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Abstract  
 
This thesis describes the investigation and development of damage modelling for composites 

materials at their micro-scale (e.g. fibre, matrix). 

A damage model for elastic materials, based on a “ local”  damage approach, has been introduced 

to predict failure onset and simulate the post-failure behaviour of unidirectional three-

dimensional representative volume elements (RVE) or unit cells with hexagonal distribution of 

the fibres over the cross section. The damage model consists of three parts: an elastic model, a 

failure criterion and the post-failure behaviour. Modifications of von Mises criteria and 

Maximum Principal Stress criterion have been considered to evaluate failure in the matrix whilst 

for the fibre in general the Maximum Principal Stress criterion has been used. The damage model 

has been implemented into the commercial code ABAQUS with subroutines in FORTRAN 

(UMAT and USDFLD). 

 

The material properties in the residual stress analyses are considered temperature dependant to 

simulate the volumetric contraction during the manufacturing process.  Hence, the overall 

residual stress introduced from curing was determined by considering two contributions: volume 

shrinkage of matrix resin from the crosslink polymerization during isothermal curing and thermal 

contraction of both resin and fibre as a result of cooling from the curing temperature to room 

temperature. 

 

Finally, three different typologies of 3D unit cells have been investigated. The first kind of 

micro-model is based on a symmetric distribution of the fibres and the unit cells have two phases, 

i.e.: matrix and fibre. The second typology of unit cells is still based on a uniform architecture but 



include a three-dimensional interphase between fibre and matrix. As in real composites at their 

constituent level fibres are randomly distributed. The mutual distance between fibres represents a 

critical factor for the ultimate mechanical properties of the micro-composites. Hence the last kind 

of micro-models account for this non-uniform position of fibres within the RVE although they 

consists of only two phases. 

    

FEM analyses have indicated that predicted damage initiation and evolution are clearly 

influenced by the presence of residual stresses in all the three different typologies of unit cells 

analysed. The numerical analyses on the numerical models have proved that, in general, the 

overall mechanical properties are strongly influenced by the presence of residual stress, fibre 

volume fraction, fibre distribution and interphasial properties. In particular on transverse tensile 

loading, residual stresses produces beneficial results in terms of ultimate strength while in the 

case of longitudinal loading (parallel to the fibres) the matrix, due to the high compressive stress, 

undergoes a premature failure although. 
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Notation 
 
s1 Principal stress 
 
s2 Principal stress 
 
s3 Principal stress 
 
ex  Elastic strain 
 
ey  Elastic strain 
 
ez  Elastic strain 
 
t xy Shear strain in-plane  
 
t xz Shear strain through thickness 
 
t yz Shear strain through thickness 
 
nxy Poisson’s ratio in-plane 
 
nxz Poisson’s ratio through thickness  
 
nyz Poisson’s ratio through thickness 
 
Ex Longitudinal Young’s modulus (fibre direction) 
 
Ey Transverse Young’s modulus 
 
Ez Transverse Young’s modulus 
 
Gxy Shear modulus in-plane 
 
Gxz Shear modulus through thickness 
 
Gyz Shear modulus through thickness 
 
sY  Yield strength 
 
t max  Maximum shear stress 



 
dE Damage factor for Young’s moduli 
 
dG Damage factor for shear moduli 
 
[C] Stiffness matrix 
 
[S]-1 Compliance matrix 
 
Vf Fibre volume fraction 
 
a Thermal expansion 
 
 
 
Subscripts 
 
x Longitudinal direction (fibre direction) 
 
y Transverse direction 
 
z Transverse direction 
 
C Compressive loading 
 
T Tensile loading 
 
f fibre 
 
m matrix  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



 

Chapter  1  

Introduction 

1.1 Fibre reinforced composite mater ials 

Since the early 1960s, there has been an ever-increasing demand for newer, stronger, stiffer, and 

yet lighter-weight materials in fields such as aerospace, transportation, and construction. High 

demands on materials for better overall performance have led to extensive research and 

development efforts in the field of composite materials. These materials have low specific gravity 

that makes their properties particularly superior in strength and modulus [1, 2] to many traditional 

engineering materials such as metals. As a result, these materials are now being utilized in 

industries that traditionally used metals, and these have become the forefront of research and 

development activity in many related areas. Composite materials that exist today can be 

categorized into five major classes, which include ceramic matrix composites (CMCs), metal 

matrix composites (MMCs), intermetallic matrix composites (IMCs), carbon-carbon composites 

(CCCs) and polymer matrix composites (PMCs). In this discussion, considerable attention is paid 

to the latter class of materials (PMCs). There are two important types of polymer matrix 

composites, short-fibre and continuous-fibre composites. The choice of polymer matrix for such 

composites can be either a thermoset or a thermoplastic. Continuous-fibre composites that offer 

the best mechanical properties compared to other fibre-reinforced composites are primarily 

reinforced with high performance fibres such as carbon, Kevlar or glass. These composites are 

often utilized in special applications like aircraft components in which the property benefits of 

the fibres are fully exploited. 

The properties of a composite material are strongly influenced by the properties of its 

constituents and their distribution and also the quality of interactions among them [2, 3]. The 

most important of all the composite properties are usually the mechanical properties, since 



whatever the reason for the choice of a particular composite for some application it must have 

certain characteristics of shape, rigidity and strength. The mechanical properties of long fibre 

composites, such as stiffness, can be predicted using several prediction schemes such as the 

“Rule of Mixtures”  and the Halpin-Tsai equations [1, 2]. 

 

Continuous fibres offer the highest mechanical properties, and give the possibility of using 

specific orientations to give the composite directional properties. They are available as lengths of 

fabric in many different woven, knitted or stitched forms, all of which have different properties, 

processing characteristics and costs. These include: 

- Unidirectional - almost all the fibres are straight and aligned in one direction. Fabrics may be 

lightly woven or stitched, or incorporate a binder to maintain their shape. 

- Biaxial - various weave styles have equal quantities of fibres at right-angles. Weaving 

inevitably involves some crimping of the fibres, resulting in loss of properties that can be 

attributed, for instance, to the high shear stress and strain due to the local bending effect of the 

fibres. Shear strain and shear stress have a negative effect especially on the compressive strength. 

Straightness may be preserved by stitching bundles of fibres. 

- Multiaxial - some specialist weaving techniques can produce triaxial fabrics. Quadriaxial 

fabrics (with reinforcement at 0°, 90° and �45°) can be produced by stitching. 

- Random - continuous fibres can be combined with a binder and deposited in a random ‘swirl’  

arrangement, primarily for use in resin transfer moulding.                    

 
Advantages and disadvantages of composite materials can be briefly summarized 
 
Advantages of Composites: 
 
·  Weight saving 

·  Corrosion resistance 

·  Long fatigue life 



·  Manufacturing: 

 - reduced parts count (complex geometries can be moulded) 

 - novel shapes possible 

 - low cost tooling 

 - low temperature processing 

·  Design freedoms: 

 - continuous spectrum of properties 

 - anisotropic properties possible 

 

Disadvantages of Composites 
 
·  High cost of raw materials 

·  Lack of design standards 

·  Properties not well characterised 

·  Low through-thickness tensile and shear strengths 

·  Sensitivity to stress concentrations 

·  Dependence of properties on manufacture 

·  Few mass production processes 

 

 
1.2  Research aims  

Only in the most recent years has the finite element technique together with the high speed and 

capacity of modern computers made it possible to analyze fibre-reinforced composite in detail. 

The goal of the present work is to develop numerical micro-models, using the commercial finite 

element package ABAQUS/Standard, to predict the tensile strength and evaluate the failure, 

damage onset and its evolution in unidirectional composite materials from the properties of the 

fibre and matrix.  

The micromechanical model considers a unit cell in which fibre and matrix are arranged in a 

hexagonal cross section array by assuming the repetitive or periodic nature of the fibre and 



matrix materials. The unit cell is also a three-dimensional (3D) solid and the size of each unit cell 

dependents on the fibre volume fraction [3].   

The effects of fibre content have been investigated by means of numerical analyses based on the 

determination of elastic constants of a unidirectional composite using a simple 3D representative 

volume element (RVE) model with a hexagonal packing array to check the reliability of  FE 

models by comparing numerical results with empirical theories (e.g. Rule of Mixtures, Halpin-

Tsai). Further investigations have been performed to study the failure onset and damage 

evolution on different configurations of unit cells.  

In particular unidirectional composites properties, e.g. strength and stiffness, are dependent upon 

the volume fraction of the fibre and individual properties of the constituent fibre and matrix 

materials [3]. Particularly the estimation of the damage and failure progression in fibre reinforced 

composite structures is very complex compared to that of conventional metallic materials. 

Composite structures may vary their stiffness and strength due to damage accumulation such as 

matrix cracking and fibre breakage during the loading history of the composite members. In the 

micromechanical approach, the constituent fibre and matrix materials, and their interaction are 

distinctively considered to predict the overall behaviour of the composite structural member.  

In particular, the present work has been developed in order to simulate progressive failure of UD 

composites by carrying out numerical analyses on unit cells under different uniaxial load 

conditions. 

Therefore, in order to predict accurately failure and simulate damage, analyses on numerical 

models have been enhanced with subroutines UMAT and USDFLD in FORTRAN available in 

ABAQUS/Standard [4]  that modify the mechanical behaviour of the component (fibre, matrix) 

as soon as failure is detected, reducing the elastic properties by introducing an accurate 

“degradation factor”  [5]. The UMAT and USDFLD subroutines allow updating the solution-

dependent state variables accordingly to the solution of an analysis. In particular, solution-



dependent state variables can be defined as a function of any other variables appearing in these 

subroutines and can evolve with the solution of the analysis. 

The selection of a proper failure criterion, both for matrix and fibre, represents a very important 

task of the modelling formulation. In particular in polymers the yield behaviour is sensitive to 

hydrostatic pressure and as a consequence, the yield stress in tension is different from that in 

compression [6-8].  

For the evaluation of failure within the fibres (E-Glass), it is possible the use of the most common 

failure theories for isotropic materials such as the von Mises failure criterion, Maximum Principal 

Stress theory and Maximum Shear Stress theory (Tresca).  

This research was especially focused on the evaluation of local distribution and magnitude of 

residual stresses (introduced during manufacturing process) for different fibre volume fractions 

and unit cell configurations that will be discussed in the next chapters. Then, subroutines UMAT 

and USDFLD have been modified to account for the contributions from both the chemical 

shrinkage of resin and the thermal cooling contraction of fibre and resin. Of interest in this 

investigation has been the determination of the role that residual stresses play in local damage 

initiation and evolution in unit cells subjected to uniaxial loading both parallel to the fibres, and 

transverse in the y and z directions. 

 

1.3 Outline 

Chapter-2 represents a review of the relevant research undertaken on micromechanical aspects of 

composite materials.  

This chapter is composed by three main sections. The first section is related to composites 

materials at their macroscale and describes failure criteria that have been developed to detect 

failure in real composites. Although this section does not take into account directly the 

microstructure of composite materials, it describes the difficulties to determine accurately the 



mechanical behaviour and ultimate properties of composites. Moreover the section highlights the 

necessity of a better understanding of the microstructure that strongly influence and determine 

the overall response of composite material at their macro-level. 

The second section describes the main issues related to the micro-modelling techniques in 

numerical analyses and it is divided into four sub-sections, namely: 

1- Review of Literature Related to the Representative Volume Element (RVE) 

2 - Review of Literature Review Related to Failure Criteria for Polymers 

3 - Review of Literature Related to Damage Modelling 

4 - Review of Literature Related to Thermal Residual Stresses 

Finally the third section is concerned with the effects of the various actions of the constituents, in 

particular, the fibre arrangement and the presence of an interphase. 

The three-dimensional unit cells adopted in the Finite Element studies required validations. 

Hence, Chapter-3 covers the preliminary studies that have been carried out in order to determine 

the elastic constants of the unit cells at different fibre volume fractions. Numerical results have 

been compared with analytical relationships (e.g. Rule of Mixtures) and/or, if possible, with 

experimental data available in the literature. The encouraging data obtained by this preliminary 

study has ensured the capability of the micro-model to describe accurately the mechanical 

behaviour of micro-composites. An extensive review of the methodologies used to evaluate 

material properties for the unit cell is also presented in this chapter. 

In Chapter-4 the material characteristics and the methodology applied to simulate the residual 

stress and the damage progression using ABAQUS/Standard is described. As a first approach to 

numerical investigations a set of numerical analyses has been performed on RVEs with various 

fibre contents in order to investigate the overall mechanical response of the unit cell under 

uniaxial tensile loading, with and without residual stresses. The description of this set of studies 



is also shown in Chapter-4. Another aspect investigated in this chapter has been the evaluation of 

different failure theories for polymers to test their capabilities to predict damage onset. 

A physical “ interphase”  can be introduced at the fibre-matrix interface by means of particular 

procedures (e.g. sizing) on the fibre surface. 

An attempt to characterize unit cells with the presence of an interphase with temperature 

dependant material properties is described in Chapter-5. These numerical studies will be able to 

predict the effect on the overall mechanical behaviour of composites and more importantly the 

effect of residual stress arising within the three-dimensional interphase on damage onset and its 

evolution. 

The real distribution of fibres in composite materials at their component level is in general a 

random arrangement and square and hexagonal arrays represent only an idealization of the micro-

structure that, although able to describe accurately the mechanical behaviour of micro-

composites, cannot take into account the stochastic effects of inter-fibre spacing on damage onset 

especially in residual stress analyses.  

Hence, non-uniform packing arrays of the unit cell have been investigated in Chapter-6 in order 

to verify any potential detrimental effect of inter-fibre spacing on failure modality in the 

numerical micro-models under study.  

Results obtained with the residual stress analysis were also compared to data from a non-residual 

stress analysis used as a benchmark. 

Chapter-7 presents the conclusions of the FEM studies on three-dimensional unit cells. This 

chapter also includes suggestions for future research based on the characterization of composite 

materials at their constituent level. 

 
 
 
 
 

 



Chapter  2 

Review of L iterature Related to Micro-Modelling of Composite 

Mater ials. 

 
2.1 Introduction 

The literature review section will describe existing work in the following areas: 

¨  Failure criteria for composite materials at the macroscale. 

¨  RVE modelling. 

¨  Effect of constituents on the mechanical properties of composites. 

 
2.2 Review of L iterature Related to Failure Cr iter ia for  Composites 

Mechanical properties (e.g., strength, damage resistance, stiffness) of composite materials can be 

improved by tailoring their microstructures. Optimal microstructures of composites, which ensure 

desired properties of composite materials, can be determined in numerical analyses (e.g. Finite 

Element Analysis, Boundary Element and Mesh-Free Method,). Hence, for a better 

understanding of the overall mechanical properties at macroscale and the strong relationship with 

the micro-properties of composites materials it is worthwhile to briefly summarize the failure 

criteria that have been developed in order to predict failure onset in real composites.    

The most important task of composite design calculation is the strength prediction. The basis for 

the calculation of composite laminates and structures is the Classical Laminate Theory (CLT). 

The CLT first looks at unstructured thin laminate plates composed of two or more unidirectional 

layers (often called plies). These plate elements have no specified dimensions in length and 

width. Only the thickness, fibre orientation and stacking sequence of its plies are important. This 

allows the calculation of the laminate©s properties as well as its load response to the imposed 

forces and moments. Structural composite parts can be seen as a composition of these thin 

laminate plate elements. For simple structural parts (eg. beams, tubes, plates) an exact solution 



can be found. Their properties and load response (e.g. bending, stresses, failure, buckling) can be 

calculated with analytical formulas. The right choice of the failure criterion is crucial. Many 

different failure criteria for unidirectional plies have been developed over the years. The first 

published failure criteria were global failure criteria and did not distinguish between different 

failures modes (Fig.2.1). They were formulated as a single, mathematically simple equation 

which can be easily adapted to the results of the experiments. Examples for such criteria are 

Hoffmann, Tsai-Hill and Tsai-Wu [1,9]. 

 

 

Fig. 2.1 - Fibre failure and inter-fibre failure modes. 
 

A simple stress based failure criteria is the Maximum Stress Criterion for fibre-reinforced 

composites [9]. This failure criterion states that failure will occur if any of the stresses in the 

material principal directions exceeds the corresponding ultimate strength. In terms of 

symbolically expression: 

T
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where the superscript C, T and S corresponding to the compressive, tensile and in-plane shear 

strength respectively. It should be noted that the Maximum Stress criterion does not consider 

interaction between stresses in different directions, which may be important in reality.  

Zinoviev et al [10, 11] introduced the maximum stress criterion in predicting the failure 

behaviour of a series of laminates namely: carbon fibre-reinforced epoxy system AS4/3501-6, 

T300/914C, glass fibre-reinforced epoxy E-glass/LY556, E-glass/MY750.  It was found that 

satisfactory prediction was obtained between the theoretical model and the available 

experimental data from biaxial tests. For most of the cases, good correlations were found in 

prediction until final failure. However, in some of the cases i.e. in the case of unidirectional E-

glass/LY556 lamina, significant discrepancy was found between experimental and predicted data 

and it was claimed by the author that the underestimated final failure of the composite was 

caused by ultimate transverse compressive stresses in one of the unidirectional plies of the 

composite laminate. 

The Maximum Strain Criterion [9] is very similar to the maximum stress criterion, with failure 

deemed to occur when any strain component in the material principal directions exceeds the 

corresponding ultimate strain. Mathematically it is expressed as: 
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Similar to the Maximum Stress theory, there is no interaction between the strain components.  



As unidirectional composites have directionally dependent strengths, judgment on the cause of 

failure must be based on all three stress components where the longitudinal strength can be 

twenty times as high as the transverse and shear strengths. Failure criteria provide the analytical 

relation for the strength under combined stresses. Most theories are developed to predict first ply 

failure (FPF), though many laminates can still support load well after FPF so these theories tend 

to be conservative. However, after FPF, the stiffness of the ply is reduced by either matrix or 

fibre failures and the strength of the laminate at the same point is evaluated again to see if the 

laminate can carry an additional load. This ply-by-ply (PBP) analysis progresses until last ply 

failure (LPF) which would be the ultimate failure of the laminate. Physical observations led to the 

development of differentiating criteria, which distinguish between fibre failure (FF, or fracture of 

the fibres) and inter-fibre failure (IFF, fracture of the matrix). Different mathematical 

formulations are used for the physically different phenomena FF and IFF. Because the effects of 

the two failure modes and the methods to avoid them are completely different, it is vital for the 

designer to know which failure is occurring. Examples of such criteria are Hashin and Puck [10, 

12].  

 

In contrast to the Maximum Stress and Strain criteria, the Tsai-Hill criterion incorporates the 

interaction between the three principal failure stresses and combines them into a single 

expression. Failure will not occur until the following expression reaches unity. 
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The predictions of failure stresses (s xu, s yu and t xyu) using both Tsai-Hill and Maximum Stress 

criteria have been evaluated for carbon/epoxy laminae in comparison with experimental data [1]. 



It was found that the data fits well to the Tsai-Hill curve. However, it does not offer the capability 

to predict failure modes such as fibre breakage, transverse or shear failure. 

 

The Tsai-Wu failure criterion generally represents a second-order surface in the space with 

coordinates s xu , s yu ,tttt xyu which is in contrast with Maximum Stress theory where the failure 

envelope is a planar surface with sharp corners and edges. The Tsai-Wu failure criterion is 

defined by the following expression:  
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The term F12 is usually experimentally determined through conducting a biaxial test, i.e. 

simultaneous loading in the directions normal and parallel to the fibre. For the prediction of first 

ply failure, the failure interaction term, F12 is the only empirical factor needed for modification. 

However, an average value of -0.5 is referred to as the generalized model for glass fibre-

reinforced and carbon fibre-reinforced composites as indicated in Liu et al [13]. Effect of F12
* has 

been investigated by Tsai et al [14] where failure envelopes have been drawn for the nominal 

case (F12
* = -0.5) and two extreme cases (F12

* = -0.1 and -0.9) and good agreement was found 

with F12
* = -0.5. Whilst sophisticated finite element analysis is necessary in determining the 

progressive failure of a laminate under non-homogenous stresses, the Tsai-Wu failure criterion 

provides a good starting point in this case.  

 

The establishment of a failure criterion involves three steps: the formulation of the criterion, the 

experimental verification and the convincing of future users. A good failure criterion should take 

the following rules into consideration: (1) it should describe as many different types of materials 

and loadings as possible; (2) a minimum amount of experimental work should be necessary to 

determine the criterion’s coefficients [15]. It is important to recognize that a failure envelope 

should be developed using the minimum number of test data points. However, there are 

geometric and material considerations which will limit the mathematical form of a failure 

criterion as well as the shape of the corresponding envelope, i.e. a failure envelope must be 

closed in order to prevent infinite strengths and the envelope must be convex so that unloading 

from a state of stress will not lead to additional failures. Hence, the ability to predict the strength 

and deformation of fibre-reinforced composites under complex loadings is of critical importance 

to designers and users of composite structures. In the Failure Criteria in Fibre Reinforced 

Polymer Composites - The World-Wide Failure Exercise [10], the authors have organised and 

coordinated an international study.  



 

 

 

The principal aims of the exercise were to: 

·  Establish the current level of maturity of theories for predicting the failure response of  

fibre reinforced polymer laminates. 

·  Close the knowledge gap between theoreticians and design practitioners in this field. 

·  Stimulate the composites community into providing design engineers with more robust  

and accurate failure prediction methods, and the confidence to use them. 

 

The basic plan was to: 

·  Assemble a comprehensive description of the current, foremost, failure theories for fibre 

 reinforced plastic laminates. 

·  Compare their predictive capabilities directly with each other. 

·  Compare their predictive capabilities directly with experimental data. 

 

This exercise has been carried out in three distinct stages referred to as Part A, Part B and Part C.  

Part A contained detailed descriptions of 14 leading failure theories and predictions by each for a 

set of test cases. Part B provided a detailed comparison between the theoretical predictions and 

the experimental results. Part C extends the study to including 4 additional theories that have 

emerged since the WWFE was first initiated and contains overall conclusions and 

recommendations. Most of the leading approaches to predicting failure in composites were 

represented, including theories employing well-known Maximum Stress, Maximum Strain, 

interactive (Tsai) and mechanistic failure criteria (Puck and Cuntze). Some less widely known 

methods were also represented (McCartney, Eckold). In response to repeated requests from 



industrial users the organisers devised qualitative and quantitative methods of summarising, 

assessing and ranking the overall performance of the different theories. The qualitative method 

consisted of comparing the predictions of all of the theories with the experimental results, one 

test case at a time and noting any ‘Fundamental’ , ‘Major’  or ‘Minor’  weaknesses.  In the 

quantitative method the ratio of predicted to measured lamina strengths, laminate initial and final 

strengths and deformations was calculated for numerous selected combinations of applied loads 

in all the various test cases. Grades were awarded for each prediction: 

- Grade A if the prediction was within ±10% of the measured value 

- Grade B if the prediction was between ±10% and ±50% of the measured value 

- Grade C if the prediction was below 50% or above 150% of the measured value 

- Grade NA if no prediction was attempted for that case. 

 

The theories of Zinoviev (Maximum Stress criterion), Bogetti (Maximum Strain criterion), Puck 

and Cuntze (mechanistic criterion) and Tsai (interactive criterion) showed very good overall 

performance. 

As a result of improvements to his method of post failure analysis, in the light of the 

experimental results, Tsai further improved his performance in Part B.  These five groups 

together with Sun (L) also formed the top group of theories according to the qualitative method 

of assessment. 

The five leading theories (see above) were explored in greater detail to demonstrate their 

strengths and weaknesses in predicting various types of structural failure. Recommendations 

were then derived, as to how the theories can be best utilised to provide safe and economic 

predictions in a wide range of engineering design applications. 

A brief summary of the grades scored by each theory for all the five ranking categories is 

illustrated in Table 2-1 in which the categories are listed according the number of the A+B grades 



achieved . It was noticed that taking Grade A and B scores together, the predictions of a number 

of theories were within 50% of the experimental results in more than 80% of cases. The full list 

of theories can be seen in the book The World-Wide Failure Exercise [10]. 

 

 

 

 
Table 2-1 Summary of the grades scored by each theory [10]. 
Grade type A B C NA A+B 

Cuntze-B 59 38 28 0 97 
Zinoviev 53 43 29 0 96 
Bogetti 51 44 30 0 95 
Puck 64 30 31 0 94 
Cuntze 62 32 31 0 94 
Tsai-B 57 36 32 0 93 

 

The need for careful interpretation of initial failure predictions has been emphasised, and also the 

necessity to allow for multiple sources of non-linearity (including progressive damage) where a 

high level of accuracy is sought for certain classes of large deformation and final failure strength 

predictions. Finally, different aspects requiring further experimental and theoretical investigation 

has been identified with a specific list of experiments indicating where further tests would be 

useful to integrate the experimental data employed in the exercise, e.g.: 

 

• Biaxial loading tests on uni-directional lamina to confirm which theoretical 

 predictions are the most realistic at some specific stress ratios.  

• Biaxial compression tests to eliminate the influence of buckling that may have resulted 

 in low experimental failure loads for some laminates. 

• More tests on initial failure and its significance. 

 

 



 

2.3 Review of L iterature Related to Micromechanical Modelling 

The purpose of this section is to introduce some of the methods used to determine the influence 

of the mechanical properties of the fibre and matrix on the elastic properties of the composite 

materials. This area of research, where interest is focused on what is happening at the level of the 

fibre and matrix, is commonly referred to as micromechanics, primarily to differentiate it from 

macro-mechanics wherein the stresses and strains within individual layers are generally of 

interest. 

 

2.3.1 Review of L iterature Related to the Representative Volume Element (RVE) 

With rapidly growing computational modelling capability, the micromechanical analysis of fibre 

reinforced composite materials has become an important means of understanding the behaviour 

of these materials. An appropriately introduced representative unit cell or representative volume 

element (RVE) is usually the first step into such an analysis. Before a unit cell can be introduced, 

a common practice is to assume an idealised regular arrangement of the reinforcing fibres in the 

matrix. Occasionally, regularly packed fibres are obtained in some modern composites. The 

loading conditions to the material represented by the unit cell can be thermal, mechanical or other 

types. The prescription of the loads to the unit cell is normally expressed in terms of macroscopic 

field quantities, such as macroscopic stresses, strains and change in temperature. For 

unidirectionally fibre reinforced composites, frequently employed idealised fibre-matrix 

arrangements are square packing (Fig 2.2) and hexagonal packing. They have both been studied 

extensively, e.g. by several researchers [2, 16-25]. 



 

Fig. 2.2 - Unit cells for square- and hexagonally-packed arrays. 

 

When a square layout is assumed, it is relatively easy to define a unit cell and to interpret the 

symmetries that the system possesses to mechanical boundary conditions of the unit cell for a 

micromechanical analysis. This is probably why there have been extensive analyses performed 

with this idealization. On the other hand, the hexagonal layout is less extensively explored, 

despite the fact that a nearly hexagonal fibre arrangement can be found in some real composites 

[26]. 

For UD composites with randomly distributed fibres in the matrix over a cross-section 

perpendicular to the fibres, there are differences between the two idealisations. An important 

characteristic of such composites is their transverse isotropy, usually achieved in a statistical 

sense. It has been shown (Cowin & Mehrabadi 1995) [27] that, although the mathematical proof 

can be found as early as in Love (1927) [28], a hexagonal layout preserves the transverse 

isotropy, a statistic feature of the majority of real materials, while, in general, a square layout 

does not. It is then conceivable that a hexagonal layout is in a more suitable position than a 

square layout to represent real materials of statistical transverse isotropy [18, 22]. 

The transverse isotropy achieved through a hexagonal packing, however, is at a price, i.e. the unit 

cell from it is substantially more sophisticated than that from a square packing. In addition to the 

z  
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square and hexagonal unit cells introduced through the two packing systems, a cylindrical unit 

cell (Fig. 2.3) is often used in the literature [2, 17].  In this interpretation it is assumed that the 

cross-section consists of many concentric cylinders. The inner cylinder of the concentric pair 

represents the fibre and the outer cylinder represents the matrix. The cylinders are not all the 

same radius, but the ratio of the radius of the fibre cylinder to the radius of the matrix, or outer, 

cylinder is the same for all cylinders. Therefore, the fibre volume fraction is the same for each 

pair of concentric cylinders. As the cylinders become smaller and smaller, more and more 

volume is filled until, in the limit, the entire cross-section is filled with concentric cylinders. 

 

Fig. 2.3 - Alternative interpretation of composite cross-section. 
 

The axisymmetric geometry allows an analytical solution in either an axisymmetric or sinusoidal 

form in the circumferential direction [18, 22]. In many cases, this model tends to produce good 

results for predictions of the effective properties of a composite. However, since packed cylinders 

do not fill the space fully, there is a higher degree of discrepancy between the reality and 

idealisation than that of the square and hexagonal cells.  



Hashin and Rosen [17] included the gaps between cylinders but a rather artificial displacement or 

stress field must be assumed before an analytical solution is possible. As a result, the obtained 

distribution of stresses may differ from that from the square or hexagonal cells significantly, 

especially, in the matrix.   

In any of the square and hexagonal packing systems, there are different geometric symmetries as 

depicted in Fig 2.4. In general, by using different symmetries, different shapes of the unit cells 

can be obtained, as illustrated by Li [18, 22] in the case of hexagonal packing in unidirectionally 

fibre reinforced composites.  

 

Fig. 2.4 - Different periodical elements for hexagonal packing [18]. 
 

 

However, when one examines a hexagonal layout, the symmetries in it are not as straightforward 

to interpret to mechanical boundary conditions as those in a square layout. As a result, available 

analyses made with a hexagonal idealization are not as systematic as with a square layout in the 

literature. Usually they fall into one of the following categories: 



a. Some of the symmetries are interpreted correctly but the existence of the remaining 

symmetries is not realized [29]. The result is that the size of the unit cell has not been minimized 

and, therefore, effective use of the unit cell has not been achieved. 

b. All the symmetries have been noticed, though vaguely, for some special cases, e.g. under a 

special loading condition, while a generalization is yet still to be made [30]. 

c. Some of the symmetry conditions have been interpreted incorrectly to mechanical boundary 

conditions [31]. This is certainly misleading [18]. 

In most existing unit cells in the literature, because of the symmetries that have been used, the 

boundary conditions can only be provided for specific loading conditions, e.g. for a specific 

macroscopic stress or strain component [18]. As a result, some analyses are restricted to a certain 

type of loading conditions, such as transverse tension and longitudinal shear [20, 21]. Others 

have dealt individually with every single component, or a limited combination, of macroscopic 

stresses or strains [18]. In other words, the macroscopic stresses or strains in an arbitrary 

combination are not allowed to be applied simultaneously as loads. While it is possible for linear 

problems to employ a superposition law to obtain the combined effects of such a macroscopic 

stress or strain state from the results of all the individual cases involved, it may not always be the 

preferred approach in every application, especially when any form of non-linearity is involved in 

the problem, in which case, superposition law is not applicable in general. The involvement of 

reflectional and rotational symmetries when these unit cells are established is responsible for not 

allowing the arbitrary application of loads because under these types of symmetry transformation, 

some stress components show symmetric characteristics while others are antisymmetric. The 

same stress component can be symmetric under one symmetry transformation but antisymmetric 

under another [18, 22]. 

 



Li [18] adopted a systematic approach involving the use of only the translational symmetry 

transformations. Two typical idealised packing systems have been employed for unidirectionally 

fibre reinforced composites, square and hexagonal.  There are a number of important advantages 

resulting from this. The unit cells so derived are capable of accommodating fibres of irregular 

cross-sections and imperfections asymmetrically distributed around fibres such as micro cracks 

and local debonding in the system, provided the regularity of the packing and imperfections is 

present. Furthermore, all the unit cells established can be subjected to arbitrary combinations of 

macroscopic stresses or strains unlike most available unit cells in the literature which can only 

deal with individual macroscopic stress or strain components. Boundary conditions for these unit 

cells have been derived from appropriate considerations of the conditions of symmetry 

transformations. 

Applications of macroscopic stresses or strains as the loads to the unit cells have been described 

in such a way that they can be implemented in a straightforward manner and the effective 

properties of the composite can be evaluated following a standard procedure. As a result, the unit 

cells introduced here are all expected to be applicable to non-linear problems of any nature, 

material and geometry. 

 

For a unidirectionally fibre reinforced composite, it is normally reasonable to assume that the 

fibres are infinitely long and every cross-section of the composite perpendicular to the fibres is 

identical. The micromechanical analysis of such a material can then be simplified to a two-

dimensional problem in the plane of a cross-section of the composite. In this plane, a 

mathematical approach, the Voronoi tessellation [31], was adopted by Li [18, 22] to tessellate the 

domain of interest in the plane with the centres of the fibres being the centres of Voronoi cells. 

The cells obtained in this way are called Voronoi cells.  



A Voronoi cell is bordered by segments perpendicular to and passing the midpoint of the 

segments connecting the centre of the cell and those of the neighbouring cells (Fig. 2.5). 

 
For regular packing, such as square and hexagonal ones, square and hexagonal cells are obtained 

as a result of such tessellations. In either case, all the Voronoi cells are identical throughout the 

plane and any one cell can be reproduced by another through a certain translational symmetry 

transformation. 

 
Fig.2.5 - Square (left) and Hexagonal (right) packing and the square unit cell. [18]. 

 

 

Micromechanics has found much success in prediction of the stiffness of unidirectional (UD) 

fibrous composites. On the other hand, little is known about the ultimate tensile strength, another 

important mechanical property, of the composite materials. The “Rule of Mixtures”  (ROM) is the 

most widely used analytical approach for estimating the stiffness properties of unidirectional 

composite materials particularly for elastic behaviour when there is a very strong bond between 

fibre and matrix. However, as far as failure properties are concerned, the rule of mixtures 

technique does not predict accurate results due as it does not account for the stress concentration 

which results from fibre-matrix interactions [33]. A semi-empirical approach namely the Halpin-

Tsai relationship is utilised by Crookston [34] in predicting the transverse modulus of a 

unidirectional composite. Experimental tests have shown that under conditions where all the 



stresses are kept low and of short duration, good correlation is obtained with experimental 

measurements for transverse modulus for long-fibre composites using this approach [35]. 

 Many other models have been developed by researchers [36-39] to predict the mechanical 

behaviour of unidirectional composite materials. 

Most strength theories for fibrous composites have been developed based on macro-mechanical 

considerations similar to those for isotropic materials, including the Maximum Stress-Strain 

criteria and the Tsai–Wu theory [40, 41]. Unlike in isotropic cases, extensive experiments 

including biaxial tests, which may be difficult or expensive to conduct in some cases, have to be 

performed to determine the strength parameters involved in these macro-mechanical theories 

whenever they are applied to any composite. Even with the same constituent materials, different 

composite having different fibre volume fraction still requires similar tests. Another drawback 

with these theories is that the failure mode cannot be predicted. They are unable to indicate which 

of the constituent phases initiates the failure of the composite and meanwhile how rich the 

strength of the other phase is. Several micromechanics based attempts to the ultimate strength of 

fibrous composites have been made [42, 43]. However, they were focused mainly on the micro-

structural failure mechanisms and were developed by pre-assuming a priori deformation modes.  

Huang proposed in [38] a set of simple micromechanical formulae for the ultimate tensile 

strengths of the unidirectional fibrous composites under individual uniaxial loads. The failure 

prediction of the composites is based on understanding for the stress states in the constituent 

materials without any pre-assumed deformation mode. Only the material properties of the 

constituent fibre and matrix as well as fibre volume fraction are required to apply these formulae. 

 
Wilczy� ski and Lewi� ski [36,37] presented an algorithm that has been used for determining the 

elastic properties of a unidirectional polymeric fibrous composite with isotropic reinforcement 

such as glass fibre as well as orthotropic reinforcement, typically carbon, polyethylene or aramid 

fibres. The algorithm consists of a cylindrical cell of unit radius and length representing a regular 



structure of continuous, parallel, elastic and isotropic fibres (in a hexagonal array) embedded in 

an isotropic elastic matrix. Initial research work [36] covered analysis on isotropic reinforcement 

while later analysis [37] permits not only for isotropic reinforcement but also the more 

complicated case of orthotropic reinforcement with carbon fibres. The approach presented is able 

to obtain all five elastic constants for unidirectional, continuous-fibre composite (Ex, Ey, Gxy, � xy 

and � yz) as well as the stress concentrations on the boundary of the phases with good accuracy in 

comparison with experimental results, and is sufficiently simple to be utilised on a Personal 

Computer.  However, other authors [44, 45] found that transverse modulus predicted from a 

square unit cell is closer to the experimental results. 

 

The prediction of the transverse modulus (Ey) of unidirectional fibre composites is of great 

importance not only because the transverse modulus itself is one important property of 

engineering materials but also because it is used as an elastic constant in predicting the stiffness 

of general laminates or the off-axis stiffness of unidirectional laminates [46] and the stiffness of 

short-fibre reinforced composites [47, 48]. There is large body of work on models that predict the 

transverse modulus of unidirectional fibre composites in terms of the properties of the 

constituents. 

The models can be classified into two categories according to whether the transverse composite 

modulus depends on fibre aspect ratio. Most of the existing models assumed that the transverse 

composite modulus (Ey) was independent of fibre length-to-diameter ratio.  

The inverse Rule-of-Mixtures (iRoM) equation [46] for Ey was derived by assuming that the 

fibres have a rectangular cross-section and employing the Rules-of-Mixtures for the strains of the 

composite and its constituents. The iRoM equation was modified by considering the constitutive 

relations of the constituents [31]. The advantage of the two models is that they are simple in form 

and thus convenient to use, but they were not satisfactorily applied to experimental results [46].  



The Halpin-Tsai equation was derived using a semi-empirical approach [49-51]. The Halpin-Tsai 

equation has been widely cited in the literature because it provides a fairly good prediction of Ey 

for continuous fibre composites.  

Shaffer [52] derived two equations for the transverse composite modulus using the mechanics of 

materials method. One of these equations is applicable when fibre volume fraction is less than 

68% and the other when fibre volume fraction is greater than 68%. The results obtained from 

these equations predict values lower than the results evaluated from experiments.  

Tsai [53] studied the problem of parallel elastic cylindrical inclusions in an elastic matrix and 

derived upper and lower bounds for Ey by interchanging the role of fibre and matrix in the 

potential energy theorem. Since the bounds are far apart, Tsai hypothesized that the transverse 

composite modulus lies somewhere between the two bounds. Hashin and Rosen [17] considered 

both hexagonal and random arrays of fibres. They used potential and complementary energy 

theorems to derive two bounds for Ey. The bounds obtained by Hashin and Rosen are much 

improved. Numerical solution techniques have also been used to evaluate the transverse 

composite modulus. Adams and Doner [21] used the finite difference method to predict the 

transverse modulus of continuous fibre composites.  

The above models are only suitable for continuous fibre composites since they neglected the 

effect of fibre aspect ratio. Some other models evaluated the effect of fibre aspect ratio.  

Yun Fu et [54] proposed a new micromechanical model for predicting the transverse modulus of 

unidirectional continuous and discontinuous fibre composites. This model is based on modelling 

a composite with a regular array of volume elements and constructing a stress pattern based on 

simple averaging procedures in the direction transverse to the fibre axis for a representative 

volume element. The predictions of the model are compared with existing experimental results 

for various fibre/matrix systems and very good agreement was found. This model has advantages 

over other existing models not only because the effects of fibre aspect ratio, inter-fibre spacing 



and fibre end gap are taken into account and the expression for the transverse modulus of 

composites is simple in form but also because the present model gives precise predictions of the 

transverse composite modulus (Fig.2.6). 

 
 

Fig. 2.6 - Schematic drawing of continuous fibre composites and a corresponding simple representative 
volume element. [54]. 

 
 

Several theoretical models have been proposed for the prediction of composite properties from 

those of the constituent fibre and matrix. Among the elastic constants predicted by these models, 

the longitudinal modulus and Poisson’s ratio show good agreement with experiments and can be 

approximated by the simple Rule of Mixtures. The predictions for the other elastic constants, 

however, show significant scatter and depend upon the assumed geometrical model of the 

composite. Experimental determination of the unidirectional composite moduli is difficult, 

especially when it involves determining the longitudinal and transverse shear moduli. Thus, 

numerical techniques like finite element methods are needed to verify the feasibility of the 

models. Numerical methods to estimate composite properties usually involve analysis of a 



representative volume element (RVE) corresponding to a periodic fibre packing sequence. 

Several papers exist in the literature where the RVE is analysed to determine composite moduli. 

These analyses present few issues that need to be examined. 

Firstly, the correct RVE corresponding to the assumed fibre distribution must be isolated. This 

has not always been done correctly. For example, Shi et a1 [55] modelled a hexagonal 

distribution of short fibres by a RVE that actually represents a square array fibre distribution [3]. 

Secondly, correct boundary conditions need to be applied to the chosen RVE to model different 

loading situations. Proper consideration must be given to the periodicity and symmetry of the 

model in arriving at the correct boundary conditions. Under longitudinal and transverse normal 

loading, a typical RVE can deform in such a way that it remains a right parallelepiped, i.e. plane 

sections remain plane. This has been correctly modelled by several researchers [21, 56, and 57]. 

However, many researchers, modelling longitudinal and transverse shear loading, have made 

incorrect assumptions about the deformed shape of the RVE.  

Naik [58] and Brockenbrough et al. [57] modelled transverse shear loading assuming that the 

deformed boundary of the RVE remained plane (no distortion). Caruso [59] also made a similar 

assumption about the deformed shape under transverse shear loading and noted that ‘ the finite 

element predictions for G23 are not very reliable in view of the difficulty associated with 

simulating the respective boundary conditions’ . 

In their work, Sun and Vaidya [3] show that the assumptions made by many researchers are 

incorrect applying the appropriate constraints on the RVE for various loading conditions, such 

that they simulate the actual deformation within the composite and relating the non-homogeneous 

stress and strain fields within the RVE to the average stresses and strains by using Gauss theorem 

and strain energy equivalence principles.  

 



Evaluation of sensitivities for transversely isotropic [60,61] unidirectional composites to a 

number of material and geometric parameters using two-dimensional, generalised plane strain 

elements within an implicit FE code (ABAQUS/Standard) has been proposed by Crookston et al 

[60]. This method enables quick determination of the significance of each input parameter before 

a series of time consuming and computationally expensive three-dimensional analyses of textile 

composite repeating unit cells is conducted. The input parameters addressed in the analysis 

included fibre modulus, matrix modulus, matrix failure stress, the amount of fibres, the tow 

aspect ratio and the tow shape. The effect on the transverse modulus and failure strength of the 

composite was examined for each of the input parameters. It was found that the number of fibres 

enclosed within the tow region of a unit cell had great influence on the transverse behaviour of 

the unit cell. Conversely, the fibre modulus which is believed to have significant effect in the 

longitudinal direction was proven to have the least effect on the modulus and failure behaviour of 

the unit cell in the direction perpendicular to the fibre. 

 

Micro-mechanical interaction of fibre and matrix is the key to understanding the mechanical 

behaviour of composite materials. By modelling the fibre-reinforced material at the micro-

mechanics level the mechanical response can be understood and improved. Also, understanding 

the complex micro-mechanical response is important for studying load transfer among fibres and 

the effect of fibre waviness. As the fibres are being melt-spun, the cross-section of the generated 

fibre may be non-circular or wavy. Also, there may not be perfect bonding between the fibre and 

matrix. 

Chati and Mitra [62] investigated composite elastic constants at a macroscopic level and the 

stress distribution at interfaces for a given volume fraction of fibre by using in their work the 

Boundary Element Method (BEM). The effects of waviness or “crenulations”  and debonding 

have also been studied. In this work it is assumed that the binder and the fibre materials are 



linearly elastic, isotropic and homogeneous. However, due to the fibre placement, the reinforced 

material is anisotropic.  

Even Eischen and Torquato [63] have applied the BEM for the determination of effective elastic 

moduli of composite materials taking into account an idealized hexagonal array of infinitely long 

fibres. A variety of inclusions either stiffer or weaker than the matrix and, a wide range of 

volume fractions of fibres have been examined. The main difference between Eischen and 

Torquato© s work and Chati and Mitra’s work is that their model is purely two-dimensional, 

whereas Chati and Mitra’s model is three-dimensional for a transversely isotropic material. 

 

Taliercio et al [39] developed a numerical model based on the “homogenization theory”  (the term 

homogenization usually qualifies the passage from the micro to the macro-scale) to describe the 

macroscopic mechanical response of unidirectional long-fibre composites with strain-softening 

matrix, subjected to stresses acting in any plane transverse to the fibres. The matrix brittleness is 

more significant in comparison to the fibres in this plane since the strengthening effect of the 

fibres is negligible. This method is applicable to any macroscopic stress conditions provided that 

a 3D finite element model with suitable boundary conditions. The main results of these analyses 

showed that the macroscopic tensile strengths of a brittle-matrix composite are much lower than 

both the strength of a ductile-matrix composite and the strength of the unreinforced matrix. 

 

De Kok [44] has created a representative unit cell model for glass fibre reinforced epoxy based 

on a two-dimensional generalized plane strain finite element model in which meshes are based on 

square and hexagonal arrays. The fibre and matrix were attached with coinciding nodes and 

perfect fibre-matrix bonding was assumed. By changing the material properties of the circular 

layers at the fibre-matrix interface from fibre to matrix or vice versa, a range of fibre volume 

fractions could be obtained from the geometric model. The transverse elasticity and failure 



behaviour of the unit cell has been examined and it is found that using von Mises failure 

criterion, a good agreement is found between failure strain results from the model and 

experiments. A similar yet simplified version of the representative volume element (RVE) from 

De Kok has been generated using plane strain elements. It is believed that the differences in local 

stresses caused by the use of plane strain (through-thickness strain is neglected) rather than 

generalized plane strain (permits through-thickness strain) are expected to be small [64, 65]. 

 

Unidirectional glass-reinforced plastics (GFRP) show poor mechanical performances in the 

transverse (90°) direction. This drawback limits use of such materials in many structural 

applications. Indeed, transverse failure of composite plies can lead to an important loss of 

stiffness of the structure, to a decrease of fatigue strength. Despite efforts made by material 

scientists during the last decade to improve performance of laminates, transverse failure strain 

and stress of composites remain much lower than ultimate properties of un-reinforced polymers. 

As a matter of fact, transverse failure strains of glass/epoxy or glass/polyester composites are 

usually close to 0.5% [66, 67]. Many experimental and theoretical studies have been performed 

in order to find the origin of composites’  transverse brittleness or to propose technological 

solutions to solve the problem [66–70]. Briancon et al [68] observed in situ plastic strain of the 

matrix during transverse loading of unidirectional glass/epoxy composites. Plastic strains in the 

matrix were revealed by distortions of micro-grids settled on specimen surface. 

Using this technique, the authors showed that plastic strain is localised near the tip of micro-

cracks and is limited by the nearest fibres which prevent its further extension. This feature gives a 

first explanation for the overall brittle transverse behaviour of the material. In another study, Asp 

et al [69] showed that epoxy resins submitted to a triaxial state of stress exhibit values of failure 

stress very close to those observed for unidirectional composites in transverse tension. They 



concluded that the triaxial stress state in the polymer matrix is mainly responsible for transverse 

brittleness of laminates. 

More advanced analyses have also been performed [64]. They are generally based on the 

determination of stress field distribution by means of analytical or numerical models. Failure 

criteria allow the evaluation of maximum admissible strain in the polymer matrix or in the 

interfacial areas. Using finite elements calculations, Asp et al [64] studied the stress distribution 

in an ideal composite constituted by a square array of fibres. These authors employed a failure 

criterion based on the dilatation energy which accounts for the influence of stress triaxiality on 

the matrix behaviour. They found that transverse failure mechanism of laminates is governed by 

the storage moduli of the constituents, by the glass fibre content, and eventually by the presence 

of an interphase. The model also predicted an increase of failure stress and strain when 

incorporating a soft rubbery interphase between fibre and matrix. The analysis performed by De 

Kok et al [44] using finite element calculations showed that high local strains take place in the 

matrix at low global strain of the composite. Application of von Mises yield criterion pointed out 

that local strains are concentrated in thin bands near fibre/matrix interface. The authors also 

suggested that a rubbery interphase allows the plastic strain to extend in the matrix and promotes 

an increase of the overall strain of the composite. De Buhan and Taliercio [70] proposed an 

analytical approach based on the concept of homogenisation in periodic media. The model 

describes the failure behaviour of laminates taking into account a debonding criterion for the 

fibre/matrix interface. 

Experimental and theoretical studies have therefore pointed out several factors responsible for the 

transverse brittleness of laminates: (i) high localisation of plastic strain in the matrix which is 

confined by surrounding fibres; (ii) triaxial state of stress in the polymer; and (iii) probable 

insufficient level of adhesion at fibre/matrix interface leading to premature debonding. Since 

local plastic strain of the matrix and interfacial adhesion are influent parameters on the transverse 



properties of composites, two ways have been investigated in order to improve the performance 

of laminates: a) increasing the ductility of the matrix; b) optimising the fibre surface treatments.  

Influence of fibre surface treatments on transverse properties of composites is a matter of 

discussion. Several studies have provided contradictory results on the subject. Tryson and Kardos 

[71] found that coating fibres with a reactive elastomer (flexible epoxy) leads to a 67% increase 

of transverse failure stress and strain for unidirectional glass/epoxy composites. According to 

these authors, such a phenomenon is related to a modification of the stress field and to a relief of 

residual stresses near the rubbery interphase. On the contrary, Podgaiz et al. [72] and Gatward et 

al. [73] observed a decrease of transverse failure strain and stress when coating glass fibres with 

elastomer sizing (flexible epoxy or polyvinyl). They suggested that the low tensile strength of 

elastomers and a poor level of adhesion between the rubbery interphase and the epoxy matrix 

could be responsible for the poor performance of such composites. According to these authors, 

tensile strength of the interface/interphase is a crucial parameter for transverse properties of 

composites. 

Benzarti et al. [66] investigated the effects of fibre surface treatments on transverse mechanical 

behaviour of unidirectional glass/epoxy composites. Model composite plates were processed by 

filament winding using glass fibres coated with different sizing changing by their epoxy 

functionality and their reactivity towards the matrix. 

In the first part of their study, transverse tension and micro-indentation characterisations were 

performed in order to correlate the ultimate behaviour of the composite with interfacial 

properties. Experiments revealed that the most reactive sizing promote the highest interfacial 

strength and also increase ultimate properties of laminates in transverse tension. This feature was 

attributed to the high crosslink density of the polymer network in interfacial areas. 

In the second part the authors carried out finite element calculations in order to evaluate local 

strain and stress concentration in a composite submitted to transverse tension conditions 



establishing the general trend for the evolution of composite failure strain as a function of 

interfacial strength. The modelling showed that a transition of the composite failure mode occurs 

at a global strain of 1.15%, from an adhesive rupture at the fibre/matrix interface to a cohesive 

rupture in the matrix. In the domain of adhesive rupture, the value of the composite failure strain 

appeared to be directly governed by the interfacial strength. Therefore, improving interfacial 

strength by use of fibre sizing with high epoxy functionality could constitute an interesting way 

to reduce transverse brittleness of composite structures. 

 

2.3.2 Review of L iterature Review Related to  Failure Cr iter ia for  Polymers 

The development of polymers for use as matrix materials in composites has generally been driven 

by the desire to achieve high yield stress and toughness as well as good adhesion with fibres. 

Although these properties are desirable and generally lead to improved composite performance, it 

is important to realize that the local stress state in the matrix within a composite can induce 

behaviour which may not be reflected in these properties. The response of polymers to the 

mechanical loading is very complex. For example, the stress state plays a considerable role in the 

material failure. Tests under all possible stress combinations cannot be provided [6, 7], therefore, 

for the prediction of their strength, it is necessary to use a failure criterion obtained on the basis 

of general performance information about the material. In addition, it is important to consider the 

effects of the strain rate and temperature, since they have a significant influence on the yield and 

failure behaviour of polymers. For isotropic engineering polymers, these effects were examined 

in [6, 7, 74-76]. 

On the contrary most metals, the deformation and the failure stress of polymers are greatly 

affected by the hydrostatic pressure, as shown by the difference observed between the stress-

strain curves in uniaxial tension and uniaxial compression [6, 77]. This effect also leads to a 



pressure dependence of the yield and failure stresses. The effect of hydrostatic pressure on the 

yield behaviour of polymers was demonstrated experimentally by several authors [77-81]. In 

contrast to metals, for polymers, the yield stress is often assumed to be equal to the maximum 

stress in the stress-strain curve [6]. The general effect of hydrostatic pressure on the mechanical 

properties of polymers consists in increased yield and failure stresses. The one-parameter yield 

criteria, such as the Tresca and von Mises criteria, represent the polymer behaviour inadequately 

because they cannot describe the dependence of the yield and failure stresses on the hydrostatic 

part of the stress tensor. Several criteria have been proposed to predict the yield and failure of 

polymers subjected to static multi-axial loading. Two modifications of the Tresca and von Mises 

criteria are often used [64, 81-83]. According to the first one, using the maximum shear stress or 

the hydrostatic stress, respectively, a linear function of the hydrostatic pressure was introduced 

[6,7]. A pressure-modified von Mises criterion predicting a nonlinear dependence of the yield 

stress on the hydrostatic pressure was applied to polymers [64, 84-86]. In the three-dimensional 

space of principal stresses, the modified Tresca surface is an irregular hexagonal pyramid, and 

the two modified von Mises criteria are a cone and a paraboloid (Fig.2.7), respectively. Another 

criterion, used for polymers is the Mohr–Coulomb criterion [87, 88]. It predicts that the critical 

stress can occur in any plane and depends linearly on the normal stress in the plane. The 

experimental investigations have shown that the criteria based on a linear dependence of the yield 

stress on the hydrostatic pressure afford a good description of polymer behaviour mainly under 

low pressures [6, 81-83]. The experimental results show that the yield and failure stresses first 

grow linearly with this pressure and then, at higher pressures, the growth rate decreases [6]. 

 

In commercially produced composites with high fibre volume fractions it is inevitable that fibres 

are distributed unevenly and that clusters of fibres as well as resin-rich areas exist. In such 

conditions the local stress states will vary between nearly shear dominated to nearly hydrostatic. 



The same given matrix will thus be predisposed to different deformation and failure modes in 

different regions of the composite. In most studies of glassy polymers, the shear-driven yielding 

has been emphasised with attention being given to the associated influence of hydrostatic stress. 

 

 

Fig. 2.7 - Failure surfaces in the principal stress space, coaxial with the  
hydrostatic axis � o (� 1 = � 2 = � 3) (a) von Mises; (b) Tresca; (c) Coulomb; (d) Mohr [88]. 

 

Several yield criteria for this purpose have been proposed [88]. These criteria usually predict the 

effect of hydrostatic compression on the yield stress satisfactorily but do less well when 

hydrostatic tension is applied. Also, the consideration of the yield stress reduction alone cannot 

explain the observed fact that although the strain to failure in uniaxial tension for matrix 

materials ranges from 1.5 to 70%, the strain to failure in transverse tension of unidirectional fibre 

composites typically varies between 0.2 and 0.9% [1, 64, 67]. 

A part of the explanation could lie in fibre/matrix debonding which may occur at low strains. 

However, as demonstrated in a [64, 69] the triaxial stress state can reduce the strain to failure of 

epoxies to within the observed failure strains in transverse tension of composites.  

Yield and failure criteria for epoxies subjected to different stress states were examined by Asp et 

al. [69]. In particular, the authors examined three epoxy systems of interest as composite matrix 

materials for their yielding and failure behaviour under uniaxial, biaxial and triaxial stress states. 



Yield criteria applicable to glassy polymers, i.e. accounting for the hydrostatic stress effect on the 

deviatoric stress to yielding, were assessed. It was evaluated that under stress states resembling 

those in matrix constrained between fibres, e.g. equi-biaxial and equi-triaxial tension, yielding is 

suppressed while brittle failure, presumably caused by crack growth from cavitation, occurs. 

Therefore the critical dilatational strain energy density was proposed as criterion of failure. 

 

Perez and Pavan [82] tested three amorphous polymers, polymethyl methacrylate, polystyrene 

and polycarbonate in uniaxial tension, uniaxial compression, plane strain compression and simple 

shear, over a range of temperatures. In each test, the yield point was precisely determined via 

residual strain measurements after unloading. With the yield stresses determined for these four 

different stress states, two pressure dependent shear yield criteria, i.e, the modified Von Mises 

and the modified Tresca criteria, were checked and compared. It was shown that (i) in each case 

(material, temperature, initial ageing state), the yield locus is satisfactorily described by either 

one or the other of the two criteria, and (ii) each criterion can be associated with a specific 

deformation mode (either homogeneous or localized in shear bands). As for the temperature 

dependence of the yield stress sensitivity to the hydrostatic pressure, it appears to be related to 

the glass transition temperature (Tg) and more precisely to the a and b relaxations. Finally, the 

pressure dependence of the yield stress was explained as being due to two effects: (i) the 

influence of pressure on molecular motions leading to yielding and (ii) the influence of pressure 

on the micro-structural state. 

 

By assuming that the failure condition is time and temperature-independent and the strength of 

polymers is a function of the stress state, the failure condition can be expressed as: 

f(s ij , k1, k2 , ...) = 0  (2-1) 
   



where s ij are the components of the stress tensor and k1, k2 , ... are material constants. The failure 

condition defines a failure limit of the material under a complex stress state. For isotropic 

materials, the stress components in Eq. (1) can be replaced by a set of isotropic arguments, for 

instance, the principal stresses s1, s2 , and s3 : 

f(s1, s2, s3, k1, k2 , ...) = 0  (2-2) 
 

In discussing failure conditions, very useful is the geometrical representation of a stress state in 

the three-dimensional space of principal stresses s i (i = 1, 2, 3). Each point with coordinates s1, 

s2 , and s3 can also be described by the coordinates x, h and q, where x is the hydrostatic 

coordinate with s1 = s2 = s3 , whereas h and q  are the polar coordinates in a deviatoric plane x= 

const. The coordinates x, h and q, can be expressed in terms of s i as follows: 

 

  

(2-3) 

 
 

Therefore, the failure condition results in the relationship 
 

f(x, h, q, k1, k2 , ...) = 0  (2-4) 
 

The form of the failure surface can be determined from experimental data. Numerous tests with 

polymers show that the failure surface in the space of principal stresses is axisymmetric relative 



to the hydrostatic axis, therefore, it is possible to reduce the number of coordinates to two, x and 

h so that the failure condition can be written in the form: 

f(x, h, k1, k2 , ...) = 0  (2-5) 
 

Altenbach [6, 7] proposed a new static failure criterion for isotropic polymers with different 

strengths in tension and compression based on exponential dependence between the mean stress 

and the von Mises equivalent stress.  

The authors assumed an exponential dependence between x and h: 
 

  
(2-6) 

 

where k and x0 are material parameters. The two material parameters introduced can be 

determined by two simple tests, the uniaxial tension and compression. This failure criterion 

allows a geometrical interpretation. In the space of principal stresses, it defines a smooth, convex 

rotational surface open in the direction of hydrostatic pressure. It is convenient to represent this 

surface in two characteristic sections. The intersections of the failure surface with the deviatoric 

planes x=const are circumferences, Fig. 2.8a. A meridional section is shown in Fig.2.8b. It can be 

noticed as a pure hydrostatic pressure cannot cause failure. The constant k is the limit value of h, 

since from x ® -¥  it follows that 

 

Hence, the constant x0 defines the vertex of the surface. The locus of the criterion is nearly 

conical for low hydrostatic pressures and tends to a cylindrical form if an increased hydrostatic 

pressure is applied.  

 



 

Fig. 2.8 - Representation of the failure surface: a) deviatoric plane and b) meridional plane (h-x plane). 
 

The validity of the criterion was demonstrated by experimental strength data taken from the 

literature for several polymers in the case of superimposed hydrostatic pressure. A limitation in 

the use of this failure criterion is that for practical application it is necessary to determine 

experimentally the material parameters. 

 

Bigoni and Piccolroaz [89] proposed a new yield/damage function for modelling the inelastic 

behaviour of a broad class of pressure-sensitive, frictional, ductile and brittle-cohesive materials. 

The yield function allows the possibility of describing a transition between the shape of a yield 

surface typical of a class of materials to that typical of another class of materials.  

This is a fundamental key to model the behaviour of materials which become cohesive during 

hardening (so that the shape of the yield surface evolves from that typical of a granular material 

to that typical of a dense material), or which decrease cohesion due to damage accumulation. The 

proposed yield function was shown to agree with a variety of experimental data relative to soil, 

concrete, rock, metallic and composite powders, metallic foams, porous metals, and polymers. 

The yield function represents a single, convex and smooth surface in stress space approaching as 

limit situations well-known criteria and the extreme limits of convexity in the deviatoric plane. 

The yield function is therefore a generalization of several criteria, including von Mises, Drucker–



Prager, Tresca, modified Tresca, Coulomb–Mohr, modified Cam-clay, and concerning the 

deviatoric section, Rankine and Ottosen.  

 

Theocaris [90] reconsidered existing failure criteria for isotropic bodies compared with modern 

versions taking into account either the influence of the strength differential effect or the influence 

of the internal dilation of the materials on yielding and therefore the contribution of the 

hydrostatic component of stress in failure. Modern criteria are expressed by quadric polynomials 

whose coefficients constitute convenient terms of the failure tensor of the material which for the 

isotropic body is defined by the respective failure stresses in simple tension and compression. 

Among the different expressions for the respective failure tensor polynomial of a material the 

paraboloid of revolution failure locus is the most convenient, since it fulfils the requirements of 

invariancy relative to any reference coordinate system, it is flexible and yields a unique solution 

for each loading path while it is unambiguously defined in the stress space. Furthermore, it is in 

conformity with basic physical laws and the extensive experience that the hydrostatic stress 

constitutes a safe loading path for the material. Experimental evidence with all varieties of 

isotropic materials corroborates the theory upon which the criterion is based. Finally, the authors 

presented a failure criterion, based on void coalescence mechanisms inside the material, which 

also takes into consideration the influence of internal dilation of the material and therefore it 

depends on the hydrostatic component of stresses. This criterion is an improvement of the 

Gurson-McClintock [91-92] criterion which permits a judicial determination of the coefficients 

of the respective quadric polynomial expressing it, since it belongs to the broad family of criteria 

based on energy principles. 

The Gurson-McClintock failure model [91, 92], based on a description of failure void nucleation 

and coalescence for the initiation and propagation of cracks in a material, is expressed by a yield 



condition, which is based on an upper-bound rigid-plastic solution for spherically symmetric 

deformations, applied around a spherical inclusion. 

This condition is expressed by: 

 

s2
e + 2 q1 f sm

2 ch(q2shh/2sm) – (1+ q3  f
2) sm

2  = 0 

where se  is, as usual, the macroscopic effective von Mises stress, given by  

 

s2
e = ½ sij sij 

 

 with sij the deviatoric components of stresses, whereas shh /3 is the hydrostatic stress. While 

Gurson assumed values for the constants qi (i = 1, 2, 3) given by q1= q2=  q3 = 1, it was found 

[38,43]  that a better fitting of results can be achieved, when the influence of neighbouring voids 

to a central pair of voids is considered, for periodically arranged cylindrical voids in a matrix. If 

this influence is taken into account in a continuum model without initial voids, these constants 

should take the values: 

 

q1 =1.5;  

q2 = l.0  

 q3 = q2
1=2.25. 

 

Moreover, sm is the equivalent tensile flow stress, representing the actual macroscopic stress state 

in the voided matrix material, disregarding local stress concentrations, and f is the current void 

volume-fraction. 

 

 



2.3.3 Review of L iterature Related to Damage Modelling 

The damage and failure progress in laminated fibrous composite structures is very complicated 

compared to that of conventional metallic materials. Composite structures may vary their 

stiffness and strength due to damage accumulation such as matrix cracking and fibre breakage 

during the loading history of the composite members. 

The study of composite materials and structures can be undertaken from two different 

approaches: micro-mechanical, meso-mechanical and macro-mechanical approaches. In the 

micro-mechanical approach, the constituent fibre and matrix materials, and their interaction are 

distinctively considered to predict the overall behaviour of the composite structural member. The 

damage and failure in fibrous composites are modelled at the fibre and matrix level. In the 

macro-mechanical approach, the properties of the constituent fibre and matrix materials are 

averaged to produce a set of pseudo-homogeneous properties for the composite structural 

member. The macro-mechanical approach does not consider the distinctive modelling of the fibre 

and matrix materials. The damage and failure of composite structures are examined based on 

smeared composite stresses and strains. The macro-mechanical approach has the advantage of 

requiring less detailed modelling than the micromechanical approach. However, the 

micromechanical approach provides more physical information, e.g. failure of fibre and matrix, 

as well as load transfer between the two. As a result, a micromechanics model is developed for 

analyses of laminated, fibrous composite structures. In particular, the strength and stiffness 

degradation of laminated fibrous composites is analyzed as damage and failure progress. 

Micromechanics studies related to continuous fibre reinforced composites deal with detailed 

micromechanical analyses of fibres and surrounding matrix. These studies model a single fibre or 

a small number of fibres to predict effective composite stiffness properties, composite strength 

properties and damage evolution of micro-cracks. While some studies derive analytical solutions, 

most of the studies use finite element analyses. These investigations show a detailed account of 

the effects of fibre and matrix properties, fibre-matrix interaction and neighbouring fibre-fibre 



interaction on the effective composite material properties of stiffness and strength. Furthermore, a 

partial fibre-matrix interface debonding as well as local micromechanical cracks, e.g. matrix 

cracking and fibre breakage are studied to determine their effects on the effective composite 

material properties. 

 

The importance of the numerical simulation is partly due to the difficulty in conducting tests with 

special configurations or observing the occurrence of internal damages at different loading levels. 

This simulation is usually carried out through the use of the finite element method. The analytical 

models used to represent these materials are either homogenous [93, 94], or heterogeneous in 

nature. The use of the first type is limited to the macroscopic mechanical evaluation. While the 

second type, which includes two-dimensional [95] and three-dimensional models [96–99], is 

dedicated to the microscopic mechanical evaluation. A two-dimensional model is acceptable 

when plane stress and strain conditions are imposed. However, these conditions are not fulfilled 

when we deal with structures such as woven composites. For such structures, a three-dimensional 

modelling becomes necessary, and has been investigated by many researchers. There are 

numerous papers on the numerical simulation of woven fabric composites, which are limited 

within linear characteristics such as elastic moduli and initial failure [96–99]. In existing 

research, only geometric non-linearity was considered without stiffness reduction caused by 

damage [99], or all damaged stiffness were assumed to be zero [100]. A few non-linear analyses 

have employed an anisotropic damaged constitutive equation corresponding to its modes [5, 101–

103]. As their anisotropic damage model has been based on only experimental knowledge, some 

questions remain about the selection of reduced components and the determination of reduced 

values. Therefore, it is required to establish a theoretical anisotropic damaged constitutive 

equation and finite element analysis considering damage modes for woven fabric composites. 



Zako et al [104], developed a theoretical anisotropic damaged constitutive equation based on 

damage mechanics, and employed it to reveal damage mechanisms for unidirectional fibre 

reinforced composite materials [105,106]. In a more recent paper Zako et al [107] proposed a 

non-linear finite element analysis based on the previous results. The utility of the new 

formulation was proven through its application onto a plain woven fabric composite. The authors 

employed a three dimensional heterogeneous FE model, which consists of fibres and matrix. 

Fibres and matrix were treated macroscopically as anisotropic and isotropic homogeneous bodies, 

respectively. The fibres were arranged unidirectionally within lamina of the composite laminates, 

but they were in the form of fibre bundles in textile composites. For the fibres, one or more 

damage modes, such as fibre breaking and transverse cracking, can take place [108]. These 

modes affect strongly the mechanical behaviour of the structure. An anisotropic damage model 

for fibres and an isotropic damage model for matrix were utilized by Zako et al [107] to simulate 

the microscopic damage propagation and thus to characterize the damage modes. Since in general 

failure criteria can not indicate the type of damage mode, which affects strongly the mechanical 

behaviour of composites, the damage modes of fibres was classified into four types as shown in 

Fig. 2.9(a). The axes L, T, and Z (x, y, z in the present work) mean the principal coordinates of 

orthotropic material, and they correspond to fibre and transverse directions, respectively. 

According to the local orientation of the fibres, the material coordinates are defined for each 

element and  by calculating the corresponding stress-to-strength ratios for the different modes, 

the authors deduced that the damage mode that takes place is the one in which the stress-to-

strength ratio has the maximum value. Moreover in order to characterize each one of the damage 

modes, the authors adopted the Murakami’s damage tensor [22], which is defined by the 

following equation: 

  



Di and ni are the principal value and principal unit vector of the damage tensor. In matrix form, 

this is expressed as follows: 

  

The characteristics of anisotropic damage model for fibre bundle are depicted in Fig. 2.9(b). 

 

 

 
Fig. 2.9 - Characteristics of anisotropic damage model for fibre bundle [107]. 

 

Bakuckas et al [110] in their research presented the concept of micromechanical-anisotropic 

continuum approach to study the mechanistic damage growth at the micro-structural level in 

centre-cracked unidirectional composite specimens. The methodology developed was 

incorporated into a displacement-based finite element program to form the Micromechanics 

Analysis and Damage Growth In Composites (MADGIC) code. One of the unique features of this 

code is that in simulating the damage growth in the form of propagating cracks, the crack paths 

need not be selected a priori. Damage growth or crack path generation capabilities, were 

introduced by a node splitting and nodal force relaxation algorithm. Prediction of fibre breakage, 

matrix cracking and fibre-matrix debonding was accomplished by determining the sequence and 

direction of node splitting through the employment of appropriate failure criteria. Depending on 

the location of a node, only certain types of splitting mechanisms may occur. All the nodes must 

(a) 

(b) 



be classified according to their locations in the composite medium so that failure criteria can be 

applied appropriately. In Fig.2.10 is shown schematically a state of damage in a unidirectional 

composite and six possible classes of nodes. 

 

 

Fig.2.10 - Schematics of node classes. 
 

Due to the modular structure of the MADGIC code, any failure criterion can be readily 

implemented for each of the different constituents. Only the maximum normal stress and 

maximum shear stress failure criteria were used in the study. In addition, an incremental flow 

theory with isotropic hardening has been incorporated in the code to account for matrix plastic 

deformation when analyzing damage growth in metal matrix composites. 

 

Tabiei et al [111] suggested a micro-mechanical material model of woven fabric composite 

materials to simulate the progressive failure. The quarter sub-cell of the representative volume 

cell (RVC) depicted in Fig. 2.11 is divided in many blocks. 

 

 



 

Fig. 2.11 - Woven composite interlacing pattern [111]. 
 

Micro-mechanical failure criteria for each constituent material in the block and corresponding 

stiffness degradation were adopted there. The material shear non-linearity described by Hahn and 

Tsai is included in the model. The material models of woven fabric composites described by the 

researchers are suitable for non-linear finite element failure analysis of composite structures, but 

because of the high degree of RVC discretization, they are computationally inefficient to be 

applied in explicit finite element codes. The authors developed a computationally efficient and 

simplified micro-mechanical model of woven fabric composite materials [112] to predict their 

elastic properties. The advantage of the model is the lack of RVC discretization and good elastic 

property prediction. The choice of the RVC is intended to account for geometrical non-linearity a 

simple and efficient technique for fibre reorientation was incorporated in the model [113, 114]. 

The failure criteria and stiffness degradation scheme is adopted almost entirely from Blackketter 

et al [5]. The isotropic matrix material in each sub-cell is checked for failure by testing the 

maximum of the principal stresses: 

 



where Xm is the tensile strength of the matrix, dE and dfG are the discount factors. The failure 

criteria and the degradation scheme for the yarn material are illustrated in Table 2-2.  

 
Table 2-2 Failure criteria and degradation scheme for yarn material [112] 

 
 
The failure in the axial direction of the yarn leads to fibre breakage. This kind of failure is 

considered as an ultimate failure of the composite material. 

 
 

Kwon et al presented [115] a simplified micromechanics model to predict the effective composite 

behaviour, as well as to study the damage evolution for composite structures. 

The micromechanical model considers a unit cell composed of four subcells by assuming the 

repetitive or periodic nature of the fibre and matrix materials. One subcell represents the fibre and 

three subcells represent the matrix material. The unit cell is a three-dimensional solid, the 

rectangular parallelepiped. As shown in Fig. 2.12, the unit cell models a quarter of a fibre 

embedded in a matrix material because of symmetry. 

 



 
Fig. 2.12 - A unit cell made of subcells (a-fibre; b, c and d-matrix) [115]. 

(1-, 2-, 3-directions are respectively x-, y-, z-directions in the present work). 
 

 

The unit cell has dimensions of unity. The size of each subcell is dependent on the fibre volume 

fraction. 

Incorporating this micromechanical model into a finite element analysis program for composite 

structures provided the following sequence of calculations: 

(1) Compute the effective material property matrix of the fibrous composite from the fibre and 

matrix material properties, and the fibre volume fraction using the present micromechanics 

model. 

(2) Find the nodal displacements from the finite element analysis of the composite structure using 

the effective material property matrix. For a laminated structure, the effective material property 

matrix should be transformed according to the rotation of the axes of each layer. 

(3) Compute the composite strains from the displacements. 

(4) Compute the fibre and matrix strains from the composite strains. 

(5) Determine the fibre and matrix stresses from the fibre and matrix strains using their 

constitutive equations. 

(6) Calculate the composite stresses from the fibre and matrix stresses. 



(7) If necessary, calculate the residual force vector from the composite stresses for iterations. 

The micromechanical damage and failure process was considered based on the fibre and matrix 

stress level, because the fibre and matrix stresses are computed explicitly. Once failure criteria 

are satisfied, the material property of the fibre or matrix is degraded to induce stress unloading at 

the failure location. For matrix cracking, the matrix property is degraded while the fibre property 

is degraded for fibre. 

 
 

The effect of waviness in the fibre yarns were investigated by Ismar et al in [116]. Considering 

the fibre bundle arrangement to be periodical, the unit cell of Fig. 2.13 can be used to 

characterize a two-dimensional woven composite. 

 

 

Fig. 2.13 - The built-up of the fibre bundles. 

The damage behaviour of the fibre bundles strongly depends on the loading situation. The Fig. 

2.14 shows a fibre bundle in different basic loading situations. 



Fig. 2.14 - Damage behaviour in fibre bundles[116]. 
(1-, 2-, 3-directions are respectively x-, y-, z-directions in the present work).  

 

The linear elastic behaviour of the fibre bundles under tensile loading in fibre direction ends 

because of crack initiation in the matrix and fibre-matrix debonding. At higher stresses multiple 

fibre breaking occurs and causes the end of the load bearing capacity of the fibre bundles. 

Considering the fibre bundles as homogeneous on the yarn scale these micromechanical damage 

events (matrix cracking, fibre breaking and debonding) result in a reduction of the elastic 

coefficients of the fibre bundles. Primarily the Young©s modulus Ex, the Poisson©s ratios nxy, nxz 

and the moduli of shear Gxy, Gxz are reduced by these events. 

 

Because of symmetry, the material behaviour perpendicular to the fibre direction can be 

considered to remain isotropic during progressive loading: nxy = nxz and Gxy = Gxz. In order to 

describe the damage behaviour of the fibre bundles parallel to the fibre direction the authors used 

three damage variables DE, Dn, DG to increase the material degradation of the fibre bundle in the 

y 



fibre direction. By using damage variables the authors were able to describe the nonlinear 

behaviour of the fibre bundles in the fibre direction, while the commonly used fracture criteria 

only distinguish between total integrity and total fracture of the structure regarded. 

 

 
2.3.4  Review of L iterature Related to Thermal Residual Stresses 

Most composites are made at an elevated temperature: as the thermal expansion coefficients of 

the fibres generally do not match those of the matrix, thermal residual stresses will be generated 

in both the fibres and the matrix when the composite cools down to room-working temperature. 

While these residual stresses essentially do not affect the composite stiffness, they do influence 

the composite strength. The amount of influence depends on the temperature variation and on the 

thermal–mechanical properties of the constituent materials. It is, thus, necessary to incorporate 

the thermal residual stresses into the composite strength formulae. Several attempts have been 

made in the past to understand thermal load effects on composite behaviours.  

Schapery [117] obtained explicit expressions for the overall thermal expansion coefficients based 

on the thermo-elastic extreme principle, using only the constituent thermal-elastic properties and 

the fibre volume fraction. The Schapery’s formulae are known to be sufficiently accurate, 

especially for the longitudinal thermal expansion coefficient of the composite [118]. However, 

the Schapery’s results can also be obtained upon an assumption of free-transverse stresses [46]. 

Therefore, Schapery’s formulae are less accurate for thermal stress analyses. In [118] Huang 

incorporated these thermal residual stresses into isothermal strength formulae of a unidirectional 

composite described in [51]. 

The fabrication process of fibre-reinforced polymer matrix composite materials requires a high 

temperature curing procedure.  

A typical curing process consists of two steps:  

 



(1) isothermal curing at an elevated temperature during which the polymer shrinks as a result of 

the purely chemical reaction (polymerisation) and builds up stiffness while the reinforcement 

remains unchanged;  

 

(2) thermal cooling from the curing temperature to room temperature during which both polymer 

and reinforcement contract but by different amount and in addition the polymer may change its 

stiffness significantly.  

 
Chemical shrinkage and thermal cooling contraction of polymer resin are constrained by the 

surrounding fibre reinforcement, which inevitably results in the development of residual stresses 

both at the fibre/matrix interface and inside the bulk resin and fibre. Therefore, cure residual 

stress is contributed by the chemical shrinkage of the curing resin and the thermal cooling 

contraction of the resin and fibre system. Shrinkage stress is a direct result of volume changes of 

polymer matrix that occur during the polymerization process and will depend on the chemical 

nature of the material and the curing procedure. During curing, the polymer can go through two 

main transitions: gelation and vitrification. Gelation corresponds to the formation of molecular 

networks and vitrification occurs when the glass transition temperature Tg of the polymer reaches 

the curing temperature. If the material is isothermally cured above the glass transition 

temperature, only gelation will occur. When the material is cured below the glass transition 

temperature, it will first gelate and then vitrify. The gelation process results in an equilibrium 

elastic modulus, whereas vitrification is associated with the transition from a rubbery modulus to 

a glassy modulus. The change in elastic modulus associated with gelation and vitrification, 

together with the volume contraction of the polymer, is the dominant factor in the occurrence of 

the shrinkage stress [120]. Thermal cooling stress arises from the mismatch in the coefficients of 

thermal expansion of the fibre and matrix. During cooling, both constituents contract but the full 

contraction of the matrix is constrained as a consequence of being bonded to the fibre. On the 



other hand, the fibre is not only shortened by its own thermal contraction, but is also compressed 

by the constrained contraction of the matrix. As a result, residual compressive stresses are 

induced in the fibre. At the same time, the matrix is constrained by the fibre from full contraction, 

and as a result, is stressed in tension. The magnitude of these stresses will depend on the 

properties of the fibre and resin system including the thermal expansion coefficient a, Poisson’s 

ratio n and elastic modulus E.  

The resulting stresses are sufficient to initiate fracture within the matrix immediately around the 

fibre [1, 2]. Therefore, it is important to determine the current state of the residual stresses and 

their effects on the behaviour of the composite when subsequently subjected to multi-axial 

mechanical loading. After curing and cooling of the composite, the matrix is subject to a triaxial 

residual stress state [119]. The resulting thermal residual stresses are of compressive nature in the 

fibre and tensile nature in the matrix [120]. 

Numerous methods have been developed to determine the residual stresses in polymer-matrix 

composites both experimentally and analytically. In general, experimental methods fall into two 

categories, namely destructive and non-destructive methods. Destructive methods, such as hole-

drilling [121], sectioning/cutting [122] and first-ply failure test [123], require the specimen to be 

destroyed during testing and therefore cannot be used for in-situ measurements. Non-destructive 

tests include warpage/curvature measurements [124], the cure-reference method [119] and 

techniques using embedded sensors (strain gauges, fibre optics or crystalline materials) with an 

X-ray or neutron diffraction method [125, 126].  

 

As far as analytical methods are concerned, residual stresses in composites are generally studied 

on the macro and meso/micro levels. On the macro-level, classical laminate theory is generally 

used and gives predictions at the ply level [127-129]. On the meso/micro-level, a Representative 

Volume Element (RVE) or unit cell which represents the meso/microscopic periodic structure of 



the laminate is constructed and the analysis is often carried out using a numerical procedure such 

as the finite element method [130-132]. 

Three dimensional finite element models have been employed to study the influence of residual 

stresses on shear response of the composites [35, 36]. More recently, a finite element micro-

mechanical based model has been developed to investigate the off-axis behaviour of 

unidirectional composites [37]. This model is general and can be used for any combination of 

normal and shear loading with residual stresses. 

 

Analytical approaches include methods based on the Self-Consistent Model (SCM) of Hill [25], 

extension of the Eshelby’s equivalent inclusion technique [27], Vanishing Fibre Diameter (VFD) 

model of Dvorak [30], Concentric Cylinder Models [28, 31] and Aboudi’s Method of Cells [33]. 

The effects of thermal residual stresses on mechanical behaviour of the composite materials have 

also been extensively studied by Nimmer [133] and Wisnom [25]. They examined the transverse 

behaviour of high temperature composites in the presence of thermally induced residual stress 

fields and found that the presence of residual stresses is beneficial for the transverse behaviour of 

composites with low interfacial strength due to the generation of compressive residual stresses at 

the interface of the fibre and matrix, for example, positive hoop stresses around the reinforcing 

fibre may augment the pull-out energy dissipation and thus increase toughness [133]. 

 

Residual stress and strain fields at the fibre-matrix or tow level can be predicted from the 

meso/microscopic unit cell model. The formation of residual stresses, especially the tensile stress 

in the matrix, is generally detrimental in the production of polymer-matrix composite parts, since 

the stress can be high enough to initiate material damage before loading such as interface 

debonding and matrix micro-cracking as shown in Fig. 2.15 [134, 135].  



The initial damage can reduce the stiffness and the strength of the material, as well as acting as 

sites for environmental degradation and nucleation of macro-cracks. Therefore, any analytical or 

experimental study involving damage and fracture mechanics of composites should take into 

account residual stresses if they exist. For glass fibre epoxy resin model composites, Fiedler et al 

showed that the thermal residual stresses can be calculated by finite element analysis (FEA) using 

the actual temperature dependent stiffness of the resin [136]. 

 

 

Fig. 2.15-  Transverse tow micro-cracks in a woven graphite fibre polyimide 
composite. Individual tow micro-crack from (a), fibre/matrix debonding [134]. 

 

Asp et al [64] showed by a FEA study that the thermal residual stress strongly reduces the 

ultimate strength of transversely loaded unidirectional (UD) composites. When load is applied to 

the fibre-reinforced composite the triaxial stresses in the matrix increase. Both the polymer 

matrix and the fibres cannot behave as they would individually as bulk materials, and the 

difference in the Poisson’s ratios causes a triaxial stress state reducing the maximum bearable 



load. In recent studies [64, 69], it was shown that yield criteria are applicable to glassy polymers 

under uniaxial, biaxial and triaxial loading if the hydrostatic stress effect is accounted for. Also it 

was found that for UD composites yielding is suppressed while a brittle failure due to crack 

growth occurs. Fiedler et al also demonstrated that the parabolic Mohr failure criterion is suitable 

to describe the experimentally observed macroscopic yield and fracture behaviour of epoxy resin 

[88, 137]. The residual stresses depending on the local fibre distribution can improve or reduce 

the local ultimate transverse strength of the composite [137]. 

 

2.4 Review of L iterature Related to the Constituents 

Clearly unidirectional composite materials are seen to have a highly anisotropic properties with 

excellent stiffness and strength in the fibre direction and rather poor properties in the transverse 

direction due to high heterogeneity of composites. Moreover in all loading directions, the 

macroscopic behaviour is influenced by phenomena occurring at microscale. In the longitudinal 

and in the transverse direction, the stress transfer from the polymer matrix to the fibre determines 

the overall mechanical behaviour. Especially under longitudinal loading the failure mode is 

influenced by the strength of fibre/matrix adhesion. Hence, a better understanding of mechanical 

behaviour of composites at macroscale can only be achieved with a study of a more realistic 

microstructure.  

In fact, the matrix undergoes micro-structural modifications in the vicinity of the fibres due to 

local changes of chemical and physical processes such as crystallisation and cross-linking. The 

region of the matrix affected by the presence of fibres referred to as the interphase region highly 

affects the mechanical behaviour of polymer composites. It has also been shown [1] that the 

nature of the fibre surface can affect the curing kinetics and cross-link density of nearby matrix. 

As shown by Gao et al [138,139] the local microstructure can be appropriately engineered by 

various fibre surface treatments, causing property differences between the interphase region and 



the bulk matrix. The authors [138, 139] conducted a comparative study of the fibre sized 

topography and modulus as well as the local mechanical property variation by using tapping 

mode phase imaging and nano-indentation tests based on the atomic force microscope (AFM). 

Their results demonstrate that the nature of the interphase within a thickness less than 1µm is 

able to modify the overall mechanical response of three-phase composites. 

 

Kobayashi et al [140] showed that initial microscopic damages, such as transverse cracks, can be 

suppressed when a tough and flexible fibre/matrix interphase is applied to the composites hence, 

as a result, the durability of composites is improved, since transverse crack causes other severe 

damage, such as delamination and/or filament breakage. In order to suppress microscopic 

damages in the composites the authors [140] also developed a method to fabricate epoxy-based 

woven fabric composites with a flexible interphase. It was demonstrated that strength and 

maximum strain increased with interphase content. The reason is that the microscopic damaged 

zones, which cause local stress concentration in warp fibre bundles, were suppressed by the 

flexible interphase. Moreover first cracking strains were delayed and crack densities became 

smaller in laminates containing the interphase. 

  

Tanoglu et al [141] used a novel experimental technique (dynamic micro-debonding technique) 

to test and characterize the interphases of various sized E-glass-fibre/epoxy-amine systems at 

displacement rates in the range 230� 2450 µm/s. A schematic of the test configuration is shown in 

Fig. 2.16. 



 

Fig.2.16 - Schematic of test configuration and the micro-debonding process [141]. 
 

 

For this technique, a new apparatus called the dynamic interphase-loading apparatus (DILA) was 

designed utilizing the fast expansion capability of piezoelectric actuators. This method enables 

one to quantify the interphase strength and the energy absorption due to debonding and frictional 

sliding over a wide range of loading rate. The loading rate achieved using DILA was about three 

orders of magnitude faster than the rates reported in the literature using traditional methods. 

The authors performed a case study based on a typical glass/epoxy composite subjected to 

ballistic impact to determine the significance of the interphase-related micro damage modes in 

absorbing the impact energy. These results showed that the energy absorbing capability and the 

shear strength of the fibre/matrix interphase is affected by the properties of the interphase and the 

loading rate. In summary, the authors concluded, an interphase that has lower strength may better 

contribute to energy absorption, while an interphase with higher strength is needed for structural 

integrity and environmental durability. 

 



An elaborated research was developed by Matzenmiller et al [142] based on the generalised 

method of cells (GMC) to quantify the overall effective properties of the composite with an 

elastic interphase region of finite thickness. This method is based on the analytical 

homogenisation scheme of the cells method where the in situ properties of the interphase are 

determined from the effective properties of the composite and the parameters for the bulk 

material of the individual phases. The GMC allows the modeling of arbitrary shaped inclusions in 

a matrix. Therefore, the interphase region, comprising the material adjacent to the bond, may by 

taken into account as a thin layer of subcells between the fibre and the matrix phase. A 

comparison between a GMC and FEM models is shown in Fig. 2.17. 

 

 

Fig. 2.17 - RVE with interphase modelled by (a) GMC and (b) FEM [6]. 
 

The inverse determination of the interphase properties from the effective material moduli requires 

the detailed knowledge of the microscopic structure of the composite. With the results of the 

inverse identification for the interphase properties it is possible to evaluate the mechanical effect 

of the various manufacturing influences on the interphase characteristics. Although the interphase 

parameters were successfully identified by the authors from the experimental data for most 

composites with various chemical treatment of the fiber surface, the numerical results are still not 



satisfying in all cases. In fact, numerical analyses showed that the interfacial properties are 

unrealistically high for the fibre-matrix-interphase systems if a transverse isotropic material 

model is assumed for the calculation of the overall composite behaviour. 

 

In the recent past, using a finite elements analysis, Asp et al. [8, 143] studied the stress 

distribution in an ideal composite constituted by a square array of fibres. These researchers 

employed a failure criterion based on the dilatation energy which accounts for the influence of 

stress triaxiality on the matrix behaviour. The dilatational (volumetric) energy density for a linear 

elastic material is given by: 

 

where s l, s2, and s3 are the principal stresses, and n and E are the Poisson’s ratio and Young’s 

modulus, respectively. The authors demonstrated that transverse failure mechanism of laminates 

is governed by the storage moduli of the constituents, by the glass fibre content, and eventually 

by the presence of an interphase. The model also predicted an increase of failure stress and strain 

when incorporating a soft rubbery interphase between fibre and matrix. Especially under 

longitudinal loading the failure mode is influenced by the strength of the fibre/matrix adhesion. 

 

Podgaiz et al [144] observed a decrease of transverse failure strain and stress when coating glass 

fibres with elastomer sizings (flexible epoxy or polyvinyl). They suggested that the low tensile 

strength of elastomers and a poor level of adhesion between the rubbery interphase and the epoxy 

matrix could be responsible for the poor performance of such composites. According to the 

authors, tensile strength of the interface/interphase is a crucial parameter for transverse properties 

of composites. More recently Benzarti et al [145] performed an investigation on effects of fibre 

surface treatments on transverse mechanical behaviour of unidirectional glass/epoxy composites. 

Model composite plates were processed by filament winding using glass fibres coated with 



different sizings changing by their epoxy functionality and their reactivity towards the matrix. 

Experiments (transverse tension and micro-indentation characterisations) revealed that the most 

reactive sizings promote the highest interfacial strength and also increase ultimate properties of 

laminates in transverse tension. This feature was attributed to the high crosslink density of the 

polymer network in interfacial areas. The authors also carried out finite element calculations in 

order to evaluate local strain and stress concentration in a composite submitted to transverse 

tension conditions. The numerical modelling showed that a transition of the composite failure 

mode occurs at a global strain of 1.15%, from an adhesive rupture at the fibre/matrix interface to 

a cohesive rupture in the matrix. In the domain of adhesive rupture, the value of the composite 

failure strain appeared to be directly governed by the interfacial strength. These authors found 

therefore that improving interfacial strength by use of fibre sizings with high epoxy functionality 

could constitute an interesting way to reduce transverse brittleness of composite structures. 

 

Foley [146] by means of a technique utilizing the indenting capabilities of the atomic force 

microscope (AFM) evaluated the local changes in material response of polymer composite 

systems near the fibre–matrix interface for two model composite systems at both room 

temperature and elevated temperatures. Eventually these authors compared the AFM indentation 

results with finite element model predictions to gain a fundamental understanding of the 

influence that the interphase properties have on the measured responses. They found good 

agreement between the finite element model predictions and the AFM measured results for all 

cases studied. The finite element results confirmed that the interphase region for an unsized 

graphite fibre is too small (relative to the physical size of the indentation probe) to conduct 

realistic characterization. However, the sized fibre case has an interphase region sufficiently large 

to obtain useful measurements. The finite element model was finally used to identify the effects 



of interphase region size on the potential usefulness of the AFM as a viable interphase 

characterization method.  

 

Effects of residual stress on damage were investigated by Aghdam [147]. These researchers 

developed a three-dimensional finite element micromechanical model to study effects of thermal 

residual stress, fibre coating and interface bonding on the transverse behaviour of a unidirectional 

SiC/Ti–6Al–4V metal matrix composite (MMC). The model includes three phases, i.e. the fibre, 

coating and matrix, and two distinct interfaces, one between the fibre and coating and the other 

between coating and matrix. The model was employed to investigate effects of various bonding 

levels of the interfaces on the initiation of damage during transverse loading of the composite 

system. Moreover the authors adopted two different failure criteria, which are combinations of 

normal and shear stresses across the interfaces in order to predict the failure of the fibre/coating 

and coating/matrix interfaces. It was shown that any interface fails as soon as the stress level 

reaches the interfacial strength.  

 

Wang [148] presented an extension of the work by Mogilevskaya and Crouch [149] to model 

micromechanical behaviour and macroscopic properties of fibre-reinforced composites with 

radially graded interphases. The approach is based on the numerical solution of a complex 

boundary integral equation in which the boundary parameters are expressed in terms of complex 

Fourier series. All the integration can be done analytically and thus the method allows for 

accurate calculation of the elastic fields anywhere within the material, including inside the fibres 

and interphases. Explicit expressions for the effective elastic constants can be obtained from 

general relations between the average stresses and strains. The interphase layer for each inclusion 

was modelled by the authors with a system of thin bands with different properties that are 

constant for each band but vary from band to band to provide the piece-wise constant 



approximation of the function that governs the gradation of the interphase material. In the 

numerical implementation, each radially graded interphase j has been discretized into a series of 

nj concentric layers characterized by homogeneous elastic properties (Fig. 2.18). 

 

 

Fig. 2.18 - Discretization of a radially graded interphase into n-layered 
homogeneous interphases [148]. 

 

The authors proved that this approach show high generality and versatility for large number of 

fibres with arbitrary sizes, locations and elastic properties and especially for the micro-scale the 

method allows for accurate calculation of the elastic fields anywhere within the material, 

including inside the fibres and interphases. Moreover the interphases can also have arbitrary 

thickness and elastic properties. 

 

Fisher et al [150] investigated the mechanical property predictions for a three-phase visco-elastic 

(VE) composite by the use of two micromechanical models: the original Mori–Tanaka (MT) 

method and an extension of the Mori–Tanaka (MT) solution developed by Benveniste [151] to 



treat fibres with interphase regions. Whilst MT method does not model the geometry of an 

annular interphase region surrounding the fibre inclusion, but treats the fibre and interphase 

regions as separate, physically distinct regions as shown in Fig. 2.19, the Benveniste model 

maintains the proper fibre-interphase-matrix geometry as shown in Fig. 2.20. It utilizes a related 

auxiliary problem (i.e. a single fibre-interphase inclusion within an infinite matrix material) to 

find the stress-concentration tensors relating an applied far-field stress to the phase-averaged 

stresses of the included (fibre and interphase) phases. 

 

 

Fig. 2.19 - Interphase modeled as a distinct inclusion region for the Mori– 
Tanaka method.  

 



 

Fig. 2.20 - Three phase composite model for the Benveniste solution. 
 
 

 

 

The main goal of their research was principally to optimize composite properties through 

engineered interphases and to measure the interphase mechanical properties through experimental 

tests, 

The several case studies performed in this research were used to compare the composite moduli 

predicted by each of these methods, highlighting the role of the interphase. Although the authors 

proved that the MT method, in general, provides a reliable micromechanical approximation of the 

viscoelastic behaviour of the composite; however, the micromechanical methods only provide an 

order-of-magnitude approximation for the effective moduli. Moreover the FEA results suggest 

that the interphase plays a large role in determining the overall behaviour of the composite. 

 

Another factor that strongly influences the material micromechanical properties is related to the 

distribution of the fibres over the cross-section in real composites.  



In a unidirectional composite at micro level fibres are embedded in the matrix material parallel to 

the longitudinal direction. In the transverse cross-section (perpendicular to the fibre direction) a 

random distribution of fibres exists and generates transverse isotropic properties. To model the 

fibre distribution in the transverse plane, the simplest idealization for analytical or numerical 

approaches is to adopt for example a hexagonal or a square array of fibre packing geometry. 

These packing geometries assume a uniform distribution and periodic packing of the fibres and 

are greatly convenient in numerical modelling since representative elements of a limited size can 

be used. Moreover the boundary conditions for both analytical and numerical analyses can be 

constructed in a simple way [22]. 

As in UD composites fibres arrangement in the matrix over the transverse cross section is 

generally at random, a more realistic response on a local as well as a global level can be obtained 

by taking into account a non-uniform packing geometry. In micromechanical finite element 

analyses of UD composites of fibres distributed at random over the transverse cross-section using 

‘unit cells’ , boundary conditions for such ‘RVEs’  can no longer be prescribed precisely due to the 

lack of symmetry about the boundary. Wongsto and Li [152], studied the effects of incorrectly 

prescribed boundary conditions for such RVEs on the predicted behaviour of the composite 

represented by the ‘unit cells’ . The decaying characteristics of such effects far from the boundary, 

accordingly to the Saint Venant’s principle, have been examined. A decay length has been found 

to amount to a couple of times of the centre-to-centre fibre spacing. Using the decay length 

obtained, analyses have been made to UD composites in which fibres are really distributed at 

random over the transverse cross-section. Although, the prescribed uniform normal displacement 

along the boundary represents an incorrect boundary condition, correct deformation and stress 

distribution can be obtained from a sub-domain of the unit cell away from the boundary by a 

number of times of average fibre spacing. 



Aghdam and Dezhsetan [153] extended the geometry of the Simplified Unit Cell (SUC) model, 

to study effects of random fibre arrangement on the mechanical and thermal characterizations of 

unidirectional composites to predict the behaviour of a fibrous composite subjected to thermal 

and mechanical, normal and shear, loading . 

Fang and Liu [154] examined the effects of different cross-sectional geometry, such as the fibre 

shape (circular, square and lozenge), size and random fibres distribution on the transverse elastic 

and plastic deformation of the metal-matrix composites with specific randomly distributed, 

aligned continuous fibres. Numerical results showed that the overall transverse plastic flow of the 

composites is rather sensitive to the fibre geometric parameters while the elastic properties 

exhibit a much lower sensitivity to the fibre distribution.  

Bulsara [155] performed a systematic study of a multi fibres RVE size appropriate for 

characterizing initiation of damage under a tensile load normal to fibres in a unidirectional 

ceramic-matrix composite. In this case, the damage initiation process showed little sensitivity to 

the radial distribution of fibres in the cross-section when a tensile load normal to fibres was 

applied. However, significant dependence on the fibre distribution was found when thermally-

induced damage was considered. 

Gusev et al [156] used a combination of numerical and experimental techniques to study the fibre 

packing and elastic properties of a transversely random unidirectional glass/epoxy composite. 

They showed that measured and numerical results were in excellent agreement and moreover 

randomness of the composite microstructure had a significant influence on the transverse 

composite elastic constants while the effect of fibre diameter distribution was small and 

unimportant. A comparison between analytical approaches and finite element analyses (FEA) for 

varying fibre distributions, ranging from single fibre unit cells to complex cells was performed by 

Rossol et al. [157] on metal matrix composites. Analysis of micro-fields showed that the main 



cause for deviation from the equistrain rule of mixtures is a stiffening effect of matrix 

confinement when surrounded by touching fibres arranged as ‘ ‘ rings’ ’  (Fig. 2.21). 

 

 
 

Fig. 2.21 - Artificial arrangements of fibres forming rings. The frame designates the unit cell for FEA. E1: 
Single ring of 12 fibres confining the matrix. E2: Periodic cubic arrangement of E1. E3: Periodic 

hexagonal arrangement of E1. E4: Periodic cubic arrangement of E1, but fibre rings are distant. E5: 
Periodic hexagonal arrangement of E1, but fibre rings are distant. In cells E2–E5 the matrix is both inside 

the fibre rings as well as in between them [157]. 
 

The Boundary Element Technique (BEM) and the embedded cell approach (ECA) were adopted 

by Knight et al [158] to investigate the micromechanical response of fibre-reinforced materials. 

The geometrical structures examined (multi-fibre RVE) were formed by uniformly spaced fibre 

arrangements (square and hexagonal array) and randomly placed fibres within the matrix. Non-

periodic arrangements give rise to higher local stresses, and the magnitudes of these stress 

concentrations have a strong dependence on the ligament length (distance between the two 

neighbouring fibres that have a common high-stress region), and to a lesser extent on the angle 

relative to the applied load (angle between a plane containing the two fibre centres and the 

applied load). 



 

In the analysis of materials with random heterogeneous microstructure the assumption is often 

made that material behaviour can be represented by homogenized or effective properties. While 

this assumption yields accurate results for the bulk behaviour of composite materials, it ignores 

the effects of the random microstructure. The spatial variations in these microstructures can 

focus, initiate and propagate localized non-linear behaviour, subsequent damage and failure. 

Baxter et al [159] used a computational method, moving window micromechanics (MW), to 

capture microstructural detail and characterize the variability of the local and global elastic 

response and to generate material property fields characterizing the non-linear behaviour of 

random materials under plastic yielding. The basis of the moving-window technique is a digitized 

image of the material microstructure in which the phases are visually distinguishable i.e., the 

greyscale level of each pixel can be used to designate it as one or the other of the phases of the 

composite (Fig. 2.22). 

Digital images of material microstructure describe the microstructure and a local 

micromechanical analysis was used to generate spatially varying material property fields. The 

strengths of this approach are that the material property fields can be consistently developed from 

digital images of real microstructures, they are easy to import into finite element models (FE) 

using regular grids, and their statistical characterizations can provide the basis for simulations 

further characterizing stochastic response. 

 



 

Fig.2.22 - Sample fibre-reinforced composite material.  
Fibres are white, matrix is black [159]. 

 

 
The use of a locally non uniform unit cell (Fig. 2.24) accounting for inhomogeneous fibre 

distribution but still able to preserve the convenience of RVE when applying the boundary 

conditions have been adopted by Zhang et al [160, 161]. These studies have been performed in 

order to investigate the transverse creep behaviour of UD reinforced glass-fibre composites with 

unsaturated polyester in which the matrix shows a non-linear viscoelastic constitutive behaviour. 

The new geometries seem to be more suitable than the traditionally used regular packing 

geometries in fact they displayed good agreement with experimental data and moreover reveal a 

detailed stress and strain distribution and redistribution over time on a local level. 

 

Generally, inhomogeneous coefficient of thermal expansion (CTE) and stiffness of the matrix 

and fibre cause microscopic internal residual stresses even in unidirectional composites. In order 

to investigate the effect of fibre arrays on such residual thermal stresses at the fibre–matrix 

interface in a unidirectional lamina, three different fibre arrays with various fibre volume 

fractions (FVF) were considered by Jin et al [162]: square and hexagonal regular arrays, and a 

random array, as illustrated in Fig 2.23. The generation of the RVE for the random fibre array 



follows the same procedure described in the authors’  previous work [163]. The RVEs are 

generated for various FVFs ranging from 0.1 to 0.6. When FVF is 0.6, the RVE for the random 

fibre array contains about 200 non-overlapped fibres. In order to simulate a sufficiently large 

number of fibres without computational difficulties in modelling and analyzing, ten sets of RVEs 

for each FVF were constructed using the same procedure. 

 

 

Fig 2.23 - Boundary conditions for the non-locally uniform unit cell [160]. 
 

The generated RVEs were statistically verified using the nearest neighbour distribution function 

and the radial distribution function [163–165], showing that the simulated RVEs have a 

statistically equivalent spatial distribution and represent the real microstructure of the composite. 

A three-dimensional finite element analysis was performed to analyze the residual thermal 

stresses within the given RVEs, as shown in Fig. 2.24. 

 



 

Fig. 2.24 - Representative volume elements of regular and random fibre arrays, and mechanical boundary 
conditions: (a) square array; (b) hexagonal array; (c) random array and (d) deformed shape after thermal 

loading [162]. 
 

 

2.5   Conclusion 

Published work in the field of composite mechanical properties prediction at the microscale has 

been reviewed. The unidirectional reinforced unit cell has been identified as the basic building 

block for the overall mechanical composite properties. Various micromechanical methods to 

determine the elastic behaviour of composite materials have been discussed, in addition to those 

for failure under uniaxial loading. Published methods to determine the failure onset and to 

simulate the damage evolution in unidirectional RVEs or more complex geometries of 

composites materials at the microscale have been also discussed in detail. This review also 



includes numerous methods which have been developed to determine the effects of residual 

stresses in polymer-matrix composites. 

 

This review highlights the need for a purely predictive numerical model that incorporates the 

effects of residual stress within the micromechanics based damage model. In particular the 

damage model in this work has been “designed”  to detect the local failure onset and damage 

propagation in three-dimensional unit cells as shown in Chapter-4. 

 

Although extensive research has been done to describe numerically the damage propagation in 

composite materials and the effect of residual stresses, it has been noted that all the numerical 

investigations have been based on two-dimensional (2D) models. These models, which are in 

general assumed in a plane stress or plane strain state, unfortunately are unable to represent 

realistically the triaxial stress state that arises in real composites during the manufacturing 

process. In addition, the fibres in the 2D unit cell are also assumed to have a regular distribution 

over the cross-section while, in real composites, the fibres are randomly distributed within the 

unit cell. 

It has been noted that recently few authors have developed more advanced numerical 3D models. 

Nevertheless, the purpose of these investigations concerned with the effects of non-symmetric 

RVEs on the overall mechanical properties and/or the distribution of residual stress in 3D 

numerical models. No damage model has been applied to determine the effect of residual stresses 

and the irregular packing array of the fibres on failure. A possible methodology to estimate the 

mechanical response of non-symmetric unit cells and the influence of the fibre position on failure 

is presented in Chaper-6 of this thesis.   

 



Published work in the field of the micromechanics of composite materials has also proved that 

the presence of a 3D interphase influences drastically the mechanical behaviour of composite 

materials. Experimental research has been performed to determine the final characteristics of the 

interphase. These data have been used by several authors to develop various methods in order to 

study the influence of a third phase on the overall mechanical behaviour of composites. 

Nevertheless, none of the published studies have adopted a 3D unit cell for the numerical 

analyses, no damage models have been implemented in numerical codes and the effects of 

thermal residual stresses have been always neglected. A potential way to determine the 

mechanical response of unit cell with a 3D interphase has been suggested in Chapter-5 of this 

thesis. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter  3  

Micromechanical Stiffness 

 

3.1 Introduction  

Unidirectional (UD) composites are those which have all fibres aligned in a single direction.  The 

properties of such composites vary significantly with direction.  A unidirectional composite with 

a hexagonal array of fibres can be transversely isotropic because the properties are the same 

along any plane which is normal to the fibre direction.  The stiffness and strength of a 

unidirectional composite are anisotropic properties since they vary with orientations. The 

stiffness of unidirectional composites in the fibre direction is usually dominated by the fibre 

properties while the strength in the transverse direction is dominated by the matrix properties. 

Since the strength of a unidirectional composite under transverse tension is much smaller than 

under longitudinal tension, transverse tensile loading is believed to be the critical loading of 

unidirectional composite materials. 

One of the basic requirements in the mechanics of composite materials is to determine the 

effective elastic properties. Experimental determination of the moduli of unidirectional 

composites is difficult, especially when it involves determining the longitudinal shear and 

transverse shear moduli. Thus, numerical techniques like the finite element method are needed to 

calculate these shear moduli. Numerical methods to calculate composite material properties 

usually involve analysis of a representative volume element (RVE) [3, 22], corresponding to a 

periodic fibre packing sequence.  

There are a few issues that need to be verified carefully when carrying out such analyses. Firstly, 

the correct RVE corresponding to the assumed fibre distribution must be isolated. Secondly, 

correct boundary conditions need to be applied to the chosen RVE to model different loading 



situations. Proper consideration must be given to the periodicity and symmetry of the model in 

arriving at the correct boundary condition. 

In the present work, the procedure for predicting the elastic constants of the composite from the 

RVE is established for a micromechanical three-dimensional finite element analysis. The finite-

element calculations are made at a specific volume fraction because the geometry of the regions 

of the finite-element mesh that represent the fibre and matrix differ from one volume fraction to 

the next and, therefore, each volume fraction study requires a separate analysis. The finite-

element calculations are for hexagonal array cross-section models (Fig. 3.1). The unit cell for the 

hexagonal array is shown in Fig. 3.2. To be noted in these figures that the x-axis is aligned with 

the fibre direction, and the y- and z-axes are perpendicular to the fibres.  

 

 

 

 

                                        

Fig. 3.1 - Cross-section idealization (hexagonal array) for micromechanics studies. 
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Fig. 3.2 - Details of 3D unit cell for hexagonally-packed array. 

 

In the present study the following assumptions are made: 

- The composite is: Macroscopically homogeneous 

   Linearly elastic 

   Macroscopically transversely isotropic  

   Initially stress free (no thermal stress) 

- The fibres are: Homogeneous 

   Linearly elastic 

   Isotropic 

   Regularly spaced 

   Perfectly aligned 

- The matrix is:  Homogeneous 

   Linearly elastic 



   Isotropic 

The material stiffness parameters are easily obtained from Hooke’s law. In the numerical 

examples, both the fibre and the matrix are taken as an isotropic material. The composite can be 

assumed transversely isotropic with straight fibres [166].  

The strain–stress relations for such a material can be written as [2]: 
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 (3-1) 

 

 

in which 

 S11= 1/Ex  S12= - � xy/Ex S13= - � xz/Ex 

S22= 1/ Ey S23= - � yz/Ey S33= 1/Ez 

S44= 1/ Gyz S55= 1/ Gxz S66= 1/ Gxy 

Since the material is said to be transversely isotropic in the y-z plane the number of elastic 

constants required for the three-dimensional relation is five as Ez = Ey, Gxz = Gxy, and � xz = � xy 

[2]. 

The relations of Equation (3-1) become: 
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in which 



S12= - � xy/Ex = Syx= - � yx/Ey 

 

Mechanical and thermal properties of typical glass fibre and epoxy matrix are summarized in 

Table 3-1. 

 

 

 

 

 

Table 3-1 - Mechanical properties of fibre and matrix 

Mater ial properties E-Glass Epoxy 

Longitudinal modulus, Ex (GPa) 76 4 

Transverse modulus, Ey (GPa) 76 4 

Poisson©s ratio, nnnn 0.2 0.35 

Shear modulus, G (GPa) 29.9 1.46 

 

 

3.2 FEM Procedures 

The aim of this work was, the determination of elastic properties in a 3D unidirectional unit cell 

in which fibres are arranged in periodic array in order to asses the reliability these micromodels. 

Most of the unit cells investigated in the past literature are related to two-dimensional unit cells. 

Unlike two-dimensional unit cells, 3D unit cells undergo a contraction in both two directions 

(e.g. y-direction and z-direction) if loaded in the third direction (x-direction). Thus this leads to a 

triaxial deformation.  



Moreover finite element results could be affected by the elements size in the mesh. Hence it was 

necessary to evaluate the micromodels and their meshes under different loading condition to 

verify that, although they undergo a triaxial deformation, elements in the mesh retain a adequate 

aspect-ratio to avoid erroneous results.    

The procedure to assess the validity of these micro-models was performed by determining elastic 

properties of a RVE and by comparing numerical results with analytical and/or possibly 

experimental data available in the literature. 

  

The package used for the analyses was ABAQUS/Standard version 6.3. The mesh was built using 

initially C3D8elements (8-node linear brick) and C3D20 (20-node linear brick) elements for a 

better accuracy [92] both available in ABAQUS/Standard version 6.3. All these types of element 

are three-dimensional continuum elements and allow stress and displacement analysis. 

The FE analyses were carried out at different volume fractions and in particular the following 

fibre volume fractions were taken into account: 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.70, 0.75, 0.80 

and 0.85. 

The number of element depends on the fibre volume fraction and the types of element used in the 

mesh. In general, the number of element ranges from circa 17000 to more than 40000 for solid 

brick elements.  

 

3.3 Axial stiffness - Longitudinal Modulus Ex  

The simplest treatment of the elastic behaviour of unidirectional long fibres composites is based 

on the premises that the material can be considered as if it were composed of parallel slabs as 

shown in Fig.3.3 and Fig.3.4 of the two constituents perfectly bonded together, with relative 

thicknesses in proportion to the fibre and matrix volume fraction. The two slabs are forced to 

have the same lengths parallel to the bonded interfaces. Hence if the stress is applied in the 



direction of the fibres alignment (x-direction in Fig.3.2), then the constituents (fibre and matrix) 

exhibits exactly the same strain: 

Under these circumstances it is possible to derive an analytical expression for the Young’s 

modulus Ex: 

m
m

f
fx VEVEE +=  (3-3) 

 

    

This equation can be rearranged in the following form: 

)1( f
m

f
fx VEVEE -+=  (3-4) 

    

where Ef ,V f , Em ,Vm are the fibre and matrix Young’s modulus and volume fractions  

respectively. 

This equation is known as the “Rules of Mixture”  [1, 2] and indicates that the composite stiffness 

is a weighted mean between the moduli of matrix and fibre and Ex depends only upon the fibre 

volume fraction. 

 

Fig. 3.3 - Ideal Unidirectional RVE 

x 

y 

z 



 

Fig. 3.4 - Slab configuration 

To carry out the numerical analyses the unit cell used in the analysis is shown in Fig. 3.2.  

Only a quadrant of the original RVE (Fig.3.5) is modelled since there are two axes of symmetry 

in this problem. 

 

 

Fig.3.5 - ¼ RVE of the hexagonal array packing. 

 

Axial loading is modelled by a displacement acting on the plane yz at x = a.  For such loading 

conditions, the boundaries of the RVE also correspond to lines of symmetry. Thus, normal 

displacements of the boundaries of the quadrant are restricted to those that cause the boundary to 

x 

y 

z 

x 

y 

z 



displace only parallel to the original boundary. The displacement constraints applied to the finite 

element model are: 

 

 

 

 

ux (0,y,z) =  0 

ux (a,y,z) = constant = 5.0E-05 [mm]   

 

uy (x,0,z) = 0 

uy (x,b,z) = constant = � y 

 

uz (x,y,0) = 0 

uz (x,y,c) = constant = � z 

 

Due to Poisson’s ratio effects, nodes placed in y = b, z = c undergo a displacement of � y and � z.  

The comparisons for the results of Equation (3-4) for the composite extensional modulus in the 

fibre direction Ex and the finite element calculations at several volume fractions are shown in Fig. 

3.6. The hexagonal finite-element array gives practically identical results to the rule of mixtures 

shown in equation (3-3). The linear dependence of Ex on fibre volume fraction is demonstrated 

and, as expected, the modulus increases whilst increasing the fibre volume fraction. 
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Fig. 3.6 - Comparison of numerical data and rule of mixtures data for composite modulus Ex. 

 

3.4 Transverse Stiffnes –Elastic  Moduli Ey and Ez 

The analytical prediction of the transverse stiffness in unidirectional composite appears more 

difficult than the axial case. Although the system can be still represented by the “slab model”  

depicted in Fig. 3.4, this simplified model shows a serious drawback. In the unit cell in Fig. 3.5, 

the y- and the z-directions appear to be transverse to the fibres. In the slab model in Fig. 3.4 the 

transverse directions are not identical and in particular the z-direction is now equivalent to the 

axial direction while in the micromodels investigated, due the periodic distribution of the fibres 

over the cross-section (hexagonal packing array), the stiffness in the z-direction and y-direction 

are supposed to be the same. Thus, to avoid this drawback, the same analytical solution to 

evaluate Ey has been adopted to calculate Ez. 



The expression derived from the conventional approach of the slab model that in the case of 

transverse loading is also called the “equal stress model” .  

The relation derived from the slab model approach is [1]: 
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This is the Rule of Mixtures relation for Ey. Comparing equation (3-5) with the expression for Ex 

in equation (3-4), it is seen that it relates the reciprocal of the extensional moduli with the volume 

fraction rather than the moduli themselves. This expression is similar to the expression for the 

equivalent stiffness of a pair of springs in series. 

The non-uniform distribution of stress and strain during transverse loading implies that the 

simple equal stress model appears to be inadequate to evaluate the transverse elastic properties 

and more in detail the slab model gives an underestimate value of the Young’s modulus.    

The most successful empirical expression to obtain more accurate estimates of Ey (and Ez) has 

been proposed by Halpin-Tsai in 1967 [1, 2]. Although it is not base on a rigorous theory of 

elasticity it takes into account the enhanced capability of fibre load bearing, relative to the equal 

stress model. 

The relation for the transverse stiffness is: 
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in which �  is: 
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and �  is:  
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y  is a measure of fibre reinforcement of the composite material and is dependent on fibre 

geometry, packing geometry, and loading conditions. Obtaining accurate values for y  is the most 

difficult part of using the Halpin-Tsai equations. The expression (3-6) gives the correct values in 

the limits of f =0 and f =1 ( f  is the fibre content) and in general shows a good agreement with 

experimental data over the complete range of fibre volume fraction.  

The value of y  is then an adjustable parameter and its magnitude is generally of the order of 

unity [81]. 

Approximations for y  are [2]: 

- Circular fibres in square array (excellent results for V f~0.55) 

 y  = 2 for Ey 

y  = 1 for Gxy  

- Square fibres in square array (good results for V f<=0.9) 

 y  = 2 for Ey 

y  = 1 for Gxy 

- Rectangular cross section in diamond array (good results for V f<=0.9) 

 y  = 2a/b for Ey 

 y  = 1.73log (a/b) for Gxy 

 

Where a = width of fibre, and b = thickness of fibre 

In the present work (hexagonal packing array) a good agreement between numerical and 

analytical (Halpin-Tsai) results have been reached by considering a value of y  = 1 for the 

evaluation of the elastic moduli Ey   and Ez. 

 



To study the other basic composite elastic properties, the unit cell of Fig. 3.5 must be loaded 

differently. To consider the composite extensional moduli perpendicular to the fibres, Ey (Ez) the 

load illustrated in Fig. 3.7 is used.  A displacement in the y-direction (z-direction) has been 

applied to the unit cell in Fig. 3.5 and it was still assumed that the fibre and matrix are perfectly 

bonded together. 

 

 

Fig. 3.7 - Cross-section subjected to transverse load. 

 

Transverse loading is modelled by a displacement acting on the plane xz in y = b in order to 

evaluate Ey and on the plane xy in z = c for Ez. 

Again, normal displacements of the boundaries of the quadrant are restricted to those that cause 

the boundary to displace only parallel to the original boundary. The displacement constraints 

applied to the finite element models are: 

 

- to determine  Ey   

ux (0,y,z) =  0 

ux (a,y,z) = constant = � x  



 

uy (x,0,z) = 0 

uy (x,b,z) = � y =5.0E-05 [mm] 

 

uz (x,y,0) = 0 

uz (x,y,c) = constant = � z 

 

- to determine Ez   

ux (0,y,z) =  0 

ux (a,y,z) = constant = � x  

uy (x,0,z) = 0 

uy (x,b,z) = constant = � y 

uz (x,y,0) = 0 

uz (x,y,c) =  � z = 5.0E-05 [mm] 

 

The first step of the research was to determine the values of Ey and Ez from the numerical 

analyses. Finite element results are shown in Fig. 3.8 and as expected, on the assumption that the 

composite is macroscopically transversely isotropic the values obtained for the whole unit cells 

investigated are perfectly coincident. 
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Fig.3.8 - Comparison of numerical results for the transverse Young’s modulus Ey and Ez. 

 

 

 

The Rule of mixtures model, the Halpin-Tsai equation and data from the finite-element 

calculations are compared in Fig. 3.9.  

A comparison with numerical results for Ez also shows a good agreement between Halpin-Tsai 

and finite element values. 
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Fig. 3.9 - Comparison of finite-elements data, rule of mixtures and Halpin-Tsai results for  

composite moduli Ez. 

 

 

 

3.5  Shear  Stiffness 

The shear moduli of unidirectional composite materials can be estimated in a similar way to the 

axial and transverse stiffness using the simplified slab model. It is worthwhile to understand the 

conventions used to identify shear stress and shear strain. The shear stress is conventionally 

designated with tttt ij (i� j) and tttt ij refers to a stress acting in the i-direction on a plane with a normal 

in the j-direction. In a similar way the shear strain ggggij can be considered as a rotation of the j-axis 

towards the i-axis. 



The transverse modulus Gij is the ratio of tttt ij   over  ggggij  . 

In unidirectional composite materials since the y-direction and z-direction are equivalent it 

follows that there are only two shear moduli because Gxy=Gyx=Gxz=Gzx� Gyz=Gzy 

For the shear modulus Gyz and Gxy, a semi-empirical expression has been developed by Halpin 

and Tsai:   
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Where, Gf and Gm are the shear moduli for the fibre and the matrix. In the present work the best 

agreement between numerical and analytical results (Halpin-Tsai) have been reached by 

considering a value of y  = 2 for the elastic modulus Gxy  and y = 1 for the elastic modulus Gyz. 

The Halpin-Tsai relation represents a greatly good approximation to the shear moduli and in 

particular it approaches closer values related to the axial shear modulus Gxy 

 

3.5.1 Shear Modulus Gyz 

The stress and strain fields in a composite under a transverse shear loading are independent of the 

axial coordinate (x-direction) and are functions of y-direction and z-direction only. The RVE 

adopted in the numerical analyses to determine the shear moduli for a hexagonal array 

micromodel is shown in Fig. 3.2.  



Many researchers modelled transverse shear by assigning equal and opposite displacements to the 

faces normal to y = b and z = c and assuming the deformed unit cell to remain a parallelogram 

with straight edges. This is an overly restrictive constraint [3]. The deformed shape needs only to 

satisfy periodicity and symmetry conditions without necessarily remaining a parallelogram in the 

deformed configuration.  

To calculate the shear modulus Gyz the boundary conditions applied to the “ full”  unit cell 

depicted in Fig.3.2 are described with the help of Fig. 3.10: 

uy (-b, z) = uy (b, z) 

uy (y, -c) = uy (y, c) 

uz (-b, z) = uz (b, z) 

uz (y, -c) = uz (y, c) 

 

Fig. 3.10 – Details of an RVE for hexagonally-packed array. 

 



A further constraint is that the boundaries of the RVE undergo constant lateral displacement as 

depicted in Fig.3.11: 

 

eeeezz (±b, z) = 0    or    uz (±b, z) =  dz    

eeeeyy (y, ±c) = 0    or    uy (y, ±c) =  dy    

 

Since correspondent nodes in opposite faces are forced to displace in the same way, a simple 

program in FORTRAN has been written to number properly the nodes on the LEFT face (nodes 

at y = -b) and RIGHT face (nodes at y = b), TOP face (nodes at z = c) and BOTTOM face (nodes 

at z = -c) and match up with each other correctly and then degrees of freedom of the 

correspondent nodes are repeated. 

      

Fig. 3.11 - RVE under transverse shear loading to evaluate Gyz. 

 



To simulate transverse shear loading, a displacement of 50E-05 mm is applied to each node of 

the TOP surface of the RVE (Fig. 3.11) in the y-direction.  

The bottom corners are placed at dz = 0 on rollers to eliminate rigid body displacement. 

 

3.5.2 Shear Modulus Gxy 

Similar boundary conditions have been applied to evaluate Gxy. Since the fibres are much stiffer 

than the matrix, they should exhibit a different shear strain, hence it is incorrect to assume that 

� xy
matrix �  � xy

fibre. The strain field in a composite subjected to longitudinal loading is two-

dimensional in nature and it is independent of the axial coordinate (x coordinate). To impose this 

constraint in the RVE, the FRONT face (nodes at x = a) and REAR face (nodes at x = 0) faces of 

the RVE are required to undergo identical displacement. In particular nodes on the FRONT face 

and REAR face with the same y and z coordinates are constrained to have the same displacements 

in all three directions. Thus, for the RVE shown in Fig. 3.2 and Fig. 3.10: 

 

ux (0, y, z) = ux (a, y, z) 

uy (0, y, z) = uy (a, y, z) 

uz (0, y, z) = uz (a, y, z) 

 

From symmetry conditions, the additional constraints on the RVE are: 

ux (x, 0, z) = 0 

ux (x, b, z) = dx = 50E-05 [mm] 

 

uy (x, 0, z) = 0 

uy (x, b, z) = 0 

 



uz (x, 0, z) = 0 

uz (x, c, z) = 0 

Deformed shapes of unit cells under shear loading applied to evaluate Gxy are depicted in Fig. 3. 

12 and Fig. 3.13 

 

Fig. 3.12 - RVE under transverse shear loading to evaluate Gxy. 
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Fig. 3.13 – 3D view of the RVE under transverse shear loading to evaluate Gxy. 

A comparison between numerical calculations for the shear moduli Gxy and Gyz (Fig.3.14) shows 

that their values are rather close to each other, with Gxy slightly greater in magnitude.  
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Fig.3.14 – Numerical results for Modulus Gxy and Gyz. 

 

In Fig. 3.15 and Fig 3.16 results obtained by means of the Halpin-Tsai have been compared to the 

numerical calculations. Although the shear modulus Gyz appears to be slightly overestimated, 

especially at lower fibre volume fraction, by the Halpin-Tsai expression compared to the 

numerical data the differences can be considered in a reasonable range in magnitude and agree 

with data in the literature for similar materials [1]. 

In particular a better agreement can be seen in Fig 3.16 that displays the comparison between 

FEM values and data from the semi-empirical equation. In general differences in the results for 

Gxy are within the range of 3%.  
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Fig. 3.15 – Comparison of finite-elements data and Halpin-Tsai results for 

    composite moduli Gyz. 
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Fig. 3.16 – Comparison of finite-elements data and Halpin-Tsai results for 

    composite moduli Gxy. 

 

3.6  Poisson contraction effects 

The Poisson’s ratio nnnnij describes the contraction in the j-direction if the stress is applied on the i-

direction. The Poisson’s ratio can be defined with the following equation: 

i

j
ij e

e
-=n  

For unidirectional composite materials there are three different Poisson’s ratios. Unfortunately 

the evaluation of Poisson’s ratio values on the basis of the idealised slab model presents several 

difficulties due to the greater degree to which the contraction of the two constituents, fibre and 

matrix, must match if compared with the real structure of unidirectional composite materials. 



Although three different Poisson’s ratios can be estimated reliable results can only be obtained 

for the case of nxy assuming an equal strain of the two constituents. Thus in this case the 

Poisson’s ratio of the constituents can be evaluated individually and summed. Then a simple 

Rules of Mixtures can be applied because of the equal strain assumption is accurate for the axial 

loading parallel to the fibres in unidirectional composites. As far as the other two Poisson’s 

ratios, simple expressions have been developed in order to evaluate their values but in general 

they lead to not reliable results if compared to experimental data. In particular the Poisson’s ratio 

nyx has been estimated to be lower than nxy because on applying a transverse load, the fibres offer 

a stiff resistance to axial contraction. Hence a more pronounced transverse contraction is 

expected leading to a higher value of nyz. 

 

3.6.1 Poisson’s Ratio � xy 

By examining the overall contraction of the unit cell in Fig. 3.17, an expression for the composite 

major Poisson©s ratio can be derived. The major Poisson©s ratio for the composite is defined as 

minus the ratio of strain in the y-direction divided by the strain in the x-direction when only the 

stress � x is applied, namely: 
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where � x  �  0; all other applied stresses = 0 

 



 

Fig.3.17 - Deformations of fibre and matrix.. 

 

The Rule of Mixtures expression for the composite Poisson©s ratio is similar in form to the 

expression for E1 [81, 90] and it can be formulated with the following equation: 

)1( fm
xy

ff
xyxy VV -+= nnn  (3-9) 

 

where V f is the fibre volume fraction, f
xyn  and m

xyn  are the Poisson’s ratios for the fibre and the 

matrix. 
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Fig. 3.18 - Comparison of finite element data and rule of mixtures results for composite  

Poisson’s ratio � xy.  

 

 

The comparison for the composite major Poisson©s ratio � xy from Equation (3-5) is presented in 

Fig. 3.18. Curves in Fig.3.18 displays that analytical and numerical results are in perfect 

agreement although data from the Rules of Mixtures are slightly higher than the finite-element 

results (in general less than 1.0%) . 

 

3.6.2 Poisson’s Ratio � yz  

The Poisson’s ratio � yz describes the contraction in the z-direction on applying loads in the y-

direction. Although no analytical formulas have been applied to compare with numerical results it 

is worthwhile to show finite element results for several fibre volume fractions (Fig. 3.19 and 

Fig.3.20).  
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Fig. 3.19 - Poisson’s ratio � yz. 

 

As expected, nyz appears to be higher than nxy and, the comparison between the two Poisson’s 

ratios shows that Poisson’s ratios nxy are less sensitive to the fibre volume fraction. In particular, 

the values of nxy are quite close to the bulk E-glass Poisson’s ratio (Table 3-1) especially at 

higher fibre volume fraction. On the contrary, nyz is strongly dependent from the fibre volume 

fraction and, its values approaches the Poisson’s ratio for the bulk epoxy resin at lower values of 

the fibre volume fraction (Table 3-1). In fact, at high fibre volume fractions the fibres in the 

micromodel are almost in contact (in hexagonal packing array the fibre volume fraction is 

~90%). Then the fibres represent an obstacle to the transverse contraction leading to a “stiffer”  

overall response in the composite. 
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Fig. 3.20 – Comparison between Poisson’s ratio � xy and Poisson’s ratio � yz 

 

3.7 Conclusion 

The appropriate constraints on the RVE under various loadings have been determined from 

symmetry and periodicity conditions obtaining a nearly complete set of elastic constants for a 

three-dimensional unidirectional composite. The transverse elastic moduli are exactly coincident 

showing a proper symmetry in the micromodel. The elastic moduli obtained from the analysis for 

the hexagonal array also have been compared with analytical results employed in this exercise 

namely the Rules of Mixtures and the Halpin-Tsai semi-empirical expression. When possible, 

numerical results have been compared with experimental results available in the literature. The 

3D micromodels have displayed a surprising uniformity with the analytical models and an 

adequate equality with experimental data.  



As all the micromodels have show their capability to predict reliable mechanical properties it will 

be possible to implement them with a micromechanics damage model in order to predict failure 

with and without thermal residual stresses. Moreover since the matrix behaves differently in 

tension and compression it will be interesting to evaluate how different failure criteria (energy 

and strain based) predict damage in the composites at their microscale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter  4  

Micromechanical Strength  

 

4.1 Introduction 

A modified micromechanics based damage model similar to the Blackketter model [5] has been 

applied by Zhao et al [170] to investigate the effects of thermal residual stresses in a two-

dimensional (2D) unit cell in which fibres are distributed over the cross-section in a square 

packing array.  Uniaxial and biaxial loading conditions applied on the 2D square unit cell shown 

that the overall response is strongly influenced by the presence of residual stress. Although under 

uniaxial transverse loading the effects of residual stresses are in general beneficial on the contrary 

on applying a biaxial transverse loading the overall mechanical response seems to undergo 

detrimental effects. 

The main goal of this part of research is to apply uniaxial loading (axial and transverse) on 3D 

unit cells that represents more realistically the behaviour of composites materials by taking into 

account the tri-axial stress state arising during the manufacturing  process. In order to achieve this 

goal a subroutine in FORTRAN as been developed to simulate the temperature-dependent 

material properties of matrix and fibres. The effect of residual stress has been evaluated for 

different unit cells with different fibre volume fractions and numerical results have been 

compared with the numerical values obtained in absence of thermal stresses.  

Finally, since the epoxy matrices show a different mechanical behaviour in tension and 

compression, as a further exercise, the reliability to predict failure and simulate damage within 

the matrix of different failure criteria has also been accounted for. Three different failure criteria 

have been adopted for our purposes. The first two failure criteria are strain based and they the 

Maximum Principal Stress criterion that is used in combination with the Tresca failure criteria. 



The third criterion used to predict failure in the matrix is a modification by Raghava of the well 

know von Mises criterion. This criterion includes the hydrostatic dependency of the epoxy 

matrix. 

Composites properties, e.g. strength and stiffness, are dependent upon the volume fraction of the 

fibre and individual properties of the constituent fibre and matrix materials. Particularly the 

estimation of the damage and failure progress in fibre reinforced composite structures is very 

complicated compared to that of conventional metallic materials. Composite structures may vary 

their stiffness and strength due to damage accumulation such as matrix cracking and fibre 

breakage during the loading history of the composite members. In the micromechanical approach, 

the constituent fibre and matrix materials, and their interaction are distinctively considered to 

predict the overall behaviour of the composite structural member.. The present work has been 

developed in order to simulate progressive failure of an UD composite with a hexagonal array 

cross-section by carrying out micromechanical finite element analyses on a unit cell under 

different uniaxial load conditions. The advantage of the micromechanical model is that the 

stresses can be associated and related to each constituent (fibre and matrix). Therefore, failure 

can be identified in each of these constituents and a proper degradation model can be modelled. 

Also, different fibre volume fractions can be taken into account by varying the geometry of the 

unit cell. 

Here, the micromechanical model considers a unit cell in which fibre and matrix are assumed to 

be perfectly bonded to the fibres throughout the analysis, with fibres arranged in a hexagonal 

cross section array (Fig. 4.1) by assuming the repetitive or periodic nature of the fibre and matrix 

materials. The unit cell is a three-dimensional solid and the geometry of each unit cell depends on 

the fibre volume fraction [22].  



 

Fig. 4.1 – Cross sectiononal idealization (hexagonal packing array) in micromechanics studies. 
Detail of the RVE. 

 
 

The micromechanical unit cell models are constructed depending on the type of load applied after 

curing. The entire RVE is displayed in Fig. 4.1, but for longitudinal and transverse tensile 

loading, due to the symmetry, a quarter of the unit cell (Fig. 4.2) can be considered.  

 

 
Fig. 4.2 - ¼ RVE of the hexagonal array packing. 

 

 

 



The displacement constraints applied to the finite element model (Fig. 4.2) in order to apply 

normal loads are [22]: 

ux (0,y,z) =  0 

ux (a,y,z) = constant = � x   

uy (x,0,z) = 0 

uy (x,b,z) = constant = � y 

uz (x,y,0) = 0 

uz (x,y,c) = constant = � z 

where ux ,  uy , uz  denote respectively displacements in the x-, y- and z-direction. 

The meshes generated for the micro-models investigated are 20-noded hexahedral elements. The 

number of elements varies approximately from 6000 to 9000 depending on the V f. Mesh 

sensitivity analysis suggests that the meshes are fine enough to produce accurate results 

compared to a mesh with twice as many elements, with a difference within 0.2% -0.5% in terms 

of residual stress and failure strain level depending on the fibre volume fraction. 

 

 

4.2 Failure Cr iter ia and Damage Propagation Model 

In order to simulate damage, it was necessary to evaluate the current stress state at each 

integration point. Then by comparing the current stress state with a specific failure criterion, the 

material properties are reduced at each “ failed”  integration point to values representing the 

particular type of damage occurred [5, 111 and 114].  

The selection of a proper failure criterion, both for matrix and fibre, represents a very important 

task of the modelling formulation. In particular in polymers the yield behaviour is sensitive to 

hydrostatic pressure and as a consequence, the yield stress in tension is different from that in 

compression [6-8]. Modifications of von Mises and Tresca criteria were taken into account to 

evaluate failure in the matrix. A common form of the von Mises failure criterion is: 
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where � 1, � 2, � 3  are the principal stresses and sY is the yield strength of material. As the von 

Mises criterion does not predict differences in yield stress between tension and compression, 

modification of this criterion have incorporated the effects of hydrostatic pressure into equation 

(4-1). A general form for the modified Von Mises criterion can be written in the following form 

[8]: 
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It is possible to determine the constants A and B in terms of the simple uniaxial tensile and 

compressive yield stresses � Y,T and � Y,C , respectively. 

The first modified Von Mises criterion was suggested by Raghava et al.[8]: 
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The second modified criterion was derived by Bauwens [8]: 
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If � Y,C = � Y,T  both the modified Von Mises criteria by Raghava and Bauwens, reduce to the Von 

Mises criterion, equation (4-1). The failure criterion proposed by Tresca states that failure occurs 

when the maximum shear stress, t max in the component being designed equals the maximum 

shear stress in a uniaxial tensile test at the yield stress. The criterion is: 
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(4-5c) 

 
 
 

 

The Tresca yield criterion can be modified to take into account the effects of the hydrostatic 

pressure. The critical value of the shear stress t max is expressed as function of the hydrostatic 

pressure: 

 ( )321maxmax sssatt o ++-=   (4-6) 
 

in which ot max  is the shear yield stress in absence of hydrostatic pressure and a  is a material 

constant: 
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The fibres adopted in the numerical models are glass fibres therefore in contrast to carbon fibres, 

their material properties are isotropic [1]. It was possible, in order to evaluate failure within the 

fibres, the use of common failure theories for isotropic materials such as the von Mises failure 

criterion, Maximum Principal Stress theory (Rankine, Lamè, Clapeyron) and Maximum Shear 

Stress theory (Tresca). The analyses were performed with the Finite Element code ABAQUS and 

more specifically ABAQUS/Standard Version 6.4. 



It is a common practice in simulating material damage to reduce the stiffness (or stiffness in a 

certain direction) to a near zero value following the onset of damage. Selective and non-selective 

stiffness reduction schemes are often used. Selective schemes are typically applied for 

composites where the load-carrying nature is dependent on the damage orientation [5]. For 

isotropic material, damage is independent of the material orientation, so that non-selective 

stiffness reduction is applied. When failure is detected the degradation is applied only on the 

elastic moduli by multiplying them with a discount factor di ÎÎÎÎ  (0, 1] (i designates the elastic 

modulus E or G). Both resin and fibre-glass are isotropic and they have the following stiffness 

matrix: 
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The Young’s modulus E and the shear modulus G were degraded independently by a discount 

factor dE and dG both initially set equal to the unity. If during the analysis the failure criteria 

exceed the maximum strength allowed for matrix or/and fibre, the modulus E is degraded to 1% 

of its initial value (dE = 0.01) at the particular integration point. The shear modulus G is reduced 

to 20% of the initial value ((dG = 0.2) under the assumption that some shear stiffness remain due 

to the friction still present on the failure plane [5].  

The non-selective stiffness degradation scheme, together with the residual stress analysis were 

programmed into two user-defined material subroutines, UMAT and USDFLD [97],  available in 



ABAQUS/Standard 6.4.. The UMAT and USDFLD subroutines allow updating the solution-

dependent state variables accordingly to the solution of an analysis. In particular, solution-

dependent state variables can be defined as a function of any other variables in these subroutines 

and evolve with the solution of the analysis [10]. 

 

4.3 Mater ials 

The constituent materials used in this investigation are glass fibre and epoxy resin, whose 

properties are given in the book World-Wide Failure Exercise [10]. The properties of glass fibre 

are assumed to remain constant and independent of the temperature change with Young’s 

modulus E = 80GPa and Poisson’s ratio n = 0.22, the coefficient of thermal expansion a = 

4.9´ 10- 6/°C and the longitudinal tensile (� T) and compressive (� C) strength are respectively 

2150MPa and 1450MPa. However, for the epoxy resin, thermal transition temperatures such as 

the glass transition temperature Tg strongly affect mechanical properties. In order to represent this 

behaviour accurately the material properties of the resin are defined as a function of temperature. 

The following relations are used:  

(a) Poisson’s ratio is assumed to be temperature independent (n = 0.35). 

(b) To evaluate the variation of Young’s modulus E over the temperature range from curing to 

room temperature, the total temperature range can be divided into three regions: 

·  Region III � TTTTT gg DD +££- , in which E varies greatly.  

·  Region II � TTT g D-< , the matrix is in solid state and E changes only slightly.  

·  Region I � TTT g D+> , the matrix is in liquid or rubbery state and E has a very small 

value. 

For each region, the modulus is obtained using the following functions [132], 
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with:  

=gT 110°C,  

=rT 23°C,  

=TD 35°C,  

( ) =rTE 3.35GPa,  

( ) ( ),TE7.0TTE rg =- D   

( ) ( ),TE01.0TTE rg =+ D   

=1k 0.35667, 

=2k 4.2485 

 

(c) The thermal expansion coefficient a is assumed to change linearly with the  temperature:  

   

a(T) =  K(T –Tref) + a(Tr) 

with a slope of:  

( )
rg

rl

TT

T
K

-

-
=

aa
                                                (4-12) 



where ( ) 6
r 1058T -´=a /°C and 610139 -´=la /°C. 

The longitudinal tensile (� T) and compressive (� C) strength of the resin are taken to be 

respectively 80MPa and 120MPa. 

Mechanical and thermal properties of fibre and matrix are summarized in Table 4-1. 

 

Table 4-1  Mechanical and thermal properties of fibre and matrix [10]. 

Mater ial properties E-Glass Epoxy 

Longitudinal modulus, Ex (GPa) 80 3.35 

Transverse modulus, Ey (GPa) 80 3.35 

Poisson©s ratio, nnnn 0.2 0.35 

Shear modulus, G (GPa) 33.33 1.24 

Longitudinal tensile strength, XT (MPa) 2150 80 

Longitudinal compressive strength, XC (MPa) 1450 120 

Longitudinal tensile failure strain, YT (%) 2.687 5 

Longitudinal compressive failure strain, YC (%) 1.813 - 

Shear strength, S (MPa) 1200 70 

Thermal coefficient, aaaa (10-6/°C) 4.9 58 

 

The isothermal curing reaction of a thermoset resin involves dramatic changes in the properties of 

the resin. After heating of the initially liquid monomer, the chemical reaction commences. The 

molecular weight and the degree of cross-linking increase as the volume of the system decreases. 

As the reaction proceeds two phenomena may occur independently: gelation and vitrification. 

Gelation corresponds to the formation of a molecular network and can be regarded as the point 

after which the system can sustain stress. Vitrification occurs when the glass transition 

temperature Tg of the reacting system reaches the cure temperature. On vitrification the system, 

either a rubbery network or a viscous liquid (if vitrification precedes gelation), is transformed 

into a glassy state. The property change was shown to be closely related to the degree of cure of 



the resin [127, 167 and 168]. Here, the properties of the resin were assumed to be independent of 

the degree of cure and constant at the isothermal curing temperature. Their values were obtained 

from the temperature-dependent functions 4-9, 4-10 and 4-11 and used for the epoxy shrinkage in 

residual stress analyses in the present work. This assumption was justified by the fact that the 

modulus was built up very quickly after resin gelation or vitrification [120]. Also stress 

relaxation due to the viscoelasticity of the epoxy resin [132, 169] was ignored here, and the 

epoxy was treated as linear elastic. 

 

4.4 Residual Stress Analysis 

Residual stress has two parts: the chemical shrinkage residual stress and the thermal cooling 

residual stress. In order to simulate a curing process, the analysis was performed by two discrete 

steps, where step one is the shrinkage stress analysis and step two is the thermal cooling stress 

analysis. The shrinkage residual stress was calculated by applying a given amount of resin 

shrinkage. For the epoxy resin considered here, the linear shrinkage strain was chosen to be 

0.01%, 0.35% and 1% which corresponds to a volumetric change of circa 0.03%, 1% and 3% 

respectively. The thermal residual stress is due to the cooling of the system from the curing 

temperature, 149°C, to room temperature, 23°C. The mechanical properties of the resin, in terms 

of shear modulus (and Young’s modulus when the resin becomes solid), increase drastically as 

the material evolves from a liquid state to a solid state. So in the resin, geometrically constrained 

within the interstices present between fibres, tensile stresses develop more easily. Moreover, 

during chemical shrinkage, in which resin is in a rubbery state, realistically no deformation is 

established along the x-direction. Strains parallel to fibres are only developed during cooling as 

the resin evolves from a liquid/rubbery state into a solid state. 

The total induced strain of the resin due to chemical shrinkage and thermal cooling can be 

expressed as [170]: 



dTTdsded ijijijij )(adde ++=  (4-13) 

 

where deij is the total strain increment, deij the elastic strain increment, ds the free shrinkage 

strain increment due to the chemical reaction (cross-linking) in the absence of constraint, � (T) the 

thermal expansion coefficient which is dependent on the temperature, dT the temperature change 

and dij is the Kronecker delta. From equation (4-1), the stress-strain relationship can be derived 

as: 

{ }dTTdsdCdeCd ijijijijklklijklij )(addes --==  (4-14) 

 

where ijds  are the stress increments and Cijkl the stiffness components. The above stress analysis 

is based on linear elasticity and the stiffness components Cijkl are related to the Young’s modulus 

E and the Poisson’s ratio n of the material. Equation (4-2) was derived for the residual stress 

analysis in the resin. The distribution of the resin’s maximum principal residual stress in the 

matrix, after curing and cooling is presented in Fig. 4.3.  

  
Fig.4.3 - Distribution of residual stress in the matrix after curing and cooling-down. 

 

  



 
The mechanical properties of the resin, in terms of shear modulus (and Young’s modulus when 

the resin becomes solid), increase drastically as the material evolves from a liquid state to a solid 

state. So in the resin, geometrically constrained within the interstices present between fibres, 

tensile stresses develop more easily. The largest values reached after chemical shrinkage and 

cooling are depicted in Fig. 4.4 Results from the analysis attribute the primary contribution to 

residual stress mainly to thermal cooling.  
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Fig. 4.4 - Trend of maximum principal residual stress (MPa) after curing and cooling-down evaluated in 

the area of max tensile stress at different V f  

 

 

In Fig. 4.5 the small contribution from the chemical shrinkage for four different fibre volume 

fractions is shown. 
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Fig. 4.5 - Trend of maximum principal residual stress (MPa) after curing evaluated in the area of max 

tensile stress at different V f . 

 

The curing stresses are small as a result of the mechanical properties of the resin during the 

curing process. In fact, its state is rubbery and almost liquid so the capability to interact with the 

fibres by transferring stresses is negligible. These results agree with most of the published work 

on residual stresses in which thermal cooling was evaluated as the main source of residual stress 

in polymer composites [120, 171].  

 

 

4.5  Effect of residual stress on transverse and longitudinal failure 

To study the influence of residual stress/strain on the response of the unit cell model, the damage 

evolution in the matrix was examined under transverse loading. After curing and thermal cooling 

analyses, a global strain was applied to the model which was achieved by specifying a uniform 

displacement at the model surfaces. At each time increment of the analysis, the damaged area in 

the matrix was determined using both the Maximum Principal Stress failure criterion and the von 



Mises criterion modified by Raghava. Throughout the following analyses, the fibre showed no 

sign of damage due to its high strength, therefore, damage and failure refer to the matrix only. 

 

4.5.1. Uniaxial longitudinal tensile loading 

In UD composites the effect of the fibre is dominant, therefore during curing, in which resin is in 

a rubbery state, realistically no deformation is established along the x-direction. Strains parallel to 

fibres are only developed during cooling as the resin evolves from a liquid/rubbery state into a 

solid state. As the fibres are dominant the strength of the micro-models in the x-direction is of 

course improved if fibre volume fraction is increased.  

A comparison between two different combinations of failure criteria was investigated: 

 1- Raghava (matrix)/von Mises (fibre)  

 2- Maximum Principal Stress (matrix)/ Maximum Principal Stress (fibre) 

The modified von Mises criterion (Raghava) and the Maximum Principal Stress criterion were 

chosen in order to compare the capability to predict the damage initiation in 3D unit cells of 

energy based criteria (Raghava) and stress based (Maximum Principal Stress).   

Both combinations show similar results in terms of ultimate strength for the fibre with residual 

stress (Fig. 4.6) but the Raghava criterion predicts matrix failure at a lower loading strain. In 

addition, the two combinations of failure criteria show a difference in the prediction of damage 

onset in the matrix. 
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Fig. 4.6 - Global stress-strain curve in x-direction on uniaxial tensile loading  

with thermal residual stress for V f 60. 
 
 

 The Maximum Principal Stress and the Raghava failure criteria predict differently the damage 

onset. The Maximum Principal Stress predicts the initiation of the damage in four regions (Fig. 

4.7a) at the fibre/matrix interface while, according to the Raghava failure criterion the matrix 

undergoes a drastic failure (Fig. 4.7b).  In fact on longitudinal loading the unit cell is strongly 

deformed in all the three directions and the energy based criterion (Raghava) results more 

influenced by the triaxial stress state arising at the fibre/matrix interface leading to a more 

conservative value if compared to the estimations determined with Maximum Stress criterion.   

 



         

   

               (a)                    (b) 

Fig. 4.7 - Comparison on damage onset prediction (V f 60%) in presence of residual stress. 
Maximum Principal Stress (a), Raghava failure criterion (b). 

 
 

As seen in Fig.4.6, the presence of residual stresses does not modify the ultimate strength of 

fibres for x-direction loading, but for the matrix it is greatly detrimental decreasing its capability 

to bear loads. Comparison between stress/strain curves with and without residual stress (Fig. 4.8) 

shows that a premature matrix failure occurs if residual stresses are applied. Residual stresses are 

always detrimental for the matrix in x-direction longitudinal loading as shown in Fig. 4.9.  

Although  thermal residual stresses do not affect the ultimate strength of the micro-composites if 

the unit cell is biaxially or even triaxially loaded small loading strains could lead to the 

fibre/matrix debonding at interface and, due to the coalescence of cracks, to the catastrophic 

failure in the composites as demonstrated in Zhao et al [170] for a unit cell with square 

arrangement of the fibres. 
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Fig. 4.8 - Global stress-strain curve in x-direction for uniaxial tensile loading for V f 60. 

Failure criteria: von Mises for the fibre and Raghava for the matrix. 
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Fig. 4.9 - Comparison of ultimate strength with and without thermal residual on longitudinal (x-direction) 
loading by using the Raghava criterion.  

 
4.5.2. Uniaxial transverse tensile loading 



Under a y-direction uniaxial tensile loading and neglecting the residual stress/strain introduced 

during the curing process, the Maximum Principal Stress criterion predicts the damage initiation 

and its evolution (represented by black shading) to start from the corners of the RVE, propagating 

within the matrix along the edges of the micro-model (Fig.4.10).  

        

  
             (a)              (b)            (c) 

Fig. 4.10 - Damage initiation and evolution under uniaxial transverse tensile loading along y-direction    
          evaluated by means of the Maximum Principal Stress with no residual stress (V f 60%). 

 

With the residual stress/strain state, the evolution of damage for uniaxial tensile loading in the y-

direction is shown in Fig.4.11. The residual stress/strain state corresponds to the conditions of 1% 

shrinkage strain and 149°C curing temperature.  

 

 

  

  



     

   
            (a)                (b)                   (c) 

Fig.4.11 - Damage initiation and evolution under uniaxial transverse tensile loading along y-direction     
    evaluated by means of the Maximum Principal Stress with residual stress (V f 60%). 

 

It can be seen that the site of damage initiation and the subsequent evolution are clearly affected 

by thermal residual stress. If the residual stress is included, damage initiates near the bottom of 

the fibre/matrix interface and evolves along the fibre/matrix interface.  

The damage onset in the z-direction with no residual stress takes place at the fibre/matrix 

interface as depicted in Fig.4.12  

 
            (a)                (b)                (c) 

Fig.4.12 - Damage initiation and evolution under uniaxial transverse tensile loading along z-direction    
evaluated by means of Maximum Principal Stress criterion with residual stress (V f 60%). 
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For this load case damage initiation and its evolution are not affected significantly by the 

presence of residual stresses. A crucial result is that the initiation of the damage depends on the 

mode of loading: y-direction or z-direction. As displayed in Fig. 4.10-12 the damage onset occurs 

within the matrix in different areas. Specifically, in the y-direction, damage takes place in the 

corners of the RVE and in the z-direction, at the fibre/matrix interface in the centre of the RVE. 

The interpretation for such a difference is due to the particular line of symmetry [35] in the RVE 

under investigation in which fibres are assembled with a hexagonal packing array (Fig.4.13). 

Hence the stress field, distributed symmetrically about the line of symmetry, is different than in a 

square packing array.  

 

                        
Fig. 4.13 - Line of symmetry in a RVE (hexagonal packing array). 

 
 
 

During the damage analysis, the global stress-strain response in the loading direction was 

monitored and an example of results is given in Fig. 4.14 for the cases with and without residual 

stress.   
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Fig. 4.14 - Global stress-strain curve in y-direction for uniaxial transverse tensile loading (60%). 

 
 

For both cases, the carried stress starts to drop from the point of damage initiation. Once damage 

is initiated, the model tends to fail suddenly. Thus, the initial failure strain level is also the final 

failure level for transverse loading. This brittle behaviour is also observed under the z-direction 

loading. In Fig. 4.15 the dependence of ultimate strength on fibre content is displayed for these 

load directions in the case of no residual stress. 
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Fig. 4.15 - Comparison of ultimate strength for y-direction and z-direction loading  

by using the Maximum Principal Stress criterion. No residual stress applied. 
 
 

The comparison between the strengths predictions using the Maximum Principal Stress and the 

Raghava failure criteria at different fibre content has an immediate consequence. In fact, the 

Raghava failure criterion shows the same location in predicting damage onset for the all cases 

(no-residual stress and residual stress, y- and z-direction loading state) but it is always less 

conservative in terms of ultimate strength (Fig. 4.16-19). 
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Fig. 4.16 - Trend of ultimate strength (MPa) in y-direction evaluated  

with Maximum Principal Stress and Raghava failure criteria. No residual stress.   
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Fig. 4.17 - Trend of ultimate strength (MPa) in y-direction evaluated  
with Maximum Principal Stress and Raghava failure criteria. Effect of residual stress. 
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Fig. 4.18 - Trend of ultimate strength (MPa) in z-direction evaluated  

with Maximum Principal Stress and Raghava failure criteria. No residual stress. 
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Fig. 4.19 - Trend of ultimate strength (MPa) in z-direction evaluated  

with Maximum Principal Stress and Raghava failure criteria. Effect of residual stress. 
 



Furthermore, the presence of residual stress in y-direction loading above 50% fibre volume 

fraction is always beneficial while for z-direction loading residual stress is slightly detrimental 

for low fibre volume fractions but becomes beneficial from a V f of 57% (Fig.4.26 and Fig.4.27). 
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Fig.4.26 – Ultimate strength (MPa) with and without residual stress (y-direction). 
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Fig.4.27 - Ultimate strength (MPa) with and without residual stress (z-direction). 

 



Residual stresses after curing and cooling cause a redistribution of the internal stress field when 

applying loads and the positive consequence is to lower stresses in the resin, improving the 

ability to bear loads in the y- and z-directions. Models with low fibre volume fractions undergo a 

detrimental effect due to thermal residual stress when the model is loaded in the z-direction. After 

cooling the highest values of residual stresses in the matrix are concentrated along the 

fibre/matrix interface in particular areas but the evolution of the stress field by applying a 

displacement in z-direction is dissimilar. In fact, for high fibre volume fractions stresses tend to 

spread internally within the resin whilst for low fibre contents they remain highly concentrated at 

the interface throughout the analysis, weakening this area significantly. Hence, residual stresses 

could play an important role in decreasing the overall response of the composite negating the 

potential beneficial effects for y- and z-direction transverse loading and producing a drastic 

failure of the composite.  

 

4.6 Conclusions 

Residual stress and its effect on transverse and longitudinal failure of fibre-reinforced polymer 

matrix composites were studied using a micromechanical unit cell model and the finite element 

method. Results obtained with the residual stress analysis were also compared to data from a non-

residual stress analysis. The overall residual stress is determined by considering two 

contributions: volume shrinkage of matrix resin during isothermal curing and thermal contraction 

of both resin and fibre as a result of cooling from the curing temperature to room temperature. 

Analyses confirm the isothermal residual stress during curing can be considered negligible 

compared to the thermal residual stress due to cooling.  

A study of two different failure criteria was performed for the matrix in order to evaluate 

differences in the capability to predict failure. The assessment of the failure criteria investigated 

proves that they are capable to describe qualitatively the material behaviour of the composite 



under longitudinal and transverse loading agreeing broadly with data in the literature. In 

particular the Raghava modified von Mises criterion results more accurate to detect the matrix 

failure on longitudinal (parallel to the fibres) loading. On the contrary on transverse loading, as 

the fibres are stiffer than the matrix, the unit cell is principally deformed in the y- and z-direction 

while the contraction in the x-direction is totally negligible and the Maximum Principal Stress 

failure criterion have been more conservative in the prediction of the failure.    

The comparison between the residual and non- residual stress analysis has demonstrated that the 

predicted damage initiation and evolution are clearly influenced by the presence of residual 

stress. Residual stress causes a premature failure in the matrix at a lower strain than with no 

residual stress conditions on longitudinal loading case (x-direction) and it is always detrimental 

for the matrix while for the fibre there is no important alteration in terms of ultimate strength. In 

particular, the effect of residual stress on transverse tensile loading (y- and z-direction) depends 

on the fibre volume fraction and produces beneficial results in the y-direction at the fibre volume 

fractions studied while, in z-direction it is detrimental for low fibre volume fractions.  

 

 

 

 

 

 

 

 

 

 

 



 

Chapter  5 

Effects of Interphasial Proper ties on the Mechanical Behaviour  of 

RVEs   

 

5.1 Introduction 

Recent research has showed that the local microstructure in the vicinity of fibre/matrix interface 

can be altered significantly by various fibre surface treatments and the presence of this interphase 

is critical on the final behaviour of composites. Unfortunately, experimental studies are not able 

to describe the “evolution”  of the interphase in composites with polymeric matrix during the 

curing and the cooling process and moreover numerical studies neglect to take into account the 

distribution of micro stresses within the interphase due to the presence of residual stress 

occurring in the manufacturing process. 

Hence, there is a need to further investigate the local response of hexagonal unit cells that 

undergo thermal residual stresses and in which there is the presence of an interphase. 

Although results from Chapter-4 showed beneficial and detrimental effects of residual stress 

depending on different variables (e.g. fibre content, matrix ultimate strength), failure onset was 

never detected during chemical shrinkage or cooling process. This phenomenon is sometimes 

detected in a real curing process. 

As already seen, researchers are also trying to “engineer”  interphases in real composite materials 

at micro-scale in order to improve the overall mechanical behaviour of composites materials. 

Hence another important aspect in the present numerical investigations is to simulate and predict 

the final response of composites at the component level scale by simply varying the material 

properties of the interphase.       

 



 

5.2 Finite Element Modelling 

In the present work, three-dimensional finite element analysis has been used to study the overall 

behaviour, damage onset and its evolution of a simple unit cell model with a hexagonal array of 

fibres under transverse and longitudinal uniaxial loadings. The numerical 3D models include an 

interphase with a constant thickness and material properties showing “ idealised”  temperature-

dependent properties over the curing a cooling process. A symmetric distribution of fibres and a 

constant value of the fibre volume fraction have been considered in these studies.  

 

The initiation of microcracks in unidirectional composites at micro level is usually governed by 

the strength of the adhesion between fibres and matrix. The local stress concentration around the 

fibres due to mechanical loading, combined with the residual thermal stresses arising during the 

curing process, make the fibre/matrix transition region the most important constituent of a 

composite material. Because both terms interface and interphase are often used to refer to the 

fibre/matrix transition, in order to avoid confusion the definition of these terms is previously 

given: 

1. Interphase:  an interphase is defined as a three-dimensional region between fibre and bulk 

matrix, with a different morphology, chemical composition and mechanical 

properties, compared to both fibres and bulk matrix. 

2. Interface:  an interface is defined as a two-dimensional edge between fibre and matrix, if no 

inter phase is considered, or fibre and interphase. 

According to these definitions, an interphase becomes an interface, if its thickness tends to zero. 

In this work the transition between fibre and matrix is modelled as an interphase with different 

properties, compared to fibre and matrix.  



Despite a lot of efforts, a full characterization of the interphase, constituted during the curing 

process, has not been yet fully achieved. In the present work the interphase has been modelled as 

an isotropic layer with material properties constant over its thickness. In order to investigate the 

effect of residual stress the Young’s modulus and Poisson’s ratio of the interphase are considered 

temperature dependent. More precisely the Young’s modulus is defined by the following relation 

in Region-II and Region-III described in Chaper-4 (Fig. 5.1) 

�
�

�
�
�

�
��
�

�
��
�

�

D

D--
-=

T2

TTT
kexpE E(T) g

 0
 

     ( )[ ]TkfexpE E(T)  0 -=                    

(5-1) 

      

The thermal expansion coefficient a is assumed to be equal to the matrix CTE. 
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Fig.5.1 – Mechanical behaviour during the cooling and curing process. 

 

 

In the micromechanical approach, the constituent fibre, matrix and interphase materials and their 

interaction are distinctively considered to predict the overall behaviour of the composite material 



structure. The micromechanical approach allows relating stresses of each constituent in the 

micromodel, namely: fibre, matrix and interphase. Therefore, failure can be detected 

independently in each of these constituents and the appropriate property degradation can be 

applied. Here, the micromechanical model considers a unit cell in which fibre, matrix and 

interphase are assumed to be perfectly bonded at their interfaces throughout the analysis, with 

fibres arranged in a hexagonal cross section array by assuming the repetitive or periodic nature of 

the fibre and matrix materials. The unit cells are a three-dimensional solid and the fibre volume 

fraction is 70%. 

The boundary conditions, damage and post-damage model applied for this investigation has been 

previously illustrated in Chapter-4. In these FEM studies only two loading conditions have been 

applied to the unit cell shown in Fig. 5.2, namely: 

1) transverse loading on the y-direction, 

2) transverse loading on the z-direction, 

 

 
Fig.5.2 – 1/4 of the hexagonal array packing RVE used as reference model with interphase. 
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5.3 Finite Element Results of RVEs with Interphase 

The first goal of this research was to understand whether a thin interphase can influence the 

mechanical behaviour of composite materials at the microscale.   

A finite element study on unit cell in absence of residual stresses has been performed in order to 

investigate the effects of thin interphases on the overall mechanical behaviour of the micro 

numerical models. The ultimate strength of interphase and matrix has been assumed to be the 

same (80MPa) while the values of the Young’s moduli Einterphase for the interphase are:  

1a)  Einterphase-soft = 1.50GPa (softer interphase); 

2a)  Einterphase-stiff = 7.45GPa (stiffer interphase). 

Numerical results show that the unit cell undergoes a “stiffening”  or “softening”  effect depending 

on the materials properties in the interphase on the y-direction and z-direction (Fig. 5.3 and Fig. 

5.4).  
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 Fig 5.3 - Ultimate strength under y-direction loading (no residual stress).  
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Fig.5.4 - Ultimate strength under z-direction loading (no residual stress).  
 

 

On transverse tensile loading numerical results have shown that the ultimate strength in unit cells 

loaded in the y-direction  and with a softer interphase is circa 4% greater than the ultimate 

strength in the micromodel with a stiffer interphase. The ultimate strength in unit cells with a soft 

interphase and loaded in the z-direction is circa 2.5% greater than the ultimate strength evaluated 

in the stiffer interphase. The magnitude of the ultimate strain in the unit cell with a softer 

interphase is even larger if compared to the ultimate strain of the unit cell with a stiffer 

interphase, namely: 20% in the y-direction and 22.5% in the z-direction. 

Although the interphase (0.1µm) is only 1/100 of the fibre diameter it plays a significant effect on 

the overall elastic response of the micromodels. In fact, by adding a thin interphase with a 

Young’s modulus of nearly 50% lower than the matrix Young’s modulus, the elastic properties of 

the micromodel display a beneficial effect in terms of transverse ultimate stress and  transverse 



ultimate strain while, the stiffer interphase (E=7.45GPa) tends to reduce the capability of the 

micro-composite to bear transverse loads.  

 

5.3.1  Effect of elastic interphasial proper ties and thermal residual stresses 

Preliminary analyses have been performed on unit cells with different combinations of Young’s 

moduli and Poisson’s ratios in order to investigate both the distribution and the magnitude of 

thermal residual stresses within the micromodels.   

The overall contraction of the resin has to be attributed to chemical shrinkage and thermal 

cooling and it can be expressed as: 

 

dTTdsded ijijijij )(adde ++=    (5-2) 
 

where deij is the total strain increment, deij the elastic strain increment, ds the shrinkage strain 

increment due to the chemical reaction (cross-linking) in the absence of constraint, � (T) the 

thermal expansion coefficient which is dependent on the temperature, dT the temperature 

increment and dij is the Kronecker delta. The stress-strain relationship can be derived as: 

 

{ }dTTdsdCdeCd ijijijijklklijklij )(addes --==    (5-3) 
 

where ijds  are the stress increments and Cijkl the stiffness components. The stress analysis is 

based on linear elasticity and the stiffness components Cijkl are related to the Young’s modulus E 

and the Poisson’s ratio n of the material. In order to simulate the curing process, the analysis was 

performed by two discrete steps, where step one is the shrinkage stress analysis and step two is 

the thermal cooling stress analysis.  

The shrinkage residual stress was calculated by applying a given amount of resin shrinkage. For 

the epoxy resin considered here, the linear shrinkage strain was chosen to be 0.35% which 



corresponds to a volumetric change of circa 1%. The overall thermal residual stresses are due to 

the cooling of the system from the curing temperature, 149°C, to room temperature, 23°C.  

The mechanical properties of the resin, in terms of shear modulus (and Young’s modulus when 

the resin becomes solid), increase drastically as the material evolves from a liquid state to a solid 

state. Hence in the resin, geometrically constrained within the interstices present between fibres, 

tensile stresses develop more easily. Moreover, during chemical shrinkage, in which resin is in a 

rubbery state, realistically no deformation is established along the x-direction. Strains parallel to 

fibres are only developed during cooling as the resin evolves from a liquid/rubbery state into a 

solid state. The amount of residual stresses within the matrix and interphase also strongly depend 

on the material properties of interphase e.g. Young’s moduli and Poisson’s ratio and thickness.  

Preliminary analyses have been carried out to evaluate the amount of residual stresses after the 

processes of curing and cooling in order to understand the effects of the residual stresses in unit 

cells with an interphase and different mechanical characteristics. The material properties of the 

interphase and the matrix have been assumed the same in Region-I in which the matrix I s in 

liquid or rubbery state and E has a very small value.  In Region-II and Region-III the evolution of 

the material properties for the interphase are expressed with equation (5-1) and it is shown in 

Fig.5.1. The final values of the Young’s moduli are:  

1a)  E = 1.50GPa (softer interphase); 

2a)  E = 3.35 GPa (equal to matrix’s modulus); 

3a)  E = 7.45GPa (stiffer interphase). 

 

The values of Poisson’s ratio have been considered constant throughout the numerical simulation 

of curing and cooling process. Three values have been chosen and they are here summarized:  

Poisson’s Ratio 

1b)  n = 0.3; 

2b)  n = 0.35; 

3b)  n = 0.4. 



 

The Poisson’s ratio n = 0.35 derives from the material properties of the epoxy matrix while the 

other two values have been chosen arbitrarily.  The interphase has a thickness is 0.1µm (fibre 

diameter is 11µm) and it has been considered as homogeneous. Hence it has been assumed that 

material properties in the interphase undergo spatially the same behaviour during the chemical 

shrinkage and cooling process. The elements used to mesh the interphase are quadratic solid 

brick elements. The dimension of these elements is the smallest dimension allowed by ABAQUS 

for this geometry.  

 
 
 

Fig. 5.5 - Maximum Principal Stress [MPa] in the matrix - SOFT INTERPHASE (n=0.3) 
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Fig. 5.6 - Maximum Principal Stress in the interphase - SOFT INTERPHASE (n=0.3) 

 

The distribution of stresses after chemical shrinkage and cooling is shown in Fig.5.5 and Fig.5.6 

Residual stresses for different combinations of elastic properties has been summarised in Table 5-

1. Estimated residual stresses have been calculated with the Maximum Principal Stress criterion. 

 
Table 5-1 – Values of residual stresses in the matrix and interphase for different material properties of  the 

interphase 
Interphase Properties 

Young’s 
Modulus [GPa] 

Poisson’s  
Ratio 

 (constant value) 

   Residual Stress after cooling [MPa]  
 

             Matrix                                Interphase 

1.50 0.3 25.5 12 
1.50 0.35 25.5 13 
1.50 0.4 25.5 14.5 
7.45 0.3 27 57 
7.45 0.35 27 59 
7.45 0.4 27 67 

 
 
From the results presented in Table 5-1 it is clearly shown that the material properties of a thin 

interphase influence the magnitude of the residual stresses within the matrix and interphase. 

Although residual stresses in unit cells with “soft”  interphase display higher values of stresses in 

the matrix, the magnitude of these stresses is less than 50% of the values reached in unit cells 

with a “stiffer”  interphase. In unit cells with a stiff interphase (E= 7.45GPa), residual stress are 

totally concentrated within the interphase.  
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5.4  Strength Study 

The high value of thermal residual stresses evaluated at the interphase of unit cells with stiffer 

interphase highlight the importance to further investigations on the effects of the overall 

mechanical behaviour and especially the damage onset and evolution in the numerical 

micromodels under different unidirectional tensile loadings. 

In the analyses that account for the presence of residual stresses, the material characteristics of 

the interphase as well as the matrix undergo profound modification throughout the analysis. The 

value of the ultimate strength has been assumed constant over the curing and the cooling process. 

But while for the matrix the value of the ultimate strength is known (80MPa) as for the 

interphase, this parameter remain unknown and it has been chose arbitrarily in order to carry out 

parametric studies on the effect of different ultimate strengths on damage formation and 

evolution.     

 

5.4.1 Effect of a stiff interphase on the transverse loading   

Different values of interphase ultimate strengths have been investigated to study the effects of 

thermal residual stress on failure and damage onset and evolution. Finite element analyses have 

been carried out on unit cell of 70% in fibre volume fraction with and without residual stress to 

compare the overall mechanical behaviour on tensile uniaxial loading. The values of ultimate 

strengths attributed to the interphase (sU,interphase) for the parametric study vary from 20MPa to 

140MPa.  

Moreover the Poisson’s ratio has been assumed equal to n=0.35 both for the matrix and the 

interphase throughout the curing and cooling process.    

Fig.5.7-12 display the damage onset and the following propagation within the unit cells with the 

stiff interphase (E=7.45GPa) on transverse loading along the y-direction.    

 



      
 

Fig.5.7 – Damage onset in unit cells with ultimate strength sU,interphase 40 MPa (residual stress analysis). 
 
 
 

 
Fig. 5.8 - Damage onset and evolution in unit cells with sU,interphase  80 MPa (no residual stress analysis). 

Yellow circles show the location of damage onset. 
 
 



  
Fig. 5.9 - Damage onset and evolution in unit cells with sU-interphase 80 MPa (residual stress analysis). 

 
                                                                          
 

 
 

 
                                                  a      b 

Fig. 5.10 – Damage onset and evolution in unit cells with sU-interphase  100 MPa (residual stress analysis).  
Yellow circles show the location of damage onset. 

 
 



 
Fig.5.11 – Damage onset and evolution in unit cells with sU,interphase  120 MPa  

(no residual stress analysis). 
 

 
Fig. 5.12 – Damage onset and evolution in unit cells  
with sU,interphase 120 MPa (residual stress analysis). 

 
 

A relevant result of the finite element study has been that for values of the sU,interphase below 

60MPa strength the failure is detected during the cooling process (Fig.5.7) in which the amount 

of thermal residual stress, after the curing process, is higher than 60MPa. 

Fig.5.7 shows the drastic failure of the interphase during the cooling process.  



The unit cells in Fig. 5.8 and Fig. 5.9 show that the presence of residual stresses also greatly 

influence the location of damage onset. In fact, damage, depicted with black areas, starts in the 

matrix and/or in the interphase depending on the magnitude of the ultimate strength of the 

interphase. In general in unit cells with a stiffer interphase (E=7.45GPa) failure has been detected 

within the matrix in absence of thermal residual stress, for values of sU,interphase above 60MPa (no 

residual stress) and finally for values of the interphase sU,interphase greater than 100MPa in 

presence of residual stresses. 

Damage initiation in numerical micromodels with an sU,interphase lower than 60MPa (no residual 

stress) and in unit cells with thermal residual stress and the interphase ultimate strength lower 

than 100MPa has been localized within the interphase.  

A particular case is represented by the unit cell in which the ultimate strength of the interphase is 

100MPa. Due to the redistribution of the internal stress during the loading after the whole curing 

process, the micromodel fails both in the interphase and in the matrix (Fig. 5.10). The damage 

initiation points are always highlighted by means of a circle in Fig. 5.8-12.  

All set of the results related to unit cells with a stiffer interphase are briefly summarized in Table 

5-2. 

 

 

 

 

 

 

 

 

 



 

Table 5-2 – Numerical results for a unit cell with a stiff interphase with different ultimate strengths.  

  STIFF INTERPHASE  - Transverse y-direction 

 No Residual Stress  Residual Stress No Residual Stress  Residual Stress 

� u,INTERPHASE 

 [MPa] 
RVE Ultimate Strength [MPa]  RVE Failure onset    

20 23.0 COOLING INTERPHASE INTERPHASE 

40 23.0 COOLING INTERPHASE INTERPHASE 

60 33.0 4.3 INTERPHASE INTERPHASE 

80 43.0 31.5 MATRIX INTERPHASE 

100 43.0 51.0 MATRIX MATRIX/INTERPHASE 

120 43.0 51.0 MATRIX MATRIX 

140 43.0 51.0 MATRIX MATRIX 

 
 
A further consequence of the residual stress is the detrimental or beneficial effects on the 

mechanical properties of the micro-composites. Finite element investigation has shown that for 

values of the interphase ultimate strength below 80MPa, the high values of thermal residual stress 

has a significant negative effect for the interphase. In particular, thermal residual stress leads to a 

complete failure of the interphase itself during the cooling process for values of sU,interphase lower 

than 60MPa. The failure of the entire interphase simulates the complete “debonding”  between 

fibre and matrix. This kind of failure in real composites at micro-scale represents the most likely 

mode of failure either during the complete curing process or during loading. Under these 

circumstances the capability of the micro-composite to bear loads under transverse tensile 

loading are negatively altered.  

Nevertheless, the effect of residual stresses starts to produce a beneficial effect in unit cells with 

the interphase ultimate strength greater than 80MPa. In these unit cells failure has been mainly 



localized in the matrix and the damage evolution in general involves partially (Fig 5.10a) or at 

the last stage of its development (Fig 5.10b) the interphase. Hence fibre/matrix debonding is 

avoided. 

 
Although the symmetry from the hexagonal distribution of fibres over the cross-section implies 

the same elastic response both on the z-direction and y-direction, the effect of damage onset and 

evolution could display significant differences.  

Under the z-direction of loading, the weakest area in the unit cell appears to be the region 

indicated in Fig. 5.13, in which inter-fibre distance has the minimum magnitude. Failure can be 

detected in the interphase or matrix depending on the value of the interphase ultimate strength. 

    

 
Fig. 5.13 – Location of damage onset in unit cells under transverse loading on the z-direction. 

 
 
 



 
 
The presence of residual stresses, it has been already seen, leads to a failure in micro-composites 

with a particular weak interphase (sU,interphase<60MPa). The micromodel with an interphase 

sU,interphase = 60MPa represent an interesting case. In fact, damage onset is located in the areas in 

which residual stresses after cooling are mostly concentrated (Fig. 5.5 and Fig. 5.6). Numerical 

analyses have shown that in unit cells with a stiffer interphase (E=7.45GPa) residual stresses tend 

to remain mainly localized within the interphase. Hence, unlike the non-residual stress analysis, 

the concentration of stress in the interphase leads to the complete failure of interphase without 

involving matrix failure. 

The damage evolution for micromodels with sU,interphase 	  60MPa and sU,interphase 
  100MPa is also 

greatly influenced by residual stress as it is displayed in Fig.5.14-16.  

Finite element studies show that the damage initiation and evolution do not undergo particular 

modification in the local distribution within the composite. Damage onset for sU,interphase > 60MPa  

starts at the interphase in the region marked with a square in Fig. 5.16 and progresses principally 

within the interphase due to the internal redistribution of stresses within the interphase itself and 

at the last stage failure involves the matrix.  

 

 



  
    a                            b 

Fig. 5.14 – Damage onset and evolution in unit cells with sU,interphase  60MPa, 80MPa and 100MPa  
(No residual stress analysis). 

 
 
 

             
                

Fig. 5.15 Damage onset and evolution in unit cells  
with sU,interphase   60MPa (residual stress analysis). 
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Fig. 5.16 – Damage onset and evolution in unit cells with sU,interphase  80MPa and 100MPa  
(residual stress analysis). 

 
 

Few analyses have been performed on unit cells with a particular strong interphase 

(sU,interphase>100MPa). Although for high values of the ultimate strength of the interphase under 

transverse loading in the z-direction failure has still been detected in the weakest area (minimum 

distance in the z-direction), damage onset (Fig. 5.17) and damage evolution are now totally 

located within the matrix.  



 
Fig.5.17 – Damage onset and evolution in unit cells  

with sU,interphase   120MPa and 140MPa (residual stress analysis). 
 
 

In Table 5-3 the ultimate strengths of the unit cells and the location of initial failure in presence 

and absence of residual stresses are summarised.  

In general, for this configuration of micromodels in which the Young’s modulus is E=7.45GPa 

and the Poisson’s ratio is n=0.35, effect of thermal residual stress can be considered detrimental 

for interphase ultimate strengths below 60MPa due to the weakening action of the residual 

stresses on stiff interphases. Finite element analyses have demonstrated in fact that the stiff 

interphase tends to accumulate stresses and to avoid the redistribution of thermal residual stresses 

within the matrix. Although the hexagonal packing array displays the same elastic stiffness both 

in the z- and y-direction, the results without residual stress show that under transverse uniaxial 

loading on the z-direction gives higher values for the ultimate strengths in comparison with 



results from the analyses in the y-direction. This trend is also repeated if residual stress due to the 

curing and cooling process is applied in the numerical calculations. 

 
 

Table 5-3 – Numerical results for a unit cell with a stiff interphase with different ultimate strengths.  

  STIFF INTERPHASE  - Transverse z-direction 

 No Residual Stress  Residual Stress No Residual Stress  Residual Stress 

� u,INTERPHASE 

 [MPa] 
RVE Ultimate Strength [MPa] RVE Failure onset    

20 15.0 COOLING INTERPHASE INTERPHASE 

40 15.0 COOLING INTERPHASE INTERPHASE 

60 42.0 7.6 INTERPHASE INTERPHASE 

80 56.0 40.0 INTERPHASE INTERPHASE 

100 57.7 62.4 
MATRIX/INTERPHASE 

INTERFACE 
INTERPHASE 

120 57.7 62.4 
MATRIX/INTERPHASE 

INTERFACE 

MATRIX/INTERPHASE 

INTERFACE 

140 57.7 62.4 
MATRIX/INTERPHASE 

INTERFACE 

MATRIX/INTERPHASE 

INTERFACE 

 
 
 

5.4.2 Effect of a soft interphase on the transverse loading 

On transverse loading along the y-direction the RVE with a “soft”  interphase (E=1.5GPa) the 

mechanical properties are improved in terms of ultimate strength and strain. Numerical studies 

including thermal residual stress arising during the curing process have shown that the magnitude 

of these residual stresses is greatly smaller than residual stresses in stiffer interphases. This result 

avoids the drawback of a possible failure within the interphase and/or in the matrix while the 

curing process is taking place ever for small values of the interphase ultimate strength (e.g. 

sU,interphase=20MPa). 

Although for small values of the interphase strength, no failure at interphase has been detected 

during the curing and cooling process. Nevertheless, thermal residual stresses produce a severe 



reduction of material properties leading to a drastic total failure of the interphase at low levels of 

loading stresses. Failure occurs at interphase in the regions of the unit cell highlighted with a 

circle (Fig. 5.18).  

   

         
                                                     a                                                       b 

Fig. 5.18 - Comparison of damage onset in unit cells  
with sU,interphase 20MPa with no residual stress (a) and residual stress (b).  

 
 
Fig. 5.19 depicts damage onset relative to micromodels with an sU,interphase below 80MPa with and 

without residual stresses. Analyses have demonstrated that damage in the numerical models 

occurs in the areas of the interphase in which the amount of residual stress reachs its maximum 

magnitude (Fig. 5.6-7).  

Although the presence of residual stress slightly modifies the location in which failure is detected 

the overall behaviour of the unit cell undergoes an advantage in terms of ultimate strength.     

A comparison of the effect of residual stress on transverse loading (y-direction) for two unit cells 

with different ultimate strengths displayed in Fig. 5.20 clearly shows the beneficial effect of 

residual stresses.    

    



    
                  a                                                          b 

Fig. 5.19 - Comparison of damage onset in unit cells with sU,interphase 20MPa, 40MPa and 60MPa with no 
residual stress (a) and residual stress (b).  
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Fig. 5.20 – Comparison of global stress-strain curves on transverse loading (y-direction)  

for residual and non-residual stress analyses. 
 

 



 

It is clearly visible that the presence of residual stresses plays a beneficial role by improving the 

material toughness. The data are summarized in Table 5-4.  

The studies has shown that in unit cells with softer interphases damage onset is detected in the 

interphase for sU,interphase lower than 80MPa both in presence and absence of residual stress, in the 

matrix for values of  sU,interphase higher than 80MPa (Fig. 5.21)  with or without residual stresses 

while, in case of sU,interphase=80MPa (Fig. 5.22) both interphase and matrix are involved. 

Moreover for ultimate strengths of the interphase above 20MPa residual stresses improve the 

capability of micro-composites to bear transverse load on the y-direction.  

Numerical analysis with residual stress has shown that the soft interphase (E=1.5GPa) during the 

complete curing process works as a ”damper” .  It is seen to transfer gradually the stresses due to 

shrinkage from the interphase to the matrix. 

 

 

     

Fig.5.21 – Damage onset and evolution in a unit cell  
with sU,interphase>80MPa (residual and non-residual stress analysis) 

 



  

Fig.5.22 – Damage onset and evolution in a unit cell  
with sU,interphase=80MPa (residual stress analysis) 

 

In this case therefore stresses, should not reach critical values that could lead to the drastic 

interphase failure with fibre and debonding.       

 
Table 5-4 – Numerical results for a unit cell with a soft interphase under transverse loading  

(y-direction).  

  SOFT INTERPHASE  - Transverse y-direction 

 No Residual Stress  Residual Stress No Residual Stress  Residual Stress 

� u,INTERPHASE 

 [MPa] 
RVE Ultimate Strength [MPa] RVE Failure onset    

20 11.8 7.8 INTERPHASE INTERPHASE 

40 23.0 29.0 INTERPHASE INTERPHASE 

60 34.0 41.0 INTERPHASE INTERPHASE 

80 45.0 51.5 MATRIX MATRIX/INTERPHASE 

100 45.0 51.5 MATRIX MATRIX 

120 45.0 51.5 MATRIX MATRIX 

 



 
 
 

Finite element investigations have already proved the positive action of soft interphase in terms 

of ultimate strength and ultimate strain of the micro-composites undergoing transverse loading in 

the y- and z-direction in absence of residual stresses arising throughout the manufacturing 

process.  

Numerical models with a soft interphase have shown similar behaviour to the stiff interphase 

studies even in analyses including the effects of thermal residual stress.  Examples of damage 

initiation points for these cases are shown in Fig. 5.23.        

 
 

 

      
                            (a)                     (b)             (c) 

 
Fig. 5.23 – Damage onset and evolution in a unit cells with sU,interphase=40MPa (a),  

sU,interphase=80MPa, sU,interphase=100MPa (c) in residual stress analyses. 
 
 

Results of finite element calculations on unit cell with soft interphase under transverse uniaxial 

loading on the z-direction are presented in Table 5-5.  

 

 



 

 
Table 5-5 – Numerical results for a unit cell with a soft interphase under transverse loading  

(z-direction).  

.   SOFT INTERPHASE  - Transverse z-direction 

 No Residual Stress  Residual Stress No Residual Stress  Residual Stress 

� u,INTERPHASE 

 [MPa] 
RVE Ultimate Strength [MPa] RVE Failure onset    

20 15.0 11.0 INTERPHASE INTERPHASE 

40 30.0 35.0 INTERPHASE INTERPHASE 

60 44.7 50.6 INTERPHASE INTERPHASE 

80 57.8 64.0 INTERPHASE MATRIX/INTERPHASE 

100 60.0 64.0 
MATRIX/INTERPHASE 

INTERFACE 

MATRIX/INTERPHASE 

INTERFACE 

120 60.0 64.0 
MATRIX/INTERPHASE 

INTERFACE 

MATRIX/INTERPHASE 

INTERFACE 

 

It can be seen that the presence of residual stresses generally produce a beneficial action and for 

interphases in which sU,interphase >20MPa the ultimate strength of the unit cell improves of circa 

15%. 

Soft interphases are able to redistribute the stresses along the interphase and to transmit part of 

the loading stress within the matrix.  For values of the ultimate strength of interphase equal and 

below 20MPa, thermal residual stresses play a more severe role on the overall material response 

of unit cells in fact, as clearly depicted in Fig. 5.24 they tend to reduce the material properties of 

the interphase and hence to influence, as already shown for the stiff interphase case, the location 

of damage initiation points that appears to take place in regions, indicated with the circles in Fig. 

5.24, in which residual stress are more concentrated after curing and cooling.   

 



             
Fig.5.24 – Damage onset and evolution in a unit cells with sU,interphase=20MPa 

(residual stress analysis) 
 

 

 
 

5.5  Poisson’s Ratio Study 
 
Due to a lack of data in the literature, a parametric finite element study on the effect of 

interphases with different material properties and various ultimate strengths has been carried out. 

The Poisson’s ratio of the interphase and the matrix have been assumed to be temperature 

independent and equal to n=0.35 throughout the numerical analysis. Further investigation have 

been performed on representative volume elements (RVE) by modifying the magnitude of 

Poisson’s ratio in order to better understand the role they play on the overall behaviour of micro-

composites on transverse uniaxial loading. 

Preliminary finite element analyses have been carried out on RVEs without considering the 

presence of thermal residual stresses. The ultimate strength of the interphase for these set of 

analyses has been assumed to be equal to the ultimate strength of the matrix: 



sU,matrix = sU,interphase  = 80MPa 

In analyses accounting for the effect of residual stresses the Poisson’s ratio of the interphase has 

been assumed temperature dependent. To evaluate the variation of Young’s modulus E over the 

temperature range from curing to room temperature, the total temperature range has been be 

divided into three regions described in Chapter 4, namely: 

·  Region I � TTT g D+> , in which the Poisson’s ratio for matrix and interphase has been 

still assumed n=0.35.  

 

·  Region II � TTTTT gg DD +££- , in which the Poisson’s ratio for the interphase has 

been still considered temperature dependent and the behaviour has been described by a simple 

linear relation: 

 

n = no �  m(T-To) 

 

where  no =0.35, To = 149oC (curing temperature) and m is a fitting parameter.  

·  Region III � TTT g D-< , in which the Poisson’  ratio in Region III for the interphase has 

been assumed constant and equal to the its final value reached at the end of Region II , namely: 

1) if  n = no - m(T-To)  �  n=0.3 

2) if  n = no + m(T-To) �  n=0.4 

The behaviour of the Young’s moduli over the range of temperatures and the values of  the glass 

transition temperature Tg and DT have been already described previously in section 5.2. 

The hypothetical linear behaviour of the Poisson’s ratio in Region II is mainly to attribute to the 

lack of experimental data on the interphase properties during the manufacturing process. The aim 

is to investigate numerically the effect of different Poisson’s ratios both in presence and absence 



of residual stress on the mechanical ability to bear uniaxial loads in which the linear 

modifications of the Poisson’s ratio n during the cooling process could be considered as an upper 

and lower bound of a real case. 

Moreover, as the majority of the chemical reactions that modify the material properties of the 

resin take place during the cooling within Region II, it has been decided to impose the 

hypothetical linear change of the n only in this region from 149oC to the room temperature.  

 
 

5.5.1 Effect of a stiff interphase on the transverse loading 
 
Numerical studies on unit cells with stiff (Einterphase=7.45GPa) interphase and different Poisson’s 

ratios have proved that the micromechanical models are still influenced by the different elastic 

properties of the interphase. In particular, in the micromodels investigated under uniaxial 

transverse loading (y-direction), the damage onset in presence of residual stresses has been 

detected in different areas of the unit cell as can be seen by comparing Fig. 5.25 and Fig. 5.26 in 

which the damage onset is highlighted by circles and its evolution is represented by the shadowed 

area. 

It is clearly visible that the effect of residual stresses is to weaken the interphase especially in the 

regions of the unit cell in which thermal stress reaches the maximum value. Hence failure, as it is 

more likely to occur in real micro-composites, takes place at the fibre/interphase and/or 

matrix/interphase “ interfaces”  that, in general, represent the most vulnerable areas in real 

composites at micro-scale. 

 



       
    (a)               (b) 

Fig. 5.25 – Damage onset (a) and evolution (b) in unit cells  
with Poisson’s ratios of n=0.3 and n=0.4 in a non-residual stress analysis.  

 
 
 
 
 

 
(a)              (b) 

Fig. 5.26 – Damage onset (a) and evolution (b) in unit cells  
with Poisson’s ratios of n=0.3 and n=0.4 in a residual stress analysis.  

 
 



Results of numerical analyses on a unit cell with a stiff interphase and different values of the 

Poisson’s ratio are presented in Table 5-6.  

A comparison between the analysis that do not account for residual stress and the numerical 

analysis in which the curing and cooling process has been simulated shows that thermal stress 

play a key role in the distribution of the damage initiation and moreover they introduce 

detrimental effects on the capability of the micromodels to bear transverse load on the y-

direction. 

 
Table 5-6 – Numerical results for a unit cell with a stiff interphase at various Poisson’s ratios under 

transverse loading  (y-direction).  

  STIFF INTERPHASE  - Transverse y-direction 

 No Residual Stress  Residual Stress No Residual Stress  Residual Stress 

Poisson’s 

Ratio 
RVE Ultimate Strength [MPa] RVE Failure onset    

0.3 44.0 42.0 MATRIX INTERPHASE 

0.35*  43.0 31.5 MATRIX INTERPHASE 

0.4 42.5 21.0 MATRIX INTERPHASE 

 

Nevertheless, different values in the Poisson’s ratio affect only marginally (Fig. 5.26) the elastic 

stiffness of RVE with the Young’s modulus Einterphase=7.45GPa and the difference between the 

Young’s modulus evaluated at n=0.4 and n=0.3 has been estimated circa 1%. 
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Fig. 5.26 – Comparison of global stress-strain curves with different Poisson’s ratios and stiff interphase 

on transverse loading (y-direction).  
. 
 
 

Finite element analysis accounting for thermal residual stress on unit cell with Einterphase=7.45GPa 

confirms the decreasing ultimate strength of the micromodels under investigation whilst the 

magnitude of the Poisson’s ratio is increased as shown in Table 5-7.  

Numerical analyses also make evident the severe weakening effect of thermal residual stress on 

the mechanical properties of the interphase. In particular, in the RVE with the Poisson’s ratio 

n=0.4 the reduction of the ultimate strength has been estimated nearly 50% less than the ultimate 

strength in micromodels that do not include thermal residual stress.  

Damage onset has been primarily detected at interphase in the regions already described 

previously for the strength study and depicted in Fig. 5.13.  

Moreover under uniaxial transverse loading in the z-direction, the ultimate strength is higher than 

the ultimate strength in the y-direction. 

 



 
Table 5-7 – Numerical results for a unit cell with a stiff interphase at various Poisson’s ratios under 

transverse loading  (z-direction).  

  STIFF INTERPHASE  - Transverse z-direction 

 No Residual Stress  Residual Stress No Residual Stress  Residual Stress 

Poisson’s 

Ratio 
RVE Ultimate Strength [MPa] RVE Failure onset    

0.3 56.5 45.0 INTERPHASE INTERPHASE 

0.35 56.25 40.0 INTERPHASE INTERPHASE 

0.4 53.5 27.5 INTERPHASE INTERPHASE 

             
 

5.5.2 Effect of a soft interphase on transverse loading 
 
Micromodels with soft interphase appear sensitive to the Poisson’s ratio values as can be seen in 

Fig. 5.27. Despite the thickness of the interphase is about 1/100 of the fibre diameter different 

values of the Poisson’s ratio imply a difference of circa 4% in the elastic stiffness. On the 

contrary, different values in the Poisson’s ratio play only a negligible role on overall material 

properties in the unit cells with a stiff interphase.   
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Fig. 5.27 – Comparison of global stress-strain curves with different Poisson’s ratios and soft interphase  
on transverse loading (y-direction).  

 
Unlike the different configurations of unit cells with a stiff interphase, finite element study with 

residual stresses has proved that micromodels including soft interphases undergo slightly 

beneficial effects in terms of ultimate strength and strain in the unit cells that have been 

investigated (Table 5-8). A comparison with data (Table 5-8) obtained from analyses that 

simulate curing and cooling show the thermal residual stress enhances the material properties 

(ultimate strength and strain) of the micro-composites of circa 14-16% 

 

Table 5-8 – Numerical results for a unit cell with a soft interphase at various Poisson’s ratios under 
transverse loading  (y-direction).  

  SOFT INTERPHASE  - Transverse y-direction 

 No Residual Stress  Residual Stress No Residual Stress  Residual Stress 

Poisson’s 

Ratio 
RVE Ultimate Strength [MPa] RVE Failure onset    

0.3 45.5 52.0 MATRIX MATRIX 

0.35 45.0 51.5 MATRIX MATRIX/INTERPHASE 

0.4 43.5 51.0 MATRIX MATRIX/INTERPHASE 

       
 
Initial failure has been detected in the areas indicated with the circles in Fig. 5.28 in the analysis 

without residual stress. It can be noticed that damage onset is not influenced by different values 

of the Poisson’  ratio. Nevertheless damage evolution within the RVE is slightly modified by the 

presence of residual stress. In particular the unit cells with interphasial Poisson’s ratios above 

n=0.3 undergo a stiffening effect as depicted in Fig. 5.27. These slightly stiffer interphases 

appear less able to dissipate thermal stress arising during curing and cooling within the interphase 

and the matrix. Hence on transverse loading along the y-direction damage occurs both in the 

matrix and the interphase and as it can be seen in Fig. 5.29 the location of the initial failure in the 

interphase remains in the region of maximum concentration of thermal stresses. 



          
Fig. 5.28 – Damage onset (yellow circles) and damage evolution (shadowed area) in unit cells  

with Poisson’s ratios of n=0.3 and n=0.4 in a non-residual stress analysis  
 
 

                                         
Fig. 5.29 – Damage onset (yellow circles) and damage evolution (shadowed area) in unit cells 

with Poisson’s ratios of n=0.3 (a) and n=0.4 (b) in a residual stress analysis  
 
 
 
 
 
 



 
 
Numerical analyses have demonstrated that unit cells loaded transversely along the z-direction 

show the location of damage onset is located in the narrow region between the fibres as shown in 

Fig. 5.30. 

  
 

       
Fig. 5.30 – Region of damage onset under transverse loading on the z-direction. 

 
 
These set of investigations on unit cells with a thin soft interphase under uniaxial loading along 

the z-direction confirmed the increasing capability of bearing loads whilst decreasing the 

magnitude of the Poisson’s ratio (Fig. 5.31) 
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Fig. 5.31 – Comparison of global stress-strain curves with different Poisson’s ratios and soft interphase  

on transverse loading (z-direction).  
 
 
The ability of the softer (E=1.50GPa) interphases to redistribute stresses arising during the whole 

curing process over the interphase and within the matrix are clearly visible in the results 

presented in Table 5-9. Although, damage onset in the softer interphase can take place either 

within the interphase or in the matrix located at the matrix/interphase interface, the ultimate 

strength undergos a beneficial improvement and their values increase of circa 5-9%. 

 
Table 5-9 – Numerical results for a unit cell with a soft interphase at various Poisson’s ratios under 

transverse loading  (z-direction).  
 

   
SOFT INTERPHASE  - Transverse z-direction 

 No Residual Stress  Residual Stress No Residual Stress  Residual Stress 

Poisson’s 

Ratio 
RVE Ultimate Strength [MPa] RVE Failure onset    

0.3 60.0 64.0 INTERPHASE 
MATRIX/INTERPHASE 

INTERFACE 

0.35*  57.0 64.0 INTERPHASE MATRIX/INTERPHASE 
INTERFACE 

0.4 56.0 61.5 INTERPHASE INTERPHASE 



 

5.6 Conclusion  

Finite element analyses have been performed in order to investigate the overall mechanical 

response of unit cells including the presence of hypothetical thin soft and hard interphases under 

uniaxial transverse tensile loading. The effect of residual stress has been also analysed by 

simulating the manufacturing process (curing and cooling) by means a user-defined subroutine 

(UMAT) available in ABAQUS. Results obtained with the residual stress analysis were also 

compared to numerical results from a non-residual stress analysis. Numerical analyses have 

proved that the thin interphase is able to modify slightly the elastic stiffness of the micromodels. 

“Softened”  unit cells have displayed a significant improvement in terms of ultimate strength and 

strain in comparison to the unit cells with a harder interphase both on the z- and y-direction. 

More interestingly, finite element analyses that simulate a hypothetical behaviour of the 

interphasial properties during curing and cooling process have demonstrated that the magnitude 

of thermal residual stress within the interphase and the matrix is strongly influenced by the 

material properties of the interphase leading to severe high values within the stiff interphase. The 

soft interphase appears to work as a “shock absorber”  by redistributing thermal residual stresses 

within the interphase itself and transferring part of them onto the matrix. On the contrary the stiff 

interphase tends to concentrate the total amount of the stresses that are particularly elevated, 

especially in some internal region of the interphase. In fact, numerical simulations have 

demonstrated that for ultimate strengths of the stiff interphase equal and/or lower to the 

magnitude of residual stress the interphase appears utterly weakened by the presence of residual 

stresses and failure occurs during the cooling process leading to the total fibre/matrix debonding 

if uniaxial transverse loading is eventually applied. 

Nevertheless, finite element results, for higher values of the interphasial ultimate strengths, have 

proved that thermal residual stresses enable an improvement in the overall mechanical response 



of the micromodels undergoing uniaxial transverse loading both for the stiff and the soft 

interphase. In these cases the presence of residual stress, especially in the soft interphase, 

contributes to delay the action of the transverse loading stress on the regions of the unit cells that 

are more likely to fail as described in the investigations in which the curing and cooling process 

has not been simulated.      

In conclusion, finite element analyses indicate that unit cells with soft interphases show superior 

characteristics in terms of ultimate strength and strain under transverse loadings and reduce 

significantly the amount of stresses if the manufacturing process is included in the numerical 

simulations, and finally improve the mechanical response even for low values of the interphasial 

ultimate strength when residual stress is included. On the other hand, the micromechanics based 

damage model in combination with the residual stress analyses have demonstrated that the failure 

onset could also take place during the cooling process within the stiff interphase for particular 

values of the interphasial mechanical properties. 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter  6  

Effect of fibre packing geometry on the Mechanical Behaviour  of 

RVEs 

 

6.1 Introduction 

Most of the investigations described previously in the literature review related to the effect of 

constituents are based on multi-fibre RVEs and are unable to describe accurately and locally 

damage onset and its evolution that usually requires a fine mesh refinement around the 

fibre/matrix interface. Moreover, they account rarely for the effect of residual stresses arising 

during the curing process. In fact the local stress distributions after chemical shrinkage and the 

following cooling could influence the onset of micro-cracks in the matrix especially in presence 

of a random distribution of the fibre over the cross-section [134]. In order to investigate the 

effects of non-uniform unit cells with a hexagonal packing array of fibres, a robust numerical 

investigation that includes a damage model has been undertaken to evaluate the local response. 

The effect thermal residual stresses have been also accounted for. 

 

6.2 Finite Element Results 

In order to investigate the effect of inter-fibre spacing on damage evolution, micromechanical 

unit cell models have been constructed by shifting the central fibre in Fig. 6.1 along the z-

direction of the “ translation”  factor GGGG (in hm).  

In the micromodel investigated the central fibre has been translated by the following GGGG:  

0.0hm; 0.25hm;0.45hm; 0.90hm; 1.35hm; 1.55hm; 1.7hm. 

To each GGGG corresponds a single micromodel, namely: 

GGGG=0.25 ®  RVE/0.25hm;  



GGGG=0.45 ®  RVE/0.45hm;  

GGGG=0.90 ®  RVE/0.90hm;  

GGGG=1.35 ®  RVE/1.35hm;  

GGGG=1.55 ®  RVE/1.55hm;  

GGGG=1.70 ®  RVE/1.70hm. 

 

RVE/0.0hm (reference model); RVE/0.25hm; RVE/0.45hm; RVE/0.90hm; RVE/1.35hm; 

RVE/1.55hm; RVE/1.70hm. 

 

Fig. 6.1 - ½ of the hexagonal array packing RVE used as a reference model. 

 

This solution also allows applying correct periodic boundary conditions and moreover to keep a 

constant fibre content (70%). A comparison between a uniform and non-uniforms unit cells is 

shown in Fig. 6.2. The displacement constraints applied to the finite element model (Fig.6.1) in 

order to apply normal loads are [3]: 



 

ux (0, y, z) =  0 

ux (a, y, z) = constant = � x   

uy (x, 0, z) = 0 

uy (x, b, z) = constant = � y 

uz (x, y, -c) = 0 

uz (x, y , c) = constant = � z 

where ux ,  uy , uz  denote respectively displacements in the x, y and z direction. 

The damage and post-damage model applied for this investigation has been already described in 

Chapter 4 and three different loading conditions have been applied to the unit cell shown in Fig. 

6.1 namely: 

3) transverse loading in the y-direction, 

4) transverse loading in the z-direction, 

5) longitudinal loading in the x-direction (parallel to the fibres). 

 



 
Fig. 6.2 – Range of fibre positions. 

 

6.2.1 Transverse loading 

As already mentioned, the purpose of this study is to investigate the effect of local damage 

evolution under transverse and longitudinal loading. A previous analysis on a uniform RVE 

(perfect symmetry) under x, y and z-direction loading has been performed to compare results with 

data from non-uniform unit cells. Details of damage onset and evolution for non-uniform unit 

cells that undergo y-direction loading are illustrated in Fig. 6.3-7, where RVE/0.0hm denotes the 

reference representative volume element. Damage contour is represented by means of a black 

area and the damage onset has been indicated in the figures with capital letters (A, B  and C).. 

Interestingly, it has been noticed that for the RVE/0.0hm and for relatively small shifting factors 

the damage is due to micro-crack in the resin.  



Initiation of damage in unit cell RVE/1.35hm (Fig. 6.5) is still similar but the damage in the 

region C in Fig. 6.3 but it has been detected at lower strains. Micromodels with a higher GGGG (Fig. 

6.5-7) exhibit a different location of damage onset. In particular damage, due to fibre/matrix 

debonding, starts in the region A (Fig.6.5-7) 

 

 

Fig. 6.3 – Damage onset and evolution in RVE/0.0hhhhm under y-direction loading condition. 
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Fig. 6.4 – Damage onset and evolution in RVE/0.25hhhhm under y-direction loading condition. 

 

 

Fig.6.5 – Damage onset and evolution in RVE/1.35hhhhm under y-direction loading condition. 
The yellow square indicate the non-damaged region of the unit cell at failure onset. 

 
 
 



 

Fig. 6.6 – Damage onset and evolution in RVE/1.55hhhhm under y-direction loading condition. 
 
 
 

   
Fig. 6.7 – Damage onset and evolution in RVE/1.70hhhhm under y-direction loading condition. 
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Global stress-strain curves (Fig. 6.8) indicate interesting results on the overall response of the 

unit cells that undergo transverse loading along the y-direction.  Under the y-direction loading 

condition, the ultimate strength and strain manifests a slightly beneficial effect. This 

improvement in the ultimate strength could be explained with the non-symmetric damage 

progression in non-uniform RVEs (Fig.6.5-7) in which a remarkable result is represented by a 

less damaged area on the inferior site of the unit cell (yellow square in Fig. 6.5)  when 

decrementing the inter-fibre spacing on the upper region of the unit cells. 
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Fig. 6.8 – Global stress-strain curve in y-direction for uniaxial transverse tensile loading. 

 

The micromodel RVE/1.70hm displays a different response due to the minimum distance 

between fibres. The plot in Fig. 6.9 shows an initial and drastic matrix failure at very low strains 

leading to a consistent modification of elastic stiffness. This tendency to a premature matrix 

failure can be also noticed in Fig. 6.8 for the curve related to the micromodel RVE/1.55hm.  
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Fig. 6.9 – Global stress-strain curve in y-direction for uniaxial transverse tensile loading  

related to RVE/1.70hm. 
 

 

Damage onset and evolution for the reference micromodel under z-direction is shown in Fig. 

6.10. The weakest region is represented by the fibre/matrix interfaces (region A and B) and 

damage can be principally attributed to the fibre/matrix debonding that propagates along the 

interfaces. 

 

Non-uniform micromodels such as RVE/1.70hm in Fig. 6.11 show that only the region A of the 

micro model has been involved in the failure but, this result has no beneficial effect on the 

micromodel in terms of ultimate strength as shown in the stress/strain curves in Fig. 6.12 in 

which it can be seen the detrimental effect of a decreasing inter-fibre distance.  

 



 

Fig. 6.10 – Damage onset and evolution in RVE/0.0hhhhm under z-direction loading condition. 
 
 

 

Model RVE/1.70hm exhibits a high ultimate strain despite a very poor ultimate strength and this 

can be presumably attributed to the very small area involved in the damage and its slow 

progression by debonding along the fibre/matrix interface. The stress/strain curve related to 

model RVE/1.70hm in Fig. 6.12 gives evidence of a premature matrix failure at very low loading 

stress and strain that modify greatly the overall mechanical response. No premature matrix failure 

has been detected for other micromodels.  



 
 Fig. 6.11 – Damage onset and evolution in RVE/1.70hhhhm under z-direction loading condition. 
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Fig. 6.12 – Global stress-strain curve in z-direction for uniaxial transverse tensile loading. 

 

 



A peculiar effect in non-symmetric unit cells is an increasing elastic stiffness when incrementing 

the central fibre translation along the z-direction as can be seen in Fig. 6.13. The Young’s 

modulus presents a visible increase of its value above a central fibre translation of 0.9hm while it 

is moderately constant under this value. In a previous investigation [172] it was found that the 

elastic stiffness depends on the fibre content and it augments by increasing the fibre volume 

fraction. Hence, the stiffening effect in non-uniform RVEs with a decreasing inter-fibres spacing 

can be attributed to a more dominant effect of fibres. In fact, the decreasing inter-fibre distance 

allows only negligible transverse strains. 
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Fig. 6.13 – Trend of Young’s modulus on transverse loading at different translation factors (GGGG). 
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6.2.2 Longitudinal loading  

In UD composites that are loaded along the longitudinal direction (x-direction, parallel to the 

fibres), the fibres are predominantly involved in bearing the loads. In this study the fibre content 

has been kept constant and the only variable is the position on the z-axis of the fibre.  

A comparison of damage onset sites (Fig. 6.14) displays different results in non-uniform RVEs. 

These unit cells exhibit different regions of the damage onset that in general depends on the 

shifting factor GGGG. In particular the reference model exhibits four entirely failed regions 

symmetrically distributed within the unit cell. While non-uniform unit cells show a non-

symmetric distribution of failed areas (Fig. 6.14). Hence, as fibres are dominant no change in 

terms of ultimate strength and strain of the micromodel is expected. In fact as shown in Fig. 6.15 

the stress/strain curves for the highest values of  GGGG and the reference model exhibit a perfect 

superposition.  

 

 

Fig. 6.14 – Damage onset under x-direction loading condition. 
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Fig. 6.15 – Global load-displacement curve in x-direction for uniaxial transverse tensile loading. 

 

 

 

6.3 Residual Stress Analysis 

 

6.3.1 Effect of residual stress on transverse loading 

To study the influence of residual stress/strain on the response of non-uniform unit cells after 

curing and thermal cooling analyses a global strain has been applied to the unit cells. The global 

strain was achieved by specifying a uniform displacement at the model surfaces, At each time 

increment of the analysis, the damaged area in the matrix or in the fibre has been determined 

using the Maximum Principal Stress failure criterion. Throughout the following analyses, the 

fibre showed no sign of damage due to its high strength, therefore, damage and failure refer to the 

matrix only.  
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Micromodels RVE/0.25hm, RVE/0.45hm, RVE/0.90hm, RVE/1.35hm and RVE/1.55hm, that 

present an inter-fibre spacing greater than ~0.15hm do not indicate any sign of failure during the 

whole curing process for the three different linear chemical shrinkages (0.01%, 0.35% and 1%). 

The most important result can be seen for the unit cell RVE/1.70hm (Fig. 6.16) that presents a 

minimum inter-fibre distance of ~0.05hm. In fact, this unit cell fails during the cooling process in 

the whole set of linear chemical shrinkages that has been examined. Matrix failure is detected in 

the narrow gap between fibres and should be attributed to a high compressive stress (Fig. 6.17) 

arising in this particular site during the contraction along the y-direction, z-direction and x-

direction due to the cooling process.  

 
 

         
Fig. 6.16 – Damage onset in RVE/1.70hhhhm during the cooling process. 
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Fig 6.17 - Trend Maximum Principal Stress during the cooling process. 

 The abscissas indicates the position of the central fibre centre for various translation factors G.  
 

 

In the y-direction loading case the reference model (Fig. 6.3) and micromodels with a shifting 

factor equal or less than 1.35hm display a damage onset still located in the same regions named 

A and B but its progression strongly depends on the fibre packing geometry. For instance, in the 

reference model (Fig. 6.18) damage is likely to spread within the matrix from the region A and B 

while without residual stress its evolution is mainly located along the edge and eventually 

progresses toward fibre/matrix interfaces. Residual stresses completely modify damage onset in 

Model RVE/1.55hm now localized in the region A and B in Fig. 6.19. 

 

GGGG 



 

Fig. 6.18 – Damage onset and evolution in RVE/0.00hhhhm under y-direction loading condition  
with residual stress. 

 
 

 
Fig. 6.19 – Damage onset and evolution in RVE/1.55hhhhm under y-direction loading condition  

with residual stress. 
 
 
 
 



 
Results regarding the z-direction loading conditions show there are no relevant differences in the 

damage onset and its evolution. The unit cell RVE/1.70hm displayed in Fig. 6.20 shows an 

initiation site of damage in region A both in case of y-direction and z-direction loading. Failure in 

this area “must”  be completely attributed to the high compressive stress during the cooling 

process after chemical shrinkage that causes matrix rupture. Nevertheless the initiation points of 

the failure are not significantly affected by the presence of residual stress especially in the z-

direction, monitoring the global stress-strain response during the damage analysis results 

indicates in general a beneficial effect of residual stress as shown in Fig. 6.21 and Fig. 6.22.  

A particular effect of residual stress can be seen in the stress/strain curves related to the 

micromodel RVE/1.70hm in Fig. 6.23 and Fig. 6.24 in which failure is detected during the 

cooling process. In this case, by applying the load after the curing process, it can be seen a 

slightly modification of elastic stiffness (more evident in Fig. 6.24). This change of the stiffness 

is caused by the damage and the detrimental effect of residual stress on the z-direction loading.  

 

Fig. 6.20 – Damage onset and evolution in RVE/1.70hhhhm under z-direction loading condition 
 with residual stress. 
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Fig. 6.21 – Global stress-strain curve in y-direction for uniaxial transverse tensile loading related to 

RVE/0.25hm. 
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Fig. 6.22   – Global stress-strain curve in z-direction for uniaxial transverse tensile loading related to 

RVE/0.25hm. 
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Fig. 6.23 – Global stress-strain curve in y-direction for uniaxial transverse tensile loading  

related to RVE/1.70hm. 
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Fig. 6.24   – Global stress-strain curve in z-direction for uniaxial transverse tensile loading  

related to RVE/1.70hm. 
 
 
 
 



Residual stresses after curing and cooling cause a redistribution of the internal stress field and the 

positive consequence is to lower stresses within the resin in the weakest regions (e.g. corners, 

interfaces) of the micromodel, improving the ability to bear loads in the y- and z-direction. In 

particular, it can be observed that residual stresses tend to delay the growth of high concentrated 

tensile stresses in these regions. Fig. 6.25, for example, displays the highest values of Maximum 

Principal Stress at the end of the cooling process and during the loading. When loading is 

applied, e.g. in y-direction, high stresses start decreasing from the position after cooling, shown 

in Fig 6.25(a), and  keep “migrating”  toward the corners and the central area of the unit cell as 

depicted in Fig. 6.25(b). 

 
 

             
Fig. 6.25 – Maximum Principal Stress distribution (RVE/0.0hm) after cooling (a) and before failure (b) 

under a transverse (y-direction) loading. Arrows indicate the highest tensile stress distribution. 
 

 



Numerical results show that for high shifting factors initial and final failure of micromodels are 

not coincident especially for high GGGG. 

In addition matrix failure could occur during the cooling process. In Table 6-1 and Table 6-2 

results are summarized for transverse loading and in particular strains in which failure is detected 

(initial failure) and the strains in which the mechanical properties of the matrix undergo an abrupt 

drop (final failure). 

 

Table 6-1 Failure strains data for transverse loading along the y-direction. 

  Transverse y-direction 

 

 

No Residual Stress    

 initial failure 

No Residual Stress    

 final failure 

Residual Stress     

 initial failure 

Residual Stress        

final failure 

 GGGG ematrix  (%)    ematrix  (%)    

0 0.27 0.27 0.31 0.31 

0.25 0.27 0.27 0.31 0.31 

0.45 0.27 0.27 0.31 0.31 

0.90 0.27 0.27 0.31 0.31 

1.35 0.27 0.27 0.29 0.29 

1.55 0.19 0.27 0.28 0.28 

1.70 0.11 0.26 cooling 0.25 

 

 

 

Table 6-2 Failure strains data for transverse loading along the z-direction 

  Transverse  z-direction 

 

 

No Residual Stress    

initial failure 

No Residual Stress    

final failure 

Residual Stress    

initial failure 

Residual Stress       

final failure 

 GGGG ematrix  (%)    ematrix  (%)    

0 0.33 0.33 0.37 0.37 

0.25 0.32 0.32 0.36 0.36 

0.45 0.31 0.31 0.35 0.35 

0.90 0.26 0.26 0.32 0.32 

1.35 0.22 0.22 0.27 0.27 

1.55 0.16 0.16 0.19 0.19 

1.70 0.08 0.23 cooling 0.16 

 

 



 

6.3.2 Effect of residual stress on longitudinal loading  

In UD composites during the curing process the resin is in a rubbery state and realistically no 

deformation is established along the x-direction. Strains parallel to fibres are only developed 

during cooling as the resin evolves from a liquid/rubbery state into a solid state. If residual 

stresses are included on the x-direction loading, numerical analyses show that the damage onset 

tends to be more localized at fibre/matrix interface (Fig. 6.26). Although residual stresses do not 

affect the ultimate strength of the unit cells but most importantly, they are greatly detrimental for 

the matrix causing failure at lower loading strains as can be seen in Fig. 6.27 and Table 6-3.  
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Fig. 6.26 – Damage onset under x-direction loading condition with residual stress. 
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Fig. 6.27 – Global stress-strain curve in x-direction for uniaxial transverse tensile loading with a 

without residual stress related to RVE/1.35hm. 
 

 

Table 6-3 Failure strains data for longitudinal loading along the x-direction 

  Longitudinal  x-direction 

 No Residual Stress Residual Stress No Residual Stress Residual Stress 

GGGG efibre  (%) efibre  (%) ematrix  (%) ematrix  (%) 

0 2.70 2.71 2.50 1.65 

0.25 2.70 2.71 2.50 1.65 

0.45 2.70 2.71 2.50 1.65 

0.90 2.70 2.71 2.50 1.65 

1.35 2.70 2.71 2.50 1.65 

1.55 2.70 2.71 2.50 1.55 

1.70 2.70 2.71 2.50 cooling  
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A full understanding of this detrimental effect can be highlighted in Fig. 6.25a and Fig.6.28. 

Unlike transverse loading conditions, in which the residual stress is redistributed from the 

position at the end of the cooling process along the fibre/matrix interface and within the matrix, 

for the longitudinal (x-direction) loading condition the already high values of residual stresses 



remain concentrated at fibre/matrix interface in the same position as after cooling process. Hence 

thermal residual stresses tend to weaken this area furthermore and moreover they promote its 

premature failure. 

 

 
Fig. 6.28 – Maximum Principal Stress distribution (RVE/0.0hm) before failure under longitudinal 

(x-direction) loading. Arrows indicate the highest tensile stress distribution. 
 

 

6.4 Conclusion 

Effects of inter-fibre spacing on transverse and longitudinal failure of fibre-reinforced polymer 

matrix composites have been studied using a micromechanical non-uniform unit cell model and 

the finite element method. Predicted damage initiation and evolution as well as mechanical 

properties are clearly influenced by different inter-fibre spacing. 

A further investigation accounting for residual stress shows that residual stress and inter-fibre 

spacing play an important role during the curing process and in presence of micro- gaps between 

fibres (~0.05hm). Matrix failure has been detected for all three different values of the linear 



chemical shrinkage (0.01%, 0.35% and 1%) that have been investigated. The presence of residual 

stresses also affects damage initiation sites especially in unit cells in which inter-fibre spacing is 

of the order of few micro-meters (0.08-0.05).  

Finally the FEM investigations have proved that thermal residual stresses are highly detrimental 

for the matrix in the longitudinal loading while in the transverse loading the unit cells see in 

general beneficial effects. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter  7 
 
Conclusion and Discussion 
 
 
7.1 Introduction 

Thermoset composite materials are becoming a viable alternative to more conventional materials 

(e.g. aluminium) in a wide range of industrial applications but their use remains still limited due 

to the limitations in the current understanding of the damage behaviour and lack of fully 

validated modelling tools. Moreover the overall ultimate properties, at macroscale, depend on the 

manufacturing process of fibre reinforced thermosetting resins that appears particularly 

influenced by the microstructure (e.g. fibre architecture, fibre content) of the composite material. 

Hence, it appears evident that a better understanding of the processes arising during the curing 

and cooling phases at the constituent level could suggest strategies to improve the ultimate 

mechanical properties at the macroscale.   

  

7.2 Finite Element Analysis  

The aim of this research has been the development of a micromechanics-based damage model 

and the implementation of this damage model into the FEM code ABAQUS. The damage model 

used to simulate the failure onset and damage progression is based on the work of Blacketter [5] 

and represents a powerful tool to simulate physically observed damage such as fibre-matrix 

debonding and micro-cracks within the matrix. It has been implemented into ABAQUS via the 

user’s subroutines UMAT and USDFLD.  

Two different kinds of numerical analyses have been carried out in order to identify the 

characteristics of the micromodels investigated, namely: 

A) Non residual stress analyses.  

B) Residual stress analyses. 



Numerical results obtained with the “non-residual”  stress analyses have been used as a 

benchmark in order to compare the effects of thermal residual stresses on the overall mechanical 

properties of the UD composites at their microscale. Although other researchers [3, 8, 147, 170] 

have investigated the mechanical characteristics of UD composites at their microscale, in general 

only two-dimensional unit cells have been adopted for their studies.     

In the present work, three-dimensional RVEs have been employed. The main difficulty of 3D 

unit cells is represented by the set of boundary conditions. In fact, these boundary conditions 

must be applied accurately on the faces of the micromodel in order to achieve a more realistic 

stress state that is generated from the different loading conditions.  

Moreover, although the computational implementation of the damage models via subroutines in 

FORTRAN represents a well established methodology, the realistic simulation of the 

manufacturing process (curing and cooling) with the subroutines UMAT and USDFLD, coupled 

to the micromechanics-based damage model, can be considered as an innovative computational 

technique. This new computational methodology that takes into account temperature dependant 

material properties was successfully implemented for the evaluation of local distribution and 

magnitude of thermal residual stresses introduced during the manufacturing process for different 

fibre volume fractions.   

 

7.2.1 Micromechanical stiffness 

An important factor of this research was to identify the proper boundary conditions to apply to 

the faces of each numerical model in order to demonstrate their potential to describe accurately 

the material properties of unidirectional composite materials at microscale. The applied boundary 

conditions are based on the research of Sun et al [3] and have been used in FE analyses resulting 

in a good agreement with experimental and the semi-empirical expressions such as the Rule of 

Mixtures. 

 



7.2.2 Micromechanical strength 

The mechanical strength of the unit cells was investigated in order to characterize the mechanical 

response of the numerical models under tensile loading. The novel computational method that 

includes the damage model and the thermal residual stresses was employed to establish the 

relationship between damage behaviour and fibre content using 3D unit cells with a hexagonal 

packing array. The user subroutines have also included different failure criteria developed to 

detect failure in polymers taking into account their different behaviour in tension and 

compression. Preliminary analyses without the residual stress have been initially carried out and 

the results have been used as a benchmark for the residual stress analyses. 

These analyses have shown the strong dependence on the fibre volume fraction especially under 

transverse loading. The mechanical response of the unit cells has been significantly affected by 

the presence of residual stresses. Ultimate strength was increased under transverse tensile loading 

due to the redistribution of stresses within the matrix. On the contrary under longitudinal loading 

conditions, the residual tensile stress remained concentrated at the fibre/matrix interface and 

caused weakening of the matrix in that area. The analyses (with and without residual stress) have 

contributed to the description of the mechanical behaviour of the composite at the constituent 

level under unidirectional tensile loading. 

 

7.2.3 Effects of Interphasial Proper ties on the Mechanical Behaviour  of RVEs 

Numerical investigations have been performed on unit cells incorporating a third phase 

(interphase) in order to approach more realistically the structure of composites at microscale. In 

fact, composite materials in general show a third phase in the vicinity of the fibres that arises 

either via unexpected modifications of the matrix during the manufacturing process or via 

accurate engineering, by modifying the nature of the fibre surfaces (sizing) to affect  the curing 

kinetics and cross-link density of  the nearby matrix. 



The most innovative aspect of these investigations is represented by the characterization of the 

interphases in the analyses with residual stress. The third phase arises during the simulated 

manufacturing process by assigning “ idealised”  temperature dependant properties (different from 

the matrix properties) to some elements of the mesh at the fibre/matrix interface.   

This numerical approach, in combination with the already described damage-residual stress 

computational model, represents a valuable instrument to evaluate the distribution and magnitude 

of residual stress after the curing and cooling process. Moreover the comparison with the results 

from non-residual stress analyses has permitted evaluation the effects of thermal stresses and 

interphasial properties on the damage behaviour.   

Non-residual and residual stress analyses have shown peculiar results. Firstly they have proved 

that the interphase is able to modify slightly the elastic stiffness of the micro-models. RVEs with 

soft interphase have displayed a significant improvement in terms of ultimate strength and strain 

in comparison to the unit cells with a stiffer interphase. 

More interestingly, finite element analyses that simulate an idealised behaviour of the interphase 

curing and cooling processes have indicated that the magnitude of thermal residual stress within 

the interphase and the matrix has been strongly influenced by the material properties of the 

interphase with significantly high values in the hard interphase. The soft interphase appears to 

work as a “damper”  by redistributing stresses within the interphase and the matrix while hard 

interphases lead to accumulated high stresses in the interphasial region. 

In conclusion, numerical investigations have indicated that unit cells with soft interphases have 

shown increased characteristics in terms of ultimate strength and strain under transverse loadings 

and reduce significantly the amount of stresses if the manufacturing process is considered in the 

numerical simulations, and finally improve the mechanical response even for low values of the 

interphasial ultimate strength when thermal residual stresses are included.  



On the other hand, unit cells with hard interphases have displayed significantly reduced 

mechanical properties and residual stress analyses applied to these 3D unit cells have indicated 

the onset of failure during the cooling process within the interphase. 

 

 

7.2.4 Effects of Fibre Packing Geometry the Mechanical Behaviour  of RVEs 

Most research related to microstructural properties of composite materials has been investigated 

by assuming a uniform periodic distribution of fibres within the unit cells.  

In the present work a new approach has been used to investigate the effects of the non-uniform 

fibre distribution on the local damage behaviour. The novel approach is based on a “single-fibre”  

3D unit cell in which the central fibre is shifted along one of the transverse axes (the z-direction 

in these work).  

The innovative computational methodology (coupled damage-residual stress analysis) has also 

been adopted to study the effect of manufacturing induced stresses in order to determine the 

effect of the fibre position on damage onset and the modification of the residual stress 

distribution in the RVE. A single-fibre approach has been considered particularly suitable for the 

numerical investigations. In fact, the computational damage model implemented in ABAQUS 

follows a “ local damage”  criterion and, therefore it requires a high quality mesh refinement all 

over the unit cell, with special emphasis at the fibre/matrix interface, to achieve reliable results. 

Hence, two kinds of analyses have been performed namely: non-residual and residual stress 

analyses. 

The simple fibre shifting along one of the transverse axes has allowed a good awareness of the 

crucial mechanisms that regulate local damage onset with and without residual stress for a non-

symmetric position of the reinforcement within the RVE and, in addition, has made possible the 

determination of a critical inter-fibre distance. Below that distance, it is likely that fibre/matrix 

debonding will occur during the manufacturing process.     



 

7.3 Future work  

FE studies, with and without residual stress, on various combinations of unit cells under uniaxial 

loading have been extensively carried out in the present research. 

Numerical analyses have shown that the mechanical behaviour of the microstructure of 

composite materials is significantly influenced by thermal residual stresses. In particular the 

present study has demonstrated that thermal residual stresses play a key role on the damage onset 

and damage progression in unit cells under uniaxial tensile loading. In addition, the mechanical 

properties of the composites are also determined by other factors such as fibre volume fraction, 

fibre arrangement, properties of interphase.  

In order to improve the understanding of the mechanical behaviour of unit cells with various 

configurations the following directions of future effort are suggested: 

 

1. Apply biaxial loadings in analyses with and without residuals stresses on the unit cells 

investigated in the present work. Draw failure envelopes for biaxial loading.  

 

2. Include additional sources of material variability for the interphase such as thickness. 

 

3. Include a 3D interphase in “non-uniform” unit cells and repeat the set of uniaxial and 

biaxial loadings in FE analyses with and without residual stress. 

 

In addition, few researchers such as Chen et al [172] have investigated the effect of 

viscoelasticity of matrix material on the evolution of residual stresses induced during the 

manufacturing process in glass fibre/epoxy composites with finite element micromechanical 

analyses. The epoxy matrix has been represented by a nonlinear viscoelastic model. The finite 



element residual stress analysis has indicated that higher cooling rate results in higher initial 

residual stresses in the laminate. However, the residual stress relaxes with time and tends to an 

asymptotic small value independent of the cooling rate. Although these results have been applied 

at the mesoscale of composite materials, they suggest that the implementation of more advanced 

constitutive models (e.g. viscoelastic model) for the epoxy matrix could estimate more accurately 

the magnitude of the manufacturing induced residual stresses within the unit cells after the 

cooling process. 

 
 

7.4 Conclusion 

After a review of the current literature on the microstructure of composite materials, the area 

related to the effects of residual stress on the overall mechanical response of composite materials 

at the microscale was identified as requiring further research. 

 

The review of literature related to the modelling of RVE to be implemented into finite element 

codes has suggested the use of the unit cells proposed by Sun et al [3] in their investigations to 

simulate the periodic distributions of fibres within the matrix. 

These unit cells are particularly suitable to be used in numerical analyses, in fact, due to their 

simple geometry, boundary conditions and loads can be imposed with particular accuracy. 

 

The damage model implemented into the finite element calculations has indicated that, 

unidirectional composite materials are not particularly able to bear transverse stresses especially 

in presence of a non-uniform position of the fibres, as physically observed, and the presence of a 

“stiff interphases” . Although residual stresses in general improve the strength of composites 

under transverse uniaxial loading, RVEs undergoing more realistic loading conditions are 



unlikely to show these beneficial effects as already demonstrated by Liguo et al [170] for 2D unit 

cells. 

 

The non-uniform distribution of the fibres in real composites coupled with the effects of the 

manufacturing process can trigger both fibre/matrix debonding and microcracks in the matrix as 

indicated by the numerical analyses in Chapter-6. Thus, in order to improve the transverse 

strength of unidirectional composites at microscale, more effort must be done to minimize the 

effect or residual stress arising during the curing and cooling phases in the proximity of the 

fibre/matrix interface. FE analyses on unit cells with different interphasial properties have 

suggested that properly engineered interphases can overcome this problem.     

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix 
 
The appendix contains listings of the subroutines written for this research. User subroutines are 

part of the commercial FEM code ABAQUS and are designed to offer more functionality to the 

code in cases where the standard options are insufficient to describe a particular mechanical 

constitutive behaviour of a material. To describe specific material characteristics, UMAT 

subroutines are called at all material calculation points of elements for which the material 

definition includes a user-defined material behaviour. The UMAT subroutines update the stresses 

and solution-dependent state variables to their values at the end of the increment for which it is 

called and finally must provide the material Jacobian matrix, e
s

D¶
D¶ , for the mechanical 

constitutive model. In addition the UMAT subroutine can be used in conjunction with user 

subroutine USDFLD.  

The USDFLD subroutine will be called at all material points of elements for which the material 

definition includes user-defined field variables and can be used to introduce solution-dependent 

material properties since such properties can easily be defined as functions of field variables.  

 

UMAT Subroutine   

Two different UMAT subroutines have been implemented into the code. The first subroutine 

includes the damage model for epoxy matrix and the E-glass fibres. The second UMAT includes 

the temperature dependant material properties for the epoxy matrix to simulate the curing and 

cooling processes for the residual stress analysis.   
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USDFLD Subroutine 

These subroutines have been employed to modify the damage variables state depending on the 

stress level detected by the failure criteria during the analysis. The Maximum Principal Stress 

criterion has been used for the subroutine described here. 
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