Contents

Abstract	⁄i
Abbreviationsvi	ii
Introduction	. 1
The Total Synthesis of Natural Products	2
Steroids	.3
Steroid Biosynthesis	.4
The Synthesis of Steroids	.9
A Free Radical Cascade Approach to the Steroids1	5
Ring-D Aromatic Steroids1	7
Results and Discussion: Part 1. A Cascade Radical-Mediated Approach	
towards Nicandrenone	Ĺ
The Development of a Radical Cascade Strategy towards	
Ring-D Aromatic Steroids	3
A Radical-Mediated Macrocyclisation-Transannulation	
Cascade	8
A Ring-D Aromatic Model System	3
Syntheses of the Sulfone 122 and the Aldehydes 121a,b	6
Syntheses of the Iododienynones 117a-d	9
The Proposed Radical Cascades from the Precursors 117a-d	
The Radical Cascades from the <i>Z</i> -Iododienynones 117a,c 4	1
The Radical Cascades from the <i>E</i> -Iododienynones 117b,d 4	.5
Results and Discussion: Part 2. A Cascade Radical-Mediated Approach	
towards Veratramine5	54

Al	Ring-D Aromatic Model System	57
AI	Model Stille Coupling Reaction using Vinylcyclopropyl	
Sta	nnanes	59
Re	trosynthetic Analysis of the Precursor 161	65
Syı	nthetic Routes to the Radical Precursor 193	66
Syı	nthesis of the Radical Cascade Precursor 193	70
The	e Macrocyclisation-Transannulation Radical Cascade from the Seleno	
Est	rer 193	76
Experime	ntal	35
Ge	neral Details	86
Ex	perimental Details	89
Pro	ocedures for Compounds 117 to 155	32
Pro	ocedures for Compounds 168 to 248	66
Reference	s 10	57
Appendix	1 X-Ray Crystallographic Data for Compound 147	
Appendix	2 Cascade radical-mediated cyclisations with conjugated ynone electrophores. An approach to the synthesis of steroids and other novel ring-fused polycyclic carbocycles, G. Pattenden, D. A. Stoker, N. M. Thomson, <i>Org. Biomol. Chem.</i> 2007, 5, 1776-1788.	,

Appendix 3 ¹H and ¹³C NMR Spectra for Compound **194b**

Abstract

The work presented in this Thesis describes several new and novel radical macrocyclisation-transannulation cascade reactions directed towards the single step construction of ring-D aromatic steroid ring systems.

The **Introduction** introduces the steroid class of natural products, their biosynthesis and previous literature strategies towards their construction. The ring-D aromatic steroids, together with their possible total synthesis *via* a novel free-radical cascade strategy, are then discussed.

The **Results and Discussion** Chapter summarises the radical cascade strategies towards ring-D aromatic steroid ring systems that have been investigated. It is divided into two sections:

Part 1 describes the evolution of our current radical cascade approaches relating to the iododienynone precursors 117a-d (Schemes 26-29). We proposed that the precursors 117a-d would lead to the 6,6,6,6 ring-D aromatic steroid ring system (such as that found in the natural product nicandrenone 67), *via* a cascade of radical ring-forming reactions. However, the proposed radical cascade from the *Z*-iododienynones 117a,c halted at the macrocyclisation stage producing the macrocycles 137a,b, whilst a radical cascade from the *E*-iododienynones 117b,d instead led to the unusual bridged tricyclic structures 148a,b and 155 (depending on whether benzene or heptane was

used as the solvent), rather than the anticipated linear tetracycles **116a,b**. A rationale for these outcomes is given.

Part 2 discusses an approach to 6,6,5,6 ring-D aromatic steroids *via* a macrocyclisation-transannulation radical cascade from the vinylcyclopropyl seleno ester precursor 193. A synthesis of the radical precursor 193 was first examined using a novel aryl-vinylcyclopropane Stille reaction coupling protocol (the development of which is discussed), as well as several alternative routes. A practical, albeit more lengthy, synthesis of the precursor 193, was then developed. The proposed radical cascade from the vinylcyclopropyl seleno ester 193 led to the desired ring-D aromatic steroid ring system 194a (with the correct *trans*, *anti*, *trans* stereochemistry) together with the methyl epimer 194b. Also isolated from the product mixture was the macrocycle 232, together with the products of reduction and decarbonylation of the acyl radical intermediate 235, *i.e.* 231 and 230, and the dioxolane 233.

The **Experimental** section describes all the procedures used to synthesise the precursor compounds **117a-d** and **193** and the products of their radical mediated cascade cyclisations. Full NMR, and other spectroscopic data, alongside mass spectrometry data are also given.

The **Appendices** include some relevant X-ray and NMR spectroscopic details.