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Abstract

Fibre Reinforced Plastics offer several advantages over other materials such as de-
creased part counts, weight savings, and flexibility. The obstacles to the further
expansion of composites use, particularly in cost-conscious industries such as the car
industry, include volume, cost, and quality. Liquid Composite Moulding, where the
dry textile reinforcement is shaped prior to application of the plastic matrix, offers
to address these drivers by offering potential for automation, speed, and quality con-
trol. However, the preforming of the dry reinforcement is rarely automated, and its
results are variable and hard to predict or control.

This thesis aims to facilitate better preforming process design and control. The
dominant deformation mechanism that allows reinforcements to conform to a 3D
surface is trellis shear. Work is therefore presented on shear characterisation of tex-
tile reinforcements using the picture frame and the bias extension tests. Several
approaches to normalising these tests to achieve method-independent shear data are
proposed, and compared. Of these, a normalisation technique for the bias extension
test based on energy considerations appears to be the most appropriate. A consti-
tutive modelling approach, based on the meso-mechanical deformation mechanisms
identified in the reinforcement, is developed for characterising the asymmetric shear
properties exhibited by non-crimp fabrics. The results from this model are compared
with experimental data. Finally, an energy minimising kinematic drape method is
developed to account for the use of automated reinforcement blank-holders, and

methods for modelling process variability using the code are investigated.
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Chapter 1

Introduction

This thesis concerns itself with the manufacture of fibre reinforced plastics (FRP).
Specifically, it looks to model the effects observed around the dry fabric preforming
of fibrous textiles for liquid composite moulding processes.

The thesis aims to achieve a greater understanding of this aspect of FRP man-
ufacture. Increased process understanding can facilitate increased speed, accuracy,
and decreased costs in the design, manufacture, and analysis stages of a product life
cycle. Furthermore, it can aid accurate predictions of those downstream manufac-

turing steps that are affected by the preform fibre architecture.

1.1 Overview

A composite material consists of the combination of constituents, such that they
do not dissolve or merge completely into each other. Composites typically consist
of a combination of two materials where the composite gains some of the most
advantageous characteristics of each constituent. Some example not covered in this
thesis include chip board, which combines wood chips with a polymer to make a
cheap boarding; nano-composites, in which (for example) nano-clays are dispersed
into a polymer matrix to improve the tensile and flexural strength and modulus,
heat distortion, water sensitivity, permeability, and so on; reinforced concrete, which

combines the bulk low cost and high compressive modulus of concrete with the high



tensile modulus of steel; sandwich structures, which use a low cost filler sandwiched
between high tensile strength skins which bear the bulk of the load.

The FRP industry arose almost a century ago as essentially a craft industry, and
large parts of it remain so even today. Parts are carefully hand manufactured by
skilled workers, with nothing more technical than some shears, a bucket of resin,
and a brush or roller. This is sometimes even the case for composites destined for
the highest technological applications. The low tech nature of the manufacturing
process allows for very easy and low cost low volume manufacture when compared to
steel or other metals. It does however provide barriers for medium to higher volume
applications in terms of per-part cost, time etc.

Many varieties of continuous fibre reinforced plastic composites have for some
time been adopted in those areas of the engineering world where the performance
and weight advantages outweigh the traditionally high cost. This includes the space
exploration and aerospace industries, high performance motoring, and competition
boating, cycling and motorcycling. The relatively low tooling costs in many com-
posite manufacturing processes outweighs the higher component manufacture costs
for low volumes, so that they are found in many low volume or prototyping exam-
ples. However, there has for some time been interest in the use of fibre reinforced
plastics in higher volume, low cost applications such as the mainstream automotive
industry. In order for them to be viable in such industries, they must become more
predictable, reliable, and substantially cheaper to manufacture at high volumes.

The motive for this thesis is to further the understanding of the composite man-
ufacturing process with a view to streamline the process for low cost, automated

manufacturing techniques. In particular, the mechanics of dry textile draping in



liquid composite moulding processes is focussed on. The final fabric layup has to
be taken into account when modelling the resin infusion process. These two process
steps are subsequently required to accurately predict the mechanics of the formed
component, failure characteristics, etc. As the models for textile preforming become
more comprehensive and complete, they allow the forming process and component
performance to be more accurately predicted. This allows tighter safety factors to
be adopted, less design iterations to be required, and a shorter prototyping and
testing phase. All of these factors currently limit the potential for the use of com-
posites in high volume, low cost per part processes. A reliable textile constituent
model, that adequately predicts the forming characterisation of a textile from its
meso-mechanical geometric description, also offers the possibility of designing fabric

architecture for a specific application, broadening the possible uses of composites.

1.2 Liquid composite moulding processes and textile form-
ing

There are many different processes used in the composites manufacturing industry.
The dominant approach within the aerospace industry involves the forming of a
textile that has already been pre-impregnated with a thermoset resin. This is shaped
to the single sided mould, covered with an impermeable bag on which a vacuum is
drawn, and placed to set in an autoclave at a raised temperature and pressure.
Some approaches take a thermoplastic matrix already combined with the textiles in
the form of a solid sheet or in the form of commingled constituent fibres. These are

heated, formed into the desired shape, and pressed to consolidate. Another approach



is to conform the dry fibrous reinforcement to the desired shape using a single mould,
and then to paint on the resin with a brush or a roller. This is one of the oldest
approaches, and apart from being labour intensive, presents many quality and health
and safety issues. A further approach shapes the dry reinforcement to the desired
shape using a single or pair of moulds, and then imposes a pressure differential to
infuse the liquid thermosetting resin into the fibres in the mould. This is given a
number of different names including Resin Transfer Moulding (RTM), RTM-light,
and vacuum infusion (VI). Whilst the work in this thesis is relevant to any processes
that preform the fabric in an unimpregnated state, the focus of enabling greater
automation is more biased to RTM-like processes.

RTM, resin transfer moulding, holds the pre-formed fibrous sheet between op-
posing moulding tool faces, which are held in a press while resin is injected into the
component at a high pressure. RTM-light requires less rigid tooling, typically the
tooling itself will be made from a fibre reinforced composite. The resin is injected un-
der pressure only slightly above ambient, the process being aided by simultaneously
applying a vacuum to the resin outlet. Unlike RTM, which requires an expensive
press to counteract the high force exerted by the pressurised resin over the face of the
tool, RTM-light tools are commonly held together by a double vacuum seal around
the edge of the tool - it becomes apparent that in order to maintain the tool closed,
the force applied by the injection pressure must be less than the force applied by
the sealing vacuum. For this reason RTM-light resin is usually injected at half an
atmosphere relative pressure or less. Vacuum infusions only use one moulding tool
face, and injection of the resin is entirely through the vacuum on the resin outlet.

In place of an opposing tool, the process is sealed with a bag which is sucked by the



vacuum to the shape of the component. This process is particularly suited to very
large components such as boat hulls, but is less suitable for components that require
two accurately positioned or cosmetic faces.

There are advantages and disadvantages to each of the above methods, not to
mention variants of these methods and other methods that fall in this category.
RTM, due to the high pressure that can be applied to the resin, can be faster than
the other methods. The injection pressure that can be applied is however affected
by the size of the press in relation to the size of the tool. Moreover, the cost of
the tooling and press required for this process becomes prohibitive for lower volume
applications.

VIs are more suited to low volume and particularly large applications. The
tooling can be made relatively quickly and easily as it does not need to withstand
high injection pressures. However, the process can be fairly slow, and a good surface
finish on both faces of the component cannot be achieved.

RTM-light, also called VI-RTM, performs the compromise between the two ex-
tremes. Like vacuum infusion, the primary pressure differential is created by drawing
a vacuum, and tools are also held together with a vacuum so that no press is re-
quired. Associated with this is a slower process speed. However, like RTM, two tool
faces are available to control surface quality.

The difference between all these processes tends to involve the method for infusion
with resin. The textile preforming process, in contrast, remains very similar. The
textile is typically placed by hand onto one of the tool faces. In the cases where
the textile cannot deform in-plane sufficiently to conform to the tool contours, it

will bridge and / or wrinkle. Wrinkles are undesirable: They create delamination



zones where failure is likely, they create resin rich and depleted zones, and they
ruin the cosmetic aspects of the part. Likewise, bridging, where the fabric does not
follow an indentation but cuts across it, is clearly not acceptable. One solution to
avoid wrinkling commonly used in the industry involves the cutting of excess fabric
from areas prone to wrinkling. This may compromise the structural capacity of the

component, affect the cosmetic appearance, as well as being more labour intensive.

1.2.1 Fabric response to draping for composite manufacture

A textile does not need to deform in order to conform to a flat surface. The textile
can also easily conform to a surface with single curvature, such as a half cylinder,
by bending of the fibres in the textile. A geometry whose curvature cannot be
described by rotation of a flat plane around a series of parallel axes is described as
having double curvature. In most cases, certain regions of an initially flat textile
must undergo a change in surface area in order to conform to a surface with double
curvature. The location and size of these regions and the magnitude of change in
surface area depends on the textile structure and the surface geometry.

Typically, a surface with very sharp radii of curvature, or one that has a deep
“draw” - that is, it is very deep compared to its other dimensions - requires the great-
est change in surface area. Textiles for fibre reinforced polymers typically utilise fibres
with extremely high tensile moduli in order to produce a part with high strength
and stiffness to weight ratio. In this case, the required change in surface area can-
not be accommodated by the tensile elongation of the fibres in the textile: This is
not only a very high energy deformation mechanism due to the high moduli, but

typical fibres used such as glass and carbon also tend to be brittle. Another option



for changing surface area is for some fibres to longitudinally compress, resulting in
undesirable wrinkles. A further mechanism is fibre slip - however, this does not allow
a very large change in surface area, and moreover is not observed very much in most
existing reinforcement textiles [30]

The remaining deformation mechanism other than buckling (that is, wrinkling)
is termed trellis shear. Trellis shear resembles engineering shear in many ways.
However, the extreme anisotropy of the textiles undergoing shear means that there
are also distinct differences. Trellis shear must always occur in reference to the fibre
or tow directions in the fabric, a tow being composed of a bundle of roughly aligned
fibres with which the fabric is manufactured. (Tows can also consist of twisted fibres,
which hold together better, but this reduces the longitudinal stiffness advantages that
are typical in FRPs.) For example, a woven textile with two distinct and uniform
initial tow directions will only shear in reference to those two directions. As a result
the trellis deformation of textiles, being the dominant deformation mechanism in
conformance of technical textiles to component geometries with double curvature, is

of primary interest in the study of dry textile preforming.

1.2.1.1 Non Crimp Fabrics

Traditionally, liquid transfer moulding has utilised Continuous Filament Mat (CFM
- randomly oriented continuous fibres with a typically low fibre volume fraction),
Woven textiles, and unidirectional textiles (UD) for reinforcements. CFM is often
easier to drape than woven textiles or UDs. However, it is often unsuitable in high
performance applications. UDs can present a draping challenge, adding to the time

taken to preform the component, but allow fibres to be laid in the direction most



needed. Woven fabrics are in many ways easier to drape than UDs, and present con-
sistent fibre directions allowing them to be used in higher performance applications.
However, unlike UDs, the tows in the textiles are crimped by the weave pattern.
This can result in textile tensile moduli that are lower than the fibre moduli, as the
tows un-crimp before placing the fibres under direct tension. Additionally, there is
a weight limit to woven textiles.

Non-crimp fabrics claim to overcome some of these limitations of woven fabrics.
A common example of non-crimp fabrics, knitted reinforcement textiles, is manu-
factured by laying tow mats in between one and four layers, and knitting the mats
together using texturised polyester thread. these textiles are often much more con-
formable than woven equivalents in that they can shear to higher angles before lock-
ing and wrinkling. Their manufacturing method allows them to be manufactured at
greater weights, which can be very helpful in manufacturing large composite compo-
nents such as boat hulls and aircraft bodies. Finally, as their namesake suggests, the
tows are not crimped by the manufacturing process, allowing for a greater transfer
of the component load to the reinforcement fibres.

Much of this thesis concentrates on the forming behaviour of knitted non-crimp

fabrics.

1.2.2 Drape modelling

The term “Drape” refers to the process of conforming a textile to a 3D geometry.
Drape modelling approaches fall broadly into two categories. The first approach
models the textile as a “pin-jointed net” (PJN). This net consists of inflexible, in-

extensible ‘rods’ attached at each end with pin joint nodes. The nodes are laid so



that they coincide with the surface geometry, according to the constraint that they
must remain a fixed distance from adjacent nodes. From this, it becomes apparent
that given the position of nodes along two intersecting lines representative of the
two tow directions, all other nodes can be calculated by geometric constraints. For
very simple geometries such as a hemisphere the geometric equations can be directly
solved to predict the forming pattern. For the vast majority of geometries, however,
a numerical solution is required. Many solvers now exist that are able to model
fabric forming using this approach.

At the other extreme of the analysis spectrum is finite element modelling (FEM).
This attempts to model as many as are possible of the physical characteristics of
the fabric, the mould, the ambient conditions, and the process sequence in order
to attempt to replicate chronologically the entire forming process. Accurate FEM
requires in-depth understanding of the modelling technique, the software tools that
utilise it, and the material models that underpin it.

Each of these two extremes offers advantages and disadvantages. The former is
relatively easy to use, and in many cases gives good results, which it generates very
quickly. However, in many other cases it cannot model accurately. This is for a
number of reasons, the most important of which is that the position of the original
two intersecting lines is determined geometrically. This does not take into account
the shear behaviour of the specific fabric or its interaction with the tools. Conversely,
the detailed interactions of the fabric, tools, and process modelled by FEM requires
detailed data on their mechanical, rheological and temperature related behaviour. It
requires substantial user competence to enter the data, to interpret the results, and

to gauge their accuracy. It can take many days to input this data, and also long
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times to run the model — although with improving material data and the increasing
power of computers these times are continually decreasing.

Some models attempt to find a middle ground between these two extremes. One
model, borrowed from the apparel industry, models the fabric as a series of intercon-
nected energy nodes. The drape is optimised to minimise the energy of the nodes,
that are subject to gravity, elastic interactions, and so on. A similar method more
adapted to the composites industry advances the pin-jointed-net concept by intro-
ducing an energy minimisation routine [60].

The energy required to shear each of the units of the pin jointed net is calculated
from the measured shear behaviour for the specific material under question (See
Section 2.2.1 for methods of measuring the shear behaviour of textiles). The positions
of the two lines which geometrically constrain the entire drape solution are then
chosen in such a way as to minimise the total shear energy of the fabric. The
difference between this approach and the PJN approach can be most easily seen
in non-symmetric fabrics that preferentially shear in one direction rather than the
other. In these cases, the increased accuracy of the energy minimised PJN is very
apparent. Furthermore, it requires substantially less user skills than FEM, and only
takes a few minutes to solve the model, as compared to the few seconds the PJN
method requires, or the hours or days that the FEM takes. It does, however, require
shear behaviour characteristics to be available for the specific fabric.

This model, in allowing for the textile architecture-specific response to be mod-
elled in a relatively fast manner, provides the potential for analysis of statistical
variations to be conducted, although this is not yet implemented. It also does not

model the effects of the interactions between the textile and the mould or other au-
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tomated tools such as a blank-holder(similarly to those found in the metal stamping
industry, a composite blank-holder holds the undeformed textile while the male ge-
ometry is inserted, thus facilitating automated draping). Finally, it only provides
limited support for the modelling of multi-layer preforms, in which multiple textile

layers have been formed onto the geometry.

1.3 Conclusions

The aspiration in terms of lower cost, high volume RTM components is a greater de-
gree of automation, repeatability, and quality. The design process should be stream-
lined, with the use of more accurate modelling tools and process understanding
assisting the reduction of design iterations and prototyping. Commonly within the
industry the effects of fabric architecture and part geometry on drape, resin infusion,
and component performance is simplified at best and ignored at its worst. The crit-
ical process parameters should be well understood and controlled, with a variability
control strategy that minimises scrap rates and predicts confidence limits.

The current composite manufacturing processes require development before they
can be undertaken in this sort of environment. Technology exists that automates the
spreading and cutting of textiles, their loading into the mould, and textile “blank-
holders” that hold the textile in tension while the mould is closed (currently blank-
holders are only implemented in thermoplastic prepreg stamping processes, however).
The injection process can be automatically controlled, with sensors in place to mon-
itor infusion progress and modelling tools that can correct the injection strategy to

ensure successful resin transfer on a real time basis. Not all of these technologies are
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mature, and very few, if any, current manufacturing operations combine all of them
for a high efficiency manufacturing line.

In terms of a more robust and efficient design cycle, the forming modelling tools
available provide complementary roles in the design process. PJN tools allow very
fast forming approximations for very early design iterations. Energy based PJN
tools assist further on when the fabric choice and other parameters are taken into
consideration. Finally, near the end of the design cycle, FEM tools can be used to
validate and refine the chosen design parameters. This allows an optimal process
whereby initial design cycles can be conducted very fast and with a minimal amount
of resource and effort, while the final design is robustly tested and validated.

To further these goals, this thesis concentrates on the shear behaviour of bi-
directional fabrics for fibre reinforced composites, and development of the energy
minimised PJN modelling approach for that forming process. It attempts to quantify
and understand the shear behaviour of some interesting industrially available textile
reinforcements, both in terms of experimental and mathematical characterisation.
It tries to further the understanding of the experiments most commonly used in
measuring the shear response of textiles. The shear behaviour of reinforcement
textiles is important for accurate modelling of both FEM and energy-minimised
PJN forming models.

Pursuing the energy-minimised PJN forming models, this thesis attempts to ex-
tend the model to incorporate other forming phenomena so far neglected, such as
fabric and forming variability, and the edge effects of automated forming blank-
holders.

It is expected that as each of these aspects of preform manufacture is better



13

understood, and tools begin to be integrated so that forming predictions inform
infusion models, and both of these inform mechanical models, then the accuracy
and versatility of predicted performance will improve. In this way the composites
industry can move from black art to science, and thereby significantly expand its

acceptance in the mainstream.



Chapter 2

Literature Review

2.1 Introduction

The context of the work presented in this thesis is in the modelling and prediction of
preforming of dry textiles to aid the product and process design within the continuous
fibre reinforced plastics industry. This necessarily builds on previous textile forming
work, which originates from the apparel industry, looking at the deformability of
textile clothing. Whilst the apparel modeling work was taken as the starting point
in this field, and a significant number of aspects of the work are still in common
across the fields, the work has nevertheless diverged due to the different technical,
aesthetic, and economic drivers found within the two industries.

The materials of choice within the textiles industry must primarily reach a certain
standard of comfort. Further criteria that vary according to the specific application
include aesthetics, price, durability, colour fastness, heat retention characteristics,
ease of cleaning, and more. In contrast, a primary driver for reinforcement textiles
is the composite performance: Without a performance advantage, other materials
will dominate. Again, other applicable criteria depend on the application, but in-
clude price, deformability, processability, recyclability, and aesthetics. The textile
performance, deformability and processability (including handling and resin transfer
properties) are highly dependent on its drape characteristics. Most textiles show

extremely low resistance to bending. Whilst elegant folds are often an advantage in
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the textile industry, these significantly reduce processability and performance in the
composites field. Also, seams and joins are common in apparel, to ensure good fit to
shape. In contrast, they can significantly affect performance in composites. Finally,
the high modulus fibres that provide the performance advantages in the compos-
ites industry result in textiles with very high tensile moduli in comparison to other
preform deformation mechanisms. Tensile deformation is in contrast of much more
importance in the apparel industry.

Due to this difference in motivations, composite textile modelling concentrates
on shear deformations. Textile shear allows a textile to conform to complex surfaces
with two degrees of curvature without wrinkling (low energy but undesirable), ten-
sile extension (very high moduli and low ultimate strains are typical), or requiring
tailoring operations. Thus, preform reinforcements and their forming operations are
specifically designed to maximise shear deformation, suppress wrinkles, and minimise
tailoring. In order to understand the preforming operation, textile shear must be
first understood.

The work therefore, and the literature reviewed that forms the background to
the work, concentrates first on the characterisation and modelling of the shear be-
haviour of continuous fibre reinforcements. Second, work done on modelling of textile

preforming is reviewed.

2.2 Fabric shear characterisation

Before fabric shear is modelled or measured, its nature must be understood. The

word shear should be used with care, as textile shear, whilst sharing some important
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characteristics with engineering shear, is a complex phenomenon involving many
different deformation mechanisms.

Homogeneous engineering shear is defined as a force applied tangentially to the
surface on which it is acting, so that the shear stress (7) is defined as the tangential
force divided by the surface area over which the force acts. The material deformation
response to shear stress is the shear strain (e,,), such that for small angles shear
strain is approximately equal to the shear angle in radians, 6.

Textile shear also refers to the action of a force parallel to the surface on which
it acts. Textiles, however, are heterogeneous materials so that the shear force of
interest must act parallel to one of the fibre directions. Shear deformation in biaxial
fabrics can often extend to 50 or more degrees, causing the reference axes (parallel
to fibres) to be no longer even approximately perpendicular. As the reference axes
must rotate with the fibres, textile shear, sometimes referred to as trellis shear, must

not therefore be confused with engineering shear.

2.2.1 Experimental characterisation

Shear response data allow textile preforming simulations to predict the effects of
textile structure on the draped pattern. This is vital in the prediction and control of
the resin injection process, and the modelling and design of the composite mechanical
properties. It would be beneficial to be able to predict textile shear response based
on its structure, and previous work as well as work in this thesis makes progress
toward this goal. For these reasons, shear response measurements are important to
textile preforming science. They allow forming models to be developed in parallel to

shear models, and they provide essential validation for shear models.
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Much work has been carried out to measure the shear characteristics of fab-
rics, first in the textiles industry, and latterly in many other contexts including the
manufacture of fibre reinforced polymer composites. The many variations of shear

experiments can be classified into three broad types, illustrated in Figure 2.1:
1. Direct shear force
2. Bias extension

3. Picture frame

F
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Figure 2.1: Three methods for measuring the shear properties of a textile.

All three test methods are summarised in the following sections, and more de-
tailed descriptions of the latter two can be found in Section 3.3.1 and Section 3.4.1

respectively.
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2.2.1.1 Direct shear measurement

As has been discussed, direct shear force experiments originate from the textile
industry [61]. Opposite sides of a rectangular specimen are clamped parallel to one
of the fibre directions. Displacement of one of the clamped edges is in the direction
of the fibres, so that a direct shear force is exerted. A force is applied normal to the
fibre direction in order to keep the fabric taut. This ensures that shear rather than
wrinkling is measured.

This was adapted for engineering fabrics by the likes of Kawabata [27], who used
a biaxial testing machine to measure the direct shear response. Force was applied
in one direction to keep the specimen taut, while a centre clamp applied the shear
stress in the other direction. Later variations [24] on this method included more
than one specimen pulled by the central clamp so that out of plane reactions would
cancel. This also allows, with careful placement of the specimens, measurement
of shear strain in only one direction, an important factor in textiles that exhibit
different shear characteristics according to the shear direction. Kawabata’s work led
to the Kawabata Evaluation System for Fabrics (KES-F), now available commercially
for fabric characterisation, and is used for the characterisation of technical textiles
including reinforcements [38].

The KES-F system presents difficulties as a shear measurement system for re-
inforcements. It is very expensive and hard to obtain and is limited to the low
shear strains and loads characteristic to the textiles industry. Furthermore, Hu and
Zhang [23] suggested that the specimen in the KES-F was not subjected to pure
shear. Their finite element simulation of the shear test suggested a shear distribu-

tion from zero at the corners to a maximum at the centre of the specimen.
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2.2.1.2 Bias extension

In the bias extension test the sample is cut and extended along an axis half-way
between the fibre directions, illustrated in Figure 2.1b (see Figure 3.16 for a biaxial
test setup).

The uniaxial bias extension method has been used for some time [62, 53] and
is popular as it requires little more than standard tensile testing apparatus. The
test requires grips wide enough to hold the top and bottom of most textile samples,
however, these are of very simple design for dry textiles. Also, it is relatively repeat-
able compared to the other tests. Wang et al. [68] demonstrated that, as only the
central part of the sample undergoes pure shear, sample dimensions are important,
and suggested that sample aspect ratios A such that the sample height is greater
than twice its width were desirable so that the uniform deformation area dominates

the sample response:

2> 2 (2.1)

Ideal deformation within the test allows the central shear area shear angle to be
related to the extension (Equation 3.19), however the boundary conditions of the test
mean that as the shear angle approaches the locking angle (that is, the maximum
shear angle that the textile will allow, often the angle at which the fabric begins to
wrinkle), the sample begins to deform by slip rather than shear. As a consequence it
is best to measure the shear angle from direct observation of the central shear area.

Despite its popularity, the complex shear distribution over the sample, the lack

of control of boundary conditions and the slip deformation mechanisms reduce the
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quantitative usefulness of the test.

The biaxial bias extension test [57] uses a cruciform sample cut in the bias direc-
tion. Ideally such a test would match the X-axis extension to the Y-axis extension
according to the ideal shear deformation of the sample, or instead set one axis to
exert a constant force. Such a setup would minimise tow slip and allow tow tension
to be induced during shear. However, in the example of Sharma et al. [57] both axes
are extended at a constant rate and the subsequent slip induced in the cruciform

tabs is ignored by solely considering the stress fields in the central shear area.

2.2.1.3 Picture frame

In this method the sample is cut in a cruciform with axes aligned with tow directions.
It is then clamped into a square frame with corner hinges whose centre of rotation
is aligned with the clamping edges. Two opposite corners of the picture frame are
extended, so that so long as the sample is properly aligned [5], pure shear is induced.
Except for the fibre bending induced at the clamp edges, this test induces pure shear
throughout the sample.

Tension in the tows prior to shearing can be induced with the use of a pre-
tensioning device [7, 60]. As well as allowing the fabric shear behaviour under tension
to be examined, this has been found to improve repeatability of results, as it helps
alignment of the sample within the frame. The test is extremely sensitive to fabric
misalignment. Misalignment causes either premature buckling or increasing tensile
loading of the tows, which due to their inextensibility subsequently dominate results.
The effects of tension on the fabric shear behaviour is of importance, for example in

forming utilising a blank-holder to hold the preform. Some research has indicated
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that tension can alter the shear behaviour of the textiles [60, 69, 32], such as increased
low angle shear resistance and increased locking angle. This might allow a challenging
part to be draped without wrinkles. Most tests did not however measure the change
in tension during shear, thus limiting the validity of the data. Launay et al. [32]
demonstrated that this varies significantly during shear, so that a single shear test
with a given pre-tension measures the shear response at different pre-tension for
different shear angles.

Another proposed solution to the generally low repeatability found in this test is
termed mechanical conditioning [10]. This proposes that the sample be sheared and
unsheared several times before test results are taken. Any misaligned tows in the
sample are pulled straight in the first few tests so that the recorded test concerns a
more predictably aligned sample. The results are indeed more repeatable, however, in
conditioning the sample the fabric no longer resembles that which comes off the roll,
and so its shear behaviour may no longer be representative of the material which
is actually formed. For example, after conditioning many fabrics exhibit thinner
tows with larger gaps, indicating some permanent compaction of the tows. Such
deformations are therefore no longer present in the recorded data, to the detriment

of its applicability.

2.2.1.4 Benchmarking

In an attempt to understand the differences between the different tests conducted by
different researchers, a web based forum (http://nwbenchmark.gtwebsolutions. com/)
was established to standardise and benchmark the international efforts to char-

acterise materials and simulate the forming processes. The aim of the material
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characterisation forum was to attempt to compare different shear tests to establish
normalisation strategies and better understand the factors that affect the results.

The work is presented by Gorezyca-Cole et al. [15] and compares the different
techniques used to conduct the picture frame test. The benchmark chose three tex-
tiles donated by Saint-Gobain to be tested - two of these, numbered 1 and 3 in
the benchmarking exercise, are the same fabrics tested, whose shear results are pre-
sented in Section 3.3.3 and Section 3.4.5. These were all dry, commingled fibreglass-
polypropylene woven-composite materials. In order to compare the results from
different picture frame sizes and setups, it was necessary to present the results in
such a way that they were independent of sample size.

Early work on the relationship between shear force and sample size suggested
that shear force should be normalised by sample area [59]. This was later modified
by Harrison et al. [18], who suggested that shear energy should be normalised by
sample area, and showed that if this was the case then the shear force should be
normalised by the sample side length. Peng et al. [50] developed this work to account
for samples whose central shear area is substantially less than the picture frame side
length, where their normalisation formula simplified to Harrison et al.’s in the case
where the central shear region side length is equal to the picture frame side length.
Peng et al.’s work is relevant for picture frame tests where the unclamped tows in
the tabs are removed: However, where only the tow at the edge of the central shear
region is removed, or where no tows are removed, the tabs between the central shear
region and the picture frame clamps also shear, albeit under different boundary
conditions. In these cases the shear contribution of the tabs should be allowed for,

and the normalisation length should be equal to the square root of the area of fabric
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inside the picture frame clamps.

Gorczyca-Cole et al. [15] compared the results from different tests around the
world normalised both by fabric area and according to Peng et al.’s technique. Whilst
agreement improved after normalisation, there was still a wide amount of scatter be-
tween different tests. The normalisations did not account for the differences between
those tests that removed tows from the tabs and those that did not. Furthermore,
the differences in boundary conditions were not taken into account. Some of the tests
were placed into the frames under tension, whilst some were not. One test rig had
the facility to measure and vary the tension during shear. Clamping arrangements
varied, as did actuation. Some experiments mechanically conditioned the material
before the test by shearing and un-shearing it a few times. Whilst this substantially
improves repeatability, the material that is tested can be visually seen to be differ-
ent to the virgin material. This shows that the picture frame test is very sensitive
to differences in the testing conditions. This is further borne out in the difficulties
in achieving repeatable results in the same picture frame by the same researcher.
Nevertheless, it is important that techniques for normalisation of results continue to
be developed in order to facilitate the comparison of different tests. This allows the

effects of other factors on the test results to be explored and understood.

2.2.1.5 Discussion on experimental data
Typically, shear measurements find a number of factors that affect the shear resis-

tance of dry textiles:

e Weave pattern strongly affects shear compliance [60]. Patterns that induce

large amounts of tow crimp, such as plain weave, show less shear compliance,
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whereas patterns with very little crimp, such as some satin weaves, show much

greater shear compliance.

e Due to their uncrimped nature, biaxial non-crimp fabrics exhibit very low shear
resistance. The presence of the stitching can cause them to preferentially shear

in one direction.
e Greater fibre density increases shear resistance.

e Greater shear resistance usually translates to a smaller locking angle.

2.2.2 Modelling approaches

The shear deformation of textiles is key to understanding their forming behaviour.
As in the modelling approaches to forming, the meso-mechanical shear deforma-
tion of textiles falls into two categories: idealised empirical modelling; and Finite
Element modelling. Finite Element approaches provide an important facet to the
understanding of textile shear, but even these need an understanding of the underly-
ing mechanisms involved to model the textile behaviour correctly. The FE approach
to shear modelling is still in its early stages and suffers from deficiencies such as
difficulties in modelling large deformations and appropriate tow compressive stiff-
ness [58, 3]. As a result, the material behaviour is approached from an idealised,

constitutive modelling approach herein.

2.2.2.1 Meso-mechanical deformation modelling
In order to model the shear behaviour of a textile, the meso-mechanical processes

that facilitate and resist the shearing must be defined and understood. It is the
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interaction of all of these separate phenomena that results in the behaviour actu-
ally observed. Typically, empirical shear models have concentrated on the shear
behaviour of plain-weave fabrics. The primary deformation mechanism concentrated
on has been the frictional resistance experienced at tow cross-overs. Other factors
modelled have included the effects of tow tension, crimp, bending, compaction, and
torsion. However, these secondary effects have often been modelled to evaluate their
effects on the frictional forces experienced at the tow cross-overs. When considering
Non Crimp multiaxial Fabrics (NCFs), this will be shown to be an inappropriate
approach, so that an energy based approach, in which the energy contributions from

each of these effects are added irrespective of their significance.

Plain-weave tensile modelling

An important contribution to the understanding of textile deformation comes from
Kawabata [25, 26, 27], who presented his work in three parts, the first two of which
modelled biaxial and uniaxial deformation along the fibre direction. His models
introduced the saw-tooth approximation for plain weave tow paths, illustrated in
Figure 2.2. The first paper [25] introduced the interrelation between the tow contact
forces F, at crossover and the tow tensile forces in the plane of the textile F; where
both tow directions were subjected to tensile stresses. For the saw-toothed geometry

to maintain equilibrium, the contact force was given as
F.=2F;cos¢; (2.2)

where 7 referred to the warp and weft tows, and ¢; is the angle of crimp of the tows in
the saw-toothed model. Two resultant expressions were created from Equation 2.2,

for each of the two tows, and the equilibrium solution was determined graphically so
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Figure 2.2: The saw tooth model for a plain-weave crossover under biaxial loading.
The tows are illustrated in the unstressed (solid) and stressed (transparent) states.
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that these two were equal. The tension in the direction of the tows was subsequently
calculated as

Fe€iyoi

E - =TI

(2.3)

where €; is the strain in the ¢ direction, and h,,; and h; represent the crimp amplitudes
for the i-direction tow before and after deformation, as illustrated in Figure 2.2.

Validation of this model was made using a biaxial tensile testing machine. Given
good experimental tensile and compaction data for the yarns, the model corresponded
closely with the biaxial measurements, particularly for higher stresses.

The second paper [26] allowed for the uniaxial stress scenario, where in order to
model the reaction of the tows in the unstressed direction a first order approximation
based on the bending and shear forces within the tow was created. The contact force

was determined as the sum of tow bending and shear forces,
F.=F.+ Fy (2.4)

where [, is the tow shear force

2 F
F, = 24 <h2d a F) (2.5)

lo2 dhy
and F, is the tow bending force

192E,1;
o713 2

Fcb = 2nf 8[82

(2.6)

Again, this work provided accurate results when compared to experimental tests for
higher stresses. It seems likely that in both the biaxial and the uniaxial models the
discrepancies at low stresses were a result of the lack of modelling for the lateral
compaction of the tow(s) under tension. Another possible effect not modelled is the

bending of the tow under tension.
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Plain-weave shear modelling

Whilst the fabric behaviour under tensile loads is of limited interest due to the
tendency to deform by shear, it is important that such behaviour is understood
in order to understand some of the meso-mechanical shear mechanisms. The third
paper by Kawabata [27] attempted to model the shear behaviour of the plain-weave
fabric by allowing the tows in the bi-axial saw-tooth model to rotate relative to each

other. The torque needed to rotate a crossover was approximated as
T == TO + Cch + 029 —|— C’4FC(9 (27)

where C, (5, and C; were derived from shear measurement apparatus. Not sur-
prisingly, the results using Equation 2.7 showed good correlation with the model.
Kawabata did however propose a mechanical model for the torque required to shear

the fabric:

2 D
T = —MCT%FC (2.8)

where [, the crossover frictional coefficient, was taken to be 0.3, D.s; was the
effective diameter of a circular crossover area with diameter equal to the width of
the tow, and F,. was calculated using Equation 2.2. This value was noted to be
similar to the C; values measured for Equation 2.7, so that Cy and Cj were thought
to be due to elastic effects in the contact region.

In another early approach to modelling shear resistance, Skelton [59] hypothesised

that the shear stiffness can be related to the area normalised shear torque:

_TJA
=

S (2.9)
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where T in the torque required to shear a sample of area A by an angle of 6, degrees.

By defining shear torque as

T~ NchcDeff

: (2.10)

where g, = 0.3 is the crossover frictional constant, D.s is the effective radius of
rotation for an elliptical crossover contact area of dimensions a in the minor axis and

b in the major so that

2 b2
Der =1/ = ; (2.11)
and F, is related to the flexural rigidity of the yarn, B,
8B, si
£~ Sy (2.12)

T
This pointed to the relative contribution of shear deformation in a textile, as the
model, although incomplete, suggested that shear strain could be many orders of
magnitude greater than the tensile strain at similar stresses. Skelton demonstrated
this with experimental data comparing low angle shear stiffness for polymeric fibre
textiles to that of metallic sheet materials, which supported the findings. Most work
on textile deformation relies on this phenomenon.
Skelton [59], with further work by Prodromou and Chen [54], also proposed a

simple prediction for the textile locking angle from the initial values for tow spacing

and width:

T.
cos O = T—S (2.13)

where T is the tow spacing and T, is the width of the tow. This suggests that

the locking angle occurs when adjacent tows contact each other. The prediction
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of the locking angle is important, as it is often used as a factor in predicting the
onset of wrinkling. However, later work by Souter [60] found that whilst visual
observations of experiments confirmed that the textile locked soon after adjacent
tows came into contact, this consistently occurred at a greater shear angle than
predicted by Equation 2.13. This might suggest that the tows may compact in-plane
prior to coming in contact with each other, possibly due to the crimping effect of
the crossover tows, or perhaps due to a strong increase in in-plane tension near
locking angle [32]. Souter’s work in shear modelling, however, modelled the tows as
compacting after contact, and specific experiments to validate this showed no tow
compaction prior to contact. More work is required in assessing the sources of tow
compaction in different weave structures, as well as different textiles.

Another model based on the saw tooth model was by Leaf et al. [34]. The tensile,
compressive and bending strain energies of the yarns were modelled in order to
predict the initial tensile behaviour of the textile, based on Castigliano’s theorem.
In a further paper, Leaf et al. [35] attempted to model plain-weave bending, again
using Castigliano’s theorem. The approach essentially derived an empirical formula,
for which constants related to the contact geometry were altered to fit experimental
data. This did however highlight the importance of the yarn geometry, in particular
at the contact regions. Leaf et al. also attempted to model shear behaviour for
a plain-weave textile [33], but by constraining the rotation of the tows around the
crossover, so that shear was resisted by the tow bending. The ends of the tows were
modelled as free ends of a cantilever beam constrained at the crossover, such that

the shear angle 6 was related to the end deflection d; and the free fibre length a.;,
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where 7 once again refers to warp and weft, as

0 9
Z_ 2.14
tan 5~ an ( )

This approach required two fitting parameters to model the initial shear modulus,
although these were refined to just one later. The fitting parameter proved to be
constant for every (apparel) textile tested, although it was acknowledged that more
yarn types needed to be tested before a universal fitting constant could be declared.

McBride [45] built on these increasingly complex unit cell description by mod-
elling the yarn geometry in a plain-weave fabric during shear with sinusoidal curves,
the coefficients of which were determined from the tow width, spacing, and textile
thickness. The model was specifically aimed at predicting shear behaviour. Textile
thickness was taken to be constant, as was confirmed from experimental measure-
ments. Similarly, tow spacing was assumed to remain constant. The variation of
tow width with shear was measured experimentally and an equation constructed to
fit the measurements. His model produced good correlation with measured data,
however, much of the data, such as the variation of tow width with shear angle,
required experimental input. McBride’s model made good progress in modelling a
more realistic unit cell geometry, however the nature of the geometric description
restricts his model to plain weave fabrics.

It should be noted that while most work agrees that the thickness of textiles re-
mains relatively constant, some does not. Kutz measured the variation of thickness of
textiles under a blank-holder before and after partial deformation over a hemispher-
ical tool [29]. This was made in response to findings that the use of a single-piece

blank-holder caused the textile to pull more at some points than at others. Kutz
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observed that as the fabric sheared in some places but not others, it must thicken at
those and experience a greater blank-holder resistance than elsewehere. His findings
showed that both non-crimp fabrics and woven textiles showed a thickness increase,
of up to 9% in some cases.

One factor in the uncertainty over the variation of fabric thickness with shear is
the different approaches to measuring it. While Kutz measured the displacement of
a blank-holder during one-sided forming around a hemisphere, McBride [45] used a
light block resting on the sheared textile, and Souter [60] painted a sheared textile
in resin, and cast cross-sections in potting resin for measurements. The latter two
tests did however agree that woven textiles maintain relatively constant thicknesses
until they approach the locking angle. Kutz has suggested that thickness does not
become a factor until the tows approach their compaction limits. As his blank-holder
approach measures the thickness of the thickest (by inference, the most sheared)
sections of the textiles around the circumference, it is thus more likely to record
thickness variation at higher angles. Moreover, it does not specify the angle at
which the thickness is measured. However, one aspect of his results that may be of
interest is the variation of thicknesses at different blank-holder pressures.

This highlights an important difference of boundary conditions between the ex-
perimental shear tests and the shear deformation in a forming operation. In press or
vacuum forming, the textile must deform under pressure on its faces, a factor that

cannot be replicated by any of the shear test methods.
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Generic weave shear models

Souter [60] expanded the work of McBride by extending the geometric description
to weave patterns other than the plain-weave, and by similarly using the geomet-
ric description for these weave patterns as a basis for a mechanical shearing model.
Souter’s approach modelled the unit cell tow paths using a lenticular basis, in which
crimp is defined by sections of circular arcs and straight segments. This allowed
him to geometrically model unit cells other than plain-weave. He also took a much
more sophisticated approach to defining tow cross-section, allowing it to vary along
the tow length depending on its contact with other tows and the crimp structure.
He maintained constant tow height and crimp angle, after taking experimental mea-
surements that confirmed previous findings that textiles maintain relatively constant
thickness up to the locking angle. Souter maintained constant tow width up to the
point at which adjacent tows came into contact, after which he varied tow width with
the cosine of the shear angle (see Equation 2.13) This corresponded very well to ex-
perimental measurements taken of a plain weave glass reinforcement. By balancing
the flexural stiffness of the tow fibres with the compaction stresses, Souter found a
way to predict the initial textile thickness. This did not correspond to experimental
measurements and was not reflected in his geometric models, but was used solely to
allow him to develop a value for the contact force at the crossover.

The description of tow path, cross-sectional shape, width and thickness, allowed
Souter to determine the effective radius of rotation for each crossover in the unit
cell, similar to Kawabata’s concept [27]. It also allowed Souter to calculate the
compaction of the tow at the crossover (see Section 2.2.2.2, below), from which he

could calculate the force applied over the parallelogram crossover area. The shear
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forces predicted corresponded well to measured values for a number of different weave
structures including plain weave, 4 harness satin weave, and 2:2 twill weave [60].
Souter’s shear model was specifically developed for woven textiles, and could
not model other structures such as 3D textiles or non-crimp fabrics. The lateral
compaction model was used to determine the crossover contact force for frictional
resistance, rather than being modelled as a source of shear resistance in and of itself.
However, the model corresponded well with experimental results, suggesting that
compaction as a direct shear effect is less significant in woven fabrics. Moreover, the
effects of tow tension on crossover friction and compaction was only briefly alluded
to. The effects of the stitch on non-crimp fabrics were discussed but not modelled.
It was suggested that lateral tow compaction may have more influence on shear
behaviour for non-crimp fabrics than for woven fabrics, but this was not explored.
A similar model to Souter’s was developed by Lomov and Verpoest [37] that
took account of a more comprehensive list of mechanical effects. This included
tow tension, friction, bending (and unbending) vertical and lateral compression,
torsion, and vertical displacement. Lomov’s model exhibited good agreement with
experimental data for woven fabrics, although it required extensive measurements
of tow mechanical properties. Creech and Pickett [11] presented FE simulations of
non-crimp fabrics based on meso-mechanical work presented by Long et al. [43], but
using solid orthotropic elements to model the tows and beam elements with zero
compressive stiffness to model the stitches. The material properties were tuned to
provide good agreement with experimental data for picture frame and bias extension

tests.
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2.2.2.2 Compaction modelling

A vital part of modelling the shear behaviour of fabrics is the tow compaction be-
haviour. Tow compaction behaviour is affected by many factors, including the con-
stituent fibre materials, crimp and twist. As in shear modelling, there are three

common approaches to predicting tow compaction:

e Empirical models - these attempt to fit empirical equations to the compaction

curves [56];

e Mechanical models - these attempt to model the behaviour of the constituent
fibres, using mechanical and / or statistical equations to relate the fibre defor-

mations to the tow deformations;

e FE models - as above, but fibre deformations and interactions are modelled

using a finite element approach [58].

The compaction models covered herein mostly treat the fibres within the tows as
beams which are forced to deform in compaction through their contact with other
fibres [67].

Early work attempted to model a random fibre assembly for the compressibility

of wool as fibres in Kirchoff bending. Van Wyk [67] proposed

KEfm3 1 1

Where K was experimentally determined, F; is the Young’s modulus of the fibres,
m is the mass of fibres in the fibre bundle, p; is the density of the fibre bundle, V} is

the fibre volume fraction, and Vj is the minimum volume fraction of the fibre bundle.
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Further work treated the fibre assembly as a set of fibre sections, the section
length being determined by the probability of contact with other fibres. Komori
et al. [28] concentrated on the distribution of fibre contact points, by modelling
the fibres as straight cylinder segments of diameter d; and length A, with distance
between points of contact b. A distribution function, Q(6,¢), was developed to
predict the orientation of a segment. Fibre contact was treated statistically, so that
a volume was defined such that there was 100% probability of contact between two
fibres of orientation (6, ¢) and (€', ¢') with a randomly distributed centre of mass.

The probability of the fibres contacting in a volume V', then, is given as

v 2d;A?sin
p = ——= —

> > (2.16)

where Yy is the angle between the two fibres. This allowed mean b values to be derived

%4

b= Sarth (2.17)
where

I - /O d /0 67 (0, )0, 6) sin 0 (2.18)
and

(0, 6) = /0 4o’ /0 40, &) sinx (0, 6,0/, &) sin(6) (2.19)

Lee and Lee [36] used this to calculate the initial compressive moduli and Pois-
son’s ratios for the fibre assembly. To do this the fibre geometry was analysed in
each of the principal directions, to develop an expression for the projected mean free

fibre lengths in each direction. The force transmitted through each contact point was
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calculated along the direction of each of the principal axes. No allowance was made
for the formation of new contact points (hence the initial moduli etc.). This allowed
the fibre segments to be treated similarly to Van Wyk, as simple beams bending
with free ends. The deformation ¢;; of each fibre segment allowed the deformation
of the fibre bundle to be defined as

. 20;b3
Sip = £
YN

M (455 # k,—;j = k) (2.20)

where M;; accounts for the stresses and deformations projected along each of the
principal axes.
Pan and Carnaby [48, 49] modified the work using beams with constrained ends,

ensuring continuity of curvature along fibre segments. Thus,

;b

O = F—4°
T T6E,

M, (2.21)

They then extended the work to model the compressive hysteresis of fibre bundles [9],
by considering the inter-fibre slip during compression. The friction between fibres
due to relative motion during compression allowed a critical angle of the contact
force, relative to the normal to the contact points, above which slipping occurs.
The use of a fibre distribution function {2 means that in theory any fibre assem-
bly could be modelled. However, such a model for aligned fibres has not yet been
developed. Instead, Cai and Gutowski [8] developed a model specifically aimed at
(lubricated) aligned fibre assemblies. In many ways it is cruder and makes more
assumptions than other models, but work by McBride [45] adapted the technique
to dry fibre bundles and fit the resulting curve extremely well to experimental data.
The ease of implementation, the good fit to experimental data, and the availability

of fit parameters make this a useful model for the purposes of this thesis.
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Rather than straight beams, the fibres were modelled as simple arches, illustrated

in Figure 2.3, with a single contact point at the apex of the arch. Thus the length

L

y
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Figure 2.3: Cai and Gutowski modelled a fibre as an arch, under a centre point load,
with applied moments and axial end loads.

to height ratio of the arches determined the number of contact points in the bundle.

The deflection of the arch in the x and y directions were evaluated using beam theory:

a’b N b B ab?
Az | | \8E/I; " EfAr Am2E I By (2.22)
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The fibre was assumed to occupy a cell volume a® x b (Figure 2.4), with the
lengthways stress acting on the end faces and the so-called bulk stress acting on the
other faces. The forces P, and P, could thus be related to the axial stress along the
fibre length and the compressive stress lateral to the fibre assembly respectively, and
similarly for the strains. Given then the volume fraction V}, the minimum volume
fraction (at zero bulk stress) Vj, the maximum volume fraction V,, and the ratio of

a to b, B, the lateral, or bulk, strain, was defined as

Lf
=1—3 2.23
€y VO ( )
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Figure 2.4: Conversion of fibre stresses to bulk tow stresses require a cell to be
constructed around the fibre.

and a compliance matrix could be determined

€ By By o
= (2.24)
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McBride developed this model into a sixth order compliance matrix, and tested

it against many different load cases, allowing him to derive accurate values for the
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fit parameters. One load case for the smaller compliance matrix of interest to shear

is that of zero axial strain

ey By

Sl L 2.29
ByBy — B (2.29)
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2.2.3 Discussion

The ideas for shear mechanisms that were initially formulated by Skelton and others
have developed to become fairly accurate shear prediction tools for woven textiles.
The effects encountered in non-crimp fabrics, however, have not yet been modelled.
As a consequence, only the effects of crossover shear have been modelled so far,
despite indications that other factors may become more important in different textile
structures and towards the extremes of woven shear. The next steps to a more
complete shear resistance model, therefore, are proposed to be to identify other
shear resistance mechanisms, and to allow them to be added to shear models by

taking an energy based approach.

2.3 Forming modelling for resin transfer moulding (RTM)

The formed state of continuous fibre textile reinforcement is important in many

different ways:

e [t allows an accurate blank shape to be predicted. This helps in automated

cutting systems and textile scrap minimisation.

e [t may predict wrinkles, allowing challenging geometric features to be assessed

early on in the design process, and altered if necessary.
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e [t may allow the lay-up or forming process to be optimised, reducing or elimi-

nating defects such as wrinkles.

e It facilitates accurate resin flow modelling [39]. Textiles can allow resin to pref-
erentially flow in some directions. Also, the variation in fibre volume fraction

around the part caused by the varied deformation creates potential dry spots.

e It allows for more accurate mechanical analysis of the formed part [12]. The
mechanical response of composites is substantially weaker normal to the fibre
direction. Thus, the weakest tensile direction at any point is along the greatest
angle from any fibres (45° in the case of two, orthogonal fibre directions). Thus,
the prediction of the direction of the fibres along the formed parts forms an

important factor in the design performance of that part.

Forming simulations have generally taken two approaches. The first, termed kine-
matic analysis, is typically fast and requires minimal user input for results. However,
it does not make allowances for the shear characteristics of the textiles being used,
or for manufacturing conditions. This range of characteristics make it very useful
for early design stages, when fast solutions allow initial design decisions to be made.
Such approaches can provide very accurate solutions for hand lay-up of fabric or
prepreg.

The second approach is a full Finite Element solution of the proposed process.
These model the entire physical sequence of events during the draping of the part
over the tool, modelling the textile according to its characteristics and allowing for
effects such as bridging (where the textile runs clear of the tool between two high

points) and process effects such as those created by blank holders. However, these
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tools require a large amount of computational power, not to mention user training
and experience. They are very dependant on accurate process description, which can
require extensive data on material characteristics. These factors make it suitable for
final design validation steps, where most design decisions have been taken, few further
design iterations are required, and accurate results become more vital.

Note that for simple geometries with shear-symmetric textiles kinematic and FE

analyses produce the same geometric results.

2.3.1 Empirical modelling approaches

The first attempts to model textile forming took an empirical approach over surfaces
of revolution [44]. They suggested that threads be treated as straight and inextensi-
ble, pivoting around crossover points with no slippage. Further, each crossover is in
contact with the geometry, whose smallest radius of curvature is larger than the yarn
spacing. These assumptions have proved to be the basis for all subsequent so-called
“Pin-Jointed Net” approaches [53, 55, 41]. It should be pointed out that whilst they
claim to be more physically appropriate, many mechanical finite element approaches
also make some of these assumptions.

Robertson et al. [55] applied this concept to a hemisphere. Due to symmetry,
he modelled only one quadrant, with the warp and weft tows constrained to the
edge of the quadrant. Solving the intersection of the geometry and two spheres with
radius equal to the fibre spacing, he found that all other nodes (crossovers) on the
PJN could be calculated. Comparisons with experimental results for the draping
of a woven cloth on a hemisphere were favourable. Van West [66, 65] extended

this approach to any geometry that can be represented as a collection of bicubic



43

patches. At this point the limitations of the approach became apparent. These are
related to the assumptions stated above, regarding tow slippage, surface radii, etc.
Another problem presented itself, the placement of the initial “generator paths”.
The placement of these had been obvious in the hemisphere problem, but was now
less so for generic geometries.

Many people have proposed largely similar solutions for kinematic drape algo-
rithms over generic geometries, including several commercial offerings. One other
example was Long et al. [41], who modelled the drape over a surface comprised of

flat elements, which provided a particularly fast calculation procedure.

2.3.2 Modified kinematic modelling approaches

With generic geometries, two geometric path placement options emerged: Projection,
and geodesics. In projection, the paths were placed so that when viewed from directly
above they followed a straight line at 90° to each other. In geodesics, the shortest
distance between two points on a surface was calculated. This ensured that at the
generator paths the tensile forces acted directly along the tow - this was shown to
improve accuracy in many cases [63, 64].

Other path placement options were explored, that tried to be more sensitive to
the process occurring. Bergsma [1] offered an iterative scheme whereby the position
of generator paths were set to minimise the change in surface area from flat to
draped sheet. Bergsma concluded that whilst projecting the paths provided a quick
and accurate prediction for axi-symmetric parts, for others the shear minimisation
approach should be utilised.

Ye and Daghyani [70], rather than minimising shear, minimised shear energy.
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They took Kawabata’s [27] expression for torque required to rotate a crossover,
and integrated it with respect to shear angle to obtain a shear energy (similar to
Equation 4.14). Although Ye and Deghyani’s torque model did not reflect any real
reinforcement, their approach suggested a method by which real textiles could be
modelled within the kinematic frame.

Souter [60] took this idea further, by measuring actual shear torques for tex-
tiles and using these as the basis for an energy minimisation algorithm based on
Long’s [41] kinematic code. This allowed Souter to model asymmetric drape effects
encountered when using certain non-crimp fabrics [42].

Lai and Young [30] tried to modify the kinematic procedure to account for inter-
yarn slip. The process first predicted a kinematic drape pattern. The in-plane
bending at each crossover was then calculated. At nodes of high bending angle, the
in-plane radius of curvature was calculated so that the bending angle was smoothed
out over adjacent nodes. This minimised large changes in shear angle, which corre-
sponds to Wang et al.’s finding that significant slip was found where there was a large
change in shear angle [68]. An iterative process is then used to determine the fibre
spacings at which the in-plane bending angles match the smoothed out set. Results
corresponded well to experiments using very loose plain weaves, in which inter-yarn

slip could be reliably measured. Comparisons to tighter weaves were not made.

2.3.3 Finite element modelling approaches

As discussed before, FE simulations were primarily introduced to model effects ne-
glected in the kinematic approach. These included the interactions between the tools

and the material, rate effects, and non shear textile deformations such as slip and
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buckling. Because they could model this, these tools proved particularly useful for
prepreg modelling, in which rate, temperature, and pressure are all important. As
this thesis concentrates on dry fabric forming, this work will not be covered in detail.

In modelling the stresses experienced by the textile during the forming process,
accurate deformation mechanics must be included into the elements. Several ap-
proaches to replicate the behaviour of textiles in contrast to isotropic materials have
been proposed.

Bergsma [1] modelled the textile as a collection of one-dimensional beams that
deform by shear, stretching and buckling only. His approach allowed wrinkling to be
predicted, although not yarn slip. Results against a single geometry corresponded
well to experimental results.

Boisse et al. [4] tested a textile on a biaxial tensile testing machine, and used
the data in a fabric model for a non-linear finite element analysis. The textile was
allowed to shear but shear properties were not modelled as they were several factors
lower than the tensile moduli. This predicted fibre patterns adequately, but in order
to accurately predict fibre buckling (wrinkling), it was found that shear data became
important [6].

Blanlot [2] presented a finite element formulation based on constitutive equations
formulated to an objective rigid-body rotation frame. This allowed the textile to
be modelled by, after each incremental deformation step, updating the principal
directions of strain to correspond to the directions of warp and weft yarns.

Bergsma and Boisse, together with many since such as Yu et al. [71], have consis-
tently found that increasing blank-holder force improves the draping of the textiles.

Yu et al. aimed to allow for the assymetric shear behaviour of non-crimp fabrics and
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also the effects of blank-holder on forming. He adapted a tensile model originally
developed for woven fabrics, and added a shear stiffness constitutive equation devel-
oped from experimental shear data to successfully demonstrate the shear asymmetry
observed with this material on a hemisphere, and the reduction of that effect with
increased blank-holder forces.

Increased complexity in the FE model should be treated with care, however.
DeLuca et al. [14] modelled specialised viscous-friction and contact constraints as
separate layers. The increase in the degrees of freedom associated with the number
of layers modelled led to huge FE overheads. Lamers et al. [31] simplified this
approach and modelled the various effects in a single element layer, incleding friction

between layers.

2.3.4 Forming implications from drape models

Whilst all drape models have aimed to predict the draped pattern in advance, the
variety of modelling approaches has highlighted the vast number of possible drape
patterns available on any given geometry. Considering the kinematic approaches,
the result depends on the point of initial drape, together with the path plotted
for each generator tow. The shear energy minimisation path placement approaches
recognise that some shear distributions are less energetically favourable than others,
and favours the result requiring the least shear deformation energy. This seems
a reasonable strategy when modelling dry reinforcements that are automatically
draped, or are draped over simple geometries.

The shear angle minimisation approach, in contrast, aims to determine the drape

pattern least likely to wrinkle, regardless of the shear energy that might be required
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to achieve it. Hancock and Potter [16] first suggested a method by which forming
models could be used to inform processing to optimise the formed pattern according
to the shear angle minimisation approach for the hand lay-up of tacky pre-pregs.
The generic application of this principle would allow a pattern to be draped without
wrinkles even when the draping process to achieve it is not intuitive or shear energy
minimised.

The different deformation operations required to drape the material over the ge-
ometries were discussed, and categorised into four types: No manipulation, Warp
manipulation, Weft manipulation, and Bias manipulation. These four categories
correspond to areas where there is very little warp or weft in-plane curvature, sub-
stantially greater Weft than Warp in-plane curvature, or proportional amounts of
both Warp and Weft curvature respectively. An analysis of the geometry identi-
fied regions for which each of these manipulations were recommended to achieve the
required draped pattern. The in-plane curvature vectors were also used to create
a manipulation vector that allowed the different manipulation regions to be linked
sequentially to form an order of drape.

This work allowed a geometry to be moulded that had previously proved impos-
sible to mould both by diaphragm forming trials and hand lay-up. The basis of this
work is to show that modified kinematic models can be used to intelligently inform
forming methods to achieve acceptable results over challenging geometries. This
work, and subsequent work creating automated tools to generate the hand lay-up
instructions [17], has however concentrated on the specific (and challenging) case of
tacky pre-preg hand lay-up, which cannot move relative to the tool once it has been

applied. Similar work needs to follow on with suggestions on the control of auto-
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mated forming techniques to minimise wrinkling, and also to address the different

issues encountered with dry textiles.

2.3.5 Discussion

Kinematic, modified kinematic and mechanical approaches to drape simulations have
been proposed. Whilst Kinematic and mechanical approaches occupy very different
complementary niches in the design cycle, both leave much to be done when com-
pared to, for example, sheet metal forming models. Important mechanisms such as
shear and tensile stress responses have been modelled, and also blank-holder effects
and wrinkling in FE models. However, process and textile variability have yet to be
treated.

Modified kinematic models such as Souter’s energy minimising kinematic ap-
proach and Lai and Young’s fibre slip models are important in increasing under-
standing early in the design process. It would be advantageous to also have an
approach to modelling wrinkling or blank-holder effects in an equally simple and less

computationally intensive manner.



Chapter 3

Experimental Shear Characterisation of Fabric

Reinforcements

3.1 Introduction

Simulation of forming processes offers the potential to substantially reduce costs by
reducing the number of prototype iterations, performance tests and process revisions.
In order to accurately predict the response of the material to the forming process its
forming characteristics must be taken into account.

Experimental characterisation of technical fabrics for engineering composites has
two immediate purposes that are within the context of this thesis: To generate ma-
terial data for forming simulations, and for validation of material behaviour models.
Material behaviour models, in turn, are developed with a view to automatically gen-
erate material data for forming simulations. For this reason trellis shear deformation,
which is the dominant deformation mechanism in the textile preforming process, is
the focus both of the deformation models (which require validation) and material
input data.

Two such characterisation experiments, specifically designed for measurements
of large in-plane shear and wrinkling, include the picture frame (PF - see Section
2.2.1.2) and bias extension (BE - see Section 2.2.1.3) test methods. The original

concept behind these and other similar in-plane shear tests can be traced back to

49
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research in textile drape and fabric forming [13, 61, 62].

Table 3.1 outlines the materials tested in the line of this work. Results are pre-
sented later in this chapter, in Section 3.3.3 comparing the picture frame test at
different pre-tension, in Section 3.4.5 on the comparison of different bias extension
normalisation techniques, and in Section 3.5 on the comparison of the two test tech-

niques. Further results can be found in Appendix B, with additional test data in

Appendix C.
Table 3.1: Materials tested for shear response
Material name Material Description
Bentley mat1 E-glass +30° non-crimp fabric, double stitched
with a (+1,0,-1,0) stitching pattern.
Bentley mat2 E-glass 3D E-glass woven fabric from 3Tex
EBXhd-936 E-glass 936gm 2, £45° non-crimp fabric from

Vetrotex, with a tricot (+1,-1) stitching
pattern, 6-gauge, stitch length 2mm
FGE 106hd E-glass 950gm 2, £45° non-crimp fabric from For-
max, with a tricot (+1,-1) stitching pat-
tern, 6-gauge, stitch length 2.5mm

FGE 106hd:1.65 | E-glass 950gm 2, +45° non-crimp fabric from

(special) Formax, with a tricot (41,-1) stitching
pattern, stitch length 1.65mm

FGE 106hd:5 E-glass 950gm 2, +45° non-crimp fabric from

(special) Formax, with a tricot (41,-1) stitching
pattern, stitch length S5mm

Twintex'™ 1 Co-mingled 1816gm—2 Twintex'™ unbalanced 2/2

E-glass/PP twill weave fabric from Vetrotex
Twintex™ 3 Co-mingled 743gm~2 Twintex ™ balanced plain weave

E-glass/PP fabric from Vetrotex
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3.2 Comparison of experiments

In order to be of generic use, material characteristics should be presented in such
a way that they only reflect the nature of the material. They should therefore be
independent of the test method, rate, sample dimensions, etc. Such data can be gen-
erated by the normalisation of an individual test’s raw output. The materials treated
in this thesis are non-viscous and therefore mostly independent of shear rate [46]. As
a result, it is unnecessary to normalise with respect to rate. Normalisation of data
depends on sample shape, size, shear distribution, and boundary conditions. Shear
distribution and boundary conditions are primarily affected by the test method,
whereas size and shape are factors that also affect same-method tests.

Picture frame experiments are simpler to normalise as compared to bias extension
as the entire sample undergoes uniform shear. Normalisation of bias extension test
data is complicated by the non-uniform strain profile occurring in the sample. One
method of avoiding this complication is to measure the strain field in a gauge section
of the deforming sample. This requires that tests are conducted on samples with a
length / width ratio greater than two. However, tests on such specimens can increase
difficulties associated with handling the fabric, particularly when dealing with loose
fabrics that tend to disintegrate easily. Large sample length / width ratios also mean
that edge effects [62] and intraply slip [20, 51] may become more significant and can
influence the deformation kinematics within a sample. Finally, use of a length /
width ratio of two can decrease the amount of material required for testing. For
these reasons, an alternative BE test normalisation procedure has been developed.

The main advantage of this method is that results from BE tests using samples with
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an initial length / width ratio of just two (or greater) can be treated. An analogous
normalisation method on shear rate dependent, pre-impregnated viscous continuous
fibre reinforced composite (CFRC) has been presented previously [18].

In the following sections, different normalisation procedures for each of picture
frame and bias extension tests are developed and discussed. Normalised results using
different methods are compared for bias extension, and finally normalised results from

different tests are also compared.

3.3 Picture frame experiments

3.3.1 Experimental method

The picture frame apparatus used for this thesis is illustrated in Figure 3.1, and is

typical for this test.

Crosshead
mounting

Clamping

Bearings

=

Figure 3.1: The picture frame shear rig
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The apparatus is designed to impose pure trellis shear deformation onto the
sample. In order to do this, the inside edge of each clamping plate must be aligned
with the centre of the bearings at either end. Also the distance between bearing
centres must be equal for opposite clamping plates. For the purposes herein it will be
assumed that this distance, called the picture frame side length (L,; in Figure 3.1),
is equal on all sides, so that when the faces are orthogonal the frame is square.
Finally, the frame sides must be aligned with the textile fibre directions. The sample
is fixed into the picture frame so that it cannot move relative to the frame. The
result of aligning the clamps with the fibre directions means that, for a £30° textile
for example, the angle between the frame sides (2¢,f, or 2¢) before deformation
(subscript 0 denotes initial, 2¢) must be 60°. Figure 3.2 shows a close up of the

picture frame with a textile clamped in and sheared.

Figure 3.2: Close up of picture frame with a textile clamped in and sheared.
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In the example presented herein, the side length of the picture frame was 145mm,
with as little of the corners cut out as possible, so that the central area had a side
length of 115mm. To ensure consistency the size of the samples was determined in
terms of the crossovers for woven textiles. Thus, a sample with 4 tows per cm would
be measured to have a central area 46 tows wide. This ensures that the cutting
follows the direction of the tows and any handling does not affect the alignment.
Initially, the EBXhd-936 non-crimp fabric was cut out using a stamp cutting die.
However, this proved hard to align with the fibre directions, as discussed later in
Section 3.3.3. Subsequently for FGE 106hd the dimensions were determined by
following the stitches with reference to the manufacturing data. Thus, to mark a
diagonal line on FGE 106hd, which has 6 stitches per inch in the weft direction and
a stitch length of 2.5mm, the line would follow 6 stitch spacings in the weft direction
for every 10 stitch lengths in the warp, which would constitute the 45° fibre direction
before handling.

The clamps are composed of ridged plates that are bolted to the picture frame
sides through three holes. Rubber strips on the inside of the clamping plates and
frame sides ensure that a good grip on the fabric is maintained (see Figure 3.3).
Tapered-ended bolts are used to minimise damage to the fibres when they were
inserted through the textile - the converse problem this causes is the potential re-
alignment of fibre angles as they are pushed around the bolt shanks.

The test is very sensitive to misalignment of the fibres within the picture frame.
A slight misalignment causes progressive compression or extension to be applied to
the fibres, causing premature wrinkling in the former case, and very high fibre tension

(due to their high modulus) in the latter. The fibres’ length-ways compressive, shear
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and extensive moduli differ by orders of magnitude, resulting in a large scatter where
exact alignment of the fibres cannot be assured. In order to minimise misalignment,

a pre-tensioning rig can be used, illustrated in Figure 3.3. This applies tension to the

Pre-tension Picture frame clamping plate Pre-tension
clamping plate \ clamping plate

Rubber /

sheet Dry fabric  Rubber sheet  Applied torque

Figure 3.3: Picture frame pre-tensioning device

fibres before they are clamped into the picture frame, aligning them with each other
and therefore making it easier to align them with the rig. The torque is applied
by hanging weights from an arm attached to the Pre-tensioning plate. The arm
position was adjusted to remain horizontal to ease torque calculations. Pre-tensions
were applied at four levels: ON, 62N, 375N, and 1300N.

Note that textile misalignment in the pre-tensioner could result in uneven tension
in the tows, as well as limited improvement in alignment in the picture frame. It
is also important to remember that the tension applied before deformation does not
necessarily remain constant during shear.

The cross-head is extended in a line away from the diagonally opposite corner
of the rig, and the force exerted in that direction, F; (see Figure 3.4), is recorded

against displacement, d;.
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The shear force is calculated using

By

F, = 3.1
2 cos ¢ (3.1)

This is best plotted against shear angle,
0 =2(¢o — ¢) (3-2)

Given the geometry of the picture frame, and presuming a square frame, the

cross-head displacement can be related to the picture frame/ep:
dy = 2L cos ¢ — 2L cos ¢g (3.3)

which, together with Equation 3.2, gives displacement in terms of shear angle,

d; = 2L, (cos (qbo — g) — CoS ¢0> (3.4)

or the shear angle in terms of displacement:

0=2 (gbo — arccos (cos bo + %)) (3.5)
1

Using crosshead displacement in tensile tests often results in inaccurate results oc-
curring due to small amount of slip of the specimen in the jaws. This is not an issue
in the picture frame test as the frame is fully constrained within the machine, and
cannot slip. Issues of textile slipping within the frame are considered later in the

chapter.

3.3.2 Normalisation of results

A simple argument is used to justify normalisation of picture frame test results by the
side length of the picture frame rig. A similar argument was presented by Harrison

et al. [18, 19]. For clarity and in later sections, the derivation is repeated here.
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Figure 3.4: Two picture frame experiments with sample sizes L; and Ls.

Figure 3.4 shows two idealised picture frame experiments of the same material
with different sample side lengths L; and Ls. The power required to extend the

picture frame is:

P; = Fyd; (3.6)

where Fj is the measured extensive force for test i (i = 1 or 2 for the two tests in
Figure 3.4), and d; is the cross-head displacement rate.

Differentiating Equation 3.4 gives

d; = 0sin <¢0 — g) Li (3.7)
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This can be re-written as

where as long as the extension rate in tests 1 and 2 is such that their angular

shear rate 6 is the same, then k; is the same in both tests,

k?l = éSiIl (¢0 - g) (39)

Substituting Equation 3.8 into Equation 3.6 gives
P, = ki FiL; (3.10)

The material can be assumed to be relatively homogeneous (with respect to shape
and size of sample, rather than directionality of properties) if the sample size is at
least an order of magnitude larger than the material’s unit cell. Taking that assump-
tion, then, the power required to deform a given material at a given deformation and
deformation rate increases linearly with its initial volume. However, the thickness
of the material (regardless of its compressibility) at that same deformation state
can be assumed to be independent of the initial volume. Given these assumptions,
the power required to extend the picture frame at that deformation state increases

linearly with the initial sample area, which for a square sample is to say:

Poc Vg ox Ag ox L? (3.11)

where V) and Ay are the initial volume and area of material respectively. The

proportionality constant for this material, v, is the power normalised by initial area,

P__ R
b=

== 3.12
AO Lz2 sin 2¢0 ( )
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and is a function of # and 6.

Equation 3.12 can be substituted into Equation 3.10 to give
WYL;sin2¢g = k1 F; (3.13)

Defining a new constant ks

i sin <¢0 — g)
_— .
sin2¢y  sin2¢ 0 (3.14)

allows Equation 3.13 to be rearranged to give

(LR

e 3.15

m L (3.15)
so that

oy B

Y _22 3.16

L1 k’g L2 ( )

where 1 /kq is a constant for the a given material at a given 6 and 6. Given
that compressible material shear response tends to be rate independent, any two
picture frame tests for these materials can be compared according to this principle,

comparing F' at any angle 6.

3.3.3 Results

Table 3.2 lists the fabrics tested with the picture frame. In the case of non-crimp
fabrics, the gauge refers to the spacing of the stitch, being the number of stitching

threads per inch. A (+1, -1) tricot stitch, following a terminology proposed by
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Souter [60], describes a stitch where the overlaps (see Section 4.3.1.1, and Figure 4.2),
extend diagonally one stitch spacing per stitch length, and then back.

Non-crimp fabrics exhibit different shear response depending on the direction of
shear. The reasons for this are explored in Chapter 4. It becomes necessary to define
directions of shear. Positive shear is defined as shear such that the fabric is extended
in the stitch direction, Negative shear being such that the fabric is extended normal

to the stitch direction.

Table 3.2: Materials tested for shear response according to the picture frame test

method
Material name Material Description

EBXhd-936 E-glass 936gm 2, 445° non-crimp fabric from
Vetrotex, with a tricot (+1,-1) stitching
pattern, 6-gauge, stitch length 2mm
FGE 106hd E-glass 950gm 2, £45° non-crimp fabric from For-
max, with a tricot (+1,-1) stitching pat-
tern, 6-gauge, stitch length 2.5mm

Twintex™ 1 Co-mingled 1816gm~2 Twintex™ unbalanced 2/2
E-glass/PP twill weave fabric from Vetrotex
Twintex™ 3 Co-mingled 743gm~2 Twintex ™ balanced plain weave

E-glass/PP fabric from Vetrotex

The woven twintex fabrics in Figures 3.6 to 3.9 show a significant increase in
low angle shear force with pre-tension. This tendency has been indicated in past
work [70], although the poor repeatability of the test has made it difficult for others
to concur [60]. The possible sources for this increase include fibre bending at the
clamps [22], and increased inter-tow friction [60]. The latter source is supported by
the non-decisive difference that pre-tension seems to make in an non-crimp fabric
tested at different pre-tensions, as can be seen in Figures 3.10 and 3.11 , in which

high pre-tension seems to increase conformability for positive shear (Conformability
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is the ease with which a textile will conform to a shape with double curvature).
Section 4.3.2.2 will demonstrate that inter-tow friction is not significant in the shear
response of non-crimp fabrics, unlike in woven fabrics.

It is interesting to note the sudden spikes in the curves such as can be seen in the
highest pre-tension curve in Figure 3.11. These correspond to the breaking of the
stitching, a phenomenon that is observable during the test both visually and audibly.
In Chapter 4 the stitching is modelled until breaking point, however beyond that it
becomes difficult to predict how the material will behave. The curves show that
the tension in the stitching is not suddenly and catastrophically released, but that
friction retains the stitching in the fabric. As the fabric does not disintegrate on stitch
failure, and the stitch has no role in the mechanical behaviour of the composite, this
demonstrates that high shear leading to stitch failure is unlikely to be detrimental
to the component performance.

The results, particularly for the non-crimp fabrics, show a high degree of vari-
ability, this is one of the prime weaknesses of the picture frame test method. This is
particularly demonstrated in Figures 3.12 and 3.13 . Non-crimp fabrics in particular
are very difficult to align in a picture frame rig. This is because the tow directions
are not immediately apparent in many non-crimp fabrics. Figure 3.5 illustrates this
problem. The dashed line marks the apparent tow direction on the textile. To deter-
mine the actual tow direction, lines have been drawn across the textile, and then a
small bundle of fibres have been pulled. The points where the lines have shifted have
shown the actual fibre direction, which was marked in as a dot-dashed line. This
illusory tow direction is created by the stitching, which pierces the tows and creates

channels where the fibres have been re-routed. These channels appear to form lines
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Figure 3.5: Marked sample of FGE 106hd illustrating the difficulties in ascertaining
tow direction in a non-crimp fabric.

that mark the tow edges. However, their direction is determined by the stitch length
and spacing, which in this case is 2.5mm and 4.23mm respectively. As the tows are
laid at 45° to the stitch direction during manufacture, the channels from stitching
points closest to 45° with respect to each other appear to match up. In this case,
this is for channels that are two stitch lengths and one stitch width apart - however,
these create an apparent tow angle of almost 50°. Added to this, the tension in the
stitch tends to shear the textile so that it is often loaded into the frame a few degrees
sheared, and the challenge in properly aligning the sample becomes readily apparent.

The effects of fibre misalignment manifest differently depending on the direction
of misalignment. If the initial fibre angles are greater than ¢, then the fibres will
undergo compressive strain during shear and the sample will wrinkle prematurely.
Where this occurred the test results were discarded and the misaligned shear response
has not been presented. Alternatively, if the initial fibre angles are less than ¢, the

fibres are placed under increasing tension during the test. This can not be observed
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visually, so that it is likely that despite best attempts to align the fibres in the frame,
some misaligned samples have been included in the results. The high modulus of
the fibres means that they cannot strain significantly enough under tension, and so
they feed through the picture frame clamp. The greatest amount of extension per
degree of shear in misaligned fibres occurs at the start of the test, so that the effect of
misalignment on the measured response can be expected to be greatest at the start
of the test. This may explain the hump observed in many picture frame results such
as those in Figure 3.13. As misaligned samples with lower shear force have already
been discarded due to premature wrinkling, it seems likely that the best results are
close to the bottom of the distribution.

The remaining picture frame test results can be found in Section B.1
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Figure 3.6: Twintex™ 1 at ON pre-tension
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Figure 3.10: Comparison of EBXhd-936 tested at different pre-tensions, at negative
and positive shear. Each curve is selected from 3 or 4 visually acceptable repeats,
except for at 62N pre-tension, for which only one test was conducted.
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Figure 3.11: Comparison of EBXhd-936 tested at different pre-tension, at negative

shear.
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Figure 3.12: EBXhd-936 at 1300N pre-tension, sheared in the positive direction,
demonstrating the large amount of scatter observed in testing non-crimp fabrics in

the picture frame.
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Figure 3.13: FGE 106hd at 1300N pre-tension, sheared in the negative direction,

demonstrating the large amount of scatter observed in testing non-crimp fabrics in
the picture frame.
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3.4 Bias extension experiments

3.4.1 Experimental method

In the bias extension test the sample is cut so that its Y-axis is at an angle ¢( to the
fibre angles - this is the bias direction. The bias extension test is commonly proposed
due to its improved repeatability compared to the picture frame test. This is because
it is much more impervious to sample angle misalignment than the picture frame test.
However, care must be taken with lengthways alignment, as this can cause a fairly
large apparent discrepancy in the curves, so that it is prudent to ensure that the
fabric is unsheared and the actual sample aspect ratio is recorded. Nonetheless, in
contrast to the effects of angle misalignment in the picture frame test, which causes
the test to record a combination of fabric shear and fibre extension or buckling, a
lengthways misalignment in bias extension tests causes a simple shift in the shear

response curves, so that ways of allowing for misalignment can be proposed.

Uniaxial test
An idealised uniaxial bias extension test is shown in Figure 3.14.

In order to induce shear deformation in orthogonal fabrics the sample dimension
ratio A = hg/wy must be greater than 1. If the sample ratio is less than this constraint
then some fibres will be clamped in both top and bottom clamps, placing them under
tension. However, the ratio is normally constrained to A > 2. This ensures that a
larger proportion of the sample is at uniform shear, and also that the sample allows
a reasonable amount of extension before full shear is reached. The illustrations in
Figure 3.14 separate the samples into different shear regions marked A, B, and C,

assuming idealised kinematics (i.e. pin-jointed behaviour):
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Figure 3.14: Idealised bias extension tests at different sample ratios, A\ = hg/wy.
Each test is shown before extension (left) and after (right).
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A) shears similarly to material in picture frame test.
B) shears at a half the angle (and therefore half the rate) of material in A.
C) does not shear at all.

Considering that material in region A would reach locking angle first, it is desirable
for the bias extension response to be dominated by fabric deformation in region A.

The constraints A > 1 or A > 2 have no relevance for non-orthogonal fabrics,
for which sample dimension constraints also depend on the initial fibre angle ¢¢. To

allow for this a ¢y-dependant sample ratio parameter x must be defined
ho
K = Atan ¢y = — tan ¢y (3.17)
Wo

For the most common case where ¢y = 45°, kK = A, the sample aspect ratio. Thus,
for consistency, all bias extension sample ratios will be quoted in terms of x rather
than \.

The fabric ratio is subsequently constrained by x > 1 or k > 2 for a material
with initial fibre angle 0° < ¢y < 90°.

Given an ideal bias extension sample with initial fibre angle ¢y and x > 2, similar
to that in Figures 3.14 b and 3.14 ¢, geometric constraints allow the cross-head

displacement to be related to the shear angle:

dy = 2(k — 1)Ls <cos (% - g) — cos ¢0> (3.18)

or the shear angle in terms of displacement:

=2 (gbo — arccos (COS ¢o + HL)) (3.19)
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Note that for k = 2 these equations are equivalent to Equations 3.4 and 3.5 for
the picture frame. In practice, unlike the picture frame test, using the crosshead
displacement to calculate shear angle is likely to result in large errors, as the sample
is not so constrained and other deformation mechanisms such as slip in the grips,
tow slip, etc can dominate. It is therefore very important to directly measure the
actual shear deformation during the test.

Figure 3.15 shows the two pairs of clamps that were used in the bias extension
tests presented here. The first comprises of steel, serrated clamps which bolt together.
Samples of approximately 90mm width with 50mm high tabs were used in these
clamps - as for the picture frame, sample widths were determined by a fixed number
of crossovers for woven fabrics and a fixed number of stitch length or widths for non-
crimp fabrics. The tabs were inserted into the jaws with 10mm excess clear of the
edge, which subsequently fed into the jaws as they were closed, causing the clamped
fabric to crimp. It was found that using these clamps caused unnecessary difficulties
when the simpler pair were adequate for use in testing dry textiles.

The second pair of clamps used consisted of flat, rubber-lined faces which were
also bolted shut. This allowed easier clamping and release of the samples, as well as
bigger sample dimensions. Orthogonal materials tested in these jaws were approx-
imately 100mm wide, with 50mm tabs again. One material tested in these jaws,
however, is a +30° non-crimp fabric, for which sample dimensions must be treated
with care. A 90mm wide sample at x = 2 contains a central shear region A (Fig-
ure 3.14) with area a little over 4000mm?. From Equation 3.17, to test a +30°
sample at k = 2 with a similar central shear area would require sample dimensions

of 70mm width and 242mm height in one shear direction, and 120mm width and
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139mm height in the other shear direction. The clamps would not hold a width

greater than 120mm.

Figure 3.15: The two clamp types that were used in the bias extension tests pre-
sented. Left are the rubber-lined faces, right are the serrated faces.

Biaxial test
Note that no biazial tests are presented in this thesis. The method is presented here
for completeness only.

The gauge section in a bias extension test is defined as that part of the sample
which experiences uniform shear across the full width of the sample. For most fabrics
this is at £45° to the fibre directions. The test can be carried out as either a uniaxial
test, or a biaxial test.

A biaxial bias extension test, like that illustrated in Figure 3.16, must have a

gauge section, so that its uniaxial-equivalent sample ratio parameter

Wy

K= —>—
hg + 2hap

tan ¢y (3.20)

must be greater than two. In this case it is perhaps better to specify that the

test must have gauge dimensions wy, > 0 and hy, > 0. The tabs must then have
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Gauge
— Section

Figure 3.16: A generalised biaxial bias extension test with x = 3.

Koy > 1, with the X-axis tabs having height h, and the Y-axis tabs having width
wy. In order to allow the material to shear without fibre slip, the Y-axis extension
should be geometrically matched to the X-axis extension (or vice-versa) according to
pin-jointed behaviour constraints. This, together with the relative rarity of bi-axial
testing machines, makes the test very difficult to perform, and it very rarely is. No
biaxial test results are presented in this thesis.

Otherwise the biaxial test is very similar to the uniaxial, and the equations for
and d3 hold. The displacement d3 in the biaxial bias extension test can be applied
in either the X or the Y axes, bearing in mind that Equation 3.19 will always return

a positive angle in the direction of d3.
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3.4.2 Assumptions and limitations

Several assumptions affect the validity of the method for measuring the trellis shear
response of the material. The method is only valid while the material deforms accord-
ing to idealised deformation. Deviation from the idealised pin-jointed deformation is
dependant on many factors including the material, the sample size and ratio. As a
result it is important to monitor the test for conformance. In order to do this, a dig-
ital video was taken of the tests and analysed using purpose-written code (described
in Section 3.4.3). There are several ways in which the deformation can deviate from

the idealised case.

Misalignment

Despite being relatively impervious to angular misalignment, the response is fairly
sensitive to any lengthways misalignment caused while clamping the sample, which
alters the sample aspect ratio. The same effect can be caused by any pre-shearing
of the material, so that the zero-shear sample ratio is different to the perceived ratio
cut out. Similar slack in generic tensile tests is often allowed for by setting a pre-load
in the test machine, so that data is not recorded until the measured load exceeds the
set pre-load. However, the low loads caused by fabric shear, the low gradient of the
curves at lower extensions, and a high ambient load “noise” at the start of the test
renders this method unsuitable. Such factors, however, should only cause a shift in
the curves rather than a change in their shape, so that the visual analysis can also

be used to allow for them.
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Fibre slip

At a point where shear deformation forces become too high, fibre slip sets in. The
transition from pure shear to pure slip deformation regimes is gradual, so that a
cut-off point has to be set after which the test is deemed non-ideal. This may a
good indicator, however, of the fabric locking angle, so that the angle at which the
deformation leaves ideal kinematics tends to tally well with the angle at which the
same fabric wrinkles in drape tests.

Fibre slip can occur both along the length of the tow and transverse. Lengthways
slip occurs due to tension overcoming the friction holding the tow in the textile. This
is not so much of an issue in woven fabrics, in which the crimp develops increasing
frictional resistance with increasing tension. Transverse slip occurs where the tow
under tension experiences a sudden change in angle. This effect has been modelled
in forming by Lai and Young [30], but applies equally in the bias extension test.
In essence, it is the result of the need for a compaction force to counter the net
transverse force caused by a bent tow under tension. In fact, the first form of slip
observable in many bias extension tests is exactly of this form, occurring around the
tip of the “C” areas, causing them to elongate. This can be observed in both samples

presented in Figure 3.15.

Non-ideal shear distribution

Finally, the fabric can deform by pure shear, and yet the shear distribution vary
from the ideal distribution. This may however cause an overall increase in predicted
shear deformation energy. Some factors that might cause a non-ideal shear distri-

bution include pre-shear due to handling, and other deformation energy factors not
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allowed for in the idealised case, such as fibre bending. To demonstrate this effect a
spreadsheet bias extension simulation has been created that allows the nodes along
the centre line in the central deformation region A to have varying separation. Some
results are shown in Figure 3.18.

In the spreadsheet the relative positions of all the nodes along the centre line
of region A (which runs along the bias direction) are manually set, as well as those
along the clamp edges. The relative node positions along the clamped edges remain
fixed, from which it becomes apparent that all the nodes in the top and bottom
regions C remain fixed in relation to each other (hence no shear can occur there).
However, the relative x and y positions of consecutive nodes along the centre line
of region A can be varied within the constraints of pure trellis shear — that the
node spacing along the fibre directions remains a constant. Given these nodes, then,
all remaining node positions can be calculated by geometric constraints. The entire
sample remains on the x-y plane, so that, given two adjacent node positions py,,
and pg,+2 on Figure 3.17, along the clamp edge or the centre line of region A, the
solution for the next node, being constrained to a distance s,q4. from both pg, and
Don+2, simplifies from the generic case to

T 1 To,n + Tomn42 n fi Yon+2 — Yon

2
Yontr2 T Yon Ton — T0nt2

(3.21)

1,n+1

452
node —1

where f; =
' \/(?/o,n — Yon+2)? + (Ton — Tont2)?

Given the positions of the nodes along the clamp edges, which, with Equation 3.21

gives the nodes in region C, and also given the node positions along the centre line
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Po,n+2

Figure 3.17: Adjacent nodes on a 2D surface. The nodes on the left have been fixed,
and the node on the right is constrained to a distance of s,ode from those on the
left.

of region A, all other node positions can subsequently be calculated. The sum of the
y-axis separation of these centre nodes yields the total sample extension.

However, even this simple demonstration does not cover the possible scenarios
of pure-shear deviation from ideal deformation. There could for example be some
pre-shear (uniform or otherwise) in the sample before clamping, so that areas of

sheared material remain fixed in their sheared state in the regions C.

a) k=2. Nodes /

along the centre ! b) k=2.5. Nodes
of region A i along the centre
have been e of region A have
distributed with | had an x-axis
uneven spacing ' 7 perturbation
along the y- . added

axis. \

Figure 3.18: Two non-ideal pure shear bias extension test simulations, each before
(left) and after extension (right).
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3.4.3 Test monitoring

To measure the cut-off point for ideal kinematics, photographs can be taken peri-
odically through some tests. Prior to the test, the samples are marked along the
borders of the different shear regions A B and C, as well as a central cross - all lines
follow tow directions. The photographs are then analysed for central shear angle and
compared to expected shear angle. At a point at which measured shear angle differs
substantially from expected, the cut-off point for the shear test validity is set. The
maximum angle measured is indicative of the locking angle.

It was estimated that during the course of a test only about seven to ten pho-
tographs can be taken, which subsequently require laborious analysis to measure
the shear angle, measure the extension, and calculate the expected shear angle. To
improve on this process, for later tests a digital video was taken of the tests. C++
code was written to automatically analyse the shear angle and extension at each
frame, requiring only the original markings to be highlighted on the starting frame.
This gave a lot more information about the deformation field, as well as allowing
less errors when measuring extension and shear angle than when doing so by hand.
Finally, it also allows any initial pre-shearing of the sample to be corrected for.

Figure 3.19 illustrates the graphical user interface for the program, which was
based on the Microsoft® Foundation Classes (MFC). The figure shows the program
analysing a black twintex sample with white markings, with the lines it tracks dis-

played in green, and the start, end and crossovers of the lines displayed as red crosses.

The use of the software is shown in the flow diagram in Figure 3.20. In all
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Figure 3.19: The user interface for the bias extension automated video analysis
software

results presented in this thesis, the test was analysed in every frame (25 frames per
second). It is important to note from Figure 3.19 that the lines’ starting and end
points can be anywhere. In the top crossover being tracked, they start and end
above the crossover, so that the crossover is outside the limits of the lines. In the
centre crossover, however, the line start and end points have been indicated so that
the crossover point is approximately half way along the limits. It would be just as
feasible to have the crossover point on one of the lines but beyond the other. It is
also important to note that the shear angle measured will vary depending on which
side of the crossover the lines are taken. To understand this, consider again the top
crossover indicated in Figure 3.19. The crossover is tracked twice: Once from the
two lines above, and once from the two lines below. As the two lines above the

crossover are on the edge of region C (using the notation introduced in Figure 3.14),
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they should record no shear during the test. However, the two lines below the same
crossover are on the edge of region A, and thus should measure the full theoretical
shear angle. If the two lines to the left or the right of the crossover had been tracked,

they should measure a half of the full theoretical shear angle.

~ Load test.avi~

‘ Define start and end frames ‘

v

Chose frame analysis
frequency — (usually every

frame)
v

Select marking colour: Red,
Green, Blue, or “Generic”

no
New crossover? (Minimum 1 Analyse!

yes
Select start and end
points of 1st line of
crossover

Select start and end
points of 2nd line of
crossover

Figure 3.20: Flow diagram showing the user sequence for analysing a bias extension
video

The program tracks the crossovers indicated by the user according to the flow
diagram indicated in Figure 3.21. The figure explains how the line is found if it is
marked as being red, green, or blue. In the “Generic” choice, the program scans the
search line at each pixel twice: On the first scan it calculates an average value of red,
green, and blue; on the second, it finds the pixel for which the sum of the absolute
differences of the r, g and b values from the averages is greatest. Typically, each line
being tracked is between 20 and 50 pixels long, giving 20 to 50 search points. As

explained, the “search line” is set perpendicular to the most recent position of the
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line being tracked, and the pixel most like the line being tracked along the search line
is noted in what is essentially an edge finding algorithm. The resolution of the edge
finding algorithm is kept at a one pixel level, due to the existence of many “edges”
in the non uniform texture of most textiles. A new pixel to match the line definition
is stored for each pixel along the old line, and the new line is determined by a least
squares fit through the new points.

The output from the program is a series of three points for each crossover at each
frame number analysed.

The program writes to a tab delimited file, recording for each frame number anal-
ysed three coordinates (the farthest point on each line and the intersection) and a
shear angle for each crossover. This is pasted into a Microsoft@® Excel spreadsheet,
which allows a full analysis to be made of the bias extension test. Consider Fig-
ure 3.19. The top and bottom line pairs are at the edge of areas C, which will not
shear while the bias extension specimen deforms ideally. The top crossover, then,
initially extends at exactly the same rate as the test machine crosshead. A straight
line fit to the plot of this point against time (as calculated from frame number) allows
the spreadsheet to calculate two important values. The first, corresponding to the
intersection of the best fit line with the x-axis, allows the spreadsheet to determine
the test start point (the camera is activated before the test commences). The second,
corresponding to the gradient of the best fit line, when compared with the extension
rate of the test, allows the spreadsheet to accurately determine the scale of the video
in mm/pixel. As the scale is determined not from a single measurement but from
several tens or hundreds of data points, this should be a more reliable value than

that determined from placing a reference distance next to the test piece.
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Figure 3.21: Flow diagram showing the sequence used by the program to keep track
of marked crossovers on a bias extension video. f denotes the current frame, cr the
current crossover, [ the current line, pr the current pixel along the line 1, Af the

frame analysis frequency (see Figure 3.20)
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The spreadsheet can also of course calculate the local shear angle at each crossover,
and this value can be compared with the expected angle to determine the locking
angle of the textile, and how much of the test corresponds to pure and idealised
shear. Finally, the plot of the shear angle against extension allows one more factor
to be calculated. If the sample is at all pre-sheared through handling or due to its
own weight as it hangs vertically in the test machine, it can shift the curve a little
along the x-axis. Due to the shape of the shear curves, this can correspond to a very
large apparent unrepeatability in the measured shear response. The initial very low
load gradients also preclude the use of a set pre-load to match the curves. However,
any pre-shear can be noted in the measured vs expected shear angle curves as a shift
of the ideal linear portion. Thus, to correct for pre-shear, the x-intercept of a linear
fit of the measured vs expected shear angle curves can be used to shift the shear
force curves appropriately.

It is very important to measure and understand the limits of the bias extension
test in terms of shear deformation. Beyond the point at which measured shear sub-
stantially differs from idealised pin-jointed shear, the shear behaviour of the textiles
is no longer being measured. Instead, a combination of shear and slip is recorded.
Thus, the graphs are only valid as shear response curves up to the point at which
the ideal shear angle corresponds well to the actual shear angle. The shear response
graphs are presented against theoretical shear, which corresponds to the measured
shear for the valid proportion of the graph. It is however very important to remem-
ber that these graphs may not be valid shear response values beyond shear angles
substantially less than 70°, depending on the material. The measured shear allows

the cut off point for shear response validity to be determined.
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3.4.4 Normalisation of results

Normalisation of results for a bias extension test is not as straight forward as that for
the picture frame. Bias extension tests with the same s value but in a different scale
can be compared by dividing the extensive force by a characteristic length (say, Lz or
wp in Figure 3.14c). However, the non-uniform shear distribution means that results
from different ratio tests or comparison with picture frame results requires more
careful treatment. Several approaches to a more robust bias extension normalisation
procedure are presented here. Because they all take different assumptions, it is
worthwhile to compare and contrast them. The relative merits of these approaches
to normalising bias extension data will be examined in Section 3.4.5 and discussed

in Section 3.5.

3.4.4.1 Energy normalisation method
Energy arguments similar to those developed for the picture frame test can also be
used to normalise the bias extension test. However, the more complex deformation
distribution in the bias extension test makes for a more involved analysis. In order
to normalise the bias extension test using energy arguments the energy contributions
from the different shear regions in the sample must be separately accounted for. The
approach is therefore only valid when the observed bias extension deformation is
similar to the idealised bias extension test.

First, geometric constraints reveal that, for k > 2 (Figure 3.14 c), the areas of

regions A and B are:
Ax = L3(2k — 3) sin 2¢ (3.22)

Ap = 2L%sin(d + &) (3.23)
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so that the initial area ratio of the regions is:

An(on) = (5 ) Aaton (3.21)
Also,
- %‘ (3.25)

where 64 and fp are the shear angles in regions A and B respectively. [Where a
subscript is ommited for the bias extension test, the shear angle 6 can be assumed
to be referring to that in the centre region A, 6 = 6,4.] Differentiating Equation 3.25

gives the relative angular shear rates of the regions:
0p = — (3.26)

Now the picture frame extensive power definition, Equation 3.6, is equally true

for the bias extension test. Differentiating Equation 3.18 gives ds,

. 0

d3 = fsin ¢0 - 5 (li - ].)Lz (327)
so that the bias extension test equivalent to Equation 3.8 is:

ds = (k — 1)k L3 (3.28)
where k; is defined in Equation 3.9. This leads to the equivalent to Equation 3.10:

P3 = (KJ - 1)]{Z1F3L3 (329)

The two-phase shear distribution of the bias extension test means that the shear
power relationship has two parts. Given Equation 3.12 for the material at a given

shear angle 6, and bearing in mind the amount of material in the different shear
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regions given in Equations 3.22 and 3.23 , the power for the bias extension sample

to deform can be written as
Py = L3sin 26y (25 — 3)9a(0) + 20(0)) (3.30)

where 1, and 1p are the shear power per unit initial area for regions A and B
respectively (see Equation 3.12), and are functions of # and 0.

Assuming that these power terms are directly proportional to the local shear
rates 04 and 05, and given the relative shear angles and rates in regions A and B in

Equations 3.25 and 3.26 , 15 evaluated at (f) can be related to ¢4 at (£):

Vp(0) = % (3.31)

Substituting Equation 3.31 into 3.30 gives
Py = L3sin2¢0((26 — 3)ya(0) +v4(0/2)) (3.32)

and equating this P3 with Equation 3.29 and rearranging gives

Ya _ k=11 ¥A(0/2)
ks  26—3Ls (26— 3)k (3.33)

where the left hand side is the same as that in Equation 3.16 — the normalised force.
Note, however, that the right hand side of the equation includes the normalised force
at 6/2, so that in order to calculate the normalised force an iterative scheme must
be followed.

The iterative scheme proposed is very simple. An initial approximation for 4 is

taken as

. k—1 ]fQFg
26 —3 Ly

(¥a(6))i=0 (3.34)
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This can be used to evaluate subsequent iterations

k=1 hkF  (Va(3)),
2k —3 Ls (2k — 3)

(%4(0))ns1 = (3.35)

until the solution converges.

Alternatively, if an nth order least squares fit is taken for the F3/L3 vs 6 curve,

s A 0 3.36

L3 ; a“‘ ( )
then an nth order 14 /ky curve,

VA N,

- = b;0" 3.37

Loy 3.7

can be derived. Substituting Equations 3.36 and 3.37 into Equation 3.33, rearrang-

ing, and comparing 6’ parameters gives the b; values in terms of the a; values:

k—1
b — —1 ), 3.38
: (2m—3+2—%>a (3:38)

The normalised extensive force curve is therefore approximated by
%:(ﬁ_l)i ai—gi (3.39)
ko par 2k — 3427 '

Both methods will be presented and compared.

3.4.4.2 Gauge method - Stress tensor rotation

This approach to normalising the material response from a bias extension test,
adapted from that suggested by Sharma et al. [57], is simple and is more consis-
tent with materials testing in general. Howewver, it must be remembered that these
methods were developed for engineering shear, which is a different quantity to trellis

shear.
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The strain for a gauge section in which the shear is uniform is measured in order to
calculate 6, and the measured stress tensor is then transformed into the appropriate
coordinates. This approach is relevant in uniaxial tests where k is greater than 2, as
well as in biaxial tests, for example those in Figure 3.14c or Figure 3.16. Figure 3.16
illustrates the gauge section (a uniaxial test would be similar, without the horizontal
tabs) and the global X and Y axes. In these cases the applied extensive forces parallel
to the X and Y axes are the same at the clamp edges as they are at the gauge
section boundaries. As deformation in the gauge section is assumed to be uniform,
the resulting stresses over the whole of the gauge section can also be assumed to be
uniform.

The principal applied stresses are in the X and Y axes, so that the stress tensor

can be written as

This can be rotated by angle «:

oxxcos?a+oyysin®a  (oyy — oxx)cos(a)sin(a)
o = (3.41)
2

(oyy — oxx)cos(a)sin(a) oxxsin®a + oyy cos? a
The angle « is defined so that the rotated X’-axis is parallel with one of the fibre
directions (Figure 3.22):

0

Estimates of the applied stress depend on the material thickness, which is very

hard to estimate. Because of this it is better to refer to the “line force”, the force
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Figure 3.22: Global and rotated orthogonal axes. The value of rotation, «, depends
on the shear angle, 6.
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per unit length:

N =ot (3.43)

where t is the current thickness of the material. As this treatment assumes that
stress and deformation (and therefore thickness) are uniform throughout the gauge

section at any given deformation state, Equations 3.41 and 3.43 can be combined

to find
Np = Ny cos® a + Ny sin® a (3.44)

where Ngypseript(IN/m) is the line force, subscripts X and Y refer to the global X and
Y directions, and L refers to the fibre direction: hence Ny is the normalised fibre
tension. Note that Nx and Ny are normalised by the material dimensions they act
on, hy(f) and wy(#) respectively, which are dependent on shear angle.

Similarly, Equations 3.41 and 3.43 also imply
Ns = (Ny — Nx) cosasin « (3.45)

where Ng(N/m) is the normalised shear force acting along the fibre directions. This
shear force can be directly compared with that of Equation 3.1 derived for the picture
frame test. Finally, in the case of a uni-directional bias extension test, the value Ny

is set to zero so that the normalised shear force N, becomes
N, = Ny cos asin « (3.46)

3.4.4.3 Gauge method - picture frame equivalence
The approach outlined in Section 3.4.4.2 gives rise to a third approach, which is

by far the simplest. This attempts to be more sensitive to the difference between
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engineering shear and fabric trellis shear.

Considering the gauge section only, the material can be seen to be deforming by
pure trellis shear, very similarly to that in the picture frame test. The method relies
on the assumption that where a material is deforming uniformly and only by trellis
shear, the sample response is not dependant on the shape, but on the initial volume
of the sample. Furthermore, assuming that a given material at a given shear angle
and shear rate has a uniform thickness 7" that is independent of the sample shape, the
shear response is therefore only dependant on the initial area of the sample. Other
differences that are not taken into account are the different boundary conditions and
tensile stresses generated by the different test methods. If, therefore, the equivalent
picture frame test of the same material with an initial sample volume equal to that
in the gauge section can be specified, then the measured X and Y axis forces should
also be the same.

Consider a picture frame test similar to those in Figure 3.4, but with side length
L, such that the sample has the same area as that of the gauge section in Figure 3.14c.
Note also, that for a biaxial equivalent, a force would be exerted on the side hinges

along the X axis. The initial area of the bias extension gauge section is

A,(60) = (ho _ ti:;()) w (3.47)

and using Equation 3.17, hy can be substituted to give

2
Wy

Ay(80) = (s~ 2) 20

(3.48)
The initial area of the picture frame sample, on the other hand, is given by

Ay = L sin 2¢y (3.49)
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Equating the two and rearranging gives

L, = ,/%(n- —2) <S;‘l’250) (3.50)

The equivalent picture frame experiment would have side length as calculated

using Equation 3.50, so that the picture frame shear force is calculated as

Iy Fx
N 2Lgcos¢  2Lgsing

N (3.51)

where 6 is calculated using Equation 3.19 and the method is valid for as long as the
material in the gauge section follows idealised pin-jointed deformation.

The biaxial treatment has only been included here for completeness, as no biaxial
test results are presented in this thesis. It does, however, give rise to the approach
for the uniaxial test. The differences give rise to a simpler solution.

The uniaxial bias extension test has no force in the X direction, Fx = 0. As a
result, the section to be considered must be wy wide, but can have a range of heights
greater than 0. The restraints on the gauge section dimensions are that it must be
a segment of the sample experiencing a uniform stress field with known boundary
stresses, so that in the uniaxial test the height of the gauge section for normalisation

purposes could be any value up to hg,
0 < hy < hy (3.52)

This suggests that the bias extension force, when plotted against shear angle, is
independent of the gauge section height. It is therefore only dependant on the

sample width wy, leaving the normalised extensive force as

Fy
Wo

Ny (3.53)



where the normalised shear force is calculated similarly to Equation 3.1.

This method works to some extent for initially orthogonal fabrics. However, a
little more thought is required for non-orthogonal fabrics. In these cases the sample
dimensions for a given x and Lz vary according to the shear direction being tested.
Thus, if the sample is only being normalised by the sample width, it would be
normalised by different amounts according to the shear direction. A better approach
would be to take account of the number of crossovers across the width - this is a

constant regardless of shear direction. A length value representative of this is the

width at ¢ = 45°, which is to say, v/2Ls.

3.4.5 Results

Table 3.3 outlines the materials that were tested using the bias extension method.

Table 3.3: Materials tested for shear response according to the bias extension test

method
Material name Material Description
Bentley mat1 E-glass 430° non-crimp fabric, double stitched
with a (+1,0,-1,0) stitching pattern.
Bentley mat2 | E-glass 3D E-glass woven fabric from 3Tex
FGE 106hd E-glass 950gm—2, +45° non-crimp fabric from
Formax, with a tricot (+1,-1) stitching
pattern, stitch length 2.5mm
FGE 106hd:1.65 | E-glass 950gm 2, +45° non-crimp fabric from
(special) a tricot (+1,-1) stitching
Formax, with pattern, stitch length 1.65mm
FGE 106hd:5 E-glass 950gm 2, +45° non-crimp fabric from
(special) Formax, with a tricot (41,-1) stitching
pattern, stitch length 5mm
Twintex'™ 1 | Co-mingled | 1816gm~2 Twintex'™ unbalanced 2/2
E-glass/PP | twill weave fabric
Twintex'™ 3 | Co-mingled | Twintex ™ balanced plain weave fabric

E-glass/PP

1816gm~2 fabric
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3.4.5.1 Comparing the energy normalisation techniques - Iterative vs
least squares

The two suggestions for solving Equation 3.33 offer advantages and disadvantages.

The results presented here are chosen to highlight such advantages and disadvantages.

The two curves presented in Figure 3.23 have been generated using the two solutions

outlined by Equations 3.34 to 3.39 .

------ Iterative energy normalisation
Least squares energy normalisation

Normalised shear force (N/m)
w

0 2 4 6 8 10
Shear angle (degrees)

Figure 3.23: Advantages and disadvantages of the two energy minimisation solutions
are highlighted at the beginning of this curve. The material tested is the Twintex™
3 fabric, for a kK = 2 sample.

To ensure a good fit, the sixth order fit for the curve used in Figure 3.23 has
not been forced to pass through the origin. Whilst this is inaccurate at the start, it
is possibly more physically appropriate, as the jump is caused by frictional energy
losses, so that if the test had started at negative shear the jump would not have been
observed. The multiple use of previous data in the iterative solution causes sudden
jumps in raw force (such as those caused by the discretisation of the load cell or that
at the start of the curve) to propagate up the curve. This can be seen in the jagged

nature of the iterative curve, caused by sudden jumps in the digital load output. It
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can also be observed in the way that it oscillates first above and then below the fit
curve, caused by the sudden increase in load at the onset of shear.

Other than the differences caused by these limitations, however, the two ap-
proaches agree closely for all materials tested. This confirms that a high enough
order was chosen for the fitted curve approach, and also that numerical errors are

not significant in the iterative process.

3.4.5.2 Shear angle curves

The bias extension tests conducted proved to have poor repeatability. However, the
use of the video analysis to offset the curves according to the predicted angle vs
measured angle offsets improved repeatability. After visually calculated offsets had
been corrected, curves were offset a second time to coincide at the average value at a
given force - the curves mostly coincided perfectly for angles below the locking angle.
It is important to present the results of the video analysis software, to understand
the range of applicability of the bias extension tests.

The angles measured appear to be subject to a lot of noise, as can be seen in
Figure 3.24. This is caused by the fitted line being affected by outlying points,
however, if a frame by frame angle measurement was made by hand, a similar error
would be observed. By having such a density of measured data, the average can be
taken as a more reliable measure than the few points that can be measured manually,
with the scatter providing a useful indicator of confidence limits of the measurement
method. Therefore the results are presented as a moving average with standard
deviation error bars in the following graphs.

One thing that can be examined is the effects of the sample aspect ratio on the
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Figure 3.24: Angles measured from video taken of a bias extension test of Twintex™

1 with sample ratio factor k = 2.

angles. Figures 3.25 to 3.27 demonstrate the differences. It is apparent that the
aspect ratio, within the range tested, have minimal effect on the locking angle, and
the onset of non pin-jointed behaviour. The tests appear to be relevant for the first
35 degrees, with the sample locking at just over 40 degrees. Observations conclude
that the first cause of the onset of non-linear behaviour is transverse fibre slip at the
tips of the C regions. Secondly the material begins to buckle, and finally it rips apart
as the tows pull out of the textile. This does not include the effects of non-uniform
behaviour, as described at the end of Section 3.4.2

Examination of the figures also shows the variation of shear angles measured at
different regions, within the central shear area. This is typically 2-5°, but can be
as much as 10°. Shear angle figures for other materials and at other ratios can be

found in Appendix C. This includes 9 different results for Twintex™ 3 at x = 2.
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Figure 3.25: Angles measured from video taken of a bias extension test of Twintex™™
1 with sample ratio factor kK = 2.
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Figure 3.26: Angles measured from video taken of a bias extension test of Twintex™
1 with sample ratio factor k = 2.5.
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Figure 3.27: Angles measured from video taken of a bias extension test of Twintex™

1 with sample ratio factor k = 3.

Examination of these shows that whilst the majority of the samples exhibited lower
shear angles at the top of theoretically constant shear region A than at the bottom,
this trend is not universal. The shear irregularities are probably caused by the low
shear modulus of the textiles. This creates a very low shear penalty to irregular shear
distributions, and weak interactions between different shear areas. Other causes of
shear irregularities include the transverse slip described above, which distort the
shear angle measured near the tips of the C regions. Thus, measurements taken
from the centre of the sample are likely to be reliable for a greater proportion of the
test.

Finally, it is important to observe the reliability of the video analysis tool. Com-
parison of Figures 3.25and 3.26 with Figure 3.27 shows that the analysis observes

less scatter in some cases. This is affected by the resolution of the video, which is
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dependant on the size of the sample and the zoom setting of the video. It is also
affected by the colour of the textile, the choice line colour, the ambient lighting, the
textile structure, and the manner in which the textile deforms. Additionally, as the
textile moves away from ideal shear, the markings curve, so that a straight line fit is

no longer appropriate.

3.4.5.3 Bias extension normalisation comparison
The energy approach, whilst being the more complicated, takes the most thorough
account of the test conditions, and so the results should be taken as the most reliable
available. Given that, it is of interest to investigate how the other, more simple
normalisation techniques compare to it and to each other.

The results are presented for a representative test for each material in Table 3.3,
at each sample ratio that was tested for that material. Results not directly discussed
can be found in Section B.2.

For initially orthogonal fabrics, the stress-tensor rotation approach tends to agree
very closely with the energy minimisation at low shear angles. This is expected, as
the model is only accurate whilst the rotated stress tensor aligns with both fibre
directions - i.e. while the fibres are orthogonal. This effect is highlighted by the
+30° material results. In Figures 3.28 and 3.29 the stress-tensor rotation approach
does not agree with other methods even at relatively low shear angles in both shear
directions. However, in the negative shear direction it crosses the other curves near
the point at which the fibres are orthogonal.

Looking at the results for different bias extension aspect ratios presented for

Twintex™ 1 in Figures 3.30 to 3.32 , the picture frame equivalence approach appears
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to work best at kK = 2.5 (see also Figure B.15), whereas it consistently over-predicts
at k = 2, and under-predicts at kK = 3. The k = 2.5 ratio is notable in that at this
ratio the area of central shear region A is equal to the square of the sample width wq
(for initially orthogonal fabrics). The approach seems to frequently over-predict at
low shear angles when compared to the other methods. This may indicate that in the
initial few degrees of shear the whole sample undergoes deformation, not necessarily
just shear. This is because the sample must show some tension along the direction of
the tows. Thus the initial tensile loading of the tows could cause the normalisation

methods to differ at low shear angles.

1401 —— Normalised Shear Force
----- normalised shear force (least squares)

120 1 — = Gauge method (PF equivalence) o
—-— Gauge method (tensor rotation) i e_,.—*"’

100 1 LT
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Figure 3.28: Bentley matl at x = 2, positive shear direction.  Sample
width = 120mm, rate of extension = 80mm/min.
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Figure 3.29: Bentley matl at k = 2, negative shear direction. Sample width = 70mm,

rate of extension = 80mm/min.
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Figure 3.30: Twintex™ 1 at x = 2. Sample width = 99mm
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Figure 3.31: Twintex™ 1 at x = 2.5. Sample width = 99mm
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