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Abstract

Numerical methods for the simulation of photonicustures bring serious
advantages in the field of research and design.| \Melpared modelling
techniques allow simulation of the demanded charestics prior to

fabrication of the device, or in some case the ewmntally observed
properties of fabricated devices to be understoatktail. .

This thesis describes work to develop a numerilcedrahm based on the real
distance paraxial finite-difference vectorial begmpagation method (FD-
VBPM). The algorithm is based on Maxwell Equatiosispplified to the time

independent diffusion equation. The program waselbped at the National
Institute of Telecommunications in Warsaw. This kvowill describe

the validation process of the code, and the probleencountered when
the presented method was applied to the simulatid?hotonic Crystal Fibres

(PCF).
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1. Introduction to Photonic Crystals and Photonic

Crystal Fibres (PCF)

1.1. The genesis and development of photonic cryta

Photonic Crystals are dielectric structures withperiodic distribution of

the refractive index. The simplest form of a phdatomrrystal has one-
dimensional periodic structure, for example mw#afilm — a Bragg mirror.

Electromagnetic wave propagation in such systems firat studied by

Lord Rayleigh in 1887 [1]. This structure was thetf photonic band gap
structure created by man. However, the PhotonicBaap (PBG) phenomena
was described over one hundred years later [2].Brhagg reflection was
the basis for creating more complicated structu3, and 3D photonic
crystals. Figure 1.1.1 introduces the basic clesdibn of photonic crystals.
The periodicity is in the material (typically dieteic) structure of the crystal.
Only a 3D periodicity, with a more complex topolotpan is shown in figure

1.1.1 ¢), can support an omnidirectional photomicdgap.

Figure 1.1.1. Periodic electromagnetic media “PhatoCrystals” — a) periodic in one

direction (1D), b) periodic in two directions (209) periodic in three directions (30)3].
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The study of wave propagation in three-dimensignakriodic media was
pioneered by Felix Bloch in 1928, extending theotken in one dimension by
G. Floquet (1883). Bloch proved that waves in aigadgc medium can
propagate without scattering. The field in such mmedcan be represented by
a plane wave multiplied by a periodic envelope fiomc The band structure of
the photonic crystals can be explained using tloelBtheorem.

Starting from the source-free Faraday’s and Ampgeriews at a fixed

frequency [3] (time dependena&' ), one can obtain an eigenvalue equation

in only the magnetic fieldH :

2
Ox20xH =(C—"j H (1.1.1)

2
where (gj is the eigenvaluelI1x =[x is the Hermitian eigen-operatas, is
c £

the dielectric functiore(r), r =(x, y, 2, andc is the speed of light.
A photonic crystal corresponds to a periodic diglec function
g(r)=€(r +R,) for some primitive lattice vector®; (i = 1, 2, 3 for a crystal

periodic in all three dimensions). In this cases Bloch-Floquet theorem for

periodic eigenproblems states that the solutiongdoation (1.1.1) can be

chosen of the fornH (r)=€“H [ ) with eigenvaluesw, (k), wherek is

a Bloch wave vector, andd,, is a periodic envelope function satisfying

following equation [3]:

(D+ik)x%(D+ik)xH . =(“’n(k)j H., (1.1.2)
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Equation (1.1.2) gives in effect a different eigayigpem over the primitive cell
of the lattice at each Bloch wave vectkr. This primitive cell is a finite

domain for the structure which is periodic in alledtions, leading to discrete

eigenvalues labelled byp=1,2,--. These eigenvalues)n(k) are continuous

functions of k, forming discrete “bands” when plotted versus kager, in
a “band structure” or dispersion diagram — bath and k are conserved
guantities, meaning that a band diagram maps éuydoakible interactions in
the system. The wave vectér is not required to be real; compldx gives
evanescent modes that can exponentially decay thenboundaries of a finite
crystal, but which cannot exist in the bulk.

Moreover, the eigensolutions are periodic functioh& as well: the solution
at k is the same as the solutionkatG ;, where G, is a primitive reciprocal
lattice vector defined byR;[G, =2/ ;. Thus, the computation of
the eigensolutions férwithin the primitive cell of the reciprocal lattices
enough to find the eigenvalues of equation (1.1VBre conventionally, one
considers the set of inequivalent wave vectorsestoso thek =0 origin,
a region called the first Brillouin zone. For exdejpin a one-dimensional

system, whereR, =a for some periodicitya and G, =2m/a, the first

Brillouin zone is the regionk =-77/a---77/ a; all other wave vectors are

equivalent to some point in this zone under trdimslaby a multiple ofG,.

Furthermore, the first Brillouin zone may itself bedundant if the crystal
possesses additional symmetries such as mirroegldry eliminating these
redundant regions, one obtains the irreducible Id&iith zone, a convex

polyhedron that can be found tabulated for mosstatine structures. In
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the preceding one-dimensional example, since mgsemms will have time-
reversal symmetr(;k - —k), the irreducible Brillouin zone would be
k=0---1r/a[3].

A complete photonic band gap is a range of fregesn@ in which there are
no propagating (reak ) solutions of Maxwell’'s equations (1.1.2) for ahy;
surrounded by propagating states above and belewgdp. There are also
incomplete gaps, which only exist over a subsedlbpossible wave vectors,
polarizations, and/or symmetries. The origins fbkimds of the photonic band
gap are the same, and can be understood by exantimnconsequences of
periodicity for a simple one-dimensional system.

Considering one-dimensional system with unifagsm 1, which has planewave
eigensolutionsa)(k) =ck, and thise has trivial periodicitya for any a=0,
with a=0 giving the usual unbounded dispersion relation.e O free,
however, to label the states in terms of Bloch tpe functions and wave
vectors for somea# 0, in which case the bands qu(| > 77/ a are translated
into the first Brillouin zone, as shown by the deghines in figure 1.1.2 b). In
particular, thek =—-77/a mode in this description now lies at an equivalent

wave vector to thek =77/ a mode, and at the same frequency; this accidental

degeneracy is an artifact of the “artificial” pati@hosen. Instead of writing
these wave solutions with electric field&x) ~ €', one can equivalently
write linear combinationg( x) = cos(77x/a and o(x) =sin(77x/a) as shown

in figure 1.1.3, both atv=csr/ a. Now, however, supposing perturbationgf

so that it is nontrivially periodic with period; for example, a sinusoid

£(x)=1+ALeoq 27x /a), or a square wave as in the inset of figure 1.h2.
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the presence of such an oscillating “potential,g thccidental degeneracy
betweene(x) and o(Xx) is broken: supposing\ >0, then the fielde(x) is
more concentrated in the higher+egions thano(x), and so lies at a lower

frequency. This opposite shifting of the bands @®a band gap, as depicted

in figure 1.1.2 b).

2y
A B
Kk
/|
VAR
/ \
/ \
/ \
VAN (Y \ W
/ \
/ \
/ \
) gap
-t/a K n/a -m/a K n/a

Figure 1.1.2.(a) Dispersion relation (band diagram), frequenay versus wavenumbdc, of

a uniform one-dimensional medium, where the dathed show the “folding” effect of
applying Bloch’s theorem with an artificial periaity a. (b) Schematic effect on the bands of

a physical periodic dielectric variation (inset)here a gap has been opened by splitting

the degeneracy at thie=+77/ a Brillouin-zone boundaries (as well as a higher-ergap
at k =0) [3].

By the same arguments, it follows that any periatigectric variation in one
dimension will lead to a band gap, albeit a smalb dor a small variation;
a similar result was identified by Lord Rayleigh 1887. More generally, it

follows immediately from the properties of Hermitieeigensystems that

the eigenvalues minimizevariational problem
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2

H@+WVEM

2

«f, =min c? (1.1.3)

» [elE

in terms of the periodic electric field envelofs,, , where the numerator

minimizes the“kinetic energy’and the denominatomimizes the “potential
energy”. Here, than >1 bands are additionally constrained to be orthogtma

the lower bands:
[HiH o = [€E4E =0 (1.1.4)

for m< n. Thus, at eaclk , there will be a gap between the lower “diele&tric
bands concentrated in the high dielectric (low poéd) and the upper “air”

bands that are less concentrated in the high dielethe air bands are forced
out by the orthogonality condition, or otherwisesnhave fast oscillations that
increase their kinetic energy. (The dielectric/@mnds are analogous to

the valence/conduction bands in a semiconductor.)

a
>

sin (ntx/a)

cos (ntx/a)

Figure 1.1.3. Schematic origin of the band gapre dimension. The degenerkte 77/ a
plane waves of a uniform medium are split intws(77x /a) and sin(77x /a) standing waves

by a dielectric periodicity, forming the lower angdper edges of the band gap, respectively —
the former has electric field peaks in the highetigric (n.igs) and so will lie at a lower

frequency than the latter (which peaks in the lasbetttric) [3].

-10 -
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In order for a complete band gap to arise in twahwee dimensions, two
additional hurdles must be overcome. First, althoug each symmetry
direction of the crystal (and eaéh point) there will be a band gap by the one-
dimensional argument, these band gaps will not gsscdy overlap in
frequency (or even lie between the same bandsdrder that they overlap,

the gaps must be sufficiently large, which impli@sninimum & contrast

(typically at least 4/1 in 3D). Since the 1D midsglequency~ crz/ az

varies inversely with the periaal it is also helpful if the periodicity is nearly
the same in different directions — thus, the larggsps typically arise for
hexagonal lattices in 2D and fcc lattices in 3D,ickhhave the most nearly
circular/spherical Brillouin zones. Second, one mtske into account

the vectorial boundary conditions on the electrieldf moving across
a dielectric boundary frons to somee’ < £, the inverse “potential:?|E|2 will
decrease discontinuously E is parallel to the interfaceE| is continuous)

and will increase discontinuously B is perpendicular to the interfacel, is

continuous). This means that, whenever the elel#lit lines cross a dielectric
boundary, it is much harder to strongly containftakel energy within the high
dielectric, and the converse is true when the fillebs are parallel to
a boundary. Thus, in order to obtain a large baapl, @ dielectric structure
should consist of thin, continuous veins/membraalesg which the electric
field lines can run — this way, the lowest band{ah be strongly confined,
while the upper bands are forced to a much higlegiuency because the thin
veins cannot support multiple modes (except for dntbogonal polarizations).
The veins must also run in all directions, so th& confinement can occur for

all k and polarizations, necessitating a complex topoindhe crystal.

-11 -



Mariusz Rafal Zdanowicz Numerical Analysis of Ritat Crystal Fibres.

1.2. Photonic Crystal Fibres.

Photonic Crystal Fibres PCF's are devices in whitie cladding of
the conventional fibre was swapped with photonitucitire [4][5]. This
structures are most two dimensional, in which thedding is an array of
microscopic rods of a material of different refrantindex, in most of cases it
is a hole filled with air, that run along the eatfibre length. There are also one
dimensional structures of the cladding — in thisecthe fibre is called Bragg
PCF, through analogy with Bragg mirror. The process fabrication of
the PCF is very complicated. A general descriptbthe process is shown in

figure 1.2.1.

o
J

Figure 1.2.1. Manufacturing of the Photonic Crydtébres: a) a stack of glass tubes and rods
is constructed as a macroscopic "preform” with tfegjuired photonic structure,

b) the macroscopic structure is fused together @nadvn down to a fibre — B)].

The geometry of the structure inside the PCF clagidiecides about its

properties. It was discovered that silica cap#aricould be stacked, fused

-12 -
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together, and drawn successfully down to PCF (Eig.1). This stack-and-
draw procedure proved highly versatile, allowingmgbex lattices to be
assembled from individual stackable units of theexi size and shape. Solid,
empty, or doped glass regions could easily be pwated. Thus, the preform
preparation process allows for designing of demdiriidee properties.

The large index contrast and complex structureGi hake it difficult to treat
mathematically. Standard optical fibre analysesdbhelp, and so Maxwell's
equations must be solved numerically. Results gmcdlly presented in
the form of a propagation diagram, whose axesherelimensionless quantities
LN\ and aw\/c, whereA is the pitch (interhole spacing) ardis the speed of
light in vacuum. This diagram indicates the rangiesequency and axial wave

vector componen{3 where the light is evanescent (unable to propagate
fixed optical frequency, the maximum possible valoe S is set by

kn=wn/ c, wheren is the refractive index of the region under coasition.

For B <kn, light is free to propagate; fo3>kn, it is evanescent. For
conventional fibre (core and cladding refractivediaes n, and n,,

respectively), guided modes appear when lightes fo propagate in the doped
core but is evanescent in the cladding (Fig. 1a2.Zhe same diagram for PCF
is sometimes known as a band-edge or “finger” glota triangular lattice of
circular air holes with an air-filling fraction o45%, light is evanescent in
the black regions of Fig. 1.2.2 b). Full two-dimemsl photonic band gaps
exist within the black fingershaped regions, sorh@/luich extend intof <k
where light is free to propagate in vacuum. Thsuleindicates that hollow-
core guidance is indeed possible in the silicasgstem. The entire optical

telecommunications revolution happened within tharrow strip for

-13 -
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kn,A\ < B\ < kn A\ of Fig. 1.2.2 a) (marked with an arrow). The nariety of

new features on the diagram for PCF explains whgrestructure Photonic
Crystals extend the possibilities of fibres so tyea

Normalized frequency w\/c
12

Normalized wave vector along fibre BA

Normalized frequency wh\/c

Normalized wave vector along fibre BA

Figure 1.2.2(a) Propagation diagram for a conventional single-mditbee with a Ge-doped
silica core and a pure silica claddingp) Propagation diagram for a triangular lattice ofrai
channels in silica glass with 45% air-filling frach [4].
Conventional fibre as presented in the top lefheorof the figure 1.2.2 a) is
providing guidance due to the total internal reftat phenomena. Guided
modes form at points like R, where light is fredrgvel in the core but unable
to penetrate the cladding. The narrow strip mamkgd 3 in the figure 1.2.2 a)

is where the whole of optical telecommunicationsrages.

-14 -
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Propagation diagram for a triangular lattice ofraites in silica glass with 45%
air-filling fraction. In region (1), light is freéo propagate in every region of
the fibre (air, photonic crystal, and silica). kgron (2), propagation is turned
off in the air, and, in (3), it is turned off indhair and the PC. In (4), light is
evanescent in every region. The black fingers mrethe regions where full
two-dimensional photonic band gaps exist. Guidedlesoof a solid core PCF
(see schematic in the top left-hand corner, figuge2 b) form at points such as
Q, where light is free to travel in the core buthble to penetrate the PC. At
point P, light is free to propagate in air but led from penetrating
the cladding by the PBG; thus it is possible toiglesa PCF structure with
a hollow core, in which the guidance is providedthy full photonic band gap
(hollow-core PCF). This generates the basic classibn of the PCFs for
the solid core fibres and hollow core fibres wikie tgeometries analogous to

this shown on the figure 1.2.3.

g

=

Figure 1.2.3. Basic classification of the PQR) solid core fibre;(b) hollow core fibre5].
Earliest numerical models showed that the hole¢kerfirst PCF were too small

to expect a photonic band gap, and making the Wwoliore structure was

pointless. The air-filling fractions big enough toeate full band-gap was

-15 -
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beyond reach in 1995, thus first attempts of cngatPCF was solid core
structures. Conceptually, it was difficult to detéme whether this structure
would be a waveguide or not. From one perspeciiveesembled a standard
fibore because the average refractive index was rlovugside the core. By
contrast, between the holes there were clear, éodrae pathways of glass
along which light could escape from the core. Thewser was provided by
the first working photonic crystal fibre (Fig. 142. which consisted of an array
of ~300 nm air holes, spaced 28n apart, with a central solid core [6].
The striking property of this fibre was that therealid not ever seem to
become multimode in the experiments, no matter bloart the wavelength of
the light, the guided mode always had a singlengtroentral lobe filling

the core. This intriguing “endlessly single-mod&hlaviour can be understood
by viewing the array of holes as a modal filter'sieve” (Fig. 1.2.5). Because
light is evanescent in the air, the holes (diamdiespacing/\) act as strong

barriers; they are the “wire mesh” of the sievee Tield of the fundamental
mode fits into the core with a single lobe of didengbetween zeros) roughly
equal to 2\. It is the “grain of rice” that cannot escape tigb the wire mesh

because the silica gaps (between the air holegcéngi the core) are too
narrow. For higher order modes, however, the Iabeedsions are smaller so
they can slip between the gaps. As the relative B@ed /A is made larger,

successive higher order modes become trapped. cCaneice of geometry
thus guarantees that only the fundamental modeuided; more detailed

studies show that this occurs fdr/ A <0.4 [7]. Very large mode-area fibres

become possible, with benefits for high-power dalyy amplifiers, and lasers

-16 -
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[8]. By doping the core to reduce its index slightjuidance can be turned off

completely at wavelengths shorter than a certagstiold value [9].

Figure 1.2.4(a) Scanning electron micrograph of the first workpigptonic crystal fibre(b)

recorded near-field pattern of the guided mode=(632.8 nm)6].

@al

Figure 1.2.5. In a solid-core PCF, the pattern afleoles acts like a modal sieve. (a),
the fundamental mode is unable to escape becauaeriot fit in the gaps between the air
holes — its effective wavelength in the transvetage is too large. lifb) and(c), the higher
order modes are able to leak away because theirstrarse effective wavelength is smaller. If
the diameter of the air holes is increased, thesgagtween them shrink and more higher order

modes become trapped in the “siej4"

Hollow-core guidance had to wait until the techmylohad advanced to

the point where larger air-filling fractions, recgd to achieve a photonic band

-17 -
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gap for incidence from vacuum, became possible.fifsiesuch fibre [10] had
a simple triangular lattice of holes, and the hwsllcore was formed by
removing seven capillaries (producing a relativielgge core that improved
the chances of finding a guided mode). A vacuunugui mode must

havef/k <1, so the relevant operating region in Fig. 1.2.2oighe left of
the vacuum line, inside one of the finger shapedwrThese conditions ensure
that light is free to propagate — and form a modeéthin the hollow core while
being unable to escape into the cladding. Optiodl @ectron micrographs of
a typical hollow-core PCF are shown in Fig. 1.2)6and b). Launching white
light into the fibre hollow-core causes them tonsmait coloured modes,
indicating that guidance existed only in restrictbdnds of wavelength,
coinciding with the photonic band gaps. This featlimits the range of
potential applications. More recently it has beassible to greatly widen
the transmission bands by fabricating a differdnticsure, a Kagomeé lattice
[11] (Fig. 1.2.6 c).

i ¥F. Y F F F B F B |
a) L Ceeh
b B i

CeC L x
DN e
41(_(((((_1\‘

1@ m

Figure 1.2.6.(a) SEM of a hollow-core photonic band gap fib(te). Near-field OM of a red
mode in hollow-core PCF (white light is launchetbithe core)(c) OM of a hollow-core PCF
with a Kagomé cladding lattice, guiding white lighd].
Two different guiding mechanisms are presentedmalieally in figure 1.2.7.

In the case of the hollow-core structure, the guigais possible due to

-18 -
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the Photonic Band-Gap (PBG) of the fibre claddirgpaln this case modified
total internal reflection, which is deciding in easf solid core fibres, is not
possible because the average (effective) refraatokex of the cladding area is

higher than the refractive index of the core.

A
As

b) l.l.l.l'l.l.l.l

s [y

Figure 1.2.7. Guiding mechanisms inside the P@the Photonic Band Gap reflection
guiding — the average refraction index of the fibladding ry is higher than in the core and

only the wavelengths of the Photonic Crystal “stapdi’ can be guided({b) guiding with
modified total internal reflection from the claddiarea with the average refraction indey n

lower than in the PCF core.

Photonic Crystal Fibre offers many new or improviedtures and finds

an increasing number of applications. The abildlydesign the PCF geometry
is also increasing, thus nowadays one can obtaintates with precise defined
properties.

Photonic devices can be used as ultra narrow batid frequencies filters.

Hollow-core PCFs (HC-PCFs) finds applications is-gased nonlinear optics.
They allows for maximizing nonlinear interactionstween laser light and
gases (low-density media). Efficient nonlinear msses require high

intensities at low power, long interaction lengtaed good-quality transverse

-19 -
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beam profiles, which HC-PCF offers. Such a fibred§ also applications as
the sensing devices for chemicals and for the Higihmonic generation
(ultraviolet and even x-ray radiation). PCFs witltremely small solid glass
cores and very high air-filling fractions not ondlysplay unusual chromatic
dispersion but also yield very high optical intéies per unit power. Thus one
of the most successful applications of PCF is tolinear optics, where high
effective nonlinearities, together with excelleantrol of chromatic dispersion,
are essential for efficient devices. The examplsuigercontinuum generation.
When ultra-short, high-energy pulses travel throaghaterial, their frequency
spectrum can experience giant broadening due t@nger of interconnected

nonlinear effects.

1.3. New frontiers in photonic optical technologies

Photonic devices and photonics is a research angzhvdevelopment is very
fast and efficient nowadays. Such devices find igppbn in almost every
scientific area. Recent advances in this emergneg aow enable to launch
a systematic approach toward the goal of full systéevel integration.
The most important goal is to integrate photoniaghvwmanotechnology and
developing novel photonic devices. The technolodythe fabrication of
photonic structures, for example Molecular Beam t&yi, allows for
production of photonic nanomaterials and sub-wangile devices. Although
incomplete understanding of the interactions betwéght and photonic
nanostructures, the physics and technology of sadeilength structured
optical materials such as photonic crystals, pat¢igrmetallic films and, more
generally, artificial optical materials, such astameaterials (i.e. structured

materials with new characteristics obtained by camiy materials properties

-20 -
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and geometrically patterning), offer novel phenoemeand applications —
mainly because of their unique dispersion chareties, which include
photonic band-gap behaviour and slow propagatidigbf.

This research area still needs a lot of work fdr iftegration of light with
nano-scale devices and processes, as well as dymachiall-optical control of
nanostructures. The associated strong optical memient has already led to
much more compact devices and enhanced non-linfact® implying
the possible replacement of electronic functiogaby all-optical operation at
the highest speeds. There is an extensive worldefftet, in both academic

and commercial research labs, to address theslemntes.

2. Introduction to the numerical methods used in
the developed program.

The range of applications for photonic devicesasywvide. The properties of
the photonic structures allows for the creation dafvices with specified,
demanded characteristics. However the cost of naatwing of such
structures is very high and involves advanced teldyy. Manufacturing and
testing of the devices to check the influence dffetent parameters of
the structure for its properties will be extremelypensive and will consume
a lot of time. Thus it is better to “predict” thbaracteristics of the designed
device with analytical calculations.

Photonic crystal, in most cases is a complicatadttire; which characteristic
does not have strict analytical solution. Thishe frea for a well prepared
analytical model combined with numerical methodsfital approximated

solution.

-21 -



Mariusz Rafal Zdanowicz Numerical Analysis of Ritat Crystal Fibres.

2.1. Theory — short introduction.

The starting point is the classical set of the Malkwquations in differential

form:

oD _
rotH =5 =0 {diVD=O

2.1.1
divB=0 ( )

rotg + 6_B
ot

H — vector of the magnetic field,
D — electric field induction vector,
B — magnetic induction vector,

E — vector of the electric field.

Material equations:

D=¢ec,E
{ (2.1.2)

B = yu,H
&— electric permeability of the medium,
& — electric permeability of the vacuum,
M — magnetic permeability of the medium,
Mo — magnetic permeability of the vacuum.
The vectorial wave equation for the isotropic mediwithout the charges and

free currents (dielectric), assuming the field pndjpnal to ~e™“, is [12]:
AE +n°k’E = O(0E) (2.1.3)

where: n is the refraction index of the mediurk, is the wavevector of
the considered beam. For the propagation in orextiin without reflections
(assumingz-axis direction), only two transverse field compotse€,, E,) are

needed to characterize the field. Assuming smajleadiscrepancy of the beam
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(true inside the optical fibre) and slowly varyingfraction index along
the propagation axis, the equation (2.1.3) candrsved to the following form
[12]:

1

n2

oE,

0, E,+ (7 = n))KE, ~ O[O, - >

0,(n’E,)] = 2in,k

(2.1.4)

whereng is the reference refraction index, and indedenotes the transverse
field componentx ory).

Assumptions made in this section allow for fastdcalations and less memory
consumption in every step of the developed algarithhese assumptions also
bring some disadvantages, such as ignoring backwaftbctions and

impossibility of simulations of the wide angle bepropagation.

2.2. Implementation of the method in FORTRAN.

The calculation area is limited in space and dismed. The developed code
discretizes the calculation area with a regulactamgular mesh of points
shown in figure 2.2.1. Assuming distances betwéercalculation pointAx in
the x-axis direction andly in the y-axis direction, an arbitrary poirR;; is
described with the co-ordinates\, jAy). The rectangular mesh is very easy
to implement in the code, however for accurateutatons it should be dense.
Dense mesh allows for making the staircasing eféecéller, but it utilizes
much more calculations. The staircasing effect asucs because the outer
boundary of an object of an arbitrary geometry doed conform to
the rectangular mesh in described method. Thetafeshown in figure 2.2.2.
The real shape of an object is represented byhidisnumber of the point
samples. As it can be observed in figure 2.2.hqusiesh with higher density

(Fig. 2.2.2 b) allows for more accurate represéntadf the physical object in
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the algorithm, thus also for describing more complgeometries of

the simulated structure.

(O, (m-1)4y) ((n-1)Ax, (Mr1)4y)
0. 2y)
(0,0) (A, 0) (2Ax, 0) ((n-1)Ax, 0)

Figure 2.2.1. Rectangular, regular mesh of disaation used in the developed code.

a) b)

/ / \

/ I |

\ & / \\ & / |
& . & —

Figure 2.2.2. The staircasing effect — the areakadrwith lines is the representation of
the elliptic shaped object (electric permeability discretized with a mesh with different

density. The finer mesh allows for distretizing emoomplex structures with greater accuracy.
Typical PCF is a complex structure containing ershaped holes inside

the cladding area. For the description of suchracttre with a rectangular

mesh, it is necessary to use adequately denseghesints.
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After a structure is discretiyed, the equation @.Imust be solved in this
structure at the propagation length For a complex structure (like PCF),
the analytical solution is impossible to obtain.eTpresented code is using
Beam Propagation Method with the differentialsguation (2.1.4) replaced by

the following formulas [12]:

oF' _Fi —pi OF L _F'hoop) +ph
ox  2Ax 0% (Ax)2

- S T (2.20)
OF _FlT_pi 9F ) _PITIQRl 4pil

dy 2ny oy (ay)?

This is so called Finite-Difference Scheme. Aftab&titution of (2.2.1) into
(2.1.4) and after derivation, the set of equati@mngwo elements of the electric
field vectorE, andE, [13,14]:
aalJ N e g B [ ad ) B

FDUSIE IS Ly g st s 1
= —fal)EM® - BOPEI TR +[1+ B0 B - OB P - BB+

+hi,jsEi—1,j s _mi,j sEi is _hi is Ei+1js
X y X y X y
(2.2.2)

parameter a used in the equations is the parameter respondine
the calculation scheme — implicit-explicit; and efetines the stability of
the algorithm,s is the step number in the direction pfaxis, and other

parameters are defined with formulas:

inz| 1 O e

alls = - 2.2.3
©Ank| (ax)® it 2(ax)? (22:3)
s tfz 1 2.2.4
© ank (ny) (2:24)
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i _(ni+l,js_ni—1,js)2 2(H+1Js_ Ais+ ﬁ—ljs)
LS = R — +
x nk| 2Axd™I#ae n'is (Ax)°
1Az 1 1 iis)2
-2 iisY _ 2) K2
+n0k[ [(AX)2+(Ay)2}+((n ) rl) ]
(2.2.5)
s — 1Az 1 + 0 Ll B 2.2.6
> 4nok{(Ax)2 A’ 2(ax)° (2:29)
s _ iAz | 1 it it
2 4 k{ri’js A\ } (22.7)
Ny y

e iAr [(nius _ ni+1,js)(rid'+:s _ n‘;:s)]Jr

X 4n0k ZAmyﬁ—l,j S rjf'l,j $

IAZ [(ni+1,j+ls — ni—l,j+:|s _ ri‘+1j—:s + h’— 5- 35)]
+

4n k 20 XA yR?

(2.2.8)

The equation for the field compondgtis:

ga STEI TSty g i st - st Ly [1+0'Ci jis+ ﬂ Ebst Y4
y y y y y y
+abi);j ,s+1Eiy+1,j s+ 1+ O,giyJ S+ 1Eiyj+ B+ 1=
P Ljspgij-1s _ ijspi-1js ijs ijs _ ijs o+ 1s _ i j,scijtls
==pBa)E,’ - BOJCE M +[1+ BC)° | E ) - BB )T By 2o - Bd LB e +

LWispi-1s _midspEiis _Rpwiisgi+s
+h'*E, m\*EJ* —h/*E,

(2.2.9)
where:

B=1-a (2.2.10)

o H i,j+ls _ 4,j-1s
geotfz) 1 1o -n (2.2.11)

anok| (ay)” n't o 2(ay)

e 182 1 2.2.12
Y 4n0k(Ax)2 (2.2.12)
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in _(ni,j+ls_ni,j—ls)2 2(HJ+l$_h'js+ ﬁj—ls)

¢, TR YT v 2
nk| 2Ayi’™* n''*(Ay)
iAz 1 1 Y
+ -2 + +( n'vlyS _ 2) k2
nok[ [(Ax)z (Ayf} ) ]
(2.2.13)
s _ 1Dz | 1 1 i -t
9,)° = >t > (2.2.14)
angk| (ay)” 1 2(ay)
H i+1,js _ 4-1js
pois =182 10 n (2.2.15)
4dn,k| n'® Ay

e o iAr !(nllls _ n"“ls)(ri*”s _ dl;s)]+

Y 4nk 20N YIS T

iAr !(n|+1,1+1s B L I e s,)]
+

ank 20 XA YN ®

(2.2.16)

Thus, if the number of point ikraxis direction is M, and the number of points
in they-axis direction is N, a set ofM'N equations is obtained. Nl equations
for Ex component, and the same number Er component. This set of

eguations can be rewritten in the matrix form:
e =[M,] ([N, JE+[Q,]E) (2.2.17)

Ex=[m,] ([N, ]E+[Q,JE) (2.2.18)

whereM, N, Q are the tri-diagonal matrices containing coeffitsefor each
calculated pointEx and E, represent two components of the electric field

vector. The electric field in the next stepHl, z,, = z.+ h, whereh is the step

size) is calculated with the use of the field dmttion known from
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the previous step(s, zs). The scheme of solving equations showed above is

stable fora = 05

2.3. Boundary Conditions.

Due to limitations in computations efficiency thmalated structure must have
finite dimensions. To avoid non-physical effectsy.ereflections from
the boundary surface there is need to use an additscheme which removes
this effect. The field reflected at the boundaryfate can interfere with
the propagating field and affect the calculatioesutts. This situation occurs
for the Dirichlet boundary condition& E O at the boundary surface), or for
the Noumann boundary conditions (derivative of theld E is 0 at
the boundary surface). In order to avoid non-plalsinterference effect of
the signal reflected at the boundary surface, thrangparent Boundary
Conditions was used.

The field described with equation (2.1.4) at theurmary surface with

the homogenous refractive index distribution candeeved to the formulas

[15]:
- 10 g,9¢ (2.3.1)
0z  2ikn, | 0x oy
oE
v= 1[0 g, 0¢ (2.3.2)
0z 2ikn,\ox*> ¥ ay*

Introducing equation conjugated to (2.3.1):

O
- 1 [0pg,0p (2.3.3)
0z  2ikn,\ 0x oy
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and multiplying the equation (2.3.1) by E&and (2.3.3) by E and adding both
sides of the obtained equations, one can desdréertergy preservation law in

the form:
a8 _ 2
E“ |E, | dxdy=

d
dl(Ele-ele]
2ikn, 0X 0X

C

b °(( _. o .\
ajdy+ I((Ey@Ey - Eya_yEyj dex} =

= (Fb - Fa) + (Fd - Fc)
(2.3.4)

wherea andb are respectively the beginning and the end ot#heulation area

in the x-axis direction,c andd are respectively the beginning and the end of
the calculation area in theaxis direction.F; andF, are the energy streams
through the boundary surface in tkaxis directionF;. andF4 are the energy
streams through the boundary surface inytais direction. At the boundary
of the calculation window, the field can be approated with the following

expression:
E, = E,explk,x+ik,y) (2.3.5)

where b, k, andk, are the complex constants. This is the assumgifon
the outgoing field to be a plane wave. Derivati61§203.5) into (2.3.4) gives in
result the following equations describing the egestteams floating through

the calculation window boundary surface:

_RekJE@ - _Reko)E,®)f

. R (2.3.6)
Ky, koMo
- _ RekJE, (¢) . Refk,)E, () (2.3.7)

i KoM ‘ Ko
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Thus the energy stream depends on the real pénedg. Considering the set
of equations (2.3.6) and (2.3.7) one can noticat, tire positive sign of thiga
value means the outgoing energy streagn(kza is the value ofks near
the boundary). When the sign of thk, value is positive — the energy stream
Fa is incoming to the calculation window, which shebdle rejected as a non-
physical case. The code contrédsat the boundary, and prevents this non-
physical behaviour.

Differential form of the boundary conditions pretsshabove is following:

E: = 5, = exp(k,,AX) (2.3.8)
E:: ; = EEA:A:J = exp(k,,2x) (2.3.9)
Ez = El = exp(k,Ax) (2.3.10)
EE i = EENNl = exp(k,4LX) (2.3.11)

where M is the number of points in tkexis direction, and N is the number of
points in they-axis direction. The estimation of the field at theundary

surface in the next step of propagation:

EList = Ez;m(ﬂj (2.3.12)

X X E3,j,s T
EMist Z gM4 ,-,s+1( E} 'l'j’sj (2.3.13)

X — =x EM—Z,j,s Y
Ei,l,s+1 — Ei,2,s+1( Elxzsj (2 3 14)

X X Ei,3,S e
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i,N-1s
Ei),(N,s+1 = Ei’(N'l’SJrl( E, j (2.3.15)

i,N-2,s
EX

Thus the boundary conditions in (s + 1) step ateutated in the previous s
step. Using scheme described above allows for ngetthe transparent

boundaries at the ends of the calculation window.

2.4. Nonlinear effects.

Dielectric media characterizes with lack of theefreharges which could be

moving in ordered way by the influence of the ex&trelectrical field
E:(EX, E,, F7). Summarized charge of the dielectric particle gsia¢ zero,
nevertheless it is interact with the electric fielkdsuming Transverse Electric
(TE) field in a scalar approximation, when only aidhe E field components
need to be considered, i.eE, =E(xt)= Aexp(ikx- wt), considering
monochromatic field which amplitudeA is constant in time and space,
the polarization of the dielectric is representethiormula:

P=gx A (2.4.1)

where &, is the vacuum electric permeability, is the electric susceptibility of

the medium. Equation (2.4.1) describes the lineapeddence between
the electric field and the medium. In general digle polarization contains

higher order components, and is nonlinear funabiotine electric fieldA[16]:
P=g[ XA+ YO R+ O R+ =g [ U+ xy O A y ON+ ] £
(2.4.2)

Dependence of the polarization value of the extdralals causes modification

of the material electric permeability, and alsoréfaction index. Considering
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the polarization described by expression (2.4.29 oan obtain the electric

induction D described by following expression:

D =gA+&, [ Y+ YDA+ YO R+ | A= g, [ 1+ x O+ y O Ar y O R+ ) £
(2.4.3)

In general D =¢(w) A, and considering non-magnetic medig=1), thus

n=n(w)=ue = Je, and in effect, after discarding higher order comgmnts,

one can obtain the value of the mediums refractimex described with

formula:

n=1+ X9 + Y@ A+ y© A2 (2.4.4)

The linear part (field independent) of the totdraetion index value can be

described with expression:

N, = ny(@) =1+ x® (2.4.5)
assuming that the considered medium is isotropiwhich nonlinearities of
even order does not appear, total value of thaetéfn index can be described
with:

n=nJ1+x® A/ nrg (2.4.6)
The root expression can be represented with théoifagries with respect to
)((‘?’)A2 (assuming)((g)A2 <<n,). Discarding the higher order expressions one

can obtain following formula:
n=n,+ny!, wherel ~|A’ (2.4.7)

where nonlinear part of the refractive index isimed asn,, = x®/2n,, andl

is the intensity of the electromagnetic wave. D&btn (2.4.7) describes
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the dependence of the total refractive index oninttensity of the propagating
field. It means that the field self modifies th@perties of the medium without
external effects. Nonlinear Kerr effect providesliidnal impact on the beam
propagation. The most interesting is the effectself focusing, which in

specific conditions can result in formation of gatial soliton when the self

focusing compensates the effect of diffraction widg.

2.5. Split-Step Local Error Method.

Introducing nonlinearity to the computations bringslditional effects,
including the modification of the refractive indesxth the beam intensity value
(in case of Kerr nonlinearity, which is performedgresented algorithm). For
minimization of the disadvantageous effects thet&tep Local Error Method
(LEM) was added to the algorithm.

Each step of the numerical computations generatesrar which is the effect
of simplifications used, or of the specificationtbé problem. This error is so
called local error. One of the methods used forimiration of this error are
Split-Step methods. The exact value of the locabrers impossible to
determine, however the causes of this error arsilplesto define with high
accuracy. Split-Step Methods are used for partiadieation of the local error
through elimination of the main cause of its getiera However, when this
cause cannot be defined precisely or in case whegroup of the parameters
of performed calculations can be changed in therdhgn, particular models
cannot be used. This is the main reason for creaticsome general criterion
for the Split-Step algorithm. An interesting soduttiis presented by Sinkin in
[17]. The proposed algorithm allows for bounding tlocal error value in

a specified range with use of double step and patation of the local error
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value. Assuming field distribution known at the surface, the field at
the z+2h can be estimatedh(is the length of single step in theaxis
direction). This is realized with computations loé ffield in z+2h with use of
one calculation step o2h length. The solution obtained this way is named

coarsesolution e.. The error generated is proportional td, thus there is

a constank for which is true that:
e =g+k(2h°+ q ﬁ) (2.5.1)
where g is real value of the field az+2h, O(h“) are the higher order

components. Next the computations are repeated Zrtomz+ 2h with use of

two steps oh size. Obtained result is nam@de solution e, , which satisfies

the expression:
e =g+2c i+ d H) (2.5.2)

By taking an appropriate linear combination of fime and coarse solutions
an approximate solution &+ 2h can be obtained, for which the leading order
error term is of fourth order in the step sizd-rom the expressions (2.5.1) and

(2.5.2) the expression can be obtained:

E:%ef —ég = e+ q h) (2.5.3)

Used scheme allows for bounding the local errouealithin a specified
range, determined by the user. The true valueefdtal error is impossible to
determine. Instead, the relative local error otepsr can be defined, to be
the local error in the coarse solution relativetiie fine solution. In case of

presented algorithm the relative local error isrdsd with:
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Sl i)-a. i)

o= M2 , (2.5.4)

where:M — is the total number of grid points along thaxis,N — is the total
number of grid points along the axis, e (i, j),e.(i, j) — are the fine and
coarse field intensity value in grid poi(lit,j), respectively. Equation (2.5.4)
gives the mean quadratic deviation of the fine ewatse solution.

The step size is chosen by keeping the relatival lecror value o in

the specified rang¢l/ 20, ,0,), determined by a fixed valug, — the goal
local error. If 0>20, — the obtained solution is discarded and step isize

halved, the computations are repeated one more timeg is in the range

(05,205); the step size is divided by a factor &f* for the next step. If

o <1/ 20, , the step size is multiplied by a factor2f* for the next step. Field

distribution obtained from equation (2.5.3) is thmeput for next step

computations.

2.6. Description of the algorithm.

Program uses two input files containing parametétke input Gaussian beam
and the characteristics of the propagation mednetuding characteristics of
the computational window. File callestructureKerr.txtcontains the values
defining the structure in which the beam propagafths code of the developed
program is written to generate structure showrherfigure 2.6.1. Algorithm is

creating the hexagonal lattice and the input filentains the values of

the diameter of the holes, the period of the lafticefractive index of
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the dielectric and the refractive index inside tiwes, Kerr coefficient and
the number of the hole rings surrounding the sobice. Other modifications of
the structure demands changes in the algorithnmidgfthe structure.

The file namedconfig.txt contains the computational window size and mesh
resolution, propagation length, propagation stee Az, propagation length
section, in which the output data is saved to tlee the reference refractive
index, the wavelength, the Gaussian beam width npetex, the value of
the goal local error, the field incident angle iegcees and the proportion
between thex andy component of the field. Three files generated quad
division of propagation length containing the irgiy of thex component, y
component and the beam intensity respectively.

Results of the computation are written into thed butput files: the first two

files contain the components of the fielfl, E, and the third one contains

the module of the fiel)cEz‘:«/Ef+ E;. These three files are saved several

times for equal segments of the propagation lenigéxt, the obtained data
files are used to plot the field distribution witke use of GnuPlot program.

The example of the index distribution across theefiunder investigation is
shown in the figure 2.6.1. Basic parameters of 8taicture can be easily

modified in the input text file.

-36 -



Mariusz Rafal Zdanowicz Numerical Analysis of Ritat Crystal Fibres.

30

(]
T A A

s s B s e B B8
(I O I B I R R I R I ]
20 4 LI B O B B I B R R R I ]
T s s PN ERRRRRDN 1375
s e e R0 R R R RO PR ORODY 1313
1518 4 ¢ ¢ & & o oo 0saa8

—
=
e 1.250
=
>

1,500
1438

99 0 P9 0P R PR RN
22 R R R PR PR R AR 1188

10 4 LI T T ) 1,125
s e e D 8RR DR R 1,063
s s s s BN 1,000

T T T T T
0 5 10 15 20 25 30
X [pum]

Figure 2.6.1. Example of the refractive index dlsition inside the simulated fibre (hexagonal

lattice photonic structure in the cladding area).

The code of the developed program allows for geémgydhe structure shown
above. To change the geometry of this structure,re@eds to change the code

of the program.

3. Validation of the developed code.

In order to validate the developed FD-BPM code itbgults obtained from
the simulations were first checked against anajticesults for linear
propagation in free space. The comparison was rfwad#ifferent propagation
lengths and different wavelengths.

The field distribution of the Gaussian beam is gkated with the formula:

E(r,z)~ Eo(mvlz;)jexr{v;zr(i)j wherew( z) = V\ém, z, = 77;/\/5 (3.1)

W is the input beam radiusy(z) describes the radius of the beam along the

propagation distance Ey is the input beam fieldy is the Rayleigh rangel, is
the wavelength,r =r (x,y). Choosing the parameters =1, Eo=1, and

considering only one field compondgf one obtains formula:
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1 -x?
E (% 2= — ex ) YT (3.2)
+
1+ o g

The input fields distributions obtained with forrauB.2 and calculated in
the program are shown on the figure 3.1.
For all of the performed simulations following pareters was used:
= number of points in the transverseafidy) directionsN =M = 401,
= calculation window width 40 x 4m
= single step length in theandy directionsAx = Ay = 0.1um
= single step length in the z directidz = 0.1um
= propagation medium refractive indax 1
The input field is presented on the figure 3.1. MRk results are presented in

figures 3.2 to 3.5.

¢ Simulation
— Theory
—1le

Field

AAAAAAAAA

Figure 3.1. The input Gaussian beam profile withk W.
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Field

— Theory
+ Simulation

Figure 3.2. Comparison of the analytical result aichulation. Beam after propagation to

5 tm in free space, wavelength 632.8 nm.

Field

— Theory
+ Simulatio

Figure 3.3. Comparison of the analytical result aichulation. Beam after propagation

to 104m in free space, wavelength 632.8 nm.
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Field

— Theory
+ Simulation

Figure 3.4. Comparison of the analytical result aichulation. Beam after propagation to

5 um in free space, wavelength 850 nm.

Field

— Theory

+ Simulation

Figure 3.5. Comparison of the analytical result aichulation. Beam after propagation to

10 zm in free space, wavelength 850 nm.

Figures 3.2 to 3.5 show that the code calculatesi¢ihd propagation in the free

space with high accuracy for different parametéth® input field.

The computations was repeated for one of the casieschanged value of

the propagation stegiz, changed mesh densiti, dy, and with changed value
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of the parametera, to check the stability and accuracy of the code i
dependence from this parameters.
Changes in the propagation step length are affecting the accuracy of
the calculations. However the influence of changethe propagation step
length in the range to O[im does not causes significant changes in
the accuracy of the calculations. The values of ghgpagation step above
0.5um causes the degradation of the obtained calcuolagsults. Figure 3.6
presents results of performed calculations for éhufferent values of
the propagation step lengiiz
0,72
0,71

0,7

0,69

0,68 . dz=001

x dz=0.5
e dz=1
— Theory

Field

0,67

0,66

0,65
0,64
0,63

X [um]

Figure 3.6. The comparison of the obtained caldalapoints for three different propagation

step lengths.

The difference between calculations results arativelly small for the step
lengths 0.5 and 0.1 in comparison with the simatatperformed for the step
length dz=1. Figure 3.7 presents the results of the catmrs for
the propagation stegiz = 0.1 anddz= 0.01, and it can be observed that making

propagation step smaller does not bring any impreré in the accuracy of
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the calculations. Because smaller value of the slepgth makes
the calculations time much longer and does not avgthe accuracy, it is not

justified to make the propagation step smaller thamum.

0,711
0,71
0,69 |

0,68 +

0,67 1 + dz=0.1
N x dz =0.01

— Theory

Field

0,66 T
0,65 T
0,64 1

0,63+

0,62+

Figure 3.7. The difference between calculationsiitedor the propagation steps dz = 0.1 and

dz = 0.01.

Figure 3.8 is showing the accuracy of performeddations for different
values of the step size. The accuracy is descrdmedhe mean quadratic
deviation (MQD) of the points calculated by prograith respect to the results

of the analytic calculations, according to formula:

> [E.()- E()F
MQD = |12 (3.3)

> [e(F

where Er are the points obtained with analytical calculasioEc are

the numerical resultdy is the number of points along tkexis.
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0,0014+
0,0012+
0,001+
[a)]
O’ 0,0008+
=
0,0006

0,0004-

0,0002

Figure 3.8. Mean Quadratic Deviation of the numatiesult relative to the analytical result

with respect to the propagation step length.

The beam profiles obtained analytically and witmdiation for the step

lengths 0.01 and O0.um are very similar, with the MQD value less
than0.4010°. Making the step length longer gives in resultslescurate

calculations.

Next, the accuracy of the numerical calculations wlaecked against changes
in the mesh density. Presented program uses th@ngedar, regular mesh of
points wherelx=dy. Figure 3.9 presents the theoretical line and tpoin

calculated for three different values of the maghb.s
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Figure 3.9. Numerical results obtained for threffetient values of the mesh size dx and dy
[ m].
It can be observed, that the most accurate valgeeskdained for the smallest
mesh size (in this case 0.@Q6n). Figure 3.10 presents the mean quadratic

deviation (MQD) calculated with formula 3.3 of résuobtained with

numerical simulation for different mesh sizes.

0,12+
0,14
0,08+
(@)
O 0,06
=
0,04+

0,02+

| I

| |

| |

‘ |
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
dx = dy [um]

Figure 3.10. Mean Quadratic Deviation of the nurnatiresult relative to the analytical result

with respect to the mesh size (dx, dy).
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The best results of performed calculations was iobtafor the mesh size
dx=dy=0.05 im]. MQD calculated for this case has the value IM3
which means that the calculated values for this hmese closest to
the theoretical line — it can be observed on theré 3.9. However calculations
for this dense mesh consume much more memory amel fThe value of
the MQD obtained for the mesh witix=dy=0.1 jum] is 0.410°, but
the calculation time and computational cost of dimeulation is very low
comparing to the previous case. Using high demsgghes for the calculations
is justified only in case, when very high accurasyneeded, for example
calculations in the PCF with complex structure ¢ ladding. Comparing
figures 3.8 and 3.10 one can also observe; thatgthg the mesh density
affects the calculation results more than changfregpropagation step length.
The code is much more sensitive for the changabdandensity of the mesh
used for calculation.

Parameterr responsible for the calculation scheme (impligiplecit) does not
affect the calculation results in the range frost0. 1. Values of the parameter
below 0.5 give unstable results, making the paranwegreater than 0.5 gives
stronger effect of numerical dissipation — decreg®f the propagating signal
power due to numerical effects.

Figure 3.11 presents the results of calculationgtee different values aof
parameter. It can be observed; that the pointsilzdéd with the program has
a stable value in dependence withThis parameter decides about the stability
of the code, and does not affect the results ot#tieulations significantly. In
further calculations the Crank-Nicholson schemel w# used, for which

parameter = 0.5.
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3.11. Numerical results obtained for three différealues of ther parameter.

Developed code can be used to simulate the bearpagation inside
the nonlinear medium. Due to check the accuracythef nonlinear effect
the Kerr-lens theorem for non-linear propagatiors waed. For a Gaussian
beam with powerP and beam radiusv propagating through a thin layer

(thicknessd) of nonlinear medium with nonlinear inde., the inverse focal

length f ™ of the Kerr lens can defined as [19]:

_ 4n,, d P

P =

(3.4)

The Kerr-lens focal length was calculated analfijoaith use of the formula
(3.4), and also by measuring of the beam widtlr gitepagation to 2im. With
known input Gaussian beam widith and known width of the beamy after
propagation on a distanck the Kerr-lens focal length can be estimated with

formula:

wd
f=—s 3.5
AW (3.5)
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whereAw = w —wj.

Figure 3.11. Geometrical construct used for estiorabf the Kerr lens focal length.

Formula 3.5 is the estimation from the geometriestauction shown in figure

3.11. Results obtained for two different wavelesgéne presented in figures

3.12 to 3.14.

250
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f [um]
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50 1

- - f-analitycal
——f - simuation

Figure 3.12. Estimated with formula 3.5 and cal¢ethwith formula 3.4 values of Kerr lens

focal lengths. Wavelength 638.2 nm.
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Figure 3.13. Estimated with formula 3.5 and cal¢ethwith formula 3.4 values of Kerr lens

focal lengths. Wavelength 850 nm.
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Figure 3.14. Comparison between the Kerr lens féexadth obtained for two different

wavelengths.
The agreement between results obtained with theryha&f the Kerr lens focal
length and the simulation with FD-BPM program shdhat the nonlinearity

implemented in the code works well. This test maybt very demanding, due
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to low differences in the beam widtw after propagation for a small distance,
especially in the medium with low nonlinearity, bttlie nonlinear effect
implemented in the presented program acts exdetlysame like in theoretic
model of the Kerr lens. Formula 3.4 is wavelengithependent, thus different
wavelength of the beam should not affect the nealinself-focusing.
The shape of the curve and the values of the addaincal lengths presented
on the figure 3.14 shows, that for two differentvel@ngths this value stays

almost the same.

4. Propagation inside the fibre.

Validation of the developed code presented in sec8 was performed for
the free space propagation of the Gaussian beantain@d results are
consistent with the theory, the program works Viallthe propagation in a free
space, which is homogenous — without additionaéctsf The optical fibre is
a waveguide — a structure built of at least twéed#nt materials, with different
parameters. Especially a PCF is a complicated tstr@iegn which the cladding
area is a photonic crystal built of two or more emals (most often
glass + air). Program needs validation in casenofiiations for more complex
structures. Accurate analytical solution of thddfidistribution inside PCF is
impossible to obtain. Thus at first the programlwié checked in case of
propagation inside of the step index fibre (singl@nd multi-mode).
Calculations made with the developed program vélcbmpared against some
examples and theoretical results.

The step index fibre is a cylindrical waveguide gagating light inside

the dielectric core area with the refraction index, surrounded by
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the dielectric core area with the refraction inaexThe condition for guiding
the light inside the core of the fibre g > n,. The simplest explanation for
the guiding phenomena is the Total Internal Refdec{TIR) on the boundary
surface between the core and the cladding. Eack fié characterized with
the normalized frequency, which gives the information about the number of
modes allowed in the fibre for a given wavelengtfhis value is defined with

formula:
V=2 [ (4.1)

wherea is the core radius) is the wavelength of the propagating fiehd,is
the refractive index of the fibre core, angd is the refractive index of the
cladding. Single mode fibre characterizes with tleemalized frequency

value less than 2.4 [16].

4.1. Real-Distance Mode Solving.

Real-Distance Mode Solving (R-DMS) technique allofes calculation of
the propagation constang)(value for every mode of the simulated waveguide

[19]. The solution of the wave equation can be faiywritten as:
Y, (x Y, 2= e"¥ ( x y0) (4.1.1)

In the waveguide with uniform index distributionoay thez direction, an

arbitrary input field P, (x, Y, 0) can be represented by the linear combination

of the eigenmode®, (x, y) in the structure:

¥ (% y.0=> 3@, (%} (4.1.2)
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where the summation includes both the guided maddghe radiation modes.

The eigenvalue\B, and eigenvecto®, (x, y) of H satisfy:

H®, (X y)=208,®,(x ) (4.1.3)

By applying Taylor expansion te”* and making use of (4.1.3), (4.1.2) can

be written as:
Y, (xY,2) :i g, exp(- BB, 9@, ( x Y (4.1.4)

Introduce the correlation function:
P(z):'U‘I’{*(x %0)¥P, ( %y 3 dxd (4.1.5)

where the superscript” denotes the Hermitian transpose. Substituting). 8.

and (4.1.4) into (4.1.5) and using the mode ortinagjty, (4.1.5) becomes

P(d)=2[ 400 (x ) aexe(- £5, awn ( xy day 3 pext- o5,)
N N (4.1.6)

where A, :|am|2’|'J'(I>,'f1 (% y)®@, (%Y dxd.

That is a vector which consists of two componemtsfull-vector case.
Although (4.1.6) is derived from the full vectorrfioula, it is easily to reduce
the formula to the semi-vector case by using th@nm@mponent in (4.1.6).

The Fourier transform (FT) of (4.1.6) leads to apression:

P(8B)=2 AS(LB-DB,) 4.1.7)

m=0
which suggests that the calculated spectrum wsbldly a series of sharp
resonant peaks, which correspond to the eigenmadethe waveguide.

The main advantage of the FT method is that thepshesonant peaks of
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the spectrum make it very easy to distinguish thedes even when
the propagation constants between the modes ae woeach other. However
this method requires simulation for a long distanggh use of the smaliiz

step. Choosing the step size too long will cause rigsolution of the FT
calculations to be too small, and the resonant pdak&alized closer than
the resolution won’t be visible. This method is yweaccurate, and allows
calculating the propagation constagt$or all modes with one simulation, but

requires big numerical effort.

4.2. Propagation in a step-index fibre.

The code has to be verified with some known examgellts. The R-DMS
scheme allows for the estimation of the propagatimmstants values of
the fibre modes. This algorithm can be checked bmparing the results
obtained with calculations to some known and we#iafibed structure, or with
results obtained with use of another numerical.tddle fibres described in
[20] are multi- and single-mode. The mode propagatconstants were
calculated with use of commercial software FEMLABEMLAB is
an interactive environment for modelling and sadvinscientific and
engineering problems based on partial differergigiations (PDE’s). When
solving the PDE that describe a model, FEMLAB aplthe finite element
method (FEM). FEMLAB runs that method in conjunatiovith adaptive
meshing and error control, thus it can be treatexldn independent source of
the accurate result. Reference [20] contains @etahalysis of the optical fibre
with the core radiusa=2 pm, core refractive index; =1.452, cladding

refractive index n, =1.43748, wavelength of the propagating field

-52 -



Mariusz Rafal Zdanowicz Numerical Analysis of Ritat Crystal Fibres.

A =632.8 nm. The values of the modes propagatiostaatss and effective

refractive indices are placed in table 4.2.1.

Table 4.2.1. Propagation constants of the fibreeuimivestigation calculated with FEMSIM.

Mode
ﬁ Ne

number

1 1,44073E+07 1,45101

2 1,43922E+07 1,44949

3 1,43723E+07 1,44748

4 1,43655E+07 1,4468D

5 1,43482E+07 1,4450pb

6 1,43349E+07 11,4437

7 1,43202E+07 1,44223

8 1,43005E+07 1,4402p

9 1,42950E+07 1,43970D

10 1,42886E+01 1,43905

To check the accuracy of the applied method theesaaiues should be
obtained with the simulation with use of the codespnted in this work.
Values used in the performed simulation:

= number of points in the transverseafidy) directionsN =M = 401,

= calculation window width 40 x 4m

= single step length in theandy directionsAx = Ay = 0.1um

= single step length in thedirectionAz = 0.01um

= number of stepbl = 200000 (propagation length — 2 mm)

= fibre core refractive inder; = 1.452

= fibre cladding refractive indem, = 1.43748

-B53 -



Mariusz Rafal Zdanowicz Numerical Analysis of Ritat Crystal Fibres.

The calculations were performed with use of the potational server available
at the National Institute of Telecommunications Warsaw. Although this
server is a powerful machine (dual core 2.41 GHx@ssor, 3.75 GB RAM
memory), the calculation for the parameters listdbve takes about three
days. The fibre was excited with the Gaussian bezfinthe axis of
the structure, to excite all the fibre modes. Theldf in the fibre after

propagation lengta = 2 mm is shown in figure 4.2.1.

¥ fjum]

13
15 16 17 18 19 20 21 22 23 24 25
X [um]

Figure 4.2.1. The field inside the simulated fiafeer propagation to 2 mm.

It can be observed, that the field is oscillatingside the fibre, it is
the superposition of the excited modes. Very spoopagation step sizéz,
and relatively long distance of the propagatiomqusth give enough resolution
of the Fast Fourier Transform (FFT) to recognizel aeparate all resonant
peaks. In the table 4.2.1 can be found valueseptbpagation constants and
the effective indices for ten modes of the investgg fibre. Due to finished
number of modes in this fibre, the values of #end n.s parameters are
expected to be found in the range (1.43748, 1.4%Bg starting value of
the effective index was set toep=1.438, and didn't change during

propagation. That means that the values offthg are expected to be from
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the range 0 to 0.014. Figure 4.2.2 shows the FFpliarde corresponding to

the values of\ng in this range.

0,01335

T
— —
) o
— —
o

0,201

o

apnydwy 144

0,014

ANet

Figure 4.2.2. The series of resonant peaks cornedjmg to the values of the modes effective

refractive indices.

On the figure 4.2.2 six different peaks can bellaed, but it can be observed,

that resolution obtained with this simulation cam tot enough to observe

the values corresponding to all modes. With suppbktnown and expected

results, two more peaks were considered as/fhg values obtained in

Moreover,

in Fig. 4.2.2 with ct@s).

performed simulation (marked

performed FFT can affect the results. The valuad of the performed FFT are
-55-
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Table 4.2.2. Comparison ofs values.

Mode
Angg Nt FEMSIM Ae

number
0,00229 | 1,44029 1,4402% 4E-05 8
0,00381| 1,44181 1,44223  0,00042 7
0,0061 1,4441| 1,44371  0,00039 6
0,00763 | 1,44563 1,44505 0,00058 5
0,00877 | 1,44677| 1,4468 3E-05 4
0,0103 1,4483| 1,44748  0,00082 3
0,01183| 1,44983 1,44949  0,00034 2
0,01335| 1,45135 1,45101 0,00034 1

At is the difference between the values obtained RHBMS simulation and
the values obtained with FEMSIM. These values maty differ much from

each other, but important thing is, that the moflecave indices values of
different modes are also very close. Above examaae repeated with a ten
times smaller value of the propagation step sizee iumber of propagation
steps has not changed. The obtained FFT for the samge ofAnek as in

before simulation is shown in figure 4.2.3. Theldienside the fibre is

presented in figure 4.2.4.
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Figure 4.2.3. Results obtained with the step size 6.001; 200.000 steps, propagation length

200 zm.
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Figure 4.2.4. The field inside the simulated fibfeer propagation to 20@m.
The results presented in the figure 4.2.3 do notgbany information about
the fibre modes. The propagation length is tootstooobtain resonant peaks in
the considered range of thAnss. The step size may be shorter, but
the information carried by the correlation functi@hl.5) is not good enough.
Obtaining better results means the simulation fdeast the same propagation

length with the step size like in the second sitioita The single step
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calculation time did not change, which means, th& impossible to repeat
the simulation for the same range — 2 mm. Such lation would need
2.000.000 steps of calculations, which gives appnaiely 25 days of single
program run. The R-D method requires relatively glomlistance of
the propagation length with very short single stépropagation. Application
of this method in the code developed at the Natiohwstitute of

Telecommunications is extremely ineffective.

4.3. Propagation in Photonic Crystal Fibre.

The PCF was described in Section 1.2. It is a straowith the cladding built
of Photonic Crystal (PC). This PC is characteringth some mean value of
the refractive index (see Fig. 1.2.7 a), and dué#&t it can be assumed that
asolid core PCF has an equivalent step-index ,fibneth similar
characteristics. Due to that, the code validatethse of the propagation inside
a step-index fibre should work well in case of fliepagation inside the solid
core PCF. However, the level of complication of thleotonic crystal, as
a periodic structure with many elements, is mugjhéi than simple step-index
fibre, thus the discretization of the PCF structiorethe calculations should be
more accurate.

The main task in this work was to adapt the codd malidate it for
the propagation the PCF’s. Analysis performed irctiSe 4.2 brings first
concerns about the ability of the developed codepierate accurately in case
of the propagation inside the PCF. The most impbrissue is the time of
the calculations, which increases significantly tioe calculations with use of

a dense mesh of points.
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First simulations were performed for the structsh®wn in figure 4.3.1, for

the set of the parameters:

pitchA =2 mm

* hole diameted = 0.8 mm

= material refractive inder; = 1.46

= hole refractive index, = 1

= propagating wavelength= 632 nm

30

2 8 8 8 B B B

25 4 & & 2 8 & & B8 d 2

[ B B N BN O BN OB R

S 09 9 0 0O P BB
20 L I B B B B B B B B B BN ]

1,500
1.438

TP P E R Y RERN BTN 1,375
RN E R 1313
Elﬁ--t----- N 1250
£ I B R B N B B R R BN BN RN I
e 2R R R PR R R AR RER 1,188
10 4 [T I I O B B B AN 1,125
AN EEE RN 1.063
) (DN B B B N N BN B R 1.000
21 [ BN BN BN BN BN BN AN
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Figure 4.3.1. The cross-section of the simulateactdre.

The parameters of the simulation:

= number of points in the transverseafidy) directionsN =M = 301,

calculation window width 30 x 3am

single step length in theandy directionsAx = Ay = 0.1um

single step length in the z directidz = 0.1 um

effective refractive indeRey = 1.46.
The evolution of the propagating field is showrfigure 4.3.2. The simulated
fibre maintains the field inside the core; the tighpropagating in the structure

with no additional effects.
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Figure 4.3.2. Calculations for the propagation msithe PCF.

The program seems to work well in case of the ¢aficns presented above.

However further analysis of the code brings somdt feesults. Presented
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program was created for the assumption of the pargropagation. This
assumption makes the calculations easier to peyfowrh the simulation in
the fibre with a larger core area gives unstablatems. Figure 4.3.3 shows
the field distribution inside the PCF large areaec&@ome bright spots of the
light intensity can be observed at the boundaryasarbetween the material
and the air hole. The energy of the propagatinig ie growing (presented in
figure 4.3.4), the code becomes unstable.
The parameters used for the simulation:

= number of points ix andy directionN =M = 501,

= calculation window width 25 x 2Am

= single step length in theandy directionAx = Ay = 0.05um

= single step length in the z directifz = 0.05um

= propagation medium refractive indaex= 1.45

= air hole refractive inder, = 1

= wavelengthhA = 1pum

0 5 10 15 20 25
X [um]

Figure 4.3.3. Instability of the code observedrat boundary surface between the material and

the air hole in case of the propagation in the Piitife with large core area (7 holes missing).
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Figure 4.3.4. Instability of the beam power durjpr@pagation.

This kind of the power increase at the boundaryaser occurs also for
the large area of the air filled hole inside thbrdi After propagation for
a certain length z, the field infiltrates the aild area, and becomes very
unstable. The example propagation process is shawnfigure 4.3.5,
the parameters used for the simulation are closealoes used in previous
simulation, however the air hole is now much bigger
The parameters used for the simulation:

= number of points ix andy directionN =M = 401,

= calculation window width 20 x 2(m

= single step length in theandy directionAx = Ay = 0.05um

= single step length in the z directidz = 0.1um

= propagation medium refractive index= 1.45

= air hole refractive inder, = 1

= wavelengthA = 1pum
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Figure 4.3.5. The propagation inside the structwith one ring of holes.

This effect disqualifies the developed code as themerical tool for
the analysis of the PCF's of different types. Thestability of the code
presented above could be explained with the higexn contrast at
the boundary surface between the propagation mednarthe air filled hole,
but it cannot be the only effect, due to simulasigrerformed for the fibre
presented in figure 4.3.1, which were stable. Taex contrast in all presented
cases was nearly the same, but two last examples gnstable results. It can
be observed, that the core area of the last twalated structures is much
bigger than the first one. The code is built wigs@mption of the paraxial
propagation — this may lead to the conclusion, thigt algorithm can be used
only for a precise set of the structure paramdtarge cladding area filled with
relatively small air holes, fibre core in only omkefect of the simulated
structure). The code could be changed to includeesadditional effects, and
improve its abilities. However present time of thiegle step calculations,
which depends on the complication level of thedte and has a value from

several to a dozens of seconds, is extremely [dhg.example simulation of
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the fibre of 1 m length with the parameté&zs= Ax = Ay = 0.1um would take

approximately 115 days (for assumption of a sirsgggp calculation time equal
1 second). The calculation time of presented algorimakes it impractical in
providing research and modelling of the PCF’s. Tlagrow specification of

the simulated structure is also a big problem.

5. Conclusions.

The main goal for this work was to adapt the sofevaleveloped at
the National Institute of Telecommunications foe tsimulations of different
types of the Photonic Crystal Fibres (PCFs). Thdeosas written with use of
FORTRAN programming language, and allows for theusation of the light
propagation in linear and nonlinear mediums. Theg@am was validated and
upgraded during the project realization. Some fonstwere added to improve
the accuracy of the calculations and its stabilltgis change in the code has
also brought about an unwanted extension effetheralculation time, which
was already extremely long.

Section 3 of this dissertation describes the pmadsthe developed code
validation in the case of free space propagatidre fomogenous structure
allows for very stable and accurate simulationh& beam. The Transparent
Boundary Conditions (TBC) used allows for the sigta radiate outside
the calculation window, not affecting the propaggtibeam. The nonlinear
effect was added to the calculations and its acgunaas checked in section 3.
The code is working well in case of the propagatiofriee space.

The Real-Distance Mode Solving Technique describesgction 4.1 allows for

calculations of the effective indices of the fibm®des, but the application of
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this method in presented algorithm turned out tadodnically difficult due to
the extremely long time of the calculations neededobtain results with
sufficient accuracy.

More complicated structures, like PCF’s, simulatedh use of presented
algorithm needs to be described with an adequatehse mesh, in order to
minimize the staircasing effect. This requirememtkes simulations in PCF’s
even more time consuming. Moreover, the preserigatithm is found to be
stable only for one type of PCF structure, makimg tore and the hole area
larger generates instability of the calculationpessented in section 4.3.

It is concluded that, due to the extremely longetiof the calculations, and
stability problems in some PCF structures, therilym described cannot be
considered as an accurate numerical tool for theulation of the photonic
structures. A suggested alternative for the nuraksinulation of waveguides
of arbitrary cross-section such as PCFs is to userauniform rectangular

grid, as suggested by Hadley in [21].
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