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ABSTRACT

Early studies of the tomato ethylene signalling network using yeast two-hybrid screen

previously identified three novel proteins (IntCR22, 242 and 266) that could interact

with a putative ethylene kinase LeCTR2 (Lin et al., 2003). In this study, it has been

demonstrated that IntCR22 is a cytoplasmic UDP-glycosyltransferase and IntCR266 is a

chloroplast metallo-proteinase homologue to the Arabidopsis FtSH5/VAR1, whereas

IntCR242 encodes a novel chloroplast protein with a C-terminal histidine-rich domain.

In order to gain more insight into the tomato ethylene signalling mechanism, the

sub-cellular localization and protein-protein interactions of the tomato ethylene

signalling components have been investigated by fluorescent protein labelling and yeast

two-hybrid experiments. Three tomato ethylene receptors (ETR1, NR and ETR4) and a

downstream regulator EIN2 have been found in the endoplasmic reticulum (ER). Three

putative downstream MAPKK kinases (CTRs) could interact with the C-terminus of the

ethylene receptor possibly on the cytoplasmic side of the ER, whereas a novel ethylene

signalling component GREEN-RIPE was located in the Golgi. It was therefore

concluded from the localization study that IntCR242 and IntCR266 were false positives

from the yeast two-hybrid screen and could not interact in vivo with the ethylene

signalling components. The results presented in this study, in line with previous

ethylene research suggest a possible involvement of the plant endomembrane system in

the ethylene signalling network. However, the question as to how the ethylene signal

moves from the ER localized receptors to promote activation of genes for the

transcription factors within the nucleus remains unsolved.
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CHAPTER 1: INTRODUCTION

1.1 Ethylene as a Phytohormone

1.1.1 Properties of ethylene

Ethylene is an endogenous plant hormone that regulates many aspects of plant growth

and development and is critically involved in germination, senescence, abscission, fruit

ripening and stress related responses. Ethylene is a gas and has a simple structure,

which consists of two carbons and four hydrogens (Table 1.1).

Table 1.1: Physical and chemical properties of ethylene

CAS number 74-85-1

Structure

Molecular weight 28.0536

Melting point -169.14 oC Boiling point -103.7 oC

The boiling temperature of ethylene is –103.7oC, which allows it to remain in gaseous

form under all the conditions suitable for plant growth. The solubility of ethylene gas

(25 oC) is higher in organic environments than in water (O’Neil, 2006), which means

that ethylene can diffuse freely through the membrane systems without the need of any

carrier protein. The lowest concentration required for the biological activity of ethylene

in the literature is 10-2 ppm and it has been suggested that 1 ppm of ethylene is

sufficient to evoke ethylene responses such as inhibition of root/hypocotyl growth in

etiolated Arabidopsis seedlings (Keegan et al., 1988; Binder et al., 2004). This is a
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lower concentration than most if not all the signalling molecules with identified

hormone functions in plants.

The unique chemical and physical characteristics of ethylene make it possible as a

signal molecule to diffuse freely to any part of the plant cell. Therefore, ethylene could

be synthesized by some cells under specific physiological or developmental conditions

and diffuse to a target tissue to evoke ethylene responses. All these properties contribute

to ethylene’s special physiological significance. It is unique among the major plant

growth regulators and it is also one of the most extensively studied phytohormones.

1.1.2 Ethylene biosynthesis

Although elucidation of the signalling apparatus is important in understanding how

ethylene or any signalling molecule functions and affects development, it is equally

important to understand how the signal molecule is produced and how the production

process is regulated. The precursor for ethylene biosynthesis is S-adenosyl-methionine

(AdoMet), which is converted from methionine by the AdoMet synthase through an ATP

dependent process (Figure 1.1; Yang and Hoffman, 1984). AdoMet is an intermediate in

a number of biosynthetic pathways as a methyl donor and is also involved in the

methylation of proteins, lipids and nucleic acids. The conversion of AdoMet to

1-aminocyclopropane-1-carboxylic acid (ACC) by the ACC synthase (ACS) is the first

committed step in the ethylene synthesis cycle (reviewed in Alexander and Grierson,

2002). Secondly, ACC is oxidized by ACC oxidase (ACO, previously called Ethylene
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Forming Enzyme) to produce ethylene, CO2 and cyanide (Holdsworth et al., 1987;

Halmiton et al., 1991). Cyanide is a toxic by-product of ethylene synthesis and is

rapidly metabolized to β-cyanoalanine derivatives by β-cyanoalanine synthase (Yip and

Yang, 1988). To control ethylene production, both ACS and ACO are regulated at the

transcriptional and post-transcriptional levels in response to environmental stimuli and

developmental cues (reviewed in Wang et al., 2002). For example, the stability and

activity of ACS were controlled post-transcriptionally by the ETO1 and ETO1-like

(EOL) proteins that can physically interact with the C-terminus of ACS and target ACS

for proteasome degradation (Wang et al., 2004).

Figure 1.1: Ethylene biosynthesis pathway

The ethylene biosynthesis pathway is also known as the “Yang Cycle”. Methionine is

first converted to S-adenyl-methionine by AdoMet synthase, then to ACC and finally

oxidized to generate ethylene. The methyl group in AdoMet is finally recycled back to

Met and Yang Cycle is completed.The enzymes catalyzing each step are shown above

the arrows. AdoMet: S-adenyl-methionine; MET: methionine; ACC:

1-aminocyclopropane-1-carboxylic acid; MTA: methylthioadenine (Schaller and Kieber,

2002).
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1.2 Ethylene Signalling

The signalling pathway of ethylene has been dissected in great detail in the model plant

Arabidopsis thaliana largely by isolating ethylene response mutants and characterizing

the mutant genes. Although ethylene affects many developmental processes during plant

growth, most of these effects are too cumbersome for mutant screens (Schaller and

Kieber, 2002). Thus the “triple-response”, which is a combination of relatively simple

effects of ethylene on dark-grown Arabidopsis seedlings, is extensively used in genetic

screens for ethylene mutants (Bleecker et al., 1988). Briefly, the triple response is

characterized by the inhibition of root elongation, production of a shortened and

thickened hypocotyl and exaggerated curve of the apical hook of the dark grown

Arabidopsis seedlings (Figure 1.2).

Figure 1.2: Triple-response

(A) Arabidopsis seedlings grown in the dark with (right) or without (left) exogenous

ethylene. (B) Dark grown seedling in the presence of the ethylene precursor ACC

developing triple response. (C and D) Close-up of the apical hook and root of the triple

response seedling (Schaller and Kieber, 2002).
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Ethylene mutants with an altered triple-response obtained from such screens can be

generally separated into two classes. The first class includes ethylene insensitive

mutants; the second class comprised the constitutive ethylene response mutants

(Bleecker et al., 1988). For example, the ein2 mutant renders the Arabidopsis plant

completely ethylene insensitive (Alonso et al., 1999) and is a member of the first

mutant class. On the other hand, the second class of mutant ctr1-1 causes constitutive

ethylene response in both seedlings and adult plants (Kieber et al., 1993). With the large

genetic mutant resources available, epistatic analysis of the double mutants has been

used to determine the genetic order of the signalling components and the framework of

the ethylene signalling pathway has been established (reviewed in Schaller and Kieber,

2002; Ecker et al., 2006; Olemdo et al., 2006).

1.2.1 Arabidopsis ethylene receptors

In the model plant Arabidopsis, ethylene is perceived by a family of five receptors

(ETR1, ERS1, ETR2, ERS2 and EIN4) in the membrane of the endoplasmic reticulum

(Chang et al., 1993; Hua, et al., 1995; Hua and Meyerowitz, 1998; Sakai et al., 1998).

The ethylene binding site is located in the N-terminal transmembrane domains of the

receptors, which is followed by a GAF domain and a histidine kinase domain. Although

this might not be active in all ethylene receptor-like proteins, an additional receiver

domain is present in the C-termini of the Arabidopsis ethylene receptors ETR1, ETR2

and EIN4 (Figure 1.3). The GAF domain was originally found in the cyclic nucleotide

phosphodiesterases and subsequently recognized in the phytochromes of
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cyanobacterium and higher plants (Charbonneau et al., 1990; Aravind and Ponting,

1997). Although, it has been suggested that the GAF domain was involved in binding

small molecules such as cGMP, its role in the ethylene receptors is still unclear.

Recently, it has been reported that the GAF domain might mediate the non-covalent

dimerization of the Arabidopsis ethylene receptor ETR1 (Xie et al., 2006). Following

the GAF domain, the C-terminal half of the ethylene receptors contains a kinase domain

and a receiver domain, which share sequence similarity to the bacterial two-component

system histidine kinase. According to the presence of the conserved kinase motifs in the

histidine kinase domain, the five ethylene receptors are divided into two subfamilies

(Hua and Meyerowitz, 1998). Only the subfamily I receptors (ETR1 and ERS2) have all

the essential elements for the histidine kinase activity and the subfamily II receptors

have an extra hydrophobic region in the N-terminus, which has been hypothesized for

targeting receptors to the secretion pathway (Figure 1.3).

Figure 1.3: The Arabidopsis ethylene receptors

The subfamily I receptors (ETR1 and ERS1) have the conserved histidine kinase motifs

(HNGFG). The remaining subfamily II receptors have a putative signal sequence for

entering the secretion pathway (grey bar). The black bar indicates the transmembrane

domain, the diamond represents the GAF domain, the rectangle indicates the histidine

kinase domain and the oval with the conserved Asp (D) indicates the receiver domain

(Schaller and Kieber, 2002).
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1.2.2 Copper mediated ethylene binding

A schematic diagram of the current model of ethylene binding is shown in Figure 1.4. It

has been suggested that the ethylene receptors dimerize by covalent disulfide linkage

and their dimerization is required for ethylene binding (Schaller and Bleecker, 1995;

Hall et al., 1999; Rodriguez et al., 1999). It is also hypothesized that ethylene binds to

the dimerized receptor through a copper co-factor and the copper ion was supplied to

the ethylene receptors by the Arabidopsis RESPONSIVE TO ANTAGONIST1 (RAN1)

protein, which is a copper-transporting P-type ATPase (Hirayama et al., 1999). This is

supported by the observations that the loss-of-function mutants of RAN1 and transgenic

plants with reduced RAN1 messenger RNA level have constitutive ethylene response

phenotypes.

Applying exogenous copper ion to the growth medium could partially rescue the

constitutive ethylene response phenotype of ran1-3, which suggested that the

constitutive ethylene response of the loss-of-function ran1-3 mutant was resulted from

the inappropriate or insufficient copper ion delivery to the ethylene receptors (Woeste et

al., 2000). The epistatic analysis also revealed that the RAN1 allele acts on or

downstream from the ethylene receptors and upstream of EIN2, as the ran1 mutant

phenotypes could only be masked by the ein2 mutation but not the mutations in the

ethylene receptors.
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Figure 1.4: Model of the ethylene binding site

(A) Copper loading of ethylene receptors by RAN1. RAN1 is a copper transporting

ATPase with two N-terminal metal-binding motifs that can bind copper and transport it

across the membrane to the ethylene receptor apoproteins. It has been suggested that

one copper ion is coordinated per receptor homo-dimer to mediate ethylene binding.

(B) Transmembrane structure of the ethylene binding site. There is one copper binding

site and consequently one ethylene-binding site per receptor homodimer. Each

monomer of the receptor homodimer contains three transmembrane segments. Cys65 and

His69 coordinate the copper ion within the second transmembrane domains of each

monomer (Schaller and Kieber, 2002).
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1.2.3 Arabidopsis ethylene receptor mutants

The Ethylene Response1 (ETR1) gene was the first member of the Arabidopsis ethylene

receptor gene family to be identified and has been characterized in most detail (Chang et

al., 1993). The ETR1 gene was mapped and cloned from the etr1-1 mutant, which is one

of the dominant gain-of-function (GOF) missense receptor mutants that confer ethylene

insensitivity by abolishing ethylene binding (Chang et al., 1993; Hall et al., 1999).

ETR1 is an integral membrane protein with 738 amino acid residues; it contains three

transmembrane domains in the N-terminus followed by a GAF domain, a histidine

kinase domain and a receiver domain (Figure 1.3).

A second ETR1 mutant allele, etr1-2 is the only ethylene receptor mutant where the

insensitivity to ethylene is not caused by mutations affecting ethylene binding (Hall et

al., 1999). The mutant protein ETR1-2, in which the Ala102 is changed to Thr in the third

trans-membrane domain, can bind ethylene in excess of wild-type ETR1 protein. It has

been demonstrated that the etr1-2 mutant phenotype could be suppressed by the

reversion-to-ethylene sensitivity1 (rte1) mutant, which encodes a novel plant membrane

protein (Resnick et al., 2006). Interestingly, rte1 could only suppress etr1-2 but not the

etr1-1 allele nor can it suppress other receptor mutants. In addition, the etr1-2/rte1

double mutant resembles both the ETR1 and RTE1 loss-of-function mutants, which

have enhanced ethylene responses. Taken together with the findings that

over-expressing RTE1 resulted in reduced ethylene sensitivity, it appears that RTE1

might negatively regulate the ethylene signalling through the ethylene receptor ETR1
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and has an essential role in ETR1 function. However, these findings also suggest that

the ethylene signal output of ETR1 could be separated into the RTE1 dependent and

RTE1 independent ones, since not all etr1 alleles could be suppressed by rte1 (Resnick

et al., 2006).

The gain-of-function (GOF) mutants of ETR1 and the other four Arabidopsis ethylene

receptor genes have a dominant ethylene insensitive phenotype (Bleecker et al., 1988).

The loss-of-function (LOF) mutants of any individual receptor genes have no obvious

ethylene-related phenotype, while LOF mutants of multiple ethylene receptors have

strong constitutive ethylene response phenotype (constitutive triple response) in the

absence of ethylene (Hua and Meyerowitz, 1998; Hall and Bleecker, 2003). The

difference between the single and multiple LOF mutants suggests that there is functional

redundancy within the ethylene receptor family because the constitutive ethylene

response phenotype is only observed in multiple receptor LOF mutants. Secondly, it

indicates that the ethylene receptors serve as negative regulators of the ethylene

signalling pathway because elimination of receptors activates the ethylene response.

1.2.4 Ethylene receptors: two-component system histidine kinase?

The carboxyl termini of the ethylene receptors are similar to histidine kinases of the

bacterial two-component system. Typically, the bacterial two-component system is

composed of a sensory histidine kinase and a response regulator (Figure 1.5). The

sensory histidine kinase is normally a membrane-bound receptor, which
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autophosphorylates on a conserved His residue. In respond to a specific environmental

stimulus, the phosphoryl group at the His residue of the receptor would be transferred to

a conserved Asp residue in the response regulator (receiver), such as a transcription

factor the activity or localization of which could be altered by the phosphorylation

(reviewed in Takeshi et al., 2000; Schaller et al., 2002).

Figure 1.5: Diagram of the two-component system

(A) The two-component system employs a histidine kinase and a response regulator.

(B) The multi-step two-component system employs a hybrid histidine kinase with

histidine kinase domain and receiver domain, a histidine-containing phosphotransfer

protein (HPt), and a response regulator.

Histidine kinase domains are indicated by rectangles, receiver domains by ovals, HPt

proteins by rounded rectangles, and transmembrane domains by black bars. The

phosphoryl transfer between histidine (H) and aspartic acid (D) residues are indicated by

arrows. (Schaller et al., 2002).
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Sometimes a phosphorelay intermediate is required for transferring the phosphoryl

group to the response regulator in a multi-step two-component system (Figure 1.5). The

sensory histidine kinase of this system usually contains a response domain with a

conserved Asp residue, thus it is also referred to as “hybrid histidine kinase”. Three

Arabidopsis ethylene receptors (ETR1, ETR2 and EIN4) are similar to the hybrid

histidine kinase (Figure 1.3), which have the receiver domain, while the ERS1 and

ERS2 lack the receiver domain and thus belong to the simple two-component system

histidine kinase.

Although the in vitro autophosphorylation of all the Arabidopsis ethylene receptors has

been demonstrated experimentally, neither the response regulator nor the phosphorelay

intermediate of the ethylene receptors resembling the two-component system has yet

been identified (Mosatche and Klee, 2004). In fact, only the Arabidopsis sub-family I

ethylene receptors (ETR1 and ERS1) have all the conserved motifs required for the

histidine kinase activity and can autophosphorylate on His residue, whereas the

remaining sub-family II receptors can only autophosphorylate on the Serine (Ser)

residue, which is unconventional for a histidine kinase in the two-component system. It

appears that the sub-family II receptors lack the histidine kinase activity but this does

not prevent them from participating in the ethylene signalling output, because it has

been shown that mutations in the subfamily II receptors could also render the

Arabidopsis plant insensitive to ethylene (Chang et al., 1993; Hua, et al., 1995; Hua and

Meyerowitz, 1998; Sakai et al., 1998).
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Moreover, expressing only the N-terminus of the mutant receptor ETR1-1, which lacks

the entire histidine kinase domain can mimic the ethylene insensitive phenotype in the

wild-type Arabidopsis (Gamble et al., 2002). It had been proposed by Wang et al.,

(2003) that the canonical histidine kinase activity of ETR1 is not required for ethylene

signalling by demonstrating that a kinase inactive form of ETR1 could complement the

etr1-7/ers1-2 loss-of-function double mutant. However, interpretation of this

complementation experiment remains arguable as it has been discovered that the LOF

ERS1 mutant (ers1-2) was, in fact, not a complete null mutant (Xie et al., 2006).

Therefore, the constitutive ethylene response phenotype of the leaky etr1-7/ers1-2

double LOF mutant is an indication that the reduced ERS1 protein level in the ETR1-7

null background is insufficient to suppress the ethylene response (able to cause

constitutive ethylene response). It was hypothesized that the kinase inactive ETR1

transgene used by Wang et al., (2003) might have utilized the histidine kinase activity

from the residual ERS1 protein from the leaky ers1-2 to restore the normal ethylene

signalling. It would thus be interesting to known whether the same kinase inactive ETR1

transgene could rescue a true etr1/ers1 LOF mutant such as the recently isolated

etr1-7/ers1-3 (Qu et al., 2007).

Qu and Schaller (2003) showed that neither the truncated ETR1 (minus the histidine

domain) nor the point mutated full-length ETR1 (lacks histidine kinase activity) could

fully rescue the etr1/ein4/etr2 triple mutant. Furthermore, it has recently been

demonstrated that the ethylene insensitivity caused by expressing the mutated ethylene
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receptor N-terminus (minus the histidine kinase domain) is sub-family I dependent (Xie

et al., 2006). Collectively, these recent findings suggest that the sub-family II receptors

alone (lacking the conserved kinase motifs, thus unable to take part in phosphorelay)

might not be able to transmit the ethylene signal. In other words, the histidine kinase

activities of the receptors are essential in the ethylene signalling output. If that is indeed

the case, a key question would be how the sub-family II receptors function without

histidine kinase activity.

The biochemical and genetic evidence suggested that the ethylene receptors have

sequence homology to the two-component system histidine kinase and their histidine

kinase activity might be required for the activity of ETR1. It is still unknown whether or

not the ethylene signal transduction takes place through a histidine kinase phosphorelay

mechanism and the role of the histidine kinase domain in the ethylene receptors remains

largely elusive.

1.2.5 Arabidopsis CTR1

The Arabidopsis CTR1 protein is a negative regulator of the ethylene signalling

pathway. The phenotypes of the CTR1 LOF mutant ctr1-1 include small rosette leaves,

early bolting (1-2 weeks), sterile early flowers, less extensive root system and a small

inflorescence, which can be phenocopied by applying exogenous ethylene to wild-type

Arabidopsis (Kieber et al., 1993; Clark et al., 1998). The gene CTR1 spans 5 kb of
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genomic DNA and contains 15 introns. The coding sequence of CTR1 is 2466 nt in

length and encodes a protein about 90 kDa. Although, the N-terminal domain of CTR1

displays little sequence similarity to any known proteins, except for other plant

CTR1-like proteins, the carboxyl terminus of CTR1 has high sequence similarity to Raf

serine/threonine protein kinase (Kieber et al., 1993). The missense mutations in the

highly conserved residues in the C-terminal kinase domain of CTR1 could produce the

constitutive ethylene response phenotype, which indicates that CTR1 functions as a

protein kinase in the ethylene signalling network (Huang et al., 2003).

Epistatic analysis of the double mutants of the receptors and CTR1 revealed that CTR1

acts genetically downstream of the ethylene receptors (Kieber et al., 1993). It was later

discovered that the N-terminus of CTR1 can interact directly with the subfamily I

ethylene receptors ETR1 and ERS1 by using yeast two-hybrid and in vitro pull-down

assays (Clark et al., 1998). It should be noted that CTR1 might also associate weakly

with the subfamily II receptor ETR2 in the yeast two-hybrid assay (Cancel and Larsen,

2002). It has been postulated that eight out of nine CTR1 mutants were loss-of-function

mutants or contain missense mutations in the kinase domain (Huang et al., 2003). For

example, mutations in the conserved kinase residues (ctr1-1, ctr1-4 and ctr1-7), a

mutant caused by T-DNA insertion (ctr1-5), a mutant disrupting intron splicing (ctr1-6)

and mutants caused by frame shift and early stop codons (ctr1-2, ctr1-3 and ctr1-9) all

rendered the Arabidopsis plants a constitutive ethylene responsive phenotype in the

absence of ethylene. On the other hand, misense mutant ctr1-8 is the result of a Gly354
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to Glu change in its N-terminus, whilst the Ser/Thr kinase activity of the CTR1-8

C-terminus remains intact (Huang et al., 2003). Yeast two-hybrid assay revealed that the

Gly354 to Glu mutation in CTR1-8 abolished its interaction with the ethylene receptors

ETR1 and ERS1. Together with the observation that the missense ctr1-8 mutant has the

same phenotype as other loss-of-function ctr1 mutant alleles, it was hypothesized that

the protein-protein interaction between the ethylene receptors and CTR1 played a

critical role in the ethylene signalling mechanism.

1.2.6 ETR1-CTR complex

The ethylene receptors contain N-terminal hydrophobic domains that could be

responsible for their membrane localization (Chang et al., 1993). It has recently been

demonstrated that the Arabidopsis ethylene receptor ETR1 is predominantly localized to

the rough endoplasmic reticulum by experiments using sucrose density gradient

centrifugation and immunoelectron microscopy (Chen et al., 2002). A membrane

topology model of the ethylene receptor has been proposed by Ma et al. (2006) through

analyzing the localization of GFP fused melon ethylene receptor CmERS1, which is a

homologue of the Arabidopsis ethylene receptor ERS1. In this model, the N-terminus of

the receptor is facing the inner ER lumen and the histidine kinase domain is exposed to

the cytosol (Figure 1.6). According to this topology model, the downstream kinase

CTR1, which interacts with the histidine kinase domain of the receptor, would associate

with the ethylene receptors on the cytoplasmic side of the ER.
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Figure 1.6: Model for ethylene receptor membrane topology

The amino terminus (NH2) of the receptor faces the ER lumen. The carboxyl terminus

(COOH) of the receptor containing the GAF domain and Histidine Kinase domain is

exposed to the cytoplasm (Ma et al., 2006).

The Arabidopsis CTR1, which could interact with the ethylene receptors ETR1 and

ETR2 in the yeast two-hybrid assay (Clark et al., 1998), has also been localized to the

ER membrane by sucrose density gradient centrifugation experiment (Gao et al., 2003).

In the same study, the authors demonstrated that CTR1 could be co-purified specifically

with the ethylene receptor ETR1 from the ER membrane fraction. Since the CTR1

protein does not contain hydrophobic transmembrane domain or endoplasmic reticulum

targeting/retention sequences (Kieber et al., 1993), the ER localization of CTR1 is

therefore suggested to be mediated by the ethylene receptors at the ER membrane.
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Moreover, this is consistent with the observation that the CTR1-8 mutant protein, which

loses its interaction with the receptors, could not be found in the ER (Gao et al., 2003).

On this basis, it is likely that there is an ETR1-CTR1 protein complex at the ER

membrane as part of the ethylene signalling mechanism. As previously mentioned,

multiple loss-of-function mutants of the ethylene receptors have strong constitutive

ethylene responses phenotype similar to those of the CTR1 loss-of-function mutant.

Therefore, it is not surprising that the ER membrane associated CTR1 is significantly

reduced in these multiple receptor LOF mutants (etr1/etr2/ein4 and etr2/ein4/ers2) (Gao

et al., 2003). Meanwhile, the amount of membrane bound CTR1 remained unaffected or

even increased in the single ethylene receptor LOF mutants. Thus the authors suggested

two non-mutually excusive models for the ethylene receptor-CTR1 complex:

(1) The N-terminus of CTR1 exerts auto-inhibition over the C-terminal Ser/Thr kinase

activity, which could be relieved when the ethylene receptors interact with the

N-terminus of CTR1. Once the interaction is abolished (eg. in the ctr1-8 mutant), the

kinase activity of CTR1 could not be switched on and the plant displays a constitutive

ethylene response phenotype.

(2) The receptor mediated ER localization of CTR1 is essential for its kinase activity.

(eg. to bring CTR1 proximal to its specific substrates near the ER membrane). In this

case, the mis-located CTR1-8 could not pass the signal to the downstream substrate and

resulted in a phenotype similar to those of the loss-of-function ctr1 mutants.
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However, it is difficult to explain the lack of constitutive ethylene responses in the

etr2/ein4 double receptor LOF mutant that has a decreased level of membrane

associated CTR1, while reducing the membrane associated CTR1 in another double

receptor LOF mutant etr1/ers1 did render the plant a constitutive ethylene response

phenotype (Gao et al., 2003). In addition, it is not consistent with the current ethylene

receptor homodimer model because the remaining receptors in a multiple receptor LOF

mutant could still be able to associate with CTR1. Especially in the case of the etr2/ein4

and etr2/ein4/ers2 mutants, the receptor ETR1, which has the strongest association with

CTR1, remains intact in the ER membrane but there is a significant reduction of

membrane associated CTR1 (Gao et al., 2003).

These findings suggest that CTR1 is part of the ethylene receptor signalling complex at

the membrane of the endoplasmic reticulum and the recruitment of CTR1 into the

receptor complex is essential to negatively regulate ethylene signalling. On these bases,

the model of ethylene signalling in the receptor level has been hypothesized (Figure 1.7

and 1.8). However questions remain as to how the ethylene receptors activate CTR1 and

what role the histidine kinase domain of the receptors plays in the ethylene signal output,

or indeed, how sub-family II receptors, which may not process true histidine kinase

activity, actually function. In addition, it should be considered that the current linear

model based on the epistatic studies might not be able to faithfully reflect the

complicated signalling events during ethylene signalling.
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Figure 1.7: Possible model of the ethylene receptor-CTR complex

The receptor ETR1 (white) forms a homodimer in the ER membrane and the ethylene

binds to the N-terminus of the receptor dimer through a copper co-factor. The

N-terminus of CTR1 (grey) binds to the histidine kinase domain of ETR1.

(A): The receptor activates CTR1 in the absence of ethylene and CTR1 represses the

downstream ethylene signalling pathway.

(B): Upon ethylene binding, the ethylene receptors become inactive and CTR1 can not

suppress the downstream ethylene signalling.

(C): In the CTR1 LOF mutants, no functional CTR1 protein was produced and the

downstream ethylene signalling pathway was always activated thus resulting in

constitutive ethylene response phenotype in the absence of ethylene.

(D): In the multiple receptor LOF mutants, no receptor would activate CTR1. Thus,

CTR1 is permanently inactive and the ethylene signalling pathway is constantly

switched on.



Introduction

-21-

Figure 1.8: Possible model of the single GOF receptor mutant

A: In the single gain-of-function receptor mutant (e.g. etr1-1), ethylene could not bind

to the receptor and the ethylene receptor would be permanently locked to the active

form, which would constantly activate CTR1 to suppress the downstream ethylene

signalling network.

B: The wild-type Arabidopsis plants expressing the N-terminus of a mutated receptor

(indicated by the truncated ETR1 protein lacking the rectangle and oval) are also

insensitive to ethylene. It was hypothesized that the truncated mutant receptor could

form a dimer with the endogenous full-length wild-type (normal) receptors and pass

down the negative signal to suppress the ethylene response.

C and D: Although the remaining ethylene receptors could function normally upon

ethylene binding, the downstream ethylene response could not be activated due to the

presence of the mutated receptor-CTR1 complex (A and B), which constantly represses

the ethylene signalling pathway.
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1.2.7 Components downstream of the receptor-CTR complex

A diagram of the ethylene signalling pathway in the model species Arabidopsis is

schematically outlined in Figure 1.9. The carboxyl terminus of CTR1 has sequence

homology to the Raf-like Ser/Thr kinase and mutation abolishing the CTR1 kinase

activity renders Arabidopsis plants with a constitutive ethylene response phenotype in

the absence of ethylene (Kieber et al., 1993). Thus, it has long been hypothesized that a

MAPKKK cascade could act downstream of CTR1 to pass on the ethylene signal,

although it is unconventional to have a typical eukaryotic Ser/Thr kinase signalling

cascade coupled directly downstream of the two-component system histidine kinase,

which is prevalent in prokaryotic organisms. A MAPKKK module including MAPK6

and MAPK13 had been proposed by Ouaked et al. (2003) to act downstream of CTR1

and this finding of the long-missing MAPKKK cascade attracted great interest from the

ethylene research community. However, flaws in the experiment design were discovered

and the MAPK6 and MAPK13 turned out to be regulating the ethylene biosynthesis

instead of the signalling (Liu and Zhang, 2004; reviewed in Ecker, 2004).

The ETHYLENE INSENSITIVE2 (EIN2) mutation is genetically placed downstream of

CTR1. The loss-of-function mutant of EIN2 has the strongest ethylene insensitive

phenotype identified so far (Alonso et al., 1999). Transgenic Arabidopsis plants

expressing the soluble carboxyl terminus of EIN2 have partially constitutive ethylene

response phenotype but displays normal ethylene responses in the dark grown seedling.

It has been suggested that the N-terminus of EIN2 perceives the signal from the
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upstream ethylene components and its C-terminus could be responsible for ethylene

signal output. EIN2 is an integral membrane protein and its N-terminus is similar to the

NRAMP family metal transporters (Alonso et al., 1999). However, unlike other

NRAMP-like proteins in Arabidopsis, the metal transport activity of EIN2 could not be

demonstrated and the involvement of a NRAMP protein in the MAPK cascade has not

been reported in any known signalling pathway.

It has been demonstrated that transcription factors including the EIN3 and EIN3-Like

(EIL) proteins are involved in amplifying the ethylene signal at the transcriptional level

(Chao, et al., 1997). The loss-of-function mutants of EIN3 are ethylene insensitive,

whereas over-expression of EIN3 activates the ethylene response constitutively, which

suggests that the ethylene signalling is positively regulated by EIN3. Ein3 Binding

Factor 1 and 2 (EBF1/2) have been identified to be responsible for mediating the

ubiquitin degradation of EIN3 as part of the ethylene signalling mechanism (Guo and

Ecker, 2003). More recently, it has been shown that an exoribonuclease XRN4 (AKA

EIN5) could regulate the stability of EBF1/2 mRNA, possibly as a feedback loop of the

ethylene signalling network (Olmedo et al., 2006; Potuschak et al., 2006). In addition, it

has also been shown that the EIN3 protein could bind to the promoter region of other

transcription factors such as Ethylene Response Factor1 (ERF1) to form another

transcription cascade to further amplify the ethylene signal (Solano et al., 1998).
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Figure 1.9: Linear ethylene signalling pathway in Arabidopsis

Ethylene binds to the receptors in the ER membrane possibly mediated by a copper

co-factor and somehow requires an unknown protein RTE1 (Reverse to Ethylene

Sensitivity1). The receptors directly interact with the Raf-like MAPKKK CTR1, which

serves as a negative regulator of the ethylene signalling. A MAPK cascade could be

involved to pass the signal down to EIN2, a putative membrane-associated

NRAMP-like metal transporter. The ethylene signal is then transmitted into the nucleus

to the transcription factors like EIN3 and ERFs. The EIN3 protein is subjected to

ubiquitin degradation mediated by EBF1 and 2 (EIN3 Binding Factor), which act as the

ubiquitin E3 ligases. A feedback loop is formed by EIN5 (XRN4) controlling the

turn-over of the EBF mRNA, which in turn affects the stability of EIN3 (Modified from

Olmedo et al., 2006).
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1.3 Ethylene Signalling in Tomato

1.3.1 Fruit ripening

Fruit ripening has been extensively studied because it is unique to plant biology and

contributes an important part to the human diet. Fruits can be classified as either dry or

fleshy. The Arabidopsis fruit (silique) falls into the dry fruit type category and releases

the seeds in a process similar to senescence and abscission. On the other hand, the

ripening process in the fleshy fruits such as tomato includes physiological, biochemical,

and structural changes in order to attract seed-dispersing organisms. The fleshy fruits

are divided into two classes: climacteric and non-climacteric according to the presence

or absence of the increased respiration rate and the concomitant burst of ethylene

production at the onset of ripening. Although the specific ripening process varies among

fleshy fruit species, the ripening changes in climacteric fruits generally include: (1)

increase of respiration rate and ethylene synthesis (2) colour changes (3) changes in

flavour and nutritional content and (4) changes in texture (Seymour et al., 1993).

Common climacteric fruits include tomato, apple and banana, which require ethylene

for ripening, whereas non-climacteric fruits such as strawberry, orange and lemon do

not exhibit a sudden burst of ethylene production, but a gradual decline in ethylene

biosynthesis, a pattern similar to their respiration during ripening (Seymour et al., 1993).

It has been shown that ethylene biosynthesis occurs by the same pathway during

ripening, senescence, in response to wounding, etc (see section 1.1.2 for details). As the

non-climacteric fruits can still produce and respond to ethylene, two systems for
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ethylene biosynthesis have been proposed (McMurchie et al., 1972). The system I is

ethylene auto-inhibitory and is responsible for the basal ethylene production in both

climacteric and non-climacteric fruits, whereas the system II is unique to climacteric

fruits and is believed to be auto-catalytic (reviewed in Alexander and Grierson, 2002).

The role of the respiratory climacteric in fruit ripening is unclear as non-climacteric

fruits can ripen without any increase in respiration and the molecular distinction

between climacteric and non-climacteric fruits are poorly understood. However,

ethylene is believed to be a key co-ordinator of the ripening process in climacteric fruit

species, as preventing its production by chemical or genetic means inhibits ripening.

In general, colour change of the fruit is associated with ripening, which is attributed to

the degradation of chlorophyll and the synthesis of new pigments in either plastids or

vacuoles. In the case of tomato, the concentration of chlorophyll, which is associated

with the thylakoid membrane in the chloroplast, peaks at the early stage of fruit growth.

When ripening occurs, ethylene production and respiration start to rise and the

chloroplasts begin to turn into chromoplasts. The chlorophyll is replaced firstly by

β-carotene and eventually by lycopene, which produces the red-orange external colour

of a tomato (reviewed in Grierson and Kader 1986). Mutations or genetic manipulations

of the pigment biosynthesis genes usually result in fruits with altered colour. For

example, the tomato mutant yellow flesh is caused by the loss-of-function (LOF)

phytoene synthase gene PSY (GTOM5), whereas the failure to accumulate

trans-lycopene in the tomato mutant tangerine is caused by LOF of the carotenoid
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isomerase gene CRTISO (Fray and Grierson, 1993; Isaacson et al., 2003).

The change of flavour in the ripening process is as important as the colour changes in

term of attracting or deterring herbivores in a way to favour seed dispersal. Flavour

change depends on a complex interaction of sugars, organic acids, phenolics and

volatile compounds. In a classic ripening event, the acid content decreases due to the

break down of the malic acid, which is a major substrate for respiration. The activity of

amylase and starch phosphorylase increases during ripening and the starch is then

converted to glucose, fructose or sucrose (Seymour et al., 1993). The co-ordination of

these processes results in the increase of sweetness in the ripened fruit, while the

volatiles making up for the aroma complementing the taste to generate the unique

flavour of the whole fruit. Several hundred flavour volatile compounds have been found,

but often, a small number contributed the key “flavour notes”.

Fruit softening resulting in the enzymatic degradation of the cell wall is one of the

major attributes of the ripening fruit. Polygalacturonase (PG) is one of the key enzymes

regulating the texture changes during fruit ripening by depolymerising pectin, which is a

major type of cell wall polysaccharide. PG is highly expressed in ripening fruit and it is

the first ripening-related cDNA (pTOM series) to be sequenced from a library enriched

in ripening tomato fruit mRNA (Grierson et al., 1986). Other cell wall hydrolases such

as pectinesterase, cellulase and glactosidase are also required to act synergistically with

polygalacturonase to disassemble pectin during fruit ripening. As these cell wall
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degrading enzymes are key players responsible for the texture changes during fruit

ripening, they are also potential targets of genetic manipulation for crop improvements

(Hamilton et al., 1995).

1.3.2 Ethylene mutants affecting tomato fruit ripening

The model plant Arabidopsis has provided many insights into the molecular basis of

fruit formation and development. On the other hand, tomato (Solanum lycopersicum) is

a climacteric freshly fruit species, in which the ripening process is coordinated by the

sudden burst of ethylene production. Therefore, tomato is a favourite system for

studying ethylene signalling and biosynthesis, particularly in areas involving fruit

ripening (Grierson et al., 1981; Gray et al., 1992; Fray and Grierson, 1993; Klee, 2004).

The tomato never-ripe (nr) mutant, which is characterized by the delay or incomplete

ripening and the yellow-greenish colour of the fruit, results from a dominant

gain-of-function missense mutation in the tomato ethylene receptor NR. The nr mutant

plants display ethylene insensitivity throughout the developmental stages and it has

been shown that NEVER-RIPE is a homologue of the Arabidopsis sub-family I ethylene

receptor ERS1 (Wilkinson et al., 1995; Yen et al., 1995). The anitisense inhibition of the

mutated NR gene restored normal fruit ripening of nr, which is in agreement with the

Arabidopsis model that ethylene signalling is negatively regulated by the receptors

(Hackett et al., 2000).
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The gene responsible for the tomato fruit ripening mutant green-ripe (allelic to

never-ripe2), has been recently cloned and shows sequence homology to the REVERSE

TO ETHYLENE SENSITIVITY1 (RTE1) in Arabidopsis (Barry and Giovanonni, 2006).

It has been suggested that the mutant gr was caused by the ectopic expression of GR

and the mutant phenotypes could be mimicked by expressing the GR cDNA using a

CaMV 35S promoter in wild-type tomato. This complements the model of RTE1 action

in Arabidopsis that loss-of-function of RTE1 results in increased sensitivity to ethylene

(Resnick et al., 2006), whilst over- or ectopic expression of RTE1 causes reduced

ethylene sensitivity.

1.3.3 Tomato ethylene receptors and CTRs

In tomato, a family of six ethylene receptors (LeETR1 to LeETR6; LeETR3 is named

NR for historical reasons) has been identified (Willkinson et al., 1995; Zhou et al., 1996;

Lashbrook et al., 1998; Tieman and Klee, 1999). Like the Arabidopsis receptors, the

tomato ethylene receptors are also divided into two subfamilies based on the conserved

motifs found in the histidine kinase domain (Figure 1.10). Each tomato receptor is

expressed in different temporal and spatial patterns dependent on developmental stages

and external stimuli (reviewed in Klee, 2002). For example, LeETR1 and LeETR2 are

constitutively expressed in all tissues; the expression of NR (LeETR3) in fruit is

regulated developmentally and the ethylene receptor LeETR4, 5 and 6 are more

abundant in reproductive than vegetative tissues.
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Several tomato CTR1-like genes (LeCTR1 to LeCTR4 plus a splice variant of CTR4)

have been reported to act genetically downstream of the ethylene receptors (Lin et al.,

1998; Leclercq et al., 2001; Adams-Philips et al., 2004). Among all the identified

tomato CTR-like proteins, CTR1, CTR3 and CTR4 are more similar to the Arabidopsis

CTR1 and they are capable of complementing the Arabidopsis CTR1 loss-of-function

mutant in different degrees (Leclercq et al., 2003; Adams-Philips et al., 2004). It has

been suggested that the tomato CTR2 might be a homologue of Enhanced Disease

Response1 (EDR1) in Arabidopsis (Frye and Innes, 1998). EDR1 has been shown to be

involved in stress and pathogen responses (Frye et al., 2001). Additionally, edr1-1

mutant also develops an enhanced ethylene response phenotype (Tang and Innes, 2002).

Figure 1.10: Tomato ethylene receptors

The tomato subfamily I ethylene receptors (ETR1, ETR2 and NR) have all the

conserved motifs (black capital letters below the bar) in the His kinase domain. NR is

the only receptor without the receiver domain (AKA response regulator). There is an

extra putative membrane spanning domain (black bar in front of the three

transmembrane domains) in ETR5 and ETR6 similar to those of the Arabidopsis

ethylene receptor ETR4, 5 and 6 (Tieman and Klee, 1999).
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Interestingly, there are several similarities between the Arabidopsis EDR1 and CTR1.

Both edr1-1 and ctr1-1 are loss-of-function mutants of a MAPKK kinase. The LOF

mutant of EDR1 de-represses the defence response pathway as LOF of CTR1

de-represses the ethylene signalling pathway, which suggests they are both negative

regulators in their signalling network (Frye et al., 2001). The dark grown seedling of

edr1-1 mutant displays normal ethylene sensitivity but the 6 week-old edr1-1 plant

grown in short-day condition has enhanced ethylene induced senescence when a high

concentration (100 ppm) of exogenous ethylene is applied (Tang and Innes, 2002). In

addition, the strong ethylene insensitive mutant allele ein2 can suppress the enhanced

ethylene-induced senescence of edr1-1 just like it suppresses the ctr1-1 mutant

phenotype (Alonso et al., 1999; Tang et al., 2005). However, how ethylene affects the

signal output of EDR1, which is a signalling component of the defence response, and

how these two signalling pathways interact remain largely unknown.

Figure 1.11: Phylogenetic tree of CTR-like proteins

LeCTR1 is closer to the Arabidopsis CTR1; LeCTR2 is more related to the Arabidopsis

EDR1 in terms of the amino acid sequence conservation (Frye et al., 2001).
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1.3.4 LeCTR2 and the IntCR clones

In the Arabidopsis ethylene signalling model, the sub-family I ethylene receptors (ETR1

and ERS1) associate with the Raf-like kinase CTR1 and possibly form a receptor-CTR

complex at the ER membrane (Gao et al., 2003). In the case of tomato, several tomato

CTR1-like proteins could also associate with the ethylene receptors in the yeast

two-hybrid assay (Lin and Grierson, unpublished data). It has been shown that one of

these CTR1-like proteins, LeCTR2 could interact specifically with LeETR1 and

LeETR2 in the yeast two-hybrid assay but showed no interaction with NR (LeETR3),

which is a receptor lacking the receiver domain (Lin and Grierson, unpublished data).

The in vitro kinase activity of LeCTR2 has also been tested and shows striking

similarity to that of the Arabidopsis and tomato CTR1. More importantly, transgenic

tomatoes with an altered expression level of LeCTR2 displayed ethylene related

phenotypes without affecting the endogenous ethylene biosynthesis (Lin and Grierson,

unpublished data). Those transgenic tomato plants have enhanced production of side

shoots and leaf epinasty, which are typical ethylene over-production phenotypes.

Collectively, these findings indicated a possible involvement of LeCTR2 in the tomato

ethylene signalling.

In an attempt to identify tomato ethylene signalling components, yeast two-hybrid

experiments had been carried out to screen a tomato fruit cDNA library using the

amino-terminus of LeCTR2 as bait and several novel IntCR (Interacting with CTR2)

proteins were identified (Lin et al., 2003). Based on the previous finding that LeCTR2
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could associate with the ethylene receptor LeETR1, the IntCR proteins were

subsequently tested for their ability to associate with the tomato ethylene receptor ETR1.

Interestingly, three IntCR proteins were able to associate with the ethylene receptor

LeETR1 in the yeast two-hybrid assay (Table 1.2). The IntCR clone 22 (IntCR22) is

similar to the Arabidopsis UDP-glycosyltransferases (UGT); IntCR242 has similarity to

the Arabidopsis PRL1-Interacting Factor L (At1g15730); IntCR266 belongs to the

family of FtSH proteinase.

Table 1.2: The IntCR clones

IntCR Clones Homolog Possible Function

IntCR22 UDP-glycosyltransferase Cytokinin and flavonoid metabolism

IntCR242 PRL1 Interacting Factor L PRL1 is involved in sugar sensing

IntCR266 FtSH Proteinase Repair damaged photosystem II

The homologue and function were predicted according to the BLAST search results

using the DNA sequence of the IntCR clones as entry (Lin and Grierson, unpublished

data).

IntCR Clone 22

From the BLAST search results, the IntCR22 clone matches the tomato EST TC176700,

which is a putative UDP-glycosyltransferase (UGT). UGT catalyzes the transfer of a

glycosyl moiety from the donor to its substrates, forming a glycosidic bond. Whereas

the animal UGTs utilize UDP-glucuronic acid, the UGTs in the higher plants use

UDP-glucose. A super-family of 107 UGTs has been found in the model plant

Arabidopsis. A phylogenetic analysis of the entire Arabidopsis UGT family has recently
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been completed and the Arabidopsis UGTs were divided into 14 subgroups (Bowles et

al., 2005). The deduced protein sequence of TC176700 (IntCR22) shows about 50%

identity (70% similarity) to the Arabidopsis UGTs in the 73C subgroup. However, the

substrates of the 73C UGTs have not yet been fully identified, except for 73C5 and

73C6, which could be involved in the cytokinin inactivation and flavonoid biosynthesis.

It has been reported that UGT73C5 could glycosylate the OH group of the N6 side-chain

of trans-zeatin and dihydrozeatin (Hou et al., 2004) and is also able to detoxify

Fusarium mycotoxin deoxynivalenol by glycosylating the OH group of the C3 of

deoxynivalenol (Popenberger et al., 2003). On the other hand, UGT73C6, which also

shares sequence homology to IntCR22, is involved in flavonol synthesis by catalyzing

the transfer of glucose to the 7-OH position of kaempferol-3-O-rhamnoside and

quercetin-3-O-rhamnoside (Jones et al., 2003). The direct involvement of a UGT in

ethylene signalling has not been reported so far. However, ethylene does affect and

interfere with the signalling pathway of many plant growth regulators and also regulates

their biosynthesis and metabolites (Chiwocha et al., 2005). Therefore, IntCR22 might

provide further insight into the ethylene signalling cross-talk with other phytohormones.

IntCR Clone 242

The cDNA sequence of IntCR242 matches the tomato EST TC181289, which is a 0.5 kb

truncated cDNA fragment similar to the 3' end region of the Arabidopsis genes

At1g15730 and At1g80480. At1g15730 has been previously identified in the yeast
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two-hybrid screen as a protein that could interact with PLEIOTROPIC RESPONSE

LOCUS1 (PRL1). It has been shown that PRL1 could associate with components of the

Arabidopsis sugar sensing network (Bhalerao et al., 1999). Loss-of-function mutant of

PRL1 has a sugar hypersensitive phenotype, which results in the de-repression of

glucose suppressed genes. Interestingly, the prl1 mutant also showed enhanced

sensitivity to several plant growth regulators including ethylene (Nemeth et al., 1998).

Additionally, it has been shown that the tomato PRL1-like protein could interact with

IntCR242 in the yeast two-hybrid assay (Lin and Grierson, unpublished data).

It has long been hypothesized that there are links between ethylene and sugar sensing

(Gibson et al., 2001; Rolland et al., 2002). For example, the sugar-insensitive1 (sis1)

and glucose insensitive4 (gin4) mutants are allelic to the ethylene signalling mutant ctr1.

The ethylene over-production1 (eto1) mutant is resistant to the inhibitory effect of sugar

during early seedling development, which can be phenocopied by applying exogenous

ethylene to the wild-type Arabidopsis (Gibson, 2004). Conversely, the ethylene

insensitive mutants and ethylene inhibitor treated Arabidopsis seedlings are

hypersensitive to sugar. As the above examples demonstrate, sugar and ethylene

signalling pathways can interact with each other, but little information is available about

how and where this “cross-talk” actually takes place. Thus, IntCR242 became

particularly interesting due to its unique ability to associate with components in both

ethylene signalling (LeETR1 and CTR2) and sugar sensing (LePRL1) pathways.
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IntCR Clone 266

The DNA sequence of IntCR266 matches the tomato EST TC115877, which encodes a

truncated protein similar to the Filamentation Temperature Sensitive H (FtSH) proteins

in Arabidopsis. The FtSH proteins were initially identified in E. coli, in which they are

metallo-proteinases involved in protein quality controls (reviewed in Beyer, 1997). The

N-terminus of the FtSH protein normally contains two transmembrane domains to

anchor the proteinase to a specific membrane; its C-terminal domain has a zinc binding

site, which could be involved in binding target substrates.

The FtSH proteins are conserved in photosynthetic organisms like cyanobacterium and

higher plants (reviewed in Adam et al., 2004; Yu et al., 2004). There are 12 FtSH-like

proteins in Arabidopsis and most of them are located in plastids. The AtFtSH5 (VAR1)

and AtFtsH2 (VAR2) have been studied in detail because a loss-of-function mutant of

either one resulted in a plant with leaf variegation (VAR) phenotypes (Sakamoto et al.,

2002; Sakamoto et al., 2003). It has been demonstrated that FtSHs are responsible for

the degradation of the photo-damaged photosynthetic system II (PSII) and the misfolded

membrane proteins, which also suggested that the leaf variegation phenotypes of the

AtFtSH5 and AtFtSH2 LOF mutant are possibly due to hypersensitivity to light stress

(Nixon et al., 2004). Interestingly, besides the involvements of FtSH in the

photo-damage related light stress, a tobacco FtSH-like protein D9 was found to be

involved in the resistance to tobacco mosaic virus infection (Seo et al., 2000).
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1.4 Objectives

The research presented in this thesis is a natural progression of the studies involving

characterization of LeCTR2, a putative CTR1-like kinase that interacts with the

ethylene receptors in the yeast two-hybrid experiments (Lin, PhD thesis, University of

Nottingham, 1999). Three novel proteins had been identified in a yeast two-hybrid

screen that could associate with both LeCTR2 and the ethylene receptor LeETR1 (Lin

and Grierson, unpublished data). Therefore, it was expected that analyzing these novel

proteins would provide further information about the function of LeCTR2.

The objective of this study was first to obtain the full-length coding sequences of

IntCRs, which would be used to generate transgenic plants for determination of their

physiological functions. It was proposed also to express recombinant GFP fusion

proteins and to identify the sub-cellular localization of IntCR by fluorescence

microscopy. Additionally, this study included part of a collaboration with Dr. Francisco

Flores to synthesize and purify the IntCR proteins in order to study their in vitro

substrates. In the later stage of the research, a transient protein expression system, which

has been developed for the localization studies of the IntCR proteins, was applied to

determine the localization of the tomato ethylene signalling components. Furthermore,

the fluorescence proteins in the transient expression vectors have been modified to be

used for Forster resonance energy transfer (FRET) and bio-molecular fluorescence

complementation (BiFC) experiments, through which the in planta protein-protein

interaction between the ethylene signalling components was investigated.
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CHAPTER 2: MATERIALS AND METHODS

2.1 Chemicals

All laboratory chemicals were purchased from Sigma (Sigma-Aldrich Co. Ltd., UK)

and Fisher (Fisher Co. Ltd., UK), unless otherwise mentioned. Microbiological media

were obtained from Oxoid (UK).

2.2 Plant Materials and Growth Conditions

Wild type tomato (Solanum lycopersicum Mill. cv. Ailsa Craig) seeds used in this

experiment were obtained from a homozygous line maintained at the Plant Sciences

Division (School of Biosciences, the University of Nottingham). The seeds of

Arabidopsis including mutants and the ecotype Columbia were obtained from the

Nottingham Arabidopsis Stock Centre (NASC) unless otherwise mentioned. The

tobacco wild type seeds (Nicotiana tobaccum var. Petit Havana) were kindly provided

by Dr. Rupert Fray (Plant Sciences Division, the University of Nottingham). Unless

specific conditions are stated, the Arabidopsis, tomato and tobacco plants were grown in

the following compost mix: 6 parts of Levington M4, 6 parts of John Innes No.3, 1 part

of vermiculite and 1 part of perlite. For growing Arabidopsis, 20 mg/l Intercept (Scootts,

UK) insecticide was applied to the compost. The glasshouse for maintaining tomato and

tobacco plants was kept at minimum 16 h day regime at about 22-26oC. The greenhouse

for growing Arabidopsis was maintained with 22 h photoperiod at about 21-23oC.
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2.3 Plant Transformations

2.3.1 Tomato transformation

All procedures were performed in a sterilized environment and all Petri dishes were

sealed with parafilm before moving to the tissue culture room. Tomato seeds were

surface sterilized prior to germination by soaking for 5 min in 75% (v/v) ethanol, 20

min in saturated tri-sodium orthophosphate solution and 10 min in 50% (v/v) bleach

(locally purchased from Tesco, UK). This was followed by four washes with sterile

distilled water (SDW) to remove the bleach solution. Seeds were germinated in

sterilized pots containing autoclaved solid MS medium (4.2 g/l MS salt, 3% (w/v)

sucrose, 1 ml/l R3 vitamin (1 g/l thiamine, 0.5 g/l nicotinic acid, 0.5 g/l pyridoxine) and

1% (w/v) agar; pH 5.5-5.8 by KOH) in the growth rooms (16 h of light at 25 oC and 8 h

of darkness at 18 oC). Cotyledons of the two-week old tomato seedlings were excised in

a flow hood and rinsed briefly in liquid MS24D medium (liquid MS medium

supplemented with 0.1 mg/l kinetin and 0.2 mg/l 2-4D) before placing at high density

on Petri dishes with solid M1 medium (MS supplemented with 1.75 mg/l zeatin and

0.87 mg/l IAA). The Petri dishes were then sealed with parafilm and incubated

overnight under low light conditions (covered by a layer of muslin) in the inverted

position to prevent water condensation.

On the next day, a 10 ml overnight liquid culture of Agrobacterium (LBA4404:

pAL4404) carrying the appropriate construct was spun down (3,000 x g, 10 min, RT)

and suspended in 100 ml of liquid MS medium to about 0.1-0.2 OD600 in a sterilized
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flow hood. The overnight cultured cotyledons were then transferred from the M1

medium to the Agrobacterium suspension and incubated for 15 min with occasional

shakings. The cotyledons were then briefly rinsed in sterilized liquid MS24D medium to

remove the excessive Agrobacterium. The cotyledons were placed back on to the same

Petri dishes with M1 medium, covered with muslin and co-incubated with

Agrobacterium for two days.

The infected cotyledons were then transferred to plates with M13 medium (M1

supplemented with 75 mg/l kanamycin and 200 mg/l augmentin) at a density of 15

cotyledons per Petri dish (Sterlin, 9 cm). Plates were covered with muslin and incubated

in the growth room in the inversed position to induce callus formation. The muslin

cover was removed after the first week incubation and from this point the explants were

sub-cultured to freshly prepared M13 media every 2 weeks to maintain the antibiotic

selection pressure.

The explants developing calluses of 1 to 2 mm in diameter were transferred to sterilized

plastic pots containing shoot inducing medium M4 (M1 with 50 mg/l kanamycin and

200 mg/l augmentin). Once the shoots were regenerated from the calluses, they were

excised and placed into pots with root inducing medium M16 (MS medium with 50

mg/l kanamycin and 200 mg/l augmentin). When a branching root system had been

established, the whole plant was transferred to compost in a 9 cm pot and covered with

a transparent plastic bag to maintain humidity. The small plants were then allowed to
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recover for one to two weeks before removing the plastic bag cover. The transgenic

tomato plants were re-potted and maintained in the greenhouse under general conditions

as previously described (Section 2.2).

2.3.2 Tobacco transformation

The surface sterilized tobacco seeds were first germinated and grown in sterilized

plastic pots with MS medium for 4-5 weeks. The leaves were cut into 1 cm diameter

leaf disks in a sterilized flow hood and dipped into the Agrobacterium suspension (as

prepared in section 2.3.1). The leaf disks were then blotted on an autoclaved filter paper

(Whatman, UK) to remove the excessive Agrobacterium before incubating overnight on

Petri dishes containing callus inducing medium (MS with 1 mg/l BA and 0.1mg/l NAA).

The leaf disks were transferred to fresh callus inducing medium (MS with 1 mg/l BA,

0.1mg/l NAA, 100 mg/l kanamycin and 200 mg/l augmentin) and sub-cultured to

freshly prepared medium every two weeks. The shoots regenerated from the calluses

were transferred to root inducing medium (MS with 100 mg/l kanamycin) and the

following procedures were the same as for the tomato transformation (see section 2.3.1

for details).

2.3.3 Arabidopsis transformation

The floral dip method (Clough and Bent, 1998) was used to transform Arabidopsis

using Agrobacterium tumefaciens C58C1 (pCH32). 100 ml of the Agrobacterium
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overnight culture was spun down (3,000 x g, RT) and suspended in 200-300 ml 5% (w/v)

sucrose solution. Silwet-L77 was added to the Agrobacterium solution to a final

concentration of 0.05% (v/v) prior to dipping. The aerial parts of flowering Arabidopsis

plants grown in 9 cm pots were dipped into the Agrobacterium solution for 15 s with

gentle agitation. The dipped plants were covered with folded plastic sleeves for 24 h to

maintain humidity. After transformation, plants were watered and grown normally for

3-4 weeks; the seeds of the transformed plants were then harvested and screened on MS

media with appropriate antibiotics according to the selection marker present in the

transgene construct. The collected seeds were first surface sterilized by soaking in 50%

(v/v) bleach with a drop of Triton X-100 for 5 min and washed 5 times with SDW. This

was followed by suspending the seeds in autoclaved 0.7% (w/v) agar solution (40 oC)

and pouring them onto Petri dishes with solid MS medium (1% (w/v) agar) with

suitable antibiotics. Petri dishes were dried for 30 min in the flow hood and sealed with

parafilm. The dishes were then kept in the cold room (4 oC) without light for 2-3 days

before being transferred to the tissue culture room (18 h photoperiod, 23-25 oC). After 2

to 3 weeks, Arabidopsis seedlings that developed dark green true leaves and an

extending root system were transferred to compost in the 9 cm pots and grown in the

glasshouse under general conditions as previously mentioned (Section 2.2).

2.4 Genomic DNA Extraction

2.4.1 MiniPrep

Genomic DNA extractions from tomato, tobacco or Arabidopsis tissues were carried out
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by using the GenEluteTM Plant Genomic DNA Miniprep Kit (Sigma, G2N70), according

to the manual with slight modifications. 300 mg of tissue was used, instead of 100 mg

suggested by the manufacturer. The DNA was eluted with 100 μl SDW instead of 200 μl

Elution Buffer.

2.4.2 Phenol-chloroform method

For large scale genomic DNA preparation, approximately 2-5 g of leaf tissue was

harvested in a 50 ml centrifuge tube and frozen in liquid nitrogen immediately. The

tissue was then transferred to a pre-cooled mortar and was ground to fine powder under

liquid nitrogen. The tissue powder was transferred to a 50 ml tube with 10 ml of DNA

extraction buffer (42% (w/v) urea, 0.31 M NaCl, 50 mM Tris-HCl pH 8.0, 20 mM

EDTA pH 8.0 and 1% (w/v) sodium sarcosine). After vigorous vortexing, the samples

were incubated in a 65°C water bath for 10 min. 10 ml of phenol-chloroform solution

(50% (v/v) phenol, 48% (v/v) chloroform and 2% (v/v) isoamyl alcohol; saturated with

TE pH 8.0) was added to the mixture. This was followed by vortexing and

centrifugation (12,000 rpm, 10 min). The upper phase was transferred to 50 ml tubes

with 5 ml of chloroform (with 2% (v/v) isoamyl alcohol) and mixed thoroughly by

vortex. After centrifugation (12,000 rpm, 5 min) the upper phase was transferred to 50

ml tubes with an equal volume of isopropanol (propan-2-ol), mixed thoroughly by

inversion and then kept at –20°C for at least 60 min. The tubes were then centrifuged

(11,000 rpm, 4°C, 20 min) to pellet the DNA. The supernatants were decanted and the

pellets were washed in 10 ml of 75% (v/v) ethanol. The DNA pellet was dissolved in
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0.5 ml of TE buffer and transferred to an autoclaved 1.5 ml centrifuge tube. This was

followed by the addition of 1 μl of RNase A (10 mg/ml, Fermantas) and incubation in

an oven at 37 oC for 1 h. The RNase was then removed by one phenol-chloroform and

one chloroform extraction. After the removal of RNA, an equal volume of cold

isopropanol was then added to the tube followed by 1 h incubation in -20 oC. Finally,

the genomic DNA was pelleted by centrifugation (14,000 rpm, 15 min) and suspended

in 50 μl water or TE buffer.

2.5 RNA Extraction

2.5.1 MiniPrep

RNA extractions were carried out using the RNeasy Mini Kit (QIAGEN), according to

the manufacturer’s instruction with slight modifications. 150 mg of leaf tissue was

ground to fine powder under liquid nitrogen in a 2 ml eppendorf tube and 500 μl of

extraction buffer RLT was added. Tubes were then vortexed vigorously and incubated in

a 60°C heat block for 5 min. The mixtures were then loaded onto the mini-prep columns

and the following procedures were performed according to the manufacturer’s protocol.

2.5.2 Phenol-chloroform method

5 g of frozen tomato fruit tissue was first ground into fine powder with a coffee grinder

(Braun). This was followed by grinding in a pre-chilled mortar under liquid nitrogen.
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The tissue powder was then transferred into a 50 ml centrifuge tube with 15 ml RNA

extraction buffer (1% (w/v) triisopropyl naphthalene sulphonic acid, 6% (w/v) 4-amino

salicylic acid, 5% (w/v) phenol mixture (500 g phenol, 70 ml meta-cresol and 0.5 g of

8-hydroxyquinoline, and 150 ml of SDW)). Samples were left on the bench to thaw

with occasional vortexing. An equal volume of phenol-chloroform was subsequently

added and the tubes were mixed by vigorous shaking. The aqueous phase and the

organic phase were separated by centrifugation (10,000 rpm, 10 min). The nucleic acids

containing upper aqueous layer was then transferred to a new 50 ml tube and extracted

again with an equal volume of phenol-chloroform. This was followed by a 5 ml

chloroform (with 2% (v/v) isoamyl alcohol) extraction to remove the remaining phenol.

After partition as before, the total nucleic acids in the aqueous phase were precipitated

by adding an equal volume of pre-chilled isopropanol. The tubes were then incubated at

–20°C for at least 1 hour and were centrifuged for 20 min (10,000 rpm, 4°C) to pellet

the total nucleic acids. The pellet was first washed with chilled 75% (v/v) ethanol and

suspended in 1 ml of RNase-free SDW. The insoluble debris was removed by a snap

spin. The RNA was subsequently precipitated with an equal volume of 4 M LiCl

solution and kept on ice for 1 h. After centrifugation (14,000 rpm, 4°C), the RNA pellet

was washed with 500 μl of 75% (v/v) ethanol, dried under vacuum and suspended in

500 μl RNase-free water. The LiCl precipitation was repeated once to remove the

genomic DNA. The final RNA pellet was suspended in 100 μl of RNase-free SDW.

RNA was quantified by using the NanoDrop spectrometer and stored at -70 oC.
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2.6 GEL Electrophoresis

2.6.1 Non-denatured agarose gel

Agarose (Bioline) was melted in 1 x TAE buffer (4.84 g/l Trizma Base, 1.142 ml/l acetic

acid and 2 ml/l 0.5 M EDTA pH8.0) in a microwave oven and cooled down to 60°C

before ethidium bromide (EtBr) was added to a final concentration of 0.05-0.1 μg/ml. A

casting tray was sealed with masking tape at both ends and the agarose solution was

poured into the casting tray with the comb inserted. The gel was then left on the bench

to set for 15-30 min and transferred to an electrophoresis tank with 1 x TAE buffer.

After loading the samples and the molecular size marker, DNA was electrophoresed at

100 V for an appropriate time. The gel was subsequently exposed to UV light

(Transilluminator, Syngene) and photographed by UVP Imagestore 5000.

2.6.2 DNA extraction from agarose gel

Gel extraction was carried out by using the QIAquick Gel Extraction Kit or MiniElute

Kit (QIAGEN) according to the manufacturer’s instruction. For rapid purification of

DNA in a agarose gel for a second round PCR, a spin column was assembled by placing

a 0.5 ml tube inside a 1.5 ml tube and the bottom of the 0.5 ml tube was punctured with

a needle. A small piece of wet filter paper was placed inside the 0.5 ml tube to cover the

hole. The agarose gel slice containing the desired DNA band was then placed into the

0.5 ml tube and was snap frozen in liquid nitrogen before centrifugation (14,000 rpm,

RT, 2 min). The flow through liquid was collected into a new tube and used for PCR.
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2.7 Polymerase Chain Reaction

2.7.1 General PCR protocol for Taq

1 μl of forward primer (10 μM)
1 μl of reverse primer (10 μM)
1 μl of dNTP (10 mM)
1.5 μl of MgCl2 (50 mM)
5 μl of 10x PCR Buffer
1 μl of DNA Template
40 μl of SDW
0.5 μl of Taq DNA polymerase (5 U/μl)

Lid: 100 °C
1: 95 °C 5 min (initial denaturation)
2: 94 °C 30 sec (denaturation)
3: 56 °C 30 sec (annealing)
4: 72 °C 1 min (extension)
5: go to 2 for 34 times
6: 72 °C 5 min (final extension)
7: hold at 20 °C

The above PCR mixture was kept on ice block (ISOfreeze, Alpha Laboratory Supply)

before being placed into the PCR machine. The annealing temperature was optimized

for each of the primer pairs. The extension time was directly proportional to the length

of the PCR product (1 min for 2 kb). The PCR program used is shown as above.

2.7.2 General PCR protocol for Accuzyme

2 μl of forward primer (10 μM)
2 μl of reverse primer (10 μM)
0.5 μl of dNTP (100 mM)
5 μl of 10x Buffer
25 μl 2x Polymate additive
1 μl of DNA Template
15 μl of SDW
0.5 μl of Accuzyme (3 U/μl)

Lid: 100 °C
1: 94 °C 5 min (first denaturation)
2: 94 °C 30 sec (denaturation)
3: 52 °C 30 sec (annealing)
4: 72 °C 1 min (extension)
5: go to 2 for 29 times
6: 72 °C 5 min (final extension)
7: hold at 10 °C

Accuzyme is a proof-reading DNA polymerase and was used to amplify cDNA or in

other processes where high fidelity was required. The 2 x Polymate Additive is a PCR

reagent that increases the PCR specificity when high GC content DNA templates were

used. The time for the extension step was directly proportional to the length of the PCR

product (1 min for 0.5- 0.75 kb).
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2.7.3 General PCR protocol for Phusion

2.5 μl of forward primer (10 μM)
2.5 μl of reverse primer (10 μM)
1.5 μl of dNTP (100 mM)
10 μl of 5x Buffer
1 μl of DNA Template
33 μl of SDW
0.5 μl of Phusion (2.5 U/μl)

1: 98 °C 30 sec (first denaturation)
2: 98 °C 10 sec (denaturation)
3: 58 °C 20 sec (annealing)
4: 72 °C 30 sec (extension)
5: go to 2 for 29 times
6: 72 °C 5 min (final extension)
7: hold at 10 °C

Phusion is a modified Pfu DNA polymerase which has an artificial DNA binding

domain fused to the DNA polymerase domain. It has the highest temperature tolerance,

the fastest processing rate (15 sec to 30 sec for 1 kb DNA) and the lowest error rate

compared to other commercially available proof-reading DNA polymerases.

2.7.4 PCR from leaf extract

PCR from leaf extract was carried out for genotyping the transgenic plants by using the

Extract and Amp Plant PCR Kit (Sigma) with the forward nptII PCR primer

5'-tggagaggctattcggctat-3' and reversed nptII primer 5'-cgctatgtcctgatagcggt-3'.

2.8 Cloning DNA into Plasmid Vectors

2.8.1 Ligation

The vectors were either purchased or homemade (plasmids digested with desired

restriction endonuclease and dephosphorylated with calf intestinal alkaline phosphatase).

In a 10 μl ligation reaction, 50 ng of vector, an appropriate amount of DNA (3:1 insert

to vector molar ratio), SDW, 2 μl of 5x ligation buffer and 1μl of T4 DNA ligase (3
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U/μl) were mixed and incubated overnight in the cold room (4oC). In the case of the

home made vectors, a ligation reaction without insert was performed as a negative

control.

2.8.2 Gateway cloning

To generate PCR product for gateway cloning, an extra nucleotide sequence CACC was

added to the forward PCR primer in front of the first ATG (CACC ATGNNNNNNN).

The purified PCR product containing CACC in the 5' end was directionally cloned to

the pEntr SD vector (Invitrogen) through TOPO isomerase reaction according to the

manufacturer’s protocol. As the efficiency of TOPO reaction decreases significantly

when the size of the insert exceeds 3 kb, the pEntr 11A vector (Invitrogen) was used for

cloning large PCR DNA fragments by restriction digestion and ligation. PCR products

were also cloned into pDonor221 vector through the BP reaction (Invitrogen). The DNA

fragment of interest was amplified in a two-step PCR approach. The first PCR was

performed with gene specific primers (GSP) with an additional attB tag in the 5' end,

the second round PCR was carried out with attB adaptor primers (Invitrogen), which

recognize the tags of the GSP primers. The GSP forward PCR primer has extra

“aaaaagcaggctnn” in the 5' end and the GSP reverse primer has extra “agaaagctgggtt” in

the 5' end. The sequences of the attB adaptor forward and reverse primer are

5'-ggggacaagtttgtacaaaaaagcaggct-3' and 5'-ggggaccactttgtacaagaa agctgggt-3'. The

final PCR product was then cloned into pDonor221 vector through the BP reaction. In a

0.2 ml tube, 0.5 μl of pDonor221 (25 ng) was mixed with 1.5 μl of the purified PCR
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product (10-20 ng) and 0.5 μl of BP clonase II was added. The tube was incubated in a

PCR machine at 25 oC for no less than 3 hours before 0.5 μl of proteinase K was added

to inactivate the enzyme for 15 min at 37 oC. The 3 μl BP reaction product was then

used immediately for E. coli transformation and selected on solid LB medium

supplemented with 50 mg/l kanamycin. The pDonor plasmid with the inserted DNA

fragment after the BP reaction has two newly formed attL sites as those in the pEntr

plasmid and is compatible with the Gateway cloning system. Once the DNA fragment

was cloned into the pENTR or pDonor vectors, which contain attL sites, they were

recombined to the pDestination vectors containing the attR sites through the LR

reaction (Invitrogen). In a 0.5 ml PCR tube, 1 μl (50 ng) of pEntr plasmid, 1 μl (50 ng)

of the pDestination vector, 0.5 μl LR clonease II were mixed and incubated at 25 oC for

two hours. 0.5 μl of proteinase K was added to the LR reaction mix to remove the

enzymes prior to E. coli transformation.

2.8.3 Preparation of competent E. coli cells

A single colony of E. coli (DH5α, DB31 or TOP10) was picked from an overnight

incubated LB plate into 5ml of Ψ Broth media (2% (w/v) Bacto Tryptone, 0.5% (w/v) 

yeast extract, 0.4% (w/v) MgSO4, 10 mM KCl, pH 7.5 with KOH), and incubated

overnight in a shaking incubator (250 rpm, 37°C). 1 ml of the overnight master culture

was transferred to 100 ml of pre-warmed Ψ Broth media, incubated for 2-3 h until the 

OD550 reached 0.48. The cells were then chilled in an ice-water bath for 15 min, and

centrifuged down (5 min, 2500 rpm, 4°C). Afterwards all steps were carried out at 4 oC.
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The cell pellet was gently suspended in 26 ml of chilled TBFI solution (100 mM RbCl,

50 mM MnCl2, 30 mM KOAc, 10 mM CaCl2, 15% (v/v) glycerol, pH 5.8 with 0.2 N

acetic acid), and kept on ice for 15 min. The cell suspension was then centrifuged down

(5 min, 2500 rpm, 4°C) and the pellet was suspended gently in 4 ml of chilled TFBII

solution (10 mM MOPS buffer pH 7.0, 10 mM RbCl, 75 mM CaCl2, 15% (v/v) glycerol).

50 μl of cells were dispensed into pre-chilled 1.5 ml tubes and frozen immediately in

liquid nitrogen. The cells were stored at -70°C. The transformation efficiency of the

competent cells was about 107 cfu/μg using pUC19 DNA.

2.8.4 E. coli transformation

The E. coli competent cells were thawed on ice for no more than 15 min. 5 μl of the

ligation reaction mixture was added to the cells. The tube was then incubated on ice for

10-15 min, heat shocked in a 42°C water bath for 60 to 90 sec, and immediately placed

back on ice for 1 min. 300 μl of room temperature LB medium was then added to the

cells. Tubes were incubated at 37°C for 1 h before being spread onto LB plates

containing the appropriate antibiotics. The plates were incubated overnight in an

inverted position in a 37°C oven to allow the transformed cells to form colonies.

2.8.5 Plasmid preparation

The small scale plasmid preparations were performed using QIAprep Spin Miniprep Kit

(QIAgen, Cat. 27104), following the manufacturer’s instruction with slight
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modifications. For high copy number plasmids, 10 ml of overnight culture was used. In

the case of low copy number plasmids like the binary vectors and yeast vectors, 50 ml

of overnight culture was used and the buffers used in the following steps were increased

accordingly. The large scale plasmid preps (200 to 300 ml LB culture) were carried out

by using the Maxi prep (anion exchange) column (Qiagen) following the manufacturer’s

protocol. The overnight culture was spun down by centrifugation of 2,000 x g for 15

min at 4 oC. The pellet was suspended in 20 ml buffer P1 and mixed by vigorous vortex

before adding an equal volume of buffer P2. The tubes were mixed by gentle inversions

and incubated at room temperature for 5 min. Chilled buffer P3 (20 ml) was added to

the tube and followed by a 15 min incubation on ice. The cell debris was removed by

two centrifugations at 12,000 rpm for 20-30 min at 4 oC. Between the centrifugations,

the supernatant was filtered through a glass wool to further reduce the debris. The clear

supernatant was subsequently transferred to a 50 ml tube with an equal volume of

isopropanol. The plasmid DNA was then pelleted by centrifugation (10,000 rpm, 4oC,

30 min) and suspended in 1 ml TE buffer and the remaining RNA was removed by

digesting with 1 μl of RNase (37oC, 30 min). The solution was then loaded onto the

Maxi column (Qiagen) with buffer QBT. The following procedures were performed

according to the manual. The E. coli glycerol stocks were prepared from 0.5 ml of the

overnight liquid culture prior to the plasmid prep by adding an equal volume of 20%

(v/v) glycerol. The glycerol stock was then snap frozen in liquid nitrogen and stored at

-70oC.
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2.9 Southern Blot

2.9.1 Genomic DNA digestion

10 μg of genomic DNA was digested overnight with 10 U of an appropriate restriction

enzyme (Fermentas) in a total volume of 100 μl. The effect of digestion was checked by

running 5 μl of the digested DNA in a TAE agarose gel. The remaining DNA was then

precipitated by adding 10 μl of sodium acetate (3 M, pH 5.2) and 300 μl of ethanol. The

mixture was placed at -20°C for 30 min before centrifugation (14,000 rpm, 15 min). The

pellet was first washed with 70% (v/v) ethanol and air dried before dissolving in 20 μl

of TE buffer.

2.9.2 Electrophoresis and blotting

The digested genomic DNA samples and the molecular weight marker (Bioline) were

loaded onto a 1% (w/v) TBE (10.8 g/l Tris; 5.5 g/l boric acid and 0.74 g/l EDTA)

agarose gel. Two wells were left unloaded between the DNA marker and the first

genomic DNA sample. The gel was electrophoresed overnight at 40 V in half strength

TBE buffer. The UV photograph of the gel was then taken as a record. The corner of the

gel near the marker loading site was cut as an indication of the position of the samples.

To transfer the DNA to a membrane, the gel was first rinsed briefly in SDW and

denatured for 40 min in solution I (1.5 M NaCl, 0.5 M NaOH) with gentle shaking. A

depurination step (0.25 N HCl, 5-10 min) would be required before denaturation if the

DNA fragments larger than 10k were to be transferred. The gel was then rinsed with
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SDW and soaked in the neutralization solution for 40 min (1.5 M NaCl, 0.5 M Tris-Cl

pH 7.0). The gel was then soaked in 10 x SSC buffer (20x SSC: 175 g/l NaCl, 88 g/l

NaCit, pH 7.0) for 5 min. This was followed by transfer of the denatured DNA to a

nylon membrane (GeneScreen, NEN Life Science). The upward capillary blotting was

assembled as below using 10 x SSC as transfer buffer (Figure 2.1). The DNA was fixed

to the membrane by UV crosslink (Stratalinker 2400, Stratagene) after the overnight

blotting.

Figure 2.1: Blotting assembly

From the top: 0.5 kg weight, kitchen tissues, filter paper (3 layers), nylon membrane,

gel, filter paper (3 layers), bridge-shaped filter paper (1-2 layers), filter paper (3 layers)

and blotting buffer (10 x SSC).

2.9.3 Hybridization

The UV crosslinked Southern blot membrane was first pre-wetted in 5 x SSC and then

placed in a hybridization bottle (Techne) with 20 ml of pre-hybridization buffer (5 x
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SSPE (20xSSPE: 175 g/l NaCl, 27.6 g/l NaH2PO4, 9.4 g/l EDTA, pH 7.4), 50% (v/v)

deionized formamide, 5 x Denhardt’s solution, 10% (w/v) Dextran sulphate Mw 500k, 1

% (w/v) SDS and 200 μg/ml ssDNA). The bottle was then incubated in a rolling

hybridization oven (Techne) at 42°C for 4 hours. The cDNA probe (20 ng) was labelled

with 32P dCTP by using a Rediprime II DNA Labelling kit (Amersham), following the

protocol supplied by the manufacturer. The labelled probe was then purified using a

Nick column (G-50, Pharmacia) to remove the unincorporated nucleotides. The purified

probe was subsequently denatured for 5 minutes in a 100°C heat block (Techne) and

added to the bottle with the membrane and the pre-hybridization solution. The

hybridization was carried out overnight at 42°C. The hybridization solution was

decanted the next day and the membrane was washed three times with SSPE buffer

(Table 2.1).

Table 2.1: Washing the membrane

WASH SOLUTION DURATION TEMPERATURE

First wash 2x SSPE 15 min 25°C

Second wash 2x SSPE and 0.1x SDS 15 min 50-65°C

Third wash 0.2x SSPE and 0.1x SDS 10 min 50-65°C

The duration of the third wash was optimized for each probe due to the differences in

length and binding specificity of the probe. Thus the remaining radioactivity of the

membrane was continuously monitored during each wash by taking the membrane out

of the hybridization bottle, placed in a plastic wrap and scanned using the handheld

radioactivity monitor.

After three washes, the membrane was briefly rinsed with 2x SSPE and sealed in a



Materials and Methods

- 56 -

plastic wrap. The membrane was then placed under an X-ray film (Kodak X-OMAT) in

an autoradiography cassette in the dark room under red light. The cassette was wrapped

in a dark plastic bag and stored at -70°C for an appropriate length of time. The exposure

time can be roughly determined by checking the counts on the membrane using the

radioactivity monitor. A membrane with <10 counts requires one week for exposure.

Membranes with >20 counts can produce enough signal on the film after 1-2 days.

2.9.4 Development of autoradiography film

The equipment and reagents used for developing films were purchased from Kodak. All

procedures were carried out in a darkroom with red light according to the instruction of

the manufacturer. The cassette was first warmed to room temperature. The film was

immediately placed into a solution with 10% (v/v) developer for about 5 min till the

bands were visible, and then rinsed with water in a separated tank with occasional

shaking. The fixation was carried out in 5% (v/v) fixer solution; at this point the film

was no longer light sensitive. After that the film was rinsed in water and allowed to dry.

2.9.5 Stripping the blot

To reuse the blot, the 32P labeled probes were removed from the membrane by soaking it

in boiling 0.1x SSPE solutions for 5 min. The radioactivity of the blot was checked by a

handheld monitor. The wash was to be repeated with fresh solution if there was

remaining radioactivity. The stripped nylon membrane was rinsed briefly in 5 x SSPE
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before sealed in plastic wrap and stored in -20 oC freezer.

2.9.6 Preparation of salmon sperm DNA

100 mg of salmon sperm DNA was added to 10 ml of TE buffer (10 mM Tris-HCl pH

8.0, 0.5 mM EDTA pH 8.0), boiled for 20 min with occasionally shaking/vortex. After

the SSDNA was completely dissolved, it was sheared by passing through a 21-gauge

needle 12 times using a 25 ml syringe. The solution was then boiled again for 10

minutes. The sheared ssDNA was dispensed to 0.5 ml aliquots in 1.5 ml tubes and

stored at -20°C.

2.10 Northern Blot

2.10.1 Electrophoresis of RNA

The following procedures were carried out in the fume hood due to the toxicity of

formaldehyde. To prepare the 100 ml formaldehyde northern gel, 90 ml of SDW, 2 ml of

sodium phosphate buffer (1 M, pH 6.8) and 1 g of agarose were mixed in a 250 ml flask

and melted in a microwave oven. 8 ml of formaldehyde (adjusted to pH 7.0 with NaOH)

was added when the gel solution was cooled to 50-60 oC. The gel solution was then

poured into the gel caster tray and was left to set in the fume hood for 30 min before use.

The volume of the RNA samples was adjusted to 10 μl with SDW and mixed with an

equal volume of the sample buffer (50% (v/v) deionized formamide, 16.5% (v/v)
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formaldehyde, 40 mM sodium phosphate buffer pH 6.8, 1 mM EDTA pH 8.0 and 10

μg/ml ethidium bromide) in a 1.5 ml tube. The tubes were then incubated in a 65°C heat

block for 15 min, snap cooled on ice for 1 min and then briefly centrifuged before

adding 1 μl of gel loading dye (Fermentas). Two wells were left empty between the

RNA size marker and the first RNA sample. After loading the samples onto the

formaldehyde gel, the gel was allowed to run at 80V for 30 min. The gel was then

photographed under UV light to compare the amount of the rRNA. The gel was run

further until the bromophenol blue dye reached the end of the gel.

2.10.2 Upward capillary blotting

The northern gel was first soaked in 25 mM sodium phosphate buffer (pH 6.8) for 10

min before blotting. The corner of the gel near the loading site was cut to mark the

position of the samples. The upward capillary blotting was carried out as that of the

Southern blot except that 25 mM sodium phosphate buffer was used as the blotting

solution instead of the 10 x SSC (Figure 2.1). After the overnight transfer, the nylon

membrane was rinsed in 2 x SSC for 2 min before UV crosslink (Stratalinker 2400,

Stratagene). This was followed by baking the membrane in an 80°C oven for 1 hour to

evaporate the formaldehyde. The hybridizations, washes and developing procedures

were the same as those used in the Southern blot as previously described (Section 2.9).
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2.11 Western Blot

2.11.1 SDS-polyacrylamide gel electrophoresis

The western blotting apparatus and consumables are products of Bio-Rad (UK). The

SDS-PAGE gel was cast and run in the fume hood due to the toxicity of the acrylamide

and β-mecaptoethanol. The SDS-PAGE gel casting apparatus was assembled following

the instruction of the manufacturer. The gel mixtures were prepared as described in

Table 2.2.

Table 2.2: Recipe for SDS-PAGE gel

Stacking Gel Resolving Gel

SDW 3.75 ml SDW 5.3 ml

50% Gel solution (Bio-Rad) 0.5 ml 50% Gel solution (Bio-rad) 2.0 ml

1M Tris-Cl pH 6.8 0.65 ml 1.5M Tris-Cl pH 8.8 2.5 ml

10% SDS 50 μl 10% SDS 100 μl

10% APS 50 μl 10% APS (fresh) 100 μl

TEMED 5.0 μl TEMED 4.0 μl

APS: ammonium persulphate, TEMED: tetramethylethylenediamine.

After the resolving gel mixture was loaded into the casting apparatus, SDW (1 ml) was

laid on the surface of the gel to produce a smooth finish. The water is then decanted and

blotted with filter paper before adding the stacking gel (table 2.2) and the comb. Once

the gel was set, the comb was removed and the gel was placed into the vertical

electrophoresis tank with 1 x Tris-glycine running buffer (10 x buffer: Tris base 30g/l,
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glycine 144g /l and 1% (w/v) SDS). The protein samples were mixed with an equal

volume of 2 x sample buffer (125 mM Tris-Cl pH 6.8, 20% (v/v) glycerol, 4% (v/v)

SDS, 0.005% (w/v) bromophenol blue and 5% (v/v) β-mecaptoethanol) and denatured

at 100oC for 10 min before loading. The SDS-PAGE was run at 100 V for 1 h.

2.11.2 Western blot

The total protein was stained by SimplyBlue Stain (Invitrogen) using the method

recommended by the manufacturer. The stained SDS-PAGE gel was to be imaged

immediately or dried between two pieces of gel drying film (Promega) for long-term

preservation. To transfer the protein to a nitrocellulose membrane, the SDS-PAGE gel

was first soaked in the cold transfer buffer (25 mM Tris base, 192 mM glycine and 20%

(v/v) methanol, pH 8.3 with HCl) for 5 min. The membrane and 10 pieces of filter paper

(Whatman) were cut to the size of the gel and soaked in the transfer buffer prior to use.

The paper-membrane-gel-paper sandwich was placed inside the semi-dry transfer

machine (Bio-Rad) with the gel side facing the bottom (anode) and the membrane side

facing the top (cathode). The transfer was carried out by applying a constant 15 V for

30-45 min. Fresh buffer was poured onto the membrane-gel sandwich when the current

began to drop; the excessive buffer was removed with dry tissue.

After the semi-dry electrotransfer, the membrane was rinsed with SDW and placed in a

Petri dish with 20 ml blocking buffer (1x TBS with 5% (w/v) nonfat milk powder) with

gentle shaking for 1 hour at room temperature. The membrane was transferred to 20 ml
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of 1 x TBST (20 mM Tris-Cl pH 7.5, 500 mM NaCl and 0.1% (v/v) Tween-20) and

washed for 5 min. The membrane was then incubated with the primary antibody in the

dilution buffer (1 x TBST with 1% (w/v) nonfat milk powder) overnight at 4oC on a

platform shaker. In the following day, the membrane was washed with 1 x TBST for 5

min and incubated with a secondary AP (alkaline phosphatase) antibody in the dilution

buffer for 1-2 h at room temperature. The membrane was then washed three times with

20 ml TBST and once with TBS for 10 min before rinsed with SDW. The membrane

was developed in 10 ml of developing solution (SIGMA). The developed membrane

was washed with water and dried between two pieces of filter paper.

2.12 Reverse Transcription

The total RNA (10 μg) was mixed with 1 μl of oligodT(25) primer (0.5 μg/μl, MWG)

and 1 μl dNTP mix (10 mM each, BioLine) in a 0.5 ml RNase-free tube (eppendorf).

RNase-free water was then added to bring the final volume to 23 μl. The tube was

incubated at 65 oC for 5 min and this was followed by adding 8 μl 5x RT buffer, 2 μl

RNasin (Promega), 4 μl DTT, 1 μl Superscript II (200 U/μl, Invitrogen). The tube was

briefly mixed by vortexing and spun down before incubating at 42 oC for 1 h. The

reaction was terminated by incubating the tube at 70 oC for 5 min. RNase H (1 μl,

Invitrogen) and RNase A (1 μl, Fermentas) were added to the RT reaction mixture to

digest the remaining RNA. SDW was then added to bring the final volume to 50 μl and

the cDNA was purified using the Wizard DNA clean-up system (Promega) following the

protocol supplied by the manufacturer.
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After confirming the presence of the transgene by PCR of genomic DNA and Southern

blot, a rapid RT-PCR was performed to check whether the transgene mRNA was

transcribed. RNA extracted from transgenic plants was reverse transcripted to cDNA by

using the BioScript reverse transcriptase (Bioline) with an anchored oligodT primer

(5'-cgctacgtaacggcatgacagtgtttttttttttttttttttttttt-3'). The synthesized cDNA thus carried

the anchored tag (indicated by the underline), which served as the reverse primer site for

the following PCR step. The reverse primer (5'-cgctacgtaacggcatgacagtg-3')

complementary to the anchored tag was then used with a gene specific primer (GSP) to

PCR the cDNA. By using this strategy, the PCR will not amplify the genomic DNA

contamination present in the cDNA sample, because the genomic DNA does not have

the tag sequence. The reverse transcription and PCR procedures were carried out

following the protocol supplied by the manufacturer (Bioline).

2.13 Yeast Two-Hybrid Assay

The IntCR clones were obtained from screening a LexA-based tomato fruit cDNA yeast

two-hybrid library (Lin et al., 2003). The Arabidopsis yeast two-hybrid library is a

modified GAL4 system (ProQuest yeast two-hybrid system, Invitrogen) and was kindly

provided by Dr. Zoe Willson (Plant Sciences Division, the University of Nottingham).
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2.13.1 Transformation of yeast

All following transformation procedures were carried out under sterilized conditions.

The solid and liquid cultures of yeast were handled in a sterilized flow hood and all

centrifugations were carried out at room temperature. The PEG4000/LiAc solution was

prepared in advance and the 10 ml aliquots were kept in the -20oC freezer. The glucose

(analytical grade, Fisher) and galactose (BioChemika Ultra, SIGMA) were autoclaved

separately in 20% (w/v) water solution before adding to the culture media. The raffinose

20% (w/v) solution was filter sterilized by passing through a 0.45 μm filter unit. The

amino acid dropout powder for preparing the SC dropout medium was purchased from

BD Clonetech and the yeast nitrogen base w/o amino acid was a product of Difco.

The appropriate yeast strain was scraped from a frozen glycerol stock to an YPAD

medium (Yeast Extract Peptone Adenine Dextrose, BD Clontech) or a synthetic

complete dropout (SC dropout) medium plate and incubated in the inverted position at

30 oC. A single colony (about 2 mm in diameter) was picked from the plate and was

used to inoculate 20 ml of the suitable liquid medium in a 100 ml flask. The yeast was

grown overnight (about 18 h) at 30 oC in a shaking incubator. The optical density (OD)

at 600 nm of the yeast liquid culture was measured in a 1 ml plastic disposable cuvette

by the spectrophotometer and the overnight cultured yeast with an OD > 1.5 units was

used for the following steps. An appropriate amount of the overnight culture was added

to 100 ml of pre-warmed liquid medium in a 250 ml flask to bring the OD to 0.25-0.30.

The diluted yeast was grown until the OD doubled to 0.5-0.6 after 3-4 h. The OD of the
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yeast culture was measured every 20 min after the initial 2 h to prevent over-growth.

The yeast culture was then centrifuged at 1,500 x g for 15 min and washed twice with

SDW before suspension in 1 ml LiAc/TE solution (100 mM LiAc, 10 mM Tris-Cl pH

8.0 and 1 mM EDTA). For each transformation, 200 ng of plasmid DNA was mixed

with 10 μl of sheared salmon sperm DNA (as prepared in section 2.9.6) in a final

volume of no more than 20 μl. The competent yeast cells (100 μl) were added to the

DNA mixture and mixed vigorously by vortex. 0.6 ml of the PEG/LiAc solution (40%

(w/v) PEG4000 (polyethylene glycol 4000, Sigma), 100 mM LiAc, 10 mM Tris-Cl pH

8.0, 1 mM EDTA, RT) was added to the cells and mixed again by vigorous vortex. The

mixture was then incubated in a 30 oC oven for 30 min before adding 70 μl of DMSO

(dimethyl sulfoxide, SIGMA). The tube was then mixed by gentle inversions before

being heat shocked in a 42 oC water bath for 15 min. The yeast cells were then briefly

cooled on ice for 30 sec and pelleted by centrifugation at 2,000 x g for 15 sec. The

transformed cells were suspended in 200 μl of SDW and plated onto the appropriate

selection medium.

2.13.2 LexA-based yeast two-hybrid assay

The tomato fruit yeast two-hybrid library was built upon the LexA yeast system and all

the yeast two-hybrid assays were carried out using the yeast strain EGY48 (MTAα, trp1,

his3, ura3, 6ops-LEU2) with DB domain fusion plasmid pEG202 (HIS3, ampR), AD

domain fusion plasmid pJG4-5 (TRP1, ampR) and the reporter plasmid pSH18-34 (Ura3,

ampR). The plasmid pRFHM1 (HIS3, ampR), which expresses LexA-DB fused to the
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homeodomain of bicoid, was used as the negative control. The plasmid pSH17-4 (HIS3,

ampR), which expresses the LexA-DB fused with Gal4-AD was used as the positive

control.

For each yeast two hybrid experiment, the competent yeast cells were prepared from

yeast EGY48 containing plasmid pSH18-34 grown in SC-U media (6.7 g/l yeast

nitrogen base w/o amino acid, 1 g/l minus uracil dropout mixture and 20 g/l glucose, pH

to 5.8 with NaOH). The transformed yeast cell containing plasmid pSH18-34, pEG202

and pJG4-5 were plated on SC–UHT medium (SC medium supplemented with 1g/l

–Ura –His –Trp dropout mix).

For measuring the lacZ reporter activity, the transformed yeast cells were spread on

plates with SC-U G/R medium (SC –U medium supplemented with 20 g/l galactose,

10g/l raffinose, 10 mM phosphate buffer pH 7.0 and 80 mg/l X-Gal). The plates were

incubated at 30 oC for 2 to 3 days before imaging. The yeast cell expressing proteins

with strong interaction was visibly blue in 12 hours (eg. the pSH17-4 positive control).

The negative control (empty pJG45 and pEG202 plasmids or the pRFHMI) would turn

blue after 4 to 5 days due to the basal LexA activity. It is thus important to include the

negative control in each yeast two-hybrid experiment.

For measuring the Leu reporter activity, the transformed yeast cells were suspended in 1

ml of SDW. A series of 1/10 dilution were made covering the 1000 fold concentration
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range. The samples (20 μl) from each dilution (1/10, 1/100, 1/1000) was spotted onto

plates with SC-UHTL G/R medium (SC medium supplemented with 1g/l –Ura –His

–Try -Leu dropout powder, 20 g/l galactose, 10g/l raffinose and pH to 6 with NaOH)

and SC-UHTL Glu medium (SC-UHTL with 20 g/l glucose instead of galactose and

raffinose). The Leu phenotype was scored after 4 to 5 days. The Leu positive yeast cell

would grow on G/R medium but not the Glu medium.

2.13.3 GAL4-based yeast two-hybrid assay

The GAL4 based yeast two-hybrid library (ProQuest, Invitrogen), which is compatible

with the gateway cloning system was kindly provided by Dr. Zoe Wilson. The yeast

MaV203 (MATα, leu2-3, trp1, his3, ade2, gal4, gal80, SPAL10::URA3, GAL1::lacZ,

HIS3UAS GAL1::HIS3@LYS2, can1R, cyh2R) was grown in the YPAD medium (10g/l

yeast extract, 20 g/l peptone, 100 mg/l adenine sulphate, 20 g/l glucose, pH 6.0 by HCl).

The transformed yeast cells were plated on the SC –TL selection medium (6.7 g/l yeast

nitrogen base w/o amino acid, 1 g/l –Try -Leu dropout mixture, 20 g/l glucose pH to 5.8

by NaOH).

Filter lift assay was used to analyze the lacZ reporter activity. The pre-wetted filter

paper (7 cm in diameter) was first placed on top of the solid YPAD medium in the 9 cm

Petri dish. The transformed yeast was plated onto the wet filter paper and the Petri

dishes were sealed and incubated overnight (20 h) in a 30oC oven in the inversed

position. In the following day, the filter paper with yeast cells was peeled and immersed
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in liquid nitrogen for 30 sec. The frozen filter was thawed in an empty Petri dish with

the yeast side on top. Three pieces of 9 cm filter paper were stacked in the lid of the 9

cm Petri dish; they were saturated with 4 ml of Z buffer (60 mM Na2HPO4, 40 mM

NaH2PO4, 10 mM KCl, 1 mM g/l MgSO4, 0.5 mg/ml X-Gal, 6 μl/ml β-mercaptoethanol,

pH 7.0). The thawed filter paper with the yeast colony side up was then placed on top of

the soaked filter paper. The Petri dish was sealed with parafilm and incubated in an

inversed position in the 37 oC oven for 24 h. The appearance of blue colour on the filters

was observed every 1-2 hours in a 24 hour period, in which the strongest interactions

would be visible in the first 2-3 hours. The final result was scored at 24 h and the filter

paper was air dried and stored at room temperature.

The His reporter assay was carried out by plating the transformed yeast cells in the SC

dropout medium with different concentrations of 3-amino-1,2,4-triazole (3AT), which is

an inhibitor of the dehydratase encoded by the HIS gene. The transformed yeast was

picked from the master plate and suspended in 1 ml of SDW. A series dilution of 1:10

was prepared and 10 μl of each dilution was spotted on to the SC –HTL plates (6.7 g/l

yeast nitrogen base w/o amino acid, 1 g/l –Try –Leu -His dropout mixture, 20 g/l

glucose pH to 5.8 by NaOH) with a 3AT concentration gradient (0 mM, 10 mM, 25 mM,

50 mM and 100 mM). The plates was sealed and incubated at 30 oC for 3 to 4 days.

The yeast activating the URA reporter was to be monitored by cell growth on SC plates

lacking uracil. In addition, the activated URA gene product would convert the
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5-fluoroorotic acid (5FOA) to 5-fluorouracil, which is toxic to yeast. Thus the cells

containing interacting proteins would grow in uracil minus medium but not on uracil

minus medium supplemented with 0.2% (w/v) 5FOA.

2.14 Protein Synthesis and Purification in Yeast

The pESP2 vector, yeast strain (SP-Q01) for expressing GST (glutathionine

S-transferase) fusion protein and the yeast culture medium were purchased from

Stratagene. The GST binding resin was a product of BD Clontech. The primary GST

antibody used for western blot detection was obtained from Ambion. The coding

sequence of the target gene was first PCR amplified using primers with a 5' BamHI

restriction site. The purified PCR product was then digested with BamHI and ligated to

the pESP2 vector. The ligation product was transformed to E. coli and the plasmid was

purified for transforming yeast (SP-Q01) using the PEG/LiAc method (2.13.1).

The transformed yeast cell was used to inoculate a 20 ml yeast extract plus supplements

(YES) medium (Stratagene) and cultured overnight at 30 oC. 1 ml of the overnight

master culture was added to 100 ml of fresh pre-warmed YES media and grown to

mid-log phase (OD600 of 0.5-0.8) for 5-7 hours. The yeast cells were then harvested by

centrifugation at 1,000 x g for 15 min (RT) and washed twice with SDW before

suspension in 200 ml of EMM media (Stratagene). To induce the GST fusion protein

production, the yeast in the EMM media was cultured for 24 hours at 30 oC shaking

incubator. The yeast cells were then harvested and snap frozen in liquid nitrogen. To
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extract the GST-fusion protein, the frozen yeast pellets were grinded for 5 min with

alumina powder in a pre-chilled mortar (4 oC). 20 ml of cold 1 x PBS (Sigma) with 2 x

proteinase inhibitor (CompletTM, GE) was added to the yeast-alumina mixture and

grinded for another 5 min. The alumina and yeast debris were pelleted by centrifugation

for 10 min at 12,000 rpm (4 oC) and the supernatant was kept on ice for GST affinity

purification.

The GST affinity resin in the column was equilibrated by washing with 5 volumes of

cold 1 x PBS three times. The yeast lysate was loaded onto the column and the flow rate

was adjusted to 5 ml/min. The column was then washed with 20 volumes of cold PBST

(PBS with 1% (v/v) Triton X-100) and eluted with 5 volume of GST elution buffer. The

protein concentration of the elution was measured using the Bradford method (Bi-Rad

Protein Assay Kit I, Bio-Rad) and visualized by SDS-PAGE and Western Blot.

2.15 Microscopy

2.15.1 Confocal scanning microscopy

The Leica TCS SP2 AOBS confocal scanning microscope was used to image the plant

materials expressing fluorescence proteins. The microscope is equipped with the Leica

confocal software (LCS), a 100 mW multi-line Argon laser (458 nm, 476 nm, 488 nm,

496 nm and 514 nm) and a 1 mW He-Ne laser (543 nm) as excitation sources. The FP

signal was collected by the SP scanner (Table 2.3) and the auto-fluorescence of the
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chlorophyll was measured between 630 and 730 nm. The transmitted light image was

collected in a separated detector.

Table 2.3: Excitation and emission settings

Fluorescence
Protein

Laser Emission collected

CFP (cyan) 458 nm 465-600 nm; used with YFP: 465-505 nm

GFP (green) 488 nm 500-600 nm

YFP (yellow) 514 nm 525-600 nm; used with mRFP1: 525-560 nm

mRFP1 (red) 543 nm 590-670 nm; used with YFP: 600-725 nm

The plant tissues were mounted on to the glass slide with a drop of 1 x PBS buffer and

covered gently with the No. 1.5 cover slip (0.17 mm thick, Scientific Laboratory

Supply). The slide was observed under UV light. Once the desired focus and object lens

were chosen, the UV shutter was closed the sample was scanned by Leica TCS SP2.

The appropriate laser intensity was selected in the Leica Control Software (LCS)

accordingly and the live image was acquired instantly through continuous scan mode.

The scanner and detector was set to xyz scanning mode, 514x514 image size, 8 bit

image and 400 Hz scan rate unless otherwise mentioned. The pinhole was set to AE unit

1 as default. The voltage applied to the photomultiplier tube (PMT, AKA “detector gain

value”) was adjusted experimentally to obtain the best signal-to-noise ratio. The

z-position and electric-zoom were chosen accordingly and the series z-position scan and

image maximal projection was carried out by using LCS. Images were acquired using

the 10x/0.4 HC PL APO CS object lens and the 40x/0.7 HCX PL FLUOTAR object lens.

The 63x/1.3 HCX PL APO CS and 40x1.25-0.75 HCX PL APO CS object lenses were
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used to obtained images where fluorescent proteins were targeted to the endoplasmic

reticulum.

2.5.2 Transient expression in onion epidermal cells

The gold powder (sphere 0.8-1.5 μm) was purchased from AlfaAesar and the Particle

Delivery System (PDS) He 1000 was a product of Bio-Rad. The gold powder (30 mg)

was first washed with 1 ml of ethanol and three times with SDW in a 1.5 ml

Low-Bound centrifuge tube (Eppendorf) before suspension in 0.5 ml of SDW. The gold

solution was then sonicated for 1 min in a water-bath sonicator (Fisher) and was

dispensed to 30 μl aliquots in the Low-Bound centrifuge tubes. The plasmid DNA was

coated onto the gold powder by using the CaCl2/spermidine method with slight

modifications (PDS manual, Bio-Rad).

The gold solution was sonicated for 10 s and vortexed vigorously for 1 min. The

plasmid DNA (25 μl) was added to the vortexing gold solution immediately following

by addition of 50 μl of 2.5 M CaCl2 and 20 μl of 0.1 M spermidine (freshly prepared

monthly) without delay. The tube was continued to be vortexed for 1 min before settling

the gold on ice for 1-3 min. The gold was then pelleted by a 1 sec pulse centrifugation

and the supernatant was removed gently without disturbing the gold pellet. Ethanol (150

μl) was gently laid on top of the gold pellet and the tube was again pulse centrifuged for

1 sec. The gold pellet was then washed with 150 μl of ethanol three times without
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centrifugation and suspended in 30 μl of ethanol. The tube was vortexed for 2-3 sec and

the gold powder was fully dispersed by pipetting. The gold solution was then loaded to

three micro-carriers (Bio-Rad) and dried in a Petri dish with desiccators for about 20

min in a 30oC oven before shooting into the onion epidermal cells.

The inner epidermal cell layer of the onion (locally purchased) was peeled and placed

with the inner side down on the Petri dishes with solid MS medium (supplemented with

1% (w/v) sucrose). Water was sprayed onto the Petri dishes to keep the onion peel

moisturized. The excessive water on the onion peels was removed by gently blotting

with a piece of dry tissue. The gold powders coated with DNA were then bombarded

into the onion cell under 26-28 cm Hg vacuum using 1,100 psi rupture disk. The Petri

dish was then sealed with parafilm and covered with black cloth. The transformed onion

peels were incubated overnight before scoring the transformed cells under the UV lamp.

2.15.3 Forster resonance energy transfer (FRET)

The Fluorescence (Forster) Resonance Energy Transfer (FRET) using CFP and YFP is a

technique to measure the distance between two proteins. Typically, protein fused with

the CFP was the donor and the YFP fusion protein is the acceptor. The efficiency of

FRET can be calculated using the change of the acceptor fluorescence intensity in a

living tissue and this method is called sensitized emission FRET (SE-FRET). FRET (A)

in a fixed tissue can be measured by the increase of donor fluorescence after photo

bleaching the acceptor, thus this technique is named as Acceptor Bleaching FRET. Both
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the sensitized emission FRET (FRET-SE) and the acceptor bleaching FRET (FRET-AB)

were carried out by using the FRET application wizard in the Leica Control Software

(LCS) following the protocol of the manufacturer.

The FRET specimen is generated by co-transforming onion epidermal cells with

constructs, in which proteins of interest were fused to CFP or YFP, respectively. The

negative control specimen is onion epidermal cells expressing both free CFP and YFP.

The positive control specimen is onion epidermal cells expressed a CFP fused to YFP.

The two reference specimens are onion epidermal cells expressing either CFP or YFP;

they were referred to as CFP reference and YFP reference.

Firstly, the FRET positive control specimen is observed under the UV light and then

scanned by the confocal microscope. In the donor channel setting, the acousto-optic

tuneable fibre (AOTF) for the 458 nm laser is set to maximum (99.9%) and the

photomultiplier tube voltage (PMT) for CFP is adjusted to slightly below detector

saturation. Secondly, in the acceptor channel, AOTF for the 514 nm laser and the PMT

voltage for YFP fluorescence are also adjusted to just below detector saturation. These

donor and acceptor channel settings are saved as default and other specimens are

examined under the same conditions. The laser AOTF and detector PMT are then

fine-tuned to avoid detector saturation for every sample specimen. Once both the AOTF

and PMT settings are optimized for all specimens (FRET, positive control, negative

control and two references), FRET images of each sample are then recorded. The donor
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only, acceptor only, FRET and background are subsequently chosen in the FRET

application wizard and the FRET efficiency was calculated by the application wizard

according to Leica’s instruction.
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CHAPTER 3: RESULTS

3.1 Introduction

3.1.1 Yeast Two-Hybrid System

The protein-protein interaction between the Arabidopsis ethylene receptor ETR1 and the

downstream MAPKK kinase CTR1 was initially characterized by using the yeast

two-hybrid assay (Clark et al., 1998). Yeast two-hybrid is a genetic tool to study protein

interactions and to identify novel proteins that can associate with a known protein of

interest without the need to know how and where the target protein acts (Bartel and

Fields, 1997). The basis of the yeast two-hybrid system relies on the reconstitution of a

functional transcription factor which has two separable domains: the DNA binding

domain (DB) and the activation domain (AD). There are three types of commercially

available yeast two-hybrid systems. The system I is based upon splitting the yeast

transcription factor GAL4 into the GAL4-AD and GAL4-DB. Both the system II and III

use the E. coli LexA as DB and differ in the choice of the activation domain. It is

generally considered that the LexA-based systems are more sensitive than the GAL4

system and conversely the GAL4 system is more stringent and produces less false

positive results (Criekinge and Beyaert, 1999).

The IntCR (Interacting with CTR2) clones were identified through screening a tomato

fruit cDNA library (LexA-based yeast two-hybrid system) using the LeCTR2

N-terminus (aa 192-542) as bait (Lin and Grierson, unpublished data). The tomato fruit
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cDNA fragments were inserted into the prey vector pJG4-5, which fused the foreign

DNA downstream of the activation domain. The bait cDNA (LeCTR2192-542) was cloned

into the vector pEG202 in frame with the LexA DNA binding domain. The LexA-bait

(DB-LeCTR2) fusion protein binds to the LexA operators upstream of the reporter gene.

If the bait protein associates with an AD-prey protein, the interaction would activate the

two reporter genes and the yeast cells would be able to grown in medium lacking

leucine and convert the X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-glacto-pyranoside)

substrate to a blue colour product (4-chloro-3-brom-indigo) (Figure 3.1).

Figure 3.1: The LexA-based yeast two-hybrid system

The bait protein was fused with the DNA binding domain (DB) of LexA, which can

bind to the eight LexA binding sites in the reporter plasmid pSH18-34. The prey protein

was fused to the activation domain (AD). If the association of the bait and prey occurs, a

functional transcription factor is regenerated. This results in the activation of the

reporter genes, and produces visible phenotypes. The activation of the Leu reporter gene

allows the yeast to grow on synthetic dropout media lacking leucine and the gene

product of the LacZ could change the colour of the yeast colony from white to blue.
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3.1.2 Fluorescent Proteins

The green fluorescent protein (GFP) was first discovered in the jellyfish Aequorea

Victoria as a companion to the bioluminescent protein aequorin (Shimomura et al.,

1962). Since then, GFP is widely used in various types of cells as a reporter gene due to

its unique in vivo fluorescence ability and low toxicity to the host cell (Prasher et al.,

1992). The use of GFP in higher plants was not feasible until a cryptic intron inside the

coding sequence of the GFP was removed (Haseloff et al., 1997). In addition, extensive

mutagenesis screens have been carried out and numerous GFP variants with distinct

fluorescence characteristics have been generated (reviewed in Shaner et al., 2005). For

instant, the S65T (Serine65 changed to Threonine) GFP stabilized the fluorochrome in a

permanently ionized form with a single absorbance peak at 489 nm, which became the

backbone of the commercially available EGFP (Clontech). The identification of the

spectra-shifted GFP variants, such as the blue-shifted cyan fluorescent protein (CFP)

and the red-shifted yellow fluorescent protein (YFP) enables multiple proteins to be

visualized simultaneously in the same cell (Heim et al., 1994).

Furthermore, it was realized that the Foster resonance energy transfer (FRET) from CFP

to YFP could serve as an indicator of the distance between the two fluorescent proteins.

FRET is the transfer of the electronic excitation energy between the donor (D) and the

acceptor (A). The FRET energy transfer occurs without radiation emission (photons)

and is results from the long-range interaction between the D and A dipoles. The

efficiency of this process is dependent on the extent of the spectral overlap between the
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D emission spectrum and the A absorption spectrum, the quantum yield of A, the

respective orientation of the proteins and most importantly, the distance between D and

A (reviewed in Periasamy and Day, 2005).

In situations where two proteins are labelled with CFP and YFP, the only variable factor

determining the FRET efficiency is the distance between the two fluorescent proteins.

Therefore, by measuring the FRET efficiency, the distance of the two target proteins can

be determined. However, it is difficult and impractical to obtain the orientation

information (orientation factor κ2) for proteins in a biological system where the protein

conformations change rapidly and result in a spread of possible κ2. Thus the average

value of κ2 =2/3 is generally used for the biological samples.

However, the early FRET measurements were hampered by the poor quantum yield and

multiple excitation stages of CFP, plus the pH sensitivity and slow maturation rate of

YFP. Therefore, three point mutations (S72A, Y145A and H148D) have been

incorporated into CFP in order to stabilize its conformation and resulted in a new CFP

variant, called “Cerulean”, which has increased quantum yield, higher excitation

coefficient and a single exponential fluorescence life-time (Rizzo et al., 2004). On the

other hand, the YFP variant Venus (F46L, F64L, M153T, V163A and S175G) has been

generated with better pH sensitivity and folding efficiency when compared to EYFP

(Nagai et al., 2002). It should be noted that a new pair of CFP/YFP variants CyPet-YPet

had been specifically optimized for FRET experiment (Daugherty et al., 2005). There
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has not yet been any published literature on the applications of CyPet-YPet in plant

cells and thus a comparison with the Cerulean-Venus pair is not feasible at present.

Quantification of FRET efficiency is generally achieved by measuring the change of the

donor or the acceptor fluorescent intensity in acceptor photo-bleaching FRET or

sensitized emission FRET. These methods either require complicated algorithms to

remove the spectra bleedthrough or cause irreversible photo bleaching and require tissue

fixation. The limitations of the intensity-based FRET could be overcome by using the

fluorescence lifetime measurement FRET (FLIM-FRET), because the fluorescence

lifetime is independent of the fluorophor concentration. However, FLIM-FRET is not

widely used because of the requirement for a costly pulse laser source and fast

photon-counting detectors.

An alternative technique known as biomolecular fluorescence complementation (BiFC)

has been developed (Hu et al., 2002; Hu and Kerppola, 2003). BiFC is based on the

ability of two non-fluorescent fragments of a fluorescent protein (e.g. YFP) to

re-constitute a functional fluorescent complex. In this approach, neither fragment shows

fluorescence by itself, unless the two fragments are brought together by interaction of

the two target proteins fused to the fragments. Therefore, BiFC could serve as an

indicator of target protein interaction. Because BiFC generates a strong fluorescence

signal and direct read-out without the need of employing a complicated algorithm like

FRET, it has become widely accepted for measuring in vivo protein-protein interaction.
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Moreover, multiple protein interactions could be visualized simultaneously within the

same cell by using multi-colour BiFC (Hu and Kerppola, 2003; Shyu et al., 2006).

3.2 Sequence Analysis of IntCR

3.2.1 The 5' end sequence of IntCR242 and 266

Plasmids containing the truncated 3' end cDNA fragment of IntCR genes (IntCR242 and

266) and the relevant sequence information were kindly provided by Dr Zhefeng Lin

(Plant Sciences Division, University of Nottingham). As the cDNA of the Arabidopsis

genes (AT1G15730 and FtSH5), which share sequence homology to IntCR242 and

IntCR266, are 1.5 kb and 2 kb in length, respectively, it was therefore estimated that

about 1 kb of the 5' end cDNA of both the IntCR242 and 266 clones is missing (Figure

3.2).

The rapid amplification of cDNA end (RACE) PCR method was used to obtain the 5'

end coding sequence of the IntCR242 and IntCR266 using the RACE primers

5'-atgatcatggccagtatg-3' (IntCR242EXT) and 5'-ggtatcttagcacctaaagcagta-3'

(IntCR266EXT) designed according to the manufacturer’s protocol (GeneRACE,

Invitrogen). The RACE PCR products were gel purified (Figure 3.2) and cloned into

vector pGEM-T-Easy (Promega). The DNA sequences were obtained by fluorescence

dye terminator sequencing (Appendix A). Based on the 5' end sequence generated from

the RACE-PCR, primers were designed to amplify the full-length coding sequence

(CDS) of IntCR242 and IntCR266 by RT-PCR. The PCR products were subsequently
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cloned into the pENTR SD vector (Invitrogen) and confirmed by sequencing.

Clones Length Estimated full-length cDNA length

IntCR22 710 bp 1.5 k

IntCR242 732 bp 1.5 k

IntCR266 700 bp 2.0 k

IntCR242 forward primer 5' caccatggcttctttgtctatagac 3' (Le242GF)

IntCR242 reverse primer 5' tgttaaacaggctttgaagcc 3' (Le242GR)

IntCR262 forward primer 5' caccatggccaattctgtactctc 3' (Le266GF)

IntCR266 reverse primer 5' agaaatgtatagctcagccttg 3' (Le266GR)

Figure 3.2: RACE-PCR products of IntCR 242 and 266

RACE-PCR was carried out using the total RNA extracted from tomato leaf tissue. The

PCR products were separated on a 1% (w/v) agarose gel with the Hyperladder I

(BioLine) as molecular weight marker. The lengths of the missing 5' end CDS of the

IntCR were estimated by comparing the IntCR sequences with their Arabidopsis

homologues. The oligos used for RT-PCR are shown above.
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3.2.2 Sequence analysis of IntCR242 and IntCR266

The deduced amino acid sequence of the IntCR242 protein showed about 70% identity

to both the Arabidopsis proteins AT1G15730 and AT1G80480 (Figure 3.3). The

N-terminal domain of the IntCR242 protein contains a putative chloroplast transit

peptide (cTP) as predicted by the sub-cellular localization prediction programme

PSORT (www.psort.org). The putative cTP cleavage site calculated by PSORT is

between amino acid residue 73 and 74. Using the IntCR242 protein as entry to search

InterPro database (http://www.ebi.ac.uk/InterProScan) revealed an ATP/GTP binding

site motif A (P-loop) in the amino acid residue 104 to 111 and a vitamin B12

biosynthesis P47K domain in the C-terminus of IntCR242 (Figure 3.3). Interestingly,

there is a region (aa 301-421) containing 31 histidine residues in the C-terminus of

IntCR242, which is also present in its two Arabidopsis homologues AT1G15730 and

AT1G80480 (Figure 3.3).

The IntCR266 gene encodes a protein of 708 amino acids, with a calculated Mw of

75.99 kDa. It has about 80% identity to the Arabidopsis FtSH5 and FtSH1 (AT5G42270

and AT1G50250). The amino-terminus of IntCR266 also contains a putative chloroplast

transit peptide (cTP) as predicted by PSORT. The IntCR266 protein contains shared

features of the chloroplast FtSH ATP-dependent metallo-protease including a cleavable

cTP, two transmembrane domains in the N-terminus, two WALKER motifs in the

C-terminal half for the Walker-type ATPase/metallo-protease and a zinc binding motif

(Figure 3.4).

http://www.psort.org/
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Figure 3.3: Amino acid sequence alignment of IntCR242

The sequences alignment of IntCR242 and its Arabidopsis homologues At1g15730 and

At1g80480 was formatted by T-Coffee and produced by Box-Shade. The black

background indicates identity, whereas the grey background represents conservative

substitution. The putative cTP cleavage site in the IntCR242 protein is indicated by the

black arrow. The ATP/GTP binding site (P-Loop) is indicated by the “*”. The His-rich

region is underlined.
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Figure 3.4: Amino acid sequence alignment of IntCR266

The sequence alignment of the IntCR266 protein and its Arabidopsis homologue FtSH5

was formatted by T-Coffee and produced by Box-Shade. The black background

indicates identity, whereas the grey background represents conservative substitution.

The putative cTP cleavage site in IntCR266 is indicated by the black arrow. The two

conserved Walker domains and the zinc binding site are marked by the rectangles.
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3.2.3 Sequence analysis of IntCR22

The plasmid containing the full-length cDNA of IntCR22 was purchased from the

Institute of Genomic Research (TIGR). The full-length coding sequence (CDS) of

IntCR22 was PCR amplified using the forward primer 5'-caccatgggtgttcttactatagagcc-3'

and the reverse primer 5'-cataggttttaaaatttttgcttgc-3'. The purified PCR product was

subsequently cloned to pENTR vector (Invitrogen) and sequenced (Appendix A).

The IntCR22 clone encodes a protein of 491 amino acids with a calculated Mw of 56.16

kDa. It has been shown by the BLAST search (http://www.ncbi.nlm.nih.gov/BLAST/)

that IntCR22 is a member of the UDP-glycosyltransferase (UGT) super-family (Figure

3.5). There are 112 UGTs in Arabidopsis and they are classified into 31 sub-families

according to the annotation of the Centre of Molecular Plant Physiology (PlaCe,

www.p450.kvl.dk/index.shtml). The six Arabidopsis UGTs having the highest sequence

homology to IntCR22 belong to the UDP-glycosyltransferase 73C sub-family. In

addition, all these six UGT73C UGTs are tandem genes at the end of chromosome II

ranging from locus 36750 to 36800 in an area about 15 kb in length (Figure 3.5). Only

the in vitro enzymatic substrates of the UGT73C family member C5 and C6 have been

identified so far (see section 1.3.4 for details). Despite the sequence homology and

being closely arranged in chromosome II, the 73C5 and 73C6 have different substrate

specificities. This suggests that the function of IntCR22 might not be hypothesized

solely based on the amino acid sequence.

http://www.p450.kvl.dk/index.shtml
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3.3 Expression of IntCR Genes

It should be noted that the general expression patterns of IntCR (Interacting with CTR2)

genes in tomato tissues of different developmental stages and in response to several

phytohormones have already been reported (Lin et al., 2003). The authors showed that

the LeCTR2 and IntCR genes are highly expressed in ripening fruit by using northern

blot assays. In addition, it has also been shown that the mRNA levels of LeCTR2 and

IntCR were affected by mechanical wounding, pathogen attack and JA treatments (Lin

and Grierson, unpublished data).

3.3.1 IntCR242 is not alone

The sequence analysis revealed that IntCR22 and IntCR266 could belong to large gene

families as indicated by the Arabidopsis genomic information (Section 3.2.2 and 3.2.3).

However, there are only two Arabidopsis genes having sequence homology to the

tomato IntCR242. In order to obtain information about the size of the tomato IntCR242

gene family, the tomato genomic DNA was subjected to Southern blot analysis.

PCR was carried out with primers 5'-cctggtgtttcttctgtcag-3' (forward) and

5'-tgttaaacaggctttgaagcc-3' (reverse) using tomato genomic DNA as template. The 0.4

kb PCR product was purified and used for generating the cDNA probe as previously

described (Section 2.9.2). The tomato genomic DNA was digested with XhoI, HindIII

and EcoRI, respectively. The digested genomic DNA fragments were separated by
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electrophoresis and analyzed by Southern blot assay. Because the probe lacks the

restriction sites of the aforementioned enzymes, the endogenous IntCR242 gene could

only produce one band in the Southern autoradiography film. The probe hybridized to

two bands in the XhoI digested genomic DNA and three bands in the EcoRI digested

genomic DNA. This multiple bands hybridization pattern indicates that there is either

more than one copy of IntCR242 in the tomato genome or the presence of two or more

IntCR242-like genes (Figure 3.6). However, a single 8 kb band was found in the HindIII

digested genomic DNA (Figure 3.6 lane 3). It is possible that HindIII digestion has

generated multiple DNA fragments of the same length that could not be separated by

electrophoresis. Alternatively, the missing DNA fragments could be too large to be

efficiently transferred to the membrane.

Figure 3.6: Southern blot of IntCR242

The tomato genomic DNA was digested with appropriate restriction enzyme and the

Southern blot assay was carried out as described in section 2.9. From left to right: 1)

Molecular weight marker Hyperladder I; 2) Genomic DNA digested with XhoI; 3)

Genomic DNA digested with HindIII; 4) Genomic DNA digested with EcoRI.
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3.3.2 Expression patterns of IntCR

Before analyzing the expression patterns of the IntCR genes, possible circadian rhythm

of target gene expression was investigated by northern blot assay. RNA was extracted at

different time points over a 24 h period from the leaf tissues of the 1 month-old tomato

plants maintained in the growth room (18 h photoperiod). Northern blot assay was

carried out to detect the IntCR transcripts in these RNA samples. It showed that

IntCR299, IntCR266 and LeApL3 are constitutively expressed, while the expression of

IntCR242 and E4 varies at different time points. IntCR22, however, showed reduced

expression from 9:00 to 18:00, which corresponds to the light period (Figure 3.7). Thus,

it was hypothesized that light might down-regulate the IntCR22 expression and further

northern blot assay was then carried out to compare the RNA extracted from the light-

and dark-grown seedlings. It showed that the IntCR22 RNA level is indeed higher in the

dark-grown seedlings, whereas the transcripts of IntCR242 and IntCR266 decreased in

the light-grown seedlings (Figure 3.8).

IntCR299 is a constitutively expressed DNAJ chaperone gene and was used as a control

for equal loading in the northern blot assay. The cDNA probe for the ethylene regulated

methionine sulphoxide reductase gene E4, was kindly provided by Dr Zhefeng Lin. The

tomato ADP-GLUCOSE PYROHOSPHORYLASE LARGE SUBUNIT3 (LeApL3), which

is a sugar regulated gene, was used as the endogenous sugar content marker. The 3' end

fragment of IntCR in plasmid pJG4-5 was released by EcoRI and XhoI digestion and

purified for generating a cDNA probe for the detection of the IntCR genes.
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Figure 3.7: Northern analysis of IntCR over a 24 h period

Northern analysis was performed using 10 μg of total RNA extracted from tomato leaf

tissue collected at different time points (indicates by the time above). The northern blot

membranes were hybridized to cDNA probes generated from the IntCR, E4 and LeApL3

genes. The ethylene regulated E4 and the sugar regulated LeApL3 were used as controls.

IntCR299, a constitutively expressed DNAJ chaperon gene was also probed to confirm

the equal loading of RNA.
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Figure 3.8: Expression of IntCR in the dark/light grown seedlings

RNA was extracted from 2 week-old tomato seedlings grown in the presence or absence

of light. Northern blot analysis was carried out using 10 μg of total RNA and hybridized

to 32P labelled cDNA probes targeting the IntCR genes. The LeApL3, which is

positively regulated by the sugar level, was probed as control.

Figure 3.9: SA induced expression of IntCR22

One month-old tomato plants grown in the glasshouse were sprayed with 0.5 mM

salicylic acid (dissolved in water with 0.005% (v/v) silvet-77) and RNA was extracted

from leaf tissue for northern blot analysis. The duration of the SA treatment is indicated

above. The first two columns are zero hour negative control. The SA regulated LePR1b

gene (positive control) increased a day after the SA treatment. The constitutively

expressed IntCR266 were used as the control of the equal loading and E4 was used as a

control for the ethylene response.



Results

- 92 -

3.3.3 The IntCR22 is up-regulated by SA

The previous northern blot experiments (Figure 3.6 to 3.8) showed that the expression

of IntCR22 could be controlled by environmental factors such as light and timing. In

addition, it has been reported that IntCR22 is related to defence response and its

expression is regulated by plant growth regulators like ABA and JA (Lin et al., 2003).

Salicylic acid (SA) is a phytohormone involved in stress responses, defence responses

and programme cell death. Thus, the expression level of IntCR22 was monitored in the

SA sprayed plants by northern blot assay (Figure 3.9). It was shown that the mRNA

accumulation of IntCR22 was induced 2 h after the SA treatment. The positive control

for SA treatment is LePR1b (kindly provided by Dr. Zhefeng Lin), which is

up-regulated by SA (24 h after the SA treatment). The ethylene regulated gene E4 was

also probed and showed an induction pattern similar to that of the LePR1b gene.

3.4 Analysis of Yeast Two-Hybrid Interactions

3.4.1 The His-rich domain is responsible for the interaction of IntCR242

The sequence analysis revealed that there is a putative chloroplast transit peptide (cTP)

in the N-terminus of IntCR242, followed by an ATP binding site (P-loop) and a

histidine-rich region (see section 3.2.2 for details). It has also been shown that

IntCR242 has the strongest interaction with the tomato ethylene receptor ETR1 and the

putative CTR1-like protein kinase CTR2 in the yeast two-hybrid assay (Lin and
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Grierson, unpublished data). In order to identify the domain in IntCR242 responsible for

its interaction with the ethylene receptor and the putative downstream kinase, five

constructs containing truncated IntCR242 fragments of different length were tested for

interaction with the LeETR1 and LeCTR2 in the yeast two-hybrid assay (Figure 3.10).

The aforementioned fragments were generated by PCR amplification of a full-length

IntCR242 cDNA clone (Table 3.1) and the PCR products were cloned into the yeast

two-hybrid prey vector pJG4-5. The subsequent yeast two-hybrid experiment was

carried out as previously described (Section 2.13).

The yeast two-hybrid assay showed that only the C-terminal domain of IntCR242

(construct No. 4) containing the His-rich region is capable of associating with the

ethylene receptor LeETR1 and the putative downstream kinase LeCTR2 (Figure 3.11).

The construct No. 5, in which the His-rich region is deleted, could not interact with

LeETR1 and LeCTR2. This showed that the His-rich domain in IntCR242 is essential

for its in vitro protein-protein interaction. Interestingly, no interaction was observed in

the yeast two-hybrid assay using the construct 1, 2 and 3. This suggested that the

inclusion of any N-terminal sequence of IntCR242 before the His-rich region might

mask its ability to associate with LeETR1 and LeCTR2. The His-rich region in the

IntCR242 protein is 42 amino acid residues in length, containing 11 His-Asp (H-D)

repeats and 4 His-Glu (H-E) repeats (Figure 3.12). Both aspartic acid and the glutamic

acid are negatively charged amino acid residues and this region is likely to associate

with positively charged proteins through ionic interactions.
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Figure 3.10: Schematic diagram of IntCR242 constructs

Five IntCR242 deletion constructs were generated for the analysis of their interactions

in the yeast two-hybrid assay to map the region responsible for the interaction of

IntCR242.

1: The full-length IntCR242 protein (aa 1 to 463).

2: The construct without the chloroplast transit peptide (cTP, aa 93 to 463).

3: The fragment minus ATP binding site (aa 112 to 463).

4: The His-rich domain (aa 249 to 463).

5: The C-terminal fragment minus the His-rich domain (aa 369-463).

Table 3.1: Primers for PCR amplification of the IntCR242 constructs

Construct Forward primer Reverse primer

1: full-length caccatggcttctttgtctataga cataggttttaaaatttttgcttgc

2: w/o cTP aactcgaggataatcgaattccagctacc aactcgagcataggttttaaaatttttgcttgc

3: w/o P-loop tgaattcaccttattaaatcacatattgact aactcgagcataggttttaaaatttttgcttgc

4: His-rich agaattcgatcttgttggtgattct aactcgagcataggttttaaaatttttgcttgc

5: w/o His-rich aagaattccctggtgtttcttctgtcag aactcgagcataggttttaaaatttttgcttgc
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Figure 3.11: Yeast two-hybrid assay of IntCR242

Yeast was transformed with the bait and prey plasmids and grown on synthetic dropout

medium (2% galactose, 1% raffinose and 20 mg/l X-Gal). The LacZ reporter was only

activated (blue coloured colony) in yeasts expressing the His-rich domain of IntCR242

(aa 249-463) with either LeCTR2 or LeETR1. This suggested that the His-rich region of

IntCR242 is responsible for the association with LeCTR2 and LeETR1. The His-rich

domain expressed with the negative control protein did not activate the LacZ reporter,

which showed that the IntCR242 protein-protein interaction is not due to self-activation

of the reporter gene. The original images of the yeast were taken by Mrs Laura Allard

(photographic unit, Sutton Bonington Campus, the University of Nottingham) (\yeast

two-hybrid\Oct 2004 IntCR242 deletion Y2H\). The bait LeETR1 (aa 126-754),

LeCTR2 (aa 195-537) and the negative control plasmid (pRFHM1, the homeodomain of

bicoid) were all kindly provided by Dr Zhefeng Lin. It should be noted that the yeast

two-hybrid interactions between IntCR and ETR/CTR have been reported in a separated

experiment (Lin et al. 2003).

301 GFDLERIESS VGAEGSKEDH TGHDHDHDHD HHHHHDHDHD HEHEHEHDHK HEHHDHHHSH

361 DHTHDPGVSS VSIVCEGTLD LEKANMWLGT LLMERSDDIY RMKGLLSVEG MDERFVFQGV

Figure 3.12: The His-rich region in IntCR242

The amino acid residues 301 to 421 of IntCR242 were shown. The histidine (H)

residues are presented in red. The aspartic acid (D) residues are indicated by the blue

colour.
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3.4.2 IntCR242 associates with other IntCR proteins

The Arabidopsis ethylene receptor ETR1 is known to be able to form a protein complex

with CTR1 in the ER membrane (Gao et al., 2003). It has also been shown that the

IntCR proteins can associate with the tomato ethylene receptor LeETR1 and the putative

CTR1-like MAPKKK LeCTR2 in the yeast two-hybrid assay (Lin et al., 2003). Thus, it

has been hypothesized that the IntCR proteins are part of the ethylene receptor

LeETR1-LeCTR2 complex in tomato (Dr. Zhefeng Lin, personal communication). To

test this hypothesis, the interaction among the IntCR proteins was examined by the

yeast two-hybrid assay. The DNA fragment encoding the His-rich region of IntCR242

(construct 4 in Figure 3.11), which has been shown to be important for its interaction

with the ethylene receptor LeETR1 and the putative downstream kinase LeCTR2, was

released from the pJG4-5 plasmid by EcoRI and XhoI digestion. It was then cloned into

the EcoRI and XhoI linearized yeast two-hybrid bait vector pEG202. The N-terminus of

IntCR242 (minus the His-rich region) was also cloned into the pEG202 (bait) plasmid

and used in the yeast two-hybrid assay as a negative control.

The yeast two-hybrid assay results indicated that the C-terminal domain of IntCR242

was indeed capable of associating with all the IntCR proteins (IntCR22, IntCR242,

IntCR266 and IntCR299), whereas the N-terminus of IntCR242 as a negative control

showed no interaction with any proteins (Figure 3.13).
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Figure 3.13: Interaction between IntCR proteins

The LacZ reporter gene was activated when the His-rich domain of IntCR242 (bait) was

expressed with the IntCR proteins (prey) but not the negative control (pJG4-5 alone).

The N-terminus of IntCR242 (without the His-rich region) did not interact with any

IntCR protein. The results indicates that the IntCR242 can associate with the IntCR

proteins (including IntCR242 itself) in the yeast two-hybrid assay, and the His-rich

domain is likely to be responsible for the interaction.

The IntCR clone 299 was another IntCR clone, which has specific interaction with

LeCTR2 but showed no interaction with LeETR1 (Lin and Grierson, unpublished data).

The empty prey plasmid pJG4-5 was used as the negative control. The yeasts were

transformed with the bait (the His-rich region of IntCR242, aa 264-463) and the prey

plasmids and grown on synthetic dropout medium supplemented with 2% (w/v)

galactose and 1% (w/v) raffinose. The prey plasmids (IntCR22333-491, IntCR266267-708

and IntCR299318-430) were kindly provided by Dr Zhefeng Lin.

The original images of the yeast taken by a hand-held digital camera are shown in saved

in the accompanied CD (\yeast two-hybrid\Apr 2004 Interaction between IntCR\).
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3.5 IntCR266 Complements the Arabidopsis Mutant var1-1

As previously mentioned, IntCR266 shares sequence homology to members of the

Arabidopsis FtSH metallo-proteinase family (see section 3.2.2 for details). The FtSH

proteins are generally involved in degrading the photo-damaged photo-system II and the

Arabidopsis FtSH5 loss-of-function mutant (var1-1) is hypersensitive to strong light

and forms white/yellow patches on leaves.

In order to determine the biological function of IntCR266, a mutant complementation

experiment was carried out. The full-length CDS (coding sequence) of IntCR266 was

cloned into pENTR vector and recombined to the binary plasmid pGWB8 as previously

described (Section 2.8.2). The T-DNA region in the binary plasmid pGWB8-IntCR266

contains the CDS of IntCR266 inserted between a CaMV 35S promoter and a

terminator (Figure 3.14). Agrobacterium (C58) harbouring this construct

(pGWB8-IntCR266) was then used to transform the Arabidopsis mutant var1-1 by

using the floral dip method (Section 2.3.3). Three independent transgenic lines were

obtained and named as var1-1::pGWB8-IntCR266.

The transgenic var1-1 lines showed phenotypes similar to the wild-type Arabidopsis

(Figure 3.15). The leaf variegation phenotype of the var1-1 was not observed in the

transgenic lines. The rosette size of the transgenic plants is larger when compared to the

var1-1 mutant plants. These observations suggested that the expression of IntCR266 in

the AtFtSH5 LOF mutant var1-1 could complement its leaf variegation phenotype and
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the tomato IntCR266 is a functional metallo-proteinase homologous to the AtFtSH5

(VAR1). However, some yellow sectors were occasionally observed on the leaves of the

second generation plants, which is similar to the variegation in leaves of the var1-1

mutant (data not shown). This might result in the local silencing of the IntCR266

transgene or a partial complementation.

Figure 3.14: T-DNA region of the pGWB plasmids

The schematic diagram of the T-DNA region of plasmid pGWB5 and pGWB8 was

generated by Vector NTI (Invitrogen). After cloning the IntCR into the plasmid through

LR recombination, the two attR sites in the pGWB plasmids (A) were changed to attB

sites with the CDS of IntCR inserted between the two attB sites (B). The CaMV 35S

promoter is used to drive the transgene expression in plant and the CDS of IntCR was

fused in frame with either the downstream sGFP (pGWB5) or 6xHis tag (pGWB8). The

kanamycin resistance gene (nptII) and hygromycin resistance gene (hpt) are placed near

the T-DNA border to provide two antibiotic selections in plants.
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Figure 3.15: IntCR266 transgene rescued the var1-1 mutant phenotype

Image of the one month old Arabidopsis plants grown in the 18 h photoperiod growth

room was captured using a hand-held digital camera. The line 1 and 2 are var1-1 mutant

transformed with the construct expressing the cDNA of IntCR266. The leaf variegation

phenotype of var1-1 is restored to wild-type in these transgenic lines. The rosette size of

the transgenic lines is also bigger than that of the var1-1 mutant. One leaf (indicated by

the arrow) of the line 2 plant developed yellow sectors similar to those of the var1-1

mutant.
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3.6 Sub-cellular Localization of IntCR

3.6.1 Constructs

Both IntCR242 and IntCR266 have putative chloroplast transit peptide (cTP) in the

N-terminal domain and are predicted to be chloroplast proteins by the sub-cellular

localization analysis software PSORT (see section 3.2.2 for details). It has been shown

that the IntCR proteins can associate with both ethylene receptor LeETR1 and a putative

downstream Raf-like kinase LeCTR2 in yeast (Lin et al., 2003). Although the

localizations of the tomato ethylene receptors and the putative kinase LeCTR2 have not

yet been identified, their homologues in Arabidopsis had been located to the ER

membrane (Chen et al., 2002; Gao et al., 2003). Thus, the key question is how the

chloroplast-located IntCR242 and IntCR266 interact with the ethylene signalling

components if they have different sub-cellular localizations.

In order to identify the localization of the IntCR proteins, the recombinant IntCR

proteins were expressed in transgenic tobacco plants with the green fluorescence protein

(GFP) fused to the C-terminal domain of IntCR. The initial efforts to visualize the

IntCR-GFP proteins in plants were unsuccessful (data not shown). Thus, the GFP

variant EGFP (enhanced GFP, BD Clonetech) was used as the fusion tag of the IntCR

proteins in the following studies. The codon of the enhanced GFP has been optimized

for expression in mammalian cells and has been suggested to have better intrinsic

brightness than the original GFP (GFP manual, BD Clonetech). The binary plasmid
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pK7FWG2 (Karimi et al., 2002) used for generating the EGFP hybrid protein was

purchased from the Functional Genomics Division of the Department of Plant Systems

Biology, University of VIB-Ghent. The IntCR cDNA was cloned into the pK7FWG2

through LRTM recombination (Invitrogen) as described previously in section 2.8.2. The

T-DNA regions of PK7FWG2 before and after cloning are shown in Figure 3.16.

Figure 3.16: T-DNA region of binary vector pK7FWG2

The schematic diagram of the T-DNA region of PK7FWG2 before and after inserting

the IntCR cDNA is shown in the picture generated by Vector NTI (Invitrogen). After the

recombination, the CDS of IntCR replaces the Gateway cassette in between the two attR

sites. From left to right: left border (LB); kanamycin resistance gene (Kan); CaMV 35S

terminator (T35S); recombination sites (attB or attR); enhanced green fluorescent

protein (EGFP); the CDS of IntCR; CaMV 35S promoter (p35S); right border (RB).
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3.6.2 IntCR242 and IntCR266 are targeted to chloroplast

To study the sub-cellular localization of the IntCR242 and IntCR266 protein, wild-type

tobacco plants were transformed with the IntCR-EGFP constructs using Agrobacterium

as previously described (Section 2.3.2). Three IntCR242-EGFP lines and two

IntCR266-EGFP lines have been generated.

The GFP fluorescence (green) and the chlorophyll auto-fluorescent (red) in the

transgenic tobacco leaf epidermal cells were imaged simultaneously by using the

confocal scanning microscope as previously mentioned (Section 2.15.1). The

IntCR242-EGFP protein was found predominantly in the chloroplasts of the tobacco

epidermal cells (Figure 3.17). The GFP fluorescence was also present in a punctated

structure scattered in the cytoplasm. These structures lack the red chlorophyll

auto-fluorescence as might possibly be mitochondria. The stromule, which is the tubular

extension of the plastid normally found in cells containing non-green plastids, was also

highlighted by the IntCR242-EGFP (Figure 3.18). The Arabidopsis homologue

(AT1G15730) of IntCR242 was also expressed in tobacco with EGFP tag and the

localization of the fusion protein was identical to IntCR242 (Figure 3.19 A and B). The

IntCR266 protein also contains a putative cTP as predicted by PSORT (see section 3.2.2

for details). The fluorescence images suggested that the IntCR266-EGFP was indeed

targeted to the chloroplasts of the transgenic tobacco leaf epidermal cells (Figure 3.19 C

and D).
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Figure 3.17: IntCR242-GFP in transgenic tobacco leaf epidermal cells

The green fluorescence of IntCR242-EGFP was found in the chloroplast of the guard

cell and the epidermal cells. The green dots scattering in the cell represented the

IntCR242-EGFP in an unknown punctated structure, which might be mitochondria. Left:

GFP image; right: the red chlorophyll auto-fluorescence. The scale bars are shown in

the bottom right.

A and B: Lower epidermal cell peel of the transgenic tobacco leaf expressing the

IntCR242-GFP construct.

C and D: A leaf disk mounted directly on a glass slide.
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Figure 3.18: IntCR242 in the stromule of the transgenic tobacco cells

The IntCR242-GFP fluorescence was observed in the stromule (indicated by the arrow)

in a hypocotyl cell. There is no red chlorophyll in the stromule that could generate red

auto-fluorescence, thus the tubular stromule remain green in the over-lapping image

while the chloroplasts show up as a yellow colour. The scale bar is 17.89 μm.

A: IntCR242-EGFP image

B: The chlorophyll red auto-fluorescence image

C: Superimposed image of A and B
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Figure 3.19: Localization of AT1G15730 and IntCR266 in transgenic tobacco

The Arabidopsis homologue (AT1G15730) of IntCR242 was expressed in tobacco with

the EGFP fusion tag. The AT1G15730-GFP protein was targeted to the chloroplasts of

the guard cell and epidermal cells and highlighted the punctated structure similar to

those detected from the IntCR242-EGFP transgenic plants. On the other hand, the

putative thylakoid membrane bounded IntCR266-EGFP was only observed in the

chloroplast.

A: GFP image of AT1G15730 expressed in tobacco

B: Grey scale bright-field image of the tobacco leaf

C: Green fluorescence image of the IntCR266-EGFP

D: Chloroplast auto-fluorescence image
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3.6.3 Cytoplasmic localization of IntCR22

The IntCR22 protein has no sub-cellular organelle targeting sequence and has been

predicted to be located in the cytoplasm by PSORT as previously described (see section

3.2.3 for details). In order to study the sub-cellular localization of IntCR22, tobacco

plants were transformed with construct expressing the recombinant IntCR22 protein

fused to GFP and three transgenic lines have been generated (referred to as

IntCR22-EGFP lines).

When the IntCR22 protein fused to EGFP tag was expressed in transgenic tobacco, the

green fluorescence was found predominantly in the cytoplasm and nucleus of the leaf

epidermal cells and the guard cells (Figure 3.20).

The Arabidopsis protein AT2G36780, which is a putative homologue of IntCR22, was

cloned into binary vector pK7FWG2 and subsequently used for generating transgenic

tobacco as previously described (Section 2.3.2). The AT2G36780-EGFP protein was

located in the cytoplasm and nucleus as was found for the IntCR22-EGFP images

(Figure 3.21).
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Figure 3.20: Localization of IntCR22-EGFP

Confocal scanning fluorescence microscope images of IntCR22-EGFP expressed in

tobacco epidermal cells showed the IntCR22-EGFP was targeted to the nucleus and the

cytoplasm. The nucleus of a guard cell and an epidermal cell are indicated by the arrow

in image D.

A): GFP fluorescence image

B) Chlorophyll auto-fluorescence

C) GFP image (green) superimposed on the chlorophyll auto-fluorescence (red)

D): Zoom in image of the guard cell.
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Figure 3.21: Localization of AT2G36780-EGFP

Confocal image of the transgenic tobacco leaf epidermal cells expressing the

AT2G36780-EGFP construct.

A) GFP image of the epidermal cell layer

B) Chlorophyll auto-fluorescence image

C) GFP image of the tobacco seedling hypocotyl cells

D) GFP image C superimposed on the bright-field image
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3.7 Localization of LeCTR2 and LeETR1

Since the Arabidopsis ethylene receptor ETR1 and CTR1 have been found in the ER

membrane (Chen et al., 2002; Gao et al., 2003), it was surprising that two of the IntCR

proteins (IntCR242 and IntCR266) contained chloroplast transit peptide (cTP) and were

localized to the chloroplast (Figure 3.17-3.19). It is difficult to reconcile these findings

with the results of the yeast two-hybrid assay that IntCR proteins could associate with

the putative ER membrane-bounded LeETR1 (Figure 3.11). Therefore, the sub-cellular

localization of the tomato ethylene receptors and CTRs needs to be investigated.

However, it has been reported that transient expression of the Arabidopsis ETR1-GFP

protein using a strong 35S CaMV promoter in Arabidopsis protoplast produced an

excess of protein aggregation and impaired the visualization of GFP (Chen et al., 2002).

In addition, the attempts to visualize AtETR1-GFP using the endogenous AtETR1

promoter was also unsuccessful possibly due to the insufficient fluorescent signal (Chen

et al., 2002). In this study, efforts to transform tobacco with the construct containing

35S::LeETR1::EGFP were unsuccessful (data not shown), which is in agreement with

the aforementioned Arabidopsis experiments that over-expressing ethylene receptor in

transgenic plants is unlikely to succeed. Furthermore, attempts to express and

visualize the LeCTR2-GFP using the CaMV 35S promoter were also unsuccessful,

possibly due to the toxicity effects caused by over-expressing a MAPKK kinase (data

not shown). Thus, fragments of LeETR1 and LeCTR2 fused to EGFP were expressed in

order to circumvent the adverse effects caused by over-expressing the full-length

proteins.
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3.7.1 Cytoplasmic localization of LeCTR2 and AtEDR1

Two of the IntCR proteins (Interacting with CTR2) have chloroplast transit peptide (cTP)

and were targeted to the chloroplast when expressed in tobacco (Section 3.6). A putative

cTP was also found in the N-terminus of CTR2 by the localization prediction software

ChloroP. However, the prediction results obtained from ChloroP and PSORT

(http://www.expasy.org) are conflicting (Table 3.2). As chloroplast proteins generally

contain an N-terminal cTP that is less than 100 amino acid in length, to test whether

LeCTR2 is a chloroplast protein, the cDNA encoding the N-terminus of LeCTR2 (aa

1-98) was PCR amplified, cloned into the binary vector pK7FWG2, in which the

LeCTR21-98 DNA sequence is fused in frame to EGFP. It was reasoned that if the

N-terminal fragment of LeCTR2 could target the GFP to the chloroplast, the full-length

LeCTR2 is likely to be a chloroplast-localized protein.

The confocal image of the GFP fluorescence in the 35S::LeCTR21-98::EGFP transgenic

tobacco cells showed that the LeCTR21-98::EGFP fusion protein was located in the

cytoplasm and nucleus, which could not co-localize with the red chlorophyll

auto-fluorescence of the chloroplast (Figure 3.22, 3.23 and 3.24). This suggests that the

LeCTR21-98 is not a functional chloroplast transit peptide in tobacco. Furthermore, the

LeCTR211-98 also failed to target GFP to mitochondrion. Therefore, the full-length

LeCTR2 protein is not likely to be targeted to chloroplast/mitochondrion and might not

be able to interact with the chloroplast IntCR proteins (IntCR242 and IntCR266) in the

plant cell.
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The Arabidopsis gene EDR1 (AT1G08720, Enhanced Disease Response1) shares

sequence homology to the tomato CTR2 as previously discussed (see section 1.3.3 for

details). The protein localization of EDR1 was then investigated by generating

transgenic tobacco plants expressing EDR1 protein fused to GFP. The cDNA encoding

N-terminus of EDR1 (aa 1 to 605) obtained from RT-PCR was cloned into plasmid

pK7FWG2 (referred to as construct EDR1-GFP; Figure 3.25). One transgenic tobacco

plant was generated expressing EDR1-GFP. The confocal microscope images of the

transgenic tobacco leaf epidermal cells indicated that EDR11-605-GFP was

predominantly localized in the cytoplasm and nucleus but not in the chloroplasts (Figure

3.25). This is identical to the localization of the LeCTR21-98-EGFP.

Table 3.2: Software prediction of the LeCTR2 localization

Software Chloroplast localization score/reliability cTP

ChloroP 0.588 67 aa

PSORT Mitochondria 7; Nucleus 4; Chloroplast 2 N/A

The software ChlroP generates a score ranging from 0 to 1 for each protein entry. The

higher the score, the more likelihood the protein would be targeted to the chloroplast.

On the other hand the prediction program PSORT lists possibilities of the protein

sub-cellular localization and assigns a value to each prediction (the higher the value, the

more reliable the prediction). ChloroP predicted that LeCTR2 is a chloroplast protein

with a 67 amino acid cTP, whilst PSORT considers LeCTR2 is more likely to be

targeted to mitochondria or nucleus than to the chloroplast. cTP: Chloroplast transit

peptide.
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Figure 3.22: LeCTR21-98-EGFP localized to the cytoplasm and nucleus

The confocal image of transgenic tobacco leaf epidermal cells expressing the first 98

amino acid residues of LeCTR2 fused to EGFP under the control of the CaV35S

promoter. The schematic diagram of the construct was shown above.

A) The LeCTR21-98-EGFP was targeted to the nucleus (arrow) and the cytoplasm.

B) The red chlorophyll auto-fluorescence marked the position of the chloroplasts.

C) Superimposed image of A and B showing that GFP was not targeted to the

chloroplast.
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Figure 3.23: Localization of LeCTR21-98-GFP in the guard cells

The confocal image of guard cells expressing the LeCTR21-98-GFP construct showed

that the GFP signal is predominantly located in the cytoplasm and nucleus. The red

auto-fluorescence of the guard cell chloroplast did not co-localize with the GFP signal.

This suggested that LeCTR2 is unlikely to be targeted to the chloroplast as IntCR242

and 266.

A) GFP image

B) Chlorophyll auto-fluorescence

C) Overlay image of A and B.
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Figure 3.24: Localization of LeCTR21-98-GFP in hypocotyl cells

The confocal image was taken from the transgenic tobacco hypocotyl cells expressing

the LeCTR21-98-GFP construct. The green fluorescence is predominantly localized in the

cytoplasm and the nucleus but not in the chloroplasts.

A) GFP image

B) Chlorophyll red auto-fluorescence

C) Superimposed image of A and B

D) Zoom in image (GFP superimposed on the red chlorophyll fluorescence)
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Figure 3.25: AtEDR11-605 was located to the cytoplasm and nucleus

The confocal image was taken from the transgenic tobacco hypocotyl cells expressing

AtEDR11-605-EGFP under the control of the CaMV35S promoter. The schematic

diagram of the construct was shown above. The localization of the green fluorescence is

similar to those of the LeCTR21-98-EGFP transgenic plants.

A) GFP image

B) Chlorophyll red auto-fluorescence

C) Superimposed image
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3.7.2 LeETR1 is located to the ER

In order to identify the cellular localization of the putative downstream kinase LeCTR2

and to circumvent the adverse effects caused by over-expressing, a construct expressing

only the N-terminal fragment of LeCTR2 fused to EGFP was used to transform tobacco

(Figure 3.22-3.24). However, this strategy was unsuccessful when it was applied to

visualize the N-terminus of LeETR1 fused to EGFP (referred to as LeETR11-137-EGFP)

in tobacco (data not shown). Thus a transient protein expression system based on

biolistic delivery of the DNA-coated gold particles to the onion epidermal cells has been

used to express the target protein of interest.

The LeETR11-137-EGFP construct was transiently expressed in the onion epidermal cells

as previously described (Section 2.15.2). Confocal images showed that the

LeETR11-137-EGFP was predominantly localized to the cortical ER network (Figure

3.26 A). The tomato EIN2 encodes an integral membrane protein and acts genetically

downstream the ethylene receptor and CTR. When transiently expressed in onion cells,

the LeEIN2-GFP fluorescence was also found in the ER network (Figure 3.26 B). The

Arabidopsis gene STL12P (AT2G01470), which encodes a SEC12-like ER membrane

protein, was used as the ER marker for the biolistic experiment as recommended in

Hanton and Brandizzi (2006). YFP (Venus) fused to the pumpkin 2S albumin ER

targeting sequence and the ER retention sequence (HDEL) was also used as ER control.

When expressed in onion cell, both constructs (Sec12-CFP and YFP-HDEL) highlighted

the cortical ER network as expected (Figure 3.26 C and D).
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Figure 3.26: LeETR1 and LeEIN2 were targeted to the ER

Recombinant proteins fused to fluorescent protein were transiently expressed in onion

epidermal cell as previously described (Section 2.15.2). The images were acquired using

the confocal scanning microscope 12-14 h after the transformation.

A: LeETR11-137-GFP

B: LeEIN2-GFP

C: Arabidopsis ER membrane protein Sec12 (AT2G01470) fused to CFP

D: YFP targeted to ER lumen
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3.7.3 IntCR22 co-localized but showed no FRET with LeCTR2

The IntCR242 and IntCR266 proteins were targeted to the chloroplasts, whereas

IntCR22 was localized in the cytoplasm and nucleus while expressed in transgenic

tobacco (see section 3.6 for details). On the other hand, LeCTR2 was found in the

cytoplasm when transiently expressed in onion epidermal cells (Figure 3.27). Although

IntCR242 and IntCR266 showed protein-protein interaction with LeCTR2 in the yeast

two-hybrid assay (Lin et al., 2003), it is unlikely that this association could take place in

the plant cell, if they were targeted to different sub-cellular organelles. It appears that

only IntCR22 could interact with LeCTR2 as both of them could be found in the

cytoplasm and nucleus.

In order to study the localization and in vivo interaction between LeCTR2 and IntCR22

proteins, they were co-expressed in an onion epidermal cell and FRET experiment was

performed. The IntCR22-CFP and LeCTR2-YFP indeed co-localized in the cytoplasm

and nucleus when simultaneously expressed in onion (Figure 3.27). However, no

Forster resonance energy transfer was observed between IntCR22-CFP and

LeCTR21-678-YFP (Figure 3.28). On the other hand, the FRET positive control, which is

a construct expressing the YFP fused to CFP, showed 21% FRET efficiency (Figure

3.29). These observations suggest that LeCTR2 might not be able to interact with

IntCR22 in vivo. However, lack of FRET could not rule out the possibility that LeCTR2

and InCR22 might interact with each other but have adopted a non-favourable

orientation or distance that prevents FRET from taking place.
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Figure 3.27: Co-localization of LeCTR2 with IntCR22

The fluorescence from CFP (cyan image left) and YFP (yellow image right) co-localized

in the cytoplasm and nucleus in an onion cell co-expressing CFP and LeCTR21-678-YFP

(top), as well as the cell co-expressing IntCR22-CFP and LeCTR21-678-YFP (bottom).

Top: Onion epidermal cell expressing LeCTR2-YFP and CFP

Bottom: Onion epidermal cell expressing LeCTR2-YFP and IntCR22-CFP
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Figure 3.28: No FRET between IntCR22 and LeCTR2

The IntCR22-CFP (donor) and LeCTR2678-YFP (acceptor) were co-expressed in the

onion epidermal cells. The FRET efficiency is 0% in the two ROIs (region of interest,

indicated as rectangles in the images). The FRET and efficiency image were generated

by the LCS as previously described in the method section.

Donor: signal from CFP donor channel when excited with 458 nm laser

Acceptor: signal from YFP channel when excited with 514 nm laser

FRET: signal from YFP when excited with 458 nm laser

Efficiency: the FRET efficiency calculated by LCS
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Figure 3.29: FRET positive control

The FRET positive control plasmid (YFP fused to CFP) was expressed in an onion

epidermal cell. In the region of interest (indicated by the green rectangle), the FRET

efficiency is 21%. The FRET and efficiency image were generated by the LCS as

previously described in the method section.

Donor: signal from CFP donor channel when excited with 458 nm laser

Acceptor: signal from YFP channel when excited with 514 nm laser

FRET: signal from YFP when excited with 458 nm laser

Efficiency: the FRET efficiency calculated by LCS
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3.8 Re-examination of the Protein-Protein Interactions

Evidence from previous protein localization experiments using either stable transgenic

plants or transient expression suggested that the ethylene receptor LeETR1 was targeted

to the ER membrane (Figure 3.26), the putative downstream kinase LeCTR2 was

localized to the cytoplasm and nucleus (Figure 3.27), whilst two of the IntCR proteins

(242 and 266) were found in the chloroplast (Figure 3.17-3.19). However, the yeast

two-hybrid assay indicated that the ER localized LeETR1 could associate with the

cytoplasmic LeCTR2 (Lin et al., 2003). Furthermore, the chloroplast protein IntCR242

and IntCR266 are also capable to interact with LeETR1 and LeCTR2 in yeast (Figure

3.11; Lin et al., 2003).

This presents an anomaly, since the in vivo protein-protein interaction could not take

place if the interacting proteins were targeted to different sub-cellular locations inside

the plant cell. Thus, further yeast two-hybrid experiments and protein interaction studies

were carried out to test the significance of the interaction between the tomato ethylene

receptors and the downstream LeCTRs.

3.8.1 The G238E mutated LeCTR2

Evidence from the yeast two-hybrid and immuno-localization experiments suggested

that the Arabidopsis Ser/Thr kinase CTR1 could interact with the ethylene receptors
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(Clark et al., 1998; Gao et al., 2003). It has also been reported that the Gly354 to Glu

mutation in the CN (CTR1 N-terminal) motif of the Arabidopsis CTR1 protein

abolished its interaction with the ethylene receptors AtETR1 and AtERS1 (Huang et al.,

2003). The authors also showed that the CN motif is conserved in all identified CTRs,

and it is also found in the tomato CTR2. Therefore it was hypothesized that if LeCTR2

associates with LeETR1 in a manner similar to that of the Arabidopsis CTR1-ETR1

interaction, the LeCTR2 protein would lose its interaction with the tomato ethylene

receptor LeETR1, when a Gly to Glu mutation is incorporated into the LeCTR2 CN

motif.

In order to introduce the corresponding Gly to Glu change into the coding sequence

(CDS) of LeCTR2, mutation PCR was carried out using a forward primer containing a

mismatch nucleotide (GGG to GAG). As the forward primer also incorporates a BamHI

site, the PCR product was digested with BamHI and cloned back into the LeCTR2 CDS

in the pENTR plasmid (Figure 3.30). The cDNA fragment encoding the mutated

LeCTR280-678 was subsequently cloned into the yeast two-hybrid prey plasmid pJG4-5.

The interaction between the mutated LeCTR2 and the ethylene receptors (LeETR1,

LeETR2 and NR) was then examined using the LexA-based yeast two-hybrid system as

previously described (Section 2.13.2).

Detection of protein-protein interaction in the yeast two-hybrid system is based on two

reporter genes: LacZ, which generates blue colour in the presence of X-Gal; LEU,
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which confers yeast growth in the absence of leucine. Yeast transformed with ethylene

receptor (LeETR1 or LeETR2) and LeCTR2 (non-mutated) activated both reporter

genes as indicated by the blue colour in the filter lift assay and the presence of yeast

growth on medium lacking leucine (Figure 3.31). This suggests that the non-mutated

LeCTR2 can interact with the ethylene receptors (ETR1 and ETR2) in the yeast

two-hybrid assay, which is consistent with the previous yeast two-hybrid results (Lin

and Grierson, unpublished data).

However, the G283E mutated LeCTR2 protein (referred to as LeCTR2m) retained its

protein-protein interaction with the tomato ethylene receptor ETR1 and ETR2 (Figure

3.31). In addition, both the wild-type and mutated LeCTR2 could not interact with the

ethylene receptor NR (Figure 3.31), which is again in agreement with the previous yeast

two-hybrid studies that LeCTR2 has no association with NR (Lin and Grierson,

unpublished data).

Collectively, the results of the mutation yeast two-hybrid assay suggests that the Gly283

to Glu mutation in the conserved CN motif of LeCTR2 has no effect on its interaction

with the tomato ethylene receptors (ETR1 and ETR2) in the yeast two-hybrid assay

(LexA-based yeast two-hybrid system).



Results

- 126 -

Figure 3.30: PCR mutation (Gly283 to Glu) of the CN motif in LeCTR2

PCR was performed using a forward primer with a G to A mutation and a gene specific

reverse primer in order to incorporate the Gly238 to Glu mutation into LeCTR2. The

PCR product was then digested with BamHI and cloned into BamHI linearized

LeCTR2-pENTR plasmid. The PCR primer with the mutation (GGG to GAG) was

shown in the rectangle. The BamHI site in the forward primer was underlined.
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Figure 3.31: Gly238 to Glu mutated LeCTR2 in the yeast two hybrid-assay

Yeast two-hybrid assay was carried out as previously described (Section 2.13.2). The

mutated LeCTR2 (referred to as CTR2m) could still associate specifically with the

ethylene receptor LeETR1 and LeETR2, but not NR. This suggests that the G238E

mutation in LeCTR2’s CN motif could not disrupt its associate with the ethylene

receptors (ETR1 and ETR2).

The blue colour in the filter lift assay shows the activation of the lacZ reporter gene,

(top image). The growth on medium lacking leucine indicates activation of the Leu

reporter gene (bottom image). The receptor constructs (LeETR1132-754, LeETR2115-732

and Nr117-635), positive/negative controls and the non-mutated LeCTR280-678 were kindly

provided by Dr. Zhefeng Lin.
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3.8.2 Interaction between receptors and CTRs

It appears that the G238E mutation in LeCTR2 is unable to abolish its interaction with

the tomato ethylene receptors ETR1 and ETR2 in the yeast two-hybrid assay (Figure

3.31). One possibility is that the mutated Gly residue in the CN motif is not involved in

the interaction of LeCTR2 with the tomato ethylene receptors. It is also possible that the

mutation could reduce the strength of the protein-protein interaction, but the

LexA-based yeast two-hybrid system is too sensitive to discriminate such difference.

Alternatively, the interaction between LeCTR2 and the ethylene receptors might be a

false positive result of the yeast two-hybrid assay. The yeast two-hybrid system based

on GAL4 transcription factor is generally considered to be more stringent than the LexA

ones. The HIS reporter gene used in the GAL4-based system also enables quantitative

measurement of the strength of the protein-protein interaction. Thus, the interaction

between LeCTR2 and the tomato ethylene receptors was re-examined using the

GAL4-based ProQuest yeast two-hybrid system (a kind gift from Dr. Zoe Wilson, Plant

Sciences Division, University of Nottingham).

In the ProQuest yeast two-hybrid system, yeast transformed with LeETR1 and LeCTR2

could not activate the reporter genes (Figure 3.32). This suggests that the interaction

between LeETR1 and LeCTR2 is too weak to be detected by the ProQuest yeast

two-hybrid system. It has been reported that the Arabidopsis ethylene receptor ETR1

could interact with AtCTR1 in the yeast two-hybrid assay (Clark et al., 1998). Therefore,

as a positive control experiment for the ProQuest yeast two-hybrid system, AtETR1 and
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AtCTR1 were cloned by RT-PCR and their interaction was tested using the ProQuest

system. It was showed that AtETR1 could interact with AtCTR1 strongly in the

ProQuest system (Figure 3.32). This indicates that the GAL4-based ProQuest yeast

two-hybrid system is capable of detecting the interaction between AtETR1 and AtCTR1,

although it is unable to demonstrate the interaction between LeETR1 and LeCTR2. This

raises a critical question as to the significance of the interaction detected in the

LexA-based yeast two-hybrid system.

In order to gain more insight into the protein-protein interaction between the tomato

ethylene receptors and CTRs, the six tomato ethylene receptors (LeETR1 to 6) and the

four tomato CTRs (LeCTR1 to 4) were cloned and tested in the ProQuest system. The

subsequent yeast two-hybrid assay showed that only LeCTR3 could interact with the

sub-family I ethylene receptors (LeETR1, LeETR2 and Nr) (Figure 3.33). It has been

previously shown that the CN box mutation could not disrupt the protein-protein

interaction between LeCTR2 and the ethylene receptors in the LexA-based yeast

two-hybrid system (Figure 3.31). The same Gly to Glu mutation was then introduced to

the CN motif of LeCTR3 by PCR mutagenesis and this construct was subsequently

tested in the ProQuest system. The yeast two-hybrid assay (ProQuest) showed that the

mutated CTR3 protein lost its interaction with the ethylene receptors (Figure 3.34).

However, it is not clear why LeCTR1, 2 and 4 showed no interaction with the receptors

in the yeast two-hybrid assay. This is particularly interesting, since it has been reported

that LeCTR1, 3 and 4 could complement the Arabidopsis CTR1 loss-of-function mutant
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(Adams-Philips et al., 2004). Furthermore, the interaction between the tomato CTRs

and the ethylene receptors has been previously demonstrated using the LexA system

(Lin and Grierson, unpublished data). Collectively, these findings suggest that the

ProQuest yeast two-hybrid system is indeed more stringent than the LexA-based one,

but it might not be able to detect the weak interactions. Therefore, to help resolve this

issue, the in vivo protein-protein interaction was investigated.

Figure 3.32: LeCTR2 does not interact with the ethylene receptors

The yeast two-hybrid assay was performed using the GAL4-based ProQuest yeast

two-hybrid system (Invitrogen) as previously described (Section 2.13.3). Yeast

transformed with AtETR1112-737 and AtCTR11-526 activated both reporter gene: LacZ

(indicated by the blue colour in the filter lift assay) and His (indicated by the growth of

yeast in histidine minus medium supplemented with 3-aminotriazole (3AT)). Yeast

transformed with LeCTR21-678 and the ethylene receptors (LeETR1132-754, LeETR2115-732

and Nr117-635) showed no activation of the reporter gene.
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Figure 3.33: LeCTR3 interacts with sub-family I ethylene receptors

The yeast two-hybrid assay was performed using the GAL4-based ProQuest yeast

two-hybrid system (Invitrogen). Yeast transformed with LeCTR31-565 (in prey plasmid

pDEST22) and the sub-family I ethylene receptors LeETR1132-754, LeETR2115-732 and

Nr117-635 (in bait plasmid pDEST32) showed LacZ reporter gene activity as indicated by

the blue colour in the filter lift assay. This suggested that the LeCTR3 could associate

specifically with the sub-family I ethylene receptors. The sub-family II receptors

(LeETR4, LeETR5 and LeETR6), however, could not interact with any CTR in this

Gal4-based yeast two-hybrid system.
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Figure 3.34: Gly347 to Glu mutated LeCTR3 in the yeast two-hybrid assay

Yeast transformed with the mutated LeCTR3 protein and the tomato ethylene receptors

(ETR1 to 6) could not activate the reporter genes of the yeast two hybrid system. It

indicated that mutation of the conserved CN motif in LeCTR3 disrupted its interaction

with the ethylene receptors. The LacZ reporter produces a blue colour on filter lift

assays. Failure to activate the His gene stopped the yeast growing on medium deprived

of histidine.
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3.9 Transient Expression of Fluorescent Proteins

3.9.1 Generating the CFP/GFP/YFP series of plasmids

In order to study the in vivo protein-protein interactions between the tomato ethylene

receptors and CTRs, a transient expression system was developed. Particle

bombardment was chosen as the method to deliver the test transgene constructs. Onion

epidermal cells were used as the recipient tissue due to their lack of intrinsic chlorophyll

auto-fluorescence. The plasmid pDH51 (Figure 3.35; Pietrzak et al., 1986), which

contains a CaMV 35S promoter, a multiple cloning site (MCS) and a 35S terminator,

was chosen as the backbone of the cloning vectors.

The CFP variant Cerulean was generated by PCR incorporating three mutations (S72A,

Y145A and H148D) to the coding sequence of ECFP (BD Clonetech). EGFP was

amplified from the plasmid pK7FWG2 (Karimi et al., 2002). The YFP variant Venus

(F46L, F64L, M153T, V163A and S175G) was PCR amplified from plasmid

pCS2-Venus (a kind gift from Dr. Atshushi Miyawaki, RIKEN Institute, Japan). The

cDNAs of the three fluorescent proteins were then cloned into the pDH51 plasmid

between the BamHI and SalI sites and tested in transient expression (Figure 3.36; for

map and sequence see accompanying CD). The resulting plasmids containing an XhoI

site in front of the first ATG of the fluorescent protein coding sequence were referred to

as pDH51-x-FP (Figure 3.36). The XhoI and SmalI sites were used to clone the Gateway

(Invitrogen) fragment for generating pDestination vectors.
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pDH51

3424bp

AP r

CaMV 35S pro

CaMV 35S Ter

P(BLA)

P(LAC)

ORI

Sma I (650)

Bam HI (643)

Hin dIII (400)

Pst I (629)

Xba I (637)

Sal I (631)

Kpn I (422)

KpnI (656)

Figure 3.35: pDH51 plasmid

The schematic diagram of the plasmid pDH51 was generated by software VectorNTI

(Invitrogen). The multiple cloning site (MCS) is between the CaMV35S promoter and

the CaMV35S terminator. Unique restriction enzymes are shown in colour red. APr:

ampicillin resistance gene; CaMV35S ter: cauliflower mosaic virus terminator;

CaMV35S pro: cauliflower mosaic virus promoter; P(LAC): Lac promoter; ORI: origin

of replication.
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Figure 3.36: pDH51-x-FP plasmid

The schematic diagram of the plasmid pDH51-x-FP (CFP, GFP and YFP) was generated

by software VectorNTI (Invitrogen). The multiple cloning site (MCS) is shown below

the plasmid map. These plasmids were coated onto gold particles and transiently

expressed in onion epidermal cells as previously described (Section 2.15.2). The images

were acquired by using the confocal scanning microscope 10 h after the transformation.
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3.9.2 Generating gateway cloning vectors: pDH51-GW-FP

In order to convert the fluorescent protein plasmids to Gateway cloning compatible

pDestination vectors (Invitrogen), the Gateway DNA fragment was PCR amplified

using primers anchored to its attR sites (5'-caccggatccacaagtttgtacaaaaaagctgaa-3' and

5'-tttctcgagcaccactttgtacaagaaagc-3'). The PCR product was then digested with XhoI,

and ligated to the SmaI and XhoI linearized pDH51-x-FP plasmids. The generated

plasmids were referred to as pDH51-GW-CFP (Accession: AM773751),

pDH51-GW-EGFP (Accession: AM773752) and pDH51-GW-YFP (Accession:

AM773753), respectively (Figure 3.37; see accompanying CD for maps and sequence

information).

To test the pDH51-GW-FP vectors, the full-length cDNA of IntCR242 and the ethylene

receptor NR were cloned into these vectors and transiently expressed in the onion

epidermal cells. IntCR242-GFP was targeted to plastid and stromule (Figure 3.37 B),

which is in agreement with the results of the previous protein localization experiments

using stable transgenic tobacco plants (see section 3.6.2 for details). The tomato

ethylene receptor NR fused to YFP highlighted the cortical network of endoplasmic

reticulum (ER) when transiently expressed in onion cells (Figure 3.37 C). CFP fused to

the N-terminal ER targeting sequence of the pumpkin 2S albumin and the C-terminal

ER retention sequence HDEL was used as the ER controls in the transient expression

experiments.
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Figure 3.37: pDH51-GW-FP plasmids

A schematic diagram of the plasmid pDH51-GW-FP (CFP, GFP and YFP) is generated

by software Vector NTI (Invitrogen). The ER CFP marker, IntCR242-EGFP and

ethylene receptor NR-YFP were transiently expressed in onion epidermal cells and

imaged 10-14 h after transformation.

(A): ER targeting CFP (Cerulean)

(B) IntCR242-EGFP in plastid and stromule.

(C) NR-YFP (Venus)

pDH51-GW-FP

5851 bp

APr

Cerulean/eGFP/Venus

Cm(R)

ccdB

CaMV 35S pro

CaMV 35S Ter

P(BLA)

P(LAC)

ORI

AttR2

AttR1

XhoI (1357)

HindIII (400)

KpnI (422)

KpnI (3083) NcoI (2316)

NcoI (3610)

SalI (631)

SalI (1489)

BamHI (2164)

BamHI (2867)

BamHI (3069)

EcoRI (406)

EcoRI (2617)

EcoRI (3616)
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3.9.3 Construction of the BiFC vectors and modified pGreenII binary vectors

In order to use the Biomolecular Fluorescence Complementation (BiFC) experiment to

study in vivo protein-protein interactions, the coding sequence of the N- and C-terminus

of YFP (Venus1-154 and Venus155-238) were PCR amplified and cloned into the plasmid

pDH51. The resulting plasmids were referred to as pDH51-nVenus and pDH51-cVenus,

respectively (see accompanied CD for details). The DNA fragment containing the

Gateway cassette was then cloned in to the nVenus and cVenus plasmids to generate

Gateway compatible pDestination vectors; they are referred to as pDH51-GW-YFPn

and pDH51-GW-YFPc (Figure 3.38; see accompanying CD for sequence information).

The The pDH51-based vectors do not contain either T-DNA borders or the origin of

replication in Agrobacterium and therefore could only be used for biolistic or protoplast

transformation. Collaboration was formed with Dr. Rupert Fray (Plant Sciences Divison,

University of Nottingham) to generate binary vectors for Agrobacterium-mediated plant

transformation. The pDH51-based Gateway plasmids were digested with EcoRI and

HindIII to release the DNA fragments containing the 35S promoter, gateway cloning

cassette, fluorescent protein and terminator. These were then cloned into binary

plasmids (pGreenII0029, pGreenII00179 and pGreenII00229) with different in planta

selection marker genes. Another set of binary vectors lacking the constitutive CaMV35S

promoter has also been generated using the KpnI released fragments from the

pDH51-based plasmids (see accompanying CD for details). A complete list of the

plasmids with the accession numbers were shown in Appendix (Table 1 to 3).
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Figure 3.38: Schematic diagram of BiFC vectors

The schematic diagram of one BiFC vector (pDH51-GW-cVenus) is shown. The

pDH51-based vector contains a 35S promoter, gateway cloning sites (between attR1 and

attR2), a linker peptide, the N- or C-terminal fragment of Venus (YFP) and a 35S

terminator.

(A) Fragment of pDH51-GW-nVenus

(B) Fragment of pDH51-GW-cVenus
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3.10 Localization of Ethylene Receptors and CTRs

3.10.1 The tomato ethylene receptors are targeted to the ER

The full-length coding sequences of the tomato ethylene receptors NR and ETR4 were

cloned into the vector pDH51-GW-GFP. Both receptors (fused to fluorescent protein)

were targeted to the ER when transiently expressed in onion epidermal cells (Figure

3.39 and 4.11). Cortical ER localization pattern was also observed when an ER

membrane protein (AtSec12p) fused to CFP was transiently expressed as an ER marker

(Figure 3.39). The fluorescent protein Venus fused to the N-terminal pumpkin albumin

ER targeting sequence and the C-terminal ER retention sequence HDEL was also

transiently expressed in the onion cells as the ER marker (referred to as ER-YFP-HDEL)

and it highlighted the same cortical ER network (Figure 3.40).

However, the NR-GFP fluorescence was not evenly distributed in the ER network

(Figure 3.39). It was observed that NR-GFP accumulated in an unknown aggregation

body 15-18 h after the biolistic transformation, whilst expression of the two

aforementioned ER makers did not cause such severe aggregation (Figure 3.41). This is

consistent with a previous report that expression of the Arabidopsis ethylene receptor

ETR1 in Arabidopsis protoplasts using the strong CaMV 35S promoter caused protein

aggregation (Chen et al., 2002). It was therefore hypothesized that the aggregation was

caused by over-expression of the ethylene receptor in the ER. To investigate whether the

receptor aggregation was an artefact resulting from NR-GFP over-expression, the ER
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marker (YFP-HDEL targeted to ER lumen) was co-expressed with NR-CFP in the onion

cells for 24 h to allow the receptor to aggregate. The NR-CFP aggregation bodies were

found near the nucleus peripheral space and the NR-CFP fluorescence was absent in the

cortical ER network (Figure 3.41). On the other hand, the ER network was still

highlighted by the YFP fluorescence generated by the YFP-HDEL construct. This

suggests that the aggregation of NR-CFP did not result in disruption of the ER but rather,

an artefact as a result of over-expression as reported by Chen et al. (2002).

The N-terminus of the tomato ethylene receptor ETR1 (aa 1-137) was cloned into the

pDH51-GW-CFP vector to fuse the transmembrane domains of the receptor to CFP.

This construct was then transiently expressed in the onion epidermal cells and the

LeETR11-137-GFP protein was found in the cortical ER network (Figure 3.42). In

Arabidopsis, it has been hypothesized that a membrane protein RTE1 regulates ethylene

sensitivity by controlling the signal output of the ethylene receptor AtETR1 (Resnick et

al., 2006). In tomato, it has been shown that GREEN-RIPE (GR) shares sequence

homology to the Arabidopsis RTE1 and its ectopic expression results in reduced

ethylene responsiveness in fruit tissue (Barry and Giovannoni, 2006). To gain more

insight into GR’s localization and relation with the tomato ethylene receptors, it was

cloned into the pDH51-GW-Venus vector and transiently expressed in onion, in which

the GR-YFP signal highlighted an unknown punctated structure. Co-expressing

GR-YFP with an Arabidopsis Golgi nucleotide/sugar transporter GONST1 fused to CFP

indicated the punctated structure was Golgi bodies (Figure 3.42).
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Figure 3.39: Never-Ripe was localized to the ER membrane in the onion cell

The transformed onion cells were incubated in a tissue culture room (22-24oC) for 14

hours before the fluorescence images were taken using the confocal scanning

microscope. The NR-GFP fluorescence was predominantly localized in the cortical

network of the endoplasmic reticulum. It should be noted that the NR-GFP fluorescence

is not evenly distributed in the ER. The ER-CFP marker (AtSec12p-CFP) was also

transiently expressed in an onion cell and imaged.
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Figure 3.40: ETR4 was localized to the ER of the onion epidermal cell

The transformed onion cells were incubated in a tissue culture room (22-24oC) for 14

hours before the fluorescence images were taken using the confocal scanning

microscope. The ETR4-GFP fluorescence was predominantly localized in the cortical

network of the endoplasmic reticulum. YFP (Venus) fused to the ER retention sequence

(YFP-HDEL) was transiently expressed in onion as an ER marker.
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Figure 3.41: NR protein aggregation after prolong expression

An onion cell was co-transformed with NR-CFP and the ER lumen YFP. The images

were acquired 24 h after transformation. The images of AtSec12-CFP and YFP-HDEL

are shown as ER controls. A) The NR-CFP aggregated around the nucleus. (B) The ER

lumen YFP highlighted the cortical ER network. (C) The bright-field image. (D) The

superimposed image.
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Figure 3.42: LeETR1 was targeted to the ER in onion cells

The N-terminus of ethylene receptor ETR1 (aa 1-137) fused to CFP variant Cerulean

was located to the ER when transiently expressed in onion epidermal cells. The newly

discovered ethylene signalling component GREEN-RIPE fused with YFP (Venus) could

co-localized with the Golgi marker GONST1-CFP, which is an Arabidopsis Golgi

nucleotide/sugar transporter.

(A and B) Confocal images show two onion cells expressing the N-terminus of LeETR1

fused to CFP.

(C and D) A single onion cell expressing Arabidopsis Golgi protein GONST1-CFP as

Golgi localization marker and an ethylene signalling component GREEN-RIPE fused to

YFP.
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3.10.2 NR dependent ER localization of CTR1, 3 and 4

It has been reported that the ER localization of the Arabidopsis CTR1 is dependent on

the presence of the ER membrane-bounded ethylene receptors (Gao et al., 2003). The

authors also suggested that AtCTR1 would dissociate from the ER if the interaction

between AtCTR1 and the ethylene receptors were disrupted by the CN motif mutation.

In order to gain further insight into the ethylene receptor-CTR interaction, the

sub-cellular localization of the tomato CTRs was investigated. The cDNAs encoding the

N-termini of the four tomato CTRs (LeCTR1, LeCTR2, LeCTR3 and LeCTR4) were

cloned into the transient expression plasmid pDH51-GW-YFP. The LeCTR proteins

fused to YFP were localized to the cytoplasm and nucleus when transiently expressed in

the onion epidermal cells (Figure 3.43). When the LeCTR-YFP proteins were

co-expressed with the full-length ethylene receptor NR (fused to CFP), three of the

LeCTR-YFP proteins (LeCTR1, LeCTR3 and LeCTR4) were found to be associated

with the ER and co-localized with the NR-CFP (Figure 3.44). In the case of LeCTR2,

which showed no interaction with NR in the yeast two-hybrid assay (Section 3.8), no

LeCTR2-YFP fluorescence signal could be found in the cortical ER network when

co-expressed with NR. To confirm that CTRs alone could not be targeted to the ER

when transiently expressed in onion, these CTR-YFP constructs (CTR1, CTR2 and

CTR3 fused to Venus) were co-expressed with an ER lumen targeted CFP construct

(Cerulean-HDEL). None of the CTR-YFP proteins could co-localize with the ER-CFP

(Figure 3.45), which indicates that the ER localization of CTR in Figure 3.44 is indeed

dependent on the presence of the ethylene receptor NR.
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Figure 3.43: LeCTR alone was targeted to cytoplasm and nucleus

Images were acquired from onion cells co-expressing CFP and LeCTR-YFP. CFP alone

is known to be located in the cytoplasm and nucleus. All LeCTRs fused to YFP have the

same localization pattern as the CFP control. This indicates they were targeted to the

cytoplasm and nucleus when transiently expressed in the onion epidermal cells without

the tomato ethylene receptors.
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Figure 3.44: LeCTR1, 3 and 4 co-localized with NR in the ER membrane

Confocal images were acquired from onion cells co-expressing NR-CFP and four

LeCTRs fused to YFP. Only LeCTR2 was absent from the ER when co-expressed with

the receptor NR-CFP.
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Figure 3.45: LeCTRs did not co-localize with ER-CFP

LeCTR1, 2 and 3 fused to YFP were co-expressed with the ER-CFP marker in onion

epidermal cells. The CTR-YFP fluorescence signal did not co-localize with the ER-CFP,

which confirms that the CTRs alone could not be targeted to the ER.
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3.10.3 Biomolecular fluorescence complementation (BiFC)

The method of choice to examine the in planta protein-protein association is Foster

resonance energy transfer (FRET). However, efforts to detect the FRET between the

ethylene receptor ETR1 and the CTRs were unsuccessful possibly due to the tendency

of the ethylene receptor ETR1 to form aggregation bodies (data not shown). Therefore,

biomolecular fluorescence complementation (BiFC) assay was used to investigate the

receptor-CTR interaction.

The overall strategy of BiFC was outlined in Figure 3.46. In the BiFC assay, the tomato

ethylene receptors were expressed in onion cells fused to the N-terminus of YFP (YFPN,

aa 1-154) and the putative downstream kinases (CTRs) were expressed with the

C-terminus of YFP fusion (YFPC, aa 155-238). Neither YFPN nor YFPC is fluorescent

by itself, unless the ethylene receptor associates with CTR, in which case the N- and

C-terminus of the YFP would be brought together and a functional YFP would be

regenerated. Therefore, the fluorescent emission of the newly formed YFP would be an

indication of the protein-protein association between the ethylene receptor and CTR.

As BiFC is a relatively novel technique and has not yet been used to study

receptor-CTR interaction, a control experiment was carried out using the ethylene

receptor NR. Because in this study, it has been shown that all the tomato CTRs except

for CTR2 could co-localize with the ethylene receptor NR (Figure 3.44) and this is also
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in agreement with the previous yeast two-hybrid assay that LeCTR2 could not interact

with NR (see section 3.8 for details). Therefore, it was reasoned that if the NR-LeCTR1

BiFC pair showed a positive result in the pilot experiment, whilst the NR-LeCTR2 pair

could not, this BiFC method would be suitable to investigate the ethylene receptor-CTR

interaction. The control BiFC experiment showed that NR has strong BiFC with CTR1

but not with CTR2 (Figure 3.47). Therefore, the interaction between the ethylene

receptor LeETR1 and the four CTRs were subsequently examined. The results in Figure

3.48 show that only CTR1, 3 and 4 could have fluorescence complementation with

LeETR1 in the BiFC assay. This suggests that LeCTR2 might not be able to interact

with LeETR1, which is also in agreement with the ProQuest yeast two-hybrid assay

results (see section 3.8).

However, it is not clear whether or not the recombinant LeCTR2 protein fused to the

C-terminus of YFP (LeCTR2-YFPC) has been properly expressed; as the

LeCTR2-YFPC protein by itself is not fluorescent and could not be detected by using

the fluorescent microscope. For example, negative BiFC result would be obtained if the

LeCTR2 has not been cloned in frame with the downstream YFPC or the expression of

the recombinant protein was suppressed. To help resolve the issue, western blot using

anti-GFP antibody could be performed to confirm the presence of the LeCTR2-YFPC

protein. However, it is not practical to extract sufficient protein from onion epidermal

cells for western blot analysis due to the low efficiency of the biolistic transformation.
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It has been reported that the N-terminus of YFP (YFPN) alone can show BiFC with any

protein fused to the C-terminus of the YFP (YFPC) through self-assembling (Hu et al.,

2000; Hu and Kerppola, 2003; Shyu et al., 2006). The YFPN protein would therefore

act as a positive control to demonstrate that the protein fused to YFPC could be

correctly expressed. In order to rule out the possibility that lack of a positive BiFC

signal in the LeETR1-LeCTR2 experiment is due to the failure of LeCTR2-YFPC

protein expression, a control experiment was performed to co-express YFPN with

LeCTR2-YFPC. This combination generated a strong BiFC signal and confirmed that

the LeCTR2-YFPC protein could be expressed (Figure 3.49). Therefore, the negative

BiFC result of LeETR1-LeCTR2 in Figure 3.48 is unlikely to be resulted in

experimental error such as lack of LeCTR2-YFPN protein expression.

Collectively, the BiFC analysis suggests that only LeCTR1, LeCTR3 and LeCTR4

could interact with the ethylene receptors LeETR1 when transiently expressed in the

onion epidermal cells, while LeCTR2 might not take part in the protein-protein

interaction with the ethylene receptor.
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Figure 3.46: Biomolecular fluorescence complementation (BiFC)

The ethylene receptors were fused to the N-terminus of YFP (N-YFP) and the CTRs

were fused to the C-terminus of YFP (C-YFP). Neither the N- or C-terminal domain

of the YFP would be expected to show any fluorescence by itself (left), unless CTR

interacts with the receptor, in which case the two separated fragments of YFP would be

brought together and the YFP emission would be observed (right).

In a BiFC assay, onion cells are co-transformed with three constructs that include:

1) The ethylene receptor fused to YFPN

2) CTR fused to the YFPC

3) A construct expressing the red fluorescent protein mRFP1, which act as the indicator

for successful transformation.



Results

- 154 -

Figure 3.47: BiFC assay of the receptor NR with CTR1 and CTR2

The onion cell expressing NR-YFPN and CTR1-YFPC showed yellow fluorescence in

the BiFC channel. This suggests that the LeCTR1 can associate with NR. The left

images (yellow) were from the BiFC channel, in which the presence of YFP

fluorescence indicates a positive protein-protein interaction result. The red images (right)

were from the red fluorescent protein co-transformed with the BiFC constructs, which

serves as the indicator of successful transformation. YFPN: N-terminus of YFP; YFPC:

C-termini of YFP.

(A) An onion cell co-transformed with NR-YFPN, LeCTR1-YFPC and mRFP1.

(B) An onion cell co-transformed with NR-YFPN, LeCTR2-YFPC and mRFP1.



Results

- 155 -

Figure 3.48: BiFC assay of the receptor ETR1 with 4 CTRs

Onion epidermal cells were co-transformed with three constructs: LeETR1-YFPN, CTR

(1 to 4)-YFPC and mRFP1. The images of the BiFC channel (left) are shown in the

colour yellow and the mRFP1 images (right) are indicator of successful transformation.

YFPN/C: the N- and C-terminal fragment of YFP.

The tomato ethylene receptor ETR1 showed positive BiFC results with CTR1, CTR3

and CTR4, but not with LeCTR2 as indicated by the images of the BiFC channel

(yellow).
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Figure 3.49: LeCTR2-YFPC showed positive BiFC with YFPN

An onion cell was co-transformed with three constructs: YFPN, CTR2-YFPC and

mRFP1. The images of the BiFC channel (right) is shown in the colour yellow and the

mRFP1 images (left) is the indicator of successful transformation.

The LeCTR2-YFPC construct previously showed no BiFC with the ethylene receptor

NR and ETR1 (Figure 3.47 and 4.19). The BiFC between LeCTR2-YFPC and the

positive control (YFPN) suggests that the LeCTR2 construct was functional and the

LeCTR2-YFPC protein has been properly expressed.
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3.11 Summary

In this study, three tomato ripening fruit cDNA clones (IntCR22, 242 and 266) obtained

from yeast two-hybrid screens using LeCTR2 as bait (Lin and Grierson, unpublished

data) were analyzed in order to understand the role of LeCTR2 in tomato ethylene

signalling. Sequence analysis suggested that IntCR22 is a UDP-glycosyltransferase,

IntCR242 is a putative homologue of the Arabidopsis AT1G15730 and IntCR266 is

similar to the FtSH protease (Section 3.2). The expression patterns of the IntCR genes

were then examinated by northern blot assays (Section 3.3). It was shown that IntCR22

was down-regulated by light and induced by salicylic acid (Figure 3.7 and 3.9). Among

the IntCR clones, IntCR242 showed the strongest interaction with ethylene receptor

LeETR1 and kinase LeCTR2 (Lin and Grierson, unpublished data) and a His-rich

region in the C-terminus of IntCR242 was found to be responsible for its interaction

(Section 3.4). To investigate the function of IntCR266, it was expressed in the

Arabidopsis FtSH5 loss-of-function mutant var1-1 and restored the leaf variegation

mutant phenotype (Figure 3.15). Protein sub-cellular localization studies suggested that

IntCR242 and 266 were targeted to the chloroplast, while IntCR22 was localized in the

cytoplasm when expressed in transgenic tobacco plants.

However, it has been shown that the Arabidopsis ethylene receptor and CTR proteins

are localized to the ER (Section 1.2.6). The localization of tomato ethylene receptors

and CTRs were therefore examinated. Gateway cloning vectors for generating

fluorescent protein fusions and a biolistic-mediated transient expression system were
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established (Section 4.3). The tomato ethylene receptors (ETR1, NR and ETR4) and

three of the LeCTR proteins (CTR1, 3 and 4) were indeed targeted to the ER when

transiently expressed in onion epidermal cells (Section 4.4). BiFC assay also confirmed

the protein-protein interaction between the tomato ethylene receptors ETR1 and these

three LeCTRs (CTR1, 3 and 4) (Figure 3.46-49). It is unlikely that the chloroplastic

IntCR proteins (IntCR242 and 266) could interact with the ER localized ethylene

receptors and CTRs. In addition, FRET assay showed no interaction between the

cytosolic IntCR22 and the LeCTR2 protein, which is the only tomato CTR localized in

the cytoplasm. Therefore, IntCR clones could be false positive clones of the yeast

two-hybrid screen.
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CHAPTER 4: DISCUSSION

4.1 Background

Ethylene is a gaseous plant hormone that regulates many aspects of plant growth and

development. Although the molecular basis of the ethylene signalling pathway has been

clarified using the model plant Arabidopsis, research on ethylene has moved into crop

species with agricultural importance, such as the tomato, and many other fruit species

where ethylene is critically involved in the fruit ripening process. Tomato perceives

ethylene by at least six membrane-bounded receptors and the ethylene signal is then

transmitted to a family of downstream kinases (LeCTRs), whereas the “small”

Arabidopsis has five ethylene receptors and only one downstream kinase (AtCTR1).

Yeast two-hybrid assay has been used successfully to study the protein-protein

interaction between Arabidopsis ethylene receptors and AtCTR1 (Clark et al., 1998).

Therefore, yeast two-hybrid screens have been carried out by researchers in the

University of Nottingham to identify novel ethylene signalling components in tomato

fruit (Lin and Grierson, unpublished data). The IntCR (Interacting with CTR2) clones

were initially discovered by screening a yeast two-hybrid library prepared from tomato

fruit RNA. Because it has been demonstrated that LeCTR2 is able to interact with the

ethylene receptor LeETR1, these IntCR clones were subsequently examined for their

ability to associate with LeETR1. Three of the IntCR clones (IntCR22, IntCR242 and

IntCR266) could indeed interact with LeETR1 in the yeast two-hybrid assay (Lin et al.,

2003). To gain more insight into the ethylene signalling network in tomato, the

functions and localization of these IntCR proteins were investigated in this study.
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4.2 IntCR22

4.2.1 IntCR22 encodes a UDP-glycosyltransferase

The IntCR22 clone obtained from the yeast two-hybrid screen (Lin et al., 2003)

contains a 0.7 kb cDNA fragment which matches the 3' end of the tomato EST

TC176700 (see section 1.3.4 for details). Analysis of the deduced amino acid sequence

of the full-length IntCR22 suggests that it is a UDP-glycosyltransferase (UGT) (see

section 3.2.3 for details). In Arabidopsis 107 UGTs have been identified and classified

into 31 sub-families. IntCR22 shares sequence homology to the members of the

Arabidopsis UGT73C sub-family (Figure 3.5).

There are two general experimental approaches to investigate the role of a

UDP-glycosyltransferase. One is to alter the expression level of the gene encoding the

target UGT and to analyze the phenotype of the transgenic plants. The alternative

method utilizes the purified recombinant UGT proteins and studies their in vitro

enzymatic activity. It would be difficult to use transgenic approaches to study the

function of IntCR22. Firstly, the phenotype of the transgenic plant with altered IntCR22

expression might be masked by the functional redundancy of an unidentified tomato

UGT. Without a comprehensive genome sequence such as those of the model plant

Arabidopsis, it is difficult to estimate how many IntCR22-like genes are present in the

tomato genome. For the same reason, we might not be able to rule out the possibility

that the phenotypes of those transgenic plants with altered IntCR22 expression level

resulted from co-silencing of genes sharing sequence homology to IntCR22.
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The in vitro enzymatic assay approach also has its disadvantages. For example, the plant

proteins synthesized and purified from yeast or E. coli might not be active due to the

lack of essential co-factors or post-translational modifications. All the 107 UGT proteins

in the model plant Arabidopsis have been synthesized and purified from E. coli; the

substrates of only 16 Arabidopsis UGT proteins have been found (Bowles, et al., 2005).

IntCR22 shares sequence homology with the Arabidopsis UTG73C3 (AT2G36780),

whose substrate specificity has not yet been reported. However, such an in vitro method

has been used successfully to characterize two other members of the UGT73C family

(Popenberger et al., 2003; Hou et al, 2004), and therefore, collaboration was formed

with Dr. Franciso Borja Flores (Plant Sciences Division, University of Nottingham) to

identify the in vitro enzymatic subtract of IntCR22 despite the aforementioned

limitations.

It has been demonstrated that the crude total protein extract from the yeast expressing

IntCR22 has higher UDP-glycosyltransferase activity than those expressing a negative

control protein (Flores, unpublished data). This observation confirmed that the IntCR22

protein is a functional UGT and the next objective is to identify its substrate. The in

vitro enzymatic activity of IntCR22 was subsequently examined against several plant

growth regulators, including auxin, cytokinin and ABA. However, the preliminary

results suggested that the plant growth regulators tested could not be glycosylated in

vitro by the purified IntCR22 protein (Flores, unpublished data).
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4.2.2 Possible biological functions of IntCR22

Although the IntCR22 protein showed no in vitro activity against zeatin in our study, it

was considered possible that IntCR22 might be active against other substrates or,

alternatively, process a tissue specific UDP-glycosyltransferase activity. Thus, northern

blot experiments were carried out to investigate where and how IntCR22 is expressed.

Evidence from the previous research has demonstrated that the IntCR genes including

IntCR22 were highly expressed in the ripening fruit (Lin et al., 2003). In the recent

study, northern blot assay showed that IntCR22 is also expressed in leaf and might have

a rhythmic expression pattern (Figure 3.7). In addition, it was also shown that the

IntCR22 mRNA accumulated in leaf 2 h after spraying the plant with 0.5 mM of

salicylic acid (Figure 3.9). These findings suggest that the expression of IntCR22 is

indeed regulated by developmental and environmental cues and it might also be

involved in defence response. However, the puzzle of the unknown substrate of

IntCR22 remains unsolved.

Evidence from a recent report shows that two members (C5 and C6) of the Arabidopsis

UGT73C family could glycosylate zearalenone (ZON) when heterologously expressed

in baker’s yeast Saccharomyces cerevisiae (Poppenberger et al., 2006). ZON is an

oestrogenic metabolite produced by plant pathogenic fungi and could be inactivated

through conjugation of a glucose moiety to form of ZON-4-O-Glc. As the expression of

IntCR22 is regulated by SA, which is a phytohormone critically involved in defence
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response (reviewed in Shah, 2003), it would be interesting to establish whether ZON is

a substrate of the IntCR22 protein, although little is known about the function of ZON

in plant-pathogen interaction. In a separate experiment, Bowles and her co-workers

demonstrated the in planta glycosyltransferase activities of UGT73C5 against

brassinosteroids (BRs) (Poppenberger et al., 2005). Transgenic Arabidopsis plants

over-expressing UGT73C5 showed BR-deficient phenotypes including small rosette

leaf, reduced petiole length and inhibition of leaf elongation. The BR content was

reduced in the UGT73C5 over-expressing lines and a higher level of 23-O-glucosyl

conjugated BR was detected in feeding experiments when compared to wild-type

(Poppenberger et al., 2005). In addition, the phenotypes of the UGT73C5

over-expresser could be rescued by applying exogenous BR. Collectively, these findings

suggested that UGT73C5 was involved in BR inactivation and over-expression of

UGT73C5 resulted in BR deficiency. However, preliminary evidence from the

transgenic tomato and Arabidopsis plants with altered IntCR22 levels suggested that the

IntCR22 might have a different substrate specificity, despite its sequence homology

with the Arabidopsis UGT73C5 (Flores, unpublished data). It is not surprising because

although UGT73C5 shares sequence homology to other members of the UGT73C

family, all of them appear to have distinct substrate specificities and the tomato IntCR22

might be a homologue of one of the uncharacterized UGT73C members.

It has been reported that the Arabidopsis mature dry seeds contain two types of

modified zeatin (zeatin riboside and zeatin-O-glucoside), and zeatin riboside is the
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predominant form of cytokinin in the wild-type seeds (Chiwocha et al., 2005).

Interestingly, the research conducted by Chiwocha and his co-workers also showed that

zeatin-O-glucoside became the major cytokinin in the sub-family I ethylene receptor

mutant etr1-2 and the glycosyl-transferase responsible for this has not yet been

identified. The tomato IntCR22 could interact with the ethylene receptor LeETR1

protein in the yeast two-hybrid assay (Lin and Grierson, unpublished data), which is the

homologue of the Arabidosis ETR1. It is possible that the Arabidopsis homologue of

IntCR22 could also interact with the ethylene receptor AtETR1 and the interaction

might affect its glycosyl-transferase activity, which causes the etr1-2 mutant to

accumulate more zeatin-O-glucoside. Further work will be required to establish whether

IntCR22 is the UGT responsible for zeatin glycosylation. One possible experiment is to

knockout the endogenous IntCR22 or LeETR1 in transgenic tomato plants using RNAi

or antisense constructs, and to compare their glycosylated zeatin levels with the

wild-type plants. Alternatively, transgenic plants over-expressing IntCR22 might also be

used.

4.2.3 Sub-cellular localization of IntCR22

One of the unique characteristics of IntCR22 protein is its ability to interact with both

the tomato ethylene receptor ETR1 and the putative downstream CTR1-like kinase

LeCTR2 in the yeast two-hybrid assay (Lin et al., 2003). As the tomato ethylene

receptor ETR1 and LeCTR2 is believed to be histidine kinase and Ser/Thr kinase,

respectively, it was thus hypothesized that LeETR1 and LeCTR2 might form a protein
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complex with IntCR22 and the activity of IntCR22 could be regulated by

protein-protein interaction. Therefore, protein localization studies were carried out to

investigate whether the ethylene receptor LeETR1, the putative downstream kinase

LeCTR2 and IntCR22 would co-localize by expressing recombinant proteins fused to

fluorescent protein.

The localization experiment showed that both the tomato IntCR22 and one of its

putative Arabidopsis homologue (UGT73C3, AT2G36780) are targeted to the cytoplasm

and nucleus in the transgenic tobacco plants (see section 3.6.3 for details). However, the

ethylene receptors and CTRs are believed to be ER proteins as the Arabidopsis ethylene

receptor ETR1 and CTR1 have been found in the ER by immno-localization

experiments (Chen et al., 2002; Gao et al., 2003). Therefore, the localization of the

tomato ethylene receptor and CTRs were investigated by using a transient expression

system (see section 3.9 for details). Evidence from the transient expression experiments

show that LeETR1 is indeed targeted to the ER (Figure 3.42). LeCTR2 was found in the

cytoplasm and nucleus and co-localized with IntCR22 when transiently expressed in

onion cells (Figure 3.26 and 3.27). These suggested that IntCR22 has the potential to

interact with LeCTR2 and however, a key question is whether, and how, the ER

membrane-bounded LeETR1 could associate with the cytosolic IntCR22.

The recently published melon ethylene receptor CmERS1 topology model suggests that

the three N-terminal transmembrane domains of the receptor are anchored to the ER
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membrane and the C-terminal domain is exposed to the cytoplasmic side of the ER

(Figure 1.6; Ma et al., 2006). The yeast two-hybrid assay showed that IntCR22 interacts

with the C-terminal domain of ethylene receptor LeETR1 (Lin et al., 2003). Thus, it is

reasonable to suggest that if LeETR1 have the same membrane topology as the melon

CmERS1, the C-terminus of LeETR1 could be able to associate with the cytosolic

IntCR22. Additionally, evidence from this study shows that the tomato ethylene receptor

NEVER-RIPE (NR), which falls into the same category of receiver domain minus

sub-family I ethylene receptor as the aforementioned CmERS1, is able to mediate the

ER localization of LeCTR1, 3 and 4 (see section 3.10.2 for details). Most importantly,

the LeCTR proteins adopt a cytosolic localization pattern unless they were expressed

with the ethylene receptor NR (Figure 3.43, 4.15). It is also in agreement with the

observation that the Arabidopsis CTR1 dissociated from the ER membrane in the

absence of the ethylene receptors (Gao et al., 2003). Thus, there is reason to believe that

proper localization of IntCR22 to the ER membrane might also require the presence of

ethylene receptors such as LeETR1. On the other hand, despite the fact that IntCR22

could associate with both LeETR1 and LeCTR2 in the yeast two-hybrid assay, it has to

be borne in mind that these protein-protein interactions might not be able to take place

in vivo, as the yeast two-hybrid screen could generate false positive results. Therefore

further experiments were required to confirm their in planta protein interactions.
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4.3. IntCR266 and IntCR242

4.3.1 IntCR266 is a functional chloroplast FtSH proteinase

The deduced amino acid sequence of IntCR266 shares 80% homology to the

Arabidopsis chloroplast metallo-proteinase FtSH5/VAR1 (Figure 3.4). It has been

reported that AtFtSH5/VAR1 is involved in degradation of photo-damaged proteins in

the thylakoid membrane and the loss-of-function mutant of AtFtSH5/VAR1 has a leaf

variegation phenotype (Sakamoto et al., 2002). The protein localization study using

transgenic tobacco plants expressing IntCR266 fused to GFP showed that IntCR266 is

indeed targeted to the chloroplast (Figure 3.19). Therefore, it was hypothesized that

IntCR266 could be a tomato homologue of AtFtSH5/VAR1.

In order to study the biological function of IntCR266, a mutant complementation

experiment was carried out. The full-length cDNA of IntCR266 under the control of a

CaMV35S promoter was transformed into Arabidopsis FtSH5/VAR1 loss-of-function

mutant var1-1. The IntCR266 transgene complemented the variegation phenotype of the

var1-1 mutant in three independent transgenic lines (Figure 3.15). This suggested that

IntCR266 was a functional chloroplast FtSH proteinase homologous to the Arabidopsis

FtSH5. However, the ethylene receptors including AtETR1, CmERS1 and three tomato

ones (ETR1, NR and ETR4) have all been located to the ER (Figure 3.26, 4.10 and 4.11;

Chen et al., 2002; Ma et al., 2006). Thus, the chloroplastic IntCR266 protein is unlikely

to be able to associate with the ethylene receptors. The interaction detected in the yeast

two-hybrid assay might therefore be a false positive result.
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4.3.2 IntCR242 is also a chloroplast protein

IntCR242 also contains an N-terminal chloroplast transit peptide (cTP) and the

full-length protein was predicted to be targeted to the chloroplast (see section 3.2.2 for

details). The two Arabidopsis proteins (accession number: AT1G15730 and AT1G80480)

sharing sequence homology (70% identity) to IntCR242 have been found in the plastid

stroma according to the recently published plastid proteome database

(http://ppdb.tc.cornell.edu/default.aspx). Therefore, experiments were carried out to

investigate the sub-cellular localization of IntCR242. A chimeric construct expressing

IntCR242 fused to GFP was generated and transformed to tobacco. Analysis of the

transgenic tobacco expressing IntCR242-GFP confirmed that IntCR242 is indeed

targeted to the chloroplasts (Figure 3.17 to 3.19).

Collectively, evidence from the protein localization studies suggest that both the

IntCR242 and IntCR266 proteins are targeted to chloroplasts, which is an unlikely

localization for proteins that could associate with ethylene receptors in the ER. However,

it has been recently discovered that some chloroplastic proteins utilize the ER secretion

pathway to enter chloroplasts (Radhamony and Theg 2006). It is hypothesized that those

proteins do not have the traditional chloroplast transit peptide (cTP) but an ER-signal

sequence followed by a cTP -like region. The ER-signal sequence would be removed

during or after the secretion and the hidden cTP would be exposed to the chloroplast

import mechanism. However, both IntCR242 and IntCR266 have the traditional cTP in

their N-termini; therefore they are not likely to enter chloroplasts through the ER.

http://ppdb.tc.cornell.edu/default.aspx
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4.3.3 Are the IntCR clones artefacts of the yeast two-hybrid screen?

The yeast two-hybrid system is a simple and high-throughput technique to screen for

partners of a specific protein without previous knowledge of the potential interactions

(reviewed in Bartel and Fields, 1997). However, yeast two-hybrid screens generate a

significant number of artefact interactions; they are referred to as false positives

(Stephens and Banting, 2000; Serebriiskii et al., 2000; Vidalain et al., 2003). The false

positives are classified into two categories: technical false positive and biological false

positive. The former class consists of proteins that could not interact with the protein of

interest (POI), but their expression in the yeast cell could switch on the reporter genes.

Proteins with DNA binding capacity such as transcription factors are common technical

false positives identified from the yeast two-hybrid screens. The biological false

positives are proteins that indeed interact with POI in the yeast cell, but the

protein-protein interactions are implausible or impossible to occur in vivo in the

organism of study.

One criterion to eliminate false positives is to investigate whether or not the identified

protein and the POI are expressed in the same time, same tissue and have the same

sub-cellular localization. It has been shown that the IntCR, ethylene receptor ETR1 and

LeCTR2 are indeed highly expressed in tomato fruit and their transcripts are particularly

abundant in ripening tissues (Lin et al., 2003) suggesting they match the first criterion

of the true interacting protein. In the protein localization study, however, the IntCR242

and IntCR266 proteins are targeted to chloroplasts, whereas the ethylene receptors are
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expected to be localized in ER. Therefore, the IntCR242 and IntCR266 clones might be

biological false positives of the yeast two-hybrid screen.

Among the IntCR clones, IntCR242 showed the strongest protein-protein association

with the tomato ethylene receptor ETR1 and the putative downstream kinase LeCTR2

(Lin et al., 2003). A deletion yeast two-hybrid assay was then performed to identify the

domain responsible for this interaction. It was mapped to a histidine-rich (His-rich)

region in the C-terminus of IntCR242, which contains 14 His-Asp repeats and 4

His-Glu repeats (Figure 3.12). Both aspartic acid and glutamic acid contain negatively

charged side changes. In addition, this His-rich region is also able to interact with all

other IntCR proteins in the yeast two-hybrid assay, which suggests it could be a sticky

protein (Figure 3.13). Thus, it seems likely that the negatively charged His-rich region is

responsible for IntCR242’s random interaction with multiple biologically irrelevant

proteins, in which case IntCR242 is a biological false positive of the yeast two-hybrid

screen.

4.4 Interaction between Tomato Ethylene Receptors and CTRs

4.4.1 Mutation in the CN motif of LeCTR2 does not abolish its interaction

It has been shown that the putative Ser/Thr kinase LeCTR2 interacted with both the

tomato ethylene receptors ETR1 and ETR2 in the yeast two-hybrid assay (Lin et al.,

2003). Because LeCTR2 failed to co-localize with the ethylene receptor ETR1 (Figure
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3.26 and 3.27), the interaction between LeCTR2 and the tomato ethylene receptors was

therefore re-examined. It has been reported that interaction between the Arabidopsis

CTR1 and ETR1 was abolished by mutation in the conserved CN motif (Huang et al.,

2003). It was thus reasoned that if LeCTR2 is a true interacting partner of LeETR1, the

same mutation in the CN box would disrupt their association. However, when the CN

motif mutation was introduced to LeCTR2 by PCR mutagenesis (Figure 3.30), the

mutated LeCTR2 still interacted with the tomato ethylene receptors in the yeast

two-hybrid assay (Figure 3.31).

The aforementioned yeast two-hybrid assays were carried out using the LexA-based

yeast two-hybrid system - the same system used to generate the two IntCR clones that

are likely to be false positives. Therefore, a more stringent yeast two-hybrid system

based on GAL4 transcription factor (ProQuest, Invitrogen) was used to study the

interaction between LeCTR2 and the ethylene receptors (see section 3.8.2 for details).

The ProQuest yeast two-hybrid system showed that LeCTR2 could not associate with

the ethylene receptors (LeETR1 and LeETR2), while the Arabidopsis CTR1 showed

strong interaction with the ethylene receptor AtETR1 in a control experiment (Figure

3.32). Additionally, in the Gal4-based yeast two-hybrid system, the Gly347 to Glu

mutation in the CN motif of LeCTR3 abolished its interaction with the tomato ethylene

receptors (LeETR1, LeETR2 and NR), which confirmed the previous hypothesis that

mutation in the CN motif of the tomato CTRs could interrupt their interaction with the

ethylene receptors (Figure 3.34). These observations suggested that the
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LeCTR2-LeETR1 interaction might be a false positive of the yeast two-hybrid.

However, in vivo evidence was still needed to confirm the yeast two-hybrid assay

results. As Gao et al. (2003) demonstrated that the endoplasmic reticulum localization

of AtCTR1 requires the presence of ethylene receptors, it was proposed to investigate

the tomato ethylene receptor-CTR interaction through analyzing their protein

localization.

4.4.2 Receptor NR dependent localization of LeCTR1, 3 and 4 in onion cells

Efforts to visualize the full-lenghth tomato ethylene receptor or CTR fused to GFP in

transgenic plants were not successful (see section 3.7.1 and 4.4.1 for details). Similar

experiments to study localization of the Arabidopsis ethylene receptors and CTR have

also been reported to be problematic (Chen et al., 2003; Gao et al., 2003), while a recent

report demonstrated that a melon ethylene receptor CmERS1 fused to GFP could be

expressed and visualized through biolistic-mediated transient expression (Ma et al.,

2006). Therefore a transient expression system was developed to express the tomato

ethylene receptors and CTRs fused to fluorescent protein (see section 3.8 for details).

Using the transient expression system, the tomato ethylene receptor ETR1,

NEVER-RIPE and ETR4 were found to be targeted to the endoplasmic reticulum (ER)

when transiently expressed in onion cells (Figure 3.39 to 4.13). The putative

downstream kinases (LeCTR1, 3 and 4) were located in the cytoplasm and nucleus

(Figure 3.43 and 4.16). However, when the ethylene receptor NR was co-expressed in
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the same cell, the CTR proteins moved to the cortical ER network and co-localized with

the ethylene receptor (Figure 3.44). This receptor dependent localization of CTR

supports the results from the previous yeast two-hybrid assay that LeCTR1, 3 and 4

could interact with the ethylene receptor (Lin and Grierson, unpublished data) and is

also in agreement with the receptor-mediated CTR1 localization model in Arabidopsis

(Gao et al., 2003).

On the other hand, LeCTR2 could not co-localize with the ethylene receptor NR in the

ER when they were co-expressed in onion cell (Figure 3.44). This again is consistent

with the evidence from the yeast two-hybrid assay (Figure 3.31) and previous

researches carried out in the University of Nottingham that LeCTR2 has no

protein-protein interaction with the receptor NR (Lin and Grierson, unpublished data).

However, prolonged expression of ethylene receptor NR led to formation of the

aggregation bodies (Figure 3.41). Additionally, the full-length ethylene receptors

LeETR1 and LeETR2, which might interact with LeCTR2, could not be transiently

expressed in onion cell due to strong aggregation (data not shown). The truncated

N-terminus of the ethylene receptor LeETR1 fused to GFP could, however, be

transiently expressed and targeted to the ER (Figure 3.42). It has been reported that

transient expression of the full-length Arabidopsis ethylene receptor ETR1 also resulted

in protein aggregation (Chen et al., 2002). Thus, the results presented in this study, in

line with the Arabidopsis research suggest the hypothesis that the ethylene receptors
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tend to aggregate when expressed at a non-biologically high level. But yet, we do not

have an explanation for these data. Since the protein-protein interaction involving

LeETR1 and LeCTR2 could not be investigated by fluorescent protein localization

study, efforts were made to use alternative fluorescent protein-based approaches such as

Forster Resonance Energy Transfer (FRET) and Biomolecular Fluorescence

Complementation (BiFC).

4.4.3 Forster Resonance Energy Transfer (FRET)

It was initially attempted to use FRET to characterize the in vivo ethylene receptor-CTR

interaction (see section 3.1.2 for details). However, efforts to measure FRET between

the ethylene receptor and CTR were not successful (data not shown). The measurement

of FRET from a positive control ruled out the possibility of equipment failure or faulty

experimental design (Figure 3.29). Therefore, two non-mutually exclusive hypothesises

were suggested to explain the lack of FRET between the ethylene receptors and CTRs.

1) No FRET between ETR and CTR

FRET is a non-radiation energy transfer phenomenon between two interacting dipoles.

It has a strong distance dependence (in Angstrom scale), such that the efficiency of

FRET varies as the inverse of the sixth power of the distance that separates the donor

and acceptor fluorescent proteins, as described by

FRET Efficiency = 1/[1+ (r/Ro)
6]

Where r is the distance between two fluorochromes and Ro is the Forster distance, which
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is proximally 4.9 to 5 nm for the CFP and YFP pair. It is generally considered that it

would be difficult to measure FRET with efficiency less than 10% using intensity-based

FRET methods (Periasamy and Day, 2005). In a CFP-YFP FRET experiment with

efficiency factor larger than 10%, the distance r would have to be less than 1.44 Ro,

which is about 8 nm. The fluorescent proteins themselves are about 3 nm in width

(Shaner et al., 2005). Therefore if the distance between ETR and CTR is larger than 5

nm, FRET would be either undetectable or prohibited (Figure 4.1 b). Furthermore,

FRET also has a strict angular dependence; it would not occur if the receptor-CTR

complex adopts a non-favourable orientation (Figure 4.1 c). In addition, both the

ethylene receptor and CTR were cloned into gateway compatible pDestination vectors

(Figure 3.37) to acquire the fluorescent protein fusion. In such a case, an 18 amino acids

peptide linker, which is encoded by the gateway att recombination site, would be used

to join the protein of interest and the fluorescent protein. Although this linker sequence

is present in any commercially available gateway vectors, the length and the relative

orientation of the linkers might prevent FRET from taking place.

2) Presence of non-interacting proteins

In an intensity-based FRET measurement such as acceptor photo-bleaching FRET,

which compares the donor fluorescence in the presence and absence of the acceptor, the

FRET efficiency is calculated by dividing the change of donor fluorescence intensity by

the donor fluorescence intensity before bleaching the acceptor as

Efficiency = (Dpost – Dpre) / Dpost
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Where Dpre and Dpost are the donor fluorescence intensity before and after

photo-bleaching the acceptor. It is reasoned that if the donor is a mixture of interacting

and non-interacting proteins, the detected FRET efficiency would be reduced directly

proportionally to the amount of those non-interacting donor proteins. For example, if

90% of the ethylene receptors did not take part in the interaction with CTR, the

observed FRET efficiency would be 10% of the real value and might not be detected.

Figure 4.1: Schematic diagram of FRET between two interacting proteins

The associating protein A and B is fused to CFP (cyan rectangle) and YFP (yellow

rectangle), respectively. (A): The distance and orientation favour FRET to occur. (B)

and (C): The distance and orientation prohibits FRET although the two target proteins

are interacting. (D): FRET does occur, the signal, however is mixed with the fluorescent

from the non-interacting proteins as may be difficult to detect.

4.4.4 Biomolecular Fluorescence Complementation (BiFC)

BiFC is an alternative experimental approach for in vivo visualization of protein-protein

interaction, which is based on the formation of a functional fluorescent complex by two

non-fluorescent fragments (Hu et al., 2002). For example, the N-terminal domain of

YFP (nYFP, aa 1-155) and the C-terminal domain of YFP (cYFP, aa 156-238) do not
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emit fluorescence on their own, unless they can be brought together by other forces to

form a new YFP complex (Hu and Kerppola 2003). In the case of BiFC, the nYFP and

cYFP fragments were fused to two proteins of interest (POI). It was reasoned that when

the two interacting POI (fused to either nYFP or cYFP) were expressed simultaneously

in a single cell, such as a onion epidermal cell, the fluorescent protein fragments

(n/cYFP) could be brought together by the interaction of POI and form an YFP complex

capable of emitting light when excited with a 514 nm laser. On the other hand, if the

two POI could not associate with each other, the FP fragments fused to the POI could

not regenerate the YFP and thus no fluorescent emission would be detected.

The formation of a BiFC fluorescent complex is a two stage process (Figure 4.2 a). The

initial step is mediated by interaction of the POI fused to the fluorescent protein

fragments, which is the N- or C-terminal domain of the YFP variant Venus in this study

(see section 3.9.3 for details). Once the initial POI complex is formed, the N- and

C-terminal fragments of YFP may self-assemble into a functional YFP. As this YFP

regeneration process is irreversible, the protein complex is stabilized permanently. This

then allows visualization of transient (kinetic) protein-protein interactions (Figure 4.2 b),

which could not be detected by FRET. Thus, if the ethylene receptor-CTR interaction

could be stabilized, the problem of ethylene receptor protein aggregation, which

hampers the FRET measurement, would therefore be circumvented. It has also been

suggested that through employing a flexible linker peptide between the target protein

and the YFP fragment (Figure 4.2 c), BiFC could be used to visualize long distant
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protein interaction of greater than 10 nm, which is beyond the detection limit of FRET

(Hu et al., 2002).

4.4.5 BiFC assay reveals the interaction between receptors and CTRs

A series of cloning vectors has been generated to express target proteins fused to N- or

C-terminal fragments of YFP for BiFC analysis (see section 3.9.3 for details). Because

BiFC is a novel technique and has not yet been widely used to visualize protein

interaction in living plant cells, a control experiment was carried out to evaluate the

applicability of BiFC for studying ethylene receptor-CTR interaction. The ethylene

receptor NEVER-RIPE is known to associate with the putative downstream kinase

LeCTR1 but not with LeCTR2 in the yeast two-hybrid assay (Figure 3.31; Lin and

Grierson, unpublished data). Moreover, protein co-localization studies confirmed that

NR could associate with LeCTR1 but not LeCTR2 (Figure 3.44). Therefore, the control

BiFC assay was performed by transiently expressing NR fused to the N-terminus of

YFP (referred to as NR-YFPN) and CTR fused to the C-terminus of YFP (referred to as

LeCTR-YFPC) in onion epidermal cells. Whereas cells transformed with NR-YFPN

and LeCTR2-YFPC showed no BiFC signal, a strong fluorescence was observed when

NR-YFPN was co-expressed with LeCTR1-YFPC (Figure 3.46). This showed that BiFC

could be used to visualize the ethylene receptor-CTR interactions.
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Figure 4.2: Schematic diagram of BiFC between two interaction proteins

Each of the two interacting proteins (presented as rectangles labelled A and B) is fused

to the N- and C-terminal fragment of YFP (indicated by the yellow interlocking

rectangles).

(A) Two-step process of BiFC complex formation. Protein A and B first interact (step 1)

and bring the two YFP fragments close enough to form a complete YFP protein (step 2).

Neither fragment is fluorescent on their own unless they are brought together to form a

complete YFP by the association between protein A and B. Therefore, no YFP

fluorescent would be detected if protein A and B did not interact.

(B) The process of regenerating YFP from the two BiFC fragments is irreversible.

Therefore, the BiFC signal is still present after the dissociation of protein A and B,

which enable BiFC to visualize transient protein-protein interactions.

(C) Increasing the length and flexibility of the linker peptide joining protein B and the

fluorescent protein fragment enables BiFC to occur over a longer distance.

To investigate the in vivo protein-protein interaction between the ethylene receptor

LeETR1 and the four putative downstream Ser/Thr kinases (LeCTR1 to 4), onion cells

were transformed with combinations of these constructs. The BiFC assay indicated that

all LeCTRs except for LeCTR2 showed strong BiFC signals when co-expressed with

the ethylene receptor LeETR1 (Figure 3.48). This suggests LeETR1 is indeed capable of

interacting with CTR1, CTR3 and CTR4 with the exception of CTR2. This is in

agreement with the previous report that expression of LeCTR1, 3 and 4 in the

Arabidopsis CTR1 loss-of-function mutant could rescue the ctr1-8 mutant phenotype

(Adams-Phillips et al., 2004). But the problem remained: why LeCTR2 could not
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associate with LeETR1 in the BiFC experiment, whilst it could interact in yeast using a

LexA-based yeast two-hybrid system (Figure 3.31). The key question is could the

LeCTR2-LeETR1 interaction again be a false positive result of the yeast two-hybrid?

4.4.6 Tomato ethylene receptor-CTR interaction: an overview

It has been reported that the Arabidopsis sub-family I ethylene receptors (AtETR1,

AtERS1) have protein-protein interactions with the downstream Ser/Thr kinase AtCTR1

(Clark et al., 1998; Huang et al., 2003). In tomato, there are at least three sub-family I

receptors (LeETR1, LeETR2 and NR) and four CTR1-like proteins (LeCTR1 to 4).

Protein localization and interaction results presented in this study, in line with previous

research in the University of Nottingham suggested a more complicated receptor-CTR

interaction network present in tomato. Four methods have been used to investigate the

tomato ethylene receptor-CTR interaction and generated different results.

1) Yeast two-hybrid system based on LexA

2) Yeast two-hybrid system based on Gal4

3) Fluorescent protein-assisted localization study

4) Biomolecular fluorescence complementation (BiFC)

Evidence from the LexA-based yeast two-hybrid assay suggested that all four LeCTRs

could interact with the receiver domain containing subfamily I receptor LeETR1 and
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LeETR2 (Table 5.1), whereas, the ethylene receptor NR, which does not contain the

receiver domain, could only interact with three CTRs (CTR1, 3 and 4) in this

LexA-based yeast two-hybrid system (Figure 3.31). On the other hand, the more

stringent Gal4-based yeast two-hybrid system (ProQuest, Invitrogen) could only detect

the protein-protein interaction between LeCTR3 and the sub-family I ethylene receptors

(Figure 3.33). More importantly, the LexA-based yeast two-hybrid system failed to

distinguish the difference between LeCTR2 with the wild-type and mutated CN motif

(Figure 3.31). Previous research has shown that this CN motif mutation in Arabidopsis

CTR1 could disrupt its interaction with the ethylene receptors (Huang et al., 2003).

Consistently, the interactions of LeCTR3 with the ethylene receptors in the Gal4-based

yeast two-hybrid system were abolished when its CN motif was artificially mutated

(Figure 3.34). It is therefore hypothesized that the conflicting yeast two-hybrid results

are due to the variation in stringency of the two yeast two-hybrid systems.

Initially, Chang et al. (1998) demonstrated the Arabidopsis ETR1-CTR1 interaction

using a LexA-based yeast two-hybrid system, in which the reporter gene is integrated

into the yeast genome. On the other hand, the reporter gene of the LexA-based yeast

two-hybrid system used for the LeCTR2-LeETR1 interaction assay in this study is

located in a high copy-number plasmid pSH18-34 (Lin et al., 2003). Genome integrated

reporter genes are also adapted in the Gal4-based ProQuest yeast two-hybrid system

(Invitrogen), which was used to re-examine the tomato ethylene receptor-CTR

interaction. In addition, the ProQuest system uses low copy number plasmids to express
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recombinant protein in yeast, whilst high copy number plasmids are used in both

LexA-based systems. Therefore, it is generally considered that the Gal4-based system is

more stringent than the LexA-based ones (Criekinge and Beyaert, 1999). In addition,

the LexA-based yeast two-hybrid system used in this study is more sensitive than the

one used by Chang et al. (1998) for the Arabidopsis ETR1-CTR1 interaction because of

the difference in reporter gene copy numbers.

Besides using yeast two-hybrid assays, in planta fluorescent protein-assisted protein

localization studies were also used to investigate the tomato ethylene receptor-CTR

interaction. By analyzing the differences in sub-cellular localization of CTRs when

transiently expressed in onion cells with or without the ethylene receptor NR, it was

possible to confirm that NR has protein-protein interactions with three CTRs (CTR1,

CTR3 and CTR4). Further evidence from BiFC suggested that the tomato ethylene

receptor ETR1 also interacts with CTR1, CTR3 and CTR4, but not CTR2 (Table 5.2).

Collectively, the in vivo fluorescent protein-based studies generated a more plausible

ethylene receptor-CTR interaction pattern compared to those obtained from the yeast

two-hybrid experiments, presumably because, as discussed above, yeast two-hybrid has

the potential to generate false positive results. But when stringent yeast two-hybrid

systems are used, weak interactions of biologically significance may be missed.

A previous study on the Arabidopsis mutant ctr1-8 has shown that tomato CTR1, CTR3

and CTR4 were capable of complementing the loss-of-function CTR1 and rescued the
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constitutive ethylene response mutant phenotype (Adams-Phillips et al., 2004). It has

also been shown that silencing the LeCTR1 gene in tomato seedlings by virus-induced

gene silencing (VIGS) could cause a constitutive ethylene response-like phenotype and

activate the ethylene responsive genes, whereas no phenotype was observed from the

plants with reduced LeCTR2 mRNA level (Liu et al., 2002). These results from other

studies, in line with the findings presented in this study, support the involvements of

LeCTR1, LeCTR3 and LeCTR4 in the tomato ethylene signalling network. In addition,

it is the first time that fluorescent proteins have been used to visualize the tomato

ethylene receptor-CTR protein complex in the endoplasmic reticulum, to which they

have long been hypothesized to be targeted. However, whether or not LeCTR2 is a

CTR1-like kinase acting downstream of the ethylene receptors in the tomato ethylene

signalling network remains unsolved.
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Table 4.1: Comparison of the LexA- and Gal4-based yeast two-hybrid systems

LexA-based yeast two-hybrid assay Gal4-based yeast two-hybrid assay

bait

prey
ETR1 ETR2 NR

bait

prey
ETR1 ETR2 NR

CTR1 Yes Yes Yes CTR1 No No No

CTR2 Yes Yes No CTR2 No No No

CTR3 Yes Yes Yes CTR3 Yes Yes Yes

CTR4 Yes Yes Yes CTR4 No No No

Failed to distinguish the CN motif

mutation in LeCTR2

Able to distinguish the CN motif

mutation in LeCTR3

The protein-protein interaction between the tomato sub-family I ethylene receptor and

the four CTRs were examined by using the LexA- and Gal4-based yeast two-hybrid

systems. The positive interaction detected by the yeast two-hybrid assay is indicated by

“Yes” and lack of interaction by “No”. Part of the LexA-based yeast two-hybrid

interaction results involving CTR1, CTR3 and CTR4 were kindly provided by Dr.

Zhefeng Lin.

Table 4.2: Ethylene receptor-CTR interactions confirmed by fluorescent protein

based methods

ETR1 NR

CTR1 Yes Yes

CTR2 No No

CTR3 Yes Yes

CTR4 Yes Yes

The four CTRs fused to fluorescent protein were found in cytoplasm and nucleus when

transiently expressed alone in onion epidermal cells. Changes of CTR1, CTR3 and

CTR4 localization to the ER were observed when they were co-expressed with the

ethylene receptor NR. This suggests CTR1, 3 and 4 interact with NR and the interaction

is crucial for their localization. BiFC assay showed that the tomato ethylene receptor

ETR1 could interact with CTR1, 3 and 4 but not CTR2.

.
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4.6 Future Work

In this study, a reverse genetic approach was used to investigate the ethylene signalling

events in tomato fruit in collaboration with colleagues in Grierson’s research group.

Firstly, we characterized clones (IntCR) isolated from a yeast two-hybrid library

enriched in ripening fruit cDNA. The function of the IntCR266 clone was first revealed

by Arabidopsis mutant complementation experiments and it turned out to be a

chloroplast FtSH protein involved in repairing the photo-damaged PSII in the

chloroplast. The endoplasmic reticulum localization of the ethylene receptors and CTRs

makes it very unlikely that they could associate with the chloroplast-located IntCR242

and IntCR266. Although it is possible for some protein to enter chloroplast via the ER,

the two IntCR proteins lack the appropriate signal sequence for this. Therefore, the

IntCR242 and 266 clones are probably false positives of the yeast two-hybrid screen.

The IntCR22 protein was shown to be a cytosolic UDP-glycosyltransferase, although a

more detailed enzymatic assay would be required to identify its enzymatic substrate.

One interesting observation is that the IntCR22 expression appears to be

down-regulated by light (Figure 3.7 and 3.8). It is also possible that the changes of

IntCR22 mRNA level are controlled by the circadian clock instead of light. A further

experiment would be to subject the wild-type tomato plant to sudden light or dark

changes and monitor the IntCR mRNA level by northern blot. If the expression pattern

of IntCR22 remained unchanged, it would be more likely to be regulated by the

circadian clock. On the other hand, if the mRNA level of IntCR22 could respond rapidly
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to the sudden light-dark switches, an experiment could be done to measure the half-life

of IntCR22 mRNA and to use the phytochrome and cytochrome mutants to further

establish the relationship between IntCR22 and light sensing. IntCR22 is also

up-regulated by salicylic acid (SA) treatment (Figure 3.9), which plays an important

role in mediating the plant defense response. Therefore, it would be very interesting to

test whether or not silencing IntCR22 by introducing an RNAi or antisense construct to

wild-type tomato plants would have an effect on the pathogen responses.

In order to study the in vivo protein-protein interaction and localization of tomato

ethylene receptors, a transient expression system was established and cloning vectors

for expressing target proteins fused to GFP variants were generated. The localization

and protein-protein interaction results presented here in this study suggested that the

ethylene receptors LeETR1, NR and LeETR4 were all targeted to the ER together with

three downstream kinases (LeCTR1, LeCTR3 and LeCTR4) possibly as a receptor-CTR

protein complex. Although, FRET between receptor and CTR could not be detected by

the traditional intensity-based FRET method, the fluorescence lifetime measurement

FRET (FLIM-FRET) could be used to quantify the receptor-CTR interaction in the

future. In addition, a series of cloning vectors and a BiFC system has been established

to visualize the protein-protein interaction between the tomato ethylene receptor ETR1

and CTRs. It is therefore possible to combine FRET with BiFC to investigate whether

CTR binds to a receptor hetero- or homo-dimer in the ER membrane. This could be

achieved by expressing two ethylene receptors fused to BiFC fragments, which generate
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the YFP fluorescence when the ethylene receptors dimerize. The downstream CTR

fused to CFP could be expressed simultaneously in the same cell, where a FRET signal

could only be generated by energy transfer from CTR-CFP to the YFP in the receptor

dimer BiFC complex.

However, the role of LeCTR2 remains elusive as conflicting results have been obtained

from different yeast two-hybrid systems with different degrees of sensitivity. It appears

that the tomato CTR2 might not be involved directly in ethylene signalling. The

Arabidopsis EDR1 is a putative homolog of CTR2 due to the sequence similarity

between CTR2 and EDR1 (Figure 1.11) and EDR1 is involved in both pathogen and

ethylene signalling (Frye et al., 1998; Frye et al., 2001; Tang et al., 2005). To gain more

insight into the role of LeCTR2, further experiments would be required to establish the

signalling event downstream from LeCTR2, possibly by attempting to use LeCTR2 to

complement the Arabidopsis EDR1 or CTR1 loss-of-function mutant and to generate

LeCTR2 knockout transgenic tomato plants. Preliminary evidence from the Arabidopsis

mutant complementation experiment showed that the LeCTR2 cDNA under the control

of CaMV35S promoter could complement neither edr1 nor ctr1 mutant possibly due to

post-transcriptional gene silencing (data not shown). On the other hand, wild-type

Arabidopsis transformed with the 35S:LeCTR2 construct displayed phenotypes

resembling the edr1 mutant, although they are preliminary results that require

confirmation (Appendix). In addition, a chimeric construct with the EDR1 promoter

fused to either LeCTR2 genomic DNA or cDNA could be generated and used in edr1



Discussion

- 188 -

mutant complementation experiments.

The protein localization experiments presented in this study showed that the ethylene

receptor-CTR complex and the EIN2 protein are all located in the endoplasmic

reticulum (Figure 3.26, 4.10 to 4.15). On the other hand, the GREEN-RIPE protein,

which might play an important role in regulating the ethylene receptor signal output

(Barry and Giovannoni, 2006), was found in the Golgi (Figure 3.42), which is also part

of the endomembrane system. Although several ethylene signalling components have

been found in the ER, it remains largely unknown how the ethylene signal is transmitted

to the downstream transcription factors inside the nucleus to cause physiological

changes such as fruit ripening and leaf senescence. The ER happens to be one of the

intracellular Ca2+ storage sites together with chloroplast and vacuole. In addition, it has

long been hypothesized that Ca2+ would be a secondary messenger in the ethylene

signalling pathway (Raz and Fluhr, 1992). More importantly, Zhao and his colleague

have recently shown a transient Ca2+ spike induced by ethylene in tobacco protoplasts

(Zhao et al., 2007). Therefore, it would be very interesting to establish whether or not

ethylene is controlling the ion channels in the ER membrane and uses Ca2+ as a

secondary messenger to regulate gene expression inside the nucleus. This could be

achieved by using the large collection of the Arabidopsis ethylene insensitive mutants.

For example, if the ethylene induced Ca2+ influx could be blocked by mutation in the

ER protein EIN2, but not by the nucleus transcription factor EIN3, it would be

reasonable to suggest that Ca2+ is the “missing” secondary messenger of ethylene.
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Figure 4.3: Proposed model of ethylene signalling in a tomato cell

The image illustrates a diagram of proposed ethylene action in a tomato cell. The ER

membrane-bound ethylene receptors associate with the downstream Ser/Thr kinase

CTR1, CTR3 and CTR4. The GREEN-RIPE protein is located in the Golgi and affects

the ethylene sensitivity of the receptors. The ER membrane protein EIN2 acts

genetically downstream of CTRs and negatively regulates an ethylene response

transcription factor EIN3. The EBF1 and 2 are E3 ubiquitin ligase targeting EIN3 for

degradation. EBF mRNA is degraded by EIN5 possibly as a feedback loop of ethylene

responses. The cytosolic LeCTR2 might be a homologue of the Arabidopsis EDR1 and

negatively regulates the defence response and ethylene-induced leaf senescence.
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APPENDIX

Sequence of IntCR22

LOCUS IntCR22 1473 bp DNA linear

KEYWORDS Interacting with CTR2 clone 22

ORGANISM Solanum lycopersicum (Lycopersicon esculentum)

1 atgggtgttc ttactataga gccacatttt gtgttgtttc ctttcatggc acaaggccat

61 acaatcccta tgattgatat tgcgcgatta ctagcacaac gcggagttat tatcacaatc

121 gttacaacac atttgaacgc gaatagattc aagaaagtca ttgatcgcgc tatagaatca

181 ggactgaaaa ttcaggtggt tcatctctac tttccaagct tagaggctgg actgcctgaa

241 ggatgtgaaa atttcgacat gcttccatcg atggatttgg ggctgaaatt cttcgatgct

301 acggaaagac ttcagcccca agtggaagaa atgttgcgag aaatgaaacc ttcaccaagt

361 tgtataatat ctgatatgtg tttcccatgg acaactaatg ttgcacaaaa gttcaacatt

421 cctagaattg ttttccatgg aatgggttgc ttttctttgt tatgtttaca taatttgaaa

481 gattgggaag ggttagaaaa gatcgagtct gatacagagt attttcgagt gcctggattg

541 ttcgacaaga ttgaactaac caaaaatcag cttggaaatg ctgccaggcc gagaaatgaa

601 gagtggcgag taatgagtga aaaaatgaag aaagcggagg aggaagctta tggaatggtg

661 gtgaatacct ttgaggattt ggaaaaagaa tacatcgagg gtttaatgaa tgcgaaaaac

721 aagaaaattt ggaccattgg ccctgtttca ctctgtaaca aagaaaaaca ggacaaagct

781 gaaagaggga acgaggctgc aattgatgaa cacaagtgtc taaactggct tgattcgtgg

841 gaacaaaact ctgtactctt tgtatgtctc gggagcctat cgcgcctttc cacgtctcag

901 atggttgagc tagggcttgg gttagaatca tcgagacgac cctttatttg ggttgttaga

961 cacatgtcag atgagttcaa gaattggcta gttgaagaag attttgagga aagagttaaa

1021 gggcaaggac tattaatccg cggttgggcg ccacaagtac tactcttgtc acatccttca

1081 ataggtgcgt tcttgactca ctgtggatgg aattcgagcc tggaaggtat aaccgctggc

1141 gtggccatga tcacttggcc aatgtttgct gagcagtttt gtaatgagag gttaatagtg

1201 gatgtactca agacaggagt gaggtcaggc atagagaggc aagtgatgtt tggagaagaa

1261 gaaaaattgg gaacacaagt aagcaaagat gacattaaga aggtgattga acaagtgatg

1321 gatgaagaaa tggaaggtga aatgagaaga aaaagagcaa aagaattagg agaaaaggca

1381 aagagggcta tggaggaaga gggttcatct catttcaact tgacacaatt gattcaagat

1441 gtgacagagc aagcaaaaat tttaaaacct atg

//
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Sequence of IntCR242

LOCUS IntCR242 1389 bp DNA linear

SOURCE

ORGANISM Solanum lycopersicum (Lycopersicon esculentum)

1 atggcttctt tgtctataga catagccacc acctttatgg gactggccaa gcgtcagacc

61 ccacagttct atggtcttcg tacagcagtg ttcccaactt tgtggaaaac aagcaaatgt

121 cagaggttca gtttatccac tagttcctct tcgagaatta gtgttgcaat caatacttct

181 tcaaaaccaa acagattctc tcgcggattt actgtttctg ctacatctac ttccgccccg

241 caaagcgagg actctgatat cttaaccaag attcctcaag ataatcgaat tccagctacc

301 attatcactg gtttcttggg ttctgggaaa actaccttat taaatcacat attgactgcg

361 gatcatggca agcgcattgc tgttatagag aatgagtatg gtgaagtgga tattgatggt

421 tctttggttg ctgcaaaaac tgctggggcg gaggagatta tgatgcttaa caatgggtgt

481 ctctgttgca ctgtgagggg tgatctagta agaatgatcg cagagttggt cagtagaaag

541 aaagggaaat ttgaccatat tgtcatagag actacaggat tggcaaatcc tgcaccaatt

601 attcaaactt tctacgcgga ggatcaggtt ttcaatgatg ttaagttgga tggtgttgtt

661 acactggttg attctaaaca tgttggtttt cacttggatg agactaagcc aaaaggtgtc

721 gtcaatgaag cagttgagca aatagcttat gctgaccgta ttataattaa caagactgat

781 cttgttggtg attctgaagt ttcttctttg attcagcgaa ttaagaacat aaataagatg

841 gctcatttga agaggacaca gtttggaaaa gtcgatttgg actatgtcct agggattgga

901 ggctttgatt tggaaagaat tgagagttcg gttggtgctg aaggttctaa ggaggaccat

961 actggccatg atcatgatca tgatcatgat caccaccacc atcatgacca cgaccatgat

1021 catgaacatg aacatgaaca tgatcacaag catgagcatc atgatcatca ccattctcac

1081 gatcatactc atgaccctgg tgtttcttct gtcagcatag tttgtgaagg gaccttggat

1141 cttgagaagg ctaatatgtg gttgggaacg ttgctgatgg aacgaagcga tgacatatat

1201 cggatgaagg gtcttttatc tgttgaggga atggatgaga gatttgtctt tcagggagtc

1261 catgacatat ttcaaggttc tccagatagg ccatggaagt cggacgaact aagaacaaac

1321 aagatagtgt ttatagggaa gaacttagat gctaaggaat tagaggaggg cttcaaagcc

1381 tgtttaaca

//



Appendix

- 202 -

Sequence of IntCR266

LOCUS IntCR266 2124 bp DNA linear

KEYWORDS Interacting with CTR2 clone 266

ORGANISM Solanum lycopersicum (Lycopersicon esculentum)

1 atggccaatt ctgtactctc ttccaatttc ttgggttccc aaatctttgt ttctcctccc

61 acacctaaaa cctcaaggta tttccatctt cactccagaa gaaagtatat agttcctcaa

121 tcaattctca gcaaaaaatc caattcagat aatttcaaga atgttccatc taaagctgct

181 atagctgctt tactcttctc ttcaatcacc ccacaagctt ttgctcttga taatacaacc

241 ccagcagcac caccacaagt gattgaagct gaagcaccaa aacctagtgc ctcaaactca

301 ttaccctttg ctcaaaatat cattttgaat gctccaaaga ctcaagcgca gcctgcttct

361 gaccttcctg aaggtactca atggaggtac agtgagttct tgaatgctgt gaagaagggg

421 aaagttgaaa gggttagatt tagtaaagac ggaagtaccc ttcagcttac agctgtagat

481 gggcgtagag ctaatgtaat tgtgcctaat gacccggatt taatcgatat tttggcgatg

541 aatggtgttg atatatcagt ttctgaaggt gaagggggta atgggttgtt tagtgttatt

601 gggaacttgt tgttccctat tattgctttt gctgggttgt ttttcctttt caggcggtct

661 cagggcggcc caggtgggcc tggaggactt ggcgggccga tggatttcgg ccggtctaag

721 tccaagtttc aggaggtgcc tgaaactgga gtgacttttg ctgatgttgc tggtgctgat

781 caagctaaat tggagttgca ggaagtggtt gatttcttga aaaatcctga taagtatact

841 gctttaggtg ctaagatacc aaaagggtgt cttttagttg gtccaccagg tactggaaag

901 acccttttag ctagagcagt agctggtgag gctggtgtgc catttttctc ttgtgcagcg

961 tcagagtttg ttgagttgtt tgtgggtgtg ggagcttcta gagttaggga tttgtttgag

1021 aaggcaaagt cgaaagcacc ttgtattgtg tttattgatg agattgacgc tgtgggaagg

1081 caaagaggtg caggtcttgg aggtggaaat gatgagaggg agcagactat taatcagctt

1141 ttgactgaaa tggatgggtt ctctggaaat tcgggtgtca ttgttttggc tgcaactaac

1201 aggcctgatg ttcttgattc tgccttgttg agacctggaa ggtttgatcg acaagtgact

1261 gtggataggc ctgatgttgc tggtagagtc aggattcttc aggtgcattc tagaggaaag

1321 gcccttgcca aggatgtgga ctttgataag attgccagga gaacaccagg tttcaccggt

1381 gcagatttgc aaaacttgat gaatgaagca gccatccttg cagctaggcg tgacctaaag

1441 gaaataagta aagatgagat atccgatgct ctagagagga taattgctgg cccggagaag

1501 aaaaatgctg ttgtctcaga tgagaagaag aagctggtag cttatcatga ggctggccat

1561 gccttggttg gtgcacttat gcccgagtat gatcctgttg ccaagatatc tataattcct

1621 cgaggccaag ccggtggtct caccttcttt gcccccagcg aagaaagact tgagtcaggc

1681 ctgtacagca ggagctatct agagaatcaa atggcagttg cacttggtgg aagagttgct

1741 gaggaggtta tttttggaca agacaacgta acaactggag catctaacga tttcatgcaa

1801 gtctcacgag tggcaaggca gatggttgag agattaggat tcagcaaaaa gataggccaa

1861 gttgccattg gaggaggtgg tggaaacccg ttcctaggcc aacagatgtc aacccagaaa

1921 gactactcca tggcaacagc cgatgtggtc gatgctgaag taagggaatt ggttgaaaag

1981 gcgtacgaaa gagctacaca aatcatcaca actcacatcg acatcctaca caagcttgct

2041 cagctgttga tagagaaaga aactgttgat ggtgaagagt tcatgagcct tttcattgat

2101 ggcaaggctg agctatacat ttct

//
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Figure: Ethylene-induced leave senescence phenotype of edr1 mutant

The edr1 seeds were a kind gift from Prof. Roger Innes (Department of Biology, Indiana

University). The wild-type and edr1 plants were grown for 6 weeks in a short-day (8 h

photoperiod) growth room and treated with 100 ppm ethylene in a sealed plastic

container for 72 h. The mutant plant (right) developed more chlorotic leaf (yellowed)

than wild-type (left) as reported in Frye et al. (2001).
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Figure: Ethylene-induced enhanced senescence phenotype of the LeCTR2

transgenic lines

The 6-week-old Arabidopsis plants grown in short day condition (8 h photoperiod) were

treated with 100 ppm ethylene for three days before the images were taken. The

wild-type transformed with the LeCTR2 and LeCTR2-GFP constructs (right) developed

more senescent leaves than the untransformed wild-type (left).

(A) and (C): Wild-type

(B) Wild-type transformed with CaMV35Spro::LeCTR2

(D) Wild-type transformed with CaMV35Spro::LeCTR2-GFP
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Figure: PR1 expression in LeCTR2 transgenic lines after ethylene treatment

Northern blot assay was carried out using RNA extracted from the aerial part of the

Arabidopsis plants treated with 100 pm of ethylene for three days. The mutant edr1 has

the highest PR1 mRNA level. PR1 expression in the LeCTR2 transgenic lines (1 to 4) is

stronger than that of the wild-type. The UV photograph of the ethidium bromide stained

membrane was shown below the autoradiography image.

WT: untransformed wild-type Arabidopsis (Col-0)

edr1: enhanced disease response 1

Lane 1 and 2: Wild-type transformed with 35S:LeCTR2

Lane 3 and 4: Wild-type transformed with 35S:LeCTR2-GFP

Figure: Purified IntCR22-GST protein

IntCR22 protein fused to GST was purified from yeast using GST affinity resin and

western blot was performed as previously described (Section 2.11 and 2.14). This

showed that the recombinant IntCR22-GST protein was purified. A) SDS-PAGE gel

stained with SimplyBlue; sizea of the protein markers are indicated. B) Western blot

detection of IntCR22-GST using GST antibody.

Lane 1 to 4: Flow through of the washes

Lane 5: Elute, IntCR22 (50 kDa) fused to GST (30 kDa)

Lane 6: Positive control, GST alone (30 kDa)
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TABLE1: pDH51-based vectors.

Name Expression cassette E. coli and antibiotic

pDH51 35S-MCS-T DH5α (Amp)

pDH51-GW 35S-GW-T DB31 (Amp, Cm)

pDH51-CFP 35S-Cerulean-T DH5α (Amp)

pDH51-EGFP 35S-EGFP-T DH5α (Amp)

pDH51-YFP 35S-Venus-T DH5α (Amp)

pDH51-mRFP1 35S-mRFP1-T DH5α (Amp)

pDH51-GW-CFP 35S-GW-Cerulean-T DB31 (Amp, Cm)

pDH51-GW-GFP 35S-GW-EGFP-T DB31 (Amp, Cm)

pDH51-GW-YFP 35S-GW-Venus-T DB31 (Amp, Cm)

pDH51-YFPN 35S-YFPN-T DH5α (Amp)

pDH51-YFPC 35S-YFPC-T DH5α (Amp)

pDH51-GW-YFPN 35S-GW-YFPN-T DB31 (Amp, Cm)

pDH51-GW-YFPC 35S-GW-YFPC-T DB31 (Amp, Cm)

MCS, multiple cloning site; GW, gateway cassette with attR1 and attR2 recombination

sites; 35S and T, cauliflower mosaic virus 35 S promoter and terminator; Amp,

ampicillin resistance; Cm, chloramphenical resistance; YFPN, N-terminus of Venus (aa

1-154); YFPC, C-terminus of Venus (aa 155-238). Accession number:

AM773751-AM773753; AM779183; AM779184.

Table2: Gateway compatible binary vectors with 35S promoter.

Backbone

FP Tag

pGreen0029

Kan+

pGreen0229

BAS+

pGreen0179

Hyg+

Cerulean (CFP) pGKPGWC pGBPGWC pGHPGWC

EGFP pGKPGWG pGBPGWG pGHPGWG

Venus (YFP) pGKPGWY pGBPGWY pGHPGWY

All plasmids were propagated in DB31 (kanamycin and chloramphenical). The in planta

selection marker gene is based on the pGreen backbone. Kan+, kanamycin resistance;

BAS+, BASTA resistance and Hyg+, hygromycin resistance. Accession number:

AM884371-AM884379.

Table3: Gateway compatible binary vectors without 35S promoter.

Backbone

FP Tag

pGreen0029

Kan+

pGreen0229

BAS+

pGreen0179

Hyg+

Cerulean (CFP) pGKGWC pGBGWC pGHGWC

EGFP pGKGWG pGBGWG pGHGWG

Venus (YFP) pGKGWY pGBGWY pGHGWY

All plasmids were propagated in DB31 (kanamycin and chloramphenical). The in planta

selection marker gene is based on the pGreen backbone. Kan+, kanamycin resistance;

BAS+, BASTA resistance and Hyg+, hygromycin resistance. Accession number:

AM884380-AM884388.


