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Abstract

Fibre Reinforced Plastics offer several advantages over other materials such as de-

creased part counts, weight savings, and flexibility. The obstacles to the further

expansion of composites use, particularly in cost-conscious industries such as the car

industry, include volume, cost, and quality. Liquid Composite Moulding, where the

dry textile reinforcement is shaped prior to application of the plastic matrix, offers

to address these drivers by offering potential for automation, speed, and quality con-

trol. However, the preforming of the dry reinforcement is rarely automated, and its

results are variable and hard to predict or control.

This thesis aims to facilitate better preforming process design and control. The

dominant deformation mechanism that allows reinforcements to conform to a 3D

surface is trellis shear. Work is therefore presented on shear characterisation of tex-

tile reinforcements using the picture frame and the bias extension tests. Several

approaches to normalising these tests to achieve method-independent shear data are

proposed, and compared. Of these, a normalisation technique for the bias extension

test based on energy considerations appears to be the most appropriate. A consti-

tutive modelling approach, based on the meso-mechanical deformation mechanisms

identified in the reinforcement, is developed for characterising the asymmetric shear

properties exhibited by non-crimp fabrics. The results from this model are compared

with experimental data. Finally, an energy minimising kinematic drape method is

developed to account for the use of automated reinforcement blank-holders, and

methods for modelling process variability using the code are investigated.
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Chapter 1

Introduction

This thesis concerns itself with the manufacture of fibre reinforced plastics (FRP).

Specifically, it looks to model the effects observed around the dry fabric preforming

of fibrous textiles for liquid composite moulding processes.

The thesis aims to achieve a greater understanding of this aspect of FRP man-

ufacture. Increased process understanding can facilitate increased speed, accuracy,

and decreased costs in the design, manufacture, and analysis stages of a product life

cycle. Furthermore, it can aid accurate predictions of those downstream manufac-

turing steps that are affected by the preform fibre architecture.

1.1 Overview

A composite material consists of the combination of constituents, such that they

do not dissolve or merge completely into each other. Composites typically consist

of a combination of two materials where the composite gains some of the most

advantageous characteristics of each constituent. Some example not covered in this

thesis include chip board, which combines wood chips with a polymer to make a

cheap boarding; nano-composites, in which (for example) nano-clays are dispersed

into a polymer matrix to improve the tensile and flexural strength and modulus,

heat distortion, water sensitivity, permeability, and so on; reinforced concrete, which

combines the bulk low cost and high compressive modulus of concrete with the high

1
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tensile modulus of steel; sandwich structures, which use a low cost filler sandwiched

between high tensile strength skins which bear the bulk of the load.

The FRP industry arose almost a century ago as essentially a craft industry, and

large parts of it remain so even today. Parts are carefully hand manufactured by

skilled workers, with nothing more technical than some shears, a bucket of resin,

and a brush or roller. This is sometimes even the case for composites destined for

the highest technological applications. The low tech nature of the manufacturing

process allows for very easy and low cost low volume manufacture when compared to

steel or other metals. It does however provide barriers for medium to higher volume

applications in terms of per-part cost, time etc.

Many varieties of continuous fibre reinforced plastic composites have for some

time been adopted in those areas of the engineering world where the performance

and weight advantages outweigh the traditionally high cost. This includes the space

exploration and aerospace industries, high performance motoring, and competition

boating, cycling and motorcycling. The relatively low tooling costs in many com-

posite manufacturing processes outweighs the higher component manufacture costs

for low volumes, so that they are found in many low volume or prototyping exam-

ples. However, there has for some time been interest in the use of fibre reinforced

plastics in higher volume, low cost applications such as the mainstream automotive

industry. In order for them to be viable in such industries, they must become more

predictable, reliable, and substantially cheaper to manufacture at high volumes.

The motive for this thesis is to further the understanding of the composite man-

ufacturing process with a view to streamline the process for low cost, automated

manufacturing techniques. In particular, the mechanics of dry textile draping in
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liquid composite moulding processes is focussed on. The final fabric layup has to

be taken into account when modelling the resin infusion process. These two process

steps are subsequently required to accurately predict the mechanics of the formed

component, failure characteristics, etc. As the models for textile preforming become

more comprehensive and complete, they allow the forming process and component

performance to be more accurately predicted. This allows tighter safety factors to

be adopted, less design iterations to be required, and a shorter prototyping and

testing phase. All of these factors currently limit the potential for the use of com-

posites in high volume, low cost per part processes. A reliable textile constituent

model, that adequately predicts the forming characterisation of a textile from its

meso-mechanical geometric description, also offers the possibility of designing fabric

architecture for a specific application, broadening the possible uses of composites.

1.2 Liquid composite moulding processes and textile form-

ing

There are many different processes used in the composites manufacturing industry.

The dominant approach within the aerospace industry involves the forming of a

textile that has already been pre-impregnated with a thermoset resin. This is shaped

to the single sided mould, covered with an impermeable bag on which a vacuum is

drawn, and placed to set in an autoclave at a raised temperature and pressure.

Some approaches take a thermoplastic matrix already combined with the textiles in

the form of a solid sheet or in the form of commingled constituent fibres. These are

heated, formed into the desired shape, and pressed to consolidate. Another approach



4

is to conform the dry fibrous reinforcement to the desired shape using a single mould,

and then to paint on the resin with a brush or a roller. This is one of the oldest

approaches, and apart from being labour intensive, presents many quality and health

and safety issues. A further approach shapes the dry reinforcement to the desired

shape using a single or pair of moulds, and then imposes a pressure differential to

infuse the liquid thermosetting resin into the fibres in the mould. This is given a

number of different names including Resin Transfer Moulding (RTM), RTM-light,

and vacuum infusion (VI). Whilst the work in this thesis is relevant to any processes

that preform the fabric in an unimpregnated state, the focus of enabling greater

automation is more biased to RTM-like processes.

RTM, resin transfer moulding, holds the pre-formed fibrous sheet between op-

posing moulding tool faces, which are held in a press while resin is injected into the

component at a high pressure. RTM-light requires less rigid tooling, typically the

tooling itself will be made from a fibre reinforced composite. The resin is injected un-

der pressure only slightly above ambient, the process being aided by simultaneously

applying a vacuum to the resin outlet. Unlike RTM, which requires an expensive

press to counteract the high force exerted by the pressurised resin over the face of the

tool, RTM-light tools are commonly held together by a double vacuum seal around

the edge of the tool - it becomes apparent that in order to maintain the tool closed,

the force applied by the injection pressure must be less than the force applied by

the sealing vacuum. For this reason RTM-light resin is usually injected at half an

atmosphere relative pressure or less. Vacuum infusions only use one moulding tool

face, and injection of the resin is entirely through the vacuum on the resin outlet.

In place of an opposing tool, the process is sealed with a bag which is sucked by the
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vacuum to the shape of the component. This process is particularly suited to very

large components such as boat hulls, but is less suitable for components that require

two accurately positioned or cosmetic faces.

There are advantages and disadvantages to each of the above methods, not to

mention variants of these methods and other methods that fall in this category.

RTM, due to the high pressure that can be applied to the resin, can be faster than

the other methods. The injection pressure that can be applied is however affected

by the size of the press in relation to the size of the tool. Moreover, the cost of

the tooling and press required for this process becomes prohibitive for lower volume

applications.

VIs are more suited to low volume and particularly large applications. The

tooling can be made relatively quickly and easily as it does not need to withstand

high injection pressures. However, the process can be fairly slow, and a good surface

finish on both faces of the component cannot be achieved.

RTM-light, also called VI-RTM, performs the compromise between the two ex-

tremes. Like vacuum infusion, the primary pressure differential is created by drawing

a vacuum, and tools are also held together with a vacuum so that no press is re-

quired. Associated with this is a slower process speed. However, like RTM, two tool

faces are available to control surface quality.

The difference between all these processes tends to involve the method for infusion

with resin. The textile preforming process, in contrast, remains very similar. The

textile is typically placed by hand onto one of the tool faces. In the cases where

the textile cannot deform in-plane sufficiently to conform to the tool contours, it

will bridge and / or wrinkle. Wrinkles are undesirable: They create delamination
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zones where failure is likely, they create resin rich and depleted zones, and they

ruin the cosmetic aspects of the part. Likewise, bridging, where the fabric does not

follow an indentation but cuts across it, is clearly not acceptable. One solution to

avoid wrinkling commonly used in the industry involves the cutting of excess fabric

from areas prone to wrinkling. This may compromise the structural capacity of the

component, affect the cosmetic appearance, as well as being more labour intensive.

1.2.1 Fabric response to draping for composite manufacture

A textile does not need to deform in order to conform to a flat surface. The textile

can also easily conform to a surface with single curvature, such as a half cylinder,

by bending of the fibres in the textile. A geometry whose curvature cannot be

described by rotation of a flat plane around a series of parallel axes is described as

having double curvature. In most cases, certain regions of an initially flat textile

must undergo a change in surface area in order to conform to a surface with double

curvature. The location and size of these regions and the magnitude of change in

surface area depends on the textile structure and the surface geometry.

Typically, a surface with very sharp radii of curvature, or one that has a deep

“draw” - that is, it is very deep compared to its other dimensions - requires the great-

est change in surface area. Textiles for fibre reinforced polymers typically utilise fibres

with extremely high tensile moduli in order to produce a part with high strength

and stiffness to weight ratio. In this case, the required change in surface area can-

not be accommodated by the tensile elongation of the fibres in the textile: This is

not only a very high energy deformation mechanism due to the high moduli, but

typical fibres used such as glass and carbon also tend to be brittle. Another option
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for changing surface area is for some fibres to longitudinally compress, resulting in

undesirable wrinkles. A further mechanism is fibre slip - however, this does not allow

a very large change in surface area, and moreover is not observed very much in most

existing reinforcement textiles [30]

The remaining deformation mechanism other than buckling (that is, wrinkling)

is termed trellis shear. Trellis shear resembles engineering shear in many ways.

However, the extreme anisotropy of the textiles undergoing shear means that there

are also distinct differences. Trellis shear must always occur in reference to the fibre

or tow directions in the fabric, a tow being composed of a bundle of roughly aligned

fibres with which the fabric is manufactured. (Tows can also consist of twisted fibres,

which hold together better, but this reduces the longitudinal stiffness advantages that

are typical in FRPs.) For example, a woven textile with two distinct and uniform

initial tow directions will only shear in reference to those two directions. As a result

the trellis deformation of textiles, being the dominant deformation mechanism in

conformance of technical textiles to component geometries with double curvature, is

of primary interest in the study of dry textile preforming.

1.2.1.1 Non Crimp Fabrics

Traditionally, liquid transfer moulding has utilised Continuous Filament Mat (CFM

- randomly oriented continuous fibres with a typically low fibre volume fraction),

Woven textiles, and unidirectional textiles (UD) for reinforcements. CFM is often

easier to drape than woven textiles or UDs. However, it is often unsuitable in high

performance applications. UDs can present a draping challenge, adding to the time

taken to preform the component, but allow fibres to be laid in the direction most



8

needed. Woven fabrics are in many ways easier to drape than UDs, and present con-

sistent fibre directions allowing them to be used in higher performance applications.

However, unlike UDs, the tows in the textiles are crimped by the weave pattern.

This can result in textile tensile moduli that are lower than the fibre moduli, as the

tows un-crimp before placing the fibres under direct tension. Additionally, there is

a weight limit to woven textiles.

Non-crimp fabrics claim to overcome some of these limitations of woven fabrics.

A common example of non-crimp fabrics, knitted reinforcement textiles, is manu-

factured by laying tow mats in between one and four layers, and knitting the mats

together using texturised polyester thread. these textiles are often much more con-

formable than woven equivalents in that they can shear to higher angles before lock-

ing and wrinkling. Their manufacturing method allows them to be manufactured at

greater weights, which can be very helpful in manufacturing large composite compo-

nents such as boat hulls and aircraft bodies. Finally, as their namesake suggests, the

tows are not crimped by the manufacturing process, allowing for a greater transfer

of the component load to the reinforcement fibres.

Much of this thesis concentrates on the forming behaviour of knitted non-crimp

fabrics.

1.2.2 Drape modelling

The term “Drape” refers to the process of conforming a textile to a 3D geometry.

Drape modelling approaches fall broadly into two categories. The first approach

models the textile as a “pin-jointed net” (PJN). This net consists of inflexible, in-

extensible ‘rods’ attached at each end with pin joint nodes. The nodes are laid so
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that they coincide with the surface geometry, according to the constraint that they

must remain a fixed distance from adjacent nodes. From this, it becomes apparent

that given the position of nodes along two intersecting lines representative of the

two tow directions, all other nodes can be calculated by geometric constraints. For

very simple geometries such as a hemisphere the geometric equations can be directly

solved to predict the forming pattern. For the vast majority of geometries, however,

a numerical solution is required. Many solvers now exist that are able to model

fabric forming using this approach.

At the other extreme of the analysis spectrum is finite element modelling (FEM).

This attempts to model as many as are possible of the physical characteristics of

the fabric, the mould, the ambient conditions, and the process sequence in order

to attempt to replicate chronologically the entire forming process. Accurate FEM

requires in-depth understanding of the modelling technique, the software tools that

utilise it, and the material models that underpin it.

Each of these two extremes offers advantages and disadvantages. The former is

relatively easy to use, and in many cases gives good results, which it generates very

quickly. However, in many other cases it cannot model accurately. This is for a

number of reasons, the most important of which is that the position of the original

two intersecting lines is determined geometrically. This does not take into account

the shear behaviour of the specific fabric or its interaction with the tools. Conversely,

the detailed interactions of the fabric, tools, and process modelled by FEM requires

detailed data on their mechanical, rheological and temperature related behaviour. It

requires substantial user competence to enter the data, to interpret the results, and

to gauge their accuracy. It can take many days to input this data, and also long
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times to run the model – although with improving material data and the increasing

power of computers these times are continually decreasing.

Some models attempt to find a middle ground between these two extremes. One

model, borrowed from the apparel industry, models the fabric as a series of intercon-

nected energy nodes. The drape is optimised to minimise the energy of the nodes,

that are subject to gravity, elastic interactions, and so on. A similar method more

adapted to the composites industry advances the pin-jointed-net concept by intro-

ducing an energy minimisation routine [60].

The energy required to shear each of the units of the pin jointed net is calculated

from the measured shear behaviour for the specific material under question (See

Section 2.2.1 for methods of measuring the shear behaviour of textiles). The positions

of the two lines which geometrically constrain the entire drape solution are then

chosen in such a way as to minimise the total shear energy of the fabric. The

difference between this approach and the PJN approach can be most easily seen

in non-symmetric fabrics that preferentially shear in one direction rather than the

other. In these cases, the increased accuracy of the energy minimised PJN is very

apparent. Furthermore, it requires substantially less user skills than FEM, and only

takes a few minutes to solve the model, as compared to the few seconds the PJN

method requires, or the hours or days that the FEM takes. It does, however, require

shear behaviour characteristics to be available for the specific fabric.

This model, in allowing for the textile architecture-specific response to be mod-

elled in a relatively fast manner, provides the potential for analysis of statistical

variations to be conducted, although this is not yet implemented. It also does not

model the effects of the interactions between the textile and the mould or other au-
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tomated tools such as a blank-holder(similarly to those found in the metal stamping

industry, a composite blank-holder holds the undeformed textile while the male ge-

ometry is inserted, thus facilitating automated draping). Finally, it only provides

limited support for the modelling of multi-layer preforms, in which multiple textile

layers have been formed onto the geometry.

1.3 Conclusions

The aspiration in terms of lower cost, high volume RTM components is a greater de-

gree of automation, repeatability, and quality. The design process should be stream-

lined, with the use of more accurate modelling tools and process understanding

assisting the reduction of design iterations and prototyping. Commonly within the

industry the effects of fabric architecture and part geometry on drape, resin infusion,

and component performance is simplified at best and ignored at its worst. The crit-

ical process parameters should be well understood and controlled, with a variability

control strategy that minimises scrap rates and predicts confidence limits.

The current composite manufacturing processes require development before they

can be undertaken in this sort of environment. Technology exists that automates the

spreading and cutting of textiles, their loading into the mould, and textile “blank-

holders” that hold the textile in tension while the mould is closed (currently blank-

holders are only implemented in thermoplastic prepreg stamping processes, however).

The injection process can be automatically controlled, with sensors in place to mon-

itor infusion progress and modelling tools that can correct the injection strategy to

ensure successful resin transfer on a real time basis. Not all of these technologies are
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mature, and very few, if any, current manufacturing operations combine all of them

for a high efficiency manufacturing line.

In terms of a more robust and efficient design cycle, the forming modelling tools

available provide complementary roles in the design process. PJN tools allow very

fast forming approximations for very early design iterations. Energy based PJN

tools assist further on when the fabric choice and other parameters are taken into

consideration. Finally, near the end of the design cycle, FEM tools can be used to

validate and refine the chosen design parameters. This allows an optimal process

whereby initial design cycles can be conducted very fast and with a minimal amount

of resource and effort, while the final design is robustly tested and validated.

To further these goals, this thesis concentrates on the shear behaviour of bi-

directional fabrics for fibre reinforced composites, and development of the energy

minimised PJN modelling approach for that forming process. It attempts to quantify

and understand the shear behaviour of some interesting industrially available textile

reinforcements, both in terms of experimental and mathematical characterisation.

It tries to further the understanding of the experiments most commonly used in

measuring the shear response of textiles. The shear behaviour of reinforcement

textiles is important for accurate modelling of both FEM and energy-minimised

PJN forming models.

Pursuing the energy-minimised PJN forming models, this thesis attempts to ex-

tend the model to incorporate other forming phenomena so far neglected, such as

fabric and forming variability, and the edge effects of automated forming blank-

holders.

It is expected that as each of these aspects of preform manufacture is better
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understood, and tools begin to be integrated so that forming predictions inform

infusion models, and both of these inform mechanical models, then the accuracy

and versatility of predicted performance will improve. In this way the composites

industry can move from black art to science, and thereby significantly expand its

acceptance in the mainstream.



Chapter 2

Literature Review

2.1 Introduction

The context of the work presented in this thesis is in the modelling and prediction of

preforming of dry textiles to aid the product and process design within the continuous

fibre reinforced plastics industry. This necessarily builds on previous textile forming

work, which originates from the apparel industry, looking at the deformability of

textile clothing. Whilst the apparel modeling work was taken as the starting point

in this field, and a significant number of aspects of the work are still in common

across the fields, the work has nevertheless diverged due to the different technical,

aesthetic, and economic drivers found within the two industries.

The materials of choice within the textiles industry must primarily reach a certain

standard of comfort. Further criteria that vary according to the specific application

include aesthetics, price, durability, colour fastness, heat retention characteristics,

ease of cleaning, and more. In contrast, a primary driver for reinforcement textiles

is the composite performance: Without a performance advantage, other materials

will dominate. Again, other applicable criteria depend on the application, but in-

clude price, deformability, processability, recyclability, and aesthetics. The textile

performance, deformability and processability (including handling and resin transfer

properties) are highly dependent on its drape characteristics. Most textiles show

extremely low resistance to bending. Whilst elegant folds are often an advantage in

14
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the textile industry, these significantly reduce processability and performance in the

composites field. Also, seams and joins are common in apparel, to ensure good fit to

shape. In contrast, they can significantly affect performance in composites. Finally,

the high modulus fibres that provide the performance advantages in the compos-

ites industry result in textiles with very high tensile moduli in comparison to other

preform deformation mechanisms. Tensile deformation is in contrast of much more

importance in the apparel industry.

Due to this difference in motivations, composite textile modelling concentrates

on shear deformations. Textile shear allows a textile to conform to complex surfaces

with two degrees of curvature without wrinkling (low energy but undesirable), ten-

sile extension (very high moduli and low ultimate strains are typical), or requiring

tailoring operations. Thus, preform reinforcements and their forming operations are

specifically designed to maximise shear deformation, suppress wrinkles, and minimise

tailoring. In order to understand the preforming operation, textile shear must be

first understood.

The work therefore, and the literature reviewed that forms the background to

the work, concentrates first on the characterisation and modelling of the shear be-

haviour of continuous fibre reinforcements. Second, work done on modelling of textile

preforming is reviewed.

2.2 Fabric shear characterisation

Before fabric shear is modelled or measured, its nature must be understood. The

word shear should be used with care, as textile shear, whilst sharing some important
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characteristics with engineering shear, is a complex phenomenon involving many

different deformation mechanisms.

Homogeneous engineering shear is defined as a force applied tangentially to the

surface on which it is acting, so that the shear stress (τ) is defined as the tangential

force divided by the surface area over which the force acts. The material deformation

response to shear stress is the shear strain (εxy), such that for small angles shear

strain is approximately equal to the shear angle in radians, θ.

Textile shear also refers to the action of a force parallel to the surface on which

it acts. Textiles, however, are heterogeneous materials so that the shear force of

interest must act parallel to one of the fibre directions. Shear deformation in biaxial

fabrics can often extend to 50 or more degrees, causing the reference axes (parallel

to fibres) to be no longer even approximately perpendicular. As the reference axes

must rotate with the fibres, textile shear, sometimes referred to as trellis shear, must

not therefore be confused with engineering shear.

2.2.1 Experimental characterisation

Shear response data allow textile preforming simulations to predict the effects of

textile structure on the draped pattern. This is vital in the prediction and control of

the resin injection process, and the modelling and design of the composite mechanical

properties. It would be beneficial to be able to predict textile shear response based

on its structure, and previous work as well as work in this thesis makes progress

toward this goal. For these reasons, shear response measurements are important to

textile preforming science. They allow forming models to be developed in parallel to

shear models, and they provide essential validation for shear models.
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Much work has been carried out to measure the shear characteristics of fab-

rics, first in the textiles industry, and latterly in many other contexts including the

manufacture of fibre reinforced polymer composites. The many variations of shear

experiments can be classified into three broad types, illustrated in Figure 2.1:

1. Direct shear force

2. Bias extension

3. Picture frame
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Figure 2.1: Three methods for measuring the shear properties of a textile.

All three test methods are summarised in the following sections, and more de-

tailed descriptions of the latter two can be found in Section 3.3.1 and Section 3.4.1

respectively.
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2.2.1.1 Direct shear measurement

As has been discussed, direct shear force experiments originate from the textile

industry [61]. Opposite sides of a rectangular specimen are clamped parallel to one

of the fibre directions. Displacement of one of the clamped edges is in the direction

of the fibres, so that a direct shear force is exerted. A force is applied normal to the

fibre direction in order to keep the fabric taut. This ensures that shear rather than

wrinkling is measured.

This was adapted for engineering fabrics by the likes of Kawabata [27], who used

a biaxial testing machine to measure the direct shear response. Force was applied

in one direction to keep the specimen taut, while a centre clamp applied the shear

stress in the other direction. Later variations [24] on this method included more

than one specimen pulled by the central clamp so that out of plane reactions would

cancel. This also allows, with careful placement of the specimens, measurement

of shear strain in only one direction, an important factor in textiles that exhibit

different shear characteristics according to the shear direction. Kawabata’s work led

to the Kawabata Evaluation System for Fabrics (KES-F), now available commercially

for fabric characterisation, and is used for the characterisation of technical textiles

including reinforcements [38].

The KES-F system presents difficulties as a shear measurement system for re-

inforcements. It is very expensive and hard to obtain and is limited to the low

shear strains and loads characteristic to the textiles industry. Furthermore, Hu and

Zhang [23] suggested that the specimen in the KES-F was not subjected to pure

shear. Their finite element simulation of the shear test suggested a shear distribu-

tion from zero at the corners to a maximum at the centre of the specimen.
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2.2.1.2 Bias extension

In the bias extension test the sample is cut and extended along an axis half-way

between the fibre directions, illustrated in Figure 2.1b (see Figure 3.16 for a biaxial

test setup).

The uniaxial bias extension method has been used for some time [62, 53] and

is popular as it requires little more than standard tensile testing apparatus. The

test requires grips wide enough to hold the top and bottom of most textile samples,

however, these are of very simple design for dry textiles. Also, it is relatively repeat-

able compared to the other tests. Wang et al. [68] demonstrated that, as only the

central part of the sample undergoes pure shear, sample dimensions are important,

and suggested that sample aspect ratios λ such that the sample height is greater

than twice its width were desirable so that the uniform deformation area dominates

the sample response:

λ > 2 (2.1)

Ideal deformation within the test allows the central shear area shear angle to be

related to the extension (Equation 3.19), however the boundary conditions of the test

mean that as the shear angle approaches the locking angle (that is, the maximum

shear angle that the textile will allow, often the angle at which the fabric begins to

wrinkle), the sample begins to deform by slip rather than shear. As a consequence it

is best to measure the shear angle from direct observation of the central shear area.

Despite its popularity, the complex shear distribution over the sample, the lack

of control of boundary conditions and the slip deformation mechanisms reduce the
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quantitative usefulness of the test.

The biaxial bias extension test [57] uses a cruciform sample cut in the bias direc-

tion. Ideally such a test would match the X-axis extension to the Y-axis extension

according to the ideal shear deformation of the sample, or instead set one axis to

exert a constant force. Such a setup would minimise tow slip and allow tow tension

to be induced during shear. However, in the example of Sharma et al. [57] both axes

are extended at a constant rate and the subsequent slip induced in the cruciform

tabs is ignored by solely considering the stress fields in the central shear area.

2.2.1.3 Picture frame

In this method the sample is cut in a cruciform with axes aligned with tow directions.

It is then clamped into a square frame with corner hinges whose centre of rotation

is aligned with the clamping edges. Two opposite corners of the picture frame are

extended, so that so long as the sample is properly aligned [5], pure shear is induced.

Except for the fibre bending induced at the clamp edges, this test induces pure shear

throughout the sample.

Tension in the tows prior to shearing can be induced with the use of a pre-

tensioning device [7, 60]. As well as allowing the fabric shear behaviour under tension

to be examined, this has been found to improve repeatability of results, as it helps

alignment of the sample within the frame. The test is extremely sensitive to fabric

misalignment. Misalignment causes either premature buckling or increasing tensile

loading of the tows, which due to their inextensibility subsequently dominate results.

The effects of tension on the fabric shear behaviour is of importance, for example in

forming utilising a blank-holder to hold the preform. Some research has indicated
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that tension can alter the shear behaviour of the textiles [60, 69, 32], such as increased

low angle shear resistance and increased locking angle. This might allow a challenging

part to be draped without wrinkles. Most tests did not however measure the change

in tension during shear, thus limiting the validity of the data. Launay et al. [32]

demonstrated that this varies significantly during shear, so that a single shear test

with a given pre-tension measures the shear response at different pre-tension for

different shear angles.

Another proposed solution to the generally low repeatability found in this test is

termed mechanical conditioning [10]. This proposes that the sample be sheared and

unsheared several times before test results are taken. Any misaligned tows in the

sample are pulled straight in the first few tests so that the recorded test concerns a

more predictably aligned sample. The results are indeed more repeatable, however, in

conditioning the sample the fabric no longer resembles that which comes off the roll,

and so its shear behaviour may no longer be representative of the material which

is actually formed. For example, after conditioning many fabrics exhibit thinner

tows with larger gaps, indicating some permanent compaction of the tows. Such

deformations are therefore no longer present in the recorded data, to the detriment

of its applicability.

2.2.1.4 Benchmarking

In an attempt to understand the differences between the different tests conducted by

different researchers, a web based forum (http://nwbenchmark.gtwebsolutions.com/)

was established to standardise and benchmark the international efforts to char-

acterise materials and simulate the forming processes. The aim of the material
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characterisation forum was to attempt to compare different shear tests to establish

normalisation strategies and better understand the factors that affect the results.

The work is presented by Gorczyca-Cole et al. [15] and compares the different

techniques used to conduct the picture frame test. The benchmark chose three tex-

tiles donated by Saint-Gobain to be tested - two of these, numbered 1 and 3 in

the benchmarking exercise, are the same fabrics tested, whose shear results are pre-

sented in Section 3.3.3 and Section 3.4.5. These were all dry, commingled fibreglass-

polypropylene woven-composite materials. In order to compare the results from

different picture frame sizes and setups, it was necessary to present the results in

such a way that they were independent of sample size.

Early work on the relationship between shear force and sample size suggested

that shear force should be normalised by sample area [59]. This was later modified

by Harrison et al. [18], who suggested that shear energy should be normalised by

sample area, and showed that if this was the case then the shear force should be

normalised by the sample side length. Peng et al. [50] developed this work to account

for samples whose central shear area is substantially less than the picture frame side

length, where their normalisation formula simplified to Harrison et al.’s in the case

where the central shear region side length is equal to the picture frame side length.

Peng et al.’s work is relevant for picture frame tests where the unclamped tows in

the tabs are removed: However, where only the tow at the edge of the central shear

region is removed, or where no tows are removed, the tabs between the central shear

region and the picture frame clamps also shear, albeit under different boundary

conditions. In these cases the shear contribution of the tabs should be allowed for,

and the normalisation length should be equal to the square root of the area of fabric



23

inside the picture frame clamps.

Gorczyca-Cole et al. [15] compared the results from different tests around the

world normalised both by fabric area and according to Peng et al.’s technique. Whilst

agreement improved after normalisation, there was still a wide amount of scatter be-

tween different tests. The normalisations did not account for the differences between

those tests that removed tows from the tabs and those that did not. Furthermore,

the differences in boundary conditions were not taken into account. Some of the tests

were placed into the frames under tension, whilst some were not. One test rig had

the facility to measure and vary the tension during shear. Clamping arrangements

varied, as did actuation. Some experiments mechanically conditioned the material

before the test by shearing and un-shearing it a few times. Whilst this substantially

improves repeatability, the material that is tested can be visually seen to be differ-

ent to the virgin material. This shows that the picture frame test is very sensitive

to differences in the testing conditions. This is further borne out in the difficulties

in achieving repeatable results in the same picture frame by the same researcher.

Nevertheless, it is important that techniques for normalisation of results continue to

be developed in order to facilitate the comparison of different tests. This allows the

effects of other factors on the test results to be explored and understood.

2.2.1.5 Discussion on experimental data

Typically, shear measurements find a number of factors that affect the shear resis-

tance of dry textiles:

• Weave pattern strongly affects shear compliance [60]. Patterns that induce

large amounts of tow crimp, such as plain weave, show less shear compliance,
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whereas patterns with very little crimp, such as some satin weaves, show much

greater shear compliance.

• Due to their uncrimped nature, biaxial non-crimp fabrics exhibit very low shear

resistance. The presence of the stitching can cause them to preferentially shear

in one direction.

• Greater fibre density increases shear resistance.

• Greater shear resistance usually translates to a smaller locking angle.

2.2.2 Modelling approaches

The shear deformation of textiles is key to understanding their forming behaviour.

As in the modelling approaches to forming, the meso-mechanical shear deforma-

tion of textiles falls into two categories: idealised empirical modelling; and Finite

Element modelling. Finite Element approaches provide an important facet to the

understanding of textile shear, but even these need an understanding of the underly-

ing mechanisms involved to model the textile behaviour correctly. The FE approach

to shear modelling is still in its early stages and suffers from deficiencies such as

difficulties in modelling large deformations and appropriate tow compressive stiff-

ness [58, 3]. As a result, the material behaviour is approached from an idealised,

constitutive modelling approach herein.

2.2.2.1 Meso-mechanical deformation modelling

In order to model the shear behaviour of a textile, the meso-mechanical processes

that facilitate and resist the shearing must be defined and understood. It is the
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interaction of all of these separate phenomena that results in the behaviour actu-

ally observed. Typically, empirical shear models have concentrated on the shear

behaviour of plain-weave fabrics. The primary deformation mechanism concentrated

on has been the frictional resistance experienced at tow cross-overs. Other factors

modelled have included the effects of tow tension, crimp, bending, compaction, and

torsion. However, these secondary effects have often been modelled to evaluate their

effects on the frictional forces experienced at the tow cross-overs. When considering

Non Crimp multiaxial Fabrics (NCFs), this will be shown to be an inappropriate

approach, so that an energy based approach, in which the energy contributions from

each of these effects are added irrespective of their significance.

Plain-weave tensile modelling

An important contribution to the understanding of textile deformation comes from

Kawabata [25, 26, 27], who presented his work in three parts, the first two of which

modelled biaxial and uniaxial deformation along the fibre direction. His models

introduced the saw-tooth approximation for plain weave tow paths, illustrated in

Figure 2.2. The first paper [25] introduced the interrelation between the tow contact

forces Fc at crossover and the tow tensile forces in the plane of the textile Fi where

both tow directions were subjected to tensile stresses. For the saw-toothed geometry

to maintain equilibrium, the contact force was given as

Fc = 2Fi cosφi (2.2)

where i referred to the warp and weft tows, and φi is the angle of crimp of the tows in

the saw-toothed model. Two resultant expressions were created from Equation 2.2,

for each of the two tows, and the equilibrium solution was determined graphically so
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Figure 2.2: The saw tooth model for a plain-weave crossover under biaxial loading.
The tows are illustrated in the unstressed (solid) and stressed (transparent) states.
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that these two were equal. The tension in the direction of the tows was subsequently

calculated as

Fi =
Fcεiy0i

4(hmi − hi)
(2.3)

where εi is the strain in the i direction, and hmi and hi represent the crimp amplitudes

for the i-direction tow before and after deformation, as illustrated in Figure 2.2.

Validation of this model was made using a biaxial tensile testing machine. Given

good experimental tensile and compaction data for the yarns, the model corresponded

closely with the biaxial measurements, particularly for higher stresses.

The second paper [26] allowed for the uniaxial stress scenario, where in order to

model the reaction of the tows in the unstressed direction a first order approximation

based on the bending and shear forces within the tow was created. The contact force

was determined as the sum of tow bending and shear forces,

Fc = Fcs + Fcb (2.4)

where Fcs is the tow shear force

Fcs =
2µfdf

l02

(
h2
dFc

dh2

+ Fc

)
(2.5)

and Fcb is the tow bending force

Fcb = 2nf
192EfIf

8l302

h2 (2.6)

Again, this work provided accurate results when compared to experimental tests for

higher stresses. It seems likely that in both the biaxial and the uniaxial models the

discrepancies at low stresses were a result of the lack of modelling for the lateral

compaction of the tow(s) under tension. Another possible effect not modelled is the

bending of the tow under tension.
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Plain-weave shear modelling

Whilst the fabric behaviour under tensile loads is of limited interest due to the

tendency to deform by shear, it is important that such behaviour is understood

in order to understand some of the meso-mechanical shear mechanisms. The third

paper by Kawabata [27] attempted to model the shear behaviour of the plain-weave

fabric by allowing the tows in the bi-axial saw-tooth model to rotate relative to each

other. The torque needed to rotate a crossover was approximated as

T = T0 + C1Fc + C2θ + C4Fcθ (2.7)

where C1, C2, and C4 were derived from shear measurement apparatus. Not sur-

prisingly, the results using Equation 2.7 showed good correlation with the model.

Kawabata did however propose a mechanical model for the torque required to shear

the fabric:

T =
2

3
µcr

Deff

2
Fc (2.8)

where µcr, the crossover frictional coefficient, was taken to be 0.3, Deff was the

effective diameter of a circular crossover area with diameter equal to the width of

the tow, and Fc was calculated using Equation 2.2. This value was noted to be

similar to the C1 values measured for Equation 2.7, so that C2 and C4 were thought

to be due to elastic effects in the contact region.

In another early approach to modelling shear resistance, Skelton [59] hypothesised

that the shear stiffness can be related to the area normalised shear torque:

S =
T/A

θs

(2.9)
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where T in the torque required to shear a sample of area A by an angle of θs degrees.

By defining shear torque as

T ≈ µcrFcDeff

2
(2.10)

where µcr = 0.3 is the crossover frictional constant, Deff is the effective radius of

rotation for an elliptical crossover contact area of dimensions a in the minor axis and

b in the major so that

Deff =

√
a2 + b2

2
(2.11)

and Fc is related to the flexural rigidity of the yarn, By

Fc ≈
8By sinψ

Ts

(2.12)

This pointed to the relative contribution of shear deformation in a textile, as the

model, although incomplete, suggested that shear strain could be many orders of

magnitude greater than the tensile strain at similar stresses. Skelton demonstrated

this with experimental data comparing low angle shear stiffness for polymeric fibre

textiles to that of metallic sheet materials, which supported the findings. Most work

on textile deformation relies on this phenomenon.

Skelton [59], with further work by Prodromou and Chen [54], also proposed a

simple prediction for the textile locking angle from the initial values for tow spacing

and width:

cos θli =
Ts

Tw

(2.13)

where Ts is the tow spacing and Tw is the width of the tow. This suggests that

the locking angle occurs when adjacent tows contact each other. The prediction
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of the locking angle is important, as it is often used as a factor in predicting the

onset of wrinkling. However, later work by Souter [60] found that whilst visual

observations of experiments confirmed that the textile locked soon after adjacent

tows came into contact, this consistently occurred at a greater shear angle than

predicted by Equation 2.13. This might suggest that the tows may compact in-plane

prior to coming in contact with each other, possibly due to the crimping effect of

the crossover tows, or perhaps due to a strong increase in in-plane tension near

locking angle [32]. Souter’s work in shear modelling, however, modelled the tows as

compacting after contact, and specific experiments to validate this showed no tow

compaction prior to contact. More work is required in assessing the sources of tow

compaction in different weave structures, as well as different textiles.

Another model based on the saw tooth model was by Leaf et al. [34]. The tensile,

compressive and bending strain energies of the yarns were modelled in order to

predict the initial tensile behaviour of the textile, based on Castigliano’s theorem.

In a further paper, Leaf et al. [35] attempted to model plain-weave bending, again

using Castigliano’s theorem. The approach essentially derived an empirical formula,

for which constants related to the contact geometry were altered to fit experimental

data. This did however highlight the importance of the yarn geometry, in particular

at the contact regions. Leaf et al. also attempted to model shear behaviour for

a plain-weave textile [33], but by constraining the rotation of the tows around the

crossover, so that shear was resisted by the tow bending. The ends of the tows were

modelled as free ends of a cantilever beam constrained at the crossover, such that

the shear angle θ was related to the end deflection δi and the free fibre length aci,
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where i once again refers to warp and weft, as

tan
θ

2
=

δi
aci

(2.14)

This approach required two fitting parameters to model the initial shear modulus,

although these were refined to just one later. The fitting parameter proved to be

constant for every (apparel) textile tested, although it was acknowledged that more

yarn types needed to be tested before a universal fitting constant could be declared.

McBride [45] built on these increasingly complex unit cell description by mod-

elling the yarn geometry in a plain-weave fabric during shear with sinusoidal curves,

the coefficients of which were determined from the tow width, spacing, and textile

thickness. The model was specifically aimed at predicting shear behaviour. Textile

thickness was taken to be constant, as was confirmed from experimental measure-

ments. Similarly, tow spacing was assumed to remain constant. The variation of

tow width with shear was measured experimentally and an equation constructed to

fit the measurements. His model produced good correlation with measured data,

however, much of the data, such as the variation of tow width with shear angle,

required experimental input. McBride’s model made good progress in modelling a

more realistic unit cell geometry, however the nature of the geometric description

restricts his model to plain weave fabrics.

It should be noted that while most work agrees that the thickness of textiles re-

mains relatively constant, some does not. Kutz measured the variation of thickness of

textiles under a blank-holder before and after partial deformation over a hemispher-

ical tool [29]. This was made in response to findings that the use of a single-piece

blank-holder caused the textile to pull more at some points than at others. Kutz
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observed that as the fabric sheared in some places but not others, it must thicken at

those and experience a greater blank-holder resistance than elsewehere. His findings

showed that both non-crimp fabrics and woven textiles showed a thickness increase,

of up to 9% in some cases.

One factor in the uncertainty over the variation of fabric thickness with shear is

the different approaches to measuring it. While Kutz measured the displacement of

a blank-holder during one-sided forming around a hemisphere, McBride [45] used a

light block resting on the sheared textile, and Souter [60] painted a sheared textile

in resin, and cast cross-sections in potting resin for measurements. The latter two

tests did however agree that woven textiles maintain relatively constant thicknesses

until they approach the locking angle. Kutz has suggested that thickness does not

become a factor until the tows approach their compaction limits. As his blank-holder

approach measures the thickness of the thickest (by inference, the most sheared)

sections of the textiles around the circumference, it is thus more likely to record

thickness variation at higher angles. Moreover, it does not specify the angle at

which the thickness is measured. However, one aspect of his results that may be of

interest is the variation of thicknesses at different blank-holder pressures.

This highlights an important difference of boundary conditions between the ex-

perimental shear tests and the shear deformation in a forming operation. In press or

vacuum forming, the textile must deform under pressure on its faces, a factor that

cannot be replicated by any of the shear test methods.
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Generic weave shear models

Souter [60] expanded the work of McBride by extending the geometric description

to weave patterns other than the plain-weave, and by similarly using the geomet-

ric description for these weave patterns as a basis for a mechanical shearing model.

Souter’s approach modelled the unit cell tow paths using a lenticular basis, in which

crimp is defined by sections of circular arcs and straight segments. This allowed

him to geometrically model unit cells other than plain-weave. He also took a much

more sophisticated approach to defining tow cross-section, allowing it to vary along

the tow length depending on its contact with other tows and the crimp structure.

He maintained constant tow height and crimp angle, after taking experimental mea-

surements that confirmed previous findings that textiles maintain relatively constant

thickness up to the locking angle. Souter maintained constant tow width up to the

point at which adjacent tows came into contact, after which he varied tow width with

the cosine of the shear angle (see Equation 2.13) This corresponded very well to ex-

perimental measurements taken of a plain weave glass reinforcement. By balancing

the flexural stiffness of the tow fibres with the compaction stresses, Souter found a

way to predict the initial textile thickness. This did not correspond to experimental

measurements and was not reflected in his geometric models, but was used solely to

allow him to develop a value for the contact force at the crossover.

The description of tow path, cross-sectional shape, width and thickness, allowed

Souter to determine the effective radius of rotation for each crossover in the unit

cell, similar to Kawabata’s concept [27]. It also allowed Souter to calculate the

compaction of the tow at the crossover (see Section 2.2.2.2, below), from which he

could calculate the force applied over the parallelogram crossover area. The shear
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forces predicted corresponded well to measured values for a number of different weave

structures including plain weave, 4 harness satin weave, and 2:2 twill weave [60].

Souter’s shear model was specifically developed for woven textiles, and could

not model other structures such as 3D textiles or non-crimp fabrics. The lateral

compaction model was used to determine the crossover contact force for frictional

resistance, rather than being modelled as a source of shear resistance in and of itself.

However, the model corresponded well with experimental results, suggesting that

compaction as a direct shear effect is less significant in woven fabrics. Moreover, the

effects of tow tension on crossover friction and compaction was only briefly alluded

to. The effects of the stitch on non-crimp fabrics were discussed but not modelled.

It was suggested that lateral tow compaction may have more influence on shear

behaviour for non-crimp fabrics than for woven fabrics, but this was not explored.

A similar model to Souter’s was developed by Lomov and Verpoest [37] that

took account of a more comprehensive list of mechanical effects. This included

tow tension, friction, bending (and unbending) vertical and lateral compression,

torsion, and vertical displacement. Lomov’s model exhibited good agreement with

experimental data for woven fabrics, although it required extensive measurements

of tow mechanical properties. Creech and Pickett [11] presented FE simulations of

non-crimp fabrics based on meso-mechanical work presented by Long et al. [43], but

using solid orthotropic elements to model the tows and beam elements with zero

compressive stiffness to model the stitches. The material properties were tuned to

provide good agreement with experimental data for picture frame and bias extension

tests.
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2.2.2.2 Compaction modelling

A vital part of modelling the shear behaviour of fabrics is the tow compaction be-

haviour. Tow compaction behaviour is affected by many factors, including the con-

stituent fibre materials, crimp and twist. As in shear modelling, there are three

common approaches to predicting tow compaction:

• Empirical models - these attempt to fit empirical equations to the compaction

curves [56];

• Mechanical models - these attempt to model the behaviour of the constituent

fibres, using mechanical and / or statistical equations to relate the fibre defor-

mations to the tow deformations;

• FE models - as above, but fibre deformations and interactions are modelled

using a finite element approach [58].

The compaction models covered herein mostly treat the fibres within the tows as

beams which are forced to deform in compaction through their contact with other

fibres [67].

Early work attempted to model a random fibre assembly for the compressibility

of wool as fibres in Kirchoff bending. Van Wyk [67] proposed

σb =
KEfm

3

ρ3
f

(
1

V 3
f

− 1

V 3
0

)
(2.15)

Where K was experimentally determined, Ef is the Young’s modulus of the fibres,

m is the mass of fibres in the fibre bundle, ρf is the density of the fibre bundle, Vf is

the fibre volume fraction, and V0 is the minimum volume fraction of the fibre bundle.
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Further work treated the fibre assembly as a set of fibre sections, the section

length being determined by the probability of contact with other fibres. Komori

et al. [28] concentrated on the distribution of fibre contact points, by modelling

the fibres as straight cylinder segments of diameter df and length λ, with distance

between points of contact b. A distribution function, Ω(θ, φ), was developed to

predict the orientation of a segment. Fibre contact was treated statistically, so that

a volume was defined such that there was 100% probability of contact between two

fibres of orientation (θ, φ) and (θ′, φ′) with a randomly distributed centre of mass.

The probability of the fibres contacting in a volume V , then, is given as

p =
v′

V
=

2dfλ
2 sinχ

V
(2.16)

where χ is the angle between the two fibres. This allowed mean b values to be derived

b =
V

2dfLIc
(2.17)

where

Ic =

∫ π

0

dθ

∫ π

0

dφJ(θ, φ)Ω(θ, φ) sin θ (2.18)

and

J(θ, φ) =

∫ π

0

dθ′
∫ π

0

dφ′Ω(θ′, φ′) sinχ(θ, φ, θ′, φ′) sin(θ′) (2.19)

Lee and Lee [36] used this to calculate the initial compressive moduli and Pois-

son’s ratios for the fibre assembly. To do this the fibre geometry was analysed in

each of the principal directions, to develop an expression for the projected mean free

fibre lengths in each direction. The force transmitted through each contact point was
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calculated along the direction of each of the principal axes. No allowance was made

for the formation of new contact points (hence the initial moduli etc.). This allowed

the fibre segments to be treated similarly to Van Wyk, as simple beams bending

with free ends. The deformation δjk of each fibre segment allowed the deformation

of the fibre bundle to be defined as

δ̄jk = ± 2Cjb
3

3EfIf
Mjk(+; j 6= k,−; j = k) (2.20)

where Mij accounts for the stresses and deformations projected along each of the

principal axes.

Pan and Carnaby [48, 49] modified the work using beams with constrained ends,

ensuring continuity of curvature along fibre segments. Thus,

δ̄jk = ± Cjb
3

6EfIf
Mjk (2.21)

They then extended the work to model the compressive hysteresis of fibre bundles [9],

by considering the inter-fibre slip during compression. The friction between fibres

due to relative motion during compression allowed a critical angle of the contact

force, relative to the normal to the contact points, above which slipping occurs.

The use of a fibre distribution function Ω means that in theory any fibre assem-

bly could be modelled. However, such a model for aligned fibres has not yet been

developed. Instead, Cai and Gutowski [8] developed a model specifically aimed at

(lubricated) aligned fibre assemblies. In many ways it is cruder and makes more

assumptions than other models, but work by McBride [45] adapted the technique

to dry fibre bundles and fit the resulting curve extremely well to experimental data.

The ease of implementation, the good fit to experimental data, and the availability

of fit parameters make this a useful model for the purposes of this thesis.
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Rather than straight beams, the fibres were modelled as simple arches, illustrated

in Figure 2.3, with a single contact point at the apex of the arch. Thus the length
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Figure 2.3: Cai and Gutowski modelled a fibre as an arch, under a centre point load,
with applied moments and axial end loads.

to height ratio of the arches determined the number of contact points in the bundle.

The deflection of the arch in the x and y directions were evaluated using beam theory:
∆x

∆y

 =


(

a2b

8EfIf
+

b

EfAF

)(
− ab2

4π2EfIf

)
(
− ab2

4π2EfIf

)(
b3

192EfIf

)


Px

Py

 (2.22)

The fibre was assumed to occupy a cell volume a2 × b (Figure 2.4), with the

lengthways stress acting on the end faces and the so-called bulk stress acting on the

other faces. The forces Px and Py could thus be related to the axial stress along the

fibre length and the compressive stress lateral to the fibre assembly respectively, and

similarly for the strains. Given then the volume fraction Vf , the minimum volume

fraction (at zero bulk stress) V0, the maximum volume fraction Va, and the ratio of

a to b, β, the lateral, or bulk, strain, was defined as

εb = 1−
√
Vf

V0

(2.23)
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Figure 2.4: Conversion of fibre stresses to bulk tow stresses require a cell to be
constructed around the fibre.

and a compliance matrix could be determined
εl

εb

 =

 BllBlb

BblBbb



σl

σb

 (2.24)

Bll, Bbl = Blb, and Bbb are defined as

Bll =
4

πEf

ζ2
[
1 + 2(ζ − 1)2

]
(2.25)

Bbl = Blb = − 16β2

π3Ef

ζ(ζ − 1)3 (2.26)

Bbb =
ζ4

3πEf

(ζ − 1)4 (2.27)

and

ζ =

√
Va

Vf

(2.28)

McBride developed this model into a sixth order compliance matrix, and tested

it against many different load cases, allowing him to derive accurate values for the
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fit parameters. One load case for the smaller compliance matrix of interest to shear

is that of zero axial strain

σb =
εbBll

BbbBll −B2
bl

(2.29)

2.2.3 Discussion

The ideas for shear mechanisms that were initially formulated by Skelton and others

have developed to become fairly accurate shear prediction tools for woven textiles.

The effects encountered in non-crimp fabrics, however, have not yet been modelled.

As a consequence, only the effects of crossover shear have been modelled so far,

despite indications that other factors may become more important in different textile

structures and towards the extremes of woven shear. The next steps to a more

complete shear resistance model, therefore, are proposed to be to identify other

shear resistance mechanisms, and to allow them to be added to shear models by

taking an energy based approach.

2.3 Forming modelling for resin transfer moulding (RTM)

The formed state of continuous fibre textile reinforcement is important in many

different ways:

• It allows an accurate blank shape to be predicted. This helps in automated

cutting systems and textile scrap minimisation.

• It may predict wrinkles, allowing challenging geometric features to be assessed

early on in the design process, and altered if necessary.
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• It may allow the lay-up or forming process to be optimised, reducing or elimi-

nating defects such as wrinkles.

• It facilitates accurate resin flow modelling [39]. Textiles can allow resin to pref-

erentially flow in some directions. Also, the variation in fibre volume fraction

around the part caused by the varied deformation creates potential dry spots.

• It allows for more accurate mechanical analysis of the formed part [12]. The

mechanical response of composites is substantially weaker normal to the fibre

direction. Thus, the weakest tensile direction at any point is along the greatest

angle from any fibres (45◦ in the case of two, orthogonal fibre directions). Thus,

the prediction of the direction of the fibres along the formed parts forms an

important factor in the design performance of that part.

Forming simulations have generally taken two approaches. The first, termed kine-

matic analysis, is typically fast and requires minimal user input for results. However,

it does not make allowances for the shear characteristics of the textiles being used,

or for manufacturing conditions. This range of characteristics make it very useful

for early design stages, when fast solutions allow initial design decisions to be made.

Such approaches can provide very accurate solutions for hand lay-up of fabric or

prepreg.

The second approach is a full Finite Element solution of the proposed process.

These model the entire physical sequence of events during the draping of the part

over the tool, modelling the textile according to its characteristics and allowing for

effects such as bridging (where the textile runs clear of the tool between two high

points) and process effects such as those created by blank holders. However, these
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tools require a large amount of computational power, not to mention user training

and experience. They are very dependant on accurate process description, which can

require extensive data on material characteristics. These factors make it suitable for

final design validation steps, where most design decisions have been taken, few further

design iterations are required, and accurate results become more vital.

Note that for simple geometries with shear-symmetric textiles kinematic and FE

analyses produce the same geometric results.

2.3.1 Empirical modelling approaches

The first attempts to model textile forming took an empirical approach over surfaces

of revolution [44]. They suggested that threads be treated as straight and inextensi-

ble, pivoting around crossover points with no slippage. Further, each crossover is in

contact with the geometry, whose smallest radius of curvature is larger than the yarn

spacing. These assumptions have proved to be the basis for all subsequent so-called

“Pin-Jointed Net” approaches [53, 55, 41]. It should be pointed out that whilst they

claim to be more physically appropriate, many mechanical finite element approaches

also make some of these assumptions.

Robertson et al. [55] applied this concept to a hemisphere. Due to symmetry,

he modelled only one quadrant, with the warp and weft tows constrained to the

edge of the quadrant. Solving the intersection of the geometry and two spheres with

radius equal to the fibre spacing, he found that all other nodes (crossovers) on the

PJN could be calculated. Comparisons with experimental results for the draping

of a woven cloth on a hemisphere were favourable. Van West [66, 65] extended

this approach to any geometry that can be represented as a collection of bicubic
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patches. At this point the limitations of the approach became apparent. These are

related to the assumptions stated above, regarding tow slippage, surface radii, etc.

Another problem presented itself, the placement of the initial “generator paths”.

The placement of these had been obvious in the hemisphere problem, but was now

less so for generic geometries.

Many people have proposed largely similar solutions for kinematic drape algo-

rithms over generic geometries, including several commercial offerings. One other

example was Long et al. [41], who modelled the drape over a surface comprised of

flat elements, which provided a particularly fast calculation procedure.

2.3.2 Modified kinematic modelling approaches

With generic geometries, two geometric path placement options emerged: Projection,

and geodesics. In projection, the paths were placed so that when viewed from directly

above they followed a straight line at 90◦ to each other. In geodesics, the shortest

distance between two points on a surface was calculated. This ensured that at the

generator paths the tensile forces acted directly along the tow - this was shown to

improve accuracy in many cases [63, 64].

Other path placement options were explored, that tried to be more sensitive to

the process occurring. Bergsma [1] offered an iterative scheme whereby the position

of generator paths were set to minimise the change in surface area from flat to

draped sheet. Bergsma concluded that whilst projecting the paths provided a quick

and accurate prediction for axi-symmetric parts, for others the shear minimisation

approach should be utilised.

Ye and Daghyani [70], rather than minimising shear, minimised shear energy.
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They took Kawabata’s [27] expression for torque required to rotate a crossover,

and integrated it with respect to shear angle to obtain a shear energy (similar to

Equation 4.14). Although Ye and Deghyani’s torque model did not reflect any real

reinforcement, their approach suggested a method by which real textiles could be

modelled within the kinematic frame.

Souter [60] took this idea further, by measuring actual shear torques for tex-

tiles and using these as the basis for an energy minimisation algorithm based on

Long’s [41] kinematic code. This allowed Souter to model asymmetric drape effects

encountered when using certain non-crimp fabrics [42].

Lai and Young [30] tried to modify the kinematic procedure to account for inter-

yarn slip. The process first predicted a kinematic drape pattern. The in-plane

bending at each crossover was then calculated. At nodes of high bending angle, the

in-plane radius of curvature was calculated so that the bending angle was smoothed

out over adjacent nodes. This minimised large changes in shear angle, which corre-

sponds to Wang et al.’s finding that significant slip was found where there was a large

change in shear angle [68]. An iterative process is then used to determine the fibre

spacings at which the in-plane bending angles match the smoothed out set. Results

corresponded well to experiments using very loose plain weaves, in which inter-yarn

slip could be reliably measured. Comparisons to tighter weaves were not made.

2.3.3 Finite element modelling approaches

As discussed before, FE simulations were primarily introduced to model effects ne-

glected in the kinematic approach. These included the interactions between the tools

and the material, rate effects, and non shear textile deformations such as slip and
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buckling. Because they could model this, these tools proved particularly useful for

prepreg modelling, in which rate, temperature, and pressure are all important. As

this thesis concentrates on dry fabric forming, this work will not be covered in detail.

In modelling the stresses experienced by the textile during the forming process,

accurate deformation mechanics must be included into the elements. Several ap-

proaches to replicate the behaviour of textiles in contrast to isotropic materials have

been proposed.

Bergsma [1] modelled the textile as a collection of one-dimensional beams that

deform by shear, stretching and buckling only. His approach allowed wrinkling to be

predicted, although not yarn slip. Results against a single geometry corresponded

well to experimental results.

Boisse et al. [4] tested a textile on a biaxial tensile testing machine, and used

the data in a fabric model for a non-linear finite element analysis. The textile was

allowed to shear but shear properties were not modelled as they were several factors

lower than the tensile moduli. This predicted fibre patterns adequately, but in order

to accurately predict fibre buckling (wrinkling), it was found that shear data became

important [6].

Blanlot [2] presented a finite element formulation based on constitutive equations

formulated to an objective rigid-body rotation frame. This allowed the textile to

be modelled by, after each incremental deformation step, updating the principal

directions of strain to correspond to the directions of warp and weft yarns.

Bergsma and Boisse, together with many since such as Yu et al. [71], have consis-

tently found that increasing blank-holder force improves the draping of the textiles.

Yu et al. aimed to allow for the assymetric shear behaviour of non-crimp fabrics and
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also the effects of blank-holder on forming. He adapted a tensile model originally

developed for woven fabrics, and added a shear stiffness constitutive equation devel-

oped from experimental shear data to successfully demonstrate the shear asymmetry

observed with this material on a hemisphere, and the reduction of that effect with

increased blank-holder forces.

Increased complexity in the FE model should be treated with care, however.

DeLuca et al. [14] modelled specialised viscous-friction and contact constraints as

separate layers. The increase in the degrees of freedom associated with the number

of layers modelled led to huge FE overheads. Lamers et al. [31] simplified this

approach and modelled the various effects in a single element layer, incleding friction

between layers.

2.3.4 Forming implications from drape models

Whilst all drape models have aimed to predict the draped pattern in advance, the

variety of modelling approaches has highlighted the vast number of possible drape

patterns available on any given geometry. Considering the kinematic approaches,

the result depends on the point of initial drape, together with the path plotted

for each generator tow. The shear energy minimisation path placement approaches

recognise that some shear distributions are less energetically favourable than others,

and favours the result requiring the least shear deformation energy. This seems

a reasonable strategy when modelling dry reinforcements that are automatically

draped, or are draped over simple geometries.

The shear angle minimisation approach, in contrast, aims to determine the drape

pattern least likely to wrinkle, regardless of the shear energy that might be required
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to achieve it. Hancock and Potter [16] first suggested a method by which forming

models could be used to inform processing to optimise the formed pattern according

to the shear angle minimisation approach for the hand lay-up of tacky pre-pregs.

The generic application of this principle would allow a pattern to be draped without

wrinkles even when the draping process to achieve it is not intuitive or shear energy

minimised.

The different deformation operations required to drape the material over the ge-

ometries were discussed, and categorised into four types: No manipulation, Warp

manipulation, Weft manipulation, and Bias manipulation. These four categories

correspond to areas where there is very little warp or weft in-plane curvature, sub-

stantially greater Weft than Warp in-plane curvature, or proportional amounts of

both Warp and Weft curvature respectively. An analysis of the geometry identi-

fied regions for which each of these manipulations were recommended to achieve the

required draped pattern. The in-plane curvature vectors were also used to create

a manipulation vector that allowed the different manipulation regions to be linked

sequentially to form an order of drape.

This work allowed a geometry to be moulded that had previously proved impos-

sible to mould both by diaphragm forming trials and hand lay-up. The basis of this

work is to show that modified kinematic models can be used to intelligently inform

forming methods to achieve acceptable results over challenging geometries. This

work, and subsequent work creating automated tools to generate the hand lay-up

instructions [17], has however concentrated on the specific (and challenging) case of

tacky pre-preg hand lay-up, which cannot move relative to the tool once it has been

applied. Similar work needs to follow on with suggestions on the control of auto-
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mated forming techniques to minimise wrinkling, and also to address the different

issues encountered with dry textiles.

2.3.5 Discussion

Kinematic, modified kinematic and mechanical approaches to drape simulations have

been proposed. Whilst Kinematic and mechanical approaches occupy very different

complementary niches in the design cycle, both leave much to be done when com-

pared to, for example, sheet metal forming models. Important mechanisms such as

shear and tensile stress responses have been modelled, and also blank-holder effects

and wrinkling in FE models. However, process and textile variability have yet to be

treated.

Modified kinematic models such as Souter’s energy minimising kinematic ap-

proach and Lai and Young’s fibre slip models are important in increasing under-

standing early in the design process. It would be advantageous to also have an

approach to modelling wrinkling or blank-holder effects in an equally simple and less

computationally intensive manner.



Chapter 3

Experimental Shear Characterisation of Fabric

Reinforcements

3.1 Introduction

Simulation of forming processes offers the potential to substantially reduce costs by

reducing the number of prototype iterations, performance tests and process revisions.

In order to accurately predict the response of the material to the forming process its

forming characteristics must be taken into account.

Experimental characterisation of technical fabrics for engineering composites has

two immediate purposes that are within the context of this thesis: To generate ma-

terial data for forming simulations, and for validation of material behaviour models.

Material behaviour models, in turn, are developed with a view to automatically gen-

erate material data for forming simulations. For this reason trellis shear deformation,

which is the dominant deformation mechanism in the textile preforming process, is

the focus both of the deformation models (which require validation) and material

input data.

Two such characterisation experiments, specifically designed for measurements

of large in-plane shear and wrinkling, include the picture frame (PF - see Section

2.2.1.2) and bias extension (BE - see Section 2.2.1.3) test methods. The original

concept behind these and other similar in-plane shear tests can be traced back to

49
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research in textile drape and fabric forming [13, 61, 62].

Table 3.1 outlines the materials tested in the line of this work. Results are pre-

sented later in this chapter, in Section 3.3.3 comparing the picture frame test at

different pre-tension, in Section 3.4.5 on the comparison of different bias extension

normalisation techniques, and in Section 3.5 on the comparison of the two test tech-

niques. Further results can be found in Appendix B, with additional test data in

Appendix C.

Table 3.1: Materials tested for shear response
Material name Material Description
Bentley mat1 E-glass ±30◦ non-crimp fabric, double stitched

with a (+1,0,-1,0) stitching pattern.
Bentley mat2 E-glass 3D E-glass woven fabric from 3Tex
EBXhd-936 E-glass 936gm−2, ±45◦ non-crimp fabric from

Vetrotex, with a tricot (+1,-1) stitching
pattern, 6-gauge, stitch length 2mm

FGE 106hd E-glass 950gm−2, ±45◦ non-crimp fabric from For-
max, with a tricot (+1,-1) stitching pat-
tern, 6-gauge, stitch length 2.5mm

FGE 106hd:1.65 E-glass 950gm−2, ±45◦ non-crimp fabric from
(special) Formax, with a tricot (+1,-1) stitching

pattern, stitch length 1.65mm
FGE 106hd:5 E-glass 950gm−2, ±45◦ non-crimp fabric from
(special) Formax, with a tricot (+1,-1) stitching

pattern, stitch length 5mm
TwintexTM 1 Co-mingled

E-glass/PP
1816gm−2 TwintexTM unbalanced 2/2
twill weave fabric from Vetrotex

TwintexTM 3 Co-mingled
E-glass/PP

743gm−2 TwintexTM balanced plain weave
fabric from Vetrotex
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3.2 Comparison of experiments

In order to be of generic use, material characteristics should be presented in such

a way that they only reflect the nature of the material. They should therefore be

independent of the test method, rate, sample dimensions, etc. Such data can be gen-

erated by the normalisation of an individual test’s raw output. The materials treated

in this thesis are non-viscous and therefore mostly independent of shear rate [46]. As

a result, it is unnecessary to normalise with respect to rate. Normalisation of data

depends on sample shape, size, shear distribution, and boundary conditions. Shear

distribution and boundary conditions are primarily affected by the test method,

whereas size and shape are factors that also affect same-method tests.

Picture frame experiments are simpler to normalise as compared to bias extension

as the entire sample undergoes uniform shear. Normalisation of bias extension test

data is complicated by the non-uniform strain profile occurring in the sample. One

method of avoiding this complication is to measure the strain field in a gauge section

of the deforming sample. This requires that tests are conducted on samples with a

length / width ratio greater than two. However, tests on such specimens can increase

difficulties associated with handling the fabric, particularly when dealing with loose

fabrics that tend to disintegrate easily. Large sample length / width ratios also mean

that edge effects [62] and intraply slip [20, 51] may become more significant and can

influence the deformation kinematics within a sample. Finally, use of a length /

width ratio of two can decrease the amount of material required for testing. For

these reasons, an alternative BE test normalisation procedure has been developed.

The main advantage of this method is that results from BE tests using samples with
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an initial length / width ratio of just two (or greater) can be treated. An analogous

normalisation method on shear rate dependent, pre-impregnated viscous continuous

fibre reinforced composite (CFRC) has been presented previously [18].

In the following sections, different normalisation procedures for each of picture

frame and bias extension tests are developed and discussed. Normalised results using

different methods are compared for bias extension, and finally normalised results from

different tests are also compared.

3.3 Picture frame experiments

3.3.1 Experimental method

The picture frame apparatus used for this thesis is illustrated in Figure 3.1, and is

typical for this test.
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Figure 3.1: The picture frame shear rig
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The apparatus is designed to impose pure trellis shear deformation onto the

sample. In order to do this, the inside edge of each clamping plate must be aligned

with the centre of the bearings at either end. Also the distance between bearing

centres must be equal for opposite clamping plates. For the purposes herein it will be

assumed that this distance, called the picture frame side length (Lpf in Figure 3.1),

is equal on all sides, so that when the faces are orthogonal the frame is square.

Finally, the frame sides must be aligned with the textile fibre directions. The sample

is fixed into the picture frame so that it cannot move relative to the frame. The

result of aligning the clamps with the fibre directions means that, for a ±30◦ textile

for example, the angle between the frame sides (2φpf , or 2φ) before deformation

(subscript 0 denotes initial, 2φ0) must be 60◦. Figure 3.2 shows a close up of the

picture frame with a textile clamped in and sheared.

Figure 3.2: Close up of picture frame with a textile clamped in and sheared.
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In the example presented herein, the side length of the picture frame was 145mm,

with as little of the corners cut out as possible, so that the central area had a side

length of 115mm. To ensure consistency the size of the samples was determined in

terms of the crossovers for woven textiles. Thus, a sample with 4 tows per cm would

be measured to have a central area 46 tows wide. This ensures that the cutting

follows the direction of the tows and any handling does not affect the alignment.

Initially, the EBXhd-936 non-crimp fabric was cut out using a stamp cutting die.

However, this proved hard to align with the fibre directions, as discussed later in

Section 3.3.3. Subsequently for FGE 106hd the dimensions were determined by

following the stitches with reference to the manufacturing data. Thus, to mark a

diagonal line on FGE 106hd, which has 6 stitches per inch in the weft direction and

a stitch length of 2.5mm, the line would follow 6 stitch spacings in the weft direction

for every 10 stitch lengths in the warp, which would constitute the 45◦ fibre direction

before handling.

The clamps are composed of ridged plates that are bolted to the picture frame

sides through three holes. Rubber strips on the inside of the clamping plates and

frame sides ensure that a good grip on the fabric is maintained (see Figure 3.3).

Tapered-ended bolts are used to minimise damage to the fibres when they were

inserted through the textile - the converse problem this causes is the potential re-

alignment of fibre angles as they are pushed around the bolt shanks.

The test is very sensitive to misalignment of the fibres within the picture frame.

A slight misalignment causes progressive compression or extension to be applied to

the fibres, causing premature wrinkling in the former case, and very high fibre tension

(due to their high modulus) in the latter. The fibres’ length-ways compressive, shear
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and extensive moduli differ by orders of magnitude, resulting in a large scatter where

exact alignment of the fibres cannot be assured. In order to minimise misalignment,

a pre-tensioning rig can be used, illustrated in Figure 3.3. This applies tension to the

 

 

 

Rubber
sheet Dry fabric

Picture frame clamping plate

Rubber sheet Applied torque

Pre-tension 
clamping plate
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Figure 3.3: Picture frame pre-tensioning device

fibres before they are clamped into the picture frame, aligning them with each other

and therefore making it easier to align them with the rig. The torque is applied

by hanging weights from an arm attached to the Pre-tensioning plate. The arm

position was adjusted to remain horizontal to ease torque calculations. Pre-tensions

were applied at four levels: 0N, 62N, 375N, and 1300N.

Note that textile misalignment in the pre-tensioner could result in uneven tension

in the tows, as well as limited improvement in alignment in the picture frame. It

is also important to remember that the tension applied before deformation does not

necessarily remain constant during shear.

The cross-head is extended in a line away from the diagonally opposite corner

of the rig, and the force exerted in that direction, F1 (see Figure 3.4), is recorded

against displacement, d1.
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The shear force is calculated using

Fs =
F1

2 cosφ
(3.1)

This is best plotted against shear angle,

θ = 2(φ0 − φ) (3.2)

Given the geometry of the picture frame, and presuming a square frame, the

cross-head displacement can be related to the picture frame6 φ:

d1 = 2L1 cosφ− 2L1 cosφ0 (3.3)

which, together with Equation 3.2, gives displacement in terms of shear angle,

d1 = 2L1

(
cos

(
φ0 −

θ

2

)
− cosφ0

)
(3.4)

or the shear angle in terms of displacement:

θ = 2

(
φ0 − arccos

(
cosφ0 +

d1

2L1

))
(3.5)

Using crosshead displacement in tensile tests often results in inaccurate results oc-

curring due to small amount of slip of the specimen in the jaws. This is not an issue

in the picture frame test as the frame is fully constrained within the machine, and

cannot slip. Issues of textile slipping within the frame are considered later in the

chapter.

3.3.2 Normalisation of results

A simple argument is used to justify normalisation of picture frame test results by the

side length of the picture frame rig. A similar argument was presented by Harrison

et al. [18, 19]. For clarity and in later sections, the derivation is repeated here.
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ḋ1
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ḋ2
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Figure 3.4: Two picture frame experiments with sample sizes L1 and L2.

Figure 3.4 shows two idealised picture frame experiments of the same material

with different sample side lengths L1 and L2. The power required to extend the

picture frame is:

Pi = Fiḋi (3.6)

where Fi is the measured extensive force for test i (i = 1 or 2 for the two tests in

Figure 3.4), and ḋi is the cross-head displacement rate.

Differentiating Equation 3.4 gives

ḋi = θ̇ sin

(
φ0 −

θ

2

)
Li (3.7)
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This can be re-written as

ḋi = k1Li (3.8)

where as long as the extension rate in tests 1 and 2 is such that their angular

shear rate θ̇ is the same, then k1 is the same in both tests,

k1 = θ̇ sin

(
φ0 −

θ

2

)
(3.9)

Substituting Equation 3.8 into Equation 3.6 gives

Pi = k1FiLi (3.10)

The material can be assumed to be relatively homogeneous (with respect to shape

and size of sample, rather than directionality of properties) if the sample size is at

least an order of magnitude larger than the material’s unit cell. Taking that assump-

tion, then, the power required to deform a given material at a given deformation and

deformation rate increases linearly with its initial volume. However, the thickness

of the material (regardless of its compressibility) at that same deformation state

can be assumed to be independent of the initial volume. Given these assumptions,

the power required to extend the picture frame at that deformation state increases

linearly with the initial sample area, which for a square sample is to say:

P ∝ V0 ∝ A0 ∝ L2 (3.11)

where V0 and A0 are the initial volume and area of material respectively. The

proportionality constant for this material, ψ, is the power normalised by initial area,

ψ =
Pi

A0

=
Pi

L2
i sin 2φ0

(3.12)
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and is a function of θ and θ̇.

Equation 3.12 can be substituted into Equation 3.10 to give

ψLi sin 2φ0 = k1Fi (3.13)

Defining a new constant k2

k2 =
k1

sin 2φ0

=

sin

(
φ0 −

θ

2

)
sin 2φ0

θ̇ (3.14)

allows Equation 3.13 to be rearranged to give

ψ

k2

=
Fi

Li

(3.15)

so that

F1

L1

=
ψ

k2

=
F2

L2

(3.16)

where ψ/k2 is a constant for the a given material at a given θ and θ̇. Given

that compressible material shear response tends to be rate independent, any two

picture frame tests for these materials can be compared according to this principle,

comparing F at any angle θ.

3.3.3 Results

Table 3.2 lists the fabrics tested with the picture frame. In the case of non-crimp

fabrics, the gauge refers to the spacing of the stitch, being the number of stitching

threads per inch. A (+1, -1) tricot stitch, following a terminology proposed by
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Souter [60], describes a stitch where the overlaps (see Section 4.3.1.1, and Figure 4.2),

extend diagonally one stitch spacing per stitch length, and then back.

Non-crimp fabrics exhibit different shear response depending on the direction of

shear. The reasons for this are explored in Chapter 4. It becomes necessary to define

directions of shear. Positive shear is defined as shear such that the fabric is extended

in the stitch direction, Negative shear being such that the fabric is extended normal

to the stitch direction.

Table 3.2: Materials tested for shear response according to the picture frame test
method

Material name Material Description
EBXhd-936 E-glass 936gm−2, ±45◦ non-crimp fabric from

Vetrotex, with a tricot (+1,-1) stitching
pattern, 6-gauge, stitch length 2mm

FGE 106hd E-glass 950gm−2, ±45◦ non-crimp fabric from For-
max, with a tricot (+1,-1) stitching pat-
tern, 6-gauge, stitch length 2.5mm

TwintexTM 1 Co-mingled
E-glass/PP

1816gm−2 TwintexTM unbalanced 2/2
twill weave fabric from Vetrotex

TwintexTM 3 Co-mingled
E-glass/PP

743gm−2 TwintexTM balanced plain weave
fabric from Vetrotex

The woven twintex fabrics in Figures 3.6 to 3.9 show a significant increase in

low angle shear force with pre-tension. This tendency has been indicated in past

work [70], although the poor repeatability of the test has made it difficult for others

to concur [60]. The possible sources for this increase include fibre bending at the

clamps [22], and increased inter-tow friction [60]. The latter source is supported by

the non-decisive difference that pre-tension seems to make in an non-crimp fabric

tested at different pre-tensions, as can be seen in Figures 3.10 and 3.11 , in which

high pre-tension seems to increase conformability for positive shear (Conformability
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is the ease with which a textile will conform to a shape with double curvature).

Section 4.3.2.2 will demonstrate that inter-tow friction is not significant in the shear

response of non-crimp fabrics, unlike in woven fabrics.

It is interesting to note the sudden spikes in the curves such as can be seen in the

highest pre-tension curve in Figure 3.11. These correspond to the breaking of the

stitching, a phenomenon that is observable during the test both visually and audibly.

In Chapter 4 the stitching is modelled until breaking point, however beyond that it

becomes difficult to predict how the material will behave. The curves show that

the tension in the stitching is not suddenly and catastrophically released, but that

friction retains the stitching in the fabric. As the fabric does not disintegrate on stitch

failure, and the stitch has no role in the mechanical behaviour of the composite, this

demonstrates that high shear leading to stitch failure is unlikely to be detrimental

to the component performance.

The results, particularly for the non-crimp fabrics, show a high degree of vari-

ability, this is one of the prime weaknesses of the picture frame test method. This is

particularly demonstrated in Figures 3.12 and 3.13 . Non-crimp fabrics in particular

are very difficult to align in a picture frame rig. This is because the tow directions

are not immediately apparent in many non-crimp fabrics. Figure 3.5 illustrates this

problem. The dashed line marks the apparent tow direction on the textile. To deter-

mine the actual tow direction, lines have been drawn across the textile, and then a

small bundle of fibres have been pulled. The points where the lines have shifted have

shown the actual fibre direction, which was marked in as a dot-dashed line. This

illusory tow direction is created by the stitching, which pierces the tows and creates

channels where the fibres have been re-routed. These channels appear to form lines
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Figure 3.5: Marked sample of FGE 106hd illustrating the difficulties in ascertaining
tow direction in a non-crimp fabric.

that mark the tow edges. However, their direction is determined by the stitch length

and spacing, which in this case is 2.5mm and 4.23mm respectively. As the tows are

laid at 45◦ to the stitch direction during manufacture, the channels from stitching

points closest to 45◦ with respect to each other appear to match up. In this case,

this is for channels that are two stitch lengths and one stitch width apart - however,

these create an apparent tow angle of almost 50◦. Added to this, the tension in the

stitch tends to shear the textile so that it is often loaded into the frame a few degrees

sheared, and the challenge in properly aligning the sample becomes readily apparent.

The effects of fibre misalignment manifest differently depending on the direction

of misalignment. If the initial fibre angles are greater than φ0 then the fibres will

undergo compressive strain during shear and the sample will wrinkle prematurely.

Where this occurred the test results were discarded and the misaligned shear response

has not been presented. Alternatively, if the initial fibre angles are less than φ0, the

fibres are placed under increasing tension during the test. This can not be observed
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visually, so that it is likely that despite best attempts to align the fibres in the frame,

some misaligned samples have been included in the results. The high modulus of

the fibres means that they cannot strain significantly enough under tension, and so

they feed through the picture frame clamp. The greatest amount of extension per

degree of shear in misaligned fibres occurs at the start of the test, so that the effect of

misalignment on the measured response can be expected to be greatest at the start

of the test. This may explain the hump observed in many picture frame results such

as those in Figure 3.13. As misaligned samples with lower shear force have already

been discarded due to premature wrinkling, it seems likely that the best results are

close to the bottom of the distribution.

The remaining picture frame test results can be found in Section B.1
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Figure 3.6: TwintexTM 1 at 0N pre-tension
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Figure 3.7: TwintexTM 1 at 375N pre-tension
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Figure 3.8: TwintexTM 3 at 0N pre-tension
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Figure 3.9: TwintexTM 3 at 375N pre-tension
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pre-tension=62N negative shear

pre-tension=375N negative shear

pre-tension=1300N negative shear

pre-tension=375N positive shear

pre-tension=1300N positive shear

Figure 3.10: Comparison of EBXhd-936 tested at different pre-tensions, at negative
and positive shear. Each curve is selected from 3 or 4 visually acceptable repeats,
except for at 62N pre-tension, for which only one test was conducted.
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Figure 3.11: Comparison of EBXhd-936 tested at different pre-tension, at negative
shear.
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Figure 3.12: EBXhd-936 at 1300N pre-tension, sheared in the positive direction,
demonstrating the large amount of scatter observed in testing non-crimp fabrics in
the picture frame.
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Figure 3.13: FGE 106hd at 1300N pre-tension, sheared in the negative direction,
demonstrating the large amount of scatter observed in testing non-crimp fabrics in
the picture frame.
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3.4 Bias extension experiments

3.4.1 Experimental method

In the bias extension test the sample is cut so that its Y-axis is at an angle φ0 to the

fibre angles - this is the bias direction. The bias extension test is commonly proposed

due to its improved repeatability compared to the picture frame test. This is because

it is much more impervious to sample angle misalignment than the picture frame test.

However, care must be taken with lengthways alignment, as this can cause a fairly

large apparent discrepancy in the curves, so that it is prudent to ensure that the

fabric is unsheared and the actual sample aspect ratio is recorded. Nonetheless, in

contrast to the effects of angle misalignment in the picture frame test, which causes

the test to record a combination of fabric shear and fibre extension or buckling, a

lengthways misalignment in bias extension tests causes a simple shift in the shear

response curves, so that ways of allowing for misalignment can be proposed.

Uniaxial test

An idealised uniaxial bias extension test is shown in Figure 3.14.

In order to induce shear deformation in orthogonal fabrics the sample dimension

ratio λ = h0/w0 must be greater than 1. If the sample ratio is less than this constraint

then some fibres will be clamped in both top and bottom clamps, placing them under

tension. However, the ratio is normally constrained to λ ≥ 2. This ensures that a

larger proportion of the sample is at uniform shear, and also that the sample allows

a reasonable amount of extension before full shear is reached. The illustrations in

Figure 3.14 separate the samples into different shear regions marked A, B, and C,

assuming idealised kinematics (i.e. pin-jointed behaviour):
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ḋ3

F3

a) Initial sample ratio λ < 2 b) Initial sample ratio λ = 2

    Initial 
c) sample λ > 2
    ratio

Figure 3.14: Idealised bias extension tests at different sample ratios, λ = h0/w0.
Each test is shown before extension (left) and after (right).
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A) shears similarly to material in picture frame test.

B) shears at a half the angle (and therefore half the rate) of material in A.

C) does not shear at all.

Considering that material in region A would reach locking angle first, it is desirable

for the bias extension response to be dominated by fabric deformation in region A.

The constraints λ > 1 or λ ≥ 2 have no relevance for non-orthogonal fabrics,

for which sample dimension constraints also depend on the initial fibre angle φ0. To

allow for this a φ0-dependant sample ratio parameter κ must be defined

κ = λ tanφ0 =
h0

w0

tanφ0 (3.17)

For the most common case where φ0 = 45◦, κ = λ, the sample aspect ratio. Thus,

for consistency, all bias extension sample ratios will be quoted in terms of κ rather

than λ.

The fabric ratio is subsequently constrained by κ > 1 or κ ≥ 2 for a material

with initial fibre angle 0◦ < φ0 < 90◦.

Given an ideal bias extension sample with initial fibre angle φ0 and κ ≥ 2, similar

to that in Figures 3.14 b and 3.14 c, geometric constraints allow the cross-head

displacement to be related to the shear angle:

d3 = 2(κ− 1)L3

(
cos

(
φ0 −

θ

2

)
− cosφ0

)
(3.18)

or the shear angle in terms of displacement:

θ = 2

(
φ0 − arccos

(
cosφ0 +

d3

2(κ− 1)L3

))
(3.19)
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Note that for κ = 2 these equations are equivalent to Equations 3.4 and 3.5 for

the picture frame. In practice, unlike the picture frame test, using the crosshead

displacement to calculate shear angle is likely to result in large errors, as the sample

is not so constrained and other deformation mechanisms such as slip in the grips,

tow slip, etc can dominate. It is therefore very important to directly measure the

actual shear deformation during the test.

Figure 3.15 shows the two pairs of clamps that were used in the bias extension

tests presented here. The first comprises of steel, serrated clamps which bolt together.

Samples of approximately 90mm width with 50mm high tabs were used in these

clamps - as for the picture frame, sample widths were determined by a fixed number

of crossovers for woven fabrics and a fixed number of stitch length or widths for non-

crimp fabrics. The tabs were inserted into the jaws with 10mm excess clear of the

edge, which subsequently fed into the jaws as they were closed, causing the clamped

fabric to crimp. It was found that using these clamps caused unnecessary difficulties

when the simpler pair were adequate for use in testing dry textiles.

The second pair of clamps used consisted of flat, rubber-lined faces which were

also bolted shut. This allowed easier clamping and release of the samples, as well as

bigger sample dimensions. Orthogonal materials tested in these jaws were approx-

imately 100mm wide, with 50mm tabs again. One material tested in these jaws,

however, is a ±30◦ non-crimp fabric, for which sample dimensions must be treated

with care. A 90mm wide sample at κ = 2 contains a central shear region A (Fig-

ure 3.14) with area a little over 4000mm2. From Equation 3.17, to test a ±30◦

sample at κ = 2 with a similar central shear area would require sample dimensions

of 70mm width and 242mm height in one shear direction, and 120mm width and
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139mm height in the other shear direction. The clamps would not hold a width

greater than 120mm.

Figure 3.15: The two clamp types that were used in the bias extension tests pre-
sented. Left are the rubber-lined faces, right are the serrated faces.

Biaxial test

Note that no biaxial tests are presented in this thesis. The method is presented here

for completeness only.

The gauge section in a bias extension test is defined as that part of the sample

which experiences uniform shear across the full width of the sample. For most fabrics

this is at ±45◦ to the fibre directions. The test can be carried out as either a uniaxial

test, or a biaxial test.

A biaxial bias extension test, like that illustrated in Figure 3.16, must have a

gauge section, so that its uniaxial-equivalent sample ratio parameter

κ =
wg

hg + 2htab

tanφ0 (3.20)

must be greater than two. In this case it is perhaps better to specify that the

test must have gauge dimensions wg > 0 and hg > 0. The tabs must then have
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Figure 3.16: A generalised biaxial bias extension test with κ = 3.

κtab ≥ 1, with the X-axis tabs having height hg and the Y-axis tabs having width

wg. In order to allow the material to shear without fibre slip, the Y-axis extension

should be geometrically matched to the X-axis extension (or vice-versa) according to

pin-jointed behaviour constraints. This, together with the relative rarity of bi-axial

testing machines, makes the test very difficult to perform, and it very rarely is. No

biaxial test results are presented in this thesis.

Otherwise the biaxial test is very similar to the uniaxial, and the equations for θ

and d3 hold. The displacement d3 in the biaxial bias extension test can be applied

in either the X or the Y axes, bearing in mind that Equation 3.19 will always return

a positive angle in the direction of d3.
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3.4.2 Assumptions and limitations

Several assumptions affect the validity of the method for measuring the trellis shear

response of the material. The method is only valid while the material deforms accord-

ing to idealised deformation. Deviation from the idealised pin-jointed deformation is

dependant on many factors including the material, the sample size and ratio. As a

result it is important to monitor the test for conformance. In order to do this, a dig-

ital video was taken of the tests and analysed using purpose-written code (described

in Section 3.4.3). There are several ways in which the deformation can deviate from

the idealised case.

Misalignment

Despite being relatively impervious to angular misalignment, the response is fairly

sensitive to any lengthways misalignment caused while clamping the sample, which

alters the sample aspect ratio. The same effect can be caused by any pre-shearing

of the material, so that the zero-shear sample ratio is different to the perceived ratio

cut out. Similar slack in generic tensile tests is often allowed for by setting a pre-load

in the test machine, so that data is not recorded until the measured load exceeds the

set pre-load. However, the low loads caused by fabric shear, the low gradient of the

curves at lower extensions, and a high ambient load “noise” at the start of the test

renders this method unsuitable. Such factors, however, should only cause a shift in

the curves rather than a change in their shape, so that the visual analysis can also

be used to allow for them.
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Fibre slip

At a point where shear deformation forces become too high, fibre slip sets in. The

transition from pure shear to pure slip deformation regimes is gradual, so that a

cut-off point has to be set after which the test is deemed non-ideal. This may a

good indicator, however, of the fabric locking angle, so that the angle at which the

deformation leaves ideal kinematics tends to tally well with the angle at which the

same fabric wrinkles in drape tests.

Fibre slip can occur both along the length of the tow and transverse. Lengthways

slip occurs due to tension overcoming the friction holding the tow in the textile. This

is not so much of an issue in woven fabrics, in which the crimp develops increasing

frictional resistance with increasing tension. Transverse slip occurs where the tow

under tension experiences a sudden change in angle. This effect has been modelled

in forming by Lai and Young [30], but applies equally in the bias extension test.

In essence, it is the result of the need for a compaction force to counter the net

transverse force caused by a bent tow under tension. In fact, the first form of slip

observable in many bias extension tests is exactly of this form, occurring around the

tip of the “C” areas, causing them to elongate. This can be observed in both samples

presented in Figure 3.15.

Non-ideal shear distribution

Finally, the fabric can deform by pure shear, and yet the shear distribution vary

from the ideal distribution. This may however cause an overall increase in predicted

shear deformation energy. Some factors that might cause a non-ideal shear distri-

bution include pre-shear due to handling, and other deformation energy factors not
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allowed for in the idealised case, such as fibre bending. To demonstrate this effect a

spreadsheet bias extension simulation has been created that allows the nodes along

the centre line in the central deformation region A to have varying separation. Some

results are shown in Figure 3.18.

In the spreadsheet the relative positions of all the nodes along the centre line

of region A (which runs along the bias direction) are manually set, as well as those

along the clamp edges. The relative node positions along the clamped edges remain

fixed, from which it becomes apparent that all the nodes in the top and bottom

regions C remain fixed in relation to each other (hence no shear can occur there).

However, the relative x and y positions of consecutive nodes along the centre line

of region A can be varied within the constraints of pure trellis shear — that the

node spacing along the fibre directions remains a constant. Given these nodes, then,

all remaining node positions can be calculated by geometric constraints. The entire

sample remains on the x-y plane, so that, given two adjacent node positions p̄0,n

and p̄0,n+2 on Figure 3.17, along the clamp edge or the centre line of region A, the

solution for the next node, being constrained to a distance snode from both p0,n and

p0,n+2, simplifies from the generic case to x

y


1,n+1

=
1

2

 x0,n + x0,n+2

y0,n+2 + y0,n

+
f1

2

 y0,n+2 − y0,n

x0,n − x0,n+2

 (3.21)

where f1 =

√
4s2

node

(y0,n − y0,n+2)2 + (x0,n − x0,n+2)2
− 1

Given the positions of the nodes along the clamp edges, which, with Equation 3.21

gives the nodes in region C, and also given the node positions along the centre line
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p0,n

p0,n2

p1,n1
snode

snode

Figure 3.17: Adjacent nodes on a 2D surface. The nodes on the left have been fixed,
and the node on the right is constrained to a distance of snode from those on the
left.

of region A, all other node positions can subsequently be calculated. The sum of the

y-axis separation of these centre nodes yields the total sample extension.

However, even this simple demonstration does not cover the possible scenarios

of pure-shear deviation from ideal deformation. There could for example be some

pre-shear (uniform or otherwise) in the sample before clamping, so that areas of

sheared material remain fixed in their sheared state in the regions C.

b) κ=2.5. Nodes 
along the centre 
of region A have 
had an x-axis 
perturbation 
added

a) κ=2. Nodes 
along the centre 
of region A 
have been 
distributed with 
uneven spacing 
along the y-
axis.

Figure 3.18: Two non-ideal pure shear bias extension test simulations, each before
(left) and after extension (right).
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3.4.3 Test monitoring

To measure the cut-off point for ideal kinematics, photographs can be taken peri-

odically through some tests. Prior to the test, the samples are marked along the

borders of the different shear regions A B and C, as well as a central cross - all lines

follow tow directions. The photographs are then analysed for central shear angle and

compared to expected shear angle. At a point at which measured shear angle differs

substantially from expected, the cut-off point for the shear test validity is set. The

maximum angle measured is indicative of the locking angle.

It was estimated that during the course of a test only about seven to ten pho-

tographs can be taken, which subsequently require laborious analysis to measure

the shear angle, measure the extension, and calculate the expected shear angle. To

improve on this process, for later tests a digital video was taken of the tests. C++

code was written to automatically analyse the shear angle and extension at each

frame, requiring only the original markings to be highlighted on the starting frame.

This gave a lot more information about the deformation field, as well as allowing

less errors when measuring extension and shear angle than when doing so by hand.

Finally, it also allows any initial pre-shearing of the sample to be corrected for.

Figure 3.19 illustrates the graphical user interface for the program, which was

based on the Microsoft R© Foundation Classes (MFC). The figure shows the program

analysing a black twintex sample with white markings, with the lines it tracks dis-

played in green, and the start, end and crossovers of the lines displayed as red crosses.

The use of the software is shown in the flow diagram in Figure 3.20. In all
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Figure 3.19: The user interface for the bias extension automated video analysis
software

results presented in this thesis, the test was analysed in every frame (25 frames per

second). It is important to note from Figure 3.19 that the lines’ starting and end

points can be anywhere. In the top crossover being tracked, they start and end

above the crossover, so that the crossover is outside the limits of the lines. In the

centre crossover, however, the line start and end points have been indicated so that

the crossover point is approximately half way along the limits. It would be just as

feasible to have the crossover point on one of the lines but beyond the other. It is

also important to note that the shear angle measured will vary depending on which

side of the crossover the lines are taken. To understand this, consider again the top

crossover indicated in Figure 3.19. The crossover is tracked twice: Once from the

two lines above, and once from the two lines below. As the two lines above the

crossover are on the edge of region C (using the notation introduced in Figure 3.14),
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they should record no shear during the test. However, the two lines below the same

crossover are on the edge of region A, and thus should measure the full theoretical

shear angle. If the two lines to the left or the right of the crossover had been tracked,

they should measure a half of the full theoretical shear angle.

yes

Analyse!
no

Load test.avi

Define start and end frames

Chose frame analysis 
frequency – (usually every 
frame)

Select marking colour: Red, 
Green, Blue, or “Generic”

New crossover? (Minimum 1)

Select start and end 
points of 2nd line of 
crossover

Select start and end 
points of 1st line of 
crossover

Figure 3.20: Flow diagram showing the user sequence for analysing a bias extension
video

The program tracks the crossovers indicated by the user according to the flow

diagram indicated in Figure 3.21. The figure explains how the line is found if it is

marked as being red, green, or blue. In the “Generic” choice, the program scans the

search line at each pixel twice: On the first scan it calculates an average value of red,

green, and blue; on the second, it finds the pixel for which the sum of the absolute

differences of the r, g and b values from the averages is greatest. Typically, each line

being tracked is between 20 and 50 pixels long, giving 20 to 50 search points. As

explained, the “search line” is set perpendicular to the most recent position of the
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line being tracked, and the pixel most like the line being tracked along the search line

is noted in what is essentially an edge finding algorithm. The resolution of the edge

finding algorithm is kept at a one pixel level, due to the existence of many “edges”

in the non uniform texture of most textiles. A new pixel to match the line definition

is stored for each pixel along the old line, and the new line is determined by a least

squares fit through the new points.

The output from the program is a series of three points for each crossover at each

frame number analysed.

The program writes to a tab delimited file, recording for each frame number anal-

ysed three coordinates (the farthest point on each line and the intersection) and a

shear angle for each crossover. This is pasted into a Microsoft R© Excel spreadsheet,

which allows a full analysis to be made of the bias extension test. Consider Fig-

ure 3.19. The top and bottom line pairs are at the edge of areas C, which will not

shear while the bias extension specimen deforms ideally. The top crossover, then,

initially extends at exactly the same rate as the test machine crosshead. A straight

line fit to the plot of this point against time (as calculated from frame number) allows

the spreadsheet to calculate two important values. The first, corresponding to the

intersection of the best fit line with the x-axis, allows the spreadsheet to determine

the test start point (the camera is activated before the test commences). The second,

corresponding to the gradient of the best fit line, when compared with the extension

rate of the test, allows the spreadsheet to accurately determine the scale of the video

in mm/pixel. As the scale is determined not from a single measurement but from

several tens or hundreds of data points, this should be a more reliable value than

that determined from placing a reference distance next to the test piece.
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Analyse first frame f=f
start

Analyse first line l=1

Search along a line perpendicular to 
line l at point px, from 0.25 of line 
length on one side to 0.25 of line 
length on the other, for the pixel with 
the greatest value of the search 
colour as compared to the other 
colours. Add to the data set

Analyse first pixel along line l: px=1

px=px+1

l=l+1

Fit a least squares line to the data set 
and clear data set

Find crossover point of two best fit 
lines. Recalculate the start and end 
points of the lines along best fit 
equations to maintain constant 
distance from the crossover point. 
Write crossover coordinates (in 
pixels) and point on each line furthest 
from crossover to output file. 

cr=cr+1

Analyse first crossover cr=1

f=f+Δf

no

yes

yes

END

Is f the last frame?

Is cr the last crossover?

      Is l=2?

Is px at end of line?

START

yes

yes

no

no

no

Figure 3.21: Flow diagram showing the sequence used by the program to keep track
of marked crossovers on a bias extension video. f denotes the current frame, cr the
current crossover, l the current line, px the current pixel along the line l, ∆f the
frame analysis frequency (see Figure 3.20)
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The spreadsheet can also of course calculate the local shear angle at each crossover,

and this value can be compared with the expected angle to determine the locking

angle of the textile, and how much of the test corresponds to pure and idealised

shear. Finally, the plot of the shear angle against extension allows one more factor

to be calculated. If the sample is at all pre-sheared through handling or due to its

own weight as it hangs vertically in the test machine, it can shift the curve a little

along the x-axis. Due to the shape of the shear curves, this can correspond to a very

large apparent unrepeatability in the measured shear response. The initial very low

load gradients also preclude the use of a set pre-load to match the curves. However,

any pre-shear can be noted in the measured vs expected shear angle curves as a shift

of the ideal linear portion. Thus, to correct for pre-shear, the x-intercept of a linear

fit of the measured vs expected shear angle curves can be used to shift the shear

force curves appropriately.

It is very important to measure and understand the limits of the bias extension

test in terms of shear deformation. Beyond the point at which measured shear sub-

stantially differs from idealised pin-jointed shear, the shear behaviour of the textiles

is no longer being measured. Instead, a combination of shear and slip is recorded.

Thus, the graphs are only valid as shear response curves up to the point at which

the ideal shear angle corresponds well to the actual shear angle. The shear response

graphs are presented against theoretical shear, which corresponds to the measured

shear for the valid proportion of the graph. It is however very important to remem-

ber that these graphs may not be valid shear response values beyond shear angles

substantially less than 70◦, depending on the material. The measured shear allows

the cut off point for shear response validity to be determined.
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3.4.4 Normalisation of results

Normalisation of results for a bias extension test is not as straight forward as that for

the picture frame. Bias extension tests with the same κ value but in a different scale

can be compared by dividing the extensive force by a characteristic length (say, L3 or

w0 in Figure 3.14c). However, the non-uniform shear distribution means that results

from different ratio tests or comparison with picture frame results requires more

careful treatment. Several approaches to a more robust bias extension normalisation

procedure are presented here. Because they all take different assumptions, it is

worthwhile to compare and contrast them. The relative merits of these approaches

to normalising bias extension data will be examined in Section 3.4.5 and discussed

in Section 3.5.

3.4.4.1 Energy normalisation method

Energy arguments similar to those developed for the picture frame test can also be

used to normalise the bias extension test. However, the more complex deformation

distribution in the bias extension test makes for a more involved analysis. In order

to normalise the bias extension test using energy arguments the energy contributions

from the different shear regions in the sample must be separately accounted for. The

approach is therefore only valid when the observed bias extension deformation is

similar to the idealised bias extension test.

First, geometric constraints reveal that, for κ ≥ 2 (Figure 3.14 c), the areas of

regions A and B are:

AA = L2
3(2κ− 3) sin 2φ (3.22)

AB = 2L2
3 sin(φ0 + φ) (3.23)
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so that the initial area ratio of the regions is:

AB(φ0) =

(
2

2κ− 3

)
AA(φ0) (3.24)

Also,

θB =
θA

2
(3.25)

where θA and θB are the shear angles in regions A and B respectively. [Where a

subscript is ommited for the bias extension test, the shear angle θ can be assumed

to be referring to that in the centre region A, θ = θA.] Differentiating Equation 3.25

gives the relative angular shear rates of the regions:

θ̇B =
θ̇A

2
(3.26)

Now the picture frame extensive power definition, Equation 3.6, is equally true

for the bias extension test. Differentiating Equation 3.18 gives ḋ3,

ḋ3 = θ̇ sin

(
φ0 −

θ

2

)
(κ− 1)Li (3.27)

so that the bias extension test equivalent to Equation 3.8 is:

ḋ3 = (κ− 1)k1L3 (3.28)

where k1 is defined in Equation 3.9. This leads to the equivalent to Equation 3.10:

P3 = (κ− 1)k1F3L3 (3.29)

The two-phase shear distribution of the bias extension test means that the shear

power relationship has two parts. Given Equation 3.12 for the material at a given

shear angle θ, and bearing in mind the amount of material in the different shear
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regions given in Equations 3.22 and 3.23 , the power for the bias extension sample

to deform can be written as

P3 = L2
3 sin 2φ0 ((2κ− 3)ψA(θ) + 2ψB(θ)) (3.30)

where ψA and ψB are the shear power per unit initial area for regions A and B

respectively (see Equation 3.12), and are functions of θ and θ̇.

Assuming that these power terms are directly proportional to the local shear

rates θ̇A and θ̇B, and given the relative shear angles and rates in regions A and B in

Equations 3.25 and 3.26 , ψB evaluated at (θ) can be related to ψA at
(

θ
2

)
:

ψB(θ) =
ψA(θ/2)

2
(3.31)

Substituting Equation 3.31 into 3.30 gives

P3 = L2
3 sin 2φ0((2κ− 3)ψA(θ) + ψA(θ/2)) (3.32)

and equating this P3 with Equation 3.29 and rearranging gives

ψA

k2

=
κ− 1

2κ− 3

F3

L3

− ψA(θ/2)

(2κ− 3)k2

(3.33)

where the left hand side is the same as that in Equation 3.16 — the normalised force.

Note, however, that the right hand side of the equation includes the normalised force

at θ/2, so that in order to calculate the normalised force an iterative scheme must

be followed.

The iterative scheme proposed is very simple. An initial approximation for ψA is

taken as

(ψA(θ))i=0 =
κ− 1

2κ− 3

k2F3

L3

(3.34)
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This can be used to evaluate subsequent iterations

(ψA(θ))n+1 =
κ− 1

2κ− 3

k2F3

L3

−
(
ψA

(
θ
2

))
n

(2κ− 3)
(3.35)

until the solution converges.

Alternatively, if an nth order least squares fit is taken for the F3/L3 vs θ curve,

F3

L3

=
n∑

i=0

aiθ
i (3.36)

then an nth order ψA/k2 curve,

ψA

k2

=
n∑

i=0

biθ
i (3.37)

can be derived. Substituting Equations 3.36 and 3.37 into Equation 3.33, rearrang-

ing, and comparing θi parameters gives the bi values in terms of the ai values:

bi =

(
κ− 1

2κ− 3 + 2−i

)
ai (3.38)

The normalised extensive force curve is therefore approximated by

ψA

k2

= (κ− 1)
n∑

i=0

(
aiθ

i

2κ− 3 + 2−i

)
(3.39)

Both methods will be presented and compared.

3.4.4.2 Gauge method - Stress tensor rotation

This approach to normalising the material response from a bias extension test,

adapted from that suggested by Sharma et al. [57], is simple and is more consis-

tent with materials testing in general. However, it must be remembered that these

methods were developed for engineering shear, which is a different quantity to trellis

shear.
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The strain for a gauge section in which the shear is uniform is measured in order to

calculate θ, and the measured stress tensor is then transformed into the appropriate

coordinates. This approach is relevant in uniaxial tests where κ is greater than 2, as

well as in biaxial tests, for example those in Figure 3.14c or Figure 3.16. Figure 3.16

illustrates the gauge section (a uniaxial test would be similar, without the horizontal

tabs) and the global X and Y axes. In these cases the applied extensive forces parallel

to the X and Y axes are the same at the clamp edges as they are at the gauge

section boundaries. As deformation in the gauge section is assumed to be uniform,

the resulting stresses over the whole of the gauge section can also be assumed to be

uniform.

The principal applied stresses are in the X and Y axes, so that the stress tensor

can be written as

σij =

 σXX 0

0 σY Y

 (3.40)

This can be rotated by angle α:

σ′ij =

 σXX cos2 α+ σY Y sin2 α (σY Y − σXX) cos(α) sin(α)

(σY Y − σXX) cos(α) sin(α) σXX sin2 α+ σY Y cos2 α

 (3.41)

The angle α is defined so that the rotated X’-axis is parallel with one of the fibre

directions (Figure 3.22):

α =
π

2
− φ0 +

θ

2
(3.42)

Estimates of the applied stress depend on the material thickness, which is very

hard to estimate. Because of this it is better to refer to the “line force”, the force
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Figure 3.22: Global and rotated orthogonal axes. The value of rotation, α, depends
on the shear angle, θ.
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per unit length:

N = σt (3.43)

where t is the current thickness of the material. As this treatment assumes that

stress and deformation (and therefore thickness) are uniform throughout the gauge

section at any given deformation state, Equations 3.41 and 3.43 can be combined

to find

NL = NX cos2 α+NY sin2 α (3.44)

where Nsubscript(N/m) is the line force, subscripts X and Y refer to the global X and

Y directions, and L refers to the fibre direction: hence NL is the normalised fibre

tension. Note that NX and NY are normalised by the material dimensions they act

on, hg(θ) and wg(θ) respectively, which are dependent on shear angle.

Similarly, Equations 3.41 and 3.43 also imply

Ns = (NY −NX) cosα sinα (3.45)

where Ns(N/m) is the normalised shear force acting along the fibre directions. This

shear force can be directly compared with that of Equation 3.1 derived for the picture

frame test. Finally, in the case of a uni-directional bias extension test, the value NX

is set to zero so that the normalised shear force Ns becomes

Ns = NY cosα sinα (3.46)

3.4.4.3 Gauge method - picture frame equivalence

The approach outlined in Section 3.4.4.2 gives rise to a third approach, which is

by far the simplest. This attempts to be more sensitive to the difference between
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engineering shear and fabric trellis shear.

Considering the gauge section only, the material can be seen to be deforming by

pure trellis shear, very similarly to that in the picture frame test. The method relies

on the assumption that where a material is deforming uniformly and only by trellis

shear, the sample response is not dependant on the shape, but on the initial volume

of the sample. Furthermore, assuming that a given material at a given shear angle

and shear rate has a uniform thickness T that is independent of the sample shape, the

shear response is therefore only dependant on the initial area of the sample. Other

differences that are not taken into account are the different boundary conditions and

tensile stresses generated by the different test methods. If, therefore, the equivalent

picture frame test of the same material with an initial sample volume equal to that

in the gauge section can be specified, then the measured X and Y axis forces should

also be the same.

Consider a picture frame test similar to those in Figure 3.4, but with side length

Lg such that the sample has the same area as that of the gauge section in Figure 3.14c.

Note also, that for a biaxial equivalent, a force would be exerted on the side hinges

along the X axis. The initial area of the bias extension gauge section is

Ag(θ0) =

(
h0 −

2w0

tanφ0

)
w0 (3.47)

and using Equation 3.17, h0 can be substituted to give

Ag(θ0) = (κ− 2)
w2

0

tanφ0

(3.48)

The initial area of the picture frame sample, on the other hand, is given by

A0 = L2
g sin 2φ0 (3.49)
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Equating the two and rearranging gives

Lg =

√
1

2
(κ− 2)

(
w0

sinφ0

)
(3.50)

The equivalent picture frame experiment would have side length as calculated

using Equation 3.50, so that the picture frame shear force is calculated as

Ns =
FY

2Lg cosφ
− FX

2Lg sinφ
(3.51)

where θ is calculated using Equation 3.19 and the method is valid for as long as the

material in the gauge section follows idealised pin-jointed deformation.

The biaxial treatment has only been included here for completeness, as no biaxial

test results are presented in this thesis. It does, however, give rise to the approach

for the uniaxial test. The differences give rise to a simpler solution.

The uniaxial bias extension test has no force in the X direction, FX = 0. As a

result, the section to be considered must be w0 wide, but can have a range of heights

greater than 0. The restraints on the gauge section dimensions are that it must be

a segment of the sample experiencing a uniform stress field with known boundary

stresses, so that in the uniaxial test the height of the gauge section for normalisation

purposes could be any value up to hg,

0 < h′g ≤ hg (3.52)

This suggests that the bias extension force, when plotted against shear angle, is

independent of the gauge section height. It is therefore only dependant on the

sample width w0, leaving the normalised extensive force as

Nd =
FY

w0

(3.53)



93

where the normalised shear force is calculated similarly to Equation 3.1.

This method works to some extent for initially orthogonal fabrics. However, a

little more thought is required for non-orthogonal fabrics. In these cases the sample

dimensions for a given κ and L3 vary according to the shear direction being tested.

Thus, if the sample is only being normalised by the sample width, it would be

normalised by different amounts according to the shear direction. A better approach

would be to take account of the number of crossovers across the width - this is a

constant regardless of shear direction. A length value representative of this is the

width at φ = 45◦, which is to say,
√

2L3.

3.4.5 Results

Table 3.3 outlines the materials that were tested using the bias extension method.

Table 3.3: Materials tested for shear response according to the bias extension test
method

Material name Material Description
Bentley mat1 E-glass ±30◦ non-crimp fabric, double stitched

with a (+1,0,-1,0) stitching pattern.
Bentley mat2 E-glass 3D E-glass woven fabric from 3Tex
FGE 106hd E-glass 950gm−2, ±45◦ non-crimp fabric from

Formax, with a tricot (+1,-1) stitching
pattern, stitch length 2.5mm

FGE 106hd:1.65 E-glass 950gm−2, ±45◦ non-crimp fabric from
(special) a tricot (+1,-1) stitching

Formax, with pattern, stitch length 1.65mm
FGE 106hd:5 E-glass 950gm−2, ±45◦ non-crimp fabric from

(special) Formax, with a tricot (+1,-1) stitching
pattern, stitch length 5mm

TwintexTM 1 Co-mingled 1816gm−2 TwintexTM unbalanced 2/2
E-glass/PP twill weave fabric

TwintexTM 3 Co-mingled TwintexTM balanced plain weave fabric
E-glass/PP 1816gm−2 fabric
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3.4.5.1 Comparing the energy normalisation techniques - Iterative vs

least squares

The two suggestions for solving Equation 3.33 offer advantages and disadvantages.

The results presented here are chosen to highlight such advantages and disadvantages.

The two curves presented in Figure 3.23 have been generated using the two solutions

outlined by Equations 3.34 to 3.39 .
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Figure 3.23: Advantages and disadvantages of the two energy minimisation solutions
are highlighted at the beginning of this curve. The material tested is the TwintexTM

3 fabric, for a κ = 2 sample.

To ensure a good fit, the sixth order fit for the curve used in Figure 3.23 has

not been forced to pass through the origin. Whilst this is inaccurate at the start, it

is possibly more physically appropriate, as the jump is caused by frictional energy

losses, so that if the test had started at negative shear the jump would not have been

observed. The multiple use of previous data in the iterative solution causes sudden

jumps in raw force (such as those caused by the discretisation of the load cell or that

at the start of the curve) to propagate up the curve. This can be seen in the jagged

nature of the iterative curve, caused by sudden jumps in the digital load output. It
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can also be observed in the way that it oscillates first above and then below the fit

curve, caused by the sudden increase in load at the onset of shear.

Other than the differences caused by these limitations, however, the two ap-

proaches agree closely for all materials tested. This confirms that a high enough

order was chosen for the fitted curve approach, and also that numerical errors are

not significant in the iterative process.

3.4.5.2 Shear angle curves

The bias extension tests conducted proved to have poor repeatability. However, the

use of the video analysis to offset the curves according to the predicted angle vs

measured angle offsets improved repeatability. After visually calculated offsets had

been corrected, curves were offset a second time to coincide at the average value at a

given force - the curves mostly coincided perfectly for angles below the locking angle.

It is important to present the results of the video analysis software, to understand

the range of applicability of the bias extension tests.

The angles measured appear to be subject to a lot of noise, as can be seen in

Figure 3.24. This is caused by the fitted line being affected by outlying points,

however, if a frame by frame angle measurement was made by hand, a similar error

would be observed. By having such a density of measured data, the average can be

taken as a more reliable measure than the few points that can be measured manually,

with the scatter providing a useful indicator of confidence limits of the measurement

method. Therefore the results are presented as a moving average with standard

deviation error bars in the following graphs.

One thing that can be examined is the effects of the sample aspect ratio on the
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Figure 3.24: Angles measured from video taken of a bias extension test of TwintexTM

1 with sample ratio factor κ = 2.

angles. Figures 3.25 to 3.27 demonstrate the differences. It is apparent that the

aspect ratio, within the range tested, have minimal effect on the locking angle, and

the onset of non pin-jointed behaviour. The tests appear to be relevant for the first

35 degrees, with the sample locking at just over 40 degrees. Observations conclude

that the first cause of the onset of non-linear behaviour is transverse fibre slip at the

tips of the C regions. Secondly the material begins to buckle, and finally it rips apart

as the tows pull out of the textile. This does not include the effects of non-uniform

behaviour, as described at the end of Section 3.4.2

Examination of the figures also shows the variation of shear angles measured at

different regions, within the central shear area. This is typically 2-5◦, but can be

as much as 10◦. Shear angle figures for other materials and at other ratios can be

found in Appendix C. This includes 9 different results for TwintexTM 3 at κ = 2.
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Figure 3.25: Angles measured from video taken of a bias extension test of TwintexTM

1 with sample ratio factor κ = 2.
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Figure 3.26: Angles measured from video taken of a bias extension test of TwintexTM

1 with sample ratio factor κ = 2.5.
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Figure 3.27: Angles measured from video taken of a bias extension test of TwintexTM

1 with sample ratio factor κ = 3.

Examination of these shows that whilst the majority of the samples exhibited lower

shear angles at the top of theoretically constant shear region A than at the bottom,

this trend is not universal. The shear irregularities are probably caused by the low

shear modulus of the textiles. This creates a very low shear penalty to irregular shear

distributions, and weak interactions between different shear areas. Other causes of

shear irregularities include the transverse slip described above, which distort the

shear angle measured near the tips of the C regions. Thus, measurements taken

from the centre of the sample are likely to be reliable for a greater proportion of the

test.

Finally, it is important to observe the reliability of the video analysis tool. Com-

parison of Figures 3.25and 3.26 with Figure 3.27 shows that the analysis observes

less scatter in some cases. This is affected by the resolution of the video, which is
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dependant on the size of the sample and the zoom setting of the video. It is also

affected by the colour of the textile, the choice line colour, the ambient lighting, the

textile structure, and the manner in which the textile deforms. Additionally, as the

textile moves away from ideal shear, the markings curve, so that a straight line fit is

no longer appropriate.

3.4.5.3 Bias extension normalisation comparison

The energy approach, whilst being the more complicated, takes the most thorough

account of the test conditions, and so the results should be taken as the most reliable

available. Given that, it is of interest to investigate how the other, more simple

normalisation techniques compare to it and to each other.

The results are presented for a representative test for each material in Table 3.3,

at each sample ratio that was tested for that material. Results not directly discussed

can be found in Section B.2.

For initially orthogonal fabrics, the stress-tensor rotation approach tends to agree

very closely with the energy minimisation at low shear angles. This is expected, as

the model is only accurate whilst the rotated stress tensor aligns with both fibre

directions - i.e. while the fibres are orthogonal. This effect is highlighted by the

±30◦ material results. In Figures 3.28 and 3.29 the stress-tensor rotation approach

does not agree with other methods even at relatively low shear angles in both shear

directions. However, in the negative shear direction it crosses the other curves near

the point at which the fibres are orthogonal.

Looking at the results for different bias extension aspect ratios presented for

TwintexTM 1 in Figures 3.30 to 3.32 , the picture frame equivalence approach appears
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to work best at κ = 2.5 (see also Figure B.15), whereas it consistently over-predicts

at κ = 2, and under-predicts at κ = 3. The κ = 2.5 ratio is notable in that at this

ratio the area of central shear region A is equal to the square of the sample width w0

(for initially orthogonal fabrics). The approach seems to frequently over-predict at

low shear angles when compared to the other methods. This may indicate that in the

initial few degrees of shear the whole sample undergoes deformation, not necessarily

just shear. This is because the sample must show some tension along the direction of

the tows. Thus the initial tensile loading of the tows could cause the normalisation

methods to differ at low shear angles.
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Figure 3.28: Bentley mat1 at κ = 2, positive shear direction. Sample
width = 120mm, rate of extension = 80mm/min.
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Figure 3.29: Bentley mat1 at κ = 2, negative shear direction. Sample width = 70mm,
rate of extension = 80mm/min.
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Figure 3.30: TwintexTM 1 at κ = 2. Sample width = 99mm
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Figure 3.31: TwintexTM 1 at κ = 2.5. Sample width = 99mm
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Figure 3.32: TwintexTM 1 at κ = 3. Sample width = 99mm
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Figure 3.33: TwintexTM 1 compared for κ = 2, 2.5, and 3.

3.5 Comparison of normalised results - bias extension vs

picture frame

If the differences in boundary conditions of different types of test (BE or PF) had

minimal impact on the test results, and assuming that the normalisation approach

is correct, then the normalised shear curves should coincide. The normalised results

using the energy normalisation arguments are therefore compared here - full results

can be found in Section B.3 It is proposed that the different boundary conditions

imposed by the different tests are at least partly responsible for differences in the

normalised test results.

From consideration of Figures 3.34 and 3.35 , it can be seen that the picture

frame test always records a higher shear force than the bias extension. This suggests
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Figure 3.34: Comparison of picture frame (at 0N and 375N pre-tension) and bias
extension (κ = 2, 2.5 and 3) normalised test results for TwintexTM 1. Four samples
per test condition.
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that the strong end clamping that the picture frame test imposes has a significant

effect on the shear response of a textile. Mechanisms that contribute to this are

the fibre deformation at the clamping edge, tension developed during shear (either

directly due to crimp, or indirectly due to lateral compaction), and the lack of

freedom for lateral tow slip. However, consideration of the stresses developed in the

bias extension test sample suggest that the tows must develop a certain degree of

tension during shear - or they would pull apart. For this reason, the 0 pre-tension

tests, whilst often suffering the least repeatability, should be regarded as the most

comparable to bias extension test results. In Figures 3.34 and 3.35 they certainly

seem to agree to a close degree, comparing the highest bias extension result with the

lowest 0 pre-tension picture frame result. Comparison with bias extension indicates

that the lowest of the curves at zero pre-tension that did not wrinkle prematurely

(as observed by eye) probably gives the most accurate response. This is because

fibre misalignment in one direction causes very high picture frame response, but

in the other direction results in premature wrinkling, the latter being immediately

discarded from the results as obviously misaligned. However, shear response under

tension may be important in modelling more accurate forming simulations with a

blank-holder. For this to be adequate, tension should be monitored throughout the

test.

Ultimately, the different boundary conditions imposed by the different tests ren-

ders comparison between them of limited use, and they are different again from those

imposed on the material during forming. Thus, it may prove that the results from

picture frame tests are more pertinent to forming using a blank-holder, whereas

bias extension test results are more appropriate for diaphragm and hand forming
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operations.

3.6 Conclusions

Experimental characterisation has been undertaken using both the bias extension

method at different aspect ratios and picture frame testing method at different pre-

tensions. The difficulties with picture frame boundary conditions continue to produce

highly variable results of limited usability. Bias extension tests at small aspect ratios

also suffer from some variability, however this variability is mostly due to curve

offsets. A method for visually analysing bias extension tests to show offset effects

has been developed. This does not consistently eliminate offset variability for all

materials, but is nonetheless a useful tool in analysing bias extension results.

Bias extension and picture frame test data analysis has been generalised to al-

low for non-orthogonal textiles, and a ±30◦ textile has been tested to demonstrate

the changes. Several normalisation approaches for bias extension results have been

proposed, and the experimental results compared for the varying approaches, and

to normalised picture frame results. The ±30◦ material has particularly effectively

demonstrated the weaknesses of applying an isotropic stress rotation technique to

an anisotropic material. Overall, it is proposed that the energy based bias extension

normalisation technique is the most appropriate, as it takes into account the actual

deformation within the samples, without making assumptions about the detailed

(and probably complex) stress field within the sample. This is further supported

by the agreement observed for all materials for tests at κ = 2.5 and 3 using this

normalisation method.
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It is curious that the picture frame equivalence normalisation approach agrees so

well with the energy approach at κ = 2.5. Furthermore, at κ = 3, it is an almost

constant 10% less than the energy approach. More work should be carried out to

investigate the cause of this, if any. This could include comparison at higher ratios

such as 3.5, 4 or above. If the discrepancy could be understood then this would make

a modified picture frame equivalence normalisation technique the preferred method

due to its great simplicity, and the ease with which it could be applied to past test

data.

Bias extension and picture frame results do not agree well even after normali-

sation. However, the lowest of visually acceptable picture frame results correspond

to the highest of bias extension results, suggesting that the differences between the

results arise from differences in boundary conditions. Whilst these inherent differ-

ences in the tests may render attempts to compare the results a little misleading,

the comparison presented here demonstrates that the exercise increases the under-

standing of both tests as well as the inherent mechanisms that affect sheared textiles.

Normalisation may allow for a rational approach to deal with the large amount of

variability of results. For example, the strong agreement between the highest bias

extension results and the lowest 0 pre-tension picture frame results suggest that

these should be taken as the most appropriate results rather than the average. In

the case of the picture frame test, it suggests that higher shear forces are the result

of misalignment, while in the bias extension test, non ideal shear and fibre slip cause

lower than expected forces.



Chapter 4

Shear Modelling of Fabric Reinforcements

4.1 Introduction

As has been outlined in Section 2.2.1, the dominant and most desirable deformation

mechanism for technical textiles draped around features with double curvature is

trellis shear. The shear modulus shown by a typical biaxial textile is many orders of

magnitude smaller than the tensile modulus along either of the tow directions. The

energy associated with wrinkling is often at least an order of magnitude lower again

than that associated with trellis shear: However, this is an undesirable effect in the

vast majority of composite applications, so that the forming process is designed to

avoid wrinkling.

Forming simulation with any level of sophistication subsequently requires fabric

deformation data, the most relevant of which is its trellis shear behaviour. In order

to accurately predict the forming results of a specific fabric its shear behaviour must

be measured or predicted. It is unlikely that experimental shear characterisation will

ever be rendered entirely redundant. However, shear modelling complements shear

experiments in several vital ways.

Firstly, it helps in the validation of results. Shear characterisation of technical

textiles is notoriously difficult, particularly with certain emerging classes of textiles

such as knitted non-crimp fabrics. Poor repeatability of results must be addressed

either by improving the test method or by the use of more robust criteria for the ex-

108
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clusion of outlying curve data. Shear modelling allows the trellis shear phenomenon

to be understood better, both highlighting the weaknesses in test methods and there-

fore facilitating their improvement, and also allowing the results to be understood

better so that irregularities can be better identified and discarded. Furthermore,

understanding of the trellis shear process may ultimately allow the effects of test

result repeatability issues and material variability to be untangled. This way, not

only confidence in test results can improve, but quality control of fabric variability

can be managed to maximise process success.

As discussed in Chapter 3, many fabrics exhibit some variability in their shear

and forming behaviour, which produces some challenges for shear measurement ex-

periments. FE shear models already show some promise in modelling the effects of

fabric variability on shear behaviour [58] - however, the slow analysis restricts the

number of repeats that can be realistically made for full statistical analyses. It may

be that as constitutive shear models mature that methods are proposed for allowing

fabric variability to be modelled, and the speed of the evaluation of these methods

would subsequently allow large data sets to be developed for different factors.

FE shear modelling approaches for dry textiles, based on unit cell models are

still, like constitutive models, quite a way from maturity. In many ways, however,

conducting an FE shear characterisation is not unlike conducting an experimental

shear characterisation. In both cases, a fundamental understanding of the underly-

ing deformation mechanisms is required in order to generate accurate, trustworthy

results. To this end this thesis has concentrated on the constitutive modelling of the

trellis shear process, expanding current models to include non woven textiles such as

non-crimp fabrics.
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Finally, it is important to point out the relative benefits of the direct output of

constitutive shear models. The results of such models can be generated in a fraction

of the time and at a subsequent fraction of the cost of FE results or experimental

measurements. Considering the bewildering and ever increasing array of technical

textile choices facing a would-be composite manufacturer, such simple models have

the potential to allow quick, cost effective evaluation of the shear behaviour (and

therefore the forming behaviour) of many different, even not yet existent textiles.

Much work has been done in determining the shear energy elements in woven

fabrics, as outlined in Section 2.2.2. Less however has been done for non-crimp

fabrics. In order to create a generic modeller the peculiarities of these fabrics must

also be modelled. Some approaches to modelling the effects of the stitching on the

non-crimp fabric’s shear behaviour are proposed, and the results are compared to

experimental results.

4.2 Sources of shear resistance in fabrics

A typical engineering fabric consists of a complex arrangement of component mate-

rials, each of which contributes to the overall material response. When considering

the shear response of fabrics to deformation, it becomes necessary to categorise the

shear resistance according to the different mechanisms that the fabric undergoes

during shear. Obvious categories for each component within the fabric include the

component material strain responses and the component interfaces.

Each component category requires prioritising according to the magnitude of

its contribution to the overall material response. The energy contributions from



111

the greatest of these can then be summed to give an approximation for the energy

contribution of the fabric.

Such a categorisation is illustrated in Table 4.1. The categories can be used as

required for a specific fabric. A woven fabric, for example, will not have stitching,

so that the energy contribution for that category is zero. A non-crimp fabric, on the

other hand, has stitching but will experience little tow bending and torsion.

Each of the element categories in Table 4.1 may be applied more than once within

a fabric, according to its structure. For example, a fabric might have both glass and

carbon tows, in which case the relevant material properties for each tow have to be

taken into account.

4.3 Shear resistance in non-crimp fabrics

4.3.1 Stitch effects

The stitch constitutes a structurally unimportant part of the fabric structure, with

its tensile modulus typically being many magnitudes smaller than that of the tows.

However, the stitch strain response is on a comparable magnitude to the fabric shear

response — and so is an important factor in shear. This is seen in many stitched

fabrics’ unusual shear behaviour.

Of the two dominant energy factors outlined in Table 4.1, the stitch extension is

considered most important, and so is treated first.

4.3.1.1 Stitch extension

In order to understand the stitching pattern in a warp-knit non-crimp fabric, the

warp-knitting process must be briefly described. The tows are laid in a mat that is
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held and moved through the machine by moving hooks at the edges. These hooks

move the mat into the knitting bars, which knit the mats together. The knitting

machine has a row of guides positioned above the tow mat, with a stitch threaded

through a hole in each guide, and a row of needles below the tow mat, illustrated

in Figure 4.1 The guides and needles are evenly spaced, according to the gauge, a

measure that defines the number of needles per inch.
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Figure 4.1: A conceptual illustration of the warp-knitting process – the stitching
thread has been omitted for clarity. An example stitching pattern can be found in
Figure 4.2.

The pattern is produced by a sequence of stitch cycles, where on a generic ith
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stitch cycle, a sequence of events occur, numbered 1-4 in Figure 4.1, as follows:

1. The tow mat advances by the stitch length distance, sl.

2. At the same time, the guide bar indexes a multiple ni of the stitch separation

sg to the left or right.

3. The needle array pushes through the tow mat.

4. Each needle hooks a loop of stitching thread from the guide above it and pulls

it through the tow mat and previous loop, completing the cycle.

A stitching cycle is normally referred to as a course.

The lapping sequence, which is the series of guide array index values ni, deter-

mines the stitching pattern. An example of one stitching pattern that repeats over

two courses, a tricot stitch, is illustrated in Figure 4.2. At the top of the fabric, the

overlaps consist of a single stitch thread that runs in a diagonal with dimensions sl

in the warp direction and ni× sg in the weft direction, where ni can be a positive or

negative integer, or zero. At the bottom, the underlaps consist of a chain of stitch

loops running in the warp direction, each loop being constrained by the subsequent

loop, which passes through it. The sum of the guide array index sequence
∑
ni must

be zero, in order that the guide bar ends up in the same position at the end of the

sequence as at the beginning. Typically the guide bar rarely strays more than two

or three stitch spacings from its starting position.

Figure 4.2 separates the stitch into a sequence of three classes of segments:

Through-thickness, overlapping, and underlapping. As the fabric shears, the geo-

metric development of each of these segments can be treated separately, and the
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Table 4.1: Shear energy dissipation categories for generic shear fabrics.
Element dominant energy type constrained by

extension BCs, Adj/Cross Tow, Stitch
lateral compaction BCs, Adj/Cross Tow, Stitch

Tow shear BCs, Adj/Cross Tow, Stitch
bending BCs, Adj/Corss Tow, Stitch
torsion BCs, Adj/Cross Tow, Stitch
friction BCs, Adj/Cross Tow, Stitch

Stitch extension Adj Tow, Stitch
friction BCs, Adj Tow, Stitch

key
BCs Boundary Conditions (e.g. mould, picture frame)
Adj Tow Adjacent Tow
Cross Tow Crossover Tow
Stitch Adjacent Stitch
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Figure 4.2: An example warp-knit stitch, a tricot stitch.
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effects added together.

underlapping

If a particular segment of the stitch is not colinear with either tow direction, trellis

shear will cause that segment to extend or compress. For a fabric with initial tow

angles ±φ0 the underlapping length su is related to the initial stitch length sl and

the shear angle θ by

su(θ) =
cosφ

cosφ0

sl (4.1)

where φ = φ0 − θ/2.

overlapping

Similarly, the ith overlap length soi in the lapping sequence is given by

soi(θ) =

√
cos2 φ

cos2 φ0

s2
l +

sin2 φ

sin2 φ0

n2
i s

2
g (4.2)

where sg is the stitch spacing and ni is the ith index in the lapping sequence.

through-thickness

Finally, in order to model the through-thickness segments, the fabric thickness must

be considered, for which tow compaction is a factor. Consider Figure 4.3 in which a

tow is shown before and after shear. In the figure, and in the segmentation of the

stitch, a rectangular tow cross-section is assumed. This is mostly for convenience:

However, sections taken by Souter [60] suggest a rectangular tow cross-section is a

reasonable assumption for non-crimp fabrics. The tow lateral cross-sectional area tA
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Figure 4.3: A tow with rectangular cross-section before (left) and after (right) shear.

is given by

tA(θ) = tt(θ)tw(0)
sin 2φ

sin 2φ0

(4.3)

so that the tow thickness is given by

tt(θ) =
tA(θ) sin 2φ0

tw(0) sin 2φ
(4.4)

Now the through-thickness is the sum of the tow thicknesses, so that for a fabric

with the same tows in both directions,

st(θ) =
2 sin 2φ0

tw(0) sin 2φ
tA(θ) (4.5)

where st is the length of the through-thickness stitch section.

Pre-pregs retain a constant cross-sectional area such that tA(θ) = tA(0), whereas

dry fabrics retain a relatively constant thickness tt(θ) = tt(0) (see Section 2.2.2.1,

McBride or Souter [45, 60]. These represent the two possible extremes for the thick-

ness behaviour of the fabric. This thesis concentrates on dry fabrics, so that the

latter scenario is of more interest. However, it is worth noting that there is a limit

to the compressibility of dry fabrics. Figure 4.4 plots the tow fibre volume fraction

vs shear angle for a constant thickness fabric. Also shown on the graph is a limiting
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volume fraction for the tows based on hexagonal packing. As the material shears the

volume fraction increases, and as it approaches the limit the material must either

thicken or wrinkle.
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Figure 4.4: Variation of a tow’s volume fraction with shear angle

Total stitch length

Summing the stitch segment lengths over the entire lapping sequence of N courses

gives the sequence stitch length sL. This is called the unit stitch, as it is the smallest

repeatable unit when considering the stitch pattern in isolation.

sL =
N∑

i=1

(2su + 2st + soi) (4.6)

Substituting Equations 4.1, 4.2 and 4.5 into Equation 4.6 gives

sL = 2N
cosφ

cosφ0

sl +
4N

tw(0) cos θ
tA(θ) +

N∑
i=1

√
cos2 φ

cos2 φ0

s2
l +

sin2 φ

sin2 φ0

n2
i s

2
g (4.7)

Evaluating at θ=0, such that φ = φ0, gives

sL(0) = 2Nsl +
4N

tw(0)
tA(0) +

N∑
i=1

√
s2

l + n2
i s

2
g (4.8)
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This becomes useful when calculating stitch strain.

Stitch constraints

Global stitch strain is given by

εs =
sL(θ)− sL(0)

sL(0)
(4.9)

However, this value presumes that the stitch is at uniform tension throughout. Ex-

cept for the simplest stitching pattern, the chain stitch, different segments of the

stitch could experience different changes in length during shear, so that the stitch

would have to pass relatively freely from one segment to another in order to remain

at uniform tension. It is important to establish whether this is the case.

In order to investigate this a tricot stitch sample was sheared. Prior to shearing,

the overlaps at the centre of the sample were marked black, but the underlaps were

left white. The sample was mounted into a picture frame and the picture frame was

extended in stages. At each stage a photograph taken of the underside of the fabric.

The photographs were analysed using ImageTool1, an image analysis program, to

measure the proportion of the underlaps that was white, and that which was black.

If the stitching is entirely constrained at the end of the segments, then the under-

laps would have remained white, with the stitching accommodating the increase in

length entirely by strain. If, on the other hand, the stitching is free to move from one

segment to the other, then the underlaps would have gradually shown more black

stitching as thread from the compressing overlaps was passed to accommodate the

extending underlaps.

1http://ddsdx.uthscsa.edu/dig/itdesc.html
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Figure 4.5 shows a photograph of the sample after some shearing. Figure 4.6

illustrates the average proportion of black and white thread observed in a sample

of the underlap photographs. As can be seen, the extension was almost entirely

accommodated by thread passing through from the overlaps. This confirms that

the stitching is relatively unconstrained, so that the tension is essentially uniform

throughout its length.

Figure 4.5: Sheared non-crimp fabric sample (underside) (FGE 106hd, see Table 3.3),
in which the stitch overlaps were marked black before shearing

It should be noted that, when tested, the stitch failed at 17% strain. This cor-

responds to the point at which the stitch begins to break at places. The stitch has

been observed in both picture frame and bias extension tests to break at high shear

angles. However, the stitch failure points cannot be predicted, and it is difficult

to assess how much of the tension would subsequently be released beyond failure.
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Figure 4.6: Average lengths of white and black thread segments in the underlaps
during shear

Visual observation suggests that some tension remains, which is related to the stitch

friction within the structure. Due to this complicated scenario, the stitch contribu-

tions are only modelled up to failure, beyond which they are presumed to no longer

contribute to the shear behaviour. As the stitch does not catastrophically unravel

after failure, but the material remains mostly intact, this failure mechanism is unim-

portant to the pre-forming process, except in that it affects the shear behaviour and

could therefore affect the forming results of the textile. In practice, the stitch has not

been observed to fail in experimental forming, as in order to do so it would probably

require extreme boundary conditions.

Stitch energy

The stitching is typically made of texturised polyester yarn, for which micro mechan-

ical deformation behaviour is more akin to that of the tows than of a homogeneous
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substance. This stitching material is broadly used in the non-crimp fabric industry.

The texturising process, whereby the yarn is twisted, heated close to its melting tem-

perature, cooled, and then untwisted, results in fibres that are permanently crimped

and thus substantially increasing the amount of extension that the stitch yarn will

undergo. This first part of the stitch extension, in which the fibres are uncrimping, is

very hard to model, as relatively negligible application of tension results in very large

extensions – in fact, it is very hard to establish the zero extension point. Beyond

the point at which the fibres in the stitch yarn have aligned, the stitch exhibits a

fairly linear stress / strain curve, as can be seen in Figure 4.7, which was obtained

from experimental tensile testing of stitch samples taken from FGE 106hd stitch

yarn. As a first approximation of the stitch behaviour, only the linear portion of the

tension/extension curve for the stitch is considered in the model.
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Figure 4.7: Two sample stitch tensile curves with best fit lines.

Let the stitch, then, have an effective modulus Es and cross-section sA such that
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their multiple is the gradient of the best fit line. For the stitch found in Figure 4.7,

EssA = 15.725N. In that case, the average tension in the stitch during trellis shear

is given by

Ss = EssAεs = EssA
sL(θ)− sL(0)

sL(0)
(4.10)

It must be remembered however that ES and sA have not been assigned individual

values, and so are meaningless on their own.

Given the stitch extension s∆ = sL(θ) − sL(0), the energy Us expended in ex-

tending the stitch can be defined as

Us =

∫
Ssds∆

=
EssA

2sL(0)
s2
∆

=
EssA

2sL(0)
(sL(θ)− sL(0))2

(4.11)

This is normalised by the fabric area that the unit stitch occupies,

As = Nslsg (4.12)

to give

Us

As

=
EssA

2NslsgsL(0)
(sL(θ)− sL(0))2 (4.13)

Shear force

Differentiating the normalised stitch extension energy with respect to the shear angle

θ yields the normalised shear torque,

τs
As

=
1

As

dUs

dθ
=

EssA

2NslsgsL(0)

d

dθ

[
(sL(θ)− sL(0))2

]
(4.14)
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from which the normalised shear force Ns can be easily calculated

Ns =
τs

As cos θ
(4.15)

Now

d

dθ

[
(sL(θ)− sL(0))2

]
= 2(sL(θ)− sL(0))

dsL

dθ
(4.16)

and

dsL

dθ
= 2N

(
dsu

dθ
+
dst

dθ

)
+

N∑
i=1

dsoi

dθ
(4.17)

So, differentiating Equation 4.1

dsu

dθ
=

sl

cosφ0

sinφ (4.18)

taking the assumption of constant fabric thickness gives

dst

dθ
= 0 (4.19)

and differentiating Equation 4.2,

dsoi

dθ
=

s2
l tanφ0 −

n2
i s

2
g

tanφ0√
cos2 φ

cos2 φ0

s2
l +

sin2 φ

sin2 φ0

n2
i s

2
g

(4.20)

Finally, substituting Equations 4.14, 4.17 and 4.18-4.20 into Equation 4.15, gives

Ns =
EssAεs tan θ

Nslsg

 2Nsl

cosφ0

+
N∑

i=1

s2
l tanφ0 −

n2
i s

2
g

tanφ0√
cos2 φ

cos2 φ0

s2
l +

sin2 φ

sin2 φ0

n2
i s

2
g

 (4.21)
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where εs is defined using Equations 4.7-4.9 .

The stitch is fed into the knitting process under tension, which is determined

by a factor called the stitch run-in, quoted as the length of thread in mm fed out

over 480 courses. The stitch run-in is controlled through the rotational speed of the

stitch reel. Geometric considerations are taken into account in terms of the radius

at which the thread is coming off the reel so that the rotation of the reel maintains

the run-in specified. It is relatively easy to incorporate this into the above value, by

redefining the stitch strain εs as

εs =
sL(θ)− sL0

sL0

(4.22)

where sL0 is different to sL(0) in that it is the length of the unit stitch at zero tension,

and can be defined as

sL0 =
N

480000
× run-in (4.23)

However, using the stated stitch run-in for one fabric gives a stitch strain at θ = 0 as

36%, which is approximately double the breaking strain. This is clearly a result of

ignoring the stress free extension portion of the stitch graph, as is discussed earlier.

For the sake of the characterisation of the stitch the stress-free length was taken to

be at the base of the linear portion of the stress-strain curve, however, the stitch can

be in an unbuckled state at shorter lengths than this, and may well be so in the reels.

Also, the approximations taken in calculating run-in are likely to be erroneous, as

they certainly do not need to be accurate from a manufacturing point of view, as

long as they are consistently applied. The best way to determine the starting point

of the stress-strain curve is to mark the start and end of a known number of stitches
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within a fabric, remove the stitching, and test it. The path of the stitching when

still in the textile will yield the initial length value SL(0), and the stitching can be

loaded into the tensile test at this length. The resulting stress-strain curves could

be applied as if SL0 = SL(0).

4.3.1.2 Stitch friction

Given that, as found in Section 4.3.1.1 the stitch passes from one segment to another

during shear, the frictional losses due to this process must be modelled.

This model requires a point along the stitch to be identified where the stitch

experiences equal extension on both sides. In the case of the tricot stitch, for example,

this can be found at the apex of any underlap (Figure 4.8), as the sequence of

stitch segments either side of that point is symmetrical: underlap segment, through-

thickness, overlap with index magnitude 1, through-thickness, underlap. The cross-

 

 
Apex

Figure 4.8: A close up of a tricot stitch with the apex of the underlapping. The apex
is taken to be at the bottom of the through-thickness segment.

over points, at which frictional losses occur, are taken to be at the apexes, the normal

force causing the friction being the tension in the stitch.

From this point of symmetry, working along the stitch, each point passing through

an apex must be assessed to determine any frictional loss arising from stitch passing

through. Firstly, for each segment, the length of the stitching from the symmetry
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point to each pass-through point must be assessed. For the example where the point

of symmetry is on the apex, the lengths to the three pass-through points in each

segment up to segment N are given by:

Lst→i1(θ) = su +
i−1∑
j=st

(2su + 2st + soj) (4.24)

Lst→i2(θ) = su + 2st + soi +
i−1∑
j=st

(2su + 2st + soj) (4.25)

Lst→i3(θ) = 2su + 2st + soi +
i−1∑
j=st

(2su + 2st + soj) (4.26)

and for the segments before the starting point:

Lst→i1(θ) = su +
st∑

j=i+1

(2su + 2st + soj) (4.27)

Lst→i2(θ) = su + 2st + soi +
st∑

j=i+1

(2su + 2st + soj) (4.28)

Lst→i3(θ) = 2su + 2st + soi +
st∑

j=i+1

(2su + 2st + soj) (4.29)

Next, the actual change in the stitch length up to that point is subtracted from

the change in the stitch path length,

est→ip(θ) =

∣∣∣∣ (Lst→ip(θ)− Lst→ip(0))− Lst→ip(0)εs

∣∣∣∣
=

∣∣∣∣Lst→ip(θ)− (εs + 1)Lst→ip(0)

∣∣∣∣ (4.30)

for each of the three pass-through points p = 1, 2, 3. Note the absolute signs, as the

direction that the stitch passes through is immaterial.

The energy taken to pass the stitch through these points Ueip
is given by the

multiple of the frictional force and the distance pulled through. The frictional force
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is calculated from the stitch frictional constant µs and the force normal to the contact

area, which will be assumed to be equal to the stitch tension Ss (Equation 4.10).

Feip
= µsSs (4.31)

So that

Ueip
(θ) = µs

∫ est→ip(θ)

0

Ssdest→ip (4.32)

This can be summed for all contact points,

UeT (θ) =
N∑

i=1

3∑
p=1

Ueip
(θ) (4.33)

The energy due to stitch friction can be normalised by the same area in Equation 4.12,

added to the normalised stitch tension energy, differentiated with respect to shear

angle, and converted to a normalised shear force. Note that for generic functions

f(θ) and g(θ),

d

dθ
(f + g) =

df

dθ
+
dg

dθ
(4.34)

so that it is equally valid to add the individual shear torque (and therefore shear

force) contributions as it is to add the energy contributions. Both the integration in

Equation 4.32 and the subsequent differentiation were numerically carried out using

the trapezium rule for the results presented in this thesis.

4.3.2 Tow effects

The tows contribute the bulk of the structural behaviour of the finished composite.

However, their shear contribution is not so straightforward. In non-crimp fabrics the
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tow bending, extension and torsion due to pure trellis shear are negligible, as these

effects arise mostly due to the crimped tow paths caused by the weaving process. As

a result, the tow effects concentrated on are the tow compaction and friction.

As the fabric shears, the tows will experience in-plane compaction due to the

reduction in surface area associated with shear. At the same time they may be

subjected to some out of plane lateral compaction from the other tow layers. Finally,

they will experience a frictional resistance to any change in profile due to the complex

lateral compaction forces acting on them. As well as this, the tows will experience a

number of other frictional resistances. Lateral compaction will require either internal

shear or lateral friction with adjacent tows, or a combination of both. Rotation with

respect to other tow layers will create friction, depending on the level of internal

in-plane shear and compaction experienced.

In many NCFs the needles pierce the tows during the knitting process so that

the tows effectively become redefined around the stitching. The stitch length sl and

gauge separation sg are also often not in a ratio corresponding to the tow angle φ0,

so that the points at which the tows are pierced vary along the tow direction. Thus

the tow layer becomes a mat of aligned glass fibres with periodic piercings causing

fibre placement disturbances. This is important when assessing tow friction and

shear, but is relatively unimportant for in-plane lateral compaction, which can be

considered independent of these effects.

4.3.2.1 Lateral compaction

The model adapted by Cai and Gutowski [8] gives a sufficiently good fit to exper-

imental data, and is therefore used for this shear model (See Section 2.2.2.2). As
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the fabric shears the tows may be forced to shear with it, and also to compact to

accommodate the change in surface area.

The first step is to predict the volume compaction associated with fabric shear.

In-plane lateral compaction is caused by the variation of the tow mat width, which

varies proportionally to
sin 2φ

sin 2φ0

. Hence, from Equation 4.3, and remembering that

pure trellis shear creates zero strain along the tow directions, the fibre volume fraction

varies according to

Vf (θ) =
tt(0)

tt(θ)

sin 2φ0

sin(2φ0 − θ)
Vf (0) (4.35)

Note that if φ0 6= 45◦ then at some point the volume fraction will be smaller than

that before shear Vf (0). In this case, while the overall volume fraction will obey

Equation 4.35, depending on the stitch architecture, the tow mat may develop large

gaps rather than decreasing local (tow) volume fraction.

Using McBride’s compaction models outlined in Section 2.2.2 with his suggested

values for β, V0, Va and Ef , the volume fraction can be used to calculate bulk strain

and therefore lateral compaction stress.

In order to transform the lateral compaction stress to a fabric shear stress, con-

sider Figure 4.9. Equating the boundary stresses vertically for the top half of the

sample reveals that

Ns =
2σbtt
sin 2φ

(4.36)

As outlined at the end of Section 4.3.1.2, appropriately normalised shear forces from

different sources can be added as legitimately as shear energies.

Other tow mechanical properties are not included in the model. Possibly the

most important of those not modelled is the tow shear stiffnesses G12 and G13. This
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Figure 4.9: A shearing fabric sample of unit length with internal bulk stress σb, and
the resulting line shear stress Ns.

may be a significant source of textile shear resistance depending on the scale on

which it occurs during textile shear.

4.3.2.2 Inter-tow Friction

Crossover friction model

Crossover shear energy dissipation has been discussed previously with regard to

viscous textile composites [19]. In collaboration with Harrison [21] a method was

developed to determine the energy dissipation due to shearing between crossovers

in a dry fabric. The main difference is that for viscous composites, the energy

dissipation is related to the instantaneous rate of shearing in the film of viscous

matrix fluid separating tows at the crossover. For dry fabrics, tows are considered

to be in direct contact at the crossovers and therefore energy dissipation is related

to relative displacement rather than the rate of relative displacement. This point
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is elaborated in the following analysis, in which the mechanism of crossover shear

energy dissipation is most conveniently explained in terms of the fabric architecture

of woven fabrics rather than NCFs. Nevertheless, the crossover shearing mechanism

is also shown to be relevant to energy dissipation in NCFs. During shear, the in-

plane shear rate of tows is rarely as high as the overall in-plane shear rate across the

composite sheet [19, 52]. This produces a non-uniform displacement profile across

the fabric, as shown in Figure 4.10.

 

tow 

inter-tow region 

tow 

(a) 

(b) 

(c) 

Figure 4.10: 4-harness satin weave glass fibre fabric, (a) black line marked in ink
before shear (b) after 40 degrees of shear the black line is clearly broken (c) Shear of
two tows and separating inter-tow region. Continuous-line shows local displacement
profile across tow and inter-tow regions, dashed-line shows average displacement
profile across the fabric sheet.

If the strain profile were uniform then the straight line marked on the fabric in

Figure 4.10a would remain straight following shear. The subsequent idealised strain

profile due to this heterogeneous shear across the fabric is illustrated in Figure 4.10c.

The heterogeneous shear profile across the sample implies relative shear between

tow crossovers. In [19] the relative 2-D kinematics occurring between crossovers was
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derived as

~νvel = {(γ̇t − ω)(1− sin θ)Y } î+ {(ω − γ̇t)(1− sin θ)X} ĵ (4.37)

where ~νvel is the relative velocity field between the crossovers, γ̇t is the in-plane shear

strain rate in both sets of tows and in the following calculation is considered constant

in time, ω is the relative angular shear rate of the two sets of tows, θ is the material

shear angle and X, Y are the position co-ordinates, with the origin at the centre of

the crossover. Equation 4.37 suggests that if γ̇t 6= ω then there is relative motion

between crossovers. Equation 4.37 can be used to find the path-line of a given initial

position as a function of time, t. Thus, it can be shown that for constant ω, θ = ωt

and

dX

dt
= X(γ̇t − ω)2

{(
t+

cos θ

ω

)
(sin θ − 1)

}
− C1(γ̇t − ω)(sin θ − 1) (4.38)

dY

dt
= Y (γ̇t − ω)2

{(
t+

cos θ

ω

)
(sin θ − 1)

}
+ C2(γ̇t − ω)(sin θ − 1) (4.39)

where the constants C1 and C2 depend on the initial position of the point, i.e. when

t = 0, X(0) = X0 and Y (0) = Y0. Thus,

C1 = Y0 +
γ̇t − ω

ω
X0 (4.40)

C2 = X0 −
γ̇t − ω

ω
Y0 (4.41)

The energy dissipation due to friction between crossovers is calculated numer-

ically. The method involves discretising the crossover area (see Figure 4.11) with

elements numbered 1 to i. Initial positions of the centres of the elements are ar-

ranged in a square grid pattern. Equations 4.38 and 4.39 are both non-separable
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first order differential equations. Thus, to determine X(t) and Y (t) as a function

of time, the Runge-Kutta technique is employed [47], where the time steps, tj, are

numbered 1 to j. The distance increment, li, of each element’s path-line, between

times tj and tj+1, is calculated. If the path-line of a given element meets the condi-

tion that it is inside the area of the crossover at time tj and remains within the new

crossover area at time tj+1, then the distance increment of the path-line, li, is used

in the subsequent energy calculation.

This condition is illustrated in Figure 4.11, which shows how the path-lines of

certain elements enter while others leave the crossover area during the course of

the simulation. In Figure 4.11(b) two path-lines are circled. The black line circles a

path-line about to leave the crossover area, while the grey line circles a path-line that

has entered the crossover area during the course of the simulation. In Figure 4.11(c)

the initial position of the path-line has left the crossover area (circled) even though

the current position of the path-line remains inside the area. Consequently, this

path-line is included in the energy calculation at the time step illustrated.

The area of each element, A(tj), is defined as the crossover area at time, tj,

divided by the number of elements inside the area at time tj. Energy dissipation is

calculated by multiplying the distance increment of each path-line, li, that meets the

condition described above, by the element area, A(tj), the normal pressure between

crossovers, P (tj), and the coefficient of dynamic friction, µ. This calculation is

summed over all the elements to find the energy dissipation, UX(tj), due to friction

at the crossovers during a given time increment. Thus,

UXj = PjXjµ
∑

i

li (4.42)
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 a)
 b)

 

c)

Figure 4.11: Discretised crossover shown at shear angles of (a) 0◦ (b) 20◦ and (c)
40◦. The points indicate the initial position of the path-line inside the crossover area
while the lines indicate the subsequent paths of the path-lines. In this calculation
γ̇t = 0.5ω.

where the j subscript indicates the value of the variable at time tj. The normal

pressure can be estimated using the compaction model outlined in Section 4.3.2.1.

Using Figure 3.4, this energy can be equated with the work required to displace the

top corner of the crossover by a distance, d(tj) in the time increment tj to tj+1.

For sufficiently small time increments the axial line force, Nd(tj), can be considered

constant and is found by dividing the energy UXj by the distance increment dj.

NCF crossover scales

It is interesting at this point to examine the effect of the size of the crossover on the

shear force per unit length of the fabric. The relevance for this will become clear

when NCF crossovers are considered. For the purposes of the study presented the

pressure acting on the surface of the crossover, Pj, was taken to be constant with

increasing shear angle (see Figure 4.12 caption). Convergence was obtained using 40
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elements. The only parameter varied between calculations was the side length of the

crossover. Figure 4.12 shows that for a constant pressure, the crossover contribution

to the shear force decreases with increasing shear angle and that the shear force is

directly proportional to the side length of the crossover. For woven fabrics this length

dependence is a minor point since the size of the crossovers is well defined by the

width of the woven tows. However, this is not the case for NCFs. As a consequence,

the crossover geometry in NCFs requires investigation.
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Figure 4.12: Effect of crossover side length on shear force produced by crossover
shear, calculated using arbitrary parameters, µ = 0.3, Pj = 3000Nm−2, γ̇t = 0.5ω.
The shear force per unit length increases linearly with the side length of the crossover.
Oscillations in the predicted shear force result from the spatial discretisation method
used in the numerical code

Many NCFs comprise two layers of unidirectional fibres, initially orientated at

90◦ to each other and stitched together. Each layer of the fabric is originally manu-

factured using bundles of fibres, or tows, laid in parallel. These tows are then pierced
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by the stitching thread. Consequently, the stitch appears to define new tows in the

fabric. However, the actual situation is often more complicated since fibres within

one ’apparent’ tow can move across an apparent tow boundary. The degree to which

fibres move across apparent tow boundaries is related to the alignment between fibre

orientation and stitch pattern. A consequence of this is that the dimensions of the

crossovers may span a relatively broad range of length scales and in general will be of

initially rectangular form of various length/width aspect ratios, rather than square.

To investigate the effect of crossover shearing on NCFs, measurements were made

for a tricot stitch warp knit NCF E-glass fabric, FGE 106hd (see Table 3.2), with

an areal density of 936g/m2. The tricot stitch is illustrated in Figure 4.2 and a

photograph of the fabric is shown in Figure 4.5. The tows are initially orientated

at ±45◦ to the stitch, with initial stitch lengths sl = 2.5mm and stitch spacing

sg = 4.17mm. Photographs of both sides of the fabric recorded before and after

positive and negative shear, where positive shear refers to stitch extension in the

warp direction, are shown Figure 4.13).

Image analysis of the form of the shear strain profile, indicated by the marked

line in Figure 4.13 on both sides of the fabric, has provided statistical data on the

length scale and shape of the crossovers, along with the shear angle in the tows χ,

versus fabric shear angle θ. Results shown in Figure 4.14 show wide distributions

of tow width on both surfaces of the fabric following positive and negative shear.

Note that tow width is only defined as such for the purposes of defining the size

of the cross-section, determined by stochastically distributed preferential slip planes

in the fibre mat. These slip planes are created by an interaction of the original

tow size, the stitch intersection points, and the local alignment of the fibres. Tow
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Figure 4.13: A continuous black line was marked across both sides of the fabric
surface and photographed following shear.(a) overlap side, unsheared, (b) underlap
side, unsheared, (c) overlap side, positive shear, (d) underlap side, positive shear, (e)
overlap side, negative shear and (f) underlap side, negative shear. Units of the ruler
shown in the pictures are cm.
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shear angle measurements in Figure 4.15 also indicate a large amount of scatter. For

the purposes of this thesis the average (mean) values of the data are used. This is

reasonable, as it has already been established that the shear response is linear with

cross-over size, so that modelling for an average crossover size will yield an averaged

shear response. Thus, the average crossover side length was calculated to be 1.87
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Figure 4.15: Tow shear angle, χ, versus fabric shear angle, θ. Data collected following
both positive and negative shear (see legend). Each point is an average of at least
40 measurements and error bars indicate the absolute range of the data. Black line
indicates homogeneous shear and grey line indicates a linear fit with χ = 0.3θ to the
data.

mm and the average tow shear rate, γ̇t, was estimated to be approximately 0.3ω.

Note that Figure 4.15 indicates that the tows only shear at 0.3 of the rate of

the textile shear. This indicates that tow inter-slip is a substantially lower energy

deformation mechanism than tow shear. Thus, even though tow shear stiffness may

be significant, other deformation mechanisms allow tow shear to be ignored for dry
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NCFs.

Finally, the relative energies associated with the slip of parallel tows past each

other, the crossover frictional effects, and tow shear could be added in a more com-

prehensive model in order to find the minimum energy fraction of tow shear to

textile shear. This could be compared to experimental observations demonstrated in

Figure 4.15.

4.3.3 Tow - Stitch interactions

So far, stitch tension, stitch friction, tow compaction and inter-tow friction, have

been modelled. Tow compaction is the dominating contribution to the shear energy

at higher shear angles. Stitch tension and friction dominate more at low shear angle,

and cause the shear asymmetry exhibited by these fabrics. It is worthwhile examining

interactions between tow and stitch effects. In modelling tow-stitch interactions, the

problem can be simplified by considering the fabric thickness, which has so far been

assumed to be constant.

If the fabric is considered to be at a constant thickness, the tows will laterally

compact until they approach their compaction limit, at which stage the shear force

will go up dramatically. Experimental shear tests (see Section 3.3.3) show a more

gradual increase in shear force than this would predict, indicating that the fabric

thickens as it is sheared, thus counteracting the effect of shear angle on the fibre

volume fraction and therefore bulk stress in the composite.

In order to illustrate the connection between tow-stitch interaction and fabric

thickness, Figure 4.16 represents a section through a tow in an NCF, with all of the

forces in the through-thickness direction indicated. The models for both the com-
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Figure 4.16: Section through a tow with a stitch running over it, showing direction
of stitch tension and tow compaction stress.

paction of the tows and the tension placed on the stitching allow these quantities to

be expressed as functions of the fabric thickness (t), and the shear angle (θs). So

far, the thickness of the fabric has been taken to be constant with shear angle, in

order that the equations could be expressed solely in terms of the shear angle. This

assumption is reasonable for smaller shear angles, and allows other effects to be mod-

elled independently, which is very convenient. At this point, however, a theoretical

investigation should be made into the consequences of varying the thickness for any

shear angle such that the stitch tension and tow compaction forces are balanced.

The unit stitch in a standard tricot stitch pierces the fabric 4 times. Thus at the

crudest level, the tension in the stitch can be made to equate the lateral compaction

force, which is calculated as the compaction pressure applied over a quarter of the

surface area of the unit cell. As the equations are too complicated to combine for an

analytical solution, an MS Visual Basic macro has been written within MS Excel that

sets the thickness such that the stitch tension is equal to the tow compaction stress

multiplied by a quarter of the unit cell surface area. Figure 4.17 shows the variation
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of thickness with shear angle for three stitch lengths. The drop in thicknesses seen

at positive shear for certain stitch lengths is a result of the increase in stitch tension

predicted. The 5mm stitch length fabric shows a sudden jump in thickness at the

point at which the stitch fails, modelled as a sudden failure at the breaking strain

of 0.17, after which the stitch is assumed to no longer affect the thickness values.

This is an unrealistic aspect of the model, in that when the stitch does fail, it only

breaks in places, and then slips near to the break points thus only partially relieving

the tension felt over most of the textile. The overall fibre volume fraction value of

0.35 is also fairly low for stitched non-crimp fabrics, as the value is taken from V0

for the compaction equations used. Finally, the compaction model does not restrict

out-of-plane thickness increases, leading to entirely unrealistic thicknesses.

4.4 Combined shear model

The model was implemented in an Excel spreadsheet. The energy contribution for

each mechanism outlined above was calculated at shear increments of half a degree.

Finally, the energy contributions were summed and differentiated to derive the total

shear torque and therefore the total shear force.

The shear model combines at the energy level. This is very straight forward, as

each energy contribution outlined sums up to give the total energy for shear, and

then the same differentiation technique can be applied to derive the total shear force.

Whilst this is the most physically appropriate approach for combining the different

effects modelled during shear, the linear nature of the differential operator means that

it is as valid to differentiate the sum of the energies as it is to sum the differentials of
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Figure 4.17: Balancing stitch tension and compaction effects: Thickness values such
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the energies (Equation 4.34). This means that the individual normalised shear forces

can be added to calculate the total shear force with equal validity. Figure 4.18 com-

pares all four curves for the non-crimp fabric model developed, demonstrating that

most of the deformation effects can be addressed independently before summation

for the overall shear response. Examination of the different shear force contributions
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Figure 4.18: Shear contributions for a non crimp, tricot stitch fabric, modelling stitch
tension, friction, lateral tow compaction, and inter-tow friction.

shows that at low positive shear angles the stitch dominates the textile shear stiff-

ness. However, as lateral tow compaction increases, this begins to dominate the shear

response, and the sample quickly approaches its locking angle. Crossover friction at

this crossover size is a small fraction of the lateral compaction force and therefore

can be neglected.
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Combination at the energy level also allows a more generic shear model to be

devised, where different shear contributions are summed according to the fabric

architecture undergoing shear. This is illustrated in Figure 4.19. Souter [60], in his

Bending
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Figure 4.19: The different meso-mechanical deformation mechanisms that control
fabric shear.

generic woven shear model used compaction and tow bending models to inform the

tow friction. However, by evaluating the energy to compact and bend the tows, as

well as the crossover frictional energy, a more complete shear model could be devised.

Furthermore, combining these effects with those developed here for non-crimp fabrics,

and others such as tow shear, would enable a shear model to be developed that can

model many textile structures.
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4.5 Results and Discussion

In modelling the non-crimp fabric described before, certain material values must be

assumed. The initial fabric thickness, t0, is taken to be 2mm and the coefficient

of friction between glass/glass and glass/stitch contacts was taken to be 0.3. The

measurement of textile thickness is difficult, as most repeatable experiments tend to

involve the measurement of the textile under a given pressure [60]. In the model the

initial thickness must not be under a pressure, thus the thickness was chosen such

that the given areal weight of the fabric was at a volume fraction that corresponds

to the minimum volume fraction stated by McBride [45] in his compaction model.

The factor AsEs, as discussed in Section 4.3.1.1, has been measured in tensile tests

and a sixth order polynomial fitted to data. For the reasons given above, values of

stitch run in have been tailored to create a small, consistent amount of stitch tension

at 0◦ shear.

To validate the model, the results for the non-crimp fabric fabric model are

first compared to picture frame and bias extension results, normalised according to

Section 3.3.2 and Section 3.4.4. Figure 4.20 makes the comparison for results for the

constant thickness model and the thickness varying model. The model predictions

can be seen to correspond fairly well to measured results, within the variability of the

different tests. Varying the thickness seems to be a valid approach up to a certain

extent, giving a result somewhere between that for picture frame and that for bias

extension, up to about 50◦ in the positive shear direction. Beyond 50◦, the curve dips

whereas both picture frame and bias extension do not. This seems to correspond to

the point at which both stitch tension and tow compaction become very high. The
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and varying thickness model for FGE 106hd shear response.
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approximation that the tow is evenly compressed by the stitch over the entire unit

cell must clearly become unrealistic under these conditions, when it is likely that the

tow is substantially more compressed directly under the stitch than anywhere else.

Samples of FGE 106hd with different stitch lengths were manufactured to test

the non-crimp fabric shear model. Figure 4.21 predicts that if FGE 106hd were to

be produced at a stitch length of 1.65mm, it would exhibit symmetric shear prop-

erties, whereas with a 5mm stitch it would show extreme shear asymmetry. These
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Figure 4.21: FGE 106hd modelled shear response at different stitch lengths - 1.65mm,
2.5mm and 5mm. Thickness was varied to balance stitch tension with compaction,
and results were compared to constant thickness predictions.

predictions were compared to bias extension results (Figure 4.22) for the standard

material as well as bespoke samples made at 1.65mm and 5mm stitch lengths.

Results for these extreme stitch lengths do not correspond to predictions very

well, although trends are replicated. However, it can be seen that the 1.65mm
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sample does exhibit symmetric shear response, whereas the 5mm sample shows the

greatest shear asymmetry. It is interesting to note that the effects of changing the

stitch length show during negative shear rather than positive as is predicted by the

model. It is possible that the reasons for the errors in positive shear predictions

result from the assumptions made in balancing stitch tension and tow compaction

- this has already been observed to be inadequate at high tension and compaction

situations. It seems likely that the assumptions made in the development of the

model do not hold very well for negative shear, where it has been observed that the

stitch response to extension parallel to the stitch direction causes the underlap to

take a zig-zag form. The current model does not take such stitch deformations into

account, neither does it allow for the effects of these on tow deformation.
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4.6 Conclusions

The effects of the stitching in non-crimp fabrics on their shear response has been

investigated and some simple models have been proposed to predict the shear force

curve. An energy based shear model has been proposed for summing the effects of

shear, and a range of non-crimp fabrics have been modelled in this manner with

predictions subsequently compared to measured results. Results correspond quite

well to the baseline fabric shear response: However, fabrics manufactured to test

the limits of the model show that there are several factors that need more analysis.

Specifically,

• The tow / stitch interactions require a more sophisticated analysis. This par-

ticular effect cannot be modelled as a separate energy contribution, rather it

is an interaction between other energy terms.

• The current model only assesses the lateral compaction caused by tow shear.

The frictional resistance as fibres move past each other should be investigated

as a shear response mechanism.

• No model has been offered to predict the average and distribution of crossover

length scales in non-crimp fabric shear, rather experimental data for a single

textile type has been relied on.

Many preforms for liquid transfer moulding have a binder treatment that allows

them to hold their preformed shape during transfer. This could introduce rate de-

pendant effects similar to those found in prepregs, but with the varying Vf that is

characteristic of dry fabrics. These effects have not been modelled.
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The approach developed here lends itself to further development in allowing

textile-architecture specific mechanisms to be modularised. This tactic can allow

for inclusion of the ever expanding technologies for creating more complex textiles.

Ultimately, fabric architecture understanding should allow the design of a fabric for a

specific application, allowing the resulting deformed pattern to correspond optimally

to the requirements.



Chapter 5

Further development of energy based kinematic

drape model

5.1 Introduction

In moving to an automated manufacturing environment, composite designers need to

anticipate the effects of the manufacturing environment and process on the product,

and to modify the design to take these factors into account. Whilst FE modelling

can represent the entire process including manufacturing concerns, it is slow to run

and requires a significant level of resource.

Section 2.3 outlines published progress towards forming models. The energy

based kinematic approach developed from Long and Rudd [41] and Souter [60] is

taken as the starting point and further developed.

This chapter looks at using a tool much more suited to earlier stages in the

design cycle, and looks to adding two important modelling capabilities to this tool.

In so doing, manufacturing issues can be predicted and solved much earlier in the

design of the part, resulting in a product that can be substantially easier and cheaper

to manufacture, whilst performing to design specification. The two factors are the

incorporation of a fabric blank-holder and stochastic material variation models to

the energy minimisation kinematic drape tool.
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5.2 Blank-holder effects on draping patterns

As previously mentioned, a fabric blank-holder is similar in concept to metal forming

blank-holders. If composite manufacture is to be automated, an alternative to the

hand lay-up technique common in current processes must be found. For small to

medium parts for resin transfer moulding (RTM) this can be achieved with a blank-

holder that, like metal stamping, holds the fabric in tension while the male tool is

punched through the material into the female tool.

It should be pointed out that the use of a blank-holder is not a panacea to the

automated draping problem. The use of a blank-holder could result in substantial

wastage caused by the excess textile that is held in the blank-holder after moulding.

This presents both financial and environmental challenges that have not yet been

addressed. Additionally, many complex geometries that may drape successfully by

hand may prove more of a challenge when formed with a blank-holder and matched

tooling. Hands that tease material into and over sharp corners may maintain a

more viable evenness of material distribution, whereas a blank-holder operation may

stretch the material excessively in some places and compress it in others. This natural

redistribution that occurs in hand lay-up also decreases the chances of wrinkling,

as it is possible in some situations to “tease out” wrinkles. Hand lay-up, on the

other hand, is even more time consuming if such fiddly jobs are required, adding

substantially to the process cost and decreasing its viability in medium and high

volume runs. As a result, it is vital that automated draping methods be explored

and their limitations better understood.

Previous experiments with such manufacturing approaches within the Univer-
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sity of Nottingham have shown that for some component geometries the amount

of clamping force applied to the blank by the blank-holder can affect the draping

results in terms of wrinkling and shear distribution. Such effects are demonstrated

in Section 5.2.4. Thus the use of a blank-holder provides another processing factor

that can be adjusted to facilitate better preform manufacture, and so it is desirable

to include it in design codes for forming analyses. However, the overriding advantage

of draping codes is their ease of use and fast computational times. Any blank-holder

models must therefore be incorporated into the code with the same philosophy, so

that accuracy may be sacrificed for a simpler, computationally faster, and easier to

use approach - a fully accurate blank-holder model can be subsequently included in

FEM simulations.

The energy minimisation approach optimises the orientation of the generator

paths so as to minimise the energy required to drape the whole part. Previously, in

calculating the energy required to drape the part, only two energy contributions have

been considered. These were the shear energy (see Section 2.2.2.1, Generic weave

shear models) and the fibre bending energy. [Bending energy does not contribute

significantly to forming energy in normal circumstances, however it provides an en-

ergy penalty that prevents the solution from bending the fibres back on themselves.]

To incorporate blank-holder effects, a third energy term can be added to the forming

energy, to estimate the energy required to pull the fabric through the blank-holder.

5.2.1 Basis of method

In order to minimise user input, specification of the blank-holder shape has been

omitted, and assumptions have been made about the frictional interaction between
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the blank-holder and the fabric. The user is therefore required to input only two

variables: The overall blank-holder force, and the tool/fabric friction. Thus the

effects of blank-holder force can be evaluated without requiring a detailed (or in fact

any) design of the blank-holder tool to be undertaken.

In order to achieve this, a number of assumptions were made:

• When any part of the blank contacts the tool, it remains there regardless of

subsequent actions. This assumption is inherent in the kinematic approach,

which maps the fabric onto the geometry rather than undertaking a chrono-

logical simulation of the draping process.

• The blank-holder shape can be thought of as being circular at an arbitrary

radius, with the centre of the circle being at the first point of contact with

the tool, which is taken to be the point at which the kinematic generator

paths cross over. This does not mean that the part being modelled must

be circular, or have rotational symmetry. Any component geometry can be

modelled, although it seems likely that the less the similarity of the shape of

the blank-holder is to a circle, the more inappropriate the force distribution

assumption in Equation 5.3 becomes.

• The blank-holder is assumed to lie in the x-y plane so that the tool moves in

the z-direction.

• The parts of the fabric to most recently contact the tool are taken to be level

with the blank-holder (i.e. same z-coordinate) at every point, thus ignoring

the shape of the fabric between the tool and the blank-holder and (due to
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the previous assumption) reducing the blank-holder consideration to a two

dimensional problem. Without this assumption the precise geometry of the

blank-holder would be required, and the problem would have to be considered

in a chronological manner, an approach that is better tackled by FE methods.

This is physically inappropriate, and is partly the result of the attempt to model

a chronological effect in a non-chronological, mapping approach. However, the

significance of the assumption should be assessed by the accuracy of the results.

• The coefficient of friction between the fabric and the blank-holder has been

assumed to be 0.2. This is a value based on some characterisation on the

fabric within the University of Nottingham, using the same rig reported by

Long and Clifford [40]. For different cases the value can be changed.

Projecting the deformed and undeformed boundaries onto the x,y plane, as was

done in this case, is particularly easy in that the z component of their position vectors

is simply ignored. However, it is relatively simple to project the boundaries onto any

plane, if a situation is identified in which the direction of the tool movement is not

parallel with the z-axis.

Consider the energy minimisation draping approach, illustrated in Figure 5.1.

Each generator path (shown in red) is extended one step away from the initial

crossover point. Having calculated the rest of the nodes around the new bound-

ary from geometric constraints, the energy required to drape the fabric up to that

step is then evaluated. Finally, the angles of each of these four new generator path

segments are chosen so as to minimise the overall forming energy. The generator

paths are extended in this way until the geometry has been fully covered.
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Figure 5.1: The kinematic draping process demonstrated on a hemispherical geome-
try. After the user has specified the initial crossover point and angles of the generator
paths (marked in red), they are extended one step out at a time and any other nodes
calculated. The first draping step has been highlighted in light blue, the second in
medium blue, and the third in dark blue.
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To be incorporated into the minimisation process, the blank-holder energy must

be evaluated at each of these steps. To do this, firstly the undeformed blank-shape

of the part of the fabric under consideration is calculated. As an example, Figure 5.2

illustrates the draped and undraped positions of the outermost nodes of the fabric

at the final draping step of a cone shaped geometry, taken from a Rolls-Royce Tay

nose cone component (pictured in Figure 5.7).
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Figure 5.2: The position of the outermost nodes of the fabric, modelled covering a
Tay nose cone geometry, projected onto the x-y plane. The energy required to pull
the fabric from the undraped to the draped positions through the blank-holder is
added to the calculated shear and bending energies to produce an ”overall” forming
energy. x and y values are in mm.

Consideration of Figure 5.2 reveals that in order for the boundary to have moved

from its undeformed state (in blue) to its deformed state, it must have pulled through

the blank-holder by a distance similar to the difference in radius of the two bound-
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aries. As both faces of the textile are in contact with the blank-holder, frictional

energy to pull it through the blank-holder is taken to be equal to twice the blank-

holder force FBH multiplied by the frictional constant µBH , multiplied by the linear

distance pulled through the blank-holder DBH , so that the total energy is doubled

Uf = 2µBHFBHDBH (5.1)

However, Figure 5.2 illustrates a difference in projected area, rather than a change

in linear distance. In order to reduce the former to the latter, the boundary drawn

by the outermost draped nodes at any draping step is considered in segments defined

by the straight lines between adjacent nodes. For each of these the distance ∆DBH

can be estimated as the difference between the distance from the generator path

crossover to the undrapedDundraped and drapedDdraped boundary segment midpoints,

Figure 5.3.

 

Dundraped
 

Ddraped
 

Boundary Segment  

φsegment
 

Figure 5.3: The segment distance contribution, ∆DBH = Dundraped −Ddraped

To determine how much the segment contributes to the overall blank-holder en-
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ergy, an equivalent segment force, ∆FBH needs to be defined. To do this, consider

the circular blank-holder of arbitrary radius, with area ABH , in Figure 5.4.

 

 

 

 

 

 

 

 ABH
ABH

segment

Figure 5.4: Circular blank-holder with arbitrary radius, of area ABH .

The pressure applied by the blank-holder to the fabric is
FBH

ABH

, which is the

pressure applied to the segment φsegment. If this segment is defined as the average

angle subtended by the segment ends to the generator path crossover (Figure 5.3),

then the area of the segment, ∆ABH , is equal to ABH multiplied by the angular

proportion of the segment:

∆ABH =
φsegment

2π
ABH (5.2)

Hence the equivalent force that applies to the segment is the pressure multiplied by

the area:

∆FBH =
φsegment

2π
ABH

FBH

ABH

=
φsegment

2π
FBH (5.3)

With this the energy contribution of the segment to the overall blank-holder energy

can be calculated as

∆Uf = 2µBH
φsegment

2π
FBHDBH (5.4)

so that the total blank-holder energy is the sum of that due to the segment boundaries

Uf =
∑

boundary

∆Uf (5.5)
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This can be calculated for the latest boundary at each step in the kinematic

modelling process. Note that at each step, the total energy required to pull the textile

through the blank-holder from undeformed to deformed is calculated afresh: It is the

difference between the fully deformed boundary and the undeformed boundary that

is calculated, so that the energy calculated is not incremental and does not need to be

added to the previous step’s blank-holder energy value. It is important to remember

this when incorporating the blank-holder energy values to the energy minimisation

algorithm, as each energy contribution should be included as the total for the draped

pattern so far rather than the incremental amount for each step.

5.2.2 Kinematic demonstration

A simple implementation of the approach is to evaluate the blank-holder energy in the

manner outlined above for a traditional kinematic drape in which the generator paths

are projected at different inter-fibre angles rather than set according to the energy

minimisation algorithms, as illustrated in Figure 5.5. This illustrates the differences

in energy resulting from pulling different non-crimp fabric quadrants through the

blank-holder. Taking the outline of the draped net, the energy to pull it through the

blank-holder can be assessed using the technique outlined above. The energy values

are presented in Figure 5.6 as the angle between generator paths is varied from 0◦

to 55◦.

It is very apparent that as the draping pattern is skewed, the total energy required

to pull the preform through the blank-holder increases. In the energy minimisation

approach, this should result in an energy penalty to shear asymmetry that is depen-

dent on the blank-holder pressure applied.
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Figure 5.5: Four geodesic kinematic drape results over a hemisphere geometry, with
the angle between the geodesic generator paths set to 0◦, 20◦, 40◦, and 60◦ from left
to right respectively.

5.2.3 Experimental method

The demonstrator part used for the experimental verification of blank-holder effects

is a Rolls-Royce Tay nose cone geometry. The cone and blank-holder setup are

mounted in an Instron test machine, shown in Figure 5.7 The blank-holder used

allows the pressure applied to the fabric to be adjusted individually around the rig

using a spring and bolt arrangement, however, in this study uniform blank-holder

pressure distributions were used. Utilising this, four nose cone drapes were carried

out, at progressive blank-holder pressures.

Before draping, the fabric used, EBXhd-936 or FGE 106hd, was marked with

an orthogonal grid, with the lines 10mm apart aligned with the fibre directions, as

shown in Figure 5.8. The fabric was placed into the blank-holder and the chosen
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Figure 5.7: Blank-holder setup with the Tay nose cone.
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Figure 5.8: Grid marked onto the fabric, before and after forming
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blank-holder pressure applied by turning the bolts a fixed number of turns. Four

different total blank-holder forces were used: 0N, 128N, 252N, and 378N. The rig

was mounted into an Instron test machine, with the blank-holder held at the top and

the cone on the moving arm, but without a load cell. The Instron test machine was

activated and the cone raised into the blank-holderon displacement control. Once

in place, the fabric was painted with a thermoset resin to fix it, and after the resin

had set, the formed cone could be removed for analysis. One drape was conducted

at each blank-holder level.

Figure 5.8 highlights the lines of maximum and minimum shear for each quadrant

of the cone. The difference between the shear angles along the maximum shear lines

along different quadrants is a good indicator of the forming symmetry. Accordingly,

shear angles were measured along these lines for each of the four cones. The shear

angles were measured in two ways. Firstly, the distance between diagonal corners of

each grid square was measured using Vernier calipers. Secondly, Photographs were

taken and analysed using CamSys, a digital mapping system.

CamSys, originally developed for for the determination of strains induced during

forming of metals, uses a system in which the material to be formed is marked

with a regular grid in the undeformed condition. After forming photographs with

a “target cube” of known dimensions are taken from two positions and analysed in

the software. The proprietry analysis software “ASAME” isolates the deformed grid

to lines, and triangulates the grid nodes from the two pictures to calculate their

3D coordinates and a strain field. for the component. This was first adapted for

composites by Souter [60].
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5.2.4 Results

Results are presented such that experimental data can be compared to predictions.

The modelled deformation was made using the University of Nottingham kinematic

drape programe “DrapeIt”, with modifications to include blank-holder energy in the

energy minimisation algorithm. The fabric shear energy was modelled using EBXhd-

936 shear data from picture frame tests by Souter [60], similar to those presented

in Section 3.3.3. The effect of increased blank-holder pressure in this case is to

negate the effect of the asymmetric shear behaviour of the material tested. Thus,

the greater the blank-holder pressure, the less skewed the draped pattern. This was

also replicated in the modelling approach.
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Figure 5.9: Measured and modelled effects of blank-holder on the draping of EBX-
hd-936 over the Tay nose-cone. Total blank-holder force is 0N

The results in Figure 5.9 show the typical asymmetric results seen from this fabric.
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Figure 5.10: Measured and modelled effects of blank-holder on the draping of EBX-
hd-936 over the Tay nose-cone. Total blank-holder force is 126N
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Figure 5.11: Measured and modelled effects of blank-holder on the draping of EBX-
hd-936 over the Tay nose-cone. Total blank-holder force is 252N
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Figure 5.12: Measured and modelled effects of blank-holder on the draping of EBX-
hd-936 over the Tay nose-cone. Total blank-holder force is 378N

The reasons for this, arising from the stitching, have been discussed in Section 4.3.1.

With the introduction of low blank-holder force in Figure 5.10, it can be seen that

the effect of the stitching is decreased, in that the fabric shears more symmetrically.

Figure 5.11 shows an almost symmetrical shear pattern as the blank-holder begins to

dominate the energy of forming, and Figure 5.12 is entirely symmetric. The errors

in the measured results can be seen from the differences in the two measurement

techniques.

It can be seen from the results that a skewed draping pattern over the nose

cone requires more material to be pulled through the blank-holder than a symmetric

pattern. Thus, as the energy cost of pulling the fabric through the blank-holder

increases with the blank-holder pressure, it dominates the drape energy so that
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fabric shear behaviour becomes less prominent. It would be informative to observe

the overall drape energy transition from the pattern with zero blank-holder pressure

to the point at which an entirely symmetric pattern is established. As what is being

observed is the interplay of the two process energies, that from the stitch and that

from the blank-holder, the transition between the two extremes could be informative

as to the magnitude of the energy that the stitch contributes to the fabric drape.

Meanwhile, the close correspondence between the measured and predicted results

provides assurance that at the least the drape and blank-holder energy models are

proportionate.

It may appear that the use of a blank-holder constricts the fabric from moving

circumferentially around the mould, an effect that cannot be adequately modelled by

this approach. However, this approach suggests that the more dominant effect of the

blank-holder is in achieving a pattern with minimal “radial” movement of the rein-

forcement, and furthermore that for axisymmetric parts at least, these constrictions

achieve the same effect in any case.

Whilst the result over the axisymmetric part approached those of kinematic drape

at high blank-holder pressures, several advantages can be seen for using the energy

minimisation approach over a kinematic one. The model allows an assessment to

be made whether a particular fabric will drape symmetrically at all. Further, it

gives an indication of what level of blank-holder pressure is required to achieve that.

However, further work should be conducted on expanding this concept, to test it on

non axisymmetric components, as well as implementing it with variable pressures,

as can be achieved with the nose cone blank-holder.
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5.3 Stochastic effects on draping patterns

The object of any virtual process development tool is to reduce the cost of pre-

manufacture assessment and optimisation of a product by minimising design iteration

and prototyping. One important function already well utilised in other manufactur-

ing environments is the prediction and optimisation of product variability and discard

rates. Many composite materials and processes exhibit high variability, which often

leads to high failure rates. This in turn increases the per-unit cost of composite

manufacture with these materials. Thus, understanding and predicting the effects

of variability on the final part should allow stochastic effects to be controlled and

minimised, reducing costs.

5.3.1 Sources of variability

In order to model and predict component variability, the processing factors that lead

to it must be categorised and individually examined. Such an attempt is made here,

and one of these categories is further examined.

Examination of the RTM manufacturing process yields obvious categories for vari-

ability according to the manufacturing process itself: Material manufacture, forming,

resin transfer, cure, and post-cure. As this thesis concerns itself with the forming

stage of the process, sub-categories of the resin-manufacture, resin transfer, cure,

and post-cure categories will be left to those more qualified in those areas. Also,

textile-manufacture is a process in itself and so lends itself to an independent study,

outside the scope of this thesis. Sources of variability for forming could include

• speed. This is particularly of importance in rate-dependent materials such as
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prepregs.

• temperature. Also of more importance to prepregs, it may also affect frictional

constants, lubricant behaviour, and fibre, tow, or stitch moduli (depending on

their materials) in dry forming.

• blank-holder pressure. Should a blank-holder be used, the value of the pres-

sure applied, as well as irregularities around the blank-holder (surface and load

evenness, load distribution due to material shear compression variations) could

affect draping. Alternatively, hand lay-up presents a large potential for vari-

ability, depending on the person performing it, the time of day, their working

conditions, etc.

• fabric alignment. Fabric misalignment could occur both in terms of in- and

out-of-plane rotation and, for example, point of first contact with the tool.

• handling effects. Fabric variability is a consequence not only of the manufac-

turing process but of subsequent handling prior to forming.

Whilst textile manufacturing variability will not be examined, the resultant fabric

variability can be looked at. Thus the variability studied here looks at the effects of

variability of the fabrics on the draped results.

5.3.2 Measuring textile variability

Fibre angle variability in turn affects resin transfer and final part characteristics.

The more deformable a material is, the more variable it tends to be - hence it is

a common practice to use the least deformable material that will drape a part. If
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quality is particularly important, it is sometimes even deemed preferable to use a

fabric that requires cutting, darts etc in return for a more consistent final part quality.

This is far from ideal, as darts complicate the manufacturing process and can create

resin rich zones in the part. Currently, fibre alignment does not usually form a part

of the fabric specification, although that seems likely to change if the composites

technology is to be embraced by the mainstream automotive industry.

To assess fabric variability a high-drape non-crimp fabric, FGE 106hd, was mea-

sured for tow angle variability. The material was carefully removed from the roll, and

samples of local fibre angles (with respect to the weft direction) over the fabric were

taken. The angles were measured from digital photographs of the fabric imported

into AutoCAD, as illustrated in Figure 5.13. The results, which appear to conform

to a Normal distribution, are presented in Figure 5.14, and tabulated in Table 5.1.

Table 5.1: Mean and standard deviation for fibre angles on FGE 106hd taken from
38 different locations over a single sample. All values are in degrees.

Mean fibre angles 42.7
Standard deviation 5.6

The validity of the results is affected primarily by the small, 38 point sample size.

However, before using the data other factors must be considered:

• The samples were taken at very regular intervals. If any pattern in the fibre

angle distribution has a frequency close to that of the samples, interference

between the two intervals could create an apparently random distribution.

• Interactions between fibre angles on the top and bottom of the fabric were

not considered as the material was handled between measurements of the top
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Figure 5.13: Sample areas were marked onto the fabric as shown in the top figure.
Bottom left shows a typical sampling area, and bottom right shows angle measure-
ment between the datum line (indicating weft direction) and a selected fibre.
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Figure 5.14: Histogram of fibre angles measured over sample with fitted Normal
distribution, mean and standard deviation as stated in Table 5.1

and the bottom face. To avoid this, the fabric should in future be placed on

a glass surface so that angles can be measured for both top and bottom faces

simultaneously.

• Samples were taken from one piece of material taken from one roll, so that

variations along the roll or between rolls cannot be taken into account. The

scale of the variability measured should be treated with great care, as the

graph presented might be seen to suggest that a roll could be received with an

average fibre angle of 30◦ rather than the stated 45◦. The angles measured are

specifically on a local scale, and not indicative of the global fibre angles or their

distribution within a roll or between rolls. Further work should be conducted

to measure these, also.
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Bearing this in mind, however, the measured distribution can be approximated

reasonable well by a Normal distribution, which can therefore be characterised very

easily by the mean and standard deviation of the fibre angle. The only significant

pattern of local angles observed was that angles were higher at the very edges of the

fabric, where it was directly handled as it was removed from the roll.

Note finally that the mean is 2−3◦ below that expected. This can been explained

by the shear behaviour model outlined in Section 4.5, as being due to the tension

under which the fabric is stitched - shear prediction data shows the shear force only

reaches zero at a negative shear value, due to the tension under which the stitch

is inserted into the material. The mean shear angle can therefore give a useful

indication of the amount of tension initially in the stitch.

5.3.3 Modelling material variability in draping

A simple method is freely available for producing a random variable conforming to

a Normal distribution. This requires use of the inverse cumulative Normal distri-

bution, for which very accurate numerical solutions can easily be calculated. The

inverse cumulative Normal distribution then allows a pseudo-random variable with

a flat distribution to be transformed into one that conforms to the standard Normal

distribution.

Hence, using a random number generator, the tow spacing can be varied according

to the Normal distribution. Inserting this into the code should create a unique

draping solution, for which the resulting shear angle distribution can be analysed

and compared to that observed.



176

5.3.3.1 Varying fibre spacing

Flat plate

One simple scheme for incorporating a stochastic effect within the DrapeIt algorithm

is to introduce a variation in tow spacing. In order to investigate how this might

affect draping, this spacing variation was initially chosen as conforming to the Normal

distribution.

Figure 5.15 shows a typical result for the ”draping” of a flat plate using the algo-

rithm implemented. Although the implementation was carried out for both kinematic

Figure 5.15: Energy-based “drape” results on a flat plate using randomised fibre
spacing with a very low standard deviation ( 1.5% of the mean fibre spacing). The
spectrum blue through to red represents low to high shear.

and energy-minimising draping approaches, the energy-minimised approach is pre-

sented here, for two reasons. The first is that in a kinematic approach the options

for laying generator paths restrict them to lying absolutely straight on a flat plate.
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Secondly, although fibre spacing variations represent a departure from the minimum

energy, it seems to make sense that once introduced the fabric would tend to deform

so as to minimise energy.

It can be observed that due to the nature of the draping approach, the effects of

the variable tow spacing are cumulative with respect to the distance of a node from

the generator path crossover - this does not correspond to a realistic shear angle

distribution.

Nevertheless it is worthwhile observing the resultant shear angle distribution,

shown in Figure 5.16. Note the very large angle standard deviation, resulting from
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Figure 5.16: Probability distribution for fibre angle taken from results shown in
Figure 5.15. The datum line is taken to be at 45◦ to Figure 5.15 for direct comparison
with Figure 5.14, and the fitted Normal distribution uses values for mean of 45.75◦

and standard deviation of 11.04◦.

a very small spacing standard deviation (24% of mean angle arising from only 1.5%

of mean spacing). This suggests that the drape response can be very sensitive to

variations in fibre spacings. However, observed fibre spacing variations tend to be
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local, so that the cumulative effects seen on the flat plate are not observed. The

sensitivity of the drape response to non-cumulative, local spacing variation may not

be so strong.

The concentration of 45◦ fibres is possibly due to the energy minimisation algo-

rithm, as the minimum shear energy for any one node is at 0◦ and so the minimum

energy drape will be such that the most fibres are close to ±45◦. A possible fix for

this could be to determine the local angles of the generator paths according to a

Normal distribution. This may also alleviate the problem of the progression in the

angle distribution with distance from the initial crossover point.

Nose Cone

In Section 5.2 a method for predicting blank-holder effects was outlined and com-

pared to results. Consideration of Figures 5.9-5.12 show that as the blank-holder

pressure increased, the experimental scatter decreased. Whilst it is not possible at

present to model this effect on a mezoscopic level, it would be interesting to see if

the degree of scatter observed could be replicated using the method outlined but

draping over the nose cone, and incorporating the blank-holder effect.

The result typically looks like Figure 5.17. Whilst the variability in shear angle

apparent in Figure 5.17 seems fairly mild, its effect can be seen on the shear angle

results in Figure 5.18. The shear angles in the figure are measured from the tip and

along the lines of peak shear angle down the length of the cone. They are plotted

against the distance on the surface of the geometry from the tip of the cone.
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Figure 5.17: A simulation of a cone draped with EBXhd-936at a blank-holder force
of 126N and a randomised spacing with a standard deviation of 0.1% of fibre spacing.

5.3.3.2 Varying fibre angle

Varying fibre spacing has limited applicability. A better approach might be to vary

the fibre angles according to the Normal distribution presented in Section 5.3.2.

However, the fibre angles measured were for the undeformed sheet, rather than for

a preform, in which fibre angles have been changed due to the preforming process.

In order to link the initial fibre angles with the formed fibre angles, the initial fibre

distribution is taken as the zero energy shear angle for local regions within the textile.

Thus, in a flat plate energy minimising drape, the textile would drape as measured.

In order to model this, the zero energy shear angle for each node in the pin-jointed

net is generated according to the Monte-Carlo method, and the value is stored with

the other node data. At each point at which the code calculates the node shear

energy, the zero energy node angle is subtracted from the calculated shear angle and
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Figure 5.18: Results from randomised cone drape with blank-holder force of 126N.
The predicted difference in shear quadrants corresponds fairly well to that experi-
mentally observed, and the spacing standard deviation of 0.1% of the fibre spacing
was chosen so that the apparent shear angle scatter would fairly well match experi-
mental scatter.
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the resultant angle is used in the shear energy equation.

Nose cone results

The biggest advantage of using an energy-based kinematic code to model stochastic

variations is in the speed of the model, which allows large data sets to be created

relatively quickly. One representative data set has been generated using the method

outlined above embedded into the University of Nottingham “DrapeIt” code. Fig-

ure 5.19 shows the variability of results for 127 simulations over the Tay nose-cone

geometry. It plots shear angle at each node against distance from the tip of the nose

cone, going along the lines of maximum shear.
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Figure 5.19: Results from drape with randomised energy curve offset. Shear curve
zero offset = 5◦.

The error bars are set to +/-1 standard deviation for that node, so that they

do not give an indication of the shape of the distribution. Figure 5.20 gives an

example of that distribution. This study indicates that an experimentally measured,
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Figure 5.20: Frequency distribution for node 6 along maximum shear line on positive
shear quadrant (grey - mean distance from tip = 96.6mm, mean inter-fibre angle =
33.5deg) and negative shear quadrant (black - mean distance from tip = 108mm,
mean inter-fibre angle = 59.8deg). No experimental verification of this effect was
made.
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relatively small variability in fibre angle in the undeformed textile can have quite a

substantial effect on the deformed fibre angles and positions. The two distributions

presented appear to have a mirrored shape, suggesting that they are related. This

is not surprising, as the constraint of constant fibre separation was maintained in

the model. This demonstrates that forming variability can be modelled within the

environment of kinematic forming models.

5.4 Conclusions

Some concepts for including effects of additional process and material variables have

been implemented in the energy based kinematic model that will allow a more appro-

priate and accurate draping simulation to be conducted with negligible loss of speed

(127 simulations in ≈ 5 hours) or ease of use. Initial results for the blank-holder

modelling approach are promising. However, a more thorough evaluation should be

made to fully explore the limits of what is a relatively simple approximation. The

potential of using blank-holders intelligently to control the draping pattern should

also be explored further. For example, if increased blank-holder pressure was ap-

plied to some segments than others around the perimeter, this may have an effect

on draped pattern, allowing forming control analogous to that proposed by Hancock

and Potter [16] for hand draping. Such controls may allow a previously hard to drape

geometry to be reliably and automatically formed.

Adding a stochastic effect to fibre spacing has produced some interesting results.

It has indicated that varying the fibre separation in the kinematic drape model by

even very small amounts (s.d. = 0.1%) can have a significant effect on the draped
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angle variation.

Some further direction in this work has been indicated, and this should con-

centrate on creating a stochastic model that is more physically appropriate. In

particular, the following problems should be considered:

• Current spacing variability simulations show a progression of shear angle vari-

ability related to the distance from the initial fibre crossover point. This is

a direct result of the implementation of the code and needs to be eradicated.

This could be achieved by local reorientation of fibres after idealised drape,

similar to the fibre reorientation work from Lai and Young [30], to ensure that

the fibre spacing variability effect is not cumulative.

• Fibre angles when varying fibre spacing tend to be unrealistically skewed to

allow as many to lie at ±45◦ as possible. This may however only be relevant in

geometries that require small shear angles. One possibility is to combine the

spacing and angle variability models.

• The degree to which adjacent fibre angle or spacing values are interdependent

should be addressed.

• The variability simulations should be explored further, with other geometries,

and larger experimental samples for comparison.

• Experimental measurements should be made of the variability of draping pat-

terns, and linked to the measured variability of the textile used.

• The effects of blank-holder pressure on variability should be investigated.
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In this specific example, it has been shown that even if fibre spacing was found

to vary by only a small amount, it could have a substantial effect on the draping

behaviour of the textile.



Chapter 6

Discussion and Conclusions

6.1 Discussion

The concern of this thesis is to facilitate the quick and accurate choice of dry textile

reinforcement for RTM processes, particularly in the early design stages. As the

predominant deformation mechanism observed in non-wrinkling textile forming is

shear, much of this thesis concentrates on measuring and predicting the shear re-

sponse of textiles. Much work has been done on modelling the shear response of

woven textiles, so that this work has concentrated on non-crimp fabrics to further

the breadth of textiles understood. Some preliminary work has also been conducted

to add to kinematic modelling energy minimisation. Specifically, simple models for

including the effects of a blank-holder on the draping pattern have been proposed

and compared to experiment. Further, some simple approaches to modelling textile

and forming variability have been explored.

6.1.1 Textile Shear

Two shear measurement methods were presented in Chapter 3. The relative merits

were discussed, and several methods were presented to normalise the shear results

for comparison. It was shown that the bias extension test can vary from the idealised

shear deformation in many ways, such as non-ideal pure trellis shear or fibre slip.

This was demonstrated to occur, and a video analysis tool was developed to monitor

186
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the shear deformation of the bias extension sample during the test. Comparisons

were made between normalised picture frame results at different pre-tensions and

normalised bias extension results at different sample aspect ratios. The differences in

normalised results highlighted the importance of boundary conditions on the textile

shear response. However, as reinforcement textiles can be processed under very

different conditions, it is desirable to understand their behaviour under different

boundary conditions.

Non-crimp fabrics were seen to have a lower shear stiffness response than woven

fabrics. They also exhibited different shear behaviour in different shear directions.

This effect can be controlled by careful choice of the stitch parameters. Stitch length,

for example, affects the cost of the fabric produced, as the stitching machines work

at a fixed stitching speed. Thus, a 2.5mm stitch length fabric would allow 50% more

textile to be produced in a given time than a 1.65mm stitch length fabric. The model

suggest that this can be achieved and a relatively balanced fabric still produced by

manufacturing at 4-gauge. Woven fabrics generally presented more repeatable shear

response. The reasons for this were mostly concerned with the ability to align woven

fabrics, in which fibre directions are more readily apparent and consistent. However,

this is mostly an artifact of the shear measurement apparatus, as drape results are

not as critically sensitive to accurate textile alignment.

Chapter 4 presented a model for the geometric progression of the stitch structure

during shear in non-crimp fabrics. The main causes of shear resistance in non-

crimp fabrics were explored. The most important of these were the stitch tension

and friction, the tow lateral compaction, and the interaction between the stitch

tension and tow compaction. The model presented showed good correspondence to
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experimental results for some cases, and successfully predicted the effect of stitch

length on shear asymmetry. However, it did not show good correspondence in two

fabrics, FGE 106hd at 1.65mm and 5mm stitch lengths. This was because of the

assumptions behind the model, which appear to lose credibility when the material is

very compacted or the stitching is highly stressed. The model also did not allow for

an observed change in the unit stitch shape during negative shear.

6.1.2 Forming models

The energy minimising kinematic drape simulation was discussed. This takes a ge-

ometric approach to drape simulation and iteratively calculates the deformation at

which the fabric requires the minimum shear energy. To add to this approach, a

method was proposed to model the effects of a blank-holder on the draping results.

The use of a blank-holder was shown to affect the draping results of a non-crimp

fabric over a nose-cone, and the effect was subsequently predicted with reasonable

accuracy. Whilst the method proposed involved many assumptions, it had the ad-

vantage of requiring very little input from the user, and did not adversely affect the

speed of output of the drape simulation. The method should be tested against a

number of different geometries, particularly those without rotational symmetry, to

fully explore its limitations.

Finally, some approaches were proposed for the modelling of variability in the

textile forming process. These were related to experimental observations of textile

variability, and preliminary attempts at modelling the effects of the textile variability

on the forming results were made. It was shown that forming results can be very

sensitive to small variability in tow spacing and initial shear angles. Further work
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would systematically measure the relationship between textile variability and forming

variability. It would explore the sensitivity of the relationship, and identify the

crucial variables for forming quality control.

6.2 Future work

This thesis has further developed work relating to the characterisation and mod-

elling of dry composite reinforcements and their preforming behaviour. Further work

should investigate several areas

1. A full statistical analysis should be conducted using the Monte Carlo drape

variation tool developed to assess the sensitivity of different geometries to pre-

form variation.

2. The validity of the blank-holder modelling should be further explored, par-

ticularly its limits in non-rotationally symmetric geometries. The effects of

blank-holder pressure on variability should also be explored.

3. Characterisation and modelling of forming behaviour for new advanced rein-

forcements, such as 3D weaves, should be undertaken to facilitate acceptance

of these materials.

4. A generic, integrated modelling tool incorporating woven and non-crimp fabric

models, as well as other textiles should be developed.

5. Shear behaviour prediction models should be used to determine optimised re-

inforcement forms. These should be integrated with forming models to deter-
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mine application specific reinforcement recommendations. Tools could be used

to design textiles to specific uses.

6. Further work should be conducted to understand the limits of the shear mea-

surement apparatus. In particular, rigorous approaches to measuring and con-

trolling tension during picture frame tests should be developed. Repeatability

continues to cause issues. More work should investigate boundary conditions

in picture frame and bias extension tests, shear variability and mitigation, and

alignment. Benchmarking should result in best practice guides and a ranking

of the merits and pitfalls of different methods.

6.3 Conclusions

1. A rough geometric description of the reinforcement fabric allows an estimation

of the fabric formability behaviour to be made. Together with a fast and easy

drape modeller, this allows preliminary reinforcement choices to be evaluated

quickly. It may also allow fabric architecture to be designed for a specific form.

2. Shear characterisations by different methods can be normalised to compare

results. The different boundary conditions of these methods allow different

effects within forming to be evaluated.

3. Simple changes in NCF stitch parameters have been demonstrated to affect

both the predicted and measured forming behaviour of the textile. This con-

firms the feasibility of fabric selection or design for specific forming require-

ments.
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4. Kinematic based draping algorithms that take into account some material and

processing factors have been demonstrated to possess a legitimate place in the

design cycle. Such a model has been extended to allow for the use of a blank-

holder, whilst the ease of use and calculation speed when compared to FE

solutions has not been adversely affected

5. The use of a blank-holder in forming experiments has been shown to affect

the forming results for some textiles. This confirms the importance of more

accurate forming simulation such as has been proposed. It also opens up an-

other design parameter for tuning resin injection issues such as dry spots, fibre

volume fraction, and final component mechanical behaviour.

6. The effects of textile variability on formed pattern have been modelled. Other

textile and forming factors that may affect variability should be modelled. The

effects of the forming variability on resin flow should also be investigated.
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Appendix B

Picture frame and bias extension results

B.1 Picture frame results
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Figure B.1: EBXhd-936 at 62N pre-tension, sheared in the negative direction
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Figure B.2: EBXhd-936 at 375N pre-tension, sheared in the positive direction
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Figure B.3: EBXhd-936 at 375N pre-tension, sheared in the negative direction
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Figure B.4: EBXhd-936 at 1300N pre-tension, sheared in the negative direction
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Figure B.5: FGE 106hd at 1300N pre-tension, sheared in the positive direction
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B.2 Bias extension results - comparison of normalisation

techniques
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Figure B.6: Bentley mat2 at κ = 2. Sample width = 100mm
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Figure B.7: Bentley mat2 at κ = 3. Sample width = 100mm
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Figure B.8: FGE 106hd:1.65 at κ = 2, positive shear direction. Sample
width = 90mm
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Figure B.9: FGE 106hd:1.65 at κ = 2, negative shear direction. Sample
width = 90mm
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Figure B.10: FGE 106hd at κ = 2, positive shear direction. Sample width = 90mm
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Figure B.11: FGE 106hd at κ = 2, negative shear direction. Sample width = 90mm
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Figure B.12: FGE 106hd:5 at κ = 2, positive shear direction. Sample width = 90mm
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Figure B.13: FGE 106hd:5 at κ = 2, negative shear direction. Sample width = 90mm
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Figure B.14: TwintexTM 3 at κ = 2. Sample width = 99mm
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Figure B.15: TwintexTM 3 at κ = 2.5. Sample width = 99mm
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Figure B.16: TwintexTM 3 at κ = 3. Sample width = 99mm
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B.3 Comparisons of normalised results from different tests
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Figure B.17: Comparison of picture frame (at 1300N pre-tension) and bias extension
(κ = 2) normalised test results for FGE 106hd. Shear direction is positive (extending
in the stitch direction)
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Figure B.18: Comparison of picture frame (at 1300N pre-tension) and bias extension
(κ = 2) normalised test results for FGE 106hd. Shear direction is negative (extending
transverse to the stitch direction)
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Figure B.19: Comparison of bias extension normalised test results for TwintexTM 1
at different aspect ratios κ = 2, 2.5, 3
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Figure B.20: Comparison of bias extension normalised test results for TwintexTM 3
at different aspect ratios κ = 2, 2.5, 3
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Figure B.21: Comparison of bias extension normalised test results for Bentley mat2
at different aspect ratios κ = 2 and 3



Appendix C

Bias extension angle results from video analysis

Results are presented after offsetting the displacement according to the axis inter-

section point, but before further offsetting according to the average value. A large

number of results were generated for TwintexTM 3 so that the trends and variability

of the shear results could be examined.
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Figure C.1: Angles measured from video taken of a bias extension test of Bentley
mat1 with sample ratio factor κ = 2.
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Figure C.2: Angles measured from video taken of a bias extension test of TwintexTM

3 with sample ratio factor κ = 2 (1).
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Figure C.3: Angles measured from video taken of a bias extension test of TwintexTM

3 with sample ratio factor κ = 2 (2).
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Figure C.4: Angles measured from video taken of a bias extension test of TwintexTM

3 with sample ratio factor κ = 2 (3).
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Figure C.5: Angles measured from video taken of a bias extension test of TwintexTM

3 with sample ratio factor κ = 2 (4).
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Figure C.6: Angles measured from video taken of a bias extension test of TwintexTM

3 with sample ratio factor κ = 2 (5).

-10

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90

Measured shear angle (degrees)

Pr
ed

ic
te

d 
sh

ea
r a

ng
le

 (d
eg

re
es

)

Figure C.7: Angles measured from video taken of a bias extension test of TwintexTM

3 with sample ratio factor κ = 2 (6).
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Figure C.8: Angles measured from video taken of a bias extension test of TwintexTM

3 with sample ratio factor κ = 2 (7).
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Figure C.9: Angles measured from video taken of a bias extension test of TwintexTM

3 with sample ratio factor κ = 2 (8).
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Figure C.10: Angles measured from video taken of a bias extension test of TwintexTM

3 with sample ratio factor κ = 2 (9).
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Figure C.11: Angles measured from video taken of a bias extension test of TwintexTM

3 with sample ratio factor κ = 2.5.
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Figure C.12: Angles measured from video taken of a bias extension test of TwintexTM

3 with sample ratio factor κ = 3.


