

THEORY AND PRACTICE OF

THE TERNARY RELATIONS MODEL

OF INFORMATION MANAGEMENT

By

Amir Pourabdollah

MSc., BEng.

Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy

February 2009

- ii -

ABSTRACT

This thesis proposes a new, highly generalised and fundamental, information-modelling

framework called the TRM (Ternary Relations Model). The TRM was designed to be a

model for converging a number of differing paradigms of information management, some

of which are quite isolated. These include areas such as: hypertext navigation; relational

databases; semi-structured databases; the Semantic Web; ZigZag and workflow modelling.

While many related works model linking by the connection of two ends, the TRM adds a

third element to this, thereby enriching the links with associative meanings. The TRM is a

formal description of a technique that establishes bi-directional and dynamic node-link

structures in which each link is an ordered triple of three other nodes. The key features that

makes the TRM distinct from other triple-based models (such as RDF) is the integration of

bi-directionality, functional links and simplicity in the definition and elements hierarchy.

There are two useful applications of the TRM. Firstly it may be used as a tool for the

analysis of information models, to elucidate connections and parallels. Secondly, it may be

used as a “construction kit” to build new paradigms and/or applications in information

management. The TRM may be used to provide a substrate for building diverse systems,

such as adaptive hypertext, schemaless database, query languages, hyperlink models and

workflow management systems. It is, however, highly generalised and is by no means

limited to these purposes.

- iii -

PUBLISHED PAPERS

The research of this thesis has led publishing the following papers, copies of which can be

found in Appendix D.

1. Pourabdollah, H. Ashman, and T. Brailsford, "Are We Talking About the Same

Structure? A Unified Approach to Hypertext Links, XML, RDF and ZigZag," in

Proceedings of the Nineteenth ACM Conference on Hypertext and Hypermedia. Pittsburgh,

PA, USA: ACM, 2008.

2. Pourabdollah, T. Brailsford, and H. Ashman, "A User-Oriented Design for

Business Workflow Systems," in Lecture Notes in Computer Science, vol. 4473, D.

Draheim and G. Weber, Eds. Berlin Heidleberg: Springer-Verlag, 2007, pp. 285-

297.

3. Pourabdollah and M. Hartley, "Gathering Unstructured Workflow Data into

Relational Database Model Using Process Definition Language," in Proceedings of

IASTED International Conference on Databases and Applications. Innsbruck, Austria:

ACTA Press, 2006, pp. 32-37.

4. Pourabdollah, T. Brailsford, and H. Ashman, "A User-Oriented Design for

Business Workflow Systems," in Proceedings of the 2nd Conference on Trends in Enterprise

Application Architecture, 2006.

5. A. Pourabdollah, T. Brailsford, and H. Ashman, "Relations Modelling Sets of

Hypermedia Links, Navigation and Semantics", the Computer Journal, (submitted

after revision, January 2009)

- iv -

ACKNOWLEDGMENTS

I wish to use this opportunity to thank those who supported me during this research.

First of all, many thanks to my dear supervisors Dr. Tim Brailsford and Dr. Helen Ashman

for all of their outstanding and invaluable support to this research and to my educations.

I would like to thank all of my colleagues in the Web Technologies Research Group for

their support and advices to this research, in particular Dr. Liz Brown, Dr. James Goulding

and Dr. Adam Moore. Also thanks to Dr. Peter Blanchfield for his comments on my first

year report which helped me in developing the rest of this research.

Many thanks to the administration of the University of Nottingham, in particular to the

staff of the International Office who kindly offered me the Research Tuition Fee

Scholarship, to the staff of the Graduate School in particular Dr. Sue Scarborough, and to

the staff of the School of Computer Science in particular Mrs. Karen Attwood. This

research would not be possible without their support.

I would also thank the examiners for this thesis, Dr. Alexandra Cristea and Dr. Peter

Blanchfield for their reading and comments.

Finally special thanks to my family, particularly to my dear wife Motahare for all of their

extraordinary supports and patients.

- v -

TABLE OF CHAPTERS

1 Introduction ... 1
2 The Related Works: Looking for a Common Foundation 11
3 The TRM: A General Introduction ... 57
4 TRM-DB: A New Schemaless Database .. 68
5 TRM-NAV: A New Hypertext Navigation Model ... 90
6 TRM-WF: A New Workflow Definition Model ... 124
7 TWM: A Practical Workflow Development .. 149
8 Discussion ... 170
9 Bibliography .. 180

Appendix A: A Database Design for Zzstructure .. 193
Appendix B: Notes on One-to-many Relationship in Zzstructure 214
Appendix C: Source codes .. 220
Appendix D: The Published Works .. 223

- vi -

TABLE OF CONTENTS

1 Introduction ... 1
1.1 Background ... 1

1.1.1 Information and information Model ... 2
1.1.2 Information Modelling and Relations ... 4
1.1.3 Questions and Problems .. 5

1.2 Aims .. 7
1.3 Objectives .. 7
1.4 Structure of the Thesis .. 9
1.5 Contributions .. 10

2 The Related Works: Looking for a Common Foundation ... 11
2.1 The Relational Databases.. 11

2.1.1 The Common Challenges .. 12
2.1.2 An Example ... 14
2.1.3 The Relational Databases: A Ternary Approach .. 16

2.2 Semi-Structured Databases and XML .. 16
2.2.1 The Common Challenges .. 18
2.2.2 An Example ... 19
2.2.3 XML: A Ternary Approach .. 21

2.3 ZigZag .. 21
2.3.1 The Main Challenges .. 23
2.3.2 An Example ... 24
2.3.3 ZigZag: A Ternary Approach ... 26

2.4 Hypertext Models and Navigation .. 27
2.4.1 Knowledge-Oriented Hypertext .. 28
2.4.2 Links with No or Implicit Association ... 30
2.4.3 Rank-Promoted Links .. 31
2.4.4 Typed Links .. 31
2.4.5 Links in Open Hypertext Approaches .. 34
2.4.6 Hypertext Links: A Ternary Approach ... 37

2.5 BRM: Binary Relations Model ... 39
2.5.1 BRM Link Model .. 39
2.5.2 The BRM: A Ternary Approach .. 42

2.6 The Semantic Web and RDF ... 44
2.6.1 RDF and OWL .. 45
2.6.2 The Main Challenges .. 47
2.6.3 The Semantic Web: A Ternary Approach .. 48

2.7 Workflow Definition Models ... 48
2.7.1 Basic Workflow Concepts ... 49
2.7.2 Workflow Models: A Ternary Approach ... 50

2.8 Ternary Approach to Other Related Fields .. 51
2.9 Using the Commonality for Interconnection ... 51

2.9.1 The Interconnections of Workflow, Knowledge and Hypertext 51
2.9.2 Workflow Interactions with Knowledge Systems 52
2.9.3 Workflow Interactions with Hypertext Systems ... 52
2.9.4 The Interconnection of ZigZag and Hypertext .. 54
2.9.5 The Interconnection of Databases and ZigZag .. 54

- vii -

2.9.6 The Interconnection of Databases and Workflows 54
2.9.7 The Interconnection of Databases and Hypertext 55
2.9.8 The Interconnection of Databases, XML and Directed Graphs 55
2.9.9 The Interconnection of ZigZag and Directed Graphs 55

2.10 Summary .. 56
3 The TRM: A General Introduction .. 57

3.1 Abstract Definition of the TRM ... 57
3.1.1 Static TRM Definition .. 57
3.1.2 Dynamic Definition .. 60

3.2 Examples of the TRM ... 62
3.2.1 The Static-TRM ... 62
3.2.2 The Dynamic-TRM .. 63

3.3 A Layered Approach ... 63
3.3.1 Bottom-up Threads .. 66

3.4 Summary .. 67
4 TRM-DB: A New Schemaless Database ... 68

4.1 An Overview of the TRM-DB .. 69
4.1.1 The TRM-DB behind the Relational Databases ... 69
4.1.2 TRM vs. XML ... 71
4.1.3 The TRM vs. ZigZag .. 73

4.2 The TRM-Table .. 74
4.2.1 An Example ... 75

4.3 The TRM-XML .. 76
4.3.1 The TRM-XML Schema .. 76
4.3.2 Example 1 ... 78
4.3.3 Example 2 ... 80

4.4 Discussion.. 83
4.5 Querying the TRM-DB ... 84

4.5.1 Querying the TRM-Table .. 85
4.5.2 Querying the TRM-XML .. 88

4.6 Summary .. 89
5 TRM-NAV: A New Hypertext Navigation Model .. 90

5.1 Background ... 90
5.1.1 Extending the BRM .. 91

5.2 The TRM-NAV Definition .. 92
5.2.1 The TRM-NAV Navigational Questions ... 92
5.2.2 Link Implementations .. 94

5.3 The Ternary-Links ... 96
5.3.1 Examples .. 96

5.4 Discussion.. 98
5.5 An Implemented Demonstration .. 99

5.5.1 An Example ... 100
5.6 Ternary Links for Adaptive Hypermedia... 102

5.6.1 Adaptation through Ternary Links .. 102
5.6.2 The System Structure ... 103
5.6.3 An Example ... 104

5.7 The TRM-NAV and the Semantic Web .. 106
5.7.1 The Challenge of RDF‟s Self-descriptivism ... 107
5.7.2 Basic Limitations of RDF .. 108
5.7.3 OWL vs. TRM in Bi-directionality .. 110

- viii -

5.7.4 Interchangeablity between RDF-XML and the TRM-XML 111
5.7.5 Conclusion: RDF vs. the TRM... 113

5.8 An Abstract Study on the Functional Links ... 114
5.8.1 An Introduction to Turing Completeness .. 114
5.8.2 Functional Linking in the BRM, the TRM and RDF 114
5.8.3 A Turing Completeness Analysis ... 117
5.8.4 Discussion .. 119
5.8.5 Section Conclusion ... 121

5.9 Summary .. 123
6 TRM-WF: A New Workflow Definition Model .. 124

6.1 Related Works on Workflow Modelling .. 124
6.1.1 Petri Nets .. 124
6.1.2 Wf-Nets .. 126
6.1.3 UML Activity Diagram .. 128
6.1.4 BPMN ... 129

6.2 Workflow Ternary Transitions .. 132
6.3 The TRM-WF Overview .. 133
6.4 The TRM-WF Coverage over the Other Models .. 135

6.4.1 The TRM-WF and Petri Nets ... 136
6.4.2 The TRM-WF and Wf-Nets ... 138
6.4.3 The TRM-WF and UML Activity Diagram ... 138
6.4.4 The TRM-WF and BPMN .. 138
6.4.5 The TRM-WF and XPDL ... 139
6.4.6 The TRM-WF and YAWL .. 139
6.4.7 The TRM-WF and the Workflow Patterns .. 139

6.5 Discussion.. 145
6.6 An Example... 146
6.7 Summary .. 148

7 TWM: A Practical Workflow Development ... 149
7.1 TWM Demonstration .. 150

7.1.1 The Information Structure .. 152
7.1.2 The User Interface .. 153

7.2 The Enterprise-scale Development Experience ... 156
7.2.1 The Usability Issues in WFMSs.. 157
7.2.2 The Related Works ... 158
7.2.3 Methodology .. 160
7.2.4 Gathering Initial Requirements .. 160
7.2.5 Functionalities and Implications .. 161
7.2.6 The System Architecture ... 163
7.2.7 A Research on User‟s Requirements ... 164
7.2.8 Discussion and the Lessons learnt ... 167
7.2.9 What does the experiment mean to the TRM ... 168
7.2.10 Conclusion ... 168

7.3 Summary .. 169
8 Discussion .. 170

8.1 Revisiting the Objectives .. 170
8.2 The Forming Ideas ... 171
8.3 Revisiting the Unification Aim .. 173
8.4 Revisiting the Construction Aim ... 174
8.5 Other Work Areas .. 175

- ix -

8.6 Why Ternary? .. 176
8.7 Epilogue ... 178

9 Bibliography ... 180
Appendix A: A Database Design for Zzstructure ... 193

A.1 Background .. 193
A.2. General Design .. 194
A.3 Detailed Design.. 195
A.4. An Improved Design .. 198
A.5. Indexing Algorithms ... 200

Appendix B: Notes on One-to-many Relationship in Zzstructure 214
B.1. Background .. 214
B.2. One-to-Many relationship Mechanisms ... 215
B.3. The Associated Problems ... 215
B.4. Storage-layer Optimization by Referencing Cells .. 216
B.5. Storage-layer Optimization by Non-ZigZag Storage .. 217
B.6. Changes on Fundamentals: Macro-Cells ... 217
B.7. Section Summary ... 219

Appendix C: Source codes ... 220
Appendix D: The Published Works ... 223

- x -

LIST OF FIGURES

Figure 2-1: Sample directed labelled graph for XML representation ... 18
Figure 2-2: The sample database in a directed-labelled graph .. 19
Figure 2-3: XML listing of the sample database ... 20
Figure 2-4: XMLSchema listing of the sample database ... 20
Figure 2-5: The sample database in Zzstructure ... 25
Figure 2-6: Multi-layered architecture of the Semantic Web (from wikipedia.org) 45
Figure 2-7 : WFMC reference model for workflow management [195] 50
Figure 2-8: Relations between workflow, hypertext and knowledge systems 52
Figure 3-1: Graphical notation for the abstract TRM definition ... 58
Figure 3-2: A sample TRM-modelled information space ... 58
Figure 3-3: The TRM graph representation of the sample database .. 63
Figure 3-4: Information System Layers used in this research .. 64
Figure 4-1: A sample conversion of a set of binary relations to the TRM graphs 70
Figure 4-2: A simple example of converting XML to the TRM graph .. 72
Figure 4-3: An example of converting XML to the TRM graph considering sub-elements

and ID referencing ... 73
Figure 4-4: A sample conversion of Zzstructure to the TRM graph .. 74
Figure 4-5: Design of the TRM-Table called Nodes table (all fields are text) 75
Figure 4-6: the TRM-Table equivalent for the bibliographic example ... 75
Figure 4-7: The TRM-XML Schema listing ... 77
Figure 4-8: The TRM-XML listing of example 1 ... 78
Figure 4-10: The view of "RelationTriples" applied on the sample database 85
Figure 4-11: The sample output of querying the TRM-Table .. 86
Figure 4-12: The sample result of converting the TRM-Table to full non-normalized table 87
Figure 4-13: A binary redundant table produced by transforming the TRM-Table 88
Figure 4-14: Description of a sample the TRM query statement in XQuery. 89
Figure 5-1: A sample Yahoo Shortcut screen capture ... 97
Figure 5-2: A sample Snap Shot screen capture ... 97
Figure 5-3: the TRM-Table equivalent for Atom Page example ... 100
Figure 5-4: the TRM graph of the Atom Webpage example ... 101
Figure 5-5: Screenshot of a prototype implementation of a Webpage with Ternary-Link 101
Figure 5-6: The mechanism of personalizing using added Ternary-Links. 104
Figure 5-7: A sample Ternary-Links example with 3 personalized looks 105
Figure 5-8: Class hierarchy and instances relationship in RDF [14] ... 108
Figure 6-1: A sample Petri-net firing ... 126
Figure 6-2: A sample UML Activity Diagram used to define a workflow 128
Figure 6-3: A sample workflow represented in BPMN ... 129
Figure 6-4: A sample decision task and its TRM equivalent .. 135
Figure 6-5: Petri-net to TRM conversion sample ... 136
Figure 6-6: Illustration of the Petr net including the token states ... 137
Figure 6-7 A partial example of UML Activity Diagram and its TRM equivalent 138
Figure 6-8: WFP #1 ... 142
Figure 6-9: WFP #2 ... 143
Figure 6-10: WFP #3 ... 143
Figure 6-11: WFP #4 ... 144
Figure 6-12: WFP #5 ... 144

- xi -

Figure 6-13: UML Activity Diagram and its TRM equivalent for the example of insurance
claim .. 146

Figure 7-1: The activity diagram of the TWM example .. 151
Figure 7-2: Using TRM-DB to express the workflow definition of the PC Servive example . 152
Figure 7-3:TWM execution table ... 153
Figure 7-4: General look of the TMW user interface .. 153
Figure 7-5: A sample of case start-up screen ... 154
Figure 7-6: A sample TWM Inbox for user "Engineer" ... 155
Figure 7-7: A sample Case History screen in TWM .. 156
Figure 8-1: The progress of the development of the TRM .. 171
Figure 8-2: The role of evidence and requirements in forming the TRM 172
Figure 8-3: Comparing 1, 2, 3 and 4 dimensions in information space – an implementation

of Einstein‟s Razor ... 177
Figure A-0-1: Bio-informatics data in I-view .. 197
Figure A-0-2: Bio-informatics data in H-view... 198
Figure A-0-3: A zzstructure example .. 201
Figure B-0-1: Indirect Solutions of Zzstructure for One-to-Many Relationship 215
Figure B-0-2: Deviation of structure from information .. 216
Figure B-0-3: Referencing-Cells Design ... 216
Figure B-0-4: Non-ZigZag Storage ... 217
Figure B-0-5: Notation and Visualization of the Concept of Macro-cell 218
Figure B-0-6: Data storage of Macro-cells ... 219
Figure B-0-7: A Comparison between the storage seisure for different one-to-many

relationship solutions ... 219

- xii -

LIST OF TABLES

Table 2-1: The sample database, non-normalized form ... 15
Table 2-2: The sample database, normalized form in 4 tables .. 15
Table 4-1: Comparison of features the studied data models ... 84
Table 5-1: Comparing similar expressions in RDF/XML and the TRM-XML 111
Table 5-2: Summary of comparison between the TRM and RDF ... 113
Table 2-3: Petri-net notations [146] .. 125
Table 2-4: BPMN notations [138, 197] ... 130
Table 2-5: YAWL notations [192]. ... 132
Table 6-1: The Workflow Patterns - Control Flow [198] .. 140
Table 7-7-1: Results of a comparative research among 40 users (part 1). 165
Table 7-7-2: Results of a comparative research among 40 users (part 2). 166
Table 8-1: The summary of comparing TRM with the related works 174
Table A-1: Basic tables‟ scheme .. 195
Table A-2: The extended version of the Links table... 199
Table A-3: Tabular representation .. 201
Table A-4: View of Pre-Rank .. 202

- xiii -

GLOSSARY OF ABBREVIATIONS

The following abbreviations have been used in this thesis for the first time:

 TRM: Ternary Relations Model: A formal description of building relations by three

nodes of data.

 TRM-DB: TRM Database, a database design method utilizing the TRM.

 TRM-NAV: TRM Navigation, a hypertext navigation framework having TRM-

based hyperlinks.

 TRM-WF: TRM Workflow, a model of describing workflows by the TRM.

 TWM: TRM Workflow Management, a workflow management system based on

the TRM-WF.

 pE: predicate-Expression, a form of making binary links in which the link source is

selected by a logical predicate and the destination by a computation.

 pfE: predicate-function, Expression, the extension of pE to be used in ternary

links, in which the association of a link is also computed by a function.

Among many other abbreviations used from other related works, these are the most

important and/or less known acronyms which are described throughout this thesis:

RDF: Resource Description Framework, OWL: Ontology Web Language, UML: Unified

Modelling Language, BPMN: Business Process Modelling Notation, XPDL: XML Process

Definition Language, YAWL: Yet Another Workflow Language, FOHM: Fundamental

Open Hypermedia, COHSE: Conceptual Open Hypertext Service, IUHM: Information

Unit Hypertext Model, MMVP: Model Map View Praxis, WFMC: Workflow Management

Coalition, W3C: WWW Consortium.

- xiv -

To My Dear Parents.

- 1 -

C h a p t e r 1 -

1 INTRODUCTION

“Generalization” or “Unification” is what many scientists from many fields of human

knowledge have targeted, particularly in the theoretical sciences, from the recent attempts

of physicists like Stephen Hawkins [96] to the universal model of Ken Wilber [200] to

explain almost “everything” in this world. The philosophical motivation for those scientists

to look for such a global theory is that in a universal scale, there must be only one truth

that can explain all the true facts in this world.

The domain of this thesis is much smaller than such universal theories, moreover, it is not

as purely theoretical as those. Also the unification in this thesis is neither an achieved nor a

targeted goal, but it is a just an approach to target or achieve some results. However, the

motivation is still the same.

If a unified theory of physics can explain an existing physical phenomenon and predict the

happening ones, then by analogy, a unified information model in IT domain may help to

explain the similarities between existing systems and to build new systems.

1.1 Background

Early computers were only for computing but now they are an integrated –if not essential-

part of human life. What the today computers can do over the traditional computing is

managing “information”, and most of the today computer systems are in fact,

“information management” systems. Before providing the dealt problems, questions, aims

and objectives of this thesis, it is necessary here to have a touch of the challenging world of

“information” terminology in the computer science‟s literature. Also the importance of a

- 2 -

unifying approach will be explained to address some problems and answer some

fundamental question in the information management community.

1.1.1 Information and information Model

In the field of information science and knowledge management, the terms data,

information, knowledge and wisdom are often considered to make a DIKW pyramid or

hierarchy proposed by Russell Ackoff in 1989 [11, 157, 166], as illustrated inFigure 1-1.

For the description of data as the basic layer, Ackoff's view in [11] is that Data is raw; it

simply exists and has no significance beyond its existence (in and of itself). It can exist in any form, usable

or not. It does not have meaning of itself.

On top of the data layer, “information” adds context to data, knowledge adds “how to

use” to the information. The term of information may be used in different contexts in the

field of computer science, and thus it is very difficult to find such a general definition. The

main thing that makes information different from any kind of raw data is the role of

human perception. Information is sometimes defined as anything that a human being can be

interested in [125], or as any represented pattern [98]. The term of knowledge is particularly

difficult to define, as reviewed in [174]. In that review, a working definition of knowledge is

proposed as the high-value form of information that is ready to apply to decisions and actions. For the

purposes of this thesis, knowledge is considered to be the meaningful structure of information.

Briefly, Information is the structured form of raw data that can be interpreted or put into

some context. Knowledge is the interpreted and meaningful structure of information that

can be use to make decisions. Wisdom then adds “when to use” elements and the decision

making and reasoning skills in a time-dependent context on top of the gathered knowledge.

Figure 1-1: DIKW pyramid [97]

- 3 -

Also in [85], the layer of “understanding” is inserted between wisdom and knowledge

layers, which includes the analyze and synthesize processes in order to reason or make a

decision or reasoning.

It may be useful to illustrate the above hierarchy in Figure 1-2.

Some related works have criticized DIKW hierarchy to be not a perfect explanation. An

opposite idea is that the relation between data, information and knowledge is not

directional and hierarchical at all. As evidence, building relations to make information out

of data is not possible without knowledge, and that the knowledge is not meaningful

without knowing the “knower” [43]. Another work [75] focuses on the “holistic” nature of

data, information and knowledge and that the relationship between them may be explained

by “meta”s not by linear dependencies.

According to the above reviews, defining data, information and knowledge is a challenging

argument. It may be impossible to draw strict lines between data, information and

knowledge and they are interchangeable in many contexts. As evidence, a structure of

information may be itself an information building block in another context.

In this thesis, the DIKW hierarchy with some sort of flexible and fuzzy borders is generally

accepted. It is also useful to have a working definition for the term of “Information

model”. It is defined here as the conceptual and/or logical way that a computerized system uses to

transit from data to information, as defined in DIKW hierarchy. According to the DIKW

illustration of Figure 1-2, this definition is almost equal to “how a system understands the

relations”.

Figure 1-2: Transition between data, information and knowledge in DIKW hierarchy [85]

- 4 -

1.1.2 Information Modelling and Relations

The defined “information model” exists in any information management system

(practically) or information management paradigm (theoretically). This thesis considers a

number of information management paradigms to be candidates of the mentioned

“information model unification”. Since the concept of “relations” has shown to be the

main issue in an information model, then the unification is mainly about unifying how to

relate pieces of data to make information (or in a wider definition, to relate simpler pieces

of information to make more complex ones).

It is noticeable that the term “relation” has also been used in the Relational Databases

Theory in a set-theory mathematical context [58] meaning a collection of related records of

data, like a table 1. This shall not be confused with the “relation” term used in this thesis

hereafter. This term is used in this thesis for its pure meaning, as something having

relationship, as in relating things together.

It is possible to rethink some of the known information modelling paradigms, in terms of

what and how they relate together, as follows:

1. Making relations between pieces of data to make tables and relating tables to build

databases.

2. Making relations between nodes of information by hyperlinks, to build a hypertext

system.

3. Making relations between pieces of data and/or metadata in a textual and semi-

structured manner to build XML listings.

4. Making semantic relations between Web resources to build the Semantic Web.

5. Making relations between cells in a multi-dimensional hyperspace to make ZigZag.

6. Making relations between tasks, actions and decisions to build a workflow

management system.

1 In that reference, Codd defines the term “relation” as Given sets S1, S2, … , Sn (not necessarily distinct), R is a relation on these

n sets if it is a set of n-tuples each of which has its first element from S1, its second element from S2, and so on. More concisely, R is a subset

of the Cartesian product S1 X S2 X … X Sn

- 5 -

More details on each of the above systems will be provided in chapter 1, but they have

been counted above to show the motivation of selecting these systems to be studied in this

thesis. These systems may be mostly different in terms of look and applications, but they

are similar in establishing some relations.

1.1.3 Questions and Problems

When researchers from different domains of the information management community get

together in conference bars, one of the main topics of debate that almost always comes up

shortly after the "my system is better than your system" conversation, is the "your system is

really the same as my system" conversation. For example, people who work on ZigZag are

often told, in no uncertain terms, that ZigZag is "merely" a different take on the Semantic

Web or that it is XML in heavy disguise.

Although many of the major paradigms of the information management superficially look

to be very different, on a deeper level they do have a lot in common – they are addressing

many of the same issues, and utilising many of the same techniques to do so. They all

divide information into independent pieces of data (a set of nodes) and they all associate

these nodes with each other (a set of links). This is called “node-link structure” in this

thesis.

The simplest node-link structure is the binary model, where each two nodes can be simply

connected by means of a link. However, a limitation of the binary model is its inability to

express the purpose of a link, either for human or for machines. This is not essential for

the technical implementation, as evidenced by the number of systems that offer links

without any indication of their purpose (the Web being a prime example), but the purpose

of the link, its reason for being and its semantic implications are nowhere represented in

the binary model. Knowing that two piece of information are connected -without knowing

by which mean they are connected- may not be enough to transit between data to

information, and from information to knowledge in DIKW hierarchy (section 1.1.1). This

will be explained more in chapter 2. As an example, without any indication of why a link

should be followed in a hypertext system, a user could easily waste time exploring

irrelevant links. In extremis he or she might even give up on the hypertext and go to a

search engine for a more rapid answer to his or her needs.

There are many information management paradigms such as ZigZag and the Semantic

Web which incorporate an awareness of “the why” of a link. These sorts of systems are

- 6 -

more likely to fit into DIKW hierarchy. It will be shown in chapter 2 that more enriched

links (with typing, semantic elements, etc.) can produce more knowledge-oriented systems.

A logical successor to the binary model is to use a ternary approach – where the relations

consist of not just the two linked nodes but also a third node, which represents the link

between them. The ternary version of the node-link structure, which is developed in this

thesis, is exemplified by a link that connects three arbitrary nodes in an ordered manner.

So, a link originates from a node, passes through another node and is terminated in a third

node. This ternary approach is not new, but it has not previously been used in this way to

unify the fundamentals of different paradigms in the information management community.

A known special case to such a node-link structure is the directed labelled graph, whereby a

separated node of information is demoted to a label and is used just for describing a binary

link. An obvious difference is that a label can no longer be involved in any other link.

As a summary, the focused problems are:

1. Some information paradigms have limitations to completely fit into DIKW

hierarchy.

2. Many cases of isolating an information system paradigm from others exist because

of ignoring their commonalities.

And the main questions are:

1. Is there any generalized information model that firstly can satisfy DIKW and

secondly the studied different modelling paradigms are considered to be special

cases of that?

2. Finding that model, can some new solutions be found to communicate between

the studied information systems in their information modelling level?

3. Knowing that different paradigms are special cases of the found model; can some

new information management paradigm be thought to be directly based on it,

particularly using the most of the found model?

By an analogy to the unified force theory [96] that physicians are developing, the above

three questions may have some equivalents like: 1) Can a unified force be found that

- 7 -

gravity, electromagnetic and atomic particle forces are special cases of that? 2) Can those

three fundamental forces be interchangeable; and 3) Can some new physical system be

thought that uses that “X-force” directly?

1.2 Aims

According to the explained approach in the previous section, the aims of this thesis are:

1. To find a unified and simple information model for the different studied information management

systems.

2. To investigate how the found information model can be used to bridge over some known

information management systems.

3. To investigate the potential of the found model in making new paradigms and/or information

management systems, that may not be known or formalized before.

1.3 Objectives

For achieving the aims mentioned in the previous section, the objectives are considered to

be:

1. A top-down study method: To have a unifying approach in studying the related works

in a knowledge management context. The studied related works are:

a. The Relational Databases

b. The Semi-structured Databases and XML

c. Hyperstructure Links

d. The Semantic Web

e. ZigZag

f. Workflow Definition Models

The main reason for selecting the above set of related models is their similarity

in fitting to a node-link structure (as explained in section 1.1.2). They are all the

commonly used paradigms in the hypertext and information management

- 8 -

communities. The model developed in this thesis does not rely on the

specifications of the above six approaches – however it will be shown that it

defines an abstract model which underpins the above paradigms, and indeed

any other node-link structure approach in information management.

During this related work study, different thoughts, advantages and

disadvantages will be studied, together with some unifying “ternary-based”

rethinking. Also the concept of “knowledge-orientation” will be provided to

investigate each paradigm in its potential to be used as a “knowledge transfer

media”. Particularly, in studying the hypertext links, different approaches to use

hyperlinks to build knowledge-oriented hypertext will be reviewed.

2. Forming the TRM: To define and formulate the found fundamental model as the

“Ternary Relations Model” or “TRM” in the most generalized way so it can cover

the studied information models. It will also be considered that the targeted

information model is not known from the beginning and also it may or may not be

generalized in a wider context than the studied systems. TRM will be defined as

static and dynamic versions and for each one a formal description will be provided.

The definition of TRM shall be both very simple and very general to be able to be

a useful unification. Moreover, a layered approach will be proposed to explain how

TRM fits in with other related works.

3. A bottom-up study method: To introduce three new information management threads

on top of TRM, as follows:

o A New Schemaless Database Paradigm

o A New Hypertext Navigation Model

o A New Workflow Definition Model

The TRM in this part is considered to be an “information model construction

kit” and this group of objectives is directed to search for the ability of the TRM

to build new paradigms and systems. For each one of the above, it will be

shown how TRM can partly or wholly be used to build new systems.

- 9 -

For the first thread, the problems of associating strict schema in structured and

semi-structured databases and the imposed limitations to handle real-life

information will be studied, then by using the TRM formulation, two methods

of using tables or XML to build databases without any associated schema will

be demonstrated. A TRM specific query language will be also proposed

together with its implementations in SQL and XQuery.

For the second thread, TRM is considered to be an extension to binary

navigational models, in which the concept of “binary links” may be extended

to “ternary links”. Through demonstrating a developed system, it will be shown

how ternary links can be used to enrich or adapt hypertext systems. Also the

similarities and differences between the Ternary Relations Model and RDF

data model used in the Semantic Web will be discussed.

For the third thread, workflow definition model is considered to be a new area

to apply TRM theory to, especially by considering dynamic and bi-directional

properties of TRM. Also a demonstration of a workflow system developed on

top of TRM will be provided.

1.4 Structure of the Thesis

According to the three objectives mentioned in the previous section, chapter 2 is the place

of the top-down study method, chapter 3 is the place of forming TRM and chapters 4 to 7

are the places for the bottom-up study method.

During the bottom-up study, chapter 4 develops the New Schemaless Database Model,

chapter 5 develops a New Hypertext Navigation Model and chapter 6 develops a New

Workflow Definition Model. Finally chapter 7 uses the idea of chapter 6 in a system

development case study.

The discussion in chapter 8 reviews the TRM development and practice in an integrated

method to reach the final conclusion about the rationale of the TRM and to overview the

possible future works.

- 10 -

1.5 Contributions

The contribution of this research can be listed as follows:

1. Extraction and formalization of the TRM as a substantial information model,

providing a tool to define, interconnect and analyze different information

management approaches for the first time.

2. The applications of TRM in hypertext navigation, by proposing a new modelling

framework for hyperlinks.

3. The applications of TRM in database theory, by introducing a new class of

schemaless databases.

4. The applications of TRM in the workflow management systems, by defining a new

extended framework for defining workflows, supported by practical systems.

This thesis provides its main “product” as a “model” together with a set of design ideas

for information system designers and users, as categorized in the above 4 items. These

design ideas which are mostly theoretical can help making new system benefiting from

the advantages of the developed information model, i.e. interfacing between existing

model and using its extra conceptual features. It is noticeable than the practical works

in this thesis are mostly for demonstrations purposes and must not be considered as

the final products of this thesis.

- 11 -

C h a p t e r 2 -

2 THE RELATED WORKS: LOOKING FOR A COMMON FOUNDATION

In this chapter five major paradigms of current information management thinking – the

Relational Databases, Semi-structured databases and XML, the Semantic Web, ZigZag, and

Workflow Models– will be reviewed and all will be directed to a “ternary approach”. It will

be shown that a special kind of node-link structure can be similarly found in those various

information management paradigms. By doing so an attempt will be made to answer the

question of “whether we are indeed all talking about the same fundamental structure”.

2.1 The Relational Databases

Today the relational databases are the most common way of using computers to store and

retrieve information. The relational databases are based on a mathematical model

introduced by Codd in 1970 [58]. From that time till now, the relational database could

practically integrate or overlay the existing approaches about how information can be

stored in “tables”. Tables consist of rows and columns, which is an intrinsically “rigid”, and

hence inflexible, Cartesian structure. Nevertheless, the paradigm of the relational databases

provides one of the most known and consistent method of data management. The main

components in the theory of the relational databases [55, 56, 58] are:

1- Relations (a set of interlinked tables) and a set of Constrains applied on them.

2- Normalization (A formal method about how to optimally design tables and their

links in order to meet integrity constrains and to avoid redundancy). Details can be

found in many database textbooks like in [113])

- 12 -

3- A sub-language or algebra (to provide the necessary language for a formal

approach to store, modify and retrieve information).

Formally, a relational database has a schema, in which it is specified how the tables are

designed and interconnected. The database schemas are expressed using a format like

r1(a,b) , r2(c,d,e) where r is the name of the table (also called relations in the context of the

relational databases) and other letters show the column names.

Linking the tables in an optimal way is what makes the relational databases distinctive from

any other database system. This is called “relational processing” in the Codd‟s theory and a

database system that does not support it should be considered as non-relational.

Interestingly, Codd uses the term of “navigation” to express the systematic functionality

for linking between tables: “There is a large difference in implementation complexity

between tabular systems, in which the programmer does his own navigation, and relational

systems, in which the system does the navigation for him, i.e., the system provides

automatic navigation” [57].

2.1.1 The Common Challenges

The first challenging issue about the relational databases comes back to the fundamental

characteristic of tables, which are a rigid structure or rows and columns. They are good

when one precisely knows which data fields are required for expressing a piece of

information, but not the best choice for dealing with the irregularity and the dynamic

properties of the real-life information.

A certain set of data fields in tables may not be adequate for expressing much real-life

information. To overcome this problem, two approaches may be used. The first approach

is to design as many tables as necessary, each with a different data field design to fit a group

of information, and finally to link these tables. As the number of necessary information

structures increases in the real-life cases, the tables converge to simpler structures having

less data fields, and the number of tables increases. The extreme point of this approach is

the binary decomposition, where the databases is being normalised down to numerous

binary tables. This process, which is called “binary decomposition” –also known as 6th

normal form- is theoretically possible but practically difficult to manage, because the

resources of a database management system will be highly allocated to manage numerous

links between numerous tables rather than being allocated to data storage and retrieval

- 13 -

tasks. As the second approach, one may want to keep the number of tables limited, so

he/she may design them in a maximal method (predicting all possible data fields in single

tables). The extreme point of this approach is ending up with a few but large non-

normalized and non-relational tables which consequently increasing the redundancies and

null values.

For several decades, any small change in schema design could have been a serious problem

for database developers, especially for working database systems. No one can stop the

dynamic and irregular aspects of the client requirements, so the mentioned problem can

always happen. This may imply deep changes in a working system with all the risks of data

or efficiency loss. This seems to be a built-in problem of relational databases, something

that completely comes back to the rigid nature of database tables.

Null values are also another challenging matter in RDBs. Nulls may cause ambiguity

because they neither express anything when a piece of data is expected, nor specify which

of the possible cases have happened: “unknown” or “nothing”? By definition, a record (or

a tuple in RDB terminology) is a complete piece of information in the context of the

container table structure. Either the null value is interpreted as “nothing” or as

“unknown”, a tuple containing a null value handles an imperfect piece of knowledge and

thus cannot be a tuple by definition.

Although normalization can provide a method of avoiding null values when it is expected

to happen, but no database designer can guarantee the availability of all required fields in

the decomposed tables at data entry time because “unknown” or “nothing” can always

happen in the real life. Also normalising down to a set of binary pairs may produce a

numerous number of joined relations which may be impractical to manage. That is why

fields of RDB tables are -by default- ready to accept null values except for the ones tagged

as “required”. If one needs to completely avoid null values, he or she will again end up with

a binary decomposition version of the database.

Also “null values” are not “values”, but something about values (which is the lack of a

value). By this view, a null is naturally meta-data. The question then will be “can a meta-

data sit in a tuple?” A tuple is defined in RDB theory as a set of tagged data and not tagged

meta-data. Thus a meta-data in a tuple cannot theoretically fulfil the information gap, and

the answer to that question is negative.

- 14 -

Different approaches to the null values in RDB community has been taken in order to fit

the null values in the RDB theory, either by changing the interpretation of the null values,

or by slight changes of the RDB theory. Codd himself extended his RDB theory to include

“unknown” values, i.e. those which are existing in the real world but we don‟t know them

[55]. A main problem of this approach is violating the Set Theory, which is the basis for

RDB theory: Simply, if a null (as defined in unknown interpretation) is a member of a set,

then is that set equal to itself? The answer is not a definite yes because that null value is not

a static member. A newer version of this approach is building RDB theory based on a

fuzzy-set theory in order to estimate null values, like in [50]. Another approach is

interpreting nulls as “non-existence” and the problem is again changes to dealing with

“information incompleteness” like in [90, 108]. Null values are even interpreted as the

combined values of “unknown or non-existence” like in [178] or “no-information” in

[202]. These approaches are still suffering from the mentioned problem of mixing data and

meta-data. An in-depth meta-data approach to the missing/incomplete information (of any

interpretation) has been studied in [143]. Also Date and Darwen in [62] provide ideas

against null values and Darwen in [61] proposes how to practically avoid them in databases.

From the point of view of this research, it doesn‟t so much matter to know whether or not

the null values can finally fit in the RDB theory. Instead, it is important to know about the

presence of such research challenges and why it is preferred to avoid the null values in the

information model provided in this thesis.

2.1.2 An Example

The example shown here is a simple bibliography database including some journal articles.

This example will be re-used in the rest of this thesis on various occasions. Here after

explaining the example, the non-normalized and normalized versions of implementing it in

the relational databases will be shown.

The database includes some journal articles; each article has some authors, a title, a journal

name and a year of publication. For each article, the number of authors can be 0 to many,

and the other fields are necessarily single. An example with three articles is shown in Table

2-1 (the non-normalized form).

- 15 -

Table 2-1: The sample database, non-normalized form

Title Author Journal Year

Enterprise-Wide Workflow

Management

C. Bussler IEEE Concurrency 1999

On the Evaluation of Workflow

Systems in Business Processes

S. Choenni

R. Bakker

Journal of Information

Systems Evaluation

2003

Searching for e-Business Performance

Measurement Systems

Null Journal of Information

Systems Evaluation

2006

The two problems of the non-normalized form can be observed as redundancies (like the

repeated name of journal) and null values (like the author name). After the normalization

process, the tables below are produced. Using the unique identifier fields, the normalized

form avoids redundancy and null problems.

Table 2-2: The sample database, normalized form in 4 tables

ArticleID Title JournalID Year

ArticleID1 Enterprise-Wide Workflow Management JournalID1 1999

ArticleID2 On the Evaluation of Workflow Systems in Business

Processes

JournalID2 2003

ArticleID3 Searching for e-Business Performance Measurement

Systems

JournalID2 2006

AuthorID Author

AuthorID1 C. Bussler

AuthorID2a S. Choenni

AuthorID2b R. Bakker

JournalID Journal

JournalID1 IEEE Concurrency

JournalID2 Journal of Information Systems Evaluation

ArticleID AuthorID

ArticleID1 AuthorID1

ArticleID2 AuthorID2a

ArticleID2 AuthorID2b

- 16 -

2.1.3 The Relational Databases: A Ternary Approach

There are two possible ways of ternary approaches to the relational databases.

First, a table can be considered as a set of finite triples: (row number, cell content, column

name). The constrains representing the links also are triples of (table name, joining field,

table name). Although this approach has so much redundancies by repeating row number

and column name for each piece of data, but it is theoretically enough to show that a table

is built on a ternary node-link structure .

The second approach is motivated by binary decomposition rules [55]. As shown in the

example, it is proved that a relational database can be decomposed to a set of finite linked

tables, each with two columns. Having this, the entire database is convertible to triples of

(first cell content, table name, second cell content). Again, although this is not practically

useful to fully decompose a database, the theory is enough for the target of this research.

This will be re-explained formally after defining the TRM in section 4.1.1.

2.2 Semi-Structured Databases and XML

The general term of “semi-structured databases” refers to a group of approaches that try to

avoid the fundamental regularity of tables (described in section 2.1.1). They also have been

called “Schemaless” or “Self-describing” databases [10]. However, the term is very difficult

to define, because what it is not is clearer than what it is.

When merging databases from different origins started to become unavoidable in the

recent ten years, especially when the Web facilitated that integration, the term “semi-

structured” was referring to some solutions to avoid rigidity of tables in information

management. When XML was introduced in 1998 by W3C, it soon became the most

common way to express information in a “semi-structured” manner [10, 171]. The obvious

advantage that makes it common is its wide acceptance as a standard of data exchange on

the Web, thanks to the textual basis of the language and the easiness of text-processing.

The XML‟s simplicity, together with its readability by both humans and machines helped

to make it a global standard, and also to be surrounded by a confusing number of XML-

based standards and languages, such as RDF-XML, XML-Schema, XHTML, etc. XML

also showed its other major characteristic: There is no separated description of the

- 17 -

structure; i.e. XML describes its content internally, thus the term “Self-describing” has also

been used for XML [101].

In RDB tables, the meaning of data (or meta-data) is expressed in the schema (tables

design), so a piece of data is interpreted by knowing its location in a certain row, a certain

columns of a certain table. The good side of this is that if the tables are designed optimally,

the space required for the database is optimally low, because the schema is stored once and

serialized data can be mapped into the schema easily.

In using the semi-structured approaches, the data is described by mixed and repeated meta-

data which has a cost of increasing storage space. The “separated” meta-data is now

changed to some “joint” ones. For example, the labelled graphs are some means of the

semi-structured data, in which labels carry meta-data and nodes carry data.

The waste of the storage space is a dark-side of XML which is usually ignored thanks to

the memory technologies. Most of the XML features are common with semi-structured

data concepts. However, XML has its own set of problems which the research on semi-

structured data has not yet addressed, considered important or solved [171]. The details of

these differences are beyond the scope of this review. In this thesis XML is generally used

as a language to express the semi-structured data.

In XML, a general syntax is like:

<element attribute=”xxx”>

 <sub-element…>

 yyy

 </sub-element>

</element>

“Elements” carry the meta-data part of the database, either by name of the elements (also

known as “tags”), or by name of the attributes. Data are inside the elements, either as the

attribute values (like xxx above), or the element values (like yyy above). Elements can have

sub-elements with all the properties of an element, so XML is equivalent to a tree of

hierarchical elements. The same structure can be shown as a directed labelled graph [175]

like the illustration of the above example in Figure 2-1. Some slightly different strategies for

this conversion have been described in [175].

- 18 -

A XML listing is completely self-describing. For consistency purposes it is usually preferred

to “validate” an XML listing by certain rules. The names of the elements and attributes and

their hierarchical interconnection are stored separately (using DTD or XMLSchema

methods) so a mechanism can be used to check the consistency and to qualify a XML

listing against the specified rules. More details about DTDs, XMLSchemas and XML query

languages are out of the scope of this thesis and can be found on the World Wide Web

Consortium website (www.w3.org).

2.2.1 The Common Challenges

Using the term “semi-structured” for XML leads to assume the existence of both

“structured” and “non-structured” aspects for XML. The non-structured aspect (or being

“schemaless”) is because of XML‟s self-descriptive characteristic and that it doesn‟t

necessarily need an external meta-data to become expressive. According to the

“structured” aspect, XML has characteristics like hierarchy; i.e. building a tree of

information and putting each piece of information on some nested levels of that tree.

According to Ted Nelson‟s view [132], the existence of hierarchy is a classical property of

many computer systems, and is originated by the paper-based look to the computers which

may prevent a computer system from being more extensible and scalable to be used in the

real-life applications. Also, XML might be validated and for a validated XML, an external

schema is required and the self-descriptive characteristic is no longer exists. These two

issues can potentially threat on the flexibility of the resulted database systems. However, it

is still absolutely possible to build XML with single level of hierarchy and without

validation requirement. This type of XML is what will be used in chapter 4 as a storage

layer for TRM, called TRM-XML.

Figure 2-1: Sample directed labelled graph for XML
representation

- 19 -

2.2.2 An Example

Recalling the bibliographic database of section 2.1.2, the database can be shown in a

directed-labelled graph as in Figure 2-2. It is noticeable that new nodes of root and article

have been added to the database to satisfy a hierarchical design.

The illustrated graph then can be used to build an XML listing of the sample database, as

listed in Figure 2-3.

XML supports using ID, IDREF pairs, which can be used to modify the listed XML in

order to reduce redundancies, if necessary. This is equivalent to changing the graph to have

some multi-input nodes. In addition, a schema written in XMLSchema can be used to

validate it, as listed in Figure 2-4.

Figure 2-2: The sample database in a directed-labelled graph

- 20 -

<root>
 <article>
 <author>C. Bussler</author>
 <title>Enterprise-Wide Workflow Management</title>
 <journal>IEEE Concurrency</journal>
 <year>1999</year>
 </article>
 <article>
 <author>S. Choenni</author>
 <author>R. Bakker</author>
 <title>On the Evaluation of Workflow Systems in Business</title>
 <journal> Journal of Information Systems Evaluation</journal>
 <year>2003</year>
 </article>
 <article>
 <title>Searching for e-Business Performance Measurement systems</title>
 <journal> Journal of Information Systems Evaluation</journal>
 <year>2006</year>
 </article>
</root>

Figure 2-3: XML listing of the sample database

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="root">
 <xs:complexType>
 <xs:all>
 <xs:element name="article">
 <xs:complexType>
 <xs:all>
 <xs:element name="author" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="title"/>
 <xs:element name="journal"/>
 <xs:element name="year"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
 </xs:all>
 </xs:complexType>
 </xs:element>
</xs:schema>

Figure 2-4: XMLSchema listing of the sample database

- 21 -

2.2.3 XML: A Ternary Approach

XML can be thought as a series of ternary links between elements, attributes and textual

values. In an XML tree, there is a hierarchy of elements. The XML hierarchy can be

flattened to form a ternary node-link structure. It is noticeable that converting an XML

listing to a series of directed labelled graphs is a very common way of representing, and

storing XML information [175]. The directed labelled graph can be thought as a demoted

version of the general ternary node-link structure, because nodes denoting labels can not

be reused in any other link.

It isn‟t necessary to use this labelled graph conversion method, instead a more general

approach may be used to convert an XML listing to a complete ternary node-link structure:

Each sub-element adds a branch to this hierarchy and connects its body contents to its

super-element. So an element can be considered to be an association between its super

element and its body. In the same sense, an attribute name is an association between an

element and its textual (or referable) contents. This will be described more in section 0.

2.3 ZigZag

ZigZag is an information paradigm that has been developed by Ted Nelson over the last

decade [117, 131]. ZigZag is particularly suited to representing scientific or other real-world

information that can be difficult to model using paradigms developed for "man made"

information [121, 122]. Many information models – in particular relational databases –

were developed primarily for business use. Such information can fit neatly into rows and

columns, and it is generally possible to modify business procedures so that the information

fits such structures. This is not always the case with information from the real world – such

as scientific information. It is not possible to change the structure of a protein or the path

of a river so that they fit in with the information paradigms intended for other application.

However, the fluid schema-less structures of ZigZag allow such structures to be modelled

easily.

In ZigZag, cells are atomic information units that can be interconnected with directed links

along dimensions – which may have meaning or may be arbitrary. A cell cannot have more

than an originating link or terminating link along any given single dimension (i.e. one in,

one out). All cells may exis in all dimensions, although they may or may not be connected

to anything. When a sequence of cells is connected along a particular dimension, that

structure is called a “rank”. Cells may be transcluded so that they appear in any rank in

- 22 -

which they may be required. These simple rules provide a multi-dimensional space which

can be as intricate and complex as is required by the information that it represents. A

detailed data structure based on ZigZag, called zzstructure, has been introduced by Nelson

in [129], with primitives named zzcell, zzlink and zzdim.

The linked-list of software engineering may be represented by a one-dimensional

zzstructure and a spreadsheet by a two-dimensional one, although these are simple

examples. The number of dimensions is not in any way limited, and in practice many

dimensions are often required for representing real-world information. Another important

feature is that loops may be constructed by linking two ends of a rank – something that is

not possible in a spreadsheet, or many other information structures.

A great advantage of such an information modelling is that a zzstructure has no schema

and so the information can be "grown" easily without the difficulty of structural change, as

opposed to the relational database. Adding new dimensions, cells, and connecting cells

along dimensions are the only functionalities that are needed to grow the information

space. Moreover, zzstructures are built using ZigZag itself – dimensions, links and

transclusions being themselves stored as cells in the system.

Nelson's vision of ZigZag includes a user interface as well as an information model [129].

However, it is possible to abstract the user interface from the information model, as will be

shown in section 3.3. The multi-dimensional zzstructure may be viewed in either a two or

thee dimensional space, using a variety of visualisation techniques. The user may then

traverse this space by moving a cursor along x, y and sometimes z axes which may

represent any of the dimensions of the underlying zzstructure. In order to make

zzstructures independent of any external description framework, ZigZag itself is built

almost entirely of self-descriptive zzstructures – in a "turtles all the way down" philosophy

– as quoted by Stephen Hawkings [95]. For example, dimension names are stored in cells

of a particular rank (called d.dim)– adding a new dimension is simply a question of adding

a new cell to that rank.

There are various implementations of ZigZag, which provide different approaches to

visualisation. The best known implementation is GZZ [110], which has interchangeable

modular "views" – each of these determining how two or three user-selected dimensions

are rendered in a pseudo-3D interface.

- 23 -

The way that the multi-dimensional zzstructure can be viewed as a two dimensional space

(like on the monitor screen) depends on how the user selects visual x and y dimensions.

The user can traverse between cells in that space by moving a cursor along x and y visual

dimensions. Also there are different possible ways of mapping zzstructure in a two

dimensional space. All of these functionalities has been realized by designing GZigZag, a

Java-based zzstructure platform [110].

2.3.1 The Main Challenges

Transclusion (called cloning in ZigZag) is an important and challenging property of

zzstructure. This allows a single cell to appear in any number of different ranks. It is

obvious from ZigZag definition that a single cell can be involved in various links along

various dimensions, and there is no need to define it repeatedly. The question is how to

differentiate between each existence of a single cell in different ranks? There should be a

mechanism to individually refer to each of those existences. Also there should be a

mechanism to visualize a single cell participating in two different ranks if both are being

visualized in a two dimensional space. Because of these reasons, zzstructure allows defining

a zzcell once, and use its clones in different positions. Clones represent the main zzcell with

all of its associated data, but with different references. The cloned zzcells are different cells

in zzstructure, and they are connected to each other along a special dimension called d.clone.

The main cell is positioned at the head of such a resulted rank. Clones appear in the

zzstructure as though they are separate cells, although there is actually only one cell being

represented in many different contexts.

There are two other challenging issues in data manipulation in ZigZag, both about how to

map information on ZigZag topological principles.

The first issue is the main restriction of ZigZag on having a single right-hand and a single

left-hand cell along a single dimension, which consequently makes the use of transclusion

necessary. ZigZag has no mechanism for a establishing direct one-to-many relationships,

so that relationship must be broken to a number of one-to-one relationships to the cloned

cells, which has its own disadvantage of resource waste. Alternatively, the “head-cell

mechanism” can be used. In head-cell mechanism, a rank of cells is interpreted as a one-to-

many relationship between the first cell (head) as one side, and the rest of cells as the other

side of the relationship. This is the same mechanism that has been used in zzstructure to

relate a cell to all of its clones along a dimension called d.clone. The disadvantage of head-

- 24 -

cell mechanism is that it is based on a “constitution” not on the topology. For instance,

changing the order of cells along a dimension (except for the head cell) has a deep

topological meaning on data, but has no meaning in establishing a one-to-many

relationship in head-cell mechanism. Other similar alternatives are also possible, like

making a rank of all related cells from many-side and linking the one-side cell to the head

of that rank along a second dimension. This has also the same disadvantage and ambiguity

as the head-cell mechanism.

To address the mentioned problem of one-to-many relationship in ZigZag, a detailed

discussion has been provided in Appendix B. The main idea in that appendix is to keep the

freedom of data manipulation in ZigZag, while not entering the Cartesian environment of

the relational database, and still have the choice of establishing direct one-to-many

relationships. The proposed solution consists of ZigZag elements plus another concept

which is called Macro-cells. The result is no longer ZigZag.

The second issue is the ambiguity of basic ZigZag elements. There is a constant need for

additional information or constitutions in order to understand the real meaning of a

topology in ZigZag. The mentioned ambiguity of using head-cell mechanism to express

one-to-many relationship is an example. More generally, if A, B and C are forming a rank,

the meaning of the relationship between A and B is not always same for B and C. Only a

subset of dimensions can have clear meaning when joining more than two cells, depending

on the concept of linking. For instance, the dimension of d.age can not be used to link more

than two cells, while the dimension of d.son may accept more. The other ambiguity is the

meaning of a reverse links in ZigZag. Even the meaning of direct link is not always clear.

For example, while the dimension of d.son can implicitly express the meaning of d.father,

there is no mechanism to relate these two reverse meanings to each other.

2.3.2 An Example

Recalling the bibliographic database of section 2.1.2, the illustration of that database in

ZigZag will be provided here. Illustrating a zzstructure on paper is difficult because ZigZag

is intrinsically multi-dimensional and does not sit well with the two dimensions of paper.

However, using the same visualization techniques as used in GZZ, Figure 2-5 shows how

that database might be represented in zzstructure. Here, three articles are linked as a rank

along the d.article dimension. Each article has a title linked to it along the d.title dimension.

There is no need for cloning here, because each title is unique and each article only has one

- 25 -

title. Each article is linked to each author along the d.author dimension, but where there is

more than one author the article is cloned (there is still only one article, but it is

represented in the context of each author). When an article is cloned it is linked in a rank

along the d.clone dimension. The journal in which the article is published is linked to each

article along the d.journal dimension, being cloned as necessary. Each journal is unique

(there is only one "Journal of Info Sys"), but each journal publishes many articles, so in this

zzstructure the journal is represented in the context of each paper, and again linked in a

rank along d.clone.

It is important to imagine all of the 2 or 3 dimensional views as different looks on a same

space. Also because cloning needs a separate dimension (d.clone), it has always been

selected as z-dimension (clones are shown by dotted lines). For consistency, two

dimensional views are used if no cloning was necessary.

Figure 2-5: The sample database in Zzstructure

- 26 -

2.3.3 ZigZag: A Ternary Approach

Dimensions are the key elements in ZigZag that are utilised to express and aggregate links

between nodes. Thus the structure has high informational strength, and associative

meanings are significant. Since links in ZigZag are meaningless without specifying the

dimension, ZigZag may be easily expressed in terms of ternary relationships: A zzstructure

may be reduced to a set of triples. Each triple consists of an originating cell, a dimension,

and a terminating cell. All cells and dimensions must then be defined in these terms. Thus a

link in a zzstructure is set of three nodes: the left-node, a dimension and the right-node.

Using this approach, it is possible to provide a formal definition of ZigZag as follows:

ZigZag is a triple of (C,D,Z) where:

C: Set of all cells

D: Set of all dimensions

Z C D C

For each (x1,d1,y1) Z , (x2,d2,y2) Z

 If x1=x2 and d1=d2 then y1=y2

 If y1=y2 and d1=d2 then x1=x2

The last two line of this definition guarantees the uniqueness of linking cells along a single

dimension. The first condition checks any two triples, to see whether they have the same

originating cell and the same dimension, and if so, then the terminating cell must also be

the same. Similarly, the second condition checks any two triples, to see whether they have

the same terminating cell and same dimension, in which case the originating cell must then

be same. Since there are no repeated members in a set like Z, being same in three elements

means that two triples are in fact one single triple.

Zzstructure allows us to have an integrated approach to dimensions, because they are in

fact stored in cells. By this view, if cells in zzstructure can represent dimensions, then the

above definition can be changed to:

Zzstructure is a pair of (C, Z) where:

C: Set of all zzcells

Z C3

For each (x1,d1,y1) Z , (x2,d2,y2) Z

 If x1=x2 and d1=d2 then y1=y2

 If y1=y2 and d1=d2 then x1=x2

- 27 -

This is not the first attempt to define zzstructure in formal terms. McGuffin et al. in [116]

and [117] have used various approaches to define zzstructure using graph-oriented, list-

oriented and space-oriented techniques. The ternary definition of zzstructure that has been

provided above is set-oriented, compared to the graph-oriented definition provided in

[116].

There are other issues about this ternary approach to ZigZag paradigm that must be

studied after defining the TRM. These issues will be studied in section 0.

2.4 Hypertext Models and Navigation

An almost universal feature of different definitions of hypertext is the non-linearity of

structure [21]. The non-linear characteristic of both reading and writing in hypertext was a

part of Nelson‟s original definition [128, 130]. Various definitions of hypertext are

reviewed in [20], and the one used here is “an interconnected structure of information which can

provide non-linearity in reading and writing”. Another definition that can be helpful in the

direction of this thesis is “Hypertext is the authoring and use, by people or machines, of associative

relationships among information nodes.” [88]. This clearly defines hypertext in the context of

node-relationship structures. In this thesis, the terms “Hypertext” and “Hypermedia” are

considered to be interchangeable because the type of media (textual, visual etc.) doesn‟t

make any difference in relating them together in the context of this thesis.

When the interconnectivity of information is considered (like in hypertext systems) nodes

are the separated and abstracted pieces of information that can be interconnected in order

to express another pieces of information. That‟s why in the context of the TRM, as will be

described in section 3.1, a relation is itself a node.

In the context of hypertext systems, the working definition of link is also similar to that

described in [20] as a “trigger plus the retrieval action performed when that trigger is activated". In this

thesis a link is considered to be a hypertext feature which provides the functional use of the

interconnection.

The associative meaning of a link, or simply the association, is defined here to denote “any

implicit or explicit relationship between two nodes of information”. This may or may not

denote semantics, depending upon the context.

- 28 -

According to the mentioned definition of hypertext, node and link, hypertext has the

potential of expressing knowledge through a node-link structure. This structure has been

modelled from several aspects, because hypertext systems have two human and technical

sides, each one having authoring and reading sides. Reviewing the developed hypertext

models is out of the scope of this thesis. Instead, some of the developed linking methods

are studied in this section, which may or may not be a part of a general hypertext model.

Although the link structure looks clear in meaning, it is interesting to know that there is still

no general “link model” for hypertext systems, which is an information model to manage

links, as mentioned by Carole Goble in her keynote address to the HT‟07 [88]. Also she

considers the main missing part of such a link model to be a link navigation model, which

models the way users navigate between nodes of information. According to the definition

of hypertext used above, this navigation model shall ease a non-linear reading and writing

through a node-link structure. Also because hypertext is defined to be potentially a

knowledge system, a well-modelled navigation shall provide a good media for transferring

knowledge between authors and readers through navigation.

In the rest of this section, the concept of Knowledge-oriented Hypertext will be explained in

section 2.4.1. Then in sections 2.4.2 to 2.4.5 some related approaches to hypertext links will

be studied, varying from implicit modelling of “association” to explicit ones. Finally in

section 2.4.6 the studied related works are reviewed again from a new point of view in

order to justify it in the main direction of the thesis.

2.4.1 Knowledge-Oriented Hypertext

Based on the provided definition of hypertext and knowledge, a hypertext system has a

potential of being a knowledge transfer system, because hypertext and knowledge are both

based on a node-relationship structure. Here the term “Knowledge-oriented hypertext

systems” is defined as those that are designed to provide an optimum knowledge transfer

while being traversed. Most studies of such systems have focused either upon the use of

hypertext functionalities to build a knowledge system, or through the incorporation of

knowledge system characteristics into an established hypertext. In this thesis, these two

areas are not considered to be separate, but are instead realized as a single system.

If the link structure is a key place for accommodating knowledge in hypertext, then the

meanings of association between the source and destination of each link have the highest

importance in knowledge-orientation. This is because without clear associative meaning in

- 29 -

navigation, discerning the intention of the author, extracting what information items the

system contains and determining how they are connected puts far too much interpretation

responsibility, and hence cognitive load upon the end user [134].

Thus knowledge-oriented navigation is not only concerned with accommodating traversal

of the links but also with the discovery of associations [17]. Another interesting approach

comes from [17] where “links do not express meaning by themselves, but express meaning

through their navigation. It is not in he links themselves, but by navigating through the

links that the meaning of the links becomes clear”. This highlights that the total behaviour

of a set of links when navigated by the user forms the knowledge transfer environment.

Some other works such as [16] use the term “Intelligent Hypertext” for the same concept,

but it is avoided in this thesis because of the definition of knowledge used herein.

Knowledge-oriented hypertext can still have all the properties of the other types of

hypertext system (can be called information-oriented hypertext), if it is not intended to be used

as a knowledge carrier. Another alternative term is Knowledge-based Hypertext in [17],

which is “one that is able to explicitly represent and actively manipulate the semantics of its

informational contents”.

In order to reach a knowledge-oriented hypertext, many approaches have been taken by

researchers, varying from overlaying solutions to fundamental model changes. Arents and

Bogaerts in [16] count two distinctive groups of approaches. In the first, knowledge is

expressed within the hypertext network itself; and in the second knowledge is expressed on

top of the hypertext network, as a separate layer. They mention that the majority of works

lie within the first group, indicating that this is due to the similarity and potential of basic

hypertext model elements to be utilised in knowledge systems. However, the second group

offers greater promise in integrating knowledge into hypertext systems. They provide a

hypertext design model called Model-Map-View-Praxis or MMVP architecture to support

this idea (more details in section 2.4.3). A related two-layer approach integrates hypertext

into the design of a knowledge-based environment, as exemplified by JANUS [76], in

which the construction tasks of the system are supported by graphs, and argumentation is

supported by a hypertext system. Nevertheless, the above separated approaches have many

overlapping features: for example, the addition of knowledge-links to the standard extant

links of a hypertext system (exemplified in [44, 89]) acts as an overlying logical layer, while

still utilising an established hypertext network.

- 30 -

2.4.2 Links with No or Implicit Association

Putting association implicitly in content, or even using no association, is the most common

approach to hypertext linking, as exemplified by HTML [183]on the World Wide Web.

Thus in order to effectively navigate a link, a conceptual understanding of the relationship

must be maintained in the user‟s mind [172]. This can be facilitated by the HTML anchor

text, by the mental model associated to a graphical icon, or even by a previous experience

of the user in Web navigation. Thus according to the definition of the knowledge-oriented

hypertext, HTML links show less clarity for the association than expected.

Spatial Hypertext [167] is an intermediate solution where the association is implicit in link

structure visualization (i.e. a spatial view illustrates an instant logic of relationships between

the nodes). Indeed, any overall strategy in organizing links, such as organizing them into a

hierarchy, is also likely to help the user to effectively visualize the system.

In WebML (Web Modelling Language) [46], a set of descriptive model, an XML-based

language and graphical notations is developed for conceptual designing aspects of the Web

pages. The WebML descriptive hypertext model includes some sub-models: Composition,

Navigation, Presentation and Personalization. In the Navigation sub-model, the links are

defined as two types of “non-contextual” (when they connect semantically independent

node) and “contextual” (when the context of the destination node of the link depends on

the context of the source node). This categorisation is almost referring to the presence or

absence of what is called “association” in this thesis. WebML is developed for designing

the Web sites (and specially for knowledge systems on the Web [73]) and thus may not be

used for other non-Web hypermedia systems. In terms of links, it is limited to the Web

style of linking and may not be used for dynamic links modelling. The association in this

model is an embedded and implicit element of the WebML links.

The implicit associations (or no association) approaches above do have potential problems.

Firstly, It is possible, indeed quite likely, that in many cases the resulting hypertext does not

engender the same conceptual model on the part of the reader that was intended by the

author [125]. Furthermore, in most cases these kind of links are more suitable for free

navigation of information rather than efficient knowledge purposes or semantic retrieval of

content [106].

- 31 -

2.4.3 Rank-Promoted Links

In the object layer of many classical hypertext models, links are second class objects (as

either in the older models like Dexter Model [92] or in the recent ones like Hypermedia

General Meta-model [168]) or dependant objects (like in some of the representations in the

Binary Relation Model of links [19]). However there exist completely contrasting

approaches, where the rank of link objects is promoted either by their primacy over nodes

or alternatively by handling nodes and links as equal-rank objects. Two related approaches

will be studied here.

In order to emphasise the structure of hypertext systems, the philosophy of “Structural

Computing” has been introduced in [135, 136], where the links are considered as first class

objects in basic design and relationships as the atomic building blocks. This is similar to

seeing a graph as edge-based rather than node-based. Moreover, a hypertext system is

considered as just a special case of this general philosophy. A hypertext implementation

based on the Structural Computing is IUHM (Information Unit Hypertext Model) [127].

There is also another approach towards upgrading a link‟s order from being a second class

object. In the Model-Map-View-Praxis (MMVP) [17], explicit knowledge manipulation for

both nodes and links is emphasized. The idea behind seeing nodes and links as equal rank

objects is that in MMVP, nodes and links are two abstract objects in lower layers that must

be instantiated for representation using the upper layers. A link has a navigational

behaviour which can be used in some similar places, and not simply as a reference to the

source and destination anchors. Nodes and links are not explicitly stored in the lowest

(Model) layer of the architecture, but are implicitly extracted from the information units

and the information semantics in that layer.

2.4.4 Typed Links

One commonality in various hypertext models (like in [91, 155]), is the view that a link has

at least two essential data fields: source and destination. Having only these two fields

cannot express any kind of intrinsic knowledge, since there is no inclusion of meaning for

the relationship between the source and the destination, and this is analogous to a sentence

without a verb. The enrichment of links by semantic meanings has been called as semantic

linking by some authors [16, 106, 126, 167]. Indeed, the existence of semantically typed

links has been counted as one of the main evaluation factors in navigational model design

of hypertext systems [54], an infrastructural component in “third-order hypertext systems”

- 32 -

[17] and as a new added feature to “the fourth generation of hypertext systems” [32].

Enriching the nodes and links by semantics is also known to be the underlying step

towards converting the World Wide Web to the “World Wide Knowledge Web” to

provide semantic filtering/visualization of the Web pages from different perspectives [40].

Adding an explicit type attribute to the link feature can explicitly contain the link

association, or the way two or more nodes are related [54]. The added link type is metadata

to describe or enhance the usefulness of data [44]. Also link typing researches are not

always directed to providing semantic links, and they can be for descriptive or more general

purposes. In the following paragraphs, some related issues and works on link typing will be

studied.

HTML 3.2 [182] and later versions support generic type linking: CLASS, REL and REV

attributes of <A> and <LINK> tags have been designed in order to handle link types.

Unfortunately this has been rarely used and most of the known Web browsers ignore them

[32, 40]. It is noticeable that they have been used by stylesheets to change the look of the

Web pages, diametrically opposed to their original intention. This facility can help users

and computers to understand various link categorizations, either in terms of their semantic

or other purposes. REL and REV attributes are used in a bi-directional manner for

navigational sequencing of web pages, creating structural hierarchy within web pages, and

for some special purposes such as defining author, copyright, etc. REL and REV accepts

pre-defined values but CLASS attribute accepts free text for further description of the link

[32].

Whether or not Web browsers can use the built-in HTML link typing for presentation, and

whether or not these types are for semantic purposes, HTML link types have their own

advantages to help Web searchers (like search engines or Web agents) when HTML

sources of Web pages are processed independently. This process can help finding related

Web resources more easily and intelligently. As an additional advantage, some other

processes can use the link types to analyze and rank the Web pages based on incoming

links from the other Web pages. A more detailed study about these kinds of search

methods has been done in [153]. The disadvantages of HTML link typing in supporting

knowledge-orientation include non-semantic provisional design, the lack of standard

presentational support by browsers and finally limited types for bidirectional semantics.

- 33 -

Also an explicit and formal manner of relationship, named Metalevel links, has been

proposed in [172] to address the problem of informality in usual HTML links. The

meaning of a link has been added as a type attribute to the link data model. An

implementation of this idea is WIS [172], which has the following other advantages over

conventional websites: bi-directional linking, different views based upon filtering of the

link types, intelligent searching based on relationship types, provision of a platform for

implementing workflow systems, and distributed and open architecture. As an example, a

link type can be expressed as “parent-child” which can be used for an intelligent search

based on “sibling”.

A similar approach is used by Oinas-Kukkonen, in which link types and link keywords

have been purposed to address another important problem: Many complain they do not know

where a link will take them? [141]. By knowing the link types, users may have a better way of

knowing the target prior to navigation. Such links have been named as rich links in [141]

with some improvement on the system‟s efficiency: preserving the information context for

the user in addition to better information organization, and benefits in collaborative design.

Although Oinas-Kukkonen has no suggestion on how to implement such links, a similar

implementation has been described in [193] in which a link can have multiple destinations,

distinctive by several link types and the user selects one of the link types from some

appearing pop-up menus before the link activation.

Another approach has been taken in the Trellis Model of hypertext [169]. This model is

based on Petri-net (a widely known workflow analyzing scheme explained in section 6.1.1),

and tries to benefit from the existing analyzing algorithms which have been developed on

Petri-nets. In this model, the fact that a transition object intermediates each two places in a

Petri-net, is mapped into the fact that a link intermediates two nodes of information in the

hypertext systems. Also the firing process of Petri-nets which transmits tokens between

places is mapped into navigation which transmits control between documents. Link typing

can take place by this analogy, because links have as many attributes as transitions,

including type. The model is not a design model, but a functional model of hypertext and

this type attribute has only instant browsing meanings, which may or may not have

associative meanings [81, 170].

Another approach is RMM (Relationship Management Methodology) [100] which is a

framework for object orientated hypertext design. Although in its underlying data model

- 34 -

(RMDM) an entity-relationship (E-R) diagram deals with user navigation of hypertext

rather than its design, RMDM differentiates between navigational and associative links.

The links in the E-R diagram are meaningfully labelled for both types of links in the

context of the object orientation. For example, a link between a course and a teacher‟s

name can be labelled as “taught by”. In the final user interface design, these labels will

themselves be link anchors inside the documents, i.e. at the end of a page which contains

the specification of the course. In this view, the links have explicit meanings, but are not

extracted from the information nodes.

2.4.5 Links in Open Hypertext Approaches

The term “Open Hypertext” has been firstly used in 1989 by Sun‟s Link Service project

[144]. The openness mainly refers to the free access of different applications to “Link

Server” as well as documents, so each application can integrate document linking services

into their standard functionalities. Then the researchers in the University of Southampton,

have worked on various aspects of the “Open Hypermedia Model” and exemplifying the

idea by developing Microcosm Link Service [63, 79, 93, 186, 187].

In Microcosm, the user reacts with some “viewers” which can be any document displaying

application. The heart of Microcosm is a document control system which controls the

passage of “messages” between the viewers, linkbases and “filters”. Each of the filters can

then block or change the message before passing it on. For example if a link source in a

document is selected by the user, the message of requesting the destination may be passed

to the linkbase through the filters and be responded by another message.

 In the open approaches to hypertext, links are logically kept out of the contents of

documents, in some “link databases” or simply “linkbases” [63]. Using linkbases can

provide more flexibility in managing the link structure. For example, the “linkbases” can be

updated, computed, added or adapted independently from the content, as well as utilizing

some automatic linking algorithms [63]. Also various linkbases are attachable to a single

document and a linkbase can serve different documents. It also has the benefit of more

efficient handling of large and numerous documents compared to the embedded-links -or

closed- approaches.

In terms of the link structure, managing links in some separated linkbases, allows us to

have as many explicit modelling elements as necessary for each link, regardless of the

- 35 -

contents that the link is going to appear in. Thus the open hypertext approaches may

provide opportunities for applying explicit association elements to the hyperlinks.

In the methods of adding computed links and automatic linking, automatic processes

attempt to enrich the informational structure by constructing new links. This approach is

very much related to the building of a knowledge-oriented hypertext because the

automated embellishments of the structure harness external sources of knowledge (e.g. in

[20]). However, this method may not change the link structural model and the added links

may still have implicit meanings to the user. Consequently, a lack of direct knowledge

transfer from the author to the reader may still exist.

Also in COHSE (Conceptual Open Hypertext ServicE) [44, 89], conceptual metadata

about hypertext documents is used to add pre-computed links to the pre-existing

navigational links. The link generator uses several software modules to recognize potential

anchor points such as ontology services, other external linkbases, RDF repositories of the

Semantic Web, or some explicit metadata descriptions inside the documents, such as the

<META> tag of HTML. COHSE can convert a set of conceptually-unlinked documents

like normal web pages to another set of linked documents. A particular useful application

of this appears when a single document can be enriched by several types of knowledge,

each for a specific group of readers.

Another approach is taken by Bieber in [29, 30] by introducing DHE (Dynamic Hypertext

Engine) as a method of automatic links addition to hypertext, based on the analysis of

existing relational databases. These databases are actually sources of supportive knowledge

and the created links are enrichments of hypertext by those knowledge sources. The

applied analyzing algorithm (RNA: Relationship Navigation Analysis) is based on the

internal joins of the relational databases.

There have been many other descriptions of adding computed links, (e.g. [12, 31, 51, 203,

204]), all of which attempt to add computed knowledge-supported hyperlinks over the pre-

existing ones.

Also FOHM (Fundamental Open Hypertext Model) [64, 119] was proposed as a single

framework for modelling interoperability between several open hypertext standards.

Because of the generality of FOHM, the “association” has been incorporated as a

modelling element. The set of associations is defined by the Cartesian product of three sets

- 36 -

of binding vectors, relation types and structural types. Relation type is itself Cartesian product of a

set of names and a set of features spaces while the latter is a set of all possible properties that

must be defined in each binding of an association. The relation type has no direct

involvement in semantic linking, as it has more functional involvement, distinguishing

between different behaviours when the link is traversed.

Another method to use the Web infrastructure as an open hypermedia system is XLink.

XLink is the W3C recommended method to incorporate links in XML documents [185].

XLink are special elements within XML documents that can represent unidirectional links

between two other XML elements. In addition to the simple one-to-one links, XLink

support “extended links”, in which elements can be related in one-to-many or many-to-

many manner. It is noticeable that XLink does not itself produce hyperlinks but uses

elements of a special namespace (XLink namespace) to notify a reader application about

the existence of some links. So it is absolutely due to the reader application how to react to

the XLink elements in an XML document. XLink has been considered as a method to use

the Web infrastructure as an open hypertext system by greater abstraction of links from

nodes [15, 106]. By using XLink, each link can have more structured attributes for linkage.

The attributes of the links which are defined neither in the source nor in the destination,

are a good opportunity to store the link semantic and/or types. The main linking element

in XLink is <bind> which has attributes including “from”, “to”, “type” and “role”. The

last two are where the associative elements of a link can be stored.

However, at the time of writing this thesis, XLink 1.0 (2001) was the only finalized version

of XLink recommended by W3C and one of the main current issues with XLink is the lack

of implementation support by the Web browsers. Only the recent versions of Mozila

Firefox and Netscape have a very limited support for “simple” links and no major Web

browser supports “extended” links.

Also Frei and Stieger in [80] have defined a hypertext link to be consisting of four

components: <t, i, s, d>, where t is the link type, i is a set of link attributes, s and d are

source and destination node of the link. t is not itself a semantic type of the link, but rather

a flag that specifies whether the link is of type referential or semantic or at most

distinguishes several subtypes of semantic links. They mention that the intention is to restrict

ourselves to a few link types so that their semantics may be understood fully by authors and users, so it is

- 37 -

clear that this link typing relies on the user‟s mind to interpret the exact meanings of the

links.

2.4.6 Hypertext Links: A Ternary Approach

After reviewing the related hypertext linking approaches, it is observable that the

“association” elements have been considered in several ways, either implicitly or explicitly.

As a summary, the way that the “association” has been modelled can be categorized as

follows:

1. Association implicit in structure: Where clear illustration of structure can transfer an

understanding of the meaning of each link (as in Spatial Hypertext [167]).

2. Association implicit in the source node: Where observation of the hyperlink together with

the help of reader‟s mental model may express the meaning of links (like in Web‟s

usual links) [172] or even when some separated link anchors in the source node

express the association (like in RMM [100]).

3. Association explicit in structure: Where the storage of a link includes some information

about its meaning (like in XLink [15]).

4. Association explicit in other nodes: Where the association may be explicitly stored in a

separated node. None of the studied related works can be explicitly categorized

under this category. However, the Structural Computing is the nearest one to the

case of “association explicit in other nodes”. There is a possible ternary approach

to the concept of the structural computing inspired from Nürnberg‟s work in

[136]1.

Implicit methods of link associations have the significant advantages of simplicity and no

storage overhead, but are less desirable from the perspective of knowledge-orientation, as

1 In structural computing, the information tends to be stored primarily in structure and secondly in nodes. The “structural

atoms” or bundles have been introduced in as the first class objects. Data elements of each bundle include a set of ends

and a set of adjacent bundles per each end. This can be partially illustrated by looking at an edge of a graph as the main

object which has some ends (nodes), and the next edges are its adjacent through its ends. The resulted model (called

EAD: Elucidate; Analogize; and Delete) allows bundles with more than two ends, which is impossible to illustrate in

normal graphs. Instead, Nürnberg propose an alternative bipartite graph in which the nodes are of two types A and B

and the edges can only link nodes of different types. Then EAD‟s bundles can be seen as A-nodes and EAD‟s ends as

B-nodes. Then a real bundle in EAD is in fact two adjacent edges (ABA or BAB) of this graph, when different

adjacency selection means having multiple ends. The multi-end nature of the bundles in structural computing is

implemented by triples of (end, bundle, end) or (bundle, end, bundle). As a conclusion, two-ended bundle are following

a binary approach while ternary bundles are following a ternary approach.

- 38 -

they rely heavily on the reader‟s mental model. Where associations are explicit in the

structure, they are stored in the form of metadata about each link. However, this

information is not necessarily transferred to the user‟s mind through link navigation. Hence

the advantage of this type of linking lies more in the efficiency of search methods and

information retrieval that it offers. Sometimes link attributes are used for other purposes

rather than associative meanings (as in FOHM [119]), and they are usually too restrictive in

size to store a complete associative meaning/description of a link. By contrast, explicit

associations in the source node are more suitable for knowledge transfer and for directing

the user‟s mind, although they may not be as efficient as storing them explicitly in structure

for intelligent information retrieval purposes. Furthermore, the anchors are often too short

to express full associative meanings (or if this is not the case then the readability of the

source document is likely to be impaired).

If associations are stored explicitly in a third node, then there is higher information

overhead for each link, in comparison with all of the other methods described. However,

there are a number of distinct advantages to this approach.

Associations stored explicitly in third nodes can express the available information about

the link to the greatest possible extent, because all such information is consistently stored

in other nodes. This method promotes associations from being attributes to full

navigational information, because in this approach, the association is one of three basic

elements of a link, with the same rank (sitting alongside source and destination). The

“attribute” view to the link associations has caused their exclusion from incorporation into

various navigational models ([19, 20]). Lastly, this method supports the openness of the

hypertext systems (where openness is defined earlier in section 2.4.5) because it includes

management of many link specifications outside of the link structure. As such, a link

structure in the resulting open hypertext system has only pointers to the real information

concerning the links and these informational items themselves also being stored as nodes.

This is hence a higher abstraction of nodes and structure.

 It is now observable that a complete link and navigation model shall model the associative

element as explicitly as possible. If association is explicitly modelled in a third node, then all

of the necessary information about the link is stored in that node, rather than somewhere

in the source or in the destination.

- 39 -

2.5 BRM: Binary Relations Model

A fundamental work on navigational modelling is Ashman‟s work on the “Binary Relations

Modelling” or “BRM” in [19, 20]. BRM can cover all of the possible binary navigation in a

formal method. Although the BRM is a model for hypertext and thus it could be covered

under section 2.4, because of its special importance as a formal predecessor for the TRM, it

has been studied individually in this chapter. Although the BRM has been introduced in the

context of hypertext, it may be studied in a wider context as an information model. After

introducing the BRM in section 2.5.1, it will be reviewed by a ternary-based look in section

2.5.2.

2.5.1 BRM Link Model

The BRM [19, 20] is a way of enumerating all the possible ways of implementing link types

in a hypertext system. It begins by identifying the salient features of binary relations from a

hypertext point of view. This hypertext sensibility influenced the necessity of considering

different representations, since the pure mathematical models of binary relations were not

subject to real-world problems. For example, the volatility of the underlying set of elements

in a relation, which in a hypertext and Web context, are manifested in implementation

difficulties such as broken or disoriented links, and link completeness. The BRM abstracted

out of real-world hypertext systems basic differences in the underlying link creation and

maintenance processes, which are described in terms of the different representations

within the BRM.

The BRM formulates all the possible ways of implementing link types in a hypertext

system, by considering purely the navigation model, and focuses on general representation

of binary relations regardless of their applications or visualizations.

The key features of the BRM are endpoints, links and relations:

1- An endpoint is any addressable “thing”.

2- A link is a connection from an endpoint to another endpoint.

3- A (binary) relation R is a subset of S2 (the Cartesian product of S upon itself) while

the model space S is the set of all endpoints.

- 40 -

Then the BRM considers how relations are comprised, determining that there are three

features:

1- The source set – elements which occur on the left of the relation, the “from”

elements;

2- The destination set – elements on the right of the relation, the “to” elements;

3- The incidences – marking which of the sources is connected or related to which of

the destinations.

Also it also considers how relations are utilised, primarily from a hypertext viewpoint, but

with more general applicability. It does this through asking a series of “navigational”

questions. Any arbitrary endpoint may be characterized by the following four main

navigational questions:

1- Source Existence: Is this node (x) the source of any link?

 (x,*) R

2- Destination Identification: Where can I go from this node?

{yS | (x,y)R}

3- Destination Existence: Is this node (y) the destination of any link?

 (*,y) R

4- Source Identification: What nodes are linked to this node?

{yS | (x,y)R}

Questions 1 and 2 represent linking in the usual, “forward” direction, while 3 and 4

represent linking in the “backward” direction, so that bidirectional linking may be

modelled. The answers to those four questions determine the various states of the sets of

static or dynamic endpoints that are required to model the possible implementations of

hypertext systems. These states are:

- 41 -

1- Enumeration – the explicit naming of all participating elements;

2- Predicate – the “filtering” of a set from a larger set by applying a set-membership

selection test; and

3- Expression – a calculation (parameterised or not) that returns a set of elements.

An example of the enumeration state is a fixed set of journal titles on a webpage, which

each one is a link source to its content. An example of the Predicate case is a function that

determines whether or not the current user has access to the content of the journal. In that

case, the link set membership is defined by a predicative function and the journal title is

not a link unless that function returns “true”. The example of the Expression case is when

a function determines the destination of the link, e.g. the journal title can be a link to the

abstract or to the full text, depending on the user‟s access level. The main difference

between the Predicate and the Expression case is that the Predicate is a logical qualifying

function, and the Expression is a function having a hypertext node as the output.

The predicate and expression states are also called “computed” , and the computation itself

can be implemented in two different modes: pre-computed or dynamically computed [20,

22]. For pre-computed links, the link anchor in the source document is clearly specified

after all the necessary computations, but in dynamically computed links, the eligibility of

each node to be source or destination, is computed in run-time on user‟s request (like non-

advertised links that are being advertised by hovering the mouse over them). This is

reflected in the remaining questions that can be asked of a representation in the BRM,

namely:

1- Link Existence: Is there a link between these two elements?

2- Source enumeration: What are all the possible sources of this set of links?

3- Destination enumeration: What are all the possible destinations of this set of links?

4- Link enumeration: What are all the links in this set?

The first of these is not a true navigation question because the identification of both source

and destination endpoints is already known, the only question being asked is whether there

is a corresponding pair of entry and exit points between them, i.e. "can one go from here

- 42 -

to there?". The last three are not navigation questions involving decisions about if and

where one can go from a given endpoint, but rather are queries about the whole set of

links, whose results are independent of the reader‟s current position in the data collection.

Pre-computation of all relation incidences (links) is the application of either a predicate or

expression to calculate all the participants in any of the three constituent sets of a relation.

Having established how the defined sets form the relations, and how these may be

represented, then a comprehensive enumeration of the representations for relations can be

defined by considering all the possible combinations of possibilities for the sets making up

a relation. To define that enumeration, one must also pay particular attention to how these

representations occur in the real-world hypertext systems. These real-world observations

support many of the theoretical observations, many being motivated by the challenges of

maintaining valid hypertext links (equivalent to relation incidences) in a highly changeable

information collection, such as the Web. This is a key limitation of those representations

that use enumeration for any or all of their constituent sets, and the various representations

of the BRM are discussed in terms of their ability to answer the navigational questions in a

volatile and potentially infinite information collection.

One of the interesting possibilities that one may construct is predicate-expression, named pE

hereafter, in which the source is nominated for being an endpoint by a computation (the

non-advertised link source) then another computation takes the source and resolves the

destination (either in pre-computed or dynamic fashion, as described in [20, 22]). This

state, which is also called “Functional Links”, is a generalization of all kinds of links in the

BRM.

In section 5.8, more study on the pE state and the Functional Links will be done after

introducing the TRM and the TRM-NAV. This will also consider a Turing Completeness

approach to the BRM and the TRM (section 5.8).

2.5.2 The BRM: A Ternary Approach

According to the BRM‟s view, the semantics of the links are irrelevant to the relation

model. The model is not affected by why any two endpoints are linked together, as its

purpose is solely to characterize how they are linked. BRM excludes the link semantics (and

more generally, associations) from being a navigational property of a link and leaves them

as attributes. Also it has been reviewed that in knowledge-oriented navigation, users need

to master the meaning of their navigational actions. Let us consider an open hypertext

- 43 -

system with two different knowledge contexts (i.e. the associations are in two different

domains). It is possible that two nodes are connected together in both contexts, but

through different associations. Unlike their endpoint similarity, these two links have a

significant difference when navigated in two knowledge domains.

In the context of knowledge-oriented hypertext, the importance of associations is too great

to be ignored when characterizing a link. In addition, associations are not only attached to

a navigation action, but also may have functional role. For example, a user may select an

association choice after selecting a link source. Then the destination is dependent not only

on the link source, but also on the selected association. It can be concluded that in

knowledge orientation view on hypertext, some of the whys can be realized as hows in

navigational modelling.

Furthermore, there are some areas in hypertext systems, in which navigational behaviour

can not be covered completely by the BRM. It is predictable that these areas are where

knowledge expressiveness is highlighted and/or when the structure of the system has more

importance. The limitations of the BRM in covering such fields are because there is no

independent characteristic for any relation incidence in the BRM [19].

Workflow Management Systems (described in section 2.7) are examples of when pure

binary links are not able to serve user tasks an information system. Considering tasks of

workflow as nodes of hypertext and its transactions as links, it is possible to build a

workflow system over a hypertext system. The resulting workflow system has hypertext

characteristics because it contains not only information about the definition of a process,

but also provides non-linear navigation between its nodes. The navigation between nodes

of a workflow is the ability of system to guide the user to go from one node to another

depending on their decision from some offered choices. In this case, each navigation step

consists of three parameters: source, decision and destination. This decision-based

navigation has three navigation elements, which cannot be modelled by the BRM.

In the process of decision making, the user selects which type of processing they want to

do on the current work case. Usually the decisions are source-dependent, i.e. the user

selects their decision from a list of available choices, which are either predefined or

computable to be available on the source node. However, there are possible source-

independent (or enumerated) decisions, like suspension or jump.

- 44 -

Likewise, in the process of destination selection, the user and/or system determine the

possible destination node(s). The destination can be more than one node, like distribution

of a task amongst in-charged users. If the user selects a source-dependent decision the

system determines the destinations (computed), otherwise the user selects the destination

explicitly (enumerated).

Zigzag is another example of these BRM limitations, when BRM cannot model a cell-

dimension-cell link of ZigZag.

The above issues can show a requirement for the extension of the BRM. This extension

needs to take association into account as an independent node of information. Because the

BRM may be viewed either as an abstract information model or a hypertext navigation

model it may readily be extended to provide the TRM as an abstract information model (in

chapter 3) and a navigation model (in chapter 5).

2.6 The Semantic Web and RDF

Many of the documents introducing the Semantic Web, start from this point that the

current Web is designed to be human-readable, so why not make it computer-readable?

And the motivation for this question is being expressed as scenarios telling about users

who wish to do some specific logical queries but no software agent or search engine can

satisfy them [14, 25-27], [142].

The basic idea is that the Semantic Web is not a new web, but an extension to it, by adding

logical tags to the web objects, so the information is re-constructed in a machine-readable

manner. This makes the web objects responsible for logical queries which come from some

web agents or search engines, then the Web is searchable not only by its row contents, but

also by its semantic interconnections [26]. The Semantic Web aims to build world-wide

network of computer-readable semantics, instead of being human-readable [142]. It is

interesting to know that the Semantic Web has been named as a hypertext, a

knowledgebase and a database in different works [89].

Figure 6-2 shows the multi-layer architecture of the Semantic Web. The URI layer provides

a global standard for referring to all the Web objects uniquely. The XML layer provides

syntax, or basic language for describing information in all the upper layers. XML Query

and XML Schema provide mechanisms to validate and access data written in XML. RDF

(and RDF Schema) provides a data model (or language, or framework) for describing the

- 45 -

Web resources. It is used to write descriptive “statements” about each resource, using

other resources, in the form of resource-property-value triples. The Ontology layer

provides more mechanisms to logically enrich RDF-described data. OWL is the standard

language used in the ontology layer of the Semantic Web (RDF and OWL will be studied

more in the next section). Finally, the upper layers of the Semantic Web provide more AI

mechanisms to make the web resources semantically reasonable, and the results of those

reasoning reliable.

2.6.1 RDF and OWL1

Among the layers of the Semantic Web, RDF and OWL are the core layers that make basic

statements about resources. Since RDF uses triples for making such statements, it can be

focused in this thesis. Although the Semantic Web is usually considered to be a subject in

the context of hypertext but RDF can be studied in a wider context and be compared with

the information model developed in this thesis. In this section, RDF and OWL elements

will be briefly introduced.

The RDF framework includes two sets of elements: RDF itself and RDF Schema (RDFS).

Because of the potential ambiguity, when the name “RDF element” is used, it means the

first set; otherwise it means RDF as a framework (like in “RDF statement”). The main

RDF elements are:

1 RDF/RDFS/OWL specifications are directly obtained from three standard XML files which have been recommended

by W3C to be used as namespace of RDF documents. They are located on these addresses of w3.org website:

http://www.w3.org/1999/02/22-rdf-syntax-ns, http://www.w3.org/2000/01/rdf-schema and

http://www.w3.org/2002/07/owl

Figure 2-6: Multi-layered architecture of the Semantic Web
(from wikipedia.org)

- 46 -

a) Types (used for instantiating a class)

b) Properties (used for instantiating a property)

c) Reifications (how to write statements about statements)

d) Containers (how to build statement about multiple resources).

A general RDF statement has the following look in XML:

<rdf:Description rdf:about=”thisSubject”>

 <thisPredicate>thisObject</thisPredicate>

</rdf:Description>

It is also noticeable that XML is only an option for describing RDF Model. There are other

alternative syntaxes, like n-Triples [154] and Notation-3 (N3) [24]. The idea of explaining

and storing statements as triples is the common approach in all of those languages.

RDF Schema (RDFS) provides some relations and logics to describe concepts, which RDF

can use as predefined structures. It is important to notice that unlike XML Schema, RDFS

is not used for validating an RDF listing, but it is used for adding more functionality to

RDF as well as providing a namespace for that. An XML listing that contains information

modelled in RDF has two namespaces: RDF elements and RDFS. RDF elements are used

for basic concepts (like types and properties) and RDFS for extended concepts (mostly in

an object-oriented framework, as follows).

A summary of RDFS names and meanings are:

a) Classes (some resources can be instantiated or be used for inheritance)

b) Resources (a class of everything).

c) Special properties like SubClassOf and SubPropertyOf to build hierarchical tree of

classes and properties

- 47 -

d) Another properties for restriction and validation of RDF statements, like domain

and range of properties

e) Some other descriptive property about resources like comment and seeAlso (how to

describe resources in a free-text formats)

f) Special classes like Literal, Datatype and Container to be used in RDF

OWL is a language about explaining logical relations between resources introduced in RDF

elements and RDFS. OWL can be used to validate or logically restrict RDF statements. It

can be considered as an extension to RDFS in a higher logical layer. OWL primitives are:

a) Equivalence or difference of resources, using properties like equivalentClass,

equivalentProperty, sameAs, disjointWith, differentFrom.

b) Boolean class combinations, using properties like unionOf, intersectionOf and

complementOf.

c) Logical properties of properties, like TransitiveProperty, SymetricProperty,

FunctionalProperty.

d) Property inversion using inverseOf.

e) More restrictive mechanisms using onProperty, hasValue, allValuesFrom… and

cardinality using properties like minCardinality, maxCardinality.

The above summary of RDF and OWL will be used in section 5.7 to compare the TRM

with the RDF, after a TRM definition is provided in the next chapter.

2.6.2 The Main Challenges

One of the early promises made for the Semantic Web is building a global distributed

knowledge base [115]. However, there are some pragmatic difficulties for applying the

Semantic Web for such a global scope, partially because of dynamic characteristics of the

global knowledge and the strictness of the Semantic Web in dealing with human

conceptual models [115]. Two main challenging issues are the ability of the Semantic Web

to be used with all possible real-life knowledge requirements, and its ability to do that at a

global scale [14, 112, 115]. Also because a single RDF triple is about relating two resources

- 48 -

by a property, there are many unanswered questions about how to use RDF to express n-

ary relations [181].

From the system engineering point of view, two core challenges on the Semantic Web are:

1) Re-engineering the task of semantic enrichment for building the web of meta-data: How

this can be done in a high-speed and low-cost manner? 2) Maintaining and adopting such a

web, especially considering the dynamic nature of the knowledge: Which knowledge-

acquisition methods and machine-learning techniques can be employed? And 3) perhaps

the hardest problem to solve is the “ontology mapping problem”, when the Semantic Web

deals with a multitude of ontologies [14].

Also there are not fixed answers to the questions like: How a human-readable fact must be

written as machine-readable? Who must do that? Is that the author of the webpage or

some tools? If it is a tool, how trustable it can be? Are all human-readable information is

convertible to machine-readable? While humans are flexible in rules and reasoning, how

can machines behave so? How to deal with fuzzy rules? [14]

The above issues were about the Semantic Web as a whole, and some more specific

challenges about RDF will be studied in section 5.7.1.

2.6.3 The Semantic Web: A Ternary Approach

A similar ternary approach to the Semantic Web clarifies that RDF, as the basic data model

of the Semantic Web, uses three URIs to build a relation and the upper layers like OWL

use the built ternary relations to accomplish higher degrees of information modelling. By

this look, RDF and consequently the Semantic Web have a great potential to be covered by

a more general ternary information model. This will be discussed more in section 5.7.

2.7 Workflow Definition Models

The subject of this section is primarily a different field of systems than the previous

sections, but with a deeper look, it also possesses another form of node-link structure

which makes it a related work to the subject of this thesis. The main related works on

workflow modelling will be reviewed in chapter 6.

Workflow systems technology is a growing branch of IT systems that attracts extensive

research in recent years. Many of the researches are about unifying the standards,

modelling and strengthening the theoretical backgrounds. The position of workflow

- 49 -

technology now is similar to the position of the database management systems in early 70‟s

when different people were developing different management systems with different

standards and no unified theory could support those works [3].

Processes and workflows have been modelled in several ways and using several notations.

The theoretical studies on various modelling types of processes can help building better

process management systems, which can consequently help to automate the processes

more efficiently, especially in business/industrial processes automation, office automation

and e-commerce systems. Some of the benefits of using such automated systems are

improvement in speed, quality, reliability and flexibility [52].

2.7.1 Basic Workflow Concepts

Workflow is the sequence of actions or steps used in a process which is usually run by

more than one involved parties and uses many different resources [104]. Each multiple-

task operation for doing a single goal must have a workflow. Workflows are usually derived

from set of operation rules. In complex workflows, some process engineers usually convert

these rules or policies to processes, and then a workflow system can handle this process by

using computers. Computerizing workflows doesn‟t mean leaving computers to do the

workflow tasks (even if this is possible), but using computer systems to know who must do

what, and when it must be done.

There are many advantages and benefits for using automated workflows for business

processes, such as improvement in transparency and efficiency, better process control,

management, customer service and responsibility, more flexibility to process changes, and

establishing paperless and rule-based office environments [42, 52, 68]. Examples are

applications enterprise office automation [86], e-commerce [71], e-learning [60] and in

general service industry like finance, insurance, etc. [156, 164]. In the field of knowledge

systems, workflows help building “rule-based” knowledge management, and are highly

combined with concepts of knowledge, especially in representation and solution processes

[82, 124].

A Workflow management system (WFMS) is computer support for the design and

execution of processes [86], dealing with both defining and executing workflows [107]. It

can completely define, manage and execute workflows whose functions are driven by a

computer representation of the workflow logic, or a systematic tool for defining and

controlling a workflow. The Workflow Management Coalition (WFMC) [195] is the

- 50 -

leading body in the workflow community and has a standard workflow management

reference model as shown in Figure 2-7. Flexible workflow models are those with clear

boundaries between workflow definition and other parts of the model (Interface 1 in the

Figure 2-7). Other parts can be considered as some engines to be driven by the workflow

definition.

Workflow management systems have some characteristics in common with systems

classified as „knowledge management systems‟. Knowledge management ideas can be also

added into workflow management for better work within a knowledge organization [83].

WFMS can actively coordinate work processes, manage any condition that can be

expressed logically, manage both expected and unexpected conditions and be run on one

or more workflow engines. It should have a high level of Interaction with participants, and

where required, should invoke the use of IT tools and applications.

Figure 2-7 : WFMC reference model for workflow management
[195]

2.7.2 Workflow Models: A Ternary Approach

The rationale behind a ternary approach to workflow modelling is that a workflow has a

ternary node-link structure, both in defining and in running modes. The atoms of

information in a workflow are some static states that the workflow cases can

accommodated (nodes or boxes) in addition to some links between nodes that cases use to

move between nodes (relations or arcs). The arcs are carrying the meaning of a case move,

so they must be described (by labels or more comprehensively by other nodes). For a

- 51 -

single case movement in a workflow, one must be aware of three elements: “from”, ”how”

and “to”. These three elements make the studied models to be covered under a general

ternary approach. More details of this approach will be explained in chapter 6.

2.8 Ternary Approach to Other Related Fields

There is a general concept of having three basic elements for knowledge atoms in some

other fields of information technology. Even in non-IT fields like in linguistics, this

concept is evidenced by T-expressions [84]. T-expressions has been introduced as

<subject, relation, object> triples and all expressions of a knowledge domain in this theory

must be modelled so. A “tense” is stored in knowledgebase as T-expression and other facts

of a tense are being stored as its “history”. The T-expression representation is recursive

and also T-expressions can be object or subject of another T-expression through some

recursive mechanisms [84].

Also the Directed Graphs [72], particularly when used as a knowledge management

methods (like in [124]), are expressed as ternary relations (like in [33]) when an edge in a

directed graph is a triple of (source, label, destination) and a leaf is a couple of (node, value). After

defining the TRM in the next chapter, it will be clear that a directed graph can be rewrite in

the TRM. The difference between the TRM and this schema is that label and nodes are of

different classes of objects while the TRM treats them in a same way. It is then noticeable

that the term of “ternary relation” (used as it is for the directed graphs [33]) is more

applicable to the TRM than the directed graph. This is because unlike the directed graphs,

three same things are related together in the TRM.

2.9 Using the Commonality for Interconnection

The studied facts about finding a possible common ternary approach to the related works

may show new or hidden aspects of interconnectivity between those areas. For example, a

direct mapping from FOHM (and not any arbitrary open hypertext model) to RDF is

possible [87] because both are three-element metadata languages.

In this section, some of such interconnectivities will be shown as a number of case studies.

2.9.1 The Interconnections of Workflow, Knowledge and Hypertext

The case of hypertext-based workflow management systems is an example of knowledge

management with hypertext [82] and can be studied as a knowledge-oriented hypertext.

Workflow management systems (WFMS) are close topics to both knowledge systems and

- 52 -

hypertext. The workflow be applied to manage a corporate or individual knowledge,

problem solution process or business process [82]. This will be more clear by noticing that:

1) Workflows have a non-linear nature in task processing and in performing processes; and

2) Knowledge systems, together with business processes, are the main areas of workflow

applications [149]. The triangle of supportive relations between these three areas is

illustrated in Figure 2-8

2.9.2 Workflow Interactions with Knowledge Systems

Workflow Management Coalition [195] defines workflow management as: “Workflow

management consists of the automation of business procedures or workflows during

which documents, information or tasks are passed from one participant to another in a way

that is governed by rules or procedures”. Also Patrash‟s [147] definition on knowledge

management is: “Getting the right knowledge to the right people at the right time so they

can make the best decision”. By mixing these two definitions, workflow management is

shown to be able to act as a tool for knowledge management. This has been shown in

detail by Garnemark in [82], when he describes how integrating knowledge management

techniques with workflow systems can support knowledge collection, storing and sharing.

As an example, the knowledge of recognizing a chemical solution has a procedural nature

which can be collected, transferred or presented by workflow systems. Noticing that

workflows are directed graphs, Collier in [59] shows how a directed graph can represent an

specified knowledge.

Figure 2-8: Relations between workflow, hypertext and knowledge systems

- 53 -

2.9.3 Workflow Interactions with Hypertext Systems

When studying some interactions of workflows with hypertext systems, two groups of

approaches are observable: workflows to help hypertext modelling and hypertext to realize

workflow system. These will be studied in the following two sub-sections.

2.9.3.1 Workflows to Support Hypertext

There are some related works in applying workflow concepts in designing and modelling of

hypertext systems. The term of “Workflow-driven Hypertext” has been introduced as “the

hypertext interfaces that permit the execution of activities and embody constraints that

drive the navigation of users” [111]. Mamaani and Abdul Kareem in [114] show that the

workflow nature of hypertext when being presented and navigated can be seen as a

process, illustrated by some flow diagrams and modelled by workflows and Petri-nets. This

idea is a motivation point for some other researchers to bridge between these two

domains: Stotts and Furuta in [81, 169, 170] take it to build Trellis model of hypertext

based on Petri-nets. Vivekanandan and De Roure in [180] show that open hypertext

systems as a set can be modelled with workflow principles for providing better services.

However, the resulted workflow is more automatic and less human driven. Collier in [59]

shows how directed graphs can be a navigational structure of hypertext systems in their

provided system called Thoth-II. Brambilla in [36] has integrates the BPMN graphical

notations of workflow with WebML notations in order to apply the workflow technology

to the conceptual design of an organization‟s website.

As a recent hypertext modelling approach, “Process-oriented Model of Hypertext” [35] has

a process-centric approach to the hypertext conceptual modelling, instead of the data-

centric approaches (like WebML, section 2.4.2). As a result, the process-oriented hypertext

incorporates some elements from the workflow technology domain (like “users”,

“groups”, “cases” and “activities”) into the hypertext modelling. In the process-oriented

model, the conceptual design of a hypertext application is divided into hypertext design,

data design and process design. Then in the process design, the orientation and

configuration of hypertext nodes will help to realize the workflow patterns which are

controlling the whole hypertext system.

2.9.3.2 Hypertext to Supports Workflows

There is another group of the related works in employing hypertext environments to

support workflow systems. Ashman in [20] suggests that because links can order the

- 54 -

processing units of a large process, they can be used to generate workflow models. She has

also counted the recording of corporate knowledge as one of the usages of hypertext

systems, which is recording the navigation steps of an expert while solving a problem and

saving this navigation history as a workflow for future use in order to fill the gap between

experts and invoices. In WIS [172], which is a hypertext system and employs Metalevel

Links (section 2.4.4) in its link structure, the navigation structure is intentionally designed

to support practical workflows. The provided example in that work shows how such a

design can support a workflow system to define a recruitment process.

In addition to the definition of the “Process-oriented Hypertext Model” in the previous

sub-section, the term “Process-oriented hypertext” has been also used to refer to a class of

hypertext deployed to implement workflow management systems in [133]. In this view,

hypertext is used as a design platform that can be used to develop information systems,

particularly for WFMSs.

2.9.4 The Interconnection of ZigZag and Hypertext

Ted Nelson says: “Zzstructure is not hypertext, while it is composed of nodes and links

(like the common hypertext forms), by itself it would make very bad hypertext” [129]. For

some others, ZigZag is a paradigm of hypertext [122]. One obvious point is that they are

both based on the node-link structure. That is why it is generally accepted that ZigZag is a

hyperstructure, in which data structures are utilised to model both organizational and

presentational aspects of hypertext nodes and links [117]. Also navigational behaviour is

obviously involved in both organizational and presentational aspects of hypertext systems.

Thus, ZigZag can be an underlying structure for several aspects of a knowledge-oriented

hypertext, including the navigational model. This means that in such a hypertext system,

nodes are cells of a zzstructure, links are links of that zzstructure, and finally associations of

links are dimensions of that zzstructure. It is then clear that the BRM cannot cover the

third element and as it will be shown, zzstructure linkbase can not have a binary

implementation.

2.9.5 The Interconnection of Databases and ZigZag

As will be explained in section 3.3, it is possible to design a ZigZag information system on

top of the database layer. Appendix A contains the details of a ZigZag data navigation

system designed using the relational database as its data layer.

- 55 -

2.9.6 The Interconnection of Databases and Workflows

Chapter 7 includes the details of development of a workflow management system on top

of a databases layer.

2.9.7 The Interconnection of Databases and Hypertext

DHE [29, 30] (described in section 2.4.5) was an example of building hypertext links over a

relational database. Moreover, databases and hypertext system can have other forms of

supporting to each other, which DHE is only an example of those approaches. Hypertext

can also be used as a user interface to retrieve information of databases [28, 80, 140] and in

terms of usability, this kind of user interface for a database system is more efficient than

the traditional tabular approaches [120].

2.9.8 The Interconnection of Databases, XML and Directed Graphs

There are methods of building relational databases from both directed graphs and XML

[33, 77, 78] by several mapping methods. Also databases is counted as one of alternative

ways of XML storage strategies in [175]. A review on those works simply shows that the

directed graphs are usually used as an intermediate stage to map between XML and

databases, and also the ability of converting XML to directed graphs and database is based

on the existence of a common ternary foundation.

2.9.9 The Interconnection of ZigZag and Directed Graphs

Zzstructure can be defined in several ways, including a definition based on directed graph

in [116]. In that view, zzstructure is a “directed multi-graph” with some extra restrictions.

This is concluded by means of a ternary approach; however, a pure ternary definition of

zzstructure has been introduced in section 2.3.3.

- 56 -

2.10 Summary

In this chapter, through reviewing the related works, the direction was to find a “ternary”

common foundation in some different areas: Knowledge management, hypertext, the

Semantic Web, ZigZag and Workflow management. What is meant by the “ternary

foundation” has not been formally defined yet and it is supposed that the reader in this

stage has enough background and motivation to read chapter 3 and to know the basic

definitions of the TRM, having an implicit view about what are the expected properties of

the TRM.

So, we now return to our original question – are we talking about the same structure?

Although this chapter could provide a rough idea about the targeted unified model, it yet

cannot accurately define what that unified model is. The fundamental information model

of all of these paradigms has been shown to be a “ternary node-link structure” [150] but

this needs to be justified through this thesis after introducing TRM in the next chapter,

particularly in sections 3.3, 4.1, 5.7, 6.4.

- 57 -

C h a p t e r 3 -

3 THE TRM: A GENERAL INTRODUCTION

In chapter 2 an implicit view of a common information model has been drawn. This model

is based on three elements that can be used in a variety of node-relation structure. It is

supposed that chapter 2 could justify the basic need for “association” as a main element

that can be modelled explicitly in nodes of the structure neither in the relations nor

implicitly anywhere else. Thus the drawn image of the proposed model must contain three

elements of “source”, “association” and “destination” as the relations atoms. This model is

called “Ternary Relations Model” or “TRM” to express that it is based on relations

between three nodes, or some triples which are related together. This chapter is to

introduce the TRM in an abstract context and to show how it can be a generalization of all

“ternary approaches” studied in the previous chapter.

3.1 Abstract Definition of the TRM

The definition of the TRM is proposed in two stages: Static and Dynamic. The Static TRM

is applicable when the relating nodes are fixed and independent of each other and/or

external parameters, and the dynamic definition extends the concept of the Static TRM to

the areas where nodes can be functionally dependent of each other.

3.1.1 Static TRM Definition

The basic concepts are:

1- “Node” is a name for every individual piece of data/information.

2- A “Relation” is an ordered triple of any three nodes called “source”, “association”

and “destination” respectively.

- 58 -

3- Each relation is itself a node.

4- “Relations” in the TRM are bi-directional, which means that a single relation can

express two meanings when being read or interpreted from two different directions.

The TRM information space is as simple as a set of nodes. There is no hierarchy structure

between nodes in the TRM. The fact that “relations are themselves nodes”, doesn‟t imply

any hierarchy because it can be resolved by cross-referencing.

The TRM graphical notation consists of circles representing nodes and arrows representing

relations. Arrows originate from the source node, passing through the association node and

terminate to the destination node. This has been illustrated in Figure 3-1, and a sample

TRM-modelled information space has been shown in Figure 3-2.

Figure 3-1: Graphical notation for the abstract TRM definition

Figure 3-2: A sample TRM-modelled information space

- 59 -

It is very important to clarify a point about the TRM notation. “This notation is not

supposed to be used instead of any other notation or language or to be a competitor to

them”. As will be seen later, for each individual subject of work, like workflows or XML,

some equivalent TRM notation exist, but it doesn‟t mean that the TRM notation is

recommended. The target is to say that “it is possible” for the TRM to express them. This

is because the TRM notation is going to be cumbersome for large amount of information.

However, it may or may not be a rival notation depending on the subject.

3.1.1.1 Formulation

The fact that “each relation is itself a node” is a recursive phrase in formulating the TRM

and may look to cause problems in making a closed TRM formulation. Fortunately, this

recursion doesn‟t imply any infinite loop because there are some basic nodes, i.e. nodes

that don‟t contain any relation, otherwise it would be impossible to build relations over

other relations. This has also the advantage of self-description, in which one can say

“everything in the TRM is node” to make the TRM definition very simple.

Let us first assume that relations are different entities from nodes. The TRM is defined as:

A couple of (N,R) where

N is the set of all nodes and

RN3 i.e. R={some (x,y,z) | x,y,z N}

Now for imposing the fact that every relation is itself a node, it is not possible to simple say

RN because N doesn‟t include triples by definition. So let us define N0 as the set of

basic nodes, i.e. nodes which doesn‟t express relations. Then N is the set of all nodes

which is the union of N0 and R. In this case, R is N3 and not N0
3 because relations can be

built over other relations as well as basic nodes. Now the Static-TRM is defined as:

A set of all nodes: N=N0 R where N0 is a set of basic nodes; and RN3 or,

N=N0 {some (x,y,z) | x,y,z N}

Equation 3-1: Static-TRM formulation

- 60 -

It is noticeable that N is defined using N, which expresses the recursive definition. This

formulation shows a node production machine: Having a set of N0 is enough to grow the

information structure in the TRM, all one needs to do is to build more triples and add

them to the existing nodes.

3.1.1.2 Internal Architecture

In the TRM, each node can have the following data members:

1- Id and/or URI

2- desc (description)

3- da (direct association) and ra (reverse association)

4- src (source), asc (association) and dst (destination)

Id is the unique internal identifier of the node which can be used to reference to any node.

The validity of Id can be defined in different scopes, which can be universal or local,

depending on the application. URI defines the web standard identifier of the node. desc is a

text containing the name, description or value of the node, independent of possible roles

of the node in any relation. da and ra are two texts describing two faces of this node when

it participates in a relation in normal or reverse directions. src, asc and dst are references to

Ids of three other nodes and are used when this node is a relation (or a statement) about

the other nodes.

Id/URI is the only necessary data members and the rest of members are optional. This has

been intentionally defined in order to allow the node structure to handle both single node

definitions (when at least one of desc, da or ra is needed) and relation definitions (when src,

asc and dst are needed).

3.1.2 Dynamic Definition

The TRM in general supports the functional links, which means that each of the three

elements of a relation can be a dynamic function of another. It also means that they are not

only changeable by the authors, but also they can be changed dynamically on the reader‟s

side. Thus in the most general case, each of the three elements in a ternary relation can be a

function of two others and the environmental attributes on the reader‟s side (like user‟s

specifications, location, time, etc.).

- 61 -

This functionality will allow us to cover some areas which cannot be covered by the Static-

TRM, like the functional links of the BRM, as mentioned in section 2.5. Also by mixing

this functionality to some of the related works studied in chapter 2, new horizons may be

opened to extend those information models and build new models. As an example, ZigZag

if mixed with the functional links. It is noticeable that the functional links of the TRM act

in a totally different level than the TRM links level. It means that the links are still ternary

and the functional links are not intended to support extra link dimensions if they are

needed. Instead, the functional links generalize the way that three nodes can be linked. In

the Static TRM, a link is about three fixed nodes and in the Dynamic TRM, it is about

three variable ones. As will be seen later, the dynamicity is neither about the number of

nodes to be linked, nor about the content of each node, but about selecting the

participating nodes. The content of a node is not necessarily fixed in the Dynamic TRM

(e.g. a functional link is itself a node with dynamic content) but a single functional link does

not act on the level of changing the content of the nodes.

3.1.2.1 Formulation

In order to formulate the Dynamic-TRM, three functions with some attributes must be

defined. Also it is necessary to have an abstracted attribute to show all of the

environmental parameters. Making this attribute is completely dependant on the nature of

information and may be different from case to case. Thus in the following formulation, it is

assumed to have an abstracted and single parameter, named t, which includes all of the

necessary environmental parameters. A set of all possible t's is named T.

The Dynamic-TRM is defined as follows: the Static-TRM (section 3.1.2.1) plus:

In terms of notation, it is difficult to draw graphs for Dynamic-TRM because the result

would be a dynamic graph that changes by having different environmental parameters.

N is the set of all nodes

RN3 i.e. R={some (x,y,z) | x,y,z N}

T={some t | t is an environmental parameter}

x=f(y,z,t) , y=g(x,z,t) , z=h(x,y,t) ; and f, g, h: (N2 T) N

Equation 3-2: The Dynamic-TRM formulation

- 62 -

However, dotted line has been used in a simple example shown in section 7.1 to denote a

time-dependence link. This solution may not be applicable in a more complex example.

Relating three nodes to each other while the relation uses functions needs more

clarification. A possible misunderstanding is to suppose that nodes are themselves dynamic

in content, and that the Dynamic-TRM relates these varying nodes to each other. Although

it is possible for the contents of nodes to be changed at any time (like any other

information model), the Dynamic-TRM has nothing to do with the changes in the content

of nodes. Being dynamic here is about relating nodes, not about contents of the related

nodes. If a single defined relation relates three fixed nodes of x,y,z1, it is possible that under

other circumstances the same relation relates x,y,z2. So the TRM relations include

references to some three nodes, while the mechanism of referencing is direct in the Static-

TRM and indirect (functional) in the Dynamic-TRM4. The practical solution to this is to

define the functions like f, g and h (of

Equation 3-2) as nodes and use them as source, association or destination of the TRM

relations. One then can have a static snapshot of the Dynamic-TRM by knowing the result

of the dynamic functions.

3.2 Examples of the TRM

3.2.1 The Static-TRM

As an example of the Static-TRM, the bibliographic example of section 2.1.2 is recalled.

However, the information in that example doesn‟t need all of the Static-TRM features (like

bi-directionality). Figure 3-3shows the equivalent TRM graph.

4 It is obviously possible that the content of a link is changed (an example is a node representing a dynamic TRM link – as

a relation is itself a node) but that node still has a fixed identification that make it ready to participate in any another

static or dynamic link. The latter dynamic link again has nothing to do with the changes inside the participating nodes,

even if they are themselves changing.

- 63 -

3.2.2 The Dynamic-TRM

Ternary-Links in a personalized hypertext (section 5.6) is an example of the Dynamic-

TRM, and the environmental parameters are the identified user specifications and possibly

time. The system may show an anchor in the hypertext as the source of a link while this

could not be a link with other users, then by clicking on that anchor a menu of choices

may appear that shows the available links while each item may vary for different users. By

selecting one of them, another environmental parameter is involved which is the “user‟s

choice”. Finally another function may calculate the desired destination with all of the

available parameters during the process and will take the user to that point.

DHE [29, 30] (described in section 2.4.5) is another special case of the Dynamic-TRM

when the added computed links are in the forms of functional triples. The rules of finding

links in DHE (called RNA: Relationship Navigation Analysis) are based on the non-

normalized schema of a relational database. The set of links in the resulted hypertext is

R={(x,y,z) | y=f(x), z=g(x,y)} when x is the content of a field, z is the available semantic

relationships originating from x, and z is the endpoint. Finally, f() and g() are functions

generated by RNA.

3.3 A Layered Approach

After defining the TRM in this chapter, it is necessary to find out how TRM fits in with

other related works studied in the previous chapter. What has been used till now was the

word “covering” to show that the TRM can be a common foundation for different

Figure 3-3: The TRM graph representation of the sample database

- 64 -

information models. This word must be clarified to show the level of such coverage. For

example, the way that the TRM covers the BRM is far different from the way that it covers

Zzstructure.

To achieve the explicit relation, a layered definition of an Information System has been

proposed in Figure 3-4.

In that configuration, the upper layers are the closer ones to representing the information

to the user and the lower layers are the closer ones to the machine physical level. Each

layer provides enough tools or functionality to represent the information provided by its

underlying layers. The layers are introduced as:

1. Storage Layer: Contains mechanics, vocabularies or syntaxes about how to store data in

files.

2. Information Model Layer: Deals with the method of structuring the information in a

space of information, from raw data to user-level information.

2.1. Model Foundation Layer: Deals with how to build the structural units of

information using raw data.

2.2. Model Top Layer: Deals with how the structural units can be managed to build

the user-level information.

3. Application Layer: Provides functionalities or tools for users by managing the user-level

information.

Figure 3-4: Information System Layers used in this research

- 65 -

Now the TRM is positioned in the Model Foundation layer, which means that the TRM

deals with building the basic information units. The TRM subsets -with less degree of

freedom than the defined TRM- like the BRM or the Static-TRM are also basing some

related top-layer models and they are in the same layer as the TRM.

ZigZag, relational and semi-structured databases, workflows models, and RDF/OWL are

categorized in Model Top Layer because they know how to manage the information units

in an information space. Members of application layer manage the user-level information

like the World Wide Web, open hypertext systems or workflow management systems.

Going downward, the Storage Layer provides the storage rules, syntaxes or vocabularies,

like XML as a textual language to store information in semi-structured database. Tables of

a relational database (including the mechanics of how the information is arranged in tables)

are also categorized under this layer.

It will be shown in section 4.1 how XML can be converted to the TRM graph. Now the

question is how something from a lower layer is to be converted to something from an

upper layer? The answer needs a deeper look on what has been converted, and as will be

shown will result in another interesting outcome. What is converted to the TRM graph is

not the vocabulary or syntax of an XML listing, but it is some semi-structured information

(or a hierarchy of information). That information could be written in a few possible

languages, including XML. Since XML is the most common way of expressing such kind

of information, it seems that XML has been converted. The TRM is located in an

abstracted layer over XML and RDB tables, so it shows that the TRM may be expressed in

XML or tables. In fact it will be shown in the next chapter that the Static-TRM can be

expressed both in XML and RDB tables without any contradiction. “TRM-XML” will be

introduced as a language of expressing the TRM-based information in XML. This naming

is not because the TRM-XML is not XML or not because it has not the XML syntax, but

because of its special vocabulary. An instant and confusing result is that XML can be

rewritten in the TRM-XML (which is still in XML); something that looks like a recursion,

but in fact is changing the information modelling method. The other outcomes of this fact

are left here to be studied after introducing the TRM-XML in the next chapter.

This layered orientation can also be evidenced by DIKW pyramid explained in section

1.1.1. and illustrated in Figure 1-2: The storage layer represents “data”, the information

model layer represents information, and the application layer represent knowledge. In the

- 66 -

information model layer, the foundation layer (here TRM) builds information by relating

data, and the top layer (like RDF) makes patterns of information to be represented as

knowledge in the application layer.

The order of layers is not about the richness of information but about their position in the

user/machine interactions. Particularly, the role of the foundation layer can be expressed as

“making information from data” and the top layer as “making knowledge from

information” by reference to the data-information-knowledge hierarchy discussed in

chapter 1. The fact that the TRM has more features than (for example) ZigZag doesn‟t

mean to swap their level in that figure. Instead, the fact that ZigZag uses a (subset of) TRM

features in making its building blocks leads to put it on top of the TRM.

It is noticeable that the TRM itself does not necessarily or directly involve in user‟s side or

in machine‟s side. In other words it is not a direct visualization tool, nor a machine coding

method. The value of TRM is benefiting the user from the values of a ternary approach to

links implementation.

3.3.1 Bottom-up Threads

As an outcome of the mentioned layered approach, there are some Bottom-up layer

threads to be discovered, in which not all of the layers to be covered necessarily nor all of

the members of a layer can serve all members of an upper layer. For example the BRM

may not serve ZigZag, or tables may not server the Dynamic-TRM. But there are some

possible threads to be counted here:

1- TablesTRMDBRDBMS: Shows a usual relational database management

system.

2- TablesBRMDBOH: Shows an open hypertext system with binary linkbase

stored in a relational database tables.

3- HTMLBRM…Web: This shows the status of the Web with normal binary

links.

4- XMLTRMRDFSW: Shows the status of layers in the Semantic Web: This

clarifies that the TRM and RDF are in two abstracted layers.

- 67 -

5- XMLTRM…DBMS: Is it possible to build databases over the pure TRM?

A good starting point to chapter 4.

6- XMLTRMDBOH: Building open hypertext systems with some Ternary-

Linkbases, a motivation to move to chapter 5.

7- TablesTRMZigZag…: Shows a zzstructure stored in tables, as

demonstrated in Appendix A.

8- TablesTRMWFWFMS: Shows a WFMS based on ternary relations which is

used tables of a DB as storage. This is what has been implemented and explained

in [152]. The same idea can be done based on XML as well.

3.4 Summary

In this chapter the TRM theory has been formed. The TRM is introduced to be a

collection of non-hierarchical nodes. The concept of relations (which themselves are nodes

in the TRM) are based on triples. Two versions of the TRM called static and dynamic are

formulated: The Static-TRM for fixed triples and the Dynamic-TRM for ternary functional

links.

A layered structure has been introduced which can precisely locate the TRM among other

works and information models. The TRM is shown to be located in the foundation layer of

information modelling techniques, while being on the top of logical and physical storage

layers. Tracing possible bottom-up threads in those layers helps justifying some

implemented works as well as discovering some unimplemented ones. It can also be a

good motivation for moving to the next chapters in order to build new information

models.

According to these arguments, the TRM is a highly generalized approach to information

that may be used to unify many existing information models. In effect, it may be viewed as

an Information Model Construction Kit for the next chapters.

- 68 -

C h a p t e r 4 -

4 TRM-DB: A NEW SCHEMALESS DATABASE

There are many situations in IT systems where people need to manage real-world

information and desire not to be constrained by “schemas”. While real-world information

is free in structure, the traditional desire in computer world was to store information in

some rigid structures. These rigid data structures were developed to serve business in the

early computer ages, and as such their design is, in many respects, a direct descendent of

hundreds of years of bookkeeping [47].

Spreadsheets, Relational and Object-Oriented Database Models are all about table-

orientation and/or hierarchy and are based on the dependence of data to some kinds of

associated schemas. Despite all of the benefits of these technologies, fitting the real-world

data to the associated schemas has been always together with many challenges on how to

artificially rearrange data, how to show them in natural ways and more importantly, how to

dynamically apply structural changes. Having two separated sides -data and metadata- for a

database management system implies keeping a permanent gap between designing and

using the database systems. The more dynamic the data is, the more difficulties in

managing these two sides are likely to appear.

The basic idea of this chapter is introducing a very general database model based on the

TRM, called “TRM-DB”. Every piece of data and the relations between them in the TRM-

DB have a single and global type, called „node‟. As will be described, because there is no

associated schema to a specified data set, it will be called “schemaless” here.

- 69 -

4.1 An Overview of the TRM-DB

Recalling from the layered approach proposed in section 3.3, the TRM-DB is located in the

Model Top Layer in the group of DB models. It is supposed to be a database on top of the

TRM (as the Model Foundation Layer) that can use the full potential of the Static-TRM,

not a subset of that. Thus the TRM-DB is some tools to manipulate information in a

complete Static-TRM framework. As shown in the layered design of Figure 3-4, the storage

layer of the new database system is some known storages like tables or XML. This section

proposes implementing the TRM-DB on top of those two storage layers. These two

implementations are called “TRM-Table” and “TRM-XML” hereafter and will be

introduced in the next two sections.

Before introducing the implementations of the TRM-DB, it is necessary to study how the

TRM can be formally the fundamental information model for the studied related works,

including RDBs, XML and ZigZag (as claimed in Figure 3-4).

4.1.1 The TRM-DB behind the Relational Databases

The TRM can be extracted from any data modelled in the relational databases. In fact,

RDBs have their own method to making ternary relations: “Tables”. Two approaches are

possible to explicitly express RDB tables in the TRM: In the first approach, tables are

viewed as expressing predicates, and the second approach uses the binary decomposition

to relate RDB tables to the TRM.

Firstly, a table can be viewed as a single semantic predicate (or association, in TRM term)

between a record identifier and a record, and a record itself is a set or ternary relations

between a record identifier, a field name and an individual data sit in that field. In other

words, tables are semantics that relate tables to records, and the field names are semantics

that relate records to data. For example, a table of “articles” with fields such as “title”,

“author”,etc. is a set of ternary links like :

{(article_id1, articles, (article_id1, title, title1)),

 (article_id1, articles, (article_id1, author, author1)),

 (article_id2, articles, (article_id2, title, title2)), … }

Secondly, can be easily proven by noticing that each data modelled in relational database

can be decomposed to a set of binary relations [55]. It means that after decomposition,

there will be an infinite number of two-column tables that include all of the information

- 70 -

necessary for rebuilding the original database. The two columns are usually IDs and textual

strings. Thus there will be a number of relations called R1 to Rn where:

Ri = { (x,y) | x has relation ri to y } ; 1 i n

Then R0 can be defined as:

R0 = { (i, ri) | 1 i< n}

Finally a general set of R can be defined as:

R = { (x,i,y) | (x,y) Ri , 0 i n }

The above set is a kind of the Static-TRM formulation, according to Equation 3-1. This

conversion has been illustrated in Figure 4-1.

It is noticeable that the binary decomposition may be widely impractical, as it may end up

with an uncontrollable number of relations, but has been used here to support the TRM

theory.

Figure 4-1: A sample conversion of a set of binary relations to the TRM graphs

- 71 -

4.1.2 TRM vs. XML

According to section 2.2, an XML listing can be viewed as a set of ternary relations

between elements, attributes and textual values. The main idea is that an XML tag is an

association between its super-element and the entire sub-element or the element„s textual

content. Also attribute names are associations between elements and textual values. This

shows that an XML listing can be converted to the TRM graph. Also the TRM has some

different properties from XML: The TRM is free from any hierarchy; it supports functional

linking and bidirectionality.

The idea of converting an XML listing to a TRM equivalent includes making ternary

relations between an entire element to its contents (whether sub-elements or attributes).

For relating a node to its sub-elements, the required associations are the name of sub-

element and the name of attributes. The entire elements (and sub-elements) are themselves

nodes that have no explicit equivalent in an XML listing (The name of the element is not a

good candidate because the elements can be repeated and the name must not be re-used

for each occurrence of an element). Thus some temporary nodes (like n1, n2 in the

following example) must be used. Finally the elements in the first level of hierarchy are

connected to the whole XML document (named “root”) via their element names.

To shows how to convert an XML listing to a TRM graph, these steps must be carried out:

1- A node called the “root” is defined.

2- All tags and sub-tags are representing by some nodes.

3- The listing between each opening and closing tag (an element or a sub-element) is

also represented as a node.

4- All attributes are represented as some nodes.

5- All textual values (either for attributes or for elements) are also represented as

some nodes.

6- The root node is connected to the nodes representing first-level element via the

nodes representing the first-level tags.

7- The first level elements are connected to the nodes representing the second-level

element via the nodes representing the second-level tags.

8- Repeat step 7 for all the nested elements.

- 72 -

9- For all attributes, the relevant node is connected to the relevant textual value node

via the relevant attribute node.

10- A node called “text” is created, and then all the element nodes are connected to the

relevant textual value node, if they have any.

It is also noticeable that during the above process, there may be repeated tags, attributes or

textual values, which must not be represented as different nodes, and the maximum reuse

must be utilized. In addition, XML supports ID and IDREF couples to make cross-

referencing. It will be very easy to represent that in the TRM graphs by having textual value

for IDREF: attributes must not be created as nodes, because they have been already

created. Thus the referencing element node must be connected to the referenced element

node via the relevant attribute name. In this case, the node “id” representing the ID

attribute is a special pre-defined node.

To illustrate the above points, two examples are shown in Figure 4-2 and Figure 4-3. The

first figure is to illustrate the main idea in a simple example and the second figure includes

how to convert sub-elements and cross-referencing to the TRM graphs.

Figure 4-2: A simple example of converting XML to the TRM graph

- 73 -

4.1.3 The TRM vs. ZigZag

According to section 2.3.3, a ternary formulation on zzstructure has been defined. That

formulation consists of a triple of (C, Z) where C is the set of all zzcells and that Z C3,

plus two extra conditions about the uniqueness of right and left connections along a single

dimension. Comparing that formulation to Equation 3-1 and

Equation 3-2, it is clearly concluded that zzstructure formulation is a special case of the

TRM formulation. The difference -or what the TRM has over zzstructure- are:

1- The TRM supports multiple connections through a single association (zzdim here),

i.e. the TRM formulation doesn‟t imply such extra conditions about the uniqueness

of right and left connections along a single dimension. This is also a solution to the

problems of one-to-many relationships in ZigZag explained in section 2.3.1.

2- Zzstructure‟s relations are not themselves nodes (zzcells here). This prohibits

zzstructure to be able to built relations over relations.

3- TRM nodes can be repeatedly used in different TRM relations without any need

for transclusion; however, the TRM can implement transclusion if needed (e.g. to

simulate ZigZag) by connecting through special node of “d.clone”.

Figure 4-3: An example of converting XML to the TRM graph considering sub-elements and ID referencing

- 74 -

Also according to the TRM internal structure explained in sections 3.1.1.2 and the TRM

dynamic definition in section 3.1.2.1, two other differences between the TRM and

Zzstructure are:

4- Zzstructure does not support bi-directional links, i.e. a zzdim has only a single

description along its positive direction, and there is no way to realize the explicit

meaning of the connection from the destination cell to the source cell. The TRM

can fulfil the ambiguity problems of ZigZag explained in section 2.3.1.

5- ZigZag cells are enumerated and it does not support the functional links, thus it

can only be a under the category of the Static-TRM.

As a result, a zzstructure graph can be converted to the TRM graph (but not vice-versa).

The fact that “two zzcells can be connected along a zzdim” is mapped to the fact that “two

TRM nodes can be connected through an association”. In order to do the conversion, one

needs to define separate nodes for both zzcells and zzdims, and connect them in the same

way. For cloned cells, one can either translate them directly to the TRM (by relating via a

special node of d.clone), or to redesign the structure in the TRM (by re-using a single

node). A sample conversion between two graphs has been illustrated in Figure 4-4.

4.2 The TRM-Table

The TRM-Table uses a single table to store the entire database (called the “Nodes” table).

The singularity of the table is the core of the TRM-Table, as it is enough to manipulate

data without any data-related schema, hierarchy or relation between different tables (like in

RDBs). It still can be managed in a relational database engine and be queried using

languages like SQL, because it is basically nothing more than a table. The distinction is

“how” and “what” to store in the table, because it is able to store any data modelled in the

Static-TRM.

The table design is simply like Figure 4-5

Figure 4-4: A sample conversion of Zzstructure to the TRM graph

- 75 -

Figure 4-5: Design of the TRM-Table called Nodes table (all fields are text)

Although the above design is a table, it is still called “schemaless” in this context. This is

because the field names are independent of the data and are originated by the information

model, not by the information itself. By this view, the tabularity of the design does not

imply any rigidity on the handled information. Thus the TRM-Table may be considered as

an “Irregular Table”.

4.2.1 An Example

Recalling the bibliographic database of section 2.1.2, the equivalent TRM-Table (called

Nodes) is shown in Figure 4-6.

Figure 4-6: the TRM-Table equivalent for the bibliographic example

- 76 -

4.3 The TRM-XML

A fundamental rule in the TRM is that every piece of information is a node and there is no

hierarchy of nodes. Although XML is designed to manage hierarchical data, it can be

adopted here to manage the TRM nodes in a one-level of hierarchy. The TRM-XML is

then an XML-based “language” that is used to express information modelled in the Static-

TRM. This language uses XML as syntax and the TRM rules as its vocabulary. Recalling

from section 3.1.1.2, the internal data structure of the TRM nodes motivates to use XML

to assign textual or referenced values to sub-elements of a node element. By this view, the

sub-elements of a node element are same as what has been introduced in section 3.1.1.2 as

Id/URI, Desc, da, ra, src, asc and dst. As described in section 3.1.1.2, TRM does not require

all links to be bi-directional, so Id is the only necessary sub-element and other sub-elements

have been intentionally selected to be optional.

For its vocabulary it needs a dedicated schema. Like any other XML, the schema can be

expressed in another XML file called the TRM-XMLSchema. Similar to what has been

mentioned about irregularity of the TRM-Table, the TRM-XML Schema does not imply

any rigidity (unlike any other XML Schemas). The TRM-XML Schema is a unified

“schema” for the “schemaless database”.

4.3.1 The TRM-XML Schema

The basic element is called <node> with sub-elements including Id, URI, desc, da, ra, src, asc,

dst. Having sub-element is not against the TRM‟s “no hierarchy” principle, because these

are sub-elements of a “node” and are designed to express the internal data structure of a

single node. Figure 4-7 shows the list of the TRM-XML Schema.

- 77 -

Finally <TRM> is the single root element that includes all of <node> elements. This

element opens once at the start of file and closes at the end.

Figure 4-7: The TRM-XML Schema listing

- 78 -

4.3.2 Example 1

As an example, suppose one needs to express these statements: Tim is a lecturer, Java is a

course, and Tim teaches Java. Here, the mentioned TRM schema can be used to structure

the TRM-XML data listed in Figure 4-8.

Figure 4-8: The TRM-XML listing of example 1

- 79 -

Because of the TRM‟s bi-directionality, the above set of the TRM relations can express the

following relations in the same time: Lecturer is the type of Tim, Course is the type of Java,

and Java is taught by Tim.

Also one can build another relation about a relation. For example, to say that “Amir knows

that Tim teaches Java” it is enough to add the following lines:

<node>

 <id>B03</id.>

 <desc>Amir</desc>

</node>

<node>

 <id>P03</id>

 <desc>knowing</desc>

 <da>knows</da><ra>is known by</ra>

</node>

<node>

 <id>S04</id>

 <src>B03</src><asc>P03</asc><dst>S03</dst>

</node>

Which again, at the same time expresses that “Tim teaches Java is known by Amir” or

“Java is taught by Tim is known by Amir” or “Amir knows that Java is taught by Tim”, etc.

The above interpretations of a single fact may seem obvious for human reading, but not

for the computers. This shows how bi-directionality can expands the expressed meanings

when the number of interconnected the TRM relations increase. The application of this

multiple-interpretation would be more flexibility in database querying.

Now if one wants to assign a course code (say “C001”) to that Java course, the following

lines must be added:

- 80 -

<node>

 <id>B04</id>

 <desc>C001</desc>

</node>

<node>

 <id>P04</id>

 <da>is the code of</da>

</node>

<node>

 <id>S05</id>

 <src>B04</src><asc>P04</asc><dst>B04</dst>

</node>

More importantly, if one wants to use “teaching” as object or subject of a statement, like to

say that “Tim likes teaching”, the following lines must be added.

<node>

 <id>P05</id>

 <da>likes</da>

</node>

<node>

 <id>S06</id>

 <src>B01</src><asc>P05</asc><dst>P01</dst>

</node>

The reuse of P01 as object without redefining it as a separate node is noticeable.

4.3.3 Example 2

Recalling the sample database of section 2.1.2 and the relevant TRM graph shown in

Figure 3-3, writing the TRM-XML list is a straightforward process. The result is the

following list:

- 81 -

<?xml version="1.0" encoding="UTF-8"?>

<TRM xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="TRM.xsd">

<node><id>IDTitle</id>

 <desc>Title</desc>

 <da>is titles as</da><ra>is the title of</ra>

</node>

<node><id>IDAuthor</id>

 <desc>Author</desc>

 <da>is written by</da><ra>is the author of</ra>

</node>

<node><id>IDYear</id>

 <desc>Year</desc>

 <da>is published in</da><ra>is the year of publication of</ra>

</node>

<node><id>IDJournal</id>

 <desc>Journal</desc>

 <da>is published by</da><ra>is the publisher of</ra>

</node>

<node><id>IDAuthor1</id>

 <desc>C. Bussler</desc>

</node>

<node><id>IDTitle1</id>

 <desc>Enterprise-Wide Workflow Management</desc>

</node>

<node><id>IDYear1</id>

 <desc>1999</desc>

</node>

<node><id>IDJournal1</id>

 <desc>IEEE Concurrency</desc>

</node>

<node><id>IDArticle1</id>

 <desc>Article1</desc>

</node>

<node><id>IDArticle1R1</id>

 <src>IDArticle1</src><asc>IDTitle</asc><dst>IDTitle1</dst>

</node>

<node><id>IDArticle1R2</id>

- 82 -

 <src>IDArticle1</src><asc>IDAuthor</asc><dst>IDAuthor1</dst>

</node>

<node><id>IDArticle1R3</id>

 <src>IDArticle1</src><asc>IDYear</asc><dst>IDYear1</dst>

</node>

<node><id>IDArticle1R4</id>

 <src>IDArticle1</src><asc>IDJournal</asc><dst>IDJournal1</dst>

</node>

<node><id>IDArticle2</id>

 <desc>Article2</desc>

</node>

<node><id>IDAuthor2a</id>

 <desc>S. Choenni</desc>

</node>

<node><id>IDAuthor2b</id>

 <desc>R. Bakker</desc>

</node>

<node><id>IDTitle2</id>

 <desc>On the Evaluation of Workflow Systems in Business Processes</desc>

</node>

<node><id>IDYear2</id>

 <desc>2003</desc>

</node>

<node><id>IDJournal2</id>

 <desc>Electronic Journal of Information Systems Evaluation</desc>

</node>

<node><id>IDArticle2R1</id>

 <src>IDArticle2</src><asc>IDTitle</asc><dst>IDTitle2</dst>

</node>

<node><id>IDArticle2R2</id>

 <src>IDArticle2</src><asc>IDAuthor</asc>

 <dst>IDAuthor2a</dst>

</node>

<node><id>IDArticle2R3</id>

 <src>IDArticle2</src><asc>IDAuthor</asc>

 <dst>IDAuthor2b</dst>

</node>

<node><id>IDArticle2R5</id>

- 83 -

 <src>IDArticle2</src><asc>IDJournal</asc><dst>IDJournal2</dst>

</node>

<node><id>IDArticle2R4</id>

 <src>IDArticle2</src><asc>IDYear</asc><dst>IDYear2</dst>

</node>

<node><id>IDArticle3</id>

 <desc>Article3</desc>

</node>

<node><id>IDYear3</id>

 <desc>2006</desc>

</node>

<node><id>IDTitle3</id>

 <desc>Searching for e-Business Performance Measurement Systems</desc>

</node>

<node><id>IDArticle3R1</id>

 <src>IDArticle3</src><asc>IDTitle</asc><dst>IDTitle3</dst>

</node>

<node><id>IDArticle3R2</id>

 <src>IDArticle3</src><asc>IDJournal</asc><dst>IDJournal2</dst>

</node>

<node><id>IDArticle3R3</id>

 <src>IDArticle3</src><asc>IDYear</asc><dst>IDYear3</dst>

</node>

</TRM>

4.4 Discussion

After introducing the TRM-DB, it is necessary to notice that XML and tables may be

viewed as “mechanics” of expressing the information modelled in the TRM. The TRM-DB

in the data model layer uses the TRM as the foundation layer and the TRM-XML or the

TRM-Table as data storage layer. The point that makes the TRM-DB special is that unlike

other related works in the data model layer, this database is directly based on the TRM. For

example, ZigZag is also an information layer based on the Static-TRM, but it doesn‟t use

all of what the TRM can provide.

The TRM-DB can be theoretically used to describe many structured or unstructured real-

world information with integration of schema in the database. This characteristic is based

on describing all information, whether data or metadata with the same method and in a

- 84 -

same context. The main issue is that there is a single, simple and global schema which is

not dedicated to any particular database.

As a comparison between the studied data models, the TRM-DB has disadvantages and

advantages over RDB, XML and Zzstructure, which have been summarized in Table 4-1.

Table 4-1: Comparison of features the studied data models

 RDB XML Zzstructure TRM-DB

Meta-data Separated Joint No or Mixed No or Mixed

One-to-many

relationship

Yes Yes by

repetition

Yes by

transclusion

Yes

Null problem No by

decomposition

(if practical)

No No No for TRM-XML,

Yes for TRM-Table

Re-use Yes by

normalization

Yes by

ID/IDREF

Built-in Built-in

Hierarchy Yes Yes No No

Bi-

directionality

No No No Yes

Relative

required

storage space

Low High High High

4.5 Querying the TRM-DB

Querying the TRM-DB is different in nature from querying other databases like RDBs or

XML. The difference goes back to the lack of a schema in the TRM-DB. For example, a

question like “what are the titles of the articles published in year 2003” in RDBs is

convertible to a SQL statement having “…WHERE year=2003…”. In that statement, a

part of the schema (“year”) is questioned to be equal to a value (“2003”). Similarly in XML,

an element called “year” may be examined to be equal to that value in an XQuery

statement.

- 85 -

In the TRM-DB by contrast, some strings like “year” are parts of data, like any other data

like “2003”. The only questionable things in SQL or XQuery are id, da, ra, src, asc and dst,

so a mapping method between these two kinds of queries must be developed. In this

section, the mapping method is described through two examples for the TRM-Table and

the TRM-XML. The used database is the example of bibliographic data of section 2.1.2.

4.5.1 Querying the TRM-Table

The equivalent TRM-Table (called “Nodes”) has been shown in Figure 4-6. For querying

the TRM-table, first a view is designed called RelationTriples, as follows:

CREATE VIEW RelationTriples

SELECT Nodes_1.desc AS src, Nodes_2.desc AS asc, Nodes_3.desc AS dst

FROM ((Nodes

INNER JOIN Nodes AS Nodes_1 ON Nodes.src=Nodes_1.ID)

INNER JOIN Nodes AS Nodes_2 ON Nodes.asc=Nodes_2.ID)

INNER JOIN Nodes AS Nodes_3 ON Nodes.dst=Nodes_3.ID;

ORDER BY src;

This view provides two features, first it filters the database with the records which have

completed triples of src, asc and dst (means relations only), secondly it shows the TRM

representation between real pieces of data, not between their identifiers. This view may

contain redundancies, but not any null. The sample output is shown in Figure 4-9.

Figure 4-9: The view of "RelationTriples" applied on the sample database

- 86 -

Then RelationTriples view can be used for applying queries through some stages. For

example, to query “what are the titles of the articles with year=2003”, first one must filter

on (asc=”Year” AND dst=”2003”) to find src as “Article2”, then another filter must be

(src=”Article1” AND asc=”title”) to find dst as “On the Evaluation of …”. This can be

done in SQL using a single statement like:

SELECT RelationTriples_2.dst

FROM RelationTriples AS RelationTriples_1

INNER JOIN RelationTriples AS RelationTriples_2

ON RelationTriples_1.src = RelationTriples_2.src

WHERE RelationTriples_1.asc="year"

AND RelationTriples_1.dst="2003"

AND RelationTriples_2.asc="title";

The above statement relates RelationTriples to itself, with aliases “RelationTriples_1” and

“RelationTriples_2”. Then the condition “RelationTriples_1.asc=year AND

RelationTriples_1.dst=2003” will filter the records to the wanted relations, with their src

referring to the wanted articles. For the wanted articles, their titles are required. The

relations that can tell us the titles are those with “title” in their asc field. Thus in

RelationTriples_2 a relation with asc=title and src={what is already found}is required.

Also RelationTriples_2 has been already filtered on its src (because it joins to

RelationTriples_1 by common src‟s).

The result of running the query is shown in Figure 4-10.

4.5.1.1 Rebuilding the Relational Database

If a database is designed in the TRM-Table, it can be used to build the equivalent relational

database. An SQL statement can use the designed “RelationTriples” view, and give a full

non-normalized version of the database, i.e. a big table with all the possible columns. The

Figure 4-10: The sample output of querying the TRM-Table

- 87 -

required SQL statement uses TRANSFORM and PIVOT keyword to convert data from

cells to the headers of the columns, as follows:

TRANSFORM First(RelationTriples.dst) AS FirstOfdsc

SELECT RelationTriples.src AS Article

FROM RelationTriples

GROUP BY RelationTriples.src, RelationTriples.dst

PIVOT RelationTriples.asc;

The result is like Figure 4-11.

The resulted table implicitly shows the binary decomposed version of the relational

database. Unlike normal progress, now it can be used to “compose” the required relations.

As the first step, one can remove null values and end up with individual binary tables (but

with possible redundancies) by querying the above SQL statement for some specific asc.

For example, the following statement will give the result of Figure 4-12

Figure 4-11: The sample result of converting the TRM-Table to full non-normalized table

- 88 -

TRANSFORM First (RelationTriples.dst) AS FirstOfdsc

SELECT RelationTriples.src AS Article

FROM RelationTriples

WHERE RelationTriples.asc="journal"

GROUP BY RelationTriples.src, RelationTriples.dst

PIVOT RelationTriples.asc;

Finally if identifiers are used, the result is a non-redundant set of the fully-decomposed

tables.

4.5.2 Querying the TRM-XML

XQuery is a language developed for querying XML databases. It has almost the same role

for XML as SQL has for RDBs. XQuery is the recommended query language for XML by

W3C (http://www.w3.org) and has the potential to be one of the most important query

languages [48]. However, XQuery is not yet supported in any Web browser at the time of

writing this thesis. Rather, there are many implementations of it in terms of applications,

plug-ins or as a part of some database engines. More about the syntax of XQuery is outside

the scope of this thesis and the full documentations can be found on W3C website

(http://www.w3.org).

XQuery can be used as a query language for the TRM-DB because it can query the TRM-

XML. The way XQuery is used for querying the TRM-XML is again naturally different

from the way it is used to query any other XML file. Here XQuery can only question about

special elements (id, da, ra, src, asc, dst) and the questions must be mapped to that special

way of using XQuery. This has been explained in the following example.

Recalling the bibliographic example and the equivalent TRM-XML listing shown in section

4.3.3, let us suppose the query is again to find “What are the titles of the articles published

in year 2003”. The required XQuery is shown and explained in Figure 4-13.

Figure 4-12: A binary redundant table produced by transforming the TRM-Table

- 89 -

4.6 Summary

In this chapter, the TRM-DB has been introduced as a method of data structuring within a

schemaless framework. It is an approach of structuring information directly on top of

Static-TRM layer. Two implementations are proposed to make the TRM-DB feasible: The

TRM-Table which uses a single table to store the entire database, and the TRM-XML

which uses XML as a language of serializing the TRM nodes.

Before introducing the TRM-DB, the graphical notation of the TRM has been shown to be

able to express RDBs, ZigZag and XML. Finally the methods of querying the TRM-DB

are provided, having two implementations: Using SQL for the TRM-Table and XQuery for

the TRM-XML.

Figure 4-13: Description of a sample the TRM query statement in XQuery.

- 90 -

C h a p t e r 5 -

5 TRM-NAV: A NEW HYPERTEXT NAVIGATION MODEL

Recalling from section 2.4, while classic hypertext models (like the Dexter Model [92])

define a link as a two-element object consisting source and destination, „association‟ has

sometimes been considered as the third element, varying from implicit to explicit

involvement. Such three-element links has been called “Ternary-Links” (as an extension to

the binary links of the BRM [19]) hereafter.

This chapter explains a TRM-based navigation model of hypertext, called “TRM-NAV”.

Like the previous chapters, this model has a unifying approach and tries to make a general

framework to cover all implicit and explicit approaches to the concept of the Ternary

Links.

5.1 Background

When the BRM [19] was introduced in chapter 2, a ternary approach to the BRM in section

2.5.2 showed the limitations of the BRM in modelling the navigation in a class of hypertext

systems called “knowledge-oriented hypertext”. The BRM focused on the four main

navigational questions (Is this node a link source? Where can I go from this source? Is this

node a link destination? What nodes are linked to this destination?). However, it represents

explicitly nothing else, such as the semantics or types or meaning of links. The extra

information about a binary link may be implicitly presented in the implementation. For

example, inspection of a set of links or of a process generating links may indicate its

purpose; however, this is not expressed explicitly in the model.

- 91 -

What is semantically lacking from the BRM representations is a discriminator which

encapsulates information about the semantics of the relation, such as the relation‟s name,

type, purpose or selection criteria. While this information is not essential for representing

relations, it is however useful in varying degrees in different real-world applications. An

obvious example is in hypertext itself, where a chooser function can be most helpful when

numerous possible links are available from a given source. In another application, it might

be useful to perform calculations which take into account the semantics of the relations

and relation incidences, for example, finding all elements which satisfy the relation “is-a-

kind-of tree” but not “lives-in tree”.

The BRM represents no information that would assist a user in selecting the most

appropriate link destination for their purposes. In the BRM, the navigational questions

allow one to determine where one can go and from where, but not why one would want to

go there.

5.1.1 Extending the BRM

The concept of the TRM may be used to extend the BRM navigational model (described in

section 2.5) minding the described semantic limitations. A third feature of a relation is

introduced whose purpose is to explicitly represent the semantics of the relation that binds

elements. So for example, the BRM‟s pE representation (section 2.5.1), specified by a

predicate p and expression E is now supplemented with a designator f which can be a

relation name or any other semantically-meaningful description, and now becomes a pfE

relation. Also the “functional links” of BRM become semantic functional links. The BRM

enumeration of incidences representation which represents a binary relation as a set of

pairs {(x1, y1), (x2, y2), ..., (xn, yn)} now becomes {(x1, R, y1), (x2, R, y2), ..., (xn, R, yn)} where R

is the relation to which these pairs all belong. This follows the Static-TRM formulation of

section 3.1.1.

The pfE linking as the TRM equivalent of the BRM‟s pE linking, by analogy is the most

general case when the relation is represented as a (predicate, expression, expression), or when

R={(x,a,y) | p(x)=true , a=f(x) ; y=g(x,a)}. This follows what has been formulated as the

Dynamic-TRM in section 3.1.2. The above is a general case when an unadvertised source

of a link can be filtered by the p() function, then the available associations are computed by

knowing the source, and finally the available destinations are computed by knowing the

source and the nominated associations.

- 92 -

Recalling the example of pE links about journal article links on section 2.5.1, an example of

pfE link could be a page similar to that example, having ternary links. For example if a

journal title on the hypertext page is qualified to be a link source (using the Predicate

mechanism) then one or more associations are calculated using the f() function. This

function can return terms like “Abstract”, “Authors”, etc. which can be a variable list for

different users. After the user selects a certain association, then the destination is again

calculated using another function E(). The function E() may use the result(s) of function f()

as parameter, as well as user‟s level of access, etc. to determine the page that the user will

be taken to.

This case will be explained in more detail in section 5.8.3.

5.2 The TRM-NAV Definition

Following the described principles for the BRM extension, “TRM-NAV” is introduced to

be a “navigational model” for hypertext systems based on the TRM (ranging from the

Static-TRM to the Dynamic-TRM), when:

1- The TRM‟s source node is the source endpoint in the links of a hypertext system.

2- The TRM‟s destination node is the destination endpoint in the links of a hypertext

systems

3- The TRM‟s association node is a hypertext resource that describes the relation

between the source and the destination.

This general approach provides an integrated framework for a number of approaches to

navigational modelling, and as such it is likely to be a valuable technique to use in future

designs of hypertext infrastructure.

5.2.1 The TRM-NAV Navigational Questions

By analogy, if the 2 elements of the BRM result in 4 questions (in section 2.5.1), then 3

elements of the TRM-NAV can provisionally result the 9 following questions:

- 93 -

1- Outgoing Questions:

a. Is this node (x) the source of any link?

 (x,*,*) R

b. What are the associations (a) of link originated by this node?

{aS | (x,a,*)R}

c. Where can I go starting with this node via any found association?

{yS | (x,a,y)R}

2- Incoming Questions:

a. Is this node (y) the destination of any link?

 (*,*,y) R

b. What are the associations (a) of links terminating with this node?

{aS | (*,a,y)R}

c. What nodes are linked to this node via any found association?

{yS | (x,a,y)R}

3- Associative Questions:

a. Is this node (a) the association of any link?

 (*,a,*) R

b. What are the sources (x) of those links?

{xS | (x,a,*)R}

c. What are the destinations of those links for each found source?

{yS | (x,a,y)R}

The above questions are built by analogy to the BRM, but they can be simplified because

the process of finding the second and the third element of each link are almost mixed and

the second and the third question in each group can be combined. The reduced set

contains 6 questions as follows:

1- Source Existence: Is this node (x) the source of any link?

 (x,*,*) R

2- Outgoing Links Identification: What are the links originated by this node?

{(x,a,y)R}

3- Destination Existence: Is this node (y) the destination of any link?

 (*,*,y) R

- 94 -

4- Incoming Links Identification: What are the links terminating with this node?

{(x,a,y)R}

5- Association Existence: Is this node (a) the association of any link?

 (*,a,*) R

6- Links Identification: What are the existing links via this association?

{(x,a,y)R}

5.2.2 Link Implementations

As with the conclusions drawn from the BRM, many implementations of hypertext

systems are based on mixing the above TRM-NAV questions with the static and dynamic

states of endpoint definitions. The difference however, is that having triples such as (x,a,y)

implies that each element may be enumerated, predicate or expression. Some of the important

possible implementations are:

(enumerated, enumerated, enumerated)

R={(x,a,y) | some x,a,y S}

This is the formation common to hypertext systems that explicitly contain relation triples,

such as zzstructure and the Semantic Web. Indeed the World-Wide Web may be viewed as

a special case of this, where one of the enumerations is a single arbitrary constant.

(enumerated, enumerated, expression)

R={(x,a,y) | some x,a S , y=f(x,a)}:

This is an interesting case, where a destination may be computed from knowing where one

is and how one wants to navigate away from this starting point.

(enumerated, expression, expression)

R={(x,a,y) | some x S , a=f(x), y=g(x,a)}

Another interesting case, when sources are explicitly defined before, but selecting a link

source can compute or list all of the traceable association, then selecting a particular

association can compute or list all of the possible destinations. The created links by

Dynamic Hypertext Engine (DHE) [29, 30] studied in section 2.4.5 is an example of this

case. DHE applies Relationship Navigation Analysis (RNA) on a relational database

contents and create new dynamic links on the content of an existing hypertext. In such

- 95 -

created links, x is the content of a field in a database table, a is an available association

originating from x and computed by RNA and y is the link endpoint computed by knowing

x and a.

(expression, enumerated, enumerated)

R={(x,a,y) | some a,y S , x=f(y,a)}

In this case for the pre-computed links, knowing where the user is currently in and she/he

could have gone to this place can lead to all the sources where she/he could have been be

before. When links are dynamically computed, this means that knowing where and how

one wants to go afterward, can make the current element an unadvertised hyperlink source.

(expression, expression, enumerated)

R={(x,a,y) | some y S , a=f(y) ; x=g(y,a)}

Considering where the user is, the system can compute the sources where he/she could

have been before and how each source can be linked to this destination.

 (predicate, enumerated, expression)

R={(x,a,y) | some a S , p(x)=true ; y=g(a)}

This case is where the link endpoints are defined dynamically, i.e. the unadvertised source

and destination.

(predicate, expression, expression)

R={(x,a,y) | p(x)=true , a=f(x) ; y=g(x,a)}

This is the general case which was called pfE or the semantic functional link. In this case

an unadvertised source of a link can be filtered by a function, then the available

associations are computed by knowing the source, and finally the available destinations are

computed by knowing the source and the nominated associations.

Where accuracy is critical, it is possible that the predicate p() would actually be a Boolean

conjunction of the results of the function f(), so that if at least one relation type is found for

a given potential source, then the predicate returns true, i.e. that the potential source is

indeed a source, because an association (link type) was found for it.

- 96 -

5.3 The Ternary-Links

The TRM-NAV is based on three elements for hypertext links. Although the familiar

binary links of hypertext can be modelled in the TRM-NAV, a more general approach in

the implementation of hypertext system is to bring that ternary principle to the user‟s

vision. A Ternary Link is a hypertext link for which the user can explicitly see the

association of the link as a separated piece of information. Moreover, some information

about the destination can also be shown to the user inside the same Ternary Link. It is

important to notice that the Ternary-Links are not new and the TRM-NAV main

contribution is not to show new implementations of links, but it is to show a general

modelling framework for many implemented or unimplemented works. This section

explains some of the related works about the implemented Ternary-Links.

5.3.1 Examples

There are some recent developments in the enrichment of the Web‟s linking mechanism

through visualization tools, which can be studied to support the concept of the Ternary

Links. Two found examples of these developments (out of many similar systems) are Yahoo

Shortcuts (http://tools.search.yahoo.com/shortcuts/) and Snap Shots

(http://www.snap.com/about/shots.php). From the point of view of this thesis, they may

be considered as adding a third dimension to traditional Web links.

In “Yahoo Shortcuts”, the body text of an email in the Yahoo environment is searched

automatically to uncover potential link anchors, and potential anchors are distinguished by

the addition of dashed underlines to the corresponding text. By hovering with the mouse

pointer over these special links, a menu of choices appears that is dependent on the nature

of that specific anchor. The user is then directed to some other Web pages by selecting an

appropriate menu choice. A Boolean function determines whether or not each word

should be considered as an anchor. Then this information is fed into a menu-producing

function. The options of this menu (equivalents to associations) and the destination Web

page for each one are also either pre-computed or dynamically computed. An illustration of

the user interface is shown in Figure 5-1.

- 97 -

“Snap Shots” provides capabilities to preview a destination web page before the user

actually clicks on the link anchor. This works by showing a small window when the user

hovers the mouse cursor over the link anchor. Snapshot can be considered as an example

of using Ternary Links in the Web. From this thesis‟s point of view, the content of the

small preview window is in fact a visual association between the link anchor and the

destination page. A sample screen capture of Snap Shots is shown in Figure 5-2.

Figure 5-1: A sample Yahoo Shortcut screen capture

Figure 5-2: A sample Snap Shot screen capture

- 98 -

5.4 Discussion

The TRM-NAV offers a number of benefits as a navigational model. It supports

knowledge-orientation, and is an open approach because the links are abstracted from the

nodes. Link associations, as some independent information units, can participate in other

links as association, source or destination, facilitating the reuse of link structures. Link

associations are flexible, with their own structure and management, and bi-directional.

Potential problems with this model are that it increases complexity of the stored

information (because links are based on three rather than two elements), and backwards

compatibility is problematic (both in respect of the third element of links and in their bi-

directionality).

There are potential misunderstandings about the TRM-NAV that shall be addressed here.

The first is the misconception that a TRM‟s triple of (x,a,y) can be decomposed into two

BRM‟s couples of (x,a) and (a,y). It is possible to mistakenly conclude that the TRM-NAV

is nothing more than a reconfigured BRM. For example, it may be presumed that even if

links have explicit associations, the user first selects x as the source and goes to a as an

intermediate point, then selects a as the source and goes to y as destination. This view is

flawed because the decomposition is not retractable. Decomposing (x,a,y) into two couples

will lose the logical relation between x and y, which was the origination for establishing the

link. Formally, there will be no way to discovering the relation between x1 and y1 while

having a set of couples like {(x1,a),(x2,a),(a,y1),(a,y2)}.

Another issue is to ask the question that if the BRM can be extended to the TRM, may it

be extended to upper degrees like 4RM, 5RM, or higher? This is equivalent to ask why a

link must only have one internal attribute that is considered as association. The reason for

this is that the link association should not be viewed as an attribute of the link or link set,

and in fact this is the reason that an association is not necessarily a synonym for “link

type”. Instead, it is a node that contains all of the informational content for expressing a

relation between two other nodes.

- 99 -

5.5 An Implemented Demonstration

Although Ternary Linking is a general method and hence may be implemented in a variety

of different situations, it will be illustrated here by using a simple Ternary Link

implementation.

A hypertext system is designed that uses explicit Ternary Links for navigation, where the

central tenet is to add some Ternary Links to the existing web pages using an abstracted

ternary linkbases. In principle, Ternary Links could be added by a wide variety of

mechanisms - encompassing both human authoring and link computation.

Each linkbase consists of a set of facts expressed as triples. Thus an existing Web page may

be enriched when viewed in different contexts, by applying different Ternary Links that

may come from different domains. The user interface consists of a drop-down menu

containing hyperlinked items that appears when a user hovers the mouse cursor over the

link anchor. The system allows the user to follow links in the binary mode as well, by

simply clicking on them as usual. Although the idea of adding semantically rich links in this

way is not in itself new, here links that are based upon ternary facts are being added.

The system uses the following technologies: 1) MySQL to manage the information about

the nodes and the Ternary Links, 2) PHP to access the MySQL database and to modify the

existing web pages, and 3) JavaScript and CSS to manage the new user interface of the

added links. The programming codes are listed in Appendix C.

The designated PHP script receives a URL as a parameter and utilises this to produce the

modified web page. The system searches the body text for any occurrence of the

“description” field of the “Node” table, and then for each found node it searches the

“Link” table for any matches in “source” or “destination” fields. The “direct association”

field for each matched “source” and the “reverse association” field for each matched

“destination” will be found in the “Node” table - their URLs will produce items of the

drop-down menu for the candidate nodes.

- 100 -

5.5.1 An Example

Supposing there are web pages describing physical concepts for:

Atom(http://www.myweb.com/atom.html),

Electron(http://www.myweb.com/electron.html),

Proton(http://www.myweb.com/proton.html),

Neutron(http://www.myweb.com/neutron.html),

Excitation(http://www.myweb.com/excitation.html).

The author of these web pages wishes to express these physical facts “through user‟s

navigation”:

1- Atom includes protons and electrons.

2- Electrons are able to excite atoms.

3- Excitation produces energy

According to chapter 4, the TRM-Table is selected to represent the above information;

however, the TRM-XML can also be another choice. Figure 5-3 shows the TRM-Table

produced for the above facts.

Figure 5-3: the TRM-Table equivalent for Atom Page example

- 101 -

Using the id‟s specified in the TRM-Table, a TRM graph can be drawn to show the ternary

relations between the nodes. This is shown in Figure 5-6.

After executing the system, a sample screenshot of the produced Ternary-Links are shown

in Figure 5-5. This has also been demonstrated in http://cs.nott.ac.uk/~axp/trm.

Although this example is based on single-word concepts, the approach can be used for

building relations between more substantial items of information in a broader view. Also

Figure 5-4: the TRM graph of the Atom Webpage example

Figure 5-5: Screenshot of a prototype implementation of a Webpage with Ternary-Link

- 102 -

this approach can readily be extended to different linkbases, permitting the production of

different sets of Ternary Links on the same web page.

The importance of this example is that here, the TRM is not used to express statements

only, but the main purpose is to express the meanings of links between several web pages.

Also this example can clearly show why the TRM-NAV is different from the philosophy of

the Semantic Web. Here the TRM-NAV has targeted humans, not machines. Machines are

not interested to know about the sources, association and destination of links, because they

won‟t traverse links to know more. This is while the philosophy of the TRM-NAV is

transferring knowledge through navigation of links. For example, users will understand two

different relations between atom and electron by following two different links, in which the

only difference is in their association. The transferred knowledge is more than two short

statements described by the equivalent RDF triples. The flexibility of the link traversal, the

user choice to select the desired link destination, and the whole environment can totally

transfer the knowledge between the authors and the readers.

5.6 Ternary Links for Adaptive Hypermedia

In the previous section, Ternary Links were based on the Static-TRM. This section studies

the potentials of the Dynamic-TRM-NAV to be applied in Adaptive Hypermedia.

5.6.1 Adaptation through Ternary Links

Hypertext systems, as mediums of knowledge transfer between authors and readers, have

much potential for being adapted to the user‟s requirements in order to make this transfer

as effective as possible. The initial definitions of the Adaptive Hypermedia [39] was “All

hypermedia systems which reflect some features of the user in the user model and apply

this model to adapt various visible aspects of the system to the user”. Also the technologies

of this adaptation have been divided to “Adaptive presentation” and “Adaptive

navigation”. The navigational adaptation part is also typically divided to various methods

which are mostly about the visual alterations: Direct guidance, sorting of links, hiding (or

disabling) of links, annotation of links and map adaptation [39]. Later a new group of

methods called “Adaptive Link Generation” has been added to the above categorization

[37]. The nearest methods to the focus of this thesis are “direct guidance” and “link

generation”. The first method is altering the destination of a link in general, however this

method has been mostly exemplified by “guiding” links (like next/previous buttons) [34].

- 103 -

The second method creates new and un-authored link (as opposed to pre-authored links)

depending on the user‟s characteristics [38].

What a dynamic link model may do is about altering any of the two or three elements of a

link. It may identify the potent source nodes and associate other nodes to that source. The

system may show the same link anchor to two users, but the first user will be taken to a

different destination than the second one. For example, a link on a house icon may take

the buyer to the house buying page and the seller to the house selling page. In this case, the

associated problem in the binary links is that the semantic of the navigation is hidden from

the user unless he or she guesses the semantic after navigation, which may cause user‟s

disorientation. Also, since both users may see the same visible interface and no visible clue

tells anything about the link semantics, this would be a bit different from the Adaptive

Hypermedia definition mentioned above.

Using TRM-NAV, the link adaptation can be applied on all three elements of the link,

which may show a new horizon in the field of Adaptive Hypermedia. Because each

Ternary Link includes not only source and destination, but also the association between

these two, they help users to explicitly identify the semantic relation embedded in each

adapted link. As an implementation, ternary linkbases can be used to add the required links

to an established hypertext after being processed in the user‟s context.

5.6.2 The System Structure

A hypertext adaptation system is proposed here, which works using existing hypertext

documents. A ternary semantic linkbase is used to discover potential anchors, which may

form the originating point of the new links. New Ternary Links, based on the linkbase and

user identification, are then computed and are finally added to the existing hypertext,

together with the necessary software support to implement these new kinds of links. This

process is summarised in Figure 5-6.

All the available semantic Ternary Links, which are stored in a linkbase, can be filtered

depending upon the user's specification and context, and be computed and added to the

set of pre-existing links in a hypertext document. The Ternary Links in the resulting

document may be traversed using an embedded software.

- 104 -

5.6.3 An Example

As an example, an online real estate photo browsing system is considered. In addition to

customers that need to explore the available houses, the users of the system may include

agents and administrative staff. Each of these groups may need to access to a different

class of information about properties. The information has also been arranged as semantic

triples (in RDF). For example, statements such as “property x is owned by y” or “property

x is in area z” has been stored in the system as some triples like (x, owned by, y) , (x, in area,

z).

A pre-existing web page has been designed that contains the property photos. The source

of the links will be computed to be the photo of a property, and the association together

with the available link destination, will be displayed whenever the mouse pointer is over a

specific photo. In this way, the structure of available links originating from the current

object is made accessible to the user. The semantic relations between the source and the

destination will be made apparent before the link is traversed.

Figure 5-6: The mechanism of personalizing using added Ternary-Links.

- 105 -

Adaptation is implemented by the capability of making different computed Ternary Links

for different users. For example the user may see links depending upon whether they are a

customer (Figure 5-7-a), an agent (Figure 5-7-b) or an administrator (Figure 5-7-c).

Figure 5-7(a) shows the personalized sample hypertext for user of the “customer” group.

Figure 5-7(b) shows the personalized sample hypertext for a user of the “admin” group. In

this case for example, the available Ternary Links include only those which are related to

the administrative tasks. Finally Figure 5-7(c) shows the personalized sample hypertext for

a user of the “agent” group.

(a) (b)

 (c)

Figure 5-7: A sample Ternary-Links example with 3 personalized looks

- 106 -

5.7 The TRM-NAV and the Semantic Web

The Semantic Web [27] is a related approach and has been described briefly in section 2.6.

The RDF data model and language [154] is a mechanism for the representation of facts as

semantic triples, and as such it is eminently suitable for use as a linkbase layer for Ternary

Link adaptation. In this case the "Ternary Semantic Linkbase" may be replaced by an

"RDF repository", and then Ternary Link adaptation could be extended to make use of the

wide range of semantic resources which are under construction by the Semantic Web

community. However, RDF is only one of the possible approaches in establishing such

semantic triples and the TRM-NAV provides more possible configurations of those

semantic triples (such as dynamic and bi-directional triples) which are not possible in RDF.

When comparing the Semantic Web with the TRM-NAV, it is noticeable that the Semantic

Web expresses facts, but not necessarily through the links. The fact that RDF uses triples

does not immediately show how the system does in term of linking. There are a few

approaches to provide navigational functionalities to the user on top of the Semantic Web

repositories, like the Semantic Web Browsers [69], the Semantic Web User Interaction [66,

165] and integrating the Semantic Web with COHSE (section 2.4.5) in [89]. TRM-NAV

may be used in modelling the navigational functionalities of such systems, but not the

Semantic Web as a whole.

An important noticeable point is that the ultimate goal of the Semantic Web is to provide

machine-readable media, while the Ternary Links are intended to be traversable by

humans. While many approaches try to convert human-readable facts into machine-

readable data in RDF (like [89]), using RDF for knowledge-oriented hyperlinks implies re-

converting such data to human-readable fashion (like in [51]), which can consequently

cause conversion overloads or a possible accumulation of conversion errors.

This has been partly shown in the example of section 5.5. That example shows a main

difference between the goal of the TRM and the philosophy of the Semantic Web: the

TRM-NAV uses navigation to provide some meanings to the users, while the links of the

Semantic Web is designed to be used by machines.

There are other fundamental issues in comparing RDF with TRM-NAV which will be

studied in the following sub-sections.

- 107 -

5.7.1 The Challenge of RDF’s Self-descriptivism

Recalling from section 2.6.1, the most important primitive concepts of RDF

elements/RDFS are resource, class and property. A reason of this importance is that RDF

elements and RDFS are intended to be self-descriptive without need to any external

metadata. RDF elements/RDFS are description frameworks, which consequently wish to

describe themselves in the same way that they describe anything else [14]. This fact is

reducible to the description of RDF‟s three primitives by themselves. Another interesting

reason for focusing on them is for mapping them to the TRM, while everything in the

TRM is a node (say, a resource) of the same type.

According to RDF specifications1;

1- Everything is an instance of class:Resource (the class of everything).

2- Every class is an instance of class:Class (the class of all classes)

3- class:Class is a subclass of class:Resources. (because instances of class:Class are „things‟

so they are instances of class:Resource)

4- class:Resource and class:Class are instances of class:Class, since they are classes.

So, class:Resource is an instance of class:Class and class:Class is a subclass of class:Resource. Also

class:Class is an instance of itself (or class:Class is of type class:Class). It seems that these two

statements are the most simplified self-descriptive loop of RDF. However, the meaning of

“is-an-instance-of” (or equally, “is-of-type”) and “is-subclass-of” are not described yet.

To clarify those terms, RDF specification says:

1- A property is a resource that relates a resource to another resource.

2- class:Property is a class of all properties. It is a subclass of class:Resource.

3- type is a special property (or equally; a special instance of class:Property) which relates

a resource to a class.

1 Extracted from these web addresses of w3.org website: http://www.w3.org/1999/02/22-rdf-syntax-ns,

http://www.w3.org/2000/01/rdf-schema and http://www.w3.org/2002/07/owl

- 108 -

4- subClassOf is another special Property which relates a class to another class.

So, another self-descriptive loop is the fact that: type is of “type” Property.

The mentioned confusing loops are not necessarily disadvantages of RDF. The fact is that

in a description framework, there must be some basic concepts that are either described by

external metadata, or be left undescribed, or described by themselves. RDF has selected

the third solution.

Figure 5-8: Class hierarchy and instances relationship in RDF [14]

Figure 5-8 shows the resulted graph. The main circular facts in the above graph are that 1)

the meaning of arrows are defined by some of the circles; and 2) the arrows are making

loops between class:Resource and class:Class.

As will be shown, the TRM avoids the complexity of self-description by 1) keeping its

architecture simple and 2) relying on the external descriptions for its primitives.

5.7.2 Basic Limitations of RDF

At the first look, the properties (instances of class:Property) are for being used as predicates,

and for many of the properties it is almost pointless to be used as object or subject of other

statements. For example “is-Taught-by” is a property but there is no point to say

something about this term, like “is-Taught-by is …”, but a property can have other

properties, like domain and range (in this example, the domain is class:Course and the range is

class:Lecturer) and this means that a statement about a property has been built in which a

property is used as a subject (in the example, a statement is “is-Taught-by has domain of

Course”). For many other terms, it is reasonable to make real-life statements about a

class:

Resource

class:

Class

class:

Property

type

SubClassOf

Subclass-of

Is-of-Type

- 109 -

property. For example, the term “phone” can be used either as a predicate to say “The

phone of Tim‟s office is 14231” or as object to say “Tim likes his phone”.

This shows that there are also many cases when a single resource is used as a predicate,

object, or subject in different statements. But in RDF, although not restricted formally,

properties are specialized to be predicate: “Properties are special kind of resources; they

describe relations between resources” [14]. That is probably the main reason for the RDF

community to have different class definitions for the class:Property and class:Class. In this

way, multiple usage of a single resource as predicate, subject or object, means multiple-

inheritance from class:Property and some other classes, which seems pointless in RDF

context (although valid).

If the example of “phone” is studied again, it becomes clear that in fact, “his-phone-

number-is” is the main term of the predicate in the first statement, and “phone” is the

object of the second one. Also one can build another statement using “is-phone-number-

of” as predicate. This fact was a motivation point for introducing the TRM concept of bi-

directionality, in which a single node can have different look, depends on being predicate,

object or subject. This is while in RDF, “phone”, “his-phone-number-is” and “is-phone-

number-of” are three different resources, because RDF resources have a single look.

Moreover, there is no RDF-layer mechanism to relate these three resources to each other.

A strict RDF rule says that in such triples, the predicate must be a property [14], which

means that one of the three resources in each triple must be an instance of class:Property.

Since class:Property is a subclass of class:Resource, there will be members of class:Resource who

are not qualified to participate in triples as the predicate. Since class:Resource has other

subclasses like class:Property, class:Class and class:Literal, those unqualified resources can be a

class, an instance of a class or a literal value.

class:Property is not documented in RDF specification as disjoint with any other class. This

means that to overcome the mentioned limitation, any other resource must be re-

instantiated as a property when it necessarily wishes to be a predicate of a statement.

However, this implies the excessive complexity of multiple-inheritance in the OO model of

information. Also there may be some restrictions on re-defining class membership for

existing objects, at least for certain classes of users.

- 110 -

A main difference between class:Class and class:Property is that instances of class:Class are

themselves class, meaning that they can have instances, while instances of class:Property

cannot necessarily be instantiated. A property, by definition, is “A specified aspect,

characteristic, attribute or relation used to describe a resource” [105]. A property is

sufficient to be a predicate of a statement. For classes, one usually makes statements about

instances of some class, not about classes themselves. For example, “Lecturer” and

“Course” are classes and “is-Taught-by” is a property. It is not needed to say that “Course

is taught by Lecturer” as an RDF statement (because this concept has been already

expressed in the domain and range of the is-Taught-by property in RDFS); rather it is

much more sensible to say that “Tim is a lecturer” and “Java is a course” and that “Java is

taught by Tim” as RDF statements.

5.7.3 OWL vs. TRM in Bi-directionality

Among OWL elements, inverseOf is similar to the TRM‟s bi-directionality. In this

mechanism, a property is described to be the inverse of another property. In the TRM also,

bi-directionality has been defined and it uses the internal data structure of each node to

describe its bi-directional reuse potential and behaviour. Here are the differences:

1- The inverse-property mechanism is working on the ontology layer and not on data

model layer; while the TRM-NAV‟s bi-directionality mechanism is built in the data

model layer. In RDF-OWL model, two resources that have been already defined in

a lower layer can be defined to have a reverse-of property against each other in an

upper layer.

2- In the Semantic Web, two different resources must be defined so that they can be

participants of inverse-property; while in the TRM-NAV a single node contains the

required information. A node has two different looks when participating in a

relation in two directions, as well as a third look when participating as a source or a

destination.

3- In the Semantic Web, only a special class of resources (properties) can have

inverses, while in the TRM-NAV each node can have bidirectional behaviour.

Having an inverse in the TRM-NAV doesn‟t depend on the allocated role of a

node in statements, while in the Semantic Web, it does.

- 111 -

For example, the following OWL lines can express the “reverse-of” relationship between

two resources (“teaches” and “is-taught-by”) that have been already defined in RDF:

<owl:ObjectProperty rdf:ID="teaches">

 <owl:inverseOf rdf:resource="#isTaughtBy"/>

</owl:ObjectProperty>

In TRM-XML instead, a node defines two associative meanings together when defining a

single node of “teaching”, as follows:

<node>

 <id>thisNodeID</id>

 < desc>Teaching</desc>

 <da>teaches</da>

 <ra>is Taught by</ra>

<node>

5.7.4 Interchangeablity between RDF-XML and the TRM-XML

Both the TRM-DB (chapter 4) and RDF can be written in XML. Two main questions can

be answered here which can end up with an important conclusion: If some information has

been already described by RDF-XML, can it be described by the TRM-XML? What about

the opposite direction?

TRM-DB is able to describe any data described in RDF (including RDF schema). A

general statement about joining three elements of “thisSubject”, “thisPredicate” and

“thisObject” in RDF-XML and the TRM-XML has been shown in Table 5-1. It shows

that from RDF to the TRM, no information has been missed through the conversion.

Table 5-1: Comparing similar expressions in RDF/XML and the TRM-XML

R
D

F
/

X
M

L
 <…defining the predicate element as rdf:Property…>

<rdf:description rdf:about=”thisSubject”>

 <thisPredicate>thisObject</thisPredicate>

</rdf:description>

- 112 -

T
R

M
-X

M
L

<…defining three nodes for thisSubject, thisPredicate, thisObject…>

<node><id>thisRelationID</id>

 < src>thisSubjectID>/src>

 <asc>thisPredicateID></asc>

 <dst>thisObjectID</dst>

</node>

In Table 5-1, there are three main differences or missing points in converting from the

TRM to RDF:

1- The statement itself has an identity in the TRM-XML (called thisRelation), but this is

not necessarily a resource in RDF-XML.

2- In RDF, thisPredicate must be defined (or re-defined) previously as rdf:Property,

otherwise the RDF statement is not valid.

3- The TRM relations contains the reverse meanings (through attributes of da and ra

while defining the node of thisPredicate), as well as a link to the abstract meaning of

thisPredicate, but RDF doesn‟t.

As a conclusion, the TRM can describe RDF-described data, but RDF cannot describe the

TRM-described data completely.

- 113 -

5.7.5 Conclusion: RDF vs. the TRM

As a conclusion, Table 5-2 summarizes the similarities and the differences between the

TRM and RDF both in theory and in application.

Table 5-2: Summary of comparison between the TRM and RDF

Theory

Issue RDF TRM

Abstracted Layer (Figure 3-4) Information Model Fundamental Model

Association as the third
element of a relation

Yes Yes

Treating associations as nodes Not always possible,
generally not applicable

Yes

Treating relations as nodes Not always Yes

Bi-directionality of associations No Yes

Theoretic Support for
functional and dynamic links

No Yes

Complexity 15 elements (RDF)
+15 elements (RDFS)

Class hierarchy &
Possible multiple-
inheritance

Self-descriptivism

1 element
+8 attributes

No class hierarchy

No Self-descriptivism

Application

Issue RDF TRM

General description framework Yes, for writing
statements

Yes, for building relations

Readability For machines For humans

Applicable for global scale Claimed, Many
arguments

Not claimed

Providing data model for
AI/ontology purposes

Claimed, Many
arguments

Not claimed

A framework for knowledge-
oriented hypertext

No Yes

Also is has been concluded that the TRM-DB can describe any RDF-described

information but not vice-versa, and that RDF is based on a subset of the Static-TRM

which is directed to satisfy the Semantic Web goals.

- 114 -

5.8 An Abstract Study on the Functional Links

In this section the concept of the functional links will be described in more details and

various implications of their existence in BRM, TRM and possibly RDF will be compared.

The main meter in this comparison is the concept of “Turing Completeness” and its recent

extensions.

5.8.1 An Introduction to Turing Completeness

Alan Turing in 1950 showed that a modelled machine, called Turing Machine, is a formal

representation of Algorithms, i.e. it has all the necessary power for doing computational

procedures [176]. In fact any computational model for doing Algorithms are reducible to

his machine, and that the Turing Machine is the most general model of computing. Turing

Machine is a very abstracted machine that works on a “tape” as its input and output. The

tape contains series of “cells” and each cell may store a “symbol” of an “alphabet”

associated with the machine (like 0 and 1 in the binary alphabet, etc.). At any time

sequence, the machine can push the tape forward or backward by one cell, and the

machine can read that cell or write on it. The state and the action which the machine

performs at any sequence of time is a function of its previous state and the input.

Later in 1956, the Turing Machine was proposed to be the equivalent machine to represent

the highest class of programming languages in the Noam Chomsky‟s Hierarchy [53], which

can process phrase-structure grammars and recursively enumerable statements.

“Turing Completeness” is often used for the ability of a system to posses as much

expressive power as a Turing Machine, i.e., every computable procedure by Turing

Machine to be computable by that system. That system can be –but not limited to- a

computational model or a programming or query language. Because of the known

expressive power of Turing Machine, the Turing Completeness is often used to analyze the

power of an arbitrary system [94].

5.8.2 Functional Linking in the BRM, the TRM and RDF

The BRM was motivated by but is by no means only useful to hypertext navigation. It is in

fact a general classification of representations of binary relations regardless of their

application or visualisation. Hypertext systems can obviously benefit from the analysis

within the BRM as it can clearly delineate the limitations and advantages of some

implementations and show how those limitations and advantages arise.

- 115 -

Moreau and Hall [123] discussed the power of various hypertext systems in terms of the

Chomsky Hierarchy ([53]), and concluded that implementing hypertext linking in the BRM

framework is Turing-complete, as long as it is implemented with the “pE” representation

of relations, mentioning that “linking is as powerful as computing”. Their conclusion was

that “simple links, generic links and some adaptive links all give hypertext systems the

power of finite state automata. The history mechanism confers to them the power of

pushdown automata, whereas the general functional links give them Turing completeness”.

Interestingly, this most powerful representation of a binary relation itself had roots in the

modelling of software and verification. The pE, or predicate-Expression, form of a

function was how Mili represented binary relations of pre- and post-process states [118].

Namely, the binary relation was not necessarily expressing a semantic relationship but

could just as easily express a process. In this context, the Turing-completeness of the pE

representation is perfectly natural; as it expresses programs which themselves by definition

express anything that is computable.

So if a relation-managing system uses the pE representation of binary relations as its

underlying implementation model, it inherits this Turing-completeness, and can do

anything that is computable. This is where much of the real power of the Web arises,

despite its very basic linking model, because it has the means by which the pE

implementation of binary relations can be achieved, combining both process and hypertext

linking. Scripting within and of Web pages allows a programmable Web, and while the

Web‟s initial design was not calculated to have this capacity and may not be optimal, it has

been successfully grafted onto the existing Web and has much the appearance of a

carefully-designed and flexible open hypertext system [134].

Since pE can represent either process or semantic relationships, or indeed any other

requirement for a binary relation, there is scope to substitute it into any situation where

alternative representations of a binary relation are in use. The prime example that is

targeted in this thesis is RDF‟s use of enumeration to represent semantic relationships.

One feature missing from the BRM representations but present in RDF is the ability to

explicitly represent the names of relation incidences from one or more named relations –

the BRM representations are unable to incorporate this naming of the appropriate relation

or incidence, except implicitly. RDF‟s semantic advantage is also compromised by the same

constraints as those present in the BRM‟s enumeration of incidences representation, this

- 116 -

latter being RDF‟s relation representation, setting aside the semantics. These constraints

include its inability to represent infinite relations, its unsuitability for dynamic use, and its

proneness to error over a changeable set of relation elements (in the hypertext case, the

endpoints of links).

The Dynamic-TRM unifies the power of the pE representation with the explicit relation

naming/designation capability of RDF. Extending the BRM to the TRM exactly addresses

this by providing explicit naming/typing/semantic meaning of each binary relation and

hence to all binary relation incidences. As a result, a range of semantic relation

representations become available, and in particular a semantic pE representation which not

only has the highest level of power but which now also can explicitly designate what

relation is intended. Thus any relation or collection of relations represented with RDF can

be equally well represented with a semantic pE representation, and not lose any of the

information about the name/type/meaning of the relation. In fact, a semantic pE

representation can be used to determine the full enumeration of incidences for a given

relation which can subsequently be stored as RDF triples.

The application of this outcome in implementations of the enumeration of incidences

representation is evident. RDF is equivalent to the enumeration of incidences

representation of relations in the TRM, with the explicit naming/typing/meaning of the

relation present in every relation incidence. Yet RDF is not “powerful” as such, being a

data representation, not a programming mechanism. However the step from data

representation to programming mechanism is conceptually very simple and consists merely

of implementing a different relation representation. The work of this thesis shows how

simple it is to incorporate Turing-completeness, perhaps not into RDF as it is at present,

but into a marginally modified RDF. If nothing else, the use of an extended pE relation

representation can simplify the creation and management of RDF triples within the current

infrastructure.

The pE representation has fewer constraints than those representations incorporating

enumeration. However it is not able to guarantee “backwards” linking, i.e. bidirectional

linking, but otherwise is able to answer the navigational questions within a greater range of

scenarios and contexts than other representations.

- 117 -

Moreau and Hall‟s work [123] thus indicates a significant difference between different

relation representations. Enumeration of relations is essentially a data structure. The pE

representation renders relations as processes. These processes can always be reduced to

data structures by fully evaluating all possible relation incidences, which may be desirable

for pragmatic purposes such as performance [22]. However the converse is not necessarily

true, as it is not always possible to fix on the “true” processes giving rise to a set of relation

incidences.

The benefits arising from referencing relation elements on a “call by nature” basis rather

than “call by name” are observable. Including participants in a relation by name ensures

that they remain in the relation, regardless of whether subsequent activity renders them

irrelevant, and at the same time it means that other elements that might become eligible for

inclusion due to meeting requisite conditions are however not included by default. There is

no inherent inclusion or exclusion, based on meeting relevant criteria, so that for those

relations which were created with criteria-based selection processes, the actual management

of selection occurs outside the relation representation.

By contrast, describing participants in a relation by explicitly prescribing the selection

process in the representation greatly simplifies the management of the relation. Eligible

participants come and go from the relation as appropriate, and it is possible to extract small

sub-relations on criteria-based selection as well, so that the entire relation never need be

fully manifested. This is discussed further in section 5.

5.8.3 A Turing Completeness Analysis

Having introduced the semantic component to relations has benefits for many hypertext

systems. For example, the functional linking (pE) in [179] which was found to be “as

powerful as computing” in [123] maps into the TRM-NAV as a “pfE” representation, so

that now there will be “semantic functional linking” with transparent semantics to assist

users in link choice. It still however retains its Turing-completeness, its ability to operate

over infinite data, its ability to select out subsets of the relation incidences without full

computation, and still retains the ability to translate into any of the enumerated

representations.

pfE is a general case when an unadvertised source of a link can be filtered by the p()

function, then the available associations are computed by knowing the source, and finally

the available destinations are computed by knowing the source and the nominated

- 118 -

associations. By analogy to the BRM and using the same arguments as in [123], pfE can

support theoretical satisfaction of Turing completeness. The proof is extensible because

the BRM is a special case of the TRM-NAV where the association is fixed. Thus a

hypertext system that implements pfE linking is Turing-complete, which it inherits from

pE linking.

It is evident that the semantic enumeration of incidence representation from the TRM is

equivalent to RDF. RDF stores triples in the <from-element, name/type, to-element>

format which exactly corresponds to the TRM enumeration of incidences in the form of

{(x1, R, y1), (x2, R, y2), ..., (xn, R, yn)}. What this means is that it is now possible to analyse the

relative strengths and weaknesses of RDF and consider possible alternative relation

representations which could achieve the same aims plus more.

Hypertext links are often directly analogous to RDF triples in terms of their creation and

maintenance, and in fact often hypertext links are used to represent a semantic relation. It

is found here that all the challenges of creating and maintaining relation participants,

whether links or triples, are the same, and that the analysis of hypertext linking in [19] is

directly applicable to RDF. The relevant issues include:

1- Creation: making new links/triples easily without too much human input especially

on large data collections;

2- Soundness [173]: all links/triples are semantically consistent, no false positives;

3- Correctness: maintaining technical accuracy of links/triples in the context of volatility

within the underlying data collection. (i.e. error 404 occurrences);

4- Calculated relations: being able to define relations without creating them in full allows

the calculation of a required ternary link. For example, any measuring system that

uses the real numbers cannot be calculated in full, so that relations such as

“distance-to” must be discretised in an enumerated representation, but could be

more accurately represented with a computation.

5- Targeted subsets: selecting a small but relevant subset of relation incidences without

computing the entire relation.

- 119 -

A central premise of this study is that RDF may be viewed as one of the representations

within the TRM. A consequence of this is that the TRM‟s pfE representation of semantic

relations could potentially be used as either an alternative or a supplement to RDF‟s triples.

At present, the generation and maintenance of triples is external to their use. By

considering pfE as a mechanism for representing ternary relations, the processing, i.e.,

creation and maintenance, of triples becomes inherent.

There are two immediately obvious amendments that could use pfE to enhance RDF, both

backwards-compatible with current RDF:

1- Automation: the minimalist solution is to build software to automatically create and

maintain triples in much the same way as links, with all the same considerations for

pre-computation of links. This is not actually doing anything to change the

Semantic Web softwares or the way triples are received and interpreted, although it

will change the way triples are created and perhaps included in documents.

2- Turing-complete RDF: to enable RDF to represent semantic relations in any of the

TRM forms, but most importantly to expand from having just simply enumerated

triples to having triples plus relations represented with pfE. This has the benefits of

enabling dynamic relation management so that triples can be created “on the fly”

and in response to the context.

The former option is essentially what occurs in those applications that use RDF as a

linkbase. The latter option requires a more radical alteration to RDF management software

which now must be able to invoke calculations and receive results. However, it is not so

far-fetched when the Web is considered to exactly do that at present, with servers calling

on external applications to perform calculations even in simple situations such as CGI and

PHP scripts.

5.8.4 Discussion

It is important that RDF be made Turing-complete. It has become much more than the

metadata language that it was originally conceived as, and is now the backbone of a

significant amount of Web development. Limitations in the power of RDF as it stands

now will limit future Web development.

- 120 -

RDF is essentially at the same stage that hypertext systems, including the Web, were in

during the early 1990s, where everything had to be explicitly named in order to be related.

Since then, hypertext systems and the Web have progressed beyond this with dynamic

computation of scripts which were in effect pE linking. Relations, in hypertext systems at

least, have become both process and data, depending on which of the relation

representations are used.

Now it is proposed here that it is time to do the same with the Semantic Web relations.

There is a previously-existing model of binary relations, the BRM, which analyses link

implementations as binary relations and diagnoses their strengths and weaknesses. If that

model is extended to incorporate the notion of explicit naming/meaning of relations into

the TRM-NAV, then it can be equally well applied to semantic relation management, such

as in the Semantic Web or in workflow management. The costs and benefits have been

studied within hypertext and are known [20], and all that remains is to map the procedures

onto RDF relations to gain the same benefits.

It is found that RDF maps exactly into one of the representations in the TRM-NAV. This

immediately suggests that the many benefits of alternative relation representations that

were found in hypertext management could beneficially be applied to semantic relation

management in the Semantic Web.

Considering then the management of semantic relations, there is clear benefit from

augmenting the forms of relation representations available to the Semantic Web

applications. Conceptually, this augmentation is very simple indeed, and consists of adding

another form of relation representation, the pfE representation, to the Semantic Web

applications. In fact, it need not even be directly added to existing applications, accessed by

many, but rather could follow the open hypertext systems model of publishing sets of

ready-made relations which anyone can use but are managed by the owner [45].

But at its most promising, the many benefits of the pfE representation include the ultimate

in flexibility – the ability to define relations as processes, not just as data. By enabling call-

by-nature relation management to supplement RDF‟s call-by-name relation management, a

criteria-based relation management is gained here, with many useful features.

Users frequently want to classify data according to the “nature” of data and thus allocate

them to relations on that basis. Algorithms that specify the selection of elements for

- 121 -

participation in a relation are obvious improvements over the manual creation of relations

in such cases. Such improvements include the automation of relation incidence creation,

with the attendant benefits of relation soundness (no false positives) and relation completeness

(no false negatives), as well as reducing human intervention.

As a result of this, every time new data is exposed to a relation‟s selection process, it can be

assessed for its eligibility automatically. Thus a user can define their own relations, based

on selection criteria relevant to their own purposes, and apply them to whatever data they

encounter. The example is section 5.3.1 could have different pfE relations for each user, so

that one user could have links from “Malaysia” but another could have links emanating

from family member names instead. Also, users often want to subsequently search for

relations or incidences from relations based on their “nature”. When the selection is

already a part of the process to make relation incidences, the process is simplified.

More importantly, it is possible to perform this selection as a dynamic process. This is

important not only because of avoiding unnecessary computation, but also because it gives

relation correctness. A relation or incidences calculated upon request will be correct at the

time of the request, more likely so than something that was correct at some earlier

calculation date [20].

Another benefit of the dynamic computation is that it bypasses the need to create or

manifest all of the incidences in the relation, yet the required instances are still available.

Dynamic computation using pfE enables this, with the predicate part of the computation

selecting out the relevant subset of relation incidence sources according to the appropriate

criteria. This creation of targeted subsets of relations can be useful whenever there is no

need to create all incidences in a relation just to access a subset of them. In particular this is

useful in a volatile data environment, where relation correctness potentially becomes an

issue as relation elements themselves change in terms of the selection criteria.

5.8.5 Section Conclusion

The BRM showed that binary relations can most usefully be represented with Mili's pE

representation, and Moreau and Hall concluded that hypertext systems which use the pE

representation as the basis for their linking (relation) activity are "as powerful as

computing", and thus are Turing-complete. Mili actually used the pE representation as a

means of expressing computer programs. Enumerated binary relation pairs however are

not as powerful, being merely a list of participating entities.

- 122 -

However the BRM, and hence the pE representation, does not explicitly represent the

name or meaning of the binary relation, this being only implicit in the definition of the

relation. In contrast, RDF explicitly names the relation to which each pair of entities

belongs.

RDF represents semantic relationships with triples, explicitly naming two participating

pairs of individual entities and the relationship which binds them. The enumeration of

related pairs within relations is however only one method amongst many for representing

relations, and not always the most efficient or viable.

The value of the TRM in the functional linking is firstly that RDF's triples can be

considered within a framework and compared to alternatives, such as the TRM version of

pE and the designated pfE. A system whose relations are represented with pfE is likewise

going to be Turing-complete. Secondly, if RDF can be equipped with a pfE representation

of relations, this would give far greater power and flexibility within the Semantic Web

applications. The management of RDF triples is reducible to the management of ternary

relations and manifests many of the same issues as are found with the management of

hypertext links.

The Semantic Web is in some respects in the same position as hypertext systems were

when only point-to-point linking was available. The problem at hand is essentially the same

– how to manage the creation and maintenance of large numbers of relations and relation

incidences over a changing, many-owner collection of information. There are differences in

the purpose and usage of those relations but this does not affect the technical challenges of

managing them. Casting relations into a model helps us to forget the superficial differences

in the use of relations, and to apply lessons learned from one relation-management

situation into another.

What was found from the management of hypertext links is that a conceptually simple

change in the way relations are represented can significantly alter the capability of hypertext

systems, in some cases translating what is in some representations nothing more than a

data structure into what becomes, in another representation, a process, and thereby gaining

all the advantages of programmability without sacrificing the ability to render those

processes back into data structures as needed. This can also be done with semantic

relations.

- 123 -

5.9 Summary

In this chapter, TRM-NAV has been introduced as an extension to the BRM in modelling

hypertext navigation. Also Ternary Links as a visual representation of this model has been

reviewed. The potential of the TRM-NAV in adaptive Hypermedia application and were

also discussed. As an extension of BRM, TRM-NAV inherits all of the beneficial

characteristics of BRM, particularly providing Turing Completeness for the built hypertext

systems. Moreover, the semantic functional links of TRM-NAV provides more knowledge-

orientation to the hypertext system than the functional links of the BRM. TRM has also

been compared with data model layer of the Semantic Web in this chapter.

- 124 -

C h a p t e r 6 -

6 TRM-WF: A NEW WORKFLOW DEFINITION MODEL

This chapter introduces a new model and notation for workflow modelling called “TRM-

WF” (TRM-WorkFlow). After revieweing the main related works on workflow modelling,

the next step is showing that the studied models and notations can be rewritten or reduced

to the TRM. Then the TRM-WF will include the TRM notations for workflow definition

and the method of storing workflow definitions in storage layers; e.g. in the TRM-DB

(chapter 4). As an instant result, the TRM-XML can be considered as a process definition

language. It will be shown that this model can provide simplicity, re-usability, bi-

directionality and dynamic characteristics to the modelled workflow.

6.1 Related Works on Workflow Modelling

In this section, the specifications of some known workflow models will be studied. These

related works include: Petri nets, Wf-nets, UML, BPMN, XPDL and YAWL. They are

models, languages and/or notations that are widely known and used in the workflow

community and are referenced by WFMC documentations [195]. In addition, the

Workflow Patterns will be introduced as a standard ruler for workflow modelling.

6.1.1 Petri Nets

The term of “Petri net” has been coined by Carl Adam Petri in his PhD thesis written in

1962 [146]. Petri net has both mathematical and graphical definitions and notations and the

formalization of Petri nets over the past decades makes it powerful for modelling and

analyzing processes. As will be shown, workflows are a subclass of Petri nets and this can

provide a mathematical support for analyzing workflows [146]. Unlike workflows, a Petri

- 125 -

net has a formal definition, so there is not any formal proof to the fact that Petri-nets can

explain all workflows in the world. Instead, using Petri-nets for workflows has been

inspired by practical experiences and it has been generally agreed in the workflow literature

that Petri net formalism is useful in the context of workflow management. In fact, only a

part of the workflow management, which is “control-flow”, can be modelled by Petri nets

[1, 3]

A Petri net in its static graphical definition is a “directed bipartite graph”. A bipartite graph

is a graph with two separated types of nodes while no edge can connect two nodes of the

same type [49]. For Petri nets, these two types of nodes are called “Places” and

“Transitions” and the directed connectors are called “Arcs”. The graphical notations of

them are circles for places and rectangles for transitions, so connections between two

places or between two transitions are not allowed. Arcs can exclusively connect places to

transitions or transitions to places. Petri net is a directed graph because the arcs have

explicit directions. Petri net graphical notations are listed in Table 6-1.

Table 6-1: Petri-net notations [146]

Element Description Notation

Place Placeholders for tokens, where they wait
for firing by transitions.

Transition An action that can transfer tokens from
input place(s) to output place(s)

Or

Arc A connection between places and
transitions or transition to places.

Tokens Each instance or case to be located in
places

In terms of dynamic characteristics, places of a Petri net may contain “Tokens” and these

tokens can move from one place to another through transitions. Tokens will be mapped

into workflow cases (or work items) later in this chapter. The “State” of a Petri net is

known by the placement of tokens inside the places of a Petri net in a certain time slot.

The process of passing a token between places through transitions is called “Firing” of that

transition. A transition can fire if it is “Enabled” which means that there is at least one

token at each of its input places. By firing, one token is removed from each input place and

- 126 -

one token is added to each output place. A sample firing process has been shown in Figure

6-1.

Formally [33, 34, 36], a Petri net is a tuple of (P,T,F,M(t),W,K) where:

- P is a set of places

- T is a set of Transitions, while PT=

- F is a set of arcs, while F (PT) (TP)

- M(t) is the state of Petri net at time t, a dynamic mapping from P to IN (IN is the set

of natural positive numbers)

- W is a set of arc weights, a static mapping from F to IN.

- And K is a set of place capacity restrictions, and a static mapping from P to IN.

The triple of (P, T, F) can completely express the graph of a Petri net in a static view. M(t)

represent the dynamic token distribution of the Petri net over the periods of time. W and

K are optional sets that add extra information over a Petri net basic definition to make it

functional in real-world conditions and they will not be covered anymore in this thesis.

More information can be found in [3, 67].

6.1.2 Wf-Nets

Although Petri net provides enough basis to explain workflows, but there is no guarantee

that every Petri net is equivalent to a workflow. For instance, workflows by nature must

have starting and ending places, and it cannot be an endless loop. Thus, workflow must

have a place with no entering arcs (a starting place) and another place with no outgoing

arcs (ending place). Also the routes from the starting node to the ending node must cover

all other nodes and there shouldn‟t be any isolated node in a workflow, i.e. nodes that

cannot be passed ever. These characteristics are not covered in the formal Petri net

definition. Instead, a Petri net that can define a workflow is called a Wf-net by Aalst in his

Figure 6-1: A sample Petri-net firing

- 127 -

different works [33, 34, 37-39] and has been used widely by workflow community (WFMC)

[195].

Wf-net by definition [3], is a Petri net with the following conditions:

i. There is only one source place that has no entering arc (source node)

ii. There is only one sink place that has no outgoing arc (sink node)

iii. Every other node is on a path from the source node to the sink node.

The above definition of Wf-nets can be rewritten mathematically as: A Petri net defined by

a triple of (P, T, F) is a Wf-net where:

 FixTxPi),(,

 FxoTxPo),(,

FoxxxxxxxxxxiTPxxxTPx nnnjin),(),,(),...,,(),,(),...,,(),,(,...,,, 121121

In the above mathematical definition, the first two conditions have not explicitly limited

the number of source nodes and sink nodes to be only one, however, the third condition

can do this job. This is because if there are two source nodes, then one of them must be in

a path from another to the sink node. Being in a path means having both entering and

outgoing arcs from and to this source node, which is impossible. The same reasoning can

be applied on the case of the sink node.

Moreover, being a Wf-net doesn‟t mean being a completely valid and working workflow.

There are other characteristics that make a Wf-net valid. For example, the above

definitions cannot test a given workflow against dynamic problems like endless loops or

dead-ends. Thanks to the formal definitions of Petri nets and Wf-nets, these dynamic

characteristics can be analyzed mathematically on a given workflow. The validity of

workflows and properties like soundness, free-choice, well-structured and boundedness is

not covered in this thesis and more information on them can be found in [3].

- 128 -

6.1.3 UML Activity Diagram

The Unified Modelling Language (UML) includes a set of standardized modelling

languages and notations in the field of software engineering, system engineering and

business process modelling [103]. UML is a developing standard initiated by Object

Management Group (OMG) [191] and the last version at the time of writing this thesis is

UML 2.1.1 [139]. One of the graphical notations in UML is the “Activity Diagram” which

is known to model any type of “flows”. In fact, what is known as “Flow Chart” in many

different fields of science and engineering has been standardized as UML Activity

Diagram. Because workflows are widely expressed graphically as flow charts, UML Activity

Diagram can be used in workflow modelling [70, 148].

In defining workflow definition in UML Activity Diagram [3, 70], the diagram is divided

into some “Swimlanes” (shown as vertical lanes), each representing a “role” in the

workflow. In each swimlane, there are some “Activities” (shown as rounded rectangles) to

represent the workflow tasks to do, some “Branches” (shown as diamonds) to represent

the decisions, and “Synchronizations” (shown as thick horizontal bars) that can be either a

“Fork” (splitting point) or “Join” (merging point). Arrows can connect any two thing either

being activity, decision or synchronization from and to any swimlane. Starting and ending

points are also shown as circles. In addition to control flow, the Activity Diagram can also

denote the object-flow, which is not essential in a workflow definition. A sample workflow

has been shown in UML Activity Diagram in Figure 6-2.

Figure 6-2: A sample UML Activity Diagram used to define a workflow

- 129 -

There is an important relation between UML Activity Diagram and Petri nets: Every

workflow described in the UML Activity Diagram has a Petri net equivalent [3]. The

mathematical proof of this fact is out of the scope of this thesis but the result will be used

later to integrate different modelling approaches.

6.1.4 BPMN

BPMN (Business Process Modelling Notation) [190, 197] is another graphical notation to

define workflows. The development of BPMN has been started by BPMI (Business

Process Modelling Initiative) [189] in 2004 and then continued by OMG (Object

Management Group) [191] after two organizations merged in 2005 [189]. BPMN has been

widely supported in the documentations released by WFMC (WorkFlow Management

Coalition) [195]. The final adoption of BMPN 1.0 specification (2006) can be found in

[138].

Unlike UML and Petri nets, BPMN is specially directed to support workflow technology

by providing standard diagrams. BPMN diagrams look like common flow charts but with

added special notations to support parallel processing, joins, etc. According to BPMN

specifications [138, 197], the basic categories of elements in BPMN are summarized in

Table 6-2. A sample workflow represented in BPMN has been shown in Figure 6-3.

Figure 6-3: A sample workflow represented in BPMN

- 130 -

Table 6-2: BPMN notations [138, 197]

Category Element Note Notation

Flow
Objects

Event Things that happens in the real world and
affect the process of workflow, including
start and end of a workflow.

Activity A task that must be done in each stage of a
workflow.

Gateway Used to control decisions, merges and splits
of the flow. Varieties include “Exclusive”,
“Inclusive”, “Complex” and “Parallel”.

Connecting
Objects

Sequence
Flow

Shows the sequence order of Flow objects.
A hatch mark on the arrow specifies the
default route when different arrows come
out from a gateway.

Message
Flow

Used to show the flow of messages between
flow objects.

Association Used for associating any text, data or notes

to a flow object.

Swimlanes Pool Denotes the groups of participants of the
workflow

Horizontal
bars

Lane Denotes each participant divided lines
within pools

Artifacts Data Object Shows data forms/storages to be
filled/stored in each activity.

Group A subset of workflow that can be grouped

as a macro activity.

Annotation A placeholder for any text, data or notes to
be associated to a flow object.

For each element in Table 6-2, there are different varieties of graphical notation to show

different sub-types. For example, a gateway can be used for decision, parallel split, merge,

etc. which are not covered here for simplicity. The value of modelling with BPMN is its

coverage over many different notations in business process as a new standard (including

UML Activity Diagram introduced in 6.1.3). A list of those notations can be found in

[197].

- 131 -

6.1.4.1 XPDL

XPDL (XML Process Definition Language) is an XML-based language to define

workflows. It is a standards language of WFMC [195] and the specifications of the latest

version at the time of writing this thesis (XPDL 2.0) has been described in [196]. XPDL

does not provide a graphical notation and it has been developed so that each BPMN

diagram can have one XPDL equivalent XML listing and vice-versa. The XML elements

and attributes defined in XPDL are designed to represent graphical elements of BPMN

and that is how XPDL can “serialize” a BPMN graph. However, XPDL shows no global

acceptance as a formal basis of workflow specification [2].

6.1.4.2 YAWL

During the past decades many different languages with different graphical and textual

notations for workflow definitions have been developed (a review can be found in [137])

but the reason behind selecting YAWL here is in its theoretical background and the main

designer people. Will Van der Aalst is a known name in workflow community which has

done much theoretical work on workflow management systems (like [33, 34, 37-39, 50, 52-

59]). One of his main works is introducing the concept of “Workflow Patterns”. Workflow

Patterns are one of the main meters used to analyze the power of a workflow management

system: The more patterns to be supported, more powerful the system is [7, 99]. The

Workflow Patterns will be reviewed in more details in chapter 6. Although these patterns

can be represented by notations like UML Activity Diagram and BMPN [198], but Van der

Aalst and his team has specially developed YAWL (stands for Yet Another Workflow

Language) as the first language to comprehensively support all of those patterns in its

clearest way [50, 58, 59, 62]. YAWL is a set of graphical notations to define workflows and

its full description can be found in [4, 5]. An XML equivalent of YAWL has also been

developed but is not a core of documented YAWL and can be found in YAWL website

[192]. This website also includes how to represent all workflow patterns in YAWL

notation.

Table 6-3 contains the main YAWL notations.

- 132 -

Table 6-3: YAWL notations [192].

Element Note Notation

Atomic task A single task to be performed by a
human or an external application.

Condition A way to represent state for the process

(not to be confused with decision),
including start and end of the process.

Split task Used when the process is divided to
more than one route. AND-split for
sending the token to all of outputs, Or-
split for sending to any number of them,
and XOR-split to send it to only one of
the outputs. OR and XOR splits are
equivalent to decisions.

(AND)

(OR)

(XOR)

Join task Used when more than one routes are
going to merge. AND-join is activated
when all the input tasks has a token, OR-
join is activated when at least one of the
input tasks has a token and XOR-join is
activated when only one of the input
tasks has a token.

(AND)

(OR)

(XOR)

Composite task A container for another YAWL process
- with its own set of YAWL elements.

Multiple
instances of a
task

There exists the ability to express that
you wish to run multiple instances of a
task concurrently

6.2 Workflow Ternary Transitions

Recalling the ternary approach to the workflow modelling concepts (section 2.7.2) since the

purpose and decision factors motivating a transition between two states in a workflow was

not explicitly captured in a purely binary relation, workflow modelling needs to explicitly

include a third entity associated with every related pair of entities (source and destination),

namely the “association” which describes the decision factors behind the use or selection

of the transition. This third entity might seem functionally unnecessary, and indeed it could

be argued that the mechanics of a binary relation do not require any form of “typing” or

semantic justification in order to function correctly.

- 133 -

However, as found in hypertext systems, it is not just the computing agent involved in the

manifestation of links or processes, there is very often a second agent involved, namely the

human/users who select what the judge the most appropriate link or process from an

otherwise indiscriminated set of possibilities. That is, the third entity in the relation is a

discriminator that represents the purpose or other semantic characteristics of the

association between the other two entities.

The ability to transform data between representations means that existing models can be

represented and their functionality can potentially be upgraded. Relations or processes can

be represented either as named and explained pairings of states, or as computational

descriptions of participating states, with the computation describing the characteristics an

entity would possess to allow it to belong to the transition between states. The ability to

convert from one representation is a significant alteration, as it means the entities

participating can be treated both as data and as processes.

Applying the TRM to process modelling is thus backwards-compatible as well as forward-

looking. The workflow model which is based purely on the introduced TRM, called the

TRM-WF.

6.3 The TRM-WF Overview

A workflow system contains not only information about definition of a process, but also

provides user‟s non-linear navigation between its nodes. The navigation between nodes of

workflow is the ability of a system to guide the user to go from a node to another

depending on his/her decision on provided choices. Thus each navigation operation

consists of three parameters: source, decision and destination. This decision-based navigation

has three navigation elements as in the TRM, making it suitable to be built directly on top

of the Dynamic TRM.

The TRM-WF has many similarities to the TRM-NAV explained in the previous chapter

because workflow navigation has almost the same principles as knowledge-oriented

hypertext navigation, to hyperlink navigation, and the semantic functional links (pfE‟s) in

workflow context includes the following node selections:

- 134 -

1- Source Selection: The user selects the source node of the navigation, which is the

node where one of the current work cases must wait to be processed. This can be

equal to selecting the desired item in the user‟s to-do list.

2- Decision Selection (equal to the TRM‟s association): The user selects which type of

processing he/she wants to do on the current work case. Usually the decisions are

source-dependant, i.e. the user selects its decision from a list of available choices,

which are either predefined or computable to be available on the source node

(computed associations). However, there are possible source-independent

decisions, like suspension, cancellation or emergency jumps (enumerated

associations).

3- Destination Selection: The user and/or system determine the destination node(s). The

destination can be more than one node, like distribution of a task among the users.

If the user selects a source-dependant decision the system determines the

destinations (computed link destinations), otherwise the user selects the destination

explicitly (enumerated link destinations).

It is noticeable that the word decision is used here for multiple purposes. First, it can be a

normal decision taken by a user in a process; secondly it can be a description of task

completeness in a single output node; and thirdly it can be a real world condition in a

solution process. Generally speaking, decisions (associations of the TRM) and destinations

are both computed functions and the ternary relation model of workflows can be

expressed as R={(x,d,y) | some x S , d=f(x) ; y=g(x,d)}; where x is source, d is decision

and y is destination. Comparing this formulation to the Dynamic-TRM (section 3.1.2), it

can be seen that the Dynamic-TRM can cover a workflow definition.

The definition of a workflow system can also be realized by a hypertext system having

Ternary Linkbase(s). The nodes are processes that can be done on a work case and they

have been abstracted from the links, which are how users can pass the work case among

themselves. It is also possible to define multiple linkbases over a fixed set of nodes. In this

case it is actually multiple workflows definable in an organization (for business

applications) or multiple solutions definable for a specific problem (for solution processes).

- 135 -

Practically, each task is represented in a node (like a Web page) and some other nodes are

dedicated to the allowed decisions. Completing a decision task in this workflow system is

carried out by following a link between source (initial step) and destination (final step)

through that decision node. This has been illustrated in the TRM notation in Figure 6-4.

As an instant result, a dual meaning for each link provides some benefits. The reverse link

meaning in workflow is actually the reverse description of a decision -if applicable- which

particularly means giving up a task or withdrawal of a case.

Recalling the layered approach proposed in section 3.3, the TRM-WF is located on the top

layer of the information model. It means that the TRM-WF is based on the TRM and can

be written in alternative storage methods and languages including the TRM-XML. It also

means that the TRM-WF is not an application by itself but it can provide the basis for such

applications‟ design.

6.4 The TRM-WF Coverage over the Other Models

In section 6.1 a number of known related works on workflow modelling has been

reviewed. In this section the ability of the TRM to cover these related works will be

studied. The study is based on comparing the TRM graphical notation with other workflow

notations and the coverage of the TRM notation on the Workflow Patterns. Although it

will be shown that the TRM can represent many other notations, it is important to notice

that the TRM notation is not always recommended to be used instead of any other

notation. The provided notation is only to justify the coverage of the TRM as a general

framework over other related works.

Figure 6-4: A sample decision task and its TRM equivalent

- 136 -

6.4.1 The TRM-WF and Petri Nets

The TRM notation can represent a Petri net. Since Petri net has two static and dynamic

characteristics, the proof of the claim must be done in two sections. For static

characteristics, the TRM notation must be able to represent a static Petri net graph and for

dynamic characteristics, the TRM must have some solutions to represent the state of a

Petri net.

6.4.1.1 Static representation of Petri net

As studied in section 6.1.1, the graph of a Petri net consists of a number of places and

transitions while the arcs connect places to transitions or transitions to places. The fact that

two places can be connected through transitions is similar to the fact that two nodes in the

TRM can be connected via another node. As the first step to convert a Petri net to a TRM

graphical notation, all places and transitions of a Petri net can be replaced with the TRM

nodes. Then each two consequent arcs between two places (a place-transition arc plus a

transition-place arc) can be replaced with a TRM link that connects three nodes (two places

plus one intermediate transition). This can be illustrated in Figure 6-5.

Figure 6-5: Petri-net to TRM conversion sample

- 137 -

Recalling section 6.1.1, if a Petri net graph is a tuple of (P,T,F) then a TRM representation

of that Petri net graph is simply a set of N1 where:

N1=PTF’ and F’= {some triples (x,r,y) | (x,r) F and (r,y) F}

The above definition fits into the Static-TRM definition of section 3.1.1. An illustration of

this arrangement has been shown in Figure 6-6.

6.4.1.2 Dynamic representation of Petri net

As stated in section 6.1.1, the state of a Petri net is the number of tokens distributed

among places in at a certain time. Also it will be explained in section 6.4.7 the number of

tokens in each place is not enough to show the state of a Petri net completely. The state

can be considered as the list of tokens in each place at a certain time. This definition can

consequently give the number of tokens in each place as required by the first definition.

Since everything must be defined as some nodes in the TRM, a token is also a node that

can be located in a place (another node) using a relation through a special node of

“locating”. Changing the location of a token in the Petri net is equivalent to changing the

destination node of that relation in the TRM.

Formally, the TRM representation of the state of a Petri net is a set of N2 where:

N2(t)= KLR(t) and;

K=Set of tokens

L=A node of “Locating” with single member “l”

R(t)={some TRM triples (x,l,y) | xK , y P, x is located in P at time t}

Figure 6-6: Illustration of the Petr net including the token states

- 138 -

Finally, the set of N(t)= N1 N2(t) is a full TRM representation of the Petri net. (P and

N1 has been already defined in section 6.4.1.1)

The above definition is compatible with the Dynamic-TRM definition of section 3.1.2.

6.4.2 The TRM-WF and Wf-Nets

Since Wf-Net (section 6.1.2) is a special case of Petri net and the TRM can represent any

Petri net (section 6.4.1), then the TRM can represent any Wf-Net.

6.4.3 The TRM-WF and UML Activity Diagram

It has been mentioned in section 6.1.3 that every workflow described in an UML Activity

Diagram has a Petri net equivalent. Using the result of section 6.1.2 , the TRM is able to

represent any UML Activity Diagram. Moreover, the conversion from an UML Activity

Diagram and the TRM can be done by converting each labelled arc to a node crossed by a

connection.

An UML Activity Diagram also supports swimlanes in order to differentiate nodes by their

rules in the organization. The TRM representation of this can be done by having a node

for each swimlane. Then other nodes can be related to swimlane nodes via another special

node called “Belonging”. This has been illustrated in Figure 6-7.

6.4.4 The TRM-WF and BPMN

BPMN which is described in section 6.1.4 has similar core elements to the UML Activity

Diagram. The main differences are supporting Message Flow, Association, nested

swimlane and Artefacts (Data Objects and Groups). The TRM representation of an UML

Activity Diagram (section 6.4.3) is flexible enough to support these differences. For

Figure 6-7 A partial example of UML Activity Diagram and its TRM equivalent

- 139 -

message flow, different set of the TRM relations can be used. For Association, the TRM

has built-in association support and any node (including text, data, etc.) can be associated

to any other node. A Nested swimlane can be covered by having two sets of “Belonging”

relations: relations between Nodes and Lanes, and relations from Lanes to Pools. Also

Data Objects can be some TRM node, and they can be related to other nodes through

special nodes called “Fill” or “Store”. Finally, a subset of workflow that must be grouped

in BMPN can be adopted in the TRM by relating all nodes inside that subset to a node

representing that group. This relation can go via another special node called “Grouping”.

6.4.5 The TRM-WF and XPDL

The TRM can represent an XPDL (section 6.1.4.1) by two approaches. First, as described

in section 6.1.4.1, XPDL is a serialization of BPMN graph, so if the TRM can represent a

BMPN graph, then it has already represented XPDL. Secondly (as studied in section 4.1),

any XML listing (including XPDL) can be converted to the TRM.

6.4.6 The TRM-WF and YAWL

As described in section 6.1.4.2, YAWL is specifically designed to support the Workflow

Patterns. Because of this, instead of studying how the TRM can represent YAWL, the

coverage of the TRM over the Workflow Patterns will be studied in the next section.

6.4.7 The TRM-WF and the Workflow Patterns

In order to provide a conceptual basis for workflow technology, the Workflow Patterns

[38, 39, 57] have been introduced in 1999 by a joint effort initiated between Eindhoven

University of Technology (led by Wil van der Aalst) and Queensland University of

Technology (led by Arthur ter Hofstede) [201]. The Workflow Patterns are possible

situations in real workflows that need to be supported by elements of a workflow model,

or the potential capabilities that a workflow management system may have [198]. This can

be represented by single elements or notations or some combinations of them. Then the

power of a workflow model, language or notation can be measured by its ability to

represent those patterns. Such an evaluation has been shown in [201] to asses different

products and standards in the workflow community. This can be helpful in measuring the

power of the TRM-WF.

The Workflow Patterns have been introduced as 20 patterns in [7]. Recently the developers

of the Workflow Patterns have revised and categorized them into 4 different groups: 43

Control Flow Patterns in [160], 40 Data Patterns in [161], 43 Resource Patterns in [162]

- 140 -

and a tree of Exception Handling Patterns in [159]. The focus of this research will be on

the list of 20 Patterns in [7] which is now the main part of the Control Flow Patterns. The

study on the recent revised list of the Workflow Patterns is out of the scope of this

research. Those 20 patterns have been counted as 19 patterns in [192], 21 patterns in [198]

or 26 patterns in [6], but these differences are not essential and they can be mapped into 20

patterns of [7].

Table 6-4 lists 20 Workflow Patterns with their names and brief description and will be

used as reference for later use.

Table 6-4: The Workflow Patterns - Control Flow [198]

Category # Pattern Name Pattern Description

Basic Control-
Flow Patterns

1 Sequence Enabling a task after the completion of a
preceding task.

2 Parallel Split
(AND-split)

The divergence of a branch into two or
more parallel branches.

3 Synchronization
(AND-join)

The convergence of two or more branches
into a single subsequent branch such that
the subsequent branch is enabled when all
input branches have been enabled.

4 Exclusive Choice
(XOR-split)

The divergence of a branch into two or
more branches such that only one of the
outgoing branches can be enabled.

5 Simple Merge
(XOR-join)

The convergence of two or more branches
into a single branch such that an
enablement of an incoming branch is
enough to enabling the output.

Advanced
Branching and
Synchronization
Patterns

6 Multi-Choice (OR-
split)

The divergence of a branch into two or
more branches such that some of the
outgoing branches can be enabled.

7 Structured
Synchronizing
Merge (OR-join)

The convergence of two or more branches
(which diverged earlier in the process at a
uniquely identifiable point) into a single
branch such that the control is passed to
the output when each active input has been
enabled.

8 Multi-Merge The convergence of two or more branches
into a single branch such that enablement
of one or more input results enabling the
output.

9 Structured
Discriminator (1-
out-of-n join)

The convergence of two or more branches
into a single branch following an earlier
divergence. Enabling the output results
cancellation of other tokens produced in
the divergence point.

- 141 -

Iteration Pattern 10 Arbitrary Cycles The ability to represent cycles in a process
model that have more than one entry or
exit point.

Termination
Pattern

11 Implicit
Termination

A given process (or sub-process) instance
should terminate when there are no
remaining work items that are able to be
done.

Multiple Instance
Patterns

12 Multiple Instances
without
Synchronization

Within a given process instance, multiple
independent instances of a task can be
created.

13 Multiple Instances
with a Priori
Design-Time
Knowledge

Pattern 12 when the required number of
instances is known at design time and it is
necessary to synchronize the instances at
completion before any subsequent tasks
can be triggered.

14 Multiple Instances
with a Priori Run-
Time Knowledge

Pattern 12 when the required number of
instances may depend on a number of
runtime factors, including state data,
resource availability and inter-process
communications, but is known before the
task instances must be created. It is
necessary to synchronize the instances at
completion before any subsequent tasks
can be triggered.

15 Multiple Instances
without a Priori
Design-Time
Knowledge

Pattern 14 when the required number of
instances is not known until the final
instance has completed. At any time, whilst
instances are running, it is possible for
additional instances to be initiated.

State-Based
Patterns

16 Deferred Choice A point in a process where one of several
branches is chosen based on interaction
with the operating environment. After the
decision, other branches executions are
withdrawn.

17 Interleaved Parallel
Routing

A set of tasks has a partial ordering
defining the requirements with respect to
the order in which they must be executed.
Also no two tasks can be executed at the
same time

18 Milestone A task is only enabled when the case is in a
specific state (typically a parallel branch).

Cancellation
Patterns

19 Cancel Task An enabled task is withdrawn prior to it
commencing execution.

20 Cancel Case A complete process instance is removed
and recorded as unsuccessful case.

As an example, Figure 6-7 which contains a part of a flowchart, includes the Workflow

Patterns number 2 (AND-split) and number 4 (XOR-split).

- 142 -

The main tool for representing the Workflow Patterns in is an extension to Petri nets

called Coloured Petri net (CPN) [7]. CPN uses values (or colours) to differentiate tokens

travelling in a Petri net. The transitions fire independently for each valued (or coloured)

token based on the values associated to each token. In addition, it is allowed to put some

“pre-conditions” for each transition. A pre-condition specifies a logical condition over the

values of the tokens that makes a transition active if the relevant token exists in that

transition‟s input place(s) [3]. In this way, an extended Petri net notation is able to illustrate

the Workflow Patterns. It is also interestingly shown that BPMN and UML 2.0 Activity

Diagram can represent the Workflow Patterns [198]. Also as mentioned in the previous

section, YAWL is intentionally designed to support the Workflow Patterns. Finally the

TRM-WF is the next candidate to be measured by the Workflow Patterns.

Each of the 20 patterns has a Petri net equivalent [201] and also one or more UML

Activity Diagram equivalents [198]. Immediately it can be concluded that all that patterns

have a TRM equivalent as well. For a more sensible approach, the main focus can be on

the first 5 patterns which are named Basic Control Flow Patterns. These 5 patterns with

their Petri-net graph, their UML/Flowchart graphical notation, their YAWL equivalent

[192, 201] and the proposed TRM equivalent graph have been shown in the rest of this

section.

6.4.7.1 WFP #1: Sequence

Enabling a task after the completion of a preceding task; Figure 6-8.

Figure 6-8: WFP #1

- 143 -

6.4.7.2 WFP #2: Parallel Split (AND-split)

The divergence of a branch into two or more parallel branches; Figure 6-9.

6.4.7.3 WFP #3: synchronization (AND-join)

The convergence of two or more branches into a single subsequent branch such that the

subsequent branch is enabled when all input branches have been enabled; Figure 6-10.

Figure 6-9: WFP #2

Figure 6-10: WFP #3

- 144 -

6.4.7.4 WFP #4: exclusive choice (XOR-split)

The divergence of a branch into two or more branches such that only one of the outgoing

branches can be enabled; Figure 6-11.

6.4.7.5 WFP #5: simple merge (XOR-join)

The convergence of two or more branches into a single branch such that an enablement of

an incoming branch is enough to enabling the output; Figure 6-12.

Figure 6-11: WFP #4

Figure 6-12: WFP #5

- 145 -

6.5 Discussion

Through the comparison done in the previous section, simplicity can be seen as the main

advantage of the TRM-WF and the highlighted point is that everything is a “node” in the

TRM and complex workflows can be seen as a number of nodes in a TRM space. This is

while other notations may use multiple elements in the definition of the same workflow.

The disadvantage can be seen as increased complexity of the TRM-WF graph when the

workflow grows. This is because the TRM graph is mostly designed to illustrate the TRM

concepts, not to be practically implemented in real problems. A practical TRM-WF data is

usually too huge to be always represented as a graph. It is noticeable that the target of the

TRM-WF is to simplify the logic of the workflow modelling and not necessarily to simplify

its visual illustration.

Another important advantage of the TRM modelling is in re-using of the nodes. As

defined before, the TRM allows usage of a single node in several relations as source,

destination or association. This is while in other notations, there is no way of re-using an

activity in two different locations of the graph.

Finally, the bi-directionality of the TRM is another important distinction over other

standards. This advantage is unique to the TRM-WF and cannot be seen in any other

studied workflow models. If a relation can be read in two opposite ways, then the question

is what is the meaning of a workflow pattern when it is read reversely? The answer comes

from workflow management systems, when users need to roll-back an activity. If a user

wants to withdraw an already passed work case, the system must provide necessary roll-

back mechanisms. This functionality will help to have limited control on sent-items to

draw them back into ready-to-study cases. The reverse meaning of a pattern which is

provided by the TRM modelling can help the developers of a workflow management

system to make it more flexible in such conditions. The use of this feature is demonstrated

as two examples in the next section and the next chapter. Another example of the

developed system based on this functionality can be found in [151].

- 146 -

6.6 An Example

In this example, Figure 6-7 is recalled and the nodes are replaced by some real tasks: An

insurance company has two groups of users: The board and administration. After a claim is

received, the board considers it and decides whether to accept or reject the claim. If it is

accepted then the board does the necessary arrangement for its payments and the

administration will send a letter of acceptance to the claimant. If the claim is rejected, only

a rejection letter must be sent to the claimant. The UML Activity Diagram and its

equivalent TRM-WF graph are shown in Figure 6-13.

Here the usage of the TRM bi-directionality can be demonstrated. For example, the node

D2 has a description like “claim acceptance”. According to the TRM-WF principles, the

direct association of D2 is supposed to show “how” a claim is passed from node X to

node Y2, something like “the claim is accepted”. From the other direction, the reverse

association of D2 must show how a claim moves backward from Y2 to X, i.e. a description

of withdrawing a claim acceptance. So the reverse association should have some

description like “the claim acceptance is reconsidered”. The same thing can be realized for

the node D1. It is also noticeable that the application layer must be equipped to use the bi-

directionality features of the underlying workflow model to make this advantage practical.

The drawn TRM-WF equivalent of that sub-workflow can be written in TRM-XML. The

following TRM-XML listing is equivalent to the graph of Figure 6-13.

Figure 6-13: UML Activity Diagram and its TRM equivalent for the example of insurance claim

- 147 -

<?xml version="1.0" encoding="UTF-8"?>
<TRM xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="C:\Research\TRMXML\TRM.xsd">
<node><id>X</id>
 <desc>Considering the claim</desc>
</node>
<node><id>D1</id>
 <desc>Claim rejection</desc>
 <da> the claim is rejected</da>
 <ra> the claim rejection is reconsidered</ra>
</node>
<node ><id>D2</id>
 <desc>Claim acceptance</desc>
 <da> the claim is accepted</da>
 <ra> the claim acceptance is reconsidered</ra>
</node>
<node><id>Y1</id>
 <desc>Sending rejection letter to the claimant</desc>
</node>
<node><id>Y2</id>
 <desc>Payment procedure</desc>
</node>
<node><id>Y3</id>
 <desc>Sending acceptance letter to the claimant</desc>
</node>
<node><id>L1</id><desc>The board</desc></node>
<node><id>L2</id><desc>The administration</desc></node>
<node><id>B</id><desc>Belonging</desc></node>
<node><id>R1</id>
 <src>X</src><asc>D1</asc><dst>Y1</dst>
</node>
<node><id>R2</id>
 <src>X</src><asc>D2</asc><dst>Y2</dst>
</node>
<node><id>R3</id>
 <src>X</src><asc>D2</asc><dst>Y3</dst>
</node>
<node><id>R4</id>
 <src>X</src><asc>B</asc><dst>L1</dst>
</node>
<node><id>R5</id>
 <src>Y1</src><asc>B</asc><dst>L2</dst>
</node>
<node><id>R6</id>
 <src>Y2</src><asc>B</asc><dst>L1</dst>
</node>
<node><id>R7</id>
 <src>Y3</src><asc>B</asc><dst>L2</dst>
</node>
</TRM>

- 148 -

6.7 Summary

In this chapter the use of the TRM as an alternative representation of workflows and

processes is investigated. The proposed model called “TRM-WF” includes the TRM

notation adopted to describe workflows, and the storage layer method (like the TRM-

XML) as the language. The Petri net notation, and transitively UML‟s activity diagrams and

the Workflow Patterns have been reduced to the TRM-WF, and it has been concluded that

the TRM-WF can represent anything representable in these other models. Moreover, the

bi-directionality of the TRM-WF provides more functionality than the other uni-directional

models. The simplicity of the TRM-WF in terms of its logic has been compared to the

graphical complexity of the TRM-WF in large-sized data. Also the ability of the TRM-WF

to describe a modelled set of processes in its own serialised language (TRM-XML) has

been shown.

The future works in continuation of this new model and language can be in two different

directions: Theory and practice. In terms of theoretical works, the question is about the

generality of the TRM model and which other information models can be covered by the

TRM, and basically how beneficial is this coverage. In terms of practice, it is necessary to

investigate the efficiency of workflow management systems built on this theory. Although

the systems described in [151] have been designed based on the TRM theory, the TRM-

XML has not been used as the process description language yet.

- 149 -

C h a p t e r 7 -

7 TWM: A PRACTICAL WORKFLOW DEVELOPMENT

This chapter is dedicated to the development of an online workflow system based on the

TRM-WF model explained in the previous chapter. The system is called TWM: “Trm-Wf

Management system”. In addition to the basic workflow management features, the system

is specially designed to demonstrate some of the highlighted features of TRM like the bi-

directional and dynamic links, as will be seen later.

The system is designed to be online and web-based in order to avoid any device or

platform dependence, in addition to the accessibility reasons. The workflow definition is

stored based on the TRM-DB theory in a MySQL database; however, it could be

implemented in TRM-XML without any basic change. PHP scripting is used to build

HTML pages by accessing the MySQL data and JavaScript is used within the PHP and

HTML codes when necessary.

The system has a complete abstraction of workflow definition from execution. This means

that any workflow design issue has nothing to do with the coding and all must be applied

on the database part of the system. Once the database is fed by the correct workflow

definition data, the execution part can operate and provide the appropriate user interface.

TWM‟s main application is a commercial product that has been installed in several

organizations so far. Sections 7.2 describes the practical issues taken in the enterprise-level

development of TWM, including user-centred design and an experiment on the users‟

- 150 -

opinions to support the design. Before that, for demonstration purposes, a simplified

version of the system together with a workflow example is described in section 7.1. This

demonstration version is available online at http://cs.nott.ac.uk/~axp/workflow.

7.1 TWM Demonstration

Although the demonstration program does not have all of the features of the main version,

but it has enough features to support how TRM-WF can be used in designing a workflow

management system. The example business process is a customer technical support

workflow, namely in a computer service team. Although the example is a relatively simple

one, this simplicity is on the workflow definition level and there is nothing in the execution

level to stop dealing with the longer workflow definitions.

The involved users in this example are the reception, the helpdesk assistant and the

engineer. These three users deal with the technical fault reports from the customers.

Briefly, after a customer call, the call is registered by the reception and referred to the

helpdesk. The level of expertise of the helpdesk is enough to cover some elementary

problems or straight-forward calls, to prioritize the call as regular/urgent or to refer the call

to the engineer if more technical help is necessary. The helpdesk is available 24-hour but

the engineer is not, so prioritizing may help to refer the calls to the standby engineer in off-

hours only if the call is really urgent. The engineer firstly tries to fix the system by remote

means, and if the engineer attempt is not successful then a visiting appointment will be set

by the reception. In all of the above cases, the call must be referred to and closed by the

reception. The above process is illustrated in Figure 7-1.

The dotted line surrounding the “Time?” decision box is not a standard UML notation, but

it has been used in the domain of TRM-WF to represent dynamic or functional links.

Unlike the other man-made decisions, here the decision between being “business time” or

“off-time” is done by an internal system function, as simple as a program that checks the

current time. In a more complex example, this program can be a function of workflow

nodes or other environmental parameters, as explained in section 3.1.2.

- 151 -

In order to demonstrate the bi-directionality properties of TRM-WF, each relation defined

between two workflow boxes includes all the necessary information for the meaning of

forward or backward link. For example, not only the reception can refer a call to the

helpdesk with the result of “call registered”, but also the helpdesk can refer the same case

back to the reception notifying that “the call is not registered properly” or “call is returned

to re-register”, etc.

There are also some other TRM unique properties that are not applicable in TWM. For

instance, it is possible for a TRM node to be source of a relation and association of another

relation in the same time, but this concept cannot be mapped into workflow, at least at the

level of this example.

Figure 7-1: The activity diagram of the TWM example

- 152 -

7.1.1 The Information Structure

According to the TRM-Table theory (section 4.2), a single global-schema table must handle

all of the required information of workflow definition. Figure 7-2 shows the table which is

designed to represent the mentioned PC Service workflow and is stored in MySQL

database.

In this table, “ID” specifies the unique node identifier, “desc” shows the node‟s

description, “ra” and “da” define the direct and reverse association of the node, and three

fields of “src”, “asc” and “dst” are about expressing three element of a relation. According

to TWM, “U**” nodes represent the users, “N**” nodes describe workflow tasks (also

N00 for the virtual “outside” node), “R**” nodes define the relations between N nodes

(equivalent to the arrows in the diagram), and “B**” nodes are about the “belonging”

relation between N nodes to U nodes (or simply which task is done by which user). The

node “B” itself is the special relation of “belonging” which must be used as the association

Figure 7-2: Using TRM-DB to express the workflow definition of the PC Servive example

- 153 -

in “B**” nodes. Finally to represent the functional links, an exclamation mark followed by

the name of the function is written in the “desc” field. (like N12).

TRM-DB is used only for defining the workflow. TWM uses another table for the

execution of the workflow. The structure of this table is application-dependant and

according to the minimum requirements of TWM demo, the design of the execution table

is show in Figure 7-3.

In this table, each action (like passing a case between two nodes) is represented as a row

with a unique ActionId. CaseId specifies the passed case, NodeId determines which node

in the definition table (TRM-DB) is equivalent to this passage (normally R** nodes) and

“Reverse” is a yes/no field that specifies whether this passage is forward or backward

through NodeId. Finally the date and time of the passage is stored in the appropriate field.

7.1.2 The User Interface

The general look of the online user-interface of TMW is shown in Figure 7-4.

In this interface, a drop-down list identifies the user working with the system. Here for

simplicity, the authentication processes has been omitted. A user, like reception, can do

three main tasks: Starting up a case, controlling his/her inbox, or checking the history of a

case. The final option (workflow graph) shows the activity diagram of the workflow to the

user, a picture like Figure 7-1.

Figure 7-3:TWM execution table

Figure 7-4: General look of the TMW user interface

- 154 -

By selecting “Case Start-up”, the system will look at the workflow definition (table of

Figure 7-2) to identify the nodes that the current user is able to start a case. Here for the

reception user, the only start-up node is N02 (Registration). This can be done by executing

a SQL query that looks for the destinations of the relations starting from N00. Starting-up

may also mean creating a new workflow case, so the description (or identifier) of the

starting case must be entered.

A typical reception starting-up screen is like Figure 7-5. In this figure, the user by typing

“Case 1” and clicking on the “Call Registration” will start the workflow of that case.

By selecting “User Inbox” a table shows the list of tasks that are waiting to be processed by

the current user. For example, the Engineer may see Figure 7-6 as her/his inbox.

Figure 7-5: A sample of case start-up screen

- 155 -

Hyperlinks in the last two columns are doable tasks, including tasks to pass forward or

backward. The user may have zero to many rows in his/her inbox, for any row he/she may

also have some decisions to pass the case forward, and/or some decisions to pass the case

backward. The look of the link specifies the result of the action when it is clicked. So for

example if “Back to helpdesk for instant help” is selected by the Engineer, then the

Helpdesk will see that text in his “Previous Result” column. This screen has been specially

designed to show the practicality of the TRM theory by feeding this table from TRM-DB,

which includes all of the required information for the user‟s decision making.

By selecting “Case History” the user can see a list of all the actions done for a specified

case. For example, a sample case history may be like Figure 7-7.

Figure 7-6: A sample TWM Inbox for user "Engineer"

- 156 -

In this screen, left-to-right arrows mean passing forward and right-to-left arrows mean

passing backward. Also the look of each passage represents the TRM notation, i.e. a

relation starting from a source node, passing through an associative node, and terminating

in the destination node. Moreover, the text showed for the association node (surrounded

by brackets) is either the content of field “da” (for the forwarding passages) or the content

of field “ra” (for the backward ones). This screen has been also designed to demonstrate

the practicality of the TRM theory and notation.

7.2 The Enterprise-scale Development Experience

This section contains some of the major design considerations which have been

experienced through development of TWM for organizations and offices. These

considerations, which are raised from both theoretical and practical sides, include the

gathered requirements in a user-oriented iterative design, the implied changes in software

architecture to satisfy these requirements and the developers‟ experiences on how such

workflow systems can be easily adopted in typical office environments.

The enterprise edition of the TWM can support defining and executing multiple workflow

systems in an organization having various groups of users. The system has been tested to

support 100 active users on a single server; however the number of users is by no means

Figure 7-7: A sample Case History screen in TWM

- 157 -

limited to that unless the server or the database has such a limitation. As will be studied

later, having a user-centred design and managing to satisfy the theoretical and practical

requirements for developing a workflow system are the main highlights in developing the

TWM. Gathering the user‟s requirements before and in parallel with the development as

well as recollecting the users‟ feedbacks and iterating this cycle has been done through

verbal and written communications with the users in different stages of the development.

More specifically, feedback from 40 users about the desired functionalities of a workflow

system after using it has been compared with the initial requirements gathered before the

development. This comparison shows not only the essential users‟ requirements from a

workflow system, but also how some of the requirements can be changed through a cyclic

design.

7.2.1 The Usability Issues in WFMSs

Workflow management systems are one of the important enterprise applications. The

design of sustainable enterprise applications requires much focus on the usability issues.

Iterative and user-centred development methods are known approaches to make such

systems more user-friendly and sustainable. In these methods, users of the systems are not

only those who have ordered a system (like in the Waterfall Model of software engineering

[158]), but those who are highly involved in the designing processes. Iteration here means

that feedbacks from users about the designing software, as a whole or as a part, are used to

re-design the system. [23].

While there are hundreds of pre-designed workflow management systems being used, still

many organizations need customized workflow applications to be specially designed for

them concerning their special needs [194]. Here it is tried to show the implications of user‟s

requirements on the development of a workflow system through an iterative design and to

show how such a design may address these requirements. Also it will be shown that

experiences of developers may be used to predict functionalities that the invoice user may

not consider in the first stages but may wish for later.

It is observable in the workflow literature that researchers put mostly emphasis on the

theory of workflow modelling and most of the efforts are devoted to technical issues or

abstracted workflow modelling [52]. This is while users may have a different class of

concerns that may be missed in an isolated software design. Through development and

- 158 -

implementation of several real-world workflow systems, it has been concluded that a main

factor in making sustainable workflow systems is an optimal balance between technical and

practical sides of development [52]. This research tries to share the lesson learned when

such a balance is targeted.

Another point that has been observed in organizations during this research is the existence

of changes in users‟ expectations after deployment of workflow management systems. This

can be considered as a part of the organizational changes enabled by workflow systems

[163].

7.2.2 The Related Works

Beside the related theoretical works mentioned in sections 2.7, there are some other related

works that are focused on combining the theory with the practical side of the workflow

technology.

ADEPT [65] is a complementary framework that tries to cover more theoretical and

practical sides of workflow modelling by providing more possible concepts and actions in

such systems, like systematic addressing the pre-planned exceptions in order to adequately

capture real-world processes (e.g. forward and backward jumps), ad-hoc derivations from

the pre-modelled workflows, covering inter-workflow dependencies, advanced user

interface, and some trends to optimize enterprise-wide communications. Rollback is

another systematic concept that has been added to the workflow model, which has not

been completely covered by the classic models. Also ADEPT has been used as a basis in

other development research projects like AristaFlow [18].

Management of workflow systems while spreading them to enterprise-wide applications

can raise some other concerns in software architecture that again may not be fully

addressed in the classical models or in many commercial products [13, 42]. End-user access

tools, workflow modelling tools, workflow instant management and project planning tools

are different fields in the optimization of a workflow management system in order to make

the product more sustainable in such scales.

Different stakeholders in workflow community, i.e. academics, vendors, organizations and

users, can raise different expectation from a workflow management system. Through

synchronization of these stakeholders‟ expectations, some researches verify that the general

- 159 -

results meet data from the theoretical side [109], while interestingly some others mention

that the theoretical side of current workflow products are quite unprepared to meet the

practical users‟ demands [13].

This balance must be reassessed independently for each certain workflow application by

putting users at the centre of the design. This is why the development process of a

workflow management system (which is itself a workflow) is another subject of research.

Although a few works have been devoted on this area, a reference workflow application

development model introduced in [194] is built on real-world experiences. In this model,

the involvement of the empirical studies, gathering users‟ requirements, business process

modelling and workflow modelling into the design processes have been studied.

Although it is observed that the details of the user-desired functionalities or features are

not a matter of interest for the theoretical researchers, authors of [9] have shared some

detailed experiences in implementing a workflow management system. The studied features

in that work, which may consequently affect the design principles, include explicit process

definition tools, process enactment facilities, tracing tools, monitoring and reporting tools.

The lessons they learned in their experiences are close to the lessons learnt in this section.

The user‟s feedback on using the system was not uniformly enthusiastic in their research

and they experienced negative feelings when the users were presented with some electronic

versions of their previous paper forms. Another negative users‟ feedback mentioned in

their work is about the workflow definition tools when users need to redefine or modify

the workflow. This problem comes back to this fact that many workflow definition tools

or definition languages (like WPDL [195] or XRL [8]) may need a certain level of computer

knowledge, which normal users may not have. The later point can raise many usability

issues that may be addressed by introducing graphical or textual workflow definition tools.

In the field of textual tools, easy process description languages which are close to natural

languages (like in [149, 152]) can help users in these issues.

The encountered problems that developers of workflow systems have experienced are

almost same in nature. A comprehensive set of those problems has been reviewed in [194],

like isolation of technical from organizational aspects, development without prototyping,

unsuitable transfer of paper works to automatic processes and server performance issues in

the enterprise-wide applications.

- 160 -

7.2.3 Methodology

The method used in this research includes gathering initial users‟ requirements, using these

requirements in the software architecture design, and gathering users‟ feedbacks after

short-term and long-term operational phase. The development method follows the

iterative design, in which the users are highly and actively involved in a cyclic process to

test the system and share their views with the developers. The developers are also asked to

validate the implemented system from the users‟ perspective.

This method has been used in four offices of different types with different businesses:

1)TV production process in a TV program production organization. 2)Office works of a

government-affiliated charity to help homeless people 3)Business processes of a

multimedia advertisement company; and 4) Workflow of an international conference

management company.

A total number of 40 active users in those four businesses have been selected for

answering two similar questionnaires before and after using the system. The first set of

questionnaires has been answered by them before starting development and the second set

has been answered after having long-term (2 years) experience in using the developed

system. It is also noticeable that none of these users have any previous experience with a

real computerized workflow system.

The result of the experiment provides general guidelines and advices for future workflow

system developments. The answers to each question are focused almost separately and the

changes in number of different answers to each question can roughly lead to certain

conclusions. Thus the no statistical analysis is necessary.

7.2.4 Gathering Initial Requirements

In the initial step, general requirements of top users (or managers) are very important to be

gathered. Managers in this step are usually interested to replace their manual system with a

computerized workflow system, while having some true or false image about the

functionalities and benefits of such systems. These main requirements include:

1- They usually have set of graphical flowcharts that need to be fed into the new

system as the raw material of workflow definition. However, these flowcharts must

be re-engineered in many cases.

- 161 -

2- The system must be able to direct users to do what they are supposed to do,

regarding the workflow definition.

3- From a managerial point of view, the system must be able to show and trace

history of processes for each case, and to show the details of each user‟s actions to

certain classes of users.

The above general requirements have been studied in depth by the developers and system

designers to reach the detailed specification. After more discussions and brain-storming

sessions, some more specifications of the system have been shared between the developers

and the users, like:

1- The system must have enough flexibility to accept some frequent changes on the

workflow.

2- There may be several workflows in a single organization, with or without gateways

between them, while a single system is supposed to manage them together.

3- There may be several differences between the workflow designed for manual

system, and those who must be used in the computerized one.

4- There may be some data forms that the users are supposed to fill before passing

the work case to the next node.

5- The existence of a messaging system between users while passing the work case

seems necessary. This can also be classified as public or private messages.

6- If a user wants to withdraw an already passed work case, the system must provide

necessary mechanisms.

7- The workflow is defined to apply to roles (or jobs) of the users, not to users

themselves. Each user may have a different role in respect to each workflow case.

7.2.5 Functionalities and Implications

Based on the requirements described above, the main functionalities that need early design

concerns have been extracted as different „forms‟ in the system‟s user interface, as follows:

- 162 -

1- Ready-to-Study Cases Form: A form is needed to be designed that contains all of the

cases that the current user is supposed to do, i.e. those which are waiting to be

studied by the current user and passed to the next one. This will look like the

“inbox” folder in email clients. It also must contain the detailed information about

the previous study which has been done on the work case by another (or same)

user. For studying a case, the user may or may not fill a data form or message to

the next user. Also a confirmation about the next destination of the work case will

be shown to the user before passing the work case.

2- Sent-items Form: A form is needed to be designed that shows a part of sent-items

which are not passed to a third party. These items are exactly those which are able

to comeback to the ready-to-study cases form, if the user wishes to do so. There

may be repeated items with different destination, if the current user has passed a

work case through a distribution node. In these cases, drawing one of them back

means withdrawal of all of them, and having them in the ready-to-study case as a

single item.

3- History and Current-status Forms: These two forms must be designed, preferably

within a single user interface, to show where were and where are the moving work

cases in the defined workflow. This has more importance from a managerial point

of view to trace and investigate the stops and movements of the work cases. In

some cases, these two forms may show the move of work cases from a workflow

to another, if the system provides such inter-workflow jumps.

4- Workflow Definition/Change Interface: This form must provide the functionalities to

design, review, change and update the workflow definition by certain classes of

users. There are two possible methods about how to manipulate the workflow

definition: textual and graphical. In the textual mode, a workflow definition

language has been used. This has been called PDL (Process Definition Language)

and it is a very simple language, similar to the structured English and can be read

and understood by normal users. A parser converts the lines of PDL to a set of

SQL statements that can be used to define or change the data in the definition layer

of the database. More details on PDL and its implementation can be found in

[149].

- 163 -

5- Workflow-bypassing Form: For escaping from happening deadlocks, or for addressing

many practical issues that may happen in offices, some certain classes of users must

have access to this form, which is designed to bypass the defined workflow. It

provides the facility that the user can pass a work case from the current node to

some other node that the defined workflow doesn‟t allow directly. This may

practically include jumping over nodes, cancelling or taking a work case away from

a certain node or acting on behalf of another user.

6- Withdraw Form: As a part of exception handling, withdraw forms are necessary to

be designed. These forms will help to have limited control on sent-items to draw

them back into ready-to-study forms.

7.2.6 The System Architecture

Concerning the above features, the main items about the system architecture have been

concluded as:

1- The system is based on client-server architecture with a central database. The

centralized database has been selected considering the size and scope of the

workflows and organizations.

2- The information stored in database includes two abstract layers, named

“definition” and “execution” layers. This abstraction also complies with the

Workflow Management Coalition reference model [195] when two different

gateways are considered for definition and execution. “Definition” is the lower

layer which contains all information about the definition of a workflow, and

“execution” is the upper layer which contains all information about workflow cases

and all processes which have been done on each task by users through the defined

workflow in the lower layer. Although these two layers are dependant, this

abstraction gives the system more flexibility in terms of accepting the workflow

changes.

3- The required flexibility of the system in terms of accepting the frequent workflow

definition changes must consider keeping the execution layer information (which

may be based on old definition data) always safe, integrated, valid and usable. This

must be done by predicting database support to these changes.

- 164 -

4- The system may ask users to fill a data form associated to each node, when they

want to pass a work case from that node. This implies having sub-databases for

manipulating data in each data form. This also implies conjunction of the workflow

database with a document management system.

5- The method of converting drawn graphical flowcharts to the information stored in

the definition layer is an important stage. Some kinds of process engineering

expertise is needed in this conversion, since a complete understanding of the

organization and its process is necessary, as well as understanding the future plan

for computerizing the system. This implies graphical flow-charting tools and/or

special language parsers to joint to the whole system.

7.2.7 A Research on User’s Requirements

A number of 40 users from different organizations have been selected for this research and

they have been initially asked to answer a questionnaire. It is noticeable that none of these

users have a real experience with any computerized workflows before this research. This

has been done just before designing the general specifications. The research has been

repeated with the same questionnaire for 40 active users (including 3 replaced persons)

after 2 years from the first user trials. During these two years the system was operational

and had been used actively by these users.

The result has been summarized in Table 7-7-1 and Table 7-7-2.

- 165 -

Table 7-7-1: Results of a comparative research among 40 users (part 1).

Issue Options
Stage 1

(before)

Stage 2

(after)

1. How do you like

the workflow

system to limit the

users in their office

works

a. No restriction: Such systems are to

answer the informational requirements of

users, not to restrict them

14 5

b. Passive: Such systems must show the

users what to do, but not restrictive

15 12

c. Active: Such systems must limit the

users to do their office works in the right

direction

11 23

2. The desired

method for

withdrawal of a

work case after

being passed

a. Should be impossible 9 2

b. Users can always withdraw unwanted

passing

21 12

c. Users can withdraw unwanted passing

only if the next user hasn‟t passed it.

10 26

3. The interface for

the studied cases

(sent items) must:

a. Show all the sent items 15 13

b. Show those who are ready to study by

the next user

25 27

c. Highly restricted to special users 0 0

- 166 -

Table 7-7-2: Results of a comparative research among 40 users (part 2).

Issue Options Stage 1

(before)

Stage 2

(after)

4. Access to the history

of work cases‟ passing

a. Show all the history 15 21

b. Show what the current user has

done

22 14

c. Highly restricted to special users 3 5

5. Access to the

current status of work

cases

a. Show all the current stop points

for a work case

16 28

b. Show those who are for this user 19 4

c. Highly restricted to special users 5 8

6. Tools for workflow

definition and changes

a. Essential 5 26

b. Good 31 10

c. Redundant 4 4

7. Graphical tools for

workflow manipulation

a. Essential 12 8

b. Good 25 24

c. Redundant 3 8

8. Possibility of

workflow bypassing

c. Must be impossible 18 7

a. Highly restricted to special users 12 19

b. Must be available in some extent

to all users

10 14

- 167 -

7.2.8 Discussion and the Lessons learnt

1- Answers to question 1 about the desired level of general restrictive behaviour of

workflow systems shows how restrictions can be accepted and even increase user

satisfaction, when it is used in the right way. The point is that the general

understandings of the restrictive behaviours of the computer systems to the users

are shaped when the system limits them to do what they are supposed to, but in a

well-designed workflow system, this can be converted to satisfaction if they find

the system allowing them what they are supposed to do and denying them

otherwise.

2- The mechanism for withdrawal of the passed work case (question 2) are mostly

desired to be applicable in all situations, whether the next user has assed the work

case to a third party or not. This look has been moderated in the second stage.

People now mostly like to have withdrawal capabilities if the next user has not

passed the work case anywhere. This is partly because of practical problems that

might be caused by the free withdrawal method.

3- Answers to question 3 about “sent-items” folder are almost the same in both

stages. Users like to have a folder called “sent items” but they mostly like it to

contain the ready-to-study items, not all items. This is because they prefer to have

the choice of seeing the history of each work case using the history screen, but in

the sent-items screen they prefer to see the items which they can withdraw.

4- Answers to question 4 about the history page have changed over time. This shows

that users imagined that it is enough if they know what they themselves have done

in the past about a certain work case, but after experiencing the system, they feel

more interested to know all the history about it.

5- Similarly, the above conclusion can be said about answers to question 5 about the

current status of work cases.

6- Answers to question 6 about workflow definition tools show how important the

existence of these tools is. People in stage 1 had no clear idea about how frequent

the changes on the workflow definitions are, or may have thought that such

- 168 -

changes are easy to apply without specific tools. This view has been corrected in

the second stage.

7- Graphical tools for workflow manipulation (question 7) were an attractive idea for

users in stage 1, but not so much in stage 2. This shows that in a busy office, users

may have not enough time to use a graphical tool, or the textual information had

enough functionality for them.

8- The answers to question 8 about the possibility of bypassing work cases show

more restrictive views of users in stage 1 than in stage 2. This also can show that

the practical situation that they may have encountered in the past has guided them

to consider more flexibility of the system in terms of workflow bypassing, at least

for some certain classes of the users.

7.2.9 What does the experiment mean to the TRM

As introduced earlier, the experiment has been done to make a user‟s centred design, so

not all of the covered items are necessarily dealing with the technical issues of making the

system. Also the initial ideas of making the system had come from a TRM centric design.

As concluded in the previous chapter, the TRM provides the theoretical platform to add

two main features of “functional links” and “bi-directionality” to the classical workflow

systems.

Although user‟s cannot explicitly observe any TRM-aware issues neither in the

questionnaire nor in working with the system, but the results of the experiment has

interestingly support the TRM added values: Questions 1 and 8 require having the

functional links and question 2 requires having the bi-directionality features in the data

model layer of the developed system. These features are not necessarily impossible without

having an explicit TRM approach in design, but such an explicit approach can make the

development more robust and consistent.

7.2.10 Conclusion

Observing a gap between theoretical modelling and real-world practical problems, it was

tried in this section to make a balance between these two sides by more focus on the details

of the generally-desired workflow features. These experiences also shows how the users‟

requirements before and after using a system can be re-used in the iterative designing

- 169 -

stages and how the architecture of a system must obey them. The role of the developers in

predicting the future users‟ requirements has also been focused, so the users‟ wishes can

approach to the developers‟ ideas. Finally, this approach can give more operational

sustainability to a working management system.

7.3 Summary

This chapter studied the possibilities of practically applying TRM-WF model in developing

a workflow management system, TWM. For this purpose, two approaches have been

taken. First, through demonstrating a simple developed TWM, it has been shown how

TRM-WF can be used to design the structural information model, how the system can use

the information stored in the TRM-DB to manage the system, and build different user

interfaces. In the second approach the lessons learnt during the extension of the TWM in

an enterprise level has been shared, concluding that a balance between the theoretical and

user-oriented design must be present to make the system more sustainable.

- 170 -

 Chapter 8-

8 DISCUSSION

In this chapter, the TRM theory and practice developed in the previous chapters will be

revisited briefly to integrate all of this research. The TRM will be evaluated against the

stated objectives and aims, other work areas will be discussed, and the abstracted

fundamental underpinning the ternary nature of the TRM will be considered.

8.1 Revisiting the Objectives

According to the objectives of this research (section 1.3), the study method includes top-

down, formation and bottom-up steps. The top-down method was designed to collect all

the evidence and requirements for forming the targeted model, and the bottom-up used

the TRM to construct new information top models.

It is useful to revisit the progress of achieving the objectives as a whole. This progress has

been shown in Figure 8-1.

- 171 -

8.2 The Forming Ideas

The above top-down method has led to forming the TRM mainly in chapter 3, but the

ideas behind this formation have not been explicitly focused, because it was not possible to

do so until the end of the bottom-up method. Let us revisit the formation of the TRM by

another basic approach, which may help reaching some new conclusions.

What inspired the development of the TRM, as with most abstract models, was a

combination of evidence and requirements. The evidence was taken from the commonalities

between related works (chapter 2). This has made it apparent that there is usually an

extractable relativity between three nodes of data. This concept of “triples” is important

because these relationships require grouping into threes – neither more nor less. The

requirements originated from studying the differences between the related works and from

observing some real-life needs in the studied models. Studying the requirements was

important because it could make it clear that the TRM should have properties such as

simplicity, dynamicity, bi-directionality, flexibility, etc.

The optimality and the effectiveness of the TRM have been shown to be dependant on

both evidence and requirements, as illustrated in Figure 8-2.

Figure 8-1: The progress of the development of the TRM

- 172 -

This fact has been supported by the reviewed related works. For example, RDF [184] is an

absolute ternary-based model, but this is not enough according to the above approach. As

shown in chapter 5, RDF does not support functional links and is not as simple as a single

class hierarchy. Thus RDF was put on top of the TRM layer to be shown that it uses a

subset of the TRM as its fundamental information layer (the layered approach of section

3.3). Similarly, the BRM [19] is an absolute dynamic model that supports the functional

link, but it lacks the first issue, which is being ternary. The same analogy may be used for

ZigZag [129], which is ternary, but restrictive.

The TRM was deliberately formulated in a context-free environment to satisfy both the

evidence and the requirements (chapter 3). This means that the TRM was developed by

looking at what other models may have or may lack, not by looking at the requirements of

an individual application.

The union of the requirements has led the TRM to include the following properties:

1. Simplicity, particularly by the rule of “nothing but node”, to satisfy the analysis

requirements (section 3.1.1).

2. Dynamic links, bi-directionality and avoiding rigidity, to satisfy the practical

requirements (section 3.1.2).

Figure 8-2: The role of evidence and requirements in forming the TRM

- 173 -

8.3 Revisiting the Unification Aim

The first aim of this research mentioned in chapter 1 was to have a unification approach to

different related systems. As a conclusion, the TRM has been shown to be able to make a

general ternary node-link structure. More specifically the following unification facts were

justified in chapters 2 to 6:

1- Relational Databases [58] are shown to be simplified as linking data in some row-

data-column triples, thus it is a special case of the Static-TRM (section 4.1.1).

2- Different hyperlink models and methods (like Dexter Model [92], BRM [19],

HTML links [183], Spatial Hypertext [167], Process-oriented Model [35], WebML

[46], Structural Computing [135, 136], MMVP [17], Metalevel links [172], Trellis

Model [169], FOHM [64, 119] and XLink [185]) were shown to be reducible to

node-context-node, node-type-node, node-semantic-node etc. (section 2.4.6), all

are reducible into special cases of the Dynamic-TRM.

3- XML [185] is shown to be convertible to directed labelled graphs [175] (section

2.2), and consequently to some node-edge-node triples, having no dynamic

structure and bi-directionality, thus it again falls into a special case of the Static-

TRM (section 0).

4- RDF [184] is based on some object-predicate-subject triples, having a different

class hierarchy for each element and no dynamic structure, thus it falls into another

special case of the Static-TRM (section 5.7).

5- ZigZag [129] is shown to be reducible to some cell-dimension-cell triples having

fundamental ZigZag restriction of linear ranks, no dynamicity and bi-directional,

thus it is a special case of the Static TRM (section 0).

6- Different known workflow definition models, languages and notations (Petri net

[145], UML [70], BPMN [138], XPDL [196] and YAWL [4]) are shown to be

simplified as a set of task-action-task triples with possible dynamic characteristics,

but no task can be action and vice versa, thus it is another special case of the

Dynamic-TRM (section 6.4).

An overall summary comparing the TRM with the related work is shown in Table 8-1.

- 174 -

Table 8-1: The summary of comparing TRM with the related works

8.4 Revisiting the Construction Aim

Although the TRM design was done in a context-free environment, fortunately this

isolation was not long-lasting and soon the TRM showed its practicality in two ways: It

could interconnect the disparate paradigms, and it could be used as a construction kit. The

interconnections have been shown to be either known -but not yet formulated- ones like

an XML to RDB gateway, or hidden like a Workflow to ZigZag gateway.

Looking at the TRM as a construction kit, i.e. to build new systems directly on top of the

TRM as it is, not as restricted by other paradigms, has shown that:

1. By eliminating the associated schema, the TRM was used to develop the TRM-DB,

a new schemaless database framework, addressing many flexibility requirements in

expressing real-life information (chapter 4).

2. By introducing dynamic ternary links, the TRM was used to build a new general

hyperlink model called TRM-NAV, which can be used in different classes of

hypertext systems (chapter 5).

3. By introducing TRM-WF, the TRM was shown to be able to define bi-directional

and dynamic workflows saving all of the benefits of the classical approaches. As

evidence, TWM, a workflow management system based on TRM-WF, was a

demonstration of managing simple to complex workflows (chapter 6).

 Ternary
relations

Definition
Simplicity

Structure
flexibility

Bi-
directionality

Dynamic
links

RDB implicit low no yes No

XML implicit medium yes no No

BRM no high yes yes Yes

Classical HT
links

no to
implicit

high yes no No

Adaptive/open
HT links

implicit high yes possible Yes

RDF explicit medium yes no No

ZigZag implicit medium yes no No

Classical WF implicit low yes no No

TRM explicit high yes yes Yes

- 175 -

8.5 Other Work Areas

The idea of having a construction kit is a motivation point to find other candidates to be

explained in the TRM framework. Also more new link-layer gateways between the known

systems can be analyzed or revealed as the future work. The TRM‟s static and dynamic

definition may also be altered or enriched by more elements to be more extendable than

the studied works. The areas of such future work are as follows:

1. More Developments on the dynamic side of the TRM: A dynamic TRM-DB, The

potential of ZigZag to handle functional links. The Dynamic-TRM may be used to

model the link structure of adaptive hypermedia.

2. Building real and practical database management systems on top of the TRM-DB,

applying and testing the introduced query method, testing and improvement of the

efficiency.

3. Practical development of a generalized hypertext linking engine, to manage the

linking structure of a hypertext system. It can be based on top of the Web, or being

completely independent.

4. In terms of the workflow technology, this thesis has not provided a full

comparison between the TRM-WF based workflow systems and the current

commercial workflow products. This comparison and how the TRM can cover

and/or help improve each system can be considered as a future work.

5. Some new candidates in computer science can be considered for studying in the

TRM framework. If they can be explained by the TRM then it may be a new

starting point to discover gateways to connect them to other systems and to

analyze or define them in a new way. If they cannot be explained by the TRM, then

that may be another starting point to extend the theory of the TRM. Areas like

Neural Networks and Route Planning in artificial intelligence have a node-link

structure, so they may be considered.

- 176 -

8.6 Why Ternary?

Having 3 elements was shown to be supported by “evidences” in chapter 2. It is now

questionable that is this fact just coincidently evidenced by reviewing some related works

or is there anything specific to the number of 3?

Recalling the data-information-knowledge pyramid described in chapter 1, it has been

shown that moving from data to information is equivalent to discovering the relations

between nodes of data (the term “relation” is again used as defined in chapter 1, not in the

context of RDBs).

Let us assume that the dimension of the information space is defined as the number of

data nodes participating in a relation. In a one-dimensional information space, no relation

can be established because the relation is meaningless for a single node.

In the 2-dimensional space, there will be relations to be discovered between couples of

nodes. In this case, each node can be either the start or the end of a relation. All one knows

about a relation is the “mechanics” of it, i.e. “how” it is established. Moving to the 3-

dimensional space, a middle node is added to the two ends for shaping a relation. While

two ends could be connected via any middle node, selecting a particular middle node must

have an intention or a meaning behind, so the middle node carries some semantics of the

relation (or the “why” of it).

In the 3-dimensions case, one may have a far better transition from data to information

than the 2-dimensions case, because the relations are richer. So the question will be, can

one go to a 4-dimensions information space in order to have an even richer structure? Why

not 4 or any other larger number?

What can the fourth element add to our understanding of a relation? Having two middle

nodes in a relation does not make any sense because they play the same role (being middle)

without any order to be distinguishable. Some other concepts like “weight” or “distance”

of a relation can all be merged on to the middle node. The only nodes that cannot be

merged on to the middle node are the two ends. Adding the forth node cannot change the

- 177 -

nature of a relation and it is observable that the only things that the forth (and upper

degree) node can add to the meaning of a relation is an unnecessary complexity1.

Selecting the 3-dimensional space can be considered as implementing the concept of

Parsimony in the information modelling. Parsimony is the general scientific tendency to

prefer simple solutions over complex ones when choosing between alternative hypothesise

[177]. Also when a solution is not enough to choose, it is always preferred to look for a

more general one rather a more specific one, as it can increase the resulted predictive

power [188].

Parsimony is often associated with Occam’s Razor which is attributed to William of Ockham

(1285–1349). The more accepted quote for Occam‟s Razor is: Pluralitas non est ponenda; or

you must not suppose than more things exist (than you have evidence for) [41]. Being reductionist is the

main message of Occam‟s Razor, something which was followed in the development of

the TRM.

Everything should be made as simple as possible, but not simpler.

This famous quote, which is attributed to Albert Einstein [199], adds a caveat about too

much simplicity with the use of Occam‟s Razor (so it has been dubbed as Einstein’s Razor

[102]). When this is applied to the case of the information space, it is observable that 1-

dimension is impossible, 2-dimensions is too simple for most purposes, 3-dimensions is

just enough for practical use; and any larger number of dimensions becomes too complex.

This is illustrated in Figure 8-3.

1 Interestingly, although ZigZag was initially designed to be multi-dimensional, it is reducible to a 3-dimensional form

(section 0). The multi-dimensional view is an unnecessary complexity in visualization.

Figure 8-3: Comparing 1, 2, 3 and 4 dimensions in information space – an implementation of Einstein‟s
Razor

- 178 -

Here is where the number of 3 plays its role in a very abstract observation on the topology

of a relation. It is possible to consider a very specific role for the number of 3 in the field

of information management, for which no other number will suffice.

If this is the case, then the role of 3 can be generalized to anywhere that the information

plays a role, and consequently conclude that the TRM –or a future variation of it- exists

wherever the information does.

8.7 Epilogue

The primary goal of this work has been to find a unified approach to modelling the atoms

of information. A proposed solution to this problem is the use of generalized triples of

data nodes. This generality provides a range of flexible features – it is simple to define and

has no associated schema and properties such as bi-directionality and dynamicity are

implicit.

The model that is at the heart of this work – the TRM – is a formal description of such

generalized triples in which 1) Each group of three ordered nodes can form a relation; 2)

Each relation is itself a node; 3) Relations are reversible – it being possible to traverse them

in either direction; and 4) The relations between nodes may be modified dynamically. This

approach has been shown to have sufficient flexibility to provide a common underpinning

to a number of widely used knowledge-based systems. It may also be used to design

implementations of various widely used information paradigms – including hypertext,

schemaless databases and workflow management systems.

One of the main values of the TRM is in making the third essential element of the links as

explicit as possible. Depending on the application, this value has shown itself in different

conceptual layers, from machine readable context (as in TRM-DB) to user‟s visualization

(as in the Ternary links of hypertext). However, it ultimately ensures that the benefits of

such a ternary approach are available on the user‟s level (as in the bi-directional workflows).

The TRM is entirely based upon the number three, and three was shown to be sufficient

for the information dimension. Three is an interesting number with special significance in

many areas of human endeavour – it seems to be fundamental to human thought. In

mathematics it is the first odd prime number, with many other unusual properties. In

many aspects of fundamental science, information is grouped into threes (e.g. the “words”

- 179 -

of biological encoding in DNA is based upon triplets). Over and over again, philosophical

and religious patterns are built out of “three pillars” and the number three has a special

significance in many cultures. A provocative possibility is that maybe three is indeed a

“magic number” because it plays an important – but hidden – role in the very fabric of

information.

 There have been some suggestions found in the development of the TRM that it is likely

to be extensible to other levels of the knowledge-hierarchy. Knowledge-oriented

hypermedia (section 2.4.1) supports the utilization of the TRM to model the knowledge

representation in hypermedia systems, and TRM-WF (chapter 6) is capable of supporting

the decision making process in workflows. An interesting and ambitious view is that

maybe the TRM truly is a unified theory of information. Maybe in the future it might be

possible to extend the initial problem considering the atoms of information to look at

atoms of knowledge, or maybe even atoms of wisdom.

- 180 -

Chapter 9-

9 BIBLIOGRAPHY

[1] W. M. P. v. d. Aalst, "The Application of Petri Nets to Workflow Management",
The Journal of Circuits, Systems and Computers, vol. 8, pp. 21-66, 1998.

[2] W. M. P. v. d. Aalst, L. Aldred, M. Dumas, and A. H. M. t. Hofstede, "Design
and Implementation of the Yawl System", Proceedings of The 16th International
Conference on Advanced Information Systems Engineering (CAISE' 04), Riga, Latvia,
2004.

[3] W. M. P. v. d. Aalst and K. v. Hee, Workflow Management: MIT Press, 2004.

[4] W. M. P. v. d. Aalst and A. H. M. t. Hofstede, "Yawl: Yet Another Workflow
Language", QUT Technical Report, FIT-TR-2002-06, Queensland University of
Technology, Brisbane, 2002.

[5] W. M. P. v. d. Aalst and A. H. M. t. Hofstede, "Yawl: Yet Another Workflow
Language (Revised Version)", QUT Technical report, FIT-TR-2003-04, Queensland
University of Technology, Brisbane, 2003.

[6] W. M. P. v. d. Aalst, A. H. M. t. Hofstede, B. Kiepuszewski, and A. P. Barros,
"Advanced Workflow Patterns", the 7th International Conference on
Cooperative Information Systems (CoopIS 2000), 2000.

[7] W. M. P. V. D. Aalst, A. H. M. T. Hofstede, B. Kiepuszewski, and A. P. Barros,
"Workflow Patterns", Distributed and Parallel Databases, vol. 14, pp. 5-51, 2003.

[8] W. M. P. v. d. Aalst, H. M. W. Verbeek, and A. Kumar, "Xrl/Woflan:
Verification of an Xml/Petri-Net Basedlanguage for Inter-Organizational
Workflows", in Proceedings of the 6th Informs Conference on Information Systems and
Technology (CIST-2001), 2001, pp. 30-45.

[9] K. R. Abbott and S. K. Sarin, "Experiences with Workflow Management: Issues
for the Next Generation", in Proceedings of the 1994 ACM Conference on Computer
Supported Cooperative Work. Chapel Hill, North Carolina, United States: ACM
Press, 1994.

[10] S. Abiteboul, P. Buneman, and D. Suciu, Data on the Web: From Relations to
Semistructured Data and Xml: Morgan Kaufmann Publishers Inc., 2000.

[11] R. L. Ackoff, "From Data to Wisdom", Journal of Applied Systems Analysis, vol. 16,
pp. 3-9, 1981.

[12] J. Allan, "Automatic Hypertext Link Typing", Proceedings of the seventh ACM
conference on Hypertext, Bethesda, USA, 1996.

- 181 -

[13] G. Alonso, D. Agrawal, A. E. Abbadi, and C. Mohan, "Functionality and
Limitations of Current Workflow Management Systems ", Submitted to IEEE
Expert, 1997.

[14] G. Antoniou and F. van-Harmelen, A Semantic Web Primer: the MIT Press, 2004.

[15] F. Arciniegas. "What Is Xlink?" Retrieved 15/08/2005, from
http://www.xml.com/lpt/a/2000/09/xlink/index.html, 2000.

[16] H. C. Arents and W. F. L. Bogaerts, "Information Structuring for Intelligent
Hypermedia: A Knowledge Engineering Approach", Proceedings of the 3rd
International Conference on Database and Expert Systems Applications,
Valencia, 1992.

[17] H. C. Arents and W. F. L. Bogaerts, "Towards an Architecture for Third-Order
Hypermedia Systems", Hypermedia, vol. 3, pp. 133-152, 1991.

[18] AristaFlow. "Next Generation Enterprise Process Management: Component-
Oriented Development of Adaptive Process-Oriented Enterprise Software."
Retrieved 10/2006, from http://www.aristaflow.de, 2006.

[19] H. Ashman, "Relations Modelling Sets of Hypermedia Links and Navigation",
The Computer Journal, vol. 43, pp. 345-363, 2000.

[20] H. Ashman, "Theory and Practice of Large-Scale Hypermedia Systems": PhD
Thesis, The Royal Melbourne Institute of Technology, Australia, 1997.

[21] H. Ashman, "What Is Hypermedia?" SIGWEB Newsletter, vol. 3, pp. 6-8, 1994.

[22] H. Ashman, A. Garrido, and H. O. Kukkonen, "Hand-Made and Computed
Links, Precomputed and Dynamic Links", Proceedings of Hypermedia -
Information Retrieval - Multimedia '97 (HIM '97), Dortmund, Germany, 1997.

[23] R. M. Baecker, D. Nastos, I. R. Posner, and K. L. Mawby, "The User-Centered
Iterative Design of Collaborative Writing Software", in Proceedings of the SIGCHI
conference on Human factors in computing systems. Amsterdam, The Netherlands: ACM
Press, 1993.

[24] T. Berners-Lee. "Notation 3 (N3)." Retrieved June 2006, from
http://www.w3.org/DesignIssues/Notation3, 1998.

[25] T. Berners-Lee, "Semantic Web Road Map", W3C Electronic Journal, vol. Sep.
1998, 1998.

[26] T. Berners-Lee, Weaving the Web, by Its Inventor: Texere LLC, 2000.

[27] T. Berners-Lee, J. Hendler, and O. Lassila, "The Semantic Web", Scientific
American, vol. 284, pp. 34-44, 2001.

[28] A. Bhaumik, D. Dixit, R. Galnares, A. Krishna, M. Tzagarakis, M. Vaitis, M.
Bieber, V. Oria, Q. Lu, F. Alljalad, and L. Zhan, "Towards Hypermedia Support
for Database Systems", Proceedings of the 34th Hawaiian International
Conference on System Sciences, Hawaii, 2001.

[29] M. Bieber. "Dynamic Hypermedia Engine (D.H.E)." CIS Department, New
Jersey Institute of Technology, Retrieved 15/08/2005, from
http://www.cis.njit.edu/~bieber/dhe-overview.html, 2000.

- 182 -

[30] M. Bieber, "Hypertext and Web Engineering", Proceedings of the ninth ACM
conference on Hypertext and hypermedia: links, objects, time and space-structure
in hypermedia systems, Pittsburgh, USA, 1998.

[31] M. Bieber, R. Galnares, and Q. Lu, "Web Engineering and Flexible Hypermedia",
Proceedings of the 2nd workshop on adaptive hypertext and hypermedia (HT'
98), Pittsburgh, USA, 1998.

[32] M. Bieber, F. Vitali, H. Ashman, V. Balasubramanian, and H. Oinas-Kukkonen,
"Fourth Generation Hypermedia: Some Missing Links for the World Wide Web",
International Journal of Human-Computer Studies, vol. 47, pp. 31-65, 1997.

[33] A. Borgida. "Storing X.M.L in a R.D.B.M.S." Lecture Notes, Department of
Computer Science, Rutgers University, Retrieved 15/08/2005, from
http://www.cs.rutgers.edu/~borgida/336/xml2db4.pdf, 2003.

[34] P. D. Bra, G.-J. Houben, and H. Wu, "A.H.A.M: A Dexter-Based Reference
Model for Adaptive Hypermedia", in Proceedings of the tenth ACM Conference on
Hypertext and hypermedia: returning to our diverse roots. Darmstadt, Germany: ACM,
1999.

[35] M. Brambilla, "Extending Hypertext Conceptual Models with Process-Oriented
Primitives", in Lecture Notes in Computer Science, vol. 2813: Springer
Berlin/Heidelberg, 2003, pp. 246-262.

[36] M. Brambilla, "Generation of Webml Web Application Models from Business
Process Specifications", in Proceedings of the 6th international conference on Web
engineering. Palo Alto, California, USA: ACM, 2006.

[37] P. Brusilovsky, "Adaptive Hypermedia ", User Modeling and User-Adapted Interaction,
vol. 11, pp. 87-110, 2001.

[38] P. Brusilovsky, "The Adaptive Web", LNCS, vol. 4321, pp. 263-290, 2007.

[39] P. Brusilovsky, "Methods and Techniques of Adaptive Hypermedia", User
Modeling and User-Adapted Interaction, vol. 6, pp. 87-129, 1996.

[40] S. Buckingham-Shum, "The Missing Link: Hypermedia Usability Research & the
Web", SIGCHI Bulletin, vol. 28, 1996.

[41] C. D. Burns, "Occam's Razor", Mind, New Series, vol. 24, pp. 592, 1915.

[42] C. Bussler, "Enterprise-Wide Workflow Management", IEEE Concurrency, vol. 7,
pp. 32-43, 1999.

[43] J. P. Carlisle, "A Look into the Relationship between Knowledge Management
and the Knowledge Hierarchies ", Proceeding of the 40th Annual Hawaii International
Conference on System Sciences, pp. 183a, 2007.

[44] L. Carr, W. Hall, S. Bechhofer, and C. Goble, "Conceptual Linking: Ontology-
Based Open Hypermedia", Proceedings of the 10th international conference on
World Wide Web, Hong Kong, 2001.

[45] L. Carr, D. D. Roure, W. Hall, and G. Hill, "The Distributed Link Service: A
Tool for Publishers, Authors and Readers", Proceedings of the 4th International
WWW Conference, Boston, USA, 1995.

- 183 -

[46] S. Ceri, P. Fraternali, and A. Bongio, "Web Modeling Language (Web M.L.): A
Modeling Language for Designing Web Sites", Computer Networks, vol. 33, pp.
137-157, 2000.

[47] P. E. Ceruzzi, A History of Modern Computing: MIT Press, 2003.

[48] D. Chamberlin, "Xquery: A Query Language for Xml", in Proceedings of the 2003
ACM SIGMOD international conference on Management of data. San Diego, California:
ACM, 2003.

[49] G. Chartrand, Introductory Graph Theory. New York: Dover, 1985.

[50] Y. M. S. Chen S.M., "Generating Fuzzy Rules from Relational Database Systems
for Estimating Null Values ", Cybernetics and Systems, vol. 28, pp. 695-723, 1997.

[51] X. Chen, D.-H. Kim, N. Nnadi, H. Shah, P. Shrivastava, M. Bieber, I. Im, and Y.-
F. Wu. "Integrating Web Systems through Linking." www2003.org, Retrieved
15/08/2005, from http://www2003.org/cdrom/papers/poster/p145/p145-
chen.htm, 2004.

[52] S. Choenni, R. Bakker, and W. Baets, "On the Evaluation of Workflow Systems

in Business Processes", Electronic Journal of Information Systems Evaluation,
2003.

[53] N. Chomsky, "Three Models for the Description of Language", IEEE
Transactions on Information Theory, vol. 2, pp. 113- 124, 1956.

[54] S. P. Christodoulou, G. D. Styliaras, and T. S. Papatheodrou, "Evaluation of
Hypermedia Application Development and Management Systems", Proceedings
of the ninth ACM conference on hypertext and hypermedia: links, objects, time
and space-structure in hypermedia systems, Pittsburgh, USA., 1998.

[55] E. F. Codd, "Extending the Database Relational Model to Capture More
Meaning", ACM Transaction on Database Systems, vol. 4, pp. 397-434, 1979.

[56] E. F. Codd, "Further Normalization of the Data Base Relational Model", IBM
Research Report, San Jose, California, vol. RJ909, 1971.

[57] E. F. Codd, "Relational Database: A Practical Foundation for Productivity",
Communications of ACM, vol. 25, pp. 109-117, 1982.

[58] E. F. Codd, "A Relational Model of Data for Large Shared Data Banks",
Communications of ACM, vol. 13, pp. 377-387, 1970.

[59] G. H. Collier, "Thoth-Ii: Hypertext with Explicit Semantics", in Proceeding of the
ACM conference on Hypertext. Chapel Hill, USA: ACM Press, 1987.

[60] J. H. D. Helic, H. Maurer, "An Analysis of Application of Business Process
Management Technology in E-Learning Systems, Technical Report", Institue for
Information Systems and Computer Media, Graz University of Technology,
Austria 2005.

[61] H. Darwen. "How to Handle Missing Information without Using Nulls,
Presentation in Warwick University." Retrieved 01/02/2009, from
http://www.dcs.warwick.ac.uk/~hugh/TTM/Missing-info-without-nulls.pdf,
2006.

[62] C. J. Date and H. Darwen, Databases, Types, and the Relational Model: The Third
Manifesto: Addison-Wesley, 2006.

- 184 -

[63] H. Davis, W. Hall, I. Heath, G. Hill, and R. Wilkins, "Towards an Integrated
Information Environment with Open Hypermedia Systems", in Proceedings of the
ACM conference on Hypertext. Milan, Italy: ACM, 1992.

[64] H. C. Davis, S. Reich, and D. E. Millard, "A Proposal for a Common
Navigational Hypertext Protocol", Technical Report, Department of Electronic
and Computer Science, The University of Southampton 1997.

[65] DBIS. "Adept - Next Generation Workflow Technology." Retrieved 10/2006,
from http://www.informatik.uni-ulm.de/dbis/, 2006.

[66] D. Degler, S. Henninger, and L. Battle, "Semantic Web Hci: Discussing Research
Implications", in CHI '07 extended abstracts on Human factors in computing systems. San
Jose, CA, USA: ACM, 2007.

[67] J. Desel and G. Juhas, "What Is Petri Net? Informal Answers for the Informed
Reader", in Lecture Notes in Computer Science, vol. 2128, H. Ehrig, Ed. Berlin:
Springer-Verlag, 2001, pp. 1-25.

[68] M. H. Diimitrios Georgakopoulos, Amit Sheth, "An Overview of Workflow
Management: From Process Modeling to Workflow Automation Infrastructure ",
Distributed and Parallel Databases, vol. 3, pp. 119-153, 1995.

[69] J. Domingue and M. Dzbor, "Magpie: Supporting Browsing and Navigation on
the Semantic Web", in Proceedings of the 9th international conference on Intelligent user
interfaces. Funchal, Madeira, Portugal: ACM, 2004.

[70] M. Dumas and A. t. Hofstede, "Uml Activity Diagrams as a Workflow
Specification Language", Proceedings of the International Conference on the Unified
Modeling Language (UML), Toronto, Canada, 2001.

[71] C. H. L. Eric W.T. Ngai, Y.C. Wong, "Application of the Workflow Management
System in Electronic Commerce", International Journal of Business Information Systems,
vol. 1, pp. 182-198, 2005.

[72] R. Z. N. F Harary, D Cartwright, Structural Models: An Introduction to the Theory of
Directed Graphs: John Wiley & Sons, 1965.

[73] F. M. Facca and M. Brambilla, "Extending Web.M.L. Towards Semantic Web", in
Proceedings of the 16th international conference on World Wide Web. Banff, Alberta,
Canada: ACM, 2007.

[74] B. Fallenstein and T. J. Lukka. "Hyperstructure: Computers Build around Things
That We Care About." Retrieved 15/08/2005, from
http://fenfire.org/manuscripts/2004/hyperstructure/, 2004.

[75] J. B. P. L. Faucher, A. M. Everett, and R. Lawson, "Reconstituting Knowledge
Management", Journal of Knowledge Management (in press), 2008.

[76] G. Fischer, R. McCall, and A. Morch, "Janus: Integrating Hypertext with a
Knowledge-Based Design Environment", Proceedings of the second annual
ACM conference on Hypertext, Pittsburgh, USA., 1989.

[77] D. Florescu and D. Kossmann, "A Performance Evaluation of Alternative
Mapping Schemes for Storing Xml Data in a Relational Database", Inria Report of
Research, 1999.

- 185 -

[78] D. Florescu and D. Kossmann, "Storing and Querying Xml Data Using an
Rdmbs", Bulletin of the IEEE Computer Society, Technical Committee on Data
Engineering, 1999.

[79] A. M. Fountain, W. Hall, I. Heath, and H. C. Davis, "Microcosm: An Open
Model for Hypermedia with Dynamic Linking", in Hypertext: Concepts, Systems and
Applications: Cambridge University Press, 1992, pp. 298-311.

[80] H. P. Frei and D. Stieger, "Making Use of Hypertext Links When Retrieving
Information", Proceedings of the ACM conference on Hypertext, Milan, Italy,
1992.

[81] R. Furuta and P. D. Stotts, "Programmable Browsing Semantics in Trellis",
Proceedings of the second annual ACM conference on Hypertext, Pittsburgh,
USA., 1989.

[82] A. Garnemark, "Workflow and Knowledge Management": Master Thesis, School
of Economics and Commercial Law, Department of Informatics, University of
Goteborg, 2002.

[83] A. Garnemark, "Workflow and Knowledge Management (Msc Thesis)", in
University of Goteborg, Department of Informatics, 2002, pp. 31-43.

[84] J. Gaulding and B. Katz, "Using “Word-Knowledge” Reasoning for Question
Answering", in The Society of Text: Hypertext, Hypermedia, and the Social Construction of
Information: MIT Press, 1989, pp. 403-422.

[85] D. C. Gene Bellinger, Anthony Mills. "Data, Information, Knowledge, and
Wisdom." Retrieved July 2008, from http://www.systems-
thinking.org/dikw/dikw.htm, 2004.

[86] D. Georgakopoulos, M. Hornick, and A. Sheth, "An Overview of Workflow
Management: From Process Modeling to Workflow Automation Infrastructure ",
Distributed and Parallel Databases, vol. 3, pp. 119-153, 1995.

[87] N. Gibbins, Harris, S., Michaelides, D. T., Millard, D. E., Weal, M. J., "Exploring
the Relationship between Fohm and Rdf", 1st International Workshop on
Hypermedia and the Semantic Web, Nottingham, UK, 2003.

[88] C. Goble and S. Bechhofer, "The Return of the Prodigal Web", Proceedings of
the 18th ACM Conference of Hypertext and Hypermedia (HT'07), Manchester,
UK, 2007.

[89] C. Goble, S. Bechhofer, L. Carr, D. D. Roure, and W. Hall, "Conceptual Open
Hypermedia = the Semantic Web? " The Second International Workshop on the
Semantic Web, Hong Kong, 2001.

[90] G. Grahne, "Dependency Satisfaction in Databases with Incomplete
Information", in Proceedings of the 10th International Conference on Very Large Data
Bases: Morgan Kaufmann Publishers Inc., 1984.

[91] V. A. Gruzman and V. I. Senichkin, "Hypermedia Models", Automated Remote
Control, vol. 62, pp. 677-694, 2001.

[92] F. Halasz and M. Schwartz, "The Dexter Hypertext Reference Model",
Communications of the ACM, vol. 37, pp. 30-39, 1994.

- 186 -

[93] W. Hall, G. Hill, and H. Davis, "The Microcosm Link Service", Proceedings of
the fifth ACM conference on Hypertext, Seattle, USA, 1993.

[94] C. H. P. Harry R. Lewis, Elements of the Theory of Computation, 2nd ed: Prentice-
Hall, 1998.

[95] S. Hawking, A Brief History of Time: Bantam Books, 1988.

[96] S. W. Hawking, The Illustrated Theory of Everything: The Origin and Fate of the Universe:
New Millennium Press, 2004.

[97] J. Hey. "The Data, Information, Knowledge, Wisdom Chain: The Metaphorical
Link." Intergovernmental Oceanographic Commission, Retrieved August 2008,
from
http://best.me.berkeley.edu/~jhey03/files/reports/IS290_Finalpaper_HEY.pdf,
2004.

[98] D. R. Hofstadter, Godel, Escher, Bach: An Eternal Golden Braid: Basic Books, Inc.,
1979.

[99] W. P. Initiative. "Workflow Patterns." Retrieved 7/2007, from
http://www.workflowpatterns.com, 2003.

[100] T. Isakowitz, E. A. Stohr, and P. Balasubramanian, "Rmm: A Methodology for
Structured Hypermedia Design", Communications of the ACM, vol. 38, pp. 34-44,
1995.

[101] T. B. J. Bosak, "Xml and the Second-Generation Web ", Scientific American, vol.
280, pp. 89, 1999.

[102] Q. T. Jackson. "On Einstein's Razor: Telesis-Driven Introduction of Complexity
into Apparently Sufficiently Non-Complex Linguistic Systems." Submitted to
Progress in Complexity, Information, and Design, Retrieved August 2008, from
http://www.thothic.com/downloads/Jackson_EinsteinsRazor_050205.pdf,
2005.

[103] R. James, J. Ivar, and B. Grady, The Unified Modeling Language Reference Manual:
Addison-Wesley Longman Ltd., 1999.

[104] B. Kemme. "Workflow Management Systems (Lecture Notes)." Retrieved
7/2004, from http://www.cs.mcgill.ca/~kemme/cs764/lectures/764-
workflow.pdf, 2000.

[105] M. Klein, J. Broekstra, D. Fensel, F. v. Harmelen, and I. Horrocks, "Ontologies
and Schema Languages on the Web", in Spinning the Semantic Web, J. H. Dieter
Fensel, Henry Lieberman, Wolfgang Wahlster, Ed.: MIT Press, 2003, pp. 95-139.

[106] P. H. Lewis, W. Hall, L. A. Carr, and D. D. Roure, "The Significance of Linking",
ACM Computer Surveys, vol. 31, pp. 10, 1999.

[107] F. Leymann and D. Roller. "Workflow-Based Applications." Retrieved 12/2005,
from http://www.research.ibm.com/journal/sj/361/leymann.html, 1997.

[108] Y. E. Lien, "Multivalued Dependencies with Null Values in Relational
Databases", Proceedings of the 5th International Conference on Very Large Databases, pp.
155-168, 1971.

- 187 -

[109] M. Lousa, A. Sarmento, and A. Machado, "Expectations Towards the Adoption
of Workflow Systems: The Results of a Case Study", in Proceedings of the 6th
International Workshop on Groupware: IEEE Computer Society, 2000.

[110] T. J. Lukka and K. Ervasti. "Gzigzag - a Platform for Cybertext Experiments."
Retrieved 15/08/2005, from http://www.nongnu.org/gzz/ct/ct-ns4.html, 2002.

[111] S. C. M. Brambilla, S. Comai, P. Fraternali, I. Manolescu, "Specification and
Design of Workflow-Driven Hypertexts", Journal of Web Engineering, vol. 1, 2003.

[112] E. Mahmoud Omar Eliwa, "Benefits and Limitations of the Semantic Web": Msc
Thesis, The University of Nottingham, UK, 2003.

[113] D. Maier, The Theory of Relational Databases: Computer Science Press, 1983.

[114] P. Mamaani and S. Abdul Kareem, "Uml Extensions for Hypermedia Navigation
and Presentation Modelling", ACM Symposium on Software Visualization
(SOFTVIS '05), St. Louis, Missouri, USA, 2005.

[115] C. C. Marshall and F. M. Shipman, "Which Semantic Web?" in Proceedings of the
fourteenth ACM conference on Hypertext and hypermedia. Nottingham, UK: ACM Press,
2003, pp. 57-66.

[116] M. J. McGuffin. "A Graph-Theoretic Introduction to Ted Nelson's
Zzstructures." Retrieved Oct. 2004, from
http://www.dgp.toronto.edu/~mjmcguff/research/zigzag/, 2004.

[117] M. J. McGuffin and M. C. Schraefel, "A Comparison of Hyperstructures:
Zzstructures, Mspaces, and Polyarchies", Proceedings of the fifteenth ACM
conference on Hypertext & hypermedia, Santa Cruz, CA, USA, 2004.

[118] A. Mili, "A Relational Approach to the Design of Deterministic Programs", Acta
Informatica, vol. 20, pp. 315-328, 1983.

[119] D. E. Millard, L. Moreau, H. C. Davis, and S. Reich, "Fohm: A Fundamental
Open Hypertext Model for Investigating Interoperability between Hypertext
Domains", Proceedings of the eleventh ACM conference on Hypertext and
hypermedia, San Antonio, USA, 2000.

[120] M. F. Mohageg, "The Influence of Hypertext Linking Structures on the
Efficiency of Information Retrieval", Human Factors, vol. 34, pp. 351-367, 1992.

[121] A. Moore and T. J. Brailsford, "Unified Hyperstructures for Bioinformatics:
Escaping the Application Prison", Journal of Digital Information, vol. 5, 2004.

[122] A. Moore, J. Goulding, T. Brailsford, and H. Ashman, "Practical Applitudes:
Case Studies of Applications of the Zigzag Hypermedia System", Proceedings of
the fifteenth ACM conference on Hypertext and hypermedia, Santa Cruz, CA,
USA, 2004.

[123] L. Moreau and W. Hall, "On the Expressiveness of Links in Hypertext Systems",
The Computer Journal, vol. 41, pp. 459-473, 1998.

[124] S. S. Mysore Ramaswamy, Ye-Sho Chen, "Using Directed Hypergraphs to Verify
Rule-Based Expert Systems", IEEE Transaction on Knowledge and Data Engineering,
vol. 9, pp. 221-237, 1997.

- 188 -

[125] J. Nanard and M. Nanard, "Using Structured Types to Incorporate Knowledge in
Hypertext", Proceedings of the third annual ACM conference on Hypertext, San
Antonio, USA, 1991.

[126] J. Nanard, M. Nanard, and H. Richy, "Conceptual Documents: A Mechanism for
Specifying Active Views in Hypertext", Proceedings of the ACM conference on
document processing systems, Santa Fe, USA, 1988.

[127] M. Nanard, J. Nanard, and P. King, "Iuhm: A Hypermedia-Based Model for
Integrating Open Services, Data and Metadata", Proceedings of the fourteenth
ACM conference on hypertext and hypermedia, Nottingham, UK, 2003.

[128] T. H. Nelson, "Complex Information Processing: A File Structure for the
Complex, the Changing and the Indeterminate", Proceedings of ACM national
conference, Cleveland, USA, 1965.

[129] T. H. Nelson, "A Cosmology for a Different Computer Universe: Data Model,
Mechanisms, Virtual Machine and Visualization Infrastructure", Journal of Digital
Information, vol. 5, 2004.

[130] T. H. Nelson, Literary Machines: Swarthmore, PA, 1981.

[131] T. H. Nelson. "What's on My Mind." Retrieved August 2008, from
http://www.xanadu.com.au/ted/zigzag/xybrap.html, 1998.

[132] T. H. Nelson, "Zigzag (Tech Briefing)", in Proceedings of the 12th ACM conference on
Hypertext and Hypermedia. Rhus, Denmark: ACM, 2001.

[133] J. Noll and W. Scacchi, "Specifying Process-Oriented Hypertext for
Organizational Computing", Journal of Networking and Computer Applications, vol. 24,
pp. 39-61, 2001.

[134] P. J. Nürnberg and H. Ashman, "What Was the Question? Reconciling Open
Hypermedia and World Wide Web Research", Proceedings of the tenth ACM
Conference on Hypertext and hypermedia: returning to our diverse roots,
Darmstadt, Germany, 1999.

[135] P. J. Nürnberg, J. J. Leggett, and E. R. Schneider, "As We Should Have
Thought", Proceedings of the eighth ACM conference on Hypertext,
Southampton, UK, 1997.

[136] P. J. Nürnberg, U. K. Wiil, and D. L. Hicks, "Rethinking Structural Computing
Infrastructures", Proceedings of the fifteenth ACM conference on Hypertext and
hypermedia, Santa Cruz, CA, 2004.

[137] K. Nyberg. "Workflow Definition Languages (Seminar on Database
Management)." Retrieved 12/2005, from
http://www.cs.hut.fi/~kny/workflowlang/, 2000.

[138] Object-Management-Group, "Business Process Modeling Notation (Bpmn)
Specification, Final Adopted Specification", DTC/06-02-01, 2006.

[139] Object-Management-Group. "Unified Modeling Language: Superstructure,
Version 2.1.1 (with Change Bars)." Retrieved July 2007, from
http://www.omg.org/docs/formal/07-02-03.pdf, 2007.

[140] H. Oinas-Kukkonen, "Embedding Hypermedia into Information Systems", in
Proceedings of the 30th Hawaiian International Conference on System Sciences: Digital
Documents - Volume 6: IEEE Computer Society, 1997, pp. 187.

- 189 -

[141] H. Oinas-Kukkonen, "What Is inside a Link?" Communications of the ACM, vol. 41,
pp. 98, 1998.

[142] S. B. Palmer. "The Semantic Web: An Introduction." Retrieved 15/08/2005,
from http://infomesh.net/2001/swintro/, 2001.

[143] F. Pascal, Practical Issues in Database Management: A Reference for the Thinking
Practitioner: Addison-Wesley, 2000.

[144] A. Pearl, "Sun's Link Service: A Protocol for Open Linking", in Proceedings of the
second annual ACM conference on Hypertext. Pittsburgh, Pennsylvania, United States:
ACM, 1989.

[145] J. L. Peterson, "Petri Nets", ACM Computer Survey, vol. 9, pp. 223-252, 1977.

[146] C. A. Petri, "Kommunikation Mit Automaten, Phd Thesis", Rheinisch-Westfälisches
Institut fur instrumentelle Mathematik, 1962.

[147] G. Pettrash, "Managing Knowledge Assets for Value", Proceedings of the Knowledge-
Based Leadership Conference, 1996.

[148] H. Podeswa, Business Object-Oriented Modeling for Business Analysts: Course
Technology Incorporated, 2005.

[149] A. Pourabdollah, "A User-Friendly Process Description Language Used in
Creating Database Model of Workflows": M.Sc. Thesis, The University of
Nottingham, Malaysia Campus., 2004.

[150] A. Pourabdollah, H. Ashman, and T. Brailsford, "Are We Talking About the
Same Structure? A Unified Approach to Hypertext Links, Xml, Rdf and Zigzag",
Proceedings of the nineteenth ACM conference on Hypertext and hypermedia,
Pittsburgh, PA, USA, 2008.

[151] A. Pourabdollah, T. Brailsford, and H. Ashman, "A User-Oriented Design for
Business Workflow Systems", in Lecture Notes in Computer Science - Teaa' 2006, vol.
4473, D. Draheim and G. Weber, Eds. Berlin Heidleberg: Springer-Verlag, 2007,
pp. 285-297.

[152] A. Pourabdollah and M. Hartley, "Gathering Unstructured Workflow Data into
Relational Database Model Using Process Definition Language", in Proceedings of
the 24th IASTED international conference on Database and applications. Innsbruck,
Austria: ACTA Press, 2006.

[153] Z. Qiu, "Hyperstructure-Based Search Methods for the World Wide Web": PhD
Thesis, Darmstadt Technical University, Denmark, 2004.

[154] W. C. Recommendation. "Rdf Test Cases." Retrieved June 2006, from
http://www.w3.org/TR/rdf-testcases/, 2004.

[155] S. Reich, U. K. Wiil, P. J. Nurnberg, H. C. Davis, K. Graonbaek, K. M.
Anderson, D. E. Millard, and J. M. Haake, "Addressing Interoperability in Open
Hypermedia: The Design of the Open Hypermedia Protocol ", New Rev
Hypermedia Multimedia, vol. 5, pp. 207-248, 1999.

[156] H. A. Reijers, Design and Control of Workflow Processes: Business Process Management for
the Service Industry: Springer-Verlag New York, Inc., 2003.

- 190 -

[157] J. Rowley, "The Wisdom Hierarchy: Representations of the Dikw Hierarchy",
Journal of Information Science, vol. 33, pp. 163-180, 2007.

[158] W. W. Royce, "Managing the Development of Large Software Systems",
Proceedings, IEEE WESCON, pp. 1-9, 1970.

[159] N. Russell, W. M. P. v. d. Aalst, and A. H. M. t. Hofstede, "Exception Handling
Patterns in Process-Aware Information Systems", BPM Center Report BPM-06-04,
BPMcenter.org, 2006.

[160] N. Russell, A. H. M. t. Hofstede, W. M. P. v. d. Aalst, and N. Mulyar, "Workflow
Control-Flow Patterns: A Revised View", BPM Center Report BPM-06-22,
BPMcenter.org, 2006.

[161] N. Russell, A. H. M. t. Hofstede, D. Edmond, and W. M. P. v. d. Aalst,
"Workflow Data Patterns", QUT Technical report, FIT-TR-2004-01, Queensland
University of Technology, Brisbane, 2004.

[162] N. Russell, A. H. M. t. Hofstede, D. Edmond, and W. M. P. v. d. Aalst,
"Workflow Resource Patterns", BETA Working Paper Series, WP 127, Eindhoven
University of Technology, Eindhoven, 2004.

[163] A. Sarmento and A. Machado, "Impact Evaluation of Organisational Changes
Enabled by Workflow Systems ", Proceedings of the 6th International Workshop on
Groupware (CRIWG'00), pp. 134, 2000.

[164] T. Schael and B. Zeller, "Workflow Management Systems for Financial Services",
in Proceedings of the conference on Organizational computing systems. Milpitas, California,
United States: ACM, 1993.

[165] M. C. Schraefel, J. Golbeck, D. Degler, A. Bernstein, and L. Rutledge, "Semantic
Web User Interactions: Exploring Hci Challenges", in HCI '08 extended abstracts on
Human factors in computing systems. Florence, Italy: ACM, 2008.

[166] N. Sharma. "The Origin of the Data Information Knowledge Wisdom
Hierarchy." Retrieved July 2008, from http://www-
personal.si.umich.edu/~nsharma/dikw_origin.htm, 2004.

[167] F. M. Shipman and C. C. Marshall, "Spatial Hypertext: An Alternative to
Navigational and Semantic Links", ACM Computer Surveys, vol. 31, pp. 14, 1999.

[168] B. Signer and M. Norrie, "As We May Link: A General Metamodel for
Hypermedia Systems ", in Lecture Notes in Computer Science, vol. 481: Springer
Berlin/Heidelberg, 2008, pp. 359-374.

[169] P. D. Stotts and R. Furuta, "Adding Browsing Semantics to the Hypertext
Model", Proceedings of the ACM conference on document processing systems,
Santa Fe, USA, 1988.

[170] P. D. Stotts and R. Furuta, "Petri-Net-Based Hypertext: Document Structure
with Browsing Semantics", ACM Transactions on Information Systems, vol. 7, pp. 3-
29, 1989.

[171] D. Suciu, "Semistructured Data and Xml", in Information Organization and
Databases: Foundations of Data Organization: Kluwer Academic Publishers, 2000, pp.
9-30.

[172] K. Takahashi, "Metalevel Links: More Power to Your Links", Communications of the
ACM, vol. 41, pp. 103-105, 1998.

- 191 -

[173] P. Thistlewaite, "Automatic Construction and Management of Large Open
Webs", Information Processing and Management, vol. 33, pp. 161-173, 1997.

[174] L. P. Thomas H Davenport, Working Knowledge, How Organizations Manage What
They Know: Harvard Business School Press, Boston, MA, 1998.

[175] F. Tian, D. J. DeWitt, J. Chen, and C. Zhang, "The Design and Performance
Evaluation of Alternative Xml Storage Strategies", SIGMOD Rec., vol. 31, pp. 5-
10, 2002.

[176] A. M. Turing, "Computing Machinery and Intelligence ", Mind, vol. 59, pp. 433-
460, 1950.

[177] D. S. Vaknin. "Parsimony – the Fourth Substance." Retrieved August 2008, from
http://samvak.tripod.com/parsimony.html.

[178] Y. Vassiliou, "Null Values in Data Base Management a Denotational Semantics
Approach", in Proceedings of the 1979 ACM SIGMOD international conference on
Management of data. Boston, Massachusetts: ACM, 1979.

[179] J. Verbyla and H. Ashman, "A User-Configurable Hypermedia-Based Interface
Via the Functional Model of the Link", Hypermedia, vol. 6, pp. 193-208, 1994.

[180] S. M. Vivekanandan and D. C. De Roure, "Workflow Description for Open
Hypermedia Systems", Proceedings of the International Workshop on Open Hypermedia
Systems Core Concepts and Research Directions, Pre-Conference Workshop at the ACM 13th
International Conference on Hypertext and Hypermedia (HT’02), pp. 52-56, 2002.

[181] W3C-Working-Group. "Defining N-Ary Relations on the Semantic Web."
Retrieved June 2006, from http://www.w3.org/TR/swbp-n-aryRelations/, 2006.

[182] W3C. "Html 3.2 Reference Specification." Retrieved August 2008, from
http://www.w3.org/TR/REC-html32-19970114, 1999.

[183] W3C. "Html 4.01 Specification." Retrieved August 2008, from
http://www.w3.org/TR/REC-html40/, 1999.

[184] W3C. "Resource Description Framework (Rdf): Concepts and Abstract Syntax."
Retrieved Feb 2004, from http://www.w3.org/TR/2004/REC-rdf-concepts-
20040210/, 2006.

[185] W3C. "Xml Linking Language (Xlink) Version 1.0." Retrieved 17/07/2008, from
http://www.w3.org/TR/xlink/, 2001.

[186] A. Warren. "Microcosm: An Open Hypermedia System." University of
Southampton, Retrieved 15/08/2005, from
http://www.soton.ac.uk/~connect/misc/mcosm1.html#http://www.soton.ac.u
k/~connect/misc/mcosm1.html#, 1995.

[187] A. Warren. "Microcosm: Flexibly Linking Information." University of
Southampton, Retrieved 15/08/2005, from
http://www.soton.ac.uk/~connect/v6i1/mcosm2.html#http://www.soton.ac.u
k/~connect/v6i1/mcosm2.html#, 1995.

[188] G. I. Webb, "Generality Is More Significiant Than Complexity, Towards an
Alternative to Occam's Razor", Proceedings of the Seventh Australian Joint Conference on
Artificial Intelligence, pp. 60-67, 1994.

[189] B. P. M. I. Website. Retrieved July 2007, from http://www.bpmi.org.

- 192 -

[190] B. P. M. N. Website. Retrieved July 2007, from http://www.bpmn.org.

[191] O. M. G. Website. Retrieved July 2007, from http://www.omg.org.

[192] Y. A. W. L. Website. "Yawl: Yet Another Workflow Language." Retrieved
7/2007, from http://yawlfoundation.org/, 2007.

[193] H. Weinreich, H. Obendorf, and W. Lamersdorf, "The Look of the Link -
Concepts for the User Interface of Extended Hyperlinks", Proceedings of the
twelfth ACM conference on Hypertext and Hypermedia, Århus, Denmark, 2001.

[194] M. Weske, T. Goesmann, R. Holten, and R. Striemer, "A Reference Model for
Workflow Application Development Processes", SIGSOFT Software Engineering
Notes, vol. 24, pp. 1-10, 1999.

[195] WFMC. "The Workflow-Management-Coalition." Retrieved 8/2006, from
http://www.wfmc.org/, 2006.

[196] WFMC, "Workflow Process Definition Interface -- Xml Process Definition
Language", Workflow Management Coalition WFMC-TC-1025, October 25
2002.

[197] S. A. White, "Introduction to Bpmn", BPTrends, July 2004.

[198] S. A. White. "Process Modeling Notations and Workflow Patterns." Retrieved
12/2005, from http://www.omg.org/bp-corner/bp-
files/Process_Modeling_Notations.pdf, 2004.

[199] Wikiquote. "Albert Einstein." Retrieved August 2008, from
http://en.wikiquote.org/wiki/Albert_Einstein.

[200] K. Wilber, A Theory of Everything. Boston: Shambhala Publications, 2001.

[201] Workflow-Patterns-Initiative. "Workflow Patterns." Retrieved 7/2007, from
http://www.workflowpatterns.com, 2007.

[202] C. Zaniolo, "Database Relations with Null Values", in Proceedings of the 1st ACM
SIGACT-SIGMOD symposium on Principles of database systems. Los Angeles,
California: ACM, 1982.

[203] L. Zhang and M. Bieber, "Towards Just-in-Time Hypermedia", Proceedings of
Hypertext '03 Conference, posters section, 2003.

[204] D. Zhou, M. Truran, T. Brailsford, H. Ashman, and A. Pourabdollah, "Llama-B:
Automatic Hyperlink Authoring in the Blogosphere", in Proceedings of the nineteenth
ACM conference on Hypertext and hypermedia. Pittsburgh, PA, USA: ACM, 2008.

- 193 -

APPENDIX A: A DATABASE DESIGN FOR ZZSTRUCTURE

A.1 Background

Zzstructure, which is a data structure being based on the new paradigm of ZigZag (more

details on [131]) [110], uses different approach for structuring data that the conventional

methods. The existing high power of relational databases is a motivating point for bridging

between these two concepts. In this approach, zzstructure and relational database are used

in two different level of abstraction and the solution consists of ideas in how to store and

retrieve data in ZigZag paradigm by relations in fixed and simple structures. In this

document, a provisional and an improved design for a client-server model based on such

relational database are provided. The difference between two designs is an indexing

method for providing easier and straight-forward access to the data in server side.

It is clear that the ZigZag paradigm is basically different from the way that relational

database are normally used, but tables of a relational database can be used to store and

retrieve data in zzstructure, because zzstructure and the proposed way of using database

are in two different levels of abstraction [122]. While zzstructure is designed to be flexible

and have no metadata [131], the main apparent obstacle for bridging between zzstructure

and databases is structural strictness of table structures in the databases. From this point,

one can assume that a database implementation of zzstructure leads to complexity and/or

dynamic changes in tables‟ structures [122], [74]. This assumption is correct as long as one

wishes to arrange zzstructured data directly to tables. Instead, this research uses databases

with fixed structure as a query server which can produce a client‟s required views. Fixed

but general and simple structure of a relational database is achievable when input and

output requests are restricted to simple and fixed tables.

- 194 -

The fact that relational databases can be used for this purpose is also evidenced by noticing

that:

Zzstructure can be defined as a directed multi-graph [117].

Zzstructure can be exported and imported to/from XML [129].

There are methods of building relational databases from both directed graphs and XML

[33], [175], [77].

While current implementations of zzstructure don‟t include any relational database model

[129], but an approach is used to bridge between XML, directed graphs and relational

databases in [33] , [175], [77]. The first reference has used “ternary relation” which is

“Generic relational schema for directed graph, independent of the XML schema” as:

Edge (source, label, destination)

Leaf (node, value)

The above relations are similar as the basic tables described in the next section. The

difference is that label is explicitly typed into tables while it has been treated here by

reference, same as source and destination. It is noticeable that the term “ternary relation” is

more applicable to where three things of same type are related together than to the case of

labelled graphs.

A.2. General Design

If tables of a relational database can be used both as input and as a required output, using

the existing power of relational database can be helpful for building a zzstructure data

server. Internal data arrangement in a relational database can enable it to store and retrieve

data in zzstructure paradigm.

A complex zzstructure is dividable to the description of cells and links (while assuming

dimensions as cells [129]), which both are describable with tables: Cells can be easily

described by normal tables with multiple columns describing the properties of a cell. Each

link in zzstructure also is a triple, consisting of an originating cell, a terminating cell and a

dimension. Thus a general table design, with these three attributes is enough for describing

the whole links. Seeing dimensions as cells, the records of Links table are triples of same

- 195 -

objects. Obviously, a relation between the first and the last table can establish a referencing

space with minimized redundancies. This architecture can obviously satisfy all normal

forms.

Multiple visualizations of the same data are one of the most powerful points of zzstructure.

Because of visual restrictions of being in 2 or 3 space dimensions, a visual system for

zzstructure data must have a mechanism for assigning zzstructure dimensions to 2 or 3

space dimensions. Thinking in 2D space, two groups of visualizations are being use as H-

view and I-view [129] (different terminology from views in relational databases). These two

groups use a specific cell as the cursor, and then expand the view around it by the priority

of horizontal or vertical dimension [117]. From this point, one of the common

requirements of a zzstructure viewer system is retrieving ordered lists of cells in a given

dimension (rank) which are around a specified cell, and this can be generated by a database

server. This simplification, leads to this key point: Although visualization of a whole

zzstructure data is possible by tables, but a specific views of a zzstructure can be expressed

as views.

A.3 Detailed Design

This design consists of 2 tables of „Cells‟ and „Links‟. Primary keys are „cell_id‟ and „link_id‟

respectively. Cells table is the place to store each cell as a record and has other descriptive

fields (from a textual description to pointers to their multimedia contents). Links table is

the place to store each ZigZag directional link as a record, which must contain the

dimension (here, the dim_id, reference to the cell which stores that dimension), and the

source and destination of the link as left_id and right_id (references to the cells of source

and destination sides of a link, respectively). This is shown in Table A-1.

Table A-1: Basic tables‟ scheme

Cells

cell_id Other Descriptive fields

Links

link_id right_id left_id dim_id

- 196 -

A simple client action is looking for cells which are linked to a specified cell. The retrieval

of the above structure is based on the finding out the left or right adjacent of a specified

cell along a specified dimension. Looking forward, the client simply asks the server to

retrieve the right_id of a link with specified left-side cell along a specified dimension in

Links table, or vice versa for looking backward. After finding out an id, other specifications

of a cell are retrievable using reference to Cells table.

A client-server prototype is designed which consists of using the above design in server-

side using mySQL, and using C++ in client-side programming. The goal was testing the

ability of such client-server architecture to exchange data in zzstructure. The minimum

expected functionality was the ability of client to store, modify and navigate data, being

defined as follows:

1. Storage: The ability of;

1.1. Getting a text and define it as a cell (or dimension)

1.2. Linking two predefined cells along a predefined dimension

2. Modification: The ability of;

2.1. Changing the text of a cell

2.2. Deleting a specified cell or a specified link

3. Navigation: The ability of;

3.1. Defining the navigation dimensions as X and Y space dimensions.

3.2. Moving a cursor pointer from a cell to one of its adjacencies along X or Y.

3.3. Visualizing all cells and links around a cursor cell, in V- or H-view.

3.4. Visualizing 2-D views both as V- or H-view.

3.5. Searching for a specified text or id and make the found cell as the cursor.

- 197 -

After implementing, the system has been tested successfully with real bio-informatics data

described in [121, 122]. The data imported to the tables of the system using GZZ exported

file (in XML format), which consists of about 2000 links. Figure A-1 and Figure A-2 show

two screen-captures of the system when a part of the bio-informatics data is being

visualized in H and I view.

Figure A-1: Bio-informatics data in I-view

- 198 -

The retrieval method in navigation process is based on of a single record in each step.

While navigation, it uses SQL commands to retrieve a single-record view consisting an

adjacent of a cell. For visualizing n cells in the screen, the system has to invoke at least n

lookups, and for each lookup, a two-way communication with the server is necessary. As

mentioned in the introduction, it is desired to use views as output, which is not fully

realized with single record views. Thus it is more preferred to see a rank directly as

consequent records of a view.

A.4. An Improved Design

The next step is to provide ways to directly retrieve ranks as views. Ranks are sequences of

cells connected directionally along a certain dimension and views are filtered, joint, sorted

tables that are extracted from the original tables. Sorted views have been used, because in

the relational database theory records of a table are members of a set with no sequencing,

while a rank has sequence inside. Because of this essential difference, a view can be a

representation of a rank, only if it has an enforced sort by one of its fields.

Since it is preferred to retrieve a single rank as a view, filtration is necessary to distinguish

between ranks to keep the cells in the same rank together. It is also necessary to find out

Figure A-2: Bio-informatics data in H-view

- 199 -

membership of cells in the ranks. This is specially required when ranks are being used for

grouping or cloning concepts and it is necessary to find out whether two cells belong to a

rank or not.

Although answers for the above queries are implicitly embedded in the records of the basic

tables, but none of them are explicitly visible by normal queries. For example, membership

of two cells to a rank is not clear unless one can trace the links records for reaching from

one cell to another.

Based on the above reasons, it is necessary to add two other fields to the Links table as

index fields, one for distinguishing ranks and the other for sorting inside a rank. The

associated cost is having more storage space and more processing load for re-indexing

these fields in data entry stage. The solution is valid if an algorithm for re-indexing can be

found. Two fields to be added to links table are: sort_id and rank_id, as in Table A-2.

Table A-2: The extended version of the Links table

Links

link_id left_id right_id dim_id sort_id rank_id

Because the server output is limited to be linear lists, a simple expression of loop ranks is a

list of cells with repeated values in the start and the end. Although this repeated cell can be

any cell in the loop, but client must tell the server its preferred starting cell (as the cursor).

If the server‟s reply consists of starting cell at the end, the client will then recognize the

rank as a loop rank; otherwise, it can be treated as linear rank.

If correct indexing in Links table can be done, then it is simple to create an intermediate

view (say “pre-rank”) by a single SQL statement as:

SELECT * FROM Links WHERE rank_id=… ORDER BY sort_id;

The above view must have a specific property that right_id in each record must be equal to

left_id in the next record, excluding the last record. In addition, if it is a loop, right_id in

the last record must be equal to left_id in the first record. Thus, the column of left_id‟s will

be close to the desired table, but it doesn‟t include the last cell of the rank. This last cell

- 200 -

appears in the column of right_id, instead. By using UNION query, the desired table can

be built as another view by:

SELECT left_id AS cell_id FROM Pre-Rank UNION SELECT

LAST(right_id) AS cell_id FROM Pre-Rank;

Notice that the above view will work correctly for loop ranks, because it will result equal

cell_id‟s for the first and the last records.

The solution has to be accompanied by an optimized re-indexing algorithm. Optimized

means minimum data transfer between server and client. Also it is preferred to have no

server side programming more than pure and standard SQL. This is not only because many

database servers don‟t support internal programming and the solution shall be as general as

possible, but also to avoid the probable time consumption required for running algorithm

in programs. Re-indexing for these two fields means making sure that all links in a rank will

share a unique rank_Id while each link in a rank has a unique sort_Id indicating its priority

in that rank.

As usual, the indexing mechanisms are useful when there are more retrieving requests to

the server that the modification requests. Indexing mechanisms cause better retrievals

when sorting or searching is necessary in data retrievals. They shift and distribute the

processing load to the data modification stage and free up the retrieval stage, by the cost of

storage space for index keys. Although the relational databases use their own indexing

mechanisms when a field needs to be indexed, but they may not help for this specific

purpose.

A re-indexing algorithm is proposed which includes all possibilities of data modification

and provides SQL statements for each situation. The main point in this algorithm is using

inline (non-iterative) SQL statements. The details of this algorithm will be provided here.

A.5. Indexing Algorithms

This section includes details of an indexing algorithm to be used in conjunction with the

method described in previous section. The goal of the indexing is to facilitate the access to

the information stored in zzstructure. Since the described method in uses relational

databases for data manipulation, the implementation of this algorithm has been

- 201 -

intentionally limited to use plain SQL statements. This means that for all updating event,

SQL statements will do all of the required tasks including re-indexing processes.

Details of the developed algorithm have been explained in this section after an example.

Here a simple example of a zzstructure arrangement is provided and how to store and

index it using the described scheme will be shown. Let us suppose the cells are arranged as

in Figure A-3. The equivalent link table is like Table A-3.

Figure A-3: A zzstructure example

Table A-3: Tabular representation

In Table A-3 the letters A, B, etc. are assumed to be Id‟s of the relevant cells. Also for

generality, the links are added to the system not necessarily in their apparent sequences.

Also in Table A-4 sort_id and rank_id are produced using the developed algorithm

mentioned. Let‟s suppose that the client wants to retrieve the whole rank along dimension

X that node B belongs to. First a simple query can extract that the required rank has

rank_id=1. Then the view of „Pre-rank‟ will filter it by rank_id=1 and sort it by sort_id and

will result Table A-4. Finally a union query will result Table A-5, which is a ready-to-use

table according to the mentioned principles.

Links

link_id left_id right_id dim_id sort_id rank_id

1 A B X 1 1

2 C D X 3 1

3 B E Y 1 2

4 E F X 1 3

5 B C X 2 1

C B A

E F

Y

X

D

- 202 -

Table A-4: View of Pre-Rank

Table A-5: View of final Rank

When a data entry or modification happens, necessary changes may be required on the

index keys. In this section, the database is supposed to contain existing data with valid

indices and the goal is to apply necessary changes on sort_id and rank_id after a single

modification. Because of the reason behind of creation of these indices, the changes are

successful as long as having two following conditions:

1. Having same rank_id for all links of a rank

2. Having no similar rank_id for links of any two different ranks

3. Increasing values of sort_id along consequent links of a rank

The goal of this algorithm is to provide an SQL-based indexing algorithm after such

modifications. Being SQL-based here means that all of the necessary changes on the above

tables must be done by consequent SQL statements that are being controlled by client

application but being run on the server side. Since the server side is a general SQL server, it

is preferred to do everything just by standard SQL. It is also noticeable that the provided

SQL statements may not be ready to execute, because they may contain variable names

Pre_Rank: SELECT * FROM Links WHERE rank_id=1 ORDER BY sort_id;

link_id left_id right_id dim_id sort_id rank_id

1 A B X 1 1

5 B C X 2 1

2 C D X 3 1

Rank: SELECT left_id AS cell_id FROM Pre-Rank UNION SELECT

LAST(right_id) AS cell_id FROM Pre-Rank;

cell_id

A

B

C

D

- 203 -

that must be substituted with real ones. Further notice on this point will be described after

describing the algorithm.

In the rest of this appendix, the notation of sort_id and rank_id will be two numbers over

and under a link line, respectively. For example, if sort_id=1 and rank_id=10, then the link

will be illustrated as:

All type of data entry or modifications in a zzstructure can be categorized in the following

sections. For each section the algorithm and SQL statements for necessary changes on the

index keys will be described.

Adding a New Link

A link wants to be added from cell with id=L to the cell with id=R along a dimension with

id=D. For simplicity, here the existence of loops in ranks is ignored for the time being but

will be considered later.

 a) Required views:

View V1 indicates any link along D having L as its right side (left side business).

In other word, it is the last link of any existing rank along D ending with L.

CREATE VIEW V1 SELECT * FROM Links WHERE

right_id=[L] AND dim_id=[D];

View V2 indicates any link along D having R as its left side (right side business).

In other word, it is the first link of any existing rank along D starting with R.

CREATE VIEW V2 SELECT * FROM Links WHERE

left_id=[R] AND dim_id=[D];

The building link is noted as a dashed line.

View M1 indicates the maximum assigned value of rank_id in the Links table:

CREATE VIEW M1 SELECT MAX(rank_id) AS max_rank

FROM Links;

V1 V2

L R

L R

1

10

- 204 -

 b) Finding out whether or not the left side and/or the right side of the adding link are busy

1) None of the sides are busy; i.e. V1 and V2 are empty. No change on the

previous records is required, just adding the new link by sort_id=1 and a new

value for rank_id. Because it is enough for the value of rank_id to be unique, this

new value can simply be one unit more than the maximum value of rank_id‟s in

Links table. In the future, when this rank expands, this rank_id for the other

added links will be copied.

INSERT INTO Links (left_id, right_id, dim_id,

sort_id, rank_id) SELECT [L] AS c1, [R] AS c2,

[D] AS c3, 1 AS c4, max_rank+1 AS c5 FROM M1;

2) Only the left side is busy; i.e. V1 is not empty while V2 is empty. In this case,

the building link is at the end of a rank, so the rank_id can be gotten from the left

side link and the sort_id is one unit more than the last one:

INSERT INTO Links

(left_id,right_id,dim_id,sort_id,rank_id) SELECT

[L] AS c1, [R] AS c2, [D] as c3, V1.sort_id+1 AS

c4, V1.rank_id AS c5 FROM V1;

3) The right side is busy; i.e. V1 is empty while V2 is not empty. In this case,

the building link is at the beginning of a rank, so the rank_id can be gotten

from the right side link. About sort_id, it can simply be one unit less than

sort_id of V2 (when negative numbers are allowed).

INSERT INTO Links (left_id, right_id, dim_id,

sort_id, rank_id) SELECT [L] AS c1, [R] AS c2,

[D] AS c3, V2.sort_id-1 AS c4, V2.rank_id AS c5

FROM V2;

To avoid negative numbers, all of sort_id‟s in the left side rank must be

incremented constantly. Notice that now the minimum possible sort_id is zero,

V1 V2

L R 3
10

4
10

5
10

V1 V2

L R
1
10

2
10

0
10

- 205 -

which is normally allowed for unsigned integers, but the problem can occur for

the next adding links. Thus, a simple way is to increment sort_id‟s in all links of

this rank by:

UPDATE Links, V2 SET

Links.sort_id=Links.sort_id+1 WHERE

Links.rank_id=V2.rank_id;

The last SQL is a serial updating which can slow down the speed of the algorithm

for a common case, but it is still an option to keep sort_id as unsigned integer and

doing the above procedure. In the rest of this document, signed integer will be

used for sort_id, thus the last SQL statement is ignored.

4) Both sides are busy; i.e. both V1 and V2 are not empty. In this case, two

separate ranks are going to join. First, a same procedure as the previous paragraph

is necessary to insert the new link:

INSERT INTO Links (left_id, right_id, dim_id,

sort_id, rank_id) SELECT [L] AS c1, [R] AS c2,

[D] AS c3, V2.sort_id-1 AS c4, V2.rank_id AS c5

FROM V2;

Because the existence of an invalid breakdown is probable on the cell L, it is

necessary to update sort_id‟s in one side of this cell. Although updating on the

side with less number of ranks is beneficial, but counting the number of ranks can

itself be time consuming. Studying this case is up to practical measurements on

real data, but for the time being, right side is selected arbitrarily. In this case,

updating the right side sort_id‟s is adding the maximum sort_id in the left side to

all of them. This maximum is on the link V1, because V1 is the last link of the left

side. The criteria of belonging to the right side is clear by filtering on rank_id to

be equal to [V1.rank_id] which automatically includes the new link, because it is

already added by this rank_id.

V2

L R
2
10

3
10

1
10

V1 V2

L R
7
10

8
10

3
15

4
15

2
15

- 206 -

On the other hand, L is also a discontinuity point for rank_id and rank_id‟s must

be updated in one side. The same considerations (like the last paragraph for

selecting which side) are applicable here, but the final decision must be the single

side for both, because all the changes are kept on a single side which has a higher

priority. Thus the right side is selected and all rank_id‟s must be changed to

[V1.rank_id].

Thus, a single SQL statement can re-index sort_id‟s as well as rank_id‟s:

UPDATE Links,V1 SET

Links.sort_id=Links.sort_id+V1.sort_id,

Links.rank_id=V1.rank_id WHERE

Links.rank_id=V2.rank_id;

 c) Considering the case of loops in ranks

A loop can be built only in section 4 above (both sides busy). Things to be

reconsidered are:

1) When adding a new link, business in both sides will no longer means joining

different ranks, because the new link can be the last link of a loop. However, the

SQL statements in that section are still valid. Notice that

[V1.rank_id]=[V2.rank_id] (because V1 and V2 belong to a single rank) and the

SQL statement will overwrite all rank_id‟s with their previous values.

2) If a loop is constructed, sort_id‟s along the rank after execution of SQL

statements will be increasing numbers with a breakdown before or after the added

link. This will not cause any problem because sorting the links when the server

replies the queries will produce a list starting or ending with the added link.

V1 V2

L R
7
10

8
10

3+8
10

4+8
10

2+8
10

L R V2 V1 2

10

3
10

4
10

5
10

6
10

7
10

- 207 -

Consequently, this will produce a cell list starting and ending with a same cell,

which is the meaning of a loop.

 d) Unifying all cases

As shown before, considering the case of loops will keep the validity of the

algorithm. However, the algorithm can do some redundant sweeping along the

ranks without any effect. Since a general algorithm is preferred to be run for

adding a link, the following algorithm can be executed:

If V2 is empty

 If V1 is empty

INSERT INTO Links (left_id, right_id,

dim_id, sort_id, rank_id) SELECT [L] AS c1,

[R] AS c2, [D] AS c3, 1 AS c4,

MAX(rank_id)+1 AS c5;

Else

INSERT INTO Links

(left_id,right_id,dim_id,sort_id,rank_id)

SELECT [L] AS c1, [R] AS c2, [D] as c3,

V1.sort_id+1 AS c4, V1.rank_id AS c5 FROM

V1;

End If

Else

INSERT INTO Links (left_id, right_id, dim_id,

sort_id, rank_id) SELECT [L] AS c1, [R] AS

c2, [D] AS c3, V2.sort_id-1 AS c4, V2.rank_id

AS c5 FROM V2;

If V1 is not empty

UPDATE Links,V1 SET

Links.sort_id=Links.sort_id+V1.sort_id,

Links.rank_id=V1.rank_id WHERE

Links.rank_id=V2.rank_id;

End If

End If

Breaking a link

A link between cell with id=L to the cell with id=R along a dimension with id=D needs to

be broken. Here also for simplicity, the case of loops is temporarily ignored and will be

studied later.

 a) Direct deletion

First, the specified link can directly be deleted by the following command:

- 208 -

DELETE * FROM Links Where left_id=L AND

right_id=R AND dim_id=D;

The deleting link is noted as a dashed line.

The next steps are updating index keys in other links of the rank.

 b) The required views

They are V1 and V2 and M1 as in the algorithm for adding links. Two other

views V3 and V4 are also necessary but will be defined later.

 c) Finding out whether or not the left side and/or the right side of the breaking link are busy:

1) Only one side is busy or none of sides are busy; i.e. V1 or V2 is empty. In these

cases, there is nothing to do because either the first or the last link of a rank or a

single-link rank has been deleted. In the first case, the rest of the rank has already

been re-indexed before, so no changes are required on the previous links. In the

second case, a whole rank has been deleted and there is no other link to be re-

indexed.

Both sides are busy; i.e. V1 and V2 are not empty. In this case, a single rank has

been split to two separate ones. Although sort_id‟s of the two side ranks can

remain unchanged (because they have already correct sorting index) but it is

necessary to change rank_id‟s in at least one of the produced ranks to be

differentiated from the other. This new value has to be a new one without any

previous usage. A simple method is to change rank_id in one side by a new value.

V1 V2

L R

V1 V2

L R

V1 V2

L R

V1 V2

L R

- 209 -

Although doing the procedure on the side with less links is beneficial, but

counting the number of links in each side can be time consuming. This trade off

can be studied in practice, but in this document, the right side will be modified for

simplicity. The new value of rank_id in the right side can be equal to one unit

more than maximum value of rank_id‟s in the Links table. To select the right side,

one can use comparing sort_id‟s with V2.sort_id:

UPDATE Links,V2,M1 SET

Links.rank_id=M1.max_rank+1 WHERE

Links.rank_id=V2.rank_id AND

Links.sort_id>=V2.sort_id;

 d) Considering the case of loop ranks:

Case 1 above cannot happen for loops, but in case 2, if link of a loop has been

deleted, it has converted a loop rank to a linear rank, not two ranks. As described

before, sort_id‟s in a loop cannot be an increasing value and must have a

breakdown step in one of its cells. Deleting one of the links means probable

leaving of this breakdown cell in the new linear rank, which will cause invalid

indexing. The breakdown will not exist if one of the two links around that cell is

occasionally deleted. In the later case, there will be nothing to do with sort_id‟s,

but in general case, sort_id‟s must be re-indexed.

(The breakdown cell is highlighted as diagonal pattern.)

It will be shown how to re-index sort_id‟s in the next paragraphs, but after doing

that, one may concern about rank_id‟s. The re-indexing algorithm for rank_id‟s

described in case 2 must not make different rank_id‟s for links of the rank after

R V2 V1

2
10

3
10

4
10

5
10

6
10

7
10

V1 V2

L
5
10

6
10

7
10

2
10

3
10

V1 V2

L R
3
10

4
10

6
10

7
10

5
10

L R

3
10

4
10

6
12

7
12

- 210 -

breaking the loop. Fortunately, the SQL statements in that section are still valid.

This is because once sort_id‟s are re-indexed, V1 will have the maximum value of

sort_id and V2 will have the minimum value; i.e. for all rank,

[sort_id]<=[V1.sort_id] and [sort_id]>=[V2.sort_id]. This means that SQL

statement will sweep all rank, and the whole rank will have same rank_id‟s.

For re-indexing sort_id‟s, a sort_id breakdown point in all links with same

rank_id as rank_id of V1 or V2 must be traced. If a loop around its breakdown

point is going to be broken or if a linear rank is breaking into two, a breakdown

point will not be found and the rest of algorithm has no effect. For this purpose,

view V3 is created as:

CREATE VIEW V3 SELECT * FROM Links WHERE

rank_id=V1.rank_id;

V3 for case of loop breaking means the produced linear rank, and for breaking

the linear ranks means the whole left side rank. Notice that a breakdown point of

sort_id in V3 can be defined as a cell which has sort_id on its left-side link greater

than sort_id on its right side link. View V4 will contain a link in V3 which has

such a breakdown on its right side cell. It will contain any breakdown existence in

V3 by relating V3 to itself as:

CREATE VIEW V4 SELECT * FROM V3 AS T1 INNER JOIN

V3 AS T2 ON T1.right_id=T2.left_id WHERE

T1.sort_id>T2.sort_id;

If V4 is not empty, V4.sort_id is the maximum of sort_id‟s values in V3, because

sort_id‟s in V3 are increasing values up to the breakdown point. The remaining

step is to add this maximum value to sort_id‟s in the appropriate records of V3:

UPDATE V2,V3,V4 SET

V3.sort_id=V3.sort_id+V4.sort_id WHERE

V3.sort_id<V2.sort_id;

V1 V2

L
5
10

6
10

7
10

2
10

3
10

V4

V3

V1 V2

L
5
10

6
10

7
10

2+7
10

3+7
10

V4 (before)

V3

- 211 -

The criteria of sort_id<=V1.sort_id comes from the point that V2 is the link at

the leftmost of the rank and any link with sort_id less that V2.sort_id needs to be

added up to be sorted before V2.

Finally, if V4 is empty, which means no breakdown, there is no need to update

any sort_id.

 e) Unifying all cases:

Considering the case of loops will result execution of the last SQL statement

before the SQL statements of case 2, as well as creating two views V3 and V4

defined above. As described, all of these consequent statements will work for

both cases of loop ranks and linear ranks. The whole algorithm for deleting a link

will be as follows:

If V1 is not empty AND V2 is not empty

UPDATE Links,V2,M1 SET

Links.rank_id=M1.max_rank+1 WHERE

Links.rank_id=V2.rank_id AND

Links.sort_id>=V2.sort_id;

If V4 is not empty

UPDATE V2,V3,V4 SET

V3.sort_id=V3.sort_id+V4.sort_id WHERE

V3.sort_id<V2.sort_id;

End If

End If

Inserting a Link

This is possible by consequent actions of breaking a links and adding two others.

Adding or Modifying a Cell

No changes on indexes required.

Deleting a Cell

Deleting a cell is not allowed while it is involved in a link. This restriction can be

carried out by enforcing the rules of referential integrity, which is defined when

creating the main tables of cells and links. If all the involved links are deleted with

the described algorithm, deleting a cell will not affect any index key in links table.

- 212 -

Further Notices

1) The mentioned unified algorithms for adding and deleting a link include

variables L, R and D that must be substituted with their real value or correct

references to them. For this purpose two alternatives are possible.

First, by direct substitution in the client side when invoking. The application in

the client side can build and send the substituted statements. The problem with

this solution is that for each modification, it is necessary to build and overwrite

the required views (like V1,V2, etc.) repeatedly, which can be time consuming.

Second, by feeding from a table: It is possible to add a single record table for

temporary storing the values of L, R, and D. The client side application must

store the real values in that table with simple SQL statements. In this case, one

has to apply necessary changes to SQL statements to select and use the values

from that table. For example, let‟s have a new table called Config with this

structure:

Config

L R D Other fields

Supposing that this table has a single record, the client will “build” and send an

SQL statement like: UPDATE Config SET L=1, R=2, D=3; Then simple

changes like the following is necessary for any SQL statement which uses L, R, or

D:

The example before change:

INSERT INTO Links (left_id, right_id, dim_id,

sort_id, rank_id) SELECT [L] AS c1, [R] AS c2,

[D] AS c3, 1 AS c4, MAX(rank_id)+1 AS c5;

And after change:

INSERT INTO Links (left_id, right_id, dim_id,

sort_id, rank_id) SELECT Config.L, Config.R,

Config.D, 1 AS c4, MAX(rank_id)+1 AS c5 FROM

Config;

- 213 -

If the second method is used, it is also possible to build the necessary views

(V1,V2, etc.) once and in advance. For example, view V1 can be built in the

database independent of the client application by:

CREATE VIEW V1 SELECT * FROM Links, * FROM Config

WHERE Links.right_id=Config.L AND

Links.dim_id=Config.D;

2) The algorithms for adding or deleting a link contain If-blocks. For

implementing these if-blocks, there are at least three alternative solutions: First, to

use server side programming: This is not recommended because it was intended

to use standard and simple SQL server, which may not necessarily support server

side programming. Second (not recommended), to use internal function of SQL

(like IIF() function): Some of the SQL statements above can be unified using

IIF() may increase their complexity. To remove all of the if-blocks, it will add

much complexity. Third, to use programming (or scripting) language in the client

side: This is more recommended. Although a decision made in the client side, but

does not violate the initial intension of doing processes in server side. This is

because the decision will not imply any unnecessary data exchange between client

and server. The only investigated thing in client side is checking a view to be

empty or not.

- 214 -

APPENDIX B: NOTES ON ONE-TO-MANY RELATIONSHIP IN

ZZSTRUCTURE

B.1. Background

It has been mentioned in section 2.3.1 that there is no direct solution exists for one-to-

many relationship representation, because of fundamental rules of ZigZag. This document

studied the associated problems of indirect solutions of representing one-to-many

relationship by zzstructure. A main source of these problems is that grouping in ZigZag

cannot be done without sequencing. In addition, these problems will be considered in the

designed relational database for storing zzstructured data (described in Appendix A).

Finally, three approaches will be provided to address the associated problems. The last

provided approach is adding an extra concept to the ZigZag paradigm (which is Macro-

cell), and the result will no longer be zzstructure.

It is necessary to provide a working definition for one-to-many relationship: Linking a single

cell, equally to other cells, by a single relation, in a single context. It is noticeable that the many-side is

a set of cells, without any sequence. This definition can cover two interesting applications

in this study: Data grouping and Cloning. Data grouping is where it is needed to put some

cells in a set without sequencing. In this case, data grouping is a relation between a set‟s

name and its members. Cloning is one of the mechanism in zzstructure to simulate one-to-

many relationship, in which several instances of cell are used to relate to other cells, while

themselves are linked through a special dimension: d.clone [129]. It is a one-to-many

relationship because it is a relation between a cell and its clones, noticing that clones of a

cell have no point in sequencing. However, if any sequencing is required between clones, it

can be done via another dimension

- 215 -

B.2. One-to-Many relationship Mechanisms

Because of basic limitations of ZigZag topology to represent one-to-many relationships,

indirect topology must be used for this purpose. Some of such solutions are represented in

Figure B-0-1.

Figure B-0-1: Indirect Solutions of Zzstructure for One-to-
Many Relationship

B.3. The Associated Problems

A problems source is that the topology may need external convention for being

understood. Different meanings of structure can be understood with or without a

convention (Uncertainty). Another source of problems is possible added information for

satisfying ZigZag rules (Redundancy). The existence of redundancy and uncertainty can

deviate the structure from the real information, as illustrated in Figure B-0-2.

- 216 -

Figure B-0-2: Deviation of structure from information

Considering the provided design for client-server approach to storing zzstructure in

relational databases (described in Appendix A), possible effects can appear in storing

redundancies (because of resource seizure), in sequential access (low speed in search,

sort,…) and in modification (multiple steps in data modification, which means lower speed

and more risk of data loss).

The following approaches are possible solutions when some or whole design goes beyond

ZigZag rules.

B.4. Storage-layer Optimization by Referencing Cells

This approach is similar to cloning mechanism for one-to-many relationship, but with no

sequencing along d.clone. Figure B-0-3 illustrates the storage design of cloning with an

example.

Figure B-0-3: Referencing-Cells Design

This solution also must be accompanied by adding a layer on the top of storage layer which

contains suitable views to show us the data as expected by the client application.

Effectiveness in search and data modification must be studied practically but it is clear that

- 217 -

the required space is less than before and there is no sequence between clones which can

provide random access to clone cells.

B.5. Storage-layer Optimization by Non-ZigZag Storage

This solution also must be accompanied by adding a layer of views to show us the data as

expected by the client application. Illustration of an example in Figure B-0-4 clarifies this

approach.

Figure B-0-4: Non-ZigZag Storage

The storage explicitly breaks ZigZag rules but can provide better search and data

modification on the row data on the cost of extra processing over storage layer. The issue

of conversion process from/to zzstructure in query layer must be noticed, because both

cells and links tables must be changed while the conversion must be optimized to be fast.

The overall performance of such a design can not be simply estimated without practical

implementations.

B.6. Changes on Fundamentals: Macro-Cells

This approach tries to add a fundamental concept to ZigZag: Grouping. A modified

zzstructure is proposed, which is no longer ZigZag, but uses its rules and adds the concept

of “Macro Cells” to it. In this structure, cells can be member of each other. A cell can be member

of 0 or 1 another cell; i.e. a cell can not be member of two groups in a same context. Also

- 218 -

all cells still are ZigZag cells, and can connect under ZigZag rules, regardless of their

container or contents. This has been illustrated in Figure B-0-5.

The resulted structure is backward compatible to zzstructure. This means that it can still be

used for storing zzstructured data. Cloning mechanism can have its previous

implementation (i.e. connecting along d.clone and storing unnecessary sequencing), but it

shall not be used for one-to-many relationship (because there will be a systematic way for

doing that). As mentioned before, cloning is a one-to-many relationship between a main

cell and its clones. Thus the clones are empty members of a main cell in this new structure

(with no d.clone, no sequencing). Visualization of this new structure will be different from

ZigZag. The suggestion is that a macro cell will be visualized in its context, regardless of

context of its members. The vision can be transferred to its members‟ context by user‟s

wish.

The storage of data in this new structure is possible by adding a “member-of” field to the

Cells table, with no change to Link table. This has been shown in Figure B-0-6.

Figure B-0-5: Notation and Visualization of the Concept of Macro-cell

- 219 -

B.7. Section Summary

Because of indirection in the possible ZigZag representations for one-to-many

relationships, a combination of uncertainty and redundancy can cause several problems in

data manipulation. In the proposed client-server architecture for using relational database

for zzstructure, these problems have been studied and these approaches have been

described: Different storage methods in server side, and a new non-ZigZag structure which

adds the concept of non-sequential grouping to Macro Cells.

Figure B-0-7 compares the number of required records in two table of storage layer, for

different approaches. If n is the number of cells in many-side, it has been shown that the

total number of records varies from a function of 4n in cloning mechanism to a function

of n in Macro-cell structure. This can be used for justification of Macro-cell structure.

Figure B-0-6: Data storage of Macro-cells

Figure B-0-7: A Comparison between the storage seisure for
different one-to-many relationship solutions

- 220 -

APPENDIX C: SOURCE CODES

The programming source codes related to the different parts of this thesis have been

written to the attached CD.

The folders on the CD and the related sections are as follows:

1. Folder “TRM-DB” related to the listings of chapter 4.

2. Folder “TRM-NAV” related to section 5.5.1

3. Folder “TWM” related to section 7.1

4. Folder “ZZCLIENT” related to Appendix A

Also the file “TRM.sql” in the root directory is an exported file from the used mySQL

database. It includes the necessary sample databases from other folders and shall be

imported into the working mySQL database if necessary.

The list of the files and folders together with a short description of each one is listed in the

following table.

A copy of the CD contents is also accessible online at http://cs.nott.ac.uk/~axp/thesiscd.

- 221 -

Root

packinglist.doc Includes this table

TRM.sql Includes the sample data necessary to be imported to mySQL
database on destination server

\TWM\public_html\workflow

graph.html Shows the workflow sample graph

index.html Homepage of TWM

twm.jpg The TWM logo

workflow.jpg Includes the picture of workflow sample graph

\TWM\cgi-bin

history.php Produces the history page, i.e. the list of tasks applied on a certain
workflow case.
Parameter: c indicating the case ID

workflow.php Produces the multi-frame home page of TWM, a page including
topframe.php at top and a placeholder for other pages at the bottom.

startflow.php Produces a page to guide the user to start a workflow case.
Parameter: u for User ID

topframe.php Produces a menu bar for the system to sit on top of the homepage

started.php Starts a workflow case from an indicated workflow node and produces
a page showing the necessary message to the user.
Parameter: n for the starting node; c for the starting case

inbox.php Produces the inbox page for each workflow users, showing a list of
cases which requires the user’s action, together with the available
actions to choose.
Parameter: u for User Id

doaction.php Performs the selected action in inbox and refresh the inbox page.
Parameter: c: Case Id

n: Node Id which contains the relation
s: Source node Id
a: Association node Id
d: Destination node Id
r: reverse action if r=1, ordinary otherwise.

ZZCLIENT

main.cpp The main C++ program to run the ZigZag client

\TRMNAV\js

dw_viewport.js The JavaScript code necessary to run within HTML files, mainly to
provide floating sub-menus.

\TRMNAV\public_html

trmlink.css The CSS codes for the visual effects of the floating menu

index.html The homepage showing the links to the original and modified pages

cssmenu.htm Produces the floating menus

atom.html A sample HTML file about atoms

electron.html A sample HTML file about electrons

proton.html A sample HTML file about protons

photon.html A sample HTML file about photons

neutron.html A sample HTML file about neutrons

electricity.htm A sample HTML file about electricity

stimulation.htm A sample HTML file about stimulation

excitation.html A sample HTML file about excitation

trmlogo.jpg The logo of TRM

\TRMNAV\cgi-bin

readfile.php Produces a new HTML having Ternary Links, by reading any other
normal HTML and looking for the link anchors by accessing to the
mySQL database. Parameter: u indicating the URL of the input HTML.

- 222 -

\TRMDB

atomTRM.xml The TRM-XML equivalent of TRM-NAV atom example

TRMBiblio.mdb The mdb equivalent of the sample bibliography database, implemented
in TRM-Table. In also includes sample SQL statements for querying
TRM-Table.

sampleTRM.xml A sample TRM-XML listing

sampleworkflow.xml A sample TRM-XML equivalent for a workflow definition

TRM.xsd The TRM-XML Schema

TRMBiblio.xml A sample TRM-XML listing for the bibliography example

TRMBiblio.xql A sample TRM-Query implemented in XQuery

TRM-
noannotation.xsd

The TRM-XML Schema without annotations

- 223 -

APPENDIX D: THE PUBLISHED WORKS

