(w) =2 (1ol A (—iw — £) 7" Blro)) + - Wol Alro)(lo| Blro)) . (2.6.9)

As in Section2.5we now perform an eigenfunction expansion of the Liouwiland
obtain the result,

o0

SHEEDS % (L] Alryp (L] Blro)) (2.6.10)

w—A
p=1 P

We can see now the importance of calculating the noise spedif the operators about
their steady-state values. The constant terms cancellégh+ 0 term corresponding
to \p = 0. Without this cancellation we would have a singularity.as> 0. The spec-
trum can also be written in matrix form, in terms of projeatmperators as introduced
by Flindt et al. p3],

Sty (w) = 2 (lo] AR(w)Blro)) (2.6.11)

whereR (w) is the psuedo-inverse of the Liouvillian given by,
R(w) =W (—iw— L)' W, (2.6.12)

where,
W=1-— |ro)(lo] . (2.6.13)

The matrix formulation is advantageous for numerical extun since we do not have
to calculate the eigenspectrum of the Liouvillian, whichaision-trivial task. The
eigenfunction expansion is used extensively in the intggtion of the noise spectra in
later sections.

Similarly the S, (w) part of the noise spectrum is found using the same method to
be,

2

w— Ap

M

Sepw) {lo| B |rp)){lp| Alro))

Il
i

— 2 (lo| BR(~w)Alro) - (2.6.14)
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2.7. Calculating the current noise of a SSET at the JQP resena

The full spectrum is given by,
Sap(w) =2 {lo] AR(w)B + BR(—w).Alro)) . (2.6.15)

Fora = b, which is normally the case, it can be shown in a straightfsdamanner
from equations.6.3and2.6.4that S (w) = S;b(w)T and the full spectrum has the
particularly simple form,

Sap(w) = 4R (lo| AR(w)B|r0)) ,

= 4R | =T (ol Al )1y Blro) (2.6.16)

w—A
p=1 P

wherelt indicates the real part.

2.7 Calculating the current noise of a SSET at the JQP
resonance

In this section we use the formalism introduced in the presisection to show how
the current noise through the SSET can be calculated. FOE& &Bne an analytical
solution of the current noise is possiblE?], which has a simple form in the — 0
limit and is discussed in Sectidh2 The total current through the SSET at some time
t is given by the Ramo-Shockley theorem,

I(t) = e IL(t) + crIp(t), (2.7.2)

wherel; andip are the current at the left and right junctions respectieglgc; and
cgr were introduced in Sectiod.1 ¢y andcg must obeye, + cg = 1, we assume
a symmetric SSET so takg, = cg = 1/2 [35]. Using this splitting and the charge
conservation conditio)(t) = I, (t) — Ir(t), whereQ is the charge operator for the
SSET island, the total current noise can be split into thegtsg/d],

1 1 1
Sir(w) = 351 (w) + 55Inln (w) — ZWQSQQ(W)- (2.7.2)

To find the full current noise spectrum we need to evaluatetinent noise at each of
the two junctions and also the charge noise of the island.
The charge operator @ = p; + 2ps2. This is a system operator and so we define
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2.7. Calculating the current noise of a SSET at the JQP resena

the superoperata® and from equatio2.6.16write the result,

Qlp(1)) = 5 (@olt) + p1)Q). (273)
So.0w) = 4R (Io] OR()QIro)
=R (3 lembIek) | @74

In order to determine the current operators for the two jionstwe must consider the
flow of charge into and out of the islan@3]. This gives for the left hand junction the
current operator,

Ip=i—2(f —¢). (2.7.5)

This is again a system operator so we can write down the result

T2 Ip(t)) = 5 (Tep(t) + p(0)12) (2.7.6)
Stpoa (W) = 4R (lo| ZLR(w)I1 |r0)
— AR [Z e (ol Te N T |ro>>] | (2.7.7)

The current operator at the right hand junction is a nonesysiperator as it involves
the leads, which we have traced out. The definition of thestuwperator comes from
the quasi-particle part of the dissipation (equafiofi4 and is given by,

Ir |p(t))) = el (q1 - qz)p(t) (qI - q%) (2.7.8)

In AppendixB we use the quantum trajectories method to derive the caroectlation
function for the right hand junction, which is given by,

T ({Tn(t + 7)., Tn(t)}) = 2¢6(r) {lol Za Iro) + 2 {lol Tne™ Tr[ro))  (2.7.9)

By comparison with the result from the QRT (equat®6.9, the correlation func-
tion is the same as that obtained for system operators bhttidt addition of a self-
correlation term. The resulting spectrum is,

Str.1r(w) = 2e {lo| Zr|ro)) + 4R {lo| ZRR(w)IR |ro))

= 1
= 2e (lo| Zr|ro)) + 4R Z oo

A
p=1 P

{lo| Zrlrp)lp| Zr 7o)
(2.7.10)

The same result was obtained by using an electron countinigpl@ approach ing3).
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2.7. Calculating the current noise of a SSET at the JQP resena

The current noise is typically given in terms of the curream& factor 68]. This is

defined as,
o S[] (w)

Fr(w) = 2e ()
The factor on the bottom is the Poissonian or shot noise bifrthie current noise. This
corresponds to the current noise through a single tunnetipm (i.e. the electrons
are independent). A Fano factor of less than one means thati¢lctrons tend to be
more evenly separated, whichgab-Poissoniamoise, and occurs in systems such as
a quantum dot in the Coulomb blockade reqirii&][ Super-Poissonianoise, on the
other hand, indicates bunching of the transport electrodsag-ano factor greater than
one. The definition of the Fano factor must be consistent thighdefinition of the
current noise and so Fano factors can be easily compared.

We mainly consider the zero frequency current noise, wtscthé same for the
two junctions due to charge conservation and so can be etdcllising either equa-
tion 2.7.70r 2.7.10 The charge noise does not contribute to the zero frequemogrt
noise as can be seen from equation.2

(2.7.11)
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Chapter 3

Signatures of the Dynamical
State of the Resonator

With the numerical tools described in Chap?axe are now in a position, in this chap-
ter, to find the steady-state of the SSET-resonator systehnaalyse how it behaves.
We then go on to show how the current and current noise can tsefalyprobe of
the resonator state. In Secti@nl we describe how the state of the resonator can be
inferred from the steady-state solution. Sectiohgives a summary of the current and
zero frequency current noise for a SSET alone, which areilasfa comparison to the
results for the coupled system. The parameter space foilSE@-8esonator system can
be divided into regions of similar behaviour in a number ofygaln Section3.3we
describe three frequency regimes of operation that we weaghout this thesis. Sec-
tions3.4-3.6 each focus on a particular frequency regime for the systedrdascribe
the overall behaviour as the detuning and coupling are dafénally in Section3.7
we make a comparison between the SSET-resonator systetheapdrticular quantum
optical system of a micromaser.

3.1 Determining the dynamical state of the resonator

The interaction between the SSET and resonator leads to dicatidn of the steady-
state of the resonator. Cooper pairs can exchange eneigyhgitesonator when they
tunnel between the lead and island. When the SSET is biasdthsd £ < 0 the
Cooper pairs lose energy when tunnelling from the lead tadlaed and so energy
can be given to the resonator. In contrasfy > 0 corresponds to the Cooper pairs
needing to gain energy to go from the lead to the island anchegg can be removed
from the resonator. For sufficiently large coupling the regor can be driven into
states of self-sustained oscillations. States of mudtdifity can also be observed, nor-
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3.1. Determining the dynamical state of the resonator
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Figure 3.1. Wigner distributions, (a) fixed point, (b) limit cycle and
(c) bistable. The parameters used &e= I', Kk = 0.005, Yext =
8x 10741, By = 1/16 eVgs, 7 = 1, Next = 0 and the values oA E /e Vs
are (a) -0.7, (b) -0.486 and (c) -0.4.

mally consisting of both an oscillating and a fixed pointetd&egions where multiple
oscillating states can also be observeg|[which we investigate in Sectiah7.

The method described in Sectién5 and AppendixA can be used to find the
steady-state density matrix of the systerfo). We then perform a partial trace over
the SSET Hilbert space to obtain the reduced density matrixhfe resonator alone,
pr(00) = Trsser [p(00)]. pr(c0) contains the full information about the steady-state
of the resonator, but further methods are required to viseidhe solution and ulti-
mately characterize the state. The first method we use is ifpeéMfunction [2]. This
is a quasi-probability distribution in position-momentspace and is defined by 3],

1 h 1
W(z,p) = 2mn ) <JU+ 5Y

pr(0) |z — %y> e/ dy (3.1.2)
The Wigner function is not a true probability distributios ihcan be negative, which
is an indication of non-classical behavio@f]. For the parameters considered in this
thesis the Wigner function is always positive.

Figure 3.1 shows the Wigner functions for the three dynamical stateth®fres-
onator that we discuss for the majority of this thesis. [hstiions such as that shown
in figure 3.1awe refer to as a fixed point state. It is characterized by alesipgak
in the Wigner function. The state corresponds to fluctuatiohthe resonator about
some average position and momentum. The resonator woulddstate of this kind
if it were uncoupled from the SSET and the fluctuations wohé&htbe thermal. When
coupled to the SSET we can interpret the state as one in wiicbdnditions to drive
the resonator into self-sustaining oscillations are ndt mikich occurs foAE > 0 or
for insufficient coupling forAE < 0.
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3.1. Determining the dynamical state of the resonator
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Figure 3.2. P(n) distributions, (a) fixed point, (b) limit cycle and
(c) bistable. The parameters are the same as in figjdre

We refer to states that have a Wigner distribution such asdigdbas limit cycle
states. These occur for parameters where the SSET drivesstheator into a state of
self-sustained oscillations, that is f&rE < 0 and sufficient coupling. The limit cycle
state shares many properties with a laser and is also knowtaamg state, an analogy
which is explored in SectioB.7 and Chapte6.

The final state, which is shown in figuBelg we refer to as a bistable state. It
occurs when both fixed point and limit cycle states are stabletions for a set of
parameters. We do not justify our use of the term bistable.hén fact it is clear
in figure 3.1cthat strictly speaking the system cannot be bistable sineeestis some
noise in the two states. However, as shown in SectioR<s.4 some of the behaviour
of the SSET-resonator system can be described in terms pfesimodel of a two state
system. A two state model is valid so long as there is a regiothé phase space
between the fixed point and limit cycle states where the Widumection approaches
zero. We use the term bistable state more loosely in our ig¢iscr of the system to
be any state where there is both a fixed point and limit cycletism present in the
Wigner function of the resonator.

Although useful for a description of the resonator state,Wigner function is a
two dimensional probability distribution for each set ofgmaeters. This reduces its
usefulness when characterizing behaviour as parametevaaed. However, it can be
seen from figure3.1 that the various states are circularly symmetric, whichgests
that the phase information of the resonator is not requettharacterize the state.

A representation that does not include phase informatidinegistribution of the
resonator energy defined #&§n) = (n|pr(co) |n), where|n) is a Fock state. Fig-
ure 3.2 shows theP(n) distributions for the same parameters as the Wigner distrib
tions in figure3.1 The characterization of states in thén) distribution is straight-
forward. We define the fixed point state as a single peak=at0, a limit cycle state
as a single peak at > 0 and a bistable state as having two peaks one of which is at

n = 0.
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3.2. Current and current noise of a SSET

Plots can be made of thB(n) distribution as a parameter is varied (e.g. fig-
ure 3.21). However, as we show in Sectios3-3.6 the state of the resonator can
be inferred quite effectively by looking at just the first tgamulants of theP(n)
distribution, which are the average energy) and the variancen?).

3.2 Current and current noise of a SSET

We start by reviewing the characteristics of the SSET in theoupled limit,x — 0.
The current{I)"=", and zero frequency Fano factor of the current nafge;(0), for
a SSET tuned to the JQP resonance are gived By[7],

_ QeEgF
 AAE® 4 h212 4 3%

8E3 (E7 + 2h°I?)
(4AE? + h2T2 + 3E2)°’

(3.2.1)

1=’

Fr=%0) =2~ (3.2.2)

and are shown in figur8.3. The current has a peak at the centre of the resonance
AFE = 0, which has a width determined bhyand £; and was discussed previously in
Section2.2.2 Far from resonancgs=°(0) has a value of 2. This is because for large
detuning the probability to be in the) state is always small (it is proportional to the
current). Due to the low current the charge is effectivedysiported in pairs, since the
time between the two quasi-particles in each JQP cycle Wihgs be small. Due to
the large time between the breaking up of the Cooper paitsgsicis independent and
so follows Poissonian statistics. The transport is eqaivieio a single tunnel junction
with a charge carrier ofe. This result is more general and in any transport process
that has Poissonian statistics the zero frequency cureartd factor can be used to find
the effective charge of the carrier, an example of which ésftactional quantum hall
effect [74-76].

Close to the centre of the resonance there is a strong iateloptween the coherent
transfer of Cooper pairs and the quasi-particle tunnelthigh results in a suppression
of the noise. The reason being that the probability of|festate no longer remains
small and so the time it takes for the system to evolve fronjihstate to the2) state
is reflected in a more ordered transport process. This ssgipreis strongest at the
centre of the resonance where the coherent motion of Co@jirsrip most important.

3.3 Frequency regimes of operation

There is a large parameter space for the system that can tarexkp We will not
attempt to investigate all of this here, but instead try tiit §pe parameter space into
smaller regions that can be investigated more closely. ssudised in Sectioh.4 we
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Figure 3.3. current (a) and current noise (b) of a SSET tuned to the JQP
resonance. The parameters usedfye= 1/16 eVys andr = 1.

user = 1 andE; = 1/16 eVys throughout. We give the time-scales of the system in
terms ofl", which we can think of as the typical time-scale of the SSETaE; < Al

For the resonator parameters we must choose the externglirt@m.y;, to be
somewhat larger than what would be expected in experimeatder to ensure the
resonator can be described by a limited number of energgsst&or the frequency of
the resonator we identify three regimes in comparison tdithe-scale of the SSET.
These are wher@ > I, where) <« I" and where? ~ I'. In this section we look at
how they are connected before we discuss each of them in treféctions3.4, 3.5
and3.6.

In Section3.1it was shown how thé”(n) distribution can be used to characterize
the state of the resonator. To explore a wide range of pammittis easier to work
with a few cumulants of thé(n) distribution. The full set of cumulants contains the
same information as thB(n) distribution, but we do not necessarily need them all to
gain a lot of information about the system. In fact the firsb tthe average energy)
and the variancén?) = (n®) — (n)?, wheren is the number operaton, = a'a, are
sufficient for our purposes. Rather than the variance wetptesonator Fano factor
F, = (7?) / (n). Just like the current Fano factor the Fano factor here isdication
of the relationship of the distribution to a Poissonianriisition. A sub-Poissonian
resonator Fano factor indicates number squeezing of tlemagsr distribution, which
is a non-classical statd, 73, 77).

We will look at these moments as a function of the detunikg, and the resonator
frequency in relation to the SSET time-scdleI". Figure3.4 provides an overview of
how the resonator behaves in terms of the average occupatiober(n). The average
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94

0.52

0.039

0.0029

0.00021

-0.5
AE/eVdS

Figure 3.4. Average energy(n), of the resonator as a function of the
detuning from resonance and resonator frequency fer 0.005, £; =
1/16 €V, Yext = 8 X 1074, r = 1 andfie, = 0. Colours are on a
log,, scale.

energy of the resonator /€2 (n), so we also refer tgn) as the average energy. For
negative detuning large values @f) are seen, which correspond to the driving of the
resonator into limit cycle states. From the average endrgynot clear where the
transitions occur or how they occur. Generally we see twakiof transition. The
most common is a continuous transition, where the systeitwvevemoothly between
dynamical states. The second is a discontinuous transitimre the system changes
state via a bistability and we see a rapid change in the state.

The location of the transitions and what type they are isciaigid quite faithfully
by the resonator Fano factdr,,, as shown in figur&.5. It can be seen that this has
a peak around the region of large). The peak to the left of the central limit cycle
region is rather large compared to the peak on the right of@g®n. This large peak
corresponds to the bistable region and elsewhere we haveiawous transition. Other
features of the plot will be explained in the following secis. The location and nature
of the transition can be confirmed by use of @) distribution.

We can compare the resonator moments with the current aneinturoise for the
same parameters as shown in figusedand3.7. Broadly speakindl) shares many
similar features with(n) and F;(0) with F,,. We will discuss further the extent to
which this is true by looking at the three frequency reginmesiore detail.
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Figure 3.5. Resonator Fano factaF,,, as a function of the detuning from
resonance and resonator frequency for the same paramefayara@3.4.
Colours are on &g, scale.
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Figure 3.6. Average SSET curren{/), as a function of the detuning from

resonance and resonator frequency for the same parametéyar@3.4.
Colours are on &g, scale.
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Figure 3.7. Current noiseF7(0), as a function of the detuning from res-
onance and resonator frequency for the same parametersuas 3ig.
Colours are on &g, scale.

3.4 High frequency resonator{2 > I

In the high frequency regime discrete peaks are se€n)ifor AE < 0, as shown

in figure 3.4 These correspond to resonant absorption of energy by Humaéor.
Less clear are the dips i) that are observed fak £ > 0, which correspond to the
resonant emission of energy by the resonator i.e. the résoren be cooled here if the
external temperature is larged, 19]. For the weak coupling values that we consider
here, the resonances can be located by the matching of theates frequency to a
multiple of the eigenenergy of the SSET.

khQ = £,/ AE? + E2, (3.4.1)

wherek is a non-zero integer and the sign on the right hand side dliimithe same as
the sign ofAE, so that resonances far< 0 correspond to driving of the resonator.
For large) we will haveAE > E; at these resonances and so their location is almost
entirely determined bA E.

To see in more detall the effect of this resonance on the eg¢spastate, figur&.8
shows(n), F,, (I) andF(0) around thek = —1 resonance aA E and the coupling,
K, are varied. From figur@.8it can be seen that as the coupling is increased the system
undergoes a transition, which is from a fixed point to a lirgitle state. The limit cycle
region grows for larger couplings to occur further from tixa@ resonance condition.
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3.4. High frequency resonatfr> T'

The value of(n) indicates the size of the limit cycle, which grows with theiping
strength and is largest on resonance. However, the val@ie ohly gives an indication
of where a transition occurs as it increases steadily tHrolig transition.

F,, is better indicator of the position of the transition as istiongly peaked at the
transition. To move from a fixed point state to a limit cyclatstinvolves a transition
through a state with a large variance. This transition cawoim two ways. The first
is a bistable transition where there are two peaks inftfw) distribution. A bistable
state must have a high variance sirtag¢ will be somewhere in between the peaks. The
second type of transition is a continuous transition whisediked point state smoothly
evolves to a limit cycle state with a small amplitude whicertlgrows progressively as
we move further into the limit cycle region. During the trdio® we will go through
states which have the bell shape of fig@&b but at small amplitude so that there
will be a sharp cut-off in the distribution at = 0, an example of which is shown in
figure3.9. This type of state will also have a large variance althoughlker than the
bistability.

In the limit cycle F,, can become very low even becoming sub-Poissonian by drop-
ping below 1 suggesting a non-classical state. The curi@séns very similar taF,
and can also become sub-Poissonian. However, there is ext dorrelation between
F, < 1landF;(0) < 1they may occur at the same time or separat2ff].[ A sim-
ilar result was obtained in/B] for a SET coupled to a resonator. They found that by
changing the bias voltage and the asymmetry of the junciogsombination of sub-
and super-Poissonian valuesiof and F;(0) could be obtained.

The plot of (I) takes a very similar form to that fdr). Indeed a plot ofI') / (n)
shows that, to a good approximation, there is a constantigtiettrelating the two
within the limit cycle region as shown by figu&1Q The factor can be found by a
simple argument due to energy conservation. In order for@€opair to move from
the lead to the island it must dissipate an amount of engf@yE? + E2 ~ |AE|.
Without the coupling to the resonator the current at thigdagdetuning is negligibly
small. We can therefore assume that the energy is entirslyrabd by the resonator.
The rate of energy gain by the resonator is therefé%e}AEL In the steady-state this
must be balanced by the energy loss of the resonator due tpidginy the environ-
ment, which occurs at a rate,.: 12 (n). We therefore expect the relationship,

hs) 26Yer
<I> = MQe'Yemt <n> = |7€| : <n>7 (342)

where we have used the resonance condition given by eqiiatidi It can be seen in
figure3.10that this is indeed the case.

A peakin(n) is also seen in figurd.4at AE = 0, but this has a different origin.
Itis due to heating of the resonator by the charge noise o88teT island and there is
no dynamical transition in the state of the resonator. Tlakperresponds to the JQP
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3.4. High frequency resonatfr> T'
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Figure 3.8. (n), F,,, (I) and F;(0) as a function of the detuning from
resonance and coupling strength for= 10T, E; = 1/16 eVgs, Yext =
3x107*T",r = 1 andn.x, = 0. The dashed line indicates the transition in
dynamical state from fixed point to limit cycle via a contiusdransition
as the coupling is increased.
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Figure 3.10. (I) /2¢l" (n) v.,+ as a function of the detuning from reso-
nance and coupling strength. The parameters are the sanggigs3fiS.
The dashed line indicates the transition from fixed pointittaticycle
state as the coupling is increased.
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3.5. Low frequency resonator < "

peak seen in the current in figudes. We will discuss in Chaptet how the SSET acts
as an effective thermal bath for the resonator in the lowdesgy and low coupling
regime.

3.5 Low frequency resonator() < I'

The resonances described by equaBchlwill have a width related to the coupling,
K, and quasi-particle tunnelling rat€, In the regime2? < T' the resonances will
no longer be distinguishable. Also note that as the frequenceduced some of the
resonances become disallowed. This occurs wiigh < E; but will not be observed
here sincer; < Al

Transfer of energy between the SSET and resonator stillredeuhis regime with
the direction given by the sign &€ £ but is now non-resonan2()]. Figure3.11shows
the average energyp), as the detuning and coupling are varied. The transitions be
tween the three different dynamical states of the resoramiindicated by dashed
lines in the figure. FOAE < 0 energy is transferred to the resonator and for strong
enough coupling the resonator is driven into the limit cystkte which grows in size
as AE becomes more negative. Fer> 0.0011 when AF is sufficiently negative
(AE ~ —0.15¢€Vys) the resonator enters the bistable regime and then undeggoe
transition back to the fixed point state in which the limit leydisappears abruptl2§].

Unlike the high frequency case there is not a strong corredguace betweetn)
and(7) as can be seen by comparing figusesland3.12 In fact the current is always
dominated by the JQP current peak of the SSET. There is sord#ication, however,
which can be seen more clearly by subtracting off the backgitiduncoupled) current
as given by equatioB.2.1, which is what we do in Chaptei

As in the high frequency casg,, is peaked around the transitions between the fixed
point and limit cycle states, figu213 The strongest feature occurs in the vicinity of
the bistable region. The peak at the continuous transiiamt as clear as the > T
case.

F;,, can be compared with the zero frequency current noise shovigure3.14as
before. For weak coupling a dip can be seefr'i0) along theAE = 0 line, which is
due to the suppression of the current noise present in theuphed case (figurd.3).
For stronger coupling, peaks are seen at the transitioreeasis thef,, plot. However,
the correspondence betwegn(0) and ), is not as strong as for the high frequency
case. In particular we see a minimum#ia(0) to the right of the bistable region that
extends down to zero coupling. This feature will be expldimeSectiord.5, but here it
demonstrates that the zero frequency noise contains nforenation about the system
than just measuring average properties or moments.

40



3.5. Low frequency resonator < "

x 10
27 I 91
1.8t I
16} | 73
I
14+ I
12} I 55
2 (]
1 I
08} N 37
AV
06}
0.4} 20
0.2}
1.8

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
AE/eVdS

Figure 3.11.Average energy of the resonator as a function of the detuning
from resonance and coupling strength b= 0.12T, E; = 1/16 eVys,

Yext = 1 x 1074T, r = 1 andney = 2. The dashed lines indicate
transitions between dynamical states: for most of the ramgesidered
the resonator is in the fixed point state, but for large ena@lipling a
transition to the limit cycle state occurs close to the aeufrthe reso-
nance. The bistable region is the smallest and occurs fer0.0011 and

AE ~ —0.15 eVys.
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Figure 3.12.Current through the SSET as a function of the detuning from
resonance and coupling strength. The dashed lines indreaisitions in
the resonator’s state and the parameters are the same ag@8BfiglL
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Figure 3.14. Current noiseF(0), as a function of the detuning from
resonance and coupling strength. The dashed lines indieausitions in
the resonator’s state and the parameters are the same ag@8fifyland
the colours are on g, scale.
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Figure 3.15.Average energy of the resonator as a function of the detuning
from resonance and coupling strength for= 2T, E; = 1/16 eVys,
Yext = 8 X 1074 T, 7 = 1 andney; = 0.

3.6 Strongly interacting regime() ~ I

The final operating regime we consider for the device is wkkre I". At this point
the matching of the electrical and mechanical time-scaadd to a relatively strong
mutual interaction.

Figure3.15show the average energy of the resonator as the detuningapting
are varied. The resonances corresponding to the absomitione or two photons
(k = —1andk = —2 in equation3.4.]) can clearly be seen in the figure. The= —2
resonance requires a stronger coupling tharkthe—1 resonance to be allowed since
it is a higher order process. Figugel6 shows the current for the same parameters.
Peaks are seen in the current due to the same resonances asAn additional peak
is seen due to the JQP peak of the SSET. The JQP current pedlecsaen to be
modified more strongly as the coupling is increased. Thesatifor thek = —1 and
k = —2 resonances can be seen to be approximately equal. In dothteaaverage
energy of the resonator is larger for the= —2 resonance. This can be understood
qualitatively from equatio3.4.1 The equation states that if the current is the same at
thek = —1 andk = —2 resonances then the average energy should be twice as big for
thek = —2 resonance, which is seen to be the case. However, it is netstodd why
the two currents are the same.

Figures3.17and3.18show F,, and F;(0) respectively. A strong enhancement is
seen in both these quantities around the resonant peakshé-br= —1 peak this
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3.7. Analogy with a micromaser
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Figure 3.16. Current as a function of the detuning from resonance and
coupling strength for the same parameters as figuré

corresponds to a continuous transition from fixed point taitlicycle state. For the

k = —2 peak the noise is much larger at the transition and correlsptina bistable
transition. Evidence of thé = —3 resonance is also seen in the noise although the
coupling is not sufficiently strong to observe a featurérih or (I). The plots ofF,

and F7(0) are generally in agreement with two notable exceptions.&Br~ —0.2
ands ~ 2 x 1073 a peak is seen if, that is not present if; (0). A similar feature
was also observed in the low frequency case and will be exgdain Sectiord.5.

Also within thek = —1 resonancéd;,, can be seen to reduce on resonance to a sub-
Poissonian value. However, a peak is seefi’ifD) on the resonance. We will return

to this feature in Sectiof.3.

3.7 Analogy with a micromaser

The instabilities seen in this system are similar to thoss $e quantum optical sys-
tems. In particular we find close analogies with the micraenagstem 22, 23]. The
micromaser 79] consists of a superconducting cavity resonator througichva beam
of two level atoms prepared in the excited state is sent. Baebis of low intensity
so that only one atom is in the cavity at any one time. Whilehim ¢avity the atoms
can exchange energy with the resonator and so excite or tadiein on resonance.
This is analogous to the SSET resonator system where thee€pajus are transported
through the system one at a time and so play the role of thesatom
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3.7. Analogy with a micromaser
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Figure 3.17. Resonator Fano factoF;,, as a function of the detuning
from resonance and coupling strength. The parametersasathe as in
figure3.15and the colours are onlag,, scale.
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Figure 3.18. Current Fano factorF7(0), as a function of the detuning
from resonance and coupling strength. The parametersasathe as in
figure3.15and the colours are onlag;, scale.
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3.7. Analogy with a micromaser

There is, however, an important difference between the tygtems. In the mi-
cromaser the rate at which the atoms travel through theycavitontrolled externally
and so is not influenced by the interaction with the resondtoour solid state sys-
tem, however, the back-action of the resonator on the SSHiifim®the current. This
makes the system more complex, but also allows us to use trentas a probe of the
behaviour of the system, which cannot be done in the micremas

A series of dynamical transitions in the resonator stateoiccthe micromaser as
the coupling between the atoms and cavity is increased agnsimo[79]. The transi-
tions are accompanied by jumps in the average energy of so@ator that correspond
to the formation of new stable limit cycle states. There &an accompanying peak
in the variance of the resonator energy at the transiff&h [The transitions become
sharper as the number of atoms to pass through the cavitygiiré cavity lifetime is
increased. The transitions also become less sharp at lighpling strengths.

We can carry out a similar analysis for the SSET-resonattesy. The equivalent
of the rate of atoms through the cavity is the current anditegrhe of the cavity mode
is given by the external damping. Unlike the micromaser wenoé easily increase
the current without modifying the interaction between 183 and resonator. It is
therefore easier to alter the external damping of the rasgrethough this will also
cause a shift in the position of the transitions. We are afsibdd by the finite number
of resonator states and so cannot reach the limit whereahsitions become sharp.

In figure 3.19the normalized average energy is shown as the couplingiesd/gr
three values of the external damping. As the coupling iseased the resonator first
goes through a transition from fixed point to limit cycle etad reach a maximum value.
Further increasing the coupling causes the average enemggltice until an increase
is seen corresponding to the formation of a second limitecgtate. The increase in
the average energy becomes sharper as the damping is redineedehaviour is also
observed in the variance of the energy as shown in figu?@ The first peak is at
the transition from fixed point to limit cycle state. The sedgpeak becomes much
more pronounced as the external damping is reduced. Alsothat in-between the
two peaksF;,, < 1 indicating a sub-Poissonian distribution in the resonatmrgy as
previously observedf3)].

The nature of the transitions is made clearer by observiagliange in thé’(n)
distribution as the coupling is varied. This is shown for $heallest and largest values
of vext from figure3.19 in figures3.21and3.22respectively. It can be seen in the
figures that as the coupling is increased more stable linciecstates of the system are
formed. For smalky..¢, as in figure3.21, it can be seen that the first limit cycle state
vanishes soon after the second is formed. It is for this redsat the jump in(n) is
seen. For the larger value ¢f,., shown in figure3.22 and for the further transitions
in figure 3.2, it can be seen that the limit cycle states co-exist and sa@gamp in
(n) is not seen.
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Figure 3.19.Normalized average energy of the resonator as a function of
the coupling for 3 values of the external damping. The otle@ameters
areAE = —0.1eVgs, Q =T, E; = 1/16eVgs, 7 = 1 andfiexs = 0. A
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Figure 3.20. F}, as a function of the coupling for 3 values of the external
damping. The parameters are the same as figii@ A transition is seen
for \/k ~ 0.12 that becomes sharper for reduceg;
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Figure 3.21.ChangingP(n) distribution as a function of the coupling for
Yext = 3 x 1074T". The other parameters are given in fig8r&9 Dashed
lines indicate the locations of peaks in the distribution.
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3.7. Analogy with a micromaser

The origin of the co-existing limit cycle states was expéalrin terms of the semi-
classical dynamics of the system i22]. The driving of the resonator by the SSET
can be described by an effective damping rate. A stable ligtdte solution occurs
when this effective damping matches the external dampirthé&yesonator bath. The
effective damping is an oscillating function with the anydie of the resonator and so
a number of solutions can co-exist.
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Chapter 4

Resonator in a Thermal State

In the previous chapter we gave an overview of the behavibilneosystem for a range

of parameters. In this chapter we remain in the regime of veealpling between the
SSET and resonator so that the resonator remains in the fduetgtate throughout. In
this regime the SSET acts as an effective thermal bath faretfenator as described in
Section4.1 We focus on just one of the frequency regimes introducelerptevious
chapter, that of? < I', where the effective bath parameters have a simple analyti-
cal form. When this is the case the current and current n@eebe described using
much simpler models than the solution of the full master &gonaThe first of these,
which is described in Sectioh2, calculates the current and current noise by assuming
that the gate voltage fluctuates with statistics given bythleemal bath model of Sec-
tion 4.1 This simple model accurately describes the current, buth@current noise.

A full description of the system in this regime can be obtdifrem a set of mean field
equations as shown in Sectidm3. The mean field equations for this system do not
form a closed set, but they can be truncated with little eimdghe thermal regime by
making sensible approximations. The final model, describegkction4.4, attempts

to capture the part of the current noise due to the dynamittseeafesonator. Finally, in
Section4.5, the finite frequency current noise in this regime is cali@daand to what
extent its behaviour is captured by the simple models isudised.

4.1 SSET as an effective thermal bath

For sufficiently weak coupling, the steady-state of the masor can be described an-
alytically. Based on the Born-Markov master equation thaswlescribed in Sec-
tion 2.4the SSET degrees of freedom can be traced over and the statereSonator
found [18]. Alternatively general linear response metho86] [can be applied to the
system to describe the resonatb][

The result from these two approaches is that for weak cogiplimd small mechan-
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4.1. SSET as an effective thermal bath

ical displacement the SSET acts on the resonator as anieffélcermal bath. The
thermal bath is characterized by three parameters, arntigéfeamping;yssgr, an ef-
fective occupation numbefissgr, and a renormalization of the resonator frequency
to Q. Using either the Born-Markov or linear response methodsvtdiues of these
parameters in the reginfeé < I" are [18, 19,

N 16mz2QE2AE [4AE? 4 130212 + 10 E2 4.1.1)
r (4AE? 4+ B2T2 + 3E2)° |
. R2T2 + AAE?
NSSET = mv (412)
2 2
02— (1 —A8mE By A . (4.1.3)
(4AE? + h2I'% + 3E7%)

We focus on the? < T regime here where the parameters have the simple form
above. However, the effective thermal bath descriptiorbeasextended to all frequency
regimes, so long as the coupling is we8H{][

In the same manner as a resonator coupled to a standard thetmathe steady-
state of the resonator will have the form of a thermal stage tfie Wigner function will
take a Gaussian form). In practice there is also the therathl tue to the resonators
surroundings and the average occupation number of the atson, is found from a
weighted average of the two batt/],

YextText + YSSETTISSET
Yext + YSSET

n= (4.1.4)
The total damping rate of the resonatprijs given by a sum of the damping due to the
SSET and the external damping due to the resonators sutrms)d

¥ = Yext T VSSET (4.1.5)

In figure 4.1 the shape ofissgr andngsgr are shown as a function of the detuning.
~vsseT IS negative forAE < 0 and so in this region the total damping of the resonator
is reduced. For sufficiently strong coupling the total damymian become negative and
this weak coupling description clearly breaks down sinedlirctuations in the position
of the resonator are no longer small. To ensure that the nzadelately describes the
state of the resonator we require that, > |ysser|- 7fisser iS also negative for
AFE < 0 so the productssgrinigseT appearing in equatios.1.4is always positive.
WhenAFE < 0 the coupling with the SSET must increase the valug aboveriq.
However, forAE > 0, i can be reduced due to the coupling with the SSET and so the
resonator can be coolet§, 19, 21].

The coupling to the SSET also leads to a shift in the averagg#ipo of the res-
onator which has a simple relationship to the average changthe SSET island,
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4.1. SSET as an effective thermal bath
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Figure 4.1. (a) ysseT (b) nsseT as a function oA £ as calculated from
equationst.1.1and4.1.2 Parameters are = 1 x 1074, Q = 0.05T,
E; =1/16 Vis, Yext = 1 x 1074 T andiiey; = 2

which is in turn proportional to the average (steady-stete)ent flowing through the
SSET [18, 22]. The average displacement is given by,

3T,

() = =51

(Iy. (4.1.6)

In Section4.3we derive this relationship using the mean field equations.

For weak SSET-resonator coupling the changes in the trangpaperties of the
SSET due to the resonator are relatively small so it makesesenexamine just the
difference between the values for the coupled and uncougasds. The uncoupled
current,(1)"=", and zero frequency current Fano factBf;=°(0), were given in equa-
tions3.2.1and3.2.2respectively.

The change in the SSET current due to the coupling with thenagsr (calculated
numerically) is shown in figuré.2 We consider a slow resonatOr <« I" and very
weak coupling so that although the SSET has quite a strongimée on the resonator
state, the resonator nevertheless remains in a thermalvstath is well described by
equationst.1.14.1.5 From figure4.2we see that near the centre of the resonance the
currentis suppressed by the resonator, but on either sttiesdhere is an enhancement.
The current noise is modified in a similar way to the curreut,ib the opposite sense,
as shown in figurd.3, thus there is an increase in the noise near to the resonatice w
a decrease on either side.

Although it is relatively easy to calculate the current andent noise numerically
it is helpful to develop simple analytical models of the cleabsystem so that the
results can be better understood. The starting point faetineodels is that a thermal
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4.1. SSET as an effective thermal bath
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Figure 4.2.Change in current through the SSET as a functioA 6f The
curves are labelled amumfor the numerical results arftifor the change
in the current calculated using equat®.3 The parameters used are the
same asin figuré.1 [Note that for these parametersaries from a value
of 2 far from resonance to a peak value of 2.28Mdf = —0.01 eVjs.
~YssET/Yext has maxima and minima af0.029 at AE = +0.044 eVys.]
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Figure 4.3.Change in the zero frequency current Fano factor of the SSET
due to the resonator. The curves are labelledwas for the numerical
results,fl is obtained from equatiof.2.§ meanZ2is calculated using the
second order mean field equations amelan3using the third order mean
field equations. The parameters used are the same as indigure
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4.2. Fluctuating gate model

state has a Gaussian distribution in position and momenpaoesB2. A Gaussian
distribution is entirely described by second order momemtact which we can use to
our advantage.

4.2 Fluctuating gate model

The simplest way of including the influence of the resonatothe SSET is to include
the effect of fluctuations in the position of the resonatottmncurrent 24]. Because
the resonator acts as a gate for the SSET island, a shift gioigon of the resonator
leads to an effective change in the detuning enéxd@y(equatior2.4.3. Hence, when
the resonator position fluctuates so will the detuning enevide can incorporate the
effect of the mechanical motion into the expression for tineent, equatior3.2.1, by
calculating it for a fixed position before averaging overitegonator state, an approach
that was also used i8f]. We make the replacementEl — AE 4 2mQ2z 2 to obtain
the current,

QeEgF
I(ac) - 2 2 272 2
4 (AE +2mQ2%z,x)” + k22 4 3E73
2¢e BT
el il (4.2.1)
B+ a(z)

where we have defined = 4AF + R*I'? + 3E% anda(z) = 16mQ%zs(AEx +
mQ?x,2?). Assuming the shift term is small, we perform a Taylor expamsf the
current abouty(0) = 0 to second order.

I(z) ~I(0) + «

: (4.2.2)
a(z)=0

a(x)=0 da (I)Q

and then take the average over the resonator position. Kgégims up to order? we
obtain,

16m%z,

(I) ;y = 1(0) {1 —— 5 {AE (z) +mQPz, (2*) (1 - 162E2) H

3% —16(mQ2%x,)? (2?) (B — 16AE?)
(% — 48mOPx2 AFEE? ’

= 1(0) (4.2.3)
where the averages are taken over the (Gaussian) steaelystagbility distribution
of the resonator. In the second line we have used equétiofito eliminate(x). The
value of(2?) ~ (z?) is calculated using equatighl.4 Although we have eliminated
(x) we can also approximate it to high accuracy using the uneabglirrent in place
of the actual current in equatienl.6

Itis clear from figured.2 that equatiort.2.3accurately describes the modification
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4.2. Fluctuating gate model

to the current due to the presence of the resonator. Thussim#ak coupling regime
where the resonator remains in a thermal state, the modbficat the currentis simply
due to two affects. A shiftin the resonator’s position gisesasymmetric shape. From
equationd.1.6this position shift will be negative so from equatidr?.3the current
will increase forAE > 0 and decrease fah ' < 0. Secondly a smearing out of the
JQP current peak due to fluctuations in the resonator positith tend to reduce the
current near to the peak and increase it either side. We geedguationt.2.3that the
decrease will be wheteAE? < T2 + 3E72.

For the current noise we naively replatdé& — AE + 2mQ%x,x in equatior3.2.2
to obtain,

32e2EAT (E2 + 2R°T?
Sp(x) = del(z) — BT (B )

3
(4 (AE + 2mQ2z,z)? + h2T2 + 3E§)
162 B2

— 4.2.4
(B + a(x))’ @29

= 4del(z) —

where¢ = 8E3 (E3 + 2h°T'2). As for the current this expression is expanded about
«(0) keeping terms up to second orderipand then the resonator position averaged
oVer.

S1(0) =de () 4,

C4EArg | 48mQPa, { 02 (2 ( 32AE2>}
5 AR (@) —m0, () (1- =5 ).
(4.2.5)
=de(I) [1 - 72mQQl§4E'2]¢AE}
AET [ s (o) () (- 9208%)] (426

The modification to the current noise is similar to that of tuerent in that there is

an asymmetry due to a shift in the position of the resonatdreasmearing out due to
fluctuations in the resonator position. However, sifig€)) is a dip rather than a peak
the changes in the current noise are in the opposite sense.

In contrast to the current, it can be seen from figigthat for the Fano factor,
equation.2.6does not capture the behaviour correctly. Although theitaiie shape
is the same with a central peak with dips either side, theesudo not match and the
asymmetry of the numerical curve is in the opposite directithat predicted by the
simple model.

The reason for the disagreement in the current noise istieatimple model of a
fluctuating gate neglects both the correlations betweerléarical and mechanical
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4.3. Mean field equations

motion and the dynamics of the resonator. The current nmism(trast to the average
current) is sensitive to the correlations between the SStFge and the resonator
motion and hence to describe it accurately we need to inchete in some way.

4.3 Mean field equations

A straightforward and systematic way to include correlagiand information about the
resonator dynamics are the mean field equations of the systmmely the equations
of motion for the expectation values of the SSET and resorgterators. The mean
field equations are generated in turn by multiplying the evastjuation by an operator
(or product of operators) and taking the trace over the fidtem p2].

For the SSET operators we have the five equations,

(Po), = 2%( (), — <c*>t) +T {p1),, (4.3.1)
(1) = —T (1), + T (pa),, (4.3.2)
(p2), = *Z];—;.L'( () — <CT>t) =T {p2),, (4.3.3)

= (<52 - 5 )+ 2ol — o)) 25 o), (43
(6, = (B~ 5 ey = 22t — ) + 22502 o), (225)

where(O), = Tr [Op(t)]. The coupling to the resonator appears in the last two oéthes
equations. We can also write down equations of motion forr#s®nator operators,
given here up to second order,

(@) = (V) (4.3.6)
(), = =0 (@), = 2.2 (p1), +2(p2), ) = Yeur (), (437)
(#2), = (@), + fva), (4.3.8)

(v2) = —92((av), + (v2), ) = 20,92 ((vp1), + 2 (vp2),)
— 2eat (V%) + % (1 + 2fieqr) , (4.3.9)

(zv), + (vz), = 2 (v*), — 207 (a?), — 2$SQQ<<IEp1>t +2 (zp2>t)

— Yewt ( (xv), + (va), ) (4.3.10)

From these equations we can derive some useful relationahgbobtain equatioh 1.6
From a trace over the charge and right hand junction curneetators in the steady-
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4.3. Mean field equations

state (equation8.7.3and2.7.8 we find,

(@) =e((p1) +2(p2)), (4.3.11)
(I) = eI ({p1) + (p2))- (4.3.12)

Equationd.3.2gives that{p;) = (p2) in the steady-state so the current and charge are

related by,
3
= —(I). 4.3.1
Q) = 55 (1) (43.13)
Then, from equationd.3.6and4.3.7, the relationship between the average position
and average charge in the steady-state is established,

Zs

(r) = ——(Q), (4.3.14)

€

which when combined with equatigh3.13 leads immediately to equati@gnl.a

No matter what order we go to the set of mean field equationshf®rSSET-
resonator system never forms a closed set. The equatida)f¢equatiord.3.4 con-
tains the second order terfmc). Calculating the the equation of motion farc) then
introduces a ternjz?c) (see equatiort.0.4 and so forth.

One approach to form a closed set of equations is to perfoensémi-classical
approximation from quantum optics. In this approximatienrelations between the
SSET and resonator are neglected (atom and field in quanttios p he replacement
(xe) — (x){c) would therefore be made. It is known as the semi-classigaiceqgma-
tion since the set of equations now describe a quantum mcthaevice coupled to a
classical harmonic oscillator. The semi-classical apjpnaxion was used to investigate
the SSET-resonator system Re.

In making the semi-classical approximation we remove sofrteenoise in the
system P2, 84]. From the mean field equations it is clear that higher ordemants
of the resonator such &s?) will not be involved. It is essential to include:?) since
we know from the fluctuating gate model, in the previous sectthat it is required
to describe the current. The state of the resonator is Gaussia very good approxi-
mation in the thermal regime. Any third order cumulants somator operators must
therefore be zero. It therefore seems sensible to extenapihi@ximation to include
the correlations of pairs of operators. In analogy to theisgassical approximation,
in which it is assumed that second order cumulants of theesysiperators are zero,
we instead assume that third order cumulants are zero. Bo#ing replacements are
of the kind,

(ac), — 2(x),(xc), + (<x2>t —2 <x>f) (c), . (4.3.15)

Crucially the correlations between products of two opesatoe retained. Further de-
tails of the method and the resulting second order mean fogléiteons are given in

57



4.3. Mean field equations
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Figure 4.4.Value 0f<x2> in the steady-state as given by the full numerical
solution ), solving the second order non-linear mean field equations
(mean and from the analytical expression in equatibf.4 (app). The
parameters used are the same as in figute

AppendixC.

The resulting set of equations is closed, butis non-lineaabse of the terms gener-
ated by the approximation. The steady-state of the systarbefound by numerically
solving the set of equations. In figude4 it is shown that the state of the resonator
as given by the value o(f:r2> is the same for the mean field equations as the full nu-
merical solution. Also shown in figuré.4is the predicted value from equatidnl.4
(<x2> = zgp (1 + 2n) for a thermal state), which also shows good agreement. The
value of the current in the steady-state obtained from therrfield equations is indis-
tinguishable from the results of the full numerical solatand fluctuating gate models,
shown in figuret.2, so is not shown here.

Although the set of non-linear equations fully describedfelution of the system
the calculation of the current noise can be simplified by fogra set of linear equa-
tions. With a linear set of equations we can use a method algmt/to that described
in Section2.6to find the noise spectrum. We can also calculate the eigeesalf the
evolution, which we make use of below.

The non-linearity in the equations comes from the use of theutants to break
correlations in the system. Without breaking these cadticela the evolution of the
SSET variables does not depend on equations for resonatoaitops alone. This sug-
gests that the equations of motion for the resonator vasadlone are not required to
capture the resonator dynamics. The evolution of the résoizincluded in the equa-
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4.3. Mean field equations

tions of the form(z¢). To recover a set of linear equations we replace the expectat
values of resonator operators alone by their steady-safies. The steady-state values
can be determined either from the non-linear set of equstitie numerical results or
the thermal bath model described in Sectoh

The new set of linear equations retains the correlationsdest the SSET operators
and position of the resonator and the dynamics of the resppasition. However, the
set of second order non-linear equations also containedythamics of<:z:2>t. To
include the same dynamics in the linearized equations wefihre have to extend the
equations to third order, so that the dynamic{ﬁ% are included in terms such as
<:17é > . We then apply the approximation to products of four opegatiNote that
this exttension to higher order is only to include the corthetamics of the resonator
it is not because the resonator state is not Gaussian (Weistilonly second order
moments to describe the resonator state). The third ordexf $@earized equations
includes both the dynamics and correlations that are pr@séme set of second order
non-linear equations.

The linearized equations can be written in the form,

p(t) = Ap(t), (4.3.16)

wherep(t) is a vector of the moments of the system ahis a matrix that describes

the evolution. The moments should be in a dimensionless fwrthatA then has
dimensions otime~!. The form of this equation is similar to equati@m.1with A
analogous to the LiouvillianZ. Both equations describe the evolution of the same
system but equatiof.3.16describes the evolution of a number of mean quantities and
is approximate. The steady-state of the linear equatiogisén by the null right hand
eigenvector ofA4, ro, and should of course have the same result as the second order
non-linear equations.

The calculation of the charge noise spectrum and curreisergpectrum for the
left hand junction can be carried out by use of the quantumessipn theorem. For
the right hand junction we use an electron counting variapfgoach 36, 61, 85] that
we previously used inZ4]. In AppendixC we describe in detail the approach for the
charge noise spectrum and give the relevant operatorsdautirent noise spectrum at
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each of the junctions. The resulting spectra are,

30 3T ~Am T ym
l rpl T
S8 qw) = 4R lz OQ_"—_”AQWO] : (4.3.17)
iw
p=1 D
30 4T T
Lo Il I rg
71,0 = |y BIETAR 4318)
p=1 P
30 1T tm T r1rm
Lo IFr Ll IR
7100) = 2618 Tro + 4% 2%1 @319
p=1 I4

where\;" are the eigenvalues of with associated right and left eigenvectegsand

lp,. Qm, I and I} are matrices that act as charge and current operators on the
mean field equations. Equations3.174.3.19are analogous to equatioRs’.4 2.7.7
and2.7.10for the full system.

In figure4.3the zero frequency current noise as predicted by the meamfietiel
is shown. The first thing to note is that the set of third ordetamfield equations
(meandn the plot) reproduce the numerical values exactly. Alsanghfor comparison
is the current noise as predicted by the set of linearizegrgborder equationsrean?,
which only include the first order dynamics of the resonalbican be seen that in
comparison to the fluctuating gate model they get the cosyentnetry but quantitative
agreement is lacking. However, we also note that reduciagtiupling reduces the
importance of the higher order dynamics which the seconeroretan field calculation
neglects. Figuré.5provides a clear illustration of this as it shows that thevselrder
calculation becomes accurate for low enough

If the mean field model is an accurate description of the ay$iten the eigenvalues
of A will be a small subset of those of the full system. The eigkrasafrom the
expansion give the time-scales of the system and can be assdlerstand the mean
field equations better.

The eigenvalues for a resonator in a thermal state can belatdd exactly §6].
The first few of which are given in table 1l The SSET eigenvalues can also be cal-
culated but they do not have a simple analytic form. In thersendting system the
eigenvalues are somewhat modified and further eigenvalilidsenntroduced. How-
ever, the eigenvalues can be separated into two groups bastugt real part of the
eigenvalues. SSET eigenvalues have a real palt and resonator eigenvalues have
a real part~ .. We always havé' > ., for our system and so there is a clear
separation.

The linearized third order mean field equations include #s®mnator dynamics up
to second order and so, as shown in table we should expectl to contain the res-
onator eigenvalues 5 + iQr, —y and—y £ 2iQy. The total dampingy, and renor-
malized frequency in the eigenvalues are given by equatidnSand4.1.3
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Figure 4.5. Change in the zero frequency Fano factor of the SSET due
to the resonator fox = 5 x 1076, All other parameters and labelling of
curves are the same as in figuré.

Order Eigenvalues
0 0
1 —214+iQp
2 — —y £1i2Qp
3 —2 Q| -2 +£i3QR
4 —2 —2y +i20p | —2v +i4Qp

Table 4.1. Eigenvalues for a damped harmonic oscillator. First order
describes the dynamics eft) andv(t), second order?(t), v*(t) and
{z,v}(¢), etc. ..
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Figure 4.6. Contributions to the current noise from different eigeres!
usingmean3model. —v, —3 + iQp and—y + 2iQr are the resonator
eigenvalues and SET is the total contribution from the SSET eigenval-
ues. The parameters are the same as in figuire

In figure 4.6 we plot the contributions to the current noise due to eaches$e
eigenvalues. The eigenvalues! + iQ2r give an asymmetry in the zero frequency
current noise. Complex eigenvalues correspond to feaatifeste frequency, which is
better understood by looking at the finite frequency curraige spectrum, which we
do in Section4.5. The eigenvalue-~ also has an important contribution to the current
noise and is the energy relaxation rate of the resonator.eigenvalues-~ + 2iQ2p
have a negligible contribution to the zero frequency noieeesthey correspond to a
noise feature far fromv = 0. The second order linearized mean field equations include
only the—1 & iQy eigenvalues which explains why they get the correct asymymet
but not quantitative agreement for the zero frequency atirreise.

Also shown in figure4.6 is the contribution from the rest of the terms in the ex-
pansion of the current noise. The other eigenvalues areecc$8ET type and have a
contribution equal to equatiof2.6(the fluctuating gate model). This shows that the
fluctuating gate model accurately captures the modificatidhe SSET current noise
that that occurs on the SSET time-scalél.
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4.4. Simple model of the resonator contribution to the aurnise

4.4 Simple model of the resonator contribution to the
current noise

The mean field equations as described in Secti@provide a complete description
of the system in the thermal regime. Using the fluctuating gabdel described in
Sectiond.2we can fully understand the part of the current noise that@cthe SSET
time-scale. In this section we develop a simple model toritesthe part of the current
noise on the resonator time-scale. In terms of the mean fipldt®ns we would like
to capture the part of the current noise due to the resonigtemealues-v, —4 £iQr
and—~y £ 2iQx.

In the thermal regime the resonator undergoes small fluotumabout some aver-
age positionzg, = (z). We assume that the current is just a function of the postfon
the resonator, and time, and perform an expansion ahgutVe work to second order
in position, which is sufficient due to the Gaussian naturtefresonator state.

oI (x,t)
Ox(t)

o 0%I(x,t)
Oz (t)? '

z(t) =g,

I(z,t) = I(zgp, t) + Z(2)

+ %:E(t) (4.4.1)

z(t)=zg,

wherez(t) = z(t) — =g, as usual. We make the assumption that the gradient of the
current is a constant in the steady-state and use the notatio

I' = lim Oz, ) ,
fmoo aw( ) z(t)=zgp
t)
= i 221 4.4.2
o0 Oz(t)? 8:1:(t)2 ot (4.4.2)

I’ gives the response of the current to a change in the posifitimearesonator (i.e.
the linear response)l” is the response of the current due to position fluctuations of
the resonator. To obtain expressions foandI” we differentiate equatioA.2.1and
retain terms up to second orderap,

2e B2 'm0z,

i _?’EJ# (AF + 2mQ2,a1,) (4.4.3)
64e E2T (mQ2x,)’ 16AE?

= 2 ﬁ(;” %) (1 65 ) (4.4.4)

where as befor@ = 4AE? + I 4+ 3F2. I’ has a zero ahE = —2mQ%z,xyp,
which is near to the peak in the JQP current, singds small.I”” has two zeros when,

AE =+ (h2F2 + E2). (4.4.5)

Performing an average over equatid.], in the steady-state, we obtain the average
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4.4. Simple model of the resonator contribution to the aurnise

current,(I)

ex’

I, = I(zg)) + % (Z*)1". (4.4.6)

If (I(z¢)) is also expanded to second ordetzinthen this equation is exactly equa-
tion 4.2.3for the fluctuating gate model. However, we have retaineddiveamics

of the resonator in equatich4.1and so can directly calculate the current noise from
the relevant correlation function. The current noise isrefifor operators about their
steady-state value and so we subtract equdtiérofrom equatiord.4.1to obtain,

I(x,t) = I(zgp,t) + 2()] + %:E_Q(t)l”, (4.4.7)

Note that the last term now containd(t) = 22(t) — (2?) rather thanz(t)? =
(z(t) — (x))*. We now perform the expansion of the current correlatiorfiom used
in the current noise,

(@t +7), I, 1)}) = ({T(@ep, t + 7). [(ws,1)})
FI2 ({2l + ), 2800 + 317 ({2 + 1), 22(0))
1| ({T(,t +7),8(0)}) + (@t + 7), T, 0)}) |
1 (it 4+ 7),22(0)) + ({22 +7), I 1)))

T[4 ), 22003 + (24 7). 2003 |
(4.4.8)

For a resonator in a thermal (Gaussian) state andx2(¢) are uncorrelated so the
last line here is zero. To obtain a simple model we also négfecthird and fourth
lines, which means neglecting the correlations betweerSBIET and resonator. By
neglecting correlations we are also neglecting the badkracontribution. For the
model to be valid any fluctuations that are caused in the egsomlue to the SSET
must be dissipated in the external bath of the resonatoer#tan be reflected back to
the SSET. This condition is satisfied for a large externapiermature and large external
damping of the resonator. Performing the required intémmnatie obtain the current
noise spectrum,

1
ST (W) = St 1 (er) + 17 Suw(w) + e "28 2 42 (W). (4.4.9)

The calculation of5,, , (w) andS,: ,2(w) for a thermal state is straightforward though
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somewhat involved, it is described in AppendixWe obtain the following spectra,

2 2
Spa(w) = Sl §1’ ) , (4.4.10)
(w? — QQR) + w242
16702, (w? + 492 + 402) [ (22)? = (2)*
202 (W) = ——— ( W) [() ] (4.4.11)

(@2 +92) (493 - w2)® + 4w2y?)

Sz, (w) consists of a peaks at = £Qr andS,: ,2(w) of peaks atv = 0, +2Qg.
The positions of these peaks are the same as we expect fasheator eigenvalues,
—3 £iQg, —y and—y £ 2iQg. In Section4.3we noted that the-2 + Q2 eigen-
values describe the first order dynamics of the resonatdsithe—~ and—~ + 2iQp
eigenvalues describe the second order dynamics (tabje Similarly S, ,(w) is the
spectrum of position fluctuations asg: ..» (w) the spectrum of:? fluctuations.

It is helpful to study the behaviour &, ,»(w) near tow = 0 so that its contribu-
tion to the zero frequency current noise can be better utatets We can use the fact
that<552>2 > (z)*, since the displacement of the resonator must be small. Fcys-
tem it is always the case, from our choice of parameterspthatz. Near tow = 0
it will also be true thatv < Q2. The bracket on the top &f,: ,2(w) can therefore
be reduced tdQ2% and the right hand bracket on the bottom can be reducedg,
since all other terms added to these will be much smallerh hiése approximations
the peak around = 0 is given by,

S50, (w) = w24+772 (z%)?, (4.4.12)
which is a Lorentzian of widthy and height <:172>2 /~. For the zero frequency cur-
rent noise the contribution from the~ eigenvalue term should be compared with
1" <x2>2 /7. Infigure4.7it can be seen that good agreement is obtained. Notice that
I"” = 0 at the steepest point on the JQP current curve, which froratem#.4.5is at

AE = £0.056 eVys for these parameters. At this point the current noise isisitige

to fluctuations in the noise of the resonator. This meansthieaturrent noise loses
some of the strong dependence on the variance in the res@uaition. The effect of

the smearing out of the current noise peak as captured byuittedting gate model in
Sectiond.2will still be present but we will lose the part due to the eryenrgjaxation of

the resonator described by they eigenvalue.

A striking example of this behaviour is shown in figui243and3.14for a low
frequency resonator. Observe that there are two minin&a(60) in the thermal regime.
The minimum forAE < 0 extends upwards in coupling through the transition to the
limit cycle regime. In contrask;, is increasing here as the coupling is increased and
the transition to limit cycle occurs. Although we do not pedtiis here, it would appear
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Figure 4.7. Eigenvalue contributions to the zero frequency currergeoi
—y and —% + iQp are from themean3model and/” <x2>2 /~ and
125, .(0) are the predictions for the same contributions using equa-
tion 4.4.9 The parameters are the same as in figute

that the result holds through the transition even thougtstate is no longer thermal.
A similar feature can also be observed in the strongly itérg regime as shown in
figures3.17and3.18

As shown by figurel.6, the other important contribution #; (0) to include is from
the —% + iQx eigenvalues. In this model the terfft S, ,.(0) is the relevant approx-
imation. However, as shown in figure7 this term goes no way towards describing
the feature in the zero frequency noise. This is unsurgisincel’? S, ..(0) is always
positive so can clearly not describe a decrease in the noigiee following section we
will study the finite frequency noise spectrum to better ustiad the reasons for this.

4.5 Finite frequency current noise in the thermal state

Based on the mean field equations and the simple model inoBet# we expect
5 peaks in the current noise spectrum as a result of the atie@nawith the resonator.
These correspondto the eigenvaluestiQ r, —y and—~42i€2g. Since the spectrum
is symmetric we will just investigate the > 0 peaks, of which there should be 3.
An example of the current noise spectrum calculated numigriusing the method
described in Sectio.7) is shown in figuret.8a Just like the zero frequency current
noise, the finite frequency current noise shows only weakifications from the case
of an uncoupled SSET. We have therefore subtracted thentumoése spectrum for an
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4.5. Finite frequency current noise in the thermal state

uncoupled SSET from the results. S&&,[47] for a discussion of the finite frequency
current noise of a SSET at the JQP resonance.

In figures4.8b—dwe compare the full numerical solution with the current rois
spectrum obtained from the third order mean field equatitircan be seen that good
agreement is obtained for all 3 peaks. To further confirm #aah of the peaks can
be associated with a single term in the eigenfunction exparnge should look at the
shape of the peak due to a single term,

Rimb ()] + (2 = w)3mb(w)]
B+ (=)

S (w) =2 (4.5.1)

wherey, = —R[\,], 2, = —S[)\,] and,

mb(w) =2 (lo| e Irp)(1p| T [ro)) + 2 (lo| Zr rp (1| T [70)
—w? (lo] Qlrp)(lp| Qlro))  (4.5.2)

This expression is obtained by taking equatidii.2 and then adding a single term
in the eigenfunction expansions 8§ ¢ (w), S, .1, (w) and Sy, 1, (w) given in equa-
tions2.7.4 2.7.7and2.7.10 The feature described b ;(w) will have a width~,.
For the resonator eigenvalugs is small and so the dependencenef(w) onw can

be neglected. The feature consists of a Lorentzian peakighh®[m/(w)]/~, and
width ~, and a resonance anti-resonance shape, which has a sizebgitles imagi-
nary part ofm’ (w). If X, is real thenm/ must also be real so that overall the current
noise is symmetric. From equatidrb.1if the peak atv = 0 is described by the single
eigenvalue;—~ then it should have a Lorentzian shape of widthwhich we confirm

in figure4.9.

In addition to the three peaks there is a slowly varying baalgd, which we as-
sociate with the modification to the SSET eigenvalue teriveg, was captured in the
zero frequency noise by the fluctuating gate model of Seeti@n The background
contribution is essentially constant over the width of tlealgs in the spectrum (since
I" > «) but varies withA E. In the following results we remove this shift as well and
just show the contributions from the resonator eigenvalues

We now investigate the change in the peaks with varyirig. Figure4.10shows
thew = 0 peak, which we established in figué€to be a Lorentzian shape of widih
This peak is entirely described by the simple model of Seectid, which predicted a
Lorentzian peak of width and from an investigation of the zero frequency noise (see
figure4.7) we established that the model also correctly capturesalghhof the peak.
The shape in figurd.10is therefore a Lorentzian of width and height/’” <:c2>2 /-

The peak atv = Q) is related to the position noise of the resonator. As shown by
figure4.8cit does not have the simple Lorentzian shape predicted bsitingle model,
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Figure 4.8. Finite frequency current noise spectrum for thermal stde r
onator forAE = 0 with the other parameters the same as in figufe
The finite frequency current noise spectrum for an uncouBBT has
been subtracted from the results. (a) shows the full ranipelleéed nu-
merically and (b—d) show the numerical solution (—) anddtleirder mean
field equations solution ¢) around each of the peaks
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Figure 4.9. Peak atv = 0 comparing the full numerical solutiomgm)
with a Lorentzian fit {it). HereAE = 0 and the other parameters are the
same as in figuré.1 The eigenvalue gives a widthy = 10.0 x 107°5T
and the Lorentzian fit has a width95 x 10=°T..
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Figure 4.10. F;(w) peak atw = 0 for varying AE from the third order
mean field equations. Only the contribution from the eigenvalue is
shown. The parameters are the same as in figLire
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Fyes(w)

w/Q

Figure 4.11. w = Qp peak for increasingic,;. AE = —0.055eVys
and the other parameters are the same as in figure Solid lines are
the —v/2 — iQp eigenvalue contribution to the current noise calculated
from the third order mean field equations and the dashed &ine$rom
the corresponding term from the simple modét 6., .. (w)).

1"?S, . (w). However, the shape is given by a single term in the eigepvakpansion

so the shape is described by equatiob.l The peak consists of a resonance part and
a resonance anti-resonance part.8¥ fhis feature was explained as a resonance peak
at the renormalized resonator frequency and an anti-reserst the bare frequency of
the resonator. The anti-resonance part is due to the bdidkad the resonator on the
SSET in the system, which was neglected in the simple modh&l eTfects of the back-
action can be reduced by increasing the external temperatuexternal damping of
the resonator. As shown in figudel1by increasing the temperature we can accurately
describe the peak using the teifiS, . (w).

Infigure4.12we investigate the = Q) peak for varying detuning. As shown from
equation4.1.3the renormalized frequency is less than the bare resonaguéncy
whenAFE > 0 and larger foAE < 0. Although the change in frequency is small here
the change in the asymmetry of the peak is evidence for tigeiérecy shift. The peak
vanishes al\FE ~ 0, which is predicted by the simple model as due to the vangshin
linear response (i.d/ = 0). Note that in figurel.8awe are very near this point so the
w = Qp peak appears quite small. By comparing figuéeldand4.12it can be seen
that in general ther = Q  peak is much larger than the one.at= 0.

In terms of the zero frequency current noise, we can now wwtaed the effect of
the —v/2 4+ Q) eigenvalue terms that was shown in figdré The variation in the
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Figure 4.12. F;(w) peak atw = Qg for varying AE from the third
order mean field equations. Only the contribution from thg — Qg
eigenvalue is shown. The parameters are the same as indigure

noise is mainly due to the strong back-action for these patars. As the asymmetry
of the peak changes this results in either an increase oedsein the current noise at
zero frequency.

The peak atv = 2Q remains small in the thermal state, as shown in figut&
It does show some asymmetry like the= Qg peak but the effect is smaller. The
asymmetry of the peak is not so apparent neako = 0 since the frequency of the
resonator is unchanged here. The height of the peak as adnmdtA £ varies due
to 1”2 just like thew = 0 peak. As shown in figuré.14the simple model describes
the peak to a good approximation, which shows that the batikraeffects are much
weaker for this peak than the= Qp peak.
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Figure 4.13. F;(w) peak atw = 2Qp for varying AE from the third
order mean field equations. Only the contribution from the — 2iQp
eigenvalue is shown. The parameters are the same as indigure
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Figure 4.14. Peak atv = 2Qpz comparing the—y — 2iQ2p term from
the third order mean field equations (mean3) with the comeging term
from the simple modeli([”QSzz_,xz (w)) atAE = 0 with the other param-
eters the same as in figudel.

72



Chapter 5

Transitions in the Dynamical
State of the Resonator

In Chapter4 we investigated the regime of weak coupling, where the rasorre-
mained in a thermal state, and found that the features seiie icurrent noise could
be understood entirely. In this chapter we no longer rastiicselves to weak cou-
pling and investigate the regime where the SSET drives thenagor into states of
self-sustained oscillations. We focus mainly on the zeegydiency current noise, in
particular, we discuss the transition regions in detail.

In Section5.1we give a brief review of transitions that occur and the tygfestates
for the three frequency regimes of interest by looking atgtd the current and current
noise. It will become apparent that the current noise in thable state is particularly
simple. The noise properties of a generic bistable systengi&en in Sectiorb.2
The results of Sectiob.2 are applied to our system in SectiérB to show that we
have a true bistability for certain choices of the paranset&éhe quantum trajectories
method (described in AppendB) can be used to model an experimenton an individual
guantum system. In Sectidn4 this method is applied to the SSET-resonator system.
Finally in Section5.5we generalise some of the results from the bistable transiti
better understand the current noise at the continuousiticanand in the limit cycle
state. In doing so we form a better understanding of the &igetion expansion of the
Liouvillian.

5.1 Areview of the behaviour of the system for moder-
ate coupling

In this section we review the behaviour of the system in theglirequency regimes by
calculating the current and current noise for some typieahmeters as a function of
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Figure 5.1. Current as a function oA £ for different resonator frequen-
ciesQ)/T = 0.12,1,10. In each case the values ©fand~.x; have been
chosen to ensure that the system reaches the limit cyckefstaht least
some values oA E whilst still remaining at low enough energies to al-
low a numerical calculation. Fd?2 = 0.12T, x = 1.5 x 10~2 and
Yext = 1x 1074 forQ =T, k = 5 x 1073 andye = 8 x 1074 T; and
forQ = 10T, k = 3x 1073 andyex;, = 3 x 10~*T'. The other parameters
are the same throughout,; = 1/16 Vs, 7 = 1 andiext = 0.

the detuning. We do this for moderate coupling, by which wamtbat the parameters
are such that the resonator is driven into the limit cycléestar AE < 0 but the
coupling is insufficient to form any of the more complex staseich as the multiple
limit cycles discussed in Sectidh7. The current is shown in figure.1 for resonator
frequencies of2 = 0.12T, Q = ' andQ2 = 10T". The current for2 = 10T" and
Q = 0.12T are slices through the 2D plots in figur@8and3.12respectively.

For Q = 10T the current is almost unmodified around the JQP peak and on the
scale of the plot can be taken as the uncoupled current, wéresidering the other fre-
guency regimes. AAE ~ —1.55 eV, the resonance corresponding to the absorption
of one photon per Cooper pair tunnelling is observed. Then&wr is in a limit cycle
state near to the resonance, which is reached via a consrramsition on either side.

For) = 0.12T the currentis suppressed near to resonance and enhantadéor
negative detuning. This behaviour is the same as seen fowvélaé coupling case
in Chapter4, but the change is much larger, particularly iz < 0. For negative
detuning the resonator is in a limit cycle state in the regidrere the current is seen
to be strongly modified (the location of the transition wikdome clearer shortly).
The transition between the fixed point and limit cycle statesurs via a continuous
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Figure 5.2. F;(0) for Q = 0.12T", with the other parameters given in fig-
ure5.1 The curve labelleciumshows the numerical value of the noise,
appis the approximate value of the noise using the first term imaeq
tion 5.3.2 andapp5+FF=%(0) is the first five terms plug? (0) for an
uncoupled SSET (equati&n5.?).

transition forAE ~ 0 and a bistable transition & F ~ 0.12¢Vy,. The current is
also modified on the positive detuning side but the changaishrsmaller and so not
apparentin figur&.1 The state of the resonator on thé” > 0 side is thermal and so
the models of Chaptetcan be applied.

For Q2 = I' the JQP current is strongly altered f&rF < 0. There is a strong
suppression of the JQP peak and peaks are seen corresptmtiiag, 2 and3 photon
resonances. The resonator is driven into a limit cycle statheA F < 0 side. Similar
to theQ2 = 0.12T case this transition occurs via a continuous transitioh &t~ 0. A
bistable transition is then seenafy ~ —0.5 eV, corresponding to a sharp change in
the current.

Figures5.2-5.4show the current noise calculated numerically for the saanam-
eters. For? = 0.12T" andQ2 = T the two peaks in the current noise correspond in
both cases to a continuous transition from a fixed point steadimit cycle atAFE ~ 0
and the presence of a region of bistability near the secanddt) peak inF;(0). In
between these two peaks the system is in a limit cycle statethE) = 10T case the
two peaks inF} (0) both correspond to continuous transitions (from fixed ptmiriimit
cycle state) with the resonator in a limit cycle state betwibe peaks. Also shown on
the plots are various approximations to the current noiseete introduced later in this
chapter.

75



5.1. A review of the behaviour of the system for moderate Gogp

x10°
10 T T
40
of | [ 1
‘ H
st | | | : Pi
‘E il [
7t i
no o : i
s | | f
< st i wof § | R
II 0 = - > R S
3ty ~04  -0.2 o |
L
21 : = — 1111111
1l \ = = = app
] I‘ app5+F7=9(0)
0 LR N - e ——.
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

AE/eVdS

Figure 5.3. F;(0) for @ = T, with the other parameters given in fig-
ure5.1 The curve labelleciumshows the numerical value of the noise,
appis the approximate value of the noise using the first term imaeq
tion 5.3.2 andapp5+FF=°(0) is the first five terms plug’(0) for an
uncoupled SSET (equatidn5.2).
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Figure 5.4. F;(0) for @ = 10T, with the other parameters given in fig-
ure5.1 The curve labelleciumshows the numerical value of the noise,
appis the approximate value of the noise using the first term imaeq
tion 5.3.2 andapp5+F+=Y is the first five terms plugy (0) for an uncou-
pled SSET (equatioh.5.9.
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5.2. A model of a generic bistable system

5.2 A model of a generic bistable system

The current noise for bistable regions in nanoelectromeichhsystems, such as the
charge shuttle, have been studied extensiv@®#91]. Before discussing the bistable
region for the SSET-resonator system we describe, in ttusose the features of a
generic system that has two current states. This genetablgssystem is truly bistable
in the sense that there are only two accessible internalsstet opposed to the SSET-
resonator system, where this can only ever be approximatedy The current char-
acteristics of a bistable system can be described by a mpdeified in terms of four
parameters, which are the currents associated with the tatess; and /., and the
switching rates between them Bf; andI's;. The current and current noise for this
two-state model take the simple for®Q, 92,

To1lh + T2l

D=7 7.
21 + 112

4(I*) (T'21 +I'2)

w? + (Do + I'12)?’

(5.2.1)

)

St(w) = (5.2.2)
where(I?) = I'yiT12(I1 — I2)?/(Ta1 + I'12)?, is thevariancein the steady-state
current. It is helpful here to make a distinction betweenugance of the current and
the current noise. The variance of the current is the secomdiant of the steady-state
current. The zero frequency current noise on the other tethetizero frequency limit

of the spectrum of current fluctuations. The latter includé&srmation about dynamics

of the system since it considers correlations in the culetwo times.

The simple two-state model can be applied to a more complstesyif it can
be described by two metastable states that are well enoymgtraged such that the
switching rate between the states is much slower than tles mtfevant time-scaleS0,
91]. From equatiorb.2.2we can see how slow switching rates between the two states
can lead to a large value for the current noise in this regikh@vever, we also note
that when the two metastable states give rise to very diftengrrents the large variance
that results can also make an important contribution to tieeat noise.

To test the applicability of the simple two state model we agaa the current and
zero frequency current noise together with estimates o€tineent in the two states to
calculate the switching rates from equatién®.1and5.2.2 In order to confirm that
the model then works we need a third expression. The cur@serinvolves a two
time correlation function of the current. We can extend thisigher orders and define
a three time current correlation function. Calculating alale Fourier transform over
this correlation function will result in the third order ecant noise,

S?(wl,wz)ztlggo/ dT1/ dro ({I(t +710), I(t + 1), I(t)}) e e™2™,
o (5.2.3)
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5.3. Proving the presence of a bistability

where{- -, -} is the symmetrized combination of the three operators. €helt will
in general depend on two frequencies and although cal@ithblinterpretation is dif-
ficult [93]. Here we require only the zero frequency limit of the thedtarder current
noise, which we will denoté?)) following the notation of 90].

(I7) = lim S7(wn,ws) (5.2.4)
wo—0

Just likeS; 1(0), (I*)) is independent of the junction, at which it is measured. For a
bistable systen{1°)),; is given by PO, 92,

6 <j2> (Il — IQ)(FlQ — Fgl)
(P +T12)3

(IPNei = (5.2.5)
Agreement between the bistable model and a calculatig/®§ provides good evi-
dence that the system is bistab®g].

Another prediction of equatioh.2.2is that the finite frequency current noise peak,
atw = 0 is a Lorentzian of widtH'5; + I'15. The presence of such a feature provides
further evidence of a bistabilitydfl, 94].

5.3 Proving the presence of a bistability

In this section we use the methods developed in the previext®s in order to prove
the presence of a bistability in the SSET-resonator systgethen go on to show how
this relates to the eigenvalue expansion of the currenendibe required parameters
for the two state model can be extracted numerically ask@lldrhe relative probabili-
ties of the two stateBs; /(I'21 + I'12) andl'ya/(T'a; + I'12) are obtained by inspection
of the steady state probability distributidt(n). Setting those elements of the steady
state density matrix, which correspond to just one of thedtates, to zero and recal-
culating the current then allows the curreftsand/; to be obtained. Finally, the sum
of the rated™;5 + I'31, and hence the individual rates, can be determined by cangpar
the current noise (calculated numerically) with equaidh?2

To calculate((73)) we use the result given if], which is valid for the right hand
junction,

(1) = (lo| Zr |ro) — 6 (lo| ZRR(0)ZR |ro)) + 6 {(lo| ZRR(0)ZrR(0)ZR |ro))
— 6 (lo] ZRR(0)R(0)ZR |ro)){lo| Zr [ro)) (5.3.1)

whereR (w) andZi were defined in equatior’s6.12and2.7.8respectively. We can
only apply the two state model when two meta-stable statesigambiguously be de-
fined (i.e. theP(n) distribution for the resonator steady state should havep®aks
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Figure 5.5. Comparison of humerical resultsym with the predictions
for a bistable systenh() for @ = I', with the other parameters given in
figure5.1 (a) Value of((13)) as a function ofAE. (b) Finite frequency
current noise peak around= 0 for AE = —0.497.

with a vanishingly small probability for some rangerofialues in between). If this is
not the case then it is not possible to separate the densttyxritao parts correspond-
ing to each of the states. Generally we can apply the methes @ I". The method
can be applied to the bistable state seed At~ —0.5 eVy; in figure 5.3 (2 =1I") but
not to the bistable state &~ ~ —0.12 eVys in figure5.2 (2 =0.12T"), where there is
significant overlap between the limit cycle and fixed poiates.

In figure 5.5awe compare the value df/3)) obtained numerically with the two
state model by following the above procedure. It can be de@rtihe values obtained
for the third cumulant from the full numerical solution argétbistable model are in
agreement. Shown in figue5bis the finite frequency current noise peak calculated
numerically atw = 0 (see Sectior2.7) compared with a Lorentzian given by equa-
tion5.2.2 for a value ofA £/ near the middle of figur.5g which is also in agreement.
These results show that the simple two state model is valithfe set of parameters.

To better understand the bistable model it is helpful to beestgenfunction expan-
sion of the current noise (see Sectdid). For the zero frequency current noise at the
left hand junction this is (see equati@ry.?),

St (0) =43 % (ol Zo Irp Wity | T o) (5.3.2)

For comparison a similar expansion of the variance in thedstestate current, also for
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the left hand junction, is,
(R*) = (13) - (1)
=3 (ol Zr Irp)(p| Zr, ro)) - (5.3.3)

The variance is given by a sum over the same matrix elemerttseasurrent noise,
but this time unmodified by the eigenvalues, Each of the eigenvectors of the Li-
ouvillian |r,)) describe a change to (or fluctuation away from) the steadg $tat
decays with a purely exponential rat&e(),) (See equatio?.5.3. Thus, the matrix
element({(lo| Zz, |rp){Ip| Z1 |70)) can be thought of as theariance in the current due
to a fluctuation of typ@. We then see that the current noise consists of a sum over
the variances due to each type of fluctuation, each dividethéyate at which that
fluctuation decays.

It is clear from equatios.3.2that if |\;| < |)\2|, then we expect the current noise
to be dominated by the first term, which corresponds to the@edbtime-scale in the
system. This is in indeed what happens when the system hadl-defiaed bista-
bility. In this case an obvious connection can be made wightivo state model de-
scribed in Sectiorb.2 (i.e. equation.2.2. The smallest eigenvalue corresponds to
the sum of the rates \; = I';5+1'9; and the numerator gives the current variance,
(ol T [ri (11| T1 [ro)) = (I?).

The relationship between the two state model and eigeritmeixpansion also
extends to the finite frequency current noise. The first tefriimeexpansion of the finite
frequency current noise at the left hand junction is (seatgu?2.7.7and discussion
below equatiort.5.7),

Sh 1 (@) = — o (ol T (| T o) (5.3.4)

A2 + w2

Using —A1 =12+ D21 and (lo| Zp [r1)){(l1| T2 |ro)) = (I?) this is identical to equa-
tion5.2.2

Although we have used the current noise at the left hand ipmdtere an identi-
cal result can be obtained for the right hand junction. Thibécause;, 1, (0) =
S1..1,(0) so if a single term of the expansion descrilsgs ;, (0) then we must have
(ol Ze lro W | T [ro)) = (lo| T lr (11 | Zr o). The2e (I) part of Sy, 1,,(w) can
be neglected when the current noise is large.

5.4 Quantum trajectories

In an experiment, on the SSET-resonator system in the léstadiime, one would hope
to be able to monitor the current with sufficient time resiolutto observe the slow
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switching between two distinct values of the current disedy using the method of
guantum trajectories we can model what might occur in anl ielg@eriment 82, 95,
96].

A full description of the method is given in Appendi The basics of the method
are that we have an ideal detector that can detect when apardisilie tunnels across
the right hand junction. By use of the quantum trajectorieshod we can obtain a
density matrix conditioned on a particular measuremerdree(@.e. the times at which
detections are made). The measurement record could beettmom an experiment
but, as described in the appendix we can make use of randorherarto perform a
simulation. We will first use the example of a SSET alone tesitate how information
is gained about the system based on the detection of quegilps

In figure5.6awe show the values df,), and(p), for the beginning of a typical
trajectory. We assume that the experiment is set up=at-oo and then the detector is
switched on at = 0 so that the initial density matrix is the steady-state dgmsatrix
of the system. The probabilities for the two states aredilhjtithe same, since this is
the case for a steady-state. Then over time the probalulibetin the|l) state rapidly
decays. The reason for this is that there is no way of acap#isé}l) state except for
a quasi-particle tunnelling and so unless a quasi-paisdietected the probability of
this state must decay away. The probability for [thestate shows strongly damped os-
cillations before coming to a steady value. These osalfetiare due to the Josephson
coupling between th@) and|2) states and are damped by the quasi-particle tunnelling.

At t = 19.2T" a quasi-particle is detected. The detection of a quasigatun-
nelling event corresponds to a rapid change in our knowlefltiee state of the system.
Before the quasi-particle tunnelled across the junctier@8ET must have been either
in the|1) or the|2) state (see figur.5). After the quasi-particle tunnelling the SSET
must now be either in th@) or the|1) state. The expectation values of the charge
states are changed according to,

<p0>t+dt _ < <p1>t

Mv P1)irar = Hp;ﬁv (P2)4iqr =0, (5.4.1)

pi); + (p2),

where the terms on the bottom ensure the density matrix resmairmalized. Since
before the jump(p;), was small the SSET is most likely in the) state following
the first jump. A second quasi-particle is detected a shove tiater { = 20.4T).
Following the second jump the SSET is most likely to be in ttateq0) state since
before the jumpp,), was large. In between the pairs of quasi-particles we again s
strongly damped oscillations @f-), due to the Josephson effect, which are strongly
damped due to the large dissipation.

It can be seen in figurg.6athat after detecting a small number of quasi-particles
we can be sure of when the SSET is in thgstate and when it is in a superposition
of the|0) and|2) states. In a more realistic experiment we should also ircthihgs
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Figure 5.6. Quantum trajectories: (dp:), and(ps), for SSET alone, (b)
(p1), and(p2), with resonator, (c) and (d)), and(n), for the same tra-
jectory as (b). Parameters for (a) &xé> = —0.15eVqs, By = 1/16 eV,
andr = 1. Parameters for (b—c) al®E = —0.45eVys, k = 0.005,
Q=T,E; =1/16 Vi, Yoxt = 8 x 1074 T, = 1 andiey; = 0.

such as the efficiency of the detect®7], which would lead to some uncertainty in the
state of the SSET.

The method can be extended to include the resonator as weltowd assume that
each photon or phonon that is absorbed and emitted by theatsaan be detected.
For a superconducting stripline resonator the main losshar@sm is through the ca-
pacitors at the ends of the resonator so this detection rbggfeasible experimentally.
For a mechanical resonator, however, the losses cannotdei®and so this would be
an unrealistic model. We therefore assume that we have the datector but the evo-
lution now includes the resonator also. Calculating theeetattion values of resonator
operators will tell us the information we have gained abbetdtate of the resonator
from the detection of quasi-particles.
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5.4. Quantum trajectories

In figure5.6bwe again showp: ), and(p.), for the beginning of the evolution but
now with coupling to the resonator. For the parameters ehtbeeresonator is in a limit
cycle state(p;), behaves as before by initially going rapidly to zero and leetwthe
two quasi-particle tunnellings during each cycle to a valiene. However(p,), now
shows continual oscillations rather than the strongly dednpscillations observed in
the uncoupled case. These oscillations become more appaltewing the detection
of the quasi-particles. We can understand this from theraafithe coupling in the
device. The charge of the island is coupled to the positioth@foscillator. The res-
onator therefore oscillates about a different fixed poiesteling on the charge of the
island. Any knowledge we gain about the island charge mesetbre give us some
information about the position of the resonator. As seergaré5.6¢ (x), is initially
zero since we have no knowledge about the phase of the d¢scillarom the initial
changes in the island charge we gain some knowledge abopih#se of the resonator
so we see oscillations ifx),. The position of the resonator modifies the detuning of the
SSET so the oscillations are also presenis),. Following the detection of a quasi-
particle we see much larger oscillations in the, since we gain additional knowledge
about the phase of the oscillations due to our increased lenlow of the charge. Fi-
nally we can investigate the average energy of the resoshatwn in figures.6d For
these parameters... = 0 so the resonator can only gain energy from the SSET. We
therefore observe an initial decay ¢f),. The current through the SSET here would
be almost zero in the absence of coupling to the resonatarlkeoving the detection
of the first quasi-particle in the cycle it is very likely thewme energy is transferred
from the SSET to the resonator. We therefore see a jump inrtéeyg following the
detection of the first quasi-particle but not the secondesthés does not give us any
further information.

We now investigate the case of a bistable region. The cuffenthe limit cycle
and fixed point states are very different, which leads to gelaariance in the overall
current as seen in the previous sections. In terms of thect@jes, the limit cycle state
has higher energy than the fixed point state, which must ttaisesl by the detection
of a large number of quasi-particles. Conversely for a fixeidipstate there must be a
sufficient gap between tunnelling events in order for themesor to relax. The limit
cycle state is therefore the state with the higher currehe fivo states here are less
well separated here than the bistability we studied in 8ad&i3 The reason being
that numerical time evolution is slow and needs to be camwigdfor a long enough
time that a large number of switches between the fixed poiatianit cycle occur. In
figure5.7awe show the evolution of), for these parameters and the associdtéd)
distribution in figure5.7h The value of(n), spends time mainly around = 0 and
n = 25, which correspond to the peaks in tR¢n) distribution, this confirms that the
quasi-particle detection tells us when the resonator ikénfixed point or limit cycle
states.
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5.4. Quantum trajectories
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Figure 5.7. (a) Quantum trajectory ofn), for bistable region. (b) Asso-
ciatedP(n) distribution. Parameters ateFE = —0.473 eVys, k£ = 0.016,
Q=T,E; =1/16€eVis, Yoxt = 0.003T, 7 = 1 andniext = 0.

The trajectory of(n), can be used to calculate the waiting times in the limit cycle
and fixed point states and hence calculate the switching batisveen the two. As seen
in figure 5.7ait is not always clear which state the system is in. By chapsitbetter
separated bistable state the situation is improved, hawaeetunnelling rate between
the two states can then become very slow and so the lengtmeftéiken to simulate
the trajectory is too long. First the centre of each stateeterinined, either from the
P(n) distribution or estimated from the trajectory. The systenthien said to have
entered the state when), passes this mid-point.

The tunnelling rate out of a state is given by the inverse efdherage time the
system spends in the state. Adding up the number of quasiéipardetected while in
each state gives an estimate of the current in each of thessstahis provides another
method of determining the rates and currents in equatichd and5.2.2 Using the
parameters in figurd.7 we obtain the following results from the trajectories.

I, = 0.0127 Iy = 0.049
s =6.99 x 107° Iy =513 x107° (5.4.2)

Then by use of equatioris2.1and5.2.2we can calculate,

(I),; = 0.034 S%1(0) = 10.66
g4+ T9 =121 x 1074 (5.4.3)
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The numerically obtained values are,

(I) =0.033 S1,1(0) =145
~A =1.20x%x10714 (5.4.4)

The bistability here is not sufficiently good to get the cot@irrent noise but we obtain
good agreement for the current and between the eigenvatlistan of the switching
rates.

5.5 Transitions and time-scales

In general, we cannot describe our system in the vicinityhefdynamical transitions
by a simple two-state model. As we have seen, even wheredhsition involves a
region of coexistence between the limit cycle and fixed pstiates the states may not
be well enough separated for a two-state model to apply. NMeacontinuous transi-
tions between the limit cycle and fixed point states thereck@ly not just two states
involved. However, one element of the two state model whigphinbe expected to
apply more widely is the emergence of a single very slow taoale, which dominates
the current noise. In the case of the continuous transitich a slow time-scale might
result from the vanishing effective dampingd.; +7.x¢) Of the system at the transition.
In what follows we use the eigenfunction expansion of thaikithan to investigate the
extent to which the current noise can be described by a siagieof this expansion.

More generally, it is not just a slow time-scale that is intpat. For a single term
in the eigenfunction expansion (equatidr.2 to accurately describe the noise, the
matrix element divided by the eigenvalii| Zy, |, ){(1,| Z1, |ro)) /A, fOr p = 1 must
be much larger than for ap > 2. In figures5.2-5.4 we compare the full current
Fano factor with approximations using just the first termdou&ion5.3.2 The peaks
at the transitions are described quite well by just the fesmtin the eigenfunction
expansion. Away from the peaks, however, we find that theenigiiot captured by
the approximation based on the first term. It is particulatbar in figure5.4 that
something is missing from this approximation. The featuheg are simply due to
the SSET alone are not captured, such as the dipZat= 0 and the Fano factor
of 2 far from resonance. We can understand this better byidemsg the meaning
of the eigenvectors and eigenvalues of the Liouvilliéd, [86]. The meaning of the
eigenvalues when the resonator can be described by a thetatalwas previously
discussed in Chaptér We repeat some of this here for clarity.

In the limit x — 0 the SSET-resonator system becomes uncoupled and the eigen-
vectors and eigenvalues of the system can be expressedria ¢éithose of the indi-
vidual subsystems, namely the SSET and the resonator. \Wkaedonator is decou-
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5.5. Transitions and time-scales

pled from the SSET it still remains coupled to the extern@hlzad its smallest (non-
zero) eigenvalues are integer multiplesygf; (Section4.3) [86]. Thus the smallest of
these eigenvalues corresponds to the energy relaxatmofrtite resonator; ey, and
hence we can infer that the corresponding eigenfunctioarites fluctuations in the
resonator’s energy. There are also a set of eigenfunctammsdorresponding eigenval-
ues) that describe fluctuations in the SSET charge statdelnricoupled regime the
current noise of the SSET can be obtained using equat®2 with the sum running
over just the SSET eigenvalues, though we already know thdtreill be given by
equation3.2.2

For the coupled SSET-resonator system we can still idethiyeigenvalues and
eigenvectors as corresponding to one or other of the sidmagsby looking at their
behaviour for large detunings (i.e. larg& F|) where the systems are effectively de-
coupled. The first few eigenvalues, which correspond to ¢ésemator, are shown (for
the slow resonator case=0.12T") in figure5.8as a function ofAE. These first few
eigenvalues indeed converge towardg.x, —27ext, - - - for large detunings. Thus at
least for large detunings the first eigenstdts,), should therefore represent fluctu-
ations which change the resonator energy. This can be cadiby performing an
eigenfunction expansion of the variance in the resonatergsn

(7%) = (Lol N rp)(Ip| N [ro)) (5.5.1)

p=1

whereN |p(t))) = np(t) = a'ap(t). As before we plot the resonator Fano factor,
F,, = (n?) / (n), rather than the variance. The full numerical calculatibthe energy
variance is compared with approximations based on the &rst &nd first 5 terms in
the eigenfunction expansion in figuse9. It is clear that only the first term is needed
to describe the energy fluctuations for large detunings agxpect. However, the
approximation based on the first term also describes thggflactuations rather well

at the peaks where the transitions occur, but not in betwéderermthe resonator is in

a limit cycle state. However, figure.9 also shows that we can describe the energy
fluctuations throughout by using more terms in the eigertfane@xpansion.

We are now in a position to understand why the calculatiorhefdurrent noise
using just the first term of the eigenvector expansion wosksell as it does and to see
how this can be easily improved upon. Comparing figlr@sand5.91t is clear that
the single-term approximation to the current noise matthesiumerical results well
around the two peaks marking the transitions (between tled fdoint and limit cycle
states) where the first term in the eigenfunction expandiem @escribes the energy
fluctuations in the resonator accurately. The fact that tfs¢ erm in the expansion
does not capture the current noise far from resonance isunptising as it only de-
scribes fluctuations in the resonator state and does natdacdhe fluctuations of the
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Figure 5.8. The five smallest (non-zero) eigenvalues as a function of the
detuning,AFE for Q = 0.12T, with the other parameters given in fig-
ure5.1 The inset show$g,,(—A,/7ext). The eigenvalues differ from
each other by less than one order of magnitude throughout@meerge
towards integer multiples of... for large|AFE].
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Figure 5.9. Energy fluctuations of the resonatdt,, as a function of
AFE for Q = 0.12T, with the other parameters given in figsel. The
three curves show the full numerical calculatiorum and approxima-
tions using just the first termgpp and the first five termsapp5 of the
eigenfunction expansion (equatibrb.]) respectively.
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5.5. Transitions and time-scales

SSET degrees of freedom. We can easily obtain better agredardarge detunings
by extending our approximation to include the contributafran uncoupled SSET,
Fr=9(0), given by equatior8.2.2 Better agreement within the limit cycle region can
be attained by using sufficient terms in our approximatioersure that the fluctu-
ations in the resonator energy are described accuratelys We arrive at our final
approximate expression for the zero frequency currenenois

m

{lo|Z, {1,|T,
F (0 FK, =0 22 0| L |rp | L |7’()>> (552)
p=1

e(I) ’

wherem should be large enough so that the corresponding numberrogtean be
used to calculattéﬁ2> accurately (via equatiod.5.7). In this case we findn = 5 is
sufficient, and the current noise calculated this way agresswell at almost all points

as shown in figure§.2-5.4. The one area where good agreement is still lacking using
equations.5.2is within the limit cycle region fof2 = 10 I, shown in figures.4. This

is because we have approximated the contribution to therunoise arising from the
SSET terms by the uncoupled value. In fact these SSET terensteimgly modified
due to the resonant absorption of energy by the resonatortfite Cooper pairs at this
point.

From these approximations it is clear that in the vicinityrad resonator transitions
the current noise is largely determined by the slow fluctuettiin the energy of the
resonator. This is because the current depends in the fatstnice on the resonator
position and hence on the latter’s energy (as this is slowhnging compared to its
period). Thus the current fluctuations depend strongly erfltictuations of the res-
onator energy, rather than those of higher moments of thenagsr. Thus wheiin?)
depends on more than one term in the expansion, the curriset thoes also.

It is important to note that even in the regions where incigdust the first term
in the eigenfunction expansion describes the current riaidg well this is not simply
because the associated eigenvalue is very much smalleathtre others. We can
see from figuré.8that (for these parameters) an overwhelming differencedsen the
slowest two eigenvalues never develops and from fi§ut§ that the relative size of
the corresponding matrix elements is important in caudiegfitst term in the eigen-
function expansion to dominate.

The other frequency regimes also show interesting featorthe expansion of the
resonator Fano factor. As shown in figird 1we again require more than one term to
fully describeF, in the limit cycle region for the case 6f=T". In the low frequency
regime (figures.9) there was a smooth deviation of the one term approximatimm f
the actual value in the limit cycle region. In the inset of figb. 1 1it is clear that instead
there are abrupt changes seen in the one term approximatiad; ~ —0.2 eVgs and
also just to the right ofA E = 0. Note that these changes are also seen in the one term
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Figure 5.10. Variance part of the current noise for the first 3 terms of
the expansion (equatidn3.2) for = 0.12T", with the other parameters
givenin figure5.1 Thep = 1 variance is much larger in the same regions
as the peaks in the corresponding plot of the current nogereb.2

approximation of the current noise, although they cannatiéarly seen in figuré.3.
The reason for this can be understood from a plot of the eajaas that correspond
to the terms used in the expansion. As shown in figude there are a number of
crossings present in the eigenvalues. There is a crossifigratr —0.2 eV and also
for AE > 0 (although less clear). The point at which the single ternrexmation
fails corresponds exactly to these crossings.

From a plot of the first few terms in the eigenfunction expansif F,,, which
is shown in figures.13 it can be seen that for the majority of the limit cycle region
only one term is required. However, this term does not nec#gsorrespond to the
smallest magnitude eigenvalue. At the crossingfd? ~ —0.2 eVy, the new smallest
eigenvalue develops into the bistable switching rate amcecty captures the noise
in the bistable region. However, when the system is not lbiisté is not the correct
term to describé", or F;(0). It can be seen from figurés12and5.13that it is the
same eigenvalue that leads to the correct single term ajppation to 7, but that it
undergoes a number of crossings.

For the case of) = 10T, as shown in figuré&.14 the smallest eigenvalue is
sufficient to capturé’,, except for near to the transitions. The eigenvalues do ratscr
at this point, as shown in figuf 15 but the smallest two become close. During the
transition region the first few terms have an important dbation. The one term
approximation to the current noise at the transition wdkggtite good since the first
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Figure 5.11.Energy fluctuations of the resonatéy,, as a function o\ £/
for Q = T', with the other parameters given in figurd. The three curves
show the full numerical calculatiomum and approximations using just
the first termappand the first five termsapp5 of the eigenfunction ex-
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Figure 5.12.The five smallest (non-zero) eigenvalues as a function of the
detuning,AE for 2 = T, with the other parameters given in figusel

The inset showdg;,(—\,/7ext)- A clear separation of eigenvalues can
be seen in the bistable region.
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Figure 5.13.First five terms in the expansion ()n‘ﬂ) (equatiorb.5.7) for
Q =T, with the other parameters given in figue. One term generally
dominates but it does not always correspond to the smalgstealue.

term captures most of the peak and the eigenvalues provatgea $caling. The state
of the system during the transition is similar to that in timeitl cycle for Q@ = 0.12T
where more than one term was also required to deséfibd he state of the resonator
at these points was previously described in Secdidiwhere a discussion of the state
of the resonator during the continuous transition was maaé¢hese cases thB(n)
distribution consists of a Gaussian like shape with a shatpff atn = 0 due to
the width being larger thafn), an example of which was shown in figused. For

Q = 10T andf2 = I" we obtain 'good’ limit cycle states (i.2(0) ~ 0) in the regions
where only one term is required to descrije For() = 0.12T" this is not the case for
the parameters used here.

In conclusion, for the regimes studied in this chapter, ttagomity of states of the
system have a value df, that can be described by a single term in an eigenfunction
expansion of the Liouvillian. The exception to this is limijtcle states wher&(0) 2~
0. The corresponding term in an eigenfunction expansion efcilirrent noise also
describes the dominant contributionfip(0) that is different from the current noise of
an uncoupled SSET.
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Figure 5.14. Energy fluctuations of the resonatdt,, as a function of
AFE for Q = 10T, with the other parameters given in figusel. The
three curves show the full numerical calculatiorum and approxima-
tions using just the first termgpp and the first five termsapp5 of the
eigenfunction expansion (equatibrb. 1) respectively.
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Figure 5.15.The five smallest (non-zero) eigenvalues as a function of the

detuning AE for @ = 10T, with the other parameters given in figuré.
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Chapter 6

Finite Frequency Resonator
Noise Spectra

In this chapter we discuss the dynamics of the limit cycléeae@ some more detail.
In order to do this we make use of several finite frequencyensiectra of resonator
operators. Throughout we make comparisons between the-8SBmator system and
a laser. In particular we investigate the linewidth of theoreator, which is introduced
in Section6.1. We show that as for a laser the linewidth in the limit cyclgioa
is dominated by phase diffusion. In Sectidh& and6.3 we give the results for the
Q> T"and) ~ I" regimes respectively.

6.1 Calculation of the resonator linewidth

The linewidth of a laseryq, is defined as the width of the peak in the emission spec-
trum, at the frequency of the resonat@i]. Above threshold the linewidth of a laser
becomes very narrow indicating an almost monochromatitt Bgurce. The emission
spectrum is defined as,

o0

Sp.at (W) = tlgIolo dr ({a(t + 1), at (t)})e™T. (6.1.1)

The numerical calculation of spectra such as these wasideddn Sectior2.6. We
could equally use,;+ ,(w), in the definition of the emission spectrum, since for sym-
metrized noised, ,i (w) = Syt o(—w). We chooses,, .+ (w), since it has the peak for
w > 0. The correlation function, in the emission spectrum, cgpoads to putting in

a photon at time then removing it at + 7. The spectrum was measured in the ex-
periment of a SSET coupled to a superconducting striplinerrator 80]. To do this a
small microwave drive was applied to the cavity and the eimisBom the cavity was
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6.1. Calculation of the resonator linewidth

measured as the frequency of the drive was varied.

We can identify two sources of noise in the resonator thatrifirie to the finite
linewidth. These are the amplitude noise and the phase.nbiseamplitude noise is
characterized by the amplitude relaxation ratg, In the limit cycle region the ampli-
tude noise leads to the finite width of of the ring in the Wigdistribution (figure3.1b.
The phase noise is characterized by the phase diffusiomyatdn a laser the phase
noise is due to jumps in phase associated with spontanedssiem[/7]. The equiva-
lent process in the SSET-resonator system is the energpegetbetween the Cooper
pairs and resonator.

The linewidth can depend on one or both of the diffusion raberder to show,
on which one it depends it is helpful to be able to calculatettho rates indepen-
dently. The amplitude relaxation rate can be found from hecsum of amplitude
fluctuations,

ge.el

Spon(w) = tlglolo 3 dr ({n(t +71),n(t)}) ™7, (6.1.2)

which will have a peak at = 0 with a width-,,.

In order to calculate the spectrum of phase fluctuations wst st define an
operator for the phase. There is much debate over the cdomeetfor the phase op-
erator [/3]. We choose to use the Susskind-Glogower opera@8s99], which are
valid so long as the occupation of the vacuum state is nédgigir 3]. This condition is
not restrictive since for a limit cycle state, where the ghiaof interest, the condition
must be met. The two operators are analogous to the expahghéise factors;, =,
and are defined,

p=(n+1)"%a=(aa’)"2a= Y [NYN +1],
N=0

pi=altn+1)72 =al(aal) 2 = i IN + 1)(N]. (6.1.3)
N=0

We define the phase noise spectrum in a similar manner to tlesiemspectrum,

oo
ppt (@) = lim dr ({p(t +7),pf()}) ™. (6.1.4)
—0

For a laser above threshold the linewidth is dominated bptizse noiseq7]. In order

to show that this is also true for the SSET-resonator systendevive a relationship
between the emission and phase noise spectra that is valdléser. Under the as-
sumption thatyy, < v,, the amplitude relaxation occurs on a much faster timeescal
than the phase relaxation. If this is true then we can nefjlettuations in the ampli-
tude and assume that it takes its steady-state value. Tlhesiiog relationship between
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Figure 6.1. Shows thatS,,:(w) = (n)S,,t(w) which means that
amplitude and phase noise are uncorrelated as discusseddaegua-
tion 6.1.5 Parameters ar@ = 10", AE = —1.58¢Vys, k = 0.003,

Yext = 3 X 10741, By = 1/16 eVys, r = 1 andfiexy = 0

the emission and phase noise spectra in the limit cycle mezaa then be derived,

4o

Saat (W) = lim [ dr<{(n(t+7)+1)1/213(t+7),(n(t)+1)1/2p?(t+7)}>em
= fm _OO ar ({7 Bt + 7). ()7 pi (¢ 4 1)} ) €7
= (n) Sy pt (W) (6.1.5)

In the first line we have used the definition of the phase opesajiven in equa-
tion 6.1.3to replacez anda’. In the second line we have replaced) andn(t + 7)
with the steady-state valué,), and additionally assumeg) > 1, which is true for
the limit cycle state. Removingr) from the integral then leads directly to the final
line. In figure6.1we show the relationship to hold for the SSET-resonatoesygor
a set of parameters in the limit cycle region. Below we withatin a different manner
that the relationship holds throughout the limit cycle cegi

It can also be seen in figuBelthat the peak in the emission spectrum is symmetric.
We would expect this to be the case for all peaks in resonptmtsa. The reason for
this is that, as discussed in SectiB, the asymmetric shape in the current noise peaks
is due to the back-action of the resonator on the SSET. Tharagyry was removed
by the addition of a large external damping or temperaturéi®resonator. Since the
dissipation in the SSET is large (due to the large valuéiofcomparison to other time-
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6.2. Phase Diffusion fan > T"

scales) any back-action effects will be removed and peakiseispectra of resonator
operators will be symmetric. A small renormalization of teeonator frequency to the
valueQ i can also be seen in the figure.

6.2 Phase Diffusion for2 > I'

In Section5.5we found that thén?) could be described by a single term of an eigen-
function expansion when the resonator was in a fixed poinboddimit cycle state. If
this is true thers,, ,,(w) is also described by a single term in an eigenfunction expan-
sion since the same matrix element part will appear. Whersitigle term approxima-
tion is valid, S,, »(w) will be given by a Lorentzian peak of the form,

) = 413" e (ol A o)
1
—iw — )\1

4 <ﬁ2> Yn
—_ m. (6.2.1)

~ 4R [ } (ol N Tr (11| A o)

If the single term approximation is valid then\; = ~,, and so the amplitude diffusion
rate can be calculated without resorting to a calculatiotheffull spectrum of ampli-
tude fluctuations. In figuré.2we compare the width of the = 0 peak in theS,, ,,(w)
spectrum as determined from a Lorentzian fit to the smallestzero eigenvalue of
the Liouvillian. They are in agreement except for aroundtthasition region where
we do not expect the expansion to work (see Sediéh

Similarly the peak in the emission spectrum is also likelyotodescribed by a
Lorentzian with a width determined by the real part of theeaigalue nearestif).
The emission spectrum will be of the form,

Saat(w) = 4R S, (Tol Alrp)(lp| AT [ro))

| Gl A

4(n) 1o
R T 02

whereA [p(t))) = 1 (ap(t) + p(t)a). As shown in figures.2 the width of the peak in
the emission spectrum is in agreement with the eigenvalulee Isingle term approxi-
mation is valid we should also find that! = (io|A|r1))}{(l1] AT |ro)) = (n), which is
confirmed in figures.3a For bothS,, ,,(w) andS,, ,+(w) we can also check the size of
the next term in the eigenfunction expansion to ensure thasimall. For the results
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Figure 6.2. Width of zero frequency peak in th€, ,, (w) spectrum as
determined from a Lorentzian fit /2 fit) and from the smallest nonzero
eigenvalue1, /2 eig). Linewidth of the resonator as determined from a
Lorentzian fit ¢ fit) and from the eigenvaluey(, eig). Parameters are
the same as in figuré.1 Within the pairs of vertical dashed lines the
P(n) distribution has a peak at # 0 but P(0) > 1 x 1075, which we
define here as the transition regions.
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Figure 6.3. (a) shows the agreement ¢f) andm! as explained in the
text. (b) shOWSm;, = 1 and the vertical dashed lines indicate the good
limit cycle region as defined in figuit@2. Parameters are the same as in
figure6.1

in this chapter, unless otherwise stated, this check hasrbade and the contributions
from other terms can be neglected.

For a thermal state (which is the case away from the resorzeede we expect,
from Sectiord.3 thaty, = 7, /2. At the edges of figuré.2it can be seen that this is
indeed the case. Within the limit cycle region there is a ssjzan betweeny,, andvq
of at least one order of magnitude. Additionally followirtettransitiony,, increases
while v continues to decrease to a minima at the resonance.

Within the limit cycle region we can also perform an eigertion expansion of

S, pt (w). Just like forS,, ,(w) ands, ,:(w) only a single term is required. We obtain,

p

S () = 413 = (ol P Iy P o)

4 (pp") va

_— 6.2.3
(w—QRr)2+73’ ( )

whereP |p(t)) = & (pp(t) + p(t)p). Clearly we must haveq = v, within the limit
cycle region for bothS, i (w) and S, ,+(w) to be described by a single term in the
expansion. As further confirmation of the relationship in&tipn6.1 we should also
find thatm), = ({lo| P [r1){(l1| PT |ro)) = (pp') = 1, which is shown in figure.3h
Note that the value ohzl, has no meaning outside the limit cycle region.

In figure 6.4 we again showy, and~q. Also shown is the real part of the next
closest eigenvalue tei(2 (labelledyq(2)). It can be seen that outside the limit cycle
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6.2. Phase Diffusion fan > T"
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Figure 6.4. Amplitude relaxation ratey,, and the real part of the two
eigenvalues nearestif), v and~q(2). Parameters are the same as in
figure6.1

region it approaches the expected value, from SeectiGnof —g%. Within the limit
cycle region it is equal tg,,. This suggests that this next term in the expansion is the
contribution to the linewidth due to the amplitude noisethe timit cycle, which is
small due to the large separation of the eigenvalues.

For a laser the phase diffusion rate has a particularly srfggin [48],

yhaser = W% (6.2.4)

whereG is the gain of the laser. However, it is not entirely clear ttha gain is for the
SSET-resonator system afd) cannot be varied independently from the parameters of
the system, on which the gain will depend. However, we cagagtishow qualitatively
that there is an inverse relationship betwéenand-~,. In figures6.5and6.6we show
(n) and~y, for varying values ofs and~e;. The detuning is chosen to be at the one
photon resonance in the centre of fig@r& It can be seen that g8) increasesy,
does indeed reduce.

In examining the off-resonant behaviour(@f) and~, we observe a striking devi-
ation from the expected relationship between the two valésnow fix+..; and vary
the detuning about the one photon resonance for a range pfiecgstrengths. Similar
plots were produced in figure.8 but here we go to higher coupling strengths. The
value of(n) is shown in figure5.7. For increasing couplingn) reaches a maximum
and then shows a decrease. The peak also becomes widergler ¢aupling as this

99



6.2. Phase Diffusion fan > T"
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Figure 6.5. Value of (n) as a function of the coupling and external damp-
ing with the other parameters given in figuie. The green region in the
bottom left has no results due to an insufficient number afmator states.
Except for a small strip for large..; and smallx (top left) the resonator
is in the limit cycle state.
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Figure 6.6. Value of —R\; as a function of the coupling and external
damping with the other parameters given in figaré The green region
in the bottom left has no results due to an insufficient nurbezsonator
states. Except for a small strip for largg,; and smallx (top left) the
resonator is in the limit cycle state and-s@tAq = 4.
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6.2. Phase Diffusion fan > T"
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Figure 6.7.Value of (n) for varying A E andx with the other parameters
given in figure6.1

maximum is approached.

In figure 6.8 the value ofF;, is shown for the same parameters. Peaks are seen
in F,, at the transitions between fixed point and limit cycle bebavas discussed in
previous chapters. Beyond the peakiin the value ofF,, continues to decrease and in
doing so drops below one. This corresponds to a sub-Po&sétiin), which is also
observed in the micromaser (see SecBor) but not a conventional laser.

In figure6.9the linewidth,yq,, as calculated from the eigenvalues is shown. Within
the limit cycle region this can be interpretedaswhere we focus our attention. The
region in whichyqo = ~, is indicated in figures.9. For low coupling the peak ifn)
corresponds to a minimum ip,. But for large coupling we see a deviation from this
behaviour. Two minima are seen-f with the peak in(n) now corresponding to a
local maximum iny,.

For the parameters here the single term approximationngiveequation6.2.2
always describes the peak in the emission spectrum. We $teosifect of the changing
eigenvalue on the height of the peak in the emission spedtrdigure6.1Q It can be
seen that the increased coupling causes a splitting of tilkeipehe emission spectrum.
This splitting is not responsible for the double peak seethénemission spectrum of
the experiment3(]. In the experiment a matching feature was observed in theit
which is not the case here (the current follojns as discussed in Sectiéh4). Note
also that the splitting is only as a function of the detunitingre is still just a single
Lorentzian peak in the emission spectrum.

The amplitude relaxation rate, shown in figré 1, does not show any unexpected

101



6.2. Phase Diffusion fan > T"
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Figure 6.8. Value of F;, for varying A E andx with the other parameters
given in figure6.1
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Figure 6.9. Linewidth of the resonatofyg, for varyingA £ andx with the
other parameters given in figuéel Colours are on &g, scale. Within
the region given by the dashed lines the resonator is in & dipcie state
andP(0) < 1 x 107° s0vg = V.
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6.3. Phase Diffusion in th@ ~ I regime
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Figure 6.10.Height of peak in emission spectrum givendyn) /yq for
a few values of: as a function of the detuning with the other parameters
given in figure6.1

behaviour and shows an increase with increasing couplirte fast relaxation rate
can be associated with the low valuefdf. We know the term associated with to
be responsible for the modifications to the zero frequeneyeat noise in the limit
cycle region as discussed in Sectid®. It may then be surprising that as shown in
figure6.12there is a clear splitting of the minimum i (0) into two minima as the
coupling is increased. The variance part of the currentenmisst therefore depend on
the phase diffusion rate, which leads to an experimentabsige of this behaviour.

6.3 Phase Diffusion in the2 ~ I" regime

In this section we look at the finite frequency eigenvalues gimase diffusion for the
strongly interacting regime. We do not investigate phafasion in the slow resonator
case since, as discussed at the end of Sebtigwe do not obtain a good limit cycle
and so cannot define a phase operator in this regime. In figliBsve repeat figuré.3
but this time forQ? = I'. The figure confirms that the emission spectrum can be de-
scribed by a single term in the eigenfunction expansion hatlthe linewidth in the
limit cycle region will be given by the phase diffusion rate.

Figure6.14shows the real part of the eigenvalues nearestifo for 2 = I". The
parameters are chosen to be the same as those used in Gifaptasy comparison. In
particular the smallest few real eigenvalues, shown in &§§ut2 should be compared
with figure6.14 It can be observed in figuGel4that within the limit cycle region there
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6.3. Phase Diffusion in th@ ~ I" regime
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Figure 6.11.Value of~,, for varying A £ andx with the other parameters
given in figure6.1
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Figure 6.12.Value of F;(0) for varying A E andx with the other param-
eters given in figur@.1 Colours are on g, scale
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6.3. Phase Diffusion in th@ ~ I regime
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Figure 6.13. (a) shows the agreement of) andm! as explained in the
text. (b) showsmzl) = 1 and the vertical dashed lines indicate the good
limit cycle region as previously definef). = I" with the other parameters
given in figure5.1

is a large separation between one of the eigenvalues andshéVe can associate this
eigenvalue with the phase diffusion rate. The other eigemgacan be associated in
some way with the energy relaxation eigenvalues in that #eyv crossings in the
same places.

For decreasind\E, (n) increases and,, is seen to decrease as for the>> T’
case. Unlike fo2 >> T" there is a large overlap between resonances so that it cannot
be seen ify, shows an increase for increasifigy at any point. However, figures 17
and3.18provide some evidence for the behaviour. Along the one ph@sonancé’,
becomes sub-Poissonian afg(0) shows a peak in same region in a similar manner
to figures6.8and6.12
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6.3. Phase Diffusion in th@ ~ I regime
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Figure 6.14. —R\,, for the 5 eigenvalues closest in magnitude-§) as

a function of the detuning fa = I" with the other parameters given in
figure5.1 Inset shows the same as the main plot but osgg, scale.
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Chapter 7

Conclusion

The subject of this thesis has been the study of a particpkam quantum system con-
sisting of a resonator coupled to a SSET at the JQP reson@heealevice has a large
parameter regime, of which we have restricted ourselvesherevthe tunnelling of
guasi-particles through the device is the dominant soufceooherence, which is a
common experimental regim@(, 21]. In Chapter2 we introduced the SSET before
describing how coupling to both mechanical and supercaimtystripline resonators
could be achieved. We also introduced the Born-Markov ma&steation description
of the system. Throughout this thesis we have made use ofitheville space for-
malism in our description of the system. This allows the clexguperoperators that
appear in Hilbert space to be replaced with matrices, athadi large size. By making
use of Liouville space we could derive expressions in agittdorward manner for the
current noise in the system.

The energy exchange between the SSET and resonator in teendgads to a vari-
ety of different steady-states for the resonator. In Chrepee explored the behaviour
of the system as the relative frequencies of the two sutesystcoupling and detuning
from the JQP resonance were varied. We found that the remoemild be driven into
states of self-sustained oscillations reminiscent of erlaad made some comparisons
with the micromaser system.

In the weak coupling regime the SSET acts on the resona@mlithermal bath.
In Chapterd we explored this regime in detail. We found that the currbrauagh the
SSET in this regime could be captured by a very simple mod# thie result that
the change in the current due to the coupling was a smearihgfahe JQP peak
due to fluctuations in the position of the resonator and & shithe detuning due to
a shift in the average position of the resonator. For theetiimoise, in the thermal
regime, this same smearing and shift in the detuning wasdfdoionly describe part
of the change due to the coupling with the resonator. We fdhatla simple set of
mean field equations was sufficient to fully describe theesysin this regime. By
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looking at the eigenvalues of the Liouvillian we found thiérte was an important
contribution to the current noise due to the energy relaraif the resonator. This was
confirmed in a further simple model that also included theadyits of the resonator.
We also investigated the finite frequency current noiseigirgsgime and could explain
the shape of the peaks seen at multiples of the resonatareiney in terms of the
eigenfunction expansion of the current noise. For eithargel external temperature or
large external damping of the resonator, the finite frequenorent noise was captured
by our second simple model.

In Chaptel5 we investigated more closely the transitions between dyceistates
of the resonator. In some situations where the system wéables we could use a
model for a generic bistable system to describe the SSERatsr system. We then
found that the slow switching rate between the two metastatalites was present in
the eigenvalues of the system. We studied the behavioureogitienvalues in other
regimes and found that the main change in the current noséodine interaction with
the resonator could usually be captured by a single term @igenfunction expansion
of the current noise. In the chapter we also gave the residtsne quantum trajectory
simulations on the device. It was found that based on a dettect the tunnelling of
guasi-particles the switching of the resonator betweenlestates of a bistability
could be observed.

A characteristic feature of a laser is a narrow linewidth whéove threshold. In
Chapter6 we investigated the linewidth of the resonator coupled ® SSET. We
showed how it is not necessary to calculate the full emisspattrum to extract the
linewidth, but that it could be obtained from the eigenvalakthe Liouvillian. We gave
the criteria for when this could be done and showed that withé limit cycle region
the linewidth was determined by the phase diffusion ratenefresonator. We then
investigated the change of the linewidth with varying cangpbhnd detuning around the
one photon resonance in the high frequency resonator regjindeing so, we found an
anomalous result (in comparison to a laser), in that thedidih was no longer smallest
on the resonance but showed minima when detuned slightli féature showed up
clearly in the current noise. We also investigated the liddwin the regime of similar
frequencies for the SSET and resonator.

Further work based on this thesis is to obtain an explanafitime features seen in
the phase diffusion rate in ChaptrAlso by making use of a high performance com-
puting facility further results could be obtained from theagtum trajectories method.
On the experimental side it would be interesting for measergs to be made of the
current noise through the SSET-resonator system so thgiadsons could be made.
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Appendix A

Detalls of the Numerical Method

This appendix gives some more details on the numerical rdetfad was used to find
selected eigenvalues and the associated eigenvectoeslabthvillian. Also described
are the approximations made in order to simplify the problem

To describe the system numerically, the basis of the resonatist be truncated.
External damping sets a limit on the resonator energy. Weetbee use a Fock state
basis for the oscillator truncated 8 states, wheréV is chosen to be large enough
that the probability for the resonator to have an energyelatiganzQ2 NV is negligible.

In Liouville space the density matrix is a vector adds a matrix with dimensions
9N?x9N?2. The quantum optics toolbog p{ can be used to investigate open quantum
systems. However, for our purposes it was necessary toajewelr own code in order
to carry out different analyses and make the necessary spmpations that we describe
below.

To obtain the steady state density matrix we need to find giet hand eigenvector
corresponding to the zero eigenvalue, or null eigenveofdhe Liouvillian. We also
make use of some of the non-zero eigenvalues along withdlseompanying left and
right eigenvectors in Chaptefs6. The solution of the full eigenspectrum is unneces-
sary and difficult due to the large size of the Liouvillian mvat We make use of the
eigsfunction in Matlab [L01] to solve the eigen problem. The Matlab function makes
use of the ARPACK linear solveflDZ, which is operated in the shift-invert mode, and
UMFPACK [103 to carry out the matrix inversion. The Matlab function firtie few
nearest eigenvalues in magnitude to a given number withdbecéated eigenvectors.
It is important that the number given is not the exact eigkrevas the matrix to invert
then becomes singular.

To find the steady-state and eigenvalues near zero the dunistused to find the
few eigenvalues closest to a small number which shouldlidbalcloser to zero than
the smallest non-zero eigenvalug, in order to achieve rapid convergence. A good
starting value is-v.xt /20, since for the uncoupled systexp = —v.:. If a parameter
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is being varied then the value can be updated;t20 each iteration. For complex
eigenvalues a search is made to find eigenvalues closestftowhere f is the fre-
guency required (e.g. the resonator frequency). Apart fiteerzero eigenvalue there
are no eigenvalues with zero real part so singularitiesaira problem. The right hand
eigenvectors of the Liouvillian are also returned by #igsfunction. To find the left
hand eigenvectors the function must be called a second tithethve transpose of the
Liouvillian.

In order to use the largest possible valueNdofwe need to reduce the size of the
Liouvillian matrix for a given value ofV. If certain elements of the density matrix are
known to be zero in the steady state then they can be omitbed the calculation by
removing the appropriate rows and columns of the Liouvilliihese terms must also
be rapidly decaying for the current noise not to be affectethbir omission.

In the electronic basis the density matrix elements comedimg to theq;, ¢2,
qif andqg operators can be neglected. As discussed below equafoh] there is no
coherence generated between|thestate and th&) or |2) states of the SSET, so these
elements must decay to zero in the steady state. That thesators do not affect the
dynamics can clearly be seen in the mean field equationsd ST (equations 3.1~
4.3.9, in which the neglected operators do not play a role. Sihesd elements of the
density matrix are effectively decoupled from the rest efslistem and do not interact
with the resonator they can be neglected with no approxonatiNeglecting these
elements reduces the dimensions of the LiouvilliaAA& x 5N?2.

In terms of the oscillator basis neglecting terms resulemipproximate solution.
For a damped harmonic oscillator the steady-state denstyixris diagonal in the
Fock state basis for weak damping. Coherence between Fatels $6 only generated
by the coupling to the SSET. Since the coupling is linear titeecence must decrease as
the energy separation is increased (i.e. the further framthin diagonal the smaller
the value). Note that this is only the case for linear couplie.g. in the quantum
shuttle device the coupling can be exponential in positi@4[and this approximation
cannot be used). Based on this reasoning elements of tHetzsailensity matrix far
from the diagonal can be neglected. To check the validityhefapproximation the
largest value on the last included diagonal of the resordgosity matrix is found
and treated as the error. The maximum error allowed depemdseoquantity being
calculated, we generally find that so long as it is beléw! the results are found to
be indistinguishable from the exact solution.

After making these approximations the problem can be sdiwed’ > 200 using
the above method on a desktop computer. The exact valdetbat can be used de-
pends on the number of diagonals required as it is the sizeeofinial matrix that is
important, the limiting factor being the memory requirecpgrform the matrix inver-
sion.
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Appendix B

Quantum Trajectories

In this appendix we introduce the concept of quantum trajées 32, 96, 105 106
and make use of them to calculate the current noise at thehagid junction of the
SSET. In the theory of quantum trajectories measurementh@®igystem are repre-
sented as operators. These operators describe the chathgesiystem that must have
occurred in order for the detector to have measured songetitior example the de-
tector may be a photon detector and the change in the systght treé a particular
transition between energy levels. A successful detectuses a rapid change in our
knowledge of the system. Less obvious is that the absenceéetieation can also tell
us something about the state of the system. The quanturotoags method tells us
the state of the system conditioned on a particular set oareaent results, known
as the measurement record.

For the SSET-resonator system we assume that we have acdékattcan tell us
when a quasi-particle tunnels across the right hand jumcixperiments of this type
have been carried out by coupling a quantum point contactqoamtum dot which
allowed the current noise to be measured to high ortd@r109.

To introduce the quantum trajectory model we follow theadtiction of L0H,
but in the context of the SSET. The detection of a quasi-garis associated with the
tunnelling operator,

C=VT (01 +q). (B.0.1)

The operator corresponds to the change in the system ttds teahe detection of
a quasi-particle. The operator is analogous to the degiruoperator of a harmonic
oscillator in that it does not tell us which transition oa@d. The change to the density
matrix due to the detection is written in terms of the superator,L ;,

Ly lp(t)) = Cp(t)CT (B.0.2)
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As would be expected the trace over this gives the currenpattécular time,

({lo| L5 |p(t)) = (CTC), = 100 (B.0.3)

e

The superoperatof ; forms the first part of the quasi-particle tunnelling supenm
ator, L4, in the master equation as defined in equagich4 We can split the full
Liouvilllanas L = Ly + L, whereLy = £ — L ;. By making use of the generalized
Dyson expansioni[1( the evolution of the density matrix can be written as,

p())) = e EFED |p(0)))

0 t t2
=> /dtm.../ dty eFot=tm) £, L yefoltzmt) £ elot) p(()Y) |
m=0 0 0

(B.0.4)

The expansion is valid for any choice of operators and woplgear to make a rel-
atively simple equation quite complicated. However, fag tharticular definition of
Ly it has an important physical meaning: gives the number of occurrences 6§
and the evolution operater“ot is the evolution of the density matrix when no quasi-
particles are detected. The part under the integrals caaftre be interpreted as the
un-normalized density matrix conditioned on a particulaasurement recorgdy{. M
consists of the detection ofi quasi-particles in the non-overlapping time intervals,
[t1,t1 + dt1), ..., [tm,tm + dtm). We denote this density matrig(¢), which is
defined,

‘ﬁ.é\/l (t)>> — eﬁo(t—tm)ﬁ‘] o EJeEo(tz—h)EJeEQh |p(0)>> , (BOS)
The probability,P (M), to obtain the measurement recovd is [110,
P(M) = (o] 52" (1)), (B.0.6)

which is just the normalization g (). We define the normalized conditioned den-
sity matrix as,
|52 (1)))

M —
" O) = Tl (807

using this definition, equatioB.0.4 can be written in the form,
s t t2
p(®) = Z/dtm.../ dty P(M) [0 (1)) (8.0.8)
m=0"0 0

Written in this formp?(¢) can be interpreted as the actual state of the system given
the measurement recod. The unconditioned density matrix is then obtained by the
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ensemble average of all the conditional density matricaghted by the probability
for each one to occur.

In practice we could set up an experiment a sufficiently lemgt = —oo) before
we switch on the detector at= 0 then the initial density matrix will be the steady-
state one. We would then aim to measure the times at whichichdil quasi-particles
tunnel, which would form our measurement record and we carthesabove to obtain
the conditioned density matrix of the system.

We can perform a simulation of an experiment by making usemdom numbers.
From now on we will drop the superscriptt and takep.(¢) to be the density matrix
conditioned on the previous measurement results. The pildpdor a quasi-particle
to tunnel across the right hand junction between a tiredt + dt, will be given by,

Py(t) = ((lo] L |pe(t))) dt. (B.0.9)

dt is chosen to be sufficiently small that the probability footguasi-particles to tunnel
across the junction in a single step is negligible. For ek step a random number
R, between 0 and 1, is chosen. If the number is less thdn) then a quasi-particle is
detected and the system is changed ugifgotherwise it evolves witlt,

Lslpe(t)) P;<R

|pe(t + dt))) = { conl D (B.0.10)
%é))» P; >R

By following this procedure we can find a conditioned densigtrix, where the mea-
surement record has the correct statistics. The time éwaluby the operatoe~o?t,
is carried out using a 4-5 embedded Runge-Kutta method wgipta/e step size con-
trol [117].

We can use the quantum trajectories method to find the ctioelfunction re-
quired for the calculation of the current noise at the rigdmdh junction, based on the
theory presented in this appendix. An alternative derwva#ilso using quantum trajec-
tories can be found in0g or using an electron counting variable &3, which have
the same solution. We require,

Jim ({Tg(t+ 1), Ir(t)}) = lim 2e* (Ly(t+7)Ls(1)). (B.0.11)

— 00

The ordering of the operators does not matter here so we gaveethe anti-commutator.
The correlation function is the ensemble average over ajgdtories starting from
the steady-state density matrix, in which a quasi-parikldetected at the times
andr. The correlation function will be given by a trace over equaB.0.4 with
|p(0))) = |ro)) and botht; = 0 andt,, = 7. Clearly there must be at least one
quasi-particle detected in the time period so we can alsteoethemn = 0 term. The
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correlation function is,
Jim 2% (Ly(t+7)Ls(1))
e T t2
—2} / it .. / dtr (L] eEOT=tm L L eEo |no) 6(41)5(r — 1)
m=1 0 0

e / dt (o] %07 £ 72 [ro)) 8(t1)5(r — 1)

0
e T t2
+ 262 Z / dty—1 ... / dto <<l0| EJ@LO(T_tm*l)E‘] e £J€£0t2£J |’I“0>>

m=2 0 0

= 2625(7') <<l0| EJ |T0>> + 262 <<l0| EJ@LTEJ |T0>> (8012)

where we have separated out the= 1 contribution and used the expansion from
equationB.0.4in reverse to get the final line.
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Appendix C

Mean Field Equations

The mean field equations up to first order in the system oparatere calculated
in [22]. The equations for the SSET operators alone were given ulateans4.3.1-
4.3.5and the equations for the resonator operators alone wega givequationd.3.6-
4.3.10 Below are written the remaining equations to complete #teup to second
order in the operators.

<xbo>t = zf—]‘; ((zc}t — <ch>t) + T (zp1), + (vpo), (C.0.1)
<x1.91>t =-T <$p1>t + I <=73p2>t + <Up1>t (C.0.2)
(J:j?g)t = —i%((l’@t — <ch>t) — T (xp2), + (vp2), (C.0.3)
(e, = (~150 = 5 a0 + i (lom, — (omm)) + (v,

2m(;21:s <J(:2c>lt (C.0.9)

i ) (C.0.5)
<Ub0>t = ’% (<Uc>t - <UCT>t) + T (vp1), — 02 (Tpo)y — Yext (VP0), (C.0.6)
<vl31>t = — (T + Yeat) (vp1); + T (vp2), — Q* (xp1), — 2,07 (p1), (C.0.7)
<U1.72>t = —i%((U@t - <'UCT>,5) - (F + Yewt) <Up2>t - <$p2>t - 217892 <p2>t
(C.0.8)
(eh = (=5 5 = e ) 00)y — 92z + 5 (amad ~ (opa))
— % (vae), (C.0.9)
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C.1. Forming a closed set of equations

. AE T Ly
<UCT> = <ZT — 5 — 'yem> <UCT>t —_ Q2 <$CT>t — zQ—h (<vp0>t — <Up2>t)
. 2
ZQL;MS (zvel),, (C.0.10)

where here the averages imply a trace over the SSET and tesareighted by the
density operatorO), = Tr[Op(t)].

C.1 Forming a closed set of equations

As discussed in Sectioh3the mean field equations never form a closed set. In order
to obtain a closed set of equations at second order we nedichioate the third order
terms (e.g(z>c'), , (vzc),) appearing in equation§.0.4 C.0.5 C.0.9andC.0.1Q
This is done by setting the third order cumulahtf] to zero, which means to products
of three operators, b andc we apply the approximation,

(abe) = {a)be) + (b)Xac) + (c)ab) — 2 (a)b)c) , (C.1.1)

provideda, b andc all commute. Where the operators involved do not commute the
expectation value should be symmetrized appropriatelydemfor the commutation
relations to be preserved. Consider, for simplicity, theregle of the expectation value
(xv) and assuming the second order cumulant is zero. This wosidtri@ (xv) —
(x)v), but also{va) — (x)(v). This is not consistent with the commutation relations
since we could also writérv) = (vz) +ifi/m — (z)v) +ihi/m. The approximation
should only be applied to a symmetrized combination of treators 1 ((zv) + (vz)),
which ensures that the approximation is consistent witlctmmutation relations.

Applying the approximation to the terfi:*c),, in equationC.0.4 we make the
replacement,

(a%c), —2(a) fae) + ((22), - 2(2)? ) (e), (C.1.2)

and similarly for(:p%wt in equationC.0.5 The resulting approximate equations are,

(e), = <Z,AE +4mQPz, (x), £)<$C>t 4 i&(@p@t — (wpa),) + (ve),

7 2 2h
e (S 19
ity (2 AE + 4129 zs (), g)<$CT>t ~ z‘%(@poh = (@pa2),) + (veh),
n Z_ng T (<z2>t _9 <$>f)<c’f>t . (C.1.4)

The other third order terms we need to consider(are:), and <xch>t, which arise
in equationsC.0.9and C.0.10respectively. Since: andv do not commute we must

116



C.2. Current noise

first rewrite the expectation values in the following way dref expansion so that the
commutation relations are obeyed.

(v + 2v) ¢), — zi (c); - (C.1.5)

(vae), = 5

N |

Performing the expansion as before we can make the replateme

((vr + xv) ¢), — () {ve), + (v) {zc), +% (e)xv 4+ vx), —2 (x) (v) {c), . (C.1.6)

N | —

The same procedure can be followed for (WCT>t term to give

(e = (i AEEEE 0 o N, + 2 (o~ ()
_ 2 (1 + 2'2”;% <U>t)<xc>t
— 2,02 (145 (av), + (va), — 4 (2 o)) (o), (C.1.7)
i), = (BRI B Yaet), = 522 (apab, — (o))
—? (1 - 12”;“"8 <v>t)<:ch>t
— 2,02 (1 =i ((@v), + (va), — 4 @) f0)) )(eT), (C.1.8)

which completes the closure of the second order equatidns.riiethod is readily ex-
tended to obtain the third order mean field equations byéassetting the fourth order
cumulant to zero and following the same procedure. For thetimrder cumulant the
replacement for the operatarsh, c andd is,

(abed) — [(a)(bcd> + (b)acd) + (c)abd) + (d)abc) + (ab)cd) + (ac)bd)
+ <ad><b0>} -2 [ (a)b)cd) + (a)c)bd) + (aXd)be) + (b)(c)Xad)
+ (bXd)ac) + (CXd)(abﬁ + 6 (a)b)c)Xd) (C.1.9)

C.2 Current noise

We describe in this section the calculation of the curreigenepectrum by use of the
mean field equations. We do this for the SSET operators ondyder to simplify the
notation, but the extension to include the resonator isgtteorward. We again make
use of the quantum regression theorem (QR3PR) #8], but in a different form to that
given in Sectior?.6. If the system can be described by a set of equations for grage
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C.2. Current noise

values of the form48],

<Ek=z}%ﬂh, (C.2.1)

then the equation of motion for the two time correlation fimes obeys the same
equation,

o _ _ _
5o (Tt +n). Vi) = Y Ay (G + 7). %0}, (€.22)
J
The evolution of the system is written in terms of the vecfa@ectation valueg(t),
and the matrixA,

p(t) = Ap(?), p(t) = [ (p2 (C.23)

which is of the form of equatio.2.1 As an example we calculate the charge noise
spectrum. We define the vector of correlation functions wfite charge operator,
po(t + 7,t), which by the QRT obeys the same equatiopés,

(C.2.4)

The Laplace transform is define@d],
ﬂ@:/ dr e*" f(7) (C.2.5)

0
Taking the Laplace transform of equati@n2.4with z = —iw and thet — oo limit
will give,

— iwpg(—iw) — po (00, 00) = Apg(—iw) (C.2.6)
= po(—iw) = (—A — iw) " 'pg (0o, 00) (C.2.7)

118



C.2. Current noise

wherepg (—iw) is a vector of noise spectra apd (oo, co) is a vector of expectation
values in the steady-state. They are given by,

Sy ow) {{Po, Q})
S;Z,Q(W) <{1517Q}>
Po(—iw) = [ S ()|, pg(00,00) = | ({P2,Q}) | - (C.2.8)
SioWw) ({e,@})
S @) ({ch,Q})

We can calculaté o (w) from,

5q.q(w) = Sp,,qw) + 25, 0(w)
= 2R (S o(w) +285 o(w)]. (C.2.9)

The charge noise spectrum is found from the addition of thevaat elements of
po(—iw). However, we can go further and expre&s o (w) in a form very similar
to that for the full system given in equatiéh7.4 We first define a matrix)™ that

when acting orp(co) givespg (oo, 00),

PQ(00,0) = 2(Q™ = (Q)) p(o0), (C.2.10)

The form of Q™ can be found by calculating the commutatorgoWith each of the
operators that make yp(¢) as required for the elements pf) (oo, 00),

%{QaPO} =0, %{Q,Pl} = P1, %{Q,pg} = 2po,
SO =e Q) =d (c2.11)

where we have included a factor éfto make the operator analogous to the charge
superoperatoiQ, that acts on the full system (equati@ry.3. This shows tha®™ is
a diagonal matrix of the form,

Q™ = diag[0,1,2,1, 1] (C.2.12)

We also define a vector corresponding to the trace opetratdi, 1, 1, 0, 0], whereT’
is the transpose. This is clearly the correct trace sthgt) = (po), + (p1),+ (p2); =
Tr [p(t)]. From the definition of)™ we will have,

(Q) =t"Q™p(c0) (C.2.13)
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C.2. Current noise

Using these definitions the charge noise spectrum is given by
53 o(w) = 4R [t7Q™ (—iw — A)1 (Q™ — (@) p(c0) (C.2.14)
A has a set of right eigenvectors,, and left eigenvectorg,,,

Arp = N)'rp (C.2.15)
T mgT
L, A=)\, (C.2.16)

where)\;" are the associated eigenvalues. Just like for the Lioawilli must have an
eigenvalue\7* = 0, with corresponding right and left eigenvectors, = p(co) and
lo = t. By performing this eigenvector expansion drin equationC.2.14we obtain
the result, .
T ym T ym
S5 o(w) = 4R lz %] (C.2.17)
p=1 p
which is analogous to equati@n?.4for the full system.
We can easily follow the same procedure to find the currergenat the left hand
junction. The current operator wdg = %2 (¢ — ¢) (equation2.7.5. Calculating
the commutators as before,

1 el 1
i{IL’pO}:ZQ—rj (¢ =), —{IL,IH}:O
1 el el
—{IL,pz} =5 (cf—¢), {IL7C} 2%(190 +p2),
el
—{IL, '} = fz2—h (po + p2) - (C.2.18)

I7* therefore takes the form,

0O 0 0 -1 1
B 0O 0 0 0 0
= '—627; 0 0 0 -1 1 (C.2.19)
1 0 1 0 0
-1 0 -1 0 O
The spectrum is given by,
5 TT1m TT1m
Iy I r, 2 I r
S (w) = 4% [3 “”—”N@O] . (C.2.20)
=1 —Ww = Ap

For the current noise at the right hand junction the quantegnession theorem
cannot be used directly. I'2f] we used an electron counting variable appro&#) [
61, 85] to calculate the current noise at the right hand junctidme final result can be
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C.2. Current noise

written in a similar form to the equations for the charge aaisd left hand junction
noise, derived in this section,

ST (W) = 2el{ TP re + 4R

Z —iw — A

p=1

(C.2.21)

5 lgfgrplgfg%m]
wherel7 is defined,

(C.2.22)

o o o o
o o o o H
o o o H o
o o o o o
o O o o o

o

to include the resonator is a straightforward extensiore dltiarge and current opera-
tors commute with the resonator operators, so the comroategiations are simple to
calculate. The trace operator () will still have just the three non-zero elements in
the positions of(p),, (p1), and(p2),. Finally the sums in equatiors.2.17 C.2.21
andC.2.21should be extended to all eigenvaluesifexcept for the zero one.
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Appendix D

Calculation of S; ;(w) and
Sy 42(0)

In this appendix we calculatg, ,(w) andS,2 ,2(w) for an oscillator in a thermal
state. For the calculation &, ,(w) we begin from the mean field equations faf),
and(v),. As before we use the notatiatit) = a(t) — (a), where(a) = (a)

oo!

@), = - (z), — v (V), . (D.0.1)

By use of the quantum regression theorem (equafich? we can write down the
evolution of the correlation functions,

% {z(t+7),2()}) = (ot +7),2@0)})
% ({o(t+7),2(t)}) = - ({z(t +7),2(t)}) — v {{o(t + 7),2(t)}). (D.0.2)
We then perform a Laplace transform as defined in equaii@®bwith z = —iw to

obtain equations for thé”;b(w) part of the noise defined in equati@b.3 with the
result,

—iwSy (w) — 2 (z%) = S (),
_zwij(w) - <{’D7‘i’}> = _QQSzx(w) - /Yij(wL (DO3)
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For a thermal staté{v, z}) = 0. Solving the two equations we obtain the result,

Sw,w(w) = 2% [S;r,z(w)]
QW_WMﬁW

= 2R
02 — w2 — qwy

40?2 <fz>
= (o) § it (D.0.4)

For the S, ,2(w) spectrum we begin from the equations for the second ordenmea
field equations again about the steady-state,

(+*) = @),
() =02 @), - 29 (2),,

(T07), = 2(v?), — 20° (a?), — v (TVT), , (D.0.5)
wherezv, = xv + vz. Making the transformation as before we obtain,

_4w3;wxw)_<g@¢@}>:5;4@4wx

—iwSh (W) — ({02, 22)) = —Q2SF, (W) — 295 . (),

w8, 42(w) = ({705,27}) =255 (W) = 20°8; (@) =98], ()
(D.0.6)

Since we have a Gaussian state we can use the method desaoriBedtionC.1 to
reduce the expectation values to ones of second order. g diois we find,

({22 2}y =2 |(a?)” = (@)"].
<{’U_2, x_Q}> =0,
({zvs,22}) = 0. (D.0.7)

First eIiminatingngw_I2 (w) from equation$.0.6we obtain,

[2y —iw] 5’1‘;@2 (w) = inQS;;J2 (w) + 207 [<J:2>2 - (x)ﬂ ,

207 — w? —iwy] SE 2 (w) = 25;;@2 (W) +2(y —iw) [<x2>2

z2,22

—@ﬂ.@na
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The final solution is then,

(492 + 49% — 2w? — Giw) [<x2>2 — (z}ﬂ

Saz a2 (w) = 2R 7 (492 — 3w?) — iw (492 — w2 + 292)

1670 (w? +44% +40%) {<5’/‘2>2 - <x>4}
72 (402 — 30%)7 WP (402 — o + 292)°
2
(w2 +97) (422 —w2)” + 407?)

The S, ,2(w) spectrum has peaksat= 0 andw = £29.
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Appendix E
Adding Qubit Dephasing

In this appendix we compare our model with the experimermsiliits of Astafiev et
al. [30). The Hamiltonian H 4, given in [3Q] is,

1 1
Hy = =3 (cof + Byol) + 19 (f”“ " 5) +hgo (af +a)od,  (E0)

where the Pauli spin operatarg' = p» — pp ando?! = ¢ + ¢! are used. The form of
the Hamiltonian is different to that of equati@w.3 However, as we now show they
are equivalent. By use of the normalization of the densityrinar? = p; + 2ps — 1,
and also returning t@ andp operators to describe the resonator we obtain,

g EJ p2 1 2 9
HA:7€p2*§(p1*1)*T(CJFCT)JF%JrimQx
h h
+ gom(pl—l—ng)— 904 (E.0.2)

Lzp Lzp

The last term—29¢ 4 is the result of a shift in the resonator coordinate betwtaen

Tzp

two models as we will now show. Defining a new position cooatén’ = = — ¢ the
Hamiltonian becomes,

2

hgo e hgo e Ey ; P
pro)p2+( 2+.I'Zp p1+2 5 (C+C)+2m

+ —mO%z? + %x’ (p1 + 2p2) + lmﬂ%g + (hQQxO - %) 2. (E.0.3)
2 Tzp 2 Tap
Constants in the Hamiltonian can always be neglected simeg do not affect the
dynamics of the system. Any constant shift in the energy ef th state can also be
neglected since the state is only accessed via incohererglting and so has no effect
on the evolution. The value af, is chosen to eliminate the final term in equati®f.3

125



The Hamiltonian is then the same as equafigh3with the following definitions,

AE = —e42090, (E.0.4)
Zzp
02,
g0 = Lz, (E.0.5)
h
mO2x,,

It can be seen that irB[] the resonator position is chosen to be zero when the island
charge is one whilst in our model we use an island charge ofresulting in a position
shift of 2, between the two Hamiltonians. For the quasi-particle tllimgerate we use

the model described in Secti@2.2to find the value of'y; on resonance and use this
as the value of’, which as described in Sectiéh2.2is sufficient. We have checked
the calculation below by using the exact rates from the maddlit is found to give

the same results. The values given3@][result in the following values for the model
parameters.

I' = 4.17GHz Q=149T
k=823x107° Ejy =0.0344 eV,
r = 38.74 Next = 0.3
Yext = 1.96 x 107°T (E.0.7)

In figureE.1a comparison of our model with the experimental curve forcineent is
shown. The JQP peak is fitted quite well by the model. The maldelpredicts a peak
in the current at around the same position as the observédiptee experiment. This
peak corresponds to the conditibft = —/AE? + E2. However, the peak is not of
the correct width and is too large. We also do not observedhdédianal features seen
in the experiment for larger negative detuning.

For the experimental parameters given in equaidh7, F/; ~ 8.1 A" and so the
condition E; < Al', that is assumed for our master equation (see Se2ti)ris not
met. Itis therefore possible that some other source ofghsisin other than the quasi-
particle tunnelling is important to correctly describe 8®ET. In order to include extra
dissipation in the qubit part of the Hamiltonian we includeuse dephasing term. For
an uncoupled system this is defined in the eigenbasis of thié. e assume that it is
unmodified by the interaction with the resonator. In orderalewulate the correct form,
in the charge basis, we should first diagonalize the qubitgfahe Hamiltonian H,,

E
H, = AEp; — 7] (c—|— cT) (E.0.8)
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0.7

Astafiev
—_—Ty =0

= = =Ty =05T
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0.4}

(I)/el’

0.3}

0.2

0.1rp

-0.1 -0.05 0 0.05 0.1 0.15
AE/eVdS

Figure E.1. A comparison of our model with the experiment iBQ].
Astafievis the current from the experiment shifted down Gg8/el’,
I'y = 0 is the current by using the model from this thesis &gd= 0.5T
is the current with the addition of pure dephasing of the gabdescribed
in this appendix. The parameters used are given in equBti®i
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It is diagonalized by the basis vectors,

1) =cos (3) 10) —sin (3 ) 12
I1) = sin (g) 10) + cos (%) 12) (E.0.9)
With y set to the value,
tan (x) = f%, (E.0.10)
The diagonalized Hamiltonian is,
Hy= T D= 0D+ 52 A+ 1Dah, €0y

wherede = /AE? + EZ, is the energy level separation. The second term above is
just a constant shift of the two levels due to our particutaice of initial Hamiltonian.
The pure dephasing term uses the operatae |1)(T| — |]) (]| which is given by,

0. = cos(x) (p2 — po) + sin (x) (c+ CT)
AR

Ly
=~ (P2 —po) = 5~ (c+cf) (E.0.12)

The pure dephasing superoperatly, is of Lindblad form §9] and is defined by,

Lsp(t) =Ty (Uzp(ﬁ)az - % {Ug,p(t)}) ) (E.0.13)

wherel'; is the dephasing rate. Figutel shows the effect of additional dephasing on
the current. It can be seen that the dephasing has littleteffethe JQP current peak.
The peak seen at the resonance is both broadened and redsaitd be closer to that
seen experimentally. However, the broadening of the peakia! in comparison to
the reduction in size. The peak will therefore have disapatbefore it becomes of the
correct width. The addition of dephasing also does not govagytowards explaining
the second feature seen in the current. We can concludeuhatadel is insufficient
to describe this particular experiment.
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