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Abstract 

 

The venom of the black widow spider (BWSV) uniquely contains a family of high 

molecular weight proteins that cause uncontrolled vesicle release in synapses. Two 

membrane receptors for BWSV have been identified, one of these being 

latrophilin/CIRL (LPH), a member of the G-protein coupled receptor superfamily of 

cell-signalling receptors and the other being neurexin. In mammals, LPH and neurexin 

have been shown to bind BWSV, but their function is unclear. 

 

We established C.elegans as a model system for studying the effects of BWSV by 

microinjection of venom into wild-type (N2) C.elegans, which showed that the venom had 

an acute lethal effect over a million-fold range of concentrations. BWSV treated with 

SDS (0.1%) or heat before injection reduced the kill rate in N2 C.elegans to zero, this 

suggests that the active component of the venom is a protein. FPLC of BWSV 

demonstrated that the active component of BWSV toxic to C.elegans resembles ε-

latroinsectotoxin. Identification of a homologue of the latrophilin gene in C.elegans, 

BO457.1, induced a functional knockout of the latrophilin gene by RNA interference 

(RNAi). The knockout was examined for a change in phenotype, which occurred in 

RNAi treated worms, compared to N2, and was extensively characterised. LPH knockout 

C.elegans were completely resistant to the lethal effects of BWSV over the same 

concentration range as that used in the N2 worms, whereas RNAi of CYP37A1, 

BO286.2 and neurexin 1α homologue has no effect on BWSV toxicity. 

 

We have shown that a C.elegans latrophilin homologue mediates the toxic effects of black 

widow spider venom in the nematode and identified a high molecular weight latrotoxin 

that kills C.elegans. Additionally, the data provide evidence for an important role of LPH 

in nerve cell function. 
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…. be systematically ascetic or heroic in little unnecessary points, do everyday something 

for no other reason than that you would rather not do it, so that when the hour of dire 

need draws nigh, it may find you not unnerved and untrained to stand the test………. 

William James 
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Abbreviations 

 

A     Adenine 

Amp     Ampicillin antibiotic 

BSA     Bovine Serum Albumin 

bp     Base pair 

BWSV     Black Widow Spider Venom 

C     Cytosine 

DEPC     Diethylpyrocarbonate 

DNA     Deoxyribonucleic acid 

cDNA     Complementary DNA 

DTT     Dithiothreitol 

EDTA     Ethylene diamine tetra acetic acid (disodium salt) 

EtBr     Ethidium Bromide 

G     Guanine 

IAA     Isoamyl alcohol 

IPTG     Isopropyl-β-D-thiogalactopyranoside 

kb     Kilobase 

kDa     KiloDalton 

LB     Luria-Bertani (Medium) 

LCT     Latrocrustatoxin 

LIT     Latroinsectotoxin 

LPH     Latrophilin 

LTX     Latrotoxin 

NGM     Nematode Growth Medium 
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PAGE     Polyacrylamide Gel Electrophoresis 

PCR     Polymerase Chain Reaction 

RNA     Ribonucleic acids 

cRNA     Complementary RNA 

dsRNA     Double-stranded RNA 

mRNA     Messenger RNA 

RNAi     RNA Interference 

SAP     Shrimp Alkaline Phosphatase 

SDS     Sodium Dodecyl Sulphate 

SEC     Size Exclusion Column 

T     Thymine 

TAE     Tris/EDTA/Glacial acetic acid buffer 

TBE     Tris/Boric acid/EDTA buffer 

TBS     Tris Buffered Saline 

TEMED    N,N,N’,N’-tetramethylethylenediamine 

Tet     Tetracyclin Antibiotics 

UHP     Ultra High Purity 

WWW     World Wide Web 

 

All amino acids indicated by their standard single letter or three letter abbreviations 

where appropriate 
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Chapter 1.   Introduction. 

 

1.1 The Black Widow Spider 

1.1.1 Black Widow Spider Venom 

During the centuries that humans and spiders have shared the environment the human 

response to these ancient animals has varied between fascination and pure terror. Even 

though spiders are not naturally aggressive animals, some species seem to have 

developed venoms that not only immobilise prey, but also work in a defensive capacity. 

Most spiders feed on insects or arthropods (Rash & Hodgson, 2002), yet spiders such as 

the Black Widow Spider (Latrodectus mactans tredisimguttatus) have venom that can cause 

severe adverse effects in mammals, including man. 

Clinically, the bite from a black widow spider is not usually fatal, nor a significant health 

problem in adult humans (Sudhof, 2001). Only in severe cases, such as when a young or 

old person is bitten, does latrodectism take place. Symptoms consist of muscle pain, 

abdominal cramps, sweating, increased blood pressure and tachycardia. Death occurs in a 

few, rare cases as a result of paralysis of the diaphragm. 

Spider venoms, including those of the black widow, represent a source of substances, 

which have biological activity, that selectively target a multitude of physiological 

functions in both insects and mammals (Rash & Hodgson 2002). The major constituents 

of venoms are proteins, polyamine and polypeptide neurotoxins, nucleic acids, amino 

acids, enzymes and inorganic salts, though not all of these substances are necessarily 

biologically active. 

Over the last decade the interest and volume of scientific publications studying spider 

toxins, especially the venom of the black widow spider, has increased immensely. This is 

because one of the components of black widow spider venom (BWSV), α-latrotoxin, has 
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shown itself to be extremely useful. α-latrotoxin is used to study synaptic transmission 

because it acts in a selective nature on synaptic nerve terminals to stimulate synaptic 

vesicle exocytosis (Grishin, 1998 & Sudhof, 2001). 

The study of BWSV has not just led to the discovery of a vertebrate specific venom 

component which has subsequently led to the discovery of two families of synaptic 

receptors and their modes of action, but also the discovery of a number of different 

venom components which have themselves differing species specificity. BWSV is 

unusual compared to other spider venoms because the active components of the venom 

are high molecular weight proteins (Frontali et al, 1976). 

The isolation and identification of BWSV components was carried out using 

fractionation on a MonoQ column (Frontali et al, 1976, Krasnoperov et al, 1992, Ashton 

et al, 2000). By further ion exchange and hydrophobic chromatographic fractionations 

(Krasnoperov et al, 1992, Ashton et al, 2000) each individual toxin was isolated, giving a 

total of seven separate venom components, one crustacean toxin, five insect toxins, and 

one mammalian toxin. Toxins were named α-latrocrustatoxin (α-LCT) for the crustacean 

toxin, α-latroinsectotoxin (α-LIT), β-latroinsectotoxin (β-LIT), γ-latroinsectotoxin (γ-

LIT), δ-latroinsectotoxin (δ-LIT) and ε-latroinsectotoxin (ε-LIT) for the insect toxins 

and α-latrotoxin (α-LTX) for the vertebrate toxin. These toxins along with their 

molecular weights and species toxicity are shown in Table 1.1. 

Purified toxins show a high level of specificity to particular phyla, for example, α-LCT 

has an LD50 of 100µg/kg in the crayfish Procambarus cubensis and Astacus astacus, it also has 

a toxic effect on crabs and shrimps (Krasnoperov et al, 1992). Yet there is no toxic effect 

of α-LCT in either mammals or insects at doses up to 5mg/kg. This is the same with 

insectotoxins, though they show toxicity (at different levels) in insects they also show no 
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cross-species toxicity, with no toxicity seen in crayfish or mammals at doses greater than 

5mg/kg (Krasnoperov et al, 1992). 

 

Toxin Name 

    α-LCT α-LIT β-LIT γ-LIT δ-LIT ε-LIT α-LTX 

Mol. Weight (kDa)  120 120 140 120 110 110 130 

LD50 (µµµµg/kg)   100* 15+ 25+ 250+ 60+ 1000+ 20= 

Yield (% total protein)  0.5 3 0.2 0.2 0.4 2 3 

Table 1.1 Characteristics of Isolated Latrotoxins (Reproduced from Grishin 1998). 
+ Tested on insect larvae (Galleria mellonella) 
* Tested on crayfish (Procambarus cubensis) 
= Tested on mice 
 

1.1.1.1 Latrocrustatoxin (αααα-LCT) 

α-LCT is fractionated from crude BWSV by MonoQ column chromatography and is 

eluted in the first protein fraction; it makes up 0.5% of the crude venom and has a 

molecular weight of 120 kDa. The toxin causes neurosecretion at crustacean synapses. 

The α-LCT protein is 1385 amino acids in length and shares similar domain structure to 

those of α-LIT, δ-LIT and α-LTX (Grishin, 1998 & 1999). The domain structure 

contains an N-terminal domain of 466 aa residues, which contains two conserved 

hydrophobic regions, which form transmembrane segments, these areas are highly 

homologous in α-LIT, δ-LIT and α-LTX. Following this, LCT has a series of ankyrin-

like repeats between 466 & 1183 aa, with a highly variable region at positions 921-1031 

aa, a further three highly homologous regions occur in a 202 aa C-terminal end. Though 

this C-terminal domain is removed during toxin maturation (Grishin, 1999). 
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1.1.1.2 Latroinsectotoxins (LIT) 

There are five latroinsectotoxins, which have been characterised in BWSV these are α-

LIT, β-LIT, γ-LIT, δ-LIT and ε-LIT. These toxins are separated from the crude venom 

by MonoQ column chromatography; insectotoxins are eluted in both the second fraction 

of proteins (α, β, γ, ε-LITs) and the third fraction of proteins (δ-LIT). All insectotoxins 

show no toxic activity in mice or crayfish at doses of 5mg/kg body weight and above 

(Krasnoperov et al, 1992). 

Data in Kiyatkin (1993), show that α-LIT is a protein 1376 amino acids in length and a 

pI of 6.38, δ-LIT cDNA encodes a protein of 1186 aa, making the amino acid sequence 

of δ-LIT 190 aa shorter than α-LIT (Dulubova et al, 1996). Alignment of the α & δ-LITs 

protein sequences show that they have conserved regions covering the whole protein, δ-

LIT has a 38% identity with α-LIT (Dulubova et al, 1996) compared to the 34% identity 

of α-LIT with α-LTX (Grishin, 1998). 

The largest similarity of the insectotoxins takes place in the N-terminal end, which is also 

the area in which there is most similarity between all toxin components, including LCT, 

LITs and LTX. Areas containing the highest levels of sequence variability take place in 

the same region of all toxins, these are present in residues 910-935 and 1027-1030, and 

these areas could be responsible for specificity of toxin binding to its presynaptic 

receptor. Maturation of the protein is required for functionality of the toxin. Data from 

Dulubova (1996) shows that with δ-LIT, C-terminal truncation is necessary for the toxin 

to cause neurotransmitter release. 
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1.1.1.3 αααα-Latrotoxin (αααα-LTX) 

α-LTX is the only component of BWSV that shows toxicity in mammals (Table 1.1). 

α-LTX, like the other toxins in BWSV is a high molecular weight protein; it has an 

apparent molecular mass of 120kDa on SDS-PAGE (Frontali et al, 1976), though its 

cDNA sequence encodes a larger protein (160kDa). Expression of the full-length protein 

does not yield a functional toxin (Kiyatkin et al, 1993), although a truncated variant is 

active (Ichtchenko et al, 1998) which suggests that the protein is cleaved in the venom 

gland to produce the mature toxin (Kiyatkin et al, 1990).  

 

α-LTX 
1   470   935 1030 1181  1381 

 

α-LIT 
1   465   926 1027 1176  

 

α-LCT 
1   466   921 1031 1183  

 

δ-LIT 
1   459   910  991  1027 

 

 

Figure 1.1 Domain structure and alignment of latrotoxins. 
Three of the four domains of latrotoxin are shown for each of the aligned toxins. 
are α-latrotoxin, α-latrocrustatoxin and two insectotoxins α & δ. The cleaved sign
Domain I is not shown. Black striped box shows Domain II, the N-terminal cons
which is around 470 amino acids for each toxin. The central domain, Domain III 
black box this is made up of a number of ankyrin-like repeats; it consists of betwe
amino acids. Within it is the white box, which represents the area of Domain III, 
highest variation between toxin types. The final hatched box shows Domain IV th
domain, which, like Domain I is cleaved upon maturation of the toxin. 

  

 

 

  
IV
1376 

1385 

 

 

IV
IV
IV
III
III
III
III
II
II
II
II
These toxins 
al peptide, 
erved domain, 
is shown as the 
en 532-717 
which has the 
e C-terminal 



 

 21 

α-LTX has protein sequence homology with α-LCT, α-LIT and δ-LIT across its entire 

sequence length, exhibiting 37% identity with δ-LIT, and 34% identity with α-LIT 

(Grishin, 1998). 

The toxin is composed of four domains, which are highly conserved throughout all 

BWSV components. Domain I is a signal peptide, which is cleaved upon maturation. 

Domain II is the conserved N-terminal region. Domain III is the central region made up 

of ankyrin-like repeats, with the fourth domain being the C-terminal end, which, like the 

signal peptide in Domain I is cleaved during maturation of the toxin (Kiyatkin et al, 1990, 

Dulubova et al, 1996, Grishin, 1998, Sudhof, 2001). A schematic representation of α-

LTX is shown in Figure 1.1. 

Purification of α-LTX using chromatography of BWSV shows that the main toxin is 

isolated in a complex with a low molecular weight protein of ~8kDa. This purified α-

LTX has been shown to form a complex in solution with the low molecular weight 

protein (Petrenko et al, 1993). In the absence of divalent cations the toxin will form a 

dimer while the presence of cations will cause the formation of tetramers (Ashton et al, 

2000). 

Further studies into the structure/function relationship of α-LTX (Ichtchenko et al, 

1998) using recombinant α-LTX synthesised using baculovirus expression vectors show 

that truncated forms of the toxin at the C-terminal end are just as potent in causing 

neurotransmitter release as the natural toxin (Ichtchenko et al, 1998), this supports the 

theory that the C-terminal end which is usually cleaved during maturation is not required 

for toxin formation of activity. Further use of toxins with the presence of increased 

numbers of amino acids between the conserved cysteine residues in the N-terminal 

region and the anykrin-like repeats region causes a loss of function of the toxin, though 
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this does not affect toxin binding (Ichtchenko et al, 1998). This indicates the importance 

of the distance between the cysteines and the repeat region in the function of the toxin. 

The 3D structure of the toxin has also been partially elucidated (Orlova et al, 2000) by 

cryo-electron microscopy. This data has shown that the latrotoxin is not a monomer, but 

a dimer, which can tetrimise (Orlova et al, 2000). The toxin has three distinct domains, 

head, wing and body, which are linked together. The 3D structure corresponds to the 

primary protein structure of α-LTX, the wing consists of residues 1-320 of the N-

terminal domain, the rest of the residues are split between the body (320-982) and the 

head (1015-1179). 

Latrotoxin monomers will assemble into stable dimers with the wings of the molecules 

pointing in a perpendicular direction (Ushkaryov, 2001). These assembled dimers can 

then spontaneously form the cyclical tetramers, in the presence of divalent cations 

(Ashton et al, 2000); this process requires significant conformational changes. The 

tetramers have two important features; the monomers surround a central channel that 

stretches the entire length of the molecule and the base of the tetramer is hydrophobic 

(Orlova et al, 2000) both of these factors are important in the action of the toxin by 

channel formation of the toxin and receptor based interaction. 

 

1.1.2 Channel formation by αααα-LTX 

α-LTX has a complex mode of action, which has still to be fully understood. Stimulation 

of neurotransmitter release by the toxin is thought to occur by direct formation of pores 

in the plasma membrane or by binding to a receptor leading to intracellular second 

messenger signalling causing neurotransmitter release. There is limited evidence for either 

of these modes of action and the possibility of collaboration between the modes of 

action to cause a toxin induced response. 
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The formation of pores or channels by α-LTX – which causes extracellular Ca2+ influx 

and cell morphology disruption (Volynski et al, 2000) – is one of the most important 

activities of α-LTX. 

The discovery of the 3D structure of α-LTX (Orlova et al, 2000) shows that the tetramer 

form associated with the non-vesicular release of cations from cells (Ashton et al, 2000) 

has a distinct resemblance to a pore (Ushkaryov, 2001). 

Many observations have been made regarding pore-formation and how it occurs; for 

example, neuroendocrine cells, which contain α-LTX receptors when exposed to toxin, 

will open cation channels (Hlubek et al, 2000), which suggest that the toxin inserts into 

the membrane spontaneously to form a channel in vivo. In Xenopus oocytes that do not 

express α-LTX receptors, the addition of toxin does not cause channel opening, only the 

addition of total brain mRNA will α-LTX cause Ca2+ channels to open, channels 

probably form after mRNA addition from brain as they contain α-LTX receptor 

proteins. Based on these different experiments it would appear that the 

binding/tethering of α-LTX to its receptors is necessary for the toxin to insert into 

membranes where it forms a non-selective cation channel (Ashton et al, 2000). This 

channel formation directly causes the release of neurotransmitters without the use of 

receptor based cell signalling. 

Insertion of the toxin directly into the lipid bilayer of liposomes was directly observed by 

cryo-EM (Orlova et al, 2000). Based on these EM images of the toxin in the membrane 

four important aspects of pore formation were discovered. That the tetramer inserts into 

the bilayer with its base, the base fully penetrates the membrane, the upper part of the 

tetramer remains above the membrane with the “wings” anchoring the toxin to it and the 

central channel causes the opening of the membrane (Ushkaryov, 2001). Depending on 

conditions the channel size will be ~10-25 Angstroms in size (Ushkaryov, 2001), the size 
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of the pore means that other molecules can pass through the central channel including 

water and neurotransmitters (Davletov et al, 1998). Anti-α-LTX antibodies can block the 

pore due to the presence of the tetramer on the membrane surface (Volynski et al, 2000). 

The structure of α-LTX has a role in its interaction with α-LTX receptors in pore 

formation, with the N-terminal wing responsible for tethering to α-LTX receptors; this 

has been shown by experimentation with truncated forms of the receptor (Ichtchenko et 

al, 1998). 

The model of the toxin, and its formation of channel containing tetramers, (Orlova et al, 

2000) appear to be the best model explaining channel formation by α-LTX. It is 

apparent though that pore formation does not account for all the activities of the toxin, 

but discovery of the 3D structure has been a valuable addition to understanding α-LTX 

pore formation. 

 

1.1.3 Receptor based interaction of αααα-LTX 

α-LTX can also cause neurotransmitter release by interaction with its receptors. In order 

for exocytosis to occur, α-LTX has to bind to specific neuronal receptors. Receptors are 

localised near the active zone of the presynaptic plasma membrane. Two classes of 

receptor are present at these points, in equal numbers; they both bind the toxin at the 

same nanomolar concentrations. The main difference between these receptors, apart 

from their structure, is that one receptor binds α-LTX in the presence of Ca2+ whereas 

the other will bind α-LTX without the presence of Ca2+. 

The Ca2+ dependent class of receptor are neurexins, while the Ca2+ independent class of 

receptor is latrophilin or CIRL (Calcium Independent Receptor for Latrotoxin). 
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1.1.4 Latrophilin/CIRL 

The α-LTX receptor latrophilin was isolated from bovine brain membranes by affinity 

chromatography (Davletov et al, 1996 & Krasnoperov et al, 1996). Further cloning studies 

have revealed that there are three closely related forms of latrophilin expressed in 

vertebrates (Sugita et al, 1998). All of these latrophilins are G-protein coupled receptors 

with large intra and extracellular domains and have the same domain structure (Sugita et 

al, 1998). 

Figure 1.2 shows the structural domains of latrophilin. (Modified from Sugita et al, 1998). 

The N-terminal, a cleaved signal peptide is followed by four domains covering ~500 

amino acids. The first domain is a lectin-like domain, the second a factomedin like 

domain, a third domain which shows homology with the G-protein coupled receptor 

BAI1-3 a brain-specific angiogenesis inhibitor, and the fourth domain featuring a short 

cysteine rich domain. This short cysteine rich sequence before the first transmembrane 

repeat has a high level of identity with other G-protein coupled receptors (Sugita et al, 

1998). The cysteine rich region may represent the site of a proteolytic cleavage signal 

during receptor maturation; this area has been termed the GPS region (Ichtchenko et al, 

1999). 
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Figure 1.2 Domain structures of latrophilin/CIRL. 
Four extracellular domains are present above the plasma membrane. The seven trans
region is similar to those in the calcitonin/secretin receptor family. Intracellular regio
domain structuring. Extracellular domains III & IV share homology with the BAI1-3
family of G-protein-coupled receptors respectively. 
 
 
The seven transmembrane region of latrophilin is related to the calcitonin/sec

of G-protein coupled receptors. Following the transmembrane region, latroph

long intracellular C-terminal tail, which is in the region of 500 amino acids in l

region is liable to alternative splicing (Sugita et al, 1998). 

The three forms of latrophilin identified in vertebrates are expressed separatel

Latrophilin-1 was first thought to be brain specific (Lelianova et al, 1997) but R

blotting techniques show expression of the protein in all tissues at low levels (

1998), latrophilin-2 is expressed in most tissues outside the brain, with low lev
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brain, latrophilin-3 is present only in the brain (Ichtchenko et al, 1999). Both latrophilin-1 

& 2 bind α-LTX at nanomolar concentrations whereas the third latrophilin protein 

cannot bind the toxin (Ichtchenko et al, 1999). 

The role of the latrophilins in vivo and the natural ligands of the receptors are unknown. 

By looking at their structure though, it appears that they have a physiological function 

possibly as cell adhesion molecules. Confirmation of latrophilin being a Ca2+ independent 

receptor was shown in Lang (1998), where synaptosomes lacking latrophilin were 

administered α-LTX and showed that α-LTX induced glutamate release was ablated, 

whereas depolarised release was normal. α-LTX induced release was prevented with and 

without Ca2+ present; this is in contrast to synaptosomes lacking neurexin, which showed 

glutamate release only when Ca2+ was present. 

 

1.1.4.1 Latrophilin as an αααα-LTX receptor 

The potential mechanism for latrophilin-mediated exocytosis is still unknown. After the 

original discovery that latrophilin is a G-protein coupled receptor it would have been 

expected that α-LTX triggers an intracellular G-protein linked second messenger 

cascade, which ultimately leads to exocytosis. 

Truncation of cytoplasmic regions has no detrimental effect on latrophilin’s ability to 

cause exocytosis when in contact with α-LTX (Hlubek et al, 2000). This data was 

generated using a cell-culture system and it is not clear whether these responses would 

also take place in vivo, meaning that C-terminal regions may still be important in starting 

intracellular cascades leading to neurotransmitter release. Yet, there still may be evidence 

for neurotransmission without intracellular signal transduction to cause exocytosis, if this 

is the case then what is the internal mechanism governing latrophilin-α-LTX transmitter 

release? It may well be that the latrophilin receptor acts as a tether for the toxin, and has 



 

 28 

no role in the intracellular transduction of α-LTX. Published data supporting the use of 

the α-LTX receptors as signalling molecules mediating the neurotransmitter release 

caused by α-LTX is scarce, while data supporting α-LTX working as a transmembrane 

pore is more numerous. At this current time the argument over which mechanism 

governs α-LTX induced toxicity is firmly in the favour of the toxin working as a pore-

forming molecule which is recruited to the plasma membrane by the latrotoxin receptor 

acting as a tether for the toxin. Little evidence is available regarding the activation of 

latrophilin in terms of signalling, though within the scope of this thesis we hope to show 

a role for latrophilin as a signalling molecule. This is an important area to address, as 

structurally latrophilin resembles a G-protein coupled receptor with characterised 

signalling properties 

 

1.1.5 Neurexin 

Neurexins were first isolated as possible receptors for α-latrotoxin after affinity 

chromatography of binding proteins on a column containing immobilised α-LTX 

(Ushkaryov et al, 1992). 

Neurexins are a family of neuron-specific cell-surface proteins. Like latrophilin’s, there 

are three neurexin genes present in vertebrates, called neurexin 1, 2 & 3. These genes are 

under the control of two distinct promoters, leading to the formation of neurexin α I, II 

& III and the β neurexins I, II & III (Ushkaryov et al, 1992 & Ushkaryov et al, 1994). 

The structure of neurexin is of a cell-surface receptor with a large extracellular sequence, 

which is homologous to the laminin G-domains, O-linked glycosylation sequences, a 

transmembrane region and a short C-terminal sequence (Henkel et al, 1999). 

Figure 1.3 shows the structures of neurexin α and β (modified from Sudhof, 2001). 
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Figure 1.3 Domain structures of neurexins 
Neurexins Iα-IIIα & Iβ-IIIβ share the same C-terminal domain containing the carbohydrate 
attachment sequence (triangles), transmembrane region (TMR) and the cytoplasmic tail (C). α-
neurexins have 3 repeat sequences (I, II, III) containing epidermal growth factor (Black 
hexagon), flanked by LNS-A and LNS-B domains.β-neurexins contain one β-neurexin specific 
domain (hatched box) and one LNS-B domain. Arrowed numbers indicate alternative splice sites 
(1-5 for α and two for β which correspond to sites 4 & 5 for α-neurexin). 
 

α & β neurexins only differ in the construction of their extracellular sequences, the 

transmembrane and intracellular C-terminus sequences remain the same. α-neurexin has 

an extracellular region composed of three repeats, each of these contain a central 

Epidermal Growth Factor (EGF) like domain sandwiched between two related LNS 

(LamininA, Neurexin, Sex hormone) domains A & B. These LNS domains are 

responsible for protein-protein interactions including the binding of α-LTX (Ushkaryov 

et al, 1992). Analysis of the structure of the sixth LNS domain (LNS-B) in α-neurexin 

shows that this is the same domain as the LNS domain (the only one) in β-neurexin 

(Sudhof, 2001). 

The presence of extensive splicing sites (five in α-neurexin and two in β-neurexin) leads 

to many isoforms of neurexins being expressed (Ushkaryov et al, 1992). In situ 

hybridisations suggest that neurexins are mostly expressed in neurons, though no exact 

localisation of the proteins has been found. Some researchers believe that they may be 
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concentrated around the synapses (Sudhof, 2001). Neurexins are also conserved in 

vertebrates and a number of invertebrates including C.elegans and Drosophila. 

 

1.1.5.1 Neurexin as an αααα-LTX receptor 

Initial observations that neurexins bound to immobilised α-LTX by affinity 

chromatography (Ushkaryov et al, 1992) was supported by data showing that 

recombinant forms of the receptor also bind to the toxin (Davletov et al, 1995). Both α 

& β neurexins bind to α-LTX and require the presence of Ca2+ for this to occur. The use 

of neurexin 1α knockout mice (Geppert et al, 1998) showed that α-LTX binding to brain 

membranes was reduced twofold in the knockout mice when Ca2+ was present but was 

unchanged when Ca2+ was not present (Geppert et al, 1998). Further evidence for the role 

of neurexin in exocytosis in the presence of Ca2+ was shown by the depression of 

exocytosis in synaptosomes taken from neurexin 1α knockout mice in the presence of 

Ca2+ while release was normal in those without (Geppert et al, 1998). Whether this is due 

to its role as an α-LTX receptor or some other function of the receptor is still unclear. 

Neurexins are thought to be expressed near the synapses, the discovery of 

synaptotagmin, a synaptic vesicle membrane protein, thought to be a calcium sensor in 

exocytosis, which binds to the C-terminal of the receptor, suggests that neurexins 

produce a signal to α-LTX intracellularly. But, α-LTX will continue to cause exocytosis 

in mice lacking the gene for synaptotagmin making the protein non-essential for 

neurexin-latrotoxin transmitter release. Truncated forms of neurexin lacking C-terminal 

sequences also respond normally to α-LTX stimulation (Sugita et al, 1999). This data 

shows that direct binding of neurexin and α-latrotoxin results in neurotransmitter 

release. 

 



 

 31 

1.1.6 Receptor co-operation 

α-latrotoxin therefore has two receptors that it binds to with high-affinity, yet these 

receptors have neither sequence homology nor structural similarities. Nevertheless, PC12 

cells with either of the receptors transfected into them can function on their own, 

cotransfection of both latrophilin and neurexin results in no enhancement of the 

secretion response to α-LTX (Sugita et al, 1998), proving that these receptors do not seen 

to co-operate on a functional level. 

Conflicting arguments have developed though, suggesting that latrophilin and neurexin 

can co-operate in α-LTX induced neurotransmission in synapses. Research using 

synaptosomes to study the effects of Ca2+ dependent and independent neurotransmitter 

release (Geppert et al, 1998) show that glutamate and GABA release is the same whether 

Ca2+ is available or not, independent of toxin dose. If the receptors worked on there own 

then observed release with Ca2+ would equal the sum of Ca2+-dependent and 

independent release, which is the case with binding, this does not the case with release, 

inferring that the receptors collaborate, this data doesn’t mention the fact that either Ca2+ 

dependent or Ca2+ independent pathways could saturate the response. This data again 

illustrates the dichotomy of α-LTX induced neurosecretion, where arguments can be 

made for and against the co-operation of the two α-LTX receptors. As yet there is still 

no definitive evidence on interaction between the receptors. 

Current thinking suggests (Sudhof, 2001) that because the receptors both bind α-LTX 

independently, any interaction will occur downstream of the binding, using a mechanism 

not yet known. 

The functions and mechanisms governing the interaction between the toxin component 

of BWSV, α-LTX, and the receptors it binds to (latrophilin and neurexin) are still not 

fully resolved. The recent generation of knockout mice to the latrophilin receptor has 
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been a boost in the number of systems available to study the effect of latrophilin and α-

LTX, but the use of mice as a model system to study protein function has significant 

limitations. An alternative animal model to the mouse is the nematode Caenorhabditis 

elegans. 

The mouse is an animal model for biological research like C.elegans, but research with 

mice is far more expensive and time consuming, not to mention ethically fraught than 

that with C.elegans. The ease, with which C.elegans can be manipulated, its genetic 

tractability, as well as the wealth of knowledge surrounding the nematodes nervous 

system, makes it an ideal model for studying the mechanism of action of BWSV and 

associated receptors. The relatively simple nervous system and the extensive 

characterisation of it should make studying BWSV toxicity relatively simple. 

By using a reverse genetic technique such as RNAi, a homologue of the latrophilin gene 

can be quickly isolated from the wealth of sequence data from the C.elegans genome 

project and the genetic function then analysed and the effects of BWSV studied in 

worms, which are latrophilin deficient or wild type. 

 

 

1.2  Caenorhabditis elegans 

1.2.1 Caenorhabditis elegans as a biological model system 

In 1965 Dr Sydney Brenner selected the rhabditid nematode worm Caenorhabditis elegans 

as an experimental model to study animal development, behaviour and the nervous 

system in a simple metazoan (Brenner, 1974). 

C.elegans is a free-living worm, which is soil dwelling and is found across the temperate 

regions of the world were it feeds on microorganisms. The “worm” (as it is often 

referred to) offers a great opportunity to study the genetics of an organism as it has a 

rapid life cycle, is small in size and easy to study and cultivate in the laboratory. 
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C.elegans is ~1mm in length with a maximum diameter in adults of ~80µm. Worms can 

be grown on an agar medium containing E.coli as a food source in Petri dishes, they have 

a rapid life cycle, embryo to adult development takes 3.5 days at 20oC, adults also 

produce a large number of offspring (~300) and are self-fertilising. 

Adult hermaphrodite worms contain a total of 959 somatic cells, of which 302 are 

neurons. Due to the number of cells being constant throughout the wild type population, 

the complete cell lineage has been characterised (Wood, 1988) along with a “wiring” 

diagram of the nervous system and its synaptic connections (White et al, 1986). This is 

possible because of the transparent nature of the worm allowing high quality microscopic 

images to be taken. 

 

1.2.1.1 Life cycle 

The growth of C.elegans is rapid; under normal laboratory conditions the entire life cycle 

of the worm from egg to egg-producing adult is 3 ½ days at 20oC. C.elegans can grow over 

a range of temperatures exhibiting the normal animal behaviour of faster growth at 

increased temperature. The life cycle can therefore take between 3 days at 25oC to 6 days 

at 15oC. Population growth is greatest at 20oC with brood sizes of ~300 progeny 

produced over a period of four days. 

C.elegans life cycle begins with embryonic development or embryogenesis, from here the 

first larval stage (L1) develops, anatomically these larvae appear similar to the adult 

worm, but smaller in size at ~250µm. Four larval stages (L1 – L4) occur during 

postembryonic development before a final moult leads to the adult worm. 

At 20oC embryogenesis takes 14 hours, time between successive larval moults at 20oC are 

as follows; 
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L1 to L2 = 29 hours 

L2 to L3 = 38 hours 

L3 to L4 = 47 hours 

L4 to Adult = 59 hours (all post fertilisation) (data adapted from Wood, 1988). 

C.elegans does possess an alternative larval stage called the dauer; this is formed at the 

second larval moult instead of the L3 and occurs at times of high population density or 

when food is lacking. The dauer is a specialised larval form, which has evolved as a 

mechanism for surviving adverse conditions; this form of the worm is resistant to 

desiccation for example. The dauer is morphologically similar to the L3, yet slightly 

thinner, dauer will mostly remain motionless, but when touched will move faster than the 

L3 form, again this appears to be a survival technique. Dauer will remain viable for ~3-4 

months, when conditions become more variable the dauer will moult and develop into 

the normal L4 larvae. 

 

1.2.1.2 Anatomy 

C.elegans is found as either male or hermaphrodite, though in normal populations only 

0.1% is male. The hermaphrodite reproduces by self-fertilisation as it contains both 

sperm and oocytes. The male, as expected produces only sperm and therefore must mate 

with the hermaphrodite to reproduce. In the event of male/hermaphrodite mating the 

male sperm will fertilise the oocytes, this cross-fertilisation will produce a 50-50 split of 

males/females in the resulting brood. This is in marked contrast to hermaphrodite self-

fertilisation, which generates only hermaphrodites, most populations in the laboratory are 

generated by self-fertilisation, hence the low level of males in a population. 

Figure 1.4 shows the general anatomy of both the male (A) and hermaphrodite (B) 

worms (Figure from Wood, 1988). 
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Figure 1.4 Cross sections of male and hermaphrodite C.elegans. 
Male C.elegans is shown in image A with the hermaphrodite in image B. Both sexes have a similar 
general anatomy, and are of a similar size, though the male is a little shorter and thinner. The 
male also clearly shows the tail-fan array used for clasping the hermaphrodite during mating. 
 
 

Both C.elegans sexes and most other nematodes are constructed anatomically in a similar 

fashion. The body is two concentric tubes separated by a fluid filled pseudocoelom, the 

body shape is maintained by internal hydrostatic pressure, the outer tube makes up the 

worms cuticle, this is mostly constructed with collagen, during each larval moult the 

cuticle is shed and a new one formed to allow the worm to grow. Four strips of muscle 

run the length of the worm attached to the sub-cuticle hyperdermis, relaxation and 

contraction of the two subventral and two subdorsal muscle strips causes the worms 

locomotion, which is observed on an agar plate as a sinusoidal wave, worms remain on 

the agar plate due to the surface tension of the water on the plate. Worms have a great 

deal of freedom in their movement, able to move forwards and backwards in response to 

the environment. 

The mouth of the worm is at the very tip of the head, from here the gut, consisting of 

the pharynx and intestine run the entire length of the body; this transparent tube ends at 

the anus (cloaca in the male). The pharynx is responsible for the initial processing of 
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food in the worm; the terminal bulb of the pharynx contains a grinder that crushes the 

bacteria before moving it on into the intestine. The pharynx is made of 20 muscle cells, 

20 nerve cells and 18 epithelial cells (Riddle et al, 1997). The intestine is made of 20 cells 

in nine rings running down the gut, contraction of these rings forces the food through 

the digestive tract (Riddle et al, 1997) 

The pharynx is where most of the neuronal cell bodies are present forming a ring 

structure, this ring is attached to two nerve cords running the length of the worm. The 

nerve ring receives and integrates sensory information and connects to motor neurons in 

the head or along the nerve cords (Bargmann, 1998). The hermaphrodite and male 

reproductive systems are the areas, which have the most variation between the sexes. 

The hermaphrodite has two functionally independent arms; each arm contains an ovary, 

oviduct and a spermatheca connected to a shared uterus centred around the vulva. The 

uterus in the adult contains fertilised eggs and embryos, which begin development in the 

adult (Wood, 1988). Egg laying occurs via contractions of the vulva controlled by 

hermaphrodite specific neurons (Riddle et al, 1997). 

The male has a single gonad (see Figure 1.4), which connects to the vas deferens then the 

cloaca at the anus. The meiotic cells which will become the sperm, are arranged down the 

gonad were each cell is in a later stage of spermatogenesis than the first. The mature 

sperm is held in the seminal vesicle prior to release. Mating is controlled by male specific 

neurons (Riddle et al, 1997). 

 

1.2.1.3 Development 

The development of C.elegans has also been extensively studied allowing the worm to be 

analysed from its initial few cells too full grown adult. 

Embryogenesis occurs in two stages, the initial phase generates the 558 cells in the 

hermaphrodite and 560 cells in the male to form the first larval stage (Wood. 1988). The 
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first cell divisions produce the “founder cells”, AB, E, MS, C and D. E produces cells 

only found in the intestine, while D only forms body wall muscle cells (Riddle et al, 1997). 

The other founder cell groups produce cells found in all parts of the body. The second 

stage of embryogenesis develops the cells in the embryo into the larval shape of the 

worm. Differentiation of cells at this stage forms nerve and muscle cells which cause the 

embryo to move inside the egg, the fully formed L1 will move even while still in the egg. 

After hatching the worm will continue to develop, with the number of cells increasing to 

959 in the hermaphrodite and 1031 in the male (Wood, 1988). During this time the 

reproductive organs will mature, to eventually form the active sexual organs by the time 

the worm reaches the adult form, sex-specific muscles are generated from a single blast 

cell M (Riddle et al, 1997). The vulva in hermaphrodites is formed from three cells in the 

central hypodermis; the male tail is formed from a number of hypodermal cells, and four 

rectal cells. The consistency of development in C.elegans along with the transparent nature 

of its body and the relatively small number of cells, which make up the body, makes the 

worm a perfect model for studying animal development and any mutations that may 

affect this development. 

 

1.2.2 C.elegans nervous system 

Like the whole of the organism, the nervous system of C.elegans has been extensively 

researched. In the hermaphrodite there are 302 neurons, these are connected by ~5000 

synapses and ~600 gap junctions which have so far been identified (White et al, 1986). 

The structure and location of each neuron is consistent throughout hermaphrodite 

populations making examination of mutant populations compared to wild type relatively 

simple. 

Another unique aspect of the worms nervous system is that only two neurons, CAN 

(osmoregulatory neuron) & M4 (pharyngeal motor neuron) are essential for the worms 
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survival (Bargmann, 1998) meaning that extensive mutations can made affecting the 

nervous system without the fear of inducing a non-viable animal model. 

The structure of the nervous system is contained mostly in a central nerve ring located 

near the pharynx, ventral and dorsal nerve cords and sensory neurons located in the 

head. The nerve ring contains the majority of interneurons along with most of the 

sensory neurons. The nerve cords travel the length of the worm and contain mostly 

motor neurons, the head contains the majority of sensory neurons, probably because this 

is the part of the worm, which analyses the worm’s environment. 

The sensory anatomy of the C.elegans nervous system is comprised of neurons, which, as 

previously mentioned, are situated in the head region. There are some of these neurons 

present along the worm’s body. These neurons are used for both mechanosensory and 

chemosensory functions, with the majority of these present in the very tip of the worm’s 

head. The motor anatomy is responsible for body-wall locomotion, egg laying, defecation 

and the pumping of the pharynx (Chalfie & Sulston, 1981). Again there are a number of 

these neurons present in the tip of the head; these are probably responsible for touch-

sensitivity (Duggan et al, 1998). 

Serial section electron micrographs (White et al, 1986) have been used to identify all of 

the synaptic connections among neurons and muscles present in the hermaphrodite. This 

has led to what C.elegans researchers refer to as the “wiring diagram” of the worm. 

Though this data does not indicate if a synapse is excitatory or inhibitory it is still an 

invaluable tool for the scientist. 

The nervous system has always been an eagerly studied aspect of C.elegans as the hope is 

that it will act as model system for the function and development of nervous systems in 

general. The completion of the genome sequence (C.elegans Consortium, Science: Vol 282, 

1998) has shown that many genes of vertebrate nervous systems are also present in 

C.elegans (Bargmann, 1998). The tools for analysing the nervous system in vivo have 
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mostly been comparison of fine structures of the nervous system in mutant and wild type 

worms by electron microscopy (EM). This is an excellent technique for looking at 

number and size of synaptic vesicles, but practically can be very fiddly and time 

consuming. Whole mount staining of the nervous system has also been used and is easier 

than EM, but it relies on the availability of appropriate antibodies. The most popular 

technique at present is the use of green-fluorescent protein (GFP) attached to neuron-

specific promoters used to analyse expression patterns of neuronal proteins in C.elegans. 

This technique has the advantage of being used on live worms, allowing screening of 

mutants with altered neuronal structures. 

Comparison of the C.elegans genes with molecules in the vertebrate nervous system 

(Bargmann, 1998) shows many similarities and a few differences between the two. 

Conserved systems between the two include, neurotransmitters and their receptors, 

synaptic release mechanisms, ligand-gated and G-protein couple receptors and second 

messenger pathways (Bargmann, 1998). C.elegans does lack rhodopsin, used for vision in 

vertebrates and invertebrates, some olfactory receptors in C.elegans are not related to 

vertebrate gene sequences, but do have the same properties. 

 

1.2.3 Synaptic transmission 

Communication between neurons and their target cells is achieved in C.elegans in the 

same way it is in most vertebrates, by the regulated release of neurotransmitters at 

synapses. Extensive study of the process of synaptic transmission has revealed that many 

of the molecular components of the vesicular release mechanisms as well as the 

respective neurotransmitters are highly conserved in metazoans, including C.elegans 

(Brownlee & Fairweather, 1999, Chacon & Sudhof, 1999). Though data has shown that 

proteins such as synaptobrevin are required for normal synaptic transmission in C.elegans 

(Nonet et al, 1997), no data as yet has been published on the effects of toxins such as 
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BWSV on C.elegans and what effect exposure to this toxin would have on the nervous 

system and neurotransmission in the worm, which are known to be the areas effected in 

mammals. Most of the classical neurotransmitters are present in C.elegans including 

acetylcholine (ACh), glutamate, γ-aminobutyric acid (GABA), serotonin and dopamine. 

Neurotransmitters are loaded into synaptic vesicles by vesicular transporters at the active 

zone of the pre-synaptic plasma membrane (Chacon & Sudhof, 1999). Specific 

transporters are necessary for loading different transmitters. Once the transmitter is 

released by vesicle fusion, it diffuses across the synaptic cleft, which separates the pre 

and postsynaptic membranes and binds to post synaptic receptors. Receptors on the 

postsynaptic membrane are specific for their transmitter; their presence on different cells 

determines the cellular response to the initial signal. The receptors influence electrical 

impulses in the post synaptic cell, from here the receptor will directly cause ion channel 

activation or start a second messenger system leading to ion channel activation. The 

transmission event is terminated by re-uptake of the transmitter from the synaptic cleft 

by membrane transporters. 

Each of the neurotransmitters in C.elegans follows this process of signalling. Acetylcholine 

(ACh) is the primary excitatory neurotransmitter, which controls motor function in the 

worm. ACh is believed to be the only transmitter, which is vital for life in C.elegans. Cha-1 

mutants show no viability as they are completely deficient in ACh (Riddle et al, 1997). All 

body wall muscles, egg laying muscles and pharyngeal muscles are thought to express 

receptors for ACh. As an ACh signal termination mechanism C.elegans has the enzyme 

acetylcholinesterase (AChE), which hydrolyses ACh in the synaptic cleft. C.elegans has 

three classes of AChE two of which have some homology with AChE classes in 

vertebrates (Brownlee & Fairweather, 1999). 

The GABAergic cells in C.elegans are responsible for inhibition of motor neurons. 

Therefore, GABA neurons are expressed in all body wall and enteric muscles. Unlike 
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ACh, GABA deficient mutants are viable, but because of their presence in body wall 

muscles, the mutants have a tendency to have motor defects. 

Dopamine (3,4-dihydroxyphenylethylamine) is produced by hydroxylation of tyrosine by 

tyrosine hydroxylase too form 3,4-dihydroxy-phenylalanine (DOPA), DOPA is then 

decarboxylated to dopamine by aromatic amino acid decarboxylase. Dopamine inhibits 

locomotion and egg laying; neurons in the egg laying muscles have been shown to 

express these receptors. 

Serotonin receptors are also expressed in the egg laying muscles, but the 

neurotransmitter is thought to have a stimulatory role in pharyngeal pumping as well as 

egg laying and is inhibitory to both locomotion and defecation. In the male worm, 

serotonin is an essential transmitter for initiating mating behaviour. 

Glutamate acts as both excitatory and inhibitory neurotransmitter in C.elegans. Worms 

with synaptic transmission mutations were first identified by Brenner (1974). He reported 

that the AChE inhibitor, lannate, was toxic to C.elegans, and that some mutated worms 

showed varying resistance to the compound. Since 1974 many more mutants have been 

identified and characterised that are resistant to AChE inhibitors such as Aldicarb. 

Inhibition of AChE causes an accumulation of ACh in the synaptic cleft causing worms 

to become paralysed and at high concentrations to die. Therefore resistance to Aldicarb 

would be due to a mutation, which reduces the accumulated ACh in the synaptic space. 

Defects in ACh receptors should also cause resistance to AChE drugs. Infact a classical 

test for identifying the type of synaptic mutation in C.elegans is carried out by analysing a 

worm’s response to the compounds Aldicarb and Levamisole. Worms, which are 

resistant to Aldicarb can be classified as presynaptic or post synaptic, presynaptic defects 

usually have elevated levels of ACh where levels are normal in, post synaptic mutants. 

Postsynaptic defects are also resistant to the AchR agonist levamisole; pre synaptic 

mutants have normal or elevated responses to levamisole. 
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As has been illustrated, C.elegans is a powerful genetic tool for studying gene function and 

loss of function. Using the genome sequence of C.elegans it is possible to identify 

homologous genes to those in mammals, such as latrophilin. One of the most recent, and 

most interesting methods of gene silencing in the worm is the use of RNA interference 

to generate gene knockouts. 

 

 

1.3 RNA Interference 

RNA interference (RNAi) describes the use of double stranded RNA (dsRNA) to target 

specific mRNAs for degradation this therefore silences their expression. RNAi is thought 

to be one of a broad class of RNA induced silencing phenomena, which occur in plants, 

animals and fungi. 

The first report of RNA induced silencing showed that either sense or anti sense RNA 

caused a change in gene expression in C.elegans (Guo & Kemphues, 1995). In 1998, Fires 

group explained that the observed change in gene expression was due to dsRNA 

contamination in the sense and anti sense samples, their data (Fire et al, 1998 & 

Montgomery et al, 1998) showed that dsRNA caused specific gene silencing. RNAi was 

born. RNAi is thought to use the sequence information in the dsRNA to make a protein-

RNA complex that ablates the mRNA; this makes RNAi highly specific as it only attacks 

genes sharing sequence with the dsRNA. 

RNAi has become the major reverse genetics technique in C.elegans research. This is 

because of the completed genome sequence of the worm; there are more gene sequences 

than gene functions. It is therefore easier to use these sequences to uncover gene 

function than vice-versa, and hence reverse genetic strategies have taken on a new 

importance. 
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RNAi can be initiated in C.elegans by injection (Fire et al, 1998), soaking worms in dsRNA 

solution (Tabara et al, 1998) or feeding worms dsRNA expressing E.coli (Kamath et al, 

2000). RNAi is also an important tool in the study of plants, fruit flies and hydra. RNA 

interference has also been shown in Zebrafish (Yin-Xiong et al, 2000) and mammalian 

cells (Elbashir et al, 2001). 

Studies involving RNAi in C.elegans show why there are many methods of dsRNA 

induced gene silencing, this is because the mode of interference can cross cell 

boundaries. Therefore the site of injection or method of administration of the dsRNA is 

not essential for successful gene silencing. Though the other methods of RNAi (other 

than injection) are not as effective as injection, there are nevertheless several advantages 

of the feeding technique over microinjection. Feeding is a far less labour intensive 

method than microinjection and is better for performing RNAi on large numbers of 

worms. Feeding can also support a continuous population of RNAi worms as long as 

there is RNA producing E.coli present, whereas injection will only produce F1 offspring 

that show RNAi phenotypes, F2 progeny will not express the dsRNA-altered phenotype. 

The mechanism by which RNAi works has not been fully elucidated but at the moment 

current thinking believes that RNAi targets mRNA with the same sequence for 

degradation. C.elegans has been screened for RNAi resistant mutants (Tabara et al, 1999) 

with the goal of trying to identify the genes required to elicit RNAi. Four genes were 

identified called rde-1 to rde-4 (rde stands for RNAi deficient) at the moment only rde-1 has 

been cloned, there are genes in both Neurospora and Arabidopsis with homology to rde-1, 

all three genes are required in there respective organisms for silencing in somatic tissues. 

Germline transmission of the RNAi signal requires rde-1 and is not required for 

interference after (Grishok et al, 2000). This suggests that rde-1 is required in the 

formation of the RNAi signal. The biochemistry of RNAi shows that small 21-25 
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nucleotides are the active dsRNA structures involved in RNAi (Elbashir et al, 2001), 

suggesting that these small fragments of RNA guide cleavage of mRNAs. 

Therefore, at this moment current models of dsRNA interference are as follows; dsRNA 

enters the organism where it interacts/activates the rde-1 gene, small 21-25 nucleotide 

RNA complexes are formed which proceed to guide the cleavage of mRNA 

corresponding to the initially injected dsRNA. 

RNAi will continue to be an important technique in C.elegans research as it is used in 

tandem with the huge amount of genome data available after the completion of the 

worm’s genome sequencing project. As this research continues it is hoped that more data 

will also be generated in an attempt to further uncover the complete mechanism that 

governs dsRNA gene silencing, not only in C.elegans but also in the other organisms that 

this phenomenon has been seen in. 

 

 

1.4 Summary 

The mechanisms that govern the interactions between the toxin components of black 

widow spider venom (latrotoxins) and the receptors that they bind to (latrophilins and 

neurexins) have still not been fully elucidated. In this study we wish to examine the 

relationship between the BWSV and the receptor latrophilin using the nematode C.elegans 

as a model system. 

The major aims of the investigation are to establish C.elegans as a model system for 

studying the effects of BWSV in both wild type worms and in worms with a homologous 

gene to the latrotoxin receptor latrophilin knocked out. To produce this knockout we 

will use the reverse genetic technique RNA interference (RNAi). By producing this 

knockout we hope to characterise any mutation produced both in physical phenotype 
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and in response to exposure to BWSV, and to establish whether these mutations are 

affecting the worms neuronal function. 

We hope that examining the effects of BWSV and latrophilin in C.elegans will allow us to 

examine the importance of latrophilin in nerve cell function and to help provide evidence 

for the role of latrophilin as a receptor for latrotoxin with a role in signalling rather than 

just acting as a tether for the toxin to form pores in the lipid bi-layer. 

We also hope to use RNAi to examine the possible effects of gene silencing on other 

genes that may be involved with neurotoxic compounds such as glutamate and 

organophosphate toxins. 
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Chapter 2.   Materials and Methods. 

 

2.1  Materials 

All reagents were obtained at Anal R grade purity or greater. Ethanol, glycerol, β - 

mercaptoethanol were from BDH. Agarose, ampicillin, ammonium acetate, 

chloramphenicol, cholesterol, ethidium bromide, BSA, DEPC, DTT, DMSO, EDTA, 

glycine, hydrogen peroxide, imipramine, isoamylalcohol, levamisole, NaCl, RNaseA, 

SDS, TEMED, Tris-base, and tetracycline were all obtained from SIGMA. Xylene cyanol 

FF, Silver stain kit, Protein Minigel kit, UnoQ and UnoS columns were from BioRad. 

Bacto-agar, Bacto-tryptone and Bacto-yeast extract were obtained from Difco. Acetic 

acid, boric acid, calcium chloride, chloroform, Coomassie blue R250, gelatin, glucose, 

hydroxyquinoline, magnesium sulphate, phenol, potassium acetate, potassium 

dihydrogenphosphate, potassium hydrogenphosphate, sodium acetate, sodium 

hydrogenphosphate and sodium hydroxide were provided by Fisher. Invitrogen provided 

the Novex Pre-cast gel systems along with all Novex loading and running buffers. All 

restriction enzymes were obtained from either NBL or Promega. Alkaline phosphatase, 

proteinase K, 1KB and 1KB+ DNA ladders were from GIBCO-BRL. Filters were 

obtained from Whatman. Ammonium persulphate and Bromophenol Blue were obtained 

from ICN. Kanamycin was obtained from Melford. IPTG was supplied by NBL. 

Invitrogen provided TRIZOL reagent. Pharmacia supplied RNAguard, T7, T3 and SP6 

polymerases, as well as Superdex 200 size exclusion column. Promega provided all 

commercial plasmids as well as T4 ligase and ligase buffers. Stratagene provided E.coli 

strains, XL-1, XL-2 and JM109. Greyhound Chromatography provided Aldicarb. Ultra 

high purity (UHP) grade water (>13 Mohms/cm3) was produced using an ELGA-UV 
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water purifier. RNAi feeding vectors for subcloning, along with bacterial strain HT115 

were a kind gift from J. Ahringer (MRC, Cambridge). 

Black widow spider venom was obtained from Russia and Latoxan (France). Purified 

alpha-latrotoxin was a kind gift from Dr Y A Ushkaryov (Imperial College, London). All 

other compounds used were from SIGMA unless stated in the text. 

 

 

2.2  General Molecular Biology Techniques 

2.2.1  E.coli growth media 

Luria-Bertani (LB) broth (10g/L Bacto-tryptone, 10g/L NaCl and 5g/L Bacto-yeast) was 

made using ultra high purity (UHP) water and autoclaved for one hour. LB-broth was 

allowed to cool to room temperature before use. LB-agar plates were made by adding 

15g Bacto-agar per litre of LB-broth prior to autoclaving. LB-agar was allowed to cool to 

55oC before the addition of appropriate antibiotics and poured into 9cm Petri dishes. 

Antibiotics used in both LB-broth and LB-agars were used at the following 

concentrations.  

Tetracycline at 20µg/ml, Ampicillin at 50µg/ml, Chloramphenicol at 25µg/ml and 

Kanamycin at 10µg/ml. 

 

2.2.2  Preparation of calcium competent E.coli 

E.coli strains (XL-1, XL-2 or JM109) were stored as –80oC glycerol (10%) stocks. 

Individual tubes of E.coli were thawed and used to streak LB-agar plates containing the 

appropriate antibiotics (tetracycline for XL-1 and Xl-2, JM109 have no antibiotic 

resistance) and incubated overnight at 37oC. A single E.coli colony was picked from an 

LB-plate with the appropriate antibiotic and used to inoculate a 5ml LB-broth liquid 

culture. The culture was grown up overnight at 37oC in a shaking incubator until a thick 
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bacterial growth had formed. Using 2.5ml of the overnight culture, 500ml of LB broth 

was inoculated in a sterile conical flask and grown at 37oC in the shaking incubator until 

an OD600 of 0.6 was reached. Cultures were chilled on ice for 20 minutes, then 

centrifuged at 4000g at 4oC for 15 minutes. The supernatant was then discarded and the 

pellet resuspended in 50ml of sterile ice cold 0.1M CaCl2. Cells were then centrifuged and 

resuspended as described. Cells were then centrifuged once more and the supernatant 

discarded, the final pellet was the suspended in 2ml sterile 0.1M CaCl2, 10% glycerol. 

Cells were placed in tubes as 200µl aliquots and stored at –80oC. 

 

2.2.3  Preparation of electro-competent E.coli 

Cultures were treated as in section 2.1.2; apart from after the first centrifugation where 

the resulting pellet was resuspended in 50ml of sterile ice cold UHP water. After further 

centrifugation at 4000g at 4oC for 15 minutes the pellet was washed in sterile ice cold 

UHP water a total of five times. After the washes, cells were resuspended in 2ml sterile 

UHP water, 20% glycerol and stored at –80oC as 200µl aliquots. 

 

2.2.4  Plasmid transformation into CaCl2 competent E.coli 

100µl aliquots of CaCl2 competent cells were gently thawed on ice. 25-50ng of DNA was 

added to the cells and allowed to incubate on ice for 30 minutes. The cell suspension was 

then heat shocked by immersion in a 42oC water bath for 90 seconds followed by 

immediate transfer back on to ice for two minutes. 1ml of LB-broth was added to the 

cells and the resulting mixture incubated for one hour at 37oC. After incubation, 100µl of 

the transformed cells were plated out onto 9cm LB-agar dishes containing the 

appropriate antibiotic for selection and incubated at 37oC overnight. 

 



 49 

2.2.5  Plasmid transformation into electro-competent E.coli 

An aliquot of XL-1 Blue electro-competent cells was thawed on ice for 5 minutes along 

with the electroporation cuvettes and the cuvette holder. To the cells 10-50ng of DNA 

or 5µl of a ligation reaction was added and further incubated on ice for 10 minutes. The 

DNA/cell mixture was placed in a BioRad Genepulser cuvette (1mm path length) and 

electroporated with a voltage of 1.8kV using the electroporater. The cells were then 

resuspended immediately in 1ml of LB broth and then incubated at 37oC for 60 minutes. 

Transformed cells were then selected by growing the bacteria on LB agar plates, which 

contain the appropriate antibiotics. 

 

2.2.6  Extraction and purification of nucleic acids 

2.2.6.1  Phenol Chloroform extraction of nucleic acids 

Tris buffered phenol (pH 8.0) is prepared by melting 500g of crystalline phenol at 68oC. 

To this liquid 0.1% (w/v) of hydroxyquinoline was added. Added to this was an equal 

volume of 0.5M Tris-HCL (pH 8.0), solution was then stirred for 15 minutes. The two 

phases were then allowed to separate and the aqueous phase discarded. To the remaining 

phenolic phase an equal volume of 0.1M Tris-HCL (pH 8.0) was added and again stirred 

for 15 minutes. The phases were allowed to again separate and the pH of the phenolic 

phases tested. The final extraction step was repeated until the pH of the phenol is in 

excess of 7.8. After the phenol has equilibrated, 0.1 volumes of 0.1M Tris-HCL were 

added. Phenol was then stored in this state at 4oC in the dark for one month. 

This solution was then used to remove protein contamination from nucleic acid samples 

by phenol chloroform extraction. To the nucleic acid sample one volume of phenol 

chloroform (1:1 v/v) was added and the mixture vortexed. The two phases were 

separated by centrifugation for 5 minutes at 15000g. The remaining aqueous phase was 

removed and kept. 
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2.2.6.2  Ethanol precipitation of nucleic acids 

Two volumes of absolute ethanol and 0.25 volumes of 3M-sodium acetate pH 5.2 were 

added to the DNA solution of interest. The solution was mixed and then placed on ice 

for 30 minutes to precipitate the nucleic acids. The solution was then centrifuged at 

room temperature at 14000g for 30 minutes. The pellet was then washed in 500µl of 

70% ethanol and centrifuged at 14000g for 30 minutes. The pellet was then air dried to 

remove any remaining ethanol, then resuspended in an appropriate buffer. 

 

2.2.6.3  Purification of plasmid DNA by alkaline lysis method 

Clones of interest were used to inoculate 5ml of LB broth containing antibiotics 

appropriate for the plasmid and incubated overnight at 37oC with shaking. After 

incubation a 1.5ml sample of the culture was aliquoted into a 1.5ml-eppendorf tube and 

the cells recovered by centrifugation at 13000g for 1 minute. The pellet obtained was 

then resuspended in 100µl of solution I (50mM glucose, 25mM Tris-HCL pH8.0, 10mM 

EDTA, RNAse A 100µg/ml) by vortex mixing. To this solution 200µl of solution II 

(200mM NaOH, 1%SDS, made up fresh) was added, the tube was then mixed 5-6 times 

by gentle inversion. This solution was allowed to stand at room temperature for 5 

minutes before 150µl of solution III (5M Potassium acetate, 11.5% glacial acetic acid) 

was added. Immediately the tube was mixed by gentle inversion before placing the tube 

on ice for 10 minutes. The tube was then centrifuged at 15000g for 10 minutes to 

remove the resulting precipitate; the supernatant is kept and transferred to a clean tube. 

Sample was phenol chloroform extracted (section 2.2.6.1) and then ethanol precipitated 

(section 2.2.6.2). The resultant pellet was washed in 70% ethanol and then allowed to dry 

in air. The plasmid DNA isolated was then resupended in 30µl of UHP water and stored 

prior to further manipulation. 
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2.2.6.4  Purification of plasmid DNA on Qiagen Mini prep columns 

For generating sequence grade DNA a Qiagen column is used, mini prep protocols were 

used for small-scale preparations; maxi prep columns were used for large-scale 

preparations. 

For a small-scale preparation, 3ml of an overnight culture was pelleted by centrifugation 

for 1 minute at 15000g, the pellet was then resuspended in 0.3ml of buffer P1 (50mM 

Tris-HCL pH 8.0, 10mM EDTA, 100µg/ml RNAse A). To this 0.3ml of buffer P2 

(200mM NaOH, 1% SDS) was added, the tube mixed gently and then incubated at room 

temperature for 5 minutes. After incubation 0.3ml of buffer P3 (3M-potassium acetate 

pH 5.5) was added and the tube incubated for 10 minutes on ice, before centrifugation at 

15000g for 15 minutes. While centrifugation was taking place a Qiagen-tip 20 was 

equilibrated with 1ml of buffer QBT (750mM NaCl, 50mM MOPS pH 7.0, 15% ethanol, 

0.15% Triton X-100). The resulting supernatant from the centrifugation step was 

immediately placed onto the Qiagen column and allowed to pass through. The column 

was then washed 4 times using 1 ml of buffer QC (1.0M NaCl, 50mM MOPS pH 7.0, 

15% ethanol). The plasmid DNA that was retained on the column was eluted from the 

column using 0.8ml of buffer QF (1.25M NaCl, 50mM Tris-HCL pH 8.5, 15% ethanol) 

and the run off collected in a clean eppendorf. The collected fraction was precipitated in 

0.7 volumes of isopropanol and incubated at room temperature for 20 minutes. The 

solution was then centrifuged for 30 minutes at 15000g; the pellet was then washed in 

100ml of ice cold 70% ethanol and centrifuged again. The pellet was then air dried and 

resuspended in 30µl of UHP water. 
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2.2.6.5  Purification of plasmid DNA on Qiagen Maxi prep columns 

The Qiagen tip 500 column is used for purifying large-scale sequence grade DNA. 

500ml of bacterial culture containing the clone of interest were used, and a similar 

protocol to that used in section 2.2.6.4 performed as described in the manufacturer’s 

handbook. The pellet isolated was resuspended in 250µl of UHP water. 

 

2.2.6.6  Preparation of DEPC water / solutions 

Diethylpyrocarbonate (DEPC) is a potent inhibitor of RNAse activity. DEPC treated 

water and solutions were used throughout all RNA protocols. A stock solution of DEPC 

was prepared as a 1:10 solution in 100% ethanol, this solution was then added to other 

solutions to give a final concentration of 0.1% (v/v), and left at room temperature for a 

minimum of 12 hours. DEPC was then deactivated by autoclaving the treated solutions 

for 20 minutes at 120oC.  

 

2.2.6.7  RNA extraction from Caenorhabditis elegans 

Total RNA was prepared from frozen pellets of C.elegans using TRIZOL extraction. 

TRIZOL reagent is a solution of guanidine isothiocyanate and phenol, which simplifies 

the original method of Chomczynski & Sacchi. 

1ml of packed frozen worms were placed in a 15ml polypropylene tube and 4ml of 

TRIZOL reagent plus 50µl β-mercaptoethanol added, the tube was then vortexed for 5 

minutes to lyse the worms, and then incubated at room temperature for 5 minutes. The 

solution was split into four 2ml-microfuge tubes and incubated at room temperature for 

a further 5 minutes. All 4 tubes were then centrifuged for 10 minutes at 14000g at 4oC to 

remove insoluble material; the supernatants were then transferred to clean tubes, 200µl 

chloroform added to each one and incubated for 5 minutes at room temperature. All 4 

tubes were again centrifuged for 10 minutes at 14000g at 4oC to separate the two phases. 
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The aqueous phase was transferred to a clean tube where 500µl isopropanol was added; 

the tubes were mixed by inversion and incubated at room temperature for 10 minutes to 

precipitate the RNA. The tubes were then centrifuged for a third time, the supernatant 

was removed and the pellet washed in 100µl of 75% ethanol, this wash was performed 3 

times in total before the tubes were centrifuged for 5 minutes at 14000g at 4oC. 

Supernatants were removed and the pellet air-dried for 10 minutes. Depending on the 

yield the RNA pellets were resuspended in 50-300µl of DEPC water. Samples were then 

stored at –20oC for short term and –80oC over the longer term. 

 

2.2.6.8  DNA extraction from Caenorhabditis elegans 

Worms were washed from a standard culture plate in M9 buffer (6g Na2HPO4, 3g 

KH2PO4, 5g NaCl, 0.25g MgSO4.7H2O per litre) and spun down. The supernatant was 

removed and the worm pellet resuspended in 100µl M9 buffer in a 1.5ml microcentrifuge 

tube. 

To the worm pellet 400µl lysis buffer (0.2M NaCl, 0.1M Tris-HCl pH8.5, 50mM EDTA, 

0.5% SDS) and 10ml Proteinase K (10mg/ml). was added to the tube and the solutions 

mixed and incubated for 30 minutes at 65oC. After incubation a further 10µl of 

Proteinase K was added and the tube was again incubated for 30 minutes at 65oC. 5µl of 

RNaseA (10mg/ml) was added and the tube incubated at 37oC for a further 30 minutes, 

before adding 500µl of phenol and mixing for 30 minutes. The tubes were centrifuged 

for 5 minutes at 14000g and the aqueous phase removed and placed in a clean 

microcentrifuge tube, to this a further 500µl of phenol was added and again mixed for 30 

minutes. Tubes were centrifuged for 5 minutes at 14000g and the aqueous phase again 

moved to a clean microcentrifuge tube. 500µl chloroform was then added and the tubes 

mixed for 30 minutes for a third time. After centrifugation at 14000g for 5 minutes the 
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aqueous phase was removed and mixed with 500µl of 100% ethanol and incubated 

overnight at room temperature. Precipitated DNA was pelleted by centrifugation for 10 

minutes at 14000g, and then washed in 500µl of 70% ethanol. DNA was then 

resuspended in UHP water (100µl for a 6cm-worm plate, 200µl for a 9cm plate). 

 

2.2.7  Polymerase chain reaction (PCR) 

Short segments of DNA were amplified using PCR primers. Primers were designed so 

that a high sequence identity to the target DNA was achieved. Base-pair mismatches 

were incorporated into the primers to generate particular restriction sites, which were 

subsequently used for sub-cloning purposes. PCR was performed using 5µl of 10X 

KlenTaq PCR reaction buffer (400mM Tricine-KOH (pH9.2 at 25oC), 150mM KOAc, 

35mM Mg (OAc)2, 750µg/ml bovine serum albumin), 1µl 5’-Primer (~70pmol), 1µl 3’-

Primer (~70pmol), 4µl dNTP mix (1.25mM), 1.5µl target DNA (~1ng), 0.5µl KlenTaq 

polymerase and diluted to 50µl with UHP water. The PCR reaction was overlaid with 

70µl of mineral oil to prevent the reaction mix from evaporating. PCR was performed on 

a Perkin Elmer DNA Thermal Cycler 480 for 30 cycles at 30 seconds denaturing at 94oC, 

30 seconds annealing at 60oC and 1 minute polymerisation at 72oC. The final cycle 

consisted of an extension cycle of 5 minutes at 60oC followed by 10 minutes at 72oC.  

PCR products were then analysed by agarose (TBE) gel electrophoresis along with a size 

ladder, and positive and negative controls. 
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Primer names and DNA sequences (5’-3’): - 

elegansLPH5’-  5’ GGA TGC CCT GAA TTC GGA CGT TAT AAA ACC 3’ 

elegansLPH3’-  5’ TTC AGA TCG TGT CCG AAT TCT CAC ATC AAA ACA GC 3’ 

Conditions: - 

94oC for 30 seconds  

60oC for 30 seconds  For 30 cycles. 

72oC for 1 minute 

60oC for 5 minutes 

72oC for 10 minutes 

 

2.2.8  Gel extraction of PCR products by Qiagen QIAquick spin column 

PCR amplified products were extracted from an agarose gel by using Qiagen’s QIAquick 

spin column. This system purifies single- or double-stranded DNA fragments from PCR 

reactions. Fragments ranging from 100bp to 10kb can be purified using the spin columns 

in a microfuge. 

To one volume of PCR reaction mix, five volumes of buffer PB were added; a QIAquick 

spin column was then placed in its 2ml collection tube. The PCR sample was applied to 

the column, and spun for 60 seconds at 15000g, this bound the DNA to the column. The 

flow through was discarded and 750µl buffer PE added to the column, the column was 

the spun again for 60 seconds at 15000g. The flow through was discarded again, before 

the column was spun for a third time at 14000g for 1 minute. The column was moved to 

a clean eppendorf tube and the DNA eluted by the application of 50µl buffer EB to the 

center of the spin column. The column was spun for a final time at 15000g for 1 minute 

to collect the DNA in the eppendorf tube. The DNA was then stored at –20oC prior to 

further manipulations. 
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2.2.9  Restriction digest of plasmid DNA 

A restriction digest was performed in a reaction volume of 30µl in an eppendorf tube 

and incubated for 2 hours at 37oC. The digest contained 5-10µl of the plasmid DNA of 

interest, 3µl of 10x restriction enzyme buffer and the rest of the reaction volume made 

up with UHP water. 5U/µg of the restriction enzyme used digests the plasmid DNA 

completely over 2 hours. Reactions were terminated by ethanol precipitation, and 

checked for digestion by agarose gel electrophoresis. 

 

2.2.10  Agarose gel electrophoresis  

DNA was separated by non-denaturing agarose gel electrophoresis. DNA electrophoresis 

was performed using the Pharmacia GNA-100 gel electrophoresis kit. Agarose was 

dissolved in an appropriate amount of 1X TBE (45mM Tris-HCL, 44mM Boric acid, 

2mM EDTA pH 8.0) to give a gel in the range of 0.7-2% (w/v). 1X TAE (40mM Tris-

HCL, 1mM EDTA, 5.71% glacial acetic acid) gel is used for the gel excision of DNA 

fragments (section 2.2.12). Agarose was dissolved in 1X TBE/TAE by microwave 

heating. The dissolved agarose solution was allowed to cool to 55oC before ethidium 

bromide (10mg/ml stock) was added to give a final concentration of 0.5µl/ml. The 

agarose gel solution was then poured into the gel casting mould, which contains the well 

forming comb and allowed to set in the mould. After the gel has become solid the gel 

was placed in the electrophoresis tank and immersed in the correct running buffer (1X 

TBE, 1X TAE). DNA samples to be run were prepared in a 10% solution of 10X 

loading buffer (30% glycerol, 0.25% bromophenol blue, 0.25% xylene cyanol FF) and 

then loaded into the wells formed by the comb. Samples were run at 80V for 1 hour, 

bands were visualised by illumination under UV light. 

 



 57 

2.2.11  Agarose gel electrophoresis (denaturing) 

Denaturing agarose gel electrophoresis was carried out as with non-denaturing 

electrophoresis except that when running RNA the gel mixture is made with 0.1% SDS 

(w/v) and the 1X TBE/TAE is made up with DEPC water rather than UHP water. Gels 

were also run at 65V instead of 80V per hour. 

 

2.2.12  DNA purification by GENECLEAN 

Restriction digested plasmid DNA was purified using the GENECLEAN II kit. This 

method is only used on 1X TAE gels; the kit contains a silica matrix (glassmilk), which 

DNA binds to without contaminants. DNA was resolved on a 1X TAE agarose gel with 

the band of interest visualised under UV light. The band was then excised using a clean 

scalpel blade, placed in an eppendorf tube and weighed. The fragment was then treated 

with 3 volumes of NaI solution (6.0M). The tube was then incubated at 55oC for 5 

minutes or until the fragment had dissolved. To the solution 5µl of glassmilk was added 

and the tube mixed gently be inversion, the solution was incubated at room temperature 

for 10 minutes. This allows the DNA to bind to the glassmilk matrix. The DNA-

glassmilk complex was pelleted by centrifugation for 15 seconds at 15000g. The 

supernatant was removed and the glassmilk resuspended in 500µl of ice-cold New Wash 

Buffer (50% 20mM Tris-HCL pH 7.2, 0.2M NaCl, 2mM EDTA and 50% ethanol) and 

again centrifuged. The centrifugation step was repeated a further 2 times before the pellet 

was resuspended in 15µl of UHP water. This solution was then incubated at 55oC for 2 

minutes, this elutes the DNA from the glassmilk complex. The tube was then centrifuged 

for 15 seconds at 15000g. The purified DNA is then transferred to a clean eppendorf. 
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2.2.13  Alkaline phosphate treatment of DNA 

Shrimp Alkaline Phosphatase (SAP) is used to remove the 5’-terminal phosphate from 

nucleic acids; this dephosphorylation with SAP prevents recircularisation of linearised 

vectors. 2µl of 10X SAP buffer (200mM Tris-HCL pH8.0, 100mM MgCl2) was added to 

the 15µl of the GENECLEAN sample along with 1U of SAP and the reaction volume 

made up to 20µl with UHP water. The reaction was then incubated for 30 minutes at 

37oC before heat inactivation at 65oC for 15 minutes. The resulting solution can then be 

used for ligation reactions. 

 

2.2.14  Ligation of DNA 

Two double stranded DNA fragments can be ligated together by the formation of a 

phosphodiester bond between the 5’-phosphoryl group and the 3’-hydroxyl group, this 

occurs in the presence of the enzyme T4 ligase. The ratio of vector DNA to insert DNA 

is important when performing a ligation reaction. The simplest ligation reaction is when 

the vector and insert DNA are in a 1:1 ratio. The total reaction volume used was 10µl, 

4µl of vector DNA, 4µl insert DNA, 1µl T4 DNA ligase and 1µl 10X T4 ligase buffer 

(250mM Tris-HCL pH 7.6, 50mM MgCl2, 5mM ATP, 5mM DTT, 25% (w/v) PEG-

8000). The tube was mixed and centrifuged at 14000g for 10 seconds. The solution was 

then incubated overnight at room temperature. This solution can be used for 

transformation into either calcium or electro competent cells. 

 

2.2.15  Production of double-stranded RNA 

2.2.15.1  Template generation 

Template DNA used for double-stranded RNA synthesis was prepared as a stock 

solution of the linearising digest. This digest stock was prepared by digesting 10µl of 
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template DNA with 3µl of 10X restriction enzyme buffer, 4U of the restriction enzyme 

being used and the total reaction mixture made up to 30µl with DEPC water. This 

reaction was incubated for 2 hours at 37oC. 

The linearised template DNA was then cleaned up by the addition of 100µg/ml of 

Proteinase K and 0.1% SDS (w/v), this solution was incubated for 30 minutes at 37oC. 

The solution was then treated with phenol chloroform extraction and centrifugation for 

1 minute at 14000g. The aqueous phase was retained and 2 volumes of absolute ethanol 

added to it along with 0.25 volumes of 3M-sodium acetate and left on ice for 20 minutes. 

The DNA solution was then centrifuged at 14000g for 30 minutes at 4oC to form a pellet 

before resuspension in 15µl of DEPC water. 

 

2.2.15.2 RNA transcription in vitro 

For RNA synthesis a large-scale transcription reaction was performed. At room 

temperature 5µl of 10X transcription buffer (200mM Tris-HCL pH 7.9, 30mM MgCl2, 

10mM spermidine, 50mM NaCl), 2µl 100mM DTT, 1µl RNAguard (Pharmacia), 7.5µl 

NTP mix (5mM ATP, GTP, CTP, UTP), 10µl DNA template, 2µl SP6, T7 or T3 RNA 

polymerase. The solution is made up to 50µl with DEPC water. The reaction mix was 

then incubated at 37oC for T7/T3 polymerase or 42oC for SP6 for 2 hours. After 

incubation 5µl DNAse I is added and the reaction incubated at 37oC for 20 minutes. 

Once this is completed the reaction can be purified and the RNA strands annealed. 

 

2.2.15.3 Annealing of sense and antisense cRNA strands 

The cRNA strands generated by the transcription reactions are purified and then 

annealed to produce double stranded RNA. 
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After incubation with DNAse I the RNAs were phenol chloroform treated and then 

centrifuged for 10 minutes at 14000g. The aqueous layer was removed and to it 2 

volumes of absolute ethanol were added, the solution was then centrifuged for 30 

minutes at 14000g at 4oC. The resulting pellet was washed in 1 volume of 70% ethanol 

and centrifuged at 14000g for 10 minutes at 4oC. Pellets were air dried and resuspended 

in 30µl DEPC water. To anneal the RNAs the transcription products were mixed in a 1:1 

ratio and then heated to 88oC for 10 minutes. 

 

 

2.3  Phage Methodologies 

2.3.1  Bacterial – Phage amplification 

2.3.1.1  Preparation of plating bacteria 

5ml LB broth supplemented with 0.2% maltose and 10mM MgSO4 in a sterile flask was 

inoculated with a single colony of host strain C600hfl (Clontech) and grown overnight 

with shaking at 30oC. The cells were then spun down in a sterile tube for 10 minutes at 

2000g in a Beckman Centrifuge. The media was then decanted off and the cell pellet 

gently resuspended in 10ml of 10mM MgSO4 without vortexing. To this mixture 7ml top 

agar (48oC) was added, quickly swirled and poured on to a 150mm LB plate. The top agar 

was then allowed to set and the plate incubated overnight without inverting and no more 

than two high at 37oC. 

 

2.3.1.2  Plating bacteriophage 

150mm LB plates containing C600hfl host cells in top agar were divided into 12 equal 

sections by drawing on the bottom of the plate. To each section 5µl of an individual 

bacteriophage sample was gently spotted and left to dry on the plate with the lid off. 

After the spots were dry, plates were incubated overnight without inversion at 37oC. 
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2.3.1.3  Picking bacteriophage plaques 

Plaques of interest were cored from the plate (removing the top agar only) using an 

inverted 1000µl Gilson tip, and transferred to a microcentrifuge tube containing 500µl 

SM buffer (5.8g NaCl, 2g MgSO4.7H2O, 50ml Tris-HCl (pH7.5), 5ml 2% (w/v) gelatin, 

in 1 litre UHP water) and 20µl of chloroform. Tube was then vortexed to release the 

phage particles into the SM buffer. Tube was then incubated at 4oC overnight. This 

phage stock is stable for up to 6 months at 4oC. 

 

2.3.2  In vivo excision 

2.3.2.1  Preparation of host cells 

Separate overnight cultures of XL-1 Blue MRF’ cells, supplemented with 0.2% (w/v) 

maltose and 10mM MgSO4 and XLOLR cells in LB broth were grown at 30oC overnight. 

XL-1 and XLOLR cells were gently spun down at 1000g for 15 minutes and resuspended 

in 10mM MgSO4 at an OD600 of 1.0. 

 

2.3.2.2  Single clone excision 

200µl XL-1 Blue MRF’ cells at OD600 of 1.0, 250µl of phage stock (containing >1x105 

phage particles) and 1µl ExAssist (Stratagene) helper phage (>1x106 pfu/ml) were added 

to a 15ml Falcon tube and incubated for 15 minutes at 37oC. 3ml of LB broth was added 

and the tube incubated at 37oC with shaking for 3 hours. After incubation, the Falcon 

tube was heated at 70oC for 20 minutes, the tube was then spun at 1000g for 15 minutes. 

Supernatant was gently decanted into a clean sterile 15ml Falcon tube, this stock contains 

the excised phagemid packaged as filamentous phage particles and can be stored at 4oC 

for up to 2 months. To plate the excised phagemid, 100µl of the phage supernatant was 

added to 200µl XLOLR cells in 10mM MgSO4 (OD600=1.0) in a 1.5ml microfuge tube 
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and the tubes incubated at 37oC for 15 minutes. 200µl of this cell mixture was plated 

onto LB-Ampicillin plates; plates were then incubated overnight at 37oC. 

 

2.3.3  Extraction of bacteriophage DNA 

LB-Ampicillin plates were checked for individual colony growth. Colonies were picked 

and grown to confluence in LB broth supplemented with ampicillin at 37oC overnight. 

Bacteriophage DNA was then extracted using standard DNA protocols (see section 

2.2.6.4). 

 

 

2.4  General Caenorhabditis elegans Methodologies 

2.4.1  Maintenance of C.elegans stocks 

Worms were maintained on NGM agar (3g NaCl, 17g Agar, 2.5g Peptone, in 1 litre high 

purity water. Autoclave, then add 1ml 1M CaCl2, 1ml 1M MgSO4, 25ml Potassium 

phosphate pH6, and 5mg/ml cholesterol) usually in 9cm petri dishes seeded with P90C a 

disabled E.coli mutant lacking the lac operon. This deletion prevents survival of the 

culture outside the lab. After the hot NGM agar had cooled, the bacterial suspension was 

plated out using sterile techniques. Plates were then incubated overnight at 37oC to allow 

the bacterial lawn to grow. Cultures require subculturing every 7-10 days. 

 

2.4.2  Subculture of stocks 

Using sterile technique, the agar layer from 4-day (or older) worm cultures was cut into 

5-6 sections using a flamed scalpel blade. Agar pieces were transferred onto fresh 

bacterial lawns on NGM agar plates and sealed with Parafilm (to prevent drying). Worms 

were routinely cultured at 15oC for 3-4 days before experimental use. 
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2.4.3  Harvesting stocks from plates 

Worms were washed from the culture plates with approx 1-2ml K-medium (2.39g KCl, 

3.099g NaCl, in 1 litre of high purity water. Autoclave and store at 15oC) or M9 buffer 

(3g KH2PO4, 6g Na2HPO4, 5g NaCl, 1ml 1M MgSO4 in 1 litre of high purity water. 

Autoclave and store at 15oC) into a 50ml centrifuge tube on ice. The tube was then filled 

to around the 50ml mark with worms suspended in buffer and left to settle for 30 

minutes at 4oC. The supernatant was removed with a pipette (liquid removed should be 

treated with bleach for decontamination) and further M9 buffer or K-medium added to 

the worm pellet. This is repeated several times to remove most of the bacteria in the 

supernatant. 

 

2.4.4  Synchronised populations 

Worms were washed from plates as in 2.3.3, and the suspension passed through a 5-

micron filter (Wilson sieve) so that only L1 and L2 larvae were present in the filtrate. 

Worms were then centrifuged at 3000rpm for 30 minutes and plated out onto fresh agar 

plates for 2-3 days at 24oC or 4-5 days at 15oC. The development of such synchronised 

cultures is checked daily, and worms harvested as young adults once they start producing 

eggs and young. 

 

2.4.5  Freezing worms as stocks 

Wild type (N2) and mutant worm strains can be stored in the frozen state indefinitely 

(Wood, 1988). Starting with cultures of just starving L1 and L2 larvae, worms were 

washed off into 1ml of M9 buffer and an equal volume of freezing solution (5.85g NaCl, 

6.8g KH2PO4, 300g Glycerol, 5.6ml 1M NaOH, in 1 litre high purity water. Autoclave 

then add 3ml 0.1M MgSO4) added. After mixing, 0.5ml aliquots were transferred into 

freezing vials and placed in Styrofoam boxes at -70oC. Thawed worms can be seeded 
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onto fresh bacterial lawns on 9cm NGM agar plates and healthy worms picked off the 

next day and transferred onto fresh plates. 

 

2.4.6  Egg isolation and cleaning 

Alkaline hypochlorite dissolves all worm tissues except eggs, which are largely resistant, 

and will also destroy almost all bacterial and fungal contaminants. 5ml of bleach (15% 

Sodium hypochlorite) and 5ml of 2M NaOH were placed on a small P90C seeded NGM 

plate between the bacterial lawn and the edge of the plate. From a second plate 10 gravid 

hermaphrodites (adults containing many eggs) were placed in the bleach solution, plates 

were then incubated overnight at room temperature. Plates containing the bleach 

solution were inspected to check that the adults had dissolved leaving only eggs. The 

hatched eggs then move over the plate to the bleach free area and are allowed to feed 

and develop. Plates were then incubated overnight at 20oC, before being transferred to 

new plates. 

 

2.4.7  Microinjection of double-stranded RNA 

RNA can be injected into any part of the worm body cavity, though it is better to inject 

into the cytoplasmic syncytium of the gonad. Injection needles were pulled from glass 

capillaries using a Sutter micropipette puller. The needles were opened just before use by 

physically breaking the needle. Over a flame, a yellow pipette tip was drawn out. A 

stretch of the drawn out part of the tip was placed on a 24x50mm coverslip, and a drop 

of microinjection oil placed on top. Using the 5x objective, the pipette was brought into 

focus and the injection needle lowered toward the pipette. The needle was rubbed up and 

down the pipette, to check if the needle was broken pressure was applied to the needle 

and continually rubbed up and down the pipette until there was a steady flow of fluid 

from the needle under pressure. The worms were placed on injection pads made from a 
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thin layer of 2%-dried agarose, which immobilised the worms by depriving them of 

moisture. N2 worms were injected at 40X magnification using a Nikon 32 microscope 

and a Leitz micromanipulator, the flow of injection fluid was controlled by a Picospritzer 

II (General Valve Corp). Worms were gently recovered by adding a single drop of 

recovery buffer (M9 plus 4% glucose) and then transferring the worms to individual 

NGM plates. 

RNA injected worms were left for 5 hours to allow pre-fertilised eggs to be laid, before 

being put onto new individual NGM plates. 

 

2.4.8 Microinjection of DNA 

DNA injections were performed as with double-stranded RNA injections (section 2.4.7). 

DNA injected worms, which were transformed, were identified by the right rolling 

phenotype caused by the mutant collagen gene, rol-6, encoded by the pRF4 plasmid. 

Each selected transgenic animal was placed on a separate NGM plate for propagation. 

Lines were established after the selectable phenotype had been successfully passed on for 

three generations. 

 

2.4.9  Microinjection of Black Widow Spider Venom 

Black widow spider venom was stored as a concentrated solution at –20oC in venom 

buffer (50mM Tris-HCL pH 8.0, 50mM NaCl). Prior to injection an aliquot of venom 

was thawed on ice and, if necessary, diluted in venom buffer. Adult C.elegans were 

injected as in section 2.4.7, except that venom was injected into the worm body cavity 

not the gonads. 

After injection worms were transferred to individual P90C coated NGM plates and 

incubated for 30 minutes at 20oC. After incubation the worms were kept at 20oC but 

were scored every 30 minutes for reaction to the venom. 
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2.4.10  RNA interference by double-stranded RNA (dsRNA) feeding 

2.4.10.1  Bacterial induction of feeding plasmids 

Single colonies of HT115 bacteria containing cloned L4440 plasmids were picked and 

grown in culture in LB-broth with the addition of 50µg/ml of the antibiotic ampicillin, 

unless indicated. Expression of dsRNA was produced as follows. 

Bacteria were grown for 8 hours at 37oC, then seeded directly onto NGM plates 

containing 1 mM IPTG and 50µg/ml ampicillin. Seeded plates were allowed to dry at 

room temperature before being incubated overnight at 25oC. 

Non-induced controls were produced by seeding bacteria onto plates that lack 1 mM 

IPTG. 

 

2.4.10.2 RNA interference by feeding 

L4 stage hermaphrodite worms were placed onto NGM plates containing seeded bacteria 

expressing dsRNA for each gene being examined and were incubated for 24 hours at 

25oC. Then, five worms were independently replica plated onto plates seeded with the 

same bacteria and allowed to lay eggs for 24 hours at 25oC before being removed. 

Progeny were scored for phenotype after a further 24 hours at 25oC. 

 

 

2.5  Behavioral assays of Caenorhabditis elegans 

2.5.1  Volatile repellent assay 

NGM plates were prepared as in section 2.4.1 but the plates, once set, were not spread 

with P90C bacteria. 

This assay was carried out using a modified version of the method of Bargmann et al, 

(1993). 20ml – 40ml of Octanol was transferred to a microfuge tube. A paintbrush bristle 

was dipped into the Octanol 10-15 times to initialise the bristle with the solvent. Five 
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worms of the strain to be examined were transferred to each NGM plate using a worm 

pick and left for two minutes to adapt to the new plate. The bristle was dipped in octanol 

again and under a light microscope, the tip of the bristle was brought as close as possible 

to the head of one worm. If contact between the worm and the bristle occurred, then a 

new worm should be assayed on a different plate. The time was recorded from when the 

bristle was brought into close proximity to the C. elegans to initiation of backward 

locomotion by C. elegans. 

One C. elegans per plate was tested at a time. This was to prevent other C. elegans on the 

same test plate becoming sensitised or desensitised by exposure to octanol during testing 

of the first worm. 

 

2.5.2  Osmotic repellent assay 

10 NGM plates were prepared as in section 2.4.1, but the plates, once set, were not 

spread with P90C bacteria. 

Using a pipette, a ring of 2M glucose, approximately 2cm diameter was drawn out in the 

centre of each plate. Two worms of the strain being studied were placed in side the ring. 

The time was recorded from when the worms were placed inside the ring until they 

entered the ring or passed through the ring boundary. This procedure was repeated for 

each plate. 

 

2.5.3  Analysis of defecation cycle 

This assay was carried out using a modified version of the method of Thomas et al, 

(1990). Defecation was scored by direct observation of the muscle contractions that 

constitute the defecation motor program (Pboc, Aboc and Exp) in single animals on 

P90C coated NGM plates over a span of 10 consecutive cycles at 20oC. The wild-type 
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defecation motor program consists of sequentially occurring Pboc, Aboc, and Exp 

(Thomas et al, 1990) contractions every 45-50 seconds. 

 

2.5.4  Exposure of C.elegans to levamisole 

This assay was carried out using a modified version of the method of Lewis et al, (1980). 

NGM was made as in section 2.4.1; 100µM stock solution of levamisole was dissolved in 

UHP water and diluted in the still molten NGM to give the required range of 

experimental concentrations. Plates were left to solidify and, when set, coated with P90C 

bacteria before incubation overnight at room temperature. The strain of worm to be 

exposed was placed on the levamisole plates as a population of 25 and left to equilibrate 

for 15 minutes. This is time zero. After 15 minutes exposure to levamisole the number of 

C.elegans paralysed was recorded. Paralysis was assessed by observed lack of locomotion, 

a rod like appearance, and a lack of movement observed after prodding the worm with a 

worm pick. This procedure was repeated at 15 minute intervals for a total of 3 hours. 

 

2.5.5  Exposure of C.elegans to aldicarb 

This assay was carried out using a modified version of the method of Lewis et al, (1980). 

NGM was made as in section 2.4.1; 1mM stock solution of aldicarb was dissolved in 

100% ethanol and diluted in the still molten NGM to give the required range of 

experimental concentrations. Plates were left to solidify and, when set, coated with P90C 

bacteria before incubation overnight at room temperature. The strain of worm to be 

exposed was placed on the aldicarb plates as a population of 25 and left to equilibrate for 

15 minutes. This is time zero. After 15 minutes exposure to aldicarb the number of 

C.elegans paralysed were recorded. Paralysis was assessed by observed lack of locomotion, 

a rod like appearance, and a lack of movement observed after prodding the worm with a 

worm pick. This procedure was repeated at 15-minute intervals for a total of 3 hours. 
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2.5.6  Exposure of C.elegans to imipramine 

This assay was carried out using a modified version of the method of Reiner et al, (1995). 

NGM was made as in section 2.4.1; 5mg/ml stock solution of imipramine was dissolved 

in UHP water and diluted in the still molten NGM to give the required range of 

experimental concentrations. Plates were left to solidify and, but were not coated with 

P90C bacteria. The strain of worm to be exposed was placed on the imipramine plates as 

a population of 25 and left to equilibrate for 15 minutes. This is time zero. Pharyngeal 

pumping was counted using light microscopy for each concentration for 5 minutes in 

total. 

 

 

2.6  Microscopy of Caenorhabditis elegans 

2.6.1  Light microscopy 

For examining wild type and mutant phenotypes a stereo microscope (Leitz) was used 

with 10x eyepiece optics and 5x and 20x objective optics. These allow analysis of adults, 

embryos and all other larval stages. 

All specimens were mounted on agar pads (see section 2.4.7) in UHP water. Specimens 

were placed in the centre of the pad and, using a Pasteur pipette the majority of the water 

was withdrawn. The amount of water remaining is important as the specimen should not 

be covered with water. A coverslip was then slowly placed on the pad, with the 

remaining water being used to seal the slide and coverslip  together.  

The slide was then mounted under the microscope and the specimens examined. 
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2.7  Protein Methodologies 

2.7.1  Preparation of black widow spider venom from venom sacs 

Concentrated black widow spider venom (a kind gift from V.Krasnoperov, Russian 

Academy of Sciences, Russia) was prepared by grinding venom sacs in venom storage 

buffer (50 mM Tris HCl, 50 mM NaCl pH8) at 4oC. The venom solution was then 

centrifuged at 14000g for 30 minutes at 4oC to remove any particulate matter. 

Concentrated venom solution was then tested for protein concentration by the method 

of Bradford (see section 2.7.2) and then stored at 4oC. A second stock of black widow 

spider venom was obtained from Latoxan, France and stored according to manufacturers 

instructions. 

 

2.7.2  Bradford (Coomassie blue) protein assay 

Protein concentration is determined using the method described by Bradford, 1976. 

Bradford reagent is the main component of this assay, it is comprised of 100mg Serva 

blue G dissolved in 100ml of 85% phosphoric acid and 50ml of 95% ethanol, and made 

up to 1 litre. 30µl sample of protein solution to be measured was added to 50µl of 1M 

NaOH. To this 950µl of Bradford reagent was added and the assay solution vortexed 

immediately. Absorbance was read at 590nm in a cuvette. The protein concentration was 

determined from a standard curve of bovine serum albumin (BSA) generated between 

the range of 0-40 µg/ml. All assay samples and standards were carried out in triplicate 

and the resultant means determined. The standard curve of BSA concentrations against 

the absorbance at 590nm produces a linear plot upon which linear regression was carried 

out. Linear regression was used on the sample readings so that unknown protein sample 

concentrations could be calculated. Only standard curves that gave rise to R2>0.95 were 

used. 
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2.7.3  SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

Based on a modified version of that described by Laemmli (1970). SDS-PAGE was 

performed using BioRad Minigel electrophoresis kit. Glass plates used for casting gels 

were cleaned with 100% methanol to remove all traces of grease and dirt that my 

interfere with the casting of the gels. Separating gels consisted of a final concentration of 

7.5% acrylamide/bis-acrylamide, 375mM Tris-HCl (pH8.8), 0.1% SDS, 0.001% TEMED 

and 0.005% Ammonium persulphate (APS), and were poured into the casting units to 

within 0.5-1.0cm from the bottom edge of the well comb, then overlaid with 100% 

ethanol. The gel was then left to polymerize for about an hour and the overlaid ethanol 

removed after polymerization had taken place. The stacking gel component of the gel 

was made immediately prior to electrophoresis. The stacking gel consists of 4% 

acrylamide/bis-acrylamide, 125mM Tris-HCl (pH6.8), 0.1% SDS, 0.001% TEMED and 

0.005% APS and was poured over the separating gel 0.25cm from the top of the gel kit, 

the well comb was then inserted before the gel set. Polymerisation of the gel takes one 

hour. The completed gel running apparatus was then placed into the gel tank and the 

upper and lower reservoirs filled with an appropriate amount of electrophoresis buffer 

(25mM Tris-HCl (pH8.6), 192mM glycine and 0.1% SDS (w/v)). Prior to the loading of 

samples, wells were flushed with electrophoresis buffer to clear the wells. Samples were 

diluted 1:1 using 1X Laemmli sample buffer (2% SDS, 10% glycerol, 5% 2-

mercaptoethanol, 0.002% bromophenol blue and 0.125M Tris-HCl (pH6.8)). Samples 

and standard ladder were then boiled for 3 minutes to denature the proteins. Samples 

and ladder were then loaded onto the gel and the gel was then run for 1 hour at 150 

Volts or until the blue running dye had reached the bottom of the gel. 

Gels were stained using Coomassie Blue method. Gels were stained for 20 minutes at 

room temperature with gentle shaking in Coomassie Blue stain (0.25g Coomassie Blue 

R250, 90ml Methanol: water (1:1), and 10ml Acetic acid, filtered through Whatman No1 
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filter prior to use). After 20 minutes, gel was destained in Coomassie Blue destain (30% 

Methanol, 10% Acetic acid (v/v)), gel was successively washed in destain solution until 

bands were clearly visible. 

 

2.7.4 Lithium duodecyl sulphate-polyacrylamide gel electrophoresis  

(LDS-PAGE) 

For sharper band resolution of small to mid-size molecular weight proteins at low pH, 

LDS-PAGE was used. 

Commercially available Pre-cast 10% Bis-Tris gels (Novex) were used. Protein samples 

were loaded using NuPAGE® LDS sample preparation buffer (Novex) and run in 

NuPAGE® MOPS running buffer (Novex) at 170V as per manufacturers instructions. 

Gels were then stained either by Coomassie Blue stain (section 2.7.3) or, when greater 

sensitivity was required, silver stain (see section 2.7.5). 

 

2.7.5  Silver staining 

The basic mechanism occurring in the silver staining of macromolecules is the reduction 

of ionic to metallic silver. Protein bands are imaged in the gel due to differences in 

oxidation/reduction potentials between sites in gels occupied by protein and adjacent 

sites not occupied by protein. Silver stain has an increased sensitivity over other staining 

methods, typically sensitivity is 50 times greater than that obtained with Coomassie Blue 

staining. 

Gels were stained using BioRads silver stain kit. Reagents were prepared as shown in the 

manufacturers instructions. 

Gels were initially fixed in 40% Methanol, 10% Acetic acid (v/v) for 30 minutes before 

being washed in 10% Ethanol, 5% Acetic acid (v/v) solution twice for 15 minutes. 

Oxidizer reagent was then added to the gel for 3 minutes prior to the gel being washed in 
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UHP water for 2 minutes, UHP water washes were continued until all the yellow colour 

had been removed from the gel. Silver stain reagent was then added, and the gel left to 

soak in the stain for 15 minutes. The gel was then washed in UHP water for 2 minutes. 

Developer was then added and allowed to remain on the gel until the solution turned 

yellow, or a brown precipitate appeared. The developer was then poured off and fresh 

added, the gel remained in the developer for a further 5 minutes. At this point, stop 

solution (5% Acetic acid (v/v)) was added, the gel was removed after 5 minutes and the 

examined. 

 

2.7.6  Chromatography of black widow spider venom 

Black widow spider venom (Latoxan) was resuspended in 50mM Tris, 150mM NaCl, 

pH8.0 and subjected to size exclusion chromatography on Superdex 200 (HR10/30 

Pharmacia). 1ml fractions were assayed by diluting 1:1000 in 50mM Tris, NaCl, pH8.0 

and microinjected into adult C.elegans (see results section). Positive fractions were 

analysed with a 40-300mM NaCl gradient in 50mM Tris, pH8.0 on UnoQ column 

(BioRad), followed by 40-400mM NaCl gradient in 50mM sodium succinate, pH6.2, on 

UnoS column (BioRad) or 40-400mM NaCl gradient in 20mM HEPES, pH8.0, on UnoS 

column. Proteins were run on a 10% Bis-Tris denaturing PAGE gel in MOPS buffer, 

according to the manufacturers instructions, (Novex) see section 2.7.4, followed by silver 

staining (section 2.7.5). 

 

2.7.7  Peptide analysis 

Proteins of interest, identified after chromatography and analysis of kill ratios from 

microinjection into C.elegans, were analysed for peptide structure. 

Proteins were diafiltered into 150mM Tris, pH8.16, subjected to tryptic digestion and 

then MS/MS analysis. 
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2.8  Sequence analysis 

Putative homologues of genes were identified by searching the C.elegans genomic DNA 

databases. 

http://www.sanger.ac.uk/Projects/C_elegans 

http://www.dna.affrc.go.jp/htdocs/swsch/index.html 

All clone sequence data was analysed using GCG. 

http://www.accelrys.com/products/gcg_wisconsin_package/index.html 

Protein homologies and alignments were identified using Pfam 6.6. 

http://www.sanger.ac.uk/Software/Pfam 

All WWW based software packages were used at their respective default values. 

 

 

http://www.sanger.ac.uk/Projects/C_elegans
http://www.dna.affrc.go.jp/htdocs/swsch/index.html
http://www.accelrys.com/products/gcg_wisconsin_package/index.html
http://www.sanger.ac.uk/Software/Pfam
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Chapter 3.   Results. 

 

3.1  Extraction of Black widow spider venom from venom sacs 

To begin analysis of black widow spider venom (BWSV), venom was extracted from the 

venom sacs of the spider Latrodectus mactans tredecimguttatus. 

Venom was extracted using the method described in section 2.7.1; venom concentration 

was calculated using the method of Bradford (1976). Concentrated venom protein was 

calculated at 1.2mg/ml. 

Venom was analysed for the presence of high molecular weight proteins, which 

characterise the components of BWSV. Venom was run as a concentrated solution and a 

1:10 dilution in venom buffer (50mM Tris, 50mM NaCl, pH8) on a denaturing SDS-

PAGE gel as described in section 2.7.3. SDS-PAGE gel of BWSV is shown in Figure 3.1. 

 

          1           2          3 

 

Figure 3.1 PAGE of black widow spider venom. 
Black widow spider venom was run on a 7.5% acrylamide SDS-PAG
conditions as described in Methods section 2.7.3. Lane 1 contains m
Lane 2 contains concentrated BWSV (24µg loaded). Lane 3 contains
1:10 using 50mM Tris, 50mM NaCl, pH8 (2.4µg loaded). The gel wa
Coomassie Blue (section 2.7.3). Sizes of molecular weight markers a
arrows on the left side of the gel, sizes of venom proteins are shown
the right side of the gel. 

 

 

 

a 

a 

a 
120kDa
200kDa
115kDa
97kD
66kD
44kD
E gel under denaturing 
olecular weight standards. 
 concentrated BWSV diluted 
s fixed and stained with 

re shown by the labelled 
 by the labelled arrows on 



 76 

3.2  Effect of injected BWSV on wild-type (N2) C.elegans 

3.2.1  Effects of BWSV on C.elegans over a range of concentrations 

BWSV has no effects on wild-type (N2) C.elegans at any concentration when worms are 

simply steeped in venom (Bell & Mee, unpublished data). This may be due to the 

thickness of the cuticle surrounding the worm preventing entry of the protein molecules 

in venom. To bypass this problem a microinjection rig was developed to allow the 

injection of fluids, including venom, into C.elegans. 

To examine the effects of BWSV on N2 C.elegans, a concentration range of venom was 

constructed and injected in adult N2 C.elegans. 10 worms per concentration were injected 

along with a negative control of venom buffer only (50mM Tris, 50mM NaCl, pH8). 

Worms were scored for any effects of the venom after incubation at 20oC for 2 hours. 
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Figure 3.2 Black widow spider venom is toxic to wild-type C.elegans. 
C.elegans (10 per point) were injected with black widow spider venom at the indicated 
concentration (µg/ml), or the control venom buffer (0) and allowed to recover for 2 hours at 
20oC on standard NGM plates (see section 2.4.1). Animals were scored after incubation and the 
% of dead animals are shown. Dead worms were characterised by a paralysed, rod-like 
appearance and an inability to respond to heavy touch with a worm pick. Death was confirmed 
by re-examination at 24 hours. 
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BWSV was toxic over a wide range of concentrations, from 1.2mg/ml to 1.2ng/ml; at 

lower concentrations the toxic response from the venom was highly variable. This may 

be due to instability of proteins or to non-specific absorption to glass and plastic 

containers. 

 

3.2.2  Effect of denatured BWSV on N2 C.elegans 

To determine whether a protein component of the venom is responsible for the 

observed toxicity, venom was treated with either 0.1% SDS or heating for 10 minutes at 

70oC to denature the protein components prior to injection into N2 C.elegans. A 

concentration of 1.2µg/ml was used to inject the worms: this concentration prevents 

instability at low concentration and is in 100-fold excess of the amount needed to kill 

C.elegans (Figure 3.2). 
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Figure 3.3 Effect of heat treatment on BWSV toxicity in C.elegans 
BWSV at 1.2µg/ml was injected into worms (Venom), or after heating for 10 minutes at 70oC 
(Venom+Heat). Negative control of venom buffer only was also injected (Buffer). 10 C.elegans 
were injected per group and after incubation at 20oC for 2 hours; worms were again scored for 
lethality caused by venom injection. 
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Data shown in Figure 3.3 show that injection of BWSV at a concentration of 1.2µg/ml 

causes complete death of all injected animals after incubation at 20oC on standard NGM 

plates, this data supports the observations made in Section 3.2.1 & Figure 3.2. Injection 

of venom buffer (50mM Tris, 50mM NaCl, pH8) causes no death when injected into 

C.elegans. These data act as positive and negative controls for the injection of BWSV into 

C.elegans after heat treatment at 70oC for 10 minutes. The % lethality observed in these 

animals was 0%. This experiment demonstrates that heat- treating venom will remove 

the toxic effect in C.elegans caused by BWSV. 

Figure 3.4 shows the effects of BWSV when treated with 0.1% SDS prior to injection 

into N2 C.elegans, this treatment, like pre-treatment with heat, causes the complete 

ablation of the toxicity of the venom. 
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Figure 3.4 Effect of 0.1% SDS treatment on BWSV toxicity in C.elegans 
BWSV at 1.2µg/ml was injected into worms (Venom), or after addition of 0.1% SDS 
(Venom+0.1% SDS). Negative control of venom buffer plus 0.1% SDS was also injected 
(Buffer+0.1% SDS). 10 C.elegans were injected per group and after incubation at 20oC for 2 
hours; worms were scored for lethality caused by venom injection. 
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Positive and negative controls of 1.2µg/ml BWSV and venom buffer (50mM Tris, 

50mM NaCl, pH8) plus 0.1% SDS respectively, were injected individually into adult 

C.elegans. Venom caused 100% lethality in the worms, while buffer plus 0.1% SDS caused 

0% death. Both these data are shown in Figure 3.4. Experimental injection of 1.2µg/ml 

BWSV treated prior to C.elegans injection with 0.1% SDS, to denature the venom, showed 

0% lethality in injected worms. 

This data supports the argument that the active toxic component in BWSV can be 

denatured by thermal or chemical treatments. 

Figures 3.3 and 3.4 both show that the denaturing of BWSV removes the toxicity of the 

venom to C.elegans. This therefore suggests that the component of the venom that is 

causing the toxicity is a protein. 

 

3.2.3  Effects of purified αααα-latrotoxin on C.elegans 

It is known that high molecular weight latrotoxins mediate the toxicity of black widow 

spider venom in mammals and insects. 

The latrotoxin α-latrotoxin is a known toxin of mammals and is specific to vertebrates 

only, as it has been shown not to elicit vesicle release at invertebrate neuromuscular 

junctions (Frontali et al, 1976 & Ashton et al, 2000). 

In order to characterise the toxic component of BWSV in C.elegans it is necessary to 

identify latrotoxins that have an effect on C.elegans. 

Initially highly purified α-latrotoxin (kind gift of Y.Ushkaryov) at 240µg/ml was tested 

on adult N2 C.elegans using the microinjection technique that has been used previously. 
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Figure 3.5 Effect of purified αααα-latrotoxin on C.elegans 
C.elegans (10 per point) were injected with BWSV at 1.2µg/ml (Venom), or purified α-latrotoxin 
(α-latrotoxin) at 240µg/ml, or buffer control (Buffer). Animals were scored for lethality after 2 
hour incubation at 20oC. 
 

Purified α-latrotoxin showed no measurable toxicity toward C.elegans upon injection. 

Previous studies have shown that α-latrotoxin is specific to vertebrates and has no effect 

on insects (Krasnoperov et al, 1992). 

The amount of α-latrotoxin in BWSV has been approximated to be 3% of total venom 

(Krasnoperov et al, 1992). Therefore, BWSV, like that used in Section 3.2.1, has an 

approximate α-latrotoxin content of 36µg/ml or 3% of total venom (1.2mg/ml). The 

experiment in Section 3.2.3 used 240µg/ml of (pure) α-latrotoxin, 6.6 times more α-

latrotoxin than in total BWSV, this shows that even at very high concentrations of pure 

α-LTX. Pure α-LTX has no toxic effect on C.elegans. 

Though the mechanism of latrotoxin stimulation is similar across a broad range of phyla, 

latrotoxins, such as α-latrotoxin only show responses in a specific animal group (Henkel 

et al, 1999). Therefore it is necessary to further characterise the components, which cause 

toxicity in C.elegans, this can be elucidated by FPLC fractionation of BWSV. 
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3.3  Chromatographic separation of BWSV proteins 

BWSV was initially fractionated based on the method of Krasnoperov (1992). However, 

latrotoxin fractions were contaminated with low molecular weight proteins (data not 

shown), and so BWSV was purified using an initial size exclusion column (Ashton et al, 

2000) followed by the procedure based on Krasnoperov (Krasnoperov et al, 1992). 

 

3.3.1 Size exclusion standards separated using size exclusion  

chromatography 

A Superdex 200 (HR10/30 Pharmacia) column was equilibrated into water (50ml at 

0.5ml per minute), then 20mM Tris pH8, 150mM NaCl. BioRad size exclusion standards 

were resuspended in the same buffer: 100µl of this solution was then spun for 20 

minutes at 4oC and the supernatant aspirated before loading onto the column.  

Two separate runs of the standards were made to check the consistency and 

reproducibility of separation from the column. 

Chromatograms for both runs were overlaid and are shown in Figure 3.6. 

670kDa, 158kDa and 44kDa standards in both runs show identical elution profiles. 

The consistency of the elution profiles obtained from both runs of the standards from 

the size exclusion column show that the columns are working to an optimum level and 

there is reproducibility of separation over a number of purifications. 

The column can therefore be prepared for size exclusion chromatography of black 

widow spider venom as the first stage of purifying and identifying the venom component 

toxic to C.elegans. 

Size exclusion chromatography was utilised to remove low molecular weight protein 

contaminants, which are present in black widow spider venom (Frontali et al, 1976). 
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Figure 3.6 Size exclusion on a Superdex 200 column. 
Size exclusion standards were dissolved in 1M Tris, 5M NaCl and loaded onto Superdex 200 
column at 0.5ml/min. The absorbance at 280nm (A280nm) of the elutes is shown as the thick 
black line, there are 2 traces, overlaid to show the 2 runs made of identical standards. Standard 
sizes are as follows, 1.thyroglobulin (bovine)670kDa, 2.gamma globulin (bovine)158kDa, 
3.ovalbumin (chicken)44kDa, 4.myoglobin (horse)17kDa, 5.VitaminB12 1350Da. 
 
 
3.3.2  Size exclusion separation of BWSV 

13.8mg BWSV in 1ml 20mM Tris pH8, 150mM NaCl was gently mixed and then spun at 

15000g for 20 minutes at 4oC. 250µl BWSV was loaded onto the column and the 

fractions were collected at 1-minute intervals. The chromatograph is shown in Figure 3.7. 

Samples were then diluted 1:1000 in venom injection buffer (50mM Tris, 50mM 

NaCl,pH8) and injected into adult C.elegans to test for toxicity. After injection worms 

were incubated for 2 hours at 20oC before analysis. Figure 3.7 shows % lethality for each 

fraction tested (n=5). 

The data shows that fractions eluted from the size exclusion column that show the 

highest % lethality were fractions 8 through 12. These fractions correspond to proteins 

with a molecular weight of 170kDa to 70kDa. With peak fractions for lethality being 

fractions 8 & 9 with 100% lethality (n=5).  
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Figure 3.7 Size-exclusion chromatography of BWSV 
BWSV was dissolved in 50mM Tris pH8, 150mM NaCl, and loaded
HR10/30 column at 0.5ml/minute. The absorbance at 280nm (A28
as a solid black line. 0.5ml fractions were collected (corresponding to
the graph) and assayed by diluting 1:1000 in venom injection buffer,
C.elegans, % lethality is shown (n=5) for each fraction as a thick black
position of eluted molecular weight markers is shown by the presenc
top of the trace; these correspond with, bovine thyroglobulin (670kD
(158kDa) and chicken ovalbumin (44kDa). 
 
 
 
 
 
Eluted fractions from the size exclusion column were run on a

to analyse the proteins present in each fraction. Gel image of t

Figure 3.8. 

Fractions visualised in Figure 3.8 correspond to those tested fo

microinjection shown on the chromatograph in Figure 3.7. 
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Figure 3.8 PAGE of fractions from size exclusion column. 
BWSV was fractionated on Superdex 200 column (Figure 3.7) and fractions of 1ml collected and 
tested for toxicity in C.elegans. Eluted fractions were also visualised on LDS-PAGE as described 
in Methods section 2.7.4. 10% Bis-Tris gel (Novex) was run in NuPage Mops buffer (Novex) at 
170V and stained using Coomassie Blue. Size of protein bands eluted in each fraction (1 to 14) 
was compared against SDS-6H (Sigma) molecular weight markers (Mr). Labelled arrows indicate 
size markers. Lanes 9-14 were run concurrently on a separate gel, the digital image is a composite 
from the two gels. 
 

LDS-PAGE gel of the eluted fractions from the SEC shows the proteins present in the 

fractions, which were tested in C.elegans for toxicity. 

Fractions 1 to 8 show proteins with molecular weights above 158kDa, fractions 9 to 14 

show proteins with a molecular weight of 158kDa and below. The proteins which elute 

in fractions 8 and 9 appear at the same molecular weight on PAGE as those in fraction 

10/11; it has previously been shown that α-LIT dimerises (e.g. Ashton et al, 2001). This 

data is consistent with dimerisation of the C. elegans-specific toxin.  

Analysis of SEC data obtained from toxicity testing in C.elegans shows fractions of peak 

toxicity in fractions 9-12 (Figure 3.7). 

Peak fractions obtained from the size exclusion column are all high molecular weight 

proteins. 

Peak fractions, which gave the highest % lethality in C.elegans, were pooled as follows; 

Fractions, 9, 10, 11 & 12. 
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3.3.3  UnoQ separation of BWSV toxic fractions obtained from SEC 

Pooled samples were diluted from a concentration of 150mM NaCl to 30mM NaCl, and 

applied to a UnoQ1 (BioRad) column in 50mM Tris pH8, 30mM NaCl and eluted from 

the column using a salt gradient. The chromatograph of this purification is shown as 

Figure 3.9. Fractions eluted from the UnoQ1 column were collected and diluted 1:1000 

in 50mM Tris, 50mM NaCl, pH8 venom buffer before toxicity testing by microinjection 

into adult C.elegans, Figure 3.9 also shows the % lethality of each eluted test fraction 

(n=5). 
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Figure 3.9 UnoQ chromatography of SEC separated BWSV fractions. 
Pooled fractions (9-12) from SEC purified BWSV in 50mM Tris pH8, 30mM NaCl were loaded 
onto UnoQ column. The absorbance at 280nm (A280nm) of the elute is shown as a solid black 
line. Salt gradient elution is shown by a dotted line. 1ml fractions were collected (corresponding 
to numbers 1-28 at the top of the graph) and assayed by diluting 1:1000 in venom buffer, and 
microinjected into C.elegans, % lethality is shown (n=5) for each fraction as a thick black line with 
circles. 
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Eluted fractions from the UnoQ column were visualised by LDS-PAGE electrophoresis 

using 10% Bis-Tris gel (Novex) (Figure 3.10). 

The chromatograph obtained when pooled fractions 9-12 were separated on the UnoQ 

column (Figure 3.9) is similar to that in Krasnoperov (1992), although this experiment 

used prior separation of venom on the SEC. 

Therefore, fractions 1-10 correspond to the crustacea-specific toxins, 11-22 the insecto-

specific toxins and 23-28 for the vertebrate-specific toxin approximately when compared 

to the MonoQ data in Krasnoperov (1992). Peak lethality of 80% was observed in 

fraction 16, while 100% lethality was seen for fraction 22.  

The data also shows some activity in the crustacean-toxin fractions but this is only 20%, 

0% lethality was observed in the fractions (23-28) which are believed to contain the 

vertebrate-specific toxin, this data supports the observations made in Section 3.2.3. 

LDS-PAGE shows the fractions eluted from the UnoQ column. Only the fractions 

showing lethality to C.elegans were run, these were fractions 4-9 & 14-22. Fractions 4-9 

show proteins of high molecular weight of ~115kDa, there is though, in some of the 

later fractions (7,8,9) low molecular weight proteins of ~66kDa which were not totally 

removed by the SEC purification. Fractions 14-22 contain a range of proteins, though in 

the 100% lethal fraction (22) there is an abundance of protein with a size in excess of 

115kDa and with little low molecular weight contaminants.  

As these fractions still contain some low molecular weight contamination, another round 

of purification was undertaken to isolate the C.elegans toxic component of BWSV. 
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igure 3.10 LDS-PAGE of BWSV fractions purified on UnoQ1 column. 
ooled fractions from SEC purification were fractionated on UnoQ1 column and the collected 
ractions analysed for toxicity in C.elegans. Eluted fractions were run on a 10% Bis-Tris gel to 
isualise proteins contained in each fraction. Gel was run at 170V and stained using Coomassie 
lue. Size of eluted proteins was compared to molecular weight markers (Mr) as indicated by the 

abelled arrows. A. 200kDa, B. 115kDa, C. 97kDa, D. 66kDa, E. 44kDa, F. 35kDa. 
umbered lanes correspond to eluted fraction apart from V 1&3, which show unfractionated 
WSV at 1µl & 3µl respectively and V, which shows 1µl-unfractionated BWSV. 
his figure is a composite of two separate gels; each gel has its own Mr marker, which is used for 
izing proteins on its respective gel only. Right hand markers for fractions 4-9, left hand markers 
or fractions 14-22. 

fter purification on UnoQ1 column, low salt fractions (14-16) were pooled and further 

urified using UnoS column, as described in Krasnoperov et al (1992). 

.3.4 UnoS separation of toxic fractions identified from UnoQ  

chromatography 

rasnoperov et al (1992), shows that after initial UnoQ purification, proteins eluted at 

he same position as the low salt fractions obtained after SEC and UnoQ separation in 

his thesis, contain multiple latroinsectotoxins. To continue purification of the nematode-

oxic fraction, samples 14-16 from the UnoQ column were pooled and further purified 

n UnoS column in 50mM Na succinate pH6.2, 20mM NaCl, and run on a gradient to 
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0.4M NaCl. 750µl fractions were collected, diluted 1:1000 in venom buffer and 

microinjected into C.elegans (n=5) to test for toxicity. 

Toxicity data obtained is shown in Figure 3.11. 
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Figure 3.11 UnoS chromatography of UnoQ separated BWSV fractions. 
Pooled fractions (13-22) from UnoQ1 purified BWSV in 50mM Na succinate, 20mM NaCl were 
loaded onto UnoS column. The absorbance at 280nm (A280nm) of the eluate is shown as a solid 
black line. Salt gradient (to 0.4M NaCl) elution is shown by a thin black line. 750µl fractions were 
collected (corresponding to numbers 1-21 on the top of the graph) and assayed for toxicity by 
1:1000 dilution in venom buffer and microinjection into C.elegans. % Lethality is shown (n=5) for 
each fraction as a thick black line with circles. 1=0%, 3=0%, 5=0%, 7=20%, 9=20%, 11=0%, 
13=0%, 15=40%, 17=20%, 19=40%, 21=0%. 
 

Fractions of interest eluted from the UnoS column were visualised by LDS-PAGE 

electrophoresis using 10% Bis-Tris gel (Figure 3.12). 

 



 89 

          Mr   15    14     13    12    8      Fw 

 

Figure 3.12 LDS-PAGE of BWSV fractions purified on UnoS column. 
Pooled fractions (13-22) from UnoQ1 purification were fractionated on UnoS column and the 
eluted fractions collected and analysed for toxicity in C.elegans. Eluted fractions of interest (15, 14, 
13, 12, 8 & Flow through (Fw)) were run on 10% Bis-Tris gel to visualise proteins within the 
fractions. Gel was run at 170V and stained using Coomassie blue. Size of eluted proteins was 
compared to molecular weight (Mr) markers as indicated by labelled arrows. 
 

UnoS purification of UnoQ fractions 14-16 shows a marked decrease in the lethality of 

the BWSV component fractions eluted from the UnoS column. The highest % kill is 

present in fractions 15 & 19 (Figure 3.11) with levels of 40% lethality after a 1:1000 

dilution. 

Krasnoperov (1992) showed that purified latroinsectotoxins are separated under these 

conditions. Proteins with similar molecular mass to latroinsectotoxins are separated 

under UnoS conditions (Figure 3.12), and elute in the same order, and the same relative 

abundance, as reported by Kransoperov (1992). 

Fraction 19 should not contain C.elegans toxic proteins; the lethality seen in this fraction 

may be due to a shift to the right in the elution profile of some of the later insectotoxins, 

and the use of different columns and venoms. LDS-PAGE of the UnoS fractions (Figure 

3.12) does show that fraction 15 (40% lethality upon injection into C.elegans) is a high 

molecular weight protein <115kDa and contains no low molecular weight contaminants. 
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This fraction would appear to represent a homogenous BWSV component that is toxic 

when injected into C.elegans. 

 

3.3.5  Identification of homogenous BWSV component toxic to C.elegans 

3.3.5.1  PAGE analysis of purified C.elegans toxin 

Purification undertaken has identified a fraction from BWSV that is potently toxic to 

C.elegans after 3 rounds of purification. Toxic fragments from each separation step were 

compared on an LDS-PAGE gel. Toxic fraction from UnoQ purification after separation 

on UnoS (fraction 15) yields a protein of 110kDa on PAGE, which has similar 

chromatographic properties to ε-latroinsectotoxin. Identification of C.elegans toxic 

protein is shown in Figure 3.13. 

Gel was silver stained after running for extra sensitivity of protein detection. 
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re 3.13 LDS-PAGE of purified BWSV showing homogenous component toxic to 
gans. 10% Bis-Tris gel was run to show homogenous component toxic to C.elegans purified 
 SEC, UnoQ and UnoS columns. Molecular weight standards (1) are shown by labelled 
s. Neat BWSV (2), venom post SEC (3), low salt peak fractions from UnoQ (4), purified 
in: putative epsilon latroinsectotoxin (5) and high salt kill peak from UnoQ (6) are in the 
ining lanes. 
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3.3.5.2  Peptide sequence analysis of C.elegans toxic fragment 

The protein obtained from BWSV purification was subjected to tryptic digestion, 

followed by MS/MS sequencing (John Keyte, personal communication).  

This gave three peptide sequences. 

 EA(L/I)(L/I)GHR 

 (AT)FQEV(L/I)DA(L/I)(L/I)EK 

 (FT)TDYVNN(L/I)AEDVR 

Similar results were obtained with another round of purification without the first size-

exclusion column. 

However, size-exclusion chromatography was included to allow the initial removal of low 

molecular weight components/contaminants. 
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3.4  Identification of latrophilin homologue in C.elegans 

Data in section 3.3 demonstrated that particular high molecular weight proteins are toxic 

to C.elegans. Mammal-specific latrotoxins are known to bind to the mammalian receptors 

latrophilin and neurexin. Therefore, homologues of these receptors in C.elegans may be 

responsible for the mediation of latrotoxin-induced toxicity. 

Database analysis of C.elegans genome (http://www.sanger.ac.uk/Projects/Celegans) was 

undertaken using the sequence of the latrophilin gene found in the rat. 

Database searches identified two possible homologues of latrophilin in C.elegans, 

BO457.1 and BO286.2. BO457.1 was found to be more closely related to latrophilin. 

Figure 3.14 shows the structure of the C.elegans latrophilin cDNA, which encodes a 1014 

amino-acid peptide with a predicted pI of 7.2. 

 

A. 

     MRRNKTTYSL LQTILVACLL TVTPTFASNK PTTDESGTIS HTICDGEAAE LSCPAGKVIS        60 

     IVLGNYGRFS VAVCLPDNDI VPSNINCQNH KTKSILEKKC NGDSMCYFTV DKKTFTEDPC       120 

     PNTPKYLEVK YNCVVPATTT TTTTTTSTTT TDSSLIVDEE EEAQKDALNS DVIKPVKKKE       180 

     DVFCSATNRR GVNWQNTKSG TTSSAPCPEG SSGKQLWACT EEGQWLTEFP NSAGCESNWI       240 

     SSRNSVLSGV ISSEDVSGLP EFLRNLGSET RRPMVGGDLP KVLHLLEKTV NVIAEESWAY       300 

     QHLPLSNKGA VEVMNYMLRN QEIWGSWDVT KRKEFASRFI LAAEKAMVAS AKGMMTSAES       360 

     NVIVQPAITV EISHKIKMSS QPTDYILFPS AALWNGQNVD NVNIPRDAIL KINKDETQVF       420 

     FSSFDNLGAQ MTPSDVTVAI AGTDQTEVRK RRVVSRIVGA SLIENGKERR VENLTQPVRI       480 

     TFYHKESSVR HLSNPTCVWW NHHELKWKPS GCKLSYHNKT MTSCDCTHLT HFAVLMDVRG       540 

     HDLNEIDQTL LTLLTYVGCI ISIICLLLTF FAYLIFSRNG GDRVFIHENL CLSLAIAEIT       600 

     FLAGITRTED SLQCGIIAVA LMYMFLSALT WMLLEGYHIH RMLTEVFPSD PRRFTYLLVG       660 

     YIPPAIITLV AYLYNSDGFG TPDHCWLSTQ NNFIWFFAGP ACFIFCANSL VLVKTLCTVY       720 

     QHTSGGYLPC RHDVDSGRSI RNWVKGSLAL ASLLGVTWIF GLFWVEDSRS IVMAYVFTIS       780 

     NSLQGLFIFL FHVVFAEKMR KDVGHWMYRR GCGGSSNSSP NHKRHNVQRD LMSPGVNSST       840 

     GSDFLYNTND KYLTNSDTTN RLVYNGIMNH PNQMSVYQQH PHHQIYEQQP GTYDYATIAY       900 

     GDMMPGHRVA APPAYQRLAV AEGRYGSQHQ LYQGWHHRPP PEFSPPPPPL STGPPNSRHY       960 

     GTGSSGRRPP SSKMSDDSAY SDGSSSMLTT EVTPQGQTVL RIDLNKPSMY CQDL            1014 

http://www.sanger.ac.uk/Projects/Celegans
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B. 

     atgcgacgta acaaaacgac ttattcgttg ctccaaacga ttctggtagc ttgtctactg        60 
     actgttactc caactttcgc cagcaacaag ccgacaacgg atgaaagtgg aaccatctca       120 
     cacacaatat gtgatggtga agctgctgaa ctgagttgtc ctgctggaaa agtaatctcg       180 
     attgtcctag gaaactatgg aagattctct gtcgctgttt gccttcctga caatgacatc       240 
     gttccatcca acatcaactg ccaaaaccac aagacaaagt caattctgga gaagaagtgc       300 
     aatggagact caatgtgcta cttcactgtc gacaagaaga cgttcaccga ggatccgtgt       360 
     ccaaatacac caaaatatct ggaagtgaaa tacaattgtg ttgttcctgc taccacgacg       420 
     actacaacca caactacatc aactactaca accgatagca gtttgattgt ggacgaagaa       480 
     gaggaggctc aaaaggatgc cctcaattcg gacgttataa aaccagtgaa aaagaaggaa       540 
     gatgtgtttt gttcggcaac caatcgacga ggagttaact ggcagaatac aaaatctggt       600 
     acaacatcaa gtgcaccatg tcctgaagga tctagtggaa aacagctttg ggcctgtacg       660 
     gaagaagggc aatggctcac agaatttcca aatagtgctg gatgtgagag caactggatt       720 
     tcctcaagaa atagtgtttt gagtggtgtt atttcgagtg aggatgtctc tggattaccg       780 
     gaatttcttc gaaatcttgg atctgaaaca cggcggccga tggttggagg tgatcttccg       840 
     aaagttctac atcttctcga aaaaactgta aatgtgattg ctgaagaaag ttgggcttat       900 
     caacatttac cactctctaa caaaggagct gtcgaagtaa tgaactacat gctccgaaat       960 
     caagaaattt ggggaagttg ggatgtaaca aagcgaaaag aatttgcatc tcgattcatt      1020 
     ttggctgctg agaaagcaat ggttgcatct gcgaaaggaa tgatgacatc ggcagaatcg      1080 
     aatgtgattg tgcaaccagc gatcactgtt gaaatttcac acaaaataaa gatgtcgtca      1140 
     cagccaacag actacatttt attcccgtca gccgctttat ggaatgggca gaatgttgat      1200 
     aatgtaaata ttccacgaga tgctatattg aagatcaaca aagacgagac tcaagtattt      1260 
     ttctcttctt ttgataatct cggagcacaa atgacacctt ctgatgttac tgtagctatc      1320 
     gctggaactg atcaaactga agttagaaaa cggcgcgtcg tctcaagaat tgttggagca      1380 
     tctttgattg aaaatggaaa agagagacga gttgagaatc tgacacaacc agttcggatt      1440 
     acattctatc acaaagaatc gtcagtccgt catttgagca atccgacgtg tgtctggtgg      1500 
     aatcatcatg aactgaaatg gaaaccttct ggatgtaaac tcagttatca taataagaca      1560 
     atgacgtcat gtgactgtac tcatctcaca cattttgctg ttttgatgga tgtacgagga      1620 
     cacgatctga atgaaatcga ccaaacgctt ctcactttgc tgacttatgt tggatgcatt      1680 
     atctcgatta tttgtcttct actcactttc ttcgcctact tgattttcag cagaaatgga      1740 
     ggtgaccgag tattcatcca cgagaatctt tgcctctcac tggccatcgc cgaaatcaca      1800 
     ttcttggctg gaatcacacg aacagaagat tcactacaat gtggaattat cgccgtcgca      1860 
     ttgatgtaca tgttcttatc agcacttaca tggatgcttt tggaaggata tcacattcat      1920 
     agaatgctca ctgaagtttt cccatcagat cctcgccgtt tcacatacct actcgtcggc      1980 
     tacattccac cagcaatcat cacacttgtg gcctacttgt acaattctga tggatttgga      2040 
     actcccgatc attgctggct tagtactcaa aacaacttca tttggttctt tgcgggtccg      2100 
     gcttgcttca tcttctgtgc caacagtctt gtgctcgtta agactttgtg cacagtttat      2160 
     cagcacacaa gtggaggata tcttccatgt cgtcacgatg ttgattctgg aagatcgatt      2220 
     cgtaactggg tcaaaggatc attggcgttg gcgagtttgc taggagtgac atggatattt      2280 
     ggacttttct gggttgaaga ctcacgatcc atcgtaatgg catatgtatt tacgatttca      2340 
     aattctcttc aaggactctt cattttccta ttccacgtcg tctttgctga aaaaatgcgt      2400 
     aaagatgttg gacattggat gtatcgacgt ggatgtggag gatcaagtaa ttcatcacca      2460 
     aatcacaaga gacataatgt tcaacgagat ttaatgtcac ctggagtaaa tagttcaact      2520 
     ggaagtgatt tcctgtacaa cacgaacgac aagtacctga ccaactcgga tactacgaat      2580 
     cgattggtat ataatggaat aatgaatcat cctaatcaaa tgtccgtata tcaacaacat      2640 
     ccacatcatc aaatttatga acaacaaccg ggaacgtatg attatgcaac catcgcatat      2700 
     ggagatatga tgcctggaca tcgtgttgct gctccaccgg cttatcaacg acttgccgtt      2760 
     gccgaaggtc ggtacggtag ccaacatcaa ctctaccaag gatggcatca tcgtcctcct      2820 
     ccagagttct cacccccacc acccccactg tcaactggac caccgaactc gcgtcactat      2880 
     gggactggct ccagtggacg acggccgccg agctcaaaga tgagtgatga ctctgcatat      2940 
     tcggatgggt catcatcgat gttgacaact gaagtgacac cacaaggaca gacggtgctt      3000 
     cgaattgatt tgaacaagcc gagcatgtat tgtcaagatt tatag                      3045 
 

Figure 3.14 Amino acid and cDNA sequences of C.elegans latrophilin homologue 
BO457.1.  
A. Amino acid sequence of BO457.1, peptide size is 1014 residues. 
B. cDNA sequence of BO457.1, total cDNA size is 3045bp. 
cDNA was produced and sequenced three times in total to confirm sequence data was correct. 
The sequence is the candidates work, not merely the result of a genefinder sequence prediction. 
 

Although overall amino acid identity with the rat latrophilin receptor is only 29%, the 

region of latrophilin required for α-latrotoxin binding (residues 493-541, Krasnoperov et 
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al, 1999) has 39% aa-identity with the C.elegans cDNA, showing a greater degree of 

sequence identity in domains directly associated with toxin: receptor interaction. 

Using Pfam 6.6 (http://www.sanger.ac.uk/Software/Pfam), the C.elegans latrophilin 

homologue was compared with the rat latrophilin homologue to identify further 

sequence identity. This search showed a number of structurally conserved domains 

between rat and C.elegans latrophilin homologues. 

Figure 3.15 shows structural domains of C.elegans latrophilin protein aligned with the rat 

latrophilin protein. 

 

           51-133          181-240                      493-541        548-799      815-870 

            

 
 
1              1014 
 
 
 
1                  1466 
 
Figure 3.15 Structural domains of C.elegans & Rat latrophilin homologues. 
C.elegans domains were identified by Pfam 6.6 search and manual alignment with the rat 
latrophilin sequence. 
Top image shows the C.elegans homologue, Galactose-binding lectin domain (51-133aa) is shown 
by yellow box, hormone receptor motif (181-240aa) is shown by red box. G-protein coupled 
receptor Protease cleavage Site (493-541aa) is shown as a blue box. The 7-transmembrane 
secretin domain (548-799aa) is a grey box. An area of four conserved cysteines is also shown 
(815-870aa) as a green box. Total amino acid size is shown by labels at the base of the diagram 
(1-1014). Lower image shows the rat latrophilin homologue, this alignment shows the conserved 
protein regions with the C.elegans protein, the coloured boxes, which correspond to the domains 
shown in the above text, show conserved regions. Total amino acid size is shown by the labels at 
the base of the diagram (1-1466). 
 

 

3.5  Extraction of RNA from Caenorhabditis elegans 

Total C.elegans RNA was extracted from wild-type (N2) C.elegans using the TRIZOL 

method described in section 2.2.6.7. Further manipulations of the latrophilin gene in 

http://www.sanger.ac.uk/Software/Pfam


 

C.elegans required the generation of RNA from the latrophilin cDNA. To check that these 

generated RNAs had not degraded on agarose gels, control total RNA from C.elegans was 

needed. 

RNA quantification was determined by spectroscopy at 260nm and the integrity of the 

RNA was visualised by denaturing agarose gel electrophoresis (Figure 3.16). Typically, 1-

2mg of RNA was isolated per 1ml of packed wild-type worms. 

RNA extracted by this method gave rise to high purity intact RNA samples, as can be 

seen in Figure 3.16 where the 28S and 18S RNA species are clearly visible. 
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ans RNA was run in all 4 lanes of the gel each lane contains 2µg RNA. Gel run was 
ined, 0.5µg/ml EtBr, 0.1% SDS denaturing, 1XTBE agarose gel run at a constant 
5V for 2 hours as described in Methods section 2.2.11. The gel was photographed 
lumination. 

Generation of C.elegans with silenced latrophilin gene by 

RNA Interference (RNAi) 

ference or RNAi is a technique, which uses double-stranded RNA (dsRNA) of 

r gene to target specific mRNAs for degradation and therefore specifically 

hat gene’s function. This phenomenon has been show to occur in a number of 

t is most common in invertebrates and plants. This reverse genetic technique 

 analysis of gene function to take place via pre-identified gene sequences, rather 
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than in forward genetics where a phenotype is identified and then the sequence searched 

for. In this section, RNAi is used to elucidate the gene function of the C.elegans 

latrophilin gene identified in Section 3.4. 

 

3.6.1  Sub-cloning of BO457.1 cDNA into pGEM-T vector 

pGEM-T vector (Promega) was used for BO457.1 sub-cloning because it has two 

polymerase promoter sites (SP6 & T7), which allow the generation of cRNA fragments 

using in vitro transcription. The original BO457.1 cDNA was generated using PCR 

primers designed from analysis of the C.elegans genome sequence (Pavel Perestenko, 

personal communication). 

The strategy for the sub-cloning of BO457.1 into the pGEM-T vector is illustrated in 

Figure 3.17. 

Figure 3.17 Cartoon depicting the sub-cloning of BO457.1 cDNA into pGEM-T vector.
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Generation of LPH: pGEM-T vector combined 3.04kb cDNA with 3.00kb pGEM-T 

vector giving a total plasmid size of 6.04kb. LPH:pGEM-T vector is required to be 

linearised to allow in vitro transcription to take place. To linearise for T7 transcription 

restriction enzymes Spe I, Not I, BstZ I, Pst I, Sal I, Nde I, Sac I, BstX I and Nsi I can 

be used to digest the vector at a unique site adjacent to the multiple cloning site (MCS). 

To linearise for SP6 transcription restriction enzymes Apa I, Aat II, Sph I, BstZ I, Nco I, 

and Sac II can be used. 

Analysis of BO457.1 cDNA sequence showed no internal digest sites for Pst I (T7) and 

Nco I (SP6) enzymes. 

Figure 3.18 shows pGEM-T vector and the restriction enzyme sites for linearisation. 

Figure 3.19 shows LPH:pGEM-T vector restriction digested with Pst I and Nco I to 

check for the viability of these enzymes to linearise the vector. 

 

 

Figure 3.18 pGEM-T vector circle map. 
pGEM-T vector circle map showing positions of restriction enzyme sites for use in linearising 
the vector (Image courtesy of Promega Inc.). 
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                1     2    3    4 

 

Figure 3.19 Restriction digest of LPH: pGEM-T clone. 
LPH:pGEM-T clone containing BO457.1 cDNA was digested with Nco I restriction enzyme and 
Pst I restriction enzyme in separate reactions. Products were run on a 1% pre-stained, 0.5µg/ml 
EtBr, 1XTBE agarose gel at a constant voltage of 80V for 1 hour to show the presence of 
linearised plasmid in both digests. 
Lane 1 contains 1KB+ DNA ladder, uncut LPH:pGEM-T clone in lane 2, Pst I cut LPH:pGEM-
T in lane 3 and Nco I cut LPH:pGEM-T in lane 4. Arrows indicate position of 6Kb linearised 
fragment from both digests, sized by the ladder on the gel. 
 

Both Pst I and Nco I enzymes digested LPH:pGEM-T to leave a 6Kb linearised 

fragment. Both enzymes were then used to prepare LPH:pGEM-T for in vitro 

transcription. 

 

3.6.2  Generation of dsRNA complementary to BO457.1 

BO457.1 cDNA was sub cloned into pGEM-T vector to give the recombinant 

LPH:pGEM-T vector. (Shown in section 3.6.1). 

To generate sense and antisense cRNA transcripts of BO457.1, LPH:pGEM-T under 

went in vitro transcription. 

Initially, LPH:pGEM-T was restriction digested with Nco I and Pst I to linearise the 

plasmid in both the T7 and SP6 orientation. The digested template was treated with NTP 

mix and the addition of SP6 RNA polymerase for the Nco I digested template and T7 

6Kb linearised 
fragment 



 

RNA polymerase for the Pst I digested template. Reaction mixes were incubated at 37oC 

for T7 polymerase and 42oC for the SP6 polymerase, for 2 hours. 

Identification of cRNA transcripts from these reactions was analysed by the presence of 

cRNA bands on a denaturing agarose gel. 
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ure 3.20 RNA transcripts from in vitro transcription. 
H:pGEM-T clone digested with Nco I (lanes 1&2) and Pst I (lanes 3&4) were used as DNA 
plates for SP6 and T7 polymerase driven in vitro transcription. Products were run as 
licates on a 1% pre-stained, 0.5µg/ml EtBr, 0.1% SDS denaturing, 1XTBE agarose gel at a 
stant voltage of 65V for 2 hours, to show the presence of cRNA transcripts as described in 
thods section 2.2.11, the gel was visualised under UV illumination and photographed. 
e 1&2 contain SP6 driven in vitro transcription from Nco I digest. Lane 3&4 contain T7 
en in vitro transcription from Pst I digest. Lane 5 contains 1.5µg total C.elegans RNA, lane 6 
tains 1KB+ size marker. 
ows indicate presence of intact cRNA transcripts for both SP6 and T7 polymerases (B) and 
arised plasmids (A). 

NA transcripts that were generated were DNase treated to remove any remaining 

A template. 

e cRNA strands were then phenol: chloroform treated and ethanol precipitated. 

nealing of both sense and antisense RNAs to form dsRNA was done by mixing in a 

 (v/v) ratio and heating at 88oC for 10 minutes. Once annealed, dsRNA was ready for 

croinjection into C.elegans. 
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3.6.3  Microinjection of LPH dsRNA into C.elegans 

Fire et al (1998), stated that the microinjection of dsRNA complementary to a gene of 

interest into the gonad of the nematode C.elegans causes potent and specific gene 

silencing of that gene. 

Since then, many changes have been made to the technique of RNAi. It is now possible 

to cause this gene interference by “soaking” or “feeding” worms dsRNA. Microinjection 

is still the most reliable method (Kamath et al, 2001) though more labour intensive. Adult 

C.elegans were injected with a range of substances to study the dsRNA effect. 

 

3.6.3.1  Microinjection of dsRNA free solutions 

10 adult C.elegans were microinjected with UHP water only using the method in section 

2.4.7. Injected adults were transferred to standard NGM plates and allowed to lay eggs 

for 5 hours. This allows any eggs fertilised before injection to be expelled from the worm 

and prevent them from influencing the results. 

Worms were then incubated on new NGM plates and the F1 progeny grown to the L4 

larval stage, at this point, F1 progeny were examined for any phenotypic changes caused 

by RNAi. 

Photomicrographs of UHP H2O injected C.elegans F1 progeny is shown in Figure 3.21. 

 

Figure 3.21 F1 progeny from C.elegans injected with UHP H2O 
Photomicrograph taken at 40X magnification. A. F1 progeny of C.elegans injected with water, B. 
F1 progeny of C.elegans not injected with water.

A B 
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F1 progeny are studied for phenotypic changes in C.elegans because RNAi is not a 

permanent effect. Only the injected animal and its first generation offspring are affected, 

second generation offspring are unaffected (Fire et al, 1998) by RNAi. F1 progeny are 

used to allow the analysis of any embryo lethal phenotypes. 

Progeny from UHP H20 injected adults showed no phenotypic changes compared to 

non-injected progeny, illustrating that the process of injection has no effect on 

phenotypic changes. 

 

3.6.3.2  Microinjection of dsRNA complementary to the tra-2 gene 

The tra-2 gene in C.elegans drives hermaphrodite development. The suppression of the tra-

2 gene causes a switch in sex from hermaphrodite to male (P.Kuwabara, personal 

communication). Using dsRNA complementary to tra-2 to suppress the gene will cause 

an easily identifiable phenotype to develop. As male C.elegans are easily identifiable 

against females, this gene acts as a positive control for RNAi. 

The tra-2 clone in pBluescript was a kind gift from Dr P.Kuwabara, Sanger Centre, tra-2: 

pBluescript was restriction digested using BssH II to linearise the tra-2 cDNA and T7 

and T3 RNA polymerase driven transcription performed to produce sense and antisense 

cRNAs. From these, tra-2 dsRNA was constructed. 10 adult C.elegans were microinjected 

with tra-2 dsRNA using the method in section 2.4.7, dsRNA was injected at a 

concentration of 100µg/ml in UHP H2O. Injected animals were transferred to standard 

NGM plates and allowed to lay eggs for 5 hours at 20oC to expel pre-injection fertilised 

eggs. Worms were transferred to new NGM plates after incubation and the F1 progeny 

grown to the L4 stage at 20oC. F1 progeny were analysed for change in phenotype from 

hermaphrodite to male. 

Photomicrographs of these offspring are shown in Figure 3.22. 
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Figure 3.22 Photomicrographs of F1 progeny from C.elegans injected with tra-
Photomicrographs taken at 40X magnification.  
A. Hermaphrodite F1 Progeny B. F1 progeny from tra-2 dsRNA injected C.elegans.
C. F1 progeny from tra-2 dsRNA injected C.elegans.   D. F1 progeny from tra-2 dsRN
C.elegans. 
 

Progeny from tra-2 dsRNA injected adults show change in phenotype from 

hermaphrodite to male. This is shown by the presence of the male tail fan (use

mating) and the presence of the testis in the body cavity. 

This data shows that the process of RNAi works with the silencing of a gene, 

an obvious, and visual phenotype. 

 

3.6.3.3 Microinjection of dsRNA for the latrophilin gene in C.eleg

Both negative (section 3.6.3.1) and positive (section 3.6.3.2) controls of RNAi

shown that the process is a viable method for inducing suppression of gene fu
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allowed to expel any eggs fertilised prior to injection with dsRNA. Worms were again 

transferred to new NGM plates and the F1 progeny grown to the L4 stage at 20oC. F1 

progeny were analysed for any physical change in phenotype. 

 

Figure 3.23 F1 progeny from C.elegans injected with LPH dsRNA. 
Photomicrographs taken at 40X magnification. 
A. Wild-type worm showing the gut (black arrows). Gut maintains the narrow intestinal passage 
seen in all N2 worms. B. Latrophilin RNAi worm showing gut distension (black arrows). Gut has 
expanded and some accumulation of the worm’s food can be seen inside the distended organ. 
 

Latrophilin RNAi worms, were compared to wild-type worms, and showed a distinct 

phenotype. Worms were constipated with an accumulation of food in the intestinal tract. 

This phenotype is similar to mutations seen in aex-3 (Iwaski et al, 1997) and egl-4 (Daniels 

et al, 2000) knockout C.elegans; both of these genes are involved in neuronal circuitry and 

synaptic transmission. 

In addition to this visual phenotype, LPH RNAi worms were found to have an extended 

period of gut peristalsis. Worms were analysed using the method described in section 

2.5.3, and the time taken between expulsion contractions was observed (Figure 3.24). 

A B 
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Figure 3.24 Expulsion interval in C.elegans defecation cycle. 
Wild-type (N2) and latrophilin RNAi (LPH RNAi) worms were observed under DIC optics and 
the time between defecation expulsions (exp) counted for ten consecutive cycles (aboc, pboc, 
exp) for each of the ten animals. The results are presented as mean +/- standard deviation. 
 

The defecation oscillator (aboc, pboc, exp) of C.elegans L4 larvae is characterised by the 

regularity of the cycle under normal temperature and nutritional status. This regularity 

makes it possible to distinguish between effects in aboc, pboc, exp period length or cycle 

variability in mutated worms. 

For wild type worms the average defecation cycle is ~45-50 seconds. LPH RNAi 

affected worms showed a significant increase in this period, with an average cycle span of 

~75 seconds. 

Though there is a change in the defecation cycle, all the components of the cycle, aboc, 

pboc and exp were still present in the LPH RNAi C.elegans. 

 

3.6.4  Sensitivity of latrophilin RNAi C.elegans to neuroactive agents 

Worms with mutations of the gene egl-4 have shown to have a constipated phenotype, 

similar to that observed in the LPH RNAi worms (Daniels et al, 2000). Furthermore, this 
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mutation has an effect on the response of the worms to neuroactive agents, such as 

aldicarb and levamisole. 

In order to test whether there is altered neural function in LPH RNAi worms, the 

sensitivity of wild type and LPH RNAi worms to neuroactive agents was examined. 

Wild type and LPH RNAi C.elegans were exposed to three drugs. Levamisole, an 

acetylcholine receptor agonist, aldicarb, an acetyl cholinesterase inhibitor and imipramine, 

a seratonin re-uptake inhibitor. Both wild type and latrophilin RNAi C.elegans were 

exposed to the drugs as outlined in methods (sections 2.5.4, 2.5.5 and 2.5.6). 

Response of both wild type and LPH RNAi worms is shown in Figure 3.25. 
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Figure 3.25 Sensitivity of latrophilin RNAi worms to neuroactive agents. 
A. Wild type (N2-filled squares) or latrophilin RNAi (LPH RNAi-open triangles) C.elegans were 
exposed to levamisole and the number of worms paralysed counted. Each data point represents 
25 worms per group. 
B. Wild type (N2-filled squares) or latrophilin RNAi (LPH RNAi-open triangles) C.elegans were 
exposed to aldicarb and the number of worms paralysed counted. Each data point represents 25 
worms per group. 
C. Wild type (N2-filled squares) or latrophilin RNAi (LPH RNAi-open triangles) C.elegans were 
exposed to imipramine and the rate of pharyngeal pumping counted. Each data point represents 
25 worms per group. 
 

Latrophilin RNAi worms were less sensitive to levamisole than wild type worms, and 

were also less sensitive to imipramine induced decrease in pharyngeal pumping compared 

to wild type. However, latrophilin RNAi worms did not have significantly altered 

sensitivity to aldicarb. This data indicates that the silencing of the latrophilin gene in 

C.elegans has an effect on the nervous system of the worm compared to wild type worms. 

 

 

3.7  Effect of LPH RNAi on BWSV toxicity in C.elegans 

BWSV is toxic to wild type C.elegans over at least a million fold dilution range (Section 

3.2.1). To examine what effect the inhibition of the latrophilin gene has on the toxic 

effects of BWSV, venom was injected into LPH RNAi worms over the same 

concentration range as that shown to be toxic in wild-type worms. 

C 



 107 

Adult, wild types C.elegans were injected with dsRNA complementary to the C.elegans 

latrophilin gene. The F1 progeny of these injected animals were grown to the adult stage 

at 20oC, so they were robust enough for BWSV injections. 

A concentration range of BWSV (0-1200µg/ml) was set up as in section 3.2, and as in 

section 3.2, wild type C.elegans were injected with BWSV over the concentration range, 

along with the LPH RNAi worms. 

To examine the effect of BWSV on LPH RNAi worms, 10 worms per concentration 

point were injected along with a negative control of venom buffer only (50mM Tris, 

50mM NaCl, pH8). Worms were scored for any effects of the venom after incubation at 

20oC for 2 hours. 
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Figure 3.26 BWSV toxicity in LPH RNAi C.elegans. 
LPH RNAi C.elegans (LPH RNAi) (10 per point) were injected with BWSV at the indicated 
concentrations (µg/ml) as were wild type (N2), or with control venom buffer (0) and allowed to 
recover for 2 hours at 20oC on standard NGM plates. Animals were scored after incubation and 
the % dead animals are shown. 
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Latrophilin RNAi worms were completely resistant to the effects of BWSV, which were 

shown in wild type C.elegans over a 106 fold range of venom concentrations. This 

demonstrates that the latrophilin gene in C.elegans is required for BWSV toxicity. 

 

 

3.8  Effect of RNAi on BWSV toxicity in C.elegans 

3.8.1  RNAi of CYP37A1 gene in C.elegans 

To investigate whether the process of microinjection is related to the effects of BWSV 

seen in LPH RNAi C.elegans, an unrelated C.elegans gene, a cytochrome P450 known as 

CYP37A1, was silenced in C.elegans using RNAi and the gene silenced worms F1 progeny 

observed for any reaction to BWSV upon injection. 

An EST of putative CYP37A1, yk147c9 (CE18566) was obtained from Professor Y. 

Kohara (National Institute of Genetics, JAPAN) as a phage clone. The Clone was 

subjected to phage excision (see methods) to yield clones in pBluescript SK- (Stratagene). 

A 0.78Kb cDNA insert of CYP37A1 was linearised from pBluescript by digest with 

restriction enzyme Pvu II, which excises the whole 0.78Kb cDNA fragment ready for in 

vitro transcription. In vitro transcription was performed using T7 and T3 polymerases to 

generate sense and antisense cRNA transcripts complementary to CYP37A1 in C.elegans. 
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Figure 3.27 cRNA transcripts of CYP37A1 gene. 
pBluescript vector containing 0.78Kb cDNA of C.elegans CYP37A1 (2) was digested by Pvu II 
restriction digest to remove the insert (3). Insert DNA was used as a DNA template for T7 (4) 
and T3 (5) transcription. Arrows indicate transcription products. Lane 1 contains 1KB+ DNA 
ladder to size fragments. Lane 6 contains total C.elegans RNA as a control of stability of RNA 
within the gel. Gel run was 1% pre-stained, 0.5µg/ml EtBr, 0.1% SDS denaturing, 1XTBE 
agarose gel run at a constant voltage of 65V for 2 hours. 
 

cRNA transcripts were Dnase treated to remove the remaining DNA template and 

annealed at 88oC for 10 minutes as described in Methods (Section 2.2.15). 

10 N2 C.elegans were microinjected with 100µg/ml concentration of CYP37A1 dsRNA, 

worms were treated as in methods and the F1 progeny injected with BWSV at 1.2µg/ml 

concentration. After 2 hours at 20oC injected worms were analysed for any effects caused 

by the injected venom. 
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Figure 3.28 Effect of BWSV on CYP37A1 RNAi C.elegans. 
CYP37A1 RNAi C.elegans (CYP37A1 RNAi) (10 per point) were injected with BWSV at a 
concentration of 1.2µg/ml as were wild type C.elegans (N2). Wild type C.elegans (N2+Buffer) and 
CYP37A1 RNAi (CYP37A1+Buffer) (10 per point) were also injected with venom buffer only as 
controls for the injection process. % Death of animals is shown after incubation at 20oC for 2 
hours. 
 

These results show that C.elegans, which undergo RNAi for CYP37A1, have the same 

sensitivity to BWSV as N2 worms. 

Therefore, the silencing of a gene in C.elegans using RNAi does not affect the sensitivity 

of C.elegans to BWSV. This is important to eliminate any possible effects on C.elegans, 

which may be due to the process of RNA interference. The data in Figure 3.28 clearly 

shows that any effects, which occur in C.elegans, which have undergone gene silencing 

using dsRNA after injection of BWSV, are due to the venom and not the process of 

dsRNA interference. 

This data also shows that animal death due to BWSV in CYP37A1 RNAi C.elegans occurs 

at the same concentration of venom (1.2µg/ml) as of that shown for the N2 worms. 
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3.8.2  RNAi of Neurexin 1αααα gene in C.elegans 

Neurexin 1α is also known to bind the mammalian α-latrotoxin. Structurally, neurexins 

resemble cell-surface receptors with extended extra cellular sequences, a single 

transmembrane region and a short intracellular sequence. 

To investigate whether a neurexin homologue in C.elegans has a role in BWSV toxicity, an 

EST of neurexin 1α, yk23f8 (CE25791) was obtained from Professor Y. Kohara 

(National Institute of Genetics, JAPAN) as a phage clone. 

The Clone was subjected to phage excision (see methods, section 2.3) to yield clones in 

pBluescript SK- (Stratagene). A 1.01Kb cDNA insert of neurexin 1α was linearised by 

independent restriction digest with Sac I (for T7 transcription) and Kpn I (for T3 

transcription) restriction enzymes. These enzymes linearise the plasmid for sense and 

antisense in vitro transcription. 

In vitro transcription was carried out as described in methods (section 2.2.15) using T7 

and T3 RNA polymerases to generate sense and antisense cRNA transcripts 

complementary to the neurexin 1α gene in C.elegans. 

cRNA transcripts were DNAse treated to remove the remaining DNA template and 

annealed at 88oC for 10 minutes. This annealing causes the sense and antisense cRNA 

transcripts to bind and form the double-stranded RNA complex, which is used to silence 

the neurexin 1α gene in C.elegans. 10 N2 C.elegans were microinjected with 100µg/ml 

neurexin 1α dsRNA. Worms were treated as in methods and the F1 progeny injected 

with BWSV at 1.2µg/ml. After 2 hours at 20oC, injected worms were observed for any 

reaction to the injected BWSV. 
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Figure 3.29 cRNA transcripts of neurexin 1αααα gene. 
pBluescript SK- vector containing 1.01Kb cDNA of C.elegans neurexin 1α (2) was digested by Sac 
I digest (3) to linearise the plasmid for T7 polymerase transcription (4). Kpn I digest (5) was used 
to linearise the plasmid for T3 polymerase transcription (6). Arrows indicate transcription 
products. Lane 1 contains 1KB+ DNA ladder to size fragments. Lane 7 contains total C.elegans 
RNA as a control of the stability of RNA in the gel. Gel was run as a 1% pre-stained, 0.5µg/ml 
EtBr, 0.1% SDS denaturing, 1XTBE agarose gel at a constant voltage of 65V for 2 hours. 
 

These results show that the gene for neurexin 1α in C.elegans has no mediatory effect on 

the toxicity of BWSV. Worms with the silenced gene showed the same sensitivity to 

injected venom as the wild-type worms. Negative controls of venom buffer only show 

no toxic effect in either neurexin 1α RNAi or N2 worms. 

The data shown in Figure 3.30 suggest that neurexin 1α, has no effect on BWSV toxicity 

in C.elegans, in marked contrast to its effects in mammals (Sudhof, 2001). 
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Figure 3.30 Effect of BWSV on neurexin 1αααα RNAi C.elegans. 
Neurexin 1α RNAi C.elegans (neurexin 1 alpha) (10 per point) were injected with BWSV at a 
concentration of 1.2µg/ml as were wild type C.elegans (N2). Wild type C.elegans (N2+Buffer) and 
neurexin 1α RNAi (neurexin 1alpha+Buffer) (10 per point) were also injected with venom buffer 
only, as a control. % Death of animals is shown after incubation at 20oC for 2 hours. 
 
 

 

3.8.3  Effect of BWSV on BO286.2 knockout C.elegans 

It is possible that the latrophilin RNAi induced resistance to BWSV is the result of 

dsRNA interference with a gene closely related with BO457.1, such as other members of 

the secretin family of serpentine receptors in C.elegans (BO286.2, F155B9.7). To test this 

theory, a deletion mutant lacking the most closely related gene BO286.2 (provided by 

C.elegans Knockout Consortium) was injected with black widow spider venom. 

BWSV was used at 1.2µg/ml concentration and injected into 10 wild type (N2) C.elegans 

and 10 BO286.2 gene knockout C.elegans. A further 10 worms from each population were 

also injected with venom buffer only as a control. 
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Figure 3.31 Effect of BWSV on BO286.2 knockout C.elegans. 
BO286.2 knockout C.elegans (BO286.2+Venom) (10 per point) was injected with BWSV at a 
concentration of 1.2µg/ml as were wild type worms (N2+Venom). Wild type C.elegans 
(N2+Buffer) and BO286.2 (BO286.2+Buffer) (10 per point) were also injected with venom 
buffer only. % Death of animals is shown after incubation for 2 hours at 20oC. 
 
 

These results show that C.elegans with a knockout of the gene BO286.2 have the same 

sensitivity to the toxic effects of BWSV as those seen in wild-type worms (Figure 3.31). 

BO286.2 is a closely related gene for latrophilin but has a lower sequence homology with 

the rat latrophilin gene than that seen for BO457.1. 

This data shows that BO286.2 has no effect on C.elegans sensitivity to BWSV injection, as 

when injected with venom they show the same response as those seen in the wild-type 

worms. 
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3.9  RNAi in C.elegans by dsRNA feeding 

The data in section 3.7 & 3.8 shows that C.elegans are resistant to the toxic effects of 

BWSV after RNAi introduced by microinjection. It was therefore decided to evaluate 

RNAi by feeding. 

A fragment of the C.elegans latrophilin cDNA was isolated by PCR, from base 495-1631, 

having 39% identity with the latrotoxin-binding domain in the latrophilin receptor in the 

rat (Krasnoperov et al, 1999). 

This 1.1Kb fragment lacks the 7-transmembrane domain, thereby obviating the 

possibility of non-specific cross-hybridisation with other 7-transmembrane receptors in 

C.elegans, and was used as a template for RNAi. 

Studies involving RNAi have shown that the mode of interference can cross-cell 

boundaries (Fire et al, 1998). In RNAi by microinjection this crossing of cell boundaries 

explains why the dsRNA affects all the tissues in the worms body rather than those, 

which come into direct contact with the injection material. This migration of dsRNA 

through the organism allows other methods of dsRNA gene silencing to be used. 

Therefore, it is possible to induce RNAi by feeding C.elegans bacteria, which express the 

dsRNA being studied. The consumed bacteria will express dsRNA in the gut, which will 

migrate to all tissues throughout the worm’s body (Fire et al, 1998). 

 

3.9.1 Generation of pL4440: LPH 

Oligonucleotides GGATGCCCTGAATTCGGACGTTATAAAACC and 

TTCAGATCGTGTCCGAATTCTCACATCAAAACAGC were used to PCR amplify 

bases 495-1631 of the latrophilin cDNA from C.elegans. 

Agarose gel electrophoresis was used to identify and purify the PCR product; this gel is 

shown in Figure 3.32. 
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Figure 3.32 PCR of latrophilin fragment. 
PCR was carried out as in methods and products run on a 1% pre-stained 0.5µg/ml EtBr 
1XTBE agarose gel run for 1 hour at 80V. Lane 1 negative control, lane 2 PCR products at a 1:10 
dilution in load buffer, lane 3 PCR product, lane 4-1KB+ DNA ladder. PCR product of correct 
size is shown by labelled arrow. 
 
The PCR product was extracted from the gel (section 2.2.8) and cloned into pGEM-T. 

pGEM-T containing the PCR fragment was EcoR I digested into the RNAi feeding 

vector pL4440 (gift from Julie Ahringer, CRC Cambridge). This gave the feeding vector 

pL4440: LPH. 

pL4440: LPH plasmid was transformed into E.coli strain HT115 (Timmons et al, 2001) 

ready for use in RNAi feeding. 

 

3.9.2  RNAi feeding using pL4440: LPH 

RNAi feeding of C.elegans using pL4440: LPH plasmid was performed as described in 

methods along with the use of dhc-1 as a control (Fraser et al, 2000). 

Dhc-1 codes for the dynein heavy chain gene in C.elegans, which is involved in 

microtubule organisation in the maturing embryo. Silencing of the dhc-1 gene will induce 

an embryo lethal phenotype. This is an excellent control gene to follow an RNAi feeding 

protocol with. 

After feeding, F1 worms were analysed for phenotypes with dhc-1 as a positive control, 

HT115 with no feeding vector as a negative control and pL4440: LPH as the 

experimental gene. 

1.1Kb PCR 
fragment 
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TEST GENE   n   % PHENOTYPE 

Dhc-1    54    100 

pL4440: LPH   62    100 

No gene   56    0 

Table 3.1 Responses of C.elegans to RNAi by feeding. 
 

100% phenotype penetrance was observed for both dhc-1 gene and pL4440: LPH. Dhc-1 

phenotype was the embryo lethal phenotype, with 100% embryos laid not developing. 

pL4440: LPH was identified as it exhibited the same constipated, elongated intestine seen 

in the original RNAi injections with the LPH gene, 100% of F1 progeny exhibited this 

phenotype. 

 

3.9.3  Effect of BWSV on pL4440: LPH RNAi C.elegans 

To examine whether the 1.1Kb fragment of C.elegans latrophilin cDNA has a mediatory 

role in BWSV toxicity in C.elegans, pL4440: LPH RNAi C.elegans were injected with 

BWSV at a concentration range of 0-1200µg/ml. 

Adult C.elegans exhibiting the LPH RNAi phenotype were removed from the RNAi 

feeding plate and injected with BWSV at one of the selected concentrations. 10 worms 

were injected per concentration. This was repeated using wild type C.elegans as controls. 

Worms were scored for effect of the venom after incubation at 20oC for 2 hours. 
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Figure 3.33 Effect of BWSV on pL4440: LPH RNAi C.elegans. 
pL4440: LPH C.elegans (pL4440: LPH) (10 per point) were injected with black widow spider 
venom at the concentrations indicated (µg/ml) as were wild type (N2) C.elegans, or venom buffer 
only (0) and allowed to recover for 2 hours at 20oC on standard NGM plates. 
Animals were scored after incubation and the % of dead animals shown. 
 

pL4440: LPH fed C.elegans show identical responses to BWSV as those shown in LPH 

RNAi worms induced by microinjection using dsRNA from the complete LPH gene. 

This proves that the latrophilin gene in C.elegans is responsible for BWSV toxicity and the 

1.1Kb fragment associated with the latrotoxin-binding site is directly responsible for the 

mediation of BWSV toxicity in the nematode Caenorhabditis elegans. 

This data also shows that the section of the C.elegans latrophilin gene that with the highest 

homology with the rat latrophilin gene (39%) is integral to the response of C.elegans to 

injected BWSV. This is, as previously stated in this thesis (section 3.4), the domain 

responsible for latrotoxin binding. 
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3.10  Construction of an LPH: GFP construct 

Gene fusion vectors are useful tools, allowing the expression of reintroduced genes to be 

monitored, and giving an indication of the distribution of the resulting products. 

In this section, the generation of a reporter gene fusion of the C.elegans latrophilin gene, 

and the reporter green-florescent protein (GFP) is described. 

 

3.10.1  Construction of an LPH: NLS: GFP: lacZ fusion vector 

The promoterless reporter plasmid, pPD96.04, was selected from the Fire Lab Vector 

Kit, 1995 version (Andy Fire, personal communication). The vector encodes the SV40 

nuclear localisation signal (NLS), S65C GFP mutant and lacZ with the unc-54 3’ end. 

Using BamHI restriction digests (section 2.2.9) a 14.3Kb fragment of the C.elegans 

latrophilin gene (BO457.1) was inserted into the pPD96.04 vector using complementary 

BamHI digests. The BO457.1 cosmid (provided by C.elegans Knockout Consortium) has 

BamHI sites at 3984bp and 18383bp. The 18383bp site is in the middle of the exon 

18329bp – 18441bp, this is the fusion site. This gives a 14399bp BamHI fragment for 

sub-cloning. This produced the LPH: NLS: GFP: lacZ fusion vector, which was named 

LPH: GFP, this plasmid is illustrated in Figure 3.34. 
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Figure 3.34 Plasmid map of LPH: GFP: NLS: lacZ fusion vector LPH: GFP. Plasmid was 
generated by subcloning of 14.3Kb fragment of BO457.1 into the GFP expression vector 
pPD96.04. 
 

 

3.10.2  Transformation of C.elegans with LPH: GFP 

Wild-type C.elegans were injected with the LPH: GFP fusion vector, at a concentration of 

50µg/ml, along with the co-injection marker pRF4 also at a concentration of 50µg/ml as 

described in section 2.4.8. 

pRF4 was used as the co-injection marker as it contains the semi-dominant right roller 

allele rol-6 (Mello et al, 1991). The roller phenotype then allowed DNA transformed 

animals to be separated from the other worms in the F1 population. 

Separate populations of C.elegans were also injected with UHP H2O as a negative control 

and the vector pPD93.97 at a concentration of 50µg/ml plus 50µg/ml pRF4 as a 

positive control. pPD 93.97 is a body-wall muscle GFP fusion vector (L2370 myo-3 Ngfp) 

(Andy Fire, personal communication). 
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For each injection group (LPH: GFP, Negative & Positive controls), 30 wild-type 

C.elegans were injected. 

After 3 days at 20oC, the numbers of roller phenotypes in the F1 generations were 

identified. This data is shown in table 3.2. 

 

VECTOR INJECTED n Rolling F1 Progeny  % Transmission 

None (UHP H2O)  30  0    0 

pPD93.97   30  40    5 

LPH: GFP   30  47    6 

Table 3.2 Transmission of rolling phenotype. Rolling F1 progeny present after microinjection 
of DNA expression vectors. 
 
 
The resulting rolling F1 progeny from the originally injected adult C.elegans were 

transferred to new NGM plates in an attempt to generate F2 progeny that also carried 

the extrachromasomal arrays. 

After a further 3 days at 20oC, the F2 progeny were analysed for the roller phenotype. 

This data is shown in table 3.3. 

 

VECTOR INJECTED Rolling F1 Rolling F2 Progeny % Transmission 

None (UHP H2O)  0   0   0 

pPD93.97   40   0   0 

LPH: GFP   47   0   0 

Table 3.3 Transmission of F1 rolling phenotype. Number of rolling F2 progeny present with 
the rolling phenotype transmitted from F1 progeny of adult C.elegans injected with different 
expression vectors. 
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As described in section 2.4.8, lines containing the selectable phenotype rol-6 are required 

to have been transmitted through three generations before the worms can have the 

extrachromasomal array permanently integrated. 

These experimental parameters were used to make sure that an integrated DNA 

transformation has occurred rather than just a transient mutation, which will be lost. 

The data shows that the rol-6 phenotype was only present in the F1 progeny and not in 

the F2 in both experimental injections (LPH: GFP) and the positive controls 

(pPD93.97). No roller phenotypes were seen in the negative controls as expected, this 

proves that the rol-6 phenotypes seen in the LPH:GFP and pPD93.97 injections, was due 

to the integration of the injected DNA rather than a random mutation of artefact of the 

injection process. 

The data shows 5% of pPD93.97 and 6% LPH: GFP F1 progeny with the roller 

phenotype. Usual % of F1 rollers are between 1-10% (Mello & Fire, 1995), so this data is 

within the expected frequency of transformed animals. 

The fact that no F2 progeny retained the roller phenotype may be due to transient 

transformation, this has been shown to take place in DNA microinjections with the rol-6 

gene (Mello et al, 1991) rather than causing heritable transformants. Factors affecting the 

heritable transformation of DNA include the concentrations of DNA initially injected 

and the size of the vector being used (Mello et al, 1991). For this experiment to produce 

integrated transformants the number of injected animals and the concentration of DNA 

being injected would have to be optimised. This was not possible within this 

investigation due to the time constraints of the project. 
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3.11  RNAi of other genes in C.elegans 

Further investigations were made using RNAi of a number of other genes in C.elegans 

which may have a neurotoxic effect in the nematode. 

The gene families investigated were the glutamate receptor genes (GluR) and the genes 

for neuropathy target esterase (NTE). 

Glutamate is an excitatory neurotransmitter present in both vertebrate and invertebrate 

species (Kawano et al, 1996). In addition to its role in synaptic transmission, glutamate 

has also been implicated in the pathophysiology of a number of neurodegenerative 

syndromes (Donevan et al, 1998). 

Neuropathy target esterase is an integral membrane protein present in all neurons and 

some non-neural cell types in vertebrates (Glynn 1999). The NTE protein is modified by 

exposure to organophosphorus esters (OP), causing inhibition of acetylcholinesterase 

(AchE), the resulting neurotoxicity can be fatal (Glynn 1999). 

By using RNAi of these genes in C.elegans it may be possible to elucidate more 

information regarding the toxicity of these genes. 

ESTs of both GluR and NTE genes were identified using the C.elegans Genome 

Database. The ESTs identified were obtained from Professor Y. Kohara (National 

Institute of Genetics, JAPAN) as phage clones. 

Table 3.4 shows the clones identified. All clones were in pBluescript SK- (Stratagene). 
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GENE  Clone Name  Insert Size  Total Plasmid Size 

GluR  yk87h12  2.32Kb   5.27Kb 

  yk122f9  1.26Kb   4.21Kb 

  yk420e7  2.25Kb   5.20Kb 

  yk130h3  2.62Kb   5.57Kb 

  yk250d3  2.16Kb   5.11Kb 

  yk348g10  3.23Kb   6.18Kb 

  yk440c12  1.04Kb   3.99Kb 

NTE  yk10b10  2.17Kb   5.12Kb 

  yk248e4  1.09Kb   4.04Kb 

  yk232g6  2.45Kb   5.40Kb 

Table 3.4 GluR and NTE ESTs. Identified from C.elegans database and obtained as phage 
clones from Y. Kohara (National Institute of Genetics, JAPAN). 
 
Clones were subjected to phage excision (methods, section 2.3) to yield clones in 

pBluescript SK-. 

Plasmids were linearised by restriction digest with PvuII as described in Methods (section 

2.2.9). PvuII was used as it removed the cDNA insert from each plasmid and could be 

used for both T7 & T3 polymerase driven transcriptions (methods, section 2.2.15). 

In vitro transcription was carried out on each plasmid and the cRNAs used to generate 

dsRNA complementary to the genes of interest. 

10 N2 C.elegans were microinjected with 100µg/ml dsRNA for each clone being tested. 

Injected animals were transferred to standard NGM plates and allowed to lay eggs for 5 

hours at 20oC to expel pre-injection fertilised eggs. 

Worms were transferred to new NGM plates after incubation and the F1 progeny grown 

to the L4 larval stage. 
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Control worms were also injected with UHP H2O as a negative control and tra-2 dsRNA 

as a positive control. 

F1 progeny were analysed for change in phenotype, this data is shown in Table 3.5. 

 

dsRNA Injected  n  F1 progeny with change in Phenotype 

UHP H2O   10  0 (all remain with N2 morphology) 

Tra-2    10  10 (all show male phenotype) 

yk87h12   10  0 (all remain with N2 morphology) 

yk122f9   10  0 (all remain with N2 morphology) 

yk420e7   10  0 (all remain with N2 morphology) 

yk130h3   10  0 (all remain with N2 morphology) 

yk250d3   10  0 (all remain with N2 morphology) 

yk348g10   10  0 (all remain with N2 morphology) 

yk440c12   10  0 (all remain with N2 morphology) 

yk10b10   10  0 (all remain with N2 morphology) 

yk248e4   10  0 (all remain with N2 morphology) 

yk232g6   10  0 (all remain with N2 morphology) 

Table 3.5 Change of phenotype present in F1 progeny of C.elegans injected with dsRNA 
corresponding to a number of different genes. 
 

Data obtained from the RNAi experiments show that UHP H2O has no effect on the 

phenotype of injected worms F1 progeny. The positive control of tra-2 dsRNA shows a 

100% change in phenotype from hermaphrodite worms to all being male in sex; these 

data support that already shown in sections 3.6.3.1 & 3.6.3.2. 

No change in physical phenotype was seen in any of the GluR or NTE dsRNA injected 

C.elegans progeny. This though does not mean that there is no change in phenotype 



 126 

taking place, often phenotypic changes are subtler and can be elucidated by behavioural 

assays or electronmicroscopy of particular tissues. 

Further investigations into possible assays for identifying phenotypes in GluR and NTE 

dsRNA injected C.elegans were not possible due to time limitations involved in this study. 
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Chapter 4.   Discussion. 

 

The nematode worm Caenorhabditis elegans has a simple, yet uniquely well described, 

nervous system. The complete cell linage and a “wiring” diagram from serial section 

electron micrographs that show the synapses between neurons (Bargmann, 1998) are two 

elements, which contribute toward the wealth of information available about the 

nematodes nervous system. One area in which C.elegans, and its nervous system, has been 

used as a model system, is in the studying of the mechanisms involved in 

neurotransmission. Much work has used C.elegans to study synaptic vesicle release 

(Iwasaki et al, 1997; Nonet et al, 1997; Nonet et al, 1998; Zhao & Nonet, 2001). One of 

the aims of this thesis is to examine the role of Black Widow Spider Venom (BWSV) 

when used as a tool for studying neurotransmission in C.elegans, as the toxins contained in 

the venom are known to stimulate the release of neurotransmitters (Rash and Hodgson, 

2002). 

 

 

4.1  Microinjection of black widow spider venom kills C.elegans 

BWSV causes neurotransmitter release in vertebrate, insect and crustacean nerve 

terminals (Frontali et al, 1976) due to the presence of high molecular weight proteins, the 

latrotoxins (Krasnoperov et al, 1992). However, there are no published reports of the 

effects of BWSV on C.elegans. Figure 3.2 clearly shows the response of C.elegans to BWSV 

over a range of venom concentrations. 

Over a million-fold concentration range, BWSV was acutely toxic to C.elegans after 

microinjection. The reason for injecting the venom into the worms are; previous 

unpublished data (Bell & Mee) show that steeping or soaking worms in venom does not 
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result in toxicity, suggesting that the venom does not penetrate the tough outer cuticle of 

the worm. 

The toxic effects of the venom caused death in the injected worms, 100% lethality was 

seen in all worms at each concentration with control showing 0% toxicity. This data 

illustrates a potent action of the venom in the nematode. Therefore, over a million-fold 

dilution (0.12-1200µg/ml) of BWSV there is 100% lethality taking place. This potent 

killing effect does not permit the calculation of an LD50 for the venom in C.elegans. 

Lowering the concentrations of venom further in an attempt to calculate an LD50 was 

not possible because at lower concentrations the toxic response from the venom was 

highly variable. This may be due to instability of proteins at these concentrations or to 

non-specific absorption to plastic or glass containers during experimental procedures. 

Lack of an LD50 for C.elegans toxicity makes a comparison with BWSV toxicity in other 

animals somewhat difficult. The most potent toxic component of BWSV is the insect-

specific toxin α-latroinsectotoxin which in the larvae of Galleria mellonella has an 

LD50=15µg/kg (Grishin, 1998). The levels of toxicity seen in C.elegans show 100% 

lethality at concentrations as low as 1.2ng/ml, this shows that the toxicity of whole 

venom in C.elegans is many times higher than that seen for a purified toxic component 

injected into its particular species, making C.elegans a highly sensitive measure of BWSV 

toxicity. 

This indicates that a component of black widow spider venom is acting on C.elegans and 

causing a toxic response. This may suggest that there is a common mechanism of action, 

as seen in vertebrates with α-LTX. However, it is necessary to characterise this toxic 

element to determine if there is any shared mechanism of action. 

BWSV presumably causes death in C.elegans by excitation of all neurons in the worm 

leading to massive neurotransmitter release, paralysis and then death. This is supported 
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by the observation that after BWSV injection, C.elegans develop a rigid straightening of 

the body before they die. They also show no response to touch, as if the muscles in the 

body wall have developed a type of “tetanus”. This massive release of neurotransmitters 

is probably enough to cause death, the neurotransmitter acetylcholine is known to be the 

primary excitatory neurotransmitter in the worm and is also vital for life (Riddle et al, 

1997) deficiencies in acetylcholine caused by pharmacological agents such as aldicarb 

cause paralysis and death in C.elegans. This is probably the same thing that happens with 

BWSV. Alternative scenarios to this method of BWSV induced killing include the 

possibility of the venom components inhibiting binding of the natural ligand to an 

important receptor in C.elegans, resulting in the prevention of an important physiological 

function taking place, which ultimately leads to the death of the worm. To investigate 

what the actual mechanism of BWSV induced killing is, electron microscope (EM) 

sections of synapses in C.elegans could be compared in worms that have been exposed to 

BWSV and those that have not. A classic response to BWSV in mammals is the lack of 

synaptic vesicles in the pre-synaptic membrane caused by the venom, which can be seen 

by EM section. If BWSV induced death is consistent in C.elegans as it is in mammals then 

worms, which were not exposed, to venom would have vesicles present in the pre-

synaptic membrane whereas those exposed to BWSV would not. 

 

 

4.2  BWSV toxicity in C.elegans is caused by a protein 

The major constituents of spider venoms are protein, polypeptide and polyamine 

neurotoxins, enzymes, nucleic acids, free amino acids, monoamines and inorganic salts 

(Rash and Hodgson, 2002). In BWSV, separate components of the venom are active 

against mammals, insects and crustaceans, but each of the toxins is known to be a high 

molecular weight protein of which all are 100kDa or more in size. Indeed, even toxin 
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components of the same class vary in size, the insectotoxins range from 110kDa for δ & 

ε toxins to 140kDa for β insectotoxin, (Krasnoperov et al, 1992) though all of these 

components are high molecular weight proteins. 

If the mechanism of action of BWSV was conserved, it would be predicted that the 

component of the venom, which is lethal to wild-type C.elegans, is also a high molecular 

weight protein. Therefore, venom was treated with denaturing agents as a preliminary 

determination of the role of the proteins in BWSV. The agents used were heat (Figure 

3.3) and SDS at a concentration of 0.1% (Figure 3.4). 

Both heat treatment and SDS treatment cause protein denaturation by breaking the 

bonds, which hold together the secondary and tertiary structure of the protein, and this 

change in structure causes a change in function. Both of these treatments caused the 

complete ablation of the toxicity seen in C.elegans, strongly suggesting that the active 

component, which caused the toxicity, is a protein. This component could therefore be a 

latrotoxin, though this experiment does not indicate whether the active component is a 

high or low molecular weight protein. 

These data also show that denaturation by both chemical and thermal agents leads to 

venom denaturation. Proteins can be degraded by other methods; indeed, latrotoxins 

themselves are thought to be cleaved while in the venom gland of the spider by 

endoproteases (Sudhof, 2001) to give the mature 120kDa protein (Dulubova et al, 1996). 

An additional approach to reinforce this experimental question would involve using 

proteases, which could also be used to degrade BWSV, to see whether cleaving the high 

molecular weight protein has an effect on the potency of the venom in C.elegans. 

Therefore, the component of venom, which causes toxicity in C.elegans, is a protein, but 

the data does not indicate if this is a high molecular weight protein such as a latrotoxin. 
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4.3  Purified αααα-latrotoxin has no toxic effect on C.elegans 

BWSV contains a number of different components, which have already been identified 

(Krasnoperov et al, 1992). So far, seven separate active components of BWSV have been 

identified and isolated (Grishin, 1998) these are α-latrocrustatoxin (α-LCT), a crustacean 

specific protein, five insect specific proteins, α-latroinsectotoxin (α-LIT), β-

latroinsectotoxin (β-LIT), γ-latroinsectotoxin (γ-LIT), ε-latroinsectotoxin (ε-LIT), δ-

latroinsectotoxin (δ-LIT), and one vertebrate specific protein α-latrotoxin (α-LTX). The 

abundance of components in BWSV shows the specificity of the venom to a number of 

species. It would be expected that insect specific toxins would be most abundant as these 

are the main prey of the spiders but it is more surprising that the venom should contain 

crustacean and vertebrate specific toxins, though these may have evolved as defence 

mechanisms. 

The specificity of α-LTX, which makes it the only venom protein toxic to vertebrates 

(Frontali et al, 1976), was examined with the injection of purified α-LTX into C.elegans. 

Figure 3.5 shows that while crude BWSV of a concentration of 1.2µg/ml causes 100% 

lethality in a population of wild-type C.elegans, injection of purified α-LTX at 240µg/ml 

causes no toxicity (0% lethality) in wild-type C.elegans. This data shows the specificity of 

α-LTX to vertebrates because it caused no response in the invertebrate worm, while total 

venom showed the high levels of toxicity seen in previous experiments contained in this 

thesis.  

This data also shows that a different component of BWSV is responsible for the toxic 

effects of the venom seen in C.elegans, which may therefore be α-LCT, one of the 

insectotoxins or perhaps a new venom component that has yet to be separated or 

identified. The components of BWSV described already have been separated by 



 

 132 

chromatographic fractionation. A similar method was used to identify the specific venom 

component, which causes the toxic effects that have been observed in C.elegans. 

 

 

4.4  Identification of a component of BWSV toxic to C.elegans 

Size exclusion chromatography separates the component proteins in BWSV by size. 

Eluted fractions from the column were tested for their toxic effects in C.elegans by 

microinjection of a sample of the fraction into wild-type worms. The response of 

C.elegans was analysed as in previous experiments into the toxicity of BWSV in the 

nematode. Five worms were tested for each separated fraction from the column and the 

% lethality plotted on the chromatograph for each fraction. 

Peak toxic fragments correspond to eluted proteins of a size of >158kDa. This shows 

the presence of high molecular weight proteins, which are toxic to C.elegans. If, the 

mechanism of action of venom components is conserved then the venom component 

toxic to C.elegans should also be a high molecular weight protein. This data supports that 

theory; and validates the use of a size exclusion column to purify the venom and 

eliminate any low molecular weight contaminants, i.e., those of under 70kDa in size. The 

data in Figure 3.7 shows that fractions containing low molecular weight proteins have 

negligible toxicity in C.elegans. Analysis of the protein content of these fractions by 

electrophoresis shows that the early eluted fractions from the column, may contain high 

molecular weight proteins, but these show little toxicity in C.elegans. Those of a size of 

around 200-100kDa in fractions 9-12 which show the highest lethality correspond to 

when latrotoxins would be expected to be eluted from the column. These fractions do 

still have some low molecular weight contaminants, which could be associated with the 

toxicity seen in C.elegans. Yet fraction 14, which has no high molecular proteins, showed 

0% lethality in C.elegans (data not shown), this reinforces the argument that high 
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molecular weight latrotoxins are responsible for BWSV toxicity in C.elegans. Though 

fractions 9 & 10 are those with peak toxicity, it is fractions 11 & 12 which have a 

molecular weight of ~100kDa. However, PAGE analysis of the fractions shows that the 

apparent protein sizes in fractions 9 & 10 are similar to those in 11 & 12. This can be 

explained by dimerisation of the latrotoxin monomers to form dimers of 200 – 280kDa, 

as is known for α-LTX (Ashton et al, 2000). 

Pooled toxic fractions 9, 10, 11, 12 from SEC chromatography were separated on UnoQ 

column using the method of Krasnoperov (1992). Toxicity of eluted fractions from the 

UnoQ column was again tested by injection into wild-type C.elegans. 

The method of Krasnoperov (1992) contains two purification steps by MonoQ column, 

whereas the approach used in this thesis uses SEC to eliminate contamination by low 

molecular weight proteins, followed by the initial MonoQ separation as per the 

Krasnoperov (1992) method. A comparison of the chromatograph produced in Figure 

3.9, with the chromatograph produced in Krasnoperov (1992) allows the lethality peaks 

from the C.elegans injections to be compared with the positions of proteins eluted in the 

same order, and the same relative abundance as those in Krasnoperov (1992). 

Ion exchange chromatography revealed the presence of multiple proteins of high 

molecular weight (~120kDa), which were toxic to C.elegans. Peak toxicity from UnoQ 

separation is in Fractions 16 & 22, with Fraction 16 having 80% lethality and Fraction 22 

100% lethality. The order of eluted latrotoxins from Krasnoperov (1992) shows initial 

fractions containing latrocrustatoxins, followed by latroinesctotoxins and finally the 

vertebrate specific toxin α-latrotoxin, though the later fractions containing LTX has also 

δ-LIT present. Fractionation of SEC separated toxin on UnoQ would be expected to 

elute Latrotoxins in the same order with the same relative abundance as those in 

Krasnoperov (1992). Therefore, the proteins eluted early from the UnoQ column should 

be associated with LCT, toxicity data shows that early-eluted fractions show little 
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nematode lethality (20%, Fraction 10). Proteins eluted in the middle of the column run 

show the highest levels of toxicity and it would be interesting to determine if these 

fractions correspond to the insectotoxin fractions described by Krasnoperov (1992), 

although we have not during the scope of this thesis been able to determine this. It is 

unclear if the most toxic fraction (22) corresponds to the fraction containing α-LTX and 

δ-LIT. Testing of this fraction for vertebrate activity would show that the toxin had been 

separated in this fraction. However, direct testing of purified α-LTX showed it is not 

toxic to C.elegans, and so it may be that δ-LIT, or an unidentified protein, are responsible 

for toxicity to C.elegans. Analysis of the toxic fractions by PAGE shows an abundance of 

high molecular weight proteins though a number of the fractions also show the presence 

of low molecular weight contaminants, which were either not fully removed by SEC, or 

arise from proteolysis. As the eluted fractions from the UnoQ column contained 

multiple proteins, a further round of purification was undertaken to isolate the 

components of BWSV that showed toxicity in C.elegans. 

Krasnoperov (1992), followed a program of initial MonoQ separation of venom at pH8, 

fraction B from this column fractionated toxins showing insect specific toxicity, by 

further purifications of fraction B, first using MonoQ at pH5.8 and then MonoS at 

pH6.2, Krasnoperov separated two insect specific toxins named γ & ε-LIT. 

Identification of medium-salt fractions from our UnoQ column (Figure 3.9 & 3.10) 

allowed these fractions (14-16) to be pooled and separated using UnoS at pH6.2. Data 

generated in Figure 3.11 shows a significant reduction in the toxicity of the eluted 

fractions than those fractions, which were tested after separation on UnoQ. No fraction 

showed a higher lethality than 40% after a 1:500 dilution, and this activity was present 

principally in two fractions, 15 and 19. Fraction 15 when analysed by PAGE shows that 

separation has produced a high molecular weight protein with a molecular mass of 
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~115kDa, with no low molecular weight contaminants. The separation of γ and ε-LIT 

using a similar method show striking similarities (Krasnoperov et al, 1992). Both elute as 

a medium salt pool from an anion exchange column, and γ-LIT elutes just before ε-LIT 

on subsequent cation exchange chromatography at moderate salt concentration (ca. 

0.2Molar) (Krasnoperov et al, 1992). γ-LIT is noticeably bigger than ε-LIT (120 Vs 

110kDa), and ε-LIT is markedly more abundant than γ-LIT. These proteins are very 

similar to the proteins eluted from the UnoS at fractions ~12 and 15 respectively, they 

have a similar molecular mass and are eluted with the same relative abundance as the 

protein in fraction 15, though due to the later elution position of fraction 15, it would 

appear that the toxic component is probably the later eluted toxin ε-LIT which comes 

off the UnoS column at 0.26M NaCl compared to 0.2M NaCl for γ-LIT (Krasnoperov et 

al, 1992). Fraction 19 also shows 40% lethality upon microinjection into C.elegans this 

contrasts with other studies where, there are no toxic BWSV components purified this 

late in the salt gradient, toxicity in C.elegans from this fraction may be due to a latrotoxin 

which is not toxic to other organisms. Therefore, purification of BWSV using FPLC has 

identified a component of venom fraction 15, which is both toxic in C.elegans when 

microinjected, but also homogenous when analysed on PAGE (Figure 3.13), 

demonstrating that it is a high molecular weight latrotoxin which mediates toxicity in 

C.elegans. 

Comparison of toxic fractions taken at each stage of the venom purification was further 

compared by LDS-PAGE. Unfractionated BWSV, venom after SEC, low and high salt 

kill peaks from UnoQ, and Fraction 15 from UnoS was compared. Neat BWSV shows 

the presence of many high and low molecular weight proteins as expected of this 

complex mixture. SEC shows the removal of low molecular weight contaminants leaving 

proteins of molecular weights in excess of 97kDa only, effectively leaving all the 
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latrotoxins. Low and high salt kill peaks show similar components, though there does 

appear to be some low molecular weight proteins still present in the high salt kill peak. 

UnoS yields a protein, which is 110kDa in size (Figure 3.13), which we have shown has 

similar chromatographic properties to ε-latroinsectotoxin (Figure 3.11). 

It would seem that the fraction of BWSV toxic to C.elegans is an insectotoxin though we 

have not tested the fractions in insects, toxicity to C.elegans is ~1-2µg/kg which is much 

greater than the toxicity of ε-LIT in insects which has an LD50~1000µg/kg. The toxicity 

of ε-LIT to C.elegans does not appear to be a feature common to all latroinsectotoxins, 

since a fraction (12) putatively containing α-latroinsectotoxin had only marginal toxicity 

to C.elegans (Figure 3.9), although Krasnoperov (1992) found it to be highly potent 

against insects with an LD50~15µg/kg. 

The data generated has allowed the separation of numerous latrotoxin venom 

components, which are not toxic to C.elegans, and, is consistent with the widely accepted 

view that latrotoxins show pronounced species-specificity, and more importantly shows 

that specific high molecular weight latrotoxins are responsible for the toxicity of BWSV 

to C.elegans. Purification of low salt peak fraction from UnoQ separation on UnoS 

column produced the homogenous component of BWSV toxic to C.elegans. Further 

analysis though could be made on the high salt peak fraction from the UnoQ column 

(Fraction 22, Figure 3.9). PAGE of this fraction (Figure 3.13) shows it still contains 

multiple high molecular weight proteins as well as low molecular weight proteins of ~70 

& 44kDa. It is feasible that further purification of this fraction could lead to finding 

other components of BWSV with toxicity to C.elegans 

Peptide sequence analysis of the C.elegans toxic fragment separated from BWSV gave a 

total of three peptide sequences, which are shown in Section 3.3.5.2. These peptide 

sequences are somewhat difficult to interpret, as they are not complete, and are 



 

 137 

ambiguous in assigning e.g. Leu for Ile. Further MS/MS sequencing is required with a 

greater amount of protein to allow better peptide sequencing to take place, the resulting 

data would then be expected to determine the similarity of these peptides to those 

already known regarding latroinsectotoxins. The lack of a full primary sequence for ε-

LIT is a significant handicap in attempting to assign the identity of the purified protein. 

Therefore, our data from studying the effects of BWSV on C.elegans strongly suggests 

that a latrotoxin is responsible for the death caused in the worm when injected with 

BWSV. This is because we have shown that a specific component causing lethality is a 

high molecular weight protein, which is both heat and chemical sensitive and has the 

same elution properties when separated using FPLC as that of latrotoxins, which have 

been described in separate publications. This protein also shows the same properties as 

other latrotoxins when analysed on PAGE and has visual, and, chromatographic 

similarity to the previously characterised latrotoxin, ε-latroinsectotoxin. 

 

 

4.5 Latrophilin gene in C.elegans 

Data generated in this thesis has shown that the venom of the black widow spider is 

toxic when injected in to the nematode C.elegans. FPLC separation of the proteins in the 

venom has shown that the component responsible for this lethality in the worm is a 

protein and that this protein is a high molecular weight latrotoxin. 

This toxin is similar to a previously described insect-specific toxin with the name ε-

latroinsectotoxin. C.elegans therefore responds to latrotoxins in a similar way to 

crustaceans, insects and mammals, which have already been shown to react to BWSV 

toxicity. 
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The mammalian specific toxin, α-latrotoxin is the most studied component of BWSV 

due to its ability to cause massive neurotransmitter release at synapses (though this is true 

for both crustacean and insect toxins also), the toxin has been shown to act by a number 

of mechanisms, which are all still not fully understood. Either way, α-latrotoxin will bind 

to mammalian receptors called latrophilin/CIRL and neurexin. Therefore homologues of 

these receptors may be responsible for the mediation of latrotoxin-induced toxicity. 

Database analysis of the C.elegans genome identified a homologue for the latrotoxin 

receptor latrophilin. This homologue, named BO457.1, was identified as one of the 

secretin family of serpentine receptors. Of this family, five sub-family branches with 

homologues in C.elegans are known, they are, flamingo-cefla (F15B9.7), latrophilin-1 

(BO457.1) and 2 (BO286.2), calcitonin receptor (C13B9.4), corticotrophin releasing 

factor (ZK643.3) and secretin receptor (C18B12.2) (Mastwal & Hedgecock, personal 

communication). All of these receptors are characterised by being 7-transmembrane 

repeat and G-protein coupled receptors. Both BO457.1 and BO286.2 have similarity 

with the rat latrophilin receptor, yet BO457.1 has the greater similarity of the two. 

Overall sequence comparison of the rat latrophilin gene and BO457.1 shows identity is 

low at only ~30%, but identity to rat latrophilin at the domain defined for the binding of 

α-latrotoxin (Krasnoperov et al, 1999) is significantly higher at ~39%, this shows that 

sequence similarity is greater in domains which are associated with the binding of 

latrotoxins. The cDNA (3.045Kb) and protein structures of BO457.1 are shown in 

Figure 3.14, the cDNA encodes a 1014 amino acid peptide with a predicted pI of 7.2. 

Further comparisons of sequence identity between the rat and C.elegans latrophilin 

homologues were carried out by Pfam 6.6 alignment (Figure 3.15). These alignments 

showed further conservation between the two proteins with previously identified 

domains remaining conserved, these include a galactose-binding lectin domain and a 

hormone receptor motif at 181-240 amino-acids which contains four conserved cysteine 
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residues with the rat. A G-protein receptor Protease cleavage Site (GPS) also with four 

cysteines conserved with the rat latrophilin and a 7-transmembrane domain of the 

secretin family are present. The BLAST analysis also identified a novel sequence motif 

immediately C-terminal to the 7-transmembrane domain, containing four conserved 

cysteine residues. This domain is only 55 amino acids in length, but shows marked 

conservation, ~50% identity, with a number of higher mammalian proteins of the G-

protein coupled receptor superfamily. The function of this domain is unclear, but the 

two pairs of conserved cysteines may well be used to form a higher order structure. 

 

 

4.6 RNAi of the latrophilin gene in C.elegans 

RNAi or RNA interference is the phenomenon of gene silencing by exposure to double-

stranded RNA complementary to the gene of interest. This phenomenon was initially 

observed in C.elegans (Fire et al, 1998) but has now been observed in fungi, plants, 

invertebrates (C.elegans, Drosophilia) and vertebrates (Zebrafish, Mice) (Bosher et al, 2000). 

The reverse genetic technique allows the analysis of the gene function of the C.elegans 

latrophilin gene to take place by identification of a phenotype, using the identified gene 

sequence. 

The ~3Kb cDNA inserted into pGEM-T was used to generate dsRNA complementary 

to the latrophilin gene by in vitro transcription. Injection of the dsRNA into C.elegans 

generated a phenotype that was characterised by a number of behaviours. 

F1 progeny of the dsRNA injected worms showed a visual phenotype consisting of an 

extended gut peristalsis cycle and apparent constipation. This constipated phenotype 

corresponds to phenotypes observed in genomic knockout worms, which are associated 

with synaptic transmission and presynaptic assembly. These genes include, aex-3, dec-4, 

egl-2, 8, 10, 19, 30, 36 and exp-2, in total 25 different genes when knocked out in C.elegans 
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show the constipated phenotype. These genes are responsible for many nervous system 

functions, for example, aex-3 is a regulator of presynaptic activity related to the 

defecation cycle, and is a putative ortholog of human MAP-kinase activating death 

domain protein, MADD (Iwaski et al, 1997), egl-10 is a member of the G-protein gamma 

subunit protein family. The fact that all of these are genes associated with synaptic 

activity in C.elegans suggests that the gene for latrophilin in C.elegans is also responsible for 

some aspect of the nervous system; this is an interesting novel finding as, though 

latrophilin has been shown to be responsible for triggering uncontrolled synaptic activity 

in mammals it has not, as far as we know, been implicated in the synaptic activity of 

C.elegans until now. Further characterisation of the phenotype shows that the silencing of 

the latrophilin gene has affected the defecation cycle in C.elegans. Defecation in the 

nematode C.elegans is achieved by a cyclical stereotyped motor program, the first stage 

being the contraction of the posterior muscles (pboc), contraction of the anterior 

muscles (aboc) and then the expulsion (exp) of the gut contents (Thomas, 1990). The 

standard C.elegans defecation motor program occurs approximately every 45-50 seconds 

and is an example of a circadian rhythm in the worm (Fred Kippert, personal 

communication), the defecation oscillator consists of the aboc, pboc and exp periods, 

which were all present in the LPH RNAi worms but there was a significant increase in 

the average cycle span from ~45-50 to ~75 seconds. 

This change in defecation cycle time may be due to LPH RNAi interfering with some 

aspect of the defecation cycle which also has an effect on the ability of the worm to expel 

food from its gut. Aex-3 is related to the defecation cycle because it is a regulator of 

presynaptic activity involved in the cycle. It may be that the latrophilin gene has a normal 

function in C.elegans associated with the defecation cycle and its regulation. Any change in 

the cycles regulation could then be affecting the worms capacity to remove food from it 

gut. Conversely, silencing the latrophilin gene may cause an accumulation of food due to 
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an effect on another aspect of the worms gut regulation this food accumulation may then 

influence the length of the defecation cycle. 

 

 

4.7 Latrophilin RNAi affects C.elegans sensitivity to neuroactive 

compounds 

Another aspect of characterising phenotypes involved with the nervous system is that 

more information regarding the type of mutation can be elucidated by exposing the 

worms to a number of pharmacologically active agents and then comparing them to 

known responses seen in wild-type worms. 

Three substances were selected to test on C.elegans and LPH RNAi C.elegans. Aldicarb, an 

acetylcholine esterase inhibitor, is primarily used in behaviour studies as an indicator of 

whether a mutation is post or presynaptic in nature (Riddle et al, 1997). This is possible 

because the mutation can be classified as pre or postsynaptic in nature by two principle 

criteria. Firstly, levels of acetylcholine are usually raised in mutant worms with a 

presynaptic defect, due to the accumulation of unreleased transmitter, but will be normal 

in mutants with defects, which are postsynaptic. Mutants with postsynaptic alterations 

will be resistant to the acetylcholine receptor agonist levamisole while presynaptic 

mutants will have a normal or even raised sensitivity to levamisole. 

The normal response of wild-type worms to aldicarb or levamisole is paralysis, as any 

interference with acetylcholine, the only neurotransmitter essential for worm viability 

(Riddle et al, 1997), will at high enough concentrations induce death. 

Experiments with aldicarb and levamisole on wild type and LPH RNAi C.elegans show a 

normal response of the wild-type worms to both drugs, as concentrations increase the % 

paralysis increases until saturation occurs and all the worms are paralysed (Figure 3.25). 

LPH RNAi worms exposed to aldicarb do not show an altered sensitivity to the drug 
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compared to wild type. Worms that have a presynaptic mutation usually show an 

increased level of paralysis than that seen in wild-type, this would be expected in LPH 

RNAi worms as the receptor latrophilin is a presynaptic receptor in mammals (Sudhof, 

2001), any mutation in C.elegans would therefore be expected to confer some increased 

sensitivity to aldicarb. Exposure to levamisole shows a reduced sensitivity of LPH RNAi 

worms to the drug, resistance of a mutation to levamisole (such as Lev-1) is usually used 

as criteria for identifying mutations, which are postsynaptic. 

Therefore, the pharmacology of the latrophilin knockout worms suggests that latrophilin 

in C.elegans is involved in a postsynaptic process, whereas α-latrotoxin works on 

receptors such as latrophilin at the presynaptic nerve terminal. This is a somewhat 

confusing situation, as previous studies have used the sensitivity of mutated worms to 

aldicarb/levamisole as a method of identifying the type (post or pre) of synaptic defect 

present. It should be noted that the latrophilin gene in C.elegans is being silenced by 

RNAi, and is not a complete knockout. Specifically, RNAi is characterised as not 

working in the nervous system completely. It may therefore be that these represent 

actions in peripheral nervous tissue. Therefore, the 3045bp cDNA is being silenced, but 

as this is not a complete genomic knockout there may still be some residual activity of 

the receptors involved, and this could have an effect on the worm’s response to the 

drugs. What this data shows, is that several neuroactive agents have different effects in 

LPH RNAi worms, although it is not clear whether this is due to a direct effect on the 

nervous system. A third pharmacological agent was used on LPH RNAi worms to 

examine effects to the worm’s nervous system of silencing the latrophilin gene. 

Imipramine is a serotonin re-uptake inhibitor. Serotonin stimulates egg-laying and 

pharyngeal pumping in C.elegans (hence the use of counting pharyngeal pumps as a 

measure of the effects of imipramine) (Riddle et al, 1997). Therefore, the prevention of 

serotonin re-uptake will cause the number of pharyngeal pumps to increase with an 
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increase in drug concentration, as a greater concentration of serotonin is available in the 

synaptic cleft due to its inability to be recycled, this will therefore increase stimulation of 

the pharynx.  Exogenous serotonin can also inhibit locomotion and defecation in 

C.elegans. 

Data in Figure 3.25 (C) shows the number of pharyngeal pumps made per minute by 

wild type and LPH RNAi C.elegans when exposed to imipramine concentrations of 0-

2mg/ml. Wild type C.elegans show a drop in the number of pharyngeal pumps taking 

place per minute from ~95 for worms exposed to no drug, to ~40 for worms given 

2mg/ml, higher concentrations of imipramine were not used as complete pharyngeal 

shut-down occurs in the presence of concentrations of 5mg/ml. In LPH RNAi C.elegans 

worms show a lowering in response to imipramine, at 0mg/ml worms have a rate of 

~110 pumps per minute and at 2mg/ml a rate of ~85 per minute. The first comparison 

to make is that resting pharyngeal rates are different in the two worm populations. Like 

the defecation cycle, the pumping of the pharynx is a highly regular occurrence with the 

number of pumps per minute changing only when stimulated by the presence of excess 

food. In these experiments worms were examined on plates with no food, as this would 

not then influence the rate of pumping. LPH RNAi worms having a pharynx that pumps 

~15 times more per minute than wild type. This is significant as the pharynx is the area 

where most of the neurons in C.elegans are present. Changes in resting function here seem 

to indicate that silencing of latrophilin in C.elegans has a greater effect on the worms 

nervous system and its function than first thought. Over the range of imipramine 

concentrations LPH RNAi worms show a less resistance to the effects of imipramine 

than those seen in the wild type. The level of pumping falls in total only ~25 per minute 

over the drug range compared to ~55 in wild type, a difference of over 50%. 

The most suprising conclusion made from this experiment is that in wild type C.elegans 

you would expect to see an increase in pharyngeal pumping as this is the classical 
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response of the worm to imipramine. Instead we see a drop in pharyngeal pumping over 

the drug concentration range, perturbation of the nervous system of LPH RNAi C.elegans 

is an obvious explanation for the drop in pharyngeal pumping seen in those worms, but 

the nervous system of the wild type worms should be functioning normally. 

Impiramine does though have a complex pharmacology in mammals were it is an 

acetylcholine antagonist and also has effects on other transmitter systems such as 

acetylcholine and dopamine. It is not known whether these functions are also applicable 

to C.elegans, and whether some of these ancillary functions are having an effect on the 

worms is not known. What is clear though is that the silencing of the latrophilin gene in 

C.elegans causes a change in the sensitivity of these worms to a number of 

pharmacological substances, which helps to further characterise the mutation and 

phenotype of the latrophilin knockout C.elegans. 

As previously mentioned, serotonin inhibits locomotion and defecation in C.elegans; 

therefore imipramine should cause a decrease in both of these functions. Further 

experiments could be carried out to test this theory, as LPH RNAi worms have 

defecation cycle defects it would be interesting to see whether imipramine could have an 

effect on the cycle in these worms. These experiments could not be undertaken during 

this thesis due to the constraints of time. 

 

 

4.8 LPH RNAi C.elegans are resistant to BWSV 

Further characterisation of the LPH RNAi phenotype was undertaken by investigating 

the effect of BWSV on these worms. Our previous work has shown that BWSV is highly 

toxic to wild type C.elegans upon microinjection over a million-fold range of dilutions 

(Figure 3.2). Therefore, the effect of BWSV over the same dilution range in LPH RNAi 

C.elegans was examined.  
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LPH RNAi worms showed complete resistance to BWSV over a concentration range of 

0-1200µg/ml (Figure 3.26). The toxicity of BWSV was completely ablated by the absence 

of the latrophilin gene in C.elegans supporting our theory that latrophilin is responsible for 

the mediation of BWSV toxicity in the nematode. An interesting challenge to the 

argument that latrophilin meditates BWSV toxicity in C.elegans is the evidence that RNAi 

has a low level of penetrance in nervous tissues (Fire et al, 1998). We have shown that 

latrophilin has a role in the nervous system as silencing this gene results in changes in 

sensitivity to pharmacological agents and some behaviours controlled by the nervous 

system, if there is low penetrance of dsRNA into these tissues then you would expect 

some resistance to the effects of venom in some worms due to the latrophilin gene not 

being fully silenced. This is not the case in LPH RNAi C.elegans as they all show 

resistance to BWSV toxicity; therefore there may be some element involved in 

controlling the worm’s response to venom. Co-suppression of another gene with similar 

homology to latrophilin, for example in the transmembrane region of the receptor, may 

be responsible for BWSV mediation, the only way to test this theory would be to use a 

truncated form of the latrophilin gene without the transmembrane region and see if this 

affected sensitivity to venom in the worm. 

This further characterises the LPH RNAi phenotype in C.elegans. Worms are therefore, 

resistant to BWSV, and its active component in C.elegans, have a physical phenotype 

characterised by an expanded gut lumen, increase in defecation motor program cycle 

time, an increase in resting pharyngeal pumping and a change in sensitivity to neuroactive 

compounds which cause a known response in wild type worms. A further implication of 

the data generated by the silencing of the latrophilin gene in C.elegans shows that the 

knockout of the gene has significant effects on the normal phenotype of the worm. This 

implies that the normal function of the latrophilin receptor is required for these effects. 

Therefore, this data shows that the signalling activity of the latrophilin receptor is 
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important, and in turn, this suggests that the receptor may have a role to play in 

mediating BWSV toxicity through its signalling function in addition to the pore-forming 

ability of BWSV. 

All of these factors have been illustrated by the experiments carried out, yet the 

assumption that latrophilin is the sole regulating factor in mediating BWSV (and it 

components) toxicity in C.elegans has not been fully justified. We have also not shown 

how the latrophilin gene regulates BWSV; we have only shown that its absence results in 

a resistance of C.elegans to the previously toxic effects of the venom. Important additional 

experiments that need to be carried out include finding if BWSV binds to the latrophilin 

protein in C.elegans and also showing that it is a functional protein when expressed in 

cells. 

 

4.8.1 The process of dsRNA injection does not effect the sensitivity 

of C.elegans to BWSV 

To examine whether the process of microinjection affects the sensitivity of C.elegans to 

BWSV a gene non-related to latrophilin and BWSV was used to study BWSV toxicity. 

The gene chosen was the cytochrome P450, CYP37A1, as far as we know this gene has 

no association with latrophilin or other components of BWSV and its toxicity. 

Cytochrome P450s are enzymes responsible for detoxification of xenobiotic compounds; 

in mammals these enzymes are mostly found in the liver, the main site for chemical 

detoxification in humans (Venkatakrishnan et al, 2001). 

An EST of putative CYP37A1 was obtained from Professor Y. Kohara and this cDNA 

used as a template for double-stranded RNA production. CYP37A1 RNAi C.elegans were 

generated, close examination of these worms showed no physical phenotype, which 

could help characterise what kind of mutation had taken place. The lack of a visual 

phenotype does mean that there is little evidence that RNAi of the CYP37A1 gene in 
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C.elegans has taken place. During all dsRNA injection procedures though, a positive 

control group of tra-2 gene dsRNA injections were made in parallel to the experimental 

dsRNA injections. If any of the offspring of the tra-2 dsRNA injected adults did not 

show a tra-2 knockout phenotype (see Figure 3.22) then the experimental injections were 

discarded and not used for BWSV injection. Groups injected with CYP37A1 dsRNA in 

parallel with tra-2 groups showing 100% tra-2 phenotypes were used for BWSV injections 

CYP37A1 RNAi worms were then injected with BWSV and the toxicity in these worms 

compared to wild type worms injected with the same concentration of venom (Figure 

3.28). 

Data generated showed that CYP37A1 RNAi C.elegans show the identical response to 

BWSV injection as that seen in wild type worms. 100% of injected animals were killed by 

venom injection. Therefore, the silencing of a gene in C.elegans using dsRNA injection 

does not affect the sensitivity of the gene-silenced worms to injected BWSV. This 

eliminates the argument that the actual process of RNAi or an artefact caused by it can 

have any affect on BWSV toxicity in C.elegans. This further supports our evidence for 

latrophilin being the gene and receptor responsible for BWSV mediated toxicity in 

C.elegans. Further experiments were carried out to examine the possibility of either the 

second identified gene associated with latrophilin (BO286.2) or the gene for the neurexin 

1α homologue in C.elegans having a role in controlling BWSV toxicity in C.elegans. 

 

4.8.2 RNAi of Neurexin 1αααα homologue has no effect on BWSV toxicity 

In mammals both latrophilin and neurexin 1α can mediate the effects of BWSV toxicity 

in cells (Sugita et al, 1999). Recent experiments with neurexin 1α knockout mice have 

shown that the absence of the neurexin gene causes a decrease in the effects of BWSV, 
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when measured as glutamate release from synaptosomes (Geppert et al, 1998). This 

suggests a need for neurexin 1α and in the mediation of BWSV in mammals. 

By isolating an EST for the neurexin 1α homologue in C.elegans from Y. Kohara’s EST 

database we generated dsRNA complementary to the neurexin 1α gene and used this to 

generate Neurexin 1α RNAi C.elegans. These worms were then injected with BWSV to 

test the sensitivity of these worms to the venom (Figure 3.30). The lack of a visual 

phenotype for neurexin 1α RNAi C.elegans does mean that there is little evidence that 

RNAi of the neurexin 1α gene in C.elegans has taken place. During all dsRNA injection 

procedures though, a positive control group of tra-2 gene dsRNA injections were made 

in parallel to the experimental dsRNA injections. If any of the offspring of the tra-2 

dsRNA injected adults did not show a tra-2 knockout phenotype (see Figure 3.22) then 

the experimental injections were discarded and not used for BWSV injection. Groups 

injected with neurexin 1α dsRNA in parallel with tra-2 groups showing 100% tra-2 

phenotypes were used for BWSV injections 

Data produced shows that the silencing of the gene for neurexin 1α in C.elegans has no 

effect of the worms sensitivity to BWSV, the worms behaved as wild type worms upon 

injection, 100% of the Neurexin 1α RNAi worms were killed by the venom. 

This further illustrates that the latrophilin gene is solely responsible for BWSV toxicity in 

C.elegans, as neurexin 1α has no effect. This is in contrast to the responses seen in 

mammals where both receptors appear to be responsible, and required for the regulation 

of BWSV toxicity (Sugita et al, 1999). 

This lack of regulation may be due to the simplicity of the worm’s nervous system. 

Though there is a neurexin 1α homologue present it may not be involved with BWSV 

toxicity. The structure of neurexin is that of a cell-surface receptor, C.elegans, having a 

simple nervous system may have a different role for the cell-surface receptor, which has 
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homology with neurexin. With little scope for redundancy in the worm’s nervous system, 

the receptor may have a different role than BWSV toxicity. Nematodes are an ancient 

organism, and at some point the neurexin gene may have become redundant in the 

worm, conservation of signalling molecules in the organism though would mean that the 

homologous neurexin gene would still be present in the genome, even though it is not 

active in regulating BWSV toxicity in the worm. 

It is important to remember that homology between two genes does not guarantee 

homology of function. We have previously stated that C.elegans has a gene, which is 

related to BO457.1, this being BO286.2. It is possible that the phenomenon of BWSV 

toxicity is controlled by BO286.2 or by co-operation between BO457.1 and BO286.2. To 

test this possibility we examined the effects of BWSV on C.elegans lacking the gene 

BO286.2. 

 

4.8.3 BO286.2 has no mediatory effect on BWSV toxicity in C.elegans 

The gene BO286.2 is a member of the secretin family of serpentine receptors, of which 

BO457.1 is also a member. BO286.2 shows some similarity with BO457.1 and as it is 

also a member of the same gene family, it may well have some role to play in the 

regulation of BWSV toxicity in C.elegans. A deletion mutant lacking the gene BO286.2 

was obtained from the C.elegans Knockout Consortium, and was injected with BWSV to 

see if the deletion of this gene had any effect on BWSV sensitivity (Figure 3.31). 

BO286.2 deletion mutants showed no difference in BWSV toxicity than seen in wild type 

worms with 100% of the mutant worms showing death when injected with venom. 

This data shows that closely related genes of BO457.1 have no mediatory effect on 

BWSV toxicity. This would be expected as in mammals, only the receptors latrophilin 

and neurexin have been identified as responsible for BWSV binding and mediation, we 
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have shown that neurexin 1α has no role in BWSV toxicity in worms, it would therefore 

be highly unlikely to find a second latrophilin receptor. 

The G-protein coupled receptor BO286.2 has no effect on BWSV, again, it may have 

some homology with BO457.1 and latrophilin but it is more likely that this receptor has a 

different role in the nervous system than mediation of spider venom. 

Our data shows that latrophilin plays the primary role in mediating the effects of BWSV 

in C.elegans, it also suggests that latrophilin may have the principal role in mediating the 

effects of BWSV in mammals. There may also be some specialisation-taking place within 

the latrophilin family in mammals. In mammals, there have been three latrophilins 

identified, latrophilin-1, 2, and 3 (Sugita et al, 1998 & Ichtchenko et al, 1999). Each of 

these is differentially expressed, latrophilin-1 is found in all tissues (Sugita et al, 1998), 

latrophilin-2 in tissues outside of the brain (Sugita et al, 1998) and latrophilin-3 only in 

the brain (Ichtchenko et al, 1999). Latrophilins-1 & 2 bind the toxin α-LTX whereas 

latrophilin-3 does not (Ichtchenko et al, 1999). Therefore, C.elegans may have the ancestral 

member of the latrophilin gene family (1, 2 & 3), which has a variety of functions, but 

these functions may, over time, have become specialised to individual proteins in 

mammals. Further studies into this could include the analysis of the distribution of 

latrophilin in C.elegans (which we have already began for latrophilin) and what their 

functions are in relation to the known distributions and functions of the mammalian 

latrophilins. 

Our data shows that the receptors neurexin 1α and latrophilin-2 (BO286.2) do not have 

a role in the mediation of BWSV in the nematode C.elegans. We have yet to extensively 

prove that it is latrophilin-1 (BO457.1) that is solely required for BWSV toxicity. There 

are other genes, which may have similar homologies to specific sequences within 

latrophilin that may ultimately play a role in controlling the response to venom. In the 

mammalian model there are still aspects of the second messenger system that has not be 
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elucidated which may have a greater influence on BWSV toxicity that the receptors 

which may only be tethers for the toxin at plasma membranes. If it is the case that 

latrophilin only “recruits” the toxin to the plasma membrane and it is the toxin itself that 

then mediates an unknown intracellular mechanism then it would then appear that the 

receptors themselves might not been mediating the observed toxicities. However, my 

data shows that the latrophilin gene has an important role in C.elegans, as judged by its 

noticeable phenotype, and demonstrates that the signalling role of this gene is important. 

It is possible to address the role of the latrophilin gene as a receptor in C.elegans by 

making transgenic C.elegans lacking the endogenous gene, but expressing various mutants 

of the normal latrophilin gene. 

 

 

4.9 RNAi by dsRNA feeding shows the same effects in C.elegans 

as dsRNA injections 

Studies involving RNAi have shown that dsRNA interference can function across cell 

boundaries therefore making the site of injection non-essential for successful gene 

inactivation (Fire et al, 1998). 

This makes it possible to use RNAi either by soaking worms in a dsRNA solution 

(Tabara et al, 1998), or by feeding worms with E.coli expressing target gene dsRNA, as the 

dsRNA can be absorbed through the gut and sent to somatic tissues and the germ line 

(Timmons & Fire, 1998). We have therefore elected to examine the effects of inducing 

latrophilin RNAi on C.elegans by dsRNA feeding. 

A fragment of the latrophilin homologue in C.elegans was isolated by PCR (Figure 3.32); 

this 1.1Kb fragment has 39% identity with the latrotoxin-binding domain of latrophilin 

(Krasnoperov et al, 1999). This fragment was chosen because it lacks the 7-

transmembrane domain, removing any possibility of non-specific cross-reaction with 
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other C.elegans 7-transmembrane receptors. Feeding of the 1.1Kb fragment of LPH 

dsRNA caused 100% phenotype penetrance (Table 3.1), which is the same level of 

phenotype penetrance seen in microinjection of dsRNA (Chris Mee, data not shown). 

The phenotype observed was the same as that seen in worms injected with full-length 

latrophilin dsRNA. Though we did not test these worms for other characteristics known 

to belong to the worms such as, defecation cycle time, sensitivity to drugs and pharyngeal 

pumping. 

We did though test the effects of BWSV injection on C.elegans fed with bacteria 

containing the 1.1Kb dsRNA fragment of the latrophilin gene (Figure 3.33). Worms 

showing the LPH RNAi phenotype showed 100% resistance to the toxic effects of 

BWSV over a million fold dilution ranges. This shows that worms which have undergone 

gene silencing by either microinjection of full length LPH dsRNA or feeding of dsRNA 

complementary to the latrotoxin binding site of latrophilin both have complete resistance 

to the toxic effects of BWSV in C.elegans over a million fold dilution. 

Therefore we have shown that BWSV is acutely toxic to C.elegans and that multiple high 

molecular weight latrotoxins of ~110kDa are responsible for this toxicity in the 

nematode. We have also shown that a homologue of the gene for latrophilin, BO457.1, 

can be silenced in C.elegans and causes the worm to become resistant to the toxic effects 

of BWSV, this effect was shown to be specific to latrophilin and is not seen with a 

neurexin 1α homologue or genomic deletion mutant of the G-protein coupled receptor 

BO286.2. To add to this, worms affected by dsRNA specific to the latrotoxin-binding 

site of the latrophilin gene show the exact same response to BWSV as those worms with 

the full-length gene silenced. Moreover, RNA interference of the latrophilin gene results 

in a marked constipated phenotype, associated with an elongated defecation cycle time, 

and altered reaction to a number of neuroactive substances. 
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4.10 GFP expression studies of the latrophilin gene in C.elegans 

To study the expression of the latrophilin gene in C.elegans we used the reporter green-

fluorescent protein (GFP) as a way of visualising the areas in which the latrophilin 

protein is expressed. The gene fusion vector made contained a nuclear localised 

expression signal allowing the cell in which latrophilin is expressed to be pinpointed. 

The fusion vector made is shown in Figure 3.34. For the vector to be used to study 

expression patterns it has to be integrated into the DNA of the nematode. This was 

performed by microinjection into the gonads of the nematode; the DNA is then 

transformed into the germline of the progeny of the worm and identified by the presence 

of a dominant genetic marker (rol-6), which is transformed into the germline at the same 

time as the fusion vector. 

Transmission of this rolling phenotype is shown in Table 3.2. Initial % transmission is 

usually in the range of 1-10% (Mello & Fire, 1995). Both the experimental and control 

DNA injections have been transmitted at a frequency of 6 and 5% respectively, which is 

within the expected range for an optimised DNA injection experiment. It is necessary to 

transfer the phenotype through three generations to remove any transient transmission 

of the DNA and to establish a permanent line of mutated worms. Therefore, F1 progeny 

with the rolling phenotype were selected and their progeny (F2) analysed for the 

continued presence of the phenotype, this data is illustrated in Table 3.3. 0% 

transmission of the roller phenotype occurred in the F2 progeny preventing the 

continuation of the experiment and the opportunity to study the expression pattern of 

latrophilin in C.elegans. 

This loss of phenotype is a common phenomenon as DNA integration into C.elegans 

occurs at low copy numbers, with only a small percentage of animals fully integrating the 

cloned DNA over a number of generations. 
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Mello (1991) outlines a method for the efficient gene transfer of extrachromasomal 

sequences in C.elegans and the maintenance of these germ lines. Two major factors are 

responsible for generating an efficient gene transfer technique. The transformation of 

transient expression and heritable extrachromasomal arrays are dependent on the 

concentration of the DNA initially injected. By increasing the concentration of injected 

DNA from 12.5µg/ml to 50µg/ml, Mello saw a 4-fold increase in the % heritable 

expression in F1 progeny. Though DNA concentrations in excess of 50µg/ml show little 

increase in heritable expression, indicating the possibility that saturation has taken place. 

In the latrophilin expression injections a total of 100µg/ml of DNA was injected giving 

6% transformation, this indicates that it is not the concentration of DNA being used 

preventing the generation of heritable lines. 

The second possibility for the lack of integrated transformants is the size of the DNA. A 

large number of plasmid molecules must assemble to form a single array (Mello et al, 

1991) with around 110-165 plasmid molecules required, this may not be occurring in our 

experiments. With this in mind it should be noted that raising the initial injection 

population could therefore increase the possibility of producing a heritable transformant. 

By doubling the number of injected adults you double the possibility of generating long 

continuous plasmid molecules, which can form heritable arrays. 

This would be the next study to undertake to optimise the conditions for the formation 

of a heritable population of worms containing the LPH expression vector, but was not 

possible due to the lack of time at the end of the thesis. 
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4.11 RNA interference of other nervous system genes in C.elegans 

Further gene homologues in C.elegans were investigated using RNAi, to examine whether 

the function of other genes associated with the nervous system homologous to 

mammalian genes, which may cause toxicity. Using reverse genetics we hope to elucidate 

some of the functions involved with these genes using C.elegans as a model system. The 

phenotypes obtained from the RNAi injections of these genes are shown in Table 3.5. 

None of the glutamate receptor or neuropathy target esterase genes caused any change in 

visual phenotype in C.elegans. Though there is no apparent visual phenotype this doesn’t 

mean that there is no gene silencing taking place in the worms injected with the dsRNA. 

As has been shown in this thesis, phenotypes may be far more subtle, with characteristics 

such as variations in body functions such as pharyngeal pumping, defecation cycle, egg 

laying and male-mating behaviour, all of these functions often are affected when the 

worms nervous system is disrupted. More subtle changes than these may have taken 

place as well, changes in the worms responses to pharmacological agents along with 

microscopic changes in the nervous system that can only be seen under electron 

microscopy. Other changes in the nervous system could be analysed by using 

electrophysiological tests such as the use of an electropharyngeogram. Any of these 

techniques could be used; the essence of the work is that even though a phenotype 

cannot be seen, this doesn’t mean that there has been no disruption of the genes 

function by RNAi. 

 

 

4.12 Further studies 

Further work that could help elucidate more information regarding the subjects studied 

in this thesis includes; finishing the GFP expression studies, and therefore finding the 

expression pattern of the latrophilin protein in C.elegans. 
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Further examination of the latrophilin receptor could be done on a genomic knockout, 

which would be a total gene knockout instead of the gene-silenced knockdown caused by 

RNAi. This would also reduce the time consuming nature of generating LPH RNAi 

C.elegans. Further characterisation of the latrophilin RNAi C.elegans phenotype could be 

done by using methods not involving BWSV, such as the use of Western blotting and 

immunocytochemistry along with antibodies raised to latrophilin in C.elegans, this would 

show if the protein was indeed down regulated in the worm. Electron microscopy would 

show any gross morphological changes in the worm’s nervous system, indeed a classical 

response of BWSV toxicity is the absence of synaptic vesicles in the terminal button. 

Examination of the nerves/muscles could also be done by electrophysiological tests such 

as electropharyngeograms using extracellular recordings of pharyngeal activity, especially 

as there does seem to be some change in the pharynx in LPH RNAi C.elegans, though 

further pharyngeal pumping studies are necessary. 
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