
Fuzzy Methodologies for Automated

University Timetabling Solution

Construction and Evaluation

by Hishammuddin Asmuni, MSc

Thesis submitted to the University of Nottingham

for the degree of Doctor of Philosophy

April 2008

mailto:hishamasmuni@gmail.com

To my loving family - Asmah Yunos, Irfan Fikri and Ainul Nadhirah.

Contents

List of Figures v

List of Tables viii

Abstract xiii

Acknowledgement xv

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Aims and Scope . 2

1.3 Overview of this Thesis . 4

I Background 6

2 Review of the State of the Art 7

2.1 Description of the Timetabling Problem 7

2.1.1 Introduction . 7

2.1.2 University Examination Timetabling 9

2.1.3 University Course Timetabling . 13

2.2 Previous Research in University Timetabling 16

2.2.1 The General Framework . 16

2.2.2 Sequential Constructive Approaches 17

2.2.3 Iterative Improvement Methods 24

2.3 Evaluation of Timetable Quality . 32

2.3.1 Data Sets and Problem Descriptions 33

2.3.2 Existing Evaluation Functions . 37

2.3.3 Multi-objective and Multi-criteria Approaches 40

2.4 The Need for Fuzzy Techniques in Timetabling 43

i

CONTENTS

2.5 Fuzzy Techniques in Timetabling . 44

2.6 Generalisation of Problem Solving Approaches 47

2.7 Chapter Summary . 50

3 Theory of Fuzzy Sets and Fuzzy Systems 51

3.1 Introduction . 51

3.1.1 Fuzzy Sets and Membership Functions 52

3.1.2 Linguistic Variables, Values and Rules 54

3.1.3 Fuzzy Operators . 57

3.1.4 Fuzzy Hedges . 58

3.1.5 Defuzzification Methods . 59

3.1.6 Overview of Fuzzy Systems . 62

3.2 Chapter Summary . 67

II Fuzzy Construction 68

4 Fuzzy Multiple Heuristic Orderings for Examination Timetabling 69

4.1 Introduction . 69

4.2 The Basic Sequential Constructive Algorithm 70

4.3 Why Fuzzy Multiple Heuristic Orderings? 74

4.4 The Fuzzy Multiple Heuristic Ordering 76

4.4.1 Fuzzy Modeling . 77

4.4.2 Experiments and Results . 88

4.5 Consistency of the Different Heuristic Ordering 99

4.5.1 Experimental Results . 99

4.5.2 Performance Analysis and Discussions 103

4.6 Chapter Summary . 111

5 Comparison of Fuzzy and Non-Fuzzy Multiple Heuristic Ordering 113

5.1 Introduction . 113

5.2 Extension to Three Heuristic Ordering 114

5.2.1 Algorithmic Changes to Reduce Computational Time 114

5.2.2 Experiments with Revised Algorithm 119

5.2.3 Experimental Results . 121

5.2.4 Discussion of Results . 131

5.3 Chapter Summary . 141

ii

CONTENTS

6 Generalisation of the Fuzzy Multiple Heuristic Ordering 142

6.1 Introduction . 142

6.2 Application to Course Timetabling . 143

6.2.1 Problem Definition . 144

6.2.2 Experimental Results . 146

6.2.3 Discussion of Results . 148

6.3 Alternative Combinations of Heuristic Orderings 150

6.3.1 Experimental Results . 155

6.3.2 Discussion of Results . 161

6.4 Alternative Approaches to Tuning the Fuzzy System 165

6.4.1 Tuning Fuzzy Rules with Fixed Membership Functions 165

6.4.2 Randomly Generated Fuzzy Models 167

6.4.3 Testings and Results . 172

6.5 Chapter Summary . 177

III Fuzzy Evaluation 179

7 A Novel Fuzzy Approach to Evaluate the Examination Timetabling 180

7.1 Introduction . 181

7.2 Assessing Timetable Quality . 181

7.2.1 Disadvantages/Drawbacks of Current Evaluation Functions 181

7.2.2 The Proposed Fuzzy Evaluation Function 183

7.2.3 Input Normalisation . 185

7.3 Preliminary Investigations . 188

7.3.1 Experiments Setup . 188

7.3.2 Experimental Results . 190

7.3.3 Discussion . 196

7.4 Chapter Summary . 201

8 Determination of Boundary Settings 203

8.1 Introduction . 203

8.2 Approximate Boundaries using Weighting Factors 205

8.2.1 Approximate Boundaries for Average Penalty 205

8.2.2 Approximate Boundaries for Highest Penalty 214

8.3 Algorithmic Determination of the Lower Boundary 215

8.3.1 Brute Force Lower Limit Approximation Algorithm 216

iii

CONTENTS

8.3.2 Greedy Lower Limit Approximation Algorithm 217

8.3.3 Comparison of Lower Limit Algorithms 220

8.3.4 Algorithmic Derivation of Boundaries 223

8.4 Evaluation of Boundary Settings . 224

8.4.1 Methods . 224

8.4.2 Results . 225

8.4.3 Discussion . 225

8.5 Review of Previously Published Results 237

8.6 Chapter Summary . 239

9 Conclusions and Future Work 242

9.1 Summary of Contributions . 243

9.1.1 Fuzzy Construction of Timetables 243

9.1.2 Fuzzy Evaluation of Timetables 245

9.2 Future Research . 246

9.3 Dissemination . 248

9.3.1 Journal Paper . 248

9.3.2 Conference Papers . 249

9.3.3 Abstract . 250

A Analysis of Modified Algorithms 251

B Crisp Values for the 35 Solutions 261

Bibliography 278

iv

List of Figures

2.1 Phases in constructing solutions for timetabling problem 17

3.1 Membership function for the set of cold temperatures, defined as cold =

{x|x ≤ 10} . 52

3.2 Membership function for the fuzzy set cold = {x | x is less than about 10} 53

3.3 Membership functions for the linguistic variable ‘temperature’ 55

3.4 Some common membership functions . 56

3.5 Fuzzy sets operations (adapted from Negnevitsky (2002, Chap. 4)) 57

3.6 Apply hedge ‘very’ onto linguistic value ‘warm’ 59

3.7 The Centre of Gravity (COG) method of defuzzification 60

3.8 The Mean of Maxima (MOM) method of defuzzification 61

3.9 The Smallest of Maxima (SOM) and The Largest of Maxima (LOM)

methods of defuzzification . 61

3.10 The Bisector of Area (BOA) method of defuzzification 62

3.11 Components of fuzzy system . 63

3.12 Characteristic of linguistic variables . 64

3.13 The fuzzified value for both input linguistic variables 65

3.14 Evaluation of rules fulfillment (firing levels) 66

3.15 Aggregation of rules . 66

3.16 Defuzzification of final shape . 67

4.1 A general framework for producing timetabling solutions 71

4.2 Pseudo code for the ‘rescheduling procedure’ used if ‘skipped’ exams exist 72

4.3 Example of examinations ordered by various combinations of heuristics . 75

4.4 The steps involved in a fuzzy version of Process 1 (from Fig. 4.1) 78

4.5 A nine-rule Mamdani inference process 81

4.6 Membership functions for Fixed Fuzzy LD+LE Model 84

4.7 The membership function for tuned fuzzy model 87

v

LIST OF FIGURES

4.8 Range of possible membership functions 87

4.9 Best fuzzy model for data sets CAR-F-92 , CAR-S-91 , EAR-F-83 , HEC-S-92 ,

KFU-S-93 and LSE-F-91 . 93

4.10 Best fuzzy model for data sets RYE-F-92 , STA-F-83 , TRE-S-92 , UTA-S-92 ,

UTE-S-92 and YOR-F-83 . 94

5.1 The modified algorithm . 118

5.2 Pseudo code for the new ‘rescheduling procedure’ 119

6.1 Possible combinations of two heuristic orderings 152

6.2 Possible combinations of three heuristic orderings 153

6.3 Pseudo-code for Tuned Fuzzy Rules 1 . 168

6.4 Pseudo-code for Tuned Fuzzy Rules 2 . 169

6.5 An example of defining a random fuzzy model 171

6.6 Pseudo-code for Random Model 1 . 173

6.7 Pseudo-code for Random Model 2 . 174

7.1 Gaussian membership function for µ(xk, σk) 185

7.2 Membership functions for input and output variables 186

7.3 Fuzzy rules for Fuzzy Evaluation Function 187

7.4 Indicative illustrations of the range of normalised inputs and associated

output obtained for the LSE-F-91 and TRE-S-92 data sets 192

7.5 Firing level for Rule 1 with different normalised input values 199

7.6 A graphical comparison of the effect of the two boundary settings for

UTA-S-92 . 200

8.1 Illustration of boundary coverage concept 204

8.2 Boundary coverage using weighted factors 205

8.3 Pseudo code for approximation of maximum total penalty, Pmax 207

8.4 A graphical illustrations of Pmax calculations for LSE-F-91 208

8.5 Pseudo code for BFLLAA for three enroled exams 218

8.6 Illustrative example of BFLLAA for 3 enroled exams 219

8.7 Pseudo code for BFLLAA for four enroled exams (continue from Figure 8.5)220

8.8 Pseudo code for GLLAA . 221

8.9 A comparison of rankings produced by the five boundary settings used

for CAR-F-92 . 226

vi

LIST OF FIGURES

8.10 A comparison of rankings produced by the five boundary settings used

for CAR-S-91 . 227

8.11 A comparison of rankings produced by the five boundary settings used

for EAR-F-83 . 228

8.12 A comparison of rankings produced by the five boundary settings used

for HEC-S-92 . 229

8.13 A comparison of rankings produced by the five boundary settings used

for KFU-S-93 . 229

8.14 A comparison of rankings produced by the five boundary settings used

for LSE-F-91 . 230

8.15 A comparison of rankings produced by the five boundary settings used

for RYE-F-92 . 230

8.16 A comparison of rankings produced by the five boundary settings used

for STA-F-83 . 231

8.17 A comparison of rankings produced by the five boundary settings used

for TRE-S-92 . 231

8.18 A comparison of rankings produced by the five boundary settings used

for UTA-S-92 . 232

8.19 A comparison of rankings produced by the five boundary settings used

for UTE-S-92 . 232

8.20 A comparison of rankings produced by the five boundary settings used

for YOR-F-83 . 233

8.21 Illustrative of minimum exams that cause penalty 236

vii

List of Tables

2.1 Examination timetabling problem characteristics. The twelve problem

instances that used in this research are highlighted in bold font. 36

2.2 The capacitated problem specifications 39

3.1 Examples of hedges (taken from Negnevitsky (2002, Chap. 4)). For the

graphical representation, the thicker line is the new shape when the hedge

act on the linguistic value. 58

4.1 Minimum and maximum values for heuristic LD , LE , SD and WLD for

each data set. The minimum and maximum values for heuristic LCD is

similar to LD . 79

4.2 Fuzzy rule set for Fixed Fuzzy LD+LE Model 85

4.3 The fuzzy rule set for the Fuzzy LD+LE Model 89

4.4 The fuzzy rule set for the Fuzzy SD+LE Model 89

4.5 The fuzzy rule set for the Fuzzy SD+LD Model 89

4.6 Experimental results for single and fuzzy multiple heuristic orderings . . 91

4.7 Values for cp parameters . 92

4.8 Comparison of cp parameters combinations for the best fuzzy model and

the second best fuzzy model . 95

4.9 Results comparison . 100

4.10 The penalty costs obtained by the different heuristic orderings on each of

the twelve benchmark data sets. In each case the best result, the worst

result, the average result and the standard deviation obtained over 30

repeated runs are given. 101

4.11 The number of skipped exams obtained due to the fact that there was no

valid time slot available in the first attempt to assign the exam into the

time slots — i.e. the number of exams in the skipped list after Process 5 103

viii

LIST OF TABLES

4.12 The number of iterations of the ‘rescheduling procedure’ required for each

data set . 104

4.13 A comparison of the computational time (in seconds) required to construct

the solutions for each heuristic ordering methods for each data set 105

5.1 A comparison of the results obtained by the different algorithms on the

CAR-S-91 , KFU-S-93 and UTA-S-92 data sets 116

5.2 Fuzzy rule set for Fuzzy LD+LE+SD Model 121

5.3 Values for weighted factors identified in the tuning process 122

5.4 Values for cp parameters obtained from the fuzzy tuning process 122

5.5 The penalty costs obtained by the different non-fuzzy heuristic orderings

on each of the twelve benchmark data sets 124

5.6 The penalty costs obtained by the different fuzzy multiple heuristic or-

derings on each of the twelve benchmark data sets 127

5.7 The Best Fuzzy, Best Linear and t-Test (Two-Sample Assuming Unequal

Variances) Result of the twelve benchmark data sets 128

5.8 The number of ‘rescheduling procedure’ required for non-fuzzy heuristic

orderings for each data set . 129

5.9 The number of ‘rescheduling procedure’ required for fuzzy multiple heuris-

tic orderings for each data set . 130

5.10 A comparison of the computational time (in seconds) required to construct

the solutions for non-fuzzy heuristic ordering for each data set 132

5.11 A comparison of the computational time (in seconds) required to construct

the solutions for fuzzy multiple heuristic orderings for each data set . . . 133

5.12 A comparison of the average computational time required for Fuzzy SD+LE

Model when old algorithm (ALG1.0) were run in two different computers.

Values in the second column are extracted from Table 4.13, and values

in the third column are extracted from Table A.2. For each data set, the

percentage improvement is shown in the fourth column. 134

5.13 A comparison of the average computational time required for Fuzzy SD+LE

Model when the new algorithm (ALG2.0) and the old algorithm (ALG1.0)

were run in two different computers. Values in the second column are ex-

tracted from Table 4.13, and values in the third column are extracted

from Table 5.11. For each data set, the percentage improvement is shown

in the fourth column. 135

ix

LIST OF TABLES

5.14 Comparison of results for single heuristic orderings using two different

algorithms . 137

5.15 Comparison of results for two heuristic orderings used simultaneously

when two different algorithms were applied 138

5.16 A comparing of results obtained herein with results published by other

researchers . 140

5.17 A comparison of results obtained using different constructive approaches 141

6.1 Course timetabling problem characteristics 145

6.2 Comparison of solution quality between Single Heuristic Ordering and

Fuzzy Multiple Heuristic Ordering . 147

6.3 Comparison of number of iterations of ‘rescheduling procedure’ required

to produce the solutions shown in Table 6.2 148

6.4 Comparison of solution quality with other results in literature 149

6.5 Fuzzy rule set when combining two heuristic orderings (with SD as one

of the variable) . 153

6.6 Fuzzy rule set when combining two heuristic orderings (without SD) . . . 154

6.7 Fuzzy rule set when combining three heuristic orderings (with SD as one

of the variable) . 154

6.8 Fuzzy rule set when combining three heuristic orderings (without SD) . . 154

6.9 A comparison of results for five Single Heuristic Ordering with last time

slot selection . 157

6.10 A comparison of results for five Single Heuristic Ordering with random

time slots selection . 158

6.11 Experimental results for two heuristic orderings applied simultaneously . 159

6.12 Experimental results for three heuristic orderings applied simultaneously 160

6.13 A comparison of ‘best’ penalty cost for the five single heuristic orderings.

The lowest value are highlighted with bold font. 163

6.14 A comparison of average penalty cost for the five single heuristic orderings.

The lowest value are highlighted with bold font. 163

6.15 A comparison of ‘best’ results obtained in Chapter 4, Chapter 5 and

this Chapter . 164

6.16 Fuzzy rule set for Fuzzy LD+LE+SD Model 166

6.17 Integer codes assigned to fuzzy model parameters 170

6.18 A comparison of results for Fuzzy LD+SD+LE Model when utilising fixed

and tuned fuzzy rules . 175

x

LIST OF TABLES

6.19 A comparison of results for tuning fuzzy model randomly 176

7.1 Minimum and maximum values for Average Penalty and Highest Penalty

obtained from the 35 timetable solutions for each data set 191

7.2 A comparison of the results obtained using the two alternative forms of

the normalisation process for data sets CAR-F-92 , CAR-S-91 , EAR-F-83

and HEC-S-92 . 193

7.3 A comparison of the results obtained using the two alternative forms of

the normalisation process for data sets KFU-S-93 , LSE-F-91 , RYE-F-92

and STA-F-83 . 194

7.4 A comparison of the results obtained using the two alternative forms of

the normalisation process for data sets TRE-S-92 , UTA-S-92 , UTE-S-92

and YOR-F-83 . 195

7.5 Range of timetable quality . 198

8.1 The ‘best’ and ‘worst’ timetable solutions known 210

8.2 Approximate boundaries derived by considering all students 211

8.3 Distribution of students enroled for a particular number of exams 212

8.4 Approximate boundaries derived by excluding students with only one exam213

8.5 A comparison of the range of boundary settings for average penalty . . . 213

8.6 The boundary settings for highest penalty 215

8.7 lowerLimit values for average penalty calculated using BFLLAA and GLLAA222

8.8 Boundary settings for average penalty using BFLLAA lowerLimit 224

8.9 A comparison of the results of fuzzy evaluation obtained by using the ap-

proximate boundary settings based on the three new methods introduced

in this Chapter . 226

8.10 Analysis of students involved in calculating the lower limit proximity cost 237

8.11 A comparison between lower limit with the ‘best’ results in literature . . 239

A.1 Analysis of Changes in Algorithm for Tuned Fuzzy LD+LE Model 251

A.2 Analysis of Changes in Algorithm for Tuned Fuzzy LD+LE Model 256

B.1 Crisp values of average penalty and highest penalty for CAR-F-92, CAR-

S-91 and EAR-F-83. 262

B.2 Crisp values of average penalty and highest penalty for HEC-S-92, KFU-

S-93 and LSE-F-91. 263

xi

LIST OF TABLES

B.3 Crisp values of average penalty and highest penalty for RYE-F-92, STA-

F-83 and TRE-S-92. 264

B.4 Crisp values of average penalty and highest penalty for UTA-S-92, UTE-

S-92 and YOR-F-83. 265

xii

Abstract

This thesis presents an investigation into the use of fuzzy methodologies for

University timetabling problems. The first area of investigation is the use

of fuzzy techniques to combine multiple heuristic orderings within the con-

struction of timetables. Different combinations of multiple heuristic order-

ing were examined, considering five graph-based heuristic orderings - Largest

Degree, Saturation Degree, Largest Enrolment , Largest Coloured Degree and

Weighted Largest Degree. The initial development utilised only two heuristic

orderings simultaneously and subsequent development went on to incorpo-

rate three heuristic orderings simultaneously. A central hypothesis of this

thesis is that this approach provides a more realistic scheme for measuring

the difficulty of assigning events to time slots than the use of a single heuristic

alone. Experimental results demonstrated that the fuzzy multiple heuristic

orderings (with parameter tuning) outperformed all of the single heuristic

orderings and non-fuzzy linear weighting factors. Comprehensive analysis

has provided some key insights regarding the implementation of multiple

heuristic orderings.

Producing examination timetables automatically has been the subject of

much research. It is generally the case that a number of alternative solutions

that satisfy all the hard criteria are possible. Indeed, there are usually a very

large number of such feasible solutions. Some method is required to permit

the overall quality of different solutions to be quantified, in order to allow

them to be compared, so that the ‘best’ may be selected. In response to that

demand, the second area of investigation of this thesis is concerned with

a new evaluation function for examination timetabling problems. A novel

approach, in which fuzzy methods are used to evaluate the end solution

quality, separate from the objective functions used in solution generation,

represents a significant addition to the literature.

The proposed fuzzy evaluation function provides a mechanism to allow an

overall decision in evaluating the quality of a timetable solution to be made

xiii

based on common sense rules that encapsulate the notion that the timetable

solution quality increases as both the average penalty and the highest penalty

decrease. New algorithms to calculate what is loosely termed the ‘lower

limits’ and ‘upper limits’ of the proximity cost function for any problem

instance are also presented. These limits may be used to provide a good

indication of how good any timetable solution is. Furthermore, there may

be an association between the proposed ‘lower limit’ and the formal lower

bound. This is the first time that lower limits (other than zero) have been

established for proximity cost evaluation of timetable solutions.

xiv

Acknowledgements

I would like to express my gratitude to my supervisors, Dr. Jonathan

Garibaldi, Professor Edmund Burke and Dr. Barry McCollum, for their

expertise, encouragement, support, and valuable advice during my research.

I would also like to thank the Ministry of Science, Technology and Innovation

(MOSTI) of Malaysia and the Universiti Teknologi Malaysia (UTM) for the

doctoral scholarship and other financial support throughout the course of my

PhD study.

Special thanks to my lovely wife Asmah Binti Yunos, my son Irfan Fikri, my

daughter Ainul Nadhirah, my parents, my brother and sisters for their love,

patience and understanding throughout the study.

To all ASAP Group members, thank you for the friendly working environ-

ment in the group.

xv

Chapter 1

Introduction

1.1 Background and Motivation

The problem of timetabling examinations and courses is of much interest and concern

to academic institutions. The basic problem is to allocate a time slot and a room for all

events (exams, lectures, seminars, tutorials) within a limited number of permitted time

slots and rooms in order to find a feasible timetable. This assignment process is subject

to ‘hard’ constraints which must be satisfied in order to get a feasible timetable. An

example of such constraint is that no student is required to attend two events at the

same time.

In addition, it is also important to build a good quality lecture timetable that con-

siders not only the administration requirements, but also takes into account lecturers’

and students’ preferences. It is generally desirable (but not essential) to satisfy these

preferences and, as such, they are termed ‘soft’ constraints.

As this task is time consuming and tedious to carry out manually, much effort has

been directed over the last few decades to generate timetables automatically. With a

large number of events needing to be assigned to resources (time slots and rooms) and a

list of constraints (both hard and soft) needing to be addressed, there are a large number

1

1.2 Aims and Scope

of potential solutions to this problem. Furthermore, the process of generating timetables

is complex, with a number of key decision points. Two major decision points are how

to construct feasible solutions and how to evaluate their effectiveness (essentially, how

to decide which of several alternative solutions is ‘the best’). Many factors need to be

considered in both these key decision areas, with much information being available. To

date, there has been relatively little research into how the available information can be

combined, with the goal of achieving better solutions.

Since Zadeh introduction the notion of fuzzy sets in 1965 (Zadeh, 1965), fuzzy

methodologies have been widely utilised in a number of decision support contexts. In-

deed, fuzzy methodologies have made significant impact in many areas, including con-

sumer technologies such as fuzzy logic auto-focus digital cameras and fuzzy washing

machines. It has been shown that such fuzzy approaches can be successful in combin-

ing multiple sources of information (Zimmermann, 1996). The motivation for the work

presented in this thesis is to investigate whether the use of fuzzy methodologies could

be of benefit in automating the decision making process in the construction and evalu-

ation of solutions to the examination timetabling problem. Although the main focus of

this thesis is on examination timetabling, the solution construction technique was also

applied to course timetabling.

1.2 Aims and Scope

The first area of investigation, described in Chapters 4 to 6, is an exploration of how fuzzy

techniques can be employed to combine multiple heuristics within the construction of

timetables. During the process of construction, the order in which exams are assigned to

time slots has been shown to have a major effect on the eventual solution. An assessment

of how difficult it is to place a given exam into a timetable (in effect, some measure of

how hard it is to satisfy the constraints relevant to the particular exam) is often used

to guide the order of placement. The usual strategy is to place the most difficult exams

2

1.2 Aims and Scope

first, on the basis that it is better to leave the easier exams until later in the process

when there are fewer time slots remaining. There are many different criteria that may

be used when assessing this difficulty.

A common approach has been to employ graph based heuristics (a heuristic is an

approximate rule or a ‘rule-of-thumb’ (Burke and Kendall, 2005, Chap. 1)) to provide a

quantitative indication of difficulty. This measure is then used to determine the order in

which the exams are assigned into the timetable and, hence, are referred to as ‘heuristic

orderings’. Examples of such heuristics are the number of other exams in conflict with the

given exam, the number of students enroled on each exam, etc. Detailed descriptions of

these heuristic orderings are given in Section 2.2.2. In this thesis, for the first time, fuzzy

methodologies are used to combine multiple heuristics simultaneously in order to provide

a measure of the difficulty of placing each exam. This measure is then used to order

(rank) the exams for assignment. Various combinations of heuristics are investigated

in the construction process. To investigate the wider applicability of this novel fuzzy

approach, the techniques were also applied to the domain of course timetabling.

The second major area of investigation, described in Chapters 7 and 8, is the use

of fuzzy methodologies in the evaluation of the quality of timetable solutions. It is

generally the case that a number of alternative solutions that satisfy all the hard criteria

are possible. Indeed, there is usually a very large number of such feasible solutions. Some

method is required to permit the overall quality of different solutions to be quantified,

in order to allow them to be compared, so that the ‘best’ may be selected. In principle,

a range of different measures of quality might be used to evaluate how well a given

solution satisfies the various soft constraints. Such a measure is termed an ‘objective

function’ which can be used either to evaluate a range of solutions manually, or can

be used in an automated process to determine the best solution. Again, in principle,

a number of alternative objectives can be combined into a single objective function or

can be kept separate in a multi-objective framework. The trade-offs between different

3

1.3 Overview of this Thesis

objectives underpin the motivation for studying multi-objective methods. In this thesis,

fuzzy methodologies are employed to evaluate the quality of solutions using a number

of identified key criteria, after a variety of alternative solutions have been produced.

There are a number of objectives that were addressed in order to accomplish the

primary aim of the research which can be outlined as follows:

1. to investigate the use of fuzzy techniques to combine, initially, two heuristics si-

multaneously in ordering events in examination timetabling;

2. to compare the fuzzy combination of heuristics with a non-fuzzy approach;

3. to expand the investigation to consider three heuristics simultaneously;

4. to investigate the wider applicability of the technique through its application to

course timetabling;

5. to explore the use of fuzzy techniques in the evaluation of constructed solutions;

and

6. to establish the boundaries of the fuzzy evaluation method in order to determine

how good a solution actually is.

1.3 Overview of this Thesis

The remaining Chapters of this thesis are divided into three parts. Part I describes the

timetabling problem in general, distinguishing examination and course timetabling, and

goes on to describe the current state of research in examination timetabling and the

basics of fuzzy set theory. In Part II (which covers Chapters 4 to 6) the implementation

of fuzzy approaches in constructing solutions to examination timetabling is described.

Part III (which covers Chapter 7 and 8) presents a novel fuzzy approach to evaluate the

quality of timetables. The individual Chapters of this thesis are summarised below.

4

1.3 Overview of this Thesis

Chapter 2 provides a description of educational timetabling problems and presents a

review of different algorithms and approaches developed in attempting to automate the

generation of solutions to University timetabling problems. The examination timetabling

benchmark data sets that are used in this research are also described together with a

description of objective functions currently used in the evaluation of timetable solution

quality. Chapter 3 provides a description of fuzzy set theory and fuzzy reasoning. This

is a self-contained Chapter that provides the material necessary for understanding the

basic features of the fuzzy techniques used in this thesis. This self-contained Chapter is

intended for readers who are not familiar with fuzzy methodologies.

In Chapter 4, a new fuzzy approach that uses two heuristic orderings simultaneously

to measure the difficulty of assigning exams into time slots is developed and tested on the

benchmark data sets. The aim of this initial study was to investigate the effects of using

multiple heuristic ordering as compared to a single heuristic ordering. Chapter 5 presents

a comparison of fuzzy and non-fuzzy multiple heuristic ordering approaches. The tech-

nique implemented in Chapter 4 is further enhanced to include the use of three heuristic

orderings simultaneously. In Chapter 6, a generalisation of the technique is investigated.

First, the suitability of fuzzy multiple heuristic ordering in course timetabling is assessed.

Then, an exploration was carried out of all possible combinations of orderings using ei-

ther two or three heuristics simultaneously, from a set of five heuristics. Finally, a range

of methods to tune the fuzzy models utilised in these techniques were investigated.

Chapter 7 presents a new fuzzy evaluation function for examination timetabling,

based on both how good the constructed timetable is as a whole and on how good the

solution is for individual students. In Chapter 8, two algorithms for determining lower

boundaries of the quality of solutions based on the underlying structure of the problem

are presented. Finally, Chapter 9 provides some concluding remarks and suggestions for

future research that arise from the work presented in this thesis.

5

Part I

Background

6

Chapter 2

Review of the State of the Art

2.1 Description of the Timetabling Problem

2.1.1 Introduction

The Oxford Advanced Learner’s Dictionary defines a timetable as ‘a list showing the

times at which particular events will happen’. Wren (1996) described timetabling as a

special type of scheduling. He defined timetabling as follows:

“Timetabling is the allocation, subject to constraints, of given resources to

objects being placed in space time, in such a way as to satisfy as nearly as

possible a set of desirable objectives.”

Since the early 1960’s, an enormous number of research papers reporting work on

timetabling problems have appeared in the literature. After more than 40 years, research

in this area is still very active and new research directions are continuing to emerge.

Examples of recent papers can be found in the series of Proceedings of the International

Conference on the Practice and Theory of Automated Timetabling (PATAT) (Burke and

Carter, 1998; Burke and Causmaecker, 2003; Burke and Erben, 2001; Burke and Ross,

1996; Burke and Rudová, 2006; Burke and Trick, 2005). Overviews and surveys can be

7

2.1 Description of the Timetabling Problem

found in papers by Bardadym (1996); Burke and Petrovic (2002); Burke et al. (1997);

Carter (1986); Carter and Laporte (1996); de Werra (1985); Petrovic and Burke (2004);

Qu et al. (2006); Schaerf (1999); Schmidt and Strohlein (1980).

With regard to educational timetabling, generally, the problems can be classified into

three types (Schaerf, 1999; Schaerf and Di Gaspero, 2001), each with their own specific

characteristics and constraints:

School timetabling These are problems that are concerned with assigning the weekly

lessons in schools. The aim is to assign a set of teachers to a set of classes (groups

of students) for a set of lessons (subjects to be taught) in a set of time periods,

while at the same time satisfying a set of constraints. There are many variations

to the basic problem. For example, in junior (lower) schools, sometimes a single

teacher remains in the same room with the same class for the whole day, teaching a

variety of subjects in the various time periods, whereas in secondary (high) schools,

teachers may remain in the same room while different classes are taught different

lessons (in the same subject) throughout the day, or a teacher may move between

rooms for different lessons. Examples of hard constraints are that no teacher may

teach in two different rooms in the same time period and that no classes can can

have different lessons at the same time. Soft constraints may cover issues such as

rest periods for teachers (these may also be hard constraints), teachers preferences

for certain rooms and / or specific timing of certain lessons. Further examples of

constraints are listed by Costa (1994) and Loo et al. (1985). As school timetabling

is out of the scope of this thesis, no further mention will be made of it.

University examination timetabling This problem is concerned with assigning a

set of (course or subject specific) examinations, each of which a group of students

is enroled in, to a given set of time slots. A typical hard constraint is that no

student can be timetabled to sit more than one exam at the same time. Further

8

2.1 Description of the Timetabling Problem

details of the problem specification and examples of hard and soft constraints are

given in the following Section.

University course timetabling This timetabling problem is concerned with assigning

courses and associated events to time slots, groups of students and lecturers in such

a way that no conflict occurs in any period, and the number of students assigned

to a room is no more than the maximum room capacity. For more details, see

Section 2.1.3 below.

Basically, these three types of timetabling problems share the same general char-

acteristic of the need to assign events to time slots while minimising the constraint

violations. However, key differences remain between these problems. For example, in

the examination timetabling problem, groups of students can sometimes be brought to-

gether into one room (to take different exams at the same time). This is not the case

in course timetabling. See Carter and Laporte (1998) for a more detailed description of

the differences between school and university course timetabling. For a full description

of the differences between university examination and course timetabling, see McCollum

(2006).

2.1.2 University Examination Timetabling

Carter et al. (1996) defined the examination timetabling problem as:

“The assigning of examinations to a limited number of available time periods

in such a way that there are no conflicts or clashes.”

Examination timetabling is essentially the problem of allocating exams to a limited num-

ber of time periods in such a way that none of the specified hard constraints are violated.

A timetable which satisfies all hard constraints is often called a feasible timetable. In

addition to the hard constraints, there are often many soft constraints whose satisfaction

9

2.1 Description of the Timetabling Problem

is desirable (but not essential). The set of constraints which need to be satisfied is usu-

ally very different from one institution to another, as reported by Burke et al. (1996a).

Examples of common hard constraints are:

• the requirement to avoid any student being timetabled for two different exams at

the same time;

• no unscheduled exam(s) exist at the end of the timetabling process;

• room capacity should be able to accommodate all students who are enroled for the

exam(s) scheduled in the particular room(s).

In practice, each institution usually has a different way of evaluating the quality of

a feasible timetable. In many cases, the measure of quality is calculated based upon a

penalty function which represents the degree to which the soft constraints are satisfied.

Example of soft constraints are as follows:

• Exam X shall be scheduled before/after exam Y .

• Avoid students having to sit exams in consecutive time slots.

• Exams with a large number of students should be scheduled earlier in the timetable.

• Only certain time slots and/or rooms may be available for particular exams.

• Exams with questions in common should be scheduled in the same time slot.

More details of constraints for examination timetabling are listed by Burke et al.

(1996a), and Di Gaspero and Schaerf (2001).

Several models and formulations for timetabling problems have been presented by

various researchers. There is a well known analogy between a basic version of the

timetabling problem (with no soft constraints) and the graph colouring problem (Burke

et al., 1994c, 2004b; Carter et al., 1996; de Werra, 1985; Welsh and Powell, 1967). In the

graph colouring problem, the goal is to find the minimum number of colours which can

be used to colour the graph vertices in such a way that none of the connected adjacent

10

2.1 Description of the Timetabling Problem

vertices are coloured with the same colour. This minimum number of colours is known

as the ‘chromatic number’ of a graph. The timetabling problem, in its simplest form

(without soft constraints), can be represented as a graph colouring problem, in which

the nodes represent the exams, colours represent the time slots and the edges represent

the conflict between exams (Burke et al., 2004b). Hence, if the examination timetabling

problem is considered as a graph colouring problem, the aim is to find the minimum

number of time slots which are able to accommodate all the exams without any clashes.

By analysing the student enrolment list, the exams that conflict (for example, exams

that have at least one common student) can be identified. Cole (1964) represented the

conflicting exams using the ‘incompatibility table’, while Broder (1964) used the term

‘conflict matrix’ for the same thing. The conflicting exams are represented by a conflict

matrix, C = [cij]NxN where i, j ∈ {1, ..., N} (N is the number of exams). Element cij

denotes the number of students enroled for both exam i and exam j. When a non-

weighted graph is employed, it is also possible to use cij = 1 if there is conflict between

exam i and exam j; cij = 0 otherwise. It is a symmetrical matrix, i.e. element cij = cji.

For diagonal cells (i.e. i = j), each cell either contains the number of students enroled

for the particular exam (cij = number of students for exam i) or the cell contains zero

(cij = 0) to denote that there is no conflict. Either is acceptable, depending on how

the information stored in the conflict matrix is utilised. Essentially, several pieces of

information can be generated from the conflict matrix that are related to graph theory.

The number of exams in conflict for an exam is equivalent to the node degree. Node

degree values are utilised when heuristic orderings (e.g. Largest Degree, Largest Coloured

Degree and Weighted Largest Degree, see Section 2.2.2) are employed to order the exams

by difficulty when constructing solutions. It is also possible to use the diagonal cell

values for the heuristic ordering Largest Enrolment if cij is not set to zero when i = j.

11

2.1 Description of the Timetabling Problem

Mathematical models also exists for the examination timetabling problem. Consider

the following notations (adopted from Maŕın (1998)):

• N is the number of exams

• P is the number of time slots available

• T = [tnp]NxP is the matrix which represents assignments of the exams into time

slots where n ∈ {1, ..., N} and p ∈ {1, ..., P}.

tnp =


1, if exam n is scheduled in time slot p

0, otherwise

• Znp is the cost of scheduling exam n in time slot p

• Ynm = 1 if exam n clashes with exam m (i.e. exam n and m have common

students), and 0 otherwise

For any timetable solution construction, the objective is to minimise

N∑
n=1

P∑
p=1

Znp tnp (2.1)

subject to:
P∑

p=1

tnp = 1, where n ∈ {1, ..., N} (2.2)

N−1∑
n=1

N∑
m=n+1

P∑
p=1

tnp tmp Ynm = 0 (2.3)

Equation 2.2 denotes that all exams must be scheduled by the end of the timetabling

process. Equation 2.3 denotes the requirement that a student is not able to attend

more than one exam at the same time. As there are many different criteria that can be

included when evaluating the timetable quality, the definition of Znp is dependent on

which criteria are to be used for the particular educational institution. In the context of

12

2.1 Description of the Timetabling Problem

the benchmark data sets used in this research, the descriptions of evaluation functions

which have been applied to the benchmark data sets are given in Section 2.3.2.

2.1.3 University Course Timetabling

In this thesis, the main focus is on constructing and evaluating solutions to the university

examination timetabling problem. The course timetabling problem is only considered

in Section 6.2 in the context of exploring the generality of the proposed fuzzy approach

to timetable construction. Hence, only a very brief definition of the problem and survey

of particularly relevant literature is given here.

A general overview of course timetabling can be found in the paper by Carter and

Laporte (1998). They defined course timetabling as:

“a multi-dimensional assignment problem in which students, teachers (or fac-

ulty members) are assigned to courses, course sections or classes; ”events”

(individual meetings between students and teachers) are assigned to class-

rooms and times.”

Note that, although course timetabling is sometimes also referred to as class-teacher

timetabling, e.g. Burke et al. (2004b), the term course timetabling is preferred in this

thesis. A complete formal description of the problem can be found in Burke et al.

(2004b).

As stated earlier, in university course timetabling, a set of courses and associated

events is assigned to a set of rooms and time periods within a week and, at the same time,

students and teachers are assigned to the courses so that the appropriate lessons can take

place, subject to a variety of hard and soft constraints. In 2002, Paechter introduced a

course timetabling problem instance generator as part of an ‘International Timetabling

Competition’1, organised by the Metaheuristics Network and sponsored by the PATAT

1http://www.metaheuristics.org/index.php?main=4&sub=44

13

2.1 Description of the Timetabling Problem

International Conference series. The objective of the International Timetabling Compe-

tition was to create feasible weekly class timetables for a university, in which a number of

hard constraints were satisfied, while minimising the number of soft constraints broken.

The instance generator was used to produce simplified, but realistic, problem instances,

all of which had at least one perfect solution (a solution with no constraint violations,

hard or soft). The competition used the following hard constraints:

1. No student is required to attend more than one course at the same time

2. A course can only be scheduled to a room which satisfies the features required by

the course

3. A course can only be scheduled to a room which has enough room to accommodate

all students registered for it

4. Only one course can be scheduled in one room at any time slot

Solutions which do not violate any of the hard constraints are defined as feasible

solutions. Besides these (and other possible) hard constraints, there are a variety of

soft constraints which have been proposed and used. The following soft constraints are

defined for the data set generation in the competition:

1. No student should be scheduled to attend only one course on a day

2. No course should be scheduled at the last time slot of the day for any student

3. No student should be scheduled to attend more than two courses consecutively in

any one day

By definition, it is not compulsory to satisfy the soft constraints for any given problem.

Usually, some form of penalty function is used to measure the degree to which the soft

constraints are satisfied. Although there is no universally accepted method, often the

numbers of students for which each constraint is not satisfied are simply summed.

14

2.1 Description of the Timetabling Problem

Automated approaches to course timetabling have been studied over the last thirty

years. A comprehensive survey of the early approaches can be found in Carter and La-

porte (1998). Other surveys of university timetabling that cover both examination and

course problems include Burke et al. (1997), Burke et al. (2004a), Carter (2001), Schaerf

(1999) and Wren (1996). The set of twenty problem instances introduced for the compe-

tition itself (three more instances were also generated, to be used as ‘unseen’ tests) have

also been used by a number of authors as a benchmark data set. The competition was

won by Kostuch (2005) utilising a ‘three-phase approach’ featuring simulated annealing,

which obtained the best results on 13 out of the 20 problem instances. Burke et al.

(2003a) also entered the competition, using an approach based on the Great Deluge Al-

gorithm (see Section 2.2.3.1), which obtained the best results on the remaining 7 of the

20 problem instances. Other approaches used in the competition included those based on

simulated annealing, a hybrid local search method and several variations of tabu-search.

Since the close of the competition, the same twenty data sets have subsequently been

used by other authors including Chiarandini et al. (2006).

Paechter’s test instance generator was used by Socha et al. (2002) to generate eleven

problem instances of various sizes. They compared a local search method and an Ant

Colony Optimisation algorithm on these eleven problem instances and showed that the

Ant Colony Optimisation algorithm achieved better performance. The same eleven

problem instances have subsequently been used by other authors as a means of com-

parison (and are also used in this thesis, as described in Section 6.2). Burke, Kendall

and Soubeiga (2003c)) introduced a hyper-heuristic (see Section 2.6) that utilised tabu-

search in an attempt to raise the level of generality of automated timetabling systems,

and the system was used to solve both these course timetabling problem instances and

nurse scheduling problems. Burke et al. (2007) developed a graph-based hyper-heuristic

approach which used a sequence of heuristic orderings to construct the initial solution

and then applied steepest descent local search to improve the solution. These data

15

2.2 Previous Research in University Timetabling

sets were also used by Abdullah et al. (2005) who employed a variable neighbourhood

search with a fixed length tabu list used to penalise the unperformed neighbourhood

structures. Following on from this, Abdullah et al. (2006c) applied a randomised it-

erative improvement method featuring composite neighbourhood structures to the test

instances. Finally, real-world data sets have also been used in case studies of university

course timetabling by other authors including Avella and Vasil’Ev (2005), Daskalaki

et al. (2004), Dimopoulou and Miliotis (2004) and Santiago-Mozos et al. (2005).

Despite the fact that the problem of timetabling university courses is very different

from timetabling university examinations, some authors have blurred the distinctions

and/or have applied the same techniques to solve both problems (McCollum, 2006).

Hence, in the remainder of the Chapter, in which the main focus is on examination

timetabling, some occasional references to key results in course timetabling will be found.

2.2 Previous Research in University Timetabling

2.2.1 The General Framework

Hertz (1991) stated that approaches developed to solve timetabling problems usually

consist of two phases. Figure 2.1 shows a general framework for finding solutions to

timetabling problems. Normally, in Phase 1, a solution is (or solutions are) constructed

by using a sequential construction algorithm. The constructed solutions can be feasi-

ble or infeasible. If a solution is infeasible, it can be ‘corrected’ during the iterative

improvement phase (Phase 2).

In Phase 2, the initial solution is modified in order to improve the solution while

ensuring the feasibility of the solution. The improvements can be implemented by using

any search algorithm such as Genetic Algorithms (Holland, 1992), Tabu Search (Glover,

1986), Simulated Annealing (Kirkpatrick et al., 1983) or the Great Deluge Algorithm

(Dueck, 1993) (to name just a few approaches). In Section 2.2.3, a brief description

16

2.2 Previous Research in University Timetabling

Phase 1 :
Sequential Constructive

Algorithm

Constructive
Solution

Improved
Solution

Problem
Definitions

Phase 2 :
Iterative improvement

Figure 2.1: Phases in constructing solutions for timetabling problem

of various search algorithms and approaches applied to university timetabling problems

is presented.

In the first part of this research, the focus is on the construction process, as con-

structing feasible solutions is a difficult task especially for large, real-world timetabling

problems (Hertz, 1991). A detailed explanation of the construction algorithm employed

in this research is outlined in Section 4.2.

2.2.2 Sequential Constructive Approaches

The use of a sequential constructive algorithm is amongst the earliest approaches used

to tackle the examination timetabling problem in an automated way (Broder, 1964;

Cole, 1964; Foxley and Lockyer, 1968). In this approach, the concept of ‘failed first’ was

implemented. The basic idea was to first schedule the exams that might cause problems

if they were to be left to later in the scheduling process. By doing so, the overall aim was

to avoid the assignment of exams to time slots which might later lead to an infeasible

solution. An infeasible solution is reached when at least one exam remains unscheduled.

In many cases this is because exams placed earlier have invalidated all the potentially

17

2.2 Previous Research in University Timetabling

valid time slots. In such a situation, a different ordering may enable a feasible solution

to be found.

Approaches which order the events prior to assignment to a period have been dis-

cussed by several authors including Boizumault et al. (1996), Brailsford et al. (1999),

Burke and Newall (2004), Burke, Kingston and de Werra (2004b), Burke and Petrovic

(2002), and Carter et al. (1996). In the context of the exam timetabling benchmark

data sets used in this research (described in Section 2.3.1), this sequencing strategy has

been implemented by Carter et al. (1996), Burke and Newall (2004), and Burke et al.

(2007). Usually, the unscheduled exams are ordered in a sequence that represents how

difficult it is judged that they will be to place in the timetable (most difficult first).

A number of commonly used strategies have been adopted from the graph colouring

problem. Many studies employ graph theory to calculate the ‘difficulty to schedule an

exam’. The following list describes the most common graph colouring based heuristic

orderings used in timetabling research:

Largest Degree (LD) First. Exams are ranked in descending order by the number

of exams in conflict — i.e. priority is given to exams with the greatest number of

exams in conflict.

Largest Enrolment (LE) First. Exams are ranked in descending order by the num-

ber of students enroled in each of the exams — i.e. exams with the highest number

of students are given the highest priority.

Least Saturation Degree (SD) First. Exams are ranked in increasing order by the

number of valid time slots remaining in the timetable for each exam — priority is

given to exams with fewer time slots available.

Largest Coloured Degree (LCD) First. This heuristic is based on LD . For this

heuristic, only exams which have been already assigned to the schedule are con-

sidered as the exams which will cause conflict.

18

2.2 Previous Research in University Timetabling

Weighted Largest Degree (WLD) First. This heuristic is also based on LD . Be-

sides the number of exams in conflict, the total number of students involved in the

conflict are taken into account as well.

In general, heuristic orderings are divided into two categories: static and dynamic.

Static heuristic orderings are predetermined before the start of the assignment process

and their values remain the same throughout the process. For the heuristic orderings

described above, LD , LE and WLD are categorized as static heuristic orderings. The

number of exams in conflict with each exam and the number of students enroled for

each exam only need to be calculated once by analysing the specific problem structure.

On the other hand, SD and LCD are considered to be a dynamic heuristic orderings

because the number of valid time slots available for unscheduled exams and the number

of exams assigned to time slots may change each time an exam is assigned to a valid

time slot; in which case, the unscheduled exams need to be reordered.

In 1961, Appleby et al. implemented graph colouring techniques in the preparation

of school timetables. Since then, the use of graph based heuristic orderings have been

extended to other types of timetabling problem. LD was the most widely used heuristic

ordering in earlier research into examination timetabling (Broder, 1964; Cole, 1964;

Welsh and Powell, 1967). Wood (1968) utilised the heuristic orderings LE and LD .

In his approach, exams were selected starting with those that require the room with

the largest capacity. These exams were then ordered decreasingly by the number of

exams in conflict. The same process was applied to the second largest room and so on.

Johnson (1990) also combined heuristic orderings LE and LD , but he considered them

simultaneously through the simple linear combination of LD , with LE multiplied by a

weighted factor wLE that was varied.

The use of Saturation Degree was first presented by Brělaz (1979) for the graph

colouring problem. Brělaz suggested that a vertex with the smallest number of colours

19

2.2 Previous Research in University Timetabling

that can be used to colour the vertex is the most difficult vertex to be coloured. Mehta

(1981) implemented the heuristic SD in order to satisfy the requirement made by the

registrar that all the exams must be scheduled in twelve time slots. However, in order

to satisfy the requirement that no student should have his/her exams scheduled at the

same time, they found that the minimum number of time slots required was thirteen.

Therefore, in order to minimise the number of students who had two exams at the

same time and to spread out each student’s schedule, preprocessing of the collected data

(e.g. grouping several exams as one exam) and adjustment of the sequence of time slots

was required.

Kiaer and Yellen (1992) modeled a course timetabling problem as a weighted graph.

Weights for edges were not based on the number of students who registered for the

two connected vertices (conflicting courses), but the edges were assigned weights, 1, n

or n2, where n was the number of courses. Five heuristics based on weighted graph

parameters were employed to select which courses were to be scheduled next. One of

the heuristics was similar to the heuristic SD , but they called the heuristic ‘forbidden

degree’. Their heuristic algorithm showed promising results when tested on randomly

generated weighted graphs (80 graphs with 50 and 100 vertices respectively, and 100

graphs with 20 vertices). They also observed that their heuristic ‘forbidden degree’ was

more efficient for problems with a higher number of average vertices. When applied to

real problems, the solutions produced by applying various heuristics outperformed the

solution generated manually by the administration.

Laporte and Desroches (1984), and Carter et al. (1996) investigated four different

types of graph based heuristic orderings to rank the exams in decreasing/increasing order

to estimate how difficult it was to schedule each of the exams. They considered Largest

Degree, Saturation Degree, Weighted Largest Degree and Largest Enrolment . These

heuristics were used individually to order the exams. Then, the exams were selected

sequentially and assigned to a time slot that satisfied all the specified constraints. In

20

2.2 Previous Research in University Timetabling

Carter et al.’s approach, their algorithm first found the maximum clique of conflicting

examinations. A clique of exams is a group of exams in which each exam conflicts

with every other exam. The size of the maximum clique can also be used to determine

the minimum number of time slots required to schedule all the exams for particular

problem instances (Gendreau et al., 1993). Exams grouped in the maximum clique were

first assigned to different time slots, and then the heuristic ordering was applied to

the remaining exams. Carter et al. tested the approach on ten random problems and

thirteen real problems. Carter and Johnson (1999, 2001) investigated further the use of

cliques for examination timetabling.

Casey and Thompson (2003) investigated the efficiency of these four heuristic or-

derings (i.e. Largest Degree, Saturation Degree, Weighted Largest Degree and Largest

Enrolment) in constructing the initial solutions in the first phase of their Greedy Ran-

domised Adaptive Search Procedure (GRASP) algorithm. Roulette wheel selection was

employed to choose the next exam to be scheduled from the top n exams in the exam or-

dering, where the appropriate value for n was experimentally determined to be between

2 and 6 depending on the total number of exams in the problem instance. The selected

exam was then scheduled into the first time slot that satisfied all the hard constraints.

Foxley and Lockyer (1968) ordered the exams by a ‘priority formula’ that used all the

known facts concerning the examinations. They also allowed a manual special priority

setting to override other soft constraints. For example, they set a special priority for

final year papers.

Although the aim of sequentially processing the ordered events (by certain criteria

or heuristics) is to make sure all events can be scheduled by the end of the construction

phase of the timetabling process, it is not always the case that all events are assigned

at the first attempt. In addition to this, there are commonly used strategies to select

which time slot an event is to be assigned to. This can also have a significant effect on

the timetable construction process. Some common strategies mentioned in the literature

21

2.2 Previous Research in University Timetabling

are as follows:

• Use the first or the last valid time slot.

• Choose a valid time slot at random.

• Use the time slot that will cause the least penalty cost.

• Use the time slot that will minimise the number of unused seats.

In the case where a feasible timetable is not achievable during construction, various

approaches can be applied. Usually, reshuffling the earlier scheduled events is performed.

In Carter et al. (1996) and, Laporte and Desroches (1984), if no clash free time slot was

found, ‘backtracking’ was implemented. In order to make a time slot available, the

time slot with the minimum number of conflicting scheduled exams that needed to be

‘bumped back’ was chosen. They used minimum disruption cost (the cost of reshuffling

the conflicting exams from the selected time slot into another valid time slot and inserting

the current unscheduled exam into the selected time slot) to identify which exam was

to be moved. All conflicting exams were either moved to the different time slot with the

least penalty cost (while maintaining feasibility) or returned to the unscheduled exams

list. For the purpose of avoiding an infinite loop, the number of times an exam could be

returned in this manner was limited to three. This process was continued until all the

exams were scheduled and a feasible solution produced. A similar backtracking approach

was applied by Casey and Thompson (2003).

Another approach proposed in Burke and Newall (2004) applied an adaptive heuristic

technique in which the exam list was initially ordered by a particular heuristic. This

heuristic could then be altered to take into account the penalty that placed exams

imposed upon the timetable. Their work was motivated by the Squeaky Wheel approach

introduced by Joslin and Clements (1999).

Some researchers have implemented heuristic ordering in the process of splitting

events into independent sets. The events are split into groups in such a way that no

22

2.2 Previous Research in University Timetabling

events in conflict are grouped together. The groups of event are then assigned to time

slots with the objective of minimising the violation of certain soft constraints. One

of the earliest papers that applied this approach to the graph colouring problem was

published by Wood (1969). He presented a comparison of two grouping approaches for

graph colouring problems. The first was based on the graph heuristic LD , while in

the second pairs of objects were grouped based on their similarity. A similarity matrix

was generated based on the information obtained from the conflict matrix. As defined

by Wood, “if vertices i and j are not connected, the similarity is the number of other

vertices k which are connected to both i and j”. Experiments on real timetabling

problems showed that the similarity matrix approach obtained better results in two out

of the six problems, while the results for the remaining four of the problems were equal

to the results produced when the graph based heuristic LD was employed. However,

when tested on randomly generated data sets, it was observed that, overall (about 75%

of the cases), the graph based heuristic LD produced better results compared to the

similarity matrix approach.

Desroches et al. (1978) presented an automated examination timetabling system

called HOREX employed by the I’Ecole Polytechnique de Montréal. The authors ex-

perimented with five heuristic orderings in the selection of exams to be placed into non

conflicted groups. These heuristic orderings included two random approaches, ordering

by Largest Enrolment and two other approaches that were developed based on the num-

ber of exams in conflict (no detailed description was given). Burke et al. (1994c) used

the degree of a vertex (graph based heuristic LD) to determine which exams could be

grouped together in the same time slot. In each group, exams were ordered increasingly

by the number of students enroled. In turn, exams were assigned to rooms with the aim

of minimizing the number of unused seats. It was, of course, possible to have more than

one exam in one room.

23

2.2 Previous Research in University Timetabling

In summary, there has been much research into different heuristic orderings. Carter

et al. (1996) indicated that it is not easy to determine which heuristic ordering is the

most appropriate for any given problem in hand. In addition, other work (e.g. Burke

and Newall, 2004) has suggested that adaptively changing the heuristic ordering during

construction can produce better solutions compared to only using one heuristic order-

ing throughout the process. A study by Burke et al. (1998b) also suggested that the

use of heuristic ordering for creating the initial solutions of an evolutionary algorithm

for timetabling problems could substantially improve performance. A common theme

of these observations is that different heuristics may be beneficial in different circum-

stances during construction. This observation lead to the conjecture that considering a

combination of different heuristics simultaneously might lead to a further improvement

in solution quality.

2.2.3 Iterative Improvement Methods

As stated earlier, having constructed a solution in Phase 1, the solution is then often

improved in Phase 2. The process is almost invariably an iterative process in which

the solution is modified at each step in order to (hopefully) improve the quality of the

solution. The most common approach is to utilise metaheuristic optimisation methods

for this iterative improvement. An excellent general review of metaheuristic approaches

in combinatorial optimisation can be found in Blum and Roli (2003). The aim of any

heuristic search technique is to provide an efficient way of iteratively exploring the search

space of a given problem. However, most methods will get trapped in local optima. The

main aim of a metaheuristic technique is to escape from local optima and thus hopefully

produce better solutions. Voβ et al. (1999) defined a metaheuristic as follows:

“A meta-heuristic is an iterative master process that guides and modifies the

operations of subordinate heuristics to efficiently produce high-quality solu-

tions. It may manipulate a complete (or incomplete) single solution or a

24

2.2 Previous Research in University Timetabling

collection of solutions at each iteration. The subordinate heuristics may be

high (or low) level procedures, or a simple local search, or just a construction

method.”

Glover and Laguna (1997) defined the term as follows:

“A meta-heuristic refers to a master strategy that guides and modifies other

heuristics to produce solutions beyond those that are normally generated in

a quest for local optimality.”

While Osman and Kelly (1996) defined it as:

“A meta-heuristic is an iterative generation process which guides a subordi-

nate heuristic ...”

Blum and Roli also quoted several definitions of metaheuristics given by several re-

searchers and outlined the basic characteristics of metaheuristics. This Section concen-

trates on the metaheuristic approaches for educational timetabling.

2.2.3.1 Simulated Annealing and the Great Deluge Algorithm

Simulated Annealing (Kirkpatrick et al., 1983) has been successfully applied to the ex-

amination timetabling problem by Thompson and Dowsland (1996, 1998). They focused

on developing a robust Simulated Annealing approach in which the cooling schedule was

determined in an automated way and adapted depending on the problem instances and

objective functions defined for the given problem instances. Bullnheimer (1997) focused

on the use of Simulated Annealing in small scale examination timetabling problems

and, particularly, on breaking down one larger real-world problem instance into several

smaller sub-problems. Burke et al. (2004a) also investigated the use of Simulated An-

nealing in examination timetabling in a comparison with the Great Deluge Algorithm

(see below).

25

2.2 Previous Research in University Timetabling

An approach that works in a very similar manner to Simulated Annealing is known as

Great Deluge Algorithm (Dueck, 1993). In comparison with the temperature parameter

used by Simulated Annealing , Great Deluge Algorithm uses two parameters that are, per-

haps, more meaningful to the user, namely the amount of computational time required

and an estimate of the quality of the desired solution. The advantage of the Great Deluge

Algorithm is that, as these parameters are more meaningful, the algorithm is easier for

the inexperienced user to apply and less parameter tuning is required. The application of

the Great Deluge Algorithm in examination timetabling problems has been investigated

by Burke et al. (2004a) and, Burke and Bykov (2006). A comparison of Great Deluge

Algorithm and Simulated Annealing applied to Carter et al.’s examination benchmark

data sets, as reported by Burke et al. (2004a), and Abdullah and Burke (2006), showed

that, overall, Great Deluge Algorithm produced better results than Simulated Annealing ,

although Great Deluge Algorithm did not produce better results in all cases.

2.2.3.2 Tabu Search

Tabu Search (Glover, 1986) has also been successfully applied to a wide range of edu-

cational timetabling problems. With various problems definitions to deal with, a vari-

ant of Tabu Search setups was employed to solve examination timetabling problems

and course timetabling problems. Di Gaspero and Schaerf (2001) investigated a family

of Tabu Search algorithms and applied the algorithms to the examination timetabling

benchmark data sets. The experimental results showed that “The most effective algo-

rithm makes use of a shifting penalty mechanism, a variable-size tabu list, a dynamic

neighbourhood selection, and a heuristic initial state.”. In 2003, Di Gaspero and Schaerf

further enhanced the algorithm by incorporating a set of multi-neighbourhood strate-

gies to improve the performance of a local search method. The algorithm was applied

to the course timetabling problem, and the experimental results demonstrated that the

enhanced algorithm produced much better results compared to the old algorithm.

26

2.2 Previous Research in University Timetabling

For course timetabling, a comparison between a combination of constraint logic with

Tabu Search, constraint logic alone and Tabu Search alone was studied by White and

Zhang (1998). By employing constraint logic to construct the initial solution and then

applying Tabu Search to improve the initial solutions, they showed that better solutions

were produced compared to using constraint logic alone. They also showed that the

timetable could be constructed in much shorter time compared to employing tabu search

alone. White and Xie (2001) developed a Tabu Search algorithm which they called

OTTABU. Both types of adaptive memory (namely recency-based short term memory

and frequency-based longer term memory) were employed in order to avoid cycling with

the aim of improving the quality of solution(s). They applied a four phase system

to construct examination timetables for the University of Ottawa. It was found that

better timetables were produced compared to the timetable obtained without longer term

memory. They also applied the algorithm to two of Carter’s proximity cost benchmark

data sets (namely CAR-F-92 and UTA-S-92). It was observed that the algorithm

demonstrated the same improvements (i.e. using longer term memory produced better

timetables) when applied to different problems (i.e. different problem instances and

different penalty cost). Later, White et al. (2004) extended this research by applying

the approach to twelve of Carter’s proximity cost benchmark data sets (see Table 2.1)

and comparing the solutions to the results published by other researchers. The paper

states that the performance of the new algorithm was ‘favourable’.

2.2.3.3 Evolutionary Algorithms

Evolutionary Algorithms (EA) are motivated by the process of natural evolution (Hol-

land, 1992). The main feature of EAs is that they are population based. That is, a

number of solutions are maintained within the algorithm and new solutions are pro-

duced by combining or changing the solutions in the current population with the aim of

producing better solutions. Amongst the popular EAs are Genetic Algorithm, Memetic

27

2.2 Previous Research in University Timetabling

Algorithm and Ant Colony Optimisation algorithms.

Burke et al. (1994a,b) investigated GAs with a direct representation scheme that

considered both time slot allocations and room assignment for university timetabling.

They considered problems with non-fixed timetable lengths and their method only ac-

cepts feasible timetables. Burke et al. (1995a) used GAs for examination timetabling

with the objective of minimising the number of time slots required. They compared

eight selection heuristics for their uniform crossover operators. Two of the heuristics

were based on graph colouring heuristics (LD and LCD); one was a random heuristic;

and the remaining were specially designed heuristics that highlighted the two constraints

that needed to be addressed (i.e. the number of time slots and the spread of the con-

flicting exams) either individually or combined. These heuristic crossover operators were

developed with the aim of avoiding infeasible timetables being produced during the re-

combination process. The experimental results showed that good quality timetables

might be produced by integrating heuristics in crossover operators. Similar heuristic

crossover operators were successfully implemented by Burke et al. (1995b) for another

set of more difficult timetabling problems.

Ross et al. (1998) discussed the effectiveness of direct representation for GA imple-

mentations in exam timetabling problems. They suggested that a GA is more suitable

for finding a good algorithm instead of directly searching for the solutions for a particu-

lar problem. Erben (2001) pointed out that the poor performance of GAs (compared to

conventional heuristic approaches) in graph colouring problems was primarily because

of the inappropriate selection of solution encoding schemes. As an alternative to direct

representation, Erben applied grouping GAs for graph colouring problems and exam

timetabling problems. In grouping GAs, a group of non-connected nodes (for graph

colouring problems) or a group of non-conflicting exams (for exam timetabling prob-

lems) is treated as one gene. The chromosome length represented the graph chromatic

number for graph colouring problems or the number of time slots for exam timetabling

28

2.2 Previous Research in University Timetabling

problems. In order to generate feasible solutions, the hard and soft constraints need

to be incorporated in the crossover operator and mutation operator. Quite encouraging

results were obtained when this approach was applied to one of the capacitated problems

of Carter et al.’s benchmark data set (specifically the TRE-S-92 problem instance).

2.2.3.4 Memetic Algorithms

The term ‘Memetic Algorithm’ was introduced by Moscato (1989) in a Technical Re-

port which described a heuristic which used “Simulated Annealing for local search with

a competitive and cooperative game between agents, interspersed with the use of a

crossover operator”. Later, Moscato and Norman (1992) went on to explain a similar

approach that utilised local search within a GA implementation. In Burke et al. (1996b),

instead of using a crossover operator, a hill climbing local search was performed after

each mutation operation. Two types of mutation operator were proposed, termed ‘light’

and ‘heavy’ mutation. A comparison with approaches that merely relied on multi-start

random descent local search showed that this approach obtained better results for the

Nottingham capacitated examination timetabling problem. However, they also observed

that further tests on more highly constrained problems (i.e. Carter et al.’s capacitated

examination timetabling benchmark problems) showed that this approach was outper-

formed by their previous approach presented in Burke et al. (1995b). Despite this,

motivated by these quite promising results, an extended version of the approach was

outlined by Burke and Newall (1999). Although the focus of the paper was on heuristic

decomposition of the timetable problem, the results also showed that incorporating GAs

with heuristic techniques and local search approaches obtained better results than using

the standard GA alone. More detailed descriptions on the design of Memetic Algorithms

for timetabling problems can be found in Burke and Landa Silva (2004).

29

2.2 Previous Research in University Timetabling

2.2.3.5 Ant Colony Optimisation

Ant Colony Optimisation is another population based approach, introduced by Dorigo

et al. (1996). Initially, applications of Ant Colony Optimisation were focused on the

Traveling Salesman Problem (Dorigo and Gambardella, 1997; Dorigo et al., 1996). A

study by Costa and Hertz (1997) investigated the use of Ant Colony Optimisation in

graph colouring problems in which they called their ant system ANTCOL. Costa and

Hertz stated that their results are quite satisfactory although their results did not match

the best results reported in the literature. Inspired by the findings, Socha et al. (2002)

used an Ant Colony Optimisation algorithm to construct course timetables. The Ant

Colony Optimisation approach was compared to other local search techniques and it was

found that Ant Colony Optimisation produced the best solutions (see Section 6.2.3 for

details of the results obtained).

The basic ANTCOL developed by Costa and Hertz (1997) was then modified and

improved by Dowsland and Thompson (2005). Instead of implementing the ant algo-

rithm to random graphs (as implemented by Costa and Hertz (1997)), Dowsland and

Thompson applied their improved ANTCOL to Carter et al.’s examination timetabling

benchmark data sets with the aim of findings the minimum number of time periods re-

quired to produce clash free timetables. Overall, the improved ANTCOL has produced

competitive results compared to the results obtained using the sequential constructive

algorithm developed by Carter et al. (1996) and Merlot et al. (2003) (see hybrid approach

below).

Eley (2006) investigated the use of two ant colony approaches namely MMAS-ET

that based on Max-Min Ant System (MMAS) (as applied by Socha et al. (2002) to

examination timetabling) and ANTCOL-ET which is a modified version of ANTCOL

(that originally used by Costa and Hertz (1997) to solve graph colouring problem) to the

Carter et al.’s proximity cost benchmark problems. For both MMAS-ET and ANTCOL-

30

2.2 Previous Research in University Timetabling

ET approaches, additional hill climber is incorporated. The experimental results show

that in average the ANTCOL-ET with hill climber approach has produced better re-

sults compared to ANTCOL-ET without hill climber, MMAS-ET with hill climber and

MMAS-ET without hill climber. In comparison the best results in literature, Eley’s

results are comparable to the results obtained by other approaches.

2.2.3.6 Hybrid Approaches

More recently, there has been much research into hybridised methods which draw on

two or more of the techniques mentioned above. In an implementation of the GRASP

algorithm in examination timetabling, Casey and Thompson (2003) observed that bet-

ter solutions could be produced by combining a limited form of Simulated Annealing

with Kempe chain neighbourhoods (Thompson and Dowsland, 1996) and a memory

function that avoided exams sharing the same time slot as in the previous iteration

during the improvement phase. Azimi (2005) developed a hybrid heuristic based on a

combination of Tabu Search and Ant Colony Optimisation. The author selected these

two metaheuristic approaches to be combined based on an earlier analysis comparing

four metaheuristic approaches including Simulated Annealing, Genetic Algorithms, Tabu

Search and Ant Colony Optimisation. The analysis was carried out with ten randomly

generated examination timetabling data sets, and the well known proximity cost penalty

function was used to evaluate the timetable solutions. Azimi introduced three different

approaches to combine Tabu Search and Ant Colony Optimisation metaheuristics, and

the results showed that all the three hybrid heuristics outperformed all the metaheuris-

tics applied individually.

The hybrid approach developed by Caramia et al. (2001) has produced several best

known results for the Carter et al.’s proximity cost benchmark problems for several data

sets (see Table 4.9). Their algorithm start with a greedy constructive heuristic and fol-

lowed with an optimiser in the attempts to spread out the students’ schedule. Caramia

31

2.3 Evaluation of Timetable Quality

et al. also applied their algorithm to the capacitated problem (see Section 2.3.2.2).

Merlot et al. (2003) applied three-stage hybrid approach to a real-world examination

timetabling problem (i.e. for University of Melbourne) and the Carter et al.’s examina-

tion timetabling benchmark data sets (graph colouring problem, uncapacitated problem

and capacitated problem). In the first stage, initial feasible solution is constructed using

a constraint programming technique. The initial solution is improved using Simulated

Annealing in stage two, and in the final stage the solution is further improved by imple-

menting a hill climbing method. In comparison to the best results in literature for the

benchmark data sets, they obtained competitive results for the graph colouring problem

and uncapacitated problem, while for the the capacitated problem they produced best

results for several problem instances. A study that investigated the hybridisation of

large neighbourhood search and Tabu Search was presented in Abdullah et al. (2006b).

Experimental results showed that their solutions for the capacitated problem were com-

petitive to the best solutions reported in the literature; they obtained best results for

two out of the six data sets.

Rahoual and Saad (2006) carried out work in which Genetic Algorithms and Tabu

Search were hybridised in an attempt to produce solutions for benchmark and real world

university course timetabling problems, with quite promising results. They produced

comparable results for the benchmark data sets, while for the real world data sets the

solutions were produced in just one hour compared to the three to four weeks required

to prepare solutions manually.

2.3 Evaluation of Timetable Quality

The quality of a given timetable can be evaluated by measuring to what degree the

specified constraints are satisfied. Usually, the main concern is the satisfaction of all

the hard constraints. However, it is also very important to minimise the violation of

the soft constraints, because, in many cases, the quality of the constructed timetable is

32

2.3 Evaluation of Timetable Quality

evaluated by measuring the fulfillment of these constraints. In practice, the constraints

imposed by various academic institutions can be very different (Burke et al., 1996a).

Such variations make the timetabling problem more challenging. Due to the complexity

of the problems, algorithms or approaches that have been successfully applied to one

problem may not perform well when applied to different timetabling problem instances.

The variety of constraints may also require different formulations of objective functions

or evaluation functions.

In this Section, the discussion will concentrate on evaluation functions that have

been applied to the examination timetabling benchmark data sets introduced by Carter

et al. (1996). A detailed description of these examination timetabling problems is now

provided. Note that, as course timetabling only features in the first part of Chapter 6,

a detailed description of the problem instances used for course timetabling is given in

Section 6.2.1.

2.3.1 Data Sets and Problem Descriptions

In 1996, Carter et al. introduced a set of examination timetabling benchmark data.

This benchmark data set collection consisted of thirteen problem instances. Originally

this data came from real university examination timetabling problems. As such, these

data sets varied considerably in terms of resource availability and constraints specified.

For the sake of generality, these data sets were then simplified so that only the following

constraints were represented:

Hard constraint The constructed timetable must be conflict free in that no student

can be scheduled for two different exams at the same time.

Soft constraint The solution should attempt to minimise the number of exams as-

signed in adjacent time slots in such a way as to reduce the number of students

sitting exams in close proximity.

33

2.3 Evaluation of Timetable Quality

Unfortunately, over time, these original thirteen problem instances have become

slightly modified due to a number of factors, and these modifications have, in effect,

meant that the problem instances differ. Qu et al. (2006) have recently completed a

thorough re-classification of all problem instances which have appeared in published

work. They discovered that there are now, effectively, twenty one different problem

instances. The complete list of these twenty one instances, with the different character-

istics and their various levels of complexity, and with Qu et al.’s proposed new naming

convention, are shown in Table 2.1.

For each data instance, two files are supplied — a student data file (with a ‘.stu’ file

extension) and course data file (with a ‘.crs’ file extension). Detailed list of the exams

enrolled on by each student are stored in the student data file, while the total number

of students enrolled for each exam is stored in the course data file. It is to be expected

that the total enrolment for all exams represented in both the student data file and the

course data file are equal for each data instance. However, three of the data instances

with suffix “II” in Table 2.1 (car92 II, car91 II and pur93 II) have conflicts in the number

of enrolments (i.e. the total number of exam enrolments presented in the two data files

is different). For these three instances, the seventh column of the table presents the total

number of enrolments in the student data file and in the course data file, respectively.

The details contained in the student data file (alone) actually provide enough infor-

mation in order for the scheduler to construct a feasible timetable (without referring to

the course data file). Examples of the information available are the conflicting exams,

the total number of students enrolled for each exam and the number of exams enrolled

by each student. This information can be used to measure the density of conflicting

exams for each problem instance. The conflict density values shown in column eight of

the Table indicates the density of conflicting exams. To calculate the conflict density,

a conflict matrix C is defined in which each element cij is one if exam i conflicts with

exam j (at least one student is enrolled for both exam i and j), or zero otherwise. The

34

2.3 Evaluation of Timetable Quality

conflict density is calculated by summing the number of other exams that each exam is

conflicted with (i.e. the elements of the conflict matrix for which cij = 1), and dividing

by the total number of elements in the conflict matrix. Note that, for pur93 II, the

conflict density value is marked with ‘-’. The inconsistency of the data files for this

problem instance requires further data conversion in order to make the conflict density

calculation possible. As this problem instance is not used in this research, no attempt

has been made to calculate its conflict density.

In this research, only twelve out of the thirteen original data sets were used (as high-

lighted in bold text in the Table). The remaining data set (PUR-S-93) has almost four

times the number of exams compared to any of the other data sets but with a very low

conflict density. The low conflict density means that the problem is loosely constrained

and so, in effect, is relatively easy to solve. Initial experimental tests confirmed that a

prohibitive amount of time would have been required to create fuzzy models for this data

set. This, taken in conjunction with its large size, means that excessive computational

time would have been devoted for little gain. Thus it was excluded from comparison in

the large number of experiments undertaken as part of this research.

35

2.3 Evaluation of Timetable Quality

T
ab

le
2.

1:
E

x
am

in
at

io
n

ti
m

et
ab

li
n
g

p
ro

b
le

m
ch

ar
ac

te
ri

st
ic

s.
T

h
e

tw
el

ve
p
ro

b
le

m
in

st
an

ce
s

th
at

u
se

d
in

th
is

re
se

ar
ch

ar
e

h
ig

h
li
gh

te
d

in
b
ol

d
fo

n
t.

D
a
ta

S
et

N
a
m

e
u
se

d
in

th
is

th
es

is

In
st

it
u
ti
o
n

N
u
m

b
er

o
f

ti
m

e
sl

o
ts

(P
)

N
u
m

b
er

o
f

ex
a
m

s
(N

)
N

u
m

b
er

o
f

st
u
d
en

ts
(S

)
N

u
m

b
er

o
f

en
ro

lm
en

ts
C

o
n
fl
ic

t
d
en

si
ty

c
a
r
9
2

I
C
A

R
-F

-9
2

C
a
r
le

to
n

U
n
iv

e
r
si

ty
,
O

tt
a
w

a
3
2

5
4
3

1
8
4
1
9

5
5
5
2
2

0
.1

3
7
7

ca
r9

2
II

-
C

a
rl

et
o
n

U
n
iv

er
si

ty
,
O

tt
a
w

a
3
2

5
4
3

1
8
4
1
9

5
5
1
8
9
/
5
5
5
2
2

0
.1

3
6
8

c
a
r
9
1

I
C
A

R
-S

-9
1

C
a
r
le

to
n

U
n
iv

e
r
si

ty
,
O

tt
a
w

a
3
5

6
8
2

1
6
9
2
5

5
6
8
7
7

0
.1

2
8
2

ca
r9

1
II

-
C

a
rl

et
o
n

U
n
iv

er
si

ty
,
O

tt
a
w

a
3
5

6
8
2

1
6
9
2
5

5
6
2
4
2
/
5
6
8
7
7

0
.1

2
6
0

e
a
r
8
3

I
E
A

R
-F

-8
3

E
a
r
l
H

a
ig

C
o
ll
e
g
ia

te
In

st
it

u
te

,
T
o
r
o
n
to

2
4

1
9
0

1
1
2
5

8
1
0
9

0
.2

6
5
5

ea
r8

3
II

-
E

a
rl

H
a
ig

C
o
ll
eg

ia
te

In
st

it
u
te

,
T
o
ro

n
to

2
4

1
8
9

1
1
0
8

8
0
1
4

0
.2

7
1
9

h
e
c
9
2

I
H

E
C
-S

-9
2

E
c
o
le

d
e
s

H
a
u
te

s
E
tu

d
e
s

C
o
m

m
e
r
c
ia

le
s,

M
o
n
tr

e
a
l

1
8

8
1

2
8
2
3

1
0
6
3
2

0
.4

1
5
5

h
ec

9
2

II
-

E
co

le
d
es

H
a
u
te

s
E

tu
d
es

C
o
m

m
er

ci
a
le

s,
M

o
n
tr

ea
l

1
8

8
0

2
8
2
3

1
0
6
2
5

0
.4

2
2
2

k
fu

9
3

K
F
U

-S
-9

3
K

in
g

F
a
h
d

U
n
iv

e
r
si

ty
,
D

h
a
r
a
n

2
0

4
6
1

5
3
4
9

2
5
1
1
3

0
.0

5
5
5

ls
e
9
1

L
S
E
-F

-9
1

L
o
n
d
o
n

S
c
h
o
o
l
o
f
E
c
o
n
o
m

ic
s

1
8

3
8
1

2
7
2
6

1
0
9
1
8

0
.0

6
2
4

p
u
r9

3
I

-
P

u
rd

u
e

U
n
iv

er
si

ty
,
In

d
ia

n
a

4
2

2
4
1
9

3
0
0
3
2

1
2
0
6
8
1

0
.0

2
9
5

p
u
r9

3
II

-
P

u
rd

u
e

U
n
iv

er
si

ty
,
In

d
ia

n
a

4
2

2
4
1
9

3
0
0
3
2

1
2
0
6
8
8
/
1
2
0
6
8
6

-

r
y
e
9
2

R
Y

E
-F

-9
2

R
y
e
r
so

n
U

n
iv

e
r
si

ty
,
T
o
r
o
n
to

2
3

4
8
6

1
1
4
8
3

4
5
0
5
1

0
.0

7
5
1

st
a
8
3

I
S
T
A

-F
-8

3
S
t.

A
n
d
r
e
w

’s
J
u
n
io

r
H

ig
h

S
c
h
o
o
l,

T
o
r
o
n
to

1
3

1
3
9

6
1
1

5
7
5
1

0
.1

4
3
0

st
a
8
3

II
-

S
t.

A
n
d
re

w
’s

J
u
n
io

r
H

ig
h

S
ch

o
o
l,

T
o
ro

n
to

1
3

1
3
8

5
4
9

5
6
8
9

0
.1

9
2
4

tr
e
9
2

T
R

E
-S

-9
2

T
r
e
n
t

U
n
iv

e
r
si

ty
,
P
e
te

r
b
o
r
o
u
g
h
,
O

n
ta

r
io

2
3

2
6
1

4
3
6
0

1
4
9
0
1

0
.1

8
0
0

u
ta

9
2

I
U

T
A

-S
-9

2
F
a
c
u
lt
y

o
f
A

r
ts

&
S
c
ie

n
c
e
,
U

n
iv

e
r
si

ty
o
f
T
o
r
o
n
to

3
5

6
2
2

2
1
2
6
6

5
8
9
7
9

0
.1

2
5
4

u
ta

9
2

II
-

F
a
cu

lt
y

o
f
A

rt
s

&
S
ci

en
ce

,
U

n
iv

er
si

ty
o
f
T
o
ro

n
to

3
5

6
3
8

2
1
3
2
9

5
9
1
4
4

0
.1

2
1
4

u
te

9
2

U
T
E
-S

-9
2

F
a
c
u
lt
y

o
f
E
n
g
in

e
e
r
in

g
,
U

n
iv

e
r
si

ty
o
f
T
o
r
o
n
to

1
0

1
8
4

2
7
5
0

1
1
7
9
3

0
.0

8
4
5

y
o
r
8
3

I
Y

O
R

-F
-8

3
Y

o
r
k

M
il
ls

C
o
ll
e
g
ia

te
In

st
it
u
te

,
T
o
r
o
n
to

2
1

1
8
1

9
4
1

6
0
3
4

0
.2

8
7
3

y
o
r8

3
II

-
Y
o
rk

M
il
ls

C
o
ll
eg

ia
te

In
st

it
u
te

,
T
o
ro

n
to

2
1

1
8
0

9
1
9

6
0
1
2

0
.3

0
4
1

36

2.3 Evaluation of Timetable Quality

2.3.2 Existing Evaluation Functions

In the context of Carter et al.’s benchmark data sets, several different evaluation func-

tions have been introduced in order to measure the quality of the timetable solution.

In addition to the commonly used function that evaluates only the proximity cost (see

Section 2.3.2.1 for details), other evaluation functions have been derived based on the

satisfaction of other soft constraints, such as minimising the number of consecutive ex-

ams in one day or overnight (Burke and Newall, 1999; Burke et al., 1996b) and assigning

large exams to early time slots (Petrovic et al., 2005).

2.3.2.1 The Uncapacitated Problem

The proximity cost function was the original evaluation function used to measure the

quality of timetables for Carter et al.’s benchmarks (Carter et al., 1996). Besides the need

to construct a clash-free timetable, it is also required to schedule the exams within the

maximum number of time slots given. This evaluation function is motivated by the goal

of spreading out each individual student’s examination timetable. In the implementation

of the proximity cost, it is assumed that the timetable solution satisfies the defined

hard constraint — i.e. no student can attend more than one exam at the same time.

In addition, the solution must be developed in such a way that it will promote the

spreading out of each student’s exams so that students have as much time as possible

between exams. If two exams scheduled for a particular student are t time slots apart, a

penalty weight is set to wt = 25−t where t ∈ {1, 2, 3, 4, 5}. The weight, wt, is multiplied

by the number of students that sit both the scheduled exams. The average penalty per

student is calculated by dividing the total penalty by the total number of students. This

function was originally implemented by Carter et al. (1996) and has been widely adopted

by many subsequent researchers in this area. The maximum number of time slots for

each data set is predefined and fixed, but no limitation in terms of capacity per time

37

2.3 Evaluation of Timetable Quality

slot is set. Thus, this is usually termed the ‘uncapacitated problem’. Consecutive exams

either in the same day or overnight are treated the same, and there is no consideration

of weekends or other actual gaps between logically consecutive days. The following

formulation represents this proximity function (adapted from Burke et al. (2004a)):

∑N−1
i=1

∑N
j=i+1 sijw|pj−pi|

S
(2.4)

where N is the number of exams, sij is the number of students enroled in both exam

i and j, pi is the time slot where exam i is scheduled, and S is the total number of

students; subject to 1 ≤ |pj − pi| ≤ 5.

2.3.2.2 The Capacitated Problem

Burke et al. (1996b) devised a new evaluation function that took into account the maxi-

mum capacity allowed in each time slot. In addition to the clash-free timetable require-

ments, an additional hard constraint was defined to specify that the total number of

students timetabled for a particular time slot must not exceed the maximum number of

students allowed. Of the twenty one data sets shown in Table 2.1, only five data sets

are usually used with this evaluation function. Table 2.2 shows the restrictions applied

to the five data sets. Note that the number of time slots are different from the list

shown in Table 2.1. Furthermore, in this problem the timetable is arranged to have

three time slots on weekdays and only one morning slot on Saturday. This is termed the

‘capacitated problem’.

The objective is to minimise the number of students who have to sit two exams in

the same day without any gap between the two exams. The problem is formulated as

follows:
N−1∑
i=1

N∑
j=i+1

[
P−1∑
p=1

tiptj(p+1)cij + tiptj(p−1)cij

]
(2.5)

38

2.3 Evaluation of Timetable Quality

Table 2.2: The capacitated problem specifications

Data Set Number of
time slots (P)

Max Students Per
Time Slot (X)

CAR-F-92 31 2000

CAR-S-91 51 1550

KFU-S-93 20 1955

TRE-S-92 35 655

UTA-S-92 38 2800

subject to constraints specify in Equations 2.2 and 2.3; and

N∑
j=i+1

tipsi ≤ Xp,∀p ∈ {1, ..., P} (2.6)

where Xp is the maximum number of seats available in time slot p. Equation 2.6 specifies

that the total number of students who are enroled for all exams timetabled in any period

must not exceed the maximum number of seats available.

Burke and Newall (1999) extended the previous evaluation function by defining dif-

ferent weights for two consecutive exams in the same day and two exams in consecutive

overnight time slots. The evaluation function was:

N−1∑
i=1

N∑
j=i+1

([
P∑

p=1

tiptj(p+1)cijdp(p+1) + tiptj(p−1)cijdp(p−1)

]
+ 5000ti(P+1)

)
(2.7)

where

dpq =



3, if periods p and q are on the same day

1, if periods p and q are on an adjacent day

0, otherwise

(2.8)

subject to constraints specify in Equations 2.2, 2.3 and 2.6.

39

2.3 Evaluation of Timetable Quality

Noted that incomplete solutions are acceptable in this evaluation function. Unsched-

uled exams (if any) are assigned to the (P +1)th period and a penalty of 5000 is given for

each unscheduled exam. For Equations 2.7 and 2.8, care must be taken to take into ac-

count the gap due to the weekend break (any two conflicting exams that are timetabled

on Saturday and Monday respectively must be given zero penalty). Burke et al. (2004a)

presented an efficient way to deal with this weekend break issue. Finally, although not

the capacitated problem, Petrovic et al. (2005) employed fuzzy methodologies to create

a novel objective function based on two criteria, one of which was based on the size of

exams — see Section 2.5 for details.

2.3.3 Multi-objective and Multi-criteria Approaches

Considering all the evaluation functions discussed above (particularly Equations 2.5

and 2.7), it is obvious that, in each case, the timetable quality is evaluated using a

single objective function which represents the summation of a weighted combination of

measures of soft constraint violation. In the context of the benchmark data sets problem

instances that are considered here, it seems that these evaluation functions are sufficient

to serve the purpose of providing comparative measures of the performance of the various

approaches that have been developed.

However, in real world timetabling problems, more constraints must be taken into

account in the timetable construction and optimisation process. Some of the constraints

have a certain level of preference defined by the administration (of the organisation) and,

in most cases, these constraints impose conflicting objectives. Coello (2006) defined a

multi-objective optimisation problem (MOP) as

“ a problem which has two or more objectives that we need to optimize simul-

taneously. It is important to mention that there might be constraints imposed

on the objectives. It is also important to emphasize that it is normally the

case that the objectives of the MOP are in conflict with each other.”

40

2.3 Evaluation of Timetable Quality

For example, consider two constraints. The first constraint is that an exam with a

large number of students should be scheduled in the earlier time slots of the overall

timetable, while the second constraint is that no student should be scheduled for two

exams in consecutive time slots. In the situation where most of the students are enroled

on the same subjects, improving the satisfaction of the first constraint (one objective)

will inevitably have to compromise the second constraint (another objective). Therefore,

a more flexible way of measuring the timetable quality is required for multi-objective

approaches. To quote McCollum (2006)

“More work is required on how the quality of solutions are measured. The

challenge for researchers is the provision of a solution where the user under-

stands the trade offs between the original objectives.”

An excellent introduction to multi-objective optimisation approaches for scheduling

and timetabling is presented by Landa Silva et al. (2004). The terms ‘multi-objective’

and ‘multi-criteria’ sometimes appear to be used interchangeably. One definition of the

difference has been given by Hwang and Yoon (1981). They defined the term ‘multi-

objective’ to refer to dealing with more than one decision factor in the design or creation

stage of a process, ‘multi-attribute’ to refer to dealing with more than one decision factor

in the evaluation stage of a process, and ‘multi-criteria’ to be a term which meant either

multi-objective or multi-attribute. As an example of less strict use of the terms, although

the following papers attempt to solve a similar problem, Burke et al. (2001a) used the

term ‘multi-criteria’, while in Petrovic and Bykov (2003) the term ‘multi-objective’ was

used. These two papers deal with examination timetabling problems in which nine

different criteria (objectives) need to be optimised. The overall aim was to minimise

the violation of each of the constraints. In order to tackle the problem, Burke et al.

(2001a) applied a ‘compromise programming approach’ in which the distance between

the current solution and an ideal point (where all the criteria were satisfied) was used to

41

2.3 Evaluation of Timetable Quality

measure the solution’s quality. Petrovic and Bykov (2003) presented a more transparent

method in which the user can express their preferences. Guided by the reference solution

specified by the user, a trajectory was drawn from the origin (initial solution) to a

reference point and a local search using the Great Deluge Algorithm (Burke et al., 2004a;

Dueck, 1993) was performed to move the point along the specified trajectory in order

to search for solutions that improved on one or more of the criteria. Other approaches

that may be considered multi-objective were presented by (Arani and Lotfi, 1989; Lotfi

and Cerveny, 1991).

The fuzzy multiple heuristic ordering method described in Chapters 4 to 6 and the

multi-attribute fuzzy evaluation of timetables described in Chapters 7 and 8 should

not be confused with multi-objective approaches to examination timetabling, such as

those described in (Arani and Lotfi, 1989; Burke et al., 2001a; Lotfi and Cerveny, 1991;

Petrovic and Bykov, 2003). In the approaches adopted in this thesis, the problem of

judging the difficulty of exams to be scheduled by using more than one heuristic ordering

(multi-criteria) and the problem of selecting the most ‘fair’ timetable by considering two

criteria are formulated as fuzzy decision problems. In contrast, in multi-objective /

multi-criteria techniques, more than one criteria are kept separate (rather than being

combined together). In such an approach, the concept of pareto optimality is usually

adopted. In pareto-based evaluation, the concept of dominance is used to establish which

solutions are considered to be better than others. A solution is said to dominate another

solution if all the criteria are better (lower or higher depending on whether minimisation

or maximisation is being considered). The pareto front is the set of all non-dominated

solutions. In (Arani and Lotfi, 1989; Burke et al., 2001a; Lotfi and Cerveny, 1991;

Petrovic and Bykov, 2003), pareto optimisation concepts were employed to explore the

solution space with the aim of minimising violations of the list of specified criteria (with

the criteria kept separate). For a detailed discussion of multi-objective approaches in

scheduling and timetabling, see Landa Silva et al. (2004).

42

2.4 The Need for Fuzzy Techniques in Timetabling

2.4 The Need for Fuzzy Techniques in Timetabling

In everyday life situations, human always have to deal with knowledge that is uncertain,

ambiguous or imprecise in nature. In other words, most of the time humans have to think

and reason based on fuzzy information. Linguistic terms (everyday words) can be seen

as the source of fuzziness. Words such as fast, tall and heavy are fuzzy. For example, we

cannot define a single quantitative value to represent the term fast. The definition for

the term is dependent on the context in which it is being used. If, for example, the term

‘fast’ is used to refer to a jet aeroplane, the definition obviously different than compared

to the use of the term in the context of a car travelling on a motorway.

(McCollum, 2006) has declared that there is a gap between academic research in uni-

versity timetabling and the practitioners who are solving real world problems. McCollum

also suggested that an approach that reflected real world situations more adequately is

critically desired. In attempting to solve real world timetabling problems, we must

recognise that these problems are typically ill-defined and difficult to model. A common

weakness of the ‘traditional’ technologies applied to solve timetabling problems (as de-

scribed in Sections 2.2.2, 2.2.3 and 2.3.3) is that their development is based on classical

reasoning and modelling techniques in which binary logic and crisp classifications are

usually implemented.

The capability to use linguistic terms (words) in reasoning is one of the main strengths

of fuzzy logic. (Zadeh, 1999) stated that

“In its traditional sense, computing involves for the most part manipula-

tion of numbers and symbols. By contrast, humans employ mostly words in

computing and reasoning, arriving at conclusions expressed as words from

premises expressed in a natural language or having the form of mental per-

ceptions. As used by humans, words have fuzzy denotations.”

43

2.5 Fuzzy Techniques in Timetabling

Another important feature of fuzzy reasoning is its capability to handle multiple input

attributes simultaneously. A survey conducted by (Burke et al., 1996a) showed that the

main concern of practitioners who solve real world university timetabling problems was

to construct timetables that satisfy a variety of constraints. Furthermore, in practice,

each institution has its own requirements that classify the constraints into hard and soft

constraints.

In addition to the requirement that the timetable solutions must be feasible (i.e.

fulfil all the hard constraints), the quality of timetable solutions is usually measured

by taking into account the satisfaction degree of each of the soft constraints. When

soft constraints are considered, rather than applying binary logic (i.e. satisfied or not

satisfied), a constraint is satisfied to a certain degree. Although partial satisfaction of

the soft constraints is (by definition) acceptable, naturally, for any timetable solution,

the quality is considered to be higher if all the soft constraints have a high degree of

satisfaction. However, these soft constraints often conflict with each other, meaning that

maximising satisfaction of any of the constraints might degrade the satisfaction of other

constraints.

These observations motivate this research towards mimicking how human timetabling

experts solve real world problems. In summary, the gap between timetabling research

and timetabling practice needs to be closed; fuzzy techniques provide a range of tools

than can help to close this gap. Further descriptions of the fuzzy techniques used in this

work are given in Chapter 3.

2.5 Fuzzy Techniques in Timetabling

Since being introduced by Zadeh (1965), fuzzy methodologies have been successfully

applied in a wide range of real world applications (Pappis and Siettos, 2005, p. 466).

Some specific examples in a selection of scheduling, timetabling and rostering areas

are as follows. Fuzzy evaluation functions have been utilized in generator maintenance

44

2.5 Fuzzy Techniques in Timetabling

scheduling by Dahal et al. (1999), while Abboud et al. (1998) used fuzzy target gross sales

(fuzzy goals) to find ‘optimal’ solutions of a manpower allocation problem, where several

company goals and salesmen constraints needed to be considered simultaneously. Fuzzy

methodologies have been investigated for other timetabling problems such as aircrew

rostering by Teodorovic and Lucic (1998), driver scheduling by Li and Kwan (2003) and

nurse rostering by Aufm Hofe (2001).

In the specific context of examination timetabling, fuzzy methods have been im-

plemented for measuring the similarity of problem instances in a case based reasoning

framework by Yang and Petrovic (2005). In this work, a fuzzy similarity measure was

used to retrieve a good heuristic for a new problem based in comparison with previous

problems that were stored in the case base. The selected heuristic was then applied to

the new problem for generating an initial solution before the Great Deluge Algorithm

was applied in the improvement stage. The results obtained indicated that the perfor-

mance of the Great Deluge Algorithm was better when this fuzzy similarity measure was

applied in the initialisation stage, compared to other initialisation approaches.

More recently, Petrovic et al. (2005) employed fuzzy methodologies to measure the

satisfaction of various soft constraints. The authors described how they modeled two soft

constraints, namely a constraint on large exams and a constraint on proximity of exams

[sic], in the form of fuzzy linguistic terms. Two sets of rules were defined to derive the

‘degree of satisfaction’ of these constraints from more fundamental input variables. The

constraint on large exams was derived from the size of the exam and the earliness of the

time period that the exam was assigned to, while the constraint on proximity of exams

was derived from the number of students sitting both exams and the number of time

periods between the two exams. The aggregation of the fuzzy outputs (for the two soft

constraints) was then used as the fitness function to evaluate the overall quality of the

solution. A linear equation with weighting factors (to differentiate which soft constraint

is the most important) was employed. The objective function can be formulated as

45

2.5 Fuzzy Techniques in Timetabling

follows (Petrovic et al., 2005).

For a timetable T , the satisfaction degree of both constraints was aggregated as

F (T) = w1f1(T) + w2f2(T) (2.9)

where w1 and w2 indicates the relative importance of the constraints.

The satisfaction degree for a large exam was formulated as

f1(T) = min{µfn(en)|n = 1, ..., N}

for all exams en, n = 1, . . . , N , where N is the total number of exams, and µfn(en) is

the degree of satisfaction of constraint fn by exam en.

The satisfaction degree for the proximity of exams was formulated as

f2(T) =

∑N−1
i=1

∑N
j=i+1 µf2(ei, ej)

C

where ei and ej, i, j = 1..N are conflicted exams, while C is the total number of pairs

of exams in conflict.

A memetic algorithm was then implemented to iteratively improve timetables using

F (T) as the objective function being optimised. They evaluated their approach on

seven of the Carter et al. benchmark problem instances. However, as the objective

function being optimised was not the usual proximity cost, they could not compare the

effectiveness of their approach with other approaches. See Petrovic et al. (2005) for

further details of the evaluation process.

Amintoosi and Haddadnia (2005) utilised the fuzzy c-means clustering algorithm to

group students in a course into smaller sections. A student on one course could select

several subjects that he/she wanted to enrol on. Therefore, when students were to be

assigned to a group, it was required that students in the same group had the same

46

2.6 Generalisation of Problem Solving Approaches

schedule (i.e. students enroled for the same subjects). It was also required that the

number of students in each section were balanced with the other sections so that the

room capacity constraints could be satisfied. Their simulation results show that better

sectioning of students was obtained when subjects with ‘the most’ and ‘the fewest’

enrolments were removed during the clustering process. That is, subjects with common

students and the less popular subjects could be excluded when comparing the similarity

of students’ schedules.

It can be seen that interest in applying fuzzy methodologies to the university timetabling

problem has only really gained significant interest in recent years, although its applica-

tion to scheduling problems in general has been reported by Slany (1996), Slowinski and

Hapke (2000), and others.

2.6 Generalisation of Problem Solving Approaches

In recent years, interest in the development of approaches that have a higher degree of

generality has increased due to the potential of applying such approaches to problem

instances with different characteristics or to problems in different domains. One such

approach employs a knowledge-based technique known as Case Based Reasoning (CBR)

to construct solutions for timetabling problems. The main concept of CBR is that similar

problems can often be solved by using similar solution methods. That is, any current

problems are attempted to be solved based on the knowledge acquired from previous

experience of solving similar problems. For any new problems, instead of trying to

solve the problems from scratch, CBR provides a mechanism to allow the solving of

the problem from a certain point of the problem solving process. Hence, the important

issue is how to measure the similarity between the new problem and the old problems

stored in the knowledge database. Burke et al. (2000, 2001b) investigated the use of

attribute graphs for representing the structure of timetabling problems. The authors

demonstrated that more information about timetabling problems can be represented

47

2.6 Generalisation of Problem Solving Approaches

using these attribute graphs and, as a result, they claimed that the retrieval of the most

similar cases could be performed more efficiently. An improved version of this approach

was described in Burke et al. (2006a), in which they introduced a ‘multiple retrieval

technique’, with the intention of applying the same approach to solve large timetabling

problems. This research formed part of the PhD work reported in Qu (2002). Those

studies described above focused on assessing the reusability of previous good timetable

solutions or part of the timetable solutions (stored in a case base) in order to generate

new timetable for new target problem instances by measuring their similarity.

The second approach that promotes the issue of generality in problem solving tech-

niques, which has gained the attention of the timetabling community, is the so called

hyper-heuristics approach. An excellent introduction of the hyper-heuristics approach

can be found in Burke et al. (2003b). They define a hyper-heuristic as:

“The process of using meta-heuristics to choose (meta) heuristics to solve

the problem in hand”

Ross (2005a) noted that the broad aim of hyper-heuristic approaches is

“ to discover some algorithm for solving a whole range of problems that is fast,

reasonably comprehensible, trustable in terms of quality and repeatability, and

with good worst-case behaviour across that range of problems.”

A variety of hyper-heuristic approaches have been developed in attempts to solve univer-

sity timetabling problems. Tabu Search based hyper-heuristics have been successfully de-

veloped for examination timetabling by (Burke et al., 2003c; Kendall and Mohd Hussin,

2005a,b). CBR has also been investigated in the hyper-heuristic context for choosing

heuristics in the construction of university timetable solutions. Such an approach was

presented by Burke et al. (2002) and Petrovic and Qu (2002) in which CBR was em-

ployed to predict the appropriate heuristic for course timetabling problems. In Burke

et al. (2006b), Tabu Search was integrated with a Case Based Reasoning technique to

48

2.6 Generalisation of Problem Solving Approaches

search for the best sequence of heuristic orderings for particular timetabling problems.

They experimented with the approach using artificially generated course and exami-

nation timetabling problems. Their experimental results suggested that using permu-

tations of different heuristic orderings in solving the problem is better than using any

single heuristic ordering alone. Case based heuristic selection for university examina-

tion timetabling has also been investigated in Yang and Petrovic (2005) (see the second

paragraph of Section 2.5). Rattadilok et al. (2005) investigated a choice function based

hyper-heuristic that applied to course timetabling problems. In addition to the sequen-

tial choice function based hyper-heuristic algorithm on a single processor, they also

experimented with parallel architectures in which two distributed choice function based

hyper-heuristic approaches were developed by implementing software agent technology.

The aim of applying distributed algorithms is to extend the search space coverage and

to reduce the computational time in the timetable constructions. Their experimental

results showed that, when distributed algorithms were used, better solutions can be

generated in shorter times compared to those when the sequential choice function based

hyper-heuristic was implemented.

Recently, Burke et al. (2007) proposed a new graph based hyper-heuristic approach

for solving course and examination timetabling problems. Instead of using a single

heuristic to find solutions for course and examination timetabling problems, a sequence

of heuristics was applied. The authors used Tabu Search and deepest descent local

search in order to find the best list of heuristics to guide the constructive algorithm in

finding the ‘best solution’ for each problem instance. A comprehensive experimental

study on hyper-heuristics that analysed the performance of combinations of heuristic

selection mechanisms and move acceptance criteria is presented in Bilgin et al. (2006).

With regards to examination timetabling problems, the results demonstrated that the

combination of choice function heuristic selection with Monte Carlo acceptance criteria

was better than the other hyper-heuristic combinations. Note that heuristics mentioned

49

2.7 Chapter Summary

in this context are not limited only to heuristic orderings but also include other type of

heuristics such as low level heuristics used to move or swap events during the timetable

construction (or improvement).

2.7 Chapter Summary

This Chapter has presented a brief introduction of educational timetabling problems,

with a more detailed description of examination timetabling problems. As timetabling

problems are tedious tasks to solve manually, a wide variety of approaches and algorithms

have been applied to timetabling problems with the aim of developing computer-based

automated timetabling systems. An overview of graph based heuristics implemented in

the construction of initial solutions was presented. Various heuristic and meta-heuristic

approaches that have been implemented in the improvement phase were also highlighted

(although it should be noted that iterative improvement is outside the scope of this

thesis). Furthermore, the range of objective functions, and various multi-objective and

multi-criteria approaches used in timetabling were discussed. Finally, a review of the

various ways in which fuzzy methodologies have been used in the context of timetabling

was presented. In the next Chapter, a background to the fuzzy techniques utilised in

the remainder of this thesis is presented, for the reader unfamiliar with fuzzy systems.

50

Chapter 3

Theory of Fuzzy Sets and Fuzzy Sys-

tems

3.1 Introduction

In many decision making environments, it is often the case that several factors need to

be taken into account simultaneously. Often, it is not known which factor(s) need to be

emphasised more in order to generate a better decision. Somehow, a trade off between

the various (potentially conflicting) factors must be made. The general framework of

fuzzy reasoning facilitates the handling of such uncertainty. Fuzzy systems are used for

representing and employing knowledge that is imprecise, uncertain, or unreliable. This

Chapter will describe the general properties of fuzzy set theory.

The concept of fuzzy logic was first introduced in 1965 by Zadeh in his seminal paper

on fuzzy sets (Zadeh, 1965). Since then, research on fuzzy set has expanded to cover

a wide range of disciplines and applications. In the present thesis, the use of fuzzy

techniques is focused only on its use in rule-based systems. Therefore, this Chapter

presents a general background of the fuzzy set theory and fuzzy methodologies that are

utilised within the research work. The contents have been selected to be sufficient to

51

3.1 Introduction

explain how these fuzzy techniques work. A fully detailed descriptions of the logical

framework based on fuzzy sets (i.e. full fuzzy logic) is not included, as it is not utilised

here. For a full description of the functioning of fuzzy systems, the interested reader is

referred to Cox and O’Hagen (1998) for a simple treatment or Zimmermann (1996) for

a more complete treatment.

3.1.1 Fuzzy Sets and Membership Functions

Fuzzy sets can be considered as an extension of classical or ‘crisp’ set theory. In clas-

sical set theory, an element x is either a member or non-member of set A. Thus, the

membership µA(x) of x into A is given by:

µA(x) =


1, if x ∈ A

0, if x /∈ A

Consider room temperature as an example. One might say that “a temperature less

than 10℃ is cold”. This statement can be represented in the form of classical set as

cold = {x|x ≤ 10} and the membership function characterising this set is shown in

Figure 3.1.

10 20 30

1.0
cold

µ(x)

Room Temperature in °C

Figure 3.1: Membership function for the set of cold temperatures, defined as cold =
{x|x ≤ 10}

52

3.1 Introduction

In contrast to classical set theory, the fuzzy set methodology introduced the concept

of degree to the notion of membership. More formally, a fuzzy set A of a universe of

discourse X (the range over which the variable spans) is characterised by a membership

function µA(x) : X → [0, 1] which associates with each element x of X a number µA(x)

in the interval [0, 1], with µA(x) representing the grade of membership of x in A. The

precise meaning of the membership grade is not rigidly defined, but is supposed to

capture the ‘compatibility’ of an element to the notion of the set.

Returning to the example above, an everyday statement like “a temperature be-

low about 10℃ is considered cold” can be represented in the form of the fuzzy set

shown in Figure 3.2. In comparison with classical set in which only sharp boundaries

are permitted, the concept of membership degree in fuzzy sets allows fuzzy or blurred

boundaries to be defined. In Figure 3.2, it can be seen that a temperature of 11℃ can

also be considered as cold but with a lesser degree of membership than for 10℃ (i.e

µcold(x = 11) = 0.85); whereas in a classical set the degree of membership is zero (i.e.

a temperature of 11℃ does not belong to the set cold at all). Fuzzy sets provide the

tools to represent problems in everyday language, and it is this property that provides

a problem solving technique that mimics the characteristics of human reasoning and

decision making.

10 20 30

1.0
cold

µ(x)

Room Temperature in °C
x = 11°C

0.85

Figure 3.2: Membership function for the fuzzy set cold = {x | x is less than about 10}

53

3.1 Introduction

3.1.2 Linguistic Variables, Values and Rules

The term ‘linguistic variable’ was introduced by Zadeh (1975) to refer to a variable whose

values are in the form of “linguistic expressions” rather than numerical values. In the

example shown in Figure 3.2, ‘temperature’ is a linguistic variable with a linguistic value

‘cold’. Other possible linguistic values for the linguistic variable ‘temperature’ could

include terms such as ‘moderate’, ‘warm’ and ‘hot’. Each linguistic value is represented

by a fuzzy set (membership function) in which the characteristic of each fuzzy set is

dependent on the context of the particular problem. Although these linguistic terms are

very subjective, they might be interpreted as (for example):

• ‘cold’ to be a temperature below about 10 ℃

• ‘moderate’ to be a temperature around 15 ℃

• ‘warm’ to be a temperature around 20 ℃

• ‘hot’ to be a temperature above about 25 ℃

In a universe of discourse U = [0, 50], these linguistic values would be associated

with fuzzy sets whose membership functions are as follows:

µcold(x) =


1, if x ≤ 10

1− (x− 10)/5, if 10 < x < 15

0, otherwise

µmoderate(x) =


1− |x− 15|/5, if 10 < x < 20

0, otherwise

µwarm(x) =


1− |x− 20|/5, if 15 < x < 25

0, otherwise

54

3.1 Introduction

µhot(x) =


1, if x ≥ 25

1− (x− 30)/5, if 20 < x < 25

0, otherwise

Graphical representations of these fuzzy sets are shown in Figure 3.3. Over the

universe of discourse, the temperature T is partitioned into four fuzzy sets — cold,

moderate, warm and hot. These fuzzy sets are partially overlapping. Hence, it can be

seen that the room temperature of 18℃ has partial membership in both the fuzzy set

moderate and the fuzzy set warm, where

µmoderate(x = 18) = 0.25, and

µwarm(x = 18) = 0.75

10 20 30

1.0
cold moderate warm hot

x = 18 °C

0.75

0.25

T

µ(x)

Figure 3.3: Membership functions for the linguistic variable ‘temperature’

In this example, triangular and trapezoidal shape membership functions are defined.

In practice, any kind of membership functions that are suitable for the problem in hand

can be defined and used. Some common functions are depicted in Figure 3.4.

In order to perform inference, rules which connect input variables to output variables

in ‘IF ... THEN ...’ form are used to describe the desired system response in terms of

55

3.1 Introduction

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Gaussian (b) Sigmoid

Figure 3.4: Some common membership functions

linguistic variables (words) rather than mathematical formulae. The ‘IF’ part of the

rule is referred to as the ‘antecedent’, the ‘THEN’ part is referred to as the ‘consequent’.

The number of rules depends on the number of inputs and outputs, and the desired

behaviour of the system. Once the rules have been established, such a system can be

viewed as a non-linear mapping from inputs to outputs.

Based on this general form of fuzzy rules, several alternative ways of defining fuzzy

rules have been used for knowledge representation in fuzzy systems (Kasabov, 1996, p.

192). In this research, the standard form of Mamdani-style fuzzy rules (Mamdani and

Assilian, 1975) are implemented. In Mamdani’s approach, rules are of the form:

Ri : if (x1 is Ai1) and ... and (xr is Air) then (y is Ci) for i = 1, 2, ..., L

where L is the number of rules, xj (j = 1, 2, 3, ..., r) are input variables, y is the output

variable, and Aij and Ci are fuzzy sets that are characterised by membership functions

Aij(xj) and Ci(y), respectively. In the fuzzy reasoning process (a more detailed expla-

nation is given in Section 3.1.6), each rule is evaluated in order to determined the degree

of fulfillment of the rule.

56

3.1 Introduction

3.1.3 Fuzzy Operators

The main fuzzy operations defined by Zadeh (1965) are as follows:

Let A and B be two fuzzy sets with membership functions µA(x) and µB(x) respec-

tively. The intersection operation (which corresponds to the logical ‘AND’) is defined as

µA∩B(x) = min[µA(x), µB(x)] (3.1)

and the union operation (which corresponds to the logical ‘OR’) is defined as

µA∪B(x) = max[µA(x), µB(x)] (3.2)

In addition, the complement operator (which corresponds to the logical ‘NOT’) is de-

fined as

µĀ(x) = 1− µA(x) (3.3)

A graphical representation of these operations is shown in Figure 3.5.

1.0
A B

µ(x)

1.0
A B

µ(x)

1.0
A B

µ(x)

1.0
A B

µ(x)

A ∩ B

A U B

1.0
A

µ(x)

1.0
Ā

µ(x)

Figure 3.5: Fuzzy sets operations (adapted from Negnevitsky (2002, Chap. 4))

57

3.1 Introduction

3.1.4 Fuzzy Hedges

In addition to the primary linguistic values (terms), it is also possible to apply the

concept of fuzzy modifiers, called hedges. Terms such as very, more or less, and slightly

are examples of hedges. Hedges are applied to linguistic values in order to modify the

shape of the particular fuzzy sets. The ability to define hedges provides more flexibility

in defining fuzzy statements that are closer to everyday language. In practice, the terms

categorised as hedges have mathematical expressions that define their operations. Some

examples of hedges with their mathematical expressions and graphical representations

are shown in Table 3.1. However, the actual definition of hedges and their operations for

any particular problem are, again, subjective and dependent on the desired behaviour

of the fuzzy system.

Table 3.1: Examples of hedges (taken from Negnevitsky (2002, Chap. 4)). For the
graphical representation, the thicker line is the new shape when the hedge act on the
linguistic value.

Hedge Mathematical expression Graphical representation

Slightly [µA(x)]1.7

1.0

µ(x)

Very [µA(x)]2

1.0

µ(x)

More or less
√

µA(x)

1.0

µ(x)

58

3.1 Introduction

Figure 3.6 depicts the application of the hedge ‘very’ to the linguistic value ‘warm’.

A room temperature of 18℃ has 0.7 degree of membership in the fuzzy set ‘warm’, and

so belongs to the fuzzy set ‘very warm’ with a membership degree of 0.49.

10 20 30

1.0
cold moderate warm hot

x = 18 °C

0.7

0.49

T

µ(x)

very warm

Figure 3.6: Apply hedge ‘very’ onto linguistic value ‘warm’

3.1.5 Defuzzification Methods

The final output of a Mamdani system is one or more arbitrarily complex fuzzy sets

which (usually) need to be defuzzified. Defuzzification is a mathematical process used

to extract crisp output from fuzzy output set(s). This process is necessary because all

fuzzy sets inferred by fuzzy inference in the fuzzy rules must be aggregated to produce

one single number as the output of the fuzzy model. Various types of defuzzification

have been suggested in literature (Cox and O’Hagen, 1998). The properties of the

specific application being developed will determine which defuzzification method can be

utilised. However, there is no systematic procedure to choose which method is the most

suitable for any given application. In the following sections, the five most often used

defuzzification methods are described.

3.1.5.1 Centre of Gravity (COG) Method

Probably the common form of defuzzification is termed the ‘centre of gravity’ method,

as it is based upon the notion of finding the centroid of a planar figure. This method

59

3.1 Introduction

can be expressed mathematically as follows:

x∗ =

∫ b

a
µ(x) · xdx∫ b

a
µ(x)dx

Theoretically, the output is calculated over a continuum of points in the aggregate

membership function. In practice, an approximate value can be derived by calculating

it over a sample of points. The formula is given by:

x∗ =

∑b
a µ(x) · x∑b

a µ(x)

Figure 3.7 shows a graphical illustration of the method of finding the point repre-

senting the centre of gravity in the interval [a, b] for the output fuzzy set.

x*

µ

1.0

x
a b

Figure 3.7: The Centre of Gravity (COG) method of defuzzification

3.1.5.2 The Mean of Maxima (MOM) Method

The Mean of Maxima method returns the average of the base-variable values at which

their membership values reach the maximum. The formula is given by:

x∗ =
k∑

j=1

xj

k

where k is the number of discrete elements of the output fuzzy set that reach the max-

imum memberships. The graphical illustration of the method is shown in Figure 3.8.

60

3.1 Introduction

x*

µ
1.0

xa b

x* = (a+b)/2

Figure 3.8: The Mean of Maxima (MOM) method of defuzzification

3.1.5.3 The Smallest of Maxima (SOM) and The Largest of Maxima (LOM)

Methods

The Smallest of Maxima method, returns the smallest value of x that belongs to [a, b] at

which their membership values reach the maximum. Meanwhile, The Largest of Maxima

method, returns the largest value of x that belongs to [a, b].

A graphical illustration of these methods is shown in Figure 3.9.

x*SOM

µ
1.0

x
x*LOM

ba

Figure 3.9: The Smallest of Maxima (SOM) and The Largest of Maxima (LOM) methods
of defuzzification

61

3.1 Introduction

3.1.5.4 The Bisector of Area (BOA) Method

The Bisector of Area (BOA) Method returns the vertical line that partitions the region

into two sub-regions of equal area. This method satisfies

∫ x∗

α

µA(x)dx =

∫ β

x∗
µA(x)dx

where α = min{x|x ∈ X} and β = max{x|x ∈ X}. A graphical illustration of this

method is shown in Figure 3.10.

µ
1.0

x
x*

Figure 3.10: The Bisector of Area (BOA) method of defuzzification

3.1.6 Overview of Fuzzy Systems

Figure 3.11 shows the five interconnected components of a fuzzy system. The fuzzifica-

tion component computes the membership grade for each crisp input variable based on

the membership functions defined. The inference engine then conducts the fuzzy reason-

ing process by applying the appropriate fuzzy operators in order to obtain the fuzzy set

to be accumulated in the output variable. The defuzzifier transforms the output fuzzy

set to a crisp output by applying a specific defuzzification method.

Briefly, the main steps in fuzzy system design are as follows:

• Analyse and understand the problem in consideration.

62

3.1 Introduction

Rule base

Inference
Engine

Membership Functions

DefuzzificationFuzzification
inputs outputs

Figure 3.11: Components of fuzzy system

• Determine the linguistic variables (the inputs and outputs). For each linguis-

tic variable, identify the linguistic values and define the fuzzy sets (membership

functions).

• Identify and define the fuzzy rule set.

• Choose the appropriate methods for fuzzification, fuzzy inference and defuzzification.

• Evaluate the system.

If necessary, this sequence of steps is then repeated an arbitrary number of times while

fine tuning the fuzzy system by modifying the fuzzy input/output sets and/or fuzzy rules.

In reality, modeling a fuzzy system is a difficult task. Finding a sufficiently good

system can be viewed as a search problem in high-dimensional space, in which each

point represents a rule set, the membership functions, and the evaluation function is

some measure of the corresponding system behaviour. This is due to the fact that the

performance of a fuzzy system is highly dependent on how the system developer defines

the linguistic variables, the membership functions, fuzzy rules set and so on. No formal

methods exist to determine the appropriate fuzzy model in a given context. The term

‘fuzzy model’ is used to mean the combination of selected linguistic variables (input and

output variables), membership functions for each linguistic variable and a rule set (as

the inference engine and the fuzzification methods are fixed — see below). Most of the

time, the system is either built based on expert knowledge or by systematically training

63

3.1 Introduction

the system using the available data. There are many alternative ways in which this

general fuzzy methodology (as shown in Figure 3.11) can be implemented in any given

problem. In our implementation, the standard Mamdani style fuzzy inference was used

with standard Zadeh (min-max) operators (Negnevitsky, 2002).

Consider a simple example, in order to understand how Mamdani style fuzzy inference

works. This example is for a fuzzy system with two input variables and one output

variable. The purpose of this example is to illustrate how the final crisp output is

obtained for the particular input values.

Step 1 - Determining linguistic variables and fuzzy sets. Let the two inputs be

represented as linguistic variables A and B; and the output as linguistic variable

C. A1, A2 and A3 are linguistic values for A; B1, B2 and B3 are linguistic values

for B; C1, C2 and C3 are linguistic values for C with membership functions as

shown in the graphical representations given in Figure 3.12.

40

1.0
A1 A2 A3

A

µ(x)

B20

1.0 B1 B2 B3

µ(x)

10

1.0
C1 C2 C3

C

µ(x)

(a) Input: A (b) Input: B (b) Output: C

Figure 3.12: Characteristic of linguistic variables

Let us define three rules as follows:

Rule 1 : IF (a is A1) AND (b is B1) THEN (c is C1)

Rule 2 : IF (a is A2) OR (b is B2) THEN (c is C2)

Rule 3 : IF (a is A3) AND (b is B3) THEN (c is C3)

Step 2 - Fuzzification. The fuzzified values for input values a = 15 and b = 5 are

shown in Figure 3.13.

64

3.1 Introduction

40

1.0
A1 A2 A3

a = 15

0.7

0.25

A

µ(x)

b = 5

0.8

0.1

B20

1.0 B1 B2 B3

µ(x)

(a) Input: A (b) Input: B

Figure 3.13: The fuzzified value for both input linguistic variables

Step 3 - Fuzzy Inferencing (Evaluate Rules). The firing level for each rule is de-

termined using the min-max operator shown in Equations (3.1) and (3.2). If the

AND operator appears in the antecedents part, the minimum fuzzified value will

be selected. On the other hand, if the OR operator appears, the maximum fuzzi-

fied value will be selected. Figure 3.14 shows the process graphically. It can be

seen that Rule 3 is not activated because both input values (i.e. a = 15 and b = 5)

have zero membership degree for the linguistic values A3 and B3 respectively.

Step 4 - Rules Output Aggregation. Having evaluated all the rules, the final shape

of the output is determined by combining all of the activated rule consequents. The

aggregation result is shown in Figure 3.15.

Step 5 - Defuzzification. COG method of defuzzification (as described in Section 3.1.5.1)

is used to defuzzified the output fuzzy set. Figure 3.16 shows the calculated ‘centre

of gravity’ of the final output fuzzy set for this simple example problem.

Even when created with expert knowledge, the system invariably needs to be fine

tuned in order to obtain a satisfactory system performance (where ‘satisfactory’ may be

defined in terms of how good is the fuzzy system is compared to the equivalent manual

system; or perhaps in terms of whether the system behaves as previously specified;

etc.). The use of search algorithms for tuning fuzzy system has been applied by many

65

3.1 Introduction

µ(x)

10

1.0

CA40

1.0
A2

a = 15

0.7

µ(x)

b = 5

0.1

B20

1.0
B2

µ(x)

µ(x)

10

1.0
C3

CA40

1.0
A3

a = 15

µ(x)

b = 5 B20

1.0
B3

µ(x)

Rule 2: IF (a is A2) OR (b is B2) THEN (c is C2)

Rule 3: IF (a is A3) AND (b is B3) THEN (c is C3)

µ(x)

10

1.0

CA40

1.0
A1

a = 15

0.25

µ(x)

b = 5

0.8

B20

1.0
B1

µ(x)

Rule 1: IF (a is A1) AND (b is B1) THEN (c is C1)

AND
(min)

0.25

OR
(max)

0.7

C2

C1

Figure 3.14: Evaluation of rules fulfillment (firing levels)

C

Rule 1 Rule 2 Final output

µ(x)

10

1.0

0.7

C2

µ(x)

10

1.0

C

0.25

C1

µ(x)

10

1.0

+
C

Figure 3.15: Aggregation of rules

researchers. Such methods include Genetic Algorithms (Gómez-Skarmeta and Jiménez,

1999; Setnes and Roubos, 2000; Shimojima et al., 1995; Wang et al., 1998) and Simulated

Annealing (Garibaldi and Ifeachor, 1999).

In spite of the fact that sophisticated search techniques are often utilised in fuzzy

tuning, it was outside the scope of this thesis to perform any extensive application of

such methods. As the focus was to investigate the applicability of fuzzy techniques in the

66

3.2 Chapter Summary

Final output, c = 4

µ(x)

10

1.0

C

Figure 3.16: Defuzzification of final shape

university timetabling problem, a simple exhaustive search was employed for fine tuning

the fuzzy system (more details of the tuning process utilised are given in Section 4.4.1.3).

3.2 Chapter Summary

This Chapter presents the basics of fuzzy set theory, fuzzy inference and fuzzy modelling.

Although the presented material only covers a very small part of the huge body of fuzzy

set theory and fuzzy techniques in general, its is designed to be enough for the unfamiliar

reader to understand the conceptual framework of the fuzzy methodologies that are

implemented in the rest of this thesis.

The very limited previous research into fuzzy techniques in timetabling problems

encouraged the author to investigate alternative ways of employing fuzzy techniques to

assist in finding solutions for timetabling problems. It is the author’s belief that the

power of fuzzy techniques may be very useful in the timetabling problem environment,

in which key decisions are influenced by many subjective factors. The ability to represent

the problem in natural language may provide the mechanism to investigate how human

experts (timetabling officers) construct timetable solutions in the real world. Although

a thoroughly exhaustive examination of fuzzy techniques in all aspects of timetabling

would be a vast undertaking, clearly beyond the scope of any one thesis, this thesis sets

out, for the first time, to explore these issues.

67

Part II

Fuzzy Construction

68

Chapter 4

Fuzzy Multiple Heuristic Orderings

for Examination Timetabling

4.1 Introduction

This Chapter presents an initial investigation into considering multiple heuristic order-

ings simultaneously for measuring the difficulties of scheduling exams into time slots.

As far as the author is aware this work is the first attempt to apply fuzzy techniques in

considering more than one heuristic ordering to measure the difficulty of assigning exams

into time slots. To allow full investigation and analysis, the scope of the preliminary

study presented in this Chapter is to combine two heuristic orderings simultaneously.

In further defining the problem at this stage, three out of five single heuristic orderings

described in Section 2.2.2 are considered to be combined (with three alternative combi-

nations of two heuristic orderings simultaneously). Further investigations that consider

three heuristic orderings simultaneously are presented in Chapter 5. In Chapter 6, var-

ious combinations of two and three heuristic orderings are considered as the five single

heuristic orderings are explored.

This Chapter is a very important and necessary first step as it serves as the foundation

69

4.2 The Basic Sequential Constructive Algorithm

for the detailed analysis outlined over the following two Chapters. It can be divided into

two parts. In the first part, the approach developed is described, followed by initial

experimental results. In the second part, results of more extensive investigations are

reported and rigorous analysis of the compared heuristics are presented. The main aims

of this Chapter are as follows:

• To illustrate that fuzzy multiple heuristic ordering is more effective compared with

single heuristic ordering where one heuristic is implemented individually

• To analyse the effect of using different combinations of heuristic orderings for

constructing initial solutions of timetabling problems

4.2 The Basic Sequential Constructive Algorithm

The sequential construction algorithm used as part of this investigation employs a heuris-

tic ordering in the initial construction phase. This is depicted in Figure 4.1. The se-

quential constructive algorithm requires the following steps:

Process 1 Choose heuristic ordering

In order to determine the sequence in which exams are scheduled to a valid time

slot, it must be decided which heuristic ordering is to be employed. Usually, any of

the heuristic orderings described earlier can be employed on their own to measure

the exams’ difficulty to be scheduled. In this research, an alternative approach

is introduced in which two heuristic orderings are considered simultaneously to

measure the exams’ difficulty.

Process 2 Calculate the difficulty of the exam to be scheduled

Having chosen a heuristic ordering to be implemented, the calculation of the as-

sessment of difficulty is performed and exams are ordered in a specified sequence.

Process 3 -Process 5 Sequentially assign exams to time slots

For each exam in turn (starting with the most difficult to schedule) the following

70

4.2 The Basic Sequential Constructive Algorithm

Sequential Constructive Algorithm

Constructive
Feasible
Solution

Process 3:
Get next event on
unscheduled list

Yes

No

No

Yes

YesNo
Process 4:
Add event
to skipped
list

Process 2:
Calculate events’
difficulty to be
scheduled

Process 1:
Choose heuristic ordering

No

Yes

Any more
events?

Valid time
slot

available?

Process 5:
Assign
event to the
time slot

Process 6:
Perform
‘rescheduling
procedures’

Skipped
event = 0?

Dynamic
heuristic?

Problem
Definitions

Figure 4.1: A general framework for producing timetabling solutions

71

4.2 The Basic Sequential Constructive Algorithm

sequence of events are carried out. The free time slots are examined in turn to

find valid ones, and for each, the penalty is calculated that would result from

placement of the exam in that slot. After examining each of the time slots, the

exam is scheduled into the available slot incurring the least penalty (if two or more

slots share the lowest penalty cost, the exam is scheduled into the last such time

slot). If no valid time slot is available, the exam is not assigned and is recorded

on a ‘skipped list’. If a dynamic heuristic is being used, the remaining exams’

difficulties are updated and the exams are reordered accordingly.

Process 6 Perform a ‘ rescheduling procedure’

This process is only performed when there is at least one exam that could not

be scheduled because no valid time slot was available — i.e there are skipped

event(s) from Process 3 . The process for scheduling the skipped exams is shown

in Figure 4.2.

Copy all skipped events into unscheduled events list
While there exist unscheduled events

E* = next unscheduled event that needs to be scheduled;
Find time slots where event E* can be inserted with minimum number of
scheduled events needed to be removed from the time slot;
If found more than one time slot with the same number of scheduled events
need to be removed

Select a time slot t randomly from the candidate list of time slots;
End if
While there exist events that conflict with event E* in time slot t

Et = next conflicted event in time slot t ;
If found another time slot with minimum penalty cost to move event Et
 Move event Et to the time slot;
else
 Bump back event Et to unscheduled events list;
End if

End While
Insert event E* to timeslot t ;
Remove event E* from unscheduled event list;
If dynamic ordering heuristic is in used

Sort unscheduled events using selected heuristic ordering;
End if

End While

Figure 4.2: Pseudo code for the ‘rescheduling procedure’ used if ‘skipped’ exams exist

72

4.2 The Basic Sequential Constructive Algorithm

The steps outlined above continue until all the exams are scheduled (i.e. feasible solution

is constructed). The reason for this is to make sure that the timetable produced is

comparable to results published in the literature - in the context of the benchmark data

sets use in this research.

The sequential construction algorithm used here is similar to the approach applied

by Carter et al. (1996) with some modification. Basically, there are three differences

between these two algorithms. The first difference is related to the initial stage of the

algorithm. In the algorithm used here, the heuristic ordering is applied to all exams,

whereas Carter et al.’s algorithm first finds the maximum-clique of examinations and

assigns them to different time slots, and then applies heuristic ordering to the remaining

exams. The second difference is in the selection of the free time slot. As with both

approaches, a search is carried out to find the clash free time slot with least penalty

cost in order to assign each exam to a time slot. In the algorithm used here, if several

time slots are available, then the last available time slot in the list will be selected.

(It was found that the choice of assigning exams to the last available time slot or the

first available time slot made little difference, as the main purpose of this was simply to

spread out the student’s timetable.) In contrast, Carter et al. chose the first clash free

time slot found in which to assign the exam. Thirdly, for reshuffling a scheduled exam,

a time slot is randomly selected from the list of time slots with the minimum number

of scheduled exams that needed to be ‘bumped back’, whereas Carter et al. used a

minimum disruption cost to break any ties.

Although the main purpose of the ‘rescheduling procedure’ is to make sure all exams

can be scheduled into time slots, it is not guarantee that this procedure can be applied

to construct a feasible timetable for any timetabling problem. No thorough experimen-

tation was performed to test the reliability of the function in term of it applicability to

other timetabling problems. In fact, throughout this research (especially for membership

functions tuning), the maximum number of iterations allowed for ‘rescheduling proce-

73

4.3 Why Fuzzy Multiple Heuristic Orderings?

dure’ have been set. Meaning that, for any combination of cp parameters, the scheduling

process will be terminated if the number iterations of ‘rescheduling procedure’ is exceeded

the predefined number of iterations allowed. Later on, in the discussion of the exper-

iment results, it can be seen that (see Tables 4.11 and 4.12) the performance of the

‘rescheduling procedure’ is dependent on the heuristic (or combination of heuristics) ap-

plied to measure the difficulty of scheduling the exams. Therefore, it might be possible

that depending on the complexity of the timetabling problem instances, the ‘rescheduling

procedure’ could cycle for ever without a feasible solution ever being reached.

4.3 Why Fuzzy Multiple Heuristic Orderings?

As mentioned earlier in Chapter 3, making decisions in multiple attributes environment

is not an easy task. When making a decision based on more than one attribute, the

problem lies in deciding which attribute should be emphasized in order to obtain the

best decision. Often it is difficult to resolve conflicting attributes. Consider the example

shown in Figure 4.3. In this example, there are ten exams (e1, e2, e3, e4, e5, e6, e7,

e8, e9, e10) with the given LD and LE values. Figure 4.3(a) shows the ten exams in an

unordered list, Figures 4.3(b) to (f) show the results of using different heuristic orderings

to order the ten exams. It can be seen that when two different heuristic orderings

are used individually, the orderings are substantially different (see Figure 4.3(b) and

Figure 4.3(c)).

It is interesting to note that if both heuristic orderings are used as a pair (e.g. use

LD as the main attribute and LE to break any tie, or vice versa — see Figure 4.3(d)),

the ordering is almost the same as that produced when only the main attribute used

on its own. This can be observed if we compare Figure 4.3(b) with Figure 4.3(d); and

Figure 4.3(c) with Figure 4.3(e).

Another way to use both attributes to handle such multiple attribute decision making

is simply to multiply the value of each attribute by a weighting factor and summate (i.e.

74

4.3 Why Fuzzy Multiple Heuristic Orderings?

form a simple linear combination). In this example, the formulation is:

weight(ej) = wlLDj + weLEj

where j = 1, 2, ...n; n is the number of exams; and wl and we are the weighting factors

(any real number) for LD and LE respectively. Using a simple combination to repre-

sent the relative importance of both attributes can result in quite a different ordering

(see Figure 4.3(f) where weights wl = 0.5 and we = 0.6 have been used - these values

were arbitrarily chosen to illustrate the point). In effect, neither the LD nor LE at-

tributes alone control the exam ordering; it is determined by considering both attributes

simultaneously. However, the problem then becomes that of needing to search for the

Unordered
exams list

Ordered by LD only Ordered by LE only

exams LD LE exams LD LE exams LD LE

e1 30 40 e3 50 20 e6 10 43

e2 10 30 e10 45 30 e1 30 40

e3 50 20 e5 39 10 e4 20 35

e4 20 35 e1 30 40 e2 10 30

e5 39 10 e9 27 15 e10 45 30

e6 10 43 e4 20 35 e8 19 25

e7 10 20 e8 19 25 e7 10 20

e8 19 25 e2 10 30 e3 50 20

e9 27 15 e6 10 43 e9 27 15

e10 45 30 e7 10 20 e5 39 10

(a) (b) (c)

Ordered by LD
and then LE

Ordered by LE and
then LD

Ordered by linear combination
of both attributes

exams LD LE exams LD LE exams LD LE weight

e3 50 20 e6 10 43 e10 45 30 40.5

e10 45 30 e1 30 40 e1 30 40 39.0

e5 39 10 e4 20 35 e3 50 20 37.0

e1 30 40 e10 45 30 e4 20 35 31.0

e9 27 15 e2 10 30 e6 10 43 30.8

e4 20 35 e8 19 25 e5 39 10 25.5

e8 19 25 e3 50 20 e8 19 25 24.5

e6 10 43 e7 10 20 e2 10 30 23.0

e2 10 30 e9 27 15 e9 27 15 22.5

e7 10 20 e5 39 10 e7 10 20 17.0

(d) (e) (f)

Figure 4.3: Example of examinations ordered by various combinations of heuristics

75

4.4 The Fuzzy Multiple Heuristic Ordering

appropriate values of wl and we to be used. Johnson (1990) implemented a similar for-

mula for constructing initial solutions to the examination timetabling problem in which

he set wl to a constant value (wl = 1) while varying the we value. The aim of this was

simply to produce a range of alternative initial solutions which were then subject to

iterative improvement.

Heuristic orderings are based on assumptions. For example, an exam is more difficult

to schedule if it has a ‘large’ number of other exams in conflict or if it has a ‘small’ number

of valid time slots available. This, in effect, is dealing with linguistic terms, where no

exact values for ‘large’ and ‘small’ have been defined. This allows for a certain amount

of uncertainty when attempting to combine such heuristics. The general framework of

fuzzy reasoning facilitates the handling of such uncertainty. The original hypothesis was

that this problem might be one where fuzzy techniques may be of use. In essence, fuzzy

methodologies allow non-linear combinations of multiple heuristics to be considered.

4.4 The Fuzzy Multiple Heuristic Ordering

This Section introduces the concept of fuzzy multiple heuristic ordering. The basic fea-

tures of the sequential constructive algorithm used have been described in Section 2.2.2.

As mentioned earlier, certain ordering strategies that have been widely studied for the

timetabling problem have evolved from studying the graph colouring problem. As this is

the first attempt to implement the concept of fuzzy multiple heuristic ordering, the pre-

liminary investigation was based on three of these heuristic orderings - LD , LE and SD .

As discussed in Section 2.2.2, these sequencing strategies have proven to be highly effec-

tive in constructing solutions for graph colouring problems and examination timetabling

problems when applied on an individual basis.

76

4.4 The Fuzzy Multiple Heuristic Ordering

4.4.1 Fuzzy Modeling

This Section presents the development of this particular fuzzy model. Considering the

first three single heuristic orderings explained in Section 2.2.2, there are three alternative

ways in which two single heuristic orderings can be simultaneously combined. The

possible combinations are:

• LD and LE , referred to as the Fuzzy LD+LE Model

• SD and LE , referred to as the Fuzzy SD+LE Model

• SD and LD , referred to as the Fuzzy SD+LD Model

These three heuristic ordering combinations provide alternative ways for ordering a list of

exams. Therefore, in Process 1 (see Figure 4.1), instead of simply choosing any one of the

single heuristic orderings to be implemented, the process needs to be modified/improved

so that the fuzzy approach can be incorporated. Accordingly, the extended version of

Process 1 is shown in Figure 4.4. It is worth mentioning that fuzzy methodologies are

only employed in Process 1 ; the other processes in the dotted-box of Figure 4.1 remain

the same.

Fuzzy modeling can be thought of as the task of designing the fuzzy inference system

specific to the particular application area. The selection of important parameters for

the inference system is crucial, as the overall system behaviour is highly dependent on

a large number of factors such as how the membership functions are chosen, the num-

ber of rules involved, the fuzzy operators used, and so on. As two heuristics are being

combined into a single overall heuristic, a fuzzy system with two inputs and one output

is developed. The input variables used are dependent on the heuristic combinations se-

lected. Three pairs of input variables are possible, namely LD and LE , SD and LE , or

SD and LD . With any pair of input variables, an output variable called examweight is

generated. This output variable, examweight, represents the overall difficulty of schedul-

ing an exam to a time slot. Each of the input and output variables are associated with

77

4.4 The Fuzzy Multiple Heuristic Ordering

Process 1: Choose heuristic ordering

Choose Non-fuzzy
Single Heuristic

Ordering

Fuzzy Modeling

Determine the heuristic orderings that will
be considered simultaneously.

Define fuzzy rules set.

Define fuzzy membership functions for
each heuristic ordering

Figure 4.4: The steps involved in a fuzzy version of Process 1 (from Fig. 4.1)

three linguistics terms: small, medium and high. Each linguistic term is represented by

a fuzzy membership function.

Normalised Membership Functions By analysing the minimum and maximum

values of each heuristic ordering (see Table 4.1), it can been seen that the values for

different heuristic ordering are in widely different scales. To further complicate of the

issue, for some heuristics, values between data sets are also widely different. For the

purpose of maintainability (easy maintenance), it was decided to implement the member-

ship function with the universe of the discourse (x-axis) for each fuzzy variable defined

to the range between 0 and 1. This means that the actual input value needed to be

transformed into a new value in the range [0, 1]. In general, this can be achieved using

a transformation such as:

v′ =
(v −minx)

(maxx −minx)

78

4.4 The Fuzzy Multiple Heuristic Ordering

where v is the actual value in the initial range [minx, maxx]. In the case here, minx, was

set to zero for each of LD , LE and SD . In Table 4.1, it can be seen that, value for min

in 24 cases are equal to zero, while another 24 cases are greater than zero (in the range

between 1 and 22). Therefore, minx, was set to zero for more convenient, as it doesn’t

make any difference. The maximum values were set by examination of the problem

instance: maxx(LD) was set to the largest number of conflicts found for any exam in

the problem instance; maxx(LE) was set to the maximum number of students enroled

to any exam in the problem instance; and maxx(SD) was set to the total number of

time slots available in the problem instance.

This is due to the fact that, rather than recalculate the parameters for the fuzzy sets

shape, it is much easier to transform the original value in the range [minx, maxx] to the

new range [0, 1]. For example, if v = 10 in [0, 20], the normalised value v′ is 0.5 in the

new range [0, 1].

Table 4.1: Minimum and maximum values for heuristic LD , LE , SD and WLD for each
data set. The minimum and maximum values for heuristic LCD is similar to LD .

LD LE SD WLD

min max min max min max min max

CAR-F-92 0 381 2 1566 0 32 0 4740
CAR-S-91 0 472 2 1385 0 35 0 4718
EAR-F-83 4 134 1 232 0 24 4 1665
HEC-S-92 9 62 7 634 0 18 22 2315
KFU-S-93 0 247 1 1280 0 20 0 5089
LSE-F-91 0 134 1 382 0 18 0 1229
RYE-F-92 0 274 3 943 0 23 0 5118
STA-F-83 7 61 1 237 0 13 7 2090
TRE-S-92 0 145 1 407 0 23 0 1267
UTA-S-92 1 303 1 1314 0 35 1 4382
UTE-S-92 2 58 1 482 0 10 3 1847
YOR-F-83 7 117 1 175 0 21 7 779

79

4.4 The Fuzzy Multiple Heuristic Ordering

4.4.1.1 An Illustrative Example

This section will illustrate the functioning of the fuzzy inference process for a nine-rule

system based on two input variables, LD and LE. Each of the input and output variables

were assigned three linguistic terms; fuzzy sets corresponding to meanings of small,

medium and high, referred to as ‘membership functions’. These membership functions

were chosen arbitrarily to span the universe of discourse (range) of the variable. A rule

set connecting the input variables (LD and LE) to a single output variable, examweight,

was constructed. The following nine rules describe the behaviour of the system:

Rule 1: IF (LD is small) AND (LE is small) THEN (examweight is very small)

Rule 2: IF (LD is small) AND (LE is medium) THEN (examweight is small)

Rule 3: IF (LD is small) AND (LE is high) THEN (examweight is medium)

Rule 4: IF (LD is medium) AND (LE is small) THEN (examweight is small)

Rule 5: IF (LD is medium) AND (LE is medium) THEN (examweight is medium)

Rule 6: IF (LD is medium) AND (LE is high) THEN (examweight is high)

Rule 7: IF (LD is high) AND (LE is small) THEN (examweight is medium)

Rule 8: IF (LD is high) AND (LE is medium) THEN (examweight is high)

Rule 9: IF (LD is high) AND (LE is high) THEN (examweight is very high)

The first stage is to normalise the input values to lie in the range [0, 1], as the

universe of the discourse (x -axis) for the fuzzy variable was defined to be between 0 and

1. Figure 4.5 illustrates the inferencing of this system with arbitrarily chosen normalised

values for LD and LE of 0.90 and 0.80, respectively. For each rule in turn, the fuzzy

system operates as follows. Consider Rule 6 as an example, as this rule provides a good

example of firing levels for different membership functions for both input variables. The

input component (‘fuzzifier’) computes the degree of membership for each input variable

based on the membership functions defined. That is, in Rule 6, the degree of membership

80

4.4 The Fuzzy Multiple Heuristic Ordering

LD = 0.90 LE = 0.80

Rule 1

Rule 3

antecedent consequent

max

examweight(0.90,0.80) = 0.68

µ
µexamweight(0.90,0.80)

Final
Output

Rule 7

µLD

0.2

medium small µLE

small

µ

x

µexamweight

small small
µLE

Very small µ

x

µexamweight

small medium µLE

small

µexamweight

µLD

small high µLE

medium

µexamweight

µLD

0.2

medium medium µLE

medium

0.45
0.2 x

µexamweight

µLD

0.2

medium high µLE

high

0.75

0.2

µexamweight

µLD

0.9

high small µLE

medium

µ

µexamweight

µLD

0.9

high medium µLE

high

µ

0.45 0.45

µexamweight

µLD

0.9

high high µLE

small

Very high

0.75 0.75

µexamweight

µLD

Rule 2

Rule 4

Rule 5

Rule 6

Rule 8

Rule 9

µLD

0.75

0.45

Figure 4.5: A nine-rule Mamdani inference process

81

4.4 The Fuzzy Multiple Heuristic Ordering

is computed for LD in the fuzzy set medium and for LE in the fuzzy set high. As shown

in the figure, the determined degree of memberships for each input variable are:

µmedium(LD = 0.90) = 0.20, and

µhigh(LE = 0.80) = 0.75

With these fuzzified values, the inference engine then computes the overall truth

value of the antecedent of the rule (Rule 6) by applying the appropriate fuzzy operators

corresponding to any connective(s) (AND or OR). In the example, the fuzzy AND

operator is implemented as a minimum function:

Rule 6 IF (LD is medium) AND (LE is high)

µRule1 = µmedium(LD = 0.90) ∧ µhigh(LE = 0.80)

= min(0.20, 0.75)

= 0.20

Next, the inference engine applies the implication operator to the rule in order to obtain

the fuzzy set to be accumulated in the output variable. In this case, inferencing is

implemented by truncating the output membership function at the level corresponding

to the computed degree of truth of the rule’s antecedent. The effect of this process can

be seen in the consequent part of Rule 6 in which the membership function for linguistic

term high was truncated at the level of 0.20. The same processes are applied to all of

the rules.

Finally, all the truncated output membership functions are aggregated together to

form a single fuzzy subset (labeled as Final Output in Figure 4.5) by taking the maxi-

mum across all the consequent sets. A further step (known as ‘defuzzification’) is then

performed if (as is usual) the final fuzzy output is to be translated into a crisp output.

82

4.4 The Fuzzy Multiple Heuristic Ordering

Using the ‘centre of gravity defuzzification’, the defuzzified value for the conclusion is

found (approximately):

∑
i

µ(xi) · xi = (0.15 ∗ 0.05) + (0.2 ∗ 0.1) + (0.2 ∗ 0.15) + (0.2 ∗ 0.2) + (0.2 ∗ 0.25)

+ (0.2 ∗ 0.3) + (0.2 ∗ 0.35) + (0.2 ∗ 0.4) + (0.2 ∗ 0.45) + (0.2 ∗ 0.5)

+ (0.2 ∗ 0.55) + (0.35 ∗ 0.6) + (0.4 ∗ 0.65) + (0.45 ∗ 0.7) + (0.5 ∗ 0.75)

+ (0.65 ∗ 0.8) + (0.7 ∗ 0.85) + (0.75 ∗ 0.9) + (0.75 ∗ 0.95) + (0.75 ∗ 1.0)

= 5.07

∑
i

µ(xi) = 0.15 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2

+ 0.2 + 0.35 + 0.4 + 0.45 + 0.5 + 0.65 + 0.7 + 0.75 + 0.75 + 0.75

= 7.45

∑
i µ(xi) · xi∑

i µ(xi)
=

5.07

7.45

= 0.680537

In the example of Figure 4.5, the output for the fuzzy system (that represents how

difficult the exam is to be scheduled) is 0.68 for the given inputs (i.e an exam with LD

and LE of 0.90 and 0.80, respectively).

All exams in the given problem instance are evaluated using the same fuzzy system,

and the sequential constructive algorithm uses the crisp output of each exam for ordering

all exams. The exam with the biggest crisp value is selected to be scheduled first, and

the process continues until all the exams are scheduled without violating any of the

hard constraints.

83

4.4 The Fuzzy Multiple Heuristic Ordering

4.4.1.2 Initial Fuzzy Model : Fixed Fuzzy LD+LE Model

In order to test how the sequential constructive algorithm would work when multiple

heuristic ordering were implemented, a fixed fuzzy model that took into account multiple

heuristic ordering was developed. Here, the term ‘fixed’ refers to the ‘best’ identified

fuzzy model during an intiial ‘trial and error’ exercise. As this fuzzy model was used

to test the applicability of fuzzy techniques for measuring the difficulty of scheduling

the exams, no further improvements were made to the fuzzy model. Alternative fuzzy

models obtained with membership functions tuning are explained in Section 4.4.1.3.

Two out of the three ordering criteria described in Section 2.2.2, namely largest de-

gree (LD) and largest enrolment (LE) were selected as input variables. The membership

functions used in this experiment are shown in Figure 4.6. The choice of these member-

ship functions was based on ‘trial and error’ to test how the algorithm would work when

exams were ordered with the aid of fuzzy reasoning.

largest degree

0

0.5

1

0 0.2 0.4 0.6 0.8 1

small medium high

largest enrollment

0

0.5

1

0 0.2 0.4 0.6 0.8 1

small medium high

examw eight

0

0.5

1

0 0.2 0.4 0.6 0.8 1

small medium high

Figure 4.6: Membership functions for Fixed Fuzzy LD+LE Model

The fuzzy rules used in this experiment are shown in Table 4.2. For simplicity,

the fuzzy rules are expressed as a linguistic matrix (see Lim et al. (1996)). In such a

linguistic matrix, the left-most column and the first row denote the variables involved

84

4.4 The Fuzzy Multiple Heuristic Ordering

Table 4.2: Fuzzy rule set for Fixed Fuzzy LD+LE Model

LE VS: very small

S M H S: small

S VS VS M M: medium

LD M M M H H: high

H S M VH VH: very high

in the antecedent part of the rules. The second column contains the linguistic terms

applicable to the input variable shown in the first column; those in the second row

correspond to the input variable shown in the first row. Each entry in the main body of

the matrix denotes the linguistic values of the consequent part of a rule.

Note that, in addition to the three basic terms, the hedge ‘very’ was utilised to create

two extra terms for the output variable. The ‘very’ hedge squares the membership grade

µ(x) at each x of the fuzzy set for the term to which it is applied. Thus the membership

function of the fuzzy set for ‘very small’ is obtained by squaring the membership function

of the fuzzy set ‘small’. For instance, the bottom-right entry in Table 4.2 is read as “IF

LD is high AND LE is high THEN examweight is very high”. The same representation

is also used to express the fuzzy rule sets for the tuned fuzzy model explained in the

following sections. This fixed fuzzy model is presented here for the purpose of comparison

with the tuned fuzzy model explained in the following section.

4.4.1.3 Extension of the Initial Fuzzy Model : Tuning Membership Func-

tions

An extension to the Fixed Fuzzy LD+LE Model, a restricted form of exhaustive search

was used to find the most appropriate shape for the fuzzy membership functions for

each of the combination. There are very many alternatives that may be used when con-

structing a fuzzy model. Usually, membership functions can be subjectively determined

in an ad-hoc style from experience or hunch. In order to reduce the search space for tun-

85

4.4 The Fuzzy Multiple Heuristic Ordering

ing the membership function, only one membership function shape is considered in this

research. Although any appropriate fuzzy membership function representation is possi-

ble, triangular membership functions were used because they are easier to represent and

also to work with. This selection was made on the basis that triangular membership

functions were continuous, normal and convex (Ying, 2000). Triangular membership

functions are among the most popular and widely used membership function nowadays.

Furthermore, by using triangular membership functions, the membership function tun-

ing (as described later) could be simplified. That is, in order to determine the fuzzy

sets for the three linguistic term (small, medium and high), only one centre point (cp)

was required. This reduced the computational time as compared to determining three

different fuzzy sets for the three linguistic terms for each of the fuzzy variable.

In this implementation, the search was arbitrarily restricted based on the membership

functions, as shown in Figure 4.7. Triangular shape membership functions were employed

to represent small, medium and high. However, the fuzzy model was then altered by

moving the point cp along the universe of discourse. This single point corresponded

to the right edge for the term small, the centre point for the term medium and the

left edge for the term high. Thus, there was one cp parameter for each fuzzy variable

(two inputs and one output). The membership functions were refined by adjusting them

until the best possible system performance was achieved. The three cp parameters were

systematically altered while assessing the performance of the system.

A search was then carried out to find the best set of cp parameters. During this

search, each point cp (for any of the fuzzy variables) can take a value between 0.0 and

1.0 inclusive. Increments of 0.1 were used (i.e. the values 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9 and 1.0) for data sets that have 300 and fewer exams, and 0.25 increments

(i.e. the values 0.0, 0.25, 0.5, 0.75 and 1.0) for data sets that have more than 300 exams.

The effect of varying the point cp from 0.0 to 1.0 is shown in Figure 4.8.

86

4.4 The Fuzzy Multiple Heuristic Ordering

0

0.5

1

0 0.2 0.4 0.6 0.8 1

small medium high

cp

Figure 4.7: The membership function for tuned fuzzy model

0

0.5

1

0 0.2 0.4 0.6 0.8 1

medium high

cp

0

0.5

1

0 0.2 0.4 0.6 0.8 1

small medium

cp

(a) cp = 0.0 (b) cp = 1.0

0

0.5

1

0 1

small medium high

cp

(c) 0 < cp <1

Figure 4.8: Range of possible membership functions

This tuning procedure is then applied to the three different combinations of multiple

heuristic orderings, as follows:

Fuzzy LD+LE Model - the combination of LD and LE heuristic orderings were

again used as the fuzzy input variables.

Fuzzy SD+LE Model - the combination of SD and LE heuristic orderings were

87

4.4 The Fuzzy Multiple Heuristic Ordering

used as the fuzzy input variables.

Fuzzy SD+LD Model - the combination of SD and LD heuristic orderings were

used as the fuzzy input variables.

For each heuristic ordering combination, a fuzzy rule set connecting the input variables

(any two of LD , LE or SD) to the output variable, examweight was constructed. All

three fuzzy rule sets were motivated by the assumption that exams should be placed

into a timetable in order of how difficult they are to schedule (most difficult first) and

encapsulating the following heuristics:

1. If an exam has a large number of other exams in conflict, it is more difficult to

schedule than one with fewer exams in conflict (LD).

2. If an exam has a large number of students enroled in it, it is more difficult to

schedule than one with fewer students enroled (LE).

3. An exam with a small number of time slots available into which it can be placed

is more difficult to schedule than one with more time slots available (SD).

These assumptions were used in order to get a symmetric, balanced set of fuzzy rules

for each heuristic ordering combination, to ensure that all possible input values were

covered. Note that the interpretation of the SD heuristic (smaller is more difficult) is

linguistically opposite to that of LD and LE (larger is more difficult). Thus, care must

be taken when considering SD as one of the heuristic orderings in a combination. The

fuzzy rules sets for the Fuzzy LD+LE Model , Fuzzy SD+LE Model and Fuzzy SD+LD

Model are shown in Tables 4.3 to 4.5, respectively.

4.4.2 Experiments and Results

4.4.2.1 Description of Experiments

A number of experiments were carried out in which progressively more sophisticated

fuzzy mechanisms were created to order the exams. In each experiment this ordering is

88

4.4 The Fuzzy Multiple Heuristic Ordering

Table 4.3: The fuzzy rule set for the Fuzzy LD+LE Model

LE VS: very small
S M H S: small

S VS S M M: medium
LD M S M H H: high

H M H VH VH: very high

Table 4.4: The fuzzy rule set for the Fuzzy SD+LE Model

SD VS: very small
S M H S: small

S M S VS M: medium
LE M H M S H: high

H VH H M VH: very high

Table 4.5: The fuzzy rule set for the Fuzzy SD+LD Model

SD VS: very small
S M H S: small

S M S VS M: medium
LD M H M S H: high

H VH H M VH: very high

simply inserted into the basic general algorithm presented in Figure 4.1.

Experiment 1 : Single Heuristic Ordering In order to provide a comparative test,

the algorithm was initially run without implementing fuzzy ordering. That is, in this

experiment, the exams in the problem instances were ordered based on a single heuristic

ordering. All the exams were then selected to be scheduled based on this ordering.

Experiment 2 : Fixed Fuzzy LD+LE Model This experiment is designed to test

the initial fuzzy model. Based on the results of this experiment, a better fuzzy model

is defined.

89

4.4 The Fuzzy Multiple Heuristic Ordering

Experiment 3 : Tuning the Fuzzy Model In this experiment, each of fuzzy models

described in Section 4.4.1.3 is used to search for the ‘best’ fuzzy model for each heuristic

ordering combinations.

4.4.2.2 Experimental Results

In this section the results obtained in each experiment are presented. In all experiments,

the basic algorithm shown diagrammatically in Figure 4.1 was employed. The only dif-

ference was the heuristic ordering used. The experiments were carried out with twelve

benchmark data sets made publicly available by Carter et al. (1996). Table 2.1 repro-

duces the problem characteristics. A proximity cost function described in Section 2.3.1

is used to measure the timetable quality.

The algorithm was developed using java based object oriented programming. The

fuzzy inference engine developed by Sazonov et al. (2002) was implemented. The exper-

iments were run on a PC with a 1.8 GHz Pentium 4 and 256MB of RAM. In the case

of the Single Heuristic Ordering and the Fixed Fuzzy LD+LE Model each instance was

run five times. In the other experiments (that involved tuning the fuzzy model), the aim

was to search for the best fuzzy model to guide the constructive algorithm. In order to

reduce the size of the search space, only the membership functions are tuned, whereas

the fuzzy rule set is fixed. In this tuning process, for problem instances that have 300

and fewer exams, the algorithm was tested on 1331 (3 variables and 11 options - 113)

membership function combinations. Problem instances that have more than 300 exams

were tested on 125 (3 variables and 5 options - 53) membership function combinations.

Because of this, each instance was only run twice. For all experiments, only the best

results are selected and presented in Table 4.6.

For comparison, the best results obtained by Carter et al. (1996) when using various

different heuristics to order the exams are shown in the second column of Table 4.6.

The results obtained for our three varieties of Single Heuristic Ordering are presented

90

4.4 The Fuzzy Multiple Heuristic Ordering

Table 4.6: Experimental results for single and fuzzy multiple heuristic orderings

Fixed
Data Set Carter et al. Single Heuristic Ordering Fuzzy Fuzzy Fuzzy Fuzzy

(1996) LD LE SD LD+LE LD+LE SD+LE SD+LD
Model Model Model Model

CAR-F-92 6.2 5.56 5.03 5.50 5.65 4.62 4.56 4.62
CAR-S-91 7.1 6.38 5.90 5.91 6.31 5.60 5.29 5.77
EAR-F-83 36.4 40.58 45.88 49.10 48.14 38.41 37.02 39.27
HEC-S-92 10.8 14.98 14.94 14.27 16.93 12.53 11.78 12.55
KFU-S-93 14.0 18.63 16.46 18.60 18.29 16.53 15.81 15.80

LSE-F-91 10.5 15.08 14.52 13.46 16.84 12.35 12.09 12.95
RYE-F-92 7.3 12.95 11.12 11.60 12.98 11.75 10.38 12.71
STA-F-83 161.5 173.09 171.87 178.24 161.21 160.42 160.75 171.42
TRE-S-92 9.6 10.98 9.93 10.81 10.36 9.05 8.67 9.80
UTA-S-92 3.5 4.48 4.78 3.83 5.16 3.87 3.57 3.86
UTE-S-92 25.8 35.19 28.80 33.14 30.54 28.65 28.07 31.05
YOR-F-83 41.7 45.60 43.53 45.27 46.41 41.37 39.80 44.70

in the third to fifth columns. The results obtained for the Fixed Fuzzy LD+LE Model

are shown in the sixth column. In general, these results are worse than for the best

Single Heuristic Ordering, except for the STA-F-83 data set, where the fixed fuzzy

model obtained the best result. This observation suggested that there might be promise

in the fuzzy approach and prompted us to undertake further investigations with tuned

fuzzy models. The results for the Fuzzy LD+LE Model , Fuzzy SD+LE Model and Fuzzy

SD+LD Model are shown in the seventh to ninth columns respectively.

The best results obtained in Table 4.6 are highlighted in bold font. The corresponding

membership functions of the fuzzy model which obtained the best result for each data

set are presented in Table 4.7. The graphical representation of the membership functions

are shown in Figures 4.9 and 4.10. It can be seen that the membership functions differ

in each case — i.e. there is no generic fuzzy model which suits all the data sets.

Table 4.8 shows a comparison of cp parameters combinations between the best fuzzy

model and the second best fuzzy model for nine of the data sets. In the table, the

91

4.4 The Fuzzy Multiple Heuristic Ordering

Table 4.7: Values for cp parameters

Fuzzy Fuzzy Fuzzy
Data Set LD+LE Model SD+LE Model SD+LD Model

LD LE examweight SD LE examweight SD LD examweight

CAR-F-92 0.00 0.50 0.50 0.50 0.25 0.25 0.50 1.00 1.00
CAR-S-91 0.50 0.00 0.25 0.25 0.00 0.50 0.75 0.75 0.75
EAR-F-83 0.40 1.00 0.30 0.50 1.00 0.50 0.80 0.40 0.20
HEC-S-92 0.40 0.20 0.40 0.40 1.00 1.00 0.20 0.40 0.00
KFU-S-93 0.75 0.00 0.00 0.50 1.00 0.50 0.50 1.00 0.50
LSE-F-91 0.75 0.50 0.25 0.25 1.00 0.25 0.25 0.75 0.50
RYE-F-92 0.75 0.25 0.00 1.00 0.00 0.00 0.75 1.00 0.50
STA-F-83 0.60 0.70 0.90 0.20 0.30 0.00 0.60 0.80 0.50
TRE-S-92 0.00 0.50 0.40 0.60 1.00 0.20 0.20 0.30 0.10
UTA-S-92 0.00 0.50 0.75 0.25 0.00 0.50 0.50 0.50 0.75
UTE-S-92 0.30 0.60 0.00 0.30 0.90 0.70 0.40 0.00 0.50
YOR-F-83 0.90 1.00 0.00 0.60 0.80 0.70 0.00 0.00 0.50

cp value of second best fuzzy model (Second Model) is highlighted in bold font if it is

different to the cp values of the best fuzzy model (First Model). In terms of robustness

of the best fuzzy model, it can be seen that for seven out of these nine data sets, the

membership functions for the antecedents are the same; only the membership functions

for the consequences are slightly different. For the other two data sets (EAR-F-83 and

STA-F-83), the membership functions for both antecedents and consequence are slightly

different.

4.4.2.3 Discussion of Results

Amongst the three Single Heuristic Ordering, it would appear that LE is the ‘best’ in this

context as it produced the best solution for eight out of the twelve data sets, compared

to only one for LD (for EAR-F-83) and three for SD (for HEC-S-92 , LSE-F-91 and

UTA-S-92). It also can be seen that, when compared to Carter et al.’s best results, our

simplified version of their algorithm produced worse results in ten out of the twelve data

sets, but a slightly better timetable was obtained for the CAR-F-92 and CAR-S-91

92

4.4 The Fuzzy Multiple Heuristic Ordering

CAR-F-92

saturation degree

0

0.5

1

0 0.2 0.4 0.6 0.8 1

medium highsmall

largest enrollment

0

0.5

1

0 0.2 0.4 0.6 0.8 1

medium highsmall

examw eight

0

0.5

1

0 0.2 0.4 0.6 0.8 1

small medium high

CAR-S-91

saturation degree

0

0.5

1

0 0.2 0.4 0.6 0.8 1

medium highsmall

largest enrollment

0

0.5

1

0 0.2 0.4 0.6 0.8 1

medium high

examw eight

0

0.5

1

0 0.2 0.4 0.6 0.8 1

small medium high

EAR-F-83

examw eight

0

0.5

1

0 0.2 0.4 0.6 0.8 1

small medium high

largest enrollment

0

0.5

1

0 0.2 0.4 0.6 0.8 1

mediumsmall

saturation degree

0

0.5

1

0 0.2 0.4 0.6 0.8 1

medium highsmall

HEC-S-92

largest enrollment

0

0.5

1

0 0.2 0.4 0.6 0.8 1

mediumsmall

saturation degree

0

0.5

1

0 0.2 0.4 0.6 0.8 1

small medium high

examw eight

0

0.5

1

0 0.2 0.4 0.6 0.8 1

small medium

KFU-S-93

saturation degree

0

0.5

1

0 0.2 0.4 0.6 0.8 1

medium highsmall

largest enrollment

0

0.5

1

0 0.2 0.4 0.6 0.8 1

mediumsmall

examw eight

0

0.5

1

0 0.2 0.4 0.6 0.8 1

small medium high

LSE-F-91

saturation degree

0

0.5

1

0 0.2 0.4 0.6 0.8 1

medium highsmall

largest enrollment

0

0.5

1

0 0.2 0.4 0.6 0.8 1

mediumsmall

examw eight

0

0.5

1

0 0.2 0.4 0.6 0.8 1

small medium high

Figure 4.9: Best fuzzy model for data sets CAR-F-92 , CAR-S-91 , EAR-F-83 ,
HEC-S-92 , KFU-S-93 and LSE-F-91

93

4.4 The Fuzzy Multiple Heuristic Ordering

RYE-F-92

largest enrollment

0

0.5

1

0 0.2 0.4 0.6 0.8 1

medium high

saturation degree

0

0.5

1

0 0.2 0.4 0.6 0.8 1

mediumsmall

examw eight

0

0.5

1

0 0.2 0.4 0.6 0.8 1

medium high

STA-F-83

largest degree

0

0.5

1

0 0.2 0.4 0.6 0.8 1

small medium high

largest enrollment

0

0.5

1

0 0.2 0.4 0.6 0.8 1

small medium high

examw eight

0

0.5

1

0 0.2 0.4 0.6 0.8 1

small medium high

TRE-S-92

saturation degree

0

0.5

1

0 0.2 0.4 0.6 0.8 1

medium highsmall medium

largest enrollment

0

0.5

1

0 0.2 0.4 0.6 0.8 1

small medium

examw eight

0

0.5

1

0 0.2 0.4 0.6 0.8 1

small medium high

UTA-S-92

saturation degree

0

0.5

1

0 0.2 0.4 0.6 0.8 1

medium highsmall

largest enrollment

0

0.5

1

0 0.2 0.4 0.6 0.8 1

medium high

examw eight

0

0.5

1

0 0.2 0.4 0.6 0.8 1

small medium high

UTE-S-92

saturation degree

0

0.5

1

0 0.2 0.4 0.6 0.8 1

medium highsmall

largest enrollment

0

0.5

1

0 0.2 0.4 0.6 0.8 1
examw eight

0

0.5

1

0 0.2 0.4 0.6 0.8 1

small medium high

YOR-F-83

examw eight

0

0.5

1

0 0.2 0.4 0.6 0.8 1

small medium high

saturation degree

0

0.5

1

0 0.2 0.4 0.6 0.8 1

medium highsmall

largest enrollment

0

0.5

1

0 0.2 0.4 0.6 0.8 1

medium highsmall

Figure 4.10: Best fuzzy model for data sets RYE-F-92 , STA-F-83 , TRE-S-92 ,
UTA-S-92 , UTE-S-92 and YOR-F-83

94

4.4 The Fuzzy Multiple Heuristic Ordering

Table 4.8: Comparison of cp parameters combinations for the best fuzzy model and the
second best fuzzy model

Data Set Fuzzy LD+LE Model
Heuristic1 Heuristic2 examweight

EAR-F-83 First Model 0.50 1.00 0.50
Second Model 0.40 1.00 0.70

HEC-S-92 First Model 0.40 1.00 1.00
Second Model 0.40 1.00 0.60

KFU-S-93 First Model 0.50 1.00 0.50
Second Model 0.50 1.00 0.75

LSE-F-91 First Model 0.25 1.00 0.25
Second Model 0.25 1.00 0.50

RYE-F-92 First Model 1.00 0.00 0.00
Second Model 1.00 0.00 0.25

STA-F-83 First Model 0.60 0.70 0.90
Second Model 0.90 0.90 0.50

TRE-S-92 First Model 0.60 1.00 0.20
Second Model 0.60 1.00 0.40

UTE-S-92 First Model 0.30 0.90 0.70
Second Model 0.30 0.90 1.00

YOR-F-83 First Model 0.60 0.80 0.70
Second Model 0.60 0.80 0.60

Note:
For STA-F-83 , Heursitic1=LD and Heuristic2=LE ;
For other data sets, Heursitic1=SD and Heuristic2=LE ;

cases. The Fixed Fuzzy LD+LE Model only achieves a better result than the best Single

Heuristic Ordering in one out of the twelve data sets (STA-F-83). However, the rules

and membership functions for this initial fixed fuzzy model were completely arbitrary,

so it could be considered surprising that it achieved a best result even once.

It is evident that the Fuzzy LD+LE Model produced better results than the Fixed

Fuzzy LD+LE Model in all cases. Although entirely expected, this observation was taken

as confirmation that the fuzzy system was capturing meaningful information and that

the tuning procedure, although not finding the truly optimal fuzzy model (in the sense

of the globally best set of membership functions for the given set of rules and other fixed

95

4.4 The Fuzzy Multiple Heuristic Ordering

aspects of the fuzzy system), was operating successfully. In comparison with best Single

Heuristic Ordering, the Fuzzy LD+LE Model obtained better results in all cases except

for the KFU-S-93 , RYE-F-92 and UTA-S-92 data sets.

The Fuzzy SD+LE Model went on to produce better results than the Fuzzy LD+LE

Model for all cases except the STA-F-83 data set. When compared to Carter et al.’s

original results, the tuned fuzzy models operating on two heuristics simultaneously (tak-

ing the best tuned fuzzy model for each data set) obtained better results for five out of

the twelve data sets. These were the CAR-F-92 , CAR-S-91 , STA-F-83 , TRE-S-92 and

YOR-F-83 data sets. Although these results have since been bettered by some authors

(see the discussion of Table 4.9 below), these have been based on iterative improvement

techniques rather than the constructive approach employed by Carter et al. (1996) and

the proposed approach.

Initially, the choice to use a combination of the LD and LE heuristics was based on

the fact that these heuristics are static in the sense that they only have to be calculated

once at the beginning of the ordering process. In contrast, the SD heuristic must be

recalculated after each exam is assigned to a slot. Thus, it was felt that tuning the

fuzzy model based on the LD+LE combination would be quicker. The choice to use the

SD+LE combination in the subsequent model was based on the observation that the LE

heuristic ordering, when used alone, obtained the minimum penalty cost for eight out

of the twelve data sets while the SD heuristic ordering obtained the minimum cost for

three out of twelve. Thus it was felt that these offered the most promising combination

of two heuristics.

The design of the fuzzy rule sets was based on three assumptions:

• if LD is High then examweight is High

• if LE is High then examweight is High

• if SD is Small then examweight is High

96

4.4 The Fuzzy Multiple Heuristic Ordering

However, it must be emphasized that the rule sets specified in Tables 4.2 to 4.5 are only

one possible instance (in the case of each experiment) out of a very large number of

alternatives. Due to the very large number of degrees-of-freedom in any fuzzy model, it

is very rare that the first fuzzy system constructed will perform at an acceptable level.

Usually some form of optimisation or performance tuning of the system will need to be

undertaken. The most significant influences on performance of a fuzzy system are likely

to be the number and location of the membership functions and the number and form

of the rules. In this implementation, the number and form of the rules are kept fixed in

all cases. Although the fuzzy membership functions were, to a certain extent, tuned to

obtain good performances, there was no attempt in the current work to tune the rule

sets. It is highly likely that, given sufficient time to perform the tuning, a set of fuzzy

rules leading to better performance of the fuzzy models could be obtained.

Table 4.6 demonstrates that, in all cases, tuning the fuzzy model produces better

results, as might be expected. Comparison of the best fuzzy model and the second best

fuzzy model as presented in Table 4.8 show the robustness of the results of the best

parameters for each data sets as the membership functions are just slightly different.

This confirms the hypothesis that simultaneous ranking of multiple heuristic orderings

can produce better results. The fact that the best fuzzy results are all obtained using

different fuzzy membership functions, as shown in Figures 4.9 and 4.10, means that

no generic fuzzy model has been obtained at this stage. Such a generic model would

be necessary if the approach is to be applied quickly and efficiently to novel data sets.

The lack of such a generic fuzzy model may cast doubt regarding the usability and

flexibility of this approach. This indicates that care must be taken when applying fuzzy

techniques: it is certainly not the case that just because it is fuzzy it is necessarily better.

Despite the fact that, across different data sets, a somewhat consistent pattern can be

seen, especially for heuristic Largest Enrolment where in five data sets (EAR-F-83 ,

HEC-S-92 , KFU-S-93 , LSE-F-91 and TRE-S-92) the cp values are set to 1.0, in three

97

4.4 The Fuzzy Multiple Heuristic Ordering

data sets (STA-F-83 , UTE-S-92 and YOR-F-83) the cp values are set between 0.7 and

0.9 (toward 1.0), while in three data sets (CAR-S-91 , RYE-F-92 and UTA-S-92) the

cp values are set to 0.0. This scenario suggests that there may indeed be a possibility

of finding a generic model. Further work is clearly possible on this issue.

Table 4.9 shows the performance of this algorithm in comparison with selected re-

cently published results on Carter et al.’s benchmarks. The best result amongst the

compared techniques for each data set is highlighted in bold font. Collectively, these

results have been selected to show the best known results for each data set. Although

the fuzzy algorithm has not beaten the best known result for any data set, its perfor-

mance is broadly competitive with the others in the sense that it is not the worst in

six out of the twelve data sets. It is also worth pointing out that the fuzzy algorithm

produces solutions for all the twelve data sets, and that in two of the cases where it

produces the worst result, at least one of the other papers did not quote any result.

However, it has to be kept in mind that the fuzzy method is a simple constructive initial

solution, compared to the other methods which are iterative improvement approaches.

Although these results are worse than more recent results, especially those of Caramia

et al. (2001), interestingly the fuzzy constructive algorithm can beat Caramia et al.’s

results for data sets CAR-F-92 , CAR-S-91 and TRE-S-92 .

Finally, some remarks should be made concerning the time required for the algorithm.

In doing so, it is vital that a distinction must be made between the time taken to perform

the tuning of the fuzzy models and the time taken to construct a solution once each fuzzy

model is fixed. Once the fuzzy model is fixed, the time taken to construct a solution is no

longer (in a practical sense) than the time taken when using a single heuristic ordering

— that is, the additional time taken for the fuzzy system to perform its ordering is

negligible. Indeed, there is some evidence (as discussed further in the following Section)

that, once the fuzzy model is fixed, solutions are constructed more quickly using the

fuzzy ordering. It seems that this may be due to the lack of required backtracking when

98

4.5 Consistency of the Different Heuristic Ordering

the fuzzy ordering is used. However, the time taken in tuning each fuzzy model is very

significant. Of course, if a generic fuzzy model could be found — that is a single fuzzy

model that produces good quality initial solutions for all data sets (including the twelve

benchmark data sets used here and novel data sets) — then the approach could be widely

adopted, with significant impact.

4.5 Consistency of the Different Heuristic Ordering

Due to the randomness in the ‘rescheduling procedure’, a different timetable may be con-

structed each time the algorithm is run. Therefore, in order to determine and compare

the performance of the various fuzzy heuristic orderings, repeated runs were performed

to generate 30 solutions with each fuzzy multiple heuristic ordering model and each of

the single heuristic orderings (LD , LE and SD), for each of the twelve data sets. For

tuned fuzzy multiple heuristic orderings, the ‘best’ fuzzy models that had been identified

during the membership functions tuning phase were utilised — i.e shown in Table 4.7.

4.5.1 Experimental Results

Table 4.10 shows a comparison of the cost penalties obtained based on 30 runs of each

data set. The best results among the different heuristic orderings used are highlighted

in bold font. It is evident that, overall, the fuzzy multiple heuristic ordering have

outperformed any of the single heuristic orderings in that, for each data set, a fuzzy

ordering obtained the best constructed timetable quality. Specifically, the Fuzzy SD+LE

Model obtained ten best results and the Fuzzy LD+LE Model and Fuzzy SD+LD Model

each obtained one best result. Amongst the single heuristic orderings, it appears that

LE is the best because it obtained eight best results, followed by SD with three best

results (HEC-S-92 , LSE-F-91 and UTA-S-92) and lastly LD with only one best result

(EAR-F-83).

99

4.5 Consistency of the Different Heuristic Ordering

T
ab

le
4.

9:
R

es
u
lt

s
co

m
p
ar

is
on

D
a
ta

S
et

F
u
zz

y
B

es
t

R
es

u
lt

s

A
b
d
u
ll
a
h

et
a
l.

(2
0
0
6
a
)

A
b
d
u
ll
a
h

a
n
d

B
u
rk

e
(2

0
0
6
)

B
u
rk

e
a
n
d

N
ew

a
ll

(2
0
0
3
)

B
u
rk

e
et

a
l.

(2
0
0
4
a
)

B
u
rk

e
et

a
l.

(2
0
0
6
a
)

C
a
ra

m
ia

et
a
l.

(2
0
0
1
)

C
a
se

y
a
n
d

T
h
o
m

p
so

n
(2

0
0
3
)

D
i
G

a
sp

er
o

a
n
d

S
ch

a
er

f
(2

0
0
1
)

K
en

d
a
ll

a
n
d

M
o
h
d

H
u
ss

in
(2

0
0
5
b
)

M
er

lo
t

et
a
l.

(2
0
0
3
)

W
h
it

e
et

a
l.

(2
0
0
4
)

Y
a
n
g

a
n
d

P
et

ro
v
ic

(2
0
0
5
)

C
A

R
-F

-9
2

4
.5

6
4
.4

4
.1

4
.1

0
4
.2

5
.3

6
6
.0

4
.4

5
.2

4
.6

7
4
.3

4
.6

3
3
.9

3

C
A

R
-S

-9
1

5
.2

9
5
.2

4
.8

4
.6

5
4
.8

4
.5

3
6
.6

5
.4

6
.2

5
.6

7
5
.1

5
.7

3
4
.5

0

E
A

R
-F

-8
3

3
7
.0

2
3
4
.9

3
6
.0

3
7
.0

5
3
5
.4

3
7
.9

2
2
9
.3

3
4
.8

4
5
.7

4
0
.1

8
3
5
.1

4
5
.8

3
3
.7

0

H
E
C
-S

-9
2

1
1
.7

8
1
0
.3

1
0
.8

1
1
.5

4
1
0
.8

1
2
.2

5
9
.2

1
0
.8

1
2
.4

1
1
.8

6
1
0
.6

1
2
.9

1
0
.8

3

K
F
U

-S
-9

3
1
5
.8

1
1
3
.5

1
5
.2

1
3
.9

0
1
3
.7

1
5
.2

0
1
3
.8

1
4
.1

1
8
.0

1
5
.8

4
1
3
.5

1
7
.1

1
3
.8

2

L
S
E
-F

-9
1

1
2
.0

9
1
0
.2

1
1
.9

1
0
.8

2
1
0
.4

1
1
.3

3
9
.6

1
4
.7

1
5
.5

-
1
1
.0

1
4
.7

1
0
.3

5

R
Y

E
-F

-9
2

1
0
.3

8
8
.7

-
-

8
.9

-
6
.8

-
-

-
8
.4

1
1
.6

8
.5

3

S
T
A

-F
-8

3
1
6
0
.4

2
1
5
9
.2

1
5
9
.0

1
6
8
.7

3
1
5
9
.1

1
5
8
.1

9
1
5
8
.2

1
3
4
.9

1
6
0
.8

1
5
7
.3

8
1
5
7
.3

1
5
8
.0

1
5
1
.5

0

T
R

E
-S

-9
2

8
.6

7
8
.4

8
.5

8
.3

5
8
.3

8
.9

2
9
.4

8
.7

1
0
.0

8
.3

9
8
.4

8
.9

4
7
.9

2

U
T
A

-S
-9

2
3
.5

7
3
.6

3
.6

3
.2

0
3
.4

3
.8

8
3
.5

-
4
.2

-
3
.5

4
.4

4
3
.1

4

U
T

E
-S

-9
2

2
8
.0

7
2
6
.0

2
6
.0

2
5
.8

3
2
5
.7

2
8
.0

1
2
4
.4

2
5
.4

2
9
.0

2
7
.6

0
2
5
.1

2
9
.0

2
5
.3

9

Y
O

R
-F

-8
3

4
0
.6

6
3
6
.2

3
6
.2

3
7
.2

8
3
6
.7

4
1
.3

7
3
6
.2

3
7
.5

4
1
.0

-
3
7
.4

4
2
.3

3
6
.3

5

100

4.5 Consistency of the Different Heuristic Ordering

Table 4.10: The penalty costs obtained by the different heuristic orderings on each of the
twelve benchmark data sets. In each case the best result, the worst result, the average
result and the standard deviation obtained over 30 repeated runs are given.

Data Set Single Heuristic Ordering Fuzzy Fuzzy Fuzzy

LD LE SD LD+LE SD+LE SD+LD

Model Model Model

CAR-F-92 Best 5.51 4.86 5.50 4.62 4.54 4.62

Average 6.10 5.42 5.74 4.63 4.54 4.62

Worst 6.81 6.40 7.25 4.64 4.54 4.62

Std. Dev. 0.41 0.38 0.43 0.01 0.00 0.00

CAR-S-91 Best 6.13 5.89 5.91 5.57 5.29 5.77

Average 6.66 6.36 5.91 5.67 5.29 5.77

Worst 7.40 6.89 5.91 5.88 5.29 5.77

Std. Dev. 0.31 0.26 0.00 0.08 0.00 0.00

EAR-F-83 Best 40.58 44.86 48.99 42.61 37.02 40.85

Average 42.05 51.06 51.49 45.16 37.02 42.16

Worst 45.09 59.14 54.79 49.90 37.02 44.46

Std. Dev. 1.03 2.99 1.67 1.52 0.00 1.27

HEC-S-92 Best 14.73 14.41 14.23 12.43 11.78 12.55

Average 16.25 16.98 16.36 14.25 11.78 12.55

Worst 18.70 21.40 20.80 18.18 11.78 12.55

Std. Dev. 1.31 1.76 1.86 1.74 0.00 0.00

KFU-S-93 Best 18.38 16.46 18.62 16.45 15.81 15.80

Average 19.53 16.47 18.62 17.84 15.81 15.80

Worst 21.81 16.50 18.62 21.75 15.81 15.80

Std. Dev. 0.94 0.01 0.00 1.64 0.00 0.00

LSE-F-91 Best 14.79 14.41 13.46 12.35 12.09 12.95

Average 17.12 16.45 13.46 12.35 12.09 12.95

Worst 19.70 18.79 13.46 12.35 12.09 12.95

Std. Dev. 1.37 1.20 0.00 0.00 0.00 0.00

RYE-F-92 Best 13.02 11.22 11.60 11.75 10.38 12.71

Average 14.54 12.86 11.60 12.47 10.38 13.92

Worst 17.38 14.60 11.60 13.70 10.38 15.42

Std. Dev. 1.10 0.84 0.00 0.52 0.00 0.69

STA-F-83 Best 173.09 171.80 178.24 160.42 160.75 171.42

Average 173.09 172.22 178.24 160.42 160.75 171.42

Worst 173.09 172.57 178.24 160.42 160.75 171.42

Std. Dev. 0.00 0.23 0.00 0.00 0.00 0.00

TRE-S-92 Best 10.65 9.92 10.81 9.05 8.67 9.80

Average 11.42 10.73 10.81 9.05 8.67 9.80

Worst 12.32 12.02 10.81 9.05 8.67 9.80

Std. Dev. 0.43 0.49 0.00 0.00 0.00 0.00

UTA-S-92 Best 4.26 4.63 3.83 3.86 3.57 3.86

Average 5.14 5.31 3.83 4.03 3.57 3.86

Worst 6.28 6.32 3.83 4.30 3.57 3.86

Std. Dev. 0.49 0.33 0.00 0.13 0.00 0.00

UTE-S-92 Best 35.19 28.79 33.26 28.65 28.07 31.05

Average 35.51 28.93 33.61 28.68 28.07 31.05

Worst 36.10 29.63 34.43 28.74 28.07 31.05

Std. Dev. 0.26 0.20 0.28 0.03 0.00 0.00

YOR-F-83 Best 45.32 43.33 45.26 41.02 39.80 44.70

Average 46.27 45.75 46.57 43.05 39.80 44.70

Worst 47.91 49.12 48.53 47.95 39.80 44.70

Std. Dev. 0.79 1.81 1.01 1.40 0.00 0.00

101

4.5 Consistency of the Different Heuristic Ordering

Table 4.11 shows the number of skipped exams obtained before the ‘rescheduling

procedure’ was called. The total number of exams that need to be scheduled for each data

instance are shown in the second column. As described, the number of skipped exams is

the number of exams that could not be scheduled after the completion of the initial phase

of the constructions process (i.e. after Process 2 to Process 5 had been completed). It

is simply the number of exams added to the ‘skipped list’ due to the fact that no valid

time slot was available. It can be seen that SD most often (seven out of twelve data

sets) produced the solutions without any skipped exams. This behaviour (most data

sets resulting in no skipped exams) is also seen in the fuzzy multiple heuristic orderings

that used SD as one of its heuristic orderings. However, this was not true for two data

sets (RYE-F-92 and STA-F-83) when the Fuzzy SD+LD Model was implemented — i.e.

for these two data sets the SD heuristic alone resulted in no skipped exams, but when

combined with the LD heuristic in the fuzzy approach some exams were skipped. The

number of skipped exams determines whether it is necessary to invoke the ‘rescheduling

procedure’ or not. Obviously, it is not necessary to invoke the ‘rescheduling procedure’ if

there are no skipped exams.

Table 4.12 shows a comparison of the number of iteration of the ‘rescheduling proce-

dure’ required. This table shows the number of iterations of the loop in the ‘rescheduling

procedure’ that were required by each heuristic ordering in order to produce the solu-

tions. As mentioned earlier, the number of skipped exams has an effect on the number of

iterations of the ‘rescheduling procedure’ are required. If there are no skipped exam, then

no ‘rescheduling procedure’ is required. On the other hand, if there are some skipped

exam, then it is necessary to invoke the ‘rescheduling procedure’, and there will always

be at least that number of iterations of the ‘rescheduling procedure’ required. For ex-

ample, when LD ordering was applied to the YOR-F-83 data set, it caused 5 skipped

exams (see second column of Table 4.11). However, on average, 27 iterations of the

‘rescheduling procedure’ were required (see second column of Table 4.12) in order to

102

4.5 Consistency of the Different Heuristic Ordering

Table 4.11: The number of skipped exams obtained due to the fact that there was no
valid time slot available in the first attempt to assign the exam into the time slots —
i.e. the number of exams in the skipped list after Process 5

Data Set Total Single Heuristic Ordering Fuzzy Fuzzy Fuzzy

number of LD LE SD LD+LE SD+LE SD+LD

exams (N) Model Model Model

CAR-F-92 543 12 11 1 1 0 0

CAR-S-91 682 10 15 0 3 0 0

EAR-F-83 190 3 8 1 7 0 1

HEC-S-92 81 2 6 2 5 1 0

KFU-S-93 461 4 4 0 8 0 0

LSE-F-91 381 3 5 0 0 0 0

RYE-F-92 486 2 5 0 1 0 2

STA-F-83 139 24 2 0 7 0 24

TRE-S-92 261 6 7 0 1 0 0

UTA-S-92 622 7 13 0 2 0 0

UTE-S-92 184 2 3 1 1 1 1

YOR-F-83 181 5 10 3 13 0 0

produce the solutions.

Finally, Table 4.13 shows a comparison of the computational time required to con-

struct the solutions for each heuristic ordering methods for each data set. As might be

expected, when dynamic heuristic ordering was used, much longer times were required

in order to produce the solutions, as each time around the loop the heuristic needed to

be recalculated and the exams reordered. This happened either when single or multiple

heuristic ordering was implemented.

4.5.2 Performance Analysis and Discussions

When constructing solutions for timetabling problems, one of the most important as-

pects that will affect the solution quality is the sequence in which the events should be

selected to be scheduled (Boizumault et al., 1996). Many ordering strategies have been

implemented by other researchers. One of the strategies that is widely used is to base

various heuristics on graph theory (Burke and Newall, 2004). However, to the best of

our knowledge, although there are many such criteria derived from graph theory that

103

4.5 Consistency of the Different Heuristic Ordering

Table 4.12: The number of iterations of the ‘rescheduling procedure’ required for each
data set

Data Set Single Heuristic Ordering Fuzzy Fuzzy Fuzzy
LD LE SD LD+LE SD+LE SD+LD

Model Model Model
CAR-F-92 Smallest 58 31 5 1 0 0

Average 204 81 58 1 0 0
Worst 459 223 261 1 0 0

CAR-S-91 Smallest 39 34 0 4 0 0
Average 99 70 0 10 0 0
Worst 287 152 0 33 0 0

EAR-F-83 Smallest 4 17 7 11 0 2
Average 7 95 49 24 0 12
Worst 12 265 167 57 0 53

HEC-S-92 Smallest 8 19 9 6 1 0
Average 29 41 39 22 1 0
Worst 101 80 121 115 1 0

KFU-S-93 Smallest 6 4 0 10 0 0
Average 13 4 0 29 0 0
Worst 80 4 0 117 0 0

LSE-F-91 Smallest 13 24 0 0 0 0
Average 59 71 0 0 0 0
Worst 182 181 0 0 0 0

RYE-F-92 Smallest 9 9 6 0 6
Average 88 28 0 22 0 59
Worst 365 86 0 73 0 217

STA-F-83 Smallest 24 2 0 7 0 24
Average 24 2 0 7 0 24
Worst 24 2 0 7 0 24

TRE-S-92 Smallest 12 13 0 1 0 0
Average 38 31 0 1 0 0
Worst 121 67 0 1 0 0

UTA-S-92 Smallest 37 65 0 4 0 0
Average 186 239 0 34 0 0
Worst 413 543 0 82 0 0

UTE-S-92 Smallest 3 3 3 1 1 1
Average 9 3 9 1 1 1
Worst 66 11 32 1 1 1

YOR-F-83 Smallest 8 18 11 14 0 0
Average 27 60 50 33 0 0
Worst 65 181 142 107 0 0

104

4.5 Consistency of the Different Heuristic Ordering

Table 4.13: A comparison of the computational time (in seconds) required to construct
the solutions for each heuristic ordering methods for each data set

Data Set Single Heuristic Ordering Fuzzy Fuzzy Fuzzy
LD LE SD LD+LE SD+LE SD+LD

Model Model Model
CAR-F-92 Shortest 45.09 20.50 396.30 2.13 442.98 725.08

Average 185.27 70.50 446.86 2.18 446.77 733.13
Worst 440.08 216.67 666.81 2.67 458.31 763.75

CAR-S-91 Shortest 47.16 36.08 922.58 6.06 1006.70 1620.36
Average 135.72 87.14 965.61 14.16 1023.50 1653.55
Worst 403.24 197.70 1161.44 49.66 1055.53 1767.08

EAR-F-83 Shortest 0.41 1.13 12.61 0.83 19.34 33.34
Average 0.63 8.26 16.62 1.88 19.38 34.82
Worst 1.13 23.74 27.70 4.88 19.47 40.77

HEC-S-92 Shortest 0.11 0.22 0.95 0.11 2.28 2.27
Average 0.37 0.52 1.29 0.32 2.36 2.36
Worst 1.33 1.03 2.36 1.45 3.49 3.49

KFU-S-93 Shortest 1.17 0.89 64.28 2.05 112.44 179.50
Average 2.74 0.91 64.54 7.77 113.92 182.91
Worst 17.19 0.97 67.03 31.64 115.30 187.50

LSE-F-91 Shortest 1.77 3.24 37.92 0.52 70.27 114.55
Average 8.25 9.77 38.00 0.53 70.57 118.33
Worst 27.50 24.33 38.61 0.58 70.88 136.47

RYE-F-92 Shortest 2.94 2.84 149.94 2.11 215.24 333.50
Average 22.68 7.54 150.44 6.01 221.01 359.11
Worst 96.94 22.64 151.75 19.55 246.77 417.64

STA-F-83 Shortest 0.19 0.05 3.33 0.16 6.58 7.66
Average 0.21 0.06 3.34 0.16 6.59 9.72
Worst 0.27 0.14 3.39 0.22 6.64 11.05

TRE-S-92 Shortest 1.08 1.31 30.02 0.47 43.55 75.39
Average 4.12 3.57 30.08 0.49 43.70 76.94
Worst 12.77 8.34 30.23 0.55 44.86 85.88

UTA-S-92 Shortest 39.38 71.22 597.94 4.95 675.06 1101.94
Average 229.01 296.84 639.26 40.40 695.52 1111.75
Worst 501.64 697.88 809.13 93.91 818.70 1160.22

UTE-S-92 Shortest 0.06 0.08 4.23 0.14 12.67 18.41
Average 0.11 0.09 4.32 0.17 13.02 19.51
Worst 0.41 0.23 4.95 0.39 13.33 24.52

YOR-F-83 Shortest 0.42 0.88 15.99 0.78 22.47 37.22
Average 1.34 3.06 18.03 1.74 22.51 38.78
Worst 3.17 9.39 23.53 5.16 22.59 46.23

105

4.5 Consistency of the Different Heuristic Ordering

could be used as an heuristic ordering, only one criterion has been used on its own at

any one time, except the works of Johnson (1990) where LE and LD heuristic are em-

ployed simultaneously. The other closest approach is recently published by (Burke et al.,

2007) where a different graph colouring heuristics are applied in sequence to construct

solutions for the examination and course timetabling problem.

This Chapter presents a new heuristic ordering method in which two heuristic order-

ings are considered simultaneously using a fuzzy methodology to combine them. The

experimental results, shown in Table 4.10, indicates that this new approach is promising.

Concentrating on the quality of the solutions, it can be seen in Table 4.10 that all best

results were obtained when fuzzy multiple heuristic orderings were implemented. This

indicates that, in these timetabling problems, determining the difficulty of scheduling

exams into time slots by taking into account multiple heuristic orderings simultaneously

has resulted in initial solutions with better quality.

Nevertheless, there are a few cases in which fuzzy multiple heuristic orderings pro-

duced worst solutions compared with specific single heuristic orderings. For example,

for the RYE-F-92 , UTE-S-92 and YOR-F-83 data sets the LE heuristic ordering beat

the Fuzzy SD+LD Model (see Table 4.10), and there are other similar such occurrences.

These observations suggest that care must be taken when choosing which heuristic or-

derings are to be uses simultaneously for any given problem instance.

When looking at ‘effectiveness’ in terms of both solution quality and variation in

solution quality, the results indicate that the Fuzzy SD+LE Model is the most effective

heuristic ordering. For all twelve data sets, the 30 multiple runs of this heuristic ordering

obtain the same solution quality. Although the Fuzzy SD+LD Model also managed to

obtain the same solution quality for ten data sets, this fuzzy model only produced one

best result out of the twelve data sets. Meanwhile, SD ordering and the Fuzzy LD+LE

Model only managed to produce the same solution for a few of the data sets, while LD

ordering only managed to obtain the same solution quality for the STA-F-83 data set.

106

4.5 Consistency of the Different Heuristic Ordering

Since the only stochastic element in our algorithm is when selecting a time slot in the

‘rescheduling procedure’, any heuristic ordering that produces an exam ordering which

causes no skipped exams will always obtain the same solution in multiple runs. On the

other hand, in situations where there are skipped exams (which depends on the problem

instance and the heuristic ordering used) these can only be scheduled by reshuffling the

already scheduled exams into another time slot, or ‘bumping’ the scheduled exams back

to the unscheduled exam list. It seems obvious that the higher the number of iterations

of the ‘rescheduling procedure’ required, the higher the possibility of obtaining a solution

with a different cost penalty.

This scenario may explain why the fuzzy membership function tuning process took a

long time to finish, particularly for the problem instances that have more than 400 exams.

It is assumed that during the fuzzy model tuning process, when a bad fuzzy model is

evaluated, it will generate an ordering of the exams which for some reason cannot guide

the constructive algorithm towards a good solution. In the case of a bad ordering of

exams such as this, many of the exams cannot be scheduled without reshuffling exams

that have already been scheduled earlier.

In Table 4.11, it can be observed that the SD heuristic ordering, the Fuzzy SD+LE

Model and the Fuzzy SD+LD Model often produced solutions without invoking the

‘rescheduling procedure’. An interesting point here is that, although the SD heuristic

ordering is capable of generating an ordering of exams that required no ‘rescheduling

procedure’, when compared against the other single heuristic orderings it only produced

three best results out of twelve data sets (see Table 4.10). In contrast, the exam ordering

generated using the Fuzzy SD+LE Model not only can guide the constructive algorithm

without requiring the ‘rescheduling procedure’, but it also can find solutions in which it

outperformed other heuristics in ten out of twelve data sets.

In addition, although the Fuzzy SD+LE Model needed to reschedule one exam in

the case of HEC-S-92 and UTE-S-92 , the solutions were produced by performing only

107

4.5 Consistency of the Different Heuristic Ordering

one iteration of the ‘rescheduling procedure’. For the same HEC-S-92 data set, the SD

heuristic ordering also produced only one skipped exam but it required 39 iterations, on

average, of the ‘rescheduling procedure’ to produce the solution. When the UTE-S-92

data set is considered, although having only one unscheduled exam, an average of nine

iterations of the ‘rescheduling procedure’ were required to produce the solution.

Taking these facts into consideration, let us now speculate as to what might be the

factors that cause the Fuzzy SD+LE Model to perform uniformly well across the twelve

data sets with different complexity. This fuzzy model combines two heuristic orderings,

each of which may feature a strength that contributes to the effectiveness of this fuzzy

model. Amongst the single heuristic orderings, LE performed well in eight out of twelve

data sets (see Table 4.10), while SD often managed to find solutions during which no

exam was skipped (see the fourth column of Table 4.11). By combining these two heuris-

tic orderings simultaneously, it might be the case that the combination is benefitting

from these two strengths to improve the overall performance of the search algorithm.

In can be seen that twenty-four exams are skipped when the single heuristic ordering

LD and the Fuzzy SD+LD Model were applied to the STA-F-83 data set (the second and

seventh columns of Table 4.11). Interestingly, all these skipped exams are then scheduled

by performing the ‘rescheduling procedure’ with the same number of iterations, i.e. 24

(see the third and eighth columns of Table 4.12). That means that none of the already

scheduled exams needed to be bumped back to the unscheduled list in order to create

spaces for the skipped exams. Further investigation has shown that the 24 skipped

exams are the same in each case. This was examined closely in order to understand

what might have caused this curious effect.

In essence, the initial part of the construction process is a greedy algorithm that

minimises the penalty of placing each exam, one by one, into the timetable (in the order

given by the heuristic determination of difficulty). With the tendency to assign each

unscheduled exam into the time slot with least penalty cost, the available time slots are

108

4.5 Consistency of the Different Heuristic Ordering

usually occupied at an early stage of the scheduling process. In the case of the STA-F-83

data set with the Fuzzy SD+LD Model , the first 13 exams were assigned to the 13 time

slots available, although some of these exams could have been scheduled together in

the same time slot — i.e. these 13 exams did not necessarily clash with each other.

In effect, this situation had caused a ‘bottleneck’, after which no more valid time slots

were available. In the next step of the construction process, the ‘rescheduling procedure’

attempts to schedule each of the skipped exams by considering multiple simultaneous

moves of already placed exams in order to obtain feasible solutions. For the STA-F-83

data set, each of the skipped exams could be placed without need to ‘unschedule’ (‘bump-

back’) any exams already placed.

Turning now to the computational time, it seems that the Fuzzy LD+LE Model

can be considered the best amongst the multiple heuristic orderings experimented with

since this heuristic always found good quality solutions in relatively low computational

time. As seen in Table 4.10, in terms of solution quality, the Fuzzy LD+LE Model and

Fuzzy SD+LE Model were approximately the same. Furthermore, when compared to the

various single heuristic orderings, it is apparent that the Fuzzy LD+LE Model heuristic

ordering obtained the minimum penalty cost for nine out of twelve data sets. However,

in terms of computational time (see Table 4.13), the Fuzzy SD+LE Model and the Fuzzy

SD+LD Model consistently perform worse than the other heuristic orderings.

Considering that the Fuzzy LD+LE Model combines two single heuristic ordering

which are both categorised as static heuristics, it might be expected that this fuzzy

model will take more computational time to produce the solution than the two heuristics

on which it depends. However, the results presented in Table 4.13 indicate that with

at least six out of the twelve cases the Fuzzy LD+LE Model is actually quicker than

the single heuristics; specifically for the CAR-F-92 , CAR-S-91 , LSE-F-91 , RYE-F-92 ,

TRE-S-92 , and UTA-S-92 data sets. (It is arguable that is it also quicker for the 7th

data set, HEC-S-92 , as the Fuzzy LD+LE Model has a lower average than the other

109

4.5 Consistency of the Different Heuristic Ordering

heuristics.) It can be seen that this fuzzy heuristic ordering always obtains the solutions

in shorter execution time for the data sets that consist of more than 300 exams, except

for KFU-S-93 . For the rest of the data sets, the time taken to construct the solution is

very reasonable compared to the other single static heuristics.

If the longest time required to produced the solutions is now compared among the

static heuristic orderings (i.e not including SD , Fuzzy SD+LE Model and Fuzzy SD+LD

Model), it is evident that the Fuzzy LD+LE Model always produced the solutions in

relatively short time (except for KFU-S-93). This is obvious for the data sets that

contains more than 300 exams particularly for CAR-F-92 , CAR-S-91 and UTA-S-92

(see Table 4.13). For example, in the case of the CAR-F-92 data set (looking at the

Worst row), the Fuzzy LD+LE Model only took approximately 3 seconds, whereas the

other heuristics took at least 217 seconds. Although it takes a long time to search for

the ‘best’ fuzzy model, it is important to notice how quick the ‘best’ fuzzy model finds

the solution compared to the other heuristic orderings.

However, the capability to produce solutions quickly is not achievable when the dy-

namic heuristic is implemented. As seen in Table 4.13, the Fuzzy SD+LD Model required

the longest time in all problem instances as compared to the other heuristics, followed

by the Fuzzy SD+LE Model . It is believed that most of the time is used to recalculate

the number of valid time slots available for the remainder of the unscheduled exams, and

not to calculate the fuzzy exam weight. This assumption is based on the observation

mentioned earlier, that the Fuzzy LD+LE Model always obtained the solutions in quick

time, meaning that the time taken to calculate exam fuzzy weight must be relatively

very small. Moreover, in ten out of the twelve problem instances, the Fuzzy SD+LE

Model found the solutions without invoking the ‘rescheduling procedure’ (and the other

two data sets with only one iteration of the ‘rescheduling procedure’), which means no

time was spent reshuffling the scheduled exams.

110

4.6 Chapter Summary

4.6 Chapter Summary

As far as the author is aware, no other published work has described the exploration

of fuzzy methodologies for simultaneously ordering exams in the construction of exam-

ination timetables. In this study, fuzzy methodology to use multiple heuristic ordering

simultaneously has been investigated.

The performance of three fuzzy multiple heuristic ordering and three single heuristic

orderings were measured on the basis of the standard examination timetabling prob-

lem instances. It was found that better solutions were generated when two heuristic

orderings were used simultaneously (provided that the ‘best’ tuned fuzzy model is ap-

plied). The results have been analyses in terms of criteria deemed important to the

construction process. The potential of the fuzzy multiple heuristic ordering approach

has been demonstrated as an important construction ordering technique using the sim-

plest sequential constructive algorithm. The objective was to understand how all relevant

criteria can be used simultaneously to enhance the provision of the initial feasible so-

lution, as opposed to obtaining solutions simply to beat previously published results.

It is the author believed that this research marks the beginning of a process which has

the capability to incorporate all important user and technical data at all stages of the

construction and improvement phases and hence will have the capability of producing

much enhanced solutions. The main focus of the work presented here is to investigate

an alternative fuzzy-based approach to assess the difficulty of scheduling exams to time

slots. A multiple heuristic ordering has been introduced in which the conflicts between

heuristic orderings is resolved by means of fuzzy reasoning, and the results obtained have

been extensively analysed in order to further the understanding of how heuristics can

be combined in various circumstances. This has been achieved by reference to a number

of essential criteria.

It can be seen that these experiments have confirmed that the fuzzy multiple heuristic

111

4.6 Chapter Summary

ordering approach can reliably perform better than the single heuristic orderings consid-

ered on repeated runs. However, the success of this fuzzy approach is highly dependent

on the individual ‘best’ fuzzy membership functions tuned for each data set. Finding a

generic fuzzy multiple heuristic ordering model that is applicable to all potential prob-

lem instances which can provide consistently good results is an interesting and open

research problem. Based on the work presented, it is believed that further investigation

is warranted into fuzzy techniques in all areas of the provision and evaluation of solutions

to the examination timetabling problem.

The work presented in the first part of the Chapter is published in the Selected

Volume of the 5th International Conference for the Practice and Theory of Automated

Timetabling (PATAT’2004) (Asmuni et al., 2005). The second part of the Chapter

has be accepted to be published in the Journal of Computers & Operations Research

(Asmuni et al., 2008).

112

Chapter 5

Comparison of Fuzzy and Non-Fuzzy

Multiple Heuristic Ordering

5.1 Introduction

This Chapter further investigates the efficiency and effectiveness of fuzzy multiple heuris-

tic orderings. Due to the large amount of time required in tuning the fuzzy models used,

the algorithm identified and used in the previous Chapter is modified in order to shorten

the computational time. This allows for more detailed analysis of various combinations

of heuristics. In addition, the concept of utilising more than one heuristic ordering si-

multaneously, proposed in the previous Chapter, is extended by considering up to three

heuristic ordering simultaneously. The modified sequential constructive algorithm was

implemented with a single heuristic ordering and multiple heuristic ordering, both by

fuzzy reasoning and linear combinations. As in the previous Chapter, the performance

of various heuristic orderings was compared on a set of standard benchmark problems.

113

5.2 Extension to Three Heuristic Ordering

5.2 Extension to Three Heuristic Ordering

In this Chapter, the multiple heuristic ordering technique described in the previous

Chapter is extended incorporating three heuristic orderings which are considered simul-

taneously. This effectively means that, the fuzzy system is extended to be able to deal

with 3 input variables and 1 output variable. It was decided that the same tuning

method (see Section 4.4.1.3) would be used. Therefore, with four fuzzy variables, there

are 114 = 14641 cp combinations that need to be tested for data sets with 300 exams or

less. Taking the EAR-F-83 data set as an example, the shortest time to produced the

solution shown in Table 4.13 is equal to 19.34 seconds when the Fuzzy SD+LE Model

was employed. If this time is used to estimate the total time to test all the 14641

combinations, the total time to tune the fuzzy model would be 3 days and 6 hours ap-

proximately. It is pointed out that this is the total tuning time if the shortest time is

considered. However, as discussed in the previous Chapter, the number of ‘rescheduling

procedure’ required have significant influence over the time to produce the solution.

Furthermore, by definition a ‘bad’ fuzzy model will produce a ‘bad’ ordering of

exams, which will tend to cause the constructive algorithm to take a longer time to

reach solutions. Therefore, it was clear that the original algorithm needed to be improved

with the goal of reducing the computational time. This was necessary to ensure sufficient

experimentation took place in establishing the effectiveness of the proposed approach.

5.2.1 Algorithmic Changes to Reduce Computational Time

With the aim of reducing the computational time, the following changes to the algorithm

were implemented:

ALG1.1 The first changes is, when no clash free time slot is available in which to

insert an exam, the ‘rescheduling procedure’ is performed straight away. Whereas

in previous algorithm (see Figure 4.1), the exam is skipped to be processed after

114

5.2 Extension to Three Heuristic Ordering

all the ‘conflict free’ exams are scheduled. In doing so it is assumed that it is better

to allocate a time slot to the ‘stuck’ exam in the earlier stage of the assignment

process, rather than do it in the later stage.

ALG1.2 The second changes is, the exam difficulty reordering is performed after five

exams are inserted into the timetable, instead of after only one. It is expected

that, by reducing the number of times the exams ordering is recalculated, less

time is require to produce the solution. This is motivated by the fact that, the

static heuristic ordering will always produced the solution in the shortest time (as

shown by the Fuzzy LD+LE Model , see Table 4.13). However, it is questionable

whether this change will maintain the solution quality, especially when the dynamic

heuristic ordering is implemented.

ALG2.0 The third change is to implement both ALG1.1 and ALG1.2 in parallel.

The motivation for this is to look into the impacts of applying both changes at the

same time.

In order to illustrate the impact of making these changes, a number of simple exper-

iments were set up. The following two fuzzy models are used: the Fuzzy LD+LE Model

and Fuzzy SD+LE Model . These two models was chosen to represents the static-static

combination and static-dynamic combination. In order to understand the effect of the

impact, the investigation focused on the impact of the number of ‘rescheduling proce-

dure’ required, the computational time and the proximity cost. These are considered

key attributes of the construction process. Table 5.1 shows the comparison of the 4 algo-

rithms. Only three data sets results were presented in this table. These three data sets

(CAR-S-91 , KFU-S-93 and UTA-S-92) are selected because the effects of the changes

made to the original algorithm described in Section 4.2 (from this point onwards, it is

termed ‘ALG1.0 ’) are more clearly observed in these three data sets. For the full results,

please refer to Appendix A.

115

5.2 Extension to Three Heuristic Ordering

Table 5.1: A comparison of the results obtained by the different algorithms on the
CAR-S-91 , KFU-S-93 and UTA-S-92 data sets

Fuzzy LD+LE Model Fuzzy SD+LE Model

Data Set ALG1.0 ALG1.1 ALG1.2 ALG2.0 ALG1.0 ALG1.1 ALG1.2 ALG2.0

CAR-S-91

Proximity Cost Best 5.58 5.56 5.57 5.60 5.29 5.29 6.20 5.59

Worst 5.81 5.63 5.82 5.65 5.29 5.29 7.06 5.59

Average 5.65 5.59 5.67 5.62 5.29 5.29 6.54 5.59

Comp. Time (s) Shortest 6.34 3.05 5.05 3.09 902.27 885.14 25.94 183.50

Worst 30.44 3.63 21.95 3.64 908.56 900.41 199.91 184.38

Average 13.48 3.26 11.65 3.33 905.15 889.51 102.30 184.08

Backtracking Min 5 3 4 3 0 0 28 0

Max 27 6 18 6 0 0 152 0

Average 12.2 3.8 9.6 4.4 0 0 84.4 0

KFU-S-93

Proximity Cost Best 16.54 15.99 16.59 15.84 15.81 15.81 22.20 17.48

Worst 19.17 16.72 18.72 16.24 15.81 15.81 25.48 17.48

Average 17.60 16.35 17.29 16.13 15.81 15.81 23.79 17.48

Comp. Time (s) Shortest 2.27 0.77 1.78 0.81 106.31 104.88 11.55 22.30

Worst 5.52 0.92 5.06 1.17 109.34 107.56 28.56 22.48

Average 3.64 0.83 3.42 0.90 107.86 106.49 18.16 22.36

Backtracking Min 12 4 10 6 0 0 56 0

Max 25 9 24 8 0 0 125 0

Average 18 7 16.8 7.2 0 0 79 0

UTA-S-92

Proximity Cost Best 3.87 3.85 3.88 3.86 3.57 3.57 4.19 3.82

Worst 4.64 3.86 4.13 3.90 3.57 3.57 4.82 3.88

Average 4.23 3.85 3.98 3.88 3.57 3.57 4.52 3.86

Comp. Time (s) Shortest 11.55 2.25 15.95 2.25 600.81 590.97 47.30 124.19

Worst 56.08 2.31 40.34 2.55 603.81 593.52 279.67 125.11

Average 31.11 2.28 28.36 2.36 602.47 591.97 119.23 124.61

Backtracking Min 10 2 18 2 0 0 51 1

Max 49 2 42 4 0 0 274 1

Average 29.8 2 29 2.8 0 0 121.2 1

When the Fuzzy LD+LE Model is used, no change is expected by employing ALG1.1

and ALG1.2 , because no exams reordering is needed for the static heuristic ordering

type. Overall, although little improvement can be seen in terms of proximity cost,

the implementation of ALG1.0 and ALG2.0 cause some decrease in the number of

116

5.2 Extension to Three Heuristic Ordering

‘rescheduling procedure’ required. As a result, the computational time is also reduced

(this can be seen clearly in UTA-S-92 data set).

The decrease in computational time can also be seen when the Fuzzy SD+LE Model is

implemented. In the seventh and eighth columns of Table 5.1, the number of ‘reschedul-

ing procedure’ required are equal to zero. That means that all the unscheduled exams can

be assigned to time slots without the need to reshuffling the already scheduled exams.

Thus, applying ALG1.0 and ALG1.1 will always produce the same solution quality.

Clearly, for the Fuzzy SD+LE Model , in many cases, the results were worst in terms of

‘proximity cost’ when the ALG1.2 and ALG2.0 are compared to the ALG1.0 . This is

due to the fact that the membership functions implemented are tuned for the ALG1.0 ,

not for ALG1.2 or ALG2.0 .

Based on these observations, it was decided that the new improved algorithm should

be used for the rest of the experiments relating to measuring the difficulty of scheduling

exams to time slots by considering multiple heuristic ordering simultaneously. The

modified sequential constructive algorithm is shown in Figure 5.1. In the implementation

shown, the k value is set to 5. The ‘rescheduling procedure’ is reproduced with very minor

changes as shown in Figure 5.2. In the previous Chapter, the number of ‘rescheduling

procedure’ required is referred to the number of iterations of the procedure because it was

dealing with ‘skipped exams’ and ‘bumped back exams’. The ‘rescheduling procedure’ is

only activated if the ‘skipped exams’ list is consisting at least one element after all exams

with valid time slot are scheduled in the timetable. Meanwhile, in this Chapter, the

number of ‘rescheduling procedure’ required refers to the number of time this procedure

is called. The outer WHILE loop statement (see Figure 4.2) is removed because this

new procedure is only activated when the reshuffling of the conflicting scheduled exams

is required.

117

5.2 Extension to Three Heuristic Ordering

Phase 1 : Sequential Constructive Algorithm

Constructive
Feasible
Solution

Process 3:
Get next event on
unscheduled list

Yes

No

No

Yes

YesNo

Process 2:
Calculate events
difficulty to be
scheduled

Process 1:
Choose heuristic ordering

No

Yes

Process 5:
Assign
event to the
time slot

Process 4:
Perform
‘rescheduling
procedures’

Problem
Definitions

Valid time
slot

available?

Dynamic
heuristic?

Process 6:
Increment Counter

Counter = k?

Any more
events?

Process 7:
Reset
Counter

Figure 5.1: The modified algorithm

118

5.2 Extension to Three Heuristic Ordering

E* = current unscheduled event that need to be scheduled;
Find time slots where event E* can be inserted with minimum number of scheduled events need to
be removed from the time slot;
If found more than one time slot with the same number of scheduled events need to be removed

Select a time slot t randomly from the candidate list of time slots;
End if
While there exist events that conflict with event E* in time slot t

Et = first event in time slot t ;
If found another time slot with minimum penalty cost to move event Et

Move event Et to the time slot;
else

Bump back event Et to unscheduled events list;
End if

End While
Insert event E* to timeslot t;
Remove event E* from unscheduled event list;

Figure 5.2: Pseudo code for the new ‘rescheduling procedure’

5.2.2 Experiments with Revised Algorithm

A series of experiments were carried out to test the new algorithm. Ultimately, the

objective of these experiments was to compare the solution quality when the different

kinds of heuristic ordering were employed to measure the difficulty of scheduling exams

to time slots. The heuristic orderings considered in the experiments are described below.

5.2.2.1 Linear Multiple Heuristic Ordering

One way to simultaneously consider several heuristic orderings in measuring the exam

difficulty weight is to multiply the value of the particular attribute of that exam with

a weighting factor. In this approach, the exams in the problem instances were ordered

based on a linear multiple heuristic ordering. All the exams were then selected to be

scheduled based on this ordering. When this method is used, the linear weighted function

becomes, for example:

W (ej) = wdLDj + weLEj + wsSDj

119

5.2 Extension to Three Heuristic Ordering

where j = 1, 2, ...N ; wd = we = ws = 0.0, 0.1, , 1.0 if N <= 300; or wd = we = ws =

0.0, 0.25, 0.5, 0.75, 1.0 if N > 300; and wd, we, ws are weighting factors for LD , LE and

SD respectively.

In the implementation, if one of the weighted factors is equal to zero, and the other

two weighted factors are assigned with non-zero value, this situation represents the im-

plementation of two heuristic ordering simultaneously. On the other hand, if two of

the weighted factors are equal to zero, and the other one is equal to 1.0, this situa-

tion represents Single Heuristic Ordering. These non-fuzzy multiple heuristic orderings

were developed for the purposes of comparison to the fuzzy multiple heuristic ordering

detailed below.

5.2.2.2 Fuzzy Multiple Heuristic Ordering

As discussed in Section 4.4.1.3, the fuzzy models must be tuned using the new algorithm

in order to search for the ‘best’ fuzzy model for each heuristic ordering combinations

descried in Section 4.4.1. Similar procedures for tuning membership functions as de-

scribed in Section 4.4.1.3 were implemented. From this point onwards, it is no longer

interesting to compare with the Fixed Fuzzy LD+LE Model explained in Section 4.4.1.2.

Therefore, this model will not be included in the current and the future experiments

or, indeed, discussions. In this Chapter, the membership functions tuning process is

performed for the three fuzzy model: Fuzzy LD+LE Model , Fuzzy SD+LE Model and

Fuzzy SD+LD Model .

In addition to these three fuzzy models, a new fuzzy model that takes into ac-

count three heuristic orderings simultaneously was proposed. This is identified as Fuzzy

LD+SD+LE Model . Therefore, a fuzzy system with three input variables and one output

variable was developed. Again, the triangular shape membership functions depicted in

Figure 4.7 were used as an initial membership function for all of the variables. Also, the

same procedures explained in Section 4.4.1.3 were employed to tune this fuzzy model.

120

5.2 Extension to Three Heuristic Ordering

A set of fixed fuzzy rules applicable to the Fuzzy LD+LE+SD model are presented in

Table 5.2.

Table 5.2: Fuzzy rule set for Fuzzy LD+LE+SD Model

LD

S M H

LE SD SD SD

S M H S M H S M H

S S VS VS S S VS M S S

M S S VS H M M H M M

H H S S H M M VH H M

VS=very small

S=small

M=medium

H=high

VH=very high

5.2.3 Experimental Results

The experiments were undertaken in two stages. The first stage focused on finding the

appropriate weighted factor values for the linear multiple heuristic orderings and the cp

values for the fuzzy multiple heuristic orderings. The results for the tuning process of

the linear multiple heuristic orderings are presented in Table 5.3; while for the fuzzy

multiple heuristic orderings, the results are presented in Table 5.4.

These values were then used in the second stage of the experiments in which repeated

runs were performed to generate 30 solutions with each heuristic ordering, for each of

the twelve data sets. In total, eleven heuristic orderings were tested in this experiment.

The following list shows the full list of the heuristic orderings that were compared:

• Single Heuristic Ordering, LD (when wd = 1.0, we = 0.0 and ws = 0.0)

• Single Heuristic Ordering, LE (when wd = 0.0, we = 1.0 and ws = 0.0)

• Single Heuristic Ordering, SD (when wd = 0.0, we = 0.0 and ws = 1.0)

• Linear Two Heuristic Ordering, Linear LD+LE (when ws = 0.0; wd and we are

assigned with the values in the second and third columns of Table 5.3 for respective

data set)

121

5.2 Extension to Three Heuristic Ordering

Table 5.3: Values for weighted factors identified in the tuning process

Linear Linear Linear Linear
Data Set LD+LE SD+LE SD+LD LD+SD+LE

wd we ws we ws wd wd ws we

CAR-F-92 0.50 0.75 0.00 1.00 0.75 0.00 0.25 0.75 0.75
CAR-S-91 0.75 1.00 0.25 0.25 1.00 0.25 0.75 0.75 1.00
EAR-F-83 0.90 0.70 0.00 0.00 0.50 0.40 1.00 0.10 0.80
HEC-S-92 0.10 0.70 1.00 0.40 0.90 0.00 0.10 0.00 0.70
KFU-S-93 0.00 0.25 0.25 1.00 0.75 0.50 0.25 0.75 0.50
LSE-F-91 0.75 0.75 0.00 1.00 0.50 0.50 0.75 0.75 0.50
RYE-F-92 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
STA-F-83 0.10 0.00 0.00 0.00 0.10 0.00 0.10 0.00 0.00
TRE-S-92 0.00 0.50 0.00 0.50 0.60 0.40 0.70 0.60 0.40
UTA-S-92 0.25 1.00 0.25 1.00 0.75 0.00 0.25 0.50 0.75
UTE-S-92 0.70 0.40 0.10 0.30 0.10 0.70 0.30 0.90 0.80
YOR-F-83 0.00 0.40 0.60 0.20 0.70 0.40 0.10 0.10 1.00

Table 5.4: Values for cp parameters obtained from the fuzzy tuning process

Fuzzy Fuzzy Fuzzy Fuzzy
Data Set LD+LE Model SD+LE Model SD+LD Model LD+SD+LE Model

LD LE exam
weight

SD LE exam
weight

SD LD exam
weight

LD SD LE exam
weight

CAR-F-92 0.75 1.00 0.00 1.00 0.25 0.25 0.25 0.50 1.00 0.00 1.00 0.50 0.50
CAR-S-91 1.00 0.75 0.00 0.50 0.25 0.75 0.75 0.00 0.25 0.00 0.75 0.25 0.50
EAR-F-83 0.40 0.00 0.80 0.20 0.80 0.80 1.00 0.20 0.80 0.50 0.90 0.70 0.10
HEC-S-92 0.30 0.90 0.70 0.40 1.00 1.00 0.90 0.00 0.20 0.30 0.20 0.70 0.70
KFU-S-93 0.75 0.00 0.00 0.00 0.25 0.00 0.75 1.00 0.50 0.00 0.50 0.50 0.00
LSE-F-91 1.00 0.25 1.00 0.25 0.00 0.00 0.50 1.00 0.25 0.00 0.50 0.50 0.25
RYE-F-92 1.00 0.50 0.50 0.50 1.00 1.00 0.25 0.25 0.00 0.00 0.25 0.25 0.50
STA-F-83 0.60 0.70 0.90 0.90 0.90 0.00 0.60 0.00 1.00 0.60 0.90 0.80 0.00
TRE-S-92 0.80 0.20 0.00 0.80 0.90 0.10 0.70 0.90 0.80 0.00 0.30 0.70 0.50
UTA-S-92 0.75 0.25 0.50 0.00 0.00 0.75 0.25 0.25 0.75 0.25 0.75 0.25 0.00
UTE-S-92 0.30 0.60 0.00 0.60 0.70 0.30 0.00 0.90 0.40 0.00 0.50 0.20 0.30
YOR-F-83 0.80 0.80 0.70 0.50 0.70 0.50 0.30 0.80 0.70 0.10 0.30 0.50 0.90

122

5.2 Extension to Three Heuristic Ordering

• Linear Two Heuristic Ordering, Linear SD+LE (when wd = 0.0; ws and we are

assigned with the values in the fourth and fifth columns of Table 5.3 for respective

data set)

• Linear Two Heuristic Ordering, Linear SD+LD (when we = 0.0; wd and ws are

assigned with the values in the sixth and seventh columns of Table 5.3 for respective

data set)

• Linear Three Heuristic Ordering, Linear LD+SD+LE (when we, wd and ws are

assigned with the values in the eighth to tenth columns of Table 5.3 for respective

data set)

• Fuzzy Two Heuristic Ordering, Fuzzy LD+LE Model (using cp values in the second

to fourth columns of Table 5.4 for respective data set)

• Fuzzy Two Heuristic Ordering, Fuzzy SD+LE Model (using cp values in the fifth

to seventh columns of Table 5.4 for respective data set)

• Fuzzy Two Heuristic Ordering, Fuzzy SD+LD Model (using cp values in the eighth

to tenth columns of Table 5.4 for respective data set)

• Fuzzy Three Heuristic Ordering, Fuzzy LD+SD+LE Model (using cp values in

eleventh to fourteenth columns of Table 5.4 for respective data set)

Table 5.5 shows a comparison of the cost penalties obtained based on 30 runs of each

data set when implementing non-fuzzy heuristic orderings. The best results among the

different non-fuzzy heuristic orderings used are highlighted in bold font. It can be seen

that, in eleven out of twelve data sets, best results are produced when multiple heuristic

orderings are implemented. In the case of the STA-F-83 data set, the single heuristic

ordering LD produced the best result and has the same solution quality compared to the

solutions produced by the Linear LD+LE and the Linear LD+SD+LE . In comparison

with the best result amongst the single heuristic orderings, Linear SD+LD combination

produced worst results in all the 12 data sets.

123

5.2 Extension to Three Heuristic Ordering

Table 5.5: The penalty costs obtained by the different non-fuzzy heuristic orderings on
each of the twelve benchmark data sets

Data Set Single Heuristic Linear Multiple Heuristic Ordering

LD LE SD LD + LE SD+LE SD+LD SD+LD+LE

CAR-F-92 Best 4.89 4.74 5.12 4.66 4.72 4.90 4.67

Exams 543 Average 5.14 4.86 5.28 4.84 4.84 5.04 4.96

Sessions 32 Worst 6.61 5.05 5.45 5.18 5.14 5.29 5.67

Std. Dev 0.32 0.07 0.11 0.12 0.08 0.09 0.21

CAR-S-91 Best 5.86 5.64 5.97 5.47 5.78 5.83 5.38

Exams 682 Average 6.15 6.02 5.97 5.61 6.05 5.99 5.42

Sessions 35 Worst 7.36 6.79 5.97 5.83 6.44 6.33 5.46

Std. Dev 0.33 0.29 0.00 0.07 0.16 0.11 0.02

EAR-F-83 Best 39.90 45.57 45.42 38.68 50.95 40.99 38.17

Exams 190 Average 42.31 49.63 45.42 41.99 55.81 42.18 41.12

Sessions 24 Worst 46.40 53.20 45.42 50.02 62.98 47.40 48.61

Std. Dev 1.57 2.46 0.00 3.23 2.83 1.86 2.34

HEC-S-92 Best 14.56 13.36 13.70 12.76 13.05 14.56 12.68

Exams 81 Average 16.29 14.73 15.06 13.56 15.26 16.87 13.71

Sessions 18 Worst 19.45 19.30 19.11 15.45 19.09 21.80 18.36

Std. Dev 1.05 1.43 1.53 0.67 1.49 1.73 1.16

KFU-S-93 Best 17.64 16.23 18.33 16.45 16.20 17.77 16.02

Exams 461 Average 18.69 16.59 18.83 16.73 16.74 19.00 16.63

Sessions 20 Worst 19.80 17.01 21.87 17.10 18.06 22.29 18.81

Std. Dev 0.55 0.23 0.70 0.19 0.50 1.10 0.80

LSE-F-91 Best 13.98 13.25 12.76 13.03 13.10 14.24 12.47

Exams 381 Average 16.13 14.19 12.76 14.06 14.34 16.16 12.73

Sessions 18 Worst 18.62 18.35 12.76 20.01 17.30 19.25 13.03

Std. Dev 1.19 0.94 0.00 1.23 1.18 1.23 0.18

RYE-F-92 Best 12.34 10.80 11.51 12.42 10.73 12.79 10.96

Exams 486 Average 13.65 12.35 11.51 13.55 11.95 14.08 11.87

Sessions 23 Worst 16.14 14.89 11.51 15.73 13.47 16.42 13.13

Std. Dev 1.03 0.98 0.00 0.74 0.77 1.08 0.57

STA-F-83 Best 167.05 172.01 177.93 167.05 172.76 171.51 167.05

Exams 139 Average 167.84 172.26 178.83 167.62 172.76 172.07 167.70

Sessions 13 Worst 168.48 172.49 179.73 168.48 172.76 172.95 168.48

Std. Dev 0.56 0.19 0.92 0.53 0.00 0.55 0.59

TRE-S-92 Best 10.45 9.25 10.50 9.26 9.56 9.97 9.21

Exams 261 Average 11.22 9.70 10.50 9.73 10.01 10.34 9.26

Sessions 23 Worst 12.29 10.73 10.50 10.21 10.86 11.17 9.29

Std. Dev 0.43 0.31 0.00 0.29 0.29 0.32 0.04

UTA-S-92 Best 3.97 3.71 4.11 3.65 3.82 3.83 3.61

Exams 622 Average 4.84 4.12 4.11 4.09 4.05 4.32 3.97

Sessions 35 Worst 6.04 5.39 4.11 4.96 4.83 4.94 4.62

Std. Dev 0.54 0.39 0.00 0.44 0.24 0.27 0.31

UTE-S-92 Best 35.19 28.93 33.72 28.68 28.93 33.27 28.41

Exams 184 Average 35.22 29.32 35.07 28.68 29.16 33.40 28.97

Sessions 10 Worst 35.27 30.89 36.56 28.68 31.31 33.59 29.92

Std. Dev 0.03 0.43 0.86 0.00 0.48 0.16 0.63

YOR-F-83 Best 45.72 42.65 46.74 42.03 44.47 44.02 41.52

Exams 181 Average 47.49 44.58 48.32 44.80 47.00 46.25 45.37

Sessions 21 Worst 50.24 48.78 49.70 48.78 51.80 49.00 48.82

Std. Dev 1.12 1.51 0.73 1.71 1.63 1.31 1.83

124

5.2 Extension to Three Heuristic Ordering

Table 5.6 shows a comparison of the cost penalties obtained based on 30 runs of

each data set when the fuzzy multiple heuristic ordering are implemented. The best

results among the different fuzzy multiple heuristic orderings used are highlighted in bold

font. It appears that Fuzzy LD+SD+LE Model is the best amongst the fuzzy multiple

heuristic ordering, because it obtained nine best results, followed by Fuzzy SD+LE Model

with two best results (CAR-F-92 and EAR-F-83). Both Fuzzy LD+SD+LE Model and

Fuzzy SD+LE Model produced best solutions with the same solution quality for the

UTA-S-92 data set. Comparing Tables 5.5 and 5.6, it is evident that the fuzzy multiple

heuristic orderings have outperformed all of the non-fuzzy heuristic orderings in terms

of cost penalty. Furthermore, if the best results in Table 5.6 are compared with the

best results obtained in previous the Chapter (see Table 4.10), it can be seen that the

solutions produced in the previous Chapter are beaten by the results obtained in this

experiments in all data sets except YOR-F-83 . However, looking at the Fuzzy SD+LE

Model specifically (this combination is the best in the previous Chapter), solutions

obtained in these experiments for six data sets (CAR-S-91 , HEC-S-92 , KFU-S-93 ,

LSE-F-91 , TRE-S-92 and YOR-F-83) are outperformed by the solutions produced using

the old algorithm (ALG1.0).

A parametric statistical test (the t-Test) was performed to measure statistical signif-

icance for the differences in the means when comparing fuzzy and linear combinations

for each heuristic combination (LD + LE, SD + LE, SD + LD and SD + LD + LE).

The t-Test is designed to detect differences in two population means, and is suitable

for large sample sizes (less than 8 is considered as a small sample size) (Ross, 2005b).

The Microsoft Excel Data Analysis Tool was employed for all the statistical tests. As

there are 30 samples per test, the distributions of the population can be assumed to be

approximately normal. The null hypothesis H0 is that the means of the two populations

are equal. H0 will be rejected if the probability that H0 is true, p−value, is smaller than

the predetermined level of significance, α (i.e. p − value < α). As this methodology

125

5.2 Extension to Three Heuristic Ordering

requires much repeated testing, a lower value of α is used. In the experiment, α is set

to 0.001.

The resulting p-values for the t-Test are shown in Table 5.7. In the table, p− values

that are far lower than α are marked with ‘< 0.0001’. It can be seen that H0 cannot

be rejected in five cases for LD + LE heuristic combination, two cases for SD + LD

heuristic combination, and one case for SD + LD + LE heuristic combination. That

means that H0 can be rejected in 83.33% of the total cases. Although it is obvious that

not all the differences are statistically significant, overall, it can be seen that the fuzzy

approach does indeed show promising performance. It should be remembered that, in

this experiment, only the membership functions of the fuzzy models were tuned. In the

next Chapter, the experimental results show that the performance of the fuzzy system

can be further improved by also tuning the fuzzy rules.

Tables 5.8 and 5.9 show comparisons of the number of ‘rescheduling procedure’ re-

quired for the non-fuzzy heuristic orderings and the fuzzy multiple heuristic orderings

respectively. In each case the smallest, the worst and the average number of ‘reschedul-

ing procedure’ required is given. Considering the single heuristic orderings (see the

third to fifth columns of Table 5.8) and fuzzy two heuristic orderings (see the third to

fifth columns of Table 5.9), it can be seen that the number of cases that required no

‘rescheduling procedure’ is reduced, as compared to the results presented in Table 4.12 of

the previous Chapter. Overall, the fuzzy two heuristic orderings show some increases in

the number of ‘rescheduling procedure’ required, but the increments are not so obvious

(considering the average number of ‘rescheduling procedure’ required). Specifically, the

Fuzzy SD+LE Model now needs to invoke the ‘rescheduling procedure’ to construct the

timetable solutions in eight out of twelve data sets. In contrast, it only required one

iteration of the ‘rescheduling procedure’ for two data sets in the previous Chapter. On

the other hand, it can be observed that the number of ‘rescheduling procedure’ required

is reduced in most cases when the different single heuristic ordering were applied with

126

5.2 Extension to Three Heuristic Ordering

Table 5.6: The penalty costs obtained by the different fuzzy multiple heuristic orderings
on each of the twelve benchmark data sets

Data Set Fuzzy
LD+LE

Model

Fuzzy
SD+LE
Model

Fuzzy
SD+LD

Model

Fuzzy
LD+SD+LE

Model

CAR-F-92 Best 4.57 4.47 4.62 4.53

Exams 543 Average 4.66 4.55 4.91 4.60

Sessions 32 Worst 4.75 4.75 5.15 4.76

Std. Dev 0.06 0.07 0.12 0.06

CAR-S-91 Best 5.45 5.31 5.45 5.21

Exams 682 Average 5.68 5.31 5.45 5.30

Sessions 35 Worst 6.20 5.31 5.45 5.52

Std. Dev 0.14 0.00 0.00 0.08

EAR-F-83 Best 38.80 36.99 39.34 37.11

Exams 190 Average 41.90 36.99 39.34 39.28

Sessions 24 Worst 49.72 36.99 39.34 41.77

Std. Dev 2.42 0.00 0.00 1.42

HEC-S-92 Best 12.09 12.03 12.69 11.70

Exams 81 Average 13.56 12.51 14.54 12.28

Sessions 18 Worst 16.83 16.20 15.88 14.30

Std. Dev 1.27 0.83 0.95 0.77

KFU-S-93 Best 15.73 15.90 16.09 15.41

Exams 461 Average 16.24 16.02 17.25 15.86

Sessions 20 Worst 17.46 16.34 20.23 17.57

Std. Dev 0.37 0.11 0.85 0.42

LSE-F-91 Best 11.97 12.16 14.22 11.43

Exams 381 Average 12.30 12.32 15.19 11.43

Sessions 18 Worst 12.44 12.47 18.08 11.43

Std. Dev 0.09 0.16 0.92 0.00

RYE-F-92 Best 13.02 10.25 13.40 10.21

Exams 486 Average 14.16 10.49 15.08 10.93

Sessions 23 Worst 17.02 10.63 16.93 14.03

Std. Dev 0.89 0.19 1.15 1.16

STA-F-83 Best 159.82 159.59 165.25 159.34

Exams 139 Average 160.14 161.17 168.12 160.26

Sessions 13 Worst 160.42 163.62 172.53 161.29

Std. Dev 0.30 1.20 2.86 0.47

TRE-S-92 Best 8.99 8.92 9.26 8.64

Exams 261 Average 9.18 9.12 9.26 8.64

Sessions 23 Worst 9.67 9.67 9.26 8.64

Std. Dev 0.17 0.24 0.00 0.00

UTA-S-92 Best 3.77 3.55 3.73 3.55

Exams 622 Average 4.17 3.55 3.73 3.55

Sessions 35 Worst 5.81 3.55 3.73 3.55

Std. Dev 0.45 0.00 0.00 0.00

UTE-S-92 Best 28.59 27.99 30.37 27.64

Exams 184 Average 28.66 28.25 30.76 28.80

Sessions 10 Worst 28.70 29.57 31.97 30.90

Std. Dev 0.04 0.29 0.59 0.86

YOR-F-83 Best 41.10 40.71 43.00 40.46

Exams 181 Average 42.33 40.71 45.47 42.11

Sessions 21 Worst 43.60 40.71 46.34 46.60

Std. Dev 0.70 0.00 0.76 1.41

127

5.2 Extension to Three Heuristic Ordering

Table 5.7: The Best Fuzzy, Best Linear and t-Test (Two-Sample Assuming Unequal
Variances) Result of the twelve benchmark data sets

Data Set Linear Multiple Heuristic Ordering

LD + LE SD+LE SD+LD SD+LD+LE

CAR-F-92 Best Linear 4.66 4.72 4.90 4.67

Best Fuzzy 4.57 4.47 4.62 4.53

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001

CAR-S-91 Best Linear 5.47 5.78 5.83 5.38

Best Fuzzy 5.45 5.31 5.45 5.21

p-value 0.0226 < 0.0001 < 0.0001 < 0.0001

EAR-F-83 Best Linear 38.68 50.95 40.99 38.17

Best Fuzzy 38.80 36.99 39.34 37.11

p-value 0.9063 < 0.0001 < 0.0001 0.0006

HEC-S-92 Best Linear 12.76 13.05 14.56 12.68

Best Fuzzy 12.09 12.03 12.69 11.70

p-value 0.9912 < 0.0001 < 0.0001 < 0.0001

KFU-S-93 Best Linear 16.45 16.20 17.77 16.02

Best Fuzzy 15.73 15.90 16.09 15.41

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001

LSE-F-91 Best Linear 13.03 13.10 14.24 12.47

Best Fuzzy 11.97 12.16 14.22 11.43

p-value < 0.0001 < 0.0001 0.0011 < 0.0001

RYE-F-92 Best Linear 12.42 10.73 12.79 10.96

Best Fuzzy 13.02 10.25 13.40 10.21

p-value 0.0052 < 0.0001 0.0009 0.0003

STA-F-83 Best Linear 167.05 172.76 171.51 167.05

Best Fuzzy 159.82 159.59 165.25 159.34

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001

TRE-S-92 Best Linear 9.26 9.56 9.97 9.21

Best Fuzzy 8.99 8.92 9.26 8.64

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001

UTA-S-92 Best Linear 3.65 3.82 3.83 3.61

Best Fuzzy 3.77 3.55 3.73 3.55

p-value 0.4965 < 0.0001 < 0.0001 < 0.0001

UTE-S-92 Best Linear 28.68 28.93 33.27 28.41

Best Fuzzy 28.59 27.99 30.37 27.64

p-value 0.0002 < 0.0001 < 0.0001 0.3907

YOR-F-83 Best Linear 42.03 44.47 44.02 41.52

Best Fuzzy 41.10 40.71 43.00 40.46

p-value < 0.0001 < 0.0001 0.0071 < 0.0001

the new algorithm compared to the figures shown in Table 4.12. Comparing the linear

multiple heuristic ordering with the fuzzy multiple heuristic ordering, it is clear that the

fuzzy multiple heuristic ordering requires fewer ‘rescheduling procedure’.

Finally, Tables 5.10 and 5.11 show a comparison of the computational time required

to construct the solutions for each non-fuzzy heuristic ordering and each fuzzy multiple

heuristic ordering for each data set, respectively. Due to the fact that different computer

128

5.2 Extension to Three Heuristic Ordering

Table 5.8: The number of ‘rescheduling procedure’ required for non-fuzzy heuristic or-
derings for each data set

Data Set Single Heuristic Linear Multiple Heuristic Ordering
LD SD LE LD + LE SD +LE SD +LD SD +LD +LE

CAR-F-92 Smallest 6 8 1 7 6 6 10
Exams 543 Average 25 13 1 20 14 10 19
Sessions 32 Worst 221 28 3 57 75 17 50
CAR-S-91 Smallest 9 13 0 5 18 6 4
Exams 682 Average 24 35 0 10 29 11 7
Sessions 35 Worst 145 85 0 18 57 18 12
EAR-F-83 Smallest 3 12 0 5 27 1 5
Exams 190 Average 7 72 0 14 85 4 13
Sessions 24 Worst 26 252 0 72 318 17 57
HEC-S-92 Smallest 3 4 5 4 8 4 4
Exams 81 Average 10 20 23 11 30 24 12
Sessions 18 Worst 43 74 158 35 118 84 64
KFU-S-93 Smallest 3 3 2 3 2 4 3
Exams 461 Average 7 4 6 5 5 13 7
Sessions 20 Worst 29 5 67 8 13 98 22
LSE-F-91 Smallest 4 3 0 2 4 3 2
Exams 381 Average 52 10 0 10 21 24 3
Sessions 18 Worst 249 67 0 66 160 150 4
RYE-F-92 Smallest 7 4 1 4 3 5 4
Exams 486 Average 58 35 1 63 20 50 20
Sessions 23 Worst 284 116 1 231 134 211 79
STA-F-83 Smallest 3 1 1 3 0 3 3
Exams 139 Average 3 1 1 3 0 3 3
Sessions 13 Worst 3 1 1 3 0 3 3
TRE-S-92 Smallest 6 2 0 2 5 3 1
Exams 261 Average 22 5 0 4 10 8 1
Sessions 23 Worst 74 11 0 8 24 20 2
UTA-S-92 Smallest 6 7 0 5 13 5 5
Exams 622 Average 60 39 0 32 20 28 12
Sessions 35 Worst 163 199 0 321 44 221 34
UTE-S-92 Smallest 2 2 2 0 2 3 2
Exams 184 Average 2 8 3 0 6 3 6
Sessions 10 Worst 2 59 7 0 55 3 31
YOR-F-83 Smallest 19 11 2 12 29 10 13
Exams 181 Average 109 24 11 27 66 45 39
Sessions 21 Worst 294 61 148 95 124 194 157

129

5.2 Extension to Three Heuristic Ordering

Table 5.9: The number of ‘rescheduling procedure’ required for fuzzy multiple heuristic
orderings for each data set

Data Set Fuzzy
LD+LE

Model

Fuzzy
SD+LE
Model

Fuzzy
SD+LD

Model

Fuzzy
LD+SD+LE

Model
CAR-F-92 Smallest 6 1 2 5
Exams 543 Average 8 2 5 6
Sessions 32 Worst 11 6 9 8
CAR-S-91 Smallest 9 0 0 4
Exams 682 Average 14 0 0 7
Sessions 35 Worst 23 0 0 11
EAR-F-83 Smallest 4 0 0 3
Exams 190 Average 15 0 0 6
Sessions 24 Worst 95 0 0 52
HEC-S-92 Smallest 2 2 1 2
Exams 81 Average 9 3 8 10
Sessions 18 Worst 48 13 43 94
KFU-S-93 Smallest 4 2 1 3
Exams 461 Average 7 3 4 6
Sessions 20 Worst 8 7 12 12
LSE-F-91 Smallest 3 1 2 0
Exams 381 Average 3 1 11 0
Sessions 18 Worst 3 1 117 0
RYE-F-92 Smallest 12 1 3 2
Exams 486 Average 85 2 24 7
Sessions 23 Worst 367 2 105 46
STA-F-83 Smallest 1 2 6 2
Exams 139 Average 1 2 11 2
Sessions 13 Worst 1 3 26 2
TRE-S-92 Smallest 1 2 0 0
Exams 261 Average 1 3 0 0
Sessions 23 Worst 4 7 0 0
UTA-S-92 Smallest 9 0 0 0
Exams 622 Average 52 0 0 0
Sessions 35 Worst 296 0 0 0
UTE-S-92 Smallest 1 3 1 2
Exams 184 Average 1 5 1 6
Sessions 10 Worst 2 17 2 16
YOR-F-83 Smallest 4 0 1 4
Exams 181 Average 26 0 3 29
Sessions 21 Worst 146 0 6 147

130

5.2 Extension to Three Heuristic Ordering

specifications were utilised to construct the solutions, it is not possible to compare

directly the time taken to construct the solutions in this Chapter to the time taken to

construct the solutions in the previous Chapter (see Table 4.13). In this Chapter, the

experiments were undertaken on a Pentium(R) 4 CPU 2.20GHz with 512MB RAM,

meanwhile a Pentium(R) 4 CPU 1.80GHz with 256MB RAM were used in the previous

Chapter. However, presumably the computational time reduction can be justified by

analysing the percentage of improvement (reduction in computational time) as shown

in Tables 5.12 and 5.13. In Table 5.12, it can be seen that the old algorithm (ALG1.0)

required between 0.5 to 16 percent less computational time when the old algorithm

(ALG1.0) was implemented on the P4 2.20GHz with 512MB RAM computer. On the

other hand, in Table 5.13 it can be observed that the computational time was reduced

by at least 77.10 percent when the new algorithm (ALG2.0) was implemented (on a P4

2.20GHz with 512MB RAM computer). This indicates that the changes made to the old

algorithm results in less computational time being required to construct the timetable

solution.

5.2.4 Discussion of Results

In Chapter 4, it was demonstrated that multiple heuristic orderings, utilising fuzzy tech-

niques to consider two heuristic orderings simultaneously, could outperform any single

heuristic ordering in the benchmark data sets used. In this Chapter, these experiments

have been extended by utilising up to three heuristic orderings simultaneously. In Ta-

ble 5.6, it can be seen that, for ten out of the twelve benchmark data sets used, better

results were obtained when the three heuristic orderings simultaneously were applied

compared to the two heuristics orderings simultaneously applied. It is not the case,

however, that three heuristic orderings always performed better than two heuristic or-

derings. For two data sets (CAR-F-92 and EAR-F-83), the best overall results are

produced when the Fuzzy SD+LE Model is employed. This is probably due to the fact

131

5.2 Extension to Three Heuristic Ordering

Table 5.10: A comparison of the computational time (in seconds) required to construct
the solutions for non-fuzzy heuristic ordering for each data set

Data Set Single Heuristic Linear Multiple Heuristic Ordering
LD SD LE LD + LE SD +LE SD +LD SD +LD +LE

CAR-F-92 Shortest 1.80 2.20 48.88 1.92 43.48 42.67 44.00
Exams 543 Average 12.84 3.80 49.46 7.42 45.68 43.20 46.45
Sessions 32 Worst 169.23 11.81 50.42 26.02 76.05 45.00 61.50
CAR-S-91 Shortest 3.78 5.77 119.36 3.22 111.78 100.28 100.05
Exams 682 Average 17.12 21.34 119.69 4.81 119.46 103.61 101.18
Sessions 35 Worst 161.74 74.34 120.44 12.72 162.14 111.72 102.61
EAR-F-83 Shortest 0.19 0.44 1.81 0.23 3.27 1.44 1.50
Exams 190 Average 0.33 4.62 2.57 0.80 7.22 1.57 1.91
Sessions 24 Worst 1.64 17.89 4.72 5.20 23.66 2.33 4.41
HEC-S-92 Shortest 0.03 0.05 0.19 0.05 0.20 0.14 0.19
Exams 81 Average 0.10 0.20 0.38 0.12 0.42 0.30 0.26
Sessions 18 Worst 0.41 0.73 1.69 0.36 1.27 0.89 0.72
KFU-S-93 Shortest 0.48 0.52 11.28 0.53 11.14 8.44 11.78
Exams 461 Average 0.80 0.56 11.82 0.57 11.40 9.41 12.21
Sessions 20 Worst 4.27 0.80 19.88 0.64 12.13 20.47 13.63
LSE-F-91 Shortest 0.33 0.33 6.42 0.30 5.69 5.22 5.44
Exams 381 Average 4.89 0.74 6.89 0.72 7.04 7.04 5.51
Sessions 18 Worst 24.09 6.09 8.27 5.91 16.94 19.58 5.58
RYE-F-92 Shortest 0.89 0.88 21.75 0.80 21.47 18.20 21.44
Exams 486 Average 10.59 6.26 21.83 11.46 24.17 25.24 24.04
Sessions 23 Worst 52.44 22.69 21.94 35.69 47.81 57.61 33.31
STA-F-83 Shortest 0.05 0.03 0.64 0.05 0.44 0.31 0.31
Exams 139 Average 0.05 0.05 0.69 0.06 0.44 0.32 0.33
Sessions 13 Worst 0.09 0.09 0.99 0.14 0.45 0.36 0.38
TRE-S-92 Shortest 0.42 0.27 5.06 0.28 4.08 3.70 3.89
Exams 261 Average 1.74 0.34 5.29 0.41 4.25 4.04 3.93
Sessions 23 Worst 6.11 0.47 5.63 0.92 5.05 4.97 4.00
UTA-S-92 Shortest 2.27 2.69 72.48 2.30 68.34 66.42 67.27
Exams 622 Average 49.81 31.97 72.61 23.52 71.25 77.55 71.06
Sessions 35 Worst 148.22 181.20 72.78 299.05 85.81 217.02 80.92
UTE-S-92 Shortest 0.05 0.05 0.73 0.05 0.67 0.55 0.69
Exams 184 Average 0.06 0.09 0.92 0.06 0.71 0.57 0.71
Sessions 10 Worst 0.11 0.36 1.59 0.08 0.97 0.63 0.81
YOR-F-83 Shortest 0.66 0.47 2.48 0.45 2.64 1.86 2.02
Exams 181 Average 3.99 1.08 3.12 1.27 4.16 3.06 3.13
Sessions 21 Worst 10.91 2.84 8.27 3.72 6.28 8.95 8.30

132

5.2 Extension to Three Heuristic Ordering

Table 5.11: A comparison of the computational time (in seconds) required to construct
the solutions for fuzzy multiple heuristic orderings for each data set

Data Set Fuzzy
LD+LE

Model

Fuzzy
SD+LE
Model

Fuzzy
SD+LD

Model

Fuzzy
LD+SD+LE

Model
CAR-F-92 Shortest 2.27 54.56 55.67 93.89
Exams 543 Average 2.55 54.83 56.32 97.23
Sessions 32 Worst 2.84 55.23 58.13 100.06
CAR-S-91 Shortest 4.33 123.47 125.17 185.25
Exams 682 Average 5.73 123.75 125.27 188.36
Sessions 35 Worst 10.98 124.25 125.42 200.81
EAR-F-83 Shortest 0.28 3.02 3.03 6.59
Exams 190 Average 0.88 3.02 3.04 7.12
Sessions 24 Worst 6.22 3.05 3.06 10.86
HEC-S-92 Shortest 0.06 0.45 0.41 1.13
Exams 81 Average 0.15 0.47 0.46 1.22
Sessions 18 Worst 0.52 0.58 0.75 1.95
KFU-S-93 Shortest 0.70 18.70 17.66 45.17
Exams 461 Average 0.77 18.81 17.89 47.20
Sessions 20 Worst 0.86 18.97 18.73 49.77
LSE-F-91 Shortest 0.47 11.49 11.49 31.81
Exams 381 Average 0.49 11.83 12.45 32.18
Sessions 18 Worst 0.63 15.00 22.44 32.34
RYE-F-92 Shortest 2.30 29.47 28.24 60.31
Exams 486 Average 16.38 29.63 31.92 61.64
Sessions 23 Worst 67.94 30.03 45.74 71.02
STA-F-83 Shortest 0.09 1.50 1.45 3.34
Exams 139 Average 0.10 1.51 1.52 3.60
Sessions 13 Worst 0.16 1.56 1.69 5.61
TRE-S-92 Shortest 0.38 6.95 6.89 14.30
Exams 261 Average 0.39 7.01 6.91 14.83
Sessions 23 Worst 0.45 7.20 6.94 16.03
UTA-S-92 Shortest 2.94 86.08 82.75 118.14
Exams 622 Average 39.22 86.71 83.38 128.30
Sessions 35 Worst 279.99 87.78 84.75 146.80
UTE-S-92 Shortest 0.13 2.09 2.00 5.39
Exams 184 Average 0.13 2.14 2.01 5.94
Sessions 10 Worst 0.19 2.28 2.06 7.36
YOR-F-83 Shortest 0.31 3.80 3.53 6.55
Exams 181 Average 1.07 3.81 3.57 7.57
Sessions 21 Worst 4.86 3.81 3.72 12.23

133

5.2 Extension to Three Heuristic Ordering

Table 5.12: A comparison of the average computational time required for Fuzzy SD+LE
Model when old algorithm (ALG1.0) were run in two different computers. Values in
the second column are extracted from Table 4.13, and values in the third column are
extracted from Table A.2. For each data set, the percentage improvement is shown in
the fourth column.

Data Set P4 1.80 GHz PC P4 2.20 GHz PC Improvement

CAR-F-92 446.77 399.25 10.64%
CAR-S-91 1023.50 905.15 11.56%
EAR-F-83 19.38 19.14 1.19%
HEC-S-92 2.36 2.22 5.71%
KFU-S-93 113.92 107.86 5.32%
LSE-F-91 70.57 68.57 2.84%
RYE-F-92 221.01 185.25 16.18%
STA-F-83 6.59 6.36 3.51%
TRE-S-92 43.70 43.00 1.60%
UTA-S-92 695.52 602.47 13.38%
UTE-S-92 11.56 11.31 2.15%
YOR-F-83 22.51 22.39 0.50%

that a fixed fuzzy rule set was implemented in each case — no tuning of fuzzy rules

was implemented. Here, the terms ‘fixed fuzzy rule set’ is referring to the ‘best’ fuzzy

model obtained in Section 5.2.3, where only the membership functions are tuned but the

fuzzy rules remain the same. This fixed fuzzy model is not related to the Fixed Fuzzy

LD+LE Model described in Section 4.4.1.2. If the rule set were tuned, then it should

be possible to find a model based on three heuristic orderings to outperform that based

on two (assuming that it is possible to search a reasonable proportion of the overall

model search space). This indicates that the selection of which heuristic orderings need

to be combined and the number of heuristic orderings that need to be considered simul-

taneously are important in order to get good quality solutions. In addition, this study

also confirms that, as might be expected, fuzzy reasoning does result in better solutions

compared to linear combinations. Although fuzzy techniques required longer processing

time (for tuning the membership functions), this is acceptable because once the best

134

5.2 Extension to Three Heuristic Ordering

Table 5.13: A comparison of the average computational time required for Fuzzy SD+LE
Model when the new algorithm (ALG2.0) and the old algorithm (ALG1.0) were run in
two different computers. Values in the second column are extracted from Table 4.13,
and values in the third column are extracted from Table 5.11. For each data set, the
percentage improvement is shown in the fourth column.

Data Set ALG1.0 ALG2.0 Improvement
(on P4 1.80 GHz PC) (on P4 2.20 GHz PC)

CAR-F-92 446.77 54.83 87.73%
CAR-S-91 1023.50 123.75 87.91%
EAR-F-83 19.38 3.02 84.40%
HEC-S-92 2.36 0.47 79.91%
KFU-S-93 113.92 18.81 83.49%
LSE-F-91 70.57 11.83 83.24%
RYE-F-92 221.01 29.63 86.59%
STA-F-83 6.59 1.51 77.10%
TRE-S-92 43.70 7.01 83.97%
UTA-S-92 695.52 86.71 87.53%
UTE-S-92 11.56 2.14 81.47%
YOR-F-83 22.51 3.81 83.09%

fuzzy model is known for the problem instances, the constructive algorithm can produce

the solution in a reasonable time.

Tables 5.14 and 5.15 compare the results obtained in Chapter 4 (i.e. using the old

algorithm (ALG1.0)) to the results produced using the new algorithm (ALG2.0). Fo-

cusing on the single heuristic ordering (see Table 5.14), it can be seen that, overall,

better results were produced when different single heuristic orderings were implemented

with the new algorithm (ALG2.0). Similarly, in Table 5.15, when two heuristic order-

ings simultaneously were applied with the new algorithm, improvements in the results

produced can be observed in many cases. Also note that, in the previous Chapter, it was

shown that in most cases the best results were obtained when the Fuzzy SD+LE Model is

implemented, in which the solutions were constructed without needing to reshuffling the

exams that had been scheduled earlier (i.e. the number of iteration in the ‘rescheduling

procedure’ was zero). In Table 5.9, it can be seen that, when the new algorithm (ALG2.0)

135

5.2 Extension to Three Heuristic Ordering

were used, only solutions for four data sets (CAR-S-91 , EAR-F-83 , UTA-S-92 and

YOR-F-83) are constructed without ‘rescheduling procedure’. For the other eight data

sets, the average number of ‘rescheduling procedure’ required was between 2 to 5. Most

probably, the number of ‘rescheduling procedure’ required is slightly affected if exams

reordering is performed only after k exams are successfully assigned to valid time slots

(in this experiment, k = 5). While dynamic heuristic ordering depends on the current

structure of the problem, it is likely that fewer ‘rescheduling procedure’ are required (or

might be not required at all) if the exams reordering is performed each time an exam is

successfully assigned to a valid time slot. Yet, when the Fuzzy SD+LE Model is utilised,

the new algorithm (ALG2.0) managed to produced better solutions compared to the

old algorithm (ALG1.0) for six data sets.

Arguably, for any iterative improvement methods, better final solutions may be ob-

tained when better initial solutions are used. However, for the cases of timetable solu-

tions generated in this research, there is no conclusive proof that better final solutions

will be produced. In this thesis, no attempt was made to iteratively improve the con-

structed timetable solution. This is due to the fact that the main objective of this

research was specifically to investigate the applicability of fuzzy techniques in timetable

construction. Despite this, many researchers have reported work on improving initial

solutions that have not been constructed in random form (generally, it is expected that

randomly constructed solutions are inferior to solutions constructed using heuristic or

optimisation methods). Perttunen (1994) has described that the performance of iterative

improvement methods are dependent on the heuristic to be utilised, the properties of the

problem itself and the processing time available. Considering the Travelling Salesmen

Problem, Perttunen (1994) also reported that improvements made to initial solutions

generated using a construction heuristic generally produced better final solutions than

those produced by improvement made on randomly generated initial solutions.

Furthermore, there has been a recent tendency to utilise hybrid approaches across

136

5.2 Extension to Three Heuristic Ordering

Table 5.14: Comparison of results for single heuristic orderings using two different algo-
rithms

Data Set Results from Chapter 4
(ALG1.0)

Results with new algorithm
(ALG2.0)

LD LE SD LD LE SD

CAR-F-92 5.51 4.86 5.5 4.89 4.74 5.12
CAR-S-91 6.13 5.89 5.91 5.86 5.64 5.97
EAR-F-83 40.58 44.86 48.99 39.90 45.57 45.42
HEC-S-92 14.73 14.41 14.23 14.56 13.36 13.70
KFU-S-93 18.38 16.46 18.62 17.64 16.23 18.33
LSE-F-91 14.79 14.41 13.46 13.98 13.25 12.76

RYE-F-92 13.02 11.22 11.6 12.34 10.80 11.51
STA-F-83 173.09 171.8 178.24 167.05 172.01 177.93
TRE-S-92 10.65 9.92 10.81 10.45 9.25 10.50
UTA-S-92 4.26 4.63 3.83 3.97 3.71 4.11
UTE-S-92 35.19 28.79 33.26 35.19 28.93 33.72
YOR-F-83 45.32 43.33 45.26 45.72 42.65 46.74

different optimisation problems, including the timetabling problem (Burke and Newall,

2003; Merlot et al., 2003), the bin-packing problem (Fleszar and Hindi, 2002) and dy-

namic cellular manufacturing systems (N. Safaei and Jabal-Ameli, 2008). Basically, in

any hybrid approach, the idea is to generate a feasible solution by using a certain method

or heuristic, and then apply another different method in order to improve the solution

generated earlier. Therefore, to some extent, such improvement phase (or phases) can

be considered as operating on solutions that somehow have better quality than an initial

solution that has been randomly generated. Having said that, it is the author belief that

better solution can be obtained by considering good initial solutions.

Overall, the Fuzzy SD+LE Model can be considered as the best model for two heuris-

tic ordering combinations. As can be seen in Table 5.15, for six out of the twelve data

sets, ‘best’ results were produced when this model was applied using the new algorithm,

and four other ‘best’ results were obtained when this model was applied using the old

algorithm. The Fuzzy LD+LE Model is the second best fuzzy model with two ‘best’

137

5.2 Extension to Three Heuristic Ordering

Table 5.15: Comparison of results for two heuristic orderings used simultaneously when
two different algorithms were applied

Data Set Results from Chapter 4
(ALG1.0)

Results with new algorithm
(ALG2.0)

LD +LE SD +LE SD +LD LD +LE SD +LE SD +LD

CAR-F-92 4.62 4.54 4.62 4.57 4.47 4.62
CAR-S-91 5.57 5.29 5.77 5.45 5.31 5.45
EAR-F-83 42.61 37.02 39.27 38.80 36.99 39.34
HEC-S-92 12.43 11.78 12.55 12.09 12.03 12.69
KFU-S-93 16.45 15.81 15.80 15.73 15.90 16.09
LSE-F-91 12.35 12.09 12.95 11.97 12.16 14.22
RYE-F-92 11.75 10.38 12.71 13.02 10.25 13.40
STA-F-83 160.42 160.75 171.42 159.82 159.59 165.25
TRE-S-92 9.05 8.67 9.80 8.99 8.92 9.26
UTA-S-92 3.86 3.57 3.86 3.77 3.55 3.73
UTE-S-92 28.65 28.07 31.05 28.59 27.99 30.37
YOR-F-83 41.02 39.80 44.70 41.10 40.71 43.00

results when the new algorithm is employed. Therefore, these observation indicate that,

if an exam is found with no available slot, rather that skip that exam and deal with it

later on, it is better to resolve the conflict as soon as the problem is identified. This

is especially applicable to the heuristic orderings where in the previous Chapter they

were required to reshuffled the already scheduled exams in order to create feasible solu-

tions. Presumably, by immediately performing the ‘rescheduling procedure’, more valid

time slots are available to move the conflicting scheduled exams from the selected time

slot. With more valid time slots available, the chance of finding a time slot with lower

penalty cost is higher (but this penalty cost is not lower than the current penalty cost

in the current time slot). If the ‘stuck’ exam were to be skipped and dealt with later

on, most probably the timetable is already compact. In that situation, it is more likely

that the chance of finding a time slot with minimum penalty cost to move the conflicting

scheduled exams is lower; there may exist some valid time slots, but the penalty cost

might be far too high compared to the current penalty in the current time slot. This

138

5.2 Extension to Three Heuristic Ordering

modification (immediately performing the ‘rescheduling procedure’) also adhered to the

main idea of the employed sequential constructive algorithm, in which the most difficult

exam (in terms of scheduling the exam) is given the higher priority to be scheduled

first. In addition to the improvements in quality of solutions, the modifications made

results in less computational time being taken to construct the solutions (see Tables 5.10

and 5.11).

Table 5.16 shows a comparison of the best results obtained here with results pre-

viously published by other researchers. Although the best results did not beat any

of the best benchmark results, the fuzzy based ordering produced better results for

CAR-F-92 , CAR-S-91 , STA-F-83 , TRE-S-92 and YOR-F-83 than Carter et al.’s con-

structive approach. It also produced the best overall result for YOR-F-83 compared

to any other purely constructive approach. Note also that the result obtained here for

STA-F-83 beats any other already published results, but this has recently been bettered

by Burke et al. (2007).

139

5.2 Extension to Three Heuristic Ordering

T
ab

le
5.

16
:

A
co

m
p
ar

in
g

of
re

su
lt

s
ob

ta
in

ed
h
er

ei
n

w
it

h
re

su
lt

s
p
u
b
li
sh

ed
b
y

ot
h
er

re
se

ar
ch

er
s

D
a
ta

S
et

F
u
zz

y
M

u
lt

ip
le

H
eu

ri
st

ic
O

rd
er

in
g
s

C
a
rt

er
et

a
l.

(1
9
9
6
)

A
b
d
u
ll
a
h

et
a
l.

(2
0
0
6
a
)

A
b
d
u
ll
a
h

a
n
d

B
u
rk

e
(2

0
0
6
)

B
u
rk

e
a
n
d

N
ew

a
ll

(2
0
0
3
)

B
u
rk

e
et

a
l.

(2
0
0
4
a
)

B
u
rk

e
et

a
l.

(2
0
0
6
a
)

C
a
ra

m
ia

et
a
l.

(2
0
0
1
)

C
a
se

y
a
n
d

T
h
o
m

p
so

n
(2

0
0
3
)

D
i
G

a
sp

er
o

a
n
d

S
ch

a
er

f
(2

0
0
1
)

K
en

d
a
ll

a
n
d

M
o
h
d

H
u
ss

in
(2

0
0
5
b
)

M
er

lo
t

et
a
l.

(2
0
0
3
)

W
h
it

e
et

a
l.

(2
0
0
4
)

Y
a
n
g

a
n
d

P
et

ro
v
ic

(2
0
0
5
)

C
A

R
-F

-9
2

4
.4

7
6
.2

4
.4

4
.1

4
.1

0
4
.2

5
.3

6
6
.0

4
.4

5
.2

4
.6

7
4
.3

4
.6

3
3
.9

3

C
A

R
-S

-9
1

5
.2

1
7
.1

5
.2

4
.8

4
.6

5
4
.8

4
.5

3
6
.6

5
.4

6
.2

5
.6

7
5
.1

5
.7

3
4
.5

0

E
A

R
-F

-8
3

3
6
.9

9
3
6
.4

3
4
.9

3
6
.0

3
7
.0

5
3
5
.4

3
7
.9

2
2
9
.3

3
4
.8

4
5
.7

4
0
.1

8
3
5
.1

4
5
.8

3
3
.7

0

H
E
C
-S

-9
2

1
1
.7

0
1
0
.8

1
0
.3

1
0
.8

1
1
.5

4
1
0
.8

1
2
.2

5
9
.2

1
0
.8

1
2
.4

1
1
.8

6
1
0
.6

1
2
.9

1
0
.8

3

K
F
U

-S
-9

3
1
5
.4

1
1
4
.0

1
3
.5

1
5
.2

1
3
.9

0
1
3
.7

1
5
.2

0
1
3
.8

1
4
.1

1
8
.0

1
5
.8

4
1
3
.5

1
7
.1

1
3
.8

2

L
S
E
-F

-9
1

1
1
.4

3
1
0
.5

1
0
.2

1
1
.9

1
0
.8

2
1
0
.4

1
1
.3

3
9
.6

1
4
.7

1
5
.5

-
1
1
.0

1
4
.7

1
0
.3

5

R
Y

E
-F

-9
2

1
0
.2

1
7
.3

8
.7

-
-

8
.9

-
6
.8

-
-

-
8
.4

1
1
.6

8
.5

3

S
T
A

-F
-8

3
1
5
9
.3

4
1
6
1
.5

1
5
9
.2

1
5
9
.0

1
6
8
.7

3
1
5
9
.1

1
5
8
.1

9
1
5
8
.2

1
3
4
.9

1
6
0
.8

1
5
7
.3

8
1
5
7
.3

1
5
8
.0

1
5
1
.5

0

T
R

E
-S

-9
2

8
.6

4
9
.6

8
.4

8
.5

8
.3

5
8
.3

8
.9

2
9
.4

8
.7

1
0
.0

8
.3

9
8
.4

8
.9

4
7
.9

2

U
T
A

-S
-9

2
3
.5

5
3
.5

3
.6

3
.6

3
.2

0
3
.4

3
.8

8
3
.5

-
4
.2

-
3
.5

4
.4

4
3
.1

4

U
T

E
-S

-9
2

2
7
.6

4
2
5
.8

2
6
.0

2
6
.0

2
5
.8

3
2
5
.7

2
8
.0

1
2
4
.4

2
5
.4

2
9
.0

2
7
.6

0
2
5
.1

2
9
.0

2
5
.3

9

Y
O

R
-F

-8
3

4
0
.4

6
4
1
.7

3
6
.2

3
6
.2

3
7
.2

8
3
6
.7

4
1
.3

7
3
6
.2

3
7
.5

4
1
.0

-
3
7
.4

4
2
.3

3
6
.3

5

140

5.3 Chapter Summary

Table 5.17: A comparison of results obtained using different constructive approaches

Data Set Carter et al.
(1996)

Burke and
Newall
(2004)

Burke et al.
(2007)

Fuzzy
Multiple
Heuristic

CAR-F-92 6.2 4.32 4.53 4.47
CAR-S-91 7.1 4.97 5.36 5.21
EAR-F-83 36.4 36.16 37.92 36.99
HEC-S-92 10.8 11.61 12.25 11.70
KFU-S-93 14 15.02 15.2 15.41
LSE-F-91 10.5 10.96 11.33 11.43
RYE-F-92 7.3 - - 10.21
STA-F-83 161.5 170.35 158.19 159.34
TRE-S-92 9.6 8.38 8.92 8.64
UTA-S-92 3.5 3.36 3.88 3.55
UTE-S-92 25.8 27.42 28.01 27.64
YOR-F-83 41.7 40.77 41.37 40.46

5.3 Chapter Summary

This Chapter has presented the extended version of the proposed fuzzy multiple heuristic

ordering approach. Two mechanisms of the algorithm developed in Chapter 4 have been

modified with the intention of reducing the computational time required for the timetable

constructions.

The main objective of this work was to investigate the effect of implementing two

different approaches to simultaneously considering multiple heuristic orderings when

finding solutions for examination timetabling problems, namely linear combination and

fuzzy reasoning. It can be seen that these investigations have confirmed that fuzzy

reasoning produces better ordering of exams compared to linear combinations. These

investigations have also shown that better timetable solutions can be obtained when

three heuristic orderings are simultaneously considered in measuring the difficulty of

exams to be scheduled.

141

Chapter 6

Generalisation of the Fuzzy Multiple

Heuristic Ordering

6.1 Introduction

This Chapter examines the issue of generalisation of the fuzzy approach in relation to

the University timetabling problem. This Chapter is divided into three parts. In the first

part, the potential of applying fuzzy multiple heuristic orderings to course timetabling is

presented. The purpose of this work is to investigate the applicability of the developed

approach to a different kind but related type of timetabling problem.

The second part of the Chapter describes extensions to the fuzzy multiple heuristic

orderings that was proposed and implemented in Chapter 4 and Chapter 5. In the

previous two Chapters, the fuzzy multiple heuristic orderings are constructed based upon

three single heuristic ordering namely Largest Degree, Saturation Degree and Largest

Enrolment . So far, four variations of fuzzy multiple heuristic orderings that combining

two or three of the above mentioned single heuristic ordering have been investigated.

In this Chapter, an extensive series of experiments are presented in which another two

single heuristic orderings (Largest Coloured Degree and Weighted Largest Degree) were

142

6.2 Application to Course Timetabling

considered. All together, when taking into account five single heuristic orderings, there

are 20 possible combinations of two and three heuristic orderings.

Finally, the third part of this Chapter describes alternative ways for tuning the fuzzy

models. Instead of only tuning the membership functions, the effects of tuning the fuzzy

rules was investigated. Four alternative tuning approaches are described in detail and

their results are compared.

6.2 Application to Course Timetabling

In Chapters 4 and 5, fuzzy methodology was used to rank exams based on an assessment

of how difficult they were to schedule, taking into account multiple heuristics. It was

shown that when two heuristic orderings were simultaneously considered to rank the ex-

ams, better results were obtained as compared to single heuristic ordering (Chapter 4).

Orderings using three heuristics simultaneously were also considered, and a compari-

son was made between fuzzy ordering with single and linear combination of heuristic

orderings (Chapter 5). All this previous work has been concerned with the problem of

creating timetables for examinations.

In this Section, the same underlying methodologies (i.e. fuzzy multiple heuristic

orderings) is applied to a novel context; that of course timetabling. We apply the same

algorithms to create fuzzy inferencing systems as in Chapters 4 and 5, with a different

penalty function to capture the different domain characteristics. In order to provide a

comparative test, the algorithm was initially run without implementing fuzzy ordering.

That is, in this approach, the events in the problem instances were ordered based on a

single heuristic ordering. All the events were then selected to be scheduled based on this

ordering. All the five single heuristic ordering described in Section 2.2.2 are utilised in

the experiments.

Based on observations of implementing fuzzy multiple heuristic orderings on exami-

nation timetabling problems (see Chapter 5), it was found that in many cases considering

143

6.2 Application to Course Timetabling

three heuristic orderings simultaneously produced better solutions compared to single

heuristic ordering or two heuristic orderings. Inspired by that finding, in this present

work the focus is on creating a fuzzy inferencing system based on three of the five single

heuristic orderings, Largest Degree (LD), Largest Enrolment (LE) and Saturation De-

gree (SD). These three heuristics were selected as these were the ones that featured in

the previous work on examination timetabling, and based on the fact that the design

of a fuzzy system utilising all five heuristics would have been intractable (if the same

tuning methodology had been utilised).

Indeed, the same restricted form of exhaustive search described in Section 4.4.1.3

was used to find the most appropriate shape for the fuzzy membership functions in

the system. As explained, each variable has 11 options of the membership function’s

shape. For fuzzy systems with 3 fuzzy variables, the search in tuning process needs

to explore 113(1331) combinations of membership functions. If we consider a fuzzy

system with 5 input variables, the tuning process would need to explore 115 (161, 051)

combinations. As we have 11 data sets on which the system is run, experiments with 5

heuristic orderings would take months to finish. The fuzzy rule set shown in Table 5.2

illustrates the 27 fuzzy rules that being used in the experiments. The solution quality

calculation described in Section 6.2.1 is used as the criteria to determine the fitness of

the membership functions for the combinations of three heuristic ordering, namely Fuzzy

LD+SD+LE Model .

6.2.1 Problem Definition

Table 6.1 reproduces the characteristics of the data sets that were used for these exper-

iments (Socha et al., 2002). These problems deal with the assignment of courses into

time slots such that rooms do not violate any of the following hard constraints:

1. No student is required to attend more than one course at the same time

2. A course can only be scheduled to a room which satisfies the features required

144

6.2 Application to Course Timetabling

by the course

3. A course can only be scheduled to a room which has enough room to accommodate

all students registered for it

4. Only one course can be scheduled in one room at any time slot

Table 6.1: Course timetabling problem characteristics

Data sets No. of
events

No. of
rooms

No. of
students

No. of
features

Small1 100 5 80 5

Small2 100 5 80 5

Small3 100 5 80 5

Small4 100 5 80 5

Small5 100 5 80 5

Medium1 400 10 200 5

Medium2 400 10 200 5

Medium3 400 10 200 5

Medium4 400 10 200 5

Medium5 400 10 200 5

Large 400 10 400 10

Any solutions which do not violate any of the above hard constraints are defined as

feasible solutions. Only feasible solutions are accepted. Besides these hard constraints,

the solutions should also try to satisfy the following soft constraints:

1. No student should be scheduled to attend only one course on a day

2. No course should be scheduled at the last time slot of the day for any student

3. No student should be scheduled to attend more than two courses consecutively in

any one day

An attempt is made to best satisfy these soft constraints, but they are not compulsory.

The quality of any feasible solution is measured by simply summing the number of

145

6.2 Application to Course Timetabling

students that fail to satisfy the soft constraints. Hence, the less the number of students

that violate the soft constraints, the better the solution quality.

The timetable is developed for one week, from Monday to Friday. For each day,

there are 9 time slots available. Hence, the number of time slots available is 45 x

number of rooms.

6.2.2 Experimental Results

In order to reduce the computational time, the number of ‘rescheduling procedure’ al-

lowed was limited to 500 for small and medium data sets, whereas for large data set

it was limited to 1000 times. This meant that during the search for a solution, if too

many events needed to be reshuffled, the fuzzy model that was currently under consid-

eration was skipped and the solution for that fuzzy model was treated as an infeasible

solution. A new fuzzy model was then tested. This was because, from observation, it

was found that in many cases good quality solutions were usually produced when only a

small number of ‘rescheduling procedure’ were required. The same setting for the maxi-

mum number of required ‘rescheduling procedure’ was implemented for Single Heuristic

Ordering.

The experimental results are shown in Table 6.2. The best results amongst the

heuristic orderings implemented are highlighted in bold font. The ‘-’ in Table 6.2 indi-

cates that no feasible solution was generated within the specified maximum number of

‘rescheduling procedure’. It can be seen that the fuzzy multiple heuristic orderings has

outperformed all single heuristic orderings in all tested problem instances.

In term of feasibility, the Fuzzy Multiple Heuristic Ordering managed to produce

feasible solutions for all data sets, whereas the best Single Heuristic Ordering, SD , only

managed to produce ten feasible solutions out of eleven data sets. Other Single Heuristic

Orderings were worse. Moreover, no Single Heuristic Ordering was able to produce a

feasible solution for the Large problem instance.

146

6.2 Application to Course Timetabling

Table 6.2: Comparison of solution quality between Single Heuristic Ordering and Fuzzy
Multiple Heuristic Ordering

Data Sets Best Single Heuristic

Fuzzy LD SD LCD LE WLD

Small1 10 78 31 48 79 80

Small2 9 45 44 55 34 52

Small3 7 28 30 42 41 27

Small4 17 42 50 48 51 48

Small5 7 41 29 74 43 47

Medium1 243 423 345 433 465 445

Medium2 325 - 398 - - -

Medium3 249 - 298 - - -

Medium4 285 - 403 - - -

Medium5 132 296 252 307 399 445

Large 1138 - - - - -

Table 6.3 summarises the performance of each heuristic ordering in terms of the num-

ber of iterations of ‘rescheduling procedure’ required. It can be seen that, all heuristics

obtained the solutions for the small size problem instances without any iterations of

‘rescheduling procedure’. On the other hand, only the Fuzzy Multiple Heuristic Order-

ing and Single Heuristic Ordering SD managed to find solutions for all of the medium

size problem instances without any ‘rescheduling procedure’ (except for Medium4 prob-

lem instance in which the Fuzzy Multiple Heuristic Ordering needed to perform the

‘rescheduling procedure’ for one event). However, for the Large problem instance the

Fuzzy Multiple Heuristic Ordering needed to perform the ‘rescheduling procedure’ for

307 iterations before it found the solution, whereas Single Heuristic Ordering SD was

unable to find a feasible solution (refer to Table 6.3).

147

6.2 Application to Course Timetabling

Table 6.3: Comparison of number of iterations of ‘rescheduling procedure’ required to
produce the solutions shown in Table 6.2

Data Sets Best Single Heuristic

Fuzzy LD SD LCD LE WLD

Small1 0 0 0 0 0 0

Small2 0 0 0 0 0 0

Small3 0 0 0 0 0 0

Small4 0 0 0 0 0 0

Small5 0 0 0 0 0 0

Medium1 0 40 0 122 60 59

Medium2 0 - 0 - - -

Medium3 0 - 0 - - -

Medium4 1 - 0 - - -

Medium5 0 2 0 51 41 40

Large 307 - - - - -

6.2.3 Discussion of Results

Looking at the quality of the produced solutions summarised in Table 6.2, for all test

instances of small and medium size, the Fuzzy Multiple Heuristic Ordering resulted in

better solutions compared to any of the single heuristic orderings. For the Large data

set, a feasible result was obtained only when the Fuzzy Multiple Heuristic Ordering was

implemented. This is consistent with the implementation of Fuzzy Multiple Heuristic

Ordering on examination timetabling problems previously described. Hence, these ob-

servations seem to indicate that this Fuzzy Multiple Heuristic Ordering approach may

be applicable to a wider range of timetabling and scheduling problems.

Table 6.4 shows the best results obtained here in comparison with the approaches of

other researchers applied to the same data sets. However, it has to be kept in mind that

the fuzzy method is constructive, as opposed to the other methods which are iterative

improvement approaches (except (Burke et al., 2007)). Burke et al. (2003c) and Socha

148

6.2 Application to Course Timetabling

Table 6.4: Comparison of solution quality with other results in literature

Data Set FMHO MA GHH THH RRLS AMM

Small1 10 0 6 1 8 1
Small2 9 0 7 2 11 3
Small3 7 0 3 0 8 1
Small4 17 0 3 1 7 1
Small5 7 0 4 0 5 0

Medium1 243 221 372 146 199 195
Medium2 325 147 419 173 202.5 184
Medium3 249 246 359 267 - 248
Medium4 285 165 348 169 177.5 164.5

Medium5 132 130 171 303 - 219.5
Large 1138 529 1068 1166 - 851.5

FMHO - Fuzzy Multiple Heuristic Ordering
MA - Memetic Approach (Abdullah, 2006, Chap. 9)
GHH - Graph-Based Hyperheuristic (Burke et al., 2007)
THH - Tabu-Search Hyperheuristic (Burke et al., 2003c)
RRLS - Random Restart Local Search (Socha et al., 2002)
AMM - Ant MAX-MIN Algorithm (Socha et al., 2002)

et al. (2002) start finding the solution by constructing an infeasible initial solution and

then iteratively improving the timetable within a limited number of evaluations. Abdul-

lah (2006, Chap. 9) started with feasible solutions and used a memetic approach with

randomised iterative improvement techniques to improve the solutions. Burke et al.

(2007) used a sequence of heuristic orderings to construct the initial solution and ap-

plied steepest descent local search to improve the solution. Although the approach here

did not perform particularly well for small size problem instances, it is evident that our

results are comparable to the other approaches for the medium and large size problem

instances.

In terms of constructive approaches, it is more interesting to compare with Burke

et al. (2007)’s approach because they used a sequence of heuristic orderings to construct

the solution whereas here several heuristic orderings are used simultaneously to con-

struct the timetable. When comparing these two constructive approaches, the approach

149

6.3 Alternative Combinations of Heuristic Orderings

here produced better results for all of the medium size problem instances, but slightly

worse solutions were obtained for small and large size problem instances. It is believed

that these initial solutions can be easily improved by applying a simple optimisation

algorithm.

6.3 Alternative Combinations of Heuristic Order-

ings

In Chapter 4 it can be seen that, all of the ‘best’ results produced by fuzzy multiple

heuristic ordering approach are constructed without the need to bump back the exams

that were already scheduled earlier. Specifically, for nine data sets no ‘rescheduling

procedure’ is performed. Although few exams are skipped in three cases (HEC-S-92 ,

STA-F-83 and UTE-S-92), the number of iterations for the ‘rescheduling procedure’ are

equal to the number of skipped exam(s). Hence, the same timetable solutions for each

data set are produced every time the ‘best’ fuzzy multiple heuristic ordering model is

applied in the sequential constructive algorithm. This means that, no stochastic element

is involved in the timetable constructions (recalled that in the ‘rescheduling procedure’

(see Figure 4.2), time slot is choose randomly if more than one time slot with minimum

number of exams need to be removed from the time slot are available). Therefore, it can

be assumed that fuzzy multiple heuristic orderings (with the ‘best’ tuned fuzzy model)

are capable of producing exams orderings that can guide the search algorithm towards

better solutions.

However, the experimental results presented in Chapter 5 has shown that the modi-

fied version of the original sequential algorithm (see Figure 4.1) cause slightly increased

numbers of iterations of the ‘rescheduling procedure’ in order to construct the timetable

solutions. Moreover, it is obvious that the number of timetable solutions that are con-

structed without the need to call the ‘rescheduling procedure’ has been reduced. Looking

150

6.3 Alternative Combinations of Heuristic Orderings

at the ‘best’ solutions produced using fuzzy multiple heuristic ordering, timetable solu-

tions for four data sets (EAR-F-83 , LSE-F-91 , TRE-S-92 and UTA-S-92) have been

constructed without need to call ‘rescheduling procedure’ i.e no non-deterministic fac-

tor involved. For the remaining eight data sets, when run for 30 times, variations of

timetable solutions with different timetable quality have been constructed for each data

set. The non-deterministic features in the ‘rescheduling procedure’ has provided larger

search space to be explored by the search algorithm. Accordingly, better solutions might

exist within the larger search space. Although it was expected that the use of three

heuristic ordering simultaneously would significantly contribute to the better timetable

solutions as compared to two heuristic orderings, it is believed that non-deterministic

feature embedded in the ‘rescheduling procedure’ also play important role in this achieve-

ment. The changes made to the sequential algorithm have somehow effected the sequence

of exams being scheduled determined earlier.

Considering the fact that a larger search space provides more chances to explore for

better solutions, a deliberately non-deterministic feature was added in the sequential

constructive algorithm. The motivation behind the idea of introducing a more random

element in the algorithm was based on the approach proposed by Burke et al. (1998a).

Burke et al. applied two different types of random selection to select which exam to

schedule next. Basically, the idea was to not select the most difficult exam to be sched-

uled every time they wanted to choose an exam. In order to achieve this, an exam was

selected from smaller group of unscheduled exams. The member of the smaller group was

selected using either Tournament Selection or Bias Selection. Their experimental results

showed that the random selection approach produced better solutions compared to the

approach without randomization. Other related work that has used random selection

approach for examination timetabling was published by Broder (1964).

The work presented in this Section did not use random selection of exams to be

scheduled. Instead, the selection of the next exam to be scheduled was based on the

151

6.3 Alternative Combinations of Heuristic Orderings

ordering of exams generated by the specified heuristic ordering. The modified version

of the sequential constructive algorithm explained in Chapter 5 was used with changes

in the way that time slots were selected. Referring to Figure 5.1, in Process 5 , rather

than assigning exam to the last time slot with least penalty cost, the time slot was

randomly selected if more than one valid time slot with the same penalty cost was

available. In addition to this change, an additional two single heuristic orderings were

considered - Largest Coloured Degree (LCD) and Weighted Largest Degree (WLD). All

possible combinations of two and three heuristic orderings are shown in Figure 6.1 and

Figure 6.2, respectively.

For each fuzzy multiple heuristic ordering, the fuzzy rules used were based on the set

of rules defined in Tables 6.5 to 6.8. When combining two heuristic orderings, the fuzzy

rules shown in Table 6.5 were applied if one of the heuristic orderings was SD , otherwise

Two Heuristic
Orderings : More
Combinations

Two Heuristic
Orderings :
Chapter 4 and 5

Single
Heuristic
Ordering

LD

LE

SD

LCD

WLD

LD+LE

SD+LE

LD+SD

LD+LCD

LE+LCD

SD+LCD

LD+WLD

LE+WLD

SD+WLD

LCD+WLD

Figure 6.1: Possible combinations of two heuristic orderings

152

6.3 Alternative Combinations of Heuristic Orderings

Three Heuristic
Orderings :
More Combinations

Three Heuristic
Orderings : Chapter 5

Single
Heuristic
Ordering

LD

LE

SD

LCD

WLD

LD+SD+LE

SD+LE+LCD

LD+LE+LCD

WLD+SD+LD

WLD+LD+LE

WLD+LD+LCD

WLD+SD+LE

LD+SD+LCD

WLD+LE+LCD

WLD+SD+LCD

Figure 6.2: Possible combinations of three heuristic orderings

Table 6.5: Fuzzy rule set when combining two heuristic orderings (with SD as one of
the variable)

SD VS: very small

S M H S: small

S M S VS M: medium

HEUR-1 M H M S H: high

H VH H M VH: very high

fuzzy rules shown in Table 6.6 were used. When considering three heuristic orderings

simultaneously, the fuzzy rules shown in Table 6.7 were applied if one of the heuristic

ordering is SD , otherwise fuzzy rules shown in Table 6.8 were used. During the imple-

mentation, the variables HEUR-1, HEUR-2 and HEUR-3 were replaced with the specific

heuristic orderings that constitute the considered fuzzy multiple heuristic ordering.

153

6.3 Alternative Combinations of Heuristic Orderings

Table 6.6: Fuzzy rule set when combining two heuristic orderings (without SD)

HEUR-2 VS: very small

S M H S: small

S VS S M M: medium

HEUR-1 M S M H H: high

H M H VH VH: very high

Table 6.7: Fuzzy rule set when combining three heuristic orderings (with SD as one of
the variable)

HEUR-2

S M H

HEUR-1 SD SD SD

S M H S M H S M H

S S VS VS S S VS M S S

M S S VS H M M H M M

H H S S H M M VH H M

VS=very small

S=small

M=medium

H=high

VH=very high

Table 6.8: Fuzzy rule set when combining three heuristic orderings (without SD)

HEUR-2

S M H

HEUR-1 HEUR-3 HEUR-3 HEUR-3

S M H S M H S M H

S VS VS S VS S M S M H

M VS S M S M H M H VH

H S M H M H VH H VH VH

VS=very small

S=small

M=medium

H=high

VH=very high

154

6.3 Alternative Combinations of Heuristic Orderings

6.3.1 Experimental Results

Carter et al.’s benchmark data sets were used in this experiment. Similar tuning mem-

bership functions procedures described in Section 4.4.1.3 were implemented. As shown

in Figures 6.1 and 6.2, all together twenty variations of multiple heuristic orderings are

possible when considering simultaneously combinations of two and three of the five sin-

gle heuristic orderings. The four fuzzy multiple heuristic ordering (i.e Fuzzy LD+LE

Model , Fuzzy SD+LE Model , Fuzzy SD+LD Model and Fuzzy LD+SD+LE Model) that

have been used in the last two Chapters were not used in this experiment. Taking into

account sixteen different fuzzy multiple heuristic orderings and five single heuristic or-

dering that needed to be considered in the experiments, only proximity cost was used

for the purpose of comparison.

In the preliminary investigations, all of the five single heuristic orderings were applied

with both types of assignment of time slots — last time slot and random time slot

selection (both were applied within the context of time slots with the same least penalty

cost). In the cases of LD , SD and LE , results presented in Chapter 5 are reproduced

here. All experiments for single heuristic orderings were run 30 times. The purpose of

these experiments was to analyse the performance of the five different single heuristic

orderings when they are used individually within the sequential constructive algorithm

with different way of time slot selection. Results from these experiments were used for

comparison with results produced by variations of fuzzy multiple heuristic orderings.

Results for the five single heuristic ordering when applied with last time slot selection

are shown in Table 6.9, where the third to fifth columns were reproduced from Table 5.5

in Chapter 5. It can be seen that, for eleven out of the twelve data sets, the ‘best’

results are produced when WLD and LE were applied. In particular, five ‘best’ results

were obtained by WLD , three by LE and only one by LD . WLD and LE produced

solutions that were almost the same quality (decimal point rounding) for CAR-F-92 and

155

6.3 Alternative Combinations of Heuristic Orderings

TRE-S-92 data sets. WLD also produced the best result that has the same solution

quality compared to the best solution produced by LCD for CAR-S-91 data set. It

seems that, amongst the single heuristic ordering, WLD appears to be the best (bear in

mind that LE is the best single heuristic in the previous experiments presented in the

last two Chapters).

Turning our attention to the random time slot selection approach, in Table 6.10, it

can be observed that the best results for ten out of the twelve data sets were once again

obtained when WLD and LE were implemented. Specifically, six ‘best’ results were

obtained by WLD , four by using LE , while LD and SD produced one best solution each.

Considering the computational time required for tuning membership functions, only

the ‘best’ results obtained by each of the sixteen new fuzzy multiple heuristic ordering

are reported. Tables 6.11 and 6.12 show comparisons of ‘best’ results obtained by fuzzy

multiple heuristic ordering when two and three heuristic orderings were considered si-

multaneously. In the case of two heuristic orderings, better results were produced in

nine out of the twelve data sets compared to the results produced by the two heuris-

tics ordering applied in Chapter 5. Concerning the three heuristic ordering, the Fuzzy

LD+SD+LE Model has been outperformed by the new fuzzy multiple heuristic ordering

in all of the data sets.

156

6.3 Alternative Combinations of Heuristic Orderings

Table 6.9: A comparison of results for five Single Heuristic Ordering with last time slot
selection

Data Set Heuristic Ordering (last time slot)

LD LE SD LCD WLD

CAR-F-92 Best 4.89 4.74 5.12 5.11 4.74

Exams 543 Average 5.14 4.86 5.28 5.34 4.99

Sessions 32 Worst 6.61 5.05 5.45 5.73 6.34

Std. Dev 0.32 0.07 0.11 0.17 0.31

CAR-S-91 Best 5.86 5.64 5.97 5.56 5.56

Exams 682 Average 6.15 6.02 5.97 5.66 5.79

Sessions 35 Worst 7.36 6.79 5.97 5.79 6.57

Std. Dev 0.33 0.29 0.00 0.06 0.22

EAR-F-83 Best 39.90 45.57 45.42 41.45 38.85

Exams 190 Average 42.31 49.63 45.42 42.21 41.35

Sessions 24 Worst 46.40 53.20 45.42 44.73 44.78

Std. Dev 1.57 2.46 0.00 0.55 1.58

HEC-S-92 Best 14.56 13.36 13.70 14.13 12.77

Exams 81 Average 16.29 14.73 15.06 15.68 14.67

Sessions 18 Worst 19.45 19.30 19.11 16.96 22.09

Std. Dev 1.05 1.43 1.53 1.08 1.93

KFU-S-93 Best 17.64 16.23 18.33 17.61 17.65

Exams 461 Average 18.69 16.59 18.83 18.57 18.55

Sessions 20 Worst 19.80 17.01 21.87 19.04 21.43

Std. Dev 0.55 0.23 0.70 0.41 1.02

LSE-F-91 Best 13.98 13.25 12.76 13.55 12.55

Exams 381 Average 16.13 14.19 12.76 14.78 13.13

Sessions 18 Worst 18.62 18.35 12.76 19.21 14.32

Std. Dev 1.19 0.94 0.00 1.18 0.42

RYE-F-92 Best 12.34 10.80 11.51 11.56 9.85

Exams 486 Average 13.65 12.35 11.51 11.96 10.30

Sessions 23 Worst 16.14 14.89 11.51 13.30 12.47

Std. Dev 1.03 0.98 0.00 0.57 0.66

STA-F-83 Best 167.05 172.01 177.93 169.58 172.01

Exams 139 Average 167.84 172.26 178.83 170.75 172.21

Sessions 13 Worst 168.48 172.49 179.73 171.54 172.49

Std. Dev 0.56 0.19 0.92 0.80 0.18

TRE-S-92 Best 10.45 9.25 10.50 10.02 9.25

Exams 261 Average 11.22 9.70 10.50 10.44 9.66

Sessions 23 Worst 12.29 10.73 10.50 10.84 10.67

Std. Dev 0.43 0.31 0.00 0.21 0.31

UTA-S-92 Best 3.97 3.71 4.11 3.88 3.63

Exams 622 Average 4.84 4.12 4.11 3.92 3.76

Sessions 35 Worst 6.04 5.39 4.11 3.97 3.98

Std. Dev 0.54 0.39 0.00 0.03 0.09

UTE-S-92 Best 35.19 28.93 33.72 31.28 29.59

Exams 184 Average 35.22 29.32 35.07 31.28 30.42

Sessions 10 Worst 35.27 30.89 36.56 31.28 31.50

Std. Dev 0.03 0.43 0.86 0.00 0.55

YOR-F-83 Best 45.72 42.65 46.74 46.31 44.19

Exams 181 Average 47.49 44.58 48.32 49.37 46.46

Sessions 21 Worst 50.24 48.78 49.70 55.67 48.67

Std. Dev 1.12 1.51 0.73 1.70 1.50

157

6.3 Alternative Combinations of Heuristic Orderings

Table 6.10: A comparison of results for five Single Heuristic Ordering with random time
slots selection

Data Set Heuristic Ordering (random time slot)

LD LE SD LCD WLD

CAR-F-92 Best 4.91 4.65 4.89 4.74 4.67

Exams 543 Average 5.26 5.12 5.12 5.10 4.97

Sessions 32 Worst 6.26 6.17 5.44 5.35 5.69

Std. Dev 0.27 0.32 0.14 0.17 0.22

CAR-S-91 Best 5.64 5.45 5.39 5.45 5.42

Exams 682 Average 5.99 5.84 5.74 5.61 5.79

Sessions 35 Worst 7.11 6.24 6.12 5.94 6.31

Std. Dev 0.28 0.19 0.15 0.11 0.22

EAR-F-83 Best 38.83 42.43 42.49 40.94 42.56

Exams 190 Average 44.61 47.03 46.68 44.66 47.45

Sessions 24 Worst 49.69 51.79 50.21 49.15 55.82

Std. Dev 2.89 2.69 1.84 2.08 3.25

HEC-S-92 Best 13.47 12.72 12.50 13.55 12.45

Exams 81 Average 15.38 15.60 14.18 15.53 14.84

Sessions 18 Worst 18.41 21.21 19.57 19.72 20.07

Std. Dev 1.19 2.18 1.31 1.37 1.74

KFU-S-93 Best 17.04 15.60 16.89 16.31 15.32

Exams 461 Average 18.88 16.77 18.54 18.04 17.32

Sessions 20 Worst 22.56 19.45 21.38 20.26 20.60

Std. Dev 1.41 0.93 0.97 0.79 1.34

LSE-F-91 Best 13.27 12.53 11.91 12.65 11.68

Exams 381 Average 15.06 14.08 13.16 13.71 13.44

Sessions 18 Worst 17.85 19.78 14.18 17.87 17.10

Std. Dev 1.25 1.59 0.51 1.12 1.37

RYE-F-92 Best 12.18 10.78 11.01 11.20 10.44

Exams 486 Average 13.67 12.38 11.98 12.66 11.54

Sessions 23 Worst 15.65 14.88 13.50 15.43 13.23

Std. Dev 0.86 1.15 0.69 0.87 0.80

STA-F-83 Best 166.43 163.85 163.66 166.28 162.62

Exams 139 Average 182.64 170.27 173.34 179.00 170.06

Sessions 13 Worst 192.73 174.99 186.71 194.74 176.77

Std. Dev 6.92 2.69 5.28 8.34 3.24

TRE-S-92 Best 9.57 9.33 9.62 9.57 9.43

Exams 261 Average 10.63 10.06 10.51 10.06 9.95

Sessions 23 Worst 11.92 12.09 11.53 10.67 10.89

Std. Dev 0.58 0.55 0.44 0.30 0.35

UTA-S-92 Best 3.95 3.67 3.71 3.71 3.60

Exams 622 Average 4.53 4.16 3.94 3.98 4.07

Sessions 35 Worst 5.52 5.65 4.35 4.35 5.38

Std. Dev 0.41 0.49 0.16 0.15 0.42

UTE-S-92 Best 30.87 28.63 29.96 29.73 28.66

Exams 184 Average 33.54 30.90 32.73 32.64 31.05

Sessions 10 Worst 38.69 37.29 36.14 35.33 36.52

Std. Dev 1.98 1.95 1.59 1.31 1.58

YOR-F-83 Best 43.87 43.21 44.09 44.96 44.15

Exams 181 Average 47.28 46.77 47.77 47.07 46.91

Sessions 21 Worst 52.75 50.66 50.29 50.37 50.16

Std. Dev 1.99 1.71 1.39 1.21 1.54

158

6.3 Alternative Combinations of Heuristic Orderings

T
ab

le
6.

11
:

E
x
p
er

im
en

ta
l
re

su
lt
s

fo
r

tw
o

h
eu

ri
st

ic
or

d
er

in
gs

ap
p
li
ed

si
m

u
lt

an
eo

u
sl

y

R
e
su

lt
s

fr
o
m

C
h
a
p
te

r
5

D
a
ta

S
et

F
u
zz

y
L
D

+
L
E

M
od

el

F
u
zz

y
S
D

+
L
E

M
od

el

F
u
zz

y
S
D

+
L
D

M
od

el

F
u
zz

y
L
D

+
L
C
D

M
od

el

F
u
zz

y
S
D

+
L
C
D

M
od

el

F
u
zz

y
L
E
+

L
C

D
M

od
el

F
u
zz

y
L
E
+

W
L
D

M
od

el

F
u
zz

y
L
C
D

+
W

L
D

M
od

el

F
u
zz

y
S
D

+
W

L
D

M
od

el

F
u
zz

y
L
D

+
W

L
D

M
od

el

C
A

R
-F

-9
2

4
.5

7
4
.4

7
4
.6

2
4
.5

7
4
.7

2
4
.5

1
4
.8

5
4
.4

8
4
.4

6
4
.6

2

C
A

R
-S

-9
1

5
.4

5
5
.3

1
5
.4

5
5
.2

9
5
.3

7
5
.2

8
5
.7

8
5
.2

6
5
.2

0
5
.2

9

E
A

R
-F

-8
3

3
8
.8

0
3
6
.9

9
3
9
.3

4
3
8
.3

6
4
0
.5

3
3
8
.5

5
3
7
.4

4
3
9
.0

9
3
8
.0

6
3
8
.2

6

H
E
C
-S

-9
2

1
2
.0

9
1
2
.0

3
1
2
.6

9
1
2
.2

8
1
2
.1

8
1
1
.8

9
1
2
.0

2
1
1
.5

9
1
1
.5

9
1
1
.4

6

K
F
U

-S
-9

3
1
5
.7

3
1
5
.9

0
1
6
.0

9
1
6
.1

9
1
6
.5

5
1
5
.0

4
1
7
.4

3
1
5
.0

3
1
4
.7

7
1
6
.3

3

L
S
E
-F

-9
1

1
1
.9

7
1
2
.1

6
1
4
.2

2
1
2
.2

6
1
2
.1

2
1
1
.8

7
1
3
.5

5
1
1
.9

2
1
1
.4

9
1
1
.2

9

R
Y

E
-F

-9
2

1
3
.0

2
1
0
.2

5
1
3
.4

0
1
0
.8

0
1
0
.6

3
1
0
.2

6
1
1
.4

6
9
.8

5
9
.8

4
1
0
.4

2

S
T
A

-F
-8

3
1
5
9
.8

2
1
5
9
.5

9
1
6
5
.2

5
1
6
1
.9

7
1
6
0
.8

7
1
5
9
.7

2
1
6
5
.9

4
1
5
9
.7

2
1
6
0
.8

0
1
5
9
.6

9

T
R

E
-S

-9
2

8
.9

9
8
.9

2
9
.2

6
8
.9

5
9
.2

0
8
.9

0
9
.0

5
8
.8

9
8
.7

6
8
.8

7

U
T
A

-S
-9

2
3
.7

7
3
.5

5
3
.7

3
3
.6

3
3
.7

2
3
.5

6
3
.9

2
3
.5

2
3
.5

1
3
.5

9

U
T
E
-S

-9
2

2
8
.5

9
2
7
.9

9
3
0
.3

7
2
8
.4

3
2
9
.6

6
2
7
.2

7
2
8
.4

5
2
7
.4

3
2
8
.0

8
2
8
.2

6

Y
O

R
-F

-8
3

4
1
.1

0
4
0
.7

1
4
3
.0

0
4
1
.2

5
4
2
.8

7
4
0
.8

4
4
0
.9

1
4
1
.6

2
4
1
.4

1
4
1
.9

8

159

6.3 Alternative Combinations of Heuristic Orderings

T
ab

le
6.

12
:

E
x
p
er

im
en

ta
l
re

su
lt
s

fo
r

th
re

e
h
eu

ri
st

ic
or

d
er

in
gs

ap
p
li
ed

si
m

u
lt

an
eo

u
sl

y

R
e
su

lt
s

fr
o
m

C
h
a
p
te

r
5

D
a
ta

S
et

T
h
re

eH
O

-1
T

h
re

eH
O

-2
T

h
re

eH
O

-3
T

h
re

eH
O

-4
T

h
re

eH
O

-5
T

h
re

eH
O

-6
T

h
re

eH
O

-7
T

h
re

eH
O

-8
T

h
re

eH
O

-9
T

h
re

eH
O

-1
0

C
A

R
-F

-9
2

4
.5

2
4
.6

4
4
.7

1
4
.5

2
4
.4

2
4
.5

1
4
.4

2
4
.5

2
4
.3

8
4
.4

2

C
A

R
-S

-9
1

5
.2

4
5
.4

9
5
.4

2
5
.4

8
5
.2

7
5
.2

6
5
.2

2
5
.2

6
5
.1

9
5
.2

0

E
A

R
-F

-8
3

3
7
.1

1
3
8
.8

5
3
8
.9

3
3
7
.6

2
3
7
.5

3
3
7
.7

4
3
7
.3

0
3
7
.6

4
3
6
.5

7
3
7
.2

9

H
E
C
-S

-9
2

1
1
.7

1
1
2
.1

6
1
2
.5

7
1
1
.9

2
1
1
.6

4
1
1
.7

2
1
1
.7

4
1
1
.6

1
1
1
.7

2
1
1
.5

2

K
F
U

-S
-9

3
1
5
.3

4
1
4
.7

9
1
5
.9

9
1
5
.2

8
1
5
.4

9
1
5
.5

4
1
5
.3

7
1
4
.9

2
1
4
.5

8
1
4
.6

1

L
S
E
-F

-9
1

1
1
.4

3
1
2
.0

5
1
2
.8

2
1
2
.2

7
1
1
.5

5
1
1
.3

0
1
1
.4

3
1
1
.6

2
1
1
.6

3
1
1
.4

3

R
Y

E
-F

-9
2

1
0
.3

0
1
0
.3

5
1
1
.1

8
1
0
.8

1
9
.8

6
1
0
.3

2
9
.8

1
9
.8

9
9
.8

2
9
.7

1

S
T
A

-F
-8

3
1
5
9
.1

5
1
5
9
.6

5
1
5
9
.5

1
1
5
8
.8

7
1
5
9
.1

7
1
5
9
.3

8
1
5
8
.4

7
1
5
9
.1

6
1
5
8
.7

2
1
5
8
.3

1

T
R

E
-S

-9
2

8
.6

4
8
.7

6
8
.9

1
8
.9

2
8
.5

9
8
.7

1
8
.7

6
8
.6

2
8
.6

2
8
.7

8

U
T
A

-S
-9

2
3
.5

5
3
.6

1
3
.7

4
3
.6

6
3
.5

5
3
.6

2
3
.5

4
3
.4

9
3
.5

1
3
.5

2

U
T
E
-S

-9
2

2
7
.6

4
2
7
.8

1
2
8
.7

8
2
8
.6

5
2
7
.4

5
2
7
.3

7
2
7
.1

3
2
7
.2

4
2
7
.1

3
2
7
.0

3

Y
O

R
-F

-8
3

4
0
.6

8
4
1
.4

1
4
2
.7

2
4
1
.3

4
4
1
.1

6
4
1
.7

2
4
0
.1

5
4
0
.8

9
4
0
.4

5
4
1
.1

7

T
h
re

eH
O

-1
=

F
u
zz

y
L
D

+
S
D

+
L
E

M
od

el

T
h
re

eH
O

-2
=

F
u
zz

y
S
D

+
L
E
+

L
C

D
M

od
el

T
h
re

eH
O

-3
=

F
u
zz

y
L
D

+
S
D

+
L
C
D

M
od

el

T
h
re

eH
O

-4
=

F
u
zz

y
L
D

+
L
E
+

L
C
D

M
od

el

T
h
re

eH
O

-5
=

F
u
zz

y
W

L
D

+
S
D

+
L
D

M
od

el

T
h
re

eH
O

-6
=

F
u
zz

y
W

L
D

+
L
D

+
L
E

M
od

el

T
h
re

eH
O

-7
=

F
u
zz

y
W

L
D

+
L
D

+
L
C
D

M
od

el

T
h
re

eH
O

-8
=

F
u
zz

y
W

L
D

+
S
D

+
L
E

M
od

el

T
h
re

eH
O

-9
=

F
u
zz

y
W

L
D

+
S
D

+
L
C
D

M
od

el

T
h
re

eH
O

-1
0

=
F
u
zz

y
W

L
D

+
L
E
+

L
C

D
M

od
el

160

6.3 Alternative Combinations of Heuristic Orderings

6.3.2 Discussion of Results

The experimental results of this research serves to confirm earlier research by Burke

et al. (1998a) with regard to the non-deterministic factor that can aid with finding

better timetable solutions. Generally, in terms of proximity cost, it can be observed

that better solutions were obtained in this Chapter compared to the solutions produced

in Chapter 4 and Chapter 5. Either these heuristic orderings are used on their own

or they are combined by means of fuzzy reasoning. Across all experiments, the most

notable single heuristic ordering was WLD . Using WLD either on its own or combining

it with other heuristic ordering produced considerably better results than the other

heuristic orderings. When WLD was applied on its own, as shown in the preliminary

investigation results (see Tables 6.9 and 6.10), it outperformed other single heuristic

orderings in both types of time slot selection.

Concerning the multiple heuristic ordering, it can be seen that eight of the best

results in Table 6.11 and all the best results in Table 6.12 were produced when WLD

is included as one of the heuristic orderings that constitute the performed multiple

heuristic ordering combinations. LE appears to be the second ‘best’ single heuristic

ordering. An interesting point is that both WLD and LE are static heuristic orderings

that rely on the number of enrolments in each exam. Taking into account that LE was

the ‘best’ in Chapter 4 and Chapter 5, these observations would seem to suggest that

the number of students enroled in each exam is a good feature to use as a heuristic

ordering in the context of the problem instances and penalty function that have been

used here. Although utilising LCD on its own only produced comparable results, it

is worth highlighting that better timetable solutions were produced when LCD was

used simultaneously with other heuristic orderings. In Table 6.12, implementing Fuzzy

WLD+SD+LCD Model and Fuzzy WLD+LE+LCD Model obtained four ‘best’ results

each, and Fuzzy WLD+LD+LCD Model produced one ‘best’ result.

161

6.3 Alternative Combinations of Heuristic Orderings

Tables 6.13 and 6.14 are referred to in order to analyse the effects of using two

different types of time slot selection (i.e. last time slot or random time slot) when

utilising single heuristic orderings. For both tables, the lowest value amongst the results

for each data set is considered as the ‘best’. In Table 6.13 it can be seen that ‘best’ results

for nine out of the twelve data sets were obtained when the random time slot selection

was implemented. However, in terms of average penalty (see Table 6.14), utilising the

last time slot selection lead to lower average penalty cost for ten data sets compared

to only two by the random time slot selection. One possible reason for this is that

more variations of timetable solutions might be found in the larger search space that

needs to be explored when time slots are selected in random. This is demonstrated by

the higher standard deviations of the results of the thirty runs, that can be observed

if we compare the Std. Dev. values shown in Tables 6.9 and 6.10, in which most the

largest value for Std. Dev. for each data set are found in Table 6.10. Because of the

non-deterministic factor, there is no guarantee that the timetable solution will always

be constructed with good quality. Careful investigations of Table 6.13 also shows that it

is not always the case that utilising the single heuristic ordering with random time slot

selection will produce better solutions compared to the use of last time slot selection.

This happens in the following cases:

• utilising WLD for EAR-F-83 , RYE-F-92 and TRE-S-92

• utilising LE for TRE-S-92 and YOR-F-83

• utilising LD for CAR-F-92

The fact that most of the ‘best’ results shown in Table 6.13 were produced when the

single heuristic ordering WLD or LE is utilised, would seem to suggest that the non-

deterministic approach is not capable of finding a good quality solution without applying

an appropriate heuristic ordering for the particular problem. This means that the success

of the non-deterministic approach is dependent on the heuristic ordering applied. Con-

162

6.3 Alternative Combinations of Heuristic Orderings

Table 6.13: A comparison of ‘best’ penalty cost for the five single heuristic orderings.
The lowest value are highlighted with bold font.

Data Set Heuristic Ordering(last time slot) Heuristic Ordering(random time slot)

LD LE SD LCD WLD LD LE SD LCD WLD

CAR-F-92 4.89 4.74 5.12 5.11 4.74 4.91 4.65 4.89 4.74 4.67

CAR-S-91 5.86 5.64 5.97 5.56 5.56 5.64 5.45 5.39 5.45 5.42

EAR-F-83 39.90 45.57 45.42 41.45 38.85 38.83 42.43 42.49 40.94 42.56

HEC-S-92 14.56 13.36 13.70 14.13 12.77 13.47 12.72 12.50 13.55 12.45

KFU-S-93 17.64 16.23 18.33 17.61 17.65 17.04 15.60 16.89 16.31 15.32

LSE-F-91 13.98 13.25 12.76 13.55 12.55 13.27 12.53 11.91 12.65 11.68

RYE-F-92 12.34 10.80 11.51 11.56 9.85 12.18 10.78 11.01 11.20 10.44

STA-F-83 167.05 172.01 177.93 169.58 172.01 166.43 163.85 163.66 166.28 162.62

TRE-S-92 10.45 9.25 10.50 10.02 9.25 9.57 9.33 9.62 9.57 9.43

UTA-S-92 3.97 3.71 4.11 3.88 3.63 3.95 3.67 3.71 3.71 3.60

UTE-S-92 35.19 28.93 33.72 31.28 29.59 30.87 28.63 29.96 29.73 28.66

YOR-F-83 45.72 42.65 46.74 46.31 44.19 43.87 43.21 44.09 44.96 44.15

Table 6.14: A comparison of average penalty cost for the five single heuristic orderings.
The lowest value are highlighted with bold font.

Data Set Heuristic Ordering(last time slot) Heuristic Ordering(random time slot)

LD LE SD LCD WLD LD LE SD LCD WLD

CAR-F-92 5.14 4.86 5.28 5.34 4.99 5.26 5.12 5.12 5.10 4.97

CAR-S-91 6.15 6.02 5.97 5.66 5.79 5.99 5.84 5.74 5.61 5.79

EAR-F-83 42.31 49.63 45.42 42.21 41.35 44.61 47.03 46.68 44.66 47.45

HEC-S-92 16.29 14.73 15.06 15.68 14.67 15.38 15.60 14.18 15.53 14.84

KFU-S-93 18.69 16.59 18.83 18.57 18.55 18.88 16.77 18.54 18.04 17.32

LSE-F-91 16.13 14.19 12.76 14.78 13.13 15.06 14.08 13.16 13.71 13.44

RYE-F-92 13.65 12.35 11.51 11.96 10.30 13.67 12.38 11.98 12.66 11.54

STA-F-83 167.84 172.26 178.83 170.75 172.21 182.64 170.27 173.34 179.00 170.06

TRE-S-92 11.22 9.70 10.50 10.44 9.66 10.63 10.06 10.51 10.06 9.95

UTA-S-92 4.84 4.12 4.11 3.92 3.76 4.53 4.16 3.94 3.98 4.07

UTE-S-92 35.22 29.32 35.07 31.28 30.42 33.54 30.90 32.73 32.64 31.05

YOR-F-83 47.49 44.58 48.32 49.37 46.46 47.28 46.77 47.77 47.07 46.91

sidering multiple heuristic orderings, it is obvious that better results were produced as

compared to the single heuristic ordering. While implementing Fuzzy WLD+SD+LCD

Model and Fuzzy WLD+LE+LCD Model with non-deterministic time slot selection ap-

pears promising, it is difficult to determine which fuzzy multiple heuristic ordering is the

most prominent. As mentioned above, the observation that the success of the random

approach is down to the heuristic ordering chosen, might be applied in multiple heuristic

163

6.3 Alternative Combinations of Heuristic Orderings

Table 6.15: A comparison of ‘best’ results obtained in Chapter 4, Chapter 5 and
this Chapter

Data Set Chapter 4 Chapter 5 This Chapter

CAR-F-92 4.54 4.47 4.38

CAR-S-91 5.29 5.21 5.19

EAR-F-83 37.02 36.99 36.57

HEC-S-92 11.78 11.70 11.46

KFU-S-93 15.80 15.41 14.58

LSE-F-91 12.09 11.43 11.29

RYE-F-92 10.38 10.21 9.71

STA-F-83 160.42 159.34 158.31

TRE-S-92 8.67 8.64 8.59

UTA-S-92 3.57 3.55 3.49

UTE-S-92 28.07 27.64 27.03

YOR-F-83 39.80 40.46 40.15

ordering as well. On that basis, it is expected that using Fuzzy WLD+SD+LCD Model

and Fuzzy WLD+LE+LCD Model within the sequential constructive algorithm with last

time slot selection (without randomisation) will produce better quality solutions.

Table 6.15 compares the ‘best’ results obtained by three different algorithms (with

a variation of single and multiple heuristic ordering combinations). Overall, the ‘best’

results produced in this Chapter have outperformed all ‘best’ results that were produced

earlier in Chapter 4 and Chapter 5. Note that, the ‘best’ results for HEC-S-92 and

LSE-F-91 data sets were produced using two heuristic orderings (i.e. Fuzzy LD+WLD

Model). Again, this shows that the number of heuristic orderings and which heuristic

orderings are considered simultaneously in measuring the difficulty of scheduling exams

will affect the performance of the construction algorithm.

164

6.4 Alternative Approaches to Tuning the Fuzzy System

6.4 Alternative Approaches to Tuning the Fuzzy Sys-

tem

Up to this point, all the fuzzy systems have featured tuning of the membership functions,

while the fuzzy rules have been fixed. In this section, a series of experiments are presented

to explore the influences of tuning the fuzzy rules. Basically, two approaches were

implemented. Firstly, a simple enumerative rule tuning process was implemented and,

secondly, a stochastic approach to generating a fuzzy system to measure the difficulty

of scheduling exams to time slots was developed (see Section 6.4.2 for more details).

6.4.1 Tuning Fuzzy Rules with Fixed Membership Functions

The objective of these experiments was to investigate whether tuning the fuzzy rules

would offer any improvement in performance over the predefined fixed set of fuzzy rules.

For this purpose, the membership functions identified in experiments reported in Chap-

ter 5, specifically Table 5.4 were implemented as fixed membership functions for the

respective data sets. The sequential constructive algorithm (ALG2.0) explained in Sec-

tion 5.2.1 was applied. As the fuzzy multiple heuristic ordering that considered three

heuristic ordering simultaneously (i.e Fuzzy LD+SD+LE Model) was studied, the fuzzy

rules set shown in Table 5.2 was used as the benchmark fuzzy rules set.

In order to help with understanding the fuzzy rules tuning process, Table 5.2 has

been reproduced with more details as shown in Table 6.16. The number in the cell

represents the rule number. In the tuning process, the only modification was in the

consequence part of each rule, one at a time in sequence from Rule 1 to Rule 27 (as

numbered in Table 6.16). The antecedent part of each rule remained the same. As

described in Section 4.4.1.2, there were five possible values for each rule consequence:

very small, small, medium, high and very high. Beside these five values, one additional

value, not inuse was added to represent the non existence of the rule. If the not inuse

165

6.4 Alternative Approaches to Tuning the Fuzzy System

Table 6.16: Fuzzy rule set for Fuzzy LD+LE+SD Model

LD

S M H
LE SD SD SD

S M H S M H S M H

S S 1 V S 4 V S 7 S 10 S 13 V S 16 M 19 S 22 S 25

M S 2 S 5 V S 8 H 11 M 14 M 17 H 20 M 23 M 26

H H 3 S 6 S 9 H 12 M 15 M 18 V H 21 H 24 M 27

VS=very small
S=small
M=medium
H=high
VH=very high

value was assigned to the consequence part of a rule, that meant the rule was not

applicable. For each rule, its consequence part was changed by assigning one of the

six possible values in the sequence of not inuse, very small, small, medium, high and

very high; one at a time. Considering 27 fuzzy rules and six possible values that can

be assigned to the consequence part of each rule, there are 162 possible sets of fuzzy

rules. For each set, the tuned fuzzy rules were tested over three runs. Initially, the total

number of the fuzzy rules was 27. However, the number of rules might be reduced if, by

removing any of the rules, solution quality improved.

Note that, by changing the values of the consequence part of a rule, the consistency

or completeness of the set of rules might be affected. In evaluating any set of rules,

the output of the fuzzy system is set to zero if none of the rules is fired for a certain

input value. That means that, for any exam with LD , LE or SD values that cannot

be handled by the proposed set of fuzzy rules, the weight of difficulty of scheduling the

exam is set to zero. Such an exam will be considered as not difficult to be scheduled

and therefore it will be given a lower priority in terms of the sequence of processing the

exams. Recall that the main purpose of applying the fuzzy technique in Process 1 is to

measure the difficulty of scheduling the exams, where the sequence of scheduling which

exams might affect the overall scheduling process. As a result, any set of fuzzy rules that

produces an ‘inappropriate’ exams ordering (where some exams result in zero difficulty

166

6.4 Alternative Approaches to Tuning the Fuzzy System

due to an incompleteness in the set of rules) will simply guide the scheduler towards

a lower quality timetable. As the main objective of this experiment is to improve the

initial fuzzy model for Fuzzy LD+SD+LE Model (implementing the fuzzy rules shown

in Table 5.2 and membership functions shown in Table 5.4), any new fuzzy model (with

new tuned fuzzy rules) that produces a worse performance compared to the initial fuzzy

model will be rejected.

At the end of the experiment, for each data set, there were 162 sets of fuzzy rules

with corresponding timetable solutions. The fuzzy rules set with the lowest penalty cost

were selected as the ‘best’ sets of fuzzy rules for the specific data sets. Two experiments

were conducted:

• Tuned Fuzzy Rules 1— The ‘best’ set of tuned fuzzy rules that improved the cur-

rent solution quality was kept and used as the initial set of fuzzy rules for the next

set of tuned fuzzy rules. A simple deepest descent enumerative search algorithm

was employed in this experiment. The pseudo-code is shown in Figure 6.3.

• Tuned Fuzzy Rules 2— Each of the rules was changed in isolation; no changes made

in the earlier iterations was taken into account. In this experiment, whenever the

consequence part of any rule was changed, the fuzzy rules were reinitialised to the

initial set of fuzzy rules as shown in Table 6.16, before moving to the next iteration.

The pseudo-code is shown in Figure 6.4.

6.4.2 Randomly Generated Fuzzy Models

The aim of this experiment was to examine alternative approaches for implementing

Process 1 (described in Chapter 4). Instead of using fixed fuzzy models (either fixed

membership functions or fixed fuzzy rules) for the particular combination of heuristic

ordering, a non-deterministic approach to define the fuzzy model was utilised. Each step

in Process 1 is now performed randomly. In order to make the experiment more man-

167

6.4 Alternative Approaches to Tuning the Fuzzy System

DECLARE INTEGER rulesCode[50][4] // Holds rules code for 50 rules of 4 variables
DECLARE DOUBLE penalty // Penalty cost for the adjacent exams for a new timetable
DECLARE DOUBLE proximityCost
DECLARE INTEGER consequence[6] ← {0,1,2,3,4,5} //Consequence code of a rule
//where 0=`not-inuse’; 1=`very small’; 2=`small’;3=`medium’;4=`high’;5=`very high’

proximityCost ← 9999.0
ruleCode ← initiliase the fuzzy rules using the fixed fuzzy rules (as shown in Table 6.16)

For i = 1 to 27 // For fuzzy rule number start from 1 to 27

For j = 0 to 5 // For consequence value represent by 0, 1, 2, 3, 4 and 5, in turn
 // Copy the current consequence part value into a temporary variable

tempCode ← ruleCode[i][4]
 // Change the consequence part of rule i

ruleCode[i][4] ← consequence[j]

Construct a timetable using the fuzzy model with the new set of fuzzy rules
penalty ← calculate penalty cost of the constructed timetable
If (penalty < proximityCost)

 proximityCost ← penalty
 Write fuzzy model into a file
 Write timetable into a file

Else
 Reset rulesCode ruleCode[i][4] ← tempCode
End If

 End For
End For

Figure 6.3: Pseudo-code for Tuned Fuzzy Rules 1

ageable, only fuzzy multiple heuristic orderings that combine three heuristic orderings

from the five available single heuristic orderings - LD , SD , LE , LCD and WLD , were

considered. This was based upon the previous observations, in which most of the ‘best’

results were produced when three heuristic ordering were considered simultaneously.

In the implementation, the first step was to randomly select three heuristic orderings

to be considered simultaneously. The next step was to create a set of fuzzy rules for the

chosen heuristic orderings, also selected in random fashion. Any rule should contain at

least one antecedent, and the maximum is three antecedents. The last step was to choose

cp points for membership functions for all of the fuzzy variables. As a fuzzy system with

168

6.4 Alternative Approaches to Tuning the Fuzzy System

DECLARE INTEGER rulesCode[50][4] // Holds rules code for 50 rules of 4 variables
DECLARE DOUBLE penalty // Penalty cost for the adjacent exams for a new timetable
DECLARE DOUBLE proximityCost
DECLARE INTEGER consequence[6] ← {0,1,2,3,4,5} //Consequence code of a rule
//where 0=`not-inuse’; 1=`very small’; 2=`small’;3=`medium’;4=`high’;5=`very high’

proximityCost ← 9999.0
ruleCode ← initiliase the fuzzy rules using the fixed fuzzy rules (as shown in Table 6.16)

For i = 1 to 27 // For fuzzy rule number start from 1 to 27

For j = 0 to 5 // For consequence value represent by 0, 1, 2, 3, 4 and 5, in turn
 // Change the consequence part of rule i

ruleCode[i][4] ← consequence[j]

Construct a timetable using the fuzzy model with the new set of fuzzy rules
penalty ← calculate penalty cost of the constructed timetable
If (penalty < proximityCost)

 proximityCost ← penalty
 Write fuzzy model into a file
 Write timetable into a file

End If
ruleCode ← reinitiliase the fuzzy rules using the fixed fuzzy rules (as shown in Table 6.16)

 End For

End For

Figure 6.4: Pseudo-code for Tuned Fuzzy Rules 2

three inputs and one output was implemented, four cp points were randomly chosen.

The integer values used to represent the heuristic orderings and fuzzy rules are shown

in Table 6.17.

An example is represented graphically in Figure 6.5 to show how the random fuzzy

model was developed. In STEP 1, the three heuristic orderings chosen are identified as

LE , SD and WLD . Based on these heuristic orderings, the randomly generated rules

were translate into ‘IF ... THEN ...’ form. The rules were represented in a two dimen-

sional array. Each row of the array represented one rule. In each row, the first column

corresponded to the antecedent for the first heuristic ordering, the second column cor-

responded to the antecedent value for the second heuristic and the third column to the

value for the third heuristic; the last column corresponded to the consequence part (i.e

examweight). In the example, three rules were randomly generated and their translated

form are given. Note that Rule 2 only consisted of two antecedents as SD was set to

169

6.4 Alternative Approaches to Tuning the Fuzzy System

Table 6.17: Integer codes assigned to fuzzy model parameters

Heuristic LD LE SD LCD WLD

Heuristic Code 1 2 3 4 5

Antecedent linguistic variable not inuse small medium high

Antecedent Code 0 1 2 3

Consequence
linguistic variable

not inuse very
small

small medium high very
high

Consequence Code 0 1 2 3 4 5

not inuse (antecedent code = 0). These fuzzy rules generations were performed without

concerning the logical order of the rule — any rule could be accepted even if it contrasted

with the basic knowledge of heuristic ordering. Considering the membership functions,

STEP 3 shows the four cp points that are randomly picked and the related membership

function graphical representations is given. Again, the first three elements of the array

correspond to the membership functions for the three chosen heuristic ordering in the

sequence order; while the last element represents the cp point for examweight.

To evaluate this non-deterministic approach using fuzzy model tuning, two experi-

ments were performed as follows:

• Random Model 1 — Experiments were performed for 100 iterations for each data

set. In each iteration, a new fuzzy model was created by randomly choosing the

heuristic orderings, 27 fuzzy rules and the four cp points for the membership func-

tions. Each fuzzy model was tested three times within the sequential constructive

algorithm. The pseudo-code is shown in Figure 6.6.

• Random Model 2 — Experiments were conducted for 1000 iterations for nine

data sets (EAR-F-83 , HEC-S-92 , KFU-S-93 , LSE-F-91 , RYE-F-92 , STA-F-83 ,

TRE-S-92 , UTE-S-92 and YOR-F-83), while for CAR-F-92 , CAR-S-91 and

UTA-S-92 , the experiments were run for 100 iterations. For this experiment, the

170

6.4 Alternative Approaches to Tuning the Fuzzy System

2 53heuristicCode

Actual heuristic : LE, SD and WLD

rulesCode 2 32 3
1 20 2
3 21 5
:

Rule 1

Rule 2

Rule 3

Rule n

Actual fuzzy rules :
Rule 1 – If LE is medium and SD is medium and WLD is high

then examweight is medium

Rule 2 – If LE is small and WLD is medium
then examweight is small

Rule 3 – If LE is high and SD is small and WLD is medium
then examweight is very high

0.33 0.780.62cp 0.44

Actual membership functions :

STEP 2 :

STEP 3 :

STEP 1 :

LE SD
0.0

1.0

1.0

µ(x) small medium high

0.0

1.0

µ(x)small medium high

1.0 WLD0.0

1.0

µ(x) small medium high

1.0 examweight0.0

1.0

µ(x) small medium high

1.0

Figure 6.5: An example of defining a random fuzzy model

171

6.4 Alternative Approaches to Tuning the Fuzzy System

heuristic orderings and cp points were randomly chosen only once for each data

set. Initially the fuzzy rules set was empty. In the first iteration, a fuzzy rule was

randomly created and set as the first rule. Having created the fuzzy model, the

sequential constructive algorithm was run three times. The best timetable con-

structed was set as a benchmark. For each of the remaining iterations, a fuzzy rule

was randomly created and appended to the end of the list of rules. The sequential

constructive algorithm was then run with the new fuzzy model (i.e. only the rules

were changed). The rules were kept if a better solution was produced with the

new fuzzy model, and the new best solution was then set as the new benchmark.

Otherwise, the newly added rule was removed. This process continued until the

number of iteration exceeded the maximum number of iterations allowed for the

particular data set. The pseudo-code is shown in Figure 6.7.

In both experiments, non-applicable rules (rule with consequence part assigned to not inuse

or rule with all the antecedents part were assigned to not inuse) were removed. Because

the fuzzy rules were randomly selected, in the case of experiment with Random Model

1 , it was possible to have a fuzzy model that contains less than 27 rules. Meanwhile, in

the case of experiments with Random Model 2 , the issue of completeness of the fuzzy

rule is relevant because the experiment starts with only one fuzzy rule. Therefore, care

must be taken when evaluating the fuzzy rules. During the experiment, any randomly

generated set of rules will be tested — including a set of rules which is inconsistent and

incomplete. As described in Section 6.4, in such a situation, the fuzzy system will simply

set the exam difficulty to zero if none the rules is fired for the certain input values.

6.4.3 Testings and Results

Table 6.18 shows a comparison of the results obtained using fixed and tuned fuzzy rules.

The first column indicates the penalty cost for the timetable solution of each data set that

has been constructed with a set of fixed fuzzy rules (extracted from the sixth column of

172

6.4 Alternative Approaches to Tuning the Fuzzy System

DECLARE INTEGER heuristicCode[3] // Holds heuristics code
DECLARE INTEGER cp[4] // Holds cp points for the membership functions
DECLARE INTEGER rulesCode[27][4] // Holds rules code for 27 rules of 4 variables
DECLARE DOUBLE penalty // Penalty cost for the adjacent exams for a new timetable
DECLARE INTEGER maxLoop // Number of iteration
DECLARE DOUBLE proximityCost

proximityCost ← 9999.0
maxLoop ← 100

For i = 1 to maxLoop

heuristicCode ← randomly choose 3 heuristis
rulesCode ← randomly choose 27 rules
cp ← randomly choose 4 cp points
For j = 1 to 3
 Construct a timetable using the randomly generated fuzzy model
 penalty ← calculate penalty cost of the constructed timetable
 If (penalty < proximityCost)
 proximityCost ← penalty
 Write fuzzy model into a file
 Write timetable into a file
 End If
End For

End For

Figure 6.6: Pseudo-code for Random Model 1

Table 5.6). In the next two columns, the qualities of the timetable solutions produced by

using the sequential constructive algorithm with Tuned Fuzzy Rules 1 and Tuned Fuzzy

Rules 2 tuning approaches are given. It can be seen that in all data sets, better solutions

were produced by tuning the fuzzy rules (either by Tuned Fuzzy Rules 1 or Tuned Fuzzy

Rules 2), compared to the approach that only used fixed fuzzy rules. The results show

that tuning the fuzzy rules has produced considerably better timetable solutions.

In the previous Chapter, it was demonstrated that combining three heuristic order-

ings produced better solutions compared to combining two heuristic orderings. However,

in two cases (CAR-F-92 and EAR-F-83), two heuristic orderings outperformed three

heuristic orderings. It was argued that, this can be rectified if the fuzzy rules were

tuned. Indeed, as can be observed, the EAR-F-83 data set now has a penalty cost equal

173

6.4 Alternative Approaches to Tuning the Fuzzy System

DECLARE INTEGER heuristicCode[3] // Holds heuristics code
DECLARE INTEGER cp[4] // Holds cp points for the membership functions
DECLARE INTEGER rulesCode[50][4] // Holds rules code for 50 rules of 4 variables
DECLARE INTEGER newRule[4] // A new rule code
DECLARE DOUBLE penalty // Penalty cost for the adjacent exams for a new timetable
DECLARE INTEGER maxLoop // Number of iteration
DECLARE DOUBLE proximityCost, ruleCounter, examSize

proximityCost ← 9999.0
ruleCounter ← 0
If (examSize > 500)

maxLoop ← 1000
Else

maxLoop ← 100
End If

heuristicCode ← randomly choose 3 heuristis
cp ← randomly choose 4 cp points
For i = 1 to maxLoop
 newRule ← randomly create a new rule
 ruleCounter ← ruleCounter + 1

rulesCode[ruleCounter][] ← append newRule at the end of the set of rules
Construct a timetable using the randomly generated fuzzy model
penalty ← calculate penalty cost of the constructed timetable
If (penalty < proximityCost)
 proximityCost ← penalty
 Write fuzzy model into a file
 Write timetable into a file
Else
 Reset rulesCode[ruleCounter][] ← {0,0,0,0}

 ruleCounter ← ruleCounter - 1
End If

End For

Figure 6.7: Pseudo-code for Random Model 2

to 36.16. This penalty cost value is smaller than the penalty cost incurred when the

Fuzzy SD+LE Model was used — i.e. 36.99. Although the result produced by the Fuzzy

SD+LE Model model for the CAR-F-92 (in the fourth column of Table 5.6) still outper-

formed the result obtained in this experiment, overall the results indicate the potential

of expanding the tuning of the fuzzy model to include tuning the fuzzy rules.

174

6.4 Alternative Approaches to Tuning the Fuzzy System

Table 6.18: A comparison of results for Fuzzy LD+SD+LE Model when utilising fixed
and tuned fuzzy rules

Data Set Fixed
Fuzzy
Rules

Tuned
Fuzzy

Rules 1

Tuned
Fuzzy

Rules 2

CAR-F-92 4.53 4.51 4.51

CAR-S-91 5.21 5.19 5.19

EAR-F-83 37.11 36.16 36.64
HEC-S-92 11.70 11.61 11.60

KFU-S-93 15.41 15.34 15.34

LSE-F-91 11.43 11.35 11.35

RYE-F-92 10.21 10.02 10.05
STA-F-83 159.34 159.09 160.79
TRE-S-92 8.64 8.62 8.47

UTA-S-92 3.55 3.52 3.52

UTE-S-92 27.64 27.64 27.55

YOR-F-83 40.46 39.25 39.79

Total 335.23 332.30 334.8

Table 6.19 compares the results obtained by the experiments outlined in Section 6.4.2

to the results produced by the experiments explained in Section 6.4.1 and the ‘best’ re-

sults of using three heuristic orderings (from Table 6.12). This comparison is on the basis

that all these results were produced when three heuristic orderings were simultaneously

implemented. However, note that the algorithms used in the experiments are slightly

different. While the results in the second column were produced with random time slot

selection (details described in Section 6.3), results for the remaining three columns were

obtained with last time slot selection (i.e. ALG2.0 — as implemented in Chapter 5).

In Table 6.19 the best results across all experiments for each data set is highlighted in

bold font. It can be seen that the best results for seven data sets were produced by

fuzzy models that featured fixed fuzzy rules and tuned membership functions (see the

first column); while the best result for three data sets were with tuned fuzzy rules (see

the second column). Although experiments which applied Random Model 1 did not pro-

175

6.4 Alternative Approaches to Tuning the Fuzzy System

Table 6.19: A comparison of results for tuning fuzzy model randomly

Data Set Best results of
combining three

heuristic ordering
(from Table 6.12)

Best results of tuning
fuzzy rules only (from

Table 6.18)

Random
Model 1

Random
Model 2

CAR-F-92 4.38 4.51 4.59 4.32

CAR-S-91 5.19 5.19 5.58 5.54
EAR-F-83 36.57 36.16 40.93 37.05
HEC-S-92 11.52 11.60 12.55 12.31
KFU-S-93 14.58 15.34 15.74 15.03
LSE-F-91 11.30 11.35 12.58 12.65
RYE-F-92 9.71 10.02 10.58 9.75
STA-F-83 158.31 159.09 159.22 158.64
TRE-S-92 8.59 8.47 9.24 8.79
UTA-S-92 3.49 3.52 3.69 4.31
UTE-S-92 27.03 27.55 29.77 29.10
YOR-F-83 40.15 39.25 43.88 42.30

Total 330.82 332.05 348.35 339.79

duce any best results, the experiments that used Random Model 2 produced one best

result. The best result for CAR-F-92 shown in the fourth column was obtained using

the following fuzzy model (which was randomly created):

• heuristic orderings : LCD , LE and SD

• cp points for membership functions : 0.550, 0.110, 0.296, and 0.132

• number of fuzzy rules : 16

Taking into account that the fuzzy model is defined in random fashion, this best

result was found in an arbitrary fashion. One possible reason why only one best result

was found in the experiments that applied the random fuzzy model is due to the fact

that the number of iterations in the experiments (100 for Random Model 1 and 1000 for

Random Model 2) was quite small when compared to the huge search space that needs

to be explored in order to find the ‘optimal’ fuzzy model.

Taking a different view, it could be stated that tuning membership functions and

176

6.5 Chapter Summary

fuzzy rules at different stages is better than tuning both membership functions and fuzzy

rules at the same time with the non-deterministic approach. Note that three of the ‘best’

results in Table 6.19 (i.e. for EAR-F-83 , TRE-S-92 and YOR-F-83) were obtained when

the Fuzzy LD+SD+LE Model was applied with fixed membership functions and tuned

fuzzy rules. Therefore, it can be expected that the solutions presented in the second

column (the results produced with fixed fuzzy rules) may be improved by tuning the

fuzzy rules with the membership functions that have been identified in the initial set of

experiments performed earlier (explained in Section 6.3). It also worthy of mention that

only 16 rules are required to produce the solution. This indicates that not all possible

rules are required to be embedded in the system in order to get a better solution.

With fewer rules, the fuzzy model is more understandable for the developer and user.

Therefore, a more sophisticated optimisation approach should be devised to tackle the

tuning process more systematically.

6.5 Chapter Summary

Several issues regarding the generalisation of the proposed multiple heuristic orderings

have been explored in this Chapter. Firstly, the issue of the applicability of the proposed

approach to a different timetabling problem. The experimental results obtained when

the fuzzy multiple heuristic ordering was implemented on course timetabling problems

suggests that the proposed approach may be suitable for generalisation to other domains.

Secondly, work was presented on exploring all possible combinations of two and

three heuristic orderings based upon the five single heuristics. The experimental results

on the range of benchmark examination timetabling data sets showed that the use of

WLD as one of the variables in the fuzzy heuristic ordering combinations leads to better

solutions in most of the problem instances. Due to the non-deterministic factor, it is

difficult to determine which heuristic ordering combination is superior amongst all the

possible heuristic ordering combinations. Furthermore, earlier work (i.e. when each of

177

6.5 Chapter Summary

the single heuristic orderings was implemented on its own) on implementing random

time slot selection indicates that the method of time slot selection and best heuristic

ordering method is inter-dependent.

Finally, alternative approaches for tuning the fuzzy models were developed and eval-

uated. The results obtained demonstrated that tuning the fuzzy rules has improved the

chances of constructing better solutions. Given that only a simple enumerative search

was implemented to modify the rules on the fixed membership functions and randomly

create fuzzy models, it is possible that more sophisticated optimisation techniques will

improve the search for the ‘optimal’ fuzzy model.

178

Part III

Fuzzy Evaluation

179

Chapter 7

A Novel Fuzzy Approach to Evaluate

the Examination Timetabling

This chapter introduces a new fuzzy evaluation function for examination timetabling.

Fuzzy reasoning is employed to evaluate the quality of a constructed timetable by con-

sidering two criteria, namely the average penalty per student and the highest penalty

imposed on any of the students. A fuzzy system was created based on a series of easy to

understand rules featuring the combination of these two criteria. A significant problem

encountered was how to determine the lower and upper bounds of the decision criteria

for any given problem instance, in order to allow the fuzzy system to be fixed and, hence,

applicable to new problems without alteration. In this work, two different methods for

determining boundary settings are proposed. Experimental results are presented and

the implications analysed. These results demonstrate that fuzzy reasoning can be suc-

cessfully applied to evaluate the quality of timetable solutions by simultaneously taking

into consideration multiple decision criteria.

180

7.1 Introduction

7.1 Introduction

Previous studies such as Asmuni et al. (2005) and Petrovic et al. (2005), demonstrated

that fuzzy reasoning is a promising technique that can be used both for modeling

timetabling problems and for constructing solutions. These studies indicated that the

utilisation of fuzzy methodologies in university timetabling is an encouraging research

topic. In this Chapter, a new evaluation function is introduced that is based on fuzzy

methodologies. The research focuses on evaluating the constructed timetable solutions

by considering two decision criteria. Although the constructed timetable solutions were

developed based on the specific objectives mentioned above, the method is general in

the sense that a user could, in principle, define additional criteria he or she wished to be

taken into account in evaluating any constructed timetables. This research is motivated

by the fact that, in practice, the quality of the timetable solution is usually assessed by

the timetabling officer considering several criteria/objectives.

A brief description of the existing evaluation methods is discussed in Chapter 2. In

the next section, the drawbacks of existing evaluation methods is presented, followed by

a detailed explanation of the proposed novel approach. Section 7.3 presents descriptions

of the experiments carried out and the results obtained, followed by discussions in Sec-

tion 7.3.3. Finally, some concluding comments and future research directions are given

in Section 7.4.

7.2 Assessing Timetable Quality

7.2.1 Disadvantages/Drawbacks of Current Evaluation Func-

tions

In the evaluation function shown in Equation 2.4, it can be seen that the final value

of the proximity cost penalty function is a measure only of the average penalty per

181

7.2 Assessing Timetable Quality

student. Although this penalty function has been widely used by many researchers in

the context of uncapacitated problem of the benchmark data set (Carter et al., 1996), in

practice, considering only the average penalty per student is not sufficient to evaluate the

quality of the constructed timetable. The final value does not, for example, represent the

relative fairness of spreading out each student’s schedule. For example, when examining

the resultant timetable, it may be the case that a few students have an examination

timetable in which many of their exams are scheduled in adjacent time slots. These

students are likely to not be happy with their timetable, as they will not have enough

time to prepare adequately. On the other hand, the remaining students enjoy a ‘good’

examination timetable.

As a specific example, consider the following two cases. Case 1 : there are 100

students with each student having a penalty cost of one; Case 2 : there are 100 students,

but now ten students have a penalty cost of ten, the rest zero. In both cases the average

penalty per student is equal to one, but obviously the solution in Case 2 is ‘worse’ than

the solution in Case 1.

One of the co-supervisors of this thesis (McCollum) has extensive experience of real-

world timetabling, having spend 12 years as a timetabling officer and with continuing

links with the timetabling industry. It is his experience that ‘proximity cost’ is not the

only factor considered by timetabling officers when evaluating the quality of an actual

timetable in practice. Usually, a timetable evaluation is based on several factors, several

of which are subjective and/or based on ambiguous information. Furthermore, to the

best of the author’s knowledge, all the evaluation functions mentioned in Section 2.3.2 are

integrated into the timetabling construction process. These objective functions are used

to measure the satisfaction of specific soft constraints. This means that the timetable

solution is optimised against these soft constraints. In practice, the user may consider

other criteria in evaluating the final timetable solution after the solution has been arrived

at. A review of other objective functions that have been proposed and which have been

182

7.2 Assessing Timetable Quality

used in timetable optimisation were given in Section 2.3.2.

One way to handle multiple criteria decision making is to use simple linear combi-

nations of the various criteria. This works by multiplying the value of each criterion by

a constant weighting factor and summing to form an overall result. Each weight repre-

sents the relative important of each criterion compared to the other criteria. As with

the case in Section 4.3, there is usually no simple way to determine the precise values

for these weights, especially weights that can be used across several problem instances

with different complexity.

In this Chapter, a new evaluation function utilising fuzzy methodologies is intro-

duced. Basically, the idea is to develop an independent evaluation function that can

be used to measure the quality of any examination timetable solution. This evaluation

function may be based on more than one criterion. The timetable can have been gener-

ated using any (single or multi-objective) approach, featuring any construction and/or

iterative improvement. Subsequently, the timetable solution with the problem descrip-

tion and the list of criteria that need to be evaluated are submitted to the evaluation

function. Hence, the methods presented in Chapters 7 and 8 represent a form of multi-

criteria evaluation of timetables carried out on constructed timetables, and are not a

form of multi-objective optimisation.

7.2.2 The Proposed Fuzzy Evaluation Function

As an initial investigation, this proposed approach was implemented on solutions which

were generated based on the proximity cost requirements (average penalty). Once gen-

erated, one additional criterion other than the average penalty per student, namely the

highest penalty that occurred amongst the students (highest penalty) was also taken into

account in the evaluation. There is no specific or external reason why this criterion was

chosen, other than the fact that it was felt that this was likely to be a factor which is

taken into account (particularly by the students themselves) in the real-world. It would

183

7.2 Assessing Timetable Quality

also appear to be quite general and fairly uncontentious, in the sense that minimising

the maximum penalty for any one student (however that penalty is derived) would seem

to be a reasonable thing to do, in addition to minimising the average of the same penalty

function over all students. Once again, it is emphasised that the latter factor was only

considered after the timetable solution was constructed. That is to say, there was no

attempt to include this criterion in the process of constructing the timetable. Such

a process (which would involve, in the terminology adopted in this thesis, turning the

fuzzy evaluation function into a fuzzy objective function) might be an interesting avenue

for future research.

A fuzzy system with these two input variables (average penalty and highest penalty)

and one output variable (quality) was constructed. Each of the input variables were

associated with three linguistic terms; fuzzy sets corresponding to a meaning of low,

medium and high. In addition to these three linguistic terms, the output variable (qual-

ity) has two extra terms that correspond to meanings of very low and very high. These

terms were selected as they were deemed the simplest possible to adequately represent

the problem. Gaussian functions of the form e−(x−c)2/2σ2
, where c and σ are constants

representing the centre and width of the fuzzy set respectively (see Figure 7.1), were used

to define the fuzzy set for each linguistic term. As shown in Figure 7.1, σk should be the

width between the central point ck and a value on the x-axis for which the membership

function has value 0.5 (so-called cross-over value). The standard Gaussian membership

function always has its peak value at one.

As this experiment aimed to move towards mimicking human decision making, smooth

function were required. Thus, Gaussians were selected on the basis that they are the

simplest and most common choice, given that smooth, continuously varying functions

were desired, particularly in the context of modelling human reasoning.

The membership functions defined for the two inputs, average penalty and highest

penalty, and the output quality are depicted in Figure 7.2 (a) – (c), respectively. For such

184

7.2 Assessing Timetable Quality

0.4

0.6

0.8

1.0

σk σk
0.5

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

ck

Figure 7.1: Gaussian membership function for µ(xk, σk)

a system with two inputs with three linguistic terms, there are nine possible fuzzy rules

that can be defined in which each input variable is associated with one linguistic term.

As already known, from the definition of proximity cost, the objective is to minimise

the penalty cost — i.e. the lower the penalty cost, the better the timetable quality.

Also, based on everyday experience, the highest penalty for any one student should be

as low as possible, as this will create a fairer timetable for all students. Based upon this

knowledge, a fuzzy rule set was defined consisting of all nine possible rule combinations.

Each rule connects the input variables to the single output variable, quality. The fuzzy

rule set is presented in Figure 7.3. As stated previously, standard Mamdani style fuzzy

inference was used to obtain the fuzzy output for a given set of inputs. The Centre of

Gravity defuzzification method described in Section 3.1.5.1 was then used to obtain a

single crisp (real) value for the output variable. This single crisp output was then taken

as the quality of the timetable.

7.2.3 Input Normalisation

With this proposed fuzzy evaluation function, a set of experiments was carried out

to determine whether the fuzzy evaluation system was able to distinguish a range of

185

7.2 Assessing Timetable Quality

mediumlow high

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

average penalty

low medium high

average penalty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

highest penalty

low medium high

mediumlow high

highest penalty

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

quality

fu
zz

ifi
ed

va
lu

e

verylow low medium high veryhigh

quality

mediumverylow highlow veryhigh

(c)

Figure 7.2: Membership functions for input and output variables

timetable solutions based on the average penalty per student and the highest penalty

imposed on any of the students. All the constructed timetables for the given problem

instance were evaluated using the same fuzzy system, and their quality determined based

on the output of the fuzzy system. The constructed timetable with the biggest output

value was selected to be the ‘best’ timetable.

Based on previous experience outlined in Chapters 4 to 6, the average penalty values

for different data sets result in widely different scales due to the different complexity of

the problem instances. For example, in the STA-F-83 data set an average penalty of

186

7.2 Assessing Timetable Quality

Rule 1: IF (average penalty is low) AND (highest penalty is low)

THEN (quality is very high)

Rule 2: IF (average penalty is low) AND (highest penalty is medium)

THEN (quality is high)

Rule 3: IF (average penalty is low) AND (highest penalty is high)

THEN (quality is medium)

Rule 4: IF (average penalty is medium) AND (highest penalty is low)

THEN (quality is high)

Rule 5: IF (average penalty is medium) AND (highest penalty is medium)

THEN (quality is medium)

Rule 6: IF (average penalty is medium) AND (highest penalty is high)

THEN (quality is low)

Rule 7: IF (average penalty is high) AND (highest penalty is low)

THEN (quality is medium)

Rule 8: IF (average penalty is high) AND (highest penalty is medium)

THEN (quality is low)

Rule 9: IF (average penalty is high) AND (highest penalty is high)

THEN (quality is very low)

Figure 7.3: Fuzzy rules for Fuzzy Evaluation Function

160.42 was obtained, whereas for UTA-S-92 , the average penalty was 3.57 (these values

are extracted from the second column of Table 4.9).

As can be seen in Figure 7.2(a) and Figure 7.2(b), the input variables have their

universe of discourse defined between 0.0 and 1.0. Therefore, in order to use this fuzzy

model, both of the original input variables must be normalised within the range [0.0, 1.0].

The initial transformation used was as follows:

v′ =
(v − lowerLimit)

(upperLimit− lowerLimit)
(7.1)

where v is the actual value in the initial range [lowerLimit, upperLimit]. In effect, the

range [lowerLimit, upperLimit] represents the actual lower and upper boundaries for

the fuzzy linguistic terms.

187

7.3 Preliminary Investigations

By applying this normalisation technique, the same fuzzy model can be used for

any problem instance, either for the benchmark data sets as used here, or for a new

real-world problem. This would provide flexibility when problems of various complexity

are presented to the fuzzy system. In such a scheme, the membership functions do

not need to be changed from their initial shapes and positions. In addition, rather

than recalculate the parameters for each input variable’s membership functions, it is

much easier to transform the crisp input values into normalised values in the range of

[0.0, 1.0]. The problem thus becomes one of finding suitable lower and upper limits for

each problem instance.

7.3 Preliminary Investigations

7.3.1 Experiments Setup

In order to test the fuzzy evaluation system, the Carter et al.’s (1996) benchmark data

sets were used again (see Table 2.1). For each instance of the twelve data sets, 40

timetable solutions were constructed using a simple sequential constructive algorithm

with backtracking, as previously described in Chapter 4. Eight different heuristics were

used to construct the timetable solutions; for each of which the algorithm was run five

times to obtain a range of solutions. However, due to the nature of the heuristics used,

in some cases, a few of the constructed timetable solutions had the same proximity cost

value. Therefore, for the purpose of standardization, 35 different timetable solutions were

selected out of the 40 constructed timetable solutions, by firstly removing any repeated

solution instances and then just removing at random any excess. The objective was

to obtain a set of timetable solutions with variations of timetable solution quality, in

which none of the solutions had the same quality in terms of proximity cost (i.e average

penalty per student). The timetable solutions were constructed by implementing the

following heuristics:

188

7.3 Preliminary Investigations

• Three different single heuristic orderings:

– Least Saturation Degree First (SD),

– Largest Degree First (LD),

– Largest Enrolment First (LE),

• Three different fuzzy multiple heuristic orderings:

– a Fixed Fuzzy LD+LE Model,

– a Tuned Fuzzy LD+LE Model, and

– a Tuned Fuzzy SD+LE Model (see Chapter 4 for details of these),

• random ordering, and

• a deliberately ‘poor’ ordering (see below).

A specific ‘poor’ heuristic was utilised in an attempt to purposely construct bad solutions.

The idea was to attempt to determine the upper limit of solution quality (in effect,

though not formally, the ‘worst’ timetable for the given problem instance). Basically

the method was to deliberately assign student exams in adjacent time slots. In order

to construct bad solutions, LD was initially employed to order the exams. Next, the

exams were sequentially selected from this ordered exams list and assigned to the time

slot that caused the highest proximity cost; this process continued until all the exams

were scheduled.

The 35 timetable solutions were analysed in order to determine the minimum and

the maximum values for both the input variables, average penalty and highest penalty.

These values were then used for the normalisation process (see Section 7.2.3). However,

because the twelve data sets have various complexity (see Table 2.1), the determination

of the initial range for each data set is not a straight-forward process. Thus, two alter-

native boundary settings were implemented in order to identify the appropriate set of

lowerLimit and upperLimit for each data set.

The first boundary setting used lowerLimit = 0.0 and the upperLimit = maxValue,

where maxValue was the largest value obtained from the set of 35 solutions. However,

189

7.3 Preliminary Investigations

from the literature, the lowest value yet obtained for the STA-F-83 data set is around

130 (Casey and Thompson, 2003). Thus, it did not seem sensible to use zero as the

lower limit in this case. In order to attempt to address this, the use of a non-zero lower

limit was investigated. Of course, a formal method for determining the lower limit for

any given timetabling instance is not currently known. Hence, the second boundary

setting used lowerLimit = minValue and upperLimit = maxValue, where minValue was

the smallest value obtained from the set of 35 constructed solutions for the respective

data set.

In this implementation, both input variables, average penalty and highest penalty,

were independently normalised based on their respective minValue and maxValue. The

fuzzy evaluation system described earlier (see Section 7.2.2) was then employed to eval-

uate the timetable solutions. The same processes were applied to all of the data sets

listed in Table 2.1. The fuzzy evaluation system was implemented using the ‘R’ lan-

guage (The R Foundation for Statistical Computing Version 2.2.0) (R Development

Core Team, 2005).

7.3.2 Experimental Results

In this Section, the experiment results are presented. Table 7.1 shows the minimum

and maximum values obtained for both evaluation criteria (the input variables). Fig-

ures 7.4(a) and 7.4(b) show the evaluation results obtained by the fuzzy evaluation

system for the LSE-F-91 and TRE-S-92 data sets. These two data sets are shown as

representative examples chosen at random. Both graphs show the results obtained when

the boundary setting [minV alue, maxV alue] was implemented. In the graph, the x-axis

(Solution Rankings) represents the ranking of the timetable solution quality evaluated

by using the fuzzy evaluation function; in order from the best solution to the worst

solution. The y-axis represents the normalised input values (average penalty and highest

penalty) and the output values (quality) obtained for the particular timetable solution.

190

7.3 Preliminary Investigations

These two graphs show that the fuzzy evaluation function has performed as desired, in

that the overall (fuzzy) quality of the solutions varies from close to zero to close to one.

Tables 7.2 – 7.4 show a comparison of the results obtained using the two alternative

forms of the normalisation process. The Solution Number is used to identify a particu-

lar solution within the 35 timetable solutions used in the experiments for each data set,

where Solution Number is assigned based on the ranking by average penalty (i.e. the so-

lution with lowest average penalty is labelled Solution Number 1, the next lowest 2, etc.).

In both tables, the fifth and sixth columns (labeled as ‘Range [minValue,maxValue]’)

indicates the fuzzy evaluation value and the rank of the solution relative to the other so-

lutions, when the boundary range [minValue,maxValue] was used. The last two columns

in the tables show the evaluation values and solution ranking obtained when the bound-

ary range [0,maxValue] was used. Only the first ten ‘best’ timetable solutions for each

of the data sets are presented, based on the ranking produced when the boundary range

[minValue,maxValue] was used.

Table 7.1: Minimum and maximum values for Average Penalty and Highest Penalty
obtained from the 35 timetable solutions for each data set

Average Penalty Highest Penalty

Data Set Minimum
Value

Maximum
Value

Minimum
Value

Maximum
Value

CAR-F-92 4.54 11.42 65.0 132.0

CAR-S-91 5.29 13.33 68.0 164.0

EAR-F-83 37.02 71.28 105.0 198.0

HEC-S-92 11.78 31.88 75.0 136.0

KFU-S-93 15.81 43.40 98.0 191.0

LSE-F-91 12.09 32.38 78.0 191.0

RYE-F-92 10.38 36.71 87.0 191.0

STA-F-83 160.75 194.53 227.0 284.0

TRE-S-92 8.67 17.25 68.0 129.0

UTA-S-92 3.57 8.79 63.0 129.0

UTE-S-92 28.07 56.34 83.0 129.0

YOR-F-83 39.80 64.48 228.0 331.0

191

7.3 Preliminary Investigations

LSE-F-91 : Timetable Quality

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 5 10 15 20 25 30 35 40

Solution Rankings

In
p

u
t/

O
u

tp
u

t
V

al
u

e

Average Penalty

Highest Penalty

Quality

(a) LSE-F-91

TRE-S-92 : Timetable Quality

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 5 10 15 20 25 30 35 40

Solution Rankings

In
p

u
t/

O
u

tp
u

t
V

al
u

e

Average Penalty

Highest Penalty

Quality

(b)TRE-S-92

Figure 7.4: Indicative illustrations of the range of normalised inputs and associated
output obtained for the LSE-F-91 and TRE-S-92 data sets

192

7.3 Preliminary Investigations

Table 7.2: A comparison of the results obtained using the two alternative forms of the
normalisation process for data sets CAR-F-92 , CAR-S-91 , EAR-F-83 and HEC-S-92

Timetable Criteria Range[minValue, maxValue] Range[0, maxValue]

Data Set Solution
Number

Average
Penalty

Highest
Penalty

Evaluation
Value

Solution
Ranking

Evaluation
Value

Solution
Ranking

CAR-F-92 1 4.544 65 0.888503 1 0.534427 1

2 4.624 71 0.876804 2 0.517946 2

3 4.639 71 0.876791 3 0.517485 3

4 4.643 71 0.876788 4 0.517366 4

5 5.148 68 0.876583 5 0.510084 5

6 5.192 69 0.873279 6 0.506692 6

8 5.508 68 0.858276 7 0.500729 7

9 5.532 68 0.856617 8 0.500120 8

11 5.595 68 0.851966 9 0.498538 9

12 5.609 68 0.850863 10 0.498184 10

CAR-S-91 1 5.292 68 0.888524 1 0.557585 1

2* 5.573 75 0.880205 2 0.537593 3

7* 5.911 68 0.879621 3 0.542750 2

3 5.654 75 0.879244 4 0.535472 4

6 5.842 75 0.875877 5 0.530812 5

10* 6.079 76 0.868161 6 0.523516 8

11* 6.393 71 0.860211 7 0.526116 6

13* 6.509 71 0.853145 8 0.523572 7

4 5.688 83 0.850233 9 0.520297 9

5 5.690 83 0.850227 10 0.520255 10

EAR-F-83 1 37.018 116 0.868135 1 0.467867 1

4* 41.860 118 0.834883 2 0.444700 3

6* 43.637 105 0.827016 3 0.454672 2

7 44.147 118 0.798099 4 0.432416 4

3 41.324 131 0.748303 5 0.415267 5

5* 43.628 129 0.733864 6 0.411292 7

9* 44.968 127 0.718542 7 0.411481 6

18 49.662 114 0.710776 8 0.392966 8

2* 41.178 144 0.699109 9 0.370814 11

10* 44.980 135 0.674252 10 0.385906 9

HEC-S-92 1 11.785 83 0.863057 1 0.506506 1

10 14.774 75 0.854699 2 0.495547 2

2 13.236 84 0.853706 3 0.489407 3

5* 14.162 83 0.847966 4 0.482514 5

7* 14.635 83 0.838633 5 0.477754 7

6* 14.217 85 0.832653 6 0.476641 8

13* 15.594 78 0.828916 7 0.481021 6

17* 15.911 75 0.817611 8 0.485117 4

15 15.763 84 0.801080 9 0.463727 9

4* 14.124 94 0.727535 10 0.446459 11

193

7.3 Preliminary Investigations

Table 7.3: A comparison of the results obtained using the two alternative forms of the
normalisation process for data sets KFU-S-93 , LSE-F-91 , RYE-F-92 and STA-F-83

Timetable Criteria Range[minValue, maxValue] Range[0, maxValue]

Data Set Solution
Number

Average
Penalty

Highest
Penalty

Evaluation
Value

Solution
Ranking

Evaluation
Value

Solution
Ranking

KFU-S-93 1 15.813 98 0.888529 1 0.541211 1

7 16.904 101 0.884358 2 0.526210 2

10 17.336 100 0.883340 3 0.524294 3

11 17.920 104 0.876034 4 0.513226 4

22* 20.022 102 0.852341 5 0.501383 11

2* 16.463 113 0.847871 6 0.509402 5

3* 16.471 113 0.847868 7 0.509339 6

4* 16.500 113 0.847858 8 0.509119 7

5* 16.500 113 0.847858 9 0.509119 8

6* 16.500 113 0.847858 10 0.509119 9

LSE-F-91 3* 13.458 78 0.881499 1 0.552817 2

1* 12.094 87 0.879126 2 0.555747 1

4* 14.720 89 0.855424 3 0.523229 4

2* 12.349 102 0.812127 4 0.527563 3

6 16.408 91 0.804048 5 0.504874 5

17* 17.942 98 0.722929 6 0.480142 7

22* 18.564 93 0.720053 7 0.481747 6

8* 16.486 109 0.707889 8 0.476028 9

23* 18.979 95 0.707212 9 0.474395 11

12* 17.174 105 0.704871 10 0.476479 8

RYE-F-92 1 10.384 87 0.888528 1 0.610225 1

7 12.180 97 0.871582 2 0.558378 2

10 12.337 97 0.870489 3 0.556102 3

8 12.264 98 0.868672 4 0.555205 4

12 12.976 97 0.864830 5 0.547756 5

11 12.417 102 0.854386 6 0.545595 6

6 12.094 105 0.839576 7 0.544225 7

16* 13.678 104 0.831331 8 0.527428 12

23* 14.441 104 0.817334 9 0.519821 14

24* 14.581 104 0.814229 10 0.518513 15

STA-F-83 1 160.746 227 0.888536 1 0.215426 1

2 161.151 227 0.887829 2 0.214107 2

3 164.375 228 0.871792 3 0.202156 3

4 167.394 227 0.824391 4 0.196779 4

5 168.195 227 0.805614 5 0.194967 5

7 168.863 227 0.788882 6 0.193535 6

6* 168.781 232 0.788385 7 0.182500 17

8* 169.100 227 0.782864 8 0.193043 7

10* 171.249 227 0.733062 9 0.188900 8

11* 171.391 227 0.730410 10 0.188645 9

194

7.3 Preliminary Investigations

Table 7.4: A comparison of the results obtained using the two alternative forms of the
normalisation process for data sets TRE-S-92 , UTA-S-92 , UTE-S-92 and YOR-F-83

Timetable Criteria Range[minValue, maxValue] Range[0, maxValue]

Data Set Solution
Number

Average
Penalty

Highest
Penalty

Evaluation
Value

Solution
Ranking

Evaluation
Value

Solution
Ranking

TRE-S-92 3* 9.311 69 0.880078 1 0.478231 2

4* 9.389 68 0.878204 2 0.479078 1

5 9.598 68 0.871588 3 0.475325 3

2* 9.039 75 0.868946 4 0.468005 6

6* 9.757 71 0.864316 5 0.465758 8

8* 9.885 68 0.858365 6 0.469941 4

1* 8.671 77 0.855435 7 0.469016 5

10* 10.003 68 0.851293 8 0.467596 7

7 9.856 75 0.846708 9 0.454514 9

9* 9.981 77 0.826007 10 0.446743 11

UTA-S-92 1 3.567 63 0.888536 1 0.532771 1

2 3.833 68 0.878185 2 0.511100 2

3 3.911 68 0.876019 3 0.508369 3

4 3.927 68 0.875482 4 0.507798 4

5 3.977 68 0.873738 5 0.506065 5

6 4.143 68 0.866816 6 0.500466 6

8 4.531 73 0.807693 7 0.475697 7

9 4.573 73 0.802872 8 0.474319 8

10 4.581 73 0.801938 9 0.474053 9

13 4.976 68 0.762605 10 0.472232 10

UTE-S-92 6 30.323 83 0.879116 1 0.438284 1

4 29.718 86 0.878651 2 0.429775 2

1 28.069 90 0.853031 3 0.420748 3

17 32.804 88 0.835146 4 0.400981 4

11 31.522 91 0.826953 5 0.392480 5

20 33.935 91 0.780095 6 0.378000 6

23 34.928 90 0.767341 7 0.377994 7

18* 32.996 94 0.758297 8 0.367082 9

3* 29.695 98 0.723270 9 0.369027 8

8 30.555 98 0.721926 10 0.362837 10

YOR-F-83 1 39.801 234 0.883004 1 0.372139 1

2* 44.158 233 0.837983 2 0.363036 3

3* 44.412 231 0.831362 3 0.365581 2

4 45.645 228 0.791749 4 0.359602 4

6 45.736 238 0.785008 5 0.345675 5

10 46.810 234 0.751639 6 0.341781 6

12 46.862 235 0.749650 7 0.340088 7

15 47.142 240 0.736830 8 0.330597 8

14* 46.947 244 0.731929 9 0.324728 10

19* 47.396 242 0.726141 10 0.324908 9

195

7.3 Preliminary Investigations

7.3.3 Discussion

The fuzzy system presented here provides a mechanism to allow an overall decision in

evaluating the quality of a timetable solution to be made based on common sense rules

that encapsulate the notion that the timetable solution quality increases as both the

average penalty and the highest penalty decrease. The rules are in a form that is easily

understandable by any incumbent timetabling officer.

Looking at Figures 7.4(a) and 7.4(b) it can be seen that, in many cases, it is not

guaranteed that timetable solutions with low average penalty will also have low highest

penalty. This observation confirmed the assumption that considering only the proximity

cost to measure timetable solution quality is not sufficient. As an example, if the detailed

results obtained for the [0,maxValue] boundary range for LSE-F-91 in Table 7.3 are

analysed, it can be seen that solution 1 (with the lowest average penalty) is not ranked

as the ‘best’ solution by the fuzzy evaluation. The same effect can be observed for the

TRE-S-92 data set (see Table 7.4) and for the UTE-S-92 data set in Table 7.4.

In these three data sets (LSE-F-91 , TRE-S-92 and UTE-S-92), the timetable solu-

tions with the lowest average penalty were not evaluated as the ‘best’ timetable solution,

because the decision made by the fuzzy evaluation system also takes into account an-

other criterion, the highest penalty. This finding can also be seen in the other data sets,

but it is not so obvious especially if only the first three ‘best’ solutions are focussed

on. Regardless of this, in terms of functionality, these results indicate that the fuzzy

evaluation system has performed as intended in measuring the timetable’s quality by

considering two criteria simultaneously.

Analysing Tables 7.2 – 7.4 further, it can also be observed that the decision made

by the fuzzy evaluation function is affected slightly when the different boundary set-

tings are used to normalise the input values. The consequence of this is that the same

timetable solution might be ranked in a different order, dependent on the boundary

196

7.3 Preliminary Investigations

conditions. In Tables 7.2 – 7.4, solutions in which the different boundary settings have

resulted in different ranking position are marked with ∗. For the CAR-F-92 (in Ta-

ble 7.2) and UTA-S-92 data sets (in Table 7.4), the solution rankings are unchanged by

altering the boundary settings. In several cases, the solution rankings are only changed

slightly. It is also interesting to note that, in a few cases, for example solution 22 for

KFU-S-93 (in Table 7.3) and solution 6 for STA-F-83 (in Table 7.3), the ranking change

is quite marked.

Overall, the performance of the fuzzy evaluation system utilizing the boundary range

[0.0,maxValue] did not seem as satisfactory as when the boundary range [minValue,maxValue]

was used. This observation is highlighted by Table 7.5, which presents the fuzzy quality

measure obtained for the ‘worst’ and ‘best’ solutions as evaluated under the two different

boundary settings.

When the boundary range [0.0,maxValue] was used, it can be seen that the fuzzy

evaluation system evaluated the quality of the timetable solutions for the twelve data

sets in the overall range of 0.111464 to 0.610225. In the case of STA-F-83 , the ‘best’

solution was only rated as 0.215426 in quality. The quality of timetable solutions falls

only in the regions of linguistic terms that correspond to meanings of very low, low and

medium in the quality linguistic variable (see Figure 7.2(c)). This is because the lower

limit value used here (i.e. lowerLimit = 0.0) is far smaller than the smallest values

observed in practice. Consequently, the input values for even the lowest values (i.e. the

‘best’ solution qualities) are transformed to normalised values that always fall within

the regions of the medium and high linguistic terms in the input variables. As a result,

the normalised input values will not cause any rule to be fired or, the firing level for any

rule is relatively very low. This is illustrated in Figure 7.5(a), in which the activation

level of the consequent part for Rule 1 is equal to 0.13. Although the possibility exists

for any input to fall into more than one fuzzy set, so that more than one rule can be

fired, the aggregation of fuzzy output for all rules will obtain a final shape that will only

197

7.3 Preliminary Investigations

Table 7.5: Range of timetable quality

Range [0, maxV alue] Range [minV alue, maxV alue]

Data Set Worst
Solution

Best
Solution

Worst
Solution

Best Solution

CAR-F-92 0.111464 0.534427 0.111464 0.888503

CAR-S-91 0.111464 0.557585 0.111464 0.888524

EAR-F-83 0.111465 0.467867 0.111465 0.868135

HEC-S-92 0.127502 0.506506 0.155374 0.863057

KFU-S-93 0.111466 0.541211 0.111466 0.888529

LSE-F-91 0.111895 0.555747 0.112182 0.881499

RYE-F-92 0.115999 0.610225 0.119240 0.888528

STA-F-83 0.111464 0.215426 0.111464 0.888536

TRE-S-92 0.111476 0.479078 0.111488 0.880078

UTA-S-92 0.111464 0.532771 0.111464 0.888536

UTE-S-92 0.111464 0.438284 0.111464 0.879116

YOR-F-83 0.120046 0.372139 0.213388 0.883004

produce a low defuzzification value.

In contrast, Figure 7.5(b) illustrates the situation when the normalised input values

fall in the regions of linguistic term that correspond to the meaning of low. In this

situation, a high defuzzification value will be obtained due to the fact that most of

the rules will have a high firing level. Thus, all of the solutions being ranked first had

quality values more than 0.8, when the initial range [minValue,maxValue] was used. In

this case, the quality of timetable solutions falls in the regions of the linguistic terms

that correspond to meanings of high and very high for the timetable quality fuzzy set

(see Figure 7.2(c)). As might be expected, from the fact that the actual minimum

and maximum values from the 35 constructed timetable solutions were used, the fuzzy

evaluation results were nicely distributed along the universe of discourse of the timetable

quality fuzzy set.

For a clearer comparison of the effect of the two boundary settings, the distribution

of input and output values for the UTA-S-92 data set are presented in Figure 7.6. As

can be seen, the input values (Figure 7.6(b) and Figure 7.6(c)) are concentrated in the

middle regions (0.4 − 0.7) of the graphs when the boundary range [0.0,maxValue] was

198

7.3 Preliminary Investigations

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

quality

fu
zz

ifi
ed

 v
al

ue

verylow low medium high veryhigh

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

highest penalty

fu
zz

ifi
ed

 v
al

ue

low medium high

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

average penalty

fu
zz

ifi
ed

 v
al

ue

low medium high

min

Average penalty = 0.4 Highest penalty = 0.6

mediumlow high mediumlow high mediumverylow high

0.13

Rule 1

0.13

low veryhigh

average penalty highest penalty quality

0.38

(a) Normalised value falls in the middle regions of the universe of discourse

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

highest penalty

fu
zz

ifi
ed

 v
al

ue

low medium high

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

average penalty

fu
zz

ifi
ed

 v
al

ue

low medium high

min

Average penalty = 0.1 Highest penalty = 0.15

mediumlow high mediumlow high

0.93

Rule 1

0.85

veryhigh

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

quality

fu
zz

ifi
ed

 v
al

ue

verylow low medium high veryhigh

mediumverylow high

0.85

low

average penalty highest penalty quality

(b) Normalised value falls in the left regions of the universe of discourse

Figure 7.5: Firing level for Rule 1 with different normalised input values

used. In contrast, when the boundary range [minValue,maxValue] was used, the input

values were concentrated in the bottom regions of the graphs. Based upon the defined

fuzzy rules, we know that the timetable quality increases with a decrease in both input

values. Indeed, this behavior of the output can be observed for both boundary setting

(see Figure 7.6(a)). Using either of the boundary settings, the fuzzy evaluation system

is capable of ranking the timetable solutions. It is purely a matter of choosing the

appropriate boundary settings of the fuzzy sets for the input variables.

199

7.3 Preliminary Investigations

UTA-S-92 : Timetable Quality

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40

Solution Rankings

E
va

lu
at

io
n

 V
al

u
e

Range [0, maxValue]

Range [minValue, maxValue]

(a) Timetable quality

UTA-S-92 : Average Penalty

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

0 10 20 30 40

Solution Rankings

N
o

rm
al

is
ed

 V
al

u
e

Range [0, maxValue]

Range [minValue, max Value]

(b) Average penalty

UTA-S-92 : Highest Penalty

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

0 10 20 30 40

Solution Rankings

N
o

rm
al

is
ed

 V
al

u
e

Range [0, maxValue]

Range [minValue, max Value]

(c) Highest penalty

Figure 7.6: A graphical comparison of the effect of the two boundary settings for
UTA-S-92

200

7.4 Chapter Summary

One of the deficiencies of this fuzzy evaluation, at present, appears to be that there

is no simple way of selecting the boundary settings of the input variables. The drawback

is that both boundary settings implemented so far can only be applied after a number of

timetable solutions are generated. Therefore significant amounts of time are required to

construct and analyse the solutions. Furthermore, if boundary setting are based on the

actual minimum and maximum values from the existing timetable solutions, the fuzzy

evaluation system might not be able to evaluate a newly constructed timetable solution

if the input values for the decision criteria for the new solution lie outside the range of

the fuzzy sets. Actually, output values can always be calculated — the real problem is

that the resultant solution quality will always be the same once both criteria reach the

left-hand boundary of their variables.

7.4 Chapter Summary

In conclusion, the experimental results presented here demonstrate the capability of a

fuzzy approach of combining multiple decision criteria in evaluating the overall quality of

a given timetable solution. This novel approach, in which fuzzy evaluation is applied to

evaluate constructed timetables (as opposed to the objective functions used in solution

generation), represents a significant addition to how the majority of current research

work decides which is the best solution. It is suggested that this approach may have

significant potential for more sophisticated evaluation of a range solutions compared

to previous approaches. This could be of significant benefit in the real-world in which

timetabling officers subjectively evaluate a range of alternative timetable solutions in

order to select the ‘best’ to be used. The fuzzy evaluation function presented here could

be used to support such decision making.

However, in the fuzzy system implementation the selection of the lowerLimit and

upperLimit for the normalisation process is extremely important because it has a sig-

nificant effect on the overall quality obtained. Thus it would be highly beneficial if

201

7.4 Chapter Summary

approximate boundary settings could be determined, particularly some form of estimate

of the lower limit of the assessment criteria, based upon the problem structure itself.

In next Chapter, two novel approximation approaches are introduced to determine the

boundary setting for average penalty and highest penalty.

202

Chapter 8

Determination of Boundary Settings

8.1 Introduction

This Chapter presents novel research into designing and utilising a variety of approaches

for determining the boundary settings to be used in the normalisation process (see Sec-

tion 7.2.3). These boundaries are termed approximate boundaries as they are informal

lower and upper limits to be used within the normalisation process as opposed to lower

and upper bounds which have been formally proven. The main feature of these ap-

proaches is that the approximate boundaries for average penalty and highest penalty are

calculated merely by analysing the underlying structure of the given problem instance,

without the need to construct an actual timetable.

One of the benefit of this approach is that the lower limit and upper limit for the

boundary setting can be determined without the need to construct a range of timetable

solutions. The other benefit is that the lower limit for proximity cost determined using

one of the proposed approaches outlined in this Chapter might indeed represent a lower

bound for the proximity cost as used by many researchers in Carter et al.’s benchmark

data set. As such, it provides an interesting new perspective into how close the best

203

8.1 Introduction

published results on these widely researched benchmark data sets are to the optimum.

In this Chapter, the approach proposed for fuzzy evaluation in the previous Chapter

is expanded in order to make the fuzzy system applicable to a wider range of problem

solutions (i.e. beyond the solutions generated for system training purposes). In order

to achieve this, two new approaches are introduced in which the underlying structure

of the problem instances is exploited in order to determine the boundary settings for

average penalty and highest penalty for each data set. With this approach, it will be

possible to measure the approximate boundary settings without the need to actually

build any actual timetables. The goal is to define boundary settings that have lower limit

and upper limit that cover all possible feasible solutions generated by any algorithm or

optimisation technique for any particular problem instance. This concept is illustrated

graphically in Figure 8.1.

Proximity cost
Upper
Limit

Lower
Limit

Worst
Solution
Quality

Best
Solution
Quality

Figure 8.1: Illustration of boundary coverage concept

The benefit of this approach is that it will reduce the need to generate many timetable

solutions in order to test the system (even if many solutions are generated, there is still

a problem in terms of testing coverage in that the solutions that have been generated

may still not be sufficiently representative to determine the lower limit). This gives a

distinct advantage if the system is applied to new real-world timetabling problems in

which no best and worst solutions are previously available. In the following Sections,

two alternative methods for determining approximate boundary settings are explained.

204

8.2 Approximate Boundaries using Weighting Factors

8.2 Approximate Boundaries using Weighting Fac-

tors

8.2.1 Approximate Boundaries for Average Penalty

The idea is illustrated in Figure 8.2. The first step is to determine the approximate

‘average’ (or medium) proximity cost (Papprox), which will then be multiplied by one

constant factor to give an approximate lower limit and multiplied by another constant

factor to give an approximate upper limit. In order to do so, it is necessary to calcu-

late the maximum proximity cost (Pmax) obtainable if the worst timetable was to be

constructed. It is assumed that the worst timetable (in terms of proximity cost) is con-

structed in the situation where every student has all of their enroled exams scheduled

in adjacent time slots. In reality, it is not possible to assign all exams enroled by each

student in adjacent time slots. This is because it is necessary to consider constraints

amongst the exams across students.

However, in the approach presented here, constraints amongst the exams across

students will not be considered. Only the fact that exams enroled by a student should

be scheduled in different time slots will be taken into account. To give an example,

Proximity cost

Papprox * kUPapprox * kL

Papprox Upper
Limit

Lower
Limit

Worst
Solution
Quality

Best
Solution
Quality

ΔL ΔU

Figure 8.2: Boundary coverage using weighted factors

205

8.2 Approximate Boundaries using Weighting Factors

suppose that Student1 is enroled in the set of seven exams (e1, e2, e3, e4, e5, e6, e7)

and that Student2 is enroled in the set of seven exams (e10, e22, e3, e34, e15, e19, e70).

Despite the fact that, in reality, both students are enroled in exam e3 and hence exam

e3 will be timetabled at the same time for both students, these two sets of exams are

treated as being entirely independent in the calculation of Pmax here. The pseudo code

for calculating Pmax is shown in Figure 8.3.

In the search for the Pmax, the number of exams enroled by each student needs to

be analysed. By doing so, it can be determined how many students are enroled for

any particular number of exams. Then, the penalty imposed on all students having

their enroled exams scheduled in adjacent time slots are calculated. As defined in the

proximity cost formulation, when a particular student has to sit two exams scheduled t

time slots apart, he or she is given a penalty weight of wt = 25−t proximity cost, in which

the applicable weight values are w1 = 16, w2 = 8, w3 = 4, w4 = 2 and w5 = 1. Note

that only exams on the right-hand side (at most five time slots apart — represented by

variable maxTimeSlot) of the exam that is currently under consideration are involved in

the penalty calculation. The penalty that is imposed on the students who enroled in the

corresponding number of exams is then calculated (represented by total1 in Figure 8.3).

Finally, the maximum average penalty is obtained by summing all the total2 values. The

maximum proximity cost, Pmax, obtained when the worst possible timetable is generated,

can be obtained using the following formula:

maximum proximity cost, Pmax =

∑Rmax

i=2 (total2i)∑Rmax

i=1 (examCounti)
, (8.1)

where Rmax is the largest number of exams enroled on by any student, total2i is the

total proximity cost for all students who enroled for i exams, and examCounti is the

number of students who enroled for i exams.

206

8.2 Approximate Boundaries using Weighting Factors

DECLARE INTEGER examEnroled // Number of exams enroled by a student
DECLARE DOUBLE penalty // Penalty cost for the adjacent exams
DECLARE INTEGER maxStudent // Total number of student
DECLARE INTEGER maxTimeSlot // Maximum number of adjacent time slots that penalty will incurred
DECLARE INTEGER Rmax // Maximum number of exams enroled by any one student
DECLARE INTEGER examCount [Rmax] // Number of students enroled for x exams
DECLARE INTEGER total1[Rmax] // Penalty impose on a student enroled for x exams
DECLARE INTEGER total2[Rmax] // Penalty impose on all the students enroled for x exams
DECLARE INTEGER totalStudent
DECLARE DOUBLE Pmax, totalPenalty

// Traverse the student array in order to read each student record
For s = 1 to maxStudent
 // Get the number of exams enroled by student s

examEnroled ← studentArray[s].examEnroled
// Increase the counter by 1

 examCount[examEnroled] ← examCount[examEnroled] + 1
End For

For i = 1 to Rmax
If examCount[i] > 0 // If there is at least one student enroled for i exams

For e = 1 to (i – 1) // Calculate penalty cost for i adjacent exams
maxTimeSlot ← e + 5
If (maxTimeSlot > i)

 maxTimeSlot ← i
 End If

 For j = (e + 1) to maxTimeSlot
 penalty ← 2 ^ (5 - (j - e))
 total1[i] ← total1[i] + penalty
 End For

End For
End If
// Accumulate the number of student
totalStudent ← totalStudent + examCount[i]
// Multiply the penalty cost for i adjacent exams with number of student enroled for i exams
total2[i] ← total1[i] * examCount[i]
// Accumulate the penalty cost
totalPenalty ← totalPenalty + total2[i]

End For
// Calculate the approximate value of maximum total penalty
Pmax ← totalPenalty / totalStudent

Figure 8.3: Pseudo code for approximation of maximum total penalty, Pmax

An illustrative example of applying this algorithm to the LSE-F-91 data set is given

in Figure 8.4. Using the enrolment information, the average number of exams enroled

on per student can be determined. The formula is as follows:

average exams per student, Eavg =

∑Rmax

i=1 (examCounti ∗ i)∑Rmax

i=1 examCounti
, (8.2)

207

8.2 Approximate Boundaries using Weighting Factors

No of exam 1 2 3 4 5 6 7 8 Min Max Avg Std Dev
No of student 99 80 302 1638 474 103 27 3 2726 1 8 3.97 0.99

Number of
Exam

E1 E2 E3 E4 E5 E6 E7 E8 total1
Number of
Student

total2

8
16 8 4 2 1 31

16 8 4 2 1 31
16 8 4 2 1 31

16 8 4 2 30
16 8 4 28

16 8 24
16 16 191 3 573

7
16 8 4 2 1 31

16 8 4 2 1 31
16 8 4 2 30

16 8 4 28
16 8 24

16 16 160 27 4320

6
16 8 4 2 1 31

16 8 4 2 30
16 8 4 28

16 8 24
16 16 129 103 13287

5
16 8 4 2 30

16 8 4 28
16 8 24

16 16 98 474 46452

4
16 8 4 28

16 8 24
16 16 68 1638 111384

3
16 8 24

16 16 40 302 12080

2
16 16 16 80 1280

1
0 0 0 99 0

Total 2726 189376

Figure 8.4: A graphical illustrations of Pmax calculations for LSE-F-91

208

8.2 Approximate Boundaries using Weighting Factors

Logically, it can be expected that the proximity cost will increase with an increase in

the number of exams enroled on by students. By having many exams, it is more difficult

to spread out each student’s schedule. Therefore, it can be stated that

Eavg ↑ ⇒ Pmax ↑

Moreover, it is obvious that the fewer the number of time slots (T) available, the higher

the proximity cost will be. That is, it is more difficult to spread out each student’s

schedule when there are only a limited number of time slots available. Thus, it follows

that

T ↑ ⇒ P ↓

Based on these observations, the following formulation can be used for an approximation

of proximity cost:

approximate proximity cost, Papprox =
(Pmax)(Eavg)

(T)
(8.3)

Having calculated the approximate value of proximity cost (Papprox), the final step is

to multiply Papprox with weighting factors kL and kU , to determine the lowerLimit and

upperLimit of the proximity cost (average penalty) for each data set.

8.2.1.1 Calculation of Weighting Factors

To choose appropriate values for kL and kU is not an easy task. Therefore a set of

experiments were performed on the benchmark data sets in order to determine both of

the weighting factors. In these experiments, the ‘best’ results available in literature and

the purposely generated ‘worst’ solutions were used as guidelines to indicate the range

of coverage required. Table 8.1 shows the minimum and maximum values for each data

set that the lowerLimit and upperLimit should cover.

209

8.2 Approximate Boundaries using Weighting Factors

Table 8.1: The ‘best’ and ‘worst’ timetable solutions known

Data set Best in literature Worst Solution

Max Average

CAR-F-92 3.93 13.34 13.28
CAR-S-91 4.00 11.42 11.35
EAR-F-83 29.30 71.28 67.89
HEC-S-92 9.20 32.00 27.21
KFU-S-93 13.00 43.40 43.40
LSE-F-91 9.60 32.38 30.32
RYE-F-92 6.80 36.71 32.17
STA-F-83 157.03 194.53 194.53
TRE-S-92 7.90 17.25 17.22
UTA-S-92 3.14 8.79 8.76
UTE-S-92 24.40 56.34 56.34
YOR-F-83 36.20 64.82 63.96

Results obtained for running the algorithm depicted in Figure 8.3 on the benchmark

data sets are shown in Table 8.2. After careful examination of these results, it was de-

termined that setting kL = 0.55 and kU = 3.10 produced boundary settings that covered

the penalty costs of all timetable solutions quality within the ‘best’ and ‘worst’ results

defined in Table 8.1. Two further important values were then examined. These were ∆U ,

the difference between the highest observed penalty cost (for the ‘worst’ solution) and

the approximate upper limit, and ∆L, the difference between the lowest observed penalty

cost (for the ‘best’ solution) and the approximate lower limit (see Figure 8.2). It can be

seen from Table 8.2 that ∆U for STA-F-83 is very high, and that ∆U for EAR-F-83

and YOR-F-83 are also quite high. This means that the upperLimit for these data sets

is set far too high above the worst available solutions. As the timetabling problem is

a minimisation problem, it might be naturally expected that most timetables are gen-

erated towards ‘best’ solutions, not towards ‘worst’ solution. Therefore ∆U should be

minimised in order to get satisfactory fuzzy evaluation results.

Further investigations indicated that these three data sets (STA-F-83 , EAR-F-83

210

8.2 Approximate Boundaries using Weighting Factors

Table 8.2: Approximate boundaries derived by considering all students

Data sets No of Enrolments Eavg Pmax Papprox Average Penalty Differences

Students lowerLimit upperLimit ∆L ∆U

(kL = 0.55) (kU = 3.10)

CAR-F-92 18419 55522 3.01 45.01 4.24 2.33 13.14 1.60 0.02

CAR-S-91 16925 56877 3.36 54.55 5.24 2.88 16.24 1.12 5.07

EAR-F-83 1125 8109 7.21 166.50 50.01 27.50 155.02 1.80 86.24

HEC-S-92 2823 10632 3.77 64.67 13.53 7.44 41.94 1.76 10.62

KFU-S-93 5349 25113 4.69 90.71 21.29 11.71 66.01 1.29 23.68

LSE-F-91 2726 10918 4.12 69.47 15.46 8.50 47.92 1.10 16.31

RYE-F-92 11483 45051 3.92 71.28 12.16 6.69 37.69 0.11 1.59

STA-F-83 611 5751 9.41 234.79 169.99 93.50 526.98 58.02 340.95

TRE-S-92 4360 14901 3.42 55.20 8.20 4.51 25.43 3.39 8.59

UTA-S-92 21266 58979 2.77 39.42 3.12 1.72 9.68 1.42 1.05

UTE-S-92 2749 11793 4.29 77.85 33.38 18.36 103.49 6.04 48.81

YOR-F-83 941 6034 6.41 142.51 43.51 23.93 134.89 12.27 72.25

and YOR-F-83) have a very small number of students with only one exam, compared

to the other nine data sets. The distributions of the number of students enroled for a

particular number of the exams for each data set are presented in Table 8.3. There are

two interesting observations that can be made from this Table. Firstly, it can be seen

that in four data sets (CAR-F-92 , CAR-S-91 , RYE-F-92 and UTA-S-92), the number

of students with only one exam is between 2025 and 6180, while for the other eight

data sets the number of students with only one exam is between only 0 and 667. As the

proximity cost is calculated by dividing the total penalty by the total number of students,

it is obvious that the proximity cost is highly affected by the number of students with

only one exam for each data set. In one sense, students with only one exam should not

given any penalty. Secondly, the fact that, for STA-F-83 , 610 out of 611 of the students

are enroled for 8, 9 or 11 exams appears to explain why this data set has a very high

proximity cost compared to the other data sets. Data sets EAR-F-83 and YOR-F-83

also show the same pattern (most of the students enroled for many exams) but to a less

extreme extent. The average number of exams enroled by each student (Eavg) for these

three data sets is between 6 and 10 (see the fourth column of Table 8.2).

211

8.2 Approximate Boundaries using Weighting Factors

Table 8.3: Distribution of students enroled for a particular number of exams

Data sets Number of exams

1 2 3 4 5 6 7 8 9 10 11 12 13 14

CAR-F-92 3969 3330 3436 4168 3212 275 29

CAR-S-91 3409 2145 2107 4098 4569 565 27 4 1

EAR-F-83 1 1 1 20 72 201 302 409 109 9

HEC-S-92 321 315 351 659 1071 105 1

KFU-S-93 276 234 277 765 2515 1082 189 11

LSE-F-91 99 80 302 1638 474 103 27 3

RYE-F-92 2025 1463 1492 1714 1884 1487 939 459 19 1

STA-F-83 1 162 239 209

TRE-S-92 667 524 744 1191 1214 20

UTA-S-92 6180 3866 3717 4026 3073 381 23

UTE-S-92 78 118 276 754 1503 20

YOR-F-83 1 20 93 64 44 174 172 372 1

One possible way to reduce the ∆U for STA-F-83 , EAR-F-83 and YOR-F-83 is

to eliminate the students with only one exam in the Papprox calculations. Therefore,

when no students with only one exam are considered, the initial value of variable j in

Equation (8.1) is set to 2; while for Equation (8.2), the initial values of both variables i

and j are set to 2. Accordingly, the pseudo code depicted in Figure 8.3 also needs to be

amended in several lines. Table 8.4 shows the results obtained when students with only

one exam are excluded from the calculations. Appropriate values for the lowerLimit and

upperLimit were then obtained by using kL = 0.38 and kU = 2.15, respectively.

It can be seen that a smaller weighting factor, kU , was required to obtained the

upperLimit that cover the range up to the worst solution for all data sets. Hence, ∆U

was also reduced in most cases, compared to the previous setting (i.e. those obtained

for kU = 3.10 when considering all students). A comparison of the boundary ranges (i.e.

upperLimit − lowerLimit) is shown in Table 8.5. Except for three data sets (CAR-F-92 ,

CAR-S-91 and UTA-S-92), it can be seen that the boundary ranges are reduced when

students with only one exam are excluded. For the purpose of comparison, both bound-

aries settings (see the seventh and eighth columns of Tables 8.2 and 8.4) were used in

the normalisation process of the fuzzy evaluation experiments.

212

8.2 Approximate Boundaries using Weighting Factors

Table 8.4: Approximate boundaries derived by excluding students with only one exam

Data sets No of Enrolments Eavg Pmax Papprox Average Penalty Different

Students lowerLimit upperLimit ∆L ∆U

(kL = 0.38) (kU = 2.15)

CAR-F-92 14450 51553 3.57 57.37 6.40 2.43 13.75 1.50 0.42

CAR-S-91 13516 53468 3.96 68.31 7.73 2.93 16.60 1.07 5.17

EAR-F-83 1124 8108 7.21 166.65 50.04 19.03 107.69 10.27 36.41

HEC-S-92 2502 10311 4.12 72.96 16.70 6.35 35.92 2.85 3.91

KFU-S-93 5073 24837 4.90 95.65 23.43 8.90 50.34 4.10 6.94

LSE-F-91 2627 10819 4.12 72.09 16.50 6.27 35.46 3.33 3.08

RYE-F-92 9458 43026 4.55 86.54 17.12 6.50 36.80 0.30 0.09

STA-F-83 611 5751 9.41 234.79 169.99 64.60 365.48 86.92 170.95

TRE-S-92 3693 14234 3.85 65.17 10.91 4.15 23.48 3.75 6.24

UTA-S-92 15086 52799 3.50 55.57 5.56 2.11 11.95 1.03 3.15

UTE-S-92 2671 11715 4.39 80.12 35.17 13.35 75.52 11.05 19.18

YOR-F-83 940 6033 6.42 142.66 43.61 16.57 93.74 19.63 28.92

Table 8.5: A comparison of the range of boundary settings for average penalty

Data sets All students Excluding
students with

only one exam

CAR-F-92 11.02 11.32
CAR-S-91 13.62 13.66
EAR-F-83 130.02 88.66
HEC-S-92 35.18 29.57
KFU-S-93 55.37 41.44
LSE-F-91 40.19 29.19
RYE-F-92 31.61 30.30
STA-F-83 441.98 300.89
TRE-S-92 21.33 19.33
UTA-S-92 8.12 9.84
UTE-S-92 86.80 62.17
YOR-F-83 113.14 77.17

213

8.2 Approximate Boundaries using Weighting Factors

8.2.2 Approximate Boundaries for Highest Penalty

In terms of highest penalty, the upperLimit value was determined by the following for-

mula:

maximum highest penalty, HPmax =
Rmax−1∑

i=1

maxgap∑
j=j+1

25−(j−i), (8.4)

where

maxgap =


i + 5, if (i + 5) 6 Rmax

Rmax, otherwise

Basically HPmax represents the proximity cost penalty for the maximum number of

exams enroled on by an individual student. In the pseudo-code shown in Figure 8.3,

this value is represented by the array subtotal1 for element number maxExam. Refer-

ring to the given example (see Figure 8.4), Rmax = maxExam = 8; hence HPmax =

subtotal1[8] = 191.

As this is the first attempt to consider the highest penalty imposed on any individual

student in evaluating timetable quality, wide experience of appropriate ranges for this

variable was not available. Hence, only the minimum and maximum values of highest

penalty for each data set from timetable solutions that had been generated in this re-

search (see Section 7.3 for the descriptions of how the solutions were generated) were used

as guidelines to determine the lower limit and upper limit for the boundary setting.

Table 8.6 shows the boundary settings for highest penalty employed in the experiments.

The phrase ‘In hands timetable’ is referred to the set of timetable solutions obtained in

the experiments as explained in Section 7.3. The lowerLimit value was simply obtained

by multiplying the upperLimit (HPmax) with a weighting factor kLHP
= 0.3 (which was

determined empirically).

214

8.3 Algorithmic Determination of the Lower Boundary

Table 8.6: The boundary settings for highest penalty

Data sets In hands timetable solutions quality Approximate boundary

Min Max Avg lowerLimit upperLimit

CAR-F-92 65.0 84.0 71.8 48.0 160.0

CAR-S-91 68.0 101.0 77.1 66.6 222.0

EAR-F-83 105.0 194.0 140.3 75.9 253.0

HEC-S-92 75.0 129.0 95.3 48.0 160.0

KFU-S-93 98.0 131.0 114.4 57.3 191.0

LSE-F-91 78.0 160.0 105.5 57.3 191.0

RYE-F-92 87.0 139.0 110.9 75.9 253.0

STA-F-83 227.0 248.0 228.2 85.2 284.0

TRE-S-92 68.0 98.0 79.3 38.7 129.0

UTA-S-92 63.0 106.0 75.0 48.0 160.0

UTE-S-92 83.0 129.0 100.4 38.7 129.0

YOR-F-83 228.0 301.0 252.7 101.1 337.0

8.3 Algorithmic Determination of the Lower Bound-

ary

In the derivation of approximate boundaries detailed above, the assumption was made

that maximum penalty cost for a student could be obtained by placing all their exams in

adjacent time slots (see Equation (8.1)). In order to calculate an approximate minimum

proximity cost (Pmin), utilising the underlying structure of the problem instances, a

contrasting assumption was applied. Conceptually, in order to mimimise the proximity

cost, the task is to spread out the exams enroled on by each student as much as possible.

That is, the objective is to assign the enroled exams into the time slots that will cause the

least penalty cost for the particular number of enroled exams. In a similar approach to

that described in the Pmax calculation detailed in Section 8.2.1, no constraints amongst

exams across students were considered. By ignoring constraints amongst exams, it is to

be expected that any feasible solution must have an average penalty that is higher than

the lowerLimit determined using this approach. In effect, ignoring this hard constraint

means that the lowerLimit is applicable to some solutions which are infeasible. However,

215

8.3 Algorithmic Determination of the Lower Boundary

crucially, it is applicable to all solutions that are feasible. Of course, if it were possible

to derive the formal lower bound for the set of feasible solutions only, then this lower

bound would represent the global optimum for this minimisation problem.

Two algorithms to determine this lowerLimit are presented below. The first features

a brute-force method in which all possible combinations of placements of exams are

considered. When run, it was found that this can take a large amount of time (obviously

dependent on the problem size) and so a refinement of the algorithm was developed. This

refinement features a type of ‘greedy’ placement algorithm, which omits many placement

combinations but runs in much faster time. In order to further reduce the computational

time (for both forms of the algorithm), only the number of enroled exams that can cause

penalty are taken into account during the calculations. For a problem with T time slots

available, the minimum number of enroled exams that will cause penalty is given by:

minExams causePenalty = ((int)(T + 5)/6) + 1, (8.5)

8.3.1 Brute Force Lower Limit Approximation Algorithm

The first algorithm is termed the Brute Force Lower Limit Approximation Algorithm

(BFLLAA). BFLLAA starts with all the enroled exams assigned in adjacent time slots.

Later on, in the sequence of iterations, the exams are moved in a systematic manner

in the search for the placement of exams that causes the least penalty. It is difficult to

represent the algorithm in pseudo-code, as the number of nested loops is dependent on

the number of exams that is currently under consideration. For example, if the penalty

cost for seven exams is being calculated, then seven nested loops are required.

Hence, an illustrative example is given in order to explain this algorithm. Consider

a problem with only eight time slots. From Equation (8.5), the minimum number of

exams that cause penalty is three. Let us assume that there are ten students enroled for

three exams and five students enroled for four exams. Figure 8.5 shows the pseudo-code

216

8.3 Algorithmic Determination of the Lower Boundary

for BFLLAA when calculating the penalty for three enroled exams. In Figure 8.6, an

illustration of the process is given (for 3 enroled exams), showing some of the steps of the

iterative process. Steps (i) and (vi) represent the first and the final step, respectively.

Steps (ii) – (v) are not in the full sequence, but are only used to show an illustrative

sample of the steps in the process. At the end of the process, the minimum penalty found

is accumulated as the total penalty. The same process is performed for each number

of enroled exams in sequence, until the stopping criteria is reached, at which point the

number of enroled exams is equal to the maximum number of exams enroled by any of

the students. For example, Figure 8.7 shows how the pseudo-code proceeds in order to

calculate the penalty for four enroled exams. Finally, Pmin is obtained by dividing the

accumulated penalty by the number of students.

8.3.2 Greedy Lower Limit Approximation Algorithm

The second algorithm is termed the Greedy Lower Limit Approximation Algorithm

(GLLAA). The pseudo-code for GLLAA is shown in Figure 8.8. For each number of

enroled exams in turn (starting with minExams causePenalty) the following is carried

out. An empty timetable is created with the specified number of time slots. For each

exam in turn, the exam is assigned to the time slot that incurs the least penalty. After

assigning each of the exams into a time slot, the penalty incurred is calculated. This

value is then multiplied by the number of students enroled on this specified number

of exams. The result of this calculation is then accumulated to the total penalty. The

process continues for each of the number of exams enroled until the maximum number of

enroled exams is reached. Pmin is determined by dividing the total penalty by the total

number of students (considering all students). Note that, at each iteration the timetable

is re-initialised as an empty timetable. This means that the process of assigning the ex-

ams to time slots for the current iteration is not affected by the exam assignments made

in the previous iteration. However, the penalty incurred at each iteration is accumulated.

217

8.3 Algorithmic Determination of the Lower Boundary

DECLARE INTEGER examEnroled // Number of exams enroled by a student
DECLARE INTEGER maxStudent // Total number of student
DECLARE DOUBLE penalty // Penalty cost for the adjacent exams
DECLARE INTEGER maxPeriod // Number of time slots available
DECLARE INTEGER maxExam // Maximum number of exams enroled by any one student
DECLARE INTEGER schedule[maxPeriod] // Holds timetable
DECLARE INTEGER examCount [maxExam] // Number of students enroled for x exams
DECLARE INTEGER subtotal[maxExam] // Penalty impose on a student enroled for x exams
DECLARE DOUBLE minPenalty, totalPenalty

// STEP 1 : Traverse the student array in order to read each student record
For s = 1 to maxStudent
 // Get the number of exams enroled by student s

examEnroled ← studentArray[s].examEnroled
// Increase the counter by 1

 examCount[examEnroled] ← examCount[examEnroled] + 1
End For

// STEP 2 : Calculate and find the exams arrangement that will cause minimum penalty cost for 3 exams
minPenalty ← 10000.0
maxPeriod ← 8
examToSchedule ← 3
DECLARE INTEGER exam[examToSchedule] ← {1,2,3} //Initialise exams list with size examEnroled
DECLARE INTEGER stopindex [examToSchedule] //Controller to avoid exams schedule in the same time slot
DECLARE INTEGER schedule [maxPeriod] // Holds timetable
stopindex[1] ← maxperiod
stopindex[2] ← maxperiod - 1
stopindex[3] ← maxperiod - 2

For L1 = 1 to stopindex[3]

For L2 = L1+1 to stopindex[2]
 For L3 = L2+1 to stopindex[1]
 schedule[L1] ← exam[1]
 schedule[L2] ← exam[2]
 schedule[L3] ← exam[3]
 penalty ← calculate penalty of assigning examToSchedule exams into schedule[]
 if (penalty < minPenalty)
 minPenalty ← penalty

End For
End For

End For
subtotal[examToSchedule] ← minPenalty * examCount[examToSchedule]
totalPenalty ← totalPenalty + subtotal[examToSchedule]

Figure 8.5: Pseudo code for BFLLAA for three enroled exams

218

8.3 Algorithmic Determination of the Lower Boundary

31 2
[3] [4] [5] [6] [7] [8][1] [2]

L3L1 L2

timeslot penalty = 400

31 2
[3] [4] [5] [6] [7] [8][1] [2]

timeslot penalty = 280

L3L1 L2

stopindex86 7

[1][3] [2]

31 2
[3] [4] [5] [6] [7] [8][1] [2]

timeslot penalty = 160

L3L1 L2

2 31
[3] [4] [5] [6] [7] [8][1] [2]

timeslot penalty = 280

L3L1 L2

(i)

(ii)

(iii)

(iv)

2 31

[3] [4] [5] [6] [7] [8][1] [2]

timeslot penalty = 180

L3L1 L2

(v)

1 2 3
[3] [4] [5] [6] [7] [8][1] [2]

timeslot penalty = 400(vi)

L3L1 L2

Figure 8.6: Illustrative example of BFLLAA for 3 enroled exams

219

8.3 Algorithmic Determination of the Lower Boundary

// STEP 3 : Calculate and find the exams arrangement that will cause minimum penalty cost for 4 exams
minPenalty ← 10000
maxPeriod ← 8
examToSchedule ← 4
DECLARE INTEGER exam[examToSchedule] ← {1,2,3,4} //Initialise exams list with size examEnroled
DECLARE INTEGER stopindex [examToSchedule] //Controller to avoid exams schedule in the same time slot
DECLARE INTEGER schedule [maxPeriod] // Holds timetable
stopindex[1] ← maxperiod
stopindex[2] ← maxperiod - 1
stopindex[3] ← maxperiod - 2
stopindex[4] ← maxperiod - 3

For L1 = 1 to stopindex[4]

For L2 = L1+1 to stopindex[3]
 For L3 = L2+1 to stopindex[2]

 For L4 = L3+1 to stopindex[1]
 schedule[L1] ← exam[1]
 schedule[L2] ← exam[2]

 schedule[L3] ← exam[3]
 schedule[L4] ← exam[4]
 penalty ← calculate penalty of assigning examToSchedule exams into schedule[]

 if (penalty < minPenalty)
 minPenalty ← penalty
 End For

End For
End For

End For
subtotal[examToSchedule] ← minPenalty
totalPenalty ← totalPenalty + subtotal[examToSchedule]

Figure 8.7: Pseudo code for BFLLAA for four enroled exams (continue from Figure 8.5)

8.3.3 Comparison of Lower Limit Algorithms

An experiments was performed in order to evaluate and compare these two new meth-

ods for calculating the lowerLimit (BFLLAA and GLLAA). A comparison of Pmin values

obtained using the two alternative algorithms is presented in Table 8.7. The approx-

imate time taken by the two algorithms is also shown for comparative purposes (run

on the same hardware under the same experimental conditions, but not particularly

carefully controlled). It can be seen that four of the data sets have values of Pmin that

are well above zero (EAR-F-83 , STA-F-83 , UTE-S-92 and YOR-F-83), another four

have values of Pmin that are smaller but still definitely non-zero (HEC-S-92 , KFU-S-93 ,

LSE-F-91 and RYE-F-92) and the other four have values quite close to zero (CAR-F-92 ,

220

8.3 Algorithmic Determination of the Lower Boundary

DECLARE INTEGER examEnroled // Number of exams enroled by a student
DECLARE DOUBLE penalty // Penalty cost for the adjacent exams
DECLARE INTEGER maxStudent // Total number of student
DECLARE INTEGER maxPeriod // Number of time slots available
DECLARE INTEGER maxExam // Maximum number of exams enroled by any one student
DECLARE INTEGER schedule[maxPeriod] // Holds timetable
DECLARE INTEGER examCount [maxExam] // Number of students enroled for x exams
DECLARE INTEGER subtotal1[maxExam] // Penalty impose on a student enroled for x exams
DECLARE INTEGER subtotal2[maxExam] // Penalty impose on all students who enroled for x exams
DECLARE INTEGER minExams_causePenalty
DECLARE DOUBLE Pmi, totalPenalty

// Traverse the student array in order to read each student record
For s = 1 to maxStudent
 // Get the number of exams enroled by student s

examEnroled ← studentArray[s].examEnroled
// Increase the counter by 1

 examCount[examEnroled] ← examCount[examEnroled] + 1
End For

//Set the minimum number of time slot that will cause penalty
minExams_causePenalty ← ((maxPeriod +5) / 6) + 1

For e = minExams_causePenalty to maxExam

Reset schedule[] as an empty timetable
If examCount[e] > 0
 DECLARE INTEGER unscheduledList[e] // Declare dummy exams list with size e

For i = 1 to e //Assign exam into time slot
 E# ← unscheduledList[i]
 Assign exam E# into a time slot in schedule[] with minimum penalty cost

 End For
penalty ← calculate penalty of assigning e exams into schedule[]
subtotal1[e] ← penalty

End If
// Multiply the penalty cost for e exams with number of student enroled for e exams
subtotal2[e] ← subtotal1[e] * examCount[e]
// Accumulate the penalty cost
totalPenalty ← totalPenalty + subtotal2[e];

End For
// Calculate the approximate value of minimum total penalty
Pmin = totalPenalty / maxStudent;

Figure 8.8: Pseudo code for GLLAA

CAR-S-91 , TRE-S-92 and UTA-S-92). Note that the time taken by BFLLAA is some-

times significant (many hours) for these data sets. Not also that the time taken by

GLLAA is very much smaller This is the first time that an attempt has been made

221

8.3 Algorithmic Determination of the Lower Boundary

Table 8.7: lowerLimit values for average penalty calculated using BFLLAA and GLLAA

Data sets BFLLAA GLLAA Percent Diff.

Pmin Time (mins.) Pmin Time (mins.) in Pmin

CAR-F-92 0.0079 55 0.0126 < 1 37.30
CAR-S-91 0.0059 1458 0.0066 < 1 10.61
EAR-F-83 17.8471 52 19.4053 < 1 8.03
HEC-S-92 3.4945 1 4.2905 < 1 18.55
KFU-S-93 5.6338 2 7.9323 < 1 28.98
LSE-F-91 2.7649 1 3.1548 < 1 12.36
RYE-F-92 3.7868 32 4.2113 < 1 10.08
STA-F-83 152.0458 < 1 153.7136 < 1 1.09
TRE-S-92 0.5936 1 0.6028 < 1 1.53
UTA-S-92 0.00216 81 0.0022 < 1 1.82
UTE-S-92 21.5098 < 1 24.3647 < 1 11.72
YOR-F-83 18.9607 7 20.9915 < 1 9.67

to derive a lower limit for the proximity cost achievable on these data sets and it is

interesting to note how high the lower limit for STA-F-83 actually is. Indeed, initially

it appeared that the lower limit derived here was above some results previously quoted

in literature. Of course, if results lower than the lower limit derived here had been

achieved, then it would imply that the assumptions made here (in order to derive the

lower limit) were incorrect. Remember that, although not formally proven as a lower

bound, the lower limit calculations derived here are believed to apply to all feasible

solutions — i.e. it is believed that any feasible solution must lie above the lower limit

derived by BFLLAA. As an aside, as GLLAA is known to be a greedy approximation of

the brute-force limit, it is possible that a feasible solution lies below the GLLAA limit.

However, it can be seen that the differences between the Pmin values obtained by the

two algorithms is quite small (within around ten percent or less of BFLLAA), while the

time taken is very much quicker.

222

8.3 Algorithmic Determination of the Lower Boundary

8.3.4 Algorithmic Derivation of Boundaries

Given that, for the Carter data sets, BFLLAA could be run in reasonable time, there was

no reason not to use the values of Pmin obtained using this method as the lowerLimit . and

then to determine a method for deriving the lowerLimit and upperLimit based on these

algorithms. Hence, the Pmin derived by BFLLAA for each data set was assigned as the

lowerLimit for average penalty. Having obtained an algorithmic value for the lowerLimit ,

the next step was to derive a method for calculating upperLimit . The algorithmic method

for deriving Pmax and Papprox calculated when considering all students, as presented in

Section 8.2.1 (see Table 8.2), was reused in a slightly modified form. Firstly, a smaller

multiplying factor of 2.0 for Papprox was utilised to give a smaller upperLimit . These

values of upperLimit were determined empirically in order to bring the boundaries close

to the lower and upper values observed in practice (so that the overall (fuzzy) quality

for the ‘best’ solution and the ‘worst’ solution are easily differentiated). The upperLimit

values should not be set too far from the lowerLimit as the intention is to construct

timetable solutions with smaller proximity cost. It was also noted that for one data set

(STA-F-83), even this value of upperLimit was higher than Pmax, and so an additional

condition was introduced limiting the upperLimit to Pmax. Hence, the upperLimit was

determined as follows:

upperLimit =


Pmax, if Papprox ∗ 2.0 > Pmax

Papprox ∗ 2.0, otherwise

where Pmax and Papprox are calculated when considering all students (see Table 8.2). The

resultant boundary settings that were obtained in this way are shown in Table 8.8.

223

8.4 Evaluation of Boundary Settings

Table 8.8: Boundary settings for average penalty using BFLLAA lowerLimit

Data sets lowerLimit upperLimit

CAR-F-92 0.008 8.48
CAR-S-91 0.006 10.47
EAR-F-83 17.847 100.01
HEC-S-92 3.495 27.06
KFU-S-93 5.634 42.59
LSE-F-91 2.765 30.92
RYE-F-92 3.787 24.32
STA-F-83 152.046 234.79
TRE-S-92 0.594 16.41
UTA-S-92 0.002 6.25
UTE-S-92 21.510 66.77
YOR-F-83 18.961 87.03

8.4 Evaluation of Boundary Settings

8.4.1 Methods

A similar experimental setup as described in Section 7.3.1 was implemented in order to

examine the effect of the various methods introduced so far for determining the boundary

of average penalty. Based on the methods explained in Sections 8.2.1 and 8.3, three

new boundary settings were examined, and these were compared to the two methods

introduction in Chapter 7. The five boundary methods compared were:

• the range[0.0, maxValue] described in previous Chapter (referred to as Range1);

• the range[minValue, maxValue] described in previous Chapter (Range2);

• the range[lowerLimit , upperLimit] using the approximate boundaries calculated

by considering all students, as described in Section 8.2.1.1 and given in columns 7–8

of Table 8.2 (Range3);

• the range[lowerLimit , upperLimit] using the approximate boundaries calculated

by excluding students sitting only one exam, as described in Section 8.2.1.1 and

224

8.4 Evaluation of Boundary Settings

given in columns 7–8 of Table 8.4 (Range4); and

• the range[lowerLimit , upperLimit] derived algorithmically based on BFLLAA, as

described in Section 8.3.1 and given in Table 8.8 (Range5).

Note that, in terms of highest penalty, similar boundary settings to those implemented

in the previous experiments (see Table 8.6) were employed unaltered.

8.4.2 Results

Table 8.9 shows the fuzzy quality measure obtained for the ‘worst’ and ‘best’ solutions

as evaluated under the three new boundary settings introduced in the Chapter (termed

Range 3 to Range 5, above). Figures 8.9 to 8.20 show graphs of the solutions ranked

by the various fuzzy evaluation functions against the ranking obtained by the original

proximity cost. In each graph, all the qualities obtained from the fuzzy evaluation

using the five alternative boundary settings described above are plotted. If the ranking

obtained by the new method is the same as that obtained by the original proximity

cost solution, then the point will lie on the line y = x. For example, in Figure 8.9,

the solution ranked 18th lowest by proximity cost was also ranked 18th lowest by the

fuzzy evaluation measure based on Range2. Any point plotted either above or below the

y = x line represents that the rank of the solution obtained using the fuzzy evaluation is

above or below the rank obtained when only considering proximity cost in measuring the

solution quality. Overlapped markers for the boundary settings show that the respective

boundary settings evaluated the solution to the same ranked position. For example, in

Figure 8.9 again, the same solution was ranked best (rank 1) by all evaluation methods.

8.4.3 Discussion

It is immediately evident that the solution rankings have changed in comparison with

the initial ranking (i.e. that based only upon proximity cost) when the fuzzy evaluation

is utilised to rank the solutions. This is consistent with the results obtained in the

225

8.4 Evaluation of Boundary Settings

Table 8.9: A comparison of the results of fuzzy evaluation obtained by using the approx-
imate boundary settings based on the three new methods introduced in this Chapter

Data sets Range3 Range4 Range5

Worst Best Worst Best Worst Best

CAR-F-92 0.250194 0.797254 0.269371 0.805984 0.219585 0.663828
CAR-S-91 0.330549 0.838201 0.333812 0.840984 0.287907 0.682057
EAR-F-83 0.481702 0.831354 0.393637 0.747719 0.374716 0.724998
HEC-S-92 0.327018 0.734226 0.275794 0.705584 0.189365 0.628090
KFU-S-93 0.298753 0.736131 0.155710 0.717846 0.111464 0.653105
LSE-F-91 0.295403 0.836315 0.130307 0.763360 0.111464 0.700172
RYE-F-92 0.286992 0.867045 0.284188 0.863133 0.283494 0.725924
STA-F-83 0.467568 0.566619 0.336497 0.476504 0.313114 0.571982
TRE-S-92 0.293612 0.676428 0.274126 0.653753 0.111464 0.544662
UTA-S-92 0.250256 0.786457 0.352895 0.834831 0.241961 0.658009
UTE-S-92 0.334524 0.678439 0.265393 0.611868 0.202785 0.659118
YOR-F-83 0.379577 0.659125 0.296110 0.555702 0.288389 0.552610

CAR-F-92

y = x

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

 Ranking by Proximity Cost

R
an

ki
n

g
 b

y
F

u
zz

y
E

va
lu

at
io

n

Range1 Range2
Range3 Range4
Range5

Figure 8.9: A comparison of rankings produced by the five boundary settings used for
CAR-F-92

226

8.4 Evaluation of Boundary Settings

CAR-S-91

y = x

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

 Ranking by Proximity Cost

R
an

ki
n

g
 b

y
F

u
zz

y
E

va
lu

at
io

n

Range1 Range2
Range3 Range4
Range5

Figure 8.10: A comparison of rankings produced by the five boundary settings used for
CAR-S-91

previous Chapter (when the boundary setting Range1 and Range2 were employed).

In terms of functionality, these results indicate that the fuzzy evaluation system has

performed as intended in measuring the timetable’s quality by considering two criteria

simultaneously. Although different boundary settings were utilised, the results show the

same pattern of overall fuzzy quality in terms of evaluation performance. For example,

in Figure 8.9, in the case of the solution that was ranked 7th by proximity cost, the five

different boundary settings ranked the solution between 12th and 17th. The reason why

the rankings produced by different boundary conditions is slightly different has been

discussed in the previous Chapter. Notice that in some cases the difference in rankings

is quite marked. For example, this situation can be observed in the following cases (in

this list the rank refers to Ranking by Proximity Cost (i.e the x-axis)):

• the solution ranked 15th for CAR-S-91 (Figure 8.10)

• the solution ranked 3rd for HEC-S-92 (Figure 8.12)

227

8.4 Evaluation of Boundary Settings

EAR-F-83

y = x

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

 Ranking by Proximity Cost

R
an

ki
n

g
 b

y
F

u
zz

y
E

va
lu

at
io

n

Range1 Range2
Range3 Range4
Range5

Figure 8.11: A comparison of rankings produced by the five boundary settings used for
EAR-F-83

• the solution ranked 22nd for KFU-S-93 (Figure 8.13)

• the solutions ranked 6th and 9th for STA-F-83 (Figure 8.16)

• the solution ranked 5th for UTE-S-92 (Figure 8.19)

One should notice that, even though the difference in ranking is quite marked, the overall

fuzzy quality for the solutions calculated by the five boundary settings are in the same

direction (i.e. they all lie either above or below the line y = x).

On the other hand, very close agreement can be observed for the solutions ranked

1st to 5th and 32nd to 35th for three data sets (CAR-F-92 , CAR-S-91 and UTA-S-92).

Further investigation showed that the five ‘best’ solutions ranked 1st to 5th for each of

these three data sets have highest penalty values that are almost identical (and hence

only average penalty has a bearing on relative solution quality). Concerning the solutions

ranked 32th to 35th, it can be observed that the last four worst solutions for CAR-S-91

and UTA-S-92 data sets have the same highest penalty value — 164 for CAR-S-91 and

228

8.4 Evaluation of Boundary Settings

HEC-S-92

y = x

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

 Ranking by Proximity Cost

R
an

ki
n

g
 b

y
F

u
zz

y
E

va
lu

at
io

n

Range1 Range2
Range3 Range4
Range5

Figure 8.12: A comparison of rankings produced by the five boundary settings used for
HEC-S-92

KFU-S-93

y = x

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

 Ranking by Proximity Cost

R
an

ki
n

g
 b

y
F

u
zz

y
E

va
lu

at
io

n

Range1 Range2
Range3 Range4
Range5

Figure 8.13: A comparison of rankings produced by the five boundary settings used for
KFU-S-93

229

8.4 Evaluation of Boundary Settings

LSE-F-91

y = x

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

 Ranking by Proximity Cost

R
an

ki
n

g
 b

y
F

u
zz

y
E

va
lu

at
io

n

Range1 Range2
Range3 Range4
Range5

Figure 8.14: A comparison of rankings produced by the five boundary settings used for
LSE-F-91

RYE-F-92

y = x

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

 Ranking by Proximity Cost

R
an

ki
n

g
 b

y
F

u
zz

y
E

va
lu

at
io

n

Range1 Range2
Range3 Range4
Range5

Figure 8.15: A comparison of rankings produced by the five boundary settings used for
RYE-F-92

230

8.4 Evaluation of Boundary Settings

STA-F-83

y = x

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

 Ranking by Proximity Cost

R
an

ki
n

g
 b

y
F

u
zz

y
E

va
lu

at
io

n

Range1 Range2
Range3 Range4
Range5

Figure 8.16: A comparison of rankings produced by the five boundary settings used for
STA-F-83

TRE-S-92

y = x

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

 Ranking by Proximity Cost

R
an

ki
n

g
 b

y
F

u
zz

y
E

va
lu

at
io

n

Range1 Range2
Range3 Range4
Range5

Figure 8.17: A comparison of rankings produced by the five boundary settings used for
TRE-S-92

231

8.4 Evaluation of Boundary Settings

UTA-S-92

y = x

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

 Ranking by Proximity Cost

R
an

ki
n

g
 b

y
F

u
zz

y
E

va
lu

at
io

n

Range1 Range2
Range3 Range4
Range5

Figure 8.18: A comparison of rankings produced by the five boundary settings used for
UTA-S-92

UTE-S-92

y = x

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

 Ranking by Proximity Cost

R
an

ki
n

g
 b

y
F

u
zz

y
E

va
lu

at
io

n

Range1 Range2
Range3 Range4
Range5

Figure 8.19: A comparison of rankings produced by the five boundary settings used for
UTE-S-92

232

8.4 Evaluation of Boundary Settings

YOR-F-83

y = x

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

 Ranking by Proximity Cost

R
an

ki
n

g
 b

y
F

u
zz

y
E

va
lu

at
io

n

Range1 Range2
Range3 Range4
Range5

Figure 8.20: A comparison of rankings produced by the five boundary settings used for
YOR-F-83

129 for UTA-S-92 . In the case of CAR-F-92 , the last three worst solutions have the

same highest penalty value which is 132, while for solution in ranked 32th has highest

penalty is equal to 83. Details of the crisp values of average penalty and highest penalty

for 35 solutions for each data set are presented in Appendix B. In these situations, the

average penalty value has greater influence on the decision made by the fuzzy evaluation

system, because the influence of highest penalty value on the decision will be the same for

the different solutions (as the value are the same). Furthermore, none of the solutions

ranked 6th to 31st (when ranked by proximity cost) is evaluated better than the five

‘best’ solutions when considering average penalty and highest penalty simultaneously.

There is no clear winner as to which boundary settings has given the most ‘appropri-

ate’ ranking of solutions. In the end, it would be up to the practitioner to choose which

boundary setting has produced solution ranking that is most satisfactory in reflecting

his/her personal requirements. It might be better to employ the range that uses the

233

8.4 Evaluation of Boundary Settings

actual minimum and maximum values of the criteria that are being considered in the

evaluation if it is easy (in terms of resource availability and computational times) to

construct a range of solution for testing purposes. On the other hand, the approxima-

tion approaches are more convenient if dealing with new timetabling problems (as no

solutions need to be constructed).

Another interesting finding is in regard to the informal lower bound for proximity

cost. This is the first time that an informal lower bound for proximity cost for each

data set has been introduced. Figure 8.21 provides a graphical illustration of the ideal

number of exams that can be placed in order to avoid any proximity cost penalty for

the twelve data sets. In the Figure, the horizontal bar represents the time slots available

for the particular data set; the vertical bar represents the location of exams that will

impose zero penalty if enroled on by a particular student (that is, if a student has an

exam at time slot 1, then the student’s next exam must occur at, or after, time slot 7

if it is to incur zero proximity cost penalty). Simply counting the number of vertical

bars crossed by the horizontal bar for a data set gives the maximum number of exams

that a student may be enroled on before a proximity cost penalty must be incurred.

Due to the limited number of time slots available, it is not always possible to assign

all the enroled exams for a particular student in the ideal arrangement. By finding the

minimum number of exams that cause penalty, it is obvious that a proximity cost will be

imposed if the maximum number of exams enroled by any student is equal to or larger

than the determined minimum number of exams that cause penalty. Comparing the

second and third columns of Table 8.10 indicates that, for all of the twelve benchmark

data sets, none of the values in the third column are less than the values in the second

column. That is, the maximum number of exams enroled on by at least one student is

higher than the maximum number of exams that can be timetabled without proximity

cost penalty. That means that it is not possible to obtain a solution with zero

proximity cost for any of the twelve benchmark data sets. Taking into account

234

8.4 Evaluation of Boundary Settings

the fact that the lower bound value is calculated based on an approximation approach

(i.e. without constructing the actual feasible timetable), it is believed that this lower

bound value can be used as benchmark for the purpose of comparing proximity costs.

For any feasible solution, it is not possible to have proximity cost that is lower than the

lower bound value for the particular data set as determined here (as shown in the second

column of Table 8.8).

Recall that these lowerLimit proximity costs were calculated by taking into account

students who are enroled for the minimum number of exams that cause penalty, and

above. When constructing an actual physical timetable, it not always the case that

students who are enroled for less than the minimum number of exams that cause penalty

are guaranteed to be able to have their exams scheduled in an ideally arrangement (i.e.

with no penalty imposed). This is due to the constraints amongst the exams that limit

the available time slots for the placement of exams into a conflict free time slot. Hence,

it is expected that any feasible physical timetable constructed should have proximity

cost that is higher than the lowerLimit proximity costs proposed here.

235

8.4 Evaluation of Boundary Settings

T
im

e
sl

o
ts

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

C
A

R
-F

-9
2

S
e
ss

io
n
s

=
3
2

C
A

R
-S

-9
1

S
e
ss

io
n
s

=
3
5

E
A

R
-F

-8
3

S
e
ss

io
n
s

=
2
4

H
E
C
-S

-9
2

S
e
ss

io
n
s

=
1
8

K
F
U

-S
-9

3

S
e
ss

io
n
s

=
2
0

L
S
E
-F

-9
1

S
e
ss

io
n
s

=
1
8

R
Y

E
-F

-9
2

S
e
ss

io
n
s

=
2
3

S
T
A

-F
-8

3

S
e
ss

io
n
s

=
1
3

T
R

E
-S

-9
2

S
e
ss

io
n
s

=
2
3

U
T
A

-S
-9

2

S
e
ss

io
n
s

=
3
5

U
T
E
-S

-9
2

S
e
ss

io
n
s

=
1
0

Y
O

R
-F

-8
3

S
e
ss

io
n
s

=
2
1

F
ig

u
re

8.
21

:
Il
lu

st
ra

ti
ve

of
m

in
im

u
m

ex
am

s
th

at
ca

u
se

p
en

al
ty

236

8.5 Review of Previously Published Results

Table 8.10: Analysis of students involved in calculating the lower limit proximity cost

Data sets Minimum
exams that

cause
penalty

Maximum
exams

enroled by
any student

Total
number of

students

Students
involved in

penalty
calculation

% of
students
involved

CAR-F-92 7 7 18419 29 0.16
CAR-S-91 7 9 16925 32 0.19
EAR-F-83 5 10 1125 1102 97.96
HEC-S-92 4 7 2823 1836 65.04
KFU-S-93 5 8 5349 3797 70.99
LSE-F-91 4 8 2726 2245 82.36
RYE-F-92 5 10 11483 4789 41.71
STA-F-83 4 11 611 611 100.00
TRE-S-92 5 6 4360 1234 28.30
UTA-S-92 7 7 21266 23 0.11
UTE-S-92 3 6 2749 2553 92.87
YOR-F-83 6 14 941 763 81.08

8.5 Review of Previously Published Results

Lately, many researchers have published their work on finding better solutions for Carter

et al.’s benchmark data set and there is much research which is still ongoing. Many of

the latest publications have published results that have outperformed the results of

earlier publications and the tendency to beat the current ‘best’ results still continues.

As the authors of such published papers usually only provide the best solution results

that they obtained (sometimes with average proximity cost and computational times),

often there is no way of independently verifying their results. Currently (at the time

of writing this thesis), one member of the Automated Scheduling, Optimisation and

Planning (ASAP) Research Group (specifically Dr. Rong Qu) has initiated an effort to

contact the authors with the ‘best’ published solutions in order to obtain their timetable

solutions for verification. This is important in order to eliminate the confusing results

that have (unfortunately) become prevalent between published papers due to the use of

237

8.5 Review of Previously Published Results

different data sets (under the same names) and/or different penalty functions.

Comparing the determined lower limit proximity cost with the published results on

Carter et al.’s benchmarks presented in Table 4.9 has identified that, in the case of the

STA-F-83 data set, there are two papers in which the published results are lower than

the lower limit value determined using the approach proposed here. The first paper

was published by Casey and Thompson (2003) in which their ‘best’ result is 134.9.

Dr. Qu has clarified that Casey and Thompson (2003) used a slightly different data

set for STA-F-83 . Apparently, due to an unfortunate error in which the data file was

inadvertently altered, the data set that they used contained only 138 exams and 549

students. On the other hand, most of other published papers have used a data set

that consists of 139 exams and 611 students. In the second paper, Yang and Petrovic

(2005) published their result with a proximity cost for STA-F-83 equal to 151.52. Via

private communication, the corresponding author indicated that this solution has one

exam unscheduled. This means that the solution was infeasible. The evaluated solution

quality was calculated to be 151.52 on the basis that an extra penalty cost of 5000 was

assigned to the solution to penalise the one unscheduled exam. The best feasible solution

generated by the same author has a proximity cost of 158.35, which does not violate the

lower limit proposed here.

Having mentioned the above example, it is believed that the determined lower

limit proximity costs for Carter et al.’s benchmarks will be extremely beneficial to the

timetabling research community. A comparison of the best (lowest proximity cost) re-

sults published in literature to date and the lower limit proposed in this thesis is shown

in Table 8.11. Note that the determined lower limit for eleven of the data sets (excluding

STA-F-83) are far lower than the ‘best’ published results. One possible reason for this

is due to the number of students that are involved in the lower limit calculation. In the

sixth column of Table 8.10, it can be seen that in three cases (CAR-F-92 , CAR-S-91

and UTA-S-92) less than 0.2% of the total students are involved in the calculations. For

238

8.6 Chapter Summary

Table 8.11: A comparison between lower limit with the ‘best’ results in literature

Data sets Lower limit, L ‘Best’ results in
literature, B

((B − L)/B) ∗ 100

CAR-F-92 0.008 3.93 99.80

CAR-S-91 0.006 4.00 99.85

EAR-F-83 17.847 29.30 39.09

HEC-S-92 3.495 9.20 62.02

KFU-S-93 5.634 13.00 56.66

LSE-F-91 2.765 9.60 71.20

RYE-F-92 3.787 6.80 44.31

STA-F-83 152.046 157.03 3.28

TRE-S-92 0.594 7.90 92.49

UTA-S-92 0.002 3.14 99.93

UTE-S-92 21.510 24.40 11.85

YOR-F-83 18.961 36.20 47.62

TRE-S-92 only 28.30% of the total students are involved. Whereas for STA-F-83 , all of

the students are involved in the lower limit calculation. Consequently, in Table 8.11 it

can observed that for CAR-F-92 , CAR-S-91 , UTA-S-92 and TRE-S-92 , the determined

lowerLimit proximity costs are at least 92.49% smaller than the ‘best’ published results.

Nevertheless, it can be seen that the best result for EAR-F-83 is within 40% of the lower

limit, RYE-F-92 is within 45%, UTE-S-92 is within 12% and YOR-F-83 is within 50%.

Further, it can be seen that the best result for STA-F-83 is within 4% of the lower limit

(which, remember, may not be achievable by a feasible solution). These lower limits

all provide researchers in the area a valuable new piece of information against which to

compare their solutions.

8.6 Chapter Summary

The new algorithms, BFLLAA and GLLAA, provide (for the first time) an algorithmic

method for deriving a lower limit to proximity cost for timetable solutions which can be

calculated for any existing or novel data set. It is the first time that any lower limit of

proximity cost has been published. Of course, a lower limit of zero has been implicitly

assumed and, for some data sets (such as CAR-F-92 and CAR-S-91) the new lower limit

239

8.6 Chapter Summary

is not much above zero. On the other hand, for some data sets (most notably STA-F-83)

the new lower limit is well above zero and is close to the best results observed. Indeed,

for STA-F-83 the new lower limit is less than 4% below the best published result in

literature to date.

Of the two algorithms, BFLLAA gives more ‘correct’ results, in that the lower limit

is a valid limit based on the underlying assumptions. However, it can take a long time

to calculate and may, for novel real-world data sets, prove to take a prohibitively long

time. The GLLAA variation provides a quick approximation to the lower limit proposed

here. However, it is worth pointing out that the lower limit for proximity cost given by

GLLAA is still lower than any of the published best results for any of the data sets; and

this is for an algorithm that is very quick to run on any data set. Thus, in practice, it

may be that obtaining a lower limit by GLLAA may be sufficient. It would appear from

the analysis of the Carter data sets presented in this Chapter, that it is reasonable to

state that any solution which is close to a limit given by GLLAA would represent a very

high quality solution (in terms of proximity cost).

The lower limits presented here provide researchers in the area of timetabling a

valuable new piece of information against which to compare their solutions for the Carter

benchmark data sets. Further, they have provided, for the first time, guidance as to

which of previously published results have been erroneous (or misleading) in that they

have either utilised slightly different versions of the data sets (published under the same

name) or have included infeasible solutions with arbitrary penalty costs for infeasibility

‘hidden’ within the measure of proximity cost penalty.

Taken as a whole, the methods outlined in the last two Chapters represent the first

attempt to implement a more realistic evaluation of timetable solutions that is more

appropriate to real-world contexts than an evaluation based on proximity cost alone.

It does so by utilising fuzzy methods to combine two criteria, average penalty (prox-

imity cost) and highest penalty (highest proximity cost for any one student). Although

240

8.6 Chapter Summary

combining these two criteria using fuzzy methodologies is conceptually relatively simple,

there are obstacles to the approach in practice. The problem of determining lower and

upper limits of the criteria on which the assessment of quality is based is probably the

most difficult challenge. This Chapter has presented methods for deriving appropriate

lower and upper limits for proximity cost (currently the most common criterion for as-

sessing timetable quality). Clearly more research will need to be undertaken on any new

criteria used for evaluation of quality but it is hoped that the methods presented here

will provide a starting point for all such research.

241

Chapter 9

Conclusions and Future Work

In this thesis fuzzy methodologies have been investigated in an attempt to construct

solutions to university timetabling problems and to evaluate the timetable quality. This

study focuses on exploring the basic but powerful features of fuzzy methodologies. In

this context, the ‘basic feature’ is the concept of membership degree in fuzzy sets. The

use of fuzzy boundaries instead of sharp boundaries as in classical sets has made possible

the use of everyday linguistic terms in the development of computer systems. Another

strength of fuzzy methodologies that is explored is the mechanism of fuzzy reasoning

that naturally provides the platform for considering simultaneously more than one at-

tribute (or factor) in decision making. This feature may be closer to human thinking

and perception than other methods of combining multiple criteria. In this sense, fuzzy

methodologies seem to provide mechanisms that more closely mimic the way human

beings make decisions. In this Chapter, a list of contributions drawn from this research

is provided, followed by a brief outline of some possibilities for future research.

242

9.1 Summary of Contributions

9.1 Summary of Contributions

9.1.1 Fuzzy Construction of Timetables

The first theme of this thesis is the use of fuzzy techniques in the construction of

timetable solutions. As far as the author is aware, this thesis is the first work to develop

and analyse the simultaneous use of multiple heuristic to determine orderings. Different

combinations of multiple heuristic orderings were examined, considering five graph-based

heuristic orderings — Largest Degree, Saturation Degree, Largest Enrolment , Largest

Coloured Degree and Weighted Largest Degree. This analysis has provided some key

insights regarding the implementation of multiple heuristic orderings. Particularly, it

has been demonstrated from the research findings that:

1. Generally, the fuzzy multiple heuristic orderings (with parameter tuning) have

outperformed all of the single heuristic orderings.

2. Employing fuzzy techniques to measure the relative importance of each of the

considered heuristic orderings produces better solutions compared to using non-

fuzzy linear weighting factors.

3. Overall, considering three heuristic orderings produced better results compared to

two heuristic orderings.

4. For any given heuristic ordering, incorporating a stochastic element in the time

slot selection may permit better solutions to be found, as a bigger search space

is explored.

5. The timetable solutions constructed by means of fuzzy constructive algorithms

were comparable to the solutions produced with more sophisticated optimisation

approaches developed by other researchers.

243

9.1 Summary of Contributions

While considering multiple heuristic orderings for constructing feasible timetable

solutions is, in itself, an original contribution, several other achievements are outlined,

as follows:

1. Integrating fuzzy techniques in the basic sequential constructive algorithm. This

approach provides a more realistic scheme for measuring the difficulty of assigning

exams to time slots. Although the five graph-based heuristic orderings imple-

mented in this research are well known within the timetabling community, each

heuristic ordering is usually employed on its own. While each heuristic ordering

can be used individually (usually with a ‘backtracking’ algorithm) to construct

feasible solutions, it is interesting to see the effect of employing more than one

heuristic ordering simultaneously. As expected, more accurate ordering of exams,

in terms of their difficulty to schedule, were obtained when several heuristic order-

ings are combined.

2. Experimental results presented in Chapter 5 justified that it is worth exploring a

more advanced approach such as the use of fuzzy techniques instead of using the

simple linear weighting function when more than one factor needs to be considered

in making decisions.

3. The developed approach produces reasonably good solutions when applied to

benchmark exam and course timetabling problem instances. These promising re-

sults might suggest that this approach can be implemented in other combinatorial

problems that can be represented as the graph colouring problem.

4. A comprehensive comparison of twenty combinations of two and three heuristic

orderings that have been tested in Chapters 4 to 6 can be used as a guideline

to choose which heuristic ordering combination is more suitable for particular

problem instances.

244

9.1 Summary of Contributions

9.1.2 Fuzzy Evaluation of Timetables

The second theme of this thesis is concerned with a new evaluation function for ex-

amination timetabling problems. In order to evaluate the fairness of the constructed

timetables, two evaluation criteria, namely the proximity cost (average penalty per stu-

dent) and the highest penalty among students, are considered. The evaluation function

is modeled as a fuzzy system in order to take the advantage of the powerful features of

fuzzy reasoning.

One common problem in developing a fuzzy system is the difficulty in defining the

appropriate fuzzy model for the variables involved. In this thesis, a fixed fuzzy model was

developed based on a common sense view of how one would define a ‘fair’ timetable when

the above evaluation criteria are considered. The major problem that arose was related

to determining the boundary settings for the universe of discourse of the membership

functions. In the initial investigation, the boundary settings used for input normali-

sation were based on the minimum and maximum values of the constructed timetable

solutions being evaluated. Then, new algorithms were developed to calculate the prox-

imity cost based only on the underlying structure of the problem instances, without

needing to build the actual physical timetable. Initially, this work was intended for the

purpose of identifying the lower and upper bound of the universe of discourse for the

fuzzy membership functions, particularly for the average penalty membership function.

Subsequently, it was realised that the outcome of this work was, for the first time, a

non-zero lower bound for timetable problems. This has provided valuable new informa-

tion for the examination timetabling community, particularly in checking the validity of

published results.

The work carried out has also made several original contributions to the state of the

art. These are outlined as follows:

1. The development of a fuzzy based evaluation function for examination timetabling.

245

9.2 Future Research

The presented approach provides a more realistic evaluation of timetables with

regard to real-world timetabling problems in which the decision to choose the

‘best’ timetable is affected by more subjective factors than proximity cost alone.

2. The creation of a novel algorithm and an associated formula for measuring approxi-

mate proximity cost without having to build the physical timetable. This cost can

provide researchers and practitioners with an idea of how good a solution to a

previously unseen timetable instance is, without needing to construct alternative

solutions for comparison.

3. The establishment of unofficial lower limit for the uncapacitated problem of Carter

et al.’s benchmark data set. For the first time, an investigation of the lower limit

for the proximity cost is presented. In addition to the requirement of a validation

tool for timetable solutions discussed by Schaerf and Di Gaspero (2006), the pro-

posed lower limit for proximity cost can be used instantly to check the validity of

timetable solutions (any feasible solutions cannot have penalty value lower than

the proposed lower limit).

9.2 Future Research

As mentioned earlier in Chapter 2, the amount of published literature on fuzzy method-

ologies for educational timetabling problems is very limited. It is obvious that the

research work presented in this thesis has opened a new line of research in which a

number of avenues of future work remain to be investigated.

Improvement of Initial Solutions. Having demonstrated that good quality initial

solutions can be obtained using fuzzy multiple heuristic orderings within the simple

sequential constructive algorithm, a particularly important future direction is to

apply optimisation algorithms to iteratively improve the initial solutions. Such

work would answer the question “Does an initial solution generated with fuzzy

246

9.2 Future Research

approach lead to better solutions compared with initial solutions generated by

single or random heuristics?”.

Improvement of the Fuzzy Modeling Technique. Observation of the attempts to

identify fuzzy models based on simple exhaustive search and the stochastic ap-

proach presented in Section 6.4 suggest that the proposed fuzzy models for multi-

ple heuristic ordering could be further improved. Of particular interest would be

to employ more sophisticated optimisation algorithms in order to identify fuzzy

model parameters (i.e. the shape of membership functions and the fuzzy rule set).

The selection of heuristic ordering to be combined could also be incorporated into

such fuzzy model optimisation. If a reliable model optimisation technique could be

developed, it might then be possible to consider the combination of four and five

heuristic orderings simultaneously, as determination of relevant fuzzy rules could

then be performed automatically. This could overcome the fact that the number of

fuzzy rules exponentially increases with the increase of input variables. In defining

the behaviour of a fuzzy system, it is usually the case that the number of fuzzy

rules required is much less than the actual possible number of rules.

Deriving a Generic Fuzzy Model. As noted in Chapters 4 and 5, in order to obtain

the best initial solution, it is necessary to tune the fuzzy model for the particular

data set. Therefore, another important avenue to explore is to search for generic

fuzzy model(s), i.e. a model which able to guide the search algorithm to quite

a good solution that is applicable across a range of problem instances. It is not

expected that it will be possible to obtain the ‘optimal’ fuzzy model for any prob-

lem instance but more research is required on identifying a generic model that

can produce quite satisfactory solution qualities that are better than any single

heuristic ordering. The obvious benefit of such a fuzzy model would be that no

tuning would be needed for each new problem instance.

247

9.3 Dissemination

Enrichment of the Fuzzy Evaluation Function. The fuzzy evaluation function pro-

posed here is clearly extendable to include more criteria. The initial investigation

presented in Chapters 7 and 8 only uses two decision criteria to evaluate the

timetable quality. One possible direction for future research includes extending the

application of the fuzzy evaluation system to real world educational timetabling

problems in which more criteria are considered in the evaluation of timetables.

Another aspect to be investigated further is in comparing the quality assessments

produced by such fuzzy approaches with the subjective assessments of quality that

timetabling officers make in real-world timetabling problems.

Furthermore, this fuzzy evaluation approach could be implemented in the context

of choosing the next move during the exploration of the neighbourhood in any

iterative improvement optimisation algorithm.

9.3 Dissemination

The research described in this thesis has been disseminated in conferences and publi-

cations in the field of timetabling and fuzzy applications. The following is the list of

papers that have been produced.

9.3.1 Journal Paper

• Asmuni, H., Burke, E. K., Garibaldi, J. M., McCollum, B. & Parkes,

A. J. An Investigation of Fuzzy Multiple Heuristic Orderings in the Construction

of University Examination Timetables. Accepted to be published in the Computers

& Operations Research journal.

248

9.3 Dissemination

9.3.2 Conference Papers

• Asmuni, H., Burke, E.K. & Garibaldi, J.M. (2004). A Comparison of Fuzzy

and Non-Fuzzy Ordering Heuristics for Examination Timetabling. In A. Lotfi, ed.,

Proceedings of 5th International Conference on Recent Advances in Soft Computing

2004 , 288–293, Nottingham, United Kingdom, 16th - 18th December 2004.

• Asmuni, H., Burke, E.K. & Garibaldi, J.M. (2005a). Fuzzy Multiple Heuris-

tic Orderings for Course Timetabling Problem. In B. Mirkin & G. Magoulas,

eds., Proceedings of the 2005 UK Workshop on Computational Intelligence (UKCI

2005), 302–309, Birkbeck University of London, London, 5th - 7th September 2005.

• Asmuni, H., Burke, E.K., Garibaldi, J.M. & McCollum, B. (2005b).

Fuzzy Multiple Heuristic Orderings for Examination Timetabling. In Burke and

Trick (2005), 334–353. The earlier version of this paper appeared in Burke, E.K.

& Trick, M.A., eds., Proceedings of 5th International Conference on the Practice

and Theory of Automated Timetabling 2004, 51–66, Pittsburgh, USA, 18th - 20th

August 2004.

• Asmuni, H., Burke, E.K., Garibaldi, J.M. & McCollum, B. (2006). A

Novel Fuzzy Approach to Evaluate the Quality of Examination Timetabling. In

E.K. Burke & H. Rudova, eds., Proceedings of 6th International Conference on the

Practice and Theory of Automated Timetabling VI (PATAT) 2006, 82–102, Brno,

Czech Republic, 30th August - 1st September 2006.

• Asmuni, H., Burke, E.K., Garibaldi, J.M. & McCollum, B. (2007). A

Novel Fuzzy Approach to Evaluate the Quality of Examination Timetabling. In

E.K. Burke and H. Rudova, eds., 6th International Conference, PATAT 2006 Brno,

Czech Republic, August 30-September 1, 2006 Revised Selected Papers , vol. 3867

of LNCS , 327–346.

249

9.3 Dissemination

• Asmuni, H., Burke, E.K., Garibaldi, J.M. & McCollum, B. (2007). De-

termining Rules in Fuzzy Multiple Heuristic Orderings for Constructing Exami-

nation Timetables. In P. Baptiste, G. Kendall, A. Munier-Kordon and F. Sourd,

eds., Proceedings of the 3rd Multidisciplinary International Scheduling Conference:

Theory and Applications (MISTA 2007), Paris, August 28-31, 2007 , 59–66.

9.3.3 Abstract

• CORS / Optimization Days 2006 Joint Conference,Montreal, 8th-10th May, 2006.

Asmuni, H., Burke, E.K., Garibaldi, J.M. & McCollum, B. On Evaluat-

ing the Quality of Automatically Generated Examination Timetables.

250

Appendix A

Analysis of Modified Algorithms

Table A.1: Analysis of Changes in Algorithm for Tuned
Fuzzy LD+LE Model

Data Set Algo1.0 Algo1.1 Algo1.2 Algo2.0

CAR-F-92

Proximity Cost Best 4.62 4.62 4.62 4.62

Average 4.64 4.63 4.63 4.64

Worst 4.64 4.64 4.64 4.65

Comp. Time (s) Shortest 1.80 1.64 1.80 1.63

Average 1.86 1.67 1.83 1.65

Worst 2.02 1.70 1.88 1.67

Backtracking Min 1 1 1 1

Average 1 1 1 1

Max 1 1 1 1

CAR-S-91

Proximity Cost Best 5.58 5.56 5.57 5.60

Average 5.65 5.59 5.67 5.62

Worst 5.81 5.63 5.82 5.65

Comp. Time (s) Shortest 6.34 3.05 5.05 3.09

Average 13.48 3.26 11.65 3.33

Worst 30.44 3.63 21.95 3.64

Continued on Next Page. . .

251

Data Set Algo1.0 Algo1.1 Algo1.2 Algo2.0

Backtracking Min 5 3 4 3

Average 12.2 3.8 9.6 4.4

Max 27 6 18 6

EAR-F-83

Proximity Cost Best 44.27 43.03 43.96 42.73

Average 45.09 44.40 45.19 44.57

Worst 46.41 46.46 47.11 47.56

Comp. Time (s) Shortest 1.02 1.13 1.13 0.61

Average 1.21 2.12 1.51 1.39

Worst 1.48 5.05 2.13 3.34

Backtracking Min 15 18 16 11

Average 18.8 28.2 21.4 19.8

Max 24 57 32 43

HEC-S-92

Proximity Cost Best 12.84 12.35 12.56 12.35

Average 13.79 12.57 15.29 12.51

Worst 15.91 12.80 19.31 12.72

Comp. Time (s) Shortest 0.14 0.09 0.20 0.08

Average 0.33 0.12 0.48 0.13

Worst 0.55 0.25 0.81 0.25

Backtracking Min 9 3 7 4

Average 24 4 33 4.4

Max 46 5 59 5

KFU-S-93

Proximity Cost Best 16.54 15.99 16.59 15.84

Average 17.60 16.35 17.29 16.13

Worst 19.17 16.72 18.72 16.24

Comp. Time (s) Shortest 2.27 0.77 1.78 0.81

Continued on Next Page. . .

252

Data Set Algo1.0 Algo1.1 Algo1.2 Algo2.0

Average 3.64 0.83 3.42 0.90

Worst 5.52 0.92 5.06 1.17

Backtracking Min 12 4 10 6

Average 18 7 16.8 7.2

Max 25 9 24 8

LSE-F-91

Proximity Cost Best 12.35 12.35 12.35 12.35

Average 12.35 12.35 12.35 12.35

Worst 12.35 12.35 12.35 12.35

Comp. Time (s) Shortest 0.44 0.45 0.45 0.45

Average 0.45 0.48 0.45 0.46

Worst 0.45 0.50 0.45 0.47

Backtracking Min 0 0 0 0

Average 0 0 0 0

Max 0 0 0 0

RYE-F-92

Proximity Cost Best 12.17 12.14 11.68 11.51

Average 12.70 12.68 12.11 11.93

Worst 13.18 13.65 12.71 12.62

Comp. Time (s) Shortest 2.03 1.00 1.42 1.02

Average 8.17 1.60 3.34 1.60

Worst 19.39 3.77 7.05 3.83

Backtracking Min 7 3 4 3

Average 40 7.2 12.8 7.2

Max 96 18 29 20

STA-F-83

Proximity Cost Best 160.42 159.82 160.42 159.82

Average 160.42 160.18 160.42 160.06

Continued on Next Page. . .

253

Data Set Algo1.0 Algo1.1 Algo1.2 Algo2.0

Worst 160.42 160.42 160.42 160.42

Comp. Time (s) Shortest 0.14 0.11 0.14 0.11

Average 0.14 0.13 0.14 0.13

Worst 0.16 0.20 0.16 0.20

Backtracking Min 7 1 7 1

Average 7 1 7 1

Max 7 1 7 1

TRE-S-92

Proximity Cost Best 9.05 9.06 9.05 9.06

Average 9.05 9.12 9.05 9.09

Worst 9.05 9.17 9.05 9.17

Comp. Time (s) Shortest 0.41 0.38 0.41 0.38

Average 0.42 0.39 0.42 0.40

Worst 0.42 0.41 0.47 0.48

Backtracking Min 1 1 1 1

Average 1 1.2 1 1.2

Max 1 2 1 2

UTA-S-92

Proximity Cost Best 3.87 3.85 3.88 3.86

Average 4.23 3.85 3.98 3.88

Worst 4.64 3.86 4.13 3.90

Comp. Time (s) Shortest 11.55 2.25 15.95 2.25

Average 31.11 2.28 28.36 2.36

Worst 56.08 2.31 40.34 2.55

Backtracking Min 10 2 18 2

Average 29.8 2 29 2.8

Max 49 2 42 4

Continued on Next Page. . .

254

Data Set Algo1.0 Algo1.1 Algo1.2 Algo2.0

UTE-S-92

Proximity Cost Best 28.68 28.59 28.65 28.59

Average 28.70 28.65 28.71 28.63

Worst 28.74 28.67 28.74 28.69

Comp. Time (s) Shortest 0.14 0.13 0.14 0.14

Average 0.14 0.13 0.14 0.15

Worst 0.16 0.16 0.14 0.17

Backtracking Min 1 1 1 1

Average 1 1.2 1 1.6

Max 1 2 1 2

YOR-F-83

Proximity Cost Best 41.54 42.06 41.30 42.06

Average 42.64 43.05 43.05 43.98

Worst 43.53 43.98 44.13 46.37

Comp. Time (s) Shortest 0.69 0.70 0.75 0.63

Average 1.63 1.64 1.55 1.31

Worst 3.19 4.61 2.19 1.92

Backtracking Min 14 17 16 13

Average 34.6 37 35.4 28

Max 73 100 49 40

255

Table A.2: Analysis of Changes in Algorithm for Tuned
Fuzzy SD+LE Model

Data Set Algo1.0 Algo1.1 Algo1.2 Algo2.0

CAR-F-92

Proximity Cost Best 4.54 4.54 6.45 4.57

Average 4.54 4.54 6.74 4.57

Worst 4.54 4.54 7.09 4.57

Comp. Time (s) Shortest 397.53 391.06 186.77 81.52

Average 399.25 394.59 223.92 82.39

Worst 402.17 397.27 307.50 83.94

Backtracking Min 0 0 228 0

Average 0 0 288 0

Max 0 0 403 0

CAR-S-91

Proximity Cost Best 5.29 5.29 6.20 5.59

Average 5.29 5.29 6.54 5.59

Worst 5.29 5.29 7.06 5.59

Comp. Time (s) Shortest 902.27 885.14 25.94 183.50

Average 905.15 889.51 102.30 184.08

Worst 908.56 900.41 199.91 184.38

Backtracking Min 0 0 28 0

Average 0 0 84.4 0

Max 0 0 152 0

EAR-F-83

Proximity Cost Best 37.02 37.02 50.51 42.52

Average 37.02 37.02 52.01 44.03

Worst 37.02 37.02 54.39 45.31

Comp. Time (s) Shortest 19.06 18.77 5.05 4.05

Continued on Next Page. . .

256

Data Set Algo1.0 Algo1.1 Algo1.2 Algo2.0

Average 19.14 18.83 7.19 4.12

Worst 19.22 18.94 9.83 4.20

Backtracking Min 0 0 63 4

Average 0 0 90.2 5.6

Max 0 0 128 7

HEC-S-92

Proximity Cost Best 11.78 11.78 17.01 12.00

Average 11.78 11.78 18.16 13.18

Worst 11.78 11.78 19.79 16.52

Comp. Time (s) Shortest 2.16 2.16 0.45 0.47

Average 2.22 2.22 0.59 0.63

Worst 2.45 2.41 0.78 0.83

Backtracking Min 1 1 32 2

Average 1 1 38.8 8.8

Max 1 1 53 26

KFU-S-93

Proximity Cost Best 15.81 15.81 22.20 17.48

Average 15.81 15.81 23.79 17.48

Worst 15.81 15.81 25.48 17.48

Comp. Time (s) Shortest 106.31 104.88 11.55 22.30

Average 107.86 106.49 18.16 22.36

Worst 109.34 107.56 28.56 22.48

Backtracking Min 0 0 56 0

Average 0 0 79 0

Max 0 0 125 0

LSE-F-91

Proximity Cost Best 12.09 12.09 17.89 12.87

Average 12.09 12.09 18.09 12.87

Continued on Next Page. . .

257

Data Set Algo1.0 Algo1.1 Algo1.2 Algo2.0

Worst 12.09 12.09 18.25 12.87

Comp. Time (s) Shortest 68.31 67.27 14.88 13.97

Average 68.57 67.42 19.73 14.06

Worst 68.77 67.58 30.83 14.11

Backtracking Min 0 0 120 0

Average 0 0 156.6 0

Max 0 0 254 0

RYE-F-92

Proximity Cost Best 10.38 10.38 12.33 11.06

Average 10.38 10.38 13.16 11.06

Worst 10.38 10.38 13.97 11.06

Comp. Time (s) Shortest 183.88 180.97 4.98 38.09

Average 185.25 182.15 12.70 38.70

Worst 187.16 183.97 26.47 39.59

Backtracking Min 0 0 19 0

Average 0 0 54.2 0

Max 0 0 116 0

STA-F-83

Proximity Cost Best 160.75 160.75 172.42 168.86

Average 160.75 160.75 172.42 168.86

Worst 160.75 160.75 172.42 168.86

Comp. Time (s) Shortest 6.23 6.13 0.20 1.31

Average 6.36 6.29 0.21 1.33

Worst 6.81 6.86 0.22 1.36

Backtracking Min 0 0 16 0

Average 0 0 16 0

Max 0 0 16 0

Continued on Next Page. . .

258

Data Set Algo1.0 Algo1.1 Algo1.2 Algo2.0

TRE-S-92

Proximity Cost Best 8.67 8.67 11.76 9.57

Average 8.67 8.67 12.32 9.72

Worst 8.67 8.67 13.24 10.02

Comp. Time (s) Shortest 42.88 42.38 4.00 8.88

Average 43.00 42.45 5.38 8.97

Worst 43.28 42.56 7.31 9.22

Backtracking Min 0 0 36 1

Average 0 0 48 1.6

Max 0 0 63 2

UTA-S-92

Proximity Cost Best 3.57 3.57 4.19 3.82

Average 3.57 3.57 4.52 3.86

Worst 3.57 3.57 4.82 3.88

Comp. Time (s) Shortest 600.81 590.97 47.30 124.19

Average 602.47 591.97 119.23 124.61

Worst 603.81 593.52 279.67 125.11

Backtracking Min 0 0 51 1

Average 0 0 121.2 1

Max 0 0 274 1

UTE-S-92

Proximity Cost Best 28.07 28.07 36.16 29.16

Average 28.07 28.07 37.59 29.60

Worst 28.07 28.07 39.69 30.62

Comp. Time (s) Shortest 11.13 11.09 0.22 2.38

Average 11.31 11.15 0.27 2.55

Worst 11.41 11.25 0.36 2.75

Continued on Next Page. . .

259

Data Set Algo1.0 Algo1.1 Algo1.2 Algo2.0

Backtracking Min 1 1 8 5

Average 1 1 10.8 22.2

Max 1 1 15 58

YOR-F-83

Proximity Cost Best 39.80 39.80 51.73 44.62

Average 39.80 39.80 52.09 45.35

Worst 39.80 39.80 52.46 46.78

Comp. Time (s) Shortest 22.36 22.02 3.08 4.63

Average 22.39 22.09 4.02 4.89

Worst 22.45 22.17 5.34 5.34

Backtracking Min 0 0 53 5

Average 0 0 74.2 7

Max 0 0 102 10

260

Appendix B

Crisp Values for the 35 Solutions

Values for average penalty and highest penalty for the 35 solutions for the 12 data sets.

261

Table B.1: Crisp values of average penalty and highest penalty for CAR-F-92, CAR-S-91
and EAR-F-83.

CAR-F-92 CAR-S-91 EAR-F-83

Ranking average highest average highest average highest

penalty penalty penalty penalty penalty penalty

1 4.54422 65 5.29182 68 37.01778 116

2 4.62376 71 5.57294 75 41.17778 144

3 4.63923 71 5.65448 75 41.32444 131

4 4.64325 71 5.68804 83 41.85956 118

5 5.14805 68 5.68975 83 43.62756 129

6 5.19241 69 5.84201 75 43.63733 105

7 5.25045 76 5.91131 68 44.14667 118

8 5.50850 68 5.92502 83 44.96267 146

9 5.53228 68 5.94783 83 44.96800 127

10 5.58228 75 6.07876 76 44.98044 135

11 5.59466 68 6.39297 71 45.82578 146

12 5.60872 68 6.41448 83 46.81867 148

13 5.61670 68 6.50866 71 48.69511 188

14 5.67224 83 6.55433 85 49.26667 131

15 5.72262 77 6.55474 98 49.51822 167

16 5.76204 75 6.62381 101 49.52178 159

17 5.76513 68 6.67332 83 49.55467 158

18 5.96075 75 6.91628 75 49.66222 114

19 6.08958 68 6.94635 71 49.78311 144

20 6.27222 68 6.95403 84 49.84800 194

21 6.32857 68 7.10576 75 50.26578 130

22 6.34774 84 7.11728 83 50.54933 148

23 6.48960 75 7.20620 71 50.99378 159

24 6.68288 68 7.27131 83 51.55200 147

25 6.68891 83 7.60360 71 51.79911 137

26 6.78636 83 7.63391 98 52.28356 148

27 6.84049 68 7.76006 76 53.01156 136

28 6.98849 71 7.82151 84 53.14311 167

29 6.98958 84 8.01022 69 54.44889 149

30 6.99294 77 8.32804 83 54.50489 160

31 7.30794 77 8.87297 98 55.09511 198

32 7.99072 83 13.10665 164 57.03378 149

33 11.28563 132 13.25058 164 60.16000 176

34 11.30110 132 13.30192 164 67.60533 198

35 11.42386 132 13.33489 164 71.27911 198

262

Table B.2: Crisp values of average penalty and highest penalty for HEC-S-92, KFU-S-93
and LSE-F-91.

HEC-S-92 KFU-S-93 LSE-F-91

Ranking average highest average highest average highest

penalty penalty penalty penalty penalty penalty

1 11.78498 83 15.81342 98 12.09391 87

2 13.23592 84 16.46326 113 12.34886 102

3 13.77365 106 16.47149 113 13.45781 78

4 14.12363 94 16.49991 113 14.71974 89

5 14.16188 83 16.49991 113 16.11262 160

6 14.21714 85 16.49991 113 16.40829 91

7 14.63479 83 16.90447 101 16.44901 132

8 14.64081 98 16.91400 124 16.48606 109

9 14.77400 98 16.91999 113 16.65737 115

10 14.77435 75 17.33614 100 16.74248 122

11 14.87070 99 17.91961 104 16.84740 108

12 15.05066 98 18.26640 114 17.17425 105

13 15.59369 78 18.26827 114 17.48496 117

14 15.65781 98 18.62311 125 17.55686 160

15 15.76337 84 18.96654 118 17.64050 121

16 15.88771 98 19.02225 129 17.69919 144

17 15.91144 75 19.12600 113 17.94167 98

18 16.25717 98 19.37858 113 18.07520 119

19 16.49203 90 19.52384 131 18.12252 127

20 16.53737 98 19.98187 118 18.18305 106

21 16.70705 113 20.00916 131 18.48239 126

22 17.12611 129 20.02225 102 18.56420 93

23 17.23521 113 20.31595 131 18.97946 95

24 18.89586 113 20.42756 114 19.31805 103

25 18.92597 77 20.90428 126 19.36207 114

26 19.08254 106 22.80052 108 20.13720 118

27 19.70988 83 23.21817 111 20.13830 104

28 20.06801 87 24.07758 113 20.80227 129

29 20.33546 129 25.05721 105 21.87748 111

30 21.58519 98 25.22247 119 26.01761 136

31 23.17499 113 25.58478 129 27.02128 133

32 23.45484 113 26.31501 121 28.16288 142

33 23.85264 106 27.01383 115 30.01761 136

34 28.52426 136 28.59563 134 32.13610 191

35 31.88027 112 43.39877 191 32.37821 161

263

Table B.3: Crisp values of average penalty and highest penalty for RYE-F-92, STA-F-83
and TRE-S-92.

RYE-F-92 STA-F-83 TRE-S-92

Ranking average highest average highest average highest

penalty penalty penalty penalty penalty penalty

1 10.38378 87 160.74632 227 8.67064 77

2 11.60185 114 161.15057 227 9.03945 75

3 11.71001 111 164.37480 228 9.31101 69

4 11.71959 111 167.39444 227 9.38922 68

5 11.82783 111 168.19476 227 9.59794 68

6 12.09449 105 168.78069 232 9.75665 71

7 12.18035 97 168.86252 227 9.85596 75

8 12.26430 98 169.09984 227 9.88486 68

9 12.33406 122 170.35516 284 9.98119 77

10 12.33693 97 171.24877 227 10.00344 68

11 12.41723 102 171.39116 227 10.25344 83

12 12.97614 97 171.92471 227 10.36239 98

13 13.13716 138 172.11620 227 10.42546 80

14 13.24872 139 172.17021 227 10.62821 83

15 13.64269 129 172.60393 227 10.68073 83

16 13.67848 104 173.12602 227 10.68739 77

17 13.68266 110 173.50245 230 10.69679 98

18 13.74980 121 173.50409 227 10.70826 68

19 13.76295 120 173.56301 268 10.72523 83

20 13.87564 107 175.55483 227 10.82523 75

21 14.02639 121 175.77414 233 10.96651 75

22 14.41662 130 176.29951 227 10.97821 98

23 14.44135 104 176.65794 239 11.00757 75

24 14.58051 104 177.53191 236 11.01835 68

25 14.61691 138 177.86579 227 11.15757 71

26 14.80632 121 178.40098 227 11.29358 75

27 15.72847 135 178.87234 233 11.44817 84

28 16.31629 138 180.63011 248 11.74725 98

29 17.44953 125 181.09984 227 12.05757 83

30 18.88392 122 181.12275 260 12.26812 98

31 21.21197 122 182.29787 227 12.79633 98

32 32.28956 191 182.72668 242 13.10482 77

33 34.82827 191 184.73650 268 13.70229 83

34 35.50649 175 186.48445 227 17.18280 129

35 36.71062 175 194.53191 284 17.24610 129

264

Table B.4: Crisp values of average penalty and highest penalty for UTA-S-92, UTE-S-92
and YOR-F-83.

UTA-S-92 UTE-S-92 YOR-F-83

Ranking average highest average highest average highest

penalty penalty penalty penalty penalty penalty

1 3.56729 63 28.06945 90 39.80128 234

2 3.83321 68 29.22473 104 44.15834 233

3 3.91080 68 29.69491 98 44.41233 231

4 3.92711 68 29.71818 86 45.64506 228

5 3.97724 68 29.88400 129 45.66844 259

6 4.14253 68 30.32291 83 45.73645 238

7 4.29865 84 30.50836 101 45.78108 301

8 4.53122 73 30.55527 98 45.93305 267

9 4.57279 73 31.21964 98 46.56642 258

10 4.58069 73 31.48582 113 46.80978 234

11 4.88413 84 31.52182 91 46.82784 262

12 4.96718 75 31.65273 104 46.86185 235

13 4.97583 68 31.65455 98 46.87885 259

14 5.00912 86 32.14400 105 46.94687 244

15 5.09212 87 32.32691 98 47.14240 240

16 5.11304 83 32.49964 98 47.20616 286

17 5.24711 69 32.80400 88 47.36663 268

18 5.28026 76 32.99600 94 47.37938 256

19 5.32978 83 33.13855 113 47.39639 242

20 5.39095 72 33.93527 91 47.71945 281

21 5.39636 98 34.36545 113 47.87779 260

22 5.54434 77 34.59964 104 47.91923 275

23 5.60651 77 34.92764 90 48.89479 238

24 5.62358 84 35.17527 113 49.31775 284

25 5.63073 106 35.66982 113 49.37088 252

26 5.65485 85 35.98545 129 50.53879 232

27 5.66632 71 36.18691 98 50.68332 256

28 5.69482 77 36.63564 105 50.76302 277

29 5.83354 84 36.84909 98 50.92774 241

30 6.04223 86 37.45782 106 51.51753 289

31 6.32531 78 38.76545 106 52.63124 248

32 8.65259 129 39.64618 98 53.13390 331

33 8.76568 129 41.31382 98 56.90436 291

34 8.78125 129 43.41345 129 63.90223 306

35 8.79253 129 56.34291 129 64.48140 295

265

Bibliography

Abboud, N., Inuiguichi, M., Sakawa, M. and Uemura, Y. (1998). Manpower
Allocation Using Genetic Annealing. European Journal of Operational Research, 111,
405–420.

Abdullah, S. (2006). Heuristic Approaches for University Timetabling Problems..
Ph.D. thesis, School of Computer Science and Information Technology, The University
of Nottingham, United Kingdom.

Abdullah, S. and Burke, E.K. (2006). A Multi-start Large Neighbourhood Search
Approach with Local Search Methods for Examination Timetabling. In D. Long, S.F.
Smith, D. Borrajo and L. McCluskey, eds., The International Conference on Au-
tomated Planning and Scheduling (ICAPS 2006), Cumbria, UK, 6-10 June 2006.,
334–337.

Abdullah, S., Burke, E.K. and McCollum, B. (2005). An Investigation of Vari-
able Neighbourhood Search for University Course Timetabling. In Proceedings of The
2nd Multidisciplinary International Conference on Scheduling: Theory and Applica-
tions (MISTA 2005), New York, USA, July 18th-21st , 413–427.

Abdullah, S., Ahmadi, S., Burke, E. and Dror, M. (2006a). Investigating
Ahuja-Orlin’s Large Neighbourhood Search Approach for Examination Timetabling.
OR Spectrum, 29, 351–372.

Abdullah, S., Ahmadi, S., Burke, E.K., Dror, M. and McCollum, B. (2006b).
A Tabu-based Large Neighbourhood Search Methodology for the Capacitated Exami-
nation Timetabling Problem. Journal of Operational Research Society , advance online
publication 13 September 2006; doi: 10.1057/palgrave.jors.2602258.

Abdullah, S., Burke, E.K. and McCollum, B. (2006c). Using A Randomised
Iterative Improvement Algorithm with Composite Neighbourhood Structures for the
University Course Timetabling Problem. In K.F. Doerner, M. Gendreau, P. Greistor-
fer, W.J. Gutjahr, R.F. Hartl and M. Reimann, eds., Computer Science Interfaces
Book Series., Springer Operations Research, accepted.

Amintoosi, M. and Haddadnia, J. (2005). Feature Selection in a Fuzzy Student
Sectioning Algorithm. In Burke and Trick (2005), 147–160.

266

BIBLIOGRAPHY

Appleby, J.S., Blake, D.V. and Newman, E.A. (1961). Techniques for Producing
School Timetables on a Computer and their Application to other Scheduling Problems.
The Computer Journal , 3, 237–245.

Arani, T. and Lotfi, V. (1989). A Three Phased Approach to Final Exam Scheduling.
IIE Transactions , 21, 86–96.

Asmuni, H., Burke, E.K., Garibaldi, J.M. and McCollum, B. (2005). Fuzzy
Multiple Heuristic Orderings for Examination Timetabling. In Burke and Trick (2005),
334–353.

Asmuni, H., Burke, E.K., Garibaldi, J.M., McCollum, B. and Parkes, A.J.
(2008). An investigation of fuzzy multiple heuristic orderings in the construction of
university examination timetables. Computers & Operations Research, (accepted to
be published).

Aufm Hofe, H.M. (2001). Solving Rostering Tasks By Generic Methods For Constraint
Optimization. International Journal of Foundations of Computer Science, 12, 671–
693.

Avella, P. and Vasil’Ev, I. (2005). A Computational Study of a Cutting Plane
Algorithm for University Course Timetabling. Journal of Scheduling , 8, 497–514.

Azimi, Z.N. (2005). Hybrid Heuristics for Examination Timetabling Problem. Applied
Mathematics And Computation, 163, 705–733.

Bardadym, V.A. (1996). Computer Aided School and University Timetabling : The
New Wave. In Burke and Ross (1996), 22–45.

Bilgin, B., Özcan, E. and Korkmaz, E.E. (2006). An Experimental Study on
Hyper-heuristics and Exam Scheduling. In Burke and Rudová (2006), 123–140.

Blum, C. and Roli, A. (2003). Metaheuristics in Combinatorial Optimization:
Overview and Conceptual Comparison. ACM Computing Surveys , 35, 268–308.

Boizumault, P., Delon, Y. and Peridy, L. (1996). Constraint Logic Programming
for Examination Timetabling. The Journal of Logic Programming , 26, 217–233.

Brailsford, S.C., Potts, C.N. and Smith, B.M. (1999). Constraint Satisfaction
Problems: Algorithms and Applications. European Journal of Operational Research,
119, 557–581.

Broder, S. (1964). Final Examination Scheduling. Communications of the ACM , 7,
494–498.

Brělaz, D. (1979). New Methods to Color the Vertices of A Graph. Communications
of the ACM , 22, 251–256.

267

BIBLIOGRAPHY

Bullnheimer, B. (1997). An Examination Scheduling Model to Maximize Students’
Study Time. In Burke and Carter (1998), 78–91.

Burke, E. and Landa Silva, J. (2004). The Design of Memetic Algorithms for
Scheduling and Timetabling Problems. In W. Krasnogor N.and Hart and J. Smith,
eds., Recent Advances in Memetic Algorithms, Studies in Fuzziness and Soft Comput-
ing , vol. 166, 289–312, Springer.

Burke, E., MacCarthy, B., Petrovic, S. and Qu, R. (2000). Structured Cases
in Case-Based Reasoning - Re-using and Adapting Cases for Time-tabling Problems.
Journal of Knowledge-Based Systems , 13, 159–165.

Burke, E.K. and Bykov, Y. (2006). Solving Exam Timetabling Problems with the
Flex-Deluge Algorithm. In Burke and Rudová (2006), 370–372.

Burke, E.K. and Carter, M.W., eds. (1998). Practice and Theory of Automated
Timetabling II, Second International Conference, PATAT’97, Toronto, Canada, Au-
gust 20-22, 1997, Selected Papers., vol. 1408 of Lecture Notes in Computer Science,
Springer.

Burke, E.K. and Causmaecker, P.D., eds. (2003). Practice and Theory of Auto-
mated Timetabling IV, 4th International Conference, PATAT 2002, Gent, Belgium,
August 21-23, 2002, Selected Revised Papers., vol. 2740 of Lecture Notes in Computer
Science, Springer.

Burke, E.K. and Erben, W., eds. (2001). Practice and Theory of Automated
Timetabling III, Third International Conference, PATAT 2000, Konstanz, Germany,
August 16-18, 2000, Selected Papers., vol. 2079 of Lecture Notes in Computer Science,
Springer.

Burke, E.K. and Kendall, G., eds. (2005). Search Methodologies - Introductory
Tutorials in Optimization and Decision Support Techniques . Springer.

Burke, E.K. and Newall, J.P. (1999). A Multistage Evolutionary Algorithm for
the Timetable Problem. IEEE Transactions on Evolutionary Computation, 3, 63–74.

Burke, E.K. and Newall, J.P. (2003). Enhancing Timetable Solutions with Local
Search Methods. In Burke and Causmaecker (2003), 195–206.

Burke, E.K. and Newall, J.P. (2004). Solving Examination Timetabling Problems
through Adaption of Heuristic Orderings. Annals of Operations Research, 129, 107–
134.

Burke, E.K. and Petrovic, S. (2002). Recent Research Directions in Automated
Timetabling. European Journal of Operational Research, 140, 266–280.

Burke, E.K. and Ross, P., eds. (1996). Practice and Theory of Automated
Timetabling, First International Conference, Edinburgh, U.K., August 29 - September
1, 1995, Selected Papers., vol. 1153 of Lecture Notes in Computer Science, Springer.

268

BIBLIOGRAPHY

Burke, E.K. and Rudová, H., eds. (2006). Proceedings of The 6th International
Conference on the Practice and Theory of Automated Timetabling, 30th August - 1st
September 2006, Brno, Czech Republic., Faculty of Informatics, Masaryk University,
Brno, The Czech Republic, Masaryk University.

Burke, E.K. and Trick, M.A., eds. (2005). Practice and Theory of Automated
Timetabling V, 5th International Conference, PATAT 2004, Pittsburgh, PA, USA,
August 18-20, 2004, Revised Selected Papers., vol. 3616 of Lecture Notes in Computer
Science, Springer.

Burke, E.K., Elliman, D.G. and Weare, R.F. (1994a). A Genetic Algorithm
based University Timetabling System. In Proceedings of the 2nd East-West Interna-
tional Conference on Computer Technologies in Education (Crimea, Ukraine, 19th-
23rd Sept 1994), vol. 1, 35–40.

Burke, E.K., Elliman, D.G. and Weare, R.F. (1994b). A Genetic Algorithm
for University Timetabling. In Proceedings of the AISB Workshop on Evolutionary
Computing (University of Leeds, UK, 11th-13th April 1994).

Burke, E.K., Elliman, D.G. and Weare, R.F. (1994c). A University Timetabling
System Based on Graph Colouring and Constraint Manipulation. Journal of Research
on Computing in Education, 27, 1–18.

Burke, E.K., Elliman, D.G., Ford, P.H. and Weare, R.F. (1995a). Specialised
Recombinative Operators for the Timetabling Problem. In Proceedings of the AISB
(Artificial Intelligence and Simulation of Behaviour) Workshop on Evolutionary Com-
puting (University of Sheffield, UK, 3rd-7th April 1995), Lecture Notes in Computer
Science, 75–85, Springer.

Burke, E.K., Elliman, D.G. and Weare, R.F. (1995b). A Hybrid Genetic Algo-
rithm for Highly Constrained Timetabling Problems. In L. Eshelman, ed., Proceed-
ings of the 6th International Conference on Genetic Algorithms (ICGA’95, Pittsburgh,
USA, 15th-19th July 1995), 605–610, Morgan Kaufmann, San Francisco, CA, USA.

Burke, E.K., Elliman, D.G., Ford, P.H. and Weare, R.F. (1996a). Exam-
ination Timetabling in British Universities - A Survey. In Burke and Ross (1996),
76–90.

Burke, E.K., Newall, J.P. and Weare, R.F. (1996b). A Memetic Algorithm for
University Exam Timetabling. In Burke and Ross (1996), 241–250.

Burke, E.K., Jackson, K., Kingston, J.H. and Weare, R.F. (1997). Automated
University Timetabling: The State of the Art. The Computer Journal , 40, 565–571.

Burke, E.K., Newall, J.P. and Weare, R.F. (1998a). A Simple Heuristically
Guided Search for the Timetable Problem. In E. Alpaydin and C. Fyte, eds., Pro-
ceedings of the International ICSC Symposium on Engineering of Intelligent Systems
(EIS’98), 574–579, University of La Laguna, Spain, ICSC Academic Press.

269

BIBLIOGRAPHY

Burke, E.K., Newall, J.P. and Weare, R.F. (1998b). Initialisation Strategies and
Diversity in Evolutionary Timetabling. Evolutionary Computation Journal (special
issue on Scheduling), 6, 81–103.

Burke, E.K., Bykov, Y. and Petrovic, S. (2001a). A Multicriteria Approach to
Examination Timetabling. In Burke and Erben (2001), 118–131.

Burke, E.K., MacCarthy, B., Petrovic, S. and Qu, R. (2001b). Case-Based
Reasoning in Course Timetabling: An Attribute Graph Approach. In D.W. Aha and
I. Watson, eds., Proceedings of the 4th International Conference on Case-Based Rea-
soning , vol. 2080 of Lecture Notes in Artificial Intelligence, 90–104, Springer-Verlag,
Berlin, Heidelberg.

Burke, E.K., MacCarthy, B.L., Petrovic, S. and Qu, R. (2002). Knowledge
Discovery in a Hyper-heuristic for Course Timetabling Using Case-Based Reasoning.
In Burke and Causmaecker (2003), 276–287.

Burke, E.K., Bykov, Y., Newall, J.P. and Petrovic, S. (2003a). A Time-
Predefined Approach to Course Timetabling. Yugoslav Journal of Operations Re-
search, 13, 139–151.

Burke, E.K., Kendall, G., Newall, J., Hart, E., Ross, P. and Schulenburg,
S. (2003b). Hyper-heuristics: An emerging direction in modern search technology. In
F. Glover and G. Kochenberger, eds., Handbook of Meta-Heuristics , chap. 16, 457–474,
Kluwer.

Burke, E.K., Kendall, G. and Soubeiga, E. (2003c). A Tabu-Search Hyperheuris-
tic for Timetabling and Rostering. Journal of Heuristics , 9, 451–470.

Burke, E.K., Bykov, Y., Newall, J. and Petrovic, S. (2004a). A Time-
Predefined Local Search Approach to Exam Timetabling Problems. IIE Transactions ,
36, 509–528.

Burke, E.K., Kingston, J. and de Werra, D. (2004b). Applications to
Timetabling. In J. Yellen and J. Gross, eds., Handbook of Graph Theory., chap. 5.6,
445–474, Chapman Hall,CRC Press.

Burke, E.K., MacCarthy, B.L., Petrovic, S. and Qu, R. (2006a). Multiple-
Retrieval Case-Based Reasoning for Course Timetabling Problems. Journal of the
Operational Research Society , 57, 148–162.

Burke, E.K., Petrovic, S. and Qu, R. (2006b). Case Based Heuristic Selection for
Timetabling Problems. Journal of Scheduling , 9, 115–132.

Burke, E.K., McCollum, B., Meisels, A., Petrovic, S. and Qu, R. (2007).
A Graph-Based Hyper Heuristic for Educational Timetabling Problems. European
Journal of Operational Research, 176, 177–192.

270

BIBLIOGRAPHY

Caramia, M., DellOlmo, P. and Italiano, G.F. (2001). New Algorithms for
Examination Timetabling. In S. Naher and D. Wagner, eds., Algorithm Engineering
4th Int. Workshop, Proc. WAE 2000 (Saarbrucken, Germany, September), vol. 1982
of Lecture Notes in Computer Science, 230–241, Springer, Berlin.

Carter, M.W. (1986). A Survey of Practical Applications of Examination Timetabling
Algorithms. Operation Research, 34, 193–202.

Carter, M.W. (2001). A Comprehensive Course Timetabling and Student Scheduling
System at the University of Waterloo. In Burke and Erben (2001), 64–82.

Carter, M.W. and Johnson, D.G. (1999). The Use of Cliques in Examination
Timetabling. Research Series 1999:9, Loughborough University, Business School.

Carter, M.W. and Johnson, D.G. (2001). Extended Clique Initialisation in Exam-
ination Timetabling. Journal of the Operational Research Society , 52, 538–544.

Carter, M.W. and Laporte, G. (1996). Recent Development in Practical Exami-
nation Timetabling. In Burke and Ross (1996), 3–21.

Carter, M.W. and Laporte, G. (1998). Recent Developments in Practical Course
Timetabling. In Burke and Carter (1998), 3–19.

Carter, M.W., G. Laporte, G. and Lee, S.Y. (1996). Examination Timetabling:
Algorithmic Strategies and Applications. Journal of the Operational Research Society ,
47, 373–383.

Casey, S. and Thompson, J. (2003). GRASPing the Examination Scheduling Prob-
lem. In Burke and Causmaecker (2003), 232–244.

Chiarandini, M., Birattari, M., Socha, K. and Rossi-Doria, O. (2006). An
Effective Hybrid Algorithm for University Course Timetabling. Journal of Scheduling ,
9, 403–432.

Coello, C.A.C. (2006). Evolutionary Multi-Objective Optimization: A Historical
View of the Field. IEEE Computational Intelligence Magazine, 1, 28–36.

Cole, A.J. (1964). The Preparation of Examination Time-tables using a Small-store
Computer. The Computer Journal , 7, 117–121.

Costa, D. (1994). A Tabu Search Algorithm for Computing an Operational Timetable.
European Journal of Operational Research, 76, 98–110.

Costa, D. and Hertz, A. (1997). Ants Can Colour Graphs. Journal of the Operational
Research Society , 48, 295–305.

Cox, E. and O’Hagen, M. (1998). The Fuzzy Systems Handbook : A Practitioner’s
Guide to Building, Using and Maintaining Fuzzy Systems.. AP Professional, Cam-
bridge, MA.

271

BIBLIOGRAPHY

Dahal, K.P., Aldridge, C.J. and McDonald, J.R. (1999). Generator Mainte-
nance Scheduling using a Genetic Algorithm with a Fuzzy Evaluation Function. Fuzzy
Sets and System, 102, 21–29.

Daskalaki, S., Birbas, T. and Housos, E. (2004). An Integer Programming For-
mulation for a Case Study in University Timetabling. European Journal of Operational
Research, 153, 117–135.

de Werra, D. (1985). An Introduction to Timetabling. European Journal of Opera-
tional Research, 19, 151–162.

Desroches, S., Laporte, G. and Rousseau, J.M. (1978). HOREX: A Computer
Program for the Construction of Examination Schedules. INFOR, 16, 294–298.

Di Gaspero, L. and Schaerf, A. (2001). Tabu Search Techniques for Examination
Timetabling. In Burke and Erben (2001), 104–117.

Di Gaspero, L. and Schaerf, A. (2003). Multi-Neighbourhood Local Search with
Application to Course Timetabling. In Burke and Causmaecker (2003), 262–275.

Dimopoulou, M. and Miliotis, P. (2004). An Automated University Course
Timetabling System Developed in a Distributed Environment: A Case Study. Eu-
ropean Journal of Operational Research, 153, 136–147.

Dorigo, M. and Gambardella, L. (1997). Ant Colonies for the Traveling Salesman
Problem. Biosystems , 43, 73–81.

Dorigo, M., Maniezzo, V. and Colorni, A. (1996). Ant System: Optimization by
a Colony of Cooperating Agents. IEEE Trans. on Systems, Man, and Cybernetics–
Part B , 26, 29–41.

Dowsland, K.A. and Thompson, J.M. (2005). Ant Colony Optimization for the
Examination Scheduling Problem. Journal of the Operational Research Society , 56,
426–438.

Dueck, G. (1993). New Optimization Heuristics: The Great Deluge Algorithm and the
Record-to-Record Travel. Journal of Computational Physics , 104, 86–92.

Eley, M. (2006). Ant Algorithms for the Exam Timetabling Problem. In Burke and
Rudová (2006), 167–180.

Erben, W. (2001). A Grouping Genetic Algorithm for Graph Colouring and Exam
Timetabling. In Burke and Erben (2001), 132–158.

Fleszar, K. and Hindi, K.S. (2002). New heuristics for one-dimensional bin-packing.
Computers & Operations Research, 29, 821–839.

Foxley, E. and Lockyer, K. (1968). The Construction of Examination Timetables
by Computer. The Computer Journal , 11, 264–268.

272

BIBLIOGRAPHY

Garibaldi, J. and Ifeachor, E. (1999). Application of Simulated Annealing Fuzzy
Model Tuning to Umbilical Cord Acid-Base Interpretation. IEEE Transactions on
Fuzzy Systems , 7, 72–84.

Gendreau, A., Salvail, L. and Soriano, P. (1993). Solving the Maximum Clique
Problem Using a Tabu Search Approach. Annals of Operations Research, 41, 385–403.

Glover, F. (1986). Future Paths for Integer Programming and Links to Artificial
Intelligence. Computers and Operations Research, 13, 533–549.

Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer, Dordrecht.

Gómez-Skarmeta, A.F. and Jiménez, F. (1999). Fuzzy Modeling with Hybrid
Systems. Fuzzy Sets and Systems , 104, 199–208.

Hertz, A. (1991). Tabu Search for Large Scale Timetabling Problems. European Jour-
nal of Operational Research, 54, 39–47.

Holland, J.H. (1992). Adaptation in Natural and Artificial Systems . MIT Press, Cam-
bridge, MA, USA.

Hwang, C.L. and Yoon, K., eds. (1981). Multiple Attribute Decision Making - Meth-
ods and Applications: A State of the Art Survey , vol. 186 of Lecture Notes in Eco-
nomics and Mathematical Systems . Springer-Verlag, Berlin.

Johnson, D. (1990). Timetabling University Examinations. Journal of Operational
Research Society , 41, 39–47.

Joslin, D.E. and Clements, D.P. (1999). Squeaky Wheel Optimization. Journal of
Artificial Intelligence Research, 10, 353–373.

Kasabov, N.K. (1996). Foundation of Neural Networks, Fuzzy Systems, and Knowledge
Engineering.. A Bradford Book, The MIT Pres.

Kendall, G. and Mohd Hussin, N. (2005a). A Tabu Search Hyper-heuristic Ap-
proach to the Examination Timetabling Problem at the MARA University of Tech-
nology. In Burke and Trick (2005), 270–293.

Kendall, G. and Mohd Hussin, N. (2005b). An Investigation of A Tabu Search
Based Hyper-heuristic for Examination Timetabling. In G. Kendall, E.K. Burke,
S. Petrovic and M. Gendreau, eds., Multidisciplinary Scheduling: Theory and Ap-
plications , 309–328, Springer.

Kiaer, L. and Yellen, J. (1992). Weighted Graphs and University Course
Timetabling. Computers and Operations Research, 19, 59–67.

Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983). Optimization by Sim-
ulated Annealing. Science, 220, 671–680.

273

BIBLIOGRAPHY

Kostuch, P. (2005). The University Course Timetabling Problem with a Three-Phase
Approach. In Burke and Trick (2005), 109–125.

Landa Silva, J.D., Burke, E.K. and Petrovic, S. (2004). An Introduction to Mul-
tiobjective Metaheuristics for Scheduling and Timetabling. In X. Gandibleux, M. Se-
vaux, K. Sorensen and V. T’kindt, eds., Metaheuristic for Multiobjective Optimisation,
vol. 535 of Lecture Notes in Economics and Mathematical Systems , 91–129, Springer.

Laporte, G. and Desroches, S. (1984). Examination Timetabling by Computer.
Computers and Operations Research, 11, 351–360.

Li, J. and Kwan, R.S.K. (2003). A Fuzzy Genetic Algorithm for Driver Scheduling.
European Journal of Operational Research, 147, 334–344.

Lim, M.H., Rahardja, S. and Gwee, B.H. (1996). A GA Paradigm for Learning
Fuzzy Rules. Fuzzy Sets and Systems , 82, 177–186.

Loo, E.H., Goh, T.N. and Ong, H.L. (1985). A Heuristic Approach to Scheduling
University Timetables. Computers & Education, 10, 379–388.

Lotfi, V. and Cerveny, R. (1991). A Final Exam-Scheduling Package. Journal of
the Operational Research Society , 42, 205–216.

Mamdani, E.H. and Assilian, S. (1975). An Experiment in Linguistic Synthesis with
a Fuzzy Logic Controller. International Journal of Man-Machine Studies , 7, 1–13.

Maŕın, H.T. (1998). Combinations of GAs ans CSP Strategies for Solving the Ex-
amination Timetabling Problem.. Ph.D. thesis, Instotuto Technólogy y de Estudios
Superiores de Monterrey.

McCollum, B. (2006). University Timetabling: Bridging the Gap between Research
and Practice. In Burke and Rudová (2006), 15–35.

Mehta, N.K. (1981). The Application of a Graph Coloring Method to an Examination
Scheduling Problem. INTERFACES , 11, 57–65.

Merlot, L.T.G., Boland, N., Hughes, B.D. and Stuckey, P.J. (2003). A
Hybrid Algorithm for Examination Timetabling Problem. In Burke and Causmaecker
(2003), 207–231.

Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and mar-
tial arts: Towards memetic algorithms. Tech. Rep. Report 826, Caltech Concurrent
Computation Program, California Institute of Technology.

Moscato, P. and Norman, M.G. (1992). A Memetic Approach for the Traveling
Salesman Problem Implementation of a Computational Ecology for Combinatorial
Optimization on Message-Passing Systems. In M. Valero, E. Onate, M. Jane, J.L.
Larriba and B. Suarez, eds., Parallel Computing and Transputer Applications , 177–
186, IOS Press, Amsterdam.

274

BIBLIOGRAPHY

N. Safaei, M.S.M. and Jabal-Ameli, M. (2008). A hybrid Simulated Annealing
for solving an extended model of dynamic cellular manufacturing system. European
Journal of Operational Research, 185, 563–592.

Negnevitsky, M. (2002). Artificial Intelligence: Guide to Intelligent Systems.. Addi-
son Wesley, 1st edn.

Osman, I.H. and Kelly, J.P., eds. (1996). Metaheuristics: Theory and Applications .
Kluwer, Dordrecht.

Pappis, C.P. and Siettos, C.I. (2005). Fuzzy Reasoning , chap. 15, 437–474. In Burke
and Kendall (2005).

Perttunen, J. (1994). On the significance of the initial solution in travelling salesman
heuristics. The Journal of the Operational Research Society , 45, 1131–1140.

Petrovic, S. and Burke, E.K. (2004). University Timetabling. In J.Y.T. Leung, ed.,
Handbook of Scheduling: Algorithms, Models, and Performance Analysis., chap. 45,
Chapman & Hall/CRC.

Petrovic, S. and Bykov, Y. (2003). A Multiobjective Optimisation Technique for
Exam Timetabling Based on Trajectories. In Burke and Causmaecker (2003), 179–192.

Petrovic, S. and Qu, R. (2002). Case-Based Reasoning as a Heuristic Selector
in a Hyper-Heuristic for Course Timetabling Problems. In Knowledge-Based Intel-
ligent Information Engineering Systems and Allied Technologies, Conference Volume
of KES’02,, vol. 82, 336–340, IOS Press.

Petrovic, S., Patel, V. and Yang, Y. (2005). University Timetabling With Fuzzy
Constraints. In Burke and Trick (2005), 313–333.

Qu, R. (2002). Case-Based Reasoning for Course Timetabling Problems . Ph.D. thesis,
School of Computer Science and Information Technology, The University of Notting-
ham.

Qu, R., Burke, E.K., McCollum, B., Merlot, L.T.G. and Lee, S.Y. (2006).
A Survey of Search Methodologies and Automated Approaches for Examination
Timetabling. Tech. Rep. NOTT-CSTR-2006-4, University of Nottingham, School of
Computer Science and Information Technology.

R Development Core Team (2005). R: A Language and Environment for Statis-
tical Computing.. R Foundation for Statistical Computing, Vienna, Austria, ISBN
3-900051-07-0.

Rahoual, M. and Saad, R. (2006). Solving Timetabling Problems by Hybridizing
Genetic Algorithms and Tabu Search. In Burke and Rudová (2006), 467–472.

Rattadilok, P., Gaw, A. and Kwan, R.S.K. (2005). Distributed Choice Function
Hyper-heuristics for Timetabling and Scheduling. In Burke and Trick (2005), 51–67.

275

BIBLIOGRAPHY

Ross, P. (2005a). Hyper-heuristics , chap. 17, 529–556. In Burke and Kendall (2005).

Ross, P., Hart, E. and Corne, D. (1998). Some Observations about GA-Based
Exam Timetabling. In Burke and Carter (1998), 115–129.

Ross, S.M. (2005b). Introductory Statistics . Elsevier Academic Press, 2nd edn., ISBN:0-
12-597132-X.

Santiago-Mozos, R., Salcedo-Sanz, S., de Prado-Cumplido, M. and
Bousoño-Calzón, C. (2005). A Two-phase Heuristic Evolutionary Algorithm for
Personalizing Course Timetables: A Case Study in a Spanish University. Computers
and Operations Research, 32, 1761–1776.

Sazonov, E.S., Klinkhachorn, P., Gangarao, H.V.S. and Halabe, U.B.
(2002). Fuzzy Logic Expert System for Automated Damage Detection from Changes
in Strain Energy Mode Shapes. Non-destructive Testing and Evaluation, 18, 1–20.

Schaerf, A. (1999). A Survey of Automated Timetabling. Artificial Intelligent Review ,
13, 87–127.

Schaerf, A. and Di Gaspero, L. (2001). Local Search Techniques for Educational
Timetabling Problems. In L. Lenart, L. Stirn Zadnik and S. Drobne, eds., Proceedings
of the 6th International Symposium on Operational Research (SOR-01), Preddvor,
Slovenia., 13–23.

Schaerf, A. and Di Gaspero, L. (2006). Measurability and Reproducibility in
Timetabling Research: State-of-the-Art and Discussion. In Burke and Rudová (2006),
53–62.

Schmidt, G. and Strohlein, T. (1980). Timetable Construction - An Annotated
Bibliography. The Computer Journal , 23, 307–316.

Setnes, M. and Roubos, H. (2000). GA-Fuzzy Modeling and Classification: Com-
plexity and Performance. IEEE Transactions on Fuzzy Systems , 8, 509–522.

Shimojima, K., Fukuda, T. and Hasegawa, Y. (1995). Self-Tuning Fuzzy Modeling
with Adaptive Membership Function, Rules, and Hierarchical Structure Based on
Genetic Algorithms. Fuzzy Sets and Systems , 71, 295–309.

Slany, W. (1996). Scheduling as a Fuzzy Multiple Criteria Optimization Problem.
Fuzzy Sets and Systems , 78, 197–222.

Slowinski, R. and Hapke, M., eds. (2000). Scheduling Under Fuzziness . Physica-
Verlag.

Socha, K., Knowles, J. and Sampels, M. (2002). A MAX- MIN Ant System for
the University Timetabling Problem. In M. Dorigo, G. Di Caro and M. Sampels, eds.,
Proceedings of ANTS 2002 - Third International Workshop on Ant Algorithms , vol.
2463 of Lecture Notes in Computer Science, 1–13, Springer, Berlin, Germany.

276

BIBLIOGRAPHY

Teodorovic, D. and Lucic, P. (1998). A Fuzzy Set Theory Approach to the Aircrew
Rostering Problem. Fuzzy Sets and Systems , 95, 261–271.

Thompson, J.M. and Dowsland, K.A. (1996). General Cooling Schedules for a
Simulated Annealing Based Timetabling System. In Burke and Ross (1996), 345–363.

Thompson, J.M. and Dowsland, K.A. (1998). A Robust Simulated Annealing
Based Examination Timetabling System. Computers & Operations Research, 25, 637–
648.

Voβ, S., Martello, S., Osman, I.H. and Roucairol, C., eds. (1999). Meta-
Heuristics: Advances and Trends in Local Search Paradigms for Optimization. Kluwer,
Boston.

Wang, C.H., Hong, T.P. and Tseng, S.S. (1998). Integrating Fuzzy Knowledge by
Genetic Algorithms. IEEE Transactions on Evolutionary Computation, 2, 138–149.

Welsh, D.J.A. and Powell, M.B. (1967). An Upper Bound for the Chromatic
Number of a Graph and its Application to Timetabling Problems. The Computer
Journal , 10, 85–86.

White, G.M. and Xie, B.S. (2001). Examination Timetables and Tabu Search with
Longer-Term Memory. In Burke and Erben (2001), 85–103.

White, G.M. and Zhang, J. (1998). Generating Complete University Timetables by
Combining Tabu Search with Constraint Logic. In Burke and Carter (1998), 187–200.

White, G.M., Xie, B.S. and Zonjic, S. (2004). Using Tabu Search with Longer-
Term Memory and Relaxation to Create Examination Timetables. European Journal
of Operational Research, 153, 80–91.

Wood, D.C. (1968). A System for Computing University Examination Timetables. The
Computer Journal , 11, 41–47.

Wood, D.C. (1969). A Technique for Colouring a Graph Applicable to Large Scale
Timetabling Problems. The Computer Journal , 12, 317–319.

Wren, A. (1996). Scheduling, Timetabling and Rostering - A Special Relationship?. In
Burke and Ross (1996), 46–75.

Yang, Y. and Petrovic, S. (2005). A Novel Similarity Measure for Heuristic Selection
in Examination Timetabling. In Burke and Trick (2005), 247–269.

Ying, H. (2000). Fuzzy Control and Modeling - Analytical Foundations and Applica-
tions . IEEE Press Series on Biomedical Engineering, IEEE Press, New York.

Zadeh, L.A. (1965). Fuzzy Sets. Information and Control , 8, 338–353.

277

BIBLIOGRAPHY

Zadeh, L.A. (1975). The Concept of a Linguistic Variable and its Application to Ap-
proximate Reasoning - I, II and III. Information Sciences , 8;8;9, 199–249;301–357;43–
80.

Zadeh, L.A. (1999). From Computing with Numbers to Computing with Words - From
Manipulation of Measurements to Manipulation of Perceptions. IEEE Transactions on
Circuitss and Systems - I: Fundamental Theory and Applications , 45, 105–119.

Zimmermann, H.J. (1996). Fuzzy Set Theory and Its Applications.. Kluwer Academic
Publishers, 3rd edn.

278

	List of Figures
	List of Tables
	Abstract
	Acknowledgement
	1 Introduction
	1.1 Background and Motivation
	1.2 Aims and Scope
	1.3 Overview of this Thesis

	I Background
	2 Review of the State of the Art
	2.1 Description of the Timetabling Problem
	2.1.1 Introduction
	2.1.2 University Examination Timetabling
	2.1.3 University Course Timetabling

	2.2 Previous Research in University Timetabling
	2.2.1 The General Framework
	2.2.2 Sequential Constructive Approaches
	2.2.3 Iterative Improvement Methods

	2.3 Evaluation of Timetable Quality
	2.3.1 Data Sets and Problem Descriptions
	2.3.2 Existing Evaluation Functions
	2.3.3 Multi-objective and Multi-criteria Approaches

	2.4 The Need for Fuzzy Techniques in Timetabling
	2.5 Fuzzy Techniques in Timetabling
	2.6 Generalisation of Problem Solving Approaches
	2.7 Chapter Summary

	3 Theory of Fuzzy Sets and Fuzzy Systems
	3.1 Introduction
	3.1.1 Fuzzy Sets and Membership Functions
	3.1.2 Linguistic Variables, Values and Rules
	3.1.3 Fuzzy Operators
	3.1.4 Fuzzy Hedges
	3.1.5 Defuzzification Methods
	3.1.6 Overview of Fuzzy Systems

	3.2 Chapter Summary

	II Fuzzy Construction
	4 Fuzzy Multiple Heuristic Orderings for Examination Timetabling
	4.1 Introduction
	4.2 The Basic Sequential Constructive Algorithm
	4.3 Why Fuzzy Multiple Heuristic Orderings?
	4.4 The Fuzzy Multiple Heuristic Ordering
	4.4.1 Fuzzy Modeling
	4.4.2 Experiments and Results

	4.5 Consistency of the Different Heuristic Ordering
	4.5.1 Experimental Results
	4.5.2 Performance Analysis and Discussions

	4.6 Chapter Summary

	5 Comparison of Fuzzy and Non-Fuzzy Multiple Heuristic Ordering
	5.1 Introduction
	5.2 Extension to Three Heuristic Ordering
	5.2.1 Algorithmic Changes to Reduce Computational Time
	5.2.2 Experiments with Revised Algorithm
	5.2.3 Experimental Results
	5.2.4 Discussion of Results

	5.3 Chapter Summary

	6 Generalisation of the Fuzzy Multiple Heuristic Ordering
	6.1 Introduction
	6.2 Application to Course Timetabling
	6.2.1 Problem Definition
	6.2.2 Experimental Results
	6.2.3 Discussion of Results

	6.3 Alternative Combinations of Heuristic Orderings
	6.3.1 Experimental Results
	6.3.2 Discussion of Results

	6.4 Alternative Approaches to Tuning the Fuzzy System
	6.4.1 Tuning Fuzzy Rules with Fixed Membership Functions
	6.4.2 Randomly Generated Fuzzy Models
	6.4.3 Testings and Results

	6.5 Chapter Summary

	III Fuzzy Evaluation
	7 A Novel Fuzzy Approach to Evaluate the Examination Timetabling
	7.1 Introduction
	7.2 Assessing Timetable Quality
	7.2.1 Disadvantages/Drawbacks of Current Evaluation Functions
	7.2.2 The Proposed Fuzzy Evaluation Function
	7.2.3 Input Normalisation

	7.3 Preliminary Investigations
	7.3.1 Experiments Setup
	7.3.2 Experimental Results
	7.3.3 Discussion

	7.4 Chapter Summary

	8 Determination of Boundary Settings
	8.1 Introduction
	8.2 Approximate Boundaries using Weighting Factors
	8.2.1 Approximate Boundaries for Average Penalty
	8.2.2 Approximate Boundaries for Highest Penalty

	8.3 Algorithmic Determination of the Lower Boundary
	8.3.1 Brute Force Lower Limit Approximation Algorithm
	8.3.2 Greedy Lower Limit Approximation Algorithm
	8.3.3 Comparison of Lower Limit Algorithms
	8.3.4 Algorithmic Derivation of Boundaries

	8.4 Evaluation of Boundary Settings
	8.4.1 Methods
	8.4.2 Results
	8.4.3 Discussion

	8.5 Review of Previously Published Results
	8.6 Chapter Summary

	9 Conclusions and Future Work
	9.1 Summary of Contributions
	9.1.1 Fuzzy Construction of Timetables
	9.1.2 Fuzzy Evaluation of Timetables

	9.2 Future Research
	9.3 Dissemination
	9.3.1 Journal Paper
	9.3.2 Conference Papers
	9.3.3 Abstract

	A Analysis of Modified Algorithms
	B Crisp Values for the 35 Solutions
	Bibliography

