
  

THE UNIVERSITY OF NOTTINGHAM  

SCHOOL OF ELECTRICAL AND 

ELECTRONIC ENGINEERING 

 

 

 

 

 

Direct Computation of Statistical Variations in 

Electromagnetic Problems 

 

By 

 

Ajibola Ajayi 

 

 

 

 

 

 

Thesis submitted to the University of Nottingham for the Degree of Doctor 

of Philosophy, May 2008.  



                                                                                                                       i 

 

ACKNOWLEDGEMENTS 

 

 

I would first like to thank God who gave me the grace and privilege to pursue 

this programme and successfully complete it in spite of many challenges faced. 

The journey has been quite remarkable and it is a unique stepping stone to many 

exploits ahead. 

 

I would like to express my profound gratitude to my supervisors, Professor 

Christos Christopoulos and Professor Phillip Sewell for their visionary support 

and unwavering guidance throughout the course of this work. I also reserve 

special thanks to Prof. Leonardo de Menezes for his invaluable contribution to 

this work during his sabbatical leave from the University of Brasilia. 

 

I would like to thank my colleagues at the George Green Institute of 

Electromagnetic Research. I am particularly grateful to Dr. Carl Styan for his 

help with algorithm development during the initial period of my programme. I 

am also thankful to Dr. Jim Wykes and Dr. John Paul for useful discussions 

especially on the subject of Transmission Line Modelling. I would like to thank 

Dr. Konrad Biwojno for his advice on how to cope with the different rigours 

associated with this project. I am also very thankful for all my many friends. 

When times were tough, you gave me the confidence and strength to keep 

pressing on to achieve all my goals. God bless you all. 

 

Finally, I would like to dedicate this thesis to my family. The sacrifice you made 

throughout my years here are simply ineffable.  The belief you have in me and 

the support you gave instilled the values and virtues that see me through on a 

daily basis. I thank my father for encouraging me to embark on the project and 

for being a stalwart at all times. I thank my mother for her tender, loving care 

and compassion. I thank my sisters for their kindness and warmth throughout the 

years. 



 ii

 

ABSTRACT 

 

 

This work described in this thesis develops a computationally efficient approach 

to performing electromagnetic simulations in the presence of statistically defined 

uncertainties caused by either material inhomogeneities, or fabrication and 

placement tolerances. Comparisons are made with results from Monte Carlo 

simulations and a sequence of higher order approximation extensions is 

considered. 

 

There are two main techniques used to achieve the overall objective of this thesis 

namely: the Direct Solution Technique (DST) and the Unscented Transform 

(UT) method.  

 

The DST based on Taylor series approximations is intended to explicitly provide 

rapid approximate solutions that obviate the need for extremely slowly 

converging and time consuming Monte Carlo analysis of multiple simulations. 

The DST approach is useful in problems where sensitivity of system responses 

with respect to stochastic variables can be mathematically defined.  

 

The UT method is similar to the Monte Carlo method but makes use of a 

significantly smaller number of simulations. As the number of random variables 

considered increases, the UT procedure requires more simulations. The 

advantage of the UT method is that it is applicable to black-box models and can 

therefore be extended to different electromagnetic solvers. 

 

The case studies used in this thesis are developed using the Transmission Line 

Modelling (TLM) method. Both the DST and UT method were found to enhance 

the modelling of uncertainty in electromagnetic problems. The scopes of both 

methods are explored and observations made upon both the degree of problem 

complexity and the extent of stochastic variation permitted.  
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“So far as the laws of mathematics refer to reality, they are not certain. And 

so far as they are certain, they do not refer to reality.” Albert Einstein 
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Chapter 1  Introduction 

 

1.1 Statistical Variations 

 

A significant issue that currently confronts engineers undertaking 

electromagnetic simulations is uncertainty in the geometrical, material, and 

excitation parameters. Fabrication tolerances, surface roughness and material 

inhomogeneity, as well as the exact placement of features such as wires, all 

contribute to the discrepancies between simulated and experimental results. 

Therefore, it is becoming of paramount importance to be able to perform 

simulations that predict the expected variation in the results due to the complex 

interplay between the variations in the problem parameters. 

 

The solution to electromagnetic problems often commences with a mathematical 

model that describes the original system under investigation. Although 

considerable effort might be required to incorporate statistical variations into the 

modelling process, it can provide very useful results to help in system design. 

The information available from existing models can be used for quantitative 

uncertainty analysis in three stages. First, the uncertainties of model inputs are 

identified and characterised. The stochastic inputs are fed into transfer functions 

to indicate propagation through the system. Finally, the uncertainties of model 

outputs are estimated from the input parameters. This is repeated many times to 

cover the parameter space. 

 

1.2 Limitations of Statistical Analysis 

 

Presently, the use of repeated simulations with different sets of input parameters 

is often used to make predictions. This approach is referred to as the Monte 

Carlo method. The length of each simulation depends on the complexity of 

model and the number of random input variables. The statistics of system 
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responses is obtained from numerous simulations of random input parameters. 

These variables are selected according a known distribution relevant to the 

model. Although this procedure is quite accurate, the convergence rate is very 

slow resulting in unrealistic computational demands for electromagnetic 

simulations. This involves thousands of simulations each lasting several hours 

for typical electromagnetic problems. Therefore, there is an emphasis on the 

development of computationally efficient paradigms for uncertainty estimation.  

 

1.3 Objective of Thesis 

 

The objective of this thesis is to develop computationally efficient techniques to 

quantify uncertainty without resorting to a substantial number of simulations 

associated with the Monte Carlo method. The main motivation is to develop 

these alternative techniques with the ultimate aim to incorporate them into the 

computational modelling process. For this to be achieved, the relationship 

between input and output parameters of the model of choice must be clearly 

defined. There must be a way to relate output parameters to input parameters of 

the original system being assessed.  The model has to contain sufficient detail to 

capture the pertinent attributes of the system.  

 

The computational requirements for alternative statistical methods, their 

applicability to a variety of problems and their ease of implementation are 

important issues that will be addressed. The additional effort required to deploy 

alternative techniques has to be worthwhile when compared with the potential to 

save costs. The methods proposed in this thesis either involve using model 

algorithms directly or by making modifications using sensitivity analysis. All 

these methods will be compared with the traditional Monte Carlo approach. In a 

simple sentence, the aim of this thesis is the direct computation of statistical 

variations in electromagnetic problems. 
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1.4 Outline of Thesis  

 

This chapter presents a brief introduction into the limitations associated with 

traditional method for uncertainty measurement. The objective of the thesis is 

also presented followed by an outline of the subsequent chapters. 

 

Chapter 2 presents a review of literature on uncertainty analysis. The motivation 

for pursing this endeavour is discussed and the types of uncertainty are 

mentioned. The available methods for representing uncertainty are also 

reviewed. The different approaches to sensitivity analysis are summarised and 

the pros and cons of each method are identified. Finally, the application of 

statistical techniques to electromagnetic compatibility (EMC) is described 

through a number of case studies. 

 

Chapter 3 outlines the foundation of stochastic EMC problems from basic theory 

behind the probabilistic techniques through to the electromagnetic problems to 

which they are applied. 

 

Chapter 4 illustrates the constraints associated with Monte Carlo analysis of one-

dimensional (1-D) electromagnetic problems. The numerical solutions to these 

problems are derived from the 1-D Transmission Line Modelling (TLM) method. 

An alternative method based on Taylor series expansion is also presented. The 

difficulties involved in deriving approximate expressions for statistical behaviour 

of problems in time domain are also discussed. 

 

Chapter 5 presents the Direct Solution Technique (DST) which is developed as a 

computationally efficient method for uncertainty analysis of electromagnetic 

problems. The DST method is based on matrix algebra which is useful to 

interface with modelling algorithms that involve discretisation of problems. The 

idea behind this technique, how it is implemented and applied are discussed in 

detail. As all the models used in this thesis are developed using TLM, the DST is 

tested on a simple circuit representing transmission line behaviour. The 

approximations obtained from DST are compared with the benchmark Monte 
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Carlo method. Although as yet the DST approach is restricted to the frequency 

domain and requires that the parameter variations are small, it enables good 

quality predictions to be obtained for the problems. The improvements to this 

method are obtained by using higher order approximations. 

 

Chapter 6 presents the application of the DST to two-dimensional (2-D) 

electromagnetic problems. The nature of DST makes it interface properly with 

the 2-D TLM method which is discussed in detail. A variety of case studies are 

analysed using DST and comparisons made with the Monte Carlo method.  

 

Chapter 7 demonstrates the application of DST to three-dimensional (3-D) 

electromagnetic problems. The Symmetrical Condensed Node (SCN) is 

introduced as the basic building block for developing 3-D TLM models. Due to 

computational constraints, the case studies here were restricted to 2-D cross 

section. Again, the DST approach is compared with the Monte Carlo method. 

 

Chapter 8 presents the theory behind the Unscented Transform (UT) method. 

This is another alternative to the time consuming Monte Carlo approach. This 

technique commences with the standardisation of model inputs. The 

corresponding responses from these inputs are collated and expressions derived 

for their statistical moments. A set of deterministic (sigma) points designated 

with weights are used to sample the distribution of input variables. These are 

referred to as UT parameters. The relationship between the statistical moments of 

input parameters (in terms of sigma points and weights) is used to approximate 

the distribution of response parameters. The nature and number of the UT 

parameters depend on the number of input random variables and the type of 

distribution each possesses.  

 

Chapter 9 presents the application of the UT technique to electromagnetic 

problems (in time and frequency domains) modelled using TLM. The statistical 

moments of measured responses are compared with the Monte Carlo method.  

 

Chapter 10 presents the conclusions of the thesis and recommendations for future 

work.   
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Chapter 2  Review of Literature 

 

 

The development of statistical tools to identify and quantify uncertainty has 

become an integral part of design methodology. The major reason for this is that 

conventional deterministic techniques, used to model underlying phenomena, are 

incapable of accounting for the random nature of system parameters. The 

consequence of this is a limitation upon investigation of the effects of stochastic 

characteristics of complex systems. The ultimate aim of this endeavour is to 

improve robustness, enhance independence and allows for flexibility in 

conceptual implementation of systems and computational modelling practice 

[2.1, 2.2]. A broad range of measures have been advocated in the literature to 

describe uncertainty. This chapter will give a distilled version of the available 

methods to date. A review will also be provided of the statistical techniques 

deployed in engineering applications unique to Electromagnetic Compatibility 

(EMC) problems.  

 

2.1 Motivation  

 

The shift in attitudes towards uncertainty as a phenomenon fundamental to 

scientific and engineering principles was detailed in [2.3]. A concise account is 

presented in this section.  

 

The sources of information can be incomplete, imprecise, fragmentary, 

unreliable, vague, contradictory or deficient in some other way. This deficiency 

is the cause of uncertainty. Thus, it will be appropriate to point out that the 

amount of uncertainty is intimately connected to the amount of information. The 

effect uncertainty has on the perception of the real-world cannot be overstated. It 

is an interwoven component of measurement at an experimental level based upon 

the resolution limits of instruments and measurement errors. The perception of 

uncertainty has undergone a significant change during the past century from a 
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traditional viewpoint, where it is avoided, to a fundamental alternative where its 

evasion will be unfavourable.   

 

The paradigm shift concerning uncertainty began in the late nineteenth century, 

when Newtonian mechanics was inapplicable in scenarios where the knowledge 

of the system investigated is incomplete. The development of relevant statistical 

methods initiated a radical approach in how this processes were examined. This 

lead to a new branch of study called statistical mechanics. Exact numbers from 

analytic methods based on calculus were substituted with statistical averages 

based on probability theory.  The traditional perception of uncertainty was 

gradually suppressed and altered when statistical mechanics became an accepted 

scientific discipline in 1902. Analytical methods were predominantly 

implemented for case studies involving a modest amount of entities under 

observation while statistical methods were constantly adopted in the event of 

more variables with a higher stochastic content.  The advent of computer 

technology in the second half of the nineteenth century was not sufficient to deal 

with random problems of very high complexity. The result of this was a 

motivation to devise new concepts and theories that can successfully navigate 

this type of obstacle. This is the primary interest of the research work presented 

in the later chapters of this thesis.  

 

2.2 Types of Uncertainty 

 

The conceptual and computational framework for complex analyses enables 

uncertainty classification into different sub-types. These are termed aleatory 

uncertainty and epistemic uncertainty [2.4 – 2.8].  The knowledge of uncertainty 

can aid in the direction of supplementary study or different measurement 

methods to reduce its effects.  
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2.2.1 Aleatory Uncertainty 

 

This arises because of the inherent vagueness in the behaviour of the system 

under study. The cause of this emanates from situations where the choice 

between available alternatives is indeterminate. The perception of this type of 

uncertainty can be quantified using conventional statistical methods. This can be 

improved if better theories describing system behaviour become available. The 

sources of aleatory uncertainty can be distinguished from other forms by their 

depiction as randomly distributed quantities. These can take values in an 

established range with the actual one varying within. Other similar terminology 

for aleatory uncertainty include: stochastic, variability, irreducible, noncognitive 

and type A uncertainty [2.6 – 2.8].  

 

2.2.2 Epistemic Uncertainty 

 

This is associated ambiguity in accurate distinctions of parameters in the domain 

of interest. There are three types of ambiguity: nonspecificity, dissonance and 

confusion [2.5]. Nonspecificity is connected with the size of possible alternatives 

that govern the prospective behaviour of corresponding system entries. 

Dissonance deals with conflicting alternatives that give rise to contradictory 

entries. Confusion is when the possible alternatives do not overlap or only do so 

partially.   

 

Unlike aleatory uncertainty which is down to capriciousness in system 

behaviour, this is a direct consequence of the lack of system information. The 

use of mathematical models and the choice of model assumptions can contribute 

to this effect. The resolution from the numerical grid cell size of a model offers 

an approximation to system behaviour which can be a source of epistemic 

uncertainty. The simplification of complex nonlinear systems using linear 

approximate models gives rise to this type of uncertainty.  This becomes evident 

when these models are juxtaposed with more inclusive surrogate types. In 

addition, when making prediction via extrapolation, models ratified for a certain 

portion of the input space might be completely inconsistent for response 
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prognostication of other aspects of system entries. On that basis, the aftermath of 

disregarded phenomena becomes conspicuous as epistemic uncertainty. Other 

similar terminology for epistemic uncertainty include: subjective, state of 

knowledge, reducible, cognitive and type B uncertainty [2.7, 2.8].   

 

2.3 Representations of Uncertainty 

 

The appropriate representation of uncertainty is important due to the versatility 

of using the prescribed delineation across a variety of disciplines. The different 

manners of representing uncertainty presented here are highlighted in [2.3, 2.5, 

2.8 - 2.15]. 

 

2.3.1 Classical Set Theory 

 

Classical set theory is the conventional way to represent uncertainty [2.3, 2.10 – 

2.12]. This is done using a collection of objections known as elements expressed 

by groups of alternatives in situations where only one scenario is feasible. This 

collection is commonly referred to as a crisp set [2.5], and is identified by the 

features of the comprising elements. The ideology behind this is the conformity 

to the rudimentary standard of precise reasoning. There is a characteristic 

function that discriminates between members and non-members of a set.  The 

uncertainty expressed using this theory is due to the nonspecificity characteristic 

of each set. The size of a set is commensurate to the degree of specificity that 

accompanies its description. Complete specificity can only be achieved when 

only one alternative is possible [2.3].  

 

2.3.2 Probability Theory 

 

Probability theory is another classical approach to represent uncertainty in 

random experiments [2.3, 2.9, 2.10, 2.11]. The conventional way to define this 
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using set terminology is called a probability space [2.9, 2.11]. There are three 

facets that complete the characterisation of the probability space which are: 

 

(i) Universal Set – This contains the macrocosm of all possible outcomes 

of any event under examination. This is also known as the universe of 

discourse or the sample space. The uniquely classified members of a 

set are known as elementary events. It is important to note that there 

is a set that will give the most illumination on the outcomes of an 

analysis.  

 

(ii) Set of events – This is a restricted set of subsets, of possible 

outcomes, with an established consensus of membership.  All subsets 

for the discrete sample space and only the measurable members in a 

continuous sample space correspond to events. A certain event is one 

that occurs in every trial.  

 

(iii) Probability – In non-specific experimentation, there is uncertainty 

affiliated with each possible event. The probability is the fundamental 

measure of likelihood for members of a subset. This can be defined as 

the ratio of the number of event occurrences to the size of the sample 

space. It is usually suitable to represent this as a number between zero 

and one. The probability of a sequence of disjoint sets from a given 

universe of discourse occurring either in isolation or in tandem is the 

sum of the probability ascribed to each event. The sum of the 

probability that an event exists and the probability that it does not 

must be unity.  There is also the notion of dependency between two 

events. The probability that an event is conditional on another if this 

is equal to the ratio of the occurrence both events to that of the 

probability of the overriding event [2.7, 2.9 – 2.12].  

 

In order to provide a pictorial description of information in the probability space, 

probability density functions (PDFs), cumulative distribution functions (CDFs) 

and complementary cumulative distribution functions (CCDFs) are deployed 

[2.9].  
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The CDF is a plot of points of the probability of a random variable assuming a 

value less than or equal to individual members of the universe of discourse. This 

is a monotonic function that increases from zero to one. Therefore, the first 

derivative of a CDF does not change sign from zero to one.  

 

The PDF represents a probability as a function of a random variable so that that 

the total area under the curve translates to the sum of all probabilities of all 

events in the sample space and as such must be unity. The probability that a 

random variable exists between an interval of two different values is the area 

under the PDF graph bounded by the region of interest. Mathematically, the PDF 

of a continuous distribution is the derivative with respect to the random variable 

of the CDF [2.10 – 2.12].  

 

The CCDF presents the probability of a random variable taking a value more 

than individual members of the sample space. Mathematically, this can be found 

by taking the difference between one and CDF. This makes the CCDF a 

monotonic function that decreases from one to zero [2.9].  

 

The target of most probabilistic methods is on the use of functions. The 

uncertainty in the values of a function, defined using a probability space, can be 

characterised by the properties it has and the probability space of the independent 

random variable. In other words, the uncertainty in the range of a function can be 

adequately represented provided the domain of the function has a defined 

probability space [2.9, 2.11]. A Monte Carlo procedure is the most widely used 

technique to estimate the probability of the instance of a functional event from 

those of the independent random variable(s). The representation of uncertainty 

for stochastic problems in this thesis will be based solely on the axioms of 

probability theory. This is due mainly to this being the conventional approach for 

EMC problems upon which this thesis is founded.  
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2.3.3 Evidence Theory 

 

The evidence theory allows for a more flexible concept of likelihood than is the 

case with a complete probabilistic specification. It can be viewed as a special 

application of probability theory. The probability space in the later case is 

replaced by an equivalent definition called the evidence space which has similar 

nomenclature for its members. [2.5, 2.9]. 

 

2.3.4 Possibility Theory 

 

This is another variant to probability theory similar to evidence theory in 

expression of nonspecificity. The vagueness consistent with this type of 

representation is closely tied to fuzzy set theory where membership to a defined 

sample space is not an issue of affirmation or refusal but one of degree [2.3, 2.5, 

2.7, 2.9].  

 

2.3.5 Fuzzy Set Theory 

 

The membership function defined for crisp sets allows for exclusivity of its 

elements to distinguish it from non-members. The representation of uncertainty 

using evidence theory or possibility theory is known as a fuzzy measure [2.3, 

2.7]. In both cases, a graded value is assigned to crisp sets signifying the degree 

of membership to a universal set. The fuzzy measure is an outgrowth of the 

classical measure techniques that deals with ambiguity. It specifies the degree to 

which an arbitrary element of the universal set belongs to crisp subsets and aims 

to address the logical antinomies consistent with the classical theory. This 

provides a broader framework that has the capacity to handle the concept of 

partial truth and therefore allows for different formulations including and beyond 

the classical probability measures [2.5, 2.7].   
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2.3.6 Interval Analysis 

 

This is based on using algebraic methods to propagate intervals from a domain of 

variables to the range of the function of these variables. This method is most 

suitable for problems where the sources of uncertainty are due to imprecise 

measurements and also because there are the available techniques to estimate 

model parameters are disparate in implementation and interpretation. The main 

advantage of using interval analysis is that it attends to problems where 

uncertainty cannot be assessed using probabilistic tools. This is especially the 

cases when the distributions of input parameters are unknown [2.13]. The range 

of a random function obtained using Monte Carlo techniques together with 

probability, evidence and possibility theory provide a reasonable approximation 

to the interval analysis solution given the a priori input probability structure. 

One drawback for using interval mathematics is that it ignores available 

information of stochastic inputs and thus will not be a recommended approach 

for problems of this nature. Another disadvantage is the lack of provision of 

adequate information on the uncertainty of system output as this is all confined 

into a single interval [2.7 - 2.9]. 

 

2.3.7 Rough Set Theory 

 

This was proposed as a modified way to deal with imprecision in set boundaries 

[2.14, 2.15]. The philosophy behind this idea was based on the supposition that 

every object in a sample space has some information affiliated with it. The 

mathematical foundation of rough sets is an indiscernibility relation between the 

members. The implication of this is that rough sets have boundary line cases 

described by an ontological framework. This is contrary to crisp sets which can 

be classified in terms of the knowledge of their elements. The approach of using 

rough sets involves the replacement of vague boundaries by a lower and upper 

crisp set approximation. The lower approximation contains all objects that are 

surely members while the upper one has ambivalent members of the rough set.  
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2.4 Monte Carlo Analysis 

 

Monte Carlo (MC) simulation techniques were introduced in the 1940s to deal 

with problems that comprise stochastic parameters from a system with 

probabilistic features. The implementation simply involves developing a 

mapping between model controlled and response variables using numerical 

integration [2.6].  

 

The MC analysis is initiated by obtaining outputs from a sampled combination of 

inputs and completed by the statistical analysis of the outcomes. In order to 

ensure that the PDFs of output metrics are adequately described, analysis is 

carried out with sufficiently large samples. This is because as the number of 

samples increase without bound the MC procedure will converge towards the 

correct distribution function although the rate at which this happens depends on 

choice of sampling. This will always be the case, irrespective of the probability 

distribution type, provided the function to be sampled is continuous and every 

point in the sample space can be selected [2.9]. The probabilistic based 

procedure, used to generate samples, provides the basis to find the integral 

necessary to define distribution functions and their associated features. In all 

sampling based techniques, weights can be used in conjunction with the sample 

elements to calculate the expected value, variance and other entities. These 

statistical parameters are derived from the integration of the ensemble over entire 

universe of discourse.  

 

Sampling based methods are widely used in the propagation of uncertainty in 

complex systems. The uncertainty in input parameters to the system is 

characterised using PDFs. This is then sampled and passed through the system 

equations to obtain the PDFs of the output parameters. Due to complexity, the 

performances of physical systems can be replaced by equivalent mathematical 

models. The input parameters to the model represent the physical characteristics, 

geometric properties or even boundary conditions for a differential equation 

describing the system [2.6]. For unique outcome of the analysis, the input 

variables must be unambiguously known and the purpose of sampling based 
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methods is to gain an insight into the behaviour of the model derived from the 

system under study. In addition, the variables with most significant contributions 

with respect to the uncertainty in analysis outcomes can be identified. Initial 

analysis can involve crude representations of variable uncertainty to decipher 

system behaviour; after which resources are channelled to improving uncertainty 

in important variables. Further iterations improve overall quality performance by 

providing repeated runs to validate the model under scrutiny and also the 

analysis implementation [2.16].  The system response can be assessed by a single 

representation of uncertainty; determined taking into account the aggregation of 

information from input variables. Some of the sampling based methods are more 

transparent than others depending on the ease of results. However, a common 

feature of this approach is that a large number of samples are required and the 

use of probability as the representation of uncertainty.  

 

As shown in Fig. 2-1, the model derived can be used as a platform for any 

sampling based technique to propagate uncertainty as it is intrinsically a 

discretised version of the system it represents.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2-1 Flow chart to express methodology behind uncertainty analysis using sampling 

based procedures 
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The total number of samples depends on the complexity of the problem and also 

the number of random variables described. For example, for nontrivial functions, 

there is a demand for extensive computation. A sequence of multiple simulations 

is executed until convergence of moments describing the distribution to a 

limiting value is attained [2.8]. It is also important than an appropriate resolution 

of model is used to ensure uncertainty exceeds the intrinsic error associated with 

measurement. This restricts analysis to stochastic system behaviour and not the 

numerical artefacts emanating from insufficient measurement resolution. An 

example of this is seen as numerical dispersion from discretisation and the 

introduction of stubs in Transmission Line Modelling (TLM) [2.17].    

 

The application of the MC methods, ranging from environment monitoring or 

assessment to finance, is sometimes restricted to uncomplicated scenarios as it is 

prohibitive in terms of computational demands. The efficacy of this technique for 

diverse applications and the simplicity behind this approach is the main 

motivation for adopting it for some case studies in this thesis.  

 

Some of the desirable features of the MC method include: the acquisition of 

results without the use of surrogate models, modifications to the original model 

are not required and as such it is easy to implement, the estimates of the 

distribution function can be known, the extensive sampling of stochastic 

variables leads to a full coverage of the range of uncertain variables and aids to 

identify fine features in distributions such as nonlinearities, thresholds and 

discontinuities. The overriding drawback is the computational cost for long 

running models which is a major stumbling block for complex non-deterministic 

problems [2.6]. 

 

Some of these sampling based methods include: random sampling, Latin 

Hypercube sampling and stratified sampling. Each method has a unique attribute 

that preserves its originality while maintaining the use of probabilistic weights to 

execute MC analysis. The similarity between them lies in the coverage of most 

of the specified regions or subsets of the sample space. The main distinguishing 

factor comes from the way the samples are stratified before selection in the 

generation of PDFs [2.6]. The random sampling is the preferred method in this 
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thesis due to its conceptual simplicity, ease of implementation and computational 

efficiency [2.18 – 2.20].  

 

Random sampling is the simplest approach to MC analysis and is deployed in 

instances where sufficiently large samples arise to provide unbiased estimates of 

the moments of a probability distribution. Each element is generated from a 

particular subset at the same probability as that subset has for occurring. The use 

of evenly distributed bins in histogram generation illustrates this point. Each bin 

is considered the subset of the entire sample space. The elements that fall within 

the interval class so defined will have exactly the same probability formulating a 

uniform distribution. The envelope around the collection of bin sizes, each with a 

unique weight allocation, will correspond to the probability distribution of the 

random variable in question. The number of simulations is commensurate to the 

bins required to sample the distribution function. The sample elements are 

created using a reproducible algorithmic process rather than a purely random one 

and are thus called pseudorandom numbers. The pseudorandom number 

generators have an associated seed value that creates the same random sequence 

of samples.  

 

2.5 Alternative Sampling Methods 

 

This section describes sampling based methods that are available other than the 

MC technique.  

 

2.5.1 Fourier Amplitude Sensitivity Test (FAST) Method  

 

The FAST method was developed in 1973 [2.21] and is based on the Fourier 

series expansion of functional models using a dimension reduction, numerical 

integration scheme on nonlinear differential equations [2.22 – 2.24]. The 

beneficial traits of this method include: a complete exploration of the range of 

input variables, the direct estimation of expected value and variance and thus the 

avoidance of surrogate models, the contribution of each random variable to total 
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variance can be known, the effects of variable interactions can be determined and 

the modifications to the original model are not required. The mathematics to 

implement the FAST method is abstruse and this is the main reason why it not as 

ubiquitous as the MC method. There is also the computational demand involved 

in evaluating the required integrals. The method is also restricted to uncorrelated 

input variable types [2.6]. 

 

 2.5.2 Reliability Based Method 

 

The reliability based method has a history of about 70 to 80 years [2.25]. It 

provides estimates for measures of uncertainty using an iterative but 

comparatively less expensive approach than the MC method [2.26]. The 

computational efficiency of this method has seen it applied to design 

optimisation of engineering systems to evaluate probabilistic constraints of 

reliability analyses [2.27 – 2.31]. There are pros and cons associated with 

reliability based procedures like all the other sampling techniques. The expedient 

characteristics of the reliability based approach are the computational efficiency 

compared to MC methods and also the provision of each contribution of each 

random variable to the overall probability of failure. The hindrances to using the 

method is that the mapping procedure is more difficult to execute for black box 

models [2.32] and the calculation of probabilities of all random variables for 

multiple failure conditions will require considerable computational effort [2.7].  

 

2.5.3 Response Surface Method 

 

The response surface method was invented in 1951 [2.33] as another sampling 

based alternative to the MC procedure. The only difference between the two 

techniques is that the former executes sampling so that all stochastic variables 

are considered independently even if they are varied simultaneously. This 

approach to sampling methodology is known as experimental design. The 

uncertainty in the output of the system can be estimated by carrying out a MC 

simulation on the fitted response surface by using specific values and 
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interactions of crucial input parameters [2.6, 2.7, 2.34, 2.35].   Some advantages 

of using the response surface method include the ease to carry out sensitivity and 

uncertainty analyses from a fitted response surface in contrast to using the 

original model and the near accurate predictions it portrays for models involving 

linear or quadratic transfer functions. The drawbacks of using the method include 

the difficulty that can be involved in developing an experimental design, the 

need for a large number of design points for many input parameters, the 

difficulty on representing a detailed distribution function and the complication of 

finding the response surface that can approximate the model with minimal 

discrepancy [2.6].  

 

2.5.4 Fast Probability Integration (FPI) Method 

 

The FPI method was originated in 1956 [2.36] as a novel way to approximate 

analytically the integrals of multivariate functions depicting probability regions 

of interest [2.37, 2.38]. It is a precursor to the FAST method for circumventing 

the multidimensional numerical integration consistent with the MC method. The 

main desirable feature of FPI as a stand-alone method for uncertainty 

characterisation are the estimation of the tails or the more extreme output 

quantiles of a distribution at reduced computational expense in comparison to the 

conventional MC method. On the other hand, this method is deemed inadequate 

for instances where the calculation of a full distribution is required or where 

there are a lot of variates under consideration [2.6]. Other drawbacks to using 

FPI is the complicated nature of the mathematical procedure and also the 

computational demands surrounding the calculation of the partial derivatives 

required for its proper implementation [2.6]. 
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2.6 Sensitivity Analysis 

 

Sensitivity analysis is a branch of research that is closely related with the 

measurement of uncertainty. The sensitivity of any system involves the rate of 

change of the outcome variable with that of controlled model parameters and 

specifications. The information derived from the sensitivity of a system under 

consideration becomes desirable in the identification of the main contributors of 

uncertainty. The sensitivity analysis is vital for the evaluation of the usability of 

a model under analysis, determination of parameters required to have more 

accurate values and gain insight into the system characteristics. These features 

allow for parametric uncertainty to be directly incorporated into problem 

formulations. 

 

Sensitivity measures can be generally classified into three broad divisions. Each 

classification employs a trade off between the accuracy in the estimates of the 

sensitivity measure and the extent of computation required. The first division is 

the variation of parameters or model formulation. This involves the execution of 

different combinations of the parameters of concern with a verified deterministic 

mathematical setup or by making improved modifications in the model structure 

such as enhancing the resolution of measurement. The second division is known 

as the domain-wide sensitivity analysis. This involves the study of the system 

behaviour over the whole range of parameter variation. The last division, the 

local sensitivity analysis, emphasises on the estimation of sensitivity by 

assessing the variation of parameters within close proximity of a sample point 

[2.7].  Several analytical methods based on sensitivity analysis have been 

proposed with widespread success across different subject areas.   

  

2.6.1 Differential Analysis Method 

 

This method is purely dependent on the premise that the model equations are 

known and can be differentiable with respect to a random parameter but are not 

explicitly determined. On the satisfaction of these conditions, there are two well 

known ways of implementing this technique [2.7]. The first is known as the 
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Neumann’s expansion [2.39, 2.40]. This involves finding the inverse of the 

model operator from the equations that define it and then expressing it as a 

geometric series of the model solutions in the absence of randomness. The 

restriction here becomes apparent when the inverse of the operators are not 

readily tractable. The second is the perturbation method [2.39, 2.41] which is a 

renowned and widely adopted technique to compute sensitivity via the expansion 

of the stochastic parameter space in terms of the power series of small finite 

random disturbances or perturbations. This quantifies how much there is a 

deviation from an expected value of a precise solution to the problem defined. 

The impediment to adopting this particular scheme is in complex, nonlinear 

systems where perturbation terms are not small and hence require a greater 

number of series sensitivity coefficients to improve the order of the accuracy for 

the measured uncertainty approximation. 

 

2.6.2 Green’s Function Method 

 

The Green’s function is used in field theory to solve inhomogeneous ordinary 

differential equations with imposed boundary conditions compatible with the 

physics of the situation under observation [2.22, 2.42, 2.43]. This can be 

extended to stochastic problems by first making some mathematical alterations to 

system equations and then using Green’s function to solve differential equations. 

The set of integrals obtained are easier to evaluate and better equipped to deal 

with higher order sensitivities [2.22, 2.44].  The robustness of the method is 

entrenched on the capacity to represent differential equations involving an 

arbitrary number of system parameters as a single set. The sensitivity coefficients 

of any order are expressed as an integral that is evaluated recursively. The 

calculation of well behaved integrals is simple in comparison to differential 

equations and hence is more economical when the number of system parameters 

is large [2.22]. 
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2.6.3 Orthonormal Series Expansion Method 

 

This method involves the definition of an arbitrary random process in terms of 

the Fourier series of orthonormal functions. The orthonormal functions have 

deterministic coefficients called the weights which represent the particular 

uncertainty distribution. The series expansion defined from this procedure is 

called the polynomial chaos expansion [2.30, 2.44 – 2.46] or the Karhunen-

Loeve expansion [2.11, 2.46].  

 

This polynomial chaos expansion establishes the foundation for the Stochastic 

Response Surface Method [2.7] and the Deterministic Equivalent Modelling 

Method [2.44, 2.45], both designed with the aim to alleviate the computational 

simulations required to sufficiently approximate uncertainty as demanded by the 

conventional approach. The input to the uncertain system undergoes a 

transformation via the series expansions and is used to project what the output 

behaviour is from a limited number of model simulations. The main advantage of 

this method is not only in its computational efficiency, but also the incentive 

created by using it on black-box or implicit type models or in scenarios where 

the sensitivities of random parameters cannot be explicitly determined. A natural 

and inevitable consequence of this is that modifications to the original model are 

not required to appreciate the potencies of the method. The unknown sensitivity 

coefficients that accompany the corresponding series expansion of model 

equations are not easily manipulated but can be estimated using a collocation 

method [2.45]. This imposes the condition that at a particular set of collocation 

points, the output metrics converge to a limiting value.  

 

The Unscented Transform (UT) method [2.47] and the Moment Design 

Technique (MDT) [2.48] are other similar concepts of characterising uncertainty 

using series expansion. The idea behind this is to approximate a nonlinear 

mapping by a set of selected points called sigma points in UT and design points 

in MDT which are analogous to the collation points in polynomial chaos 

expansion. The output moments can be found through a weighted average of the 

sigma points determined by the moments of the input probability distribution 
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function. The UT approach will be included in this thesis as one of the proposed 

benchmark procedures of uncertainty propagation. 

 

A major shortcoming with this stance of uncertainty estimation is the exponential 

increase in the number of test points required with the degrees of freedom. 

 

2.6.4 Direct Method  

 

The direct method simply involves finding the derivatives of the stochastic 

parameters of interest with respect to the input random variables. This is 

achieved by the differentiation of model equations that delineate system 

performance and finding the solution of the ensuing sensitivity equations. This is 

of particular significance where the system does not have an analytical 

framework to define a transfer function and consequently only a model that 

numerically evaluates this is appropriate. This method forms the basis of the 

Direct Solution Technique (DST) which is the subject of this thesis and will be 

discussed later in greater detail.  

 

The direct approach for sensitivity analysis can be broadly classified into two 

categories [2.7]. The first is the Coupled Direct Method where the sensitivity 

equations are solved together with the rudimentary model equations. The second, 

the Decoupled Direct Method, is another alternative where the solutions to both 

equations are achieved independently in order to maximise computational 

efficiency.  

 

The drawback to the direct method is that it requires access to explicit model 

equations and thus cannot be applicable to black-box problems where the 

governing model equations are not known. A common example of this is when 

an executable file is made available from numerical algorithms but the source 

code, that is responsible for the explicit relationship between input and output 

parameters, is inaccessible.  
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2.7 Applications of Statistical Techniques to EMC 

2.7.1 Tolerances and Variability 

 

The nature of practical systems is such that the stochastic nature of parameters 

that defines them renders deterministic assessment insufficient for expansive 

performance analysis. The requirement for precise manoeuvres to quantify 

uncertainty in loads, geometry, material properties, manufacturing processes and 

operational environments has become a growing necessity to allow for more 

competitive designs [2.48]. This is the reason motivating the incorporation of 

tolerance values in design to establish fluctuations around nominal system 

parameters due to the fabrication process, ambient temperature conditions, aging 

and other performance factors [2.49, 2.50].  

 

The use of entity tolerance values can aid not only in the handling of variations 

in component characteristics from the manufacturing process (tolerance 

synthesis) but also provides an assessment on how it will affect the overall 

working of system in which that component is a part (tolerance analysis). As a 

result, there is an impetus to pursue statistical methods, in cases where the 

expected values of response from nominal input parameters are not adequate, for 

the characterisation of system behaviour. In fact, the tolerance of component 

values in design optimisation can now be expressed in terms of its mean or 

central value and the variance about it to facilitate statistical approximations of 

measured response parameters [2.49, 2.51]. This makes an attractive method to 

estimate the probability that prescribed system thresholds are exceeded given the 

statistical description of uncertain parameters.  

 

There are four key aspects that are involved with the study of tolerances in 

engineering; namely size, form, orientation and position. The first two areas 

influence the shape and material behaviour of uncertain features while the later 

two govern the directionality and location respectively. The techniques that have 

been a focal point for this design include tolerance calculation, worst-case 

analysis, statistical analysis, design optimisation and constraint-based reasoning 

[2.51, 2.52]. The tolerance design is an essential part of manufacturing and plays 
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an integral role in the relation of performance to cost of a product. Therefore, it 

is necessary to ensure that the maximum range of tolerance is met while 

satisfying the functional requirement of the design process [2.51].  

 

2.7.2 Tolerances in Selected Electrical Engineering Problems  

 

The drive behind developing novel means to depict the random nature of system 

parameters has produced some encouraging dividends. There are many 

engineering case studies where some of the statistical techniques mentioned in 

this chapter have been profitably employed. This subsection highlights the 

progress that has been made with some examples.  

 

The failure of conventional design methods to account for uncertainties of 

element values in design of integrated circuits have been solved via the 

application of practical and efficient statistical techniques. The reliability 

analysis and yield estimation in integrated circuit design has been improved 

through the use of MC sampling methods on an approximation strategy based on 

polynomial expansions of equivalent circuit parameters [2.53, 2.54]. The primary 

drawback here as stated before is the extensive amount of computation required 

to attain desired accuracy [2.55, 2.56]. Another problem with using a MC 

procedure (either in isolation or co-ordination with other statistical methods) is 

where the distribution of design parameters is unknown and the only available 

information is not beyond a central value and some tolerance related in some 

way to the variance of the input random variables [2.57]. These problems can be 

assuaged using the first-order second moment (FOSM) method from a truncated 

Taylor series expansion to calculate the variance of the output behaviour. This 

method requires, for its proper execution, the calculation of the sensitivities of 

the response with all the degrees of freedom. The performance of a linear-time 

invariant circuit was used to illustrate this in [2.56] where the response of a 

Butterworth low pass filter was considered. The required sensitivities from 

uncorrelated random entries were obtained using adjoint network procedures. 

The FOSM method was also found to be an alternative to the MC method in the 

calculation of the mean and variance of the frequency response of periodically 
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switched linear circuits such as switched capacitor networks and switching-mode 

power supplies. The cost of computation increases with the order of the 

derivatives [2.58]. Another proposed method for calculation of uncertainty in 

equivalent circuit model is known as simulated annealing (SA) which is similar 

in principle to the response surface method. This is basically a search method 

that conditionally explores a solution space and keeps track of the information on 

the sensitivities and uncertainties of random parameters. The SA method has 

been applied in the uncertainty analysis of high-speed devices [2.59].  

 

The physical parameters of the components are affected by uncertainties from 

the construction process which is compounded by parasitics and actual operating 

conditions. The combined effect of uncertainty sources cause deviations from the 

nominal performance of adopted parameters [2.60]. The use of interval 

mathematics has been applied in the calculation of tolerances for switching 

converters and non-linear output functions that are used in electronic design 

[2.60 – 2.65]. A model approximation can be derived and interval mathematics 

applied to estimate the tolerance at a reduced computational effort [2.60]. The 

efficiency of the interval mathematics method for switching converters has been 

shown to improve using the genetic algorithm optimisation technique and it 

highlights its significance over the repeated analyses of the system while 

accounting for statistical distribution of parameter variations using the MC 

method [2.61].  

 

The worst case circuit analysis is a nonlinear, multivariate and global 

optimisation problem that requires a thorough evaluation of system attributes 

against performance tolerance limits under the simultaneous existence of all the 

most unfavourable conditions. This method has been used strategically in the 

calculation of the gain of a band-pass filter with the tolerances of the passive 

components provided to determine if the circuit can withstand the changes in the 

environment. The MC method and Taylor series expansion approximation 

method can be used for worst case circuit analysis [2.65 – 2.66].  In situations 

where circuit equations cannot be used to explicitly determine tolerance 

responses the transformation into a set of linear equations using piecewise 

methods might be required prior to the application of interval mathematics. 
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However, the trade-off of the expansion error with ease of implementation has to 

be considered [2.65]. 

 

2.7.3 Statistics and EMC 

 

The EMC analyses of complex systems conspicuously point to a statement that a 

lack of information stemming from uncertainty limits the extent to which 

deterministic prediction plays a role for a detailed investigation [2.67]. This 

creates a void in the feasibility of using nominal parameter simulations to get an 

insight into the internal physics in EMC applications inherently affected by 

variability. Probabilistic and statistical methods have the propensity to create a 

relationship between the accuracy of predicted features to the available data 

which cannot be achieved using deterministic modelling [2.68]. This subsection 

presents some case studies on the use of statistical methods in EMC. 

 

The instrumentation and measurement of electromagnetic coupling mechanisms 

involves the challenge of suppressing electromagnetic interference (EMI) and 

enhancing EMC. Most of these EMC measurements are conducted in well-

controlled coupling environments in facilities such as open-area test sites and 

anechoic chambers. The reverberation chamber can be used in a complementary 

role to the aforementioned measurement domains and is defined as a highly 

resonant cavity with metallic walls used to produce multi-mode fields with an 

average magnitude that tends towards a plane wave uniformly distributed 

throughout the entire volume. These conditions enable this enclosure to be used 

as a simple radiated, isotropic and randomly polarized test environment [2.69].  

 

A variable scatter or paddle wheel is inserted as the mechanism to alter the 

modal excitation of the chamber [2.70]. The fields in the interior of the chamber 

are deterministic but owing to the changing boundary conditions, the ability of a 

given source to couple energy into certain modes can only be assessed 

statistically. A physical interpretation of the random field is that each member of 

the ensemble coincides with a different stirrer position [2.71]. The paddle wheel 

also forms a high quality factor with boundary conditions that are constantly 
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modified in the chamber making it exhibit a pass band characteristic [2.72, 2.73]. 

The quality factor is a useful parameter because it can predict the mean field 

strength from the input power [2.74]. The size of the paddle wheel determines 

the random nature of observed fields. There is a random modulation effect on the 

amplitude and frequency of fields for electrically large paddle wheels [2.75]. The 

stirring effect on modes achieved by mechanical means using the paddle wheel 

can equally be attained by sweeping the source of excitation over a narrow 

bandwidth [2.76]. Otherwise stated, the statistical interpretation of fields applied 

to equipment under test (EUT) in the reverberation chamber is an aftermath of 

either the stirring of the field modes electronically (from the source) or 

mechanically (using a paddle wheel or via vibration of the chamber walls) [2.77].  

 

There are some paramount factors that determine whether a reverberation 

chamber is in the proper working configuration. These factors include the stirring 

ratio, field uniformity, the ratio of the maximum field to average field, and the 

underlying statistical characterisation of the fields. The PDF serves as a useful 

visualisation tool for underlying distributions of certain parameters of interest 

associated with a reverberation chamber. In a perfectly stirred chamber, the real 

and imaginary parts of the polarised (in-phase and quadrature components) 

electrical and magnetic fields have a normal distribution, the phase has a uniform 

distribution, the field magnitudes at the cut-off frequency of the modes are found 

to possess a Rayleigh distribution while the power (related to the square of the 

field amplitude) has an exponential distribution [2.71, 2.72, 2.78]. All the 

distributions associated with the reverberation chamber can be represented using 

MC techniques by mathematical manipulation of a uniform number generator 

[2.79, 2.80]. The advantage of using PDFs for field quantities is that estimators 

and their accuracy can be calculated. The quality factor of the chamber is directly 

proportional to the variance of the field components and the maximum likelihood 

estimator (the ratio of the mean square field to the number of degrees of 

freedom) whose statistical significance can be appreciated with large sample 

sizes [2.73]. The knowledge of these distributions can also be extended to the 

study of shielding effectiveness of an EUT within the chamber in a limited 

frequency range [2.81].  
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A statistical model for electromagnetic field variables in complex cavities can be 

obtained from the deterministic field expressions. The position vectors of fields 

in arbitrarily shaped cavities are treated as random variables distributed with a 

uniform distribution. The steady state field expression is adopted in conjunction 

with probability theory to obtain the statistical model. The eigenvectors of the 

arbitrarily shaped electrically large cavity with randomly crafted walls can be 

derived and used with the statistical model to acquire the volume averages of 

functions in the cartesian co-ordinates. The random cavity fields are interpreted 

to exhibit behaviour consistent with a superposition of a large number of photons 

with random locations and propagation direction. The attraction of statistical 

characterisation using this model has been illustrated in mode stirred chambers 

and RF system vulnerability assessment as incremental changes in test 

configuration or test object geometry can result in large deviations in measured 

responses [2.82]. 

 

EMI comes about as a result of unintentional coupling with an external source 

that degrades the effective performance of electrical/electronic devices. From a 

design perspective, it is important to limit the effects of EMI and this has lead to 

a surge in interest to construct analytically tractable, experimentally verifiable 

and statistical-physical models to achieve this goal [2.83]. There are three 

categories of electromagnetic noise distinguished by the comparison of the 

bandwidth of interference to that of the receptor system: Class A interference 

occurs in environments where the spectrum of noise is narrower than the 

bandwidth of the receptor, class B interference is seen when this situation is 

reversed and class C interference is a hybrid version combing the effects of the 

two previous classes [2.68, 2.83]. A useful way to observe the statistical impact 

of interference on the response of receptor is to place a typical narrow-band 

receiver in an electromagnetic environment [2.83]. A posteriori probability 

distributions are used to find out the chance that the envelope of a modulated 

waveform observed at the intermediate frequency (between that of the carrier 

and baseband signal) of the receiver exceeds a particular threshold that specifies 

the spectral range corresponding to a particular class of interference [2.68, 2.83].  
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Crosstalk is a type of EMI that is evident in wiring structures [2.68]. The random 

position of wires introduces a probabilistic aspect to the nature of crosstalk in 

transmission systems [2.67, 2.84]. This best describes the case when the problem 

described involves a bundle of wires in which their relative positions are 

unknown or vary in a haphazard manner. The method of interval mathematics is 

applied to experimental data to devise an empirical approach to find how 

coupling on cable harness matches with known statistical distributions via 

hypothesis tests [2.85]. The MC standpoint involves a single analysis output data 

as a random variable and considering several geometrical considerations to 

obtain a set of outcomes for substantial statistical treatment via repeated runs 

[2.68]. This is prevalent in cases where the information on the overall scale of 

non-uniformity is obtainable, the number of wires in the bundles is not high and 

the closed form expression of the cross talk PDF cannot be derived from random 

cable analysis because of arbitrary variation in cross section across the line axis 

[2.67, 2.68]. The efficacy of the MC method is also acknowledged in the 

uncertainty measurement of induced currents in a multiconductor transmission 

line (MTL). The source of illumination is a wave defined with random 

amplitude, polarisation or direction of incidence. The induced current magnitude 

is affected by the height above the ground, the cross-section and the load 

configurations of the MTL and this must be taken into account in its statistical 

interpretation [2.86]. 

 

On the other hand, a probabilistic model based on a purely analytical approach 

can be derived from the canonical circuit equations to calculate an implicit 

expression for crosstalk between a pair of wires above a ground plane separated 

by an unknown distance and  at a random height above a ground plane both 

given by uniform distribution functions [2.84]. The constraint here is that the 

wires are straight, parallel and electrically-short [2.67, 2.84]. The distribution 

from both the empirical and analytical models for evaluating the coupling under 

these restrictions indicates a PDF with a lognormal characteristic [2.84, 2.85]. 

The crosstalk can be also investigated using a three conductor transmission line 

model in which a victim circuit integrates all the interference effects due to a 

generator circuit. The frequency behaviour of the mean and variance of the near 

and far end crosstalk voltage transfer ratio is derived in this paradigm using the 
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Taylor series method validated using the MC procedure as a benchmark [2.68, 

2.87]. The perturbation theory is exploited, in the absence of closed-form 

expressions, to calculate useful statistical properties of wave propagation for 

quasi-random, inhomogeneous transmission lines [2.88].  

 

Another important role of statistics in EMC is the characterisation of uncertainty 

associated with measurement systems. The quality of an EMC measurement can 

be tested and verified by repeating experimental procedures and improving the 

setup mechanism in order to suppress uncertainty. The process of identifying all 

the sources of error in measurement is called the uncertainty budget [2.68].      

 

There are two types of error associated with measurement viz: random errors 

and systemic errors. The discrepancy between observed results and actual 

performance resulting from random errors is intrinsic to the measurement 

system. Upon closer scrutiny, it is evident that though this cannot be utterly 

eradicated, the effect of random can be minimised statistically to a large extent 

by repeated measurements using the MC method. The systemic errors also 

cannot be totally eliminated but the fluctuations about the nominal measurement 

values can be found thus allowing for appropriate amendments to data. The 

dispersion in measurement can be displayed using PDFs [2.68, 2.89]. The total 

uncertainty in a measurement system is expressed in decibels and is the 

accumulation of all the sources of uncertainty. This implies that the sources of 

uncertainty are a product of terms prior to the application of the logarithm to the 

base of ten.  This leads to PDFs representing this type of uncertainty having 

normal and lognormal characteristics [2.68, 2.90]. The measurement of noise-

parameters can also be subjected to uncertainty analysis. A low-noise amplifier 

has sources of uncertainty that are affected by the ambient temperature, 

reflection coefficients of terminations and variations in connection. The MC 

method can be used to elucidate the effect of these factors on the noise 

parameters. For instances where some factors are less dominant than others 

emphasis must be made on the parameters that cause maximum degradation in 

measurements [2.91].  
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2.8 Need for Alternative Uncertainty Analysis Methods 

 

The ultimate objective behind this work is to explore the synergy between 

probabilistic and deterministic modelling tools to produce a seamless package 

unified into an organic whole. The use of statistical methods provides some 

information on the tolerance to be attributed to deterministic simulation results. 

This will be useful for yield analysis which can be defined as the number of 

system parameters that comply with imposed tolerance conditions [2.57]. The 

key feature of the effort behind this thesis is to cut down on the number of model 

runs required for MC simulations to obtain PDFs. Analytical methods are not as 

extensive or diverse as its MC counterpart but are good for problems where 

uncertainty is small and the system transfer function can be represented by 

mathematical equations. However, there is a need to find out ways to calculate 

higher order moments of responses as this will provide more information on the 

underlying distributions. These are the issues that will be addressed in this thesis 

using the DST method for electromagnetic modelling. The UT method is also 

used as a robust alternative that circumvents the need of transfer functions that 

are sometimes difficult to define.  
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Chapter 3  Basic Theory 

 

 

The use of probabilistic techniques is the widely accepted approach for 

uncertainty analysis of mathematical models. In EMC studies, numerical 

solutions of equivalent circuit models simplify the rigorous differential equations 

describing their behaviour. The aims of this chapter are two fold. First, to 

provide an introduction to probability techniques used in this thesis. Second, to 

present the basic electromagnetic theory that explains the models used in later 

chapters. The combination of both independent areas of study will establish a 

firm foundation for stochastic EMC problems. 

 

PART I 

3.1     The Random Variable 

 

The concept of a random variable entails a function that has a domain which is 

the sample space of experimental outcomes [3.1]. Alternatively, it is regarded as 

a mathematical quantity that depicts uncertainty. A random variable can 

describe, from the sample space of experimental outcomes, the range of values 

that the probabilities associated with an uncertainty quantity can assume [3.2, 

3.3].  

 

The random variable can take any value between plus and minus infinity 

provided that there are no physical restrictions. For example, the constitutive 

parameters defining relative permeability and permittivity of a material cannot be 

less than unity.  

 

Mathematically, let X be a random variable that expresses all possible outcomes 

from an engineering system.  This transformation is either a one-to-one or one-

to-many mapping process [3.4]. The characteristic of the outcomes is such that 
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the set { }X x≤  is an event for any real number x. The probability of an event 

where X  tends to an absolute value of infinity is zero [3.2]:  

 

{ } { } 0P X P X= +∞ = = −∞ =  

 

Random variables can be classified based on their features into two main types 

[3.1, 3.3, 3.4]:  

 

• Continuous Random Variables: These typify the random variables that 

have continuous range of values within a specific interval. In this case, it 

is impossible to find an exact value of the random variable as there are an 

infinite number of possible values. This is the reason why intervals are 

used to ascertain what the likelihood is that a random variable is between 

two known values. The cumulative distribution function (CDF) F (x) of a 

continuous random variable X is the probability of the event { }X x≤  

and is represented by the expression [3.5]:  

 

( ) ( )F x P X x= ≤  

 

The continuous cumulative distribution function has the following 

properties [3.1 – 3.6]: 

 

                    (i)    ( )
0

1

x

x

F x
= − ∞

= + ∞


= 


 

 

                    (ii)                 ( ) ( )1 2 1 2
F x F x x x≤ <  

 

                    (iii)             ( ) ( )
0y

lim F x y F x x
+→

+ = ∀  

 

The properties shown in (3.3) – (3.5) above show that F (x) is a 

continuous, monotonically increasing function from zero to one [3.5]. 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 
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The derivative of F (x) is another distribution function known as the 

probability density function (PDF) defined as: 

 

( ) ( )dF x
f x

dx
=  

 

Proceeding from the axiom of monoticity of the CDF, it is consistent to 

state that  f (x)  is non-negative; that is [3.1], 

 

( ) 0f x ≥  

 

The properties of F (x) in (3.3) and (3.6) can be adapted to form an 

expression to represent the corresponding PDF as a definite integral over 

the range of real numbers ad infinitum [3.4]: 

 

( ) ( ) ( ) ( ) 1P X F F f x dx
+∞

−∞

−∞ < < +∞ = ∞ − −∞ = =∫  

 

The CDF F (x) can thus be given by an expression from (3.7): 

 

   ( ) ( ) ( ) ( ) ( )0
x

F x F x F x F f u du
−∞

= − = − −∞ = ∫  

 

The expression of  f (x)   in (3.6) can be rewritten by taking into account 

that of F (x)  in (3.9): 

 

( ) ( )
xd

f x f u du
dx −∞

= ∫  

 

The PDF f (x)  is expressed as a real-valued function of a random variable 

representative of the probability of each point within an interval and the 

total area under it must be one [3.1, 3.4]. The probability that a non-

discrete random variable X lies within a range of two different values x1 

and  x2  is:  

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 
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( ) ( ) ( ) ( )
2

1 2 2 1

1

x

x

P x X x F x F x f x dx< < = − = ∫  

 

The probability of the event { X x }≥  can easily be derived from the 

(3.8) and (3.9): 

 

( ) ( ) ( ) ( )1 1
x

P X x f x dx P X x F x
+∞

≥ = = − < = −∫  

 

• Discrete Random Variables: These are random variables that arise from 

discrete values of a set [3.1]. These are distinct from the continuous types 

as the probability of occurrence of a discrete random variable X can be 

determined by a probability mass function (PMF) P(x) in which the 

random variable is equal to an exact value denoted by [3.4]: 

 

( ) ( )i i
P x P X x= =  

where 
i

x  is the ith value of X . 

 

The PMF must obey the inequality [3.4]: 

 

( )0 1
i

P x≤ ≤  

 

In addition to the property in (3.14), the sum of all possible probabilities 

of the random variable must be equal be one. Let n be the total number of 

outcomes or the number of elements in the sample space of the random 

variable, then: 

 

( )
1

1
n

i
i

P x
=

=∑  

 

The discrete cumulative distribution function in which X, as shown in 

(3.15), can take on a finite number of values x1, x2  ,…, xn has the 

following properties [3.1, 3.4, 3.5]: 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 



Chapter 3     Basic Theory 

 43 

                   (i)                

( )
( ) ( )

( ) ( )

( )1

1 2

1

1

1 2

2 3

0

n

x

x x

x x n

x x

P x x x

P P x x x

P P x x

F x
+

+

− ∞ < <

≤ <

≤ <

•
•
•
•

• • • • + ≤ < ∞







= 






 

 

       (ii)                   ( ) ( ) ( )
1

i

i i j
j

F x P X x P x
=

= ≤ = ∑  

 

       (iii)      ( ) ( )1 2 1 2
F x F x x x≤ <  

 

                   (iv)              ( ) ( ) ( )i i i
y xi

P X x F x lim F y x
−→

= = − ∀  

 

                   (v)                 ( ) ( ) ( )1 2 1
2y x

P x X x F x lim F y
−→

≤ ≤ = −  

 

The properties shown in (3.16a) – (3.19) above show that F (x) is a 

discontinuous, monotonically increasing function from zero to one [3.5].  

Consider an example distribution function with the features: 

 

( )

0 0

0 5 0 1

1 1 2

x

F x . x

x

− ∞ < <





= ≤ <



 ≤ <

 

 

From (3.18), the corresponding PMF  P (x) = {0.5, 0.5} as shown in Fig. 

3.1-A.  

(3.16a) 

(3.17) 

(3.18) 

(3.16b) 

(3.20) 

(3.19) 
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 Fig. 3-1A Probability mass function of a discrete random variable  
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Fig. 3-1B Cumulative mass function of a discrete random variable  
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The cumulative mass function (CMF) in (3.20) is depicted in Fig. 3.1-B. 

From the diagram, it is clear that the jump at 1 and 2 is precisely the 

probabilities that the random variable is equal to either of these integer 

values, that is 0.5. From (3.19), it is seen that it is a sure event that the 

random variable selected per experiment is between 1 and 2.  

 

The uncertainty analysis of electromagnetic problems usually involves 

the use of the MC method. The sample space of uncertain parameters has 

finitely many elements and as a result any random variable type must be 

of the discrete type and obey the axioms postulated above. However, it 

must be noted that the discrete random variable provides an 

approximation of the continuous distribution functions and a sufficiently 

large number of samples improves the precision of uncertainty 

measurement. 

 

3.2    Normal Distribution and Central Limit Theorem 

 

The normal or Gaussian random variable X is one defined by the PDF [3.1, 3.4 – 

3.6]: 

 

( )
( )2

22
1

2

x x

f x e x

−
−

σ= − ∞ < < ∞
σ π

 

where x  is the mean of the distribution and σ  is the standard deviation. Both 

parameters will be studied in later sections.  

 

The CDF of a normal distribution is given by [3.4, 3.6]: 

  

( )
( )2

22
1

2

x x
x

F x e dx

−
−

σ

−∞

=
σ π

∫  

 

The normal distribution has the following properties [3.4]: 

 

(3.21) 

(3.22) 
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(i) The PDF tends to zero as the absolute value of the normal random 

variable approaches infinity. 

 

(ii) The PDF is symmetric about the mean x . This implies for any real 

number 
0

x  then ( ) ( )0 0
f x x f x x+− = . 

 

(iii) The mode, that is the value that occurs most in a data set, and the 

mean of the distribution are the same. 

 

(iv) The mean and variance are the parameters that describe the 

distribution. 

 

(v) The mean of the sum of normally disturbed independent variables is 

equal to the sum of the mean of each of the random variables. 

 

(vi) The variance of the sum of normally disturbed independent variables 

is equal to the sum of the variance of each of the random variables. 

 

In Fig. 3-2A, the PDF of a normal distribution is shown for a random variable 

with a mean = 10 and standard deviation = 2. The corresponding CDF is 

presented in Fig. 3-2B. 

 

From [3.5], the central limit theorem states that for a sum of independent N 

random variables that are distributed identically with a finite variance tends to a 

normal distribution as the N approaches infinity. This theorem is the main 

motivation for the choice of the normal distribution for most of the case studies 

presented in this thesis as the cumulative effect of many sources of uncertainty 

(without a dominant distribution type) can be modelled by a solitary random 

variable with a normal distribution [3.6].  
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 Fig. 3-2A Probability density function of the normal distribution 
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Fig. 3-2B Cumulative density function of the normal distribution 

 

 

 



Chapter 3     Basic Theory 

 48 

3.3    Exponential Distribution  

 

The random variable X with an exponential distribution is defined by the PDF 

[3.1, 3.6]: 

 

( ) ( ) 0 0xf x e U x ,x .−λ= λ λ > ≥  

where U (x) is a unit step function and  λ is a factor necessary to ensure (3.23) 

satisfies (3.8).  

 

The cumulative distribution function is obtained by substituting (3.23) into (3.9) 

[3.1, 3.4]: 

 

( ) 1 xF x e−λ= −  

 

The PDF and CDF of an exponential distribution with λ = 1 are shown in Fig. 3-

2A and Fig. 3-2B respectively.  

 

The choice of the exponential distribution in this thesis is important as the 

random variable is non-negative and therefore typical of the examples used for 

the case studies. This also verifies that the proposed approximation techniques 

are not restricted to the more tractable normal distribution. 

(3.23) 

(3.24) 
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Fig. 3-3A Probability density function of the exponential distribution 
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Fig. 3-3B Cumulative density function of the exponential distribution 
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3.4    The Expected Value and Moments of a Random Variable 

 

The tendency of a sample of interest to cluster round a particular value can be 

sufficiently characterised using values associated with mathematical expectations 

called statistical moments. The moments of a particular set of values is the sum 

of integer powers of the values [3.7]. The importance of these parameters is 

innate in the ability to describe the shape of the probability distribution of a 

random variable  

 

The concept of moments can be further elucidated upon analogy with area 

moments used in the calculation of quantities such as centroidal distance, first 

static moments and moment of inertia. In statistics, the origin and the mean are 

common reference points on the measurement axis for the calculation of 

moments. The statistical moments are regarded as a special case of mathematical 

expectation [3.4]. The definition of random variable is incomplete without the 

mention of the mathematical expectation [3.6]. In this section, the moments 

important for probabilistic and statistical studies are provided for both 

continuous and discrete random variables. 

 

The kth moment about the origin, denoted mk, of a continuous random variable X  

with a PDF  f (x) is the expected value for X 
k
  and is given by [3.1 – 3.6]: 

 

( )k k

k
m E X x f x dx

+∞

−∞

 = =  ∫  

 

The corresponding equation for a discrete random variable X and PMF P(x) is: 

 

( )
1

n
k k

k i i
i

m E X x P x
=

 = =  ∑  

 

In the following sub-sections, some moments used to describe the random 

variables are discussed [3.1 – 3.5]. 

 

 

(3.25) 

(3.26) 
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3.4.1 The Expected Value or Mean 

 

The mean is a very important concept in probability and statistics that denotes 

the average value of the distribution of a random variable [3.3, 3.5]. The mean is 

defined as the first moment about the origin which acts as a representative of the 

central value for the distribution. The mean of a discrete random variable that 

can take a set of values x1, x2,…, xn provides an estimate to the position where 

central clustering occurs. Therefore, the mean is often referred to as the measure 

of central tendency of a set of values [3.5]. The proximity of the limiting central 

value to the arithmetic mean of an experiment depends on the number of samples 

considered. The same principle applies to higher order moments of the 

distribution.  

 

A mathematical expression for the mean, denoted x , of a continuous random 

variable X with a PDF f (x) can be obtained via the substitution of k = 1 in (3.25): 

 

[ ] ( )1
x m E X x f x dx

+∞

−∞

= = = ∫  

 

From (3.27), the mean of the exponential distribution in (3.23) is the reciprocal 

of the non-zero parameterλ . 

 

For a discrete random variable X with a probability mass function P(x) the 

substitution of k = 1 yields the expression [3.4]: 

 

[ ] ( )1
1

n

i i
i

x m E X x P x
=

= = = ∑  

 

The concept of relative frequency from classical probability theory stipulates that 

the probability an event occurs is the ratio of its occurrences to the total number 

of trials [3.1, 3.4]. This standpoint allows for a modification, consistent with MC 

technique, to (3.28) if all observations are attributed equal weights, that is the 

( )
i

P x = 1
n : 

(3.27) 

(3.28) 
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1

1

n

n i
i

x x
=

= ∑  

 

The mean has the same units as the random variable. The median and mode are 

alternative estimators of this quantity especially in cases of poor mean 

convergence with an increased number of sample points. The median is the value 

of the 50th percentile of the distribution and the mode is the value where the 

distribution has the highest value [3.3]. The mean provides specific information 

about a random variable but does not fully characterise it. This is because two 

distinct distribution types might have the same mean. This leads to the 

exploration of other ways to characterise the underlying variable [3.4]. The next 

step upon the characterisation of the central value of a distribution will by 

convention be to define the spread of data around that value [3.7].  

 

For more details on the shape of the distribution, higher order moments about the 

mean are required. In general terms, the kth moment about the mean x  of a 

continuous random variable X in (3.28) is the expected value for  ( )kX x− and 

is given by [3.4, 3.6]: 

 

( ) ( ) ( )k k

k
E X x x x f x dx

+∞

−∞

 µ = − = −  ∫  

 

The corresponding equation for the discrete random variable X is [3.4]: 

 

( ) ( ) ( )
1

nk k

k i i
i

E X x x x P x
=

 µ = − = −  ∑  

 

The central moment for an exponential distribution of a continuous random 

variable is given by: 

 

k k

k !
µ =

λ
 

 

(3.29) 

(3.30) 

(3.31) 

(3.32) 
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3.4.2 Variance or Dispersion 

 

The second moment is indicative of the width or variability of the distribution 

about the central value. In other words, it is an indicator for the closeness of the 

values in the distribution to the mean.  

 

The variance, or its square root, the standard deviation, is a measure available 

for the second central moment of data [3.6].  The units of variance are the square 

of the units of the random variable [3.4]. A mathematical expression for the 

variance, denoted 
2σ , of a continuous random variable can be obtained via the 

substitution of k = 2 in (3.30): 

 

( ) ( ) ( )2 22

2
E X x x x f x dx

+∞

−∞

 σ = µ = − = −  ∫  

 

For a discrete random variable with equal weights with a mean value as shown in 

(3.28), the variance with the substitution of k = 2 and ( )iP x = 1
n  in (3.31) yields 

the expression [3.4]: 

 

( ) ( )2 22 1
2

1

n

n i
i

E X x x x
=

 σ = µ = − = −  ∑  

 

The value of variance from equation (3.34) is a biased estimate [3.4] as the mean 

of the distribution is known a priori rather than being evaluated from data [3.7]. 

In this case, the average value of many sample estimates of the variance does not 

approach the true value. This situation is rectified using the unbiased estimate 

which is given as [3.4]: 

 

( ) ( )2 22 1
12

1

n

n i
i

E X x x x−
=

 σ = µ = − = −  ∑  

 

The standard deviation is defined as the square root of the variance. It has the 

same units as the mean of the distribution and the random variable and as a result 

is a better descriptor of dispersion or spread of a distribution function than the 

(3.33) 

(3.34) 

(3.35) 
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variance [3.4]. The standard deviation, denoted σ , for a continuous random 

variable X  is the square root of the expression in equation (3.35): 

 

( ) ( ) ( )2 2
E X x x x f x dx

+∞

−∞

 σ = − = −  ∫  

 

The standard deviation from an unbiased estimate of variance, in equation (3.35), 

for a discrete random variable X  is:                                                      

             

( ) ( )2 2
1

1
1

n

n i
i

E X x x x−
=

 σ = − = −  ∑  

 

The coefficient of variation, CV, is a dimensionless quantity that is defined as the 

ratio of the dispersion of a data set to the central value. Mathematically, this is 

given by the expression [3.4]:    

 

CV
σ

=
µ

 

 

In cases where there is no convergence with increasing data points then a more 

robust estimator for the width known as average deviation denoted Ad is 

prescribed. This is defined by the expression [3.7]: 

                            

1

1

n

nd i
i

A E X x x x
=

= − = −   ∑  

 

3.4.3 Skew 

 

The third central moment about the mean describes the symmetry or skew of the 

distribution. The skew unlike other lower order moments is defined in a way to 

make it dimensionless, that is, a pure number that signifies the degree of 

asymmetry of a distribution about its mean. Since the third moment about the 

mean has units of the cube of the random variable [3.4], the skew for a 

(3.36) 

(3.37) 

(3.38) 

(3.39) 
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continuous random variable, X, with a standard deviation σ  shown in (3.36) is 

[3.6, 3.7] the ratio of the third moment measured about the mean to the cube of 

the standard deviation:                  

 

( )
3 3

3

3

X x x x
Skew E f x dx

+∞

−∞

 µ − −   = = =    σ σ σ    
∫  

 

The skew for a discrete random variable, X, with ( )iP x = 1
n  and a standard 

deviation σ  shown in (3.37) is computed as [3.4, 3.7]:            

 

33

3 1

3
1

n
i

n
i

x xX x
Skew E

=

 µ −−   = = =    σ σ σ    
∑  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-4 Skewness of a probability distribution function  

 

From the skewed probability distributions illustrated in Fig. 3-4, it can be seen 

that the positive (negative) value for skewness connotes a distribution with an 

asymmetric extremity extending outwards towards more positive (negative) axis 

of the random variable. Otherwise stated, the extreme tail of the distribution is 

more to the right (left) of the central value for distributions with a positive 

(negative) skew.  

 

(3.40) 

(3.41) 
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f(
x
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It is important to note that for any set of n  values it is likely that the expression 

in equation (3.41) is non-zero even for an intrinsically symmetrical distribution. 

For an idealised case of a normal distribution, the standard deviation of (3.41) as 

an estimator for skewness is about 15
n .  It is good practise to consider valid 

skewness that is many times as large as this [3.7].  The skewness of a continuous 

exponential distribution obtained by substituting f (x) in (3.40) with that in (3.23) 

and gives a value of 2. 

 

3.4.4 Kurtosis 

 

The fourth central moment about the mean describes the relative peakedness or 

flatness of a probability density function relative to a normal distribution. This 

kurtosis is a non-dimensional quantity related to the fourth central moment. For a 

continuous random variable, X, it is defined by the expression [3.7]:  

 

( )

4

4

4

4

3 3

3

X x
Kurt E

x x
f x dx

+∞

−∞

  µ − = − = −   σ σ    

 − = −  σ  
∫

 

                                           

The corresponding expression for a discrete random variable X with ( )iP x = 1
n  

is: 

 

4

4

4

4

1

1

3 3

3
n

i

n
i

X x
Kurt E

x x

=

  µ − = − = −   σ σ    

 − = −  σ  
∑

 

 

 

 

 

(3.42) 

(3.43) 
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Fig. 3-5 Kurtosis of a probability distribution function 

 

The –3 term in the above expressions makes the value of the kurtosis zero for a 

normal distribution. A distribution is leptokurtic in nature if it has a positive 

kurtosis and that with a negative kurtosis is termed platykurtic [3.7]. Fig 3-5 

illustrates probability distributions with non-zero kurtosis. It can be seen that the 

peaked distribution has a positive kurtosis  

 

The standard deviation of (3.43) for an essentially normal distribution is 96
n  

but this tends to infinity for many practical distributions as the kurtosis depends 

on a high central moment [3.7]. The kurtosis of a continuous exponential 

distribution obtained by substituting f (x) in (3.42) with that in (3.23) and this 

gives a value of 6. 

 

3.5    Functions of a Random Variable  

 

There are many electromagnetic problems that involve a dependent variable that 

is a function of one or more independent random variables. The probabilistic 

features exhibited by the dependent random variable are based on those of the 

independent random variables and the functional relationship between them 

[3.4].  The function of a random variable can only be a random variable if the 

following conditions are satisfied [3.1]: 

 

Positive Kurtosis Negative Kurtosis 

f(
x
) 

x 
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(i) The domain must include the range of the independent random 

variables. 

(ii) The probability at plus or minus infinity is zero. 

(iii) The CDF of the function occurs at outcomes from the sample 

space of a countable number of intervals.  

 

3.5.1 Probability Distribution of a Dependent Random Variable 

 

Let X be a continuous random variable with PDF f (x) and the function Y = g (X) 

is also continuous with a PDF. f (y) can also be calculated from the following 

[3.4]: 

 

(i) An event{ }Y y≤  can only be defined from a corresponding 

event{ }X x≤ . 

(ii) The probability of the event { }Y y≤  is set to be the CDF        

F (y). 

(iii) The PDF f (y) is the derivative of F (y). 

(iv) The range of Y for which f (y) is valid is determined. 

 

The random variable Y  has the PDF [3.1, 3.4]: 

 

( ) ( )( ) ( )1

1
g y

f y f g y
y

−
− ∂

=
∂

 

where  x = g
–1
 (y) and the Jacobian of the inverse is:  

( ) ( )

( )

11

1x g y

g y g x

y x

−−

−=

∂ ∂

∂ ∂

 
=  

 
 

 

The CDF of Y is [3.1, 3.4]: 

 

( ) ( )
( )1g y

F y f x dx

−

−∞

= ∫  

(3.44) 

(3.45) 
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For any value of g
–1
 (y) where the function g (x) has n roots then (3.45) can be 

rewritten as follows [3.1, 3.4, 3.6]: 

 

( ) ( )( ) ( )1

1

1

n
i

i
i

g y
f y f g y

y

−
−

=

∂
=

∂
∑  

 

3.5.2 Mean and Variance of a Dependent Random Variable 

 

For certain problems, it is essential enough to know only the mean and variance 

of a dependent random variable Y = g (X). This can be obtained from the 

probabilistic characteristics of the independent random variable X and the 

mapping properties defined by the function.  

 

The mean or expected value of the function of a continuous random variable X is 

given by [3.1, 3.4 – 3.6]: 

 

( ) ( ) ( )E g x g x f x dx
+∞

−∞

=   ∫  

 

The variance of the function of a continuous random variable X is given by [3.1, 

3.4]: 

 

( ) ( ) ( )
2

2

g
g x E g x f x dx

+∞

−∞

 σ = −    ∫  

 

The standard deviation 
g

σ is the square root of (3.48). 

 

The corresponding expressions for a discrete random variable of (3.47) and 

(3.48) can be obtained as (3.30) was from (3.31). The skew and kurtosis 

expressions for the function g (X) can easily be derived by replacing x, x andσ  

with g (x), E [g (x)], and 
g

σ  in the relevant equations from (3.40) – (3.43). 

 

(3.46) 

(3.47) 

(3.48) 
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3.5.3 Approximate Methods  

 

The analytical solutions for the distribution and moments of a function of 

random variables can be acquired from expressions provided in the preceding 

sections. However, there are scenarios where these methods are not suitable 

since solutions to functions are not available in closed form. In this case, 

approximate methods based on Taylor series expansion can be used [3.4].  

 

The Taylor series expression for g (X) about the mean of X is: 

 

( ) ( ) ( ) ( )
2

2

2

x x x x

dg d g
g x g x x x x x

dx dx
= =

= + − + −  

 

A detailed description of derivations of approximations of the moments (using 

the Taylor series expansion in (3.49)) of the function of a random variable with 

normal and exponential distributions is presented in Appendix A. It is worthy to 

note that the derivations of the mean and variance of the normal distribution are 

well documented in literature [3.1, 3.4]. The mean and variance of the function 

of a random variable with an exponential distribution on the other hand, which is 

not readily available in literature, have been derived in this thesis. The 

approximations of the skew of the function of a random variable for both 

distributions and the kurtosis of the function of the random variable with normal 

distribution have also been derived. 

(3.49) 
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PART II 

3.6    Basic Theory on Electromagnetism 

 

The theory behind electromagnetism is founded on the basic understanding that 

electric and magnetic fields are interdependent. In general, the time harmonic 

representation of electric and magnetic fields propagating at an angular 

frequency ω are given by [3.9]: 

 

E = j tE e ω  

H = j tH e ω  

where t  is the time variable, E  and H  are the phasor vectors of the complex 

electric and magnetic field expressions respectively. The boldface terms E  

(V/m) and H (A/m) are vector quantities that represent the electric and magnetic 

fields respectively. 

 

The behaviour of electromagnetic fields is described by Maxwell’s equations. 

The simplified time dependent form of these equations (in a source-free region) 

is [3.9 – 3.11]: 

 

0.D∇ =  

         0.B∇ =  

= -
t

∂
∇ ×

∂
B

E   

=
t

D
H

∂
∇ ×

∂
  

where D  (C/m) is the electric flux density and B  (T) is the magnetic flux 

density.  

 

The divergence relations in (3.51a) and (3.51b) are obtained from Gauss’s law 

for electric field and magnetic flux conservation respectively. From Stoke’s 

theorem, the contour integral versions of Faraday’s law and Ampere’s law yield 

the curl relations in (3.51c) and (3.51d) respectively [3.9]. 

(3.50a) 

(3.50b) 

(3.51a) 

(3.51b) 

(3.51c) 

(3.51d) 
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The time-harmonic source free equations are obtained from (3.51c) and (3.51d) 

by assuming all quantities as phasors: 

 

= -j∇ × ωE B   

= jH D∇ × ω   

 

The interaction between electromagnetic fields and the materials in linear, 

isotopic media are defined by the constitutive relations [3.9 – 3.11]:  

 

0 r
= =ε ε εD E E   

0 r
= =µ µ µB H H  

where ε (F/m) is the material permittivity, µ (H/m) is the material permeability, 

εr  is  relative material permittivity and µr is  relative material permeability . The 

permittivity and permeability of free space are ε0 and µ0 respectively. The work 

presented in this thesis relates only to isotropic, non-magnetic materials where   

µr =1.  

 

The wave equation for the electric field can be found by taking the curl on both 

sides of (3.52a) and using the relations in (3.52b), (3.53a) and (3.53b): 

 

( )2
= j = j j∇ ×∇ × − ω∇ × − ωµ∇ × = −µ ω εE B H E   

 

The wave number k  = ω µε  (rads/m) is defined as the spatial analogue of 

angular frequency. Using k in (3.54) gives: 

 

2= k∇ × ∇ × E E   

 

The left hand side of (3.55) can be rewritten using the well known vector identity 

[3.9]: 

 

2= .∇ ×∇ × ∇∇ − ∇E E E   

 

  (3.52a) 

(3.52b) 

(3.53a) 

(3.53b) 

(3.54) 

(3.55) 

(3.56) 
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From (3.51a) and (3.53a), it can be shown that the term 0.∇ =E . Therefore, 

(3.55) can be reformulated to give: 

 

2 2 0k∇ + =E E   

 

The wave equation for magnetic fields can also be obtained by taking the curl of 

both sides of (3.52b). After similar mathematical manipulations, this is found to 

be:  

 

2 2
0k∇ + =H H   

 

Both (3.57) and (3.58) are referred to as Helmholtz equations [3.9].  

 

The cut-off frequency of resonant structures with rectangular cross-section and 

filled with homogenous dielectrics can be obtained from Helmholtz equations 

[3.9]. The idea in future chapters is to make ε a random variable and study the 

behaviour of cut-off frequency as a function of this random variable. The next 

chapter deals with the statistical analysis of 1-D electromagnetic problems using 

some of the theory reviewed here.  

 

(3.57) 

(3.58) 
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Chapter 4  Statistical Analysis of 1-D problems 

 

 

The Monte Carlo (MC) method is widely accepted as the conventional way to 

carry out statistical analysis. This involves the development of a computer-based 

model that illustrates the performance of the system under study. In this chapter, 

the one-dimensional (1-D) TLM technique will be introduced and applied to 

solving a simple electromagnetic problem. The MC method will be used to 

quantify the uncertainty of a stochastic model parameter. The constraints of 

using the method are discussed and a suitable alternative is proposed. The main 

motivation for restricting deterministic considerations in this chapter to one 

dimension is to make it possible to obtain direct predictions at reduced 

computational cost. This will be extended to higher dimensions in subsequent 

chapters.  

 

4.1 One-Dimensional (1-D) TLM 

 

Numerical modelling allows the solution of real world problems through the use 

of mathematical surrogates. This commences with a problem statement. Once 

this is understood, the features of the problem to be scrutinised are identified. 

The efficacy of the modelling process is linked with the simplicity it provides 

and how favourably it compares with the real behaviour of the system under 

analysis. Verification and ease of obtaining the results obtained are therefore of 

paramount importance [4.1].  

 

The transmission line modelling (TLM) method is an established numerical 

technique exploited to solve electromagnetic field problems [4.1 – 4.2]. The 

technique is a differential method that can be implemented in both the time and 

frequency domains. In both domains, the problem space defined is discretised 

using transmission line segments connected at points referred to as nodes [4.1]. 
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The basic line segment and its discrete TLM equivalent are shown in Fig. 4-1A 

and 4-1B respectively.  

 

            

 Fig. 4-1A Lumped circuit representation of basic line segment 

 

               

Fig. 4-1B Discrete TLM equivalent of basic line segment 

 

The parameters R and G are passive circuit components denoting series 

resistance and shunt admittance. These can be introduced to incorporate losses in 

the transmission line. In this thesis, all the case studies assume these values to be 

negligible. The parameters L and C are the series inductance and shunt 

capacitance respectively. The link impedance Z0 in Fig. 4-1B can be related to 

the lumped circuit parameters, in the lossless case, by the expression [4.1]: 

 

0

L
Z

C
=  

 

The velocity of propagation u of a wave that travels the length of the line 

segment ∆x is [4.1]: 

 

(4.1a) 
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( )( )
1 1

u x
CL LC

x x

= = ∆

∆ ∆

 

 

Therefore, the time taken ∆t for a wave to travel a line segment is: 

 

x
t LC

u

∆
∆ = =  

 

The interaction between the sampling nodes interconnected by short lengths of 

commensurate transmission line is shown in Fig. 4-2. For notational 

convenience, the subscript n and k are used to represent quantities at that node 

and time step respectively. The superscript i denotes incident quantities and r 

reflected quantities.  

 

The central node n is connected to its neighbours n – 1 and n + 1 at the left and 

right respectively. The incident voltages on the left and right of the node n at 

time step k are kVL
i
n and kVR

i
n respectively. At the point and instance of contact, 

the incident voltage at n are reflected in the opposite direction of transit. This is 

termed the scattering process. The sum of the forward and backward propagating 

pulses on each line segment constitutes the total node voltage. 

 

    

Fig. 4-2 Connection and scattering process between adjacent nodes 

 

In order to derive the Thevenin circuit equivalent for the interaction at the node 

n, it is essential to resort to transmission line theory. The voltage pulse injected at 

either end of a line segment terminated by an open circuit is reflected so that the 

total voltage is twice that of the incident voltage. Hence, the Thevenin equivalent 

circuit at node n is presented as shown in Fig. 4-3. 

(4.1b) 

(4.1c) 
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Fig. 4-3 Thevenin equivalent circuit for transmission line section in free space  

 

The application of Millman’s theorem [4.3] to the circuit in Fig. 4-3 makes the 

total node voltage to be: 

 

0 0

0 0

2 2

1 1

i i

k n k n

i i

k n k n k n

VL VR

Z Z
V VL VR

Z Z

+
= = +

+

 

 

The total voltage to the left and right of the node n  is the same and equal to the 

voltage at the node centre as shown in Fig.4-3: 

 

k n k n k n
VL VR V= =  

 

The total voltages on the left and right of the node n, from the scattering process, 

is known to be the sum of the pertinent incident and reflected voltages that is 

[4.1]: 

 

i r

k n k n k n
VL VL VL= +  

i r

k n k n k n
VR VR VR= +  

  

The incident voltages a time step depend on the conditions imposed on the 

previous time step. The voltage incident to the right of the node n at a particular 

time step is equal to that reflected from the right of the subsequent node n + 1 at 

the previous time step. This concept is similar to the left of the node but in 

(4.2) 

(4.3) 

(4.4a) 

(4.4b) 



Chapter 4     Statistical Analysis of 1-D problems 

 69 

reverse spatial orientation. The connection process can thus be described using 

the following relations [4.1]: 

 

1 1

i r

k n k n
VL VR+ −=  

1 1

i r

k n k n
VR VL+ +=  

  

The different material properties in TLM are introduced by adding stubs. The 

link line impedance represents free space with unity relative permittivity and 

permeability. The stubs are only introduced to model materials when these 

parameters exceed unity. These are either capacitive stubs to model permittivity 

or inductive stubs to model permeability. The former is an open circuit stub 

while the later is a short circuit stub. The need to preserve synchronisation with 

the free space model is important to ensure that node pulses in either case are 

combined and updated at the same instant in time [4.1].   

 

 

 

 

 

 

 

 

Fig. 4-4  1-D resonator and the TLM equivalent circuit of a segment 

 

The arrangement considered for the application of stubs is indicated in Fig. 4-4. 

This illustrates the simple implementation of a 1-D stubbed resonator with a 

relative permittivity greater than one. The aim of this apparatus is to obtain the 

statistical properties of resonant frequency in the presence of a material with 

random relative permittivity. The boundary conditions to the problem are defined 

such that the voltage is short circuited. The round trip time of the capacitive stub 

must be the same as the transit time for each link line to maintain 

synchronisation. For the material shown, the modelled capacitance per unit 

(4.5b) 

(4.5a) 

Zo Zo 

Zs 

E 

 H 

 
   y  

x  
H 
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length Cd can be expressed in terms of the ratio of the link impedance to stub 

impedance: 

0

0 0

1 1
1

2 2
d

S S

Zt t
C

x Z Z uZ Z

   ∆ ∆
= + = +   ∆    

 

 

Given that Cd is the permittivity of the modelled medium [4.1], then the 

relationship between the stub impedance ZS, the link impedance Z0 and the 

relative permittivity εr using (4.6a) is: 

 

( )
0

2 1
S

r

Z
Z =

ε −
 

 

The Thevenin equivalent circuit for the node in the presence of a capacitive stub 

is presented in Fig. 4-5. The central branch is the part of the network represents 

the stub contribution. The total voltage at the node for this scenario is: 

 

0 0

0 0

2 2 2

1 1 1

i i i

k n k n k S n

S

k n

S

VL VR V

Z Z Z
V

Z Z Z

+ +
=

+ +

 

where kVs
i
 represents the incident voltage to the capacitive stub. The total node 

voltage can be substituted into (4.3) to determine the voltage reflected to 

neighbouring nodes. The voltage reflected from the stub into the node after the 

round trip time is [4.1]: 

 

r i

k s k n k s
V V V= −  

 

The connection process for the open circuit stub is [4.1]: 

 

1

i r

k s k s
V V+ =  

 

(4.6b) 

(4.6a) 

(4.7) 

(4.8) 

(4.9) 
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Fig. 4-5 Thevenin equivalent circuit for transmission line with capacitive stub  

 

The electric field is polarised in the y – direction if the direction of propagation is 

x as shown in Fig. 4-4.  This field quantity is related to the total node voltage 

[4.1]: 

 

k n

y

V
E

x
= −

∆
 

 

The frequency response of the problem defined in Fig. 4-4 can be obtained using 

the Fast Fourier Transform (FFT), of the TLM field or voltage computation. The 

general expression for the resonant frequency of interest fr is: 

                                        

( )
2

r r

r

n' c
f g

L
= ε =

ε
 

where c is the speed of light in m/s, L is the length of the transmission line in m 

and n’ is a positive integer representing the harmonic number. Fig. 4-6A shows 

the frequency response using TLM with modelling parameters of 100 nodes and 

32,768 time steps. The relative permittivity εr = 2 and the length of the cavity      

L = 1m. 

(4.10) 

(4.11) 



Chapter 4     Statistical Analysis of 1-D problems 

 72 

0

500

1000

1500

2000

2500

3000

3500

0 200 400 600 800 1000

Frequency (MHz)

V
o

lt
a

g
e

 (
V

)

Fig. 4-6A Frequency response of stubbed resonator with  εr = 2 and L = 1m 
 

The percentage difference between the results derived via simulation and 

analysis is shown in Fig. 4-6B. From the results obtained, it is clear that the 

numerical dispersion errors in the model increase with frequency. This limitation 

can be mitigated by selecting ∆x to be at most one-tenth of the smallest 

wavelength of interest [4.1].  In this thesis, spectral analysis is restricted to n’ = 1 

where the error is smallest. 
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Fig. 4-6B Percentage difference between analytic and simulated results  
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4.2 1-D Resonator with Stochastic Permittivity 

 

The starting point for statistical analysis is a deterministic treatment of the model 

relevant to the interactions of parameters under examination. This has been dealt 

with using the TLM technique in the previous section. The aim here is to use the 

stubs introduced earlier as means for introducing permittivity.  

 

4.2.1 Monte Carlo Analysis 

 

The MC method can be used to assess a problem of a 1-D resonator with 

normally distributed uniform stochastic permittivity. The random variables 

representing the relative permittivity are generated from uniform random variates 

transformed into normal variates. The results are repeatable as a seed is used to 

begin the random number generation. This is important for debugging simulation 

and for comparison with design alternatives [4.4].  
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Fig. 4-7 Frequency responses at first harmonic using the MC method  
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The mean relative permittivity εr = 2 and the length of the cavity L  = 1m. The 

corresponding fundamental resonance is evaluated for each relative permittivity 

sample. The result for the standard deviation in relative permittivity σεr of 0.05 

after first five MC simulations, using 100 TLM stubbed nodes and 32,768 time 

steps, is presented in Fig. 4-7. The PDFs of cavity resonances defined for a range 

of standard deviations, σεr is shown in Fig. 4-8. Each curve is the result of 

100,000 MC simulations. Even with this number of simulations, the peaks of the 

PDFs are not perfectly aligned for different σεr. This illustrates the need for 

approximate methods with less stringent computational demands. 
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Fig. 4-8 Frequency PDFs of fundamental resonance at different values of σεr 

 

The relationship between the statistical moments of the resonant frequency with 

σεr, obtained from the MC simulations, is shown in Fig. 4-9. The quasi-linear 

behaviour clearly observed for small σεr can be used as the basis of comparison 

with approximate methods. 

σ
εr
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Fig. 4-9 Effect of changing σεr on the moments of the frequency PDF  

 

The study of convergence of moments of the distribution is important in 

determining the number of MC simulations that would be necessary. Fig. 4-10 

shows the convergence of the MC analysis with the number of simulations 

performed. From the simple example of a 1-D resonator and at σεr = 0.1 the 

convergence is very slow, and consequently, the approach becomes rapidly 

intractable for even moderately sized problems. The order of the moments 

determines the rate of convergence. The higher the order, the more simulations 

needed for convergence to be obtained. 20,000 simulations of this example 

requires a run time of over 5 hours on a PC with a AMD Athlon 2.01GHz 

processor. The inexpensive approach of a single computational run in 1-D soon 

becomes more time consuming for numerous simulations using the MC method.  

The onus is now to adopt approximate method that can drastically reduce 

computation costs. The results obtained here will be compared with approximate 

technique based on Taylor series expansions.  
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Fig. 4-10 Convergence of the statistical moments of the first cavity resonance obtained from 

Monte Carlo analysis simulations with  σεr = 0.1 

 

4.2.2 Approximate Method 

 

The approximation of moments was discussed in chapter 2 of this thesis. The 

aim of this sub-section is to illustrate the efficacy of using the Taylor series 

approach. The equations deployed are those derived in section A of the appendix. 

For the case study of the 1-D stubbed resonator, the same deterministic and 

stochastic parameters given in sub-section 4.2.1 are used. The agreements 

between the analytic considerations and MC method for the statistical moments 

are shown in Fig. 4.11A – C.  

 

The standard deviation of the frequency PDF σfr measured from the MC method 

and the fourth order Taylor series approximation using (A.23) in Appendix A are 

compared in Fig. 4.11A. The discrepancy as expected would increase with the 

standard deviation σεr. The percentage difference between both methods for 

measuring σfr at σεr = 0.2125 is 1.26%. Similarly, the measurement of the skew 

and kurtosis of the frequency PDF also deteriorates with an increase in σεr. The 

fourth order Taylor series approximations of the skew and kurtosis are used from 

σfr (MHz) 
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(A.26) and (A.31) in Appendix A respectively. The percentage difference 

between the MC and fourth order Taylor series approximations of both moments 

at σεr = 0.2125 are 2.43% and 2.55% respectively.  
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Fig. 4-11A Comparison of the Monte Carlo and analytic methods for measuring σfr of the 

frequency PDF as σεr changes 
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Fig. 4-11C Comparison of the Monte Carlo and analytic methods for measuring kurtosis of 

the frequency PDF as σεr changes 

 

The discrepancy between the measurements of the kurtosis between both 

methods is increased for σεr less than 0.1. The reason for this is that when σεr 

approaches zero the distribution behaves like a delta function with a very sharp 

peak. 
rε

σ  

 

4.3 Material Correlation Effects in Random Media 

 

In the previous section, analysis was based on the sampling a relative random 

variable from a normal distribution. The medium of propagation was specified as 

a homogenous layer of relative dielectric permittivity at different MC 

simulations. Each sample defines the relative permittivity of the entire line 

during simulation and the fundamental resonance of resonating signal is 

extracted after steady state is reached.  

 

This section deals with the generation of random relative dielectric permittivity 

with a given spatial correlation function which characterises the degree of 

roughness of the medium. For this purpose two statistical parameters are of 
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importance and will feature as input to the theoretical model. These are the root 

mean square (or standard deviation) of the permittivity values and the 

correlation length. 

 

The model of the randomly inhomogeneous medium is defined in the form of a 

set of localised relative permittivity of different scales, that is correlation length 

[4.5]. The correlation length is introduced in the stochastic representation of 

random nodal distribution in the discretised TLM model. The correlation length 

is so called, as the relative permittivity is now a function of distance along the 

direction of propagation.  

 

The relative permittivity in the previous section had infinite correlation length as 

the entire line is homogenous. For the condition of zero correlation length, the 

permittivity is locally homogenous and isotropic on a nodal scale. Consideration 

of continuously spatial variations in material parameters requires some care, if 

convergence with mesh density is to be observed. Quantification of the 

correlation of, for example, the relative permittivity at different spatial locations, 

can proceed from the autocorrelation function R (a), 

 

( ) ( ) ( )
2

2

1
L

r r
L L

R a lim x x a dx
L

−

→∞
−

= ε ε +∫  

 

Here, an exponential autocorrelation function [4.7], which is typical of many 

physical scenarios, is adopted for the purposes of illustration, 

 

( ) 2

a
Lc

RMS
R a e

− 
 
 = ε  

where Lc is the correlation length and εRMS is the root mean square of the central 

permittivity value. Appendix B shows the derivations of how to generate a set of 

inhomogeneous relative permittivity values with a known mean from a uniform 

random number generator using an exponential autocorrelation function.  

 

(4.13) 

(4.12) 
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For time domain simulations, it is difficult to keep track of changes to 

propagating pulses in inhomogeneous media even for deterministic conditions. 

This situation makes it challenging to devise analytical methods that can account 

for the points where the pulses have been and the time when this event occurred. 

An illustration of this can be seen from a simple numerical experiment. The aim 

is to see if the spread of a propagating Gaussian pulse in a 1-D stubbed resonator 

(case I) with a fixed length is commensurate with that of another longer line 

(case II) after provided the distance covered by the pulse is the same while 

keeping  Lc and εRMS unchanged. The Gaussian pulse Vs injected at the end of the 

line in both scenarios is:  

 

2
t t p

HW

s
V e

∆ − 
 
 =  

where tp is the time step where the peak of the pulse occurs and HW is the 

number of time steps that indicates pulse half-width. For tp = HW = 30∆t, the 

Gaussian pulse is presented in Fig. 4-12. The source resistance for both case I 

and II is 50 Ω.   

 

In case I the following parameters were used to define inhomogeneity: Lc =   0.1 

and εRMS = 0.0025. The summation of the relative permittivity at each node 

divided by the total number of nodes gives a central value of 2. The length of the 

cavity is 1m and a total of 100 nodes were used. This implies that ∆x = 0.01m. 

The distribution of the permittivity under these conditions is shown in             

Fig. 4-13A. This can be obtained from (B.20) and (B.21) in Appendix B. 

 

The voltage profile after 750 time steps as observed at point n = 50 is shown in 

Fig. 4-13B. The amplitude of the pulse and how wide it is are also indicated. As 

the pulse propagates the amplitude reduces while the width increases with 

distance. 

(4.14) 
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Fig. 4-12 Gaussian pulse with unit amplitude and parameters tp = HW = 30 ∆t 
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Fig. 4-13A Distribution of relative permittivity in case I with Lc =   0.1 and εRMS   = 0.0025 
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Fig. 4-13B Pulse propagating in case I observed at n = 50 after 750 ∆t 

 

In case II, there are six conjoined lines each of the same geometric length and 

roughness characteristics as case I. The choice of samples are however dissimilar 

due to the random selection process. The diagram of the transmission line 

arrangement used in case II is shown in Fig. 4-14A. 

 

 

 

Fig. 4-14A Transmission line arrangement for case II 

 

The central relative permittivity in each line is 2. The distribution of the 

permittivity in case II is shown in Fig. 4-14B with spatial parameters in are ∆x = 

0.01m with a total of 600 nodes. 
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Fig. 4-14B Distribution of relative permittivity in case II with LC = 0.1 and εRMS = 0.0025 

 

The pulse propagating in case II is shown in Fig. 4-14C. The observation point 

that corresponds to the pulse after the fourth reflection in case I is n = 450 in case 

II. The voltage profile after 900 time steps, as observed at this point, is shown in 

Fig. 4-14D. The pulse spreads in both cases due to material dispersion [4.1]. 

From the results, it is observed that the pulse in case II is wider after the same 

distance travelled as case I but with smaller amplitude. This might be because the 

reverberating pulse case I becomes correlated with the medium and as such does 

not spread as adversely as the forward propagation in case II. This behaviour gets 

progressively worse with increasing time steps. This would make it difficult to 

derive approximate expressions for the statistical behaviour of a propagating 

pulse in the time domain for inhomogeneous stochastic media.  
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Fig. 4-14D Pulse propagating in case II observed at n = 450 after 900 ∆t 

  

The simulation in case I is repeated 100,000 times to assess the statistical 

significance of the standard deviation of the changes in pulse width wσ∆  

between the original pulse and reflections after some time steps.  As the relative 

permittivity samples are selected from a random number generator, the data set 

generated during each simulation is different. Fig. 4-15 shows how wσ∆  

converges with increasing simulations for each reflection. From the results, it is 

observed that the pulse width increases after each reflection. The difference 
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between  wσ∆  at the first and second reflection is more than that at the second 

and third reflection. This could be due to the fact that as the signal transverses 

the line back and forth it becomes correlated with the medium of propagation. As 

numerical dispersion becomes more prominent, it is observed that the difference 

between wσ∆  at the penultimate and final reflections does not follow the 

expected trend.  This suggests more complications in deriving analytical models 

for statistical behaviour in the time domain. For this reason, most of the 

subsequent case studies are considered in the frequency domain.  
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Fig. 4-15 Convergence of the standard deviation of the changes in pulse width 

 

The next chapter deals with the mesh analysis of transmission line with random 

impedances in the frequency domain. The results obtained are to be used in the 

extension of approximation paradigm discussed in this chapter to higher 

dimensions.  
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Chapter 5  Direct Solution Technique  

 

 

This chapter involves the use of an approximate method based upon Taylor 

series expansions for statistical circuit analysis. This method is referred to as the 

Direct Solution Technique (DST). The development of this method will be 

illustrated by its application to a simple circuit network that represents a 

transmission line in the frequency domain. The results are presented for showing 

the behaviour of mesh currents as the impedance in the network varies 

stochastically. The method is then applied on a more complex circuit network to 

assess the degradation of the technique with increasing complexity. Finally, the 

impact of including higher order moments into the approximation model is 

discussed. 

 

5.1 Stochastic Circuit Analysis 

 

In this section an approach is presented that allows the moments of output 

quantities to be evaluated directly using a Taylor series approximation on a 

matrix representation of an electromagnetic problem. The method will be 

initially developed using the simple electrical circuit example of Fig. 5-1 [5.1] 

and subsequently extended to the case of the 2-D TLM algorithm in the next 

chapter. The approach is referred to as the Direct Solution Technique (DST) 

[5.1]. 

 

Fig. 5-1 Generic circuit configuration with random impedances 
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The circuit in Fig. 5-1 is the lumped equivalent circuit of a transmission line. In 

accordance with the circuit topology, the impedances Z1, Z2 and Z3 have the same 

nominal inductive reactance while Z4 and Z5 have the same nominal capacitive 

reactance. The impedances Z1 to Z5 are defined to be normally distributed 

independent random variables and the voltage sources to be precisely specified. 

Mesh analysis yields a matrix equation for the unknown loop currents. This 

matrix is a simple example of the more general form 

 

Z .I V=  

where Z is the random impedance matrix, I is a column vector of mesh currents 

and V  is a column vector of source voltages. By definition, each element of Z is 

known and specified in terms of the statistical moments of the individual 

impedances. The objective is to obtain the statistical moments of the mesh 

currents. Let Y be the admittance matrix which is the inverse of the impedance 

matrix Z, then pre-multiplying both sides of (5.1) by Y gives: 

 

Y .V I=  

                                       

For simplicity, consider that only one impedance, Zn, is statistically variable. 

Given that V = Z . Y . V then 

 

( )0V Z Y Z Y V' . ' ' . .= = +  

where '  denotes differentiation with respect to Zn.   

 

The derivative of the current in the kth mesh Ik with respect to Zn using (5.2) and 

(5.3) is:  

 

( ) ( )k k k
I Y V Y Z Y V' ' . . ' . .= =−  

 

The first order second moment of Ik can be found from (A.23) in Appendix A: 

 

(5.1) 

(5.2) 

(5.3) 

(5.4) 
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( )22 2

I Z knk
I 'σ σ≅  

Similarly,   

 

( )0 2V Z Y Z Y Z Y V'' . '' '' . ' . ' .= = + +  

and hence 

 

( ) ( )( )2
k k k

I Y V Y Z Y Y Z Y Z Y V'' '' . . '' . . ' . . ' . .= =− −  

 

The second order first moment of Ik can be found from (A.8) in Appendix A: 

 

( ) ( )
2

2

Zn

k k n k
ZI I I ''

σ
≅ +  

where Ik (Zn)  denotes the kth current when all impedances take their mean 

values. 

 

The expressions in (5.4) and (5.8) can be extended to cases where all the 

impedances vary independently,   

 

( )22 2

I Z knk n

I 'σ σ≅∑  

( ) ( )
2

2

Zn

k k n k
n

ZI I I ''
σ

≅ +∑  

 

The equivalent expressions if all random impedances vary independently 

according to an exponential distribution can be found respectively from (A.23) 

and (A.10) in Appendix A: 

( )22 2

I Z knk n

I 'σ σ≅∑  

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 
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( ) ( ) ( )

( ) ( ) ( )

2

2

2

k n Z k Z kn n

k Znn
Z n k n k n kn

Z

Z Z Z

I I I

I

.I .I I

' ''

'' ' . ''

σ σ

σ
σ

 + +
 ≅  − − +  

∑  

 

These derivations will be applied to the circuit under analysis and the results 

compared to the benchmark results from converged MC simulations. 

 

5.1.1 Stochastic Impedances with a Normal Distribution 

 

The mesh current analysis for the circuit in Fig. 5-1 is: 

 

( )
( )

( )

1 4 4 1 1

4 2 3 4 5 2

5 3 5 3 2

0

0

0

Z Z Z I V

Z Z Z Z Z I

Z Z Z I V

+ −     
     − + + − =     

    − + −    

 

 

The term Z’ can be expressed in terms of the random impedances Z1 – Z5 in the 

circuit network all resulting in symmetric and sparse matrices: 

 

1 0 0

0 0 0
1

0 0 0

d Z

dZ
=
 
  
 

(5.14a) 

0 0 0

0 1 0
2

0 0 0

d Z

dZ
=
 
  
 

(5.14b) 

0 0 0

0 0 0
3

0 0 1

d Z

dZ
=
 
  
 

 (5.14c) 

1 1 0

1 1 0
4

0 0 0

d Z

dZ

−

= −
 
  
 

 (5.14d) 

0 0 0

0 1 1
5

0 1 1

d Z

dZ
= −

−

 
  
 

 (5.14e) 

 

The first and second columns of matrix in (5.14d) and the second and third of 

(5.14e) are collinear as both random impedances Z4 and Z5 are common to the 

central mesh. The term   Z’  is evidently a null matrix when expressed in terms of 

all the random impedances.  

 

In this section, all the impedances are independent stochastic variables that are 

normally distributed. The impedances Z1, Z2 and Z3 have a mean of 20jΩ while 

(5.13) 

(5.12) 
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Z4 and Z5 have a mean of –30jΩ. The voltage sources are V1 = 24V  and             

V2 = 12V− . The standard deviation, σZn, is assumed to be the same for all 

impedances.  The standard deviation and mean of each mesh current can be 

found from (5.9) and (5.10) respectively. The comparison between the DST and 

the converged MC method for 100,000
 
simulations is shown in Fig. 5-2. From 

the results obtained, it is seen that the difference in both methods for the standard 

deviation of mesh currents gets larger with increasing values of σZn. The 

difference between the DST and MC approaches is less than 1% when the 

standard deviation of the circuit impedances is below 0.5 Ω, corresponding to 

variations of 1.7 – 2.5% about the absolute central impedance value of              

20 – 30 Ω.  
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Fig. 5-2 Percentage difference between the DST and MC methods for circuit with stochastic 

impedances with a normal distribution 

 

5.1.2 Stochastic Impedances with an Exponential Distribution 

 

The impedances in the circuit configuration in Fig. 5-1 are taken in this section 

to have an exponential distribution. The impedances have the same nominal 

values and tolerances as the previous section to compare both distributions. The 

exponential distribution used is taken from (A.9) in Appendix A. The DST 

method approximates the standard deviation and mean of mesh currents using 

 I1(jA)
          

I2(jA)      I3(jA)            

σI1 (A)
      

σI2(A)     σI3(A) 
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(5.11) and (5.12) respectively. The converged MC method used was based on 

100,000 repeated runs of the exponential impedance variates. The percentage 

difference between the DST and MC methods is presented in Fig. 5-3.  
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Fig. 5-3 Percentage difference between the DST and MC methods for circuit with stochastic 

impedances with an exponential distribution 

 

The results obtained show that the percentage difference between both methods 

here yields a wider discrepancy when compared with normal distributions. The 

percentage difference between the methods when measuring σI1, σI2 and σI3 at  

σZn = 0.5Ω, are 0.66 %, 0.65 % and 0.69 % respectively. The corresponding 

values in the case of the normal distribution are 5.85 %, 5.34 % and 6.53 % 

respectively. Due to the mathematical tractability of the later, the effect of the 

higher order moments on DST particularly for low standard deviations would 

have a lower impact on accuracy than in the case for exponential distributions. 

This is because the odd moments for normal distributions are zero and so make 

no contribution to the DST approach. The conclusion drawn here is that the type 

of distributions of stochastic variables plays an important role in the accuracy 

approximation methods. Other distributions could be studied but most have 

properties similar to the two cases considered here. 

 

       σI1(A)
       

σI2(A)    σI3 (A) 

       I1(jA)
         

I2(jA)     I3(jA)            
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5.2   Impact of Complexity on DST Accuracy  

 

In this section, the effect of increased circuit complexity on the accuracy of the 

DST method is studied. The circuit in Fig. 5-1 is modified slightly by 

introducing an additional branch. The resulting circuit configuration is shown in 

Fig. 5-4 [5.1]. The impedances are all independent normal random variables. The 

impedances Z1, Z2, Z3 and Z4 have a mean of  20jΩ while Z5 and Z6  have a mean 

of  – 30jΩ.      

Fig. 5-4 A more extensive circuit for the application of DST. 

 

The results in Fig. 5-5 show the percentage difference in the mean and standard 

deviation of mesh currents between DST and the MC method for 100,000
 

simulations. From the difference between the DST and Monte Carlo approaches, 

it is clear that there is a closer agreement with small standard deviations as 

expected. This degrades with both increased standard deviation and circuit 

complexity. The percentage difference between the methods when measuring σI1, 

σI2 , σI3 and σI4 at σZn = 0.5Ω, are 7.63 %, 7.48 %, 7.70 % and 8.07 % 

respectively. This is worse than results obtained from the simpler case studied in 

section 5.1. The conclusion from these results is that even if a tractable 

distribution is used, the DST method will need an improvement to cope with 

enhanced complexity. An improvement in accuracy should be achievable with 

higher order approximations as will be shown in the next section.  
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Fig. 5-5 Percentage difference between the DST and MC methods for circuit with enhanced 

complexity 

 

5.3  Improving Accuracy of DST Using Higher Order Terms 

  

Until this point, only first and second order moments were retained in the DST 

analysis. This section will now generalise to higher order terms and demonstrate 

that improved accuracy may be available, albeit at some extra computational 

effort.  From the expansion in (A.5) of Appendix A:  

 

( ) ( )
2 3

2 3

32

2 3

f f
f f ....

! !β=β β=β

∂ ∂

∂β ∂β

µµ
β = β + + +  

where β is a random variable of mean β and nth central moment at  µn  given by: 

 

( ) ( )
n

n
P d

∞

−∞

µ = β − β β β∫  

where P(β) is the probability density function of β. The first central moment has 

been excluded from (5.15) above because it is zero as seen from substituting n = 

1 in (5.16).  This has been shown in (A.6) of Appendix A. The expression in 

(5.15) can be generalised by truncating the expansion at the rth term: 

I1(jA)
     

I2(jA)    I3(jA)    I4(jA)            
 

σI1(A)
    

σI2(A)  σI3(A)   σI4(A) 
 

(5.15) 

(5.16) 
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( )
2

j
r

j

j
j

f
f f

j !=
β=β

 µ ∂
= β +   ∂β 

∑  

 

Specifically applying this formula to the mesh circuit of Fig. 5-1 and summing 

over the influences of all the impedances, the mean of the kth current is: 

 

( )
5

1 2

j
r

jZn k
k k n j

n j
n

d I
I I Z

j ! dZ= =

 µ  
= +       
∑ ∑  

 

 Using the identity for variance [5.2]: 

 

22 2

f
f ( ) fσ = β −  

 

and with a substantial amount of algebra as shown in [5.3] the following 

formulae are recovered as the generalisations of  (5.18): 

 

2
1

2

2 1 2

jr r
j ji j i j

f
j i j

j
f f f

ij ! j !

−
−

= = =

 µ µ     
σ = −               

∑ ∑ ∑  

 

Here 
i

i

i

f
f

=

∂
=
∂

β β
β

 and 
i

jC
i

j
=






  is a binomial coefficient.  

    

Applying (5.20) to the mesh circuit of Fig. 5-1 and summing over the influences 

of all the impedances, the variance of the kth current is: 

 

2
15

2

1 2 1 2

i j i jjr r
jZ jZn k k n k

I i j i jk
n j i j

n n n

j d I d I d I

ij ! dZ dZ j ! dZ

−−

−
= = = =

 µ µ       
 σ = −                 

∑ ∑ ∑ ∑  

where µjZn is the jth central moment of Zn, vector products are performed as 

piecewise multiplications and derivatives are evaluated at the mean values of Zn. 

The main results of this section, (5.18) and (5.21), were presented in [5.4] and 

shall now be employed for the problem of Fig. 5-1.  

(5.19) 

(5.17) 

(5.20) 

(5.18) 

(5.21) 
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Fig. 5-6A and 5-6B show the improvement in the predicted current standard 

deviation as the number of moments is increased. The cases of both small and 

large standard deviations of normally distributed impedance values are 

considered. The percentage difference for all the results in this section is from 

the DST and converged MC method after 100,000
 
simulations. 
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Fig. 5-6A Effect of increasing moments on the accuracy of the DST for random impedances 

with  σZn =  0.1 
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Fig. 5-6B Effect of increasing moments on the accuracy of the DST for random impedances 

with  σZn =  2 
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Although there is an initial improvement and the curves do asymptotically 

approach zero theoretically, it is clear that the rate of convergence is very slow, 

particularly above four moments. The percentage difference in the mean is much 

smaller than that of the standard deviations. Fig. 5-7A and 5.7B repeat this test 

using exponentially distributed impedances.  
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Fig. 5-7A Effect of increasing moments on the accuracy of the DST for random impedances 

with  σZn =  0.1 
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Fig. 5-7B Effect of increasing moments on the accuracy of the DST for random impedances 

with  σZn =  0.67 
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The initial convergence is better, but again the asymptotic convergence is very 

slow above four moments. The relationship between the number of moments and 

standard deviation on the percentage difference between the DST and MC 

approaches is shown in the 3-D plot in Fig. 5-8. As anticipated, the discrepancy 

between both techniques reduces with increasing moments and reducing standard 

deviations. 
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Fig. 5-8 Effect of increasing moments and standard deviation on the accuracy of the DST  

 

The accuracy of the DST method with increasing moments was tested in a 

scenario having mixed distributions in [5.3]. The circuit in Fig. 5-1 is used for 

this analysis. The impedances Z1, Z3 and Z4 were chosen to be normal variates 

while Z2 and Z5 were exponential variates. There cases of small and large 

standard deviation values were considered assessed.  

 

For the first case, the mean and standard deviation of stochastic impedances used 

are: Z1 = 20jΩ, Z2 = 15jΩ, Z3 = 18jΩ, Z4 = –30jΩ, Z5 = –25jΩ, σZ1 = 0.1Ω, σZ2 = 

0.1Ω , σZ3 = 0.2Ω, σZ4 = 0.15Ω,  and σZ5 = 0.067Ω. Fig. 5-9A and 5-9B show the 

effect of increasing moments on DST accuracy when measuring the mean and 

standard deviations of mesh currents respectively. 
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For the second case, the mean and standard deviation of stochastic impedances 

used are: Z1 = 20jΩ, Z2 = 15jΩ, Z3 = 18jΩ, Z4 = –30jΩ, Z5 = –25jΩ, σZ1 = 0.9Ω, 

σZ2 = 0.5Ω, σZ3 = 1.5Ω,  σZ4 = 0.85Ω,  and σZ5 = 0.33Ω. Fig. 5-10A and 5-10B 

show the effect of increasing moments on DST accuracy when measuring the 

mean and standard deviations of mesh currents respectively. The percentage 

difference between the DST and MC methods in the second case is more than the 

first case as the variations of stochastic parameters is higher. The results obtained 

in both cases also showed that beyond four moments the asymptotic convergence 

is slow.  
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Fig. 5-9A Effect of increasing moments on the accuracy of the mean using DST for random 
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Fig. 5-9B Effect of increasing moments on the accuracy of the standard deviation using 

DST for random impedances with mixed distributions with small variations 
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Fig. 5-10A Effect of increasing moments on the accuracy of the mean using DST for 

random impedances with mixed distributions and large variations 
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Fig. 5-10B Effect of increasing moments on the accuracy of the standard deviation using 

DST for random impedances with mixed distributions and large variations 

 

The conclusion for both distributions is that use of a few higher order terms may 

extend the accuracy of the overall approach to larger standard deviations in the 

problem parameters, but that the use of higher terms does not always yield 

practically better results.  
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Chapter 6  Statistical Analysis in 2-D Problems 

 

 

This chapter presents the application of the DST to two-dimensional (2-D) 

stochastic problems. These provide a better illustration of real-life examples than 

the 1-D examples, albeit at a higher computational overhead. The 2-D TLM 

technique is used to solve for the fields in the case studies presented. The MC 

method is then be used to generate random samples of stochastic variables and 

the statistical moments are acquired. The results are compared with the DST 

applied to TLM models depicting parameters of interest. The impact of including 

higher order approximations to improve the DST is also discussed. 

 

6.1 Two-Dimensional (2-D) TLM 

 
In chapter 4, the 1-D TLM model had only two ports per node junction. This 

restricts the field components that could be studied. In this section the 2-D TLM 

technique is introduced. 

 

The 2-D TLM model involves the discretisation of the problem space in two 

orthogonal directions which constitute a reference plane. This is achieved by 

using a mesh of interconnected transmission lines on the planar structure under 

analysis [6.1].   

 

There are two field configurations that can be examined from the discretised 

structure. The first allows modelling the magnetic field component in the 

direction orthogonal, while the electric fields are parallel to the reference plane. 

This is referred to as the TE mode and is modelled using a series node. The 

second configuration is the dual of the first which implies that the electric field 

component is orthogonal while the magnetic fields are parallel to the reference 

plane. This is denoted as the TM case and is modelled using a shunt node. The 

later case is considered in this chapter. 
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  NX-1, NY-1 

0,0 NX-1, 0 

NY-1, 0 

For the illustration of this technique, the majority of examples here deal with the 

effect of stochastic permittivity on the resonance of the first harmonic in resonant 

structures. The schematic illustration of a discretised 2-D dielectric space is 

shown in Fig 6-1. The x-y plane is used as the frame of reference. There are NX 

nodes and NY nodes in the x and y-directions respectively. The total number of 

nodes is the product of NX and NY. The order of numbering the co-ordinates (x, 

y) is found by scanning each node along the x-axis. The selected nodes in Fig. 6-

1 are closest to the edges of the problem space.   

 

Let the subscripts x, y and z represent the direction of the field components and 

circuit parameters. For the TM case, the non-zero field components are Hx, Hy 

and Ez. Given that there is no field variation in the z-direction for 2-D problems, 

the wave equation can be derived as [6.1]: 

 

2 2 2

2 2 2
Z Z ZE E E

x y t

∂ ∂ ∂
+ = µε

∂ ∂ ∂
 

 

 

 

        

 

 

 

 

 

Fig. 6-1 2-D dielectric resonator in the x-y plane 

 

The lumped circuit representation of the shunt node located at (x, y) is shown in 

Fig. 6-2A. The structure is such that each node comprises four ports which are 

exchange channels with neighbours in the x-y plane. All the inductive circuit 

parameters are connected between a port and the node centre. The total 

inductance per unit length for propagation in the x and y-directions is L (H/m) 

while the total capacitance per unit length in the z-direction is 2C (F/m).The 

(6.1) 

z 

x 

y 
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discrete TLM equivalent for the shunt node is depicted in Fig. 6-2B with the 

incident and reflected port voltages.  
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Fig. 6-2A Lumped circuit representation of shunt node [6.1]  
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Fig. 6-2B Discrete TLM equivalent of shunt node  
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The space dimensions of the node from Fig. 6-2A are ∆x, ∆y and ∆z in the x, y 

and z-directions respectively. It is assumed for simplicity that these parameters 

are of the same length ∆l. The relationship between currents and voltages 

associated in time and space in the shunt node is given by [6.1]: 

 

xZ IV L

x l t

∂∂
= −

∂ ∆ ∂
 

yZ
IV L

y l t

∂∂
= −

∂ ∆ ∂
 

x zI VC

x l t

∂ ∂
= −

∂ ∆ ∂
 

y z
I VC

y l t

∂ ∂
= −

∂ ∆ ∂
 

 

Differentiating (6.2a) and (6.2c) with respect to x and t respectively and 

combining the results gives:  

 

( )
2 2

2

2 2
Z ZV V

LC l
t x

∂ ∂
= ∆

∂ ∂
 

 

Differentiating (6.2b) and (6.2d) with respect to y and t respectively gives a 

similar expression to (6.3). Both results can be combined to give: 

 

2 2 2

2 2 2
2Z Z ZV V V

x y t

∂ ∂ ∂
+ = µε

∂ ∂ ∂
 

 

The parameters inductance and capacitance per unit length are by definition the 

permeability µ and permittivity ε respectively. Dividing (6.4) through by ∆l and 

comparing with (6.1), the voltage per unit length is equal to the electric field. 

The same relationship applies for the current per unit length and magnetic field. 

Also, it is seen that the permittivity being modelled is twice that required by the 

medium from theory. This value must be scaled accordingly in the model 

parameters.  

 

(6.2a) 

(6.2b) 

(6.2c) 

(6.3) 

(6.4) 

(6.2d) 
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The link impedance ZTL in Fig. 6-1B is related to the lumped circuit parameters 

in free space by the expression [6.1]: 

 

0

0

2
TLZ

µ
=

ε
 

 

The velocity of propagation uTL of a wave that travels the length of the line 

segment ∆l for time step ∆t in free space is [6.1]: 

 

0 0

2
TL

l
u

t

∆
= =
∆ µ ε

 

 

The connection and scattering process between a node located at (x, y) and its 

immediate neighbours is shown in Fig. 6-3.  

 

 
Fig. 6-3 Connection and scattering process between adjacent nodes 

 

(6.5a) 

(6.5b) 



Chapter 6     Statistical Analysis in 2-D Problems  

 108 

Voltage pulses at a particular port are reflected or scattered back towards 

neighbouring node centres and vice-versa. In every TLM simulation, it is 

essential to define boundaries. The process of connection is simply a handshake 

between coupled ports away from boundaries. The ports linked directly with 

boundaries have the incident voltage reflected back in conformity with 

transmission line theory.  

 

In the previous chapter, material properties were modelled using 1-D stubs. The 

2-D stub architecture is based on the same principle. The lumped circuit 

arrangement for the application of capacitive stubs is illustrated in Fig. 6-4A.  

The stub capacitance CS is added to the original model. This is connected at the 

node centre to represent lossless materials with relative permittivity that is more 

than one.   The discrete TLM equivalent is depicted in Fig. 6-4B.  
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Fig. 6-4A Lumped circuit representation of shunt node with stub capacitance 
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Fig. 6-4B Discrete TLM equivalent of shunt node with capacitive stub 

 

The round trip propagation time in a stub should be the same as the time to 

transverse a node. The relationship between the stub capacitance CS and stub 

impedance ZS is given by [6.1]: 

 

2S

S

t
C

Z

∆
=  

 

The relationship between link capacitance C and link impedance ZTL is:  

 

TL

t
C

Z

∆
=  

 

The overall capacitance represented by the shunt node from Fig. 6-4A is thus: 

 

2
2 1

4
TL

tot S

TL S

Zt
C C C

Z Z

 ∆
= + = + 

 
 

 

(6.6) 

(6.8) 

(6.7) 
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As stated earlier, the permittivity of the medium is the total capacitance per unit 

length.  This can be related to the modelling parameters in (6.8) using (6.5a) and 

(6.5b) to give: 

 

0 0 1
4

tot TL
r

S

C Z

l Z

 
ε = ε ε = = ε + ∆  

 

 

From (6.9), the relationship between the stub impedance of a material and 

relative permittivity εr  is: 

 

( )4 1
TL

S

r

Z
Z =

ε −
 

 

The Thevenin equivalent circuit for the shunt node in the presence of a 

capacitive stub is presented in Fig. 6-5. Branch 5 represents the stub contribution 

to the network. The total voltage VZ at the node centre for this scenario is: 

 

( )1 2 3 4 5
2 2

4 1

i i i i i

TL S
Z
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Fig. 6-5 Thevenin equivalent circuit for shunt node with capacitive stub  

 

 

 

(6.11a) 

(6.9) 

(6.10) 
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The expression in (6.11) can be multiplied through by ZTL to give: 

 

( )1 2 3 4 52 2

4

i i i i i
S

Z

S

ˆV V V V V Y
V

Ŷ

+ + + +
=

+
 

where TL
S

S

Z
Ŷ

Z
=  

 

The reflected voltage at any port is the difference between VZ and the incident 

voltage at that port. The scatter sub-matrix relates the vector of incident voltages 

with that of the reflected voltage of each node (x, y) of the problem space at a 

time step k: 

 
r i

k x ,y kx ,y x ,y
V S . V=  

 

For a shunt node with a stub, the scatter sub-matrix is a 5 x 5 matrix [6.1]: 

 

2 2 2 2 2

2 2 2 2 2
1

2 2 2 2 2

2 2 2 2 2

22 2 2 2

x ,y

Y Ys

Y Ys

S Y Ys
Y

Y Ys

Y Ys

 ∧ ∧ 
 
 ∧ ∧
 
 
 ∧ ∧
 

∧  
 ∧ ∧ 
 
 ∧ ∧ 
 
 

=

−

−

−

−

−

 

where 4 S
ˆ ˆY Y= +  

 

The global scatter matrix is given by a sparse matrix with diagonal entries 

consisting of the scatter sub-matrices. This provides the relationship between the 

incident and reflected voltages of all the nodes. The expression for this at a 

particular time step k is: 

 
r i

k kV S . V=  

where kV
r and kV

i are global vectors that contain all the reflected and incident 

port voltages respectively at time step k. 

(6.11b) 

(6.12) 

(6.13) 

(6.14) 
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 The problem with NP ports per node has a global scatter matrix S of the order 

NX x NY x NP. Using the designated numbering arrangement in Fig. 6-1, S is 

given by the expression: 

 

0 0

1 0

1 1

0 0 000

0 0 0 0 00

0 0 0 0 0 0

0 0 0

0 0 00

,

NX ,

NX ,NY

S . .

. .

. .

S . . .
S

.. . .. . . .

.. . .. . . .

.. . .. . . .

S. . .

−

− −

 
 
 
 
 
 

=  
 
 
 
 
  
 

 

where 0 is a null NP x NP matrix. For a 2-D shunt node, NP = 5. 

 

This global matrix formulation is important for solving 2-D frequency domain 

problems. This can be achieved by translating voltage expressions from the time 

domain into the frequency domain using a Fourier transform. 

 

The connection sub-matrix can also be attained by taking into account that pulses 

incident on a port are either coupled into adjacent ports or reflected according to 

boundary conditions. For a shunt node (x, y) away from the boundary, the 

incident link line voltages at a current time step k + 1 depend on those reflected 

from adjacent ports at a previous time step k. The port associated with the 

capacitive stub is terminated with an open circuit boundary and connected to the 

node centre. By inspection, the following expressions are obtained:  

 

( ) ( )1 1 3 1i r
k kV x, y V x, y+ = −  

( ) ( )1 2 4 1i r
k kV x, y V x , y+ = −  

( ) ( )1 3 1 1i r
k kV x , y V x, y+ = +  

( ) ( )1 4 2 1i r
k kV x, y V x , y+ = +  

( ) ( )1 5 5
i r

k kV x, y V x , y+ =  

 

(6.15) 

(6.16a) 

(6.16b) 

(6.16c) 

(6.16e) 

(6.16d) 
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For nodes connected to metallic boundaries, the associated port p will be 

terminated with a short circuit boundary and the incident voltage at the time step 

k + 1 is: 

( ) ( )1
i r

k p k pV x, y V x, y+ = −  

where (0, y), (NX – 1, y), (x, 0) and (x, NY – 1) are the pertinent co-ordinates of      

(x, y) in (6.17). 

 

The global connection matrix relates all the incident voltages at a current 

timestep with the reflected voltages at the previous timestep for all the ports in 

the problem space. This is given by: 

 

1
i r

k kV C . V+ =  

 

The order of the global connection matrix is sparse and of the same order as that 

of the global scatter matrix. The entries of this matrix are shown in Appendix C. 

 

6.1.1 Frequency Domain TLM (FDTLM) for Problems with Reflecting 

Boundaries 

 

For waveguide problems, a frequency domain interpretation of the TLM matrix 

is obtained using the following steps: 

  

STEP 1: Substitution of the vector of reflected voltages Vr(t) in (6.18) with its 

representation in (6.14). The resulting expression is written in terms of ∆t to 

give: 

( ) ( )i iV t t C .S .V t+ ∆ =  

 

STEP 2: Find the Fourier transform of both sides (6.19): 

 

i ij tV e C .S .Vω∆ =  

where Vi is the is an eigenvector of C.S and the Fourier transform of Vi(t). The 

corresponding eigenvalue is e jω∆t and ω is the angular resonant frequency. 

(6.17) 

(6.18) 

(6.19) 

(6.20) 
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6.1.2 Frequency domain TLM for problems with non-reflecting 

boundaries 

 

For problems with non-reflecting boundaries, the frequency domain 

interpretation of the TLM matrix is obtained using the following steps: 

 

STEP 1:  A vector of all voltage sources Vs(t) is included to (6.19) to give:  

 

( ) ( ) ( )i iV t Vs t C .S .V t t= + − ∆  

 

STEP 2:  Find the Fourier transform of both sides (6.21): 

 

( ) ij tVs I C .Se .Vω∆= −  

where  Vs is the Fourier transform of Vs(t), and I is an identity matrix of order 

NX x NY x NP. 

 

Making a substitution A = I – C.S e jω∆t in (6.22a), a Fourier expression for the 

voltage source can be found [6.2]: 

 

iVs A.V=  

 

6.2 Application of the DST to Stochastic Waveguide Problems 

 

In many applications, where the response of a system is a function of several 

design parameters, it is important to know how the eigensolutions of a matrix 

change as it elements change [6.3]. A statistical model can be derived from the 

electromagnetic constitutive variables. The derivatives of eigenvalues in 

particular are useful in the calculation of the statistics of eigenvalue location in 

stochastic applications [6.4]. This feature is exploited here in the application of 

DST to TLM waveguide analyses. This is shown using the steps below: 

 

(6.21) 

(6.22a) 

(6.22b) 
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STEP 1: Differentiate both sides of (6.20) with respect to the random variable, 

which in this case is relative permittivity, εr. There are two variables here that are 

identified as functions of εr namely: resonant frequency fr and scatter matrix S. 

 

i ij t
i i j t

r r r r

d S dV de dV
C . .V C .S . V e

d d d d

ω∆
ω∆+ = +

ε ε ε ε
 

 

STEP 2: Let Ui represent the eigenvector of the transpose of the connect and 

scatter matrix product. This is defined in (6.24). From matrix algebra, the 

eigenvectors, Ui and Vi have identical eigenvalues. The eigenvectors are 

generated to satisfy the boundary conditions on the metallic walls of the guide.  

 

iT iTj tU .C .S e Uω∆=  

 

STEP 3:  Pre-multiply both sides of (6.23) with the transpose of the eigenvector 

Ui: 

 

i ij t
iT i iT i j t

r r r r

d S dV de dV
U C . .V C .S . U V e

d d d d

ω∆
ω∆   

+ = +   ε ε ε ε   
 

 

 

STEP 4:  Substitute the (6.24) into (6.25) and eliminate the product of e jω∆t and 

UiT.dVi /dεr which appears on both sides of the equation. This can be rearranged 

to make the derivative of the eigenvalue with respect to relative permittivity 

subject of the formula:  

 

iT i

j t
r

iT i

r

d S
U .C . .V

dde

d U .V

ω∆ ε
=

ε
 

 

STEP 5: As for problems involving inhomogenously loaded dielectric 

waveguide, an explicit relationship between fr and εr is not readily obvious and 

can only be assessed via the solution of a set of transcendental equations [6.4]. 

(6.23) 

(6.24) 

(6.25) 

(6.26) 
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This issue can be obviated via the introduction of an auxiliary derivative term   

d/d fr  to obtain the rate of change of fr with εr. 

 

( )2

iT i

r r
iT ij t

r

d S
U .C . .V

df d

d U j t e Vω∆

ε
=

ε π∆
 

 

STEP 6: The first order approximation for the variance of the resonant frequency 

for a distribution of εr and NRV  random variables can be found via the relation 

[6.5]: 

 

( )
2

2 2

1

N RV r r j

fr rj
j

r j

df

dε
=

 ε
 σ ≅ σ
 ε 

∑  

where the overbar denotes the mean of the parameter under consideration. 

 

6.3 Application of the DST to Stochastic Problems with 

Absorbing Boundaries 

 

Consider a set of wires (whose exact radii are unknown) suspended in an 

enclosure with absorbing boundaries. The DST now has to be modified to take 

these boundary conditions into account. The equations derived in sub-section 

6.1.2 are used with the DST approach to approximate the mean and variance of 

observed voltages. 

 

The variance of TLM port voltages are contained in a single covariance matrix. 

This can be obtained from differential analysis. The method described here 

involves the use of the perturbation method as shown: 

 

( ) ( ) ( ) ( ) ( )2 2

22
r

r r

d A' r d A' r
A' r A' r A' r ...

dr dr

δ
= + δ ≅ + δ + +  

where r is the stochastic wire radius, r  is the mean wire radius, δr is the 

perturbation parameter and A’ is the inverse of A.  

(6.27) 

(6.28) 

(6.29) 
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Applying the perturbation term to (6.22b): 

 

    ( ) ( ) ( ) ( )2 2

22
i r

r r

d A' r d A' r
V A' r Vs A' r ... Vs

dr dr

 δ
= + δ ≅ + δ + + 

 
 

where 

( ) ( ) ( )( ) 1j tr rA' r I C .S e
−− ω∆≅ −  

( ) ( ) ( ) ( )
d A' r d A r

A' r . . A' r
dr dr

= −  

 

The rate of change of the vector Vi with respect to r is: 

 

( ) ( )idV r d A' r
Vs

dr dr
=  

 

The covariance matrix to approximate the variances in each of the ports for NRV 

random variables is: 

 

     ( ) ( ) ( )2

2 2 2

1 1

T
i

N NRV RV j jT

rj rjVi
j j

j j j

d A' r d A' rdV r
.Vs.Vs .

dr dr dr= =

    
σ ≅ σ = σ     

          
∑ ∑  

 

The covariance matrix 2

Vi
σ  is a symmetric one defined as follows [6.6]: 

 

11 12 1

2 21 22 2

1 1

i i iV V V n

i i iV V V n

Vi

i i iV V Vn n nn

σ σ σ 
 
σ σ σ 
 σ =
 
 
σ σ σ 
 

…

…

⋮ ⋮ … ⋮

…

 

where σV 
i
ab gives the covariance between incident voltages between port a and 

port b which must be equal to σV 
i
ba.  The variance on port a independent of other 

influences is given by the expression σV
i
aa and is found in the ath position on the 

leading diagonal of the covariance matrix. 

(6.30a) 

(6.30b) 

(6.30c) 

(6.32) 

(6.31) 

(6.33) 
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Now, it is has been established that each shunt node consists of a 5 x 5 sub-

matrix depicting the 5 port network that act as links to neighbouring nodes. The 

total voltage on a particular node m from (6.11b) is: 

  

1 2 3 4 52
4

i i i i i
smm m m m m

m

sm

V V V V Y V
V

Y

Λ

Λ

 + + + + =
 + 

 

where m1 - m4 are the link line orthogonal ports and m5 is the open circuit stub 

modelling permittivity with normalised admittance Ŷsm. 

 

Given the variances and covariance of all the ports from (6.33), the first order 

variance approximation of the total voltage at node m can be found in [6.6]: 

 

   

( )

2
2 2 2 2 2

1 2 3 4 5

2
1 2 1 3 1 42

2 3 2 4 3 4

1 5 2 5 3 5 4 5

4

24

smi i i i iV V V V Vm m m m m

i i iV V Vm m m m m mVm

sm i i iV V Vm m m m m m

sm i i i iV V V Vm m m m x x x x

Y

Y

Y

Λ

Λ

Λ

 
σ + σ + σ + σ + σ 
 

  
σ + σ + σ  σ ≅     + +σ + σ + σ+    

    
  + σ + σ + σ + σ    

 

 

The second derivative of Vi with respect to r can be found from (5.7) to be: 

 

    
2 22

2 2 2
2

i d A' d A' d A d Ad V
Vs A' . .A' A' .A' . .A' .Vs

dr dr dr dr dr

      
= = − −      

     
 

 

The second order approximation for the mean of incident voltages is:  

 

( )
2 2

2
1 2

iN RVi ri j

j
j

j

d V
V V r

dr=

σ  
≅ +   

 
∑  

 

The mean total voltage can be found from (6.34): 

 

(6.34) 

(6.35) 

(6.36) 

(6.37) (6.37) 
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6.4 Case Studies for the Application of the DST to 

Electromagnetic Problems 

 

This section deals with the application of the theory developed in sections 6.2 

and 6.3. The case studies here deal with stochastic electromagnetic problems 

analysed using the MC method and then compared with the DST alternative. For 

each scenario the problem space in sub-sections 6.41 – 6.43 is discretised using 

24 nodes (NX) in the horizontal direction and 12 nodes (NY) in the vertical 

direction.  To validate the DST approach, the resonances of a number of 

canonical boxed dielectrics are considered. This will use the DST equations 

derived in section 6.2. There are additional examples with wires suspended in a 

deterministic medium with absorbing boundaries. This will use the DST 

equations derived in section 6.3.  

 

6.4.1 Resonances in Structures with Homogenous Normally Distributed 

Random Dielectrics  

 

Although it would suffice to use conventional methods to estimate how 

homogenous random dielectric affects resonance distribution, calculations are 

shown here based on the DST and comparisons are made.  

 

From the expression of fundamental resonant frequency for homogenous 

dielectric resonators provided in [6.7], the rate of change of fr with εr is found to 

be: 

 

2 2

3 2

1 1
4 /

r r X Y

df c

d L L

   
= +   ε ε    

 

(6.38) 

(6.39) 
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where c is the speed of light LX and LY are the length and height of the resonator 

respectively.  

 

Consider a normally distributed random dielectric with a central relative 

permittivity of 2.01 and a standard deviation of 0.05. The resonator dimensions 

are LX = 1m and LY = ½ m. The MC simulation is performed by using 100,000 

repeated runs of the FDTLM algorithm described in [6.8]. The fundamental 

frequency converges to a standard deviation of 2.9541MHz. Using a substitution 

of (6.39) into (6.28), the analytic approximation of this standard deviation is 

2.9426MHz. The DST for the same experiment in 2D-TLM involves using the 

derivative in (6.27). This gives a standard deviation of 2.94304 MHz which is 

very close to the closed form result. The difference between the DST and the 

closed form approximations is the manner in which sensitivity is calculated. The 

comparison between both techniques is shown in Fig. 6-6 for different central 

relative permittivity values but the same standard deviation of 0.05. The speed of 

propagating fields would decrease with increasing relative permittivity. 

Therefore, the approximate variance from (6.28) of the field must also decrease 

as seen in Fig. 6-6. For a problem with NRV  random variables, the DST approach 

requires NRV + 1 simulations to obtain results which are considerably less than 

the number required by the MC method. Each simulation for both approaches 

takes about 2s on a PC with a AMD Athlon 2.01GHz processor.  

 

The effect of increasing standard deviation on the accuracy of both the DST and 

analytical methods is also studied. The same parameters from the previous 

paragraphs are retained with σεr the only changing variable. The converged MC 

simulations take 100,000 repeated runs. From the results obtained, the agreement 

between the MC and the first order approximation methods degrades with 

increasing standard deviation. This is shown in Fig. 6-7. 
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Fig. 6-6 Comparison between the analytic and DST approximation methods for 

homogeneous resonators 

 

0

0.9

1.8

2.7

3.6

4.5

0.05 0.1 0.15 0.2 0.25

Standard deviation σεr

|%
D

if
fe

re
n

c
e

|

Analytic

DST

 LY = 1/2m    εr = 2.01, σεr = 0.05 - 0.25

LX = 1m

 
Fig. 6-7 Percentage difference between the converged MC simulations and approximation 

methods  
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6.4.2 Resonances in Structures with Normally Distributed Inhomogeneous 

Random Dielectrics 

 

Numerical modelling has been seen to be a suitable way for the deterministic 

modelling of inhomogenously filled waveguides [6.9]. One reason for this is the 

drawback in the analytic approach which involves solving transcendental 

equation [6.5], and consequently contriving an expression for dfr/dεr, is difficult 

or impossible to handle. The DST approach used for TLM has a unique way of 

navigating this obstacle by providing sensitivity parameters in terms of known 

connection and scatter matrices.  

 

The dielectric slab with rectangular cross section, illustrated in Fig. 6-8A, does 

not yield closed form results even from a deterministic viewpoint [6.5]. 

However, the proximity between the analytic and DST methods for the 

homogeneous case gives the confidence to apply the latter in this section. The 

dimensions of the partially-filled resonator and the position of the slab are also 

provided. The central slab is stochastic with a normal distribution of mean 

relative permittivity of 2.01 with increasing standard deviation values. The 

surrounding medium is not a random variable with relative permittivity εr1 of 

1.01. The results show that applying the DST in a TLM modelling environment 

yields satisfactory results when compared with the MC technique. Intuitively, as 

seen in Fig. 6-8A, the changes in σεr2 affect the standard deviation of 

fundamental resonance σfr. The percentage difference between the DST and MC 

approximations of σfr increases with the variability of the problem as shown in 

Fig. 6-8B.  
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Fig. 6-8A Comparison between the DST and MC approximation methods for a floating 

dielectric slab in a resonator 
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Fig. 6-8B Percentage difference between the converged MC simulations and DST methods 

for the structure shown in Fig. 6-8A 
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The DST can be applied to situations where NRV is greater than one. For the 

problem defined in Fig. 6-9A, the number of random dielectric variables in the 

resonator is increased. The geometry of the dielectric materials and their 

respective positions are also shown. The four slabs are uncorrelated materials    

1, 2, 3 and 4 that have the same central relative permittivity, of 2.01, and 

standard deviation σεr. The central surrounding medium is deterministic and 

retains the relative permittivity εr1 of 1.01. 

 

The relationship between the standard deviation of relative permittivity and 

fundamental resonance is shown in Fig. 6-9A. For the DST approach, the 

independent sensitivity of all the slabs is taken into account when calculating the 

output frequency variance. The percentage difference between the DST and MC 

methods is presented in Fig. 6-9B. As with the other results, there is a growing 

discrepancy between both approaches with rising input variability. 

 

0

1

2

3

4

0 0.05 0.1 0.15 0.2 0.25

Standard deviation σεr

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 σ

fr
  
(M

H
z
)

Monte Carlo

DST

    1/3m

1/6m

    1/3m     1/3m

1/6m

1/6m

1 3

2 4

 
Fig. 6-9A Comparison between the MC and DST approximation methods for a four 

dielectric slabs with rectangular cross-section 
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Fig. 6-9B Percentage difference between the converged MC simulations and DST methods 

for the structure shown in Fig. 6-9A 

 

In the examples just considered, the materials are assumed to be piecewise 

homogeneous. However, in a practical inhomogeneous case caused by non-

uniform fabrication, it is apparent that samples of the same piece of material are 

no longer independent and similar observations can be made regarding surface 

roughness and boundary placements. Such cases require that the statistical 

variations of two or more problem parameters are dependent, necessitating the 

introduction of covariances in the analysis presented above.  

 

A convenient normalised measure of the dependence of two parameters is 

provided by the correlation coefficient. This can be readily used to extend the 

DST approach to treat the case of dependent statistical parameters. For the 

example in Fig. 6-10A, the correlation coefficient ρ13 between the two dielectric 

materials, with relative permittivity  εr1 and ε r3 is: 

 

13

13

1 3

r

r r

ε

ε ε

σ
ρ =

σ σ
 (6.40) 
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where σεr13 is the covariance between them and -1≤ ρ13 ≤ 1. Correlation can be 

included in, for example, by generalising (6.28) to give [6.6]: 

 

    ( )
22

2 2

1 1 3 313
1 1 3 3

2r r r r
f r r r r

r r r r

df df df df

d d d d
ε ε ε εσ ≅ σ + ρ σ σ + σ

ε ε ε ε

      
      

      
 

 

Fig. 6-10B shows the percentage difference between converged MC simulations 

and the DST approach as the correlation coefficient between the two discrete 

dielectric materials is varied. From the results, the discrepancy is minimum when 

both variables are uncorrelated, that is when ρ13 = 0, and remains acceptably low 

across the complete range of correlations. The general efficiency of this approach 

is illustrated by the fact that the maximum difference for the example in Fig.     

6-10A is not more than 0.22% for the different degrees of statistical dependency 

considered.  
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(6.41) 
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Fig. 6-10B Percentage difference between the converged MC simulations and DST methods 

for the structure shown in Fig. 6-10A 

 

Consideration of continuously spatial variations in material parameters requires 

some care, if convergence with mesh density is to be observed. Quantification of 

the correlation of, for example, the relative permittivity at different spatial 

locations, can proceed from the autocorrelation function given in (4.12). The 

structure in Fig. 6-11A models a single dielectric material, sampled at eight 

points as eight uniform layers of correlated relative permittivity values generated 

using (4.13) with Lc = 0.125m and εRMS = 0.05. The slabs have a combined mean 

relative permittivity of 2.01 and the same standard deviation. Fig. 6-11B shows 

the percentage difference between converged MC simulations and the DST 

approach. 
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Fig. 6-11A Eight correlated dielectric slabs modelling a single dielectric block as eight 

layers with correlated relative permittivities 
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Fig. 6-11B Percentage difference between the converged MC simulations and DST methods 

for the structure shown in Fig. 6-11A 
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 6.4.3 Resonances in Structures with Normally Distributed Stochastic 

Boundaries 

 

The exact position of boundaries allows for accurate modelling of waveguide 

problems. This is difficult to attain in cases where dimensions of structure under 

analysis is not a multiple of the mesh size. The method proposed in [6.10] 

addresses this constraint by allowing for boundaries to be adjusted in 

infinitesimal dimensions compared with overall size of the structure. The 

modelling advantage of this approach is that there is a simple modification to the 

scatter matrix and no alteration to the connect matrix. Fig. 6-12 illustrates a 

resonator that has a highlighted movable boundary.  

 
 

Fig. 6-12 Resonator with an infinitesimally adjustable boundary 

 

Let ∆L be the size of the mesh in the problem space away from the adjustable 

boundary. This is related to the height of the resonator LY by the expression: 

 

YL L.NY= ∆  

 

A variation parameter α is introduced consistent with the physics of the problem. 

This is related to the length of the resonator LX by the expression [6.10]: 

 

( ) ( )1 1
2X

L
L NX L

∆
= − ∆ + + α  

where 0 < α <2. 
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(6.42) 

(6.43) 
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The constitutive and geometric parameters of cells at the adjustable boundary are 

related to those away from it as shown [6.10]: 

L' L∆ ≅ α∆  

TL TLZ ' Z≅ α  

where ∆L’ and Z’TL are the  length and characteristic impedance of link lines 

connecting terminal nodes to the movable boundary respectively.  

 

The corresponding Thevenin equivalent circuit of the adjustable boundary model 

is shown in Fig.  6-13. 
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Fig. 6-13 Thevenin equivalent circuit for shunt node connected to an adjustable boundary 

 

The expression of total node voltage Vz from the circuit model in Fig. 6-13 is: 

 

4
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1
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i
i i i i
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V ˆV V V V Y

V
Ŷ

 
+ + + + α =

+ +
α

 

 

The expression of Vz in (6.46) would only affect entries of the scatter sub-matrix 

of associated with the movable boundary.  This is a 5 x 5 matrix as shown: 

 

(6.44a) 

(6.45b) 

(6.46) 
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1

3m S
ˆ ˆY Y+

α
+=  

 

In a homogenous resonator with an uncertain boundary, the standard deviation of 

resonant frequency σfr can be derived analytically from the standard deviation of 

sub-nodal variations σα: 
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The DST for moving boundaries simply entails the substitution of εr, in section 

6.2, with α and the introduction of ∆L’ and Z’TL as appropriate. The comparison 

between approximation methods is shown in Fig. 6-14A for a mean variation 

parameter of 0.5 with different standard deviation values. Consistent with results 

earlier, there is a growing discrepancy between approximation techniques as the 

standard deviation of α increase. This is illustrated in Fig. 6-14B. 

 

Surface roughness can be achieved by applying (4.12) and (4.13) to the variation 

parameter α. In Fig. 6-15A, the combined mean of the variation parameters of all 

six random variables shown is 0.5, Lc = 0.167 m and the root mean square of α is 

0.05. The example here has εr fixed at 2.01. Again, it is apparent that the DST 

approach provides excellent agreement with the converged MC analysis.        

Fig. 6-15B shows the percentage difference between converged MC simulations 

and the DST approach. 

(6.48) 

(6.47) 



Chapter 6     Statistical Analysis in 2-D Problems  

 132 

0

0.075

0.15

0.225

0.3

0 0.05 0.1 0.15 0.2 0.25
Standard deviation σα

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
 σ

f 
r 

(M
H

z
)

Monte Carlo

DST

Analytic

α = 0.5,σα = 0.05-0.25      εr = 2.01
                

1/2m

 
Fig. 6-14A Comparison between the MC, DST and analytic approximation methods for a 

resonator with movable boundaries. 
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Fig. 6-14B Percentage difference between the converged MC simulations and DST methods 

for the structure shown in Fig. 6-14A. 
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Fig. 6-15A An approximation of surface roughness using six correlated variation 

parameters 
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Fig. 6-15B Percentage difference between the converged MC simulations and DST methods 

for the structure shown in Fig. 6-15A 
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6.4.4 Wires with Stochastic Radius in Deterministic Medium with 

Absorbing Boundaries 

 

One of the most important aspects of the EMC design process is the ability to 

accurately measure the shielding effectiveness (SE) of an enclosure. This is to 

ensure that unwanted interference is restricted to avoid disturbing the 

performance of equipment under test. The calculation of SE has to take 

variability into account to predict its performance in cases where the structure 

under analysis has non-deterministic features. As described in the section 6.3, an 

approximation paradigm such as the DST is suitable for this type of case study. 

 

The TLM model of a wire node is shown in Fig. 6-16. This was obtained by 

mapping the analytic field behaviour of a thin wire onto the numerical model. 

Complete derivation and validation of the thin wire model can be found in 

[6.11]. In this sub-section, a set of wires with stochastic radii are arranged in 

enclosure with deterministic boundaries as shown later. The wires formulate a 

screen and the variability on SE is assessed in the presence of a plane wave 

illumination. 
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Fig. 6-16 Discrete TLM model of wire shunt node  
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The relationship between the link line impedance Zw of a node with a thin wire to 

that of the surrounding medium ZTL is given by [6.11]: 

 

2 2

2 2w TL

r
Z Z

r

 ∆ −
=  ∆ + 

 

where ∆ is the cell radius, that is ∆L/2, and r is the wire radius.  

 

The stub impedance of the wire model Zsw has a short circuit termination with 

incident and reflected voltages following the relation in (6.17). Zsw is related to 

ZTL via the expression [6.11]: 

 

4
TL

sw

Z
Z ln

r

∆ =  
 

 

 

The scatter sub-matrix of the wire node is given by: 
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2 2 2 2 2
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 
 
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 
 

∧ ∧ 
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 
 
 ∧ ∧ 
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=

−

−

−

−

−

 

where 4w sw
ˆ ˆY Y+=  and  

4 w
sw

sw

Z
Ŷ

Z
= . 

 

The connection matrix has to be modified to illustrate the mismatch in 

impedance between the wire and the surrounding medium. The discrete TLM 

model depicting connection between horizontal link lines is shown in Fig.         

6-17A. The corresponding Thevenin equivalent circuit is provided in Fig. 6-17B.  

 

(6.51) 

(6.49) 

(6.50) 
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Fig. 6-17A Connection between the link lines of wire (right) and surrounding medium (left) 

 

 
 

Fig. 6-17B Thevenin equivalent circuit for connection between wire and surrounding 

medium 

 

The total voltage V in Fig. 6-17B is: 

 

1
22 1 1ii

wTL

TL w TL w

VV
V

Z Z Z Z

−
   

= + +   
   

 

where Vi
TL and Vi

w are the incident voltages to the medium and wire nodes 

respectively. 

 

The reflected voltages from the medium and wire can be found from the 

difference between the total voltage and respective incident voltages: 

 

( )2 i
r w TL TL w

TL

TL w

V Z Z Z
V

Z Z

− −
=

+
 

( )2 2i
r TL w TL w

w

TL w

V Z Z Z
V

Z Z

− −
=

+
 

(6.52) 

(6.53a) 

(6.53b) 
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where Vr
TL and Vr

w are the reflected voltages to the medium and wire nodes 

respectively. 

 

From (6.53a) and (6.53b), it is clear that the reflected voltages depend on Zw 

which is a function of r. This implies that the connection matrix must also have 

entries relating wire and medium quantities which are functions of r. Therefore, 

the DST for wires with stochastic radii, as derived in section 6.3, take account of 

this property. 

 

The structure in Fig. 6-18 comprises four wires suspended in free space with 

vertical absorbing walls and horizontal reflecting walls. The absorbing walls 

have a reflection coefficient is the ratio of 1 – √2 to 1 + √2 [6.1]. The problem 

space here is discretised with NX = 23 and NY = 11.  The cell size ∆L for this 

problem is  ½3 m. The dimensions of the wires, their position and the size of the 

surrounding structure are shown in Fig. 6-18. The mean radius of each wire is 

0.125. The excitation of amplitude 1V is made at all the ports of the nodes 

located at 2∆L from the left absorbing wall. The wires would act as a partial 

shield and the spaces between them are effectively apertures through which 

fields penetrate. An observation point is defined at 6∆L from the bottom 

reflecting wall and 7∆L from the right absorbing wall.  

  
Fig. 6-18 Wires suspended in a free space medium with vertical absorbing and horizontal 

reflecting walls  

 

The coefficient of variation (the ratio of the standard deviation to the mean) of 

each wire radius is fixed at 0.05. The MC method involves the application for 

nominal design to a large number of randomly perturbed radii values of each 

Incident 
Field  

Observation Point  Wire Screen  
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wire. For the purposes here, a total of 20,000 runs per wire radius are performed 

to assess the field behaviour against increasing frequency. The results are 

compared then with the DST. The analysis is confined to the lower frequency 

range to as dispersion affects analysis at the higher end of the spectrum.  

 

The mean total voltage (related to electric field) at observation point in Fig. 6.18 

can be found using (6.38). Fig. 6-19A shows how the real part of expected 

voltage relates with frequency for the MC and DST methods. Fig. 6-19B 

illustrates how the imaginary part of expected voltage relates with increasing 

frequency both methods. The standard deviation of total voltage at the 

observation point can be approximated using (6.34). Fig. 6-19C shows how the 

standard deviation, approximated from statistical methods, of observed voltage 

changes with increasing frequency values. All these results show how applicable 

the DST is to situations of different boundary conditions. This is a good 

alternative that uses the derivatives to each random variable which is cheaper to 

compute across the frequency band considered here. The favourable comparison 

with the benchmark MC method validates the results. Further investigation on 

the statistical behaviour the SE using both techniques can now be confidently 

implemented.  
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Fig. 6-19A Relationship between real part of expected voltage and frequency 
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Fig. 6-19B Relationship between imaginary part of expected voltage and frequency  
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Fig. 6-19C Relationship between standard deviation of voltage and frequency  
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The SE of the wire structure in an enclosure shown in Fig. 6-18 is: 

 

20 refV
SE log

V
=  

where Vref and V  are the total voltages at the observation point with the wires 

absent and present respectively. 

 

The first order average shielding effectiveness  SE  is: 

 

20 refV
SE log

V
≅  

where V  is the mean total voltage at observation point. Both MC and DST 

approximations of SE  are compared for a range of frequencies as shown in Fig. 

6-20A. The percentage difference between both methods is about 0.0027%. 
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Fig. 6-20A Relationship between expected shielding effectiveness and frequency 

 

 

 

(6.54) 

(6.55) 
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The first order standard deviation of shielding effectiveness is σSE: 

 

20

10
V

SE V

V V

SE

V ln V=

σ∂
σ ≅ σ =

∂
 

where σV is the standard deviation of total voltage at observation point shown in 

Fig. 6-18. From (6.56) it is seen that σSE has a dependency on the coefficient of 

variation of total voltage. The standard deviation σSE is approximated using both 

approximations of σV from MC and DST as shown in Fig. 6-20B. The percentage 

difference between both methods is about 0.023%. 
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 6.4.5 Impact of Higher Order Derivatives on the DST Approach 

 

In the previous sub-sections, the DST was applied using the first and second 

order derivatives to approximate the mean and standard deviation of random 

parameters of interest. This technique can be improved via consideration of 

higher order sensitivity values although this involves additional solutions of the 

(6.56) 
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global FDTLM matrix equations. This can be particularly expensive when 

iterative methods are adopted for waveguide problems [6.12]. However, although 

this could be prohibitive, it is useful for approximating higher order statistical 

moments. This sub-section entails an iterative algorithm to compute higher order 

derivatives of random variables about nominal values. The effect of this on the 

approximation of statistical moments and the choice of random variable 

distribution are discussed. 

 

Higher order DST approximations to waveguide problems are based on the steps 

below: 

 

STEP 1: Differentiate both sides of (6.23) with respect to the εr random variable: 

 

2 2

2 2

2 2

2 2

2

2

i i
i

r r r r
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d d d d
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+ +
ε ε ε ε

= + +
ε ε ε ε

 

 

STEP 2: The equation (6.57) can be readily extended to the nth derivative: 

 

0 0

i in m m n m j t mn n

n m m n m m
m m
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∑ ∑  

 

STEP 3:  Pre-multiply both sides of (6.57) with the transpose of the eigenvector 

Ui: 
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STEP 4:  The equation (6.59) can also be readily extended to the nth derivative: 

 

(6.57) 

(6.59) 

(6.58) 
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0

0

in m mn
iT

n m m
m

r r

in m j t mn
iT

n m m
m

r r

n d S d V
U . C . .

m d d

n d e d V
U .

m d d

−

−
=

− ω∆

−
=

  
   ε ε   

  
=    ε ε   

∑

∑

 

 

It is important to note that when m = n, both sides of (6.60) would cancel each 

other out. 

 

STEP 5:  The second derivative of e jω∆t with respect to εr is: 
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STEP 6: In general, the nth derivative of e jω∆t : 
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From (6.62), it is possible to find the nth derivative of fr with respect to εr . This 

is useful in deriving higher order approximations and is shown in Appendix A.  

 

The impact of higher order derivatives is demonstrated here using the dielectric 

slab with rectangular cross section in Fig. 6-8A. The third order terms are not 

included for normal distributions as all odd moments are zero in this case. The 

fourth order DST approximation of the mean is seen in (A.8) in Appendix A. The 

percentage difference between the results obtained for the mean fundamental 

resonance and the MC method is shown in Fig. 6-21A. It is observed that the 

discrepancy between both methods as σεr2 increases is most apparent when the 

first order estimation is used. The second and fourth order methods significantly 

reduce this effect as more terms are considered from (A.8). There is no 

considerable difference between the second and fourth order results. Due to the 

computational expense required to go from second order derivatives to fourth 

order, it is recommended that for this scenario the second order technique should 

(6.61) 

(6.60) 

(6.62) 
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be sufficient. The fourth order DST approximation of standard deviation σfr can 

be found from (A.23). As with the values for the mean, the higher order terms 

have better agreement with the converged MC methods. Fig. 6-21B shows the 

percentage difference between DST and MC methods as the order increases. The 

third and fourth order contributions do not have any noticeable differences 

between the results. This would imply that the third order approximation should 

be more computationally cost effective.   
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Fig. 6-21A Impact of higher order derivatives on the DST approximation of the average 

fundamental resonance of the structure in Fig. 6-8A 



Chapter 6     Statistical Analysis in 2-D Problems  

 145 

-0.5

0.0

0.5

1.0

1.5

0.05 0.1 0.15 0.2 0.25

Standard deviation σεr2

%
D

if
fe

re
n

c
e

1st Order 2nd Order

3rd Order 4th Order

 

 
Fig. 6-21B Impact of higher order derivatives on the DST approximation of the standard 

deviation of fundamental resonance of the structure in Fig. 6-8A 

 

The higher order derivatives are also useful in producing better approximations 

of higher order moments such as the skew and kurtosis of a distribution as shown 

in Fig. 6-21C and Fig. 6-21D respectively. 

 

The DST approximation of the skew is found from (A.29) in Appendix A. From 

the results shown in Fig. 6-21C, the fourth order contributions provide the best 

agreement with the MC method. The same applies for the kurtosis, shown in Fig 

6-21D which is found from (A.33) in Appendix A.  
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Fig. 6-21C Impact of higher order derivatives on the DST approximation of the skew of 

fundamental resonance of the structure in Fig. 6-8A 
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Fig. 6-21D Impact of higher order derivatives on the DST approximation of the kurtosis of 

fundamental resonance of the structure in Fig. 6-8A 
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The impact of higher order derivatives could also be useful when dealing with 

exponential random variables. In general, this kind of distribution requires a 

higher order approximation than the normal distribution with identical statistical 

parameters. This is because the odd moments are non-zero for exponential 

distributions and would add more terms to the DST approximation. To obtain 

meaningful results for the structure in Fig. 6-8A with an exponential distribution 

of εr2, at least a fourth order approximation is required. The results for the 

percentage difference between the fourth order DST and MC methods are shown 

in Figs. 6-22A – C. The percentage difference between both methods for the 

same standard deviation increases as the order of the moment considered 

increases. The fourth DST approximation of the mean, standard deviation and 

skew can be found from (A.10), (A.24) and (A.28) respectively.  
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Fig. 6-22A Percentage difference between DST and MC approximations of the average 

fundamental resonance of the structure in Fig. 6-8A with exponential distribution of εr2 
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Fig. 6-22B Percentage difference between DST and MC approximations of the standard 

deviation of fundamental resonance of the structure in Fig. 6-8A with exponential 

distribution of εr2 
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Fig. 6-22C Percentage difference between DST and MC approximations of the skew of 

fundamental resonance of the structure in Fig. 6-8A with exponential distribution of εr2 

 

The next chapter deals with the application of DST to 3-D TLM problems. This 

is done simply to scale up the use of the method to realistic case studies.  
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Chapter 7  Statistical Analysis in 3-D Problems 

 

 

This chapter presents the application of the DST to three-dimensional (3-D) 

stochastic problems. In comparison with 1-D or 2-D problems, the 3-D approach 

provides the best depiction of realistic scenarios at the cost of substantially 

increased computational effort. As with the previous chapters, the TLM method 

is used to numerically assess field behaviour. The MC method is compared with 

the DST for 3-D problems.  

 

7.1    Three-Dimensional (3-D) TLM 

 

The 3-D TLM technique is used to scale up the size of a corresponding 2-D 

problem by introducing more ports into the computational domain. This 

increases the coverage of field behaviour in a defined electromagnetic problem. 

The 3-D TLM node is constructed by combining 2-D series and shunt nodes 

[7.1]. The most successful approach is the symmetrical condensed node [7.2] 

which is described in the next section. 

         

7.2       The Symmetrical Condensed Node 

                        

The 3-D symmetrical condensed node (SCN) is illustrated in Fig. 7-1. This is 

developed by using transmission lines without resorting to the conventional 

lumped and Thevenin equivalent circuits. Two directions of polarisation in the   

x-y, y-z or x-z planes are carried on two pairs of transmission lines joined 

together at a common node centre [7.2, 7.3].  
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Fig. 7-1 The symmetrical condensed node [7.4] 

 

For a SCN without stubs, all transmission lines have the same characteristic 

impedance ZTL. This SCN is used for modelling free space and has 12 ports 

which represent two orthogonal field polarisations in each of the x, y or z-

directions. The total voltage across any port p is denoted by Vp. The ports of a 

particular node (x, y, z) connect to those of its neighbours with the same 

polarisation. For example, port 1 of a particular node couples with port 12 of its 

neighbour while port 2 couples with port 9. This same pattern remains for all the 

ports with except those connected with boundaries. The incident link line 

voltages at a current time step k + 1 depend on those reflected from adjacent 

ports at a previous time step k. By inspection, the following expressions are 

obtained:  

 

( ) ( )1 1 12
1i r

k k
V x, y , z V x , y , z+ = −  (7.1a) 
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( ) ( )1 2 9
1i r

k k
V x, y , y V x , y , z+ = −  

( ) ( )1 3 11
1i r

k k
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( ) ( )1 4 8
1i r

k k
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( ) ( )1 5 7
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k k
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( ) ( )1 8 4
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( ) ( )1 9 2
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k k
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( ) ( )1 10 6
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k k
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( ) ( )1 11 3
1i r

k k
V x , y , z V x , y , z+ = +  

( ) ( )1 12 1
1i r

k k
V x, y , z V x , y , z+ = +  

 

For nodes connected to metallic boundaries, the associated ports p are terminated 

with a short circuit boundary and the incident voltage at the time step k + 1 is: 

 

( ) ( )1

i r

k p k p
V x, y , z V x , y , z+ = −  

 

For an incident pulse on a particular port to scatter to other ports on the same 

node, there must be a relationship between one or both field quantities associated 

with them. This scattering sub-matrix Sx,y,z at a node (x, y ,z) in free space is a 12 

x 12 matrix derived in [7.2, 7.3] to be: 

 

(7.1b) 

(7.1c) 

(7.1e) 

(7.1d) 

(7.1e) 

(7.1f) 

(7.1g) 

(7.1h) 

(7.1i) 

(7.1j) 

(7.1k) 

(7.1l) 

(7.2) 
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The scattering sub-matrix relates the vector of incident voltages with that of the 

reflected voltage of each node (x, y, z) of the problem space at a time step k: 

 

r i

k x ,y ,z kx ,y ,z x ,y ,z
V S . V=  

 

The law of energy conservation demands that the total incident power must equal 

the total reflected power [7.2]. As all the link lines have the same characteristic 

impedance, this relationship is given by: 

 

( ) ( )T T
r r i i

k k k kx ,y ,z x ,y ,z x ,y ,z x ,y ,z
V . V V . V=  

where the superscript T represents the transpose of a matrix.  

 

From the transpose of both sides of (7.4), the expression (kV 
r
x,y,z)

T 
=                  

(kV
 i
x,y,z)

T
.S

 T 
x,y,z is obtained. Substituting this into the right hand side of (7.5) 

gives: 

 

( ) ( )T T
Tr r i r

k k k kx ,y ,zx ,y ,z x ,y ,z x ,y ,z x ,y ,z
V . V V . S . V=  

 

Comparing the right hand sides of (7.5) and (7.6), the relationship between 

incident and reflected voltages becomes: 

(7.3) 

(7.4) 

(7.5) 

(7.6) 
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Ti r

k kx ,y ,zx ,y ,z x ,y ,z
V S . V=  

 

From (7.4) and (7.7) it is clear the scattering sub-matrix has a unitary property. 

This is because the transpose of S
  
x,y,z is equal to its inverse. 

 

The global scattering matrix is given by a sparse matrix with diagonal entries 

consisting of the scattering sub-matrices as shown in the last chapter. This 

provides the relationship between the incident and reflected voltages of all the 

nodes. This expression for this at a particular time step k is: 

 

r i

k k
V S . V=  

where kV
r
 and kV

i
 are global vectors that contain all the reflected and incident 

port voltages respectively at time step k. 

 

Assume a 3-D electromagnetic problem requires NX, NY, and NZ nodes in the x, 

y and z-directions respectively. A SCN with NP ports per node has a global 

scattering matrix of the order NX x NY x NZ x NP. Using a similar numbering 

scheme with the last chapter, the global scattering matrix is: 

 

0 0 0

1 0 0

0 1 0

1 1 1

0 0 000

0 0 0 0 00

0 0 0 0 0 0

0 0 0

0 0 00

, ,

NX , ,

, ,

NX ,NY ,NZ

S . .

. .

. .

S . . .
S

S .. . .. . .

.. . .. . . .

.. . .. . . .

S. . .

−

− − −

 
 
 
 
 
 

=  
 
 
 
 
  
 

 

 

As mentioned earlier, free space media requires a SCN with NP = 12. This does 

not apply when relative permittivity or permeability exceeds unity. This case is 

dealt with in the Appendix D. 

(7.8) 

(7.7) 

  (7.9) 
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   NX-1, NY-1 

0,0 
 NX-1, 0 

NY-1, 0 

7.3       Application of DST to 3-D Electromagnetic Problems 

 

The application of DST to the SCN stub model is quite straightforward. The 

frequency domain method simply entails using the exact formulation derived in 

Chapter 6. The global 2-D scattering and connection matrices are replaced with 

the corresponding 3-D SCN equivalent. The running of deterministic 3-D SCN 

stub models is quite demanding on computational resources. This constitutes a 

severe handicap in the use of MC methods to carry out multiple simulations for 

3-D stochastic problems. For this reason, only two examples are presented in this 

section. For each case study, the problem space is a waveguide discretised using 

24 nodes (NX) in the horizontal direction and 12 nodes (NY) in the vertical 

direction. The 3-D SCN mesh has been used successfully to model the 

rectangular cross-section of waveguides. The slice of the 3-D SCN is one cell 

thick. A schematic representation of this node across the cross-section of a 

rectangular waveguide is illustrated in Fig. 7-2. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7-2 2-D cross-section of dielectric waveguide in the x-y plane using a slice of the 3-D 

SCN  

 

Ports 2, 4, 8 and 9 of all the SCNs are terminated by short circuit boundaries.  

The same procedure applies to ports 7 and 12 of the SCN connected to the top, 1 

and 5 to the bottom, 3 and 6 to the left and 10 and 11 to the right waveguide 

walls. This yielded better agreement when compared with 2-D analytical results 

than the 2-D shunt node [7.6].   

z 

x 

y 

Short Circuit Guide Walls 
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For 3-D SCN model of a problem with NRV  random variables, the DST approach 

(described in section 6.2) requires NRV  + 1 simulations to obtain results which 

are significantly less than the number required by the MC method. Each 

simulation for both approaches takes about 8s on a PC with a AMD Athlon 

2.01GHz processor. The converged MC simulations take 100,000 repeated runs 

which is about 9 days on the same platform. 

 

The first case study is of three dielectric slabs with rectangular cross section in 

the structure illustrated in Fig. 7-3A. The top and bottom slabs are stochastic and 

uncorrelated with a normal distribution of mean relative permittivity of 2.01 and 

increasing standard deviation values σεr1 = σεr3 = σεr. The central medium is not a 

random variable with relative permittivity εr2 of 1.01. The results show that 

applying the DST to a 3-D SCN yields good results when compared with the MC 

technique. The changes in σεr affect the standard deviation of fundamental 

resonance σfr. The percentage difference between the DST and MC 

approximations of σfr is shown in Fig. 7-3B. As expected the percentage 

difference between both methods increases with the variability of the problem. 
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Fig. 7-3A Comparison between the DST and MC approximation methods for two dielectric 

slabs in a resonator 

0

0.125

0.25

0.375

0.5

0.05 0.1 0.15 0.2 0.25

Standard deviation σεr

|%
D

if
fe

re
n

c
e

| 
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 

Fig. 7-3B Percentage difference between the converged MC simulations and DST methods 

for waveguide in Fig. 7-3A 
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The second case study using the SCN is the structure in Fig. 7-4A. The problem 

involves modelling eight dielectric slabs that are piecewise homogenous with 

correlated mean relative permittivity values generated using (4.13). The 

correlation length   Lc = 0.125m and the root mean square of relative permittivity 

εrms = 0.05. The slabs have a combined mean relative permittivity of 2.01 and the 

same standard deviation. The 2-D model for this problem, shown in Fig. 6-11B, 

was examined in the last chapter. The results follow the same trend for both 

approaches. Fig. 7-4B shows the percentage difference between converged MC 

simulations and the DST approach. The 3-D SCN has better dispersion 

characteristics than the 2-D node [7.5] and thus offers better agreement between 

the DST and MC methods. For σεr = 0.25 in each slab, the percentage difference 

for the 2-D node in Fig. 6-11B is 1.103% while in the 3-D node this is reduced to 

0.606%.This proves that improving on model accuracy provides a superior 

platform for comparative analysis. However, the computational resources 

required to achieve this are a major deterrent, particularly for statistical analysis 

based on repeated runs. The DST approach proposes a cost effective way to deal 

with stochastic problems with high complexity in 3-D.  
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Fig. 7-4A Eight correlated dielectric slabs modelling a single dielectric block as eight layers 

with correlated relative permittivities 
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Fig. 7-4B Percentage difference between the converged MC simulations and DST methods 

for waveguide in Fig. 7-4A 

 

The DST for performing electromagnetic simulations in the presence of 

statistically defined parameters has been shown to be useful for 1-D, 2-D and 3-

D problems. The next chapter proposes an alternative means to carry out these 

statistical approximations.  
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Chapter 8  The Unscented Transform Method 

 

 

This chapter introduces an alternative method for estimation of statistical 

moments based on experimental design techniques. This method is referred to as 

the unscented transform method. This is particularly useful for functions which 

are calculable but not differentiable. The theory behind this technique is 

discussed here and applied to selected case studies in the next chapter.   

 

8.1 Theory of the Unscented Transform (UT) Method 

 

The Unscented Transform (UT) was developed in [8.1] as a practical estimator to 

the probability distribution function instead of the traditional MC method. The 

principle behind this approach is based on the moment design technique 

described in [8.2]. The first step to implementing UT is to identify the sources of 

variability in the system under consideration. A set of deterministically selected 

input (sigma) points are then transformed via a nonlinear mapping process. The 

number of sigma points depends on the order of approximation required. These 

points are much fewer in number when compared to the number required to 

attain convergence using the MC method. The mapped sigma points or design 

values are weighted in a commensurate manner to the probability distribution of 

stochastic input parameters. Therefore, it is possible to find the relationship 

between the moments of input parameters and the weights of the sigma points. 

Fig. 8-1 illustrates a continuous normal distribution and its discrete equivalent 

with 3 and 7 sigma points. 
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Fig. 8-1 Representation of the standard normal distribution and the discrete approximation 

 

The DST developed in the preceding chapters requires that the function of 

stochastic variables is differentiable and as such is intimately connected with 

sensitivity analysis. The UT method however has the advantage of working with 

an existing model without an explicit transfer function. This makes it tailor made 

for applications to black-box models. However, the number of sigma points 

required increases exponentially with the number of random variables to obtain 

the same order of accuracy as the DST approximation. This section takes a look 

at the definition of sigma points and associated weights as well as how they both 

relate to the number of random variables and the choice of input distribution 

types.  

 

8.1.1 Application of UT to Problems with One Random Variable 

 

Let x be a random variable with a mean x   and standard deviation 
x

σ . Then, a 

standardised random variable x̂  can be defined with zero mean and the same 

standard deviation as x. Therefore, x is given by the expression: 

 

ˆx x x= +  

 

The Taylor’s series approximation for a function of x is: 

(8.1) 
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( ) ( ) ( )
2 3

2 3

2 3

1 1

2 3x x x x x x

df d f d f
ˆ ˆ ˆ ˆf x f x x f x x x x ...

dx ! dx ! dx
| | |

= = =

    = + = + + + +     
     

 

 

The non-linear mapping process commences by attributing coefficients to 

stochastic variables to form a power series. This is attained by replacing the 

derivative terms in (8.2) with coefficients similar to the regression polynomial 

model adopted in [8.3]. Thus, (8.2) can be rewritten to give: 

 

( ) ( )2

0 1 2 0

n

n
ˆ ˆ ˆ ˆ ˆf x x a a x a x .... a x a g x+ = + + + + = +  

where 
1

n

n n x x

d f
a

n dx!
|

=

 
=  

 
and n is the order of the polynomial. Comparing 

(8.2) and (8.3), it is clear that a0 = ( )f x . 

 

The expected value of ( )f x is: 

 

( ) ( ) ( )0
ˆ ˆf E f x x a E g x f x g= + = + = +        

 

The variance of ( )f x  is: 

 

( )( ) ( )
22 2 2

f
ˆE f x f E g x g   σ = − = −  

 

 

The sigma points Si used in the UT calculations are defined at specific values and 

designated with weights wi. As these are discrete values of stochastic variables, 

the expected value of  f (x) in terms of these parameters is [8.1]: 

  

( ) ( )
1

0 0
1

m

i i
i

f w f x S w f x S
−

=
= + + +∑  

 

(8.2) 

(8.3) 

(8.4) 

(8.5) 

(8.6a) 
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where m is the number of sigma points considered and S0 = 0 for an odd number 

of sigma points and an even distribution. Substituting (8.3) into (8.6a) for this 

case and collecting like terms: 

 

( ) ( )
1 1

0
1 1

m m

i i i
i i

f w w f x w g S
− −

= =

 = + +  
∑ ∑  

 

Comparing (8.4) and (8.6b), the following relations are obtained: 

 

1

0
1

1
m

i
i

w w
−

=

 + =  
∑  

( )
1

1

m

i i
i

w g S g
−

=
=∑  

 

From (8.6c), the weights designated in UT are deterministic and must sum up to 

one. This implies that probability axioms are obeyed in UT. Similarly, the 

variance of  f (x) in terms of weights and sigma points is [8.1]: 

 

( ) ( )
12 22

0
1

m

f i i
i

w f x f w f x S f
−

=
σ = − + + −      ∑  

 

Substituting (8.4) into (8.7a): 

 

( )
1 22 2

0
1

m

f i i
i

w g w g S g
−

=
σ = + −  ∑  

 

Expanding (8.7b): 

 

( ) ( )
1 1

2 2 2

0
1 1

2
m m

f i i i i
i i

w w g w g S gg S
− −

= =

   σ = + + −   
∑ ∑  

 

Substituting (8.6c) and (8.6d) into (8.7c): 

 

( )
1

2 2 2

1

m

f i i
i

w g S g
−

=
 σ = − ∑  

 

(8.6b) 

(8.6c) 

(8.6d) 

(8.7a) 

(8.7b) 

(8.7c) 

(8.7d) 
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Comparing (8.5) and (8.7d) gives the relation:  

 

( ) ( )
1 22

1

m

i i
i

ˆE g x w g S
−

=
  =  ∑  

 

In general, the sigma points and weights in UT are related to the moments of a 

random variable x by: 

1

1

m
k k

i i
i

ˆE x w S
−

=
  =  ∑  

 

The first four moments of any distribution provide information on the mean, 

variance, skew and kurtosis. From these moments the following sets of equations 

are obtained: 

 

[ ]
1

1

0
m

i i
i

ˆE x w S
−

=
= =∑  

1
2 2 2

1

m

i i x
i

ˆE x w S
−

=
  = = σ  ∑  

1
3 3 3

1
1

m

i i x
i

ˆE x w S
−

=
  = = γ σ  ∑  

( )
1

4 4 4

2
1

3
m

i i x
i

ˆE x w S
−

=
  = = γ + σ  ∑  

where γ1 and γ2 are the skew and kurtosis of the input distribution. 

 

The sigma points and weights can be obtained by solving (8.10a) – (8.10d) using 

the Maple software. The first two terms for both parameters are [8.4]: 

 

( ) 2

1 1 2 1

1
4 3 3

2
x x

S  = γ − σ γ + − γ σ 
 

( ) 2

2 1 2 1

1
4 3 3

2
x x

S  = γ + σ γ + − γ σ 
 

( ) ( )
1

2 2

2 1 1 2 1

2

4 3 3 4 3 3
w

−
=

 γ + − γ γ − γ + − γ 

 

( ) ( )
2

2 2

2 1 1 2 1

2

4 3 3 4 3 3
w

−
=

 γ + − γ γ + γ + − γ 

 

(8.8) 

(8.9) 

   (8.10a) 

(8.10b) 

(8.10c) 

(8.10d) 

(8.11) 
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The weights and sigma points obtained are substituted into (8.6a) and (8.7a) to 

obtain the second order mean and standard deviation respectively. The more UT 

terms that are considered, the better the accuracy of the approximation.  

 

The knowledge of the weights and sigma points can also be extended to find the 

skew and kurtosis of the output distribution [8.7]: 

 

( )
1 3

1

3

m

i i
i

f

w f x S f
Skew

−

=
+ −  

=
σ

∑
 

( )
1 4

1

4
3

m

i i
i

f

w f x S f
Kurt

−

=
+ −  

= −
σ

∑
 

 

8.1.2 Application of UT to Problems with Two Random Variables 

 

For a problem with two random variables 
1
x̂  and

2
x̂ , the Taylor series in terms of 

regression coefficients is: 

 

( ) 2 2

1 2 1 1 2 2 3 1 2 4 1 5 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆg x , x a x a x a x x a x a x ...= + + + + +  

 

The product terms in (8.13) leads to a modification in (8.9). The relationship 

between sigma points and moments is: 

 

( )
1

1 2
1 2

1

m
k l k l

i i i
i

ˆ ˆE x x w S S
−

=
  =  ∑  

 

For a second order approximation, the combination of k and l leads to a system 

of fourteen equations: 

 

(8.12a) 

(8.12b) 

(8.13) 

(8.14) 
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( ) [ ] ( ) [ ]

( ) ( )

( ) ( )

( ) ( )

( )( ) [ ] ( )

1 1
1 2

1 2
1 1

1 12 21 2 2 2

1 2
1 1

1 13 31 3 2 3

1 2
1 1

1 14 41 4 2 4

1 2
1 1

1
1 2 1

1 2
1

m m

i i i i
i i

m m

i i i i
i i

m m

i i i i
i i

m m

i i i i
i i

m

i i i i i
i

ˆ ˆw S E x w S E x

ˆ ˆw S E x w S E x

ˆ ˆw S E x w S E x

ˆ ˆw S E x w S E x

ˆ ˆw S S E x x w S

− −

= =

− −

= =

− −

= =

− −

= =

−

=

= =

   = =   

   = =   

   = =   

=

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ( )

( ) ( ) ( ) ( )

( ) ( ) ( )( )

1 22 2

1 2
1

1 12 2 21 2 2 1 2 2 2

1 2 1 2
1 1

1 13 31 2 3 1 2 3

1 2 1 2
1 1

m

i
i

m m

i i i i i i
i i

m m

i i i i i i
i i

ˆ ˆS E x x

ˆ ˆ ˆ ˆw S S E x x w S S E x x

ˆ ˆ ˆ ˆw S S E x x w S S E x x

−

=

− −

= =

− −

= =

 =  

   = =   

   = =   

∑

∑ ∑

∑ ∑

 

 

Each sigma point has three variables (wi, 
1
Si and 

2
Si). This system has fourteen 

equations and therefore requires at least five sigma points to satisfy all the 

conditions in (8.15). This leads to the equations: 

 

[ ]1 1 1 1 1

1 1 2 2 3 3 4 4 5 5 1
ˆw S w S w S w S w S E x+ + + + =  

[ ]2 2 2 2 2

1 1 2 2 3 3 4 4 5 5 2
ˆw S w S w S w S w S E x+ + + + =  

1 2 1 2 1 2 1 2 1 2 2

1 1 2 2 3 3 4 4 5 5 1
ˆw S w S w S w S w S E x + + + + =    

2 2 2 2 2 2 2 2 2 2 2

1 1 2 2 3 3 4 4 5 5 2
ˆw S w S w S w S w S E x + + + + =    

1 3 1 3 1 3 1 3 1 3 3

1 1 2 2 3 3 4 4 5 5 1
ˆw S w S w S w S w S E x + + + + =    

2 3 2 3 2 3 2 3 2 3 3

1 1 2 2 3 3 4 4 5 5 2
ˆw S w S w S w S w S E x + + + + =    

1 4 1 4 1 4 2 4 1 4 4

1 1 2 2 3 3 4 4 5 5 1
ˆw S w S w S w S w S E x + + + + =    

2 4 2 4 2 4 2 4 2 4 4

1 1 2 2 3 3 4 4 5 5 2
ˆw S w S w S w S w S E x + + + + =    

[ ]1 2 1 2 1 2 1 2 1 2

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 1 2
ˆ ˆw S S w S S w S S w S S w S S E x x+ + + + =  

1 2 2 1 2 2 1 2 2 1 2 2 1 2 2

1 1 1 2 2 2 3 3 3 4 4 4 5 5 1 2
ˆ ˆw S S w S S w S S w S S w S S E x x + + + + =    

11 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 1 2
ˆ ˆw S S w S S w S S w S S w S S E x x + + + + =    

1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 2

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 1 2
ˆ ˆw S S w S S w S S w S S w S S E x x + + + + =    

1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 3

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 1 2
ˆ ˆw S S w S S w S S w S S w S S E x x + + + + =    

 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 1 2
ˆ ˆw S S w S S w S S w S S w S S E x x + + + + =    

 

(8.15) 

(8.16) 
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The general equation for an nth order approximation with NE equations and nRV 

random variables is [8.4]: 

 

( )
( )

2

1

1

1

n
RV

E
i

RV

n i !
N

i ! n !=

− +
=

−
∑  

 

Each sigma point adds nRV + 1 unknowns to each of the NE  equations. Therefore, 

the number of sigma points m is the next integer to the ratio between NE and    

nRV + 1: 

 

1

E

RV

N
m

n
=

+
 

 

From (8.17) and (8.18), it can be seen that NE increases rapidly with nRV.   

 

The sigma points for the random variables can be expressed in an orthogonal 

geometric plane. For two random variables 
1
x̂ and 

2
x̂ , a position vector (

1
S, 

2
S) is 

defined such that a point in this plane is:  

 

1 2

1 2x x
ˆ ˆP Sa Sa= +

�

 

where 
1x

â and 
2x

â  are unit vectors in the 
1
x̂ and 

2
x̂ directions respectively.  

 

The magnitude of the position vector (
1
S, 

2
S) is: 

 

1 2 2 2R S S= +  

 

The second moments about the origin can be found from: 

 

( ) ( )
1 1

2 2

1 1 1 1 2 1 2 2 2 1
1 1

2
m m

i i i i i x x i i x x i x x
i i

ˆ ˆ ˆ ˆ ˆ ˆw P .P w x a .a x x a .a x a .a
− −

= =
= + +∑ ∑

� �

 

 

For normal independent random variables with zero mean and unity standard 

deviation, (8.21) can be simplified to: 

(8.17) 

(8.18) 

(8.19) 

(8.21) 

(8.20) 
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( )
1 1

2 2 2 2

1 2
1 1 1

nm m RV

i i i i i
i i i

ˆ ˆ ˆw P .P w R E x E x E x
− −

= = =
     = = + =     ∑ ∑ ∑

� �

 

 

Now, R 
4
 can be found from (8.20):  

 

4 1 4 1 2 2 2 2 42R S S S S= + +  

 

The fourth moments about the origin from (8.23) are: 

 

 
1

4 4 2 2 4 4 2 2

1 1 2 2
1 1

2 2
n nm RV RV

i i i j
i i i j

ˆ ˆ ˆ ˆ ˆ ˆ ˆw R E x E x x E x E x E x x
−

= = ≠
        = + + = +         ∑ ∑ ∑  

 

The radius about the origin R is the the ratio of (8.24) and (8.22): 

 

1

2
4 2 2

1

2

1

2
n nRV RV

i i j
i i j

nRV

i
i

ˆ ˆ ˆE x E x x

R

ˆE x

= ≠

=

    +    
=  

    

∑ ∑

∑

 

 

For uniformly distributed weights, w can be found by substituting (8.25) into 

(8.22): 

2

2

1

4 2 2

1

2

nRV

i
i

n nRV RV

RV i i j
i i j

ˆE x

w

ˆ ˆ ˆn E x E x x

=

= ≠

     =
    +     

∑

∑ ∑

 

 

Now, as the random variables are normally distributed with unity standard 

deviation, then  E[
2

i
x̂ ] = E[

2

i
x̂ ] = 1 and E[

4

i
x̂ ] = 3. 

 

For two random variables, five sigma points are equidistant round a plane circle 

at an angle:  

 

1 2

1 12
0 5

5

p S S
cos sin p

R R

− −   π
α = = = ≤ <   

   
 

(8.22) 

(8.23) 

(8.24) 

(8.25) 

(8.26) 

(8.27) 
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As the standard deviation considered is unity, the sigma points can be scaled by 

multiplying 
1
S and 

2
S by 

1x
σ  and 

2x
σ  respectively.  

 

For normally distributed random variables the solution of (8.16) using (8.25), 

(8.26) and (8.27) is [8.4]: 

 

1 2

1 1 1 2

1 2

2 1 2 2

1 2

3 1 3 2

1 2

4 1 4 2

1 2

5 1

1
1 5

10

2 2
2 0 2 0

5 5

2 2
2 2

5 5

2 2
2 2 2 2

5 5

2 2
2 3 2 3

5 5

2
2 4

5

i

x x

x x

x x

x x

x

w i

S cos S sin

S cos S sin

S cos S sin

S cos S sin

S cos S

= ≤ ≤

π π   = σ = σ   
   

π π   = σ = σ   
   

π π   = σ = σ   
   

π π   = σ = σ   
   

π = σ 
 

5 2

2
2 4

5
x

sin
π = σ 

 

 

where 
1x

σ  and 
2x

σ  are the standard deviation of random variables
1
x̂  and 

2
x̂  

respectively.  

 

The effects of correlation between two normally distributed random variables 

can be taken into account by using the covariance matrix transformation [8.8].  

 

1 1

1 1

2 2

2 2

1 1

2 2

1 1

2 2

x x

x x

S ' S

S ' S

    + ρ − ρ
    σ σ    =
    + ρ − ρ

−    σ σ    

 

where 
1
S' and 

2
S' are the sigma points if  

1
x̂  and 

2
x̂ are statistically dependent 

with a correlation coefficient of ρ.  

 

The solution of (8.16) for the scenario in (8.29) becomes: 

 

 

(8.28) 

(8.29) 
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1 2 1 2

1 2 1 2

1 2

1 1 1 1 2 2

1 2
2 1 1 2 2 2

1

1
1 5

10

2 2 2 2
2 0 0 2 0 0

5 5 5 5

2 2 2 2
2 2

5 5 5 5

i

x x x x

x x x x

w i

S T cos T sin S T cos T sin

S T cos T sin S T cos T sin

= ≤ ≤

π π π π          = σ + σ = σ − σ                    

π π π π          = σ + σ = σ − σ                    

1 2 1 2

1 2 1 2

1

2

3 1 1 3 2 2

1 2

4 1 1 4 2 2

1
5

2 2 2 2
2 2 2 2 2 2

5 5 5 5

2 2 2 2
2 3 3 2 3 3

5 5 5 5

2

x x x x

x x x x

S T cos T sin S T cos T sin

S T cos T sin S T cos T sin

S T co

π π π π          = σ + σ = σ − σ                    

π π π π          = σ + σ = σ − σ                    

=
2 1 2

2
51 1 2 2

2 2 2 2
4 4 2 4 4

5 5 5 5
x x x x

s T sin S T cos T sin
π π π π          σ + σ = σ − σ                    

 

where 
1

1

2
T

+ ρ
=  and 

2

1

2
T

− ρ
=  

 

8.1.3 Application of UT to Problems Using Non-Uniform Weights  

 

For non-uniform weights, a geometric approach can also be deployed to obtain 

sigma points. The simplest manner to achieve this is to define random variables 

in a Euclidean space. nRV axes are defined at the geometric centre of a nRV -

dimensional unit cube. Fig. 8-2 shows that the total number of sigma points (red 

and black dots) using this method is 2
 nRV

 +  2 nRV .  

 

                   2 Random variables                                      3 Random variables 

 

 

 

            

 

 

 

Fig. 8-2 Shapes (not to scale) illustrating the number of sigma points allocated for a 

problem with two and three random variables. 

 

 

(8.30) 
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The 2
 nRV 

sigma points that correspond to the black dots in Fig. 8-2 have co-

ordinates given by the expression [8.4]: 

 

( )1 2

2
1 2

nRV RV
j nRV

RV

n
P i ,i ,....i j

n

+
= ≤ <

�

 

where 
1 2

1
nRV

i i ... i= = = = ±  

 

The weights for the sigma points in (8.31a) are [8.4]: 

 

2

1
1 2

2 2

nRV RV
j nRV

RV

n
w j

n

 
= ≤ ≤ + 

 

 

The 2 nRV  points represented by the red dots have co-ordinates given by the 

expression [8.4]: 

 

          ( )1 2
2 2 1 2 2

n nRV RV
j RV n RV

RV
P n i ,i ,....i j n= + + ≤ ≤ +
�

 

where 
1 2

0
n
RV

i i ... i= = = =  or 1±  

 

The weights for the sigma points in (8.31b) are [8.4]: 

 

2

1
2 1 2 2

2

nnRV RV
j RV

rv

w j n
n

 
= + ≤ < + + 

 

 

8.1.4 Higher Order Approximations Using UT 

 

The accuracy of the UT method can be improved by taking more terms into 

account from the Taylor series approximation in (8.3). The polynomial ( )ˆg x for 

a fourth order approximation is: 

 

( ) 2 3 4

1 2 3 4
ˆ ˆ ˆ ˆ ˆg x a x a x a x a x= + + +  

(8.31b) 

(8.32b) 

(8.32a) 

(8.31a) 

(8.33) 
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From (8.17), a fourth order approximation requires eight equations required to 

find the weights and sigma points. The moments of a normally distributed 

random variable can be found in [8.9]. These are substituted in (8.9) to give: 

 

[ ]
1

1

0
m

i i
i

ˆE x w S
−

=
= =∑  

1
2 2 2

1

m

i i x
i

ˆE x w S
−

=
  = = σ  ∑  

1
3 3

1

0
m

i i
i

ˆE x w S
−

=
  = =  ∑  

1
4 4 4

1

3
m

i i x
i

ˆE x w S
−

=
  = = σ  ∑  

1
5 5

1

0
m

i i
i

ˆE x w S
−

=
  = =  ∑  

1
6 6 6

1

15
m

i i x
i

ˆE x w S
−

=
  = = σ  ∑  

1
7 7

1

0
m

i i
i

ˆE x w S
−

=
  = =  ∑  

1
8 8 8

1

105
m

i i x
i

ˆE x w S
−

=
  = = σ  ∑  

 

There are four weights and four sigma points required to solve (8.34). These 

equations could not be solved directly using MAPLE software. Therefore, it is 

important to use an alternative means to simplify the calculation of the UT 

parameters. The method proposed here is to find a relationship between the UT 

technique and the integral calculation of moment.  

 

The Gaussian Quadrature (GQ) method [8.10, 8.11] approximates the integral by 

selecting the optimal abscissas at which to evaluate the function. For a function   

f (x), this is given by: 

 

( ) ( ) ( ) ( )
1

1

m

i i
i

f x W x dx w f S E f x
+∞ −

=−∞

≅ =   ∑∫  

where W(x) is the weighting function representing the continuous PDF,  wi are 

the weights and Si are the optimal abscissas which correspond to the sigma points 

in UT.  

(8.34) 

(8.35) 
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Orthogonal polynomials pn(x) are a class of polynomials defined in a closed 

interval [x1, x2] and are related to the weighting function by the equation [8.10]: 

 

( ) ( ) ( )
2

1

0 0 1 2
x

a b
x

W x p x p x dx a b ; a ,b , , ,..= ≠ =∫  

 

Using the method, the zeros of pn (x) of degree n are the optimal abscissas and 

correspond to the sigma points. The number of sigma points is equal to n.  pn (x) 

is defined by the Rodrigues’ formula [8.10]: 

 

( )
( )

( ) ( )1
n

n

n n

n

d
p x W x Q x

a W x dx
 =  

 

where an is a constant and Q (x) is a polynomial independent of n. Both these 

terms are documented in [8.10] and change according to different types of W (x).  

 

pn (x) is called a Hermite polynomial if W (x) is a Gaussian distribution and a 

Laguerre polynomial if it is an exponential distribution. The weights for any 

distribution are calculated from pn (x) using the relation [8.11]: 

 

( ) ( )
2

1

1 x
n

i
xn i

x Si

p x
w W x dx

dp x S

dx =

=
−

∫
 

 

The generating function for a Hermite polynomial Hn (x) from (8.37) is [8.10]: 

  

( ) ( )
2 2

2 21
nx x

n

n n

d
H x e e

dx

− 
= −  

  

 

 

The recurrence relation for Hn (x) from (8.39a) is [8.10]: 

 

( ) ( ) ( )1 1n n n
H x xH x nH x+ −= −  

 

(8.36) 

(8.38) 

(8.37) 

(8.39a) 

(8.39b) 
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These fourth order UT parameters for (8.34) are found using the Hermite 

polynomial at n = 5 within the range (- ∞ ,+∞ ): 

 

0
0S =  

1
5 10

x
S = − σ     

2
5 10

x
S = − − σ  

3
5 10

x
S = + σ    

4
5 10

x
S = − + σ  

( ) ( )
0 2 2

120

5 10 5 10
w =

− + +

 

 

( )
1 2

3

4 5 10
w =

−

  

( )
2 2

3

4 5 10
w =

−

 

 

( )
3 2

3

4 5 10
w =

+

  

( )
4 2

3

4 5 10
w =

+

 

 

The generating function for a Laguerre polynomial Ln (x) from (8.37) is [8.10]: 

  

( )
x n

n x

n n

e d
L x x e

n ! dx

− =    

 

The recurrence relation for Ln (x) from (8.39a) is [8.10]: 

 

( ) ( ) ( ) ( ) ( )1 1
1 2 1

n n n
n L x n x L x nL x+ −+ = + − −  

 

The fourth order UT parameters for an exponential distribution with standard 

deviation 
x

σ  are found from Laguerre polynomial at n = 5 at within the range 

(0,+∞ ): 

(8.41a) 

(8.41b) 

(8.40) 
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0
3.596425771

x
S = σ  

1
0.2635603197

x
S = σ     

2
1.413403059 

x
S = σ  

3
 12.64080084

x
S = σ    

4
7.085810006

x
S = σ  

-1

0
0.7594244976 10w = ×  

 
1

0.5217556100w =   
2

 0.3986668121w =  

 -2

3
 0.3611758646 10w = ×   -4

4
 0.2336997028 10w = ×  

 

The higher the order of an approximation, the more the weights and sigma points 

needed to satisfy the moment equations. There is a trade-off between 

computational demands and degree of accuracy.  

 

8.1.5 Approximating the PDF of Random Variable Functions  

 

The PDF of a function y can be found from that of the independent random 

variable x. Given that y has n roots, its PDF is defined by [8.12]: 

 

( ) ( ) ( ) ( )1 2

1 2

x x x n

y

x x x x x xn

f x f x f x
f y ....

dy dy dy

dx dx dx= = =

= + + +
 

where fx (x) and fy (y) are the PDFs of x and y respectively.x1, x2,… xn are the 

roots of y which is a function of x.  

 

For a second order UT approximation, the polynomial in (8.3) can be written as: 

 

2

0 1 2
0y a a x a x− + + =  

 

The derivative of y with respect x is: 

 

1 2
2

dy
a a x

dx
= +  

 

The roots of (8.37) are: 

(8.43) 

(8.44) 

(8.45) 

(8.42) 
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( )2

1 1 2 0

2

4

2

a a a y a
x

a

− ± − −
=  

 

From (8.39), dy/dx is: 

 

( )2

1 2 0
4

dy
a a y a

dx
= ± − −  

 

Assuming x is a normally distributed random variable, then fy (y) from (8.36) is: 

 

( )

( ) ( )

( )

2 2
2 24 40 01 11 11 2 1 2

2 22 22 22 2

2

1 2 0

1

2 4

a a a y a a a a y a

a a
x x

y

x

x x

e e

f y
a a y a

   
− + − − − − − −   

− − − −   
σ σ   

   

 
 
 +
 
  =

σ π − −
 

 

where x  is the mean and 
x

σ  is the standard deviation of x.  

 

From (8.11a) and (8.11b) the sigma points are S1 = 3
x

σ and S2 = – 3
x

σ  . 

The weights are calculated from (8.6c), (8.11c) and (8.11d) are: w0 = 2/3, w1 = 

w2 = 1/6. Therefore, the mean of y can be expressed in terms of the polynomial 

coefficients. This is compared with (8.6b) to give: 

 

( ) ( ) ( )0 2

2 1 1
3 3

3 6 6
x x x

y a a y x y x y x= + σ = + − σ + + σ  

 

Similarly, the variance of y in terms of the polynomial coefficients is compared 

with (8.7b):  

2 2 4

1 2
2

y x x
a aσ = σ + σ  

( ) ( ) ( )
2 222 1 1

3 3
3 6 6

x x
y x y y x y y x y   = − + − σ − + + σ −      

 

 

(8.46) 

(8.47) 

(8.48) 

(8.49a) 

(8.42b) 
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From (8.2) and (8.3), a0 = ( )y x . The polynomial coefficients a1 and a2 can be 

found from solving (8.42a) and (8.42b) to give: 

 

( ) ( )1

1
3 3

2 3
x x

a y x y x = + σ − − σ 
 

( ) ( ) ( )2

1
3 2 3

6
x x

a y x y x y x = + σ − + − σ 
 

 

(8.43a) and (8.43b) show that the polynomial coefficients can be calculated from 

the weights and sigma points. The polynomial coefficients can now be used to 

approximate the distribution of y using (8.41). Higher order UT schemes follow a 

similar procedure by adopting pertinent root finding procedures. This can be 

obtained using in-built functions in MATLAB. 

 

The next chapter deals with the application of the UT theory to stochastic 

electromagnetic problems. This is done to establish the method as a viable 

alternative to MC techniques. The potential drawback comes with the rapid 

increase in the number of design points required as the random variables and the 

degree of accuracy increases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(8.43a) 

(8.43b) 
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Chapter 9  Application of UT to Stochastic Problems 

 

 

This chapter presents the application of the UT theory to stochastic 

electromagnetic problems. The case studies here are analysed in the time and 

frequency domains. The approximation of moments using UT is compared with 

the benchmark MC method. 

 

9.1 Application of UT to Time Domain Problems 

 

This section presents the measurement of uncertainty in electromagnetic 

problems modelled the time domain. The elegance of the UT approach is that it 

does not require any modifications to the preferred modelling algorithm. A 

deterministic set of sigma points and weights constitute the UT parameters to be 

identified. These depend on the number of random variables and the order of 

approximations to be attained. The overall number of simulations needed is 

much smaller than required when using the classical MC method. The UT 

parameters are then used to approximate the statistical moments of interest. 

 

In the time domain, the interaction between neighbouring nodes in a discretised 

problem space can be characterised using the global matrix equation in (6.19). 

This can be rewritten as: 

 

1i ik k
V C .S . V−=  

where C and S are the global connect and scatter matrices respectively. kVi is 

global vector that contains incident port voltages at time step k.  

 

It is possible to further simplify (9.1). This involves the elimination of the 

dependency on the previous time step: 

 

(9.1) 
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0

k

i ik
V C .S . V=     

 

For time domain problems with stochastic parameters, it is clear that a finite 

series approximation of (9.2) would deteriorate with increasing number of time 

steps. Therefore, the accuracy of the UT method will be better for a smaller 

number of time steps. 

 

The case study shown in Fig. 9-1A comprises of a TEM line modelled using the 

time domain MEPHISTO TLM solver in [9.1]. The line has a spatial 

discretisation ∆l of 1 mm and is terminated at either end with absorbing 

boundaries. The dimensions of the guide are 30 X 1 mm. Material 1 is 

deterministic with relative permittivity of 1. Material 2 is represented by a 

random variable with mean relative permittivity of 8 varying normally with a 

variance of 0.4. The geometry of the dielectric materials and their respective 

positions are also shown. Both dielectrics are 10 mm apart and are separated 

from either end of the guide by 5 mm. Input and output points in the TEM guide 

are defined for the excitation and observation of fields respectively. These are 

shown in Fig. 9-1B. A unit impulse function is applied at the input point and the 

voltage is sampled at the observation point.  

 

 

 

 

 

Fig. 9-1A TEM line with two stochastic dielectric materials 

 

 

 

 

 

 

 

Fig. 9-1B TEM waveguide with input and output points 

(9.2) 
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The second order UT method uses the parameters defined in (8.11) while the 

fourth order approach uses (8.35). The second order and fourth methods require 

three and five sigma points respectively. These second and fourth UT methods 

are applied to the observed voltage and are compared with 40,000 MC 

simulations. Each simulation for both methods takes 0.72s on a PC with a AMD 

Athlon 2.01GHz processor. The mean voltage at the output point for the first 120 

time steps is shown in Fig. 9-2A. 
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 Fig. 9-2A Comparison between the MC and UT approximations of mean voltage for TEM 

guide  

 

The agreement between the methods is found to deteriorate with increasing time 

steps k. This is not clear from Fig. 9-2A. To illustrate this effect, the mean 

voltage is shown from between time steps k = 60 and k = 120 in Fig. 9-2B. The 

second order UT approach begins to deviate from the MC method after k = 85. 

The fourth order UT deviates after k = 115. Therefore, the higher the order of the 

UT method the longer it is in agreement with the MC simulations in the time 

domain. 
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 Fig. 9-2B Comparison between the MC and UT approximations of mean voltage for TEM 

guide between k = 60 and k = 120 

 

The standard deviation of voltage at the output point is also approximated using 

both the UT and MC methods. The results are shown after the first 120 time 

steps in Fig. 9-3A. The agreement between methods here also deteriorates with 

increasing time steps. However, as the standard deviation is a higher order 

moment than the mean, it is expected that disagreement occurs in a shorter 

period. The standard deviation 
V

σ  is shown from between the k = 60 and            

k = 120 in Fig. 9-2B. The second order UT approach begins to deviate from the 

MC method after k = 70 and the fourth order UT deviates after k = 75. These 

results pose a challenge on how to increase the order of UT approximations with 

time steps. This is not dealt with here but is a challenging problem for future 

research.  
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Fig. 9-3A Comparison between the MC and UT approximations of standard deviation of 
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The electric field at the output point is the ratio of the observed voltage to the 

cell size. This quantity randomly varies with stochastic relative permittivity. The 

probability density function (PDF) of electric field is approximated using the UT 

approach described in sub-section 8.1.3. The second and seventh order UT 

approximations are compared with the PDF obtained using the MC method at     

k = 10. The results from these comparisons are shown in Fig. 9-4. The agreement 

between methods further endorses the UT as a good alternative to time 

consuming MC method.  
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 Fig. 9-4 Comparison between the MC and UT approximations of the probability 

distribution function at k = 10 

 

The impact of increased time steps on the PDF of the electric field is now 

considered. From the results obtained when k = 30 in Fig. 9-5, it is clear that the 

moments of the PDF change. The discrepancy between the UT and MC methods 

becomes more pronounced. This is consistent with the behaviour observed 

before where the UT approximation degrades with increasing time steps.  
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Fig. 9-5 Comparison between the MC and UT approximations of the probability 

distribution function at k = 30 

 

9.2 Application of UT to Frequency Domain Problems 

 

The problem defined in Fig. 9-1A is now assessed over a range of frequencies. 

The maximum frequency of the problem is inversely proportional to two times 

the total number of time steps. This is consistent with the Nyquist criterion for 

sampling. The scattering parameter S11 describes the reflection coefficient at the 

input point. This is given by the expression: 

 

( ) ( )
( )

1 2

11

1

FFT V FFT V
S

FFT V

−
=  

where FFT (V1) is the frequency response in the TEM line with material 2 absent 

and FFT (V2) the frequency response with material 2 present.  

(9.3) 
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S11 is calculated at certain frequencies f for the UT sigma points and 40,000 MC 

simulations of random relative permittivity. The maximum frequency for this 

problem is fmax. The mean of S11 magnitude and phase is computed from these 

results and is presented in Fig. 9-6A and Fig. 9-6B respectively.  

 

There is good agreement between the UT and MC approximation methods. The 

fourth order UT method gives better results throughout the range displayed than 

the second order method. The second order UT mean of S11 magnitude begins to 

deviate from the MC method when the normalised frequency ratio f/fmax is 0.096. 

The same approximation of the mean of S11 phase shows a similar trend at the 

same frequency ratio. The fourth order approximation of the mean of S11 

magnitude is good throughout the range of frequencies considered. The same 

however cannot be said of the mean of S11 phase which deviates when the 

normalised frequency ratio is 0.096.  

 

The approximation of standard deviation of S11 magnitude and phase is 

considered in Fig. 9-7A and Fig. 9-7B respectively. The discrepancies between 

UT and MC results now occur at an earlier stage than that of the mean. For the 

case of S11 magnitude this occurs at the normalised frequencies of 0.05 and 0.07 

for the second and fourth order UT results respectively. The S11 phase shows a 

noticeable deviation from the MC results at normalised frequencies of 0.044 and 

0.088 for the second and fourth order UT results respectively. 
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 Fig. 9-6A Comparison between the MC and UT approximations of the mean S11 Magnitude  
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The PDF of the electric field at the output point in Fig. 9-1A can be 

approximated at a specific frequency from sub-section 8.1.5. The example 

illustrated in Fig. 9-8 is the electric field PDF when the input frequency is 8.48 

GHz. The second and seventh order UT approximations show good agreement 

with the MC method.  
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Fig. 9-8 Comparison between the MC and UT approximations of the probability 

distribution function at a frequency of 8.48GHz 

 

The next problem involves the coupling of two wire monopoles in a metallic box 

as shown in Fig. 9-9. This detailed description of the theoretical coupling model 

between the monopoles and waveguide in the frequency domain is found in    

[9.2 – 9.3]. Uncertainty in the length and position of one wire monopole affects 

the coupling with the other in the box. The parameter of interest S21 is calculated 

in [9.2]. This is the ratio of the voltage at the receiving monopole to the voltage 

of the transmitting monopole in the frequency domain. The random variables 

considered for this problem are normal. These include the length of the receiving 

wire and its position in x-z plane. The MC method runs for a total of 10,000 

simulations which lasts about 6 hours on a PC with a AMD Athlon 2.01GHz 

processor. Using the approach described in sub-section 8.1.3, a total of 15 sigma 

points are required for a second order UT approximation.  
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The box used has dimensions used 36 x 12 x 42 cm. Both wire monopoles are 

perpendicular to the x – z plane. The variations in wire lengths are not long 

enough to make a significant difference to the box resonances. The transmitting 

wire has a length of 3.5cm and is placed at co-ordinates x =18 cm and z = 6 cm. 

The receiving wire has a mean length of 0.5 cm with uncertainty in x and z 

positions. The mean position of the recieving wire is at x = 18 cm, z = 36 cm. 

The position of both monopoles at the centre box in the x-y plane implies only 

odd harmonics are observed. The first and third modes are considered for this 

problem. The variance of all the random variables is fixed at 0.28868 cm.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 9-9 Coupling between two wire monopoles in a metallic enclosure 

 

The sigma points and weights are found from (8.31a) – (8.32b). These are 

combined to find the UT approximation of the average S21 coupling between the 

fixed and non-deterministic monopoles using (8.6b). Fig. 9-10A shows the 

comparison between the MC and UT approximations for the average S21 

coupling over a range of frequencies. The results show good agreement between 

the two methods. The UT approximation of the standard deviation of S21 

coupling is calculated using (8.7a). The results for this compared with the MC 

method and presented in Fig. 9-10B. As the frequency increases, the discrepancy 

between the methods becomes more evident. The skew and kurtosis of the S21 

coupling can be approximated with UT using (8.12a) and (8.12b) respectively. 

The results for the skew using UT are compared with MC in Fig. 9-10C. In 

general, the skew is positive except at the frequencies corresponding to the box 

resonance. Both methods appear to be in close proximity over the displayed 
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frequency range. The same applies to the kurtosis using both methods as shown 

in Fig. 9-9D. These results support the use of UT as a viable alternative to the 

conventional MC method in statistical EMC analyses [9.4].  
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Fig. 9-10A Comparison between the MC and UT approximations of the mean S21 coupling 

between monopoles 
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Fig. 9-10B Comparison between the MC and UT approximations of the standard deviation 

of S21 coupling between monopoles 
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Fig. 9-10C Comparison between the MC and UT approximations of the skew of S21 

coupling between monopoles. 
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Fig. 9-10D Comparison between the MC and UT approximations of the kurtosis of S21 

coupling between monopoles 

 

The correlation between the logarithm of voltage at the receiving monopole and 

each of the input random variables in the x, y and z-directions for MC and UT 



Chapter 9     Application of UT to Stochastic Problems 

 194 

results are shown in Fig. 9-10E and Fig. 9-10F respectively. There is a close 

relationship between the methods across the displayed frequency range. 
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Fig. 9-10E MC results of correlation between x, y and z-directions and logarithm of 

measured voltage at receiving monopole 
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Fig. 9-10F UT results of correlation between x, y and z-directions and logarithm of 

measured voltage at receiving monopole 
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The results show that zero correlation occurs in the x-direction which means that 

variation in this direction is insignificant on measured voltage. This is because 

the monopoles are in the y-z plane. This also explains why there is greater 

correlation in the y and z-directions. Maximum correlation between y and            

z-directions and measured voltage occurs at resonance points. 

 

The effect of correlation between two random variables is considered next. The 

standard deviation of the fundamental resonant frequency 
fr

σ  of a waveguide is 

assessed in the presence of statistically dependent media as shown in Fig. 9-11A. 

The two stochastic materials with relative permittivities εr1 and ε r3 are separated 

by a deterministic medium with relative permittivity εr1. Fig. 9-11A illustrates 

the relationship between 
fr

σ  and the correlation coefficient ρ13. Fig. 9-11B 

shows the percentage difference between 100,000 converged MC simulations 

and the second order UT approach as the correlation coefficient between the two 

discrete dielectric materials in a rectangular waveguide is varied. The UT method 

for this case study uses the set of equations derived in (8.30) to estimate the 

variance in (8.7d).  Fig. 9-11B shows the percentage difference between 

converged MC simulations and the UT approach as the correlation coefficient 

between the two discrete dielectric materials is varied. From the results, the 

percentage difference is minimum when both variables are correlated, that is 

when ρ13 = 1, and remains acceptably low across the complete range of 

correlations. The second order UT approximation of standard deviation performs 

much better than the first order DST method used for the same case study in 

chapter 6. This is another configuration in which the higher the order of an 

approximation the more accurate the results. 
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Fig. 9-11B Percentage difference between the converged MC simulations and UT methods 

for waveguide in Fig. 9-11A 

 

The final case study involves finding the kurtosis of an exponentially distributed 

relative permittivity of a random variable using UT. The case study is a 
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stochastic floating dielectric in a waveguide as shown in Fig. 9-12A. This result 

could not be obtained using DST as explained in Appendix A. The weights and 

sigma points for the fourth order UT approximation are provided in (8.42). The 

solutions of the weights and sigma points are used to calculate kurtosis from 

(8.12b). 

  

The central slab in Fig. 9-11A is stochastic with an exponential distribution of 

mean relative permittivity of 2.01 and increasing standard deviation values. The 

surrounding medium is not a random variable and has relative permittivity εr1 of 

1.01. The fourth order UT kurtosis approximation is compared with that from 

100,000 MC simulations. The results are shown in Fig. 9-12A. The percentage 

difference between both methods is shown in Fig. 9-12B. Again, the higher the 

standard deviation of relative permittivity the greater the discrepancy between 

the two methods. 

0

2

4

6

8

10

12

0.05 0.1 0.15 0.2 0.25

Standard deviation σεr2

 K
u

rt
o

s
is

 o
f 
fr

e
q

u
e

n
c
y

Monte Carlo

UT

 1/6m

  1/6m

 1/6m

εr1 = 1.01

εr2 = 2.01 ,σεr2 = 0.05 - 0.25

      1/4m       1/4m 1/2m

Fig. 9-12A Comparison between the MC and UT approximation of the kurtosis of 

fundamental resonance for a floating dielectric slab in a waveguide 

  

 



Chapter 9     Application of UT to Stochastic Problems 

 198 

0

5

10

15

20

25

30

0.05 0.1 0.15 0.2 0.25

Standard deviation σεr2

|%
D

if
fe

re
n

c
e

|

 

Fig. 9-12B Percentage difference between the converged MC simulations and UT methods 

for waveguide in Fig. 9-12A 

 

In the next chapter, the conclusions to this thesis are presented. The findings of 

the research are summarised and suggestions are made for further work.  
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Chapter 10 Conclusions 

 

 

The main contribution of this research work is to formulate computationally 

efficient methods for approximating statistical moments in electromagnetic 

problems. This chapter presents a summary of the findings in this thesis and 

some general conclusions on the development and use of the proposed methods. 

Recommendations for future research are also briefly discussed. 

 

10.1 Development of the Direct Solution Technique (DST) 

 

The DST approach for performing electromagnetic simulations in the presence of 

statistically defined input parameters is introduced in this thesis. Based upon 

Taylor’s series approximations, it was possible to explicitly provide rapid 

approximate solutions that obviate the need for extremely slowly converging and 

time consuming MC analysis of multiple simulations. The scope of the DST has 

been explored and initial observations made upon both the degree of problem 

complexity and the extent of stochastic variation permitted and the accuracy 

compared with exhaustive multiple simulations.  

 

Several computational modelling tools are available in electromagnetic research 

are based on the use of matrix algebra. The TLM was the preferred choice in this 

thesis due to its widespread use in the laboratory and excellent stability. The 

challenges of using the MC method in 1-D electromagnetic problems in the time 

domain were explored in chapter 4. For problems with explicit differentiable 

parameters, the statistical moments can be approximated from the Taylor series. 

However, for instances where this is not possible, numerical solving techniques 

are used. This was the motivation for developing an approximation technique 

that was compatible with numerical electromagnetic models.  
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The main advantage of using DST for stochastic problems in TLM is that it was 

formulated to work on matrices. This was demonstrated in chapter 5. A simple 

test circuit that represents transmission line models with stochastic impedances 

was used. The aim was to use DST to approximate the statistical moments of 

mesh currents. The first and second derivatives of current are found to be related 

to the voltage vector, impedance and admittance matrices. The accuracy of the 

DST method was shown to improve when higher order current derivatives and 

impedance moments were considered. The DST method is shown to work on 

problems with different probability distribution functions. The normal and 

exponential distribution types were used in this thesis to emphasise this point. 

The odd moments of a normal distribution made no contributions to improved 

accuracy of the mean. The higher order moments included in DST 

approximations gave better agreement with the MC method. This effect was 

more pronounced for stochastic variables with exponential distribution than for 

normal case. With the foundation of DST now in place, the onus was to apply the 

method to more challenging problems. 

 

10.2 Application of DST to Stochastic Electromagnetic 

Problems 

 

Following the success of the DST approach on a matrix algebra problem, it was 

then applied to case studies modelled in 2-D and 3-D frequency domain TLM. 

Both methods involved the use of connect and scatter matrices combined to 

reflect the physical scenario being studied. The type of problem defined 

determines whether either or both these matrices are differentiated to find 

sensitivity parameters of interest. Once this is established, the relevant statistical 

moments can be calculated.  

 

In chapter 6, the DST was applied to 2-D waveguides with stochastic dielectrics. 

As the fundamental resonant frequency fr was the parameter being measured, the 

DST involved the approximation of its statistical moments. The validity of the 

method for approximating the standard deviation of fr was verified with an 

analytical approximation approach. The first order second moment 
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approximation fr showed favourable comparison with MC method based on 

repeated use of the deterministic TLM solvers. The percentage difference 

between both methods was consistently shown to increase with standard 

deviation of random variables. A wide range of other waveguide problems was 

studied to further illustrate the efficacy of the DST. These included case studies 

with material correlation effects and those with irregular and movable 

boundaries. The general conclusion is that the DST does not require higher order 

moments for stochastic input variables with small variability.  

 

The effect of statistical dependency between two dielectrics with stochastic 

relative permittivities on fr was investigated. The standard deviation of 

percentage difference between DST and MC methods was highest between a 

correlation coefficient of zero and one.  

 

The impact of higher order derivatives on approximation of statistical moments 

was more evident for a dielectric with an exponential distribution of relative 

permittivity than normal distribution.  

  

The DST was also applied to a 2-D problem with absorbing boundaries. The 

configuration was a set of four wires with random radii in a rectangular 

enclosure with absorbing boundaries. The TLM wire node was used to devise the 

numerical model from which shielding effectiveness of the wire screen was 

calculated. The mean and standard deviation of the shielding effectiveness 

approximated from the DST was consistent with that found from the MC 

method. This demonstrated that the method can also be applied to more general 

problems with non-reflecting boundary conditions. 

 

In chapter 7, the 3-D SCN was used to model a 2-D cross-section of a 

waveguide. The idea here was to prove that the DST was not only restricted to 2-

D TLM problems. Due to prohibitive computation demands to obtain MC 

benchmark results more challenging 3-D problems were not dealt with here. The 

results from case studies investigated showed results consistent with chapter 6. 

However, because the model efficiency is increased in the 3-D case, there was 

better agreement between the DST and MC methods than for the 2-D equivalent. 
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This proves that although the effort to improve a model might be 

computationally expensive it gives a better platform for statistical analysis. The 

fact that DST drastically cuts down the computational overhead endorses it as a 

very attractive option for 3-D statistical analysis. 

 

From the results discussed in this section, the development and application of the 

DST meets the need of quick and precise approximations of uncertainties 

associated with model outputs provided input variations are small.  

 

10.3 Development of the Unscented Transform (UT) Method 

 

The theory behind the UT method was explained in chapter 8. The motivation for 

using this method was because it was adaptable to black-box type models. This 

implies that the mathematical details of the models it is applied on need not be 

defined explicitly. The statistical moments are approximated using a power 

series of standard random variables with unknown coefficients. The distribution 

of the input random variables are sampled at deterministic sigma points which 

are assigned with weights. The conventional approach for calculating statistical 

moments of discrete distribution functions is applied to these UT parameters. 

Therefore, the accuracy of approximations is directly related to the number of 

weights and sigma points. A set of equations are obtained that need to be solved 

to find the UT parameters. These equations increase with the number of input 

random variables. The identification of the sigma points help point out which 

model input samples contribute the most to output uncertainties. The weights are 

needed together with the sigma points to approximate the statistical moments of 

model outputs. Alternate ways to calculate weights and sigma points from 

geometric and trigonometric identities were examined. From the later, it was 

possible to use a transformation technique to incorporate statistical dependency 

between two random variables. 

 

The Gaussian Quadrature (GQ) method based on orthogonal series expansions 

was used as another approach for finding UT parameters. The advantage of this 
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standpoint is the way it copes with the solving a large system of equations. The 

elegance of the GQ method is such that the sigma points correspond to the roots 

of a weighting function. This function is a polynomial of has an arbitrary order 

and is dependent on the distribution of input variables being inspected. The 

Hermite and Laguerre polynomials are used for normal and exponential 

distributions respectively. The order of the weighting function corresponds to the 

number of sigma points. The Rodrigues formula provides the relationship 

between weights and sigma points.  

 

Finally, the PDF of the output distribution fy (y) was estimated from the weights 

and sigma points. The coefficients of the standard series expansion are found 

from the UT parameters and the approximations of output statistical moments. 

The coefficients are substituted back into the approximate expressions of fy (y).  

The UT theory explained in chapter 8 was applied to the stochastic 

electromagnetic problems in chapter 9. 

 

10.4 Application of UT to Stochastic Electromagnetic Problems 

 

The UT method was applied to a variety of problems in the time and frequency 

domains in chapter 9. The first case study involved the time domain simulation 

of a TEM waveguide with a stochastic dielectric. The UT and MC methods were 

used to approximate the mean and standard deviation of observed voltage from a 

TLM algorithm. The agreement between both methods was found to reduce as 

the number of time steps increases. This effect was mitigated but not eliminated 

when higher order approximations are used. The reason for this is that the 

voltage incident at node at a time step k is related to the product of the connect 

and scatter matrices raised to the power k. Therefore, the more the time steps 

used the greater the order of approximations needed to maintain accuracy. This is 

because the effects of correlation in the time domain is not considered as the 

TLM nodes are treated as independent. The PDF of the observed electric field 

were approximated using the UT and MC methods at a certain time steps. The 

agreement between them reduced at higher time steps although a higher order 

approximation improved this trend. The frequency domain analysis of the 
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problem yielded some interesting results. The mean and standard deviation of the 

S11 parameter was assessed at different frequency points. The UT and MC 

methods were closer at lower frequencies and better agreement was attained 

when higher order expressions were included. The TLM model introduces errors 

at higher frequencies which contribute to the limitations at a given order.   

 

The second case study was a pair of wire monopoles in a metal box with non-

deterministic dimensions. The receiving monopole has a stochastic length. The 

mean, standard deviation, skew and kurtosis of the S21 parameter were shown to 

be in close proximity for the UT and MC methods. The correlation between the 

voltage at receiving monopole and the random variables is maximum along the 

length; and minimum in the direction outside the plane where the monopoles are 

positioned. 

 

The third case study involves two dielectrics with statistically dependent relative 

permittivities in a waveguide. The results again show that the percentage 

difference between the UT and MC methods was highest between correlation 

coefficients of zero and one.  

 

The last case study involves a dielectric slab with an exponentially distributed 

relative permittivity. The kurtosis of fr was found using the UT method. This was 

an important result as the equivalent could not be attained using the DST as 

shown in Appendix A. The percentage difference between the UT and MC 

methods increased with standard deviation of relative permittivity. 

 

10.5 Direction for Future Research 

 

This thesis used the DST and UT methods as mathematical surrogates to the 

traditional MC technique in stochastic electromagnetic problems. All the case 

studies in the thesis used either normal or exponential PDFs of stochastic random 

variables. However, this is not extensive and there should be applications to 

other distribution functions. For the UT method, this is straightforward as the set 

of equations to find weights and sigma points is related to the moments of input 
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distributions. The GQ approach requires modification to the weighting function 

which is available in literature. The DST on the other hand, requires substitutions 

of relevant distribution functions and corresponding statistical moments into 

expressions derived in Appendix A.  

 

The calculation of statistical moments of measured parameters in the time 

domain remains a formidable challenge. The UT method is satisfactory for a 

small number of time steps. For larger values, a suggestion is to devise a model 

that updates the order of the UT parameters with increasing time steps. Another 

situation for future research is that of random processes where stochastic 

variables are time dependent.  
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Appendix A Approximation of Statistical Moments 

 

 

This section contains the rigorous mathematical derivation of approximating the 

statistical moments of the function of a random variable using Taylor series 

expansion. The normal and exponential distribution functions considered here 

are consistent with the case studies presented in the thesis.  

 

A.1 Approximating the Expected Value of a Random Variable 

Function 

 

Let ( )g x  be the function of a random variable x  whose stochastic properties 

can be defined using its mean x  and standard deviation σ . The mean of the 

distribution is given by the expression: 

 

[ ] ( )E x xf x dx
+∞

−∞

= ∫  

where ( )f x  is the probability density is function of the random variable x  and 

satisfies the expression: 

 

( ) 1f x dx
+∞

−∞

=∫  

 

Similarly, the mean of  ( )g x  is: 

 

( ) ( ) ( )E g x g x f x dx
+∞

−∞

=   ∫  

 

The function ( )g x  can be expressed as a polynomial from Taylor’s series about 

the mean value x : 

(A.1) 

(A.2) 

(A.3) 
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   ( ) ( ) ( )( ) ( )( ) ( ) ( )( )2

2

nn
g'' x x x g x x x

g x g x g' x x x ...
! n!

− −
≅ + − + + +  

 

Substituting the approximate expression for ( )g x  in (A.3): 

 

     ( ){ } ( ) ( )( ) ( )( ) ( ) ( )( ) ( )
2

2

nn
g'' x x x g x x x

E g x g x g' x x x ... f x dx
! n!

+∞

−∞

 − −
≅ + − + + +  

 
∫  

 

The derivatives of ( )g x  are defined about the mean value are: 

 

( )
x x

dg
g' x g'

dx =
= =    ( )

2

2
x x

d g
g'' x g''

dx =
= = ( )

3

3
x x

d g
g''' x g'''

dx =
= =  

( )
4

v v

4
xx

d g
g' x g'

dx =
= = ( ) ( ) ( )

n
n n

n
xx

d g
g x g

dx =
= =  

where n  is the order of the derivative included to obtain an estimate of 

( )[ ]E g x .  

 

Let ( ) ( )n

n x x f x dx
+∞

−∞

µ = −∫  be the nth central moment about the mean. Finding 

the first four central moments of random variable x  about the mean x  would 

give a truncated approximation of the expected value of x . This can be found as 

follows: 

 

( ) ( ) ( ) ( )1First Moment : x x f x dx xf x dx x f x dx 0
+∞ +∞ +∞

−∞ −∞ −∞

µ = − = − =∫ ∫ ∫    

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) 2

2 2 2

2

2 2 2 2

2 2 22 2 2 2

Second Moment : x x f x dx x 2xx x f x dx

x f x dx x 2x f x dx x f x dx x f x dx 2x x f x dx x

x f x dx 2 x x x f x dx x E x x

+∞ +∞

−∞ −∞

+∞ +∞ +∞ +∞ +∞

−∞ −∞ −∞ −∞ −∞

+∞ +∞

−∞ −∞

µ = − = − +

= − + = − +

 = − + = − = − = σ 

∫ ∫

∫ ∫ ∫ ∫ ∫

∫ ∫

 

(A.4) 

(A.5) 
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( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )( ) ( )2 2 2

3 2 33 2

3

2 33 2

2 2 3 2 33 3

Third Moment : x x f x dx x 3xx 3 x x x f x dx

x f x dx 3x x f x dx 3 x x f x dx x f x dx

E x 3x x 3x x x E x 3x x x

+∞ +∞

−∞ −∞

+∞ +∞ +∞ +∞

−∞ −∞ −∞ −∞

µ = − = − + −

= − + −

   = − σ + + − = − σ + +   

∫ ∫

∫ ∫ ∫ ∫  

 

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( )

2

2

4 2 3 44 3 2

4

2 3 44 3 2

2 2 4 44 3

2 2 44 3

Fourth Moment : x x f ( x)dx x 4x x 6 x x 4 x x x f x dx

x f x dx 4x x f x dx 6 x x f x dx 6 x xf x dx x f x dx

E x 4x E{ x } 6 x x 6 x x

E x 4x E{ x } 6 x x 5 x

+∞ +∞

−∞ −∞

+∞ +∞ +∞ +∞ +∞

−∞ −∞ −∞ −∞ −∞

µ = − = − + − +

= − + − +

 = − + σ + − + 

 = − + σ + − 

∫ ∫

∫ ∫ ∫ ∫ ∫  

 

The second moment about the mean is called the variance and the ratio of the 

third moment to the cube of standard deviation (or the product of variance and 

standard deviation) is termed the skewness of the distribution. The ratio of the 

fourth moment to that of the square of variance is the kurtosis. 

 

Taking the first few terms from (A.6) and placing it in (A.5) gives: 

 

( ) ( ) ( ) ( ) ( )First term : g x f x dx g x f x dx g x
+∞ +∞

−∞ −∞

= =∫ ∫                                                 

 

( )( ) ( ) ( )( )0Second term : g' x x x f x dx g' x 0
+∞

−∞

− = =∫  

 

( )( ) ( ) ( ) ( )2 2

2

g'' x g '' x1
Third term :  g '' x x x f x dx µ

2! 2 2

+∞

−∞

− = = σ∫  

 

( )( ) ( ) ( )

( ) ( )( ) ( )( )

3

3

2 33 2

g''' x1
Fourth term :  g''' x x x f x dx µ

3! 6

g''' x
E x 3x x 2 x

6

+∞

−∞

− =

= − σ + +  

∫
 

(A.6) 
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( )( ) ( )

( ) ( ) ( )( ) ( )( )4 3

v
4v

4

v
42 22

:

x x

g' x1
Fifth term  g' x x x f ( x)dx µ

4! 24

g' x
E 4x E 6 x x 5 x

24

+∞

−∞

− =

   = − + σ + −   

∫
 

 

The fourth order expected value of ( )g x  can be approximated by the 

expression: 

 

( ) ( ) ( ) ( )2 4

8

v
g'' x g' x

E g x g x +
2

σ σ
≅ +    

 

Let the random variable have an exponential distribution defined as: 

 

( ) 1
x

f x e

 − σ =
σ

 

 

The fourth order approximation of the expected value from (A.5) of the function 

of the exponential random variable defined in (A.9) is: 

 

( ) 2 2 2 3 4 3

2 2 3 2 3 4

1

2

1 1 1 1 1

2 6 2 6 24

v v

v v v

E g x g g' g'' g'' x g''' x g''' x g''' g' g' x

g' x g' x g' x g'' x g''' x g' x

≅ + σ+ σ − σ − σ + σ + σ + σ − σ  

+ σ − σ − + σ − +
 

 

The distribution of the random variable x  will dictate which of the higher order 

moments will make a contribution to an approximation of the expected value or 

any higher order moments of ( )g x .  

 

For a normal distribution of x , 3µ  and other odd central moments is zero whilst 

4

4µ = 3σ which further simplifies the approximation of by eliminating some 

terms. For other distributions it is possible that this is not the case and in this 

instance, 3µ  and 4µ  can be evaluated a priori from the skew and kurtosis and 

substituted directly into the above terms.   

(A.8) 

(A.7) 

(A.9) 

(A.10) 
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A.2 Approximating the Expected Value of the Square of a 

Random Variable Function 

 

The procedure for calculating the moments of the square of the function ( )g x  is 

similar to highlighted above. The expression of the mean of ( )2
g x  in terms of 

the moments of the independent variable x  : 

 

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )( )2
n

2 2 2 2 2 v 23 4 nµ µ µσ
E g x g x + g x '' + g x ''' + g x ' +....+ g x

2 3! 4! n!
 ≅              

 

The derivatives of ( )2
g x  in the above expression are: 

 

( )( ) ( ) ( )( ) ( ) ( ) ( )( )22g x '' 2g x g' x ' 2 g x g'' x g' x = = +
 

 

 

( )( ) ( )( ) ( ) ( ) ( ) ( )32 2g x ''' g x '' ' 2 g x g''' x g' x g'' x = = +     

 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )22 v v
'

g ( x ) ' g''' x 2 g x g' x +4g' x g''' x +3g'' x g'' x   = =   
 

 

The general form for finding the nth derivative of ( )2
g x  is: 

 

( )( )( )
( )( )( )n n-1

2 2
'

g x g x =   
            

 

 

 

                             

(A.11) 

(A.12) 

(A.13) 

(A.14) 

(A.15) 



Appendix A     Approximation of Statistical Moments 

 212 

A.3 Approximating the Variance of a Random Variable 

Function 

 

In order to approximate the variance of a distribution, a parameter that defines 

the rth moment about the mean of a function ( )g x  is given by the expression: 

 

( ) ( ) r

gr E g x E g x µ = −      

 

Adopting the binomial series expansion to grµ  above gives: 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

1 1

1
1

1 1
1

mr r r m m

gr

r r r r

r r
g x g x E g x .... g x E g x

m
E

r
... g x E g x E g x

r

− −

− −

    
− + + −                      
    µ =   

 + + − + −           −   

    

 

Let an auxiliary term called the raw moment defined as the rth moment about the 

origin and is given by the expression: 

 

( ) r

gr' E g xµ =     

                                                     

Substituting for ( ) r
E g x   with gr'µ in (A.17) above: 

 

    

( ) ( ) ( )

( ) ( ) ( ) ( )

1

1 1

1 0

1
1

1 1
1

m m

gr gr gr m

gr

r r r r

g g

r r
' ' E g x .... ' E g x

m

r
... ' E g x ' E g x

r

− −

− −

    
µ − µ + + − µ          

    µ =   
 + + − µ + − µ        −   

        

 

From (15) ( )[ ]1g E g x'µ =  and 0 1g'µ = , thus grµ  becomes: 

 

(A.16) 

(A.17) 

(A.18) 

(A.19) 
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( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

1 1

1
1

1 1
1

m m

gr gr gr m

gr

r r r r

r r
' ' E g x .... ' E g x

m

r
... E g x E g x E g x

r

− −

− −

    
µ − µ + + − µ          

    µ =   
 + + − + −            −   

         

 

Now, 
1

r

r −

 
 
 

 = r  and ( )[ ] ( )[ ] ( )[ ]1r r
E g x E g x E g x

− =  

 

Therefore, (A.20) can be further simplified to give: 

 

 
( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

1
1

1 1

mm

gr gr gr m

gr

r rr r

r r
' ' E g x .... ' E g x

m

... rE g x E g x

− −

−

    
µ − µ + + − µ          

   µ =  
 + + − + −        

       

 

Now from (A.19), the second moment about the mean or the second central 

moment is the variance and this gives  

 

              ( ) ( ) ( )2 22

2 2

2

g g g' E g x E g x E g x =     µ = µ − = − σ          
           

 

By substituting the approximate expressions derived earlier for ( )2
E g x    and 

( )[ ] 2

E g x   into (A.22), the variance for a normally distributed random variable 

x (that is, 03µ =  and 
4

34µ σ= ) can be estimated as: 

 

    2 2 2 4 2 6 2 8

2

1 5 1 1

2 12 2 6

v v

g
g' g'' g' g''' g''' g'' g' g'

     µ ≅ σ + + σ + + σ + σ     
     

    

 

The corresponding equation of (A.23) for the exponential random variable in 

(A.9) is: 

 

(A.20) 

(A.21) 

(A.22) 

(A.23) 
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4 2 2 6 2 2 2 5

2

2
3 2 4 3

1 1 1

3 36 6

1 1
2

4 3

v v v

g
v v

g'' g' x g' g''' x g' x g' g'' x g''' g' x

g'' g''' x g''' g' x g' g'' x g' g' x

 + + + + − 
µ ≅ σ 

 − + − − 
 

 

 

+ 

2 2 2 3 2 5

3

4 2 3

1
4 4 2 2 4

3

5 8
6

3 3

v v

v v

g' g'' g'' x g' g' x g''' x g' x g' g''' x

g''' g' x g'' g''' x g'' g' x

 − + − − − 
σ 

 + + − 
 

 

 

+ 

2 2 2 4 2

4

3 2

9
8 6 16 5

4

9 11 6

v v

v v

g''' g'' x g' g' x g'' g''' x g' x g''

g''' g' x g'' g' x g' g'''

 − − + + σ  − + + 

 

 

+ 

3 2

5

2

31
26 18 31

3

18 8

v v v

v

g' x g'' g' x g'' g''' g''' g' x

g''' x g' g'

 − − + + σ  − + 

  

                    

+ ( )2 2 2 619 66 28 33v v vg''' g''' g' x g'' g' g' x− + + σ  

   

+ ( )2 7 2 868 68 69v v vg''' g' g' x g'− σ + σ

 

 

A.4 Approximating the Skew of a Random Variable Function 

 

In order to approximate the skew of a distribution, a parameter is defined for the 

third moment about the mean of a function ( )g x  given by the expression: 

 

                              ( ) ( ) 3

3 3 23 2g g g' ' E g x E g xµ = µ − µ +                                          

 

(A.24) 

(A.25) 
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Substituting the Taylor series expressions about the mean in similar fashion to 

(A.11) and restricting to fourth order derivatives and normal probability 

distribution in x : 

( )2 4 2 6 2 2 8

3

3 9 15
3 6 4

2 4 4

v 3 v v

g g' g'' g' g' g' g''g'''+g'' g'' g' g''g''' g' g'''g'
   µ ≅ σ + + σ + + + σ   
   

            
2 10 1225 11

2
8 16

v v2 v3g''' g' g''g' g'
   + + σ + σ   
   

                                                  

 

The  third moment about the mean of a function ( )g x of an exponential random 

variable in (A.9) is: 

 

3
2 2 3

2

1 3
6 2

6 2

1
3 2

4

1
2 6 6

4

1 1

6 108

v2 6 2 5 2 4 2 2 v 6 3

v 5 2 v 5 2 v 7 2 2 3 3

g
v 4 v 3 6 3

v 7 v3

g' g' x g''g''' x +3g'' g''' x g' g'' x g''g'''g' x g'

g' g''' g' x g'' g' x g''' g' x g' g''' x g'' x

g' g'' g' x g' g' x g' g'' g''' x g''' x g' g'' g''' x

g'' g' x g' x

− + + +

− − − + −
µ ≅

+ − − + −

− −

3

3 1

2 12

9 2 4 v2 8g' g''' x g''' g' x

 
 
 
 
 

σ 
 
 
 

+ + 
 

   

 

+ 

3 2 2 4 2 6 3 8 2

2 2 2 2 7 3 5 4

2 5 2 5 2 3 2

3 2 4

45 7 1
18 36

2 2 4

9
54 9 2 15

2

18 18 3 18 18

21
24 15

4

v v

v v v

v v

v v

g'' x g'' g''' x g'' g' x g' x g' g'' x

g' g'' g''' x g' g' x g''' g' x g''' x g' g''' g' x

g' g'' g'' g''' g' x g' g' x g' g''' x g' g''' x

g' g'' g' x g'' g' x g

+ + + − +

+ − − +

+ − − − −

− + +

4

2 6 2 336v''' g' x g'' g''' x

 
 
 
 
 
 
 
 
 
 

σ

−

 

 

+ 

3 2

3 2

2 2 2 2

2 2

7 2 5 4

2 2 4

6 3 2

4 5 3

3

55 132

39 36 192

60 156 186

158 106

108

7
27

2

96

49

2

37

v

v

v v v

v

v v v

g' g''' g' g''' g' g'' g'''

g''' g' g' g'' g'' g''' g'' g'''

g'' g''' g' g' g'' g'

g' g''' g'

_ g' x g''' g' x g' g'' g' x g' g' x

g''' x x x

x x x

x g'' x x

x

− +

+ + −

+ − +

+ − −

− −

+

+

+ 5

3 260 36 vg'' g'x g' x

 
 
 
 
 
 
 
 
 
 
 
 

σ

−
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+ 
2 2 2

401
270 390 270

12

867 492 465 209

511 747
60 155

2 2

401
441 74 627

2

v 2 v3 6

v 3 2 v 2 3 3

v 4 v 4 v v2 3

2 v 2 v2 5 3

g' g'' g''' g' g'' g' x g' g''' x g' x

g'' g''' g' x g'' g''' x g' g''' g' x g''' x

g'' g' x g''' g' x g' g' g' g' x

g'' g' x g''' g' x g'' g'' g'''

− − +

− − + −

+ + + −

+ − + +

6

2 2x

 
 
 
 
 σ
 
 
 
 
 

 

 

+

2

7

3

2 2 2

2385
1236 3114

2

1188 504 1458

477
729 594 342

2

1767 558 1062

v2 4 v2 3 v 2

v v

2 v2 2 v3 5 2

v 3 v

g''' g' x g'' g' x g'' g''' g' x

g' g''' g' x g' g'' g' g'' g''' x

g''' x g' g' x g' x g' g'''

g''' g' x g'' g''' g'' g' x

 − + 
 
− + − 

σ 
 + + − +
 
 − + − 

 

 

2 2

3 8

2

1428 1158 1566 4152

2621
1566 5242 1428

2

6876 5787

v2 v v2 2

v3 4 v2 3 v

v v 2

g' g' x g'' g' g'' g''' g'' g' x

g''' x g' x g''' g' x g' g''' g'

g'' g''' g' x g''' g' x

 − + + +
 
 − + − + σ
 
 
− +   

 

+

2 3

9

2 2

7212 5504 12078 1622

1656 16512 8868

v v3 3 v

v v 2 v2

g'' g''' g' g' x g''' g' x g'''

g' g' g''' g' x g'' g' x

 − − +
σ  + + − 

 

 

+  ( )2 2 3 2 2 1012336 9156 16914 33828v v v vg''' g' g'' g' g' x g''' g' x+ + − σ  

 

+ ( )3 2 11 3 1234236 3423 34442v v vg' x g''' g' g'− + σ + σ  

 

The skew is given by the expression: 

  

( )
3

3

2
2

g

g

Skew
µ

=

µ

                                                      

 

(A.27) 

(A.28) 
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Using the approximate expressions for 2gµ  and 3gµ , the skew for the function 

of a random variable with a normal distribution is: 

 

  

( )2 4 2 6

2 2 8

2 10 12

2 2 2 4 2

3
3 6

2

9 15
4

4 4

25 11
2

8 16

1 5 1

2 12 2

v 3

v v

v v2 v3

v

g' g'' g' g' g' g''g'''+g''

g'' g' g''g''' g' g'''g'

g''' g' g''g' g'

Skew

g' g'' g' g''' g''' g'' g'

  σ + + σ  
  

  + + + σ  
  

    + + σ + σ    
    ≅

  σ + + σ + + 
 

3

2
6 2 81

6

vg'
   σ + σ        

  

 

A.5 Approximating the Kurtosis of a Random Variable 

Function 

 

In order to approximate the kurtosis of a distribution, a parameter is defined for 

the fourth moment about the mean of a function ( )g x  given by the expression: 

 

( ) ( ) ( )2 3

4 4 3 24 6 3g g g g' ' E g x ' E g x E g xµ = µ − µ + µ −            

 

This can be approximated, restricting to fourth order derivatives and normal 

probability distribution in x  as: 

 

( ) ( )( ) ( )2 24 4 3 6 4 2 2 8

4

35 15
3 10 15 21 39

2 4

v

g g' g' g''' g' g'' g' g''' g'' g' g''g' g' g'' g'''
 µ ≅ σ + + σ + + + + σ 
 

 

( ) ( )
2 2 3 3 10125 27 35

9 67
4 2 2

v v vg'g' g''g''' g'' g' g'g''' g' g''g'''g'
 + + + + + σ 
 

 

( ) ( )2 2
4 12 14255 85 385 75

34 17
4 4 48 2

v2 2 v v v3 v
g' g'''g' g''g''' g' g''g' g''' g''g' g''g'

   + + + + σ + + σ   
   

 

1623

4

v4g'
 + σ 
 
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The kurtosis is given by the expression:  

 

( )
4

2

2

g

g

Kurt
µ

=
µ

                                                      

 

Using the approximate expressions for 2gµ  and 3gµ , the kurtosis of a random 

variable with a normal distribution  is: 

 

( ) ( )( )
( )

( ) ( )

( )

24 4 3 6

2 4 2 2 8

2 2 3 3 10

2

3 10 15

35 15
21 39

2 4

125 27 35
9 67

4 2 2

255 85 385
34

4 4 48

v

v v v

v2 2 v v

g' g' g''' g' g''

g' g''' g'' g' g''g' g' g'' g'''

g'g' g''g''' g'' g' g'g''' g' g''g'''g'

g' g'''g' g''g''' g' g''g' g''

Kurt

σ + + σ

 + + + + σ 
 

 + + + + + σ 
 

+ + + +

≅
( )

4 12

2
14 16

2

2 2 2 4 2 6 2 8

75 23
17

2 4

1 5 1 1

2 12 2 6

v3 v v4

v v

'

g''g' g''g' g'

g' g'' g' g''' g''' g'' g' g'

 
 
 
 
 
 
 
 
 
  σ  
  

    + + σ + σ    
    

      σ + + σ + + σ + σ            

        

 

The corresponding expression for the exponential random variable could not be 

derived as the MAPLE software adopted for the more complicated derivations 

did not deem this tractable enough to profer approximations. 

 

(A.32) 

(A.33) 
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Appendix B      Exponential Correlation Function 

 

 

This section contains the procedure for selecting random samples of relative 

permittivity from an exponential correlation function.  

 

B.1 Random Inhomogeneities 

 

There can be two distinct random distributions of relative permittivity having the 

same behaviour. The distributions, for example, can have the same root mean 

square but different correlation lengths. The concept of correlation allows for 

the description of both distributions in order to distinguish the characteristics 

[B.1]. The correlation function thus defined here stipulates the degree of 

interdependence between random inhomogeneities.  

 

The ideas of correlation effects can be developed from a simple scenario 

considered here. Let the relative permittivity at each node 
nε  in the TLM model 

be the smallest size of inhomogeneity. For a transmission line of N nodes, then 

the series of permittivity in each node is:  1210 ,.....,, −Nεεεε . The dependence of 

each of these permittivity values on one another in the same medium is described 

by an autocorrelation function [B.1]: 

 

( )
2

2

1 N

i i a
N Ni

R a lim  
N

+→∞ −=

 
= ε ε 

 
∑  

where a  is fixed integer value.  

 

The deviation of the permittivity value from being uniform is described by a 

function )(xε where x  is the direction of propagation. For a very long 

transmission line, the statistics of )(xε is such that provided it is a stationary 

random function then it is independent of the position x . The average of all the 

(B.1) 
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measurement is determined a priori and is designated by the term ε . As )(xε  

represents a continuous distribution, integration is used in place of summation in 

(B.1) and the autocorrelation function ( )R a  is defined as: 

 

( ) ( ) ( ) ( ) ( )
2

2

1
X

X X

R a x x a  lim  x x a dx
X→∞

−

 
= ε ε + = ε ε +  

 
∫  

                   

The expression above as shown is the summation over various values of a of the 

average of the product of the deviation at point x  with another ax +  further 

down the transmission line. The property of ( )R a  is such that it is independent 

on x  and depends only on a . 

 

The ensemble average of the sum of squares of )(xε  gives is the mean square of 

the distribution and this coincides with when 0=a and is given by: 

 

( ) ( ) ( )
2

2 2 2

2

1
0

X

RMS
X X

R x  lim  x dx
X→∞

−

 
= ε = ε = ε  

 
∫  

where RMSε  is the root mean square of the relative permittivity values of the 

function )(xε . 

 

)(xε  is a random function although the ensemble averages in (B.2) and (B.3) are 

not and can be easily measured. Many random processes are described by an 

exponential autocorrelation function. This would be defined as [B.2]: 

 

( ) 2
a

Lc

RMS
R a e

− 
 
 = ε  

where 
c

L  is the correlation length and 
RMS
ε  is the root mean square of the 

central permittivity value.  

 

The correlation length is the scale over which is a measure of how )(xε  is 

correlated at two different points along the direction of propagation. Points that 

(B.2) 

(B.3) 

(B.4) 
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lie within the correlation length will have a greater value of  ( )R a  than those that 

lie further apart.  

 

The power spectral density can be defined as the Fourier transform of the 

autocorrelation function: 

 

( ) ( ) j aR R a e da
∞

− ω

−∞

ω = ∫ɶ  

 

Substituting ( )R a  in (B.5) from (B.3): 

 

( ) ( )
2

2

1
X

j a

X X

R( ) lim  x x a dx e da
X

∞
− ω

→∞−∞ −

 
ω = ε ε +  

 
∫ ∫ɶ  

 

Collecting like terms together gives: 

 

( ) ( ) ( )
2

2

1
X

j a

X X

R lim  x dx x a e da
X

∞ ∞
− ω

→∞−∞ −∞−

 
ω = ε ε +  

 
∫ ∫ ∫ɶ  

 

Let ','' dadaxaaaxa =−=⇒+=  

 

( ) ( ) ( ) ( )2

2

1
X

j a ' x

X X

R lim  x dx a' e da'
X

∞ ∞
− ω −

→∞−∞ −∞−

 
ω = ε ε  

 
∫ ∫ ∫ɶ  

 

From the second integral let )(~ ωε  be the Fourier transform of )'(aε . From the 

frequency shifting rule of Fourier transforms the above expression yields: 

 

( ) ( ) ( )
2

2

1
X

j x

X X

R lim  x e dx
X

∞
ω

→∞−∞ −

 
ω = ε ω ε  

 
∫ ∫ɶ ɶ  

 

Similarly, let )(~ ωε be the Fourier transform of )(xε then: 

(B.5) 

(B.6) 

(B.7) 

(B.8) 

(B.9) 
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( ) ( ) ( )1
X

R lim  
X

∞

→∞−∞

 ω = ε −ω ε ω 
 

∫ɶ ɶ ɶ  

 

Applying the Parseval’s theorem in the spatial domain to equation (B.10) [B.1]: 

 

( ) 21
X

R lim  ( )
X

∞

→∞−∞

 ω = ε ω 
 

∫ɶ ɶ  

 

The next objective is to find the Fourier transform of the exponential 

autocorrelation function:  

 

( ) 2
a

L j ac

RMS
R e e da

− ∞   − ω 

−∞

ω = ε∫ɶ  

 

Solving the above integrand and substituting the definite integral bounds: 

 

( )
( )

0

2
2 2

22

0

2

1 1 1

a a
L Lj a j ac c

c c c RMS

RMS RMS

c c c

L e e L e e L
R

j L j L L

∞
   −   − ω − ω   

−∞

   
ε   ω = ε + ε =

   ω − ω + + ω
      

ɶ  

                                          

Equating the above expression to (B.11):  

 

( )
( )

2
2

22

21

1
c RMS

X
c

L
R lim  ( )

X L

∞

→∞−∞

ε ω = ε ω = 
+ ω 

∫ɶ ɶ  

 

The next task is that given the correlation function ( )R a , a sequence that depicts 

the appropriate behaviour of )(xε  from a sequence of uniformly distributed 

random numbers. First, an assumption that the spectral content of ( )R ωɶ is the 

filtered output of uniformly distributed random data. Thus, its characteristic is 

given as: 

 

2 2

1
RMS c

c

L
( )

j L

ε
ε ω =

+ ω
ɶ  

(B.10) 

(B.11) 

(B.12) 

(B.13) 

(B.14) 

(B.15) 
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The digital implementation of this filter is found from the bilinear transform 

using the expression [B.3]: 

 

1

1

2 1
1

z
j

x z

−

−

 −
ω =  ∆ + 

 

where x∆ is the spacing between the nodes. 

 

( )
2

1

1

2

2 1
1

1

RMS c

c

L
z

z
L

x z

−

−

ε
ε =

  −
+   ∆ +  

ɶ
 

 

Multiplying the numerator and denominator of (B.17) by 11 −+ z : 

 

( ) ( )1 2 12 2
1 1 1 2

RMS c
z z z L

x x

− −    ε + + − = ε +    ∆ ∆    
ɶ  

 

(B.18) can be rearranged to give: 

 

( ) ( )1 2 12 2
1 1 1 2

RMS c
z z z L

x x

− −    ε + + − = ε +    ∆ ∆    
ɶ  

 

The above expression is seen to be a system with memory in the z-domain where 

the term on the left is the input sequence of uniformly distributed random 

)( xnr ∆  and on the right is the required output correlated sequence )( xn∆ε . The 

inverse z-transform to the spatial domain of the above expression is : 

 

( )2
1 1

2 2
1 2 1

n RMS c n n n
L r r

x x
− −

   + ε = ε + − − ε   ∆ ∆   
 

 

For a uniformly distributed random sequence )( xnr ∆  between –√3 to √3 gives a 

mean value of zero and an RMS value of unity [B.4]. This standardised sequence 

if adopted in (B.20) would also give a mean of nε  to be zero.  

(B.16) 

(B.17) 

(B.18) 

(B.19) 

(B.20) 



Appendix B     Exponential Correlation Function 

 224 

The actual mean permittivity ε  can be into account simply by using the 

expression: 

actual n
ε = ε + ε  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(B.21) 
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Appendix C      Connection in Waveguide Problems 

 

 

This section describes the connection procedure between ports of adjacent nodes 

in a discretised TLM waveguide problem.  

 

C.1 Connection Matrix 

 

During the process of connection there is a handshake between coupled ports 

away from the metallic walls of the waveguides. The ports linked directly with 

boundaries have the incident voltage reflected back in conformity with 

transmission line theory. As materials are modelled here with the use of open 

circuit stubs, then the coupling in this case occurs internally with the node centre.  

 

The global connection matrix C  is a square matrix of the order (NX x NY x NP) 

describes how the nodes are connected via their member ports. This matrix is 

constructed simply by placing 1 in the position of coupled ports and stub 

positions. For ports connected to short circuit boundaries the negative unity 

reflection co-efficient is highlighted by placing -1 in the pertinent matrix 

elements as will be shown in this section. All the nodes with position co-

ordinates (0, y), (NX – 1, y), (x,0) and (x, NY – 1).  The global connection matrix 

is defined as follows:  

 

( ) ( )i rt t tCVV +∆ =  

 

 

 

 

 

(C.1) 
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 a = NP (NX-1) 

a +3 

a +4 

b 

b +1 

b+2 

b+3 

b+4 b+5 

b+6 

b+7 

b+8 

b+9 

 b = (NY-1) NXNP 

c 

c +1 

c +2 

c +3 

c +4 

 c = a + b 

C.2 Connection of Ports at Boundaries  

 

The port numbering system for the top and bottom boundaries are shown in Fig. 

C-1. The relationship between neighbouring nodes connected to these boundaries 

is provided here.  

 

The top boundary corresponds to the position co-ordinate (x, NY – 1) and that of 

the bottom boundary (x, 0). The left boundary corresponds to the position co-

ordinate (0,y) and that of the right boundary (NX – 1, y).  

 

The dotted lines in all the diagrams in this section indicate that the intermediate 

nodes and the corresponding ports have been omitted to direct attention on the 

pertinent areas of discussion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              

              

Fig. C-1 Port number configuration for top and bottom walls of dielectric waveguide 
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1 

a 

a+3 

d 
d +1 

 d = a + NP 

e+3 

e 

b +1 c +3 

b c 

f 

f +1 g +3 

g 

d 

 f = (NY-2) NXNP  e = d + NP (NX-1)  g = a + f  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. C-2 Port number configuration for left and right walls of dielectric waveguide 

 

A generic mathematical formula for calculating the port numbers connected at 

the boundaries of the waveguide along with the corresponding position in the 

connection matrix can be found from Fig. C-1 and Fig. C-2: 

 

(a) Top Boundary 

 

( ) ( ) ( )1 2T NY NX NP x NP 
  

= − × × + + ×         0 x NX≤ <  

1C T T = −        

 

(b) Bottom Boundary 

 

                                              B x NP= ×                       0 x NX≤ <  

Left 

Wall 
Right  

Wall 

(C.2) 

(C.3) 

(C.4) 

x 

y 
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1C B B = −      

 

(c) Left Boundary 

 

                          ( )[ ] 1L y NX NP= × × +           0 y NY≤ <  

1C L L = −      

 

(d) Right Boundary 

 

         ( )( )( )[ ]1 1 3R NP NX y= × × + − +     0 y NY≤ <  

1C R R = −      

 

C.3  Connection of Intermediate Ports 

 

The intermediate ports comprise those that are connected away from waveguide 

boundaries. A matrix constructed from these port elements alone will possess 

symmetric characteristics. This is indicative of the exchange between adjacent 

ports. 

 

C.3.1 Connection Along the X-Direction 

 

Fig. C-3 shows a discretised TLM model of a waveguide with emphasis placed 

on connecting ports away from the metal walls in the x-direction. The definitions 

of ports a – f are given in Figs. C-1 and C-2 above.  

 

 

 

 

(C.5) 

(C.7) 

(C.6) 

(C.8) 

(C.9) 
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  b +3 c +1 

g +1 

 b +6  c -2 

 g -2 

e +1 

a+1 

 e -2 

 a -2 

 f +3  f +6 

 d +3 d +6 

3      6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. C-3 Port number configuration of intermediate nodes along x-direction of dielectric 

waveguide 

 

The first and the third port of the nodes in Fig. C-3 are coupled with each other. 

The exception to this pattern of arrangement is the first port of the nodes with co-

ordinate (0, y) connected to the left wall and the third port of the nodes with co-

ordinate (NX – 1, y) connected to the right wall. 

 

Using the same principle as for the outer boundaries, a generic mathematical 

formula for calculating the number assigned to the intermediate coupling ports in 

the x-direction with their position in the connection matrix can be found. The 

first stage is the connection of the first to the third port and the exchange is 

complete via the connection of the third to the first port of neighbouring nodes. 
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(a) Connection of the first and third ports of intermediate nodes  

 

( )
1y y

r r y NP NX
+

= + × ×     
0

1 0r NP ; y NY= + ≤ <  

               ( )
1y y

c c y NP NX
+

= + × ×  
0

3 0; y NYc = ≤ <  

( )
13

1
y

row r x NP= + − ×       1 0x NX ; y NY≤ < ≤ <  

( )
13

1
y

col c x NP= + − ×        1 0x NX ; y NY≤ < ≤ <  

13 13
1C row col =      

 

The (x – 1) term in (C.12) and (C.13) are needed because of the presence of the 

left boundary and to apply correct conditions to the ports 1 connected to it.  

 

 

(b) Connection of the third and first ports of intermediate nodes  

 

               ( )
1y y

r r y NP NX
+

= + × ×      
0

3 0r ; y NY= ≤ <  

              ( )
1y y

c c y NP NX
+

= + × ×    
0

1 0NP ; y NYc = + ≤ <  

( )
31 y

row r x NP= + ×        0 1 0x NX ; y NY≤ < − ≤ <  

( )
31 y

col c x NP= + ×         0 1 0x NX ; y NY≤ < − ≤ <  

31 31
1C row col =      

 

The NX – 1 term in (C.17) and (C.18) ensures that the right boundary is avoided. 

This is because the third ports of the nodes connected to it have a -1 reflection 

coefficient and are not coupled to any of the ports of the neighbouring nodes.  

 

 

(C.10) 

(C.11) 

(C.12) 

(C.13) 

(C.15) 

(C.16) 

(C.17) 

(C.18) 

(C.19) 

(C.14) 
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b  

f +2 

b+5  

f +7 

d  

     2 

d+5  

    7 

c-5  

g-3 

c  

g+2 

e-5  

a-3 

e  

a+2 

C.3.2 Connection Along the Y-Direction 

 

Fig. C-4 shows a discretised TLM model of a waveguide with emphasis placed 

on connecting ports away from the metal walls in the y-direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. C-4 Port number configuration of intermediate nodes along the y-direction of dielectric 

waveguide 

 

The zeroth (this is used due to the ordinate system adopted) and the second port 

of the nodes in Fig. C-4 are coupled with each other. The exception to this 

pattern of arrangement is the zeroth port of the nodes with co-ordinate (x, 0) 

connected to the bottom wall and the second port of the nodes with co-ordinate 

(NX – 1, y). 
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The generic mathematical formula for calculating the number assigned to the 

intermediate coupling ports in the y-direction and their position in the connection 

matrix is similar to the case in the x-direction. The only difference here is in the 

modification to avoid top and bottom boundaries. The first connection is that of 

the zeroth to the second port. The exchange is complete via the connection of the 

second to the zeroth port. 

 

(a) Connection of the zeroth and second ports of intermediate nodes  

     ( )
1

1
y y
r r y NP NX
+

= + − × ×       0 1r NX NP; y NY= × ≤ <  

     ( )
1

1
y y
c c y NP NX

+
= + − × ×    0

2 1; y NYc = ≤ <  

( )
02 y

row r x NP= + ×             0 1x NX ; y NY≤ < ≤ <  

( )
02 y

col c x NP= + ×              0 1x NX ; y NY≤ < ≤ <  

02 02
1C row col =      

 

The (y – 1) term in (C.20) and (C.21) is needed because of the presence of the 

bottom boundary and to apply correct conditions to the ports 0 connected to it.  

 

(b) Connection of the second and zeroth ports of intermediate nodes  

    ( )
1y y

r r y NP NX
+

= + × ×      
0

2 0 1r ; y NY= ≤ < −  

   ( )
1y y

c c y NP NX
+

= + × ×    
0

0 1NX NP; y NYc = × ≤ < −  

( )
20 y

row r x NP= + ×      0 0 1x NX ; y NY≤ < ≤ < −  

              ( )
20 y

col c x NP= + ×         0 0 1x NX ; y NY≤ < ≤ < −  

20 20
1C row col =      

 

The NY – 1 term ensures that the top boundary is avoided as the second ports of 

the nodes connected to it. 

(C.20) 

(C.21) 

(C.22) 

(C.23) 

(C.25) 

(C.26) 

(C.27) 

(C.28) 

(C.29) 

(C.24) 
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C.4 Connection of Stubs  

 

The stubs are terminated using open circuits to reflect the capacitive properties of 

modelled materials. The consequence of this is that the coupling is at the node 

centre where it is redistributed to other ports. This straightforward interpretation 

of wave propagation is seen calculation of the number assigned to the stub ports 

and their position in the connection matrix: 

 

( ) ( )1M NP n NP= × + −     0 n N ; N NX NY≤ < = ×  

1C M M =      

 

It is important to note that this case is only required for materials with 

permittivity greater than that for air. All the matrix elements of the connection 

matrix that does not fall into any of the above classifications are assigned a value 

of zero. 

 

 

 

(C.30) 

(C.31) 
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Appendix D      SCN with inductive and capacitive stubs 

 

 

This section describes the 3-D SCN used to model materials with relative 

permittivity or permeability that is greater than one.  

 

D.1 The SCN with inductive and capacitive stubs 

 

The SCN without stubs had 12 link lines all with the same characteristic 

impedance ZTL given by: 

 

0

0

TL
Z

µ
=

ε
 

  

Let all the space dimensions of the SCN be equal to ∆l. Then, the velocity of 

propagation uTL through each link line in free space is [D.1]:  

 

0 0

1
2 2

TL

l
u c

t

∆
= = =
∆ µ ε

 

where c is the speed of light. 

 

The relationship between link capacitance C and link impedance ZTL in the SCN 

is [D.1]:  

 

2
TL

t
C

Z

∆
=  

 

In free space the total capacitance modelled in the x, y or z-directions of the SCN 

is 4C. A lossless material of permittivity ε is modelled by adding a stub 

(D.1) 

(D.2) 

(D.3) 
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capacitance CS  to the total link capacitance in the x, y and z-directions to give an 

overall capacitance of: 

 

4
tot S

C l C C= ε∆ = +  

 

The characteristic admittance of the capacitive stub using (D.3) and (D.4) in the 

x, y or z-directions is: 

 

( )2 42 2
2S

SC

TL

l CC l
Y

t t t Z

ε∆ −  ε∆
= = = − ∆ ∆ ∆ 

 

Therefore, the normalised stub admittance in the x, y or z-directions using 

(7.10a), (7.10b) and (D.5) is: 

 

0 0

0

2 2 2 2r r

SC SC TL

l l
Ŷ Y Z

t c t

 ε ε ∆ µ ε ∆ = = − = −   ∆ ε ∆  
 

 

The relationship between link capacitance L and link impedance ZTL in the SCN 

is [D.1]:  

 

2

TL
Z t

L
∆

=  

 

Similarly, a lossless material of permittivity µ is modelled by adding a stub 

inductance LS  to the total link capacitance 4L in the x, y and z-directions to give 

an overall inductance of: 

 

4
tot S

L l L L= µ∆ = +  

 

The characteristic impedance of the inductive stub using (D.7) and (D.8) in the x, 

y or z-directions is: 

 

( )2 42
2 2S

SL TL

l LL l
Z Z

t t t

µ∆ − µ∆ = = = − ∆ ∆ ∆ 
 

(D.4) 

(D.5) 
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The normalised stub admittance in the x, y or z-directions using (D.1), (D.2) and 

(D.9) is: 

 

0 0

0

2 2 2 2SL r r

SL

TL

Z l l
Ẑ

Z t c t

 µ µ ∆ ε µ ∆ = = − = −   ∆ µ ∆  
 

 

The capacitive stubs have an open circuit termination while short circuit stubs 

have a closed circuit termination. Both stubs have pulses incident on them 

reflected back to the node after round trip propagation in one time step. The 

inductive stub has the incident voltages at the next time step equal to minus the 

reflected voltage at the previous time step. On the other hand, the capacitive stub 

has the incident voltage at the next time step equal to the reflected voltage at the 

previous time step. The connection process of link lines remains unchanged from 

the free space SCN model. The global connection matrix contains all the 

information relating incident voltages at the next time step with reflected voltage 

at the previous time step of all the ports associated with each SCN in the 

discretised 3-D problem space. 

 

To incorporate material properties into scattering matrix, the capacitive stubs in 

the x, y and z-directions are assigned port numbers 13 to 15, while inductive 

stubs port numbers 16 to 18 respectively. This augments the scattering sub-

matrix to an order 18 x 18. A voltage pulse incident on port 1 is scattered into 

ports 1, 2, 3,9,11 and 12. As Ex and Hz are the associated fields, part of the 

scattered pulse couples with ports 13 and 18 respectively. This procedure is 

repeated for all the ports in the SCN stub model and the scattering sub-matrix is 

[D.1, D.2]:        

 

 

 

 

 

 

 

(D.10) 
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       1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 a b d      b  -d c g     i 

2 b a    d   c -d  b g    -i  

3 d  a b    b   c -d  g    -i 

4   b a d  -d c   b   g  i   

5    d a b c -d  b     g -i   

6  d   b a b  -d c     g  i  

7    -d c b a d  b     g i   

8   b c -d  d a   b   g  -i   

9 b c    -d   a d  b g    i  

10  -d   b c b  d a     g  -i  

11 -d  c b    b   a d  g    i 

12 c b -d      b  d a g     -i 

13 e e       e   e h      

14   e e    e   e   h     

15     e e e   e     h    

16    f -f  f -f        j   

17  -f    f   f -f       j  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

S x,y,z = 

18 f  -f        f -f      j 

 

 

where 

( ) ( )2 4 2 4

SC SL

SC SL

ˆ ˆY Z
a

ˆ ˆY Z

−
= +

+ +
 

( )
4

2 4
SC

b e
Ŷ

= =
+

 

( ) ( )2 4 2 4

SC SL

SC SL

ˆ ˆY Z
c

ˆ ˆY Z

−
= −

+ +
 

( )
4

2 4
SL

d i
Ẑ

= =
+

 

( )
4

2 4

SL

SL

Ẑ
f

Ẑ
=

+
 

( )
4

2 4

SC

SC

Ŷ
g

Ŷ
=

+
 

4

4

SC

SC

Ŷ
h

Ŷ

−
=

+
 

     (D.11) 



Appendix D     SCN with inductive and capacitive stubs 

 

 239 

( )
4

2 4

SL

SL

Ẑ
f

Ẑ
=

+
 

 

The global scattering matrix of the SCN with material stubs is found by 

substituting (D.11) into (7.9). 
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