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Abstract 

Numerical methods for the simulation of photonic structures bring serious 

advantages in the field of research and design. Well prepared modelling 

techniques allow simulation of the demanded characteristics prior to 

fabrication of the device, or in some case the experimentally observed 

properties of fabricated devices to be understood in detail. . 

This thesis describes work to develop a numerical algorithm based on the real 

distance paraxial finite-difference vectorial beam propagation method (FD-

VBPM). The algorithm is based on Maxwell Equations, simplified to the time 

independent diffusion equation. The program was developed at the National 

Institute of Telecommunications in Warsaw. This work will describe 

the validation process of the code, and the problems encountered when 

the presented method was applied to the simulation of Photonic Crystal Fibres 

(PCF). 
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1. Introduction to Photonic Crystals and Photonic 

Crystal Fibres (PCF) 

1.1. The genesis and development of photonic crystals. 

Photonic Crystals are dielectric structures with a periodic distribution of 

the refractive index. The simplest form of a photonic crystal has one-

dimensional periodic structure, for example multilayer film – a Bragg mirror. 

Electromagnetic wave propagation in such systems was first studied by 

Lord Rayleigh in 1887 [1]. This structure was the first photonic band gap 

structure created by man. However, the Photonic Band Gap (PBG) phenomena 

was described over one hundred years later [2]. The Bragg reflection was 

the basis for creating more complicated structures, 2D and 3D photonic 

crystals. Figure 1.1.1 introduces the basic classification of photonic crystals. 

The periodicity is in the material (typically dielectric) structure of the crystal. 

Only a 3D periodicity, with a more complex topology than is shown in figure 

1.1.1 c), can support an omnidirectional photonic bandgap. 

 

 

Figure 1.1.1. Periodic electromagnetic media “Photonic Crystals” – a) periodic in one 

direction (1D), b) periodic in two directions (2D), c) periodic in three directions (3D) [3]. 

a) b) c) 
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The study of wave propagation in three-dimensionally periodic media was 

pioneered by Felix Bloch in 1928, extending the theorem in one dimension by 

G. Floquet (1883). Bloch proved that waves in a periodic medium can 

propagate without scattering. The field in such medium can be represented by 

a plane wave multiplied by a periodic envelope function. The band structure of 

the photonic crystals can be explained using the Bloch theorem. 

Starting from the source-free Faraday’s and Ampere’s laws at a fixed 

frequency [3] (time dependence i te ω− ), one can obtain an eigenvalue equation 

in only the magnetic field H : 

 
2
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∇× ∇×  is the Hermitian eigen-operator, ε  is 

the dielectric function ( )ε r , ( ), ,x y z=r , and c is the speed of light. 

A photonic crystal corresponds to a periodic dielectric function 

( ) ( )iε ε= +r r R  for some primitive lattice vectors iR  (i = 1, 2, 3 for a crystal 

periodic in all three dimensions). In this case, the Bloch-Floquet theorem for 

periodic eigenproblems states that the solutions to equation (1.1.1) can be 

chosen of the form ( ) ( ),
i

ne= kr
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Equation (1.1.2) gives in effect a different eigenproblem over the primitive cell 

of the lattice at each Bloch wave vector k . This primitive cell is a finite 

domain for the structure which is periodic in all directions, leading to discrete 

eigenvalues labelled by 1,2,n = ⋯. These eigenvalues ( )nω k  are continuous 

functions of k , forming discrete “bands” when plotted versus the latter, in 

a “band structure” or dispersion diagram – both ω  and k  are conserved 

quantities, meaning that a band diagram maps out all possible interactions in 

the system. The wave vector k  is not required to be real; complex k  gives 

evanescent modes that can exponentially decay from the boundaries of a finite 

crystal, but which cannot exist in the bulk. 

Moreover, the eigensolutions are periodic functions of k  as well: the solution 

at k  is the same as the solution at j+k G , where jG  is a primitive reciprocal 

lattice vector defined by ,2i j i jπδ⋅ =R G . Thus, the computation of 

the eigensolutions fork within the primitive cell of the reciprocal lattice is 

enough to find the eigenvalues of equation (1.1.2). More conventionally, one 

considers the set of inequivalent wave vectors closest to the 0=k  origin, 

a region called the first Brillouin zone. For example, in a one-dimensional 

system, where 1 a=R  for some periodicity a and 1 2 /aπ=G , the first 

Brillouin zone is the region / /k a aπ π= − ⋯ ; all other wave vectors are 

equivalent to some point in this zone under translation by a multiple of 1G . 

Furthermore, the first Brillouin zone may itself be redundant if the crystal 

possesses additional symmetries such as mirror planes; by eliminating these 

redundant regions, one obtains the irreducible Brillouin zone, a convex 

polyhedron that can be found tabulated for most crystalline structures. In 
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the preceding one-dimensional example, since most systems will have time-

reversal symmetry( )k k→ − , the irreducible Brillouin zone would be 

0 /k aπ= ⋯  [3]. 

A complete photonic band gap is a range of frequencies ω  in which there are 

no propagating (real k ) solutions of Maxwell’s equations (1.1.2) for any k , 

surrounded by propagating states above and below the gap. There are also 

incomplete gaps, which only exist over a subset of all possible wave vectors, 

polarizations, and/or symmetries. The origins for all kinds of the photonic band 

gap are the same, and can be understood by examining the consequences of 

periodicity for a simple one-dimensional system. 

Considering one-dimensional system with uniform 1ε = , which has planewave 

eigensolutions ( )k ckω = , and this ε  has trivial periodicity a for any 0a ≥ , 

with 0a =  giving the usual unbounded dispersion relation. One is free, 

however, to label the states in terms of Bloch envelope functions and wave 

vectors for some 0a ≠ , in which case the bands for /k aπ>  are translated 

into the first Brillouin zone, as shown by the dashed lines in figure 1.1.2 b). In 

particular, the /k aπ= −  mode in this description now lies at an equivalent 

wave vector to the /k aπ=  mode, and at the same frequency; this accidental 

degeneracy is an artifact of the “artificial” period chosen. Instead of writing 

these wave solutions with electric fields ( ) axiex /~ π±E , one can equivalently 

write linear combinations ( ) ( )cos /e x x aπ=  and ( ) ( )sin /o x x aπ=  as shown 

in figure 1.1.3, both at /c aω π= . Now, however, supposing perturbation of ε  

so that it is nontrivially periodic with period a; for example, a sinusoid 

( ) ( )1 cos 2 /x x aε π= + ∆ ⋅ , or a square wave as in the inset of figure 1.1.2. In 
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the presence of such an oscillating “potential,” the accidental degeneracy 

between ( )e x  and ( )o x  is broken: supposing 0∆ > , then the field ( )e x  is 

more concentrated in the higher-ε  regions than ( )o x , and so lies at a lower 

frequency. This opposite shifting of the bands creates a band gap, as depicted 

in figure 1.1.2 b). 

 

A B 

 

Figure 1.1.2. (a) Dispersion relation (band diagram), frequency ω  versus wavenumber k , of 

a uniform one-dimensional medium, where the dashed lines show the “folding” effect of 

applying Bloch’s theorem with an artificial periodicity a . (b) Schematic effect on the bands of 

a physical periodic dielectric variation (inset), where a gap has been opened by splitting 

the degeneracy at the /k aπ= ±  Brillouin-zone boundaries (as well as a higher-order gap 

at k = 0) [3]. 

By the same arguments, it follows that any periodic dielectric variation in one 

dimension will lead to a band gap, albeit a small gap for a small variation; 

a similar result was identified by Lord Rayleigh in 1887. More generally, it 

follows immediately from the properties of Hermitian eigensystems that 

the eigenvalues minimize a variational problem: 
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in terms of the periodic electric field envelope ,n kE , where the numerator 

minimizes the“kinetic energy”and the denominator minimizes the “potential 

energy”. Here, the 1n >  bands are additionally constrained to be orthogonal to 

the lower bands: 

 * *
, , . , 0m n m nε= =∫ ∫k k k kH H E E  (1.1.4) 

for m n< . Thus, at each k , there will be a gap between the lower “dielectric” 

bands concentrated in the high dielectric (low potential) and the upper “air” 

bands that are less concentrated in the high dielectric: the air bands are forced 

out by the orthogonality condition, or otherwise must have fast oscillations that 

increase their kinetic energy. (The dielectric/air bands are analogous to 

the valence/conduction bands in a semiconductor.) 

 

Figure 1.1.3. Schematic origin of the band gap in one dimension. The degenerate /k aπ= ±  

plane waves of a uniform medium are split into ( )cos /x aπ  and ( )sin /x aπ  standing waves 

by a dielectric periodicity, forming the lower and upper edges of the band gap, respectively – 

the former has electric field peaks in the high dielectric (nhigh) and so will lie at a lower 

frequency than the latter (which peaks in the low dielectric) [3]. 
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In order for a complete band gap to arise in two or three dimensions, two 

additional hurdles must be overcome. First, although in each symmetry 

direction of the crystal (and each k  point) there will be a band gap by the one-

dimensional argument, these band gaps will not necessarily overlap in 

frequency (or even lie between the same bands). In order that they overlap, 

the gaps must be sufficiently large, which implies a minimum ε  contrast 

(typically at least 4/1 in 3D). Since the 1D mid-gap frequency επ ac /~  

varies inversely with the period a, it is also helpful if the periodicity is nearly 

the same in different directions – thus, the largest gaps typically arise for 

hexagonal lattices in 2D and fcc lattices in 3D, which have the most nearly 

circular/spherical Brillouin zones. Second, one must take into account 

the vectorial boundary conditions on the electric field: moving across 

a dielectric boundary from ε  to some ε ε′ < , the inverse “potential” 
2ε E  will 

decrease discontinuously if E  is parallel to the interface (E
�
 is continuous) 

and will increase discontinuously if E  is perpendicular to the interface (ε ⊥E  is 

continuous). This means that, whenever the electric field lines cross a dielectric 

boundary, it is much harder to strongly contain the field energy within the high 

dielectric, and the converse is true when the field lines are parallel to 

a boundary. Thus, in order to obtain a large band gap, a dielectric structure 

should consist of thin, continuous veins/membranes along which the electric 

field lines can run – this way, the lowest band(s) can be strongly confined, 

while the upper bands are forced to a much higher frequency because the thin 

veins cannot support multiple modes (except for two orthogonal polarizations). 

The veins must also run in all directions, so that this confinement can occur for 

all k  and polarizations, necessitating a complex topology in the crystal. 
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1.2. Photonic Crystal Fibres. 

Photonic Crystal Fibres PCF’s are devices in which the cladding of 

the conventional fibre was swapped with photonic structure [4][5]. This 

structures are most two dimensional, in which the cladding is an array of 

microscopic rods of a material of different refraction index, in most of cases it 

is a hole filled with air, that run along the entire fibre length. There are also one 

dimensional structures of the cladding – in this case the fibre is called Bragg 

PCF, through analogy with Bragg mirror. The process of fabrication of 

the PCF is very complicated. A general description of the process is shown in 

figure 1.2.1. 

 

Figure 1.2.1. Manufacturing of the Photonic Crystal Fibres: a) a stack of glass tubes and rods 

is constructed as a macroscopic ”preform” with the required photonic structure, 

b) the macroscopic structure is fused together and drawn down to a fibre – c)[4]. 

The geometry of the structure inside the PCF cladding decides about its 

properties. It was discovered that silica capillaries could be stacked, fused 
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together, and drawn successfully down to PCF (Fig. 1.2.1). This stack-and-

draw procedure proved highly versatile, allowing complex lattices to be 

assembled from individual stackable units of the correct size and shape. Solid, 

empty, or doped glass regions could easily be incorporated. Thus, the preform 

preparation process allows for designing of demanded fibre properties.  

The large index contrast and complex structure in PCF make it difficult to treat 

mathematically. Standard optical fibre analyses do not help, and so Maxwell’s 

equations must be solved numerically. Results are typically presented in 

the form of a propagation diagram, whose axes are the dimensionless quantities 

βΛ  and / cωΛ , where Λ  is the pitch (interhole spacing) and c  is the speed of 

light in vacuum. This diagram indicates the ranges of frequency and axial wave 

vector component β  where the light is evanescent (unable to propagate). At 

fixed optical frequency, the maximum possible value of β  is set by 

/kn n cω= , where n  is the refractive index of the region under consideration. 

For knβ < , light is free to propagate; for knβ > , it is evanescent. For 

conventional fibre (core and cladding refractive indices con  and cln , 

respectively), guided modes appear when light is free to propagate in the doped 

core but is evanescent in the cladding (Fig. 1.2.2 a). The same diagram for PCF 

is sometimes known as a band-edge or “finger” plot. In a triangular lattice of 

circular air holes with an air-filling fraction of 45%, light is evanescent in 

the black regions of Fig. 1.2.2 b). Full two-dimensional photonic band gaps 

exist within the black fingershaped regions, some of which extend into kβ <  

where light is free to propagate in vacuum. This result indicates that hollow-

core guidance is indeed possible in the silica-air system. The entire optical 

telecommunications revolution happened within the narrow strip for 
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cl cokn knβΛ < Λ < Λ  of Fig. 1.2.2 a) (marked with an arrow). The rich variety of 

new features on the diagram for PCF explains why microstructure Photonic 

Crystals extend the possibilities of fibres so greatly. 
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Figure 1.2.2. (a) Propagation diagram for a conventional single-mode fibre with a Ge-doped 

silica core and a pure silica cladding. (b) Propagation diagram for a triangular lattice of air 

channels in silica glass with 45% air-filling fraction [4]. 

Conventional fibre as presented in the top left corner of the figure 1.2.2 a) is 

providing guidance due to the total internal reflection phenomena. Guided 

modes form at points like R, where light is free to travel in the core but unable 

to penetrate the cladding. The narrow strip marked with 3 in the figure 1.2.2 a) 

is where the whole of optical telecommunications operates. 
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Propagation diagram for a triangular lattice of air holes in silica glass with 45% 

air-filling fraction. In region (1), light is free to propagate in every region of 

the fibre (air, photonic crystal, and silica). In region (2), propagation is turned 

off in the air, and, in (3), it is turned off in the air and the PC. In (4), light is 

evanescent in every region. The black fingers represent the regions where full 

two-dimensional photonic band gaps exist. Guided modes of a solid core PCF 

(see schematic in the top left-hand corner, figure 1.2.2 b) form at points such as 

Q, where light is free to travel in the core but unable to penetrate the PC. At 

point P, light is free to propagate in air but blocked from penetrating 

the cladding by the PBG; thus it is possible to design a PCF structure with 

a hollow core, in which the guidance is provided by the full photonic band gap 

(hollow-core PCF). This generates the basic classification of the PCFs for 

the solid core fibres and hollow core fibres with the geometries analogous to 

this shown on the figure 1.2.3. 

Earliest numerical models showed that the holes in the first PCF were too small 

to expect a photonic band gap, and making the hollow core structure was 

pointless. The air-filling fractions big enough to create full band-gap was 

 
a) 

 

 b) 

 

Figure 1.2.3. Basic classification of the PCF: (a) solid core fibre; (b) hollow core fibre [5]. 
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beyond reach in 1995, thus first attempts of creating PCF was solid core 

structures. Conceptually, it was difficult to determine whether this structure 

would be a waveguide or not. From one perspective, it resembled a standard 

fibre because the average refractive index was lower outside the core. By 

contrast, between the holes there were clear, barrier-free pathways of glass 

along which light could escape from the core. The answer was provided by 

the first working photonic crystal fibre (Fig. 1.2.4), which consisted of an array 

of ~300 nm air holes, spaced 2.3 µm apart, with a central solid core [6]. 

The striking property of this fibre was that the core did not ever seem to 

become multimode in the experiments, no matter how short the wavelength of 

the light, the guided mode always had a single strong central lobe filling 

the core. This intriguing “endlessly single-mode” behaviour can be understood 

by viewing the array of holes as a modal filter or “sieve” (Fig. 1.2.5). Because 

light is evanescent in the air, the holes (diameter d, spacing Λ ) act as strong 

barriers; they are the “wire mesh” of the sieve. The field of the fundamental 

mode fits into the core with a single lobe of diameter (between zeros) roughly 

equal to 2Λ . It is the “grain of rice” that cannot escape through the wire mesh 

because the silica gaps (between the air holes encircling the core) are too 

narrow. For higher order modes, however, the lobe dimensions are smaller so 

they can slip between the gaps. As the relative hole size /d Λ  is made larger, 

successive higher order modes become trapped. Correct choice of geometry 

thus guarantees that only the fundamental mode is guided; more detailed 

studies show that this occurs for / 0.4d Λ <  [7]. Very large mode-area fibres 

become possible, with benefits for high-power delivery, amplifiers, and lasers 
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[8]. By doping the core to reduce its index slightly, guidance can be turned off 

completely at wavelengths shorter than a certain threshold value [9]. 

 A 

 

 B 

 

Figure 1.2.4. (a) Scanning electron micrograph of the first working photonic crystal fibre, (b) 

recorded near-field pattern of the guided mode (λ = 632.8 nm) [6]. 

 

Figure 1.2.5. In a solid-core PCF, the pattern of air holes acts like a modal sieve. In (a), 

the fundamental mode is unable to escape because it cannot fit in the gaps between the air 

holes – its effective wavelength in the transverse plane is too large. In (b) and (c), the higher 

order modes are able to leak away because their transverse effective wavelength is smaller. If 

the diameter of the air holes is increased, the gaps between them shrink and more higher order 

modes become trapped in the “sieve”[4]. 

Hollow-core guidance had to wait until the technology had advanced to 

the point where larger air-filling fractions, required to achieve a photonic band 
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gap for incidence from vacuum, became possible. The first such fibre [10] had 

a simple triangular lattice of holes, and the hollow core was formed by 

removing seven capillaries (producing a relatively large core that improved 

the chances of finding a guided mode). A vacuum-guided mode must 

have / 1kβ < , so the relevant operating region in Fig. 1.2.2 is to the left of 

the vacuum line, inside one of the finger shaped areas. These conditions ensure 

that light is free to propagate – and form a mode – within the hollow core while 

being unable to escape into the cladding. Optical and electron micrographs of 

a typical hollow-core PCF are shown in Fig. 1.2.6, a) and b). Launching white 

light into the fibre hollow-core causes them to transmit coloured modes, 

indicating that guidance existed only in restricted bands of wavelength, 

coinciding with the photonic band gaps. This feature limits the range of 

potential applications. More recently it has been possible to greatly widen 

the transmission bands by fabricating a different structure, a Kagomé lattice 

[11] (Fig. 1.2.6 c). 

 a) b) c) 

 

Figure 1.2.6. (a) SEM of a hollow-core photonic band gap fibre. (b) Near-field OM of a red 

mode in hollow-core PCF (white light is launched into the core). (c) OM of a hollow-core PCF 

with a Kagomé cladding lattice, guiding white light [11]. 

Two different guiding mechanisms are presented schematically in figure 1.2.7. 

In the case of the hollow-core structure, the guidance is possible due to 
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the Photonic Band-Gap (PBG) of the fibre cladding area. In this case modified 

total internal reflection, which is deciding in case of solid core fibres, is not 

possible because the average (effective) refractive index of the cladding area is 

higher than the refractive index of the core. 

 

Figure 1.2.7. Guiding mechanisms inside the PCF: (a) the Photonic Band Gap reflection 

guiding – the average refraction index of the fibre cladding nav is higher than in the core and 

only the wavelengths of the Photonic Crystal “stopband” can be guided; (b) guiding with 

modified total internal reflection from the cladding area with the average refraction index nav 

lower than in the PCF core. 

Photonic Crystal Fibre offers many new or improved features and finds 

an increasing number of applications. The ability for design the PCF geometry 

is also increasing, thus nowadays one can obtain structures with precise defined 

properties. 

Photonic devices can be used as ultra narrow band optic frequencies filters. 

Hollow-core PCFs (HC-PCFs) finds applications in gas-based nonlinear optics. 

They allows for maximizing nonlinear interactions between laser light and 

gases (low-density media). Efficient nonlinear processes require high 

intensities at low power, long interaction lengths, and good-quality transverse 

a) 

b) 
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λ3 
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beam profiles, which HC-PCF offers. Such a fibre finds also applications as 

the sensing devices for chemicals and for the high harmonic generation 

(ultraviolet and even x-ray radiation). PCFs with extremely small solid glass 

cores and very high air-filling fractions not only display unusual chromatic 

dispersion but also yield very high optical intensities per unit power. Thus one 

of the most successful applications of PCF is to nonlinear optics, where high 

effective nonlinearities, together with excellent control of chromatic dispersion, 

are essential for efficient devices. The example is supercontinuum generation. 

When ultra-short, high-energy pulses travel through a material, their frequency 

spectrum can experience giant broadening due to a range of interconnected 

nonlinear effects. 

1.3. New frontiers in photonic optical technologies. 

Photonic devices and photonics is a research area which development is very 

fast and efficient nowadays. Such devices find application in almost every 

scientific area. Recent advances in this emerging area now enable to launch 

a systematic approach toward the goal of full systems-level integration. 

The most important goal is to integrate photonics with nanotechnology and 

developing novel photonic devices. The technology of the fabrication of 

photonic structures, for example Molecular Beam Epitaxy, allows for 

production of photonic nanomaterials and sub-wavelength devices. Although 

incomplete understanding of the interactions between light and photonic 

nanostructures, the physics and technology of sub-wavelength structured 

optical materials such as photonic crystals, patterned metallic films and, more 

generally, artificial optical materials, such as metamaterials (i.e. structured 

materials with new characteristics obtained by combining materials properties 
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and geometrically patterning), offer novel phenomena and applications – 

mainly because of their unique dispersion characteristics, which include 

photonic band-gap behaviour and slow propagation of light. 

This research area still needs a lot of work for full integration of light with 

nano-scale devices and processes, as well as dynamic and all-optical control of 

nanostructures. The associated strong optical confinement has already led to 

much more compact devices and enhanced non-linear effects, implying 

the possible replacement of electronic functionality by all-optical operation at 

the highest speeds. There is an extensive worldwide effort, in both academic 

and commercial research labs, to address these challenges. 

2. Introduction to the numerical methods used in 

the developed program. 

The range of applications for photonic devices is very wide. The properties of 

the photonic structures allows for the creation of devices with specified, 

demanded characteristics. However the cost of manufacturing of such 

structures is very high and involves advanced technology. Manufacturing and 

testing of the devices to check the influence of different parameters of 

the structure for its properties will be extremely expensive and will consume 

a lot of time. Thus it is better to “predict” the characteristics of the designed 

device with analytical calculations. 

Photonic crystal, in most cases is a complicated structure; which characteristic 

does not have strict analytical solution. This is the area for a well prepared 

analytical model combined with numerical methods to find approximated 

solution. 



Mariusz Rafal Zdanowicz  Numerical Analysis of Photonic Crystal Fibres. 

- 22 - 

2.1. Theory – short introduction. 

The starting point is the classical set of the Maxwell equations in differential 

form: 

 
0

0
,

0

rot
divt
div

rot
t

∂ − = = ∂
 ∂ = +
 ∂

D
H D

B B
E

 (2.1.1) 

H – vector of the magnetic field, 

D – electric field induction vector, 

B – magnetic induction vector, 

E – vector of the electric field. 

Material equations: 

 0

0

εε
µµ

=
 =

D E

B H
 (2.1.2) 

ε – electric permeability of the medium, 

ε0 – electric permeability of the vacuum, 

µ – magnetic permeability of the medium, 

µ0 – magnetic permeability of the vacuum. 

The vectorial wave equation for the isotropic medium without the charges and 

free currents (dielectric), assuming the field proportional to ~ i te ω− , is [12]: 

 ( )2 2n k∆ + = ∇ ∇E E E  (2.1.3) 

where: n is the refraction index of the medium, k is the wavevector of 

the considered beam. For the propagation in one direction without reflections 

(assuming z-axis direction), only two transverse field components (Ex, Ey) are 

needed to characterize the field. Assuming small angle discrepancy of the beam 
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(true inside the optical fibre) and slowly varying refraction index along 

the propagation axis, the equation (2.1.3) can be derived to the following form 

[12]: 

 
z

kinn
n

knn t
tttttttt ∂

∂=∇−∇∇−−+∇ E
EEEE 0

2
2

22
0

2 2)](
1

[)(   (2.1.4) 

where n0 is the reference refraction index, and index t denotes the transverse 

field component (x or y). 

Assumptions made in this section allow for faster calculations and less memory 

consumption in every step of the developed algorithm. These assumptions also 

bring some disadvantages, such as ignoring backward reflections and 

impossibility of simulations of the wide angle beam propagation. 

2.2. Implementation of the method in FORTRAN. 

The calculation area is limited in space and discretized. The developed code 

discretizes the calculation area with a regular, rectangular mesh of points 

shown in figure 2.2.1. Assuming distances between the calculation points ∆x in 

the x-axis direction and ∆y in the y-axis direction, an arbitrary point Pi,j is 

described with the co-ordinates (i .∆x, j .∆y). The rectangular mesh is very easy 

to implement in the code, however for accurate calculations it should be dense. 

Dense mesh allows for making the staircasing effect smaller, but it utilizes 

much more calculations. The staircasing effect is occurs because the outer 

boundary of an object of an arbitrary geometry does not conform to 

the rectangular mesh in described method. The effect is shown in figure 2.2.2. 

The real shape of an object is represented by finished number of the point 

samples. As it can be observed in figure 2.2.2, using mesh with higher density 

(Fig. 2.2.2 b) allows for more accurate representation of the physical object in 
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the algorithm, thus also for describing more complex geometries of 

the simulated structure. 

 

Figure 2.2.1. Rectangular, regular mesh of discretization used in the developed code. 

 

Figure 2.2.2. The staircasing effect – the area marked with lines is the representation of 

the elliptic shaped object (electric permeability ε2) discretized with a mesh with different 

density. The finer mesh allows for distretizing more complex structures with greater accuracy. 

Typical PCF is a complex structure containing circle shaped holes inside 

the cladding area. For the description of such a structure with a rectangular 

mesh, it is necessary to use adequately dense mesh of points. 

(0, 0) 

(0, 3∆y) 

(2∆x, 0) (∆x, 0) ((n-1)∆x, 0) 
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ε2 
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After a structure is discretiyed, the equation (2.1.4) must be solved in this 

structure at the propagation length z. For a complex structure (like PCF), 

the analytical solution is impossible to obtain. The presented code is using 

Beam Propagation Method with the differentials in equation (2.1.4) replaced by 

the following formulas [12]: 

 
( )

( )
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 (2.2.1) 

This is so called Finite-Difference Scheme. After substitution of (2.2.1) into 

(2.1.4) and after derivation, the set of equations for two elements of the electric 

field vector Ex and Ey [13,14]: 
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  (2.2.2) 

parameter α  used in the equations is the parameter responsible for 

the calculation scheme – implicit-explicit; and determines the stability of 

the algorithm, s is the step number in the direction of z-axis, and other 

parameters are defined with formulas: 
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  (2.2.8) 

The equation for the field component Ey is: 
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where: 

 1β α= −  (2.2.10) 
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  (2.2.16) 

Thus, if the number of point in x-axis direction is M, and the number of points 

in the y-axis direction is N, a set of 2.M .N equations is obtained. M.N equations 

for Ex component, and the same number for Ey component. This set of 

equations can be rewritten in the matrix form: 

 ( )11s s s
x x x x xy yE E E

−+      = +     M N Q  (2.2.17) 

 ( )11s s s
y y y y yx xE E E

−+      = +     M N Q  (2.2.18) 

where M , N, Q are the tri-diagonal matrices containing coefficients for each 

calculated point, Ex and Ey represent two components of the electric field 

vector. The electric field in the next step (1s+ , 1s sz z h+ = + , where h is the step 

size) is calculated with the use of the field distribution known from 
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the previous step ( ), ss z . The scheme of solving equations showed above is 

stable for 5.0≥α . 

2.3. Boundary Conditions. 

Due to limitations in computations efficiency the simulated structure must have 

finite dimensions. To avoid non-physical effects e.g. reflections from 

the boundary surface there is need to use an additional scheme which removes 

this effect. The field reflected at the boundary surface can interfere with 

the propagating field and affect the calculations results. This situation occurs 

for the Dirichlet boundary conditions (E = 0 at the boundary surface), or for 

the Noumann boundary conditions (derivative of the field E is 0 at 

the boundary surface). In order to avoid non-physical interference effect of 

the signal reflected at the boundary surface, the Transparent Boundary 

Conditions was used. 

The field described with equation (2.1.4) at the boundary surface with 

the homogenous refractive index distribution can be derived to the formulas 

[15]: 
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Introducing equation conjugated to (2.3.1): 
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and multiplying the equation (2.3.1) by Ex
* and (2.3.3) by Ex, and adding both 

sides of the obtained equations, one can describe the energy preservation law in 

the form: 
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  (2.3.4) 

where a and b are respectively the beginning and the end of the calculation area 

in the x-axis direction, c and d are respectively the beginning and the end of 

the calculation area in the y-axis direction. Fa and Fb are the energy streams 

through the boundary surface in the x-axis direction, Fc and Fd are the energy 

streams through the boundary surface in the y-axis direction. At the boundary 

of the calculation window, the field can be approximated with the following 

expression: 

 )exp(E E 0x yikxik yx +=  (2.3.5) 

where E0, kx, and ky are the complex constants. This is the assumption of 

the outgoing field to be a plane wave. Derivation of (2.3.5) into (2.3.4) gives in 

result the following equations describing the energy streams floating through 

the calculation window boundary surface: 
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Thus the energy stream depends on the real part of the kx. Considering the set 

of equations (2.3.6) and (2.3.7) one can notice, that the positive sign of the kxa 

value means the outgoing energy stream Fa (kxa is the value of kx near 

the boundary a). When the sign of the kxa value is positive – the energy stream 

Fa is incoming to the calculation window, which should be rejected as a non-

physical case. The code controls kx at the boundary, and prevents this non-

physical behaviour. 

Differential form of the boundary conditions presented above is following: 
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where M is the number of points in the x-axis direction, and N is the number of 

points in the y-axis direction. The estimation of the field at the boundary 

surface in the next step of propagation: 
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Thus the boundary conditions in (s + 1) step are calculated in the previous s 

step. Using scheme described above allows for setting the transparent 

boundaries at the ends of the calculation window. 

2.4. Nonlinear effects. 

Dielectric media characterizes with lack of the free charges which could be 

moving in ordered way by the influence of the external electrical field 

( ), ,x y zE E E=E . Summarized charge of the dielectric particle is equal zero, 

nevertheless it is interact with the electric field. Assuming Transverse Electric 

(TE) field in a scalar approximation, when only one of the E  field components 

need to be considered, i.e. ( ) ( ), expxE E x t A ikx i tω= = − , considering 

monochromatic field which amplitude A  is constant in time and space, 

the polarization of the dielectric is represented with formula: 

 0P Aε χ=  (2.4.1) 

where 0ε  is the vacuum electric permeability, χ  is the electric susceptibility of 

the medium. Equation (2.4.1) describes the linear dependence between 

the electric field and the medium. In general dielectric polarization contains 

higher order components, and is nonlinear function of the electric field A [16]: 

 (1) (2) 2 (3) 3 (1) (2) (3) 2
0 0... ...P A A A A A Aε χ χ χ ε χ χ χ   = + + + = + + +     

  (2.4.2) 

Dependence of the polarization value of the external fields causes modification 

of the material electric permeability, and also its refraction index. Considering 
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the polarization described by expression (2.4.2) one can obtain the electric 

induction D  described by following expression: 

(1) (2) (3) 2 (1) (2) (3) 2
0 0 0... 1 ...D A A A A A A Aε ε χ χ χ ε χ χ χ   = + + + + = + + + +     

  (2.4.3) 

In general ( )D Aε ω= , and considering non-magnetic media ( )1µ = , thus 

( )n n ω µε ε= = = , and in effect, after discarding higher order components, 

one can obtain the value of the mediums refraction index described with 

formula: 

 (1) (2) (3) 21n A Aχ χ χ= + + +  (2.4.4) 

The linear part (field independent) of the total refraction index value can be 

described with expression: 

 ( ) (1)
0 0 1n n ω χ= = +  (2.4.5) 

assuming that the considered medium is isotropic in which nonlinearities of 

even order does not appear, total value of the refraction index can be described 

with: 

 (3) 2 2
0 01 /n n A nχ= +  (2.4.6) 

The root expression can be represented with the Taylor series with respect to 

( )3 2Aχ  (assuming ( )3 2
0A nχ << ). Discarding the higher order expressions one 

can obtain following formula: 

 Innn NL+≈ 0 , where 
2

~ AI  (2.4.7) 

where nonlinear part of the refractive index is defined as (3)
0/ 2NLn nχ= , and I 

is the intensity of the electromagnetic wave. Definition (2.4.7) describes 
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the dependence of the total refractive index on the intensity of the propagating 

field. It means that the field self modifies the properties of the medium without 

external effects. Nonlinear Kerr effect provides additional impact on the beam 

propagation. The most interesting is the effect of self focusing, which in 

specific conditions can result in formation of the spatial soliton when the self 

focusing compensates the effect of diffraction widening. 

2.5. Split-Step Local Error Method. 

Introducing nonlinearity to the computations brings additional effects, 

including the modification of the refractive index with the beam intensity value 

(in case of Kerr nonlinearity, which is performed in presented algorithm). For 

minimization of the disadvantageous effects the Split-Step Local Error Method 

(LEM) was added to the algorithm. 

Each step of the numerical computations generates an error which is the effect 

of simplifications used, or of the specification of the problem. This error is so 

called local error. One of the methods used for minimization of this error are 

Split-Step methods. The exact value of the local error is impossible to 

determine, however the causes of this error are possible to define with high 

accuracy. Split-Step Methods are used for partial elimination of the local error 

through elimination of the main cause of its generation. However, when this 

cause cannot be defined precisely or in case when the group of the parameters 

of performed calculations can be changed in the algorithm, particular models 

cannot be used. This is the main reason for creation of some general criterion 

for the Split-Step algorithm. An interesting solution is presented by Sinkin in 

[17]. The proposed algorithm allows for bounding the local error value in 

a specified range with use of double step and extrapolation of the local error 
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value. Assuming field distribution known at the z surface, the field at 

the 2z h+  can be estimated (h is the length of single step in the z-axis 

direction). This is realized with computations of the field in 2z h+  with use of 

one calculation step of 2h  length. The solution obtained this way is named 

coarse solution ce . The error generated is proportional to 3h , thus there is 

a constant κ  for which is true that: 

 ( ) ( )3 42c te e h O hκ= + +  (2.5.1) 

where te  is real value of the field at 2z h+ , ( )4O h  are the higher order 

components. Next the computations are repeated from z to 2z h+  with use of 

two steps of h size. Obtained result is named fine solution fe , which satisfies 

the expression: 

 ( )3 42f te e h O hκ= + +  (2.5.2) 

By taking an appropriate linear combination of the fine and coarse solutions 

an approximate solution at 2z h+  can be obtained, for which the leading order 

error term is of fourth order in the step size h. From the expressions (2.5.1) and 

(2.5.2) the expression can be obtained: 

 ( )44 1

3 3f c tE e e e O h= − = +  (2.5.3) 

Used scheme allows for bounding the local error value within a specified 

range, determined by the user. The true value of the local error is impossible to 

determine. Instead, the relative local error of a step σ  can be defined, to be 

the local error in the coarse solution relative to the fine solution. In case of 

presented algorithm the relative local error is defined with: 
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where: M – is the total number of grid points along the x axis, N – is the total 

number of grid points along the y axis, ( ) ( ), , ,f ce i j e i j  – are the fine and 

coarse field intensity value in grid point ( ),i j , respectively. Equation (2.5.4) 

gives the mean quadratic deviation of the fine and coarse solution. 

The step size is chosen by keeping the relative local error value σ  in 

the specified range ( )1/ 2 ,G Gσ σ , determined by a fixed value Gσ  – the goal 

local error. If 2 Gσ σ>  – the obtained solution is discarded and step size is 

halved, the computations are repeated one more time. If σ  is in the range 

( ),2G Gσ σ ; the step size is divided by a factor of 1/32  for the next step. If 

1/ 2 Gσ σ< , the step size is multiplied by a factor of 1/32  for the next step. Field 

distribution obtained from equation (2.5.3) is the input for next step 

computations. 

2.6. Description of the algorithm. 

Program uses two input files containing parameters of the input Gaussian beam 

and the characteristics of the propagation medium including characteristics of 

the computational window. File called structureKerr.txt contains the values 

defining the structure in which the beam propagates. The code of the developed 

program is written to generate structure shown on the figure 2.6.1. Algorithm is 

creating the hexagonal lattice and the input file contains the values of 

the diameter of the holes, the period of the lattice, refractive index of 
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the dielectric and the refractive index inside the holes, Kerr coefficient and 

the number of the hole rings surrounding the solid core. Other modifications of 

the structure demands changes in the algorithm defining the structure. 

The file named config.txt contains the computational window size and mesh 

resolution, propagation length, propagation step size ∆z, propagation length 

section, in which the output data is saved to the file, the reference refractive 

index, the wavelength, the Gaussian beam width parameter, the value of 

the goal local error, the field incident angle in degrees and the proportion 

between the x and y component of the field. Three files generated in equal 

division of propagation length containing the intensity of the x component, y 

component and the beam intensity respectively. 

Results of the computation are written into three text output files: the first two 

files contain the components of the field ,x yE E  and the third one contains 

the module of the field 2 2 2
x yE E E= + . These three files are saved several 

times for equal segments of the propagation length. Next, the obtained data 

files are used to plot the field distribution with the use of GnuPlot program. 

The example of the index distribution across the fibre under investigation is 

shown in the figure 2.6.1. Basic parameters of that structure can be easily 

modified in the input text file. 
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Figure 2.6.1. Example of the refractive index distribution inside the simulated fibre (hexagonal 

lattice photonic structure in the cladding area). 

The code of the developed program allows for generating the structure shown 

above. To change the geometry of this structure, one needs to change the code 

of the program. 

3. Validation of the developed code. 

In order to validate the developed FD-BPM code the results obtained from 

the simulations were first checked against analytical results for linear 

propagation in free space. The comparison was made for different propagation 

lengths and different wavelengths. 

The field distribution of the Gaussian beam is calculated with the formula: 

( ) ( ) ( )





 −









zw

r

zw

w
EzrE 2

2
0

0 exp~, , where ( ) ( )2

0 01 /w z w z z= + , 
2
0

0

w
z

π
λ

=  (3.1) 

w0 is the input beam radius, w(z) describes the radius of the beam along the 

propagation distance z, E0 is the input beam field, z0 is the Rayleigh range, λ is 

the wavelength, ( ),r r x y= . Choosing the parameters w0 = 1, E0 = 1, and 

considering only one field component Ex, one obtains formula: 
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 (3.2) 

The input fields distributions obtained with formula 3.2 and calculated in 

the program are shown on the figure 3.1. 

For all of the performed simulations following parameters was used: 

� number of points in the transverse (x and y) directions N = M = 401, 

� calculation window width 40 x 40 µm 

� single step length in the x and y directions ∆x = ∆y = 0.1 µm 

� single step length in the z direction ∆z = 0.1 µm 

� propagation medium refractive index n = 1 

The input field is presented on the figure 3.1. Example results are presented in 

figures 3.2 to 3.5. 
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Figure 3.1. The input Gaussian beam profile with w = 1. 
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Figure 3.2. Comparison of the analytical result and simulation. Beam after propagation to 

5 µm in free space, wavelength 632.8 nm. 
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Figure 3.3. Comparison of the analytical result and simulation. Beam after propagation 

to 10 µm in free space, wavelength 632.8 nm. 
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Figure 3.4. Comparison of the analytical result and simulation. Beam after propagation to 

5 µm in free space, wavelength 850 nm. 
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Figure 3.5. Comparison of the analytical result and simulation. Beam after propagation to 

10 µm in free space, wavelength 850 nm. 

Figures 3.2 to 3.5 show that the code calculates the field propagation in the free 

space with high accuracy for different parameters of the input field. 

The computations was repeated for one of the cases with changed value of 

the propagation step dz, changed mesh density dx, dy, and with changed value 
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of the parameter α, to check the stability and accuracy of the code in 

dependence from this parameters. 

Changes in the propagation step length dz are affecting the accuracy of 

the calculations. However the influence of change in the propagation step 

length in the range to 0.5 µm does not causes significant changes in 

the accuracy of the calculations. The values of the propagation step above 

0.5 µm causes the degradation of the obtained calculation results. Figure 3.6 

presents results of performed calculations for three different values of 

the propagation step length dz. 
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Figure 3.6. The comparison of the obtained calculation points for three different propagation 

step lengths. 

The difference between calculations results are relatively small for the step 

lengths 0.5 and 0.1 in comparison with the simulation performed for the step 

length dz = 1. Figure 3.7 presents the results of the calculations for 

the propagation step dz = 0.1 and dz = 0.01, and it can be observed that making 

propagation step smaller does not bring any improvement in the accuracy of 
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the calculations. Because smaller value of the step length makes 

the calculations time much longer and does not improve the accuracy, it is not 

justified to make the propagation step smaller than 0.1 µm. 
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Figure 3.7. The difference between calculations results for the propagation steps dz = 0.1 and 

dz = 0.01. 

Figure 3.8 is showing the accuracy of performed calculations for different 

values of the step size. The accuracy is described as the mean quadratic 

deviation (MQD) of the points calculated by program with respect to the results 

of the analytic calculations, according to formula: 
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 (3.3) 

where ET are the points obtained with analytical calculations, EC are 

the numerical results, N is the number of points along the x-axis. 
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Figure 3.8. Mean Quadratic Deviation of the numerical result relative to the analytical result 

with respect to the propagation step length. 

The beam profiles obtained analytically and with simulation for the step 

lengths 0.01 and 0.1 µm are very similar, with the MQD value less 

than 30.4 10−⋅ . Making the step length longer gives in result less accurate 

calculations. 

Next, the accuracy of the numerical calculations was checked against changes 

in the mesh density. Presented program uses the rectangular, regular mesh of 

points where dydx = . Figure 3.9 presents the theoretical line and points 

calculated for three different values of the mesh size.  
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Figure 3.9. Numerical results obtained for three different values of the mesh size dx and dy 

[µm]. 

It can be observed, that the most accurate values are obtained for the smallest 

mesh size (in this case 0.05 µm). Figure 3.10 presents the mean quadratic 

deviation (MQD) calculated with formula 3.3 of results obtained with 

numerical simulation for different mesh sizes. 
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Figure 3.10. Mean Quadratic Deviation of the numerical result relative to the analytical result 

with respect to the mesh size (dx, dy). 
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The best results of performed calculations was obtained for the mesh size 

dx = dy = 0.05 [µm]. MQD calculated for this case has the value 7.08.10-5 

which means that the calculated values for this mesh are closest to 

the theoretical line – it can be observed on the figure 3.9. However calculations 

for this dense mesh consume much more memory and time. The value of 

the MQD obtained for the mesh with dx = dy = 0.1 [µm] is 0.4.10-3, but 

the calculation time and computational cost of the simulation is very low 

comparing to the previous case. Using high density meshes for the calculations 

is justified only in case, when very high accuracy is needed, for example 

calculations in the PCF with complex structure of the cladding. Comparing 

figures 3.8 and 3.10 one can also observe; that changing the mesh density 

affects the calculation results more than changing the propagation step length. 

The code is much more sensitive for the changes in the density of the mesh 

used for calculation. 

Parameter α responsible for the calculation scheme (implicit-explicit) does not 

affect the calculation results in the range from 0.5 to 1. Values of the parameter 

below 0.5 give unstable results, making the parameter α greater than 0.5 gives 

stronger effect of numerical dissipation – decreasing of the propagating signal 

power due to numerical effects. 

Figure 3.11 presents the results of calculations for three different values of α 

parameter. It can be observed; that the points calculated with the program has 

a stable value in dependence with α. This parameter decides about the stability 

of the code, and does not affect the results of the calculations significantly. In 

further calculations the Crank-Nicholson scheme will be used, for which 

parameter α = 0.5. 
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3.11. Numerical results obtained for three different values of the α parameter. 

Developed code can be used to simulate the beam propagation inside 

the nonlinear medium. Due to check the accuracy of the nonlinear effect 

the Kerr-lens theorem for non-linear propagation was used. For a Gaussian 

beam with power P and beam radius w propagating through a thin layer 

(thickness d) of nonlinear medium with nonlinear index nNL, the inverse focal 

length 1f −  of the Kerr lens can defined as [19]: 

 1
4

4 NLn d
f P

wπ
− =  (3.4) 

The Kerr-lens focal length was calculated analytically with use of the formula 

(3.4), and also by measuring of the beam width after propagation to 2 µm. With 

known input Gaussian beam width w, and known width of the beam w1 after 

propagation on a distance d, the Kerr-lens focal length can be estimated with 

formula: 

 
wd

f
w

=
∆

 (3.5) 
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where ∆w = w – w1. 

 

Figure 3.11. Geometrical construct used for estimation of the Kerr lens focal length. 

Formula 3.5 is the estimation from the geometric construction shown in figure 

3.11. Results obtained for two different wavelengths are presented in figures 

3.12 to 3.14. 
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Figure 3.12. Estimated with formula 3.5 and calculated with formula 3.4 values of Kerr lens 

focal lengths. Wavelength 638.2 nm. 
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Figure 3.13. Estimated with formula 3.5 and calculated with formula 3.4 values of Kerr lens 

focal lengths. Wavelength 850 nm. 
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Figure 3.14. Comparison between the Kerr lens focal length obtained for two different 

wavelengths. 

The agreement between results obtained with the theory of the Kerr lens focal 

length and the simulation with FD-BPM program shows that the nonlinearity 

implemented in the code works well. This test may be not very demanding, due 
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to low differences in the beam width ∆w after propagation for a small distance, 

especially in the medium with low nonlinearity, but the nonlinear effect 

implemented in the presented program acts exactly the same like in theoretic 

model of the Kerr lens. Formula 3.4 is wavelength independent, thus different 

wavelength of the beam should not affect the nonlinear self-focusing. 

The shape of the curve and the values of the obtained focal lengths presented 

on the figure 3.14 shows, that for two different wavelengths this value stays 

almost the same. 

4. Propagation inside the fibre. 

Validation of the developed code presented in section 3 was performed for 

the free space propagation of the Gaussian beam. Obtained results are 

consistent with the theory, the program works well for the propagation in a free 

space, which is homogenous – without additional defects. The optical fibre is 

a waveguide – a structure built of at least two different materials, with different 

parameters. Especially a PCF is a complicated structure in which the cladding 

area is a photonic crystal built of two or more materials (most often 

glass + air). Program needs validation in case of simulations for more complex 

structures. Accurate analytical solution of the field distribution inside PCF is 

impossible to obtain. Thus at first the program will be checked in case of 

propagation inside of the step index fibre (single-, and multi-mode). 

Calculations made with the developed program will be compared against some 

examples and theoretical results. 

The step index fibre is a cylindrical waveguide propagating light inside 

the dielectric core area with the refraction index n1, surrounded by 
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the dielectric core area with the refraction index n2. The condition for guiding 

the light inside the core of the fibre is n1 > n2. The simplest explanation for 

the guiding phenomena is the Total Internal Reflection (TIR) on the boundary 

surface between the core and the cladding. Each fibre is characterized with 

the normalized frequency V, which gives the information about the number of 

modes allowed in the fibre for a given wavelength λ. This value is defined with 

formula: 

 2
2

2
1

2
nn

a
V −=

λ
π

 (4.1) 

where a is the core radius, λ is the wavelength of the propagating field, n1 is 

the refractive index of the fibre core, and n2 is the refractive index of the 

cladding. Single mode fibre characterizes with the normalized frequency V 

value less than 2.4 [16]. 

4.1. Real-Distance Mode Solving. 

Real-Distance Mode Solving (R-DMS) technique allows for calculation of 

the propagation constant (β) value for every mode of the simulated waveguide 

[19]. The solution of the wave equation can be formally written as: 

 ( ) ( ), , , ,0jzx y z e x y−= H
t tΨ Ψ  (4.1.1) 

In the waveguide with uniform index distribution along the z direction, an 

arbitrary input field ( ), ,0x ytΨ  can be represented by the linear combination 

of the eigenmodes ( ),x ymΦ  in the structure: 

 ( ) ( )
0

, ,0 ,m
m

x y a x y
∞

=
=∑t mΨ Φ  (4.1.2) 
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where the summation includes both the guided modes and the radiation modes. 

The eigenvalue mβ∆  and eigenvector ( ),x ymΦ  of H  satisfy: 

 ( ) ( ), ,mx y x yβ= ∆m mHΦ Φ  (4.1.3) 

By applying Taylor expansion to jze− H  and making use of (4.1.3), (4.1.2) can 

be written as: 

 ( ) ( ) ( )
0

, , exp ,m m
m

x y z a j z x yβ
∞

=
= − ∆∑t mΨ Φ  (4.1.4) 

Introduce the correlation function: 

 ( ) ( ) ( ), ,0 , ,HP z x y x y z dxdy= ∫∫ t tΨ Ψ  (4.1.5) 

where the superscript “H” denotes the Hermitian transpose. Substituting (4.1.3) 

and (4.1.4) into (4.1.5) and using the mode orthogonality, (4.1.5) becomes 

( ) ( ) ( ) ( ) ( )*

0 0

, exp , expH
m m m m m m

m m

P z a x y a j z a x y dxdy A j zβ β
∞ ∞

= =
= − ∆ = − ∆∑ ∑∫∫ m mΦ Φ

  (4.1.6) 

where ( ) ( )2
, ,H

m mA a x y x y dxdy= ∫∫ m mΦ Φ . 

That is a vector which consists of two components in full-vector case. 

Although (4.1.6) is derived from the full vector formula, it is easily to reduce 

the formula to the semi-vector case by using the major component in (4.1.6). 

The Fourier transform (FT) of (4.1.6) leads to an expression: 

 ( ) ( )
0

m m
m

P Aβ δ β β
∞

=
∆ = ∆ − ∆∑ɶ  (4.1.7) 

which suggests that the calculated spectrum will display a series of sharp 

resonant peaks, which correspond to the eigenmodes of the waveguide. 

The main advantage of the FT method is that the sharp resonant peaks of 
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the spectrum make it very easy to distinguish the modes even when 

the propagation constants between the modes are close to each other. However 

this method requires simulation for a long distance, with use of the small dz 

step. Choosing the step size too long will cause the resolution of the FT 

calculations to be too small, and the resonant peaks localized closer than 

the resolution won’t be visible. This method is very accurate, and allows 

calculating the propagation constants β for all modes with one simulation, but 

requires big numerical effort. 

4.2. Propagation in a step-index fibre. 

The code has to be verified with some known example results. The R-DMS 

scheme allows for the estimation of the propagation constants values of 

the fibre modes. This algorithm can be checked by comparing the results 

obtained with calculations to some known and well described structure, or with 

results obtained with use of another numerical tool. The fibres described in 

[20] are multi- and single-mode. The mode propagation constants were 

calculated with use of commercial software FEMLAB. FEMLAB is 

an interactive environment for modelling and solving scientific and 

engineering problems based on partial differential equations (PDE’s). When 

solving the PDE that describe a model, FEMLAB applies the finite element 

method (FEM). FEMLAB runs that method in conjunction with adaptive 

meshing and error control, thus it can be treated like an independent source of 

the accurate result. Reference [20] contains detailed analysis of the optical fibre 

with the core radius a = 2 µm, core refractive index n1 = 1.452, cladding 

refractive index n2 = 1.43748, wavelength of the propagating field 
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λ = 632.8 nm. The values of the modes propagation constants β and effective 

refractive indices neff are placed in table 4.2.1. 

Table 4.2.1. Propagation constants of the fibre under investigation calculated with FEMSIM. 

Mode 

number 
β neff 

1 1,44073E+07 1,45101 

2 1,43922E+07 1,44949 

3 1,43723E+07 1,44748 

4 1,43655E+07 1,44680 

5 1,43482E+07 1,44505 

6 1,43349E+07 1,44371 

7 1,43202E+07 1,44223 

8 1,43005E+07 1,44025 

9 1,42950E+07 1,43970 

10 1,42886E+07 1,43905 

To check the accuracy of the applied method the same values should be 

obtained with the simulation with use of the code presented in this work. 

Values used in the performed simulation: 

� number of points in the transverse (x and y) directions N = M = 401, 

� calculation window width 40 x 40 µm 

� single step length in the x and y directions ∆x = ∆y = 0.1 µm 

� single step length in the z direction ∆z = 0.01 µm 

� number of steps N = 200000 (propagation length – 2 mm) 

� fibre core refractive index n1 = 1.452 

� fibre cladding refractive index n2 = 1.43748 
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The calculations were performed with use of the computational server available 

at the National Institute of Telecommunications in Warsaw. Although this 

server is a powerful machine (dual core 2.41 GHz processor, 3.75 GB RAM 

memory), the calculation for the parameters listed above takes about three 

days. The fibre was excited with the Gaussian beam off the axis of 

the structure, to excite all the fibre modes. The field in the fibre after 

propagation length z = 2 mm is shown in figure 4.2.1. 

 

Figure 4.2.1. The field inside the simulated fibre after propagation to 2 mm. 

It can be observed, that the field is oscillating inside the fibre, it is 

the superposition of the excited modes. Very short propagation step size dz, 

and relatively long distance of the propagation, should give enough resolution 

of the Fast Fourier Transform (FFT) to recognize and separate all resonant 

peaks. In the table 4.2.1 can be found values of the propagation constants and 

the effective indices for ten modes of the investigated fibre. Due to finished 

number of modes in this fibre, the values of the β and neff parameters are 

expected to be found in the range (1.43748, 1.452). The starting value of 

the effective index was set to neff0 = 1.438, and didn’t change during 

propagation. That means that the values of the ∆neff are expected to be from 



Mariusz Rafal Zdanowicz  Numerical Analysis of Photonic Crystal Fibres. 

- 55 - 

the range 0 to 0.014. Figure 4.2.2 shows the FFT amplitude corresponding to 

the values of ∆neff in this range. 

0,001

0,051

0,101

0,151

0,201

0,251

0 0,002 0,004 0,006 0,008 0,01 0,012 0,014

∆neff

F
F

T
 A

m
pl

itu
d

e

 

Figure 4.2.2. The series of resonant peaks corresponding to the values of the modes effective 

refractive indices. 

On the figure 4.2.2 six different peaks can be localized, but it can be observed, 

that resolution obtained with this simulation can be not enough to observe 

the values corresponding to all modes. With support of known and expected 

results, two more peaks were considered as the ∆neff values obtained in 

performed simulation (marked in Fig. 4.2.2 with circles). Moreover, 

the amplitude of some peaks obtained is relatively small, and the noise of 

performed FFT can affect the results. The values read of the performed FFT are 

enclosed in the table 4.2.2.  

0,00229 

0,00381 

0,0061 

0,00763 

0,00877 

0,0103 

0,01183 
0,01335 
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Table 4.2.2. Comparison of neff values. 

∆neff neff FEMSIM ∆ε 
Mode 

number 

0,00229 1,44029 1,44025 4E-05 8 

0,00381 1,44181 1,44223 0,00042 7 

0,0061 1,4441 1,44371 0,00039 6 

0,00763 1,44563 1,44505 0,00058 5 

0,00877 1,44677 1,4468 3E-05 4 

0,0103 1,4483 1,44748 0,00082 3 

0,01183 1,44983 1,44949 0,00034 2 

0,01335 1,45135 1,45101 0,00034 1 

∆ε is the difference between the values obtained with R-DMS simulation and 

the values obtained with FEMSIM. These values may not differ much from 

each other, but important thing is, that the mode effective indices values of 

different modes are also very close. Above example was repeated with a ten 

times smaller value of the propagation step size. The number of propagation 

steps has not changed. The obtained FFT for the same range of ∆neff as in 

before simulation is shown in figure 4.2.3. The field inside the fibre is 

presented in figure 4.2.4. 



Mariusz Rafal Zdanowicz  Numerical Analysis of Photonic Crystal Fibres. 

- 57 - 

0

0,1

0,2

0,3

0,4

0,5

0,6

0 0,002 0,004 0,006 0,008 0,01 0,012 0,014

∆neff

F
F

T
 A

m
pl

itu
d

e

 

Figure 4.2.3. Results obtained with the step size dz = 0.001; 200.000 steps, propagation length 

200 µm. 

 

Figure 4.2.4. The field inside the simulated fibre after propagation to 200 µm. 

The results presented in the figure 4.2.3 do not bring any information about 

the fibre modes. The propagation length is too short to obtain resonant peaks in 

the considered range of the ∆neff. The step size may be shorter, but 

the information carried by the correlation function (4.1.5) is not good enough. 

Obtaining better results means the simulation for at least the same propagation 

length with the step size like in the second simulation. The single step 
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calculation time did not change, which means, that it is impossible to repeat 

the simulation for the same range – 2 mm. Such simulation would need 

2.000.000 steps of calculations, which gives approximately 25 days of single 

program run. The R-D method requires relatively long distance of 

the propagation length with very short single step of propagation. Application 

of this method in the code developed at the National Institute of 

Telecommunications is extremely ineffective. 

4.3. Propagation in Photonic Crystal Fibre. 

The PCF was described in Section 1.2. It is a structure with the cladding built 

of Photonic Crystal (PC). This PC is characterized with some mean value of 

the refractive index (see Fig. 1.2.7 a), and due to that it can be assumed that 

a solid core PCF has an equivalent step-index fibre, with similar 

characteristics. Due to that, the code validated in case of the propagation inside 

a step-index fibre should work well in case of the propagation inside the solid 

core PCF. However, the level of complication of the photonic crystal, as 

a periodic structure with many elements, is much higher than simple step-index 

fibre, thus the discretization of the PCF structure for the calculations should be 

more accurate. 

The main task in this work was to adapt the code and validate it for 

the propagation the PCF’s. Analysis performed in Section 4.2 brings first 

concerns about the ability of the developed code to operate accurately in case 

of the propagation inside the PCF. The most important issue is the time of 

the calculations, which increases significantly for the calculations with use of 

a dense mesh of points. 
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First simulations were performed for the structure shown in figure 4.3.1, for 

the set of the parameters: 

� pitch Λ = 2 mm 

� hole diameter d = 0.8 mm 

� material refractive index n1 = 1.46 

� hole refractive index n2 = 1 

� propagating wavelength λ = 632 nm 

 

Figure 4.3.1. The cross-section of the simulated structure. 

The parameters of the simulation: 

� number of points in the transverse (x and y) directions N = M = 301, 

� calculation window width 30 x 30 µm 

� single step length in the x and y directions ∆x = ∆y = 0.1 µm 

� single step length in the z direction ∆z = 0.1 µm 

� effective refractive index neff = 1.46. 

The evolution of the propagating field is shown in figure 4.3.2. The simulated 

fibre maintains the field inside the core; the light is propagating in the structure 

with no additional effects. 
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(a) Input field at z = 0 

 

(a) The field distribution at z = 2 mm 

 

(a) The field distribution at z = 6 mm 

Figure 4.3.2. Calculations for the propagation inside the PCF. 

The program seems to work well in case of the calculations presented above. 

However further analysis of the code brings some fault results. Presented 
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program was created for the assumption of the paraxial propagation. This 

assumption makes the calculations easier to perform, but the simulation in 

the fibre with a larger core area gives unstable solutions. Figure 4.3.3 shows 

the field distribution inside the PCF large area core. Some bright spots of the 

light intensity can be observed at the boundary surface between the material 

and the air hole. The energy of the propagating field is growing (presented in 

figure 4.3.4), the code becomes unstable. 

The parameters used for the simulation: 

� number of points in x and y direction N = M = 501, 

� calculation window width 25 x 25 µm 

� single step length in the x and y direction ∆x = ∆y = 0.05 µm 

� single step length in the z direction ∆z = 0.05 µm 

� propagation medium refractive index n1 = 1.45 

� air hole refractive index n2 = 1 

� wavelength λ = 1 µm 

 

Figure 4.3.3. Instability of the code observed at the boundary surface between the material and 

the air hole in case of the propagation in the PCF fibre with large core area (7 holes missing). 
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Figure 4.3.4. Instability of the beam power during propagation. 

This kind of the power increase at the boundary surface occurs also for 

the large area of the air filled hole inside the fibre. After propagation for 

a certain length z, the field infiltrates the air hole area, and becomes very 

unstable. The example propagation process is shown in figure 4.3.5, 

the parameters used for the simulation are close to values used in previous 

simulation, however the air hole is now much bigger. 

The parameters used for the simulation: 

� number of points in x and y direction N = M = 401, 

� calculation window width 20 x 20 µm 

� single step length in the x and y direction ∆x = ∆y = 0.05 µm 

� single step length in the z direction ∆z = 0.1 µm 

� propagation medium refractive index n1 = 1.45 

� air hole refractive index n2 = 1 

� wavelength λ = 1 µm 
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Figure 4.3.5. The propagation inside the structure with one ring of holes. 

This effect disqualifies the developed code as the numerical tool for 

the analysis of the PCF’s of different types. The instability of the code 

presented above could be explained with the high index contrast at 

the boundary surface between the propagation medium and the air filled hole, 

but it cannot be the only effect, due to simulations performed for the fibre 

presented in figure 4.3.1, which were stable. The index contrast in all presented 

cases was nearly the same, but two last examples gives unstable results. It can 

be observed, that the core area of the last two simulated structures is much 

bigger than the first one. The code is built with assumption of the paraxial 

propagation – this may lead to the conclusion, that this algorithm can be used 

only for a precise set of the structure parameters (large cladding area filled with 

relatively small air holes, fibre core in only one defect of the simulated 

structure). The code could be changed to include some additional effects, and 

improve its abilities. However present time of the single step calculations, 

which depends on the complication level of the structure and has a value from 

several to a dozens of seconds, is extremely long. The example simulation of 
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the fibre of 1 m length with the parameters ∆z = ∆x = ∆y = 0.1 µm would take 

approximately 115 days (for assumption of a single step calculation time equal 

1 second). The calculation time of presented algorithm makes it impractical in 

providing research and modelling of the PCF’s. The narrow specification of 

the simulated structure is also a big problem. 

5. Conclusions. 

The main goal for this work was to adapt the software developed at 

the National Institute of Telecommunications for the simulations of different 

types of the Photonic Crystal Fibres (PCFs). The code was written with use of 

FORTRAN programming language, and allows for the simulation of the light 

propagation in linear and nonlinear mediums. The program was validated and 

upgraded during the project realization. Some functions were added to improve 

the accuracy of the calculations and its stability. This change in the code has 

also brought about an unwanted extension effect on the calculation time, which 

was already extremely long. 

Section 3 of this dissertation describes the process of the developed code 

validation in the case of free space propagation. The homogenous structure 

allows for very stable and accurate simulation of the beam. The Transparent 

Boundary Conditions (TBC) used allows for the signal to radiate outside 

the calculation window, not affecting the propagating beam. The nonlinear 

effect was added to the calculations and its accuracy was checked in section 3. 

The code is working well in case of the propagation in free space. 

The Real-Distance Mode Solving Technique described in section 4.1 allows for 

calculations of the effective indices of the fibre modes, but the application of 
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this method in presented algorithm turned out to be technically difficult due to 

the extremely long time of the calculations needed to obtain results with 

sufficient accuracy. 

More complicated structures, like PCF’s, simulated with use of presented 

algorithm needs to be described with an adequately dense mesh, in order to 

minimize the staircasing effect. This requirement makes simulations in PCF’s 

even more time consuming. Moreover, the presented algorithm is found to be 

stable only for one type of PCF structure, making the core and the hole area 

larger generates instability of the calculation, as presented in section 4.3. 

It is concluded that, due to the extremely long time of the calculations, and 

stability problems in some PCF structures, the algorithm described cannot be 

considered as an accurate numerical tool for the simulation of the photonic 

structures. A suggested alternative for the numerical simulation of waveguides 

of arbitrary cross-section such as PCFs is to use a non-uniform rectangular 

grid, as suggested by Hadley in [21]. 
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