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Abstract

Traditional PI controllers have been largely employed for the control of industrial

variable speed drives due to the design ease and performance satisfaction they pro-

vide but, the problem is that these controllers do not always provide robust perfor-

mance under variable loads. Existing solutions present themselves as complex control

strategies that demand specialist expertise for their implementation. As a direct con-

sequence, these factors have limited their adoption for the industrial control of drives.

To counter this trend, the thesis proposes two techniques for robust control system

design. The developed strategies employ particular Evolutionary Algorithms(EA),

which enable their simple and automated implementation. More specifically, the EA

employed and tested are the Genetic Algorithms (GA), Bacterial Foraging (BF ) and

the novel Hybrid Bacterial Foraging, which combines specific desirable features of the

GA and BF .

The first technique, aptly termed Robust Experimental Control Design, employs the

above mentioned EA in an automated trial-and-error approach that involves directly

testing control parameters on the experimental drive system, while it operates un-

der variable mechanical loads, evolving towards the best possible solutions to the

control problem. The second strategy, Robust Identification-based Control Design,

involves a GA system identification procedure employed in automatically defining an

uncertainty model for the variable mechanical loads and, through the adoption of the

Frequency Domain H∞ Method in combination with the developed EA, robust con-

trollers for drive systems are designed. The results that highlight the effectiveness of

the robust control system design techniques are presented. Performance comparisons

between the design techniques and amongst the employed EA are also shown. The

developed techniques possess commercially viable qualities because they elude the

need for skilled expertise in their implementation and are deployed in a simple and

automated fashion.
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Chapter 1

Introduction

Electric motors use approximately 70% of the world’s total electrical energy [1].

Within industrialised nations, the use of electrical motors demands similarly sig-

nificant portions of the total electric energy produced. In the UK for example, 65%

of the total electric energy used by industry powers drives, whilst 23% of the to-

tal electrical energy used by commerce is for electric motors [2]. Any industry that

wishes to improve its profitability by reducing electricity consumption must achieve

efficient use of electrical drives. Apart from the fact that electric drives significantly

harness a large portion of total electric power generated, a second force behind the

increasing attention being paid to its efficient use is that of the environmental effects

from the emissions from generating power stations. In a typical fossil-fuel powered

power station the generating efficiency is around 35%. But with the consideration

of transmission, distribution, electrical and mechanical losses in a drive system, the

overall effect is that 100 kWh of fuel input can result in only 11 kWh of useful output

energy [2]. From these reasons, it is evident that there is an ever increasing demand

for more efficient operations of electric drives. Amongst other issues, these demands

can be met with improved control.

The electric drives are subject to very variable industrial load conditions during op-

eration. Given the controllers are a significant determinant of the drives’ operative

1
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efficiency, they must be designed appropriately to provide robust performance under

these load conditions. The appropriate method should consider all possible load con-

ditions during the controllers’ design. There are many schemes reported that have

achieved the aim. Most of these schemes are complex, demanding expertise and re-

quiring significant user involvement. The appeal of a simple approach, requiring little

or no user interaction in optimising simple linear controllers is strong and desirable

for many industrial applications. The thesis is focused on describing a novel ap-

proach which meets these requirements. It is an automated approach which employs

Evolutionary Algorithms for the design of robust controllers for electric drives.

1.1 Electric Drives and their Control

The predominance of electric drives is due to several factors particular to its struc-

ture: electric drives can be controlled easily and very high quality performance of

the drives is achievable through electronic control. They can be easily adapted to

function under any condition - explosive or radioactive environments, forced air ven-

tilation or totally enclosed and even submerged in liquids [3]. Since electric drives

do not require hazardous fuels and do not emit exhaust fumes, they hardly have any

operative detrimental effect on their immediate environment. They can be brought

into action very quickly on demand and can be made robust in dealing with variable

load conditions. In comparison to other drives, the service requirements are not at all

significant; this highlights the significant economic benefits it can provide. Electric

drives can be designed to operate indefinitely in all four quadrants of the torque-speed

plane without requiring a special reversing gear. The four quadrants of operations

highlight the motoring and generating mode for the motors. They are available for

any power (ranging from 10−6 to 108 W) and cover a wide range of torque and speed

demands [3].

The electric drive consists of the electric motor and the power converters. The power

converters consist of a combination of power electronic devices that essentially provide
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Figure 1.1: Overview of speed and current controlled variable speed electric drive

an average voltage (driving force) for the electric motor. Figure 1.1 represents a speed

and torque/current controlled electric drive. The following sections will provide an

overview on the controlled drive system, initially focusing on the electric motor and

broadly highlighting the different types. Then, the power converters generally used

within the drives will be briefly described and finally, a description of the controllers,

required for the efficient operation of the drive, will be presented.

1.1.1 The Electric Motor

Electric motors convert electrical to mechanical energy. They play an important role

as electromechanical energy converters in very significant manufacturing operations:

transportation, material handling and most production processes. The ease of con-

trolling these motors provides a significant property that can be taken advantage of

in meeting ever-increasing user demands that include the need for flexibility and pre-

cision, which is often the result of advances in technology within industry. Also, the

need for energy conservation in order to safe-guard the environment is a key driver

for improved efficiency in the employment of variable speed electric drives [3], [4].

The electric motor, which simply consists of an arrangement of copper coils and

steel laminations, is clearly a simple, but rather clever energy converter: the basic
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principle behind its operation exploits the force which is exerted on a current-carrying

conductor placed in a magnetic field. In most cases, and regardless of the type, electric

motors consists of a stator and a rotor or armature. Within the electric motors, the

arrangement is such that there exist a strong magnetic field which interacts with

many conductors, each carrying as much current as possible in order to produce as

much force as is required to drive different applications [4]. To avoid going into too

much detail on the very popular motors, a broad classification on the different types

of electric motors will be provided. Under this classification, four types of electric

motors can be identified: dc motors, ac induction motors, synchronous motors and

special motors [5].

The DC motor is widely used due to its simplicity in construction and the ease with

which it can be controlled. For these reasons, in the 1960s, the DC variable speed

drives were the preferred choice for industrial applications [1]. Nowadays, although

the AC machines are almost entirely the preferred choice, the DC machines are still

valued for their wide speed and torque range and also their overall efficiency. There

are three main types of DC motors: (1) series-wound including permanent-magnet

and separately-excited motors (2) shunt-wound and (3) compound-wound. This clas-

sification is made according to the way in which the magnetic field in a DC motor is

created [6]. The DC motor has a wide application range that includes machine tools,

traction hoisting, and robotics, etc. The rapid advancements in power electronics

and control strategies further enhanced the overall applications of conventional DC

motors. The mechanical commutation process within the DC motor, which enables

the flow of current in one direction within its current carrying conductors, pose some

limitations to the functioning of the conventional DC machine. The results of this are

a cap on the maximum possible ratings on the DC motors and also the development

of design strategies that focus on ways to avoid the employment of commutators and

its associated components in future DC machine designs. The commutators are prone

to frequent failures, which could be responsible for the breakdown of the equipment.

Apart from the inherent limitations on its maximum ratings, sparks, which is often

the result of commutation within the DC commutator motor, limits its usage within

hazardous environments [5].
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”The induction motor is the universal workhorse of modern industry” [5], [6]. During

the Late 1960s, the rapid advances in semiconductor technology for power and control

applications enabled the AC drives contention with the DC Drives as the preferred

choice for industrial applications [1]. Currently, the induction motor drive, which is

a prominent member of the AC drives family, is the industry favourite. The squirrel-

cage induction motor is particular noted for having certain desirable qualities of being

economically affordable, reliable, and for these reasons it has become touted for most

industrial applications; they have become widely available worldwide in mass scale

production. Older models of induction motors were bulky and less efficient due to poor

quality of previously available construction materials and lack of adequate analytical

and design tools. The newer models are less bulky and, with the levels of technological

advancement in this current age, significant energy conservation can be achieved with

the high-efficiency class induction motors that often have an associated low cost [5].

Conventional synchronous motors are well-known industrial drives. The operation

demands that they produce constant speed regardless of the load conditions they are

operating under. Modern synchronous motors are brushless and they are widely used

in low and medium rating industrial drives. For lower ratings, permanent magnet

(PM) and reluctance motors are receiving wide attention. Because of high efficiency,

simpler construction and control etc., the permanent magnet (PM) types are finding

more favour than the reluctance motors [3], [5].

The special motor covers a wide spectrum of unique electric motors and moving de-

vices. These motors are so called due to either the peculiar constructional features or

their unusual applications. Some of these motors are the permanent magnet, stepping,

switched reluctance, reluctance-permanent magnet and hysteresis motors [5].

A wide range of different types of electric motor can be found in many modern day

applications. These could range from linear to rotary motions with the employed

electric motors having ratings ranging from microwatt to megawatts. The basic pur-

pose of an electric motor is to harness electric energy in doing mechanical work. The

end product of such a conversion within the electric drives, the mechanical power
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is eventually used to drive almost anything; most devices that move are almost al-

ways powered by an electric motor. Such devices range from a cassette recorder or

a computer disk or a fan to a vast rolling mill. The evidence of the wide usage and

importance of the electric motors is highlighted by the statistics that about 65-75%

of the world’s total electrical energy is consumed by electric motors [1]. For these

reasons, reliable and efficient electric motors form a significant focus and is, quite

literally, a central driver to our modern way of life [2].

1.1.2 The Power Converters

The Converters are essential for the functioning of a drive system. They are generally

required for the conversion of electric power to the form and value required by the

supplied load. Given the impracticality of instantaneously stepping up and down the

supply voltage to meet the immediate requirements of the connected load, the viable

alternative is to alternately connect/disconnect the load from the supply by turning

on/off switches which connect the load to the supply.

Power converters are made up of high-power fast-acting semiconductor devices, such

as bipolar junction transistors (BJT), metal oxide semiconductor field effect transis-

tors (MOSFET), insulated gate bipolar transistor (IGBT), silicon controlled rectifier

or transistors (SCR), gate turn-off SCR (GTO) and MOS-controlled thyristor (MCT).

These solid-state devices are configured in a certain circuit topology function as an

on-off electronic switch to convert the fixed supply voltage into variable voltage and

variable frequency supply. Significant advances in power semiconductor technology

over the past two decades has enabled the development of compact, more efficient

power electronic converter topologies with significantly improved reliability [3], [4].

The different converter types are broadly classified based on the types of input and

output voltages of the converter. Given there are two voltage types,the DC (Direct

Current) or AC (Alternating Current) voltages, the different classes of converters

are: DC-to-DC Converters (Choppers), DC-to-AC Converters (Inverters), AC-to-DC
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Converters (Rectifiers), AC-to-AC Converters (Cyclo-converters, Matrix converters).

These converters are used, within the electric drive, according to the requirements of

the electric motors and their applications.

1.1.3 Control of Electric Drives

Generally, the efficient operation of variable speed electric drives is largely governed

by controllers - the more efficient the controller, the more effective the drive will

be in carrying out its assigned function. Closed loop control of electric drives has

not always been available and accepted for industrial applications. In the 1950s, the

control of drives was normally open-loop and as a result motor speed was affected by

changes of load. This meant that there was a limitation in the possible speed range

because at low speeds, the motor would stall when the load was applied. But, by the

late 1950s, the closed loop control of variable speed drives had gained wide industry

acceptance, especially because of its proposed benefits of greater accuracy and faster

response of variable speed drive systems, wider speed range of operation, ability to

tune the drive system to suit the application, etc [7].

Within the modern day closed loop control system for variable speed drives, there

exists an inner-current loop control and an outer-speed loop control [1]. Conventional

controllers based on the Proportional, Integral and Derivative (PID) family are often

the preferred choice for implementing the control of drives and they have served the

industrial drives for decades. This is mainly because of their simple control structure,

ease of design, low cost and because they sufficiently satisfy the requirements of many

industrial applications [8], [9].

The actual tuning of a PID controller requires a good model (an abstraction of

the real system) and certain design rules for its successful implementation. The

tuning procedure can sometimes be a time-consuming and difficult task, above all,

for complex plants. Some control engineers may take one to three days searching

for a practically valid PID controller setting for certain industrial applications [8],
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[9], [10]. Furthermore, it is also realised that many PID controllers for closed loop

systems are poorly tuned. This could be due to the fact that the design is based

upon approximations of the actual system dynamics - a model. A poorly tuned

control system may waste energy and cause excessive and unnecessary wear of the

plants within the closed loop control system. Although many improved PI/PID design

methods are proposed, such as root locus, Ziegler-Nichols (Z-N) methods etc, they

have shortcomings such as long testing time and limited control performance [8].

Despite the satisfactory performance of these controllers for some industrial appli-

cations, they fail to perform to the same standard under condition with significant

mechanical load variation, nonlinearity, load disturbance; in other words, in such

situations, these controllers are not robust. Given the ever-increasing demand for

efficient performance of electric drives in industrial applications, measures must been

taken to ensure their robustness and reliability. The field of control that deals with

the design of such robust control systems that provide the most efficient performance

under uncertain conditions is known as Robust control [11] and its principles have

been adopted in fulfilling the project aims.

1.2 Robust Control Design

The problem of robust control, which involves designing control systems in the pres-

ence of plant uncertainties, is classical. The thesis focuses on providing easily imple-

mentable solutions for this problem. This is made possible with the incorporation

of the Evolutionary Algorithms (a branch of Artificial Intelligence). The designed

solution focuses on the design of robust digital controllers for variable speed drives.

In order to simply demonstrate the effectiveness of the proposed control design tech-

niques, a Variable Speed Permanent Magnet DC motor drive has been chosen. The

developed methodology can then be easily extended to other types of electrical drives.

The problems addressed in the thesis focus on two approaches for robust control de-

sign - the experimental and identification-based approaches.



1.2. ROBUST CONTROL DESIGN 9

1.2.1 Robust Experimental Control Design

There have been very recent efforts successfully implemented for the design of robust

controllers directly on the actual drive while it is operating under load conditions.

Model-based techniques mainly rely upon the accuracy of the model used in the

simulations. But, these models are only approximations of the real system and in

most cases, the models are often simplified, as they neglect actual nonlinearities and

uncertainties that exist in the real system. This could be due to the computing

limitations of the employed processor or unavailability of modelling techniques to

adequately characterise certain observed or unobserved system phenomena [12], [13],

[14].

In the case of direct design, the effects of the actual and unknown a priori high-

order phenomena, nonlinearities and uncertainty are fully accounted for in the design

procedure and the resulting controller solution can be immediately harnessed on the

actual system with known performance. These robust controller design techniques

permit access to design tools that do not require skilled expertise for system modelling,

or complex design methods for controller optimisation. On the other hand, in spite

of the simplicity of the basic idea, direct optimisation strategies require dealing with

several challenging problems initially before they can be successfully implemented.

These problems have strongly limited the number of successful applications reported

within this field [12], [13], [15], [16].

The attractiveness of the direct design procedure lies in the simplicity of the idea that

underlies its implementation. Although there are problems that come along with the

process, overcoming these obstacles would yield a method that is incredibly useful

for the drive commissioning process, easily adaptable and capable of lending itself

well to several commercial applications. The research work presented here will focus

on overcoming the problems of implementing an experimental control design method

and also setting up a direct design approach that employs evolutionary algorithms

in an automated control-optimisation process for variable speed drives while they are

subject to variable mechanical loads.
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1.2.2 Robust Identification-based Control Design

Over the past twenty years, there has been significant drive for the development of

new theory that can be employed in deriving solutions for robust control problems

and the term robust control for this classical problem is only of recent vintage [11].

Currently, there is ever-increasing focus in formulating more methods for tackling such

problems. The main issue related to this new area of research is model uncertainty.

It is known as a fact that real physical systems can only be described by means of

an uncertain model, and Robust Control theory has quantified the influence of this

uncertainty in the stability and performance of control systems [11], [17], [18].

A number of theoretical approaches to the control of uncertain systems have been

developed. Some of these methods include: frequency domain approach like the H2

and H∞ design methods, stochastic domain approach, game-theoretic or minimax

approach, guaranteed-cost control, adaptive control methods, parameter estimation,

Lyapunov-function theory, sliding-mode control (SMC), qualitative-feedback theory

(QFT), Hurwitz-condition approach, norm-uncertainty approach, etc. These methods

have many benefits and have been shown to be effective for different applications. But

it is not all rosy: often with these robust control methods, the focus is on complex

control structures which increases the difficulty of implementation. Also, given the

specialist knowledge required for its development, it can demand significant user

interaction and time consuming implementation.

The drives manufacturers are reluctant to incorporate control algorithms which re-

quire specialist skills for commissioning the control parameters, preferring to stay

with traditional controllers such as Proportional plus Integral (PI), due to the ease of

understanding and the ability to commission an adequate controller quickly. Hence,

despite its advantages, these modern methods are often sacrificed in favour of tradi-

tional control methods [19]. Implementing a simple (automated) strategy with which

to efficiently apply such theoretical robust control methods in conjunction with system

identification techniques would prove invaluable for the control engineers regarding

time to achieve control solutions and quality of these final solutions. This work will
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in fact develop an automated theoretical control design approach based on the H∞

theory and a system identification process using evolutionary algorithms.

1.3 Project Objectives

In light of the discussion, the prime objectives of the research project will focus on

developing simple but commercially attractive and viable methods for the purpose

of designing robust control systems. The developed methods both employ particular

evolutionary algorithms. The first technique considers the design of robust control

systems that involves performing tests directly on the experimental system. The

second approach is less direct and instead employs the robust control theory along

with novel system identification methods in achieving its aims. The objectives of the

thesis can be summarised as follows:

1. Develop particular Evolutionary Algorithms that can enable automation within

the robust control system design procedure

2. Develop a novel approach for the automated direct design of robust controllers

for variable speed electric drives that employs the developed evolutionary algo-

rithms in the experimental design process.

3. Develop a novel approach for the automated design of robust controllers for

variable speed drives that which employs the robust control theory, a novel

system identification procedure and the evolutionary algorithms in the design

process.

4. Provide a comparison of the developed evolutionary algorithms adopted to

achieve the automation in the design procedure.

5. Provide a comparison of the different design techniques developed to achieve

the design of robust control systems.
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1.4 Thesis Outline

The thesis has been structured in the following manner:

Chapters Two and Three focus on providing a general framework for implementing

the automated design tool, the evolutionary algorithms, and a detailed description of

the particular evolutionary algorithms investigated during the research project.

Chapter 2: Describes the Evolutionary Algorithms and highlights the reasons why

it is the preferred choice. It also gives a general overview of their implementation and

highlights the different areas these algorithms have been successfully applied to.

Chapter 3: Describes the implementation of the particular algorithms deployed for

the purpose of achieving the research objectives. The investigated algorithms are the

Genetic Algorithms, Bacterial Foraging and Hybrid Bacterial Foraging.

Chapters Four and Five focus on the general description, hardware design and the

conceptual implementation of the Experimental System

Chapter 4: Describes the general overview of the Experimental System used to

test the effectiveness of the robust control design strategies developed during the

research work. It also describes the experimental system’s hardware design by initially

characterising its specific components and finally illustrating how they come together.

Chapter 5: Describes an integral portion of the experimental system - the mechanical

emulator system. The chapter explains the concept of the emulator system and

illustrates how it is incorporated within the experimental system .i.e. the closed loop

control system of the variable speed drive. The chapter also describes the nature of

the controller to be optimised and provides results that show a working mechanical

emulator system.

Chapters Six and Seven represent the culmination of the fervent efforts of the research

work. The chapters describe the novel robust control system design procedures that
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result from applying the investigated evolutionary algorithms to the developed ex-

perimental system.

Chapter 6: Provides a detailed description of the Robust Experimental Control De-

sign procedure. The novel design technique is achieved through the direct application

of the investigated optimisation algorithms to the experimental system hardware. It

also provides the results achieved by employing each of the different evolutionary

algorithms during the direct design procedure.

Chapter 7: Provides an exhaustive description of the Robust Identification-based

Design procedure. It describes the frequency domain approach and how it is employed

in conjunction with the evolutionary algorithms and system identification methods

to achieve a novel robust control design method. It also provides the results achieved

through the adoption of the different evolutionary algorithms for the design procedure.

Chapter Eight provides insightful analysis and discussions on the evolutionary algo-

rithms investigated and the novel robust control system design techniques employed

Chapter 8: The discussions within the chapter focus on: (1) The comparison of the

evolutionary algorithms employed, which enable automation in the design procedure

and (2) The comparison between the novel robust identification-based and experi-

mental control design techniques. The chapter also concludes the thesis by providing

recommendations on design strategies and identifies potential directions for future

research.



Chapter 2

Evolutionary Algorithms

2.1 Introduction

In nature, achievement of an optimal state is necessary for continuous existence of

objects, both living and non-living. This is evident in the efficient and optimal bond

arrangements found within elements and their atoms that form the basic building

blocks of life as we know it. Similar evidence is cited in different living species in their

natural observation of the principle of survival of the fittest, together with biological

evolution, in order to better adapt to their environment. In this case, a well-adapted

species that dominates all other species in its surroundings can be suitably referred

to as an optimal solution in its locale [20].

Recently, due to the complex nature of many emerging problems within the field of

science and engineering, computing the global optimal solutions to such problems

require more novel and advanced techniques. The use of classical gradient-based

programming techniques may fail to solve such problems because they usually contain

multiple local optima. In recent years, there has been a great deal of interest in

some emerging artificial intelligence tools in the area of optimisation. These tools

have the proposed benefits of successfully identifying the global optimal solutions

14
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to optimisation problems with multiple local optima. They are classed as Global

Optimisation methods. As a result of their proposed benefits, global optimisation

methods are increasingly being invoked to deal with emerging problems within the

field of science and engineering [12], [13], [20].

Global Optimisation is a branch of applied mathematics and numerical analysis that

deals with the optimisation of single or multiple criteria. These criteria are expressed

mathematically as objective functions. The result of such a global optimisation process

is the set of inputs for which these objective functions return the optimal values [13],

[20], [21]. The algorithms (step-by-step logical instructions) implemented for the

purpose of achieving such results are termed Optimisation Algorithms.

Optimisation algorithms are capable of and are largely employed in finding a global

optimum solution to different optimisation problems. The different criteria that deter-

mine the optimum solution are specified within the objective functions. The optimi-

sation algorithms search to find the set of inputs to the objective function that results

in optimum outputs. These optimisation algorithms can be broadly grouped, accord-

ing to their method of operation, into two categories: deterministic and probabilistic

algorithms. Deterministic algorithms behave as they are defined; for any particular

input, the same output is always produced. There are no alternate outcomes for

the implementation of a deterministic algorithm. If no way to proceed exists, the

algorithm terminates. These algorithms incorporate no procedures that involve the

use random numbers in deciding their output. Examples of deterministic algorithms

include State Space Search, Branch and Bound and Algebraic Geometry [20].

For many emerging science and engineering issues, deterministic algorithms are un-

feasible. This is because the sample space for possible solutions to such problems

is very large and there is uncertainty in the relations between the inputs and corre-

sponding outputs. This suggests that a sample space cannot be partitioned in any

wise fashion and as such, an exhaustive search of the sample space is necessary in

order to determine which gives the best solutions. For this reason, probabilistic algo-

rithms are employed in such cases. These algorithms employ a degree of randomness
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in their logical (step-by-step) sequence violating the constraints of the determinis-

tic algorithms [20], [22]. Figure 2.1 shows the overall classification of probabilistic

optimisation algorithms.

(Stochastic) Hill Climbing
Random Optimisation

Simulated Annealing (SA)
Tabu Search (TS)
Parallel Tempering

Stochastic Tunneling
Direct Monte Carlo Sampling

Evolutionary Algorithms Swarm Intelligence

Genetic Algorithms (GA)
Evolutionary Programming

Evolution Strategy (ES)
Genetic Programming (GP)

Bacterial Foraging (BF)

Ant Colony Optimization (ACO)
Particle Swarm Optimization (PSO)

Figure 2.1: Classification of Probabilistic Optimisation Algorithm

In general, any task can be solved by a process that involves searching through a

sample space of possible solutions and identifying which solution(s) yield the required

output; such a systematic approach is classified as an optimisation process. For small

spaces, classical exhaustive methods are usually preferred; for larger spaces, more

efficient methods that may employ artificial intelligence must be employed. The

methods of evolutionary computation are among such techniques; they are stochastic

algorithms whose search methods model some natural phenomena: Darwin’s genetic

inheritance and Mendel’s selection principle. Evolutionary Algorithms (EA) are the

best known class of evolutionary computation methods [20], [23]. They are also an

important class of probabilistic algorithms. They encompasses all such algorithms

that are based on a set of multiple solution candidates (called population) which are

iteratively refined using approaches based on biological theories of evolution. This

field of optimisation is also a class of soft computing as well as a part of the area of

artificial intelligence. Its roots are embedded deep within four landmark approaches:

evolutionary programming (EP ), evolution strategies (ES), genetic algorithms (GA)

and genetic programming (GP ). The genetic algorithm was popularised by Goldberg
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and the majority of control applications in the literature adopt this approach. GP is,

perhaps, the next most popularly used method [14], [20], [23]. The following describes

the more popular evolutionary computation techniques in some detail:

Genetic Algorithm: A GA performs a multi-directional search through a sample

space of potential solutions. During the process, it maintains the population of po-

tential solutions but randomly creates new solutions within this population. The

creation of new solutions is achieved by the adoption of certain operators (mutation,

crossover, selection, reproduction), which mimic the process of natural selection and

evolution. This evolutionary approach has been adopted in achieving the aims of the

research project and more detail is provided in section 3.2.

Evolution Strategy: Evolutionary strategies (ES) were developed in the mid 1960s

by Bienert, Rechenberg, and Schwefel at the Technical University of Berlin, Germany

as a method for evolving optimal shapes of minimal drag bodies in a wind tunnel

using Darwin’s evolution principle [24]. The earliest evolution strategies were based

on a population consisting only of one individual. Through the years, the algorithm

has been developed and it now has the ability to include several individuals. In

evolutionary strategies, the representation used is a fixed-length real-valued vector.

This bears similarity with the GAs in that each position in the vector corresponds to

a feature of the individual [24].

Beginning with an initial parent generation in each iteration, a child generation is

generated by randomly modifying the parent parameters. The main reproduction

operator in evolution strategy is Gaussian mutation, in which a random value from

a Gaussian distribution is added to each element of an individuals vector to create a

new offspring. Another operator that could be used is intermediate recombination, in

which the vectors of two parents are averaged together, element by element, to form

a new offspring.

After the mutation step the objective function is evaluated for all children and the

best of them are selected to form the new parent generation. With µ representing the
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number of parents and λ representing the number of children, strategies of selection

and transmission can be distinguished in the following way [25], [26].

1. (µ + λ) - plus strategy: the next generation is selected from µ parents and λ

offsprings.

2. (µ, λ) - comma strategy: the µ best parents out of the λ offsprings form the

next parent generation, none of the parents survives.

Evolutionary Programming: This was developed by Fogel, Owens and Walsh

in the mid 1960s. Their book, ”Artificial Intelligence Through Simulated Evolu-

tion” formed an important marker for the widespread implementation of EP appli-

cations [27]. The representations used in evolutionary programming are typically

tailored to the problem domain. One representation commonly used is the fixed-

length real-valued vector. This is similar to the representation method for the GA

and ES. The primary difference between evolutionary programming and other evolu-

tionary computation approaches is that no exchange of material between individuals

in the population is made. Thus, only mutation operators are used.

For real-valued vector representations, evolutionary programming is very similar to

evolutionary strategies without recombination. A typical selection method would

involve selecting each individual within the population as the N parents. For the

reproduction phase, each parent is mutated to form N new individuals (offsprings).

Finally, a random selection of N individuals from the new population that comprises

parents and their offspring is implemented to form the new generation [23].

Genetic Programming: This is an interesting approach developed by Koza and it

is becoming an increasingly popular technique. GP deals with the issue of how to

automatically create a working computer program for a given problem from some ini-

tial problem statement. The GP achieves its aim of finding a global optimal solution

by breeding populations of computer programs in terms evolution and the princi-

ple of natural selection, which is essentially based on the concept of survival of the
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fittest [28]. In GP , a computer program is often represented as a tree (a program

tree) where the internal nodes correspond to a set of functions used in the program

and the external nodes (terminals) indicate variables and constants used as the input

to computer program (functions). The set of all functions and terminals is selected a

priori in such a way that some of the composed trees yield a solution [23].

(5 4 ) 3 6 ( 2 5 )

( 5 4 ) ( 2 5 ) 6 3

Figure 2.2: Subtree crossover of parents (a.) and (b.) to form offspring (c.) and (d.)

In a standard genetic program, the representation used is a variable-sized tree of

functions and values. The objects that constitute the population are not fixed-length

character strings that encode possible solutions to the optimisation problem but they

are computer programs (functions) that, when executed, provide the candidate so-

lutions to the problem. Genetic algorithms and genetic programming are similar in

most other respects, except that the reproduction operators are tailored to a tree
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representation. The most commonly used operator, illustrated in figure 2.2 is subtree

crossover, in which an entire subtree is swapped between two parents [14], [23].

Bacterial Foraging: Bacterial Foraging is a new evolutionary computational

method proposed by Kevin Passino[29] in 2002. In this scheme, the foraging (methods

for locating, handling and ingesting food) behaviour of E. coli bacteria present in our

intestines is mimicked. The approach incorporates concepts of evolution and natural

selection and as such it is suitably regarded as an evolutionary algorithm. Although

it also incorporates concepts of Swarm Intelligence, the fundamental idea behind the

algorithms development is based upon the natural selection of bacteria with good

foraging habits and the evolution of better strategies using the good foragers as the

parents. They undergo different stages such as chemotaxis, swarming, reproduction

and elimination and dispersal. This evolutionary approach has also been adopted in

achieving the aims of the research project and more detail is provided in section 3.3.

In the last decade, within the field of control and instrumentation engineering, evolu-

tionary algorithms have been receiving increasing attention because of their potential

to deal with problems not amenable to existing design techniques. Through the

adoption of EA, there are more novel techniques being developed that are aimed at

designing more efficient controllers for variable speed drives and a number of such

EA design techniques have also been successfully implemented for such applications.

In [12] and [16], automated design of controllers for variable speed drives have been

investigated.

Although the conditions under which the method is investigated are not typical dy-

namic operative conditions for electronic drives, the results obtained show the ease

and effectiveness of employing these optimisation algorithms. Also, the area of system

identification by employing these algorithms is currently an active area of research

[13]. In this chapter, a structured approach for the implementation of evolutionary

algorithms will be presented and subsequently, its different applications will be dis-

cussed. But first of all, a highlight will be made as to why the evolutionary algorithms

are the preferred choice.
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2.2 Preference of Evolutionary Algorithms

The evolution of modern man through the ages and his inherited ability to adapt

suitably to his environment is adequately perceived by most as an optimisation pro-

cess. Researchers have adequately adapted this simple, but powerful, concept and

applied it to real-world problems. The quote from [30] supports the widespread

adoption of this concept for solving complex problems: ”it is quite natural, there-

fore to seek to describe evolution in terms of an algorithm that can be used to solve

difficult optimisation problems. The classic techniques of gradient descent, determin-

istic hill-climbing and purely random search (with no heredity) have been generally

unsatisfactory when applied to nonlinear optimisation problems, especially those with

stochastic, temporal or chaotic components. But these are problems that nature has

seemingly solved so well. Evolution provides inspiration for computing the solutions

to problems that have previously appeared intractable”. The section highlights the few

clear advantages on why Evolutionary Algorithms are the preferred alternative for

computational algorithms in dealing with the emerging problems within the field of

science and engineering.

In reality, most of the real-world problems do not have easily decipherable relations

between the problem domain and its corresponding possible solutions [14]. This could

be due to the noisy nature of the problem or general uncertainty within the problem

domain that cannot be easily modelled through existing methods. In such a situation,

a logical approach would be to perform an exhaustive (point-to-point) search of the

solutions domain. Such a procedure would be inefficient and even more so if the

solution domain is extremely large. This implies that traditional (gradient-based)

methods would be ineffective in these extreme conditions. But, the EA approach are

inherently suited to such extreme environments and, given that the nature of emerging

problems within the science and engineering field are becoming characterised by such

extreme conditions, EA are excellent alternatives to tackling these novel problems.

Generally, in the process of solving a problem, it is necessary to understand and

characterise the behaviour of the problem. Likewise, in providing a control solution
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for a system, a vital initial step would be to model the system to be controlled.

Having obtained a model, this would provide the platform for the next step, which

is achieving the final control solution for the system. In deriving a model for the

system, practitioners adopt either:

1. a simple linearised model of the system

2. a more complex (faithful) model of the system

The global optimum solution for the linearised model can be obtained using tra-

ditional methods. For the complex models, adopting a EA strategy are the more

efficient alternatives in finding an optimal solution. Given the complex nature of

these models, the global optimum may not be discovered but only an approximate

optimal solution. There is strong support for the more superior quality possessed by

approximate solutions for complex (faithful) models when compared with the global

solutions attained using simple (less faithful) models [14], [30]. This highlights the

usefulness of evolutionary algorithms, which are inherently suited in attaining near-

optimum solutions for complex, real-world problems.

Critiques for the EA are often directed towards the number of parameters that need

to be defined at initialisation. These parameters include the maximum number of

generation, population size, probability of occurrence of selection and reproduction

operators etc. The benefits that underlies this critique is, given the many parameter

definitions required for initialisation, some wrongly defined parameters could still

lead to a fairly successful EA search results. In other words, the many initialisation

parameters enhances the robustness of the EA because ”even some obviously wrong

parameter values do not prevent fairly good results” [14].

Another very interesting application of the EA, solutions to which were not previously

achievable with traditional methods, is temporal optimisation [14]. This process

involves immediate identification of the system parameters based upon instantaneous

inputs to the system. Such problems are regarded as being very difficult probably
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due to the instantaneous periodic focus and the demands of quality approximations

of the behaviourial strategy for the system within a small time window. The EA are

suited to such applications because they can easily adapt to changes in the problem

domain. Most traditional approaches require a restart of the algorithm due to the

difficulty in adapting to the changing instantaneous conditions [14], [30].

2.3 Implementation of Evolutionary Algorithms

Challenging optimisation problems, which elude acceptable solutions via conventional

methods, arise regularly in control systems engineering. Evolutionary algorithms

(EA) permit flexible representation of decision variables and performance evaluation

and are robust to difficult search environments, leading to their widespread uptake

in the control community.

Initialisation Evaluation
Fitness 

Assignment

SelectionReproductionTermination

Figure 2.3: Structured Implementation of Evolutionary Algorithms

EA are global and parallel search and optimisation methods that are founded on bio-

logically inspired mechanisms like mutation, crossover, natural selection and survival

of the fittest. The solution candidates of a certain problems play the role of indi-

viduals. Their fitness is rated according to objective functions whose improvements

form the aim of the optimisation and drive the evolution in specific directions. The

advantage of evolutionary algorithms compared to other optimisation methods is that

they make only few assumptions about the underlying fitness landscape and therefore
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perform consistently well in many different problem categories [20]. Generally, the

implementation method for the EA can be summarised in the following steps: Initial-

isation, Evaluation, Fitness assignment, Selection and Reproduction. The structure

is represented in figure 2.3.

2.3.1 Initialisation

Population initialisation is a crucial task in evolutionary algorithms (EA) because it

can affect the convergence speed and also the quality of the final solution. Although

this fact is known, reports within this research field are very few. Certain approaches

have been considered for improving the initialisation process that is a necessary step

for the EA implementation. Two of the more significant approaches will be described

as follows:

Quasi-random method: This involves generating numbers with a ”perfect uniform

distribution”. Each successive point generated via this method is equally spaced from

the previous point. As a consequence of these equally spaced points, individuals

within the initial population would be evenly distributed within the sample space.

Traditionally, numbers generated ’randomly’ for the initial population tend to mimic

random numbers. They are not truly random (or independent) as they are developed

algorithmically. Hence, they are termed pseudo-random numbers. These numbers

tend not to be evenly spread around the sample space and form clusters in some

portions of the sample space [31].

The fact that the pseudo-random number distribution does not encompass the sample

space of solutions suggest it is less likely to discover the optimum solution using this

initialisation method. It has been reported that employing quasi-random method of

initialisation can improve the quality of final solutions without significantly increasing

the speed of convergence of the algorithm to the best possible solution [31]. For higher

dimensional problems, their advantage pales into insignificance because it becomes

more difficult to generate quasi-random sequences [32], [33].
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Opposition-based learning method: This is a novel initialisation approach that

employs opposition-based learning to generate an initial population. Generally, evolu-

tionary optimisation methods are initialised with some solutions (initial population)

and the aim is to improve performance towards some eventual optimal solutions. The

process of searching terminates when certain user-specific criteria are met. In the

absence of a-priori information about the solution, a random guess is useful in defin-

ing the start point for the optimisation process. The computation time required in

discovering the best solution could depend on the distance of the initial guess from

optimal solution. We can improve our chances of finding the optimal solution and

reduce the time to find the optimal solution by starting with a closer (fitter) solution.

This is achieved by checking the opposite guess of the initial guess simultaneously.

By doing this, the closer one to the solution (say the guess or opposite guess) can be

chosen as the initial solution [33], [34]

Definition - Let x be a real number in an interval [a,b] (x ∈ [a,b]); the opposite

number, x̄ is defined by (2.1).

x̄ = a + b − x

Conducted experiments over a comprehensive set of benchmark functions, reported

in [32], demonstrate that replacing the random initialisation with the opposition-

based population initialisation can accelerate convergence speed for these cases. In

summary, the basic idea behind the opposition-based learning is considering the esti-

mate and opposite estimate (guess and opposite guess) at the same time in order to

achieve a better approximation for current candidate solution. Unlike quasi-random

number generation, the calculation of opposite candidates is not difficult or time con-

suming. Furthermore, there are no dimensionality limitations. Hence, the idea is

applicable to a wide range of optimisation methods [33], [34], [35].

Although these proposed approaches have potential benefits, due to the ease of im-

plementation and the well documented successes of the pseudo-random method of

initialisation, this initialisation approach has been adopted within the EA employed

in achieving the research project objectives. In future projects, it would be useful to
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investigate these other approaches and their benefits within particular applications.

2.3.2 Evaluation

The evaluation stage of the implementation of the optimisation algorithms is of ut-

most importance. This is because, by the evaluation of individual solutions using

the objective function(s), the respective objective values are assigned to each indi-

vidual (potential solution) within the population (sample space of possible solution).

These objective values quantify the quality of possible solutions for the particular

optimisation problem being investigated. It is a very vital function for the algorithms

implementation as it is used in defining the best solution.

In the evaluation of the objective function, it is necessary to define this function and

then calculate the corresponding objective value for the respective inputs. Most tech-

nical literature define the objective function with single indices, as integral time errors

in systems’ step responses (ITAE) or variants of this indices [15]. In recent literature,

often underlined is the fact that control problems are, by their very nature, multi-

objective, and also a single time-response based index may not be sufficient to define

the desired specification of the controller design. In addition, the objective function

can include any measurable, observable, or calculable behaviour or characteristics of

the problem under consideration. Such characteristics of the problem may include,

for example, the rise time, steady state error, overshoot etc. Hence, the choice of in-

tegral time errors seems not to fully capitalise on the full capabilities of evolutionary

algorithms in some cases [12],[13].

Given that the objective function can take into account several aspects of the design

problem (in the time and frequency domain), the objective functions can be either

combined by incorporating different indices to yield a unique fitness for a particular

problem or considered separately in a multiobjective optimisation problem [12],[13].

Certain Optimal controller designs have been achieved using a frequency domain

approach - H∞, as the objective function. In this case, the objective function is the
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sum of the squared robust stability and disturbance attenuation performance indices

[14].

Calculating the objective function could be achieved through analysis and by adopting

different formulae. It could also be achieved through computer simulations or by

direct experimentation on the system to be controlled. The analytical formulae are

generally obtained from linear models of the process and the controller, neglecting

all the nonlinear effects for example hysteresis and voltage drops across brushes in

electric drives. In such cases, using simple linear controllers, the integral-time-based

performance indices (e.g., IAE or ITAE) can be computed through closed formulae of

controller parameters. More frequently, the nonlinear effects assumed to be negligible

are in fact not. In such cases, obtaining an accurate simulation model of the controlled

process that accounts for the nonlinearities is vital. With such a simulation model, a

direct approach to computing the fitness of the controller is to carry out closed loop

simulations [12].

Recently, some authors have devised special techniques to implement evolutionary

design strategies on-line. The obvious advantage of direct experimentation is the

accuracy of the results obtained. All model-based approaches largely rely on the ac-

curacy of the model used in the simulations or application of analytical formulae. The

controller designed using direct experimentation already considers all possible nonlin-

earities and higher order disturbances during the design process; hence the optimal

control from such a design procedure is ready for use directly after the experimental

process is completed [12], [13], [14].

2.3.3 Fitness assignment

The fitness assignment process assigns a positive real number to an individual (possi-

ble candidate solution). The positive real number emphasises how fit the individual is

relative to the other individuals within the population. This fitness assignment pro-

cess is essential as it differentiates significantly candidates with very similar objective
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values. There are several fitness assignment strategies that have been described in

evolutionary algorithms related literature. Some of the more common strategies will

be described in the following sections [20], [36].

2.3.3.1 Rank-Based Fitness Assignment

Rank-based Fitness Assignment is also known as Pareto ranking. It assigns fitness

values to individuals based on their rank within the population. The individuals are

ranked according to the magnitude of their objective values. The purpose of the de-

signed optimisation algorithms in this research project is to minimise the objective

value .i.e. the best (optimal) solution should have the minimum possible objective

value. Considering a pair of possible solutions for an optimisation task, the first pos-

sible solution, individual1, is said to be dominated if the objective value it produces,

after substitution in the objective function, is less optimal than that produced by the

second possible solution, individual2. Hence, the second possible solution is said to

be nondominated. Also, if the objective value produced by the first possible solution

is the same as that produced by the second possible solution, then individual1 is said

to cover individual2 or vice versa.

Generally, the rank of an individual within the population depends on the number of

individuals dominating the individual. While this method of ordering is a good typical

approach capable of directing the search into the direction of the pareto optimal

solution and delivering a broad scan of the solution space, it neglects the fact that

the user of the optimisation is not often interested in the whole sample space of

possible solutions but only has interest in selected regions [20].

2.3.3.2 Weighted Sum Fitness Assignment

Weighted Sum Fitness Assignment is reported as the most primitive form of fitness

assignment. It simply involves assessing the fitness of an individual by summing the
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weighted objective values (assuming a multi-objective evolutionary algorithm). The

weightings of the different fitness values are defined entirely arbitrarily depending

only on the user’s preferred specifications [20].

2.3.3.3 Niche Size Fitness Assignment

In the search for a global solution, the underlying idea is that most of the solutions

domain is crowded by sub-optimal individuals (solutions) and around the global opti-

mal regions, there are only few individuals. Niche size fitness assignment attributes a

fitness value to each individual which reflects how crowded the niche of the individual

is. The more crowded the niche of an individual is, the less fit the individual. Niche

means the area in a given distance around the individual. The crowdedness then

describes the count of other individuals inside that niche.

It is usually not wanted that niches are crowded significantly with all the possible

solutions, since that would mean the optimisation algorithm converges fast. Instead,

the preferred choice is many niches with few individuals inside, which means that

many different solution patches are investigated and a broader scan of the sample

space of solutions can be obtained. The niche fitness does not contain any information

about the prevalence/dominance of the any selected solution over other solutions, it

solely concentrates on assigning fitness values to individuals based on their niche [20],

[37].

2.3.3.4 SPEA Fitness Assignment

The Strength Pareto Evolutionary Algorithm is a recently developed means for fitness

assignment. With the optimisation of multiple objective evolutionary algorithms, the

various objectives to be optimised can be conflicting: meeting the optimal solution,

with a chosen set of parameters, of one objective function can result in a degraded

solution for a another objective function. A pareto-optimal solution for a multiob-
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jective optimisation problem is a set of solutions, consisting of certain parameters,

with which the corresponding objective functions cannot be improved in any dimen-

sion without degradation in another. SPEA uses a mixture of new and established

techniques in order to find multiple optimal solutions in parallel.

The fitness assignment strategy adopted in this approach initially requires a classi-

fication of possible solutions (within the sample space) on the basis of whether they

are dominated, nondominated, covered - Pareto-ranking. Within any one generation,

the nondominated individuals are stored in a Pareto set. This is updated after each

generation passes in such a way that only a particular number of nondominated solu-

tions are stored in the Pareto set. The fitness assignment for each individual solution

within the Pareto set is based upon how many other individual solutions dominate

and cover the individual solution under consideration. SPEA Fitness Assignment is

not concerned with the individuals in the population within any one generation - a

unique feature of this approach. The fitness value assigned to an individual solution

is called its strength. The more the individuals that dominate and cover a solution,

the less fit the individual for reproduction.

2.3.3.5 NSGA Fitness Assignment

Generally, pareto-based approaches use the objective functions to distinguish between

the non-dominated and dominated solutions in the current population. The fitness

assignment of an individual is based on the information from both the non-dominated

and dominated sets. A ranking procedure entirely based on the non-dominated set

to decide the fitness of the individuals was first suggested by Srinivas and Deb [36].

Based upon these ideas, the Non-dominated Sorting Genetic Algorithm (NSGA) was

developed. NSGA Fitness Assignment is based on several layers of classifications of

the individuals.

Before selection is performed, the population is ranked on the basis of non-domination:

all non-dominated individuals are classified into one category (with a dummy fitness
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value, which is proportional to the population size, to provide an equal reproduc-

tive potential for these individuals). To maintain the diversity of the population,

these classified individuals are shared with their dummy fitness values. Sharing is

achieved dividing the original fitness value of an individual solution by a quantity

proportional to the number of individuals within a given distance around it. Then

this group of classified individuals is ignored and another layer of non-dominated in-

dividuals is considered. The process continues until all individuals in the population

are classified [20].

2.3.4 Selection

Selection essentially involves choosing a specified number of individuals from a list of

candidate solutions for the mating pool, where reproduction will occur. The ultimate

aim is to form a new generation of individuals that are potentially better solutions

than their parents. The requirement for selection is that the fitter individuals have

greater chances of survival than their weaker counterparts. The process of selection

mimics nature and, in particular, the principle of natural selection, albeit in a simplis-

tic manner, given the fitter individuals are more likely to be the determinants for the

new generation. The process of selection may be implemented in a deterministic or a

randomised manner, according to the specification of the user, which would normally

depend on the application.

There are generally two classes of selection algorithms; those that occur with replace-

ment and those that occur without replacement. In a selection algorithm without

replacement, each individual from the input list is taken into consideration for re-

production at most once and therefore also will occur in the mating pool one time

at most. The list of selected individuals , returned by algorithms with replacement,

can contain the same individual multiple times. There are several types of selection

method discussed in related literature [29], [38]. Some of the more common and im-

portant types of selection - Roulette wheel, Truncation, Rank, Tournament, Elitist -

will be discussed in more detail in the following sections.
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2.3.4.1 Roulette Wheel Selection

The Roulette wheel selection method is one of the oldest selection methods. It is

also known as stochastic sampling. In this method, an individual’s chance of being

selected is proportional to its fitness relative to the other individuals [23], [39]. A

roulette wheel is shown in the figure 2.4. Each portion represents an individual’s

fitness relative to the other individuals.

Figure 2.4: Roulette Wheel Selection

On each turn of the roulette wheel, an individual is selected at the selection point.

It is evident from the roulette wheel that the fittest individuals (individuals having

the largest portions of the wheel) are most likely to be selected on each turn. Hence,

the fittest individuals will most likely form the members of the mating pool which

is required in forming the new generation of solutions. The number of turns of the

roulette wheel equals the number of individuals required in the mating pool.

2.3.4.2 Truncation Selection

Truncation selection does not attempt to emulate natural selection techniques. It is

an artificial selection method in which the individuals are first ordered by their fitness

and only a proportion of the fittest individuals selected are used in the mating pool for
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reproduction. The proportion of the fittest individuals selected is defined arbitrarily.

This proportion indicates the proportion of the population that serve as parents and

it is reported to range between 50 - 100% of the total population. Individuals that do

not fall within the proportion do not reproduce. This method of selection promotes

premature convergence and does not encourage diversity in generations of individual

solutions [20], [40].

2.3.4.3 Rank Selection

With this method of selection, at each generation, the individuals in the population

are sorted according to their fitness and each individual is assigned a rank in the

sorted population. This method of selection is more useful than the Roulette wheel

method in avoiding premature convergence in a situation where the fitness value of

one individual is relatively much greater than the rest [40].

2.3.4.4 Tournament Selection

The Tournament selection is a two stage process. The first stage involves the selection

of a group of individuals for the population. The group must consist of at least two

individuals. The next stage involves selecting the fittest individual from the group.

Once this is implemented, the unselected members can be discarded from further

selection (without replacement) or they can be reinserted into the population for

further selection (with replacement). This process is repeated until the mating pool

is filled with the required number [20].

2.3.4.5 Elitist Selection

The Elitist selection strategy guarantees that the best individual generated will not

be lost from one generation to the next as a consequence of sampling effects or the ap-
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plication of genetic operators. It simply involves directly passing the best solution of a

previous generation to the current generation. This ensures that the algorithm always

converges at the global optimum value, if it is found within successive generations.

There is the downside that there might be convergence to a local optimum value as a

result of the elitist approach. Often, with the implementation of Evolutionary algo-

rithms, the elitist selection strategy is combined with other selection strategies [20],

[24], [41].

2.3.5 Reproduction

Reproduction is the process that produces a new generation of solutions from a current

generation. It is the necessary step required to combine the selected individuals within

the mating pool to form the offspring of solutions. The methods to achieve reproduc-

tion during the implementation of evolutionary algorithms can be broadly grouped

into four reproduction operators - Creation, Duplication, Mutation and Crossover.

These operators can be implemented in a deterministic or a randomised way [20],

[24]. The aim of the combined applications of these operators during reproduction is

to ensure that the reproduced population are better than the current population; this

is facilitated through inheritance of the best characteristics of the current generation

by the reproduced generation.

2.3.5.1 Creation

The creation operator is used to generate a new solution that has no relation with

existing solutions. This process is to generate initial solutions. These solutions can

be generated in a random manner or, through experience, in a manner specified by

the user. This is known as seeding the initial population, which can help increase the

rate of convergence of the algorithm [42].
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2.3.5.2 Duplication

The duplication operator is used to create an exact copy of an existing solution. This

operator could be useful to increase the numbers of particular individuals with desired

fitness values and, in turn, decrease the unwanted individuals in order to keep the

total number of individuals constant within the population. The selective preference

could enable convergence to the global optimum or conversely, encourage premature

convergence to local optimum values.

2.3.5.3 Mutation

The mutation operator is used to generate a new individual by modification of an

existing individual. Figure 2.5 illustrates the process of mutation on an individual

that is binary encoded. During the mutation operation, first, the mutation point

is selected. In the example in figure 2.5, the mutation point is on bit three of the

individual. Second, the actual mutation is performed by merely changing the bit at

the mutation point to its complement bit.

Figure 2.5: Illustration of the mutation

The process can be implemented in a stochastic manner by randomly selecting indi-

viduals and, in the same manner, picking the different positions within the selected

individual to serve as the mutation point. It can also be achieved in a determinis-

tic fashion, by specifically selecting particular individuals and ,in the same fashion,

subsequently choosing positions on the individual as the mutation point.
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2.3.5.4 Crossover

The crossover operator is used to create two new individuals by the combination of

the features of two existing individuals. The process of crossover involves two stages:

the first stage involves the selection of the crossover site. In the example illustrated

in figure 2.6, which illustrates the principle of the crossover operator by considering

binary encoded individuals, the crossover site is between bits three and four. The

second stage involves swapping the bits that are to the right of the crossover site.

The crossover operator can be applied in a random or deterministic manner.

Figure 2.6: Illustration of the crossover

The four reproduction operators - Creation, Duplication, Mutation and Crossover are

used in conjunction with one another to reproduce whole populations of individuals.

The combined use of the reproduction operators ensures that the population experi-

ences both divergence and convergence in varying magnitudes to ensure that, through

generations, the algorithm eventually converges at the global optimum solution.

2.3.6 Termination

Evaluation, Fitness Assignment, Selection and Reproduction is repeated until the

Termination criterion is reached. Classical termination criteria for the EA include
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• the maximum number of generations

• the maximum number of function evaluations

• the maximum computation time

• the absolute global optimum value

• the convergence of the individuals within the population

A combination of these classical termination criteria are often used to bring the EA

to a stop. At the point of termination, the EA should have arrived at the global

optimum solution to the optimisation problem.

2.4 Applications of Evolutionary Algorithms

Applications in science and engineering requiring evolutionary algorithms are numer-

ous. In order to create an awareness of the relevance of of Evolutionary Algorithms,

its application in three key industrial sectors will be summarised. The considered sec-

tors are Power (Energy and Electric Power), Transport (Aerospace and Automotive)

and Communications (Telecommunications).

2.4.1 Energy and Electric Power

In the sector of energy and electric power, the focus is on energy generation. Some

of the methods employed to achieve energy generation harness wind, water, fuel

cells, solar energy, etc. The sector is also concerned with effectively distributing the

generated energy to the consumers. As a result, there is a lot of work undertaken in

the design of electrical distribution systems and control and power electronics systems

to ensure safe, effective and efficient operation of the production facilities [43]. To

highlight the effectiveness of the EA within this sector, its applications in the key

areas within this sector will be summarised



2.4. APPLICATIONS OF EVOLUTIONARY ALGORITHMS 38

2.4.1.1 Control Systems

Generally, in the design of control systems, three stages are employed: (1) Identifica-

tion of the system (2) Designing the controllers for the modelled system (3) Evaluating

the Robustness and Performance of the designed system [12], [13], [14], [15].

2.4.1.1.1 System Identification: In the absence of a model of a physical sys-

tem, due to its variation with time and operating conditions, a means to obtain

a mathematical model that considers both the structure and parameters of such a

physical process will be beneficial. System Identification procedures provide a suit-

able method to achieve such a model. Given that many physical systems possess

a time-varying nature and are dependent on operating conditions, dynamic system

identification procedures are often necessary. For these reasons, System Identification

that incorporates EA is currently an active area of research [13], [14].

Research and development of linear system identification has been studied for more

than three decades. However, identification of nonlinear systems is an emerging

topic of interest. Nonlinear characteristics such as saturation, dead-zone, etc., are

embedded in the very fabric of many real systems. In order to analyse and control such

systems, identification of nonlinear characteristics is necessary. Although nonlinear

system identification is more challenging, given the usefulness of such identified models

in designing more effective control strategies and the emergence of tools to achieve the

more demanding identification process, it has been receiving increasing attention [13].

The process of system identification of linear and nonlinear systems generally involves

two intrinsic problems: the selection of a suitable model structure and the estimation

of model parameters. The very nature of the EA, which enables parallel evaluation

of large solution space, makes the EA easily adaptable to identifying linear and

nonlinear models for systems especially where there is no a priori knowledge of the

possible structure and parameters for the model to be designed. A large number

of practitioners have reported successful linear system identification and there is an
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ever-increasing number of successful identification of nonlinear systems [12], [13].

2.4.1.1.2 Controller Design: The applications for Evolutionary Algorithms in

control system design can be classified in two main groups: The offline and online

methods:

Offline method: This approach is adopted for the design of controllers using models

of the systems to be controlled. In designing the controllers, the complexity of the

process model could require equally complex controllers that demand expertise in

designing their structure and parameters. Although the complexity of models can

be sacrificed for simple linear models, the resulting control solutions might also have

imposed quality limitations on its performance [15]. The application of evolutionary

algorithms to offline controller design methods can absolve the need for expertise in

designing the corresponding (complex) controllers required by the complex systems.

This could potentially improve the quality of the achieved system dynamics. EA have

been widely and successfully applied to off-line design applications.

Online method: In spite of the simplicity of the basic idea, the on-line application

of evolutionary algorithms for optimisation requires dealing with several challenging

problems, which have strongly limited, to date, the number of successful applications

in this field. Online EA design techniques allow us to obtain automatic design tools

that do not require skilled expertise for system modelling because it harnesses trial-

and-error controller optimisation directly on the actual process to be controlled. The

benefit of such an approach throws more certainty on the quality of the final solution

obtained. Designing and developing a system capable of properly running an evolu-

tionary search procedure in real-time, by directly commanding the physical hardware,

can be extremely complex. First of all, safety mechanisms to avoid poor-performing

or even unstable solutions, which can cause permanent damage to the hardware, must

be developed. The algorithm must also be designed to avoid interferences between

testing of subsequent solutions. Furthermore, to obtain significant and practically

useful results, thousands of experiments are necessary to obtain controllers with high
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fitness, and mechanisms for improving the speed of convergence become indispensable

to obtain results of practical interest in reasonable search times [12].

The EA have been employed in both online and offline optimisation of the structures

and parameters of controllers for closed loop systems. Some research have focused

only on the optimisation of the parameters of a pre-defined controller structure. More

recently, the optimisation has been performed simultaneously on the structure and

parameters of controllers. It has also been demonstrated that evolutionary optimisers

can be used to derive superior controller structures in aerospace applications in less

time (in terms of function evaluations) than other methods such as Linear Quadratic

Regulators (LQR) and Powell’s gain set design [13], [14].

2.4.1.1.3 Robust Stability Analysis: Evolutionary algorithms have been

utilised in the context of efficient robust control system design. With all physical

systems, there are bound to be parameters that vary with operating conditions. De-

pending on the complexity and the significance of these variations, the time-invariant

models used in the design of control systems will need to model these parameter

variations as a first step in order to design truly robust control systems [13]. Evo-

lutionary algorithms have also been incorporated in procedures that tune both the

structure and parameters of controllers while considering the parameter variations

that exist within the nominal model [12], [44]. These parametric variations are often

not discrete but continuous and of infinite combinations. Thus, in order to model

all the possible parametric variations and to simultaneously optimise the controllers

accordingly, applications involving H∞ robust control theory, which help in defining

models that suitably bound these variations, have been employed in combination with

evolutionary algorithms in recent reports [19].

2.4.1.2 Power Electronics

The design of electronic circuits is often time consuming and can be a mundane

process due to the need to repeat a number of design steps. Normally, during the
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electronic circuit design process, the circuit topologies and its relevant components are

selected logically but, on the other hand, design decisions such as switching frequency,

duty cycle, heat sink size, etc are made based on experience and intuition. This

could provide room for error in the design process especially if electronic circuits

for entirely new applications are being developed. For this reason, it would be of

great benefit to the design engineer to have a computer-aided design tool that would

remove uncertainty, through the dependance on intuition and establish more certain

approaches in the electronic circuit design procedure [45].

For a typical power electronic design process that employs the EA, the parameters

to be optimised may include the switching frequency, inductor parameters (number

of primary and secondary windings, air-gap size), number of capacitors, diodes and

their configuration (parallel or series). Through simulations, the quality of the ran-

domly generated design is evaluated against the given specification for the circuit;

this may include the losses the circuit generates at certain load conditions, minimum

deviation from the specified output voltage for the expected input voltage range and

load conditions, the output voltage ripple being within specified limits in the pres-

ence of certain voltage input and load conditions, etc [46]. Successful applications

of the EA in the design of electronic circuits have been reported in several academic

journals and its application in this field is increasingly being taken up amongst power

electronics engineers[45], [46].

2.4.1.3 Power Networks

The cost and reliability of power distribution systems are becoming as important as

those of their associated power generation and transmission systems. The planning

of these large-scale and complicated distribution systems depends on computers and

mathematical optimisation tools. The goal of the modern day power distribution

system planning focuses on meeting the ever-increasing and dynamic load demands,

within operational constraints, economically, reliably and safely by making optimised

decisions based upon several factors such as sub-station location, size, reliability,
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voltage level of the distribution network etc [47].

Currently, an important issue in the field of power distribution is the need to optimise

networks that serve commercial and residential areas. Generally, these networks are

designed based upon two criteria: (1) minimal cost and (2) reliability of the supply

(sub-stations and/or feeders). The solutions to the optimisation problem would be

the parameters that enable the planner obtain optimal locations and sizes of the

sub-stations and supplies to these stations (feeders) that achieve the best values for

the two design criteria. The EA have been extensively adopted within this field of

power networks in optimising models for these power distribution networks. The

very complicated nature of the design: simultaneously and objectively evaluating the

network-design criteria, which can be seen as complements of each other, presents a

problem that the EA are capable of dealing with effectively; the nature of the problem

makes it virtually impossible to be tackled by widely practised ad-hoc methods.

2.4.2 Aerospace and Automotive

In the field of aeronautical design, optimisation has a very significant role. To high-

light the significance, it is established achieving optimal designs for structures, aero-

dynamic shape and flight trajectories can bring about significant savings in costs, fuel

consumption, reduction in green house emissions, etc [48]. In most cases, achieving

these optimal solutions involve solving complex nonlinear partial differential equa-

tions that are not amenable to traditional gradient-based methods. The EA have

been adopted in dealing with such complex problems because these problems require

a sensible random and exhaustive search technique; these requirements are in line

with the inherent nature of the EA.

The EA have been used in achieving practical optimal designs of the wing-shape for

a super-sonic aircraft [48], [49]. The four major parameters that were considered for

the design were aerodynamic drag at supersonic cruising speeds, drag at subsonic

speeds, aerodynamic load (bending force on the wing) and the twisting moment of
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the wing. These parameters are mutually exclusive and attaining an optimal wing

design required tradeoffs between the parameters. A multiple-objective EA provided

the means to objectively assess the separate contributions of each parameter and

to provide the necessary trade-offs required to meet the design objectives. This is

another instance that has encouraged the wider the uptake of unconventional EA

approaches over traditional approaches for engineering design.

In the automotive industry, due to tighter restrictions on both air pollution and

energy consumption, there is a significant drive towards developing Hybrid Electric

Vehicles (HEV ). However, the design of these vehicles are difficult due to the large

number of inter-related design parameters and conflicting design objectives. Tradi-

tional optimisation techniques have proven to be ineffective at dealing with hybrid

electric vehicle design due to the rather complicated nature of HEV systems. As a

result, the EA are being increasingly adopted to deal with such design problems as

the stochastic search techniques are particularly suited to dealing with such complex

engineering design [50].

2.4.3 Telecommunications

Telecommunications are a significant symbol of the modern age of society. Over the

last decade, the growing demand for data communications has influenced the rapid

development of network infrastructures, cellular networks and internet services. Cur-

rently, new technologies such as cellular mobile radio systems, optical fibres and high

speed networks have are in wide-spread demand and on a global scale. These new

technologies permit the fast data communications and provide myriads of avenues

for new services and applications. As a result of the current situation, there is in-

terest stirring up in technology and telecommunication problems such as antennae

design, efficient allocation of base stations, frequency assignment to mobile phones

and structural design problems relating to routing information through the network.

These problems and may others found in the field of Telecommunications can be

expressed as optimisation problems [51].
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The size of existing telecommunication infrastructure is constantly on the increase

and the result is that the typical optimisation problems are becoming increasing more

complex and are posing significant challenges to existing algorithms. The effect of

this has been a search for an alternative algorithm that can tackle these newly found

complexities. The EA are now being increasingly adopted by Telecom engineers in

dealing with these optimisation problems. The EA have already been successfully

applied to a number and a diverse range of telecommunication applications that

include hardware design, data transmission and network design.

The EA have been successfully applied to optimisation of the hardware infrastructure

involved in antennae design, The optimisation problem with the antenna design fo-

cuses on keeping the structure as simple and low-cost as possible and at the same time

achieving the particular electrical requirement. The robustness and the versatility of

the employed EA make the method especially beneficial in instances that have large

search spaces and have proven better performances than other algorithms [52]. In

the field of data transmission, applications that have required the EA optimisation

include aspects related to the direct communication of data between two components

such as cellular phones and base stations. In the area of network design, the EA

have been applied to minimising the costs of setting up networks and optimising the

network’s reliability and connectivity, which focuses on the network’s functionality de-

spite failures in some of its links or nodes. They have also been applied to optimising

placement and configuration of the antennae systems within such networks [51].

2.5 Conclusion

The chapter has focused on the description, implementation and the applications of

the Evolutionary Algorithms. In achieving this aim, initially, a classification of op-

timisation algorithm was presented and the importance of Evolutionary Computing,

the field to which Evolutionary Algorithms belong to, was highlighted. Next, The

preference for the Evolutionary Algorithms over other algorithms within the artificial
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intelligence was highlighted. Finally, the general implementation and application of

these algorithms were discussed. The general implementation of the Evolutionary

Algorithms can be summarised in six phases. These are the phases of Initialisation,

Evaluation, Fitness Assignment, Selection, Reproduction and Termination. The sec-

ond to fifth phase of the Evolutionary Algorithms are repeated until the criteria for

termination are met.

The Applications of Evolutionary Algorithms within three important sectors of in-

dustry - Power, Transport and Communication. The description of the applications

of the EA to the Power industry, includes applications in the field of control system

design, which can be categorised into the off-line and online methods, system identifi-

cation for process models and robust stability analysis of control systems. Within the

field of control systems design, there are already well established strategies for off-line

applications but the field of the online applications have been very limited to date due

to the very challenging problems that need to be dealt with for its implementation.

The research project deals with these difficulties in order to achieve its objectives.

Although the many benefits of the Evolutionary Algorithms have been highlighted

in this chapter, they have their limitations. It has been suggested that many of

the limitations of existent evolutionary algorithms, such as premature convergence,

stagnation, loss of diversity, lack of reliability and efficiency, are derived from the fun-

damental convergent evolution model and the oversimplified ”survival of the fittest”

Darwinian evolution model. Within this model, the higher the fitness the population

achieves, the more the search capability is lost. This is also the case for many other

conventional search techniques [20].



Chapter 3

Investigated Evolutionary

Algorithms

3.1 Introduction

The usefulness of the evolutionary algorithms has been highlighted in chapter 2. Some

of the different applications of these algorithms are also discussed. This chapter fo-

cuses on the three evolutionary algorithms employed for the robust automated control

design of this research project. The algorithms are employed to optimise the closed

loop speed controller for the experimental described in chapter 4. In achieving the

optimum control solution for the experimental system, the algorithms ensure that the

speed response of the closed loop experimental system follows the desired speed as

closely as is possible; this serves as an important criteria for quantifying the quality

of the closed loop system’s response.

The first EA considered is The Genetic Algorithm (GA). The GA is currently

amongst the most popular evolutionary algorithms and it has become a very at-

tractive tool for optimisation processes. The simplicity and elegance of its underlying

concept and the requirements for the GA implementation are some of the reasons for

46
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its popularity. For these reasons, the GA was deemed a suitable approach in fulfilling

the aims of the research project.

The Bacteria Foraging (BF ) Optimisation Algorithm is relatively new on the scene

of Evolutionary Algorithms. The reason it has been employed in this research work

is that recent publications have demonstrated that in some cases it has comparable

performance with the GA [68]. Also, some other publications have suggested it is

more effective than the GA under certain criteria [69], [70]. Given the overall positive

remarks on the BF , it was deemed suitable to investigate the effectiveness of the

emerging evolutionary algorithm and do some comparison with its more popular

counterpart.

The Hybrid Bacteria Foraging (HBF ) algorithm is a novel optimisation approach

developed during the course of the research project. Although similar algorithms

have been implemented in [71] and [72], the novelty of the developed HBF algorithm

is due to the uniqueness of its application in order to meet the project demands. Its

development stemmed out of curiosity as to the effectiveness of the combination of

particularly desirable features of two remarkable search and optimisation techniques.

The details of its implementation and the manner in which it combines the principles

of both GA and BF will be discussed

3.2 Genetic Algorithm

The Genetic Algorithms (GA) are a subset of evolutionary computing, which is a

rapidly growing part of Artificial Intelligence (AI). The GA is a random search and

optimisation method that is inspired by Charles Darwin’s evolution theory and Gregor

Mendel’s principles of natural selection and survival of the fittest. The beginnings of

genetic algorithms (GA) can be traced back to the early 1950s when several biologists

used computers for simulations of biological systems. However the work done in late

1960s and early 1970s at the University of Michigan, under the direction of John

Holland, led to GA as they are known today [14], [15]. John Holland is credited as
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the Father of the Genetic Algorithms, since he was the first to introduce them in the

1960s. Further work for the algorithm’s development was carried out by Holland and

his students and colleagues at the University of Michigan.

The motivation for the design of the Genetic Algorithms came from a desire to study

the natural adaptation within nature and to implement its underlying processes within

a computer system. In 1975, John Holland published a book titled ”Adaptation in nat-

ural and artificial systems”. This presented a theoretical framework for the computer

implementation of evolution theories. For the Genetic Algorithms, its implementation

can be summarised in four steps - initialisation, selection, reproduction, termination.

These are highlighted in figure 3.1.

Initialization
Termination

Yes

No

cP

mP

Figure 3.1: Flow Chart of The Genetic Algorithm

Genetic Algorithm (GA) is a stochastic global search method that is inspired by the

theories of evolution and natural selection. It operates on a population of poten-

tial solutions, termed individuals, applying the principle of evolution, simulated by

means of mathematical operations that mimic the process of selection, crossover and
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mutation. A fitness function measures the fitness of an individual to survive in a pop-

ulation of individuals. The genetic algorithm will seek the solution that maximises or

minimises the fitness function, generating at each step a new generation of solutions

using the operations of mutation and crossover and selecting the best individuals for

the population at the following step. The results of this evolutionary manipulation

are new solutions, termed offspring. The new sets of solutions produced, representing

a new generation, are then interbred by the same means as the parent solutions. The

process stops when a termination criterion has been reached. The output of the GA

optimisation should, in theory, converge at the best possible solution. Unlike other

optimisation algorithm, because the GA performs a search of the solution space in

parallel and not by point to point, it is far less likely to converge at local optimum

but more likely to reach the global optimum solution [65].

3.2.1 Initialisation

At the start of the GA, a specified number of individuals and the maximum number

of generations are chosen; and using these specified variables, the first generation

of individuals is generated randomly. Also defined at the start of the GA are the

range of values the individuals can take, the number of offspring to produce from one

generation to the next,the crossover and mutation rate for the reproduction function

and finally the termination criteria. Each individual represents a possible solution to

the robust controller optimisation problem. An individual is represented as a string

of numbers and encoded within each individual are the parameters and the structure

for the digital controller to be designed.

3.2.2 Selection

The selection procedure of the GA is responsible for choosing a specified number of

the ’fittest’ individuals from the current population of individuals for reproduction,

in order to form the new generation of solution. The selection process is dependant
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on the fitness of each individual. In order to quantify the ’fitness’(quality of the

response) of each individual(possible solution), a user-defined fitness function is em-

ployed. Each individual is tested and evaluated using the fitness function and the

output of the function - the fitness value quantifies the fitness of each individual. The

fitness function employed for the optimisation procedure is defined as the Integration

of the Absolute Error (IAE) between the demand speed, ω∗ and the real speed of the

system, ω. The fitness value evaluation is represented in figure 3.2.

Fitness Valueu

*

Figure 3.2: Fitness function of Genetic Algorithms

Having quantified the fitness of each individual, the selection of individuals to place in

the mating pool is performed. There are a number of ways to implement the selection.

Some of the more common selection methods are the elitism, roulette-wheel selection,

stochastic universal sampling and Tournament selection. These have been described

in section 2.3.4. A combination of elitism and the stochastic universal sampling is

used to implement the selection function for the GA harnessed in the research project.

The elitist selection ensures that at least one copy of the fittest individual(s) of the

current generation is passed directly onto the new generation. The main advantage

of this approach is it prevents the best solutions from being lost through generations,

thus increasing the probability of convergence to a global optimum solution. On

the flip side, there is also a risk of convergence to a local optimum. The stochastic

universal sampling is used to select the remaining members of the new generation. It

provides zero bias and minimal spread within the selected population. The individuals

are mapped onto a line segment such that each segment represents each individual’s

fitness value relative to the other individuals. Then equally spaced pointers are placed

over the line. The number of pointers placed represents the number of individuals to

be selected. The first pointer is selected randomly. Its position must lie within the
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length of the interval between the first two pointers.

3.2.3 Reproduction

As mentioned in the previous section, the individuals chosen in the selection phase

of the GA are used to form the individuals of the new generation. By means of

the elitist approach, copies of the best individual(s) from the current generation are

passed on directly to the new generation. The remaining part of the new generation

is formed by using a probability guided simulation of crossover and mutation on

the individuals selected using the Stochastic Universal Sampling method. With the

opposing and collective diverging and converging effects of mutation and crossover

respectively, there is the increased chance of the GA arriving at a global optimum

solution at termination.

3.2.3.1 Crossover

The crossover function is used within the GA to create two individuals for the new

generation from the combination of features of two individuals of the current popu-

lation. It is essentially the genetic operator that simulates sexual reproduction. The

combination is done by merely swapping parts of the individuals between each other.

Its occurrence depends upon the crossover rate value Pc, which simply determines

how often, within any generation, the crossover function is carried out on pairs of in-

dividuals. The value of Pc is often chosen to be in the range 0.5 - 1.0 [73]. Crossover

can be implemented easily by two methods. These methods are the ’single-point’ and

the ’multiple-point’ crossover. The implementation always involves two individuals

within the population being considered. For the purpose of illustration, the individu-

als considered are members of a real number decimal population. The implementation

of binary crossover has been presented in figure 2.6; but given that real number deci-

mal coding is best for engineering applications, it has been employed for the research

project. The two methods for its implementation are illustrated in figure 3.3.
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Figure 3.3: Illustration of the crossover function

The single-point crossover has been adopted for the research project. During the

simulation of the single-point crossover, the two individuals selected randomly for

reproduction are paired off. A crossover site is selected and all the digits of one

individual to the right of the crossover site are exchange with those of the other. For

the multi-point crossover, initially, two crossover points are selected and the area

between these two points serve as the crossover site. The portion of first individual

within the site is swapped with the corresponding portion of the second individual.

The resulting individuals, termed offspring, form the individuals of the population of

the new generation. The crossover function is necessary to ensure convergence of the

GA to an optimal solution.

3.2.3.2 Mutation

In order to prevent the premature convergence of individuals to a local optimum and

widen the search capability of the algorithm, the mutation function is incorporated.

The mutation function enables the GA to search the sample space of solutions more
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effectively through its random application on the individual. Naturally, its effect could

be of no consequence to the search procedure or it could have a potentially negative

effect by creating individuals which are really bad solutions to the optimisation prob-

lem; it could also potentially discover really good solutions. In all cases, the mutation

operator improves the wider search capabilities of the optimisation algorithm.

nine

Figure 3.4: Illustration of the mutation function

The application of mutation involves randomly choosing a position to perform the

operation and then changing the figure in that position to any one of its comple-

mentary values. For the decimal population, any figure (in any position) would have

nine complementary values. An illustration of this operator is shown in figure 3.4.

An illustration of binary mutation has also been illustrated in figure 2.5; but the real

number decimal coded approach is preferred and adopted for the research project

because they are the best for engineering applications.

It must be highlighted that mutations can occur randomly to every position of each

parameter within an individual. Figure 3.5 shows the mutation of a typical individual

that encodes both the controller’s structure and relevant parameters: k represents the

’gain’ of the controller; A, B, D and E represent the ’zeros’ of the controller; C, F

and G represent the controller’s ’poles’ while F0 and F1 represent the flags that define

the controller structure. More details on the nature of the digital controller optimised

is presented in section 5.4. In figure 3.5, the PI controller is mutated into a Fourth
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08/09/2008 - 15/09/2008

Interval Description

08/09/2008 - 15/09/2008

Interval Description

k A B C D E F G 0F 1F

Figure 3.5: Illustration of the mutation on typical individual

order controller. Randomly altering the individuals within a population enables the

GA to effectively search through the sample space, thus increasing its chances of

converging at a global optimum solution. The mutation operation does not occur

as frequently as the crossover function and it is regulated generally by using a small

mutation probability, Pm. The mutation operator is carried out on a single individual

and the value of Pm is often chosen to in the range 0.005 - 0.05 [73].

3.2.4 Termination

This is the point at which the GA outputs the optimum controller structure and

parameters having reached the termination criteria specified within the algorithm.

Some of the possible criteria for termination includes

• A maximum computation time specified at the start has been reached

• A total number of generations has been achieved.

• The objective value below a certain fixed value

• A certain number of iterations have been performed
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A combination of the possible termination criteria are often used to bring the GA

to a stop. In the case of an effective search, at the point of termination, the GA

should arrive in an area around the global optimum solution to the optimisation

problem being considered. With regards to the research project, the global optimum

solution will be the best possible structure and parameter for the digital controller for

a variable speed drive that ensures robust performance, in terms of speed dynamics,

in the presence of variable mechanical load.

3.3 Bacterial Foraging

From the observation of nature, it is evident that living organisms with good foraging

habits are most likely to propagate their genes through generations. Such organisms

are healthier and are able to successfully adapt to their environment. As a result,

they are more likely to produce offspring, thus spreading their genes through gener-

ations. This simple observation is clearly stated within Darwin’s principle of natural

selection. The very tenets of this elegant principle is increasingly being adopted by

scientists, within algorithms, as tools in achieving optimal solutions for many optimi-

sation problems. Bacterial Foraging (BF ) is one of such algorithms. It was formally

introduced in 2002 by Kevin M. Passino in [29]. The BF is a stochastic search and

optimisation technique based on the foraging habits of Escherichia coli, more com-

monly known as E. coli, a bacterium commonly found in the gut of human beings.

Extensive studies have been carried out on the foraging habits of E. coli [29], [68].

This has enabled the successful implementation of a computer model of their foraging

habit as an optimisation algorithm. A fundamental part of the BF is the movement

of the bacterium. Each one possesses six rigid whip-like structures, called flagella, to

enable motion. These flagella make between 100-200 rotations per second and the

manner in which they are made to rotate guides the types of motion exhibited by

the bacterium in response to the stimuli it encounters within different mediums. The

motion (or taxis) of E. coli is generally triggered in response to different chemicals.
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For this reason, the bacterial motion is termed chemotaxis, which literally means

motion triggered by chemical stimulants. There are many other types of taxis that

are used to describe bacterial motion and some of these include: aerotaxis (attracted

to oxygen), phototaxis (light), thermotaxis (temperature), magnetotaxis (magnetic

lines of flux) etc. It has also been noted that certain bacteria can change shape

and number of flagella to ensure efficient foraging within different media [71]. The

chemotactic motion exhibited alternately by the E. coli, whilst searching for better

forage, are of two distinct types: (1) tumble and (2) runs (swims). More details on the

types of chemotactic motion are provided in section 3.3.2. The chemotactic motion

of E. coli is modelled within the BF algorithm according to the possible mediums

the bacteria encounters and its response within such mediums. This is summarised

as follows:

1. Neutral substance medium: Bacterium tumbles and runs alternately

2. Noxious substance medium: Bacterium tumbles more than it swims as it at-

tempts to get out of the noxious substance (climb down the noxious substance

gradient). It essentially seeks more favourable conditions

3. Nutrient substance medium: Bacterium swims more than it tumbles while it

searches for even more favourable nutrient mediums (up the nutritious substance

gradient)

The BF optimisation algorithm is regarded as a social foraging algorithm because it

requires collective search and foraging of a number of bacteria within a colony. For any

social foraging technique to be effective, it is necessary that each bacterium is able

to communicate and harness this communication capability with other bacteria to

fully capitalise on the collective searching and foraging of the colony. For the bacteria

colony of E. coli, communication is ensured by the secretion of chemicals which either

alert other bacteria on whether suitable forage or unsuitable conditions have been en-

countered. The chemicals are termed attractants when its overall effect congregates

bacteria to suitable foraging spots. In the case where it alerts other bacteria to move
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away from unfavourable conditions, they are termed repellents. This useful means of

communication within the bacteria colony is incorporated within the Bacterial For-

aging Algorithm by implementing the Swarming function, described in section 3.3.3.

The BF optimisation algorithm has been developed, within MATLAB/Simulink, par-

ticularly to meet the demands of the research project. The implementation of the BF

optimisation algorithm is summarised in Figure 3.6. The highlighted stages - initial-

isation, chemotaxis, swarming, reproduction and elimination/dispersal are described

in the following sections.

Randomly Generate Initial Population of 

Bacteria & their Positions, 
i
(j, k, l) on 

Domain of the Optimization problem  

Perform Chemotaxis for Bacterium 

1. Calculate the Nutrient Concentration, J(i, j, k, l)

of each bacterium at Current Positions 

3. Tumble in Random Direction & 

Calculate new J(i, j+1, k, l). Let 

this equal Jlast

4. Swim in Random Direction. 

Calculate new J(i, j+1, k, l).

Compare with Jlast

Reproduction – Sort Bacterium health Jhealth, in ascending 

order. Bacteria with highest Jhealth die. Bacteria with lowest 

Jhealth split, with the new copies replacing dead bacteria 

End Program with the 

best result as output 

Bacterial Swarming

2. Add Cell-to-Cell Attractant

Effect

Ped

+
+

If J(i, j+1, k, l) > Jlast or m = Ns

& j < Nc

i = i + 1 (move to next 

bacterium in population)  

If J(i, j+1, k, l) < Jlast

& m < Ns, m = m + 1

j = Nc

k = Nre

l = Ned

if k < Nre, k = k + 1 

if l < Ned, l = l + 1 Elimination-dispersal – With Probability Ped, eliminate and disperse 

each bacterium to random positions on the optimization domain 

Figure 3.6: Flow Chart of the Bacterial Foraging Optimisation Algorithm
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3.3.1 Initialisation

At the start of the BF algorithm, all the parameters required for its implemen-

tation are specified. These include the number of bacteria within the population,

the positions of each bacterium within the sample space, the number of chemotactic

steps taken during each bacterium lifetime, the number of reproduction and elimina-

tion/dispersal events that would occur during the algorithm’s implementation.

Having defined these initial parameters, the bacterial population is randomly dis-

tributed to different positions within the search space. The different bacterial posi-

tions represent potential solutions to the optimisation problem. The nutrient con-

centration function evaluates the nutrient concentration in the each of the different

bacterial position. The aim of the BF is to seek out the best solution that optimises

the nutrient concentration function (The solution that optimises the nutrient concen-

tration function represents the best structure and parameters for the robust digital

controller). After the initialisation phase, each bacterium searches for for the best

solution within the sample space by performing chemotaxis.

3.3.2 Chemotaxis

E. coli has the proclivity to convene at nutrient-rich areas by an activity called chemo-

taxis. The word ’chemotaxis’ simply means movement in response to chemical stimu-

lus. They achieve chemotaxis in two different ways: Each bacterium can either ’run’,

which is movement in a specified direction, or it can ’tumble’, which is a movement

in a random direction. The bacteria always alternates between these two modes of

chemotaxis all its life while searching for nutrients. Figure 3.7 illustrates the two

different modes of chemotaxis. In order to search for the positions with best nutrient

concentrations, each bacterium takes a specified number of chemotactic steps. Each

chemotactic step is described by swim intervals during which the bacteria moves in a

straight line interspersed with tumbles, when the bacteria has random reorientation.
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Figure 3.7: Modes of Chemotaxis - Tumble and Run

For the search procedure, bacteria need to have some direction. This is necessary to

indicate whether the search procedure implemented by the algorithm is progressive.

In order to incorporate such an indicator, the BF optimisation algorithm adopts a

nutrient concentration function. The nutrient concentration function quantifies nu-

trient concentration at each bacteria position and outputs a corresponding nutrient

concentration value. It has the same implementation as the objective function de-

scribed in section 3.2.2. At the initialisation of the algorithm or at the beginning of

each chemotactic step, tumble or run/swim within the chemotactic loop, each bac-

terium has, what is referred to as, its ’initial’ position. The nutrient concentration

function evaluates each ’initial’ bacterium position to output a corresponding initial

nutrient concentration value. The ’initial’ nutrient concentration value serves as a ref-

erence to compare the subsequent nutrient concentration values that will be obtained

during the algorithm’s execution. By carrying out such a comparison, the algorithm

can decide which is a good direction to progress the search in. Thus, the nutrient

concentration function is a means to indicate a progressive search procedure.
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The subsequent nutrient concentration values are determined each time a bacteria

tumbles (moves in random directions) or run/swim (moves in a specified direction)

from its initial position. In the chemotactic process, the tumble must always occur

before the run/swim. After a tumble, which is a move in a random direction to a ’new’

position, the nutrient concentration is evaluated. The ’new’ nutrient concentration

value is compared with the ’initial’ nutrient concentration value. The outcome of

the comparison determines whether a swim will follow subsequently. If the ’new’ is

better than the ’initial’ nutrient concentration value, a run/swim will follow in the

direction randomly chosen by the tumble. On the contrary, if the ’new’ is worse than

the ’initial’ nutrient concentration value, there will be no run/swim. The chemotactic

process for this bacterium ends by storing the position (and its corresponding nutrient

concentration) achieved. In the case of the research project, ’better’ means ’smaller’,

given the objective is to minimise the nutrient concentration function.

If the conditions for a run/swim to occur are satisfied, the ’new’ nutrient concentra-

tion value (obtained as a result of the tumble) now represents the ’initial’ nutrient

concentration value and thus, serves as a reference point for the first run/swim that

subsequently follows. After the first swim (move in the direction specified by the tum-

ble) occurs, a new bacterium position is obtained. The ’new’ nutrient concentration

is quantified. In order for a second swim to then occur, the same conditions for the

first swim to occur must be met. if it is not satisfied, the run/swim ends by storing

the position and nutrient concentration of the last successful swim (the first swim in

this case).

After a tumble or a run/swim, the bacterial position, represented by θ, is given by

(3.1). Within the equation, i represents the counter for each bacteria within the

population; j represents the number of chemotactic steps that each bacteria has

undertaken during its lifetime; k represents the counter for the reproduction steps

while l is the indicator for the elimination and dispersal events that is occurring.

θi(j + 1, k, l) = θi(j, k, l) + C(i)φ(j) (3.1)



3.3. BACTERIAL FORAGING 61

where θi(j, k, l) represents the position of the ith bacteria at the jth chemotactic step,

the kth reproductive step and the lth elimination and dispersal step. C(i) is the size

of the chemotactic step taken in a random direction by the ith bacteria. At the end

of each chemotactic step, the nutrient concentration is calculated.

3.3.3 Swarming

When cells of the E. coli are randomly distributed in a solution that has varying

concentrations of nutrients and noxious substances randomly distributed within it,

each bacterium would secrete attractants to signal other cells if it finds that it is

swimming in areas with good nutrient concentration. This facilitates the convergence

of cells of bacteria to form groups around areas in the solution with high nutrient

concentration. This enhances the effectiveness of the search and foraging procedure.

Also, when cells of bacteria experience noxious substances, each cell would secrete

repellents to divert the search and foraging process away from the areas with noxious

substances. This causes divergence of the bacteria cells, ensuring that they spread

out to other areas, thus improving the effectiveness of the search procedure. This

behaviour of the foraging of bacteria termed swarming has been modelled within

the BF optimisation algorithm. The mathematical expression for swarming can be

represented as in (3.2)

Jcc(θ, P (j, k, l)) =
S
∑

i=1

J i
cc(θ, θ

i(j, k, l))

=

S
∑

i=1

[

−dattractexp

(

−wattract

p
∑

m=1

(θm − θi
m)2

)]

+

S
∑

i=1

[

−hrepellentexp

(

−wrepellent

p
∑

m=1

(θm − θi
m)2

)]

(3.2)

Jcc(θ, P (j, k, l)) is the cell-to-cell attraction/repulsion function value that is to be
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added to the nutrient concentration function, which is to be optimised. S is the total

number of bacteria, p is the number of parameters to be optimised which are present

in each bacterium, dattract and wattract represents the quantification of the depth and

width of the attractant released by each bacterium and hrepellent and wrepllent represent

the quantification of the depth and width of the repellant secreted by each bacterium.

3.3.4 Reproduction

Reproduction occurs when every cell in the bacteria population has moved the spec-

ified number of chemotactic steps. The reproduction occurring is not sexual repro-

duction, as in humans, but conjugation, which merely involves the transmission of

genetic material from a donor to a recipient cell. It is the next phase after chemo-

taxis. Reproduction is necessary to cause the all the bacteria within the population

to converge at the bacteria population with the best nutrient concentration value.

Reproduction in BF optimisation algorithm within the bacteria population is

achieved in two stages. The first stage essentially involves assigning a fitness value to

each bacterium within the population. The fitness value determines which bacteria is

fit enough to reproduce. In some research publications, the fitness value of each bac-

teria within the population has been evaluated by calculating the sum of its nutrient

concentration values obtained over total number of chemotactic steps [71], [74].

For this research project, it is derived by considering only a single value, which is the

best nutrient concentration value that corresponds to the best position occupied by

the bacteria during chemotaxis. The benefits of this definition of the fitness value is

it ensures the best positions are not lost but are propagated through the bacterial

population by means of the process of reproduction.

Having achieved the fitness assignment, the bacteria are then ranked according to

their fitness values. The bacterium with smaller nutrient concentration values are

ranked higher than those with larger values. In order to reproduce, the one-half of
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the population of bacteria, ranked the least, is killed off. The remaining half which

has the better ranks is replicated - each surviving bacterium splits into two copies of

itself. The resulting population produced still has the same number of bacteria within

the population but, for each bacteria that is not ’killed-off’ there exist an identical

copy. The new population then serves as initial position for the next chemotactic

process or the next elimination-dispersal event.

3.3.5 Elimination and Dispersal

The environment of a population of bacteria could be subject to changes. These

changes could have a gradual impact such as variations in concentration of nutrients

in the area the bacteria population reside due to their foraging habits; the more

they feed within their environment, the less forage will be left to feed on in future. It

could also be sudden, possibly as a result of torrid environmental conditions appearing

such as weather conditions, diminished nutrient concentration etc. This could result

in death of some members of the bacteria population or general irregularities within

the climate of the bacteria environment. The events that bring about sudden or

gradual changes within the foraging environment of bacteria have been modelled in a

simple form within the BF optimisation algorithm; they are termed elimination and

dispersal events.

Elimination: The process simply involves randomly killing off some of the poorly

performing bacteria within the population. The need for this is simply to provide

room for new members of the bacterium population that potentially are situated

in areas with higher nutrient concentration. The obvious effect of elimination is a

reduction in the total bacterial population. In order to counter the reduction, a

complimentary process termed Dispersal occurs.

Dispersal: The eliminated bacteria are randomly replaced by new ones, which are

probably situated in different (and possibly better) locations than the previously ex-

isting members of the population. These new locations might be better because they
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may be situated closer to spaces with better nutrient concentration. This enhances

the global nature of the search procedure by dispersing some parts of the population

into other parts of the sample space.

The elimination and dispersal events, which occur after a specified number of repro-

ductive steps, help ensure the BF optimisation algorithm is truly global in its search

procedure. The elimination and dispersal events could have a negative influence on

the foraging of the bacteria by destroying bacteria in certain positions, which might

be close to nutrient-rich areas and transcribing portions of the bacterial population

to positions with poorer nutrient concentration. It could also have the positive effect

of introducing the bacterial population to environments with higher concentrations of

solutions or moving them away from noxious substances, thus enhancing the progress

of the search and foraging procedure.

3.3.6 Termination

At this juncture, the BF outputs the positions of the bacterium that correspond to

an optimal design of both structure and parameters for the robust controller. The

termination criteria that may be employed in bringing the algorithm to a halt include:

• The maximum computation time for the algorithm has been reached

• Convergence to a fixed low nutrient concentration value is reached

• A total number of elimination and dispersal events have occurred.

• A certain number of iterations have been performed

As with the GA, a combination of possible termination criteria are used to bring the

algorithm to a stop. The termination criteria used within the research project are

convergence to a fixed low fitness function value and reaching the total number of

elimination and dispersal events. After termination, depending on the success of the
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search procedure that has occurred, the BF may have converged at the best possible

solution.

3.4 Hybrid Bacterial Foraging

The Hybrid Bacteria Foraging (HBF ) is an example of a hybrid evolutionary algo-

rithm. Its name has been chosen for two reasons:

1. it is formed from the combination of the GA and the BF

2. it is largely similar in implementation to the BF .

Similar hybrid evolutionary algorithms have been developed and used in [42], [72], [71]

and [70] but the novelty of the developed algorithm lies especially in the uniqueness

of the application it has been specifically developed for. The circumstance that led

to the development of the HBF stemmed from the process of investigating ways

to improve the effectiveness of the simple BF optimisation algorithm (described in

section 3.3.4) as an approach for the design of robust controllers for the electronic

drive.

In the formation of the HBF optimisation algorithm, the aim was to combine specific

desirable functions of the BF and the GA into one algorithm. The BF optimisation

algorithm is known for its ’excellent local search’ capabilities but it does have obvi-

ous limitations in its global search approach. This presents a scenario, which is the

converse for the GA: it has excellent global search capabilities but is rather limited

in its local search procedure. Merging the two algorithms, through selective combi-

nation of certain favourable functions of the BF and GA could potentially yield an

algorithm that has excellent local and global search capabilities. Every other process

within the HBF is exactly the same as those of the BF optimisation algorithm apart

from the Chemotactic and Reproduction process. The modifications that are imple-

mented through the combination with GA are the reasons for the differences. These
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constituent processes were modified because they largely determine the effectiveness

of the HBF and sensible modifications to such processes can bring about significant

improvements in the performance of any algorithm.

3.4.1 Hybrid Chemotaxis

The Hybrid chemotactic process includes the process of tumble and run/swim. It also

includes the GA reproductive process which is the modification that aims to improve

the normal chemotactic process of the BF . After every bacterium has performed

chemotaxis, the new bacteria position and the corresponding nutrient concentration

values achieved are modified using the reproductive process adopted from the GA.

The idea is to create a new set of bacteria positions from the initial set, which is

derived from the tumbles (and swims). The new set obtained through the GA modi-

fications will then be used in next chemotactic step.

In deriving the new set of bacteria positions, first, the initial set of bacteria posi-

tions are ranked. The ranking is based on their nutrient concentration values. The

smaller values are ranked higher and vice versa. After the ranking process, a certain

(user-specified) number of bacteria positions, which are the most highly ranked are

passed directly into the new set of bacteria positions. The remaining members of the

new set are formed from the initial set by randomly simulating crossover to produce

new bacteria positions and then carrying out the mutation function on randomly se-

lected bacteria positions. These GA reproduction operators are described in section

3.2.3. The new set of bacteria positions are used as the initial positions for the next

chemotactic step.

3.4.2 Hybrid Reproduction

A similar modification described for the Hybrid chemotaxis has been implemented for

the reproduction phase of the BF to yield the hybrid reproduction of the HBF . The
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reproduction phase described in section 3.3.4 involves initially assigning fitness values

to each member of the bacteria population, ranking each member of the population

according to its respective fitness value, killing-off of the bottom-half of the ranked

population and finally duplicating each member of the top half of the population. The

GA modification alters this reproduction process by using the operators of crossover

and mutation to produce a new population, rather than merely duplicating the top-

half of the ranked bacterial population.

The bacterial population is ranked according to their fitness values of each bacterium.

The fitness value is derived by considering only a single value, which corresponds

to the best (minimum) nutrient concentration value the bacterium experienced all

through the chemotactic process. The lower the fitness value of the bacterium, the

better its rank and vice versa. Having achieved a ranked bacterial population, a

number of highly ranking bacterium are passed unaltered to the new population of

bacteria. The remaining members of the new population are obtained by applying the

functions of crossover and mutation randomly on the remaining bacteria within the

ranked population. The modified approach to reproduction enables a better chance

of convergence of the bacterial population to the positions that correspond to the

best structure and parameters for the controller being designed. At the same time,

the mutation function enables the algorithm to search wider areas within the sample

space thus enhancing the global nature of the search procedure.

3.5 Conclusion

The chapter presents a detailed description of the structure and implementation of

the particular evolutionary algorithms employed during the research project. The

algorithms investigated are the popular Genetic Algorithms, the emerging Bacterial

Foraging and the novel Hybrid Bacterial Foraging Algorithms. The stochastic and

global nature of these algorithms ensure that during the search procedure, they are

likely to converge at the best possible solution. A unique advantage to employing
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the Genetic Algorithms in tackling optimisation problems is it has good global search

capabilities. It spends more of its time searching widely across the sample space

but it is less inclined to performing localised searches. This could be a disadvantage

especially when the best possible solutions can be found within a localised area.

The Bacterial Foraging Optimisation Algorithm, on the other hand, is more focused

in searching locally. Although it does search globally, by its nature, it does so less

frequently and through the aid of elimination and dispersal events. The Hybrid Bacte-

rial Foraging Algorithm combines the specific benefits of both the Genetic Algorithms

and the Bacterial Foraging Algorithm, implementing both local and global search of

the sample space of possible solutions. In general, the nature of these algorithms

ensures that once the process begins, there is no need for any user interaction, imply-

ing reduced amounts of human time allocated to control design. This makes it very

viable commercially. Also, given the requirements for their implementation, these al-

gorithms can be adapted for any optimisation problem and can lend itself to myriads

of applications in control and engineering in general.



Chapter 4

Experimental System Description

4.1 Introduction

In order to test the efficiency and effectiveness of the Evolutionary Algorithms, whose

general implementation is described in chapter 2, in designing robust control systems,

the system prototype employed was a variable speed drive that operates under variable

mechanical loads. In this chapter, the ultimate aim is to provide a concise and detailed

description of the Experimental system that has been employed for the testing of the

Evolutionary Algorithms during the research project. To achieve this objective, it is

necessary to:

1. Describe, in a generic fashion, the variable speed drive system employed for the

research work. This involves characterising the electric motor used, the nature

of the converters employed and the closed loop control systems employed for

the motor drive control.

2. Provide details on how the mechanical loads, which are a necessary condition

for the optimisation, have been incorporated within the experimental system.

3. Describe how the experimental system has been specifically implemented to

69
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meet the requirements of the research project. This involves describing each

component of the experimental system and demonstrating how they come to-

gether to yield the overall system.

4.2 Variable Speed Drive System

The detailed schematic of the system employed is shown in figure 4.1. The experi-

mental system mainly comprises a variable speed drive system that controls a variable

mechanical load.

DCV
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Figure 4.1: Experimental System

The variable speed drive system employed essentially consists of a cascade control sys-

tem that has an inner (current), outer (speed) control loop, a power conversion stage

and a permanent-magnet DC motor. The system’s power conversion stage employs

a DC-to-DC converter based on a Junction Field Effect Transistor (JFET ) H-bridge
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configuration with a Pulse Width Modulation (PWM) scheme which switches at

20kHz and has a nominal current of 3A. Integrated within the DC-to-DC converter

is an analogue PID current controller that is employed in the implementation of the

inner (current) loop.

The speed control of the electric motor is performed by an outer speed loop im-

plemented as a digital control system. The electric motor employed is a brushed

Permanent-Magnet DC servomotor. The selected drive was the preferred choice be-

cause of the ease with which it could be controlled and this facilitated the implemen-

tation of the experimental system and the overall optimisation procedure. The speed

controller employed in the outer control loop forms the subject of the optimisation

procedure and its nature is fully characterised in section 5.4.
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Figure 4.2: DC motor equivalent circuit

The equivalent circuit that describes the electrical dynamics of the DC motor can be

represented in figure 4.2. The corresponding equation for the DC motor operation is

given in (4.1). Vdc represents the DC voltage across the terminals of the armature

of motor, La represents the inductance of the armature windings, Ra represents the

armature resistance, i represents the current flowing in the armature windings and

Eb denotes the back EMF generated as a result of the motor’s operation.
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Vdc = La

di

dt
+ iRa + Eb (4.1)

At the start of operation, a voltage, Vdc, is applied across the armature of the DC

motor. The current, i, that would flow initially through the armature windings will

be large, since it is only armature winding resistance, Ra and the impedance of its

inductance, La, that will be experienced. Such large currents could damage the

motor by affecting its brushes, commutator or windings. To reduce this high start-up

current, in large DC motors, starting resistors are placed in series with the armature.

The magnetic field produced by the current, i, will interact with the field produced

by the permanent magnet, resulting in torque production that would cause rotation

of the armature. As soon as the armature begins to rotate, following Faraday’s laws

of electromagnetic induction, an Electromagnetic Force (EMF ) is induced to stop

the motion of the armature through the magnetic field. The direction of the EMF

is opposite to that of the applied Voltage, Vdc, hence it is termed the Back EMF .

The effect of the Back EMF is that it reduces the overall current in the armature

windings as the speed of the armature/motor increases.

4.3 Variable Mechanical Load

The variable mechanical load forms the necessary conditions under which the speed

controller of the experimental system has been optimised. In order to deal with the

impracticality of having the different mechanical loads physically present for testing

the developed control algorithms, it was necessary to emulate the different mechanical

load dynamics. To help visualise the incorporation of such an emulator system into

the experimental system, it would be useful to represent the experimental system in

figure 4.1 as the simplified schematic in figure 4.3.

The Programmable Load Emulator System has been developed to accurately repro-

duce the dynamics of these different mechanical loads. Adopting such a system has
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Emulator System
ref refi i

Figure 4.3: Incorporation of Emulation System

provided the flexibility in harnessing different load conditions, which in turn provides

the means to exhaustively test the control algorithms as tools for robust control sys-

tem design. The concept behind its implementation and the results that verify its

effectiveness are presented in chapter 5. In the following section, the implementation

of the Experimental System will be described by fully characterising its constituents

components.

4.4 Experimental System Implementation

In order to meet the requirements of the experimental system prototype, it was nec-

essary to design a system that is able to experimentally emulate any mechanical load

and also to implement a variable speed drive system that controls these mechanical

loads. This has been achieved by suitably controlling twin motors coupled on the

same shaft, with the control system of one motor serving as the variable speed drive

system and the control system of the other motor providing the means to dynamically

emulate different mechanical loads.

The layout of the hardware design for the experimental system is shown in figure 4.4;

it shows the different parts and highlights how they come together to yield the overall

experimental system. The subsequent sections will give a description of the different

parts highlighted in figure 4.4.
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Figure 4.4: Overall layout of experimental rig.

4.4.1 The Motors

The motors used on the test rig are the DCM 2B 30/03 A2 Control Technique

brushed permanent-magnet Matador DC servomotors. The parameters of the motor

at rated conditions are given in table 4.1.

The two motors are coupled together along their shafts. The coupling used are pro-

duced by the Ruland Manufacturing company. The particular coupling used for the

servo application is the oldham coupling. It is a three piece coupling comprising two

aluminium hubs and a centre piece. This centre piece, which can be metallic or made

of plastic, serves as the torque transmitting material. For the purpose of the research

project, it has been selected as a plastic material. This is because it provides electrical
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Stall Torque 0.32 Nm

Stall Current 4.6A

Maximum Peak Current 23 A

Rotor Inductance 1.34 mH

Rotor Resistance 0.85 Ω

Volt Constant 7.3 V/krpm

Rotor Inertia 0.0000324 kgm2

Table 4.1: DC motor parameters at rated conditions

isolation and it can act as as a mechanical fuse - when the plastic centre piece breaks,

it breaks cleanly and prevents the transmission of power, thus preventing possible

damage to more expensive machine components.

The unique design of the coupling enables it to operate with zero backlash, which

means no misalignment between the two motors [53]. This implies that the coupling

can bring about an excellent link between the two motors, M1 and M2 in figure

4.4.. This feature is particularly important in the research project for the emulation

strategy adopted.

Information about the speed of the motors is obtained from the tacho-generator signal.

The signal is used in monitoring the state of experimental system. Table 4.2, which

summarises the specifications of the tachogenerator, has been provided by Control

Techniques, the manufacturers of the DC drives.

4.4.2 The Power Conversion Stage

The power conversion stage employed in the experimental setup is the Control Tech-

niques DCD 60×10/20 mini maestro. It consists of a DC-to-DC converter and an

analogue current controller based on a MOSFET H-bridge configuration switching at

20kHz with nominal current of 3A. The permanent magnet brushed DC servo-motors

are particularly suited to these power converter interfaces in delivering powerful and
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voltage constant 0.01 V/rpm

peak to peak ripple 1.6 %

rms ripple 0.7 %

linearity error 0.1 %

voltage tolerance ±5.0 %

voltage variation -0.02 % per ◦C

nr. of comm. segments 25

nr. of poles 4

Table 4.2: Tachogenerator specification

accurate motor control.

The converters can be powered from DC supply with output voltage of between 24V

to 72V. It can also be powered from a rectifier with DC-link voltage of between 20V to

80V. The maximum allowable ripple on this voltage is 2V peak-to-peak. A DC supply

of 60V has been selected for the purpose of this research work and for a simplified

configuration since the aim of this research is focused on control system design.

The mini maestro units provide the options for analogue speed and current con-

trol. Only the analogue current control provided is used for the research project.

The built-in current controller uses a proportional plus integral and derivative (PID)

controller. The 20kHz switching frequency of PWM within the current loop, which

employs Junction Field Effect Transistors (JFET), ensures fairly silent operation of

the drives. The analogue speed controller is bypassed and instead, a digital controller

is used, whose software implementation allows the GA routine to interact with it.

The schematic of the converter is shown in Appendix A.3

4.4.3 The xPC target System

The xPC target system is a high performance environment that consists of a host and

target PC connected together. It enables the connection of Simulink and State flow
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models to physical systems and the execution of these model applications in real-time

on a PC-compatible software. The host-target connection is achieved using either a

RS-232 or TCP/IP protocol (direct, LAN or ethernet). The TCP/IP cable connection

is preferred because it is the faster of the two options. It provides data rates of up

to 100Mbit/sec over any distance [54]. In the following sections, the functions of the

Host and the Target PC will be described.

4.4.3.1 The Host PC

The host PC is used for control and monitoring of the downloaded target PC appli-

cations. It provides the environment for the execution of real-time applications using

the xPC target toolbox of MATLAB-Simulink. MATLAB is a high-level technical

computing language. It provides a suitable environment for the development of al-

gorithms, visualising and analysing data. Simulink is a platform for multi-domain

simulation and model-based design of dynamic systems.

It is a requirement that the host-PC runs MATLAB, Simulink, Real-Time Workshop,

xPC target and a C-compiler as the development environment for the running of

real-time applications. Applications are designed separately on MATLAB, using its

command-line interface - the m-files, and Simulink. The applications implemented

within Simulink are compiled into C-code and downloaded onto the target PC, via

the communication link between the two, where it is processed. The command-line

interface of MATLAB is then used in passing commands to the target PC to control

the real-time functioning of the downloaded application.

The optimisation algorithms, the digital controller and the closed loop programmable

emulation system are implemented on the Host PC. The optimisation algorithms

are programmed in the m-files of MATLAB. Both the digital controller, which is

implemented in the difference equations format, and the closed loop programmable

emulation system are designed in Simulink. By using the C compiler on the Host PC,

the Simulink diagrams can be converted to C-code, which aiss data processing.
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4.4.3.2 The Target PC

The target PC processes the information downloaded from the host PC and is capable

of implementing three particular functions. These are:

1. the target application control

2. the parameter tuning

3. the signal (data) acquisition function

The classification of the functions of the target PC characterises the commands di-

rected from the host PC in a similar fashion. The target application control function

is essentially used for downloading the target applications onto the target PC from

the host PC, start and stop execution, change the stop and sample time and detect

CPU overloads.

The parameter tuning function enables changing the model parameters on the target

PC. This is achieved by using the command-line interface to alter the model param-

eters, either before or during execution of the application, after downloading it to

the target PC. The xPC target kernel running on the target-PC enables the signal

logging in order to acquire signals throughout the execution of an application. Data

is stored in real time in Random Access Memory (RAM) or in the file system of the

target system during the signal acquisition mode. On completion of the execution

phase, the signals obtained can be analysed and deductions can be made accordingly.

4.4.4 The Interface Board

The interface board used in the experimental rig is the National Instruments PCI-

MIO-16XE-10. This is the heart of the experimental system. It is an I/O board

with 16 single or 8 differential analog input (A/D) channels (16-bit) with a maximum
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sample rate of 100 kHz, 2 analogue output (D/A) channels (16-bit), 8 digital input

and output lines and two counter/timers (24-bit) with a maximum source clock rate

of 20MHz. The I/O board is housed within the target PC.

By means the PCI-MIO-16XE-10 board, the digital signals created within the target

PC are converted to analogue signals and, after conditioning, the generated analogue

signals are transferred to the power conversion stage. These analogue conditioned

signals serve as the reference of the current loop within the converters for the motors,

M1 and M2. The conditioned analogue tacho-generator signal, which encodes the

speed of the motors, are converted to digital signals by the PCI-MIO-16XE-10 board.

These digital signals are processed on the target PC and transferred to the host PC

where they are stored and analysed.

4.4.5 The Signal Conditioning Circuit

The purpose of conditioning is to ensure that all the transmitted signals reach their

destinations with minimal distortions and the amplitudes of the input signals to

the circuit devices are within the allowable range. It is necessary to condition the

tacho-generator signal. This conditioned signal serves as the input to the PCI-MIO-

16XE-10 board. It is also necessary to condition the output voltage signals from

the PCI-MIO-16XE-10 board. The conditioned output PCI-MIO-16XE-10 signals

serve as the reference for the analogue current control loops, which is situated in the

converters on-board control. Figure 4.5 is the circuit used to condition the tacho-

generator signal. It comprises the Potential Divider, Buffer, Active Low-pass Filter

and Voltage Limiter

4.4.5.1 Potential Divider

The potential divider is to step-down the tacho-generator signal. It also ensures that

the inputs to the buffer are kept within the specified allowable range.
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Figure 4.5: Signal Conditioning Circuit

4.4.5.2 Buffer

The buffer is simply an operational amplifier with unity gain. It is also known as

a voltage-follower circuit. It is used to ensure the stepped down tacho-generator

signal is transmitted with minimal distortions from the input point (the output of

the potential divider circuit) to the input point (the Low-pass filter).

4.4.5.3 Active Low-pass filter

The second order low-pass filter is used to filter out noise. The Pulse Width Modulator

(PWM) of the DC-to-DC converter, switching at 20kHz was a significant noise source.

The cut-off frequency of the filter is approximately 200Hz. Shielded cables were also

used wherever possible to help reduce effects of noise on the signal quality.

4.4.5.4 Voltage Limiter

The voltage limiting circuit is achieved simply by using zener diodes rated at 10V. The

rated values of these diodes are chosen to coincide with the range of allowable input

signals to the PCI-MIO-16XE-10 board and the mini maestro drive for the motors.
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Figure 4.5 shows the arrangement of these zener diodes that ensures that signals

with amplitudes greater than 10V are clamped at 10V. The circuit used to condition

the output PCI-MIO-16XE-10 signals consists of the buffer (the signals are buffered

first) and the voltage limiting circuit. The potential divider is excluded because

the maximum allowable signal from the output of the PCI-MIO-16XE-10 board has

amplitude of 10V. This has the same magnitude as the maximum allowable input

to the drives of the motors. Both the drive and the PCI-MIO-16XE-10 board have

low-pass filter incorporated to adequately remove noise.

4.5 Conclusion

In this chapter , the experimental system, which is employed in testing the effective-

ness of the developed robust control system design techniques, has been described.

The system essentially comprises a variable speed drive that is subjected to variable

mechanical load conditions. In fully characterising the developed prototype system,

it was necessary to:

1. Provide detailed insight of variable speed drive employed. This has been

achieved by providing a description of the drive’s inner current and the outer

speed control systems and the DC Permanent-magnet motor that is employed

within the electric drive system.

2. Elucidate the manner by which the variable mechanical loads are implemented

and also highlight how the programmable load emulator system, which is used in

accurately reproducing the different mechanical load dynamics, is incorporated

into the experimental system prototype.

Given the impracticality of having different mechanical loads within the labs to test

the developed algorithms, it was necessary to develop a programmable system capable

of emulating these different loads and which was also incorporated within the exper-

imental system. As a result, the hardware design of the Experimental System was
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arranged in the manner described in this chapter to ensure adequate representation

of the variable speed drive prototype and also include the means by which to subject

the drive to accurately reproduced dynamics of different mechanical loads within the

experimental system. The concept for the implementation of the programmable me-

chanical emulator system and how it is fully incorporated within the experimental

system is described in chapter 5.



Chapter 5

Mechanical Emulator System

5.1 Introduction

There have been considerable research activities in the field of nonlinear, adaptive and

robust control methods for electrical servo drives. For the purpose of validating the

control system effectiveness under different operative conditions, linear, nonlinear and

time-varying mechanical loads are usually required. It is not a practical option having

these different loads present within the laboratory; however dynamically emulating

these mechanical loads using a dynamometer is a viable alternative [55]. For this

reason, an emulation strategy has been employed to successfully develop a viable test

bed to investigate the performance of evolutionary algorithms for automated control

system design.

Torque controlled load dynamometers are commonly used in engine test beds or the

testing of electrical machines. For such applications, the drives are usually tested un-

der steady state or slowly changing conditions. For applications that require testing

with loads having faster dynamics, simulated load emulation under open-loop condi-

tions has been adopted i.e. the emulated load is not part of a closed loop speed or

position control system [55], [56], [57]. In order to test variable speed drives, such

83
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tests might be insufficient because dynamic or non-linear effects in some loads can

be dominant and these dynamometers do not meet the requirements for investigating

the closed-loop dynamic behaviour of the drives and the motion-control techniques.

Therefore, it is essential that dynamometers, for the testing of drives, should be able

to produce dynamic load effects [58], [59].

More recently, dynamometers that can imitate practical load dynamics satisfactorily

by using the inverse mechanical-dynamics (IMD) principle have been reported in [56],

[57]. Using the IMD principle, the shaft speed (or position) is measured and used to

derive the torque for the dynamometer to follow the desired dynamics. The method

is effective only in the continuous systems where the sampling effects are not consid-

ered. In the digital systems, the sampling effects introduce noise, which can cause

system instability under certain conditions. Stabilising filters are often introduced

to counteract the problem but the introduction of such filters changes the open-loop

pole-zero structure and this in turn causes the closed loop characteristics of the em-

ulation strategy to differ from that of the desired load dynamics. Although exact

dynamic matching of the emulated load and the desired load was not obtained, the

target of achieving an acceptable time-response matching for an open-loop emulation

was reached [55], [60].

In this chapter, the dynamometer control strategy employed during the course of the

project is described. The results obtained, using the experimental emulation strategy,

are provided and the simulation results are shown alongside for comparison. The

dynamometer control strategy enables the accurate dynamic emulation of linear and

nonlinear load models inside the speed-control loops. The strategy, which uses forward

dynamics, preserves the open-loop pole-zero structure of the desired load dynamics

and is suitable for discrete-time implementations. A similar emulation strategy has

been employed in [55], [58], [60], [61]. The dynamometer control strategy provides the

means with which mechanical load parameters (such as inertia and friction) can either

be preprogrammed or varied with speed or position. In addition to drives/engine

testing, another useful application of the mechanical load emulation is to provide

off-site testing of drive converters which handle real industrial applications.
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5.2 Dynamic Emulation of Mechanical Loads

The purpose of emulation is to accurately reproduce the dynamic response of a me-

chanical load for a given input signal. For the research project, this is achieved

experimentally for both a stiff and flexible shaft mechanical load. In order to explain

the concept of emulation, it would be useful to initially imagine two electric motors

referred to as systems A and B in figure 5.1. System A is the subject of the emulation

and System B would be used to reproduce the exact dynamic response of System A

to an input Electric Torque, Te. System A is chosen to have Inertia, JM which is

greater than the inertia, JL of system B, Both systems are characterised by the same

friction, B.
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Figure 5.1: Illustration of Emulation

Considering that both systems start from rest, for the same electrical torque input,

Te to system A and system B, the acceleration, α1 produced on system A would be



5.2. DYNAMIC EMULATION OF MECHANICAL LOADS 86

smaller than the acceleration, α2 of system B. In order to make system B move with

the same acceleration, α1 as system A for the same torque input, an opposing torque,

TL to the electric torque, Te must also be applied to system B; the magnitude of TL

must be such that the resultant torque, Te - TL must now produce an acceleration on

system B, which is the same as that produced by Te on system A. The task with the

emulation strategy has to deal with obtaining the required dynamics of the opposing

torque, TL. The solution to the problem is achieved by employing the described

emulation strategy.

The mechanical dynamics of an electrical machine can be given by

Te = J
dω

dt
+ Bω (5.1)

where Te is the electrical driving torque, J is the moment of inertia, B is the vis-

cous friction coefficient and ω is the angular speed. The open-loop transfer function

(OLTF) relating speed and electrical torque is:

ω

Te

=
1

Js + B
(5.2)

In this chapter, the objective is to control the load machine such that the relation

between the shaft angular speed, ω and the electrical driving machine torque, Te will

be equivalent to the mechanical load model to be emulated, Gem i.e.

ω

Te

= Gem (5.3)

For the cases considered during the research, the desired relations to successfully

emulate the stiff-shaft and flexible-shaft mechanical load models are given in equations

(5.11) and (5.21), respectively.
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5.3 Implementation of the Emulation Strategy

The emulation system employs a Permanent Magnet DC motor, which is exactly the

same as the drive motor; the two motors are coupled on a common shaft. The drive

machine and its DC-to-DC converters provide the required test system for research

into the development of control algorithms. The load motor is controlled such that its

speed (or position) response of the coupled system (of M1 and M2) to a given drive

torque is equivalent to that of any desired linear or nonlinear mechanical load.
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Figure 5.2: Mechanical Load Emulator System

Figure 5.2 highlights the mechanical load emulation system incorporated within the

total closed loop speed control system. GC is the driving machine’s speed controller

(the optimisation algorithms under test are applied to optimise this controller and it

is fully characterised in section sec:EDCC), GID
and GIL

are the current loops of the

driving machine and dynamometer, respectively, Gem is the emulated load dynamics,
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GCOMP is the inverse of the speed-tracking loop (this is described in section 5.3.3),

Gt is the speed-tracking loop controller, Te and TL are the driving machine and

dynamometer electrical torque demands, respectively.
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Figure 5.3: Total closed loop speed-control with Load Emulation

Figure 5.3 represents the simulation model of the complete closed-loop control with

load emulation implemented within MATLAB/Simulink. G is the real total dynamics

of the driving and load machines, ωref is the ideal speed demand, ω is the real shaft

speed, Gh is the D/A converter and Ts is the sampling time used in the A/D converter.

In the emulation strategy highlighted in figure 5.2, the electrical torque input, Te

is initially applied to the mechanical load, Gem. The speed dynamics obtained is

compensated by GCOMP for the effects of the speed-tracking loop; the compensated

speed dynamics then serve as the reference for the this loop. The real shaft speed,

ω is compared with the compensated speed and the error is fed through a controller

Gt to derive the electrical torque, TL, for the load machine. The structure of the

programmable load emulator system is such that there are two significant control

loops: The first focuses on controlling the speed response of the drive motor, M1



5.3. IMPLEMENTATION OF THE EMULATION STRATEGY 89

while the second control loop controls that of the load motor, M2. The following

sections will discuss in detail the control of the drive and load motor.

5.3.1 Control of the Drive Motor

For successful emulation, the controller, GC of the drive motor, M1 is required in

deriving the electrical torque, Te. The electrical torque, Te, (or its associated current,

Ie) serves as the input to the mechanical load emulation system. To obtain the

required torque input, Te, the controller, GC is employed in controlling the speed of

the emulated load, Gem such that it follows the speed demand, ωref . The result is

that the desired electric torque signal, Te is produced by the controller, GC in the

process. Te is then harnessed as the electric torque input for the drive motor, M1

and within the mechanical load emulator system, where it is specifically employed in

deriving the dynamics of the compensating load torque, TL that serves as the input

to the load motor, M2. Naturally, if the total dynamics of the coupled system (of M1

and M2), G equalled that of the mechanical load, Gem, for the same input torque, Te,

both systems will move with the exact same speed dynamics, ω and no compensating

load torque, TL will be required; in this case, there would be no need for emulation.

The emulation strategy is especially required where the total dynamics of the coupled

system, G and the mechanical system, Gem differ; in this case, for the same initial

conditions, the drive torque, Te, will cause different speed dynamics on the systems.

Hence, in order to achieve a successful emulation strategy, it is necessary to derive

the compensating load torque, TL and the control of the load motor, M2 enables the

derivation of such a torque compensation; the process is subsequently described.

5.3.2 Control of the Load Motor

The control for the load motor is used in deriving a load torque, TL, which acts to

compensate the derived torque input, Te to the emulation system. In order to derive

the load torque, TL, it is necessary to
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1. Obtain the total torque dynamics,(Te+TL) required to force the coupled system,

G to move with the same speed dynamics of ω as the mechanical load, Gem.

2. Obtain the difference between the derived total torque dynamics, (Te+TL) and

electric torque input, Te; the result of this gives the required load torque, TL.

To achieve the first objective, a closed loop control system that has the coupled

system, G, as its plant is designed. The designed control system, known as the speed-

tracking loop, is shown in figure 5.4. The details of its design are described in section

5.3.3. The torque signal produced by its controller, Gt equals the sum of the electric

drive and load torque, (Te+TL) which should normally be used to drive the coupled

system, G at the desired speed dynamics, ω. In order to obtain the load torque,

TL, the difference between the sum of the torque dynamics, (Te+TL) and the derived

torque input, Te, obtained via the control of the drive motor, is calculated and this

results in the load torque, TL. The arrangement required to achieve this result can

be observed in the dynamometer control in figure 5.2.

5.3.3 Modelling the Speed-tracking Loop

Within the mechanical load emulator, in order for the emulated load, Gem to have

its dynamic properties truly represented (in the open and closed loop), the dynamics

of the speed tracking loop must be cancelled out entirely by the compensation term,

GCOMP . Figure 5.4 shows the open-loop system for the emulated load. In order to

ensure accurate emulation of the mechanical load model, GCOMP must be inverse of

the closed loop transfer function (CLTF) of the speed tracking loop, i.e.

GCOMP =
1 + GtGIL

G

GtGIL
G

(5.4)

From figure 5.4, a good model of the compensation term, GCOMP , which cancels

out the dynamics of the speed tracking loop, reduces the closed-loop control of the
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Figure 5.4: Open loop load emulation system

emulated load in figure 5.3 to the desired system in figure 5.5, which is simply a

cascaded closed-loop system that comprises an inner current loop, GID
and an outer

speed loop in which a speed controller, GC acts on an emulated mechanical load, Gem.
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Figure 5.5: Reduced Simulation System

In order to model the compensation term, GCOMP it is necessary to initially model

the speed tracking loop; this would involve modelling the inner current loop, GIL
and

the outer speed loop. The inverse of the speed tracking loop model will equal the

required compensation term.

5.3.3.1 Modelling the Current Loop

The modelling of the current loop involved identifying (hand-tuning) the current

(PID) controller parameters to ensure there was minimal error between the experi-

mental and simulation responses. The inductance and resistance of the motor wind-

ings were provided in data sheets from the manufacturer and as such, these values
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were kept fixed during the modelling process. The details of the identified parameters

are in table 5.1.

The results that show the successful modelling of the current loop are shown in figure

5.6. They show the responses produced by the experimental and simulation system

for current references of 1.3A, 2.7A, 5.0A and 7.2A: the experimental system response

is highlighted in green while the corresponding simulation results are shown in blue.
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Figure 5.6: Identification of Load Machine Current loop

The 2kHz ripple, which is ever present on the current waveforms shown in figure 5.6

can be attributed to the clamping of the rotor of the DC motor using a rotor bar, as
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a means to isolate the effects of the mechanical speed loop, during the current loop

identification process. The clamping of the rotor, although adequate for the modelling

process, was not perfect. As a result, slight oscillations of the rotor occurred despite

the clamping measures taken. The observed 2kHz current ripples are the ever-present

external disturbance that exist at the output of the current control loop due to the

imperfect clamping of the rotor during the modelling process.

5.3.3.2 Modelling the Mechanical Speed Loop

The total Inertia, J and Friction B for the coupled system comprising the drive and

load machine, G have been identified by employing a similar hand tuning approach

as in section 5.3.3.1. There was no need to identify the speed controller, Gt as this

was implemented digitally and used on both the experimental system, in obtaining

data, and the simulation system, in the tuning process for identifying the mechanical

load parameters.

Figure 5.7 shows the results of the comparison between the plant’s speed response

data at two different speed references and the corresponding simulation data obtained

by adopting the identified lumped mechanical model for G. The results highlight the

quality of the model obtained for the parameters of the mechanical plant. Table 5.1

summarises the results of the system identification process; it shows the identified

parameters and their respective values.

The identified speed-tracking loop digital model is a proper discrete function with the

denominator being two orders (z2) greater than the numerator. This implies that the

GCOMP term, which is the inverse of the speed-tracking loop model, is an improper

Controller Parameters Mechanical Model

k a(rad/s) b(rad/s) c(rad/s) J(kgm2) B(Nms)

6 1000 1230 2150 0.00011 0.00035

Table 5.1: Identified System Parameters
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discrete function. In order to successfully implement its transfer function block within

Simulink, a factor of, z2 is added to the denominator of the GCOMP term. The result

is both the numerator and denominator become equal. The extra delays introduced

in the denominator are compensated for by introducing a factor z to the model of the

emulated load, Gem and the model of the drive motor current control loop, GID
. As a

result, there would be two advance terms which will cancel the two delays introduced

in the compensation term, GCOMP .

5.4 Electronic Drive Controller Characteristics

The very nature of the optimisation process demanded that the controller, GC to

be optimised was implemented in the digital z − domain through a microprocessor.

The reason is the ’nature’ of the optimisation process is such that both the structure

and parameters of the digital controller are simultaneously and regularly updated in

a bid to discover a best possible robust controller for the closed loop system under

consideration. The digital controller implementation provides a suitable option for

regularly making updates on both the structure and parameters; it forms the focus of

the automated optimisation process, which is made possible through the application

of the evolutionary algorithms. The design of the digital controller is implemented

within MATLAB/Simulink; its inherent characteristics, which enable the simultane-

ous optimisation of both its structure and parameters will form the subject of the

subsequent sections. The description will focus on its structure, parameter settings

and the anti-windup scheme adopted.

5.4.1 Controller Structure

The structure of the digital controller distinctly incorporates a Proportional plus In-

tegral (PI), a real pole and zero, and a complex pole and zero pair. The structures

made possible for selection by virtue of the controller design are the Proportional plus
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Integral (PI), PI plus Lead/Lag (PI + real zero/pole), Third order (PI + complex ze-

ros/poles) and a Fourth order controller (PI + real zero/pole + complex zeros/poles)

structure. The different controller structures are selected based on the values of the

flags, F0 and F1. These flags are encoded within the individuals (possible solutions).

The combination of the flags and the resulting controller structure selected is sum-

marised in table 5.2.

All the controller structures include the PI; this ensures that for any randomly chosen

controller, there is no steady state error between the step demand and output speed

of the control system. Although more options can be made regarding controller

structure, the need to ensure zero steady state error makes the incorporation of the

PI necessary and thus reduces the options on controller structures evaluated. Figure

5.8(a) gives the basic layout of the digital controller employed: it shows the possible

structures within the digital controller, which depend on the different flag settings.

The simulink schematic of the digital controller is shown in Appendix A.1

5.4.2 Controller Anti-windup Scheme

A necessary part of the controller structure is the integrator anti-windup mechanism.

Every system requires a drive (actuator) signal to force it to do as demanded. Within

a feedback control system, the controller provides the actuation signal to force the

system to act accordingly. There exists a maximum actuation signal for every real

system and, when the signal reaches this maximum, the controller, in effect, becomes

F1 F0 Structure Parameters

0 0 PI k, A

0 1 PI + real zero/pole k, A, B, C

1 0 PI + complex zeros/poles k, A, D, E, F , G

1 1 PI + real zero/pole + complex zeros/poles k, A, B, C, D, E, F , G

Table 5.2: Controller structure and corresponding parameters
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disconnected from the system it attempts to control. This is because the output

produced by the controller (after it reaches the maximum) has no further effect on the

actuation of the system it is supposed to control. The effect of this becomes especially

significant in control design with the incorporation of integrators in controllers of

feedback systems.

The controller, with an integrator, always attempts to cancel out errors eventually

when the system reaches steady state. To achieve this, the error (the difference

between the demand and output of the control system) is fed into the controller and

its integrator sums up the error over time and outputs an actuating signal proportional

sum of the error over time, to affect the motion of the system under consideration. If

the actuation signal of the system reaches its saturation (maximum) limit, any further

signal produced by the controller is of no consequence on the system’s response.

There is the possibility of errors existing when the system’s actuation input saturates.

Due to the presence of these errors, the integrator continues production of actuating

signals proportional to the existing errors. If the actuation input for the system to

be controlled remains in saturation for long periods, the integrator would eventually

output very high values because the error is not being reduced as the system fails

to respond according, given it is in saturation. As a result these high controller

outputs, the integrator is said to (wind-up). Once, the actuation signal reduces from

the maximum, the controller becomes reconnected to the system; but it could take an

awfully long period for the integrator to readjust its output or (wind-down) to give

that required output to achieve the desired system response. From the description,

to ensure accurate and efficient control, it is necessary to stop the integrator from

integrating to very high error values as avoiding this improves the responsiveness of

the system by reducing the wind-down time for the integrator. The approach taken

is to limit the output of the integrator to a maximum value, which corresponds to the

maximum actuation signal for the system to be controlled. This ensures that it never

needs to wind-down from unnecessarily high values. The incorporation of the anti-

windup scheme within the digital controller is shown in figure 5.8(b). It represents

the integrator’s action in a difference equation format and it shows the actuation
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limit placed within the loop, which bounds the output of the integrator. Its value

is set to be the maximum and minimum actuation signals for the mechanical load

system which the controller acts on. To place it context, for the research project, the

actuation limits corresponds to the current/torque inputs to electric drive system.

5.4.3 Controller Parameters

The parameters to be optimised are the gain, poles and zeros of the digital controllers

and the flags that define the structure of the digital controller. There is the need

to specify the limits for each of the parameters in order to guide the optimisation

algorithms in their search procedure. The limits are defined such that the position of

each pole and zero lie within the unit circle. This is a necessary precaution to ensure

that each of the randomly selected poles or zeros have a stable response. Table 5.3

shows the limits of each pole and zero parameters optimised by the algorithms. The

limits also ensure that the values for each flag is actually implemented as a binary

number. The number of parameters to be optimised for any one digital controller

selected randomly would vary from a minimum of four, for a PI controller (and its

flags), to a maximum of ten parameters for a fourth order controller.

5.5 Mechanical Load

The mechanical load emulator has been employed to emulate particular load dynamics

that represent typical industrial mechanical loads. These emulated loads serve as the

operating conditions for controller optimisation and as such the design process will

Structure PI Pole & Zero Complex Pole & Zero pair

Parameters k A B C D E F G

Range [0, 2] [-1, 1] [-1, 1] [-1, 1] [-2, 2] [-1, 1] [-2, 2] [-1, 1]

Table 5.3: Range of Controller Parameters
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lend itself well under actual industrial conditions. The two mechanical loads consid-

ered for the purpose of investigating the effectiveness of the optimisation algorithms

in designing robust control systems for industrial electric drives are: (1) Stiff-shaft

mechanical load and (2) Flexible-shaft mechanical load. The mechanical loads in-

vestigated in the research project are interesting because they are quite commonly

found in different industrial applications [60]. These mechanical loads are synony-

mous with the loads experienced by industrial drives in operating lifts, hoists, fans,

etc. They can also be used to represent the load dynamics experienced by car tyres

under different load conditions [62]. The section provides a detailed description of

the mechanical loads that are investigated during the research project.

5.5.1 Stiff-shaft mechanical load

The mechanical load system simply comprises a drive motor and a load motor coupled

together by means of a stiff shaft. The drive motor has its characteristic inertia, JM

and friction, BM . The load motor, which is connected to the drive motor, has inertia,

JL and friction BL. The mechanical load system can be represented as in figure 5.9.

The transfer function of the stiff-shaft mechanical load, given as (5.11), is derived by

initially considering the equations of the two motors separately and then combining

the individual equations to yield the overall transfer function. A useful assumption

made in the derivation of the transfer function of the linear mechanical load is (5.8).

The assumption is justified because the motors are connected using a stiff shaft hence

there is negligible backlash. As a result, the speed of the drive motor can be assumed

to be exactly equal to the load motor speed. The experimental implementation of

the mechanical load within the lab is achieved using the programmable load emulator

described in chapter 5.3. The bandwidth limitations of the programmable load emu-

lator and the maximum load torque of the drive motor permit only a certain range

of mechanical loads to be emulated [58], [60]: the total inertia, Jem of the mechanical

load is chosen to vary between the minimum possible value of J and a maximum value

of 5J . A similar variation pattern is selected for the total friction of the system, Bem
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with a minimum value of B and a maximum value of 5B. The minimum values of

the total inertia, Jem and friction, Bem correspond to the total inertia, 0.00013kgm2

and total friction, 0.00052Nms of the mechanical drive train used for the emulation.

T
L

J
L

T
e J

M B
L

B
M

,,

LM

Figure 5.9: Stiff-shaft mechanical load

TL(s) = JLsωL(s) + BLωL(s) (5.5)

Te(s) = JMsωM(s) + BMωM(s) + TL(s) (5.6)

Te(s) = JMsωM(s) + BMωM(s) + JLsωL(s) + BLωL(s) (5.7)

ωM(s) = ωL(s) (5.8)

Te(s) = (JM + JL)sωL(s) + (BM + BL)ωL(s) (5.9)

Jem = JM + JL

Bem = BM + BL (5.10)

Gem(s) =
ωL(s)

Te(s)
=

1

Jems + Bem

(5.11)

5.5.2 Flexible-shaft mechanical load

The flexible-shaft mechanical load simply comprises two motors, the drive and the

load motor connected together by a spring or flexible shaft. Within the mechanical

load model, the friction of the two motors have been neglected. The drive motor

has its inertia represented as JMem
and the load motor inertia is symbolised by JLem

.

the flexible transmission between the two motors has its characteristic damping co-

efficient, Dem and a spring constant, Kem. As a result of the flexible transmission
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between the drive and the load motor, there is a backlash present between the motors.

The flexible-shaft mechanical load can be represented as in figure 5.10.

T
e

T
L

J
LemMem

D

K

M L

J

em

em

Figure 5.10: Flexible-shaft mechanical load [60]

JMem
sωM = Te(s) − TL(s) (5.12)

TL(s) = JLem
sωL (5.13)

TL(s) = Dem(ωL − ωM) − Kem

(ωL

s
−

ωM

s

)

(5.14)

ωL(s)

ωM(s)
=

Dems

Kem

+ 1

JLem

Kem

s2 +
Dem

Kem

s + 1
(5.15)

Te(s) = JMem
sωM + JLem

sωL (5.16)

Te(s) = JMem
sωM + JLem

(

sωL

sωM

× sωM

)

(5.17)

Te(s) = JMem
sωM + JLem

(

Dems + Kem

JLem
s2 + Dems + Kem

× sωM

)

(5.18)

ωM(s)

Te(s)
=

JLem

Kem

s2 +
Dem

Kem

s + 1

s(JMem
+ JLem

)

(

JMem
JLem

(JMem
+ JLem

)Kem

s2 +
Dem

Kem

s + 1

) (5.19)

Gem(s) =
ωL(s)

Te(s)
=

ωL(s)

ωM(s)
×

ωM(s)

Te(s)
(5.20)

Gem(s) =

Dem

Kem

s + 1

s(JMem
+ JLem

)

(

JMem
JLem

(JMem
+ JLem

)Kem

s2 +
Dem

Kem

s + 1

) (5.21)

In a similar fashion as the stiff-shaft mechanical load and due to the bandwidth

limitations of the emulator, its inertia, JLem
has been chosen to vary between JL
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and 5JL. JL has the chosen value of 0.00007kgm2. The damping coefficient of the

spring, Dem has been selected to vary between D and 5D and its minimum value,

D has been selected as 0.1Nm/rad/s. The spring constant Kem has been chosen as

2.0Nm/rad and the speed backlash between the motors has been selected as 5rad/s.

These parameters of the flexible shaft mechanical system were also selected for the

purpose of visualising the effectiveness of the automated optimisation procedure when

compared with the hand-tuned design and through experimentation the selected value

was deemed suitable to demonstrate this.
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Figure 5.11: Bode Plots for Average Models of Mechanical Load

The transfer function of the nonlinear load with flexible shaft has been derived by

considering, separately, the transfer functions of the different parts of the mechanical

load system and then combining them to yield the its overall transfer function. The

steps to the derivation have been shown between equations (5.12) to (5.21). The

Schematic for the difference equation (5.21) is in Appendix A.2. It can be represented

in continuous domain as in figure 5.12. Its implementation combines equations (5.15)

and (5.19) and in between them exist a flexible shaft connection, which causes a

backlash, in terms of speed, between the motors. The bode plots for the average

models of the stiff and flexible shaft mechanical loads are shown in figure 5.11. Within

the stiff shaft load, Jem and Bem have values of 3J and 3B respectively while in the

flexible shaft load model, JLem
and Dem have values of 3JL and 3D respectively.
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Figure 5.12: Schematic of Flexible Shaft Mechanical Load
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5.6 Emulation of Mechanical Loads

The dynamometer control strategy has been used to emulate both a stiff and flexible

shaft mechanical load. The drive controller, GC used in the emulation strategy is

a PI controller designed via the root-locus method to give the best possible system

response. External load disturbances are considered in both cases within the control

of the mechanical load. The disturbance torque has magnitude of 0.15 Nm, which is

a third of the rated-torque of each DC motor employed in the emulation system.

The speed demand profiles used in demonstrating the emulation strategy last for 5s:

From 0s to 0.1s, a speed demand of 0rpm is requested; from 0.1s to 2s, there is a

speed demand of 0rpm to 1000rpm; finally, from 2s to 5s, a demand speed of 1000rpm

to 2000rpm is requested and a disturbance torque is introduced at 3.5s.

5.6.1 Emulation of the Stiff shaft Mechanical Load

The dynamics of the Stiff shaft mechanical load described in section 5.5.1 have been

accurately experimentally reproduced using the programmable load emulator. In

order to emulate the stiff-shaft mechanical load, its transfer function, described in

equation (5.11), is implemented as a difference equation, using the zero-order hold

approximation. The difference equation incorporates an advance term which cancels

one of the two delays introduced within the transfer function for the compensation

term, GCOMP . In accurately reproducing the dynamics of the stiff shaft mechan-

ical load, three different combinations of total inertia, Jem and total friction, Bem

have been considered to demonstrate the accuracy of the strategy for load emulation

harnessed:

• Case 1: Jem = J = 0.00013 kgm2; Bem = 5B = 0.00260 Nms

• Case 2: Jem = 3J = 0.00039 kgm2; Bem = 3B = 0.00156 Nms

• Case 3: Jem = 5J = 0.00065 kgm2; Bem = B = 0.00052 Nms
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The plots shown in the figures 5.13, 5.14 and 5.15 validate the emulation strategy.

They show the emulation achieved using the experimental set-up and compare the

results with the response obtained using the reduced simulation model in figure 5.5.

The plots show the emulation of the stiff shaft mechanical load at the three different

combinations of the total inertia and friction values and it also includes the load

disturbance applied at the output of the controller at time equals 3.5 seconds.

5.6.2 Emulation of Flexible Shaft Mechanical Load

The dynamics of the flexible shaft mechanical load described in section 5.5.1 have

also been accurately reproduced using the dynamometer control strategy described.

For the purpose of digitally implementing the flexible shaft load to be emulated,

its transfer function, given in equation (5.21), is discretised using the zero-order hold

approximation and implemented as a difference equation and in the form of a Simulink

schematic. The difference equation incorporates an advance term which cancels one

of the two delays introduced within the transfer function for the compensation term,

GCOMP .

In order to demonstrate the validity of the emulation strategy adopted, three com-

bination of load motor moment of inertia, JLem
and damping coefficient, Dem have

been tested. In each of the following cases, the drive motor inertia, JMem
is 0.00007

kgm2, the spring constant, Kem is 2.0 Nm/rad and there is a constant backlash of 5

rad/s. The cases considered are:

• Case 1: JLem
= JL = 0.00014 kgm2, Dem = 5D = 0.5 Nm/rad/s

• Case 2: JLem
= 3JL = 0.00042 kgm2, Dem = 3D = 0.3 Nm/rad/s

• Case 3: JLem
= 5JL = 0.00070 kgm2, Dem = D = 0.1 Nm/rad/s

Figures 5.16, 5.17 and 5.18 show the comparison between the results of the reduced

simulation model and those obtained from the experimental set-up . This further
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validates the emulation employed for the research project. Load disturbance are also

added to the outputs of the closed loop control system at time equals 3.5 seconds.

5.7 Limitations of the Emulation System

There are system limitations that restrict the characteristics of mechanical loads that

can be emulated using the dynamometer. The dynamometer torque response is one

of those factors [59], [60]. Another factor lies in the bandwidth of the active low-pass

filter used to reduce the noise from the speed signal produced by the tachogenerator.

For the experimental rig considered in this chapter, the torque bandwidth is fairly

modest and lies within 1000 - 1200 Hz, limiting the emulated mechanical dynamics to

frequencies up to 200 - 220 Hz. This estimate is based on the practical recommenda-

tion that, for the speed tracking loop, the bandwidth of the outer (speed) loop should

be five times less than the inner (current) loop [63]. The bandwidth of the active

low-pass filter designed is approximately 200 Hz and it coincides with the resulting

boundaries imposed by the limits of the torque dynamics.

During the emulation of any mechanical load, it is necessary that the output of

the speed tracking loop controller, Gt never goes into saturation. The compensation

would be invalid if this occurs. This is because the exact torque dynamics, required to

force the dynamic behaviour of the load machine to match with that of the mechanical

plant model being emulated, would be impossible to obtain. This is equivalent to

clipping off certain parts of the required controller dynamics. A point to note is that

the controller can have any structure; this includes a Proportional-plus-Differential

(PD), Proportional-plus-Integral (PI), lead or Proportional(P) controller. There is

also no need for an integrator to maintain zero error for the tracking loop since the

tracking loop itself is not subject to any disturbance input [58], [59], [61].

The minimum inertia that can be emulated is made equal to the total inertia of the

coupled system, which includes the inertias of the drive and load motors [58], [59], [61].

Emulating systems with inertias lower than this value could result in saturating the
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speed controller of the tracking loop and this would invalidate the emulation. Hence,

this saturation must be avoided. For this reason, the mechanical loads emulated

in the research project have parameter values that are always greater than the total

dynamics of the coupled (drive and load motor) system used in the emulation system.

The benefits of having the digital controller and the mechanical emulator system on

the same platform within the experimental set-up provides certain benefits. Some of

these benefits can be highlighted by considering the sampling time of the system. The

sampling time used within the experimental system is the same for both the digital

controllers and the mechanical emulator system. In the absence of such an integrated

platform, there may have been issues in matching the different sample times for

proper synchronisation of the two systems. Another benefit of the compact platform

can be highlighted in the distance that exists between the digital controllers and the

mechanical emulator system. As a result of the close proximity of the two systems,

there was no need for signal maintenance/boosting electronic circuits such as current

mirrors or configured amplifiers. The absence of same platform implementation for

the two systems may not necessarily limit the effectiveness of the employed emulation

strategy but it probably would have made its implementation more involving

5.8 Conclusion

This chapter has described a dynamometer control strategy for the dynamic emu-

lation of mechanical loads. The emulation strategy has been employed within the

research work for the particular emulation of the dynamics of a Stiff and Flexible-

shaft mechanical load. The strategy ensures that the (open and closed loop) dynamics

of the mechanical load models are preserved during the emulation. The emulation

strategy is based on a speed-tracking control with implicit feed-forward of its inverse

dynamics that provides compensation for the closed-loop tracking control dynamics

[55], [60].

The emulation strategy implemented provides a platform for the testing of different
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motor drive control strategies. The emulation system requires the driving machine

torque reference signal as an input variable. This is not a restriction as the aim is

to provide a test-bed for motion control strategies of drives. If a torque reference

signal is not available, then an electrical torque observer or estimator is required.

The experimental emulation facility allows the emulation of mechanical load models

with different plant-parameter values. The bandwidth of the emulation strategy is

limited by the inner current control loop of the load machine and the bandwidth of

the noise filter for the tachogenerator.

The described approach for emulation within the chapter incorporates the model of

the dynamometer current loop in its compensation term. In the cases considered

during the research project, the model of the dynamometer current control loop can

be justifiably neglected; simply assuming that it has a unity gain, would produce

similar results with the emulation strategy; the point being that there is not a serious

requirement to model accurately the current loop especially given it has much faster

dynamics than the speed loop.

In summary, the programmable load emulator system incorporates delays and ac-

curately modelled compensation terms which cancel out the dynamics of the speed

tracking loop. The cancellation ensures the mechanical load dynamics imposed by

the emulator truly represents the desired load in both steady state and transient con-

ditions. Having eliminated the speed tracking loop dynamics, the emulator imposes

the desired dynamics of the digital mechanical load on the motor drive controller. By

adopting this approach, it is possible to investigate the performance of different ro-

bust, adaptive and nonlinear optimisation algorithms on a true experimental system

under different mechanical load conditions.



Chapter 6

Robust Experimental Control

Design

6.1 Introduction

The chapter describes the Robust Experimental Control design method adopted to

achieve the objective of an automated design of robust speed control systems for

electronic drives. This method is one of the solutions that result from the application

of the automated design tool, EA, directly onto the experimental system. The other

method proposed in this work, based on a more theoretical approach, is described in

more detail in chapter 7. The experimental control design method is one that enables

the direct optimisation of the controller for the drive while it is subjected to accurate

dynamics of modelled operating (load) conditions. Although it is often tempting to

term this method an online optimisation process, there exists a difference between

the two approaches. Online optimisation means that the evolutionary algorithms

perform the robust design while the drive is running during normal work situation

(in a factory for example) without interrupting the production chain, or whatever

the drive has been placed to do. Although there exists differences between the two,

similar issues are involved in setting up the test beds for the implementation of both

116
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optimisation approaches.

There have been recent developments regarding the techniques devised for the de-

sign of robust control systems online/experimentally. Some of these techniques are

reported in [12], [16], [41] and [65]. The experimental control design method is im-

plemented through direct trial-and-error experimentation on the actual system. The

benefits of the approach employed over traditional model-based techniques include:

1. The high fidelity in the quality of the final controller solution given the man-

ner with which the method is implemented. With regards to model-based ap-

proaches, the fidelity of the solution largely depends on the quality of the model.

Often these models may fail to account for non-linearities, noise etc within the

system, thus placing limitations on the quality of the final solution achieved via

this approach.

2. The non-requirement for detailed analysis of the system to be optimised. Un-

der the model-based approach, modelling the system to be controlled involves

carrying a fairly detailed analysis to predict the behaviour of the system in re-

sponse to different inputs. The modelling process often requires some level of

expertise and it can also be incredibly time-consuming

3. The robustness in its application, i.e. it can be applied in a very similar manner

to many different systems without the need to entirely re-develop the approach.

This is a follow-on from the second point. The model-based approach demands

defining a a model for each of the different system types it is applied to.

Although the underlying concept is simple, the design and development of a system,

capable of automatically designing robust control systems through direct experimen-

tation on the actual system can be difficult. The difficulty stems from a number of

reasons, which include:

1. A means to prematurely stop the testing of badly performing controller solu-

tions. The premature halting process is achieved through the incorporation of
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specifically designed software logic circuits. The process serves as the safety

mechanism that prevents damage to the hardware.

2. A means to avoid interference between the testing of subsequent solutions. Such

a mechanism ensures that the outcome of the tests of any one solution is not

influenced by previously tested solutions. The method adopted within the re-

search project simply allocates a time period within which a controller solution

is tested and evaluated. The pre-allocated testing time prevents overlapping

between tests and their outcomes.

3. Often many experiments need to be performed and their outcome evaluated,

given the trial-and-error nature of the optimisation process. For this reason,

mechanisms that bring about convergence to an optimal solution within rela-

tively short periods are necessary for the successful application of the method.

The methods adopted to ensure convergence will be discussed.

This chapter deals with the description of an experimental process for the automated

design of robust digital controllers for variable speed DC drives. To this point, there

are only a few documented researches that have adopted such an automated exper-

imental robust control system design method [12], [16]. In a similar fashion to the

same general motivations of the mentioned literature, the process attempts to fully

exploit the potentials of evolutionary design by letting the search algorithm explore

alternative structures (controllers of different orders), and optimise the associated

parameters describing a linear anti-windup controller for an industrial drive. Also

during the search and optimisation procedure, the variable speed drives are subject

to certain operating conditions such as the emulated mechanical load dynamics of

typical industrial loads. The operating conditions are a necessary part of the op-

timisation process that ensure the controllers designed are robust and as such will

perform efficiently under the given operating condition.

The description of the experimental procedure involves highlighting the necessary

additions to the experimental system described in chapter 4 and then summarising

the entire experimental process. The automated experimental optimisation process
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is repetitive and involves several trial-and-error events which are somewhat similar.

To describe the adopted optimisation process, it would be sufficient to describe the

implementation of one trial-and-error event that occurs. Finally, experimental results

of the automated optimisation will be presented and analysed. Also, the simulations

results will be provided for the purpose of comparison.

6.2 Experimental Optimisation System

The detailed conceptual layout of the automated experimental optimisation system

can be suitably represented in the diagram of figure 6.1. The particular aim of the

research focuses on developing a unique and novel optimisation approach for design-

ing robust ’speed’ controllers for the electric drives. The actual physical hardware

for the experimental system is shown in figure 4.4; it consists of two identical 1.2kW

permanent magnet DC servomotors coupled along the same shaft. One serves as the

Driving motor and the other is the load motor with the possibility of emulating dif-

ferent kinds of mechanical load types. Both motors, for their power conversion stage,

employ a Control Technique DCD60*10/20, DC-to-DC converter and an analogue

current controller based on a MOSFET H-Bridge configuration switching at 20kHz

with nominal current of 3A. Both the control strategy and the mechanical load emula-

tion are programmed using xPC target toolbox in MATLAB/Simulink and interfaced

with the motors using the National Instrument PCI-MIO-16XE-10 high resolution

I/O board.

Figure 6.1 highlights the application of the evolutionary algorithms to the digital

speed controller, GC and also the incorporation of the logic protection circuit used in

prematurely stopping the testing of bad controller parameters within the experimental

system. Given the Evolutionary Algorithms enables automatic optimisation of the

controller and the load emulator enables the accurate reproduction of the variable

industrial load conditions, under which the controller is optimised, the experimental

optimisation set-up adequately incorporates the necessary systems to meet one of the
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Figure 6.1: Experimental system

main aims of the projects.

The function of the logic protection scheme implemented within MATLAB/Simulink

is ultimately to stop the premature testing of ’bad’ controllers. These controllers

produce responses that do not meet the specification of the desired output response.

It must be emphasised that the logic circuit does not stop the testing of all bad

controllers but only those that quite significantly detract from the desired response

or produce a response that could potentially be damaging to the physical hardware.

The implementation of the logic protection scheme can be can be summarised in the

following manner:

1. The logic protection scheme uses three signals of the experimental rig as its in-

puts: the speed signal, ω, produced by the tachogenerator, the current demand

signal, Ie produced by the digital speed controller and the current demand signal

produced by the speed-tracking controller, IL.

2. The logic circuit is simply a combination of logic conditions, defined around
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these three inputs, which predict bad controller responses.

3. The circuit prematurely stops the further testing of controllers that meet the

criteria for obviously bad controller responses and permits only the testing of

those controllers that do not trigger the preset conditions

Apart from the benefits of damage prevention to the physical hardware and reduc-

tion in the stress and fatigue suffered by the system during experimentation, thus

prolonging its lifespan, the incorporation of the logic protection scheme brings about

a peripheral benefit of time reduction for the optimisation process achieved through

the incorporation of the safety mechanism. The schematic that represents the func-

tioning of the protection scheme is shown in figure 6.2 and its actual implementation

within Simulink is in Appendix A.4.

LI

eI

Figure 6.2: Logic Protection Scheme

For every controller parameter directly tested on the experimental system, regarding

the functioning of the logic protection circuit in relation to speed responses, the
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resulting response of the mechanical load, ω is compared against a set of conditions

that define the bad speed responses. These conditions check that:

1. the speed response follows a zero speed demand accurately and within error

limits defined by the output of the tachogenerator.

2. the speed response does not exceed certain specified limits for minimum and

maximum speed.

In a similar fashion, the current demand, Ie produced by the drive controller, Gc is

compared against similar sets of conditions, which check that:

1. when a zero-speed demand is requested, an approximate zero-average current is

requested by the controller. The amplitudes of the voltage signal that represent

this zero-average current must be within set limits defined by the error of the

analogue-to-digital converter

2. the speed response, ω has a transient response that lasts for a specified time

period. This time period is specified using the response obtained when a PI

controller is employed for the same system.

3. the current demand by the controller is within the nominal value when the

transient response of the system has subsided.

The final input to the logic protection circuit is the current demand, IL of the speed-

tracking controller, Gt. This is essentially used to ensure that:

1. the emulation strategy is not invalidated by any controller randomly selected

by the EA during the optimisation process.

2. if IL reaches saturation at any point during testing, the evaluation process is

stopped given this implies such a controller invalidates the emulation process.
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If any one of the inputs to the logic protection circuit, derived from the controllers

under test, meet their respective criteria for bad responses, further testing is stopped

and the evolutionary algorithm moves along to test the next solution.

6.3 Automated Experimental Optimisation

The experimental optimisation process implemented provides the means to automati-

cally tune simultaneously both the structure and parameters of the digital controllers

while it is being subject to varying mechanical loads. The benefits of the approach is

there is no need to have any knowledge of the model of the mechanical load for which

the robust controllers are to be designed because the optimisation is implemented

directly on the system that includes the mechanical load. The unique feature of this

approach lies in its evaluation stage, which is critical for directly designing robust

control systems.

The general structure for the implementation of the different algorithms are described

in chapter 3. Each of the different algorithms adopt a similar evaluation stage. The

evaluation stage deserves particular mention because the manner by which it is im-

plemented in this chapter, defines the experimental method for robust control system

design. The purpose of the evaluation stage is to quantify the quality of each ran-

domly selected controller. These values are used by the evolutionary algorithms to

determine which controller gives the best performance. The evaluation stage tests

that each randomly selected controller performs well to the selected combinations of

parameter variations.

The objective function is adopted by the GA to for the purpose of evaluation while the

BF and HBF adopts the nutrient concentration function for evaluation of individual

solutions. The evaluation process is similar for the different algorithms and it is

implemented in three stages: assigning of controller its structure and parameters,

testing the defined controller and evaluating controller performance
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6.3.1 Assignment of Controller Structure and Parameters

Although this phase of the overall evaluation process takes the least amount of time,

its successful implementation is crucial to the accuracy of the results from the eval-

uation stage. If controller parameters are wrongly assigned, the the optimisation

would be driven in the wrong directions from the very beginning, resulting in bad

control solutions. Each individual within the population of solutions encodes data

that correspond to the structure and parameter of the digital controller under consid-

eration. For the evaluation process to begin, the controller must be assigned with its

structure and parameters by the values encoded by the individual under evaluation.

The assignment is done via the MATLAB m-file code. Within the coding sequence,

approximately 25ms is set aside for the successful implementation of the controller

definition stage. The controller definition process largely depends on the speed of the

computer’s processor; this implies that for more powerful processors, the process can

be implemented in a shorter time. The newly defined controller is then downloaded

onto the Simulink model for the digital controller.

6.3.2 Testing the Defined Controller

The digital controller, whose controller structure and parameter have been assigned,

is tested experimentally, using the setup in figure 6.1. The controller should ideally

be subjected to all the possible combinations of parameter variations for the stiff and

flexible shaft mechanical load. There are an infinite number of possible combinations;

hence, the controller is tested separately on nine combinations of parameter variations

for the these mechanical loads. These combinations, in each case, are suitable to cover

the range of parameter variations for these loads.

During testing, each controller is subjected to the same operating conditions that

include speed transients and load disturbance, as well as variations of the mechanical

load parameters. The profile of the speed transients and load disturbances can be

simply categorised in four phases: During Phase one, between the time period of 0
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ms to 100 ms, a speed of 0 rad/s is requested. This period is useful in immediately

weaning out obviously bad controllers from further testing; some bad controllers might

tend to produce accelerated responses when there is, in fact, no speed demanded.

Phase two lasts between the periods of 100 ms and 600 ms. During this period,

the experimental system is expected to rotate at approximately 105 rad/s. A speed

demand of 210 rad/s is requested in Phase three, between the periods of 600 ms and

1050 ms. Finally, in Phase four, coupled with the speed demand requested in Phase

three, a torque disturbance, approximately 0.15 Nm, is also imposed on the output of

the controller, between the periods of 1050 ms and 1500 ms. The real-time simulation

is performed within a time period of 1700 ms. This stage of the evaluation process

takes the longest and is implemented in real-time using the xPC target system; it has

no dependence on the power of the computer’s processor. The data obtained from

the real-time simulation phase are stored and used in the next stage, which involves

quantifying the quality of the performance of the different controllers.

6.3.3 Quantifying the Quality of Controllers’ Performance

The speed response produced by the tested controller is used to obtain the numeric

value that represents its performance. The performance value is achieved using the

Integration of the Absolute Error (IAE) (section 3.2.2) between the desired speed

and the actual speed response produced by the controller. Also incorporated within

this stage is a penalty factor on speed responses that have an overshoot of more

than 8%. Although this is not explicitly shown within the code, the conditional

statements, and the signals they act upon evaluate whether or not the controllers’

speed responses meet certain criteria. If they fail to meet the criteria, they penalised

by the addition of a really large value (in this case ’5000’) to their objective value.

Quantifying the controllers performance is implemented in a window of approximately

25 microseconds during the programme run; this period allocated also depends on

the power of the processor being harnessed. Defining the periods of the different

stages is necessary to ensure that the testing of a previous controller solution does

not affect the evaluation of current solution.
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It is also necessary to incorporate protection circuits that prematurely stop the testing

of badly performing individuals. The effects of such protection schemes are threefold;

first, it reduces the overall time for the experimental design of robust digital controller

by prematurely halting further testing of badly performing individuals as soon as they

are detected; second, it reduces the stress and fatigue experienced by the machine

during the experiments and third, it helps in preventing damage to the machine. Such

protection are also useful in the simulation particularly for the purpose of reducing

time for the overall optimisation process. Figure 6.3 summarises the evaluation stage

for the experimental process for the design of robust digital controllers.

6.4 Results

The results obtained by employing the experimental robust control design method

highlight the effectiveness of the proposed approach. The similarities between the

results obtained by the different evolutionary algorithms used in combination with

the proposed method show that the designed algorithms are effective in their search
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procedures. These similarities also provide more confidence in the truly global nature

of the obtained solutions; this suggests that the corresponding speed responses they

provide are the most efficient under the considered operating conditions. In the

following sections, the general speed profile of the results obtained will be explained

and the results of the controlled speed responses of the stiff and flexible shaft loads

in the presence of speed transients and load torque disturbance will be characterised.

6.4.1 Stiff Shaft Load Response

By employing the experimental control design, robust control systems for the stiff

shaft load have been designed using each of the three evolutionary algorithms. In

the subsequent paragraphs, a comparison between the speed responses produced by

the separately designed robust control systems will be provided. At this juncture, it

will be useful to explain the general profile of the speed response observed across the

results provided.

The general profile of the speed responses obtained from the designed robust con-

trol system can be explained in the following manner: The torque produced by the

controller, which is derived from the difference between the demand speed and the

actual speed of the mechanical load, forces the load to move until it reaches the de-

sired speed. On reaching the desired speed, there is no more torque produced, as

there is no more speed error. The result is the load moves with a constant velocity

equal to the desired speed. The resulting mechanical load speed response produced

can be reasonably characterised according to its rise time, settling time, overshoot,

disturbance rejection time and steady state output.

Rise time: Observed across the speed responses is the variations in the rise times

as a result changing the inertia of the mechanical loads. The responses of the GA

designed fourth order controller in figures 6.6, 6.7 and 6.8 have respective rise times of

71ms, 73ms and 85ms. The speed responses of the fourth order controller designed

by the BF is show in figures 6.12, 6.13 and 6.14; they have respective rise times of
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74.2ms, 72.2ms and 85.2ms. Similar responses have been obtained using the HBF .

The responses of the fourth order controller it designed are shown in figures 6.18, 6.19

and 6.20 and these have respective rise times of 80.2ms, 71ms and 83.8ms.

Settling time: For the observed responses in figures figures 6.6, 6.7 and 6.8 achieved

by employing the GA, the respective settling times are 130ms, 100ms and 135ms.

The controller designed by the BF has produced speed responses in figures 6.12,

6.13 and 6.14 with settling times of 114ms, 116ms and 200ms respectively.The HBF

algorithms has produced similar speed responses in figures 6.18, 6.19 and 6.20 with

the respective settling times of 159ms, 93ms and 171ms.

Overshoot: The GA fourth order controller produces a maximum overshoot of

1.23%, which is found in its response in figure 6.8. The BF controlled response in

figure 6.14 produces a maximum overshoot of 3.8%, which is slightly higher than

that of the GA. The HBF response has produces a maximum overshoot of similar

magnitude as its counterparts of 1.4% in figure 6.20

Disturbance Rejection: All the responses shown for each of the different evo-

lutionary algorithms reject disturbance quickly. The GA controller speed response

reject disturbance in less than 180ms, while the BF achieves total rejection of dis-

turbance in less than 150. The HBF is the fastest with disturbance rejection time

of less than 110ms.

Steady State: The effects of the total friction is observed in the steady state motion

of the stiff-shaft load. The larger the friction in the system, the greater the torque

demand required to achieve the demand speed because of the extra torque needed to

overcome friction. A natural outcome of doing work against friction is noise (and heat)

produced. The noise produced as a result of the greater friction is observed in the

steady state as slight oscillations around the steady state speed of the control systems.

The larger the load friction, the larger the observed steady state noise oscillations.

For the GA controller responses in figures 6.6, which has the largest value of friction,

the steady state response is its noisiest with maximum oscillation around the steady
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state value of 3%. In a similar manner, the BF optimisation algorithm produces

its noisiest signal in figure 6.12, with maximum steady-state oscillations of 1.1%.

The HBF control system response also follow the same trends producing its noisiest

response in figure 6.18 for the system with the largest friction value; its maximum

steady-state oscillation is 1.5%.

6.4.2 Flexible Shaft Load Response

Although the speed responses obtained with the flexible-shaft mechanical load, is

largely due to the same reasons as those for the stiff-shaft load closed loop system,

the effects of the spring and backlash within the system demands more reasons to

clarify the observed speed responses. The aim of the designed control systems is

ultimately to keep the speed of the load motor moving at a desired value. Like the

stiff-shaft load, the controller produces a torque derived from the error between the

desired speed and the actual speed of the load that acts on the mechanical load to

force it to rotate according to the demand speed.

0.58 0.59 0.6 0.61 0.62 0.63
100

102

104

106

108

110

112

114

116

118

time (seconds)

S
p

e
e
d

 (
ra

d
/s

)

Experiment

Simulation

Speed Demand requested
at time = 0.6s

Figure 6.4: Time-lag oscillations due to Backlash



6.4. RESULTS 130

Due to the presence of the spring and backlash, there exists a slight complication.

The issue is that the controller cannot directly influence the speed response of the

load. Indirect control is achieved by first causing the motion of the drive motor and

then the effect is transmitted to the load motor via the flexible shaft that connects

the two motors. As a result of backlash, there exists a time lag that exist between the

application of the torque on the drive motor and the load motor responding accord-

ingly. Figure 6.4 confirms the existence of the time lag both in the experimental and

its corresponding simulation results. During the lag phase, some speed oscillations are

observed on the speed response. These oscillations are due to the imperfect coupling

between the two permanent magnet DC motors employed within the experimental

system. Although these oscillations are captured within the simulation model to an

extent, they could not be perfectly modelled.

This time-lag period is largely dependent on the magnitude of the backlash present.

The damping, Dem and stiffness, Kem of the spring generally affect the speed oscil-

lations that can be experienced as torque is transmitted across it; the larger these

values, the more they represent a stiff-shaft and the less likely there would be oscilla-

tions observed in the spring, especially during motion in steady state. The effect (of

larger damping values) can be observed in the speed responses in figures 6.9, 6.10,

6.15, 6.16, 6.21 and 6.22

In order to explain the steady-state oscillations observed in 6.11, 6.17 and 6.23 after

the external disturbance (load) torque is applied, figure 6.5 will be considered. It is

worth mentioning that a possible reason for the slight discrepancy observed between

the experimental and simulation results in these figures could be due to the fact

that errors from the model derived at a lower frequency have become accentuated

due to the higher operating bandwidth of the automatically designed control system.

These modelling errors may have stemmed from the imperfect coupling between the

motors, the simple model for the current loop assumed or the trial-and-error approach

employed in tuning the DC motor parameters. The same explanations can be applied

to the similar results obtained in chapter 7. The variation of the torque input, Te,

drive motor speed, ωm, load motor speed, ωL and the speed difference, ωm - ωL,



6.4. RESULTS 131

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

T
o

rq
u

e
 (

N
m

)

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
200

205

210

215

220

S
p

e
e

d
 (

ra
d

/s
)

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
-10

-5

0

5

10

S
p

e
e

d
 (

ra
d

/s
)

eT LT

ref L m

m L

Figure 6.5: Close-up of control system variables

which serves as the input to the spring that causes backlash are shown in figure 6.5.

The observed motion can be considered in two phases - ’before’ the load disturbance

application and ’after’ the application of load disturbance.

Before the application of the load disturbance, which can be observed between

the period of 1s and 1.05s in figure 6.5, the system is in steady-state with the load

motor speed, ωL, following the desired reference. The drive motor speed, ωL, is also in

steady state and the difference between the load and drive motor speed is just under

5rad/s. The backlash caused by the spring within the flexible shaft load acts just like

a switch: (1) it is turned ’on’ when its input, ωm - ωL, exceeds 5rad/s which causes the

spring to produce a load torque, TL that acts on the load motor (2) it is turned ’off’

when its input goes below 5rad/s and the result is there is no load torque produced

by the spring. In summary, the backlash acts as a switch only allowing transmission

of torque through the spring once the backlash limits have been exceeded. In steady

state, the input to the spring, ωm - ωL, lie within its backlash limits; as a result, there

is no load torque and the load motor maintains its steady-state speed.

After the load disturbance is applied in figure 6.5 at 1.05s, the drive torque
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input, Te, suddenly decreases causing the drive motor speed, ωm, to decrease in a

similar manner. As a result of the sudden decrease in the drive motor speed, the

input to the spring, ωm - ωL, becomes greater than 5rad/s and the spring backlash

is turned ’on’. A few milliseconds after 1.05s, the transmission of load torque, TL to

the load motor begins suddenly, decreasing the load motor speed, ωL. The designed

control system senses the deviation of the load motor speed, ωL, from the desired

speed reference value, ωref and it attempts to correct the error by increasing the

torque input, Te to the flexible shaft mechanical load. The increased torque input,

Te, initially causes a decreased rate of reduction of ωm up until 1.07s; thereafter, ωm

begins to increase. The overall effect of the change in Te between 1.05s and 1.07s

causes the input to the spring, ωm - ωL, to eventually fall back to within the backlash

limits and reduces TL to zero by 1.07s.

Although there is no more torque transmission to the load motor, the load motor

speed continues to decrease between the period of 1.07s and 1.13s as a result of the

damping present within the spring of the flexible shaft load. Also, given the control

system still senses an error between the speed reference and the load motor speed,

there is the continued increase in the torque input, Te, to the flexible shaft mechanical

plant. The result is a continued rise in the drive motor speed, ωm. As the load motor,

ωL, decreases and the drive motor speed, ωm, increases, the input to the spring, ωm -

ωL, also increases. When this difference becomes greater than 5rad/s at about 1.13s,

the backlash is switched on and the load torque, TL, generated between 1.13s and

1.17s causes a decrease in the spring’s input, ωm - ωL by increasing the load motor

speed, ωL and restoring it back to the desired speed, ωref . On reaching the desired

speed, given there is no direct control on the load motor speed, rather than staying

at the desired speed, it keeps on increasing at a rate governed by the damping effect

in the spring. The increase in load motor speed continues until the backlash limits

are exceeded; it is only once they are exceeded that the required load torque can be

produced to force the load motor speed back to the desired speed reference, hence

the oscillatory motions observed on the waveform.

The flexible shaft load speed responses will be characterised according to its rise time,
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settling time and steady state output ripple. The speed transients produced are in

response to step inputs of 0 - 1000 rpm between times of 0.1s and 0.6s and step

inputs from 1000 - 2000 rpm between time periods of 0.6s and 1.5s. An external load

disturbance of 0.15Nm is applied after 1.05s to the control system.

Rise time: The results of the GA optimisation has produced the following responses

in figures 6.9, 6.10 and 6.11. with rise times of 120.4ms, 102.4ms and 98ms respec-

tively. The speed responses of the BF optimised control system in figures 6.15, 6.16

and 6.17 have the rise times of 105.2ms, 95.6ms and 96.2ms respectively. Also the

rise times of the speed responses for the HBF optimised control system in figures

6.21, 6.22 and 6.23 are 120.2ms, 103.8ms and 100ms respectively.

Settling time: The settling times achieved by the speed responses of the GA opti-

mised control system in figures 6.9, 6.10 and 6.11 are 200ms, 190ms and 190ms. For

the BF optimised speed responses in figures 6.15, 6.16 and 6.17, the settling times

achieved are 180ms, 165ms and 155ms. The settling times of the speed responses in

figures 6.21, 6.22 and 6.23 obtained using the HBF optimised controller are 200ms,

180ms and 133ms.

Steady-state output: On application of the torque disturbance, for the speed re-

sponses to the mechanical load with inertia of 5JL and damping of D, the resulting

torque oscillations have slightly different magnitudes . The GA control system pro-

duce torque oscillations with a magnitude of 6 rad/s around the final speed. The

BF optimised system has torque oscillations of magnitude 5.65 rad/s. Finally, the

speed response of the HBF control system produces these torque oscillations with a

magnitude of 5 rad/s.

6.5 Conclusion

This chapter has described the robust experimental robust control method for the

automated design of robust digital control systems. The proposed approach has been
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Figure 6.6: GA Fourth order Controller Response for Inertia J and Friction 5B
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Figure 6.7: GA Fourth order Controller Response for Inertia 3J and Friction 3B
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Figure 6.8: GA Fourth order Controller Response for Inertia 5J and Friction B
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Figure 6.9: GA Fourth order Controller Response for Inertia JL and Damping 5D
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Figure 6.10: GA Fourth order Controller Response for Inertia 3JL and Damping 3D
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Figure 6.11: GA Fourth order Controller Response for Inertia 5JL and Damping D
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Figure 6.12: BF fourth order Controller Response for Inertia J and Friction 5B



6.5. CONCLUSION 141

0 0.1 0.2 0.3 0.4 0.5

0

20

40

60

80

100

120

time (seconds)

S
p

e
e
d

 (
ra

d
/s

)

Experiment

Simulation

(a) Controller response to step demand of 0 to 1000 rpm

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
100

120

140

160

180

200

220

time (seconds)

S
p

e
e
d

 (
ra

d
/s

)

Experiment

Simulation

(b) Controller response to step demand of 1000 to 2000 rpm with load
disturbance of 0.15Nm applied at 1.05s

Figure 6.13: BF fourth order Controller Response for Inertia 3J and Friction 3B
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Figure 6.14: BF fourth order Controller Response for Inertia 5J and Friction B
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Figure 6.15: BF fourth order Controller Response for Inertia JL and Damping 5D
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Figure 6.16: BF fourth order Controller Response for Inertia 3JL and Damping 3D
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Figure 6.17: BF fourth order Controller Response for Inertia 5JL and Damping D
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Figure 6.18: HBF fourth order Controller Response for Inertia J and Friction 5B
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Figure 6.19: HBF fourth order Controller Response for Inertia 3J and Friction 3B
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Figure 6.20: HBF fourth order Controller Response for Inertia 5J and Friction B
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Figure 6.21: HBF fourth order Controller Response for Inertia JL and Damping 5D
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Figure 6.22: HBF fourth order Controller Response for Inertia 3JL and Damping
3D



6.5. CONCLUSION 151

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

10

20

30

40

50

60

70

80

90

100

110

time (seconds)

S
p

e
e
d

 (
ra

d
/s

)

Experiment

Simulation

(a) Controller response to step demand of 0 to 1000 rpm

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
100

120

140

160

180

200

220

time (seconds)

S
p

e
e
d

 (
ra

d
/s

)

Experiment

Simulation

(b) Controller response to step demand of 1000 to 2000 rpm with load
disturbance of 0.15Nm applied at 1.05s

Figure 6.23: HBF fourth order Controller Response for Inertia 5JL and Damping D
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applied specifically to the optimisation of robust controllers for variable speed drives.

The different components of the experimental setup are described and the schematics

of the simulation and experimental systems that result from the combination of the

different parts are shown. The experimental system comprises the digital controller,

the evolutionary algorithms which optimises the controller while it is subject to the

variable mechanical load. The variable mechanical load is a necessary part of the

experimental system. It replicates the typical industrial operating load conditions for

the drive. Hence, the digital controller designed under these operating conditions will

enable the drive to perform robustly under industrial load conditions

The experimental approach to the optimisation process involves a series of processes -

initialisation, evaluation, fitness assignment, selection, reproduction and termination.

A crucial step is the evaluation process, which involves quantifying the quality of

the possible solutions.The experiments require a series of real-time simulations of the

experimental system for calculating the performance value of the individuals. Given

the random nature of the process, it is necessary to incorporate protection circuits

within the experimental set-up to stop the testing of badly performing individuals.

These are implemented in both hardware and software.

The results of the automated optimisation process verify the effectiveness of the design

approach. it also highlights the good agreement between the simulation model and

the experimental system. It is also noted that the different Evolutionary Algorithms

produce similar optimised speed responses. But, it would be interesting to compare

the different algorithms in order to highlight the uniqueness of each. A detailed

comparison of the algorithms employed is discussed in chapter 8.

The automated experimental optimisation process described in this chapter highlights

important benefits of a simple and automated approach to the design of the Robust

digital controllers for variable speed drives. It also does not require any detail on the

model of the mechanical load in order to design robust digital controllers for such a

system. The inherent disadvantages in the approach lies in the fact that it imposes

stress and causes fatigue to the experimental system, thus shortening its life span.
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Also, the time taken for the optimisation can be an issue. In order to address the

problems, a theoretical approach to the design of Robust digital controllers has been

investigated and it will be discussed in chapter 7.



Chapter 7

Robust Identification-Based

Control Design

7.1 Introduction

Self-commissioning - the automatic design of current, flux and speed control parame-

ters - is now available on most commercial electronic drives. Advanced commissioning

schemes perform some simple tests on the machine to determine flux and torque es-

timators for Vector Control and Direct Torque Control. However the controllers em-

ployed are usually limited to Proportional plus Integral (plus derivative sometimes).

This keeps the automated design process simple, but also means that the controllers

can be ”fine tuned” by commissioning engineers if required, without too much detailed

knowledge of advanced control structures. The disadvantage of employing these PID

controllers within the closed loop system is highlighted in the responses produced

when the parameters of system it controls vary significantly during normal operation.

Some drive applications require precise speed or position control, which standard

self commissioning schemes cannot achieve. Machine tools for example require fast

response, minimal overshoot, fast settling in the presence of variable inertia, large

disturbance torques etc. For these applications, more sophisticated drive controllers

154
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are required, preferably self-commissioned with the drive undergoing its normal oper-

ating cycle so that the extremes of load behaviour can be seen. [12], [16], [41] and [65]

proposed the use of Genetic Algorithms whereby the drive was allowed to operate in

situ, and the GA gradually optimised the controller parameters (and order) to match

predefined performance specifications. The advantage of this method was that the

commissioning of a high performance speed/position controllers could be fully auto-

mated using routines run on a PC. Once commissioning was complete, the PC could

be removed. This approach forms the subject of chapter 6. The main drawback was

that the self-commissioning period was long, as many controller solutions had to be

experimentally evaluated. Also, it was possible for ”bad controllers” to be tested,

adding mechanical stress to the commissioning process.

In this chapter, the focus will be on a new approach that does not involve direct ex-

perimentation on the physical hardware during the design procedure. The approach

harnesses only mathematical/simulation models of the system under consideration.

The benefits of the system identification-based robust control design approach is im-

mediately highlighted by the fact that the physical hardware does not experience

stress during the design procedure and hence, the issues surrounding the testing of

bad controllers become insignificant. The design method incorporates the applica-

tion of the investigated evolutionary algorithms together with the Robust Control

theory and a system identification procedure. This chapter will describe the robust

control theory, the system identification methods and demonstrate how it has been

applied within the theoretical approach for robust control design. Robust control the-

ory considers the design of controllers that fare well across a range of models. Given

the necessary consideration of a range of models, robust control is inherently about

model uncertainty, particularly focusing on the implications of model uncertainty for

control design. The theory originated in the 1980s in the control theory branch of the

engineering and applied mathematics literature, and it is now perhaps the dominant

tool for Robust control theoretical design [15], [38]. System identification approaches

provide a means to characterise system mechanisms by analysis of measured input

and output data from the system. The analysis essentially involves fitting the mea-

sured data to a mathematical representation of the system [30]. The adoption of the
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Evolutionary Algorithms in conjunction with these application, ensures the design

method is automated in its procedure for synthesising robust control systems.

7.2 Robust Control

Robust control refers to the control of plants with unknown dynamics while they

are subjected to unknown disturbances [75]. A basic desiderata for the practical im-

plementation of robust control is that the system remain stable in the presence of

perturbations; ensuring stability and good performance in the worst case scenario

would ensure robust performance of control systems in the face of all possible per-

turbations [18]. Clearly, the main issue in achieving robust control is uncertainty

and how the system can deal with this problem. Robust control theory attempts to

provide systematic techniques and methods to solve control problems where uncer-

tainty is a dominant issue [76]. The following sections will provide a description of

uncertainty and highlight the methods used, in general, to design control systems in

the face of uncertainty. They will focus on the particular method, frequency domain

uncertainty modelling techniques, harnessed to achieve the aim of this work.

7.2.1 Uncertainty

The first stage when designing a closed loop control system create a model of the

actual plant. Once this has been obtained, the control would be designed around

it. This can be achieved using conventional approaches like the root-locus design

or more commonly, the trial-and-error approach. This would involve randomly, but

sensibly, evaluating different parameters for the controller until a suitable set of con-

troller parameters, which give good closed loop system responses are obtained. The

controller obtained through either approach is transcribed to the real system to verify

the quality of the controller designed, using the plant model,on the actual plant.
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The reality of models is that they are, at best, an excellent ’approximation’ of the

real system. The fact that it is an ’approximation’ implies that there are bound to be

discrepancies between the real and modelled plant. These discrepancies, termed mod-

elling errors, can manifest itself as subtle parameter variations around the modelled

value at frequencies comparable to the system dynamics that are very sensitive to op-

erating conditions such as temperature, elevation from ground etc. It could also be in

the form of un-modelled dynamics at high frequencies. Often, these discrepancies can

be justifiably ignored, but in other cases, failure to model these dynamics accurately

could result in significantly detrimental performance by controllers designed on the

modelled plant.

Apart from plant modelling errors, there are system variables that are excluded when

representing the actual closed system of the plant as a computer simulation model.

These parameters can include noise from the system measurement devices such as

transducers and they could also include external disturbances which are often very

variable depending on the conditions within which the system is operating. The

difficulty with modelling such random quantities, which are often negligible in mag-

nitude, leads to the justifiable conclusion of excluding them within system models.

In some cases, this is a viable option resulting in good designs of controllers. In other

cases, the effects are dramatic giving rise to poorly designed closed loop control sys-

tems. These various un-modelled parameters, often neglected in theoretical designs

are termed uncertainties.

There are two types of uncertainties that affect control systems:

1. Plant Uncertainty which arises due to errors in modelling, changes in parame-

ters, inexact and incomplete data, modelling approximations

2. Signal Uncertainty which arises due to exogenous signals such as disturbances,

sensor noise, etc [44], [77], [78].

The various sources of model uncertainty can be broadly grouped in three categories:
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7.2.1.1 Parametric uncertainty

Parametric uncertainty arises from the fact that, within a linear model, there are

always parameters that are approximately known and, in some cases, completely

wrongly estimated. These parameters may also vary due to nonlinearities or a change

in operating conditions. Parametric uncertainty can sometimes be referred to as

structured uncertainty [44], [78].

7.2.1.2 Neglected and un-modelled dynamics uncertainty

Neglected and un-modelled dynamics uncertainty, which are errors within a model,

result from missing dynamics arising from intentionally ignored high frequency be-

haviour. These missing dynamics could also be the result of the inability to model

certain dynamics as a result of poor understanding of the physical process on which

the model is based. This form of uncertainty is present in any model of a real sys-

tem [44].

7.2.1.3 Lumped uncertainty

Lumped uncertainty simply combines the previous two categories of uncertainties in

one lumped model. It represents several forms of parametric and/or un-modelled

dynamics uncertainty combined into a single lump. Lumped model uncertainty is

often referred to as unstructured uncertainty [44], [78].

There are three main concerns for control system engineers in meeting their objec-

tives: observability, controllability and stability. Within a designed control system,

observability is classified as the ability to observe all of the parameters or state vari-

ables of the system. Controllability defines the ability of the system to be controlled

by forcing its state variables to change to any desired state. Stability is described

as the bounded response produced by the system in response to a similarly bounded
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input to the system. Any successful control system will have to possess these three

abilities but in the face of uncertainty, control design engineers will find it a task in-

cluding all these properties within their designed systems especially given the limited

system information often provided for the modelling process [75].

7.2.2 Robust Control Techniques

One method to deal with uncertainty in the past was stochastic control. This branch

of control aims at reducing the bounds of uncertainty due to randomness within the

system to be controlled. In stochastic control, uncertainties of a somewhat random

nature in the system are modelled as probability distributions. These distributions

are combined to produce a stochastic model for the design of the optimal control law.

The justification for the combination is based on the fact that all random processes

within nature are sum total of other independent contributing factors [75].

Robust control methods seek to bound the uncertainty rather than express it in the

form of a distribution. One method of bounding the uncertainty is adopting a fre-

quency domain technique (section 7.3). Given a bound on the uncertainty, the control

can deliver results that meet the control system requirements in all cases. Therefore

robust control theory can be described as a worst-case analysis method rather than

a typical case method. Often, in order to satisfy certain robust performance require-

ments, some performance must be sacrificed [18]. There are currently a variety of

techniques that have been developed for robust control. Brief descriptions of some

methods are provided, highlighting their basic concepts.

7.2.2.1 Frequency Domain H2 and H∞ techniques

The Frequency Domain techniques provide a viable approach to tackling the prob-

lems of robustness and performance in the design of robust control systems. In order

to adopt a quantitative method with the application of the Frequency Domain Tech-
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niques, system norms are adopted. These system norms are single numbers, which

give measures of the overall magnitude of the systems being investigated. The sys-

tem norms that lend themselves particularly well in the design of optimal control

systems are the Hardy Space Norms [44]. These norms are called after the British

pure mathematician G. H. Hardy (1877 1947).

Hardy Space Norms are employed for characterising stable systems. The relevant

system norms used in the frequency domain technique for robust control system

design are the H2 and H∞ norms. The overall aim of the Hardy space inspired

Frequency Domain techniques is to achieve a system that is robust in the face of

plant model uncertainty [44]. Further details on the frequency domain techniques

applied in achieving the project’s aims are provided in section 7.3.

7.2.2.2 Adaptive Control

An adaptive control system harnesses observers in tracking each significant state

variable in the system. The system can adjust each observer to account for time

varying parameters of the system. In an adaptive system, there is always a dual role

of the control system: The output is controlled to eventually equal the desired input

while, simultaneously, the system continues to adapt and improve its performances

according to changes in the system parameters [79].

7.2.2.3 Parameter Estimation

Parameter estimation technique establishes boundaries in the frequency domain that

cannot be crossed to maintain stability. These boundaries are evaluated by using

uncertainty vectors. This technique is graphical and has some similarities to the root

locus design method. The technique proposes certain benefits on providing clues to

the user on how to change the system to make it more insensitive to uncertainties.
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7.2.2.4 Sliding-Mode Control

This is another approach to robust control. It is a are part of a class of Variable Struc-

ture Control Systems (VSCS). These systems are characterised by sets of feedback

control laws and decision rules, which are essentially switching functions. Particular

feedback control structures are switched to or adopted depending upon the system

behaviour being exhibited that needs to be controlled. The clear advantage of such

an arrangement is its ability to combine several different structures within a single

system. Also, its closed-loop responses become insensitive to certain classes of un-

certainty, given the control laws are defined in a region-specific manner. The issues

with its adoption are the need to understand the possible behaviours that can be

exhibited by the system, appropriately defining the different control laws for these

different regions of behaviour and implementing the decision laws to enable correct

switching in between the feedback control structures [60].

7.3 Frequency Domain H∞ Method

Classical frequency domain control design methods deal with the issue of robustness

using gain and phase margin settings [80]. The presence of interactions in cross-

coupled multivariable systems make these methods unreliable indicators of robustness

in control systems. The incorporation of the Hardy space norms make the traditional

frequency domain techniques readily applicable to problems involving multivariable

systems with cross-coupling between channels. As a result, the inclusion of the Hardy

Space norms can be viewed as a concept that has evolved the application of classical

frequency domain methods.

The choice of implementing Robust Control System Designs in this research project

via the Hardy space inspired frequency domain techniques is guided by the fact that

these techniques are of recent vintage within the field of Control Engineering, hence

there is probably a lot of exploration to be undertaken in order to exploit its full
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potentials. It has also been highlighted that the Hardy Space inspired frequency

domain techniques enable dealing with the issues of robustness and performance far

more directly when compared with other optimisation techniques [81].

The frequency domain H∞ technique has been selected in order to implement the

design of robust control systems for the mechanical plants investigated within the

research projects. The preference for the H∞ over the H2 method is due to several

reasons. One of the reasons stems from the description of the norms: the H2- and

H∞-norms are expressed in (7.1) and (7.2) respectively. The H2 norm measures the

’average’ gain of the system f(s) taken over all frequencies while the H∞ norm, which

is perhaps a more fundamental norm for systems, characterises the ’maximum’ gain

of the system over the frequency domain [82].
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2

=





1

2π

∞
∫

−∞
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2
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p
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A highlighted problem with the approach that employs H2 norm is it is only able to

deal with the system, f(s), when it has specific input signals (.e.g. impulse inputs);

it becomes difficult to implement the H2 approach with systems that have a range of

input signals (.e.g. step and ramp inputs). On the other hand, the H∞ approach can

be conveniently applied to the system, f(s), with a range of input signals [83].

The frequency domain H∞ approach, in comparison to the H2 method, can also be

conveniently applied in representing both structured and unstructured uncertainty

within models. It does not seem to have much competition (when compared with

other norms) in terms of quantifying unmodelled dynamics uncertainty [44]. Promi-

nent authors within the field of robust control theory, Owen and Zames made the

following observation in [44], [84]: ”The design of feedback controllers in the presence

of non-parametric and unstructured uncertainty... is the raison d’etre for H∞ feedback

optimisation. If the disturbances and plant models are clearly parameterised then H∞

methods seem to offer no clear advantages over more conventional state-space and
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parametric methods”.

For these reasons, the frequency domain (H∞) approach has been employed in the re-

search project for the design of robust control systems. Its application is implemented

in two stages; the first stage involves defining the uncertainty model for the plant to

be controlled - this is at the heart of the problems concerned with designing robust

control systems. The second stage involves designing the control system around the

plant uncertainty model obtained. This stage employs the evolutionary algorithms in

a random search procedure to achieve an optimised design (section 7.4).

7.3.1 Frequency Domain Uncertainty Models

In order to ensure that the control systems that are designed based on the proposed

method are truly robust to all possible parameter variations, it is necessary to have

a plant model that considers the uncertainty. A means to achieve this is to obtain

a model that bounds the different uncertainties that can be experienced in reality.

The model derived thus is termed an ’uncertainty model’. The uncertainty model,

in essence, is a somewhat more accurate mathematical representation of the actual

plant, given it considers the possible system variations. The closed loop control

system is then designed around the uncertainty model. As an illustration, the actual

uncertainty within a model can be represented in figure 7.1

The aim of selecting a suitable uncertainty model is to bound the actual uncertainty

using a disc-like approximation. In order to bound the uncertainty i.e. define the

uncertainty model of the plant, it is necessary to first categorise the general types of

uncertainties that exist within models. Once a suitable uncertainty classification is

achieved, using certain approaches, appropriate models for these can be defined.

There are a number of models, described using the H∞ frequency-domain paradigm,

that are used in robust control design to consider unstructured uncertainties within

models. This subsequent sections describes the different models for plant uncertainties
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0
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W

Figure 7.1: Disc-like approximation (black-line) of actual uncertainty (red-line)

and eventually discusses the uncertainty model chosen and the underlying reasons for

the selection. Generally, the uncertainty models considered are the multiplicative,

additive and the two feedback perturbation models. These models can also be used

to consider structured uncertainty.

7.3.1.1 Multiplicative uncertainty model

The multiplicative uncertainty/perturbation model is the most commonly used in

robust control design when considering unstructured uncertainty [44].

Gem(s) = G0(s)(1 + ∆(s)Wm(s)) (7.3)

( )
m

W s ( )s

0
( )G s

Figure 7.2: Multiplicative uncertainty model

It can effectively capture a wide variety of model uncertainty including structured as
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well as neglected and unmodelled dynamics uncertainty [44], [78]. The multiplicative

perturbation is defined mathematically in equation (7.3). G0(s) represents the nom-

inal transfer function, ∆(s) is any stable transfer function which at each frequency

has a magnitude that is not larger than one. Wm(s) is the Weighting function that

represents the upper bound of the multiplicative uncertainty. It is a weight that is

introduced in order to normalise the perturbations to be less than one in magnitude

at each frequency. Its model is represented in figure 7.2 [44], [78].

7.3.1.2 Additive uncertainty model

Implementing the additive uncertainty model implies that real plant G(s) would have

a transfer function represented as in equation 7.4.

Gem(s) = G0(s) + ∆(s)Wa(s) (7.4)

0
( )G s

( )s ( )
a

W s

Figure 7.3: Additive uncertainty model

Wa(s) is the Weighting function that represents the upper bound of the additive

uncertainty. The additive perturbation model can be represented as in figure 7.3 [78].

7.3.1.3 Feedback uncertainty model

These models are especially useful in accounting for the different types of uncertainty.

They can be implemented in two different ways. The first model is shown in (7.5)
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and the corresponding schematic is in figure 7.4.

Gem(s) =
G0(s)

1 + ∆(s)Wf (s)
(7.5)

( )
f

W s ( )s

0
( )G s

Figure 7.4: Feedback uncertainty model(one)

A second possible model is shown in (7.6). Its corresponding schematic is in figures

7.5 Wf(s) is the Weighting function that, in both cases, represents the upper bound

of the feedback uncertainty [44], [77], [78].

Gem(s) =
G0(s)

1 + ∆(s)Wf (s)G0(s)
(7.6)

( )s

0
( )G s

( )
f

W s

Figure 7.5: Feedback uncertainty model(two)

The uncertainty model, described in (7.6), has been selected in order to model the

uncertainty that exists within the plant case studies for which control systems is to

be designed in this project. The plants considered are the stiff and flexible Shaft

mechanical loads, which have been described in chapter 5. The subsection 7.4.2 will

focus on describing the parameters of the feedback uncertainty models adopted for

each of the mechanical loads.
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7.3.2 Frequency Domain H∞ Control Design

The objective of the frequency domain H∞ control technique is to synthesise con-

trollers that are capable of achieving robust performance in a closed loop system that

has uncertainty within its plant. The H∞ control method can be seen as worst case

optimisation because it amounts to minimising the effects on the output of the worst

input (disturbance, noise, etc) on the closed loop system [81]. The procedure for

employing the H∞ method can be summarised in two steps:

1. specify the control task as a ’mathematical’ optimisation problem

2. solve the specified optimisation problem

7.3.2.1 Defining the Mathematical Optimisation Problem

The aim of robust control is to design systems that are stable, especially in the face

of perturbations. A feature of stable systems is they have defined maximum limits

on their outputs: for an input of any frequency, the stable system would eventually

settle at a particular output value. A useful indicator of how well a system defines

boundaries on possible input signals is provided by the ’H∞ norm’; the norm indicates

the system’s peak gain value and the frequency at which it occurs.

The frequency domain H∞ control method essentially deals with minimising the

H∞ norm (.i.e. peak value) of certain closed loop frequency response functions.

These frequency response functions define the relationship between the input signals

(disturbance, noise, etc), whose effects are to be controlled, and the output of the

closed loop system. For the purpose of achieving solutions for robust performance

(see 7.4.6), the frequency response functions to be minimised often consists of func-

tions that complement one another. This means that a minimum for one function

will give a maximum value for the other existing function. As a result, the optimisa-

tion problem for the H∞ control method is not a straightforward task. In obtaining
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solutions for nominal performance (see 7.4.4), the mathematical optimisation task

is more direct. The frequency response functions present within the mathematical

optimisation problem will depend on the uncertainty model chosen to represent the

plant perturbations.

7.3.2.2 Solving the Optimisation Problem

The solution of the defined mathematical optimisation problem is the controller that

minimises the peak value of closed loop frequency response functions that exist within

the optimisation problem. One of the largest disadvantages of the H∞ control method

is the inability to fix the controller structure a priori. Generally, the H∞ method

provides controller solutions with high order. These solutions are often obtained

by trial-and-error (root-locus) approaches, which makes it difficult to discover and

implement. In such cases, having obtained the high order control solution, there is

the need to apply order reduction methods to achieve final solutions with reduced

order [80], [81].

In order to avoid the difficulty of finding and implementing high order controller

solutions, certain design methods have adopted the approach of fixing the structure

of the controller a priori, preferably to one of low-order (PID) controller, and then

obtaining the relevant parameters for the chosen controller structure through a similar

trial-and-error procedure [80].

In both these approaches, the quality of the final control solution is sacrificed. In one

case, the compromise is due to the difficulty in implementing the high order solution,

which theoretically has the potential of producing better closed loop control system

responses. In the other case, the compromise stems from restricting the possible

control structures that can be optimised by initially selecting a low order solution.

Also, the trial-and-error approach by which the control parameters are selected under

both methods makes it difficult to make an exhaustive search of all the possible

solutions.
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The approach proposed in this research project substitutes the traditional, trial-and-

error search procedure with a simple and automated search procedure that employs

particular evolutionary algorithms. The benefits are highlighted in the exhaustive

search capabilities that the evolutionary algorithms provide [13], [37]. With regards to

the optimisation of the controller, the structure of the possible control solution is not

selected a priori or restricted to a low-order structure. Due to the exhaustive search

capabilities of the EA, there is the possibility of testing different order controllers

(up to fourth-order) and subsequently selecting the best performing controller for the

closed loop system from multitudes of possible solutions.

7.4 Robust Control System Design

Generally, in designing a robust control system, there are three steps involved:

1. identification of the nominal/average model of the plant.

2. defining the uncertainty model of the plant

3. designing the closed loop system around the uncertainty model

The design of the closed loop system involves an automated trial-and-error approach

that requires the particular EA. During the design process, each randomly selected

control system is evaluated against certain criteria in to determine if it meets the

overall objective of robust performance. The evaluation criteria are

• Nominal stability : stability with no model uncertainty

• Nominal performance: performance with no model uncertainty

• Robust stability : stability with model uncertainty

• Robust Performance: stability and performance with model uncertainty
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7.4.1 Nominal Model Identification

Defining the parameters of the nominal model is a typical system identification prob-

lem. A system identification problem can be formulated as an optimisation task where

the objective is to find a model and a set of parameters that minimise the predic-

tion error between the plant outputs i.e, the measured data, and the model output.

Existing system identification models approaches are highly analytical and based on

mathematical derivation of the system’s model.

The are also other approaches, which are experimentally based on fitting a model to

recorded data by assigning numerical values to its parameters. Evolutionary com-

puting can be used in conjunction with these different approaches for the purpose of

matching recorded experimental data with analytically derived general models. Em-

ploying evolutionary computing approaches seems very promising as it requires little

knowledge about the problem [85], [86], [87].

The identification process involves defining the nominal system parameters for the

mechanical loads representing the plant of the system for which controllers are to

be optimised. The two mechanical loads considered are the stiff and flexible shaft

load. The GA is used to identify the nominal/average total inertia, Jem and total

friction, Bem of the stiff shaft mechanical load and the total load inertia, JLem
and

damping, Dem of the flexible shaft mechanical load. The parameters are identified as

a function of their drive shaft speed. The two stage process for the identification of

the mechanical load system parameters involves:

1. Experimental Data Capture

2. Off-line System Identification using GA

The identification process can also be used to derive non-linear models that predict

the behaviour of the system parameters over a speed range. For the targets of this

research project, only the average model identification process was adopted in order

to simplify the nominal model with which to perform further analysis.
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7.4.1.1 Experimental Data Capture

For the first stage, the drive control is designed using the approximated rated val-

ues of the nominal system parameters for the Stiff and Flexible shaft mechanical

load. Sub optimal performance is achieved but this does not matter at the moment.

The response of the real system is captured for a series of simple speed and torque

transients, which can be executed in less than one minute.

7.4.1.2 Off-line System Identification using GA

The basic idea is to use a GA routine off-line to identify the motor mechanical pa-

rameters in the simulation model, by recursively running the simulation and trying

to minimise the error between the real measured speed responses and the simulated

one under the same experimental conditions. In the simulation model the control

parameters are kept the same as those implemented in the DSP of the experimental

set-up, while the motor mechanical parameters are changed by the GA at every new

simulation in order to match the simulation speed responses to the real measured

ones that serve as the reference. The summary of the system identification process is

presented in figure 7.6

All the information on the mechanical parameters is coded into two element strings,

known as individuals that represent the inertia and friction values to be identified.

At the initialisation of the Genetic Algorithm, a specified number of individuals and

generations are chosen, and the first population of individuals is generated randomly.

Each individual is tested on the Simulink model and the speed closed loop dynamics

is obtained. The quality of the response obtained is quantified using the Fitness

function. In this case, the fitness function is simply defined as the Integration of

The Absolute Error (IAE) between the experimental data and the response obtained

from the model. This implies that smaller the fitness value, the better the match

between the individual and the real mechanical parameters. At the end of the trials

of each individual within one generation, the GA ranks the individuals based upon
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(Physical System)

(GA Fitness Function)

No

Yes

Figure 7.6: System identification process: used in the nominal model identification
for the mechanical loads
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their corresponding fitness values. The individual with the lower fitness values rank

higher and vice versa. A number (defined by the user) of high ranking individuals

are then passed onto the next generation (elitist selection). The remaining members

of the new generation are formed by performing evolutionary processes of mutation

and crossover on the remaining lower ranking individuals.
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Figure 7.7: Identification of Load Machine Current loop

Stiff Shaft mechanical model

The nominal system parameters have been identified using the described identifica-

tion process: J̄em is equal to 0.000394 Kgm2 and B̄em is equal to 0.0016 Nms. Its

transfer function is given in equation (7.7). Figures 7.7(a) and 7.7(b) show the re-
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sults of the parameters of total inertia and friction identified for the load within the

considered speed range of 0 - 3000 rpm. Figure 7.8 shows the match between the

experimental and identified model for the stiff shaft mechanical load. In figure 7.8(a),

the match between the identified model and the experimental system for a speed

transient of 0rpm to a 1000rpm is shown. To further demonstrate the accuracy of

the identification, the match between the experimental system and its model in their

speed transients produced as a result of a step demand from 1000rpm to 2000rpm

in the presence of an external load torque disturbance of 0.15Nm, introduced after

2.75s, is shown in figure 7.8(b).

G0(s) =
1

J̄ems + B̄em

=
1

3Js + 3B
(7.7)

Flexible Shaft mechanical model

The nominal system parameters have also been identified using the described identifi-

cation process: J̄Lem
is equal to 0.00042 Kgm2 and D̄em is equal to 0.3 Nm/rad/s. Its

transfer function is given in equation (7.8). Figures 7.7(c) and 7.7(d) show the results

of the parameters of total load inertia and damping identified for the load within

the considered speed range of 0 - 3000 rpm. Figure 7.9 shows the match between

the experimental system and the identified model for the flexible shaft mechanical

load. The speed transient produced by a step input of 0rpm to a 1000rpm by the

experimental system and the identified model is shown in figure 7.9(a). The excel-

lent agreement that further highlights the effectiveness of the identification process is

shown in figure 7.9(b); in the figure, the speed transients produced by a step input

from 1000rpm to 2000rpm in the presence of load disturbance torque of 0.15Nm,

introduced after 3.5s, has been obtained for the experimental system and its model.

G0(s) =

D̄em

Kem

s + 1

(JMem
+ J̄Lem

)s

(

JMem
J̄Lem

(JMem
+ J̄Lem

)Kem

s2 +
D̄em

Kem

s + 1

)

=

3D

Kem

s + 1

(JMem
+ 3JL)s

(

JMem
× 3JL

(JMem
+ 3JL)Kem

s2 +
3D

Kem

s + 1

) (7.8)
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(a) Identification of stiff shaft nominal model: Speed transient to a step input 0 -
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(b) Identification of stiff shaft nominal model: Speed transient to a step input of
1000 - 2000rpm and external disturbance of 0.15Nm introduced after 2.75s

Figure 7.8: Identification of stiff shaft nominal load
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7.4.2 Mechanical load Uncertainty Model

The feedback uncertainty model shown in figure 7.5 has been selected in order to

account for the perturbations within the mechanical loads. It is necessary that the

feedback uncertainty models for the stiff and flexible shaft mechanical loads investi-

gated during the research project are defined in order to implement a robust control

system for these mechanical plants. The first step to this effect is to define and iden-

tify a benchmark nominal model G0(s). This is represented as the centre point of

the approximate uncertainty region in figure 7.1. The nominal models, G0(s) for the

mechanical loads have been defined in section 7.4.1. As a result of having identified

the nominal model, the next step would be to define the robust weighting function,

Wf(s), which is represented as the radius of the disc-like approximation of uncertainty

in figure 7.1.

Wf(s) ≥

∣

∣

∣

∣

1

Gem(s)
−

1

G0(s)

∣

∣

∣

∣

(7.9)

Wf (s) = 0.0178(0.2494s + 1) (7.10)

Wf (s) = 0.0026(0.0013s + 1) (7.11)

The weighting function, Wf(s) bounds the actual uncertainty of the plant. It es-

sentially defines the upper bounds of the uncertainty within feedback perturbation

model. The weighting function can be obtained by the equation 7.9, which is derived

from the expression of the feedback uncertainty in (7.5). Equation 7.9 implies that

in order to obtain the expression for the weighting function, Wf (s), it is necessary to

derive the:

1. inverse of the transfer functions of every plant within the uncertainty model

2. inverse of the transfer function of the identified plant nominal model
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(a) Identification of flexible shaft nominal model: Speed transient to a step input
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(b) Identification of flexible shaft nominal model: Speed transient to a step input
of 1000 - 2000rpm and external disturbance of 0.15Nm introduced after 3.5s

Figure 7.9: Identification of flexible shaft nominal load
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(b) Robust weighting for flexible-shaft load

Figure 7.10: Robust weighting functions for Mechanical load

The weighting function, Wf(s) is defined as the minimum magnitude plot that com-

pletely envelopes the largest magnitude plot of the difference between the two derived

quantities. The equation that expresses the weighting function, Wf (s) is in (7.9). The

weighting functions calculated for the stiff and flexible shaft load are given in (7.10)

and (7.11). The corresponding magnitude plots for the stiff and flexible mechanical

plants are shown in figures 7.10(a) and 7.10(b). It can be observed that the magni-

tudes of all the possible transfer functions, which is defined by (7.9), are plotted on

the same axes as the highlighted weighting functions, Wf (s).

7.4.3 Nominal Stability

This is the first condition that must be satisfied along the design process for the

implementation of a robust control system. The stability analysis focuses on the

control system with the nominal model with no uncertainty model analysis performed
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at this stage. The generic closed-loop system represented by figure 7.11 is internally

stable if all internal signals decay to zero after the external signals w, d1 d2 and n

have vanished.

0
GCm

e '
u u

n

yr '
y

m
y

2
d

1
d

Figure 7.11: Generic closed-loop control system [78]

The standard feedback loop is internally stable, if and only if [78]:

• The poles of the closed-loop system are located in the left-half plane

• There is no right-hand plane pole-zero cancellation in forming CG0

For any control system randomly selected during the optimisation process, to evaluate

the internal stability of the nominal model, it is necessary to initially identify the

C Controller G0 nominal model

y controlled output d1 (plant) input external signal

ym measured controlled output d2 (plant) output disturbance

u actuating signal y′ plant output

e tracking error (e = r - y) u′ controller output

em measured tracking error (em = r - ym) u control signal

r reference input n sensor noise

Table 7.1: Generic closed-loop control system parameters
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nominal system parameters. Having identified this, its nominal stability is evaluated

based on the conditions for internal stability for the standard feedback loop.

7.4.4 Nominal Performance

Having verified the nominal internal stability of the control system under considera-

tion, its nominal performance is now evaluated. The control system is said to have

nominal performance if it satisfies certain conditions. For an internally stable closed

loop system, the nominal performance condition is given by (7.12), where Wt repre-

sents the weighting on the complementary sensitivity function, T defined in (7.13),

describes the relationship between the controlled output y and the difference between

the reference input r and the sensor noise, n.

The nominal performance condition, defined in (7.12), simply states that there are

specifications that the designed system must adhere to. These specifications are

defined by the weight, Wt. If Wt multiplies T , which is defined by (7.13), the resulting

function will have a magnitude lower than ’one’ at all frequencies only if T has been

been designed such that it meets the performance specification. If this condition is not

verified, the designer will understand that the control system does not adhere to the

design constraints with the nominal model. Ideally, the value of T at every frequency

should be ’zero’: this implies that the controlled output would be unaffected by the

noise inputs to the systems [88], [89].

The nominal performance condition can also be given by equation (7.14), where Ws

represents the weighting on the sensitivity function, S. The sensitivity function,

defined in (7.15), describes the effects of the output disturbance on the controlled

output, y. The sensitivity function also describes the effects of variations in the

external inputs, r and d2 on the tracking error, e. To achieve a good disturbance

rejection with the designed control system, the value of the sensitivity function at

every frequency must be as small as possible; ideally, it should be ’zero’, which implies

its complement, T must be ’one’ [88], [89]. This implies there exist conflict in achieving



7.4. ROBUST CONTROL SYSTEM DESIGN 181

the design constraint for the Sensitivity, S and its Complement, T .

The demands of the sensitivity function, S and its complement, T are conflicting and

as such, to ensure good robust control design, there must be some compromise defining

the sensitivity function, S, which specifies the system’s sensitivity reduction and

disturbance response and its complement, T , which defines the plant uncertainty, the

response and measurement noise of the system. Typically, disturbance rejection and

sensitivity reduction are desired over a lower frequency range, while plant modelling

errors and measurement noise generally occur at higher frequencies. For this reason,

it is possible to achieve a compromise by defining a suitable performance criteria, in

terms of weights, on the Sensitivity, S function and its complement, T to facilitate

good control design [88].

‖WtT‖
∞

< 1 (7.12)

T =
y

r − n
=

CG0

1 + CG0

(7.13)

‖WsS‖∞ < 1 (7.14)

S =
e

r − d2

=
y

d2

=
1

1 + CG0

(7.15)

The weighting on the sensitivity function, Ws specifies the performance in relation

to disturbance rejection (in terms of magnitude at different frequencies) required the

of the control system. Ws can be defined considering three design goals that concern

the steady state error, the stability margin and the transition frequency, which is the

frequency at which disturbances are amplified instead of attenuated for the sensitivity

function (but represents the bandwidth, frequency of attenuation, for the weight, Ws).

A general formula which represents Ws is given in (7.16) and its bode plot can be

represented as in figure 7.12(a). It dictates that the maximum steady state error can

be limited to MS, the high frequency disturbance amplification can be limited to AS

and the transition frequency, ωt can be limited to ωS [78].

Ws =
s + ωSAS

AS(s + ωSMS)
(7.16)

Wt =
s + ωT AT

MT (s + ωT MT )
=

s + 360

1.5(s + 1800)
(7.17)

In a similar vein, the weighting, Wt is the performance specification on the Com-

plementary sensitivity function, T but in relation to noise rejection. The design
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approach adopted within the research project employed this performance specifica-

tion. The general form for the weighting is given as (7.17) and its bode plot for the

formula is in figure 7.12(b).
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Figure 7.12: Robust weighting functions for Mechanical load

Three design goals are defined within (7.17): (1) The maximum limit of the noise

signal amplitude at low frequencies can be limited to MT ; this value was chosen as

1.5 based on general design specification in [44]. (2) The high-frequency noise at-

tenuation can be limited to AT ; this was selected as 0.1 based upon general design

specification in [44], [78]. (3) The transition frequency (bandwidth) of the comple-

mentary sensitivity function, T , which is the frequency at which noise is attenuated,

can be limited to ωT . Its value was selected as approximately a 1200 rad/s, which is

the bandwidth of the active-low pass filter designed for the signal conditioning of the

tachogenerator signals within the experimental system in section 4.4.5. Within the

weighting function Wt, the transition frequency, ωT represents the frequency at which

noise signals are amplified rather than attenuated. Given the random distribution of

solutions, redefining the boundaries for the sensitivity or complementary sensitivity
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function does not guarantee an increase or decrease in the number of viable possible

solutions to the control optimisation problem.

7.4.5 Robust Stability

A necessary criterion for a robust control system is that it is stable in the face of

perturbation. This implies that the controller designed must have a stable closed loop

system response for all the possible plant perturbations determined by the foreseen

perturbations to the system. In the theoretical design, these different plant variations

need to be considered within a single suitable uncertainty plant model.

‖WfG0S‖∞ < 1 (7.18)

A feedback uncertainty model has been selected to define the plant uncertainty in

section 7.4.2. The robust stability condition for the feedback uncertainty model is

stated in equation (7.18). This equation is somewhat similar to the nominal perfor-

mance condition in (7.12) given it defines a weight, WfG0 on the sensitivity function.

This weight specifies the performance criteria on the sensitivity function across the

perturbations within the plant uncertainty model. Each control system, randomly

selected during the automated optimisation process, is evaluated based on this condi-

tion. Table 7.2 shows the robust stability conditions for each of the other perturbation

models defined in section 7.3.1.

7.4.6 Robust Performance

The next phase in the design deals with the evaluation for robust performance. The

criteria for robust performance combines the conditions of nominal performance and

robust stability for the plant perturbation model. Given the conditions for robust

stability considers the Sensitivity function, S and those for the nominal performance

considers its complement T , the resulting control system, designed to respect the
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combination of these two conditions, will provide suitable trade-offs for the ideally

conflicting system performance indicators.

Within the algorithm, only those controllers that meet the conditions for robust per-

formance are further tested to evaluate their actual dynamic response under certain

load conditions. The nominal performance condition for an internally stable closed-

loop system with no uncertainty in its nominal model, G0 is given in equation (7.12).

If the nominal model, G0 is perturbed with feedback uncertainty as in equation (7.19),

the nominal performance condition can be represented as (7.22). The robust perfor-

mance condition is then a combination of the nominal performance and the robust

stability conditions of the perturbed plant.

G0 →
G0

1 + ∆WfG0

(7.19)

∥

∥

∥
WtT̃

∥

∥

∥

∞

< 1 (7.20)

T̃ =

G0 × C

(1 + ∆WfG0)

1 +
G0 × C

(1 + ∆WfG0)

=
G0C

1 + G0C + ∆WfG0

=

G0C

(1 + G0C)

1 +
∆WfG0

(1 + G0C)

T̃ =
T

1 + ∆WfG0S
(7.21)

∥

∥

∥
WtT̃

∥

∥

∥

∞

=

∥

∥

∥

∥

WtT

1 + ∆WfG0S

∥

∥

∥

∥

∞

< 1 (7.22)

A sufficient condition for robust performance of the perturbed system is given in

(7.23).

‖WfG0S‖∞ < 1 and

∥

∥

∥

∥

WtT

1 + ∆WfG0S

∥

∥

∥

∥

∞

< 1 (7.23)

From equation (7.23), a necessary and sufficient condition for robust performance for



7.5. AUTOMATED THEORETICAL OPTIMISATION 185

the perturbed plant with feedback uncertainty is given in equation (7.24)

‖|WtT | + |WfG0S|‖∞ < 1 (7.24)

Table 7.2 shows the conditions for nominal performance, robust stability and robust

performance for all the uncertainty models described in section 7.3.1.

7.5 Automated Theoretical Optimisation

The automated identification-based approach to designing robust control systems

builds on some of the advantages of the experimental optimisation process described

in chapter 6. During its implementation, the objective functions, adopted by the

investigated evolutionary algorithms, ensure that each randomly selected controller

(structure and parameters) satisfies the conditions for robust performance. In a sim-

ilar fashion to the experimental approach, each of the three investigated algorithms

adopt a similar controller solution evaluation stage. The unique feature of the ro-

bust identification-based control design approach lies in the evaluation stage (fitness

function), which is critical for theoretically determining robust performance.

The purpose of the evaluation stage is to quantify the quality of each randomly

selected controller. These values are used by the evolutionary algorithms to determine

which controller gives the best performance. The evaluation checks that each tested

controller satisfies the four conditions necessary for robust control system design:

Perturbation NPC RSC RPC

(G0 + Wa∆) ‖WsS‖∞ < 1 ‖WaCS‖
∞

< 1 ‖|WsS| + |WaCS|‖
∞

< 1

G0 (1 + ∆Wm) ‖WsS‖∞ < 1 ‖WmT‖
∞

< 1 ‖|WsS| + |WmT |‖
∞

< 1

G0/ (1 + ∆Wf ) ‖WtT‖
∞

< 1 ‖WfS‖∞ < 1 ‖|WtT | + |WfS|‖∞ < 1

G0/ (1 + ∆WfG0) ‖WtT‖
∞

< 1 ‖WfG0S‖∞ < 1 ‖|WtT | + |WfG0S|‖∞ < 1

Table 7.2: Necessary and Sufficient Conditions for Robust Performance: NPC -
Nominal Performance Condition, RSC - Robust Stability Condition, RPC - Robust

Performance Condition
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the nominal stability, nominal performance, robust stability and robust performance.

The commented MATLAB m-file code for the implementation of the fitness function

of the Robust identification-based control design method is in the attached CD-ROM

Appendix.

Nominal stability: Incorporated within the objective functions of each investigated

evolutionary algorithm is a verification strategy that tests if each randomly selected

controller will achieve nominal stability with the mechanical loads being considered.

This is achieved, within the digital z-domain, by ensuring:

1. Poles of the closed-loop system lie within the unit circle: the magnitude of each

closed-loop pole and zero must be less than or equal to ’one’.

2. There is no pole-zero cancellation outside the unit circle in forming CG0.

This is achieved by ensuring that all the poles and zeros of the controller, C lie

within the unit circle. This, in turn, can be simply done by bounding the magnitudes

of each pole and zero to ’one’. Only those controllers that satisfy the nominal stability

condition are further tested against the nominal performance criteria.

Nominal performance: The nominal performance condition is specified in equa-

tion (7.17). Those randomly selected controllers, which do meet the user-specified

demands for nominal performance, are excluded from further testing.

Robust stability: The feedback perturbation model has been adopted for modelling

the uncertainty within the mechanical loads. Each randomly selected controller is

evaluated on its robust stability based on the condition given in the equation (7.18).

As in the previous evaluation stage, only those controllers that satisfy the condition

for robust stability are further tested.

Robust performance: This is, in a sense, the ultimate test for a truly robust

control system. The condition for robust performance combines both the conditions

for nominal performance and robust stability. This is represented in equation (7.24).
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The controllers that meet the robust performance are then subject to further testing

on the quality of their performance.

Evaluation of robust control systems: For those controllers that perform ro-

bustly, its performance to the nominal model for the stiff shaft and flexible shaft me-

chanical load (with backlash), for different speed transients and in the presence of load

disturbance, is evaluated using the simulation model. The quality of the performance

is quantified by evaluating the Integration of the Absolute Error (IAE) between the

reference speed and the speed response produced by the robust closed-loop control

system. There is a penalty factor incorporated for those controlled responses that

exceed an 8 % overshoot. The controllers are then ranked according to their fitness

values - the controllers with lower fitness values are ranked higher and vice versa. The

next stage, after suitable ranking the individual solutions according to their fitness

values is reproduction, in a bid to generate better solutions

The process of the generation of possible solutions and their subsequent evaluation

using the described fitness function is repeated during the implementation of the

investigated optimisation algorithms until a termination criterion, as described in

chapter 2, has been reached. At this point, the algorithms should have converged

to the best solution, which is a closed-loop system that provides robust performance

in the presence of system uncertainties and also has minimum overshoot on it speed

responses under the different load conditions. Figure 7.13 summarises the evaluation

process of the identification-based approach to robust control system design.

An important advantage of the method proposed in this chapter over its experimental

counterpart is that given the optimisation is performed on a simulation model of the

actual system, the actual plant experiences little or no stress during the process, thus

prolonging its functioning lifespan. Another important advantage is the length of time

required for the process. It can be much reduced when compared with the experimen-

tal process for a similar optimisation problem described in section 6.3. The reason

is the time duration largely depends on the power of the computer processor used in

implementing the optimisation process. in this case, the time taken to determine and
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Figure 7.13: Summary of theoretical optimisation evaluation process

evaluate the robust performance of any one randomly selected controller is approxi-

mately 300 ms. A possible disadvantage is that the automated identification-based

approach process requires that the mechanical plant for which the control system is

to be designed must be modelled. However, once a structure of the system model is

selected, its parameters are automatically identified by the GA procedure, reducing

greatly the modelling efforts and enormously increasing the accuracy. Once a suitable

model has been automatically designed, the robust control system design process is

relatively straightforward; this is largely due to the use of the evolutionary algorithms

in the design procedure.

7.6 Results

The information provided by the results obtained in this section, through the adoption

of the evolutionary algorithms and the identification-based control design method, can

be summarised as follows: the similarities between these sets of results and those in

section 6.4, obtained via the robust experimental design method, provides validation
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for both these approaches. It also demonstrates that the identification-based method

is an effective option for the design of robust control systems. Taking another perspec-

tive, the similarities between the results obtained, through the combined adoption of

the identification-based control design method and the evolutionary algorithm, is a

testament to the effectiveness of the algorithms employed. Also, given the similari-

ties in the results obtained by the different algorithms, there is more confidence that

the obtained solutions are truly global and the corresponding speed responses they

provide are the best possible. Given the undeniable similarities between the results

obtained, it will be useful and sufficient to explain the general speed response profile,

obtained through the adoption of the proposed approach, for the stiff and flexible

shaft mechanical loads. The dynamic responses obtained will then be characterised.

7.6.1 Stiff-shaft load speed response

Robust control systems for the stiff shaft load have been designed using each of the

three evolutionary algorithms. In the subsequent paragraphs, a comparison between

the speed responses produced by the robust control systems designed using each of

the three algorithms will be provided. To achieve this, the resulting mechanical load

speed response produced will be characterised according to its rise time, settling time,

overshoot, disturbance rejection time and steady state output.

Rise time: During the mechanical load’s transition from initial speed to final speed,

its response is largely governed by its inertia: the larger the inertia, the slower the

initial acceleration (rate of speed change). This feature is observed across the speed

responses for stiff-shaft load with different inertias. The responses of the GA designed

(fourth order) controller in figures 7.14, 7.15 and 7.16 have respective rise times of

80.4 ms, 74.4 ms and 86.2 ms. The BF results shown in figures 7.20, 7.21 and 7.22

with inertias J , 3J and 5J have rise times of 104 ms, 99 ms and 90 ms respectively.

The speed responses obtained via the HBF optimisation algorithm in figures 7.26,

7.27 and 7.28 have rise times of 86 ms, 80ms and 87 ms respectively.
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Settling time: The settling time is a criteria used to evaluate how quickly the

different responses settle to the final value. The speed responses, obtained using

the GA designed fourth order controller, in figures 7.14, 7.15 and 7.16 achieve a

settling time within two percent around the final value of 148 ms, 112 ms and 115

ms respectively. The BF optimised responses in figures 7.20, 7.21 and 7.22 have

settling times of 191 ms, 147 ms and 122 ms respectively. Also, the HBF speed

responses in figures 7.26, 7.27 and 7.28 produce similar settling times as the other

two algorithms of 153 ms, 126 ms and 119 ms.

Overshoot: During the control design procedure, the aim was to keep the maximum

overshoot to about eight-percent of the final value. The outcome of the restriction

has been successfully enforced, given the results obtained from the optimisation. The

maximum overshoot obtained with each algorithm occurred when the load had its

largest inertia of 5J ; this is due to the output of the controllers being in saturation

for longer as it produces the required torque demand to drive the heavier mechanical

load to the desired speed. The maximum overshoot obtained with the GA designed

controller is 2.7%. With the BF optimised control system, there exist an overshoot

of 1.7%. Finally for the controller, designed via the HBF algorithm, there exists a

maximum overshoot of 1.68%.

Disturbance Rejection: This is a measure of how quickly the designed control

systems reject the load torque disturbance of 0.15 Nm introduced imposed on the

system after 1050 ms. The robust control systems reject disturbance in similar time

periods, largely appearing to be independent of the different mechanical loads they

are controlling. The GA robust control system rejects disturbance in 210 ms, the BF

optimised control system rejects disturbance in 150 ms while the HBF algorithm

also achieves disturbance rejection in 150 ms.

Steady State: For the GA controller responses in figures 7.14, which has the largest

value of friction, the steady state response is the noisiest with maximum oscillation

around the steady state value of 1.27%. In a similar manner, the BF optimisation

algorithm produces the noisiest signal in figure 7.15, with maximum steady-state
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oscillations of 1.83%. The HBF control system response also follow the same trends

producing the noisiest response in figure 7.16 for the system with the largest friction

value; its maximum steady-state oscillation is 1.55%.

7.6.2 Flexible-shaft load speed response

The resulting mechanical load speed responses produced can be suitably characterised

according to its rise time, settling time and steady state output ripple. The speed

transients produced are in response to step inputs of 0 - 1000 rpm between times of

0.1s and 0.6s and step inputs from 1000 - 2000 rpm between time periods of 0.6s and

1.5s. An external load disturbance of 0.15Nm is applied after 1.05s.

Rise time: The results of the GA optimisation has produced the following responses

in figure 7.17, 7.18 and 7.19 with rise times of 122 ms, 106 ms and 101 ms respectively.

The speed responses of the BF optimised control system in figure 7.23, 7.24 and 7.25

have the rise times of 123 ms, 107 ms and 101 ms respectively. Also the rise times of

the speed responses for the HBF optimised control system in figures 7.29, 7.30 and

7.31 are 116 ms, 102.4 ms and 98.4 ms respectively.

Settling time: The 2% settling times achieved by the speed responses of the GA

optimised control system in figure 7.17, 7.18 and 7.19 are 258 ms, 232 ms and 185

ms. For the BF optimised speed responses in figure 7.23, 7.24 and 7.25, the settling

times achieved are 261 ms, 238 ms and 148 ms. The settling times of the speed

responses obtained using the HBF optimised controller are 234, 231 and 204 ms.

Steady-state output: On the application of torque disturbance, for the the me-

chanical load with inertia of 5JL and damping of D, the resulting torque oscillations

have different magnitudes . The GA control system produce torque oscillations with

a magnitude of 5.9 rad/s around the final speed. The BF optimised system has

torque oscillations of magnitude 5.76 rad/s. Finally, the speed response of the HBF

control system produces these torque oscillations with a magnitude of 4.6 rad/s.
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(b) Controller response to step demand of 1000 to 2000 rpm with load
disturbance of 0.15Nm applied at 1.05s

Figure 7.14: GA Fourth order Controller Response for Inertia J and Friction 5B
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(b) Controller response to step demand of 1000 to 2000 rpm with load
disturbance of 0.15Nm applied at 1.05s

Figure 7.15: GA Fourth order Controller Response for Inertia 3J and Friction 3B
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(b) Controller response to step demand of 1000 to 2000 rpm with load
disturbance of 0.15Nm applied at 1.05s

Figure 7.16: GA Fourth order Controller Response for Inertia 5J and Friction B
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(b) Controller response to step demand of 1000 to 2000 rpm with load
disturbance of 0.15Nm applied at 1.05s

Figure 7.17: GA Fourth order Controller Response for Inertia J and Damping 5D



7.6. RESULTS 196

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

10

20

30

40

50

60

70

80

90

100

110

time (seconds)

S
p

e
e
d

 (
ra

d
/s

)

Experiment
Simulation

(a) Controller response to step demand of 0 to 1000 rpm

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
100

120

140

160

180

200

220

time (seconds)

S
p

e
e
d

 (
ra

d
/s

)

Experiment
Simulation

(b) Controller response to step demand of 1000 to 2000 rpm with load
disturbance of 0.15Nm applied at 1.05s

Figure 7.18: GA Fourth order Controller Response for Inertia 3J and Damping 3D
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(b) Controller response to step demand of 1000 to 2000 rpm with load
disturbance of 0.15Nm applied at 1.05s

Figure 7.19: GA Fourth order Controller Response for Inertia 5J and Damping D
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(b) Controller response to step demand of 1000 to 2000 rpm with load
disturbance of 0.15Nm applied at 1.05s

Figure 7.20: BF Fourth order Controller Response for Inertia J and Friction 5B
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(b) Controller response to step demand of 1000 to 2000 rpm with load
disturbance of 0.15Nm applied at 1.05s

Figure 7.21: BF Fourth order Controller Response for Inertia 3J and Friction 3B
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(b) Controller response to step demand of 1000 to 2000 rpm with load
disturbance of 0.15Nm applied at 1.05s

Figure 7.22: BF Fourth order Controller Response for Inertia 5J and Friction B
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(b) Controller response to step demand of 1000 to 2000 rpm with load
disturbance of 0.15Nm applied at 1.05s

Figure 7.23: BF Fourth order Controller Response for Inertia J and Damping 5D
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(b) Controller response to step demand of 1000 to 2000 rpm with load
disturbance of 0.15Nm applied at 1.05s

Figure 7.24: BF Fourth order Controller Response for Inertia 3J and Damping 3D
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(b) Controller response to step demand of 1000 to 2000 rpm with load
disturbance of 0.15Nm applied at 1.05s

Figure 7.25: BF Fourth order Controller Response for Inertia 5J and Damping D
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(b) Controller response to step demand of 1000 to 2000 rpm with load
disturbance of 0.15Nm applied at 1.05s

Figure 7.26: HBF Fourth order Controller Response for Inertia J and Friction 5B



7.6. RESULTS 205

0 0.1 0.2 0.3 0.4 0.5

0

10

20

30

40

50

60

70

80

90

100

110

time (seconds)

S
p

e
e
d

 (
ra

d
/s

)

Expeiment
Simulation

(a) Controller response to step demand of 0 to 1000 rpm

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
100

120

140

160

180

200

220

time (seconds)

S
p

e
e
d

 (
ra

d
/s

)

Expeiment
Simulation

(b) Controller response to step demand of 1000 to 2000 rpm with load
disturbance of 0.15Nm applied at 1.05s

Figure 7.27: HBF Fourth order Controller Response for Inertia 3J and Friction 3B
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(b) Controller response to step demand of 1000 to 2000 rpm with load
disturbance of 0.15Nm applied at 1.05s

Figure 7.28: HBF Fourth order Controller Response for Inertia 5J and Friction B
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(b) Controller response to step demand of 1000 to 2000 rpm with load
disturbance of 0.15Nm applied at 1.05s

Figure 7.29: HBF Fourth order Controller Response for Inertia J and Damping 5D
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(b) Controller response to step demand of 1000 to 2000 rpm with load
disturbance of 0.15Nm applied at 1.05s

Figure 7.30: HBF Fourth order Controller Response for Inertia 3J , Damping 3D
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(b) Controller response to step demand of 1000 to 2000 rpm with load
disturbance of 0.15Nm applied at 1.05s

Figure 7.31: HBF Fourth order Controller Response for Inertia 5J and Damping D
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7.7 Conclusion

The chapter has described the automated identification-based approach to the de-

sign of robust control systems. The approach subsequently involves the automatic

design through heuristic optimisation strategies with constraints to provide robust

performance in the face of largely variable mechanical loads and also deliver speed

responses with minimum possible overshoot. In order to ensure that the closed-loop

system meets the criteria for robust performance, the system is evaluated against

different criteria. These performance conditions are the nominal stability, nominal

performance and robust stability. A control system that satisfies these three criteria

are said to have robust performance.

In evaluating the robust stability, the uncertainty model for the plant is defined. This

involves defining the the robust weighting that models the bounds for the uncertainty

of the actual plant. Combining both conditions of nominal performance and robust

stability give rise to the robust performance conditions. Controllers that satisfy the

conditions for robust performance are subject to further testing, which involves quan-

tifying the quality of its response to certain operating conditions. A penalty factor is

also added on to the derived performance value for those controlled speed response

that have overshoots greater than 8%.

The chapter also highlights the important benefits of the investigated identification-

based approach; as well as being simple, given its automated nature, it also introduces

much less stress to the robust experimental system when it is applied for a similar

optimisation problem when compared to the experimental approach. With regards

to the durations of the optimisations, the times can be much reduced when compared

to the experimental optimisation process, which largely depends on the speed of the

computer processor. The slight drawback lies in the need to model the uncertainty

within the mechanical load for which the control system is to be designed. This

requires some skill and, when compared with the experimental approach, it is not as

easy to adopt.



Chapter 8

Discussions and Conclusion

8.1 Introduction

Chapters 6 and 7 have focused on the implementation of two novel automated methods

for robust control system design, which both employ evolutionary algorithms and an

optimisation process. These chapters have demonstrated the effectiveness and validity

of the algorithms employed in the design procedure given the quality of the obtained

experimental results and the good agreement with the simulations. Also highlighted

within the chapters are the benefits of employing each of the investigated approaches

for a robust control design problem.

The results provided in sections 6.4 and 7.6 are very similar. Hence, in order to pro-

vide a useful comparison that gives more insight into the differences in performance

of the investigated evolutionary algorithms and the adopted robust design methods,

an extended analysis on the obtained results will be provided within the final chap-

ter. The more-in-depth analysis of the results will facilitate effectively comparing the

different evolutionary algorithms employed. It will also aid in highlighting the ad-

vantages and disadvantages between the two different robust control design methods

adopted for the research project. To summarise, the chapter will provide:

211
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1. a comparison between each of the different algorithms - GA, BF and HBF

- employed during the research project by adopting two performance indices:

efficiency and effectiveness of the evolutionary algorithms.

2. a comparison between the two control design methods - the experimental and

identification based approach - employed to achieve the aims of the research by

harnessing the performance indices of efficiency and effectiveness.

3. recommendations on the best combination of robust control system design

method and evolutionary algorithms to employ depending upon the complexity

of the system that needs to be controlled.

4. suggestions for future directions of the research work in order to further facilitate

the realisation of the benefits that can be reaped from the ardent investments

of time and effort that have been made in the research project

GA BF HBF

GA BF HBF

Compares

Evolutionary

Algorithms

Compares 

Evolutionary

Algorithms

Compares

Evolutionary

Algorithms

Compares 

Evolutionary

Algorithms

Mechanical Load

1. Stiff shaft

2. Flexible shaft

Secondary row

Main row

Main row

Secondary row

Figure 8.1: Classification of Results

Figure 8.1 summarises the classification of the results obtained for the research project

and also presents a format for comparing the results obtained using the different

robust control system design methods and evolutionary algorithms.
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(a) First Stage: Root Locus Plots
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(b) First Stage: Step Response
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(c) Second Stage: Root Locus Plots
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(d) Second Stage: Step Response
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(e) Final Stage: Root Locus Plots
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(f) Final Stage: Step Response

Figure 8.2: Three stages during EA optimisation for Stiff Shaft Plant

Figures 8.2 and 8.3 present a pictorial reminders of the typical results achieved during

the optimisation process for the control system design; they show the root-locus and

step response plots of closed-loop systems for the stiff and flexible shaft mechanical

loads evolving to the best possible solutions through three distinct phases of the

optimisation process. Figure 8.2(a) shows a solution from the initial stages of the

closed system optimisation process for the stiff shaft mechanical plant. The solution

obtained clearly has some issues with stability; this can be observed in the root-
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locus plot, with some of its closed loop poles existing outside the boundaries set

by the unit circle and also in its time domain response to a step speed demand of

1000rpm and 2000rpm and a disturbance torque of 0.15Nm at 2.05s in figure 8.2(b).

Figures 8.2(c) and 8.2(d) highlight a solution that has been achieved further into the

EA optimisation while figures 8.2(e) and 8.2(f) show the final solution of the EA

optimisation process.
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(b) First Stage: Step Response
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(c) Second Stage: Root Locus Plots
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(d) Second Stage: Step Response
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(e) Final Stage: Root Locus Plots
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(f) Final Stage: Step Response

Figure 8.3: Three Stages during EA optimisation for Flexible Shaft Plant
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In a similar fashion, figures 8.3(a) and 8.3(b) show a solution from the initial stage;

its response is clearly oscillatory and this is highlighted in the root-locus plots that

has some of its closed loop poles just outside the unit circle. Figures 8.3(c) and 8.3(d)

show an improved response which occurs further into the optimisation process and

finally, figures 8.3(e) and 8.3(f) show the best possible solution arrived at by the end

of the EA optimisation process.

8.2 Performance Index

The comparison of the investigated evolutionary algorithms and the different control

design methods is based on two performance indicators: efficiency and effectiveness.

These indices are considered based on the suggestions provided in [90], which illus-

trates a comparison of Genetic Algorithms other Global Optimisation Algorithms and

its use in Calibration Problems. The performance indices employed are described as

follows:

1. Efficiency: considers the period taken by each algorithm to reach a global min-

imum. The period is measured by the number of function evaluations required

by each algorithm to arrive at its best objective value.

2. Effectiveness: considers the minimum objective value achieved by each opti-

misation algorithm after its termination criteria has been met.

In order to compare the effectiveness of the different algorithms employed and the

developed control design methods, it was necessary to redefine a new objective func-

tion termed the Performance Comparison Function (PCF ). The function is used

to provide a common platform to compare the solutions obtained by adopting the

different robust control design techniques and evolutionary algorithms. The index

considers the rise time, (2%) settling time and overshoot of each controlled response

produced separately by the nine combinations of parameter variations for the me-

chanical loads considered during the automated experimental optimisation process
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described in section 6.3. The PCF also considers the Integration of the Absolute

Error (IAE) between their respective responses and the speed demand. The perfor-

mance index is given as:

PCF value =
9
∑

i=1

(rise time + settling time + overshoot + IAE) (8.1)

8.3 Comparison of Evolutionary Algorithms

Within this section, the evolutionary algorithms employed will be compared based on

the performance indices described in the previous section. The aim of the comparison

is to highlight the algorithm provides best performance under each of the two robust

control design methods.

8.3.1 Comparison under Identification-based Approach

Figures 8.4 and 8.5 show the progress made by each optimisation algorithm in finding

an optimum solution for the Identification-based design of robust controllers for the

stiff and flexible shaft mechanical loads.

Stiff Shaft Mechanical Load: Figure 8.4 shows the progressive descent of the

objective function in the investigated algorithms up to their eventual final output.

Their profiles are drawn out on the same axis to provide a lucid comparison on the

effectiveness and efficiency of the employed algorithms. For the BF , its profile shows

that up until 6900 function evaluations, only bad solutions are experienced. There

on after, it discovers better solutions and first reaches 10% of its minimum objective

value that corresponds to a PCF value of 41.34 after approximately 36400 function

evaluations. The reason for its very distinct transition can be attributed to its focus

on a local search which dominates its search procedure and only occasionally adopting
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Figure 8.4: EA Stiff Shaft Controller Optimisation

a global search through the elimination and dispersal events. The GA profile tells a

somewhat similar story: up until the 7130 function evaluations, only bad solutions are

discovered. Thereto, significantly better solutions are discovered until it first arrives

(10%) around its optimal solution that has a corresponding PCF value of 39.54; this

occurs after 29500 function evaluations have been performed.

The best (most efficient and effective) of the three algorithms, based upon the per-

formance criteria employed, is the HBF ; it converges fastest, after 7800 function

evaluations, to 10% of its optimal solution that has a corresponding PCF value of

37.33. This is also the smallest PCF value attained. The algorithms demonstrates

improvements over its parents, the BF and GA; it incorporates the best features of

each parent algorithm and the result is an improvement in its global search ability.

Stiff Shaft Flexible Shaft

Evaluations PCF Value Evaluations PCF Value

BF 36400 41.34 34000 109.31

GA 29500 39.54 10000 108.57

HBF 7800 37.33 6400 107.23

Table 8.1: EA Performance Summary under Theoretical Design Method
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Figure 8.5: EA Flexible Shaft Controller Optimisation

Flexible Shaft Mechanical Load: The PCF profiles created by the algorithms

in their respective searches for an optimal solution is shown in figure 8.5. In its

optimisation procedure, the BF first reaches 10% of its final solution after 34000

function evaluations. The optimal solution attained by the BF has a corresponding

PCF value of 109.31. The best solution attained by the GA has a corresponding

PCF value of 108.57; After approximately 10000 function evaluation, the algorithm

first discovers a value, which is 10% of its best. As in the case of the robust controller

optimisation for the stiff shaft load, the HBF is the best optimisation algorithm in

terms of the performance criteria employed: it obtains a best solution with PCF value

of 107.23 and it first arrives at 10% of its best objective value after 6400 function

evaluations. The summarised details of the optimisation results obtained by the

different algorithms employed under the Identification-based control design method

for the mechanical loads is shown in Table 8.1.

8.3.2 Comparison under Experimental Control Design

Figures 8.6 and 8.7 show the progress profiles achieved by the different algorithms

employed during the automated experimental robust control design of the controllers
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for the stiff and flexible shaft loads.

Stiff Shaft Mechanical Load: From figure 8.6(b), it can be seen that the BF

optimisation algorithm first converges to 10% of its best value after about 50000

function evaluations. The best controller solutions discovered by the BF have a

corresponding PCF value of 38.63. The GA give a better performance in its search

for a best solution: it reaches 10% of its best solution after 8000 function evaluations

and with a corresponding PCF value of 37.43, the GA performs better than the BF

in its optimisation process. The HBF outperforms the both the BF and GA firstly,

by reaching 10% of its best value, only after 7000 function evaluations and secondly,

the minimum value it attains has a corresponding PCF value of 36.31.
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Figure 8.6: EA Experimental Stiff Shaft Controller Optimisation

Flexible Shaft Mechanical Load: Figure 8.7(b) highlights the latter stages of the

optimisation for each of the employed algorithms. The BF first reaches about 10%

of its best solution after about 32000 function evaluations. Its best solution has a

corresponding PCF value of 109.23. The GA gives a better overall performance than

the BF : it reaches 10% of its final value only after about 5000 function evaluations.

and its best solution has a lower PCF value of 107.53. Again the HBF , which

combines the excellent local search capability of the BF with the more global search

ability of the GA is the best performer: it reaches 10% of its best objective value
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after about 4000 function evaluations and its best solution has a corresponding PCF

value of 106.39. The summarised results obtained by the different algorithms under

the automated experimental control design method for the mechanical loads is shown

in Table 8.2.
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Figure 8.7: EA Experimental Flexible Shaft Controller Optimisation

The performances of the GA relative to the BF obtained is supported by the re-

sults provided in [68] and [70], which highlight the more global search ability of the

GA over the BF from the quicker convergence it achieves around its final solution

during its search procedure. The performance of the HBF display improvements

over its parent algorithms. These improvements were ’somewhat’ expected given the

performance comparisons, obtained in [70], [71] and [72], between other Hybrid Evo-

lutionary Algorithms and their parent algorithms. It must be highlighted that the

Stiff Shaft Flexible Shaft

Evaluations PCF Value Evaluations PCF Value

BF 50000 38.63 32000 109.23

GA 8000 37.43 5000 107.53

HBF 7000 36.31 4000 106.39

Table 8.2: EA Performance Summary under Experimental Design Method
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comparisons were implemented for optimisation tasks, which are different from that

considered within this research project.

8.4 Comparison of Control Design Methods

The efficiency and the effectiveness of the design methods employed with each of the

different optimisation algorithms has be compared. The summary of the comparison

will be presented in the following sections.

8.4.1 Comparison under GA

Figure 8.8 shows the profiles of the GA employed under the identification-based and

experimental design methods juxtaposed on the same axis. It can be observed that

the experimental approach performs better than its identification-based counterpart

in terms of the speed in finding a best controller solution for each mechanical load

considered for the research project.
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Figure 8.8: GA optimisation Profile

The experimental approach can be said to be more efficient because it takes fewer
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function evaluations in achieving an optimal solution. The experimental approach

takes approximately 8000 and 5000 function evaluations which is better than the

corresponding 29500 and 10000 function evaluations required by the identification-

based approach for the stiff and flexible shaft loads respectively.

The experimental design method is also more effective, slightly achieving a better

quality controller solutions than its counterpart for both mechanical loads: for the stiff

and flexible shaft loads respectively, the experimental approach achieves controlled

responses with PCF values of 37.43 and 107.53 while the identification-based design

achieves a PCF value of 39.54 and 108.57.

8.4.2 Comparison under BF

Figure 8.9 presents a side by side comparison of the progressive search made by the

identification-based and experimental approach, each employing the BF optimisation

algorithm during the design procedure.
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Figure 8.9: BF optimisation Profile

For both the stiff shaft and flexible shaft load cases, the experimental design method

is more effective because it achieves better quality controller solutions with a PCF
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value of 38.63 and 109.23 compared with the PCF value of 41.34 and 109.31 obtained

by the identification-based approach respectively.

In terms of efficiency, although for the stiff shaft load, the identification-based ap-

proach is more efficient given it requires 36400 function evaluations to arrive around

its best solution compared to the 50000 function evaluations required by the experi-

mental approach, the latter is slightly more efficient in optimising controllers for the

flexible shaft load, given it requires 32000 function evaluations compared to the 34000

function evaluations required by its alternative.

8.4.3 Comparison under HBF

In figure 8.10, the PCF profiles of the progressive search of the HBF employed under

the identification-based and experimental approach are presented on the same axis.
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Figure 8.10: HBF optimisation Profile

In employing the HBF , the experimental approach is more efficient in achieving a

good end result to the optimisation task. It requires 7000 and 4000 function eval-

uations for the stiff and flexible shaft loads respectively. The theoretical approach

is less efficient given it arrives around its best objective value after 7800 and 6400
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function evaluations during the controller optimisation for the stiff and flexible shaft

load respectively.

Regarding the effectiveness of the two approaches, The experimental approach is

marginally more effective given the better quality of the controller solutions it discov-

ers during its search procedure. For the stiff and flexible shaft loads, with the experi-

mental approach, the HBF achieves minimum PCF values of 36.31 and 106.39 while

the identification-based approach attains minimum values of 37.33 and 107.23. Also,

a point to note is, in employing the HBF for the optimisation problem, the differ-

ence between the results obtained using the identification-based and the experimental

design method is very much reduced.

8.5 Recommendations on Design Strategy

Based upon the results and logically exhaustive discussions provided in section 8.3,

certain recommendations will be made in this section on the design strategies analysed

in this research project. Also recommendations on a design strategy will be proposed

within a wider context; this would depend on the complexity of the plant for which

a control system is to be designed. It would also depend on time constraints placed

on finding suitable robust controller solutions to design problems.

For this research project, in designing robust controllers for the case of a stiff shaft

mechanical load, an Experimental Approach that employs the HBF optimisation

algorithm would be the preferred design strategy given it is the most efficient in its

search procedure and it is most effective, in terms of the quality of the solution it

achieves. In a similar vein, for the design of robust controllers for the flexible shaft

mechanical load case, an Experimental Approach that employs the HBF turns out

to be the preferred choice for very much the same reasons highlighted earlier.

A possible reason for the success of the experimental approach over the theoreti-

cal approach could be that, apart from the fact that the real system prototype is
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directly used, the experimental approach is optimised specifically for distinct combi-

nations of mechanical parameter values. For this reason, it is highly optimised for

these values and, given a similar objective function is employed within the Perfor-

mance Comparison Function, it has a better value representing its quality. With the

identification-based approach, the controllers are optimised for a continuum of combi-

nations of parameter values that may include other combinations slightly larger than

the maximum that is distinctly defined in the experimental design approach. Hence,

with the identification-based approach, what we have is a controller that is robust

to a range of parameters values that is slightly larger than the range considered in

the experimental design technique. In so doing, sacrifices are made in performance

for the particular combination of parameters used in the Performance Comparison

Function (PCF ).

It must be highlighted that the small price paid in employing the identification-based

approach, in terms of performance, is greatly rewarded by the fact that the risks of

wear and damage to the experimental system is entirely avoided during the control

optimisation procedure. Regarding the Evolutionary Algorithms, in all the consid-

ered cases, the HBF is the overall best optimisation algorithm under the considered

performance criteria.

In a wider context, given the experience obtained during the research project, if the

system for which a controller is to be designed is somewhat complex, it could be

advisable to employ a combination of the direct experimental design method and the

identification-based approach in optimising robust controllers. This would involve

possibly testing controllers first with on a good simulation model of the system under

the theoretical design method and only those that are potentially good solutions will

be further tested on the rig, which should be kitted with all the necessary protec-

tion circuits, during the automated design procedure with the preferred algorithm

being the Hybrid Bacterial Foraging optimisation algorithm. The obvious benefits of

such an approach over the experimental design method could be a reduction in the

time required for the optimisation and minimised risk of wear and damage to the

experimental system.
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8.6 Conclusion and Further Work

The objectives of the research project highlighted in section 1.3, have successfully

been achieved. The milestones achieved during the project can be summarised as

follows:

1. Three different Evolutionary Algorithms, one of which is an original contribu-

tion have been specifically developed in software within MATLAB/Simulink.

They are the Genetic Algorithms (GA), Bacterial Foraging (BF ) and Hybrid

Bacterial Foraging (HBF ) Algorithm to enable the implementation of robust

control design techniques.

2. Two Automated Robust Control Design Methods have been successfully devel-

oped. The First method is a direct design approach implemented on the actual

experimental set-up. It is known as the Automated Experimental Robust Con-

trol Design Method. The second avoids the direct design method but instead

employs a more theoretical approach to robust control system design, which

adopts a novel strategy by combining a GA system identification process and a

frequency domain H∞ control design method. It is aptly termed the Automated

Robust Identification-Based Control Design Method.

3. A detailed comparison between the different algorithms employed has been pro-

vided based on the results obtained and the way in which they are employed

during the separate search procedures implemented by the different algorithms.

The result of the comparison presents the HBF as the preferred candidate for

robust control design

4. In a similar manner, a detailed comparison of the Design methods employed

has been provided. Although the results highlights that the Experimental ap-

proach in combination with the HBF is the overall best, in the end, using HBF

and the Experimental or the Identification-based approach produce robust con-

trol systems with almost equivalent performance, with the advantage that the



8.6. CONCLUSION AND FURTHER WORK 227

identification-based approach does not impose risks of damage and wear to the

experimental system.

The Automated design methods developed in the research project has the potential

to improve the overall efficiency of variable speed drives which are widely employed in

industries worldwide. Given the age of Green Energy, these design methods could aid

reductions in green-house emissions and improve energy conversion within generation

systems. It also has certain unique potentials for commercialisation, particularly in

the process of commissioning variable speed drives. To make the highlighted potential

even more practical in the near future, there are a couple of suggestions for further

work. The first is directed at improving the performance, in terms of efficiency and

effectiveness of the adopted evolutionary algorithms by employing different initiali-

sation methods for population generation. Given the validation obtained from the

research work on the strength of the developed methods, a second suggestion would

be to apply these algorithms online on industrial processes; its efficiency can then be

compared with already established process control systems. By vividly highlighting

its potentials in a more practical setting, they could come to fruition more quickly.
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Appendix B

Robust Performance Conditions

B.1 Nominal Stability

For the unperturbed closed loop control system in figure 7.11, the closed loop transfer

function is given by

CG0

1 + CG0

=
L

1 + L
, where L = CG0 (B.1)

Using the Nyquist Stability Criterion, the internal stability of the nominal feedback

system is determined by considering the Nyquist plot of its characteristic equation,

(1+L). If the nominal feedback system is internally stable, two conditions will hold

true [78]:

1. The Nyquist plot of (1+L) does not pass through the critical point of (-1,0)

2. The number of counterclockwise encirclements equals the number of poles of

G0 in the real axis of the s-plane, Re(s) ≥ 0 plus the number of poles of C in

Re(s) ≥ 0

241
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B.2 Robust Stability

This is simply the internal stability for each of the plants that exist within the un-

certainty (perturbed) model. Using the Nyquist Stability Criterion, if the system has

a nominal closed loop model that is internally stable, the system’s robust stability is

certain only if the perturbations introduced by the other plants within the uncertainty

is less than one.

In the following sections, the robust stability of each uncertainty model will be derived

by focusing on the modified characteristic equation in order to identify the pertur-

bation introduced on the Nyquist plot of the internally stable nominal closed loop

system

B.2.1 Additive Uncertainty

The perturbation model, G is represented as

G = G0 + ∆Wa (B.2)

The perturbed transfer function for L thus becomes

GC = (G0 + ∆Wa)C (B.3)

The key equation that considers the modified characteristic equation of (B.1) is

= 1 + (G0 + ∆Wa)C

= (1 + CG0)

(

1 +
∆WaC

1 + CG0

)

= (1 + L)(1 + ∆WaCS) (B.4)

where L = CG0 and S =
1

1 + CG0

From (B.4), the robust stability criteria of the additive uncertainty model is

‖WaCS‖
∞

< 1 (B.5)
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B.2.2 Multiplicative Uncertainty

Perturbation model,G is represented as

G = (1 + ∆Wm) G0 (B.6)

The perturbed transfer function for L thus becomes

GC = ((1 + ∆Wm) G0)C

= (1 + ∆Wm) L (B.7)

The key equation that considers the modified characteristic equation of (B.1) is

= 1 + (1 + ∆Wm) L

= 1 + L + ∆WmL = (1 + L)

(

1 +
∆WmL

(1 + L)

)

= (1 + L)(1 + ∆WmT ) (B.8)

where T =
L

1 + L

From (B.8), the robust stability criteria of the additive uncertainty model is

‖WmT‖
∞

< 1 (B.9)

B.2.3 Feedback Uncertainty

First Model: The perturbation model, G is represented as

G =
G0

1 + ∆Wf

(B.10)

The perturbed transfer function for L thus becomes

GC =
G0

1 + ∆Wf

C

=
L

1 + ∆Wf

(B.11)
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The key equation that considers the modified characteristic equation of (B.1) is

= 1 +
L

1 + ∆Wf

=
1 + L + ∆Wf

1 + ∆Wf

=

(1 + L)

(

1 +
∆Wf

1 + L

)

1 + ∆Wf

= (1 + L)

(

1 + ∆WfS

1 + ∆Wf

)

(B.12)

From (B.12), the robust stability condition for the considered feedback uncertainty is

‖WfS‖∞ < 1 (B.13)

Second Model: The perturbation model, G is represented as

G =
G0

1 + ∆WfG0

(B.14)

The perturbed transfer function for L thus becomes

GC =
G0

1 + ∆WfG0

C

=
L

1 + ∆WfG0

(B.15)

The key equation that considers the modified characteristic equation of (B.1) is

= 1 +
L

1 + ∆WfG0

=
1 + L + ∆WfG0

1 + ∆WfG0

=

(1 + L)

(

1 +
∆WfG0

1 + L

)

1 + ∆WfG0

= (1 + L)

(

1 + ∆WfG0S

1 + ∆WfG0

)

(B.16)

From (B.16), the robust stability condition for the considered feedback uncertainty is

‖WfG0S‖∞ < 1 (B.17)
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B.3 Nominal Performance

The nominal performance of the unperturbed system in figure 7.11 is given as (B.18)

or (B.19)

‖WsS‖∞ < 1 (B.18)

‖WtT‖
∞

< 1 (B.19)

where S =
1

1 + CG0

and T =
CG0

1 + CG0

For the Uncertainty models considered, their respective sufficient conditions for nom-

inal performance will be derived by separately considering (B.18) and (B.19).

B.3.1 Additive Uncertainty

Nominal Performance according to (B.18): Substituting (B.2) into the expres-

sion for S, gives the perturbed sensitivity function as (B.20)

=
1

1 + CG0 + ∆WaC

=
1

(1 + CG0)

(

1 +
∆WaC

1 + CG0

)

=
S

1 + ∆WaCS
(B.20)

Substituting (B.20) into (B.18), the nominal performance condition is

∥

∥

∥

∥

WsS

1 + ∆WaCS

∥

∥

∥

∥

∞

< 1 (B.21)

Nominal Performance according to (B.19): Substituting (B.2) into the expres-
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sion for T , gives the perturbed sensitivity function as

=
C(G0 + ∆Wa)

1 + C(G0 + ∆Wa)

=

CG0

(

1 +
∆Wa

G0

)

(1 + CG0)

(

1 +
∆WaC

1 + CG0

)

=

T

(

1 +
∆Wa

G0

)

1 + ∆WaCS
(B.22)

Substituting (B.22) into (B.19), the nominal performance condition is

∥

∥

∥

∥

∥

∥

∥

∥

WtT

(

1 +
∆Wa

G0

)

(1 + ∆WaCS)

∥

∥

∥

∥

∥

∥

∥

∥

∞

< 1 (B.23)

B.3.2 Multiplicative Uncertainty

Nominal Performance according to (B.18): Substituting (B.6) into the expres-

sion for S, gives the perturbed sensitivity function as

=
1

1 + C (1 + ∆Wm) G0

=
1

(1 + CG0)

(

1 + ∆Wm

(

CG0

1 + CG0

))

=
S

1 + ∆WmT
(B.24)

Substituting (B.24) into (B.18), the nominal performance condition is

∥

∥

∥

∥

WsS

1 + ∆WmT

∥

∥

∥

∥

∞

< 1 (B.25)

Nominal Performance according to (B.19): Substituting (B.6) into the expres-
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sion for T , gives the perturbed complementary sensitivity function as

=
(1 + ∆Wm)CG0

1 + (1 + ∆Wm)CG0

=
CG0(1 + ∆Wm)

1 + CG0 + ∆WmCG0

=
CG0(1 + ∆Wm)

(1 + CG0)

(

1 +
∆WmCG0

1 + CG0

)

=
T (1 + ∆Wm)

(1 + ∆WmT )
(B.26)

Substituting (B.26) into (B.19), the nominal performance condition is

∥

∥

∥

∥

WtT (1 + ∆Wm)

(1 + ∆WmT )

∥

∥

∥

∥

∞

< 1 (B.27)

B.3.3 Feedback Uncertainty

Nominal Performance according to (B.18): Considering the First model, de-

fined by (B.10), and substituting the expression into that for S, gives the perturbed

sensitivity function as

=
1

1 +
CG0

1 + ∆Wf

=
1 + ∆Wf

1 + CG0 + ∆Wf

=
1 + ∆Wf

(1 + CG0)

(

1 +
∆Wf

1 + CG0

)

=
S(1 + ∆Wf )

1 + ∆WfS
(B.28)

Substituting (B.28) into (B.18), the nominal performance condition is

∥

∥

∥

∥

WsS(1 + ∆Wf)

1 + ∆WfS

∥

∥

∥

∥

∞

< 1 (B.29)
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Nominal Performance according to (B.19): Considering the First model, de-

fined by (B.10), and substituting the expression into that for T , gives the perturbed

complementary sensitivity function as

=
CG0

1 + ∆Wf + CG0

=
CG0

(1 + CG0)

(

1 +
∆Wf

1 + CG0

)

=
T

1 + ∆WfS
(B.30)

Substituting (B.30) into (B.19), the nominal performance condition is
∥

∥

∥

∥

WtT

1 + ∆WfS

∥

∥

∥

∥

∞

< 1 (B.31)

Nominal Performance according to (B.18): Considering the Second model,

defined by (B.14), and substituting the expression into that for S, gives the perturbed

sensitivity function as

=
1

1 +
CG0

1 + ∆WfG0

=
1 + ∆WfG0

1 + CG0 + ∆WfG0

=
1 + ∆WfG0

(1 + CG0)

(

1 +
∆WfG0

1 + CG0

)

=
S(1 + ∆WfG0)

(1 + ∆WfG0S)
(B.32)

Substituting (B.32) into (B.18), the nominal performance condition is
∥

∥

∥

∥

WsS(1 + ∆WfG0)

(1 + ∆WfG0S)

∥

∥

∥

∥

∞

< 1 (B.33)

Nominal Performance according to (B.19): Considering the Second model,

defined by (B.14), and substituting the expression into that for T , gives the perturbed
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complementary sensitivity function as

=
CG0

1 + ∆WfG0 + CG0

=
CG0

(1 + CG0)

(

1 +
∆WfG0

1 + CG0

)

=
T

1 + ∆WfG0S
(B.34)

Substituting (B.34) into (B.19), the nominal performance condition is

∥

∥

∥

∥

WtT

1 + ∆WfG0S

∥

∥

∥

∥

∞

< 1 (B.35)

B.4 Robust Performance

For each uncertainty model, the robust performance condition the nominal perfor-

mance and robust stability conditions. In the following sections, sufficient conditions

for robust performance for the considered uncertainty models will be summarised

B.4.1 Additive Uncertainty

For this uncertainty model, the robust performance conditions can be expressed as

(B.36) or (B.37)

‖WaCS‖
∞

< 1 and

∥

∥

∥

∥

WsS

1 + ∆WaCS

∥

∥

∥

∥

∞

< 1 (B.36)

‖WaCS‖
∞

< 1 and

∥

∥

∥

∥

∥

∥

∥

∥

WtT

(

1 +
∆Wa

G0

)

(1 + ∆WaCS)

∥

∥

∥

∥

∥

∥

∥

∥

∞

< 1 (B.37)
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B.4.2 Multiplicative Uncertainty

The robust performance conditions can be expressed as (B.38) or (B.39)

‖WmT‖
∞

< 1 and

∥

∥

∥

∥

WsS

1 + ∆WmT

∥

∥

∥

∥

∞

< 1 (B.38)

‖WmT‖
∞

< 1 and

∥

∥

∥

∥

WtT (1 + ∆Wm)

(1 + ∆WmT )

∥

∥

∥

∥

∞

< 1 (B.39)

B.4.3 Feedback Uncertainty

First model: The robust performance conditions can be expressed as (B.40) or

(B.41)

‖WfS‖∞ < 1 and

∥

∥

∥

∥

WsS(1 + ∆Wf )

1 + ∆WfS

∥

∥

∥

∥

∞

< 1 (B.40)

‖WfS‖∞ < 1 and

∥

∥

∥

∥

WtT

1 + ∆WfS

∥

∥

∥

∥

∞

< 1 (B.41)

Second model: The robust performance conditions can be expressed as (B.42) or

(B.43)

‖WfG0S‖∞ < 1 and

∥

∥

∥

∥

WsS(1 + ∆WfG0)

(1 + ∆WfG0S)

∥

∥

∥

∥

∞

< 1 (B.42)

‖WfG0S‖∞ < 1 and

∥

∥

∥

∥

WtT

1 + ∆WfG0S

∥

∥

∥

∥

∞

< 1 (B.43)
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