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Abstract

This thesis describes the investigation and development of damage modelling for composites
materials at their micro-scale (e.g. fibre, matrix).

A damage model for elastic materials, based on a “local” damage approach, has been introduced
to predict falure onset and simulate the post-failure behaviour of unidirectional three-
dimensional representative volume elements (RVE) or unit cells with hexagonal distribution of
the fibres over the cross section. The damage model consists of three parts. an elastic model, a
failure criterion and the post-failure behaviour. Modifications of von Mises criteria and
Maximum Principal Stress criterion have been considered to evaluate failure in the matrix whilst
for the fibre in general the Maximum Principal Stress criterion has been used. The damage model
has been implemented into the commercial code ABAQUS with subroutines in FORTRAN

(UMAT and USDFLD).

The material properties in the residua stress analyses are considered temperature dependant to
simulate the volumetric contraction during the manufacturing process. Hence, the overall
residual stress introduced from curing was determined by considering two contributions: volume
shrinkage of matrix resin from the crosslink polymerization during isothermal curing and thermal
contraction of both resin and fibre as a result of cooling from the curing temperature to room

temperature.

Finally, three different typologies of 3D unit cells have been investigated. The first kind of
micro-model is based on a symmetric distribution of the fibres and the unit cells have two phases,

i.e.: matrix and fibre. The second typology of unit cellsis still based on a uniform architecture but



include a three-dimensional interphase between fibre and matrix. As in real composites at their
constituent level fibres are randomly distributed. The mutua distance between fibres represents a
critical factor for the ultimate mechanical properties of the micro-composites. Hence the last kind
of micro-models account for this non-uniform position of fibres within the RVE athough they

consists of only two phases.

FEM analyses have indicated that predicted damage initiation and evolution are clearly
influenced by the presence of residual stresses in all the three different typologies of unit cells
anaysed. The numerical analyses on the numerica models have proved that, in generd, the
overall mechanical properties are strongly influenced by the presence of residua stress, fibre
volume fraction, fibre distribution and interphasial properties. In particular on transverse tensile
loading, residual stresses produces beneficial results in terms of ultimate strength while in the
case of longitudinal loading (parallel to the fibres) the matrix, due to the high compressive stress,

undergoes a premature failure athough.
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Notation

S1 Principal stress

S> Principal stress

S3 Principal stress

& Elastic strain

e Elastic strain

e Elastic strain

ty  Shear strainin-plane

txz Shear strain through thickness
ty, Shear strain through thickness
Ny  Poisson’sratio in-plane

Nyz Poisson’ s ratio through thickness
Ny, Poisson’ s ratio through thickness
Ex Longitudinal Y oung’'s modulus (fibre direction)
Ey Transverse Y oung's modulus

E, Transverse Young' s modulus
Gyxy  Shear modulusin-plane

Gx;  Shear modulus through thickness
Gy;  Shear modulus through thickness
Sy Yield strength

tmax  Maximum shear stress



de Damage factor for Y oung’'s moduli
de Damage factor for shear moduli
[C]  Stiffness matrix

[S]?  Compliance matrix

v Fibrevolumefraction

a Thermal expansion

Subscripts

X Longitudinal direction (fibre direction)

y Transverse direction
z Transverse direction
C Compressive loading

T Tensile loading
f fibre

m matrix



Chapter 1

I ntroduction

1.1 Fibrereinforced composite materials

Since the early 1960s, there has been an ever-increasing demand for newer, stronger, stiffer, and
yet lighter-weight materials in fields such as aerospace, transportation, and construction. High
demands on materials for better overal performance have led to extensive research and
development efforts in the field of composite materials. These materials have low specific gravity
that makes their properties particularly superior in strength and modulus [1, 2] to many traditional
engineering materials such as metals. As a result, these materials are now being utilized in
industries that traditionally used metals, and these have become the forefront of research and
development activity in many related areas. Composite materials that exist today can be
categorized into five mgor classes, which include ceramic matrix composites (CMCs), meta
matrix composites (MMCs), intermetallic matrix composites (IMCs), carbon-carbon composites
(CCCs) and polymer matrix composites (PMCs). In this discussion, considerable attention is paid
to the latter class of materials (PMCs). There are two important types of polymer matrix
composites, short-fibre and continuous-fibre composites. The choice of polymer matrix for such
composites can be either a thermoset or a thermoplastic. Continuous-fibre composites that offer
the best mechanical properties compared to other fibre-reinforced composites are primarily
reinforced with high performance fibres such as carbon, Kevlar or glass. These composites are
often utilized in special applications like aircraft components in which the property benefits of
the fibres are fully exploited.

The properties of a composite material are strongly influenced by the properties of its
constituents and their distribution and also the quality of interactions among them [2, 3]. The

most important of all the composite properties are usually the mechanical properties, since



whatever the reason for the choice of a particular composite for some application it must have
certain characteristics of shape, rigidity and strength. The mechanical properties of long fibre
composites, such as stiffness, can be predicted using severa prediction schemes such as the

“Rule of Mixtures’ and the Halpin-Tsal equations[1, 2].

Continuous fibres offer the highest mechanical properties, and give the possibility of using
specific orientations to give the composite directiona properties. They are available as lengths of
fabric in many different woven, knitted or stitched forms, all of which have different properties,
processing characteristics and costs. These include:

- Unidirectional - aimost all the fibres are straight and aligned in one direction. Fabrics may be
lightly woven or stitched, or incorporate a binder to maintain their shape.

- Biaxial - various weave styles have equal quantities of fibres at right-angles. Weaving
inevitably involves some crimping of the fibres, resulting in loss of properties that can be
attributed, for instance, to the high shear stress and strain due to the local bending effect of the
fibres. Shear strain and shear stress have a negative effect especially on the compressive strength.
Straightness may be preserved by stitching bundles of fibres.

- Multiaxial - some specidist weaving techniques can produce triaxial fabrics. Quadriaxial
fabrics (with reinforcement at 0°, 90° and 45°) can be produced by stitching.

- Random - continuous fibres can be combined with a binder and deposited in a random *swirl’

arrangement, primarily for use in resin transfer moulding.

Advantages and disadvantages of composite materials can be briefly summarized
Advantages of Composites:

- Weight saving
- Corrosion resistance

- Long fatigue life



- Manufacturing:
- reduced parts count (complex geometries can be moulded)
- novel shapes possible
- low cost tooling
- low temperature processing
- Design freedoms:
- continuous spectrum of properties

- anisotropic properties possible

Disadvantages of Composites

- High cost of raw materials

- Lack of design standards

- Properties not well characterised

- Low through-thickness tensile and shear strengths
- Sensitivity to stress concentrations

- Dependence of properties on manufacture

- Few mass production processes

1.2 Research aims

Only in the most recent years has the finite element technique together with the high speed and
capacity of modern computers made it possible to analyze fibre-reinforced composite in detail.
The goa of the present work is to develop numerical micro-models, using the commercia finite
element package ABAQUS/Standard, to predict the tensile strength and evaluate the failure,
damage onset and its evolution in unidirectional composite materials from the properties of the
fibre and matrix.

The micromechanical model considers a unit cell in which fibre and matrix are arranged in a

hexagonal cross section array by assuming the repetitive or periodic nature of the fibre and



matrix materials. The unit cell is aso athree-dimensiona (3D) solid and the size of each unit cell
dependents on the fibre volume fraction [3].

The effects of fibre content have been investigated by means of numerical analyses based on the
determination of elastic constants of a unidirectional composite using a simple 3D representative
volume element (RVE) model with a hexagona packing array to check the reliability of FE
models by comparing numerical results with empirical theories (e.g. Rule of Mixtures, Halpin-
Tsai). Further investigations have been performed to study the failure onset and damage
evolution on different configurations of unit cells.

In particular unidirectional composites properties, e.g. strength and stiffness, are dependent upon
the volume fraction of the fibre and individual properties of the constituent fibre and matrix
materials [3]. Particularly the estimation of the damage and failure progression in fibre reinforced
composite structures is very complex compared to that of conventional metalic materials.
Composite structures may vary their stiffness and strength due to damage accumulation such as
matrix cracking and fibre breakage during the loading history of the composite members. In the
micromechanical approach, the constituent fibre and matrix materias, and their interaction are
distinctively considered to predict the overall behaviour of the composite structural member.

In particular, the present work has been developed in order to simulate progressive failure of UD
composites by carrying out numerical analyses on unit cells under different uniaxial load
conditions.

Therefore, in order to predict accurately failure and simulate damage, analyses on numerical
models have been enhanced with subroutines UMAT and USDFLD in FORTRAN available in
ABAQUS/Standard [4] that modify the mechanical behaviour of the component (fibre, matrix)
as soon as falure is detected, reducing the elastic properties by introducing an accurate
“degradation factor” [5]. The UMAT and USDFLD subroutines alow updating the solution-

dependent state variables accordingly to the solution of an analysis. In particular, solution-



dependent state variables can be defined as a function of any other variables appearing in these
subroutines and can evolve with the solution of the analysis.

The selection of a proper failure criterion, both for matrix and fibre, represents a very important
task of the modelling formulation. In particular in polymers the yield behaviour is sensitive to
hydrostatic pressure and as a consequence, the yield stress in tension is different from that in
compression [6-8].

For the evaluation of failure within the fibres (E-Glass), it is possible the use of the most common
failure theories for isotropic materials such as the von Mises failure criterion, Maximum Principal
Stress theory and Maximum Shear Stress theory (Tresca).

This research was especially focused on the evaluation of local distribution and magnitude of
residual stresses (introduced during manufacturing process) for different fibre volume fractions
and unit cell configurations that will be discussed in the next chapters. Then, subroutines UMAT
and USDFLD have been modified to account for the contributions from both the chemical
shrinkage of resin and the thermal cooling contraction of fibre and resin. Of interest in this
investigation has been the determination of the role that residual stresses play in local damage
initiation and evolution in unit cells subjected to uniaxial loading both parallel to the fibres, and

transverse in the y and z directions.

1.3 Outline

Chapter-2 represents areview of the relevant research undertaken on micromechanical aspects of
composite materials.

This chapter is composed by three main sections. The first section is related to composites
materials at their macroscale and describes failure criteria that have been developed to detect
failure in real composites. Although this section does not take into account directly the

microstructure of composite materias, it describes the difficulties to determine accurately the



mechanical behaviour and ultimate properties of composites. Moreover the section highlights the
necessity of a better understanding of the microstructure that strongly influence and determine
the overall response of composite materia at their macro-level.

The second section describes the main issues related to the micro-modelling techniques in
numerical analyses and it is divided into four sub-sections, namely:

1- Review of Literature Related to the Representative Volume Element (RVE)

2 - Review of Literature Review Related to Failure Criteriafor Polymers

3 - Review of Literature Related to Damage Modelling

4 - Review of Literature Related to Thermal Residual Stresses

Finally the third section is concerned with the effects of the various actions of the constituents, in
particular, the fibre arrangement and the presence of an interphase.

The three-dimensional unit cells adopted in the Finite Element studies required validations.
Hence, Chapter-3 covers the preliminary studies that have been carried out in order to determine
the elastic constants of the unit cells at different fibre volume fractions. Numerical results have
been compared with analytica relationships (e.g. Rule of Mixtures) and/or, if possible, with
experimental data available in the literature. The encouraging data obtained by this preliminary
study has ensured the capability of the micro-model to describe accurately the mechanical
behaviour of micro-composites. An extensive review of the methodologies used to evaluate
material properties for the unit cell is also presented in this chapter.

In Chapter-4 the material characteristics and the methodology applied to simulate the residual
stress and the damage progression using ABAQUS/Standard is described. As afirst approach to
numerical investigations a set of numerical anayses has been performed on RVEs with various
fibre contents in order to investigate the overall mechanical response of the unit cell under

uniaxia tensile loading, with and without residual stresses. The description of this set of studies



is also shown in Chapter-4. Another aspect investigated in this chapter has been the evaluation of
different failure theories for polymers to test their capabilities to predict damage onset.

A physical “interphase” can be introduced at the fibre-matrix interface by means of particular
procedures (e.g. sizing) on the fibre surface.

An attempt to characterize unit cells with the presence of an interphase with temperature
dependant materia properties is described in Chapter-5. These numerical studies will be able to
predict the effect on the overall mechanical behaviour of composites and more importantly the
effect of residua stress arising within the three-dimensional interphase on damage onset and its
evolution.

The rea distribution of fibres in composite materials at their component level is in genera a
random arrangement and square and hexagonal arrays represent only an idealization of the micro-
structure that, although able to describe accurately the mechanical behaviour of micro-
composites, cannot take into account the stochastic effects of inter-fibre spacing on damage onset
especialy inresidua stress analyses.

Hence, non-uniform packing arrays of the unit cell have been investigated in Chapter-6 in order
to verify any potentia detrimental effect of inter-fibre spacing on failure modality in the
numerical micro-models under study.

Results obtained with the residual stress analysis were also compared to data from a non-residua
stress analysis used as a benchmark.

Chapter-7 presents the conclusions of the FEM studies on three-dimensiona unit cells. This
chapter also includes suggestions for future research based on the characterization of composite

materials at their constituent level.



Chapter 2

Review of Literature Related to Micro-Modelling of Composite

Materials.

2.1 Introduction

The literature review section will describe existing work in the following areas:
Failure criteria for composite materials at the macroscale.
RVE modelling.

Effect of constituents on the mechanical properties of composites.

2.2 Review of Literature Related to Failure Criteriafor Composites

Mechanical properties (e.g., strength, damage resistance, stiffness) of composite materials can be
improved by tailoring their microstructures. Optimal microstructures of composites, which ensure
desired properties of composite materials, can be determined in numerical analyses (e.g. Finite
Element Anaysis, Boundary Element and Mesh-Free Method,). Hence, for a better
understanding of the overall mechanical properties at macroscale and the strong relationship with
the micro-properties of composites materials it is worthwhile to briefly summarize the falure
criteriathat have been developed in order to predict failure onset in real composites.

The most important task of composite design calculation is the strength prediction. The basis for
the calculation of composite laminates and structures is the Classical Laminate Theory (CLT).
The CLT first looks at unstructured thin laminate plates composed of two or more unidirectional
layers (often called plies). These plate elements have no specified dimensions in length and
width. Only the thickness, fibre orientation and stacking sequence of its plies are important. This
allows the calculation of the laminate® properties as well as its load response to the imposed
forces and moments. Structural composite parts can be seen as a composition of these thin

laminate plate elements. For simple structural parts (eg. beams, tubes, plates) an exact solution



can be found. Their properties and load response (e.g. bending, stresses, failure, buckling) can be
calculated with analytical formulas. The right choice of the failure criterion is crucial. Many
different failure criteria for unidirectional plies have been developed over the years. The first
published failure criteria were globa failure criteria and did not distinguish between different
failures modes (Fig.2.1). They were formulated as a single, mathematically ssimple equation
which can be easily adapted to the results of the experiments. Examples for such criteria are

Hoffmann, Tsai-Hill and Tsai-Wu [1,9].

Fig. 2.1 - Fibre failure and inter-fibre failure modes.

A simple stress based failure criteria is the Maximum Stress Criterion for fibre-reinforced
composites [9]. This failure criterion states that failure will occur if any of the stresses in the
material principal directions exceeds the corresponding ultimate strength. In terms of
symbolically expression:

Cc T
Sxu<Sx<Sxu

C

Sy

T
<5y<syu



5<c3

where the superscript C, T and S corresponding to the compressive, tensile and in-plane shear
strength respectively. It should be noted that the Maximum Stress criterion does not consider
interaction between stresses in different directions, which may be important in reality.

Zinoviev et a [10, 11] introduced the maximum stress criterion in predicting the failure
behaviour of a series of laminates namely: carbon fibre-reinforced epoxy system AS4/3501-6,
T300/914C, glass fibre-reinforced epoxy E-glass/LY556, E-glassMY 750. It was found that
satisfactory prediction was obtained between the theoretica model and the available
experimental data from biaxial tests. For most of the cases, good correlations were found in
prediction until final failure. However, in some of the casesi.e. in the case of unidirectional E-
glass/L Y556 lamina, significant discrepancy was found between experimental and predicted data
and it was claimed by the author that the underestimated final failure of the composite was
caused by ultimate transverse compressive stresses in one of the unidirectional plies of the
composite laminate.

The Maximum Strain Criterion [9] is very similar to the maximum stress criterion, with failure
deemed to occur when any strain component in the material principal directions exceeds the

corresponding ultimate strain. Mathematically it is expressed as:

C T
Sxu <6 <€y

c T
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C S
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Similar to the Maximum Stress theory, there is no interaction between the strain components.



As unidirectional composites have directionally dependent strengths, judgment on the cause of
failure must be based on all three stress components where the longitudinal strength can be
twenty times as high as the transverse and shear strengths. Failure criteria provide the analytical
relation for the strength under combined stresses. Most theories are devel oped to predict first ply
failure (FPF), though many laminates can still support load well after FPF so these theories tend
to be conservative. However, after FPF, the stiffness of the ply is reduced by either matrix or
fibre failures and the strength of the laminate at the same point is evaluated again to see if the
laminate can carry an additional load. This ply-by-ply (PBP) analysis progresses until last ply
failure (LPF) which would be the ultimate failure of the laminate. Physical observations led to the
development of differentiating criteria, which distinguish between fibre failure (FF, or fracture of
the fibres) and inter-fibre failure (IFF, fracture of the matrix). Different mathematical
formulations are used for the physically different phenomena FF and |FF. Because the effects of
the two failure modes and the methods to avoid them are completely different, it is vital for the
designer to know which failure is occurring. Examples of such criteria are Hashin and Puck [10,

12].

In contrast to the Maximum Stress and Strain criteria, the Tsai-Hill criterion incorporates the
interaction between the three principal failure stresses and combines them into a single

expression. Failure will not occur until the following expression reaches unity.

The predictions of failure stresses (Syu, Syu and tyy,) using both Tsai-Hill and Maximum Stress

criteria have been evaluated for carbon/epoxy laminae in comparison with experimenta data [1].



It was found that the data fits well to the Tsai-Hill curve. However, it does not offer the capability

to predict failure modes such as fibre breakage, transverse or shear failure.

The Tsai-Wu failure criterion generally represents a second-order surface in the space with
coordinates Sy, , Syu ,txyu Which is in contrast with Maximum Stress theory where the failure
envelope is a planar surface with sharp corners and edges. The Tsai-Wu failure criterion is

defined by the following expression:
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The term Fi, is usualy experimentally determined through conducting a biaxial test, i.e.
simultaneous loading in the directions normal and parallel to the fibre. For the prediction of first
ply failure, the failure interaction term, Fi, is the only empirical factor needed for modification.
However, an average value of -0.5 is referred to as the generalized model for glass fibre-
reinforced and carbon fibre-reinforced composites as indicated in Liu et al [13]. Effect of F1, has
been investigated by Tsai et a [14] where failure envelopes have been drawn for the nominal
case (Fo = -0.5) and two extreme cases (F, = -0.1 and -0.9) and good agreement was found
with F,' = -0.5. Whilst sophisticated finite element analysis is necessary in determining the
progressive failure of a laminate under non-homogenous stresses, the Tsai-Wu failure criterion

provides a good starting point in this case.

The establishment of a failure criterion involves three steps: the formulation of the criterion, the
experimental verification and the convincing of future users. A good failure criterion should take
the following rules into consideration: (1) it should describe as many different types of materials
and loadings as possible; (2) a minimum amount of experimental work should be necessary to
determine the criterion’s coefficients [15]. It is important to recognize that a failure envelope
should be developed using the minimum number of test data points. However, there are
geometric and material considerations which will limit the mathematical form of a failure
criterion as well as the shape of the corresponding envelope, i.e. a failure envelope must be
closed in order to prevent infinite strengths and the envelope must be convex so that unloading
from a state of stress will not lead to additional failures. Hence, the ability to predict the strength
and deformation of fibre-reinforced composites under complex loadings is of critical importance
to designers and users of composite structures. In the Failure Criteria in Fibre Reinforced
Polymer Composites - The World-Wide Failure Exercise [10], the authors have organised and

coordinated an international study.



The principal aims of the exercise wereto:
Establish the current level of maturity of theories for predicting the failure response of
fibre reinforced polymer laminates.
Close the knowledge gap between theoreticians and design practitionersin this field.
Stimulate the composites community into providing design engineers with more robust

and accurate failure prediction methods, and the confidence to use them.

The basic plan was to:
Assemble a comprehensive description of the current, foremost, failure theories for fibre
reinforced plastic laminates.
Compare their predictive capabilities directly with each other.

Compare their predictive capabilities directly with experimental data.

This exercise has been carried out in three distinct stages referred to as Part A, Part B and Part C.
Part A contained detailed descriptions of 14 leading failure theories and predictions by each for a
set of test cases. Part B provided a detailed comparison between the theoretical predictions and
the experimental results. Part C extends the study to including 4 additional theories that have
emerged since the WWFE was first initiated and contains overall conclusions and
recommendations. Most of the leading approaches to predicting failure in composites were
represented, including theories employing well-known Maximum Stress, Maximum Strain,
interactive (Tsai) and mechanistic failure criteria (Puck and Cuntze). Some less widely known

methods were aso represented (McCartney, Eckold). In response to repeated requests from



industrial users the organisers devised qualitative and quantitative methods of summarising,
assessing and ranking the overall performance of the different theories. The qualitative method
consisted of comparing the predictions of al of the theories with the experimental results, one
test case a a time and noting any ‘Fundamental’, ‘Mgor’ or ‘Minor weaknesses. In the
guantitative method the ratio of predicted to measured lamina strengths, laminate initial and final
strengths and deformations was calculated for numerous selected combinations of applied |oads
in al the various test cases. Grades were awarded for each prediction:

- Grade A if the prediction was within £10% of the measured value

- Grade B if the prediction was between £10% and £50% of the measured value

- Grade C if the prediction was below 50% or above 150% of the measured value

- Grade NA if no prediction was attempted for that case.

The theories of Zinoviev (Maximum Stress criterion), Bogetti (Maximum Strain criterion), Puck
and Cuntze (mechanistic criterion) and Tsal (interactive criterion) showed very good overall
performance.

As a result of improvements to his method of post failure anaysis, in the light of the
experimental results, Tsai further improved his performance in Part B. These five groups
together with Sun (L) also formed the top group of theories according to the qualitative method
of assessment.

The five leading theories (see above) were explored in greater detail to demonstrate their
strengths and weaknesses in predicting various types of structural failure. Recommendations
were then derived, as to how the theories can be best utilised to provide safe and economic
predictions in awide range of engineering design applications.

A brief summary of the grades scored by each theory for all the five ranking categories is

illustrated in Table 2-1 in which the categories are listed according the number of the A+B grades



achieved . It was noticed that taking Grade A and B scores together, the predictions of a number
of theories were within 50% of the experimental results in more than 80% of cases. The full list

of theories can be seen in the book The World-Wide Failure Exercise [10].

Table 2-1 Summary of the grades scored by each theory [10].

Grade type A B C NA A+B
Cuntze-B 59 38 28 0 97
Zinoviev 53 43 29 0 96
Bogetti 51 44 30 0 95
Puck 64 30 31 0 o}
Cuntze 62 32 31 0 94
Tsai-B 57 36 32 0 93

The need for careful interpretation of initial failure predictions has been emphasised, and also the
necessity to alow for multiple sources of non-linearity (including progressive damage) where a
high level of accuracy is sought for certain classes of large deformation and final failure strength
predictions. Finally, different aspects requiring further experimental and theoretical investigation
has been identified with a specific list of experiments indicating where further tests would be

useful to integrate the experimental data employed in the exercise, e.g.:

. Biaxial loading tests on uni-directional laminato confirm which theoretical
predictions are the most realistic at some specific stress ratios.

. Biaxial compression tests to eliminate the influence of buckling that may have resulted
in low experimental failure loads for some laminates.

. Moretestson initial failure and its significance.



2.3 Review of Literature Related to Micromechanical Modelling

The purpose of this section is to introduce some of the methods used to determine the influence
of the mechanical properties of the fibre and matrix on the elastic properties of the composite
materials. This area of research, where interest is focused on what is happening at the level of the
fibre and matrix, is commonly referred to as micromechanics, primarily to differentiate it from
macro-mechanics wherein the stresses and strains within individual layers are generally of

interest.

2.3.1 Review of Literature Related to the Representative Volume Element (RVE)

With rapidly growing computational modelling capability, the micromechanical anaysis of fibre
reinforced composite materials has become an important means of understanding the behaviour
of these materials. An appropriately introduced representative unit cell or representative volume
element (RVE) is usually the first step into such an analysis. Before a unit cell can be introduced,
a common practice is to assume an idealised regular arrangement of the reinforcing fibres in the
matrix. Occasionaly, regularly packed fibres are obtained in some modern composites. The
loading conditions to the materia represented by the unit cell can be thermal, mechanical or other
types. The prescription of the loads to the unit cell is normally expressed in terms of macroscopic
field quantities, such as macroscopic stresses, strains and change in temperature. For
unidirectionally fibre reinforced composites, frequently employed idealised fibre-matrix
arrangements are sguare packing (Fig 2.2) and hexagonal packing. They have both been studied

extensively, e.g. by several researchers[2, 16-25].



Fig. 2.2 - Unit cellsfor square- and hexagonally-packed arrays.

When a sguare layout is assumed, it is relatively easy to define a unit cell and to interpret the
symmetries that the system possesses to mechanical boundary conditions of the unit cell for a
micromechanical analysis. This is probably why there have been extensive analyses performed
with this idealization. On the other hand, the hexagona layout is less extensively explored,
despite the fact that a nearly hexagonal fibre arrangement can be found in some real composites
[26].

For UD composites with randomly distributed fibres in the matrix over a cross-section
perpendicular to the fibres, there are differences between the two ideaisations. An important
characteristic of such composites is their transverse isotropy, usualy achieved in a statistical
sense. It has been shown (Cowin & Mehrabadi 1995) [27] that, although the mathematical proof
can be found as early as in Love (1927) [28], a hexagona layout preserves the transverse
isotropy, a statistic feature of the majority of real materias, while, in general, a square layout
does not. It is then conceivable that a hexagonal layout is in a more suitable position than a
sguare layout to represent real materials of statistical transverse isotropy [18, 22].

The transverse isotropy achieved through a hexagonal packing, however, is at aprice, i.e. the unit

cell from it is substantially more sophisticated than that from a square packing. In addition to the



square and hexagonal unit cells introduced through the two packing systems, a cylindrical unit
cell (Fig. 2.3) is often used in the literature [2, 17]. In this interpretation it is assumed that the
cross-section consists of many concentric cylinders. The inner cylinder of the concentric pair
represents the fibre and the outer cylinder represents the matrix. The cylinders are not all the
same radius, but the ratio of the radius of the fibre cylinder to the radius of the matrix, or outer,
cylinder is the same for al cylinders. Therefore, the fibre volume fraction is the same for each
pair of concentric cylinders. As the cylinders become smaller and smaller, more and more

volumeisfilled until, in the limit, the entire cross-section is filled with concentric cylinders.

Fig. 2.3 - Alternative interpretation of composite cross-section.

The axisymmetric geometry allows an analytical solution in either an axisymmetric or sinusoidal
form in the circumferential direction [18, 22]. In many cases, this model tends to produce good
results for predictions of the effective properties of a composite. However, since packed cylinders

do not fill the space fully, there is a higher degree of discrepancy between the reality and

idealisation than that of the square and hexagonal cells.



Hashin and Rosen [17] included the gaps between cylinders but arather artificial displacement or
stress field must be assumed before an analytical solution is possible. As a result, the obtained
distribution of stresses may differ from that from the square or hexagonal cells significantly,
especidly, in the matrix.

In any of the square and hexagonal packing systems, there are different geometric symmetries as
depicted in Fig 2.4. In genera, by using different symmetries, different shapes of the unit cells
can be obtained, as illustrated by Li [18, 22] in the case of hexagonal packing in unidirectionally

fibre reinforced composites.

Fig. 2.4 - Different periodical elements for hexagonal packing [18].

However, when one examines a hexagonal layout, the symmetriesin it are not as straightforward
to interpret to mechanical boundary conditions as those in a square layout. As a result, available
analyses made with a hexagonal idealization are not as systematic as with a square layout in the

literature. Usually they fall into one of the following categories:



a. Some of the symmetries are interpreted correctly but the existence of the remaining
symmetries is not realized [29]. The result is that the size of the unit cell has not been minimized

and, therefore, effective use of the unit cell has not been achieved.

b. All the symmetries have been noticed, though vaguely, for some special cases, e.g. under a

specia loading condition, while a generalization is yet still to be made [30].

c. Some of the symmetry conditions have been interpreted incorrectly to mechanical boundary

conditions [31]. Thisis certainly misleading [18].

In most existing unit cells in the literature, because of the symmetries that have been used, the
boundary conditions can only be provided for specific loading conditions, e.g. for a specific
macroscopic stress or strain component [18]. As aresult, some analyses are restricted to a certain
type of loading conditions, such as transverse tension and longitudinal shear [20, 21]. Others
have dealt individualy with every single component, or a limited combination, of macroscopic
stresses or strains [18]. In other words, the macroscopic stresses or strains in an arbitrary
combination are not allowed to be applied simultaneously as loads. While it is possible for linear
problems to employ a superposition law to obtain the combined effects of such a macroscopic
stress or strain state from the results of all the individual cases involved, it may not always be the
preferred approach in every application, especially when any form of non-linearity isinvolved in
the problem, in which case, superposition law is not applicable in general. The involvement of
reflectional and rotational symmetries when these unit cells are established is responsible for not
allowing the arbitrary application of loads because under these types of symmetry transformation,
some stress components show symmetric characteristics while others are antisymmetric. The
same stress component can be symmetric under one symmetry transformation but antisymmetric

under another [18, 22].



Li [18] adopted a systematic approach involving the use of only the translational symmetry
transformations. Two typical idealised packing systems have been employed for unidirectionally
fibre reinforced composites, square and hexagonal. There are a number of important advantages
resulting from this. The unit cells so derived are capable of accommodating fibres of irregular
cross-sections and imperfections asymmetrically distributed around fibres such as micro cracks
and local debonding in the system, provided the regularity of the packing and imperfections is
present. Furthermore, all the unit cells established can be subjected to arbitrary combinations of
macroscopic stresses or strains unlike most available unit cells in the literature which can only
deal with individual macroscopic stress or strain components. Boundary conditions for these unit
cells have been derived from appropriate considerations of the conditions of symmetry
transformations.

Applications of macroscopic stresses or strains as the loads to the unit cells have been described
in such a way that they can be implemented in a straightforward manner and the effective
properties of the composite can be evaluated following a standard procedure. As a result, the unit
cells introduced here are all expected to be applicable to non-linear problems of any nature,

material and geometry.

For a unidirectionally fibre reinforced composite, it is normally reasonable to assume that the
fibres are infinitely long and every cross-section of the composite perpendicular to the fibres is
identical. The micromechanical analysis of such a material can then be simplified to a two-
dimensional problem in the plane of a cross-section of the composite. In this plane, a
mathematical approach, the Voronoi tessellation [31], was adopted by Li [18, 22] to tessellate the
domain of interest in the plane with the centres of the fibres being the centres of Voronoi cells.

The cells obtained in thisway are called VVoronoi cells.



A Voronoi cell is bordered by segments perpendicular to and passing the midpoint of the

segments connecting the centre of the cell and those of the neighbouring cells (Fig. 2.5).

For regular packing, such as square and hexagonal ones, square and hexagonal cells are obtained
as aresult of such tessellations. In either case, all the Voronoi cells are identical throughout the
plane and any one cell can be reproduced by another through a certain trandational symmetry

transformation.

Fig.2.5 - Square (left) and Hexagonal (right) packing and the square unit cell. [18].

Micromechanics has found much success in prediction of the stiffness of unidirectional (UD)
fibrous composites. On the other hand, little is known about the ultimate tensile strength, another
important mechanical property, of the composite materials. The “Rule of Mixtures” (ROM) isthe
most widely used analytical approach for estimating the stiffness properties of unidirectional
composite materials particularly for elastic behaviour when there is a very strong bond between
fibre and matrix. However, as far as failure properties are concerned, the rule of mixtures
technique does not predict accurate results due as it does not account for the stress concentration
which results from fibre-matrix interactions [33]. A semi-empirical approach namely the Halpin-
Tsai relationship is utilised by Crookston [34] in predicting the transverse modulus of a

unidirectional composite. Experimental tests have shown that under conditions where al the



stresses are kept low and of short duration, good correlation is obtained with experimental
measurements for transverse modulus for long-fibre composites using this approach [ 35].

Many other models have been developed by researchers [36-39] to predict the mechanical
behaviour of unidirectional composite materials.

Most strength theories for fibrous composites have been developed based on macro-mechanical
considerations similar to those for isotropic materials, including the Maximum Stress-Strain
criteria and the Tsa—Wu theory [40, 41]. Unlike in isotropic cases, extensive experiments
including biaxial tests, which may be difficult or expensive to conduct in some cases, have to be
performed to determine the strength parameters involved in these macro-mechanical theories
whenever they are applied to any composite. Even with the same constituent materials, different
composite having different fibre volume fraction still requires similar tests. Another drawback
with these theories is that the failure mode cannot be predicted. They are unable to indicate which
of the constituent phases initiates the failure of the composite and meanwhile how rich the
strength of the other phase is. Several micromechanics based attempts to the ultimate strength of
fibrous composites have been made [42, 43]. However, they were focused mainly on the micro-
structural failure mechanisms and were devel oped by pre-assuming a priori deformation modes.
Huang proposed in [38] a set of simple micromechanica formulae for the ultimate tensile
strengths of the unidirectional fibrous composites under individual uniaxia loads. The failure
prediction of the composites is based on understanding for the stress states in the constituent
materials without any pre-assumed deformation mode. Only the material properties of the

constituent fibre and matrix as well as fibre volume fraction are required to apply these formulae.

Wilczy ski and Lewi ski [36,37] presented an algorithm that has been used for determining the
elastic properties of a unidirectional polymeric fibrous composite with isotropic reinforcement
such as glass fibre as well as orthotropic reinforcement, typically carbon, polyethylene or aramid

fibres. The agorithm consists of a cylindrical cell of unit radius and length representing a regular



structure of continuous, parallel, elastic and isotropic fibres (in a hexagonal array) embedded in
an isotropic elastic matrix. Initial research work [36] covered analysis on isotropic reinforcement
while later anaysis [37] permits not only for isotropic reinforcement but also the more
complicated case of orthotropic reinforcement with carbon fibres. The approach presented is able
to obtain all five elastic constants for unidirectional, continuous-fibre composite (Ex, Ey, Gyy, xy
and ;) as well as the stress concentrations on the boundary of the phases with good accuracy in
comparison with experimental results, and is sufficiently simple to be utilised on a Personal
Computer. However, other authors [44, 45] found that transverse modulus predicted from a

square unit cell is closer to the experimental results.

The prediction of the transverse modulus (E,) of unidirectional fibre composites is of great
importance not only because the transverse modulus itself is one important property of
engineering materials but also because it is used as an elastic constant in predicting the stiffness
of general laminates or the off-axis stiffness of unidirectiona laminates [46] and the stiffness of
short-fibre reinforced composites [47, 48]. Thereis large body of work on models that predict the
transverse modulus of unidirectional fibre composites in terms of the properties of the
constituents.

The models can be classified into two categories according to whether the transverse composite
modulus depends on fibre aspect ratio. Most of the existing models assumed that the transverse
composite modulus (Ey) was independent of fibre length-to-diameter ratio.

The inverse Rule-of-Mixtures (iRoM) equation [46] for E, was derived by assuming that the
fibres have a rectangular cross-section and employing the Rules-of-Mixtures for the strains of the
composite and its constituents. The iRoM equation was modified by considering the constitutive
relations of the constituents [31]. The advantage of the two modelsis that they are ssmplein form

and thus convenient to use, but they were not satisfactorily applied to experimental results [46].



The Halpin-Tsal equation was derived using a semi-empirical approach [49-51]. The Halpin-Tsai
equation has been widely cited in the literature because it provides a fairly good prediction of E,
for continuous fibre composites.

Shaffer [52] derived two equations for the transverse composite modulus using the mechanics of
materials method. One of these equations is applicable when fibre volume fraction is less than
68% and the other when fibre volume fraction is greater than 68%. The results obtained from
these equations predict values lower than the results evaluated from experiments.

Tsai [53] studied the problem of paralel elastic cylindrical inclusions in an elastic matrix and
derived upper and lower bounds for E, by interchanging the role of fibre and matrix in the
potential energy theorem. Since the bounds are far apart, Tsai hypothesized that the transverse
composite modulus lies somewhere between the two bounds. Hashin and Rosen [17] considered
both hexagonal and random arrays of fibres. They used potential and complementary energy
theorems to derive two bounds for E,. The bounds obtained by Hashin and Rosen are much
improved. Numerical solution techniques have also been used to evaluate the transverse
composite modulus. Adams and Doner [21] used the finite difference method to predict the
transverse modulus of continuous fibre composites.

The above models are only suitable for continuous fibre composites since they neglected the
effect of fibre aspect ratio. Some other models evaluated the effect of fibre aspect ratio.

Yun Fu et [54] proposed a new micromechanical model for predicting the transverse modulus of
unidirectional continuous and discontinuous fibre composites. This model is based on modelling
a composite with a regular array of volume elements and constructing a stress pattern based on
simple averaging procedures in the direction transverse to the fibre axis for a representative
volume element. The predictions of the model are compared with existing experimental results
for various fibre/matrix systems and very good agreement was found. This model has advantages

over other existing models not only because the effects of fibre aspect ratio, inter-fibre spacing



and fibre end gap are taken into account and the expression for the transverse modulus of
composites is simple in form but also because the present model gives precise predictions of the

transverse composite modulus (Fig.2.6).

Fig. 2.6 - Schematic drawing of continuous fibre composites and a corresponding simpl e representative
volume element. [54].

Severa theoretical models have been proposed for the prediction of composite properties from
those of the constituent fibre and matrix. Among the elastic constants predicted by these models,
the longitudinal modulus and Poisson’s ratio show good agreement with experiments and can be
approximated by the simple Rule of Mixtures. The predictions for the other elastic constants,
however, show significant scatter and depend upon the assumed geometrical model of the
composite. Experimental determination of the unidirectional composite moduli is difficult,
especially when it involves determining the longitudinal and transverse shear moduli. Thus,
numerical techniques like finite element methods are needed to verify the feasibility of the

models. Numerical methods to estimate composite properties usualy involve analysis of a



representative volume element (RVE) corresponding to a periodic fibre packing sequence.
Severa papers exist in the literature where the RVE is analysed to determine composite moduli.
These analyses present few issues that need to be examined.

Firstly, the correct RVE corresponding to the assumed fibre distribution must be isolated. This
has not aways been done correctly. For example, Shi et al [55] modelled a hexagonal
distribution of short fibres by a RVE that actually represents a square array fibre distribution [3].
Secondly, correct boundary conditions need to be applied to the chosen RVE to model different
loading situations. Proper consideration must be given to the periodicity and symmetry of the
model in arriving at the correct boundary conditions. Under longitudinal and transverse normal
loading, atypical RVE can deform in such away that it remains a right parallelepiped, i.e. plane
sections remain plane. This has been correctly modelled by several researchers [21, 56, and 57].
However, many researchers, modelling longitudinal and transverse shear loading, have made
incorrect assumptions about the deformed shape of the RVE.

Naik [58] and Brockenbrough et al. [57] modelled transverse shear loading assuming that the
deformed boundary of the RVE remained plane (no distortion). Caruso [59] also made a similar
assumption about the deformed shape under transverse shear loading and noted that ‘the finite
element predictions for Gyz are not very reliable in view of the difficulty associated with
simulating the respective boundary conditions'.

In their work, Sun and Vaidya [3] show that the assumptions made by many researchers are
incorrect applying the appropriate constraints on the RVE for various loading conditions, such
that they ssmulate the actual deformation within the composite and relating the non-homogeneous
stress and strain fields within the RVE to the average stresses and strains by using Gauss theorem

and strain energy equivalence principles.



Evaluation of sensitivities for transversely isotropic [60,61] unidirectional composites to a
number of material and geometric parameters using two-dimensional, generalised plane strain
elements within an implicit FE code (ABAQUS/Standard) has been proposed by Crookston et al
[60]. This method enables quick determination of the significance of each input parameter before
a series of time consuming and computationally expensive three-dimensional analyses of textile
composite repeating unit cells is conducted. The input parameters addressed in the analysis
included fibre modulus, matrix modulus, matrix failure stress, the amount of fibres, the tow
aspect ratio and the tow shape. The effect on the transverse modulus and failure strength of the
composite was examined for each of the input parameters. It was found that the number of fibres
enclosed within the tow region of a unit cell had great influence on the transverse behaviour of
the unit cell. Conversely, the fibre modulus which is believed to have significant effect in the
longitudinal direction was proven to have the least effect on the modulus and failure behaviour of

the unit cell in the direction perpendicular to the fibre.

Micro-mechanical interaction of fibre and matrix is the key to understanding the mechanical
behaviour of composite materials. By modelling the fibre-reinforced material at the micro-
mechanics level the mechanical response can be understood and improved. Also, understanding
the complex micro-mechanical response is important for studying load transfer among fibres and
the effect of fibre waviness. As the fibres are being melt-spun, the cross-section of the generated
fibre may be non-circular or wavy. Also, there may not be perfect bonding between the fibre and
matrix.

Chati and Mitra [62] investigated composite elastic constants at a macroscopic level and the
stress distribution at interfaces for a given volume fraction of fibre by using in their work the
Boundary Element Method (BEM). The effects of waviness or “crenulations’ and debonding

have also been studied. In this work it is assumed that the binder and the fibre materials are



linearly elastic, isotropic and homogeneous. However, due to the fibre placement, the reinforced
material is anisotropic.

Even Eischen and Torquato [63] have applied the BEM for the determination of effective elastic
moduli of composite materials taking into account an idealized hexagonal array of infinitely long
fibres. A variety of inclusions either stiffer or weaker than the matrix and, a wide range of
volume fractions of fibres have been examined. The main difference between Eischen and
Torquato©s work and Chati and Mitra's work is that their model is purely two-dimensional,

whereas Chati and Mitra’'s model is three-dimensional for atransversely isotropic material.

Taliercio et al [39] developed a numerical model based on the “homogenization theory” (the term
homogenization usualy qualifies the passage from the micro to the macro-scale) to describe the
macroscopic mechanical response of unidirectional long-fibre composites with strain-softening
matrix, subjected to stresses acting in any plane transverse to the fibres. The matrix brittlenessis
more significant in comparison to the fibres in this plane since the strengthening effect of the
fibresis negligible. This method is applicable to any macroscopic stress conditions provided that
a 3D finite element model with suitable boundary conditions. The main results of these analyses
showed that the macroscopic tensile strengths of a brittle-matrix composite are much lower than

both the strength of a ductile-matrix composite and the strength of the unreinforced matrix.

De Kok [44] has created a representative unit cell model for glass fibre reinforced epoxy based
on atwo-dimensional generalized plane strain finite element model in which meshes are based on
square and hexagonal arrays. The fibre and matrix were attached with coinciding nodes and
perfect fibre-matrix bonding was assumed. By changing the material properties of the circular
layers at the fibre-matrix interface from fibre to matrix or vice versa, a range of fibre volume

fractions could be obtained from the geometric model. The transverse elasticity and failure



behaviour of the unit cell has been examined and it is found that using von Mises failure
criterion, a good agreement is found between failure strain results from the model and
experiments. A similar yet simplified version of the representative volume element (RVE) from
De Kok has been generated using plane strain elements. It is believed that the differencesin local
stresses caused by the use of plane strain (through-thickness strain is neglected) rather than

generaized plane strain (permits through-thickness strain) are expected to be small [64, 65].

Unidirectiona glass-reinforced plastics (GFRP) show poor mechanical performances in the
transverse (90°) direction. This drawback limits use of such materials in many structural
applications. Indeed, transverse failure of composite plies can lead to an important loss of
stiffness of the structure, to a decrease of fatigue strength. Despite efforts made by material
scientists during the last decade to improve performance of laminates, transverse failure strain
and stress of composites remain much lower than ultimate properties of un-reinforced polymers.
As a matter of fact, transverse failure strains of glass/epoxy or glass/polyester composites are
usually close to 0.5% [66, 67]. Many experimental and theoretical studies have been performed
in order to find the origin of composites transverse brittleness or to propose technological
solutions to solve the problem [66—70]. Briancon et al [68] observed in situ plastic strain of the
matrix during transverse loading of unidirectional glass/epoxy composites. Plastic strains in the
matrix were revealed by distortions of micro-grids settled on specimen surface.

Using this technique, the authors showed that plastic strain is localised near the tip of micro-
cracks and islimited by the nearest fibres which prevent its further extension. This feature gives a
first explanation for the overall brittle transverse behaviour of the material. In another study, Asp
et a [69] showed that epoxy resins submitted to atriaxial state of stress exhibit values of failure

stress very close to those observed for unidirectional composites in transverse tension. They



concluded that the triaxia stress state in the polymer matrix is mainly responsible for transverse
brittleness of laminates.

More advanced analyses have aso been performed [64]. They are generaly based on the
determination of stress field distribution by means of analytica or numerica models. Failure
criteria allow the evaluation of maximum admissible strain in the polymer matrix or in the
interfacial areas. Using finite elements calculations, Asp et a [64] studied the stress distribution
in an ideal composite constituted by a square array of fibres. These authors employed a failure
criterion based on the dilatation energy which accounts for the influence of stress triaxiality on
the matrix behaviour. They found that transverse failure mechanism of laminates is governed by
the storage moduli of the constituents, by the glass fibre content, and eventually by the presence
of an interphase. The model also predicted an increase of failure stress and strain when
incorporating a soft rubbery interphase between fibre and matrix. The analysis performed by De
Kok et a [44] using finite element calculations showed that high local strains take place in the
matrix at low global strain of the composite. Application of von Mises yield criterion pointed out
that local strains are concentrated in thin bands near fibre/matrix interface. The authors also
suggested that a rubbery interphase allows the plastic strain to extend in the matrix and promotes
an increase of the overall strain of the composite. De Buhan and Taliercio [70] proposed an
analytical approach based on the concept of homogenisation in periodic media. The model
describes the failure behaviour of laminates taking into account a debonding criterion for the
fibre/matrix interface.

Experimental and theoretical studies have therefore pointed out several factors responsible for the
transverse brittleness of laminates: (i) high localisation of plastic strain in the matrix which is
confined by surrounding fibres; (ii) triaxia state of stress in the polymer; and (iii) probable
insufficient level of adhesion at fibre/matrix interface leading to premature debonding. Since

local plastic strain of the matrix and interfacial adhesion are influent parameters on the transverse



properties of composites, two ways have been investigated in order to improve the performance
of laminates: @) increasing the ductility of the matrix; b) optimising the fibre surface treatments.
Influence of fibre surface treatments on transverse properties of composites is a matter of
discussion. Several studies have provided contradictory results on the subject. Tryson and Kardos
[71] found that coating fibres with a reactive elastomer (flexible epoxy) leads to a 67% increase
of transverse failure stress and strain for unidirectional glass/epoxy composites. According to
these authors, such a phenomenon is related to a modification of the stress field and to a relief of
residual stresses near the rubbery interphase. On the contrary, Podgaiz et a. [72] and Gatward et
al. [73] observed a decrease of transverse failure strain and stress when coating glass fibres with
elastomer sizing (flexible epoxy or polyvinyl). They suggested that the low tensile strength of
elastomers and a poor level of adhesion between the rubbery interphase and the epoxy matrix
could be responsible for the poor performance of such composites. According to these authors,
tensile strength of the interface/interphase is a crucia parameter for transverse properties of
composites.

Benzarti et a. [66] investigated the effects of fibre surface treatments on transverse mechanical
behaviour of unidirectional glass/epoxy composites. Model composite plates were processed by
filament winding using glass fibres coated with different sizing changing by their epoxy
functionality and their reactivity towards the matrix.

In the first part of their study, transverse tension and micro-indentation characterisations were
performed in order to correlate the ultimate behaviour of the composite with interfacial
properties. Experiments revealed that the most reactive sizing promote the highest interfacial
strength and also increase ultimate properties of laminates in transverse tension. This feature was
attributed to the high crosslink density of the polymer network in interfacial aress.

In the second part the authors carried out finite element calculations in order to evaluate local

strain and stress concentration in a composite submitted to transverse tension conditions



establishing the general trend for the evolution of composite failure strain as a function of
interfacial strength. The modelling showed that a transition of the composite failure mode occurs
at aglobal strain of 1.15%, from an adhesive rupture at the fibre/matrix interface to a cohesive
rupture in the matrix. In the domain of adhesive rupture, the value of the composite failure strain
appeared to be directly governed by the interfacial strength. Therefore, improving interfacial
strength by use of fibre sizing with high epoxy functionality could constitute an interesting way

to reduce transverse brittleness of composite structures.

2.3.2 Review of Literature Review Related to Failure Criteriafor Polymers

The development of polymers for use as matrix materials in composites has generally been driven
by the desire to achieve high yield stress and toughness as well as good adhesion with fibres.
Although these properties are desirable and generally lead to improved composite performance, it
IS important to realize that the local stress state in the matrix within a composite can induce
behaviour which may not be reflected in these properties. The response of polymers to the
mechanical loading is very complex. For example, the stress state plays a considerable role in the
materia failure. Tests under all possible stress combinations cannot be provided [6, 7], therefore,
for the prediction of their strength, it is necessary to use a failure criterion obtained on the basis
of general performance information about the material. In addition, it is important to consider the
effects of the strain rate and temperature, since they have a significant influence on the yield and
failure behaviour of polymers. For isotropic engineering polymers, these effects were examined
in[6, 7, 74-76].

On the contrary most metals, the deformation and the failure stress of polymers are greatly
affected by the hydrostatic pressure, as shown by the difference observed between the stress-

strain curves in uniaxial tension and uniaxial compression [6, 77]. This effect also leads to a



pressure dependence of the yield and failure stresses. The effect of hydrostatic pressure on the
yield behaviour of polymers was demonstrated experimentally by several authors [77-81]. In
contrast to metals, for polymers, the yield stress is often assumed to be equal to the maximum
stress in the stress-strain curve [6]. The genera effect of hydrostatic pressure on the mechanical
properties of polymers consists in increased yield and failure stresses. The one-parameter yield
criteria, such as the Tresca and von Mises criteria, represent the polymer behaviour inadequately
because they cannot describe the dependence of the yield and failure stresses on the hydrostatic
part of the stress tensor. Severa criteria have been proposed to predict the yield and failure of
polymers subjected to static multi-axial loading. Two modifications of the Tresca and von Mises
criteria are often used [64, 81-83]. According to the first one, using the maximum shear stress or
the hydrostatic stress, respectively, a linear function of the hydrostatic pressure was introduced
[6,7]. A pressure-modified von Mises criterion predicting a nonlinear dependence of the yield
stress on the hydrostatic pressure was applied to polymers [64, 84-86]. In the three-dimensional
space of principal stresses, the modified Tresca surface is an irregular hexagona pyramid, and
the two modified von Mises criteria are a cone and a paraboloid (Fig.2.7), respectively. Another
criterion, used for polymers is the Mohr—Coulomb criterion [87, 88]. It predicts that the critical
stress can occur in any plane and depends linearly on the norma stress in the plane. The
experimental investigations have shown that the criteria based on alinear dependence of the yield
stress on the hydrostatic pressure afford a good description of polymer behaviour mainly under
low pressures [6, 81-83]. The experimental results show that the yield and failure stresses first

grow linearly with this pressure and then, at higher pressures, the growth rate decreases [6].

In commercially produced composites with high fibre volume fractions it is inevitable that fibres
are distributed unevenly and that clusters of fibres as well as resin-rich areas exist. In such

conditions the local stress states will vary between nearly shear dominated to nearly hydrostatic.



The same given matrix will thus be predisposed to different deformation and failure modes in
different regions of the composite. In most studies of glassy polymers, the shear-driven yielding

has been emphasi sed with attention being given to the associated influence of hydrostatic stress.

Fig. 2.7 - Failure surfacesin the principal stress space, coaxial with the
hydrostatic axis ,( 1= 2= 3)(a) von Mises; (b) Tresca; (c) Coulomb; (d) Mohr [88].

Severa yield criteria for this purpose have been proposed [88]. These criteria usually predict the
effect of hydrostatic compression on the yield stress satisfactorily but do less well when
hydrostatic tension is applied. Also, the consideration of the yield stress reduction aone cannot
explain the observed fact that although the strain to failure in uniaxia tension for matrix
materials ranges from 1.5 to 70%, the strain to failure in transverse tension of unidirectional fibre
composites typically varies between 0.2 and 0.9% [1, 64, 67].
A part of the explanation could lie in fibre/matrix debonding which may occur at low strains.
However, as demonstrated in a[64, 69] the triaxia stress state can reduce the strain to failure of
epoxies to within the observed failure strains in transverse tension of composites.
Yield and failure criteria for epoxies subjected to different stress states were examined by Asp et
a. [69]. In particular, the authors examined three epoxy systems of interest as composite matrix

materials for their yielding and failure behaviour under uniaxial, biaxial and triaxial stress states.



Yield criteria applicable to glassy polymers, i.e. accounting for the hydrostatic stress effect on the
deviatoric stress to yielding, were assessed. It was evaluated that under stress states resembling
those in matrix constrained between fibres, e.g. equi-biaxial and equi-triaxia tension, yielding is
suppressed while brittle failure, presumably caused by crack growth from cavitation, occurs.

Therefore the critical dilatational strain energy density was proposed as criterion of failure.

Perez and Pavan [82] tested three amorphous polymers, polymethyl methacrylate, polystyrene
and polycarbonate in uniaxia tension, uniaxial compression, plane strain compression and simple
shear, over a range of temperatures. In each test, the yield point was precisely determined via
residual strain measurements after unloading. With the yield stresses determined for these four
different stress states, two pressure dependent shear yield criteria, i.e, the modified Von Mises
and the modified Tresca criteria, were checked and compared. It was shown that (i) in each case
(material, temperature, initial ageing state), the yield locus is satisfactorily described by either
one or the other of the two criteria, and (ii) each criterion can be associated with a specific
deformation mode (either homogeneous or localized in shear bands). As for the temperature
dependence of the yield stress sensitivity to the hydrostatic pressure, it appears to be related to
the glass transition temperature (T,) and more precisely to the a and b relaxations. Finaly, the
pressure dependence of the yield stress was explained as being due to two effects: (i) the
influence of pressure on molecular motions leading to yielding and (ii) the influence of pressure

on the micro-structura state.

By assuming that the failure condition is time and temperature-independent and the strength of
polymersis afunction of the stress state, the failure condition can be expressed as.

f(sij, ki ke, ..) =0 (2-1)



where sj; are the components of the stress tensor and ki, ko , ... are materia constants. The failure
condition defines a failure limit of the material under a complex stress state. For isotropic
materias, the stress components in Eq. (1) can be replaced by a set of isotropic arguments, for
instance, the principal stressess;, S, , and s3:

f(Sl, So, S3, kl, kz , ) =0 (2-2)

In discussing failure conditions, very useful is the geometrical representation of a stress state in
the three-dimensional space of principal stresses s; (i = 1, 2, 3). Each point with coordinates s,
S, , and s3 can also be described by the coordinates x, h and g, where x is the hydrostatic
coordinate with s; = s,=s3, whereash and g are the polar coordinates in a deviatoric plane x=

const. The coordinates x, h and g, can be expressed in terms of s; as follows:

(2-3)

Therefore, the failure condition results in the relationship

f(x, h, q, ki, k, ..) =0 (2-4)

The form of the failure surface can be determined from experimental data. Numerous tests with

polymers show that the failure surface in the space of principal stresses is axisymmetric relative



to the hydrostatic axis, therefore, it is possible to reduce the number of coordinates to two, x and
h so that the failure condition can be written in the form:

f(x, h, ki, k2, ...) =0 (2-5)

Altenbach [6, 7] proposed a new static failure criterion for isotropic polymers with different
strengths in tension and compression based on exponential dependence between the mean stress
and the von Mises equivalent stress.

The authors assumed an exponential dependence between x and h:

(2-6)

where k and xo are material parameters. The two materia parameters introduced can be
determined by two simple tests, the uniaxial tension and compression. This failure criterion
allows a geometrical interpretation. In the space of principa stresses, it defines a smooth, convex
rotational surface open in the direction of hydrostatic pressure. It is convenient to represent this
surface in two characteristic sections. The intersections of the failure surface with the deviatoric

planes x=const are circumferences, Fig. 2.8a. A meridional section is shown in Fig.2.8b. It can be

noticed as a pure hydrostatic pressure cannot cause failure. The constant k is the limit value of h,

since from x ® -¥ it follows that

Hence, the constant xo defines the vertex of the surface. The locus of the criterion is nearly
conical for low hydrostatic pressures and tends to a cylindrical form if an increased hydrostatic

pressure is applied.



Fig. 2.8 - Representation of the failure surface: a) deviatoric plane and b) meridional plane (h-x plane).

The validity of the criterion was demonstrated by experimental strength data taken from the
literature for several polymers in the case of superimposed hydrostatic pressure. A limitation in
the use of this failure criterion is that for practical application it is necessary to determine

experimentally the material parameters.

Bigoni and Piccolroaz [89] proposed a new yield/damage function for modelling the inelastic
behaviour of a broad class of pressure-sensitive, frictional, ductile and brittle-cohesive materials.
The yield function allows the possibility of describing a transition between the shape of a yield
surface typical of aclass of materials to that typical of another class of materials.

This is a fundamental key to model the behaviour of materials which become cohesive during
hardening (so that the shape of the yield surface evolves from that typical of a granular material
to that typical of a dense material), or which decrease cohesion due to damage accumulation. The
proposed yield function was shown to agree with a variety of experimental data relative to soil,
concrete, rock, metallic and composite powders, metallic foams, porous metals, and polymers.
The yield function represents a single, convex and smooth surface in stress space approaching as
limit situations well-known criteria and the extreme limits of convexity in the deviatoric plane.

The yield function is therefore a generalization of several criteria, including von Mises, Drucker—



Prager, Tresca, modified Tresca, Coulomb—Mohr, modified Cam-clay, and concerning the

deviatoric section, Rankine and Ottosen.

Theocaris [90] reconsidered existing failure criteria for isotropic bodies compared with modern
versions taking into account either the influence of the strength differential effect or the influence
of the internal dilation of the materias on yielding and therefore the contribution of the
hydrostatic component of stress in failure. Modern criteria are expressed by quadric polynomias
whose coefficients constitute convenient terms of the failure tensor of the material which for the
isotropic body is defined by the respective failure stresses in simple tension and compression.
Among the different expressions for the respective failure tensor polynomial of a materia the
paraboloid of revolution failure locus is the most convenient, since it fulfils the requirements of
invariancy relative to any reference coordinate system, it is flexible and yields a unique solution
for each loading path while it is unambiguously defined in the stress space. Furthermore, it isin
conformity with basic physical laws and the extensive experience that the hydrostatic stress
constitutes a safe loading path for the material. Experimental evidence with all varieties of
isotropic materials corroborates the theory upon which the criterion is based. Finally, the authors
presented a failure criterion, based on void coalescence mechanisms inside the material, which
also takes into consideration the influence of internal dilation of the material and therefore it
depends on the hydrostatic component of stresses. This criterion is an improvement of the
Gurson-McClintock [91-92] criterion which permits a judicial determination of the coefficients
of the respective quadric polynomial expressing it, since it belongs to the broad family of criteria
based on energy principles.

The Gurson-McClintock failure model [91, 92], based on a description of failure void nucleation

and coalescence for the initiation and propagation of cracks in a material, is expressed by ayield



condition, which is based on an upper-bound rigid-plastic solution for spherically symmetric
deformations, applied around a spherical inclusion.

This condition is expressed by:

s%+ 20 fsm ch(GeSh/2Sm) — (1+ s ) sp” =0

where s, is, as usual, the macroscopic effective von Mises stress, given by

s%=%S; S

with S; the deviatoric components of stresses, whereas sy, /3 is the hydrostatic stress. While
Gurson assumed values for the constants g; (i = 1, 2, 3) given by g1= q.= g3 = 1, it was found
[38,43] that a better fitting of results can be achieved, when the influence of neighbouring voids
to a central pair of voidsis considered, for periodically arranged cylindrical voids in a matrix. If
this influence is taken into account in a continuum model without initial voids, these constants

should take the values:

1 =1.5;
0= 1.0

O3= q21:2.25.

Moreover, sy, isthe equivalent tensile flow stress, representing the actual macroscopic stress state
in the voided matrix material, disregarding local stress concentrations, and f is the current void

volume-fraction.



2.3.3 Review of Literature Related to Damage Modelling
The damage and failure progress in laminated fibrous composite structures is very complicated

compared to that of conventional metalic materials. Composite structures may vary their
stiffness and strength due to damage accumulation such as matrix cracking and fibre breakage
during the loading history of the composite members.

The study of composite materials and structures can be undertaken from two different
approaches. micro-mechanical, meso-mechanical and macro-mechanical approaches. In the
micro-mechanical approach, the constituent fibre and matrix materials, and their interaction are
distinctively considered to predict the overall behaviour of the composite structural member. The
damage and failure in fibrous composites are modelled at the fibre and matrix level. In the
macro-mechanical approach, the properties of the constituent fibre and matrix materials are
averaged to produce a set of pseudo-homogeneous properties for the composite structural
member. The macro-mechanical approach does not consider the distinctive modelling of the fibre
and matrix materials. The damage and failure of composite structures are examined based on
smeared composite stresses and strains. The macro-mechanical approach has the advantage of
requiring less detalled modelling than the micromechanical approach. However, the
micromechanical approach provides more physical information, e.g. failure of fibre and matrix,
as well as load transfer between the two. As a result, a micromechanics model is developed for
analyses of laminated, fibrous composite structures. In particular, the strength and stiffness
degradation of laminated fibrous composites is analyzed as damage and failure progress.
Micromechanics studies related to continuous fibre reinforced composites deal with detailed
micromechanical analyses of fibres and surrounding matrix. These studies model asingle fibre or
a small number of fibres to predict effective composite stiffness properties, composite strength
properties and damage evolution of micro-cracks. While some studies derive analytical solutions,
most of the studies use finite element analyses. These investigations show a detailed account of

the effects of fibre and matrix properties, fibre-matrix interaction and neighbouring fibre-fibre



interaction on the effective composite material properties of stiffness and strength. Furthermore, a
partial fibre-matrix interface debonding as well as local micromechanical cracks, e.g. matrix
cracking and fibre breakage are studied to determine their effects on the effective composite

material properties.

The importance of the numerical ssimulation is partly due to the difficulty in conducting tests with
special configurations or observing the occurrence of internal damages at different loading levels.
This simulation is usualy carried out through the use of the finite element method. The anal ytical
models used to represent these materials are either homogenous [93, 94], or heterogeneous in
nature. The use of the first type is limited to the macroscopic mechanical evauation. While the
second type, which includes two-dimensional [95] and three-dimensional models [96-99], is
dedicated to the microscopic mechanical evaluation. A two-dimensional model is acceptable
when plane stress and strain conditions are imposed. However, these conditions are not fulfilled
when we deal with structures such as woven composites. For such structures, athree-dimensional
modelling becomes necessary, and has been investigated by many researchers. There are
numerous papers on the numerica simulation of woven fabric composites, which are limited
within linear characteristics such as elastic moduli and initial faillure [96-99]. In existing
research, only geometric non-linearity was considered without stiffness reduction caused by
damage [99], or all damaged stiffness were assumed to be zero [100]. A few non-linear analyses
have employed an anisotropic damaged constitutive equation corresponding to its modes [5, 101—
103]. As their anisotropic damage model has been based on only experimental knowledge, some
guestions remain about the selection of reduced components and the determination of reduced
values. Therefore, it is required to establish a theoretical anisotropic damaged constitutive

eguation and finite element analysis considering damage modes for woven fabric composites.



Zako et a [104], developed a theoretical anisotropic damaged constitutive equation based on
damage mechanics, and employed it to reveal damage mechanisms for unidirectiona fibre
reinforced composite materials [105,106]. In a more recent paper Zako et a [107] proposed a
non-linear finite element analysis based on the previous results. The utility of the new
formulation was proven through its application onto a plain woven fabric composite. The authors
employed a three dimensional heterogeneous FE model, which consists of fibres and matrix.
Fibres and matrix were treated macroscopically as anisotropic and isotropic homogeneous bodies,
respectively. The fibres were arranged unidirectionally within lamina of the composite laminates,
but they were in the form of fibre bundles in textile composites. For the fibres, one or more
damage modes, such as fibre breaking and transverse cracking, can take place [108]. These
modes affect strongly the mechanical behaviour of the structure. An anisotropic damage model
for fibres and an isotropic damage model for matrix were utilized by Zako et a [107] to Ssmulate
the microscopic damage propagation and thus to characterize the damage modes. Since in general
failure criteria can not indicate the type of damage mode, which affects strongly the mechanical
behaviour of composites, the damage modes of fibres was classified into four types as shown in
Fig. 2.9(a). TheaxesL, T, and Z (X, y, z in the present work) mean the principal coordinates of
orthotropic material, and they correspond to fibre and transverse directions, respectively.
According to the local orientation of the fibres, the material coordinates are defined for each
element and by calculating the corresponding stress-to-strength ratios for the different modes,
the authors deduced that the damage mode that takes place is the one in which the stress-to-
strength ratio has the maximum value. Moreover in order to characterize each one of the damage
modes, the authors adopted the Murakami’s damage tensor [22], which is defined by the

following equation:



D; and n; are the principa value and principal unit vector of the damage tensor. In matrix form,

thisis expressed as follows:

The characteristics of anisotropic damage model for fibre bundle are depicted in Fig. 2.9(b).

@

(b)

Fig. 2.9 - Characteristics of anisotropic damage model for fibre bundle [107].

Bakuckas et a [110] in their research presented the concept of micromechanical-anisotropic
continuum approach to study the mechanistic damage growth at the micro-structural level in
centre-cracked unidirectional composite specimens. The methodology developed was
incorporated into a displacement-based finite element program to form the Micromechanics
Analysis and Damage Growth In Composites (MADGIC) code. One of the unique features of this
code is that in simulating the damage growth in the form of propagating cracks, the crack paths
need not be selected a priori. Damage growth or crack path generation capabilities, were
introduced by a node splitting and nodal force relaxation algorithm. Prediction of fibre breakage,
matrix cracking and fibre-matrix debonding was accomplished by determining the sequence and
direction of node splitting through the employment of appropriate failure criteria. Depending on

the location of a node, only certain types of splitting mechanisms may occur. All the nodes must



be classified according to their locations in the composite medium so that failure criteria can be
applied appropriately. In Fig.2.10 is shown schematicaly a state of damage in a unidirectional

composite and six possible classes of nodes.

Fig.2.10 - Schematics of node classes.

Due to the modular structure of the MADGIC code, any failure criterion can be readily
implemented for each of the different constituents. Only the maximum normal stress and
maximum shear stress failure criteria were used in the study. In addition, an incremental flow
theory with isotropic hardening has been incorporated in the code to account for matrix plastic

deformation when analyzing damage growth in metal matrix composites.

Tabiel et a [111] suggested a micro-mechanical material model of woven fabric composite
materials to simulate the progressive failure. The quarter sub-cell of the representative volume

cell (RVC) depicted in Fig. 2.11 isdivided in many blocks.



Fig. 2.11 - Woven composite interlacing pattern [111].

Micro-mechanical failure criteria for each constituent material in the block and corresponding
stiffness degradation were adopted there. The material shear non-linearity described by Hahn and
Tsai isincluded in the model. The material models of woven fabric composites described by the
researchers are suitable for non-linear finite element failure analysis of composite structures, but
because of the high degree of RVC discretization, they are computationaly inefficient to be
applied in explicit finite element codes. The authors developed a computationally efficient and
simplified micro-mechanical model of woven fabric composite materials [112] to predict their
elastic properties. The advantage of the model is the lack of RV C discretization and good elastic
property prediction. The choice of the RV C isintended to account for geometrical non-linearity a
simple and efficient technique for fibre reorientation was incorporated in the model [113, 114].
The failure criteria and stiffness degradation scheme is adopted almost entirely from Blackketter
et a [5]. The isotropic matrix material in each sub-cell is checked for failure by testing the

maximum of the principal stresses:



where X, is the tensile strength of the matrix, de and dic are the discount factors. The failure

criteria and the degradation scheme for the yarn material areillustrated in Table 2-2.

Table 2-2 Failure criteria and degradation scheme for yarn materia [112]

The failure in the axial direction of the yarn leads to fibre breakage. This kind of failure is

considered as an ultimate failure of the composite material.

Kwon et a presented [115] a simplified micromechanics model to predict the effective composite
behaviour, as well asto study the damage evolution for composite structures.

The micromechanical model considers a unit cell composed of four subcells by assuming the
repetitive or periodic nature of the fibre and matrix materials. One subcell represents the fibre and
three subcells represent the matrix material. The unit cell is a three-dimensional solid, the
rectangular parallelepiped. As shown in Fig. 2.12, the unit cell models a quarter of a fibre

embedded in amatrix material because of symmetry.



Fig. 2.12 - A unit cell made of subcdlls (a-fibre; b, ¢ and d-matrix) [115].
(1-, 2-, 3-directions are respectively x-, y-, z-directionsin the present work).

The unit cell has dimensions of unity. The size of each subcell is dependent on the fibre volume
fraction.

Incorporating this micromechanical model into a finite element analysis program for composite
structures provided the following sequence of calculations:

(1) Compute the effective material property matrix of the fibrous composite from the fibre and
matrix material properties, and the fibre volume fraction using the present micromechanics
model.

(2) Find the nodal displacements from the finite element analysis of the composite structure using
the effective material property matrix. For a laminated structure, the effective material property
matrix should be transformed according to the rotation of the axes of each layer.

(3) Compute the composite strains from the displacements.

(4) Compute the fibre and matrix strains from the composite strains.

(5) Determine the fibre and matrix stresses from the fibre and matrix strains using their
constitutive equations.

(6) Calculate the composite stresses from the fibre and matrix stresses.



(7) If necessary, calculate the residual force vector from the composite stresses for iterations.

The micromechanical damage and failure process was considered based on the fibre and matrix
stress level, because the fibre and matrix stresses are computed explicitly. Once failure criteria
are satisfied, the material property of the fibre or matrix is degraded to induce stress unloading at
the failure location. For matrix cracking, the matrix property is degraded while the fibre property

is degraded for fibre.

The effect of waviness in the fibre yarns were investigated by Ismar et a in [116]. Considering
the fibre bundle arrangement to be periodical, the unit cell of Fig. 2.13 can be used to

characterize atwo-dimensional woven composite.

Fig. 2.13 - The built-up of the fibre bundles.

The damage behaviour of the fibre bundles strongly depends on the loading situation. The Fig.

2.14 shows afibre bundle in different basic loading situations.



Fig. 2.14 - Damage behaviour in fibre bundles[116].
(1-, 2-, 3-directions are respectively x-, y-, z-directionsin the present work).

The linear elastic behaviour of the fibre bundles under tensile loading in fibre direction ends
because of crack initiation in the matrix and fibre-matrix debonding. At higher stresses multiple
fibre breaking occurs and causes the end of the load bearing capacity of the fibre bundles.
Considering the fibre bundles as homogeneous on the yarn scale these micromechanical damage
events (matrix cracking, fibre breaking and debonding) result in a reduction of the elastic
coefficients of the fibre bundles. Primarily the Y oung® modulus Ey, the Poisson® ratios nyy, Ny,

and the moduli of shear G,y, Gx, are reduced by these events.

Because of symmetry, the material behaviour perpendicular to the fibre direction can be
considered to remain isotropic during progressive loading: nyy = Ny, and Gyy = Gy, In order to
describe the damage behaviour of the fibre bundles parallel to the fibre direction the authors used

three damage variables Dg, D,,, D to increase the material degradation of the fibre bundle in the



fibre direction. By using damage variables the authors were able to describe the nonlinear
behaviour of the fibre bundles in the fibre direction, while the commonly used fracture criteria

only distinguish between total integrity and total fracture of the structure regarded.

2.3.4 Review of Literature Related to Ther mal Residual Stresses

Most composites are made at an elevated temperature: as the thermal expansion coefficients of
the fibres generally do not match those of the matrix, thermal residual stresses will be generated
in both the fibres and the matrix when the composite cools down to room-working temperature.
While these residual stresses essentially do not affect the composite stiffness, they do influence
the composite strength. The amount of influence depends on the temperature variation and on the
thermal—mechanical properties of the constituent materials. It is, thus, necessary to incorporate
the thermal residual stresses into the composite strength formulae. Several attempts have been
made in the past to understand thermal load effects on composite behaviours.

Schapery [117] obtained explicit expressions for the overall thermal expansion coefficients based
on the thermo-€lastic extreme principle, using only the constituent thermal-elastic properties and
the fibre volume fraction. The Schapery’s formulae are known to be sufficiently accurate,
especialy for the longitudinal thermal expansion coefficient of the composite [118]. However,
the Schapery’s results can also be obtained upon an assumption of free-transverse stresses [46].
Therefore, Schapery’s formulae are less accurate for thermal stress analyses. In [118] Huang
incorporated these thermal residual stresses into isothermal strength formulae of a unidirectional
composite described in [51].

The fabrication process of fibre-reinforced polymer matrix composite materials requires a high
temperature curing procedure.

A typical curing process consists of two steps:



(2) isothermal curing at an elevated temperature during which the polymer shrinks as a result of
the purely chemical reaction (polymerisation) and builds up stiffness while the reinforcement

remains unchanged;

(2) thermal cooling from the curing temperature to room temperature during which both polymer
and reinforcement contract but by different amount and in addition the polymer may change its

stiffness significantly.

Chemica shrinkage and thermal cooling contraction of polymer resin are constrained by the
surrounding fibre reinforcement, which inevitably results in the development of residual stresses
both at the fibre/matrix interface and inside the bulk resin and fibre. Therefore, cure residual
stress is contributed by the chemical shrinkage of the curing resin and the thermal cooling
contraction of the resin and fibre system. Shrinkage stress is a direct result of volume changes of
polymer matrix that occur during the polymerization process and will depend on the chemical
nature of the material and the curing procedure. During curing, the polymer can go through two
main transitions: gelation and vitrification. Gelation corresponds to the formation of molecular
networks and vitrification occurs when the glass transition temperature Tg of the polymer reaches
the curing temperature. If the materia is isothermally cured above the glass transition
temperature, only gelation will occur. When the material is cured below the glass transition
temperature, it will first gelate and then vitrify. The gelation process results in an equilibrium
elastic modulus, whereas vitrification is associated with the transition from a rubbery modulus to
a glassy modulus. The change in elastic modulus associated with gelation and vitrification,
together with the volume contraction of the polymer, is the dominant factor in the occurrence of
the shrinkage stress [120]. Thermal cooling stress arises from the mismatch in the coefficients of
thermal expansion of the fibre and matrix. During cooling, both constituents contract but the full

contraction of the matrix is constrained as a consequence of being bonded to the fibre. On the



other hand, the fibre is not only shortened by its own thermal contraction, but is also compressed
by the constrained contraction of the matrix. As a result, residual compressive stresses are
induced in the fibre. At the same time, the matrix is constrained by the fibre from full contraction,

and as a result, is stressed in tension. The magnitude of these stresses will depend on the

properties of the fibre and resin system including the thermal expansion coefficient a, Poisson’s

ratio n and elastic modulus E.

The resulting stresses are sufficient to initiate fracture within the matrix immediately around the
fibre [1, 2]. Therefore, it is important to determine the current state of the residual stresses and
their effects on the behaviour of the composite when subsequently subjected to multi-axia
mechanical loading. After curing and cooling of the composite, the matrix is subject to a triaxial
residual stress state [119]. The resulting thermal residua stresses are of compressive nature in the
fibre and tensile nature in the matrix [120].

Numerous methods have been developed to determine the residual stresses in polymer-matrix
composites both experimentally and analytically. In general, experimental methods fall into two
categories, namely destructive and non-destructive methods. Destructive methods, such as hole-
drilling [121], sectioning/cutting [122] and first-ply failure test [123], require the specimen to be
destroyed during testing and therefore cannot be used for in-situ measurements. Non-destructive
tests include warpage/curvature measurements [124], the cure-reference method [119] and
techniques using embedded sensors (strain gauges, fibre optics or crystaline materials) with an

X-ray or neutron diffraction method [125, 126].

As far as analytica methods are concerned, residual stresses in composites are generaly studied
on the macro and meso/micro levels. On the macro-level, classical laminate theory is generally
used and gives predictions at the ply level [127-129]. On the meso/micro-level, a Representative

Volume Element (RVE) or unit cell which represents the meso/microscopic periodic structure of



the laminate is constructed and the analysis is often carried out using a numerical procedure such
as the finite element method [130-132].

Three dimensional finite element models have been employed to study the influence of residual
stresses on shear response of the composites [35, 36]. More recently, a finite element micro-
mechanical based model has been developed to investigate the off-axis behaviour of
unidirectional composites [37]. This model is general and can be used for any combination of

normal and shear loading with residual stresses.

Analytical approaches include methods based on the Self-Consistent Model (SCM) of Hill [25],
extension of the Eshelby’s equivalent inclusion technique [27], Vanishing Fibre Diameter (VFD)
model of Dvorak [30], Concentric Cylinder Models [28, 31] and Aboudi’s Method of Cells [33].
The effects of thermal residual stresses on mechanica behaviour of the composite materials have
also been extensively studied by Nimmer [133] and Wisnom [25]. They examined the transverse
behaviour of high temperature composites in the presence of thermally induced residual stress
fields and found that the presence of residua stresses is beneficial for the transverse behaviour of
composites with low interfacial strength due to the generation of compressive residual stresses at
the interface of the fibre and matrix, for example, positive hoop stresses around the reinforcing

fibre may augment the pull-out energy dissipation and thus increase toughness [133].

Residual stress and strain fields at the fibre-matrix or tow level can be predicted from the
meso/microscopic unit cell model. The formation of residual stresses, especially the tensile stress
in the matrix, is generally detrimental in the production of polymer-matrix composite parts, since
the stress can be high enough to initiate material damage before loading such as interface

debonding and matrix micro-cracking as shown in Fig. 2.15 [134, 135].



The initial damage can reduce the stiffness and the strength of the material, as well as acting as
sites for environmenta degradation and nucleation of macro-cracks. Therefore, any analytical or
experimental study involving damage and fracture mechanics of composites should take into
account residual stresses if they exist. For glass fibre epoxy resin model composites, Fiedler et al
showed that the thermal residual stresses can be calculated by finite element analysis (FEA) using

the actual temperature dependent stiffness of the resin [136].

Fig. 2.15- Transverse tow micro-cracks in awoven graphite fibre polyimide
composite. Individual tow micro-crack from (@), fibre/matrix debonding [134].

Asp et a [64] showed by a FEA study that the thermal residual stress strongly reduces the
ultimate strength of transversely loaded unidirectional (UD) composites. When load is applied to
the fibre-reinforced composite the triaxial stresses in the matrix increase. Both the polymer
matrix and the fibres cannot behave as they would individually as bulk materials, and the

difference in the Poisson’s ratios causes a triaxia stress state reducing the maximum bearable



load. In recent studies [64, 69], it was shown that yield criteria are applicable to glassy polymers
under uniaxial, biaxial and triaxia loading if the hydrostatic stress effect is accounted for. Also it
was found that for UD composites yielding is suppressed while a brittle failure due to crack
growth occurs. Fiedler et a also demonstrated that the parabolic Mohr failure criterion is suitable
to describe the experimentally observed macroscopic yield and fracture behaviour of epoxy resin
[88, 137]. The residual stresses depending on the local fibre distribution can improve or reduce

the local ultimate transverse strength of the composite [137].

2.4 Review of Literature Related to the Constituents

Clearly unidirectional composite materials are seen to have a highly anisotropic properties with
excellent stiffness and strength in the fibre direction and rather poor properties in the transverse
direction due to high heterogeneity of composites. Moreover in al loading directions, the
macroscopic behaviour is influenced by phenomena occurring at microscale. In the longitudinal
and in the transverse direction, the stress transfer from the polymer matrix to the fibre determines
the overall mechanical behaviour. Especially under longitudinal loading the failure mode is
influenced by the strength of fibre/matrix adhesion. Hence, a better understanding of mechanical
behaviour of composites at macroscale can only be achieved with a study of a more realistic
microstructure.

In fact, the matrix undergoes micro-structural modifications in the vicinity of the fibres due to
local changes of chemical and physical processes such as crystallisation and cross-linking. The
region of the matrix affected by the presence of fibres referred to as the interphase region highly
affects the mechanical behaviour of polymer composites. It has also been shown [1] that the
nature of the fibre surface can affect the curing kinetics and cross-link density of nearby matrix.
As shown by Gao et a [138,139] the local microstructure can be appropriately engineered by

various fibre surface treatments, causing property differences between the interphase region and



the bulk matrix. The authors [138, 139] conducted a comparative study of the fibre sized
topography and modulus as well as the local mechanical property variation by using tapping
mode phase imaging and nano-indentation tests based on the atomic force microscope (AFM).
Their results demonstrate that the nature of the interphase within a thickness less than 1um is

able to modify the overall mechanical response of three-phase composites.

Kobayashi et al [140] showed that initial microscopic damages, such as transverse cracks, can be
suppressed when a tough and flexible fibre/matrix interphase is applied to the composites hence,
as a result, the durability of composites is improved, since transverse crack causes other severe
damage, such as delamination and/or filament breakage. In order to suppress microscopic
damages in the composites the authors [140] also developed a method to fabricate epoxy-based
woven fabric composites with a flexible interphase. It was demonstrated that strength and
maximum strain increased with interphase content. The reason is that the microscopic damaged
zones, which cause local stress concentration in warp fibre bundles, were suppressed by the
flexible interphase. Moreover first cracking strains were delayed and crack densities became

smaller in laminates containing the interphase.

Tanoglu et a [141] used a novel experimental technique (dynamic micro-debonding technique)
to test and characterize the interphases of various sized E-glass-fibre/epoxy-amine systems at
displacement rates in the range 230 2450 pm/s. A schematic of the test configuration is shown in

Fig. 2.16.



Fig.2.16 - Schematic of test configuration and the micro-debonding process [141].

For this technique, a new apparatus called the dynamic interphase-loading apparatus (DILA) was
designed utilizing the fast expansion capability of piezoelectric actuators. This method enables
one to quantify the interphase strength and the energy absorption due to debonding and frictional
dliding over awide range of loading rate. The loading rate achieved using DILA was about three
orders of magnitude faster than the rates reported in the literature using traditional methods.

The authors performed a case study based on a typical glass/epoxy composite subjected to
ballistic impact to determine the significance of the interphase-related micro damage modes in
absorbing the impact energy. These results showed that the energy absorbing capability and the
shear strength of the fibre/matrix interphase is affected by the properties of the interphase and the
loading rate. In summary, the authors concluded, an interphase that has lower strength may better
contribute to energy absorption, while an interphase with higher strength is needed for structural

integrity and environmental durability.



An elaborated research was developed by Matzenmiller et a [142] based on the generalised
method of cells (GMC) to quantify the overall effective properties of the composite with an
elastic interphase region of finite thickness. This method is based on the analytical
homogenisation scheme of the cells method where the in situ properties of the interphase are
determined from the effective properties of the composite and the parameters for the bulk
material of the individual phases. The GMC allows the modeling of arbitrary shaped inclusionsin
a matrix. Therefore, the interphase region, comprising the material adjacent to the bond, may by
taken into account as a thin layer of subcells between the fibre and the matrix phase. A

comparison between a GMC and FEM modelsis shownin Fig. 2.17.

Fig. 2.17 - RVE with interphase modelled by (a) GMC and (b) FEM [6].

The inverse determination of the interphase properties from the effective material moduli requires
the detailed knowledge of the microscopic structure of the composite. With the results of the
inverse identification for the interphase properties it is possible to evaluate the mechanical effect
of the various manufacturing influences on the interphase characteristics. Although the interphase
parameters were successfully identified by the authors from the experimental data for most

composites with various chemical treatment of the fiber surface, the numerical results are still not



satisfying in all cases. In fact, numerical analyses showed that the interfacial properties are
unrealistically high for the fibre-matrix-interphase systems if a transverse isotropic material

model is assumed for the calculation of the overall composite behaviour.

In the recent past, using a finite elements anaysis, Asp et a. [8, 143] studied the stress
distribution in an ideal composite constituted by a square array of fibres. These researchers
employed a failure criterion based on the dilatation energy which accounts for the influence of
stress triaxiality on the matrix behaviour. The dilatationa (volumetric) energy density for alinear

elastic material is given by:

where s|, S,, and s3 are the principal stresses, and n and E are the Poisson’s ratio and Young's
modulus, respectively. The authors demonstrated that transverse failure mechanism of laminates
is governed by the storage moduli of the constituents, by the glass fibre content, and eventually
by the presence of an interphase. The model also predicted an increase of failure stress and strain
when incorporating a soft rubbery interphase between fibre and matrix. Especially under

longitudinal loading the failure mode is influenced by the strength of the fibre/matrix adhesion.

Podgaiz et al [144] observed a decrease of transverse failure strain and stress when coating glass
fibres with elastomer sizings (flexible epoxy or polyvinyl). They suggested that the low tensile
strength of elastomers and a poor level of adhesion between the rubbery interphase and the epoxy
matrix could be responsible for the poor performance of such composites. According to the
authors, tensile strength of the interface/interphase is a crucia parameter for transverse properties
of composites. More recently Benzarti et a [145] performed an investigation on effects of fibre
surface treatments on transverse mechanica behaviour of unidirectional glass/epoxy composites.

Model composite plates were processed by filament winding using glass fibres coated with



different sizings changing by their epoxy functionality and their reactivity towards the matrix.
Experiments (transverse tension and micro-indentation characterisations) revealed that the most
reactive sizings promote the highest interfacial strength and also increase ultimate properties of
laminates in transverse tension. This feature was attributed to the high crosslink density of the
polymer network in interfacial areas. The authors also carried out finite element calculations in
order to evaluate local strain and stress concentration in a composite submitted to transverse
tension conditions. The numerical modelling showed that a transition of the composite failure
mode occurs at a global strain of 1.15%, from an adhesive rupture at the fibre/matrix interface to
a cohesive rupture in the matrix. In the domain of adhesive rupture, the value of the composite
failure strain appeared to be directly governed by the interfacia strength. These authors found
therefore that improving interfacial strength by use of fibre sizings with high epoxy functionality

could constitute an interesting way to reduce transverse brittleness of composite structures.

Foley [146] by means of a technique utilizing the indenting capabilities of the atomic force
microscope (AFM) evaluated the local changes in material response of polymer composite
systems near the fibre—-matrix interface for two model composite systems at both room
temperature and elevated temperatures. Eventually these authors compared the AFM indentation
results with finite element model predictions to gain a fundamental understanding of the
influence that the interphase properties have on the measured responses. They found good
agreement between the finite element model predictions and the AFM measured results for all
cases studied. The finite element results confirmed that the interphase region for an unsized
graphite fibre is too small (relative to the physical size of the indentation probe) to conduct
realistic characterization. However, the sized fibre case has an interphase region sufficiently large

to obtain useful measurements. The finite element model was finally used to identify the effects



of interphase region size on the potential usefulness of the AFM as a viable interphase

characterization method.

Effects of residual stress on damage were investigated by Aghdam [147]. These researchers
developed a three-dimensional finite element micromechanical model to study effects of thermal
residual stress, fibre coating and interface bonding on the transverse behaviour of a unidirectional
SIC/Ti—6AI-4V metal matrix composite (MMC). The model includes three phases, i.e. the fibre,
coating and matrix, and two distinct interfaces, one between the fibre and coating and the other
between coating and matrix. The model was employed to investigate effects of various bonding
levels of the interfaces on the initiation of damage during transverse loading of the composite
system. Moreover the authors adopted two different failure criteria, which are combinations of
normal and shear stresses across the interfaces in order to predict the failure of the fibre/coating
and coating/matrix interfaces. It was shown that any interface fails as soon as the stress level

reaches the interfacial strength.

Wang [148] presented an extension of the work by Mogilevskaya and Crouch [149] to model
micromechanical behaviour and macroscopic properties of fibre-reinforced composites with
radialy graded interphases. The approach is based on the numerical solution of a complex
boundary integral equation in which the boundary parameters are expressed in terms of complex
Fourier series. All the integration can be done anaytically and thus the method allows for
accurate calculation of the elastic fields anywhere within the material, including inside the fibres
and interphases. Explicit expressions for the effective elastic constants can be obtained from
general relations between the average stresses and strains. The interphase layer for each inclusion
was modelled by the authors with a system of thin bands with different properties that are

constant for each band but vary from band to band to provide the piece-wise constant



approximation of the function that governs the gradation of the interphase material. In the
numerical implementation, each radially graded interphase j has been discretized into a series of

n; concentric layers characterized by homogeneous el astic properties (Fig. 2.18).

Fig. 2.18 - Discretization of aradially graded interphase into n-layered
homogeneous interphases [148].

The authors proved that this approach show high generality and versatility for large number of
fibres with arbitrary sizes, locations and elastic properties and especially for the micro-scale the
method alows for accurate calculation of the elastic fields anywhere within the materia,
including inside the fibres and interphases. Moreover the interphases can also have arbitrary

thickness and elastic properties.

Fisher et a [150] investigated the mechanical property predictions for a three-phase visco-elastic
(VE) composite by the use of two micromechanical models: the original Mori—Tanaka (MT)

method and an extension of the Mori—Tanaka (MT) solution developed by Benveniste [151] to



treat fibres with interphase regions. Whilst MT method does not model the geometry of an
annular interphase region surrounding the fibre inclusion, but treats the fibre and interphase
regions as separate, physicaly distinct regions as shown in Fig. 2.19, the Benveniste model
maintains the proper fibre-interphase-matrix geometry as shown in Fig. 2.20. It utilizes a related
auxiliary problem (i.e. a single fibre-interphase inclusion within an infinite matrix material) to
find the stress-concentration tensors relating an applied far-field stress to the phase-averaged

stresses of the included (fibre and interphase) phases.

Fig. 2.19 - Interphase modeled as a distinct inclusion region for the Mori—
Tanaka method.



Fig. 2.20 - Three phase composite model for the Benveniste solution.

The main goa of their research was principally to optimize composite properties through
engineered interphases and to measure the interphase mechanical properties through experimental
tests,

The several case studies performed in this research were used to compare the composite moduli
predicted by each of these methods, highlighting the role of the interphase. Although the authors
proved that the MT method, in general, provides a reliable micromechanical approximation of the
viscoelastic behaviour of the composite; however, the micromechanical methods only provide an
order-of-magnitude approximation for the effective moduli. Moreover the FEA results suggest

that the interphase plays alarge role in determining the overall behaviour of the composite.

Another factor that strongly influences the material micromechanica properties is related to the

distribution of the fibres over the cross-section in real composites.



In aunidirectional composite at micro level fibres are embedded in the matrix material parallel to
the longitudinal direction. In the transverse cross-section (perpendicular to the fibre direction) a
random distribution of fibres exists and generates transverse isotropic properties. To model the
fibre distribution in the transverse plane, the simplest idealization for anaytical or numerical
approaches is to adopt for example a hexagonal or a square array of fibre packing geometry.
These packing geometries assume a uniform distribution and periodic packing of the fibres and
are greatly convenient in numerical modelling since representative el ements of alimited size can
be used. Moreover the boundary conditions for both analytical and numerical analyses can be
constructed in asimple way [22].

As in UD composites fibres arrangement in the matrix over the transverse cross section is
generaly at random, a more realistic response on alocal as well as aglobal level can be obtained
by taking into account a non-uniform packing geometry. In micromechanical finite element
analyses of UD composites of fibres distributed at random over the transverse cross-section using
‘unit cells', boundary conditions for such ‘RVES' can no longer be prescribed precisely due to the
lack of symmetry about the boundary. Wongsto and Li [152], studied the effects of incorrectly
prescribed boundary conditions for such RVEs on the predicted behaviour of the composite
represented by the ‘unit cells'. The decaying characteristics of such effects far from the boundary,
accordingly to the Saint Venant’s principle, have been examined. A decay length has been found
to amount to a couple of times of the centre-to-centre fibre spacing. Using the decay length
obtained, analyses have been made to UD composites in which fibres are realy distributed at
random over the transverse cross-section. Although, the prescribed uniform normal displacement
along the boundary represents an incorrect boundary condition, correct deformation and stress
distribution can be obtained from a sub-domain of the unit cell away from the boundary by a

number of times of average fibre spacing.



Aghdam and Dezhsetan [153] extended the geometry of the Simplified Unit Cell (SUC) model,
to study effects of random fibre arrangement on the mechanica and thermal characterizations of
unidirectional composites to predict the behaviour of a fibrous composite subjected to thermal
and mechanical, normal and shear, loading .

Fang and Liu [154] examined the effects of different cross-sectiona geometry, such as the fibre
shape (circular, square and lozenge), size and random fibres distribution on the transverse elastic
and plastic deformation of the metal-matrix composites with specific randomly distributed,
aligned continuous fibres. Numerical results showed that the overall transverse plastic flow of the
composites is rather sensitive to the fibre geometric parameters while the elastic properties
exhibit amuch lower sensitivity to the fibre distribution.

Bulsara [155] performed a systematic study of a multi fibres RVE size appropriate for
characterizing initiation of damage under a tensile load normal to fibres in a unidirectional
ceramic-matrix composite. In this case, the damage initiation process showed little sensitivity to
the radial distribution of fibres in the cross-section when a tensile load normal to fibres was
applied. However, significant dependence on the fibre distribution was found when thermally-
induced damage was considered.

Gusev et a [156] used a combination of numerical and experimental techniques to study the fibre
packing and elastic properties of a transversely random unidirectional glass/epoxy composite.
They showed that measured and numerical results were in excellent agreement and moreover
randomness of the composite microstructure had a significant influence on the transverse
composite elastic constants while the effect of fibre diameter distribution was small and
unimportant. A comparison between analytical approaches and finite element analyses (FEA) for
varying fibre distributions, ranging from single fibre unit cells to complex cells was performed by

Rossol et al. [157] on metal matrix composites. Analysis of micro-fields showed that the main



cause for deviation from the equistrain rule of mixtures is a stiffening effect of matrix

confinement when surrounded by touching fibres arranged as *‘rings”’ (Fig. 2.21).

Fig. 2.21 - Artificial arrangements of fibres forming rings. The frame designates the unit cell for FEA. E1:
Single ring of 12 fibres confining the matrix. E2: Periodic cubic arrangement of E1. E3: Periodic
hexagonal arrangement of E1. E4: Periodic cubic arrangement of E1, but fibre rings are distant. E5:
Periodic hexagonal arrangement of E1, but fibre rings are distant. In cells E2—E5 the matrix is both inside
the fibre rings as well asin between them [157].

The Boundary Element Technique (BEM) and the embedded cell approach (ECA) were adopted
by Knight et a [158] to investigate the micromechanical response of fibre-reinforced materials.
The geometrical structures examined (multi-fibre RVE) were formed by uniformly spaced fibre
arrangements (square and hexagona array) and randomly placed fibres within the matrix. Non-
periodic arrangements give rise to higher local stresses, and the magnitudes of these stress
concentrations have a strong dependence on the ligament length (distance between the two
neighbouring fibres that have a common high-stress region), and to a lesser extent on the angle

relative to the applied load (angle between a plane containing the two fibre centres and the

applied load).



In the analysis of materials with random heterogeneous microstructure the assumption is often
made that material behaviour can be represented by homogenized or effective properties. While
this assumption yields accurate results for the bulk behaviour of composite materials, it ignores
the effects of the random microstructure. The spatial variations in these microstructures can
focus, initiate and propagate localized non-linear behaviour, subsequent damage and failure.
Baxter et a [159] used a computationa method, moving window micromechanics (MW), to
capture microstructural detail and characterize the variability of the local and globa elastic
response and to generate material property fields characterizing the non-linear behaviour of
random materials under plastic yielding. The basis of the moving-window techniqueis adigitized
image of the materia microstructure in which the phases are visualy distinguishable i.e., the
greyscale level of each pixel can be used to designate it as one or the other of the phases of the
composite (Fig. 2.22).

Digital images of material microstructure describe the microstructure and a locad
micromechanical analysis was used to generate spatialy varying material property fields. The
strengths of this approach are that the material property fields can be consistently developed from
digital images of real microstructures, they are easy to import into finite element models (FE)
using regular grids, and their statistical characterizations can provide the basis for simulations

further characterizing stochastic response.



Fig.2.22 - Sample fibre-reinforced composite material.
Fibres are white, matrix is black [159].

The use of a locally non uniform unit cell (Fig. 2.24) accounting for inhomogeneous fibre
distribution but still able to preserve the convenience of RVE when applying the boundary
conditions have been adopted by Zhang et al [160, 161]. These studies have been performed in
order to investigate the transverse creep behaviour of UD reinforced glass-fibre composites with
unsaturated polyester in which the matrix shows a non-linear viscoelastic constitutive behaviour.
The new geometries seem to be more suitable than the traditionally used regular packing
geometries in fact they displayed good agreement with experimental data and moreover reveal a

detailed stress and strain distribution and redistribution over time on alocal level.

Generadly, inhomogeneous coefficient of thermal expansion (CTE) and stiffness of the matrix
and fibre cause microscopic internal residual stresses even in unidirectional composites. In order
to investigate the effect of fibre arrays on such residual thermal stresses at the fibre-matrix
interface in a unidirectional lamina, three different fibre arrays with various fibre volume
fractions (FVF) were considered by Jin et al [162]: square and hexagonal regular arrays, and a

random array, as illustrated in Fig 2.23. The generation of the RVE for the random fibre array



follows the same procedure described in the authors previous work [163]. The RVEs are
generated for various FVFs ranging from 0.1 to 0.6. When FVF is 0.6, the RVE for the random
fibre array contains about 200 non-overlapped fibres. In order to simulate a sufficiently large
number of fibres without computational difficulties in modelling and analyzing, ten sets of RVEs

for each FVF were constructed using the same procedure.

Fig 2.23 - Boundary conditions for the non-locally uniform unit cell [160].

The generated RVEs were statistically verified using the nearest neighbour distribution function
and the radial distribution function [163-165], showing that the simulated RVEs have a
statistically equivalent spatial distribution and represent the real microstructure of the composite.
A three-dimensional finite element analysis was performed to analyze the residual thermal

stresses within the given RVEs, as shown in Fig. 2.24.



Fig. 2.24 - Representative volume elements of regular and random fibre arrays, and mechanical boundary
conditions: (a) square array; (b) hexagonal array; (c) random array and (d) deformed shape after thermal
loading [162].

2.5 Conclusion

Published work in the field of composite mechanical properties prediction at the microscale has
been reviewed. The unidirectiona reinforced unit cell has been identified as the basic building
block for the overall mechanical composite properties. Various micromechanical methods to
determine the elastic behaviour of composite materials have been discussed, in addition to those
for failure under uniaxia loading. Published methods to determine the failure onset and to
simulate the damage evolution in unidirectional RVES or more complex geometries of

composites materials at the microscale have been also discussed in detail. This review also



includes numerous methods which have been developed to determine the effects of residual

stresses in polymer-matrix composites.

This review highlights the need for a purely predictive numerical model that incorporates the
effects of residual stress within the micromechanics based damage model. In particular the
damage model in this work has been “designed” to detect the local failure onset and damage

propagation in three-dimensional unit cells as shown in Chapter-4.

Although extensive research has been done to describe numerically the damage propagation in
composite materials and the effect of residual stresses, it has been noted that all the numerical
investigations have been based on two-dimensional (2D) models. These models, which are in
general assumed in a plane stress or plane strain state, unfortunately are unable to represent
realistically the triaxial stress state that arises in real composites during the manufacturing
process. In addition, the fibres in the 2D unit cell are also assumed to have a regular distribution
over the cross-section while, in real composites, the fibres are randomly distributed within the
unit cell.

It has been noted that recently few authors have devel oped more advanced numerical 3D models.
Nevertheless, the purpose of these investigations concerned with the effects of non-symmetric
RVEs on the overall mechanical properties and/or the distribution of residual stress in 3D
numerical models. No damage model has been applied to determine the effect of residual stresses
and the irregular packing array of the fibres on failure. A possible methodology to estimate the
mechanical response of non-symmetric unit cells and the influence of the fibre position on failure

is presented in Chaper-6 of thisthesis.



Published work in the field of the micromechanics of composite materials has also proved that
the presence of a 3D interphase influences drastically the mechanical behaviour of composite
materials. Experimental research has been performed to determine the final characteristics of the
interphase. These data have been used by severa authors to develop various methods in order to
study the influence of a third phase on the overal mechanica behaviour of composites.
Nevertheless, none of the published studies have adopted a 3D unit cell for the numerical
analyses, no damage models have been implemented in numerical codes and the effects of
thermal residual stresses have been aways neglected. A potentiad way to determine the
mechanical response of unit cell with a 3D interphase has been suggested in Chapter-5 of this

thesis.



Chapter 3

Micromechanical Stiffness

3.1 Introduction

Unidirectional (UD) composites are those which have dl fibres aligned in asingle direction. The
properties of such composites vary significantly with direction. A unidirectional composite with
a hexagonal array of fibres can be transversely isotropic because the properties are the same
aong any plane which is norma to the fibre direction. The stiffness and strength of a
unidirectional composite are anisotropic properties since they vary with orientations. The
stiffness of unidirectiona composites in the fibre direction is usually dominated by the fibre
properties while the strength in the transverse direction is dominated by the matrix properties.
Since the strength of a unidirectional composite under transverse tension is much smaller than
under longitudina tension, transverse tensile loading is believed to be the critical loading of

unidirectional composite materials.

One of the basic requirements in the mechanics of composite materias is to determine the
effective elastic properties. Experimental determination of the moduli of unidirectional
composites is difficult, especially when it involves determining the longitudinal shear and
transverse shear moduli. Thus, numerical techniques like the finite element method are needed to
calculate these shear moduli. Numerical methods to calculate composite material properties
usually involve analysis of a representative volume element (RVE) [3, 22], corresponding to a
periodic fibre packing sequence.

There are afew issues that need to be verified carefully when carrying out such analyses. Firstly,
the correct RVE corresponding to the assumed fibre distribution must be isolated. Secondly,

correct boundary conditions need to be applied to the chosen RVE to model different loading



situations. Proper consideration must be given to the periodicity and symmetry of the model in
arriving at the correct boundary condition.

In the present work, the procedure for predicting the elastic constants of the composite from the
RVE is established for a micromechanica three-dimensional finite element analysis. The finite-
element calculations are made at a specific volume fraction because the geometry of the regions
of the finite-element mesh that represent the fibre and matrix differ from one volume fraction to
the next and, therefore, each volume fraction study requires a separate analysis. The finite-
element calculations are for hexagonal array cross-section models (Fig. 3.1). The unit cell for the
hexagonal array is shown in Fig. 3.2. To be noted in these figures that the x-axis is aligned with

the fibre direction, and the y- and z-axes are perpendicular to the fibres.

Fig. 3.1 - Cross-section idealization (hexagonal array) for micromechanics studies.



Fig. 3.2 - Details of 3D unit cell for hexagonally-packed array.

In the present study the following assumptions are made:

- The compositeis.  Macroscopically homogeneous
Linearly elastic
Macroscopically transversely isotropic

Initially stress free (no thermal stress)

- Thefibres are: Homogeneous
Linearly elastic
| sotropic
Regularly spaced

Perfectly aligned

- The matrix is: Homogeneous

Linearly elastic



| sotropic
The material stiffness parameters are easily obtained from Hooke's law. In the numerical
examples, both the fibre and the matrix are taken as an isotropic material. The composite can be
assumed transversely isotropic with straight fibres [166].

The strain—stress relations for such amaterial can be written as[2]:

€x Su Sp S3 O 0 0 Sx
€y S2 S»2 S 0 0 0 Sy
€; _ S13 S23 533 0 0 0 Sz
9z 0 0 0 Sy 0 0 fy (1)
g, O 0 0 0 S5 0 ¢
gy O 0 0 0 0 Sx 1

in which

Si= VE Sio=- w/Ex Si13=- xdEx

Sp=1Ey Sp=- JE, Sz=1VE,

Su=UGy, Sss=UGx Se=1Gy

Since the material is said to be transversely isotropic in the y-z plane the number of elastic
constants required for the three-dimensional relation is five asE; = Ey, Gx; = Gyy, and ;= xy
[2].

Therelations of Equation (3-1) become:

Ex Su S S 0 0 0 Sx
y S S Sz 0 0 O Sy
€& _ S» S3 Sp 0 0 O Sz
9 0 0 0 2Sp-Spy 0 0 Iy, (32
4, O 0 0 0 Se 0ty
gy O 0 0 0 0 S 1y

in which



Sio=- xy/Ex = Syx: - yx/Ey

Mechanical and thermal properties of typical glass fibre and epoxy matrix are summarized in

Table 3-1.

Table 3-1 - Mechanical properties of fibre and matrix

Material properties E-Glass Epoxy
Longitudinal modulus, E, (GPa) 76 4
Transverse modulus, E, (GPa) 76 4
Poisson®ratio, n 0.2 0.35
Shear modulus, G (GPa) 29.9 1.46

3.2 FEM Procedures

The aim of this work was, the determination of elastic properties in a 3D unidirectional unit cell
in which fibres are arranged in periodic array in order to asses the reliability these micromodels.
Most of the unit cells investigated in the past literature are related to two-dimensional unit cells.
Unlike two-dimensional unit cells, 3D unit cells undergo a contraction in both two directions
(e.g. y-direction and z-direction) if loaded in the third direction (x-direction). Thus this leads to a

triaxial deformation.



Moreover finite element results could be affected by the elements size in the mesh. Hence it was
necessary to evaluate the micromodels and their meshes under different loading condition to
verify that, although they undergo atriaxial deformation, elements in the mesh retain a adequate
aspect-ratio to avoid erroneous results.

The procedure to assess the validity of these micro-models was performed by determining elastic
properties of a RVE and by comparing numerical results with analytica and/or possibly

experimental data available in the literature.

The package used for the analyses was ABAQUS/Standard version 6.3. The mesh was built using
initially C3D8elements (8-node linear brick) and C3D20 (20-node linear brick) elements for a
better accuracy [92] both available in ABAQUS/Standard version 6.3. All these types of element
are three-dimensional continuum elements and allow stress and displacement analysis.

The FE analyses were carried out at different volume fractions and in particular the following
fibre volume fractions were taken into account: 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.70, 0.75, 0.80
and 0.85.

The number of element depends on the fibre volume fraction and the types of element used in the
mesh. In general, the number of element ranges from circa 17000 to more than 40000 for solid

brick elements.

3.3 Auxial stiffness - Longitudinal Modulus E,
The simplest treatment of the elastic behaviour of unidirectional long fibres composites is based

on the premises that the material can be considered as if it were composed of paralel slabs as
shown in Fig.3.3 and Fig.3.4 of the two constituents perfectly bonded together, with relative
thicknesses in proportion to the fibre and matrix volume fraction. The two slabs are forced to

have the same lengths parallel to the bonded interfaces. Hence if the stress is applied in the



direction of the fibres alignment (x-direction in Fig.3.2), then the constituents (fibre and matrix)
exhibits exactly the same strain:
Under these circumstances it is possible to derive an analytical expression for the Young's

modulus Ey;

E=EV'+E V™ (3-3)

This equation can be rearranged in the following form:

E, =Ev' +E,(1-V") (3-4)

where E; V', En V™ are the fibre and matrix Young's modulus and volume fractions
respectively.

This equation is known as the “Rules of Mixture’ [1, 2] and indicates that the composite stiffness
is a weighted mean between the moduli of matrix and fibre and Ex depends only upon the fibre

volume fraction.

Fig. 3.3 - Ideal Unidirectional RVE



Fig. 3.4 - Slab configuration

To carry out the numerical analyses the unit cell used in the analysisis shown in Fig. 3.2.
Only a quadrant of the original RVE (Fig.3.5) is modelled since there are two axes of symmetry

in this problem.

X

Fig.3.5 - “aRVE of the hexagonal array packing.

Axial loading is modelled by a displacement acting on the plane yz at x = a. For such loading
conditions, the boundaries of the RVE also correspond to lines of symmetry. Thus, normal

displacements of the boundaries of the quadrant are restricted to those that cause the boundary to



displace only parallel to the original boundary. The displacement constraints applied to the finite

element model are:

ux (0y,2)=0

Ux (ay,2) = constant = 5.0E-05 [mm]

uy(x,0,z) =0

uy (X,b,z) = constant =

uz(x,y,0)=0

uz(x,y,c) = constant =

Due to Poisson’ s rétio effects, nodes placed iny = b, z = c undergo adisplacement of yand .

The comparisons for the results of Equation (3-4) for the composite extensional modulus in the
fibre direction E, and the finite element calculations at several volume fractions are shown in Fig.
3.6. The hexagonal finite-element array gives practically identical results to the rule of mixtures
shown in equation (3-3). The linear dependence of E, on fibre volume fraction is demonstrated

and, as expected, the modulus increases whilst increasing the fibre volume fraction.
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Fig. 3.6 - Comparison of numerical data and rule of mixtures datafor composite modulus E,.

3.4 Transverse Stiffnes—Elastic Moduli E, and E,

The analytical prediction of the transverse stiffness in unidirectional composite appears more
difficult than the axial case. Although the system can be still represented by the “slab model”
depicted in Fig. 3.4, this simplified model shows a serious drawback. In the unit cell in Fig. 3.5,
the y- and the z-directions appear to be transverse to the fibres. In the slab model in Fig. 3.4 the
transverse directions are not identical and in particular the z-direction is now equivalent to the
axial direction while in the micromodels investigated, due the periodic distribution of the fibres
over the cross-section (hexagonal packing array), the stiffness in the z-direction and y-direction
are supposed to be the same. Thus, to avoid this drawback, the same anaytical solution to

evaluate Ey has been adopted to calculate E,.



The expression derived from the conventiona approach of the slab model that in the case of

transverse loading is also called the “ equal stress model”.

The relation derived from the slab model approach is[1]:

()

This is the Rule of Mixtures relation for E,. Comparing equation (3-5) with the expression for Ex

in equation (3-4), it isseen that it relates the reciprocal of the extensional moduli with the volume

fraction rather than the moduli themselves. This expression is similar to the expression for the

equivalent stiffness of a pair of springsin series.

The non-uniform distribution of stress and strain during transverse loading implies that the

simple equal stress model appears to be inadequate to evaluate the transverse elastic properties

and more in detail the slab model gives an underestimate value of the Y oung’'s modulus.

The most successful empirical expression to obtain more accurate estimates of E, (and E;) has

been proposed by Halpin-Tsal in 1967 [1, 2]. Although it is not base on a rigorous theory of

elasticity it takes into account the enhanced capability of fibre load bearing, relative to the equal

stress model.

Therdation for the transverse stiffnessis:

5:1+Y/7r
E, 1+hf
inwhich is:
p=9-1
gty

and is

(3-6)



- B
Em
y is a measure of fibre reinforcement of the composite material and is dependent on fibre
geometry, packing geometry, and loading conditions. Obtaining accurate values for y is the most
difficult part of using the Halpin-Tsai equations. The expression (3-6) gives the correct valuesin
thelimitsof f =0 and f =1 ( f isthe fibre content) and in general shows a good agreement with
experimental data over the complete range of fibre volume fraction.
The value of y is then an adjustable parameter and its magnitude is generally of the order of
unity [81].
Approximationsfory are[2]:
- Circular fibresin square array (excellent results for V¢~0.55)
y =2forEy
y =1for Gy
- Square fibres in square array (good results for V<=0.9)
y =2forEy
y =1for Gy
- Rectangular cross section in diamond array (good results for V¢<=0.9)
y =2albfor E

y =1.73log (a/b) for Gyy

Where a = width of fibre, and b = thickness of fibre
In the present work (hexagonal packing array) a good agreement between numerica and
analytical (Halpin-Tsai) results have been reached by considering a value of y = 1 for the

evaluation of the elastic moduli E, and E,.



To study the other basic composite elastic properties, the unit cell of Fig. 3.5 must be loaded
differently. To consider the composite extensional moduli perpendicular to the fibres, E, (E;) the
load illustrated in Fig. 3.7 is used. A displacement in the y-direction (z-direction) has been
applied to the unit cell in Fig. 3.5 and it was still assumed that the fibre and matrix are perfectly

bonded together.

Fig. 3.7 - Cross-section subjected to transverse load.

Transverse loading is modelled by a displacement acting on the plane xz in y = b in order to
evaluate Ey and on the plane xy in z= c for E,.

Again, normal displacements of the boundaries of the quadrant are restricted to those that cause
the boundary to displace only parallel to the origina boundary. The displacement constraints

applied to the finite element models are:

- todetermine Ey
ux(0y,z2)= 0

Ux (ay,2) = constant =



uy(x,0,z) =0

uy(x,b,z) = y=5.0E-05[mm]

uz(x,y,0)=0

uz(x,y,c) = constant =

- todetermine E;
ux(Oy,2)=0

Ux (ay,2) = constant =
uy(x,0,z) =0

uy (X,b,z) = constant =
uz(x,y,0) =0

uz(x,y,c) = ;=5.0E-05[mm]

The first step of the research was to determine the values of E, and E, from the numerical
analyses. Finite element results are shown in Fig. 3.8 and as expected, on the assumption that the
composite is macroscopically transversely isotropic the values obtained for the whole unit cells

investigated are perfectly coincident.
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Fig.3.8 - Comparison of numerical results for the transverse Y oung’s modulus E, and E,.

The Rule of mixtures model, the Halpin-Tsai equation and data from the finite-element
calculations are compared in Fig. 3.9.
A comparison with numerical results for E; also shows a good agreement between Halpin-Tsai

and finite e ement values.
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Fig. 3.9 - Comparison of finite-elements data, rule of mixtures and Halpin-Tsai results for

composite moduli E,.

3.5 Shear Stiffness

The shear moduli of unidirectional composite materials can be estimated in a similar way to the
axia and transverse stiffness using the simplified slab model. It is worthwhile to understand the
conventions used to identify shear stress and shear strain. The shear stress is conventionally
designated with tj; (i j) and t; refers to a stress acting in the i-direction on a plane with a normal
in the j-direction. In a similar way the shear strain g; can be considered as a rotation of the j-axis

towards the i-axis.



The transverse modulus Gj; is the ratio of t;; over g;.
In unidirectional composite materials since the y-direction and z-direction are equivalent it
follows that there are only two shear moduli because Gyy=Gyx=Gx;=Gx Gy,=Gy

For the shear modulus Gy, and Gy, a semi-empirical expression has been developed by Halpin

and Tsai:
G
Xy :1+Y/7f (3_7)
G, 1+ Af
inwhich is:
p=9-1
gty
and is
- Go
G

Where, G; and G, are the shear moduli for the fibre and the matrix. In the present work the best
agreement between numerical and analytical results (Halpin-Tsai) have been reached by
considering a value of y = 2 for the elastic modulus Gy, and y = 1 for the elastic modulus Gys.
The Halpin-Tsai relation represents a greatly good approximation to the shear moduli and in

particular it approaches closer values related to the axial shear modulus Gyy

3.5.1 Shear Modulus Gy,

The stress and strain fields in a composite under a transverse shear loading are independent of the
axial coordinate (x-direction) and are functions of y-direction and z-direction only. The RVE
adopted in the numerical analyses to determine the shear moduli for a hexagona array

micromodel isshown in Fig. 3.2.



Many researchers modelled transverse shear by assigning equal and opposite displacements to the
faces normal to y = b and z = ¢ and assuming the deformed unit cell to remain a parallelogram
with straight edges. Thisis an overly restrictive constraint [3]. The deformed shape needs only to
satisfy periodicity and symmetry conditions without necessarily remaining a parallelogram in the
deformed configuration.

To caculate the shear modulus Gy, the boundary conditions applied to the “full” unit cell
depicted in Fig.3.2 are described with the help of Fig. 3.10:

Uy (-b, 2) = uy (b, 2)

Uy (Y, -C) = uy (Y, ©)

uz (-b, z) = uz (b, 2)

Uz (y, -¢) = U (y, )

Fig. 3.10 — Details of an RVE for hexagonally-packed array.



A further constraint is that the boundaries of the RVE undergo constant lateral displacement as

depicted in Fig.3.11:

e;(xb,2)=0 or u;(zxb,2z)= d,

gy (¥,€) =0 or uy(y, xc) = dy

Since correspondent nodes in opposite faces are forced to displace in the same way, a ssimple
program in FORTRAN has been written to number properly the nodes on the LEFT face (nodes
at y = -b) and RIGHT face (nodes at y = b), TOP face (nodes a z = ¢) and BOTTOM face (nodes
a z = -c) and match up with each other correctly and then degrees of freedom of the

correspondent nodes are repeated.

Fig. 3.11 - RVE under transverse shear |oading to evaluate Gy,.



To simulate transverse shear loading, a displacement of 50E-05 mm is applied to each node of
the TOP surface of the RVE (Fig. 3.11) in the y-direction.

The bottom corners are placed at d, = 0 on rollers to eliminate rigid body displacement.

3.5.2 Shear Modulus Gy

Similar boundary conditions have been applied to evaluate G,y. Since the fibres are much stiffer

than the matrix, they should exhibit a different shear strain, hence it is incorrect to assume that
xS The strain field in a composite subjected to longitudinal loading is two-

dimensional in nature and it is independent of the axial coordinate (x coordinate). To impose this

constraint in the RVE, the FRONT face (nodes at x = a) and REAR face (nodes at x = 0) faces of

the RVE are required to undergo identical displacement. In particular nodes on the FRONT face

and REAR face with the same y and z coordinates are constrained to have the same displacements

in all three directions. Thus, for theRVE shown in Fig. 3.2 and Fig. 3.10:

uX (0, yl Z) = uX (a, yl Z)
uy(0,y,2)=uy(ay,2

uZ (0, y! Z) = uZ (a1 y! Z)

From symmetry conditions, the additional constraints on the RVE are:
Ux (X,0,2)=0

Ux (X, b, z) = dx = 50E-05 [mm]

uy(x,0,2)=0

uy (x,b,z)=0



u;(x,0,2)=0
u;(x,c,z2=0
Deformed shapes of unit cells under shear |oading applied to evaluate Gy, are depicted in Fig. 3.

12 and Fig. 3.13

—

Loading
direction

Fig. 3.12 - RVE under transverse shear loading to evaluate G,,.



Fig. 3.13 — 3D view of the RVE under transverse shear |oading to evaluate G,y.
A comparison between numerical calculations for the shear moduli Gy and Gy, (Fig.3.14) shows

that their values are rather close to each other, with G,y slightly greater in magnitude.
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Fig.3.14 — Numerical results for Modulus G,y and Gy..

In Fig. 3.15 and Fig 3.16 results obtained by means of the Halpin-Tsai have been compared to the
numerical calculations. Although the shear modulus Gy, appears to be dightly overestimated,
especially at lower fibre volume fraction, by the Halpin-Tsai expression compared to the
numerical data the differences can be considered in a reasonable range in magnitude and agree
with datain the literature for similar materials[1].

In particular a better agreement can be seen in Fig 3.16 that displays the comparison between
FEM values and data from the semi-empirical equation. In genera differences in the results for

G,y are within the range of 3%.
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Fig. 3.15 — Comparison of finite-elements data and Halpin-Tsai results for

composite moduli Gy.
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Fig. 3.16 — Comparison of finite-elements data and Halpin-Tsai results for

composite moduli Gy.

3.6  Poisson contraction effects

The Poisson’s ratio n;; describes the contraction in the j-direction if the stress is applied on the i-

direction. The Poisson’s ratio can be defined with the following equation:

__§
n” - -
=
For unidirectional composite materias there are three different Poisson’s ratios. Unfortunately
the evaluation of Poisson’s ratio values on the basis of the idealised slab model presents severa

difficulties due to the greater degree to which the contraction of the two constituents, fibre and

matrix, must match if compared with the real structure of unidirectional composite materials.



Although three different Poisson’s ratios can be estimated reliable results can only be obtained
for the case of ny, assuming an equal strain of the two constituents. Thus in this case the
Poisson’s ratio of the constituents can be evaluated individually and summed. Then a simple
Rules of Mixtures can be applied because of the equal strain assumption is accurate for the axial
loading parallel to the fibres in unidirectional composites. As far as the other two Poisson’s
ratios, simple expressions have been developed in order to evaluate their values but in general
they lead to not reliable results if compared to experimental data. In particular the Poisson’s ratio
Ny« has been estimated to be lower than ny, because on applying a transverse load, the fibres offer
a stiff resistance to axia contraction. Hence a more pronounced transverse contraction is

expected leading to a higher value of ny,.

3.6.1 Poisson’s Ratio yy

By examining the overall contraction of the unit cell in Fig. 3.17, an expression for the composite
major Poisson® ratio can be derived. The major Poisson® ratio for the composite is defined as
minus the ratio of strain in the y-direction divided by the strain in the x-direction when only the

stress  isapplied, namely:

€ e
L=pn,=-—= (3-8)

n,=-—
eX eX

Xy

where , 0; al other applied stresses=0



Fig.3.17 - Deformations of fibre and matrix..

The Rule of Mixtures expression for the composite Poisson® ratio is similar in form to the

expression for E; [81, 90] and it can be formulated with the following equation:

Ny =n)Iny +ny(1-V f) (3-9)

where V' is the fibre volume fra(:tion,n)fy and nﬂ‘y are the Poisson’s ratios for the fibre and the

matrix.
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Fig. 3.18 - Comparison of finite element data and rule of mixtures results for composite

Poisson’'sratio .

The comparison for the composite major Poisson®ratio x, from Equation (3-5) is presented in
Fig. 3.18. Curves in Fig.3.18 displays that analytical and numerical results are in perfect
agreement although data from the Rules of Mixtures are dightly higher than the finite-element

results (in general less than 1.0%) .

3.6.2 Poisson’s Ratio y,

The Poisson’'s ratio , describes the contraction in the z-direction on applying loads in the y-
direction. Although no analytical formulas have been applied to compare with numerical resultsit
is worthwhile to show finite element results for severa fibre volume fractions (Fig. 3.19 and

Fig.3.20).
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Fig. 3.19 - Poisson’s ratio y,.

As expected, ny, appears to be higher than ny, and, the comparison between the two Poisson’'s
ratios shows that Poisson’s ratios nyy are less sensitive to the fibre volume fraction. In particular,
the values of n,y are quite close to the bulk E-glass Poisson’s ratio (Table 3-1) especialy at
higher fibre volume fraction. On the contrary, ny, is strongly dependent from the fibre volume
fraction and, its values approaches the Poisson’s ratio for the bulk epoxy resin at lower values of
the fibre volume fraction (Table 3-1). In fact, at high fibre volume fractions the fibres in the
micromodel are amost in contact (in hexagonal packing array the fibre volume fraction is
~90%). Then the fibres represent an obstacle to the transverse contraction leading to a “stiffer”

overall response in the composite.
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Fig. 3.20 — Comparison between Poisson’sratio , and Poisson’sratio ,

3.7 Conclusion

The appropriate constraints on the RVE under various loadings have been determined from
symmetry and periodicity conditions obtaining a nearly complete set of elastic constants for a
three-dimensional unidirectional composite. The transverse elastic moduli are exactly coincident
showing a proper symmetry in the micromodel. The elastic moduli obtained from the analysis for
the hexagonal array also have been compared with analytical results employed in this exercise
namely the Rules of Mixtures and the Halpin-Tsai semi-empirical expression. When possible,
numerical results have been compared with experimental results available in the literature. The
3D micromodels have displayed a surprising uniformity with the analytical models and an

adeguate equality with experimental data.



As all the micromodels have show their capability to predict reliable mechanical properties it will
be possible to implement them with a micromechanics damage model in order to predict failure
with and without thermal residual stresses. Moreover since the matrix behaves differently in
tension and compression it will be interesting to evaluate how different failure criteria (energy

and strain based) predict damage in the composites at their microscale.



Chapter 4

Micromechanical Strength

4.1 Introduction

A modified micromechanics based damage model similar to the Blackketter model [5] has been
applied by Zhao et a [170] to investigate the effects of thermal residua stresses in a two-
dimensional (2D) unit cell in which fibres are distributed over the cross-section in a square
packing array. Uniaxia and biaxia loading conditions applied on the 2D square unit cell shown
that the overall response is strongly influenced by the presence of residual stress. Although under
uniaxial transverse loading the effects of residual stresses are in general beneficial on the contrary
on applying a biaxial transverse loading the overal mechanical response seems to undergo
detrimental effects.

The main goal of this part of research is to apply uniaxia loading (axial and transverse) on 3D
unit cells that represents more redlistically the behaviour of composites materials by taking into
account the tri-axial stress state arising during the manufacturing process. In order to achieve this
goal a subroutine in FORTRAN as been developed to simulate the temperature-dependent
material properties of matrix and fibres. The effect of residual stress has been evaluated for
different unit cells with different fibre volume fractions and numerical results have been
compared with the numerical values obtained in absence of thermal stresses.

Finally, since the epoxy matrices show a different mechanical behaviour in tension and
compression, as a further exercise, the reliability to predict failure and simulate damage within
the matrix of different failure criteria has also been accounted for. Three different failure criteria
have been adopted for our purposes. The first two failure criteria are strain based and they the

Maximum Principal Stress criterion that is used in combination with the Tresca failure criteria



The third criterion used to predict failure in the matrix is a modification by Raghava of the well
know von Mises criterion. This criterion includes the hydrostatic dependency of the epoxy
matrix.

Composites properties, e.g. strength and stiffness, are dependent upon the volume fraction of the
fibre and individual properties of the constituent fibre and matrix materials. Particularly the
estimation of the damage and failure progress in fibre reinforced composite structures is very
complicated compared to that of conventional metallic materials. Composite structures may vary
their stiffness and strength due to damage accumulation such as matrix cracking and fibre
breakage during the loading history of the composite members. In the micromechanical approach,
the constituent fibre and matrix materials, and their interaction are distinctively considered to
predict the overall behaviour of the composite structural member.. The present work has been
developed in order to simulate progressive failure of an UD composite with a hexagonal array
cross-section by carrying out micromechanical finite element analyses on a unit cell under
different uniaxial load conditions. The advantage of the micromechanical model is that the
stresses can be associated and related to each constituent (fibre and matrix). Therefore, failure
can be identified in each of these constituents and a proper degradation model can be modelled.
Also, different fibre volume fractions can be taken into account by varying the geometry of the
unit cell.

Here, the micromechanical model considers a unit cell in which fibre and matrix are assumed to
be perfectly bonded to the fibres throughout the analysis, with fibres arranged in a hexagonal
cross section array (Fig. 4.1) by assuming the repetitive or periodic nature of the fibre and matrix
materials. The unit cell is athree-dimensional solid and the geometry of each unit cell depends on

the fibre volume fraction [22].



Fig. 4.1 — Cross sectionona idealization (hexagonal packing array) in micromechanics studies.
Detail of the RVE.

The micromechanical unit cell models are constructed depending on the type of 1oad applied after
curing. The entire RVE is displayed in Fig. 4.1, but for longitudinal and transverse tensile

loading, due to the symmetry, a quarter of the unit cell (Fig. 4.2) can be considered.

Fig. 4.2 - ¥4 RVE of the hexagonal array packing.



The displacement constraints applied to the finite element model (Fig. 4.2) in order to apply
normal loads are [22]:

ux(Oy,z2)=0

Ux (ay,2) = constant =

uy(x,0,z) =0

uy (X,b,z) = constant =

uz(x,y,0) =0

uz(x,y,c) = constant =

where uy, Uy, U, denote respectively displacementsin the x-, y- and z-direction.

The meshes generated for the micro-models investigated are 20-noded hexahedral elements. The
number of elements varies approximately from 6000 to 9000 depending on the V:i. Mesh
sensitivity analysis suggests that the meshes are fine enough to produce accurate results
compared to a mesh with twice as many elements, with a difference within 0.2% -0.5% in terms

of residual stress and failure strain level depending on the fibre volume fraction.

4.2 Failure Criteria and Damage Propagation M odel

In order to simulate damage, it was necessary to evaluate the current stress state at each
integration point. Then by comparing the current stress state with a specific failure criterion, the
material properties are reduced at each “failed” integration point to values representing the
particular type of damage occurred [5, 111 and 114].

The selection of a proper failure criterion, both for matrix and fibre, represents a very important
task of the modelling formulation. In particular in polymers the yield behaviour is sensitive to
hydrostatic pressure and as a consequence, the yield stress in tension is different from that in
compression [6-8]. Modifications of von Mises and Tresca criteria were taken into account to

evaluate failure in the matrix. A common form of the von Misesfailure criterionis:



(51- 52 +(s2- s3)° +(s5- 51)* =252 (4-1)

where 1, ,, 3 are the principal stressesand sy is the yield strength of material. As the von
Mises criterion does not predict differences in yield stress between tension and compression,
modification of this criterion have incorporated the effects of hydrostatic pressure into equation

(4-1). A general form for the modified Von Mises criterion can be written in the following form

[8]:

’4(51+52+53)+B[( 1° 2)2+( 2" 3)2+( 3° 1)2]=1 (4_2)

It is possible to determine the constants A and B in terms of the smple uniaxia tensile and
compressive yield stresses v rand vy c, respectively.

The first modified Von Mises criterion was suggested by Raghava et al.[8]:

2(5Y,c'SY,T)(51+52+53)+[( 17 2)2"'( 2" 3)2"'( 3° 1)2]:25Y,05Y,T (4-3)

The second modified criterion was derived by Bauwens [8]:

\/E(SY,C' SY’T)(81+52+S3)+[( N e N L l)2]}/2 :zﬁ(m) (4-9)

SvyctSy,T SyctSvy,T

If vc= v 1 boththe modified Von Mises criteria by Raghava and Bauwens, reduce to the Von

Mises criterion, equation (4-1). The failure criterion proposed by Tresca states that failure occurs
when the maximum shear stress, tnax in the component being designed equals the maximum

shear stressin auniaxial tensile test at the yield stress. The criterioniis:



%|Sl - S3| = [max (4-58.)
1 4-5b
§|$1' 52|=[max ( )

(4-5¢)

1
§|52 - $3| :tmax

The Tresca yield criterion can be modified to take into account the effects of the hydrostatic
pressure. The critical value of the shear stress ta IS expressed as function of the hydrostatic
pressure:

= o

max max

t - a(s, +5,+s,) (4-6)

in which #°_ is the shear yield stress in absence of hydrostatic pressure and & is a material

constant:

(4-7)

The fibres adopted in the numerical models are glass fibres therefore in contrast to carbon fibres,
their material properties are isotropic [1]. It was possible, in order to evauate failure within the
fibres, the use of common failure theories for isotropic materials such as the von Mises failure
criterion, Maximum Principal Stress theory (Rankine, Lame, Clapeyron) and Maximum Shear
Stress theory (Tresca). The analyses were performed with the Finite Element code ABAQUS and

more specifically ABAQUS/Standard Version 6.4.



It is a common practice in simulating material damage to reduce the stiffness (or stiffnessin a
certain direction) to a near zero value following the onset of damage. Selective and non-selective
stiffness reduction schemes are often used. Selective schemes are typically applied for
composites where the load-carrying nature is dependent on the damage orientation [5]. For
isotropic material, damage is independent of the material orientation, so that non-selective
stiffness reduction is applied. When failure is detected the degradation is applied only on the
elastic moduli by multiplying them with a discount factor d; T (0, 1] (i designates the elastic

modulus E or G). Both resin and fibre-glass are isotropic and they have the following stiffness

matrix:
-1
1 n n 0 0 0
dgE dgE dgE
n 1 n 0 0 0
dgE dgE dgE
_dnE _dnE dlE 0 0 0
cl=[s] 1= Te=  Te= fEE (4-8)
0 0 0 —_— 0 0
dsG
1
0 0 0 o — 0
dsG
1
0 0 0 0 o —
dgG

The Young's modulus E and the shear modulus G were degraded independently by a discount
factor de and dg both initially set equal to the unity. If during the analysis the failure criteria
exceed the maximum strength allowed for matrix or/and fibre, the modulus E is degraded to 1%
of itsinitial value (dg = 0.01) at the particular integration point. The shear modulus G is reduced
to 20% of the initial value ((dg = 0.2) under the assumption that some shear stiffness remain due
to thefriction still present on the failure plane [5].

The non-selective stiffness degradation scheme, together with the residual stress analysis were

programmed into two user-defined material subroutines, UMAT and USDFLD [97], availablein



ABAQUS/Standard 6.4.. The UMAT and USDFLD subroutines allow updating the solution-
dependent state variables accordingly to the solution of an analysis. In particular, solution-
dependent state variables can be defined as a function of any other variables in these subroutines

and evolve with the solution of the analysis[10].

4.3 Materials

The constituent materials used in this investigation are glass fibre and epoxy resin, whose
properties are given in the book World-Wide Failure Exercise [10]. The properties of glass fibre
are assumed to remain constant and independent of the temperature change with Young's
modulus E = 80GPa and Poisson’s ratio 77 = 0.22, the coefficient of thermal expansion a =
4.9 10°%°C and the longitudina tensile ( 1) and compressive ( ¢) strength are respectively
2150MPa and 1450MPa. However, for the epoxy resin, thermal transition temperatures such as
the glass transition temperature T4 strongly affect mechanical properties. In order to represent this

behaviour accurately the material properties of the resin are defined as a function of temperature.

The following relations are used:
(a) Poisson’'sratio isassumed to be temperature independent (/7= 0.35).
(b) To evauate the variation of Young's modulus E over the temperature range from curing to

room temperature, the total temperature range can be divided into three regions:

Region |11 Tg -LTETE Tg + LT , inwhich E varies greatly.
Regionll T <T - LT, thematrix isin solid state and E changes only slightly.

Regionl T > Tg + LT, the matrix is in liquid or rubbery state and E has a very small

value.

For each region, the modulus is obtained using the following functions [132],



T-T

E(T)=E(T -K,————— T<T.-OT

(M=o ke T<T, .o

E(T)=€(T, - Or)exp -k, "2 1 prgTET o (4-10)
Or+ or ? ‘

E(T)=001E(T,) T>T,+LT (4-11)

with:

T, =110°C,

T =23°C,

LT =35°C,

E(T,) =3.35GPa,

E(T,- £T)=0.7E(T)),
E(T, + LT )= 0.01E(T,),
k, =0.35667,

k, =4.2485

(c) Thethermal expansion coefficient a is assumed to change linearly with the temperature:

a(m = K(T-T) + a(Ty)
with a slope of:

a -a(r)

K =
T,- T,

(4-12)



where a(T,)=58"10"°/°Cand @, =139" 10°®/°C.
The longitudinal tensile ( 1) and compressive ( ¢) strength of the resin are taken to be

respectively 80MPaand 120M Pa.

Mechanical and thermal properties of fibre and matrix are summarized in Table 4-1.

Table4-1 Mechanical and thermal properties of fibre and matrix [10].

Material properties E-Glass Epoxy
Longitudinal modulus, E, (GPa) 80 3.35
Transverse modulus, E, (GPa) 80 3.35
Poisson®ratio, n 0.2 0.35
Shear modulus, G (GPa) 33.33 124
Longitudina tensile strength, X+ (MPa) 2150 80
Longitudina compressive strength, X¢ (MPa) 1450 120
Longitudina tensilefailure strain, Y1 (%) 2.687 5
Longitudinal compressive failure strain, Y ¢ (%) 1.813 -
Shear strength, S (MPa) 1200 70
Thermal coefficient, a (10°/°C) 4.9 58

The isothermal curing reaction of athermoset resin involves dramatic changes in the properties of
the resin. After heating of the initialy liquid monomer, the chemical reaction commences. The
molecular weight and the degree of cross-linking increase as the volume of the system decreases.
As the reaction proceeds two phenomena may occur independently: gelation and vitrification.
Gelation corresponds to the formation of a molecular network and can be regarded as the point
after which the system can sustain stress. Vitrification occurs when the glass transition
temperature Tg of the reacting system reaches the cure temperature. On vitrification the system,
either a rubbery network or a viscous liquid (if vitrification precedes gelation), is transformed

into a glassy state. The property change was shown to be closely related to the degree of cure of



theresin [127, 167 and 168]. Here, the properties of the resin were assumed to be independent of
the degree of cure and constant at the isothermal curing temperature. Their values were obtained
from the temperature-dependent functions 4-9, 4-10 and 4-11 and used for the epoxy shrinkage in
residual stress analyses in the present work. This assumption was justified by the fact that the
modulus was built up very quickly after resin gelation or vitrification [120]. Also stress
relaxation due to the viscoelasticity of the epoxy resin [132, 169] was ignored here, and the

epoxy was treated as linear elastic.

4.4 Residual Stress Analysis

Residual stress has two parts. the chemical shrinkage residual stress and the thermal cooling
residual stress. In order to simulate a curing process, the analysis was performed by two discrete
steps, where step one is the shrinkage stress analysis and step two is the thermal cooling stress
analysis. The shrinkage residual stress was calculated by applying a given amount of resin
shrinkage. For the epoxy resin considered here, the linear shrinkage strain was chosen to be
0.01%, 0.35% and 1% which corresponds to a volumetric change of circa 0.03%, 1% and 3%
respectively. The thermal residual stress is due to the cooling of the system from the curing
temperature, 149°C, to room temperature, 23°C. The mechanical properties of the resin, in terms
of shear modulus (and Young's modulus when the resin becomes solid), increase drastically as
the material evolves from aliquid state to a solid state. So in the resin, geometrically constrained
within the interstices present between fibres, tensile stresses develop more easily. Moreover,
during chemical shrinkage, in which resin is in a rubbery state, redlistically no deformation is
established along the x-direction. Strains paralel to fibres are only developed during cooling as

the resin evolves from aliquid/rubbery state into a solid state.

The total induced strain of the resin due to chemical shrinkage and thermal cooling can be

expressed as[170]:



de; =dg; +q;ds+a;a(T)dT (4-13)

where dg; is the total strain increment, de; the elastic strain increment, ds the free shrinkage
strain increment due to the chemical reaction (cross-linking) in the absence of constraint, (T) the
thermal expansion coefficient which is dependent on the temperature, dT the temperature change
and d; is the Kronecker delta. From equation (4-1), the stress-strain relationship can be derived
as:

ds, =C,,de, =C{de, - g,ds- g,a(T)dT} (4-14)

where ds; are the stress increments and Cijy the stiffness components. The above stress analysis

is based on linear elasticity and the stiffness components Cj;q are related to the Y oung’'s modulus
E and the Poisson’s ratio 77 of the material. Equation (4-2) was derived for the residual stress
anaysis in the resin. The distribution of the resin’s maximum principal residual stress in the

matrix, after curing and cooling is presented in Fig. 4.3.

Fig.4.3 - Distribution of residual stressin the matrix after curing and cooling-down.



The mechanical properties of the resin, in terms of shear modulus (and Y oung’s modulus when
the resin becomes solid), increase drastically as the material evolves from aliquid state to a solid
state. So in the resin, geometrically constrained within the interstices present between fibres,
tensile stresses develop more easily. The largest values reached after chemical shrinkage and
cooling are depicted in Fig. 4.4 Results from the analysis attribute the primary contribution to

residual stress mainly to thermal cooling.

38 |
36§

W W w
o N B
T T TTT

28 ©

N
(o3}
T

Residual Stress [MPa]
N
N

N
N
TTT

N
o

45 50 55 60 65 70 75 80 85
Fibre Volume Fraction %

Fig. 4.4 - Trend of maximum principa residual stress (MPa) after curing and cooling-down evaluated in
the area of max tensile stress at different V;

In Fig. 4.5 the small contribution from the chemical shrinkage for four different fibre volume

fractionsis shown.
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Fig. 4.5 - Trend of maximum principal residual stress (MPa) after curing evaluated in the area of max
tensile stress at different Vi

The curing stresses are small as a result of the mechanical properties of the resin during the
curing process. In fact, its state is rubbery and almost liquid so the capability to interact with the
fibres by transferring stresses is negligible. These results agree with most of the published work
on residua stresses in which thermal cooling was evaluated as the main source of residual stress

in polymer composites [120, 171].

45 Effect of residual stresson transverse and longitudinal failure
To study the influence of residual stress/strain on the response of the unit cell model, the damage

evolution in the matrix was examined under transverse loading. After curing and thermal cooling
analyses, a global strain was applied to the model which was achieved by specifying a uniform
displacement at the model surfaces. At each time increment of the analysis, the damaged areain

the matrix was determined using both the Maximum Principal Stress failure criterion and the von



Mises criterion modified by Raghava. Throughout the following analyses, the fibre showed no

sign of damage due to its high strength, therefore, damage and failure refer to the matrix only.

4.5.1. Uniaxial longitudinal tensile loading
In UD composites the effect of the fibre is dominant, therefore during curing, in which resinisin

arubbery state, redlistically no deformation is established along the x-direction. Strains parallel to
fibres are only developed during cooling as the resin evolves from a liquid/rubbery state into a
solid state. As the fibres are dominant the strength of the micro-models in the x-direction is of
course improved if fibre volume fraction is increased.

A comparison between two different combinations of failure criteria was investigated:

1- Raghava (matrix)/von Mises (fibre)

2- Maximum Principal Stress (matrix)/ Maximum Principal Stress (fibre)

The modified von Mises criterion (Raghava) and the Maximum Principal Stress criterion were
chosen in order to compare the capability to predict the damage initiation in 3D unit cells of
energy based criteria (Raghava) and stress based (Maximum Principa Stress).

Both combinations show similar results in terms of ultimate strength for the fibre with residua
stress (Fig. 4.6) but the Raghava criterion predicts matrix failure at a lower loading strain. In
addition, the two combinations of failure criteria show a difference in the prediction of damage

onset in the matrix.
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Fig. 4.6 - Global stress-strain curve in x-direction on uniaxia tensile loading
with thermal residual stressfor V; 60.

The Maximum Principa Stress and the Raghava failure criteria predict differently the damage
onset. The Maximum Principal Stress predicts the initiation of the damage in four regions (Fig.
4.7a) at the fibre/matrix interface while, according to the Raghava failure criterion the matrix
undergoes a drastic failure (Fig. 4.7b). In fact on longitudinal loading the unit cell is strongly
deformed in al the three directions and the energy based criterion (Raghava) results more
influenced by the triaxia stress state arising at the fibre/matrix interface leading to a more

conservative value if compared to the estimations determined with Maximum Stress criterion.
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Fig. 4.7 - Comparison on damage onset prediction (V; 60%) in presence of residual stress.
Maximum Principal Stress (a), Raghavafailure criterion (b).

As seen in Fig.4.6, the presence of residua stresses does not modify the ultimate strength of
fibres for x-direction loading, but for the matrix it is greatly detrimental decreasing its capability
to bear loads. Comparison between stress/strain curves with and without residual stress (Fig. 4.8)
shows that a premature matrix failure occurs if residua stresses are applied. Residual stresses are
always detrimental for the matrix in x-direction longitudinal loading as shown in Fig. 4.9.
Although thermal residual stresses do not affect the ultimate strength of the micro-composites if
the unit cell is biaxially or even triaxialy loaded small loading strains could lead to the
fibre/matrix debonding at interface and, due to the coalescence of cracks, to the catastrophic
failure in the composites as demonstrated in Zhao et a [170] for a unit cell with sguare

arrangement of the fibres.
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4.5.2. Uniaxial transversetensileloading



Under ay-direction uniaxial tensile loading and neglecting the residual stress/strain introduced
during the curing process, the Maximum Principal Stress criterion predicts the damage initiation
and its evolution (represented by black shading) to start from the corners of the RVE, propagating

within the matrix along the edges of the micro-model (Fig.4.10).

@ (b) (©
Fig. 4.10 - Damage initiation and evolution under uniaxial transverse tensile loading along y-direction
evaluated by means of the Maximum Principal Stress with no residual stress (V¢ 60%).

With the residual stress/strain state, the evolution of damage for uniaxial tensile loading in the y-

direction is shownin Fig.4.11. Theresidual stress/strain state corresponds to the conditions of 1%

shrinkage strain and 149°C curing temperature.
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Fig.4.11 - Damage initiation and evolution under uniaxial transverse tensile loading along y-direction
evaluated by means of the Maximum Principal Stress with residual stress (V;60%).

It can be seen that the site of damage initiation and the subsequent evolution are clearly affected
by thermal residual stress. If the residual stress is included, damage initiates near the bottom of
the fibre/matrix interface and evolves along the fibre/matrix interface.

The damage onset in the z-direction with no residua stress takes place at the fibre/matrix

interface as depicted in Fig.4.12

€Y (b) (©)
Fig.4.12 - Damage initiation and evolution under uniaxial transverse tensile loading along z-direction
evaluated by means of Maximum Principal Stress criterion with residual stress (V¢ 60%).



For this load case damage initiation and its evolution are not affected significantly by the
presence of residual stresses. A crucia result is that the initiation of the damage depends on the
mode of loading: y-direction or z-direction. As displayed in Fig. 4.10-12 the damage onset occurs
within the matrix in different areas. Specifically, in the y-direction, damage takes place in the
corners of the RVE and in the z-direction, at the fibre/matrix interface in the centre of the RVE.
The interpretation for such a difference is due to the particular line of symmetry [35] in the RVE
under investigation in which fibres are assembled with a hexagonal packing array (Fig.4.13).
Hence the stress field, distributed symmetrically about the line of symmetry, is different thanin a

square packing array.

y

Fig. 4.13 - Line of symmetry in a RVE (hexagonal packing array).

During the damage analysis, the global stress-strain response in the loading direction was
monitored and an example of resultsis given in Fig. 4.14 for the cases with and without residual

stress.
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Fig. 4.14 - Global stress-strain curve in y-direction for uniaxial transverse tensile loading (60%).

For both cases, the carried stress starts to drop from the point of damage initiation. Once damage
isinitiated, the model tends to fail suddenly. Thus, the initia failure strain level is also the final
failure level for transverse loading. This brittle behaviour is also observed under the z-direction
loading. In Fig. 4.15 the dependence of ultimate strength on fibre content is displayed for these

load directions in the case of no residual stress.
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Fig. 4.15 - Comparison of ultimate strength for y-direction and z-direction loading
by using the Maximum Principal Stress criterion. No residual stress applied.

The comparison between the strengths predictions using the Maximum Principal Stress and the
Raghava failure criteria at different fibre content has an immediate consequence. In fact, the
Raghava failure criterion shows the same location in predicting damage onset for the all cases
(no-residual stress and residual stress, y- and z-direction loading state) but it is always less

conservative in terms of ultimate strength (Fig. 4.16-19).
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75

Fibre Volume Fraction %

70 |
g . O
65 | \
L —
' 60 [
Qo L
Z 55 |
= -
g 50 r
& 45 - | —*Raghava, No residual stress
40 [ | ™ Maximum Principal Stress, No residual stress '
35 | h
30 E 1 1 1 1 1 1 Lo
45 50 55 60 65 70 75 80 85
Fibre Volume Fraction %
Fig. 4.18 - Trend of ultimate strength (MPa) in z-direction evaluated
with Maximum Principal Stress and Raghava failure criteria. No residual stress.
75
70 | —e
65 |
. = —i —
=60
Qa -
= 55 |
< -
o 50 |
o r
Z 45 | | -+ Raghava, residual stress
40 [ | ™ Maximum Principal Stress, residual stress
35 |
30 t | | | | | 1 |
45 50 55 60 65 70 75 80 85

Fig. 4.19 - Trend of ultimate strength (MPa) in z-direction eval uated
with Maximum Principal Stress and Raghava failure criteria. Effect of residua stress.




Furthermore, the presence of residual stress in y-direction loading above 50% fibre volume
fraction is always beneficial while for z-direction loading residua stress is slightly detrimental

for low fibre volume fractions but becomes beneficial from aV; of 57% (Fig.4.26 and Fig.4.27).
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Fig.4.26 — Ultimate strength (M Pa) with and without residual stress (y-direction).
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Fig.4.27 - Ultimate strength (M Pa) with and without residual stress (z-direction).



Residual stresses after curing and cooling cause a redistribution of the internal stress field when
applying loads and the positive consequence is to lower stresses in the resin, improving the
ability to bear loads in the y- and z-directions. Models with low fibre volume fractions undergo a
detrimental effect due to thermal residual stress when the model isloaded in the z-direction. After
cooling the highest values of residual stresses in the matrix are concentrated along the
fibre/matrix interface in particular areas but the evolution of the stress field by applying a
displacement in z-direction is dissimilar. In fact, for high fibre volume fractions stresses tend to
spread internally within the resin whilst for low fibre contents they remain highly concentrated at
the interface throughout the analysis, weakening this area significantly. Hence, residual stresses
could play an important role in decreasing the overall response of the composite negating the
potential beneficial effects for y- and z-direction transverse loading and producing a drastic

failure of the composite.

4.6 Conclusions

Residual stress and its effect on transverse and longitudinal failure of fibre-reinforced polymer
matrix composites were studied using a micromechanical unit cell model and the finite element
method. Results obtained with the residual stress analysis were also compared to data from anon-
residual stress analysis. The overal residua stress is determined by considering two
contributions: volume shrinkage of matrix resin during isothermal curing and thermal contraction
of both resin and fibre as a result of cooling from the curing temperature to room temperature.
Analyses confirm the isothermal residual stress during curing can be considered negligible
compared to the thermal residual stress due to cooling.

A study of two different failure criteria was performed for the matrix in order to evauate
differences in the capability to predict failure. The assessment of the failure criteria investigated

proves that they are capable to describe qualitatively the materia behaviour of the composite



under longitudina and transverse loading agreeing broadly with data in the literature. In
particular the Raghava modified von Mises criterion results more accurate to detect the matrix
failure on longitudinal (parallél to the fibres) loading. On the contrary on transverse loading, as
the fibres are stiffer than the matrix, the unit cell is principally deformed in the y- and z-direction
while the contraction in the x-direction is totally negligible and the Maximum Principa Stress
failure criterion have been more conservative in the prediction of the failure.

The comparison between the residual and non- residual stress analysis has demonstrated that the
predicted damage initiation and evolution are clearly influenced by the presence of residual
stress. Residual stress causes a premature failure in the matrix at a lower strain than with no
residual stress conditions on longitudinal loading case (x-direction) and it is always detrimental
for the matrix while for the fibre there is no important alteration in terms of ultimate strength. In
particular, the effect of residual stress on transverse tensile loading (y- and z-direction) depends
on the fibre volume fraction and produces beneficial results in the y-direction at the fibre volume

fractions studied while, in z-direction it is detrimental for low fibre volume fractions.



Chapter 5

Effects of Interphasial Properties on the Mechanical Behaviour of
RVEs

5.1 Introduction

Recent research has showed that the local microstructure in the vicinity of fibre/matrix interface
can be atered significantly by various fibre surface treatments and the presence of this interphase
is critical on the final behaviour of composites. Unfortunately, experimental studies are not able
to describe the “evolution” of the interphase in composites with polymeric matrix during the
curing and the cooling process and moreover numerical studies neglect to take into account the
distribution of micro stresses within the interphase due to the presence of residual stress
occurring in the manufacturing process.

Hence, there is a need to further investigate the local response of hexagona unit cells that
undergo thermal residual stresses and in which there is the presence of an interphase.

Although results from Chapter-4 showed beneficial and detrimental effects of residual stress
depending on different variables (e.g. fibre content, matrix ultimate strength), failure onset was
never detected during chemical shrinkage or cooling process. This phenomenon is sometimes
detected in areal curing process.

As aready seen, researchers are also trying to “engineer” interphases in real composite materials
at micro-scale in order to improve the overal mechanical behaviour of composites materials.
Hence another important aspect in the present numerical investigations is to simulate and predict
the final response of composites at the component level scale by simply varying the material

properties of the interphase.



5.2 Finite Element Modelling

In the present work, three-dimensional finite element analysis has been used to study the overall
behaviour, damage onset and its evolution of a simple unit cell model with a hexagonal array of
fibres under transverse and longitudinal uniaxia loadings. The numerical 3D models include an
interphase with a constant thickness and material properties showing “idealised” temperature-
dependent properties over the curing a cooling process. A symmetric distribution of fibres and a

constant value of the fibre volume fraction have been considered in these studies.

The initiation of microcracks in unidirectional composites at micro level is usualy governed by

the strength of the adhesion between fibres and matrix. The local stress concentration around the

fibres due to mechanical loading, combined with the residual thermal stresses arising during the

curing process, make the fibre/matrix transition region the most important constituent of a

composite material. Because both terms interface and interphase are often used to refer to the

fibre/matrix transition, in order to avoid confusion the definition of these terms is previously
given:

1. Interphase: an interphase is defined as a three-dimensiona region between fibre and bulk
matrix, with a different morphology, chemical composition and mechanical
properties, compared to both fibres and bulk matrix.

2. Interface:  aninterface is defined as atwo-dimensiona edge between fibre and matrix, if no
inter phase is considered, or fibre and interphase.

According to these definitions, an interphase becomes an interface, if its thickness tends to zero.

In this work the transition between fibre and matrix is modelled as an interphase with different

properties, compared to fibre and matrix.



Despite a lot of efforts, a full characterization of the interphase, constituted during the curing
process, has not been yet fully achieved. In the present work the interphase has been modelled as
an isotropic layer with material properties constant over its thickness. In order to investigate the
effect of residual stress the Y oung’s modulus and Poisson’ s ratio of the interphase are considered
temperature dependent. More precisely the Young's modulus is defined by the following relation
in Region-11 and Region-I11 described in Chaper-4 (Fig. 5.1)

T-T,- DT

E(TY=E, exp - k
(T)=E, exp DT 5.1)

E(T) = E, expl- kf(T)]

The thermal expansion coefficient a is assumed to be equal to the matrix CTE.
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Fig.5.1 — Mechanical behaviour during the cooling and curing process.

In the micromechanical approach, the constituent fibre, matrix and interphase materials and their

interaction are distinctively considered to predict the overall behaviour of the composite material



structure. The micromechanical approach alows relating stresses of each constituent in the
micromodel, namely: fibre, matrix and interphase. Therefore, falure can be detected
independently in each of these constituents and the appropriate property degradation can be
applied. Here, the micromechanical model considers a unit cell in which fibre, matrix and
interphase are assumed to be perfectly bonded at their interfaces throughout the analysis, with
fibres arranged in a hexagonal cross section array by assuming the repetitive or periodic nature of
the fibre and matrix materials. The unit cells are a three-dimensional solid and the fibre volume
fraction is 70%.

The boundary conditions, damage and post-damage model applied for this investigation has been
previoudly illustrated in Chapter-4. In these FEM studies only two loading conditions have been
applied to the unit cell shown in Fig. 5.2, namely:

1) transverseloading on the y-direction,

2) transverse loading on the z-direction,

Fig.5.2 — 1/4 of the hexagonal array packing RV E used as reference model with interphase.



5.3 Finite Element Results of RVEswith I nter phase

The first goal of this research was to understand whether a thin interphase can influence the
mechanical behaviour of composite materials at the microscale.

A finite element study on unit cell in absence of residual stresses has been performed in order to
investigate the effects of thin interphases on the overall mechanical behaviour of the micro
numerical models. The ultimate strength of interphase and matrix has been assumed to be the
same (80M Pa) while the values of the Y oung's moduli Einterphase fOr the interphase are:

18) Einterphase-soit = 1.50GPa (softer interphase);

28) Einterphasesitt = 7.45GPa (stiffer interphase).

Numerical results show that the unit cell undergoes a*“ stiffening” or “ softening” effect depending
on the materials properties in the interphase on the y-direction and z-direction (Fig. 5.3 and Fig.

5.4).
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Fig 5.3 - Ultimate strength under y-direction loading (no residual stress).
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Fig.5.4 - Ultimate strength under z-direction loading (no residual stress).

On transverse tensile loading numerical results have shown that the ultimate strength in unit cells
loaded in the y-direction and with a softer interphase is circa 4% greater than the ultimate
strength in the micromodel with a stiffer interphase. The ultimate strength in unit cells with a soft
interphase and loaded in the z-direction is circa 2.5% greater than the ultimate strength evaluated
in the stiffer interphase. The magnitude of the ultimate strain in the unit cell with a softer
interphase is even larger if compared to the ultimate strain of the unit cell with a stiffer
interphase, namely: 20% in the y-direction and 22.5% in the z-direction.

Although the interphase (0.1um) is only 1/100 of the fibre diameter it plays a significant effect on
the overall elastic response of the micromodels. In fact, by adding a thin interphase with a
Y oung's modulus of nearly 50% lower than the matrix Y oung’s modulus, the elastic properties of

the micromodel display a beneficial effect in terms of transverse ultimate stress and transverse



ultimate strain while, the stiffer interphase (E=7.45GPa) tends to reduce the capability of the

micro-composite to bear transverse loads.

5.3.1 Effect of easticinterphasial propertiesand thermal residual stresses

Preliminary analyses have been performed on unit cells with different combinations of Young's
moduli and Poisson’s ratios in order to investigate both the distribution and the magnitude of
thermal residua stresses within the micromodels.

The overal contraction of the resin has to be attributed to chemical shrinkage and thermal

cooling and it can be expressed as:

de; =de; +d;ds+d;a(T)dT (5-2)

where dg; is the total strain increment, de; the elastic strain increment, ds the shrinkage strain
increment due to the chemical reaction (cross-linking) in the absence of constraint, (T) the
thermal expansion coefficient which is dependent on the temperature, dT the temperature

increment and dj; is the Kronecker delta. The stress-strain relationship can be derived as:

dsij =Ciy de, =Ciu {deij - dij ds- dija(T)dT} (5-3)

where ds; are the stress increments and Cj the stiffness components. The stress analysis is

based on linear elasticity and the stiffness components Cijy are related to the Y oung's modulus E
and the Poisson’ s ratio 77 of the materia. In order to simulate the curing process, the anaysis was
performed by two discrete steps, where step one is the shrinkage stress analysis and step two is
the thermal cooling stress analysis.

The shrinkage residual stress was calculated by applying a given amount of resin shrinkage. For

the epoxy resin considered here, the linear shrinkage strain was chosen to be 0.35% which



corresponds to a volumetric change of circa 1%. The overal thermal residua stresses are due to
the cooling of the system from the curing temperature, 149°C, to room temperature, 23°C.

The mechanical properties of the resin, in terms of shear modulus (and Y oung’s modulus when
the resin becomes solid), increase drastically as the material evolves from aliquid state to a solid
state. Hence in the resin, geometrically constrained within the interstices present between fibres,
tensile stresses develop more easily. Moreover, during chemical shrinkage, in which resinisin a
rubbery state, redlistically no deformation is established along the x-direction. Strains parallel to
fibres are only developed during cooling as the resin evolves from a liquid/rubbery state into a
solid state. The amount of residual stresses within the matrix and interphase also strongly depend
on the material properties of interphase e.g. Y oung’'s moduli and Poisson’s ratio and thickness.
Preliminary analyses have been carried out to evaluate the amount of residual stresses after the
processes of curing and cooling in order to understand the effects of the residual stresses in unit
cells with an interphase and different mechanical characteristics. The material properties of the
interphase and the matrix have been assumed the same in Region-1 in which the matrix | sin
liquid or rubbery state and E has avery small value. In Region-Il and Region-111 the evolution of
the material properties for the interphase are expressed with equation (5-1) and it is shown in
Fig.5.1. Thefina values of the Y oung’ s moduli are:

1a) E =1.50GPa (softer interphase);
2a) E =3.35 GPa (equal to matrix’s modulus);
3a) E =7.45GPa (stiffer interphase).

The values of Poisson’s ratio have been considered constant throughout the numerical simulation
of curing and cooling process. Three values have been chosen and they are here summarized:
Poisson’s Ratio

1b) n=0.3;

2b) n=0.35;

3b) n=0.4.



The Poisson’s ratio n = 0.35 derives from the material properties of the epoxy matrix while the
other two values have been chosen arbitrarily. The interphase has a thickness is 0.1um (fibre
diameter is 11um) and it has been considered as homogeneous. Hence it has been assumed that
material properties in the interphase undergo spatially the same behaviour during the chemical
shrinkage and cooling process. The elements used to mesh the interphase are quadratic solid
brick elements. The dimension of these elementsis the smallest dimension allowed by ABAQUS

for this geometry.

/

Fig. 5.5 - Maximum Principal Stress[MPa] in the matrix - SOFT INTERPHASE (n=0.3)



/

Fig. 5.6 - Maximum Principal Stressin theinterphase - SOFT INTERPHASE (n=0.3)

The distribution of stresses after chemical shrinkage and cooling is shown in Fig.5.5 and Fig.5.6
Residual stresses for different combinations of elastic properties has been summarised in Table 5-

1. Estimated residual stresses have been calculated with the Maximum Principal Stress criterion.

Table5-1 — Values of residual stressesin the matrix and interphase for different material properties of the

interphase
Interphase Properties Residual Stress after cooling [MPa]
Young's Poisson’s i
Modulus [GP4] Ratio Matrix Interphase
(constant value)
1.50 0.3 25.5 12
1.50 0.35 255 13
1.50 04 25.5 145
7.45 0.3 27 57
7.45 0.35 27 59
7.45 04 27 67

From the results presented in Table 5-1 it is clearly shown that the material properties of a thin
interphase influence the magnitude of the residual stresses within the matrix and interphase.

Although residual stresses in unit cells with “soft” interphase display higher values of stressesin
the matrix, the magnitude of these stresses is less than 50% of the values reached in unit cells
with a “stiffer” interphase. In unit cells with a stiff interphase (E= 7.45GPa), residual stress are

totally concentrated within the interphase.



54  Strength Study
The high value of thermal residual stresses evaluated at the interphase of unit cells with stiffer

interphase highlight the importance to further investigations on the effects of the overall
mechanical behaviour and especially the damage onset and evolution in the numerical
micromodels under different unidirectional tensile loadings.

In the analyses that account for the presence of residual stresses, the materia characteristics of
the interphase as well as the matrix undergo profound modification throughout the analysis. The
value of the ultimate strength has been assumed constant over the curing and the cooling process.
But while for the matrix the value of the ultimate strength is known (80MPa) as for the
interphase, this parameter remain unknown and it has been chose arbitrarily in order to carry out
parametric studies on the effect of different ultimate strengths on damage formation and

evolution.

5.4.1 Effect of a stiff interphase on the transver seloading
Different values of interphase ultimate strengths have been investigated to study the effects of

thermal residual stress on failure and damage onset and evolution. Finite element analyses have
been carried out on unit cell of 70% in fibre volume fraction with and without residual stress to
compare the overall mechanical behaviour on tensile uniaxial loading. The values of ultimate
strengths attributed to the interphase (Su,interphase) fOr the parametric study vary from 20MPa to
140M Pa.

Moreover the Poisson’'s ratio has been assumed equal to n=0.35 both for the matrix and the
interphase throughout the curing and cooling process.

Fig.5.7-12 display the damage onset and the following propagation within the unit cells with the

stiff interphase (E=7.45GPa) on transverse loading along the y-direction.



Fig.5.7 — Damage onset in unit cells with ultimate strength Sy jnterphase 40 MPa (residual stress analysis).

Fig. 5.8 - Damage onset and evolution in unit cells with Sy jnerphase 80 MPa (no residual stress analysis).
Y ellow circles show the location of damage onset.



Fig. 5.9 - Damage onset and evolution in unit cellSwith S y.interphase 80 MPa (residual stress analysis).

a b

Fig. 5.10 — Damage onset and evolution in unit cells with S y.inerphase 100 MPa (residual stress analysis).
Y ellow circles show the location of damage onset.



Fig.5.11 — Damage onset and evolution in unit cellSwith S y jnerphase 120 MPa
(no residual stress analysis).

Fig. 5.12 — Damage onset and evolution in unit cells
With Sy interphase 120 MPa (residual stress analysis).
A relevant result of the finite element study has been that for values of the Sy nterphase DElOW
60M Pa strength the failure is detected during the cooling process (Fig.5.7) in which the amount
of thermal residual stress, after the curing process, is higher than 60M Pa.

Fig.5.7 shows the drastic failure of the interphase during the cooling process.



The unit cells in Fig. 5.8 and Fig. 5.9 show that the presence of residual stresses also greatly
influence the location of damage onset. In fact, damage, depicted with black areas, starts in the
matrix and/or in the interphase depending on the magnitude of the ultimate strength of the
interphase. In general in unit cells with a stiffer interphase (E=7.45GPa) failure has been detected
within the matrix in absence of thermal residual stress, for values of Sy jnterphase 80Ve 60M Pa (no
residual stress) and finally for values of the interphase Suyiinterphase greater than 100MPa in
presence of residual stresses.

Damage initiation in numerical micromodels with an S y interphase [OWer than 60M Pa (no residual
stress) and in unit cells with thermal residual stress and the interphase ultimate strength lower
than 100M Pa has been localized within the interphase.

A particular case is represented by the unit cell in which the ultimate strength of the interphase is
100MPa. Due to the redistribution of the internal stress during the loading after the whole curing
process, the micromodel fails both in the interphase and in the matrix (Fig. 5.10). The damage
initiation points are always highlighted by means of acirclein Fig. 5.8-12.

All set of the results related to unit cells with a stiffer interphase are briefly summarized in Table

5-2.



Table 5-2 — Numerica results for a unit cell with a stiff interphase with different ultimate strengths.
STIFF INTERPHASE - Transversey-direction

No Residual Stress Residual Stress No Residual Stress Residual Stress
WINTERFRASE " RVE Ultimate Strength [MP4] RVE Failure onset
[MPa]
20 23.0 COOLING INTERPHASE INTERPHASE
40 23.0 COOLING INTERPHASE INTERPHASE
60 33.0 43 INTERPHASE INTERPHASE
80 43.0 315 MATRIX INTERPHASE
100 43.0 51.0 MATRIX MATRIX/INTERPHASE
120 43.0 51.0 MATRIX MATRIX
140 43.0 51.0 MATRIX MATRIX

A further consequence of the residua stress is the detrimental or beneficial effects on the
mechanical properties of the micro-composites. Finite element investigation has shown that for
values of the interphase ultimate strength below 80M Pa, the high values of thermal residual stress
has a significant negative effect for the interphase. In particular, thermal residual stress leads to a
complete failure of the interphase itself during the cooling process for values of Sy interphase lOWeEr
than 60MPa. The failure of the entire interphase simulates the complete “debonding” between
fibre and matrix. This kind of failure in real composites at micro-scale represents the most likely
mode of failure either during the complete curing process or during loading. Under these
circumstances the capability of the micro-composite to bear loads under transverse tensile
loading are negatively altered.

Nevertheless, the effect of residual stresses starts to produce a beneficial effect in unit cells with

the interphase ultimate strength greater than 80MPa. In these unit cells failure has been mainly



localized in the matrix and the damage evolution in general involves partially (Fig 5.10a) or at
the last stage of its development (Fig 5.10b) the interphase. Hence fibre/matrix debonding is

avoided.

Although the symmetry from the hexagonal distribution of fibres over the cross-section implies
the same elastic response both on the z-direction and y-direction, the effect of damage onset and
evolution could display significant differences.

Under the zdirection of loading, the weakest area in the unit cell appears to be the region
indicated in Fig. 5.13, in which inter-fibre distance has the minimum magnitude. Failure can be

detected in the interphase or matrix depending on the value of the interphase ultimate strength.

Fig. 5.13 — Location of damage onset in unit cells under transverse loading on the z-direction.



The presence of residual stresses, it has been aready seen, leads to a failure in micro-composites
with a particular weak interphase (Suy,intephase<60MPa). The micromodel with an interphase
Su,interphase = 60MPa represent an interesting case. In fact, damage onset is located in the areas in
which residual stresses after cooling are mostly concentrated (Fig. 5.5 and Fig. 5.6). Numerical
analyses have shown that in unit cells with a stiffer interphase (E=7.45GPa) residual stresses tend
to remain mainly localized within the interphase. Hence, unlike the non-residual stress analysis,
the concentration of stress in the interphase leads to the complete failure of interphase without
involving matrix failure.

The damage evolution for micromodels with Sy interphase 60MPa and S yinterphase  100M Palis also
greatly influenced by residual stressasit isdisplayed in Fig.5.14-16.

Finite element studies show that the damage initiation and evolution do not undergo particular
modification in the local distribution within the composite. Damage onset for Sy jnterphase > 60M Pa
starts at the interphase in the region marked with a square in Fig. 5.16 and progresses principally
within the interphase due to the internal redistribution of stresses within the interphase itself and

at the last stage failure involves the matrix.
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Fig. 5.14 — Damage onset and evolution in unit cells with Sy jnterphase 60M Pa, 80M Pa and 100M Pa
(Noresidua stress analysis).
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Fig. 5.15 Damage onset and evolution in unit cells
With S yjinterprase 60MPa (residual stress analysis).
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Fig. 5.16 — Damage onset and evolution in unit cells with Sy jnterphase 80M Paand 100M Pa

(residual stress analysis).
Few analyses have been performed on unit cells with a particular strong interphase
(S u,interphase>100M Pa). Although for high values of the ultimate strength of the interphase under
transverse loading in the z-direction failure has still been detected in the weakest area (minimum
distance in the z-direction), damage onset (Fig. 5.17) and damage evolution are now totally

|ocated within the matrix.
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Fig.5.17 — Damage onset and evolution in unit cells
With Sy jinterphase 120MPaand 140MPa (residual stress analysis).

In Table 5-3 the ultimate strengths of the unit cells and the location of initia failure in presence
and absence of residual stresses are summarised.

In general, for this configuration of micromodels in which the Young's modulus is E=7.45GPa
and the Poisson’s ratio is n=0.35, effect of thermal residual stress can be considered detrimental
for interphase ultimate strengths below 60MPa due to the weakening action of the residual
stresses on tiff interphases. Finite element analyses have demonstrated in fact that the stiff
interphase tends to accumulate stresses and to avoid the redistribution of thermal residual stresses
within the matrix. Although the hexagonal packing array displays the same elastic stiffness both
in the z- and y-direction, the results without residual stress show that under transverse uniaxial

loading on the z-direction gives higher values for the ultimate strengths in comparison with



results from the analyses in the y-direction. Thistrend is also repeated if residual stress due to the

curing and cooling process is applied in the numerical calculations.

Table 5-3 — Numerica results for a unit cell with a stiff interphase with different ultimate strengths.
STIFF INTERPHASE - Transver se z-direction

No Residual Stress Residua Stress No Residual Stress Residua Stress
HINTERPRASE RVE Ultimate Strength [MPa] RVE Failure onset
[MPa]
20 15.0 COOLING INTERPHASE INTERPHASE
40 15.0 COOLING INTERPHASE INTERPHASE
60 42.0 7.6 INTERPHASE INTERPHASE
80 56.0 40.0 INTERPHASE INTERPHASE
MATRIX/INTERPHASE
100 57.7 62.4 INTERPHASE
INTERFACE
MATRIX/INTERPHASE MATRIX/INTERPHASE
120 57.7 62.4
INTERFACE INTERFACE
MATRIX/INTERPHASE MATRIX/INTERPHASE
140 57.7 62.4
INTERFACE INTERFACE

5.4.2 Effect of a soft interphase on the transverseloading
On transverse loading along the y-direction the RVE with a “soft” interphase (E=1.5GPa) the

mechanical properties are improved in terms of ultimate strength and strain. Numerical studies
including thermal residual stress arising during the curing process have shown that the magnitude
of these residual stresses is greatly smaller than residual stressesin stiffer interphases. This result
avoids the drawback of a possible failure within the interphase and/or in the matrix while the
curing process is taking place ever for smal values of the interphase ultimate strength (e.g.
S U,interphase=20M Pa).

Although for small values of the interphase strength, no failure at interphase has been detected

during the curing and cooling process. Nevertheless, thermal residual stresses produce a severe



reduction of material properties leading to a drastic total failure of the interphase at low levels of
loading stresses. Failure occurs at interphase in the regions of the unit cell highlighted with a

circle (Fig. 5.18).
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Fig. 5.18 - Comparison of damage onset in unit cells

With Sy jnterphase 20M Pa with no residual stress (a) and residual stress (b).

Fig. 5.19 depicts damage onset relative to micromodels with an Sy jnterphase below 80M Pawith and
without residual stresses. Analyses have demonstrated that damage in the numerical models
occurs in the areas of the interphase in which the amount of residual stress reachs its maximum
magnitude (Fig. 5.6-7).

Although the presence of residual stress slightly modifies the location in which failure is detected
the overall behaviour of the unit cell undergoes an advantage in terms of ultimate strength.

A comparison of the effect of residual stress on transverse loading (y-direction) for two unit cells
with different ultimate strengths displayed in Fig. 5.20 clearly shows the beneficial effect of

residual stresses.



@
O b

Fig. 5.19 - Comparison of damage onset in unit cells with Sy jnterphase 20M Pa, 40M Pa and 60M Pa with no
residual stress (a) and residual stress (b).
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Fig. 5.20 — Comparison of global stress-strain curves on transverse loading (y-direction)
for residual and non-residual stress analyses.




It is clearly visible that the presence of residual stresses plays a beneficial role by improving the
material toughness. The data are summarized in Table 5-4.

The studies has shown that in unit cells with softer interphases damage onset is detected in the
interphase for s y interphase lOWer than 80M Pa both in presence and absence of residual stress, in the
matrix for values of Sy interphase higher than 80MPa (Fig. 5.21) with or without residual stresses
while, in case of Sy nepras=80MPa (Fig. 5.22) both interphase and matrix are involved.
Moreover for ultimate strengths of the interphase above 20MPa residua stresses improve the
capability of micro-composites to bear transverse load on the y-direction.

Numerical analysis with residual stress has shown that the soft interphase (E=1.5GPa) during the
complete curing process works as a ”damper”. It is seen to transfer gradually the stresses due to

shrinkage from the interphase to the matrix.

Fig.5.21 — Damage onset and evolution in a unit cell
With Sy jnterphase>80M Pa (residual and non-residual stress analysis)



Fig.5.22 — Damage onset and evolution in a unit cell
With Sy, jnterphass=80M Pa (residual stress analysis)
In this case therefore stresses, should not reach critica values that could lead to the drastic

interphase failure with fibre and debonding.

Table 5-4 — Numerical resultsfor aunit cell with a soft interphase under transverse loading
(y-direction).
SOFT INTERPHASE - Transversey-direction

No Residual Stress Residual Stress No Residual Stress Residual Stress
HINTERPHASE RVE Ultimate Strength [MPa] RVE Failure onset
[MPa]
20 11.8 7.8 INTERPHASE INTERPHASE
40 23.0 29.0 INTERPHASE INTERPHASE
60 34.0 41.0 INTERPHASE INTERPHASE
80 45.0 51.5 MATRIX MATRIX/INTERPHASE
100 45.0 515 MATRIX MATRIX

120 45.0 515 MATRIX MATRIX




Finite element investigations have already proved the positive action of soft interphase in terms
of ultimate strength and ultimate strain of the micro-composites undergoing transverse loading in
the y- and z-direction in absence of residual stresses arising throughout the manufacturing
process.

Numerical models with a soft interphase have shown similar behaviour to the stiff interphase
studies even in analyses including the effects of thermal residual stress. Examples of damage

initiation points for these cases are shown in Fig. 5.23.
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Fig. 5.23 — Damage onset and evolution in aunit cells with Sy jnerphass=40M Pa (a),
Su,interphase=80MPa, Sy interphass—=100M Pa (C) in residual stress analyses.

Results of finite element calculations on unit cell with soft interphase under transverse uniaxial

loading on the z-direction are presented in Table 5-5.



Table 5-5 — Numerical resultsfor aunit cell with a soft interphase under transverse loading

(z-direction).

u,INTERPHASE

SOFT INTERPHASE - Transverse z-direction

No Residual Stress

Residua Stress

No Residua Stress

Residua Stress

RVE Ultimate Strength [MPal

RVE Failure onset

[MPa]
20 15.0 11.0 INTERPHASE INTERPHASE
40 30.0 35.0 INTERPHASE INTERPHASE
60 44.7 50.6 INTERPHASE INTERPHASE
80 57.8 64.0 INTERPHASE MATRIX/INTERPHASE
MATRIX/INTERPHASE MATRIX/INTERPHASE
100 60.0 64.0
INTERFACE INTERFACE
MATRIX/INTERPHASE ~MATRIX/INTERPHASE
120 60.0 64.0
INTERFACE INTERFACE

It can be seen that the presence of residual stresses generally produce a beneficial action and for

interphases in which Sy intephase >20MPa the ultimate strength of the unit cell improves of circa

15%.

Soft interphases are able to redistribute the stresses along the interphase and to transmit part of
the loading stress within the matrix. For values of the ultimate strength of interphase equal and
below 20MPa, thermal residual stresses play a more severe role on the overall material response
of unit cellsin fact, as clearly depicted in Fig. 5.24 they tend to reduce the material properties of
the interphase and hence to influence, as already shown for the stiff interphase case, the location

of damage initiation points that appears to take place in regions, indicated with the circles in Fig.

5.24, in which residual stress are more concentrated after curing and cooling.
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Fig.5.24 — Damage onset and evolution in aunit cellsSwith S jnterphase=20M Pa
(residual stress analysis)

5.5 Poisson’s Ratio Study

Due to a lack of data in the literature, a parametric finite element study on the effect of
interphases with different material properties and various ultimate strengths has been carried out.
The Poisson’s ratio of the interphase and the matrix have been assumed to be temperature
independent and equal to n=0.35 throughout the numerical analysis. Further investigation have
been performed on representative volume elements (RVE) by modifying the magnitude of
Poisson’s ratio in order to better understand the role they play on the overall behaviour of micro-
composites on transverse uniaxial loading.

Preliminary finite element analyses have been carried out on RVEs without considering the
presence of thermal residual stresses. The ultimate strength of the interphase for these set of

analyses has been assumed to be equal to the ultimate strength of the matrix:



S U,matrix = S uUinterphase = 80MPa

In analyses accounting for the effect of residual stresses the Poisson’s ratio of the interphase has
been assumed temperature dependent. To evaluate the variation of Young’s modulus E over the
temperature range from curing to room temperature, the total temperature range has been be
divided into three regions described in Chapter 4, namely:

Region| T >T +LT, inwhich the Poisson’s ratio for matrix and interphase has been

still assumed n=0.35.

Regionll T - LTETET, + LT, in which the Poisson’s ratio for the interphase has

been till considered temperature dependent and the behaviour has been described by a simple

linear relation:

n=n, m(T-Ty)

where n,=0.35, T, = 149°C (curing temperature) and m is afitting parameter.

Region Il T <T_- LT, inwhich the Poisson’ ratio in Region 11 for the interphase has

been assumed constant and equal to theits final value reached at the end of Region Il , namely:
Dif n=n,-m(T-T,) n=0.3
2)if n=n,+m(T-T,) n=0.4
The behaviour of the Y oung’'s moduli over the range of temperatures and the values of the glass
transition temperature Ty and DT have been already described previously in section 5.2.
The hypothetical linear behaviour of the Poisson’s ratio in Region 11 is mainly to attribute to the

lack of experimental data on the interphase properties during the manufacturing process. The aim

is to investigate numerically the effect of different Poisson’s ratios both in presence and absence



of residua stress on the mechanica ability to bear uniaxial loads in which the linear
modifications of the Poisson’s ratio n during the cooling process could be considered as an upper
and lower bound of areal case.

Moreover, as the mgjority of the chemical reactions that modify the material properties of the
resin take place during the cooling within Region Il, it has been decided to impose the

hypothetical linear change of the n only in this region from 149°C to the room temperature.

5.5.1 Effect of a stiff inter phase on the transver seloading

Numerical studies on unit cells with stiff (Einterpnase=7.45GPa) interphase and different Poisson’s
ratios have proved that the micromechanical models are still influenced by the different elastic
properties of the interphase. In particular, in the micromodels investigated under uniaxial
transverse loading (y-direction), the damage onset in presence of residua stresses has been
detected in different areas of the unit cell as can be seen by comparing Fig. 5.25 and Fig. 5.26 in
which the damage onset is highlighted by circles and its evolution is represented by the shadowed
area.

It is clearly visible that the effect of residual stressesis to weaken the interphase especially in the
regions of the unit cell in which thermal stress reaches the maximum value. Hence failure, asit is
more likely to occur in real micro-composites, takes place at the fibre/interphase and/or
matrix/interphase “interfaces’ that, in general, represent the most vulnerable areas in real

composites at micro-scale.
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Fig. 5.25 — Damage onset (a) and evolution (b) in unit cells
with Poisson’ s ratios of n=0.3 and n=0.4 in anon-residual stress anaysis.
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Fig. 5.26 — Damage onset (a) and evolution (b) in unit cells
with Poisson’s ratios of n=0.3 and n=0.4 in aresidual stress analysis.



Results of numerical analyses on a unit cell with a stiff interphase and different values of the
Poisson’ sratio are presented in Table 5-6.

A comparison between the analysis that do not account for residual stress and the numerical
analysis in which the curing and cooling process has been simulated shows that thermal stress
play a key role in the distribution of the damage initiation and moreover they introduce
detrimental effects on the capability of the micromodels to bear transverse load on the y-

direction.

Table 5-6 — Numerical results for aunit cell with a tiff interphase at various Poisson’ s ratios under
transverse loading (y-direction).

STIFF INTERPHASE - Transversey-direction

No Residual Stress Residual Stress No Residual Stress Residua Stress
Poisson’s . .
_ RVE Ultimate Strength [MPal RVE Failure onset
Ratio
0.3 44.0 42.0 MATRIX INTERPHASE
0.35* 43.0 315 MATRIX INTERPHASE
0.4 425 21.0 MATRIX INTERPHASE

Nevertheless, different values in the Poisson’s ratio affect only marginally (Fig. 5.26) the elastic
stiffness of RVE with the Young's modulus Einephase=7.45GPa and the difference between the

Y oung’s modulus evaluated at n=0.4 and n=0.3 has been estimated circa 1%.
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Fig. 5.26 — Comparison of global stress-strain curves with different Poisson’ sratios and stiff interphase
on transverse loading (y-direction).

Finite element analysis accounting for thermal residual stress on unit cell with Einterphase=7.45GPa
confirms the decreasing ultimate strength of the micromodels under investigation whilst the
magnitude of the Poisson’sratio isincreased as shown in Table 5-7.

Numerical analyses also make evident the severe weakening effect of thermal residual stress on
the mechanical properties of the interphase. In particular, in the RVE with the Poisson’s ratio
n=0.4 the reduction of the ultimate strength has been estimated nearly 50% less than the ultimate
strength in micromodels that do not include thermal residual stress.

Damage onset has been primarily detected at interphase in the regions aready described
previously for the strength study and depicted in Fig. 5.13.

Moreover under uniaxia transverse loading in the z-direction, the ultimate strength is higher than

the ultimate strength in the y-direction.



Table 5-7 — Numerical results for aunit cell with a stiff interphase at various Poisson’ s ratios under
transverse loading (z-direction).

STIFF INTERPHASE - Transverse z-direction

No Residual Stress Residual Stress No Residual Stress Residual Stress
Poisson’s . .
_ RVE Ultimate Strength [MPe] RVE Failure onset
Ratio
0.3 56.5 45.0 INTERPHASE INTERPHASE
0.35 56.25 40.0 INTERPHASE INTERPHASE
0.4 535 275 INTERPHASE INTERPHASE

5.5.2 Effect of a soft inter phase on transver seloading

Micromodels with soft interphase appear sensitive to the Poisson’s ratio values as can be seen in
Fig. 5.27. Despite the thickness of the interphase is about 1/100 of the fibre diameter different
values of the Poisson’s ratio imply a difference of circa 4% in the eastic stiffness. On the
contrary, different values in the Poisson’s ratio play only a negligible role on overall material

properties in the unit cells with a stiff interphase.
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Fig. 5.27 — Comparison of global stress-strain curves with different Poisson’ s ratios and soft interphase
on transverse loading (y-direction).

Unlike the different configurations of unit cells with a stiff interphase, finite element study with
residual stresses has proved that micromodels including soft interphases undergo dlightly
beneficial effects in terms of ultimate strength and strain in the unit cells that have been
investigated (Table 5-8). A comparison with data (Table 5-8) obtained from analyses that
simulate curing and cooling show the thermal residual stress enhances the material properties

(ultimate strength and strain) of the micro-composites of circa 14-16%

Table 5-8 — Numerical results for aunit cell with a soft interphase at various Poisson’ s ratios under
transverse loading (y-direction).

SOFT INTERPHASE - Transversey-direction

No Residua Stress Residua Stress No Residual Stress Residual Stress
Poisson’s . .
_ RVE Ultimate Strength [MPa] RVE Failure onset
Ratio
0.3 455 52.0 MATRIX MATRIX
0.35 45.0 515 MATRIX MATRIX/INTERPHASE
0.4 435 51.0 MATRIX MATRIX/INTERPHASE

Initial failure has been detected in the areas indicated with the circlesin Fig. 5.28 in the analysis
without residual stress. It can be noticed that damage onset is not influenced by different values
of the Poisson’ ratio. Nevertheless damage evolution within the RVE is slightly modified by the
presence of residual stress. In particular the unit cells with interphasial Poisson’s ratios above
n=0.3 undergo a stiffening effect as depicted in Fig. 5.27. These dightly stiffer interphases
appear less able to dissipate thermal stress arising during curing and cooling within the interphase
and the matrix. Hence on transverse loading along the y-direction damage occurs both in the
matrix and the interphase and as it can be seen in Fig. 5.29 the location of theinitia failure in the

interphase remainsin the region of maximum concentration of thermal stresses.



Fig. 5.28 — Damage onset (yellow circles) and damage evol ution (shadowed ared) in unit cells
with Poisson’s ratios of n=0.3 and n=0.4 in anon-residual stress analysis

Fig. 5.29 — Damage onset (yellow circles) and damage evol ution (shadowed area) in unit cells
with Poisson’s ratios of n=0.3 (a) and n=0.4 (b) in aresidua stress analysis



Numerical analyses have demonstrated that unit cells loaded transversely along the z-direction
show the location of damage onset is located in the narrow region between the fibres as shown in

Fig. 5.30.

Fig. 5.30 — Region of damage onset under transverse loading on the z-direction.

These set of investigations on unit cells with a thin soft interphase under uniaxial loading aong
the z-direction confirmed the increasing capability of bearing loads whilst decreasing the

magnitude of the Poisson’sratio (Fig. 5.31)
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Fig. 5.31 — Comparison of global stress-strain curves with different Poisson’s ratios and soft interphase
on transverse loading (z-direction).

The ability of the softer (E=1.50GPa) interphases to redistribute stresses arising during the whole
curing process over the interphase and within the matrix are clearly visible in the results
presented in Table 5-9. Although, damage onset in the softer interphase can take place either
within the interphase or in the matrix located at the matrix/interphase interface, the ultimate

strength undergos a beneficial improvement and their values increase of circa 5-9%.

Table 5-9 — Numerical results for aunit cell with a soft interphase at various Poisson’ s ratios under
transverse loading (z-direction).

SOFT INTERPHASE - Transverse z-direction

No Residual Stress Residual Stress No Residual Stress Residual Stress
Poisson’s . .
. RVE Ultimate Strength [MPa] RVE Failure onset
Ratio
MATRIX/INTERPHASE
0.3 60.0 64.0 INTERPHASE INTEREACE
0.35* 57.0 64.0 INTERPHASE MATRIX/INTERPHASE

INTERFACE

04 56.0 61.5 INTERPHASE INTERPHASE




5.6 Concluson

Finite element analyses have been performed in order to investigate the overall mechanical
response of unit cells including the presence of hypothetical thin soft and hard interphases under
uniaxia transverse tensile loading. The effect of residua stress has been also analysed by
simulating the manufacturing process (curing and cooling) by means a user-defined subroutine
(UMAT) available in ABAQUS. Results obtained with the residual stress analysis were also
compared to numerical results from a non-residual stress anaysis. Numerical anayses have
proved that the thin interphase is able to modify slightly the elastic stiffness of the micromodels.
“Softened” unit cells have displayed a significant improvement in terms of ultimate strength and
strain in comparison to the unit cells with a harder interphase both on the z- and y-direction.

More interestingly, finite element analyses that simulate a hypothetical behaviour of the
interphasia properties during curing and cooling process have demonstrated that the magnitude
of thermal residual stress within the interphase and the matrix is strongly influenced by the
material properties of the interphase leading to severe high values within the stiff interphase. The
soft interphase appears to work as a “shock absorber” by redistributing thermal residual stresses
within the interphase itself and transferring part of them onto the matrix. On the contrary the stiff
interphase tends to concentrate the total amount of the stresses that are particularly elevated,
especially in some internal region of the interphase. In fact, numerical simulations have
demonstrated that for ultimate strengths of the stiff interphase equal and/or lower to the
magnitude of residual stress the interphase appears utterly weakened by the presence of residual
stresses and failure occurs during the cooling process leading to the total fibre/matrix debonding
if uniaxial transverse loading is eventually applied.

Nevertheless, finite element results, for higher values of the interphasial ultimate strengths, have

proved that thermal residual stresses enable an improvement in the overall mechanica response



of the micromodels undergoing uniaxia transverse loading both for the stiff and the soft
interphase. In these cases the presence of residual stress, especially in the soft interphase,
contributes to delay the action of the transverse loading stress on the regions of the unit cells that
are more likely to fail as described in the investigations in which the curing and cooling process
has not been simulated.

In conclusion, finite element analyses indicate that unit cells with soft interphases show superior
characteristics in terms of ultimate strength and strain under transverse loadings and reduce
significantly the amount of stresses if the manufacturing process is included in the numerical
simulations, and finally improve the mechanical response even for low values of the interphasial
ultimate strength when residual stress is included. On the other hand, the micromechanics based
damage model in combination with the residual stress analyses have demonstrated that the failure
onset could also take place during the cooling process within the stiff interphase for particular

values of the interphasial mechanical properties.



Chapter 6
Effect of fibre packing geometry on the M echanical Behaviour of

RVEs

6.1 Introduction
Most of the investigations described previously in the literature review related to the effect of

constituents are based on multi-fibre RVEs and are unable to describe accurately and locally
damage onset and its evolution that usualy requires a fine mesh refinement around the
fibre/matrix interface. Moreover, they account rarely for the effect of residual stresses arising
during the curing process. In fact the local stress distributions after chemical shrinkage and the
following cooling could influence the onset of micro-cracks in the matrix especially in presence
of a random distribution of the fibre over the cross-section [134]. In order to investigate the
effects of non-uniform unit cells with a hexagona packing array of fibres, a robust numerical
investigation that includes a damage model has been undertaken to evaluate the local response.

The effect thermal residual stresses have been also accounted for.

6.2 Finite Element Results

In order to investigate the effect of inter-fibre spacing on damage evolution, micromechanical
unit cell models have been constructed by shifting the centra fibre in Fig. 6.1 aong the z
direction of the “trandlation” factor G (in hm).

In the micromodel investigated the central fibre has been translated by the following G

0.0hm; 0.25hm;0.45hm; 0.90hm; 1.35hm; 1.55hm; 1.7hm.

To each Gcorresponds a single micromodel, namely:

G=0.25® RVE/0.25hm;



G=0.45® RVE/0.45hm;
G=0.90® RVE/0.90hm;
G-1.35® RVE/1.35hm;
G=1.55® RVE/1.55hm;

G=1.70® RVE/1.70hm.

RVE/0.O0hm (reference model); RVE/0.25hm; RVE/0.45hm; RVE/0.90hm; RVE/1.35hm;

RVE/1.55hm; RVE/1.70hm.

Fig. 6.1 - 2 of the hexagonal array packing RVE used as a reference model.

This solution aso alows applying correct periodic boundary conditions and moreover to keep a
constant fibre content (70%). A comparison between a uniform and non-uniforms unit cells is
shown in Fig. 6.2. The displacement constraints applied to the finite element model (Fig.6.1) in

order to apply normal loads are [3]:



ux (0,y,2)= 0
Ux (a Y, Z) = constant =
uy(x,0,2)=0
uy (X, b, z) = constant =
uz(x,y,-c)=0
uz(x,y,c)=constant = ,

where uy , Uy, U, denote respectively displacementsin the x, y and z direction.

The damage and post-damage model applied for this investigation has been aready described in
Chapter 4 and three different loading conditions have been applied to the unit cell shown in Fig.
6.1 namely:

3) transverse loading in the y-direction,
4) transverseloading in the z-direction,

5) longitudinal loading in the x-direction (parallel to the fibres).



Fig. 6.2 — Range of fibre positions.

6.2.1 Transver seloading
As dready mentioned, the purpose of this study is to investigate the effect of local damage

evolution under transverse and longitudinal loading. A previous anaysis on a uniform RVE
(perfect symmetry) under X, y and z-direction loading has been performed to compare results with
data from non-uniform unit cells. Details of damage onset and evolution for non-uniform unit
cells that undergo y-direction loading are illustrated in Fig. 6.3-7, where RVE/0.0hm denotes the
reference representative volume element. Damage contour is represented by means of a black
area and the damage onset has been indicated in the figures with capital letters (A, B and C)..
Interestingly, it has been noticed that for the RVE/0.0hm and for relatively small shifting factors

the damage is due to micro-crack in the resin.



Initiation of damage in unit cell RVE/1.35hm (Fig. 6.5) is still similar but the damage in the
region C in Fig. 6.3 but it has been detected at lower strains. Micromodels with a higher G (Fig.
6.5-7) exhibit a different location of damage onset. In particular damage, due to fibre/matrix

debonding, startsin theregion A (Fig.6.5-7)

Fig. 6.3 — Damage onset and evolution in RVE/0.0hm under y-direction loading condition.



Fig. 6.4 — Damage onset and evolution in RVE/0.25hm under y-direction loading condition.

Fig.6.5 — Damage onset and evolution in RVE/1.35hm under y-direction loading condition.
The yellow sguare indicate the non-damaged region of the unit cell at failure onset.



Fig. 6.6 — Damage onset and evolution in RVE/1.55hm under y-direction |oading condition.

%

Fig. 6.7 — Damage onset and evolution in RVE/1.70hm under y-direction loading condition.



Global stress-strain curves (Fig. 6.8) indicate interesting results on the overall response of the
unit cells that undergo transverse loading along the y-direction. Under the y-direction loading
condition, the ultimate strength and strain manifests a dlightly beneficia effect. This
improvement in the ultimate strength could be explained with the non-symmetric damage
progression in non-uniform RVEs (Fig.6.5-7) in which a remarkable result is represented by a
less damaged area on the inferior site of the unit cell (yellow sguare in Fig. 6.5) when

decrementing the inter-fibre spacing on the upper region of the unit cells.

6.0E-02 i
5.0E-02 |
'
o L
O, 4.0E-02 |
n L
%))
L
= 3.0E-:02 |
7
o
<
2 20802 |
§ ' f —C=000um | “Mhaa,,
-2-C=135pum
1.0E-02 ——C=155um
i —+ C=1.70 um
0.0E+00711111111111111111111111111111111111111111111

000 0.05 0.10 0.15 020 0.25 030 035 040 0.45
LOADING STRAIN %

Fig. 6.8 — Global stress-strain curve in y-direction for uniaxial transverse tensile loading.
The micromodel RVE/1.70hm displays a different response due to the minimum distance
between fibres. The plot in Fig. 6.9 shows an initial and drastic matrix failure at very low strains

leading to a consistent modification of elastic stiffness. This tendency to a premature matrix

failure can be also noticed in Fig. 6.8 for the curve related to the micromodel RVE/1.55hm.
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Fig. 6.9 — Global stress-strain curve in y-direction for uniaxial transverse tensile loading
related to RVE/1.70hm.

Damage onset and evolution for the reference micromodel under z-direction is shown in Fig.
6.10. The weakest region is represented by the fibre/matrix interfaces (region A and B) and
damage can be principaly attributed to the fibre/matrix debonding that propagates along the

interfaces.

Non-uniform micromodels such as RVE/1.70hm in Fig. 6.11 show that only the region A of the
micro model has been involved in the failure but, this result has no beneficial effect on the
micromodel in terms of ultimate strength as shown in the stress/strain curves in Fig. 6.12 in

which it can be seen the detrimental effect of a decreasing inter-fibre distance.



Fig. 6.10 — Damage onset and evolution in RVE/0.0hm under z-direction loading condition.

Model RVE/1.70hm exhibits a high ultimate strain despite a very poor ultimate strength and this
can be presumably attributed to the very small area involved in the damage and its slow
progression by debonding along the fibre/matrix interface. The stress/strain curve related to
model RVE/1.70hm in Fig. 6.12 gives evidence of a premature matrix failure at very low loading
stress and strain that modify greatly the overall mechanical response. No premature matrix failure

has been detected for other micromodels.
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Fig. 6.11 — Damage onset and evolution in RVE/1.70hm under z-direction |oading condition.
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Fig. 6.12 — Global stress-strain curvein z-direction for uniaxial transverse tensile loading.



A peculiar effect in non-symmetric unit cells is an increasing elastic stiffness when incrementing
the central fibre trandlation along the z-direction as can be seen in Fig. 6.13. The Young's
modulus presents a visible increase of its value above a central fibre tranglation of 0.9hm while it
is moderately constant under this value. In a previous investigation [172] it was found that the
elastic stiffness depends on the fibre content and it augments by increasing the fibre volume
fraction. Hence, the stiffening effect in non-uniform RVEs with a decreasing inter-fibres spacing
can be attributed to a more dominant effect of fibres. In fact, the decreasing inter-fibre distance

allows only negligible transverse strains.
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Fig. 6.13 —Trend of Young's modulus on transverse loading at different tranglation factors (G.



6.2.2 Longitudinal loading
In UD composites that are loaded along the longitudinal direction (x-direction, paralel to the

fibres), the fibres are predominantly involved in bearing the loads. In this study the fibre content
has been kept constant and the only variable is the position on the z-axis of the fibre.

A comparison of damage onset sites (Fig. 6.14) displays different results in non-uniform RVESs.
These unit cells exhibit different regions of the damage onset that in general depends on the
shifting factor G. In particular the reference model exhibits four entirely failed regions
symmetrically distributed within the unit cell. While non-uniform unit cells show a non-
symmetric distribution of failed areas (Fig. 6.14). Hence, as fibres are dominant no change in
terms of ultimate strength and strain of the micromodel is expected. In fact as shown in Fig. 6.15
the stress/strain curves for the highest values of G and the reference model exhibit a perfect

superposition.

Fig. 6.14 — Damage onset under x-direction loading condition.
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Fig. 6.15 — Global |oad-displacement curve in x-direction for uniaxial transverse tensile |oading.

6.3 Residual Stress Analysis

6.3.1 Effect of residual stresson transverseloading
To study the influence of residua stress/strain on the response of non-uniform unit cells after

curing and thermal cooling analyses a global strain has been applied to the unit cells. The global
strain was achieved by specifying a uniform displacement at the model surfaces, At each time
increment of the analysis, the damaged area in the matrix or in the fibre has been determined
using the Maximum Principal Stress failure criterion. Throughout the following analyses, the
fibre showed no sign of damage due to its high strength, therefore, damage and failure refer to the

matrix only.



Micromodels RVE/0.25hm, RVE/0.45hm, RVE/0.90hm, RVE/1.35hm and RVE/1.55hm, that
present an inter-fibre spacing greater than ~0.15hm do not indicate any sign of failure during the
whole curing process for the three different linear chemical shrinkages (0.01%, 0.35% and 1%).

The most important result can be seen for the unit cell RVE/1.70hm (Fig. 6.16) that presents a
minimum inter-fibre distance of ~0.05hm. In fact, this unit cell fails during the cooling processin
the whole set of linear chemical shrinkages that has been examined. Matrix failure is detected in
the narrow gap between fibres and should be attributed to a high compressive stress (Fig. 6.17)
arising in this particular site during the contraction along the y-direction, z-direction and x-

direction due to the cooling process.

Fig. 6.16 — Damage onset in RVE/1.70hm during the cooling process.
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Fig 6.17 - Trend Maximum Principal Stress during the cooling process.
The abscissas indicates the position of the central fibre centre for various trand ation factors G

In the y-direction loading case the reference model (Fig. 6.3) and micromodels with a shifting
factor equal or less than 1.35hm display a damage onset still located in the same regions named
A and B but its progression strongly depends on the fibre packing geometry. For instance, in the
reference model (Fig. 6.18) damage is likely to spread within the matrix from the region A and B
while without residual stress its evolution is mainly located along the edge and eventually
progresses toward fibre/matrix interfaces. Residual stresses completely modify damage onset in

Model RVE/1.55hm now localized in the region A and B in Fig. 6.19.



Fig. 6.18 — Damage onset and evolution in RVE/0.00hm under y-direction loading condition
with residua stress.

Fig. 6.19 — Damage onset and evolution in RVE/1.55hm under y-direction loading condition
with residua stress.



Results regarding the z-direction loading conditions show there are no relevant differences in the
damage onset and its evolution. The unit cell RVE/1.70hm displayed in Fig. 6.20 shows an
initiation site of damage in region A both in case of y-direction and z-direction loading. Failurein
this area “must” be completely attributed to the high compressive stress during the cooling
process after chemical shrinkage that causes matrix rupture. Nevertheless the initiation points of
the failure are not significantly affected by the presence of residual stress especialy in the z-
direction, monitoring the globa stress-strain response during the damage analysis results
indicates in general a beneficial effect of residual stress as shown in Fig. 6.21 and Fig. 6.22.

A particular effect of residual stress can be seen in the stress/strain curves related to the
micromodel RVE/1.70hm in Fig. 6.23 and Fig. 6.24 in which failure is detected during the
cooling process. In this case, by applying the load after the curing process, it can be seen a
slightly modification of elastic stiffness (more evident in Fig. 6.24). This change of the stiffness

is caused by the damage and the detrimental effect of residual stress on the z-direction loading.

Fig. 6.20 — Damage onset and evolution in RVE/1.70hm under z-direction |oading condition
with residual stress.
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Fig. 6.21 — Global stress-strain curve in y-direction for uniaxial transversetensile loading related to
RVE/0.25hm.
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Fig. 6.22 —Global stress-strain curve in z-direction for uniaxial transverse tensile loading related to
RVE/0.25hm.
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Fig. 6.23 — Global stress-strain curve in y-direction for uniaxial transversetensile loading
related to RVE/1.70hm.
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Fig. 6.24 — Global stress-strain curve in z-direction for uniaxial transverse tensile loading

related to RVE/1.70hm.



Residual stresses after curing and cooling cause a redistribution of the internal stressfield and the
positive consequence is to lower stresses within the resin in the weakest regions (e.g. corners,
interfaces) of the micromodel, improving the ability to bear loads in the y- and z-direction. In
particular, it can be observed that residual stresses tend to delay the growth of high concentrated
tensile stresses in these regions. Fig. 6.25, for example, displays the highest values of Maximum
Principal Stress at the end of the cooling process and during the loading. When loading is
applied, e.g. in y-direction, high stresses start decreasing from the position after cooling, shown
in Fig 6.25(a), and keep “migrating” toward the corners and the central area of the unit cell as

depicted in Fig. 6.25(b).

Fig. 6.25 — Maximum Principal Stress distribution (RVE/0.0hm) after cooling (a) and before failure (b)
under atransverse (y-direction) loading. Arrows indicate the highest tensile stress distribution.



Numerical results show that for high shifting factors initial and final failure of micromodels are
not coincident especially for high G

In addition matrix failure could occur during the cooling process. In Table 6-1 and Table 6-2
results are summarized for transverse loading and in particular strains in which failure is detected
(initial failure) and the strains in which the mechanical properties of the matrix undergo an abrupt

drop (final failure).

Table 6-1 Failure strains data for transverse |oading a ong the y-direction.

Transver se y-direction

No Residual Stress ~ No Residual Stress Residual Stress Residual Stress
initial failure final failure initial failure final failure

G Emarrix (%) Emarrix (%0)

0 0.27 0.27 0.31 0.31
0.25 0.27 0.27 0.31 0.31
0.45 0.27 0.27 0.31 0.31
0.90 0.27 0.27 0.31 0.31
1.35 0.27 0.27 0.29 0.29
155 0.19 0.27 0.28 0.28
1.70 011 0.26 cooling 0.25

Table 6-2 Failure strains data for transverse loading along the z-direction

Transverse z-direction

No Residual Stress ~ No Residual Stress Residual Stress Residual Stress
initial failure final failure initial failure final failure

G Emarrix (%) Ermarrix (%0)

0 0.33 0.33 0.37 0.37
0.25 0.32 0.32 0.36 0.36
0.45 0.31 031 0.35 0.35
0.90 0.26 0.26 0.32 0.32
1.35 0.22 0.22 0.27 0.27
1.55 0.16 0.16 0.19 0.19

1.70 0.08 0.23 cooling 0.16




6.3.2 Effect of residual stresson longitudinal loading

In UD composites during the curing process the resin is in a rubbery state and realistically no
deformation is established along the x-direction. Strains parallel to fibres are only developed
during cooling as the resin evolves from a liquid/rubbery state into a solid state. If residual
stresses are included on the x-direction loading, numerical analyses show that the damage onset
tends to be more localized at fibre/matrix interface (Fig. 6.26). Although residual stresses do not
affect the ultimate strength of the unit cells but most importantly, they are greatly detrimental for

the matrix causing failure at lower loading strains as can be seen in Fig. 6.27 and Table 6-3.

Fig. 6.26 — Damage onset under x-direction loading condition with residual stress.
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Fig. 6.27 — Global stress-strain curvein x-direction for uniaxial transverse tensile loading with a
without residual stress related to RVE/1.35hm.

Table 6-3 Failure strains data for longitudinal loading along the x-direction

Longitudinal x-direction

No Residual Stress Residual Stress No Residual Stress Residual Stress

G Efibre (%) Eribre (%) Ematrix (%) Ematrix (%)

0 2.70 2.71 2.50 1.65
0.25 2.70 2.71 2.50 1.65
0.45 2.70 2.71 2.50 1.65
0.90 2.70 2.71 2.50 1.65
1.35 2.70 2.71 2.50 1.65
1.55 2.70 271 2.50 155
1.70 2.70 271 2.50 cooling

A full understanding of this detrimental effect can be highlighted in Fig. 6.25a and Fig.6.28.
Unlike transverse loading conditions, in which the residua stress is redistributed from the
position at the end of the cooling process along the fibre/matrix interface and within the matrix,

for the longitudinal (x-direction) loading condition the already high values of residual stresses



remain concentrated at fibre/matrix interface in the same position as after cooling process. Hence
thermal residual stresses tend to weaken this area furthermore and moreover they promote its

premature failure.

Fig. 6.28 — Maximum Principal Stress distribution (RVE/0.0hm) before failure under longitudinal
(x-direction) loading. Arrows indicate the highest tensile stress distribution.

6.4 Conclusion

Effects of inter-fibre spacing on transverse and longitudinal failure of fibre-reinforced polymer
matrix composites have been studied using a micromechanica non-uniform unit cell model and
the finite element method. Predicted damage initiation and evolution as well as mechanical
properties are clearly influenced by different inter-fibre spacing.

A further investigation accounting for residual stress shows that residual stress and inter-fibre
spacing play an important role during the curing process and in presence of micro- gaps between

fibres (~0.05hm). Matrix failure has been detected for all three different values of the linear



chemical shrinkage (0.01%, 0.35% and 1%) that have been investigated. The presence of residual
stresses also affects damage initiation sites especially in unit cells in which inter-fibre spacing is
of the order of few micro-meters (0.08-0.05).

Finally the FEM investigations have proved that thermal residual stresses are highly detrimental
for the matrix in the longitudinal loading while in the transverse loading the unit cells see in

genera beneficia effects.



Chapter 7

Conclusion and Discussion

7.1 Introduction

Thermoset composite materials are becoming a viable aternative to more conventional materials
(e.g. uminium) in a wide range of industrial applications but their use remains still limited due
to the limitations in the current understanding of the damage behaviour and lack of fully
validated modelling tools. Moreover the overal ultimate properties, at macroscale, depend on the
manufacturing process of fibre reinforced thermosetting resins that appears particularly
influenced by the microstructure (e.g. fibre architecture, fibre content) of the composite material.
Hence, it appears evident that a better understanding of the processes arising during the curing
and cooling phases at the constituent level could suggest strategies to improve the ultimate

mechanical properties at the macroscale.

7.2 Finite Element Analysis

The am of this research has been the development of a micromechanics-based damage model
and the implementation of this damage model into the FEM code ABAQUS. The damage model
used to simulate the failure onset and damage progression is based on the work of Blacketter [5]
and represents a powerful tool to simulate physically observed damage such as fibre-matrix
debonding and micro-cracks within the matrix. It has been implemented into ABAQUS via the
user’s subroutines UMAT and USDFLD.

Two different kinds of numerical analyses have been carried out in order to identify the
characteristics of the micromodels investigated, namely:

A) Nonresidual stress analyses.

B) Residual stress analyses.



Numerical results obtained with the “non-residual” stress analyses have been used as a
benchmark in order to compare the effects of thermal residual stresses on the overall mechanical
properties of the UD composites at their microscale. Although other researchers [3, 8, 147, 170]
have investigated the mechanical characteristics of UD composites at their microscale, in general
only two-dimensional unit cells have been adopted for their studies.

In the present work, three-dimensional RVEs have been employed. The main difficulty of 3D
unit cells is represented by the set of boundary conditions. In fact, these boundary conditions
must be applied accurately on the faces of the micromodel in order to achieve a more realistic
stress state that is generated from the different loading conditions.

Moreover, athough the computational implementation of the damage models via subroutines in
FORTRAN represents a well established methodology, the redistic simulation of the
manufacturing process (curing and cooling) with the subroutines UMAT and USDFLD, coupled
to the micromechanics-based damage model, can be considered as an innovative computational
technique. This new computational methodology that takes into account temperature dependant
material properties was successfully implemented for the evaluation of local distribution and
magnitude of thermal residual stresses introduced during the manufacturing process for different

fibre volume fractions.

7.2.1 Micromechanical stiffness
An important factor of this research was to identify the proper boundary conditions to apply to

the faces of each numerical model in order to demonstrate their potential to describe accurately
the material properties of unidirectional composite materials at microscale. The applied boundary
conditions are based on the research of Sun et a [3] and have been used in FE analyses resulting
in a good agreement with experimental and the semi-empirical expressions such as the Rule of

Mixtures.



7.2.2 Micromechanical strength
The mechanical strength of the unit cells was investigated in order to characterize the mechanical

response of the numerical models under tensile loading. The novel computational method that
includes the damage model and the thermal residual stresses was employed to establish the
relationship between damage behaviour and fibre content using 3D unit cells with a hexagonal
packing array. The user subroutines have aso included different failure criteria developed to
detect failure in polymers taking into account their different behaviour in tension and
compression. Preliminary analyses without the residua stress have been initially carried out and
the results have been used as a benchmark for the residual stress analyses.

These anayses have shown the strong dependence on the fibre volume fraction especially under
transverse loading. The mechanical response of the unit cells has been significantly affected by
the presence of residual stresses. Ultimate strength was increased under transverse tensile loading
due to the redistribution of stresses within the matrix. On the contrary under longitudinal loading
conditions, the residual tensile stress remained concentrated at the fibre/matrix interface and
caused weakening of the matrix in that area. The analyses (with and without residual stress) have
contributed to the description of the mechanical behaviour of the composite at the constituent

level under unidirectional tensile loading.

7.2.3 Effectsof Interphasial Propertieson the Mechanical Behaviour of RVEs

Numerical investigations have been performed on unit cells incorporating a third phase
(interphase) in order to approach more realistically the structure of composites at microscale. In
fact, composite materials in general show a third phase in the vicinity of the fibres that arises
either via unexpected modifications of the matrix during the manufacturing process or via
accurate engineering, by modifying the nature of the fibre surfaces (sizing) to affect the curing

kinetics and cross-link density of the nearby matrix.



The most innovative aspect of these investigations is represented by the characterization of the
interphases in the analyses with residual stress. The third phase arises during the simulated
manufacturing process by assigning “idealised” temperature dependant properties (different from
the matrix properties) to some elements of the mesh at the fibre/matrix interface.

This numerical approach, in combination with the aready described damage-residua stress
computational model, represents a valuable instrument to evaluate the distribution and magnitude
of residual stress after the curing and cooling process. Moreover the comparison with the results
from non-residual stress analyses has permitted evaluation the effects of thermal stresses and
interphasial properties on the damage behaviour.

Non-residual and residual stress analyses have shown peculiar results. Firstly they have proved
that the interphase is able to modify slightly the elastic stiffness of the micro-models. RVEs with
soft interphase have displayed a significant improvement in terms of ultimate strength and strain
in comparison to the unit cells with a stiffer interphase.

More interestingly, finite element analyses that simulate an idealised behaviour of the interphase
curing and cooling processes have indicated that the magnitude of thermal residual stress within
the interphase and the matrix has been strongly influenced by the material properties of the
interphase with significantly high values in the hard interphase. The soft interphase appears to
work as a “damper” by redistributing stresses within the interphase and the matrix while hard
interphases lead to accumulated high stresses in the interphasial region.

In conclusion, numerical investigations have indicated that unit cells with soft interphases have
shown increased characteristics in terms of ultimate strength and strain under transverse loadings
and reduce significantly the amount of stresses if the manufacturing process is considered in the
numerical simulations, and finally improve the mechanical response even for low values of the

interphasial ultimate strength when thermal residual stresses are included.



On the other hand, unit cells with hard interphases have displayed significantly reduced
mechanical properties and residual stress analyses applied to these 3D unit cells have indicated

the onset of failure during the cooling process within the interphase.

7.2.4 Effectsof Fibre Packing Geometry the M echanical Behaviour of RVEs

Most research related to microstructural properties of composite materials has been investigated
by assuming a uniform periodic distribution of fibres within the unit cells.

In the present work a new approach has been used to investigate the effects of the non-uniform
fibre distribution on the local damage behaviour. The novel approach is based on a“single-fibre’
3D unit cell in which the central fibre is shifted along one of the transverse axes (the z-direction
in these work).

The innovative computational methodology (coupled damage-residual stress analysis) has aso
been adopted to study the effect of manufacturing induced stresses in order to determine the
effect of the fibre position on damage onset and the modification of the residual stress
distribution in the RVE. A single-fibre approach has been considered particularly suitable for the
numerical investigations. In fact, the computational damage model implemented in ABAQUS
follows a “local damage” criterion and, therefore it requires a high quality mesh refinement all
over the unit cell, with special emphasis at the fibre/matrix interface, to achieve reliable results.
Hence, two kinds of analyses have been performed namely: non-residual and residual stress
analyses.

The simple fibre shifting along one of the transverse axes has allowed a good awareness of the
crucial mechanisms that regulate local damage onset with and without residual stress for a non-
symmetric position of the reinforcement within the RVE and, in addition, has made possible the
determination of a critical inter-fibre distance. Below that distance, it is likely that fibre/matrix

debonding will occur during the manufacturing process.



7.3 Futurework

FE studies, with and without residual stress, on various combinations of unit cells under uniaxial
loading have been extensively carried out in the present research.

Numerical analyses have shown that the mechanica behaviour of the microstructure of
composite materials is significantly influenced by thermal residual stresses. In particular the
present study has demonstrated that thermal residual stresses play a key role on the damage onset
and damage progression in unit cells under uniaxia tensile loading. In addition, the mechanical
properties of the composites are also determined by other factors such as fibre volume fraction,
fibre arrangement, properties of interphase.

In order to improve the understanding of the mechanical behaviour of unit cells with various

configurations the following directions of future effort are suggested:

1. Apply biaxia loadings in analyses with and without residuals stresses on the unit cells

investigated in the present work. Draw failure envelopes for biaxial loading.

2. Include additional sources of materia variability for the interphase such as thickness.

3. Include a 3D interphase in “non-uniform” unit cells and repeat the set of uniaxial and

biaxial loadingsin FE analyses with and without residual stress.

In addition, few researchers such as Chen et a [172] have investigated the effect of
viscoelasticity of matrix material on the evolution of residual stresses induced during the
manufacturing process in glass fibre/epoxy composites with finite element micromechanical

analyses. The epoxy matrix has been represented by a nonlinear viscoelastic model. The finite



element residual stress anaysis has indicated that higher cooling rate results in higher initia
residual stresses in the laminate. However, the residual stress relaxes with time and tends to an
asymptotic small value independent of the cooling rate. Although these results have been applied
at the mesoscale of composite materials, they suggest that the implementation of more advanced
constitutive models (e.g. viscoelastic model) for the epoxy matrix could estimate more accurately
the magnitude of the manufacturing induced residual stresses within the unit cells after the

cooling process.

7.4 Concluson

After a review of the current literature on the microstructure of composite materias, the area
related to the effects of residual stress on the overall mechanical response of composite materials

at the microscale was identified as requiring further research.

The review of literature related to the modelling of RVE to be implemented into finite element
codes has suggested the use of the unit cells proposed by Sun et a [3] in their investigations to
simulate the periodic distributions of fibres within the matrix.

These unit cells are particularly suitable to be used in numerical analyses, in fact, due to their

simple geometry, boundary conditions and loads can be imposed with particular accuracy.

The damage model implemented into the finite element calculations has indicated that,
unidirectional composite materials are not particularly able to bear transverse stresses especialy
in presence of a non-uniform position of the fibres, as physically observed, and the presence of a
“stiff interphases’. Although residual stresses in general improve the strength of composites

under transverse uniaxial loading, RVEs undergoing more realistic loading conditions are



unlikely to show these beneficial effects as aready demonstrated by Liguo et a [170] for 2D unit

cells.

The non-uniform distribution of the fibres in real composites coupled with the effects of the
manufacturing process can trigger both fibre/matrix debonding and microcracks in the matrix as
indicated by the numerica analyses in Chapter-6. Thus, in order to improve the transverse
strength of unidirectional composites at microscale, more effort must be done to minimize the
effect or residual stress arising during the curing and cooling phases in the proximity of the
fibre/matrix interface. FE analyses on unit cells with different interphasial properties have

suggested that properly engineered interphases can overcome this problem.



Appendix

The appendix contains listings of the subroutines written for this research. User subroutines are
part of the commercial FEM code ABAQUS and are designed to offer more functionality to the
code in cases where the standard options are insufficient to describe a particular mechanical
constitutive behaviour of a material. To describe specific material characteristics, UMAT
subroutines are called at all material calculation points of elements for which the material
definition includes a user-defined material behaviour. The UMAT subroutines update the stresses

and solution-dependent state variables to their values at the end of the increment for which it is

caled and finally must provide the materia Jacobian matrix,ﬂDs/ﬂD o for the mechanical

constitutive model. In addition the UMAT subroutine can be used in conjunction with user
subroutine USDFLD.

The USDFLD subroutine will be called at al material points of elements for which the material
definition includes user-defined field variables and can be used to introduce sol ution-dependent

material properties since such properties can easily be defined as functions of field variables.

UMAT Subroutine

Two different UMAT subroutines have been implemented into the code. The first subroutine
includes the damage model for epoxy matrix and the E-glass fibres. The second UMAT includes
the temperature dependant material properties for the epoxy matrix to simulate the curing and

cooling processes for the residual stress analysis.
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#1 +

USDFLD Subroutine

These subroutines have been employed to modify the damage variables state depending on the
stress level detected by the failure criteria during the analysis. The Maximum Principal Stress

criterion has been used for the subroutine described here.
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