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ABSTRACT  

Discrete element modelling has been used to capture the essential mechanical 

features of railway ballast and gain a better understanding of the mechanical 

behaviour and mechanisms of degradation under monotonic and cyclic loading.   

A simple procedure has been developed to generate clumps which resemble real 

ballast particles.  The influence of clump shape on the heterogeneous stresses 

within an aggregate was investigated in box test simulations.  More angular 

clumps lead to greater homogeneity and the interlocking provides a much more 

realistic load-deformation response.  A simple two-ball clump was used with two 

additional small balls (asperities) bonded at the surface, to represent a single  

particle; it is shown that particle abrasion gives the correct settlement response.   

A clump formed from ten balls in a tetrahedral shape was used in monotonic and 

cyclic triaxial test simulations and found to produce the correct response.  The 

interlocking and breaking of very small asperities which find their way into the 

voids and carry no load was modelled using weak parallel bonds.  The interlocking 

and fracture of larger asperities was modelled by bonding eight small balls to the 

ten-ball clump.  Monotonic tests were performed on triaxial samples under 

different confining pressures and the results compared with existing experimental 

data.  Tests were also simulated using uncrushable clumps to highlight the 

important role of asperity abrasion.  Cyclic triaxial tests were then simulated on 

the same aggregates under a range of stress conditions and the results compared to 

existing experimental data for the same simulated ballast.   

The clumps are able to capture the behaviour of ballast under different conditions, 

and asperity abrasion plays an important role in governing strength and volumetric 

strain under monotonic loading, and on permanent strains under cyclic loading.  

The contribution of this thesis is therefore to show that it is possible to model a 

real granular material under static and cyclic conditions, providing much micro 

mechanical insight.   
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CHAPTER 1  

INTRODUCTION 

 

1.1 Background and Problem Definition 

Railways play an important role in the worldwide transportation system.  Every 

year a large amount of money is spent on track maintenance.  With growing 

demand for high speed trains and heavy freight movement, deterioration of the 

track geometry has been recognised as the main cause of the need for track 

maintenance.  According to Selig and Waters (1994), ballast is one of the main 

sources of track geometry deterioration as shown in Figure 1.1.   

 

Figure 1.1. Contributions to settlement in rail track (Selig and Waters, 1994). 
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Railway ballast generally comprises large, angular particles of typical size 

approximately 40 mm.  The main functions of railway ballast are to reduce 

pressures from the sleeper bearing area to acceptable levels at the surface of the 

subgrade soil, to facilitate maintenance operations for the re-establishment of track 

riding quality, and to provide rapid drainage (Selig and Waters, 1994).  Ballast 

functions deteriorate through the actions of traffic loading and maintenance 

tamping.  The angularity (sharp corners) of ballast leads to stress concentrations 

and breakage, but is necessary for good shearing resistance.  Traffic loading is one 

of the main causes of ballast degradation.  Over the years, many researchers have 

studied the complex behaviour of ballast using laboratory and in-situ test 

techniques.  However, due to the limitations of the physical tests to accurately 

monitor the ballast response at a particle level, the true nature of the deformation 

and mechanism of degradation has not yet been fully understood.   

The discrete element method (DEM) (Cundall and Strack, 1979) provides a way to 

investigate the mechanical behaviour of granular material at both micro and macro 

level.  In DEM, finite displacements and rotations of discrete bodies are allowed 

and new contacts can be recognised automatically during the calculation process.  

It enables investigation of the micro mechanics of the deformation of granular 

materials that cannot be easily studied in laboratory tests.  DEM has been used to 

investigate the mechanical behaviour of granular material over the past three 

decades; details will be described in the literature review.  In recent years, it has 

also been used to model particle crushing (also discussed in the literature review).  

Thus, it provides a powerful numerical tool for modelling the mechanical 
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behaviour of railway ballast and for studying the micro mechanical behaviour of 

railway ballast and the mechanisms of particle degradation.   

1.2 Aims and Objectives 

The ultimate goal of this project is to gain a better understanding of the mechanical 

behaviour of railway ballast at particle level by using the discrete element method.  

The aims of this project can be stated as: 

• To develop a suitable particle model in PFC
3D

, so that the mechanical 

response of ballast under different loading condition can be modelled. 

• To model box tests and both monotonic and cyclic triaxial tests to 

gain a better understanding of ballast mechanics. 

• To study the effect of ballast degradation on the performance of 

ballast under different loading conditions. 

To achieve these aims, the following specific objectives are required: 

1. Selection of a particle shape that effectively captures the main mechanical 

features of real ballast (e.g. stress-strain response, volumetric behaviour, 

permanent deformation and particle degradation). 

2. Modelling of the mechanism of particle abrasion. 

3. Simulations of box tests and both monotonic and cyclic triaxial tests. 

4. Comparison of simulation results with experimental data. 
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5. Comparison of the simulation results using breakable assemblies and 

unbreakable assemblies to study the effect of degradation of railway ballast 

on macroscopic behaviour. 

1.3 Thesis Outline 

This thesis is divided into eight chapters.  A brief outline of this thesis is given 

below.   

Chapter 2 contains a literature review of the mechanical behaviour of railway 

ballast.  A description of the track components, ballast functions, forces generated 

on the ballast layer, and ballast characteristics are presented.  The mechanical 

behaviour of railway ballast under both static and repeated loading and the factors 

influencing the behaviour are then discussed.  A review of degradation of granular 

materials is also presented in section 2.2.   

Chapter 3 contains a literature review of DEM and PFC
3D

 used in the modelling of 

granular materials.  The effects of particle shape and interparticle friction on the 

mechanical behaviour of granular material are discussed and methods used to 

model the particle shape and particle breakage are presented.  Recent applications 

of PFC in the modelling mechanical response of railway ballast are reviewed.   

In Chapter 4, a simple procedure to generate clumps which resemble real ballast 

particles is introduced and a procedure for the box test simulation is described.  

The effect of particle shape on behaviour is investigated in box test simulations by 

using both spheres and clumps.   
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In Chapter 5, a simple particle model to simulate particle abrasion is described.  

The effect of particle abrasion under cyclic loading is investigated in the box test 

simulations.   

Chapter 6 presents monotonic triaxial test simulations.  Different scales of particle 

abrasion are simulated.  Parallel bonds are introduced between clumps to simulate 

the interlocking of very small asperities and small balls are bonded at the corners 

to model relatively larger asperities.  The effects of particle shape, particle friction, 

and particle abrasion on the behaviour of railway ballast are investigated.  The 

behaviour of the assembly for the developed particle model under a range of 

confining pressures is then compared with experimental data.   

Chapter 7 presents cyclic triaxial test simulations.  The assemblies of particles 

developed in Chapter 6 are used.  The effect of particle abrasion under cyclic 

loading is investigated in the cyclic triaxial test simulations.  Simulation results 

under different cyclic loading conditions are compared with experimental results.  

The effect of particle abrasion on permanent strain and degradation is investigated 

and presented.   

Chapter 8 summarises the major contributions of this research and presents 

suggestions for future research.   
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CHAPTER 2 

LITERATURE REVIEW: MECHANICAL 

BEHAVIOUR OF RAILWAY BALLAST 

  

2.1 Introduction 

A large amount of money is spent on the maintenance of the railway track every 

year.  Railway track maintenance arises mainly from the degradation of ballast and 

the deterioration of the track geometry (Selig and Waters, 1994).  In order to 

minimise maintenance costs, a proper understanding of how ballast performs 

under traffic loading is imperative.  In this chapter, an introduction of track 

components, ballast functions, and track forces will first be presented, followed by 

ballast characteristics.  A literature review of recent studies of the mechanical 

behaviour of railway ballast under both static loading and repeated loading is 

presented.  Finally, a review of the degradation of granular materials is presented.   

2.2 Track Components and Ballast Functions 

Generally, ballasted track structures can be grouped into two main components: 

the superstructure and substructure.  The superstructure consists of the rails, the 

fastening system and the sleepers, while the substructure consists of the ballast, the 
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subballast and the subgrade.  Figures 2.1 and 2.2 show the components of a typical 

ballasted track.  Railway ballast is a crushed granular material placed as the top 

layer of the substructure where the sleepers are embedded.  Ideal ballast materials 

are angular, crushed, hard stones and rocks, uniformly graded, free of dust and dirt, 

and not prone to cementing action (Selig and Waters, 1994).  However, due to the 

lack of universal agreement concerning the proper specifications for the ballast 

material index characteristics, availability and economic considerations have been 

the main factors considered in selection of ballast materials.  Various materials 

have been used for ballast such as crushed granite, basalt, limestone, slag and 

gravel.   

The ballast layer plays an important role in the rail track system.  Main ballast 

functions were summarised by Selig and Waters (1994) as follows:  

1. Retain the track in its required position by withstanding forces applied to 

the sleepers.  

2. Provide the required degree of resiliency and energy absorption to the track. 

3. Distribute stresses from the sleeper bearing area to acceptable stress levels 

for the subballast and subgrade, thereby limiting permanent settlement of 

the track. 

4. Provide sufficient voids for storage of fouling material in the ballast, and 

movement of particles through the ballast.  
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5. Facilitate maintenance surfacing and lining operations (to adjust track 

geometry) by an ability to rearrange ballast particles with tamping.  

6. Provide immediate drainage of water falling onto the track.  

 

 

Figure 2.1. Track layout of a typical ballasted track – side view (Selig and Waters, 

1994). 

 

 

Figure 2.2. Track layout of a typical ballasted track – cross section (Selig and Waters, 

1994). 
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2.3 Track Forces 

Track forces imposed on ballast layer can be divided into vertical, lateral, and 

longitudinal components.  Vertical forces are the main imposed forces on ballast, 

while, the lateral and longitudinal forces are much harder to predict (Selig and 

Waters, 1994).   

2.3.1 Vertical forces 

The vertical force is a combination of static load and dynamic load.  The static 

load combines the dead weight of train and the weight of superstructure (i.e. the 

weight of the rails, the fastening system and the sleepers).  Regarding the dynamic 

load, it depends on track, vehicle and train characteristics, operating conditions, 

and environmental conditions.  Figure 2.3 shows static and dynamic wheel loads 

plotted in the form of cumulative frequency distribution curves.  Field 

measurements carried out by Broadley et al. (1981) and Frederick and Round 

(1985) showed that the dynamic forces could increase the wheel load by a factor of 

three, depending on the different types of the rail track system.   

The stress in the ballast layer due to the vertical force passing down from the 

sleeper has not yet been accurately determined.  The reason for this is that the 

ballast layer consists of large particles and its behaviour is more like discrete than 

continuous (Shenton, 1974).  Figures 2.4(a) and (b) show the pressure distribution 

along the sleeper bottom and vertical pressure of different levels in the ballast 

layer, respectively.   
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Figure 2.3. Static and dynamic wheel loads for (a) Colorado test track and (b) 

mainline track between New York and Washington (Selig and Waters, 1994). 

 

(a) 

 

(b) 

Figure 2.4. Pressure distribution (Shenton, 1974). 

2.3.2 Lateral forces 

The lateral force is the force that acts parallel to the long axis of the sleepers.  The 

principal sources of this type of force are lateral wheel force and buckling reaction 
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force (Selig and Waters, 1994).  The lateral wheel force arises from the train 

reaction to geometry deviations in self-excited hunting motions which result from 

bogie instability at high speeds, and centrifugal forces in curved tracks.  The 

buckling reaction force arises from buckling of rails due to the high longitudinal 

rail compressive stress which results from rail temperature increase.   

2.3.3 Longitudinal forces 

The longitudinal forces are parallel to the rail.  The sources of this force are: 

locomotive traction force including force required to accelerate the train and 

braking force and thermal expansion and contraction of rails (Selig and Waters, 

1994).   

2.4 Ballast Characteristics 

The ability of ballast to perform its functions depends on the particle 

characteristics (e.g. particle size, shape, angularity, hardness, surface texture and 

durability) together with the in-situ physical state (e.g. grain structure and density).  

Selig and Waters (1994) pointed out that no single characteristic controls ballast 

behaviour and that the behaviour of ballast is the net effect of many combined 

characteristics.  This section contains a presentation of the main ballast 

characteristics.  Their effect on the behaviour of railway ballast under different 

loading conditions will be presented in the next few sections.   
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2.4.1 Durability 

Durability tests have been developed to evaluate toughness of ballast particles or 

tendency for particle breakage.  Granular materials consisting of weak grains 

should exhibit higher degrees of degradation, and hence, relatively more 

compressibility and lower shear strengths.  Two abrasion tests (i.e. Los Angeles 

Abrasion (LAA) test and micro-Deval Attrition (MDA) test) are commonly used 

to evaluate the durability of ballast in railway engineering.  The LAA test for 

railway ballast is carried out as specified in BS EN 13450 (2002).  The LAA test 

involves rotation 5 kg of 31.5-40 mm and 5 kg of 40-50mm dry ballast with 10 

spherical steel balls weighing 5.2 kg in a steel drum.  The steel drum is rotated on 

a horizontal axis for 1000 revolutions.  The tested ballast materials are sieved 

using a 1.6 mm sieve.  The definition of the LAA is the percentage of the test 

portion passing a 1.6 mm sieve after the completion of the test.  The LAA test 

measures the resistance of ballast to fragmentation.  The MDA test is carried out 

as specified in BS EN 13450 (2002).  The MDA test involves rotating two 

specimens of dry ballast materials in two separate steel drums.  Each specimen 

consists of 5 kg of 31.5-40 mm and 5 kg of 40-50 mm particles.  Two litres of 

water are added into each steel drum and the ballast specimen is rotated on a 

horizontal axis for 14,000 revolutions with a rotational speed of 100 rot/min.  The 

tested ballast materials are sieved using a 1.6 mm sieve.  The definition of the 

MDA is the percentage of the test portion passing a 1.6 mm sieve after the 

completion of the test.  This test measures the resistance of ballast to wear.  
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2.4.2 Particle shape 

Particle shape influences not only the physical state of the assembly (grain 

structure and porosity) but also the particle interaction (interparticle friction, 

contact force and coordination number).  In the past, various attempts have been 

made to characterise particle shape of railway ballast.  However, due to the 

complexity and irregularity of the shape of particle, universally accepted effective 

parameters on shape characteristic have not been established so far.  In the railway 

industry, various shape characteristics (i.e. flakiness, elongation, sphericity, 

angularity and surface texture) are used.   

Barrett (1980) reviewed various approaches to analyze particle shape in geology 

and sedimentology and expressed the shape of a particle in terms of three 

independent properties, namely: form (overall shape), roundness (large-scale 

smoothness) and surface texture, as shown in Figure 2.5.  These three properties 

can be distinguished at least partly because of their different scales with respect to 

the particle, as shown in Figure 2.6.  Form reflects variations in the particle scale, 

while roundness reflects variations at the corners.  Surface texture is a property of 

particle surfaces between and at the corners.   

2.4.3 Gradation 

The selection of the particle size distribution of ballast layer has a great effect on 

both in-situ performance and the economic evaluation of track design.  It is widely 

accepted that a narrow gradation would best meet the requirements for railway 

ballast.  Sufficient voids are formed within the railway ballast with a narrow 
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gradation and, therefore, it provides efficient drainage of water from the ballast 

trackbed.  The particle size distributions required in British railway ballast 

specification (RT/CE/S/006 issue 3, 2000) is shown in Table 2.1.   

 

Figure 2.5. A simplified representation of form, roundness and surface texture by 

three linear dimensions to illustrate their independence (Barrett, 1980). 

 

Figure 2.6. A particle outline (heavy solid line) with its component elements of form 

(light solid lines, two approximations shown), roundness (dashed circles) and texture 

(dotted circles) identified (Barrett, 1980). 
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Square Mesh Sieve (mm) 
Cumulative % by mass 

passing BS sieve 

63 100 

50 70-100 

40 30-65 

31.5 0-25 

22.4 0-3 

32-50 ≥ 50 

Table 2.1. Particle size distribution specification (RT/CE/S/006 Issue 3, 2000). 

2.5 Mechanical Behaviour of Railway Ballast under Static 

Loading 

2.5.1 Micromechanics of deformation during loading 

Ballast consists of grains in contact and surrounding voids.  It is commonly known 

that the mechanical behaviour of ballast is inherently discontinuous and 

heterogeneous.  Oda and Iwashita (1999) indicated that the behaviour of granular 

materials is determined not only by the arrangement of particles in space, but also 

by what kinds of interactions occur between them.  Ballast, like other granular 

materials, shows complex elastic-plastic behaviour under loading and unloading.  

Many laboratory tests have been conducted to investigate the stress-strain 

behaviour of ballast.  However, complete understanding of the micro mechanical 

response (at a particle level) has not been fully established.   

Deformation under loading is normally a combination of the volumetric and shear 

at the macroscopic level, whereas, at the microscopic level, deformation is the 
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results of particle rearrangement and breakage.  Luong (1982) postulated that the 

deformation of granular soils under loading is the result of three main mechanisms: 

consolidation, distortion, and attrition.  The consolidation mechanism 

(densification or dilation) is the change in volume of particle assemblies; the 

distortion mechanism is the change in aggregate shape due to sliding and rolling; 

the attrition mechanism is particle crushing and breakage leading to rearrangement 

and compaction or dilation.  The resistance to particle sliding and rolling depends 

on the interparticle friction of the granular material (Oda and Iwashita, 1999).  

Crushing is a progressive process that can start at relatively low stresses, and 

certainly dominates the behaviour of the assembly at very high effective stress.  

The details of particle crushing and degradation will be presented in the later 

section.   

2.5.2 Factors controlling stress-strain behaviour of granular material 

Due to the size of railway ballast particles, large-scale triaxial test equipment has 

been developed to investigate the mechanical behaviour.  Monotonic triaxial tests 

are commonly used to investigate mechanical response of typical ballast under 

static loading conditions.  Indraratna et al. (1998), for example, performed large-

scale triaxial tests on latite basalt to study the stress-strain relationships, strength 

properties and degradation characteristics of railway ballast.  Figure 2.7 shows the 

large-scale triaxial equipment used in their tests.  Results of monotonic triaxial 

tests can provide valuable insight into results for the cyclic loading tests.   



 17 

Effect of stress level 

Ballast in railway track is normally subjected to low confining pressure.  

Indraratna et al. (1998) conducted a series of monotonic triaxial tests on ballast 

under a range of confining pressures from 1 kPa to 240 kPa (which simulate the 

typical confining pressures generated within ballasted track by the passage of 

unloaded to fully loaded trains).  Their results showed that the peak shear stress 

increased with confining stress, as shown in Figure 2.8.  At very low confining 

pressure, ballast specimens exhibited dilatancy, while at higher levels of confining 

pressure (e.g. >120 kPa) an overall volume compression was observed over a wide 

range of axial strains.   

 

Figure 2.7. Large-scale triaxial equipment: (a) schematic view of test frame with 

triaxial chamber and (b) detailed components of triaxial chamber (Indraratna et al., 

1998). 
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Figure 2.8. Experiment results of drained compression tests on ballast under 

different confining pressures (contraction positive) (Indraratna et al., 1998). 

Indraratna et al. (1998) compared the principal stress ratios at failure of ballast 

from the tests with those of other granular materials (e.g. sandy materials and 

rockfill) measured by  Marsal (1967, 1973), Ponce and Bell (1971), Marachi et al. 

(1972), Charles and Watts (1980), Fukushima and Tatsuoka (1984).  They found 

that the peak principal stress ratio was markedly higher at low confining pressure 

(e.g. <35 kPa) and that the peak principal stress ratio decreased rapidly with 

increasing confining pressure, as shown in Figure 2.9.   

For granular material, a non-linear Mohr-Coulomb envelope is more noticeable at 

lower confining pressure (Oda and Iwashita, 1999; Powrie, 2004).  Similar 

observations from monotonic triaxial tests on railway ballast under low confining 

pressure (e.g. less than 300 kPa) were reported by Raymond and Davies (1978) 
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and Indraratna et al. (1998).  Figure 2.10 illustrates a typical Mohr-Coulomb 

envelope for ballast.   

 

Figure 2.9. Influence of confining pressure on peak principal stress ratio for basalt in 

comparison with various granular media (Indraratna et al., 1998). 

 

Figure 2.10. Mohr-Coulomb failure envelopes for Latite Ballast (Indraratna et al., 

1998). 
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For granular materials, like sand and rockfill, many researchers (e.g. Bishop, 1966; 

Vesic and Clough, 1968; Marsal 1967, 1973; Charles and Watts, 1980; Indraratna 

et al., 1993) found that the peak friction angle decreased with increasing confining 

pressure.  A similar relationship between peak friction angle and confining 

pressure for ballast was found by Indraratna et al. (1998), as shown in Figure 2.11.  

Indraratna et al. (1998) believed that the high values of the friction angle for 

ballast at low confining pressure are strongly related to the low interparticle 

contact forces and the interlocking of particles.   

Effect of initial density  

Roner (1985) conducted a number of triaxial tests on quartzite ballast and 

concluded that, independent of gradation and particle size, peak friction angle 

increased with decreasing initial voids ratio, as shown in Figure 2.12(a).   

 

Figure 2.11. Influence of confining pressure on the peak angle of internal friction of 

Basalt at low to medium confining pressures (Indraratna et al., 1998). 
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(a) 

 

(b) 

Figure 2.12. Effect of particle characteristics on (a) peak internal friction angle and 

(b) deviator stress at failure (Selig and Waters, 1994). 

Effect of particle characteristics 

As mentioned in the previous section, the behaviour of ballast is governed by 

particle characteristics.  Although laboratory tests have been developed to 

determine trends for influence of particle characteristics on aggregate specimen 

performance, some effects of particle characteristics on the behaviour of ballast 

still need to be investigated.   

Selig and Waters (1994) summarised the effect of shape characteristics on 

behaviour of granular materials.  They indicated that any amount of flaky particles, 

either randomly oriented or oriented other than generally parallel to the failure 

plane, increase the shear strength of the granular assembly and that, when a 

significant proportion of the particles are flaky, orientation parallel to the failure 
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plane will cause a substantial strength reduction.  Roner (1985) conducted triaxial 

tests on both flaky and non-flaky ballast specimens with random and different 

parallel particle orientations.  The results showed that the random flaky specimens 

had a strength which is significantly greater than the strength at the corresponding 

voids ratio for the non-flaky specimens and that only if the particles were parallel 

to the failure plane a substantially lower strength occurred for the flaky specimens.  

The effect of ballast particle shape on the shear strength of the assembly is shown 

in Figure 2.12.   

The shear strength of aggregate also increases with increasing particle angularity 

and particle surface roughness (Thom and Brown, 1988 and 1989).  However, 

higher particle angularity and particle surface roughness would also tend to cause 

more particle breakage and a lower specimen stiffness.   

As for the effect of gradation, Roner (1985) concluded that the shear strength was 

not affected by change of gradation on quartzite ballast specimens for equal voids 

ratios.   

2.6  Mechanical Behaviour of Railway Ballast under Repeated 

Loading 

Results of monotonic triaxial tests provide valuable information on the shear 

strength, stress-strain behaviour and degradation characteristics of typical ballast.  

However, because passing trains generate non-uniform vibrations and induce 

dynamic effects on the ballasted layer (Selig and Waters, 1994), the static tests 
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alone do not model the field situation completely.  Thus, it is necessary to 

investigate the behaviour of ballast under repeated loading conditions.   

Figure 2.13 shows complex elastic-plastic behaviour of ballast when subjected to 

repeated loadings.  In general, the deformation of granular layers under repeated 

loading is characterized by a resilient deformation and a permanent deformation, 

as shown in Figure 2.14.  However, the true nature of the deformation mechanism 

of a layer of granular material is not yet fully understood (Lekarp et al. 2000a).  In 

this section, shakedown theory is firstly introduced; factors affecting both resilient 

and permanent behaviour of granular material will then be presented.   

 

Figure 2.13. Ballast behaviour in the cyclic triaxial test (Selig and Waters, 1994). 
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Figure 2.14. Strains in granular materials during one cycle of load application 

(Lekarp et al., 2000a). 

2.6.1 Shakedown theory 

The shakedown concept has been used to describe the evolution of the plastic 

deformation in materials under repeated loading.  The basic assumption is that the 

structure can be modelled by an inhomogeneous elastic-plastic material.  It 

predicts that the structure will eventually either shakedown or collapse.  The 

critical load level separating these two types of behaviour is termed the 

“shakedown limit”.  According to the shakedown theory (Collins and Boulbibane, 

2000), four categories of material response under repeated loading can be 

distinguished: 

1.  Purely Elastic.  The applied stress is sufficiently small, so that no 

permanent strain accumulation occurs. 

2.  Elastic Shakedown.  The applied stress is slightly below the plastic 

shakedown limit.  The material response is plastic for a finite number of 

cycles, however, the ultimate response is elastic. 
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3.  Plastic Shakedown.  The applied stress is low enough to avoid a rapid 

incremental collapse.  The material achieves a long-term steady state 

response with no accumulation of plastic strain, but hysteresis in the stress-

strain plot.  

4.  Incremental Collapse.  The repeated stress is relatively large, so that a 

significant zone of material is in a yielding condition and plastic strain 

accumulates rapidly with failure occurring in the relatively short term. 

Figure 2.15 shows these four types of response of elastic-plastic structure to 

repeated loading.   

 

Figure 2.15. Four types of response of an elastic-plastic structure to repeated loading 

(Collins and Boulbibane, 2000). 

When the load level exceeds the elastic limit load, permanent plastic strains occur 

and the response of the structure to a second and subsequent loading cycle is 
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different from the first.  Three basic causes are postulated by Collins and 

Boulbibane (2000) as follows: 

1.  Residual stresses are induced in the structure by the application of a load 

cycle, therefore, the total stress field induced in the second cycle is the sum 

of this residual stress field and that produced by the applied load.  

2.  Material properties (e.g. strain hardening or softening) change due to the 

previous loading. 

3.  The geometry of the surface is changed, as a consequence of the permanent 

strains induced there.  

2.6.2 The cyclic triaxial test and the box test 

Over the years, many researchers have studied the complex behaviour of granular 

materials using laboratory and in-situ testing techniques.  The cyclic triaxial test 

(Indraratna et al., 2005; Suiker et al., 2005; and Lackenby et al., 2007) is a 

common laboratory test used to investigate the mechanical behaviour of railway 

ballast under a large number of passing train wheels.   

Norman and Selig (1983) developed a box test, in which sleeper settlement, ballast 

breakage and abrasion, changes of density and stiffness of ballast, and horizontal 

residual stresses in the ballast during cyclic loading were investigated.  McDowell 

et al. (2005) developed the box test to simulate the effects of train loading and 

tamping on the performance of ballast.  Both resilient and permanent behaviour of 

ballast under cyclic loading were investigated in their box tests.  Figures 2.16 and 
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2.17 show the section of ballast underneath the rail seat modelled in the box test 

and the set up of the box test, respectively (Lim, 2004).   

 

Figure 2.16. Plan of rail and sleepers showing section represented by the box test 

(Lim, 2004). 

 

(a) 

 

(b) 

Figure 2.17. Box test set-up: (a) view from the top of the box and (b) front view (Lim, 

2004). 
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2.6.3 Factors affecting resilient response 

According to Seed et al. (1962), the resilient modulus of a material is defined as 

the repeated deviator stress divided by the recoverable axial strain during 

unloading in the triaxial test, as shown in Figure 2.14.  The resilient response of 

railway ballast under cyclic loading is affected by many factors (e.g. confining 

pressure, stress ratio, number of loading cycles, stress history, density, particle 

sizes and grading, fines content, and aggregate type) (Lekarp et al., 2000a).  In this 

subsection, the main factors that affect the resilient response of ballast are 

presented.   

Effect of stress level 

Lekarp et al. (2000a) summarised that the resilient response of granular material is 

influenced mostly by stress level.  Lackenby et al. (2007) conducted a series of 

triaxial test on ballast and indicated that the resilient modulus increased with 

increasing confining pressure, as shown in Figure 2.18.   

Effect of initial density 

It is widely accepted that the resilient modulus of granular material generally 

increases with increasing density (e.g. Trollope et al., 1962; Hicks, 1970; 

Robinson, 1974; Rada and Witczak, 1981; Kolisoja, 1997).  However, for railway 

ballast, Shenton (1974) indicated that the porosity have little influence on the 

resilient modulus.  Thom and Brown (1988), and O’Reilly and Brown (1991) also 

reported similar observations in their studies.   
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Figure 2.18. Resilient modulus MR response under various stress states after 500,000 

cycles (Lackenby et al., 2007).  

Effect of frequency and number of cycles 

It is generally agreed that the impact of frequency and load duration on the 

resilient behaviour of granular materials is not significant (e.g. Seed et al., 1965; 

Morgan, 1966; Hicks, 1970; Boyce et al., 1976; Thom and Brown, 1988).   

Suiker et al. (2005) and Lackenby et al. (2007) conducted cyclic triaxial tests on 

ballast and showed that the application of cyclic loading can lead to a considerably 

increase in material stiffness.  The resilient modulus generally increases gradually 

with the number of repeated load applications as the material stiffens (Moore et al., 

1970 and Lackenby et al., 2007).  Figure 2.19 shows the effect of the number of 

cycles on the resilient modulus.  Researchers (Hicks, 1970; Shenton, 1974 and 

Alva-Hurtado, 1980) found that, after a certain number of repeated load 

applications, the material behaves in an almost purely resilient manner and the 

resilient modulus eventually comes to an approximately constant value.   
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Figure 2.19. Resilient modulus MR response under various stress states: (a) effect of 

confining pressure σ'3 and number of cycles N on MR for qmax,cyc = 500 kPa and (b) 

effect of qmax,cyc on MR for σ'3 = 60 and 240 kPa (Lackenby et al., 2007).  

Effect of particle characteristics 

Researchers (Janardhanam and Desai, 1983; Thom and Brown, 1989; Thompson, 

1989; O’Reilly and Brown, 1991; and Lekarp et al., 2000a) showed that the 

resilient behaviour of ballast is, to some degree, affected by the particle shape, 

particle size, particle strength and the gradation.  Many studies (Hicks, 1970; 

Hicks and Monismith, 1971; Allen, 1973; Allen and Thompson, 1974; Thom, 

1988; Barksdale and Itani, 1989; Thom and Brown, 1989) have reported that 

crushed aggregates which have angular to subangular shaped particles give a 

higher resilient modulus than uncrushed gravel with subrounded or rounded 

particles.  A rough particle surface is also said to result in a higher resilient 
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modulus.  Thom and Brown (1988 and 1989) reported that for granular materials 

the resilient modulus increased with increasing particle surface friction angle (the 

surface friction angle between particle of approximately 20 mm and concrete 

surface).  Kolisoja (1997) showed that the magnitude of the resilient modulus 

increased linearly with the equivalent or average particle size Dekv, which was 

defined as: 

3
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=        (2.1) 

2.6.4 Factors affecting permanent strain response 

The permanent strain of granular material after unloading is defined in Figure 2.14.  

Possible micro mechanisms for the accumulation of permanent strain under 

repeated loading are particle rearrangement and breakage.  Factors affecting the 

permanent strain response of granular materials are present as follows: 

Effect of stress level 

The development of permanent strain is significantly influenced by stress level.  

Lackenby et al. (2007) conducted a series of cyclic triaxial tests on ballast under 

various loading conditions.  They pointed out that permanent axial strain is 

dependent both on the magnitudes of maximum deviator stress and confining 

pressure.  Figure 2.20 shows the permanent axial strain and permanent volumetric 

strain response as a function of number of cycles and confining pressure.  They 



 32 

found that permanent axial strain decreased with decreasing maximum deviator 

stress and increasing confining pressure.   

 

 

Figure 2.20. Strain response under cyclic loading: (a) axial strain εa as a function of 

the number of cycles N; (b) volumetric strain εv as a function of N; (c) final εa after 

500,000 cycles and (d) final εv after 500,000 cycles (Lackenby et al., 2007). 
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Effect of initial density 

Initial density is one of the most important factors affecting the accumulation of 

permanent strain (Olowokere, 1975; Shenton, 1974; Knutson, 1976; Raymond and 

Davies, 1978; and Alva-Hurtado and Selig, 1981).  Many researchers have found 

that a small decrease in initial density will lead to a significant increase in the 

accumulated permanent strain and that this effect is more significant for angular 

aggregates than rounded aggregates (Lekarp et al., 2000b).  Shenton (1974), Jeffs 

and Marich (1987), and Brown (1996) indicated that the resistance to 

accumulation of plastic deformation can be greatly improved if high initial 

compacted density is achieved.   

Effect of frequency, number of cycles and sequence of loading 

Shenton (1974) investigated the influence of loading frequency on the 

accumulation of permanent strain in ballast and showed that the loading frequency 

did not affect the accumulation of permanent strain.  Figure 2.21 shows a plot of 

normalised axial strain after 10
4
 cycles against frequency for the same value of 

deviator and confining stress (Shenton, 1974).  Recently, Eisenmann et al. (1994) 

demonstrated that only the higher range of frequencies specific to high-speed lines 

(speed > 225 km/h) would affect the settlement of ballast.  Thus, in general, the 

response approximately is frequency independent, except that higher frequencies 

may cause a dynamic increment to be superimposed on the “static” load.   

For railway ballast under typical wheel load, it is widely agreed that permanent 

deformation is generally proportional to the logarithm of the number of loading 
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cycles, as shown in Figure 2.22.  The rate of accumulation of permanent strain has 

generally been found to decrease with increasing number of cycles (Morgan, 1966; 

Barksdale, 1972; Shenton, 1974; Sweere, 1990; and McDowell et al., 2005).  

However, Lekarp (1997) and Lekarp and Dawson (1998) indicated that for low 

applied stress, granular material has a limiting permanent strain, while, for high 

applied stress, the rate of accumulation of permanent strain will continue to 

increase with increasing number of cycles (i.e. the structure collapse).  This is 

based on shakedown concept, as mentioned earlier.   

 

Figure 2.21. Effect of loading frequency (Shenton, 1974). 

 

Figure 2.22. Permanent deformation as a linear function of logarithm of number of 

load cycle (Shenton, 1974). 
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The effect of the sequence of loading has been investigated by Stewart and Selig 

(1984) and Selig and Waters (1994).  Their results showed that the sequence of 

loading did not affect the accumulation of permanent strain.  Figure 2.23 shows 

typical results strain accumulation for different loading sequences.  In these 

experimental tests different magnitudes of deviator stress were used and the 

deviator stress was changed after every 1000 load applications.  Clearly the final 

permanent strains for all the different loading sequences are approximately equal.   

 

Figure 2.23. Effect of difference in sequence of loading on permanent strain (Selig 

and Waters, 1994). 

2.7 Degradation of Granular Materials 

Crushing is a progressive process that can start at relatively low stresses, and 

results in gradual changes in the soil fabric and packing.  Particle crushing is 

governed by grain size and shape, the magnitudes of the applied stresses, and the 

mineralogy and strengths of individual grains.  The influence of particle 

degradation on the mechanical behaviour of granular material has been studied by 
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many researchers (Marsal, 1967; Vesic and Clough, 1968; Hardin, 1985; Indratana 

et al., 1998; and Ueng and Chen, 2000).  Indraratna et al. (1998) pointed out that 

the crushing of particles is a decisive factor in the behaviour of ballast.  They 

indicated that the breakage of ballast is related macroscopically to the applied 

deviator stress and confining pressure, and microscopically to the excessive 

contact stresses generated within the body of angular particles.  However, because 

ballast is highly inhomogeneous in nature, it is difficult to predict mechanisms of 

degradation upon loading.  In the following subsections, different types of particle 

breakage and the mechanism of single particle fracture are presented.  Factors 

affecting particle breakage are also presented.  Finally, the mechanism of ballast 

degradation under repeated loading is discussed.   

2.7.1 Description of particle breakage 

According to Raymond and Diyaljee (1979), the process of degradation of ballast 

particles due to wheel loading can occur in three ways:  

1. The breakage of particles into approximately equal parts.   

2. The breakage of angular projections 

3. The grinding off of small-scale asperities.   

A similar description of particle breakage in sand was reported by Nakata et al. 

(1999).  It should be noted that the description of breakage given to each particle 

relies heavily on visual observation and requires a measure of personal judgement.   
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2.7.2 Single particle under compression 

A study of single particle fracture (when compressed between flat platens) 

provides a useful insight to the fundamental mechanisms of particle fracture.  It 

also provides a useful method to quantify, scientifically, the tensile strength of 

different particles (e.g. McDowell and Amon, 2000; McDowell, 2002; McDowell 

et al., 2003; Lim 2004).  However, particles within a granular assembly interact 

with neighbours leading to considerably complex loading paths.  Contact forces 

between particles are unique in magnitude and direction, depending on the size 

and shape of grains, the particle arrangement and the number of contact points 

(Marsal, 1973).  The loading path is complicated further by the variation in 

particle strengths within the assembly.   

It is widely accepted that the failure of a spherical particle under compression is a 

tensile failure.  Particle fractures are initiated through existing internal flaws in 

which stress concentration occurs.  According to Jaeger (1967), the tensile strength 

of rock grains can be indirectly measured by diametral compression between flat 

platens.  Lee (1992) following Jaeger (1967) calculated the tensile strength of 

grain (e.g. Leighton Buzzard sand, oolitic limestone and carboniferous limestone) 

as 

2d

Ff
f =σ          (2.2) 

where the subscript f denotes failure, σ is the tensile stress, F is the diametral force 

and d is the diameter of a grain.  Recently, McDowell and Amon (2000) showed 
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that Weibull statistics (Weibull, 1951) can be applied to characterise soil particle 

strength.  They showed that the mean tensile strength σav is a function of particle 

size d according to the equation 

m

av d /3−
∝σ          (2.3) 

where m is the Weibull modulus.  Lim et al. (2004) performed single particle 

crushing tests on a range of ballasts and found that for most ballasts, although a 

Weibull distribution of strengths was obtained within each size range, the size 

effect on the average strength was inconsistent with that predicted by Weibull 

statistics.  This is in contrast to the results obtained by McDowell and Amon (2000) 

and McDowell (2002) for sand particles, which followed the Weibullian size effect.  

Lim et al. (2004) hypothesised that this may have been because those sands were 

each largely composed of one mineral.   

2.7.3 Factors affecting particle degradation 

In general, the breakage of ballast particles depends on several factors, including 

particle strength, particle shape, density, stress level, frequency, number of cycles, 

and degree of saturation (Indraratna et al., 2004).  Indraratna et al. (2004) divided 

these factors into three categories as follows:  

1. Properties related to the characteristics of the parent rock (e.g. hardness, 

specific gravity, toughness, weathering, mineralogical composition, 

internal bonding and grain size).  
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2. Properties associated with the blasting, crushing and transportation 

processes (e.g. roundness, particle shape, particle size and surface 

smoothness). 

3. Factors related to the field/experimental variables (e.g. confining pressure, 

initial density or porosity, thickness of the ballast layer, ballast gradation, 

presence of water or ballast moisture content, and dynamic loading pattern 

including train speed and frequency).  

The micro mechanics of crushable aggregates has also been studied by researchers 

(e.g. Lee, 1992; Lade et al., 1996; McDowell et al., 1996; McDowell and Amon, 

2000; Lim et al., 2004).  According to McDowell et al. (1996), the survival 

probability of a particle in an aggregate subjected to one-dimensional compression 

is determined by the applied macroscopic stress, the size of the particle and the 

coordination number.   

Applied macroscopic stress 

An increase in applied macroscopic stress would increase the average induced 

tensile stress in a particle; and this leads to a higher probability of particle 

breakage.  Experimental results (Indraratna et al., 1998) showed that for the same 

ballast material, more particle breakage is observed when the applied stress 

increases.   
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Size of particle 

There is a variation in soil particle strength because of the dispersion in internal 

flaw sizes.  Since large particles contain more flaws or defects compared to 

smaller particles, it exhibits a lower average tensile strength.  Thus, the probability 

of particle breakage increases with an increase in particle size.   

Coordination number 

The probability of particle breakage also reduces with an increase in the 

coordination number because the induced tensile stress in a particle is reduced by 

the compressive stress caused by the many contacts.  The coordination number 

depends on particle shape, particle size, gradation and density.   

2.7.4 Ballast degradation under cyclic loading 

Ballast breakage index (BBI) was introduced by Indraratna et al. (2005) to 

quantify the magnitude of degradation of railway ballast.  BBI can be calculated 

from Equation 2.4, where A and B are defined in Figure 2.24.   

BA

A
BBI

+
=          (2.4) 

Lackenby et al. (2007) indicated that ballast degradation behaviour under cyclic 

loading can be categorised into three zones, namely: the dilatant unstable 

degradation zone (DUDZ), the optimum degradation zone (ODZ), and the 

compressive stable degradation zone (CSDZ).  These zones are dependent on the 
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level of confining pressure and maximum deviator stress acting on the specimen, 

as shown in Figure 2.25.   

 

Figure 2.24. Ballast breakage index (Indraratna et al., 2005). 

Dilatant unstable degradation zone (DUDZ) 

Degradation in the DUDZ is the most significant among the three zones.  Breakage 

occurs mainly at the onset of loading, when the axial strain and dilation rates are at 

a maximum.  Lackenby et al. (2007) found that most of the degradation in this 

zone was due to the breakage of angular corners or projections, rather than particle 

splitting.  They indicated that this is due to internal deformation mechanisms, such 

as sliding or rolling, that inhibit the formation of permanent interparticle contacts, 

thus preventing splitting due to excessive stresses.   
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Figure 2.25. Effect of confining pressure σ'3 and maximum deviator stress qmax,cyc on 

ballast breakage index BBI, and effect of qmax,cyc on DUDZ, ODZ and CSDZ breakage 

zones (Lackenby et al., 2007). 
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Optimum degradation zone (ODZ)  

Lackenby et al. (2007) indicated that, as the results of small increase of confining 

pressure, an optimum internal contact stress distribution and increased interparticle 

contact area occurred in ODZ.  Therefore, tensile stresses within particles were 

diminished and breakage was reduced significantly.  Besides, the coordination 

number was expected to be slightly increased (compared with DUDZ specimens) 

owing to the reversal of volumetric strain behaviour (from dilation to compression) 

Compressive stable degradation zone (CSDZ)  

According to Lackenby et al. (2007), breakage was more significant in CSDZ than 

in the ODZ.  They found that although corner degradation was still the foremost 

kind of breakage, some particle splitting takes place and that the fatigue of 

particles became more prominent in the CSDZ.  They postulated that particles 

were highly stressed and contact forces were more isotropic under increasing 

confining pressure.   

2.8 Summary 

Railway ballast generally comprises large, angular particles of typical size 

approximately 40 mm.  It places at the top layer of the substructure where the 

sleepers are embedded.  The main functions of railway ballast are to reduce 

pressures from the sleeper bearing area to acceptable levels at the surface of the 

subgrade soil, to facilitate maintenance operations for re-establishment of track 

riding quality, and to provide rapid drainage.  The ability of ballast to perform its 
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functions depends on the particle characteristics (e.g. particle size, shape, 

angularity, hardness, surface texture, gradation and durability) together with the 

in-situ physical state (e.g. grain structure and density).  Durability, particle shape 

and gradation are three main particle characteristics influencing the mechanical 

behaviour of ballast.   

Ballast functions deteriorate through the actions of traffic loading and maintenance 

tamping.  Laboratory tests (e.g. monotonic and cyclic triaxial tests, box tests) have 

been carried out to investigate the mechanical behaviour of ballast by researchers.  

The mechanical behaviour of ballast under static loading is mainly affected by 

stress level, initial density, particle angularity and particle surface roughness.  

Under low confining pressure, ballast exhibits high dilatancy and high principal 

stress ratios as result of the low interparticle contact forces and the interlocking of 

particles.  Under repeated loading, the resilient and permanent behaviour of ballast 

are mainly affected by the confining pressure and the applied cyclic loading.   

Particle crushing is a progressive process that can start at relatively low stresses, 

and certainly dominates the behaviour of the assembly at very high effective stress.  

The degree of particle breakage affects the deformation and the ultimate strength 

characteristics of ballast, and therefore the performance of the track.  Ballast 

particle breakage can occur in three ways (i.e. the splitting of particles, the 

breakage of angular projections and the grinding of small-scale asperities).  The 

particle breakage depends on the applied macroscopic stress, the size of particle 

and the coordination number.  The mechanism of ballast degradation under 
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repeated loading depends both on the confining pressure and maximum deviator 

stress.   
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CHAPTER 3 

LITERATURE REVIEW: DISCRETE ELEMENT 

MODELLING OF GRANULAR MATERIAL 

 

3.1 Introduction 

Granular materials are composed of distinct particles which displace 

independently from one another and interact only at contact points.  The discrete 

characteristics of the granular material result in complex behaviour under different 

loading conditions.  The discrete element method provides a way of investigating 

the mechanical behaviour of granular materials both microscopically and 

macroscopically.  In the modelling of granular materials, the discrete element 

method has the advantage that it enables the investigation of some features which 

are not easily measured in laboratory tests, such as interparticle friction, 

distribution of contact forces, coordination number, and particle movement.  

Furthermore, an identical prepared sample can be reused for different loading 

conditions in discrete element modelling.  Therefore, the material properties and 

the effect of loading condition can be investigated without any influence from the 

initial sample preparation method.   
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Cundall and Strack (1979) firstly applied the discrete element method (DEM) to 

granular materials and showed that DEM is a valid tool for fundamental research 

into the behaviour of granular materials by comparing the numerical results with 

the results from photoelastic analysis.  Parallel with the development of 

computational capacity, DEM has been used increasingly over the past three 

decades to investigate the behaviour of granular materials from a micro 

mechanical point of view.  However, some effects of micro properties are not yet 

fully understood, such as particle shape, interparticle friction, contact constitutive 

law and fabric (i.e. particle arrangement and orientation).   

This chapter generally contains the basic knowledge of DEM and PFC
3D
 and the 

developments and recent achievements of DEM.  In section 3.2, a description of 

the conceptual model of the discrete element method is presented first.  Then, 

attention is given to the computer code PFC
3D
, which is a simplified 

implementation of DEM.  The general mathematical background and some 

specific features (i.e. bonding models and clump logic) are presented.  In section 

3.3, the effects of particle shape in discrete element modelling are discussed, 

together with the introduction of two methods used to model the effect of particle 

shape.  The effect of interparticle friction on mechanical behaviour of granular 

material is discussed in section 3.4.  Section 3.5 shows two main methods of 

simulating particle breakage in two-dimension and three-dimension.  Finally, 

recent applications of PFC in modelling mechanical response of railway ballast are 

reviewed and presented in section 3.6.   
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3.2 Introduction to the Discrete Element Method and PFC
3D

 

3.2.1 The discrete element method 

The discrete element method was first developed by Cundall (1971) for rock 

mechanics problems and later applied to granular materials by Cundall and Strack 

(1979).  Cundall and Hart (1992) defined the scope of the discrete element method 

and summarized fundamental aspects in the modelling of discrete element systems.  

In their definition, the DEM allows finite displacements and rotations of discrete 

bodies, including complete detachment, and recognises new contacts automatically 

as the calculation progresses.   

The DEM models granular materials as packed assemblies of discrete elements.   

This method is based on the use of an explicit numerical scheme in which the 

interaction of the particles is modelled contact by contact and the motion of the 

particles is modelled particle by particle.  Therefore, the DEM makes it possible to 

analyse the mechanics of granular materials at both micro and macro levels.   

In the DEM, the interaction of the particles is treated as a dynamic process with 

states of equilibrium developing whenever the internal forces balance.  The contact 

forces and displacements of a stressed assembly of particles are found by tracing 

the movements of the individual particles.  Movements result from the propagation 

through the particle system of disturbances caused by specified wall and/or 

particle motion, and body forces.   
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The dynamic behaviour is represented numerically by a timestepping algorithm in 

which it is assumed that the velocities and accelerations are constant within each 

timestep.  The solution scheme is identical to that used by the explicit finite-

difference method for continuum analysis.  DEM is based upon the idea that the 

timestep is so small that, during a single timestep, disturbances cannot propagate 

from any particle further than its immediate neighbours.  Then, at all times, the 

forces acting on any particle are determined exclusively by its interaction with the 

particles with which it is in contact.   

The calculations performed in the DEM alternate between the application of 

Newton’s second law to the particles and a force-displacement law at the contacts.  

Newton’s second law is used to determine the motion of each particle arising from 

the contact and body forces acting upon it, while the force-displacement law is 

used to update the contact forces arising from the relative motion at each contact.  

More details about the calculation algorithm are described further in a later section.   

3.2.2 The PFC
3D

 Particle-Flow Model 

PFC
3D
 models stressed assemblies by the movement and interaction of rigid 

spherical particles based on the DEM.  The model is composed of distinct spheres 

that displace independently of one another and interact only at contacts or 

interfaces between the particles.  The assumptions made in PFC
3D
 are: 

1. The particles are treated as rigid bodies. 

2. The contacts occur over a vanishingly small area (i.e. at a point). 
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3. A soft-contact approach is used in the contacts so that the rigid particles are   

allowed to overlap one another at the contact points. 

4. The magnitude of the overlap is related to the contact force via the force-

displacement law. 

5. Bonds can exist at contacts between particles. 

6. All particles are spherical; however, the clump logic supports the creation 

of super-particles of arbitrary shape.  Each clump consists of a set of 

overlapping spheres, and acts as a rigid body with a deformable boundary. 

In PFC
3D
, the ball and the wall are the two basic entities.  Walls allow one to apply 

velocity boundary conditions to assemblies of balls for purposes of compaction 

and confinement.  The balls and walls interact with one another via the forces that 

arise at contacts.  PFC
3D
 is suitable for modelling the stress-strain response of a 

granular material, which deformation results primarily from the sliding and 

rotation of the rigid particles and the interlocking at particle interfaces.  More 

complex behaviour of granular materials can be modelled by allowing the particles 

to be bonded together at their contact points, so that internal forces (i.e. tensile, 

shear or moment) are allowed to develop at the contacts.  Some basic conceptual 

models and the mathematical background of PFC
3D
 are presented in the following 

subsections.  Further information with regard to PFC
3D
 can be found in the PFC

3D
 

manual (Itasca, 1999).   
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3.2.3 Calculation cycle 

The calculation cycle in PFC
3D
 is a timestepping algorithm that requires the 

repeated application of the law of motion to each particle, a force-displacement 

law to each contact, and constant updating of wall positions.  Figure 3.1 illustrates 

the calculation cycle.  At the start of each timestep, the contacts are updated from 

the particle and wall positions.  The force-displacement law is then applied to each 

contact to update the contact forces based on the relative motion between the two 

contacted entities and the contact constitutive model.  Then, the law of motion is 

applied to each particle to update its velocity and position based on the resultant 

force and moment arising from the contact forces and any body forces acting on 

the ball.  Also the wall positions are updated based on the specified wall velocities.   

 

Figure 3.1. Calculation cycle use in PFC
3D

 (Itasca, 1999). 
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Force-Displacement law 

The contact force vector Fi can be resolved into normal and shear components 

( n

iF  and s

iF ) with respect to the contact plane as  

s

i

n

ii FFF +=          (3.1) 

The force-displacement law relates the relative displacement between two entities 

at a contact to the contact force acting on the entities via the normal and shear 

stiffnesses at the contact.  The normal contact force vector is calculated by  

i

nnn

i nUKF =          (3.2) 

where nK  is the normal stiffness [force/displacement] at the contact and nU  is the 

overlap of the two entities.  The shear contact force is calculated in an incremental 

fashion.  When the contact is formed, the total shear contact force is initialized to 

zero.  Each subsequent relative shear-displacement increment results in an 

increment of elastic shear force that is added to the current value.  The shear 

elastic force-increment vector is calculated by  

s

i

ss

i UkF ∆−=∆         (3.3) 

where k
s
 is the shear stiffness [force/displacement] at the contact and s

iU∆  is the 

shear component of the contact displacement-increment vector calculated from the 

motion.  Finally, the new shear contact force is calculated by summing the shear 
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force vector existing at the start of the timestep with the shear elastic force-

increment vector 

{ } s

i

olds

j

s

i FFF ∆+=
][

        (3.4) 

Law of motion 

The motion of a single particle is determined by the resultant force and moment 

vectors acting upon it.  The equations of motion can be expressed as two vector 

equations.  One of the equations of motion relates the resultant force to the 

translational motion, as 

( )iii gxmF −= &&         (3.5) 

where Fi is the resultant force, m is the total mass of the particle, and gi is the body 

force acceleration vector.  The other equation of motion relates the resultant 

moment to the rotational motion, as 

ii HM &=          (3.6) 

where Mi is the resultant moment acting on the particle, and Hi is the angular 

momentum of the particle.  For a spherical particle of radius R with uniform 

density, Equation 3.6 can be simplified and referred to the global-axis system as   

iii mRIM ωω && 






== 2

5

2
       (3.7) 

For the clump, the equations of motion are further described in the section 3.3.3.   
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The equations of motion, given by Equations 3.5 and 3.7, are integrated using a 

centred finite-difference procedure involving a timestep of ∆t.  The quantities 

ix& and ωi are computed at the mid-intervals of t±n∆t/2, while the quantities xi, ix&& , 

iω& , Fi, and Mi are computed at the primary intervals of t±n∆t.  The accelerations 

are calculated as 

( ))2/()2/()( 1 tt

i

tt

i

t

i xx
t

x ∆−∆+ −
∆

= &&&&        (3.8) 
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i
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∆
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Inserting these expressions into Equations 3.5 and 3.7 and solving for the 

velocities at time ( 2/tt ∆± ) result in 
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Finally, the position of the particle centre for the next cycle can be calculated by  

txxx tt

i

t

i
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i ∆+= ∆+∆+ )2/()()(
&        (3.12) 
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3.2.4 Contact constitutive model 

The overall constitutive behaviour of a material is simulated in PFC
3D
 by 

associating a simple constitutive model with each contact.  Generally, the 

constitutive model acting at a particular contact consists of three parts: a stiffness 

model, a slip model and a bonding model.   

Contact-stiffness model 

The stiffness model provides an elastic relationship between the contact force and 

the relative displacement via a Force-Displacement Law (i.e. Equations 3.2 and 

3.3).  A linear contact-stiffness model is used in the simulations for this research.  

The linear contact model assumes that the stiffnesses of the two contacting entities 

A and B act in series.  The contact stiffnesses for the linear contact model can be 

calculated by 
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where the superscripts [A] and [B] denote the two entities in contact.   

The Slip Model 

The slip model, which is an intrinsic property of the two entities in contact, 

enforces a relationship between shear and normal contact forces such that the two 
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contacting balls may slip relative to one another.  It is defined by the friction 

coefficient at the contact µ [dimensionless], where µ is taken to be the minimum 

friction coefficient of the two contacting entities.  If the overlap is less than or 

equal to zero, then both the normal and shear contact forces are set to zero.  

Otherwise, the contact is checked for slip conditions by calculating the maximum 

allowable shear contact force 

n

i

s FF µ=max          (3.15) 

If ss

i FF max> , then slip is allowed to occur (during the next calculation cycle) by 

setting the magnitude of s

iF  equal to sFmax  via 

( )siss

i

s

i FFFF /max←         (3.16) 

The bonding models 

PFC
3D
 allows particles to be bonded together at contacts.  Two bonding models are 

provided: a) a contact-bond model and b) a parallel-bond model.  Once a bond is 

formed at a contact between two particles, the contact continues to exist until the 

bond is broken.   

a) The contact-bond model 

A contact bond can be envisaged as a pair of elastic springs with constant normal 

and shear stiffnesses acting at the contact point.  These two springs have specified 

shear and tensile normal strengths.  The constitutive behaviour relating the normal 
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and shear components of contact force and relative displacement for particle 

contact occurring at a point is shown in Figure 3.2. The contact bond breaks when 

the contact force exceeds either the normal contact bond strength or the shear 

contact bond strength.   

b) The parallel-bond model 

A parallel bond can be envisaged as column of elastic glue lying on the contact 

plane.  The parallel bond can transmit both forces and moments between particles.  

The constitutive behaviour of the parallel bond is similar to that of the contact 

bond, as shown in Figure 3.2.  Relative motion at the contact causes a force and a 

moment to develop within the parallel bond as a result of the stiffness of the 

parallel bond.  The parallel bond breaks when the stress in any part of the bond 

exceeds the parallel bond strength.   

The total force and moment associated with the parallel bond are denoted by iF  

and iM .  Each of these vectors can be resolved into normal and shear components 

with respect to the contact plane as  

s

i

n

ii FFF +=          (3.17) 

s

i

n

ii MMM +=         (3.18) 

where n

iF , n

iM  and s

iF , s

iM  denote the normal and shear component vectors, 

respectively.  These vectors are shown in Figure 3.3.  The maximum tensile and 

shear stresses acting on the bond periphery can be calculated by 
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where A is the area of the bond disc, J is the polar moment of inertia of the disc 

cross-section, I is the moment of inertia of the disc cross-section about an axis 

through the contact point and R  is the radius of the bond disc.   

 

(a) Normal component of contact force 

 

(b) Shear component of contact force 

Figure 3.2. Constitutive behaviour for contact occurring at a point (Itasca, 1999). 
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Figure 3.3. Parallel bond depicted as a cylinder of cementatious material (Itasca, 

1999). 

3.2.5 Clump logic 

A clump is a single entity of overlapping balls (i.e. the balls comprising the clump 

remain at a fixed distance from each other).  Internal overlapping contacts are 

ignored in calculations, resulting in a saving of computational time compared to a 

similar calculation in which all contacts are active.  In this sense, a clump differs 

from a group of particles that are bonded to one another (an agglomerate).   

The total mass of a clump m, the location of the centre of mass of clump xi
[G]
 and 

the moments and products of inertia Iii and Iij, which are the basic mass properties 

of a clump, are defined by the following equations 
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where Np is the number of balls in the clump, m
[p]
 is the mass of a ball, x

[p] 
is the 

centroid location of the ball and R
[p]
 is the radius of the ball.   

The motion of a clump is determined by the resultant force and moment vectors 

acting upon it.  Because a clump is treated as a rigid body, its motion can be 

described in terms of the translational motion of a point in the clump and the 

rotational motion of the entire clump.  The equation for translational motion can be 

written in the vector form  

( )iii gxmF −= &&         (3.25) 

where Fi is the resultant force, the sum of all externally-applied forces acting on 

the clump and gi is the body force acceleration vector arising from gravity loading.  

The equation for rotational motion can be expressed in the matrix form as  

{ } { } [ ]{ }αIWM =−         (3.26) 
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in which [M] is the resultant moment about the centre of mass, iω is the angular 

velocity about the principal axis and iω&  is the angular acceleration about the 

principal axes, referred to a local coordinate system that is attached to the clump at 

its centre of mass.  The equations of motion, given by Equations 3.25 and 3.26, are 

integrated using a centred finite-difference procedure involving a timestep of ∆t as 

described in section 3.2.3.   
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3.3 Influence of Particle Geometry in DEM 

Due to the limited computational power, circular elements in two-dimension were 

used to model the granular materials in the early discrete element analysis (e.g. 

Cundall and Strack, 1979; Cundall, 1989; Ting et al., 1989; Bathurst and 

Rothenburg, 1990; Bardet and Proubet, 1991; Iwashita and Oda, 1998).  The 

studies showed that insights into the micro mechanisms governing the response of 

real granular materials can be obtained from two-dimensional simulations.  

However, laboratory tests clearly showed that the responses for two-dimensional 

and three-dimensional particles under similar boundary conditions are different 

(Thomas, 1997).  Spherical elements have been widely used in recent years as 

computational power has increased (e.g. Thornton, 2000; Suiker and Fleck, 2004; 

Cui and O’Sullivan, 2006).  More valuable information was obtained from these 

three-dimensional simulations, as they more readily relate to real granular 

materials.   

In fact, natural grains (e.g. sand and gravel) normally have an irregular shape.  

Mitchell (1993) pointed out that it is typical for sands to have more than half of 

their particles with a ratio of length to width more than 1.4.  Irregularly shaped 

particles can provide interlocking and extra moment resistance (i.e. resistance to 

rotation).  The perfectly circular/spherical shape of the idealised particles makes 

them tend to roll excessively.  As a result, a lower overall strength for an assembly 

of circular/spherical particles was commonly observed.  Besides, sphericity also 

has a significant effect on the volumetric strain and the maximum dilation angle 



 63 

(Frossard, 1979).  The problem of excessive rolling in numerical simulations has 

been demonstrated by many researchers (e.g. Ting et al., 1989; Bathurst and 

Rothenburg, 1990; Bardet and Proubet, 1991; Ng and Dobry, 1992).  Different 

approaches have been tried to overcome the problem of using discs or spheres.  

Two major methods used to simulate the effect of particle shape are presented in 

the following subsection.   

3.3.1 Restrain the rotation of individual particles 

Ting et al. (1989) showed that realistic soil behaviour can be obtained in discrete 

element simulation when particle rotation is restrained artificially.  A similar 

approach was used by Ng and Dobry (1992, 1994) to simulate the mechanical 

behaviour of sand under monotonic and cyclic loading.  Based on studies of shear 

bands in laboratory and numerical simulations, Iwashita and Oda (1998) and Oda 

and Kazama (1998) indicated that rotational resistance to rolling for each particle 

is one of the factors controlling the strength and dilatancy of granular soils.  They 

suggested that rotational resistance should be activated at contact points in the 

discrete element modelling.  A modified distinct element method (MDEM) was, 

therefore, developed by Iwashita and Oda (1998).  In addition to contact-stiffness 

model and slip model, a rolling model, which comprises an elastic spring, a 

dashpot, a no-tension joint and a slider, is installed at each contact point in MDEM, 

as shown in Figure 3.4.  Iwashita and Oda (1998) used MDEM to investigate the 

effect of rolling restriction.  The results showed that a higher peak and ultimate 

shear strength and clear void localization were observed by restricting the particle 
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rotations, compared with simulations using free rolling particles, as shown in 

Figure 3.5.   

 

Figure 3.4. Contact model in MDEM (Iwashita and Oda, 1998). 

Recently, Suiker and Fleck (2004) conducted a series of triaxial test simulations to 

investigate the effect of particle rotation and interparticle friction.  They found that 

both friction angle φ' and dilatancy angle ψd increase when particle rotation is 

restricted and that the differences in the friction angle φ' and dilatancy angle ψd for 

free particle rotation samples and restricted particle rotation samples become more 

marked with increasing interparticle friction angle φ'µ, as shown in Figure 3.6.   

 

Figure 3.5. Effect of particle rolling resistance on stress-strain behaviour and 

volumetric change (contraction positive) (Iwashita and Oda, 1998).  
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Figure 3.6. Interparticle friction angle φ'µ against friction angle φ' and dilatancy 

angle ψd at steady-state collapse (at deviator strain = 0.05) (Suiker and Fleck, 2004). 

3.3.2 Using non-circular/spherical particles 

The drawback of MDEM is that the numerical parameters of rotational resistance 

are difficult to relate to any observable physical quantity.  Particle shape 

determines the distribution and magnitudes of the contact forces, and particle 

interlocking due to the angularity of particles significantly affects the mechanical 

behaviour.  However, these cannot be modelled by restraining rotation of 

circular/spherical particles.  Oda et al. (1985) indicated that more fabrics are 

possible at the microscopic level with non-spherical particles and that simulations 

based on circular particles may be too idealised to capture the shape characteristic 

of soil behaviour.  The approach which reduces the effect of the numerical 

idealization by using more accurate shape of granular materials was developed by 
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many researchers (e.g. Rothenburg and Bathurst, 1992; Lin and Ng, 1997; Favier 

et al., 1999; O’Sullivan and Bray 2003; Ni et al., 2000; Powrie et al., 2005).   

Rothenburg and Bathurst (1992) employed two-dimensional elliptical particles 

with eccentricity e ranging from 0 to 0.25 to model real sand behaviour.  They 

found that the main difference in the mechanical behaviour of assemblies between 

elliptical particles and discs are the strength characteristics.  And they showed that 

assemblies of elliptical particles had similar qualitative features as real sands.  The 

stress-strain behaviour for ellipses with different eccentricities is shown in Figure 

3.7.  Rothenburg and Bathurst (1992) also found that the coordination number 

decreased with both decreasing eccentricity and increasing shear strain, as shown 

in Figure 3.8.  Similar results were found in three-dimensional simulations (e.g.  

Lin and Ng, 1997; Ng, 2001).  A higher peak and ultimate shear strength, larger 

initial stiffness, more dilation and less particle rotation for elliptical particles than 

spherical particles were observed by Lin and Ng (1997) when they investigated the 

behaviour of assemblies of elastic ellipsoidal particles in triaxial test simulations.  

In addition, they found that the assembly of ellipsoidal particles achieved lower 

porosity and larger coordination number under the same consolidation procedure.   

Favier et al. (1999) reported a method, namely the multisphere method, to 

represent non-spherical particles using overlapping spheres which are fitted to the 

surface contour of the real particle shape.  The approach has been used to 

approximate ellipsoidal particles using four identical overlapping spheres placed 

on the major and minor axes of the particle (Vu-Quoc et al. 2000, Zhang and Vu-

Quoc, 2000, and Favier et al. 2001) as shown in Figure 3.9.  In the same year, 
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Thomas and Bray (1999) used a disc cluster (which is a group of circular discs 

permanently connected to form an irregularly shaped particle) to represent the 

shape of real grains.  They simulated biaxial shear tests and anchor pull-out tests 

using these disc clusters.  The results showed that disc clusters exhibited less 

tendency to rotate excessively and that computation speed did not decrease 

significantly.  Thomas and Bray (1999) showed that specimens with more realistic 

fabrics (i.e. particle arrangement and orientation) can be created by using disc 

clusters and reported that peak internal friction angles φ'peak increased 12.5º (from 

22.5º to 35º) when using disc clusters instead of single discs with free rotation, as 

shown in Figure 3.10.   

 

Figure 3.7. Stress-strain behaviour during biaxial compression (Rothenburg and 

Bathurst, 1992). 
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Figure 3.8. Coordination number plotted against shear strain (Rothenburg and 

Bathurst, 1992). 

 

Figure 3.9. The position of the four spheres in the cluster (Vu-Quoc et al., 2000). 

Recently, O’Sullivan and Bray (2003) used overlapping sphere clusters to model 

single sand particles in triaxial test simulations, as shown in Figure 3.11.  They 

indicated that the assembly of overlapping sphere clusters exhibited a stiffer 

response and higher peak stress ratio than the assembly of spheres.   
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Figure 3.10. (a) Stress-strain response and (b) average particle rotation in biaxial 

shear tests (Thomas and Bray, 1999). 

Ni et al. (2000) and Powrie et al. (2005) studied the effect of applied stress, initial 

sample porosity, particle shape and interparticle friction on the behaviour of sand 

using DEM.  Each soil grain was modelled as two spheres bonded together (an 

“agglomerate”) with a high strength parallel bond (as shown in Figure 3.12) in 

their simulations.  They defined the particle shape factor as (R + r) / R, where R 

and r are the radii of the larger and smaller spheres, respectively.  They found that 

the deformation and shear strength of the assembly are a function of the particle 
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shape factor.  With increasing the shape factor, both the peak and ultimate shear 

strength increased.  The overall dilation of the sample during the simulations 

increased significantly and the degree of particle rotation reduced significantly 

with increasing particle shape factor.  Ni et al. (2000) found that the shear strength 

of the assembly with shape factor greater than 1.7 was higher than that of single 

spheres with rotation prevented.  They concluded that restraining rotation of 

spherical particles cannot capture the effect of interlocking provided by particle 

shape.   

 

Figure 3.11. Axisymmetric sphere clusters (O’Sullivan and Bray, 2003). 

 

Figure 3.12. Schematic illustration of a bonded particle. The diameter of the parallel 

bond is the same as the diameter of the smaller sphere (Powrie et al., 2005). 
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Since the angularity of railway ballast particle tends to be much more than that of 

most sand particles, modelling the shape characteristic of ballast particle is 

significantly important in the discrete element modelling of railway ballast.  Lim 

and McDowell (2005) used both spheres and eight-ball cubic clumps representing 

railway ballast particle in the simulations of box test and showed that the eight-ball 

clumps give much more realistic behaviour due to particle interlocking.  Similar 

findings were reported by McDowell et al. (2006) in the simulations of monotonic 

triaxial tests on railway ballast.  Details are presented in section 3.6.   

3.4 Influence of Interparticle Friction Angle 

Skinner (1969) said that when the interparticle friction is high, particle rolling 

dominates the volume change; when the interparticle friction is low, sliding 

dominates the volume change.  Suiker and Fleck (2004) observed that both 

internal friction angle φ' and dilatancy angle ψd increased with increasing 

interparticle friction angle φ'µ in triaxial test simulations, as shown in Figure 3.13.  

However, when the interparticle friction was high (φ'µ >25°), the internal friction 

angle φ' and dilatancy angle ψd levelled off.  They concluded that the relative 

proportion of interparticle rolling to sliding increased with increasing interparticle 

friction angle φ'µ.  A similar conclusion was drawn by Liu and Matsuoka (2003) 

when they conducted simple shear test simulations using circular discs.   

Ni (2003) investigated the effect of interparticle friction angle φ'µ in direct shear 

test simulations using spheres and two bonding spheres, respectively, as described 

in section 3.3.2.  He reported that the interparticle friction significantly affected 
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both peak strength and volumetric dilation of the assemblies.  He found that for the 

samples composed of spherical particles, the interparticle friction angle φ'µ did not 

affect the ultimate strength; whereas, for the samples composed of two bonding 

particles the ultimate strength increased with increasing interparticle friction.  

Hence, particle shape and interparticle friction together affect the ultimate strength 

of an assembly.  Ni (2003) also reported that for both the assembly of spheres and 

the assembly of two-ball agglomerates, a higher degree of particle rotation was 

observed when the particle friction angle φ'µ is higher.   

 

Figure 3.13. Interparticle friction angle φ'µ versus internal friction angle φ' for DEM 

and experimental results (Suiker and Fleck, 2004). 

3.5 Modelling of Particle Breakage 

Two methods have been proposed to model particle breakage in DEM.  One is to 

treat each granular particle as a porous agglomerate built by bonding smaller 

particles (Robertson, 2000; McDowell and Harireche, 2002a; Cheng et al., 2003; 

and Lim and McDowell, 2005).  The other solution is to replace the particle with 
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an equivalent group of smaller particles when the original particle fulfils a 

predefined failure criterion (Lobo-Guerrero and Vallejo, 2005).  Details of these 

methods are presented as follows: 

The fracture of soil grains was first modelled by Robertson (2000) using PFC
3D
.  

In his studies, each particle was modelled as a porous agglomerate of balls bonded 

together with contact bonds.  Three different packings (e.g. hexagonal close 

packing (h.c.p.), face-centred cubic packing (f.c.c.) and body-centred cubic 

packing (b.c.c.)) were investigated.  Robertson (2000) found that results for h.c.p. 

agglomerates with random rotation were more repeatable than for the other 

packings.  He also found that a Weibull distribution of bond strengths was best 

reproduced by removing balls at random from the h.c.p. agglomerate to simulate 

flaws and that scaling ball contact stiffness and bond strength by the same factor f 

resulted in failure at the same strain at a fracture force scaled by f.   

Following Robertson (2000), McDowell and Harireche (2002a) used realistic 

particle parameters and applied gravity to stabilise the agglomerate prior to 

loading in order to replicate experiments of crushing of silica sand particles.  

Figure 3.14 shows the agglomerate in single particle crushing test simulation.  

They showed that it is possible to reproduce the right average strength of 

agglomerates as a function of size and the correct statistical distribution of 

strengths for a given size, so that the strengths followed the Weibull distribution.   

McDowell and Harireche (2002b) then used these agglomerates to model one-

dimensional compression tests on silica sand.  The results from these simulations 
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showed that yielding coincided with the onset of bond fracture, consistent with the 

hypothesis by McDowell and Bolton (1998) that yielding is due to the onset of 

particle breakage.   

 

Figure 3.14. Final fracture of a typical 0.5 mm diameter agglomerate, showing intact 

contact bonds (McDowell and Harireche, 2002a). 

Lobo-Guerrero and Vallejo (2005) developed a method to model particle crushing 

in two-dimensional simulations.  In their method, they assumed that the breakage 

criterion applies only to a particle having a coordination number smaller than or 

equal to three and that the real loading configuration (as shown in Figure 3.15(a)) 

is equivalent to that obtained in a diametrical compression test (as shown in Figure 

3.15(b)).  When the internal tensile stress of the disc is greater than its tensile 

strength, the disc is fractured into eight smaller discs, as shown in Figure 3.15(c).   

3.6 Modelling Mechanical Response of Railway Ballast Using 

DEM 

Since railway ballast in the track generally comprises large particles of typical size 

approximately 40 mm, it is difficult to treat such a material as a continuum.  DEM 
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provides insight into the micro mechanical behaviour of railway ballast.  The 

mechanical behaviour of railway ballast in various test conditions has been 

simulated by many researchers (Lim and McDowell, 2005; McDowell et al., 2006; 

Lobo-Guerrero and Vallejo, 2006; and Hossain et al., 2007).  This section will 

review recent work on discrete element modelling of ballast.   

 

Figure 3.15. Idealisation of the induced tensile stress and arrangement of the 

produced fragments (Lobo-Guerrero and Vallejo, 2005). 

Lim and McDowell (2005) carried out a series of simulations on single particle 

crushing tests for railway ballast using agglomerates of bonded balls.  In their 

simulations, they showed that the distribution of strengths correctly followed the 

Weibull distribution and that the size effect on average strength was consistent 

with that measured in the laboratory.  Lim and McDowell (2005) also simulated 

oedometer tests on crushable ballast particles using agglomerates of bonded balls.  

Compared with experimental results, they found that the yield stress for the 

agglomerates was less than that for the real ballast.  They indicated that the 

difference of results between laboratory tests and simulations was due to the 
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spherical shape of the agglomerates, which leaded to columns of strong force in 

the simulated sample.   

Box tests (as mentioned in section 2.6.2) were simulated by Lim and McDowell 

(2005) to study the mechanical behaviour of ballast subjected to traffic loading.  

Spheres and eight-ball clumps were used to represent each ballast particle to 

ascertain whether interlocking of ballast can be modelled and whether the particle 

shape influences the resilient and permanent deformation of the ballast.  They 

found that the eight-ball clumps can provide particle interlocking and give more 

realistic mechanical behaviour under repeated loading.  A similar conclusion was 

drawn by McDowell et al. (2006) when they used both spheres and eight-ball 

cubic clumps in simulations of large-scale triaxial experiments.  McDowell et al. 

(2006) pointed out that, as breakage was not considered in their simulations, 

comparing with the experimental results (Indraratna et al., 1998), dilation rather 

than contraction was observed at high confining pressures.   

Lobo-Guerrero and Vallejo (2006) studied the effect of crushing on railway ballast 

in a simulated track section by using a circular disc to represent each single ballast 

particle.  Two hundred cycles of loading were applied to the circular disc 

aggregate through three simulated sleepers.  The method of modelling particle 

crushing developed by Lobo-Guerrero and Vallejo (2005), as mentioned in section 

3.5, was used in their simulations.  They found that permanent deformation 

increased considerably when particle crushing was included and that particle 

crushing was concentrated underneath the simulated sleepers, as shown in Figure 

3.16.  However, the effect of particle shape was not considered in their simulations.   
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Recently, Hossain et al. (2007) studied the effect of angular ballast breakage on 

the stress-strain behaviour of railway ballast under different confining pressures 

using biaxial test simulations.  Two dimensional angular shaped clumps were used 

in their simulations to model particle interlocking.  Similar to the method 

introduced by Lobo-Guerrero and Vallejo (2005), particle crushing was simulated 

by releasing discs from the clump when the internal tensile stress induced by 

contact forces was greater than or equal to 10 MPa.  Hossain et al. (2007) showed 

that particle breakage had significantly effect on both the axial strain and the 

volumetric strain.   

 

Figure 3.16. Details of the unloaded sample of crushable ballast after 200 cycles 

(Lobo-Guerrero and Vallejo, 2006). 
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3.7 Summary 

DEM is a powerful tool for fundamental research into the behaviour of granular 

materials.  The basic concepts and general mathematical backgrounds of DEM and 

PFC
3D
 have been presented.  Some specific features (e.g. bonding models and 

clump logic) in PFC
3D
 have been described.  Circular/spherical particles tend to 

roll excessively and lead to a lower strength of the assembly.  Restraining rotation 

of individual particles and using non-circular/spherical particles are the main 

approaches to overcome the problem of excessive rolling when using circular discs 

or spheres.  Both peak and ultimate shear strength can be increased by restraining 

the rotation of circular/spherical particles in an assembly.  However, the numerical 

parameters of rotational resistance are difficult to relate to any observable physical 

quantity, and restraining rotation of circular/spherical particle cannot simulate the 

effect of particle interlocking.   Higher shear strength can be obtained by using 

non-circular/spherical particles to model the effect of particle shape and particle 

interlocking.  Interparticle friction also affects the stress-strain behaviour and 

volumetric change of an assembly.  Both friction angle φ' and dilatancy angle ψd 

increase with increasing interparticle friction angle φ'µ (i.e. φ'µ <25°), but then 

level off with further increase in interparticle friction angle.  Two main methods 

have been presented to model particle breakage in DEM.  One is to treat a grain as 

a porous agglomerate built by bonding smaller particles.  The other is to replace 

the particles that fulfil a predefined failure criterion with an equivalent group of 

smaller particles.  The simulated mechanical behaviour of railway ballast in 

various test conditions has been discussed.  The studies indicated that it is 
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necessary to simulate particle interlocking in modelling of mechanical behaviour 

of railway ballast.  In the triaxial test simulations, dilation rather than contraction 

was observed at high confining pressures.  This indicated that it is necessary to 

consider the particle breakage in the simulation of railway ballast.  The effect of 

crushing on the railway ballast in two-dimensional simulations of ballasted track 

has been reported.  The studies showed that the influence of particle breakage on 

the settlement and volumetric strain observed in the simulations was significant. 
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CHAPTER 4 

IMPORTANCE OF MODELLING BALLAST 

PARTICLE SHAPE 

  

4.1 Introduction 

Previous research (e.g. Cheng et al., 2004; Harireche and McDowell, 2003; Lim 

and McDowell, 2005; McDowell et al., 2006) has shown some success in 

simulating the behaviour of granular materials using DEM.  The use of PFC
3D
 

(Itasca, 1999) to model crushable particles using bonded agglomerates has been 

described in detail by Robertson (2000), McDowell and Harireche (2002), Cheng 

et al. (2003), and Lim and McDowell (2005).  Lim and McDowell (2005) 

investigated the use of DEM for modelling railway ballast subjected to single 

particle crushing tests, oedometer tests and box tests involving cyclic loading by a 

simulated railway sleeper.  They found that DEM was capable of simulating 

particle fracture and particle interlock.  In their single particle crushing test 

simulations and oedometer test simulations, particle fracture was achieved by 

bonding small balls together to form agglomerates of ballast-sized particles, whilst 

in the box test simulations clumps of overlapping balls were used to reduce 

computational time.  However, the clumps used in the box test simulations were 
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simple cubic clumps of eight spheres, so the clump shape did not resemble that of 

a real ballast particle.  Previous studies (Ting et al., 1989; Ng and Dobry, 1992; 

Rothenburg and Bathurst, 1992; and Favier et al., 1999) have shown that particle 

shape has a great influence on the mechanical behaviour of granular materials and 

that using spheres to represent each grain is not enough for granular materials 

comprising angular particles.  

This chapter presents a simple procedure used to model ballast particle shape by 

using many overlapping balls of different sizes to form complex clumps 

resembling real ballast particles.  The parameters affecting the clump shape are 

described and examples of clumps using different parameters are presented.  In 

addition, the distribution of contact forces is examined in an aggregate of spheres 

and two alternative aggregates of clumps created using different parameters, in 

order to show the effect of the particle shape on the inhomogeneous stresses 

induced within the particle assembly.  The result of the application of a cycle of 

load in a box test on clumps is compared with that for a box test on spheres and the 

effect of the particle shape on contact force distribution, particle displacement and 

particle rotation is studied.  

4.2 Modelling Ballast Particle Shape 

4.2.1 Modelling procedure 

Figure 4.1 shows a typical real ballast particle.  The aim is to model such a 

complex shape using DEM.  For this purpose, overlapping balls are used to form 



 82 

clumps using a simple procedure which gives control over the sphericity, 

angularity and surface texture of the clump.   

 

Figure 4.1. Typical full-sized ballast particle. 

A ball is created at the centre of a cubic cell to form the main body of the clump.  

Fourteen directions are created: six orthogonal to the cube faces (i.e. in positive 

and negative directions along each orthogonal axis), and eight along the cube 

space diagonals, as shown in Figure 4.2.  All balls in the clump are created within 

a virtual sphere with a radius Rv.  Along each direction, it is possible to generate 

balls to form the clump; however, the directions of ball generation are chosen at 

random, and not all directions might be employed.  First, either only the six 

directions orthogonal to the cube faces are chosen for possible ball generation, or 

all 14 directions are chosen as possibilities.  The likely number of directions used 

for ball generation is chosen as n and the probability p that a particular direction 

might be used is then n/6 if only the directions orthogonal to the cube spaces are 

used as possible directions, and n/14 if the space diagonals are also used.  For each 

direction then, a random number r is drawn from uniform distribution in the range 

[0.0, 1.0].  If r is less than or equal to p, then this direction is chosen to generate 
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balls.  The number of balls generated in each direction is set directly.  Figure 4.3 

shows the ball generation process in one direction.  The radius of the second ball 

formed is less than the radius of the first one.  The difference in the radii of 

successively generated balls is a uniformly distributed random variable in the 

range [0.0, c], where c is the maximum possible difference and is chosen directly.  

In this way, the angle subtended by the common tangents to successively 

generated spheres, is created at random, and the maximum angle is controlled 

partly by c (see below).  Figure 4.4 shows the clump geometry and generation 

along a typical direction x.  The centre of the second ball is derived from the centre 

of the first one and reduction in radius.  The first ball with radius 1R  is centred at 

A(x1,y1,z1) and the second ball with radius 2R  is centred at B(x2,y2,z2).  The angle 

2α is the angle subtended by the two common tangents to the spheres.   It can be 

seen that 

112 Dxx +=                                         (4.1) 

12 yy =                                           (4.2) 

12 zz =                                           (4.3) 

211 DDR +=                                 (4.4) 

322 DDR +=                                 (4.5) 

421 DRR =−                               (4.6) 
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where 4D  is the reduction of radius in the range [0.0, c]. 

 

Figure 4.2. Directions of ball generation for clumps. 

 

 

Figure 4.3. Ball generation along one direction. 
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Figure 4.4. Definition of clump geometry. 

Substituting Equations 4.4 and 4.5 into Equation 4.6 yields 

431 DDD +=                                     (4.7) 

Substituting Equation 4.7 in Equation 4.1: 

4312 DDxx ++=                     (4.8) 

where 3D  is the clump extension parameter and is constant and is chosen by the 

user.   

The relationship between D4, D3 and α is given by  

( ) 143

43

4 1sin
−

+=
+

= DD
DD

D
α                    (4.9) 
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The parameters D3, c (and hence D4), and the number of balls generated along 

each direction each has an influence on the sphericity of the particle.  The ratio 

D3/D4 controls the angle α which will influence the sphericity depending on the 

number of balls used.  Figure 4.5 shows the effect of using different values of α to 

generate clumps, shown for a constant value of D3.  In Figure 4.5 the value of α 

and hence D4 is constant for each generated ball and the maximum permissible 

number of balls have been shown; in the simulations described in subsection 4.2.2 

below, the value of D4 is a uniformly distributed random variable in the range [0.0, 

c] and is chosen at random for each ball generated.  A high sphericity would be 

achieved with a low value of D3, a high value of D4, and a small number of balls.  

The value of D4 and the number of balls used also influences the angularity since 

this will determine the size of the smallest ball.  Using a large number of balls with 

small extension D3 can be used to produce flatter particle surfaces.   

 

Figure 4.5. Effect of angle α on clump geometry. 

After all the selected directions for ball generation have been used, balls are used 

to link up outermost balls of adjacent directions in order to form edges of the 

clump.  A line is used to join the outermost balls, and a series of balls inserted in 
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between, as shown in Figure 4.6.  The radii of these balls vary linearly from one 

outermost ball to the other, and the number of such balls for each edge, set directly, 

affects the fineness or surface texture of the modelled ballast particle.  The greater 

the number of balls used in each edge, the more ‘realistic’ the clump.   

 

Figure 4.6. Formation of edge of clump. 

 

4.2.2 Results 

Table 4.1 shows the parameters used for five different samples of clumps.  Figures 

4.7-4.11 show some examples of the clumps formed using these parameters.  It can 

be seen that realistic clumps can be formed by choosing a small extension between 

the clumps D3 and large maximum value c in the reduction in ball size D4, which 

is chosen at random for each generated ball; this tends to give large values of α 

and serves to produce simulated ballast which is reasonably equi-dimensional as is 

required by the Railtrack Line Specification for track ballast in the UK 

(RT/CE/S/006 Issue 3, 2000).   
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Shape parameters 
Sample 

4.1 

Sample 

4.2 

Sample 

4.3 

Sample 

4.4 

Sample 

4.5 

Number of directions of 

ball generation 
6 14 14 14 6 

Probability of the number 

of directions of ball 

generation used, p (%) 

50 50 50 40 80 

Maximum number of balls 

in each direction 
2 2 2 2 2 

Maximum reduction of 

radius in each direction, c 
0.2R 0.5R 0.2R 0.4R 0.5R 

D3 0.2R 0.2R 0.2R 0.2R 0.5R 

Number of balls used in 

each edge 
1 2 2 2 2 

Table 4.1. Parameters for clumps in different sample. 

 

 

 Figure 4.7. Typical clumps generated for Sample 4.1 (refer to Table 4.1 for 

parameters). 
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Figure 4.8. Typical clumps generated for Sample 4.2 (refer to Table 4.1 for 

parameters). 

 

Figure 4.9. Typical clumps generated for Sample 4.3 (refer to Table 4.1 for 

parameters). 
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Figure 4.10. Typical clumps generated for Sample 4.4 (refer to Table 4.1 for 

parameters). 

 

Figure 4.11. Typical clumps generated for Sample 4.5 (refer to Table 4.1 for 

parameters). 
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4.3 Box Test Simulations Using Unbreakable Irregular Shaped 

Particles 

4.3.1 Modelling procedure 

McDowell et al. (2004) described box tests on ballast involving applied cyclic 

load to a simulated sleeper on ballast in a box of dimensions 700 mm × 300 mm × 

450 mm.  The test set-up is shown in Figure 2.20.  Lim and McDowell (2005) 

described discrete element modelling of this ballast using a sphere to represent 

each ballast particle, and also using a simple eight-ball cubic clump.  Following 

Lim and McDowell (2005), box tests were simulated using the new clumps 

developed in section 4.2, to examine the effect of clump shape on the distribution 

of contact forces and also the cyclic response of the aggregate.   

Figure 4.12 shows the simulated box test arrangements for the spheres, Samples 

4.1 and 4.2.  The box has dimensions 700 mm × 300 mm × 450 mm.  Figure 

4.12(a) shows the box with 1936 spheres, each of diameter 36.25 mm prior to 

loading.  The sample was compacted by enhanced gravity and reducing gravity to 

9.81 m/s
2
 towards the end of the compaction stage.  In order to make particle 

compact easier and reduce computational time for the compaction process, a low 

friction coefficient was used.  However, frictionless balls were not used as it was 

found that it took the spheres a long time to stabilise after compaction, even with 

the default local non-viscous damping active.  Therefore, during the compaction 

process, the coefficients of friction for the spheres, sleeper, walls and base were set 

to be 0.3.  During subsequent loading, the friction coefficients were set equal to 



 92 

0.5.  The normal and shear stiffnesses (linear-elastic) of the spheres were set to be 

5.08×10
9
 N/m and the stiffnesses of the sleeper and walls were set to have the 

same values.  Since in box test the Young’s modulus of stiff rubber is 

approximately 2,000 times smaller than that of steel (Ashby and Jones, 1980), the 

stiffnesses of the simulated rubber base were set to 2.54×10
6
 N/m (which is 2,000 

times smaller than that of value for the walls).  The density of the spheres was 

2,600 kg/m
3
. 

 
(a) 

 
(b) 

 
(c) 

Figure 4.12. Box test on (a) spheres, (b) Sample 4.1 and (c) Sample 4.2. 
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The clumps were formed by creating small initial spheres, expanding to a diameter 

of 36.25 mm and cycling to equilibrium.  “Virtual spheres” were then created by 

deleting the initial spheres and creating a virtual space by multiplying the initial 

sphere diameter by a factor of 1.26 for Sample 4.1 and 1.31 for Sample 4.2.  Each 

“virtual sphere” formed the outermost possible boundary for each clump and the 

clumps were created within the “virtual spheres”.  Figure 4.12(b) shows Sample 

4.1, containing 1,770 clumps (17,642 balls) and Figure 4.12(c) shows Sample 4.2 

with 1,995 clumps (65,591 balls).  For the clumps, the stiffnesses and coefficients 

of friction used were the same as for the simulated box tests on spheres.  Similar to 

the compaction procedure for the spheres, during compaction the coefficient of 

friction of the balls was set to 0.3, and increased to 0.5 after compaction.   

It should be noted that for the clumps, since balls overlap, the total volume of balls 

in a clump is greater than the volume of the clump and the mass of the clump is 

therefore greater than the mass of an equivalent clump with a uniform density; 

such an entity is currently not available within PFC
3D
.  Where there is overlapping 

of balls within a clump, there is a contribution to the mass in the overlapping 

region from each of the overlapping balls.  This may not influent the mechanical 

behaviour of the clumps under static loading. However, when the dynamic effect 

of the clumps is significant, the influence of mass due to overlapping balls will 

become significant.  The mass of overlapping balls also affects the moments of 

inertia of the clump since the mass is not uniformly distributed within the clump.  

Thus, a modified density was used in each clump.  In order to achieve the desired 

mass, the modified density ρm is derived from the initial density ρo as 
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                              (4.10) 

where Vi is the volume of the i
th
 ball in the clump and Vclump is the volume of the 

clump and  

clump

overlap

ii VVV +=∑∑                           (4.11) 

where ∑Vi
overlap

 is the volume of overlap in the clump.  This procedure produces 

clumps with the correct mass but with a non-uniform density.  Due to the difficulty 

in calculating the volume of each clump, and since the geometry of each clump is 

different, the volume of a clump in Equation 4.10 was approximated to be 

equivalent to the volume of a sphere of diameter 36.25 mm (i.e. the volume of the 

sphere created before expanding to create a virtual sphere to contain the clump).  

The use of clumps having non-uniform density because of overlapping mass 

means that the dynamics of the clumps are only approximately correct.  Since the 

balls of the clump produced following the procedure described in section 4.2 

locate around the first generated sphere, with smaller degrees of overlap occurring 

further from that sphere, the location of the centre of mass of the clump is very 

close to the centre of mass of a clump with the same mass and uniform density.   

For the sample of spheres, it was possible to calculate the porosity directly using a 

measurement sphere in PFC
3D
 (Itasca, 1999); in this way the variation in the 

porosity throughout the box can be studied.  However, no facility is available in 

PFC
3D
 for calculating the porosity of a sample of clumps comprising more than 
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two particles within each clump.  Therefore the initial porosities of the samples 

were estimated using a three-dimensional grid of small cubes, each of side 0.005 

m, in the column directly below the sleeper and found to be 0.37 for the aggregate 

of spheres, 0.35 for Sample 4.6 and 0.37 for Sample 4.7.   

The spheres and Sample 4.1 were loaded using a sinusoidal load pulse with a 

minimum load of 3 kN and a maximum load of 40 kN, at a frequency of 3 Hz 

(following McDowell et al., 2004).  The required loading was maintained by 

PFC
3D
 servo-control mechanism (the algorithm of the servo-control mechanism 

can be found in the Appendix).  

4.3.2 Effect of particle shape on mechanical response 

Figure 4.13 shows the contact forces for each of the three samples under self-

weight after compaction by enhanced gravity and then reducing gravity to 9.81 

m/s
2
.  It can be seen that the contact forces are reduced for the more angular 

clumps (i.e. Sample 4.2), which is in agreement with data published by Nakata et 

al. (2001) for real sands, and that the stress distribution for the spheres is more 

homogeneous. 

Figures 4.14 and 4.15 show the contact forces for the spheres and Sample 4.1 prior 

to loading, at maximum load and after unloading to 3 kN respectively.  It is noted 

that the number of contacts does not change much during the cycle of loading and 

unloading.  The magnitude of the mean contact force for Sample 4.1 (whose shape 

is closer to reality comparing with those of spheres) is less than that for the spheres 
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because of the higher number of contacts for Sample 4.1.  It should be noted that 

Sample 4.1 contains flaky particles, as shown in Figure 4.7. 

 

(a) 

 

(b) 

 

(c) 

Figure 4.13. Contact forces for (a) spheres, (b) Sample 4.1 and (c) Sample 4.2 prior to 

loading. 
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(a) 

 

(b) 

 

(c) 

Figure 4.14. Contact forces for spheres (a) prior to loading (maximum contact force 

= 482N, average contact force = 29.9N, number of contacts = 10,337); (b) at 

maximum load (maximum contact force = 4,050N, average contact force = 336.2N, 

number of contacts = 10,323) and (c) after unloading to 3kN (maximum contact force 

= 1,012N, average contact force = 42.7N, number of contacts = 10,328). 
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(a) 

 

(b) 

 

(c) 

Figure 4.15. Contact forces for Sample 4.1 (a) prior to loading (maximum contact 

force = 374N, average contact force = 15.4N, number of contacts = 282,955); (b) at 

maximum load (maximum contact force = 4,233N, average contact force = 164.1N, 

number of contacts = 282,955) and (c) after unloading to 3kN (maximum contact 

force = 1,354N, average contact force = 34.4N, number of contacts = 282,955). 
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Figures 4.16 and 4.17 show the rotations of the spheres and clumps during one 

cycle of loading.  The size of each circle is proportional to the magnitude of the 

particle rotation, calculated as the vector sum of the rotations about three mutually 

orthogonal axes.  The grey circles reflect a rotation of 10
o
-20

o
 for the spheres and 

0.1
o
-1
o
 for the clumps in Sample 4.1.  Solid black circles indicate larger rotations 

of >20
o
 for spheres and >1

o
 for clumps.  For the sample of spheres, it is clear that 

the main particle rotations occur near the corner of the sleeper and both sides of 

the sleeper.  Less rotation occurs directly below the sleeper.  In Sample 4.1, the 

distribution of the rotations is quite uniform except for a few particles which have 

relatively large rotations, and the average particle rotation is much less than for the 

spheres.  The magnitude of the average rotation of the spheres after the complete 

cycle of loading and unloading is almost equal to the summation of the magnitudes 

of the average rotation during loading and during unloading separately.  Similarly, 

the magnitude of the maximum rotation after the load-unload cycle is much greater 

than that at maximum load.  This shows that spheres continue to roll in the same 

sense even on unloading.  However, in Sample 4.1 the magnitude of the average 

particle rotation of the clumps after the complete cycle of loading and unloading is 

similar to that at maximum load, and it can be seen that the maximum rotation 

after the load-unload cycle is much less than that at maximum load.  This indicates 

that for the clumps, some particles must have rolled in the opposite sense by a 

significant amount on unloading.  Thus the influence of three-dimensional particle 

shape can be seen in providing interlock and thus reduced particle rotation.  The 

multiple contacts between clumps give increased rolling resistance. 
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(a) 

 

(b) 

 

(c) 

Figure 4.16. Rotations of spheres (a) during loading (maximum rotation = 48.3°, 

average rotation = 5.18°; (b) during unloading (maximum rotation = 26.5°, average 

rotation = 2.92°) and (c) after the complete cycle of loading and unloading 

(maximum rotation = 63.2°, average rotation = 7.25°). 



 101 

 

(a) 

 
(b) 

 
(c) 

Figure 4.17. Rotations of clumps in Sample 4.1 (a) during loading (maximum 

rotation = 8.89°, average rotation = 0.061°); (b) during unloading (maximum 

rotation = 3.15°, average rotation = 0.033°) and (c) after the complete cycle of 

loading and unloading (maximum rotation = 3.31°, average rotation = 0.062°). 
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Figures 4.18 and 4.19 show the particle displacement vectors for the spheres and 

Sample 4.1 drawn at the same scale.  Since the particle displacements for Sample 

4.1 are so small, this scale has been magnified by a factor of 80 and reproduced in 

Figure 4.20.  It can be noted that the displacements of the spheres on both sides of 

the sleeper are larger than those below the sleeper and the displacements are 

generally upwards (as shown in Figure 4.18).  Comparing Figure 4.18(a) and (b), it 

can be noted that the spheres on both sides of the sleeper continue to move 

upwards on unloading.  For the clumps, the behaviour is very different: the 

average particle displacement is greatest directly beneath the sleeper and is 

downwards.  Comparing Figure 4.20(a) and (b), it can be seen that the clumps 

below the sleeper must have moved upwards during unloading.  The displacements 

of Sample 4.1 seem closer to the response of ballast particles in the box test 

(McDowell et al., 2004).   

Figure 4.21 shows the response of the spheres and Sample 4.1 to a single cycle of 

load (sinusoidal, at frequency 3 Hz and maximum load of 40 kN).  It can be seen 

that the clumps show a more realistic load-deformation response than the spheres, 

comparing with available data for the cyclic loading of granular materials (Lekarp 

et al., 2000a), in which it is usually observed that axial strain does not continue to 

increase beyond maximum load, but rather reduces in a resilient manner on 

unloading.  The difference in the response of the spheres and Sample 4.1 can be 

attributed to the interlocking provided by the three-dimensional clumps, which 

affects the rolling resistance and particle displacements, as shown in Figures 4.16-

4.20.  This is consistent with three-dimensional simulations using PFC
3D
 by Suiker 
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and Fleck (2004) in which they showed that restricting particle rotation may 

substantially increase the overall shearing resistance of the spheres.  The use of 

clumps generated using the simple procedure described above therefore looks to 

be a promising tool for generating more realistic ballast particle shapes and 

consequently a more realistic load-deformation response. 

 

(a) 

 

(b) 

Figure 4.18. Total displacements of spheres (a) at maximum load (maximum 

displacement = 8.25mm) and (b) after one cycle of loading and unloading (maximum 

displacement = 11.79mm). 
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(a) 

 

(b) 

Figure 4.19. Total displacements for clumps in Sample 4.1 (a) at maximum load 

(maximum displacement = 2.34mm) and (b) after one cycle of loading and unloading 

(maximum displacement = 2.32mm). 

4.4 Conclusions 

A simple procedure has been developed which permits the generation of clumps of 

spheres to simulate ballast in a realistic way.  Simple parameters have been shown 

to allow control over the sphericity, angularity and surface roughness, and 

examples of various clumps generated at random using the procedure have been 

described.  Aggregates of clumps have been generated in a box and the stresses 

induced by self-weight are found to become less homogeneous with increasing 
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angularity of the clump, in agreement with available data.  The interlocking 

provided by the three-dimensional clumps gives much reduced particle rotations 

and displacements.  For the spheres, deformation is concentrated at the corners and 

sides of the sleeper where particles flow upwards, even on unloading.  For the 

clumps, however, deformation is concentrated directly under the sleeper where 

particles move downwards on loading, and then upwards by a smaller amount on 

unloading, giving a cyclic load-deformation response of the clumps which is found 

to resemble more closely the response of real ballast.  

 

(a) 

 

(b) 

Figure 4.20. Displacement vectors of (a) Figure 4.19(a) and (b) Figure 4.19(b)  

magnified by a factor of 80. 
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Figure 4.21. Cyclic response for spheres and Sample 4.1. 

It should be noted that the work described in this chapter has been published in the 

form of a paper in Granular Matter (Lu and McDowell, 2007). 



 107 

 

CHAPTER 5 

DISCRETE ELEMENT MODELLING OF BALLAST 

ABRASION IN THE BOX TEST 

  

5.1 Introduction 

For granular materials subjected to cyclic loading, permanent axial strain 

accumulates linearly with the logarithm of the number of load cycles (Barksdale, 

1972).  Shenton (1974) showed this to be true for ballast subjected to cyclic 

loading in a triaxial test, and that the response of the ballast becomes 

approximately resilient after approximately 1,000 cycles.  McDowell et al. (2005) 

conducted both box test with tamping and traffic loading and box tests with only 

traffic loading on ballast.  Figure 5.1 shows the results form their study.  ‘Traffic-

only wet ballast A4’ and ‘Traffic-only wet ballast A5’ (as shown in Figure 5.1) are 

the samples used in the box tests with only traffic loading.  ‘Wet ballast A2’ is the 

sample used in the box tests with tamping and traffic loading.  The cumulative 

settlement for the ‘Wet ballast A2’ is shown as ‘Cumulative wet ballast A2’ in 

Figure 5.1.  They found that, for box tests with only traffic loading (i.e. cyclic 

loading was applied to the sleeper for 10
6
 cycles), the settlement of the sleeper was 

proportional to the logarithm of number of load cycles and that the resilient 
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stiffness increased towards some constant value with increasing number of cycles.  

They also found that most of the particle breakage was due to abrasion rather than 

bulk fracture, and this occurred mainly directly beneath the sleeper.  Aursudkij 

(2007) observed similar results in the Nottingham Railway Test Facility (described 

by Brown et al., 2007).  This highlights the importance of ballast abrasion in 

influencing its behaviour.  

 

 

Figure 5.1. (a) Settlement and (b) stiffness plotted against number of cycles for 

traffic-only box test and standard box test (tamping and traffic loading) on wet 

ballast (McDowell et al., 2005). 
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The use of PFC
3D
 to model crushable particles using bonded agglomerates of balls 

has been described in detail by Robertson (2000), McDowell and Harireche 

(2002a), Cheng et al. (2003) and Lim and McDowell (2005).  Since it is 

computationally very time-consuming to use agglomerates of bonded balls to 

represent a large number of ballast particles in a simulation, clumps have been 

used to model ballast particle shape and introduce interlock in the previous chapter.  

However, the clumps used in those simulations were unbreakable, so particle 

degradation could not be investigated.  

This chapter aims to show that it is possible to use DEM to model ballast abrasion 

correctly, and to show that ballast abrasion gives arise to the correct form of 

settlement response, albeit for only a small number of cycles at this stage.  

Asperities are introduced and bonded to the rigid clumps, so as to provide a 

mechanism for abrasion.  Three samples of particles with different asperity bond 

strengths are used to examine the influence of particle abrasion (i.e. asperity 

fracture) during cyclic loading on settlement and stiffness. 

5.2 Modelling Procedure 

A simple two-ball clump is used with two additional small balls (asperities) 

bonded at the surface, to represent a single ballast particle.  Figure 5.2 shows the 

clump used to represent a single ballast particle, in addition to the box containing 

an aggregate of 1,510 of such clumps.  Dimensions are such as to mimic typical 

ballast sized particles; the average size of the ballast particles used in the 

laboratory box test (McDowell et al. 2005) was 36.25 mm.  The centre of ball B is 



 110 

on the surface of ball A.  Two smaller balls C and D of diameter 6 mm are also 

visible in Figure 5.2: these are the asperities.  

 

(a) 

 

(b) 

 

(c) 

Figure 5.2. (a) Three-dimensional particle comprising two-ball clump and two 

asperities; (b) clump and asperity dimensions and (c) aggregate of particles prior to 

cyclic loading. 

It has been shown in Chapter 4 and Lu and McDowell (2007) that spheres are too 

simplistic to capture the real behaviour of railway ballast.  However, modelling 

real particle shapes is computationally too time-consuming, and so the simple 
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clumps with bonded asperities used in this chapter can provide some degree of 

particle interlocking and surface damage without being too computationally 

inefficient.  It is necessary to concede that ballast particles tend to have angular 

asperities, and the amount of degradation will be a function of both the strength 

and the angularity of the asperities.  Thus this chapter presents a crude 

approximation to the real geometry, and is unlikely to provide sufficient damage 

or interlocking.  An optimum ballast particle model, which provides more particle 

interlocking and extensive asperities breakage, will be studied in Chapters 6 and 7.  

In order to study the effect of abrasion on ballast behaviour, a sample was created 

in which balls C and D formed part of the particle clump (i.e. unbreakable ballast 

particle): this is Simulation 5.1.  For Simulations 5.2 and 5.3, balls C and D were 

bonded to ball A using parallel bonds and the radii of the bond discs were 2 mm.  

The bond tensile and shear strengths were 500 MPa for Simulation 5.2 and 300 

MPa for Simulation 5.3.  The bond breaks when the tensile stress or shear stress in 

the bond exceeds the strength (Itasca, 1999).  For the balls and walls, the normal 

and shear stiffnesses (linear-elastic) were 10
8 
N/m.  The parallel bond stiffness 

(uniformly distributed over the bond area) was 3.5×10
6 
MPa/m, so as to give a 

resultant stiffness equal to that for the balls and walls.  The stiffness of the 

simulated rubber base (subgrade) was 5×10
5 
N/m and the density of the particles 

was 2,600 kg/m
3
.   

The procedure of sample preparation used here was the same as that described in 

section 4.3.1.  In order to reduce computational time and prevent particle breakage 

occurring during this process, the particles were treated as unbreakable clumps 



 112 

during gravitational compaction.  During compaction, the ball and wall 

coefficients of friction were set to 0.3 (to reduce computational time as described 

in section 4.3.1); these were then subsequently increased to 0.8 after compaction.  

Once the sample had been cycled to equilibrium under a gravitational acceleration 

of 9.81 m/s
2
, balls C and D were released from each clump and parallel bonds 

were installed.  The initial normal and shear strengths of the parallel bonds were 

set to be 100 times the final required values to prevent breakage during this 

transition; the strengths were then reduced gradually.  Once the required bond 

strengths were achieved, a sinusoidal load pulse was applied with a minimum load 

of 3 kN and a maximum load of 40 kN at a frequency of 3 Hz (following 

McDowell et al., 2005).  It should be noted that for all three simulations, the same 

aggregate geometry was tested: that is, all particles were in the same positions at 

the start of each simulation.  Twenty load cycles were applied to ballast assembly 

in each simulation.  Because limitations in computing time make it unrealistic to 

perform simulations with large numbers of cycles, the purpose in this chapter is 

simply to demonstrate that modelling abrasion is important and necessary if the 

correct aggregate response is to be achieved.  Mechanical behaviour of ballast 

assembly under large number of load cycles in triaxial test simulations will be 

investigated in Chapter 7.  

5.3 Effect of Particle Abrasion on Mechanical Response 

Figure 5.3 shows the position of the bottom of the simulated sleeper as a function 

of applied load for each of the assemblies of particles during 20 load cycles.  It can 
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be seen that the permanent settlement continues to increase (in proportion to the 

number of cycles) even after 20 cycles for the uncrushable clumps, and also for the 

clumps in Simulation 5.2 which did not exhibit much bond breakage.  It is 

suspected that this is due to insufficient particle interlock.  It is therefore necessary 

here to focus on the deformation in the early stages of the test when asperity 

fracture dominates the behaviour of the weaker aggregate.  It can be seen that, for 

Simulation 5.3, significant settlements occur in the early stages of the test; the rate 

of settlement generally reduces as the number of cycles increases up until 

approximately the ninth load cycle when the aggregate has stabilised.  

Figure 5.4 shows the number of bonds that break during the 20 load cycles for 

Simulations 5.2 and 5.3.  For railway ballast under repeated loading, the amount of 

degradation must decrease with increasing number of cycles as the ballast particles 

become rounder and the broken asperities fall into the available voids.  This sort of 

trend can be observed during the first 9 cycles of loading in Simulation 5.3.  For 

Simulation 5.3, 2.52% have broken after 9 cycles and only a further 1.22% have 

broken in the next 11 cycles.  In Simulation 5.2, only small amounts of breakage 

occurred, with 0.40% bonds broken after 10 cycles and 0.56% broken after 20 

cycles.  It can therefore be seen that the large permanent settlements in the early 

stages of Simulation 5.3 are associated with significant asperity breakage.  A plot 

of permanent settlement against number of cycles is shown for each of the 

assemblies in Figure 5.5.  The number of cycles is plotted on a linear scale in 

Figure 5.5(a) and on a logarithmic scale in Figure 5.5(b).  
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(c) 

Figure 5.3. Displacement of bottom of sleeper during 20 load cycles for (a) 

Simulation 5.1; (b) Simulation 5.2 and (c) Simulation 5.3. 
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Figure 5.4. Number of broken bonds during 20 load cycles. 
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(b) 

Figure 5.5. Settlement plotted against number of load cycles for all three simulations 

plotted on (a) linear scale and (b) logarithmic scale. 
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It should be noted that, for real ballast, settlement must be caused by 

rearrangement of grains, some of which will be triggered by asperity fracture.  

After a large number of cycles, the strong particle interlock present in real 

aggregates would tend to prohibit settlement without further abrasion.  For 

Simulations 5.1 and 5.2 where little or no damage occurs, and for Simulation 5.3 

after the first 9 cycles, the settlement response is approximately linear with the 

number of cycles; this is due to insufficient interlock given by the simplistic 

clumps.  However, for the first 9 cycles of Simulation 5.3 in which asperity 

abrasion is significant, it can be seen that the settlement is approximately 

logarithmic with the number of cycles.  Hence, it appears that a more realistic 

response has been achieved by permitting a significant amount of particle abrasion. 

The resilient "stiffness" at any one cycle is calculated as 

max min

max min

K
σ σ

δ δ

−
=

−
        (5.1) 

where σ  relates to sleeper bearing stress and δ  to sleeper displacement.  Figure 

5.6 shows the resilient stiffness for each of the assemblies of particles during 20 

load cycles.  It was found that, although for the first few cycles the stiffness 

increased with increasing bond strength, the stiffness of all three assemblies 

increased towards a steady state value of approximately 450-530 kPa/mm after 20 

cycles.  This is consistent with values based on falling weight deflectometer tests 

in the UK (McDowell et al., 2005).  Larger numbers of cycles are required in real 

ballast to achieve this steady state in which stiffness is approximately constant; it 
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is proposed that this is due to the large amounts of abrasion which can occur, 

compared with the limited amount permitted in the simulations using two bonded 

asperities for each clump.  
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Figure 5.6. Stiffness plotted against number of load cycles for all three simulations. 

Figure 5.7(a) shows a typical contact force distribution at maximum load during 

cyclic loading in Simulation 5.3, and Figure 5.7(b) shows the locations of where 

asperities break in the box during 20 load cycles for Simulation 5.3.  It can be seen 

that particle abrasion has occurred in (and around) the main contact force chains, 

and that most of the abrasion has occurred beneath the sleeper, as opposed to in the 

crib ballast or in the ballast near the sides of the box, in agreement with the 

observations made from the laboratory box tests (McDowell et al., 2005).  
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(a) 

 

(b) 

Figure 5.7. (a) Typical contact force distribution during cyclic loading in Simulation 

5.3 and (b) locations of where asperities break during 20 load cycles in Simulation 

5.3. 

5.4 Conclusions 

The abrasion of ballast particles in box test has been modelled to observe the effect 

of abrasion on permanent deformation.  A ballast particle has been modelled as a 

two-ball clump with two smaller spheres bonded using parallel bonds to simulate 

asperities.  When significant asperity breakage occurs, a realistic response is 

observed such that permanent settlement is related to bond breakage, and the 

permanent settlement is approximately proportional to the logarithm of the number 
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of cycles of load, albeit for only a small number of cycles.  Although this 

observation is only confined to the first few cycles, this is believed to be due to the 

lack of particle interlock, in addition to the small number of asperities used.  

Nevertheless, this chapter has shown the importance of modelling abrasion using 

DEM if the correct response is to be achieved.  It has also been shown that most of 

the particle abrasion occurs beneath the sleeper, in agreement with laboratory 

experiments (McDowell et al., 2005).  An improved ballast particle model which 

provides more particle interlocking and greater possibility for asperity breakage 

will be presented in Chapters 6 and 7.   

It should be noted that the work described in this chapter has been published in the 

form of a paper in Geotechnique (Lu and McDowell, 2006). 
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CHAPTER 6 

MONOTONIC TRIAXIAL TEST SIMULATIONS 

   

6.1 Introduction 

The monotonic triaxial test is one of the most important laboratory tests for the 

investigation of the mechanical behaviour of railway ballast.  Indraratna et al. 

(1998), for example, performed large-scale triaxial tests on latite basalt to study 

the stress-strain behaviour, strength and degradation characteristics of railway 

ballast.  The porosities of the compacted specimens were in the range from 0.44 to 

0.46.  The specimens were tested under various confining pressures σc' ranging 

from 15 kPa to 240 kPa (which simulate the typical confining pressures generated 

within ballasted track by the passage of unloaded to fully loaded trains).  The key 

results from their study are shown in Figure 6.1.  Very high principal stress ratios 

σ1' / σ3' were observed in their triaxial tests at low confining pressures.  Small 

changes in the particle size distribution were observed in their tests and particle 

breakage was more pronounced at higher confining pressures.  

McDowell et al. (2006) used an eight-ball cubic clump to represent each single 

ballast particle in large-scale triaxial test simulations and compared the results 
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with experimental results (Indraratna et al., 1998).  They pointed out that, as 

breakage was not considered in their simulations, comparing to the experimental 

results (Indraratna et al., 1998), dilation rather than contraction was observed at 

high confining pressures.  Chapter 5 and Lu and McDowell (2006) have shown the 

importance of modelling ballast abrasion in box test simulations.  However, the 

results showed that the two-ball clump with two smaller asperities is insufficient to 

provide particle interlocking and extensive asperity breakage for a large number of 

cycles.  Therefore, an improved ballast particle model is studied in this chapter. 

In this chapter, the discrete element method is used to simulate the mechanical 

behaviour including particle abrasion of railway ballast under the monotonic 

triaxial test conditions and the results are compared with the experimental data 

(Indraratna et al., 1998), so that the effects of micro properties can be related to the 

macro behaviour of ballast.  A confining pressure of 120 kPa has been used in a 

series of simulations to study the effect of different factors (i.e. particle shape, 

particle friction coefficient and particle abrasion) on the stress-strain behaviour of 

railway ballast.  Three different particle shapes and friction coefficients are studied 

first.  Parallel bonds are then introduced between clumps to simulate the 

interlocking of very small asperities and increase the shear strength of the 

assembly.  In addition, the effect of particle abrasion is shown by introducing 

bonded asperities.  The stress-strain behaviour for the developed particle model for 

railway ballast under a range of confining pressures is then compared with that for 

experimental results; and the micro mechanical behaviour in the simulations is 

also investigated.  
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Figure 6.1. Experiment results of drained compression tests on ballast under 

different confining pressures (Indraratna et al., 1998). 
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6.2 Modelling Procedure 

Indraratna et al. (1998) described large-scale triaxial tests on railway ballast 

involving applied monotonic axial loads under different confining pressures.  The 

large-scale triaxial equipment used in their tests was shown in Figure 2.8.  The size 

of the specimen was 300 mm diameter × 600 mm high.  Figure 6.2 shows 

simulated ballast particles using single spheres, eight-ball cubic clumps, ten-ball 

triangular clumps and ten-ball triangular clumps with eight small balls (asperities) 

bonded in the triaxial cell.  Single-sized particles of approximately 40 mm 

diameter were used in order to model the particle size distribution considered by 

Indraratna et al. (1998) with D50  = 38.9 mm, α = 0.5 (uniformity coefficient 1.6), 

since ballast is usually a reasonably uniformly graded material.  The sizes of the 

balls in the clumps and the numbers of particles used in each sample are shown in 

Table 6.1.  The total number of clumps in the triaxial test model ranges from 618 

to 1006.  The volume of each clump was obtained by drawing the peripheral shape 

of the clump in Autocad and calculating its volume.  In these triaxial test models, a 

cylindrical vertical wall was used to simulate a flexible membrane and two 

horizontal walls were placed at the top and bottom of the sample, respectively.  

The normal and shear stiffnesses of the balls were set to be 1×10
9
 N/m and the 

density of the balls was set to be 2,500 kg/m
3
.  A friction coefficient of 0.5 was 

used for all balls.  The walls were set to be frictionless with zero shear stiffness 

during each simulation (during both sample preparation procedure and loading).  

The two horizontal walls had the same normal stiffness as the particles (1×10
9
 

N/m); the normal stiffness of the cylindrical vertical wall (1×10
8
 N/m) was set to 
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be one tenth of the normal stiffness of the particles in order to simulate the effect 

of the flexible membrane.  It should be noted that when the normal stiffness of the 

cylindrical vertical wall is low, small spheres would penetrate through the wall as 

a result of the high contact forces induced between the spheres and the wall and 

that the effect of normal stiffness of the wall on the behaviour of the assembly is 

negligible.  It is possible to simulate a flexible membrane using a large number of 

bonded balls, however, this makes the computations much too time-consuming. 

 
Number of 

clumps 

Volume of 

clumps (mm
3
) 

Diameter of 

spheres/balls 

in clumps 

(mm) 

Diameter 

of 

asperities 

(mm) 

Porosity 

of the 

samples 

Loose sample of 

single spheres 
678 3.35×10

4 
40 - 0.47 

Dense sample 

of single 

spheres 

742 3.35×10
4
 40 - 0.41 

Loose sample of 

eight-ball cubic 

clumps 

840 2.57×10
4
 20 - 0.48 

Dense sample 

of eight-ball 

cubic clumps 

1006 2.57×10
4
 20 - 0.40 

Loose sample of 

ten-ball 

triangular 

clumps 

713 3.26×10
4
 16.33 - 0.44 

Dense sample 

of ten-ball 

triangular 

clumps 

859 3.26×10
4
 16.33 - 0.32 

Sample of ten-

ball triangular 

clumps with 

eight asperities 

618 3.35×10
4
 16.33 6 0.49 

Table 6.1. Number of particles, sizes of the particles and porosity of the samples. 

The assemblies were generated using the dynamic method (following McDowell et 

al., 2006).  During the generation procedure, an assembly of spheres was first 

generated within the cell randomly without overlapping.  These spheres were 
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initially generated with half their final diameter.  The number of spheres generated 

in the cell was calculated from a porosity, which is set by the user.  It should be 

noted that the porosity set by the user may differ from the final porosity obtained 

in sample preparation and just before shearing shown in Table 6.1, since the final 

size of the triaxial cell may change slightly during sample preparation and the 

spheres may be replaced by other shaped particles (e.g. eight-ball cubic clumps 

and ten-ball triangular clumps).  The spheres were then expanded to their final size 

and the system was cycled to equilibrium with the locations of walls remaining 

fixed.  The system was considered to be in equilibrium when the ratio of the mean 

unbalanced force to the mean contact force became smaller than a set tolerance 

(e.g. 10
-3
).  In order to minimise the computational time during this procedure by 

making particle rearrangement easier, the coefficients of friction for all particles 

were set to zero.  The spheres could then be replaced by clumps with random 

orientation when using non-spherical shaped particles.  For the clumps, the system 

was cycled to equilibrium again to reduce the high contact forces produced by 

overlapping due to the particle replacement.  In order to achieve an initial state 

free of internal forces, all walls were moved outwards at the same slow rate (e.g. 

10
-4
 m/s).  The system was cycled to equilibrium (with no wall movement) after 

every 50 cycles (of wall movement) until internal forces were completely released 

and the system was in equilibrium.  It is important to note that for all the 

simulations, the final dimensions of the cell were approximately equal to 300 mm 

× 600 mm.  This was achieved by trial and error using different initial sizes for the 

cell.   
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(a) 

 

(b)  

 

(d) 

 

(c) 

 

(e) 

Figure 6.2. PFC
3D
 model (a) triaxial cell; (b) single sphere as a ballast particle; (c) 

eight-ball cubic clump as a ballast particle; (d) ten-ball triangular clump as a ballast 

particle and (e) ten-ball triangular clump with eight small balls (asperities) bonded 

as a ballast particle. 

After the procedure of assembly generation was completed, isotropic compression 

was applied to achieve the required stress state.  The servo-control mechanism was 

applied to all walls, so that the required confining pressures were obtained.  The 

normal stress on each wall was calculated by the summation of the normal contact 
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forces on the wall divided by the area of the wall.  Different porosities were 

prepared using single spheres, eight-ball cubic clumps and ten-ball triangular 

clumps, respectively.  Friction coefficients from 0.0 to 1.0 were used to control the 

porosities of assemblies during isotropic compaction; after compaction the friction 

coefficient was changed back to 0.5 for the shearing stage of the simulation.  Once 

the required stress state was achieved, monotonic loading was applied to both the 

top and bottom walls with a constant speed of 0.02 m/s, so that the rate of loading 

was slow enough for the samples to remain under static loading conditions, but the 

fastest rate which could be used without affecting the results.   

6.3 Selecting Particle Shape 

Particle shape plays a key role in the behaviour of railway ballast.  Using complex 

irregular shaped clumps to represent each ballast particle in the large-scale triaxial 

test simulation is not practical due to the calculations being too time-consuming.  

In this section, three different simple shapes were used to represent each ballast 

particle in the triaxial test simulations to obtain an acceptable shape for modelling 

railway ballast.   

Table 6.1 lists the porosity of the samples produced by using different friction 

coefficients (e.g. µ = 0.0 for dense samples and µ = 1.0 for loose samples) for each 

particle shape model under 120 kPa isotropic compaction.  It should be noted that 

the internal voids of clump were not included in the calculation of porosity, as the 

volume of clump was calculated by Autocad (as mentioned in section 6.2).  

Monotonic loading was applied to each sample under a confining pressure of 120 
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kPa.  The stress-strain behaviour and the volume change during the shearing of 

these samples are plotted in Figure 6.3.   
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(b) 

Figure 6.3. Results of triaxial simulations on both loose and dense samples for 

spheres, eight-ball cubic clumps and ten-ball triangular clumps under a confining 

pressure of 120 kPa. 
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As can be seen from Figure 6.3, both peak strength and ultimate strength increase 

with increasing particle angularity, and increasing particle angularity gives a 

higher initial stiffness.  This is in agreement with the experimental findings of 

many researchers cited by Selig and Waters (1994) and Lekarp et al. (2000a).  The 

ultimate strengths of loose and dense samples agree, which means that all these 

samples reached a critical state.  The loose samples have approximately the correct 

porosity, comparing with the experimental data, and the correct volumetric 

response, but the shearing resistances are too low, so further modifications were 

made to try to correct this.  The ten-ball triangular clumps were used in the 

following simulations, as they provided a higher shear strength compared to the 

two other shaped particle models. 

It is noted that the stress-strain response of an assembly not only depends on the 

particle shape but also on interparticle friction.  A series of simulations was carried 

out to investigate the effect of friction coefficient.  Both loose and dense samples 

for the ten-ball triangular clump were used in these simulations, and different 

friction coefficients (varying from 0.3 to 1.0) were applied.  The effect of friction 

coefficient on the shear strength and volumetric strain is shown in Figure 6.4 for 

the dense samples and in Figure 6.5 for the loose samples.  It can be seen in 

Figures 6.4 and 6.5 that the friction coefficient has a large effect on shear strength 

when the friction coefficient is lower than 0.8.  However, it makes little difference 

to the shear strength when the friction coefficient is increased from 0.8 to 1.0.  

Therefore, the shear strength of assembly cannot keep increasing by increasing 

interparticle friction.  Similar findings for simple particle shapes were reported by 
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Ni (2003) and Suiker and Fleck (2004), as shown in Figure 3.13.  As for the 

volumetric behaviour, increasing the friction coefficient causes the assembly to be 

more dilative.  This is also in agreement with the findings from Ni (2003) and 

Suiker and Fleck (2004).   
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(b) 

Figure 6.4. Effect of friction coefficient on (a) shear strength and (b) volumetric 

strain (contraction positive) for dense sample of ten-ball triangular clumps. 
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Figure 6.5. Effect of friction coefficient on (a) shear strength and (b) volumetric 

strain (contraction positive) for loose sample of ten-ball triangular clumps. 

Comparing with experimental data (as shown in Figures 6.4 and 6.5), the ultimate 

strengths of the assemblies in the simulations are still far lower than that of the real 

ballast, even when a high friction coefficient is used.  For the loose sample, when 

the friction coefficient is higher than 0.5, the assembly is more dilative than the 
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real ballast.  Thus, the correct ultimate shear strength cannot be modelled by 

purely increasing the friction coefficient.   

6.4 Modelling Particle Abrasion 

6.4.1 Parallel bond contact law between clumps 

A real ballast particle is typically angular with a rough surface texture and particle 

interlocking plays an important role in the shear behaviour of a ballast assembly.  

Selig and Waters (1994) reviewed experimental data for granular materials and 

pointed out that increasing both angularity and particle surface roughness increases 

the shear strength of the assembly.  Particle interaction (e.g. sliding and rolling of 

individual particles) is very complex.  Interlocking at a contact between two 

ballast particles resulting from the rough surface texture or asperities provides 

extra shearing resistance.  The effect of rough surface texture is hard to model by 

using very small balls to form the real ballast particle surface, and modelling fine 

particle shape requires a large number of balls, which would lead to unrealistic 

computational time.  Because of the idealised smooth surface of balls in the 

numerical model, shearing resistance provided by friction (via the sliding model) 

is insufficient in modelling railway ballast.  In order to increase the shear strength 

of an assembly to that of real ballast measured in the laboratory tests, a parallel 

bond contact law provided by PFC
3D
 (Itasca, 1999) was introduced at each contact 

between clumps to model the interlocking of ballast particles resulting from very 

small asperities (i.e. the rough surface texture) without cementation.  The parallel 

bond breaks when the stress in any part of the bond exceeds the specified (weak) 
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parallel bond strength.  Compared to the shear strength of a parallel bond, a very 

low normal strength of parallel bond was used, so that the tensile force sustainable 

between clumps is so small that it can be ignored.  The parallel-bond model is 

active in conjunction with the slip model at each contact between two clumps and 

shearing resistance at the contact is provided by both friction and the parallel bond.  

The purpose of using the parallel bond between clumps in modelling railway 

ballast is simply to simulate the shear and rotational resistance provide by 

interlocking small asperities.  Parallel bonds were created at each particle contact 

between two clumps before isotropic compaction was applied to the samples.  

During isotropic compaction and shearing, a new parallel bond was created 

immediately when a new contact between two clumps was formed.   

The loose sample for ten-ball triangular clumps (used in section 6.3 and Figure 6.5) 

was used in the following simulations.  The initial porosity of this sample is 0.44; 

the friction coefficient is 0.5.  A series of four simulations with constant ratio of 

shear to normal parallel bond strength between clumps (i.e. ratio of 50) was 

performed to investigate the effect of bond strength.  In order to prevent large 

relative displacement of two contacted clumps (i.e. the displacement of parallel 

bond) occurring, the stiffnesses of parallel bonds have constant ratio with the 

parallel bond strengths (i.e. parallel bonds break at the same bond strain).  The 

parameters for the parallel bonds between clumps used in these simulations are 

listed in Table 6.2.   



 134 

  

Normal bond 

strength 

(kPa)  

Shear bond 

strength 

(kPa) 

Normal bond 

stiffness 

(MPa/m) 

Shear bond 

stiffness 

(MPa/m) 

Simulation 

6.1 
10 5×10

2
 10 10

2
 

Simulation 

6.2 
10

2
 5×10

3
 10

2 
10

3
 

Simulation 

6.3 
10

3 
5×10

4
 10

3 
10

4
 

Simulation 

6.4 
5×10

3 
2.5×10

5
 5×10

3
 5×10

4
 

Table 6.2. Parameters of parallel bonds between clumps used in the series of 

simulations to investigate the effect of increasing bond strengths and stiffnesses for 

parallel bonds between clumps. 

The results of these simulations are shown in Figure 6.6.  The experimental result 

under a confining pressure of 120 kPa is shown on the same figure for comparison.  

Comparing with the experimental result, the shear strength of the assembly in 

Simulation 6.2 matches the experimental result under a confining pressure of 120 

kPa, though there is too much dilation compared to the experiment data.  It can be 

seen from Figure 6.6(a) that the shear strength, particularly peak strength, 

increases with increasing bond strength between clumps.  More dilation is 

observed (as shown in Figure 6.6(b)) when the parallel bond strength increases.  

Although increasing the bond strength between clumps increases the peak strength 

of the assembly, the behaviour becomes more brittle.   
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(b) 

Figure 6.6. Effect of increasing parallel bond strength and stiffness between clumps 

on (a) shear strength and (b) volumetric strain (contraction positive). 

Figure 6.7 shows the average coordination number of clumps with different 

parallel bond strengths during loading.  It can be seen from Figure 6.7 that the 

assembly with higher bond strength has lower mean coordination number and the 
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mean coordination number decreases when the assembly dilates.  This indicates 

that higher bond strengths lead to more particle rolling instead of sliding, more 

dilation of the assembly and lower coordination number.   
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Figure 6.7. Effect of increasing parallel bond strength and stiffness between clumps 

on average coordination number of clumps. 

A series of tests (Simulations 6.5-6.7) with constant normal bond strength (10
2
 kPa) 

and normal stiffness (10
2
 MPa) was performed to study the effect of the ratio of 

shear to normal strength.  The parameters for the parallel bonds between clumps 

used in these simulations are listed in Table 6.3.  Shear bond strengths and 

stiffnesses within the range of 0.01 to 5 times the values used in Simulation 6.2 

were applied and the normal bond strength and stiffness used in this series of tests 

were the same as those in Simulation 6.2.   
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Normal bond 

strength 

(kPa) 

Shear bond 

strength 

(kPa) 

Normal bond 

stiffness 

(MPa) 

Shear bond 

stiffness 

(MPa) 

Simulation 

6.5 
10

2
 50 10

2
 10 

Simulation 

6.6 
10

2
 5×10

2
 10

2
 10

2
 

Simulation 

6.2 
10

2
 5×10

3
 10

2
 10

3
 

Simulation 

6.7 
10

2
 2.5×10

4
 10

2
 5×10

3
 

Table 6.3. Parameters of parallel bonds between clumps used in the series of 

simulations to investigate the effect of increasing ratio of shear to normal bond 

strength and stiffness for parallel bonds between clumps. 

Figure 6.8 shows the shear stress-strain relationship and volumetric strain 

behaviour for this series of tests.  It can be seen from this figure that the shear 

strength of the assembly, in particularly peak strength, increases with increasing 

ratio of shear to normal bond strength and stiffness.  Well-defined post-peak 

softening occurs when the shear parallel bond strength is high.  It should be noted 

that if the shear bond strength is set too high, the parallel bond would break due to 

the normal stress exceeding the normal strength rather than the shear stress 

exceeding the shear strength.  Figure 6.9 shows the average coordination number 

of clumps with different parallel bond strengths during loading.  It can be seen 

from this figure that the average coordination number of clumps decreases with 

increasing shear bond strength.  These results are similar to the results shown in 

Figures 6.6 and 6.7.   
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(b) 

Figure 6.8. Effect of increasing the ratio of shear parallel bond strength and stiffness 

to normal parallel bond strength and stiffness between clumps on (a) shear strength 

and (b) volumetric strain (contraction positive). 
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Figure 6.9. Effect of increasing the ratio of shear parallel bond strength and stiffness 

to normal parallel bond strength and stiffness between clumps on average 

coordination number of clumps. 

6.4.2 Using asperities 

In the previous subsection, although the shear strength and stiffness of the ballast 

assembly could be modelled by adding weak parallel bonds between clumps to 

model small-scale asperities interlocking, dilation rather than contraction was 

observed during loading with 120 kPa confining pressure.  Particle breakage was 

observed in the laboratory experimental work (Indraratna et al., 1998).  McDowell 

et al. (2006) therefore suggested that particle breakage should be considered in 

DEM simulations on ballast.  Although, bulk fracture may occur under high stress 

levels, laboratory tests (Indraratna et al., 2005 and Aursudkij, 2007) have been 

shown that most ballast degradation is attributed to corner breakage and that bulk 

fracture is not significant.  Therefore, the effect of bulk fracture is not considered 



 140 

here.  Chapter 5 has shown that modelling abrasion is necessary to give the correct 

response in terms of settlement as a function of number of loading cycles for 

ballast subjected to cyclic loading in the box test simulations.  Therefore, here only 

abrasion is considered.   

In order to model the correct response of volume change during compaction, eight 

small balls were bonded to each ten-ball triangular clump at the corners and edges 

using contact bonds and parallel bonds to model small asperities, as shown in 

Figure 6.2(e).  The diameter of these small balls is 6 mm.  A sample with a 

porosity of 0.49 was made.  A series of simulations was carried out to study the 

influence of the asperity breakage – i.e. particle abrasion.  The parameters of the 

contact and parallel bonds used in these simulations for bonding the small balls are 

listed in Table 6.4 and the parameters of the weak parallel bonds between clumps, 

used to model the particles interlocking at very small asperity contacts, were set to 

be the same as those in Simulation 6.2 (listed in Table 6.2): i.e. much weaker than 

the asperity bond strengths.   

Figure 6.10 shows the results in terms of deviator stress and volumetric strain 

against axial strain.  It can be seen in Figure 6.10 that with decreasing asperity 

bond strength, shear strength of the assembly decreases and the assembly becomes 

more contractive.  Figure 6.11 shows the number of asperities broken off during 

the monotonic loading.  As expected, the number of asperities broken off increases 

with a decrease in the bond strength of asperities.  Hence, it can be seen that the 

number of broken asperities during shearing affects both the shear strength and the 

volumetric response of the assembly.  The higher the number of broken asperities 
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during shearing, the lower the shear strength and the less dilative the assembly.  

Particle abrasion therefore plays an important role in the shear stress-strain 

relationship and volumetric behaviour.  In order to achieve both an acceptable 

shear stress-strain response and an acceptable volumetric strain response, 

Simulation 6.11 seems to offer the best compromise.  Figure 6.12 shows the 

locations of broken asperities during monotonic loading in Simulation 6.11.  As 

can be seen from the figure, no particular zone where asperities break a lot is 

observed.  In other words, as asperities break and particle columns buckle, the 

applied boundary stresses cause a redistribution of contacts and new asperities 

break.   

  

Normal 

parallel 

bond 

strength 

(MPa) 

Shear 

parallel 

bond 

strength 

(MPa) 

Normal 

parallel 

bond 

stiffness 

(GPa/m) 

Shear 

parallel 

bond 

stiffness 

(GPa/m) 

Normal 

contact 

bond 

strength 

(kN) 

Shear 

contact 

bond 

strength 

(kN) 

Normal 

contact 

bond 

stiffness 

(GN/m) 

Shear 

contact 

bond 

stiffness 

(GN/m) 

Simulation 

6.8 
6×102 6×102 1.768×103 1.768×103 1.7×102 1.7×102 1 1 

Simulation 

6.9 
1.2×103 1.2×103 3.536×103 3.536×103 1.7×102 1.7×102 1 1 

Simulation 

6.10 
3×103 3×103 8.840×103 8.840×103 1.7×102 1.7×102 1 1 

Simulation 

6.11 
6×103 6×103 1.768×104 1.768×104 1.7×102 1.7×102 1 1 

Simulation 

6.12 
6×104 6×104 1.768×105 1.768×105 1.7×102 1.7×102 1 1 

Table 6.4. Parameters for parallel bonds and contact bonds used to bond asperities 

with clumps used in the series of simulations to investigate the effect particle 

abrasion. 
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(b) 

Figure 6.10. Effect of increasing bond strength and stiffness between clump and 

asperity on (a) shear strength and (b) volumetric strain (contraction positive). 
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Figure 6.11. Number of asperities broken off during monotonic loading. 

 

Figure 6.12. Locations of broken bonds between clumps and asperities during 

monotonic loading in Simulation 6.11. 

6.5 Modelling Railway Ballast Behaviour under a Large Range of 

Confining Pressures 

Triaxial test simulations using ten-ball triangular clumps bonded with eight small 

balls were carried out under a range of confining pressures (from 15 kPa to 240 
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kPa) used by Indraratna et al. (1998).  The parameters of the weak parallel bonds 

used between clumps were those in Simulation 6.2 (the same as those in 

Simulation 6.11) and the contact and parallel bonds used to bond asperities with 

clumps were those in Simulation 6.11 as the shear strength and volumetric 

behaviour were deemed to be acceptably close to the experimental result.  A series 

of simulations using unbreakable ten-ball triangular clumps with eight small balls 

(i.e. asperities which cannot break off and are treated as part of the clump) were 

also carried out under a range of confining pressures (from 15 kPa to 240 kPa) for 

comparison.  For the unbreakable assembly, the parameters of the weak parallel 

bonds used between clumps were also those in Simulation 6.2.   

6.5.1 Axial and volumetric strain 

Figure 6.13 shows the simulation and experimental results, in terms of deviator 

stress against axial strain; Figure 6.14 shows the simulation and experimental 

results, in terms of volumetric strain against axial strain.  Figures 6.15(a) and (b) 

show the numbers of asperities broken off under different confining pressures 

against axial strain and volumetric strain, respectively.  As can be seen from 

Figures 6.13, 6.14 and 6.15, particle abrasion plays an important role in correctly 

modelling both shear strength and volumetric change of the assembly of ballast.   

Comparing the experimental results with the simulation results which incorporated 

abrasion, the stress-strain relationship is well simulated at low stress levels (15 kPa 

– 120 kPa), however, for the simulation under a confining pressure of 240 kPa, the 

shear strength of the assembly simulated is a little lower than the experimental one.  
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Comparing the shear strengths of the breakable assembly to those of the 

unbreakable assembly (as shown in Figures 6.13(a) and (b)), the shear strength has 

decreased to some degree as a result of particle breakage (as shown in Figure 6.15).   

As for the volumetric behaviour, more dilation is observed in the simulations for 

both breakable assembly and unbreakable assembly at the low stress levels.  High 

dilation is still pronounced at high confining pressures, when the particle breakage 

is not considered, as shown in Figure 6.14(b).  However, it can be seen in Figure 

6.14(a) that for the sample with simulated abrasion, dilation has reduced much 

more with increasing confining stress as more asperities break.  Volumetric strain 

agrees reasonably with the experimental results under a high confining pressure 

(240 kPa) where asperity breakage is pronounced.  This is probably due to the 

arbitrary number of asperities bonded on each clump and the asperity size.  

Smaller balls may break at lower stress levels, giving more asperity breakage and 

less dilation.  Using more and smaller balls bonded to the clumps as asperities may 

give more realistic volumetric strains at lower confining pressures.  Therefore, 

further investigation of the effect of number and size of asperities is needed; this is 

suggested for further research.   

It can be seen from Figure 6.15 that particle abrasion occurs at both low and high 

stress levels.  With increasing confining pressure, more asperities are broken off.  

This finding agrees with Indraratna et al. (1998).   
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(c) 

Figure 6.13. Results of deviator stress against axial strain under a range of confining 

pressures (a) using ten-ball triangular clumps bonded with eight small balls as 

asperities; (b) using ten-ball triangular clumps with eight small balls (unbreakable 

asperities) and (c) experimental results (Indraratna et al., 1998). 



 147 

-0.2

-0.15

-0.1

-0.05

0

0.05

0 0.05 0.1 0.15 0.2

Axial strain
V
o
lu
m
e
tr
ic
 s
tr
a
in
 

  15 kPa
  30 kPa
  60 kPa
  90 kPa
120 kPa
240 kPa

 
(a) 

-0.2

-0.15

-0.1

-0.05

0

0.05

0 0.05 0.1 0.15 0.2
Axial strain

V
o
lu
m
e
tr
ic
 s
tr
a
in

  15 kPa
  30 kPa
  60 kPa
  90 kPa
120 kPa
240 kPa

 
(b) 

-0.2

-0.15

-0.1

-0.05

0

0.05

0 0.05 0.1 0.15 0.2

Axial strain

V
o
lu
m
e
tr
ic
 s
tr
a
in

  15 kPa
  30 kPa
  60 kPa
  90 kPa
120 kPa
240 kPa

 
(c) 

Figure 6.14. Results of volumetric strain against axial strain under a range of 

confining pressures (a) using ten-ball triangular clumps bonded with eight small 

balls as asperities; (b) using ten-ball triangular clumps with eight small balls 

(unbreakable asperities) and (c) experimental results (Indraratna et al., 1998). 
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(b) 

Figure 6.15. Number of asperities broken off during monotonic loading under a 

range of confining pressures against (a) axial strain and (b) volumetric strain. 

6.5.2 Number of contacts 

Figure 6.16 shows a plot of the number of contacts prior to shearing and after 

shearing (i.e. axial strain = 0.2) for the breakable and unbreakable assemblies 

against confining pressure.  As can be seen from the figure, the assemblies under 

different isotropic compaction pressures (prior to shearing) have similar numbers 
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of contacts (approximately 7000); after shearing to 0.2 axial strain, the number of 

contacts for both the breakable and unbreakable assemblies increases with 

increasing confining pressure.  For the unbreakable assembly after shearing, the 

number of contacts under different confining pressures is always lower than the 

initial number of contacts as the sample dilates; however, for the breakable 

assembly after shearing, the number of contacts is lower than the initial number of 

contacts under lower confining pressures (15 kPa – 60 kPa) as the sample dilates 

and higher than the initial numbers of contacts under higher confining pressures 

(90 kPa – 240 kPa), as the sample contracts.   
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Figure 6.16. Number of contacts prior to shearing and after shearing for the 

breakable and unbreakable assemblies. 

The important finding here is that without particle abrasion, discrete element 

modelling shows that increasing the confining pressure does not sufficiently 

suppress the dilatancy under monotonic shear loading.  However, when asperity 

abrasion is included, the volumetric response under increasing confining stress is 

much more promising.  Comparing with the unbreakable assembly, asperity 
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abrasion leads to a higher number of contacts, and particle rotations and dilatancy 

are more suppressed.  Therefore, abrasion provides a key micro mechanical 

explanation for the elimination of dilatancy with increasing confining pressure 

under monotonic loading.   

6.6 Conclusions 

The stress-strain behaviour of railway ballast under monotonic loading has been 

modelled using the discrete element method.  The results have shown that particle 

shape, interparticle friction, interlocking and asperity fracture all play an important 

role in determining the mechanical behaviour of railway ballast.  The shear 

strength of an assembly of spheres is very low compared to that of real ballast.  

Even using more angular particles with an increased coefficient of friction is not 

enough to increase the shear strength of the assembly to be as high as that of real 

ballast.  By adding weak parallel bonds between clumps to simulate surface 

texture and enhance the shear resistance of each particle contact, the correct shear 

strength of railway ballast can be simulated.  However, introducing particle shape, 

increasing the coefficient of friction and introducing parallel bonds between 

clumps each produce more dilation, so that too much dilation is observed.  

Realistic volumetric change behaviour can be obtained if particle abrasion is 

modelled.  It has been shown that by introducing parallel bond contact law 

between clumps and bonded asperities, approximately the correct response in 

terms of shear stress and volumetric strain can be observed for a range of 

confining pressures. 
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CHAPTER 7 

CYCLIC TRIAXIAL TEST SIMULATIONS 

 

7.1 Introduction 

Since the mechanical behaviour of railway ballast under cyclic loading differs 

from that under monotonic loading, large-scale cyclic triaxial test equipment has 

been used by various researchers (e.g. Indraratna et al., 2005; Suiker et al., 2005; 

Lackenby et al., 2007) to investigate the permanent strain and particle degradation 

of ballast under a variety of repeated loading conditions.  Chapter 6 examined the 

modelling of the mechanical behaviour, including particle breakage, in the 

monotonic triaxial test simulations under a range of confining pressures.  The 

simulation and experimental results were in broad agreement.  In this chapter, the 

ten-ball triangular clumps bonded with eight small balls described in Chapter 6 are 

used.  A series of simulations using both a breakable assembly and an unbreakable 

assembly under a confining pressure of 120 kPa are carried out to study the effect 

of particle abrasion under different cyclic loads.  A series of simulations using 

breakable assemblies were then conducted to investigate the effect of confining 

pressure, cyclic deviator stress magnitude and the number of cycles on the 

permanent strain and breakage of ballast.  The results are compared with the 
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experimental data (Lackenby et al., 2007).  Simulation results under cyclic loading 

are also compared with those under monotonic loading conditions obtained in 

Chapter 6.  In addition, the effect of parallel bonds between clumps (used to 

simulate interlocking of very small asperities) is studied by using different bond 

strengths.   

7.2 Modelling Procedure 

The particle model used in this chapter is the ten-ball triangular clump with eight 

asperities described in Chapter 6, as shown in Figure 6.2(e).  The geometry and 

construction of the simulated triaxial cell is also the same.  The samples had 

dimensions of approximately 300 mm diameter × 600 mm high, with each sample 

having 618 particles (a particle being a ten-ball triangular clump with eight 

asperities).  Figure 7.1 shows a sample with 618 particles of ten-ball triangular 

clumps under 120 kPa confining pressure prior to loading.  The initial porosity of 

this sample was 0.44.  The properties of the particles were the same as those of the 

ten-ball triangular clump with eight asperities in section 6.5.  The normal and 

shear stiffnesses of the balls were both 1×10
9
 N/m and the density of the particles 

was 2,500 kg/m
3
.  The coefficient of friction for the balls was set to 0.5.  The walls 

were set to be frictionless with zero shear stiffness during each simulation.  The 

two horizontal walls had the same normal stiffness as the particles (1×10
9
 N/m); 

the normal stiffness of the cylindrical vertical wall (1×10
8
 N/m) was set to be one 

tenth of the normal stiffness of the particles.  The parameters of the contact and 

parallel bonds for bonding the small balls (asperities) are listed in Table 7.1 and 
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the parameters of the weak parallel bonds between clumps (used to model the 

interlocking at very small asperity contacts) are listed in Table 7.2.   

Simulation 

number 

Normal 

parallel 

bond 

strength 

(MPa) 

Shear 

parallel 

bond 

strength 

(MPa) 

Normal 

parallel 

bond 

stiffness 

(GPa/m) 

Shear 

parallel 

bond 

stiffness 

(GPa/m) 

Normal 

contact 

bond 

strength 

(kN) 

Shear 

contact 

bond 

strength 

(kN) 

Normal 

contact 

bond 

stiffness 

(GN/m) 

Shear 

contact 

bond 

stiffness 

(GN/m) 

Simulation 

7.4-7.19 
6×103  6×103   1.768×104 1.768×104 1.7×102 1.7×102  1 1 

Table 7.1. Parameters for parallel bonds and contact bonds used to bond asperities 

with clumps used in the simulations. 

Simulation number 

Normal 

parallel 

bond 

strength 

(kPa) 

Shear 

parallel 

bond 

strength 

(kPa) 

Normal 

parallel 

bond 

stiffness 

(MPa/m) 

Shear 

parallel 

bond 

stiffness 

(MPa/m) 

Simulation 7.1-7.17 100 5,000 100 1,000 

Table 7.2. Parameters for parallel bonds between clumps used in the simulations.  

 

Figure 7.1. Assembly of ten-ball triangular clumps with eight small balls (asperities) 

bonded in the triaxial cell. 
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The normal stress on each wall was calculated by the summation of the normal 

contact forces on the wall divided by the area of the sample where the wall was 

located.  The servo-control mechanism was applied to all walls to maintain the 

required confining pressures and cyclic loading.  Following Lackenby et al. (2007), 

samples under confining pressures ranging from 10 kPa to 240 kPa were simulated 

and sinusoidal load pulses were applied to the samples with a minimum load of 45 

kPa being set for each test.  Three different magnitudes of maximum load were 

used: 230 kPa, 500 kPa and 750 kPa.  The frequency of the cyclic load was 4 Hz.  

Limitations in computing time make it unrealistic to perform simulations with as 

many cycles as in the experimental tests, so one hundred loading cycles were 

applied in each simulation.  The axial strain and the overall volumetric strain of 

the sample were monitored, and the location of asperity breakage was recorded.  

Following Lackenby et al. (2007), failure of ballast specimens under repeated 

loading is defined by an arbitrary level of strain accumulation (e.g. axial strain is 

higher than 0.25).   

The cyclic triaxial test simulations were divided into three test series.  Series 7.1 

was to study the effect of particle abrasion (asperity breakage) with a confining 

pressure of 120 kPa being used with both the breakable and unbreakable 

assemblies prepared in the monotonic triaxial test simulations in section 6.5.  The 

simulations in Series 7.1 are summarised in Table 7.3.   

The simulations in Series 7.2 used the crushable assembly and were carried out 

under different loading conditions, as listed in Table 7.4.  The results were 

compared with experimental data (Lackenby et al., 2007).  The aim of these 
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simulations was to study the effect of confining pressure and cyclic deviator stress 

magnitude on the micro mechanical behaviour of railway ballast, including 

degradation.  The breakable assemblies prepared in the monotonic triaxial test 

simulations in section 6.5 under a range of confining pressures (from 30 kPa to 

240 kPa) were used here.  A breakable assembly with a confining pressure of 10 

kPa was also prepared using the same procedure as described in section 6.2.  The 

parameters of the weak parallel bonds between clumps and the contact and parallel 

bonds used to bond asperities with clumps were the same as those used in section 

6.5 (as listed in Table 7.1 and 7.2).   

Simulation number 

Confining 

pressure 

(kPa) 

Maximum 

deviator 

stress 

(kPa) 

Asperities 

Simulation 7.1 120 230 unbreakable 

Simulation 7.2 120 500 unbreakable 

Simulation 7.3 120 750 unbreakable 

Simulation 7.4 120 230 breakable 

Simulation 7.5 120 500 breakable 

Simulation 7.6 120 750 breakable 

Table 7.3. List of cyclic triaxial test simulations in Series 7.1. 

Different parallel bond strengths between clumps were used in Series 7.3 to 

investigate the effect of parallel bonds between clumps (used to simulate small-

scale asperity interlocking) on the behaviour of the assembly.  The parallel bond 

strengths between clumps are listed in Table 7.5.  A confining pressure of 30 kPa 

and a maximum deviator stress of 750 kPa were used in this series.   
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Simulation number 

Confining 

pressure 

(kPa) 

Maximum 

deviator 

stress 

(kPa) 

Asperities 

Simulation 7.7 10 230 breakable 

Simulation 7.8 10 500 breakable 

Simulation 7.9 30 230 breakable 

Simulation 7.10 30 500 breakable 

Simulation 7.11 30 750 breakable 

Simulation 7.12 60 230 breakable 

Simulation 7.13 60 500 breakable 

Simulation 7.14 60 750 breakable 

Simulation 7.4 120 230 breakable 

Simulation 7.5 120 500 breakable 

Simulation 7.6 120 750 breakable 

Simulation 7.15 240 230 breakable 

Simulation 7.16 240 500 breakable 

Simulation 7.17 240 750 breakable 

Table 7.4. List of cyclic triaxial test simulations in Series 7.2. 

Simulation 

number 

Normal 

parallel 

bond 

strength 

(kPa) 

Shear 

parallel 

bond 

strength 

(kPa) 

Normal 

parallel 

bond 

stiffness 

(MPa/m) 

Shear 

parallel 

bond 

stiffness 

(MPa/m) 

Simulation 7.18 50 2,500 50 500 

Simulation 7.11 100 5,000 100 1,000 

Simulation 7.19 300 15,000 300 3,000 

Table 7.5. Parameters for parallel bonds between clumps used in the simulations in 

Series 7.3. 

7.3 Effect of Particle Abrasion under Cyclic Loading 

A series of simulations (Series 7.1) using the breakable and unbreakable 

assemblies under a confining pressure of 120 kPa were carried out, with maximum 

deviator stresses of 230 kPa, 500 kPa and 750 kPa being applied.   
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Figure 7.2 shows the experimental results from Lackenby et al. (2007), in terms of 

both axial and volumetric strain against number of loading cycles.  For comparison 

with the simulation results, the experimental results for the first 1,000 cycles are 

shown in Figure 7.3.  Figure 7.4 shows the axial and volumetric strain against 

number of loading cycles for the simulations, using the breakable and unbreakable 

assemblies.  The number of asperities broken off as a function of the number of 

cycles under different maximum deviator stresses in the simulations is shown in 

Figure 7.5.   
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(b) 

Figure 7.2. (a) Axial strain and (b) volumetric strain (contraction positive) under a 

confining pressure of 120 kPa against number of cycles (Lackenby et al., 2007). 
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(b) 

Figure 7.3. (a) Axial strain and (b) volumetric strain (contraction positive) under a 

confining pressure of 120 kPa during the first 1,000 cycles (Lackenby et al., 2007). 
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(b) 

Figure 7.4. (a) Axial strain and (b) volumetric strain (contraction positive) for both 

breakable and unbreakable assemblies under a confining pressure of 120 kPa 

against number of cycles. 



 160 

 

0

50

100

150

200

250

300

1 10 100 1000

Number of cycles

N
u
m
b
e
r 
o
f 
b
ro
k
e
n
 a
s
p
e
ri
ti
e
s

230 kPa

500 kPa
750 kPa

 

Figure 7.5. Number of asperities broken off under a confining pressure of 120 kPa 

against number of cycles. 

It can be seen from Figure 7.3(a) that, for the real ballast assembly, the rate of 

increase of axial strain is very high in the first 1,000 cycles, especially for high 

maximum deviator stresses (i.e. qmax,cyc = 500 kPa and 750 kPa).  Lackenby et al. 

(2007) found that real ballast shakes down (i.e. there is an insignificant rate of 

increase of axial strain) within 10,000 cycles, as shown in Figure 7.2(a).  However, 

it can be seen from Figure 7.4(a) that for the simulations, the main axial strain 

accumulated during the first 10 cycles, with only a few axial strain increments 

occurring during the remaining 90 cycles.  It would appear that, for the simulations, 

permanent axial strain accumulation stabilises, and the assembly shakes down 

within 100 cycles, presumably because of the limited umber of asperities.  In 

addition, fatigue or slow crack growth is not considered in these simulations.   
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It can be seen from Figure 7.5 that the number of asperities broken off increases 

with increasing maximum deviator stress, with the number of asperities broken off 

under a maximum deviator stress of 750 kPa being about ten times higher than that 

under a maximum deviator stress of 230 kPa.  For the simulation using a 

maximum deviator stress of 230 kPa, most asperity breakage occurs during the 

first few cycles.  For the simulation using a maximum deviator stress of 750 kPa, a 

large number of asperity breakages occurs during the first 10 cycles with asperities 

still breaking off, however, during the remaining 90 cycles.   

Comparing the breakable assembly with the unbreakable, a higher axial strain is 

observed for the breakable assembly for each of the different maximum deviator 

stresses (as shown in Figure 7.4(a)).  Axial strain increases very little during the 

remaining 90 cycles when using the unbreakable assembly under a maximum 

deviator stress of 750 kPa.  By comparison, a larger axial strain was observed 

during the remaining 90 cycles for the breakable assembly under a maximum 

deviator stress of 750 kPa due to asperities still breaking off during the remaining 

90 cycles, leading to additional permanent axial strain.  When particle abrasion is 

omitted from the simulation, particle rearrangement decreases and the assembly 

shakes down in a few cycles.  However, when particle abrasion is modelled, 

asperity breakage leads to more particle rearrangement and hence extra permanent 

axial strain.  Thus, a greater number of cycles is needed for the breakable assembly 

to shake down.   

Figure 7.6 shows the axial and volumetric strain after 100 cycles for the 

simulations using the breakable and unbreakable assemblies.  The axial and 
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volumetric strain after 100 cycles and the final axial and volumetric strain for the 

experimental results are also plotted in the same figure for comparison.  It should 

be noted that the accumulated axial strain is a function of the number of cycles 

before an assembly shakes down and that the number of cycles required depends 

on the loading conditions.  Due to the limitation of simulation (e.g. number of 

asperities, ignoring the effect of fatigue and slow cracking), the assembly in the 

simulations stabilises more quickly than the real ballast.  After 100 cycles, the 

assembly in the simulations is stable, while real ballast is not (with accumulated 

axial strain still increasing significantly).  It is clear from Figure 7.6 that a larger 

axial strain and greater contraction are observed when the breakable clumps are 

used comparing with those using unbreakable, particularly under high maximum 

deviator stresses where a large number of asperities breaks off.  It can be seen 

from Figure 7.6 that the axial strain for both simulations and experimental tests 

increase with increasing maximum deviator stress and that the volumetric strain 

for both simulations and experimental tests peaks for a maximum deviator stress of 

500 kPa and then decreases at qmax,cyc = 750 kPa.  Comparing the simulations using 

breakable clumps with those using unbreakable, the axial and volumetric strain for 

the unbreakable assemble are closer to the experimental results after 100 cycles, 

however, the axial and volumetric strain for the breakable assemble are closer to 

the final experimental results.  This is due to the more rapid stabilising of the 

assembly in the simulation than in real ballast under the same number of cycles 

and the effect of particle abrasion on axial and volumetric strain.  The rapid 

stabilising of the assembly in the simulation leads to a higher axial and volumetric 
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strain, while the unbreakable assembly causes insufficient permanent deformation 

(i.e. axial and volumetric strain).   
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Figure 7.6. (a) Axial strain and (b) volumetric strain (contraction positive) after 100 

cycles for simulations and experimental tests, and after 500,000 cycles for 

experimental tests. 
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7.4 Modelling Railway Ballast Behaviour under a Large Range of 

Confining Pressures 

7.4.1 Axial and volumetric strain 

A series of triaxial test simulations using a crushable assembly were carried out 

under the different loading conditions used by Lackenby et al. (2007).  The 

loading conditions are given in Table 7.4.  Figures 7.7 and 7.8 show the 

experimental results, in terms of axial and volumetric strain against number of 

cycles.  For comparison with the simulation results, the experimental results for 

the first 1,000 cycles are shown in Figures 7.9 and 7.10.  Figures 7.11 and 7.12 

show the axial and volumetric strain against number of cycles for the simulations 

under different loading conditions.  The number of asperities broken off in the 

simulations as a function of the number of cycles is plotted in Figure 7.13.   

As for the simulations in Series 7.1, most assemblies in Series 7.2 shake down 

within 100 cycles, apart from the assemblies with a relatively low confining 

pressure and high maximum deviator stress.  It is clear from Figure 7.11 that only 

Simulation 7.11 (confining pressure of 30 kPa and maximum deviator stress of 

750 kPa) failed within 100 cycles.  This is consistent with the experimental data 

(Lackenby et al., 2007) which shows that under a confining pressure of 30 kPa and 

maximum deviator stress of 750 kPa the specimen failed (i.e. axial strain > 0.25) 

rather than shook down.   



 165 

qmax,cyc = 230 kPa

0

0.05

0.1

0.15

0.2

0.25

1 10 100 1000 10000 100000 1000000

Number of cycles

A
x
ia
l 
s
tr
a
in

  10 kPa
  30 kPa
  60 kPa
120 kPa
240 kPa

  
(a) 

qmax,cyc = 500 kPa

0

0.05

0.1

0.15

0.2

0.25

1 10 100 1000 10000 100000 1000000

Number of cycles

A
x
ia
l 
s
tr
a
in

  10 kPa
  30 kPa
  60 kPa
120 kPa
240 kPa

  
(b) 

qmax,cyc = 750 kPa

0

0.05

0.1

0.15

0.2

0.25

1 10 100 1000 10000 100000 1000000

Number of cycles

A
x
ia
l 
s
tr
a
in

  30 kPa
  60 kPa
120 kPa
240 kPa

  
(c) 

Figure 7.7. Axial strain as a function of the number of cycles (Lackenby et al., 2007). 
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Figure 7.8. Volumetric strain (contraction positive) as a function of the number of 

cycles (Lackenby et al., 2007). 
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Figure 7.9. Axial strain during the first 1,000 cycles (Lackenby et al., 2007). 
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Figure 7.10. Volumetric strain (contraction positive) during the first 1,000 cycles 

(Lackenby et al., 2007). 
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Figure 7.11. Axial strain as a function of the number of cycles for the simulations. 
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Figure 7.12. Volumetric strain (contraction positive) as a function of the number of 

cycles for the simulations. 
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Figure 7.13. Number of asperities broken off against number of cycles. 
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It can be seen from Figure 7.11 that axial strain increases with increasing 

maximum deviator stress and decreasing confining pressure.  Similar behaviour 

was reported in the experiments by Lackenby et al. (2007).  Comparing the 

simulation results with the experimental results (as shown in Figure 7.7), 

permanent axial strain was simulated effectively.  With reference to the volumetric 

strain (Figures 7.8 and 7.12, contraction positive), higher dilation was observed for 

the simulations with relatively low confining pressure and high maximum deviator 

stress than for the laboratory tests.  This is similar to the results from the 

monotonic triaxial test simulations presented in Chapter 6, where higher dilation 

was observed under low confining pressures (i.e. 15 kPa and 30 kPa) than in the 

experimental data.   

Figure 7.14(a) shows a plot of final axial strain after 500,000 cycles for 

experimental tests against confining pressure.  Figures 7.14(b) and (c) show plots 

of axial strain after 100 cycles for experimental tests and simulations respectively, 

against confining pressure.  Lackenby et al. (2007) used Equation 7.1 to describe 

the influence of confining pressure on axial strain.   

b

a a
−

= '

3σε          (7.1) 

where a and b are regression coefficients listed in Table 7.6.  Equation 7.1 with 

different regression coefficients are plotted as dotted lines in Figure 7.14.  Figure 

7.15(a) shows a plot of volumetric strain after 500,000 cycles for experimental 

tests against confining pressure.  Figures 7.15(b) and (c) show plots of volumetric 

strain after 100 cycles for experimental tests and simulations respectively, against 
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confining pressure.  It should be noted that for the experimental results after 100 

cycles (as shown in Figures 7.14(b) and 7.15(b)), the specimens have not shaken 

down.   
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Figure 7.14. Axial strain against confining pressure: (a) experimental results at 

500,000 loading cycles (Lackenby et al., 2007); (b) experimental results at 100 loading 

cycles (Lackenby et al., 2007) and (c) simulation results. 
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Figure 7.15. Volumetric strain (contraction positive) against confining pressure: (a) 

experimental results at 500,000 loading cycles (Lackenby et al., 2007); (b) 

experimental results at 100 loading cycles (Lackenby et al., 2007) and (c) simulation 

results. 
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qmax,cyc (kPa) a b 

230 0.30 0.51 

500 0.85 0.55 

750 2.00 0.60 

Table 7.6. Regression coefficients for Equation 7.1 (Lackenby et al., 2007). 

Comparing the simulation results with the experimental results after 100 cycles, it 

was found that axial strains for simulations are higher than for the experiment 

results, apart from the simulations with 10 kPa confining pressure.  This is due to 

the more rapid stabilising of the assembly in the simulation than in real ballast 

under the same number of cycles.  Simulation 7.11, for example, failed within 100 

cycles, while the experimental specimen under the same loading condition failed 

after 200 cycles; therefore, the axial strain for Simulation 7.11 (as shown in Figure 

7.14(c)) is found to be higher than in the experimental one (as shown in Figure 

7.14(b)).  Regarding volumetric strain, the assembly in the simulations is more 

contractive under high confining pressures and more dilative under low confining 

pressures in comparison with the experimental results after 100 cycles.   

Comparing the simulation results after 100 cycles with the experimental results 

after 500,000 cycles, for high confining pressures (i.e. confining pressures of 120 

kPa and 240 kPa), axial strains for simulations match those for the experimental 

results.  For low confining pressures (i.e. confining pressures of 10 kPa to 60 kPa), 

axial strains for the simulations are lower than those for the experimental tests, 

particularly under high maximum deviator stresses.  Regarding volumetric strain, 
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when the specimen is contractive (under higher confining pressures), the 

simulation results are consistent with the experimental results.  However, when the 

specimen is dilative (under low confining pressure), higher dilation is observed in 

the simulations.  As discussed in section 6.5.1, this is probably due to the arbitrary 

number of asperities bonded on each clump and the asperity size. Smaller 

asperities may break at lower levels giving more asperity breakage and less 

dilation. 

7.4.2 Strain behaviour as a function of ψ 

Lackenby et al. (2007) introduced the ratio of maximum deviator stress for cyclic 

loading to the peak strength obtained from monotonic triaxial tests ψ, as described 

in   Equation 7.2. 

stapeakcyc qq ,max, /=ψ         (7.2) 

They found that final axial strain is confined within a narrow band of values when 

plotted against the ratio ψ.  Equation 7.3 was used to describe this.   

βψαε +=a          (7.3) 

where α and β are regression coefficients.   

Figures 7.16(a) and (b) show the plot of axial strain after 500,000 cycles and 100 

cycles, respectively, against the ratio ψ for experimental tests.  Figure 7.16(c) 

shows the plot of axial strain after 100 cycles against the ratio ψ for the 

simulations.  It can be seen that for the simulations, the relationship between axial 
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strain after 100 cycles and the ratio ψ is also confined within a narrow band.  It 

should be noted that the slope of the narrow band is affected by the number of 

cycles (as shown in Figures 7.16(a) and (b)).  Due to the peak strength obtained 

from the monotonic triaxial test simulations and the axial strain from the cyclic 

triaxial test simulations are slightly different from those of experimental results, 

the slope of the narrow band for simulations differs from that for experimental 

tests. 

7.4.3 Number of contacts 

Figure 7.17 shows the number of contacts prior to cyclic loading and under 

different maximum deviator stresses and confining pressures at the 100
th
 cycle.  

The number of contacts after shearing (i.e. axial strain = 0.2) for the monotonic 

triaxial test simulations is plotted in the same figure, and the ultimate strengths are 

also stated.  It can be seen that, as in the monotonic triaxial test results, the number 

of contacts increases with increasing confining pressure.  For the simulations 

under low confining pressure (<60 kPa), the number of contacts decreases with 

increasing maximum deviator stress; however, for the simulations under high 

confining pressure (>60 kPa), the number of contacts increases with increasing 

maximum deviator stress.  It is interesting to compare the number of contacts with 

the volumetric strain, as shown in Figure 7.15(c).  When the number of contacts 

after 100 cycles is lower than the initial number, the assembly has dilated.  The 

reverse behaviour is observed when the number of contacts after 100 cycles is 

higher than the initial number: the sample has contracted.   
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Figure 7.16. Axial strain against the ratio of maximum deviator stress under cyclic 

loading to maximum deviator stress under monotonic loading (a) experimental 

results at 500,000 loading cycles (Lackenby et al., 2007); (b) experimental results at 

100 loading cycles (Lackenby et al., 2007) and  (c) simulation results. 
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Figure 7.17. Number of contacts for both cyclic and monotonic triaxial test 

simulations. 

As mentioned in section 6.5, the change in the number of contacts is due to the 

particle breakage and rearrangement.  It is apparent from Figure 7.17 that, under 

low confining pressure, although more asperities break off under higher maximum 

deviator stress, the number of contacts is lower than that under lower maximum 

deviator stress.  This indicates that under low confining pressure, asperity 

breakage permits further dilation.   

Comparing with the number of contacts for the monotonic triaxial test simulations, 

as shown in Figure 7.17, more contacts form under cyclic loading with similar 

confining pressure and deviator stress (deviator stress at 0.2 axial strain for 

monotonic triaxial test simulations and maximum deviator stress for cyclic triaxial 

test simulations).  Looking at the monotonic test with an ultimate strength of 193 

kPa, for example, and the cyclic data at maximum deviator stress of 230 kPa and 
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500 kPa, it is evident that under a maximum cyclic deviator stress of 193 kPa, the 

number of contacts would be higher and the assembly would be less dilative, 

giving a lower average contact force.   

7.4.4 Cyclic degradation behaviour 

Figure 7.18 shows the ballast breakage index after 500,000 cycles for the 

experimental tests.  This index indicates the breakage level based on a calculation 

of area under the particle size distribution before and after each test (the detail was 

described in Chapter 2).  The higher the ballast breakage index, the more breakage 

in the specimen.  Figure 7.19 shows the number of asperities broken off after 100 

cycles for the simulations.  Figure 7.20 shows the number of broken parallel bonds 

between clumps (modelling very small asperities) after 100 cycles for the 

simulations.   

 

Figure 7.18. Effect of confining pressure and maximum deviator stress on ballast 

breakage index (Lackenby et al., 2007). 
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Figure 7.19. Number of broken asperities against confining pressure. 
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Figure 7.20. Number of broken parallel bonds between clumps against confining 

pressure. 

Indraratna et al. (2005) indicated that ballast degradation behaviour under cyclic 

loading can be categorised into three distinct zones: the dilatant unstable 

degradation zone (DUDZ), the optimum degradation zone (ODZ), and the 
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compressive stable degradation zone (CSDZ), as shown in Figure7.18.  These 

zones are dependent on both confining pressure and maximum deviator stress 

acting on the specimen (Lackenby et al., 2007).  The upper limits of confining 

pressure for DUDZ and ODZ are listed in Table 7.7.  These three distinct zones 

are also apparent in the simulation, as shown in Figure 7.19 (which has the 

Lackenby et al. (2007) zones superimposed).  Regarding parallel bonds between 

clumps (which simulate the small-scale asperities), it can be seen from Figure 7.20 

that a large number of parallel bonds between clumps have broken under a low 

confining pressure (DUDZ) and that the number of broken parallel bonds 

decreases with decreasing maximum deviator stress and increasing confining 

pressure.   

σ'3 upper limits (kPa) 
qmax,cyc (kPa) 

DUDZ ODZ 

230 15 65 

500 25 95 

750 50 140 

Table 7.7. Upper limits of confining pressure for DUDZ and ODZ (Lackenby et al., 

2007). 

Lackenby et al. (2007) found that most of the degradation in DUDZ was due to the 

breakage of angular corners or projections, rather than particle splitting.  They 

indicated that this is due to internal deformation mechanisms, such as sliding or 

rolling, which inhibit the formation of permanent interparticle contacts, thus 

preventing splitting due to excessive stresses.  With reference to the simulations, 

Figures 7.19 and 7.20 indicate that the fracture of small angular projections 
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(modelled by bonding asperities) and the grinding off of very small asperities 

(modelled by parallel bond between clumps) together dominate the behaviour in 

DUDZ.  The considerable fracture of small angular projections and grinding off of 

small-scale asperities in DUDZ is accompanied by significant particle rolling and 

sliding.   

In the ODZ, Lackenby et al. (2007) found that breakage reduces significantly as a 

result of the increase of confining pressure.  In the simulations, both the number of 

broken asperities and the number of broken parallel bonds between clumps reduce 

considerably.  The reduced particle breakage in this zone is accompanied by less 

dilation and an increase in the number of contacts.   

In the CSDZ, Lackenby et al. (2007) found that although corner degradation is still 

the foremost kind of breakage, some particle splitting takes place.  In this research, 

particle splitting is not simulated as it is computationally very time-consuming to 

use agglomerates of bonded balls to model particle splitting, and only a little 

particle splitting is observed in the experimental tests (Lackenby et al., 2007), 

Future research can address the modelling of particle splitting.  Figure 7.20 shows 

that, in comparison with other zones, fewer parallel bonds between clumps break 

off.  However, more asperities break off in the CSDZ, comparing with those in the 

ODZ (as shown in Figure 7.19).  Under high confining pressure, since the particle 

movement (i.e. rolling and sliding) and the assembly dilation are largely 

suppressed as a result of high confinement and an increased number of contacts, 

the grinding off of very small asperities (modelled by the parallel bonding between 

clumps) is limited.  However, since the mean contact force increases with 
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increasing confining pressure, the crushing of angular corners and sharp asperities 

is still significant.   

In general, Figures 7.19 and 7.20 suggest that the behaviour observed in Figure 

7.18 is dominated by asperity fracture (i.e. the fracture of small angular 

projections), simulated here by bonding small balls to the clumps.   

Figures 7.21-7.25 show the number of broken asperities during 100 cycles for 

different maximum deviator stresses and confining pressures against axial strain.  

The number of asperities broken off under monotonic loading is also plotted in 

these figures in a solid line.  As expected, under cyclic loading conditions, more 

breakage occurs at the same axial strain.  It can be seen from these figures that, 

under the same confining pressure, the number of broken asperities under different 

maximum deviator stresses against axial strain follows the same curve.  Equation 

7.4 can be utilised to describe the relationship between number of broken 

asperities Nasp and axial strain εa.   

d

aasp cN ε=          (7.4) 

where c and d are regression coefficients listed in Table 7.8.   

Confining 

pressure (kPa) 
c d 

10 5,093 2.12 

30 8,138 2.11 

60 14,290 2.03 

120 15,649 1.67 

240 16,008 1.45 

Table 7.8. Regression coefficients for Equation 7.4. 
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Figure 7.21. Number of broken asperities under a confining pressure of 10 kPa 

against axial strain. 
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Figure 7.22. Number of broken asperities under a confining pressure of 30 kPa 

against axial strain. 
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Figure 7.23. Number of broken asperities under a confining pressure of 60 kPa 

against axial strain. 
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Figure 7.24. Number of broken asperities under a confining pressure of 120 kPa 

against axial strain. 
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Figure 7.25. Number of broken asperities under a confining pressure of 240 kPa 

against axial strain. 

Figure 7.26 shows Equation 7.4 and the number of broken asperities under 

different confining pressures.  Given axial strain and confining pressure, it is 

possible to predict the number of broken asperities using Equation 7.4, as shown in 

Figure 7.27.  The number of broken asperities under different confining pressures 

and maximum deviator stresses after 100 cycles are also plotted in Figure 7.27.  

By using Equations 7.3 and 7.4, given the confining pressure and the ratio ψ, it is 

possible to predict the total axial strain and number of broken asperities.   
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Figure 7.26. Number of broken asperities under confining pressures of 10 kPa to 240 

kPa against axial strain. 
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Figure 7.27. 3D plot showing the relationship between confining pressure, axial 

strain and number of broken asperities. 



 188 

7.5 Effect of Parallel Bond between Clumps 

Both the experimental and simulation results have shown that the assemblies fail 

under a confining pressure of 30 kPa and a maximum deviator stress of 750 kPa.  

This loading condition was used, therefore, in Series 7.3 to study the effect of 

parallel bonds between clumps.  The parameters for parallel bonds between 

clumps used in this series of simulations are given in Table 7.5.  Figure 7.28 shows 

the axial and volumetric strain for different parallel bond strengths between 

clumps against number of cycles.  It can be seen that with decreasing parallel bond 

strength, the axial strain increases more rapidly.  For the assembly with low 

parallel bond strength (Simulation 7.18), axial strain increases with the number of 

cycles and fails after about 20 cycles.  Regarding volumetric strain, for the 

assembly with low parallel bond strength, it keeps dilating.  Nevertheless, for the 

assembly with high parallel bond strength, it dilates during the first few cycles and 

then becomes stable.   

Figure 7.28(a) indicates that, for Simulations 7.18 and 7.11, when the axial strain 

is higher than 0.17, the rate of increase of axial strain increases sharply and the 

assemblies fail.  However, for Simulation 7.19, where the parallel bond strength is 

the highest, axial strain and volumetric strain level off after 20 cycles.  It appears 

that the assembly in Simulation 7.19 stabilises within 100 cycles.   

Figure 7.29 shows the number of parallel bonds between clumps broken off during 

the 100 cycles.  Figure 7.30 shows the number of asperities broken off during the 

100 cycles.  As expected, the lower the parallel bond strengths are, the more 
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parallel bonds between clumps are broken off.  For the assembly with low parallel 

bond strength, the number of broken parallel bonds between clumps increases 

sharply.  Similarly, the number of broken asperities increases with decreasing 

parallel bond strength and the number of asperities which break off rises sharply 

when the assembly approaches failure.  This is due to large numbers of particles 

rotating when the assembly approaches failure and the angular corners and sharp 

asperities break off.   
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Figure 7.28. (a) Axial strain and (b) volumetric strain (contraction  positive) against 

number of cycles. 
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Figure 7.29. Number of broken parallel bonds between clumps against number of 

cycles. 
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Figure 7.30. Number of broken asperities against number of cycles. 

Figure 7.31 shows a plot of the number of broken parallel bonds between clumps 

for the assemblies with different parallel bond strengths against axial strain.  It can 

be seen that the number of broken parallel bonds between clumps increases with 

increasing axial strain.  As expected, fewer parallel bonds between clumps break at 
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the same level of axial strain, if the assembly stabilises rather than continues to 

failure.   
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Figure 7.31. Number of broken parallel bonds between clumps against axial strain. 

Particles rearrange towards stable positions under cyclic loading.  For high parallel 

bond strength (providing high shear resistance at each contact between particles), 

after a number of cycles, the assembly stabilises and dilation stops.  For the 

assembly with low parallel bond strength, the shear resistance at the contact is 

insufficient, particles keep sliding and rolling and the sample finally fails.  The 

important finding here is that parallel bond strengths have an important effect on 

the mechanical behaviour of the assembly under cyclic loading.  It affects the 

particle abrasion, the particle arrangement, and hence the stress-strain behaviour of 

the assembly.   
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7.6 Conclusions 

The mechanical behaviour of an assembly of ten-ball triangular clumps, each 

bonded with eight small balls as asperities under cyclic triaxial loading conditions 

has been studied.  The effect of particle abrasion under a confining pressure of 120 

kPa has been investigated.  It has been shown that particle abrasion affects both 

axial strain and volumetric strain, particularly under high maximum deviator stress 

and that ballast degradation under cyclic loading and permanent response of 

ballast can be simulated by modelling asperity abrasion.  Crushable assemblies 

have been subjected to different cyclic loading conditions.  The simulation results 

have been compared with the experimental results.  The simulated assemblies 

stabilised within fewer cycles than the real ballast.  Comparing with the 

experimental results, the permanent axial strain under different loading conditions 

was simulated effectively in the simulations using breakable assemblies.  Higher 

dilation was observed in the simulations for assemblies with low confining 

pressure and high maximum deviator stress.  As for the experimental data, the 

relationship between axial strain after 100 cycles and the ratio of maximum 

deviator stress for cyclic loading to the peak strength for static loading ψ is also 

confined within a narrow band in the simulations.  The number of broken 

asperities under different loading conditions showed the same trend as the ballast 

breakage index in the experimental data.  The degradation behaviour has been 

analysed at micro level.  The number of broken asperities after 100 cycles can be 

determined, knowing values for any two of the following: axial strain, confining 

pressure or maximum deviator stress, since axial strain itself is a function of 
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confining pressure and maximum deviator stress.  The effects of parallel bond 

strength between clumps have also been studied and it has been shown that the 

parallel bond strength between clumps affects particle abrasion (asperity breakage), 

particle arrangement and the stress-strain behaviour of the assembly.  The main 

conclusion is therefore that the simulation results match well the experimental 

results over a large range of confining pressures and deviatoric stresses.  The 

simulations are able to capture the behaviour of real ballast in terms of axial and 

volumetric strain and degradation under a range of confining pressures and cyclic 

deviator stresses.   
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CHAPTER 8 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER 

RESEARCH 

 

8.1 Conclusions 

Ballast particle shape plays a key role in the mechanical behaviour of railway 

ballast (e.g. stress-strain response and volumetric change behaviour).  Modelling 

particle shape in a reasonable level is a key factor in discrete element modelling 

mechanical behaviour of railway ballast.  Various particle shapes (e.g. sphere, 

irregular shaped clump, two-ball clump with two smaller spheres bonded, eight-

ball cubic clump, ten-ball triangular clump and ten-ball triangular clump with eight 

smaller spheres bonded) have been investigated under various loading conditions.  

Under the same loading conditions and boundary conditions, particle shape plays a 

key role in determining the distribution and magnitudes of contact forces.  

Moreover, angular shaped particle provides interlocking and moment resistance.  

Particle shape, therefore, affects stress-strain response and volumetric change 

behaviour at macro level, and particle rolling, sliding and particle interlocking at 

micro level.  Compared to other particle shapes, the ten-ball triangular clump with 
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eight smaller spheres bonded captures the main mechanical features effectively 

without increasing computational time significantly.   

In order to model the correct response in terms of permanent deformation and 

volumetric strain, particle abrasion has been modelled in the simulations.  

According to the size of asperities, two types of particle abrasion have been 

modelled.  Small-scale asperities which find their way into the voids and carry no 

load have been modelled by using weak parallel bonds; angular corners and 

projections have been modelled by bonding small balls to the clump.   

Box test simulations have been carried out using spheres, irregular shaped clumps 

and two-ball clumps with two small spheres (asperities).  The influence of particle 

shape on the heterogeneous stresses within an aggregate and on particle rotation 

and displacement has been investigated.  The effect of particle breakage under 

cyclic loading has also been studied in the box test simulations. 

Both monotonic and cyclic triaxial test simulations have been carried out.  The 

effect of particle shape, interparticle friction and particle abrasion has been studied 

in the monotonic triaxial test simulations. The mechanical behaviour of railway 

ballast under monotonic loading with a range of confining pressures has been 

simulated using the ten-ball triangular clumps with eight smaller spheres bonded.  

The ten-ball triangular clumps with eight smaller spheres bonded have also been 

used in the cyclic triaxial test simulations with various loading conditions.  The 

effect of particle abrasion (both parallel bond between clumps and asperity 
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breakage) on the mechanical behaviour of railway ballast under cyclic loading has 

been investigated.   

The results of both monotonic and cyclic triaxial test simulations using the ten-ball 

triangular clumps with eight smaller spheres bonded have been compared with 

experimental results.  For the monotonic triaxial test simulations, when the particle 

abrasion is modelled, the correct response of ballast in terms of shear stress and 

volumetric strain for a range of confining pressures can be obtained.  The 

monotonic triaxial test simulations have shown that increasing the confining 

pressure does not sufficiently suppress the dilatancy without particle abrasion.  

However, when asperity breakage is simulated, the volumetric response under 

increasing confining stress is much more realistic.  For the cyclic triaxial test 

simulations, the permanent axial strain and volumetric behaviour under different 

loading conditions has been simulated effectively in the simulations.   

The effect of degradation of railway ballast has been studied using the breakable 

and unbreakable assembly in the box test simulations and both monotonic and 

cyclic triaxial test simulations.  Asperity abrasion plays an important role in 

governing strength and volumetric strain under monotonic loading, and in 

permanent strains under cyclic loading.  Particle abrasion leads to increasing 

number of contacts and decreasing mean contact force.  Simulation results have 

been shown that modelling ballast degradation is important and necessary in the 

modelling mechanical behaviour of railway ballast.  
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8.2 Suggestions for Further Research 

The simulations carried out in this research focus on simple shaped particles.  

Capturing the entire shape of real ballast particles in a discrete element model is a 

goal for further research.  Under the same loading conditions and boundary 

conditions, particle shape determines the distribution and magnitudes of the 

contact forces, and therefore, it significantly affects particle crushing.  In this 

research the size and location of asperities were arbitrarily fixed.  However, it 

should be noted that the sizes and shapes of fragments from a natural ballast 

particle are determined by contact force distribution acting on the particle, the 

magnitudes of the contact forces and the distribution of flaws in the particle.  

Therefore, in further work, the particle model should also be able to capture more 

realistic particle fracture.  Statistical variability in the bond strengths and the effect 

of fatigue (slow crack propagation) under repeated loading should be included by 

having more complex shapes with a larger number of bonded balls. 

Since ballast is usually a reasonably uniformly graded material, the simulations 

carried out in this research assumed that the sample consisted of single sized 

particles.  However, this approximation is aimed at reducing the complexity in the 

simulations and it may not represent entirely a real gradation of ballast.  Therefore, 

future research could be aimed at investigating the effect of gradation on the 

stress-strain response and volumetric behaviour of a ballast assembly. 

The contact mechanics between real ballast particles is not fully understood and 

experimental research may be a useful starting point.  In this research, parallel 
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bonds and the linear contact stiffness model are used together to model the 

interaction of contacting ballast particles.  Future research can study contact 

mechanics for real ballast particles and develop a more realistic and effective 

contact constitutive model in DEM.  

For the clumps, when spheres overlap, the total volume of spheres in a clump is 

greater than the volume of the clump and the mass of the clump is therefore 

greater than the mass of an equivalent clump with a uniform density; such an 

entity is currently not available within PFC
3D
.  Where there is overlapping of 

spheres within a clump, there is a contribution to the mass in the overlapping 

region from each of the overlapping spheres.  This also affects the inertia tensor of 

the clump since the mass is not uniformly distributed within the clump.  A method 

which can produce clumps with uniform density and correct inertia tensor needs to 

be developed in the future.   

The cylindrical wall was used to simulate a flexible membrane in the research.  

Although, it is possible to simulate a flexible membrane using a large number of 

bonded balls, this makes the computations much too time-consuming.  Alternative 

methods should be developed in the future so that real flexible boundary 

conditions can be modelled. 
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APPENDIX 

   

The Numerical Servo-control Mechanism 

A servo-control algorithm was developed to achieve stress-controlled loading 

(Itasca, 1999).  A wall velocity is adjusted to minimize the difference between the 

measured stress and target stress.  The velocity of a wall )(wu&  was calculated from 

a function of the measured stress σ
measured

, the required stress σ
required

 and a “gain” 

factor G, as follows: 

σσσ ∆=−= GGu requiredmeasuredw )()(
&       (A.1) 

The maximum increment in wall force arising from the movement of wall in one 

timestep can be calculated by  

tuNkF w

c

w

n

w
∆=∆
)()()(

&         (A.2) 

where ∆F
(w)
 is the change in force on the wall, Nc is the number of contacts on the 

wall, and kn
(w)
 is the average stiffness of these contacts.  Thus, the change in mean 

wall stress, ∆σ
(w)
, is computed by  
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σ         (A.3) 



 217 

where A
(w)
 is the area of the wall.   

For stability, the absolute value of the change in wall stress must be less than the 

absolute value of the difference between the measured stresses and required 

stresses.  Therefore, a relaxation factor α (α<1) is applied and the stability 

requirement becomes  

σασ ∆<∆
)(w         (A.4) 

Substituting Equations A.1 and A.3 into Equation A.4 gives 

σα ∆<
∆

)(

)()(

w

w

c

w

n

A

tuNk &
        (A.5) 

and the “gain” factor can be calculated by 

tNk

A
G

c

w

n

w

∆
=
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α

         (A.6) 

Therefore, by updating the velocity of a wall in each timestep using Equation A.1, 

the required stress can be achieved.   
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