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Abstract

Universities have to manage their teaching space, and plan future needs. Their efforts

are frequently hampered by, capital and maintenance costs, on one hand, pedagogical and

teaching services on the other. The efficiency of space usage, can be measured by the

“utilisation”: the percentage of available seat-hours actually used. The observed utilisation,

in many institutions, is unacceptably low, and this provides our main underlying motivation:

To address and assess some of the major factors that affect teaching space usage in the hope

of improving it in practise. Also, when performing space management, managers operate

within a limited number and capacity of lecture theatres, tutorial rooms, etc. Hence, some

teaching activities require splitting into different groups. For example, lectures being too

large to fit in any one room and seminars/tutorials being taught in small groups for good

teaching practise. This thesis forms the cornerstone of ongoing research to illuminate issues

stemming from poorly utilised space and studies the nature of constraints that underlies

those low levels of utilisation. We give quantitative evidence that constraints related to

timetabling are major players in pushing down utilisation levels and also, devise “Dynamic

Splitting” algorithms to illustrate the effects of splitting on utilisation levels. We showed the

existence of threshold between phases where splitting and allocation is “always possible”

to ones where “it’s never possible”, hence, introducing a practical application of Phase

Transition to space planning and management. We have also worked on the long-term

planning aspect of teaching space and proposed methods to improve the future expected

utilisation.

xi



Acknowledgements

Thank you GOD, for you made this venture happen, and cross the thorny tough path of

what is a PhD. Thank you for the flood of love and care that got me to where I am now,

through the most difficult and enduring times.

I would like to express my most sincere gratitude to my supervisor Professor

Edmund Burke. His guidance and support all along my PhD has made it possible to

successfully complete this work.

Many thanks to Dr Barry McCollum and the team of RealTime Solutions for their

unrelenting help and advice provided through all years of my research.

Deep appreciation to Dr Dario Landa-Silva and Dr Andrew Parkes, for the tech-

nical help, encouragement and expertise they have provided. This research would not have

been completed without their precious and sound advice.

I would like to thank, the staff and all students of the ASAP Group at the univer-

sity of Nottingham. Thank you for creating a warm and friendly environment for academic

research, specially, Matthieu Basseur, Jaume Bacardit, Ruibin Bai, Timothy Curtois, Ger-

man Terrazas Angulo, Jason Atkin, Geert de Maere, Antonio Vazquez, Ziad Azar, Helen

Newton and Lorna Goodwin.

Finally, I am very grateful to my external examiners, Professor Sanja Petrovic and Dr

William Fawcett for their highly valuable comments and suggestions.

xii



1

Chapter 1

Introduction

Space, like Time, is Money

(NAO1)

1.1 Background and motivation

The university sector, in the UK, suffers from chronic space under-usage. Decisions related

to the provision of teaching space are complex, over-constrained, and directly impact the

costs and quality of service for students and staff. For example, over-provision of space leads

to higher capital, maintenance and running costs, while under-provision leads to poorer

service with teaching events and activities being unable to find space or being forced into

inappropriate timeslots or locations.
1The National Audit Office, from “Space Management in Higher Education: A Good Practice Guide

(1996)”
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Furthermore, there is evidence that the current system is deficient. A simple met-

ric, used by the HEFCE2, to measure the efficiency of teaching space usage is “Utilisation”

which gives an indication of the percentage of “seat-hours” being actually used. There are

reports suggesting that levels of teaching space utilisation in UK universities are rather low

(around 20-30%) (McCollum and McMullan, 2004; McCollum and Roche, 2004). Paradox-

ically, there is often a perception that there is lack of teaching space because it can be

difficult to find appropriate rooms and timeslots when organising teaching events.

As an example of tools that have been used to relate utilisation and space usage,

from a statistical point of view, we can consider the inefficiency multiplier3 studied by SMG4,

which explores the amount of space made available, for every m2 in use, at a given utilisation

level.

According to SMG, a higher utilisation rate implies that less space is being pro-

vided, and a lower rate, means more space is provided per m2 in use. We can infer therefore,

that, low utilisation figures lead to a high cost of space in support for a teaching activity,

and a lower income ratio per m2.

This in turn, will imply that an aggressive approach to improve low utilisation

levels will have a large cost impact. SMG also reports that:

“because of the non-linear relationship between utilisation rates and space provi-
sion, where utilisation is very low, a small increase can have a significant impact
on the amount of space provided and on the attendant cost.”

Therefore, acquiring extra space for academic activities is generally met with reluctance

from space and estate managers on the basis of poor space management. Hence, an overall
2Higher Education Funding Council for England. See www.hefce.ac.uk
3Report on Space utilisation: practice, performance and guidelines
4UK Higher Education Space Management Group. See www.smg.ac.uk



1. introduction 3

aim of universities is to improve the utilisation of teaching space. Nevertheless there must be

limits on what is possible to achieve within the context of practical objectives of timetabling

in addition to space issues. In a naive approach to space planning, one might think that if

the overall seats-supply matches closely the overall seats-demand, it should be possible to

allocate teaching space with high (close to 100%) utilisation levels. However, in practice

this will not be achievable. Instead some lower utilisation might be expected; but precisely

how low?

This thesis forms the cornerstone of an ambitious, ongoing project to understand

and perhaps predict what utilisations universities nowadays might be expected to reliably

achieve, and how to achieve them.

1.1.1 Planning versus timetabling

Before proceeding further, it is important to set the context for the work in this thesis, and

in particular, to emphasise the differences from general course or curriculum timetabling.

As is known for capacity planning problems, there are multiple time-scales and

rolling time horizons involved. At a high level, we may think of the following rough division

into time phases5:

• Space Planning: “Long term” campus or new building design, with time hori-

zon of around 5-50 years. Planning would probably require a new space artchitec-

ture/modelling.

• Space Management: “Short term” remodelling of existing space, with time horizon
5The division is likely to be approximate; phases might well overlap, planning and management are likely

to be repeated, etc.
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of around 1-5 years, mainly for an “at the time” purpose-fit accomodation.

• Course Timetabling: “Immediate”, allocation of teaching events to times and

rooms for the next term or semester. The time horizon is “immediate” because it

needs to be done for the next teaching session.

Space Planning is concerned with decisions as to which rooms ought to be built or re-

allocated to different tasks. In particular, the long-range nature of space planning implies

that decisions need to be made before the exact details of current timetables, student

numbers, etc, become available.

Common approaches to deal with this incomplete information are to consider, the

so called space norms. For example, a norm could be a physical objective such as 5m2

per Ph.D. student. That will form the basis for space management and also office space

allocation (OSA), and provides a reasonable foundation for space planning, since one can

use these norms to estimate the overall demand for office space, and subsequently match

this demand by a corresponding rooms supply while factoring in a projected utilisation

factor.

While this works well for OSA (because, most offices are all used), attempting to

do this for teaching space allocation is more difficult because the expected low utilisation

leads planners to build in a corresponding excess capacity. Moreover, expected utilisations

are such that this inbuilt “safety margin” has to be as much as a factor of two, or more.

Studies of space planning and management interact with course timetabling but

there is a crucial difference. In instances of course timetabling we are given a set of teaching

events and a set of rooms. From definitions, later in the thesis, it will be clear that utilisation
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is obtained by simple counting of seat demand and availability, that is the seat-hours being

actually used, and is fixed from the outset. One might even say that, as far as utilisation

is concerned, by the time we get to the course timetabling stage then “the damage has

already been done” and there is little that better timetabling can do to fix poor utilisation.

In standard course timetabling, the aim is to optimise other objectives (such as student

preferences) but our focus must lie on the stages before and their interaction with course

timetabling. If we are to study the factors that can change utilisation then it must be

allowed to take many different values for the demand (e.g. teaching events/modules) and

cannot be predetermined. Hence, we must do at least one of (i) vary total demand, and (ii)

vary total capacity.

Most of the approaches in coming chapters will either alter the total demand,

keeping room sizes fixed, or alter the spacetype6 of a given room.

1.1.2 Class splitting

Now we return to the topic of “splitting” of a class. Demand is represented by teaching

events to be allocated to a single room and timeslot. The main assumptions are generally

that all events will fit in available room. In reality, that is different: course splitting has

been driven and motivated by both of the following requirements:

1. Small-Group Splitting: Classes that are intrinsically designed to be taught in small

groups, such as seminars or tutorials.
6more on that in chap. 7
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2. Constraint-Driven Splitting: Classes that could in principle be held without split-

ting, but for which splitting is forced because of other constraints:

(a) capacity constraints: the class is simply too large to fit into one room.

(b) timetable constraints: the enrollment is large and across such a wide spectrum of

students, this class will conflict with many other classes, greatly reducing the chances of

obtaining a conflict-free timetable. Splitting that class into multiple groups can greatly help

ease timetabling pressures, as students are more likely to be able to find a group that is

conflict free for them. We elaborate more on this aspect of splitting in chap. 6. We have

also investigated constraints on numbers and sizes of groups, and found they can also drive

down utilisation.

1.2 Scope and aims

This thesis forms the basis of ongoing research on Teaching Space Allocation (TSA) funded

by the University of Nottingham (through an EPSRC Grant), and RealTime Solutions

Ltd. We have collaborated closely with RealTime Solutions, and they have provided us

with highly valuable advice, and made available several datasets for experimental usage.

Informal conversations with Dr Barry McCollum and Dr Paul McMullan, who have broad

knowledge and practical experience on the space planning sector, have helped us extend

our vision on the most important issues and difficulties we might face in this investigation.

Our main aims in this thesis are to:

1. Understand the main factors that affect space utilisation and identify potential issues.

2. Devise novel ways to do splitting, in order to study it’s effects on space usage.
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3. In the presence of real-world constraints, identify the “critical points” of target utili-

sations, where we detect areas where given utilisations are almost always achievable.

4. investigate the computational costs of achieving different levels of utilisation, in the

presence of other objectives.

5. Study how the patterns of computational costs will impact on space management and

planning.

6. Study the effects of the timetabling constraints on utilisation in cases where splitting is

involved, including a brief study of the interaction between timetabling and splitting.

7. Suggest new models to alter the “spacetype7” of rooms in the hope of improving

expected utilisations.

1.3 Thesis overview

This thesis is organized as follows:

In chapter 2, we survey and discuss previous research on splitting and sectioning, and

expose state-of-the-art models and methodology related to splitting in course timetabling.

The nature of course timetabling requires a brief note on existing terminologies, to help

explain the models. Some other problems closely related problems to space management

and planning are also briefly exposed.

In chapter 3, we introduce the pure teaching space allocation problem, and investigate

the effects of key location and timetabling constraints on utilisation levels. An initial
7Detailed in chap. 7.
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study of the multiobjective nature of the problem, using two and three objectives is also

included in this chapter. We show the real-world effects of various constraints on utilisation

and space management and this serves as a gentle introduction to models introduced later

in the thesis.

In chapter 4, we look at the problem of splitting in teaching space allocation. We provide

a first model for splitting and study the effects that splitting, location and timetabling

constraints have on the utilisation levels. We consider the optimisation problem of “what

is the maximum achievable utilisation in the presence of some of the constraints”. This

chapter also presents a new Dynamic Splitting algorithm in which splitting is performed as

part of the local search.

In chapter 5, we look at the decision problem of whether random subsets of teaching

events are fully allocatable or not. We found that there is a Threshold for “Is it possible

to allocate all events into the available space and achieve a target utilisation UR?”. We

identified “critical values” of target utilisation, UC , if UR < UC the answer is “almost

always yes” but if UR > UC the answer is “almost always no”.

The Threshold is pertinent because it gives a method to determine levels of util-

isation that can be achieved reliably, and so should aid decisions as to how much teaching

space to provide. We have studied also the computational hardness at this threshold and

provided experimental evidence that the problem becomes intractable at the thresholds, by

detecting an Easy-Hard-Easy8 pattern in teaching space allocation.
8Thresholds have been extensively studied within Artificial Intelligence (AI), and it is known that such

thresholds often exhibit an “Easy-Hard-Easy” pattern: with computational costs increasing rapidly as we
approach the threshold
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In chapter 6, we give evidence that when splitting occurs, the timetabling conflicts

gets relaxed. We introduce the notion of partial inheritance to define the extent to which

conflicts between events get resolved as we split. The question that naturally arises is: “how

do conflicts get transmitted from parent events to respective groups as splitting occurs?”.

The main assumption being that, a proper assignment of students to groups can lead to

canceling the effects of timetabling and relaxing conflicts, resulting in less constraints at

the space management level.

In chapter 7, we look at the long-term planning aspect of the teaching space allocation

problem: “How can we re-model teaching space, such that the overall critical utilisation is

improved. We consider this from a spacetype mixing angle, where classes of a given type

do not generally match rooms with the same corresponding spacetype. We provide two

different methods (exact and heuristic) that can alter the spacetype of a room and show

that altering the spacetype profile leads to an improvement in the expected utilisation.

1.4 Contributions of the thesis

We summarize the contributions of the thesis as follows:

1. Introduce, formulate, and provide an initial model for the teaching space allocation

problem, with and without splitting.

2. For the first time, investigate the effects of splitting on the teaching space allocation

problem, and provide a local search based algorithm that preforms Dynamic Splitting

of large teaching events, while achieving optimal space utilisation.
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3. A preliminary investigation of the multiobjective nature of the teaching space alloca-

tion problem with splitting and study trade-off surfaces as a decision tool for assessing

factors affecting space usage.

4. For the first time, using an Integer Programming model for the teaching space al-

location, provide experimental evidence, of how the “Easy-Hard-Easy” pattern of

computational difficulty at phase transitions can interact with space utilisation. This

thesis pioneers a practical aspect of using the Phase Transition to improve space

planning in general and utilisation in particular.

5. Using a student-based allocation model, show that splitting has the potential to reduce

timetabling conflicts, and that studying the splitting problem without timetabling

constraints still provides a reasonable approximation for assessing utilisation levels.

6. From a space planning perspective, provide, for the first time, a model that allows

spacetype mixing, and show that altering the space profile can potentially improve

space utilisation.

7. Devise methods to alter the spacetype profile of rooms with the main goal of improving

the critical utilisation.
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Chapter 2

Splitting-Sectioning-Grouping : State-of-the-Art

The way we see the problem is the problem

Stephen Covey

2.1 Introduction

Proper management of academic teaching space requires a thorough understanding of the

“mechanics” of university timetabling and the different factors that result in space wastage.

This chapter surveys some previous work in university course timetabling with a special

attention to sectioning and splitting.

The academic literature in course timetabling is vast and varied, and what com-

plicates any survey is that, most of the research often use different problem formulations

tailored to specific universities, resulting in a maze of different terminologies. For example,

a course in a given institution, can mean a module in another, or maybe a lecture in a
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UK AMERICAN TSA Others 1 Others 2
LEVEL X course program course curriculum program
LEVEL Y module course module subject course
LEVEL Z Lec/Tut/Wksp section class session class periods
LEVEL S group lecture group N/A N/A

Table 2.1: Course timetabling terminology in the UK, US and in some other universities.
Column TSA contains the terminology used throughout the thesis

third one. We first provide a summary of the terminology12 used across the literature in

order to establish a common ground for the rest of thesis. Later we outline some of the

main course timetabling models relevant to our work and discuss the differences between

different sectioning methodologies. We conclude this chapter with a survey of the different

methodologies used to tackle course timetabling.

2.2 Terminology

Different authors have described their sectioning and timetabling models using institution-

specific ad-hoc terminology. In this section and in figures 2.1, 2.2, and table 2.1, We review

some of the most used terms and relate them to the well known levels of study.

In the American system (table 2.1), mostly used in American and Canadian

universities, (LEVEL X) defines a program: programs generally span multiple years and

students enrol in such programs to obtain their qualifications. e.g. Business. Part of the

requirements for a program , is a course (LEVEL Y) : e.g. Accounting or Finance. While

programs are generally multi-year, courses are semester or single-year teachings. A course

is taught in a series of lectures scheduled at different times in a weekly schedule, where a
1The TSA column of table 2.1, gives the terminology used in this paper.
2We do not intend to provide a typology in this approach, the main goal is establish a common ground

that best describes the sectioning concepts.
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US:section Level

Lecture Level

US:Course Level

US:Program Level BUSINESS

section 2section 2section 1 section 1

Accounting Finance

lecture 2lecture 1 lecture 2lecture 1lecture 1lecture 2lecture 2lecture 1

Student taking Accounting course
attends lectures 1 and 2 of section 2

Figure 2.1: Terminology in American Universities

student is required to attend all of those lectures to complete the course. If the number of

students enrolled in that course is larger then any available room capacity, then new sections

(LEVEL Z) of this course are created (Note, sections can also be created for pedagogical

reasons). Every course section is taught in its own series of lectures (LEVEL S). Therefore,

a student choosing course section 1 for example, will have to attend all the lectures of this

course section. Papers following this model include (Hertz and Robert, 1998; Hertz, 1991;

Carter and Laporte, 1998; Sampson et al., 1995; Stallaert, 1997; Carter, 2000; Aubin and

Ferland, 1989).

As shown in figure 2.1, a program requires more than one compulsory course (e.g.

Accounting and Finance). Courses, in which, enrolment is high are offered in sections.

Students have the choice of which section to join, and are enrolled in exactly one section of

a course. Every section includes a number of lectures. A student is required to attend all

of those lectures scheduled in different times.

The academic system in the United Kingdom, is explained in figure (2.2) and

column UK of table 2.1. A given course (LEVEL X), which is generally multi-year (referred

to as program in the American system), includes many modules (LEVEL Y) of which some
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BUSINESS 

Finance

 
2 3 4 5 61

WORKSHOP

Accounting 

class 2 class 3 class 4

Student attends one of 
group 1 or group 2

Splitting level

class 1

LECTURE TUTORIAL 

Student attends one of 
group 1...6

UK: Course Level

Class level : Student 
 attends all of those classes

1 2

Student attending group 1 of  Workshop of Accouting module
and group 1 for Tutorial of Accouting module

UK: Module level 

 and unsplit class 1 and class 2

LEVEL X

LEVEL Y

LEVEL Z

LEVEL S

Figure 2.2: Terminology in UK Universities

are compulsory and other optional. In the example of figure 2.2, a module (LEVEL Y),

e.g. Accounting, has four classes: two of which are lectures, one is a tutorial type, and

one a workshop type. A student enrolled in this module (LEVEL Y) should attend all of

those classes (LEVEL Z) during the week, which consequently must be allocated at different

times. The classes of type workshop, need to be split into 2 to 3 groups, (LEVEL S),

while tutorials need to be split in as many groups as required so that each group has 15-20

students (depending on the institution). Lectures on the other hand should not be split

unless absolutely required, e.g. because all lecture rooms are fully booked, or this is no room

with enough capacity for all students. Since every type of class splits differently, splitting

would rather happen at the class level (as opposed to at the course level in the American

system, (LEVEL Y)). For example, in the UK system, two students might belong to the

same workshop group (e.g. group 1) but they can however be in 2 different tutorial groups.

The following are examples of papers that use the UK terminology: Mirrazavi

et al. (2003); Abdelaziz Dammak (2006).

Note, in the American system, two lectures of the same section have to have the
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same number of students, however in the UK system with classes like (Lec/Tut/Wksp)

(LEVEL Z) could split in different group numbers, for example a workshop class can be

split in 3-4 groups, while tutorial classes split in 8-9 tutorial groups .

Examples of other terminologies used in course timetabling can be found here:

Smith (1971); Socha et al. (2002). Columns (others 1, others 2) of table (2.1), include

other terminologies used in course timetabling models for some European universities. When

no sectioning or grouping is involved, “sessions” or “class periods” are the lowest level to

be used.

Many of the papers, dealing with graph colouring, where no sectioning is required

use the “course-lecture” terminology. “Lectures” is also a very common term, if no splitting

is needed, usually the goal is to allocate a lecture to a room and time-slot. Lectures will

therefore represent a teaching event that requires allocation. In chap. 3, as no splitting

is performed, we will use the term event to represent allocation of classes that do not split.

2.3 Course Timetabling

2.3.1 Main course timetabling models

NOTE: The student sectioning problem is often called the “grouping sub-problem “ (See

Schaerf, 1999).

Course and University Timetabling has attracted many researchers, over the years. Various

approaches have been studied, compared and tailored to specific academic needs and prefer-

ences. Course Timetabling (CT) problems3 come under different distinct flavours, depend-
3Extensive resources and conference proceedings, on timetabling in general, can be found in Burke and

Ross (1996); Burke and Carter (1998); Burke and Erben (2001); Burke and Causmaecker (2003); Burke
and Trick (2005); Burke and Rudová (2006)
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ing on specific institutions or departmental requirements. The standard course timetabling

formulation can be found in Schaerf (1999); Rossi-Doria et al. (2003, 2002). In that formu-

lation, courses can generally fit in available rooms and there is no need to split or consider

any sectioning4. In the following survey, we will look at models where authors consider

some sort of sectioning, whether directly of indirectly. Most of the models try capture the

real-world aspects of course timetabling, and faced with sectioning requirements, have to

adapt their model to allow some sort of grouping. Timetabling courses - offered in multiple

sections - is problematic. Carter identifies the “timetabling paradox”:

We cannot assign times to sections until we know which students are in each
section. But we cannot assign students to sections until we know when the
sections are timetabled

Most of the approaches to tackle this “paradox” are centred around working in

multiple stages and decomposing the problem into smaller ones, or by performing an initial

grouping of requests to courses before the timetabling stage. Then, after the timetable is

available, students are reassigned to sections, minimising clashes. Note, clashes happen

when a student is assigned to 2 teaching events which are offered in the same timeslot.

There are various ways to classify approaches to sectioning in course timetabling.

The variety of different models and motivations behind most of the research makes this task

challenging. Throughout this chapter we survey the research according to common model

characteristics and approaches relevant to splitting/sectioning. At the highest level, two

large sectioning approaches can be suggested and summarised as follows:

• Course-centred splitting : These are approaches where the timetabling occurs at the
4Unless pedagogical constraints require having multiple sections.
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course level, not considering any decision on students allocation. The interest being

generally on how to assign classes/groups to available rooms, times and/or teachers.

• Student-centred sectioning : Also known as large scale timetabling. It generally in-

cludes a course-based timetabling scheme in addition to the allocation of individual

students to sections of courses. The main goal would be to reduce conflicts resulting

from student enrolment, while achieving the required objectives.

Note, such classification is not strict; some special problems or formulations cannot

be easily placed within the above categories. Therefore, later in the chapter we group some

of the papers, in additional methodology classes.

2.4 Course-centred splitting

In course-centred splitting, conflicts or student clashes are generally part of the input, and

no direct decision on the assignment of individual students to particular sections is required.

We survey some of the most important and relevant papers.

Back in the 70’s, Smith (1971) constructed a statistical model that measures the

probability of assigning courses to rooms, assuming known demand distribution. He con-

sidered student demands for courses as random variables, and the measure used to accom-

modate student demand is the probability of “overflow” which represents the probability

that at least one course cannot be allocated. Dividing student into sections obeyed the

following rules: 1) section size is less then a maximum allowable size determined by the

administrators, 2) number of sections should be minimised, 3) sections should be balanced

in size. Smith’s approach does not study any relationship between the section sizes and
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numbers with other objectives of interest like location, utilisation etc. The problem is not

an optimisation one, and does not cover any space planning issues.

Selim (1988) proposed a split vertices, graph theoretical approach to model the

effect of splitting on the chromatic number in a timetabling conflict graph. His main aim

was to determine the number of sections and the number of periods needed to allocate all

courses into the available timeslots. He provides upper bounds on the minimum number

of sections needed to have a feasible solution and restricts the number of sections for some

type of courses (LEVEL Y)(Lab courses). His approach was merely centred around resolving

conflicts and providing a feasible timetable. It is a decision problem, a modified study of a

graph colouring problem.

Mirrazavi et al. (2003) used goal programming and a genetic algorithm, in a two-

stage approach to solve another variant of university timetabling problems. While goal

programming was mainly used to solve the room allocation problem, a genetic algorithm

assigned timeslots to lectures5. The main “goals”, in their model, are to maximise utilisation

and satisfy teaching constraints. Lectures with sizes larger than available room capacities

needed splitting. Hence, they used a pre-processing stage to divide big lectures into smaller

groups using different (groups, room) combinations. In a later stage, they allow the goal

programming engine to choose the best of these combinations that would improve all goals.

Goals considered were: full lecture allocation, eliminate lecture conflicts, minimise physical

time distance between lectures, and maximise timeslots preferences (“lunch breaks Goal”).

Their approach is rather similar to Tripathy (1992) except that the latter uses a Lagrangian

relaxation approach at the student level (more on Tripathy’s approach in sec. 2.5).
5lecture is at (LEVEL Z)
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Boronico (2000): suggested a multistage6 decision support system, with the fol-

lowing goals : 1) Decide on courses to offer, 2) decide on number of sections per course, and

3) Assign timeslots and faculty to sections. Deciding on the number of sections is done by

a separate mathematical sub-model, which defines a level of coverage 7 to courses, such

that the expected demand for courses is met with a high probability.

Ram et al. (1987) used an algorithmic procedure to tackle the splitting aspect of

academic course planning. Course splits depended on projected course demands and the

size of a course.

2.4.1 Course-centred mathematical models

We now look at some course-centred splitting models that used advance mathematical pro-

gramming techniques to handle the creation of sections and their assignment to timeslots

and rooms. Al-Yakoob and Sherali (2006, 2007) addressed the class timetabling problem

using elaborate mathematical programming models. They suggested large mixed integer,

2-stage formulations. The first stage performs the allocation of class sections to times-

lots, and the second-stage assigns faculty to given sections. The number of sections per

class (LEVEL Z) is fixed. They also consider many different “non-classical” constraints,

e.g. all male/female sections, parking and traffic congestion, classes in consecutive times-

lots, sections of classes spread over different timeslots, flexible student choices, etc. They

compare their approach with a manual assignment and perform a sensitivity analysis by

understanding changes in the standard deviation of different soft constraints.
6Using a Hierarchical mathematical model
7Probability that the expected demand will be met
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Daskalaki et al. (2004, 2005) proposed an elaborate Integer programming model to

tackle a variant of university timetabling problem. The approach includes assigning courses

to teachers, timeslots and rooms while deciding on the number of periods for every session

(LEVEL Z) of a course (LEVEL Y), as well the number of sessions. The number of sessions

is constrained by the availability of time periods. In Daskalaki et al. (2005) they suggest

a 2 stage approach, to overcome the difficulty of solving large problem instances, whereby

their first stage solved the LP relaxation and the second stage solved the integer program

for each day of the week.

Papoutsis et al. (2003) used Column Generation (CG) to assign teachers to classes

and timeslots in a Greek high school. Similarly, Qualizza (2005) used column generation in

a branch and price algorithm and defined a master problem and a sub-model. Both authors

defined (CG) patterns as being the assignment of weekly timetable of a single course. As it is

known in (CG), the linear relaxation of a master model provides the prices for a sub-model.

Solving the sub-model would provide new columns (patterns) for the master model. The

process is iterative.

Avella and Vasil’ev (2005) proposed a formulation for the university course time-

tabling problem UCTP of Gaspero and Schaerf (2002) as an integer linear program. They

studied the relationship between UCTP and set packing to introduce valid inequalities

(cutting planes). The problem does not involve splitting of courses, and there is no decision

support direction on that approach.

In the context of grouping, Dimopoulou and Miliotis (2001, 2004), proposed an

integer programming approach to assign courses and groups of courses to timeslots and
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classrooms. A group, as they define it, is a set of courses that cannot be assigned to the

same timeslot, since they are taken by the same students.

Breslaw (1976) used integer programming to tackle the faculty assignment prob-

lem, assigning sections of courses to faculty. The number of sections is dictated by 1)

the availability of teachers, 2) teachings (the total number of sections per teacher), and 3)

available timeslots so that no time conflicts occur.

Tillett (1975) extended Breslaw’s approach by including teacher preferences (pref-

erence ratings), as a main objective, with the main constraint that all sections of courses

need to be fully allocated.

2.4.2 Course-centred goal programming models

This section reviews approaches focusing on the multiobjective and/or multicriteria nature

of timetabling and splitting problems, when some objectives are favoured over the other

depending on institutional preferences. Harwood and Lawless (1975) used Goal Programming

(Sec. 2.8.1) to examine the conflicting goals in the faculty-course assignment problem.

Their model assigned faculty to courses with the main goal of satisfying personal “faculty

preferences” goals. Other goals included satisfying organisation teaching load requirements,

and teaching staff personal preferences by: 1) selecting specific courses, 2) minimising the

number of teaching preparations, 3) minimising the number of teaching days in a week,

4) minimising the number of night classes, and 5) maximising the number of sections for

the same course (for variety). The major drawback to their model model is that it may

be very difficult to implement. The small instance used the assignment of only seven

faculty members resulting in a model with over one thousand constraints and almost 200
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variables. Department chairpersons do not always have the time or the expertise to develop

such a model for each particular instance. In Harwood and Lawless approach the number

of sections per course is fixed and goals are more directed towards faculty preferences.

Schniederjans and Kim (1987) extended and dealt with limitations of Harwood and Lawless

(1975) approach, mainly in terms of size of the model. They considered that some of the

goals are supposed to be hard constraints, and added extra, university specific goals, like

departmental goal and teaching load requirements. A drawback is that, no time assignments

to courses was considered. Badri (1996) suggested a new Goal Programming (sec. 2.8.1)

model where they extended the work of Schniederjans and Kim by including most of the

goals of Harwood and Lawless and also performing, the course time assignment.

2.4.3 Other methodologies

Other different methodologies for splitting can be found in the following models. Dyer (1976)

used a flow formulation to model the course-teacher-timeslot problem. They presented an

optimisation system where the number of sections per course is not fixed but bounded.

There is no consideration for the section size, and the limiting effects on the section number

is mostly the availability of teaching hours.

Glassey and Mizrach (1986) suggested a decision support system with an opti-

misation module for classroom assignment. They’ve used a heuristic algorithm to assign

classes/sections to rooms and timeslots. The number of sections is fixed in their model.

Bloomfield and McSharry (1979) approach was among the first models to assign

sections to timeslots, rooms and teachers, in a real world problem. They extended the work

of Mulvey (1983) and realised the need to use heuristics in multistage approaches to tackle
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the problem. Their model decides on the number of sections (LEVEL Z) required for every

course (LEVEL Y), based on capacity requirements.

Hertz (1992) used Tabu Search to tackle a variant of class-teacher timetabling.

He considers in addition to the set of classical course timetabling constraints, the teachers

availability, precedence, and compactness of a timetable. The terminology he used, very

similar to that of Column Others 1 in table 2.1, includes curriculum, classes, topics, etc.

There are several classes of students, and every class follows a specific curriculum. Every

curriculum consists of a set of subjects and each subject consists of a set of topics. A

teacher is assigned to a topic and a class. No splitting is allowed, and it’s an optimisation

problem, tackled in a single stage. One characteristic of his approach is that periods can

have different length.

2.5 Student-centred sectioning

In this section we look at the problem of large scale timetabling. which involves constructing

a timetable and assigning individual students to available sections (LEVEL S). Different ap-

proaches were suggested in the literature. Some, for example, construct an initial timetable

in a first stage, then allocate students to corresponding sections so that conflicts are re-

duced, student preferences met and/or size of sections is balanced. The sectioning part

(Grouping Sub-problem8) further complicates the timetabling process since extra decisions

on student assignment need to be taken.
8The sectioning problem also known as the (grouping sub-problem), should not be confused with the

concept of grouping which tends to group students or courses so as to minimise timetabling clashes
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2.5.1 Multi-staged models

Approaches to sectioning using multi-stages, attracted many researchers, because these

methods allow more flexibility when solving large scale problems. Carter (2000) suggested

decomposing the problem and solving it in multiple stages. He introduced the concept of

“homogenous sectioning” where in a pre-assignment step he groups students with similar

course requests and then assigns those groups to sections. This allows an estimation of

the required number of sections. After the timetable is constructed, a later stage assigns

individual students to sections so that conflicts are minimised.

In his earlier work, Tripathy (1984) used a Lagrangian relaxation algorithm to al-

locate subjects (LEVEL Y) to periods and rooms: the problem is to assign students enrolled

in streams9 (LEVEL X) which are represented by 900 subjects, to different periods. Students

from 4 to 6 streams have to study some particular subjects simultaneously (an extra, com-

plicating constraint). Therefore, those subjects cannot be assigned to the same time-slot.

His main goal was to allocate all subjects and have a feasible conflict free assignment where

no students in two different subjects are assigned to the same time-slot. Tripathy opted

for a grouping approach to reduce the problem size and introduced: Student-groups and

subject-groups.

Grouping is part of the pre-processing stage: first he groups students of a stream

in a student-group and then splits the given student-group in two or more splits based

on the enrolment of students to subjects (a split would include students enrolled in op-

tional and mandatory subjects), in that way if the initial non-split group requires k time-
9specialisations
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slots then the split groups would require less than k. Moreover, Tripathy introduced

subject-groups which represent a group of one or more subjects being taken by the

the same student-group. With this grouping the author is able to reduce the number

of variables representing subjects to be assigned to timeslots. Rooms are also grouped in

room-groups sorted by capacity such that subject-groups are assigned to room-groups

with similar capacities. The main purpose of using this strategy is to reduce the size of the

problem, so that it can be tackled with a Lagrangian relaxation algorithm. That approach

differs from the work in this thesis because here, splitting is dynamic and is dictated by the

interaction between utilisation and all the other constraints, rather then just the student

conflicts.

In a later work, Tripathy (1992) proposes a decision support system to aid admin-

istrator to perform student sectioning, subject to the following constraints : 1) generation

of conflicts matrix, 2) multiple section grouping and 3) generation of a class schedule. In

this approach the number of sections (LEVEL S) is bounded to three sections per course.

The conflict matrix is reconstructed after deciding on the number of sections. In multiple

section grouping he tries to assign sections to courses so as to minimise conflicts and number

of time-slots used and if it’s not possible to satisfy a complete conflict reduction he then

restricts student choice (enrolments) in subjects.

Aubin and Ferland (1989) tackled the large scale timetabling problem by solving

the two sub-problems timetabling and grouping. They formulate each sub-problem as an

assignment problem. Then, they iteratively modify the timetable and the grouping while

reducing timetable course conflicts, to provide better load balancing in sections. Their
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algorithm terminates when no further improvement in the objective function is obtained.

They identify two types of conflicts: 1) conflicts due to lectures and 2) conflicts due to

students, and assign penalties for violating each of them. While the section number is pre-

determined and fixed for each course, the section size is not. The solution method in Aubin

and Ferland’s model is a heuristic procedure where in every iteration, courses/students are

reassigned to different periods of the week. Many authors e.g. Hertz, later contested Aubin

and Ferland’s work by claiming that their model delivered local but not a global optimum.

Laporte and Desroches (1986), used a multiple pass algorithm to assign students to sec-

tions in a fixed and available course timetable . They made sure all student conflicts were

resolved, student preferences/selections satisfied and section sizes well balanced. Ferland

and Fleurent (1994) presented a decision support system (SAPHIR) that is currently used

in two Canadian universities: Montreal and Sherbrooke. SAPHIR includes several heuristic

improvement procedures that yield improved solutions for a given schedule, as well as an

automatic optimisation procedure to generate a timetable from scratch. The system solves

the grouping as well as the timetabling problem. It is also highly interactive and allows the

user to change many of the input parameters obtaining a different timetable.

Hertz and Robert (1998) used a tabu search Meta-Heuristic to tackle the large

scale timetabling problem in an interactive manner, modifying the grouping so as to reduce

conflicts between courses and maintain load balancing between sections. Hertz uses a fixed

timetable and maintained the number of students in every section (LEVEL S) as close as

possible to a given target. Heuristics, in his model can alter the section size.

Winters (1971), was among the first papers in sectioning. He suggests a multiple
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pass algorithm. In the first pass they fix the number of sections for every course and the

number of students assigned to a section which should be less then a given target. On

later passes, they identify 3 cases: 1) if not enough sections for a given course they add

one section, 2) if there are too many sections for a course, containing a small number of

students, then drop one section, 3) if not enough seats for section of a course, then add an

amount of seats as dictated by the algorithm, and 4) if no sufficient demand for a given

section to be opened, then a decision is made (heuristically) to keep the section or not. It’s

an elegant multiphase-multipass algorithm.

In fairly recent work, Alvarez-Valdes et al. (2000) suggested a two phase algorithm

using Maximum Cardinality Independent Sets and Tabu Search for sectioning, focusing

on satisfying student preferences and maintaining load balancing. They search for feasible

solutions and model the problem as a decision problem. The number of sections is their

model is fixed, part of the input, and no change allowed to the timetable post assignment.

Also Sampson et al. (1995) suggested a heuristic approach to course timetabling where they

first timetable courses and then assign the students. They construct a timetable after stu-

dents enrol for classes. Their approach included objectives to satisfy teacher preferences and

student satisfaction. The procedure used allows interactive feedback from the scheduler.

2.5.2 Single-staged approaches

This section looks at some more challenging models where sectioning is performed in a single

stage. Boland et al. (2006) used an integer linear program to course timetabling, showing

that it is possible to find exact solutions to the problem of grouping and room assignments

in a single stage. With a fixed number of sessions per class, they perform teacher and
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student allocation but don’t assign timeslots to courses. They grouped classes in blocks,

such that all classes of a block can be timetabled in parallel.

Head and Shaban (2007) used a heuristic approach to create student and course

timetables. they aimed to minimize the total section number and load balance for all sec-

tions. It’s an an optimisation approach, where they use a large set of real-world constraints.

The system is aimed at improving student satisfaction and reducing timetabling violations.

Busam (1967) tackled the problem of assigning students to sections in a fixed

timetable environment. AminToosi et al. (2004b,a) used clustering with a fuzzy function

to tackle the sectioning problem stressing on respecting student course selections and sec-

tions load balancing. Wood and Whitaker (1998) used non-linear goal programming on a

secondary school timetabling problem, where they assign students to timeslots and rooms

while assigning as well, teachers to classes. Other student-oriented approaches, include

Cheng et al. (2003); Miyaji et al. (1988); Banks et al. (1998); Laporte and Desroches (1984);

Mingers and O’Brien (1995).

Rudová and Matyska (2000) suggested constraint programming with variable an-

notations and a special objective function to help solve over-constrained parts of the sec-

tioning and room assignment problem.

Also Müller et al. (2005) introduced a new iterative forward search algorithm to

solve the minimal perturbation problem in course timetabling. They applied their algo-

rithm on real-world instances at Purdue University. Rudová and Murray (2003) is another

advanced constraint satisfaction approach also applied to the Purdue data-sets.
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2.5.3 Starting Point of the study

In this section, before surveying the litterature further, we look at the most relevant ap-

proaches that initially formed the cornerstone of this study. Generally, the literature on

course and university timetabling is focused on courses with a specific/fixed number

of sections. Every course has a pre-assigned number of sections and the main aim is to

allocate courses/sections to timeslots, teachers or rooms. Similarly, one looks at the assign-

ment of students to specific sections, e.g. Al-Yakoob and Sherali (2006, 2007); Harwood

and Lawless (1975).

However, recently, some papers tackled, indirectly, the idea of dividing large

courses into smaller ones creating sections of a given size, or deciding on number of sections

needed. Those were instrumental in inspiring our approach, with for example:

• Smith (1971) through an advanced, generalized statistical model.

• Selim (1988) with split vertices in a graph theoretical approach.

• Mirrazavi et al. (2003) through a hybrid methodology that includes, Goal programming

with a Genetic algorithm.

On the student based sectioning approach, Tripathy (1984) summed up an administrator-

oriented decision support system, and Carter (2000) with a decomposition based approach,

have directed our view towards, a focused study of the students conflicts. Consequently,

the impact of those conflicts on space and utilisation, have helped inspire our design of an

enrolment generator.

Note, besides the aforementioned references, our research has been driven by two
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essential and primary goals of (1) developing an understanding of the factors that lead to low

utilisations, and (2) to investigate methods to chose risk-free, safety margins that are more

cost-efficient for real-world teaching space, as underlined in the space reports, McCollum

and Roche (2004); McCollum and McMullan (2004).

2.6 Decision support systems

The nature of course timetabling problems, constraints and objectives, is such that, a single

solution to a specific problem might not be of interest. Instead, a group of solutions, prefer-

ably with tunable parameters, gives university administrators more flexibility in making

future decisions.

Therefore, various papers have suggested decision support systems DSS, to tackle

timetabling in academic universities. Generally motivated by the presence of conflicting ob-

jectives, satisfying an objective at the expense of another becomes a matter of institutional

choice.

Most famously, Dinkel et al. (1989) suggested a decision support system to assign

teachers and subjects to timeslots and rooms, modelled as an efficient network problem.

Their approach is quite similar to our approach, including soft competing constraints like

timetable, space usage and faculty preferences. They study the trade-off between fac-

ulty/subject assignment and Utilisation10, and provide a weighted preference for sections of

a given department to be allocated before other sections. The model includes the choice to

select subjects to be allocated disregarding No Partial Allocation11. Dinkel et al. approach
10Defined as unassigned and assigned courses to rooms
11When assigning teaching events, No Partial Allocation penalty would force the solver to allocate all

events, meaning that allocation is fully performed, not partially



2. splitting-sectioning-grouping : state-of-the-art 34

differs from ours, mainly in the fact that no splitting of subjects was involved, and also

they considered course splitting as already provided by administrators. So the number of

sections and the Section-Size are fixed in their approach.

Ferland and Fleurent (1994) also suggested heuristics and exact methods within

a decision support system for both the timetabling and grouping sub-problems. For other

decision support systems, (see Boronico, 2000; Harwood and Lawless, 1975; Schniederjans

and Kim, 1987; Badri, 1996; Dimopoulou and Miliotis, 2001, 2004; Glassey and Mizrach,

1986; Ferland and Roy, 1985).

2.7 Classroom/teacher assignment

The classroom assignment problem focuses on the assignment of rooms to teaching events

considering a fixed timetable. Carter and Tovey (1992) thoroughly studied the different

formulations and analysed their complexities. They proved which cases of the variants

are tractable and which are NP complete12. They classified the problems as interval and

non-interval according to whether classes meet once or many times, in a week. Ferland

and Roy (1985) solved the classroom assignment sub-problem by reducing it to a quadratic

assignment problem while Abdennadher (1998) used constraint logic programming to tackle

the same problem.

Fizzano and swanson (2000), used a matching algorithm to tackle a variant of the

classroom assignment problem and provided optimal schedules to plan classes in classrooms.

There was no splitting involved, but an interesting aspect in their study was assessing the

utilisation levels of rooms in Puget Sound university. For other relevant problems, like the
12Details on complexity and intractability can be found in (Garey and Johnson, 1979; Karp, 1986).
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“Teacher Assignment Problem”, (see Santos et al., 2005; Tillett, 1975).

2.8 Mixed Integer and integer programming

Integer Programming have been abundantly applied to sectioning and timetabling problems.

An integer program IP seeks the maximisation or minimisation of a linear function subject

to linear constraints and decision variables taking integer values only. (see Bosch and Trick,

2005; Boyd and Vandenberghe, 2004; Dantzig and Thapa, 1997; Nemhauser and Wolsey,

1988).

An IP with n variables and m constraints, has the following form

min z∗ = CT x

s.t. Ax ≤ B ∀x ∈ Z

with A an m× n matrix, A ∈ Rm×n, and vectors B ∈ Rm, C ∈ Rn

With the following cases (Achterberg, 2004; Hooker, 2005, 2002; Nemhauser and Wolsey,

1988):

• if x ∈ {0, 1}n the problems becomes a Binary Integer Program (BIP).

• if all variables are real, ∀x ∈ Rn, it will become a Linear Programming problem LP.

Linear programming can be solved efficiently using the simplex method. Nemhauser

and Wolsey (1988) method.

• If some of the x variables, NOT all, are real the problem falls under the Mixed Integer

Programming MIP area .
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IP provides a flexible tool to model intricate timetabling problems, but is faced with the

difficulty of solving large instances. For state-of-the-art approaches to sectioning using IP

(see Papoutsis et al., 2003; Dimopoulou and Miliotis, 2001; Mirrazavi et al., 2003; Daskalaki

et al., 2005; Avella and Vasil’ev, 2005; Mulvey, 1983; Aubin and Ferland, 1989; Cheng

et al., 2003; Miyaji et al., 1988; Mirhassani, 2006). For example, Daskalaki et al. (2004)

recently proposed a novel Binary Integer program on a course timtebling formulation at

the University of Patras, but was able to solve only a small instance taken from a single

department (72 courses and 211 teaching periods and 12 classrooms).

Techniques and methods that combine Mixed-Integer and Constraint Program-

ming CP can be found in (Rodošek et al., 1999; Milano et al., 2002; Milano and Wallace,

2006; van Hoeve, 2001, 2005; Hooker, 2005, 2002).

2.8.1 Goal programming

Goal Programming GP is a multi-objective mathematical programming technique. In many

complex problems, decision making involves maximising more than one well defined objec-

tive function. In fact there is a growing interest in considering more then one specific goal

(target) to be achieved when tackling timetabling problems

A GP problem can formulated as follows (see McNamara, 1971; Tamiz et al., 1998) :

z =
k∑

i=1

(uini + vipi) (2.1)

s.t. fi(X) + ni − pi = bi i = 1 . . . k

fi(X): a linear function of X with X as the vector of nonnegative decision variables and
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unknowns.

bi the target value for that objective.

ui and vi, the weights corresponding to objective function deviation. ni and pi represent

the negative and positive deviations from this target value.

k the number of objectives. A survey on GP can be found in Tamiz et al. (1998); McNamara

(1971).

Goal programming has been successfully adapted to timetabling and sectioning

problems. The ease of use and the flexibility in weighting and prioritising constraints has

contributed to making GP an ideal tool for decision support systems. Some approaches

are detailed in sec. 2.4 and 2.5, and can be found also in (Harwood and Lawless, 1975;

Schniederjans and Kim, 1987; Badri, 1996; Diminnie and Kwak, 1986; Ritzman et al., 1979;

Lee and Clayton, 1972; Miyaji et al., 1988).

2.8.2 Phase transition

Phase transition is a common behaviour, in physical and combinatorial systems, where a

system is transformed from one phase to the other. In physics, for example a transforma-

tion from solid to liquid at a given critical point, the “melting point”, is an example of

that transition. The critical point itself depends on a special combination of temperature,

pressure and material composition, and it’s around that point, that the system undertakes

the transformation. Phase transitions themselves exhibit, in general, a sudden change in

one of the properties of the system, and it is an interesting problem to understand and

quantise the probability and extent of such a transition.

Phase transition in complexity and combinatorial optimisation has recently at-
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tracted many researchers. Transitions around a critical point has been identified in many

NP-Hard problems like SAT, Hamiltonian Cycles (see Cheeseman et al., 1991; Coarfa et al.,

2000; Parkes, 1997; Smith and Dyer, 1996, and Others).

Phase transition has also been studied on number partitioning (NP) and Multi-Way

Number Partitioning (MNP) (see Gent and Walsh, 1995, 1996). Parkes (1997) studied the

phase transition in satisfiability problems.

In timetabling and graph colouring, Ross et al. (1996) showed that there is a phase transition

for some evolutionary algorithms tailored to timetabling problems. They showed that,

increasing the number of constraints made the problem harder to solve until a point where

it became easier. The approach considers the behaviour of the algorithm with the increase

in constraints but does not tackle the case with an increase in events or rooms and is not

set as a decision or planning problem. Erben (2001) has identified phase transition regions

in a class of graph colouring problems with randomly generated graphs. They extend the

colouring problem to the grouping problem using a genetic algorithm. For other works on

thresholds and phase transition (see Coarfa et al., 2000; Diminnie and Kwak, 1986; Smith

and Dyer, 1996; Gent et al., 1996).

2.9 Neural networks in timetabling

Artificial neural networks have also been widely used in solving combinatorial optimisation

problems. They have proved to be successful in tackling complex problems, including the

full range of Timetabling and sectioning problems. (see Carrasco and Pato, 2004; Kovacic,

1993; Tsuchiya and Takefuji, 1997; Corr et al., 2006) for application in timetabling problems.
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2.10 Constraint programming in timetabling

Constraint Programming is a programming paradigm where variables are related in a way

that can be stated in the form of constraints.

The basic motivation in Constraint Programming is that some user defines the

constraints that models a specific real-world problem, and a general purpose solver is used

to solve those constraints. For example, in trying to schedule a set of activities, decision

variables might be the available timeslots, or even resources needed to accomodate them,

and the constraints might act on the availability of those timeslots, the conflits between

activities in some given time etc. Hence, constraint solvers use such problems, consider

their variables and constraints, and find given assignements for those variables that satisfy

all constraints. Different ways to search the solution space (through specific algorithms,

like backtracking and branch and bound) can be used, but face the challenge represented

by the computational complexity of constraint problems. Much care, is therefore needed in

finding good formulations that can considerably reduce the search space.

Constraint Satisfaction Problems CSP13, represent the process of solving a set

constraints such that:

Define the triple 〈X, D, C〉 :

X a finite set of variables,

D is a domain of values,

C is a set of constraints.

∀Xi ∈ {X1, . . . , Xn},
13see Frish (2002), Wallace (2004)
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Di domain of variables Xi.

Given a finite set of constraints, where each constraints restricts the values that the variables

can take e.g. X1 = X2, X1 + X2 < X3

A Total Assignment maps variables Xi to one element of their domain Di. A solution to

an instance of CSP will be a Total Assignment satisfying all constraints. For an in-depth

study (see Milano et al., 2002; Milano and Wallace, 2006; Hooker, 2002).

Applications of CSP to timetabling and planning can be found in Stamatopoulos

et al. (1998); Milano and Wallace (2006), Abdennadher and Marte, (2000).

Constraint Logic Programming14 CLP, on the other hand, combines logic and con-

straint programming, by extending logic programming to include constraints in the body of

clauses. Assignment-type problems, with large number of complex constraints can be easily

modelled as CLPs. Various powerful solvers are widely available for solving CSPs: CHIP,

ILOG Solver and ECLiPSe and Prolog were developed for solving and modelling large scale

CSPs and CLPs and are widely used by the scheduling and timetabling community (Cheng

et al., 1995; van Hoeve, 2000; Hooker, 2005, 2002; Stamatopoulos et al., 1998; Kambi and

Gilbert, 1996).

2.11 Other Approaches

Previous work relevant to space utilisation, and studies of demand for space in universities

is abundant in the litterature. Fizzano and swanson (2000) reported the needs by their

institutions (University of Puget Sound) to improve their space usage, and tried to assess

the classroom requirements to meet all the demand. Also, early work, on space planning
14For a survey of Constraint logic programming see Jaffar and Maher (1994)
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by Bullock (1974), studied the demand for teaching space from an architectural point view,

stressing on the planning aspect for teaching space. They have considered conflicts between

events in a discrete fashion and listed all possible timetabling and teaching patterns. Based

on that, they tried to estimate the demand for rooms. Demand beeing measured by the

probability distribution of events in weekly schedule.

2.12 Summary and conclusion

This chapter has surveyed research in splitting and sectioning and discussed it’s relevance to

our work. We sought to clarify some of the main terminologies used in the course timetabling

literature. We looked at different forms of splitting performed in course-centred timetabling,

where the teaching events are generally split disregarding individual student assignments,

and compared different methodologies under this approach.

We also surveyed some of the literature in large scale timetabling, where focus is

on assigning students to available sections/groups, and discussed the different approaches

proposed.

Finally, we exposed some of the main methodologies used in the field, and provided

references to relevant work. The next chapter will formally introduce the foundation of the

work undertaken in the thesis.
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Chapter 3

Initial Investigation of Short-term Space

Management

‘Rooms are used half of the time, and when used are half full’

HEFCE

3.1 Introduction

This chapter introduces the lecture-based - splitting free - pure teaching space allocation.

Motivated by the need to improve space usage, we carry out an initial investigation of the

real world factors and constraints that affect space usage. We try to develop an under-

standing of how good is space utilised through one aspect of our problem, the lecture case:

“Lectures” ideally should not be split. From an optimisation perspective, we use Pareto

fronts in the presence of different constraints and provide quantitative evidence that con-

straints arising from timetabling and location have the potential to explain low utilisation
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seen in reality. A multiobjective problem arises, when constraints related to timetabling

and location are conflicting with the main goal of optimising space usage. This chapter

will introduce some of the methodologies seen in coming chapters, as well as the exact and

heuristic solvers used to tackle the problem.

3.2 Aims and motivation

As discussed in chap. 1, Utilisation figures in academic institutions are very low. Attempts

to remedy this situation, and so to improve space planning are hampered by the lack of a

qualitative understanding of why utilisation is generally that low.

First consider a simple “pure” event1 allocation problem in which we optimise util-

isation by assigning teaching events (for example lecture classes as explained in chapter 2)

from a given pool to available timeslots. On the data-sets we have available, this imme-

diately gave utilisation of 85-90%. This is far too high to match reality, and so indicates

that a model based purely on space issues, and given free choice of events, is inadequate to

model teaching space allocation in real-world universities.

Based on administrators recommendations, to extend the model we introduce some

realistic constraints, that map the event allocation problem to a real world problem. There-

fore, since event allocation (e.g. lectures) usually takes place within the context of many

constraints on locations and timings of events, accordingly we include within our model,

objectives that are intended to provide an approximation/abstraction of real timetabling

issues.
1Events, in this chapter represent “lectures” as explained in chapter 2. “lectures” needs to be allocated

and do not require splitting. We call them “events” to simplify and generalize the approach which could
apply to other type of teaching events.
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The underlying problem that we consider is the event allocation problem. This

problem generally arises as the classroom assignment problem (Carter and Tovey, 1992;

Schaerf, 1999; Burke and Petrovic, 2002) within timetabling problems, and consists of se-

lecting feasible room assignments for events. However, in our work it is not a hard constraint

that all the events must be allocated, but rather the decision as to which events are con-

sidered, becomes a part of the problem. To the best of our knowledge, this differs from all

the course timetabling literature in which it is a hard constraint that every event must be

allocated. This also meant that we had to implement a new solver rather than attempt to

use an existing one.

3.3 Lecture based, teaching space allocation model

In the following subsections, we give a description and a mathematical formulation for

the teaching space allocation problem (TSA). Next we define the terminology used in this

chapter.

3.3.1 Description

For each teaching room, we are given:

1. Capacity : the maximum number of students that the room can accommodate.

2. Timeslots : the number of timeslots for which the room is available during the week

(or other relevant scheduling time period).

3. Department : the department that owns, or is most closely associated with, the room.
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An event requires the following information:

1. Students : the number of students that must be accommodated.

2. Department : the owning/associated department. The primary task is to assign events

to rooms so as to satisfy the following hard constraints :

1. The size of an event (students) must not exceed the room capacity

2. The number of events allocated to a room must not exceed the number of timeslots, as

events cannot share room timeslots.

Notice that there is no constraint saying that an event must be allocated to some

room (like is often the case in timetabling). Instead, finding a set of events that are to be

allocated such that utilisation is maximised, is part of the problem.

3.3.2 Real-world Location and Timetabling penalty

In this section, we describe the objective and some real world constraints that mostly

influence administrators in seeking better timetables.

3.3.3 Utilisation

In chap. 1 we have detailed the main motivation behind studying utilisation levels in

academic institutions. Our objective is to increase room Occupancy and Frequency of usage

by filling rooms with as many students as possible to directly improve utilisation. The

utilisation measure in this thesis, is closely linked to the number of Bodies-On-Seats (BOS)2

which is the sum of all students allocated to a given room in a weekly schedule. If a room
2A commonly used acronym within the Academic Planning community.
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is used many times in a given schedule, then U is the sum of all students that have been

allocated to this room in that schedule over the total available seats.

U :=
BOS used

total BOS capacity (BOSC)
(3.1)

Usually we refer to U as a percentage. Then U = 100% iff every seat is filled at every

available timeslot. One can also think of U as the product of the frequency of usage by the

occupancy of a room. Our reasoning goes as follows:

The frequency of usage represents the number of timeslots used in a given room j over the

total timeslots available p:

Fj =
timeslots used

timeslots available
(3.2)

and the Occupancy (Oj) is the fractional usage of room j at any time, that is the number

of seats used over total available seats:

Oj =
seats used

seats available
(3.3)

The occupancy is generally averaged over all timeslots for a given room,

OP
j =

(∑
P Oj

p

)
(3.4)

OP
j represents the occupancy of room j averaged over all timeslots P . Finally, the utilisation

Uj for a single room j , is the product FjO
P
j .

Therefore, the total utilisation U , is the weighted average of Uj over all rooms. Optimising
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the BOS used will imply optimising U .

Location Penalty (L) : The intention of the location penalty is to model how well the

rooms match the events allocated to them in terms of physical location. Here, this means

that the allocation of an event E to a room R should receive a penalty depending on the

estimated distance between E and R which is the distance between the department owning

the room, and the department owning the event allocated to it. (We will treat minimisation

of the L penalty as an objective; or specifically will be maximising -L.) In the absence of

any data for physical distances we have arbitrarily selected a set of penalties based purely

on the departments involved. When an event E is owned by a department, and this is

assumed to be its natural home, then entries in the matrix LN×M (Lij) are equal to zero.

The diagonal is therefore zero in the matrix. The L penalty is non-zero only if the event

is owned by a department different from that which owns the room. Basically, this just

encourages events to be placed within their owning department. (Such location penalties

are also likely to be fairly natural, even if the allocation decisions are made be a central

administration: lecturers and students will generally prefer to remain close to their “home”

department.)

Notice that the location penalty depends only on the room and event, and so if we

take a linear combination, then the goal would be to optimise BOS and -L; the L penalty

and BOS score together will form a new objective.

Timetable Penalty (TT): Teaching space allocation is also constrained by timetabling

needs, and this constraint has utmost importance in academic universities. In order to take
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some account of the effects of timetabling we introduce a conflict graph between events. In

the absence of data we have used various simple randomised generators for the TT conflict

matrix. An enhanced real-world “student enrolment” generator is explained in chap. 6, and

will replace the randomized generator when creating conflict matrices in future work. Our

model is again based on the owning department for each event. Specifically, we generate

conflict matrices denoted by TT (p, q) according to:

• conflicts between events from the same department are generated randomly with prob-

ability p.

• conflicts between events from different department are generated randomly with prob-

ability q.

The case p = q corresponds to ignoring the department, and we will refer to TT (p, p) as

simply TT (p). Another simple case is TT (100, 0): the conflict graph that has edges between

any two events in the same department but none otherwise. This corresponds to expecting

that events from the same department are more likely to have students in common, or

simply that departments strongly prefer that their own events do not clash. We expect

that the TT constraints will capture some of the broad effects of real timetabling problems.

Note that the departmental owner of an event is fixed, and is not necessarily the same as

its allocated location, though in cases of a mismatch the assignment would generate an L

penalty as explained earlier.
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3.3.4 Mathematical formulation

Let’s call, first, each (room,timeslot) pair a roomslot, then we tend to assign events to

roomslots, and to maximise the allocated seat-hours. In the absence of other constraints

or objective functions, it is well-known that this is just a standard assignment problem,

and reduces to a maximum weight matching problem in a bipartite graph (see Garey and

Johnson (1979)).

Roomslots denote the available space to which events are allocated. So having r

rooms and p timeslots per room, the number of roomslots would be rp. A roomslot represent

a room taken at any given one time, and have therefore the same capacity as that room.

Model EALLOC :

given:

N : set of all events

n : total number of events, n = |N |

P : set of all timeslots

p : total number of timeslots, p = |P |

r : total number of rooms

M : set of all roomslots

m : total number of roomslots, m = |M | and m = rp.

Si : number of students enrolled in event i

Cj : capacity of roomslot j

LN×M (Lij): location matrix between event i and

roomslot j with entries Lij .
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Ci1i2 : Conflict matrix between different events i1, i2

Bup
L : upper limits on the location (L)

T z = {j |j ∈ M : z ∈ P}: represents the set of roomslots corresponding to a given timeslot

z, with M =
⋃

z∈P T z and
⋂

z∈P T z = ∅.

For every timeslot z ∈ P , T z is the subset which includes all roomslots of timeslot z. T z is

the set of roomslots considered at a given one time.

We use the following binary decision variable:

yij =





1 if an event i is allocated to roomslot j.

0 otherwise

Objective and Constraints The objective is to maximise the total BOS used:

Obj∗ =
( n∑

i=1

m∑

j=1

Siyij

)
(3.5)

subject to the following constraints:

Capacity of an event should be less than or equal the capacity of a roomslot:

Siyij ≤ Cj ∀i ∈ N, j ∈ M (3.6)

Only one event can be allocated to a given roomslot :

n∑

i=1

yij ≤ 1, ∀j ∈ M (3.7)
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An event cannot be assigned to more than one roomslot:

m∑

j=1

yij ≤ 1, ∀i ∈ N (3.8)

Location constraint: The location penalty must be less than or equal the upper limit

Bup
L :

n∑

i=1

m∑

j=1

Lijyij ≤ Bup
L (3.9)

When Bup
L = 0, hard location penalty is enforced.

One can the change the location constraint to an objective, by using a linear

combination of location and total BOS used :

Obj∗ = W (BOS).
( n∑

i=1

m∑

j=1

Siyij

)
−W (L).

( n∑

i=1

m∑

j=1

Lijyij

)
(3.10)

W (BOS) and W (L) are weights, set to give preference to one objective over the other. This

would be used in coming sections to plot the trade-off surfaces.

Timetabling constraints: Constraint 3.11 forbids two events with common students to

be allocated to the same timeslots.

Ci1i2(yi1j1 + yi2j2) ≤ 1, ∀θ ∈ P, ∀j1 ∈ T θ, ∀j2 ∈ T θ, (3.11)

∀i1 ∈ N,∀i2 ∈ N (3.12)

i1 6= i2, j1 6= j2; (3.13)

The conflict matrix Ci1i2 , has been generated using the randomized generator for the TT
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Figure 3.1: Schematic of the local search operators (except 2-swap-rand) for both HC
and SA.

penalty.

3.4 Heuristic approach: optimisation problem

In this section, we present a heuristic approach to the problem. We use two local search

algorithms (Hill Climbing HC and Simulated Annealing SA), with specialised operators to

explore the search neighbourhood of solutions.

3.4.1 Local search operators

The neighbourhood moves used to explore the search space are given below. Note that,

by construction, all operators (implicitly) maintain feasibility of the solution. Figure 3.1
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illustrates these local search operators.

1-swap-rand: Randomly select 2 different rooms and in each room randomly

select an allocated event. The selected events are swapped between rooms. If the given

events violate any of the hard constraints, we randomly search again for 2 other events to

swap.

2-swap-rand: Similar to 1-swap but it randomly selects 4 (2 from each room)

rather than 2 events and swaps them. Special consideration is given to checking that the 4

events are all different and that one swap would not cancel the other.

Move-exterior Randomly selects an allocated and an unallocated event and tries

to swap them; assigning the unallocated event to the timeslot of the allocated one.

Push-rand Randomly selects one event from the unallocated set of events and

tries to allocate it to a randomly selected room, also picking the timeslot at random.

Push-rand-p: This move is another version of push-rand but which gives priority

to early timeslots in the rooms timetable, favouring them over late ones. The local search

is allowed to switch probabilistically between the 2 different versions of push-rand.

Pop-rand: Randomly selects one event from a randomly selected room and un-

allocates it.

Move-inner: Swap 2 randomly selected events in a given room between 2 ran-

domly selected timeslots.

3.4.2 Meta-heuristics

We use Hill-Climbing HC and Simulated Annealing SA (Kirkpatrick et al., 1983; Aarts and

Korst, 1990) implementations in this chapter. The HC variant uses the moves given above
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to perform a search of the neighbourhoods. On each iteration, it selects an operator from

the list above according to a given move probability and applies it to generate a candidate

solution. If the candidate solution has better (or equal) fitness3 than the incumbent, we

commit to the move, but otherwise disregard it.

SA was used as the main component for overcoming local optima (mainly in the

presence of the timetabling penalty). As it is known, simulated annealing, which evolved

from an algorithm for Statistical Mechanics by Metropolis (Aarts and Korst, 1990), avoids

getting stuck in local optima by probabilistically accepting, non-improving candidate solu-

tions. The acceptance criteria depends on the current temperature of the algorithm. Given

a fitness function F , and ∆F the change in fitness between two neighbouring solutions, then

the probability P of accepting non-improving solutions is given by:

P = e
∆F
Tk (3.14)

where Tk is the current temperature of the system and is generally cooled according to a

cooling schedule. In our algorithm the fitness function is the weighted linear combination

of total utilisation U plus the Location (L) and timetabling (TT ) penalties:

F = W (U) · U + W (L) · (−L) + W (TT ) · (−TT ) (3.15)

where the W(*) are simply weights associated with each objective or penalty and change
3Represented by Eq 3.15.
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according to a preference or used to derive the pareto fronts as will be discussed in next

section.

A geometric cooling schedule was used in our algorithm, specifically temperature

Ti+1 → αTi every 650 iterations with α = 0.998. We generally used 6 million iterations

and initial temperature Ti = 0.6. Such a slow cooling over a large number of iterations was

chosen to err on the side of safety. Tuning the SA parameters, such that we gain confidence

on the quality of solutions provided was compared with the IP solver (CPLEX) on a smaller

dataset. (Details shown in figure 3.2).

3.5 Pareto fronts

In the following set of experimental results we show, quantitatively, the effect of adding the

L and TT penalties on the utilisation U . Adding those penalties will unlikely increase util-

isation levels, instead they will drive it down. However, the main issue is the magnitude of

such an effect, and in particular, whether the effects can be large enough to be a substantial

cause for the low values of utilisation seen in practise. Hence, we are interested in reducing

the upper estimates on utilisation, and will enable the solver to select those events that will

be allocated so that U is maximum. We will treat the system as a multi-objective problem

using the utilisations, and (the negatives of) the location penalty L, and timetable penalty,

TT, and determine the appropriate (approximate) Pareto fronts (Ref. Deb (2005); Steuer

(2003) for descriptions of the concepts of Pareto optimisation).

Let’s first consider the simpler two-objective sub-cases.
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Figure 3.2: L versus U. with 10 timeslots. LP scan uses the exact solver (CPLEX) and
LS uses the local search method

3.5.1 Bi-objective: Utilisation versus Location

In finding trade-off surfaces, we follow the simple, standard procedure of generating points

by taking many possible linearisations of the problem. That is, data points are generated by

running the solver(s) for different discretized values of the objective weights. The specific

weights of every objective were altered by increasing it by a constant factor ( chosen in a

way proportional to the scale of the objective (the estimate is by trial and error)) such that

the change in the specific weights would allow a wide exploration of the pareto front.

Figure 3.2 shows the results of such an exploration. Note that in fact we plot -L

rather than the location penalty L itself, merely so that we meet the convention that all

axes correspond to maximisation problems, i.e., “better” means towards to the top right.

Also, for clarity, in all such plots we remove all dominated points.

The first set of points are obtained by taking a linear combination of the weights
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(for U and L), solving model EALLOC using CPLEX 10, (with objective defined in equation

3.10). Each such solution is hence Pareto optimal. However, some Pareto optimal solutions

might not be reachable in this way (“unsupported” solutions, Deb (2005); Tuyttens et al.

(2000)), and this leaves gaps in the experimental Pareto Front, hence, those gaps were

reduced by using an alternate method: by setting a given threshold, on the location penalty,

then optimising the utilisation, we can plot the different optimal U levels for various location

thresholds. Using this method the plots were clearer with less gaps in between different runs.

The final set of points in Figure 3.2 are obtained using our local search method (SA). It gives

points that are also very close to optimal, the difference being small enough so as to not

significantly change the shape of the curve. This gives us confidence that our SA method

will not be distorting later results. SA was run many times, with every run correponding to

one point in the graph. Problems uses dataset Lec in the appendix. Note that even if the

location penalty has the potential to decrease utilisation to near 50% value, the real world

case is actually between 92% (which the max in the absence of L) and 50%, since one might

relax this penalty a bit, not driving it as low as 0. Indeed, one can notice, from this figure,

that if we relax L by 1/8th of it’s whole range (that is allow -L to be 1000), one can gain

nearly 12 % in utilisation. In an environment where space is very scarce, such a gain can

be justifiable.

3.5.2 Bi-objective: Utilisation versus Timetabling Penalty

Figure 3.3 shows the trade-off between utilisation U and timetabling TT. Introducing the

timetabling penalty can drastically decrease the utilisation to near 35% level. Timetabling

penalty in our model and in real world cases is a crucial player, rightly affecting how rooms,
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Figure 3.3: The trade-off between Utilisation,U, and Timetable Objectives, TT, dataset
with 10 timeslots.

timeslots and events interact between each other. While one can generally relax other

constraints (location for example) it’s generally an imperative requirement that timetabling

penalty be obeyed and no clashes occur between events. For example, a 35% U given TT=0

is much different scenario than 50% U given L=0.

3.5.3 Three Objective Problem: U vs L vs TT

In this set of experiments we combine the three objectives together and study their interac-

tion and their effect on the utilisation. We fix the weight for the U objective and produce

points by scanning many different weights for L and TT (meaning TT(100,0)), and opti-

mising each one separately. The results of this for rooms with 10 timeslots are given in

Figure 3.4 .

As explained in the caption, the 3 dimensional data is converted to 2-dimensional

by giving U and -L to the x and y axes. The timetable objective is represented by grouping
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Figure 3.4: U vs L vs TT for dataset with 10 timeslots. X and Y axes are for Utilisation
U and Location L. Different colors represent different values for the timetabling penalties.
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Figure 3.5: Same as Fig 3.4 but with 18 timeslots.
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Figure 3.6: Same as previous figures but with 50 timeslots.

points into different sets according to their TT penalty, and plotting using different point

patterns (and shades). Sets further down the key correspond to being better for the TT.

We see that the maximal U is 92% but this is reduced to 29% if the L and TT penalties are

forced down to zero.

Figures 3.5 and 3.6 gives results for data-sets with 18 and 50 timeslots. Primarily,

note that by increasing the numbers of timeslots, utilisation decreases. This is merely

because the seat hours needed by the events is less than the available seat-hours as soon

as the number of timeslots is greater than 18. Also, with larger number of timeslots, the

chance of having more roomslots under filled (e.g. lower occupancy) is higher. Notice that

L and TT are having a significant effect even for the case with 50 timeslots.

Also, in figure 3.6, there are sufficient seats available that in the absence of any

L and TT constraints, all events can be allocated, this leads to the value of U=37% on

the righthand edge. However, such complete allocations have large L and TT penalties. If
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the L and TT penalties are driven down then U is also driven down significantly. That is,

even when the available seat-hours is twice the requested number, L and TT can provoke

that some events must remain unallocated.This supports our hypothesis that the location

and timetable penalties have the potential to dramatically drive down utilisation, and so

are a reasonable candidate to explain low utilisations in the real world. furthermore, if

we request any utilisation beyond 40% then we are very likely to be able to satisfy about

95-98the request, but not the 100% we would expect in a safe region. We suspect that this

indicates that there is a mismatch between rooms and events.

Note, the nature of the data-sets used are such that if we use 50 timeslots per

room, lectures become substantially under-subscribed, in the sense that the total demand

for seat hours and timeslots from the events is much smaller than the supply of seat-hours

and timeslots from the rooms. In order to explore a wider range of these supply-to-demand

ratio we need to do one or more of (i) add more events, (ii) reduce the number of rooms,

or (iii) have fewer timeslots per room. We opt against creating more events, as it would

make the problems unnecessarily large. The options of reducing rooms or reducing timeslots

are similar in that they reduce the available seat-hours. also the variety of room sizes has

probably a role to play in setting utilisation levels, and so do not want to change any room

profile at the moment (this issue is investigated in chap. 7). Instead we uniformly reduce

the timeslots for all rooms. Hence we created instances with 10, 18, and 50 timeslots.
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3.6 Impact of Location and Timetabling penalty

As mentioned previously, L and TT are having a significant effect on utilisation. There are

sufficient seats available that, in the absence of any of these 2 constraints all events can be

allocated, and this leads to the value of U=30% as a nominal, average value across many in-

stitutions. Clearly, if the L and TT penalties are to be forced down, then U will significantly

improve. Also, even when the available seat-hours is twice that requested, L and TT can

mean some events must remain unallocated. Perhaps, in the context of achieving a given

utilisation level, our aim should also be oriented towards looking at achieved utilisation

versus specific random requests. For example, what would be an achieved level of U, given

a requested notional level, under L and TT constraints. The effect of those 2 constraints

can be studied indirectly rather then explicitly varying their intensity and looking at the

changes in the utilisation levels. Let alone, a deterministic change in U and L, or U and TT,

is highly indicative but still insufficient in determining future evolution or maybe current

space utilisation in many institutions. The results in this chapter support our hypothesis

that the location and timetabling penalties have the potential to dramatically drive down

utilisations, and so are a reasonable candidates to explain low utilisations in the real world.

But we are yet to prove the notion of achieving a given utilisation level and the ability to

meet different random requests, under different space requirements and constraints. We

will delve deeper in this aspect in later chapters, by analysing the stochastic nature of the

problem in hand, and show that they match the conclustions extracted from this chapter.
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3.7 Summary and conclusions

In this chapter, we looked at the pure event allocation problem from an optimisation per-

spective and aimed to understand the factors that have the potential to explain low util-

isations observed in academic institutions; this is a first, preliminary step in an attempt

to improve utilisation in practice. We have devised exact and heurstic methods that have

provided an initial, unsurprising insight to major constraints affecting space usage. We have

shown that constraints that mimic timetabling and physical locations, reduce the utilisa-

tion levels in universities to the more realistic and observed levels. This chapter provides

the foundation for the coming work, in including the timetabling and location penalty and

using similar methodologies on other more important aspects affecting teaching space al-

location issues. We used Simulated Annealing and Hill Climbing algorithms when dealing

with datasets intractable by exact IP solvers. The constraints used here do not cover the

case where “non-lecture” teaching activities require allocation, (e.g. tutorials) where most

of the events do not fit in the available rooms and therefore require splitting which is the

subject of the next chapter.
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Chapter 4

Splitting in Teaching Space Allocation: The

Optimisation Approach

That which is static and repetitive is boring. That which

is dynamic and random is confusing. In between lies art

John A. Locke

4.1 Introduction and motivation

In this chapter, we introduce and describe the teaching space allocation problem with split-

ting, where the focus is on teaching activities that do not generally fit into available space

and need to be broken up into multiple groups (e.g. sections). We propose an algorithm

to perform “dynamic splitting” in the presence of different constraints and compare it to

a static1 way of splitting, widespread in many institutions. A multi-objective optimisation
1Refer to sec. 2.4 for details on different types of splitting.



4. splitting in teaching space allocation: the optimisation approach 65

problem naturally arises, with a trade-off between satisfying preferences on splitting, a de-

sire to increase utilisation, and also to satisfy other constraints such as those based on event

location, and timetabling conflicts. We will explore such trade-offs in this chapter using a

dynamic splitting strategy embedded in the local search.

Outline of the chapter Section 4.2 gives the basic description of the problem constraints

and objective functions, and a brief description of the data sets. We study the splitting

algorithms in section 4.3. In section 4.3.1 we outline a form of local search that does not

include splitting, but which forms a good basis for the algorithms for splitting (Dynamic

splitting) presented in section 4.3.2. In Section 4.4 we compare the performance of the

various algorithms. In Section 4.5 we move to the exploration of the solution space itself,

presenting results for the trade-offs between the various objectives.

4.2 Problem description

Teaching space allocation with splitting, is concerned with allocating teaching events (classes/course

offerings, tutorials, seminars) to rooms and times. We follow, in this chapter the same ter-

minology described in sec. 2.2. We introduce some of the constraints and objectives that

arise when splitting is involved.

4.2.1 Classes, groups and rooms

Most of the work in this chapter is centred around the class and group levels of our model

(see sec. 2.2). Hence, for classes we have:

1. Size: Number of students.
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2. Type: type of teaching activity (Lecture, Seminar, Tutorial, etc.) of the class/group.

3. Department: Department offering/managing the class.

Classes will generally be split into groups, which should be assigned to a single

room and timeslot. In this model, classes have the same information as modules except

that each takes only a single timeslot.

For every room we have:

1. Capacity: Maximum number of students in the room.

2. Timeslots: The number of timeslots per week.

3. Spacetype: type of teaching activity (Lecture, Seminar, Tutorial, etc.) for which the

room is more suitable.

4. Department: The one that owns/administers the room.

The basic hard constraints (i.e. those that we always enforce) are:

1. Capacity constraint: Size of a class/group cannot exceed the room capacity

2. No-sharing constraint: At most one class/group is allowed per roomslot.

In this chapter, we will also apply the condition that the spacetype of a class/group must

be the same as that of the room. In general, this hard constraint can be softened, and the

resulting spacetype mixing is an important issue this is studied in chap. 7. So, henceforth,

in descriptions of the algorithms we will ignore spacetypes.
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4.2.2 Penalty and objective functions

Merely allocating teaching events to roomslots so as to satisfy the capacity constraints

and no-sharing constraints on its own is not useful. We also need to take into account

space utilisation objectives for additional soft constraints. Based on the work described in

chap. 3, and also from considerations of what a good allocation is likely to mean in the

presence of splitting, we use the following:

Utilisation (U)

The primary objective is that we want to make the best use of the rooms, and have a good

number of student contact hours. We will measure this by the “Seat-Hours” – which is just

the sum over all rooms and timeslots of the number of students allocated to that roomslot.

Utilisation is defined in sec. 3.3.3

Timetabling (TT)

Teaching space allocation is also constrained by timetabling needs, details of which has

been explained in sec. 3.3.2. Hence we use here a timetabling penalty (TT) that is just a

standard conflict matrix between events; a set of pairs of events that should not be placed

at the same timeslot. We will simply use randomly generated conflict graphs for now. We

use TT (p) to denote that each potential conflict is taken independently with probability

percentage, p. For example, TT(70) means that the conflict density is (about) 70%.
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Location (L)

In sec. 3.3.2, we have detailed the motivation behind the location penalty, merely reducing

the physical travel distances for students between taught events, seeming likely that students

and faculty would prefer that the events they attend will be close to their own department.

As in sec. 3.3.2, we do not attempt to model this exactly but instead use a simple model

in which there is a penalty if the department of the event is different from that of the

roomslot. Specifically, if a class/group i has department D(i), and is allocated to a room

r with department D(r), then there is a penalty matrix derived from the department,

Y (D(i), D(r)). All classes in their own department are not penalised, Y (d, d) = 0, and

the off-diagonal elements were selected arbitrarily (as we did not have physical data). The

total Location penalty is just the sum of this penalty over all allocated events.

Group Size (GZ):

For teaching events such as tutorials or seminars it is standard practice that these events

are taught in small groups. Various institutions sets out to have group size preferences for

such kinds of events. Hence when splitting, we need to be able to control the sizes of groups.

In this chapter, we use a simple model in which we take a target size for the groups, and

simply penalise the deviation from that target. Given an allocated group i, let the number

of students be si, the total number of allocated groups be I, and the target group size T .

The group size penalty GZ that we use is

GZ =
I∑

i=1

|si − T | (4.1)
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Disregarding this penalty, would generally condition the Group Size to be bounded

by the room capacity. The target group size generally varies with different spacetypes.

Specific values are empirically estimated from previous years average group sizes.

Group number (GN) :

Every group will need a teacher, and so the total number of groups allocated will have a cost

in terms of teaching hours, and should not be allowed to become out of control. The penalty

GN is simply the total number of allocated groups. Pressure to minimise GN will tend to

discourage class splitting. When splitting, a class transmits all conflicts to it’s groups: say

class A, conflicts with B and C, then upon splitting the new formed groups of this class ,

A1 and A2 will both conflict with B and C. In coming chapter we will discuss the partial

inheritance aspects in more detail.

No Partial Allocation (NPA) :

The context in which we do the search is that we have a large pool of classes available and

we should choose the best subset that can be allocated. However, if a class is broken into

groups, then the class as a whole ought to be allocated or not. The NPA penalises those cases

in which some of the groups of a class are allocated, but other groups from the same class

remain unallocated. Enforcing NPA as a hard constraint would disallow partial allocation:

for every class, either all its groups are allocated, or not.
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4.2.3 Overall objective function

The overall problem is a multi-objective optimisation problem because there is conflict

between improving utilisation and satisfying the constraints. However, we use a linearisation

into a single objective or fitness F, which can be represented as follows:

F = W (U) · U + W (L) · (−L) + W (TT ) · (−TT ) +

W (GZ) · (−GZ) + W (GN) · (−GN) + W (NPA) · (−NPA) (4.2)

where the W(*) are simply weights associated with each objective or penalty. The minus

signs merely change penalties into objectives, and make all the “dimensions” or objectives

into maximisation problems.

The aim is to maximise F and consequently maximise utilisation (U) while reducing

the penalties for L, TT, etc. In practice, we will consider a wide variety of relative weights.

Of course, if a weight is large enough then it effectively turns the penalty into a hard

constraint. Using weights is also intended to allow modelling of the way that administrators

will relax some penalties and tighten others.

4.3 Splitting algorithms

In this section, we describe the splitting heuristics that are incorporated into the hill-

climbing (HC) and the simulated annealing (SA) approaches (sec. 3.4.2). Two strategies are

implemented: a) constructor-based splitting, and b) dynamic local search-based splitting.

In the first case, the group size is calculated during the construction of an initial solution
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and remains fixed for all teaching events throughout the local search. In dynamic splitting,

the group size is calculated as the local search progresses according to the size of the class

(and room capacity) that is being allocated. Hence, we will have:

• SS-HC: Constructor-based static splitting and hill-climbing.

• SS-SA: Constructor-based static splitting and simulated annealing.

• DS-HC: Dynamic splitting and hill-climbing.

• DS-SA: Dynamic splitting and simulated annealing.

4.3.1 Static splitting

In static splitting we select a target group size (generally based on room profiles) and then

split all the classes of size larger than that target size, into as many groups as needed during

the process of constructing an initial solution. We use the term static, because once a split is

enforced it cannot be changed. We afterwards run a local search algorithm (hill-climbing or

simulated annealing) to improve the initial solution. So, in this strategy, splitting happens

within the constructor and this provides no flexibility in changing the group size during the

local search.
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There can be many ways to calculate and fix the target group size. Here we

compare three variants which are based on the notion of a “target room capacity”. This

means that the target group size is calculated based on the capacity of the rooms that are

available for allocating groups. Specifically, the target group size is fixed to one of three

different values:

1. MAXCAP - the largest room capacity,

2. AVGCAP - the average room capacity,

3. MINCAP - the smallest room capacity.

We recognise that more elaborate ways to calculate the target group size are pos-

sible based on information from the room profiles. However, our interest here is to explore

how splitting during the construction phase affects the search process in general, and com-

pare it to the case in which splitting is carried out during the local search (dynamic) which

is described in the next subsection.

4.3.2 Dynamic splitting operators

In dynamic splitting, we calculate the group sizes during the local search itself. The dy-

namic splitting heuristic is also capable of un-splitting/rejoining groups and this gives more

flexibility to determine an adequate target group size by changing, adding, deleting and

merging groups as needed.

Dynamic splitting is embedded in the local search in such a way that there is

freedom and diversity in the choices of group sizes. Thus the dynamic splitting operator

considers not only the room capacities (as in the case of the of static splitting) but also
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the location (L), timetabling (TT), group number (GN), group size (GZ), and no partial

allocation (NPA) constraints. Note that, at the current stage, the operators themselves

do not directly respond to an increase/decrease in penalties, this is tackled directly by the

local search. Presumably, this leads to inefficiencies because good moves will need to be

discovered via multiple iterations of the SA/HC rather than directly and heuristically with

the operators; we intend to investigate this issue in future work.

It is important to note that in this dynamic splitting approach, the “pool of unallo-

cated classes” is a pool of the portions of classes that are not yet allocated. The unallocated

portions contain no information about how they will be split. That is, it is not a pool of

groups waiting to be allocated, but instead the groups are created during the process of

allocation. The main characteristic of the dynamic splitting operators lies in the fact that

when a split occurs, we actually select a fraction of a class and allocate it. When a group is

unallocated, we merge it back with the associated class without keeping track of previous

group splits.

We detail below, the neighbourhood operators used in the dynamic splitting (or-

dered roughly by their degree of elaborateness):

1-swap-rand-grp: This operator works as 1-swap-rand described in (chapter 3,

section 3.4.1) but the move is carried out between 2 groups (not necessarily of the same

class) from different rooms, and swap them.

Move-inner-grp: This operator works as move-inner described in (chapter 3,

section 3.4.1) but the move is carried out between 2 groups (not necessarily of the same

class).
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Push-rand : This operator works as push-rand described in (chapter 3, sec-

tion 3.4.1) but note that the events being ‘pushed’ to the allocation are groups of a class

that are smaller than the chosen room, and so no splitting was needed.

Pop-unsplit . This operator is used to remove groups from their allocated room

and unsplit/rejoin groups with their unallocated parent class. Note that this move can be

seen as the reverse operation to splitting but not exactly because we do not keep track of the

splits made during the search by split-push and split-max that we describe next. First,

the pop-unsplit operator chooses at random an allocated group from a randomly selected

room. In the case that the chosen class is a group, the operator unallocates the group and

merges it with its unallocated parent event. If the class is not a group it is simply added

to the unallocated pool.

Split-push : This operator is used to handle classes whose unallocated portion is

larger than the chosen room, and is the main operator that is used to create new groups.

It is at the heart of the dynamic splitting:

Proc: split-push
1 Randomly select a room Rj with available timeslots.

Let its capacity be Cj .
2 Randomly select a class Pi from the unallocated pool.

Let the size of Pi be Ni.
3 Set size s = floor(Cj ∗ rand(δ, 1))

though if s > Ni then s=Ni

4 Randomly select empty roomslot tj

5 Create group Si with size s

and resize the remainder Pi

6 Set that Si inherits all conflicts from class Pi (see chap. 6)
7 Generate candidate move by allocating Si to room Rj in timeslot tj
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Note that rand(δ, 1) means a number selected uniformly at random from the in-

terval [δ, 1] and the parameter δ is described below. After randomly selecting a roomslot

and unallocated class, the main step in this operator is to decide how to split the class to

create a new group. Assuming that the capacity of the room is smaller than the size of the

remainder of the class, the new group size, s, is calculated by multiplying the capacity of

the room by a randomly selected factor. The factor depends on a “group re-sizing parame-

ter”, δ, that we give a value between 0.4 and 0.6. Suppose that we take δ = 0.4 then this

effectively means that the generated group size, s, will be between 40% and 100% of the

selected room’s capacity. The intention of this randomised selection of group size is that it

enables the search to discover group sizes that match the penalties such as group size and

group number. The new group inherits all of the conflict information from its parent class

– see the discussion of the “Conflict Inheritance Problem” in chap. 6. The new group is

then allocated to the chosen room. The remaining part of the parent class is left in the

unallocated list of classes with its size reduced appropriately.

Split-max : This operator is a version of split-push with δ=1 and is designed so

that classes with size larger than the chosen room are split into groups with the maximum

size allowed to fit in the chosen room.

4.3.3 Example of the operator application

An example of the search process, and the differences that can arise during search, are

illustrated in the simple example of Figure 4.1. Two classes C1 and C2, of sizes 120 and 40
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C=20 C=20ROOMS C=60 C=60
R1 R2 R3 R4

C2C1

S=120 S=40

2060

C=20 C=20ROOMS C=60 C=60
R1 R2 R3 R4

C1 C2

S=40S=120

4020
60 60 20 20

Tslot 1Tslot 1

CLASSES CLASSES

Case 2Case 1

Figure 4.1: Example in which applying operators to split classes has different effects. In
case 1, class C2 first receives a push-rand into room R2, and then applications of split-
push to C1 are able to allocate only 60+20+20=100 students rather than the needed 120.
However, in case 2 we see that reversing the order allows all of both classes to be allocated.

respectively, are to be allocated to the four rooms available. We have selected capacities so

that total size of classes equals the total capacity of the rooms. In the first case, the smaller

class C2 is allocated first to room R2 via a push-rand move without a split. This inevitably

means that 20 spaces within room R2 are wasted, and so later it becomes impossible to

fully allocate all of class C1. However, in the second case, the larger class C1, is first split

using split-max and then we end up with a perfect fit of class C1 to rooms R1 and R2, and

class C2 to rooms R3 and R4. The operator split-max with its implicit “maximum size

groups first” is often better at maximising the utilisation; though there are other cases in

which push-rand is necessary, like when we are required to achieve a target group size, for

example. For this reason, and also because of preliminary experimentation, we tend to give

the operator split-max more probability of being selected than the operator push-rand .

4.3.4 Controlling the search

We have also observed, that the effectiveness of each operator varies during the search. As

an example, suppose we are just doing non-splitting local search as described in section 4.3.1.
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We start with an empty allocation, and then the Push-rand operator is most important

and successful in the early stages as classes need to be allocated. But due to limitations

in the capacity of rooms, this operator stalls for the rest of the search, during which the

other moves provide the bulk of the successful search efforts. This led to us taking a simple,

though adequate, compromise with probabilities of around 10-20% for each operator.

4.4 Experimental comparison of splitting algorithms

In this section, we first investigate the “static splitting” method in which only the construc-

tor does splitting followed by local search in the form of Simulated Annealing, CONS-SA

(CONS-HC is not presented as, unsurprisingly, it performs no better than CONS-SA). We

find that it is far inferior to the dynamic splitting approach. Moving to the dynamic split-

ting itself we then compare the HC and SA variants, and will see that the DS-SA variant

is the better.

Considering the datasets in Appendix A (table A.1), we illustrate the importance

of splitting in our scenario. Table 4.4 compares some examples of the utilisation percentages

obtained, and the number of events allocated, without any splitting (not even static splitting

from the constructor) and compares them with those obtained by DS-SA:

Wksp Tut Sem
SA, no splitting 36% (264 events) 0.015% 0.013%
DS-SA 70% (720 events) 26% (1747 events) 44% (3000 events)

We clearly see that splitting is essential for the tutorials and seminars as, otherwise, virtually

nothing is allocated. For the workshops, some classes can be allocated, but we still lose

a lot compared to when splitting is allowed. So from now on we always permit splitting.

While, in the results above, utilisation figures seem a bit higher than those found in the



4. splitting in teaching space allocation: the optimisation approach 78

real world cases (30-40%) we show later that constraints drive the utilisation down to more

practical levels.

In general, our results present trade-off curves which are approximations to Pareto

Fronts. These curves represent the compromise between two of the objective functions: We

select a wide range of combinations of weights associated for the two chosen objectives, and

call the local search with those weights. For example, we often plot the trade-off between

Utilisation, U , and location, L. In this case, we pick a non-zero value for W (U), and then

just search at each of many values for W (L). This leaves some gaps in the curves due to the

presence of unsupported solutions. However, the gaps are generally small and we do not

expect that filling them would significantly change the overall messages from the results.

Note that since L is a penalty, then the objective is essentially −L and we use this for the

y-axis so that “better” is towards the top-right corner (and similarly for all others of our

trade-off graphs).

4.4.1 Dynamic vs. static splitting

Figure 4.2 shows the trade-off curves between utilisation and location for the three different

methods from the static splitting, MAXCAP, MINCAP, AVGCAP (see subsection 4.3.1),

and compares them to the results from the dynamic splitting method, DS-HC.

We see that for the static case, splitting based on the average room capacity (AVG-

CAP), outperforms the other two methods (MINCAP and MAXCAP). This is reasonable

because when splitting by the smallest room capacity there is capacity wastage in larger

rooms and when splitting is based on the larger room capacity there is also wastage caused

by violating room capacities, since we cannot allocate a group to a room with smaller
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Figure 4.2: Comparison of dynamic and static (constructor-based) splitting for the Wksp
data set. Plots give the trade-offs obtained between utilisation and Location; all the other
objectives being disregarded (WTT =WGZ=WSN=WNPA=0). The first three sets of points
are from the three static splitting methods and the last set from the dynamic splitting with
hill-climbing.

capacity.

However, it is also clear that all our constructor-based splitting methods are easily

outperformed by the dynamic splitting. This is unsurprising, as it is entirely reasonable

that it is best to do splits based upon the availability of room capacities rather than on a

uniform target capacity. It is possible that a more sophisticated constructive method would

perform much better. However, for the purposes of this chapter we will henceforth consider

only dynamic splitting.

4.4.2 Dynamic splitting: HC vs. SA

Figure 4.3 illustrates the different performances of DS-HC and DS-SA on the Wksp problems

in the presence of timetabling. Figure 4.4 is the same except that it is for a tutorials dataset

(see Appendix. A). As is well-known, the conflict graph of the timetabling penalty moves

the problem to a variant of graph colouring. So it is not surprising that the SA is likely to



4. splitting in teaching space allocation: the optimisation approach 80

-18000

-16000

-14000

-12000

-10000

-8000

-6000

-4000

-2000

 0

 0  20  40  60  80  100

 -
 L

U

SA TT(70)
HC TT(70)

Figure 4.3: Trade-off of utilisation and location as obtained with dynamic splitting, and
using the hill-climbing (HC) and simulated annealing (SA) algorithms. For the Wksp data,
and in the presence of TT(70), and no other constraints beside U, L, and TT.
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Figure 4.4: Same as for Figure 4.3 but instead using the tutorials dataset, Tut-trim, and
with TT(75).
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outperform the HC, as SA can escape local minima but HC cannot. Perhaps more surprising

is that the performances in the absence of TT are often very similar. Presumably, without

the TT, the search space is rather well-behaved.

In any case, it is clear that DS-SA is the best of the algorithms that we have

considered, and so will be assumed from now on whenever we have a TT penalty (and in

the absence of a TT penalty it seemed to matter little which one is used).

4.5 Trade-Offs between the various objectives

Having selected dynamic splitting as our algorithm of choice, we now change focus: we no

longer pursue the solution algorithm itself, but instead focus almost entirely on the solution

space. In particular, we present some preliminary and partial results on how the various

objectives interact, and in particular the magnitude of their effect on the utilisation.

4.5.1 Interaction of Group Size Penalty (GZ), Location Penalty (L), and Utilisation (U)
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Figure 4.5: Trade-off surfaces for the given values of the weight W(GZ) for the group
size policy. On the Wksp data-set, with a target group size of 25; and optimising only
utilisation U, location L, and group size GZ.
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Figure 4.5 gives plots of the trade-off between utilisation (U) and location (L), in

the presence of various weights, W (GZ), for the group size penalty (GZ), with a target group

size of 25, but with no other penalties. Note that the case W (GZ) = 0, was seen previously

as the best line in figure 4.2, and illustrates that, even without group size constraints,

demanding a low location penalty has the potential to significantly reduce the utilisation

(from about 98% down to 50%). The non-zero values for W (GZ) drastically reduce the

utilisation: dropping to the range 10-50%. This corresponds to a policy of a fixed size, but

with such an excessively-strict adherence to that policy that the overall room usage suffers.

4.5.2 Trade-offs arising from Group Size penalty and Utilisation
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Figure 4.6: Utilisation vs. group size penalty, GZ, for the Wksp data set, and for two
values (15 and 20) of the target group size.

So far, we have only looked at trade-offs between Utilisation and Location. But

now, in Figure 4.6 we show the trade-off between utilisation, U, and group size penalty (GZ).

This happens to be with a small weight given to the group number penalty, SN; however,

with no other penalties: W (L) = W (TT ) = W (NPA) = 0, so in this case location penalties

are ignored. Each curve illustrates the drastic drop in utilisation as we move towards the
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group size becoming a hard constraint. We also see that reducing the target for the group

size reduces utilisations though by a lesser amount.

Part of this effect is possibly because our current group size penalty does not allow

a range of values for the group size, and because it penalises under-filling a group just as

much as overfilling. In future work, we intend to allow more relaxed and flexible versions

of the group size penalty. However, intuitively, it still seems very likely that group size

requirements are going to have a strong negative effect on utilisation, and crucially, the

methods that we are developing will still allow one to quantify these effects.

Generally, enforcing a soft group size penalty is more realistic than a hard one

since flexibility in the group size is quite reasonable; groups aren’t always standardized

towards a fixed, unchangeable target size and it ought to be possible to vary the target size

to suit other constraints.

4.5.3 Effects of timetabling constraints
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Figure 4.7: Trade-offs between Utilisation and Location for the Wksp dataset. “No
TT” means that no objectives besides L and U are weighted, in particular W(TT)=0. In
contrast, “TT(70)” means that a timetabling constraint, with a density of 70% is enforced
as a hard constraint.
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Figure 4.8: Trade-offs between Utilisation and Location, in the presence of various
strengths of the “No Partial Allocation” (NPA) penalty, but with no TT or other penalties.

Figure 4.7 is a plot of the usual trade-off between utilisation and location objec-

tives, but comparing the presence and absence of a timetabling constraint. The case with

timetabling is with conflict matrix of density 70%, and with an associated weight W(TT)

that is large enough that the timetabling is effectively enforced as a hard constraint. In this

case, as we split, all conflicts from parent events are transfered to group sub-events. This

meant that timetabling constraints have significantly affected the utilisation, but in fact, as

we will show in chap. 6, full inheritance is not a realistic aproach to transmitting conflicts,

and partial inheritance will be discussed further. For now, we can assume that utilisation,

under full inheritance, is driven down by the timetabling penalty.

4.5.4 Inclusion of the No-Partial-Allocation Penalty

So far we have presented results for cases in which the “No Partial Allocation” (NPA)

objective is ignored, that is, W(NPA)=0. This means that some groups from a class can

be allocated even though others are unallocated. This gives the search extra freedom, and

so it is reasonable that enforcing NPA will only further reduce the utilisations obtained.
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The magnitude of this effect is seen in Figure 4.8, We see that giving NPA high weights

can further reduce the utilisation by about 10-20%. This is a significant effect, though it

is somewhat smaller than the effects seen in the trade-offs with the timetabling and group

size objectives. It is also interesting that the effect of the NPA becomes very small when

selecting solutions with small location penalty.

4.5.5 Impact and Approach Objectives

Our previous empirical approach of studying the effects of different constraints, stems from

the absence of a real-world model that incorporates important factors affecting utilisation.

A naive historical way to perform capacity planning, based on utilisation estimates, would

have been simply to ensure that the supply exceeds the demand. However, it is very rare

that it is possible to use all of the available seats.

Naturally, excess capacity within space is expensive, because it entails planning for

seats to be underused. Good planning should reduce the excess capacity without increasing

the risks that expected activities will not find a space. However, this is difficult because

there is little fundamental understanding of why the utilisation is so low in the first place,

or of the interaction between various constraints, mainly timetabling, Location, Group size

and utilisation.

If we were interested in doing splitting under a form of “pre-timetabling”, as the

early stages of timetabling, then we lack the essential information of available students,

and will have to rely on enrolment estimates. Effectively, the consideration of the group

size constraints will very much depend on those estimates, and so does most critically

the timetabling penalty. For space planning, we need to understand which utilisations
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are achievable, under varying random requests from year to year. Also how those achieved

measures, impact the decision criteria, when it comes to choosing group sizes, in the presence

of constraints, such as location and timetabling.

4.6 Summary

In this chapter we looked at the optimisation problem of maximising utilisation while satis-

fying preferences on splitting and considering constraints like event location and timetabling

conflicts. The problem has a multiobjective nature, and we showed some of the character-

istics or trade-offs between the different constraints. We found that the incorporation of

objectives other than solely employing utilisation can result in the utilisation dropping from

over 90% down to much lower figures such as 30-50%. This is significant because such low

utilisations are consistent with the real world; and so our model ultimately has the potential

to explain real-world utilisation figures. We acknowledge that other factors apart of those

considered in this study are also likely to have an impact on the utilisation inefficiency in

real-world problems. The work presented here, forms a first step into a deeper investigation

of this issue.

However, this chapter investigated the optimisation approach and did not consider

the decision problem, of: “given some random subset of classes, can we split and allocate

all of them in the available space”. Investigating this decision problem (Fixed choice) will

provide a deeper insight into the nature and behaviour of splitting under a changing number

of events and is the subject of the next chapter.
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Chapter 5

Threshold Effects on Teaching Space Allocation

Know most of the rooms of thy native country

before thou goest over the threshold thereof

Thomas Fuller (1608-1661)

5.1 Introduction

This chapter looks at the decision problem for the teaching space allocation with splitting:

“whether it is possible or not, to split and then fully allocate a given random set of modules

within the available teaching space”. Using an Integer Programming model for the TSA with

splitting, we study the probability that different levels of utilisation are achieved. We show

that sharp transitions exist between phases in which splitting and allocation is “almost

always possible” to ones in which it is “almost never possible”. More importantly, we

provide quantitative evidence of the computational cost increasing rapidly as we approach
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the Phase Transition. The point of this chapter is that even though it’s possible to estimate

utilisation Levels, the computational cost of achieving them in practice, might be quite high.

This will in turn affect the true utilisation levels that can be claimed as achieved. We use

Integer Programming and the stochastic (SA) solver of chap. 4 to illustrate the point, and

consider the splitting case in the presence of location and Group-Size penalties. Thresholds

have been extensively studied within Graph Theory and later within Artificial Intelligence

(AI), however, we expect that they are not so well-known within the Operational Research

(OR) community and so briefly review them here.

5.2 Thresholds and motivation

In the area of graph theory, the study of thresholds has focused on the random graphs

Bollobas (1985). A standard model for random graphs is denoted Gn,p where n is the

number of nodes, and p the probability of an edge between any two nodes. The probability,

Pr[P ], of a random graph having some boolean property, P , such as ‘has a large cluster’ or

‘is fully connected’, is studied as a function of n and p.

It turns out that the (n, p) parameter space is typically divided into regions in

which the probability is asymptotically close to one, Pr[P ] = 1− o(n), stated as instances

“almost always” have P , and other regions in which Pr[P ] = o(n), that is, instances “almost

never” have property P , and with a sharp demarcation line between these regions. Often,

these regions are called phases, and the demarcation line a phase transition, to follow the

similar phenomena in physical systems; for example, ice, water, and steam are phases of H2O

with sharp phase transitions at temperatures 273K and 373K (at atmospheric pressure).
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It is important to emphasise that such thresholds are not rare. As soon as one looks at

large instances arising with some random component, but from some similar source, then

thresholds become a common occurrence. There is even a remarkable “zero one law” within

random graphs that any suitable property (non-trivial and monotonic under the addition

of edges to a graph) will exhibit a threshold ?.

But then why are we interested in thresholds and easy-hard-easy patterns at all?

After all, such patterns are now ubiquitous and so simple presentation of “yet another hard

threshold” would neither be particularly informative or surprising. What distinguishes our

work is the usage and implications we draw from the hard thresholds. In AI work, hard

thresholds were studied for their own intrinsic interest, however, their actual usage was

almost exclusively1 indirect, and limited to being a source of many hard and suitably-sized

problems for driving forward the development of solution algorithms. For example, they

were heavily used for SAT solvers, however as solvers improved they become more able to

exploit structures within real instances and so benchmarks moved away from the previously

used thresholds.

In contrast, we are proposing in this chapter, a case in which a hard threshold in

itself can have a direct practical impact. We will see that the thresholds also have a novel

and direct relevance in and of themselves; namely, they can have an impact on the short

and medium-term planning process.
1A possible exception is the uses of thresholds as attempts to exploit and predict the hardness of instances

with the view to improving solvers (e.g. ?)
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5.3 Description and formulation

In this section, we present the terminology used, followed by a Mathematical Programming

formulation.

5.3.1 Problem parameters

We have slightly extended the model of chap. 4 to become centered around Module-Class-

Group levels defined in sec. 2.2. We now explain the parameters2 associated with modules,

classes, and rooms :

For every module, k ∈ {1, . . . , q} we associate the following:

1. size Sk : Number of students in module k.

2. timeslots Tk : Number of timeslots required by the module in a weekly schedule.

3. department dk: Department administering module k.

Other aspects, belonging to modules, like special module features, or module pref-

erences, can be thought of, yet we are not considering them in this study. Also, as explained

in sec. 2.2, classes will carry the same information as their respective modules except for

only having one time-slots, and also having an associated “type”. That is, for a class i ∈

{1, . . . , n} we associate the following:

1. size Si: number of students of the class (equal to the number of students of the

respective module).

2. type SPi: Lecture, Workshop, Tutorial, etc.
2Some of these parameters have been explained in previous chapters
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3. department di: department offering/managing the class.

For every room j ∈ {1, . . . , r} we have:

1. capacity Cj : maximum number of students in the room.

2. timeslots Tj : the number of timeslots per week.

3. spacetype SPj : space for Lecture, Workshop, Tutorial, etc.

4. department dj : the one that owns/administers the room.

5.3.2 Penalty and objective functions

The constraints and objectives that have been introduced in (chap. 4, sec. 4.2), will still

apply to this model, except for the timetabling penalty. In chapter 6, we will give proof,

that splitting will relax conflicts between classes, and make timetabling effects negligible on

the utilisation. The standard constraints of capacity and no-sharing, will be included.

However, more importantly, we also introduce the idea of the solvers having two

different modes, free and fixed choice.

Fixed Choice The solver is not given the freedom of choosing which classes to

allocate to rooms. Instead, the question that we address is “can we fully allocate all

the classes to the rooms?”

Free Choice The solver is allowed to select which classes to allocate so that it

maximises utilisation. The question that we address: “which set of classes in Q,

to allocate to rooms in J , given timeslots number T , so that we get a maximum

utilisation?”.
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The free choice mode allows the solver to choose classes that better fits in avail-

able roomslots. In a set of available classes, which subsets provides the best utilisation

is a characteristic question in this mode. As discussed in chap. 1, in order to study util-

isation we allow the sets of allocated events to vary. The free choice mode directly allows

the allocated events to vary and corresponds to the (extreme) case in which classes are

allowed to be chosen solely to maximise utilisation. In the fixed choice mode, events are

varied by solving problems with many different and varied sets of events.

5.3.3 Mathematical formulation : IP model

The following parameters and variables are used for modeling the problem as an Inte-

ger Program (IP). Roomslots, as defined previously, denote the available space to which

classes/groups are allocated. So having r rooms and p timeslots, the number of room-

slots would be rp.

Model TSA-SPLIT :

Given:

Q : set of all modules

q : total number of modules, q = |Q|

N : set of all classes

n : total number of classes, n = |N |

P : set of all timeslots

p : total number of timeslots, p = |P |

M : set of all roomslots
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m : total number of roomslots, m = |M | and m = rp

r : total number of rooms

In this chapter, we only consider tutorial and workshop spacetypes, and further-

more we consider them individually and do not mix, that is we will force that classes of a

given type are assigned to room with the same spacetype. Spacetype mixing will be studied

in chap. 7

Further parameters are:

Si : number of students enrolled in class i

Cj : capacity of roomslot j

LN×M (Lij): location matrix between classes i and

roomslot j with entries Lij .

Gt
i: target group size for class i

Glow
i : lower limit on group size for class i

Gup
i : upper limit on group size for class i

Gnb
i : upper limit on number of groups of class i

Ol : minimum occupancy allowed, i.e. minimum fraction of room seats to be filled

We also have parameters to impose non-negative upper limits on the penalties:

Bup
L : upper limits on the location (L)

Bup
GZ : upper limit on group size (GZ) penalty

For example, Bup
L = ∞ will correspond to no limit on locations, whereas Bup

L = 0

will force no location penalty, i.e. that all locations are perfect matches.
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Decision variables: We use the following integer non-negative decision variables:

vij = number of students of class i allocated to roomslot j

This variable is an integer variable that will ultimately govern the size of the group when

assigned to a timeslot.

yij =





1 if one group of class i is allocated to roomslot j.

0 otherwise

yij will is a binary variable that determines whether a group will be assigned to a timeslot

or not.

xi =





1 if class i is allocated

0 otherwise

Objective and Constraints : The objective is to maximise the overall seat-hours used

Obj∗ =
( n∑

i=1

m∑

j=1

vij

)
(5.1)

subject to the following constraints.

Given that no partial allocation is allowed, we enforce

m∑

j=1

vij = Sixi ∀i ∈ N (5.2)
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Room capacities cannot be exceeded, and so we impose

vij ≤ Cjyij , ∀i ∈ N, j ∈ M (5.3)

This also links the v and y decision variables.

Only one group can be allocated to a given roomslot:

n∑

i=1

yij ≤ 1, ∀j ∈ M (5.4)

The location penalty must be less than the upper limit Bup
L :

n∑

i=1

m∑

j=1

Lijyij ≤ Bup
L (5.5)

When Bup
L = 0, hard location penalty is enforced.

To limit the group size (GZ) penalty we impose

n∑

i=1

m∑

j=1

∣∣∣vij −Gt
iyij

∣∣∣ ≤ Bup
GZ (5.6)

Note that only occupied roomslots will contribute to this penalty, and the net effect is to

drive group sizes to the target size. When Bup
GZ is 0, all groups must have a size equal to

Gt
i :

In some cases we also impose upper and lower limits on the group sizes, as university
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managers would like group sizes in a given range. we therefore use the following :

vij ≤ Gup
i yij ∀i ∈ N, j ∈ M (5.7)

vij ≥ Glow
i yij ∀i ∈ N, j ∈ M (5.8)

We impose upper limits on the number of groups per class, e.g a class can be offered in

only 2 groups :
m∑

j=1

yij ≤ Gnb
i , ∀i ∈ N (5.9)

Note that if Gnb
i = 1 the problem becomes the pure teaching space allocation, without

splitting.

If a roomslot is used then the given fraction Ol of room seats needs to be filled:

vij ≥ OlCjyij , ∀i ∈ N, j ∈ M (5.10)

In this chapter, we use Ol = 0.3 (we investigated other values and found that smaller values,

or turning off this constraint altogether, do not change the results we present here).

The following constraint is entailed by the other constraints

n∑

i=1

m∑

j=1

yij ≤ rp (5.11)

but we added it as it makes the formulation tighter, leading to a considerable reduction in

computation times.
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Finally, note that in the fixed choice mode, we simply enforce ∀i. xi = 1 giving

m∑

j=1

vij = Si ∀i (5.12)

The value of the objective Obj∗ is then fixed, and the problem is simply that of feasibility.

That is the problem will no longer be an optimisation problem, but rather overconstrained,

in a bid to explore wether all the demand can be satisfied by available space.

5.4 Achievement curves

This methodology of generating random subsets, widespread in the literature, is detailed in

the pseudocode of proc: subset-scan, and will be used throughout this chapter.

Given a fixed set of rooms and a set of modules Q of a given spacetype, and their

respective classes, representing an estimate of the demand for students enrolled, BOSe,

one can ask the following:

Given a demand, BOSe, (for total “seat hours”), and taking account of the
constraints, is there an allocation that allows full satisfaction of the demand?

The point of “Achievement Curves” is to study how the probability of the answer

being “Yes, all are allocatable” varies with the demand. More specifically, since we are

given a fixed set of rooms and a set of classes, then we can compute the utilisation if

they were all to be allocated, we call this the “requested” utilisation UR, (section 3.3.3).

UR will be generated, as explained in the coming pseudocode, by selecting random subsets

of classes and summing over all available students, then dividing by the total available

room capacities. That will provide a “requested” value that could be fed to the solver for



5. threshold effects on teaching space allocation 98

further analysis. We can then run a solver to find the set of classes that can be allocated,

and these then give the “Achieved” utilisation UA. If all classes can be allocated then

UA = UR, however in general UA is lower than UR.

The intent of an achievement curve is to find the likely values of UA as a function of

UR. We determine the achievement curves experimentally simply by taking many different

sets of classes, over a wide range of values of UR. In this chapter, we use the following

simple procedure:

Proc: subset-scan
1 Given a set of modules Q of a given spacetype, with module k ∈ {1, . . . , q} .
2 For ν= 1 to 3000
3 For s= 1 to q
4 Randomly select a subset of s different modules from set Q, represented by UR

5 Run the solver in free choice mode on the subset to get UA

6 END
7 END

In this subset-scan procedure, every randomly generated subset generates a point, with

coordinates (UR, UA). An example is given in figure 5.1(a), in which we give the achievement

curves with two different upper limits on the location penalty (Bup
L = 800, 1200).

Alternatively we can present the “fractional achievement”, or “fill factor”

Kf =
UA

UR
(5.13)

against UR. An example is given in figure 5.1(b). The results were obtained using CPLEX

10.0 as the solver. CPLEX is given an “MIP gap” of 1% meaning it only stops when it
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Figure 5.1: Safety graph, representing requested utilisation (UR) versus achieved utilisa-
tion (UA), with 2 different upper limits on the location penalty (for the WKSP data-set)

proves the current solution is within 1% of optimal. Hence we can be sure that the fall-off

in achieved utilisation is a not a result of any deficiency in the solver.

As observed in figures 5.1(a) and (b), the main features of these curves are their

statistical predictability and the threshold behaviour. At a given value of UR the achieved

values do not vary widely but are rather closely clustered and so one can say that the

expected UA is fairly predictable. The threshold behaviour is the observation that the

achievement curve exhibit a critical utilisation UC that separates them into three distinct

areas:
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1. “Under”, UR < UC%. Almost all instances are “satisfiable”, that is, the requested

utilisation almost surely be achieved. That is, Pr(UR = UA) ∼ 1. In figure 5.1(b) it

corresponds to the area where Kf = UA/UR = 1

2. “Critical”, UR ≈ UC . In this region there is mix of satisfiable and unsatisfiable

instances.

3. “Over”, UR > UC . In this region almost all instances are unsatisfiable, that is, it is

impossible, or at least very unlikely that full allocation is possible.

We note that such sharp thresholds as seen above are common behaviour, in phys-

ical and combinatorial systems. In physics, they correspond to a “phase transition”, for

example, melting is a transformation from solid to liquid. Phase transition in complexity

and combinatorial optimisation have attracted many researchers. For example, transitions

have been identified in many NP-hard problems such as SAT, Hamiltonian cycles (HC)

(Cheeseman et al., 1991).

In terms of space management we might regard the “under” region UR < Uc as

the SAFE region because the requests are very likely to be satisfied. The critical region

and over are generally UNSAFE. The intended usage of such results is that administrators

should aim to be in the safe region so as to be confident to satisfy demand, but as close as

possible to the critical region so as to maximise utilisation.

We are therefore interested in the quantity

Pr[Kf = 1] : probability of achieving Kf = 1 on random choice of classes given UR

(5.14)
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Figure 5.2: The x-axis is the requested utilisation UR. The left-hand “y1-axis” is the
probability of full allocation, Pr(Kf=1). The right-hand “y2-axis” is the run-time (on log
scale). The average run-times are plotted together with “error bars” representing the lower
and upper quartiles of the run-time. For the run-times, the instances are separated into:
“Sat”, satisfiable; “Unsat”, unsatisfiable; and “Undet” for undetermined by the solver.
Results are with no bounds on location and group size, i.e. Bup

L = Bup
GZ = ∞. Data-sets

used are (a) WKSP, and (b) TUT.

and in particular how it varies with the requested utilisation UR.

5.5 Phase transition and computational hardness

In this section we give experimental results for the probability of full allocation, Pr[Kf =

1] and also for the computational time needed for solving the allocation problems. In

particular, we will see thresholds, indicating that the search costs (measured in run-time)
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are much higher in the phase transition region, i.e. the existance of an Easy-hard-easy

transition (Cheeseman et al., 1991; Erben, 2001; Gent and Walsh, 1996; Ross et al., 1996;

Smith and Dyer, 1996).

Experimental Procedure. In order to explore “easy-hard-easy threshold” results we

follow the following method:

1. Produce many varied subsets of the classes using a procedure similar to subset-scan

in the previous section. For each such subset:

(a) run the solver (CPLEX in this case) using model TSA-SPLIT and record

whether the instance is

i. “Sat.”: a full allocation is found, i.e. the instance is satisfiable.

ii. “Undet.”: the problem reaches the time limit (we use 1500 seconds) and so

remains undetermined.

iii. “Unsat.”: it is proved no allocation is possible.

2. Take the data and put into bins3 according to the requested BOS for each instance;

selecting bin-sizes appropriate to give a reasonably fine-grained plot, but with enough

data points in each bin. Compute for each bin:

(a) the probability of the instance being satisfiable.

(b) for the runtime analysis, further divide the instances into “Sat.”, “Undet.”, and

“Unsat.” and for each division compute the average runtime, and the lower and

upper quartiles (the 25th and 75th percentiles).
3A standard way to find the probability, is to group data points into “categories” or “bins” and then plot

the frequency distribution (e.g probability) over all bins



5. threshold effects on teaching space allocation 103

The results of such an analysis are given in Figure 5.2 for the WKSP data set,

and not imposing any limits on the location and group size penalties. The results for the

probability of full allocation show a sharp threshold with UC ≈ 92%. We also see that the

runtimes are much larger in the neighbourhood of the threshold. Note that the run-time axis

is logarithmic: instances at U = 90% take 10-100 times as long as those at U = 80%. The

observed easy-hard-easy behaviour is reasonable. Below the threshold there are many

solutions and so it is easy to find one. For U ≥ 100% the linear relaxation will detect

infeasibility and so the runtime will be small as branch-and-bound search is not needed.

Around the threshold, there are few if any solutions, and so the search will pursue many

failed branches.

The dramatic increase in runtimes at the threshold implies that better solution

methods will be required if we are to approach the threshold on larger data sets.

Figure 5.2 (b) gives the results of a similar investigation of the TUT dataset. The

outcome is similar to the Workshop case of figure 5.2 (a), but we can notice that threshold

is closer to 100%. We believe this is because the smaller rooms help achieve near optimal

allocations compared to larger one in WKSP dataset. However both databases exhibit the

same behaviour in terms of time requirements.

5.5.1 Thresholds with location constraints

In the same fashion as figure 5.2, in figure 5.3 we show the effects of imposing an upper

limit on the location penalty, Bup
L = 800. For both the WKSP and TUT datasets we see

that there is still a clear threshold, however it is now at a significantly smaller critical

utilisation: reduced to about 45% for WKSP, and 60% for TUT. The transition becomes
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Figure 5.3: Threshold results, as Figure 5.2, but with an upper limit on location penalty
Bup

L = 800. Data-sets: (a) WKSP (b) TUT

slightly less sharply defined. These are consistent with the results of chap. 3, that the

need to reduce location penalties has the potential to significantly drive down utilisations.

The computational hardness, and easy-hard-easy pattern, also peak at the threshold, in line

with the case of pure splitting.

5.5.2 Thresholds with location and group size constraints

For tutorials, it is usual that they are intended to be taught in small groups. We now look

at the effects on the thresholds of two different ways to enforce the small group requirement.
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Figure 5.4: TUT Data-set Bup
L = 800 (a) Group size target enforced by Bup

GZ = 150
Gt

i = 15 (b) Group size strictly constrained in the range 12,. . .,16.

In figure 5.4(a) we take a target size of 15 and impose an upper limit on the

resulting total group size penalty. There is again a threshold, but now the critical utilisation

plummets to 20%. Also, the computational hardness remains in that many instances still

cannot be solved.

As an alternative to the overall penalty, in Figure 5.4(b) we see the effects of

imposing for each group that the size must lie within the range 12,. . .,16. (That is, we

use Glow = 12 and Gup = 16). Again there is a threshold, and the group size constraints
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have substantially reduced the achievable utilisation. However, it is also apparent that

the hardness peak has essentially disappeared. (remark that it is well-known that whilst

thresholds are often associated with hardness peaks, it is that not all thresholds have a

hardness peak).

These results suggest that enforcing small group sizes can easily lead to a large

loss of utilisation. Presumably, any remedy to this will involve modifying the room sizes

so as to be a better match. Studies of room sizes profiles are part of our ongoing research,

and will be reported elsewhere.

5.6 Hardness peaks using a stochastic (SA) solver

In this section, we reuse the solver of chapter 4, in a Fixed-Choice mode, using the

Simulated Annealing algorithm with reheat, to study the Threshold Behaviour and Phase

Transition. As shown later, using another algorithm strengthens our findings by suggest-

ing that the same characteristic behaviour of the problems occurs across other different

algorithms.

5.6.1 Runtimes comparison between (SA) solver and CPLEX

Figure 5.5 a) plots the run-times required by CPLEX and SA on the pure splitting case,

NOT imposing any limits on the location or group size penalties. After 80% UR, (SA)

appear to exhibit a “False Threshold”, hardly coping with the required change of regime,

where no free roomslots are available, and given this set of roomslots, the goal becomes to

maximize the total number of students allocated. While CPLEX adapts better, in the hard

region, it still finds it difficult to fully allocate all courses. Specialised algorithms might be
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Figure 5.5: The average run-times, of SA and CPLEX plotted together. For the run-
times, the instances are separated into: CPLEX: “Sat”, satisfiable; “Unsat”, unsatisfiable;
“Undet” for undetermined, and Simulated Annealing (SA) : “SA Sat” satisfiable and “SA
Undet” for undetermined.



5. threshold effects on teaching space allocation 108

required in this area of the search, however this study stands at the level of commonly used

algorithms adaptable to most search types, e.g. CPLEX branch and bound and Simulated

Annealing. Figure 5.5 b) represents the probabilities that kf = 1 is achieved using CPLEX

and the (SA) solver. Notice how the local search under-performes CPLEX on instances of

the same size. The transition of Pr(Kf = 1) from 1 to 0 coincides with the respective

peaks (for (SA) and CPLEX) in runtime shown in figure Figure 5.5 a). We also plot that

Pr(Kf = 1) is Unsat. The small area in the graph for Pr(Kf = 1) between Sat. and Unsat

represents the Undetermined (Undet.) region.

Figure 5.6 a) plots the runtimes required by CPLEX and SA in the presence of the

location L penalty. The SA solver adapts well in the threshold area and even solves some

instance quicker then CPLEX. Experiments with SA in presence of the location constraint,

are performed with solver in an optimisation mode, the outcome is therefore either Sat. or

Undet.

Figure 5.6 b) represents the probabilities that kf = 1 is achieved using Cplex and

(SA) solver in the presence of the location penalty. Results are very similar to Figure 5.5 b)

but the transitions smoother and less sharp then the pure splitting case.

5.7 Summary

Still in the “Space Management” Perspective, the splitting problem , as mentioned in chap-

ter 1, is of considerable importance for many institutions. In this chapter we looked at the

decision problem of: ”Is it possible to allocate all classes into the available space and achieve

a target utilisation UR?”. We found that, even if some utilisation levels can be achieved
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with a good splitting, they won’t be of much use if solvers are incapable of achieving them.

We have shown that the computational effort of achieving some desired utilisation levels can

be very high, and that happens naturally at the Threshold. This chapter, proposes a case

in which, Phase Transition systems can have a practical impact on studying space usage.

We used an integer programming formulation and a Simulated Annealing Meta-heuristic to

illustrate the point.

So far in the thesis, we have only considered spacetypes separately. We have

enforced that the type of a class must be the same as that of the room. However realistically

allocation happens in a mixed spacetype environment where e.g. tutorial groups can be

assigned to a lecture theatre etc. We will discuss spacetype mixing in chapter 7. On the

other hand, In the proposed model of this chapter, we have omitted the timetabling penalty,

and considered that conflict inheritance (chap. 6) is zero. In the coming chapter we briefly

illustrate how good is our approximation of a zero-valued conflict inheritance by considering

a model that incorporates student enrolments.
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Chapter 6

Partial Inheritance in Teaching Space Allocation

The finest inheritance you can give to a

child is to allow it to make its own way

Isadora Duncan

6.1 Introduction

In chapter 5, we studied the splitting problem not considering constraints arising from

timetabling conflicts. When splitting and allocating a class “A” which conflicts with “B” and

“C”, we define the “partial inheritance” as a measure of how conflicts are transmitted from

“parent” classes to “child” groups as splitting takes place. It has always been known that

sections generally relax the timetabling constraints (Schaerf, 1999; Carter, 2000). Indeed,

part of this work is to quantify and discuss the extent to which the timetabling conflicts are

reduced and provide cases where they sometimes get reduced to zero. This chapter actually
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Figure 6.1: Effects of splitting and sectioning which reduces the timetabling conflicts

differs from existing work in the area in that it’s student-centered, that is decision are

made on assigning individual students to groups as well as constructing a class timetable.

6.2 Motivating partial inheritance

So far, the models in this thesis, have focused on splitting and allocating classes to avail-

able roomslots, disregarding how individual students are assigned to respective groups. We

took a course-centred approach (Ref. chap. 2). In chapter 3, when assigning teaching

events to roomslots, we have studied the timetabling penalty as a major real-world con-

straint affecting space utilisation. This penalty took into account the conflicts between

classes, as students had to enrol in a multitude of them in a given semester. It was repre-

sented by a conflict graph. For example, three classes “A”, “B”, and “C” in which at least

one or more students are simultaneously enrolled, cannot be allocated to the same timeslot,

necessarily requiring three timeslots1. When those classes get split into groups e.g. A1, A2,

B1, B2 and C1, C2, then if every group should inherit all the conflicts from its parent, then

they will require three or more timeslots. However, there are cases where splitting and
1in figure 6.1, an edge between any two vertices, will represent two conflicting classes and colors represent

timeslots



6. partial inheritance in teaching space allocation 113

reallocating students to groups could eventually reduce the number of conflicts (two colors

in figure 6.1). Consequently, even if conflicts cannot be completely reduced, their impact

on the timetabling penalty would be negligible post-splitting. The main assumption here,

is that grouping students, in a proper manner, would relax the timetabling penalty.

For us to support this assumption, we are bound to use a student-centred model

of the teaching space allocation, capable of assigning individual students to groups and

timeslots, under well defined conditions. Moreover, a valid student model, requires infor-

mation on the enrolment of students into modules and classes, that is a provision of a

real-world conflict graph, generated by the student enrolments. This provides our motiva-

tion: (1) to design, a new enrolment generator, that would capture as much as possible,

the factors that mimic those enrolments, and (2) to support the claim that when split-

ting occurs, a course-centred approach is a credible and valid approximation that allows

timetabling conflicts to be relaxed.

Note, we do not try to provide an exhaustive study of conflicts and conflict graphs

in timetabling (as with a graph theoretical approach), that stands beyond the scope of this

thesis.

6.3 Enrolment Generator: genRol

This section describes the enrolment generator (genRol) that will be used in this chapter,

to generate student enrolments in classes and their respective conflict matrices. Although,

genRol is fully randomised, class sizes has been determined by class profiles available in

datasets of Appendix. A: that is, given a set of real-world, fixed class sizes, genRol selects
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Figure 6.2: Schematic of the workings of genRol , showing the window based structure,
and a random selection based on a Normal distribution

students and fills in classes such that the total number of students assigned to a given class

is less then or equal to the fixed class size multiplied by the class tolerance γ2.

Procedure proc: genRoll, describes the algorithm behind genRol . Using the

set of class profiles and the set of all students, we group students and classes into windows

and assigns students to classes by sampling from a uniform or normal distribution.
2γ allows a small variation in the class size, as generally classes have different sizes from year to year.
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6.3.1 Window based selection

Proc: genRol
1 Initialize sorted student vector B.
2 Initialize sorted class vector Q.
3 Initialize class sizes φi.
4 Set η upper limit on student-enrolments.
5 Set γ: Course tolerance.
6 Set σ: Window size
7 Set ε: window overlap
8 Set δ: number of windows
9 Set ζb: current student-enrolment for student b
10 Set ϕi: current class capacity for class i
11 initialise students window center-position WC [w]
12 select probability distribution Dist = (N|U)
13 LOOP w = 1 to δ
14 LOOP k over all φi in window w
15 WHILE ϕk ≤ φk × γ DO
16 IF Dist == N
17 set Dist = N (WC [w], σ + ε)
18 select student b according to Dist
19 IF ζb ≤ η THEN
20 add student to class φk

21 ζb = ζb + 1
22 ELSE
23 remove student s from window (student-enrolments for s satisfied)
24 END IF
25 ELSE IF Dist == U
26 set Dist = U(WC [w] + (σ + ε)/2,WC [w]− (σ + ε)/2)
27 select student b according to Dist
28 IF ζb ≤ η THEN
29 add student to class φk

30 ζb = ζb + 1
31 ELSE
32 remove student s from window (student-enrolments for s satisfied)
33 END IF
34 ϕk = ϕk + 1
35 END WHILE
36 END LOOP
37 END LOOP
38 Return set of student enrolments, conflict graphs and new class profiles
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The schematic diagram of figure 6.2 illustrates our approach to genRol : Students

and classes are used as two separate, sorted vectors. Students s1 to sn can be thought

as occupying aligned positions 1 to n. Windows which can be thought of as departments

in a given faculty, or faculties in a large university, are groupings of students or classes,

where every window is a subset of the classes or students respectively. E.g. students of

window 1 are to be randomly selected and assigned to classes of the corresponding class

window C-window 1. Although student windows can only have students assigned to the

corresponding classes window, when overlap is allowed, a small fraction of students of a

given window can be assigned to classes of another window.

Initially, all classes are empty with capacity dictated by the profile of classes

(See Appendix. A). In every window, students are selected, at random, from a given distri-

bution (Normal or Uniform) and assigned to classes.

In proc: genRol, the student-enrolment number (η) is the upper limit on the number

of classes a student enrols in, per semester. Generally, the higher the limit, the denser the

conflict graph. The class tolerance parameter γ controls the number of students assigned to

any given class as a fraction of the given class capacity, This, in turn, controls the overall

requested BOS. It is set as a random parameter controlling the increase or decrease in the

total number of students in classes from year to year. Also, σ is the size of the window and

δ is the number windows. So, if b is the total number of students, σ = b/δ.
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Figure 6.3: Selection based on a uniform distribution with with δ = 5, η = 5, ε = 0.05

6.3.2 Enrolment histograms

In the following histograms, we present the outcome of enrolments produced by genRol .

The X axis represent the students, and Y axis represent the classes. One single student

can enrol in more then one class, and therefore every student-enrolment is represented by

a different color.

Figure 6.3 shows the enrolment diagram using a selection based on a Uniform

distribution. We allow 5% of overlap between windows, that is ε = 0.05, allowing genRol

to select student-enrolments and fill classes from other windows.

In figure 6.4, student selection is based on a normal distribution with a standard

deviation larger the window size, allowing more students to cross-enrol in a neighbouring

window. Similarly, figure 6.5 uses a normal distribution, but with a tighter standard devi-

ation (std = σ). the histogram is less fuzzy than figure 6.4 and less students are allowed to

register across windows.

Our approach to genRol , is to try to mimic real world enrolments where students
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in large universities can choose to subscribe to courses from other departments (windows).

This enrolment will generally affect the structure of the timetabling conflict graph. To this

end, on a separate research track, studying the clustering coefficients in conflict graphs,

and analysing real-world student enrolments3, we found a very close match between our

histograms and histograms revealing the clustering of students into classes. This actually

strengthens our belief that a departmental/window grouping is a reasonable strategy for

genRol .

6.4 Student-based model formulation (EN-st)

In the following formulation every student is able to enroll in more than one class. We will

call the single enrolment of a student in a specific class, a student-enrolment, the number

of student-enrolments for a given student is bounded by η, which is the upper limit on the

number of classes a student is allowed to register in. On the other hand, roomslots denote

all available space to which classes are allocated. Having r rooms and p timeslots per

room, the number of roomslots is rp.

Model EN-st :

given :

B : the set of all students

N : set of all student-enrolments,

n : total number of student-enrolments, n = |N |

M : set of all roomslots
3From the university of Toronto
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m : number of roomslots, m=|M | and m = rp

K : the set of all classes

P : the set of all timeslots

p : the number of timeslots, p = |P |

T z = {j |j ∈ M : z ∈ P}: represents the set of roomslots corresponding to a given

timeslot z, with M =
⋃

z∈P T z and
⋂

z∈P T z = ∅.

T z is the set of roomslots considered at a given one time.

Given a partition of students in a given class, we define the following :

Si = {s |s ∈ N : i ∈ K} : represent group of students which belong to different classes,

with N =
⋃

i∈K Si and
⋂

i∈K Si = ∅. si :number of students enrolled in class i, si = |Si|

Cβ = {d |d ∈ N : β ∈ B} represents the set of conflicts such that every subset represents

“student-enrolments” for a single student, with N =
⋃

β∈B Cβ and
⋂

β∈B Cβ = ∅.

For every student β, Cβ represents all student-enrolments for that student.

Cj : capacity of roomslot j

Wi: weight of class i, represents a weighted preference for a given class.

Lij : location matrix between classes i and room j

Gt
i: target group size for class i

Glow
i : lower limit on group size for class i
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Gup
i : upper limit on group size for class i

Gnb
i : upper limit on number of groups of class i

Ol : minimum occupancy allowed, i.e. minimum fraction of room seats to be filled

τ : Upper limit on section size for all classes, Gup
i ≤ τ ∀i

ν: Upper limit on section number for all classes, Gnb
i ≤ ν ∀i

µ: Upper limit on allowed sections taught by a single teacher

Bup
L : upper limits on the location (L)

Bup
GN : upper limit on group number (GN) penalty

Decision variables: We use the following binary decision variables:

xbj =





1 if student-enrolment b is assigned to roomslot j

0 Otherwise

yij =





1 if one class i is allocated to roomslot j

0 Otherwise

Objective: to maximise the total BOS (total student-enrolments):

Obj∗ = max(
|N |∑

b=1

|M |∑

j=1

xbj) (6.1)

Subject to the following constraints:
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The location penalty must be less than the upper limit Bup
L :

|K|∑

i=1

|M |∑

j=1

Lijyij ≤ Bup
L (6.2)

When Bup
L = 0, hard location penalty is enforced.

The group number penalty could also be preferred to be less than an upper limit Bup
GN , set

by university policies:
|K|∑

i=1

|M |∑

j=1

yij ≤ Bup
GN (6.3)

Bup
GN , will represent an upper bound on the total group number required.

6.4.1 Student constraints

This set of constraints enforces proper assignment of students to groups and roomslots. In

constraint(6.4) a given student-enrolment cannot go in more than one roomslot:

|M |∑

j=1

xbj ≤ 1, ∀b ∈ N ; (6.4)

In constraints (6.5) (6.6), the number of all students assigned to a roomslot should be less

than the roomslot capacity Cj :

|N |∑

b=1

xbj ≤ Cj , ∀j ∈ M ; (6.5)

and with τ is the upper limit on the group size, then we also have:
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|N |∑

b=1

xbj ≤ τ, ∀j ∈ M ; (6.6)

In constraint (6.7) the sum of all students of a class is less than the size of the given class

si.

|Si|∑

b=1

xbj ≤ si, ∀i ∈ K, ∀j ∈ M ; (6.7)

Group sizes should not exceed the initial roomslot capacity. This constraint links also

variables x to y.
|Si|∑

b=1

xbj ≤ Cjyij , ∀i ∈ K, ∀j ∈ M ; (6.8)

If a roomslot is used then the given fraction Ol of room seats needs to be filled:

|Si|∑

b=1

xbj ≥ Olsiyij , ∀i ∈ K, ∀j ∈ M ; (6.9)

Classes/Group constraints

Constraints (6.10) (6.11) specify upper limits on the number of groups. Constraint (6.10)

ensures that the number of groups per class be less then ν and constraint (6.11) does not

allow assigning more then one group to any roomslot.

|M |∑

j=1

yij ≤ ν, ∀i ∈ K, (6.10)
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|K|∑

i=1

yij ≤ 1, ∀j ∈ M, (6.11)

Timetabling constraints

Constraint (6.12) represent student conflicts, such that any two classes, where a given

student is simultaneously enrolled, cannot be allocated to the same timeslot.

xb1j1 + xb2j2 ≤ 1, ∀γ ∈ P, ∀j1 ∈ T γ , ∀j2 ∈ T γ , (6.12)

∀β ∈ B, ∀b1 ∈ Cβ,∀b2 ∈ Cβ (6.13)

b1 6= b2, j1 6= j2; (6.14)

the Cβ set, hold the student-enrolments for student β

Constraint (6.15) ensures that no two groups of a given class be allocated to the same

timeslot (assuming for example that a given teacher teaches both groups).

|T p|∑

j1

yij1 ≤ 1, ∀p ∈ P, ∀i ∈ N ; (6.15)

xbj , yij ∈ {0, 1} ∀b ∈ N,∀i ∈ K, ∀j ∈ M ; (6.16)

6.5 Decision making and effects on Partial Inheritance

We have discussed, so far, a practical way to generate student enrolments and class conflicts

using genRol. In the following sections, the focus is on the student-centered model (EN-st)
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of sec. 6.4, whose objectives and constraints are similar to the model of chap. 5, with the

exception that decisions here are made based on individual student assignments. Indeed,

we give evidence of conflicts being resolved, when splitting occurs under certain conditions

and parameter settings. We show that achieving or not full allocation given a set of class

conflicts is dependant on a set of parameters of which, the allowed number of groups per

class (ν) and the group size (τ).

Partial inheritance I: Let us define the partial inheritance to be a function I, depend-

ing on the following variables: window number (δ), enrolments per student (η), timeslots

number (p), upper limit on group number (ν), upper limit on group size (τ), and denoted

by I(δ, η, p, ν, τ)4.
4The dependence of I on those variables, will be supported by coming experiments on utilisation and not

by theoretical analysis. For detailed studies of conflict resolution in graph theory refer to chap. 2.
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I(δ, η, p, ν, τ)





= 0 if all conflicts are resolved, U = 100%

6= 0 Otherwise

Note that the approach has been centred around deciding on conflict resolution

based on the effects on the utilisation rather then on countable conflicts, yet one can argue

that the latter is more expressive, however we have opted for this approach in line with

work on utilisation.

We have no interest at this stage in knowing what values such a function would

take. However, we are interested in knowing under what circumstances (e.g. parameters),

I is not null.

Our approach is as follows: starting from: a fixed instance of classes and rooms,

a given student enrolment, a fixed number of windows, and a fixed timeslot number, we

vary the upper limit on the group size τ and plot the utlisation versus τ for different values

of upper limit on group number ν. We vary τ such that it scans different group sizes up to

sizes larger then the maximum class size: τ ∈ {0, . . . , Cmax}, Cmax = max(Cj), ∀j.

Results from this experiment are presented in figure 6.6. When ν is one, there is

no full allocation for any values of τ , even as τ becomes equal to Cmax. Hence conflicts will

remain unresolved and I(δ, η, p, 1, τ) 6= 0. As ν becomes larger than one, two for example,

after a given value of τ (≈ 42) full allocation becomes possible I(δ, η, p, 2, 42) = 0. Same

applies when ν is set set to 3, I(δ, η, p, 3, 30)=0, Clearly for ν = 3, all values of τ ≥ 30 make

I = 0.
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These experiments gave almost the same results when we changed the window

number (δ) and the number of enrolments per student (η), in this case with δ ∈ {3 . . . 8}

and η ∈ {3 . . . 7}. Changing values of δ and η caused values τ to be shifted for I to become

equal to zero. Administrators that have to make decisions on splitting, are interested in

the first values of τ and ν which make I = 0 or U = 100%. Then, one might consider the

smallest pair (τ, ν) (e.g. smallest τ and ν) which makes the partial inheritance zero,

mainly because it’s sometimes preferred to have group sizes as small as possible, or possibly

the smallest number of groups.

As figure 6.6 dealt with one instance of classes and enrolments, in the coming

section we study the behaviour of the partial inheritance under changing student enrolments.

In a sense we study the robustness of partial inheritance at the pair (τ, ν), in the case

of figure 6.6, at the points (30, 3) or (42, 2).

Note, the obvious cases where partial inheritance can never be zero: for example, if

the number of students-enrolments is larger than the number of timeslots (which is highly

unlikely, as in a given teaching week with 45 timeslots, students are not usually allowed

to enrol in more then 4-7 classes). Also when the number of windows is greater than

the number of courses or when there are less than 2-3 available rooms, or fewer than 4-5

timeslots, I 6= 0. Those cases rarely happen in practice.



6. partial inheritance in teaching space allocation 128

6.6 Robustness and solution quality

6.6.1 Free versus Fixed timetable

The student model used in this chapter, (model EN-st), involved decisions on which classes

are assigned to which roomslots (y variables), and also which students are assigned to which

groups (x variables). Hence, there is the timetabling component and the sectioning compo-

nent repectively. Studying the robustness of the Partial Inheritance, leads to understanding

the behaviour of utilisation levels at the special pair (τ, ν), for a fixed timetable5, under

changing enrolment. For this purpose, in this section, we will make use of both procedures,

genRol and Enroll-Robust.

Proc: Enroll-Robust
1 Given a set of classes K of a given spacetype.
2 Use model EN-st on single instance of classes and rooms for a given pair (τ, ν)
3 Extract the timetable (y variables): yFIX

ij

4 For z= 1 to 3000
5 Run genRol and get UR

6 Run modified model EN-st with yij = yFIX
ij

7 Get UA

8 END
9 END

6.6.2 Proc: Enroll-Robust

Procedure Enroll-Robust explains the methodology used. For a fixed timetable and under

varying enrolments and class tolerance γ, the main purpose is to study the utilisation level

at the given “special” pair (τ, ν), e.g at (30, 3) or (42, 2). For example, at the pair (30, 3)

5fixed values of yij variables become yFIX
ij
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Figure 6.7: Robustness of the Partial Inheritance at the special pair (τ, ν). τ = 42 and
ν = 2. Plots with different values of number of enrolments per student (η=4 and 6), for
free and fixed timetable.

of figure 6.6, which corresponds to a single solution provided by model (EN-st) for fixed

values of τ and ν, we extract the timetable assignments (y variables). Then for every

single run, using procedure genRol, we vary the enrolments and the class tolerance γ,

(γ ∼ U(0.02.0.05)). We record the requested utilisation UR versus the achieved UA. We

repeat this procedure and collect the points shown in figure 6.7. Note, this procedure is

different than proc:subset-scan used in chapter chap. 5, as Enroll-Robust does not

select different subsets, but rather changes the enrolments and the class sizes, to generate

requested utilisations UR.

In figure 6.7, Every point in the graph represents a single solution. The first plot,

leaving the timetable free, shows that almost every requested utilisation has been achieved.

Changing the timetable for every instance helps resolve all the conflicts. Besides, by using

a reasonably higher value for τ , allows enough flexibility for the solver to make I = 0.
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For the other plots (Fix Ttble), we fix the timetable and find that after a given

critical utilisation level, not all requests can be achieved. However, the difference is quite

small, for example, while a requested value UR of 0.39 can be easily achieved, a UR of 0.43

can only lead to 0.41 achieved. One can generally deduce that, depending on how risk averse

universities are, a timetable fixed from the outset, is robust enough that differences between

requested and achieved utilisations do not exceed the 5% mark. This is also supported in

figure 6.8, where we plot the requested utilisation, governed by a change in enrolment and

class tolerance, versus the fill factor Kf
6, for a fixed timetable. One can notice that the

change induced by the requested utilisation do not drive the fill factor by more than 5%

(from 0.95 to 1) and for UR between 0.38 and 0.4 the fill factor is always 1.

6.6.3 Research directions

This section has lead us again to the timetabling paradox that was discussed in chap. 2.

That is, should we timetable post enrolment or pre-enrolment. Understanding space plan-

ning and the effects of this concepts on space utilisation is beyond the scope of the thesis and

remains, up to our knowledge an open-ended question. Many approaches, tend to provide

an initial timetable, then after enrolments occur, the initial timetable is altered to meet

the new demands. Yet decisions as to the group sizes and group numbers would greatly

affect this alteration and more complex constraints tend to complicate changing a timetable

post-enrolment. Figure 6.9 represents the stochastic approach of a global decision making

process, where in a first stage a timetable is constructed and decision on upper limits of

group size and group number are made, then as time unfolds and enrolment occurs, the
6The “fractional achievement”, or “fill factor” was defined in sec. 5.4 of chap. 5, as Kf = UA

UR
.
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Figure 6.8: Achievement curve, representing Kf versus UR, For different values of (η=4
and 6), at the special pair (τ, ν). τ = 42 and ν = 2.

second stage or “recourse” will decide on the student assignments.

6.7 Summary

This chapter has studied and introduced the partial inheritance concept which was defined

as to how conflicts are transmitted from classes to group splits when splitting and allocation

Recourse: 

Sectioning

   (x variables)

Construct 

Timetable 

(y variables)

First STAGE Enrollment Second STAGE

E

Here-and-Now Wait-and-See

GZ / GN Decision Tradoff 

Time

Decisions/Criteria

Figure 6.9: Stochastic approach
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occurs. We have designed a purpose-fit student enrolment generator genRol that tries to

mimic real world enrolments and generates realistic class sizes. Based on that generator we

showed cases where most of the conflicts got resolved as more group splits were allowed.

We have also studied the robustness of the partial inheritance, and showed that changing

enrolments could cause a 5% drop in the requested utilisation, under a fixed timetable.

It is well known that sectioning will relax the timetabling conflicts (Schaerf, 1999;

Carter, 2000), but this chapter was needed to support this claim in a splitting frame-

work, which is a close variant of the well known Sectioning problem. Moreover, as we will

deal with spacetypes in the coming chapter, when a given spacetype requires splitting the

timetabling penalty is omitted but when no splitting is needed (e.g Lectures) class conflicts

are considered and the penalty is switched on automatically.
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Chapter 7

Spacetype Mixing in Teaching space allocation :

Long Term Planning

If you are planning for a year, sow rice;

if you are planning for a decade, plant trees;

if you are planning for a lifetime, educate people

Chinese proverb

7.1 Introduction

So far in this thesis we have considered spacetypes separately; e.g. the allocation of tutorial

activities to tutorial rooms, lectures to lecture theatres etc. However, in practice, allocation

happens in a mixed spacetype environment in which, teaching events of a given type can

be allocated to rooms of another spacetype, e.g. tutorials can borrow lecture theatres

or workshop rooms, when they’re available. The “preference” for which events can be
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placed in which spacetype is of great practical interest for the academic sector in general

and RealTime Solutions in particular. This chapter will provide a more general model

for the teaching space allocation problem with spacetype mixing and look at altering the

spacetypes of rooms so that the critical utilisation can be improved. We address the problem

of finding what better “mix” of spacetypes within the physical space is achievable, and what

minimal change in space profiles would best improve the critical utilisation?. We provide

two methodologies: a heuristic and an exact approach to alter the room spacetypes.

7.2 Aims and motivation

As discussed in chapter 1, the limited availability of teaching space, constantly motivates

institutions to achieve optimal space usage. Our study of teaching space, has focused so far

on the short-term space management perspective, “ how to split and allocate given demand

to the available teaching space”. Teaching space is constituted of (not restricted to) rooms

of different sizes, providing a range of facilities, e.g. large tiered rooms also known as lecture

theatres, small tutorial rooms, laboratory rooms, seminar rooms, etc.

Rooms are therefore associated with a given spacetype (e.g. lecture, tutorial, work-

shop, seminar etc.) and generally host academic activities of a similar type, for example,

lectures are offered in lecture theatres, tutorials in tutorial rooms, etc.

Room characteristics (sizes and spacetypes) representing a set of given rooms, will

form the space profile of the available space. Therefore altering one room’s spacetype, will

affect the “space profile”.

Space planning in academic institutions is closely related to maintaining a given



7. spacetype mixing in teaching space allocation : long term planning 135

space profile so that future demand for space will be satisfied. The demand will be repre-

sented by teaching events (like lectures, tutorial, seminars etc.), that need to be assigned

to the available space.

In practice, mixing happens more frequently in institutions, and from informal

discussions with school managers, events are often assigned rooms of different spacetypes,

e.g. Tutorials can be offered in lecture theatres if they’re available, or seminar and workshop

rooms etc.

Consequently, we give evidence that matching spacetypes when performing activ-

ities allocation, using current space profile, has a detrimental effect on the utilisation, that

in sum, justifies mixing which occurs in many institutions.

On the the other hand, the “space profile” that took shape, when the estate was

first built and made available for teaching, was generally tailored to the institution needs at

the time, not considering its future growth and the increase in teaching events and activities.

Later, as time evolves, and institutions grow bigger, varied sized events (lectures, tutorials)

are assigned to rooms that don’t really match their type, nor their size, therefore affecting

utilisation. A new space profile would then be required to match the new teaching activities

requirements. Remodelling space for purpose-fit accommodation is sometimes restricted by

cost or the method of construction.

In this chapter, we address all these facts as follows: using a typical instance of

current events, and two distinct methods, we try to alter the space profile in a way that best

matches that instance and show that this newly created space profile potentially improves

the expected utilisation.
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The methodology goes as follows:

• First, given the initial (current) space profile, and an initial IP model, we plot the

achievement curve allowing an approximation of the critical utilisation, which happens

to be around 20-25 % (pretty low as we impose a hard penalty on the group size).

• Second, using 1) an extended IP model, or 2) a local-search-like method, and a typical

instance of teaching events (e.g. with BOS equal to available seats), we alter the

current space profile and generate a new profile that optimises utilisation for that

specific instance.

• Third, using the newly created space profile, we plot another achievement curve that

proves the new critical point has improved by around 10-15%.

Outline of the chapter: in section 7.3 we describe the mathematical models, in section 7.4

we expose the methodology to generate new space profiles, in section 7.5, we expose the

effect of altering space profile on the critical utilisation.

7.3 Description and Formulation

As mentioned in sec. 2.2, the course timetabling terminology, is varied, and depends on the

countries and the academic institutions. For a detailed overview refer to chapter 2.

A course, in this model, generally lasts multiple years and represent the type of

study, students chose to join any specific institution. Course requirements let students

enrol in modules, which are taught once a term, but several times in a week ; e.g. the

module “Programming for CS” is taught on Monday 10:00 am, Wednesday 1:00am, Friday
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10:00 pm. Student enrolled in that module should attend “all of” those taught meetings.

Meetings of a module, where a student is required to attend “all of” them: classes.

A brief description is presented here.

For every module, k ∈ {1, . . . , q} we associate the following:

1. size Sk : Number of students in module k.

2. timeslots Tk : Number of timeslots required by the module in a weekly schedule.

3. department dk: Department administering module k.

Other aspects, belonging to modules, like special module features, or module pref-

erences, can be thought of, yet we are not considering them in this study.

classes will carry the same information as their respective modules except for the time-

slots and type.

For a class i ∈ {1, . . . , n} we associate the following:

1. size Si: number of students of the class (equal to the number of students of the

respective module).

2. type EPi: lecture, workshop or tutorial, etc.

3. department di: department offering/managing the class.

For every room j ∈ {1, . . . , r} we have:

1. capacity Cj : maximum number of students in the room

2. timeslots Tj : the number of timeslots per week
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3. spacetype SPj : space for lectures, workshops, tutorials, etc.

4. department dj : the one that owns/administers the room.

The hard constraints that are always enforced:

1. Capacity constraint: class/group size cannot exceed room capacity.

2. No-sharing constraint: at most one class/group is allowed per “room-slot”, where

by room-slot we refer to a (room, timeslot) pair.

For the definition of the utilisation and the soft constraints that are used in this

model, we refer the reader to chapter 5. In this chapter, however, we have introduced an

additional constraint of spacetype matching:

Spacetype Penalty: We use the notion of spacetype penalty, to account for the desire of

matching teaching events of a certain type to rooms with the same given spacetype. E.g.

tutorials would need to be assigned to tutorial rooms. We simply set a penalty if the type

of the class does not match that of the given room. E.g. given class i with type EPi, is

assigned to room j with spacetype SPj , then there is a penalty matrix represented by

Γij(EPi,SPj) where all entries are non-negative. If EPi=SPj then, Γij = 0. The total

spacetype penalty of a given assignment is the sum of this penalty over all rooms and all

classes. In sum, this could be considered as a count of mixing violations as we allocate

classes and groups to available rooms.
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7.3.1 Mathematical formulation

The following parameters and variables are used for modeling the problem as an Integer Pro-

gram (IP), with roomslots also here, denoting the available space to which classes/groups

are allocated.

MODEL SPM: Given :

Q : set of all modules

q : total number of modules, q = |Q|

N : set of all classes

n : total number of classes, n = |N |

R : Set of all rooms

r : total number of rooms, r = |R|

P : set of all timeslots

p : total number of timeslots, p = |P |

M : set of all roomslots

m : total number of roomslots, m = |M | and m = rp

D : set of all types/spacetypes D = {1, 2, 3}

1 : for Lectures; 2: for Workshops; 3: for Tutorials.

EPi: type of class i.

SPj : Spacetype of roomslot j.

T z = {j |j ∈ M : z ∈ P}: represents the set of roomslots corresponding to a given timeslot

z, with M =
⋃

z∈P T z and
⋂

z∈P T z = ∅.
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For every timeslot z ∈ P , T z is the subset which includes all roomslots of timeslot z. T z is

the set of roomslots considered at a given one time.

Ab = {j |j ∈ M : b ∈ R}: represents the set of roomslots corresponding to a given room

b, with M =
⋃

b∈P Ab and
⋂

b∈P Ab = ∅.

For every room b ∈ P , Ab is the subset which includes all roomslots of room b.

F k = {i |i ∈ N : k ∈ Q}: represents the set of classes belonging to a given module k,

with N =
⋃

k∈Q F k and
⋂

k∈Q F k = ∅.

For every module k ∈ Q, F k is the subset which includes all classes of module k.

Ed = {i |i ∈ N : EPi = d, d ∈ D}: represents the set of classes belonging to a given

type d, with N =
⋃

d∈D Ed and
⋂

d∈D Ed = ∅.

For every type d ∈ D, Ed is the subset which includes all classes of type d. In this model,

we consider lectures, tutorial and workshop spacetypes,

Hd = {j |j ∈ R : SPj = d, d ∈ D}: represents the set of rooms belonging to a given

spacetype d, with R =
⋃

d∈D Hd and
⋂

d∈D Hd = ∅.

For every spacetype d ∈ D, Hd is the subset which includes all classes of spacetype d.

Si : number of students enrolled in class i

Cj : capacity of roomslot j
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LN×M (Lij): location matrix between event i and roomslot j with entries Lij .

Γij : spacetype matrix between classes i and roomslot j

Gt
i: target group size for class i

Glow
i : lower limit on group size for class i

Gup
i : upper limit on group size for class i

Gnb
i : upper limit on number of groups of class i

Ol : minimum occupancy allowed, i.e. minimum fraction of room seats to be filled

Ci1i2 : conflict matrix between 2 lectures i1 and i2.

Bup
L : upper limits on the location (L)

Bup
GZ : upper limit on group size (GZ) penalty

Bup
SP : upper limits on the spacetype penalty (Γ)

For example, Bup
L = ∞ will correspond to no limit on locations, whereas Bup

L = 0

will force no location penalty, i.e. that all locations are perfect matches.

Decision variables:

Let: vij be the number of students of class i allocated to roomslot j, with vij ≥ 0, and vij

integer ∀i ∈ N,∀j ∈ M .

And the decision variables:

yij =





1 if one group of class i is allocated to roomslot j.

0 Otherwise
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xi =





1 if class i is allocated.

0 Otherwise

zk =





1 if module k is allocated.

0 Otherwise

7.3.2 Objective function

The objective is to maximize the overall seat-hours used:

Obj∗ = max
( n∑

i=1

m∑

j=1

vij

)
(7.1)

Subject to :

Given that partial allocation is not allowed, we enforce

m∑

j=1

vij = Sixi ∀i (7.2)

Room capacities cannot be exceeded, and so we impose

vij ≤ Cjyij , ∀i ∈ N, j ∈ M ; (7.3)

This also links the v and y decision variables.
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Only one group can be allocated to a given roomslot:

n∑

i=1

yij ≤ 1, ∀j ∈ M (7.4)

The location penalty must be less than the upper limit Bup
L :

n∑

i=1

m∑

j=1

Lijyij ≤ Bup
L (7.5)

When Bup
L = 0, hard location penalty is enforced.

To limit the group size (GZ) penalty for workshops we impose

|E2|∑

i=1

m∑

j=1

∣∣∣vij −Gt
iyij

∣∣∣ ≤ Bup
GZ (7.6)

Constraint 7.6 is not required for tutorials because hard limits are imposed on their group

size and also not required for lectures since they do not split .

To enforce the spacetype mixing penalty we impose:

n∑

i=1

m∑

j=1

Γijyij ≤ Bup
SP (7.7)

We also impose an upper and lower limits on the group sizes for tutorials using:

vij ≤ Gup
i yij ∀i ∈ E3, j ∈ M (7.8)

vij ≥ Glow
i yij ∀i ∈ E3, j ∈ M (7.9)
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Given that partial allocation of module is not allowed, classes of a module should either

all be allocated or none, we enforce:

|F k|∑

i=1

xi = |D|zk, ∀k ∈ Q; (7.10)

We impose upper limits on the number of groups per workshop class, as generally they

are required to be taught in 3-4 groups only:

m∑

j=1

yij ≤ Gnb
i , ∀i ∈ E2 (7.11)

A lectures do not split, the number of groups per class should be less than or equal to one,

we impose,

m∑

j=1

yij ≤ 1, ∀i ∈ E1 (7.12)

If a roomslot is used then the given fraction Ol of room seats needs to be filled:

vij ≥ OlCjyij , ∀i ∈ E2, j ∈ M (7.13)

This is relevant only for Workshops. In this paper we use Ol = 0.3. (We investigated other

values and found that smaller values, or turning off this constraint altogether, do not change

the results we present here.)

The following constraint is entailed by the other constraints but we added it as it lead to a

considerable reduction in computation times.
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n∑

i=1

m∑

j=1

yij ≤ rp (7.14)

Timetabling constraints:

Lectures, workshops and tutorials of a given module should not be allocated to the same

timeslot:
|F k|∑

i=1

|T θ|∑

j=1

yij ≤ 1 ∀k ∈ Q, θ ∈ P ; (7.15)

Constraint 7.16 imposes that no two lectures with common students be allocated to the

same timeslots.

Ci1i2(yi1j1 + yi2j2) ≤ 1, ∀θ ∈ P, ∀j1 ∈ T θ, ∀j2 ∈ T θ, (7.16)

∀i1 ∈ E1,∀i2 ∈ E1 (7.17)

i1 6= i2, j1 6= j2; (7.18)

The conflict matrix Ci1i2 between different lecture classes i1, i2 has been generated using

the enrollment generator of chapter 6.

Finally, note that in the fixed choice mode, we simply enforce ∀i. xi = 1 giving

m∑

j=1

vij = Si ∀i (7.19)

The value of the objective Obj∗ is then fixed, and the problem is simply that of feasibility .

Please refer to chap 6 for more details on the effect of splitting on the timetabling conflicts.
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7.4 Adapting space profile

7.4.1 EXT-SPM model extension

EXT-SPM: Extended model The model of section 5.3 used a fixed space profile de-

termined by parameters SPj . An interesting approach would be to let the solver chooose

the space profile that would maximimise utilisation. we extended model SPM by replacing

SPj and matrix Γij by the main decision variable:

wρσ =





1 if room ρ is assigned spacetype σ.

0 Otherwise

and a derived variable :

ujσ =





1 if roomslot j is assigned spacetype σ .

0 Otherwise

and adding the following constraints:

if a room is assigned a given spacetype all of it’s respective roomslots are assigned

that spacetype:
|Ab|∑

j=1

ujd = pwbd, ∀b ∈ R,∀d ∈ D; (7.20)

Only one spacetype assigned to any room:

|D|∑

d=1

wbd = 1, ∀b ∈ R (7.21)

Linking variables u to y, imposes that if a roomslot is assigned a given spacetype
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d, then that roomslot can only be assigned classes of type d.

yij ≤ ujd, ∀d ∈ D, ∀i ∈ Ed, ∀j ∈ M ; (7.22)

Only one spacetype assigned to any roomslot:

|D|∑

d=1

ujd ≤ 1, ∀j ∈ M (7.23)

When using model EXT-SPM, constraint 7.7 is not used since the matrix Γij is

dropped and replaced by decision variables u and w. All other constraints in SPM remain

unchanged in the extended model.

Note, as the maximisation will still be focused on maximising the utilisation, the

extended model will still decide on the spacetype assignments without directly including

variable w part of the objective function. w will remain however, a structural variable part

of the extended model.

7.4.2 LS-SPM: Local search in space profile

7.4.3 Adapting space profile

In space planning, an interesting goal for space managers is to alter the space profile so that

the projected critical utilisation can be improved.

In this chapter adapting space profiles to a given fixed instance of events, is done in two

ways:

First, by extending model SPM to become EXT-SPM.
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Second, by using procedure LS-SPM and searching the spacetype neighbourhood of space

profiles.

These methods would tailor the space profile to a single “real-world”, fixed instance

of teaching events. We try changing the space profile, using a local-search-like method, when

large instances are in question. For smaller instances and for finding upper bounds on a

given solution, the integer programming approach will be sufficient.

Local Search operators

The operators used in procedure LS-SPM are given below. They allow changes and alteration

to the space profile. All operators maintain feasibility of the profile.

Swap-type: OP 1, Randomly select 2 different rooms with two different spacetypes, and

swap their spacetypes: e.g. if selected room 1 is a lecture room and room 2 is a tutorial

room, then after applying this operator, room 1 becomes a tutorial room and room 2 a

lecture room.

Alter-type: OP 2, Randomly select a room and alter it’s spacetype. Spacetypes can be

one of (lecture, workshop or tutorial).

Proc: LS-SPM
1 Set Obj1 = 0;
2 Load Rooms vector : Roi

3 load current Rooms vector : Roc = Roi

4 Load empty room vector Rod

5 Load modules vector Ei

6 LOOP 1 to Tcriteria or No improvement

7 Randomly select operator OPX , with X ∈ {1, 2}.
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8 apply to rooms vector(Roc): Rod = OPX(Roc)
9 run CPLEX with Model SPM on (Ei,Rod)
10 get Obj∗= Max(U)
11 IF Obj∗ ≥ Obj1
12 Obj1 = Obj∗

13 assign Rod vector to Roc: Roc = Rod

14 END IF
15 END LOOP
16 Return space profile: Roc

Procedure LS-SPM is a simple variant of local search, used to improve the current

space profile. Starting with a fixed instance of events and rooms, the algorithm applies

a perturbation/move using operators OP 1−2 to rooms vector (static room profile). Then

using the current event instance, it solves model SPM and finds the maximum utilisation

Obj∗. If Obj∗ is larger or equal to the incumbent then keep perturbation, otherwise, revert

back to previous configuration. The algorithm loops until reaching a given termination

criteria. This procedure is faced the difficult task of optimising model SPM so that the run-

time is reduced. This procedure is performed over 6 hours of computation time, owing to the

difficulty of quickly solving the IP model with the Integer Programming solver (CPLEX).

7.5 Results

7.5.1 New spacetype profile with procedure LS-SPM

Figure 7.1 is a histogram comparing the initial and adapted space profile using procedure

LS-SPM without altering the room sizes (Operators OP 1 and OP 2 used).

One can notice how the algorithm “selects” small-sized room and 7.2 assigns them

to tutorials. Workshops and Lectures are left with largest ones. The total number of room-
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Figure 7.1: Adapting Space profile using procedure LS-SPM starting with a real world
instance .

slots suffice to fit all lectures in just 2 larger rooms. The method is very slow, owing to

running the SPM model in every iterations with the spacetype penalty enforced.

Similarly, in figure 7.2, we compare the initial and adapted space profile using the

exact model EXT-SPM. The adapted profile is very similar to that of figure 7.1. In both our

models the instance used has 20 modules having one lecture each.

7.5.2 Spacetype mixing effects on Utilisation

Figure 7.3 is an approximation plot of utilisation versus spacetype penalty for a typical

“real-world” instance. The error bars represent the actual integral value of the utilisation

(up to 2 % MIP gap) and the upper bound on the utilisation value resulting from the linear

relaxation of model SPM. Enforcing a lower limit on mixing violations drives the utilisation

by roughly 20%. The large number of tutorial groups generally require more tutorial room-

slots than are available, and when we force groups to match their respective spacetypes,
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there would be a knock on effect on the utilisation, as seen in this figure. In practise, most

universities mix spacetype to counter balance this loss. In the next section we consider the

effects of the spacetype penalty on the critical utilisation, for different projected demands

1. NOTE: We use a small dataset with only 15 timeslots, with large events and small

rooms, creating a large number of splits per module, this justifies the low utilisation under

sp-Penalty 0. Anyway 20-30 % utilisation is very typical of institution the average being

25% according to SMG2

7.5.3 Safety in static, fixed-adapted models and dynamic-adapted profiles

In previous sections, we explored methods to alter the space profile. In this set of exper-

iments, we plot the achievement curves (see chap. 5), to study the effects of altering the

space profile, on the critical utilisation. The safety curves, as explained in sec. 5.4, make

use of some model (e.g. SPM), a given set of rooms and some random subsets of teaching

events, and looks for utilisation levels where it’s “safe” to perform full allocation. In these

coming experiments, we will compare critical utilisation levels for different sets of rooms,

e.g. different space profiles.

We start by plotting the safety and achievemet curves:

First, using an initial “real-world” static profile, (Static case).

Second, perform this same procedure, but with a space profile adapted with procedure

LS-SPM (Fixed-adapted, Bup
SP = 0).

1The spacetype penalty values are multiplied by −1 as we seek the maximum utilisation for the minimum
spacetype penalty

2UK Higher Education Space Management Group. See www.smg.ac.uk
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Third, we use model EXT-SPM to plot the achievement curves while adapting the space

profile for every random subset generated (Dynamic-adapted, that provides an upper bound

on the best possible utilisation.

Fourth, In all experiments we prohibit any mixing, this experiment, uses the adapted

profile, but allows some mixing violations (Fixed adapted Bup
SP = 200).
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Figure 7.4: Safety and achievement curve of the requested utilisation UR versus (a) Kf

and (b) UA, for Static, Fixed-adapted with Bup
SP = 0, Fixed-adapted with Bup

SP = 200,
and Dynamic-adapted with Bup

SP = 0 models

Figure 7.4 presents the results of our experiments. In figure 7.4 (a), Kf or “Frac-

tional Achievement Ratio”, is the fraction of the requested utilisation that is achievable.

The first observation, is that the values of achieved UA for corresponding requests, are
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grouped around the mean. Seemingly, small changes in UA between points near to some

value of UR are small compared to the value of UA itself, for (a) and (b). This implies that

properties of the system are statistically predictable.

The adapted space profiles have improved the utilisation by more than 12-15 %

over the static model. However, in order to reach the utilisation level where all mixing

violations are allowed (around 42 % in figure 7.3 with Bup
SP = 800), setting a value of 200

as an upper limit for the spacetype penalty, can further improve the expected utilisation.

Some mixing violations should generally be allowed, since when adapting the space profile,

we alter the spacetype of all roomslots of a room ( e.g. we can’t consider a room to be of

tutorial type half of the time and the other half a workshop room). Allowing that bit of

mixing will overcome this small utilisation waste. Note that the fuzzy region of the adapted

cases is indicative that for some requested utilisation, different levels can be achieved. For

more details on the size of the problems and datasets please refer to the appendix (A) .
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adapted cases.
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Lec Mean Wksp Mean Tut Mean Lec Std Wksp Std Tut Std
Static 0.615 0.7621 0.515 0.060 0.063 0.032
Fixed Adapt 0.505 0.763 0.339 0.066 0.074 0.042
Dynamic Adapt 0.560 0.766 0.348 0.104 0.126 0.070

Table 7.1: Average occupancy and standard deviation, for Static, Fixed and Dynamic
adapted cases
.

In figure 7.5, we plot the group numbers allocated versus UR for the Fixed-adapted

and Dynamic-adapted case. Clearly, the number of groups generated by the dynamic-adapted

case, provides an upper bound on the fixed-adapted. We have used just one scenario when

searching for the fixed adapted space profile. This would suggest that if the frequency of

usage of rooms has the possibility of theoretically beeing improved, the utilisation achieved

cannot in general. That in sum suggests that we should consider the effects of occupancy,

which will be discussed in the next section.

7.5.4 Occupancy

Table 7.1 presents the average occupancy per spacetype, for the static, fixed and dynamically

adapted cases, as well as the standard deviation for each of the three cases. The occupancy

is measured for every solved instance as being the average over all rooms, of seats used over

available seats. We first notice that tutorials, expectedly have the lowest occupancy of the

three cases (0.55, 0.33), That is surely due to the constraint group size being in a range

(15-20), less than the average room size.

However, unexpectedly, as we alter the spacetype profile, the occupancy tends to

decrease, mainly in the case of tutorial and lectures. The results suggest that the spacetype

profile improvement has dramatically improved the frequency of usage but not the room
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occupancy. We believe that the best approach to fill rooms completely is to alter the room

size profile and that is part of future work. Note that allowing a free split in the case of

workshops did in fact improve the workshop occupancy as we alter the space profile.
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7.6 General applicability of our approach

The achievement curves, exposed in previous sections, provide a view on the future quality

of achievable allocations. In particular, within a given institutional context and set of

resources and constraints, the critical utilisation gives a measure of the largest utilisation

that can be safely achieved. Initial work on space planning focused on determining the

critical utilisation for a given fixed set of (teaching space) resources. However, the natural

goal in space planning is then to develop methods to adjust the sets of resources so as to

increase the critical utilisation. Therefore, such an approach, has a rather global scope and

is naturally extendible to encompass a wide spectrum of different academic settings and

enrolements.

Furthermore, in contrast with our previous work, which used a single spacetype

but added adjustements to the room-size profile, the work here was centered around altering

the space profile (including spacetypes ) such that better utilisation can be achieved.

However, for the purpose of result consolidation, an interesting, generalizable ap-

proach would be to use stochastic programming and simultaneously optimize with respect

to multiple scenarios. This is part of future research being undertaken at the university of

Nottingham.

7.7 Summary

This chapter is an initial study with small test cases, of the long-term planning and remod-

elling aspect of teaching space. We have proposed methods to alter the space profile (room

spacetypes), and studied the spacetype mixing requirements and effects on space utilisation
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when module characteristics don’t really match the space profile. We have used a

local-search based method and an Integer Programming formulation when altering room

spacetypes, and found that this change has considerably improved the critical utilisation.

This chapter lays the foundation for future work discussed in the next chapter, where good

planning would consider the uncertain growth of universities, and matches it with decisions

on space expansion.
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Chapter 8

Conclusion and Future Work

8.1 Introduction

Space planning and management problems directly affect the academic sector. Problems

related to space provisions are mostly over constrained by, first, the availability of space

and, second, the need to satisfy timetabling and pedagogical constraints at all levels of the

academic hierarchy. This thesis is an initial attempt, to provide an in-depth study of space

utilisation in academic institutions and explore models and methodologies that could assess

utilisation levels, in the hope of improving them in practice. Moreover, we have studied

the problem of splitting, where large modules or classes, being too large to fit into available

rooms, would need to be broken up in smaller groups, and we devised algorithms to study

splitting effects on space utilisation.

8.2 Identifying real-world constraints and an initial investigation

In this thesis, we aimed at creating a better understanding of the factors required for

an efficient management and planning of teaching space allocation. A fundamental stage
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of capacity planning is to estimate the projected student enrolments and multiply it by

the expected weekly student contact hours to obtain the total demand for seat-hours.

Similarly, by summing up the room capacities and multiplying by the number of hours

for which rooms are available, we can determine the seat-hours supply. A naive way to

perform capacity planning, based on such seat-hours estimates, would be simply to ensure

that the supply exceeds the demand.

However, it is very rare that it is possible to use all of the seats. The efficiency

of space usage is usually measured by giving a figure for the Utilisation; the fraction (or

percentage) of available seat-hours that actually end up being used. In many institutions,

the utilisation can be surprisingly low, commonly only 20-50%.

Attempts, therefore, to remedy this situation, and so to improve space planning

are generally hampered because there does not seem to be an agreed or qualitative under-

standing of why utilisation is so low in the first place. Furthermore, the utilisation figures

incorporated into space norms are obtained from standard sources, and are based more

on statistical studies of available space and enrolments in some universities, and might as

well be inappropriate for a modern module system. Hence, we initially, had to tackle two

important goals:

1) Develop an understanding of the factors leading to low utilisation. To these

ends, we considered a simple a pure event allocation problem in which we optimise utilisation

by taking events and assigning them to available timeslots. On the data-sets we have

available, this immediately gave utilisation of 85-90%. This is far too high to match reality,

and so indicates that a model based purely on space issues, and given free choice of classes,
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is inadequate to model the problem of managing teaching space allocation in real-world

universities. To extend the model we have added extra constraints, where event-allocation

usually takes place within the context of many constraints on locations and timings of events

(timetabling penalty). Accordingly, we included within our model objectives intended to

provide a simplified approximation/abstraction of real timetabling issues.

We found that the location and timetabling-based objectives do indeed have the

potential to drive down the utilisation levels. We also found that if classes are selected in

advance, then the reliably achievable utilisation can be much lower than when class selection

is done by the optimiser.

2) Study factors leading to low utilisation in the splitting case. In this second

goal, we had to consider the case where event sizes are larger than available rooms, and

consequently would require splitting. Also, for ease of use of a multiobjective study, we

have incorporated specially designed splitting algorithms as part of the local search. It

was observed that splitting affects the solution quality and splitting could itself be affected

by other penalties like Location and Timetabling. Whenever one mentions “timetabling”,

immediately, course timetabling comes to mind, and with splitting involved, one would

consider the sectioning problem1. However, we have not studied such immediate space

management problems as the sectioning problem. Instead, we were concerned with decision

support for space capacity planning over a longer time frame. For space planning, we

needed to understand which utilisations are achievable and how they depend on the decision

criteria: such as group sizes, group number, and the constraints arising from location and
1See chap. 2
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timetabling. We have therefore devised algorithms to do splitting together with event

allocation. We also explored the trade-offs between the various objectives, so that we

could understand the impact of such trade-offs on the use of expected utilisation as a

safety margin within space planning. It should be stressed that the splitting algorithms

proposed here were used to investigate long-term space planning and not to address near-

term space management which is associated to timetabling. Therefore, our approach was to:

1) Formulate or model the splitting problem such that it incorporates most of the main real

world aspects - although it does not need to contain all the details. For example, we have

covered the small group requirements by simply introducing objectives related to the group

size or number. 2) Used local search and simulated annealing to explore the solution space

and deal with the splitting problem. 3) Carried out experiments in order to visualise the

trade-off surfaces. The specific contributions made were as follows. Dynamic splitting :

A local search based on exchanges of events, but in which we also make decisions on how

to do the splitting. Moves can split classes, and can also rejoin them in order to suit the

available rooms. Preliminary trade-off surfaces : where we presented results on the

interaction of objectives such as location and timetabling, with preferences on group sizes

and number.

8.3 Exact models and phase transition

In chap. 5 we introduced the notion of achievement curves as a tool to study the levels of

utilisation that can be reliably achieved. These curves then revealed the underlying thresh-

old phenomena. For example, we studied the thresholds in the presence of splitting, and
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found that different penalties and constraints have significant effects on the utilisation that

can safely be achieved. However, practically, it is also important to know the computational

effort (i.e. runtimes of solvers) that are needed in order to reach the target utilisation. Ac-

cordingly, we extended the previous work by investigating the runtimes needed to solve the

arising problems. Here, we have shown that there is a standard Easy-Hard-Easy pattern in

the hardness, with problems near the threshold being much harder to solve. Whilst some

utilisation levels are easily achievable, some levels require much higher computational effort.

For example, a 5% improvement of utilisation might well require a hundred-fold increase in

computational time. The dramatic increase in runtimes at the threshold implies that better

solution methods will be required if we are to approach the threshold on larger data sets.

We concluded that there is close link between improving utilisation and improving solver

technologies. We have shown, that attempts, in space management, to achieve acceptable

utilisation figures beyond the normal standard ones seen in academic establishments might

well require improvements in solvers. Hardness peaks were found to occur when using two

different algorithms, giving strength to believing that the hardness peaks are real. It may

be that a specialised algorithm can make hard peaks disappear, but even if this was the

case here, it is still important for the administrator or planner to be aware of effects of

the choice of solver on the achievable utilisation. This provides a novel role for the Easy-

Hard-Easy patterns that has been so extensively studied within the Artificical Intelligence

community. Not only do they provide a source of challenging instances for algorithm devel-

opment, but also they can have a direct interaction with practical issues in space planning

and management.
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8.4 Student-centred models and timetabling penalty relaxation

Conflicts between two teaching events generally happen when students simultaneously, enrol

in both events, and therefore could not be assigned to the same timeslot2. Conflicts are

represented by a conflict graph, where vertices are the events themselves and edges represent

the actual conflicts. In standard timetabling concepts, the conflict graph will be fixed, and

the “timetabler” is supposed to assign times to events so that no conflicting events are

assigned the same times. However in the case of splitting, the conflict will surely change as

those events are broken up into smaller groups. Hence, if a class has multiple groups, then

not every group ought to have the same conflicts as the parent class. The question that

naturally arises: “how do conflicts get transmitted from parent events to groups as splitting

occurs ?”. The main assumption being that, a proper assignment of students to groups can

lead to dropping the timetabling penalty and relaxing the conflicts, resulting with a partial

inheritance close to zero.

As the timetabling penalty was extensively used in this thesis there was a need to

justify this claim by providing evidence that splitting, in our case, does relax class conflicts.

For this purpose, we have studied the partial inheritance by introducing a student-centred

model, and considered the behaviour of utilisation under changing student enrolment. We

gave proof that when a class is divided into more then one group, and given specific group

size and numbers, conflicts can be fully resolved. We have also studied the robustness of the

partial inheritance under changing student enrolments. This also required the design of a

new enrolment generator genRol which allowed us to simulate real-world student enrolments.
2Those events cannot be taught at the same time.
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8.5 Long-term space planning and spacetype mixing

Finally, we have looked at the long-term space planning problem.

Attempts to study and improve utilisation levels were centered so far on the short-

term space management aspect: “ how to split and assign demand to roomslots”.

In most academic institutions, teaching space is composed of different sized rooms,

with different usages e.g. tiered/flat, tutorial rooms, laboratory, etc. Rooms are attributed

therefore a given spacetype (e.g. lecture, tutorial, workshop, seminar etc.), and generally

host academic activities of a similar type, for example, lectures are offered in lecture theatres,

tutorials in tutorial rooms, etc.

Room characteristics (sizes and spacetypes) form the space profile of the avail-

able space. Therefore altering one room’s spacetype, will affect the “space profile”.

In day-to-day management practice, mixing spacetype occurs frequently, and,

events are often assigned rooms of different spacetypes, e.g. Tutorials can be offered in

lecture theatres if they’re available, or seminar and workshop rooms etc.

This thesis considered matching spacetypes when performing activities allocation,

using current space profile, and found that this mixing has a detrimental effect on the

utilisation.

Moreover, the Space Profile that was generally seen in universities does not

really match the class/module profile (which represent demand), since with time demand

grows and curricula changes. Remodelling space for purpose-fit accommodation is highly

restricted by cost.

We have therefore proposed two distinct methods that alter the space profile in a
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way that best matches current demand, and showed that the newly created space profile

can potentially improve the expected utilisation. Using the achievement curves and the

notion of safety discussed in chap. 5, we gave evidence that altering the space profile have

improved the critical utilisation by around 15-20 %.

8.6 Future work

This thesis represents an initial study into teaching space allocation, and lays the foundation

for new upcoming research in teaching space. In this section, we look at some of the future

research directions:

8.6.1 Proposed model
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Figure 8.1: A global view at the model for Teaching Space Allocation.

Figure 8.1 provides the global picture of the model we’re aiming at for the teaching
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space allocation problem. This model extends the current one and groups allocation of

modules and individual students to rooms, timeslots and teachers, all in a spacetype mixing

environment.

From the pure event based allocation with timetabling, then to the splitting aspects

and then to mixing spacetypes and altering space profiles (including spacetypes and room

sizes), solving our model becomes a challenge at this point. The main question would lie

in the extent to which, given this model, we can neglect student allocation and move from

a pure student-centred to course-centred in order to study planning issues. We envisage a

new simulation based approach, flexible enough to assist administrators in in their decision

making on short-term and long-term space planning. The Simulation Optimisation would

gather different specialised solvers and algorithms including exact methods like large scale

integer programming and dynamic programming techniques, to solve subsets of the problem

while delegating other subsets to heuristic solvers.

8.6.2 Phase transition under spacetype mixing

In chap. 5 we used the Phase Transition and Easy-Hard-Easy concepts, on teaching space

allocation. We studied the computational hardness at the threshold for spacetypes sepa-

rately, in the presence of different penalties and constraints (like location and group size) .

We have shown that the hardness varies between spacetype and cross-penalties. The future

work on this front will focus on studying the threshold behaviours under spacetype mixing

and probably find new levels of difficulty as mixing can bring together different instances

with different computational hardness patterns.
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8.6.3 Room profile optimisation

In chap. 7 we looked at altering the spacetype profile of a room, and we studied the

effects on the critical utilisation. Further work could explore altering the roomsizes rather

then spacetypes such that expected utilisation can be improved. Modelling this requires

a stochastic approach, for decisions made “here-and-now” will affect future growth and

student enrolments.
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Appendix

A.1 Datasets

Table A.1 gives an overview of the four major datasets we used throughout this thesis. All

datasets are collected from a building of a university in Sydney, Australia. Note that we use

datasets in which the demand of seat-hours is much larger then their supply because this is

the case that is relevant to our study. The workshops dataset, Wksp, is mainly characterized

by the non-uniform capacity of rooms ranging from 21 to 80, making it possible for some

small courses to fit without splitting. For Tut, the main characteristic of this data-set is the

Data-set Name: Lec Wksp Tut Sem Tut-trim
Spacetype: Lec Workshop Tutorial Seminar Tutorial
num. of modules: 608 1077 2088 3711 620
num. of rooms: 20 16 184 88 47
timeslots number: 50 48 46 46 50
Seat-Hours, courses: 69,983 86,140 290,839 440,131 87,678
Seat-Hours, rooms: 188,244 39,408 163,500 176,318 41,350

Table A.1: The five data-sets that we use, and some of their properties, including numbers
of rooms and courses, the total Seat-Hours demanded by all the courses, and the Seat-Hours
available in all the rooms.
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small capacity of rooms and their uniformity, e.g. most rooms have sizes in the range 8-20,

enforcing a group size is therefore trivial in this case. The full data-set, Tut, is quite large

and so, in order to be able to plot trade-off surfaces in a reasonable amount of time, we also

created the set Tut-trim by randomly selecting a fraction of the rooms and courses. The

seminar data-set, Sem, is similar in structure to Tut, it exhibits the same characteristics as

Tut, and has room capacities ranging from 30 to 86 students. Both seminars and tutorials

have relatively large courses and therefore splitting is essential for them.

A.2 Dataset description

In this section, we provide an executive description of the main datasets used in this study,

with main aim of providing better insight to the size and property of instances used to run

experiments. In the Lec dataset, for example, We have 20 rooms, and each has 50 timeslots.

This gives a total of 1000 timeslots, whereas the lecture courses only have 608 events. Also,

the total seat-hours demand from the lecture courses is 69983 whereas the total supply from

the rooms is 202650. Hence, in the initial data set, the lectures are substantially under-

subscribed, in the sense that the total demand for seat-hours and timeslots from the courses

is much smaller than the supply of seat-hours and timeslots from the rooms. In order to

explore a wider range of these supply-to-demand ratios, we have opted against creating more

courses, as it would make the problems unnecessarily large. The options of reducing rooms

or reducing timeslots are similar in that they reduce the available seat-hours. Eliminating

rooms requires a decision of which ones to remove, and it is hard to know what counts as a

fair reduction, especially as we suspect that it is the distribution of room and course sizes
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Module ID Size Timeslots Department Faculty
FC6328 90 3 Management Business
FC6349 220 3 Law Arts
FC6429 110 3 Law Arts
FC6435 210 2 Management Business
FC6445 210 4 Management Business

Table A.2: Module profile and format used in experiments

that is the most important, and so do not want to change it accidentally (and this is also

why we do not attempt to use a random generator for instances). So, instead, we uniformly

reduce timeslots for all rooms. Hence, we create Lecture Room problem instances, LR(T),

with the timeslots per room reduced to T. In the original data T=50, but we also studied

T=10,18, and 30,as described in chap. 3. The case T=18 is the smallest T in which the

seat-hours demand could potentially be still be met by the rooms. For the other datasets,

Wksp, Tut, (data in table A.1) where splitting was mostly involved, more freedom was left

in defining the different events. Since splitting is dynamic, the event profile will change as

the search goes on and different groups get formed to fit the available space. The room

space details are mostly formed of non-partitionable rooms with sizes ranging from 20 to

100 seats and with the same timeslot structure of the lecture datasets.

A.3 Event Profile

Table A.2 provides a snapshot of the module profiles used in most experiments. For example,

module FC6328 has 90 students enroled, and is taught in 3 timeslots per week. The module

is offered by the Management of the Business school. Generally module sizes vary between

40-50 students up to 450 students, and have different number of classes.
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Room ID Capacity Timeslots Spacetype Department School
RO121 300 45 Lecture Finance Business
RO111 235 30 Lecture Law Arts
RO124 200 45 LEC Law Arts
RO201T 25 40 Tutorial Management Business
RO222T 15 45 Tut Law Arts
RO222W 35 45 Workshop Finance Business
RO282W 30 45 Workshop Law Arts

Table A.3: Room profiles used in experiments

A.4 Room Profile

Table A.3 shows a snapshot1 of the room profiles used in most experiments. For example,

room RO121 has a capacity of 300 students, and is available on 45 timeslots per week. The

spacetype is a lecture theater, and is located in the management department of the Business

school.

1Data is available from http://www.cs.nott.ac.uk/~cbb/TSA
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A.5 Opl Mod Files
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